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ÖZET 
 

Zamana bağlı salınımlı dış manyetik alan altında bilineer ve bikuadratik en yakın komşu 

etkileşme Hamiltonyenli kinetik tek ve iki alt örgülü izotropik spin-1 Blume-Emery-

Griffiths (BEG) sistemleri, ortalama alan yaklaşımı kullanılarak incelendi. Sistemin 

zamanla değişimini tanımlamak için Glauber- tipi stokhastik dinamik kullanıldı. 

Sistemdeki çözümleri veya fazları bulmak için ortalama düzen parametrelerinin zamanla 

değişimi incelendi. Faz dönüşümlerinin doğasını karakterize etmek (sürekli ve süreksiz) 

ve dinamik faz geçiş (DFG) sıcaklıklarını elde etmek için dinamik düzen 

parametrelerinin davranışı indirgenmiş sıcaklığın bir fonksiyonu olarak incelendi. 

Dinamik faz diyagramları iki farklı düzlemde, (T, h) ve (k, T), sunuldu. Dinamik faz 

diyagramları, tek alt örgülü sistem için, düzensiz (d) ve ferromanyetik (f) temel fazlar 

yanısıra, f + d, f + fq ve fq + d karma fazlarını içerirken; iki alt örgülü sistem için, d ve f 

temel fazlar ile, f + d, a + d, f + a, f + a + d ve f + i karma fazlarını içerir. Sonuç olarak, 

sistemin davranışının bikuadratik etkileşme parametresine kuvvetli bir şekilde bağlı 

olduğu bulundu. 

 

Anahtar Kelimeler: Tek ve iki alt örgülü izotropik spin-1 BEG modeli, Glauber-tipi 

stokhastik dinamik, Dinamik faz geçişleri, Dinamik faz diyagramları. 



iv 
 

KINETIC ISOTROPIC SPIN-1 BLUME- EMERY GRIFFITHS (BEG) SYSTEMS 

UNDER A TIME-DEPENDENT OSCILLATING EXTERNAL MAGNETIC 

FIELD 

 
Ersin KANTAR 

Erciyes University, Graduate School of Natural and Applied Sciences 
M. Sc. Thesis, July 2008 

Thesis Supervisor: Prof. Dr. Mustafa KESKİN 
 

ABSTRACT 
 

 
A study, within a mean-field approach, of the kinetic one and two sublattice isotropic 

spin-1 Blume-Emery-Griffiths (BEG) systems Hamiltonian with bilinear and biquadratic 

nearest-neighbor exchange interactions in the presence of a time-dependent oscillating 

external magnetic field is presented. The Glauber-type stochastic dynamic is used to 

describe the time evolution of the system. The time varitions of average order 

parameters are investigated to find the phases or solutions in the system. The thermal 

behavior of dynamic order parameters are also studied to characterized the nature 

(continuous and discontinuous) of the phase transitions and obtain the dynamic phase 

transition (DPT) points. The dynamic phase diagrams are presented in two different 

planes, (T, h) and (k, T). While dynamic phase diagrams contains the disordered (d) and 

ferromagnetic (f) fundamental phases, the f + d, f + fq and fq + d mixed phase regions 

for the kinetic one sublattice system; dynamic phase diagrams contains the d and f 

fundamental phases, the f + d, a + d, f + a, f + a + d and f + i mixed phase regions for the 

kinetic two sublattice system. As a result, it is found that the behavior of the system 

strongly depends on the biquadratic interaction parameter. 
 

Keywords: One and two sublattice isotropic spin-1 BEG model, Glauber-type stochastic 

dynamic, Dynamic phase transitions, Dynamic phase diagrams. 
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                                       ŞEKİLLER LİSTESİ 
 

Şekil 2.1. Tek alt örgülü izotropik spin-1 BEG modeli için 
mıknatıslanmanın (m) ve kuadrupol momentin (q) zamanla 
değişimi. a) Sistemde sadece düzensiz (d) faz mevcuttur 
(k=0.1, h=1.0, T=2.0). b) Sistemde sadece ferromanyetik 
(f) faz mevcuttur, (k=0.1, h=0.2, T=0.375). c) Sistemde 
hem ferrokuadropolar (fq) faz hem de düzensiz (d) faz 
mevcuttur, (k=0.3, h=1.4, T=0.125). 

 
Şekil 2.2. Tek alt örgülü izotropik spin-1 BEG modeli için 

mıknatıslanmanın (m) ve kuadrupol momentin (q) zamanla 
değişimi. a) Sistemde hem ferromanyetik (f) faz hem de 
ferrokuadropolar (fq) faz mevcuttur, (k=0.3, h=0.3, 
T=0.25). b) Sistemde hem düzensiz (d) faz hem de, 
ferromanyetik (f) faz mevcuttur, (k=0.10, h=0.750, 
T=0.175). 

 
Şekil 2.3. Dinamik mıknatıslanmanın, M, (kalın çizgi) ve dinamik 

kuadrupol momentin, Q, (ince çizgi) indirgenmiş sıcaklığa 
bağlı olarak davranışları, (k=0.1 ve h=0.6). Sistemde 
ikinci- derece faz geçişi meydana gelmektedir, TC=0.5125. 

 
Şekil 2.4. Dinamik mıknatıslanmanın, M, (kalın çizgi) ve dinamik 

kuadrupol momentin, Q, (ince çizgi) indirgenmiş sıcaklığa 
bağlı olarak davranışları, (k=0.1 ve h=0.2). a) Sistemde f 
fazından d fazına ikinci- derece faz geçişi meydana 
gelmektedir, (TC=0.6525). b) Sistemde birbirini takip eden 
iki faz geçişi meydana gelmemektedir, birincisi fq fazından 
f fazına birinci- derece faz geçişi (TtQ=0.1775) ve ikincisi f 
fazından d fazına ikinci- derece faz geçişidir (TC=0.6525). 

 
Şekil 2.5. Dinamik mıknatıslanmanın, M, (kalın çizgi) ve dinamik 

kuadrupol momentin, Q, (ince çizgi) indirgenmiş sıcaklığa 
bağlı olarak davranışları, (k=0.1 ve h=0.8). a) Sistemde f 
fazından d fazına birinci- derece faz geçişi meydana 
gelmektedir, (Tt=0.2125). b) Sistemde herhangi bir faz 
geçişi olmamaktadır ve bu durum düzensiz (d) faza karşılık 
gelir. 

 
Şekil 2.6. Lyapunov üstellerinin indirgenmiş sıcaklığın bir fonksiyonu 

olarak davranışları, (k=0.1 ve h=0.2). a) m için indirgenmiş 
sıcaklığın bir fonksiyonu olarak Lyapunov üstellerin 
davranışı. b) q için indirgenmiş sıcaklığın bir fonksiyonu 
olarak Lyapunov üstellerin davranışı. 
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Şekil 2.7. Tek alt örgülü izotropik Blume- Emery- Griffiths modelinin 
(T, h) düzleminde dinamik faz diyagramları. Sistemde 
düzensiz (d), ferromanyetik (f) ve üç karma faz bölgesi 
mevcuttur, bunlar fq+d, f+fq ve f+d karma fazlarıdır. 
Kesikli ve sürekli çizgiler sırasıyla birinci- derece ve ikinci- 
derece faz geçiş çizgilerini ve içi dolu daireler dinamik 
üçlükritik noktayı temsil ederler. TP dinamik üçlü nokta ve 
QP dinamik dörtlü noktadır. (a) k = 0.1, (b) k = 0.15, (c) k 
= 0.2, (d) k = 0.3, (e) k = 0.4, (f) k = 1.0. 

 
Şekil 2.8. Tek alt örgülü izotropik Blume- Emery- Griffiths modelinin 

(T, k) düzleminde dinamik faz diyagramları. Sistemde 
düzensiz (d), ferromanyetik (f) ve üç karma faz bölgesi 
mevcuttur, bunlar fq+d, f+fq ve f+d karma fazlarıdır. 
Kesikli ve sürekli çizgiler sırasıyla birinci- derece ve ikinci- 
derece faz geçiş çizgilerini ve içi dolu daireler dinamik 
üçlükritik noktayı temsil ederler. B dinamik çift kritik son 
nokta, TP dinamik üçlü nokta ve QP dinamik dörtlü 
noktadır. (a) h = 0.1, (b) h = 0.6, (c) h = 0.7, (d) h = 0.9, (e) 
h = 1.25.  

 
Şekil 3.1. İki alt örgülü izotropik spin-1 BEG modeli için alt örgü 

mıknatıslanmaların ve alt örgü kuadrupol momentlerin 
zamanla değişimi. a) Sistemde sadece düzensiz (d) faz 
mevcuttur, (k=-0.1, h=1, T=0.625). b) Sistemde sadece 
ferromanyetik (f) faz mevcuttur, (k=-0.1, h=0.125, T=0.25). 
c) Sistemde hem ferromanyetik (f) faz hem de düzensiz (d) 
faz mevcuttur, (k=-0.1, h=0.75, T=0.125). d) Sistemde hem 
antikuadrupolar (a) faz hem de düzensiz (d) faz mevcuttur, 
(k=-0.3, h=1.25, T=0.25). 

