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NOTASYON LISTESI

: noktalar

: manifoldlar

: reel-degierli, smooth(diferensiyellenebilir) fonksiyonlar
: egriler

: vektor alanlari

koordinat sistemi

: i-inci koordinat vekt6r alam

:0, ye karsilik gelen dual 1-form

: M tizerindeki (p,q) tipindeki tensérler kiimesi
: M iizerindeki vektor alanlari kiimesi
: M lizerindeki 1-formlarm kiimesi

: M {lizerindeki reel-degerli, smooth fonksiyonlarm kiimesi



OZET

Bir Riemann manifoldunda herhangi bir egri Frenet formiilleri tarafindan
nitelendirilebilir. Ornegin, bir egrinin biitlin egrilikleri 5zdes olarak sifir ise, bu
durumda bu egri bir geodezik, sadece birinci egriligi sifirdan farkh bir sabit ve digerleri
8zdes olarak sifir ise, bu durumda egri bir cember, birinci ve ikinci egrilikleri sifir

olmayan sabitler ve digerleri 6zdes olarak sifir ise , bu durumda eri bir helistir.

Eger bir M manifoldu, bir g indefinite-metrik’i iizerine kurulu ise, ortaya null
vektorler, uzay-benzeri vektorler ve zaman-benzeri vektorler ¢ikacaktir. Bu durum
dogal olarak egrinin Frenet formiillerinde bir farkhlifa neden olacaktir. Bu tez, bir yari-
Riemann (6zellikle Lorentz) manifoldu iizerindeki ¢emberler, helisler ve null egrilerle

ilgili yapilan ¢alismalardan bir derleme nitelifine sahiptir.

Girig boliimiinde, bir simetrik doniigiimiin indefinite 6zelligi, non-dejenere
Ozelligi, indeksi, vb. gibi yari-Riemann manifoldlarin kurulugu agisindan can alici rol

oynayan temel tammlar verilmistir.

Boliim 1°de yari-Riemann manifoldun tanmim, belirli 5zellikleri ve yari-Riemann
Geometrisinin en 6nemli elemanlarindan Levi-Civita Koneksiyonunun tanmm

verilmistir.

Bo6liim 2’de yari-Riemann altmanifold, indirgenmis koneksiyon, altmanifoldun
geometrisini belirlemeye yarayan ikinci temel form (sekil tensorii) ve normal

koneksiyonun tammlari ve bunlarla ilgili teoremler verilmigtir.

Béliim 3’de Riemann manifoldlarindaki egrilerle ilgili genel tamm ve teoremler
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verilmistir.

Boliim 4, tezin asil konusu olan Boliim 5’e gegisi saglayan Lorentz
manifoldlariyla ilgili tanim ve teoremleri igermektedir. Son boliimde yer alan Srnekler,

Ozglin olup ilgili teoremlere 151k tutmaktadir.



SUMMARY

In a Riemannian manifold, a curve is described by the Frenet formula. For
example, If all curvatures of a curve are identically zero, then the curve is a geodesic. If
only the first curvature is a non-zero constant and others are identically zero. Then the
curve is called a circle. If the first and second curvatures are non-zero constants and

others are identically zero, then the curve is called a helix.

If a manifold M is furnished with an indefinite metric g, then null vectors, space-

like vectors and time-like vectors come forth.

This thesis consists of collective results on circles, helixes and null curves in a

semi-Riemannian manifold especially in a Lorentzian manifold.

In the introductory chapter, we gave fundamental notions which play the crucial
roles to establish a semi-Riemannian manifold such as indefinite non-degenere metrics
and the index of a symmetric bilinear mapping and so on.

In the first chapter, a semi-Riemannian manifold and the Levi-Civita connection
on it were defined and certain properties of a semi-Riemannian manifold were

investigated.

Second chapter includes the definitions of a semi-Riemannian manifold, induced
connection, the second fundamental form(shape tensor) and normal connection. In this

chapter some theorems on the shape tensor and the others were given.

In the third chapter fundamental definitions and the theorem about curves of
Riemannian manifolds were given.

Fourth chapter that is connecting fifth chapter in which we present main content
of the thesis, includes basic notions and theorems on Lorentzian manifolds.
Examples given in the last chapter are original and they enlighten the related theorems.



L.Giris
TEMEL BILGILER

V , m-boyutlu bir reel vektdr uzay olsun. V iizerinde
g:Vx VIR

seklinde bir simetrik, bilineer doniisiim verilsin. Eger her ve V i¢in g(€, v) = 0 olacak
sekilde V nin sifirdan farkh bir £ vektorii varsa, o takdirde g, V lizerinde dejenere’dir,
aksi takdirde non-dejenere’dir denir. Eger g, V iizerinde non-dejenere ise, o takdirde
her veV igin g (u, v) = 0 = u =0 dir. V nin simetrik bilineer g formuna gére,

Rad V={EeV :g (§, v)=0,veV}

seklinde tammh alt uzayma V nin null uzay1 veya Radical’t adi verilir. Rad V *nin
boyutuna da g nin stfirhk derecesi adi verilir ve nullV ile gosterilir. nullV>0 ise g
dejenere, null V= 0 ise g, V iistiinde non-dejenere’dir.

Sifirdan farkh her veV vektori i¢in g (v,v)>0 (g (v, v)<0) ise g’ ye V iizerinde
pozitif-definite (negatif-definite) deriz. Boylece g definite ise non-dejenere’dir. Eger her
veV icin g (v,v) = 0 (g(v,v) < 0) ve g(u,v)=0 olacak sekilde sifirdan farkli bir ueV
vektorii varsa o takdirde g, V tizerinde pozitif (negatif) semi-definite’dir denir. Boylece
g semi-definite ise dejeneredir.

W, V nin bir alt uzay ise g, Wx W iizerine kisitlanabilir ve gly, kisitlanmist W
tizerinde yine bir simetrik, bilineer form’dur. g|,, nin negatif-definite oldugu en genis alt
uzaym boyutu’na g nin V iizerindeki index’i ad1 verilir ve indV=q ile gosterilir.

Simdi M, m-boyutlu bir reel smooth (diizgiin) manifold ve g’ de M iistiinde (0,2)
tipinde simetrik bir tensdr alam olsun. Boylece, g, M’nin her p noktasmdaki T,M
tanjant uzay iizerinde bir simetrik bilineer g, formunu tanimlar [1].



IL. Boliim 1

YARI-RIEMANN MANIFOLDLAR

Tanmm 1.1. Bir smooth M manifoldu tizerindeki bir g metrik tensorii sabit
indekse sahip bir simetrik nondejenere (0,2) tensor alamdir.

Bagka deyigle ge I3 (M), M nin herhangi bir p noktasim smooth olarak T, (M)
tizerindeki g, skaler carpma kargihk getirir, ve g nin indeksi biitiin p noktalan igin
aymdir.

Tamm 1.2. Bir yari-Riemann manifold bir g metrik tensorii {izerine kurulu bir
smooth M manifoldudur.

Boylece, bir yari -Riemann manifold (M, g) swrah ¢iftidir. Aym manifold
tizerinde farkh iki metrik tensor farkh yari-Riemann manifoldlarim olugtururlar.

Bir M yari-Riemannian manifoldu iizerindeki g, metrik tensdriiniin v indeksine
M nin indeksi denir. M nin boyutu n ise 0<v<n yazlabilir. Eger v=0 ise, M bir
Riemann manifoldudur. Yani V,eM, g, T, (M) lizerinde pozitif tammlidur. Ozel olarak

v =1ve n>2 ise 0 zaman M ye Lorentz manifoldu denir.

Biz g notasyonunun yerine alternatif olarak tanjant vektorler igin gy(v,w) =
<v,w>, €lR ve vektdr alanlan igin g(V,W) = <V,W>e3(M) notasyonunu kullanacagrz.

Eger x', ..., X%, UcM fiizerinde bir koordinat sistemi ise bu durumda g metrik

tensSrunii

=]

ve V=3V, , W= Wi,
i=1 j=1

-
1]

vektor alanlar1 olmak {izere



gV, W)=<V,W>=)g,ViW

ij=1

seklinde yazabiliriz. g non-dejenere oldugundan Vpe U, gy(p) matrisinin tersi vardir
ve tersini gi(p) ile gosteriyoruz. g simetrik oldugundan g; = g; ve buradan g¥ = g
(1<i,j<n). Sonug olarak U iizerinde g metrik tensoriinii

g = 2gj dx'®dx’ seklinde yazabiliriz. Ayrica VpelR®, IR" ile Tp(IR") arasinda
bir kanonik lineer izomorfizm vardir;

VV=IVE;
Boylece IR" deki nokta ¢arpimmdan bir metrik tensor ortaya gikarabiliriz.

(V. W, )= VW = Yv'w'. Burada O<v<n olmak {izere toplamdaki ilk v tane “+”

({34

igareti, “~” isaretine gevirirsek;

v n PR
>=-YVw + Yviw

<V W
i=1 j=v+l

P

seklinde indeksi v olan bir metrik tens6r inga edilebilir.

Bu metrik tensorlin meydana getirdigi uzayr IR| ile gosterelim. IR} ye yan-
Euclidean uzay denir. n>2 olmak tizere IR}, Minkowski n-uzay olarak adlandmilr,
Eger 6zel olarak n=4 ise IR} relativistik uzay-zaman adm alir. Sonug olarak

g =

-1, 1<i<v . o . .
olmak tizere IR} {izerindeki metrik tensor

1, v+1<i<n
g = Yedu'®du’ seklindedir.

Tamm 1.3. Bir v e T, (M) tanjant vektdriine
{v, v) >0 yada v=0 ise uzay-benzeri (space-like)
{v, V) <0 ise zaman-benzeri (time-like)

(v, v) =0 ve v=£0 ise null vekt6r denir.



Lorentz durumda null vektSrlere igikbenzeri (light-like) vektorler denilebilir.

LEVI-CIVITA KONEKSIYONU

Tanm 1.4. ', ..., u”, IR? nin dogal koordinatlari olsun. Eger Vve W= Yw'0,

IR}, tizerinde vektdr alanlar iseler

VyW=YV(W)9; vektor alanna W nin V yoniine gore dogal
kovaryant tiirevi denir.

Simdi bu tammu keyfi yari-Riemann manifoidlara genisletelim.

Tanmm 1.5, Bir smooth M manifoldu {izerindeki bir V konneksiyonu agagidaki
6zelliklere sahip bir fonksiyondur.

V:R(M)x RM)— R(M) soyleki
(V1) VW, Vye gore I(M) - lineer.
(V2) V\W, W ye gore IR - lineer.
(V3) feI(M) olmak iizere V(fW)=VIW+{V,W
VW ye V koneksiyonuna gére W nin V yoniindeki kovaryant tiirevi denir.

(V1) aksiyomu V,W’nin V ye gére tensdr oldugunu iddia eder, ancak (V3)
aksiyomu ise V,W nin W ye gore tensér olmadigim gosterir.

Simdi asil amacimizi ger¢eklestirmek igin agagidaki 6nermeden faydalanalim.

Onerme 1.6. M bir yar-Riemann manifold olsun. Eger VeX(M) ise V/, M
lizerinde bir 1-form olsun soyleki

VXeRM), VX) =<V, X>

Bu durumda V—V" geklinde tammlanan fonksiyon, N(M) den &'(M) a I(M) -
lineer izomorfizm dir.



ispat: V', 1-form oldugundan S(M)-lineer dir. Dolaysiyla V—V* fonksiyonuda
3(M) lineer olur. Simdi su iddialar1 ger¢eklersek izomorfizm oldugunu géstermis
olacagz.

i) Eger VXe R (M), <V, X> = <W, X> ise bu durumda V =W dir.

ii) Verilen 0eR°(M) 1-formu igin tektiirli belirli bir VeN(M) vektor alam
vardir, 8yle ki VXeN(M), 6(X)=<V,X> olur.

U=V-W diyelim. Eger VpeM ve VXeNX(M) <U,, X,> = 0 ise buradan U=0
¢ikar. Ciinkii; Ty(M) in her elemam X, formundadir ve TyM) non-dejeneredir.
Dolayisiyla T,(M) tizerindeki metrik tensér non-dejeneridir. Béylece i) dogrulanir.

