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ZAMANA BAGLI SALINIMLI DIS MANYETIiK ALAN ALTINDA KiNETIiK
IZOTROPIK SPiN-1 ISING BLUME-EMERY-GRIFFITHS (BEG) SISTEMLERI

Ersin KANTAR
Erciyes Universitesi, Fen Bilimleri Enstitiisii
Yiiksek Lisans Tezi, Temmuz 2008
Tez Damismam: Prof. Dr. Mustafa KESKIN

OZET

Zamana bagl salinimli dis manyetik alan altinda bilineer ve bikuadratik en yakin komsu
etkilesme Hamiltonyenli kinetik tek ve iki alt orgiilii izotropik spin-1 Blume-Emery-
Griffiths (BEG) sistemleri, ortalama alan yaklasimi kullanilarak incelendi. Sistemin
zamanla degisimini tanimlamak i¢in Glauber- tipi stokhastik dinamik kullanildi.
Sistemdeki ¢ozlimleri veya fazlar1 bulmak i¢in ortalama diizen parametrelerinin zamanla
degisimi incelendi. Faz doniisiimlerinin dogasini karakterize etmek (stirekli ve siireksiz)
ve dinamik faz gecis (DFG) sicakliklarini elde etmek icin dinamik diizen
parametrelerinin davranist indirgenmis sicaklifin bir fonksiyonu olarak incelendi.
Dinamik faz diyagramlar iki farkli diizlemde, (T, h) ve (k, T), sunuldu. Dinamik faz
diyagramlari, tek alt 6rgiili sistem ig¢in, diizensiz (d) ve ferromanyetik (f) temel fazlar
yanisira, f + d, f + fq ve fq + d karma fazlarini icerirken; iki alt 6rgiilii sistem igin, d ve f
temel fazlarile, f+d,a+d, f+a, f+a+d ve f+ i karma fazlarimi icerir. Sonug olarak,
sistemin davraniginin bikuadratik etkilesme parametresine kuvvetli bir sekilde baglh

oldugu bulundu.

Anahtar Kelimeler: Tek ve iki alt orgiilii izotropik spin-1 BEG modeli, Glauber-tipi

stokhastik dinamik, Dinamik faz gecisleri, Dinamik faz diyagramlari.



KINETIC ISOTROPIC SPIN-1 BLUME- EMERY GRIFFITHS (BEG) SYSTEMS
UNDER A TIME-DEPENDENT OSCILLATING EXTERNAL MAGNETIC
FIELD

Ersin KANTAR
Erciyes University, Graduate School of Natural and Applied Sciences
M. Sc. Thesis, July 2008
Thesis Supervisor: Prof. Dr. Mustafa KESKIN

ABSTRACT

A study, within a mean-field approach, of the kinetic one and two sublattice isotropic
spin-1 Blume-Emery-Griffiths (BEG) systems Hamiltonian with bilinear and biquadratic
nearest-neighbor exchange interactions in the presence of a time-dependent oscillating
external magnetic field is presented. The Glauber-type stochastic dynamic is used to
describe the time evolution of the system. The time varitions of average order
parameters are investigated to find the phases or solutions in the system. The thermal
behavior of dynamic order parameters are also studied to characterized the nature
(continuous and discontinuous) of the phase transitions and obtain the dynamic phase
transition (DPT) points. The dynamic phase diagrams are presented in two different
planes, (T, h) and (k, T). While dynamic phase diagrams contains the disordered (d) and

ferromagnetic (f) fundamental phases, the f + d, f + fq and fq + d mixed phase regions

for the kinetic one sublattice system; dynamic phase diagrams contains the d and f
fundamental phases, the f+d,a+d, f+a, f+a+ dand f + i mixed phase regions for the
Kinetic two sublattice system. As a result, it is found that the behavior of the system

strongly depends on the biquadratic interaction parameter.

Keywords: One and two sublattice isotropic spin-1 BEG model, Glauber-type stochastic

dynamic, Dynamic phase transitions, Dynamic phase diagrams.
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Sekil 2.1

vi

SEKILLER LISTESI

. Tek alt orgiili izotropik spin-1 BEG modeli i¢in

miknatislanmanin (m) ve kuadrupol momentin (q) zamanla
degisimi. a) Sistemde sadece diizensiz (d) faz mevcuttur
(k=0.1, h=1.0, T=2.0). b) Sistemde sadece ferromanyetik
(f) faz mevcuttur, (k=0.1, h=0.2, T=0.375). ¢) Sistemde
hem ferrokuadropolar (fq) faz hem de diizensiz (d) faz
mevcuttur, (k=0.3, h=1.4, T=0.125).

Sekil 2.2. Tek alt orgiili izotropik spin-1 BEG modeli igin

Sekil 2.3.

Sekil 2.4.

Sekil 2.5.

miknatislanmanin (m) ve kuadrupol momentin (q) zamanla
degisimi. a) Sistemde hem ferromanyetik (f) faz hem de
ferrokuadropolar (fq) faz mevcuttur, (k=0.3, h=0.3,
T=0.25). b) Sistemde hem diizensiz (d) faz hem de,
ferromanyetik (f) faz mevcuttur, (k=0.10, h=0.750,
T=0.175).

Dinamik miknatislanmanin, M, (kalin ¢izgi) ve dinamik
kuadrupol momentin, Q, (ince ¢izgi) indirgenmis sicakliga
bagli olarak davraniglari, (k=0.1 ve h=0.6). Sistemde
ikinci- derece faz gegisi meydana gelmektedir, T¢=0.5125.

Dinamik miknatislanmanin, M, (kalin ¢izgi) ve dinamik
kuadrupol momentin, Q, (ince ¢izgi) indirgenmis sicakliga
bagli olarak davraniglari, (k=0.1 ve h=0.2). a) Sistemde f
fazindan d fazina ikinci- derece faz ge¢isi meydana
gelmektedir, (Tc=0.6525). b) Sistemde birbirini takip eden
iki faz gecisi meydana gelmemektedir, birincisi fq fazindan
f fazina birinci- derece faz gegisi (Tig=0.1775) ve ikincisi f
fazindan d fazina ikinci- derece faz gecisidir (T¢=0.6525).

Dinamik miknatislanmanin, M, (kalin ¢izgi) ve dinamik
kuadrupol momentin, Q, (ince ¢izgi) indirgenmis sicakliga
bagh olarak davraniglari, (k=0.1 ve h=0.8). a) Sistemde f
fazindan d fazina birinci- derece faz gecisi meydana
gelmektedir, (T=0.2125). b) Sistemde herhangi bir faz
gecisi olmamaktadir ve bu durum diizensiz (d) faza karsilik
gelir.

Sekil 2.6. Lyapunov iistellerinin indirgenmis sicakligin bir fonksiyonu

olarak davraniglari, (k=0.1 ve h=0.2). a) m i¢in indirgenmis
sicakligin bir fonksiyonu olarak Lyapunov iistellerin
davranigi. b) q i¢in indirgenmis sicakligin bir fonksiyonu
olarak Lyapunov iistellerin davranisi.
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vii

Sekil 2.7. Tek alt orgiilii izotropik Blume- Emery- Griffiths modelinin

(T, h) diizleminde dinamik faz diyagramlari. Sistemde
diizensiz (d), ferromanyetik (f) ve lic karma faz bolgesi
mevcuttur, bunlar fq+d, f+fq ve f+d karma fazlaridir.
Kesikli ve siirekli ¢izgiler sirasiyla birinci- derece ve ikinci-
derece faz gecis cizgilerini ve i¢i dolu daireler dinamik
ticliikritik noktay1 temsil ederler. TP dinamik iiclii nokta ve
QP dinamik dortlii noktadir. (a) k = 0.1, (b) k =0.15, (¢) k
=0.2,(d)k=03,(e) k=04, (f) k=1.0.

Sekil 2.8. Tek alt orgiilii izotropik Blume- Emery- Griffiths modelinin

Sekil 3.1.

Sekil 3.2.

Sekil 3.3.

(T, k) diizleminde dinamik faz diyagramlari. Sistemde
diizensiz (d), ferromanyetik (f) ve lic karma faz bolgesi
mevcuttur, bunlar fq+d, f+fq ve f+d karma fazlaridir.
Kesikli ve siirekli ¢izgiler sirasiyla birinci- derece ve ikinci-
derece faz gecis cizgilerini ve i¢i dolu daireler dinamik
ticliikritik noktay1 temsil ederler. B dinamik cift kritik son
nokta, TP dinamik ii¢li nokta ve QP dinamik dortli
noktadir. (a) h=0.1, (b) h=0.6, (c) h=0.7, (d) h=10.9, (e)
h=1.25.

Iki alt orgiilii izotropik spin-1 BEG modeli igin alt orgii
miknatislanmalarin ve alt orgii kuadrupol momentlerin
zamanla degisimi. a) Sistemde sadece diizensiz (d) faz
mevcuttur, (k=-0.1, h=1, T=0.625). b) Sistemde sadece
ferromanyetik (f) faz mevcuttur, (k=-0.1, h=0.125, T=0.25).
c) Sistemde hem ferromanyetik (f) faz hem de diizensiz (d)
faz mevcuttur, (k=-0.1, h=0.75, T=0.125). d) Sistemde hem
antikuadrupolar (a) faz hem de diizensiz (d) faz mevcuttur,
(k=-0.3, h=1.25, T=0.25).

Iki alt orgiilii izotropik spin-1 BEG modeli igin alt orgii
miknatislanmalarin ve alt o6rgii kuadrupol momentlerin
zamanla degisimi. a) Sistemde hem ferromanyetik (f) faz
hem de antikuadrupolar (a) faz mevcuttur, (k=-0.3, h=0.5,
T=0.375). b) Sistemde ferromanyetik (f) faz,
antikuadrupolar (a) faz hem de diizensiz (d) faz mevcuttur,
(k=-0.25, h=0.7, T=0.125). c) Sistemde hem ferromanyetik
(f) faz hem de ferrimanyetik (i) faz mevcuttur, (k=-0.3,
h=0.125, T=0.2).

Dinamik miknatislanmalarin, M, ve Mg, (kalin ¢izgi) ve
dinamik kuadrupol momentlerin, Qs ve Qg, (ince ¢izgi)
indirgenmis sicakliga bagli olarak davranmiglari. Sistemde
ikinci- derece faz gegisi meydana gelmektedir, (T¢=0.614),
(k=-0.17 ve h=0.25).
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Sekil 3.4. Dinamik miknatislanmalarin, M, ve Mg, (kalin ¢izgi) ve

dinamik kuadrupol momentlerin, Q4 ve Qg, (ince ¢izgi)
indirgenmis sicakliga bagl olarak davranislari, (k=-0.25 ve
h=0.5). a) Sekil 3.5 ile aym fakat T¢=0.503. b) Birbirini
takip eden iki faz gecisi meydana gelmektedir. Birincisi i
fazindan a fazina (T=0.205), ikincisi a fazindan d fazina
ikinci- derece faz ge¢isi (T¢=0.503).

Sekil 3.5. Iki alt orgiilii izotropik spin-1 BEG modelinin (T, h)

diizleminde dinamik faz diyagramlari. Sistemde diizensiz
(d), ferromanyetik (f) ve bes karma faz bolgesi mevcuttur,
bunlar f+d, a+d, f+atd, f + i ve f+a karma fazlardir. Kesikli
ve stirekli cizgiler sirasiyla birinci- derece ve ikinci- derece
faz gecis ¢izgilerini ve i¢i dolu daireler dinamik tgliikritik
noktayi, B ¢ift kritik son nokta, Z dinamik sifir sicaklik
kritik noktayi, E dinamik kritik sonlu noktayi, P dinamik
besli noktayr ve A dinamik c¢oklu kritik noktayi,
gostermektedir. (a) k = -0.10, (b) k = -0.14, (¢) k = -0.17,
(d) k=-0.25, (e) k =-0.30, (f) k =-0.33 (g) k =-0.50.
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1. BOLUM

GIRIS

Istatistik fizik alanindaki bazi problemler, farkli yontemler kullanarak analitik olarak
coOziilebilmesine ragmen, giinlimiiz arastirmalari, simiilatif veya yaklasik c¢ozlimler
bulmada modern bilgisayarlarin giiclinden yararlanir. Matematiksel kolaylik bu yontem
ve ¢Oziimlerde aranilan temel Ozelliktir. Kuvvetli bir sekilde etkilesen parcaciklardan
olusan sistemlerin istatistiksel olarak incelenmesi zor ve bu sistemlerde parcaciklarin
davranigini kesin olarak agiklayan basit bir matematiksel ifade bulmak oldukga
onemlidir. Bu modellerden ilk ve en basarilisi tek boyutta ferromanyetik faz
doniisiimiinii agiklamak i¢in Wilhelm Lenz tarafindan onerilmis ve 6grencisi Ernest
Ising [1] tarafindan ¢6ziilmiistiir. Bu model genel olarak Ising modeli diye adlandirilir.
Modelin iki boyutta kesin ¢oziimii ise Onsager [2] tarafindan yapilmistir. Bu modelde
parcaciklarin spinleri 1/2 olarak alinmistir ve spin-1/2 Ising modeli olarak
adlandirilmistir. Ising modelleri i¢inde en basit ve en yaygin kullanilan model, spin-1/2
Ising modeli olup, Akiskan konsantrasyonu, gazlarin sogurulmasi, ikili sivi veya
gazlarin faz gecisleri, ikili alagimlardaki diizenli-diizensiz faz gegisleri, vb. gibi
sistemlerin incelenmesinde kullanilmistir. Ancak termodinamik davraniglari spin-1/2
Ising modeli ile tanimlanamayan, He’-He* gibi ikili siv1 karisiminda, seyreltik manyetik
sistemlerde, kat1 ortohidrojen, ti¢lii sivi karigimlari, yari-iletken alasimlar, re-entrant
olaylar, manyetik diizenlilik, diizenli-diizensiz faz gegisleri gibi, sistemleri incelemek

icin spin-1 Ising modeli ideal bir modeldir.