 
Şekil 3.2. İki alt örgülü izotropik spin-1 BEG modeli için alt örgü 

mıknatıslanmaların ve alt örgü kuadrupol momentlerin 
zamanla değişimi. a) Sistemde hem ferromanyetik (f) faz 
hem de antikuadrupolar (a) faz mevcuttur, (k=-0.3, h=0.5, 
T=0.375). b) Sistemde ferromanyetik (f) faz, 
antikuadrupolar (a) faz hem de düzensiz (d) faz mevcuttur, 
(k=-0.25, h=0.7, T=0.125). c) Sistemde hem ferromanyetik 
(f) faz hem de ferrimanyetik (i) faz mevcuttur, (k=-0.3, 
h=0.125, T=0.2).  

 
Şekil 3.3. Dinamik mıknatıslanmaların, MA ve MB, (kalın çizgi) ve 

dinamik kuadrupol momentlerin, QA ve QB, (ince çizgi) 
indirgenmiş sıcaklığa bağlı olarak davranışları. Sistemde 
ikinci- derece faz geçişi meydana gelmektedir, (TC=0.614), 
(k=-0.17 ve h=0.25). 
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Şekil 3.4. Dinamik mıknatıslanmaların, MA ve MB, (kalın çizgi) ve 
dinamik kuadrupol momentlerin, QA ve QB, (ince çizgi) 
indirgenmiş sıcaklığa bağlı olarak davranışları, (k=-0.25 ve 
h=0.5). a) Şekil 3.5 ile aynı fakat TC=0.503. b) Birbirini 
takip eden iki faz geçişi meydana gelmektedir. Birincisi i 
fazından a fazına (Tt=0.205), ikincisi a fazından d fazına 
ikinci- derece faz geçişi (TC=0.503). 

 
Şekil 3.5. İki alt örgülü izotropik spin-1 BEG modelinin (T, h) 

düzleminde dinamik faz diyagramları. Sistemde düzensiz 
(d), ferromanyetik (f) ve beş karma faz bölgesi mevcuttur, 
bunlar f+d, a+d, f+a+d, f + i ve f+a karma fazlarıdır. Kesikli 
ve sürekli çizgiler sırasıyla birinci- derece ve ikinci- derece 
faz geçiş çizgilerini ve içi dolu daireler dinamik üçlükritik 
noktayı, B çift kritik son nokta, Z dinamik sıfır sıcaklık 
kritik noktayı, E dinamik kritik sonlu noktayı, P dinamik 
beşli noktayı ve A dinamik çoklu kritik noktayı, 
göstermektedir. (a) k = -0.10, (b) k = -0.14, (c) k = -0.17, 
(d) k = -0.25, (e) k = -0.30, (f) k = -0.33 (g) k = -0.50. 
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1. BÖLÜM  

GİRİŞ 

 

İstatistik fizik alanındaki bazı problemler, farklı yöntemler kullanarak analitik olarak 

çözülebilmesine rağmen, günümüz araştırmaları, simülatif veya yaklaşık çözümler 

bulmada modern bilgisayarların gücünden yararlanır. Matematiksel kolaylık bu yöntem 

ve çözümlerde aranılan temel özelliktir. Kuvvetli bir şekilde etkileşen parçacıklardan 

oluşan sistemlerin istatistiksel olarak incelenmesi zor ve bu sistemlerde parçacıkların 

davranışını kesin olarak açıklayan basit bir matematiksel ifade bulmak oldukça 

önemlidir. Bu modellerden ilk ve en başarılısı tek boyutta ferromanyetik faz 

dönüşümünü açıklamak için Wilhelm Lenz tarafından önerilmiş ve öğrencisi Ernest 

Ising [1] tarafından çözülmüştür. Bu model genel olarak Ising modeli diye adlandırılır. 

Modelin iki boyutta kesin çözümü ise Onsager [2] tarafından yapılmıştır. Bu modelde 

parçacıkların spinleri 1/2 olarak alınmıştır ve spin-1/2 Ising modeli olarak 

adlandırılmıştır. Ising modelleri içinde en basit ve en yaygın kullanılan model, spin-1/2 

Ising modeli olup, Akışkan konsantrasyonu, gazların soğurulması, ikili sıvı veya 

gazların faz geçişleri, ikili alaşımlardaki düzenli-düzensiz faz geçişleri, vb. gibi 

sistemlerin incelenmesinde kullanılmıştır. Ancak termodinamik davranışları spin-1/2 

Ising modeli ile tanımlanamayan, He3-He4 gibi ikili sıvı karışımında, seyreltik manyetik 

sistemlerde, katı ortohidrojen, üçlü sıvı karışımları, yarı-iletken alaşımlar, re-entrant 

olaylar, manyetik düzenlilik, düzenli-düzensiz faz geçişleri gibi, sistemleri incelemek 

için spin-1 Ising modeli ideal bir modeldir. 

Spin-1 Ising modeli 1960’lı yıllarda tanımlanmış ve zamanımıza kadar kullanılan ve 

kullanılmaya da devam edilen en önemli modellerden birisidir. Bu model üç durumlu 

ve iki düzen parametreli bir sistemdir. En basit spin-1 Ising modeli, bilineer (J) 
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ve kristal alan (D) etkileşme Hamiltonyenli spin-1 Ising modeli olup model genelde 

Blume-Capel (BC) modeli diye adlandırılır. Bu model ilk olarak Blume [6] ve Capel 

[7-8] tarafından birbirinden bağımsız olarak geliştirilmiştir. Diğer taraftan, en yakın 

komşu çifti etkileşmeli keyfi bilineer (J), bikuadratik (K) ve kristal alan (D) etkileşme 

parametreli spin-1 Ising modeli, Blume-Emery-Griffiths (BEG) modeli [9] olarak 

adlandırılmaktadır. BEG modeli, istatistik fizik ve yoğun madde fiziğinde en fazla 

incelenmekte ve fiziksel kooperatif olayları açıklamada en çok kullanılmakta olan 

modellerdendir. BEG modeli ilk olarak He3-He4 karışımlarının termodinamik 

özelliklerini incelemek için kullanılmıştır. Daha sonra ise donma, yarı-iletken 

alaşımlarda düzen, elektronik iletkenlik modelleri, faz diyagramlarındaki re-entrant 

olaylar, martensitik geçişler vb. gibi pek çok fiziksel olayın incelenmesinde 

kullanılmıştır ve kullanılmaya devam edilmektedir. Yukarıda anlatılan olayların 

incelenmesi ortalama alan yaklaşımı [9- 12], renormalizasyon grup tekniği [13- 17], 

etkin alan teorisi [18], Monte-Carlo metodu [19- 21], kümesel değişim metodu [22- 30] 

kullanılarak yapılmıştır. Bu metotların yanı sıra BEG modeli, Monte-Carlo 

renormalizasyon tekniği [31], sabit çiftlenim yaklaşımı [32], modifiye Bethe-Pierls 

metodu [33], lineer zincir yaklaşımı [34] ve iki parçacık kümesel değişim metodu [35] 

ile de incelenmiştir. Ayrıca BEG modelinin gerçek çözümleri Bethe kafesi, bal peteği 

ve Kagome kafesi [36], üzerinde ayrıntılı olarak incelenmiştir.  

BEG modelinin özel bir durumu ise J ve K etkileşme parametreleri ile tanımlanan spin-

1 Ising modelidir ki bu modelde izotropik BEG modeli olarak adlandırılmaktadır. 

İzotropik BEG modeli, ilk olarak bazı bileşimlerde [37], deneysel olarak elde edilen 

manyetik faz geçişlerinin teorik olarak açıklanmalarında kullanılmıştır. [38]. Daha 

sonra ortalama-alan yaklaşımı [39], genellenmiş sabit çiftlenim [32], etkin alan teorisi 

[40], kümesel değişim metodu [41] ve sonlu küme [42] gibi dengeli istatistik fizikte iyi 

bilinen yaklaşık metodlarla incelenmiştir. Bunun yanısıra modelin kesin çözümü Bethe 

kafesinde de yapılmıştır [43]. Böylece bu çalışmalarla, birçok fiziksel sistemlerin 

dengeli davranışları hakkında bilgiler elde edilmiş ve edilmeye devam edilmektedir.   

