
Reliable Cloud Storage using

Hierarchical Authenticated Data Structures

by

Mohammad Etemad

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

Koç University

September, 2015

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Mohammad Etemad

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assistant Prof. Alptekin Küpçü

Associate Prof. Öznur Özkasap

Assistant Prof. Sinem Ergen

Assistant Prof. Charalampos Papamanthou

Assistant Prof. Selçuk Baktır

Date:

To my beloved wife, Saeedeh.

iii

ABSTRACT

As the hardware and smart mobile devices progress and Internet becomes pervasive,

new sets of IT services appear. These services are fed in by data and generate new data

as output. Therefore, more and more data is generated and used by enterprises and

individuals which confirms the important role of data.

Data is the most valuable asset of this era. There are several threats targeting data,

ranging from natural disasters such as fire and flood to computer viruses and crashes,

and from untrusted employees having access to data to outside adversaries.

Cloud storage offers a trusted platform to host others’ data, and brings advantages

such as cost saving, global access to data, and reduced management overhead, while

posing some disadvantages: The data owner looses the direct control over her data, and

some other unauthorized people gain access to the data.

This thesis targets providing reliable cloud storage services. The reliability is used

here for different security properties. It includes availability which means that the client

can access her data at any time and any location. We propose a scheme that supports

availability through distribution and replication, while improving search and update time

considerably. Moreover, we propose a generic framework for constructing proof of re-

trievability schemes that aim achieving availability through employing erasure-correcting

codes. It also encompasses data integrity which means that the cloud service provider

gives a cryptographic proof along with each answer he sends to the client, enabling

her to check correctness of the answer. Our schemes provide integrity in the presence

of malicious adversaries. We also investigate database outsourcing and its security re-

quirements (in a unified security definition): completeness, correctness, and freshness.

Moreover, it comprises data confidentiality, which gives the assurance that no one except

those who were determined by the client already, can access the data. We propose a

searchable symmetric encryption scheme that supports both confidentiality and integrity

for dynamic data in malicious settings.

iv

ÖZETÇE

Donanım ve akıllı mobil cihazların ilerlemesi, ve İnternet’in yaygınlanması, yeni BT

hizmetleri’nin gelişmesine sebep olur. Dolayısıyla, daha fazla veri işletmeler ve bireyler

tarafından oluşturulup ve kullanılır. Bu, verilerin toplumlarda ne kadar önemli bir rolü

olduğunu göstermektedir.

Veriler çağın en değerli varlıklarıdır. Çeşitli olaylar verileri tehdit etmektedir: Yangın

ve sel gibi doğal afetler, bilgisayar virüsleri, güvenilmeyen çalışanlar, vs.

Bulut depolama verileri tutmak için güvenilir bir platform sunuyor. Maliyet tasar-

rufu, veriye küresel erişim ve düşük yönetim yükü gibi avantajlar getiren bulut depo-

lamanın, aynı zamanda bazı kötü yanları da bulunmaktadır: veri sahibi kendi veri-

lerinin üzerine direk kontrolünü kaybedebilir, ve güvenilir olmayan başkaları verilere

erişim hakkı kazanabilir.

Bu tez güvenilir bulut depolama hizmeti sağlamayı hedeflemektedir. Burada güvenilirlik

farklı güvenlik özellikleri için kullanılmaktadır. Erişilebilirlik istemcinin bulunduğu

herhangi bir yerde ve herhangi bir zamanda, verilerine erişmesini sağlamak anlamına

gelir, bu tanımın bir parçasıdır. Biz dağıtım ve replikasyon düzeyini kullanarak, önemli

ölçüde arama ve güncelleme süresini azaltırken, erişile- bilirliği destekleyen bir düzeni

öneriyoruz. Üstelik, silinti düzeltme kodları kullanmakla hazır bulunmayı sağlamayı

hedefliyoruz. Veri bütünlüğü bulut hizmet sağlayıcı tarafından istemciye her cevap ile

birlikte cevap doğruluğunu kontrol etmek için bir kriptografik kanıt vermesi gerekir de-

mektir. Önerdiğimiz tüm planlar kötü niyetli servis sağlayıcılar varlığında bütünlüğü

sağlayabilir. Güvenilirliğin ayrı bir parçası olan veri gizliliği, önceden belirlenmiş olanlar

harici hiç kimsenin verilere erişememesi güvencesini kapsar. Biz kötü niyetli ortam-

larda dinamik veriler için gizliliğini ve bütünlüğünü destekleyen bir aranabilir simetrik

şifreleme düzeni öneriyoruz.

v

ACKNOWLEDGMENTS

My sincere appreciations goes to my advisor, Alptekin Küpçü, and my committee

Öznur Özkasap, Sinem Ergen, Charalampos Papamanthou, and Selçuk Baktır for all

their help and support throughout my PhD. I am thankful to Ertem Esiner, Handan

Kılınç, Buket Yüksel, and everyone in the Crypto group at Koç University, without

whom our office would not have been as much fun or as pleasant.

I would like to acknowledge the unconditional affection and continuous support of

my lovely wife, Saeedeh, in all my life, especially during my PhD. I see signs of her love

and support in every success I achieved. I am also grateful to my mom, Kübra. They

have always been the best inspiration in my life. Thanks are not enough to be given my

family for their endless love and support.

Finally, I acknowledge and thank the support of TÜBİTAK, the Scientific and Tech-

nological Research Council of Turkey, under grant numbers 111E019, 112E115, and

114E487, Koç University, and European Union COST Actions IC1206 and IC1306.

vi

TABLE OF CONTENTS

List of Figures xii

Nomenclature xvi

Chapter 1: Reliable Cloud Storage Services 1

1.1 Hierarchical Authenticated Data Structures 3

1.2 Availability of the Outsourced Data in the Cloud 3

1.3 A Generic Dynamic PDP Model . 4

1.4 Database Outsourcing using Hierarchical ADSs 5

1.5 Verifiable Dynamic Searchable Symmetric Encryption 7

1.6 Generic Dynamic Proofs of Retrievability 8

1.7 Organization . 9

Chapter 2: Preliminaries 10

Chapter 3: Hierarchical Authenticated Data Structures 12

3.1 Authenticated Data Structures . 12

3.1.1 ADS Constructions . 14

3.1.2 ADSs with Especial Properties 17

3.2 Hierarchical ADSs . 18

Chapter 4: Availability of the Outsourced Data in the Cloud 20

4.1 Introduction . 20

4.1.1 Related Work . 22

4.2 DR-DPDP . 28

4.2.1 DR-DPDP Architecture . 28

4.2.2 From DPDP to DR-DPDP . 30

vii

4.2.3 Security of DR-DPDP . 32

4.2.4 Efficiency . 33

4.3 Version Control using DPDP . 33

4.3.1 Common Utility Functions . 35

4.3.2 VCS Operations . 36

4.3.3 Extensions and Analysis . 38

4.3.4 Security of VCS . 40

4.4 Performance . 42

4.5 Discussion . 44

4.5.1 Further Analysis of the Organizer 44

4.5.2 Replicating the Organizer . 44

4.5.3 Repartitioning . 45

4.6 Conclusions and Future Work . 47

Chapter 5: A Generic Dynamic Provable Data Possession Model 48

5.1 Introduction . 48

5.1.1 Provable Data Possession . 49

5.1.2 Authenticated Data Structures 50

5.1.3 Observations . 50

5.1.4 Our contributions . 52

5.2 Background . 53

5.2.1 Related Work . 53

5.3 Dynamic Provable Data Possession . 56

5.3.1 Dynamic Provable Data Possession Definitions 56

5.4 Explicitly- and Implicitly-ordered ADSs 59

5.5 Basic DPDP Construction . 59

5.5.1 Explicitly-ordered ADSs . 59

5.5.2 Implicitly-ordered ADSs . 62

5.5.3 Operation Complexities of the Ordered ADSs 65

5.5.4 DPDP from Implicitly-ordered ADSs (Basic Construction) 67

viii

5.5.5 Security of the Basic DPDP Construction 68

5.6 Efficient Dynamic Provable Data Possession 69

5.6.1 Tag Schemes . 71

5.6.2 Efficient DPDP Construction . 75

5.6.3 Security of the Efficient DPDP 76

5.7 Generalization and Comparison . 78

5.8 Conclusion . 78

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data

Structures 80

6.1 Introduction . 80

6.1.1 Related Work . 83

6.1.2 Overview of Our Solution . 89

6.2 Hierarchical Authenticated Data Structures 91

6.2.1 HADS Construction . 92

6.2.2 HADS Operations . 93

6.3 Outsourced Database Scheme . 94

6.3.1 Definitions . 95

6.3.2 Generic ODB Construction . 97

6.3.3 Illustrative Examples . 100

6.3.4 Tables with Composite Keys . 105

6.3.5 Efficient ODB Construction . 106

6.4 Join . 108

6.4.1 Overview . 109

6.4.2 Two-way Join . 110

6.4.3 Queries with Join and Selection 113

6.4.4 Multi-way Join . 114

6.4.5 Special joins . 117

6.5 Analysis . 120

6.5.1 Security . 120

ix

6.5.2 Distribution Among Multiple Servers 121

6.5.3 Privacy . 122

6.5.4 Performance . 123

6.6 Conclusion . 128

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 130

7.1 Introduction . 130

7.1.1 Related Work . 131

7.1.2 Preliminaries . 135

7.1.3 Our Model . 135

7.1.4 Overview of Our Solution . 137

7.1.5 Our Contributions . 141

7.2 VDSSE: Verifiable Dynamic Searchable Symmetric Encryption 142

7.2.1 Security Description . 142

7.2.2 VDSSE Definition . 143

7.3 Construction . 147

7.3.1 Search . 149

7.3.2 File Addition . 150

7.3.3 File Deletion . 151

7.3.4 File Modification . 151

7.3.5 Boolean Search . 152

7.4 VDSSE in the Standard Model . 156

7.5 Analysis . 158

7.5.1 Security Proof . 158

7.5.2 Comparison to Previous Work (Asymptotic) 159

7.5.3 Performance Analysis . 161

7.5.4 First scenario: small number of large documents 161

7.5.5 Second scenario: large number of small documents 164

7.5.6 Standard model . 166

7.6 Conclusion . 167

x

7.7 Security Proof . 168

7.8 Security Proof in the Standard Model . 172

7.9 Detailed Construction of Our VDSSE . 173

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 176

8.1 Introduction . 176

8.1.1 Related Work . 179

8.1.2 Preliminaries . 181

8.2 Informal Technical Overview . 182

8.2.1 Observations . 182

8.2.2 Overview of Our Solution . 184

8.3 Erasure-Coded Authenticated Log . 185

8.3.1 Security Definition . 187

8.3.2 Generic ECAL Construction . 188

8.3.3 Existing Configurations of the Buff 190

8.3.4 Equibuffers Configuration . 192

8.3.5 ECAL Protocols . 193

8.3.6 Optimized ECAL Construction 194

8.3.7 ECAL Efficiency . 198

8.3.8 ECAL Security Proof . 199

8.4 Dynamic Proof of Retrievability . 201

8.4.1 Dynamic PoR using ECAL . 201

8.4.2 Dynamic PoR Security Definitions 203

8.4.3 DPoR Construction . 203

8.4.4 Dynamic PoR Security Proof . 205

8.4.5 Comparison to Previous Work . 205

8.5 The Impact of Client Storage . 207

Chapter 9: Conclusion and Future Directions 208

Bibliography 210

xi

LIST OF FIGURES

3.1 A Merkle hash tree. 14

3.2 (a) An authenticated skip list with six items and (b) Verifying proof of d2. 15

3.3 Updating the rank-based authenticated skip list. 16

3.4 A persistent rank-based authenticated skip list. Hatched nodes are for old

version, filled in nodes are for new version. 17

3.5 A two-level HADS. 18

4.1 The DR-DPDP architecture. 29

4.2 Our VCS architecture. 34

4.3 Information stored in a PDP block. 36

4.4 (a)Branching, (b)PDP block structure, and (c)merge. 38

4.5 Update and challenge times in DPDP and DR-DPDP. 42

5.1 (a) A file and its PDP tags, and (b) a new block inserted at the ith position

(indices and tags not updated). 49

5.2 Our model. 58

5.3 (a) An explicitly-ordered Merkle hash tree, (b) with f3 being deleted. . . 60

5.4 (a) An explicitly-ordered authenticated skip list, (b) with f3 being deleted. 60

5.5 (a) An Explicitly-ordered authenticated skip list, (b) with f4500 being added. 61

5.6 An Implicitly-ordered Merkle hash tree, (b) with f3 being deleted. 62

5.7 (a) An implicitly-ordered authenticated skip list, (b) with f3 being deleted. 63

5.9 (a) An implicitly-ordered FlexList, (b) with a 2K block f3 being added. . 63

5.8 Storing data at intermediate nodes as well. 63

5.10 An authenticated AVL tree (a) before and (b) after a single rotation. . . 66

5.11 Partitioning in general. 66

5.12 Constructing a DPDP scheme using an implicitly ordered ADS. 68

xii

5.13 Proofs generated using the (a) basic and (b) efficient DPDP schemes. . . 70

5.14 Construction of an efficient dynamic provable data possession scheme. . . 76

6.1 Our sample database. 81

6.2 The result set of the query SELECT * FROM Student WHERE StdID > 105. 81

6.3 Hash chaining. 87

6.4 Server architecture. 90

6.5 (a) An ADS storing the PK column of the Student table, and (b) the

membership proof for the query SELECT StdID FROM Student WHERE StdID

> 105. 91

6.6 HADS constructions to store security information for a database. 92

6.7 The ODB model. 95

6.8 A comparison of proof generation and proof sizes in an ADS and an HADS.101

6.9 Proof of SELECT * FROM Student WHERE major=‘CS’ and stdId=103. . 102

6.10 Proof verification for vo= ‘h1, h2,h(104),105,106,107,108,h(+∞)’. . . . 103

6.11 Storing the column Mark from table S2C with composite PK (stdId and

crsId). 105

6.12 HADS of stdId (from S2C). 112

6.13 Non-PK join. 113

6.14 Proof generation for T1 ona=a T2 ona=a T3. 115

6.15 Ordering graphs for different cases. 116

6.16 Non-equijoin proof generation for |T1.a− T2.a| < 3. 119

6.17 Proof generation time and proof size for one-clause queries. 125

6.18 Proof generation time and proof size for queries with two clauses. 126

6.19 Proof overhead and client verification time. 127

6.20 Proof generation time and proof size (key-based join). 127

6.21 Proof generation time and proof size (general join). 128

7.1 Our VDSSE model. 136

7.2 VDSSE structure. 137

xiii

7.3 The example scenario with three files and four keywords. 139

7.4 The indices after adding a new file f4 containing keywords w2 and w4.

The bold parts indicate the nodes affected during the file addition. 140

7.5 A small part of real construction showing leaves storing (key, value) pairs.

The upper values in boxes are the keys, and the lower ones are the values. 148

7.6 Search and verification operations on the file index. 149

7.7 File addition and deletion, and Boolean search in the first scenario. . . . 162

7.8 File modification in the first scenario. 162

7.9 Proof size and overhead in the first scenario. 163

7.10 File addition and deletion, and client verification in the second scenario. . 164

7.11 File modification in the second scenario. 165

7.12 The proof size and overhead in the second scenario. 166

8.1 Our model. 184

8.3 The server allocates more memory as new logs arrive. 191

8.2 Incremental-buff. 191

8.4 Equibuffers. 192

8.5 One-dimensional view of hierarchical configurations. 193

8.6 Server memory lay- out with nδ client local storage. 207

xiv

xv

NOMENCLATURE

ADS Authenticated Data Structures

APSI Authorized Private Set Intersection

CA Certificate Authority

CFF Common Friend-finding

CKA Chosen Keyword Attack

CPA Chosen Plaintext Attack

CSP Cloud Storage Provider

CT Certificate Transparency

DBAS DataBase Authentication System

DCSP Distributed Cloud Storage Provider

DPDP Dynamic Provable Data Possession

DPoR Dynamic Proof of Retrievability

DR-DPDP Distributed and Replicated Dynamic Provable Data Possession

DSSE Dynamic Searchable Symmetric Encryption

E2EE End-to-End Encryption

ECAL Erasure-Coded and Authenticated Log

ECC Erasure-Correcting Code

ECT Enhanced Certificate Transparency

HADS Hierarchical Authenticated Data Structures

HLA Homomorphic Verifiable Authenticators

HVT Homomorphic Verifiable Tag

KAS Key Authentication Service

MAK Message Authentication Code

MSN Mobile Social Networks

ODB Outsourced DataBase

ORAM Oblivious RAM

xvi

OSN Online Social Networks

PDP Provable Data Possession

PK Primary Key

PoR Proof of Retrievability

PPT Probabilistic Polynomial Time

PRF Pseudo-Random Function

PSI Private Set Intersection

ROM Random Oracle Model

SSE Searchable Symmetric Encryption

TPA Third Party Auditor

VCS Version Control System

VO Verification Object

xvii

Chapter 1: Reliable Cloud Storage Services 1

Chapter 1

RELIABLE CLOUD STORAGE SERVICES

New IT services are appearing with a high speed, encouraging enterprises and indi-

viduals to use and benefit from. These services help people do jobs easier, and societies

be fairer. They provide equal opportunities for all people in different areas such as

education, information access, and social activities. Due to their wide-spread use and

popularity, enterprises and individuals are becoming more and more dependent on IT

services and frameworks which are fed in by data and generate new data as output.

Therefore, more and more data is generated and used by enterprises and individuals

which confirms the important role of data.

Another important fact about data is that data needs protection which is a very

complicated task. There are several threats of different kind and motivation attacking

data. They range from natural disasters such as fire and flood to computer viruses, and

from untrusted employees having access to data to outside adversaries with different

motivation. Moreover, the devices may crash, leading to loss of the stored data.

Loss of data will affect the owner according to the owner type and data type. For

an individual, the risk it brings ranges from loss of money at his bank accounts to his

civil liberties. For an enterprise, it may put business secrets at risk, attacking its repu-

tation [66]. These express that data should be kept protected and at trusted platforms.

Neither individuals nor small- to medium-sized enterprises possess required equipments

and human resources to provide the needed protection.

Cloud storage offers such a protected platform to host others data. It is a pool of

networked computers with required software, hardware and network connections, offering

data hosting services to the customers. It can gather together the required equipment,

devices and human resources, and offer a trusted storage service to the customers that

require it but cannot prepare it by themselves.

Chapter 1: Reliable Cloud Storage Services 2

Protecting data and making it available for authorized users are the most important

concerns of any organization using IT services. Therefore, there is a universal trend

toward storage outsourcing through the cloud (e.g., Google drive, Amazon S3) which

brings advantages such as cost saving, global access to data, and reduced management

overhead. Cloud storage, however, has some disadvantages. The most important one is

that the data owner (or, the client), by outsourcing her data at a cloud storage provider

(CSP, or simply the server), looses the direct control over her data, and should rely on

what are retrieved from the server. Another important problem is that data is kept at

a different domain, and those that are not necessarily trusted have access to it.

Therefore, the client expects having an authenticated storage with guaranteed re-

trievability [28, 131] and confidentiality. Authenticated storage means that the client

can verify that each data access returns the correct value; i.e., a value which is the

most recent version of data that has already been written by the client herself. Guaran-

teed retrievability means that the client is assured that her data is retrievable; i.e., she

can retrieve all her data at any time. Confidentiality means that the data is processed

(i.e., encrypted) before being stored at the cloud. Hence, the adversary cannot induce

meaningful data with high probability, although he has access to the (processed) data.

This thesis targets providing reliable cloud storage services. The reliability is used

here for different security properties. It includes availability which means that the client

can access her data at any time and any location, supposed that the required infras-

tructure is ready. It encompasses data integrity which means that cloud service provider

(CSP) gives a cryptographic proof along with each answer he sends to the client, en-

abling her to check correctness of the answer. Moreover, it comprises data confidentiality

also, which gives the assurance that no one can access the data except those who were

determined by the client already.

More precisely, we propose a scheme that supports availability through distribution

and replication, while improving search and update time considerably, depending on

the level of distribution and replication. It also enhances the performance of the cloud

storage due to the parallelism based on distribution. The architecture and internal

working of the server are completely transparent to the client. Moreover, we use a

persistent authenticated skip list to propose a distributed version control system on the

Chapter 1: Reliable Cloud Storage Services 3

cloud. Proof of retrievability schemes also aim the availability of the outsourced data,

but they have problems with dynamism. We propose a generic method to build dynamic

proof of retrievability schemes, and investigate possible storage configurations for an

efficient solution. Regarding confidentiality, we propose a verifiable dynamic searchable

symmetric encryption supporting Boolean queries. All our schemes provide integrity in

the presence of malicious adversaries.

1.1 Hierarchical Authenticated Data Structures

The research presented in this thesis has been started by looking for authenticated data

structures (ADSs) matching the cloud architecture better. Though the tree-based ADSs

such as Merkle hash tree [99] and rank-based authenticated skip list [54] provide a balance

between search and update operation (detailed in Section 5.4), these ADSs do not match

the distributed architecture of the cloud. We study and propose the hierarchical ADSs

(HADSs) to be used in the cloud.

The advantage of the HADS is that it can be distributed at different locations at

the cloud, improving the availability and performance with a better load balancing. We

observed that HADS can be applied in other scenarios as well: database outsourcing for

solving the problem of storing duplicate values in an ADS, and searchable symmetric

encryption for supporting verifiability and Boolean search.

1.2 Availability of the Outsourced Data in the Cloud

With the growing trend toward using outsourced storage, the problem of efficiently

checking and proving data integrity needs more consideration. Starting with provable

data possession (PDP) [3] and proof of retrievability (PoR) [82] schemes in 2007, many

cryptography and security researchers have addressed the problem. After the first solu-

tions for static data, dynamic versions such as dynamic PDP (DPDP) were developed.

Researchers also considered distributed versions of such schemes. Alas, in all such dis-

tributed schemes, the client needs to be aware of the structure of the cloud, and possibly

pre-process the file accordingly, even though the security guarantees in the real world are

not improved. Moreover, this ties the client to the exact architecture of CSP, requiring

her to re-perform the whole pre-process on each change at the CSP.

We propose a distributed and replicated DPDP which is transparent to the client.

Chapter 1: Reliable Cloud Storage Services 4

It allows for real scenarios where the CSP hides its internal structure from the client,

flexibly manage its resources, while still providing provable services. The CSP decides

on how many and which servers will store the data. Since the load is distributed on

multiple servers, we observe one-to-two orders of magnitude better performance in our

tests, while availability and reliability are also improved.

Our system incurs no cost over the single-server case; it actually improves the per-

formance due to parallelism. Indeed, for a system with 100 servers and 10 replicas, our

system performs 10 times faster updates and proofs than a single-server storage. How-

ever, the asymptotic complexity of our system does not depend on the number of replicas

or partitions. Since the CSP’s architecture is completely transparent to the client, it can

be changed on-the-fly with the sole decision of the CSP and without affecting the client.

Therefore, our clients and servers are more efficient due to the transparency of the server’s

architecture. Especially, the client computation in the existing multi-replica scheme is

O(t), where t is the number of replicas, while in our scheme, the client prepares only one

copy of her data.

In addition, we use persistent rank-based authenticated skip lists to create centralized

and distributed variants of a dynamic version control system with complexity O(1 +

log n), where n is the number of blocks. We map all operations of a version control

system to the underlying cloud storage operations in a provable manner for the first

time, and show that, in many cases, the complexity of the operation is independent of

the number of versions. Moreover, we consider the multi-client scenario for a provable

version control system for the first time.

This work has been published in the 11-th International Conference on Applied Cryp-

tography and Network Security (ACNS 2013), Canada [58].

1.3 A Generic Dynamic PDP Model

Erway et al. [54] adapted the PDP model for dynamically updatable data, and called it

the dynamic provable data possession (DPDP) model. The idea is that a client outsources

her files to a server, and later on challenges the server to obtain a proof that they are kept

intact, while updating her files. During recent years, many schemes have been proposed

for this purpose, all following a similar framework.

Chapter 1: Reliable Cloud Storage Services 5

We analyze the exact requirements of dynamic data outsourcing schemes regarding

security and efficiency, and propose a general framework for constructing such schemes

encompassing existing schemes as different instantiations. We show dynamic data out-

sourcing scheme can be constructed given black-box access to an implicitly-ordered ADS

and a (homomorphic) verifiable tag scheme. We also investigate the requirements these

building blocks should satisfy, using which one can easily check applicability of a given

building block for dynamic data outsourcing. A performance comparison with different

building blocks is also given.

More precisely, we propose a generic framework for construction of efficient DPDP

schemes that describes the required components and their properties. It indicates that

efficient DPDP schemes can be constructed given black-box access to an extractable

homomorphic verifiable tag scheme and an implicitly-ordered ADS scheme. The existing

schemes [54, 145, 152, 57] are all specific cases of our general model. Moreover, we

investigate the requirements of ADSs to be used in DPDP schemes: the ADS should

be implicitly-ordered, i.e., the property used for searching the blocks inside the ADS

should not depend on the block indices. Instead, a relative indexing mechanism like

rank (the number of blocks in a subset) satisfies the requirements. We also show how

to convert an explicitly-ordered ADS into an implicitly-ordered ADS. The tag scheme

is another requirement we investigate in detail: it should be verifiable, homomorphic,

and extractable. Homomorphism helps performance by auditing without downloading

all challenged blocks, and verifiability and extractability provide security of the scheme.

We investigate two kinds of DPDP schemes: the basic scheme and the efficient

scheme. The basic scheme does not employ a tag scheme. While, the efficient one

employs extractable homomorphic verifiable tags, and is communication-efficient.

The results of this work have been prepared as a journal paper [61].

1.4 Database Outsourcing using Hierarchical ADSs

In an outsourced database scheme, the data owner delegates the data management tasks

to a remote service provider. At a later time, the remote service is supposed to answer

any query on the database. The essential requirements are ensuring the data integrity

and authenticity with efficient mechanisms. Current approaches employ authenticated

Chapter 1: Reliable Cloud Storage Services 6

data structures to store security information, generated by the client and used by the

server, to generate proofs showing the answers to the queries are authentic. The existing

solutions have shortcomings with multi-clause queries and duplicate values in a column.

We use the HADS for storing the security information that alleviates the mentioned

problems. Our solution handles many different types of queries, including multi-clause

selection and join queries, in a dynamic database. We provide a unified formal defi-

nition of a secure outsourced database scheme, and prove that our proposed scheme is

secure according to this definition, which captures previously separate properties such as

correctness, completeness, and freshness. The performance evaluation based on our pro-

totype implementation confirms the efficiency of our proposed scheme, showing about

3x to 5x improvement in proof size and proof generation time compared to previous

work, and about only 4% communication overhead over the actual query result in a real

university database.

More precisely, we achieve the following contributions: We provide a unified security

definition for an outsourced database scheme (ODB) capturing completeness, correctness,

and freshness simultaneously. These are the required security properties for database

outsourcing that are different from outsourcing a flat file. We use HADS to build a

provably-secure ODB that supports efficient proof generation for not only single-clause

but also multi-clause queries. The HADS also solves the problem of storing duplicate

values in a ADS. The resulting construction handles proofs on columns containing du-

plicate values with around 3x to 5x better efficiency, regarding both proof generation

time and size, compared to previous work that appends the corresponding PK values to

duplicate values in a column to make them all distinct.

The rationale behind our scheme is to relate all records to their respective PK values.

Therefore, our ODB construction efficiently handles proofs for join, multi-table joins, and

non-equijoins queries, and queries containing both join and selection. Our ODB provides

efficient proofs for almost all query types.

The outcomes of the work, supporting only the selection queries, has already been

published in the 16-th Annual International Conference on Information Security and

Cryptology (ICISC 2013), South Korea [59]. Later, we added support for join queries,

and submitted the full version containing all results to a reputable journal [60].

Chapter 1: Reliable Cloud Storage Services 7

1.5 Verifiable Dynamic Searchable Symmetric Encryption

To protect the privacy of the outsourced data, the data should be kept encrypted. Using

regular encryption schemes implies that the client cannot search over the encrypted data

and she should sacrifice functionality for security. Using searchable symmetric encryption

(SSE), the data is encrypted in a way that the client can later search and selectively

retrieve the required data.

A number of SSE schemes were proposed with special security and efficiency consid-

erations. The first proposals were mostly for the static and non-adaptive settings, and

then newer schemes for dynamic and adaptive settings were created. A disadvantage

common to most of the existing schemes is that they are secure only against semi-honest

adversaries, thus not meeting the practical requirements.

We propose a verifiable dynamic SSE scheme that is adaptively secure against mali-

cious adversaries and prove its security. Our VDSSE scheme guarantees the authentic-

ity and completeness of the query results in a provable manner that ensures the

client about correctness of the received result. It also protects privacy and integrity

of the documents, while enabling efficient search.

Our scheme supports file modification, which is essential for efficiently working with

large files, in addition to the ability to add/delete files. Since it is not reasonable to

download and re-upload a very large file for a small modification. In our performance

analysis, we show that the our modification reduces the communication dramatically

depending on the file size.

We also efficiently support provable Boolean search queries even in such

a dynamic setting, for any Boolean combination of keywords (not conjunction or

disjunction alone). While our main construction is proven secure in the random oracle

model (ROM), we also present the first dynamic solution secure in the standard model

with full security proof. Some of the existing works state that we their scheme in the

ROM can be easily converted into a scheme seucre in the standard model by replacing

the hash functions with pseudorandom functions. But the resulting scheme cannot be

simulated during the proof.

Our experiments show that our scheme in the ROM can perform a search within a

few milliseconds, verify the result in another few milliseconds, and has only 0.01% proof

Chapter 1: Reliable Cloud Storage Services 8

size overhead. Moreover, our standard model, while being asymptotically slower, is still

practical, requiring only a small amount of client memory (e.g., ' 488 KB) even for a

large file collection (e.g., ' 10 GB), and necessitates small tokens (e.g., ' 156 KB for

search and ' 362 KB for file operations).

The results of this work has been prepared as a journal paper [63].

1.6 Generic Dynamic Proofs of Retrievability

Together with its great advantages, cloud storage brought many interesting security

issues to our attention. Since 2007, with the first efficient storage integrity protocols

Proofs of Retrievability (PoR) of Juels and Kaliski, and Provable Data Possession (PDP)

of Ateniese et al., many researchers worked on such protocols. The first proposals worked

for static or limited dynamic data, whereas later proposals enabled fully dynamic data

integrity and retrievability.

Since the beginning, the difference between PDP and PoR models were greatly de-

bated, and there was a trend to find the possible relations among these schemes. Most

notably, it was thought that dynamic PoR (DPoR) was harder than dynamic PDP

(DPDP). Historically this was true: The first DPDP scheme was shown by Erway et

al. in 2009, whereas the first DPoR scheme was created by Cash et al. in 2013. Based

on our in-depth analysis of these schemes and deep understanding of their goals, we

express that a DPoR scheme can be built given black-box access to a DPDP [54] and

a static PoR scheme [127] (which, in turn, can be obtained from a static PDP and an

ECC scheme). This contribution is of utmost importance, as, in some sense, it means

that in 2009 when the first DPDP scheme appeared, we indeed immediately could have

had dynamic PoR schemes as well.

We propose a general framework for constructing DPoR schemes. Our frame-

work encapsulates all known DPoR schemes as its special cases. We further show prac-

tical and interesting optimizations that enable even better performance than Chandran

et al. and Shi et al. constructions. For the first time, we show how to obtain audit band-

width for DPoR independent of the data size, and how the client can greatly

speed up updates with O(λ
√
n) storage (where n is the number of blocks, and λ is

the security parameter), which is about 3 MB of client storage for 10 GB outsourced

data, and can easily be obtained in today’s smart phones, let alone computers.

Chapter 1: Reliable Cloud Storage Services 9

It is already shown by Williams and Sion [148] that adding local storage to the client

does not affect the asymptotic costs of the existing schemes [28, 131, 30]. In contrast,

we show that by dividing the outsourced memory into buffers of equal size, adding local

storage to the client does improve the update cost in our scheme.

We propose the erasure-coded and authenticated log (ECAL) as an efficient data

structure to store the update logs, in different configurations. While previous works’

reshuffling operations require O(n) temporary storage at the client for each update

[28, 131, 30], our equibuffers configuration reduces it considerably into orders available

in almost all existing hand-held electronic devices, letting us employ even mobile phones

for updating data on the cloud storage. (A rebuild still requires large client memory,

e.g., a computer, but needs to be done only once every O(n) updates.) We consider a

client storage of size O(λ
√
n) which is about 3 MB for 10 GB outsourced data. This is a

reasonable assumption since most of hand-held electronic devices today have more than

3 MB local memory. Thus, without the need for large reshuffling memory, our protocol

may even be used by smart phones for updating data (e.g., now you can update

a text file on your secure Dropbox on the go).

These findings are prepared for publication in our recent paper ‘Generic Efficient

Dynamic Proofs of Retrievability’ [62].

1.7 Organization

The organization of this thesis follows the organization of this chapter.

Chapter 2: Preliminaries 10

Chapter 2

PRELIMINARIES

Notation. We use x← X to denote that x is sampled uniformly from the set X, |X|

to represent the number of elements of X, and || to show concatenation. PPT denotes

probabilistic polynomial time, and λ is the security parameter.

A function ν(λ) : Z+ → [0, 1] is called negligible if ∀ positive polynomials p,∃

constant c such that ∀ n > c, ν(λ) < 1/p(n). Overwhelming probability is greater than

or equal to 1− ν(λ) for some negligible function ν(λ). By efficient algorithms, we mean

those with expected running time polynomial in the security parameter.

Hash functions are functions that take arbitrary-length strings and output strings

of some fixed length, and the goal is to produce random-looking outputs and to avoid

collisions. In a hash function H, the collision is defined as a pair of distinct inputs x

and x′, i.e., x 6= x′, that is mapped to the same hash values, i.e., H(x) = H(x′) [87, 123].

Let h : K ∗M → C be a family of hash functions, whose members are identified by

k ∈ K. A hash function family is collision resistant if ∀ PPT adversaries A,∃ a negligible

function ν(λ) such that: Pr[k←K; (x, x′)←A(h, k) : (x′ 6= x)∧ (hk(x) = hk(x
′))] ≤ ν(λ),

where λ is the security parameter of the hash function family (e.g., related to |k|).

Collision resistance implies second-preimage resistance [123]. For simple notation, we

omit the family and use h for hk.

We show a file f divided into n blocks as f=(f1||f2||...||fn), and use fi to refer to

the ith block of the file. We store the blocks and their corresponding hash values on the

server, therefore, we require the hash function to be collision resistant.

Pseudo-random function (PRF). Let GenPRF(1λ) ∈ {0, 1}λ be a key genera-

tion function, l the keyword length and l′ the encrypted keyword length, F : {0, 1}λ ×

{0, 1}l→{0, 1}l′ be a family of pseudorandom functions, and F ′: {0, 1}l→{0, 1}l′ be the

family of all functions mapping l-bit strings to l′-bit strings. Define Fs : {0, 1}l →

{0, 1}l′ as Fs(x)=F (s, x). F is a pseudorandom function family if ∀ PPT distinguish-

Chapter 2: Preliminaries 11

ers D, ∃ a negligible function ν(λ) such that: |Pr[s←GenPRF(1λ) : DFs(.)(1λ)=1] −

Pr[f ′←F ′:Df ′(.)(1λ)=1]|≤ν(λ). For formal CPA and PRF definitions, refer to [41, 87].

A symmetric-key encryption scheme is defined as three PPT algorithms SKE =

(Gen,Enc,Dec) such that:

• k ← Gen(1λ): is the key-generation algorithm that given the security parameter λ

as input, outputs a key k.

• c← Enc(k,m): is the encryption algorithm that on input the key k and a message

m returns the corresponding ciphertext c.

• m = Dec(k, c): is the decryption algorithm that takes the key k and ciphertext c

as input and gives the message m.

We require SKE to be CPA-secure, which informally means that the scheme leaks no

information to an adversary with access to an encryption oracle. For formal definition

of CPA-security, refer to [87].

A signature scheme is a scheme for preserving message integrity, consisting of the

following PPT algorithms [71]:

• (sk, vk)← Gen(1λ): generates a pair of signing and verification keys (sk, vk) using

the security parameter λ as input.

• σ ← Sign(sk,m): generates a signature σ on a message m using the key sk.

• {accept, reject} ← Verify(vk,m, σ): checks whether σ is a correct signature

on a message m, using the verification key vk, and outputs an acceptance or a

rejection signal, accordingly.

Interactive protocols. We present our key authentication scheme as a set of in-

teractive protocols between stateful clients and stateful servers, instead of separately-

executed algorithms. Each protocol may receive inputs from both parties and may

output some data at both parties. Hence, we represent a protocol as protocolName

(outputclient)(outputserver)← (inputclient)(inputserver).

Chapter 3: Hierarchical Authenticated Data Structures 12

Chapter 3

HIERARCHICAL AUTHENTICATED DATA STRUCTURES

3.1 Authenticated Data Structures

An authenticated data structure (ADS) is a scheme for data authentication, where un-

trusted responders answering client queries accompany the answers with cryptographic

proofs to show their validity [137, 138, 118, 76]. The client constructs the ADS upon a

set of data items and uploads it to an untrusted server who answers later queries. The

client stores a constant metadata locally to verify the proofs. There are different kinds of

ADSs: Merkle hash tree [99], authenticated skip list [72], authenticated 2-3 trees [105],

and accumulator [12].

Definition 3.1.1 An ADS scheme consists of three polynomial-time algorithms (KeyGen,

KeyGenCertify, Verify) [118]:

(sk, pk)← KeyGen(1k) is a probabilistic algorithm executed by the client to generate a

private and public key pair (sk, pk) given the security parameter k. The client

then shares the public key pk with the server.

(ans, π)← Certify(pk, cmd) run by the server to respond to a command issued by the

client, given as input the public key pk and the command cmd. If cmd is a query

command, it outputs a verification proof π enabling the client to verify authenticity

of the answer ans. If cmd is a modification command, the ans is null, and π is a

consistency proof that enables the client to update her local metadata.

({accept, reject}, st′)← Verify(sk, pk, cmd, ans, π, st) is run by the client upon re-

ceipt of a response. The public and private keys (pk, sk), the answer ans, the

proof π, and the client’s current metadata st are given as input. It outputs an

accept or reject based on the result of the verification. Moreover, if cmd was a

modification command and the proof is accepted, the client updates her metadata

accordingly (to st′).

Chapter 3: Hierarchical Authenticated Data Structures 13

Definition 3.1.2 Correctness of ADS. For all valid proofs π and answers ans re-

turned by the server in response to a command issued by the client, the verify algorithm

accepts with overwhelming probability.

Definition 3.1.3 The ADS security game is played between the challenger who acts

as the client and the adversary who plays the role of the server:

Key generation. The challenger runs KeyGen(1k) to generate the private and public

key pair (sk, pk), and sends the public key pk to the adversary.

Setup. The adversary specifies a command cmd, and sends it together with an answer

ans and proof π to the challenger. The challenger runs the algorithm Verify, and

notifies the adversary about the result. If the command was a modification com-

mand, and the proof is accepted, then the challenger applies the changes on her lo-

cal metadata accordingly. The adversary can repeat this interaction polynomially-

many times. Call the latest version of the ADS, constructed using all the commands

whose proofs verified, D.

Challenge. The adversary specifies a command cmd, an answer ans′, and a proof π′,

and sends them all to the challenger. He wins if the answer ans′ is different from

the result set of running cmd on D, and cmd, ans′, π′ are verified as accepted by

the challenger.

Definition 3.1.4 (Security of ADS) We say that the ADS is secure if no PPT ad-

versary can win the ADS security game with non-negligible probability.

Theorem 3.1.1 (Security of ADS) The ADS is secure according to Def. 3.1.4.

Proof 3.1.1 This theorem is proved for different schemes separately by different re-

searchers. Merkle [99] showed the security of Merkle hash tree, Papamanthou et al. [119]

did the job for the authenticated hash table, Goodrich et al. [73] proved security of the

RSA one-way accumulator [12] based ADS, Noar and Nissim [105] showed security of the

2-3 tree, and Papamanthou and Tamassia [118] proved security of the ADSs constructed

using authenticated skip list or red black tree.

Chapter 3: Hierarchical Authenticated Data Structures 14

3.1.1 ADS Constructions

A one-way accumulator [12] is defined as a family of one-way, quasi-commutative

hash functions. A function f : X ∗ Y → X is quasi-commutative if ∀x∈X, y1, y2 ∈ Y :

f(f(x, y1), y2)=f(f(x, y2), y1). Benaloh and de Mare [12] proposed a quasi-commutative

one-way accumulator based on an RSA modulus and proved its security. Let n = pq,

where p and q are large safe primes of the same size. Define f(x, y) = xy mod n. For a set

Y={y1, y2, ...ym}, the accumulated value is v = f(x, y1, y2, ...ym) = xy1y2...ym mod n, and

the membership witness for each yi is wi = f(x, y1, y2, ..., yi−1, yi+1, ...ym) = xy1y2...yi−1yi+1...ym

mod n, that is verified by checking wyii mod n
?
= v.

Proof generation and verification in an accumulator are O(1) operations. However,

any update operation (insertion, deletion, or modification) requires all witnesses to be

recomputed, making it an O(n) operation, where n is the number of items in the accumu-

lator. Moreover, the one-way accumulator [12] cannot generate non-membership proofs.

Damgard and Triandopoulos [40] proposed an accumulator supporting non-membership

proofs using bilinear maps.

Using the RSA one-way accumulator, Goodrich et al. [73] constructed an efficient and

dynamic authenticated dictionary. An untrusted directory, storing the data maintained

by a trusted source, can provide answers to membership queries that can be verified

cryptographically. They also proved the security of the scheme.

Figure 3.1: A Merkle hash tree.

Merkle hash tree is a widely used ADS for static

data. The leaf nodes store hash of data items, and the

intermediate nodes are assigned a value computed as

hash of a function of values of its children. The client

keeps the root’s value as local metadata. When one

node is updated, some neighbor nodes are also affected,

and should be updated accordingly. The affected nodes

are on the path from the updated node to the root.

A (non-)membership proof generated by the server consists of all nodes on the path

from the queried node to the root that are needed to reconstruct the required part of the

ADS by the client. The client verification includes rebuilding the required part of the

ADS using the information given in the proof, and comparing its digest against the local

Chapter 3: Hierarchical Authenticated Data Structures 15

(a) An authenticated skip list. (b) Verification.

Figure 3.2: (a) An authenticated skip list with six items and (b) Verifying proof of d2.

metadata. If they are equal, the client accepts the answer. Any mismatch indicates a

misbehavior of the server. A Merkle hash tree built upon a dataset with four items {d1,

d2, d3, d4} is shown in Figure 3.1.

A skip list [121] is a randomized data structure having binary-tree-like properties

that can be used to construct authenticated dictionaries. Goodrich et al. [74] used the

skip list to construct an authenticated dictionary. They first introduced the concept of

a commutative cryptographic hash function h that can be constructed from a collision

resistant hash function f as: h(x, y) = f(min(x, y),max(x, y)). Then, they constructed

the authenticated skip list, where the value of each leaf node is the hash of the

respective data item, and the value of each intermediate node is computed as the hash

of concatenation of values of its children.

The Merkle hash tree and authenticated skip list are tree-based ADSs supporting

logarithmic operation. Both search and update operations require O(log n) cost, where

n is the number of items in the ADS. The value of the root in these tree-based ADSs is

the digest of the ADS, stored locally by the client as metadata.

Figure 3.2a illustrates an authenticated skip list storing the data items {d1, d2,

d3, d4, d5, d6}. ‘−∞’ and ‘+∞’ are two special values known as the left and right

boundary values, respectively, surrounding the values stored in an authenticated skip

list. The proof path of a query about d2 is drawn using the dashed lines and the parts

contributing to the proof are colored. The membership proof generated for d2 in the

simplest form looks like: ‘h1, d2, h(d3), h2, h(+∞)’. Except the queried value that is

sent in clear as part of the proof, all others are the hash values stored at the nodes in

the proof path. Using the proof, the client reconstructs the required part of the ADS,

and compares its digest with the one she keeps locally, as presented in Figure 3.2b. Any

mismatch shows a misbehavior of the server.

Chapter 3: Hierarchical Authenticated Data Structures 16

(a) A rank-based authenticated
skip list. Numbers inside the
nodes are their ranks.

(b) A node (filled) is inserted after the
second node. Values on the path up to
the root (dashed) are recomputed

Figure 3.3: Updating the rank-based authenticated skip list.

Papamanthou et al. [119] introduced the authenticated hash table, which consti-

tutes a hierarchy of one-way accumulators in a way that provides constant proof size

and verification time. It keeps either the query or update time constant while providing

the other with sub-linear complexity. They developed an authenticated hash table sup-

porting both membership and non-membership queries on sets, and gave efficient and

secure protocols for authenticating membership queries.

Rank-based authenticated skip list. DPDP [54] uses a modified form of the

authenticated skip lists called rank-based authenticated skip list, where each node

v also stores the number of leaf nodes reachable from v (the rank of v). Figure 3.3a

shows the rank information of the ADS given in Figure 3.2a. A file F is divided into

n blocks m1|m2|...|mn, then a homomorphic tag Ti is computed for each block and put

in the skip list, while the blocks are stored elsewhere by the server. Each node has two

pointers: rgt(v) and dwn(v). Nodes also store a label f(v) that is computed using a

collision-resistant hash function h, as a function of f(rgt(v)) and f(dwn(v)). The client

stores locally the label of the skip list’s root to verify the coming membership proofs.

Nodes of all levels above the bottom level, also store a label f(v) that is a crypto-

graphic hash, and is computed using some collision-resistant hash function h, e.g., SHA-1

in practice, as a function of f(rgt(v)) and f(dwn(v)). The client keeps the label of the

top leftmost node to verify the proofs coming from the server. Refer to [54] for more

information about rank-based authenticated skip list and these functions.

In a tree-like structure, the insertion, deletion, or modification of a block affects only

the nodes along the path from the block up to the root. Ranks of the affected nodes

can be recomputed in constant time per node in a bottom-up way [54]. This is shown

in Figure 3.3b, where a new block is inserted after the second block.

Chapter 3: Hierarchical Authenticated Data Structures 17

3.1.2 ADSs with Especial Properties

A multi-proof ADS shows membership of multiple elements in one proof. To prove

membership of a set of elements, it does not need to do the job for each element one-by-

one. Instead, it generates a proof showing membership of all elements in one traversal

of the ADS. This reduces the server computation, the client verification, and communi-

cation though not asymptotically. FlexList [57] is an ADS with multi-proof capabilities.

Figure 3.4: A persistent rank-based authenti-
cated skip list. Hatched nodes are for old ver-
sion, filled in nodes are for new version.

A persistent rank-based authenti-

cated skip list stores the current ver-

sion and all previous versions together effi-

ciently. To make an authenticated skip list

persistent, the path-copying method is ap-

plied [2]. A block update results in a new

version. The new version consists of all

unchanged nodes of the previous version,

plus nodes on the path from the updated

block up to the root, whose values are recomputed. Figure 3.4 shows the process, where

a new block is inserted after the second block, at level five, resulting in a new rank-based

authenticated skip list.

An ordered ADS can be used to show some elements are consecutive. A total

order on the elements to be stored in an ordered ADS is required, i.e., it cannot handle

duplicate values. Assume that x, y and z are consecutive elements of a total order (A,<)

such that x < y < z, (i.e., x is the largest element in set A that is smaller than y, and z is

the smallest element in set A that is larger than y), and A is stored at ADSA. Informally,

we say ADSA is ordered if it can prove that x = predecessor(y) and z = successor(y) for

all consecutive x, y, z ∈ A. The Merkle hash tree and authenticated skip list are ordered

ADSs, while the accumulator is not. An ordered ADS is perfectly suited for authenticated

range queries, since it can prove the boundary records (detailed in Chapter 6).

Chapter 3: Hierarchical Authenticated Data Structures 18

3.2 Hierarchical ADSs

Figure 3.5: A two-level HADS.

A hierarchical ADS (HADS) consists of multiple

levels of ADSs, possibly of different types. It re-

lates together the relevant data stored at different

levels, and can easily be distributed on multiple

servers. Each ADS at level i is constructed on top

of a number of ADSs at level i + 1. Each element

of an ADS at level i stores the digest of, and a link

to an ADS at level i+ 1. Therefore, multiple ADSs

with different underlying structures can be linked

together to form a hierarchical ADS with multiple levels. The only restriction is that

all ADSs at level i must be of the same underlying structure to have consistent proofs.

(We can handle the heterogeneous case as well, but it complicates the presentation). At

the bottommost level, the hash of the data is stored as well (e.g., the hash of records

in the database). The client stores the digest of the topmost ADS as metadata. Figure

3.5 presents a two-level HADS using authenticated skip list and Merkle hash tree at the

first and second levels, respectively.

An HADS scheme is an ADS scheme defined with three PPT algorithms (HKeyGen,

HCertify,HVerify) to distinguish them from non-hierarchical ADSs. Using these algo-

rithms, the server can perform update or search operations and output a proof, using

which the client can verify that the operation is performed correctly. Definitions 3.1.1,

3.1.2, 3.1.3, 3.1.4 (using HADS algorithm names) provide a formal framework for HADS

schemes. The same correctness and security definitions apply.

Theorem 3.2.1 (Security of HADS) Our HADS construction (with n levels of pos-

sibly different ADSs) is secure according to Definition 3.1.4 (employing HADS algorithm

names) if the underlying ADSs are secure.

Proof 3.2.1 We reduce security of the HADS scheme to the security of the underlying

ADSs. If a PPT adversary A wins the HADS security game with non-negligible proba-

bility, we can use it to construct a PPT algorithm B who breaks the security of at least

Chapter 3: Hierarchical Authenticated Data Structures 19

one of the ADS schemes used, with non-negligible probability. B acts as the server in

the ADS game played with the ADS challenger C, and simultaneously, B plays the role

of the challenger in the HADS game with the adversary A. He receives the public key

of an ADS from C, and himself produces n − 1 pairs of ADS public and private keys.

Then, he puts the received key in random ith position, and sends the n public keys as the

public key of an n-level HADS to A. During the setup phase, B builds a local copy of the

HADS for herself. Note that this is invisible to the adversary A, and thus will not affect

his behavior. After the setup phase, A selects a command, generates the answer and

proof for the command, and sends them to B. For the adversary to win, the answer must

be different from the real answer in at least one location, with its verifying sub-proof.

B can find it since she maintains a local copy. When B receives them, she selects the

related command, answer and proof parts for the ith position, and forwards them to C.

If the guess of i was correct, then B would succeed. If A passes the verification with

non-negligible probability p, then B passes the ADS verification with probability greater

than or equal to p/n (breaking the ADS security with non-negligible probability, since n,

the number of HADS levels, is polynomial in the security parameter).

Since we employ secure ADSs, p/n must be negligible, which implies that p is negli-

gible, and hence, the adversary A has negligible probability of winning the HADS game.

Therefore, if the underlying ADSs are secure, then the HADS scheme is secure.

Chapter 4: Availability of the Outsourced Data in the Cloud 20

Chapter 4

AVAILABILITY OF THE OUTSOURCED DATA IN THE

CLOUD

4.1 Introduction

In recent years, cloud storage systems have gained considerable attention from both

academia and industry, due to the services it can provide at lower costs. As a result, IT

outsourcing has grown by 79% [7]. In the case of outsourcing storage, the client wants

to upload her data to a server, and wants to rest assured that her data remains intact.

She may trust the server in terms of availability, but does not necessarily trust him to

keep her data intact. Indeed, the server may try to hide data loss or corruption due to

hardware or software failures. When the data is large, it is not acceptable to require the

client retrieve the whole file in order to validate it, due to the high bandwidth and time

complexity [3]. This will be even more problematic if the client uses resource-constrained

devices, or performs the check frequently [54].

Ateniese et al. [3] proposed the concept of provable data possession (PDP), which

provides probabilistic guarantees of possession of the outsourced file. In PDP, the file is

divided into blocks before being stored on the server, and later, the client may challenge

a randomly-selected subset of the blocks. The server’s response to this challenge is then

verified by the client to check the integrity of the file. Juels and Kaliski [81] developed

a similar model named proof of retrievability (PoR). The route is followed by others

[125, 151, 124, 48, 5], only for static files.

Later, dynamic cloud storage protocols were developed by Erway et al. [54] and

Ateniese et al. [4], and later variants followed [145]. The DPDP scheme [54] uses rank-

based authenticated skip list, which supports insertion, modification, and deletion of

blocks with O(log n) cost, where n is the number of blocks.

Chapter 4: Availability of the Outsourced Data in the Cloud 21

All these schemes deal with integrity checks, but if the data is lost, it can only be

detected, not recovered. The instant solution to this problem is to store multiple copies

of the file, and use other copies if one is corrupted. Many such solutions exist for both

static and dynamic scenarios [37, 19, 7, 8, 155, 156] but these schemes require the client

to perform pre-computation that is on the order of the number of servers/replicas (e.g.,

generate multiple encoded copies of the file), and the CSP architecture is not transparent

from the point of view of the client.

This imposes an unnecessary burden on the client, decreasing her efficiency, while

she has no way to check whether the CSP keeps storing exactly the agreed-upon number

of replicas, unless the client interacts with each server (storing a replica) one-by-one.

Even in that case, presumably the inter-server communication is much faster than the

client-server communication, thus a single server in the background may be storing the

data and providing proofs to multiple servers interacting with the client. Moreover, if

the client takes into account the internal architecture of the CSP in the pre-computation,

then the CSP cannot even improve his architecture without notifying the client (which

leads to re-computations). Normally, the CSP wants to change his structure and adapt

it with the world technical progress (e.g., Amazon S3 is said to store three replicas for

each file [153], which may be increased or decreased with technological advancements).

The same thing happens in the industry: it is said that Amazon, a famous cloud

storage provider, stores three replicas for each file in S3 [153], but there is no way for

the client to check if he stores exactly three replicas. It is unacceptable if CSP would

rather to keep a specific and separate architecture for each (or a group of) customer(s)

due to technological progresses and willingness of the customers.

We propose a transparent, distributed, and replicated dynamic PDP (DR-DPDP),

based on the DPDP scheme [54]. The CSP’s architecture is completely transparent to

the client, and hence the client performs in the same way as in DPDP.

Our DR-DPDP scheme does not decrease the guarantee on detection probability, and

hence incurs no harm to the client, while helping her get rid of pre-computation imposed

solely by the architecture, and later checking data integrity toward a specific architecture.

We improve the client’s efficiency, and achieve better scalability, availability and reliabil-

ity at the CSP. The CSP can flexibly manage its resources, perform its own choice of

Chapter 4: Availability of the Outsourced Data in the Cloud 22

load balancing and replication schemes in the background, while still providing provable

storage for the client. This makes DR-DPDP much easier to deploy on real systems.

We also present a provable Version Control System (VCS), achieving better (optimal)

complexity O(1 + log n). We further combine our DR-DPDP scheme with our VCS to

obtain a distributed VCS (DVCS) scheme with the same complexity.

Contributions. The main contributions of this work are as follows:

• We propose the first transparent, distributed, and replicated provable dynamic

cloud storage system.

– Our system incurs no cost over the single-server case; it actually improves the

performance due to parallelism. Indeed, for a system with 100 servers and

10 replicas, our system performs 10 times faster updates and proofs than a

single-server storage.

– Asymptotic complexity of our system does not depend on the number of

replicas, servers, or partitions.

– The CSP’s architecture is completely transparent to the client, and can be

changed on-the-fly with the sole decision of the CSP. Our clients and servers

are more efficient due to the transparency of the server’s architecture.

• We present a (distributed) version control system with optimal complexity.

– We map VCS operations to underlying cloud storage operations in a provable

manner for the first time, and show that, in many cases, the complexity of

the operation is independent of the number of versions.

– We consider the multi-client scenario for provable VCS for the first time.