Spin-1 Ising modeli 1960’11 yillarda tanimlanmis ve zamanimiza kadar kullanilan ve
kullanilmaya da devam edilen en 6nemli modellerden birisidir. Bu model {i¢ durumlu

ve iki diizen parametreli bir sistemdir. En basit spin-1 Ising modeli, bilineer (J)



ve kristal alan (D) etkilesme Hamiltonyenli spin-1 Ising modeli olup model genelde
Blume-Capel (BC) modeli diye adlandirilir. Bu model ilk olarak Blume [6] ve Capel
[7-8] tarafindan birbirinden bagimsiz olarak gelistirilmistir. Diger taraftan, en yakin
komsu cifti etkilesmeli keyfi bilineer (J), bikuadratik (K) ve kristal alan (D) etkilesme
parametreli spin-1 Ising modeli, Blume-Emery-Griffiths (BEG) modeli [9] olarak
adlandirilmaktadir. BEG modeli, istatistik fizik ve yogun madde fiziginde en fazla
incelenmekte ve fiziksel kooperatif olaylar1 agiklamada en c¢ok kullanilmakta olan
modellerdendir. BEG modeli ilk olarak He’-He! karigimlarinim termodinamik
ozelliklerini incelemek icin kullanilmigtir. Daha sonra ise donma, yari-iletken
alagimlarda diizen, elektronik iletkenlik modelleri, faz diyagramlarindaki re-entrant
olaylar, martensitik gecisler vb. gibi pek c¢ok fiziksel olaym incelenmesinde
kullanilmistir ve kullanilmaya devam edilmektedir. Yukarida anlatilan olaylarin
incelenmesi ortalama alan yaklasimi [9- 12], renormalizasyon grup teknigi [13- 17],
etkin alan teorisi [18], Monte-Carlo metodu [19- 21], kiimesel degisim metodu [22- 30]
kullanilarak yapilmistir. Bu metotlarin yan1 sira BEG modeli, Monte-Carlo
renormalizasyon teknigi [31], sabit c¢iftlenim yaklasimi [32], modifiye Bethe-Pierls
metodu [33], lineer zincir yaklasimi [34] ve iki parcacik kiimesel degisim metodu [35]
ile de incelenmistir. Ayrica BEG modelinin gergek ¢oziimleri Bethe kafesi, bal petegi

ve Kagome kafesi [36], lizerinde ayrintili olarak incelenmistir.

BEG modelinin 6zel bir durumu ise J ve K etkilesme parametreleri ile tanimlanan spin-
1 Ising modelidir ki bu modelde izotropik BEG modeli olarak adlandirilmaktadir.
Izotropik BEG modeli, ilk olarak bazi bilesimlerde [37], deneysel olarak elde edilen
manyetik faz gecislerinin teorik olarak agiklanmalarinda kullanilmistir. [38]. Daha
sonra ortalama-alan yaklagimi [39], genellenmis sabit ¢iftlenim [32], etkin alan teorisi
[40], kiimesel degisim metodu [41] ve sonlu kiime [42] gibi dengeli istatistik fizikte iyi
bilinen yaklagik metodlarla incelenmistir. Bunun yanisira modelin kesin ¢6ziimii Bethe
kafesinde de yapilmistir [43]. Bdylece bu c¢alismalarla, bircok fiziksel sistemlerin

dengeli davranislar1 hakkinda bilgiler elde edilmis ve edilmeye devam edilmektedir.

Iki alt orgiilii spin-1 BEG modeli bikuadratik etkilesme parametresinin itici yani
negatif oldugu K<0 duruma karsilik gelir. Sistem A ve B gibi i¢ ice ge¢mis iki alt
orgliye sahiptir. Bu modelin 6zel bir hali de kristal alan etkilesme parametresi D = 0

alinarak tanimlanan iki alt orgiilii izotropik spin-1 BEG modelidir. Bu model iizerine



ozel bir ¢alisma yapilmamakla birlikte yapilan ¢aligmalar iki alt 6rgiilii BEG modeli
kapsaminda yapilmistir. Bu yiizden biz burada iki alt orgiilii izotropik spin-1 BEG
modelinide i¢eren ¢alismalardan bahsedecegiz. Model iki alt 6rgii g6z Oniine alinarak,
Tanaka ve Kawabe [20] tarafindan molekiiler alan ve Monte-Carlo metodu ile
incelenerek diizen parametrelerinin sicakliga gore degisimi ve faz diyagramlari elde
edilmigtir. Wang ve Wentworth [44] ile Wang ve ark. [21], iki alt orgiilii modelin faz
diyagramlarin1 elde etmek icin Monte-Carlo metodunu kullanmiglar ve onceden
yapilmis ¢alismalardan farkli olarak faz diyagramlarinda antiquadrupolar faz bélgesini
elde etmislerdir. Netz [31] ise Monte-Carlo renormalizasyon grup teknigini kullanarak
yaptiklar1 incelemede sistemin ¢ifte reetrant davranig sergilemesinin yaninda dar bir
bolgede ferrrimanyatik fazi elde etmislerdir. Grigelionis ve Rosengren [29], Lapinskas
ve Rosengren [28] ve Rosengren ve Lapinskas [27] ise, kiimesel degisim metodunu
kullanarak modeli incelemisler ve elde ettikleri sonuglarin analitik ve Monte-Carlo
metoduyla bulunan sonuclarla uyumlu oldugunu gostermislerdir. Akheyan ve
Ananikian [45], modeli tekrarlama tekniklerini kullanarak Bethe oOrgiisii {lizerinde
incelemiglerdir. Elde ettikleri faz diyagramlarmi diger yaklasim metotlar1 ile elde
edilen faz diyagramlari ile karsilastirmiglardir. Tucker ve ark. [30] modeli kiimesel
degisim metodunun ¢ift yaklagimini kullanarak Bethe oOrglisii lizerinde incelemis ve
kapsamli faz diyagramlarini ve bu faz diyagramlar1 iizerinde ferrimanyetik ve
antiquadrupolar faz bdolgelerini detayli bir sekilde vermislerdir. Rosengren ve
Haggkvist spin-1 BEG modelini bal petegi Orgiisiinde ¢alismislardir [46]. Ekiz ve
Keskin [24] spin-1 BEG modelini kiimesel degisim metodunu kullanilarak incelediler.
Keskin ve Erding [47] modeli yol ihtimaliyet metodu ile incelediler. Son yillarda da
Erding ve ark. antiferromanyetik BEG modelini en diisiik kiimesel degisim metodu ile

incelediler [23].

Dengeli durumun aksine, spin-1 Ising sistemlerinin dengesiz yani dinamik
davraniglarini anlamak amaciyla ¢ok az arastirma yapilmistir. Bunun sebebi ise dengesiz
davranigin ¢ok karmasik bir yapida olmasi ve dengesiz davranisi inceleyen metotlarin az
sayida olmasidir. Zamana bagh tek boyutlu izotropik BEG modelini incelemek icin ilk
calisma Obokata [48] tarafindan yapilmistir. Obokata, Bethe metodunu kullandi ve daha
sonra da onu zamana bagli duruma genisleterek durulma zamanlarmi elde etmis ve

statik indirgenmis alinganligin sicakliga bagliligini incelemistir. Tanaka ve Takahashi



[49] ise molekiiler alan yaklasimini kullanarak, modelin basit bir dinamigi {izerine
calistilar ve diizen parametrelerinin durulma egrilerini elde ettiler. Ayni1 zamanda, kritik
sicaklikta; iki durulma zamanindan sadece birinin sonsuza gidecegini gosterdiler.
Tanaka ve Takahashi [49] spin sistemleri ile 1s1 haznesi arasindaki etkilesmenin
ayrmtilarin1 gézoniine almadilar. Keskin ve arkadaslar1 [50, 51] modelin bir c¢ok
dengesiz davraniglarini, Ozellikle diizen parametrelerinin yar1 kararl, kararsiz
durumlarin1 yol ihtimaliyet metodu ile incelediler. Erdem ve Keskin [52, 53], modelin
durulma olaylar1 ve Ozellikle sistemdeki ses dalgalarmmin yayilmasini, tersinmez
termodinamigin Onsager teorisini kullanarak kapsamlica incelediler. Ayrica, Ozer ve
Erdem [54], yol ihtimaliyet metodunu kullanarak hiicre zarlarindaki voltaj kapili iyon

kanallarinin dinamigi {izerine ¢alistilar.

Dengesiz sistemlerdeki ilging problemlerden birisi de, dengesiz veya dinamik faz gecis
(DFG) sicakliklarinin bulunmasi problemidir. DFG ilk olarak, Glauber-tipi stokastik
dinamigi [55] kullanilarak, zamana bagli salinimli manyetik alan altinda kinetik spin-
1/2 Ising modelinin kararli durumlari, ortalama-alan yaklasik metodu ile incelenmesi
sonucu bulundu [56, 57]. Daha sonra, kinetik spin-1/2 Ising modelindeki, dinamik faz
gecisleri, dinamik ortalama-alan yaklagik metoduyla [58] ve dinamik Monte Carlo
hesaplamalar1 ile incelenmistir [59- 63]. Tutu ve Fujiwara [64], Landau tipi
potansiyelleri olan sistemlerde DFG sicakliklarini elde edebilecek sistematik metot
gelistirmisler ve dinamik faz diyagramlar1 sunmuslardir. Tek boyutlu kinetik spin-1/2
Ising modelinde ki DFG’ler Glauber metoduyla incelenmistir [65]. Son zamanlarda ise
daha karmasik sistemlerde, yani spin-1 BC [66], spin-3/2 BC [67], spin-3/2 BEG [68],
gibi yliksek spinli Ising sistemleri, Heisenberg spin sistemleri [69], CO basimcinin
periyodik degisimi ile CO oksidasyonu icin Ziff-Gulari-Barshad modeli [70], XY
modeli [71], gibi sistemlerde DFG sicakliklar1 elde edilmis ve dinamik faz diyagramlari
sunulmustur. DFG sicakliklari, deneysel olarak ilk defa, ¢ok ince Co/Cu (001)
ferromanyetik filmlerinde gozlenmistir [72]. Buna ilaveten, yakin zamanda ferroik
sistemde (ferromagnet, ferroelektrik ve ferroelastik) [73], YbaCuO filmlerde [74],
C10E3/D,0 sisteminde [75], Fe/Au(001) sisteminde [76, 77], ince polikristal NigoFey
filmlerde [78], photoinduced faz gegcisi [79], B1,Sr,CaCu,Oy siiperiletken bilesiginde
[80] ve PEN (polietilen naftalin) nanobilesiklerinde [81], DFG sicakliklar1 gézlenmistir.



Bu tez de, zamana bagli salimimli dis manyetik alan altinda Glauber- tipi stokhastik
dinamik ile tanimlanan tek ve iki alt orgiilii kinetik izotropik spin-1 BEG sistemlerinin
kararli durumlar1 ortalama alan yaklasimi kullanilarak incelenecektir. Glauber-tipi
stokhastik dinamik kullanilarak sistemin ortalama alan dinamik denklemleri elde
edilerek, bu denklemler Adams-Multon kestirme ve diizeltme ve Romberg integrasyon
metotlart ile niimerik olarak ¢oziilecektir. Sistemlerde mevcut olan fazlari bulmak igin
ortalama miknatislanmalarin ve kuadrupol momentlerin zamana bagli davranislar
incelenecektir. Daha sonra, dinamik miknatislanmalarin ve kuadrupol momentlerin,
yani dinamik diizen parametrelerinin, indirgenmis sicakligin bir fonksiyonu olarak
davraniglart incelenerek dinamik faz gegis sicakliklari tespit edilecektir ve dinamik faz
gecis sicakliklarinin dogasi (siirekli ve kesikli, yani birinci- ve ikinci-derece faz
gecisleri) karakterize edilecektir. Ayrica, tek alt orgiilii kinetik izotropik spin-1 BEG
sisteminde, ¢Oziimlerin kararhliklarinin ve dinamik faz gegislerinin dogrulugunun
kontrolii Lyapunov iistelleri ile verilecektir. Daha sonra, sistemin dinamik faz
diyagramlar1 indirgenmis sicaklik, indirgenmis manyetik alan genligi (T, h) ve
indirgenmis bikuadratik etkilesme parametresi, indirgenmis sicaklik (k, T)

diizlemlerinde sunulacaktir.

Bu giris bilgilerinden sonra, Boliim 2’de tek alt orgiilii izotropik spin-1 BEG sisteminin
kararli ¢ozlimleri ortalama-alan yaklagimi kullanilarak incelenecektir. Glauber-tipi
stokhastik dinamik kullanilarak sistemin ortalama alan dinamik denklemleri elde
edilecektir. Elde edilen ortalama alan dinamik denklemleri Adams Multon kestirme ve
diizeltme ve Romberg integrasyon metodlar1 kullanilarak nlimerik olarak c¢oziilecektir.
Ortalama miknatislanmanin ve kuadrupol momentin zamana bagli davranisi incelenerek
sistemde mevcut olan fazlar tespit edilecek, ve dinamik miknatislanmanin ve
kuadrupoliin, yani dinamik diizen parametrelerinin, sicaklifa gore davraniglar
incelenerek dinamik faz gecis sicakliklar1 elde edilecek ve dinamik faz gecis
sicakliklarinin dogasi (siirekli ve kesikli, yani birinci- ve ikinci-derece faz gegisleri)
karakterize edilecektir. Liapunov {istelleri de hesaplanarak c¢oziimlerin kararliligi ve
dinamik faz gecis sicakliklarinin dogru ve eksiksiz bulundugu kontrol edilecektir. Daha
sonra sistemin dinamik faz diyagramlari, indirgenmis sicaklik ve indirgenmis manyetik
alan genligi (h) diizleminde, (T, h), indirgenmis sicaklik indirgenmis ve bikuadratik

etkilesme parametresi (k) diizleminde, (k, T), verilecektir.