İki alt örgülü spin-1 BEG modeli bikuadratik etkileşme parametresinin itici yani 

negatif olduğu K<0 duruma karşılık gelir. Sistem A ve B gibi iç içe geçmiş iki alt 

örgüye sahiptir. Bu modelin özel bir hali de kristal alan etkileşme parametresi D = 0 

alınarak tanımlanan iki alt örgülü izotropik spin-1 BEG modelidir. Bu model üzerine 
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özel bir çalışma yapılmamakla birlikte yapılan çalışmalar iki alt örgülü BEG modeli 

kapsamında yapılmıştır. Bu yüzden biz burada iki alt örgülü izotropik spin-1 BEG 

modelinide içeren çalışmalardan bahsedeceğiz. Model iki alt örgü göz önüne alınarak, 

Tanaka ve Kawabe [20] tarafından moleküler alan ve Monte-Carlo metodu ile 

incelenerek düzen parametrelerinin sıcaklığa göre değişimi ve faz diyagramları elde 

edilmiştir. Wang ve Wentworth [44] ile Wang ve ark. [21], iki alt örgülü modelin faz 

diyagramlarını elde etmek için Monte-Carlo metodunu kullanmışlar ve önceden 

yapılmış çalışmalardan farklı olarak faz diyagramlarında antiquadrupolar faz bölgesini 

elde etmişlerdir. Netz [31] ise Monte-Carlo renormalizasyon grup tekniğini kullanarak 

yaptıkları incelemede sistemin çifte reetrant davranış sergilemesinin yanında dar bir 

bölgede ferrrimanyatik fazı elde etmişlerdir. Grigelionis ve Rosengren [29], Lapinskas 

ve Rosengren [28] ve Rosengren ve Lapinskas [27] ise, kümesel değişim metodunu 

kullanarak modeli incelemişler ve elde ettikleri sonuçların analitik ve Monte-Carlo 

metoduyla bulunan sonuçlarla uyumlu olduğunu göstermişlerdir. Akheyan ve 

Ananikian [45], modeli tekrarlama tekniklerini kullanarak Bethe örgüsü üzerinde 

incelemişlerdir. Elde ettikleri faz diyagramlarını diğer yaklaşım metotları ile elde 

edilen faz diyagramları ile karşılaştırmışlardır. Tucker ve ark. [30] modeli kümesel 

değişim metodunun çift yaklaşımını kullanarak Bethe örgüsü üzerinde incelemiş ve 

kapsamlı faz diyagramlarını ve bu faz diyagramları üzerinde ferrimanyetik ve 

antiquadrupolar faz bölgelerini detaylı bir şekilde vermişlerdir. Rosengren ve 

Haggkvist spin-1 BEG modelini bal peteği örgüsünde çalışmışlardır [46]. Ekiz ve 

Keskin [24] spin-1 BEG modelini kümesel değişim metodunu kullanılarak incelediler. 

Keskin ve Erdinç [47] modeli yol ihtimaliyet metodu ile incelediler. Son yıllarda da 

Erdinç ve ark. antiferromanyetik BEG modelini en düşük kümesel değişim metodu ile 

incelediler [23]. 

Dengeli durumun aksine, spin-1 Ising sistemlerinin dengesiz yani dinamik 

davranışlarını anlamak amacıyla çok az araştırma yapılmıştır. Bunun sebebi ise dengesiz 

davranışın çok karmaşık bir yapıda olması ve dengesiz davranışı inceleyen metotların az 

sayıda olmasıdır. Zamana bağlı tek boyutlu izotropik BEG modelini incelemek için ilk 

çalışma Obokata [48] tarafından yapılmıştır. Obokata, Bethe metodunu kullandı ve daha 

sonra da onu zamana bağlı duruma genişleterek durulma zamanlarını elde etmiş ve 

statik indirgenmiş alınganlığın sıcaklığa bağlılığını incelemiştir. Tanaka ve Takahashi 
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[49] ise moleküler alan yaklaşımını kullanarak, modelin basit bir dinamiği üzerine 

çalıştılar ve düzen parametrelerinin durulma eğrilerini elde ettiler. Aynı zamanda, kritik 

sıcaklıkta; iki durulma zamanından sadece birinin sonsuza gideceğini gösterdiler. 

Tanaka ve Takahashi [49] spin sistemleri ile ısı haznesi arasındaki etkileşmenin 

ayrıntılarını gözönüne almadılar. Keskin ve arkadaşları [50, 51] modelin bir çok 

dengesiz davranışlarını, özellikle düzen parametrelerinin yarı kararlı, kararsız 

durumlarını yol ihtimaliyet metodu ile incelediler. Erdem ve Keskin [52, 53], modelin 

durulma olayları ve özellikle sistemdeki ses dalgalarının yayılmasını, tersinmez 

termodinamiğin Onsager teorisini kullanarak kapsamlıca incelediler. Ayrıca, Özer ve 

Erdem [54], yol ihtimaliyet metodunu kullanarak hücre zarlarındaki voltaj kapılı iyon 

kanallarının dinamiği üzerine çalıştılar. 

Dengesiz sistemlerdeki ilginç problemlerden birisi de, dengesiz veya dinamik faz geçiş 

(DFG) sıcaklıklarının bulunması problemidir. DFG ilk olarak, Glauber-tipi stokastik 

dinamiği [55] kullanılarak, zamana bağlı salınımlı manyetik alan altında kinetik spin-

1/2 Ising modelinin kararlı durumları, ortalama-alan yaklaşık metodu ile incelenmesi 

sonucu bulundu [56, 57]. Daha sonra, kinetik spin-1/2 Ising modelindeki, dinamik faz 

geçişleri, dinamik ortalama-alan yaklaşık metoduyla [58] ve dinamik Monte Carlo 

hesaplamaları ile incelenmiştir [59- 63]. Tutu ve Fujiwara [64], Landau tipi 

potansiyelleri olan sistemlerde DFG sıcaklıklarını elde edebilecek sistematik metot 

geliştirmişler ve dinamik faz diyagramları sunmuşlardır. Tek boyutlu kinetik spin-1/2 

Ising modelinde ki DFG’ler Glauber metoduyla incelenmiştir [65]. Son zamanlarda ise 

daha karmaşık sistemlerde, yani spin-1 BC [66], spin-3/2 BC [67], spin-3/2 BEG [68], 

gibi yüksek spinli Ising sistemleri, Heisenberg spin sistemleri [69], CO basıncının 

periyodik değişimi ile CO oksidasyonu için Ziff-Gulari-Barshad modeli [70], XY 

modeli [71], gibi sistemlerde DFG sıcaklıkları elde edilmiş ve dinamik faz diyagramları 

sunulmuştur. DFG sıcaklıkları, deneysel olarak ilk defa, çok ince Co/Cu (001) 

ferromanyetik filmlerinde gözlenmiştir [72]. Buna ilaveten, yakın zamanda ferroik 

sistemde (ferromagnet, ferroelektrik ve ferroelastik) [73], YbaCuO filmlerde [74], 

C10E3/D2O sisteminde [75], Fe/Au(001) sisteminde [76, 77], ince polikristal Ni80Fe20 

filmlerde [78], photoinduced faz geçişi [79], Bi2Sr2CaCu2Oy süperiletken bileşiğinde 

[80] ve PEN (polietilen naftalin) nanobileşiklerinde [81], DFG sıcaklıkları gözlenmiştir. 
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Bu tez de, zamana bağlı salınımlı dış manyetik alan altında Glauber- tipi stokhastik 

dinamik ile tanımlanan tek ve iki alt örgülü kinetik izotropik spin-1 BEG sistemlerinin 

kararlı durumları ortalama alan yaklaşımı kullanılarak incelenecektir. Glauber-tipi 

stokhastik dinamik kullanılarak sistemin ortalama alan dinamik denklemleri elde 

edilerek, bu denklemler Adams-Multon kestirme ve düzeltme ve Romberg integrasyon 

metotları ile nümerik olarak çözülecektir. Sistemlerde mevcut olan fazları bulmak için 

ortalama mıknatıslanmaların ve kuadrupol momentlerin zamana bağlı davranışları 

incelenecektir. Daha sonra, dinamik mıknatıslanmaların ve kuadrupol momentlerin, 

yani dinamik düzen parametrelerinin, indirgenmiş sıcaklığın bir fonksiyonu olarak 

davranışları incelenerek dinamik faz geçiş sıcaklıkları tespit edilecektir ve dinamik faz 

geçiş sıcaklıklarının doğası (sürekli ve kesikli, yani birinci- ve ikinci-derece faz 

geçişleri) karakterize edilecektir. Ayrıca, tek alt örgülü kinetik izotropik spin-1 BEG 

sisteminde, çözümlerin kararlılıklarının ve dinamik faz geçişlerinin doğruluğunun 

kontrolü Lyapunov üstelleri ile verilecektir. Daha sonra, sistemin dinamik faz 

diyagramları indirgenmiş sıcaklık, indirgenmiş manyetik alan genligi (T, h) ve 

indirgenmiş bikuadratik etkileşme parametresi, indirgenmiş sıcaklık (k, T) 

düzlemlerinde sunulacaktır.  

