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YAPAY ZEKA TEKNIKLERI iLE YERALTI SU SEVIYESININ ZAMAN
SERIiSi TAHMINI

Ramazan SENTURK
Kayseri Universitesi, Lisansiistii Egitim Enstitiisii
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Damisman: Dog¢. Dr. Rifat KURBAN

OZET

Yeralti suyu kaynaklarinin etkin yonetimi kritik 6neme sahiptir ve son arastirmalar,
yeraltt suyu seviyelerindeki diislislerin yeralti suyu hidrolojisi iizerindeki etkisini
vurgulayarak siirdiiriilebilir uygulamalarin gerekliligini ortaya koymaktadir. Bu tez
calismasinda, yapay zeka teknikleri kullanilarak yeralti suyu seviyesinin zaman serileri
tahmini gerceklestirilmistir. Kaggle'dan elde edilen AquiferAuser veri seti kullanilarak,
bes farkli kuyunun yeralti suyu seviyeleri analiz edilmis ve tahminlerde bulunulmustur.
Caligma kapsaminda NAR-NN ve LSTM gibi yapay sinir ag1 algoritmalar1 kullanilmis ve
performanslart RMSE degerleri lizerinden karsilagtirilmistir. Sinir aglar1 farkli egitim
algoritmalar1 ve parametrelerle test edilerek en uygun konfigiirasyonlar belirlenmistir.
Zaman gecikmesi artarken NAR-NN performansi iyilesmis ve LSTM performansi
diigmiistir. NAR-NN modeli icin Bayesian Regularization geri yayilim (trainbr)
algoritmasi, Levenberg-Marquardt geri yayilim (trainlm) algoritmasina gore daha iyi
sonuclar saglamistir. LSTM modeli icin ise, rmsprop egitim algoritmast adam
algoritmasindan daha basarili bulunmustur. NAR-NN modeli LSTM modeline kiyasla
daha diisiik RMSE degerleri elde ederek daha yiiksek tahmin dogrulugu sergilemistir. Bu
durum, NAR-NN modelinin zaman serilerindeki karmasik ve dogrusal olmayan iliskileri

daha etkin bir sekilde modelleme yetenegine baglanabilir.

Bu calisma, yapay zeka modellerinin su yonetiminde 6nemli bir rol oynayabilecegini ve
dogru model se¢imi ile optimizasyonun bu siirecte kritik oldugunu gostermektedir. Yapay
zeka modellerinin dogru tahminler yapabilmesi, su kaynaklarinin daha verimli ve

stirdiiriilebilir bir sekilde yonetilmesine katki saglayacaktir

Anahtar Kelimeler: Yeralti1 su seviyesi tahmini, Yapay sinir agi, Dogrusal olmayan

otoregresif sinir ag1, Uzun kisa siireli bellek
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TIME SERIES PREDICTION OF GROUNDWATER LEVEL WITH
ARTIFICIAL INTELLIGENCE TECHNIQUES

Ramazan SENTURK
Kayseri University, Institute of Graduate Education
M.Sc. Thesis, September 2024
Supervisor: Assoc. Prof. Dr. Rifat KURBAN
ABSTRACT

Effective management of groundwater resources is critical and recent research has
highlighted the impact of declining groundwater levels on groundwater hydrology,
highlighting the need for sustainable practices. In this thesis, groundwater level
time series forecasting is performed using artificial intelligence techniques.
Using the AquiferAuser dataset obtained from Kaggle, groundwater levels of five
different wells were analyzed and predictions were made. Neural network algorithms
such as NAR-NN and LSTM were used in the study and their performances were
compared based on RMSE values. The neural networks were tested with different
training algorithms and parameters to determine the optimal configurations. As the
time delay increases, NAR-NN performance improves and LSTM performance
decreases. For the NAR-NN model, the Bayesian Regularization backpropagation
(trainbr) algorithm provided better results than the Levenberg-Marquardt
backpropagation (trainlm) algorithm. For the LSTM model, the rmsprop training
algorithm was found to be more successful than the man algorithm. The NAR-NN
model exhibited higher prediction accuracy with lower RMSE values compared to the
LSTM model. This can be attributed to the ability of the NAR-NN model to model

complex and nonlinear relationships in time series more effectively.

This study shows that Al models can play an important role in water management and
that proper model selection and optimization are critical in this process. The ability of
artificial intelligence models to make accurate predictions will contribute to a more

efficient and sustainable management of water resources.

Keywords: Groundwater level prediction, Artificial neural network,

Nonlinear autoregressive neural network, Long short-term memory
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GIRIS
Su temin ve dagitim sistemlerinin siirdiiriilebilir yonetimi, giiniimiiziin su kaynaklar
yonetimi alaninda énemli bir konudur. Ozellikle yeralt1 suyu seviyelerindeki diisiisler ve
iklim degisikligi gibi faktorler, su kaynaklarinin etkin ve verimli bir sekilde yonetilmesi
gerekliligini vurgulamaktadir. Bu baglamda, zaman serileri tahmini, su kaynaklarinin
gelecekteki durumunu 6ngdrerek su yonetimi stratejilerinin optimize edilmesine yardimci

olabilir. Bu tez ¢calismasi, yapay zeka teknikleri kullanarak yeralti suyu seviyesinin zaman

serileri ile tahminini ele almaktadir.

Gliniimiizde yapay zeka ve makine Ogrenimi algoritmalari, karmagik ve biiylik veri
kiimelerini analiz ederek anlamli sonuglar ¢ikarma konusunda oldukc¢a basarilidir. Su
temin ve dagitim sistemlerinde zaman serileri tahmini i¢in kullanilan yapay sinir aglari
ve uzun kisa siireli bellek (LSTM) modelleri, su seviyelerinin ve su talebinin gelecekteki
degerlerini ongdrmede etkili araglar olarak one ¢ikmaktadir. Bu tezde, farkli yapay sinir
ag1 algoritmalar1 kullanilarak su temin ve dagitim sistemlerindeki yeralti suyu

seviyelerinin tahmini yapilmis ve bu algoritmalarin performanslar karsilagtirilmisgtir.

Bu c¢alismada, Kaggle'dan elde edilen AquiferAuser veri seti kullanilarak bes farkli
kuyunun yeralt1 suyu seviyeleri analiz edilmis ve tahminlerde bulunulmustur. NAR-NN
ve LSTM gibi yapay sinir ag1 algoritmalar1 kullanilarak elde edilen sonuclar, tahminlerin
dogrulugunu artirmak icin farkli egitim algoritmalar1 ve parametrelerle test edilmistir.
Elde edilen bulgular, yapay zekd modellerinin su yonetiminde O6nemli bir rol
oynayabilecegini ve dogru model sec¢imi ile optimizasyonun bu siirecte kritik oldugunu
gostermektedir. Bu tez, yapay zeka tekniklerinin su temin ve dagitim sistemlerinde etkin
bir sekilde kullanilabilecegini ve bu alandaki ¢alismalarin su kaynaklarinin daha verimli

ve siirdiiriilebilir yonetimine katki saglayacagini vurgulamaktadir.



BIiRINCi BOLUM
YERALTI SUYU VE ONEMIi

1.1 Yeralt1 Suyu

Yeralt1 suyu, 6zellikle su kitlig1 yasanan ve genis yeralt1 su sistemlerine sahip bolgelerde,
tamamlayic1 su kaynagi olarak islev géren 6nemli bir kaynaktir (Wada vd., 2010). Yeralt1
suyu kaynaklariin etkin yonetimi esastir ve son aragtirmalar yeralti suyu seviyelerindeki
diisiisler, yeralti suyu hidrolojisi iizerindeki etkisini vurgulayarak siirdiiriilebilir
uygulamalarin gerekliliginin altin1 ¢izmistir (Smerdon vd., 2009). Ayrica, yeralti suyu
olanaklarinin, zorluklarinin ve potansiyel ¢6ziim yollarinin ilerlemesinde zamanin 6nemi
gorsel olarak ortaya konmus ve yeralti suyu sosyo-ekolojisinin incelikli bir sekilde
anlagilmasi gerekliligi vurgulanmistir (Giordano, 2009). Sekil 1.1°de ekolojik su

dongiisiiniin asamalar1 gosterilmistir. (Su Dongiisii, 2024)

Sekil 1.1. Su Dongiisiiniin Asamalart
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Hidrolojik dongiiniin 6nemli bir unsuru olan yeralt: suyu, 6zellikle su kitlig1 yasanan ve
genis akifer sistemlerine sahip bolgelerde su kaynaklarinin korunmasinda ¢ok dnemli bir
isleve sahiptir. Son zamanlarda yapilan ¢aligsmalar, karmasik arazilerde yeralti suyu
baglantisinin ve besin akislarinin yonetimi ve anlagilmasina odaklanmistir. Bu caligsmalar,
bu siirecleri kavramsallastirmak i¢in modern jeofizik tekniklerin kullanilmasinin
gerekliligini vurgulamaktadir. Ayrica, antroposen ¢aginda diinya ¢apindaki yeralti suyu
kaynaklarinin uzun vadeli yasayabilirligi ve yonetiminin incelenmesi, dogal kaynaklarin
yonetimi ile diinya sistemlerinin bilimsel ¢alismas1 arasindaki karmagsik iliskiyi

vurgulayarak ¢oklu bakis agilarindan analiz edilmistir.

Yeralt1 suyu, 6zellikle sulu tarimda olmak iizere kentsel su temini ve kirsal gecim
kaynaklarinin korunmasinda kritik bir role sahip olan temel ve 6nemli bir dogal kaynaktir
(Foster & Chilton, 2003). Yeralt1 suyunun ekolojik 6nemi, 6zellikle ekolojik agidan
biiylik ilgi ¢eken yeralti suyu ve nehir suyu arasindaki etkilesimler agisindan cevre
tizerindeki etkisinde yatmaktadir (X vd., 2012). Ayrica, petrolden etkilenen yerlerde
arsenik gibi kirleticilerin yeralti sularina desarj edilmesi, yeraltt suyu rezervlerinin

biitiinligii konusunda endiselere yol agmistir (Cozzarelli vd., 2015).

Ayrica, yeralti suyuna bagimli olan bitki Ortiisiiniin refah1 yeralti suyu sistemiyle
yakindan baglantilidir ve bu da ¢evresel kaynak yonetimi i¢in yeraltt suyunun etkin bir
sekilde yoOnetilmesinin 6nemini vurgulamaktadir (Eamus vd., 2006). Yeralti suyu
biyocesitliliginin korunmasi, ekolojik dengenin siirdiiriilebilmesi i¢in degerlendirilmesi
ve korunmasina yonelik arastirmalar gerektiren temel bir 6zelliktir (Gibert & Culver,
2009). Buna ¢k olarak, yirmi yillik bir siire zarfinda yapilan bibliyometrik bir arastirma,
yeralt1 suyu arastirmalarinin diinya capindaki durumu hakkinda faydali bilgiler saglamis

ve yeralt1 suyu iizerine yapilan ¢aligmalarin genis yelpazesini ve dnemini vurgulamistir

(Niu vd., 2014).

Nemli iklim, su tablast derinligi ve yeralt1 suyu sarj dinamikleri arasindaki baglanti
arastirilmig, iklim ve arazi kullaniminin yeralti suyu sarji tizerindeki karmasik etkisi
ortaya ¢ikarilmistir (Smerdon vd., 2008). Ayrica, kiyi akiferlerinde deniz suyu girisimi
tizerindeki akis yoniine bagli dagilimin pratik sonuglari, kiy1 bolgelerindeki yeralti suyu
yonetimi i¢in Onemli sonuglar dogurmaktadir (Fahs vd., 2022). Buna ek olarak,

aragtirmacilar yeraltt suyundaki siilfatin kaynagmi ve dagilimini arastirarak belirli



akiferlerdeki suyun kalitesini etkileyen kimyasal siiregler hakkinda bilgi saglamistir
(Long vd., 2021).

Caligsma, yeralt1 suyunun kullanimini ve bunun tagkin kontrolii ve su kaynaklar1 yonetimi
acisindan sonuclarini incelemis, belirli alanlarda yeralt1 suyuna alternatif olarak yiizey
suyu kullanma olasiligin1 vurgulamistir (Purnawan vd., 2022). Bununla birlikte, kiiresel
yeralti suyu siirdiiriilebilirligi zorlu bir gérev olmaya devam etmekte ve yeralt1 suyunun
yonetimi i¢in kapsamli ve stirdiiriilebilir bir strateji gerektirmektedir (Gleeson, 2020). Qi
ve arkadaglar1 (2021) tarafindan yiiriitilen bir calismada, tuzlanmadan etkilenen
yerlerdeki yeralti sularinin ekolojik esigi incelenmistir. Bu ¢alismanin amaci, yeralti suyu
ile ilgili arastirmalar1 gelistirmek ve su kaynaklar1 planlarinin olusturulmasi i¢in degerli

bilgiler saglamaktir (Qi vd., 2021).

Sekil 1.2°de, Fotor yapay zeka araci ile olusturulan gorselde, yeralti suyu arastirmalari
ekoloji, cevre ve siirdiiriilebilirlik gibi ¢esitli yonleri vurgulanmaya g¢alisiimistir. Bu
arastirma, insan faaliyetleri, arazi kullanim1 ve yeralt1 suyu dinamiklerini etkileyen dogal
stiregler arasindaki karmasik iligkiyi arastirmaktadir. Yeralti sularimin siirdiiriilebilir
yonetimi, tarim, kentsel kaynaklar ve ekolojik denge gibi cesitli sektorler igin kritik bir

kaynak olmasi nedeniyle simdiki ve gelecek nesiller i¢cin ¢ok dnemlidir.

Sekil 1.2. Ekolojik Dongii




1.2 Yeralti1 Suyu Olusumu ve Kaynaklari

Onemli ve vazgecilmez bir dogal kaynak olan yeralt1 suyu, ¢cok sayida siirecle yaratilir ve
cok sayida engelle karsilasir. Yeralti1 suyunun yeniden doldurulmasi, yeralti suyunun
yaratilmasinda ¢ok énemli bir bilesendir (Vries & Simmers, 2002). Bu siire¢ karmasiktir
ve hidrojeokimyasal 6zellikler, Sekil 1.3’de goriildiigii gibi jeolojik olusumlar ve insan
faaliyetleri gibi ¢esitli unsurlardan etkilenir (S. Wang vd., 2021). Si1g yeralt1 sularindaki
yiiksek floriir miktarlar1 ¢ogunlukla buharlasma konsantrasyonu, sizinti yoluyla
zenginlesme ve insan kaynakli kirlilik gibi mekanizmalardan kaynaklanmaktadir (Gao
vd., 2020). Ayrica, iklim degisikligi ve insan faaliyetlerinin yeralti sularinin yenilenmesi
ve hidrolojik siirecgler iizerindeki yansimalari, yeraltt suyu kaynaklarinin uzun vadeli
yasayabilirligi i¢in bir risk olusturmaktadir (Tolera & Chung, 2021; Wossenyeleh vd.,
2020). Yeralt1 suyunun olusumunda rol oynayan mekanizmalar hakkinda bilgi edinmek,
bu degerli kaynag1 yonetmeyi ve korumay1 amaclayan stratejilerin basarili bir sekilde

uygulanmasi i¢in ¢ok 6nemlidir
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Buna ek olarak, yeralti suyunun kalitesi hidrojeokimyasal 6zellikler, jeolojik olusumlar
ve insan faaliyetleri gibi bir dizi unsurdan etkilenir (Gao vd., 2020; S. Wang vd., 2021).
Madencilik bolgelerindeki yeralti suyunun hidrojeokimyasal 6zelliklerinin ve olusum
mekanizmalarinin incelenmesi, jeolojik yapilarin yeralti suyunun kalitesi iizerindeki
onemli etkisini vurgulayan bir drnektir (S. Wang vd., 2021). Ayrica, sulu tarimin yeralti
suyu sarjinin tuzlulugu tizerindeki etkisi, yar1 kurak alanlarda 6nemli bir siirdiiriilebilirlik
sorunu olarak kabul edilmis ve bu sorunun iistesinden gelmek i¢in kapsamli yonetim
tekniklerinin gerekliligini vurgulamistir (Foster vd., 2018). Bu bulgular, yeraltt suyu
yaratma siiregleri ile yeralti suyunun Kkalitesi arasindaki karmasik baglantiy
vurgulamakta ve yeralt1 suyu yonetimine yonelik kapsamli yaklagimlara duyulan ihtiyaci

ortaya koymaktadir.