Boliim 3’°de ise iki alt orgiilii, itici bikuadratik etkilesme parametreli (K<0), kinetik
izotropik spin-1 BEG sistemi incelenecektir. Glauber-tipi stokhastik dinamik
kullanilarak sistemin ortalama alan dinamik denklemleri elde edilecektir. Sistemde
mevcut olan fazlari elde etmek i¢in ortalama miknatislanmalarin ve kuadrupol
momentlerin zamana bagli davraniglart Adams Multon kestirme ve diizeltme ve
Romberg integrasyon metodlart kullanilarak incelenecektir. Dinamik faz gecis
sicakliklari elde etmek ve dinamik faz gegislerinin dogasimi karekterize etmek icin
dinamik diizen parametrelerinin indirgenmis sicakligin bir fonksiyonu olarak,
incelenecek, daha sonra sistemin dinamik faz diyagramlar yalniz (T, h) diizleminde

verilecektir.

Son bdliimde ise, yapilan calisma Ozetlenerek elde edilen sonuglarin tartisiimasi

yapilacaktir.



2. BOLUM

TEK ALT ORGULU KINETIK iZOTROPIK SPiN-1 BLUME-EMERY-
GRIFFITHS (BEG) SISTEMI

2.1. Model ve Ortalama- Alan Dinamik Denklemleri
2.1.1. Modelin Tanitim
Tek alt orgiilii izotropik spin-1 Blume-Emery-Griffiths (BEG) Ising sistemi ,ii¢

durumlu, S;=+1, 0, ve iki diizen parametreli sistemdir. Bu diizen parametreleri

i) Ortalama miknatislanma, m = <S> olarak tanimlanur.

ii) Ortalama kuadropol moment, q = <Sz> veyaq=3 <S2 > — 2 seklinde tanimlanir.

Burada, ortalama miknatislanma ifadesi bir tarafa yonelimin diger tarafa yonelmeden
fazlaligin1 gosterir ve dipol moment diye de adlandirilir. Ortalama kuadrupol moment

ifadesi ise ortalama miknatislanmanin karesinin lineer bir fonksiyonudur.

Tek alt orgiilii izotropik spin-1 BEG sisteminin Hamiltonyen ifadesi;

H=-1)SS,~KD SSI-HY S, (2.1)
) (i) i

burada S; = +1,0 degerlerini alir. <1_]> toplamin en yakin komsu ciftler {izerinden

aliacagini gosterir. J ve K sirasiyla bilineer ve biqadratik etkilesme parametreleridir. H

ise zamanla degisen salinimli dig manyetik alandir (H = Hocos(wt)).



2.1.2. Ortalama- Alan Dinamik Denklemlerinin Elde Edilmesi

Bu kesimde zamana bagli salinimli dis manyetik alan altinda tek alt orgiilii izotropik
spin-1 BEG modeli i¢in, sistemin davranisini tam olarak aciklayan ortalama- alan
dinamik denklemleri elde edilecektir. Bunun i¢in Glauber dinamigi kullanacagiz ve

master denkleminden yararlanacagiz.

Sistem mutlak T sicaklifinda izotermal 1s1 banyosu ile temas etmektedir. Sistemin
zamanla degisimi Glauber-tipi stokhastik dinamik kullanilarak tanimlanir. Sistem
Glauber-tipi stokhastik dinamige gore birim zamanda 1/7 oraninda degisim gosterir.
Sistemin t zamaninda, (Si,S,,...,Sn), spin konfigiirasyonuna sahip oldugu andaki
ihtimaliyet fonksiyonu ise, P(S1,S,,...,Sn) ile gosterilir. Thtimaliyet fonksiyonun zamana
baglhiligi, spinler arasi etkilesmeyi de tam olarak agiklayan master denklemi ile verilir.

Master denklemi;

d ,

—P(S1,855 8= =D (O Wi(S; > S)P(S,,S,,..., S, .., Sy3h))

a RE (2.2)
(O Wi(S; = S)P(S,.S,,....S!, ..., Syh)),

ioss

seklindedir. Burada W,(S, —S;) herhangi bir i’inci spinin S; durumundan S;
durumuna gecis veya olasilik yogunlugudur. Yani sistem T mutlak sicakliginda 1s1
banyosu ile temas halinde iken her spin S; durumundan$; durumuna W,(S, —S;)

olasilig1 ile degisir. Denge durumunda

d
P85S0 =0, (2.3)

olur. Bu durumda (2.2) ile verilen master denklemine dikkat edilirse
W.(S, = S)P(S,.....S,,....S, )=W,(S, = S)P(S,,...,S,,..., Sy ), (2.4)
oldugu kolaylikla goriilebilir ve master denkleminden olasilik yogunluklari orani

W,(S, >S) _P(S,,S5s.S15.Sy)
W.(S.>S.) P(S.S,,...S.,...8y)

: (2.5)



seklinde bulunur. Buradan

P(S,.S,,.... Sy Jaexp(-pH), (2.6)

seklindeki genel kanonik dagilim ifadesinden yararlanilirsa olasilik yogunlugu,

_1_exp(BAE(S, = 8))

W v exp(-BAE(S, > S))

(S, —>S) 2.7)

seklinde verilir. Burada Z toplamin S; = £1, 0 degeri {izerinden almacagim gosterir.
S|

B=1/k,T, seklindedir ve k, Boltzmann sabitidir. AE ise herhangi bir S, spininin S,

durumuna gectigi zamanda sistemin enerjisinde meydana gelen degismeyi gosterir

Esitlik (2.1) de verilen Hamiltonyen ifadesinden yararlanilarak

AE(S; = S))=~(S;-S,)(1D_ S, +H)-(S7-S})(3K > 387-2), (2.8)

seklinde yazilir. Buradan,

x=S,+H ve y=3(1<23s§-2], (2.9)
i j

ile tanimlanirsa,

AE(S, = S) =—(S; =S)x = ((S))* = ($))")y, (2.10)

olur. Simdi Si durumundan S, durumuna miimkiin olan tiim enerji degisimlerini
hesaplayabiliriz. Bulunan bu enerji degisimi ifadeleri (2.7) denkleminde yerine yazilirsa

her S, — S, gecisi igin olasilik yogunluklari su sekilde elde edilir.

W.(1 2 0)— 1 exp(-By) ’ (2.11.a)
1 2cosh(Bx)+exp(-By)

W15 0 1 exp(-By) , (2.11.b)
T 2cosh(Bx)+exp(-By)
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Wl 1):1 exp(Bx) ’ (2.11.¢)
T 2cosh(Bx)+exp(-Py)

W0 1)21 exp(Bx) ’ (2.10.d)
1 2cosh(Bx)+exp(-By)

Wl _l)zl exp(-px) , (2.10.e)
1 2cosh(Bx)+exp(-By)

W05 _1)21 exp(-Bx) , (2.10.9)
T 2cosh(Bx)+exp(-Py)

W.(0 - 0)=0, (2.10.g)

W.(1->1)=0, (2.10.h)

W.(-1—>-1)=0. (2.10.1)

Olasilik yogunlugu ifadelerine dikkat edilirse W,(S, —S,) 'nin S, ’ye bagli olmadigini

kolayca gorebiliriz ve W,(S, —S,) =W,(S,) yazabiliriz. Bu durumda,

W.(1—0) =W, (-1 0)=W,(0), (2.11.a)
W (-1->1D)=W,(0 > 1)=W,(1), (2.11.b)
W, (11— -1)=W,(0 > -1)=W,(-1), (2.11.¢)

oldugu goriiliir. Buna gore (2.2) ile verilen master denklemi,

d ,
aP(sl,sz,...,sN;t) ==Y (D, W.(S)P(S,,S,,..., 8,83 1)

i S

+ (D, Wi(S)P(S,,8,,...,S!,., S D),

i oSS

(2.12)

sekline doniislir. Master denkleminden yararlanilarak sistemin genel diferansiyel

denklemleri su sekilde elde edilir.

. 2sinhB(JD S, +H)

ra<sk>:—<sk>+

2 COShB(JZ S;+H)+ exp(—3BKZ (35? —2) [ (2.13)
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3exp(-3K D (357-2))

d
—(3S7-2)=-(35; -2)+1- J ,  (2.14
Tt < “ > < “ > 2coshB(ID S, +H)+exp(-3pK D (3S2-2)) @.19)
j i
ortalama- alan yaklasimi kullanilarak,
d 2sinh B(Jz(S)+H, cos(wt))
4 (s) =5+ (5)+ 1, . 2.15)
dt 2coshB(Jz <S> +H, cos(wt)) +exp(-3pKz <3S - 2>)
3exp(—3BKz(3S* -2
ri<3s2—z>=_<3sz—2>+1— P3P < >) ——, (2.16)
dt 2coshB(Jz(S) + H, cos(wt)) +exp(~3pKz (38" -2})
olarak bulunur. Bulunan bu ortalama- alan dinamik denklemleri,
Qim=—m+ 251nh[(1/T)(m+hcos&)] ’ 2.17)
d¢ 2cosh[(1/T)(m+hcos&)]+exp(-3kq/T)
) dg q 3exp(—3kq/T) (2.18)

d_é =marl- 2 cosh [(I/T) (m+h cos&)] +exp(-3kq/T)’

seklinde yazilabilir. Burada m= <S> , q= 3<82 > -2, E=wt, T=Blz)", k:% ,

H .
h:J—0 ve Q=twolarak tanimlanmistir. T, h, k ve Q boyutsuz parametrelerdir.
z

Sistemimizde Q =21 ve z = 4 degerindedir.

2.2. Dinamik Diizen Parametreleri ve Dinamik Faz Geg¢is Noktalar:

Bu kesimde, sistemde mevcut olan fazlar1 bulmak i¢in (2.17) ve (2.18) de verilen
ortalama- alan dinamik denklemleri, Adams- Moulton kestirme ve diizeltme yontemi
kullanilarak niimerik olarak ¢oziilerek dinamik diizen parametrelerinin zamana bagl
davranis1 incelenecektir. Daha sonra, dinamik diizen parametrelerinin tanimi yapilacak
ve bu tanmim denklemleri Adams- Moulton kestirme ve diizeltme, ve Romberg
integrasyon yontemleri kullanilarak niimerik olarak c¢oziilillecek ve dinamik diizen
parametrelerinin davranislari indirgenmis sicakligin bir fonksiyonu olarak incelenerek,
dinamik faz ge¢is noktalar1 tespit edilecek ve dinamik faz gecislerinin dogasi (siirekli ve

kesikli, yani birinci- ve ikinci- derece faz gegisleri) karakterize edilecektir. Ayrica
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dinamik faz ge¢is noktalarinin dogrulugunu ve elde edilen ¢oziimlerin kararliligini
gostermek amaciyla Lyapunov iistelleri de hesaplanacaktir. Son olarak, (2.17) ve (2.18)
verilen ortalama- alan dinamik denklemlerin kararli ¢oziimlerinden yararlanarak, k
parametresinin farkli degerleri i¢in (T, h) diizleminde ve h parametresinin farkl
degerleri i¢in (k, T) diizleminde dinamik faz diyagramlar1 sunulacaktir. Denklem (2.17)
ve (2.18)’in kararli ¢oziimleri 2x periyodu icin &’nin periyodik bir fonksiyonu olacaktir.
Bunun nedeni ise dinamik denklemlerde ki kosiniislii terimden kaynaklanmaktadir.
Boylece, ¢ozlimler sahip olduklar1 ya da olmadiklar1 6zelliklerine gore ii¢ tip ¢oziimden

biri olabilir.

m(&+m)=-m(§) (2.19)
q(&+m)=—q(&) (2.20)