4.1.1 Related Work

Proof of Storage. A trivial way to perform integrity check is via message authentication

codes or hash functions. The client hashes her file before uploading, and stores the hash

value. Later, the client retrieves the whole file, recomputes its hash, and checks if it

matches the stored hash value [7]. This is not efficient since each verification requires

the whole file to be transmitted. The client can divide the file into blocks, hash each

block separately, and challenge a random subset of blocks. Again, all challenged blocks

should be transmitted for verification [3].

Chapter 4: Availability of the Outsourced Data in the Cloud 23

One of the earliest methods of providing and checking data authenticity was Message

Authentication Code (MAC) based schemes. In these schemes, first the client computes

a MAC of the file, stores it and transfers the file to the server, deleting its local copy.

Later on, to check the authenticity of the file, the client requests and receives the file,

recomputes the MAC of the file, and compares it with the stored one [7, 3]. These

schemes are not efficient since the computations are done with the whole file each time.

An efficient alternative of this scheme is dividing the file into blocks and computing MAC

for each block, keeping the MAC’s and moving the file onto the server. Later, the client

requests and receives a randomly-selected subset of file blocks and their corresponding

MACs, and compares the received MACs with the ones that itself computes (using

received blocks). Both of these alternatives need the blocks (whole file in the first

alternative) to be transferred to the client, and hence require high bandwidth. So, both

of them are not efficient [7].

An asymptotically-efficient hash-based scheme is proposed by Deswarte et al. [43]

with O(1) complexity for client storage and communication. But, since the operation at

the server is exponentiation with the entire file in each verification, the system will be

extremely slow for large files. Filho et al. [64] also proposed a scheme for data integrity

verification with an RSA-based hash function. This scheme is similar to the scheme for

Deswarte [43], and it has the same limitations.

Ateniese et al. [3] proposed the first scheme, called provable data possession (PDP),

where these efficiency problems solved. The client divides the file F into n blocks of

equal size (F = f1||f2||...||fn), computes a tag Ti for each block, and transfers the file

along with the tags to the server, deleting her local copy.

Later, she sends a challenge, which is a pseudorandom function key used to generate

random block indices and coefficients, to the server. Upon receipt, the server constructs

a proof using the tags and blocks stored, and the random block indices and coefficients,

and sends the proof back to the client for verification. The client verifies the proof and

decides based on the result. If the proof is rejected, the server is misbehaving. Otherwise,

she insures with high probability that the server keeps her data correctly. This is because

the challenged indices are selected randomly.

The tags used in PDP has two main properties [3]:

Chapter 4: Availability of the Outsourced Data in the Cloud 24

• Blockless verification. The server sends a combined block that is essentially a

random linear sum of challenged blocks, rather than sending the blocks individu-

ally. This enable the server to construct a proof that allows the client to verify if

the server keeps storing the requested blocks intact, even though the client does

not have access to the actual blocks.

• Homomorphicity. The tags are homomorphic and can be combined into a single

tag, matching the combined block, using the same random coefficients. This allows

combining two tags Ti and Tj corresponding to blocks fi and fj, into a value Ti+j

corresponding to the sum of the blocks fi + fj.

Moreover, they differentiate between public and private verification. In public verifi-

cation anyone who knows the client’s public key can verify the server’s response, while

in private verification, only the client can perform the verification.

Juels and Kaliski [81] proposed a proof of retrievability (PoR) scheme where the

main difference is that the client uses erasure-correcting codes to encode her file before

uploading. This enables resilience against data losses at the server side: the client may

retrieve her data even if the server corrupts a portion of it.

The PDP and POR, as well as their later variants and generalizations [125, 48, 5]

support only static files. The first dynamic schemes were proposed simultaneously by

Ateniese et al. [4] and Erway et al. [54]. Ateniese et al. [4] proposed the Scalable PDP,

where the client pre-computes responses for pre-decided challenges and stores them on

the server encrypted. This means that the number of updates and challenges a client can

perform is limited and fixed, and is determined by the client during pre-computation.

They achieve optimal asymptotic complexity O(1) in all complexity criteria (server com-

putation, client computation, communication, server storage, client storage), yet each

update requires rebuilding all the remaining challenges. (The number of challenges is

also considered a constant).

Erway et al. [54] proposed a Dynamic PDP (DPDP) scheme in the standard model

that supports provable unlimited updates (modify, delete, and insert) with O(log n)

complexity. The scheme is based on rank-based authenticated skip list, in which, only the

relative indexes of blocks are used, so it can efficiently support dynamism. The proof

for a block is computed using values in the search path from that block up to the root

Chapter 4: Availability of the Outsourced Data in the Cloud 25

of the skip list. Since a skip list is a tree-like structure that has probabilistic balancing

guarantees, the proofs will have O(log n) complexity with high probability.

All these schemes deal with integrity of the outsourced data, but the availability

and reliability are important as well. One method is to store several copies of the file,

resulting in better availability and efficiency.

A first effort to use multi-copy paradigm was MR-PDP (Multiple-Replica PDP)

scheme proposed by Curtmola et al. [37] that extends the (single-copy) PDP. MR-PDP

enables a client to store t replicas of a file, and verify through a challenge-response pro-

tocol that each unique replica is accessible. HAIL [19], on the other hand, distributes

PoR to multiple servers, trying to balance their load.

Barsoum et al. [7] proposed a multi-copy PDP scheme for static files, where the

client generates t distinct copies of the file by encrypting the file under t different keys.

Later, she separately challenges each copy using a PDP scheme to ensure that the cloud

is possessing all t copies. Hence, the scheme is simply applying a PDP scheme to t

different files, but the efficient scheme uses Homomorphic Linear Authenticators [5] that

enables the server to aggregate challenged tags to construct an efficient proof.

The client first generates t copies of the file {F1, F2, ..., Ft}, then generates an aggre-

gated tag for the blocks at the same indices in each copy, then sends all to the server,

deleting its local copy. Later, the client issues a single random PDP challenge as above.

Upon receipt, the server computes an aggregated proof, which shows that he is still

correctly possessing all t copies, and sends it back to the client for verification. Here,

multi-copy does not necessarily mean multi-server : a single server may store all copies,

making the system vulnerable to failures.

Barsoum et al. later proposed two multi-copy DPDP schemes, based on tree and

map structures [8, 9]. The tree-based scheme uses the Merkle hash tree [99], which is a

binary tree used to authenticate the values of the data blocks via collision-resistant hash

functions. In this scheme, each copy of the file is put into a Merkle hash tree, and their

roots are used to construct another Merkle hash tree (the directory) whose root is the

metadata stored at client, similar to the file system proposal of DPDP [54]. Again, the

challenge-response mechanism is not transparent to the client; she must know this new

structure is in place.

Chapter 4: Availability of the Outsourced Data in the Cloud 26

Zhu et al. [155, 156] proposed the Cooperative PDP scheme where the client generates

the tags of the blocks and then sends them securely to the organizer. The organizer is

one of the servers who is responsible for communication with the client, and determines

on which server each part of file will be stored. Later, when the client challenges the

organizer, he gathers together responses from multiple servers and sends a single final

response back to the client. Since the responses are homomorphic, the organizer can

combine them efficiently. A disadvantage is that the cloud architecture is not transparent

to the client, since the tags depend on which server is storing a particular block.

In our DR-DPDP scheme, the client is exactly a DPDP client, and all servers storing

data are DPDP servers. The organizer is a DPDP server that does not store actual data,

but stores the roots of sub-lists corresponding to partitions of the file. The decision about

the distribution of partitions over servers, number of servers, replication, etc. are all up

to the CSP. Most importantly, the whole process is transparent to the client, and she is

still guaranteed that there is at least one intact copy. We note that single-server DPDP

corresponds to a special case (one server, one partition, one replica) of our construction.

It is important to note that the CSP may store all the data on a single server, even if

the scheme directs him not to do so. The client has no way of distinguishing such a single-

server case from multi-server storage, unless she interacts with each server separately.

Even in such a case, the servers may be communicating in the background; a single

storage server may prepare proofs and send them to multiple servers who interact with

the client. The client may try to infer via timing [21], but it is not a reliable measure since

the inter-server communications are much faster than the client-server communications.

Thus, instead of trying to force the CSP, we give him the flexibility. The CSP may

freely employ replication for fault tolerance and availability, and distribution for load

balancing and scalability, without the need to inform the client. On the other hand, the

client is still ensured that at least one working copy is present, or otherwise the CSP

will get caught cheating. Therefore, the CSP is incentivized to make sure he keeps the

client’s data intact. Our solution does not decrease detection probability of a cheating

CSP, while providing improved performance as seen in Section 4.4.

Version Control. The outsourced version control system (VCS) ia s main applica-

tions of dynamic data outsourcing schemes. Pervasive examples include Git and SVN.

Chapter 4: Availability of the Outsourced Data in the Cloud 27

There have been many efforts to access the old values of updated data being held

in data structures. Overmars [111, 112] proposed three methods to search in-the-past.

The first method is to build a new structure same as the before, perform the update

on the newest copy, and store both of them. This method has a cost of O(n) for both

time and space. The second method is to store only the updates. For each query, the

corresponding version is built on-the-fly, and the results are generated using it. This

method is space-efficient (O(1) per single update), but generating current version takes

O(v) time, where v is the total number of the file versions. The third method uses

RI-tree to address decomposable search problem, and updates are insertions. The cost

for both time and space is O(1).

Driscoll et al. [50] studied persistence in data structures considering binary search/red-

black trees. They took details of the data structure into account to have O(log n) query,

insertion, and deletion time; and O(1) space bound for insertion and deletion.

Anagnostopoulos et al. [2] introduced the notion of persistent authenticated dictio-

naries, where the user can make queries of the type ‘Was element e in set S at time

t?’ and get an authenticated answer, which is used for making authentic statements

about the past. The data structure, together with the protocol for queries and updates

is called a persistent authenticated dictionary. As noted by Anagnostopoulos et al. [2],

a persistent authenticated dictionary must provide low computational cost, low commu-

nication overhead, and high security. They gave a persistent version of an authenticated

dictionary based on skip list [121] and called it persistent authenticated skip list. We will

apply persistency on rank-based authenticated skip list to make persistent rank-based

authenticated skip list.

Erway et al. [54] proposed an extension of their DPDP to support version control. If

the average number of blocks in each version of a file is n, and there are v versions, their

VCS requires O(log n + log v) time and space for proofs, whereas our proposal requires

only O(1+log n), which is independent of the number of versions (see [54, 15, 106, 52, 35]

for optimality discussion). Furthermore, we show how to combine this VCS with our

DR-DPDP to obtain distributed VCS with the same complexity. We also explicitly map

VCS operations to provable operations in our DR-DPDP scheme.

Chapter 4: Availability of the Outsourced Data in the Cloud 28

4.2 DR-DPDP

In multi-copy schemes, the organizer combines the results of challenging the same set

of blocks on all servers, and returns it as proof to the client. But in distributed case,

each server generates a part of the proof, and sends the result to the organizer, who

combines them together and returns the result to the client. Having both replication

and distribution helps increase availability, reliability, and scalability.

All previous work try to support distribution or replication (or both) of the file, but

the client has to pre-process the file, and make it ready to be stored on that specific

architecture. We extend the DPDP scheme [54] to support distribution and replication

of the outsourced file that is transparent to the client; i.e., the client is not required to

perform computations dependent on the storage architecture.

4.2.1 DR-DPDP Architecture

Model. DR-DPDP is a scheme that provides transparent distribution and replication of

user data over multiple servers. There are three entities in the model as depicted in Figure

4.1a. The client, who stores data on the CSP, challenges the CSP to check the integrity

of data, and updates the stored data. The organizer, who is one of the CSP servers,

is responsible for communication with the client and other servers (acts as a gateway

or load-balancer). The servers, who store the user data, perform provable updates on

behalf of the client, and respond to the client challenges coming via the organizer. They

only communicate with the organizer and there is no inter-server communication.

It is very important to observe that even though it seems like a central entity, the

organizer is not expected to perform any disk operations or expensive group operations

(e.g., exponentiation). He will only perform simple hashing, and work with a very small

skip list. Hence, his load will be very light, making it very easy to replicate the organizer

to prevent it from becoming a bottleneck or single-point-of-failure. (Further discussion

can be found in the Section 4.5.1.)

When the client wants to store a file using this scheme, she first prepares the file

as in DPDP, then sends all blocks to the organizer. The organizer divides the file into

partitions, each with a predefined number of blocks, and sends each partition to an

Chapter 4: Availability of the Outsourced Data in the Cloud 29

(a) The architecture. (b) A distributed skip list with 2 replicas.

Figure 4.1: The DR-DPDP architecture.

agreed-upon number of servers (A partition and its rank-based authenticated skip list

will be replicated on the specified number of servers.) Each server stores the blocks,

builds the corresponding part of the rank-based authenticated skip list, and sends the

root value back to the organizer. All servers run in parallel. Once received at least

one response for each partition, the organizer builds its own part of the rank-based

authenticated skip list and sends the root value as metadata to the client. All these

operations are commanded by the organizer and all are transparent to the client.

The idea behind this architecture is that a big rank-based authenticated skip list is

divided into multiple sub-lists; the top part is stored on the organizer, and the servers

store lower parts, thereby improving scalability. Also, each sub-list will be replicated on

a predefined number of servers, improving availability and reliability. Figure 4.1b shows

the idea, where each partition is replicated on two servers. Different servers replicating

the same partition are required to use the same randomness to have identical skip lists.

Leaves of the organizer’s skip list contain the roots of the servers’ skip lists, leading to

a very small skip list.

Note that the single-server DPDP is a special case of ours, where R = r1 in Figure

4.1b, and the client and server behavior is unchanged. Moreover, we used a distributed

rank-based authenticated skip list to store the tags. With small changes, the 2-3 trees

(as used by Zheng and Xu [154]) and Merkle hash trees (as used by Wang et al. [145])

can be used instead.

Chapter 4: Availability of the Outsourced Data in the Cloud 30

Since the view of DR-DPDP can be seen as a single rank-based authenticated skip

list distributed over multiple servers, the format of algorithms are all similar to DPDP

algorithms. All algorithms consist of these three steps:

• Find the root of the sub-list containing the requested block(s): This is a usual

search operation in skip list performed by the organizer to find leaf node(s) con-

taining information about the server(s) storing the block(s).

• Send the desired command to the server(s): The organizer sends the desired com-

mand to those servers. each server executes the command exactly as in DPDP, on

its own skip list, and returns back the results. All servers operate in parallel.

• Construct the result: The organizer combines together all results received from the

server(s), adds its own proof, and sends the result to the client.

4.2.2 From DPDP to DR-DPDP

We show how to use DPDP to construct DR-DPDP. All client operations (KeyGen,Challenge,

PrepareUpdate,VerifyUpdate,Verify), and server operations (PerformUpdate,Prove)

are the same as DPDP. The organizer operations (PerformUpdate,Prove) are shown in

Algorithms 4.2.1 and 4.2.2, respectively.

Suppose that the file F and a rank-based authenticated skip list on it have been

stored in the distributed manner as mentioned. Later, from time to time, the client

wants to verify the integrity of the blocks, or update them. The possible updates, as in

DPDP scheme, are insertion of a new block after a given block i, deletion of a block i,

and modification of a block i. For all of these operations, the client prepares the desired

update command (using PrepareUpdate), and sends it to the organizer, who searches

for the block indices in his skip list, figuring out which servers hold which blocks to be

updated. Then, he delegates the job to the corresponding servers (All servers holding

the same replicas must perform the update.) All servers perform the update in parallel

and send the root value to the organizer who picks one proof and metadata per partition

among replicas (possible strategies are in Section 4.5.2), updates his own skip list and

sends the new root value to the client (Algorithm 4.2.1).

To get an integrity proof, the client generates a challenge command as a list of blocks

and random coefficients, and sends it to the organizer. Upon receipt, the organizer finds

Chapter 4: Availability of the Outsourced Data in the Cloud 31

Algorithm 4.2.1: PerformUpdate, run by the organizer.
Input: DPDP values sent by the client (e(F), e(info), e(M)).

Output: DPDP proof to be sent to the client.

1 Interpret info as {o1, o2, ..., ol}; // list of file block indices to be updated.

2 Interpret e(F) as {mo1
,mo2

, ...,mol}; // list of corresponding file blocks.

3 P = {}; // initialize empty proof.

4 for i = 1 to l do

// find servers storing the othi block from the organizer’s skip list.

5 (loci, {Sr}sr=0)← Search(oi);

6 for j = 1 to s do

// Servers perform DPDP update on own partitions, thinking of Fi−1 as

the current version, and Mi−1 as the current root.

7 (Mcj , PMcj
)← Sj .PerformUpdate(pk, Fi−1,Mi−1, e(moi), e(oi), e(M));

// Pick one proof PMc
and root Mc, how to pick is discussed later.

8 P = P
⋃
PMc ;

// Put new server roots to the organizer’s skip list.

9 (M ′c, P
′
Mc

)← PerformUpdate(pk, Fi−1,Mi−1, {Mc}, {loci}, e(M));

10 P = P
⋃
P ′Mc

;

11 return M ′c, P ;

out which servers hold which blocks, decides on which servers should create the proofs

(possibly based on their load), and challenges those servers on the blocks residing in their

partition. All servers generate their proofs in parallel, and send them to the organizer.

Each proof consists of two parts: a skip list proof, and a combined block. The organizer

sums up all combined blocks, and generates the full proof using the sub-proofs and their

paths in his own skip list (from ris to R in Figure 4.1b) as described in Algorithm 4.2.2.

Algorithm 4.2.2: Prove, run by the organizer.
Input: DPDP challenge sent by the client (c).

Output: DPDP proof to be sent to the client.

// list of block indices challenged and associated random coefficients.

1 Interpret c as {o1, o2, ..., ol} and {r1, r2, ..., rl};
2 P = {};
3 for i = 1 to l do

4 (loci, {Sr}sr=0)← Search(oi);

// Select a server from those storing block oi and challenge it.

5 Sc ∈ {Sr}sr=0;

6 Pc ← Sc.Prove(pk, Fi,Mi, ci);

7 P = P
⋃
Pc;

8 return P ;

Chapter 4: Availability of the Outsourced Data in the Cloud 32

Frequent insertions or deletions to a partition makes its size very large or small. To

solve this problem, repartitioning is required. The repartitioning strategy balances the

load on the servers, preserving an amortized time for challenge and update operations.

4.2.3 Security of DR-DPDP

Since the client-server communication is the same as in DPDP [54], we use the same

security definition.

Definition 4.2.1 (Security of DR-DPDP) A DR-DPDP scheme is secure if for any

PPT adversary who can win the data possession game (from [54]) with non-negligible

probability, there exists a polynomial-time extractor that can extract the challenged parts

of the file by resetting and challenging the adversary.

Theorem 4.2.1 If DPDP scheme is secure, then our DR-DPDP scheme is secure ac-

cording to Definition 4.2.1.

Proof 4.2.1 All communication between the client and the organizer takes palace as in

DPDP. The process is transparent to the client; she thinks as if she communicates with

a DPDP server. Moreover, all servers behave as in DPDP. The only difference is how

the proof is generated at the organizer, but the resulting proof will be the same as a

single-server DPDP proof. Therefore, the organizer-server and inter-server communica-

tion is not a matter of security, and rather, we consider the security of client-organizer

communication. If the adversary manages to create a verifying proof with non-negligible

probability even though all copies of the challenged blocks are corrupted, this means that

he managed to cheat either on (at least) one of the server proofs, or the organizer proof.

In either case, finally, a DPDP proof is created.

If, at the end of the data possession game [54] the proof is accepted by the challenger

with non-negligible probability, then the challenger can extract the requested blocks. The

challenger and the extractor we use here are exactly the same as in the DPDP proof,

using the ‘weighted sums’ as described in [54].

Therefore, under the assumption that DPDP is secure, DR-DPDP is secure. The

DR-DPDP is as secure as the underlying DPDP in the sense that the client will accept

the proof, as long as there is at least one intact copy of her data.

Chapter 4: Availability of the Outsourced Data in the Cloud 33

4.2.4 Efficiency

When a challenge command comes, the organizer finds the set of servers storing each

block, and selects one of them to compute the proof. If the organizer has some knowledge

about the servers’ current states, e.g., current load of each server, it can perform the

selection accordingly, which affects the overall performance of the system. Also, each

server will store and process only a partition of the file, instead of the whole file. Hence,

the DR-DPDP proof generation and update processes are distributed over some servers

running in parallel, leading to better performance. This is similar to the shared-nothing

architecture leading to parallel execution of commands, which in turn will reduce the

response time and improve the scalability [79].

Assume each partition has b blocks, and we have p partitions (so n = pb blocks in

total). The organizer has a skip list with p leaves, while each server holds a skip list

storing b blocks. Since all servers run in parallel, the total time complexity of each server’s

PerformUpdate or Prove functions is O(log b). The organizer’s skip list requires O(log p)

cost for a similar operation, and O(p) cost for combining proofs coming from all servers.

Therefore, the proof complexity (computation and communication) of DR-DPDP for

a challenge with one block in each server is O(p + log b), regardless of the number of

replicas. The same challenge requires O(p log b) cost using the original DPDP.

4.3 Version Control using DPDP

We show how a persistent rank-based authenticated skip list can be used to build a

Version Control System (VCS) like SVN, CVS, Git, etc. We store a file in a persis-

tent rank-based authenticated skip list and assume each commit includes a set of block

updates (insertion, modification, deletion), resulting in a new version.

To manage these versions, Erway et al. [54] suggests putting their roots into another

rank-based authenticated skip list. But, we use a persistent rank-based authenticated

skip list to store the file and its subsequent versions, and put all roots of the persistent

skip list into a PDP [3] structure. (Note that a PoR scheme [125, 81] can also be employed

here, with appropriate algorithm definitions.)

Chapter 4: Availability of the Outsourced Data in the Cloud 34

Figure 4.2: Our VCS architecture.

Figure 4.2 presents an instantiation of our

VCS. We assume that the client, the orga-

nizer, and the servers share a pseudorandom

generator seed (or a pseudorandom function

key), so that each one can perform any ran-

domized computation independently, while

obtaining the same result as the others. The main advantage of this assumption is

that, when the client already has a version of the file and performs some updates on

it, she can compute the persistent rank-based authenticated skip list root herself, as an

honest server would do with the same randomness. She can then compute a PDP tag

for that root, and send it to the organizer (or the server in single-server case). The orga-

nizer performs the update command, as the client did, and appends the PDP tag to the

corresponding PDP structure. This cuts off two rounds from the protocol, eliminating

the need for the server to send a DPDP root and proof first, and the client responding

back with a tag, thereby improving communication complexity greatly.

To insert a block, the client provides the server with a seed to be used in a pseudo-

random function to generate the random level, at which the block will be inserted. The

client does the same computations, finds the root of new version, interprets it as a block

for PDP structure, and computes a PDP tag for the block. Then, the client sends the

desired insert command along with the PDP tag of the root to the server. Upon receipt,

the server performs the insert command, as the client did, and appends the PDP tag

to the corresponding PDP structure. Our method requires O(1) storage at client and

O(1 + log n) proof complexity.

An interesting feature of our VCS is that only the content of the first version is explic-

itly stored on the server. All subsequent versions are stored in terms of the differences

between the current and previous versions. These differences are referred to as deltas

and clearly require much less storage space than the entire contents of a version [109]. In

contrast to other schemes which require rebuilding a version from scratch, in our VCS,

each version is ready upon request (using persistent rank-based authenticated skip list),

solving the problem stated in [50].

Chapter 4: Availability of the Outsourced Data in the Cloud 35

4.3.1 Common Utility Functions

Before describing VCS operations, we present a common utility function to be used in

VCS algorithms: GetVersion(Vi, Vj). This algorithm is executed by the client to request

the version Vj, when she already holds Vi (which may be null).

• Vi is null or Vi ≥ Vj: This corresponds to a checkout operation (Vi is null), or to

a revert operation (Vi ≥ Vj). In both cases, the server sends the version Vj from

scratch, together with its proof.

• Vi < Vj: This corresponds to an update operation, where the client is trying to

update to a newer version.

– If the total number of blocks in version Vj is low compared to the number of

changed blocks between Vi and Vj, it is still better to send all these blocks to

the client from scratch (together with their proof).

– Otherwise, the server sends the differences (delta) and their proof separately

for each version u such that Vi < u ≤ Vj.

Normally, the server has to send all deltas starting from the client’s current version,

one by one, along with their PDP proofs. This requires O(1 + ed + ed log n) communi-

cation, where d = Vj − Vi, and e is the average size of deltas. Using the stated trick,

we can reduce this complexity to O(1 + ed), since sending only the deltas along with

versions’ PDP proofs suffices. The client can build the skip list up to the last version

using his current blocks and the deltas, and verify the PDP proofs. We separate two

cases for proof generation and verification, when the difference is one version (d = 1) or

multiple versions (d > 1):

• One version: the server sends the deltas of the new version and the corresponding

PDP proof (together with any other information such as commit logs). The client

rebuilds the persistent rank-based authenticated skip list, and finds the root. Then,

she decides on the validity of the version (by running PDP Verify algorithm on

the root she computed).

• Multiple versions: the server should send the requested blocks, the aggregated

PDP proof of all versions, together with all other required information. Now, if

the server sends a linear combination of the versions’ information, as in PDP, the

Chapter 4: Availability of the Outsourced Data in the Cloud 36

Figure 4.3: Information stored in a PDP block.

client has no chance of relating them with individual versions. The client can find

by herself, the fixed-length part of the Figure 4.3, but not the variable-length part.

If the server sends all versions’ information separately, then we loose the O(1)

complexity of the PDP proof.

To solve the problem, the server sends a linear combination of only variable length

parts of PDP blocks of requested d versions, achieving O(1) proof size. Let Vvark

be the variable-length portion of the PDP block associated with the kth version,

Vfixk be the fixed-length portion of length lfix, and rk be the random challenge

sent by the client for version k.

1. The server computes Vvar =
∑Vj

k=Vi
Vvark ∗ rk and sends to the client as part

of the PDP proof.

2. After reconstructing persistent rank-based authenticated skip lists, the client

computes Vfix =
∑Vj

k=Vi
Vfixk ∗ rk since she now knows each Vfixk .

3. The client computes V ′=Vvar ∗2lfix+Vfix by shifting Vvar to the left lfix times

and adding Vfix. One can verify V ′ corresponds to the combined block in a

PDP proof. From here on, the client may perform regular PDP verification

using the combined tags received as part of the PDP proof.1

4.3.2 VCS Operations

Sink [132] states common functionalities of a VCS as: create, checkout, commit, update,

add, edit, delete, diff, revert, log, tag, branch, merge, resolve, and lock. We show how

these functions are supported by our scheme in a provable manner.

• Create: The first upload command issued by the client, creates the repository.

One can check if the first version (and hence the repository) is stored by the

server, using the common utility functions described above.

1We use the version of PDP that does not employ the knowledge-of-exponent assumption and does
not take the hash value of the block [3].

Chapter 4: Availability of the Outsourced Data in the Cloud 37

• Update: The client calls the GetVersion(Vi, Vj) to request the last version Vj

from the server and update her local/working copy, who is at version Vi.

• Checkout: Similar to update with the difference that the client does not have any

local copy. She calls GetVersion(null, Vj).

• Add, edit, delete: These operations are done locally on the working copy.

• Diff : To find the differences between two versions, the server (the organizer in

the distributed case) sends the two versions along with their proof to client who

can find the differences using a diff algorithm. Alternatively, only deltas with their

proofs can be sent.

• Commit: After performing all updates on its working copy, the client must com-

mit. Using our above-mentioned trick, the client computes the root of the persis-

tent rank-based authenticated skip list after updates, and a PDP tag for that root.

The client sends a DPDP update command with the updated blocks, and a PDP

append command for the tag of the new version’s root to the server at once. The

server(s) update using the above utility functions.

• Revert: The client wants to drop what has been changed after some version Vi,

and go back to version Vj (possibly Vj = Vi). She simply runs GetVersion(Vi, Vj)

with the server where Vi is the current version of the client’s local copy.

• Log: With each commit, the client may provide some logging information (e.g.,

time and author of the change made, and a summary of changes). The client adds

this log to the PDP block related to the version, and builds the PDP tag of the

whole block (Figure 4.3).

• Tag: Name of a branch, can be managed in the same way as ‘Log’ above. (Not to

be confused with a PDP tag.)

• Branch This operation creates another line of development, and gives the ability to

have more than one version. This is useful especially in development environments

where different groups work on different parts of a project. A version is identified

by branch number and version number within the branch. Figure 4.4a shows a

visualization of branching.

We store these information about each version: the branch and version number, the

root of the corresponding rank-based authenticated skip list, the previous branch

Chapter 4: Availability of the Outsourced Data in the Cloud 38

(a) Branching (b) Matching nodes by the client.

Figure 4.4: (a)Branching, (b)PDP block structure, and (c)merge.

that this one was generated from, version of the previous branch that this one has

began, the log, and maybe the tag (see Figure 4.3).

Our scheme keeps storage efficient. For each branch, a specific PDP structure will

be generated. One may think of one PDP file per branch whose blocks correspond

to each version in that branch. But, multiple branches may have many blocks in

common, therefore, all share the same blocks.

• Merge: This is to combine together two versions of two different/same branches

and make a new version in a new/same branch. In development environments, for

example, two groups of developers work on their sub-projects separately, and at

the end they want to merge what they have done. This operation consists of the

following steps: (1) the client requests the two versions of its interest, (2) the server

sends those two versions to the client, along with their DPDP and PDP proofs as

described in our utility functions, (3) the client runs an algorithm to find and

match corresponding nodes of the versions (the skip lists), and then, determines

the new version (e.g., Figure 4.4b) and computes its PDP tag. She then sends all

the new version blocks and its PDP tag to the server.

• Lock: We believe provably locking something in a client-server setting is a hard

(or possibly impossible) problem and consider it out of scope.

4.3.3 Extensions and Analysis

Multi-client VCS. Our discussion above assumes the same client keeps committing

and also retrieving versions. In the single-client case, the client keeps information about

the last version, preventing the server from cheating. But, in a multi-client system, the

server may cheat and send a previous version –a replay attack where the server behaves

Chapter 4: Availability of the Outsourced Data in the Cloud 39

as if some commit never occurred– to the client (other than the client who created the

last version and knows some information about that). The scheme proposed by Erway et

al. [54] as an extension to DPDP is also vulnerable to this attack. Therefore, some level

of inter-client communication is required to prevent the server/organizer from cheating.

Each client, after each commit, broadcasts information about her commit to other clients,

or puts it on a trusted bulletin board. Just the last version number (and branch number)

of the commit needs to be shared between the clients. Sharing of any secret information

is not necessary (thus the bulletin board can be public). We assume the clients trust

each other, since they modify the same repository. Now that each client knows the latest

version number (of each branch), the server will be caught if he sends a different version.

Distributed VCS. When the client has multiple devices, all connected to the server

to commit or update data, e.g., software development environments, the above- men-

tioned central VCS does not suit well, and a distributed VCS (DVCS) is needed.

Using persistent rank-based authenticated skip list, the proposed DR-DPDP scheme

can be used to build a DVCS. Each server stores a persistent rank-based authenticated

skip list whose roots will be stored in another rank-based authenticated skip list at the

organizer. The organizer stores the roots of his own persistent rank-based authenticated

skip list (for versions) in the PDP structure. With each update, a new distributed

persistent rank-based authenticated skip list with specific updated blocks (the other

blocks are shared with the old version) will be built. The organizer sends the new

version’s root back to the client. Once the client verified the value of the new root, it

computes a PDP tag for the root, and sends it to the organizer for storage. In this case,

making commits such a two-step process is important for transparency. Since the CSP

architecture should be transparent to the client, she cannot perform the skip list updates

locally, even with a shared pseudorandom seed. The client must wait for the organizer

to send back the new root before creating the tag. The organizer manages the PDP and

communication with the client: the distributed architecture is transparent to the client.

Efficiency A proof has two parts: a PDP proof for the version information, and a

DPDP proof for the data in that version. The former requires O(1), while the latter

needs time and communication complexity O(log n). The client’s storage complexity is

O(1), and proof verification complexity is O(1 + log n) for one version.

Chapter 4: Availability of the Outsourced Data in the Cloud 40

4.3.4 Security of VCS

Definition 4.3.1 (Security game for VCS) Played between the adversary who acts

as a VCS server, and a challenger who plays the role of a VCS client. Full PDP and

DPDP game description can be found on the original papers [3, 54]. There are two kinds

of VCS commands: update and retrieve. Update commands (i.e., create, commit, branch,

and merge) change data on the server, while retrieve commands (i.e., update, checkout,

diff, and revert) ask the server to give some parts of the stored files.

Key generation The challenger runs KeyGen(), stores public and private keys (pk, sk),

and sends the public key pk to the adversary.

Query The adversary specifies an update F and the related information info specify-

ing type of the update (e.g., , create, branch, merge), and sends them all to the

challenger. The challenger runs Commit on them and sends the results to the

adversary, who replies with the new metadata and proof, which will be verified by

the challenger. The adversary will be notified about the result, and he can repeat

this interaction polynomially-many times.

Setup The adversary creates a new repository, using the Create command. Then, the

above-mentioned interaction is performed again. The challenger updates her local

metadata only for the updates whose proofs are accepted.

Challenge Let F denote the final version of the file as created by the adversary using the

verifying updates in the setup phase. Also, the challenger holds the latest verified

metadata. The challenger creates a challenge by picking a random version and

running the algorithm GetVersion with the adversary, who replies with a proof.

The adversary wins if the received proof is accepted.

Definition 4.3.2 (VCS security) A VCS scheme is secure if for any PPT adver-

sary who can win the VCS security game with non-negligible probability, there exists

a polynomial-time extractor who can extract the challenged version of the file with non-

negligible probability by resetting and challenging the adversary.

Theorem 4.3.1 Our VCS (DVCS) is secure according to Definition 4.3.2, assuming

that PDP and DPDP (DR-DPDP) are secure.

Chapter 4: Availability of the Outsourced Data in the Cloud 41

Proof 4.3.1 Both VCS and DVCS work in the same way except that DVCS uses DR-

DPDP in the background, so here we only consider the VCS. We already proved that

DR-DPDP is secure if DPDP is secure.

A VCS is not secure if the server can prepare proofs accepted by the client when the

requested blocks are corrupted, or the blocks used to generate the proof belong to another

version. This can be done by creating a DPDP proof, even though (some parts of) the

requested challenges do not exist, or a PDP proof, using an old version of the file, to

convince the client.

The VCS challenger combines a PDP and a DPDP challenger. She runs the KeyGen(1λ)→

(sk, pk) which calls the DPDP.KeyGen(1λ)→ (skDPDP , pkDPDP) and PDP.KeyGen(1λ)→

(skPDP , pkPDP), sets sk = (skPDP , skDPDP) and pk = (pkPDP , pkDPDP), stores public

and private keys (pk, sk), and sends only the public key pk to the adversary..

Whenever the adversary requests a commit, the challenger runs DPDP.Prepare−

Update() on the update request from the adversary, and performs DPDP.PerformUpdate()

locally to find the root of the new version. She computes a PDP tag for this root using

PDP.TagBlock(), and sends the output of DPDP.PrepareUpdate() together with the

PDP tag to the adversary.

At the challenge phase of the security game, the challenger runs GetVersion() on

a random challenge. One may think of this as sending a random version number and

a series of random blocks in that version (think of this as corresponding to deltas in

GetVersion()). The adversary’s response need to include the DPDP root of challenged

version, its PDP proof, the challenged blocks of the version, and the DPDP proof of the

blocks. The PDP block contains only one data (the DPDP root of challenged version),

therefore, can be extracted easily if the PDP proof is accepted (using PDP.CheckProof()).

The extractor simply outputs this data, and is correct since PDP is assumed to be secure.

Then, the challenger runs DPDP.Verify() to verify the DPDP proof. If it is accepted

with non-negligible probability, the challenger can extract the requested blocks, as de-

scribed in the DPDP security proof [54] solving linear equations. Therefore, under the

assumption that PDP and DPDP (DR-DPDP) are secure, our VCS (DVCS) is secure.

Efficiency. Once a file is stored on a server, for each update, we store the difference

Chapter 4: Availability of the Outsourced Data in the Cloud 42

from the previous version, the delta, which needs O(log n) storage per different block. So,

the server storage complexity is O(1+log n) per version. The client storage complexity is

O(1), proof generation, communication complexity, and verification are all O(1 + log n).

4.4 Performance

In this section, we compare performance of our DR-DPDP scheme with single-server

DPDP. We obtained rank-based authenticated skip list performance numbers from a

prototype implementation. All numbers are taken on a regular 2.5GHz machine with 4

cores (but the test running on a single core), with 4GB RAM and Ubuntu 11.10 operating

system. The performance numbers are averages from 50 runs. We consider an example

scenario with these properties:

• There are 100 servers, and no server stores more than one partition or replica.

• As we increase the number of replicas, the number of partitions will decrease.

• We assume 100000 blocks in total. If each block is 1/2KB, this gives a 50MB VCS

(e.g., Tcl CVS repository), while 16KB blocks give a stored file of size 1.6GB. In

both cases, it provides a realistic large number.

Given this scenario, we compare the server response time for both challenge and

update commands, in both (single-server) DPDP and DR-DPDP schemes, and analyze

the relation between the number of replicas and the server response time. Note that in

DR-DPDP, since the number of servers is fixed, the number of partitions will decrease

as the number of replicas increases. Essentially, 100-replica case will have the same

challenge-response performance as the single-server case since each server will be storing

the whole file in our test.

(a) Update times. (b) Challenge times. (c) DR-DPDP update time.

Figure 4.5: Update and challenge times in DPDP and DR-DPDP.

Chapter 4: Availability of the Outsourced Data in the Cloud 43

Figure 4.5a represents the total time taken for a 100-block update command in DPDP

and DR-DPDP, assuming that the servers in DR-DPDP execute in parallel (except the

organizer, who waits for servers’ responses). In single-server DPDP, as the number of

replicas grows, the update time will grow linearly, since a single server performs the

update on all replicas sequentially. In DR-DPDP, the update command is executed by

all servers in parallel, and there is no noticeable growth in update time, due to the load

balancing property of the distributed scheme.2

As the number of replicas grows in DR-DPDP, each server receives challenge com-

mands for a larger number of blocks, therefore the response time will be increased; as

shown in Figure 4.5b. While, in single-server DPDP, the server will select a single replica

to respond to challenge commands, and hence, the response time does not depend on

the number of replicas. As expected, when all servers store the whole file (100-server

100-replica case), the DR-DPDP performance is equivalent to single-server DPDP, but

availability, reliability, and fault-tolerance benefits still do exist (all servers must fail

simultaneously for harm to occur).

An interesting property of our proposed scheme is that when the number of replicas

is small (the number of partitions is large, and each partition stores a small number of

blocks), the size of organizer’s authenticated skip list becomes large. In this case, the

computation time in the organizer becomes greater than that of the servers, becoming

a bottleneck. Hence, the total challenge or update time will be large. As the number

of replicas grows, the number of partitions falls down, leading to a drop in the size of

the organizer’s rank-based authenticated skip list. Since the computation time in the

organizer is reduced, the total challenge or update time will decrease. At some point, the

total challenge or update time will be minimum, after which the size of each partition

becomes large, and hence, the computation time of servers gets large. Therefore, the

total challenge or update time will again increase. This is shown in Figure 4.5c. Based

on the specifications of the underlying hardware, each CSP can determine the optimum

number of replicas and partitions (about 10 replicas were the best in our test scenario).

2For simplicity, the figure assumes random blocks are updated, resulting in a more-or-less balanced
load among the servers.

Chapter 4: Availability of the Outsourced Data in the Cloud 44

As for the organizer, consider 10-replica case in the scenario above. This means

the organizer’s skip list will have only 10 leaves, requiring roughly 0.8KB of memory.

Thus, everything the organizer performs can be in memory (a 16GB organizer can store

more than 20 million such skip lists), without requiring disk access. Furthermore, in

general it is easy to replicate information that is just 0.8KB in size in real time. These

properties render the organizer a viable and attractive option even though it seems to

be a centralized entity in the system.

Note that DR-DPDP greatly outperforms DPDP, especially when we realize that

network time between the client and the organizer dominates the network time between

the organizer and the servers in a typical deployment.

4.5 Discussion

4.5.1 Further Analysis of the Organizer

There are some trade-offs between efficiency and correctness depending on how the or-

ganizer picks one proof and one root among replicas. 1) The organizer can verify the

validity of responses from all the servers, and continue only if all the servers updated

correctly. Obviously, this increases the load of the organizer and may introduce delays

for the client. Yet, it may be useful for diagnosis purposes at the cloud storage provider,

since the organizer can now detect faulty servers and may signal the maintenance team

to fix them. 2) The organizer can collect the results and send the one received first to

the client, without performing any validity check. This way, the client may face invalid

proofs if that one server was faulty. In such a case, the client may ask a second chal-

lenge, to see if there remains at least one intact copy of her data. In response to that

second challenge, the organizer may employ the first strategy above instead. 3) As a

middle-ground, the organizer may simply compare all the responses for equality (without

verifying), and send the proof to the client if the responses from all replicas match. If

there was a mismatch, the organizer may start verifying proofs and use the first one that

verifies. The organizer may then again flag the servers with unmatching proofs as faulty.

4.5.2 Replicating the Organizer

The organizer can be replicated to prevent it from being single point of failure. By

replication, we gain the advantages increased availability, increased performance, and

Chapter 4: Availability of the Outsourced Data in the Cloud 45

enhanced reliability at the expense of overhead for creating, maintaining and updating the

replicas [68]. For static schemes, the contents of the organizer’s rank-based authenticated

skip list can be computed and conveniently stored at all replicas, or may be computed

by one organizer and read by all others. But in a dynamic scheme, a replica update

protocol is needed: if the organizer’s data is modified by multiple servers, consistency of

the data may be compromised [68].

Goel and Buyya [68] categorized and compared replication strategies in distributed

storage and data distribution systems based on architectural and data management po-

lices used in different systems. Of the four categories defined, the P2P class is suitable for

managing replicated organizers. Three replication strategies are defined in this category

based on: granularity, replica distribution, and replica creation strategy.

The granularity at which the data is replicated is an important parameter in repli-

cation systems: whole-data and piece-by-piece 3 [13]. Whole-data replication is simple

to implement and has a low state cost, but performs poorly with large data. But, the

cost of replicating entire organizer in one operation for large sizes can be cumbersome in

both space and time. With piece-by-piece replication the cost to replicate an individual

piece can be small, but low availability is an important weakness: the probability of

unavailability due to a piece loss is high [13]. To achieve higher availability, erasure-

correcting codes can be used [68]. As the size of data stored on the organizer is small,

the whole-data replication can be used.

4.5.3 Repartitioning

If the insertion and deletion operations are uniformly distributed over all partitions,

the number of elements in each partition will remain proportional to the number of file

blocks, and repartitioning will not be required. However, it is often the case that we

do not know in advance what series of operations will be performed on the file. We

need a repartitioning strategy to balance the load on servers, preserving an amortized

time for challenge and update operations. If some partitions are more prone to insertion

(deletion), after a number of operations, resizing is needed. We show that repartitioning

does not affect amortized cost of our scheme, using techniques from [36].

3In the paper they are called whole-file and block-level, respectively.

Chapter 4: Availability of the Outsourced Data in the Cloud 46

The size of each partition, 2b, can be determined based on the processing properties

of servers, to reach a good response time. When the client uploads his file, the organizer

puts b sequential blocks in each partition, having a load factor α(T)=1/2. We want to

bound the load factor between 1/4 and 1 [36].

After an insertion, if a partition reached the limit of 2b blocks, the organizer takes

all blocks from that partition, asks the servers storing that partition to delete the stored

data, sends them insertion commands for blocks 1 to b, finds a new set of servers, sends

them blocks b + 1 to 2b for storing, gets the root of resulting skip lists, and inserts

the roots into its own skip list at proper positions. Afterwards, these servers can store

another b blocks each, without requiring repartitioning.

A server storing b blocks can store another b blocks before repartitioning is needed.

The cost of these operations is O(b log b) in total. Repartitioning, as described above,

requires cost b (the cost of building a skip list with b blocks is b, and the two partitions

can be built in parallel at all replicas). Hence, the total cost of inserting b blocks is

O(b log b)+b. Therefore, the amortized cost for insertion of each block is then (O(b log b)+

b)/b = O(log b)+1 = O(log b) showing that repartitioning does not change the amortized

cost for block insertion. We did not take into account the time needed to transfer b blocks

from one server to another.

Similarly, the size of a partition may fall down due to multiple deletion operations

performed. For load balancing, we bring some blocks from one of its neighbors (read the

blocks of the two partitions, delete their skip list, and build two new partitions, each

containing half the total blocks read). The cost needed for these operations is at most

(3b/2)O(log b) + 5b/4 in total, and (3/2)O(log b) + 5/4 ≈ O(log b) per block, without

taking into account the transfer time of the blocks.

In both cases with repartitioning, the amortized cost of a block insertion or deletion

is O(log b), same as for normal insertion or deletion. So, repartitioning does not affect

the amortized cost of these operations, and thus our DR-DPDP scheme can handle

amortized logarithmic cost under any workload.

Chapter 4: Availability of the Outsourced Data in the Cloud 47

4.6 Conclusions and Future Work

A transparent, distributed, and replicated DPDP is presented. Our scheme extends

DPDP to support the distributed architecture of cloud storage. User data is distributed

on multiple servers, leading to better scalability, as well as availability and reliability

since several servers may store the same partition. Another important feature of our

scheme is that the architecture of the cloud storage provider is completely transparent

from the client’s viewpoint. This fits the real scenario where the CSP wants to hide

its architecture, and the client is happy as long as she can reach her file (i.e., at least

one copy of her file is intact). Our scheme greatly benefits the cloud service provider by

providing internal flexibility on resource management, while not harming the client in

any way. We also used persistent rank-based authenticated skip list to create a dynamic

cloud VCS with optimal complexity (O(log n)), and combined it with DR-DPDP to

obtain a distributed VCS. Our schemes support common VCS operations in a provable

manner.

It is interesting to note that some ideas from RAFT [21] may be employed on top

of our work. One of the main ideas in RAFT is to correlate the response time of the

cloud with the number of hard drives. In our DR-DPDP scheme, it will be related to the

number of different servers employed, since each independent server can run in parallel.

This way, the client may have an idea about fault tolerance of the system. Yet, we leave

such an analysis as future work.

Chapter 5: A Generic Dynamic Provable Data Possession Model 48

Chapter 5

A GENERIC DYNAMIC PROVABLE DATA POSSESSION

MODEL

5.1 Introduction

Data outsourcing is a useful application of IT that is getting more acceptance as the

communication and networking technology advances. It brings many advantages such as

huge amount of cheap storage, world-wide access to data, and reduced management over-

head, while imposing security objections such as integrity and confidentiality. Proving

integrity and confidentiality is currently the most notable barrier toward full integration

of data outsourcing at the cloud, as the data owner loses the direct control over her data.

PDP. Ateniese et al. [3] proposed the first static data outsourcing scheme called

provable data possession (PDP) that provides probabilistic integrity guarantees. Dur-

ing the precomputation phase, the client divides a file into a number of equal-size blocks,

computes a cryptographic tag for each block, and sends the data together with the vector

of tags to an untrusted server. Later, she repeatedly audits the outsourced data to check

if the server stores her data intact. A successful audit ensures the client that her data

is stored correctly at the server, with high probability. Similar schemes were proposed

using other techniques [33] or supplying extra properties [39, 78, 143].

Generalization. Ateniese et al. [6] first proposed a general framework for building

public-key homomorphic verifiable authenticators (HLA) from any identification proto-

col with homomorphic properties. Next, they used these HLAs to propose a general

framework for constructing a publicly-verifiable proof of storage (PoS) scheme. The

resultant PoS scheme supports only the static data with communication complexity in-

dependent of the data size, and unlimited number of audits. The security of the PoS

was also proven.

Chapter 5: A Generic Dynamic Provable Data Possession Model 49

(a) A file and its PDP tags. (b) A new block inserted at the ith position.

Figure 5.1: (a) A file and its PDP tags, and (b) a new block inserted at the ith position (indices
and tags not updated).

Dynamic Data Outsourcing Schemes. The main problem with the general frame-

work of Ateniese et al. [6] is that it does not support dynamic data outsourcing. Recently,

many dynamic data outsourcing schemes have been proposed. Almost all these schemes

[54, 145, 152, 57] use a similar architecture. The differences lie in the data structures

they use, or the cryptographic schemes they benefit from. We want to give a general

secure framework for constructing dynamic data outsourcing schemes.

5.1.1 Provable Data Possession

First proposed by Ateniese et al. [3], PDP is a memory-checking scheme who provides

probabilistic guarantees of possession of the outsourced file using a challenge-response

mechanism. The client first divides a file f into n blocks, f = (f1||f2||...||fn), then

computes a tag ti for each block, and finally transfers the file along with the tags to the

server, deleting its local copy, as shown in Figure 5.1a.

A PDP tag for the ith block, fi, is computed as ti = (h(Wi).g
fi)d mod N , where

N = pq is an RSA modulus with p = 2p′ + 1 and q = 2q′ + 1 as two safe primes, g is

a generator of QRN , pk = (N, g) is the public key, sk = (d, v) is the secret key, and

Wi = v||i [3]. Wi ties each tag to the current PDP instantiation and the position i. If a

new block is inserted at (or deleted from) position j, each block i from position j to the

end becomes the (i+ 1)th ((i− 1)th) block. Then, all tags from the position j to the end

becomes invalid (pointing to the old position where a new blocks resides) and need to

be recomputed according to the new contents. This is illustrated in Figure 5.1b, where

a new block is inserted at position i (of Figure 5.1a) and the block indices and tags not

updated yet. Therefore, the tags ti, ..., tn point to incorrect blocks, and hence, all are

invalid, and must be recomputed.

Chapter 5: A Generic Dynamic Provable Data Possession Model 50

To make sure that the server keeps storing the file intact, the client sends a challenge,

which is a subset of block indices selected randomly, to the server. Upon receipt, the

server constructs a proof using the challenged tags and blocks, and sends it back to

the client for verification. Since the PDP tags are homomorphic, instead of sending all

challenged tags and blocks, the server combines them into a single tag and a single block,

reducing the proof size, and the client is still able to verify them.

5.1.2 Authenticated Data Structures

The authenticated data structure (ADS) schemes are used for data authentication. An

ADS contains the security information generated by a client on a data set and used by

untrusted responders to provide cryptographic proofs showing that the answers to the

client’s queries are valid [137, 138, 118, 76]. The ADS is constructed using, and depends

on, all client data. On each update to the client data, the corresponding part of the

ADS together with some neighboring elements should be updated accordingly.

Two types of ADSs are used in data outsourcing contexts: secret key based and

public key based. In the former, the client computes a small metadata (constant-size

metadata is preferred) and either stores it locally or outsources it in encrypted form

together with the ADS and data. In the latter, the whole ADS is stored at the server

(e.g., the accumulator [12]).

There are different types of ADSs: accumulators [12], authenticated skip lists, au-

thenticated hash tables [119], Merkle hash trees [99], and 2-3 trees [105].

5.1.3 Observations

We investigated in detail the data outsourcing schemes, their security, advantages, and

weaknesses, and give the results as a set of observations. These observations can be used

as a guideline for constructing a data outsourcing scheme either form scratch or using

the existing building blocks.

• Observation 1. If a client (the data owner) outsources only her data to an un-

trusted cloud service provider (CSP), the CSP can manipulate the data, while the

client has no way of detecting such a misbehaviour. Therefore, before outsourcing

her data, the client should accompany it with cryptographic techniques that enables

later verification. The client can divide the data into equal-size blocks, compute

Chapter 5: A Generic Dynamic Provable Data Possession Model 51

a tag for each block, and store them at the CSP, as most of the existing schemes

[3, 81, 39, 19]. Now, she can perform efficient updates, and use spot-checking that

ensures the data integrity with a good probability.

• Observation 2. There are two problems with this solution. The first problem is

the possibility of replay attacks: The CSP can ignore an update totally and use the

old authentic data and tags to pass the client verification successfully. The second

problem is that the tags are bound to the exact location of the corresponding blocks

to be secure. Hence, an update in an intermediate location of the outsourced data

shifts all remaining blocks, requiring all the corresponding tags be recomputed.

• Observation 3. The solution to the first problem is to employ an authenticated

data structure (ADS) to store the tags. The ADS protects the integrity of the tags,

which in turn, protect the integrity of the data blocks. An ADS who keeps the

order of tags implicitly (such as rank-based authenticated skip list [54]) solves also

the second problem. Since the tags are not explicitly bound to the exact locations

of the corresponding blocks, the (blocks and the) tags can be updated efficiently.

• Observation 4. The general framework for data authenticity in dynamic data

outsourcing contexts consists of a secure tag scheme together with an implicitly-

ordered ADS to keep the tags, that is the focus of this work.

Since storing information about all file blocks, or all updates at the client side is not

efficient, any solution in the dynamic setting should have sublinear (preferably constant)

metadata at the client side. The tree-like ADSs such as Merkle hash tree or authenticated

skip list, satisfy these requirements. The client puts the blocks in such an ADS, stores

its digest locally, and outsources the ADS with the file.

However, the server sends to the client all challenged file blocks with their mem-

bership proofs in the ADS, that is not communication-efficient. Using a homomorphic

verifiable tag scheme, the client computes a tag for each file block, and stores these tags

(instead of the blocks themselves) in the ADS. To answer an audit, the server computes

a combination of the challenged blocks (that is about a block in length), the membership

proofs of their respective tags (that are small in length, compared to the blocks), and

sends them to the client for verification.

A tag scheme for dynamic data outsourcing should provide these properties:

Chapter 5: A Generic Dynamic Provable Data Possession Model 52

• Homomorphic. It is possible to combine two tags Tmi
and Tmj

of two blocks

mi and mj into a value Tmi
⊕ Tmj

as the tag of mi ⊕mj. The server can send a

combination of file blocks and a combination of their tags instead of sending them

all to the client, for communication efficiency.

• Unforgeable. It should be computationally infeasible for the server, to find an-

other block with the same tag, or compute a tag for a block of his choice.

• Extractable. If the adversary passes the audits successfully, he should have

enough knowledge about challenged blocks, extracted by an efficient extractor.

The ADS, in addition to being secure, should satisfy the following conditions:

• Efficiency. The ADS should support efficient search and update. We investigate

possible kinds of ADSs and compare their operation complexities. Our results

reveal that the tree-based ADSs are the efficient ones, supporting search and update

with O(log n) cost, where n is the number of data blocks.

• Ease of rebalance. To have the logarithmic costs, the ADS should remain bal-

anced after any number of updates. The binary search tree, that is used in many

schemes, does not satisfy this condition, and hence is not a good candidate for

dynamic data outsourcing. On the other hand, skip list [121], AVL tree, red-black

tree, etc. can be efficiently rebalanced.

• Implicit order. The ADS must arrange the file blocks or their respective tags

according to their location in the outsourced data in a way that updating one tag

does not affect (all) the remaining ones. One way, is to divide the set of file blocks

into subsets, and store at each subset, the number of blocks it contains (known as

the rank). It is obvious that an update in a subset will not affect the other subsets

with whom there is nothing in common. We call them implicitly-ordered ADS s.

5.1.4 Our contributions

• We propose a generic framework for construction of efficient DPDP schemes that

describes the required components and their properties. It indicates that efficient

DPDP schemes can be constructed given black-box access to an extractable ho-

momorphic verifiable tag scheme and an implicitly-ordered ADS scheme. The ex-

isting schemes [54, 145, 152, 57] are all specific cases of our general model.

Chapter 5: A Generic Dynamic Provable Data Possession Model 53

• We investigate the requirements of ADSs to be used in DPDP schemes: the ADS

should be implicitly-ordered, i.e., the property used for searching the blocks should

not depend on the block indices. Instead, a relative indexing mechanism like rank

(the number of blocks in a subset) satisfies the requirements. We show how to

convert an explicitly-ordered ADS into an implicitly-ordered ADS.

• The tag scheme should be verifiable, homomorphic, and extractable. Homomor-

phism helps performance by auditing without downloading all challenged blocks,

and verifiability and extractability provide security of the scheme.

• We investigate two kinds of DPDP schemes: the basic scheme and the efficient

scheme. The basic scheme does not employ a tag scheme, while the efficient scheme

employs extractable homomorphic verifiable tags, and is communication-efficient.