Simdi i) sayesinde ii) deki teklik kosulu ispatlannug oldu. Dolaysiyla ii) yi
ispatlamak igin keyfi bir U koordinat komsulugunda V yi bulmak yeterlidir. Eger U
tizerinde 6=Y0,dx' ise, V yi V = 3.¢6,0; seklinde tammlayahm. Bu durumda (g;) ve

ij

(g" )birbirlerinin ters matrisleri oldugundan
<V,0y >= Zgijei <0;,0y >= Zeigijgjk
i.j ij

= Zeisik =6, =06(0,)

3(M) - lineerlikten U tizerinde biitiin X ler igin <V, X>=06(X) ¢ikar.

Boylece yar-Riemann geometride bir vekt6r alammi rahatga bir 1-forma
doniigtiirebiliriz ve bunun tersinide yapabiliriz. Yukandaki Onerme deki kosullari
saglayan V vekt6r alanina, 0, 1-formuna metrik olarak esdegerdir denir.

Simdi yari-Riemann geometrisinin en temel teoremlerinden birini verelim.

Teorem 1.7. Bir M yari-Riemann manifoldu tizerinde tek tiirlii belirli Syle bir V
koneksiyonu vardir ki VX,V,We X (M),

(V4) [V, W]= VvW'VwV
(V5) X <V,W> = <V,V,W> + <V, V,W>



kosullarim saglar. V ye M nin Levi-Civita koneksiyonu denir ve asagidaki Koszul
formiiliinii gercekler.

2<V, W, X> = V<W . X> + W<X, V> - X<V, W>
"<V,[W,X]> + <W3[X9V]> + <X9[V’W]>‘

Ispat: Farzedelim ki M {izerindeki V koneksiyonu (V4) ve (V5) i gergeklesin.
(V5) i kullamirsak Koszul formiiliiniin sag yamndaki ilk {i¢ terim su hale gelir.

<V W,X> + <W, V,W> + <V X V> + <X Vi, V> <V, V,W> - <V, V,W> Bunu
(1) ile gosterelim. (V4) i kullamirsak son tli¢ terim su hale gelir;

-<V,VoX> + <V,V,W> - <X,V V>

Bunu da (IT) ile gosterelim (T) ile (IT) yi toplayip gerekli sadelestirmeleri
yaparsak 2<V , W , X> kahr. Boylece V, Koszul formiiliinii gergeklemis olur. Onerme

1.6 nm i) sikkindan V nin teklii de ortaya ¢ikar.

Simdi V koneksiyonunun varhfm gosterelim. Koszul formiiliiniin sag tarafim
F(V,W.X) ile tammlayalm. Sabit V, We(M) vektor alanlar1 i¢in dogrudan basit
hesap gosterir ki X—>F(V,W,X) fonksiyonu J(M)-lineerdir. Dolayisiyla bu fonksiyon
bir 1-form dur. Onerme 1.5 sayesinde, tektiirlii belirli 5yle bir vektor alam vardir ki, onu
VW ile gosterirsek biitlin X vektor alanlar igin 2<V,W,X>=F(V,W,X) olur. Simdi bu
V koneksiyonunun (V 1) den (V 5)’e kadar biitiin 5zellikleri gergekledifini gosterelim.
Omegin (V4)’ti agkk olarak gosterelim. 2<V ,W-V,V,X> = F(V,W,X)-F(W,V,X)
ifadesinin sad tarafi <X,[V,W}> - <X,[W,V]> = 2 <[V,W], X> seklindedir. Dolayisiyla
Onerme 1.5 den istenen gikar. $imdi (V 3) i gosterelim. Keyfi bir X vekt6r alam iin

<QV (fW), X> = V<IW,X> + fW<X,V>-X<V, fW>
'<V:[tWaX]> + <tws[X9V]> + <X,[V,fw]>

burada [fW,X] = -XfW+{W,X] oldugunu kullanirsak esitliin sag tarafi



Vi<W, X) + V<X, W> + X<V, W>
-WI<V,W>+HF(V,W,X) = 2<(VH)W+{V,W,X> seklinde bulunur.

Boylece Onerme 1.6 den (V3) saglanir. Digerlerinin gergeklenmesi ise daha
agiktir.

Simdi yan-Riemann manifoldlarmda V Levi-Civita koneksiyonuyla ilgili ileride
sik¢a kargilagacagimiz iki tanim verelim.

Tanm 1.8. V, bir M yarn-Riemann manifoldu {izerinde bir vektor alam olsun.
M tizerinde tek tiirlii belirli 6yle bir V, kovaryant tiirevi (Levi-Civita) vardir ki

fe3(M) igin V. f=Vf
ve WeR(M) i¢in V, W Levi-Civita kovaryant tiirevini elde ederiz.
Eger Ae I} (M) ise (1,s) tipinden V,A tensdr alamt V’ye gére fiM) - lineerdir.

Tanm 1.9. Bir M yan-Riemann manifoldu tizerinde (r,s) tipindeki A

tensOriiniin kovaryant diferensiyeli (r,s+1) tipindeki V A tensoriidiir.

Soyleki,

(VAYO, ..., 6, X, ..., X5, VIS(VLAXO', ..., 65, X, ...X,), burada V,X;e X(M) ve
Oer’(M).1<iss, Igj<r. Ozel olarak r=s=0 durumunda A tensdrii bir feI(M)
fonksiyonu olacagindan bu durumda bunun diferansiyeli dfe N*(M) dir. Gergekten;
YVeRM), ( VO(V)=V,£=VE=df(V) dir. Bir A tensor alamnm her Ve X(M) igin V,A
kovaryant diferensiyeli 6zdes olarak sifir ise A tensdr alanma paralel’dir denir. Ornegin
bir M yari-Riemann manifoldu iizerindeki g(V,W) = <V,W> metrik tensoriiniin paralel
olmasi (V5) e esdegerdir. Gergekten, Xe X (M) keyfi vektor alam i¢in

(V.2)(V, W) = (V2)(V, W, X)+g(ViV, W)tg(V, VW)

oldugundan istenen kolayca ¢ikar.



HI. Bolim 2

YARI-RIEMANN ALTMANIFOLDLAR

Oncelikle genel anlamda altmanifold tanmmm yapahm.

Tanmm 2.1. Eger bir P manifoldu asafidaki iki kogulu saghyorsa M
manifoldunun bir altmanifoldu dur denir:

(1) P,M nin topolojik altuzay:,

(ii) jPcM igine doniisimii smooth ve her peP noktasmda dj diferansiyel
doniigtimil bire-bir’dir.

Eger M, M nin Tamm 2.1 deki gibi bir yarr-Riemann altmanifoldu ise
v,weT,(M)cT, (M) vekdrleri igin <v,w> notasyonu bilinen anlamdadir. M ve M nin
Levi-Civita koneksiyonlarmmn kargilagtirilmas1 sonucunda ortaya B ile gsterecegimiz
bir tensor ortaya ¢ikar. Bu ise M de M nin seklini belirlemeye yarar. M deki
koneksiyonu V, M deki koneksiyonu ise V ile gosterecegiz. Ote yandan Y, M iistiinde

bir egri iizerindeki vektor alant ise Y =VY/ds ve Y'=VY/ds. (Eger egri M de ise

(; =a'=do./ds). Bundan bdyle M, M nin yari-Riemann altmanifoldudur demek yerine
daha kisa olarak Mc M notasyonunu kullanacagz.

TANJANTLAR ve NORMALLER

Tanmmm 2.2. Bir smooth $:P->M doniiglimii lizerindeki bir Z vektdr alam su
sekilde tanimlanan doniisimdiir; Z:P—>TM s6yleki noZ=¢, burada =, TM den M ye
izdiigtimdiir.

jMcM igine donisiimil fizerindeki her bir X vektor alam yukaridaki tammdaki
gibi ise M ye M nin bir smooth altmonifoldu denir. Bdylece X, M nin her p noktasma

M nin p noktasmdaki bir X, tanjant vektorimnii karsihk getirir. Eger fe3(M) igin
Xfe3(M) oluyorsa X smooth’dur diyoruz. Bu sekilde tanmmh vektér alanlarmm



kimesini N(M) ile gosterirsek, N(M), 3(M) izerinde modiil yapisma sahiptir.
Tammdan kolayca gunu ¢ikarabiliriz; herhangi Ye N(ﬁ) icin YIMe R (M) dir 2}
Simdi McM olsun. Her peM igin Ts(M), Tp(ﬁ) nin bir non-dejenere
altuzayidir. Dolayisiyla lineer cebir bilgilerimize gére
Tp(M) = T(M)+T,(M)" yazabiliriz.
ve iistelik T,(M) *de nondejeneredir. To(M) L nin boyutu k, M nin M deki ko-boyutu
adim alir. Dolayisiyla M nin boyutu n ise M nin boyutu n+k olmak zorundadir. Yani
Boy Ty(M )=Boy T,(M) + Boy Ty(M)*
Ayrica, ind Ty(M )=ind T,(M) + ind T,(M)*
yazabiliriz.

T,,(M)l deki vektorlere M ye normal vektdrler diyoruz. Tp (M) deki vektorlere
ise M ye tanjant vektorler diyoruz. Yukaridaki toplamlardan faydalanarak peM olmak

fizere her xe Ty( —ﬁ) vektori i¢in agagidaki tek tiirlii yazihs: yapabiliriz.

x= tan(x) + nor(x)
Burada tan(x) e T,(M) ve nor(x)e T,(M)"

Ortogonal izdtigtimiin dogal sonucu olarak

tan:Ty( M )->T,(M) ve nor:To( M )—>T,(M)*

izdiigiimlerinin IR-lineer oldugunu sdyleyebiliriz.

Bir Ze N(M) vektor alany, eger her Z,, vektorii M ye normal ise M ye normal dir.
Bu tiir vektor alanlarmdan olugan kiimeyi N(M)" ile gosterirsek N(M)*, N(M) nin bir

altmodiilii olur.

Bir Xe §(M) vektér alanma M nin her noktasinda tan ve nor operatdrlerini

uygularsak tanXeNX(M) ve norXeN(M)" vektsr alanlarm elde ederiz. Ortogonal
izdiigtimiin sonuglarindan

tan: N(M)—>N(M) ve nor: X(M) >R (M)*
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izdigtiimleri 3(M)-lineerdir. Ayrica RNR(M)=RM)+XM)* direkt toplammdan
X=tanX-+norX dzdeslifini yazabiliriz [3].

INDIRGENMIS KONEKSIYON

Eger M, M nin bir yari-Riemann altmanifoldu ise, M nin V Levi-Civita
koneksiyonundan faydalanarak M {izerine indirgenmis bir koneksiyonu tammlamaya
cahsalm. N(M)x R(M)—>N(M) fonksiyonunu diisinelim. Eger VeX(M) ve
Xeg(M) ise, bu durumda, V ve X, R(ﬁ) de olmadiklarndan VX in nerede
oldugunu bilemeyiz. Bu eksikligi gidermek i¢in agafidaki 6nermeyi kullanalm.

Onerme 2.3. $:P—>M bir immersiyon olsun. Eger ZeN(¢) ise 8yle bir XeN(M)

vardir ki peP nin bir komsulupunda Z=X; olur. Burada X’e¢ Z nin smooth lokal

genislemesi denir.

Simdi her peM i¢in V ve X, p nin M deki bir U komgulugunda V nin ve X in
smooth lokal genislemesi olsun. Bu durumda UM iizerinde V X vektor alamm VX
nin UNM ye kisitlanmisi olarak tanimlayabiliriz.

Onerme 2.4. V yX, M iizerinde iyi tammh smooth M vektdr alamdir.

Ispat: Bir smooth vektor alanmmn kistlanmgi da smooth oldugundan

V¥X| UM de smooth olur. Bylece bu islemin geniglemelerin segiminden bagimsiz

oldugunu gostermek yeterlidir. Bir U koordinat sistemi iizerinde X =Yfo; yazahm. O

zaman VyX =) V£'0,+Y f'V_8, olur. Ancak qeUnM igin (V f)(q)=V,f =

V(A UNM) ve Vv(9,)] =Vv,(8,) oldugundan V¥X in kistlanms sadece V ve
X’e baghdir. Agiktir ki V:N(M)x N (M)~ N (M) indirgenmis koneksiyonu M nin

Levi-Civita koneksiyonuyla ¢ok yakmdan baglantihdir. Biz her iki koneksiyon i¢in de
aym notasyonu kullanacagiz. Boylece asagidaki sonucu yazabiliriz.