Bu giriş bilgilerinden sonra, Bölüm 2’de tek alt örgülü izotropik spin-1 BEG sisteminin 

kararlı çözümleri ortalama-alan yaklaşımı kullanılarak incelenecektir. Glauber-tipi 

stokhastik dinamik kullanılarak sistemin ortalama alan dinamik denklemleri elde 

edilecektir. Elde edilen ortalama alan dinamik denklemleri Adams Multon kestirme ve 

düzeltme ve Romberg integrasyon metodları kullanılarak nümerik olarak çözülecektir. 

Ortalama mıknatıslanmanın ve kuadrupol momentin zamana bağlı davranışı incelenerek 

sistemde mevcut olan fazlar tespit edilecek, ve dinamik mıknatıslanmanın ve 

kuadrupolün, yani dinamik düzen parametrelerinin, sıcaklığa göre davranışları 

incelenerek dinamik faz geçiş sıcaklıkları elde edilecek ve dinamik faz geçiş 

sıcaklıklarının doğası (sürekli ve kesikli, yani birinci- ve ikinci-derece faz geçişleri) 

karakterize edilecektir. Liapunov üstelleri de hesaplanarak çözümlerin kararlılığı ve 

dinamik faz geçiş sıcaklıklarının doğru ve eksiksiz bulunduğu kontrol edilecektir. Daha 

sonra sistemin dinamik faz diyagramları, indirgenmiş sıcaklık ve indirgenmiş manyetik 

alan genliği (h) düzleminde, (T, h), indirgenmiş sıcaklık indirgenmiş ve bikuadratik 

etkileşme parametresi (k) düzleminde, (k, T), verilecektir. 
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Bölüm 3’de ise iki alt örgülü, itici bikuadratik etkileşme parametreli (K<0), kinetik 

izotropik spin-1 BEG sistemi incelenecektir. Glauber-tipi stokhastik dinamik 

kullanılarak sistemin ortalama alan dinamik denklemleri elde edilecektir. Sistemde 

mevcut olan fazları elde etmek için ortalama mıknatıslanmaların ve kuadrupol 

momentlerin zamana bağlı davranışları Adams Multon kestirme ve düzeltme ve 

Romberg integrasyon metodları kullanılarak incelenecektir. Dinamik faz geçiş 

sıcaklıklarını elde etmek ve dinamik faz geçişlerinin doğasını karekterize etmek için 

dinamik düzen parametrelerinin indirgenmiş sıcaklığın bir fonksiyonu olarak,  

incelenecek, daha sonra sistemin dinamik faz diyagramları yalnız (T, h) düzleminde 

verilecektir.  

Son bölümde ise, yapılan çalışma özetlenerek elde edilen sonuçların tartışılması 

yapılacaktır.  

 



 
 

2. BÖLÜM  
 

TEK ALT ÖRGÜLÜ KİNETİK İZOTROPİK SPİN-1 BLUME-EMERY-

GRİFFİTHS (BEG) SİSTEMİ 

 

 

2.1. Model ve Ortalama- Alan Dinamik Denklemleri 

 

2.1.1. Modelin Tanıtımı 

 

Tek alt örgülü izotropik spin-1 Blume-Emery-Griffiths (BEG) Ising sistemi ,üç 

durumlu, Si= ±1, 0, ve iki düzen parametreli sistemdir. Bu düzen parametreleri 

i) Ortalama mıknatıslanma, m = S  olarak tanımlanır. 

ii) Ortalama kuadropol moment, q = 2S  veya q = 3 2S2 −  şeklinde tanımlanır.  

 

Burada, ortalama mıknatıslanma ifadesi bir tarafa yönelimin diğer tarafa yönelmeden 

fazlalığını gösterir ve dipol moment diye de adlandırılır. Ortalama kuadrupol moment 

ifadesi ise ortalama mıknatıslanmanın karesinin lineer bir fonksiyonudur.  

 

Tek alt örgülü izotropik spin-1 BEG sisteminin Hamiltonyen ifadesi;  

 
2 2

i j i j i
ij ij i

J S S K S S H S ,= − − −∑ ∑ ∑H       (2.1) 

 

burada Si = ±1,0 değerlerini alır. ij  toplamın en yakın komşu çiftler üzerinden 

alınacağını gösterir. J ve K sırasıyla bilineer ve biqadratik etkileşme parametreleridir. H 

ise zamanla değişen salınımlı dış manyetik alandır (H = H0cos(wt)).  
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2.1.2. Ortalama- Alan Dinamik Denklemlerinin Elde Edilmesi 

 

Bu kesimde zamana bağlı salınımlı dış manyetik alan altında tek alt örgülü izotropik 

spin-1 BEG modeli için, sistemin davranışını tam olarak açıklayan ortalama- alan 

dinamik denklemleri elde edilecektir. Bunun için Glauber dinamiği kullanacağız ve 

master denkleminden yararlanacağız. 

 

Sistem mutlak T sıcaklığında izotermal ısı banyosu ile temas etmektedir. Sistemin 

zamanla değişimi Glauber-tipi stokhastik dinamik kullanılarak tanımlanır. Sistem 

Glauber-tipi stokhastik dinamiğe göre birim zamanda 1/τ  oranında değişim gösterir. 

Sistemin t zamanında, (S1,S2,…,SN), spin konfigürasyonuna sahip olduğu andaki 

ihtimaliyet fonksiyonu ise, P(S1,S2,…,SN) ile gösterilir. İhtimaliyet fonksiyonun zamana 

bağlılığı, spinler arası etkileşmeyi de tam olarak açıklayan master denklemi ile verilir. 

Master denklemi; 

 

'
İ İ

'
İ İ

'
1 2 N i i i 1 2 i N

i S ¹S

'
i i i 1 2 i N

i S ¹S

d P(S ,S ,...,S ;t)= ( W (S S )P(S ,S ,...,S ,...,S ;t))
dt

  + ( W (S S )P(S ,S ,...,S ,...,S ;t)),

− →

′→

∑ ∑

∑ ∑
   (2.2) 

 
şeklindedir. Burada )SS(W '

iii →  herhangi bir i’inci spinin Si durumundan '
iS  

durumuna geçiş veya olasılık yoğunluğudur. Yani sistem T mutlak sıcaklığında ısı 

banyosu ile temas halinde iken her spin Si durumundan '
iS  durumuna )SS(W '

iii →  

olasılığı ile değişir. Denge durumunda 

 

1 2 N
d P(S ,S ,...,S ; t) 0,
dt

=         (2.3) 

 
olur. Bu durumda (2.2) ile verilen master denklemine dikkat edilirse 
 

' '
i i i 1 i N i i i 1 i NW (S S )P(S ,...,S ,...,S )=W (S S )P(S ,...,S ,...,S ),→ →    (2.4) 

 
olduğu kolaylıkla görülebilir ve master denkleminden olasılık yoğunlukları oranı 
 

''
1 2 i Ni i i

'
i i i 1 2 i N

P(S ,S ,...,S ,...,S )W (S S ) ,
W (S S ) P(S ,S ,...,S ,...,S )

→
=

→
      (2.5) 
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şeklinde bulunur. Buradan 

1 2 NP(S ,S ,...,S )αexp(-βH),         (2.6) 

 
şeklindeki genel kanonik dağılım ifadesinden yararlanılırsa olasılık yoğunluğu, 
 

'
i

'
' i i

i i i '
i i

S

exp(-βΔE(S S ))1W (S S )= ,
τ exp(-βΔE(S S ))

→
→

→∑
      (2.7) 

 
şeklinde verilir. Burada ∑

'
iS

toplamın '
iS  = ±1, 0 değeri üzerinden alınacağını gösterir. 

B1/ k T,β =  şeklindedir ve Bk  Boltzmann sabitidir. EΔ  ise herhangi bir iS  spininin '
iS  

durumuna geçtiği zamanda sistemin enerjisinde meydana gelen değişmeyi gösterir  

 

Eşitlik (2.1) de verilen Hamiltonyen ifadesinden yararlanılarak 

 
' ' '2 2 2

i i i i j i i j
j j

ΔE(S S )=-(S -S )(J S +H)-(S -S )(3K 3S -2),→ ∑ ∑    (2.8) 

şeklinde yazılır. Buradan,  

 

j
j

x S H= +∑  ve 2
j

j
y=3 K 3S -2

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ,        (2.9) 

ile tanımlanırsa, 

 
2 2

i i i i i iE(S S ) (S S )x ((S ) (S ) )y,′ ′ ′Δ → = − − − −      (2.10) 

 
olur. Şimdi Si durumundan '

iS  durumuna mümkün olan tüm enerji değişimlerini 

hesaplayabiliriz. Bulunan bu enerji değişimi ifadeleri (2.7) denkleminde yerine yazılırsa 

her '
i iS S→  geçişi için olasılık yoğunlukları şu şekilde elde edilir. 