5.2 Background

5.2.1 Related Work

Static PDP. Ateniese et al. [3] proposed the provable data possession scheme, which

provides probabilistic guarantees of possession of the outsourced file using a challenge-

response mechanism. It uses homomorphic verifiable tags (HVTs), using which the server

aggregates the challenged blocks and tags, and sends only one aggregated block and one

aggregated tag, reducing the communication.

Wang et al. [142] used the BLS signatures in a similar manner (as the PDP) to

provide the privacy-preserving public auditing for static data. The scheme is publicly

verifiable to allow a third party auditor (TPA) to perform the auditing on behalf of the

client, while preventing the TPA from accessing the client data. The idea is to blind the

(PDP-like) proofs coming from the server.

Wang [143] proposed the concept of proxy provable data possession (PPDP). The

proxy is an entity who is involved on behalf of the client in a publicly verifiable PDP

protocol with the server and checks the integrity of the client’s outsourced data regularly.

Shah et al. [128, 129] encrypts the data before outsourcing, and uses privacy-preserving

third-party auditing.

Zhu et al. [155] proposed a cooperative PDP (CPDP) scheme using homomorphic

verifiable response and hash index hierarchy for a cooperation environment involving

Chapter 5: A Generic Dynamic Provable Data Possession Model 54

multiple cloud service providers that store and maintain the client’s data. This is different

from the multi-copy schemes in the sense that the client is only communicating with one

entity known as the organizer. Th organizer is responsible for communication between

the client and the servers. In Chapter 4, we proposed a multi-copy scheme for dynamic

data that is transparent to the client.

Dynamic PDP. The above schemes are static and do not support dynamic opera-

tions on the outsourced data, i.e., they are only suitable for archival purposes. The main

problem with dynamism in these schemes [3, 143] is the possibility of replay attacks :

The server can ignore an update request coming from the client, without being caught

(the client has no way to detect such a misbehaviour).

Ateniese et al. [4] proposed SPDP as a dynamic PDP scheme. They pre-compute and

store at the server a number of random challenges with the corresponding answers, i.e.,

the number of challenges a client can perform is limited and fixed a priori. Moreover,

later updates affect all remaining answers. In other words, an update invalidates all

remaining (unused) challenge answers, and the client should compute and send to the

server a new set of challenge answers to be used by the challenges following the update.

Erway et al. [54] used the rank-based authenticated skip list to give the first dy-

namic PDP scheme. The rank-based authenticated skip list supports block updates

with O(log(n)) cost, where n is the number of file blocks. In their first scheme, they

used the data blocks in the rank-based authenticated skip list, and hence, all challenged

blocks are sent to the client. In the second scheme, they aggregated all challenged blocks

into one using the RSA-based HVTs and sent to the client as part of the proof. Esiner et

al. [57] extended this work using FlexList [56] that uses the size of data in bytes accessi-

ble from each node (instead of the number of blocks). This allows the data blocks to be

variable in size as well as the variable-size updates. In Chapter 4, we extended DPDP

to provide reliability and scalability. It uses a hierarchical authenticated skip list that

supports distribution and replication of any part of the outsourced data, arbitrarily.

Wang et al. [145] used the Merkle hash tree [99] together with the BLS tags, which are

publicly verifiable homomorphic authenticators, to propose a publicly verifiable DPDP

scheme. However, there is an important unanswered objection about their scheme: If

the insertion (or deletion) operations are not distributed uniformly, and most of these

Chapter 5: A Generic Dynamic Provable Data Possession Model 55

operations are concentrated on a specific part of the tree, the tree will be unbalanced

after applying these operations, loosing its logarithmic benefits.

Wang et al. [141] proposed a DPDP scheme that uses erasure-correcting codes to

achieves storage correctness insurance and data error localization. They used an (n+k, k)

Reed-Solomon erasure-correcting code on a file f with n blocks (i.e., f = (f1||f2||...||fn)

to create k redundancy parity vectors from n data vectors in a way that the original file f

can be reconstructed from any n out of n+k data and parity vectors. Before outsourcing

the file, the client precomputes a number of tokens, each one covering a random subset

of data blocks, and either keeps them locally or stores them encrypted on the server.

Barsoum and Hasan [10] proposed a DPDP scheme that can perform full block-level

dynamic operations on the outsourced data. It uses a block status table to keep track of

the updates and store the block sequence numbers.

Generic PDP. Ateniese et al. [6] proposed a framework to use any identification

protocol satisfying certain homomorphic properties for constructing public-key homo-

morphic linear authenticators (HLAs). Then, they showed how a publicly-verifiable

proof of storage scheme satisfying the following properties can be built using any public-

key HLA: 1) The data is static, 2) the communication complexity is independent of the

file size, and 3) the number of verifications is unbounded.

Static PoR (Proof of Retrievability). First proposed by Juels and Kaliski [81], PoR

is an integrity checking scheme for static outsourced data. It provides strong retriev-

ability guarantees using erasure-correcting codes, i.e., in case of any unauthorized data

manipulation, the erasure-correcting code will help recover the original data. Juels and

Kaliski’s PoR supports only a limited number of challenges. Compact PoR [127] uses

erasure-correcting codes together with PDP to propose a PoR scheme. The resultant

PoR scheme supports public verifiability and removes the upper bound on the number

of audits. Dodis et al. [49] identified different variants of PoR and gave optimal PoR

schemes for each one, together with improved and generalized static PoR schemes.

Dynamic PoR. Stefanov et al. [135] proposed Iris as a dynamic PoR scheme inside

a cloud file system called Iris. However, it is a semi-dynamic PoR scheme since the

erasure-coding data is stored locally (on a trusted party called the portal). The first

dynamic PoR scheme with full security definition and proof is proposed by Cash et al.

Chapter 5: A Generic Dynamic Provable Data Possession Model 56

[28]. Recently, Chandran et al. [30] and Shi et al. [131] proposed other dynamic PoR

schemes. We do not follow this line of work as our focus is on DPDP.

Generic PoR is discussed in Chapter 8.

5.3 Dynamic Provable Data Possession

5.3.1 Dynamic Provable Data Possession Definitions

Definition 5.3.1 (Dynamic provable data possession scheme) A dynamic prov-

able data possession scheme is composed of the following interactive protocols between a

stateful client and a stateful server1:

• Setup(1λ): The client starts up this protocol to generate the secret and public keys,

and share the public key with the server, given as input the security parameter λ.

• Update(
−−−−→
i, v, op): The client uses this protocol to ask the server perform the opera-

tions op ∈ {Insert, Delete, Modify} on the block indices ~i, given the values ~v (if

required). Note that vi is empty for deletion, and there should already be a value

in the ith position for modification.

• Read(~i) is used by the client to read the blocks specified by a vector of block indices

~i. The client specifies the locations~i as input, and outputs the corresponding values

~v with a proof p proving authenticity of ~v.

• Audit(): The client specifies a challenge vector and uses this protocol to check

whether the server keeps storing the outsourced data correctly. She finally outputs

an acceptance or a rejection notification.

During the execution of Setup protocol, both the client and the server create their

own local states. The protocols following Setup will use these local states, and the

following Update protocols will update these local states. The client can either send the

whole file f in one execution of the Update protocol, or send it block-by-block by running

the Update protocol multiple times. Both methods result in the same final configuration

on the server. Moreover, the Update protocol does not include verification since server

misbehaviour will be caught by the subsequent Audits, with overwhelming probability.

1It is different from the original definition of Erway et al. [54], similar to the dynamic PoR definition
of Cash et al. [28].

Chapter 5: A Generic Dynamic Provable Data Possession Model 57

We defined two similar protocols Read and Audit. For now, they do the same job:

the Audit can be used to read the selected part of the data. Later on, when we talk

about the efficiency, it will be clear that a separate read protocol is needed2.

Inspired by the security definitions given in [3, 54], we define the security of a DPDP

scheme through the following game.

Definition 5.3.2 (Data possession game of DPDP) . Data possession game is

played between two stateful parties: the challenger acting as the client and the adversary

playing the role of a server.

• Initialization. The challenger creates a copy of the honest client C and the honest

server S, and asks C to run the Setup protocol. C runs Setup, generate the keys,

and gives the public key to the challenger who shares it with the malicious and

honest servers.

• Setup. The server gives the required information to the challenger and asks him

to start a protocol (Update, Read or Audit). The challenger uses the provided

information to start a protocol between C and S̃. The challenger, in parallel,

relays a copy of each command coming from C to the honest server S. This is

repeated polynomially-many times during which S creates his local database.

• Challenge. S̃ specifies a challenge vector and sends it as an audit request to the

challenger. The challenger asks the client to start the Audit protocol, and sends

the command from the client to both S and S̃, simultaneously.

S̃ wins the game if his answer is accepted by the client while it differs from the answer

of S. It is expected that Pr[AuthGameS̃(λ) = 1] ≤ ν(λ) for any efficient adversarial server

S̃, and a negligible function ν(λ).

Definition 5.3.3 (Security of DPDP) A DPDP scheme is secure if for any PPT

adversary S̃ who can win the data possession game with non-negligible probability, there

exists an extractor who can extract the challenged parts of the file.

Model. There are two parties in our DPDP model. The data owner (also known as

client) performs the required pre-computations, e.g., she computes the tags and builds

2Actually, an inefficient way to read t blocks is to use the Audit protocol t times, i.e., one block is
read in each execution.

Chapter 5: A Generic Dynamic Provable Data Possession Model 58

the ADS, and them along with her files to the server. Later, she asks the server to

perform audit and update (deletion, modification, or addition) on the outsourced data,

giving him necessary information.

Figure 5.2: Our model.

The server performs the operation, and prepares the an-

swer for the audit operation, and a proof for all operations,

and sends them back to the client. The proof ensures that

the server performed the operation correctly. Moreover, the

client executes the audit periodically to make sure that the

server keeps storing her data intact. This is illustrated in Figure 6.7.

Adversarial model. The server is untrusted, i.e., he can act maliciously, or made

by others to act so. He may cheat by attacking the integrity of the outsourced data by

adding/deleting files or updating the file contents, while trying to be undetected.

PDP [3] and many following schemes [33, 142, 143, 128, 129, 155] support only static

data, making them suitable for archival storage. However, to make the cloud storage

functional, we need to support dynamic operations (insertion, deletion, and modification)

on the outsourced data.

The two problems with dynamism, as stated in Observation 2, are the possibility

of replay attacks, i.e., a malicious server can ignore later updates on the outsourced

data and generate proofs using the old (correct) version of data that passes the client

verification, and the complexity of the update operations. One simple way to prevent

the replay attacks is to store some (small) information about each data block at the

client side (as metadata), which entails O(n) local storage, where n is the number of

file blocks. But, this local metadata cannot be easily outsourced since it will be either

insecure or inefficient, and it does not solve the complexity problem.

On the other hand, keeping nothing about the outsourced data locally, the client has

no way of checking integrity of her data. Hence, we want the client store local metadata

of constant size. But, this constant-size metadata should sample all file blocks to be able

to protect them all.

There are different ways of generating constant-size information about a large file di-

vided into n equal-size blocks: f = (f1||f2||...||fn). Aggregating all blocks, hash-chaining

all blocks, storing the blocks in an accumulator, and storing the blocks in a tree are among

Chapter 5: A Generic Dynamic Provable Data Possession Model 59

the possible ways that generate constant-size data. With aggregation and hash-chaining,

all blocks are required for verification, making them inefficient communication-wise. Us-

ing accumulator and some trees (discussed later), a block update requires updating all

remaining blocks, that is O(n) in the worst case, where n is the number of blocks, not

efficient computationally.

To sum up, an ADS sampling all file blocks, resulting in a constant-size metadata,

where a block update affects other blocks as small as possible, is required for constructing

a basic DPDP scheme.

5.4 Explicitly- and Implicitly-ordered ADSs

5.5 Basic DPDP Construction

Computing and verifying the authentication information for the whole file, requires access

to the whole file that is not communication-efficient. Hence, data outsourcing schemes

divide the file into a number of equal-size blocks as f = (f1||f2||...||fn) and outsource

these blocks. For audit, they investigate integrity of only a subset of these blocks chosen

at random. This guarantees the integrity of the file with overwhelming probability [88].

Dividing a file into blocks brings another difficulty: not only the contents but also

the positions of the blocks are important. Therefore, each block should be bound to its

specific position in the file. One can think of the file as a set of blocks sorted by their

positions. Any ADS storing these blocks (or their authentication information) should

preserve their order.

5.5.1 Explicitly-ordered ADSs

An explicitly-ordered ADS storing a set preserves the order of its values through binding

each value to the position it belongs to, i.e., each file block fi should be bound to the

ith position. Since the positions are consecutive and incremental (i.e., 1, 2, 3, ..., n), to

add or delete a block, all remaining blocks up to the end should be re-bound to their

new positions, that is an O(n) operation in the worst case, where n is the number of

blocks in the file. However, insertion to the end (append) and deletion from the end are

optimal operations with O(1) cost. There are different ADSs with these properties.

Chapter 5: A Generic Dynamic Provable Data Possession Model 60

(a) An explicitly-ordered Merkle hash tree. (b) f3 is deleted.

Figure 5.3: (a) An explicitly-ordered Merkle hash tree, (b) with f3 being deleted.

(a) An explicitly-ordered auth. skip list. (b) f3 is deleted.

Figure 5.4: (a) An explicitly-ordered authenticated skip list, (b) with f3 being deleted.

Merkle hash tree [99], as presented in Figure 5.3a, is an explicitly-ordered ADS,

storing the a file f divided into 8 blocks as f = (f0||f1||...||f7). That is, to find the

ith block given the binary representation of i, the search algorithm takes one bit in

each step and follows the corresponding path on the tree. Since each block occupy

its dedicated position, inserting a value in an intermediate position, requires all value

from that position up to the end be moved one place ahead and re-bound to their new

positions (that requires re-computations). After deleting a block, e.g., the fourth block

(f3) in Figure 5.3a, all remaining blocks should be shifted one place back, and re-bound

to the new positions, as illustrated in Figure 5.3b. The nodes affected by this deletion

are colored. Note that f4 is now the fourth block, v5 is the fifth value, and so on.

Authenticated skip list as presented in Figure 5.4a, is another explicitly-ordered

ADS, storing the same file f = (f0||f1||...||f7). Deleting f3 leads to the ADS in Figure

5.4b that shows changes in all remaining nodes up to the end.

However, there is an important difference between an authenticated skip list and a

Merkle hash tree: In the lack of the positioning problem, the former supports dynamic

Chapter 5: A Generic Dynamic Provable Data Possession Model 61

operations while the latter does not. The reason is that in case of many insertions to

the same position, the Merkle hash tree may be converted into a linear ADS, loosing the

logarithmic complexity benefits.

Since the main problem with these two ADSs is the position update problem, one

may choose not to assign the block positions consecutively, and leave some positions

between any two successive blocks. This allows some limited amount of dynamism:

when a block is inserted, it is assigned an unused position in the range it belongs to.

Figure 5.5a represents a skip list who stores the blocks at positions that are multiples of

their position in the file, i.e., f0 is stored at position 0, f1 at position 1000, f2 at position

2000,.... Hence, 999 blocks can be inserted between each two successive blocks. Adding

a new block between f4 and f5, for example, leads to the ADS in Figure 5.5b.

This method allows a limited dynamism, since when all empty positions are occupied,

the original problem will again be encountered, though it can be solved for another

limited time with a rebuild that assigns new positions to all blocks and creates empty

positions in between. The rebuild is an O(n) operation.

Leaving some empty positions although solves the dynamism problem, brings an-

other important problem: the client has no way to find the positions that each block

is outsourced. For example, she can not realize that f4 is stored at position 4000, but

f5 and f6 are stored at positions 4500 and 5000, respectively. Therefore, she cannot

perform search, which is also the base of the other operations.

In sum, the explicitly-ordered ADSs cannot support dynamic operations efficiently.

The data outsourcing schemes using explicitly-ordered ADSs (e.g., PDP [3], in which a

(a) An explicitly-ordered auth. skip list. (b) f4500 is added.

Figure 5.5: (a) An Explicitly-ordered authenticated skip list, (b) with f4500 being added.

Chapter 5: A Generic Dynamic Provable Data Possession Model 62

(a) An implicitly-ordered Merkle hash tree. (b) f3 is deleted.

Figure 5.6: An Implicitly-ordered Merkle hash tree, (b) with f3 being deleted.

tag is computed for each file block that ties up the blocks to their positions in the file)

cannot handle updates efficiently. Accumulator [12] is another unordered ADS that can

be modified to support order of the data it stores. However, the resultant will be an

explicitly-ordered accumulator.

5.5.2 Implicitly-ordered ADSs

An implicitly-ordered ADS uses a property among the blocks of the file, and arranges

them accordingly. This property does not directly depend on their positions, but can

be used to locate each block. The file is divided into subsets of its successive blocks

recursively, and the property in use is computed on each subset. The property can be

the rank of each subset (the number of blocks in the subset), or the length of all data

in the subset, in bytes. The rank-based authenticated skip list introduced in [54] is

an implicitly-ordered ADS. Flexlist [56] is another implicitly-ordered ADS built on the

length of data, and handles storing variable-length data blocks.

However, it is not possible to use any similar property for constructing implicitly-

ordered ADSs. For example, the maximum (minimum) of the block positions or values

in the subset (e.g., binary search trees or B-trees) cannot be used for building such

ADSs. Since the maximum (minimum) of the block positions depends directly on the

block positions, an insertion or deletion will affect all remaining nodes. The maximum

(minimum) of the block values arranges the blocks in the ADS differently from their

order in the file, that is not suitable for file outsourcing.

Therefore, to support dynamic operations efficiently, an ADS should not store (any

function of the) explicit positions of the blocks it stores. Using an implicit property such

Chapter 5: A Generic Dynamic Provable Data Possession Model 63

(a) An implicitly-ordered auth. skip list. (b) f3 is deleted.

Figure 5.7: (a) An implicitly-ordered authenticated skip list, (b) with f3 being deleted.

(a) An implicitly-ordered FlexList. (b) A 2K block f3 is added.

Figure 5.9: (a) An implicitly-ordered FlexList, (b) with a 2K block f3 being added.

as the number or the length of the blocks in each subset, helps to find and locate all

blocks, while makes efficient updates on the blocks possible.

Figure 5.6a shows an implicitly-ordered Merkle hash tree using the rank property.

The rank of each node is defined as the number of blocks accessible from that node [54].

The data blocks are stored in leaves, and each intermediate node stores a value computed

as a function of values of its children and its own rank.

Figure 5.8: Storing data at in-
termediate nodes as well.

To differentiate between the blocks of the set and those

computed by the ADS, hereafter, we will call the latter one

label. Alternatively, one can store the blocks at all nodes

of the tree, whether a leaf node or an intermediate node.

This way, the Figure 5.6a will be converted into Figure

5.8. (A similar conversion on Figure 5.3a generates an

explicitly-ordered ADS similar to Figure 5.8.)

The rank-based authenticated skip list, which is an extension of the skip list

[121], is another implicitly-ordered ADS. Figure 5.7a shows the rank-based authenticated

Chapter 5: A Generic Dynamic Provable Data Possession Model 64

skip list constructed on the same example file f = (f0||f1||...||f7). Each node has a rank,

which identifies the numbers of file blocks accessible through that node, and is used

during search, as described in Algorithm 5.5.1. An update affects nodes on the path

from the updated node up to the root, as shown in Figure 5.7b, that is an O(log n)

operation with high probability [121, 54, 76], where n is the number of blocks. No

update is required at the other parts of the ADS.

FlexList [56] is another rank-based authenticated skip list, where the rank of a node

is the length of data accessible through that node, as represented in Figure 5.9a. This

figure stores a file of size 15 KB divided into blocks of different length. The operation

costs are logarithmic, as in a regular authenticated skip list. Figure 5.9b illustrates

insertion of a new block (f3) of size 2 KB into the Figure 5.9a.

Since the blocks are not bound to their positions, and the rank of each node is

independent of the rank of other nodes that do not have anything in common (e.g., rank

update in the left subtrees of Figures 5.6a and 5.8 will not affect their right subtrees),

therefore, update (insertion, deletion, and modification) operations will not affect all

nodes (up to the end). In a tree-like structure, an update operation affects only the

nodes on the path from the updated node up to the root, which requires O(log n) cost,

where n is the number of blocks stored in the tree. Deleting a block, e.g., the fourth

block (f3) in Figures 5.6a and 5.7a, affects only the ranks of nodes on the path from

the node storing f3 up to the root, as illustrated in Figures 5.6b and 5.7b, respectively.

Note, however, that the position of the remaining blocks will be adapted automatically.

More precisely, f4 is now the fourth block, f5 is the fifth block, and so forth, without

any explicit update. The same holds when a block is inserted, as shown in Figure 5.9b.

Search. To search for the ith block in a rank-based tree, starting from the root, we

compare i with the rank of the left child. If i ≤ leftchild.rank, then we continue with

the left child, otherwise we set i = i − leftchild.rank to compute the proper relative

index, and continue with the right child. This process goes on until the ith node is met, at

the leaf level. This is illustrated in Algorithm 5.5.1. Note that this algorithm works for

the Merkle hash tree that only store blocks at the leaf nodes. If the intermediate nodes

also store blocks, we need to check against the node itself we are visiting. The Algorithm

5.5.1 requires small changes to support this case as well. The search algorithms of the

Chapter 5: A Generic Dynamic Provable Data Possession Model 65

existing schemes [54, 57] are logically similar to our generic search algorithm.

Algorithm 5.5.1: Search
Input: Root node of the tree: RN, and the position of the value being searched: i.
Output: The membership proof, π.

1 if RN.leftchild == NULL then
2 return RN.value;
3 else
4 if i ≤ RN.leftchild.rank then
5 π = RN.rightchild.label;
6 return π||Search(RN.leftchild, i);

7 else
// If the intermediate nodes also store the file blocks, first compare

with the current node itself.

8 π = RN.leftchild.label;
9 return π||Search(RN.leftchild, i−RN.leftchild.rank);

Other ADSs. We can add the rank property into the other dynamic authenticated

balanced trees, such as AVL, red-black, or 2-3 trees [105] to make them implicitly-

ordered. In these ADSs, after an update, only the nodes on the path from the update

point up to the root may need update their ranks since only those nodes have updated

subtrees [147]. In the AVL, for example, there are two kinds of rebalancing to eliminate

any imbalance in the tree that might happen after an update [147]: single rotation and

double rotation. Figure 5.10a shows an imbalance AVL tree after an insertion in the

left subtree of Ri. Assume that the ranks of all affected nodes on the path up to the

root have already been re-computed. The single rotation changes the ADS into the one

shown in Figure 5.10b, which shows that this operation changes only the ranks of the

nodes Ri and Ri+t. The ranks of all subtrees and the path from the parent of Ri up to

the root will not change. (Their labels may require re-computation.)

5.5.3 Operation Complexities of the Ordered ADSs

Explicitly-ordered ADSs. In an explicitly-ordered ADS, the cost of a search operation

is O(1) since the exact location of each data block is known. The update operations

(insertion, deletion, and modification)3, on the other hand, require O(n) cost at the

worst case, since an update operation affects all the remaining blocks. The ordered

3We talk about the update operations in general, an do not take into account special cases such as
the append and deletion from the end. They are O(1) operation since the exact location of the block
they operate on is known, and these operations do not affect the remaining blocks.

Chapter 5: A Generic Dynamic Provable Data Possession Model 66

(a) An imbalance AVL tree. (b) Single rotation and rank update.

Figure 5.10: An authenticated AVL tree (a) before and (b) after a single rotation.

accumulator is an example of these ADSs, and it cannot be converted directly into an

implicitly-ordered ADS.

Figure 5.11: Partitioning in general.

Implicitly-ordered ADSs. Converting an

explicitly-ordered ADS into an implicitly-ordered

ADS actually means reducing the update complex-

ity from linear to sublinear. To this end, we can

divide the data set (to be stored in the explicitly-

ordered ADS) into partitions, and store each par-

tition in a different explicitly-ordered ADS. This way, a block update will only affect one

partition. To keep unity of the data set (or the file in case we store a file in the ADS),

however, we need to tie these partitions together in a secure manner. The general form

is shown in Figure 5.11. There are n1−ε partitions each of size nε that constitute the

level zero. All blocks in a partition are children of a node at one level above. These

intermediate nodes are also divided into partitions of size nε in the same manner. This

process goes on until the root is constituted, and generates 1/ε levels in total.

Letting ε = 1/2, produces
√
n partitions at level zero, each of size

√
n, organized in

a two-level architecture. Hence, the search cost is 2, which is O(1), and the update cost

is
√
n at each level, leading to 2

√
n in total, that is O(

√
n). When ε = 1/c, where c is a

constant, there are n1−1/c partitions, each of size n1/c, in a structure with c levels. Thus,

the search cost is c=O(1), and the update cost is cn1/c=O(n1/c). There is an imbalance

between the search and update costs. Therefore, we set ε=1/ log n, which generates

Chapter 5: A Generic Dynamic Provable Data Possession Model 67

partitions of size two at level zero, and log n levels, leading to 2 log n=O(log n) search

cost and O(log n) update cost.

Table 5.1 shows a comparison among the ADSs based on complexity classes.

Table 5.1: A comparison among ADS operation complexities.

Complexity class Example Search Update
Linear Ordered accumulator O(1) O(n)
Sublinear Authenticated hash table O(1) O(nε)
Logarithmic Rank-based authenticated skip list O(log n) O(log n)

5.5.4 DPDP from Implicitly-ordered ADSs (Basic Construction)

An implicitly-ordered ADS, Figures 5.6a, 5.7a, or 5.9a for instance, can be used to

construct a dynamic provable data possession scheme. We call this the basic DPDP

scheme. First, a file f is divided into n blocks f = (f1||f2||...||fn). Then, each block is

stored at the corresponding node of the ADS. Leaf nodes store a function, e.g., hash,

of the blocks, and each intermediate node stores a values computed as a function of its

children values, and its rank, according to the construction rules of the ADS.

The client outsources the file together with the ADS to the server, and keeps only

the digest stored at the root of the ADS. For an audit, the client selects a randomly-

selected subset of block indices, prepares the corresponding command according to the

ADS format and sends it to the server. The server generates the membership proofs all

challenged blocks and sends the result to the client. The client reconstruct the required

parts of the ADS according to the proof, and compares the computed root digest with

the stored root digest. Any mismatch leads to a rejection, and shows misbehavior of

the server. For each update, the client prepares the update command according to the

ADS format, and sends the command to the server. On receipt, the server performs the

update on both the file and the respective ADS, and sends the proof of operation back to

the client. The client verifies the proof, and if accepted, updates the locally-stored digest.

Later audits will be checked against this new value. Figure 5.12 represents constructing

a DPDP scheme using an implicitly-ordered ADS.

The Update command builds the ADS at the outset, and performs the following

updates on the ADS. It requires the operation op ∈ {Insert, Delete, Modify}, the block

index i, and the new value of the block for Insert and Modify. To read the ith block,

Chapter 5: A Generic Dynamic Provable Data Possession Model 68

the client uses Read protocol with the input i, which returns the ith block together with

its membership proof. The client accepts the block if the proof is verified. In an Audit

protocol, the client chooses a vector of block indices at random, ~c, and sends it to the

server, who generates the membership proof for all challenged blocks and sends it back.

Again, the client verifies the proof and emits an acceptance or a rejection signal.

Let ∆ = (KeyGen, Certify, Verify) be a secure ADS scheme. Construct a DPDP scheme D = (Setup,
Update, Read, Audit) as follows:
• Setup(1λ):

– Run (sk, pk) = ∆.KeyGen(1λ).

– Output (sk, pk) and send the pk to the server.

• Update(
−−−−→
i, v, op):

– The client prepares the update commands according to the ADS format, and sends the resultant
command, cmd, to the server.

– On receipt, the server runs π = ∆.Certify(pk, cmd), and sends π to the client.

– The client runs ∆.Verify(sk, pk, cmd, null, π, stC). If it is accepted, then she updates her local state
accordingly. Otherwise, the server’s misbehaviour is detected.

• Read(~i):

– The client prepares the read command accordingly, cmd, and sends it to the server.

– The server runs (ans, π) = ∆.Certify(pk, cmd), and sends the answer ans and the proof π to the
client.

– The client runs ∆.Verify(sk, pk, cmd, ans, π, stC). If it is accepted, she consumes the read data.
Otherwise, the server’s misbehaviour is detected.

• Audit():

– The client produces a challenge vector ~c, prepares it according to the ADS format as cmd, and sends
it to the server.

– The server runs (ans, π) = ∆.Certify(pk, cmd), and sends the answer ans and the proof π to the
client.

– The client runs ∆.Verify(sk, pk, cmd, ans, π, stC). If it is accepted, she will be convinced, with high
probability, that the server is storing her data intact. Otherwise, the server’s misbehaviour is detected.

Figure 5.12: Constructing a DPDP scheme using an implicitly ordered ADS.

5.5.5 Security of the Basic DPDP Construction

Theorem 5.5.1 If ∆ = (KeyGen, Certify, Verify) is a secure implicitly-ordered ADS

scheme, our construction, given in Figure 5.12, is a secure DPDP scheme.

Proof 5.5.1 According to Definition 5.3.3, a DPDP scheme is secure if the challenger

can extract the actual challenged blocks whenever the adversary wins the data posses-

sion game. That is, if the adversary’s answer is accepted by the client, he should have

knowledge of the challenged blocks.

Chapter 5: A Generic Dynamic Provable Data Possession Model 69

We reduce security of the DPDP scheme to that of the underlying implicitly-ordered

ADS. If a PPT adversary A wins the data possession game with non-negligible proba-

bility, we use it to construct a PPT algorithm B who breaks security of the ADS, with

non-negligible probability. B acts as the challenger in the data possession game with A

and, in parallel, plays the role of server in the ADS game with the ADS challenger C.

C generates the public and private keys of the ADS, and sends the public key to B

who forwards a copy to A. The parties execute the setup phase during which B builds a

local copy of the implicitly-ordered ADS (storing the file) for himself. The adversary A

has no idea about it, and thus it will not affect his behaviour.

Once the setup phase is done, A generates the answer and proof for a command he

selects, and sends them to B who forwards a copy of them to C. The answer should be

different from the real answer and the proof should be verified, for the adversary to win. B

can realize the fact that the received answer differs from the real one using the local copy

he maintains. The view of A when run as a subroutine by B is identically distributed to

the view of A in the ADS game. Hence, if A passes the verification with non-negligible

probability p, B passes the ADS verification with the same probability, breaking the ADS

security with non-negligible probability.

Since the ADS is secure, p must be negligible, hence, the adversary A has negligi-

ble probability of winning the DPDP data possession game. To conclude, if the ADS

employed is secure, our DPDP scheme is secure.

Now, since the adversary sends all challenged blocks as part of the proof (i.e., there is

no aggregation), the challenger can extract the challenged blocks directly, without rewind-

ing the adversary.

5.6 Efficient Dynamic Provable Data Possession

The basic scheme given in previous section is not efficient enough since the server sends

all challenged blocks as part of the proof to the client. It requires communication linear

in the challenge size. To reduce the communication (not asymptotically), we can use the

homomorphic verifiable tags (HVT) introduced first by Ateniese et al. [3] and later used

by others in diverse forms [54, 155, 127]. The HVT enables anyone to combine two tags

Tmi
and Tmj

of two blocks mi and mj into a value Tmi
⊕ Tmj

as the tag of mi ⊕mj.

Chapter 5: A Generic Dynamic Provable Data Possession Model 70

(a) The basic DPDP scheme. (b) The efficient DPDP scheme.

Figure 5.13: Proofs generated using the (a) basic and (b) efficient DPDP schemes.

The general form of the existing DPDP schemes is to divide the file into n blocks as

f = (f1||f2||...||fn), compute the HVTs of the blocks, and store the tags in an implicitly-

ordered ADS that guarantees the authenticity of the tags, and can be updated by an

untrusted server in a provable manner. The client outsources the file, the tags, and the

implicitly-ordered ADS, while storing a constant metadata, e.g., the digest stored at the

root of the tree-like ADSs, easily stored and shared with the other clients when needed.

Using an implicitly-ordered ADS solves both problems: the client metadata helps

prevent the replay attacks, and the sublinear (logarithmic if the ADS is tree-like) com-

plexity of the implicitly-ordered ADS improves the update complexity.

The HVTs bring another advantage that is called blockless verification [3], which

means that the client can verify that the server possesses the challenged blocks, even

without access to the actual blocks. Using this important property, in response to a

challenge, the server aggregates all challenged blocks into one block (and all respective

tags into one tag block) and sends them together with the ADS proof to the client. Stated

differently, instead of building the proof on all challenged blocks and their tags, only one

file block (and only one tag block) together with the ADS proof are sent, reducing the

proof size considerably. Figure 5.13 visualizes these two cases and their difference.

Let b be the size of a block and t be the size of a tag such that t < b. With c = 460

blocks in a challenge, the communication cost of the basic DPDP scheme is cb plus the

ADS proof. For an outsourced file of size 1 GB divided into n ' 500,000 blocks each of

size b = 2 KB, and a 128-bit output hash function, the ADS proof is ' 130 KB. Further,

the size of 460 blocks is 920 KB. Hence, the proof size of the basic DPDP scheme is '

1050 KB, in total. Using HVTs, the challenged blocks are all aggregated into one block

and the respective tags are also aggregated into one tag block, and are sent to the client

along with the ADS proof. This leads to a proof of size t+b plus the ADS proof size

Chapter 5: A Generic Dynamic Provable Data Possession Model 71

that is smaller than the proof of the basic scheme. In our example, the proof size using

HVTs will be ' (130 + 2) KB = 132 KB. This shows about 8X improvement due to use

of the HVTs.

The client in some intervals audits the server to check the integrity of her data. Using

the CombineTag and CombineData functions, the server can aggregate the challenged file

blocks together, and their related tags together, and send only two values back to the

client. Since the number of challenged indices is constant, this method will not improve

communication asymptotically, but it is optimal in size. For verification, the client can

only download the corresponding tags instead of retrieving the data blocks. The ADS

provides the integrity of the tags, which in turn, provide the integrity of data blocks [54].

Ateniese et al. [6] showed how to generate HLAs from any identification protocol

supposed to be homomorphic. Later, they showed that an HLA can be used to con-

struct a static proof of storage scheme: The client divides the file ~f into n blocks

f = (f1||f2||...||fn), generates their HLA tags, and outsources the file f along with the

vector of tags, ~t. Later, the server computes and sends to the client a linear combination

of the challenged blocks (not all of them) in response to the client audits. Although

the scheme is efficient enough for static data, it cannot support dynamic operations (ex-

cept the Append) on the file. Stated differently, dynamic operations on this scheme are

neither secure nor efficient. The former problem is related to the fact that a malicious

server can use the previous data and tags of the modified blocks (i.e., the replay attack),

and for the latter case, as stated before, the tags are explicitly bound to their positions.

One solution for the replay attack is to store information about the last update

on the blocks (and use it in tag generation). These information need to be stored on

the client, requiring O(n) storage. Different forms of this approach appear in different

applications [136, 30]. A second way is to store the tags in an ADS, and store some

constant information about the resultant ADS at the client side for verification. This

approach has also been used in different schemes [54, 145, 152].

5.6.1 Tag Schemes

An important application of cryptography is to provide secure communication over in-

secure open communication channels. Message integrity is the main property of such

Chapter 5: A Generic Dynamic Provable Data Possession Model 72

security that insures if the received message is exactly the one sent already by the origin.

The same concept has been used in almost all remote data checking schemes proposed

for cloud, to enable the client to check whether the data she retrieves from the server

are authentic. The client divides her data into some equal-size blocks, generates a tag

for each block, and outsources them at the server. Later, the client reads along with

each block the corresponding tag, and verifies the authenticity of the retrieved data

against their tags before using the data. The tags guarantee that if the server manages

to manipulate the client’s data he hosts, he will be caught with a high probability.

Once used in a data outsourcing application at the cloud, the tag scheme will give

proofs for more than one blocks at the same time, since the queries ask for multiple

blocks at a time, normally. A regular verifiable tag scheme is not efficient enough re-

garding batch verification, which is required to provide satisfactory probabilistic integrity

guarantees for data outsourcing in the cloud. The reason is that to generate proofs for

the challenges, the server needs to send all challenged blocks to the client, that is not

communication-efficient.

Using a homomorphic verifiable tag scheme, all challenged blocks can be aggregated

into one block, and all corresponding tags into one tag, in a way that the authenticity of

the challenged blocks (and hence, the whole outsourced data with high probability) can

be inferred. We assume that the aggregation of data blocks are performed by the server,

but either the client or the server can do the aggregation of the tags. Aggregation of the

tags results in a reduced communication if done by the server. Note that this will not

enhance the communication efficiency asymptotically.

Definition 5.6.1 (Homomorphic verifiable tag scheme) A homomorphic verifiable

tag scheme consists of the following PPT algorithms:

• (sk, pk)← KeyGen(1λ): is a probabilistic algorithm executed by the client to set up

the scheme and generate a private and public key pair (sk, pk), given the security

parameter λ. She then sends the public key pk to the server.

• (~T) ← TagGen(sk, f): is a probabilistic algorithm run by the client to generate

the homomorphic tags of the file blocks. Given the secret key sk and the file f as

input, it generates a vector of homomorphic tags ~T .

Chapter 5: A Generic Dynamic Provable Data Possession Model 73

• (µ)← CombineData(pk, f,~c): is a deterministic algorithm run by the server upon

receipt a challenge vector ~c. It also takes as input the public key, and the file f ,

and generates a data block µ.

• (τ) ← CombineTag(pk, ~T ,~c): is a deterministic algorithm run by either the client

or the server to generate an aggregated tag τ . The public key pk, the vector of

tags ~T , and a challenge vector ~c are given as input.

• {accept, reject} ← Verify(sk,~c, µ, τ): is a deterministic algorithm run by the

client to verify the received tag. The secret key sk, the aggregated file blocks µ,

a challenge vector ~c, and the aggregated tag τ are given as input. It outputs an

acceptance or a rejection notification.

Inspired by security definitions from [6, 87], we now give the security definitions of

the HVT scheme.

Correctness. An HVT scheme is correct if ∀ λ∈N, ∀ (pk, sk) ← KeyGen(1λ), ∀ f ,

∀ ~T ← TagGen(sk, f), and ∀ ~c ∈ Zln we have: Verify(sk, CombineData(pk, f,~c),~c,

CombineTag(pk, ~T ,~c)) = accept.

Security. Informally, an HVT scheme is secure if no PPT adversary can generate

a valid aggregated tag (or a set of tags that can be aggregated) for a new set of data

blocks that were not already provided by the client. Next, we define the unforgeability

game for the HVT scheme.

Definition 5.6.2 (Unforgeability game of an HVT scheme) Let Π=(KeyGen,

Tag, CombineData, CombineTag, Verify) be an HVT scheme. The unforgeability game

between a challenger and a PPT adversary A, ForgeGameA(λ), is defined as follows. (A

has oracle access to TagGen(sk, .) for any message of his choice.

• Initialization. The challenger executes KeyGen(1λ) to generate the key pair

(pk, sk), and shares sk with A.

• Setup. The adversary A, given 1λ and oracle access to TagGen(sk, .), outputs a

file f . The challenger runs ~T←TagGen(sk, f) and sends ~T to A. A continues to

have oracle access to TagGen(sk, .). Q is the set of all queries A asked to his oracle.

• Challenge. A sends a challenge request to the challenger, who prepares and sends

back a challenge vector ~c. In response, the server outputs a data block µ′, and a

tag vector ~t.

Chapter 5: A Generic Dynamic Provable Data Possession Model 74

A wins the game if his answer (µ′ and ~t) to the selected challenge vector ~c gets ac-

cepted by the challenger while µ′ 6=CombineData(pk, f,~c). The output of the experiment

is 1 in this case, and 0, otherwise.

Definition 5.6.3 (Security of an HVT scheme) . A homomorphic verifiable tag

scheme Π = (KeyGen, TagGen, CombineData, CombineTag, Verify) is unforgeable under

an adaptive chosen-message attack (secure) if ∀ PPT adversaries A, ∃ a negligible func-

tion ν(.) such that: Pr[ForgeGameA(λ) = 1] ≤ ν(λ).

Extractability. In addition to being unforgeable, a tag scheme should be extractable

to be used in data outsourcing in the cloud. When a client challenges the server and

he gives answers passing the client verification, this means that the server has sufficient

knowledge about the challenged blocks. In the presence of a proper extraction method,

the client can extract the challenged blocks with high probability. An HVT scheme is

secure if the challenger can extract the real challenged block using a verification that

succeeds with non-negligible probability, in polynomial interactions with the adversary.

Definition 5.6.4 (Extractability game) . The extractability game is played between

an honest client C and an adversary A.

• Initialization. The challenger creates a copy of an honest client C, and starts

Setup among C and A.

• Setup. A adaptively chooses a protocol ∈ {Read, Update, Audit} and sends it with

the required information to the challenger asking her to start the protocol. The

challenger forwards them to the client who starts up the protocol. A repeats this

process polynomially-many times. Call the final states of the client and adversary,

stC and stA, respectively.

• Challenge. The extractor repeats Audit polynomially-many times with A in the

final state stA (via rewinding). Call the extracted file f ′.

Definition 5.6.5 (Extractability) A tag scheme is extractable if there exists a PPT

extractor such that for all PPT A, if A passes the Audit protocol with non-negligible

probability, then at the end of the extractability game, we have f ′ = f (the original

outsourced file) with overwhelming probability.

Chapter 5: A Generic Dynamic Provable Data Possession Model 75

We give a high level proof idea as we did not give a concrete construction. While

existing HVT schemes all combine the data and tags linearly, any combining formula is

applicable subject to existence of a proper extraction method. Currently, the extraction

of linear combinations is only known. Since the adversary sends the aggregated data

blocks to the challenger, we should show that the challenger is able to extract the original

data blocks. Ateniese et al. [6] showed the extraction process in detail for the HLAs,

where the aggregated answer is a linear combination of the challenged blocks. The

extractor repeatedly rewinds the adversary polynomially-many times. The process stops

when either |~c|-many (|~c| is the challenge vector) accepted linearly independent answers

are found, or |~c|-many accepted answers are not found after polynomial-many tries, which

shows the adversary is misbehaving.

5.6.2 Efficient DPDP Construction

We use the implicitly-ordered ADSs to store the HVTs, that guarantees the server stores

the tags intact, and uses the correct tags in responses to the client queries. The HVTs,

in turn, are used to verify that the server keeps genuine outsourced data blocks. This

combination results in an efficient DPDP scheme.

Generally, the client computes the HVTs for all blocks of the file f = (f1||f2||...||fn),

puts them in an implicitly-ordered ADS, and outsources the ADS with the file at the

server, while keeping the digest of the ADS locally as metadata. Later on, she challenges

a random subset of the blocks. In response, the server gives two proofs. The first proof is

the one that is generated using the ADS (that includes the tags of the challenged blocks)

and, if accepted, indicates that the tags coming from the server are authentic. The

second proof is the aggregation of the challenged blocks, which (together with a similar

aggregation of the tags4) shows the server keeps challenged file blocks (and hence, the

outsourced file with high probability) intact.

Figure 5.14 gives the general form of constructing an efficient DPDP scheme given

access to a HVT scheme and an implicitly-ordered ADS scheme.

4This can be done by either the server or the client (since she has the required tags already). To
lighten the burden on the client, we can ask the server to compute and send it with the proof.

Chapter 5: A Generic Dynamic Provable Data Possession Model 76

Let ∆=(KeyGen,Certify,Verify) be a secure ADS scheme, and Π=(KeyGen,TagGen,CombineData,CombineTag,

Verify) be a secure HVT scheme. Construct a DPDP scheme D=(Setup,Update,Read, Audit) as follows:
• Setup(1λ):

– The client runs (sk∆, pk∆) = ∆.KeyGen(1λ), and (skΠ, pkΠ) = Π.KeyGen(1λ),

– outputs sk = {sk∆, skΠ} and pk = {pk∆, pkΠ}, and

– sends the pk to the server.

• Update(
−−−−→
i, v, op):

– The client runs ~t = Π.TagGenskΠ
(~i, ~v) if op ∈ {Insert, Modify},

– prepares the update according to the ADS format, cmd, and

– sends ~t, (
−−−−→
i, v, op), and cmd to the server.

– The server stores ~t, processes (
−−−−→
i, v, op), runs π = ∆.Certify(pk∆, cmd), and sends π to the client.

– The client runs ∆.Verify(sk∆, pk∆, cmd, null, π, stC). If it is accepted, then she updates her local state
accordingly. Otherwise, the server’s misbehaviour is detected.

• Read(~i):

– The client prepares the read command with the ADS format, cmd, and sends it to the server.

– The server runs (ans, π)=∆.Certify(pk∆, cmd), and sends the ans and π to the client.

– The client runs ∆.Verify(sk∆, pk∆, cmd, ans, π, stC). If it is accepted, she consumes the read data. Oth-
erwise, the server’s misbehaviour is detected.

• Audit():

– The client produces a challenge vector ~c containing random block indices, prepares it according to the ADS
format as cmd, and sends it to the server.

– The server runs (ans, π) = ∆.Certify(pk∆, cmd) and µ← Π.CombineDatapkΠ
(~f,~c), and

– sends ans, π and µ to the client.

– She runs ∆.Verify(sk∆, pk∆, cmd, ans, π, stC) and Π.Verify(skΠ, µ,~c,Π.CombineTag(pkΠ, ans,~c)).

– If both verifications were accepted, the client will be convinced that the server is storing her data intact,
with high probability. Otherwise, the server’s misbehaviour is detected.

Figure 5.14: Construction of an efficient dynamic provable data possession scheme.

5.6.3 Security of the Efficient DPDP

Theorem 5.6.1 If Π = (KeyGen, TagGen, CombineData, CombineTag, Verify) is a se-

cure HVT scheme, and ∆ = (KeyGen, Certify, Verify) is a secure implicitly-ordered

ADS scheme, then our construction, given in Figure 5.14, is a secure DPDP scheme

according to Definition 5.3.3.

Proof 5.6.1 According to Definition 5.3.3, a DPDP scheme is secure if the adversary

possesses sufficient knowledge of the challenged blocks in order to win the data possession

game. This helps the challenger extract the actual challenged data.

We reduce security of the DPDP scheme to the security of its building blocks: the

Chapter 5: A Generic Dynamic Provable Data Possession Model 77

implicitly-ordered ADS scheme and the extractable homomorphic verifiable tag scheme.

If a PPT adversary A wins the data possession game with non-negligible probability, we

use it to construct a PPT algorithm B who breaks security of either of the two schemes,

with non-negligible probability. B plays the role of the challenger in the data possession

game with A, and simultaneously, acts as the server in the ADS game played with the

ADS challenger CA and in the tag game played with the tag challenger CT .

CA and CT generate their public and private key pairs, and share their public keys

with B who relays a copy to A. The parties execute the setup phase during which B builds

a local copy of the data blocks and the corresponding HVTs, and the implicitly-ordered

ADS (storing the file) for himself. This will not affect A’s behaviour as he is not aware

of this fact.

After the setup phase, A generates the answer and proof for a command he selects,

and sends them to B. On receipt, B separates the parts related to the ADS from those

related to the HVT, and forwards a copy of them to CA and CT , respectively. For A to win

the game, at least one of answers should be different from the real answer, and the proof

should be accepted. (B can detect this misbehaviour using the local copy.) This means

that: Pr[A wins] = Pr[B wins the ADS game∨B wins the HV T game]. Letting p =

Pr[B wins], pA = Pr[B wins the ADS game], and pT = Pr[B wins the HV T game],

results in: p ≤ pA + pT .

Now, if p is non-negligible (i.e., A can pass the DPDP verification with non-negligible

probability), then either pA is non-negligible (i.e., B passes the ADS verification with non-

negligible probability that means breaking the ADS security with non-negligible probability)

or pT is non-negligible (i.e., B passes the HVT verification with non-negligible probability

that means breaking the HVT security with non-negligible probability), or both pA and pT

are non-negligible.

Since the ADS and HVT are secure, pA and pT must be both negligible, which implies

according to p ≤ pA + pT that p is also negligible, and hence, the adversary A has

negligible probability of winning the DPDP data possession game.

Further, the extractability of the proposed DPDP construction comes directly from

the underlying tag scheme. Putting all together, our DPDP construction in Figure 5.14

is secure supposed that the tag and implicitly-ordered ADS schemes are secure.

Chapter 5: A Generic Dynamic Provable Data Possession Model 78

5.7 Generalization and Comparison

Our scheme proposes a general framework for constructing efficient DPDP schemes, given

access to a secure implicitly-ordered ADS scheme and a secure HVT scheme. All existing

DPDP schemes are specific cases of this general model.

By ignoring data dynamism (throwing away the implicitly-ordered ADS) and using

RSA-based HVTs, we achieve the PDP [3]. Also, ignoring data dynamism and using

algebraic signature based HVTs gives the data possession checking scheme by Chen [33].

PPDP [143] and CPDP [155] are also static schemes based on BLS signatures.

Zhang and Blanton [152] proposed the block update tree, where each node stores a

range of data blocks on which an update is performed. The block update tree ensures

that a block or a range of blocks can be efficiently located within the tree, and the tree

can be kept balanced after multiple updates. The integrity of each block is protected

using MAC. Therefore, instantiating the ADS as the block update tree, and the HVT as

the MAC in our general model generates this scheme.

Esiner et al. [57] proposed a different ADS called FlexList, which supports blocks with

different size, and used it to construct a modified DPDP scheme, FlexDPDP. FlexList,

which is an implicitly-ordered ADS, together with the RSA-based HVTs make a special

case of our general scheme.

Using an implicitly-ordered Merkle hash tree together with BLS tags for blocks re-

duces our scheme to that proposed by Wang et al. [145]. A comparison among these

schemes is given in Table 5.2.

5.8 Conclusion

A general framework for constructing secure DPDP scheme is presented. Also, the

requirements of the building blocks are discussed. We argued that a secure DPDP scheme

can be constructed with black-box access to an homomorphic verifiable tag scheme and

an implicitly-ordered ADS scheme.

The implicitly-ordered ADS is based on a property that does not depend directly on

the block positions, hence, later update operations are possible. However, to be efficient

enough, tree-like structures such as rank-based authenticated skip list, or 2-3 tree are

Chapter 5: A Generic Dynamic Provable Data Possession Model 79

Table 5.2: A comparison among DPDP schemes. (X◦ means the scheme is not efficiently or
fully dynamic, ‘Hom’ stands for Homomorphic, and ‘Rb’ means Rank-based.)

Scheme Dynamic?
ADS Tag

Type Rb? Type Hom?

PDP [3] × Vector × RSA-based X

AS-RDPC [33] × Vector × Algebraic signature X

PPDP [143] × Vector × BLS signature X

CPDP [155] × Vector × BLS signature X

Wang et al. [141] X◦ Matrix × Blinded token ×
Barsoum and Hasan [10] X◦ Block status table × Incremental numbers ×
SPDP [4] X◦ Vector × Hash-based token ×
EDPDP [152] X◦ Block update tree × MAC ×
PV-DPDP [145] X◦ Merkle hash tree × BLS signature X

DPDP [54] (scheme I)

X
Auth. skip list

X
- ×

DPDP [54] (scheme II)
RSA-based X

DPDP [55] (RSA tree) RSA tree

FlexDPDP [57] X FlexList X RSA-based X

good candidates, and pose a good rebalance property after updates.

The tag scheme, in addition to being secure, should be extractable, which requires

the server to have enough knowledge about the challenged blocks, for his answers pass

the client verification successfully. The homomorphicity of the tag scheme helps to

aggregate all challenged blocks into one, and hence, enhances the communication while

still providing verifiability.

We showed that almost all existing DPDP schemes use the same architecture. We

analyzed this architecture in detail and developed the general framework for constructing

(PDP and) DPDP schemes, encompassing existing ones.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 80

Chapter 6

DATABASE OUTSOURCING WITH HIERARCHICAL

AUTHENTICATED DATA STRUCTURES

6.1 Introduction

Huge amount of data is being produced everyday due to the widespread use of computer

systems in organizations and companies. Data needs protection, and most of companies

lack enough resources to provide it. By outsourcing data storage and management to

the cloud, they free themselves from data protection difficulties, and hence, concentrate

on their own proficiency.

Consider a university who stores all data about students, faculty, and courses in a

relational database, with limited resources and equipment for hosting a large amount

of data and handling a large volume of queries, especially at the beginning and end of

semesters. The university wishes to outsource data management to a remote database

service provider offering to access and update the database online.

An important problem is that by data outsourcing, the owner loses the direct control

over her data and should rely on answers coming from the remote service provider (who

is not fully trusted). Therefore, there should exist mechanisms giving the data owner

(the client) the ability for checking the integrity of the outsourced data. To make sure

that the remote server operates correctly, the client should verify the answers coming

from the server in response to her queries [75]. The remote server sends to the client a

verification object (vo) along with the answer to the query (the result set). The vo gives

the client the ability to verify that the server’s answer is authentic. Since the client may

be a portable device with limited processing power, the vo should be small, and efficiently

verifiable. The client uses the vo to verify that the query answer is [149, 92, 144, 75, 108]:

• complete: the result set sent to the client is exactly the set of records that are the

output of executing the query, i.e., no record is added or removed.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 81

Figure 6.1: Our sample database.

• correct : the result set sent to the client is provided by the client already, i.e., no

unauthorized modification.

• fresh: the result set sent to the client is provided using the most recent data on

the server, and does not belong to old versions, i.e., no replay attacks.

Figure 6.2: The result set of
the query SELECT * FROM Student

WHERE StdID > 105.

Assume that the university database is out-

sourced, and the client wants to execute the query:

SELECT * FROM Student WHERE stdID>105. A

small part of the database together with the re-

sult of this query is shown in Figures 6.1 and 6.2,

respectively. How the client can make sure that

these are all records matching the query, and none of them has been tampered with?

We want the completeness, correctness, and freshness properties all hold in the returned

answer, guaranteeing that the answer is genuine.

These properties are described by Palazzi [113] differently, i.e., the client should

perform two kinds of verification upon receipt of an answer from the server:

• Horizontal: to check that no record has been tampered with (i.e., correctness).

This is to verify that the server has not modified any value in any record. Note

that there is no completeness or freshness verification here.

• Vertical: to validate completeness of the query results, i.e., the given result set is

the exact outcome of executing the query issued by the client. It ensures that no

record is deleted from/added to the result set by the server. The most well known

method for this is the authenticated range query.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 82

The authenticated range query is a way of providing completeness in the outsourced

database context. Multiple implementations have been proposed by researchers using

different data structures [116, 44, 103, 108, 149, 113, 92, 115, 107, 75]. In all these

methods, the records are linked together in a way that we can prove there is no extra

or missing record in between. It requires two records surrounding the result set: one

immediately before the first record (the left boundary record) and one immediately after

the last record (the right boundary record). They are referred to as the boundary records.

We call such data structures with the ability to prove the predecessor (left boundary)

and successor (right boundary) ordered.

We know that the primary key (PK) column in a table, as the stdID in the Student

table in our example, contains unique values, while non-PK columns may contain du-

plicate values, as the major and stdName columns in our example. We want to perform

authentic queries on all searchable columns (the columns that can be used to build

clauses) of a table. The general method is to sort a table by each searchable column,

and build an authenticated data structure (ADS) on the result, that will be used to

generate cryptographic proofs for queries having a clause using the column. There is

a problem with duplicate values in non-PK searchable columns [115, 93]: a total order

on the values of searchable columns is required to build the ADS, which together with

the fact that the duplicate values belong to different records, make building the ADSs

complicated. The existing solutions are not efficient.

We introduce a hierarchical ADS scheme (HADS) for solving this problem. HADS

is also advantageous in proof generation for multi-clause (multi-dimensional) queries.

The HADS can be stored in the same database [29], or separately. Storing the HADS

separately breaks the tie to a specific database and brings more flexibility. This way, the

DBMS used for data storage can be changed without affecting the proof system.