Sonug 2.5. v, McM nin indirgenmis koneksiyonu olsun. Eger V, WeX(M) ve
X,Ye R (M) ise, o zaman
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Sonug 2.5. V, McM nin indirgenmis koneksiyonu olsun. Eger V, WeX(M) ve
X,Ye N (M) ise, o zaman

)] VvX,V ye gore I(M) - lineerdir.
2) VvX,Xe gore IR-lineerdir.

@) feIM)igin Vy ((X)=VEXHVyX
@ [V,W]=VyW-VyV

B) V<XY>=<VvX,Y>+<XVyY>

Burada su basit gercegi vurgulamakta yarar var. V,W vektor alanlari M ye
tanjant olmasma ragmen VyvW kovaryant tiirevinin M ye tanjant olmas1 gerekmez.
Dolaysiyla ortaya tanVyW ve norVyW vektdr alanlarmin ne oldugu sorusu ¢ikiyor.

Onerme 2.6. McM igin, eger V,WeX(M) ise bu durumda VyW = tanVyW
dir. Burada V, M nin Levi-Civita koneksiyonudur.

Ispat: XeX(M) keyfi bir vektor alam olsun X, V, W vektor alanlarmm lokal

genislemelerini Koszul denkleminde yazarsak.

2< VYW, X >=F(V,W,X)
elde ederiz.

F(V,W,X)M=F(V,W,X) bulunur. Buradan <VyW,X>=<V,W,X> olur.
X,M ye tanjant oldugundan VyW nin yerine tan VyW yazabiliriz. Boylece metrik

tensoriin nondejenereliinden V, W =tan VvW sonucu gikar [2].

Onerme 2.7. B:X(M)x 8 (M)—>N (M) olmak iizere B(V,W)=nor VyvW seklinde
tanmimh fonksiyon 3(M) - bilineer ve simetriktir.

ispat: VyW, V ye gbre JI(M)-lineer ve nor operatdrii J(M)-lineer
oldugundan B fonksiyonu V ye gére 3I(M)- lineerdir. feI(M) olmak dizere
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Vv(W) = (V)W +fVyW nor Vv (fW)=nor(V)W-+norfVyW . Burada W, M ye
tanjant ve nor operatdrii 3(M) lineer oldugundan

B (V,fW)=nor Vv (fW) =f norV, W = f B(V,W).
B, W ye gore de I(M)-lineerdir. Ote yandan

B(V,W) - B(W,V) = nor(VvW —VwV)=nor[V,W]=0. Boylece istenilen iddialar
ispatlanmig olur.

Biz bu B fonksiyonuna M nin gekil tensorii yada ikinci temel formu diyoruz.

Son iki Onermeyi Ozetlersek Gauss denklemi diyecegimiz bir &zdesligi elde

ederiz.

V,WeR(M) olmak fizere VyW =V, W +B(V,W). Burada VyW, M ye tanjant
B(V,W) isc M ye normaldir [4].

Tanmm 2.8. M nin bir M yar-Riemann altmanifoldunun sekil tensorii B = 0 ise
Mye M nin bir tiimel geodezik altmanifoldu denir.

Tamm 2.9. McM ve peM olsun. Biitiin v,weTy(M) ler igcin B(v,w)=<v,w>z
olacak sekilde bir zeT,(M)" normal vektorti var ise p noktasma M nin bir umbilik
noktasi denir. Bu durumda z ye M nin p noktasindaki normal egrilik vektérii denir.

Eger bir McM yar-Riemann altmanifoldunun her noktasi umbilik ise M ye
tiimel umbilik denir. Bu durumda M {izerinde B(V,W)=<V,W>Z olacak sckilde Z
smooth normal egrilik vektdr alam vardir. Baylece bir tiimel umbilik altmanifoldunda Z
normal egrilik vektor alami &zdes olarak sifir ise o altmanifold tiimel geodezik
altmanifold olur.
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YARI-RIEMANN HiPERYUZEYLER

M nin bir M yari-Riemann hiperyiizeyi sadece karsit boyutu 1 olan yar-
Riemann altmanifoldudur. Bdylece Tp(M)" normal uzaymn indeksi ya 0 yada 1 dir.
Simdi bununla ilgili tanim verelim.

Tammm 2.10. Mnin bir M yari-Riemann hiperyiizeyinin € isareti, efer M nin
karsst indeksi O ise +1 dir. Bdylece her z#0 normal vektdrii icin (z,z) >0 olur. Efer M
nin karsit indeksi 1 ise € igareti -1 dir, boylece her z#0 normal vektori i¢in (z,z) <0

olur.

Agik olarak eer =1 ise ind M=ind M ancak e=-1 ise indM=indM-1 dir.
Riemann manifoldlarda hiperyiizeylerin isareti daima +1 dir ancak, metrigin belirsiz
olmasi durumunda hiperylizeylerin isareti +1 veya -1 olabilir.

Onerme 2.11. ¢, feI(M) nin bir degeri olsun. Bu durumda M=f(c)
kiimesinin M nin bir yari-Riemann hiperyiizeyi olmasi i¢in gerek ve yeter kogul M

lizerinde ( gradf, gradf) >0 yada <0 olmasidir. Bu durumda M nin isareti ( gradf, gradf)
in igaretidir ve U=gradf/||gradf]|, M tlizerinde bir normal vektor alamdir.

Ispat: gradf, dfe metrik olarak esdeger oldugundan buradan kolayca M nin
hiperyiizey oldugu ¢ikar. Ciinkii c, fe J (M) nin bir degeri oldugundan f(p)=c kosulunu
saglayan her pe Migin df, # 0 dir dolayistyla (gradf,gradf) = 0dr ve M=f"'(c) bir

hiperytizey olur. Ote yandan herhangi bir ve T,(M) igin

<gradf, v> = v(f) = v(ffM)=0 dwr. Clinkii f, M lizerinde sabitdir ve bdylece gradf
M ye normal olmak zorundadir.

Omegin IR™' de f£=Y(u’)* olarak alirsakf'(r?), bildigimiz standart S%(r)
kiiresidir.

Her McM yar-Riemann hiperyiizeyinin bu sekilde elde edilmesi gerekmiyor,

¢ilinkti M nin tamaminda tammbh smooth birim normal vektdr alanmnin var olmas: garanti
degildir. Ornek olarak IR® te Mbius bandim verebiliriz [9].
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Tanmm 2.12. U, McM yan-Riemann hiperylizeyinin bir birim normal vekt6r
alam olsun. M iizerinde biitiin V,We N (M) vektdr alanlan igin

<S(V),W> = <B(V,W),U>

kosulunu saglayan (1,1) tipindeki S tens6r alanma M nin U tarafindan tiiretilen sekil

operatorii denir.

Onerme 2.13. Eger S, U tarafindan tiiretilen sekil operatorii ise, bu
durumda S(v)=-VyU dir ve her peM igin T,(M) iizerinde S lineer operatorii self-
adjointtir.

Ispat: <U,U> sabit oldugundan <$vU,U >=0 olur. Boylece vyU, M ye
tanjant olur. We (M) olsun. Bu durumda;

<§(V),W> =<B(V,W),U>=<VyW,U >=-<VyU ,W>

Buradan S(V)=-VyU ¢ikar. B nin simetrik olmasi nedeniyle S nin self-adjointligi
kolayca gikar [2],[4].

HIPERKUADRIKLER
q(v)=<v,v> seklindeki e 3 (IR}*") fonksiyonunu ele alalim. g yu dogal

koordinatlara gore agarsak

g=Ye,@) ==Y @) + ¥ @y’

i=l i=1 j=vil

Eger P, IR™! nin bir yer vektorii ise 0 zaman q=<P,P> yazabiliriz. Sonug olarak
gradg=2P olur.

Ciinkii her V igin
<gradq,V> = Vg=V<P,P>=2<VyP,P>=2<P,V>

Burada, Vq=V [q], q niin V ydniine gore tiirevidir.
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Boylece <gradq, gradg>=4q. Onerme 2.11 e gére r>0 ve e=*1 oldugundan
Q=q(er’) kiimesi IR™! nin bir yan-Riemann hiperylizeyidir. Q niin birim normali
U=P/r ve isareti €& dur. Bu sckilde tammlanmmg hiperylizeylere IR™ nin
hiperkuadrikleri denir. Ozel olarak A=q”(0)-{0} kiimesine IR®" nin nul konisi
diyoruz.

Tanmm: 2.14. n>2 ve 0<v <n olsun. Bu durumda

(1) IR*™! nin r>0 yarigaph sbzde kiiresi (pseudo-sphere) boyutu n ve indeksi v
olan bir hiperkuadriktir, $6yle ki

$1()=q"()=p e RI¢p,p) =17}

(2) IR* nin r>0 yanigaph sbzdehiperbolik (pseudo hiperbolic space) boyutu n
ve indeksi v olan bir hiperkuadriktir, s6yleki

HY(r) = q ' (-1%) = {p e IR™! :< p,p >= -1}

S6zdekiirelerin isareti +1 oldugundan indeksi IR™! nin indeksi ile aymdir,
ancak sozdehiperbolik uzaylarm isareti -1 oldugundan IR™" de indeksi v—1 olmak

zorundadir. v=0 igin SP(r), IR™ = IR™! in standart kiiresidir.

Simdi sozdekiireler ile sozdehiperbolik uzaylarin birbirleriyle iligkisini ortaya
¢ikaran dnermeyi verelim.

Onerme 2.15. o(P1, --> Pnt1) = (Dv+ls -5 Pnt1> P15 ..., Pv) Scklinde verilen
o: IR} - IR™  donliglmi bir ters-izometridir. $oyleki o, her S2(r) stzdekiiresini

Hj_, (r) sézdehiperbolik uzay iizerine tagir ve ters dontisimide Hp_,(r) yi S,(r) ye

tagir.
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Ispat: o bir lineer izomorfizm oldugundan ve <o(p),o(p)>

n-+1 v
==Y (0;,)’+>.(p;) =—<p,p> oldugundan c nin bir izometri oldugu ve

v+l 1

Sy (@) yi Hy_, (r) ye tasidigi kolayca goriiliir [2].

NORMAL KONEKS{YON

McM nin normal koneksiyomu VeR(M), ZeNM)* igin ViZ=norVyZ

seklinde tanmh V* : R(M)xX(M)* - X(M)* fonksiyonudur.

VyZ ye Z nin V ye gore normal yondeki kovaryant tiirevi denir.
V koneksiyonun dzelliklerinden faydalamirsak agagidaki tig 6zelligi kolayca yazabiliriz.

(1) Vi Z, V-ye gore S(M)-lineer ve Z ye gore IR-lineerdir.
?) Vy (£2) =fV5 Z+V{Z, burada fe 3(M).

3) V<Y, Z>=<ViY,7Z><Y, Vi Z>, burada Y,Ze R (M)*
v v

Tensorlerle ilgili tiirev tamm ve normal koneksiyonu kullanarak McM nin B
sekil tensorii icin (V,B)X,Y) = Vy@BX,Y)) - B(VvX,Y) - BX,WvY) esitligini
yazabiliriz. Burada V,X,Y e N(M).

B nin simetrikligi ve J(M)-bilineerliginden VB :R(M)x R(M)->RM)"
fonksiyonun da simetrik ve I(M)-bilineer oldugunu gorebiliriz.

Bir ZeNX(M)* vektor alanma, YVeR(M), Vv Z=0 kosulunu saghyorsa normal
yonde paraleldir denir.

Simdi V ile V- koneksiyonunun iliskisini agiklamamiza yarayacak B tensoriiniin
tanimm verelim. Mc M olsun Ve N(M) ve Ze RM)* olmak iizere

B(V,Z)=tan VvZ seklinde tanimlanar.

Boylece daha 6nceden gormiis oldugumuz tanimlar: birlestirirsek;
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(1) VvZ=B(V,Z)+ViZ vi elde ederiz.

B :NM)x R(M)*—>R (M) fonksiyonunun I(M)-bilineer oldugu agiktir. Buradan
her peM noktasmda B bize T,(M) ye bir IR-bilineer doniisiimii verir.
(2) <]~3 (V3Z)5W> = '<B(V9W)’Z>

Burada V,WeXM) ve ZeNM)'. Bunu sgbyle ispat edebiliriz.
<Z,W>=0=><VyZ, W >=—<Z,VyW > oldugundan

<B(V,2),W>=<VyZ,W >=— < VyW,Z >= —<B(V,W),Z>

(3) ZeRM) igin SzV= -B(V,Z) dersek (2) den <SzV,W>=<B(V,W),Z>
yazabiliriz [2],[5].
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IV. Boliim 3

EGRILER

Bir M manifoldunda o:I->M seklindeki smooth doniisiime bir egri denir. Burada
I, IR nin agik arahf olacag: gibi, yar1 sonsuz agik arabik yada IR nin kendisi de olabilir.
Ozdegslik d6niigiimii sayesinde I, IR! in bir agik altmanifoldudur. (IR=IRY)

Tanim 3.1. a:I->M bir efri olsun. a nin tel noktasindaki iz vektorii
o ()= dof 3| ]e Ty OM).
dll t a(t)
Simdi egrilerle ilgili basit 8zellikleri listeleyelim.
(1)  Yone gore tlirev: fe I(M) olmak tizere
w(of =32 .
du

Boylece efer a, o/(0)=v olacak sekilde bir egri ise bu durumda
v(f)=(d(foa)/dt)(0 ) dur.