Eger c¢oziim (2.19) ve (2.20) ile verilen Ozellige sahipse simetrik ¢oziim olarak
adlandirillir ve diizensiz veya paramanyetik faza karsilik gelir. Bu durumda,
miknatislanma m(&) sifir degeri etrafinda salinir ve manyetik alana uyum gosterir. Diger
taraftan, kuadrupol moment q(§) sifirdan farkli bir deger etrafinda salinir ve sicaklik
sonsuza gittiginde sifir degeri etrafinda salinir. Ikinci ¢dziim ise, ¢dziim (2.19) ve (2.20)
ile verilen 6zellige sahiptir ve simetrik olmayan ¢ézlimdiir. Bu ¢6ziim ferromanyetik faz
olarak adlandirilir. Bu ¢6ziimde, miknatislanma ve kuadrupol moment sifirdan farkl bir
deger etrafinda salinirlar ve dis manyetik alani takip etmezler. Ugiincii tip ¢oziimde ise,
¢coziim (2.19) uyar ve (2.20) ye uymaz. Bu c¢oziim ferrokuadrupol ya da basitge
kuadrupol (fq) faza karsilik gelir. Bu tip ¢6ziimde, m(&) sifir degeri civarinda salinir ve
dis manyetik alana uyum gosterir, ancak q(§) dis manyetik alana uyum gostermez ve
sifir etrafinda salinmaz ve -2 ya da +1 degeri civarinda salinir. Eger -2 etrafinda
salinirsa bu simetrik olmayan ¢oziim ferrokuadrupol ya da basit¢e kuadrupol (fq) faza,
+1 etrafinda salinirsa bu ¢6ziim diizensiz (d) faza karsilik gelir. Bu gergekler agik bir
sekilde (2.17) ve (2.18) ile verilen dinamik denklemlerin niimerik olarak ¢6ziilmesiyle
gortliir. (2.17) ve (2.18) numarali denklemler, verilen parametreler ve baslangi¢
degerleri i¢in Adams- Moulton kestirme ve diizeltme yontemi kullanilarak ¢oziildii ve
coziimler Sekil 2.1 ve Sekil 2.2 gosterildi. Bu sekillerde bes farkli ¢6ziim

goriilmektedir. Sistemde d, f temel fazlarinin yani sira bu fazlarin bir arada bulundugu
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ii¢ tane karma faz mevcuttur. Bunlar f ve d fazlarmin bir arada oldugu f+d karma fazi,
ve fq fazlarmin bir arada oldugu f+fq karma fazi1 ve fq ve d fazlarinin bir arada oldugu
fq+d karma fazlaridir. Sekil 2.1(a)’da yalnmzca simetrik ¢6ziim elde edilmistir yani
burada sadece diizensiz faz (d) mevcuttur, ama Sekil 2.1(b) de simetrik olmayan ¢6ziim
elde edilmistir ve bu ¢6zliim ferromanyetik (f) faza karsilik gelir. Bu ¢oziimler baslangi¢
degerlerine baglh degildir. Sekil 2.1(c) de m(&) i¢in simetrik olmayan ¢dziime ve q(&)
icin simetrik ¢oziime sahibiz. Ciinkii m(&) sifir degeri etrafinda salinirken q(&), -2 veya
+1 degerleri etrafinda salinir. Diger taraftan Sekil 2.2(a) da m(§) ve q(§) i¢in iki ¢oziime
sahibiz. Birinci ¢6ziim m(&) sifir degeri etrafinda ve q(&), -2 degerleri etrafinda salinir
bu nedenle burada fq fazi mevcuttur ve ikinci ¢oziimde m(§), £1 degeri etrafinda
salinirken q(§), +1 degerleri etrafinda salinir bu nedenle burada f fazi mevcuttur. Bu
durumda sistemde f+fq karma fazi meydana gelmis olur ve coziimler baslangig
degerlerine baghdir. Sekil 2.2(b) Sekil 2.2(a) ya benzerdir burada f ve d fazlari bir arada
bulunur. Bu sebeple sistemde f+d karma fazi veya ¢6ziimii mevcuttur ve ¢oziimlerde

baslangi¢ degerlerine baglhdir.
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Sekil 2.1. Tek alt orgiilii izotropik spin-1 BEG modeli i¢in miknatislanmanin (m)

ve kuadrupol momentin (q) zamanla degisimi. a) Sistemde sadece
diizensiz (d) faz mevcuttur (k = 0.1, h=1.0, T = 2.0). b) Sistemde sadece
ferromanyetik (f) faz mevcuttur, (k = 0.1, h = 0.2, T = 0.375). ¢)
Sistemde hem ferrokuadropolar (fq) faz hem de diizensiz (d) faz
mevcuttur, (k=0.3, h=1.4, T=0.125).
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Sekil 2.2.

Tek alt orgiilii izotropik spin-1 BEG modeli i¢in miknatislanmanin (m)
ve kuadrupol momentin (q) zamanla degisimi. a) Sistemde hem
ferromanyetik (f) faz hem de ferrokuadropolar (fq) faz mevcuttur, (k =
0.3, h = 0.3, T = 0.25). b) Sitemde hem diizensiz (d) faz hem de
ferromanyetik (f) faz mevcuttur, (k = 0.10, h=0.750, T = 0.175).
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Boylece, Sekil 2.1 ve Sekil 2.2 den goriildiigii gibi sistemde bes farkli faz
bulunmaktadir. Bunlar, d, f, f+d, fq+d ve f+fq fazlaridir. Bu bes fazin arasindaki
dinamik faz smirlarini belirleyebilmemiz ig¢in, dinamik faz gecis sicakliklarini (DFG)
hesaplamaliyiz ve daha sonra bu noktalar kullanilarak sistemin dinamik faz
diyagramlar1 sunulabiliriz. Dinamik faz gegis sicakliklari, bir peryot basina ortalama
diizen parametrelerinin yada dinamik diizen parametrelerinin davraniginin indirgenmis
sicakligin bir fonksiyonu olarak incelenmesiyle elde edilecektir. Elde edilen DFG
noktalar1 aym1 zamanda Lyapunov istelleri kullanilarak elde edilip bu noktalarin
dogrulugunun kontrolii yapilacaktir. Dinamik diizen parametreleri, yani dinamik

miknatislanma (M) ve dinamik kuadrupol moment (Q), asagidaki sekilde tanimlanir.

1 27
M=—— j m(&)de, (221
Q- [acexe, 22)
2m

M ve Q’nun davranisi, indirgenmis sicakligin bir fonksiyonu olarak, h ve k’nin farkl
degerleri i¢in dinamik denklemlerin Adams-Moulton kestirme ve diizeltme metodu ve
Romberg integrasyon metodunun birlesimiyle incelendi ve sekiz faz arasindaki dinamik
faz gecis noktalarmin nasil hesaplandigi ve dinamik faz sinirlarin nasil elde edildigi,
ornek olarak, Sekil 2.3, Sekil 2.4 ve Sekil 2.5°de verildi. Bu sekillerde kalin ve ince
cizgiler sirasiyla M ve Q’yu temsil etmektedir. T¢c ve Ty, M ve Q i¢in sirasiyla birinci-
ve ikinci- derece faz gegis sicakliklaridir. Ty yalnizca Q igin birinci- derece faz gecis
sicakligidir. Sekil 2.3, k = 0.1 ve h = 0.6 degerleri i¢in dinamik diizen parametrelerinin,
M ve Q, indirgenmis sicakliga bagliligin1 gostermektedir. Dinamik diizen parametreleri,
indirgenmis sicaklik artarken stirekli olarak azalarak T kritik sicakliginda, sistem f
fazindan d fazina geg¢mekte ve sistemde ikinci- derece bir faz gegisi meydana

gelmektedir.
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Sekil 2.3. Dinamik miknatislanmanin, M, (kalin ¢izgi) ve dinamik kuadrupol momentin,
Q, (ince ¢izgi) indirgenmis sicakliga bagli olarak davranislari, (k =0.1 ve h =
0.6). Sistemde ikinci- derece faz gecisi meydana gelmektedir, Tc= 0.5125.

Sekil 2.4, k = 0.10 ve h = 0.2 i¢cin M ve Q’ niin davranisini indirgenmis sicakligin bir
fonksiyonu olarak iki farkli baslangic degeri icin, baslangi¢ degerleri Sekil 2.4(a) icin M
= 1.0 ve Q = 1.0 ve Sekil 2.4(b) igin M = 0 ve Q = -2.0, ¢izilmistir. Sekil 2.4(a)’nin
davranigi Sekil 2.3 e benzemekle birlikte tek fark T = 0.6525 dir. Sekil 2.4(b)’ de iki
faz gec¢isi meydana gelmektedir. Bunlardan birincisi kuadropolar (fq) fazdan
ferromanyetik faza (f), T kritik sicaklifinda birinci dereceden faz gecisidir, ikincisi ise f

fazindan d fazina ikinci derece faz gecisidir.
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Sekil 2.4. Dinamik miknatislanmanin, M, (kalin ¢izgi) ve dinamik kuadrupol
momentin, Q, (ince ¢izgi) indirgenmis sicakliga bagli olarak
davraniglari, (k = 0.1 ve h = 0.2). a) Sistemde f fazindan d fazina
ikinci- derece faz gec¢isi meydana gelmektedir, (Tc = 0.6525). b)
Sistemde birbirini takip eden iki faz gecisi meydana gelmemektedir,
birincisi fq fazindan f fazina birinci- derece faz gegisi (Tiq = 0.1775)
ve ikincisi f fazindan d fazina ikinci- derece faz gegisidir (T¢ =
0.6525).

Sekil 2.5, k = 0.10 ve h = 0.8 icin M ve Q’ nun davranisini indirgenmis sicakligin bir
fonksiyonu olarak iki farkli baslangi¢ degeri i¢in, baslangi¢c degerleri Sekil 2.5(a) icin M
=1ve Q= 1.0 ve Sekil 2.5(b) icin M = 0 ve Q =-2.0, ¢izilmistir. Sekil 2.5(a)’da hem M
hem de Q birinci- derece faz gecisi gecirmektedir, ¢iinkii M ve Q indirgenmis sicaklik
arttikga azalmakta ve belirli bir sicaklik degerinde siireksizlik meydana gelmektedir.
Stireksizligin meydana geldigi sicaklik T, sicakligidir ve faz geg¢isi f fazindan d fazina
meydana gelmektedir. Sekil 2.5(b) gostermektedir ki M daima sifira esit ve sifir
sicaklikta Q = 1.0 degerini almaktadir, fakat sistem hi¢ faz gecisi vermemektedir,
boylece bu sekil d fazina karsilik gelmektedir. Sekil 2.5(a) ve Sekil 2.5(b)’ye birlikte

bakildiginda sistemde f ve d fazlarinin bir arada oldugu f + d faz bélgesinin mevcut

oldugu, h = 0.8 degeri i¢in Sekil 2.7(a)’den kolaylikla goriilebilir.
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Sekil 2.5. Dinamik miknatislanmanin, M, (kalin ¢izgi) ve dinamik kuadrupol
momentin, Q, (ince ¢izgi) indirgenmis sicakliga bagl olarak
davranislari, (k = 0.1 ve h = 0.8). a) Sistemde f fazindan d fazina
birinci- derece faz gegisi meydana gelmektedir, (T, = 0.2125). b)
Sistemde herhangi bir faz gec¢isi olmamaktadir ve bu durum
diizensiz (d) faza karsilik gelir.

Simdi, ¢ézlimlerin kararliligin1 ve bulunan dinamik faz gecis noktalarinin dogrulugunu
Lyapunov iistellerinin hesaplanmasi ile kontrol edebiliriz. Eger denklem (2.17) ve

(2.18)

dm

Qd_a’; =F(m,f), (2.23)
da _

Q o F,(q,%), (2.24)

seklinde yazilirsa Lyapunov Ustelleri A ve A asagidaki gibi verilir.

27
o, = [Fge, (2.25)
2wy Om
27
o =% g (2.26)

Y 2my 0q
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r,<0 ve A, <0 oldugunda ¢oziimler kararlidir. Biz M ve Q igin iki Lyapunov
usteline sahibiz. Bunlar simetrik durumda 2, ve A simetrik olmayan durumda ise
A Ve A, dir. Eger sicaklik gegis sicakligina yaklasirken Lyapunov ustelleri A, ve
A, surekli olarak sifira gidiyorsa, A, = A _. = 0 oldugu yerdeki sicaklik ikinci- derece
faz gecis sicakhiidir (Tc). Bununla birlikte, eger Lyapunov ustelleri A, ve A siirekli

olarak sifira giderken bir ¢esit zirve (cusp) yaptiklar: sicaklik degeri ikinci- derece faz
gecis sicakligidir (T¢). Q i¢in Lyapunov {istellerinin Tc¢ sicaklifinda sifir olmamasinin
nedeni Q dinamik kuadrupol momentin, T¢ sicakliginda sifir olmamasidir. Diger
taraftan, eger sicaklik faz gecis sicakligina yaklasirken Lyapunov {istellerinin
stireksizlik gdsteriyorsa, atlama yaptig1 sicaklik birinci- derece faz gecis sicakligidir. Bu
davranislar1 agik bir sekilde gorebilmek i¢in, Lyapunov lstelleri indirgenmis sicakligin
bir fonksiyonu olarak incelenmis ve k = 0.1 ve h = 0.2 (bu degerler Sekil 2.4(b)’ye
karsilik gelmektedir) Sekil 2.6’da gosterilmistir. Sekil 2.6’da, kalin ve ince c¢izgiler
strastyla simetrik (A,) ve nonsimetrik (A, ) durumlar gostermektedir. Tc, M ve Q icin
ikinci- derece faz gecis sicaklifidir ve Tyg sadece Q icin birinci- derece faz gecis
sicakligidir. Sekil 2.6(a), M i¢in Lyapunov distelinin davranisini gostermektedir ve
burada iki faz ge¢isi meydana gelmektetir. Tig = 0.1775 sicakliginda birinci- derece faz

gecisi vardir, ¢linkii A den A_ e siireksiz bir atlama yapmustir, sistemde T¢ = 0.6525
sicaklifinda A = A . = 0 oldugundan ikinci- derece faz gegisi vardir. Sekil 2.6(b), Q

icin Lyapunov {istelinin sicaklikla davranisini gostermektedir. T = 0.1775 sicaklifinda

birinci- derece faz gegisi vardir, ¢inkii A den A ’e siireksiz bir atlama yapmistir,

(A, » T fazina karsilik gelirken A, fq fazina karsilik gelir). Daha sonra A, ve A, bir

qn 2
zirve yapar, bu ylizden T¢ = 0.6525 sicakliginda ikinci- derece faz gecisi meydana gelir.
Sekil 2.6, Sekil 2.4(b) ile karsilastirildiginda sonuglarin birbirleriyle uyum gosterdigi

gorilebilir. Ayrica, hesaplamalarda A <0 ve A, < 0 olarak bulundugundan dolay:

coziimlerin kararlilig1 goriiliir.

Son olarak belirtmeliyiz ki, salinimli manyetik alan dinamik faz gegislerine neden

olmaktadir, ¢iinkii indirgenmis statik manyetik alan genligi (h) i¢in hesaplamalar
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yapildiginda sistemin hi¢ faz ge¢isi vermedigi goriilmektedir. Bu gergek, daha once

yapilan ¢alismada gdsterilmistir. [66, Sekil 6].
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) (b)
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Sekil 2.6. Lyapunov tstellerinin indirgenmis sicakligin bir fonksiyonu olarak

davranislari, (k = 0.1 ve h = 0.2). a) M i¢in indirgenmis sicakligin bir
fonksiyonu olarak Lyapunov iistellerin davranisi. b) Q i¢in indirgenmis
sicakligin bir fonksiyonu olarak Lyapunov {istellerin davranisi.