The rationale behind this work is to relate everything to the PKs. Since the PKs are

unique identifiers of records in a database, they enable us to compare and combine the

results of different queries and check the correctness and completeness at the same time

(freshness is provided by storing a constant-size local metadata). This is an important

distinction between our HADS and similar (multi-level) ADSs, as their proofs cannot be

combined and compared together. We also support dynamic databases where the data

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 83

owner issues modification queries (Insert, Delete, Update), in a provable manner. We

believe that our HADS may also be of independent interest, applicable to other scenarios.

We believe that our HADS scheme may also be of independent interest, applicable

to other scenarios. We also reduce the amount of information leakage inherent in range

queries in a multi-user environment, which will be discussed further in Section 6.5.3.

Our contributions can be summarized as follows:

• We provide a unified security definition for an outsourced database scheme (ODB)

capturing completeness, correctness, and freshness simultaneously.

• We formalize the hierarchical ADS scheme and prove its security, for the first time.

• We build a provably-secure ODB using HADS that supports efficient proof gener-

ation for not only single-clause but also multi-clause queries.

• We handle proofs on columns containing duplicate values with around 3x to 5x

better efficiency, regarding both proof generation time and size.

• Our scheme supports the tables with composite keys, for the first time.

• Our ODB construction efficiently handles proofs for join, multi-table joins, and

non-equijoins queries, and queries containing both join and selection.

• Our ODB provides efficient proofs for almost all query types. We achieve only

4% communication overhead compared to the actual result size, using our Koç

University database.

6.1.1 Related Work

Inefficient approaches. An elementary way to verify the authenticity of an answer to

an outsourced database query is to sign each table and store the signature locally. This

method requires sending the whole table to the client for verification, and hence, does

not scale up. Another method is to compute and store, with each record, a signature that

verifies the contents of the record. The problems are that computing a signature (for

each record) is an expensive operation, and this method does not provide completeness.

ADS-based approaches. A more suitable approach towards answer verification is

to use ADSs [44, 97, 116, 47, 144, 149] to store authentication information, and send the

relevant parts of them to the client as the authenticity proof.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 84

Devanbu et al. [44] proposed one of the first schemes using ADS for checking integrity

of the remote data. They used a Merkle hash tree to store the security information about

an outsourced static data (which changes infrequently). It stores at the leaves hash of

values of selected columns in each record. Intermediate nodes store a hash value that

is computed using the values of their children. The scheme supports the projection and

simple join operations inefficiently.

Pang and Tan [116] used one or more verifiable B-trees (VB-tree) for each table.

The VB-tree is an extension of B-tree using the Merkle hash tree. Leaf nodes contain

hashes of records, and internal nodes are assigned a signature computed using the values

of its children. A VB-tree is generated (using the table sorted on that column) for

each searchable column. This method does not support completeness [115], and found

insecure for the insecurity of the function computing the signatures [107].

MB-tree is a similar variant used in the literature [44, 103, 108, 149]. MB-tree

is similar to VB-tree except that a light hash function is used instead of expensive

signatures. Again, the leaves store hashes of the records, and each internal node stores

a hash value computed on the concatenation of the digests of its children. The client

stores locally the root’s digest, or signs and stores it on the server.

Another line of work is using an authenticated skip list to store the required

information for the verification [113, 144]. It is suitable and efficient enough for this

purpose, especially when we consider dynamic scenarios. Wang and Du [144] proved

that such ADSs provide soundness and completeness for one-dimensional range queries,

and multiple ADSs are required for multi-dimensional range queries.

Palazzi [113, 114] built one authenticated skip list for each searchable column in each

table. For a query with one clause, a proof is computed using the corresponding skip list

and sent back to the client along with the result set. For multi-clause queries, the result

set of one clause that is finished earlier is considered and separated into a ‘YesSet ’ and

a ‘NoSet ’ by applying the other clauses on top. The result sent to the client is a larger

set than the real result set of the query, and hence, is not efficient. The problem is that

each proof authenticates a set, and these sets cannot be compared against each other.

A common problem with all these methods [116, 44, 103, 108, 149, 113, 92, 115,

107, 75, 114] is the duplicate values in non-PK columns that make building the ADSs

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 85

problematic since distinct values are required. Pang et al. [115] and Li et al. [93] propose

applying the standard geometric perturbation method, i.e., adding a tiny amount of

random perturbation to each duplicated value so that they are guaranteed to be distinct

and a total ordering will still be guaranteed. Although this solution works for static

data, it is not suitable for a dynamic case, since perturbing a duplicate value may result

again in a duplicate value (in static case, we know all duplicate values and can make

them all distinct). Narasimha and Tsudik [107] propose using an additional mechanisms,

i.e., using the record ID, to solve this problem, but then searching on the column will

be problematic, i.e., we cannot search by only the real values of the column. Palazzi

et al. [114] appends to each value, hash of the record the value belongs to, making all

values distinct, and builds the ADSs using these values. In our performance results, we

show that these solutions that keep all the duplicate values in the same ADS result in

significantly slower systems.

Authenticated range query is a method to prove the completeness (i.e., no extra

records and no missing ones), which works as follows [44, 92, 149, 107]:

• Find the contiguous nodes storing the values corresponding to the result set of the

query, as well as the left boundary record and the right boundary record. To be able

to work with such proofs, the underlying ADS needs to be ordered.

• Compute the ADS membership proofs of the boundary records.

• Put all these values into the verification object and send it to the client.

• The client uses the values in the result set with the membership proofs to recon-

struct the respective part of the ADS, and computes the digest.

• She compares the computed digest with the locally stored metadata. If they are

the same, then the query result is accepted, and rejected otherwise.

If the proof is accepted, the set {left boundary record, result set, right boundary

record} is guaranteed by the ordered ADS to be a sorted and contiguous set of values,

with no extra or missing value between them [144, 97].

Hierarchical ADSs. Due to their widespread use, work has been done to improve

the efficiency of authenticated range queries. Nuckolls [108] proposed a flexible structure

called Hybrid Authentication Tree, which uses the one-way accumulators in upper levels

to break the dependence on tree height of the MB-tree. He defined the concept of

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 86

canonical covering roots as the set of nodes with disjoint sub-trees whose leaves are

the exact answer to the range query. Each sub-tree works in the normal way, but an

accumulator is used at the level of sub-tree roots (i.e., these sub-tree roots are not

connected up to a single root in regular way to complete the tree). He showed that there

are O(log n) canonical covering roots and they have height O(log n).

Goodrich et al. [75] gave a super-efficient answer verification method by decoupling

the authentication structure from the search data structure. This is similar to the Nuck-

olls’s method but uses only hashes and is run recursively to reach a super efficient point.

They divided a tree with n leaves (and height log n) into sub-trees with log n leaves (and

height O(log log n)), and stored their roots in another structure. The sub-trees are di-

vided further into sub-trees with O(log log n) leaves. This process is repeated recursively

up to an optimal level. The proof only consists of the values required for building the

corresponding sub-trees, not the whole tree. The verification is simply comparing the

computed roots against the stored root values. Note that none of the previous work

formalizes or generalizes such hierarchical ADSs.

Hash chaining is another method for providing authentic query results where the

records are linked together to show that there is no extra or missing records between

them. The client sorts the table by a searchable columns (and repeats this process

for all searchable columns), and link all two (or three in some approaches) consecutive

records [ri−1,] ri, ri+1 together, i.e., compute h([h(ri−1)||]h(ri)||h(ri+1)), where h is a

collision resistant hash function. The first and last records are linked to special records

indicating the beginning and end of the records. [92, 115, 107, 75]. To provide authentic

proofs, the client either computes signatures for the links, or relates them to each other

in a tree structure.

Upon receipt of a query, the server (1) executes the query, (2) finds the result set and

the boundary records, (3) computes the proof as either the set of links’ signatures, or the

corresponding part of the tree, and (4) sends them all to the client. Using signatures, the

verification object contains a linear (in the size of the result set) number of signatures,

and hence, computation and communication costs are high.

The aggregated hash chaining [104, 107, 107] is proposed to use the aggregation

capability of the underlying scheme to combine multiple proofs into one, reducing the

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 87

proof size. Mykletun et al. [104] proposed two aggregated hash chaining methods using

two different signature schemes. These methods do not guarantee the completeness.

Later, Narasimha and Tsudik [107] changed the scheme to provide the completeness.

They computed a tag T (r) = hsk(h(r)||h(IPR1(r))||...h(IPRs(r))) for each record r,

where IPRi(r) is the record immediately before r when the table is sorted on the ith

column. Each tag is affected by the orders of all s searchable columns in a table. Their

main problems are the cost of updates and lack of join possibility.

Figure 6.3: Hash chaining.

According to the Figure 6.3, the immedi-

ate predecessors of record R3 in columns C1,

C2 and C3 are: R2, R4 and R7, respectively.

Therefore, the signature of R3 is computed as:

Sign(R3) = h(h(R3)||h(R2)||h(R4)||h(R7))SK .

To answer a query, the server sends the result set of records, the two boundary records

Rlb and Rub, the aggregated signature, and (s− 1) ∗ (ub− lb+ 1) missing hash values (of

before records) to make the signature computation possible [107].

Provable join. Devanbu et al. [45] pre-computed all possible joins and constructed

the corresponding ADS to enable proof generation by the server. They suggested con-

structing the ADS on the differences between the values of matching columns in the

result set. This way, they can support queries with equi-join (difference = 0), >-clause

(difference > 0), and <-clause (difference < 0).

Li et al. [92] proposed the Embedded Merkle B-tree (EMB-tree) whose nodes consist

of regular B+-tree entries augmented with an embedded MB-tree, and used it to support

authentic join queries. To join two tables R and S, R onCi=Cj
S, where Ci ∈ R and

Cj ∈ S, they: (1) find the smaller table, say R, (2) insert it as a whole into the vo, along

with its proof, and (3) for each vk ∈ Ci, construct a range query proof for the query

‘SELECT * FROM S WHERE Cj = vk’, and append it to the vo. It requires |Ci|-many

range queries, hence, is not efficient regarding the client and server computation, and

communication.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 88

Pang et al. [117] used signature aggregation to propose a scalable query result au-

thentication mechanism for dynamic databases. Their first attempt is similar to the

schemes of Li et al. [92], and results in a huge verification object. Their second attempt

uses a certified Bloom filter [14] to show that some of records of the first table has no

matching records on the second table. To join two tables R and S, R onCi=Cj
S, where

Ci ∈ R and Cj ∈ S, they: (1) select all records of R, compute their proof as an aggregate

signature, and add it to the vo, (2) for those records having a matching in S, do nothing

(the matching records are included in the answer), and, (3) add the Bloom filter for

S pre-computed by the owner into the vo to show that the remaining records do not

have matching records. For the records that the Bloom filter gives a false positive, the

boundary records are used.

Join algorithms that use the ADSs for both tables and generate reasonable proofs

are proposed by Yang et al. [149]. The first algorithm, Authenticated Indexed Sort-

Merge join, is an efficient form of previous join algorithms with one ADS [92, 117],

and eliminates the repeated range queries and redundant proofs. The second algorithm,

Authenticated Indexed Merge join uses one ADS for each table. It traverses each ADS

once, and each required node is inserted only once into the vo. Though it is efficient

computationally and communication-wise, for any (mis)match, two boundary records

are inserted into the vo, which is unnecessary as we show in our join algorithms. The

third algorithm, Authenticated Sort-Merge join, is used to perform the join on a column

for which no ADS is generated. The server inserts the whole first table into the vo, the

matching records of the second table, and the rank lists used to prove the matching.

The client verifies all of them and generates the expected result locally.

Recently, an integrity-checking mechanism is given for join queries performed by an

untrusted computational server working with some trusted storage servers [42]. The

client gives the storage servers a query, an encryption key, and information on how to

inject some fake records (markers and twins) into the result. He execute the query, inject

the fake records, encrypt and send the result to the computational server who performs

the join and sends the final result to the client.

Private query processing. Carbunar and Sion [25] suggested a private join on the

outsourced databases that supports equi-join, and can be extended to support range join

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 89

queries, assuming an honest-but-curious server. For each value in a column, the client

finds all matching values in all other tables, encrypts them, and stores them all in a

Bloom filter. For a join between two tables, the client computes a trapdoor and sends it

to the server, so that the server can find all matching pairs of the requested tables, and

send the corresponding records. The scheme is not computation- and storage-efficient,

especially for range queries and dynamic data. Another privacy-preserving join scheme

proposed by Ma et al. [96] only supports equi-join, but uses randomized trapdoors. It

is not computation-efficient, since for a join between two columns A and B, each value

ai ∈ A should be checked against all values bj ∈ B. In both schemes, there are no

(correctness, completeness, and freshness) proofs accompanying the server answers.

6.1.2 Overview of Our Solution

To be able to provide proof for different kinds of queries in a database, one ADS per

searchable column in a given table is built. We also follow a similar approach, and build

a hierarchical ADS (HADS) for each searchable column. Figure 6.6b visualizes the idea

for a database. At the topmost ADS, the database ADS, the table names are stored. For

each table, we have a table ADS, which stores the names of the columns in that table.

For each column, we have a column ADS that stores the unique values in that column.

Finally, the bottommost ADSs are primary key ADSs, associated with each unique value

vi in a column Cj, storing the primary key (PK) values of the records having vi in column

Cj. For example, in our sample database in Figure 6.1, a column-level ADS for major will

contain only three leaves, with labels CE, CS, EE. The lower-level ADS connected to the

CE will contain the primary key values 101, 102, and 106. Similarly, the lower-level ADS

connected to CS will contain 103 and 105. Note that, our HADS definition is flexible,

and hence such a four-level hierarchy is not a requirement, but a sample deployment

that makes sense.

Efficient duplicate handling. The reason for the necessity of such a hierarchical

structure comes from the shortcomings of previous ADS-based solutions. Note that

columns, such as major, contain duplicate values. Obviously, such duplicates can be

made unique, for example, by appending a random perturbation [93], hash of the record

[114], or the replica number [115]. Yet, the server should traverse the whole resulting

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 90

(big) ADS to search for a value. Since the HADS stores the unique values in an upper

level, which is a much smaller ADS, the server first finds a value in this ADS, and accesses

the whole related values in the lower level, without further computation. As an example,

consider a column containing 1000 unique values, each of which is repeated 100 times.

A regular ADS would need to integrate 100,000 values, whereas our HADS will have

one upper-level ADS with 1000 values, and 1000 lower-level ADSs with 100 values each.

Hence, instead of searching for 100 values in an ADS with 100,000 values, the server

looks for only one value in an ADS with only 1000 values (and access the whole

lower-level ADS storing 100 values). This results in great performance improvements

regarding both communication and computation.

We use multi-proof supporting ADSs (e.g., the FlexList [57]) to construct the HADSs,

which in turn, makes efficient authenticated range queries possible. A multi-proof sup-

porting ADS generates an efficient (non-)membership proof for a set of values, instead of

separate proofs for each value in the set. The proof for the clause a < coli < b, indeed,

consists of membership proofs of a and b, and the values matching the clause. The client

can reconstruct and verify the ADS locally using the information in the proof.

Server architecture. There are two parts on the server side: the DBMS (database

management system) who stores the client data and responds to the client’s SQL queries,

and the DBAS (database authentication system) who stores the security information in

the form of the ADSs and HADSs, and generates cryptographic proofs to the queries.

Figure 6.4: Server architecture.

The DBMS choice is independent of our work,

and any DBMS can be employed. We design and

implement our own DBAS. Since our DBAS works

independently of the underlying DBMS (on the

same query), our proofs do not include any extra

record, making it an efficient scheme. Figure 6.4

shows this architecture.

Join. Another advantage of the HADS is an improved join algorithm. Since we use

similar ordered HADSs, the items contained in them are comparable, and hence proving

mutual memberships (i.e., for ‘AND’ connector and join queries) is easy. To join two

tables on two columns, we start at the leftmost leaf nodes of both ADSs and compare

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 91

them together. If they store the same value, it is reflected in the proof. Otherwise, we

jump over the nodes of the ADS containing the smaller value, to a node containing the

smallest value that is less than or equal to the bigger value. This process goes on until

the end of either ADS is met. The proof size and proof generation time is reduced due

to the lack of duplicates.

Combining proofs. Another important advantage of our scheme is that since the

HADS ties all values to their related PKs, all proofs prove to the client the authenticity

of a set of PKs. This makes possible the results of the proofs to be compared and

combined together, which was a common problem among most of the existing solutions

[45, 115, 107, 114]. Stated differently, for queries with more than two clauses, the server

starts by generating proof for the first two clauses on their ADSs, and uses the result

(that is not in the form of an ADS) with the next clause, who has an ADS, to generate

a new proof. This is repeated (with proper ordering on the clauses, detailed in Section

6.4.4) until all clauses are processed. Thus, more than two clauses or joins on more than

two tables can be handled.

6.2 Hierarchical Authenticated Data Structures

Before going into details of the HADS, let us see how a column data is stored in an ADS,

e.g., a authenticated skip list. For now, assume that the column does not contain any

duplicate values. Figure 6.5a presents an authenticated skip list storing the PK column

of the Student table, and Figure 6.5b illustrates the membership proof for the query

SELECT StdID FROM Student WHERE StdID>105.

The Hierarchical ADS (HADS) is an ADS consisting of multiple levels of ADSs. Each

ADS at level i is constructed on top of a number of ADSs at level i + 1. Each element

(a) ADS of Student table PK column. (b) A membership proof.

Figure 6.5: (a) An ADS storing the PK column of the Student table, and (b) the membership
proof for the query SELECT StdID FROM Student WHERE StdID > 105.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 92

(a) A two-level HADS. (b) A general four-level HADS for a database.

Figure 6.6: HADS constructions to store security information for a database.

of an ADS at level i stores the digest of, and a link to an ADS at level i+ 1. Therefore,

multiple ADSs with different underlying structures can be linked together to form a

hierarchical ADS with multiple levels. The only restriction is that all ADSs at level i

must be of the same underlying structure to have consistent proofs. At the bottommost

level, the hash of the data is stored as well (e.g., the hash of records in the database). The

client stores the digest of the topmost ADS as metadata. Figure 6.6a presents a two-level

HADS instantiation (based on our sample database in Figure 6.1) using authenticated

skip list and Merkle hash tree at the first and second levels, respectively. Similarly,

Figure 6.6b shows a general four-level HADS architecture to store a database (the ADSs

are represented as tree for simplicity, but they can be of any type as long as they can

store digest of the corresponding lower level ADSs).

An HADS scheme is an ADS scheme defined with three PPT algorithms (HKeyGen,

HCertify,HVerify) to distinguish them from non-hierarchical ADSs. Definitions 3.1.1,

3.1.2, 3.1.3, 3.1.4 (using HADS algorithm names) provide a formal framework for HADS

schemes. The same correctness and security definitions apply.

6.2.1 HADS Construction

We construct an HADS using (possibly different) ADSs at multiple levels in a hierarchical

structure. First, all lowest-level ADSs are constructed using the real data. Then, these

ADSs are divided into groups according to some relation, and their digests together with

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 93

information about where they are stored and the data of the upper level, are used to

build the upper-level ADSs. This process is followed until a single ADS is built whose

root will be stored as metadata by the client.

To generate a membership proof, the client should provide the server with the required

information directing the traversal on the HADS at all levels. In other words, the client

tells the server which element(s) at each level should be looked for. The server follows

down the HADS until the last level, generates and combines the proofs for all levels, and

sends the resultant proof to the client. If ADSs with modification capabilities are used,

a similar recursive strategy is employed for provable modification operations as well.

We provide the input as a set of (key, value) pairs in a way that the pairs needed

for the upper levels appear first. The execution will begin on the topmost ADS, and

be directed by the input data customized to proper sub-ADSs at each level. A query

command uses the keys, while a modification requires both the keys and values.

6.2.2 HADS Operations

The HKeyGen algorithm generates a public and private key pairs for each level, combines

all public keys into pk, and all private keys into sk, and outputs the result as the private

and public key pair of the HADS (Algorithm 6.2.1). Even though conceptually one may

employ different ADSs or use the same structure with different keys within the same

level, to keep the presentation simple, we present as all ADSs at level i being of the same

type and with the same key pair.

Algorithm 6.2.1: HKeyGen, run by the client.
Input: the security parameter λ, no. of levels n, underlying structure of each level.
Output: the private and public keys of the HADS

1 skHADS = {}; //private key of the HADS.

2 pkHADS = {}; //public key of the HADS.

3 for i = 1 to n do
4 (sk, pk) = ADSi.KeyGen(1λ); //Level i ADS produces its security keys.

5 skHADS = skHADS ∪ sk;
6 pkHADS = pkHADS ∪ pk;

7 return (skHADS , pkHADS);

The HCertify performs the proof generation and modification on HADS. The re-

cursive operation starts at the topmost ADS, and is repeated on all affected ADSs in

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 94

the hierarchy. The ADS in each level generates its own proof. Since the ADSs are tied

together such that each leaf node of an ADS at level i stores a link to an ADS at level

i + 1, their proofs will be combined together according to their order in the hierarchy,

as presented in Algorithm 6.2.2. The HADS proof contains all required ADS proofs. To

simplify this operation, we use another PPT algorithm as a helper method to find the

sub-ADSs of a given ADS:

Find(key, value)→ ({(ADS ′, {(key′, value′)})}) This is used (inside HCertify) to in-

terpret the input data and find the next level ADS(s) together with the related

input value(s). It traverses the current ADS with the provided key(s) and finds

the leaf node(s) storing address(es) of the ADS(s) at the next level to continue

with. Finally, it outputs the set of next-level ADSs and their (key′, value′) pairs.

Examples are given in Section 6.3.3.

Algorithm 6.2.2: HCertify, run by the server.
Input: the public key pk, the command cmd, the data given as a (key, value) pairs.

Output: the generated proof

1 Pown = {}; // Proof of the current ADS.

2 Pchild = {}; // Proof of all children combined together.

3 {(ADS′, {(key′, value′)})} = Find(key, value);

// Output is null if already at the bottommost level.

4 for each element e ∈ {(ADS′, (key′, value′))} do

5 P = e.ADS′.HCertify(pk, cmd, e.(key′, value′)); //Each child computes proof.

6 Pchild = Pchild||P ; // Combine the proofs.

7 Pown = Certify(pk,OP, (key, value)); //Compute this ADS proof.

8 return Pchild||Pown;

The HVerify is also a recursive process that is run by the client to verify each level’s

proof in a bottom-up manner. It first verifies the bottommost ADSs. If they are all

accepted, it uses their digests with the proofs of the above-level ADSs to verify the level

above, and so forth. Finally, when the upper-most level is reached and a single digest is

obtained, which is verified against the local metadata.

6.3 Outsourced Database Scheme

Model. The outsourced database (ODB) model, as depicted in Figure 6.7, is composed

of three parties: the data owner, the querier, and the service provider. The data owner

performs the required pre-computations, uploads the database, and gives the querier(s)

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 95

the security information needed for verification. The data owner then may perform any

modifications on the outsourced database.

Figure 6.7: The ODB model.

The service provider (or simply, the server) has the

required equipment (software, hardware, and network re-

sources) for storing and maintaining the database in a

provable manner. We do not know or care about the

internal structure of the server, i.e., the server may use

some levels of replication and distribution to increase the

performance and availability. The querier (user) issues

a query to the server, who executes the query, computes the result set, generates the

proof, and sends all back to the querier. The querier then verifies the answer using the

security information given by data owner. For the sake of a simpler presentation, we

refer to them as the client. It is possible to have multiple queriers or data owners, and

data owners can also act as queriers. We focus on the single-client case.

We decouple the real data from the security information on the service provider. The

DBMS is a regular database management system responsible for storing and updating

the data, and executing the queries on the data and giving the answer back. The DBAS

(database authentication system) stores the authentication information about the data,

and generates the proofs to be sent to the client. Thus, a DBAS can be used with any

DBMS, and the focus of this work is to construct an efficient and secure DBAS. The

DBMS and DBAS together constitute an ODB.

Adversarial Model. The remote server is not fully trusted: he can either act

maliciously, or be subverted by attackers to do so, or may suffer failures. He may cheat

by attacking the integrity of the data (modifying the records) and giving fake responses

to the client queries (executing the query processing algorithm incorrectly, or modifying

the results), or by performing unauthorized modifications, while trying to be undetected.

6.3.1 Definitions

An outsourced database requires certification and verification algorithms, similar to an

ADS. Thus, the following definitions follow the same ideas. A corollary to this is that

an ADS scheme can be employed to construct an ODB system.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 96

Definition 6.3.1 An outsourced database scheme consists of three probabilistic

polynomial-time algorithms (OKeyGen, OCertify, OVerify) where:

• (sk, pk) ← OKeyGen(1k): is a probabilistic algorithm run by the client to generate

a pair of secret and public keys (sk, pk) given the security parameter k. She keeps

both keys, and shares only the public key with the server.

• (ans, π) ← OCertify(pk, cmd): run by the server to respond to a command cmd

issued by the client. It produces an answer ans and a proof π that proves authen-

ticity of the answer. If the command is a modification command, the answer is

empty, and the proof proves that the modification is done properly.

• ({accept, reject}, st′) ← OVerify(pk, sk, cmd, ans, π, st): is run by the client

upon receipt of the answer ans and proof π, to be verified using the public and

private keys. It outputs an ‘accept’ or ‘reject’ signal. If the command was

a modification command and the verification result is ‘accept’, then, the client

updates her local metadata as st′, according to the proof.

Definition 6.3.2 (ODB security game) There are two parties playing this game: the

challenger who acts as the client, and the adversary who plays role of the server.

Key generation The challenger generates the private and public key pair (sk, pk) using

OKeyGen, keeps them locally, and sends the public key to the adversary.

Setup The adversary specifies a command cmd (either a query or a modification) to-

gether with an answer ans and a proof π, and sends them to the challenger. The

challenger runs the algorithm OVerify, and notifies the adversary about the result.

If the command was a modification, and the proof is accepted, the challenger ap-

plies the changes on her local metadata. The adversary can repeat this interaction

polynomially-many times. Let D be the database resulting from verified commands.

Challenge The adversary specifies a command cmd′, an answer ans′, and a proof π′,

and sends them to the challenger. He wins if the answer ans′ is different from the

result set of running cmd′ on D, and cmd′, ans′, and π′ are verified as accepted by

the challenger.

Definition 6.3.3 ODB Security. We say that an ODB scheme is secure if no PPT

adversary can win the ODB security game with non-negligible probability.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 97

Note that the ODB security game covers all previously separate guarantees: correct-

ness, completeness, and freshness. This is simply due to the fact that the game requires

that no adversary can return a query answer together with a valid proof such that the

returned answer is different from the answer that would have been produced by the ac-

tual database. If any one of the freshness, completeness, or correctness guarantees were

to be invaded, the adversary would have won the game. Looking ahead, in our proofs,

the challenger keeps a local copy of the database, and can detect whether or not the

adversary succeeded. If he succeeds, our reduction shows that we break some underlying

security assumption.

6.3.2 Generic ODB Construction

A generic way to construct an ODB is to employ a regular DBMS, together with a DBAS

built using a number of ADSs. A common problem among all previous ODB schemes

is the existence of duplicate values in non-PK columns, since making an ordered ADS

(necessary for range queries) requires a total order on data items. The existing solutions

[44, 115, 93, 114] are not efficient (see Section 6.5.4). Our HADS solves the problem

efficiently, and easily generates proofs for the answers to multi-dimensional queries.

If the query has a clause on a non-PK column, say coli, containing duplicate values,

the result set of the query includes all records with the specified value(s) in coli. The

way we can identify these records and compare them with the result set of the other

clauses is to relate each record to its corresponding (unique) PK.

Definition 6.3.4 PK-set. For each distinct value vi in a non-PK column of a table T ,

the set of all PK values corresponding to vi in all records of T is called the PK-set of vi,

represented as PK(vi), i.e., PK(vi)={kj∈PK(T): ∃ record R ∈ T s.t. kj ∈ R∧vi ∈ R}.

Note that the PK-set includes only the PK values, not the whole records. Any mem-

bership scheme can be used for assigning the PK-set to a non-PK value, regarding the

client and server processing power, and communication requirements of the application

under construction. The only difference is the type of corresponding proof that is gen-

erated by the server and verified by the client. This brings the flexibility to support

multiple membership schemes, and select one based on the state of the system at that

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 98

time (further discussed in Section 6.3.5). The PK-sets of distinct elements of column

major are shown in Figure 6.6a.

We construct the DBAS in the following way. Since all values in the PK column(s) are

distinct, we use a regular (single-level) ordered ADS to store the corresponding security

information, similar to the ones presented in the previous work [113, 144]. An example

ADS for storing the PK column of the Student table, using an authenticated skip list

is presented in Figure 6.5a. For a non-PK column, for simplicity, a two-level HADS

stores the security information: the distinct values are located at the first (upper) level

(i.e., each duplicate value is stored exactly once), and the corresponding PK-sets of these

values are located at the second (lower) level. A sample HADS for storing the major

column of the Student table is illustrated in Figure 6.6a. It uses an authenticated skip

list at the first level, whose leaves are tied to Merkle hash tree digests at the second level.

The client locally stores the digests of the HADSs of each searchable column as

metadata. Later, she checks the authenticity of server’s answers against these digests.

This method requires the client to store digests in the number of searchable columns

in the database. As an alternative design, the client can put the digests of searchable

column of each table in another ADS (the table ADS), and on top of them make another

ADS (the database ADS) just as in Figure 6.6b. Then, she needs to store only the

digest of this new (four-level) HADS as metadata. One may further extend this idea

to multiple databases a user owns, and then multiple users in a group, and so forth.

By increasing the number of levels of the HADS, it is possible to always make sure the

client stores a single digest. This presents a nice trade-off between the client storage and

the proof-verification performance. For the sake of simple presentation, we will employ

two-level HADS constructions.

Using the authenticated range query for proof generation ensures completeness. Fresh-

ness is provided through storing the digest(s) at the client side. To provide correctness

(i.e., the horizontal proof [113]), we store the hash of the corresponding record, h(record),

with each PK. In flat ADSs like the accumulator, the hash values are tied to the elements,

while in tree-structured ADSs, the hash values are stored at the leaves. (The computa-

tion of values of the intermediate nodes depends on the underlying structure of the ADS

in use.) The ADS of the PK column of a table T is built using the set of all PK values

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 99

and hashes of their records {(pki, h(recordi))}|T |i=1 as (key, value) pairs. For a non-PK

searchable column colj of a table T with d distinct values {vi}di=1, the respective HADS

is constructed as: For each distinct vi ∈ colj, a second-level ADS is built using the (key,

value) pairs {(pks, h(records))}, where pks ∈ PK(vi). Then, a first-level ADS storing

pairs {(vi, h(h(vi)||h(digest of the corresponding second-level ADS)))} is constructed.

The client outsources these (H)ADSs together with the database, while keeping their

digests locally as metadata. Later, upon receipt of a proof and answer (result set), she

performs the verification using the information provided in the proof and hashes of the

records in the result set. If all records are used (to be discussed in Section ??) and

the proofs verify according to the local digests, then the client accepts the proof and

the answer. Therefore, our construction provides the three properties required for a

secure ODB scheme: freshness, correctness, and completeness. We prove this formally

in Section 6.5.1.

Palazzi [113] and Wang and Du [144] showed how to use authenticated skip list as

an ADS to store a column. Celko [29] gave methods on how to store a tree inside a

relational table. Using these techniques, we can construct multiple HADSs for each

table, one for each searchable column, and store them all inside a table called security

table on the server, as used by Palazzi [113]. The set of all these security tables is

called the security (or authentication) information, which will be stored and processed

by DBAS. Using these security information, the DBAS can compute proofs for queries

by applying any range query method, and the improvements given in previous work can

be applied. Essentially, this means the DBAS itself can be another DBMS.

We decouple the security information from the real data as Goodrich et al. [75] did.

The DBAS stores the security information and generates proofs to be sent to the client.

The DBMS stores the client’s data. They can reside both on the same machine, or

on different machines. By using techniques in [113, 144, 29], it is possible to implement

authenticated skip list or Merkle tree proofs of the DBAS using a DBMS as well. In such

a case, the DBAS can share the same DBMS with the data, or use a separate DBMS.

When the server receives a command, he relays it to both the DBMS and the DBAS,

collects their responses, and forwards them to the client. We focus on DBAS, as DBMS

has nothing to do with proof generation and authentication.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 100

HADS proofs. The membership proofs of HADSs for non-PK columns consist of two

parts: the first part proves the (non-)existence of the unique value(s) in the column, and

the second part ties each value to the respective PK-set. A key difference with a regular

ADS is that after showing the existence of a value in the first-level ADS, all values in the

related second-level ADS (storing the related PK-set) should be included without further

computation, since they all share the same values in the queried column. This reduces

both the proof size (communication) and proof generation time (server computation).

However, the client verification cost for HADS is very close to ADS, since she needs to

reconstruct the whole second-level ADS and the membership path in the first-level ADS.

Consider a table with d distinct values in column Cj, each repeated r times, on

average, leading to rd records in total. Using a duplicate elimination mechanism [44,

115, 93, 114], we can store such a table inside a regular ADS. The HADS builds a first-

level ADS of size d, whose leaves are each connected to a second-level ADS of size r,

leading to HADS size rd. Therefore, the server storage remains the same. However, for

a query about a value vi in Cj, the ADS proof size and proof generation time both are

O(2 log rd+r) = O(log r+log d+r), while those of the HADS are both O(log d+r). The

ADS uses a range query with 2O(log rd) cost, and processes the r values as the result

set. However, the HADS finds vi at the first-level ADS with cost O(log d) and accesses

all r values in the second-level ADS. This is presented in Figure 6.8 and further detailed

in proof generation section.

6.3.3 Illustrative Examples

We give some examples to better understand our construction.

Selection in a four-level HADS (Figure 6.6b). The DBAS first converts the

query SELECT * FROM Student WHERE major in(‘CE’,‘CS’) and BCity=‘Istanbul’

to (key, value) pairs: (Student,{(major,{CE,CS}),(BCity,{Istanbul})}). Then,

it asks the HADS to generate and return the corresponding proof. The HADS runs

HCertify. With the help of the Find algorithm that decomposes the converted query

into the proper parts and finds the next-level ADSs, HCertify works as follows: It asks

the database ADS to give its proof, given the converted query. The database ADS, in

turn, executes the Find algorithm, which interprets the converted query and uses the

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 101

(a) Using duplicate elimination (ADS). (b) Using HADS

Figure 6.8: A comparison of proof generation and proof sizes in an ADS and an HADS.

key Student to find the next-level ADS. Then, the database ADS asks the Student ADS

to recursively give its proof, supplying it with the input {(major, {CE,CS}), (BCity,

{Istanbul})}. Now, the Student ADS, via the Find algorithm, finds two next-level

ADSs: the major ADS and the BCity ADS, and asks them to give their proofs by pro-

viding the required inputs {CE,CS} and {Istanbul}, respectively. These two ADSs,

working in parallel, repeat the same steps and find the last-level ADSs storing the PK-

sets of values CE, CS, and Istanbul, and ask them to give their proofs. After receiving

proofs from the last-level ADSs, the major ADS and the BCity ADS generate and add

their own proofs, and relay the result back to the Student ADS who will do the same

job and send the result to database ADS. The database ADS adds its own proof and

sends the resultant full proof to DBAS to hand on to client.

Selection in a two-level HADS. Figure 6.9 presents another example showing

the proof generation with a two-level HADS, for the query SELECT * FROM Student

WHERE major=‘CS’ and stdId=103, which is translated by the DBAS into ‘(Student,

{(major,{CS}),(stdId,{103})})’. The first level is a skip list containing unique val-

ues of the major column, and the second level has three Merkle hash trees containing

stdId values matching each major value (i.e., their PK-sets). The first-level ADS needs

to prove membership of CS. This can be done by returning ‘h′1,CS,h(EE),h(+∞)’; es-

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 102

Figure 6.9: Proof of SELECT * FROM Student WHERE major=‘CS’ and stdId=103.

sentially the result, together with the hashes of the nodes required to obtain the corre-

sponding digest. At the second level, the Merkle tree needs to prove membership of 103.

This is done by returning ‘103,h(105)’. The generated verification object will look like:

vo=‘h′1,CS(103,h(105)),h(EE),h(+∞)’. The client can verify both levels using this vo

together with the hash of the records in the returned result.

Modification. As an example targeting modification, consider adding a new record

into the Student table: INSERT INTO Student VALUE(109,‘Cem’,‘CE’,‘Izmir’). This

adds the pair (109,h(record)), where h(record)=h(h(109)||h(‘Cem’)||h(‘CE’)||

h(‘Izmir’)), into the ADS of the PK column. We further need to add (109,h(record))

to the second-level ADS associated with CE. Once this is done, since the digest of the

CE ADS would be modified, we need to reflect this in the major ADS as well. Similarly,

we need to construct a new Izmir ADS, containing only (109,h(record)), and add its

digest to the BCity ADS. Using two-level HADS constructions, there will be three parts

in the translated command: (109,h(record)) to be executed by the ADS of the PK col-

umn, (CE,(109, h(record))) for the major HADS, and (Izmir,(109,h(record))) for

the BCity HADS. In a four-level HADS construction, the translated command looks like:

(Student,{〈stdId,(109,h(record))〉,〈major,(CE,(109,h(record)))〉,〈BCity,(Izmir,

(109,h(record)))〉}).

Verification is fulfilled similarly in a bottom-up manner. The client first verifies the

PK-sets’ proofs. If all verified, it goes on to use them for verifying the column ADSs’

proofs. If this step also was successful, its results are used to verify proofs of the table

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 103

ADSs (the Student table here). Finally, the database ADS proof is verified in a similar

manner. If all proofs are verified employing all and only the records in the answer, then

the client accepts the answer as authentic.

Figure 6.10: Proof verification for vo= ‘h1,
h2,h(104),105,106,107,108,h(+∞)’.

Since the verification is accomplished

similarly at all levels, we give an exam-

ple showing verification in the ADS of Fig-

ure 6.5b, where the proof vo=‘h1,h2,h(104),

105,106,107,108,h(+∞)’ is given for the

query SELECT * FROM Student WHERE StdID

>105. The verification algorithm extracts

the result set {106,107,108} and the bound-

ary records {105,+∞}, and checks whether

105<106 <107<108< +∞ (step 1). If the

check is passed, it uses h(104) to compute h′3 (step 2). In the step 3, it uses h′5 and

h(107) to compute h′5, which is used together with h2 to compute h′4, which in turn, is

used along with h1 to compute h′6. Finally, it uses h′6 and h(+∞) to computes h′7, the

digest of the computed ADS. Now, it compares h′7 against the digest stored locally (h7).

This is illustrated visually in Figure 6.10. Note that, a full proof would also contain

information about the levels of these nodes in a skip list, but those parts are hidden for

the sake of a simpler presentation. Thus, assume the server also tells the client where to

connect these nodes at in the proof.

Proof Generation. To provide details on how the DBAS generates proofs, we

consider different cases where the query has only one clause, or multiple clauses. For

each case we discuss how the proof is generated, and what is included in the proof.

One-dimensional queries contain only one clause. Two possible cases are:

• The clause is on the PK column: For example, the query is SELECT * FROM

Student WHERE stdID > 105. The server asks the HADS of the PK column of

the Student table to compute and return its range proof, and sends it back to the

client. The proof includes the boundary records, and all intermediate nodes’ values

required for verification at the client. (Note that we employ ADSs supporting

multi-proofs.) Figure 6.5b depicts an example, using authenticated skip list as the

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 104

underlying ADS, where the result set is (106, 107, 108), and the boundary records

are 105 and +∞. The proof looks like: vo=‘h1,h2,h(104),105,106,107,108,+∞’.

• The clause is on a non-PK column: A sample query is SELECT * FROM

Student WHERE major=‘CE’. The server uses the HADS of the major column to

find CE at the first level. If not found, he puts the non-membership proof in vo.

Otherwise, he puts the CE’s membership proof and all values in its PK-set (in the

second-level ADS) in vo. In contrast to storing duplicate-eliminated data in regular

ADSs, the first-level ADS is very small, and all values in the second-level ADS are

used without further computation. The proof is as: vo=‘h(−∞),CE(101,102,106),

h′5,h(+∞)’, using Figure 6.9.

Multi-dimensional queries. For each clause, the server asks the corresponding

HADS to give its proof, collects them into the verification object vo, and sends it to

the client. Upon receipt, the client verifies all proofs one-by-one, and accepts if all are

verified. If the clauses were connected by ‘OR’, then each proof verifies a subset of the

received records, and the result set should be the union of all these verified records.

For ‘AND’, each proof verifies a superset of records in the result set, and the answer is

the intersection of results of the individual clauses. Therefore, each proof must verify

all records in the result set. An important distinction between our HADS and previous

schemes [45, 115, 107, 114] is that our proofs can be compared and combined together.

Possible scenarios for two-clause case are:

• One clause on the PK, the other on a non-PK column: For example,

the query is SELECT * FROM Student WHERE StdID > 105 AND major = ‘CE’.

Since the order in which the clauses are applied is not important for the proof, we

can consider the non-PK clause first, then apply the PK clause on the results of the

first step. Therefore, the server first applies the non-PK clause on the correspond-

ing first-level ADS, and then, applies the PK clause on the resultant second-level

ADSs. Finally, he adds them both to the vo, and sends it to the client. On Figure

6.9, this method produces the proof vo=‘h(-∞),CE(h(101),102,106),h′5,h(+∞)’.

• Both clauses on non-PK columns: A sample query is SELECT * FROM Student

WHERE BCity=‘Istanbul’ AND major=‘CE’. The server generates one proof for

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 105

each clause, each containing the first-level ADS proof for the value itself (e.g.,

Istanbul and CE) and the corresponding PK-set, puts them into the vo, and sends

it to the client. Each proof proves authenticity of a set of PK values (of the same

table) that can be combined and compared together. If the clauses were connected

by ‘AND’, the client takes their intersection and checks if the result set contains

only records with these PKs. For ‘OR’, union of these authentic sets is used.

The above process can be generalized to more than two clauses and supports any

combination of ‘AND’, ‘OR’, and ‘NOT’ operators. The client verifies the proofs, per-

forms a number of set operations on the resulting authentic sets of PKs, and compares

them with the result set. Note that we do not require any additional records to be sent

to the client on top of the result set of the query.

6.3.4 Tables with Composite Keys

Since the data is distributed on multiple tables, there must be relations between them

to collect them back together. The foreign keys are used to relate the tables to each

other, and hence some tables may employ composite keys (i.e., a PK includes multiple

columns). This, in turn, makes the construction problematic: we cannot relate a non-PK

column to any of the foreign key columns due to the existence of duplicate values (each

foreign key column alone may contain duplicate values). Previous schemes [114, 149]

that use regular ADSs cannot handle this case efficiently, as they need to construct and

use multiple ADSs for each column, and for different queries they need to use the proper

ADS to generate the proof.

Figure 6.11: Storing the column Mark from table S2C
with composite PK (stdId and crsId).

HADS solves this problem effi-

ciently. Note that generally the con-

catenation of multiple foreign keys

forms the composite key. Thus, we

use this composite key as the PK of

the table, and use it to construct the

HADSs. One HADS is constructed for

each searchable column(including for-

eign key columns), relating the column’s values (containing duplicates) stored at the

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 106

first-level ADS (that contains only one copy of each replicated value) to the unique

PK values (constructed as the composite key) stored at the second-level ADSs. These

HADSs can be used in connection with other HADSs to generate the proofs. An example

is depicted in Figure 6.11 where the composite key for table S2C is stdId||crsId.

6.3.5 Efficient ODB Construction

Different ADSs can be chosen for HADS levels subject to their requirements and the

application. We employed two-level HADSs, with special role and considerations for

each level. We compare the existing ADSs and investigate their eligibility to be used in

each level, in three classes: logarithmic (e.g., authenticated skip list [72, 54]), sublinear

(e.g., authenticated hash tables [119]), and linear (e.g., one-way accumulator [12]).

For each level in an HADS, an ADS can be chosen subject to the requirements of that

level and the application. We employed two-level HADSs, each level having a special role

and posing special considerations. We compare the existing ADSs and investigate their

eligibility to be used in each level. We consider three classes of ADSs: linear (e.g., one-

way accumulator [12]), sublinear (e.g., authenticated hash tables [119]), and logarithmic

(e.g., authenticated skip list [72, 54]).

First level. This level stores the distinct values of a column, and generates the first

part of the proof to be sent to the client. Proof generation is based on the authenticated

range queries, which implies that this level should use an ordered ADS. One-way accu-

mulator and hash tables do not support this property efficiently, and hence cannot be

used for this level.

Therefore, we choose the authenticated skip list (alternatively, the Merkle hash tree)

to be used in the first level. The proof time/space is O(log(|Ci|)) for an update, and

O(log(|Ci|) + t) for a query with O(t) records in the result set. There are |Ci| distinct

values, on average, stored in the first-level ADS, therefore, the storage complexity is

2|Ci|, which is O(|Ci|).

Second level. This level stores the PK-sets of values in the first level. For one-

dimensional queries, and multi-dimensional queries connected with ‘OR’, the order of

values in the PK-set is not a matter of importance, thus, any ADS can be used with

time/space trade-offs discussed below. The second-level ADSs of multi-dimensional

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 107

queries connected with ‘AND’ should be compared to generate efficient proofs, hence,

an ordered ADS should be employed.

Accumulator. For each distinct value in a column, an accumulated value is com-

puted using all values in its PK-set. For each PK value, a witness is computed which

proves that it belongs to the specified PK-set. If we need to select all PK values, the

second-level proof is essentially empty, but to select a subset of the PK values (required

for ‘AND’), the witnesses of the selected PK values are required to be sent to the client.

For each distinct value in the first-level ADS, N/|Ci| PK values and witnesses should

be computed and stored, on average, where N is the total number of records in the table.

In total, 2|Ci| + |Ci| ∗ N/|Ci| = 2|Ci| + N (which is O(|Ci| + N)) storage is required

(including the 2|Ci| space for the first-level ADS).

A proof for each value is made up of two parts, one for the first-level ADS (e.g., for

authenticated skip list, a path from the leaf up to the root, which is O(log |Ci|)), and the

other is the accumulated value along with all values in the PK-set, which is N/|Ci| (the

accumulated value is already included in the hash value stored at the corresponding leaf

of the first-level ADS). The client herself can check validity of the PK-set against the

accumulated value. Therefore, for a result set of size t, the asymptotic size of vo will be

O(log |Ci|) + 2t ' O(log |Ci|+ t).

The accumulator’s main problem is the cost of update: with each update, all witnesses

should be updated using costly operations (modular exponentiation).

Authenticated hash table. This is a sublinear membership scheme with constant

query and verification time, making it an interesting scheme for clients with resource-

constrained devices. It is a good choice if the data is static. In a leaf node storing vi, we

put also the root of the authenticated hash table constructed using the PK-set of vi.

On average, N/|Ci| PK values are linked to each leaf node, hence, we require O(|Ci|+

(1 + ε)N/|Ci| ∗ |Ci|) = O(|Ci|+ (1 + ε)N)) ≈ O(|Ci|+N) storage (including the O(|Ci|)

space for the first-level ADS). Here, ε is a constant.

The first-level ADS proof is the same, but this ADS requires only constant proof

size ε [118], reaching (O(log |Ci|) + t) for t records in the result set. Moreover, hash

operations are much faster than modular exponentiations of the accumulator.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 108

Table 6.1: A comparison of schemes for the second level where the first level is a logarithmic
ADS, for storing a single table. Proof size and verification time is given for one-dimensional
queries. s and t denote the number of searchable columns, and the number of records in the
first level, respectively.

Accumulator Authenticated hash table
Storage 2N + (s− 1)(2|Ci|+ 2N) 2N + (s− 1)(2|Ci|+N)
Proof size 2 log |Ci|+ t+ 2tN/|Ci| 2 log |Ci|+ t+ 2t ∗N/|Ci|
Verification time t(log |Ci|+N/|Ci|) t(log |Ci|+N/|Ci|)
Update time logN + (s− 1)(log |Ci|+N/|Ci|) logN + (s− 1)(log |Ci|+N/|Ci|)

Authenticated skip list
Storage 2N + (s− 1)(2|Ci|+ 2N)
Proof size 2 log |Ci|+ t+ tN/|Ci|
Verification time t(log |Ci|+ 2N/|Ci|)
Update time logN + (s− 1)(log |Ci|+ logN/|Ci|) = s logN

Merkle tree or authenticated 2-3 tree or authenticated skip list are member-

ship schemes with logarithmic height and proof size. The way the second-level schemes

are modified, or the proofs are generated, are the same as for the first-level. Using au-

thenticated skip list in both levels helps the algorithms be consistent that brings some

level of uniformity in construction and architecture.

Each node requires ≈ 2(N/|Ci|) storage to store the PK-set, therefore, 2|Ci|+ 2|Ci| ∗

N/|Ci| = 2(|Ci| + N) = O(|Ci| + N) storage is required to store a column. The proof

size and time for one record are both O(log |Ci| + log(N/|Ci|)) = O(logN), and for

r = tN/|Ci| records are both O(log |Ci|+ r).

A comparison of ODB construction via various ADSs is given in Table 6.1. It shows

the second level alternatives while the first level is a logarithmic ordered ADS. Using a

logarithmic ADS such as an authenticated skip list at both levels is the efficient choice

leading to O(log |Ci| + r) proof size and time for r = tN/|Ci| records, and O(logN)

update time for one record. (The unit operations in the accumulator are more costly

than those in the others.) Other alternatives can be chosen subject to the requirements

such as the database being static or dynamic.

6.4 Join

In relational database systems, data is organized (divided) into a set of tables. An

important and frequently-used operation is, therefore, the join operation, which collects

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 109

data from two (or more) tables to produce new results. In outsourced databases, the

server should perform the join and generate the proof verified by the client. The server

can utilize any existing optimal join algorithm, since we put no restriction on the DBMS

part. Instead, we design our DBAS proof generation algorithms to produce efficient

proofs minimizing the server’s effort, the communication, and the client’s computation.

6.4.1 Overview

Our join algorithms use HADSs for both (all) tables built on the columns on which the

join is formed. Since the HADSs keep the same relationships among the tables they are

created for, we can generate proofs proving correctness of those relations.

Without loss of generality, consider a one-to-many relationship, which is the most

widely used relationship: R onrid=rid S, i.e., the PK column of R, rid, is used as a foreign

key in S. R contains only distinct values in column rid, while S may contain duplicate

values. The HADS of S ties each distinct value in rid to its respective PK-set in S. Now,

we can easily compare the ADS of R built on rid with the first-level ADS of the HADS of

S (storing unique values) built on rid, and generate efficient proofs. (Only the first-level

ADS, which is very small, is used for comparison, and all values in the respective second-

level ADS of the matching ones are reflected into the vo without further computation.)

Besides, as the values are stored sorted, the server traverses each ADS only once.

Efficient proof generation. Compared to [92, 117] that for each value of the first

table, perform a range query on the second table, and [149] that uses range queries

efficiently, ours is more efficient as it converts range queries into equalities for matches.

The problem with [149] is that for each value in the first ADS, the set of matching values

in the second ADS is surrounded by two more records, for completeness. Since we store

and compare unique values in HADSs, a value in the first (H)ADS either matches only

one value in the second (H)ADS that is shown by equality in vo, or does not match any

value in the second (H)ADS that is shown using range queries. In addition, the first-level

ADSs used for proof generation are very small compared to the previous work, reducing

the proof size and proof generation time.

Other join types. The HADS, in addition to the equi-join, supports non-equi-join

and multi-way join as well. Although an inefficient way of doing a non-equi-join between

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 110

R and S is performing a range query on S for each record in R, our non-equi-join algorithm

traverses each ADS only once, and is very efficient. Our algorithm for multi-way join

queries can be generalized to support queries of the form T1 ona=a T2 ona=a T3 ona=a ...,

between n tables.

6.4.2 Two-way Join

Consider equi-join on two tables R and S represented as R onCi=Cj
S, where Ci and Cj

are columns of R and S, respectively. The HADSs of these columns will be used for

proof generation. We categorize and discuss possible cases separately.

Either Ci or Cj is a PK column used as foreign key in the other table. The

generated vo is a set of PKs used for comparing or combining with other vo’s.

The server uses HADSR(Ci) and HADSS(Cj) for proof generation. He starts by the

smallest item (e.g., leftmost leaf node in a tree or skip list type ADS) in the first-level ADS

of one of the HADSs, and searches for its value, say vi, on the other HADS. If the value

is found on the other HADS, both values are inserted into the vo showing a matching.

Otherwise, the boundary records (the two consecutive values on the other HADS that vi

would have been located between them), together with the vi, are inserted into the vo.

This shows that vi has no matching on the other table. Once finished working on it, he

jumps to the next expected node. By the expected node, we mean the item that either

is immediately after the current node or stores the closest value to the current value of

the other HADS. If the current and expected nodes are not successive, the intermediate

information (e.g., for authenticated skip list, the levels and digests corresponding to a

part of the ADS not included in the proof) required for verifying the ADS by the client,

will be added to vo. We use the algorithm FindNext to find the expected node:

(nodej, nodek)← FindNext(vi) If vi is null, then return the node immediately following

the current node as nodej (nodek will be null). Given a value vi, if a node storing

vi is found, add the required information of the intermediate nodes into the vo

and return the node storing vi as nodej (nodek will be null again). Otherwise, add

the needed information of the intermediate nodes into the vo and return the two

consecutive boundary nodes nodej and nodek storing vj and vk, respectively, such

that vj < vi < vk.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 111

Consider the join Student onstdId=stdId S2C, where both tables have an HADS on

column stdId: HADSStudent(stdId) and HADSS2C(stdId). The proof generation works

as follows: Traverse both HADSs until the leftmost leaf node (at the first level) storing

the values v1 (in HADSStudent(stdId)) and v′1 (in HADSS2C(stdId)):

• v1 = v′1: Add them to the vo (a matching), run FindNext() on both HADSs to

find the next values v2 and v′2, and repeat the process with v2 and v′2.

• v1 6= v′1: Add the larger value, say v1, into the vo and runHADSS2C(stdId).FindNext(v1)

to find a matching on HADSS2C(stdId). If it returns one node, a matching has

been found, therefore, repeat the process with v1 and the value of the matched

node. If HADSS2C(stdId).FindNext(v1) returns two nodes, say nodej and nodek,

there is no matching, but the value of nodek may be equal to that of the next node

of v1. Hence, add v1, nodej.val, and nodek.val into the vo, then find the node fol-

lowing v1 as node2=HADSStudent(stdId).FindNext(), and repeat the process with

node2.val, and nodek.val. The Algorithm 6.4.1 illustrates this process.

Algorithm 6.4.1: JoinCertify, run by the server.
Input: Two second-level ADSs of the joining tables: ADSR and ADSS , and their current

nodes: NodeR and NodeS , initialized by their leftmost nodes.

Output: the verification object: vo

1 if NodeR is null OR NodeS is null then

2 return vo =the intermediate information of the other ADS;

3 if NodeR.val = NodeS .val then

4 vo = NodeR.val + ‘;’ + NodeS .val; //A matching is found.

5 NextR = ADSR.FindNext();

6 NextS = ADSS .FindNext();

7 vo = vo + ‘:’ + JoinCertify(NextR, NextS); //Go to the next round.

8 else

//Find the matching on the other ADS.

9 Find the node holding the bigger value, say NodeR;

(Next1S , Next2S) = ADSS .FindNext(NodeR.val);

10 if Next1S is null then

11 vo = vo + ‘;’ + NodeR.val, intermediate information of ADSR till end;

12 else

13 if Next2S is null then

14 vo = NodeR.val + ‘;’ + Next1S .val; //A matching is found.

15 else

16 vo = NodeR.val + ‘;’ + Next1S .val + ‘,’ + Next2S .val; //No matching.

17 NextR = ADSR.FindNext();

18 NextS = ADSS .FindNext();

19 vo = vo + ‘:’ + JoinCertify(NextR, NextS); //Go to the next round.

20 return vo ;

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 112

Figure 6.12: HADS of stdId (from S2C).