(2) Koordinat agihmi: x', ..., x", M nin o(t) noktasmdaki bir koordinat

sistemi olsun. Baz teoreminden;

a)=3 d(x;“) 9,

i=1 u

a(t)

(3)  Reparametrizasyon: Eger a:I->M bir egri ve h:JoI , J arahfmnda smooth
dontsiim olsun, bu durumda P=c(h):J>M egrisine o. nm yeniden parametrelenmesi
denir ve Vsel, B'(s)=(dh/du) o’(h(s))

(4) Bir donisimiin etkisi: Eger o:I->M, M de bir egri ise, bu durumda
¢:M—-N doniiglimii o edrisini ¢oo:I->N egrisine tagir. ¢ nin diferensiyel doniiglimii
hizlar korur, yani;
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dé(a’'(t))=(poa)'(t), Vtel.
Vtel, o/(t)0 ise o ya regiiler egri denir.

Bir egriyi daima t—a(t+c),(ceIR) seklinde yeniden parametreleyebilecegimiz
i¢in bir egrinin tamim blgesinin daima sifir1 igerdigini kabul edebiliriz [2].

PARALEL OTELEME

Bir déniigiim {izerindeki vektSr alammmin en basit durumu bir a:I->M egrisi
tizerindeki Z vektér alamdir. Z, her tel noktasiu smooth bir sekilde M nin a(t)
noktasmdaki tanjant vektoriine karsihk getirir. Ornegin; o {izerindeki o' hiz vekt6rii bir
vektor alamdir. Bu o' vektdr alam bir VeNX(M) vektSr alaninin oo egrisine kisitlanmig
halidir. Yani a'=V, dir. Bu tiir smooth vektor alanlarmin kiimesini X (o) ile gosterirsek
N(a), I(I) tizerinde bir modiil yapisina sahiptir.

Onerme 3.2. a:I->M, bir M yari-Riemann manifoldu tizerinde bir egri olsun. Bu
durumda N(o) dan N(a) ya tektiirlii belirli Z—>Z'=VZ/dt geklinde Syle bir fonksiyon

vardrr ki

(1) (aZ+bZy)'=aZ, +bZ, (a,belR)

2) (hZy = (db/dt)Z+hZ', he 3(I)

@) V) OVay (V) tel, VeR(M)
@  dt<Zy,Zp>=<Z,,Z,>+<Z,,Z,>.

kosullarm: gercekler. S6zii edilen bu fonksiyona indirgenmis kovaryant tiirev diyoruz.

Ispat: Teklik: Farzedelim ki bir indirgenmis koneksiyon yukardaki ik g
ozelligi gerceklesin. Biz o egrisinin bir tek x', ..., x* koordinat sisteminin tamm
bblgesinde bulundugunu farzedebiliriz. Baz teoremine gore, eger Ze N(a) ise, o
zaman ot) noktasinda

Z (O=XZ(t)Xa=X(Zx) )8
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Zx"I-IR bilesen fonksiyonunu Z! ile gdsterelim. (1) ve (2) dzelliklerinden

Z-a] +Z Z'(8;|,) olur. Burada (3) i kullanwsak (8ila)'=Vi(5))

i=1 i=1

oldugundan

A
Z'=
l—zl dt i=1

yazabiliriz.

Boylece Z' tamamen V Levi-Civita koneksiyonu tarafindan belirleniyor. O halde
bu koneksiyon tek olmak zorundadir.

Varlik: o (J) bir koordinat komsulugunda tammlansm. Burada J, 1 nin herhangi
bir altarahgidir. Z' bu aralikta yukaridaki formiildeki gibi tanmmlanirsa yukandaki dort
Ozellik gerceklenir.

Ozel olarak Z=o!' olmas1 durumunda Z'=o"’ ye o nin ivmesi denir.
Bir Z vektor alam igin Z'=VZ seklinde yazabiliriz ve buradan a''=Vq(a') ¢ikar.

Yukardaki koordinat formiiliiniin i¢ine Christoffel sembollerini koyarsak

k
z'-_-g{i‘azt_kJrZr;Mzi}ak

dt

ij
elde ederiz.

Eger Z'=0 ise Z ye paralel’dir denir. Bu formiil gosterir ki Z'=0 olmas: bir lineer
adi diferensiyel denklem sistemine esdegerdir. Bu tiir sistemler igin temel varlik ve
teklik teoremi sayesinde agagidaki sonucu yazabiliriz.

Sonug 3.3. Bir a:I>M egrisi i¢in acl ve zeTye)(M) olsun. Bu durumda Z(a)=a
olacak sekilde bir tek paralel Z vektdr alam vardir.

bel olmak iizere P=PP(a):Tp(M)—»> Tq(M) déniigiimii herbir z yi Z(b) ye
gonderir. Bu doniisime p=a(a) dan g=a(b) ye o boyunca paralel teleme adi verilir.

Onerme 3.4. Paralel 6telemeler bir izometridir.
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Ispat: v,weT,(M) olsun. Bu vektorlere kargihk gelen Sonug 3.3. deki gibi
paralel vektér alanlan V,W olsun. V+W de nparalel olacagindan
P(v+w)=(V+W)(b)=V(b)+W(b)=P(v)+P(w). Benzer sekilde celR i¢in P(cv)=cP(v) dir.
Bdoylece P lineerdir.

Eger P(v)=0 ise o zaman Sonug 3.3. deki teklikten V, a lizerinde 6zdes olarak
sifir olmak zorundadw. BSylece v=V(a)=0 olur. O halde P bire bir ve M nin tanjant
uzaylarn aym boyuta sahip olduklarmdan P bir lineer izomorfizimdir. Sonu¢ olarak
yukardaki V,W vektdr alanlar igin

dit<V,W> = <V',W> + <V,W>=(0. Buradan <V,W> sabit oldugundan

<P(v), P(w)> = <V(b), W(b)> = <V(a), W(a)>=<v,w> yazariz. Boylece P bir izometridir
[2],[6].

GEODEZIKLER

Bir M yari-Riemann manifoldunda y:I->M egrisinin ¥ hiz vektSr alam paralel
ise ¥ ya bir geodezik denir.

Sonug 3.5. x', ..., X", UcM ftizerinde bir koordinat sistemi olsun. U daki bir y
egrisinin M nin geodezifi olmas: igin gerek ve yeter kosul y nin koordinat fonksiyonlar:
olan x* oy lar igin

d”(): D S i) d(x' o) d(x"to M _o, d<k<n)

t 7 dt d

olmasidir.

Adi diferensiyel denklemlerin varlik ve teklik teoreminin sonucunda asagidaki
onermeyi yazabiliriz.
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Onerme 3.6. Eger ve T,(M) ise 0 (sifiri) icine alan bir I arahg ve tek tirld
belirli bir y:I>M geodezigi y'(0)=v olacak sekilde vardur.

Ornek 3.7. Yan-Oklidyen Uzaym Geodezikleri

IRy nin dogal koordinatlarma gore biitin Christoffel sembolleri sifir

d*(u o)
dt
u' (y(t))=p'+tv' yazarz. Burada her telR igin p' ve V' ler keyfi sabitlerdir. Dolayisiyla

olacagmmdan geodezik denklemi =0 (1<i<n) halinc gelir. Bdylece

vektSr notasyonuna gore y(t)=p+tv elde ederiz. Buradan IR nin geodeziklerinin
dogrular oldugunu goriiriiz.

Onerme 3.8. y:I->M, M nin sabit olmayan t parametreli geodezigi olsun. y nin
yoh:J>M reparametrizasyonunun da bir geodezik olmasi i¢in gerek ve yeter kosul
h(t)=at+b a,belR, olmasidir.

Ispat: Herhangibir y egrisi igin
(yoh) (t)=(dh/dt) y' (h(t)). Burada Leibniz ve zincir kuralin: kullamrsak
v geodezik oldugundan y"'=0 ve y sabit olmadifindan v’ asla sifir olmaz.
Boylece (yoh)(t) egrisinin geodezik olmasi igin gerek ve yeter kosul

%(t) =0<>h(t)=at+b olmasidir [2],[4],[51,[6].

ALTMANIFOLDLARDA GEODEZIKLER

VyW=V,W+B(V,W) esitligini bir epri {izerindeki vektor alanlarma
uygulayabiliriz.

Onerme 3.9. M, M nin bir yar-Riemann altmanifoldu ve Y, M deki bir a eprisi
tizerinde M ye tanjant bir vektor alam olsun. Bu durumda

Y = Y4 B(e, Y) drr.
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Burada Y = VY /ds ve Y'=VY/ds

ispat: Her zamanki gibi o y1 M nin bir tek kosulugunda diigiinebiliriz. Y=XY'6;
yazahm. M nin geometrisine gore

. ay* i o
Y=Z—ds*ai +XY'(@i]a)

yazabiliriz. Ancak (ai|a)‘ = vuz'a\i = Va'(ai)+ B(',8)

oldugundan son ifadeyi bir 6nceki ifadede yerine koyarsak

\?:Zd—;g-ai +Y Y (V. (8;) + B, 9,))

buluruz. Boylece B nin JI(M)-lineerligini kullamrsak
¥=3 Y 5 4 VY, 8+ B,y Yid)
ds 1 1 i

Y =Y +B(,Y)
elde ederiz.

Sonug 3.10. Eger o, Mc M de bir egri ise 0 zaman

*0
a=a"+B(a,a’)

yazilabilir.

Burada a, o nn M geometrisine gdre ivmesi ve a'’, M geometrisine gore

ivmesidir.

Bu sonucun ispati i¢in yukaridaki dnermede Y yerine o egrisinin hiz vektSriinii
almak yeterlidir.
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Simdi B tensériinin M de M nin seklini nasil belirledigini gormeye gahsahm.
Sabit peM i¢in ve T, (M) ve y egriside y'(0)=v olacak sekilde M nin bir geodezidi olsun.

M ye gore y bir dogru oldugundan y nin M deki epriligi asinda M nin M deki
lokal egriligidir. Sonug 3.10. a gére :y.(O) =B(v,v) olur. Bylece biitlin v ler i¢in B,

peM noktasinda M nin M deki seklini belirlemis olur.

Sonug 3.11. McM olsun. M deki bir o egrisinin M nin geodezigi olmasi igin
gerek ve yeter kogsul M nin geometrisine gére ivmesinin M ye normal olmasidir.

Ispat: Sonug 3.10. a gﬁre(; =a"+ B(a’,a') yazilir. simdi o, M nin geodezigi ise
o’'=0 olur. Béylece (.x =B(a',a') ve B, daima M ye normal oldugundan o:, de M ye

normal olur. &, M ye normal olsun. Buradan a"=0 gikar. Bu ise o nin M nin bir
geodezifi oldugunu ifade eder [2].
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V. Boliim 4

LORENTZ NEDENSEL (CAUSAL) KARAKTER

Bir Lorentz manifoldu indeksi 1 ve boyutu en az 2 olan bir yari-Riemann
manifoldtur.

W bir V Lorentz vekt6r uzaymin bir altuzay: ve g, V de bir skaler ¢arpim olsun.
Bu durumda;

(1) g/W poztif tammh ise, yani, W bir i¢ ¢arpm uzayr iss W ye uzay-
benzeri’dir denir.
(2) g|W indeksi 1 olan nondejenere skaler ¢arpim ise 0 zaman W ye zaman-

benzeri’dir denir.
(3) g|W dejenere skaler garpim ise 0 zaman W ye 151k-benzeri’dir denir.

Bu {i¢ tane karaktere, W nin nedensel karakteri deriz. Bu tamm Tamm 1.3 ile
birlestirirsek bir v vektériiniin nedensel karakteri ile R, altuzaymm nedensel karakieri
aymdir. (Burada R,, v tarafindan dogrulan altuzay)

Sifir altuzay: yani sadece sifir vektdriinden olugan altuzay uzay-benzeridir.