Ozetlemek gerekirse, yeralti suyunun olusumu, Sekil 1.4°deki gibi hidrojeokimyasal
ozellikler, jeolojik yapilar ve insan faaliyetleri de dahil olmak {izere ¢ok sayida faktdrden
etkilenen karmagik bir siirectir. Yiiksek floriir seviyeleri, tuzluluk sorunlart ve iklim
degisikliginin etkisi gibi yeralt1 suyu olusumuyla ilgili zorluklar1 ele almak i¢in kapsamli
arastirma ve yonetim teknikleri gereklidir. Bu 6nlemler, bu temel kaynagin siirdiiriilebilir
kullanimini saglamak i¢in gereklidir. Yeralti suyunun olusumu ile ilgili mekanizmalarin
ve zorluklarin kapsamli bir sekilde anlagilmasi, bu degerli kaynagin yonetilmesi ve

korunmasina yonelik stratejilerin basarili bir sekilde uygulanmasi i¢in gereklidir.

Sekil 1.4. I[yonlarin Hareketlerini ve Kimyasal Reaksiyonlarini Etkileyen Siirecleri Igeren
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1.3 Yeralti Suyunun Bilin¢siz Kullanimi ve Etkileri

Yeraltt sularinin bilingsiz kullanimi ¢evre ve tiirler lizerinde derin etkiler yaratabilir.
Tarimda bitki biiyiime diizenleyicilerinin uygunsuz ve bilingsiz kullanimi ¢evre i¢in
zararl sonuglara yol acabilir. Bu diizenleyiciler, tarimsal uygulamalar sirasinda topraga
karigma ve ardindan yeralti sularina sizarak tehdit olusturma potansiyeline sahiptir
(Ismail, 2022). Buna ¢k olarak, kullanilmis iiriinlerin yanlhslikla ¢evreye atilmasi gevre
kirliligini artirarak kaynaklarin hizla tilkkenmesine ve kirlilik seviyelerinin ylikselmesine
neden olur (Achylov & Kaygin, 2022). Ayrica, tarimda giibre ve pestisitlerin yanliglikla
uygulanmasi, yeralt1 sularinda NOs, SOs, As, F ve U gibi baz1 elementlerin seviyelerinin
yiikselmesine yol agan yerel kirliliklerle iligkilendirilmistir (Basibiiyiik vd., 2020; Ersahin
& Bilgili, 2023).

Farkinda olmadan yeralt1 suyu kullaniminin sonuglari, ¢evresel etkilerin 6tesinde karar
verme slireglerine kadar uzanmaktadir. Calismalar, bilingsiz bilisin bireylerin karmasik
ortamlarda davranigsal karar verme siireglerini gelistirebilecegini ve seg¢imlerinden
duyduklart memnuniyeti artirabilecegini gostermistir (Hu vd., 2018). Dahasi,
arastirmalar, bilingsiz islemenin, kararlarin saglanan tiim bilgilerin kisa ve degerlendirici
bir genel bakigina dayanabilecegi durumlarda 6zellikle avantajli oldugunu gostermistir
(Queen & Hess, 2010). Bununla birlikte, nanopartikiillerin yanlislikla emilmesi gibi
zararl sonuclara yol agabileceginden, bilingsiz bilis ile baglantili olas1 tehlikeleri kabul
etmek ¢ok 6nemlidir. Bu durum, kentsel ve endiistriyel atiklar su ekosistemine girdiginde

ve trofik zincirler boyunca biriktiginde ortaya ¢ikabilir (Zhang vd., 2022).

Sonug olarak, yeralti suyunun yanlislikla kullanilmasinin ¢evre, tarim ve karar alma
prosediirleri tizerinde kapsamli etkileri olabilir. Bilingsiz yeralti suyu kullaniminin olas1
cevresel ve saglik sonuglarina iligkin bilginin artirilmasi ve bu etkileri hafifletmek icin

stirdiiriilebilir ve dikkatli yontemlerin savunulmasi 6nemlidir.
1.4  Yeralt1 Suyu ve Iklim Degisikligi Iliskisi

Hidrolojik dongiiniin 6nemli bir unsuru olan yeralt1 sulari, iklim degisikliginin etkilerine
kars1 savunmasizdir. Tklim degisikliginin yeralt1 suyu kaynaklari iizerindeki potansiyel
etkilerine iliskin artan endise, son yillarda 6nemli 6l¢iide dikkat ¢cekmistir. Calismalar,
iklim degisikliginin yeralt1 suyu sistemlerini, yeralt: suyunun yenilenmesini degistirmek,
yeraltt su rezervuarlarinin davramigini etkilemek ve su tablasinin derinliginde

dalgalanmalara neden olmak gibi ¢esitli mekanizmalar yoluyla etkiledigini géstermistir



(Costantini vd., 2023; Hamidi vd., 2021; Wu vd., 2020). Iklim degisikligi ile kiiresel
miicadele 151ginda, iklim degisikligi ve yeralt1 suyu kaynaklar1 arasindaki karmagsik
baglantilar1 anlamak cok Oonemlidir. Bu anlayis, su kaynaklarini yonetmek ve degisen

iklime uyum saglamak i¢in etkili yOntemler uygulamak ag¢isindan hayati Onem

tagimaktadir (Landes vd., 2014; Meyer, 2017).

Iklim degisikliginin yeralt1 suyu sistemleri iizerindeki etkisi biiyiik ilgi géren bir konudur.
Caligmalar, yeralti suyu sistemlerinin iklim degisikligine karsi kiiresel duyarliligina
iliskin mevcut anlayisimizin sinirli oldugunu gostermistir. Ayrica, yeralti suyundan iklim
sistemine olan geri bildirimlerde genis bir g¢esitlilik vardir (Cuthbert vd., 2019;
Goderniaux vd., 2011). Ayrica tahminler, artan sicakliklarin Hindistan gibi ve {ilkemizde
Konya bolgelerinde yeralti sularinin tikkenme hizin1 daha da koétiilestigini Sekil 1.5’deki
gibi obruklar olustugunu gostermekte ve iklim degisikliginin yeralti suyu rezervleri
tizerindeki etkisinin kapsamli bir degerlendirmesinin yapilmasinin  Snemini
vurgulamaktadir (Bhattarai, 2023). Ayrica, Banglades'teki Rangpur bolgesi gibi kurakliga
duyarli yerlerdeki yeralti suyu rezervlerinin azalmasi, iklim degisikligi ve muson
diizenleri nedeniyle yeralt1 suyu seviyelerinin yer ve zaman igindeki dalgalanmasini

vurgulamaktadir (Monir vd., 2022).

Sekil 1.5. Bilingsiz Yeralti Suyu Kullanimi Sonucu Konya’'da Olusan Obruklar

Konyakapah
havzasindabir yilda
kullamilan
sumiktan
2milyar
450 milyonm3

Konya
bolgesinde
kayith obruk
sayisi

600

adet




Iklim degisikliginin yeralt: suyu kaynaklari iizerindeki sonuglari, su hareketinin
dinamiklerinin 6tesine gecerek ¢evre ve toplumla ilgili diger unsurlar1 da kapsamaktadir.
Tayland'daki asag1 Chao Phraya havzasinda iklim degisikliginin tarimsal gelir tizerindeki
potansiyel etkilerini incelemek icin, 6zellikle yeralt1 suyu stirdiiriilebilirligi iizerindeki
etkiye odaklanan bir aragtirma yapilmistir. Bu arastirma iklim degisikligi, yeralt1 suyu
kaynaklar1 ve tarimsal ge¢im kaynaklarinin karsilikli bagimliligini vurgulamaktadir
(Balasubramanian & Saravanakumar, 2021; Tanachaichoksirikun vd., 2018). Iklim
degisikliginin yeralti suyu kaynaklar1 {izerinde yarattigi karmagik sorunlarla etkin bir
sekilde miicadele etmek i¢in bilimsel bilgi, politika dnlemleri ve toplum katilimini
birlestiren kapsamli bir yaklasim benimsemek gerekmektedir. Bu yaklasim, bu hayati su
kaynaginin uzun vadeli ve siirdiiriilebilir yonetimini saglamak i¢in ¢cok dnemlidir (Meyer,

2017).

Diinya c¢apinda oOngoriilen degisikliklerin yeralti suyu sistemlerini etkilemesi
beklendiginden, iklim degisikliginin yeralt1 suyu kaynaklar: iizerindeki etkileri giderek
artan bir endise konusu haline gelmistir (Green vd., 2011). Libya, Misir ve Sudan'daki
Nubian Akiferi'nin gosterdigi gibi, yenilenebilir yeralti suyu kaynaklariin iklim
degisikliginin etkilerine kars1 duyarliliginin anlagilmasi, verimli su kaynaklar1 yonetimi
icin ¢ok onemlidir (D611, 2009). Bununla birlikte, iklim degisikligi ve yeralti suyu
sistemleri arasindaki karmasik etkilesim, yani Hindistan gibi bolgelerdeki yeralt1 suyu
tiikenme oranlariin yogunlagmasi hala iyi anlagilamamistir (Bhattarai, 2023; Thomas &
Famiglietti, 2019).

Insan faaliyetleri, iklim degisikligi ve yeralti suyu kaynaklari arasindaki iliski,
gelecekteki iklim senaryolart altinda Kuzey Cin Ovasi'nin sulanan tarim bolgesinde
yeralti suyu seviyelerindeki insan kaynakli degisiklikleri tahmin etme yeteneginin
yetersiz olmasinin da gosterdigi gibi, ¢ok 6nemli bir ¢alisma alanidir (Chen vd., 2023).
Dahasi, iklim kaynakli yeraltt suyu tiikenmesinin tespiti, iklimsel degiskenligin hem
dogrudan hem de dolayli sonuglarinin etkilerini siklikla g6z ardi ederek kisitlanmigtir
(Thomas & Famiglietti, 2019). Iklim degisikligi ve yeralt1 suyu kalitesi arasinda baglanti
kurmak i¢in, karmasik ve dlciilmesi zor etki mekanizmalarini vurgulayan diinya ¢apinda
onemli tahminler tiretmek igin kapsamli veri kiimeleri gereklidir (McDonough vd., 2020;
S.J. Wang vd., 2021). Iklim degisikligi, Sekil 1.6’daki gibi insanlik i¢in biiyiik bir kiiresel
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endise kaynagi olarak giderek daha fazla 6ne ¢ikmaktadir. Kuzey Tayland'da hem yiizey

suyunun hem de yeralt1 suyunun yenilenmesini etkilemektedir (Petpongpan vd., 2020).

Sekil 1.6. Iklim Degisikliginin Su Kaynaklarina Etkisi

Iklim degisikliginin yeralt: sularmin uzun vadede yasayabilirligi iizerindeki etkisi dnemli

ve acil bir konudur. Bu durum, Tayland'daki Yukari Chao Phraya Nehri havzasinda ve
Mississippi  Embayment'ta yeralti suyu rezervlerinde beklenen azalma ile
kanitlanmaktadir (Ouyang vd., 2021; Pratoomchai vd., 2014). Ayrica, Banglades'teki
Rangpur bolgesi gibi kurakliga egilimli bolgelerdeki yeralti suyu seviyelerinin azalmasi,
iklim degisikliginin yeralt1 suyu kaynaklari iizerinde yarattigi karmasik zorluklarin acilen
ele alinmasi gerektigini vurgulamaktadir (Monir vd., 2022). iklim degisikliginin olumsuz
sonuglarini ele almak ve siirdiiriilebilir entegre su yonetimi stratejilerinin uygulanmasini
saglamak i¢in etkin yonetisimin saglanmasi sarttir. Bu, iklim degisikligi nedeniyle risk
altinda olan yeralti suyu kaynaklarimin etkin bir sekilde yonetilmesi i¢in ozellikle
onemlidir (Yagbasan, 2016).

1.5 Yeralt1 Suyunun Korunmasi ve Siirdiiriilebilir Yonetimi

Yeralt1 sularinin korunmasi ve uzun vadede yasayabilirligi, bu 6nemli kaynagin gelecek
kusaklar i¢in erisilebilirligini garanti altina almak icin gereklidir. Sulamaya yoOnelik
onemli talep ve artan niifus goz oniine alindiginda, yeralt1 suyu seviyelerini (YAS) dogru
bir sekilde tahmin etmek icin yeralt1 suyu sistemlerine iligkin kavrayisimizi gelistirmek

zorunludur (Malakar vd., 2022). Bunu anlamak, yeralt1 suyu kaynaklarinin siirdiiriilebilir
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yonetimi i¢in ¢cok dnemlidir. Ayrica, yeralti suyunun siirdiiriilebilirligini saglamak i¢in
kapsamli ve her seyi kapsayan bir yapinin, giivenli verim, yenilenebilirlik, tiikenme veya
stres gibi geleneksel kavramlara kiyasla yonetisim ve yonetim i¢in daha biiyiilk 6neme
sahip oldugu vurgulanmistir (Gleeson vd., 2022). Bu durum, birden fazla unsurun
karmasik etkilesimini gbz oniinde bulundurarak, yeralti suyu kaynaklarimin uzun vadeli
yasayabilirligini saglamak i¢in daha kapsamli bir stratejiye yonelik temel bir bakis agisi

degisikliginin gerekliligini vurgulamaktadir.

Etkili yeralt1 suyu yonetisimi ve yonetimi, bu dogal kaynagin korunmasi ve uzun vadede
yasayabilirligi i¢in elzemdir. Yeralt1 sularinin miilkiyeti genellikle hiikiimetlere aittir ve
yonetimi koruma, siirdiiriilebilir kullanim ve herkes icin suya esit erisim saglamay1
amagclayan politikalarla yonetilir (Aeschbach—Hertig & Gleeson, 2012). Ayrica, koruma
stratejilerinin basarili bir sekilde yiiriitiilmesi, yeralti suyunun korunmasinin uzun vadeli
uygulanabilirligini etkileyen yonetisim bilesenlerinin ve 6zelliklerinin kapsamli bir
sekilde anlagilmasini gerektirmektedir (Mirnezami vd., 2019). Bu durum, yeralti suyu
kaynaklarinin uzun vadeli ve sorumlu kullanimim1 garanti altina almak i¢in giicli
yoOnetisim ¢ergevelerine ve diizenlemelerine duyulan ihtiyaci vurgulamaktadir. Buna ek
olarak, yeralt1 suyu yoOnetisiminin inceliklerini ve siirdiiriilebilirlikle iligkisini
arastirmanin bir yolu olarak yeralt1 suyu diizenlemelerini tasarlamak i¢in bilim odakli bir
strateji Onerilmistir (Gleeson vd., 2022). Bu yaklasim, yeralti sularinin korunmasi ve
stirdiiriilebilirligi ile ilgili karmasik zorluklarin {istesinden gelmek i¢in doga ve sosyal
bilimlerde uzmanlagmig bilim insanlar1 arasinda ¢ok disiplinli is birliginin gerekliligini

vurgulamaktadir.