Using HADSStudent(stdId) from Figure

6.5a and HADSS2C(stdId) from Figure 6.12,

we generate proof for Student onstdId=stdId

S2C. For simple presentation, we put in the

vo only the values and hashes stored on nodes,

and leave out the other information required

for verification (e.g., the level in an authen-

ticated skip list). If a matching between two

nodes is found, we add only one of them into the vo for reducing the proof size. Fur-

thermore, we separate each round by a column ‘:’, parts belonging to each HADS inside

a round by a semi-column ‘;’, and values inside each part by a comma ‘,’. Since the

PK-set of each value can be found in the result set, we do not include it in the proof,

but if needed, we can insert the PK-set of each value inside parentheses following the

value. Within a round, values of HADSStudent(stdId) appear first.

We start with the smallest values in the HADSs: v1 = 101 and v′1 = 101. Since

there is a matching, 101 is added into the vo (vo=‘101;101(501,502,504)’). Then, the

FindNext() is run on both HADSs to find the next values: v2 = 102 and v′2 = 103. Since

v′2 > v2, 103 is inserted into the vo and HADSStudent(stdId).FindNext(103) is executed

(during which h(102) will be added into the vo as an intermediate value, resulting in

vo=‘101;101(501,502,504) : h(102);103(503,504)’), returning the node storing v3 = 103.

Due to the matching, 103 is again added into the vo (vo=‘101;101(501, 502,504) :

h(102),103;103(503,504)’), and FindNext() is run on both HADSs that will result in:

v4 = 104 and v′3 = 106. Again, 106 is added into the vo andHADSStudent(stdId).FindNext(106)

is executed (during which h(104), h(105) will be added into the vo as intermediate values,

resulting in vo=‘101;101(501,502,504) : h(102),103;103(503,504) : h(104),h(105);106(500,

502,504)’), returning the node storing v6 = 106, to be added into the vo due to the

matching. Then, FindNext() is executed on both HADSs, which will give: v7 = 107 and

v′4 = 108. 108 will be added into vo and HADSStudent(stdId).FindNext(108) results in

v8 = 108. Finally, vo will be vo=‘101;101(501,502,504) : h(102),103;103(503,504) :

h(104),h(105),106;106(500, 502,504) : h(107),108;108(501,503)’.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 113

Figure 6.13: Non-PK join.

Neither Ci nor Cj is a PK column. Each column

has an HADS storing its distinct values and related PK-

sets. If each distinct value of Ci and Cj has an average

PK-set of size n and m, respectively, and there are k

matching records, the result set will have knm records,

on average. Our proof for this query is of size O(k(n+

m)), showing again the HADS proofs are efficient.

Imagine two tables T1 and T2, both having an integer

PK column and a character non-PK column with two

matching values ‘B’ and ‘F’, whose HADSs are shown in

Figure 6.13. The algorithm, starting at the leftmost nodes, finds out that B>A, and exe-

cutes FindNext(‘B’) on T1, leading to vo= ‘h(−∞), r1,B(102,104, 107);h(−∞),B(3562)’

due to the matching found. It goes on, putting intermediate value h5 in the vo, finds

another matching ‘F’, which is the last node in T1. Later, FindNext(‘F’) on T2 puts h6 in

vo, and realizes that both columns are fully traversed. These steps yield vo=‘h(−∞),r1,

B(102,104,107);h(−∞),B(3562) : h5,F(105,108);F(8759,9658) : h(+∞);h6,h(+∞)’.

For verification, the client interprets the proof in vo, and investigates whether the

values in each step are either equal, or one is between the two others. If it is correct,

she adds them to the corresponding ADS list, and goes on with the next step proof (any

problem leads to rejection). Finally, she uses the Vertify() function of the (H)ADS to

verify the two ADS lists. If both passed the verification successfully, she accepts the

proof, otherwise, rejects.

6.4.3 Queries with Join and Selection

As denoted by Mishra and Eich [100], the general query optimization rule for queries

containing various operations is that the join operation is performed after all selection

operations. The reason is that the selection operations result in intermediate sub-tables

(used as input to the join) that are likely to vary substantially in size [100]. Since all proof

are based on PKs in our approach, the results of the selection queries are integrated easily

into the join queries, resulting in small proofs (both communication and computation).

We distinguish the following cases:

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 114

• The selection uses the same column as the join. The same HADSs are used

to generate proofs for both selection and join, i.e., records in the result set should

satisfy the selection constraint in addition to the join constraint. For example, the

proof generation for SELECT * FROM Student S, S2c C WHERE S.stdId=C.stdId

and S.stdId>105 starts from the node storing the value 104 (the boundary), and

both clauses are applied simultaneously during the join.

• The selection uses different columns than the join. The selection proof is

generated first that results in an authenticated set of PKs. Then, if this is connected

to the join clause with ‘OR’, the proof of the join clause is also generated, and both

proofs are sent together to the client. But for ‘AND’, the join proof-generation

algorithm should consider only those records that are in the selection proof, instead

of the whole table, leading to smaller join proofs. The server runs the join proof-

generation algorithm on sorted authentic PK-set resulting from the selection proof,

and the other table. For each PK value in the sorted authentic PK values, if there

is a matching on the HADS of the other table, reflect it on the proof. Otherwise,

supply a non-membership proof. For the query SELECT * FROM Student S, S2c

C WHERE S.stdId=C.stdId and S.major =‘CS’, for instance, the selection proof

supplies the sorted authentic set of PK values {103, 105}, used together with table

S2C by the join proof-generation algorithm to compute the (smaller) join proof.

6.4.4 Multi-way Join

Since data is distributed over multiple tables, users may issue queries with join on

multiple tables, e.g., T1 onCi=Cj
T2 onCk=Cl

T3 on ..., to combine them back together.

Yang et al. [149] performed the three-table join as ((T1 onCi=Cj
T2) onCk=Cl

T3) or

(T1 onCi=Cj
(T2 onCk=Cl

T3)). But, the output of the join that is performed first, is

not a table with an ADS on the column of the next join. Therefore, their AIM join

algorithm is not applicable, and their AISM (which uses only one ADS on one table)

is used instead. Essentially, they apply AIM for the first join, followed by AISM.1 We

treat the case that all joins are on the same column separately from the case that the

1Their algorithms are not directly applicable for multi-join case. They provided new versions m-
AISM, m-ASM, and m-AIM. They require some prior information about the third table used for reducing
the proof size of the first join, between the first and second tables, before the second join is performed.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 115

Figure 6.14: Proof generation for T1 ona=a T2 ona=a T3.

columns differ, and present efficient solutions for all such cases.

Multi-way join on the same column. As noted by Raman et al. [122] and Yang et

al. [149], these queries are common in data warehousing applications, where a fact table

is joined with other tables, on the same column. Our algorithm performs much better for

the multi-way join with all join clauses on the same column: T1 ona=a T2 ona=a T3 ona=a

Moreover, our algorithm can support multi-way joins between n tables, without change.

We start by the smallest items in all HADSs. If all are the same, this is reflected in the

vo, showing a matching. Otherwise, the maximum value among them, vmax, is selected

and added into the vo and all the remaining HADSs are queried (i.e., FindNext(vmax))

to either find a matching, or prove non-existence of the value. This is repeated until the

last node of one of the HADSs is met. Then, the verification object is finalized with the

remaining intermediaries. Each HADS is traversed exactly once, and no item is checked

multiple times. Jumping to the maximum value when no matching is found enables us

to skip the largest possible number of items, providing an optimally efficient proof.

An example showing our join proof generation algorithm for T1 ona=a T2 ona=a T3 is

given in Figure 6.14. It first starts by the leftmost nodes that are 1,1,5. Since 5 is their

maximum, FindNext(5) is run on both T1 and T2, leading to vo=‘h(−∞),h1,h(4),5;h2,h(3),

5;h(−∞),5’. After this matching, the algorithm then jumps to and processes the

next nodes, which are 6,9,7, and thus continues by FindNext(9) on T1 and T3. Fol-

lowing the same logic, it finally outputs vo=‘h(−∞),h1,h(4),5;h2,h(3),5; h(−∞),5’ :

h(6),9;9;h(7),9 : h(15),16, 18;14,19;17 : 19;19;19 : h(20),h3, h(+∞);h(20), h4,h(+∞);h(+∞)’.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 116

(a) The sample database. (b) T3 refers to T2 refers to T1. (c) T1 and T3 refer to T2.

Figure 6.15: Ordering graphs for different cases.

Multi-way join on different columns. Since our proofs are composed of a set of

PKs, we can compare and combine them together. We separate a multi-way join into

a set of two-way joins (with selections, if there exists any), and apply our two-way join

algorithm as described previously. For a query with n joins, we generate and send n

proofs to the client who verifies them, and accepts the answer if all proofs are verified.

To perform a multi-way join of the form T1 onCi=Cj
T2 onCk=Cl

T3, one way is to deal

with T1 onCi=Cj
T2 independently from T2 onCk=Cl

T3, and generate the proofs directly

using the HADSs. Another way is to perform one of them first, and use its result, which

is an authentic PK-set, to generate the next proof. This means that the proof for each

join depends on the previous join, which depends, in turn, on the preceding one. Since

a join leaves out some records, using its result for the next join is expected to generate

smaller proofs. Thus, we perform the joins according to an order that generates efficient

proofs. We categorize the possible cases and investigate employing an efficient ordering.

Efficient ordering. We define the ordering graph as a directed graph to show the

relationship between the tables and use it to determine the order of joins. The joined

tables constitute the vertices, and an edge from Ti to Tj indicates that table Ti contains

a column that refers to a column in Tj (the join is on these columns). The ordering

graph of our database (Figure 6.1) is represented in Figure 6.15a.

Consider the case in Figure 6.15b: We should perform the T2−T3 join first, followed

by T1−T2 join. The reason is that the T2−T3 join results in an authentic set of T2’s PKs

used in the T1 − T2 join (that is on T2’s PK), while the result of T1 − T2 join (authentic

sets of PK values of tables T1 or T2) cannot be used in T2 − T3 join that is on T3’s PK.

Hence, performing the T2 − T3 join first, generates efficient proofs.

In Figure 6.15c, both T1 and T3 use the PK of T2 as foreign key. Both joins are on

T2’s PK, and hence, the order of joins is not a matter of importance. We perform either

join first, determine the authentic set of PKs of T2 contributing to the join, and do the

other join between this authentic set and the other table. Figure 6.15a is also dealt with

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 117

similarly. Since both joins outputs an authentic set of (composite) PK values of S2C,

the other join can be handled using this set and the other table.

Multi-way joins are divided into a set of two-way joins, and the above-mentioned

categories are used to determine the order in which these joins should be performed to

generate efficient proofs. In cases where the order is not important, the DBAS can use

the table sizes and database optimization techniques to estimate the result size, and

select the one with small expected size [67, 100, 77].

6.4.5 Special joins

We consider some special cases of the join that are less common compared to the well-

known equijoin, and show how our join algorithm supports them. Equijoin is defined to

be the join in which the operator is equality [100, 46]. The non-equijoin, which is also

called the band join, is defined as the join operation that the operator is not equality

[100]; i.e., the values of one of the join columns fall within a band of values of the other

column [46]. In other words, the values of one of the columns constituting the join clause

fall within a band of values of the other column [46].

Equijoin of the form T1.Ci = T2.Cj ∓ n,n ∈ N. This is a special case of the

equijoin. We treat T1.Ci = T2.Cj ∓ n as matching (instead of T1.Ci = T2.Cj) and apply

the equijoin algorithm. Proof generation for the query T1.a + 1 = T2.a = T3.a − 2 on

Figure 6.14 works as: The algorithm starts with the smallest values 1, 1, 5, respectively.

Since T1.a + 1 = T2.a = T3.a − 2 does not hold, the greatest number according to the

relation, which is 5, is used to find the expected nodes on the two other ADSs. But we

need to adjust our parameters. 5 would be matched with 5 − 2 = 3 in T2, so we run

FindNext(3) on T2. It will also be matched with 5−2−1 = 2 in T1, so we run FindNext(2)

on T1. Our proof generation algorithm generates vo=‘h(−∞),h(1),2;h2,3;h(−∞),5 :

4;5;7 : 6,9;9;9,17 : 15;14,19;17 : h(16),18;19; 19,h(+∞) : h5,h(+∞);h(20),h4,h(+∞);’,

indicating that the query T1.a + 1 = T2.a = T3.a − 2 executed on Figure 6.14 has two

matchings: (2, 3, 5) and (4, 5, 7).

Non-equijoin. The general form of a non-equijoin query is |T1.Ci − T2.Cj| < n, n ∈

N. A simple proof generation algorithm for this join is to select the HADS of the table

with smaller number of records, and for each node of this HADS, perform an authenti-

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 118

cated range query on the other HADS. But, this is less efficient regarding computation

and communication, due to the many intersections among the sets the authenticated

range queries return.

We modify our join algorithm slightly to support the non-equijoin more efficiently.

We select the smaller HADS, and for each record in this HADS, compute the matching

records on the other HADS. Since one record may correspond to many records, we need

to include the boundary records. To prevent the values to be processed multiple times,

we perform as follows:

• If the left boundary of the current record is greater than the right boundary of the

previous record, then it is necessary, and hence we add the required intermediate

information, the left boundary, the matching records, and the right boundary into

the vo. Since the left boundary record, and hence, all matching records of the

current record reside after the right boundary record of the previous record, the

server does not need to go backward after completion of processing of the previous

record. He jumps to the left boundary record of the current record, while adding

the required intermediate information for reconstructing the HADS.

• If the left boundary of the current record is less than or equal to the right boundary

of the previous record, there may be common matching records. Due to the security

of the HADS that prevents a malicious server from adding or deleting matching

records, no need to go backward. Such a malicious server can try to delete some

matching records and put the corresponding intermediate information to pass the

client verification. But, such intermediate information can only appear between

two sets of matching records (not inside a set of matching records). Thus, we go

on from the current position in the second HADS, and add to the vo the remaining

matching records until the right boundary record.

Therefore, in both cases, the server traverses both HADSs once. The same facts

hold for the client during the verification. She only checks the given boundary records

and reconstructs the HADS without the need to going backward. This is an important

observation that simplifies the client and server computation. This process is shown in

Algorithm 6.4.2. Two helper functions FindLeftBoundary() and FindRightBoundary()

with obvious functionality are used in the algorithm.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 119

Algorithm 6.4.2: NEQJoinCertify, run by the server.
Input: the band of the query: n, and two HADSs of the two joining tables.

Output: the verification object: vo

1 Select the smaller table. Call it R, and the other S;

2 Traverse both HADSs to reach the leftmost node at the first level;

3 vo = {};
4 RNode = R.CurrentNode;

5 SLeft = SRight = S.CurrentNode;

6 while RNode.val 6= +∞ AND SRight.val 6= +∞ do

7 if |RNode.val − SRight.val| > n then

8 SLeft = FindLeftBoundary(RNode.val);

9 SRight = FindRightBoundary(RNode.val);

10 Add SLeft.val, all records until SRight.val, and SRight.val into the vo;

11 else

12 SRight = FindRightBoundary(RNode.val);

13 Add all records until SRight.val, and SRight.val into the vo;

14 RNode = R.NextNode;

15 return vo;

Figure 6.16: Non-equijoin proof gen-
eration for |T1.a− T2.a| < 3.

Assume that we want to execute the non-

equijoin query |T1.a − T2.a| < 3 on the example

given in Figure 6.16. We start by T1 (who has

fewer records) and for each record, find the set of

matching records on T2. For the first record, 5,

FindLeftBoundary(5) and FindRightBoundary(5)

return the boundary records 1 (|5 − 1| >= 3) and

9 (|5 − 9| >= 3), respectively. These boundary

records together with the matching records in be-

tween, are added into the vo: vo=‘5;1,3,5,9’. The next record is 7 for which |7− 9| < 3,

hence, its left boundary record is already in the proof, and we only need to find the

right boundary record which is 14. Since all matching records are already in the vo,

we add only 14, i.e., vo=‘5;1,3,5,9 : 7;14’. Nothing is inserted for the next record,

9, since |9 − 14| >= 3, meaning that even the right boundary is already in the proof,

leading to vo=‘5;1,31,5,9 : 7;14 : 9;-’. Regarding 24, since |24 − 14| > 3, we call

FindLeftBoundary(24) to find the left boundary record, which adds h(19) as the in-

termediate information into the vo, and returns 20. FindLeftBoundary(24) returns 28.

There are no matching records in between, therefore, only the boundary records are

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 120

added into the vo=‘5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28’. Since the end of T1 is

reached, we add h(30) as the intermediate information of T2. Finally, vo=‘5;1,3,5,9 :

7;14 : 9;- : 24;h(19),20,28 : h(+∞);h(30),h(+∞)’ is returned as the proof.

The verification is also accomplished similarly as shown in Algorithm 6.4.3.

Algorithm 6.4.3: NEQJoinVeriify, run by the client.
Input: the verification object: vo, the difference: n.
Output: 0 for acceptance, -1 for rejection.

1 ADSR = ADSS = {};
2 RoundProof = vo.GetRoundProof(); //Get the proof until the next ‘:’.

//Interpret proof, see if non-equijoin condition holds for all records.

3 while RoundProof do
4 RNode = RoundProof.GetLeftPart(); //In each round, only one R record.

5 ADSR.Add(RNode); //R records are stored for later verification.

6 SProof = RoundProof.GetRightPart(); //The corresponding proof of S.

7 SNode = SProof.F irstNode;
8 if SNode == NULL then
9 continue; //No matching, go to the next round.

//Add all intermediate information into the ADS, if there is any.

10 while SNode is intermediate do
11 ADSS .Add(SNode);
12 SNode = SProof.NextNode;

//Check and add to the ADS the left boundary record, if there is any.

13 if SNode.val < RNode.val then
14 ADSS .Add(SNode);
15 SNode = SProof.NextNode;

//Add all matching records into the ADS, if there is any.

16 while |SNode.val −RNode.val| < n do
17 ADSS .Add(SNode);
18 SNode = SProof.NextNode;

//Check and add to the ADS the right boundary record, if any.

19 if SNode.val > RNode.val then
20 ADSS .Add(SNode);
21 SNode = SProof.NextNode;

//Error: if there are remaining nodes.

22 if SNode 6= NULL then
23 return −1; //Error occured.

24 RoundProof = vo.GetRoundProof();

//Now, all verified matching nodes are in ADSR and ADSS, verify them.

25 if !ADSR.Verify() OR !ADSS .Verify() then
26 return −1; //Error occurred.

27 return 0; //No error.

6.5 Analysis

6.5.1 Security

Theorem 6.5.1 (Security of the ODB scheme) Our ODB scheme is secure accord-

ing to Definition 6.3.3, provided that the underlying HADS scheme is secure.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 121

Proof 6.5.1 We reduce security of the ODB scheme to the security of underlying HADSs.

If a PPT adversary A wins the ODB security game with non-negligible probability, we

can use it to construct a PPT algorithm B who breaks the security of HADS scheme

with non-negligible probability. B acts as the server in the HADS game played with the

HADS challenger C, and simultaneously, B plays the role of the challenger in the ODB

game with the adversary A. He receives the public key of an HADS from C, and relays

it to A (note that all HADSs built for each searchable column will use the same key).

During the setup phase, B builds a local database for herself (which does not change the

adversary’s view). After the setup phase, A selects a query, generates the answer and

proof for the query, and sends them to B. For the adversary to win, his answer must be

different from the real answer on at least one location, but with a verifying proof. On

receipt, B selects the related command, answer and proof parts for the answer that differs

from the real answer (she can find it using her local copy), and forwards them to C. If A

passes the ODB verification with non-negligible probability p, B can also pass the HADS

verification (break HADS security) with non-negligible probability p.

Since we employ a secure HADS, p must be negligible, which implies that the adversary

has negligible probability of breaking ODB. Therefore, our ODB scheme is secure (and

provides the required properties for an outsourced database: correctness, completeness,

and freshness), if the underlying HADS is secure.

Note that this proof is not specific to our two-level construction. If one uses a four-

level construction, as we talked in Section 6.3.3, then B plays the HADS game with a

four-level HADS challenger. In general, for an n-level ODB construction, B should play

the game with an n-level HADS challenger, in the same manner as described above. The

proof or the probabilities will not be affected by this change.

6.5.2 Distribution Among Multiple Servers

Each ADS at a level in the HADS architecture is independent from its siblings (the

other ADSs at the same level). We can utilize this property to distribute these ADSs

over multiple servers as in Chapter 4, which will be transparent to the client, and will

lead to reduced response times. The server who is responsible for communication with

the client (the organizer) stores the first level ADS, and upon receipt of a query, finds

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 122

the servers storing required parts of the security information, and asks them to provide

their proofs. Then, he collects the proofs, adds its own proof, and sends the result to the

client. Each ADS stores the address of the servers hosting his children ADSs, by which

he can find each child if needed. The servers work in parallel, and provide the calling

server with the proofs in time less the than that if he would generate all proofs himself.

These are all commanded by the organizer, and completely transparent to the client.

6.5.3 Privacy

Our ODB construction provides proofs showing correctness, completeness, and freshness.

Yet, we did not assume that the database is encrypted. We leave working on an encrypted

database as future work. But, our scheme indeed provides some level of privacy. In

the current context, privacy means that the client receives (and learns) only the results

(records) of her query. This is important in multi-user (multi-querier [104]) environments

where row-based access control is used [115].

The problem is that the range queries use two more records (the boundary records)

to provide completeness. If the underlying ADSs store whole records in leaves, and the

user does not have the access permission to those boundary records, then the range query

proof may violate the access control policies. Pang et al. [115] gave an expensive method

to check the boundary records without revealing them. Note that the DBMS may enforce

the policy on the result set, but the proof leaks information. This privacy issue is reduced

(not completely eliminated) in our approach by using only PKs in leaves, not the whole

record. This way, the extra information the client will learn are only the two extra PKs.

Essentially, the HADS prevents revealing of other elements of the boundary records.

Another problem occurs with multi-dimensional queries. In these queries where the

clauses are connected by ‘AND’, we need only the PK values contained in all dimensions

(in the intersection of the result sets of all clauses). Yet, our approach requires all PK-

sets, even those that are not included in the answer, to be sent as part of the proof,

for verification. This may violate the access control policies. To reduce this problem,

the DBAS first takes the intersection of contributing PK-sets that identifies which PK

values will be included in the proof. For the others, the server will only send their

hashes (in hash-based ADSs), or witnesses (in accumulator-based ADSs), to enable the

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 123

client to verify the proof and check if there are other common values not sent by the

server, while hiding their values. This is due to the fact that the hashes and witnesses of

two equal values will be equal (they are computed deterministically). While the client

is computing the intersection, she can also compute the intersection of these witnesses

and hashes. We expect to see no such intersection, otherwise completeness is violated.

Dictionary attacks are still possible, but at least some level of protection is provided,

especially if the values come from a large domain and are not easily predictable.

6.5.4 Performance

Setup. To evaluate our ODB scheme, we implemented a DBAS prototype using the

efficient two-level HADS construction, whit FlexList [57] at both levels, and Cashlib

library [98] in C++. All experiments were performed on a 2.5GHz machine with 4 cores

(but the test run on a single core), with 4GB RAM and Ubuntu 11.10 operating system.

The performance numbers are averages of 50 runs.

Our DBAS application is deployed on the same machine where the DBMS resides, and

stores the security information of our database. Each dynamic query (Insert,Update,

Delete,Drop,Alter,...) affects this part as well, but the query should be converted

into the (key, value)-based format. For example, the query SELECT * FROM Student

WHERE major in(‘CE’,‘CS’) and BCity=‘Istanbul’ is converted to (Student,{(major,

{CE,CS}),(BCity,{Istanbul})}). We did not implement an automatic converter, but

it should not affect the timing since its overhead is much smaller than the proofs.

We use a database containing three tables: Student and Course tables, each with

105 randomly-generated records, and S2C table storing the courses taken by students,

with 106 randomly-generated records. There are two scenarios: each registered student

has taken 10 courses in the first scenario, and 100 courses in the second scenario, on

average. (In the second scenario, not all students are taking courses since we only have

106 S2C records in total.) A distinct StdId is used as a foreign key in S2C 10 times in

the first scenario, and 100 times in the second scenario, on average.

Given this database, we observe the system behavior (proof generation time and

proof size) for different query types. Since in our scheme proofs are generated using only

the hashes of the values of the column(s) forming the clause (not the whole records), the

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 124

proof size is independent of the record size. Our scheme enhances the efficiency

by reducing the required computation and proof size, confirmed by experimental results:

• The proofs are generated using only values of the required columns, and these

values already exist in the DBMS answer to the query.

• The concept of PK-sets divides a large ADS into small ADSs in a hierarchy. Hence,

the proof size and the computation time decrease as well.

• Using the PK-sets, there is a one-to-one correspondence for the matching records,

and there is no need for boundary records. This is a very important property for

computing boolean operations and join proofs easily.

Comparison to previous work. Different methods were proposed for making the

duplicate values unique [44, 115, 93, 114] to store them in a regular ADS. Since they

produce the same number of distinct values (= number of records in the table), their

ADS sizes are the same, leading to similar performances. For the sake of comparison, we

concatenate each duplicate value with a replica number as in [115], and build a regular

ADS to compare our HADS against it. This is referred to as ‘previous work’ in our

figures. (Therefore, the ‘previous work’ in the figures correspond to all these works, if

they used the same ADS as us.)

Selection Queries on One Table. We consider three cases:

One-clause queries. We investigate the case that the clause is on a non-PK column

(e.g., SELECT * FROM Student WHERE major=‘CE’). Since the number of distinct values

in the non-PK column is less than that of the PK column, the first-level ADS of the

HADS storing a non-PK column is smaller than the (single-level) ADS storing the same

column in the way of the previous work. (We do not count the second-level ADSs in the

one-clause case, since they are included in whole, without any computation to find and

select some.) This corresponds to the fact that, some values are repeated on non-PK

columns, whereas the PK column contains only unique values. The proof generation

time and proof size for a non-PK clause using HADS are thus expected to be smaller

compared to the previous work. The Figures 6.17a and 6.17b show ∼5x smaller proofs,

and ∼3x faster proof generations, compared to the previous work. There is a ∼10%

efficiency gain even with range queries.

Two-clause queries. There are two cases: the query has either one PK and one non-

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 125

PK clause (e.g., SELECT * FROM Student WHERE StdID>105 AND major=‘CE’), or two

non-PK clauses (e.g., SELECT * FROM Student WHERE BCity=‘Istanbul’ AND major=‘CE’).

In the HADS of the non-PK columns, all values of the second-level ADSs are included in

the result (without further computation), therefore, the dominant factors are the proof

generation time and proof size of the first-level ADSs. We apply each clause on its own

HADS and generate two proofs to put in the verification object. Figures 6.18a and 6.18b

show the proof generation time and proof size for two-clause queries. We observe ∼2x

smaller proofs and ∼1.5x faster proof generations using HADS, compared to previous

work, for the case with one PK and one non-PK clauses. For the case with two non-PK

clauses, the proof is ∼5x smaller in size, and ∼3.5x faster in generation time.

Multi-clause queries. There are more than two clauses in this case, and the two-

clause case is a special case of this one. Again, we can separate this case into two cases

depending on whether one of the clauses is on the PK column or none of them are.

The server asks each HADS sequentially to give its first-level proof. The total proof

generation time and proof size of the server is summation of the corresponding values

taken by all HADSs. We are not presenting any figures for this, but based on the results

presented above, we expect similar gains. Indeed, the gains would be even greater if all

clauses are on non-PK columns.

Communication overhead. Another important factor is the overhead of our

scheme on the communication, i.e., how much does the proof increase the traffic. As

the proof size is independent from the record size, for tables with small record size

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Previous work
HADS, 10 duplicates
Previous work, Range query
HADS, Range query

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

Number of records in the query result

T
im

e(
m

s)

Proof generation time

Previous work
HADS, 10 duplicates
Previous work, Range query
HADS, Range query

(b) Proof generation time.

Figure 6.17: Proof generation time and proof size for one-clause queries.

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 126

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Two non−PK clauses, previous work
One PK and one non−PK clauses, previous work
One PK and one non−PK clauses, HADS
Two non−PK clauses, HADS

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of records in the query result

T
im

e(
m

s)

Proof generation time

Two non−PK clauses, previous work
One PK and one non−PK clauses, previous work
One PK and one non−PK clauses, HADS
Two non−PK clauses, HADS

(b) Proof generation time.

Figure 6.18: Proof generation time and proof size for queries with two clauses.

(∼1KB), the proof size is about 10-40% compared to the result size. As a real example,

we used the Student table from Koç University database that stores (student ID, name,

address, phone, email, standing, department, advisor, photo) for each student. The

records of this table are between 5 and 20KB in size, where the photo size is dominant.

Using the HADS for proof generation imposes only 1 − 4% communication overhead.

The results are shown in Figure 6.19a. Compared to similar algorithms such as [114]

that require O(logN + t) cost for a query result of size t, using range queries, the cost

of our algorithm is O(log |Ci|+ t).

Client computation. We observed that the HADS does not increase the client

verification time compared to the previous work. The reason is that while the server

just puts what a second-level ADS stores into the vo, the client has to reconstruct the

second-level ADS together with the proof path in the first-level ADS. The computation

at the second-level (first-level) ADS of our HADS is very similar to that of the previous

schemes at the lower (upper) part of their ADSs. Therefore, the total client computation

using our HADS and previous ADSs are very close. This is illustrated in Figure 6.19b

for one-clause queries.

Join Queries. We consider two cases: In key-based join, the stdID column of

the Student table is referred to in the S2C table as a foreign key (e.g., SELECT * FROM

Student,S2C WHERE Student.StdID=S2C.StdID), while in general join, we add two un-

related columns of the same type to Student and Course for this join (e.g., SELECT *

FROM Student,Course WHERE Student.TempCol1=Course.TempCol2).

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 127

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Number of records in the query result

P
ro

of
 s

iz
e

/ q
ue

ry
 r

es
ul

t s
iz

e

Proof overhead on the query result

Record size = 1 KB
Record size ~ 5 − 20 KB

(a) Proof overhead.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of records in the query result

T
im

e
(m

s)

Client verification time

Previous work
HADS with 10 duplicates
HADS with 100 duplicates

(b) Client verification time.

Figure 6.19: Proof overhead and client verification time.

In the key-based join scenario, we consider two cases. In the first case, each student

has chosen 10 courses, therefore, the first-level ADS stores the students, and for each one,

a second-level ADS containing 10 elements stores the selected courses. The first-level

ADS contains all 104 student IDs. In the second case, each student has taken 100 courses,

therefore, a second-level ADS containing 100 courses is linked to each first-level ADS.

The first-level ADS in this case is smaller, containing 103 records. The experimental

results are shown in Figures 6.20a and 6.20b. The figures show ∼2.5x enhancement for

proof size and proof generation time in 10-course case. There are ∼4x smaller proofs

and ∼6x faster proof generations in 100-course case, compared to the previous work.

We observe a similar behaviour for the general join scenario, where each value in

temporary columns TempCol1 and TempCol2 is duplicated about 10 or 100 times, similar

0 1 2 3 4 5

x 10
4

0

2000

4000

6000

8000

10000

12000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Previous work
HADS with 10 duplicates
HADS with 100 duplicates

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

Number of records in the query result

T
im

e
(m

s)

Proof generation time

Previous work
HADS with 10 duplicates
HADS with 100 duplicates

(b) Proof generation time.

Figure 6.20: Proof generation time and proof size (key-based join).

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 128

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Previous work
HADS with 10 duplicates
HADS with 100 duplicates

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of records in the query result

T
im

e
(m

s)

Proof generation time

Previous work
HADS with 10 duplicates
HADS with 100 duplicates

(b) Proof generation time.

Figure 6.21: Proof generation time and proof size (general join).

to our main scenario. Figures 6.21a and 6.21b show the experimental results. The proof

sizes are reduced ∼3x and ∼4x in 10-element and 100-element cases, respectively. The

proof generation times are decreased ∼2x and ∼5x in 10-element and 100-element cases,

respectively.

Asymptotic complexity. Moreover, the cost of the approach proposed by Li et al.

[92] for joining two tables T1 and T2 of approximate size N is O(N logN), while that of

ours is O(N +N) = O(N). Compared to [149] who has the same asymptotic cost O(N),

our HADS generates more efficient proofs as it does not use the boundary records for

the matching records, in addition to the fact that it operates on smaller ADSs. Assume

that α|Ci|, 0 ≤ α ≤ 1, records of a column have matching on the other table. The cost

of our join algorithms using HADS is α|Ci| ∗ N/|Ci| + (1 − α)|Ci| = αN + (1 − α)|Ci|,

which means that the cost is close to O(|Ci|) when α is close to zero, and approaches

O(N) as α approaches one; i.e., ours drops in the worst case to the algorithm of [149].

Communication overhead. Our scheme’s proof size does not depend on the record

size. This is an important difference between ours and the join algorithms proposed by

Yang et al. [149], where the proof size increases with the record size.

6.6 Conclusion

We presented a hierarchical ADS for storing the security information required for proof

generation in outsourced databases. The HADS extends the ADS to support storing du-

plicate values, and generating comparable and combinable proofs efficiently (useful for

Chapter 6: Database Outsourcing with Hierarchical Authenticated Data Structures 129

boolean operators and joins). We employed the HADS to construct outsourced databases

with proofs for query result authenticity, including completeness, correctness, and fresh-

ness guarantees. We proved these properties using a new unified security definition.

Our outsourced database construction can provably handle selection queries with one

or multiple clauses connected by ‘OR’ or ‘AND’ connectors in any manner, join queries

including equijoins, non-equijoins, band joins, joins on non-PK columns, joins over more

than two tables, and combinations of selection and join queries. Besides, with reduced use

of boundary records, we can easily support clauses formed using the SQL ‘IN’ operator.

This allows us to present efficient proofs for a wide range of database queries. We only

support the sequential proof generation, and leave the concurrent version as future work.

We have presented performance gains due to our solution over the previous work

where regular (one-level) ADSs are used. Our solution achieves ≈3x smaller proofs in

size and ≈5x faster proof generations time when HADS is used for queries with one

clause. Moreover, for join queries we observed ≈4x enhancement in proof size and ≈5x

enhancement in proof generation time using HADS, when each foreign key is repeated

100 times, on average. With reasonable record sizes, e.g., 5−20KB in our Koç University

database’s Student table, the communication overhead is ≈4% compared to the result

size, becoming even smaller with larger record sizes. Our HADS shows similar drops in

proof sizes and proof generation times for join queries, compared to previous solutions.

Thus, we believe outsourced databases are finally ready for prime-time.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 130

Chapter 7

VERIFIABLE DYNAMIC SEARCHABLE SYMMETRIC

ENCRYPTION

7.1 Introduction

Huge amounts of data is generated these days by individuals and enterprises to feed

the software and hardware devices they use. Data requires storage, maintenance, and

protection. Not all individuals and enterprises possess the physical and human resources

required for data management. Hence, using cloud storage services becomes a necessity.

Cloud storage has numerous advantages such as reduced cost, high availability, and

global access to data.

Previous studies on cloud storage mainly considered efficient integrity verification [3,

82, 4, 54, 126, 28, 131, 30], as well as confidentiality [85]. Our goal is to achieve integrity

and confidentiality simultaneously, while preserving the efficient search functionality in

outsourced storage scenarios.

To achieve confidentiality of the outsourced data, it is stored in encrypted form,

and then all information about the plaintext becomes hidden. One important difference

between the user’s viewpoint when uses a local system with the case when she uses a

remote system is that she uses the file system navigation to access her files in the former

case, while in the latter case she has to search for the files. When she wants to access a

particular data, a search is necessary [69, 31, 150, 86]. But, we cannot search over the

encrypted data and selectively retrieve the files. We need schemes enabling us to search

for encrypted files containing the keywords, without the cloud service provider (CSP)

learning the keyword or the contents of the files.

Searchable encryption enables the client to outsource her encrypted data, and later

search over it with a token that is generated using her secret key, and is used in designing

searchable cloud storage systems [38, 86]. Cloud storage systems are used to provide

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 131

the required data management services, and being demanded extensively due to the

advantages they bring. But, these advantages may be disparaged if the CSP cannot

provide the ability to access the remote data selectively [80]. Any cloud storage system

should provide the search-based access to remote data [85]. We consider searchable

symmetric encryption (SSE) that employs symmetric-key cryptography.

To store a collection of files, the client first determines the dictionary, which is the

superset of keywords that appear in all files. Then, she builds an index, which is a

data structure showing which file contains which keywords. She encrypts both the index

and the files, and transfers them to the CSP. To search for the files containing a given

keyword, the client generates and sends a token enabling the CSP to search over the

encrypted index to find and return the respective encrypted files. This is known as

index-based SSE [69, 38, 32, 140, 31, 86, 90].

Informally, an SSE scheme is considered secure if: 1) the encrypted index and the

set of file ciphertexts reveal no information about the original index and the files, 2)

the tokens can only be generated with access to the client’s secret key, and 3) the set

of adaptively generated tokens for a series of queries reveal no information about the

queries, the index, and the files [38, 32, 86].

Almost all existing SSE schemes reveal the access pattern, which relates the set of

encrypted files to the tokens (without learning the contents of the token or the files),

and the search pattern, which indicates whether two or more of the tokens were for the

same query [38, 32, 86, 140]. A secure SSE scheme leaks nothing more.

7.1.1 Related Work

The oblivious RAM [70] can be used to perform search on the remote (encrypted) data

while hiding the access pattern. Though the recent tree-based and hash-based ORAM

schemes [130, 136, 91] make ORAM efficient for some special datasets, it is practically

inefficient in general, since for each operation, it requires logarithmic number of rounds

of interactions.

Early works and definitions. Goh [69] introduced the secure index as an efficient

data structure for keyword search. A Bloom filter is constructed for each file using

its keywords. Given a trapdoor, the server finds all documents containing the word in

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 132

O(n) time, where n is the number of files. The scheme is secure against chosen-keyword

attacks (CKA1). But Bloom filters are known to cause false positives.

Chang and Mitzenmacher [31] gave constructions with O(n) search time and pro-

posed the simulation-based notion of security that shows the trapdoors do not leak any

information about the keywords queried.

Curtmola et al. [38] stated that both CKA1 [69] and simulation-based [31] definitions

are not adequate notions of security for SSE schemes, and gave a stronger definition

(CKA2). They gave a construction, where a linked list of document IDs containing the

keyword is built for each keyword, and the nodes are distributed randomly in an array.

The heads of all linked lists are stored in a lookup table. Adaptively and non-adaptively

secure schemes with optimal query time O(d) were proposed, where d is the number of

matching documents.

Chase and Kamara [32] introduced the concept of controlled disclosure, i.e., the client

discloses some pieces of (encrypted) data that are necessary for the server to perform its

task. They gave constructions for queries on matrices, labeled data, and graphs. The

simulation-based security was used in their proofs.

Yoshino et al. [150] pointed to a security weakness in the existing games for SSE,

and gave a new one for database applications. But their constraints are hard to satisfy,

and the given construction has a linear (in the table size) search time.

Dynamic data. Update in SSE is a sensitive operation requiring high security

consideration. The problem in the dynamic setting is that once an update operation is

performed, the server gains extra information related to previous queries. Consider that

the scheme uses previous pseudo-random seeds and keys for the updated files. Then,

the server can learn whether or not the newly added files contain the keywords that

have already been queried for (even though the keyword is encrypted and the server

does not know it) [31]. Proposed solutions, using a new key for each update and using a

pseudo-random function to generate keys, require a key management scheme and make

the search process complicated. Curtmola et al. [38] gave an optimization to reduce the

complexity of such key management from linear to logarithmic.

Liesdonk [139] proposed two dynamic SSE schemes. The first scheme requires a

large communication for search, and the second scheme has a limited number of possible

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 133

updates. Kamara et al. [86] extended the construction of Curtmola et al. [38] to provide a

dynamic SSE (DSSE) scheme. They gave a security definition for DSSE that is adaptively

secure against chosen-keyword attacks (CKA2), and presented the first dynamic CKA2-

secure construction with optimal query time.

Kamara and Papamanthou [84] proposed a parallel and dynamic SSE scheme using

a keyword red-black tree, with O(d) search time (parallel). But, the dictionary is static,

and large amount of data is stored at nodes, making the proofs large. Moreover, the

update operations require one more round of interaction.

Stefanov et al. [134] proposed a dynamic SSE scheme with small leakage, and achiev-

ing forward privacy (i.e., current leakage is not useful for future updates). But, the

scheme uses a structure similar to Oblivious RAM [70], which requires redundant heavy

rebuilds, and hence, is not suitable especially for devices with small local storage. They

presented their scheme assuming the adversary is honest, and later extended it to work

with malicious adversaries, but the proof size is O(N) in the worst case, where N is the

number of all keyword-file pairs (the whole index).

Recently, Cash et al. [26] proposed a dynamic SSE scheme based on a previous

work [27]. It stores all existing keyword-file pairs encrypted and at a random order on

the server. The search time is O(d). Then, some modification are applied to reduce

the server’s access time to these pairs (on the secondary storage). To support dynamic

operations, they store the added or deleted keyword-file pairs in separate lists and require

the server to check them as well on each search operation.

Malicious adversary. Almost all existing SSE schemes provide security against

semi-honest adversaries. Kurosawa and Ohtaki [90] defined and formulated the security

of verifiable SSE schemes that is stronger than the ‘adaptive semantic security’ [38] and

takes into account malicious adversaries, only for static data. The schemes given by

Stefanov et al. [134] and Kamara and Papamanthou [84] can support verifiability, but

their proof sizes are very large (i.e., the whole index in the worst case).

Kamara et al. [85] combined their DSSE scheme [86] with other cryptographic schemes

to present a cryptographic cloud storage system called CS2 that guarantees confidential-

ity, integrity, and verifiability. CS2 has three parts: a dynamic proof of data possession

scheme, a search authenticator construction for providing correctness of the search re-

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 134

sults, and an adaptively secure DSSE with sub-linear search time. They did not detail

how the search authenticator was constructed and linked to their DSSE scheme, and how

the extra leakage due to the search authenticator prevented (hence, we cannot compare

it with our scheme). We present a detailed construction with full proofs, and Boolean

search support, both in the random oracle model and the standard model.

Boolean search. Searching for Boolean combinations of keywords was an open

problem for a while [31, 83]. Existing schemes in the semi-honest model [69, 102, 27,

120, 65] just ask the server to perform the Boolean search, who sends back a list of files

without a proof showing that the query was executed properly and the returned files are

exactly the ones matching the query. Completeness of the search results is a problem

in the malicious setting. PDSSE [84] can support Boolean search with large proofs,

but for static keywords only. Stefanov et al. [134] scheme can be extended to support

verifiability, but cannot handle efficient Boolean search (the proof is the whole index).

BSSE [102] uses randomized queries and supports general form of Boolean search in the

semi-honest setting. Cash et al. also support efficient Boolean search operation in the

semi-honest setting for static [27] and dynamic [26] data. Blind seer [120] goes one step

ahead and preserves privacy of the client query. In fact, the query is sent to the server

encrypted and the server returns the (encrypted) files matching the query. However,

blind seer is mainly for static data and can support updates in a basic way, which is not

suitable for highly dynamic environments, and works in the semi-honest setting. The

malicious-client blind seer [65] considers and solves an access control deviation problem

in blind seer when the client acts maliciously.

Attacks. We are aware of two attacks on SSE schemes. The first attack [80] targets

the access pattern. It combines the access pattern data leakage with the prior knowledge

gained from other streams to find the queried keywords. It is claimed that the proposed

attack discloses sensitive information with a very high accuracy. The second attack

[94] exploits the search pattern data leakage with the help of prior knowledge to learn

information about the words being searched. The technique used to hide the query

keyword (adding fictitious keywords) increases the network traffic.

Searchable encryption using public key. Another line of work is using public

key mechanisms to build searchable encryption schemes. The scheme of Boneh et al.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 135

[16] is among the first of many [146, 22, 18, 11, 1, 95].

Comparison. A comparison among the dynamic schemes is given in Table 7.1.

It reveals that our dynamic SSE scheme that is adaptively secure in the presence of

malicious adversaries, is the only one supporting efficient and secure file modification.

The index size of our scheme is asymptotically equal to similar schemes, but it uses

an additional O(logm) search time and space to support verifiability. A more detailed

comparison will be provided in Section 7.5.2.

Table 7.1: A comparison of dynamic SSE schemes. (n=|f| is the number of files, m=|w| is
the number of keywords, d = |fw| is the number of files containing w, and N is the number of
occurrences of all keywords in all files, i.e., N = Σw∈w|fw|. B is the size of a Bloom filter, b
is the cost of processing a node, p is the number of processors, and dw is the number of times
w has been added/deleted. ‘fm’ and ‘fi ’ mean support for file modification and file integrity,
respectively. ‘ROM’ and ‘Std’ stand for random oracle and standard models, respectively.)

Van Liesdonk et al. [139] CKA2 honest O(d) O(N) ROM −
Kamara et al. [86] CKA2 honest O(d) O(N) ROM −
[Kamara and Pap. 2013] CKA2 honest(malicious) O((d/p) log n) O(mn) ROM −
Stefanov et al. [134] CKA2 honest(malicious) O(d log3N) O(N) ROM,Std −
Pappas et al. [120] - honest O(db log n) O(nB) ROM

√

Cash et al. [26] CKA2 honest O((d+ dw)/p) O(N) ROM,Std
√

Fisch et al. [65] - malicious-client O(db log n) O(nB) ROM
√

Our scheme CKA2, fm, fi malicious O(d+ logm) O(N) ROM,Std
√

7.1.2 Preliminaries

File collections. The client owns n files f=(f1, f2, ..., fn), each with a unique identifier

id(fi). The files are encrypted as c=(c1, c2, ..., cn) using a CPA-secure symmetric en-

cryption scheme, where ci = Enc(K, fi). The set of all unique keywords contained in the

collection of files is called the dictionary, and is represented by w={w1, w2, ..., wm}. We

refer to the list of the files containing the keyword w as fw (i.e., fw={fi: w∈fi}), and to

that of the encrypted files as cw={ci : fi = Dec(K, ci) ∧ w ∈ fi}. The set of keywords a

file contains is wf={wi: wi ∈ f}). The files can be of any type as long as a keyword index

operation supporting them is provided. N is the number of all keyword-file matchings.

7.1.3 Our Model

There are two parties in our Verifiable Dynamic SSE (VDSSE) model. The client per-

forms the required pre-computations, builds the encrypted indices, and uploads the in-

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 136

dices and files to the server. The server possesses the resources and equipment required

for hosting the outsourced data and answering the client requests.

Figure 7.1: Our VDSSE model.

Later, the client asks the server to perform search,

deletion, modification, or addition on the encrypted

data, giving the appropriate token and other neces-

sary information. The token contains the required in-

formation that enables the server to perform the oper-

ations on the encrypted indices, and can be generated

using the secret key of the client. Other necessary in-

formation may include the new file to be added, modifications to the file, and possibly

pseudo-random seeds for randomized operations. The server performs the operation,

and generates and sends the answer and proof to the client. For simplicity, we assume a

single-client model as presented in Figure 7.1.

Using the search token, for example, the server finds the set of encrypted files cw

containing w, and sends back those files along with the proof that the search operation

was indeed done as requested. The proof is necessary in the malicious setting. The

client will accept the result if and only if the proof is verified.

All these operations are performed on the encrypted data, and hence, the server will

not find out which keyword is searched for, (though he has a chance of finding some

frequently-queried keywords [80]), or what the contents of the files are. But he will learn

that all files in the set of (encrypted) files selected as the search result contain the queried

keyword, as well as the fact that all other files do not. Moreover, update operations reveal

which encrypted keywords are added/removed to/from which encrypted files. Therefore,

dynamic schemes leak more information than the static ones [86]. This type of leakage is

referred to as the access pattern [38, 32]. Another leakage, known as the query pattern or

search pattern [38, 32, 94], states whether two or more tokens were for the same query;

and occurs since the tokens are deterministic [86]. We allow these types of leakage, and

precisely specify what leaks with each token.

Adversarial model. The server can act maliciously, or be subverted by the attackers

to do so. He may cheat by attacking the verifiability (sending a wrong set of files to

the client), or the integrity of the outsourced data (modifying the file contents), while

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 137

trying to be undetected. Furthermore, he may try to obtain more information about the

keywords or files than what is leaked by the tokens.

7.1.4 Overview of Our Solution

Problems. Memory-checking schemes can support confidentiality in addition to in-

tegrity [3, 82, 54, 19, 126, 37, 4, 57]. But, we need to solve two more problems: 1)

efficiently searching over encrypted data, and 2) verifiability (proving that the files re-

turned by the server are exactly the ones matching the query, i.e., there is no extra or

missing or corrupted file). The straightforward solutions either require employing de-

terministic encryption as in [133], which is vulnerable to statistical attacks leading to

revealing the file contents, or transferring all the documents to the client, which is not

efficient. SSE was mainly proposed as a remedy to the first problem, while it should

solve the second one as well.

The Boolean search makes the problem even worse, as it requires providing verifia-

bility for multiple keywords efficiently. The problem is that the indices are built around

single keywords, without any efficient algorithm for combining them and generating

proofs for a Boolean combination of keywords. Existing solutions [27, 102, 120, 65] work

in the semi-honest setting and do not support verifiability.

We decompose a Boolean formula into a set of primitive combinations, and generate

their integrity and verifiability proofs using ADSs. Then, a set of unions, intersections,

or complementations is performed on the authentic results based on how the primitive

combinations are connected, to produce the final result.

Figure 7.2: VDSSE structure.

Our Solution. We observe that for securing against

malicious adversaries, an SSE scheme may employ two

parts: an integrity-preserving part (i.e., a memory-

checking scheme) and a verifiability-providing part (i.e.,

an index-based SSE scheme) supporting both single-

keyword and Boolean search. The server storage in our

scheme consists of three parts: the file index (FX) stores

security information of the encrypted files and generates integrity proofs; the forward

index (FI) and the inverted index (II) are the encrypted indices used for providing ver-

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 138

ifiability. The client stores the keys and digests of these indices (RFX , RFI , and RII)

as metadata for verification. The server’s answer contains the queried files (for search),

and the verifiability and integrity proofs (PFI , PII and PFX) as in Figure 7.2.

The forward index is a two-level HADS tying each keyword to the set of file identi-

fiers containing the keyword. The encrypted keywords are located in the first-level ADS,

which is used to generate proofs showing (non-)existence of the queried (encrypted) key-

word(s). This is a new feature not provided by most of the existing schemes. Each

node storing a keyword is connected to another ADS at the second level, who stores

the encrypted file identifiers containing the keyword. The proofs generated using this

second-level ADS assures the client about the verifiability of the received response (i.e.,

there are no extra or missing files).

Inverted index. The forward index does not suit file deletion well since the server

should traverse the whole data structure to find all occurrences of the file and delete them.

We need another similar data structure relating each file identifier to the set of keywords

the file contains, for efficiently locating them in the forward index. Therefore, we build

another two-level HADS that stores the file identifiers in the first level, and links them to

the second-level ADSs storing the encrypted keywords each file contains. The elements in

each second-level ADS carry information needed for locating the corresponding keywords

in the forward index. To delete a file, the server finds its keywords using the inverted

index, removes them, and uses the provided information to efficiently find and delete the

links between these keywords and the file in the forward index.

The file index is another two-level HADS. The first-level ADS stores the file iden-

tifiers, and provides proofs showing (non-)existence of the files. For each file, a second-

level ADS is constructed as a dynamic provable data possession (DPDP) scheme [54, 56],

providing its integrity. All update operations on the files are prepared and performed

accordingly. For each operation, DPDP provides a proof through which we can verify

that the operation is performed correctly.

These three data structures support provable operations (search/add/delete/modify)

on the encrypted outsourced files. The first-level ADSs fulfill two functionalities: provid-

ing (non-)membership proofs for the queried keywords and file identifiers, and locating

the corresponding second-level ADSs. A search operation accesses the forward and file

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 139

(a) The forward index. (b) The inverted index. (c) The file index.

Figure 7.3: The example scenario with three files and four keywords.

indices, while the update operations on files (add/delete/modify) affect the inverted

index, too. This way, future search operations return correct and consistent answers.

The client stores the digests (the hash values stored at the root) of the three HADSs,

together with the required keys (three PRF keys, one symmetric encryption key, and the

DPDP key). Hence, the client storage is O(1).

An illustrative example. We use an example to better understand the indices

and the relations among them. Assume that there are three files and four keywords: f1

contains (w1, w3, w4), f2 contains (w2), and f3 contains (w1, w4). The files are divided

into two, two, and four blocks, respectively. Figure 7.3 shows a simplified representation

of the indices where the file and keyword identifiers are used instead of their encrypted

versions. The HADSs in the figure are authenticated skip lists.

(Boolean) Search. To answer a (Boolean) search query, the server first locates the

queried keyword(s) in the first-level ADS of the forward index. If not found, he gener-

ates and sends back a non-membership proof. If found, he generates the membership

proof, and finds the respective second-level ADS(s) to extract the identifiers of all files

containing the keyword(s). Then, he prepares the integrity proof for those files using the

file index. Finally, he sends all proofs and files matching the query (if any) to the client.

For a Boolean search, we employ an algorithm to operate via intersections, unions, or

complementations on the second-level ADSs of all queried keywords and generate effi-

cient proofs. This way, the server only needs to send the final resulting set of files to the

client, even in the malicious setting. Examples are given in Sections 7.3.1 and 7.3.5.

File addition. The server first generates a second-level ADS including all (en-

crypted) keywords in the file (given in the token), and ties its root to the file identifier in

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 140

(a) The forward index. (b) The inverted index. (c) The file index.

Figure 7.4: The indices after adding a new file f4 containing keywords w2 and w4. The bold
parts indicate the nodes affected during the file addition.

the first level of the inverted index, as shown in Figure 7.4b, where a new file f4 contain-

ing keywords w2 and w4 is added. Then, he adds the file identifier into the second-level

ADSs of all its keywords (w2 and w4). The result is illustrated in Figure 7.4a. He also

builds a second-level ADS according to DPDP and relates its root to the file identifier

in the first level of the file index, as in Figure 7.4c (illustrated assuming that the file is

composed of three blocks). Finally, he sends proofs of all these operations to the client.

File deletion. To delete a file, the server first locates the corresponding second-level

ADS of the file in the inverted index, using which he accesses all file keywords to delete

the relations between the file identifier and all its keywords in the file index. Then, he

deletes the corresponding second-level ADS of the file in both the inverted index and the

file index. Finally, he deletes the file itself, and sends the proofs of all three indices to

the client. As an example, to delete f3 from Figure 7.3, the server realizes through the

related second-level ADS in the inverted index, that f3 has two keywords: w1 and w4.

Using this information, he finds and deletes f3 from the second-level ADSs of w1 and w4

in the forward index. Then, he deletes f3 and its second-level ADS from the inverted

index and the file index.

A File modification causes some already-existing keywords be deleted, and some

new keywords be added. It operates on the forward and inverted indices like file addition

and deletion, while also performing a modification on the file index.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 141

7.1.5 Our Contributions

Issues. Remember the main problems with the existing schemes were: 1) they dealt with

static data mostly, 2) even the dynamic ones did not consider efficient file modification,

3) most of them were secure in the semi-honest setting, which is much easier to deal

with, 4) very few considered Boolean search (and none considered Boolean search in a

dynamic and malicious setting), and finally 5) most of the existing schemes are fully

proven secure only in the random oracle model. We overcome all these issues:

• We present a verifiable dynamic searchable symmetric encryption scheme that

is adaptively secure against malicious adversaries, and prove its security.

Our VDSSE guarantees the authenticity and completeness of the query results

and protects privacy and integrity of the files, while enabling efficient search.

• It supports efficient and provable Boolean search for any Boolean combination

of keywords (not conjunction or disjunction alone) for dynamic data.

• Unlike other schemes that only support addition and deletion on the outsourced

encrypted files, ours also supports efficient file modification. This is an impor-

tant improvement since performing a delete-then-add operation for a small change

on a large file may not result in an acceptable performance.

• Our experimental results confirm the efficiency of our solution: A search query

resulting in 500 files takes about 4 ms to be processed by the server, with about

11 KB proof. Our proof overhead is only 0.01% compared to the total size of the

resultant files. Moreover, adding (deleting) a new file containing 10,000 distinct

keywords takes about 3800 (2300) ms. A file modification affecting 1000 keywords

takes 345 to 355 ms, depending on the file size.