2.3. Dinamik Faz Diyagramlan

Onceki kesimde dinamik faz gegis noktalar1 elde edildi ve dogrulugu da kontrol edildi.
Simdi sistemin, k’nin ¢esitli degerleri i¢in (T, h) diizleminde ve h’nin ¢esitli degerleri
icin de (k, T) dizleminde dinamik faz diyagramlarin1 sunabiliriz. Bu faz

diyagramlarinda siirekli ve kesik ¢izgiler sirasiyla ikinci- derece ve birinci- derece faz
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gecis cizgilerini gdstermektedir. Dinamik {gliikritik nokta i¢i dolu dairelerle
gosterilmistir. (T, h) diizleminde temel topolojisi farkli alt1 ve (k, T) diizleminde temel

topolojisi farkli bes faz diyagrami bulunmustur.

2.3.1. (h-T) Diizleminde Dinamik Faz Diyagramlan

Bu kesimde, indirgenmis bikuadratik etkilesim parametresinin (k) cesitli degerleri icin
(T, h) diizleminde dinamik faz diyagramlar1 sunulacak ve sistemin k parametresine
baglilig1 incelenecektir. Dinamik iicliikritik nokta i¢i dolu dairelerle gosterilmistir. TP

dinamik ti¢li nokta ve QP dinamik dortlii noktadir.

i) 0 <k <0.111 araliginda k = 0.1 i¢in (T, h) diizleminde faz diyagrami Sekil
2.7(a) gosterilmistir. Bu faz diyagraminda, yiiksek indirgenmis sicaklikta (T) ve yiiksek
indirgenmis manyetik alan genliginde (h), diizensiz (d) faz mevcuttur, h ve T’ nin diisiik
degerlerinde ise ferromanyetik (f) faz gézlenmektedir. Bu iki bolge arasindaki dinamik
faz sinir1, £ — d, ikinci- derece faz gecis cizgisidir. indirgenmis sicakligin diisiik ve
indirgenmis manyetik alan genliginin belirli degerlerinde f ve d fazinin birlikte
bulundugu f+ d karma fazi bulunmaktadir. £+ d karma fazi, f ve d fazlarindan birinci-
derece faz gecis cizgisiyle ayrilmigtir. Sistem ayn1 zamanda birinci ve -ikinci derece faz
gecis cizgilerini birlestiren yalnizca bir dinamik ti¢liikritik noktaya sahiptir. Ayrica T ve
h 1n ¢ok diisiik degerlerinde sistemde f+fq karma fazi veya bolgesi mevcuttur ve bu
karma faz ile f faz1 arasindaki dinamik faz sinirlar1 birinci dereceden faz gecisidir. Bu
faz diyagramu tek spin Ising [66, 83-85] (Kaynak 66 ve 84° de verilen ¢aligmalarda, f +
fq karma faz1 yerine sirasiyla f + p ve f, + p karma fazlar1 gelmektedir) ve karma spin
[86, 89, 90] (Kaynak 86 ve 89’ da verilen ¢alismalarda f ve fq fazlarinin yerine sirasiyla
1 ve a fazlari, Kaynak 90 ile verilen calismada f + fq karma faz1 yerine 1 + p karma fazi

gelmektedir) Ising sistemlerinde de elde edilmistir.

ii) 0.111 <k <£0.169 araliginda k = 0.15 i¢in (T, h) diizleminde faz diyagrami
Sekil 2.7(b) de verilmistir. Bu faz diyagrami Sekil 2.7(a) ya benzer fakat burada sifir
sicakliginda f faz1 kaybolur ve f+ fq bolgesi biiylimeye baglar. Ayrica sistemde bir adet
dinamik tcliikritik nokta ve dinamik {i¢lii nokta (TP) mevcuttur. Bu faz diyagraminin

benzeri spin-1 BEG [83] calismasinda da elde edildi.
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iii-) 0.169 < k < 0.293 araliginda k = 0.2 i¢in (T, h) diizleminde faz diyagrami
Sekil 2.7(c) de sunulmustur. Sistemde iki tane ticliikritik nokta mevcuttur; birisi Sekil
2.7(a) dakine benzerdir digeri ise h 1 diisiik ve T’ nin yiiksek degerlerinde meydana
gelir. Bu yiizden h 1n diisiik ve T nin yiiksek degerlerinde f ve d fazlar1 arasinda birinci-
derece faz gecisi bulunur. T’ nin diisiik degerlerinde ve h 1n belli degerlerinde f+ fq
karma faz1 meydana gelir. Ayrica sistemde T’ nin yiiksek h 1n diisiik degerlerinde f+d
karma fazi meydana gelir. Dinamik faz sinirlar f ve d fazin1 ayiran iki ticliikritik nokta
haricinde birinci- derece faz gecisidir. Bu sinirda ikinci- derece faz ge¢isi vardir. Ayrica
sistemde bir tane dinamik dortlii nokta (QP) ve dinamik {i¢li nokta (TP) mevcuttur. Bu

faz diyagraminin benzeri spin-1 BEG [83] ¢alismasinda da elde edildi.

iv) 0.293 < k < 0.325 araliginda faz diyagrami k = 0.3 i¢in ¢izilmistir. Sekil
2.7(d) de goriildiigli gibi bu faz diyagrami Sekil 2.7(c) ye benzer ama ondan farki, fq+d
bolgesi biliylimeye baslar ve h 1in diisiik ve T nin yiiksek degerlerinde f+ d karma fazi

meydana gelir.

v) 0.325 < k < 0.535 araliginda faz diyagrami k = 0.4 i¢in elde edilmistir ve
Sekil 2.7(e) de sunulmustur. Sistemde f+fq, fq+d ve d fazi olmak iizere ii¢ faz ve iki
tanede tgliikritik nokta bulunmaktadir. Bu tgliikritik noktalar arasindaki ikinci- derece

gecisin disinda biitlin faz sinirlar birinci- derece faz gecisidir.

vi) k > 0.535 degerlerinde k = 1.0 icin faz diyagrami olusturulmustur. Sekil
2.7(f) de verilen bu faz diyagrami Sekil 2.7(e) deki diyagrama benzer fakat ondan farki
sistemde dinamik t¢liikritik noktanin birisi kaybolmustur. Bununla birlikte k nin degeri
arttiginda fq+d bolgesi biiyiimeye baslar. Bu faz diyagraminin benzeri, Kaynak 83 ve
85’ de verilen ¢aligmalarda da elde edilmesine ragmen Kaynak 85 ile verilen ¢alismada

f faz1 yerine f, faz1 gelmektedir.

Bu kesimde elde edilen sonuglar Int. J. Mod. Phys. C. dergisinde yayinlanmistir [82].
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Sekil 2.7. Tek alt orgiili izotropik Blume- Emery- Griffiths modelinin (T, h)
diizleminde dinamik faz diyagramlari. Sistemde diizensiz (d),
ferromanyetik (f) ve lic karma faz bolgesi mevcuttur, bunlar fq+d, f+fq
ve f+d karma fazlanidir. Kesikli ve siirekli cizgiler sirasiyla birinci-
derece ve ikinci- derece faz gecis ¢izgilerini ve i¢i dolu daireler dinamik
ticliikritik noktay1 temsil ederler. TP dinamik {i¢lii nokta ve QP dinamik
dortlii noktadir. (a) k = 0.1, (b) k=0.15, (¢) k=0.2, (d) k=0.3, (¢) k =
0.4, (f) k= 1.0.
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2.3.2. (k-T) Diizleminde Dinamik Faz Diyagramlari

Bu kesimde dinamik faz diyagramlar1 (k, T) diizleminde sunulmus ve Sekil 2.8(a)-(e)’
de gosterilmigtir. Sistemde bes farkli dinamik faz diyagrami elde edilmistir. Bu
diyagramlarda kesikli ve siirekli ¢izgiler sirastyla birinci- ve ikinci- derece faz gegisini
temsil etmektedir. Ayrica, dinamik tigliikritik nokta i¢i dolu dairelerle gosterilmistir. B

dinamik ¢ift kritik son nokta, TP dinamik ti¢lii nokta ve QP dinamik dortlii noktadir.

i) 0 <k<0.479 araliginda faz diyagrami1 h = 0.1 i¢in Sekil 2.8(a)’ da gdsterilmistir.
Faz diyagrami d, f temel fazlarinin yani sira bu fazlarin bir arada bulundugu ii¢ adet
f+d, f+{q, fq+d karma fazlarini1 igermektedir. Bununla birlikte iki tane ti¢liikritik nokta
ile bir adet dinamik dortlii nokta (QP) ve bir adet dinamik ii¢lii nokta (TP)
bulunmaktadir. Dinamik faz sinirlar1 f ve d fazlar1 arasinda ve k’ nin yiiksek degerleri
icin f+fq ve fq+d fazlar1 arasinda ikinci- dereceden faz gegisidir, bunun disindaki biitiin

dinamik faz gegisleri birinci- derecedendir.

ii) Faz diyagrami h = 0.6 icin Sekil 2.8(b)’ de gosterilmistir. f ve d temel
fazlarinin yaninda f+fq ve fq+d karma fazlar sistemde mevcuttur. Dinamik faz sinirlari
f ve d fazlan ve f+fq ve fq+d fazlar arasinda ikinci- derecedendir, diger taraftan f ve
f+fq ile d ve fq+d fazlar arasinda birinci- derecedendir. Ayrica sistemde bir adet
dinamik ¢ift kritik son nokta (B) bulunmaktadir. Bu faz diyagramiin benzeri Kaynak
87 ve 92 ile verilen ¢alismalarda da elde edilmistir. Yalniz Kaynak 92 ile verilen

caligmada f faz1 yerine f3,, faz1 gelmektedir.

iii) Faz diyagrami h = 0.7 i¢in Sekil 2.8(c)’ de sunulmustur. Faz diyagraminda bir
tane dinamik ti¢liikritik nokta ile bir adet dinamik dortlii nokta (QP) bulunmaktadir.
Dinamik faz sinirlan1 f+fq ve fq+d fazlar1 arasinda k nin yiiksek degerlerinde ikinci-
derece ve k’nin diisiik degerlerinde birinci- dereceden faz gecis ¢izgileridir. Diger biitlin

faz gecis sinirlar1 birinci- derecedendir.

iv) Faz diyagrami h = 0.9 i¢in Sekil 2.8(d)’ de elde edilmistir. Bu faz diyagrami
Sekil 2.8(c)’ ye benzemekle birlikte tek fark, dinamik faz smirlarinin hepsi birinci-

derece faz gecis cizgileridir. Sistemde dinamik ticliikritik nokta mevcut degildir, fakat
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bir tane dinamik dortlii nokta mevcuttur. Bu faz diyagraminin benzeri Kaynak 87 ve 92
ile verilen caligmalarda da elde edilmistir. Yalniz Kaynak 92 ile verilen ¢alismada f fazi

yerine f3,; faz1 gelmektedir.

v) Faz diyagrami h = 0.9 icin Sekil 2.8(e)’ de gosterilmistir. Bu faz diyagrami
Sekil 2.8(d)’ ye benzer, fakat bu faz diyagraminda f+d ve f+fq karma fazlan
kaybolmustur, ve dolayis1 ile QP’ de meydana gelmektedir. Bu faz diyagraminin
benzeri Kaynak 87, 89 ve 92 ile verilen ¢aligmalarda da elde edilmistir. Yalniz Kaynak
89 da verilen ¢alismada f ve fq fazlarinin yerine sirasiyla i ve a fazlari, Kaynak 92 de

verilen ¢alismada f fazi yerine f3,, faz1 gelmektedir.
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Sekil 2.8. Tek alt orgiilii izotropik Blume- Emery- Griffiths modelinin (k, T)

diizleminde dinamik faz diyagramlari. Sistemde diizensiz (d),
ferromanyetik (f) ve lic karma faz bolgesi mevcuttur, bunlar fq+d, f+fq
ve f+d karma fazlanidir. Kesikli ve siirekli cizgiler sirasiyla birinci-
derece ve ikinci- derece faz gecis cizgilerini ve dolu daireler dinamik
iicliikritik noktay1 temsil ederler. B dinamik cift kritik son nokta, TP
dinamik iiclii nokta ve QP dinamik dortlii noktadir. (a) h = 0.1, (b) h =
0.6,(c)h=0.7,(d)h=0.9, (¢) h=1.25.



3. BOLUM

iKi ALT ORGULU KINETIK iZOTROPiK SPiN-1 BLUME-EMERY-
GRIFFIiTHS (BEG) SISTEMI

3.1. Model ve Ortalama- Alan Dinamik Denklemleri

3.1.1. Modelin Tanitimi

Itici (K<0) bikuadratik etkilesme parametreli, kinetik izotropik spin-1 Blume-Emery-
Griffiths (BEG) Ising modeli, A ve B gibi iki alt 6rgiilii Ising model olup, A alt orgiisii
Si* = £1, 0 ve B alt orgiisii S;” = %1, 0 spin degerlerine sahiptir. Sistem dért adet diizen
parametresine sahiptir. Bu diizen parametreleri,

ortalama miknatislanmalar,
m, E<siA>, m, s<sjB>, (3.1)

ortalama kuadropol momentler,

a,=3{(8) )=2. au =3{(s7)") 2. 62

seklinde tanimlanir.