Yeralt1 suyu kaynaklarinin etkin yonetimi, asir1 kullanim ve tiikenmeden kaynaklanan
sorunlarin iistesinden gelmek i¢in ¢ok onemlidir. Aragtirmalar, menfaat sahibi bireyler
tarafindan yonetilen ve diizenleyici denetimle desteklenen koruma girisimlerinin
uygulanmasinin, asirt yiiklii akiferlerde siirdiiriilebilirlii saglamak i¢in bir ara¢ olarak
hizmet edebilecegini gostermistir (Deines vd., 2019). Buna ek olarak, yeralti suyu
pompalamasinin azaltilmasi ve suyun yoniiniin degistirilmesi gibi insan miidahalelerinin
yeralti suyu depolamasinin dengelenmesinde ve uzun vadeli siirdiiriilebilirligin garanti
altina alinmasindaki etkinligi kabul edilmistir (Yang vd., 2022). Bu bulgular,
stirdiiriilebilir yeralti suyu yonetimini saglamak i¢in proaktif 6nlemler ve miidahaleler

almanm O6nemini vurgulamaktadir. Ozetle, bu gdzlemlerin birlesimi, yeralt1 suyu
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kaynaklarinin korunmasi ve siirdiiriilmesi i¢in kapsamli ve ¢ok disiplinli bir stratejinin
benimsenmesi gerekliligini vurgulamaktadir. Bu yaklagim, yonetisim, yonetim ve ilgili

tiim taraflarin aktif katilim1 gibi unsurlari icermelidir.

Birlesmis Milletler'in 2030 Siirdiiriilebilir Kalkinma Giindemi, 169 hedef ve izleme icin
bircok gdstergenin eslik ettigi 17 siirdiriilebilir kalkinma hedeflerinden (SKH)
olugmaktadir. Bu hedefler, siirdiiriilebilir kalkinmanin ekonomik, c¢evresel ve sosyal
yonlerini ele almay1 amaglamaktadir (Salvia vd., 2019). SKH'lerin gergeklestirilmesi, ok
uluslu isletmelerin katilimina baghdir (Zanten & Tulder, 2018). Yeralti suyu kaynaklari
ve su kalitesiyle ilgili siirdiiriilebilir kalkinma hedeflerine ulasilmasi, SKH'lerin birbirine
bagimhiligi1 ve bunlarla miicadele etmek i¢in kapsamli stratejilerin gerekliligini
vurgulayan bir¢ok yerde ¢ok onemli bir konudur(Alexakis, 2021). Birlesmis Milletler
Genel Kurulu, 2000 yilinda Milenyum Kalkinma Hedeflerinin onaylanmasindan
etkilenen bir dizi SKH ortaya koymustur. Bu SKH'ler, siirdiiriilebilir kalkinmanin {i¢
ayagii dengeli ve birbiriyle iliskili bir sekilde kapsamakta ve hedeflerin kapsamli
dogasini vurgulamaktadir (Medeiros, 2020).

Yeralt1 sularinin korunmasi, Birlesmis Milletler tarafindan belirlenen hedeflere ulagilmasi
icin elzemdir. Cift¢ilerin hayvan diskist i¢in ¢evre dostu bertaraf tesisleri insa etme
konusunda tesvik edilmemesi, yeralt1 sularinin korunmasinin 6niinde dnemli bir engel
teskil etmekte ve dolayisiyla Sekil 1.7°deki SKH 6: "temiz su ve sanitasyon” hedefine
ulasilmasini tehlikeye atmaktadir (Deng vd., 2022) .Yeralt1 sular1, SKH 2 ve 6 ile uyumlu
olarak ekosistemlerin sagliginin korunmasi, gida giivenliginin saglanmasi ve gilivenli
igme suyuna erigimin saglanmasinda ¢ok onemli bir role sahiptir (Reinecke vd., 2023).
Ayrica, yeralti sularmin kirlilige kars1 korunmasi ve paydaglara yonelik egitim ve
farkindalik girisimlerinin yiiriitiilmesi, SKH dogrudan katkida bulunarak gelecek i¢in ¢ok
onemli girisimlerdir (Indika vd., 2022). SKH hedeflerine basarili bir sekilde ulagilmasi,
yeraltt suyunun mevcudiyeti, kalitesi ve erisilebilirligi gibi avantajli yonlerine baghdir.
Ancak, basarili bir sekilde yonetilmedigi takdirde, bu hususlarin hem toplum hem de

dogal ¢evre tizerinde olumsuz etkileri olabilir (Petitta vd., 2023).

Sonug olarak, yeralt1 sularinin korunmasi, 6zellikle temiz su ve sanitasyonun saglanmast,
ekosistem refahinin korunmasi ve siirdiiriilebilir su yonetisiminin uygulanmasiyla ilgili
olanlar olmak iizere ¢esitli SKH ulasilmasiyla yakindan baglantilidir. SKH'lerin birbirine

bagimhilig, yeralti  sularinin  korunmasi  ve  siirdiiriilebilir = kalkinmanin
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desteklenmesindeki roliiniin ele alinmasi i¢in kapsamli ve koordineli stratejilerin

gerekliligini vurgulamaktadir.

Sekil 1.7. Birlesmis Milletler 'in 2030 Siirdiiriilebilir Kalkinma Hedefleri (Sirdiiriilebilir Kalkinma
Hedefleri, 2024)
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1.6 Yeralt1 Suyu Verilerin Kaydedilmesi

Yeralt1 suyu verilerinin kaydedilmesi, hidrojeolojik incelemelerin ve ¢evresel gozetimin
onemli bir bilesenidir. Yeralt1 suyu sistemlerinin g¢esitli 6zelliklerini ve kapsamli veri
toplama gerekliligini yansitan yeralti suyu verilerini gozlemlemek ve belgelemek i¢in cok
cesitli teknikler ve metodolojiler olusturulmustur. Masood ve digerleri yeralt1 suyunun
izlenmesine yonelik yontemlerin kapsamli bir incelemesini sunmaktadir. Bu yontemleri
iic ayn1 kategoride smiflandirarak, yeralt1 suyu verilerini toplamak icin g¢esitli
metodolojiler kullanmanin 6nemini vurgulamaktadirlar (Masood vd., 2022). Yeraltt suyu
izleme, Malenda ve Penn'in Denver Havzasi'ndaki ana kaya akiferlerindeki yeralt1 suyu
seviyelerini arastirirken 6rnekledigi gibi, yeralt1 suyu seviyelerini diizenli olarak 6lgmek
ve kaydetmek i¢in tipik olarak basing transdiiserleri kullanir (Malenda & Penn, 2020).
Buna ek olarak, Parvin ve arkadaslar1 yeralti suyu seviyelerindeki bolgesel oriintiiyii ve

zamansal degisimleri incelemek i¢in kuyu log verilerini kullanarak yeralti suyu
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dinamiklerini anlamak i¢in uzun vadeli veri toplamanin énemini vurgulamistir (Parvin

vd., 2011).

Dogru su seviyesi 0l¢limii, sulama, tagkin tahmini ve ¢evresel izleme dahil olmak iizere
bir dizi 6nemli kullanim i¢in gereklidir. Su seviyelerini 6lgmek i¢in limnigraflar, basing
sensorleri, ultrasonik sensdrler ve goriintii tabanli yontemler gibi ¢esitli yaklasgimlar ve
teknolojiler gelistirilmistir. Gengoglan ve arkadaglar1 bir sulama kanalindaki su
seviyelerini ve akis oranlarii limnigraflar, basing sensorleri ve ultrasonik sensorler
kullanarak degerlendirmistir. Bu ¢esitli teknolojilerden elde edilen ortalama okumalar1
vurgulamislardir (Gengoglan vd., 2023). Ayrica, Eltner ve digerleri mevcut tekniklerin
kisitlamalarina isaret ederek otomatik su seviyesi 0l¢timiiniin gerekliligini vurgulamistir
(Eltner vd., 2018). Buna ek olarak, Chetpattananondh ve arkadaslari1 kendi kendini kalibre
edebilen interdijital kapasitif sensor kullanarak su seviyelerini 6lgmek i¢in bir yontem
onermistir (Chetpattananondh vd., 2014). Ayrica, Li ve arkadaslar1 ultra kii¢iik bir basing
sensOrii kullanarak bir fluviyograf gelistirerek modern teknolojinin su seviyesi dl¢lim
cihazlarina dahil edilebilecegini gostermistir (Li vd., 2019). Gosterilen 6rnekler, cagdas
su seviyesi Ol¢glim yoOntemlerinde limnigraflarin ¢ok cesitli kullanim alanlarimi
gostermekte ve hidrolojik arastirma ve yonetimdeki Onemini vurgulamaktadir. Bu
yontemler, Ol¢limlerin dogrulugunu ve giivenilirligini artirmaya odaklanmaktadir.
Yapilan ¢aligsmalar, su seviyelerini degerlendirmek i¢in kullanilabilecek, her biri kendine
0zgl fayda ve dezavantajlara sahip c¢esitli metodoloji ve teknolojileri sergilemekte ve

bdylece bu 6nemli konunun ilerlemesine katkida bulunmaktadir.

Yeralt1 sularinin stirekli ve kapsamli bir sekilde izlenmesinin énemi, Kim ve Lekic
tarafindan da vurgulanmakta ve yiizey suyu kaynaklarinin aksine, diinya ¢apinda bircok
bolgede yeralti sularinin yetersiz yonetim odagina ve yetersiz izlenmesine dikkat
¢ekilmektedir (Kim & Lekic, 2019). Lee ve arkadaslari tarafindan yiiriitiilen ¢alisma,
yeraltt suyu verilerinin halka erisilebilirligini vurgulayarak, agik veri kurallarinin yeralti
suyu bilgilerinin seffafligin1 ve kullanilabilirligini ilerletmedeki Oneminin altini
cizmektedir (Lee vd., 2021). Ayrica, kritik bolgenin yeralti suyuna verdigi kapsamli
tepkiyi dogru bir sekilde 6lgmek i¢in birden fazla veri akis1 kullanmanin ve uzun vadeli
kayitlar tutmanin gerekliligini vurgulayin. Bu, sinirli finansal kaynaklarin neden oldugu
yetersiz veya kesintili uzun vadeli veri kayitlarinin yarattigi zorluklarin altin1 ¢izmektedir

(Singha & Navarre-Sitchler, 2021).
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Knierim ve digerleri, yeraltt suyu verilerinin toplanmasiyla ilgili engelleri ve
karmasikliklar1 incelemektedir. Belirli sahalarda yeraltt suyu kullaniminin kesin
kayitlarinin gelistirilmesindeki sinirlamalar1 vurgulamakta ve yeralti suyu kullaniminin
ve kullanilabilirliginin dogru bir sekilde tahmin edilmesinin 6nemini vurgulamaktadirlar
(Knierim vd., 2017). Buna ek olarak, Holland ve arkadaglari tarafindan yiiriitiilen ¢alisma,
yeraltt suyu ¢ikarimi i¢in sofistike sensor aglarmin olusturulmas: ve dogrulanmasina
odaklanmaktadir. Bu ¢alisma, yeralti suyunun izlenmesine yonelik teknolojilerin ve
metodolojinin gelistirilmesine yonelik devam eden ¢abalarin altini ¢izmektedir (Holland
vd., 2022). Referanslar, farkli metodolojiler, zorluklar ve yeralti suyu dinamiklerini
anlamak icin siirekli ve kapsamli izlemenin 6nemi de dahil olmak iizere yeraltt suyu

verilerini kaydetmenin ¢esitli yonlerini vurgulamaktadir (Knierim vd., 2017).
1.7 Yeralt1 Suyu Verilerini Kullanarak Tahminleme Calismalar:

Yeraltt suyu verilerinin degerlendirilmesi, 6zellikle su kitligi yasanan bolgelerde su
kaynaklar1 yonetiminin énemli bir bilesenidir. Yeralt1 suyu ¢ekimine iligkin rakamlar
siklikla eskimekte ve jeopolitik sinirlar arasinda tutarsiz metodolojiler kullanilarak
degerlendirilmektedir (Richey vd., 2015). Bu uyumsuzlugun varligi, yeralti suyu
depolamasindaki dalgalanmalar1 anlamak i¢in kesin ve gilincel tahmin yontemlerine
duyulan ihtiyacin altim1 ¢izmektedir. Bazi arastirmalar, birden fazla bilgi kaynagi
kullanarak Hindistan Ganj Havzas1 gibi belirli alanlarda yeralti suyu depolama
tiikenmesinin tahminine dncelik vermistir (Sreekanth vd., 2023). Bu metodolojiler, yeralti
suyu depolama tahminlerinin hassasiyetini artirmak i¢in ¢esitli veri kaynaklarini bir araya

getirmenin 6nemini gostermektedir.

Asoka ve digerleri tarafindan yapilan calisma, muson yagislarinin ve pompajin
Hindistan'daki yeralti suyu depolamasindaki degisimleri ne o6lglide etkiledigini
incelemistir (Asoka vd., 2017). Calisma, yeralt1 suyu dinamiklerindeki dogal ve insani
etkiler arasindaki karmasik etkilesimi vurgulamaktadir. Bu durum, hem iklimsel
faktorleri hem de insan eylemlerini dikkate alan kapsayici tahmin tekniklerinin
gerekliligini vurgulamaktadir. Ayrica, Maréchal ve digerleri (2006) yar1 kurak bolgelerde
sulu tarim yapilan yeralti suyu havzalarinda spesifik verim ve dogal sarjin hesaplanmasini
aragtirmistir (Maréchal vd., 2006). Elde ettikleri bulgular, yeralti suyu seviyelerini tahmin
ederken arazi kullanimi ve insan miidahalelerini dikkate almanin Onemini

vurgulamaktadir.
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Ayrica arastirmacilar, yeralti suyu tiikenmesinin atmosferik karbondioksit seviyeleri
tizerindeki  etkilerini  inceleyerek  yeraltt suyu  dinamiklerinin  hidrolojik
degerlendirmelerin Otesine gegen kapsamli sonuglarini vurgulamiglardir (Wood &
Hyndman, 2017). Bu durum, yeralt1 suyu tilkenmesinin ¢evresel ve iklimsel sonuglarini
degerlendirmek i¢in hassas tahmin yontemlerinin 6nemini vurgulamaktadir. Yeralti suyu
sarj tahmini, dogrusal olmayan transfer fonksiyonu giiriiltii modelleri gibi tekniklerin
uygulanmasiyla kolaylastirilmistir ve yeraltt suyu tahmini i¢in erisilebilen ¢ok cesitli

metodolojik yaklasimlar1 gostermektedir (Collenteur vd., 2021).

Buna ek olarak, ¢aligmada bolgesel yeralti suyu sarjin1 tahmin etmek i¢in izleyici
tekniklerinin ve hidrolojik biitce yontemlerinin kullanimi vurgulanmaktadir. Bu durum,
yeralt1 suyu tahminlerinin inceliklerini ele almak i¢in kullanilan yaklagimlarin ¢esitliligini
gostermektedir (Manghi vd., 2009; Yin vd., 2009). Cesitli stratejilerin varligi, yeralti suyu
dinamiklerini uygun sekilde degerlendirmek i¢in kapsamli ve entegre yaklagimlar
kullanmanin 6nemini vurgulamaktadir. Buna ek olarak, yeralti suyu potansiyelinin
haritalanmas1 i¢in veri madenciligi algoritmalarinin ve uzaktan algilama verilerinin
uygulanmasi, yeraltt suyu kaynaklarinin tahmin edilmesinde sofistike teknolojilerin
kullanildigin1 vurgulamaktadir (Lee vd., 2019). Ayrica Sentiirk ve digerleri tarafindan
yapilan bir ¢alismada, yapay zeka ile LT2 kuyusunun verileri ile dogrusal olmayan
otoregresif sinir ag1 kullanarak ileriye doniik yeralti suyu tahminlemesi yapmislardir

(Sentiirk vd., 2023).