 

i
1 exp(-βy)W (1 0)=
τ 2cosh(βx)+exp(-βy)

→ ,                (2.11.a) 

i
1 exp(-βy)W (-1 0)=
τ 2cosh(βx)+exp(-βy)

→ ,                (2.11.b) 
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i
1 exp(βx)W (-1 1)=
τ 2cosh(βx)+exp(-βy)

→ ,               (2.11.c) 

i
1 exp(βx)W (0 1)=
τ 2cosh(βx)+exp(-βy)

→ ,               (2.10.d) 

i
1 exp(-βx)W (1 -1)=
τ 2cosh(βx)+exp(-βy)

→ ,                (2.10.e) 

i
1 exp(-βx)W (0 -1)=
τ 2cosh(βx)+exp(-βy)

→ ,                (2.10.f) 

iW (0 0)=0→ ,                              (2.10.g) 

iW (1 1)=0→ ,                   (2.10.h) 

iW (-1 -1)=0→ .                   (2.10.ı) 

 

Olasılık yoğunluğu ifadelerine dikkat edilirse '
i i iW (S S )→ ’nin iS ’ye bağlı olmadığını 

kolayca görebiliriz ve '
i i iW (S S )→ = '

i iW (S )  yazabiliriz. Bu durumda, 

 

i i iW (1 0) W ( 1 0) W (0),→ = − → =       (2.11.a) 
 

i i iW (-1 1)=W (0 1)=W (1)→ → ,      (2.11.b) 
 

i i iW (1 1) W (0 1) W ( 1),→− = → − = −       (2.11.c) 
 
olduğu görülür. Buna göre (2.2) ile verilen master denklemi, 
 

'
i i

'
i i

'
1 2 N i i 1 2 i N

i S S

i i 1 2 i N
i S S

d P(S ,S ,...,S ; t) ( W (S )P(S ,S ,...,S ,...,S ; t))
dt

( W (S )P(S ,S ,...,S ,...,S ; t)),
≠

≠

= −

′+

∑ ∑

∑ ∑
   (2.12) 

 
şekline dönüşür. Master denkleminden yararlanılarak sistemin genel diferansiyel 

denklemleri şu şekilde elde edilir. 

 

j
j

k k 2
j j

j j

2sinh (J S H)
d S S ,
dt 2cosh (J S H) exp( 3 K (3S 2))

β +
τ = − +

β + + − β −

∑
∑ ∑

  (2.13) 
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2
j

j2 2
2

j j
j j

3exp(-3βK (3S -2))
dτ 3 2 = - 3 2 +1- ,
dt 2coshβ(J S +H)+exp(-3βK (3S -2))

− −
∑

∑ ∑k kS S  (2.14) 

 
ortalama- alan yaklaşımı kullanılarak, 
 

0
2

0

2sinh (Jz S H cos(wt))d S S ,
dt 2cosh (Jz S H cos(wt)) exp( 3 Kz 3S 2 )

β +
τ = − +

β + + − β −
  (2.15) 

2
2 2

2
0

3exp( 3 Kz 3S 2 )d 3S 2 3S 2 1 ,
dt 2cosh (Jz S H cos(wt)) exp( 3 Kz 3S 2 )

− β −
τ − = − − + −

β + + − β −
 (2.16) 

 
olarak bulunur. Bulunan bu ortalama- alan dinamik denklemleri, 

 

[ ]
[ ]

2sinh (1/ T) (m h cos )d m m ,
d 2cosh (1/ T) (m h cos ) exp( 3kq / T)

+ ξ
Ω = − +

ξ + ξ + −
   (2.17) 

[ ]
dq 3exp( 3kq / T)q 1 ,
d 2cosh (1/ T) (m h cos ) exp( 3kq / T)

−
Ω = − + −

ξ + ξ + −
   (2.18) 

şeklinde yazılabilir. Burada Sm = , 2q 3 S 2≡ − , wt=ξ , 1)Jz(T −β= , Kk=
J

, 

Jz
Hh 0=  ve Ω=τw olarak tanımlanmıştır. T, h, k ve Ω  boyutsuz parametrelerdir. 

Sistemimizde π=Ω 2  ve z = 4 değerindedir. 

 

2.2. Dinamik Düzen Parametreleri ve Dinamik Faz Geçiş Noktaları 

 
Bu kesimde, sistemde mevcut olan fazları bulmak için (2.17) ve (2.18) de verilen 

ortalama- alan dinamik denklemleri, Adams- Moulton kestirme ve düzeltme yöntemi 

kullanılarak nümerik olarak çözülerek dinamik düzen parametrelerinin zamana bağlı 

davranışı incelenecektir. Daha sonra, dinamik düzen parametrelerinin tanımı yapılacak 

ve bu tanım denklemleri Adams- Moulton kestirme ve düzeltme, ve Romberg 

integrasyon yöntemleri kullanılarak nümerik olarak çözülülecek ve dinamik düzen 

parametrelerinin davranışları indirgenmiş sıcaklığın bir fonksiyonu olarak incelenerek, 

dinamik faz geçiş noktaları tespit edilecek ve dinamik faz geçişlerinin doğası (sürekli ve 

kesikli, yani birinci- ve ikinci- derece faz geçişleri) karakterize edilecektir. Ayrıca 
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dinamik faz geçiş noktalarının doğruluğunu ve elde edilen çözümlerin kararlılığını 

göstermek amacıyla Lyapunov üstelleri de hesaplanacaktır. Son olarak, (2.17) ve (2.18) 

verilen ortalama- alan dinamik denklemlerin kararlı çözümlerinden yararlanarak, k 

parametresinin farklı değerleri için (T, h) düzleminde ve h parametresinin farklı 

değerleri için (k, T) düzleminde dinamik faz diyagramları sunulacaktır. Denklem (2.17) 

ve (2.18)’in kararlı çözümleri 2π periyodu için ξ’nin periyodik bir fonksiyonu olacaktır. 

Bunun nedeni ise dinamik denklemlerde ki kosinüslü terimden kaynaklanmaktadır. 

Böylece, çözümler sahip oldukları ya da olmadıkları özelliklerine göre üç tip çözümden 

biri olabilir. 

 

( ) ( )m mξ + π = − ξ         (2.19) 

( ) ( )q qξ + π = − ξ         (2.20) 

 

Eğer çözüm (2.19) ve (2.20) ile verilen özelliğe sahipse simetrik çözüm olarak 

adlandırılır ve düzensiz veya paramanyetik faza karşılık gelir. Bu durumda, 

mıknatıslanma m(ξ) sıfır değeri etrafında salınır ve manyetik alana uyum gösterir. Diğer 

taraftan, kuadrupol moment q(ξ) sıfırdan farklı bir değer etrafında salınır ve sıcaklık 

sonsuza gittiğinde sıfır değeri etrafında salınır. İkinci çözüm ise, çözüm (2.19) ve (2.20) 

ile verilen özelliğe sahiptir ve simetrik olmayan çözümdür. Bu çözüm ferromanyetik faz 

olarak adlandırılır. Bu çözümde, mıknatıslanma ve kuadrupol moment sıfırdan farklı bir 

değer etrafında salınırlar ve dış manyetik alanı takip etmezler. Üçüncü tip çözümde ise, 

çözüm (2.19) uyar ve (2.20) ye uymaz. Bu çözüm ferrokuadrupol ya da basitçe 

kuadrupol (fq) faza karşılık gelir. Bu tip çözümde, m(ξ) sıfır değeri civarında salınır ve 

dış manyetik alana uyum gösterir, ancak q(ξ) dış manyetik alana uyum göstermez ve 

sıfır etrafında salınmaz ve -2 ya da +1 değeri civarında salınır. Eğer -2 etrafında 

salınırsa bu simetrik olmayan çözüm ferrokuadrupol ya da basitçe kuadrupol (fq) faza, 

+1 etrafında salınırsa bu çözüm düzensiz (d) faza karşılık gelir. Bu gerçekler açık bir 

şekilde (2.17) ve (2.18) ile verilen dinamik denklemlerin nümerik olarak çözülmesiyle 

görülür. (2.17) ve (2.18) numaralı denklemler, verilen parametreler ve başlangıç 

değerleri için Adams- Moulton kestirme ve düzeltme yöntemi kullanılarak çözüldü ve 

çözümler Şekil 2.1 ve Şekil 2.2 gösterildi. Bu şekillerde beş farklı çözüm 

görülmektedir. Sistemde d, f temel fazlarının yanı sıra bu fazların bir arada bulunduğu 