• We also propose a dynamic construction secure in the standard model with full

security proof and Boolean search capability. While being asymptotically slower

than its random oracle model counterpart, we argue that its efficiency is acceptable

in practice: e.g., for 10 GB of outsourced files, on average, the client storage is

' 488 KB only, and the search and add tokens are just ' 156 KB and ' 362

KB, respectively.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 142

7.2 VDSSE: Verifiable Dynamic Searchable Symmetric Encryption

7.2.1 Security Description

A secure SSE scheme should be verifiable (i.e., satisfy file integrity and query complete-

ness in the presence of malicious adversaries) and private (i.e., the adversary cannot

gain more information beyond what is allowed). We define these security requirements

intuitively first, and then provide formal definitions.

Verifiability means that the server cannot deceive the client into accepting a wrong

response. That is, if he deletes or adds some new files, modifies the contents of some

existing files, or sends a set of files different from the actual query result, he will be caught

with overwhelming probability. We formalize this concept through a game similar to that

of an ADS [137, 76].

Privacy requirement means that nothing should be leaked about the keywords and

the files [38, 32, 86]: 1) the encrypted index together with the set of ciphertexts reveal

no information about the original index and files, and 2) the set of adaptively-generated

tokens reveals no information about the queries, the original index, and the files. This

strong definition of security is currently satisfied only by the oblivious RAM [70], and

existing SSE schemes [69, 31, 38, 32, 86, 84, 134] reveal the access and search patterns

for the sake of efficiency.

In fact, by uploading the encrypted index and files, the server learns at least the

number of files and their sizes. Moreover, each query leaks some limited information

about the files and keywords, e.g., the server will learn all encrypted files found as the

result of a search query share the encrypted keyword, and whether or not different queries

were for the same keyword. Dynamic schemes reveal more information compared to the

static (search-only) schemes [86].

We prove that both of our solutions (the random oracle model version, as well as the

standard model scheme) are CKA2-secure. This is proven using a simulator that acts

in an indistinguishable manner to the client, and performs operations by only knowing

the leakage. Since the simulator performs the operations only knowing the leakage, it

is impossible for the adversary to learn more than the leakage. Essentially, this is the

same proof strategy as in the zero-knowledge simulator for the proofs.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 143

Leakage. For each operation, the client reveals some information to the server to

help him fulfill the job. Therefore, some information about the client’s queries and the

files containing each (queried) keyword leaks. The amount of leakage can be reduced

to some degree by adding some noise to our data, i.e., adding some random files and

keywords to decrease the access pattern leakage [80]. Some fictitious keywords and

files would be generated and added to the dictionary and the file collection, respectively.

Then, the fictitious keywords are randomly assigned to some of the files, and the fictitious

files are linked to some randomly selected keywords. Moreover, some fictitious (search

and update) operations will be commanded by the client at random times. No PPT

distinguisher can distinguish the real data from the noise due to encryption, and hence,

the server cannot be sure that all files assigned to a keyword really contain that keyword.

This method degrades the efficiency depending on the level of the noise. Additionally,

search for different combinations of keywords in a query decreases the search pattern

leakage [94]. While these solutions can be employed to decrease the leakage in practice

by sacrificing efficiency, we do not complicate our presentation with such details.

To formalize the leakage during the system initialization and execution, we use multi-

ple leakage functions each capturing the information leakage from a different viewpoint.

Indeed, if we use noise as above, the real amount of leakage will be less.

7.2.2 VDSSE Definition

Definition 7.2.1 A VDSSE scheme includes the following PPT algorithms:

The following algorithms are executed by the client:

(sk, pk)← KeyGen(1λ) is run to generate a secret and public key pair (sk, pk) given the

security parameter λ. The public key pk is shared with the server.

(I, c,M)← BuildIndex(sk, f) is an algorithm that given the secret key sk and a file

collection f, creates the encrypted index I and the encrypted file collection c to be

sent to the server, and the local metadata M .

f = Dec(sk, c) is a deterministic algorithm that given the secret key sk and a ciphertext

c, outputs the corresponding plaintext file f .

Ts = SearchToken(sk,M,w) given the secret key sk, the metadata M , and a keyword w

from the dictionary, creates a search token Ts to be sent to the server.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 144

Tb = BooleanSearchToken(sk,M, φ(w1, w2, ..., wt)) is an algorithm that given the secret

key sk, the metadata M , and the Boolean combination of keywords (using ‘∧’, ‘∨’,

‘¬’), computes a Boolean search token Tb.

(Ta, c) = AddToken(sk,M, f) creates a file addition token Ta and the respective ciphertext

c, given the secret key sk, the metadata M , and a file f as input.

Td = DeleteToken(sk,M, id(f)) takes the secret key sk, the metadata M , and the file

identifier id(f) as input, and outputs a deletion token Td.

(Tm, cm, inf) = ModifyToken(sk,M, id(f),m) takes the secret key sk, the metadata M ,

the file identifier id(f), and the modification m on the file, and creates a modifi-

cation token Tm with an encrypted modification cm and its information inf (e.g.,

where the modification will take place) to be performed on the file.

({accept, reject},M ′)← Verify(sk,M, cw, π) is a procedure run on receipt of an an-

swer cw (which is empty for update operations) and a proof π. It emits an accep-

tance or a rejection notification based on the verification result, and updates the

local metadata M (to M ′) in case of acceptance.

These algorithms will be executed by the server:

(cw, π) = Search(pk, I, c, Ts) is an algorithm to find and return the encrypted files con-

taining a keyword. It takes as input the client’s public key pk, the encrypted index

I, the encrypted file collection c, and the search token Ts, and outputs a subset of

the encrypted files cw ⊆ c matching the search token Ts and a proof π showing that

the result is authentic, to be sent to the client.

(cw, π) = BooleanSearch(pk, I, c, Tb) is to find and return the encrypted files matching

the Boolean combination of the keywords. It takes as input the client’s public key

pk, the encrypted index I, the ciphertexts c, and the Boolean search token Tb, and

outputs a subset of the encrypted files cw ⊆ c and a proof π that shows the result

is authentic.

(I ′, c′, π) = Add(I, c, Ta, c) is run to add a new encrypted file into the collection of en-

crypted files c and update the index I, given the add token Ta with the new cipher-

text c. It outputs the new index I ′, the new collection of encrypted files c′, and the

proof π showing the operation is performed correctly.

(I ′, c′, π) = Delete(I, c, Td) given the encrypted index I, the collection of encrypted files

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 145

c, and the delete token Td, deletes the specified file and generates the updated index

I ′ and the file collection c′, along with the proof π to be sent to the client.

(I ′, c′, π) = Modify(I, c, Tm, cm, inf) is run to modify an encrypted file in the collection

c and the encrypted index I given the modification token Tm, the encrypted modi-

fication cm, and information inf about the modification. It outputs the new index

I ′, the modified file collection c′, and the proof π.

Definition 7.2.2 (Correctness of a VDSSE scheme) A VDSSE scheme is correct

if ∀ k ∈ N, ∀ f, ∀ (sk, pk) ← KeyGen(1k), ∀ (I, c,M) ← BuildIndex(sk, f), and ∀

update commands series, a search query returns the most recent versions of exactly the

files satisfying the search criteria, and the file contents are original.

Definition 7.2.3 (Security of a VDSSE scheme) A VDSSE scheme is secure if it

is verifiable and private, as per definitions below.

Definition 7.2.4 (Verifiability of VDSSE) We say that a VDSSE scheme is verifi-

able if no PPT adversary can win the verifiability game with non-negligible probability.

The verifiability game below is played between the challenger who acts as the client and

the adversary who plays the role of the server.

Setup The challenger runs KeyGen(1k) to generate the secret and public keys (sk,pk) and

shares the public key pk with the adversary. The adversary sends a file collection f

to the challenger who runs (I, c,M)← BuildIndex(sk, f), and sends the resulting

(I, c) back to the adversary.

Query The adversary can interact with the challenger polynomially-many times. At

each interaction, the adversary adaptively asks the challenger to perform a com-

mand ∈ (Search, BooleanSearch, Add, Delete, Modify) of his choice. The chal-

lenger sends back the proper token Tx ∈ {Ts, Tb, Ta, Td, Tm} with other necessary

information for the update (i.e., c for Add or cm, inf for Modify). For each query,

the adversary sends a proof π and any other result (i.e., cw for Search) to the chal-

lenger, who notifies the adversary of the verification result. The challenger applies

the verified and accepted changes to her local copy of the file and index storage.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 146

Challenge The challenger sends a query to the adversary, who responds with an answer

and proof (c′w and π′ for Search). The adversary wins if the answer differs from

the result of running the query on challenger’s local copy, but the proof is accepted.

Definition 7.2.5 (Privacy of a VDSSE scheme (Dynamic CKA2-security)) Let

VDSSE = (KeyGen, BuildIndex, Dec, SearchToken, Search, BooleanSearchToken, BooleanSearch,

AddToken, Add, DeleteToken, Delete, ModifyToken, Modify, Verify) be a VDSSE scheme.

By following experiments with a stateful adversary A, a stateful simulator S, and stateful

leakage functions LInit, LSrch, LBlSrch, LAddDel, and LMod:

RealA(k) : The challenger first generates the keys (sk, pk) by running KeyGen(1k), and

shares the public key pk with A. A outputs a file collection f. The challenger gener-

ates the encrypted indices and file collection through (I, c,M)←BuildIndex(sk, f) and

sends (I, c) to A. Then, A performs a polynomial number of adaptive queries. For

each query requested by the adversary, the challenger generates the corresponding token

and sends it to A: for a search query, she generates Ts←SearchToken(sk,M,w), for a

Boolean search query she generates Tb←BooleanSearchToken(sk,M, φ(w1, w2, ..., wt)),

for an add query she generates (Ta, cf)←AddToken (sk,M, f), for a delete query she gen-

erates Td←DeleteToken(sk,M, id(f)), and for a modify query she generates (Tm, cm)←

ModifyToken(sk,M, id(f),m), for the keywords and files of the adversary’s choice. Fi-

nally, A outputs a bit b that is the output of the experiment.

IdealA,S(k) : A outputs a file collection f. The simulator S is not given f, but generates

sends to A the encrypted index and file collection (I, c) using the information provided

by the leakage LInit. A makes a polynomial number of adaptive queries. For each query,

the simulator is not given the information the challenger would have received, but instead

is provided by the corresponding leakage LSrch, LBlSrch, LAddDel, or LMod, using which

he prepares and returns an appropriate token along with the required data, e.g., the

ciphertext for an add operation, or the content changes for a modification. At the end,

A outputs a bit b that is the output of the experiment.

VDSSE is (LInit, LSrch, LBlSrch, LAddDel, LMod)-private against adaptively chosen

keyword attacks if ∀ PPT adversaries A, ∃ a PPT simulator S and a negligible

function ν(k) such that: |Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1]| ≤ ν(k).

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 147

7.3 Construction

We use a two-level efficient HADS, which is constructed using authenticated skip lists1

in both levels, to implement the indices. There are three indices in our scheme: the

forward index, FI, relating each keyword to the set of file identifiers it appears in, the

inverted index, II, tying each file to the set of keywords it contains, and the file index,

FX, connecting the DPDP structure of each file as a second-level ADS to its identifier

at the first level. ADSs are (key, value) pair-based structures.

The first level of the forward index stores the set of encrypted keyword identifiers.

It is used to prove queried keyword does (or does not) exist in the set of stored keywords.

The keys of the nodes are the outputs of a PRF on keyword identifiers, as FK1(id(wi)),

and the corresponding values contain Rwi
, which is the root of the respective second-level

ADS, FIwi
, storing the identifiers of the files wi appears in.

We use these second-level ADSs to prove that this set of files is exactly the set

matching the keyword in a search query. We also employ an algorithm operating on

these ADSs to generate similar efficient proofs for Boolean search. For a keyword wi,

we associate two keys K ′wi
=FK2(id(wi)) and Kwi

=FK3(id(wi)) for hiding the identifiers

of files containing wi (i.e., the identifiers in fwi
). We use these keys to compute the

(key, value) pairs (to build the FIwi
) as keyfj = FK′wi

(id(fj)) and valfj = ((id(fj) ⊕

H1
Kwi

(rj)), rj), for all id(fj) ∈ fwi
, where H1 is a hash function modeled as a random

oracle and rj is a random value.The keyfj will be used for add/delete/modify operations,

and the valfj will be used during searches. A small part of the forward index construction

of Figure 7.3a is shown in Figure 7.5a.

The inverted index, II, has a similar structure, tying a file identifier to the keywords

the file contains, to support efficient deletion and modification. Without it, upon deletion

of a file, the server should scan the whole forward index to find all occurrences of the

file identifier; a process that is neither efficient nor private. The first-level ADS of the

inverted index stores the encrypted file identifiers FK1(id(fj)) as the keys, and Rfj (root

of the second-level ADS, IIfj , storing the keywords fj contains) as the values at leaves.

To build each IIfj , first the two keys K ′fj=FK2(id(fj)) and Kfj=FK3(id(fj)) are gen-

1Similar ADSs, e.g., Merkle hash tree [99] or 2-3 tree [105] can also be used.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 148

(a) The forward index. (b) The inverted index.

Figure 7.5: A small part of real construction showing leaves storing (key, value) pairs. The
upper values in boxes are the keys, and the lower ones are the values.

erated. Then, they are used to compute the (key, value) pairs as keywi
=FK′fj

(id(wi)) and

valwi
=([FK1(id(wi))||keyfj]⊕H2

Kfj
(ri), ri), using the hash functionH2 as a random oracle

and the random values ri, for all keywords in fj. They contain the information required

for finding the desired nodes in the forward index efficiently (for deletion/modification).

Figure 7.5b presents a small part of the inverted index corresponding to Figure 7.3b.

The above encrypted indices provide support for verifiability of the queries. That

is, they can be used to guarantee that the file identifiers returned as a response to a

search query would indeed be the real ones matching the query. Equally important is to

make sure those file contents are also unmodified. Therefore, we build the file index as

another two-level efficient HADS, to protect the integrity of the outsourced (encrypted)

files. At the first level, an authenticated skip list is built using the file identifiers as

keys, and the root of the related second-level ADSs as values. Each second-level ADS is

associated with an encrypted file inside a DPDP [54] or FlexDPDP [57] instantiation to

protect its integrity. The DPDP divides the file into a number of blocks, computes a tag

for each block, and puts them into an authenticated rank-based skip list. Again, roots

of these ADSs are used to construct the first-level ADS2.

The BuildIndex algorithm takes the files in, finds all searchable keywords among

them to make the dictionary w, and follows the above-mentioned steps to build the

indices. The client stores the security keys, and roots of these indices as local metadata,

and uploads the indices and the encrypted files to the server.

2This is similar to the directory-hierarchy extension of DPDP, which proves the existence of the
files. The client needs to keep only a single metadata, regardless of the number of files.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 149

(a) Search. (b) Verification.

Figure 7.6: Search and verification operations on the file index.

The tokens. Since the indices are encrypted, for each operation, the client provides

the server the required information for performing the operation, through tokens. The

tokens depend on the client’s private key, and only the client can generate such tokens.

The information required for operations on the file index (according to DPDP) is also

sent with each update token. Since that part is well-defined in DPDP [54], we do not

include it in our presentation. We now describe each operation.

7.3.1 Search

Token. The search token carries information about a keyword wi enabling the server

to operate on the encrypted indices and find the file identifiers containing wi. Since the

forward index relates wi to the file identifiers containing it, the token needs to include

the required keys to operate on this index. Hence, we define Ts = (FK1(id(wi)), Kwi
).

Server computation. Using FK1(id(wi)), the server locates a leaf node in the first

level of the forward index, storing the root of the respective second-level ADS. If not

found, he generates a non-membership proof for FK1(id(wi)) and returns it with an

empty file set to the client. If found, a membership proof for FK1(id(wi)) is generated,

and Kwi
is used to decrypt the encrypted file identifiers at leaves of the second-level

ADS. The information required for client verification is added into the proof.3 Then,

the server generates the integrity proofs for these file identifiers using the file index as

in DPDP. Finally, all proofs together with the encrypted files are sent to the client.

Example. The search token for the keyword w2 in our example in Figure 7.3a is Ts =

(FK1(id(w2)), FK3(id(w2))). The first key, FK1(id(w2)), specifies a path to a leaf node in

the forward index, whose value will tell the server which second-level ADS to continue

3For an authenticated skip list, this information includes the levels of the nodes.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 150

with, as in Figure 7.6a. The server generates the membership proof ‘h1;w2;h2, h(+∞)’.

(The colored nodes contribute to the proof generation.) The second key, FK3(id(w2)), is

used to decrypt the leaf values of this second-level ADS to find the file identifiers.

Client verification. The client first rebuilds the second-level ADS containing the

file identifiers using the information in the proof, and uses its root to reconstruct the

proof path of the first-level ADS of the forward index. Then, she compares the computed

root value against the one in her local matadata, and any mismatch leads to a rejection.

These steps are presented in Figure 7.6b. If it is accepted, she compares the list of files in

the answer with those given in the proof, and rejects the answer in case of any mismatch.

Finally, she verifies the integrity of all the received files with the help of the DPDP part

of the proof, and accepts the answer if the integrity of all files are verified.

7.3.2 File Addition

Token. The add token carries information for adding the tie between the file iden-

tifier and all its keywords into the file index, updating the forward index (making

later searches consistent) and the inverted index accordingly. To add the file fj con-

taining s distinct keywords {wit}st=1, the token will look like Ta=(FK1(id(fj)), {keywit
,

valwit
, FK1(id(wit)), key

t
fj
, valtfj}

s
t=1), which is used by the server as explained below.

Example. We add a new file f4 with two keywords w2 and w4, divided into three

blocks, into the example given in Figure 7.3. The token will be Ta=(FK1(id(f4)),

{keyw2 , valw2 , FK1(id(w2)), key2
f4
, val2f4 , keyw4 , valw4 , FK1(id(w4)), key4

f4
, val4f4}). The server

first builds a second-level ADS using the key-value pairs (keyw2 , valw2) and (keyw4 , valw4),

and ties its root to the first level of the inverted index using the key FK1(id(f4)), as shown

in Figure 7.4a. Then, he finds the second-level ADSs of FK1(id(w2)) and FK1(id(w4))

in the forward index, and adds the key-value pairs (key2
f4
, val2f4) and (key4

f4
, val4f4) into

them, respectively. Finally, he instantiates a DPDP construction for this file as a second-

level ADS and ties its root to the first-level ADS of the file index using the key id(f4).

The changes this file addition gives rise to are identified in bold lines in Figure 7.4. Each

index generates its own proof, and the server sends these proofs back to the client.

Client verification. The client first builds a second-level ADS using the keywords

and the same randomness as the server, and another second-level ADS according to

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 151

DPDP, and ties them to the first-level ADS of the inverted index and file index, respec-

tively, using the proof. Moreover, she adds the file identifier into the second-level ADS of

its keywords in the forward index. If all three updated indices matches the proof coming

from the server, the client accepts the proof and updates her metadata.

7.3.3 File Deletion

Token. The token contains information required for the server to find and delete a file fj

and all relations between this file and its keywords, and update the indices accordingly.

FK1(id(fj)) is needed to locate the second-level ADS of the inverted index, through which

the server obtains the information required for updating the forward index. To decrypt

that ADS, Kfj is needed. To delete the actual (encrypted) file, id(fj) is required. Thus,

the delete token is Td = (FK1(id(fj)), Kfj , id(fj)).

Example. The delete token for deleting f3 containing keywords w1 and w4, from

the example in Figure 7.5 will be Ta=(FK1(id(f3)), Kf3 , id(f3)). The server first lo-

cates FK1(id(f3)) in the inverted index to find the respective second-level ADS, and

uses Kf3 to compute all H2
Kf3

(ri)s required to decrypt the values at its leaves to at-

tain (FK1(id(w1))||key1
f3

) and (FK1(id(w4))||key4
f3

). Then, he locates FK1(id(w1)) and

FK1(id(w4)) in the forward index to reach their related second-level ADSs from which

he will delete key1
f3

and key4
f3

, respectively. Afterwards, he deletes the nodes storing

FK1(id(f3)) and id(f3) and their related second-level ADSs from the inverted and file

indices, respectively, and the file id(f3). Finally, he sends the proofs to the client.

Client verification. The client applies all modifications locally and compares the

result against what received from the server. If the proof is accepted, she updates her

local metadata accordingly, and performs nothing otherwise.

7.3.4 File Modification

Token. The modification is a combination of add and delete tokens, and causes some of

the existing relation between the file and its keywords be removed, and some new ones be

added. However, givenKfj (the key of the hash function), the server can find all keywords

in the file. To prevent this, we should give the server only the required H2
Kfj

(ri)s, which

requires knowledge of ris. Therefore, the client gives the server the valwi
s of the key-

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 152

words being deleted, receives their ris, and prepares the required H2
Kfj

(ri)s. The token is

Tm=(FK1(id(fj)), {keywit
, valwit

, FK1(id(wit)), key
t
fj
, valtfj}

t1
t=1, {keywi′t

, H2
Kfj

(ri′t)}
t2
t=1, id(fj)),

where t1, t2 are the numbers of keywords added and deleted, respectively.

Even though the token treats the index modification as deletion and addition of

keywords, the file operation, which is the slow and large part, is treated as modification,

according to the underlying DPDP. Previous works indeed required deleting the whole

file (including via the index) and adding its new version from scratch.

Server computation. The server manages the newly-added keywords as in the file

addition, and those being removed as in the file deletion, and sends the generated proofs

to the client, who performs verification as in the two above-mentioned cases.

7.3.5 Boolean Search

Token. For each keyword in the Boolean formula, the server needs the same informa-

tion as a single-keyword search. Therefore, for a Boolean combination of t keywords,

φ(w1, ..., wt), we create one search token Ts per wi to form the Boolean search token.

Though this will leak information about all keywords in the query formula, it is required

for our proof generation. The blind seer [120, 65], [102] and [27] leak much less, but the

client cannot verify the result coming from the server. We leave the efficient, verifiable,

and privacy-preserving Boolean search in dynamic environments as an open problem.

Naive solutions. The existing schemes supporting Boolean search [102, 27, 120, 65]

assume a semi-honest adversary: the server executes the query, and finds and sends

the resultant files to the client who accepts them without verification. We propose

the first dynamic SSE scheme providing verifiable and efficient Boolean search. In

the malicious setting, the server’s answers need to be equipped with a proof including

sufficient information enabling the client to check their verifiability. This requires giving

more information to the server, leaking all keywords in the formula. To employ the

existing solutions in the malicious setting, for each keyword in the search formula, all

files containing the keyword should be sent to the client for verification, which is a very

inefficient solution [27].

A naive solution in the malicious settings is that the server generates a proof for

each keyword in the Boolean search formula, that shows the set of file identifiers each

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 153

keyword appears in. Then, he performs a sequence of unions (for ‘∨’), intersections

(for ‘∧’), and complementations (for ‘¬’) according to the Boolean search formula, and

prepares the final set of file identifiers satisfying the Boolean search criteria. Finally, he

sends the resultant files together with the proofs to the client. The client first verifies

each proof, and if all were accepted, performs a sequence of unions, intersections, and

complementations on the accepted proof results, similar to the server. Moreover, she

checks the integrity of all received files. At the end, she accepts the answer if the set of

file identifiers that are the output of the verification, exactly matches the received files.

Server computation. We observe that in the malicious setting, the server can

perform better, especially when some involved second-level ADSs are very large, where

only a very small part satisfies the query. Therefore, the server, by operating on the

keyword proofs, can generate efficient proofs.

We decompose a Boolean search formula into a set of primitive combinations for which

a proof using the existing ADSs can be generated. Each proof provides an authenticated

set of file identifiers to the client, who uses them to generate the final authenticated

set of file identifiers by applying a sequence of unions, intersections, and complemen-

tations, according to the Boolean formula over the primitives. Our key contribution

here is that these primitive combinations are not just for a single keyword, as in the

naive approach. Any Boolean combination of keywords can be constructed using these

primitive combinations.

Since the existing schemes do not provide the client with an authenticated set of file

identifiers to start with, they cannot generate such Boolean search proofs (i.e., there is no

authenticated set on which the client can apply the intersection, union, or complementa-

tion). Stated differently, these schemes do not provide the completeness property, which

requires that the client should have a way of checking that there is no extra or missing

file in a query answer. The reason why we do not decompose the primitive combinations

further into the keywords, is that we can provide efficient proofs for these combinations

(especially those constructed using ‘∧’), which improves the proof generation time and

proof size. The primitive combinations and how their proofs are generated are as follows:

• ¬ϕ(w1, ..., wt): The server sends the proof for ϕ(w1, ..., wt) to the client who con-

siders the complement file set as the query answer if the proof is accepted.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 154

• w1∨w2∨...∨wt: The proof should include at least all distinct file identifiers stored at

each ADS corresponding to a wi. The server can traverse all these ADSs once and

generate a space-efficient proof. The client uses the proof to reconstruct the ADSs

for verification. Alternatively, the server sends proofs of all wis (the file identifiers

in the corresponding ADSs and the information required for reconstructing them)

to the client, without further computation. The client reconstructs the ADSs one-

by-one, and if all are accepted, outputs the set of distinct file identifiers as the

authentic result. This is a trade-off between the communication and the client and

server computations.

• �1w1 ∧ �2w2 ∧ ... ∧ �twt where �i is either empty or ¬: If all �is are ¬ (i.e., the

formula is ¬w1 ∧ ¬w2 ∧ ... ∧ ¬wt), it can be converted into ¬(w1 ∨ w2 ∨ ... ∨ wt),

using De Morgan’s laws. Otherwise, we have a set of keywords, each with a related

second-level ADS, connected by ‘∧’. If the file identifiers were stored in these

second-level ADSs sorted according to their plain values, we could easily compare

them and find the common values. But they are stored sorted on their encrypted

values, hence, their plain values cannot be efficiently compared. Therefore, we first

sort these second-level ADSs according to their sizes (since the order of keywords

is not a matter of importance), and start by the comparing the two smallest ones.

For each file identifier in the first ADS, we generate either a membership or a

non-membership proof in the second ADS, depending on whether it appears in the

second ADS or not. This gives us two sets of file identifiers: one set including

those that appear in the second ADS and the other containing those that do not.

We continue comparing the former set with the next ADS similarly, while leaving

out the latter one. This process goes on until all ADSs are accomplished. The

important idea here is that the set of file identifiers to compare with the next ADS

gets smaller as we go ahead. The algorithm 7.3.1 illustrates the process.

Example. Consider the Boolean search formula Q=w2∨¬(w1∧w3) to be executed on

Figure 7.3. The client prepares the token as: Tb=(FK1(id(w2)), Kw2)∨¬((FK1(id(w1)), Kw1)∧

(FK1(id(w3)), Kw3)). The server first decomposes it into primitivesQ1=(FK1(id(w2)), Kw2)

and Q2=((FK1(id(w1)), Kw1)∧(FK1(id(w3)), Kw3)), and generates their proofs separately

using the related second-level ADSs. The proof of Q1 is a regular ADS proof that

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 155

Algorithm 7.3.1: CompBooleanFID, run by the server.
Input: t second-level ADSs: ADS1...ADSt, their keys: K1...Kt, and literals: N1...Nt.

Output: List of file identifers FID, and the proof π.

// Assume ADSs are given in increasing order of the number of leaves.

1 π = {};
2 Decrypt all values in leaves of the ADS1;

3 if N1 == ′¬′ then

4 FID = f− {fi|fi ∈ ADS1};
5 else

6 FID = {fi|fi ∈ ADS1};
7 π = {(fi, level)|fi ∈ ADS1};
8 for each ADSi ∈ {ADS2, ..., ADSt} do

9 πi = FID′ = {};
// Each ADSi encrypted with a different key. Decrypt first.

10 FIDi = {fj |fj = Dec(Ki, f
′
j) ∧ f ′j ∈ ADSi};

11 for each fj ∈ FID do

12 if fj ∈ FIDi then

13 π′ = ADSi.GenMembershipProof(f ′j);

14 if Ni 6= ′¬′ then

15 FID′ = FID′ ∪ fj ;
16 else

17 π′ = ADSi.GenNonMembershipProof(f ′j);

18 if Ni == ′¬′ then

19 FID′ = FID′ ∪ fj ;
20 πi = πi||π′;
21 π = π||πi;
22 FID = FID′; //Consider only these identifiers for the next round, not all

in FID. Important: the FID size is decreasing as progress.

23 return (FID, π);

looks like πQ1={h(−∞), id(f2), h(+∞)}. For Q2, the Algorithm 7.3.1 generates πQ2=

{h(−∞); {id(f1):h(−∞), id(f1), h(id(f3)), h(+∞)};h(+∞)}, which obeys the format:

{h(−∞); {id(fi):πid(fi) using ADSw3}id(fi)∈ADSw1
;h(+∞)}. It includes the file identifiers

in ADSw1 , each followed by a (non-)membership proof in ADSw3 . The authentic result

of Q1 is {id(f2)}, and that of Q2 is {id(f1)}.

Then, the server takes complementation of the authentic result of Q2, which yields

{id(f2), id(f3)}, followed by a union with the authentic result of Q1, achieving the fi-

nal result {id(f2), id(f3)}. He also generates the integrity proof, πint, for the files in

{id(f2), id(f3)} using the file index. Finally, the server sends the proofs πQ1 , πQ2 , and

πint, together with the encrypted files f2 and f3 to the client.

The client first verifies πQ1 and πQ2 . If they are accepted, she performs the set

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 156

operations as the server, and finds {id(f2), id(f3)}. Then, she checks if only two files

f2, f3 are in the answer. Finally, she accepts the answer if πint is also verified.

7.4 VDSSE in the Standard Model

Our scheme employs one-time pad encryption using two hash functions modeled as ran-

dom oracles. This is necessary in our proof so that the simulator can later claim he

encrypted the correct value, even though during the encryption process he had no idea

about it. Alternatively, one can use a deniable encryption scheme [24, 51] or a non-

committing encryption scheme [34].

In a regular encryption scheme, the ciphertext serves as a commitment of the sender

to the encrypted data. If the receiver (the server), after receipt of a ciphertext, asks the

sender (the simulator) to reveal the plaintext, the sender cannot show a different message

and prove it as the desired plaintext. While in a non-committing encryption scheme,

a simulator can decrypt a previously-sent ‘dummy ciphertext ’, which is indistiguishable

from a real one, to a plaintext she wants [23]. This means that the ciphertext does not

commit the sender to a specific data as the expected plaintext.

Note that a very basic non-committing encryption scheme is the one-time pad. Since,

for any given ciphertext and message pair, a key that matches the plaintext to the desired

ciphertext can easily be found, one-time pad can effectively replace all random oracle

uses (i.e., replace H1 and H2 in the BuildIndex with directly using r value as the key for

one-time pad, and of course do not send the r values to the server). The simulation-based

security proof will still work perfectly.

We use two PRFs F and G to replace H1 and H2. Therefore, instead of stor-

ing FK′wi
(id(fj)) and ((id(fj) ⊕ H1

Kwi
(rj)), rj) as the (key, value) pair, we store (l, [FK(

id(fj)) ⊕ FKwi
(l)]) as the (key, value) pair at the lth node of FIwi

. Similarly, instead

of FK′fj
(id(wi)) and ([FK1(id(wi))|| keyfj] ⊕ H2

Kfj
(ri), ri), we store (t, [FKfj

(id(wit))||

〈[FK(id(wit))||lt]⊕GKfj
(t)〉]) as the (key, value) pair at the tth node of IIfj .

One issue in this simple construction is that it is very likely that id(f1) appears in

the first location of many second-level ADSs of the forward index. Therefore, a two-time

pad attack may reveal some information. To prevent this type of attacks, we store fwi

and wfj in permuted random order inside their second-level ADSs.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 157

Now, in the absence of random oracles, the server should be given all FKwi
(l) values

to answer a search query (in the search token). Similarly, the server needs all GKfj
(t)

values to perform a deletion, provided by the token. To be able to build such tokens,

the client should store locally the number of files containing each keyword wi, cntwi
, and

the number of keywords each file fj contains, cntfj . In essence, the tokens change, but

the operations remain effectively the same as their random oracle model counterparts.

Search. The search token for wi, in addition to FK(id(wi)), encompasses cntwi
-

many one-time pad keys, i.e., it looks like Ts = (FK(id(wi)), {FKwi
(l)}cntwi

l=1). FK(id(wi))

specify a path in the first level of the forward index to a second-level ADS, FIwi
, whose

values will be decrypted using {FKwi
(l)}cntwi

l=1 . The rest of token generation and server

computation are exactly as in the ROM. We substitute each keyword in a Boolean search

formula with the respective token Ts to generate the Boolean search token.

File addition. The client extracts the keywords in the file fj, increments their

counter (cntwi
) by one, and sets {keywil

=l}tl=1, where t is the number distinct searchable

keywords in fj. The rest of token generation and server computation are as in the ROM.

File deletion. Although we can give the corresponding PRF key to the server as

in ROM, but we cannot simulate it in our proof. Instead, the delete token for a file fj

conveys all values required for decrypting the data stored at the respective second-level

ADS of the inverted index, IIfj . Hence, the delete token for a file fj with cntfj -many

distinct keywords looks like: Td = (FK(id(fj)), {GKfj
(t)}

cntfj
t=1). Its worth noting that

since the file identifiers in the second-level ADSs of the forward index are position-

dependent, removing one of them needs keeping the other positions unaffected. Thus,

instead of deleting the leaf nodes containing the file identifier, we replace their contents

with a NULL value showing the node is empty. This means that deletion will not reduce

the token size of later searches.

Modification. Since the keywords of a file are stored with the order of appearance

in the related second-level ADS of the inverted index, upon modification, the client does

not know their location in the related second-level ADS. As in ROM, the client first asks

the server the locations of keywords being deleted (by this modification), giving him

the FKfj
(id(wi)) values. Then, she generates the required GKfj

(t) values for decrypting

the encrypted data at leaves of the second-level ADS IIfj corresponding to the deleted

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 158

keyword. The rest of token generation and server computation are as in the ROM.

Optimization. If some additions and deletions are performed almost simultaneously,

to reduce the number of leaves with NULL values due to deletion during the modification,

we can replace the new keywords with the deleted ones. However, if the number of deleted

keywords is greater than the new keywords, the remaining deleted nodes will be replaced

by NULL values. This can also be applied on an addition following a deletion to save

space on the forward index. Note that this combination optimization is not a security

breach, since the server already knows the identifiers of the deleted and added keywords

in a dynamic scheme.

Efficiency. Previously, a search and delete token contained the keys of the hash

functions. Upon receiving this key, all the server needed to do was to run the hash

function with the associated ri random values. Now, the server only stores PRF en-

cryptions of the identifiers, without any randomness. Thus, the server storage decreases

a little. But, the client storage increases, as she needs to store, for each keyword and

file identifier, the number of assigned file and keyword identifiers, respectively, which

is O(n + m), plus two extra keys used by F and G. Alternatively, the client can store

the counters encrypted on the server [26] and retrieve them before performing a search.

This increases the communication and leakage. The search and delete token sizes also

increase, depending on the number of files associated with a keyword and the number of

keywords associated with a file, respectively. We will show that these are very realistic

numbers in practice.

7.5 Analysis

7.5.1 Security Proof

Before going into details of the security proof, we formalize our leakage functions:

LInit shows the information leakage during the initialization: LInit(f)=(|f|, |fwi
|wi∈w,

|w|, |wfj |fj∈f, |fj|nj=1, {eid(fj)}fj∈f, {eid(wi)}wi∈w). Briefly, the number of files and

keywords, the number of keywords per file and files per keyword leak, as well as

the file sizes and encrypted keywords (eid(wi)s) and file identifiers (eid(fj)s). The

keywords and files themselves never leak, as they are encrypted.

LSrch shows the encrypted file identifiers containing eid(wi) (the access pattern of wi)

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 159

revealed during the search operation: LSrch(f, wi) = (eid(wi), {eid(fj)}wi∈fj).

LBlSrch is similar to LSrch but for a Boolean combination of keywords: LBlSrch(f,w′ ⊆

w) = {eid(wi), {eid(fj)}wi∈fj}wi∈w′ . The leakage is the set of encrypted keyword

identifiers, eid(wi), each with its access pattern.

LAddDel shows the leakage during a file addition or deletion: its size, and the encrypted

identifier of the file and its keywords. LAddDel(f, fj)=(eid(fj), |fj|, {eid(wi)}wi∈fj).

LMod contains the leakage during a modification: the random values used as the in-

puts of the hash function for hiding the information about the deleted keywords

(leaked in the first round), size of the file after modification, and the set of encrypted

keyword identifiers being added (of size t1) and deleted (of size t2), leaked in the

second round. Finally, LMod(f, fj)=(eid(fj), |fnewj |, {eid(wit)}t1t=1, {eid(wi′t), ri′t}
t2
t=1).

In the standard model, it contains the location of the deleted and added keywords:

LMod(f, fj)=(eid(fj), |fnewj |, {lt, eid(wit)}t1t=1, {l′t, eid(wi′t)}
t2
t=1).

Theorem 7.5.1 If a CPA-secure symmetric-key encryption scheme SKE, a secure HADS

scheme, a secure PRF F , and two hash functions H1 and H2 modeled as random oracles

are employed, our VDSSE is secure according to Def. 7.2.3.

Theorem 7.5.2 If a CPA-secure symmetric-key encryption scheme SKE, a secure HADS

scheme, and two secure PRFs F and G are employed, then our VDSSE scheme in the

standard model is secure according to Definition 7.2.3.

We prove them by proving verifiability and privacy, in Section 7.7 and 7.8.

7.5.2 Comparison to Previous Work (Asymptotic)

Our scheme possesses important advantages over the existing dynamic SSE schemes (see

Table 7.2). First, it supports verifiability (in the presence of malicious adversaries).

Though PDSE [134] and PDSSE [84] can also support verifiability, their proofs are very

large. Second, our scheme is the only scheme among these schemes that supports efficient

and provable Boolean search. The scheme proposed by Cash et al. [26] supports

Boolean search (similar to their previous work for static data [27]) without any proof

showing authenticity of the answer. BSSE [102] supports Boolean search in the semi-

honest setting. PDSSE can support Boolean search over static dictionaries with large

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 160

Table 7.2: A comparison of dynamic SSE schemes. V DSSERO and V DSSEST are our con-
structions in the random oracle and standard model, respectively. ‘T. Size’ stands for ‘Token
Size’. The other symbols are as in Table 6.1.

Scheme
Storage Search Add (Modify) Delete

Client Server T. size Computation T. size Computation T. size Computation

[139] O(m) O(N) O(1) O(d) O(w) O(w) O(m) O(N)

DSSE [86] O(1) O(N) O(1) O(d) O(w) O(w) O(1) O(wd)

PDSSE [Kamara and Pap. 2013] O(1) O(nm) O(1) O(d logn) O(w logn) O(w logn) O(w logn) O(w logn)

PDSE [134] O(logN) O(N) O(logN) O(d log3 N) O(w) O(w log2 N) O(w) O(w log2 N)

BS [120] O(1) O(nB) O(logn) O(bd logn) O(B) O(B) O(1) O(1)

[26] O(1) O(N) O(1) O(d) O(w) O(w) O(w) O(w)

MCBS [65] O(1) O(nB) O(logn) O(bd logn) O(B) O(B) O(1) O(1)

V DSSERO O(1) O(N) O(1) O(logm + d) O(w) O(logn + w log(md)) O(1) O(logn + w log(md))

V DSSEST O(n+m) O(N) O(d) O(logm + d) O(w) O(logn + w log(md)) O(w) O(logn + w log(md))

proofs. PDSE does not support efficient Boolean search. The blind seer (BS) [120]

and malicious-client blind seer (MCBS) [65] support Boolean search for dynamic data

in honest (-server) model. They also preserve the privacy of the query, i.e., the server

does not have any idea about the query being run. The BS, MCBS, and [26] leak less

information to the server about the query being run. Finally, while the other schemes

support only file addition and deletion, our scheme supports efficient file modification.

This is of importance especially for large files, as it may not be acceptable to re-transfer

a large file for a small modification. A more detailed comparison is below.

Storage. The client storage in our scheme is optimal (O(1)). Except the PDSSE, BS,

and MCBS, the other schemes all require O(N) asymptotic server storage (though ours

needs larger storage in practice, i.e., for storing the file index), which is practically less

than O(nm) of PDSSE. PDSE needs O(N) server storage at the cost of increased client

storage and server computation. The client storage in our standard model is O(n+m).

This is very small compared to the size of all outsourced files, since for each file, only a

few hundred bits are stored. However, this amount of storage may be noticeable when

the number of keywords or files is very large. The same holds for PDSE and [26].

Token size. Our VDSSE, together with DSSE, BS, and MCBS have optimal token

sizes (constant-size search and delete, O(w) add tokens). In the standard model, we

need to compute and send the PRF outputs for all leaf nodes of the related second-level

ADS, and hence the token sizes increase. Therefore, the search token is O(d), and the

add and delete tokens are O(w). The token sizes of the standard model of PDSE are

O(logN) times worse than those of our scheme.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 161

Computation. DSSE possesses the best search time O(d), add time O(w), and

delete time O(wd). Our scheme naturally requires more computation for supporting

verifiability and file integrity. Actually, we pay O(logm) extra for a membership proof of

a keyword, and O(log n) extra for a membership proof of a file. Removing the verifiability

and integrity proofs causes our scheme’s complexities drop to those of DSSE. In our

standard model, the client computation increases to O(d) for generating search token,

and to O(w) for generating add and delete tokens, but the server computation is the

same as in the random oracle model. The standard model client and server computation

times of PDSE are again O(logN) times worse than those of our scheme.

To the best of our knowledge, our schemes are the first verifiable dynamic SSE

schemes supporting modifiability and Boolean search. Furthermore, our standard

model construction is the most efficient such construction, supporting verifiable dynamic

operations and Boolean search, with full security proof. We will show practical efficiency

of our system using concrete performance numbers.

7.5.3 Performance Analysis

Setup. To evaluate our SSE scheme, we implemented a prototype with the two-level

efficient HADS construction with Flexlist [56] at both levels of the indices, in C++ using

Cashlib library. All experiments were performed on a 2.50 GHz machine with 24 cores

(but using a single core), with 16 GB RAM and Ubuntu 12.04 LTS operating system.

The performance numbers are averages of 50 runs. We took into account only the server

computation time for working on the encrypted indices, i.e., the server computation time

on the files and the file index is excluded. We have two scenarios:

7.5.4 First scenario: small number of large documents

This corresponds to the case that a client outsources her files to a cloud server. We

investigated the local storage of several accounts at Koç University and observed that

there are about 1000 academic papers and ebooks, each containing 5000 to 30,000 distinct

keywords, on average. There are about 100,000 distinct keywords in total. This leads

to 1000 and 100,000 leaves at the first levels of the inverted index and forward index,

respectively. The number of nodes of the second-level ADSs differ depending on the

number of keywords each file contains, and the number of files each keyword appears in.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 162

0.5 1 1.5 2 2.5 3

x 10
4

0

2000

4000

6000

8000

10000

12000

Number of keywords in the file

T
im

e
(m

s)

File insertion and deletion

Insertion
Deletion

(a) File addition and deletion.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

Number of files each keyword appears in

T
im

e
(m

s)

Client verification and Boolean search

Client verificarion
Boolean search

(b) Client verification and Boolean search.

Figure 7.7: File addition and deletion, and Boolean search in the first scenario.

0 5000 10000 15000
0

1000

2000

3000

4000

5000

Number of modified keywords

T
im

e
(m

s)

Modification of a file containing 30000 keywords

(a) Different number of keywords.

2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

Number of keywords in the file

T
im

e
(m

s)

File modification affecting 1000 keywords

Modification (our scheme)
Delete−then−add

(b) Fixed number of keywords.

Figure 7.8: File modification in the first scenario.

File addition and deletion. Figure 7.7a illustrates the addition and deletion times

of a file with different number of keywords. It shows that the server performs more

computation as the number of keywords in the file (and hence, the file size) increases.

This is expected, as the server needs to add/delete all keywords to/from the second-level

ADSs of the forward index. Adding a new file with 5000 and 30,000 distinct keywords,

for example, takes about 2 and 11 seconds, respectively.

File modification. Figure 7.8a depicts the results of a file modification affecting

different number of keywords when the file already contains 30,000 keywords. A modifi-

cation affects a set of keywords on the indices, and hence, the operation time increases

with the number of affected keywords. But for a fixed number of affected keywords, the

modification time is very slightly affected by the total number of keywords in the file as

shown in Figure 7.8b; i.e., the dominant factor is the number of affected keywords.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 163

0 200 400 600 800 1000
0

5

10

15

20

Number of results

S
iz

e
(K

B
)

Proof size

Sending 50 results each time
Sending all reults once

(a) Proof size.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Number of results

R
at

io

Proof overhead to the result size

Sending 50 results each time
Sending all reults once

(b) Proof overhead.

Figure 7.9: Proof size and overhead in the first scenario.

We further compare our modification solution to first deleting the file and then adding

the modified file, as required by schemes without file modification capabilities. As the

Figure 7.8b shows, a modification on a file affecting 1000 keywords takes between 345

and 355 ms in our scheme, while the delete-then-add would require between 1500 and

9000 ms, depending on the file size. This would get much worse if we also consider the

file upload and the file index operations.

File search. The server uses first-level ADS of the forward index to generate the

membership proof. Then, he decrypts all the encrypted file identifiers stored at the

leaves of the corresponding second-level ADS, and sends all the files with the proof to

the client. Hence, the search time does not pose a considerable variation as the number

of keywords increases, and was between 3ms and 5ms in our tests.

Boolean search. We performed the Boolean search of the form w1∧w2 for different

number of files (sharing w1 and w2), assuming both keywords appear in almost the same

number of files (of which a portion contains both keywords together). The server needs

to traverse the second-level ADSs of all keywords in the formula, and generate their

membership proof at the first level of the forward index. The client, however, needs

to reconstruct the whole second-level ADSs and the proof paths on the first-level ADS

for verification. This is why the client verification times are greater than the server

computation times in Figure 7.7b. Our Boolean search at the server takes 7 ms when

each keyword appears in 100 files and 40 ms when each keyword appears in 1000 files.

However, it takes about 11 and 74 ms for the client to verify these two cases.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 164

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of keywords in the file

T
im

e
(m

s)

File insertion and deletion

Insertion
Deletion

(a) File addition and deletion.

0 50 100 150 200
4

6

8

10

12

14

Number of results returned

T
im

e
(m

s)

Client verification time, sending the result in parts

50000 results
20000 results
10000 results
5000 results
1000 results

(b) Client verification time.

Figure 7.10: File addition and deletion, and client verification in the second scenario.

Iterated search. The server can send all the search results together, or may send

them in small groups (e.g., 50 files each time).4 Sending the search results iteratively in

groups of a small size helps the client to stop receiving more results when she is satisfied.

Figure 7.9a compares the server proof generation time for the cases of sending all the

search results together versus sending a result of size 50 files each time. It shows that

the proof size for 100 and 1000 files in the result are about 2 and 18 KB, respectively,

while that is about 2 KB for each group including 50 files. As expected, this strategy is

meaningful only in scenarios where the client is expected to stop retrieval before receiving

(almost) all the results.

Proof overhead. Our scheme’s proof overhead is very insignificant compared to the

size of the resultant files being sent to the client, e.g., about 0.0001 times (or 0.01% of)

the search result size as shown in Figure 7.9b, and can be neglected.

7.5.5 Second scenario: large number of small documents

This scenario corresponds to the case that a large number (e.g., 100,000) of webpages

are outsourced to an untrusted cloud server. We investigated the number of distinct

keywords in different websites (e.g., bbc.com, office.com, nytimes.com, and many other

websites related to news, technology, and education) using the online word counter tool

from words.contentor.com and realized that the number of distinct words in a typical

webpage is generally between 100 and 5000.

File addition and deletion. The file addition and deletion times in this scenario

4If the search results of all keywords are stored ranked, the client is normally interested in those
with high ranks, and may not want to receive those with low ranks [140, 110].

http://www.bbc.com
http://www.office.com
http://www.nytimes.com
http://words.contentor.com

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 165

are depicted in Figure 7.10a. The operation times are reduced compared to Figure 7.7a

since each file contains smaller number of distinct keywords (i.e., at most 5000). Figure

7.10a reveals that the addition of a new file including 500 and 5000 distinct keywords

takes about 420 and 3500 ms, respectively.

File modification. In a similar manner, the file modification shows a drop compared

to the previous scenario, as shown in Figure 7.11a. It ranges from 80 to 600 ms when the

number of keywords increases from 100 to 1000. Once again, Figure 7.11b shows that the

modification time depends primarily on the number of affected keywords, not the total

number of keywords in the file. It also shows that a modification affecting 500 keywords

takes between 310 and 325 ms in our scheme, confirming the 4-20 fold efficiency gain of

our modification solutions compared to the delete-then-add methods.

File search. The search and verification operations behave very similar to the

previous scenario. The search time on the server increases very slightly with the number

of files in the result, and was between 3ms and 11ms in our experiments.

Iterative search. This scenario resembles the search engines, where the client re-

ceives a small part of the query results at a time (e.g., 10 per page for the Google). Our

server can also prepare and send a small part of the query results each time, accompanied

with the corresponding membership proof. Since a consecutive part of the results are

sent each time, the server uses the range query technique at the second-level ADSs of the

forward index, and hence the computation time changes very slightly with the number

of results returned to the client. But the client needs to verify all results she receives

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Number of modified keywords

T
im

e
(m

s)

Modification of a file containing 5000 keywords

(a) Different number of keywords.

1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

6000

Number of keywords in the file

T
im

e
(m

s)

File modification affecting 500 keywords

Modification (our scheme)
Delete−then−add

(b) Fixed number of keywords.

Figure 7.11: File modification in the second scenario.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 166

0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

Number of results

S
iz

e
(K

B
)

Proof size

Sending 50 results each time
Sending all reults once

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of results

R
at

io

Proof overhead to the query result size

Sending 50 results each time
Sending all reults once

(b) Proof overhead.

Figure 7.12: The proof size and overhead in the second scenario.

each time, which increases the verification time. The verification times for different sizes

of the query result parts are presented in Figure 7.10b, and are around 4 to 14 ms.

Proof overhead. Our scheme generates very small proofs, as illustrated in Figure

7.12a. When the whole query results are sent once, the server generates the membership

proof for the keyword using the first-level ADS of the forward index, and only the

file identifier existing in the corresponding second-level ADS. Therefore, the proof size

increases with the number of files in the query result. When the results are sent in

parts, the sizes of the proofs are independent of the number of results sent each time,

and changes very slightly with the total number of files sharing the keyword (i.e., size of

second-level ADS). Compared to the size of files in the query result, our proofs are still

insignificant in size, e.g., < 0.02 times the result size, as shown in Figure 7.12b.

7.5.6 Standard model

Our scheme in the standard model requires O(n+m) client storage. Since the encrypted

bit-length of a random file identifier and the number of keywords in a file (e.g., 128 and

20 bits, respectively) are very small compared to the size of a typical file (e.g., 10 MB),

the client storage is very small compared to the outsourced files.

First scenario. With 1000 files (n=1000) and 100,000 keywords (m=100,000), the

client storage is 101,000×20=2,020,000 bits ' 247 KB, regardless of the file and keyword

sizes, depending only on the number of files and keywords. Search token size is also

small, e.g., 1000×128=128,000 bits ' 16 KB, when a keyword matches all 1000 files.

The add token, the biggest one in the standard model, is of size 128+10,000×(20+20+

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 167

128+128)=2,960,128 bits ' 362 KB for a file with 10,000 keywords. The size of a delete

token is about half the size of an add token. The modify token size depends on the

number of deleted and added keywords.

Second scenario. For 100,000 files (n=100,000) and 100,000 keywords (m=100,000),

the client storage will be 200,000×20=4,000,000 bits ' 488 KB, regardless of the file

and keyword sizes, depending only on the number of them. The search token size is

10,000×128=1,280,000 bits'156 KB when a keyword matches 10,000 files. The add to-

ken size is 128+5000×(20+20+128+128)' 180 KB for a file with 5000 keywords. The

size of a delete token is about half the size of an add token, and the size of modify token

depends on the number of deleted and added keywords.

These results show that our scheme in the standard model is very practical.

7.6 Conclusion

We presented a verifiable dynamic SSE scheme for outsourcing encrypted files (for con-

fidentiality) and later retrieving them selectively. The VDSSE considers a malicious

settings, and all operations on the outsourced encrypted files are verifiable.

Our VDSSE also supports verifiable Boolean search in general, no only conjunction.

Using our approach, the server generates a space-efficient proof for the whole Boolean

search result, to be verified by the client.

The VDSSE supports the encrypted file modifiability on the server. As confirmed

by our experiment results, a delete-then-add operation time for a small modification on

a large file, is very large compared to our modification (e.g., between 1500 and 9000 ms

vs. ' 350 ms for a modification affecting 1000 keywords), and would not be acceptable.

We also presented a dynamic construction secure in the standard model with full

security proof, Boolean search capability, and performance evaluation for the first time.

Although our VDSSE in the standard model is asymptotically slower than its counterpart

in the random oracle model, its efficiency is acceptable in practice: e.g., for 10 GB of

outsourced files, on average, the client storage is ' 488 KB only, and the search and

add tokens are just ' 156 KB and ' 362 KB, respectively.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 168

7.7 Security Proof

Theorem 7.7.1 Our VDSSE scheme is verifiable according to Definition 7.2.4, provided

that the underlying HADS scheme is secure.

Proof 7.7.1 We reduce verifiability of our VDSSE scheme to the security of the un-

derlying building blocks, the three HADSs: FI, II, FX. If a PPT adversary A wins the

VDSSE verifiability game with non-negligible probability, we use it to construct a PPT

algorithm B who breaks security of at least one of the HADSs, with non-negligible proba-

bility. B acts as the server in the HADS security game played with the HADS challengers

CFI , CII , and CFX . Simultaneously, he plays the role of the challenger in the VDSSE

verifiability game with A. He receives public keys of the HADSs from their challengers

and relays them to A.

During the setup phase, B receives commands from A, and forwards each part to the

corresponding HADS challenger in its respective format. At the same time, B builds a

local copy of the HADS structures for herself that is invisible to the adversary A, and

thus will not affect his behavior. After the setup phase, A selects a command, generates

the answer and proof for the command, and sends them to B. The adversary wins, if the

answer is different from the real answer (B can find the real answer since he maintains

a local copy), and the proof is verified.

The proof has three parts: π = πFI ||πII ||πFX . B forwards the command, answer,

and proof parts to the corresponding challengers. If A passes the VDSSE verification

with non-negligible probability p, B can also pass each of the HADS verifications with

non-negligible probability p (breaking the HADS security).

Since the HADS is secure, p must be negligible, which means that A can break verifi-

ability of the VDSSE only with negligible probability. Therefore, if the underlying HADS

schemes are secure, our VDSSE scheme is verifiable.

Theorem 7.7.2 If SKE is a CPA-secure symmetric-key encryption scheme, the HADS

is secure, F is a secure PRF, and the hash functions H1 and H2 are modeled as random

oracles, then our VDSSE scheme is (LInit,LSrch,LBlSrch,LAddDel,LMod)-private against

adaptive chosen-keyword attacks.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 169

Proof 7.7.2 Overview: We construct a PPT simulator S who simulates the client

in a way that is indistinguishable from the real client by any PPT distinguisher. The

simulator starts by constructing a simulated (encrypted) index I and a simulated version

of the collection of encrypted files c. These simulated versions are generated as randomly

selected values, but the simulator uses the information provided by LInit to make them

similar to the real ones. The simulator needs the number of files, their sizes, the number

of keywords in each file, the number of keywords in the dictionary, and the number of

files per keyword for a correct simulation of the initial index. These are all given to

the simulator in LInit. Since the values stored at the forward and inverted indices are

the outputs of PRFs, the simulator can select random values instead. The PRF security

guarantees that no PPT distinguisher can distinguish them. S uses the encryption of

all-zero strings of given sizes for the files; an action guaranteed to be indistinguishable

by the CPA-security of the encryption scheme used. The tokens are also simulated in a

similar manner, except that S should keep a local copy to keep the tokens consistent; the

problem that is pointed out and solved first in [38], and later in [32, 86]. She performs all

simulation computations on her own local copy. Now, we detail the construction of such a

PPT simulator S who adaptively simulates the encrypted files (ciphertexts), the indices,

and tokens. We refer to the encrypted keyword and file identifiers (i.e., FK1(id(wi)) and

FK1(id(fj))) stored at the first-level ADSs and are visible to the adversary, as eid(.).