Ozetlemek gerekirse, yeralt: suyu verilerinin degerlendirilmesi, cesitli veri kaynaklarinin,
metodolojik yaklagimlarin ve hem dogal hem de insani faktorlerin dikkate alinmasini
gerektiren karmasik bir girisimdir. Incelenen arastirmalar, yeralti suyu dinamiklerinin
karmagikliginin {stesinden gelmek ve iyi bilgilendirilmis su kaynaklari ydnetimini
kolaylastirmak icin kesin ve kapsayict tahmin yoOntemlerinin gerekliligini

vurgulamaktadir.



IKINCi BOLUM
MATERYAL VE METOD

2.1 Veri Seti ve Calisma Alani

Kaggle’dan elde edilen AquiferAuser veri setinden LT2, SAL, PAG, CoS ve DIEC
kuyularinin kaydedilen yeralti su seviyelerini kullanarak simiilasyon calismalari
gerceklestirilmistir  (Acea Smart Water Analytics, 2023). Tablo 1.1°de veri seti olarak
kullanilan kuyularin data 6zellikleri ve Sekil 2.1 ile Sekil 2.5 arasindaki sekillerde zamana
bagli su seviyelerinin degisimleri gosterilmistir. Bu su kiitlesi kuzey ve giiney olmak
tizere iki alt sistemden olusmaktadir ve birincisi digerinin davranigini kismen
etkilemektedir. Kuzey alt sistemi bir su tablasi akiferi iken, giiney alt sistemi bir artezyen
yeralt1 suyu sistemidir. Kuzey sektoriindeki seviyeler SAL, PAG, CoS ve DIEC kuyulari
tarafindan gosterilirken, giliney sektoriindeki seviyeler LT2 kuyusu tarafindan
gosterilmektedir. Test ve egitim i¢in kullanilacak olan verilerin ayristirilmasinda 6n islem
olarak eksik veriler bulunmus ve bu veriler en yakin komsular ile enterpolasyon islemi
yapilmistir. Enterpolasyon sonucunda olusan datadan bos olan veriler ayiklanarak

deneyde kullanilacak olan veri seti olugturulmustur.



Tablo 2.1. Aquifer Veri Setinden Alinan Verilerin Ozellikleri
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Baglangig Bitis Veri Veri

Tarihi Tarihi Uzunlugu Siklig1
Depth_to_Groundwater LT2 01.01.2006 30.06.2020 | 5476 Giinliik
Depth_to_Groundwater SAL 06.04.2007 30.06.2020 | 4835 Giinliik
Depth_to_Groundwater PAG 01.01.2009 30.06.2020 | 4199 Giinliik
Depth_to_Groundwater CoS 29.06.2006 30.06.2020 | 3336 Giinliik
Depth_to_Groundwater DIEC 02.01.2011 30.06.2020 | 3468 Giinliik

Sekil 2.1. Aquifer Veri Setinden Alinan LT2 Kuyusunun Islenmemis Verisi

Sekil 2.2. Aquifer Veri Setinden Alinan SAL Kuyusunun Islenmemis Verisi



Sekil 2.3. Aquifer Veri Setinden Alinan PAG Kuyusunun Islenmemis Verisi

Sekil 2.4. Aquifer Veri Setinden Alinan CoS Kuyusunun Islenmemis Verisi

Sekil 2.5. Aquifer Veri Setinden Alinan DIEC Kuyusunun Islenmemis Verisi
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2.2 Yontemler
2.2.1 Yapay Sinir Aglar1 (YSA)

YSA, insan beyninin 6grenme siirecini taklit ederek 6grenme, hafiza ve genelleme
yoluyla edinilen bilgiyi kullanmamiz1 saglar. Bilgisayar yazilimi, mevcut verilerden yeni
veriler iretmek gibi temel faaliyetlerin yiiriitildigi yerdir. Sinir a1, biyolojik
noronlardan olusan bir sistem veya yapay noronlardan veya diigiimlerden olusan yapay
bir agdir (Hopfield, 1982). Dolayisiyla, bir sinir agi biyolojik néronlardan olusan
biyolojik bir sinir ag1 veya yapay zeka konularini ele almak i¢in kullanilan yapay bir sinir
ag1 olabilir. Biyolojik noron baglantilari, yapay sinir aglarinda diigimler arasindaki
agirliklar olarak temsil edilir. Pozitif agirlik etkinlestirici bir baglantiyr gosterirken,
negatif degerler bastirici baglantilar1 ifade eder. Tiim girdiler bir agirlik kullanilarak
birlestirilir ve toplanir. Bu faaliyetin adi dogrusal kombinasyondur. Bir aktivasyon
fonksiyonu nihai olarak ¢iktinin biiyiikliigiinii diizenler. Kabul edilebilir bir ¢ikt1 araligi

genellikle 0 ila 1 araligina diiger veya alternatif olarak -1 ila 1 arasinda degisebilir.

Yapay aglar, ongoriicii modelleme, uyarlanabilir kontrol ve bir veri seti iizerinde egitim
igeren uygulamalar i¢in kullanilir. Otodidaktizm, karmasik ve goriiniiste farkli verilerden

icgoriileri sentezleyebilen birbirine bagl sistemler i¢inde ortaya ¢ikabilir.

Sekil 2.6. Sinir Ag1 Modeli

Hedef

Noéronlar arasinda agirhiklari

Giris (w) ve bias (b) olan Cikis

baglantilardan olusan
sinir agl.

Agirhik ve bias'lari yenile

Bilim insanlari, insan beyninin olaganiistii niteliklerini taklit eden matematiksel modeller

olusturmak igin beynin nérolojik ve fiziksel yapisini temel olarak kullanmislardir. insan
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beyninin isleyigini simiile etmek i¢in yapay néron ve yapay ag modelleri 6nerilmistir
(Sagiroglu vd., 2003). Bdylece yapay sinir aglar1 (YSA) olarak bilinen yeni bir arastirma
alan1 ortaya ¢ikmistir. Yapay sinir ag1 (YSA), belirli bir amaci gerceklestirmek i¢in insan
beyninin ve néronlarinin yapisin taklit eden bir sistemdir. Sekil 2.6'da bir Yapay Sinir

Aginin (YSA) temel blok diyagrami gosterilmektedir.

Katmanli yapay sinir ag1 (YSA) mimarisi, ¢esitli topolojilerde diizenlenmis birbirine
bagli noronlara sahiptir. Bilesenler insan sinir sisteminden ilham alir. Sinir aglari, belirli
bir amac1 gerceklestirmek icin ndronlar arasindaki baglantilarin ¢arpan veya katsayi
degerlerini maksimize ederek egitilebilir. Sekil 1.7'de bir ndron modeli gdsterilmektedir.
Bir sinir diigiimii giris degerleri, agirliklar, toplama islemi, transfer fonksiyonu ve ¢ikis
degerinden olusur. Bir Yapay Sinir Ag1 (YSA), insan beyni gibi paralel bir islemci olarak
islev goriir. Bilgi edinebilir, depolayabilir ve bilesenleri arasindaki agirlikli baglantilar
araciligiyla genellemeler yapabilir. Ogrenme siireci, istenen hedefe ulasmak amaciyla

agirliklart ayarlamak icin 6grenme algoritmalariin kullanilmasini gerektirir.

Sekil 2.7. Yapay bir néron modeli

P2() W1

Wn

PHO b

Sekil 2.7, n'nin girdi sayisini, p'nin girdi degerlerini, w'nin girdileri ve néronu birbirine
baglayan agirlik ¢arpanini, b'nin néronun 6nyargisini, f'nin transfer fonksiyonunu ve a'nin
cikt1 degerini temsil ettigi bir sinir agin1 gdstermektedir. Girdiler baslangicta agirliklarla

carpilir ve daha sonra toplanir. Bias degeri ¢evirilere uygulanir ve ¢ikt1 transfer



22

fonksiyonundan gecirilerek belirlenir. Transfer fonksiyonu dogrusal ya da dogrusal
olmayan olabilir. Bu paradigma, girdi ve ¢ikti arasinda matematiksel bir fonksiyon
baglantis1 kurar. Norondan istenen ¢iktiy1 elde etmek icin w ve b degerleri ayarlanmalidir.
Yapay sinir ag1 noron modelinin matematiksel gosterimi Aslantas & Kurban tarafindan

verilmistir (Aslantas & Kurban, 2007).

a- f(iwi D.+b) 1)

S1g sinir aglari, bir giris katmani, bir gizli katman ve bir ¢ikis katmanindan olugan temel
bir yapay sinir agi tiirtidiir. Giris katman1 modelin dis ortamdan veri almasini saglar ve
bu verileri gizli katmana aktarir. Gizli katman, modelin 6grendikce bilgiyi temsil etme
yetenegini gelistirmek i¢in girdi verilerini manipiile eder. Her gizli katman, girdi
verilerinin agirlikli toplamlarini alan ve bunlar1 bir aktivasyon fonksiyonu kullanarak
isleyen belirli sayida noron hiicresinden olusur. Cikt1 katmani, gizli seviyeler tarafindan
islenen bilgileri kullanarak sonuglar tiretir. Tek katmanli olan bu sinir aglari, yapay sinir
ag1 arastirmalarinda bir calisma odagidir. Bu aglar 6riintii tanima ve makine 6grenimi gibi
cesitli uygulamalarda basar1 gostermistir (Schmidhuber, 2015). S1g sinir aglar1, minimum
katman sayisi nedeniyle derin sinir aglarina gore hesaplama acisindan verimli ve
egitilmesi daha kolaydir. S1g sinir aglari, herhangi bir diizgiin fonksiyonu taklit etme
yetenegine sahiptir ve bu da onlarin ifade potansiyelini gostermektedir (Becker & Zhang,
2020). Si1g sinir aglarinin avantajlart vardir, ancak derin sinir aglarina kiyasla temsil
kabiliyeti sinirhidir, ¢linkii derin aglar s1g aglarin yapamadigi durumlar verimli bir sekilde
temsil edebilir (Jia vd., 2020). Sonuglar, ger¢ek diinya sorunlarinin iistesinden gelmek
icin s1g sinir aglar1 kullanmanin pratik 6nemini vurgulamaktadir. S1g ve derin sinir aglari
arasinda karar verirken, gorevin 6zel gereksinimlerini g6z Oniinde bulundurmak ¢ok
onemlidir. S1g aglar baz1 durumlarda temsil giicii ve hesaplama verimliligi agisindan
avantajlar sunabilirken, derin aglar digerlerinde karmasik 6zellikleri yakalamak i¢in daha
uygun olabilir (Guo vd., 2019). Tek bir gizli katmanla karakterize edilen s1g sinir aglari,
hesaplama verimliligi ve ifade yetenekleri saglayarak onlar1 ¢ok ¢esitli uygulamalar i¢in
uygun hale getirir. Belirli gorevlerde ve pratik alanlarda etkinlik gdstermis olsalar da s1g
bir sinir aginin en iyi se¢enek olup olmadigina karar vermek i¢in sorunun ihtiyaglarini

kapsamli bir sekilde degerlendirmek o©nemlidir. S1g ve derin sinir aglarinin
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Odiinlesimlerini anlamak, cesitli durumlarda benzersiz gii¢lerinden yararlanmak icin ¢ok

Onemlidir.

S1g bir sinir agmin temel yapisim1 Sekil 2.8.’deki gibi gosterilebilir. Diyagramdaki her
daire veya diigiim bir ndron hiicresini temsil eder ve oklar her bir ndéron hiicresinden gelen
girdi verilerinin ve ¢iktilarin akisini gosterir. Giris katmani genellikle seklin sol tarafina
yerlestirilir, arada gizli katman bulunur ve ¢ikis katmani sag tarafta yer alir. Her diiglim,
katman igindeki bir ndron hiicresini sembolize eder ve oklar tizerindeki agirliklar, girdiler
ve hiicreler arasindaki baglantilarin yogunlugunu gosterir. Bu grafik yardimi, sig sinir

aglarinin temel yapisinin ve unsurlarinin daha net anlasilmasini kolaylagtirmaktadir.

Sekil 2.8. Sig sinir agi néron modeli

Ileri Beslemeli Cok Katmanli Algilayict (MLP), cesitli uygulamalarda yaygin olarak

kullanilan bir yapay sinir agidir. MLP, verimliligi ve etkinligi nedeniyle akis

modellemesinde siklikla kullanilmaktadir (Nowak & Sobota, 2015). Ayrica, kalite tahmin
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modellerinde, Cok Katmanli Algilayic1 (MLP) hassas tahmin modelleri olusturmak i¢in
duygu analizi ile birlikte kullanilmistir (Mondal vd., 2016). MLP, mesleki maruziyet ve
timor biyobelirtegleri gibi ¢esitli alanlarda uyarlanabilirligini gostererek kanser
tespitinde kullanilmustir (Seidel vd., 2014). MLP, tahmin mimarilerinde, 6zellikle de
yagmurla beslenen sektorlerde yagis tahmininde evrensel bir yaklasimer olarak kabul
edilmektedir (Khidir vd., 2013). MLP'nin 6nemi, kesin kisa vadeli tahminler yapmak igin
geri yayillim egitim algoritmalartyla birlikte kullanildigr riizgar hizi tahmininde
gosterilmistir (Zucatelli vd., 2019). Recursive Deterministic Perceptron (RDP), MLP'nin
esnekligini ve ¢esitli bicimlerini sergileyen ileri beslemeli ¢ok katmanli sinir aginin bir

uzantisi olarak kabul edilmektedir.

MLP'nin etkinligi, farkli parametrelerin kareler toplami hatasi iizerindeki etkisini
degerlendirerek sinir ag1 yapilarini optimize etmede gosterilmistir (Castro vd., 2017).
MLP, ozellikle ¢evre sorunlariyla miicadelede kirlilik tespiti ve kategorizasyonuna
uygunlugu agisindan degerlendirilmistir (Denisov, 2017). MLP, mimarisi ve basit
metodolojisi sayesinde kalp hastaligi tespitinde tibbi karar destek sistemleri i¢in dnde

gelen bir denetimli yapay sinir ag1 modeli olarak kabul edilmektedir.

Sekil 2.9°da blok diyagran gosterilen Ileri Beslemeli Cok Katmanli Algilayici (MLP),
akis modellemesinden tibbi karar destek sistemlerine kadar c¢esitli uygulamalarda

esnekligini ve verimliligini gostererek c¢esitli alanlarda yaygin olarak kullanilmaktadir.

Sekil 2.9. Jleri beslemeli cok katmanli sinir agi nérom modeli

Katmani Katmani 1 Katmani 2 Katmani
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2.2.2 Dogrusal Olmayan Otoregresif Sinir Ag1 (NAR-NN)

Zaman serisi uygulamalart tipik olarak yiliksek degiskenlik ve kisa stireli gecici
donemlerle karakterize edilir. Bu ger¢ek, zaman serilerinin dogrusal bir model
kullanilarak modellenmesini zorlastirmaktadir, bu nedenle dogrusal olmayan bir
yaklagim onerilmelidir. NAR-NN, zaman serisi tahmininde kullanilan ayrik, dogrusal
olmayan, otoregresif bir modeli tanimlar (Lépez vd., 2012; Nyanteh vd., 2013). NAR-
NN sistem denklemi asagidaki gibidir (Ibrahim vd., 2016).

y() = h(y(t — 1), y(t = 2), ., y(t — D)) + £(t) (2)

Bu formiil, bir NAR aginin, serinin p ge¢mis degerlerini kullanarak bir veri serisinin Yy
zamanindaki degerini, y(t), tahmin etmek i¢in nasil kullanildigin1 agiklar. h() fonksiyonu
onceden bilinmemektedir ve bir sinir agin1 egitmenin amact, agin optimizasyonu yoluyla
fonksiyona yaklagmaktir. Son olarak, e(t) terimi y serisinin t zamanindaki yaklagsik
hatasini temsil eder. Sekil 2.10'da bir NAR-NN temel blok diyagrami gosterilmektedir.

Sekil 2.10. NAR-NN Ag:t ¢alisma diyagrami

—y(t-1)y—>

—y(t-2)———>»

COK KATMANLIAG —ty—>

y(t-p) .