13 
 

üç tane karma faz mevcuttur. Bunlar f ve d fazlarının bir arada olduğu f+d karma fazı, f 

ve fq fazlarının bir arada olduğu f+fq karma fazı ve fq ve d fazlarının bir arada olduğu 

fq+d karma fazlarıdır. Şekil 2.1(a)’da yalnızca simetrik çözüm elde edilmiştir yani 

burada sadece düzensiz faz (d) mevcuttur, ama Şekil 2.1(b) de simetrik olmayan çözüm 

elde edilmiştir ve bu çözüm ferromanyetik (f) faza karşılık gelir. Bu çözümler başlangıç 

değerlerine bağlı değildir. Şekil 2.1(c) de m(ξ) için simetrik olmayan çözüme ve q(ξ) 

için simetrik çözüme sahibiz. Çünkü m(ξ) sıfır değeri etrafında salınırken q(ξ), -2 veya 

+1 değerleri etrafında salınır. Diğer taraftan Şekil 2.2(a) da m(ξ) ve q(ξ) için iki çözüme 

sahibiz. Birinci çözüm m(ξ) sıfır değeri etrafında ve q(ξ), -2 değerleri etrafında salınır 

bu nedenle burada fq fazı mevcuttur ve ikinci çözümde m(ξ), ±1 değeri etrafında 

salınırken q(ξ), +1 değerleri etrafında salınır bu nedenle burada f fazı mevcuttur. Bu 

durumda sistemde f+fq karma fazı meydana gelmiş olur ve çözümler başlangıç 

değerlerine bağlıdır. Şekil 2.2(b) Şekil 2.2(a) ya benzerdir burada f ve d fazları bir arada 

bulunur. Bu sebeple sistemde f+d karma fazı veya çözümü mevcuttur ve çözümlerde 

başlangıç değerlerine bağlıdır. 
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Şekil 2.1. Tek alt örgülü izotropik spin-1 BEG modeli için mıknatıslanmanın (m) 
ve kuadrupol momentin (q) zamanla değişimi. a) Sistemde sadece 
düzensiz (d) faz mevcuttur (k = 0.1, h = 1.0, T = 2.0). b) Sistemde sadece 
ferromanyetik (f) faz mevcuttur, (k = 0.1, h = 0.2, T = 0.375). c) 
Sistemde hem ferrokuadropolar (fq) faz hem de düzensiz (d) faz 
mevcuttur, (k = 0.3, h = 1.4, T = 0.125). 
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Şekil 2.2. Tek alt örgülü izotropik spin-1 BEG modeli için mıknatıslanmanın (m) 
ve kuadrupol momentin (q) zamanla değişimi. a) Sistemde hem 
ferromanyetik (f) faz hem de ferrokuadropolar (fq) faz mevcuttur, (k = 
0.3, h = 0.3, T = 0.25). b) Sitemde hem düzensiz (d) faz hem de 
ferromanyetik (f) faz mevcuttur, (k = 0.10, h = 0.750, T = 0.175). 
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Böylece, Şekil 2.1 ve Şekil 2.2 den görüldüğü gibi sistemde beş farklı faz 

bulunmaktadır. Bunlar, d, f, f+d, fq+d ve f+fq fazlarıdır. Bu beş fazın arasındaki 

dinamik faz sınırlarını belirleyebilmemiz için, dinamik faz geçiş sıcaklıklarını (DFG) 

hesaplamalıyız ve daha sonra bu noktalar kullanılarak sistemin dinamik faz 

diyagramları sunulabiliriz. Dinamik faz geçiş sıcaklıkları, bir peryot başına ortalama 

düzen parametrelerinin yada dinamik düzen parametrelerinin davranışının indirgenmiş 

sıcaklığın bir fonksiyonu olarak incelenmesiyle elde edilecektir. Elde edilen DFG 

noktaları aynı zamanda Lyapunov üstelleri kullanılarak elde edilip bu noktaların 

doğruluğunun kontrolü yapılacaktır. Dinamik düzen parametreleri, yani dinamik 

mıknatıslanma (M) ve dinamik kuadrupol moment (Q), aşağıdaki şekilde tanımlanır. 

 
2

0

1M m( )d ,
2

π

= ξ ξ
π ∫          (2.21) 

 
2

0

1Q q( )d ,
2

π

= ξ ξ
π ∫          (2.22) 

 
M ve Q’nun davranışı, indirgenmiş sıcaklığın bir fonksiyonu olarak, h ve k’nın farklı 

değerleri için dinamik denklemlerin Adams-Moulton kestirme ve düzeltme metodu ve 

Romberg integrasyon metodunun birleşimiyle incelendi ve sekiz faz arasındaki dinamik 

faz geçiş noktalarının nasıl hesaplandığı ve dinamik faz sınırların nasıl elde edildiği, 

örnek olarak, Şekil 2.3, Şekil 2.4 ve Şekil 2.5’de verildi. Bu şekillerde kalın ve ince 

çizgiler sırasıyla M ve Q’yu temsil etmektedir. TC ve Tt, M ve Q için sırasıyla birinci- 

ve ikinci- derece faz geçiş sıcaklıklarıdır. TtQ yalnızca Q için birinci- derece faz geçiş 

sıcaklığıdır. Şekil 2.3, k = 0.1 ve h = 0.6 değerleri için dinamik düzen parametrelerinin, 

M ve Q, indirgenmiş sıcaklığa bağlılığını göstermektedir. Dinamik düzen parametreleri, 

indirgenmiş sıcaklık artarken sürekli olarak azalarak TC kritik sıcaklığında, sistem f 

fazından d fazına geçmekte ve sistemde ikinci- derece bir faz geçişi meydana 

gelmektedir.  
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Şekil 2.3.  Dinamik mıknatıslanmanın, M, (kalın çizgi) ve dinamik kuadrupol momentin, 
Q, (ince çizgi) indirgenmiş sıcaklığa bağlı olarak davranışları, (k = 0.1 ve h = 
0.6). Sistemde ikinci- derece faz geçişi meydana gelmektedir, TC = 0.5125. 

 

 

Şekil 2.4, k = 0.10 ve h = 0.2 için M ve Q’ nün davranışını indirgenmiş sıcaklığın bir 

fonksiyonu olarak iki farklı başlangıç değeri için, başlangıç değerleri Şekil 2.4(a) için M 

= 1.0 ve Q = 1.0 ve Şekil 2.4(b) için M = 0 ve Q = -2.0, çizilmiştir. Şekil 2.4(a)’nın 

davranışı Şekil 2.3 e benzemekle birlikte tek fark TC = 0.6525 dir. Şekil 2.4(b)’ de iki 

faz geçişi meydana gelmektedir. Bunlardan birincisi kuadropolar (fq) fazdan 

ferromanyetik faza (f), Tt kritik sıcaklığında birinci dereceden faz geçişidir, ikincisi ise f 

fazından d fazına ikinci derece faz geçişidir. 
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Şekil 2.4.  Dinamik mıknatıslanmanın, M, (kalın çizgi) ve dinamik kuadrupol 

momentin, Q, (ince çizgi) indirgenmiş sıcaklığa bağlı olarak 
davranışları, (k = 0.1 ve h = 0.2). a) Sistemde f fazından d fazına 
ikinci- derece faz geçişi meydana gelmektedir, (TC = 0.6525). b) 
Sistemde birbirini takip eden iki faz geçişi meydana gelmemektedir, 
birincisi fq fazından f fazına birinci- derece faz geçişi (TtQ = 0.1775) 
ve ikincisi f fazından d fazına ikinci- derece faz geçişidir (TC = 
0.6525). 

 
Şekil 2.5, k = 0.10 ve h = 0.8 için M ve Q’ nun davranışını indirgenmiş sıcaklığın bir 

fonksiyonu olarak iki farklı başlangıç değeri için, başlangıç değerleri Şekil 2.5(a) için M 

= 1 ve Q = 1.0 ve Şekil 2.5(b) için M = 0 ve Q = -2.0, çizilmiştir. Şekil 2.5(a)’da hem M 

hem de Q birinci- derece faz geçişi geçirmektedir, çünkü M ve Q indirgenmiş sıcaklık 

arttıkça azalmakta ve belirli bir sıcaklık değerinde süreksizlik meydana gelmektedir. 

Süreksizliğin meydana geldiği sıcaklık Tt sıcaklığıdır ve faz geçişi f fazından d fazına 

meydana gelmektedir. Şekil 2.5(b) göstermektedir ki M daima sıfıra eşit ve sıfır 

sıcaklıkta Q = 1.0 değerini almaktadır, fakat sistem hiç faz geçişi vermemektedir, 

böylece bu şekil d fazına karşılık gelmektedir. Şekil 2.5(a) ve Şekil 2.5(b)’ye birlikte 

bakıldığında sistemde f ve d fazlarının bir arada olduğu f + d faz bölgesinin mevcut 

olduğu, h = 0.8 değeri için Şekil 2.7(a)’den kolaylıkla görülebilir. 
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Şekil 2.5.  Dinamik mıknatıslanmanın, M, (kalın çizgi) ve dinamik kuadrupol 

momentin, Q, (ince çizgi) indirgenmiş sıcaklığa bağlı olarak 
davranışları, (k = 0.1 ve h = 0.8). a) Sistemde f fazından d fazına 
birinci- derece faz geçişi meydana gelmektedir, (Tt = 0.2125). b) 
Sistemde herhangi bir faz geçişi olmamaktadır ve bu durum 
düzensiz (d) faza karşılık gelir. 