Onerme 4.1. V bir Lorentz vektdr uzayi olsun. z, V de bir zaman-benzeri vektor
ise, 0 zaman z" altuzay1 uzay-benzeridir ve V=Rz®z" drr.

Ispat: Rz indeksi 1 olan nondejenere bir altuzaydir. Buradan z" de nondejeredir
ve V=R,z" dir. Bylece indV=ind Rz+indz" oldugundan indz'=0 yani z" uzay-benzeri

olur.

Bu ispat gosterir ki W altuzaymm zaman-benzeri olmas: igin gerek ve yeter
kosul W' nin uzay-benzeri olmasidr ve istelik bu iddia (W')'=W esitligi ile
uyumludur. Bunun sonucu olarak sunu iddia edebiliriz. Bir W altuzaymin 1s:k-benzeri
olmasi igin gerek ve yeter kogul W nin 151k-benzeri olmasidir.
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Uzay-benzeri olan altuzaylarla ugragsmak c¢ok kolaydwr. Ciinkli uzay-benzeri
altuzaylarm altuzaylarida uzay-benzeridir ve Schwarz Esitsizlifi bu uzaylarda
gecerlidir.

[<v,w><Jv]iw], esitlik i¢in gerek ve yeter kosul v ile w nin lineer bagimh
olmasidir.

Onerme 4.2. W, bir Lorentz uzaymnda boyutu en az 2 olan bir altuzay olsun. Bu
durumda asagidaki ifadeler esdegerdir.

(1) W zaman-benzeri ise Lorentz uzaymmn kendisidir.
(2) W iki tane lineer bagimsiz null vektdr ihtiva eder.
(3) W bir tane zaman-benzeri vektor ihtiva eder.

Ispat: (1) = (2). ey, ..., €m, W nin bir ortonormal baz: olsun. Burada ¢; zaman-
benzeri vektordiir. Bu durumda e; % e; lineer bagimsiz null vektdrlerdir. Gergekten ¢, ¢,
€lR i¢in

ci(ertey) + cafe; -cex) =0
= (crtey)ert(ci-cr)er =0
¢; ile e; lineer bagmsiz oldugundan c¢;+c¢,=ci-c; = 0. Buradan c;=c,=0.
Ornegin <ej+e,, e1te>=<e;,e>+2<er,e>+<ey,er>=1+0+1=0

(2) = (3) u ile v lineer bagimsiz null vektor ise <u, v> 0 dir. Buradan utv

vektorlerinden birisi zaman-benzeridir.

(3) = (1). Egger z, W de zaman-benzeri vektor ise o zaman W* ¢ z ve W uzay-
benzeri olmak zorunda olur. Ancak o zaman

W = (W)" oldugundan W zaman-benzeri olur.
Onerme 4.3. Bir Lorentz uzaymmn bir W altuzay igin asagidakiler esdegerdir.

(1) W igik-benzeridir, yani dejeneredir.
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(2) W en az bir null vektér ihtiva eder ancak zaman-benzeri vektor ihtiva
etmez.

(3) WnA=L-{0}, burada L bir 1-boyutlu altuzay ve A, V Lorentz uzaymin
null konisidir.
Ispat: (1) = (2) W dejenere oldugundan bir tane null vektor ihtiva edecektir.

Ancak bir 6nceki dnermeden bir zaman-benzeri vektor ihtiva edemez.

(2) = (3) W bir null vektdr ihtiva ettifinden WNA kiimesi bog degildir. Bir
Onceki Snerme nedeniyle iki tane null vektdr ihtiva etseydi W bir tane zaman-benzeri
vektor ihtiva edeceginden WNA = L-{0}, tekboyutlu olmak zorunda olur.

(3) = (1) W uzay-benzeri olamaz ve bir 6nceki 6nerme nedeniyle zaman-
benzeride olamaz. Buradan W 1gik-benzeridir [1],[2].
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V1. Béliim 5

YARI-RIEMANN MANIiFOLDLARDA

BAZI EGRILER

Hazirhk Onermeler

Onerme 5.1. Herhangibir peM; (boyutu en az 3)noktasmda B(x,y)=0 olsun,
burada xeTy(M;) bir zaman-benzeri birim vektor, yeTy(M;) bir uzay-benzeri birim
vektor ve <x,y>=0 dir. Bu takdirde M; bir tiimel umbilik altmanifoldtur.

Onerme 5.2. B, bir M; Lorentz manifoldunun ikinci temel formu olsun. Eger
herhangibir peM; noktasmdaki herhangibir n null vektéri igin B(n,n)=0
oluyorsa, bu taktirde M; bir tiimel umbilik altmanifoldtur.

Onerme 5.3. Eger <n;,n,>=-1 kosulunu saglayan herhangi n;,n, null vektdrleri
icin B(n;,ny)=0 oluyorsa bu taktirde M; bir tiimel geodezik altmanifoldtur.

Onerme 5.4. peM; olsun. Bu noktadaki <x,y>=0 kosulunu saglayan herhangibir

zaman-benzeri birim vektdr x ve herhangibir uzay-benzeri birim vektor y i¢in

2B(X,X) =-B (Y9Y)
oluyorsa, bu takdirde M; bir tiimel geodezik altmanifoldtur.

Onerme 5.5. H, bir M; Lorentz altmanifoldun ortalama egrilik vekt6r alam ve
herhangi peM,; i¢in ViH=0 olsun (Burada xeTy(M;) herhangi uzay-benzeri yada
zaman-benzeri vektordiir.) Bu durumda H paraleldir [7].

Indeksi v olan yan-Riemann manifoldu M, ile gosterelim. o:I—>M, regiiler
eprisini ele alalim. Burada I, IR! nin bir agik alt arahgidir. Eger o egrisinin biitlin hiz
vektorleri o'(t) ler uzay-benzeri ise a egrisine uzay-benzeri denir. Benzer sekilde biitlin
hiz vektdrleri zaman-benzeri (istk-benzeri) ise zaman-benzeri (igik-benzeri) egri denir.
Eger o efrisi zaman-benzeri yada uzay-benzeri ise o y1 <a'(t), o'(t)>=¢ olacak sekilde

yeniden parametreleyebiliriz. (Burada e=+1 eger o uzay-benzeri ise, £=1 eger a
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zaman-benzeri ise). o(t) egrisinin parametresini o mn yay uzunlugu olarak kabul
ediyoruz [7],[8].

CEMBERLER ve HELISLER

a=a(t), My de bir zaman-benzeri egri olsun. ki(t) ile a(t) nin j-inci egriligini
g6z6nline alahm. >2 igin ki(t)=0 ve Y asal vekt6r alam ve Z binormal vekttr alam
uzay-benzeri olmak fizere a(t) boyunca Frenet formiilleri

a'ty=X

VX=ki(t)Y

VxY = ki(t)X+ky(t)Z

ViZ = ky(t)Y

seklinde olur. Burada V ile M, nin kovaryant tiirevini gosteriyoruz. Eger ka(t)=0 ve
k;(t), a(t) boyunca pozitif bir sabit ise a=o(t) egrisine bir gember denir. Eger hem k;(t)
ve hem ky(t) a(t) boyunca bir pozitif sabite esit iseler a=a(t) egrisine bir helis denir.

Buradaki en 6nemli sorun bu kogullar1 saglayan egrilerin var olup olmadigidir.
Adi diferensiyel denklem sistemlerinin ¢bzlimlerinin varhk ve tekliine iligkin teori
geregince t=0 1 icine alan yeterince kii¢iikk bir aralikta tanimh ve verilen baglangic
kosullarim gergekleyen bir tek ¢6ziim vardir. Yani herhangi bir peM, noktasi ve bu
noktadaki ortonormal x ve y vektorleri igin (burada x zaman-benzeri ve y uzay-benzeri)
yerel olarak p den gegen ve tanjant vektdrii x olan bir gember vardir ve verilen kosullari
saglar. Benzer iddialar helisler icinde sGylenebilir.

a=a(t), M, Lorentz manifoldunda bir zaman-benzeri egri olsun. Eger o(t) egrisi
(o/(t=X

(5.6) { V, X=kY

\ Vi Y=kX

kogullarm, Vtel, gergekliyorsa o(t) ye bir gember denir. Burada Y bir uzay-benzeri
vektdr alani ve k bir pozitif sabitdir.
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Onerme 5.7. a(t), M; Lorentz manifoldunda bir zaman-benzeri egri olsun. Eger
o(t) bir gember ise 0 zaman a(t) nin hiz vektor alam X igin

(5.8) ViV, X-<V X, V,X>X = 0 kosulu gerceklenir.

Tersine eger bir zaman-benzeri egri bu kosulu gerceklerse ya bir geodeziktir yada bir
cemberdir.

Ispat: a=o(t) bir gember olsun. (5.6) deki esitlikleri (5.8) de yazalm.
Vi(kY) - <kYkY>X =kV, Y-k <Y,Y> X = I®X - ®X =0

Simdi tersini diiginelim. Yani bir a=o(t) zamanbenzeri egri (5.8) kosulunu

gercekliesin,

<X, VxX>=0 oldugundan (5.8) den faydalanarak

d<V,X, V,X>)dt = 2 <V,V,X, VX> = 2 <VX, V,X> <X, V,X>=0
yazabiliriz. Buradan <V, X, V,X> a(t) boyunca sabit olur. Eger <V, X, V,X>=0 ise a(t)
bir geodeziktir. Kabul edelim ki <V,X, V,X> sifirdan farkli bir sabit olsun. M;, Lorentz
manifoldu oldugundan bir zaman-benzeri vektdre ortogonal olan sifirdan farkli bir
zaman-benzeri yada bir null vektdre sahip olamaz. Dolayisiyla <X, V,X>=0 dan V,X
uzay-benzeri olmak zorundadir. Boylece,

<V, X, VX>=k2, V, X=kY
yazabiliriz. Burada Y bir uzay-benzeri birim vektor ve k pozitif bir sabitdir.

Bu durumda V.Y = (1/k) V,V,X)=(1/k)(k*X)=kX bulunur. Boylece o(t) bir
¢emberdir [7],[9].

ORNEK 5.9. gIR*>xIR*>5IR
g(v,w) = -viw1+vowy
seklinde tammli g metrik tensdrilniin belirledigi IR? Lorentz manifoldunda

a(t)=(sinht,cosht), teIR
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egrisini diislinelim

o' (t)=X=(cosht, sinht)

g(X, X)=<X,X>=-cosh’t + sinh’t=-1

Béylece a(t) bir zaman-benzeri egridir.

V. X=a''(t) = (sinht, cosht)

<V X, VyX>=-sinh’t + cosh’t=1.

V. X=Y diyelim. Y bir uzay-benzeri vekt6ér alami V.Y = (cosht, sinht) yani
VxY=X Sonugta a=a(t) nin IR? de bir gember oldugunu sdyleyebiliriz. Ustelik;

ViVeX - <V X, Vi X>X

=V,Y - <Y, Y> X =X-X=0

oldugundan o (t) egrisi (5.8) kosulunu saglar.

Teorem 5.10. M;, bir M, yan-Riemann manifoldunun boyutu 2 den biiyiik bir
baglantih Lorentz altmanifoldu olsun. Eger bir k>0 icin M; deki k egrilifine sahip her

zaman-benzeri gember M, de de bir zaman-benzeri gember ise bu durumda M, tiimel
umbiliktir ve¢ M, de bir paralel ortalama egrilik vektoriine sahiptir. Tersine eger M,
tlimel umbilik ve paralel ortalama egrilik vektdriine sahip ise, bu durumda M, deki her
zaman-benzeri egri M , de de bir zaman-benzeri egridir.

fspat: p, M; in keyfi bir noktast olsun. x, yeTy(M;) ortonormal vektdrlerini
diglinelim goyleki x zaman-benzeri ve y uzay-benzeridir. a=c(t), M, de asagidaki
kosullar saglayan bir gember olsun;

a(0)=p, X(p)=%, (VX)(p)=ky.

Burada V, M, in kovaryant tiirev operatérii ve X, oft) egrisinin hiz vektdr
alamdir. Bu durumda X, M; tlizerinde V4V, X - <V, X, V,X> X = 0 kogulunu gercekler.