2.2.3 Geri Yayihm (Backpropagation) Algoritmasi

Geriye yayilim, bilgisayar bilimleri, yapay zeka ve makine 6grenimi gibi alanlarda yaygin
olarak uygulanan yapay sinir aglarinin egitimi i¢in énemli bir algoritmadir. Yaklasim,

hatay1 ¢ikis katmanindan giris katmanina dogru geriye dogru yayarak bir sinir aginin
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parametrelerini degistirmeyi gerektirir. Bu, agin zaman icinde 6grenme yoluyla
performansini artirmasini saglar (Miguez vd., 2014). Geriye yayilma algoritmasi, egitim
etkinligini artirmak icin siklikla dogrusal olmayan en kiigiikk kareler icin Marquardt

algoritmas1 gibi ek optimizasyon yontemleriyle eslestirilir (Hagan & Menhaj, 1994).

Ayrica, geri yayillim goriintii tanima, hastalik tespiti ve tahmin modelleri gibi ¢esitli
alanlarda kullanilmistir. Insansiz hava araclar1 i¢in hedef tanimada uygulanmis ve gergek
diinya senaryolarina uyarlanabilirligini gostermistir (Jia & Duan, 2017). Geriye yayilim,
hastalik tespitinde, yani diabetes mellitus olasiliginin %80,91 dogruluk oraniyla tahmin

edilmesinde cesaret verici sonuglar gostermistir (Anggoro & Hajiati, 2023).

Algoritmanin uyarlanabilirligi ve etkinligi, derin geri yayilim aglarin1 kullanarak giic
dagitim aglarinin miidahaleci olmayan yiik izlemesi i¢in kullaniminda gosterilmistir (Ma
& Yin, 2021). Veri tahmini alaninda, geri yayilim sinir ag1, belirli bir model kullanilarak
kahve fiyatinm1 %88,2 dogrulukla tahmin etmek i¢in kullanilmistir (Wahyudi vd., 2022).

Genel olarak, geri yayilim algoritmasi, hastalik tespiti, goriintli tanima ve veri tahmini
gibi ¢ok cesitli alanlarda kullanilan yapay sinir aglarini egitmek i¢in esnek ve verimli bir

yontemdir.
2.2.4 Levenberg-Marquardt Geri Yaylim Algoritmasi

Levenberg-Marquardt geri yayilim algoritmasi, verimliligi ve etkinligi nedeniyle yapay
sinir aglarinin (YSA) egitimi i¢in yaygin olarak kullanilan bir tekniktir. Bu yontem,
Gauss-Newton yontemi ile en dik inis algoritmasinin avantajlarini birlestiren, daha hizli
yakinsama ve geligsmis performans saglayan bir optimizasyon teknigidir (He vd., 2001).
Algoritma, hava durumu modellemesinde, enerji hasat sistemlerinde, toprak sivilasma
duyarlilig1 tahmininde, beyin-bilgisayar arayiizlerinde, 1s1 esanjorii ariza tahmininde,
zaman serisi tahmininde ve koprii ayaklar: etrafindaki yerel oyulma derinligi tahmininde

etkili bir sekilde kullanilmustir.

Arastirmalar, Levenberg-Marquardt yonteminin egitim dogrulugu ve yakinsama
ozellikleri acisindan esnek geri yayilim ve hata diizeltme algoritmalar1 da dahil olmak
tizere diger geri yayilim algoritmalarindan daha etkili oldugunu géstermistir (Muhammad
& Vaino, 2019). Ayrica, egitim senaryolarinin ¢ogunda gelencksel geri yayilim
algoritmasindan daha hizli ve daha etkili oldugu belgelenmistir (Ozkan vd., 2011).

Ayrica, aktor-elestirel 0grenme yontemlerinde, Levenberg-Marquardt algoritmasinin
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elestirel ag mimarisine dahil edilmesinin yakinsama hizini artirdigi 6ne stirtilmiisttir (Ni

vd., 2011).

Fizikte Levenberg-Marquardt geri yayilim teknigi, kritik Rayleigh sayilarinin dagilimini
tahmin etmek ve yapay sinir aglar1 aracilifiyla dogrusal kararlilik analizi igin
kullanilmaktadir (Reddy vd., 2022). Ayrica, RADAR gorintiilerinden yansitma
parametrelerini miilkemmel regresyon degerleri ve dogrulukla ¢ikarmak igin

kullanilmistir (Kumar & Anuradha, 2018).

Algoritma, esnek geri yayilim da dahil olmak iizere gesitli egitim algoritmalariyla
karsilagtirilmig ve belirli durumlarda istiin siniflandirma performansina sahip oldugu
belirlenmistir (Comert & Kocamaz, 2017). Ayrica, egitim i¢in sonlu elemanlar sinir ag1

ile birlestirilerek cesitli ag yapilarina uyarlanabilirligi gosterilmistir (Reynaldi vd., 2012).

Levenberg-Marquardt geri yayilim sinir ag1, enerji ile ilgili amaglarla binalardaki gii¢
kullanimini tahmin etmek i¢in optimize edilmis ve kullanilmistir (Ye & Kim, 2018).
Sistem, yerel minimumlarla ilgili sorunlarin tistesinden gelmek ve hizli yakinsama elde
etmek i¢in Cuckoo Search algoritmasi kullanilarak dahil edilmis ve optimize edilmistir

(Nawi vd., 2013).

Levenberg-Marquardt geri yayilim algoritmasi, farkli alanlardaki yapay sinir aglarini
egitmek i¢in giiclii ve uyarlanabilir bir tekniktir ve verimliligini, etkinligini ve genis

kullanimini gostermektedir.

YSA icin kullanilan baskin 6grenme algoritmasi Levenberg-Marquardt geri yayilim
teknigidir. Bu egitim fonksiyonu siklikla en hizli geri yayilim algoritmasidir. Bu
algoritma ikinci dereceden tahminleri gergeklestirmek igin kullanilmaktadir (Ruiz vd.,

2016).

Hessian matrisinin hesaplanmasini gerektirmeden tiirevi hesaplamasi nedeniyle egitim
hiz1 yiiksektir. Performans fonksiyonu, ileri beslemeli ag egitiminde goriildiigli gibi
kareler toplam1 seklindeyse, Hessian matrisi Denklem (3)'deki gibi tahmin edilebilir ve

gradyan Denklem (4)'te agiklandig1 gibi hesaplanabilir.
H=]"] @)

g=]J"e (4)
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Denklem (3) ve (4), J'yi ag hatalarinin agirliklara ve biaslara gore birinci tiirevlerini
iceren Jacobian matrisi ve €'yi tiim egitim drneklerindeki ag hatalarimi temsil eden bir
vektor olarak tanimlar. Jacobian matrisi, Hessian matrisinin bir yaklagimini saglamak igin
geleneksel bir geriye yayilma yaklasimi kullanilmistir. Bu yontem Hessian matrisini
hesaplamaktan daha az karmagiktir. Levenberg-Marquardt algoritmasi bu ydntemi

Denklem (5)'te 6zetlenen Newton benzeri glincellemede kullanir.

X1 =X — [J7]+ud] ") 7e (5)

2.2.5 Bayesian Regiilasyon Geri Yayilhim Algoritmasi

Bayesian regiilasyon geri yayilim algoritmasi, YSA alaninda gii¢lii bir aragtir. Bu teknik,
ortalama karesel hatay1 (MSE) azaltmak yerine karesel hatalarin ve karesel agirliklarin
agirlikl toplamini en aza indirerek klasik Levenberg-Marquardt (LM) algoritmasindan
ayrilir (Fang vd., 2020). Bayes diizenlemesi geri yayilim teknigi, kapsamli g¢apraz
dogrulama ihtiyacin1 azaltarak ve genelleme performansini artirarak bu ayrimdan
yararlanir (Golpour vd., 2021). Ayrica, yol giivenligi i¢in kaza tahmin modelleri,
fotovoltaik sistemlerde maksimum gii¢ noktas1 takibi ve deneysel verilere dayali toprak

slirtiinme acisinin tahmini gibi farkli alanlarda etkili bir sekilde kullanilmustir.

Bayes diizenlemesi geri yayilim algoritmasi, diizlemsel bir kanaldaki sivi peristaltik
hareketinin incelenmesi, c¢evresel ekonomik sistemlerin modellenmesi ve geri
dontistiiriilmiis  agregalarla  kendiliginden yerlesen betonun yarilma ¢ekme
mukavemetinin tahmin edilmesi gibi ¢esitli uygulamalarda etkinligini gostermistir.
Ayrica, dogrusal/dogrusal olmayan pantograf gecikmeli diferansiyel denklemlerin
baslangi¢c deger problemlerini ele almak, kimyasal bilesimi kullanarak hayvan yeminin
besin igerigini degerlendirmek ve soyma agisinin bir kertenkele spatulasinin soyma
kuvveti tizerindeki etkisini tahmin etmek i¢in uygulanmistir (Gouravaraju, 2020; Khan
vd., 2020; Nikmatya vd., 2022).

Bayesian Regularization geri yayilim algoritmasi, egitim binalarinda sogutma enerjisi
tilkketimini tahmin etmek, drone navigasyonu icin yoriingeleri segmentlere ayirmak ve
iyonik sivilarda karbondioksit ¢oziiniirliigiinii tahmin etmek gibi farkli uygulamalar i¢in
yapay sinir aglarmi egitmek i¢in kullanilmistir. Bu yaklagimin kararliligi ve dogrulugu,
sinir ag1 modellemesinde gelismis performans potansiyeli gosteren klasik geri yayilim

algoritmalariyla olumlu bir sekilde karsilagtirilmistir (Roy vd., 2021).
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Karsilagtirmali ¢aligmalar, Bayesian Regiilasyon geri yayilim yonteminin dogruluk ve
genelleme performansi acisindan Levenberg-Marquardt gibi alternatif egitim
algoritmalarindan daha iyi performans gosterdigini ortaya koymustur (Kumar & Sodhi,
2022). Mesleki popiilasyonlar i¢in ger¢cek zamanli maruziyet degerlendirme modellerinde
kullanilmus, iistiin sonuglar vermis ve maruziyet modellerini tahmin etme potansiyelini

gostermistir (Sarigiannis vd., 2009).

Bayesian regiilasyon geri yayilim teknigi, yapay sinir aglarinda gii¢lii ve uyarlanabilir bir
aragtir ve gesitli uygulamalarda gelismis genelleme performansi, kararlilik ve dogruluk

gibi faydalar saglar.
2.2.6 Uzun Kisa Siireli Bellek (LSTM)

LSTM, sirali verilerin modellenmesi i¢in uygulanan yinelemeli sinir ag1 (RNN)
yaklasiminin 6zel bir tiirti olarak 1990 yillarin sonunda gelistirilmistir (Hochreiter &
Schmidhuber, 1997). YSA metodolojisinde, girdi veri setindeki her bir veri noktasi, bir
onceki ¢ikt1 degeri dikkate alinarak sistematik olarak analiz edilir. Bu mimarinin gegmis
zaman dilimlerinden 6grenmeyi icerdigi iddialarina ragmen, gradyanin kaybolmasi /
patlamasi sorunu nedeniyle bunun ulasilamaz oldugu belirtilmistir (Goniil, 2015). Bu
sorunun Ustesinden gelmek i¢in uzun siireli bilgiyi hatirlayabilen LSTM mimarisi

gelistirilmistir.

YSA, insan beyninin yapisindan sonra modellenen, verileri 6grenme ve analiz etme
yetenegine sahip algilayicilardir (Sentiirk & Sentiirk, 2016). Kiyic1 ve digerleri tarafindan
belirtildigi iizere, Y SA basarist mimarisine ve 6grenme algoritmasina baglidir (Kiyic1 vd.,
2022). YSA, insan beyninin dgrenme siireglerini taklit ederek yeni veriler olusturan,
gecmis bilgileri hatirlamak ve bilgi parcalari arasinda baglantilar kurarak sonuclar
¢ikarmak i¢in insanin 6grenme 6zelliklerini kullanan bir bilgisayar yazilimidir (Akalin &
Demirbas, 2022). YSA, insan beyninin ndro-fizyolojik yapisin1 matematiksel olarak taklit

ederek islevlerini simiile etmek icin tasarlanmis bilgisayar sistemleridir (Yetiz vd., 2021).
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Sekil 2.11. LSTM Mimarisi

Ct—l Ce

he,

Xt

LSTM mimarisi, Sekil 2.11.’de gosterildigi gibi birbirini tekrar eden sirali bloklardan
olusur. Genel olarak LSTM yapisinda unut, girdi ve ¢ikti olmak iizere 3 farkli katmandan
olusur. LSTM mimarisinde oncelikle girdi olarak X, ve h,_;bilgileri kullanilarak hangi
bilgilerin silinecegine karar verilir. Bu islemler unut katmaninda f; denklem 6

kullanilarak yapilir ve aktivasyon fonksiyonu olarak sigmoid kullanilir.
fe=aWpgx* Xe+ Wgp * he-1 + by) (6)

Ikinci adimda yeni bilgilerin belirlenecegi girdi katmani devreye girer ve oncelikle i,
denklem 7 kullanilarak sigmoid fonksiyonu ile bilgiler giincellenir. Ardindan denklem 8

ile yeni bilgiyi olusturacak aday bilgiler tanh fonksiyonu tarafindan belirlenir.
it=0(Wix* Xe + Wi * he-1 + bi) @)
ge = tanh(Wex * Xe + Wen * he-1 + be) (8)
Denklem 9 tarafindan yeni bilgiler olusturulur.
Ce=Ce1* fr+ic*gt 9

Son olarak ¢ikt1 katmaninda denklem 10 ve 11 kullanilarak ¢ikt1 verileri elde edilir.
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0t = 0(Wox * Xt + Won * ht-1+ bo) (10)
ht = ot * tanh(Ct) (12)

Yukarida ifade edilen siire¢ tekrarlanarak devam eder. Agirlik parametreleri W ve bias
parametreleri b gergek egitim degerleri ile LSTM ¢ikti degerleri arasindaki farki

minimize edecek sekilde model tarafindan 6grenilmektedir.
2.2.7 Kok-Ortalama-Kare Yayilimi (RMSprop) Algoritmasi

RMSprop, son yillarda stokastik gradyan inig algoritmasinin bir uzantisi olmasiyla
tinlenen uyarlanabilir bir 6grenme teknigidir. RMSprop, parametrelerin karesel
gradyanlarinin ¢alisan bir ortalamasini hesaplar ve saklar. Asagida rmsprop i¢in formiiller

verilmistir.