But, id(fj) refers to name under which the file is stored.

File index We discuss only the forward and inverted indices below. The first-level ADS

of the file index is the same as that of the inverted index; hence simulated similarly.

The second-level ADSs of the file index are DPDP constructions that can be built

like an honest client over the simulated encrypted files.

Initialization The simulator, after generating K5 via KeyGen, builds some special in-

ternal data structures required for performing simulation. FS is a vector of size n

used for storing the random hash function keys assigned to each file identifier (to

be used at the related second-level ADS of the inverted index). A similar vector of

size m, WS, stores the random hash function keys assigned to the keywords. For

each keyword wi, a matrix WSwi
of size fwi

× 3 is assigned to store the random keys

and values and randomnesses that are generated to build the FIwi
. Similarly, for

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 170

each file fj, a matrix FSfj of size wfj× 3 is assigned to store the random keys and

values and randomnesses required for constructing the IIfj . Moreover, two matrices

WO and FO, that are empty at the outset, are used to answer the random oracle

queries for H1 and H2, respectively.

For each encrypted keyword and file identifier eid(.) given by LInit, S generates

random k-bit hash function keys ki and k′j and registers them in WS and FS, respec-

tively (i.e., WS[eid(wi)] = ki and FS[eid(fj)] = k′j). Moreover, for each keyword

wi, |fwi
|-many l-bit random values keyfj and valfj (replacing (id(fj)⊕H1

Kwi
(rj)))

and k-bit random values rfj are generated and stored in WSwi
; i.e., {WSwi

[t][1] =

keyfj ; WSwi
[t][2] = valfj ;WSwi

[t][3] = rfj}
|fwi
|

t=1 . Similarly, for each file identifier

fj, |wfj |-many l-bit random values keywi
, 2l-bit random values valwi

(replacing

[FK1(id(wi))||keyfj] ⊕ H2
Kfj

(ri)) and k-bit random values rwi
are generated and

stored in FSfj ; i.e., {FSfj [t][1] = keywi
;FSfj [t][2] = valwi

;FSfj [t][3] = rwi
}
|wfj
|

t=1 .

These values are indistinguishable for any PPT distinguisher, since the outputs of

H1 and H2 are random. To simulate each encrypted file fj ∈ f, she encrypts an

all-zero string of length |fj| as cj ← EncSKEK5(0
|fj |)).

Now, she performs BuildIndex using these random values instead of the actual

ones. Finally, she programs the random oracles to make these values consistent

with future queries: {WO[WS[eid(wi)]][WSwi
[t][3]] = WSwi

[t][2] ⊕ id(fjt)}
|fwi
|

t=1

and FO[FS[eid(fj)]][FSfj [t][3]] = FSfj [t][2] ⊕ 〈eid(wit)||WSwit
[lt][1]〉}

|wfj
|

t=1 . Con-

sistency means that the simulator always generates search tokens in a way that the

adversary observes the same set of file identifiers for the same keyword. Any add,

modify, and delete operation occurs in between, is reflected correctly on the results.

Simulating a single-keyword search token Using the information in the leakage func-

tion LSrch(f, id(wi))=(eid(wi), {eid(fj)}wi∈fj), the simulator finds the random value

and key assigned to eid(wi), and outputs the token as Ts = (eid(wi),WS[eid(wi)]),

and programs WO to reflect the file identifiers in the leakage as {WO[WS[eid(wi)]]

[WSwi
[lfj][3]] = WSwi

[lfj][2] ⊕ eid(fj)}eid(fj)∈LSrch
, where lfj is the location of

eid(fj) in WSwi
.

Simulating a Boolean search token The simulator takes the same steps as for one-

keyword case for each keyword in LBlSrch.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 171

Simulating the add token The simulator updates her local data structures according

to the information in LAddDel(f, fj) = (eid(fj), |fj|, {eid(wi)}wi∈fj), in the same

way as in initialization: She generates a k-bit random hash function key for this

file, registers it in FS, builds a second-level ADS containing all keyword identi-

fiers, and ties its root to the inverted index with the key eid(fj). She also adds

eid(fj) into the second-level ADS of all keywords in LAddDel. Finally, she outputs

Ta = (eid(fj), {FSfj [t][1], FSfj [t][2]||FSfj [t][3], eid(wit),WSwit
[lt][1], WSwit

[lt][2]||

WSwit
[lt][3]}eid(wit)∈LAddDel

), where t is the location of eid(wit) in FSfj and lt is the

location of eid(fj) in WSwit
.

Simulating the delete token S uses the information in LAddDel(f, fj) = (eid(fj), |fj|,

{eid(wi)}wi∈fj) to check through FS if a hash function key is already assigned to

eid(fj). If not, she first generates a new k-bit random key k′j and sets FS[eid(fj)] =

k′j. Then, she programs FO in a way that assigns the file identifiers given by

LAddDel to the random values in FSfj . Then, S deletes eid(fj) from the second-

level ADS of all given keywords (in the respective WSwi
s), removes FSfj , and

deletes the cell indexed by eid(fj) from FS. Finally, she outputs the delete token as

Td = (eid(fj), FS[eid(fj)], id(fj)).

Simulating the modify token The simulator checks if a hash function key is already

assigned to eid(fj). If not, she first generates a new k-bit random key k′j and sets

FS[eid(fj)]=k
′
j. Then, she sends the FSfj [t][1] values corresponding to the key-

words being deleted to the server, and receives the corresponding randomnesses.

The leakage LMod(f, fj)=(eid(fj), |fnewj |, {eid(wit)}t1t=1, {eid(wi′t), ri′t}
t2
t=1) gives in-

formation about the keywords being added or deleted. She updates the file ac-

cordingly and treats the newly-added keywords as in add token generation. For

the keywords to be deleted, she programs the corresponding parts of the WO and

FO accordingly, and sends FO[FS[eid(wi′t)]][ri′t] for all these keywords in the to-

ken. These steps bring the FS, WS, FO, WO, FSfj , and WSwi
s to a consistent

and up-to-date state. Finally, she outputs Tm = (eid(fj), {FSfj [lt][1], FSfj [lt][2]||

FSfj [lt][3], eid(wit),WSwit
[l′t][1],WSwit

[l′t][2]||WSwit
[l′t][3]}t1t=1, {FSfj [i′t][1], FO[FS[

eid(wi′t)]][ri′t]}
t2
t=1, where lt, l

′
t, and i′t are indices of the file identifier and its key-

words to be added or deleted.

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 172

Answering random oracle queries In our simulation, add and modify operations al-

ways program the random oracle matrices and make them ready for use. Therefore,

search and delete operations always find the required random oracle values inside

matrices. H1 random oracle queries with key K and randomness r is always re-

sponded with WO[K][r], and that of H2 is responded with FO[K][r].

All operations of the simulator are polynomial, making the total running time of the

simulator polynomial (since there will be at most polynomially-many adversary queries).

Moreover, based on our assumptions, all operations are performed by the simulator in a

way that the adversary cannot distinguish them from what the real client outputs.

7.8 Security Proof in the Standard Model

Proof 7.8.1 Overview: The idea and indistinguishability assumptions behind the proof

is similar to the random oracle model version. Now, we construct such a PPT simulator

S who adaptively simulates the encrypted files (ciphertexts), the indices, and tokens.

Initialization S uses the keys generated via KeyGen for building some special internal

data structures required during simulation. For each eid(wi) given by LInit, S sets

cntwi
= |fwi

|, i.e., the number of files containing wi. For each file identifier eid(fj)

given by LInit, S sets cntfj = |wfj |, i.e., the number of keywords fj contains. Then,

for each wi, she generates cntwi
-many l-bit random valfj values, keeps them in a

vector WSwi
of size cntwi

, and uses them together with their l′-bit location numbers

to build a second-level ADS. The roots of these ADSs are used as values together

with the respective keys eid(wi) to build the first-level ADS of the forward index.

Moreover, for each fj, she generates cntfj -many (2l + l′)-bit random valwi
values,

stores them in a vector FSfj of size cntfj , and uses them together with their l′-bit

location numbers to build a second-level ADS. She uses the roots of these ADSs as

values together with the corresponding keys eid(fj) to build the first-level ADS of

the inverted index. She also puts each encrypted file in a DPDP structure and uses

their roots as values and eid(fj)’s as keys to build first-level ADS of the file index.

Simulating a single-keyword search token Using the information in the leakage func-

tion LSrch(f, wi) = (eid(wi), {eid(fj)}wi∈fj), the simulator creates another vector

WAwi
of size cntwi

and stores fwi
in WAwi

in the order specified by LSrch. Then,

she outputs the token as Ts = (eid(wi), {WSwi
[t]⊕WAwi

[t]}cntwi
t=1).

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 173

Simulating a Boolean-search token The simulator takes the same steps as above for

each keyword in LBlSrch.

Simulating the add token Using LAddDel(f, fj) = (eid(fj), |fj|, {eid(wi)}wi∈fj), the

simulator first updates her local data structures. She sets cntfj = |wfj |, stores

wfj in FAfj and generates cntfj -many (2l + l′)-bit random values, and puts them

in FSfj . For each eid(wi) ∈ wfj , she increments the related cntwi
by one, appends

eid(fj) to the related WAwi
, and generates an l-bit random value valifj to be ap-

pended into WSwi
. Finally, she outputs Ta = (eid(fj), {t, FSfj [t], eid(wit), cntwit

,

WSwit
[cntwit

]}
cntfj
t=1), where wit is the tth keyword in wfj .

Simulating the delete token Using LAddDel(f, fj) = (eid(fj), |fj|, {eid(wi)}wi∈fj), S

first stores wfj in FAfj and sets cntfj = |wfj |. Then, for each eid(wi) ∈ wfj ,

she puts NULL in the cells corresponding to eid(fj) in the related WAwi
. She

finally outputs Td=(eid(fj), {FSfj [t] ⊕ 〈FAfj [t]||lt〉}
cntfj
t=1), where lt is the location

of FAfj [t] in the related second-level ADS of the forward index, deletes FSfj and

FAfj , and sets cntfj=0. The XOR is performed on the last (l + l′) bits of FSfj [t].

Simulating the modify token S sends the first l-bits of the FSfj [t] values corre-

sponding to the keywords being deleted to the server, who responds with their

location in the related second-level ADS. LMod(f, fj)=(eid(fj), |fnewj |, addSet={lt,

eid(wit)}t1t=1, delSet = {l′t, eid(wi′t)}
t2
t=1) gives information about the list and loca-

tion of keywords being added or removed. S first updates the file and generates

the DPDP update information. Then, if the respective FAfj does not exist, she

builds an empty FAfj of size cntfj , and stores inside it the added and deleted key-

word’s identifiers. She outputs Tm = (eid(fj), {lt, FSfj [lt], eid(wit), cntwit
, FSwit

[

cntwit
]}lt∈addSet), {l′t, FSfj [l′t] ⊕ 〈FAfj [l′t]||it〉}lt∈delSet), where its point to the loca-

tions of deleted keywords in the related WSwi
. Finally, she updates the correspond-

ing cntwi
s, cntfjs, FSfjs, WSwis, FS, and WS accordingly.

All operations of the simulator are polynomial, making the total running time of the

simulator polynomial (since there will be at most polynomially-many adversary queries).

Moreover, based on our assumptions, all operations are performed by the simulator in a

way that the adversary cannot distinguish them from what the real client outputs.

7.9 Detailed Construction of Our VDSSE

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 174

Listing 1. Our construction

Let SKE=(KeyGen,Enc,Dec) be a private-key encryption scheme, FI, II, and FX be HADS schemes with algorithms
(KeyGen,Certify,Verify), F : {0, 1}k × {0, 1}l′ → {0, 1}l be a PRF family, and H1 : {0, 1}k × {0, 1}k → {0, 1}l
and H2 : {0, 1}k × {0, 1}k → {0, 1}2l be hash function families modeled as random oracles, where l is the length of
identifiers and keywords, and k is the security parameter.

KeyGen(1k) Generate three random keys as Ki ← GenPRF(1k) for 1 ≤ i ≤ 3, KSKE ← SKE.KeyGen(1k), (pkFI , skFI) ←
FI.KeyGen(1k), (pkII , skII) ← II.KeyGen(1k), and (pkFX , skFX) ← FX.KeyGen(1k). Output pk = (pkFI , pkII , pkFX),
sk = (K1,K2,K3,KSKE , skFI , skII , skFX), and send pk to the server.

BuildIndex(sk, f) // w is the dictionary.

Building the forward index:
• For each wi ∈ w :

– Set Kwi = FK3
(id(wi)) and K′wi

= FK2
(id(wi)).

– Find the set of file identifiers fwi ⊆ f containing wi.
– For each id(fj) ∈ fwi :

∗ keyfj = FK′
wi

(id(fj)).

∗ valfj = ((id(fj)⊕H1
Kwi

(rj)), rj).

– Build an authenticated skip list, FIwi , with (keyfj , valfj) as (key, value) and find its root Rwi .
• Construct the first-level authenticated skip list, FI, over |w|-many leaves, using FK1

(id(wi)) as key and Rwi as value

at each leaf. Call its root RFI .

Building the inverted index and the file index:
• For each fj ∈ f:

– cj = SKE.EncKSKE
(fj).

– Kfj = FK3 (id(fj)) and K′fj = FK2 (id(fj)).

– Find the set of distinct keyword identifiers wfj ⊆ w that appear in fj .

– For each id(wi) ∈ wfj :
∗ keywi = FK′

fj

(id(wi)).

∗ valwi = ([FK1
(id(wi))||keyfj]⊕H2

Kfj
(ri), ri).

– Build an authenticated skip list, IIfj , with (keywi , valwi) as (key, value) and find its root Rfj .

– Build a second-level ADS according to DPDP (or FlexDPDP) for cj and find its root RDPfj .

• Construct the first-level authenticated skip list, II, over |f|-many leaves, using FK1 (id(fj)) as key and Rfj as value
at each leaf. Call its root RII .

• Construct the first-level authenticated skip list, FX, over |f|-many leaves, using FK1
(id(fj)) as key and RDPfj as

value at each leaf. Call its root RFX .
• Set c = (c1, c2, ..., cn).

• Set I = (FI, {FIwi}wi∈w, II, {IIfj }fj∈f, FX, {RDPfj }fj∈f).
• Set M = (RFI , RII , RFX). // The local metadata

• Output (I, c,M). // I and c are sent to the server who stores them.

Dec(sk, cj) Output fj = SKE.DecKSKE
(cj).

SearchToken(sk,M,wi) Output Ts = (FK1 (id(wi)),Kwi).
Search(I, c, Ts) .
• Interpret Ts as (K1,K2).

• (Node, π1) = FI.Certify(pkFI , ‘Challenge K1’). // Find a node through the key K1.

• If Node = NULL then return ({}, π1). // The non-membership proof.

• Find the second-level ADS whose root is Node.val.

• For each leaf of this second-level ADS who stores (dj , rj):
– Decrypt each leaf value as id(fj) = dj ⊕H1

K2 (rj).
– Put the ciphertext with id(fj), i.e., cj , in cw.

• π2 = FX.Certify(pkFX , ‘Challenge cw’). // Integrity proof generation by the file index.

• Return (cw, π1||π2).

BooleanSearchToken(sk,M, φ(w1, ..., wt)) .
• Set Tb = φ(w1, ..., wt).

• Replace each wi ∈ Tb with (FK1
(id(wi)),Kwi).

• Output Tb.
BooleanSearch(I, c, Tb, ch) .
• Compute file identifiers satisfying Tb and corresponding proof, π1, as in Section 7.3.5.

• Put in cw ciphertexts of the file identifiers found.
• π2 = FX.Certify(pkFX , ‘Challenge cw’). // Integrity proof generation by the file index.

• Output (cw, π1||π2).

Chapter 7: Verifiable Dynamic Searchable Symmetric Encryption 175

Listing 1. Our construction (Cont’d.)

AddToken(sk,M, fj) // fj has unique keywords (w1, ..., wt).

• cj = EncSPEKSKE
(fj).

• Ta = (FK1
(id(fj)), {keywi , valwi , FK1 (id(wi)), key

i
fj
, valifj

}ti=1).

• Prepare the corresponding file update information, infoAddcj , according to the HADS.

• Output (Ta, infoAddcj , cj).
Add(I, c, Ta, infoAddcj , cj) .

• c′ = c ∧ cj .

• Interpret Ta as (KI
fj
, {KI

wi
, V I

wi
,KF

wi
,KiFfj

, V iFfj
}ti=1).

• FX.Certify(pkFX , infoAddcj). // Put cj in a second-level ADS whose root will be RDPfj .

• π1 = FX.Certify(pkFX , ‘Add (KI
fj
, RDPfj)’). // Tie it to fj in the first level of FX.

• II.Certify(pkII , ‘Build {(KI
wi
, V I

wi
)}’). //Create an ADS with all keywords whose root is Rfj .

• π2 = II.Certify(pkII , ‘Add (KI
fj
, Rfj)’). // Tie it to fj in the first level of II.

• For each tuple in {KF
wi
,KiFfj

, V iFfj
}ti=1:

– Node = FI.Certify(pkFI , ‘Challenge KF
wi

’). // Locate wi in the first level of the FI.

– If Node = NULL // The keyword does not exist in the forward index.

∗ FI.Certify(pkFI , ‘Build (KiFfj
, V iFfj

)’). // Create an ADS whose root is Rwi.

∗ π3 = π3||FI.Certify(pkFI , ‘Add (KF
wi
, Rwi)’). // Tie it to wi in the first level of FI.

– Else

∗ FI.Certify(pkFI , ‘Add (KiFfj
, V iFfj

)’).// Add the file id to the second-level ADS found.

∗ π3 = π3||FI.Certify(pkFI , ‘Modify (KF
wi
, R′wi

)’). // Apply the update in the first level.

• Output (the modified index I′, c′, π1||π2||π3).
DeleteToken(sk,M, id(fj)) :

• Output Td = (FK1
(id(f)),Kfj , id(fj)).

Delete(I, c, Td) :
• Interpret Td as (K1,K2, id(fj)).

• c′ = c \ cj .

• (Node, π1) = II.Certify(pkII , ‘Challenge (K1)’). // Find the leaf node with key K1 on II.

• If Node = NULL then return π1. // The non-membership proof.

• Find the second-level ADS whose root is Node.val.

• For each leaf of this second-level ADS who stores (dj , rj).
– Decrypt each leaf value as (id(wi),Kwi) = dj ⊕H2

K2 (rj).

– FI.Certify(pkFI , ‘Delete (id(wi),Kwi)’). // Delete a second-level node with key Kwi on FI.

– π2 = π2||FI.Certify(pkFI , ‘Modify (id(wi), R
′
wi

)’). // Deletion affects the first level of FI.

• π3 = II.Certify(pkII , ‘Delete (K1)’). // Delete K1 (with the second-level ADS) from II.

• π4 = FX.Certify(pkFX , ‘Delete (K1)’). // Delete K1 (with the second-level ADS) from FX.

• Output (the modified index I′, c′, π2||π3||π4).
ModifyToken(sk,M, id(fj),m) :

• Tm = (FK1
(id(fj)), {keywi , valwi , FK1

(id(wi)), key
i
fj
, valifj

}t1i=1, {keywi , H
2
Kfj

(ri)}t2j=1), where t1 and t2 are the

number of keywords being added and deleted.
• Prepare the corresponding update information, infoModfj , according to the HADS.

• Output (Tm, infoModfj).
Modify(I, c, Tm, infoModfj) :
• Update fj and achieve c′.
• Interpret Tm as (KI

f , {K
I
wi
, V I

wi
,KiFw ,K

′F
f , V iFf }

t1
i=1, {K′Iwi

, h′Iwi
}t2j=1).

• FX.Certify(pkFX , infoModcj). // Update the second-level ADS whose root is RDPfj .

• π1 = FX.Certify(pkFX , ‘Modify (KI
f , RDP

′
fj

)’). // Update the first-level ADS of FX.

• π2 = perform the add part as in the Add algorithm.

• π3 = perform the delete part as in the Delete algorithm.

• Output (the modified index I′, c′, π1||π2||π3).
Verify(sk, pk,M, cw, π) :

• Interpret π as πFI ||πII ||πFX .

• verFI = FI.Verify(skFI , pkFI , cw, πFI , RFI).
• verII = II.Verify(skII , pkII , cw, πII , RII).

• verFX = FX.Verify(skFX , pkFX , cw, πFX , RFX).

• If at least one of them shows rejection, output ‘reject’.
• If the operation was Search or BooleanSearch: check the list of received files against the identifiers in the proof, and

output ‘reject’ for any mismatch.
• Update local state M accordingly.
• Output ‘accept’.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 176

Chapter 8

GENERIC EFFICIENT DYNAMIC PROOFS OF

RETRIEVABILITY

8.1 Introduction

Protecting data and making it available for authorized users are among the most impor-

tant concerns of any organization using IT services. Therefore, there is a universal trend

toward storage outsourcing through the cloud (e.g., Google Drive, Amazon S3, Microsoft

OneDrive), bringing advantages such as cost saving, global access to data, and reduced

management overhead. Yet, the most important disadvantage is that the data owner

(client), by outsourcing her data to a cloud storage provider (server), loses the direct

control over her data.

Therefore, the client expects having an authenticated storage and guaranteed retriev-

ability [28, 131]. The former means that the client wants each data access to return the

correct value; i.e., a value that is the most recent version of data that has been written

by the client herself. The latter means that the client wants to make sure that her

data is retrievable; i.e., she can retrieve all her data correctly. These authenticity and

retrievability checks should be much more efficient than downloading the whole data.

A simple mechanism to provide an authenticated storage is to compute a digest (e.g.,

hash or MAC) of data and keep it locally after transferring the data to the server (or

in case of a MAC or signature, the key is kept locally, while the tags are stored at

the server). But, the client needs to download the whole data and check it against the

locally-stored digest to investigate the authenticity of her data, which is prohibitive given

current trends of outsourcing tens of gigabytes of data.

Static techniques. Juels and Kaliski [81] proposed the first scheme to provide such a

storage, which was called proofs of retrievability (PoR). The client, before outsourcing her

data, encodes it with an erasure-correcting code (ECC), which brings some redundancy

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 177

while giving the guarantee that the server should manipulate a significant portion of

the outsourced (encoded) data in order to impose a data loss or corruption. However,

using PoR systems, such a misbehavior resulting in a large data loss or corruption will

be caught with a very high probability.

At the same time, Ateniese et al. [3] proposed the provable data possession (PDP)

framework. The main difference was that PDP was not using erasure-correcting codes,

and hence was more efficient. Yet, PDP did not provide the same retrievability guarantee

that PoR provided.

Shacham and Waters [126] improved the PoR construction and created compact PoR.

They also later showed that, the compact PoR may be created from a PDP combined

with erasure-correcting codes [127]. Yet, this only reflected the relationship between the

static versions of PDP and PoR.

Dynamic techniques. Most of the existing PoR schemes support only static data

[81, 127, 20, 49], i.e., they do not support efficient updates on the outsourced data. In

fact, secure and efficient update is the main problem with PoR schemes. Imagine that,

after outsourcing her data, the client wants to update a single block. To be efficient,

it should affect as small part of the data as possible. But, the server can erase or

modify all affected blocks, with a small probability of being caught. To prevent such a

misbehavior, a small change should affect a significant fraction of the outsourced data

that is not efficient. Efficiency and security are seemingly two conflicting properties

related to update in PoR schemes.

Two flawed DPoR scheme proposals were given by Cash et al. [28], based upon

observations by Küpçü [88]. The first proposal, which targets efficiency, divides the data

into a number of equal-size blocks and applies the PoR pre-computations on each block

separately (i.e., each block is small static PoR). To update a block, the client needs

to access only that block. Again, the server, who observes the client update behavior,

can remove the whole block while preserving a good chance of passing later audits.

The second proposal shows that even permuting the blocks randomly will not solve the

problem, as later updates will reveal the original locations of the updated parts.

Cash et al. [28] provided the first efficient and secure dynamic PoR scheme using the

Oblivious RAM (ORAM) [70]. Later improvements [131, 30], at a high level, separate

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 178

the updated data from the original data, and store the update logs in a hierarchical data

structure similar to ORAM.

On the other hand, the first dynamic PDP protocol was created by Erway et al. [54]

in 2009; four years before the first dynamic PoR. The reason is that, since PDP-type

schemes do not employ erasure-correcting codes, the abovementioned problems did not

exist. Interestingly enough, we show for the first time, how dynamic PDP and dynamic

PoR schemes are related, using a general framework.

(D)PDP and (D)PoR differences. The security guarantee a PDP gives is weaker

than a PoR in the sense that it guarantees that the client can retrieve most of the out-

sourced data, compared to the PoR that guarantees retrieving the whole data. Though

erasure-correcting codes help providing full retrievability, they bring a problem as well:

to perform a small update the whole outsourced data is required (discussed more in

Section 8.2.1). This is the main source of problems toward making PoR dynamic.

Our contributions. We analyze the existing work on PoR and DPoR in detail,

and identify their weaknesses and strengths. Then, we propose a generic dynamic PoR

scheme construction framework encompassing previous DPoR schemes as special cases,

with various optimizations.

• Since the proposal of PDP [3] and PoR [81] in 2007, there was a trend to find the

possible relations among these schemes. Based on our in-depth analysis of these

schemes and deep understanding of their goals, we express that a DPoR scheme

can be built given black-box access to a DPDP [54] and a static PoR

scheme [127] (which, in turn, can be obtained from a static PDP and an

ECC scheme). This contribution is of utmost importance, as, in some sense, it

means that in 2009 when the first DPDP scheme appeared, we indeed immediately

could have had dynamic PoR schemes as well.

• We propose a generic efficient dynamic PoR scheme. The existing dynamic

PoR schemes [30, 131] are special cases of our general model.

• One important difficulty in existing DPoR schemes is the excessive volume of com-

munication. We show how to aggregate proofs of all blocks challenged in an audit

into one, and reduce the audit bandwidth from O(λ log(n)) [30, 131] to O(λ), where

n is the number of outsourced blocks and λ is the security parameter, obtaining

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 179

an optimally-efficient audit bandwidth. Interestingly, one realizes that this is

below the memory-checking bound of O(log(n)/ log log(n)) [53], since it is commu-

nication and not computation.

• Adding local storage to the client does not affect the asymptotic costs of the existing

schemes [28, 131, 30] as pointed to by Williams and Sion [148]. In contrast, we

show how adding local storage to the client does improve the update

cost in our scheme.

• We propose the erasure-coded and authenticated log (ECAL) as an efficient data

structure to store the update logs, in different configurations. While previous

works’ reshuffling operations require O(n) temporary storage at the client for each

update [28, 131, 30], our equibuffers configuration reduces it considerably into or-

ders available in almost all existing hand-held electronic devices, letting us employ

even mobile phones for updating data on the cloud storage. (A rebuild still requires

large client memory, e.g., a computer, but needs to be done only once every O(n)

updates.) We consider a client storage of size O(λ
√
n) which is about 3 MB for

10 GB outsourced data. This is a reasonable assumption since most of hand-held

electronic devices today have more than 3 MB local memory. Thus, without the

need for large reshuffling memory, our protocol may even be used by smart phones

for updating data (e.g., you can update a file on your secure Dropbox on the go).

8.1.1 Related Work

PoR was first proposed by Juels and Kaliski [81] for static data. The data is erasure-

coded and encrypted. Then, a set of sentinel blocks are appended, the result is permuted

randomly, and outsourced to the server. The sentinel blocks are used to check authen-

ticity with high probability, and in case of any unauthorized manipulation, the erasure-

correcting code will help recover the original data. Juels and Kaliski’s PoR supports

only a limited number of challenges.

Shacham and Waters [126] gave the first PoR schemes with full security proofs against

arbitrary adversaries. They proposed two schemes, one using pseudorandom functions

that is secure in the standard model, the other using BLS signatures [17] that is secure in

the random oracle model. The former supports only private verifiability while the latter

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 180

allows public verifiability. The main advantage over [81] is that it supports unlimited

number of challenges.

Bowers et al. [20] proposed a theoretical framework for static PoR design, enhancing

the above PoR constructions [81, 126] and supporting a limited number of challenges.

Dodis et al. generalized the static PoR schemes [49].

PDP, first proposed by Ateniese et al. [3], is a very close line of work that provides

probabilistic guarantees of possession of the outsourced file using a challenge-response

mechanism. Similar schemes were proposed targeting public verifiability [151, 142] and

availability [19, 37, 7]. Curtmola et al. [39] integrated PDP with ECC to enhance the

possession guarantee, and proposed robust data possession.

Dynamic PDP. The above schemes can only be used for archival purposes, i.e.,

they do not support dynamic data. Ateniese et al. [4] gave a dynamic PDP scheme

where they pre-compute and store at the server a limited number of random challenges

with the corresponding answers. Therefore, the number of challenges is limited and later

updates affect all remaining answers. Erway et al. [54] proposed the first fully dynamic

PDP scheme using rank-based authenticated skip lists providing O(log(n)) complexity

for updates and audits, where n is the number of blocks. Later variants use other

data structures [145, 141], supply additional properties [10], distribute and replicate, or

enhance efficiency [56].

Dynamic PoR. Zhen et al. [101] and Zheng and Xu [154] claimed to give dynamic

PoR schemes, but actually dynamic PDP schemes were given. Similarly, the emphasis

of Wang et al. [145] is on data integrity while they claim retrievability. The main reason

is that, in our opinion, the distinction between PDP and PoR schemes was not well-

understood at that point. We also contribute in this regard.

Stefanov et al. [135] proposed a dynamic PoR scheme inside a cloud file system called

Iris. However, Iris is not a fully-dynamic PoR scheme as it stores the erasure-coding data

locally (on a trusted party called the portal).

The first really dynamic PoR scheme with full security definition and proof was pro-

posed by Cash et al. [28]. The scheme has constant client storage and polylogarithmic

communication and computation. As a building block, they use an ORAM satisfying

a special property called next-read-pattern-hiding. Although it achieves asymptotic ef-

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 181

ficiency, ORAM is a complicated and heavy cryptographic primitive that is (currently)

not practically efficient.

Chandran et al. [30] proposed a locally updatable and locally decodable code, and

used it to construct a dynamic PoR scheme. They erasure-code the data, and store it

remotely inside a hierarchical authenticated data structure similar to ORAM. Later up-

dates are also erasure-coded and stored in the same data structure. Reading through that

structure requires O(n) cost, hence, they store the plain data and subsequent updates

in another similar structure.

Shi et al. [131] proposed a dynamic PoR scheme similar to [30], using the fast

incrementally-constructable codes to achieve efficiency. Later, they improved their scheme

by outsourcing some part of computation to the server, reducing the communication and

client computation. Using the introduced homomorphic checksum, the client only per-

forms the computation on these checksums, leaving computation on data to the server.

Relationship among these schemes. Shacham and Waters [127] showed that

a PoR scheme can be obtained by employing a PDP system together with erasure-

correcting codes. We will employ their result.

The first dynamic PDP schemes [54, 145], providing authenticity, appeared in 2009,

while the first dynamic PoR schemes [28, 30, 131], with retrievability guarantee, were

proposed in 2013. There were efforts [101, 154] to apply approaches similar to DPDP on

PoR to construct dynamic PoR schemes, but the results were actually DPDP schemes.

By analyzing the differences and similarities between DPDP and DPoR in-depth, for

the first time, we show how to tie these schemes together. In fact, a DPoR scheme

can be built using (black-box access to) DPDP and PoR (which, in turn, can be built

using PDP and erasure-correcting codes [127]) schemes. This interestingly reveals that

we could have had DPoR schemes in 2009 when the first DPDP schemes appeared.

Moreover, existing DPoR schemes [30, 131] are special cases of our general model.

8.1.2 Preliminaries

Erasure-correcting codes deal with correcting errors that occur during data transmis-

sion over a noisy channel, or data storage in a device. An (n, k, d)Σ erasure-correcting

code over a finite alphabet Σ is a pair of efficient encoding and decoding algorithms

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 182

(encode, decode) such that encode : Σk → Σn transforms a message m = (m1,m2,

...,mk) ∈ Σk into a codeword c = (c1, c2, ..., cn) ∈ Σn, and decode : Σn−d+1 → Σk

recovers the original message from a codeword in the presence of at most d−1 erasures.

Compact PoR. Shacham and Waters [127] showed how to obtain (compact) PoR

from an efficient PDP scheme together with an erasure-correcting code. At a high

level, the data is erasure-coded, permuted (pseudo-)randomly, and the (PDP) tags are

computed for the resulting blocks. When we talk about PoR schemes, we mean this

Shacham and Waters construction. In general, we employ Ateniese et al. [3] PDP scheme

as the building block, but at times we modify it to obtain an even more efficient PoR

construction. The compact PoR is only required for our optimization, but in general,

any other PoR scheme can be used. The (compact) PoR scheme is defined as [81, 127]:

• (pk, sk) ← Kg(1λ): is a randomized algorithm that generates a public-private key

pair (pk, sk) given the security parameter λ.

• (M ′, τ)← St(sk,M): is a randomized algorithm that takes the secret key sk and

a file M as input and outputs a processed file M ′ and a tag τ .

• π ← P(pk,M ′, τ): run by the server that takes the public key pk, the outsourced

file M ′, and the tag τ as input and generates a proof π.

• accept/reject ← V(sk, pk, π): is an algorithm run by the client to verify the

proof coming from the server. Given the secret and public keys and the proof π,

it outputs an acceptance or a rejection signal.

8.2 Informal Technical Overview

8.2.1 Observations

By investigating the previous work, the problems they pointed to, and the given solutions,

we made these observations showing the conditions an efficient and secure dynamic PoR

scheme should satisfy. We regard these as a main contribution:

• Observation 1. To ensure retrievability of the outsourced data, erasure-correcting

codes can be used. Using an (n, k, d)Σ erasure-correcting code, if the adversary

manipulates a small part of the data (i.e., up to d − 1 out of n blocks), the data

retrievability is still guaranteed [81, 127, 39, 135, 30].

• Observation 2. If the adversary manipulates a significant part of the data (i.e.,

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 183

more than d-1 blocks), it cannot be recovered using the erasure-correcting code.

An integrity checking mechanism is needed to catch such an adversary, with high

probability [54, 39, 135]. Note that the integrity checking mechanism needs to

detect only such significant modifications/deletions.

• Observation 3. Simple updates on erasure-coded data is not enough. Two pos-

sibilities are [88, 28]:

– If a single update affects a small part of the encoded data (the code is lo-

cally updatable), then the server learns and later can erase the whole update

without a high probability of getting caught. Thus, this option is not secure.

– If a single update affects a huge part of the encoded data (the whole encoded

data), requiring ∼ O(n) cost, the server learns almost nothing about the

update locations and cannot attack them. But such updates are not efficient.

• Observation 4. Therefore, it is better to store the update information separately,

rather than applying the updates on the encoded data. There should be two parts

of server storage: one part stores the encoded original data, and the other part

stores the update information (referred to as the log store). The log store, which

is empty at the outset, can grow to be as much as linear in the data size. When

the log store becomes full, the updates in it will be applied on the original data.

This generates the latest version of data and an empty log store [30, 131].

• Observation 5. Since the log store can be as large as (linear in the size of)

the original data, the efficiency problem is again met. The remedy is to use a

hierarchical data structure [28, 30, 131]. Each level is erasure-coded, updated, and

audited independently, and merged into the next level once filled up.

• Observation 6. Although the insecurity and inefficiency problem of the update

logs can be solved using the observations above, we are now faced with a new

problem: to read the latest version of some data, we need to decode the encoded

data and apply all the logs, which requires O(n) time. To solve, one should store

an uncoded version of data, protected by a dynamic memory checking scheme, at

the server [30, 131]. This frees the read operation from difficulties of struggling

with the erasure-correcting codes. For read operations, the membership proofs of

the memory checking scheme serves as the authenticity proof (i.e., if the proof is

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 184

accepted, we can be assured with high probability that the challenged data is kept

intact on the server [54]).

• Observation 7. It is enough that the memory checking scheme is only responsi-

ble for authenticity of the data read, and hence the read operations need not be

oblivious. This reveals the access pattern of the client, but access privacy is not

a requirement of the dynamic PoR definition [131]. The log store, on the other

hand, needs oblivious operations, due to the explained failed attempts regarding

the update information enabling the server to create data loss or corruption. Shi

et al. [131] and Chandran et al. [30] also followed a similar path and provided the

privacy only for operations on the encoded log structure. Cash et al. [28], on the

other hand, used the encoded data to read and update the outsourced data. Hence,

both read and update operations are performed obliviously in their scheme. We

also observe that the log store can be append-only.

• Observation 8. An ORAM structure performs both read and update operations

in a similar manner that an adversary can not distinguish them. Therefore, a

read operation cuts (or just copies) the requested data item and inserts it back in

the ORAM from the top level [28], requiring reshuffling operation. Therefore, if

the read operations will not be run through the ORAM, then there is no need to

perform the extra heavy reshufflings. This is an important observation that we will

utilize to construct an efficient structure for storing the logs.

8.2.2 Overview of Our Solution

Figure 8.1: Our model.

Now that we have observed some important aspects of

the design, we can present an overview of our general

framework. In our framework, any update operation

leaves a footprint, which is called a log. If these logs

are kept securely and erasure-coded, even in case of

any data loss, the data can be recovered using the logs. This is conceptually similar

to what a database management system or a journal-based file system performs in the

background. However, a main difference is that we do not trust the server to keep the

logs correctly, so we should audit the server.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 185

Inspired by the existing work [28, 131, 30], our scheme has two parts: one is a data

structure for keeping update logs securely and providing the retrievability guarantee,

the other is a dynamic memory-checking scheme that responds to read queries providing

authenticity, as shown in Figure 8.1. The update operations affect both parts.

Initially, the client has some original data, which is stored twice at the server: once in

the memory checking scheme (e.g., DPDP [54]), and once in the log store in an erasure-

coded and garbled manner. Later, to update (insert, delete, or modify) a data block,

the client prepares the corresponding command and directs it to the memory-checking

part for execution. In parallel, she prepares the respective update log, to be appended

to the existing logs in the log store.

During normal execution, read operations are responded by the memory-checking

scheme equipped with authenticity proofs. However, in case of any data loss in the

memory-checking part such that the read operation returns incorrect responses (or noth-

ing), the log store is used to recover the requested data. If it cannot be recovered even

using the logs, the server is misbehaving, and this will be caught with high probability.

Since the log store supports retrievability, it is enough that audits are performed over that

part. Answers to both the read and audit are accompanied with cryptographic proofs,

so the client can verify them.

8.3 Erasure-Coded Authenticated Log

The log store plays an important role in our scheme. We call it the Erasure-Coded

Authenticated Log (ECAL). The ECAL first erasure-codes the logs (to guarantee re-

trievability), and garbles the result (e.g., by encrypting the blocks and permuting them

randomly) to make locating any part of the original data difficult for the server. Finally,

it provides authenticity using a homomorphic tag. Any scheme supplying retrievabil-

ity and authenticity can be used to store the update logs. We show that a static PoR

scheme does the job, when used hierarchically. Hereafter, we use the compact PoR [127]

as our static PoR building block. Any similar scheme can be used instead, but our

optimizations are only applied over the PDP-based schemes such as compact PoR.

The above observations demonstrate us how to build the ECAL. Briefly, we need

an erasure-coded log (insuring retrievability) stored in a static memory checking scheme

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 186

(providing integrity), satisfying efficiency requirements. Any scheme using ECC together

with one of the integrity-preserving methods satisfies the requirements, and, if used for

storing static data, is a PoR scheme [127]. To provide the efficiency, we use a hierarchical

memory, each level employing a distinct instance of the compact PoR [127].

Each update the client performs on her data leaves a log. Regardless of the location

of the updates on the plaintext data, the new logs will be appended to the end of the

existing logs, i.e., the logs are append-only. Outsourcing all these logs at a rather safe

place using ECAL guarantees that if the original data faced integrity problems, the client

can recover it through the logs. Hence, the client needs to investigate integrity of her

logs over time, helping her induce that either the data is fully retrievable, or the server

is misbehaving. All definitions below follow closely those of Cash et al. [28].

Definition 8.3.1 (ECAL) An erasure-coded authenticated log scheme includes these

PPT interactive protocols between a stateful client and a stateful server:

• LInit(1λ, 1w, n,M): The client starts up this protocol to initialize an empty ECAL

memory on the server, providing as input the security parameter λ, the word size

w, and the memory size n. (The memory need not be bounded.) The initial data

M is also outsourced into the initialized memory.

• LAppend(l): The client uses this protocol to ask the server append the log l to the

set of logs already stored.

• {accept, reject} ← LAudit(): The client specifies a challenge vector and uses

this protocol to check whether the server keeps storing the logs correctly (they are

retrievable). She finally emits an acceptance or a rejection signal.

Both the client and the server create their own local states during execution of the

LInit protocol. These local states will be used and updated during execution of the

other protocols following LInit. We assume that LInit creates an empty memory at

the server, but if the client has some initial data, she can send them all using LInit and

ask the server to store them as the initial data, or she can append them one-by-one using

LAppend. LInit and LAppend do not include verification. If the server misbehaves, it

will be caught by the subsequent LAudit executions.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 187

8.3.1 Security Definition

Correctness considers the honest behavior of the (client and the) server in a protocol

execution. A scheme is correct if the following is satisfied with probability 1 over the

randomness of the client: Reading the ith data, results in a value v such that v is the ith

value that has already been written by an LAppend protocol. If less than i data exists,

it returns ⊥. Moreover, the LAudit protocol, once executed, results in an acceptance.

Authenticity. If the server deviates from honest behavior by providing proofs while

he has manipulated the challenged part of data, the client should detect it with over-

whelming probability. The authenticity game AuthGameS̃(λ) between a challenger and a

malicious server S̃ is defined as:

• Initialization. The challenger starts the LInit protocol to initialize the environ-

ment. The challenger also starts a copy of the honest client C and the honest server

S, and runs LInit among them.

• Setup. The server S̃ asks the challenger to start a protocol execution (LAppend or

LAudit) by providing the required information. The challenger starts two parallel

executions of the same protocol between C and S, and between itself (acting as

the client) and S̃, using the information provided by the server. This is repeated

polynomially-many times.

• Challenge. S̃ sends an audit request to the challenger, who initiates two parallel

LAudit protocols, one between C and S, and one between itself and S̃, using the

same randomness.

S̃ wins the game if his answer is accepted while it differs from that of S; in such

a case the game returns 1. It is expected that Pr[AuthGameS̃(λ) = 1] ≤ ν(λ) for any

efficient adversarial server S̃, and some negligible function ν(λ).

Definition 8.3.2 (Authenticity) An ECAL scheme is authentic if no PPT adversary

can win the above game with probability better than negligible in λ.

Retrievability. We want the ECAL to guarantee that if a malicious adversary per-

forms more than d − 1 erasures within some level1, he should not pass the subsequent

1When levels are not of the same size in hierarchical configurations, then each level may have a
different d parameter, depending on the erasure-correcting code used.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 188

audit: i.e., if a malicious adversary passes the audit with a non-negligible probabil-

ity, then he should have sufficient knowledge of all outsourced logs. The knowledge is

formalized via existence of an efficient extractor that, given black-box access to the ma-

licious adversary, can retrieve all logs L. The retrievability game among a challenger, an

extractor, and a malicious server S̃ is as:

• Initialization. The challenger creates a copy of an honest client C, and starts the

LInit between C and S̃.

• Setup. S̃ adaptively asks the challenger to start a protocol LAppend or LAudit

by providing the required information. The challenger forwards the request to

the client who starts up the protocol. The adversary can repeat this process

polynomially-many times. Call the final states of the client and malicious server,

stC and stS̃ , respectively.

• Challenge. The extractor repeats the LAudit protocol polynomially-many times

with S̃ in the final state stS̃ (rewinding). Call the extracted data M′.

Definition 8.3.3 (Retrievability) An ECAL scheme provides retrievability if there

exists a PPT extractor such that for all PPT S̃, if S̃ passes the LAudit protocols with

non-negligible probability, then at the end of the game we have M′=‘genuine data’ with

overwhelming probability.

8.3.2 Generic ECAL Construction

Assume Σm={0, 1}w′ and Σl={0, 1}w are two finite alphabets showing the message space

and log space, respectively. The client initializes a compact PoR scheme [127] CP=

(Kg,St,P,V), puts the original data M=(m1, ...,mk) ∈ Σk
m inside it, and outsources the

result to the server. The result will be stored at Buff∗ (part of the log store) and will not

be changed until the next rebuild, which puts the last version of the client data inside a

new compact PoR instantiation and outsources the result again into the Buff∗. Later,

she performs updates on the original data, and outsources the corresponding logs at the

Buff in a way that the adversary cannot differentiate or locate the recently-added logs

among the already-existing ones. The content of Buff changes as new update logs are

outsourced. The client wants to rest assured the logs are retrievable, which means that

she can rebuild the final (or any intermediate) version of her data.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 189

We present each update log as a single block in Σl, therefore, each data insertion,

deletion, or modification appends a new block to the existing logs. Each update log

contains the location on the plain data, the operation type, and the new value to be

stored. Indeed, a log is of the form iOv, where i is the index on the plain data, O ∈

{I,D,M} is an update operation, and v is the new value to be stored at the stated index

(v is empty for deletion). As an example, let M =‘abcde’ be a message of length 5. The

update log ‘2Mf ’ states that the value at the second location is modified to f . Applying

the series of update logs L = (2Mf, 5Mk, 3It, 5My, 4Ms) brings M to the final state

M =‘aftsyk’.

The age of an update log is the time elapsed since the time the log is arrived: the log

that arrived first is the oldest one, and the log that arrived most recently is the youngest

one. It is important to store the logs ordered according to their age, since applying the

same logs in a different order may lead to a different data.

The logs L = {ijOjvj}kj=1 are ordered according to their age and put in a compact PoR

scheme [127], which generates an encoded version of the logs C = (C1, C2, ..., Cn) ∈ Σn.

The encoded logs are then outsourced to the server. The authenticity is handled by the

compact PoR, which ensures that the logs are retrievable (or, the server is caught mis-

behaving). This, in turn, ensures retrievability of the client data even if the outsourced

uncoded data is corrupted.

There are two types of memory on the server. Buff∗, whose content is fixed between

two rebuild operations and is the same among different configurations, stores the logs

corresponding to the original data of the client. The other memory stores the logs of the

subsequent updates on the data, and its efficiency affects the whole scheme. We only

consider and work on the later throughout this paper.

An advantage of using PDP over MAC (e.g., schemes in [30, 131]) is that the PDP

uses homomorphic tags, using which it can aggregate together a set of requested blocks,

and send only one block to the client. This reduces the communication dramatically.

Although Shi et al. [131] use a homomorphic checksum scheme, the outsourced checksums

are encrypted, and hence are not ready to be aggregated. Therefore, they can only

aggregate the blocks.

Once in every O(n) updates, when the Buff becomes full, a rebuild operation applies

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 190

all logs in the Buff on the client data stored at Buff∗, empties the whole Buff, puts the

latest state of the client’s data in a new compact PoR, and stores the result at Buff∗

(whose size is increased if needed). Note, however, that our rebuild operation is very

light compared to that of [28, 30, 131] due to the existence of the memory-checking

scheme who can provide the client with the (authenticated) latest version of her data,

i.e., she does not need to apply all logs on the original data one-by-one to compute the

latest version. The client only verifies the received data and if accepted, puts it inside a

new compact PoR instantiation and outsources the result again at Buff∗.

8.3.3 Existing Configurations of the Buff

Linear configuration. Buff can be, in the simplest form, a one-dimensional buffer (of

length n) storing the output of the compact PoR [127] constructed over the logs. The

client stores a counter ctr to keep the size of the logs, initialized to zero and incremented

every time a new log is created. To add a new log (or a set of new logs up to the size of the

client local storage) to the Buff, the client should download all the existing outsourced

logs, decode it to retrieve the plaintext logs, append the new log, initialize a new compact

PoR instantiation to put the logs inside, and upload the result. Although the audit is an

O(λ) operation, this construction suffers from the same efficiency problem as the original

static PoR: to prevent the adversary from tampering with the recently-added parts of

the logs, a small update affects all the outsourced logs. Therefore, the amortized server

computation and bandwidth (after n updates) is: (1 + 2 + ...+ n)/n = n/2 = O(n).

According to the Observation 7, we only care about obliviousness of the update

(append) operations, which is provided by the compact PoR [127]. Combined with the

Observation 8, it illustrates that the exact requirement is to only accumulate the logs

given by the update operations, according to their age. This means that the intermediate

reshufflings2 (of smaller buffers into larger ones) are not required, which simplifies the

log structure. This is an important difference between our scheme and those of [30, 131]

that reshuffle the buffers.

2There are two types of rebuild operations in most ORAM schemes [70, 130, 91] and ORAM-based
dynamic PoR schemes [28, 131]: the reshuffling that is executed on each 2j updates to reshuffle and
transfer contents of all buffers i < j into the buffer j, making empty all buffers i < j, and the rebuild
that is executed when all buffers become full (i.e., once in every O(n) updates) to read all buffers, apply
them on the original data, and empty all buffers.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 191

Figure 8.3: The server allocates more memory as new logs arrive.

Figure 8.2: Incremental-buff.

Incremental-buffers configuration. Similar to

ORAM [70], there is a sequence of buffers whose sizes

grow at a geometric rate [91] and are organized in a

way that the buffer at the ith level stores 2i elements,

as shown in Figure 8.2. In ORAM structures, once the

smaller buffers are filled, they are obliviously reshuffled

into the larger buffers [70, 91] to provide the access pri-

vacy, i.e., the client completely hides her data access

pattern from the untrusted server [136]. Although an adversary can observe which

physical storage locations are accessed, he has a negligible chance of learning the real

access pattern of the client [130]. But, this is achieved at a very high cost, e.g.,

O(log2(n)/ log log(n)) is the best known overhead [91, 136].

A dynamic PoR scheme using ORAM was proposed by Cash et al. [28]. Since access

privacy is not specified by the PoR definition [127, 131], a complete ORAM scheme is not

needed. Instead, only the hierarchical buffers idea from the ORAM is taken to preserve

obliviousness of the update operations [30, 131]. This means that the adversary can

observe the access pattern of the client. With each update, a buffer is re-encoded (in a

new compact PoR), making it hard for the adversary to correlate the new content to the

old one, or to locate the newly-added logs.

If the total size of the (encoded) log memory is n, then there are log(n) levels, first

level storing 20 = 1 log and last level storing 2log(n)−1 = n/2 logs. In this structure, an

update operation adds a new log to the first level, if it is empty. Otherwise, if the first

empty level is j (the client can find it using her local state), then the logs stored at all

levels i < j are read by the client, the new log is appended, all are put in a new compact

PoR scheme, the result is stored at level j, and all levels i < j are emptied.

However, this is a conceptual organization, and the server does not need to allocate

such a memory at the outset. He allocates new memory as new logs arrive. For a simple

presentation, assume each log as a cell. The first log requires only one cell. When the

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 192

second log comes in, it is merged with the already-existing one, and the result is stored at

a memory piece with two cells. The occupied memory size increases as new logs arrive.

This process is depicted in Figure 8.3.

8.3.4 Equibuffers Configuration

Figure 8.4: Equibuffers.

Direct application of the incremental-buffers configuration

to the dynamic PoR is not suitable as it imposes unnecessary

burden. First, although the upper-level buffers are small,

the lower-level buffers are of size O(n) that requires O(n)

temporary storage at the client to perform the reshuffling.

This amount of memory is not available in most current

hand-held devices, thus, they cannot update the outsourced

data. Second, adding some (permanent) local storage to the client will not improve the

asymptotic costs of this configuration as pointed to in [148] and proven in Appendix 8.5.

Third, managing a buffer divided into levels of different size is complicated for the client.

As an alternative, we propose the equibuffers configuration in which all levels are

buffers of the same capacity. If the total size of the Buff is n and there are t levels,

each level has size n/t. A simple representation is shown in Figure 8.4. An advantage

of this configuration over the previous one is that all buffers are of the same size, hence,

all operations become alike and simple. Since all levels are similar, we can fill them up

from one end. Another important advantage of this configuration is that adding local

storage to the client does improve the update complexity. Assume there are

t levels, each of size n/t, on the server, and a local storage of size nδ with 1 < nδ ≤

n/t on the client. Now, the client can accumulate nδ update logs at her local storage

and outsource them at once, reducing the amortized update complexity from O(n/t)

to O(n1−δ/t). Setting δ = 1/2,
√
n local memory is available on almost all existing

hand-held devices (e.g., around 3 MB memory is required for 10 GB outsourced data).

Regarding the Observation 7 and 8, the update logs are accumulated into the buffers

from one end, until all buffers become full. Then, the client can either ask for further

storage, or perform a rebuild that stores the (encoded) latest state of her data at Buff∗

and resets Buff. This rebuild can be performed in a computer.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 193

Figure 8.5: One-dimensional view of hierarchical configurations.

8.3.5 ECAL Protocols

In both hierarchical configurations, the client’s local state contains the keys of the com-

pact PoR schemes in all levels and a counter ctr, which is incremented with each update.

Using ctr, the client can find the buffer that the current update log should be directed

to. One can think of these hierarchical buffers as a one-dimensional buffer storing the

update logs sequentially, as shown in Figure 8.5. Each level is treated as a separate

compact PoR scheme, with a different pair of keys stored at the client. For each buffer,

a proof is computed containing an aggregation of the challenged tags, and a value based

on the combination of the challenged logs. Since the compact PoR satisfies blockless

verification [3], the challenged blocks themselves are not sent to the client.

The general ECAL construction is as follows:

• LInit(1λ, 1w, n,M): The client starts this protocol to initialize the empty buffers

on the server, giving as input the security parameter λ, the block size w, the

memory size n, and the initial data M. The client:

– Sets ctr = 0.

– Runs (pk∗, sk∗)← CP.Kg(1λ) and shares pk∗ with the server.

– Puts the initial data M in a compact PoR: C∗ = CP.St(sk∗,M), and out-

sources C∗ to the server.

The server remembers the public key pk∗, and stores C∗ in Buff∗.

• LAppend(l): adds a new update log, l. The client:

– Increases ctr by one, i.e., ctr = ctr + 1.

– Adds l to her local storage, locbuff.

– If locbuff is full:

∗ Computes the buffer number to put the new log into. As an example,

for equibuffers case with each level of size buffsize, she computes j =

dctr/(buffsize ∗ CodeRate)e, where CodeRate is the code rate of CP.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 194

The current logs will be stored at buffj.

∗ Reads contents of buffj as Cj from the server with its proof.

∗ If the authenticity verification succeeds, decodes Cj to obtain Lj.

∗ Adds the new logs to the received logs according to their age: Ljnew =

Lj||locbuff.

∗ Runs (pkj, skj) ← CP.Kg(1λ) to get the new keys for level j, and shares

pkj with server.

∗ Performs the proper pre-computation again: Cj
new = CP.St(skj, L

j
new).

∗ Outsources the encoded logs Cj
new (to buffj), and empties locbuff.

The server is responsible for responding the clients read query for buffer j, and

then replacing its contents with the new ones received from the client.

• LAudit(): The client sends a challenge vector to the server to check whether the

server keeps storing the logs correctly (it can also be used to read a log, e.g., the

ith log, by putting only i in the challenge vector). The important point is that the

challenge should sample all logs to give the retrievability guarantee. The client,

after verifying the server’s answer, emits an acceptance or a rejection notification.

– The client picks λ random locations from each buffer buff1, ..., bufft and

Buff∗, puts all in the challenge vector ch, and sends it to the server.