Hipotezden a. (t), M, de bir gember oldugundan

ex va— <—V-xX,—v5xX > X = 0 01ur.
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Burada 6, M, iizerinde kovaryant tiirev operatoriidiir. Daha Onceki temel
bilgileri kullanarak son ifadeyi diizenleyelim ve sonra ortaya ¢ikan sonucun normal
parcasm: yazahm.

ViV X+BX,X)-<ViX,ViX>X =0
V.V, X+ V(B X)-<V:X,ViX>X =0

V_V, X +B(X,V, X) +tan V. (B(X, X)) + norVx (B(X,X))
—< VX, VX >X =0,

Son ifadenin normalini alirsak

B(X,V,X) + VB(X,X) =0 olur.

Bu ifadeyi

(VB)(x,x,x) = V:B(x,x) -~ B(V,x,x) - B(x,V,x) esitliginde yerine yazarsak p

noktasinda (V~7 B)(x,x,X) =3B(x,V, x) =-3kB(x,y) olur. Bu bize verilen bir birim
zaman benzeri xeTy(M;) vektorii igin, B(x,y) nin x e ortogonal olan bir birim uzay-
benzeri vektor oldugunu ve y vektOriinden bagimsiz oldugunu sdyler. Son ifadede y
yerine -y yazarsak B(x,y)=0 elde ederiz, burada x zaman-benzeri ve y uzay-benzeri
olmak {iizere ortonormal vektorlerdir. p noktas: keyfi oldufundan M, tlimel umbiliktir.
Buradan herhangi ortonormal X ve Y vektor alanlan igin B(X,Y)=<X,Y> H yazabiliriz.

Bu denklemi B(X, V,X)+V;B(X,X) =0 denkleminde kullanalim.

<X,V.X>H+V; <X,X>H=0
T R

=>ViH=0 Buradan X herhangi zaman-benzeri vektdr alam oldugundan
Onerme 5.4. den H nm ortalama vektdr alam bir paralel vektor alam oldugu ortaya
cikar.
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Simdi tersini ispatlayalim. o(t), M; de bir zaman-benzeri ¢ember olsun. M;
tlimel umbilik ve paralel ortalama egrilik vektdriine sahip oldugundan

B(X,X) =-H, B(V:X,X) =<V, X, X>H=0,

Spxx(X) = <HH>X, ViBX.X) =V:H=0, burada X bir zaman-benzeri
vektor alamdir. Simdi

exexx—' < vxx,ﬁxx > X = 0
oldugunu gésterelim.

V.V.X

V.(V, X+B(X, X))
=V,V X+ V. (B(X,X))
=V, V, X+B(X,V,X)~SyxxX)+ ViBX,X)
=V.VX=+<HH>X.
Ote yandan < V.X,V,X >=< V_X +B(X,X),V, X + B(X,X)
=<V X,V _X>+<B(X,X),B(X,X) >
=V XVX>+<HH>.
Boylece VxViX~<VxX,VxX>X
=V .V, X+ <H,H>X-<V XV, X>X-<HH>X

=V, V,X~-<V,X,V,X>X=0.
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O halde a(t), M, de bir zaman-benzeri gemberdir [7].

Simdi M; (BoyM, = 3)Lorentz manifoldunda helisleri diigiinelim. a=a(t), M;
Lorentz manifoldunda bir regiiler zaman-benzeri helis olsun. Bu durumda

a@®=X, V. Y=kX+k,Z
VX=%Y,  V.Z=-kY

formtillerini a(t) boyunca elde ederiz. Burada Y, Z uzay-benzeri vektdr alaniar1 ve ki,
k;, pozitif sabitlerdir.

Onerme 5.11. o=0(t) boyutu en az 3 olan bir Lorentz manifoldun bir zaman-
benzeri egrisi olsun. Eger a(t) bir helis ise bu durumda o(t) nin hiz vektdr alam (5.12)
ViViViX - KV, X=0 kosulunu gercekler burada K bir sabitdir. Tersine bir zaman-
benzeri a(t) egrisinin iz vektdr alami bu kogulu gergekliyorsa o zaman oft), ya bir
geodezik, ya bir gember ya da bir helistir.

Ispat: Farzedelim ki o(t) bir zaman-benzeri helis olsun.
ViViVi X - KV, X = V, 'V, (k1 Y)-Kk; Y

=k; Vi(kiX+koZ)-Kk; Y

=1 Y-k kI Y-Kk; Y

=k, Y(k? - k2 -K), burada K=k? -k dersek istenen kosul saglanir.

Tersini diisiinelim. Kabul edelim ki a(t) zaman-benzeri egrisi (5.12) kosulunu
gergekliyor.

<X, V,X>=0 esitligini X yoniine gore tiiretirsek
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<X, V.V X> + <V, X, V., X> = 0 elde ederiz. Bu denklemi tekrar X
dogrultusunda tiiretirsek <V,V,V, X, X>+3<V,V,X, VX>=0 olur. (5.12) kosulunu son
denklemde kullanirsak

<V VX, ViX> = 0 elde ederiz.
Buradan <V,X, V,X> in a (t) boyunca sabit oldugu ortaya ¢ikar.

Eger <V,X, ViX>=0 ise a (t) bir geodeziktir. Eger <V, X, V,X># 0 ise bu durumda
Oyle bir birim uzay-benzeri Y vektdr alam vardir ki bir pozitif k; sabiti i¢in

Vi X=k;Y yazlabilir. Ciinkii <X,V,X>=0 oldugundan V,X uzay-benzeri olmak
zorundadir. M; boyutu en az 3 olan Lorentz manifold oldugundan

Vx Y=k X+bZ yazariz, burada Z hem X’ ¢ hem de Y’ ye ortogonal olan bir uzay-
benzeri vektor alamdir. Eger b=0 ise bu durumda o(t) bir ¢gemberdir. Buradan b nin
pozitif fonksiyon oldugunu kabul edersek

d<V, VX, Vi X>/dt=0=<V,V,V X, V X>

<V VX, ViV X> = K<V, X, Vi X> + <V, VX, Vi X>
yazabiliriz.

Bu denklemde V,X=k;Y ve V,Y=k;X+bZ esitligini kullanirsak

k?b® = kj ~Kk? olur.

k; # 0 ve b pozitif oldugundan buradan

b=+k!-K gikar. b=k, dersek

VxY=k X+k,Z buluruz.

Bu ifadeyi X dogrultusunda tiiretirsek

ViV Y=k Vi X + ky(V,Z) olur.

Ote yandan V,V,Y=(1/k;) V,V,V:X=(1/k;) (k? ~k3) VX,

yani V,V,Y = (k¥ -k2)Y olur.
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Az 6ncede V,V,Y = ka+k2VxZ bulmustuk. Sonugta V,Z=-k,Y ¢ikar. Yani

a(t) bir zaman-benzeri helis olur.
Ornek 5.13. g: IR® x IR>IR

g(v,w)=<v,w>=-viwi+v,wytvsw; gseklinde tammmh metrik tensdriin belirledigi
IR; Lorentz manifoldun da teIR olmak tizere

a(t) = (sinh+/2 t,cosh+/2 t, t) egrisini ele alalm.
X=o/(t) = (/2 cosh+/2 t, +/2 sinh+/2 t, 1)

<X,X> = -2cosh? /2 t+2sinh? /2 t+1=-1<0

Boylece a(t) bir zaman-benzeri egridir.

V,X = (2sinh+/2 t, 2cosh+/2 t,0)

<V X, VX > = - 4sinh? /2 t+4cosh? 2 t = 4>0
[IVxX]| = 2, yani VX bir uzay-benzeri vektdr alamdir.

ViX=2Y(k, =2) dersek Y bir birim uzay-benzeri vektdr alam olur. Ustelik
<X,V X> =0, oldugundan Y, X’e ortogonal olur.

Y=(sinh\/§ t, cosh+/2 t, 0)

Vi Y=(+/2 cosh+/2 t, /2 sinh+/2 , 0).

Burada k2=ﬁ veZl= (-cosh«/i t, -sinhw/i t, -2 ) segersek;
V,Y=k,X+k,Z olur.

<7,7> = -cosh®~/2 t+sinh®+/2 t+2 =1>0 oldugundan Z bir uzay-benzeri birim
vektor alamdir.
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<X,Z>=+~/2 cosh* /2 t - 2 sinh® 2 t-+/2 =42 -4/2=0
<Y,Z>= +cosh+/2 t.sinh+/2 t-cosh+/2 t. sinh~/2 t+0=0
V.Z = (-2 sinh+/2 t, -2 cosh+/2 t, 0)= 42 Y.
Boylece , Vi =2Y
VY =2X+2Z
V.Y =-42Y
Boylece a(t), IR} de bir zaman-benzeri helis olur.
Simdi V4V, VX-KV,X=0
oldugunu kontrol edelim.
V.V, (2cosh+/2 t,2sinh+/2 t, 0)-K(2cosh+/2 t, 2sinh+/2 t, 0)
=V, (22 sinh+/2 t, 24/2 cosh+/2 t, 0)-K(2cosh~/2 t, 2sinh+/2 1,0)
=4(coshﬁ t, sinh~/2 t, 0)-K(200shw/§ t, 2sinh+/2 t,0)
burada K=k? —k? =22 — (+/2)? =2 dir ve bdylece V,V,V,X-KV,X=0 olur.

Teorem 5.14. M,, bir M, yari-Riemann manifoldunun bir baglantih Lorentz
altmanifoldu olsun. Eger k;, k; i¢in M; deki k; ve k, egriliklerine sahip her zaman-
benzeri helis My de de zaman-benzeri ise bu durumda M;, M, nin timel geodezik
altmanifoldudur.

Ispat: Herhangi bir peM igin x,y ve z, Tp(M;) de ortonormal vektérler olsun

sOyleki; x zaman-benzeri y ve z uzay-benzeri vektorlerdir .
o=o(t), M; de asagidaki kogullar: saglayan bir helis olsun

a(0)=p, o'(t)=:X, X(p)=x%, Y(p)=y, Z(p)=2.
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V:X)P)=kiy, (VxY)(p)=kixtkez, (ViZ)(p)=-kzy, burada Y asal normal, Z de
binormal vektor alamdir.

a(t), M; de bir helis oldugundan
ViViViX - kV,X=0, k=k? — k2
yazariz.

Hipotezden a(t), My de de bir helis oldugundan

Gx ‘V—x —.V_x X'K-V—x X=0 01ur-

Daha onceki bolimlerde elde ettifimiz Gauss denklemini son denklemde yerine
yazahm.

Vi Vi (ViX+B(X,X))-KV:X-KB(X,X)=0

Vi (Vx ViXo+ V5 (B, X))-KV,.X-KB(X,X)=0

Ve (VaViXHB(X, VaX))-Spocxo(X)+ Vi BEXX))

KV, X-KB(X,X)=0

= Vx (VaVaX)+ Vi (BX,VoX))- Vi (Saoxo@)+ Va (Vi BX,X))
KV, X-KBX,X))=0.

=V Vi ViX+BX, V, ViX)-Spax v (X Vi B, V,X)
~VsSBex0()-BX, S-Sy iy 1, X0

+V, (V; (BX,X))-KV,X -KB(X,X) =0.

Son denkleme kV_ X terimini bir kez ekleyip bir kez ¢ikarrsak ve M, deki
normalini ahrsak
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B(X,V,V,X)+ V;B(X,V,X) - B(X,Syx 5 X))

elde ederiz.
M; deki tanjant kismim alirsak

S0 ) =V, S0 ) =S ez K + (k—K)V,X =0 elde ederiz. Elde

ettigimiz son iki denklemden ilkini p noktasmda degerlendirirsek
B(x,V,k,Y) + V,B(x,k,y) = B(X,Spx 3 (X)) + V5 (V,B(x,x) - KB(x,x) = 0.
= k,B(x,k,X + k,7) + K, {V B(X, )}~ B(X, S5 (%)
+ V3 (ViB(x,x) - KB(x,x) = 0.
= ka(x, x)+k k,B(x,z) +k, {(eB)(x, y,x)+B(V_x,y)
+B(x,V,y) }-B(X,Sp 5 (X)) + Vi (VB)(X,%,%)
+B(V_x,x) + B(x,V,x)) - KB(x,x) = 0.
= k2B(x,x) + k k,B(x,2) + k, (VB)(X, y,x) + k2B(y,y) + K’ B(%,x)
+k,k,B(x,2) - B(X,Spx 5, (X)) + (V2 B)(X, X, X, %) + (VB)(V, X, X, X)
+(VB)(x,V,%,%)+(VB)(x,x,V,x) + 2k, V*B(x,y) - KB(x,%) = 0.
= k?B(x,X) + k,k,B(x,2) + k, (VB)(%, y,x) + k?B(y, y) + k’B(x, %)
+k,k,B(x,2) - B(X, S 5 () + (VB(x, %, X,%) + k, (VB)(y,%,%)

+k, (VB)(x,¥,%) +k, (VB)(%, %, ) + 2k, {(VB)(x, y,x) +
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B(V,x,y) + B(x,V, y)}-KB(X,X) =0
Diizenlemeler ve sadelegtirmeler yaparsak
(5.15) 4k?B(x,x)+3k2B(y,y)+ 4k k,B(x,2)+ 5k, (VB)x,y,x)
+(V2B)(x, X, %, %) + k, (VB)(X, X, ¥) = B(X,S5 x, (X)) ~ KB(x,x) = 0.
buluruz

Bu denklemde z yerine -z yazarsak

B(x,z2) = 0 oldugu kolayca goriiliir. Dolayisiyla M; in tiimel umbilik oldugu
ortaya cikar.