Ve =PBove—1 + (1 — ﬁz)[VE(H{’)]Z (12)

burada B, hareketli ortalamanin bozulma oranini temsil eder. Yaygin olarak kullanilan
bozulma oranlar1 0,9, 0,99 ve 0,999'dur. Ortalama karesel gradyan uzunluklar1 10, 100 ve
1000 parametre giincellemesi i¢in 1/(1 — B,) olarak iliskilendirilmistir. RMSprop
algoritmasi, her bir parametre i¢in giincellemeleri ayr1 ayri standartlastirmak i¢in denklem
13"t kullanir. RMSprop algoritmasi, belirli bir denklem kullanarak her parametre i¢in
giincellemeleri ayr1 ayr1 normallestirir.
aVE (9{))
Oppp =0p — ——— (13)
Vo + €
burada eleman bazinda bolme islemi, € sifira b6lmeyi onlemek igin dahil edilen kiigiik

bir sabit degeri temsil edecek sekilde gergeklestirilir.
2.2.8 Uyarlanabilir Moment Tahmini (Adam) Algoritmasi

Uyarlanabilir moment tahmini (Adam) yaklasimi, RMSprop'a benzer bir momentum
terimi kullanarak parametreleri degistirir. Eleman bazinda hareketli ortalamalar
kullanilarak hesaplanan karesel degerler ve parametre gradyanlar1 denklem 14 ve 15 ile

temsil edilir.

my = fime_q + (1= B)VE(6,) (14)
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Ve = Bave_g + (1 — B2)[VE(6,)]? (15)

burada  bozunma  oranlart = f3; ve [, ‘GradientDecayFactor’  ve
'SquaredGradientDecayFactor' argiimanlar1 kullanilarak ayarlanabilir. Adam, ag

ayarlarin1 yapmak i¢in denklem 16 tarafindan saglanan hareketli ortalamalar1 kullanir

(Adige vd., 2023).

am,

Op1 = 0o — (16)

Vg+6

2.3 Ortalama Karekok Hatas1 (RMSE)

RMSE, tahminlerini ger¢ek degerlerle karsilastirarak bir tahmin modelinin dogrulugunu
degerlendirmek i¢in kullanilan istatistiksel bir 6l¢iidiir. RMSE, 6zellikle regresyon analizi
gibi gorevlerde yaygin olarak kullanilir. Hesaplama, beklenen ve gercek degerler
arasindaki farklarin karesinin alinmasini, bu karesel farklarin ortalamasinin alinmasini ve
ardindan sonucun karekokiiniin hesaplanmasini igerir. Daha diisiik bir RMSE, modelin
gercek degerlerle yakin bir sekilde hizalanarak daha dogru tahminler sagladigini gosterir.
Bir tahmin modelinin hassasiyetini ve etkinligini degerlendirmek i¢in kullanilan ¢ok

onemli bir 6l¢iidiir.

RMSE = (17)




UCUNCU BOLUM
DENEYLER

3.1 Simiilasyon Calisma Diizenegi

Simiilasyon ¢alismalar1 Intel Core 17 islemci ile gli¢lendirilmis, 16GB RAM'e sahip bir
bilgisayarda ve MATLAB 2022b versiyonunda gerceklestirilmistir.

Deneylerde NAR-NN egitiminde trainlm ve trainbr yapay sinir aglari egitim algoritmalari
kullanilmistir. LSTM modelinin egitiminde ise adam ve rmsprop algoritmalari
kullanilmistur. Her iki makine 6grenmesi yontemi ic¢in gizli katmanin boyutlar1 (néron
sayilart) (gkb) (2, 10, 30 ve 40) ve epok sayilari (50, 100, 150, 200) kullanilarak deneyler
gerceklestirilmistir. Girdi verileri igin t=1 ve t=2 adim olmak {izere zaman gecikmesi
kullanilmistir. Deneyde kullanilan veri setlerindeki 6zellikleri Tablo 2.1°de verilmistir.
Bu verinin %70'1 yapay sinir aglariin egitimde ve kalan %30'u ise test verisi olarak
kullanilmigtir. Deneyler 30 kez tekrarlanmis ve bu tekrarlarinin ortalamasi ile standart
sapmalart hesaplanmistir. Tablolarda ortalama hata sonuglar1 verilmis olup, standart

sapmalar ise parantez i¢lerinde verilmistir.
3.2 Sayisal Sonuclar

Bu boliimde deneylere iliskin RMSE sonuglar1 sunulmustur.

Tablo 3.1. LT2 Kuyusu NAR-NN trainlm algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,0747 (2,16E-01)

0,0347 (1,34E-04)

0,0350 (4,92E-04)

0,0350 (1,60E-04)

epok =100

0,0348 (9,98E-04)

0,0347 (3,61E-04)

0,0351 (6,37E-04)

0,0350 (4,58E-04)

epok =150

0,0346 (1,12E-04)

0,0347 (9,00E-04)

0,0351 (6,14E-04)

0,0350 (4,30E-04)

epok =200

0,1135 (3,00E-01)

0,0347 (6,25E-04)

0,0351 (5,23E-04)

0,0350 (5,75E-04)

Tablo 3.1.”deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 2 ve epok

sayist 150 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.




Tablo 3.2. LT2 Kuyusu NAR-NN trainlm algoritmasi ve t=2 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0346 (1,18E-03)

0,0345 (9,87E-04)

0,0352 (3,53E-04)

0,0352 (3,56E-04)

epok= 100

0,0343 (4,09E-04)

0,0346 (1,62E-04)

0,0353 (2,88E-04)

0,0355 (3,14E-04)

epok= 150

0,0343 (4,25E-04)

0,0347 (2,36E-04)

0,0354 (3,17E-04)

0,0358 (7,94E-04)

epok= 200

0,0343 (4,54E-04)

0,0348 (2,71E-04)

0,0354 (3,82E-04)

0,0359 (8,40E-04)

Tablo 3.2.”deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 2 ve epok

sayis1 100, 150 ve 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.3. LT2 Kuyusu NAR-NN trainbr algoritmas: ve t=1 i¢cin RMSE sonuglar.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0349 (7,18E-04)

0,0347 (2,47E-04)

0,0349 (3,28E-04)

0,0349 (2,93E-04)

epok= 100

0,0346 (2,86E-04)

0,0347 (2,18E-04)

0,0349 (1,78E-04)

0,0349 (2,69E-04)

epok= 150

0,0346 (2,54E-04)

0,0347 (1,56E-04)

0,0349 (2,04E-04)

0,0349 (3,31E-04)

epok= 200

0,0345 (3,02E-04)

0,0347 (2,67E-04)

0,0349 (2,65E-04)

0,0349 (2,62E-04)

Tablo 3.3.”deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 2 ve epok

sayist 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.4. LT2 Kuyusu NAR-NN trainbr algoritmast ve t=2 i¢in RMSE sonuglar

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,0344 (1,19E-04)

0,0343 (9,69E-04)

0,0498 (5,92E-02)

0,0384 (2,24E-02)

epok= 100

0,0343 (3,00E-04)

0,0343 (1,62E-04)

0,0343 (4,72E-04)

0,0344 (2,04E-04)

epok= 150

0,0343 (3,53E-04)

0,0343 (8,68E-04)

0,0343 (3,61E-04)

0,0345 (2,21E-04)

epok= 200

0,0342 (2,98E-04)

0,0343 (4,30E-04)

0,0343 (2,19E-04)

0,0345 (3,85E-04)

Tablo 3.4.”deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 2 ve epok

sayist 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.




Tablo 3.5. LT2 Kuyusu LSTM adam algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0906 (9,34E-03)

0,0720 (2,98E-03)

0,0627 (2,26E-03)

0,0576 (1,08E-03)

epok= 100

0,0697 (4,80E-03)

0,0648 (2,53E-03)

0,0599 (1,59E-03)

0,0572 (1,12E-03)

epok= 150

0,0639 (3,41E-03)

0,0606 (2,21E-03)

0,0587 (1,33E-03)

0,0564 (1,04E-03)

epok= 200

0,0628 (3,66E-03)

0,0597 (2,81E-03)

0,0577 (1,45E-03)

0,0561 (9,50E-04)
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Tablo 3.5.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 40 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.6. LT2 Kuyusu LSTM adam algoritmas: ve =2 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,0965 (1,06E-02)

0,0759 (4,12E-03)

0,0678 (1,66E-03)

0,0635 (7,16E-04)

epok= 100

0,0760 (3,98E-03)

0,0690 (2,40E-03)

0,0654 (1,35E-03)

0,0629 (6,25E-04)

epok= 150

0,0693 (3,01E-03)

0,0659 (1,87E-03)

0,0639 (1,16E-03)

0,0624 (6,33E-04)

epok= 200

0,0680 (3,05E-03)

0,0650 (1,87E-03)

0,0634 (1,02E-03)

0,0623 (7,52E-04)

Tablo 3.6.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 40 ve

epok sayisi1 200 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.

Tablo 3.7. LT2 Kuyusu LSTM rsmprop algoritmasi ve t=1 i¢cin RMSE sonuglar1.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0775 (6,58E-03)

0,0740 (3,98E-03)

0,0695 (3,38E-03)

0,0722 (3,21E-03)

epok= 100

0,0665 (5,60E-03)

0,0646 (2,82E-03)

0,0625 (1,85E-03)

0,0646 (2,96E-03)

epok= 150

0,0610 (3,39E-03)

0,0590 (2,56E-03)

0,0573 (1,70E-03)

0,0592 (3,65E-03)

epok= 200

0,0573 (2,49E-03)

0,0559 (1,61E-03)

0,0535 (1,49E-03)

0,0554 (3,30E-03)

Tablo 3.7.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 30 ve

epok sayist 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.



Tablo 3.8. LT2 Kuyusu LSTM rmsprop algoritmas ve t=2 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0834 (8,58E-03)

0,0770 (4,08E-03)

0,0745 (2,48E-03)

0,0772 (3,40E-03)

epok= 100

0,0709 (3,09E-03)

0,0689 (2,39E-03)

0,0674 (1,85E-03)

0,0703 (2,96E-03)

epok= 150

0,0660 (1,85E-03)

0,0646 (1,64E-03)

0,0631 (9,25E-04)

0,0654 (3,20E-03)

epok= 200

0,0638 (2,36E-03)

0,0620 (1,39E-03)

0,0605 (9,51E-04)

0,0624 (1,93E-03)
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Tablo 3.8.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 30 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.9. LT2 Kuyusu NAR-NN ve LSTM RMSE sonuglar:.

trainlm

trainbr

adam

rmsprop

t=1

0,0346 (1,12E-04)

0,0345 (3,02E-04)

0,0561 (9,50E-04)

0,0535 (1,49E-03)

t=2

0,0343 (4,09E-04)

0,0342 (2,98E-04)

0,0623 (7,52E-04)

0,0605 (9,51E-04)

Tablo 3.9.’deki sonuglar incelendiginde ortalama hata i¢in, NAR-NN egitiminde trainbr

egitim algoritmasi1 ve t=2 zaman gecikmesi uygulandiginda iyi sonuglar elde edildigi

gbzlemlenmistir. Zaman gecikmesi artarken NAR-NN egitiminde iyilesme goriiliirken

LSTM egitiminde ise kotiilesme goriilmektedir. NAR-NN egitiminde trainbr egitim

algoritmasi trainlm egitim algoritmasinda gore daha basarili sonuglar elde edilmistir.

LSTM egitiminde ise rmsprop egitim algoritmasi adam egitim algoritmasina gore daha

basarili oldugu goriilmektedir.

Tablo 3.10. SAL Kuyusu NAR-NN trainlm algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0805 (5,11E-04)

0,0802 (5,94E-04)

0,1063 (1,11E-02)

0,1137 (7,09E-03)

epok =100

0,0804 (2,87E-04)

0,0804 (4,70E-04)

0,1282 (1,35E-03)

0,1278 (3,19E-04)

epok =150

0,0801 (2,57E-04)

0,0805 (7,82E-04)

0,1325 (1,29E-02)

0,1271 (8,23E-04)

epok =200

0,0802 (2,24E-04)

0,0805 (4,10E-04)

0,1313 (9,68E-03)

0,1270 (1,94E-04)

Tablo 3.10.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 2 ve

epok sayisi 150 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.



Tablo 3.11. SAL Kuyusu NAR-NN trainim algoritmasi ve t=2 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0797 (6,63E-04)

0,0780 (5,47E-03)

0,0911 (1,09E-02)

0,0918 (9,84E-03)

epok= 100

0,0798 (9,14E-04)

0,0794 (7,91E-03)

0,0957 (1,35E-02)

0,1087 (2,38E-02)

epok= 150

0,0799 (8,16E-04)

0,0791 (7,49E-03)

0,1027 (1,36E-02)

0,1200 (2,23E-02)

epok= 200

0,0800 (3,87E-04)

0,0824 (9,39E-03)

0,1167 (4,64E-02)

0,1377 (4,21E-02)
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Tablo 3.11.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 10 ve

epok sayis1 50 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.12. SAL Kuyusu NAR-NN trainbr algoritmas: ve t=1 i¢cin RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,0804 (3,86E-04)

0,0803 (9,48E-04)

0,1108 (8,04E-03)

0,1071 (1,95E-02)

epok= 100

0,0802 (1,85E-04)

0,0803 (1,29E-04)

0,1255 (1,11E-02)

0,1064 (2,26E-02)

epok= 150

0,0802 (1,88E-04)

0,0803 (1,27E-04)

0,1231 (1,19E-02)

0,1235 (1,35E-02)

epok= 200

0,0801 (8,10E-04)

0,0803 (9,55E-04)

0,1274 (8,66E-03)

0,1208 (1,74E-02)

Tablo 3.12.deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 2 ve

epok sayisi1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.13. SAL Kuyusu NAR-NN trainbr algoritmasi ve t=2 icin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0794 (8,07E-04)

0,0779 (1,74E-03)

0,0789 (4,10E-03)

0,0833 (7,45E-03)

epok= 100

0,0800 (4,80E-04)

0,0747 (9,33E-04)

0,0795 (8,67E-03)

0,0876 (1,06E-02)

epok= 150

0,0798 (3,19E-04)

0,0757 (5,20E-03)

0,0796 (9,60E-03)

0,0898 (1,19E-02)

epok= 200

0,0800 (4,96E-04)

0,0773 (6,34E-03)

0,0831 (1,07E-02)

0,0890 (1,37E-02)

Tablo 3.13.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 100 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.



Tablo 3.14. SAL Kuyusu LSTM adam algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1564 (1,60E-02)

0,1331 (5,56E-03)

0,1201 (2,99E-03)

0,1124 (2,11E-03)

epok= 100

0,1259 (6,26E-03)

0,1165 (4,07E-03)

0,1080 (3,22E-03)

0,1021 (1,80E-03)

epok= 150

0,1147 (8,06E-03)

0,1058 (4,01E-03)

0,0987 (3,60E-03)

0,0969 (2,30E-03)

epok= 200

0,1035 (5,17E-03)

0,0911 (4,49E-03)

0,0882 (2,92E-03)

0,0926 (2,68E-03)

Tablo 3.14.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 30 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.15. SAL Kuyusu LSTM adam algoritmasi ve t=2 i¢in RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,1669 (1,29E-02)

0,1480 (5,98E-03)

0,1372 (2,94E-03)

0,1294 (1,48E-03)

epok= 100

0,1383 (8,19E-03)

0,1313 (4,07E-03)

0,1272 (2,40E-03)

0,1210 (1,08E-03)

epok= 150

0,1295 (5,83E-03)

0,1229 (3,50E-03)

0,1176 (3,57E-03)

0,1164 (1,36E-03)

epok= 200

0,1228 (4,18E-03)

0,1119 (3,73E-03)

0,1080 (1,45E-03)

0,1112 (1,48E-03)

Tablo 3.15.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 30 ve

epok sayisi1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.16. SAL Kuyusu LSTM rsmprop algoritmast ve t=1 i¢cin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,1391 (1,13E-02)

0,1198 (4,42E-03)

0,1162 (3,70E-03)

0,1175 (4,09E-03)

epok= 100

0,1023 (5,49E-03)

0,0978 (5,20E-03)

0,0962 (3,95E-03)

0,0998 (3,95E-03)

epok= 150

0,0892 (1,88E-03)

0,0887 (2,99E-03)

0,0879 (2,06E-03)

0,0912 (3,41E-03)

epok= 200

0,0846 (1,27E-03)

0,0842 (2,78E-03)

0,0846 (3,88E-03)

0,0852 (2,85E-03)

Tablo 3.16.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.