 

Şimdi, çözümlerin kararlılığını ve bulunan dinamik faz geçiş noktalarının doğruluğunu 

Lyapunov üstellerinin hesaplanması ile kontrol edebiliriz. Eğer denklem (2.17) ve 

(2.18) 
 

1
dm F (m, ),
d

Ω = ξ
ξ

        (2.23) 

 

2
dq F (q, ),
d

Ω = ξ
ξ

        (2.24) 

 

şeklinde yazılırsa Lyapunov üstelleri mλ  ve qλ  aşağıdaki gibi verilir. 

 
2

1
m

0

F1 d ,
2 m

π ∂
Ωλ = ξ

π ∂∫         (2.25) 

 
2

2
q

0

F1 d ,
2 q

π ∂
Ωλ = ξ

π ∂∫         (2.26) 
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m 0λ <  ve q 0λ <  olduğunda çözümler kararlıdır. Biz M ve Q için iki Lyapunov 

üsteline sahibiz. Bunlar simetrik durumda msλ  ve qsλ  simetrik olmayan durumda ise 

mnλ  ve qnλ  dir. Eğer sıcaklık geçiş sıcaklığına yaklaşırken Lyapunov üstelleri mnλ  ve 

msλ  sürekli olarak sıfıra gidiyorsa, mnλ  = msλ  = 0 olduğu yerdeki sıcaklık ikinci- derece 

faz geçiş sıcaklığıdır (TC). Bununla birlikte, eğer Lyapunov üstelleri qnλ  ve qsλ  sürekli 

olarak sıfıra giderken bir çeşit zirve (cusp) yaptıkları sıcaklık değeri ikinci- derece faz 

geçiş sıcaklığıdır (TC). Q için Lyapunov üstellerinin TC sıcaklığında sıfır olmamasının 

nedeni Q dinamik kuadrupol momentin, TC sıcaklığında sıfır olmamasıdır. Diğer 

taraftan, eğer sıcaklık faz geçiş sıcaklığına yaklaşırken Lyapunov üstellerinin 

süreksizlik gösteriyorsa, atlama yaptığı sıcaklık birinci- derece faz geçiş sıcaklığıdır. Bu 

davranışları açık bir şekilde görebilmek için, Lyapunov üstelleri indirgenmiş sıcaklığın 

bir fonksiyonu olarak incelenmiş ve k = 0.1 ve h = 0.2 (bu değerler Şekil 2.4(b)’ye 

karşılık gelmektedir) Şekil 2.6’da gösterilmiştir. Şekil 2.6’da, kalın ve ince çizgiler 

sırasıyla simetrik ( sλ ) ve nonsimetrik ( nλ ) durumları göstermektedir. TC, M ve Q için 

ikinci- derece faz geçiş sıcaklığıdır ve TtQ sadece Q için birinci- derece faz geçiş 

sıcaklığıdır. Şekil 2.6(a), M için Lyapunov üstelinin davranışını göstermektedir ve 

burada iki faz geçişi meydana gelmektetir. TtQ = 0.1775 sıcaklığında birinci- derece faz 

geçişi vardır, çünkü msλ  den mnλ ’e süreksiz bir atlama yapmıştır, sistemde TC = 0.6525 

sıcaklığında mnλ  = msλ  = 0 olduğundan ikinci- derece faz geçişi vardır. Şekil 2.6(b), Q 

için Lyapunov üstelinin sıcaklıkla davranışını göstermektedir. TtQ = 0.1775 sıcaklığında 

birinci- derece faz geçişi vardır, çünkü qnλ  den qn 'λ ’e süreksiz bir atlama yapmıştır, 

( qnλ , f fazına karşılık gelirken qn 'λ  fq fazına karşılık gelir). Daha sonra qnλ  ve qn 'λ  bir 

zirve yapar, bu yüzden TC = 0.6525 sıcaklığında ikinci- derece faz geçişi meydana gelir. 

Şekil 2.6, Şekil 2.4(b) ile karşılaştırıldığında sonuçların birbirleriyle uyum gösterdiği 

görülebilir. Ayrıca, hesaplamalarda mλ  < 0 ve qλ  < 0 olarak bulunduğundan dolayı 

çözümlerin kararlılığı görülür. 

 

Son olarak belirtmeliyiz ki, salınımlı manyetik alan dinamik faz geçişlerine neden 

olmaktadır, çünkü indirgenmiş statik manyetik alan genliği (h) için hesaplamalar 
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yapıldığında sistemin hiç faz geçişi vermediği görülmektedir. Bu gerçek, daha önce 

yapılan çalışmada gösterilmiştir. [66, Şekil 6]. 

 

 
Şekil 2.6.  Lyapunov üstellerinin indirgenmiş sıcaklığın bir fonksiyonu olarak 

davranışları, (k = 0.1 ve h = 0.2). a) M için indirgenmiş sıcaklığın bir 
fonksiyonu olarak Lyapunov üstellerin davranışı. b) Q için indirgenmiş 
sıcaklığın bir fonksiyonu olarak Lyapunov üstellerin davranışı. 

 

 

2.3. Dinamik Faz Diyagramları 

 

Önceki kesimde dinamik faz geçiş noktaları elde edildi ve doğruluğu da kontrol edildi. 

Şimdi sistemin, k’nın çeşitli değerleri için (T, h) düzleminde ve h’nin çeşitli değerleri 

için de (k, T) düzleminde dinamik faz diyagramlarını sunabiliriz. Bu faz 

diyagramlarında sürekli ve kesik çizgiler sırasıyla ikinci- derece ve birinci- derece faz 
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geçiş çizgilerini göstermektedir. Dinamik üçlükritik nokta içi dolu dairelerle 

gösterilmiştir. (T, h) düzleminde temel topolojisi farklı altı ve (k, T) düzleminde temel 

topolojisi farklı beş faz diyagramı bulunmuştur. 

 

2.3.1. (h-T) Düzleminde Dinamik Faz Diyagramları 

 

Bu kesimde, indirgenmiş bikuadratik etkileşim parametresinin (k) çeşitli değerleri için 

(T, h) düzleminde dinamik faz diyagramları sunulacak ve sistemin k parametresine 

bağlılığı incelenecektir. Dinamik üçlükritik nokta içi dolu dairelerle gösterilmiştir. TP 

dinamik üçlü nokta ve QP dinamik dörtlü noktadır. 
 

i-) 0 < k ≤ 0.111 aralığında k = 0.1 için (T, h) düzleminde faz diyagramı Şekil 

2.7(a) gösterilmiştir. Bu faz diyagramında, yüksek indirgenmiş sıcaklıkta (T) ve yüksek 

indirgenmiş manyetik alan genliğinde (h), düzensiz (d) faz mevcuttur, h ve T’ nin düşük 

değerlerinde ise ferromanyetik (f) faz gözlenmektedir. Bu iki bölge arasındaki dinamik 

faz sınırı, f → d, ikinci- derece faz geçiş çizgisidir. İndirgenmiş sıcaklığın düşük ve 

indirgenmiş manyetik alan genliğinin belirli değerlerinde f ve d fazının birlikte 

bulunduğu f + d karma fazı bulunmaktadır. f + d karma fazı, f ve d fazlarından birinci- 

derece faz geçiş çizgisiyle ayrılmıştır. Sistem aynı zamanda birinci ve -ikinci derece faz 

geçiş çizgilerini birleştiren yalnızca bir dinamik üçlükritik noktaya sahiptir. Ayrıca T ve 

h ın çok düşük değerlerinde sistemde f+fq karma fazı veya bölgesi mevcuttur ve bu 

karma faz ile f fazı arasındaki dinamik faz sınırları birinci dereceden faz geçişidir. Bu 

faz diyagramı tek spin Ising [66, 83-85] (Kaynak 66 ve 84’ de verilen çalışmalarda, f + 

fq karma fazı yerine sırasıyla f + p ve f2 + p karma fazları gelmektedir) ve karma spin 

[86, 89, 90] (Kaynak 86 ve 89’ da verilen çalışmalarda f ve fq fazlarının yerine sırasıyla 

i ve a fazları, Kaynak 90 ile verilen çalışmada f + fq karma fazı yerine i + p karma fazı 

gelmektedir) Ising sistemlerinde de elde edilmiştir. 