(5.15) denklemini su sekilde yeniden diizenleyelim.
5k, (VB)(X,y,x) + k, (VB)(x,x,y) = -4k*B(x,x) — 3k’B(y, )
-4k k,B(x,z) - (Y~7 B)(x,X,X,Xx)+B(x, Spx x) (X)) + KB(x,x)

Burada y yerine -y yazarsak denklemin sag tarafi degismeyeceginden
5k, (VB)(x,y,x) +k, (VB)(x,x,y) =0

gikar yani;

5k, {(VEB)x.Y) - B (V.x,y) - BV, )}

+k{V; B, %)~ B(V,y, )~ B(y,V, )} =0

M,; tiimel umbilik oldugundan B(x,y)=<x,y > H dur.

Burada (x,x)=-1,(y,y)=1 ve {x,y) =0 oldufundan

5k, V4 (x, yYH =k, (y, y)H ~k, (x, x)H -k (x, 2)H }

EoRTMANsgy, | TAULD
VAN RAS TR e T
WL g
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+k {VE <x,x>H-k, <x,x>H-k, <zx>H-k(y,y)H}=0

= 5k {0~k H+kH-0}+k,VIH+H-0~H}=0
=-k,V;H=0=>V!H=0.

Burada x zaman-benzeridir dolayisiyla H ortalama vektor alam paraleldir.

Ote yandan X,y)=0 oldugundan
dolay1 (VB)(x,x,%x) =0 olur.Ciinkii

(VB)(x,x,x) = (VB)(%,x) - 2B(%,V_X)
=V <x,x>H-2k,B(x,y) =-V:H-2k, <x,y>H=0

Dolaysiyla (VB)(x,%,%x) =0 olur.
Bu bilgileri (5.15) te kullanirsak
4k? <x,x>H+4kk, <x,z>H+0+3k? <y,y>H+
<Spxx)(X)»x>H+0-K<x,x>H=0
= —4k’H +3k’H- < B(x,x),B(x,x) >H+KH = 0.
= -k}H+KH-<H,H>H=0
= (-k}+K~-<HH>H=0
Simdi

~Saxv.0&) —V, Bpx x5 (X))~ Svi BEX) X)+(kk-K)V,X=0  denkleminin

her iki yamm Y ile ¢arpalm.

< —-SB(X,VXX) (X),Y>-<V, SpxxnX)Y>-< Sv,{ BEX X),Y >
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+<k-K)V,X,Y>=0

= — < B(X, Y),B,k, V)~ <V (Spi (XD, Y >

—<B(X,X),ViB(X,X) > —k,(k-K) < Y,Y >=0

=~ <V, S, XN, Y > +k; (k] -k3 -K) <Y, Y >=0
Buradan B(X,Y)=0 oldugundan

<V, a0 (Y >=V, <Sp (X, Y > = < Sy (X)V, Y >

=V, <B(X,Y),BX,X) > - <B(X,k,X+k,Z),B(X,X) >

= -k, < B(X,X),B(X,X) >

=k, <H,H>.

elde ederiz. Boylece

k, <H,H > +k, (k7 ~k2 —~K) =0 olur. Dolayistyla

<H,H >=-k? +k3 +K bulunur.

Bu esitligi (—k? + K~ <H,H >)H =0 esitliginde kullanirsak;

(-k?+K+k?-k2-K)H=0

=-k3H=0=>H=0
elde ederiz.

Bu ise M in tiimel geodezik oldugunu gésterir. Ciinkii VxeTp(M;) i¢in

Bx,x) =<xx>H=0=B=0[7].
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CARTAN CATILI NULL EGRILER

M; boyutu en az 3 olan bir Lorentz manifold olsun. a=a(t) ile k; ve k, sabit
egriliklerine sahip Cartan ¢atih null egriyi gbsterelim. Bu durumda o (t) {izerindeki X,
Y ve Z vektor alanlan1 asagidaki kogullar gercekliyorsa a(t) ye Cartan gatih null e@ri
denir.

a'()=X, <X, X>=<Y,Y>=0, <X, Y>=-1

<X, 2>=<Y,7>=0, <Z,2>=1

V. X=k,Z ViY=kZ, ViZ=kX+k;Y
burada V, M; iizerindeki kovaryant tiirev peratoriidiir.

Onerme 5.16. Sabit eprilikleri k; ve k; olan bir o(t) Cartan catth null egri
ViV Vi X=2k;k;V,X kosulunu gergekler. Burada X=a/'(t).

Onerme 5.17. a=o(t) bir M; Lorentz manifoldunun bir null erisi olsun.
Farzedelim ki o(t) null egrisinin hiz vektor alam1 X=a'(t) ve bir null vektdr alam Y, a(t)
boyunca

Vi ViV X=2(<V, X, V, X>) 2(<V, Y,V Y>)?V, X
<V X,V X> >0, <V,Y,V,Y> <0, <X, Y>=-1 w (D
kosullarim saglasmlar. Bu durumda a=a(t) sabit egriliklere sahip bir Cartan ¢atih null
egridir.
Ispat: <X,X>=0 ifadesini X ydniinde titretirsek <V, X,X> = 0 ...(II) elde ederiz.
(IT) ifadesini X yoniinde iki kez tiiretirsek

<V ViV X, X> + 3 <V,V, XV, X> = 0 ... (II) elde ederiz. (I) dekileri (II) te
yerine yazarsak ve (II) yi kullamrsak <V, V,X,V,X> = 0 ... (IV) elde ederiz. Bu
denklem <V, X,V,X> in egri boyunca sabit oldugunu gdsterir.

Buradan hipotezden kZ=V,X yazabiliriz. Burada Z bir birim uzay-benzeri vekt6r
alam ve k pozitif bir sabitdir, (II) den kolayca goriilebilecegi gibi <X,Z> =0 ... (V).

(IV) denklemini X y8niinde tliretirsek (I) den dolayr



2k (<VxY,VxY>)m + <V, ZV,Z> = 0 ... (VI) denklemini elde ederiz. Bu
denklemden

A<V, VY V,Y> =<V Z,V_Z><V,V,ZV,Z> ... (VII) elde ederiz.
Ote yandan
Vi VxZ=(1/k) V<V, V,X oldugundan (I) ve (IV) nedeniyle
<V ViZ Vi Z> = <V;V X,V X> = () olur, Buradan (VII) den
<V,VxY,V,Y>= 0 olur. Bu ise a(t) boyunca <V,Y,V,Y> sabit demektir.
<V,Y,V,Y> = w? yazalm. Burada w bir pozitif sabitdir. a(t) boyunca (VI) y1 bu
denklemde yerine yazarsak
<V Z V2> = -2kw ... (VIII) olur, Bu V,Z nin bir zaman-benzeri vekttr alam oldugunu
styler. M; bir Lorentz manifold oldugundan V,Z = aX+bY...(IX) yazabiliriz, burada a
ve b reel fonksiyonlardir. Buradan <V,V,X,X> = -bk elde ederiz. Ote yandan (I) den
<V, VX X> = <V, X, V,X> = -k oldugundan son iki denklemden b=k=(sabit)
sonucunu elde ederiz. Boylece (IX) dan V,Z = aX+kY cikar.
<VRZ,VyZ> = -2ak = -2kw
oldugundan, buradan a = w = (sabit) ve
ViZ = wX+kY...(X) sonucunu ¢ikartiriz. Bu son ifadeyi X yoniinde tiiretirsek
ViViZ = wV,X+kV,Y ... (XI)
Ote yandan (I) ve (V) den dolay:
ViVxZ = (1/K)VViVX = (1/k)2kwV, X = 2wV, X ... (XII). Son iki denklemi
birlegtirirsek ve (V) i kullanirsak V.Y = wZ... (XII) elde ederiz. <X,Y> = -1 ifadesini X
yOniinde tiiretirsek <V, X,Y> + <X,V,Y> = 0 olur. Burada (XIII)’d kullanirsak

<Y,Z>=0 (XIV) Sonugta (V), (VI), (X), (XII) ve (XIV) ten o(t) nin bir Cartan ¢atih null
egri oldugu sonucu gikar.

Ornek 5.18. IR], Lorentz manifoldunda a(t) = (—~1——sinh t,——l—cosht,-;—,—;-) telR

V22
egrisini ele alahm.
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1 1 11
o'(t) = X = (—=cosht,—=sinh t,—,—
O=x=Gettm ™Y
<X,X>=—1-(-cosh2t+sinh2t)+—1—+~1—=-——1-+l=0.
2 4 4 2 2
X, bir null vektdr alan1.
—=cosht,—=sinh t, —1———1—) olarak segelim.
- (oot s -
R o 1 1 11
<Y, Y>——(-—cosh t+sinh“t)+ > +—=-—+—=0.
4 4 2 2
\ ) 11 1
<X, Y>—-(—cosh t +sinh t)—--—~=—————=—1.
4 2 2

(sinh t,cosh t,0,0)

X=

k, Z = (sinh t,cosh t,0,0) olsun.

i

1
ﬁ 2
<Z,7> = -sinh’t +cosh’t+02+0%=1, o halde Z uzay-benzeridir.

vV, Y= T (sinht,cosht,0,0) yazabiliriz.

k, = :71_5 segebiliriz.

VZ = (cosht, sinht, 0,0)

V.Z=k,X+k,Y oldugu agiktir. Béylece

a'(t) =X, <X,X> =<Y,Y> =0, <X,Y>=-1

<X,Z>=<Y,2>=0,<Z,2>=1

VX =kiZ, VY =kZ, ViZ = kx X+Kk; Y
oldugundan a(t) bir Cartan gatth null egridir.

Teorem 5.19. M, bir M, yar-Riemann manifoldunun bir Lorentz altmanifoldu
olsun. Eger M; deki her sabit egrilikleri olan Cartan ¢atih null efri M, nin de sabit
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egrilikleri olan Cartan catih null egrisi ise, bu durumda M; M, nin bir tiimel geodezik
altmanifoldudur.

Ispat: Keyfi bir peM; igin x,y,ze T,(M) olsun. $Sdyleki x ve y null vektdr, z ise
uzay-benzeri birim vektdr. <x,y>=-1 ve <x,2>=<y,z>=0 kabul edelim. a=o(t), sabit
egrilikleri k,,k, olan bir null efiri olsun. Cartan ¢atis: (X,Y,Z), su sekilde olsun.

a(0)=p, a'(t)=:X, X(p)=x, Y(p)=y, Z(p)~z
(520)  (ViX)(P) =kiz, (VxY)(p) = koz, (V:Z)(p) = kextkyy ,

Burada V, M, tizerindeki kovaryant tiirev operatoriidiir. o(t), M, de Cartan ¢atili null
egri oldugundan, Onerme 5.16. dan V,V,V,.X=2kk; V.X...(I) yazabiliriz. Ote
yandan hipotez geregi o(t), My de bir Cartan ¢atih null egri oldugundan Onerme

5.16. dan VVxVxX = 2K,K,VyX...(Il) yazabiliriz. Burada V, M, nin kovaryant
tlirev operatorli ve K, K, pozitif sabitlerdir.

(D) yi agik sekilde yazip buarda (1) i kullanalm ve daha sonra M; deki normalini alahm.