Tablo 3.17. SAL Kuyusu LSTM rmsprop algoritmasi ve t=2 i¢in RMSE sonuglari.

gkb=2 gkb=10 gkb=30 gkb=40
epok=50 | 0,1516 (1,44E-02) | 0,1367 (4,25E-03) | 0,1324 (2,70E-03) | 0,1358 (9,59E-03)
epok= 100 | 0,1208 (3,94E-03) | 0,1175 (2,63E-03) | 0,1153 (2,15E-03) | 0,1185 (3,40E-03)
epok= 150 | 0,1106 (2,47E-03) | 0,1092 (1,31E-03) | 0,1102 (2,45E-03) | 0,1106 (2,26E-03)
epok= 200 | 0,1067 (1,13E-03) | 0,1068 (1,26E-03) | 0,1065 (1,53E-03) | 0,1071 (1,89E-03)
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Tablo 3.17.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 30 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.18. SAL Kuyusu NAR-NN ve LSTM RMSE en iyi sonug¢lart.

trainlm trainbr adam rmsprop
t=1 0,0801 (2,57E-04) | 0,0801 (2,57E-04) | 0,0882 (2,92E-03) | 0,0842 (2,78E-03)
t=2 0,0780 (5,47E-03) | 0,0747 (9,33E-04) | 0,1080 (1,45E-03) | 0,1065 (1,53E-03)

Tablo 3.18.’deki sonuglar incelendiginde ortalama hata i¢in, NAR-NN egitiminde trainbr
egitim algoritmasi ve t=2 zaman gecikmesi uygulandiginda iyi sonuglar elde edildigi
gozlemlenmistir. Zaman gecikmesi artarken NAR-NN egitiminde iyilesme goriiliirken
LSTM egitiminde ise kotilesme goriilmektedir. NAR-NN egitiminde trainbr egitim
algoritmasi trainlm egitim algoritmasinda gore daha basarili sonuclar elde edilmistir.
LSTM egitiminde ise rmsprop egitim algoritmasi adam egitim algoritmasina gore daha

basarili oldugu goriilmektedir.

Tablo 3.19. PAG Kuyusu NAR-NN trainlm algoritmast ve t=1 icin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1211 (9,55E-02)

0,1036 (1,03E-04)

0,1044 (2,22E-04)

0,1052 (1,91E-04)

epok =100

0,1209 (9,55E-02)

0,1043 (4,15E-04)

0,1047 (4,30E-04)

0,1060 (4,65E-04)

epok =150

0,1210 (9,55E-02)

0,1048 (4,77E-04)

0,1051 (3,75E-04)

0,1061 (2,11E-04)

epok =200

0,1035 (1,67E-04)

0,1050 (2,50E-04)

0,1051 (3,89E-04)

0,1059 (2,92E-04)

Tablo 3.19.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 2 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.



Tablo 3.20. PAG Kuyusu NAR-NN trainlm algoritmasi ve t=2 i¢cin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1183 (9,61E-02)

0,1019 (6,12E-04)

0,1053 (3,23E-03)

0,1054 (2,52E-03)

epok= 100

0,1008 (3,42E-04)

0,1020 (5,47E-04)

0,1055 (2,63E-03)

0,1103 (8,43E-03)

epok= 150

0,1008 (2,74E-04)

0,1022 (1,01E-03)

0,1095 (9,29E-03)

0,1133 (1,05E-02)

epok= 200

0,1007 (2,79E-04)

0,1024 (1,09E-03)

0,1120 (1,57E-02)

0,1229 (2,78E-02)

Tablo 3.20.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 2 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.21. PAG Kuyusu NAR-NN trainbr algoritmas: ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,1042 (1,75E-03)

0,1034 (2,89E-04)

0,1042 (1,68E-04)

0,1047 (3,58E-04)

epok= 100

0,1036 (2,81E-04)

0,1034 (3,68E-04)

0,1042 (2,09E-04)

0,1050 (4,53E-04)

epok= 150

0,1035 (1,93E-04)

0,1034 (2,78E-04)

0,1043 (1,94E-04)

0,1055 (5,42E-04)

epok= 200

0,1209 (9,56E-02)

0,1034 (3,13E-04)

0,1043 (2,11E-04)

0,1057 (6,47E-04)

Tablo 3.21.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 10 ve

epok sayist 50, 100, 150 ve 200 oldugunda daha iyi sonuglar elde edildigi

gozlemlenmistir.

Tablo 3.22. PAG Kuyusu NAR-NN trainbr algoritmasi ve t=2 icin RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,0794 (8,07E-04)

0,0779 (1,74E-03)

0,0789 (4,10E-03)

0,0833 (7,45E-03)

epok= 100

0,0800 (4,80E-04)

0,0747 (9,33E-04)

0,0795 (8,67E-03)

0,0876 (1,06E-02)

epok= 150

0,0798 (3,19E-04)

0,0757 (5,20E-03)

0,0796 (9,60E-03)

0,0898 (1,19E-02)

epok= 200

0,0800 (4,96E-04)

0,0773 (6,34E-03)

0,0831 (1,07E-02)

0,0890 (1,37E-02)

Tablo 3.22.’deki sonuclar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 100 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.




Tablo 3.23. PAG Kuyusu LSTM adam algoritmas: ve t=1 i¢cin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,2221 (2,28E-02)

0,2045 (9,12E-03)

0,1872 (5,43E-03)

0,1799 (3,62E-03)

epok= 100

0,1897 (1,03E-02)

0,1784 (7,80E-03)

0,1672 (5,37E-03)

0,1606 (1,17E-02)

epok= 150

0,1688 (9,76E-03)

0,1405 (9,98E-03)

0,1284 (3,59E-03)

0,1463 (1,52E-02)

epok= 200

0,1445 (1,11E-02)

0,1205 (4,17E-03)

0,1158 (2,71E-03)

0,1299 (8,18E-03)
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Tablo 3.23.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 30 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.24. PAG Kuyusu LSTM adam algoritmasi ve t=2 i¢in RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,2391 (1,14E-02)

0,2243 (6,07E-03)

0,2144 (4,66E-03)

0,2076 (2,21E-03)

epok= 100

0,2102 (7,51E-03)

0,2058 (6,23E-03)

0,2008 (4,13E-03)

0,1993 (2,14E-02)

epok= 150

0,1995 (5,89E-03)

0,1850 (8,27E-03)

0,1789 (5,82E-03)

0,1814 (5,75E-03)

epok= 200

0,1852 (7,88E-03)

0,1700 (4,46E-03)

0,1663 (1,66E-03)

0,1766 (5,17E-03)

Tablo 3.24.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 30 ve

epok sayisi1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.25. PAG Kuyusu LSTM rsmprop algoritmas: ve t=1 i¢cin RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1912 (1,79E-02)

0,1807 (6,72E-03)

0,1767 (6,53E-03)

0,1874 (4,95E-03)

epok= 100

0,1499 (7,30E-03)

0,1418 (8,29E-03)

0,1500 (3,28E-02)

0,1497 (7,71E-03)

epok= 150

0,1305 (5,00E-03)

0,1265 (1,15E-02)

0,1274 (2,31E-02)

0,1282 (4,38E-03)

epok= 200

0,1189 (3,50E-03)

0,1165 (8,43E-03)

0,1231 (2,89E-02)

0,1156 (7,03E-03)

Tablo 3.25.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 40 ve

epok sayis1 200 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.



Tablo 3.26. PAG Kuyusu LSTM rmsprop algoritmasi ve t=2 i¢cin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,2192 (1,01E-02)

0,2069 (6,03E-03)

0,2079 (4,99E-03)

0,2140 (4,52E-03)

epok= 100

0,1889 (5,59E-03)

0,1839 (9,62E-03)

0,1855 (4,92E-03)

0,1890 (5,15E-03)

epok= 150

0,1738 (3,07E-03)

0,1772 (1,31E-02)

0,1740 (1,34E-02)

0,1757 (4,95E-03)

epok= 200

0,1674 (2,29E-03)

0,1657 (3,69E-03)

0,1687 (1,10E-02)

0,1663 (3,27E-03)
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Tablo 3.26.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.27. PAG Kuyusu NAR-NN ve LSTM RMSE en iyi sonuglart.

trainlm

trainbr

adam

rmsprop

t=1

0,1035 (1,67E-04)

0,1034 (2,78E-04)

0,1158 (2,71E-03)

0,1156 (7,03E-03)

t=2

0,1007 (2,79E-04)

0,0747 (9,33E-04)

0,1663 (1,66E-03)

0,1657 (3,69E-03)

Tablo 3.27.’deki sonuglar incelendiginde ortalama hata i¢in, NAR-NN egitiminde trainbr

egitim algoritmasi ve t=2 zaman gecikmesi uygulandiginda iyi sonuclar elde edildigi

gozlemlenmistir. Zaman gecikmesi artarken NAR-NN egitiminde iyilesme goriiliirken

LSTM egitiminde ise kotilesme goriilmektedir. NAR-NN egitiminde trainbr egitim

algoritmasi trainlm egitim algoritmasinda gore daha basarili sonuclar elde edilmistir.

LSTM egitiminde ise rmsprop egitim algoritmasi adam egitim algoritmasina gore daha

basarili oldugu goriilmektedir.

Tablo 3.28. CoS Kuyusu NAR-NN trainim algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0610 (4,47E-04)

0,0613 (3,49E-04)

0,0757 (6,33E-03)

0,1898 (7,00E-02)

epok =100

0,0611 (1,40E-04)

0,0614 (2,68E-04)

0,1109 (1,43E-02)

0,9282 (3,35E-01)

epok =150

0,1057 (2,45E-01)

0,0614 (1,04E-04)

0,1373 (5,09E-02)

1,0662 (3,97E-01)

epok =200

0,1057 (2,45E-01)

0,0613 (2,13E-04)

0,2878 (4,06E-01)

1,2890 (3,14E-01)

Tablo 3.28.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 2 ve

epok sayis1 50 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.



Tablo 3.29. CoS Kuyusu NAR-NN trainim algoritmasi ve t=2 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0566 (6,05E-04)

0,0547 (3,91E-04)

0,0554 (5,10E-04)

0,0557 (3,47E-04)

epok= 100

0,0562 (4,22E-04)

0,0547 (3,31E-04)

0,0557 (6,45E-04)

0,0560 (6,23E-04)

epok= 150

0,0559 (6,39E-04)

0,0547 (4,99E-04)

0,0558 (7,38E-04)

0,0574 (2,40E-03)

epok= 200

0,0558 (4,86E-04)

0,0546 (3,12E-04)

0,0560 (6,79E-04)

0,0570 (1,71E-03)
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Tablo 3.29.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 10 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.30. CoS Kuyusu NAR-NN trainbr algoritmas: ve t=1 i¢cin RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,1042 (1,75E-03)

0,0600 (2,89E-04)

0,1042 (1,68E-04)

0,1047 (3,58E-04)

epok= 100

0,1036 (2,81E-04)

0,0600 (3,68E-04)

0,1042 (2,09E-04)

0,1050 (4,53E-04)

epok= 150

0,1035 (1,93E-04)

0,0598 (2,78E-04)

0,1043 (1,94E-04)

0,1055 (5,42E-04)

epok= 200

0,1209 (9,56E-02)

0,1034 (3,13E-04)

0,1043 (2,11E-04)

0,1057 (6,47E-04)

Tablo 3.30.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 2 ve

epok sayisi 150 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.31. CoS Kuyusu NAR-NN trainbr algoritmasi ve t=2 i¢cin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,0642 (7,86E-03)

0,0611 (1,06E-04)

0,0623 (5,40E-04)

0,0674 (1,38E-02)

epok= 100

0,0610 (6,03E-04)

0,0611 (8,28E-04)

0,0624 (5,60E-04)

0,0647 (3,41E-03)

epok= 150

0,0586 (2,41E-04)

0,0611 (1,18E-04)

0,0626 (1,10E-03)

0,0685 (9,46E-03)

epok= 200

0,0542 (2,29E-04)

0,0611 (1,20E-04)

0,0631 (2,30E-03)

0,0663 (6,00E-03)

Tablo 3.31.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 2 ve

epok sayis1 200 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.



Tablo 3.32. CoS Kuyusu LSTM adam algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1164 (4,89E-04)

0,1156 (1,60E-03)

0,1152 (4,21E-04)

0,1132 (1,96E-04)

epok= 100

0,1160 (2,75E-04)

0,1152 (5,74E-04)

0,1150 (2,46E-04)

0,1130 (5,36E-04)

epok= 150

0,1160 (3,63E-04)

0,1152 (1,96E-04)

0,1151 (1,94E-04)

0,1128 (2,80E-04)

epok= 200

0,1159 (2,80E-04)

0,1152 (3,75E-04)

0,1150 (2,04E-04)

0,1148 (2,93E-04)
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Tablo 3.32.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 40 ve

epok sayis1 150 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.33. CoS Kuyusu LSTM adam algoritmast ve t=2 i¢in RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,2800 (3,35E-02)

0,2338 (1,43E-02)

0,1971 (6,71E-03)

0,1765 (3,32E-03)

epok= 100

0,2010 (1,83E-02)

0,1833 (9,42E-03)

0,1757 (5,46E-03)

0,1620 (3,75E-03)

epok= 150

0,1807 (1,23E-02)

0,1688 (8,65E-03)

0,1603 (5,76E-03)

0,1496 (2,80E-03)

epok= 200

0,1696 (1,18E-02)

0,1591 (7,64E-03)

0,1522 (9,74E-03)

0,1597 (3,48E-02)

Tablo 3.33.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 40 ve

epok sayisi 150 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.34. CoS Kuyusu LSTM rsmprop algoritmasi ve t=1 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,2015 (2,43E-02)

0,1803 (1,51E-02)

0,1817 (7,92E-03)

0,1928 (2,07E-02)

epok= 100

0,1454 (1,28E-02)

0,1457 (1,17E-02)

0,1407 (7,06E-03)

0,1596 (8,86E-03)

epok= 150

0,1237 (7,43E-03)

0,1238 (9,18E-03)

0,1208 (1,25E-02)

0,1370 (1,72E-02)

epok= 200

0,1099 (7,06E-03)

0,1108 (1,28E-02)

0,1109 (1,01E-02)

0,1206 (1,63E-02)

Tablo 3.34.’deki sonuglar incelendiginde ortalama hata icin, gizli katman boyutu 2 ve

epok sayis1 200 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.



Tablo 3.35. CoS Kuyusu LSTM rmsprop algoritmasi ve t=2 i¢in RMSE sonuglari.

gkb=2 gkb=10 gkb=30 gkb=40
epok=50 | 0,2205 (2,67E-02) | 0,1997 (9,73E-03) | 0,2008 (6,82E-03) | 0,2191 (3,82E-02)
epok= 100 | 0,1686 (1,00E-02) | 0,1679 (1,04E-02) | 0,1647 (7,08E-03) | 0,1788 (8,45E-03)
epok= 150 | 0,1498 (6,72E-03) | 0,1475 (1,20E-02) | 0,1464 (9,38E-03) | 0,1507 (9,67E-03)
epok= 200 | 0,1344 (3,96E-03) | 0,1378 (1,78E-02) | 0,1360 (7,46E-03) | 0,1405 (1,38E-02)
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Tablo 3.35.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 2 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.36. CoS Kuyusu NAR-NN ve LSTM RMSE en iyi sonuc¢lart.

trainlm trainbr adam rmsprop
t=1 0,0610 (4,47E-04) | 0,0598 (2,78E-04) | 0,1128 (2,80E-04) | 0,1099 (7,06E-03)
t=2 0,0546 (3,12E-04) | 0,0542 (2,29E-04) | 0,1496 (2,80E-03) | 0,1344 (3,96E-03)

Tablo 3.36.’deki sonuglar incelendiginde ortalama hata i¢cin, NAR-NN egitiminde trainlm
egitim algoritmasi ve t=2 zaman gecikmesi uygulandiginda iyi sonuglar elde edildigi
gozlemlenmistir. Zaman gecikmesi artarken NAR-NN egitiminde iyilesme goriiliirken
LSTM egitiminde ise kotilesme goriilmektedir. NAR-NN egitiminde trainbr egitim
algoritmasi trainlm egitim algoritmasinda gore daha basarili sonuclar elde edilmistir.
LSTM egitiminde ise rmsprop egitim algoritmasi adam egitim algoritmasina gore daha

basarili oldugu goriilmektedir.