– The server runs (σi, µi)← CP.P(pki, buffi, chi) for each buffi ∈ {buff1, ..., bufft,

Buff∗} to generate a proof of possession, where chi is a subset of ch contains

indices of blocks in buffi. He sends all proofs {σi, µi}ti=1||{σ∗, µ∗} to client.

– The client runs CP.V(pki, ski, chi, σi, µi) on all proofs received, and emits ‘accept’

if all verified, else ‘reject’.

8.3.6 Optimized ECAL Construction

Communication-efficiency for audits. If all logs appear together, we can put them

all inside a single compact PoR instantiation. But they grow gradually over time, and

we cannot simply add new logs to the existing ones inside a compact PoR instantia-

tion. That is why we use the hierarchical buffer with each level as a separate compact

PoR instantiation that generates separate (aggregated) proofs. These proofs cannot be

aggregated further with those of the other levels, leading to increased communication.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 195

To solve the problem, we change the tag generation algorithm of the PDP inside

compact PoR in a way that we can handle adding later logs into the same PoR instan-

tiation, without leading to replay attacks. Indeed, we can aggregate all challenged tags

into one, and reduce communication. We call the resulting scheme the modified compact

PoR. This immediately brings another advantage: the client stores only one pair of keys

since there is only one PDP instantiation in use.

In PDP [3], a random number v is generated and concatenated with the block

number: Wi = v||i. Wi is used in tag generation to bind the generated tag to a

specific PDP construction and the corresponding block. The tags are computed as

ti = (h(Wi)g
mi)d mod N , for each block mi. We use v differently, to bind each block

to the last time the corresponding buffer was updated: vbuffj = PRFK(ctr). This way,

on each update, a new (pseudo)random value is generated for the corresponding buffer,

inside the same PDP construction. If a buffer is filled up, it becomes permanent and its

tags will not be changed (until the next rebuild).

The proof generation by the server remains the same. Our modification only affects

the verification: the client should use the correct v values for each buffer. This, however,

is not complicated since for each full buffer buffj, CodeRate ∗ Σj
i=0|buffj| will be used

as input to the PRF, where CodeRate is the code rate of the compact PoR in use. For

the current working buffer, the largest value ≤ ctr that is a multiple of the client local

storage size is used. The client can compute the required v values for verification, and

does not need to keep different keys.

The prime result of this modification is that the server can aggregate all challenged

tags into one, and send it together with the corresponding hash value to the client. This

reduces the proof size (and the client storage for keys) from O(λt) to O(λ) in audits,

where t is the number of levels of Buff.

Note that the modified compact PoR is not a fully dynamic scheme. It only supports

append operation as the original PDP scheme [3]. Our modification does not affect its

security. The same extractor works here, and the same security proof is applicable.

We compare the three configurations and select the optimized ones regarding the

audit bandwidth. The server provides a proof for all audit commands coming from the

client. Different configurations pose different proof sizes:

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 196

• Linear. There is only one modified compact PoR instantiation. O(λ) blocks (and

their tags) are accessed (and aggregated) to generate the proof. Thus, both the

server computation and the communication are O(λ).

• Hierarchical. There are t levels, and hence, t modified compact PoR instanti-

ations. The challenge samples O(λ) blocks at each level. The server accesses all

challenged blocks (and their tags), leading to O(λt) computation. Using the stated

optimization, the proofs of all levels can be aggregated together to reduce the proof

size from O(λt) ([30, 131]) to O(λ).

Client storage and preventing reshuffling. Reshuffling is used in ORAM [70]

and ORAM-based dynamic PoR schemes [28, 131, 30] to obliviously transfer data (logs,

in our case) from the smaller buffers into the larger ones. An immediate implication

of reshuffling is that the client has to have a temporary memory to store and operate

on the whole logs being transferred. However, the more logs are outsourced, the bigger

temporary memory is required. This states that these schemes does not suit the devices

with limited amount of local memory.

• Unilevel: All the outsourced logs are put inside a single modified compact PoR

scheme, forming a unit chunk of data. To append a new log(s), the whole logs

should be downloaded, requiring a local memory that increases as more logs are

outsourced (up to O(n)).

• Incremental-buffers: The outsourced logs are stored in a memory that is divided

into t levels with increasing size, requiring reshuffling at some points. If the first

empty level to store the new logs is j, then all levels i<j should be transferred to

the client and prepared to be stored on level j. This requires a local memory that

is small at the outset, and increases as the new logs arrive, up to O(n) when most

of the small levels are full. Adding some permanent local storage will not alleviate

the problem [148] as proven in Appendix 8.5.

• Equibuffers: There are t levels, each of size n/t, that are all alike and used to

store the logs, starting from one end, until all become full (in which case a rebuild

is required). Once some buffer are filled up, their content will not be changed (until

the next rebuild that occurs once in O(n) updates). Therefore, at most one buffer

of size O(n/t) is required to be transferred back to the client, requiring O(n/t)

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 197

temporary local storage, and no reshuffling is necessary during updates.

With O(n/t) permanent local storage, the client accumulates O(n/t) logs and

outsource them altogether. This way, the redundant interactions to download and

upload the half-empty buffers is eliminated, and the server will only receive and

store a full buffer each time.

We observe that applying our modification on the equibuffers case, and using client

local storage of size a level (at the server) achieves the best performance. The remaining

thing is choosing t, as it directly affects the memory requirements and performance: the

level capacity affects the update cost, and the number of levels affects the audit cost,

directly. Having t =
√
n levels, each of size

√
n, balances the update and audit costs.

Therefore, the Buff (of size n on the server) is divided into
√
n buffers buff1, ..., buff√n,

each of size
√
n. (Buff∗, of size n, stores the encoded version of the original data.)

Client local memory. With a local memory locbuff of size nδ (0 ≤ δ ≤ 1/2, up

to the size of a level), the client accumulates the most recent logs and outsources them

together, which decreases the (amortized) update complexity from O(n1/2) to O(n1/2−δ).

If δ = 1/2, the whole client memory is sent to the server at once, who puts it on a level

without further computation, and the (amortized) updates complexity will be O(1).

Moreover, there is no need to read some logs from the server and combine with those on

the client side. For an outsourced file of size 10 GB, divided into 10 × 220 blocks each

of size 1 KB, the client stores at most
√

10 × 210 blocks locally, which corresponds to

3.16 MB. This amount of local memory is available in almost all today’s smart mobile

phones. Furthermore, it is easy to transmit this data using even GSM mobile networks.

Rebuild and reshuffling. Reshuffling is used in ORAM [70] and ORAM-based

dynamic PoR schemes [28, 131, 30] to obliviously transfer logs from the smaller buffers

into the larger ones. An immediate implication is that for handling an update, an O(n)

client memory is needed. Thus, these schemes do not suit the devices with limited local

memory. Our equibuffer configuration needs client memory in the size of a level only.

Hence, given this amount of local memory (e.g., O(
√
n)), it does not require reshuffling

anymore. However, all configurations require rebuild that needs O(n) client memory.

But it is performed only once in O(n) updates, requiring a computer to be employed.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 198

8.3.7 ECAL Efficiency

Different configurations show different operation complexities. For any application, one

can choose the most appropriate one considering the application requirements and the

operation complexities. Some applications may require light read operation, while some

may stress on update operation without heeding read.

Unilevel configuration. Each LRead should read the whole buffer at the worst case,

decode it, and use the required part(s), leading ot O(n) worst-case complexity. LUpdate

has O(n) amortized cost as computed already. Adding nδ client storage will reduce it to

O(n1−δ). LAudit accesses λ elements and aggregates their tags into one. Both the server

computation and the communication are O(λ). The client needs a temporary memory

of size O(n) to preform these operations.

Incremental-buffers configuration. To recover a specific log, the whole logs

should be reconstructed first. Therefore, LRead starts from the first written log, ac-

cesses them up to the last one, which is an O(n) operation. Since it works similar to

[30, 131], the amortized cost of LUpdate, in a similar manner, is O(log(n)). LAudit ver-

ifies λ elements in each level, leading to O(λ log(n)) server computation, but since the

tags are aggregated to one using our aforementioned modification on the PDP scheme,

the communication complexity is only O(λ). A temporary memory of size O(n) is re-

quired at the client side for these operations to be performed. Importantly, adding local

storage to the client will not change the update complexity asymptotically [148]. We will

show this in Appendix 8.5. Moreover, this configuration performs multiple reshufflings.

Equibuffers configuration. There are several different possibilities to arrange a

buffer of size n as a series of equal-size buffers that affect the update and audit costs. We

chose to use
√
n buffers each of size

√
n that balances the update and audit costs. Similar

to the previous configurations, LRead requires O(n) cost. Assume that the client has a

local memory of size nδ. She can keep nδ logs locally, and transfer them altogether to

the server. Therefore, the amortized cost of an LUpdate operation is O(
√
n/nδ). When

δ = 0, i.e., the local storage isO(1), the LUpdate complexity isO(
√
n), and when δ = 1/2,

i.e., the local storage is O(
√
n), the LUpdate complexity becomes O(1). LAudit, again

verifies λ elements in each level, which requires O(λ
√
n) server computation, but due to

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 199

the aggregation of tags, the communication complexity is again O(λ). Note that since

this configuration does not require the intermediate reshuffling between different buffers,

therefore, at most O(
√
n) temporary memory at the client side is required. In addition,

with O(
√
n) local memory, the client can prepare a complete buffer locally and send it to

the server. Hence, there will be no half-empty buffers to be read and combined with the

local logs (while [30, 131] require O(n) temporary memory to perform such reshufflings).

The O(
√
n) client local storage is very reasonable. For a 10GB file, it requires ∼3MB

client storage that is available today on most hand-held electronic devices.

A comparison of LUpdate and LAudit complexities for different ECAL configurations

is given in Table 8.1. LRead has O(n) cost in all configurations, and hence is inefficient.

This is why it is performed using a memory-checking scheme storing the plain data.

Table 8.1: A comparison of different versions of our scheme using the communication-efficient
technique. It shows the client storage (C. St.), the server comutation (S. Comp), and the
bandwidth (BW) for LAppend and LAudit operations.

Configuration C. St.
LAppend LAudit

S. Comp. BW S. Comp. BW

Unilevel
O(1) O(n) O(λn) O(λ) O(λ)

O(nδ) O(n1−δ) O(λn1−δ) O(λ) O(λ)

Incremental
O(1) O(log(n)) O(λ log(n)) O(λ log(n)) O(λ)

O(nδ) O(log(n)) O(λ log(n)) O(λ log(n)) O(λ)

Equibuffers

O(1) O(
√
n) O(λ

√
n) O(λ

√
n) O(λ)

O(nδ) O(n1/2−δ) O(λn1/2−δ) O(λ
√
n) O(λ)

O(
√
n) O(1) O(λ) O(λ

√
n) O(λ)

8.3.8 ECAL Security Proof

Theorem 8.3.1 If CP = (Kg, St, P, V) is a secure compact PoR scheme, E=(LInit,

LAppend, LAudit) is a secure ECAL scheme according to Def. 8.3.2 and 8.3.3.

Correctness immediately follows from that of the underlying PoR scheme.

Authenticity is provided by the underlying compact PoR scheme. The linear buffer

case is obvious. The incremental-buffers case was shown by Shi et al. [131]. We treat

the equibuffers below, and then focus on our communication-efficient optimized version.

For the hierarchical equibuffers case, assume that there are t levels, and each level is a

distinct compact PoR instantiation. If a PPT adversary A wins the ECAL authenticity

game with non-negligible probability, we can use it to construct a PPT algorithm B who

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 200

breaks the security of at least one of the compact PoR schemes used in one of the levels,

with non-negligible probability. B acts as the challenger in the ECAL game with the

adversary A, and simultaneously, plays role of the server in compact PoR game played

with the compact PoR challenger C. He receives the public key of a compact PoR scheme

from C, and produces t− 1 other pairs of compact PoR public and private keys himself.

Then, he guesses some i and puts the received key in ith position, and sends the t public

keys to A. From here on, B just keeps forwarding messages from A on the level i to C,

and vice versa. For other levels, he himself performs the operations.

When A wins the ECAL security game, if the guessed level i was the related compact

PoR level, B would also win the compact PoR security game. Thus, ifA passes the ECAL

verification with non-negligible probability p, B passes the compact PoR verification with

probability at least p/t. As we employ secure compact PoRs, p/t must be negligible,

which implies p is negligible, hence, A has negligible probability of winning the ECAL

game. Our ECAL scheme is secure if the underlying compact PoRs are.

When the communication-efficient configuration is used, the reduction is even simpler

(for both incremental- and equi-buffers). All levels use the same key. The only difference

is that, when C sends an append operation, B internally calculates the associated level i

and sends the related append operation to A. Further, observe that the only difference of

our optimization from the original compact PoR is the tag calculation. Since we employ

the same PRF idea, with just a slightly different input, this does not affect the security.

Therefore, if A wins with probability p, B wins with the same probability.

Retrievability. We give a high level proof of retrievability here without going into

details, since the proof is similar to the already-existing proofs [127, 81, 3, 28].

We reduce extractability of the incremental and equibuffers constructions to that

of the compact PoR (the linear case is a compact PoR). There are multiple compact

PoR instances in both constructions. Due to the security of compact PoR, if the server

manipulates more than d−1 blocks in some level, he will be caught with high probability

(see [127]). Hence, if he can pass the verification, each level is extractable, which means

that the portion of logs stored in that PoR instantiation is retrievable with overwhelming

probability. Putting together all these PoR instantiations guarantees retrievability of the

whole logs stored in these constructions with overwhelming probability.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 201

For the communication-efficient configuration, the compact PoR extractability proof

is again applicable [127], since changing the PRF input in the tag does not affect ex-

tractability. There is only one compact PoR in use, hence, its extractor works for this

ECAL configuration as well.

8.4 Dynamic Proof of Retrievability

Since the ECAL stores the client data and guarantees its retrievability, it seems that the

ECAL itself is a dynamic PoR scheme. However, due to the nature and application of

the ECAL, reading a data block requires reading, decoding, and reconstructing all logs,

necessitating O(n) cost. Therefore, read is not an efficient operation in ECAL, and it

should not normally be fulfilled through the ECAL. This means that retrieving through

the ECAL should be the last resort when other options fail. This is the important reason

why ECAL is not an efficient DPoR scheme in its own. If we do not care about read

efficiency, we can use the ECAL as a DPoR scheme. Now, we are about to define our

general efficient dynamic PoR framework.

Since access privacy is not a requirement in PoR definition [81], we can store the

client data in a dynamic memory-checking scheme, e.g., DPDP [54], preserving its au-

thenticity. Read operations will be handled through this memory-checking part. But,

update operations will affect both the memory-checking part and the ECAL part. This

will solve the read inefficiency problem.

This means that given a dynamic memory-checking scheme and a static PoR scheme,

e.g., compact PoR [127], we can construct an efficient dynamic PoR scheme. Moreover,

given an erasure-correcting code scheme and a static memory-checking scheme, e.g., PDP

[3], (or any –homomorphic for efficiency– MAC or signature scheme), we can construct

a static PoR [127]. Therefore, a dynamic PoR scheme can be constructed given black

box access to a dynamic memory-checking scheme, an erasure-correcting code scheme,

and a static memory-checking scheme.

8.4.1 Dynamic PoR using ECAL

According to our observations on making PoR dynamic, storing updates inside the data

is neither efficient nor secure. Therefore, we store the updates inside an ECAL scheme

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 202

(to support retrievability), separately from the data. Moreover, we use the update logs

differently from [30, 131], as they only support modification on the original data, but we

support insertion and deletion, too. They only require the last version of data blocks to

reconstruct the data (the number of blocks is fixed), but we need the whole logs.

The data itself is stored inside a dynamic memory-checking scheme (e.g., DPDP [54])

in plaintext form, since we apply later updates on and read through it. We refer to the

DPDP part as ‘D’ and the ECAL part as ‘E’. An informal description of dynamic PoR

operations is given below.

• Read is used to retrieve the most up-to-date version of the data at a specific

location. Since D maintains the last version of the data, read can be done through

D. Moreover, D provides an authenticity proof (of size O(λ log n)) for all data

blocks read, that works as the proof of retrievability for the block(s) being read.

• Update is performed on the outsourced data, and brings both D and L in an

up-to-date state. Updating D requires O(λ) communication and O(log n) server

computation, and updating L depends on the underlying ECAL structure. The

equibuffers structure with O(
√
n) buffers of size O(

√
n) each, and O(

√
n) client

storage, runs updates with O(λ) communication and O(1) server computation.

• Audit checks authenticity of the outsourced logs to see if the server keeps storing

them intact. It challenges λ random blocks from each non-empty buffer of L and

verifies them. Since the challenge vector can bu generated by the server given the

required keys, the client-to-server communication is O(λ) [3]. Using the equibuffers

setting, the server finds and aggregates the challenged blocks and their tags in

O(λ
√
n) time. The proof includes two values, and is of size O(λ). The client

verification time is also O(λ
√
n).

• Periodic rebuild. Our scheme in the equibuffers setting eliminates the reshuf-

fling operation, which is executed more frequently, and needs only the rare re-

builds. Moreover, we run the rebuild operation using the fresh data from D instead

of combining and using the update logs, resulting in a much more efficient rebuild.

The server sends the whole data from D to the client, which is an O(n) operation.

The client first verifies the whole data with DPDP. If accepted, this guarantees that

it is the correct last version of the data, and the logs can be discarded completely.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 203

She then runs LInit and uploads the result. Hence, the communication and the

client computation are also O(n). Since this operation is executed once in every n

updates, the amortized complexities will all be O(1).

Definition 8.4.1 (Dynamic PoR) A dynamic PoR scheme includes the following in-

teractive protocols (mostly from [28]) run between a stateful client and a stateful server.

The client, using these protocols, can outsource and later update her data at an untrusted

server, while retrievability of her data is guaranteed (with overwhelming probability):

• PInit(1λ, 1w, n,M): given the alphabet Σ = {0, 1}w and the security parameter λ,

the client uses this protocol to initialize an empty memory of size n on the server,

outsourcing there the initial data M .

• PUpdate(i, OP, v): the client performs the operation OP ∈ {I,D,M} on the ith

location of the memory (on the server) with input value v (if required).

• (v, π)← PRead(i): is used to read the value stored at the ith location of the memory

managed by the server. The client specifies the location i as input, and outputs

some value v, and a proof π proving authenticity of v.

• {accept, reject} ← PAudit(): The client checks if the server keeps storing her

data correctly. She emits an acceptance or rejection signal.

8.4.2 Dynamic PoR Security Definitions

Since ECAL is a DPoR scheme, all its security definitions with proper protocol names

are applicable here. In both games, the server S̃ asks the challenger to start a protocol

(PRead, PUpdate or PAudit) by providing the required information.

8.4.3 DPoR Construction

Let n, k ∈ Z+ (k<n), and Σl={0, 1}w and Σm={0, 1}w′ be two finite alphabets. The

client is going to outsource a data M=(m1, ...,mk) ∈ Σk
m. She stores M inside a DPDP

construction D=(KeyGen,PrepareUpdate,PerformUpdate,VerifyUpdate,Challenge,Prove

,Verify). She also initializes an ECAL instantiation E=(LInit,LAppend,LAudit) to

store the encoded logs. On each update, she updates both D and E supporting read and

audit, respectively. Our dynamic PoR construction is:

PInit(1λ, 1w, n,M):

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 204

• The client runs (pk, sk)← D.KeyGen(1λ) and shares pk with the server.

• The client runs (e(M), e(‘full rewrite’), e(st′c)) ← D.PrepareUpdate(sk, pk,M,

‘full rewrite’, stc).

• The server runs (M1, sts, st
′
c, Pst′c)←D.PerformUpdate(pk, e(M), e(‘full rewrite’),

e(st′c)), where M1 is the first version of the client data, and st′c and Pst′c are the

client’s metadata and its proof, respectively, to be sent to the client.

• The client executes D.VerifyUpdate(sk, pk,M,‘full rewrite’, stc, st
′
c, Pst′c), and

outputs the corresponding acceptance or rejection notification.

• The client also stores the initial data using the ECAL: E.LInit(1λ, 1w, n,M).

PUpdate(i, OP, v):

• The client runs (e(v), e(OP, i), e(st′c)← D.Prepare- Update(sk, pk, v, (OP, i), stc).

• The server runs (mj, sts, st
′
c, Pst′c)← D.PerformUp- date(pk, e(mj−1), e(OP, i), e(st′c)),

where mj−1 is the current version of the data on the server (to be updated into

mj). The server sends st′c and Pst′c to the client.

• The client executes D.VerifyUpdate(sk, pk, v, (OP, i), stc, st
′
c, Pst′c), and outputs

the corresponding acceptance or rejection signal.

• The client, in parallel, prepares the log, l =‘iOPv’, and runs E.LAppend(l).

PRead(i):

• The client creates a DPDP challenge ch containing the block index i only, and

sends it to the server. (Challenging only one block is a ‘read’.)

• The server executes P ← D.Prove(pk,mj, sts, ch) to generate and send the proof

P (for the ith block only).

• The client runs {accept, reject} ← D.Verify(sk, pk, stc, ch, P) to verify the

proof, and emits an acceptance or a rejection signal based on the result.

• If there was a problem reading from D, then she tries to read through the log

structure E. In such a case, she needs to read the whole logs.

• If reading from E is not possible too, server misbehavior is detected. She goes to

the arbitrator, e.g., [89].

PAudit:

• The client starts E.LAudit(). If it results in an acceptance, she outputs accept,

otherwise, she outputs reject and contacts the arbitrator.

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 205

8.4.4 Dynamic PoR Security Proof

Theorem 8.4.1 If D = (KeyGen, PrepareUpdate, PerformUpdate, VerifyUpdate, Challenge,

Prove, Verify) is a secure DPDP scheme, and E = (LInit, LAppend, LAudit) is a se-

cure ECAL scheme, DPoR=(PInit, PRead, PUpdate, PAudit) is a secure DPoR scheme

according to (the modified versions of) definitions 8.3.2 and 8.3.3.

Proof 8.4.1 Correctness of DPoR follows from the correctness of DPDP and ECAL.

Since DPoR has nothing to do apart from DPDP and ECAL, if both of them operate

correctly, then any PRead(i) will return the most recent version stored at the ith location

through DPDP, and all PAudit operations will lead to acceptance.

Authenticity of the plain data is provided by the underlying DPDP and ECAL

schemes. Whenever a data is read, the underlying DPDP scheme sends a proof of in-

tegrity, assuring authenticity. When that fails, the logs will be read through ECAL, which

also provides authenticity.

In particular, if a PPT adversary A wins the DPoR authenticity game with non-

negligible probability, we can use it in a straightforward reduction to construct a PPT

algorithm B who breaks security of the underlying ECAL scheme or DPDP protocol with

non-negligible probability. Since both the ECAL and DPDP schemes are secure, the

adversary has negligible probability of winning either of them. Therefore, our DPOR is

authentic supposed that the underlying ECAL and DPDP schemes are authentic.

Retrievability immediately follows from that of the ECAL. Since ECAL is secure,

it guarantees retrievability of the logs that can be used to reconstruct and retrieve the

plaintext data. We bypass the proof details as it is straightforward to reduce retrievability

of our dynamic PoR scheme to that of the underlying ECAL.

8.4.5 Comparison to Previous Work

Investigating the equibuffer configuration of ECAL in detail and using the complexities in

Table 8.1 reveals that the client storage (Sclient), and the update and audit costs (Cupdate

and Caudit) are related together via the following formula (ignoring factors depending on

the security parameter): Sclient ∗ Cupdate ∗ Caudit = O(n).

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 206

This formula describes a nice trade-off between the client storage, and the update and

audit costs, that can be used to design dynamic PoR schemes with different requirements.

Cash et al. [28] gave a similar statement for the linear configuration (Appendix A of their

paper): ∀δ > 0, using blocks of size nδ the complexity of read, update, and audit will be

O(1), O(nδ), and O(n1−δ), respectively.

Similarly, our scheme also covers the schemes given in [30, 131]. Using the incremental-

buffers configuration together with MAC instead of PDP tags reduces our scheme to

[131]. If, in addition, the incremental-buffers together with MAC is used to store the

plain data as a memory-checking scheme instead of DPDP, the resulting scheme is [30].

Our schemes pose important advantages compared to the previous work [28, 30, 131].

First, the bandwidth optimization makes the audit and (amortized) update bandwidth

O(λ), which are optimal. Second, our equibuffer configuration with reasonable amount

of permanent client storage, i.e., O(
√
n) that is ' 3 MB for an outsourced data of size

10 GB, makes possible using smart phones (and other hand-held electronic devices) for

updating the outsourced data.

Table 8.2 represents a comparison among the dynamic PoR schemes. The server

storage is O(n) in all schemes. The operation complexities of our schemes are computed

using the version with the equibuffer optimization and the audit bandwidth optimization

applied on. These two optimizations can be applied independently. The bandwidth

optimization, for instance, can be applied on top of previous work [131, 30] achieving

optimal audit bandwidth in those configurations as well. The communication cost in our

scheme, in all settings, is reduced to O(λ). Therefore, we manage to obtain the most

general and efficient DPoR construction.

Table 8.2: A comparison of dynamic PoR schemes (comp. stands for computation, and the
temporary memory is required at the client side to fulfill the updates. All schemes require a
temporary memory of size O(λn) for rebuild.)

Scheme Client
Read Update Audit

Temporary
Storage Server comp. BW Server comp. BW Server comp. BW Memory

Cash et al. [28] O(λ) O(λ log2 n) O(λ log2 n) O(λ2 log2 n) O(λ2 log2 n) O(λ2 log2 n) O(λ2 log2 n) O(λn)

LULDC [30] O(λ) O(λ log2 n) O(λ log2 n) O(logn) O(logn) O(λ logn) O(λ logn) O(λn)

Shi et al. [131] O(λ) O(logn) O(λ logn) O(logn) O(λ logn) O(λ logn) O(λ2 logn) O(λn)

Our scheme
O(λ) O(logn) O(λ logn) O(

√
n) O(λ

√
n) O(λ

√
n) O(λ) O(

√
n)

(Equibuffer) O(
√
n) O(logn) O(λ logn) O(1) O(λ) O(λ

√
n) O(λ) O(λ)

Chapter 8: Generic Efficient Dynamic Proofs of Retrievability 207

8.5 The Impact of Client Storage

We show that in the incremental-buffers configuration, adding local storage to the client

will not change the update complexity asymptotically. Assume the client has a local

storage of size nδ used to keep updates locally, and send them all at once to the server

(when it becomes full). We can imagine the server’s memory layout as in Figure 8.6.

Figure 8.6: Server memory lay-
out with nδ client local storage.

This represents a similar layout to the Figure 8.2,

but now each update operation carries a data of length

nδ that will be put in the first level buffer. The next up-

date finds the first level full, merges its data with those

in the first level and reshuffles them, and finally stores

the result in the second level buffer (and empties the

first level). This is repeated in a similar way as in the

original configuration until the whole buffer becomes

full. Stated differently, all operations are the same as the original incremental-buffers

configuration, the only difference is the update data size.

There are (1 − δ) log(n) buffers, first buffer of size nδ and the last one of size O(n).

The first buffer will be written n1−δ times, the second one n1−δ/2 times, and the last

buffer one time. Now, we compute the number of update operation executions to update

a total of n logs into the server:

n1−δ ∗ nδ + (n1−δ/2) ∗ 2nδ + ...+ 1 ∗ n = n+ n+ ...+ n = ((1− δ) log(n))n.

Therefore, the amortized cost of a single update is (1− δ) log(n) = O(log(n)), which

is asymptotically same as the case where the client had constant local storage.

Chapter 9: Conclusion and Future Directions 208

Chapter 9

CONCLUSION AND FUTURE DIRECTIONS

The advantages of cloud storage are increasingly attracting individuals and enter-

prises to outsource their data at the existing cloud service providers. Along with the

data outsourcing increase, the cloud storage technology is experiencing an evolution to-

ward maturity. For the sake of cloud storage success, it is essential to detect the possible

security weaknesses and act on-time to eliminate them.

This thesis tackles two categories of possible vulnerabilities in the cloud storage:

integrity and confidentiality. The efforts in the integrity class includes all solutions pro-

posed for ensuring the data owner about the integrity and retrievability of her data

outsourced to an untrusted service provider. We made two contributions for the in-

tegrity protection: extending the DPDP to support distribution and replication in an

efficient manner, and proposing the general framework of building DPDP schemes. We

also gave an important solution for using the DPDP to provide a secure database out-

sourcing scheme. The security requirements of database outsourcing (i.e., completeness,

correctness, freshness) are different from those of a flat file. There are areas requiring

more research regarding database outsourcing: Providing all these properties in a very

efficient manner, and supporting multi-way join operations efficiently and provably.

Regarding the confidentiality, the only existing solution is encrypting the data before

outsourcing. But then the data owner cannot search over the encrypted outsourced data

and retrieve her data selectively. Searchable symmetric encryption is about to provide

search over the encrypted data. However, the existing searchable encryption schemes

work in the semi-honest setting, meaning that the client accepts what she receives from

the CSP without any proof.

We proposed a verifiable dynamic searchable symmetric encryption. It supports

search and update operations on the outsourced encrypted data, accompanies all an-

swers with a proof for owner’s verification. Another advantage is that not only the

Chapter 9: Conclusion and Future Directions 209

search results are authenticated, but also the scheme preserves the integrity of the files.

Moreover, our scheme supports Boolean search.

Both update operations and Boolean search leak more information. Things become

more complicated in the malicious setting where the server should generate proofs for

the operations. The server needs information about all keywords in the Boolean formula

to generate the proof. This contradicts the query privacy (leaking as less as possible)

that is the focus of [26, 120, 65]. A new research direction in this line of work is providing

schemes supporting Boolean search in a provable and privacy-preserving manner.

The equivocation problem is not taken into account in many existing outsourcing

schemes, which means that the server can give two different answers to the same query

given by two different users. The problem is solved by assuming that the data owner

can transfer to all other users the security information required for verification. This is

a limited case of preventing equivocation, however, more general solutions are required.

In the future, I plan to study a general framework for a protocol stack involving all

these security requirements and functionalities. That would be a modular approach,

each module focusing on a single requirement or functionality. It can be built by inte-

grating the available schemes in a valid and meaningful layered architecture to provide

all required security guarantees for the cloud.

Bibliography 210

BIBLIOGRAPHY

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Theory

of Cryptography, pages 480–497. Springer, 2010.

[2] A. Anagnostopoulos, M. Goodrich, and R. Tamassia. Persistent authenticated

dictionaries and their applications. Information Security, pages 379–393, 2001.

[3] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,

Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores.

In CCS’07. ACM, 2007.

[4] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik. Scal-

able and efficient provable data possession. In SecureComm ’08, pages 9:1–9:10.

ACM, 2008.

[5] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from

homomorphic identification protocols. In Adv.s in Cryptology–ASIACRYPT’09,

pages 319–333, 2009.

[6] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from

homomorphic identification protocols. In ASIACRYPT, pages 319–333. Springer,

2009.

[7] A.F. Barsoum and M.A. Hasan. Provable possession and replication of data over

cloud servers. CACR, University of Waterloo, 32, 2010.

[8] A.F. Barsoum and M.A. Hasan. On verifying dynamic multiple data copies over

cloud servers. Technical report, Cryptology ePrint Archive, Report 2011/447, 2011.

Bibliography 211

[9] A.F. Barsoum and M.A. Hasan. Enabling data dynamic and indirect mutual trust

for cloud computing storage systems. IEEE Transactions on Parallel and Dis-

tributed Systems, (99):1699–1710, 2013.

[10] Ayad Barsoum and Anwar Hasan. Enabling dynamic data and indirect mutual

trust for cloud computing storage systems. Parallel and Distributed Systems, IEEE

Transactions on, 24(12):2375–2385, 2013.

[11] Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and effi-

ciently searchable encryption. In Advances in Cryptology-CRYPTO 2007, pages

535–552. Springer, 2007.

[12] J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative

to digital signatures. In EUROCRYPT’93, pages 274–285. Springer, 1994.

[13] R. Bhagwan, D. Moore, S. Savage, and G. Voelker. Replication strategies for highly

available peer-to-peer storage. Future Directions in Distributed Computing, pages

153–158, 2003.

[14] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[15] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correct-

ness of memories. Algorithmica, 12(2):225–244, 1994.

[16] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public key encryption with keyword search. In EUROCRYPT 2004, pages 506–

522. Springer, 2004.

[17] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.

In Advances in CryptologyASIACRYPT 2001, pages 514–532. Springer, 2001.

[18] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted

data. In Theory of cryptography, pages 535–554. Springer, 2007.

Bibliography 212

[19] K.D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and integrity layer

for cloud storage. In CCS’09, pages 187–198. ACM, 2009.

[20] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and

implementation. In CCSW, pages 43–54. ACM, 2009.

[21] Kevin D. Bowers, Marten van Dijk, Ari Juels, and Alina Oprea nd Ronald

L. Rivest. How to tell if your cloud files are vulnerable to drive crashes. In

CCS’11. ACM, 2011.

[22] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryp-

tion (without random oracles). In CRYPTO 2006, pages 290–307. Springer, 2006.

[23] Ran Canetti, U Friege, Oded Goldreich, and Moni Naor. Adaptively secure multi-

party computation. 1996.

[24] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryp-

tion. In CRYPTO’97. Springer, 1997.

[25] Bogdan Carbunar and Radu Sion. Toward private joins on outsourced data. IEEE

Transactions on Knowledge and Data Engineering, 24(9):1699–1710, 2012.

[26] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-

large databases: Data structures and implementation. In Network and Distributed

System Security Symposium (NDSS14), 2014.

[27] David Cash, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk, Marcel Rosu,

and Michael Steiner. Highly-scalable searchable symmetric encryption with sup-

port for boolean queries. IACR Cryptology ePrint Archive, 2013.

[28] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability

via oblivious ram. In EUROCRYPT’13, pages 279–295. Springer, 2013.

Bibliography 213

[29] Joe Celko. Joe Celko’s Trees and hierarchies in SQL for smarties. Morgan Kauf-

mann, Washington, 2004.

[30] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updat-

able and locally decodable codes. In Theory of Cryptography, pages 489–514.

Springer, 2014.

[31] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. In ACNS, pages 442–455. Springer, 2005.

[32] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure.

In Advances in Cryptology-ASIACRYPT 2010, pages 577–594. Springer, 2010.

[33] Lanxiang Chen. Using algebraic signatures to check data possession in cloud stor-

age. Future Generation Computer Systems, 29(7):1709–1715, 2013.

[34] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved

non-committing encryption with applications to adaptively secure protocols. In

Advances in Cryptology–ASIACRYPT 2009, pages 287–302. Springer, 2009.

[35] Dwaine Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and G. Suh.

Incremental multiset hash functions and their application to memory integrity

checking. In Advances in Cryptology-ASIACRYPT 2003, pages 188–207. Springer,

2003.

[36] T. Cormen, C. Leiserson, R. Rives, and C. Stein. Introduction to algorithms. The

MIT press, third edition, 2009.

[37] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp: Multiple-replica

provable data possession. In ICDCS’08, pages 411–420. IEEE, 2008.

[38] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-

metric encryption: improved definitions and efficient constructions. In Proceedings

of the 13th ACM conference on Computer and communications security, pages

79–88. ACM, 2006.

Bibliography 214

[39] Reza Curtmola, Osama Khan, and Randal Burns. Robust remote data checking.

In Proceedings of the 4th ACM international workshop on Storage security and

survivability, pages 63–68. ACM, 2008.

[40] Ivan Damg̊ard and Nikos Triandopoulos. Supporting non-membership proofs with

bilinear-map accumulators. IACR Cryptology ePrint Archive, 2008:538, 2008.

[41] Ivan Bjerre Damg̊ard. Collision free hash functions and public key signature

schemes. In EUROCRYPT’87, pages 203–216. Springer, 1988.

[42] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,

and Pierangela Samarati. Integrity for join queries in the cloud. Cloud Computing,

IEEE Transactions on, 1(2):187–200, 2013.

[43] Y. Deswarte, J.J. Quisquater, and A. Säıdane. Remote integrity checking. Integrity

and Internal Control in Information Systems VI, pages 1–11, 2004.

[44] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party data

publication. Data and Application Security, pages 101–112, 2002.

[45] P. Devanbu, M. Gertz, C. Martel, and S.G. Stubblebine. Authentic data publica-

tion over the internet. Journal of Computer Security, 11(3):291–314, 2003.

[46] David J DeWitt, Jeffrey F Naughton, and Donovan A Schneider. An evaluation of

non-equijoin algorithms. In VLDB, pages 443–452. Morgan Kaufmann Publishers

Inc., 1991.

[47] G. Di Battista and B. Palazzi. Authenticated relational tables and authenticated

skip lists. Data and Applications Security XXI, pages 31–46, 2007.

[48] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hard-

ness amplification. In TCC, 2009.

[49] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hard-

ness amplification. In Theory of cryptography, pages 109–127. Springer, 2009.

Bibliography 215

[50] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures

persistent. Journal of computer and system sciences, 38(1):86–124, 1989.

[51] Markus Dürmuth and David Mandell Freeman. Deniable encryption with negligible

detection probability: An interactive construction. In EUROCRYPT’11. Springer,

2011.

[52] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. How

efficient can memory checking be? In TCC, 2009.

[53] Cynthia Dwork, Moni Naor, Guy N Rothblum, and Vinod Vaikuntanathan. How

efficient can memory checking be? In TCC, pages 503–520. Springer, 2009.

[54] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data

possession. In CCS’09, pages 213–222. ACM, 2009.

[55] C. Chris Erway, Alptekin Kupcu, Charalampos Papamanthou, and Roberto

Tamassia. Dynamic provable data possession. Cryptology ePrint Archive, Report

2008/432, 2008.

[56] Ertem Esiner, Adilet Kachkeev, A Küpçü, and Ö Özkasap. Flexlist: optimized skip

list for secure cloud storage. Technical report, Technical Report, Koç University,

2013.

[57] Ertem Esiner, Alptekin Küpçü, and Öznur Özkasap. Analysis and optimization on

flexdpdp: A practical solution for dynamic provable data possession. Intelligent

Cloud Computing (ICC14), 2014.

[58] Mohammad Etemad and Alptekin Küpçü. Transparent, distributed, and replicated

dynamic provable data possession. In Applied Cryptography and Network Security,

pages 1–18. Springer, 2013.

[59] Mohammad Etemad and Alptekin Küpçü. Database outsourcing with hierarchi-

cal authenticated data structures. In Information Security and Cryptology–ICISC

2013, pages 381–399. Springer, 2013.

Bibliography 216

[60] Mohammad Etemad and Alptekin Küpçü. Database outsourcing with hierarchical

authenticated data structures. Submitted to a journal, 2015.

[61] Mohammad Etemad and Alptekin Küpçü. A generic dynamic provable data pos-

session model. Submitted to a journal, 2015.

[62] Mohammad Etemad and Alptekin Küpçü. Generic efficient dynamic proofs of

retrievability. Submitted to a conference, 2015.

[63] Mohammad Etemad and Alptekin Küpçü. Veriable dynamic searchable symmetric

encryption supporting boolean search. Submitted to a journal, 2015.

[64] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto. Demon-

strating data possession and uncheatable data transfer. Cryptology ePrint Archive,

Report 2006/150, 2006. http://eprint.iacr.org/.

[65] Ben Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir

Kolesnikov, Tal Malkin, and Steven M Bellovin. Malicious-client security in blind

seer: A scalable private dbms. In IEEE Symposium on Security and Privacy. IEEE,

2015.

[66] Allan A Friedman and Darrell M West. Privacy and security in cloud computing.

Center for Technology Innovation at Brookings, 2010.

[67] César Galindo-Legaria and Arnon Rosenthal. Outerjoin simplification and reorder-

ing for query optimization. ACM Transactions on Database Systems (TODS),

22(1):43–74, 1997.

[68] S. Goel and R. Buyya. Data replication strategies in wide area distributed systems.

Technical report, ISBN 1-599044181-2, Idea Group Inc., Hershey, PA, USA, 2006.

[69] Eu-Jin Goh. Secure indexes. Technical report, Cryptology ePrint Archive, Report

2003/216, 2003.

http://eprint.iacr.org/

Bibliography 217

[70] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-

ious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[71] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM, 17(2):281–308, 1988.

[72] Michael Goodrich and Roberto Tamassia. Efficient authenticated dictionaries with

skip lists and commutative hashing. US Patent App, 10(416,015), 2000.

[73] Michael Goodrich, Roberto Tamassia, and Jasminka Hasić. An efficient dynamic

and distributed cryptographic accumulator. Information Security, pages 372–388,

2002.

[74] Michael T. Goodrich and Roberto Tamassia. Efficient authenticated dictionaries

with skip lists and commutative hashing. Technical report, Tech. Rep., Johns

Hopkins Information Security Institute, 2001.

[75] Michael T Goodrich, Roberto Tamassia, and Nikos Triandopoulos. Super-efficient

verification of dynamic outsourced databases. CT-RSA, pages 407–424, 2008.

[76] Michael T Goodrich, Roberto Tamassia, and Nikos Triandopoulos. Efficient au-

thenticated data structures for graph connectivity and geometric search problems.

Algorithmica, 60(3):505–552, 2011.

[77] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, pages 73–169, 1993.

[78] Christian Hanser and Daniel Slamanig. Efficient simultaneous privately and pub-

licly verifiable robust provable data possession from elliptic curves. IACR Cryp-

tology ePrint Archive, 2013:392, 2013.

[79] Waqar Hasan, Daniela Florescu, and Patrick Valduriez. Open issues in parallel

query optimization. SIGMOD Rec., 25(3):28–33, 1996.

Bibliography 218

[80] M Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on

searchable encryption: Ramification, attack and mitigation. In NDSS’12, 2012.

[81] Ari Juels and Burton S. Kaliski, Jr. Pors: proofs of retrievability for large files. In

CCS’07, pages 584–597, New York, NY, USA, 2007. ACM.

[82] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In

Proceedings of the 14th ACMCCS, pages 584–597. ACM, 2007.

[83] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. Financial Cryp-

tography and Data Security, pages 136–149, 2010.

[84] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable

symmetric encryption. In Financial Cryptography and Data Security, pages 258–

274. Springer, 2013.

[85] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Cs2: A searchable

cryptographic cloud storage system. Microsoft Research, TechReport MSR-TR-

2011-58, 2011.

[86] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable

symmetric encryption. In Proceedings of the 2012 ACM CCS, pages 965–976, 2012.

[87] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CHAP-

MAN & HALL/CRC, 2008.

[88] Alptekin Küpçü. Efficient cryptography for the next generation secure cloud: pro-

tocols, Proofs and Implementation. Lambert Academic Publishing, 2010.

[89] Alptekin Küpçü. Official arbitration with secure cloud storage application. The

Computer Journal, 2013.

[90] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption.

In Financial Cryptography and Data Security, pages 285–298. Springer, 2012.

Bibliography 219

[91] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of hash-

based oblivious ram and a new balancing scheme. In ACM SODA, pages 143–156.

SIAM, 2012.

[92] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated

index structures for outsourced databases. In ACM SIGMOD, pages 121–132.

ACM, 2006.

[93] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Authenticated index struc-

tures for aggregation queries. ACM Transactions on Information and System Se-

curity (TISSEC), 13(4):32, 2010.

[94] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an Tan. Search pattern leak-

age in searchable encryption: Attacks and new construction. Information Sciences,

265:176–188, 2014.

[95] Zhiquan Lv, Cheng Hong, Min Zhang, and Dengguo Feng. Expressive and secure

searchable encryption in the public key setting. In Information Security, pages

364–376. Springer, 2014.

[96] Sha Ma, Bo Yang, Kangshun Li, and Feng Xia. A privacy-preserving join on

outsourced database. Information Security, pages 278–292, 2011.

[97] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S.G. Stubblebine. A

general model for authenticated data structures. Algorithmica, 39(1):21–41, 2004.

[98] S. Meiklejohn, C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. Zkpdl: A

language-based system for efficient zero-knowledge proofs and electronic cash. In

USENIX Security Symposium, 2010.

[99] Ralph Merkle. A certified digital signature. In CRYPTO’89, pages 218–238.

Springer, 1990.

[100] Priti Mishra and Margaret H Eich. Join processing in relational databases. ACM

Computing Surveys (CSUR), 24(1):63–113, 1992.

Bibliography 220

[101] Zhen Mo, Yian Zhou, and Shigang Chen. A dynamic proof of retrievability (por)

scheme with o(logn) complexity. In IEEE ICC, pages 912–916. IEEE, 2012.

[102] Tarik Moataz and Abdullatif Shikfa. Boolean symmetric searchable encryption.

In ACM CCS, pages 265–276. ACM, 2013.

[103] E. Mykletun, M. Narasimha, and G. Tsudik. Providing authentication and in-

tegrity in outsourced databases using merkle hash trees. UCI-SCONCE Technical

Report, 2003.

[104] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and in-

tegrity in outsourced databases. In NDSS, 2004.

[105] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. Se-

lected Areas in Communications, IEEE Journal on, 18(4):561–570, 2000.

[106] Moni Naor and Guy Rotblum. Complexity of online memory checking. In FOCS,

2005.

[107] M. Narasimha and G. Tsudik. Authentication of outsourced databases using sig-

nature aggregation and chaining. In Database Systems for Advanced Applications,

pages 420–436. Springer, 2006.

[108] G. Nuckolls. Verified query results from hybrid authentication trees. Data and

App. Sec., 2005.

[109] B. O’Donovan and J.B. Grimson. A distributed version control system for wide

area networks. Software Engineering Journal, 5(5):255–262, 1990.

[110] Cengiz Örencik and Erkay Savaş. An efficient privacy-preserving multi-keyword

search over encrypted cloud data with ranking. Distributed and Parallel Databases,

32(1):119–160, 2014.

[111] M.H. Overmars. Searching in the past i. RUU-CS, (81-07), 1981.

Bibliography 221

[112] M.H. Overmars. Searching in the past ii: general transforms. University of Utrecht

Dept. of Computer Science Technical Report RUU-CS-81-9, 1981.

[113] Bernardo Palazzi. Outsourced Storage Services: Authentication and Security Vi-

sualization. PhD thesis, Roma Tre University, 2009.

[114] Bernardo Palazzi, Maurizio Pizzonia, and Stefano Pucacco. Query racing: fast

completeness certification of query results. In Data and Applications Security and

Privacy XXIV, pages 177–192. Springer, 2010.

[115] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying

completeness of relational query results in data publishing. In ACM SIGMOD,

pages 407–418. ACM, 2005.

[116] HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge com-

puting. In International Conference on Data Engineering, pages 560–571. IEEE,

2004.

[117] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis. Scalable verification for

outsourced dynamic databases. VLDB, 2(1):802–813, 2009.

[118] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient al-

gorithms for two-party authenticated data structures. Information and Commu-

nications Security, pages 1–15, 2007.

[119] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Au-

thenticated hash tables. In Proceedings of the 15th ACM conference on Computer

and communications security, pages 437–448. ACM, 2008.

[120] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-

ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. Blind

seer: A scalable private dbms. In 35th IEEE Symposium on Security and Privacy,

pages 359–374. IEEE, 2014.

Bibliography 222

[121] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications

of the ACM, 33(6):668–676, 1990.

[122] Vijay Raman, Lin Qiao, Wei Han, Ind. Narang, Ying Chen, Kou Yang, and Fen

Ling. Lazy, adaptive rid-list intersection, and its application to index anding. In

ACM SIGMOD, volume 11-14, pages 773–784, 2007.

[123] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,

implications, and separations for preimage resistance, and collision resistance. In

Fast Software Encryption, pages 371–388. Springer, 2004.

[124] Francesc Sebé, Josep Domingo-Ferrer, Antoni Martinez-Balleste, Yves Deswarte,

and Jean-Jacques Quisquater. Efficient remote data possession checking in critical

information infrastructures. IEEE Transactions on Knowledge and Data Engineer-

ing, 20(8):1034–1038, 2008.

[125] H. Shacham and B. Waters. Compact proofs of retrievability. In Advances in

Cryptology-ASIACRYPT 2008, pages 90–107. Springer, 2008.

[126] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Advances

in Cryptology-ASIACRYPT 2008, pages 90–107. Springer, 2008.

[127] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal of

cryptology, 26(3), 2013.

[128] Mehul A Shah, Mary Baker, Jeffrey C Mogul, Ram Swaminathan, et al. Auditing

to keep online storage services honest. In HotOS, 2007.

[129] Mehul A Shah, Ram Swaminathan, and Mary Baker. Privacy-preserving audit and

extraction of digital contents. IACR Cryptology ePrint Archive, 2008:186, 2008.

[130] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with

o ((logn) 3) worst-case cost. In Advances in Cryptology–ASIACRYPT 2011, pages

197–214. Springer, 2011.

Bibliography 223

[131] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic

proofs of retrievability. In Proceedings of the 2013 ACM SIGSAC conf. on Com-

puter & Communications Security, pages 325–336. ACM, 2013.

[132] Erik Sink. Version Control by Example. Pyrenean Gold Press, 1st edition, 2011.

[133] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security and Privacy. IEEE,

2000.

[134] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic

searchable encryption with small leakage. NDSS’14, 2014.

[135] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A scalable cloud

file system with efficient integrity checks. In ACSAC, pages 229–238. ACM, 2012.

[136] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path oram: An extremely simple oblivious

ram protocol. In ACM CCS, pages 299–310. ACM, 2013.

[137] Roberto Tamassia. Authenticated data structures. In Algorithms-ESA 2003, pages

2–5. Springer, 2003.

[138] Roberto Tamassia and Nikos Triandopoulos. On the cost of authenticated data

structures. Technical report, Center for Geometric Computing, Brown University,

2003.

[139] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem

Jonker. Computationally efficient searchable symmetric encryption. In Secure

data management, pages 87–100. Springer, 2010.

[140] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked keyword

search over encrypted cloud data. In ICDCS, pages 253–262. IEEE, 2010.

Bibliography 224

[141] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure and

dependable storage services in cloud computing. IEEE Transactions on Services

Computing, 5(2):220–232, 2012.

[142] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving pub-

lic auditing for data storage security in cloud computing. In INFOCOM, 2010

Proceedings IEEE, pages 1–9. IEEE, 2010.

[143] Huaqun Wang. Proxy provable data possession in public clouds. Services Com-

puting, IEEE Transactions on, 6(4):551–559, 2013.

[144] J. Wang and X. Du. Skip list based authenticated data structure in das paradigm.

In GCC’09. IEEE, 2009.

[145] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and

data dynamics for storage security in cloud. ESORICS 2009, pages 355–3700, 2009.

[146] Brent R Waters, Dirk Balfanz, Glenn Durfee, and Diana K Smetters. Building an

encrypted and searchable audit log. In NDSS’04, volume 6, 2004.

[147] Mark Allen Weiss. Data structures and problem solving using Java. Pearson Edu-

cation Inc., 2009.

[148] Peter Williams and Radu Sion. Usable pir. In NDSS, 2008.

[149] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. Authen-

ticated join processing in outsourced databases. In ACM SIGMOD, pages 5–18.

ACM, 2009.

[150] Masayuki Yoshino, Ken Naganuma, and Hisayoshi Satoh. Symmetric searchable

encryption for database applications. In NBiS’11, pages 657–662. IEEE, 2011.

[151] Ke Zeng. Publicly verifiable remote data integrity. In ICICS’08, pages 419–434,

Berlin, Heidelberg, 2008. Springer-Verlag.

Bibliography 225

[152] Yihua Zhang and Marina Blanton. Efficient dynamic provable possession of remote

data via balanced update trees. In Proceedings of the 8th ACM SIGSAC symposium

on Information, computer and communications security, pages 183–194. ACM,

2013.

[153] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai. Fault-tolerant scheduling with dynamic

number of replicas in heterogeneous systems. In HPCC 2010, pages 434–441, 2010.

[154] Q. Zheng and S. Xu. Fair and dynamic proofs of retrievability. In Proc. of the first

ACM conf. on Data and app. security and privacy, pages 237–248. ACM, 2011.

[155] Yan Zhu, Hongxin Hu, Gail-Joon Ahn, and Mengyang Yu. Cooperative prov-

able data possession for integrity verification in multi-cloud storage. IEEE TPDS,

99(PrePrints), 2012.

[156] Yan Zhu, Huaixi Wang, Zexing Hu, Gail-Joon Ahn, Hongxin Hu, and Stephen S.

Yau. Efficient provable data possession for hybrid clouds. In CCS’10, pages 756–

758, New York, 2010. ACM.

	List of Figures
	Nomenclature
	Reliable Cloud Storage Services
	Hierarchical Authenticated Data Structures
	Availability of the Outsourced Data in the Cloud
	A Generic Dynamic PDP Model
	Database Outsourcing using Hierarchical ADSs
	Verifiable Dynamic Searchable Symmetric Encryption
	Generic Dynamic Proofs of Retrievability
	Organization

	Preliminaries
	Hierarchical Authenticated Data Structures
	Authenticated Data Structures
	ADS Constructions
	ADSs with Especial Properties

	Hierarchical ADSs

	Availability of the Outsourced Data in the Cloud
	Introduction
	Related Work

	DR-DPDP
	DR-DPDP Architecture
	From DPDP to DR-DPDP
	Security of DR-DPDP
	Efficiency

	Version Control using DPDP
	Common Utility Functions
	VCS Operations
	Extensions and Analysis
	Security of VCS

	Performance
	Discussion
	Further Analysis of the Organizer
	Replicating the Organizer
	Repartitioning

	Conclusions and Future Work

	A Generic Dynamic Provable Data Possession Model
	Introduction
	Provable Data Possession
	Authenticated Data Structures
	Observations
	Our contributions

	Background
	Related Work

	Dynamic Provable Data Possession
	Dynamic Provable Data Possession Definitions

	Explicitly- and Implicitly-ordered ADSs
	Basic DPDP Construction
	Explicitly-ordered ADSs
	Implicitly-ordered ADSs
	Operation Complexities of the Ordered ADSs
	DPDP from Implicitly-ordered ADSs (Basic Construction)
	Security of the Basic DPDP Construction

	Efficient Dynamic Provable Data Possession
	Tag Schemes
	Efficient DPDP Construction
	Security of the Efficient DPDP

	Generalization and Comparison
	Conclusion

	Database Outsourcing with Hierarchical Authenticated Data Structures
	Introduction
	Related Work
	Overview of Our Solution

	Hierarchical Authenticated Data Structures
	HADS Construction
	HADS Operations

	Outsourced Database Scheme
	Definitions
	Generic ODB Construction
	Illustrative Examples
	Tables with Composite Keys
	Efficient ODB Construction

	Join
	Overview
	Two-way Join
	Queries with Join and Selection
	Multi-way Join
	Special joins

	Analysis
	Security
	Distribution Among Multiple Servers
	Privacy
	Performance

	Conclusion

	Verifiable Dynamic Searchable Symmetric Encryption
	Introduction
	Related Work
	Preliminaries
	Our Model
	Overview of Our Solution
	Our Contributions

	VDSSE: Verifiable Dynamic Searchable Symmetric Encryption
	Security Description
	VDSSE Definition

	Construction
	Search
	File Addition
	File Deletion
	File Modification
	Boolean Search

	VDSSE in the Standard Model
	Analysis
	Security Proof
	Comparison to Previous Work (Asymptotic)
	Performance Analysis
	First scenario: small number of large documents
	Second scenario: large number of small documents
	Standard model

	Conclusion
	Security Proof
	Security Proof in the Standard Model
	Detailed Construction of Our VDSSE

	Generic Efficient Dynamic Proofs of Retrievability
	Introduction
	Related Work
	Preliminaries

	Informal Technical Overview
	Observations
	Overview of Our Solution

	Erasure-Coded Authenticated Log
	Security Definition
	Generic ECAL Construction
	Existing Configurations of the Buff
	Equibuffers Configuration
	ECAL Protocols
	Optimized ECAL Construction
	ECAL Efficiency
	ECAL Security Proof

	Dynamic Proof of Retrievability
	Dynamic PoR using ECAL
	Dynamic PoR Security Definitions
	DPoR Construction
	Dynamic PoR Security Proof
	Comparison to Previous Work

	The Impact of Client Storage

	Conclusion and Future Directions
	Bibliography