Iki alt &rgiilii izotropik BEG sisteminin Hamiltonyen ifadesi:

DX YRR X5 ) e

<ij> <ij>

burada <1J> toplamin en yakin komsu ciftler tizerinden alinacagini gosterir. J ve K sira-

styla bilineer ve biqadratik etkilesme parametreleridir. H ise zamanla degisen salinimli

dis manyetik alandir (H = Hycos(wt)).
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3.1.2. Ortalama- alan Dinamik Dinamik Denklemlerinin Elde Edilmesi

Bu kesimde zamana bagli salinimli dis manyetik alan altinda iki alt orgiilii izotropik
spin-1 BEG modeli i¢in, sistemin davranisini tam olarak tanimlayan ortalama- alan di-
namik denklemleri elde edilecektir. Bunun i¢in Glauber modelini kullanacagiz ve

master denkleminden yararlanacagiz.

Modelin iki alt 6rgiilii durumu i¢in Master esitligi asagidaki gibi verilir. Bu esitlik yazi-
lirken B alt 6rgiisiinde bulunan spinlerin bir an i¢in sabit oldugu diistintilmustiir. Yani
gecisler sadece A Orgiisii lizerindeki spinler arasinda meydana gelmektedir.

d ,
aPA(SIA,SZA,SSA,...SNA;t)Z—Z( > WASH S P(SHSAS A8 )

i SiAls'iA
(3.4)
D WASH 5SM)PSASAS A LS,

i SiA,S’iA

burada, W*(S} —S*) i. spinin S* durumundan S* durumuna ve W*(S* —S*), S*
durumundan S;'durmuna birim zamandaki gegis olasihgidir. P,(S*,S,%,....S*;0),
S*.8,%,....8,"  spin konfigiirasyonunda ki  ihtimaliyet fonksiyonu ve
PA(SIA,SzA,...,SK,\;t), SIA,SzA,...,SKf spin konfigiirasyonunda ki ihtimaliyet fonksiyo-
nudur. Sistem mutlak T sicakliginda 1s1 banyosu ile temas halinde oldugu i¢in, her spin

S} durumundan S* durmuna birim zamanda gegis olasihgiyla degisebilir. Denge du-

rumunda,

%PA (SA.8,4,...8 0 =0, (3.5)

oldugundan denklem (3.4)’ den olasilik yogunluklart oraninin

WA >SY) PSS LS8N
WASA >8Y  PSALSA,..LSE L8

: (3.6)

oldugu rahatlikla goriilebilir. Buradan
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P(S,.S,,S;,...Sy)aexp(—BH), (3.7)
ile tanimlanan genel kanonik dagilim ifadesinden faydalinilirsa olasilik yogunlugu

WASS o> §™)— 1 exp(—BAES,* >S))
P Lt Y exp(BAESS »SH))’
5

(3.8)

seklinde verilir. Burada B=1/k,T, k, Boltzmann faktdrii, > toplami ise S;*, miim-
S'A

kiin {i¢ degeri, S!* =+1, 0, iizerinden alindigi1 gdstermektedir. AE(S,* —S,*), herhan-
gi bir spinin S* durumundan S* durumuna gegisi sirasinda sistemin enerjisindeki

meydana gelen degismedir ve Hamiltonyen ifadesinden yararlanarak
AEMS? as;*‘>:4s;’*—&A)(HHZSJ-B)—((s;AY—(sﬁ)z)(sKZ(stBf—2)} (3.9)
j i

seklinde yazilir.

x=H+1) S’ve y=3K> (3(8})*-2)), (3.10)
J J

ile tanimlanirsa, (3.9) denklemi,
AER (S = 87) = =(S1" =S )x = ((5") =(5"))y. (3.11)
Seklinde yazilir. Oncelikle S,* durumundan S;* durumuna miimkiin olan tim enerji

degisimlerini hesaplayabiliriz. Bulunan bu enerji degisimi ifadeleri (3.8) denkleminde

yerine yazalirsa, her §* — S gegisi i¢in olasilik yogunluklari su sekilde elde edilir.

WA= 0) = W (=1 - 0) = & exp(-By) (3.12.2)
‘ ‘ T 2cosh(Bx) +exp(-By)
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WAL= —1)= WAO0 - -y =1 exp(—px)
‘ ‘ © 2cosh(Bx) +exp(-By)”

WiA (0 SN 1) — WiA (_1 N 1) — l eXp(BX) ,
1t 2cosh(Bx) + exp(—By)
WA (0 — 0)=0,

W (1—1)=0,

W (-1 - -1)=0.

(3.12.b)

(3.12.0)

(3.12.d)
(3.12.¢)

(3.12.)

Olasilik yogunlugu ifadelerine dikkat edilirse W.*(S* —S.*) ’nin S*’ya bagl olmadi-

gim kolayca gorebiliriz ve W (S* — S*)=W*(S;*) yazabiliriz. Bu durumda

WA (11— 0)=W2 (-1 > 0)=W>(0),

W (1> D=WS (0 - D=W (1),

WAL= -D=WA (0 = -1)=W (1),

oldugu goriiliir. Buna gore (3.4) ile verilen master denklemi

dt i

ShxgA

iPA(s,A,szA,...,sg;t)=—Z[ > wA(s;A)]PA(s,A,SZA,...,s;*,.

i\ stzs?

+Z£ > WASHPASASA, LS

(3.13.2)
(3.13.b)

(3.13.0)

LSRst)

Sﬁ;t)}

(3.14)

sekline doniisiir. Master denkleminden yararlanilarak sistemin genel diferansiyel denk-

lemleri su sekilde elde edilir.

ZSinhB[JZSjB +H]
i

Ta<sk>A - _<Sk>A +

ZCoshB[JZSjB +HJ+ exp[-3(KZ(3(SjB)2 —2)))

,(3.15)
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%<3s§-z>A =-(381-2),

3exp£-3(KZ(3(SjB)2-2))] (3.16)

200sh(JZS?JrH)Jrexp[-3(KZ(3(SjB)2-2))J

+1-

seklinde veya ortalama- alan yaklasimi kullanilarak

d __ 2SinhB(JZ<S?>+HO cos(wt))
T dt <Si>A - <Si >A + 2C0shB(JZ<S?> +H, cos(wt)) +eXP(_3B(Kz<Qf>)) ’ (3.17)
3 -3B(Kz Q?
T%<Q1>A ==(Q), +1- 7)) (3.18)

2coshB(Jz(S}) + H, cos(wt)) +exp (—3B (Kz(Q] >)) |

olarak bulunur. Bulunan bu diferansiyel denklem

2sinh[(1/T)(m, +hcosé)]
Q—m, =-m, + , (3.19)
2cosh[(1/T)(my +hcost)]|+exp[-3kq, / T]

3exp[-3kq, /T]

d
Q—q, =—-q, +1- ,
Aa =4 2cosh[(1/T)(mB +hcos§)] +exp[—3qu /T]

dg

(3.20)

seklinde yazilabilir. Burada m, = <Si>A , My = <Sj >B qa = <Q1>A, Jdg = <Qj>B

E=wt, T=(Pz])", kZ%, h=H/z], ve Q=1w.

Simdi, A orgiisiinde bulunan spinlerin bir an i¢in sabit kaldiklarin1 ve B orgiisiinde bu-
lunan spinlerin degistigini varsayalim. Bundan 6nceki hesaplamalara benzer olarak B

Orgiisii icin ortalama- alan dinamik denklemlerini elde ederiz.

d 2sinh[(1/T)(m, +hcosE)]
Q—m, =-my + )
d¢ 2cosh[(1/T)(m, +hcos&)]+exp[-3kq, /T]

(3.21)
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3 -3kq, /T
Q%:_q3+l exp[ qA ]

- . (3.22)
dg 2cosh[(1/T)(m, +hcos&)]+exp[-3kq, /T]

Son olarak bu noktayr da belirtelim ki, bu ¢esit ortalama- alan dinamik ¢alismasinda
spin degisimlerinin korelasyonlar1 gibi sinirlamalar iizerine durulmamis, bu teorik ca-
lisma dinamik faz diyagramlarmi tanimlamak i¢in yapilmistir. Bu ayni zamanda dina-

mik ¢oklu kritik noktalarin varligini kestirmeyi de saglamaktadir.
3.2. Dinamik Diizen Parametreleri ve Dinamik Faz Doniisiim Noktalar

Bu kesimde, sistemde mevcut olan fazlar1 bulmak i¢in (3.19) -(3.22) de verilen ortala-
ma- alan dinamik denklemleri, Adams- Moulton kestirme ve diizeltme yontemi kullani-
larak niimerik olarak ¢oziilerek dinamik diizen parametrelerinin zamana bagli davranisi
incelenecektir. Daha sonra, (3.19-22) denklemleri Adams- Moulton kestirme ve diizelt-
me, ve Romberg integrasyon yontemleri kullanilarak niimerik olarak ¢oziilillecek ve
dinamik diizen parametrelerinin davranislar indirgenmis sicakligin bir fonksiyonu ola-
rak incelenerek, dinamik faz ge¢is noktalar: tespit edilecek ve dinamik faz gecislerinin
dogas: (siirekli ve kesikli, yani birinci ve ikinci derece faz gecisleri) karakterize edile-
cektir. Bu amaglar i¢in, 6ncelikle dinamik denklemlerin (Denklem 3.19-22) kararl ¢6-
ziimlerini, T, k ve h parametreleri degistigi zaman hesaplayacagiz. Denklem 3.19-22’nin

kararli ¢oziimleri 2w periyodlu &’ nin bir fonksiyonu olacaktir ki bunlar,

m, (§+2n)=m, (&) ve m, (§+2n)=m, (&), (3.23)

qx (E+2m)=0q, () ve qg(E+2m)=q;(E). (3.24)

Boylece, ¢coziimler sahip olduklari ya da olmadiklar1 6zelliklerine gore dort tip ¢oziim-

den biri olabilir.
m, (§+7)=-m, (&) ve my (E+7)=-m,(§) (3.25)

dx (E+m)=-0, (&) ve g (E+m)=-0; (&) (3.26)
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Denklem (3.25) ve (3.26) i¢in birinci tip ¢6ziim, simetrik ¢6ziim olarak adlandirilir ve
diizensiz duruma veya diizensiz faza karsilik gelir. Bu ¢6ziimde, alt 6rgli miknatislan-

malart m, ve m; birbirine esittir (m, = my), m, ve m, sifir degeri civarinda salinir

ve dis manyetik alana uyum gosterir. Diger taraftan, kuadrupol diizen parametreleri de

q, ve qg birbirine esit (q, = q) ve sifirdan farkli bir deger etrafinda salinir ve sicak-
lik sonsuza gittiginde q = 3<Si>-2 tanimindan sifir degeri civarinda salinr. Ikinci tip

¢Oziimii denklem (3.25) ve (3.26)’e uymaz ve simetrik olmayan ¢6ziim olarak adlandiri-

lir ki bu ¢6zlim ferromanyetik ¢6ziime karsilik gelir. Bu ¢oziimde, m, ve m, birbirine
esit (m, = my), ve alt 6rgii kuadrupol momentler de birbirine esittir (q, = qg) ve si-

firdan farkli bir degerde salinirlar. Bu durumda, miknatislanma ve kuadrupol diizen pa-
rametreleri dis manyetik alani takip etmezler, sifir degerinde salinmak yerine sifirdan

farkl bir degerde salinirlar, yani m, ve m, +1 civarinda salinirsa bu simetrik olmayan

¢oziim ferromanyetik faza karsilik gelir. Ugiincii tip ¢6ziim denklem (3.25)’e uyar ve
denklem (3.26)’e uymaz ve antikuadrupol ya da staggered ¢6ziim diye adlandirilir. Bu

¢oziimde, m, ve m, birbirine esit (m, = my) ve sifir degeri etrafinda salinirlar ve dis
manyetik alana uyarlar. Diger taraftan, q, ve q, birbirine esit degildir ve dis manyetik

alana uymayarak sifirdan farkli bir deger etrafinda salinirlar. Dordiincii tip ¢6ziim ise
(3.25) ve (3.26)’e uymaz ve yine simetrik olmayan ¢6ziim olarak adlandirilir, bu ¢6ziim

ferrimanyetik (i) ¢ozlime karsilik gelir. Bunun nedeni ise, m, ve mj birbirine esit de-
gildir (m,#mg) ve sifirdan farkli bir deger civarinda salinirlar. Diger taraftan,
kuadrupol diizen parametreleri q, ve q, birbirine esit degildir (q, #q;) ve sifirdan

farkli bir deger civarinda salinirlar. Bu durumda miknatislanma ve kuadrupol diizen
parametreleri dis manyetik alana uymazlar. Bu gercekler acik bir sekilde (3.25) ve
(3.26) ile verilen dinamik denklemlerin niimerik olarak ¢dziilmesiyle goriliir. (3.25) ve
(3.26) numarali denklemler, verilen parametreler ve baslangi¢c degerleri i¢in Adams-
Moulton kestirme ve diizeltme yontemi kullanilarak ¢oziildii ve ¢oziimler Sekil 3.1 ve
Sekil 3.2 de gosterildi. Bu sekillerde yedi farkli ¢oziim goriilmektedir. Sistemde, d, f
fazlari ile birlikte bes tane bir arada var olan faz mevcuttur. Bir arada var olan ¢ézlimler,
f ve d ¢éziimlerin bir arada bulundugu f + d karma fazi, a ve d ¢6ziimlerin bir arada bu-
lundugu a + d karma fazi, f ve a ¢oziimlerin bir arada bulundugu f + a karma fazi, f, a ve