Tablo 3.37. DIEC Kuyusu NAR-NN trainim algoritmasi ve t=1 igcin RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1290 (6,98E-04)

0,1287 (9,19E-04)

0,1292 (1,29E-03)

0,1454 (7,22E-03)

epok =100

0,1290 (1,87E-04)

0,1288 (3,17E-04)

0,1403 (1,99E-02)

0,1683 (9,60E-03)

epok =150

0,1290 (7,46E-04)

0,1284 (1,45E-04)

0,1513 (2,69E-02)

0,1874 (1,45E-02)

epok =200

0,1290 (8,80E-04)

0,1283 (9,79E-04)

0,1413 (2,43E-02)

0,2122 (1,91E-02)

Tablo 3.37.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.



Tablo 3.38. DIEC Kuyusu NAR-NN trainim algoritmasi ve t=2 ig¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1233 (9,25E-04)

0,1245 (7,36E-03)

0,1463 (2,90E-02)

0,1540 (2,47E-02)

epok= 100

0,1225 (9,10E-04)

0,1267 (1,56E-02)

0,1727 (4,75E-02)

0,1790 (4,20E-02)

epok= 150

0,1221 (1,05E-03)

0,1242 (7,52E-03)

0,1927 (5,58E-02)

0,1954 (4,79E-02)

epok= 200

0,1218 (9,59E-04)

0,1228 (2,86E-03)

0,2187 (8,29E-02)

0,2652 (1,22E-01)
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Tablo 3.38.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 2 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.39. DIEC Kuyusu NAR-NN trainbr algoritmast ve t=1 i¢cin RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,1281 (7,03E-04)

0,1278 (1,45E-04)

0,1409 (1,57E-02)

0,1481 (1,08E-02)

epok= 100

0,1280 (5,68E-04)

0,1277 (1,17E-04)

0,1416 (1,36E-02)

0,1594 (5,23E-03)

epok= 150

0,1462 (9,98E-02)

0,1277 (7,69E-04)

0,1517 (2,21E-02)

0,1604 (6,13E-03)

epok= 200

0,1279 (2,19E-04)

0,1277 (1,33E-04)

0,1549 (2,07E-02)

0,1691 (1,10E-02)

Tablo 3.39.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 100, 150 ve 200 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.

Tablo 3.40. DIEC Kuyusu NAR-NN trainbr algoritmast ve t=2 i¢in RMSE sonuglar1.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,1227 (9,35E-04)

0,1215 (5,33E-04)

0,1221 (1,66E-03)

0,1233 (2,97E-03)

epok= 100

0,1217 (9,30E-04)

0,1214 (1,41E-03)

0,1240 (5,43E-03)

0,1247 (5,37E-03)

epok= 150

0,1213 (6,57E-04)

0,1211 (1,39E-03)

0,1217 (2,53E-03)

0,1347 (3,38E-02)

epok= 200

0,1215 (1,16E-03)

0,1210 (2,90E-03)

0,1233 (4,65E-03)

0,1273 (1,24E-02)

Tablo 3.40.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 10 ve

epok sayis1 200 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.



Tablo 3.41. DIEC Kuyusu LSTM adam algoritmas: ve t=1 i¢in RMSE sonuglart.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,2772 (1,91E-02)

0,2566 (1,11E-02)

0,2404 (8,21E-03)

0,2209 (4,21E-03)

epok= 100

0,2403 (1,31E-02)

0,2186 (1,19E-02)

0,1952 (9,77E-03)

0,1956 (8,58E-03)

epok= 150

0,2025 (1,85E-02)

0,1731 (1,56E-02)

0,1506 (5,75E-03)

0,1747 (5,08E-03)

epok= 200

0,1799 (1,58E-02)

0,1460 (5,58E-03)

0,1384 (2,33E-03)

0,1618 (7,82E-03)
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Tablo 3.41.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 30 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.42. DIEC Kuyusu LSTM adam algoritmasi ve t=2 i¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok=50

0,3118 (1,93E-02)

0,2929 (9,35E-03)

0,2811 (5,81E-03)

0,2683 (3,12E-03)

epok= 100

0,2796 (9,75E-03)

0,2659 (7,12E-03)

0,2514 (6,22E-03)

0,2536 (4,46E-02)

epok= 150

0,2579 (1,17E-02)

0,2371 (1,06E-02)

0,2183 (4,21E-03)

0,2330 (3,29E-03)

epok= 200

0,2391 (1,01E-02)

0,2147 (6,10E-03)

0,2084 (3,41E-03)

0,2259 (6,26E-03)

Tablo 3.42.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 30 ve

epok sayisi1 200 oldugunda daha iyi sonuglar elde edildigi gozlemlenmistir.

Tablo 3.43. DIEC Kuyusu LSTM rsmprop algoritmasi ve t=1 icin RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,2610 (2,36E-02)

0,2246 (1,36E-02)

0,2174 (1,09E-02)

0,2301 (2,36E-02)

epok= 100

0,1839 (9,25E-03)

0,1749 (2,95E-02)

0,1747 (4,22E-02)

0,1788 (3,35E-02)

epok= 150

0,1541 (6,52E-03)

0,1505 (1,94E-02)

0,1379 (3,18E-03)

0,1627 (5,84E-02)

epok= 200

0,1409 (5,07E-03)

0,1409 (1,39E-02)

0,1421 (4,01E-02)

0,1434 (4,39E-02)

Tablo 3.43.’deki sonuglar incelendiginde ortalama hata igin, gizli katman boyutu 30 ve

epok sayis1 150 oldugunda daha iyi sonuclar elde edildigi gozlemlenmistir.



Tablo 3.44. DIEC Kuyusu LSTM rmsprop algoritmasi ve t=2 ig¢in RMSE sonuglari.

gkb=2

gkb=10

gkb=30

gkb=40

epok= 50

0,2877 (1,31E-02)

0,2701 (6,57E-03)

0,2632 (5,53E-03)

0,2740 (1,75E-02)

epok= 100

0,2439 (8,56E-03)

0,2331 (1,31E-02)

0,2320 (2,53E-02)

0,2366 (2,59E-02)

epok= 150

0,2187 (5,53E-03)

0,2138 (5,94E-03)

0,2198 (2,51E-02)

0,2148 (5,42E-03)

epok= 200

0,2098 (4,50E-03)

0,2094 (7,25E-03)

0,2165 (2,07E-02)

0,2073 (3,76E-03)
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Tablo 3.44.’deki sonuglar incelendiginde ortalama hata i¢in, gizli katman boyutu 40 ve

epok sayis1 200 oldugunda daha iyi sonuglar elde edildigi gézlemlenmistir.

Tablo 3.45. DIEC Kuyusu NAR-NN ve LSTM RMSE en iyi sonuclart.

trainlm

trainbr

adam

rmsprop

t=1

0,1283 (9,79E-04)

0,1277 (1,17E-04)

0,1384 (2,33E-03)

0,1379 (3,18E-03)

t=2

0,1218 (9,59E-04)

0,1210 (2,90E-03)

0,2084 (3,41E-03)

0,2073 (3,76E-03)

Tablo 3.45.’deki sonuglar incelendiginde ortalama hata i¢in, NAR-NN egitiminde trainbr

egitim algoritmasi ve t=2 zaman gecikmesi uygulandiginda iyi sonuglar elde edildigi

gozlemlenmistir. Zaman gecikmesi artarken NAR-NN egitiminde iyilesme goriiliirken

LSTM egitiminde ise kotiilesme goriilmektedir. NAR-NN egitiminde trainbr egitim

algoritmasi trainlm egitim algoritmasinda gore daha basarili sonuglar elde edilmistir.

LSTM egitiminde ise rmsprop egitim algoritmas1 adam egitim algoritmasina gore daha

basarili oldugu goriilmektedir.

3.3 Grafiksel Sonuclar

Bu béliimde tahmin sonuglari gorselleri Sekil 3.1 - 3.40°da verilmistir. Mavi ¢izgi orijinal

veriyi, kirmizi ¢izgi ise tahmin sonucunu ifade etmektedir.



Sekil 3.1. LT2 Kuyusu NAR-NN trainim algoritmasi ve t=1 igin test verisi ve egitim ¢iktist sonuglart.
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Sekil 3.2. LT2 Kuyusu NAR-NN trainlm algoritmasi ve t=2 igin test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.4. LT2 Kuyusu NAR-NN trainbr algoritmasi ve t=2 igin test verisi ve egitim ¢iktisi sonuglart.
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Sekil 3.7. LT2 Kuyusu LSTM rmsprop algoritmasi ve t=1 igin test verisi ve egitim ¢iktist sonuglari.
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Sekil 3.9.SAL Kuyusu NAR-NN trainlm algoritmasi ve t=1 igin test verisi ve egitim ¢iktist sonuglari.
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Sekil 3.10. SAL Kuyusu NAR-NN trainlm algoritmasi ve t=2 igin test verisi ve egitim ¢iktist SOnuglart.
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Sekil 3.13.

SAL Kuyusu LSTM adam algoritmasi ve t=1 igin test verisi ve egitim ¢iktisi sonug¢lart.
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Sekil 3.16. SAL Kuyusu LSTM rmsprop algoritmasi ve t=2 i¢in test verisi ve egitim ¢iktist sonuglari.
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Sekil 3.17. PAG Kuyusu NAR-NN trainlm algoritmasi ve t=1 igin test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.19. PAG Kuyusu NAR-NN trainbr algoritmasi ve t=1 i¢in test verisi ve egitim ¢iktisi sonug¢lari.
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Sekil 3.20. PAG Kuyusu NAR-NN trainbr algoritmasi ve t=2 i¢in test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.22. PAG Kuyusu LSTM adam algoritmasi ve t=2 icin test verisi ve egitim ¢iktist sonuglart.
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Sekil 3.23. PAG Kuyusu LSTM rmsprop algoritmasi ve t=1 igin test verisi ve egitim ¢iktis1 sonuglari.
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Sekil 3.24. PAG LSTM rmsprop algoritmast ve t=2 igin test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.25.COS Kuyusu NAR-NN trainlm algoritmasi ve t=1 i¢in test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.28. COS Kuyusu NAR-NN trainbr algoritmast ve t=2 igin test verisi ve egitim ¢iktist sonuglart.

Target
Predicted

M
{

oy Y A . Jh* N
' Ul VA
yf

Water Level m)
&
T

o 100 200 300 400 500 800 700 00 200 1000
Time Index

Sekil 3.29. COS Kuyusu LSTM adam algoritmasi ve t=1 icin test verisi ve egitim ¢iktist sonuglart.
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Sekil 3.30. COS Kuyusu LSTM adam algoritmasi ve t=2 igin test verisi ve egitim ¢iktis1 sonuglari.
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Sekil 3.31. COS Kuyusu LSTM rmsprop algoritmast ve t=1 i¢in test verisi ve egitim ¢iktisi sonuglari
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Sekil 3.32. COS LSTM rmsprop algoritmasi ve t=2 icin test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.33. DIEC Kuyusu NAR-NN trainlm algoritmast ve t=1 igin test verisi ve egitim ¢iktisi sonuglart.
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Sekil 3.34. DIEC Kuyusu NAR-NN trainlm algoritmast ve t=2 i¢in test verisi ve egitim ¢iktisi sonuglart.
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Sekil 3.35. DIEC Kuyusu NAR-NN trainbr algoritmasi ve t=1 i¢in test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.36. DIEC Kuyusu NAR-NN trainbr algoritmasi ve t=2 igin test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.37. DIEC Kuyusu LSTM adam algoritmasi ve t=1 i¢in test verisi ve egitim ¢iktist sonuglart.
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Sekil 3.38. DIEC Kuyusu LSTM adam algoritmast ve t=2 igin test verisi ve egitim ¢iktisi sonuglari.
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Sekil 3.39. DIEC Kuyusu LSTM rmsprop algoritmasi ve t=1 i¢in test verisi ve egitim ¢iktist sonuglari.
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Sekil 3.40. DIEC LSTM rmsprop algoritmast ve t=2 i¢in test verisi ve egitim ¢iktisi sonu¢lari.
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DORDUNCU BOLUM

SONUC VE TARTISMA

Bu tez ¢alismasinda, su temin ve dagitim sistemlerinde yeralt1 suyu seviyelerinin tahmini
icin Yapay Zeka (YZ) tekniklerinin kullanimi incelenmistir. Ozellikle, Dogrusal
Olmayan Otoregresif Sinir Ag1 (NAR-NN) ve Uzun Kisa Siireli Bellek (LSTM)
modelleri, AquiferAuser veri setinden alinan bes farkli kuyu verisi kullanilarak test

edilmistir.

Calisma sonuglari, hem NAR-NN hem de LSTM modellerinin yeralt1 suyu seviyelerinin
tahmininde basarili olabilecegini gostermistir. NAR-NN modeli i¢in, trainbr egitim
algoritmasi genellikle trainlm algoritmasindan daha iyi sonuglar vermistir. LSTM modeli

i¢in ise, rmsprop egitim algoritmasi adam algoritmasindan daha basarili bulunmustur.

Genel olarak, NAR-NN modeli, LSTM modeline kiyasla daha diisik RMSE degerleri
elde ederek daha dogru tahminler saglamistir. Bunun nedeni, NAR-NN modelinin zaman
serilerindeki dogrusal olmayan iligkileri modellemede daha etkili olabilmesidir. Ayrica,
zaman gecikmesinin artmast NAR-NN modelinin performansini olumlu yonde
etkilerken, LSTM modelinin performansini olumsuz yonde etkilemistir. Bu durum, NAR-
NN modelinin uzun vadeli bagimliliklar1 yakalamada LSTM modelinden daha iyi

oldugunu gosterebilir.

Bu tez calismasi, smirli sayida veri seti ve YZ modeli kullanilarak gergeklestirilmistir.
Bu nedenle, elde edilen sonuglarin genellestirilebilirligi sinirh olabilir. Ayrica, ¢alisma
sadece yeraltt suyu seviyelerinin tahminine odaklanmistir. Su temin ve dagitim
sistemlerindeki diger degiskenlerin (6rnegin, yagis, sicaklik, pompaj oranlari) tahmini

i¢in YZ tekniklerinin kullanimi gelecekteki caligmalar i¢in bir konu olabilir.



64

Bu tez caligsmasi, su temin ve dagitim sistemlerinde YZ tekniklerinin kullanimi i¢in bir¢ok

gelecek ¢alisma firsatt sunmaktadir. Bunlardan bazilari sunlardir:

Farkli cografi bolgelerden ve daha uzun zaman dilimlerini kapsayan veri setleri
kullanilarak  YZ modellerinin performanst daha kapsamli bir sekilde
degerlendirilebilir.

Destek Vektdr Makineleri (SVM), Rastgele Ormanlar (RF) ve Derin Ogrenme
(DL) gibi diger YZ modelleri, yeralt1 suyu seviyelerinin tahmini icin test edilebilir
ve performanslart NAR-NN ve LSTM modelleriyle karsilastirilabilir.

Farkli YZ modellerinin gii¢lii yOnlerini birlestiren hibrit modeller, tahmin
dogrulugunu artirmak i¢in gelistirilebilir.

Yagis, sicaklik, pompaj oranlar1 gibi diger degiskenlerin tahmini i¢in YZ
teknikleri kullanilabilir ve bu tahminler, su kaynaklarinin daha etkin yonetimi i¢in
kullanilabilir.

YZ modellerinin karar verme siireglerinin daha seffaf hale getirilmesi, bu
modellerin su kaynaklar1 yonetiminde daha yaygin bir sekilde kullanilmasim
saglayabilir.

Su temin ve dagitim sistemlerinde YZ tekniklerinin kullanimi heniiz emekleme
asamasindadir. Bu alanda yapilacak gelecek calismalar, su kaynaklarinin daha

stirdiiriilebilir bir sekilde yonetilmesine onemli katkilar saglayabilir.
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