Bu durumda

4B(X,V.V_X)+5(VB)X,V,X,X) +3B(V,X,V_X)
~B(X, Sy (X)) + (V’B)(X, X, X, X)

+(VBYX,X,V, X) - 2K ,K,B(X,X) =0 olur.
(5.20) daki bilgileri yukaridaki denklemde yazarsak p noktasinda
4k, k,B(x,x) + 4k*B(x, y) + 5k, (VB)(x, 2, X)
+3k?!B(z,2) - B(X, 854, (X) )+ (V?B)(x,X,X,X)
+k (VB)(x,x,7) - 2K,K,B(%,x) =0... (II)
ifadeleri yazilabilir.
Simdi (IIT) denkleminde z yerine -z koyarsak

2 (kik-KiKo)B(x,x)+4 ki B (x,y)*+3 k] B (2,2)

~B(X,Spx.x (X)) + (VB)(X, X,%X,X) = 0.... (IV)
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sekline gelir.

(IV) te x yerine 2x ve y yerine (1/2)y yazarsak

8(2k1ky-K1K2)B (x,x)+4k? B(x,y)+3 k? B(z,2)

16B (X, Spx 1 (X)) +16(V?B)(x, X, X,X) = 0

Bu denklemi ve (IV) i kullanip gerekli sadelestirmeleri yaparsak

2(2k1ka-KiK2)B(x,X)-5B(X, S x 5, (X) + 5(6 ’B)(x,X,X,X) =0. Bu denklemi (IV)
te yazarsak

4B(x,S oy (X)) — 4V B)(x, X, %,X) + 4k} B(x,Y) +3k{ B(z,2) =0 ... (V). Simdi
X yerine 2x ve y yerine (1/2)y yazalm, bu durumda

4B(x,y)= -3B(z,2)...(VI) olur.

z bir uzay-benzeri birim vektor ve x ve y null vektorler soyleki <x,z> = <y,z> = 0 ve
<x,y> = -1 oldugundan x = z+t ve y = 1/2(t-z) yazabiliriz. Burada t bir zaman-benzeri
birim vektor soyleki

<z,t> =0 dr. (VI) nedeniyle
4B(z+t, (t-z)/2 ) = -3B(z,z) yazariz.

Buradan 2B(t,t) = -B(z,z) elde ederiz ki bu M; in M, nin tiimel geodezik altmanifoldu
oldugunu gosterir.

Cartan catisma sahip null efri  k, =0 kosulunu ger¢ekliyorsa bu egriye
genellestirilmig null kubik denir.

Onerme 5.21. o=o(t) genellestirilmis null kiibik egrisi V,V,V,X=0, kosulunu
gergekler,

Burada V, egri boyunca kovaryant tiirevdir.
Teorem 5.22. Eger bir a=o(t) null egrisi

X= a'(t), VxVxVX=0, ( VX, V:X)>0 kosulunu gergekliyorsa bu durumda a(t)
bir sabit egrilikli genellestirilmis null kubiktir.
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Ornek 5.23. IR}, Lorentz manifoldunda

3 3
a(t)= (-tg- + t,lfg—tz,%—t),t e IR egrisini ele alahm.

t? t?
X=a'(t)= (7+1,J§t,-2-—1)

t? t2
<X, X >=—(-2—+1)2 +2t +(7—1)2 =0

VxVxV:X=(0,0,0) oldugu ise agiktur.

Ote yandan V,.X=(t, V2 , t) ve <V, X, V,X> = -24+2+=2>0.

Boylece a=a(t) bir genellestirilmis null kiibiktir.

Teorem 5.24. M; bir M, yar-Riemann manifoldunun bir Lorentz altmanifoldu

olsun. Eger M; deki her genellestirilmis null kiibik, My de de bir genellestirilmis null
kiibik ise, bu durumda M, M, de tiimel geodezik altmanifoldtur.

Ispat: a=a(t), M; de genellestirilmis null kiibik olsun. O halde o’(t):=X olmak
tizere <X, X>=0, V,VV,X=0 ve { V,X, VX)) >0, peM; i¢in a(0)=p, o'(t)=X, X(p)=x,

(ViX)(p)=kiz, <x,2>=0 kosullart gerceklensin. Burada z uzay-benzeri

birim vektor.
<X, X>=(0 ifadesini X yoniinde tiiretirsek
<V, X,X >= 0 olur. Bu son ifadeyi tekrar X y6niinde tiiretirsek
<V VX, X> + <V, X, V,X> = (0 elde ederiz.
{ViX, ViX) >0 oldugundan
{VxV:X, X) <0 olmak zorundadir.
ViV X=k}Y diyelim. Burada Y, <X,Y>=-1 olacak sekilde bir vektsr alamdur.
Ote yandan V,V,V,X=0 oldugundan V,V, X, a=o(t) boyunca sabittir.
<V VX, ViV X> = X<V, V X, V. X> - <V, V, V. X,V . X>

—
0
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~xix<v x,v,Xx >]
2

=X 1ka <ZZ >]
[ 2

ve <Z,7>=1 oldugundan

WL V,X, V,V,X>= x[-lz- X(kf)] =x[o]=0.

-
0

Boylece V,V,X bir null vektdr alamdir ve ki =k, dersek VoV, X = k,Y den Y
bir null birim vekt6r alam olmak zorundadir.

Hipotez geregi a=a(t), M., de de genellestirilmis null kiibik oldugundan

6){ —wa exx = 0 Olul'.
ViVi(V X+B(X, X)) =0
= Vi (V,V, X +B(X,V,X) + ViB(X,X) - Spx 5, (X)) =0

=V V.V X+BX,V,V . X)+V;BX,V,X)- Spex,v,0(X)

+V,ViB(X,X)-S, tpexon )~ ViSpex) (X)
—B(X,Spx %) (X)) =0

Bu ifadenin M; deki normalini ahirsak

BX,V, V,X)+V;BX,V, X)

+V, Vi B(X,X) - B(X,Spx x, (X)) = 0 elde ederiz.
Bu ifadeyi peM; noktasinda degerlendirirsek
k,B(x,y) +k,ViB(x,2) + V, Vi B(x,x)

~B(X,85x %, (X)) =0
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buluruz. Bu ifadede y yerine -y yazarsak
k,B(x,~y) +k,ViB(x,z) + Vi ViB(x,x) ~ B(x, Spxxx)N=0
elde ederiz.

Buldugumuz son iki ifadeyi taraf tarafa ¢ikarirsak, sonug olarak B(x,y) =0
buluruz. Burada <x,y> = -1 ve x ve y null vektdrler oldugundan hazirlk teoremlerine
gbre M, tiimel geodezik altmanifold olmak zorundadir{[7],[9].
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VII. TARTISMA VE SONUC

Bilindifi {izere Riemann Geometri’"de egriler ve lzerinde bulundugu
altmanifoldlar ile iligkili 6zellikler giliniimiize kadar c¢alijagelmis ve bir ¢ok sonuglar
ortaya konmustur. Ancak yari-Riemann Geometri’de egrilerin yapist ve {izerinde
bulundugu yari-Riemann altmanifoldun egriye yiikledigi nitelikler egrinin ve
altmanifoldun uzay-benzeri, zaman-benzeri ve 1gik-benzeri olusuna gore birbiri ile
iligkilendirilmesi Riemann haline goéreceli olarak yeni ve halen iizerinde ¢ahgmalarm
stirdiiriilmekte oldugu bir alandr. Ozellikle Lorentz manifoldlarm ve daha genel olarak
yari-Riemann manifoldlarin igik-benzeri egrilerinin incelenmesi ve &zelliklerinin iginde
bulundugu manifolddan nasil etkilediginin veya tlimel geodezik yada tlimel umbilik
olusu gibi niteliklerin yapisma etkisinin aragtirilmas: halen tizerinde yogun gahigmalarm
yapilmakta oldugu konulardir.

Bu ¢alismay1 biz ileri ¢aligmalara zemin hazirlayacak bir bicimde hazirladik. Bu
amagla yar-Riemann altmanifoldlar birinci ve ikinci bolimde gahgildi.  Uglincii
bolimde bu altmanifoldlar Ustiindeki e@riler ve dordiincli bdlimde Lorentz
manifoldlarm zaman-benzeri egrileri ve bunlar i¢inde de gember, helis ve Cartan ¢atih
null egriler ¢alisildi. Riemann manifoldlar: tstiindeki egriler i¢in tammlanan Frenet
formiilleri bu halde farkliik g6sterdi. Bunun i¢in egri iistiinde uygun bir gati, Cartan
catisi olarak adlandirildi.

n-boyutlu bir Lorentz manifoldunun(n>3) isik-benzeri bir egrinin transerval
vektdr bundle’ min yani; non-dejenere kismumin “ki o egrinin tanjant bundle ile normal
bundle’nin bosg olmayan arakesiti olarak tamimlanuy” belirlenmesi durumunda egrinin
Cartan ¢atis1 2 tanesi 1sik-benzeri ve n-2 tanesi de uzay-benzeri olarak bulunur ve bunlar
sayesinde egrinin Frenet denklemleri tamimlanabilir. Besinci boliimde zaman-benzeri
egrilerin Cartan catilar1 zaman-benzeri helisler igin tammlanarak Teo.5.14 de bir
Lorentz altmanifoldunun bir yari- Riemann manifoldunda tiimel geodezik olarak
bulunabilmesinin bir helisin altmanifoldta zaman-benzeri olmasmin yari-Riemann
{istmanifoldta da korunuyor olmasi oldugu ispatlanmistir. Bu teoremin sabit egrilikli
Cartan g¢atih null egrinin tistmanifoldada sabit egrilikli Cartan ¢atih bir null egri olmast

Teo.5.19. da ispatlanmugtir.
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Ornek 5.18. ile IR} Lorentz manifoldunun

a(t) ( J_smht J_cosht : ) seklindeki bir egrisinin bir null ¢atiya sahip oldugu

gosterilmis olup 6zglin bir 6rnektir. Ornek 5.23. ile verilen

aft)= ( +t —\gz——tz %—- tJ egrisi de IR} de genellestirilmis null-kiibiktir.

Teo.5.19.da ki sonug genellestirilmis null-kiibikler i¢cin Teo.5.24 de &6zgiin
olarak ispatlanmgtir.

Bu ¢alisma daha sonra tizerinde ¢ahgacagimiz yari-Riemann manifoldlarm 1gik-
benzeri altmanifoldlarrm anlayabilmemize yarayacak bir pencereyi aralamamzi
saglamigtar.



53

VII. KAYNAKLAR

[1] DUGGAL, K.L. and BEJANCU A., Lightlike Submanifolds of Semi-Riemannian
Manifolds and Applications, Kluwer Academic Publishers, 1996.

[2] O’NEILL, B., Semi-Riemannian Geometry with Applications to Relativity,
Academic Press, 1983.

[3] HOFFMAN, K. and KUNZE, R., Linear Algebra, Prentice-Hall of India Private
Limited, 1967.

[4] HICKS, N.J., Submanifolds of Semi-Riemannian Manifolds, Rend. Circ. Mat.
Palermo 12(1963) 137-149.

[S]HICKS, N.J., Notes on Differential Geometry, D. Van Nostrand Company, Inc.,
1965.

[6] BOOTHBY, W.M., An introduction to Differentiable Manifolds and
Riemannian Geometry, Academic Press, 1975.

[7] IKAWA, T., On curves and Submanifolds in an Indefinite-Riemannian
Manifold, Tsukuba J. Math. Vol. 9 No. 2(1985), 353-371.

[8] BONNER, W.B., Null curves in 2 Minkowski space-time, Tensor N.S., 20(1969),
229-242.

[9] NOMIZU, K. and YANO, K., On circles and spheres in Riemannian Geometry,
Math. Ann., 210(1974), 163-170.



54

IX. 0ZGECMIS

27.03.1973 tarihinde Artvin’in Savsat ilgesinin Kiiplice kdyiinde dogdum.
Ikokulu Kiiplice {lkokuli’nda, Ortaokulu Savsat Ortaokulu’nda okudum. Liseyi
Giresun Atatlirk Lisesi’nde tamamladim. 1992 yilinda Istanbul Universitesi Fen
Fakiiltesi Matematik Boliimii’ne girdim. 1996 yilinda bu bsliimden mezun oldum ve
ayn yil Istanbul Universitesi Fen Bilimleri Enstitiisii Matematik Anabilim Dali’'nda
yiiksek lisans egitimine bagladim. 6 Kasim 1996 tarihinde Istanbul Universitesi Fen
Fakiiltesi Uygulamah Matematik Anabilim Dal’nda arastirma gorevlisi olarak atandim
ve halen aym bliimde gérevimi siirdlirmekteyim.