d ¢oziimlerin bir arada bulundugu f + a + d karma fazi, f ve 1 ¢oziimlerin bir arada bu-
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lundugu f + 1 fazlaridir. Sekil 3.1(a)’da yalnizca simetrik ¢6ziim elde edildi ve bundan
dolay1 sadece diizensiz (d) ¢6ziim vardir. my ve mp sifir degeri etrafinda salinmakta ve
alt orgii kuadrupol momentler de birbirine esittir (qa = qg) ve sifirdan farkli bir degerde
salinirlar. Bu, d fazina karsilik gelmektedir. Sekil 3.1(b)’de yalnizca simetrik olmayan
¢Ozlim bulunmaktadir ve my ve mp birbirine esit ve =1 deger etrafinda salinmakta ve qa
ve qp stfirdan farkli bir deger etrafinda salinmaktadir. Bundan dolay1 sadece
ferromanyetik (f) ¢6ziim vardir. Bu ¢oziimler baslangic degerlerine bagli degildir. Sekil
3.1(c)’de my ve mg baslangi¢ degerlerine gore ya birbirine esit ve sifirdan farkli bir
deger etrafinda salinmakta ya da birbirine esit ve sifir etrafinda salinmaktadir. ms ve mg
sifir etrafinda salinirken gqa ve gqg birbirlerinden esit ve sifirdan farkli bir deger etrafinda
salinmaktadir. Buradan sistemde f + d karma fazi oldugu anlasilmaktadir. Sekil
3.1(d)’de ma ve mp sifir etrafinda salinirken gqa ve gg baslangic degerlerine gore ya bir-
birine esit ve sifirdan farkli bir deger etrafinda salinmakta ya da birbirinden farkhi ve
yine sifirdan farkli deger etrafinda salinmaktadir, yani sistemde a + d karma faz1 mev-
cuttur. Sekil 3.2(a)’da ma ve mg baslangic degerlerine gore ya birbirine esit ve sifirdan
farkl bir deger etrafinda salinmakta ya da birbirine esit ve sifir etrafinda salinmaktadir.
myu ve mg sifir etrafinda salinirken qa ve gg birbirlerinden ve sifirdan farkli bir deger
etrafinda salinmaktadir. Boylece sistemde f + a karma fazi oldugu Sekil 3.2(a)’dan ko-
laylikla goriilmektedir. Sekil 3.2(b), Sekil 3.2(a)’ya benzer fakat burada f + a + d fazlan
mevcuttur. Sekil 3.2(c)’de ise my ve mg baslangi¢ degerlerine gore ya birbirine esit ve
sifirdan farkli bir deger etrafinda salinmakta ya da birbirinden farkli ve yine sifirdan
farkli deger etrafinda salinmaktadir. Bunun anlamu ise sistemde f + i karma fazi bulun-
maktadir. Sekil 3.1(a) ve (b)’de ki ¢oziimler baslangic degerlerine bagh degil iken, Sekil
3.1(c) ve (d) ile Sekil 3.2°de ki ¢ozlimler baslangi¢ degerlerine baglidir.
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Iki alt 6rgiilii izotropik spin-1 BEG modeli igin alt drgii miknatislanmala-
rin ve alt 6rgli kuadrupol momentlerin zamanla degigimi. a) Sistemde sa-
dece diizensiz (d) faz mevcuttur, (k =-0.1, h=1, T =0.625). b) Sistemde
sadece ferromanyetik (f) faz mevcuttur, (k =-0.1, h=0.125, T = 0.25). ¢)
Sistemde hem ferromanyetik (f) faz hem de diizensiz (d) faz mevcuttur,
(k=-0.1, h=0.75, T = 0.125). d) Sistemde hem antikuadrupolar (a) faz
hem de diizensiz (d) faz mevcuttur, (k =-0.3, h=1.25, T =0.25).
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iki alt érgiilii izotropik spin-1 BEG modeli i¢in alt 6rgii nuknatislanmala-
rin ve alt 6rgli kuadrupol momentlerin zamanla degisimi. a) Sistemde
hem ferromanyetik (f) faz hem de antikuadrupolar (a) faz mevcuttur, (k =
-03, h = 05, T = 0.375)b) Sistemde ferromanyetik (f) faz,
antikuadrupolar (a) faz hem de diizensiz (d) faz mevcuttur, (k = -0.25, h
= 0.7, T = 0.125). ¢) Sistemde hem ferromanyetik (f) faz hem de
ferrimanyetik (i) faz mevcuttur, (k =-0.3, h=0.125, T=0.2).
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Yukaridaki sekillere bakildiginda sistemde yedi farkli faz mevcut oldugu goriilmektedir.
Bu fazlar, sirasiyla d, f, f +d,a+ d, f+ a, f + a + d ve f+ 1, fazlaridir. Bu yedi fazin ara-
sindaki dinamik faz smirlarini belirleyebilmemiz i¢in, dinamik faz gecis noktalarini
hesaplamal1 ve daha sonra bu noktalar kullanilarak sistemin dinamik faz diyagramlari
sunulabilir. Dinamik faz gecis sicakliklar1 (DFG), bir peryot basina ortalama diizen pa-
rametrelerinin ya da dinamik diizen parametrelerinin davranisinin indirgenmis sicakligin

bir fonksiyonu olarak incelenmesiyle elde edilecektir.

Dinamik diizen parametreleri, dinamik alt 6rgli miknatislanmalar1 (Ma, Mg ) ve dinamik

alt 6rgii kuadrupol momentleri (Qa, Qs )

1 2n 1 27
M, = j m,, (E)dE, M, =—— J m, (E)E, (3.27)
ve
1 27 1 27
Q=7 j q, (E)E, Q= j q5 (E)E. (3.28)

formiilleri ile tanimlanir. Ma, Mp, Qa ve Qp ’nin davranisi, h ve k’nin bir kag¢ degeri
icin indirgenmis sicakligin bir fonksiyonu olarak, Romberg integrasyon yontemi ile
Adams-Moulton kestirme ve diizeltme gibi niimerik metodlarin birlestirilmesiyle ince-
lendi. Yedi faz arasindaki dinamik faz sinirlarinin ve dinamik faz gegis noktalarinin
nasil hesaplandigin1 ve dinamik faz sinirlarin nasil elde edildigi Sekil 3.3 ve Sekil
3.4’de gosterilmistir. Bu sekillerde kalin ¢izgi My ve Mg ’yi, ince ¢izgi Qa ve Qp ’yi
temsil etmektedir. T, ve T, sirastyla M ve Mg, Qa ve Qg i¢in birinci- derece ve ikinci-
derece faz gecis (yada kritik) sicakliklarini, Tcq ise yalmizeca Qa ve Qg igin ikinci- dere-
ce faz gecis sicakligini gostermektedir. Sekil 3.3, k =-0.17 ve h = 0.25 i¢in Ma, Mp, Qa
ve Qg ’nin davraniglarini indirgenmis sicakligin bir fonksiyonu olarak gostermektedir.
Bu sekilde, sifir sicaklikta My = Mg =1 ve Qa = Qp = 1 degerindedir ve diizen paramet-
releri indirgenmis sicaklik artarken siirekli olarak sifira azalmaktadir, bundan dolay1
Tc=0.614de ikinci- derece faz gegisi meydana gelmektedir. Diger taraftan, Qa ve Qg
birbirine esit olarak T¢ sicakligina kadar azalmakta ve T¢ sicakliginda keskin doniis
yaptiktan sonra indirgenmis sicaklik artarken sifira azalmakta ve son olarak sicaklik

sonsuza giderken sifir olmaktadir. Bu durumda, dinamik faz gecisi f fazindan d fazina
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olmaktadir ve ¢6ziim M, Mg, Qa ve Qp 'nin baslangic degerlerine bagli degildir. Sekil
3.4, iki farkli baglangi¢ degeri i¢in, k = -0.25 ve h = 0.5 degerleri i¢in M ve Mg, Qa ve
Qg ’nin sicaklikla degisimlerini gostermektedir. Sekil 3.4(a) i¢in baslangi¢c degerleri Ma
= M;p =1 ve Qa = Qp =1 ve Sekil 3.4(b) i¢in baslangic degerleri M =1, Mg =0 and Qa
=1, Qp =-2 dir. Sekil 3.4(a), Sekil 3.3’e benzerdir. My = Mp ve Qa =Qp, indirgenmis
sicaklik artarken sifira dogru siirekli olarak azalmakta ve bdylece T¢ = 0.503 sicakligin-
da ikinci- derece faz gecisi meydana gelmektedir. Sekil 3.4(b)’de, sistem pespese iki faz
gecisi gecirmektedir. Bu gecislerin birincisi a fazindan (Ma= Mg =0 ve Qs # Qg #0)
fazina birinci- derece faz gecisi (T; = 0.205) meydana gelmektedir, ikincisi ise f fazin-
dan d fazina (Ma = Mp =0 ve Qa = Qp # 0) T¢ = 0.503 sicakliginda ikinci- derece faz
gecisi meydana gelmektedir. Sekil 3.4(a) ve 3.4(b)’den sistemde T; sicakligina kadar
f+a karma fazinin, T, ve T¢ sicakliklari arasinda f fazinin, T¢ sicakligindan sonra d fazi-
nin oldugu kolaylikla goriilebilir ve bu gergekler Sekil 3.5(d) faz diyagraminda h=0.5

icin agikca goriilebilir.

1.2

0.00 0.25 0.50 0.75

Sekil 3.3. Dinamik miknatislanmalarin, My ve Mg, (kalin ¢izgi) ve dinamik
kuadrupol momentlerin, Qs ve Qg, (ince ¢izgi) indirgenmis sicakliga
bagl olarak davraniglari. Sistemde ikinci- derece faz geg¢isi meydana
gelmektedir, (T¢c = 0.614), (k=-0.17 ve h =0.25).
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Sekil 3.4. Dinamik miknatislanmalarin, My ve Mg, (kalin ¢izgi) ve dinamik
kuadrupol momentlerin, Qo ve Qg, (ince ¢izgi) indirgenmis sicakliga
bagl olarak davranislari, (k =-0.25 ve h =0.5). a) Sekil 3.3 ile ayn1 fakat
Tc = 0.503. b) Birbirini takip eden iki faz gecisi meydana gelmektedir.
Birincisi a fazindan f fazina (T; = 0.205), ikincisi f fazindan d fazina
ikinci- derece faz gegisi (Tc = 0.503).
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3.3. Dinamik Faz Diyagramlar:

Dinamik faz ge¢is noktalarini elde ettikten sonra sistemin dinamik faz diyagramlarini
(T, h) diizleminde elde edebiliriz. Indirgenmis bikuadratik etkilesme parametresinin itici
oldugu yani k<0 durumlar i¢in elde edilen yedi temel faz diyagrami Sekil 3.5(a)-(g)’de
gosterilmistir. Bu sekillerde siirekli ve kesik ¢izgiler sirasiyla ikinci- derece ve birinci-
derece faz geg¢is cizgilerini gdstermektedir. Faz diyagramlarinda, i¢i dolu kiireler dina-
mik ticliikkritik noktay1, B ¢ift kritik son noktay1, Z dinamik sifir-sicaklik kritik noktayz,
E dinamik kritik sonlu noktay1, P dinamik besli noktay1 ve A dinamik ¢oklu kritik nok-
tay1, gostermektedir. Bu kesimde, indirgenmis bikuadratik etkilesim parametresinin (k)
cesitli degerleri igin (T, h) diizleminde faz diyagramlar1 sunulacak ve sistemin k para-

metresine baglilig1 incelenecektir.

i-) k = -0.1 i¢in (T, h) diizleminde faz diyagrami Sekil 3.5(a) gosterilmistir. Bu
faz diyagraminda, yiliksek indirgenmis sicaklikta (T) ve yliksek indirgenmis manyetik
alan genliginde (h), diizensiz (d) faz mevcuttur, h ve T’ nin diisiikk degerlerinde ise ¢o-
ziimler ferromanyetik (f) faz gézlenmektedir. Bu iki bolge arasindaki dinamik faz siniri,
f ve d, ikinci- derece faz gegis cizgisidir. indirgenmis sicakligin diisiik ve indirgenmis
manyetik alan genliginin belirli degerlerinde f ve d fazinin birlikte bulundugu f + d
karma fazi1 bulunmaktadir. f + d karma fazi, f faz1 ve d fazindan birinci- derece faz gecis
cizgisiyle ayrilmistir. Sistem ayni zamanda her iki birinci- derece faz gegis ¢izgisini
birlestiren ve birinci- dereceden ikinci- dereceye faz gegisini gosteren yalnizca bir di-
namik ticliikritik nokta sergilemektedir. Bu faz diyagraminin benzeri, kinetik spin-1/2
[56], spin-1 [66, 91], spin-3/2 [67, 68] (bu ¢alismalarda f faz1 yerine f3/, faz1 gelmekte-
dir) ve spin-2 [84, 85] (bu ¢alismalarda f faz1 yerine f, faz1 gelmektedir) Ising sistemle-
rinde elde edilmistir. Ayrica bu faz diyagrami karma spin (1/2, 1) [90] ve (1, 3/2) [89]
Ising sistemlerinde de elde edilmistir. Yalniz bu ¢alismalarda f faz1 yerine 1 faz1 gelmek-

tedir.

ii-) k = -0.14 i¢in (T, h) diizleminde faz diyagrami Sekil 3.5(b)’de sunulmustur.
Sistemde bir adet {i¢liikritik nokta, bir adet ¢ift kritik son nokta (B) ve bir adet dinamik
sifir-sicaklik kritik nokta (Z) vardir. Bu faz diyagraminda, iki temel faz f, d ve {i¢ adette

bir arada faz bolgesi f+d, a+d, f+a+d bulunmaktadir. Bu fazlar arasindaki faz siirlari, f



42

ile f +d, f+d ile f+a+d,f+a+d ile d ve f+d ile d fazlar birbirinden birinci- derece, file d

fazida ikinci -derece dinamik faz siniriyla ayrilmistir.

iii-) Sekil 3.5(c), k =-0.17 degerinde elde edilen dinamik faz diyagramlarini gos-
termektedir. Bu faz diyagrami Sekil 3.7(b)’ye benzemektedir, fakat T nin diisiik deger-
lerinde ve h’nin belirli degerlerinde f+i karma faz1 olusmaktadir. f+i karma fazi ile f faz1
arasindaki dinamik faz sinir1 ikinci- derece faz gegis ¢izgisidir. Bu yiizden sistemde
Sekil 3.5(b) den farkli olarak {i¢ tane dinamik sifir-sicaklik kritik nokta (Z) mevcuttur.

iv-) k = -0.25 icin (T, h) diizleminde faz diyagrami sekil 3.5(d) de verilmistir.
Sistemde f ve d fazlari ile birlikte dort tane bir arada var olan faz, f+i, f+a, f+a+d ve a+d
karma fazi bulunmaktadir. f ile d fazi, atd ile d fazi, f+i ile f faz1 ve f+a ile atd faz
arasindaki dinamik faz smirlar ikinci- derece faz gecis cizgileri olup, diger tiim fazlar
arasindaki sinirlar birinci- derece faz gegis ¢izgileridir. Sistemde bir dinamik ti¢liikritik
nokta, birlikte iki tane dinamik sifir-sicaklik kritik nokta (Z), bir tane dinamik kritik
sonlu nokta (E) ve bir tane de dinamik multikritik nokta (A) vardir.

v-) Sekil 3.5(e)’de goriilen faz diyagrami k = -0.30 degeri icin elde edilmistir.
Elde edilen bu sekil, Sekil 3.5(d)’ye benzerdir fakat bir ka¢ farklilik vardir. (1) T’nin
diisiik degerlerinde meydana gelen i + d karma faz1 biiytiimiistiir. (2) T ve h’nin kii¢iik
degerlerinde f faz1 olusmustur. Olusan bu f fazi ile f + i karma faz1 arasinda dinamik faz

sinir1 ikinci- derece faz gecis ¢izgisidir.

vi-) k = -0.33 degeri i¢in elde edilen faz diyagrami Sekil 3.5(f)’de sunulmustur.
Bu faz diyagrami Sekil 3.5(e)’ye benzer fakat Sekil 3.5(e)’den farkli olarak indirgenmis
sicakligin ve indirgenmis manyetik alan genliginin kiiciik degerlerinde olusan f fazi
kaybolmustur ve sistemde bulunan diger f faz bolgesi kii¢lilmiistiir. Diger taraftan, f+ i
ve f + a karma fazlar1 arasinda faz sinirilar1 T nin yiiksek degerlerinde ikinci- derece ve
t nin diisiik degerlerinde birinci- derece faz gecisi olugsmakta ve bdylece sistemde dina-
mik {gliikritik nokta meydana gelmektedir. Bunun yani1 sira sistemde bir tane dinamik

sifir-sicaklik kritik nokta (Z) ve bir tane dinamik besli nokta (P) mevcuttur.

vii-) Sekil 3.5(g)’de sunulan faz diyagrami k = -0.50 degeri icin elde edilmistir.
Sekil 3.5(g), Sekil 3.5(f)’ye benzemekle beraber bir kac¢ degisiklik vardir. f + i karma
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faz1 ve f faz1 kaybolmustur. Bu faz diyagraminda f+a ile a+d ve a+d karma fazlar ile d
faz1 arasindaki dinamik faz sinirlari ikinci- derece faz gecis cizgileri olup, diger tiim faz

sinirlari ise birinci- derece faz gegis ¢izgileridir.

Sekil 3.5.(b)-(g)’ deki dinamik faz diyagramlari spin-1 BEG [91] ¢alismasinda da elde

edilmistir.
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Iki alt 6rgiilii izotropik spin-1 BEG modelinin (T, h) diizleminde dinamik
faz diyagramlari. Sistemde diizensiz (d), ferromanyetik (f) ve bes karma
faz bolgesi mevcuttur, bunlar f+d, a+d, f+a+d, f + 1 ve f+a karma fazlari-
dir. Kesikli ve siirekli ¢izgiler sirasiyla birinci- derece ve ikinci- derece
faz gecis cizgilerini ve ici dolu daireler dinamik {i¢liikritik noktayi, B ¢ift
kritik son nokta, Z dinamik sifir sicaklik kritik noktay1, E dinamik kritik
sonlu noktayi, P dinamik besli noktay1 ve A dinamik ¢oklu kritik nokta-
y1, gostermektedir. (a) k = -0.10, (b) k = -0.14, (c) k =-0.17, (d) k = -
0.25, (e) k=-0.30, (f) k =-0.33 (g) k =-0.50.



4. BOLUM
SONUC VE TARTISMA

Bu tez ¢alismasinda, zamana bagli salinimli dis manyetik alanin varliginda keyfi bilineer
(J) ve bikuadratik (K) etkilesme Hamiltonyenli kinetik spin-1 Ising modelinin, izotropik
spin-1 BEG modeli diye de adlandirilir, kararli ¢ozlimleri tek ve iki alt 6rgiilii durumlari
icin ortalama-alan yaklasimi ile incelendi. Ortalama-alan dinamik denklemleri elde etmek

icin Glauber-tipi stokhastik dinamik kullanildi.

Tek alt orgiilii kinetik izotropik spin-1 BEG sistemde varolan fazlar elde etmek i¢in, ilk
olarak Adams-Moulton kestirme diizeltme yoOntemi kullanilmasiyla ortalama
miknatislanmanin ve ortalama kuadrupol momentin zamana bagli olarak davranislar
incelendi. Sistemde, diizensiz (d) ve ferromanyetik (f) olmak {izere iki temel faz ile bu
fazlarin bir arada bulundugu {i¢ adet karma faz, bunlar f ve d fazlarinin bir arada oldugu
f+d karma fazi, f ve fq fazlarinin bir arada oldugu f+fq karma faz1 ve d fazlarinin bir arada
oldugu fq+d karma fazi, bulundu. Daha sonra, indirgenmis bikuadratik etkilesme
parametresinin (k=K/J) farkli degerleri i¢in dinamik miknatislanmanin ve kuadrupoliin,
yani dinamik diizen parametrelerinin, sicakliga gore davranislart Adams- Moulton kestirme
diizeltme yontemi ve Romberg integrasyon yontemi kullanilarak incelendi ve sonugta;
dinamik faz gegis sicakliklar tespit edildi ve dinamik faz gegislerinin dogasi (siirekli ve
kesikli, yani birinci- ve ikinci- derece faz gecisleri) karakterize edildi. Lyapunov {istelleri
de hesaplanarak ¢oztimlerin kararlilig1 ve dinamik faz ge¢is noktalarmin dogru ve eksiksiz
bulundugu kontrol edildi. Dinamik faz gecis noktalarindan kullanilarak sistemin dinamik
faz diyagramlari, indirgenmis bikuadratik etkilesme parametresinin (k) farkli degerleri igin
(T, h) diizleminde ve indirgenmis dis manyetik alan genliginin (h) farkli degerleri i¢in (k,
T) diizleminde elde edildi. (T, h) diizleminde alt1 ve (k, T) diizleminde bes adet temel
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dinamik faz diyagrami elde edildi. Sistemde d ve f temel fazlar ile bu fazlarin bir arada
oldugu f+d, f+fq ve fq+d karma fazlarida elde edildi. Ayrica, (T, h) diizlemindeki dinamik
faz diyagramlari, dinamik tigliikkritik nokta, dinamik tglii nokta (TP) ve dinamik dortlii
nokta (QP)’ yi ve (k, T) diizlemindeki dinamik faz diyagramlari, dinamik tg¢liikritik nokta,
dinamik dortli nokta (QP) ve dinamik ¢ift kritik son nokta (B)’yi de i¢erdigi gorildii.

Tek alt orgiilii calismada (T, h) ve (k, T) diizlemlerinde elde edilen dinamik faz
diyagramlariin bir kismi daha 6nce yapilan ¢alismalarda elde edilmesine karsin bir kismi
su ana kadar yapilan ¢aligsmalarda elde edilmemistir. (T, h) diizleminde elde edilen dinamik
faz diyagramlarindan, Sekil 2.7.(a)’daki faz diyagrami tek spin Ising sistemlerinde [66, 83-
85] (Kaynak 66 ve 84’ de verilen ¢alismalarda, f + fq karma fazi yerine sirasiyla f + p ve f,
+ p karma fazlar1 gelmektedir) ve karma spin [86, 89, 90] (Kaynak 86 ve 89’ da verilen
calismalarda f ve fq fazlarinin yerine sirasiyla i ve a fazlari, Kaynak 90 ile verilen
calismada f + fq karma faz1 yerine i + p karma faz1 gelmektedir) elde edilmistir. Sekil
2.7.(b), 2.7.(c) [83] ve Sekil 2.7.(f) *deki [83, 85] (Kaynak 85 ile verilen ¢aligmada f fazi
yerine f, faz1 gelmektedir) faz diyagramlarinin benzerleri daha 6nce yapilan ¢alismalarda
elde edilmesine ragmen 2.7.(d) ve 2.7.(e)’ deki diger iki dinamik faz diyagrami ilk kez bu
sistemde elde edilmistir. (k, T) diizleminde elde edilen dinamik faz diyagramlarindan
sadece Sekil 2.8.(a) ve 2.8.(c) oOnceki calismalarda elde edilmemistir. Sekil 2.8.(b),
2.8.(d)’de [87, 92] (Kaynak 92 ile verilen ¢alismada f faz1 yerine f3, faz1 gelmektedir) ve
Sekil 2.8.(e)’de [87, 89, 92] (Kaynak 89 da verilen caligmada f ve fq fazlarinin yerine
sirastyla i ve a fazlari, Kaynak 92 de verilen ¢alismada f fazi yerine f3,, faz1 gelmektedir)

elde edilen faz diyagramlar1 daha 6nce yapilan ¢alismalarda elde edilmistir.

Iki alt &rgiilii, itici (K<0) bikuadratik etkilesme parametreli, kinetik izotropik spin-1 BEG
sisteminde mevcut olan fazlar1 elde etmek icin, ilk olarak ortalama miknatislanmalarin ve
ortalama kuadrupol momentlerin zamana bagli olarak davraniglari, Adams- Moulton
kestirme diizeltme yontemi kullanilmasiyla incelendi ve sistemde diizensiz (d) ve
ferromanyetik (f) olmak iizere iki temel faz ve bu fazlarin birarada bulundugu bes adet
karma faz, bunlar f + d,a +d, f+a, f + a+ d ve f+ i karma fazlaridir. Daha sonra,

indirgenmis bikuadratik etkilesme parametresinin (k) farkli degerleri i¢in dinamik
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miknatislanma ve kuadrupol diizen parametrelerinin, sicakligin bir fonksiyonu olarak
davraniglart Adams- Moulton kestirme diizeltme yontemi ve Romberg integrasyon yontemi
kullanilarak incelenerek dinamik faz gecis sicakliklar1 tespit edildi ve dinamik faz
gecislerinin dogas1 (siirekli ve kesikli) karakterize edildi. Dinamik faz gecis sicakliklari
kullanilarak sistemin dinamik faz diyagramlari, indirgenmis bikuadratik etkilesme
parametresinin (k) farkli degerleri icin (T, h) diizleminde elde edildi. (T, h) diizleminde
yedi farkli temel dinamik faz diyagrami elde edildi. Sistemde d ve f temel fazlar ile bu
fazlarin bir arada oldugu f+d,a +d, f+a, f + a+ d ve f + i karma fazlarida elde edildi.
Ayrica dinamik faz diyagramlarinda, dinamik tgliikritik nokta, dinamik double kritik sonlu
nokta (Z), dinamik kritik sonlu nokta (E), dinamik besli nokta (P) ve dinamik ¢oklu kritik
nokta (A) elde edildi. Hem tek alt 6rgiilii hemde iki alt orgiilii kinetik izotropik spin-1 BEG
sistemlerinin dinamik faz diyagramlari incelendiginde, sistemlerin davranisinin kuvvetli bir

sekilde indirgenmis bikuadratik etkilesme parametresine (k) bagli oldugu goriilmektedir.

Diger taraftan iki alt orgiilii ¢calismada (T, h) diizlemlerinde elde edilen dinamik faz
diyagramlarindan Sekil 3.5.(a)’daki faz diyagrami daha once kinetik spin-1/2 [56], spin-1
[66, 91], spin-3/2 [67, 68] (bu ¢alismalarda f faz1 yerine f3/; faz1 gelmektedir) ve spin-2 [84,
85] (bu calismalarda f faz1 yerine f, faz1 gelmektedir) Ising sistemlerinde elde edilmistir.
Ayrica bu faz diyagrami karma spin (1/2, 1) [90] ve (1, 3/2) [89] Ising sistemlerinde de elde
edilmistir. Yalniz bu calismalarda f fazi yerine i faz1 gelmektedir. Elde edilen diger biitiin
dinamik faz diyagramlar1 bu ¢alisma disinda sadece spin-1 BEG [91] ¢alismasinda elde

edilmistir.

Son olarak, belirtmek gerekir ki, ortalama- alan yaklasiminin eksikliginden dolay1 bazi
birinci-dereceden faz gecis sicakliklar1 ve 6zel noktalar yapay birinci-dereceden faz gecis
sicakliklar1 ve yapay 6zel noktalar olabilir. Bu yiizden sistem Dinamik Monte Carlo (DMC)
simiilasyonlar1 ile daha kesin olarak incelenebilir. Biz bu ¢alismani, DMC hesaplamalari
veya renormalizasyon grup (RG) teknikleri gibi daha kesin sonug¢ veren metotlarla yapilan

caligsmalara bir temel olusturacag diislincesindeyiz.
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