 

ii) 0.111 < k ≤ 0.169 aralığında k = 0.15 için (T, h) düzleminde faz diyagramı 

Şekil 2.7(b) de verilmiştir. Bu faz diyagramı Şekil 2.7(a) ya benzer fakat burada sıfır 

sıcaklığında f fazı kaybolur ve f+ fq bölgesi büyümeye başlar. Ayrıca sistemde bir adet 

dinamik üçlükritik nokta ve dinamik üçlü nokta (TP) mevcuttur. Bu faz diyagramının 

benzeri spin-1 BEG [83] çalışmasında da elde edildi. 
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iii-) 0.169 < k ≤ 0.293 aralığında k = 0.2 için (T, h) düzleminde faz diyagramı 

Şekil 2.7(c) de sunulmuştur. Sistemde iki tane üçlükritik nokta mevcuttur; birisi Şekil 

2.7(a) dakine benzerdir diğeri ise h ın düşük ve T’ nin yüksek değerlerinde meydana 

gelir. Bu yüzden h ın düşük ve T nin yüksek değerlerinde f ve d fazları arasında birinci-  

derece faz geçişi bulunur. T’ nin düşük değerlerinde ve h ın belli değerlerinde f+ fq 

karma fazı meydana gelir. Ayrıca sistemde T’ nin yüksek h ın düşük değerlerinde f+d 

karma fazı meydana gelir. Dinamik faz sınırları f ve d fazını ayıran iki üçlükritik nokta 

haricinde birinci- derece faz geçişidir. Bu sınırda ikinci- derece faz geçişi vardır. Ayrıca 

sistemde bir tane dinamik dörtlü nokta (QP) ve dinamik üçlü nokta (TP) mevcuttur. Bu 

faz diyagramının benzeri spin-1 BEG [83] çalışmasında da elde edildi. 

 

iv) 0.293 < k ≤ 0.325 aralığında faz diyagramı k = 0.3 için çizilmiştir. Şekil 

2.7(d) de görüldüğü gibi bu faz diyagramı Şekil 2.7(c) ye benzer ama ondan farkı, fq+d 

bölgesi büyümeye başlar ve h ın düşük ve T nin yüksek değerlerinde f+ d karma fazı 

meydana gelir. 

 

v) 0.325 < k ≤ 0.535 aralığında faz diyagramı k = 0.4 için elde edilmiştir ve 

Şekil 2.7(e) de sunulmuştur. Sistemde f+fq, fq+d ve d fazı olmak üzere üç faz ve iki 

tanede üçlükritik nokta bulunmaktadır. Bu üçlükritik noktalar arasındaki ikinci- derece 

geçişin dışında bütün faz sınırları birinci- derece faz geçişidir.  

 

vi) k > 0.535 değerlerinde k = 1.0 için faz diyagramı oluşturulmuştur. Şekil 

2.7(f) de verilen bu faz diyagramı Şekil 2.7(e) deki diyagrama benzer fakat ondan farkı 

sistemde dinamik üçlükritik noktanın birisi kaybolmuştur. Bununla birlikte k nın değeri 

arttığında fq+d bölgesi büyümeye başlar. Bu faz diyagramının benzeri, Kaynak 83 ve 

85’ de verilen çalışmalarda da elde edilmesine rağmen Kaynak 85 ile verilen çalışmada 

f fazı yerine f2 fazı gelmektedir. 

 

Bu kesimde elde edilen sonuçlar Int. J. Mod. Phys. C. dergisinde yayınlanmıştır [82].   
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Şekil 2.7.  Tek alt örgülü izotropik Blume- Emery- Griffiths modelinin (T, h) 

düzleminde dinamik faz diyagramları. Sistemde düzensiz (d), 
ferromanyetik (f) ve üç karma faz bölgesi mevcuttur, bunlar fq+d, f+fq 
ve f+d karma fazlarıdır. Kesikli ve sürekli çizgiler sırasıyla birinci-  
derece ve ikinci- derece faz geçiş çizgilerini ve içi dolu daireler dinamik 
üçlükritik noktayı temsil ederler. TP dinamik üçlü nokta ve QP dinamik 
dörtlü noktadır. (a) k = 0.1, (b) k = 0.15, (c) k = 0.2, (d) k = 0.3, (e) k = 
0.4, (f) k = 1.0. 



25 
 

2.3.2. (k-T) Düzleminde Dinamik Faz Diyagramları 
 

Bu kesimde dinamik faz diyagramları (k, T) düzleminde sunulmuş ve Şekil 2.8(a)-(e)’ 

de gösterilmiştir. Sistemde beş farklı dinamik faz diyagramı elde edilmiştir. Bu 

diyagramlarda kesikli ve sürekli çizgiler sırasıyla birinci- ve ikinci- derece faz geçişini 

temsil etmektedir. Ayrıca, dinamik üçlükritik nokta içi dolu dairelerle gösterilmiştir. B 

dinamik çift kritik son nokta, TP dinamik üçlü nokta ve QP dinamik dörtlü noktadır. 

 

i) 0 <k≤0.479 aralığında faz diyagramı h = 0.1 için Şekil 2.8(a)’ da gösterilmiştir. 

Faz diyagramı d, f temel fazlarının yanı sıra bu fazların bir arada bulunduğu üç adet 

f+d, f+fq, fq+d karma fazlarını içermektedir. Bununla birlikte iki tane üçlükritik nokta 

ile bir adet dinamik dörtlü nokta (QP) ve bir adet dinamik üçlü nokta (TP) 

bulunmaktadır. Dinamik faz sınırları f ve d fazları arasında ve k’ nın yüksek değerleri 

için f+fq ve fq+d fazları arasında ikinci- dereceden faz geçişidir, bunun dışındaki bütün 

dinamik faz geçişleri birinci- derecedendir.  

 

ii) Faz diyagramı h = 0.6 için Şekil 2.8(b)’ de gösterilmiştir. f ve d temel 

fazlarının yanında f+fq ve fq+d karma fazları sistemde mevcuttur. Dinamik faz sınırları 

f ve d fazları ve f+fq ve fq+d fazları arasında ikinci- derecedendir, diğer taraftan f ve 

f+fq ile d ve fq+d fazları arasında birinci- derecedendir. Ayrıca sistemde bir adet 

dinamik çift kritik son nokta (B) bulunmaktadır. Bu faz diyagramının benzeri Kaynak 

87 ve 92 ile verilen çalışmalarda da elde edilmiştir. Yalnız Kaynak 92 ile verilen 

çalışmada f fazı yerine f3/2 fazı gelmektedir. 

 

iii) Faz diyagramı h = 0.7 için Şekil 2.8(c)’ de sunulmuştur. Faz diyagramında bir 

tane dinamik üçlükritik nokta ile bir adet dinamik dörtlü nokta (QP) bulunmaktadır. 

Dinamik faz sınırları f+fq ve fq+d fazları arasında k nın yüksek değerlerinde ikinci-  

derece ve k’nın düşük değerlerinde birinci- dereceden faz geçiş çizgileridir. Diğer bütün 

faz geçiş sınırları birinci- derecedendir. 

 

iv) Faz diyagramı h = 0.9 için Şekil 2.8(d)’ de elde edilmiştir. Bu faz diyagramı 

Şekil 2.8(c)’ ye benzemekle birlikte tek fark, dinamik faz sınırlarının hepsi birinci-  

derece faz geçiş çizgileridir. Sistemde dinamik üçlükritik nokta mevcut değildir, fakat 



26 
 

bir tane dinamik dörtlü nokta mevcuttur. Bu faz diyagramının benzeri Kaynak 87 ve 92 

ile verilen çalışmalarda da elde edilmiştir. Yalnız Kaynak 92 ile verilen çalışmada f fazı 

yerine f3/2 fazı gelmektedir. 

 

v) Faz diyagramı h = 0.9 için Şekil 2.8(e)’ de gösterilmiştir. Bu faz diyagramı 

Şekil 2.8(d)’ ye benzer, fakat bu faz diyagramında f+d ve f+fq karma fazları 

kaybolmuştur, ve dolayısı ile QP’ de meydana gelmektedir. Bu faz diyagramının 

benzeri Kaynak 87, 89 ve 92 ile verilen çalışmalarda da elde edilmiştir. Yalnız Kaynak 

89 da verilen çalışmada f ve fq fazlarının yerine sırasıyla i ve a fazları, Kaynak 92 de 

verilen çalışmada f fazı yerine f3/2 fazı gelmektedir. 
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Şekil 2.8.  Tek alt örgülü izotropik Blume- Emery- Griffiths modelinin (k, T) 

düzleminde dinamik faz diyagramları. Sistemde düzensiz (d), 
ferromanyetik (f) ve üç karma faz bölgesi mevcuttur, bunlar fq+d, f+fq 
ve f+d karma fazlarıdır. Kesikli ve sürekli çizgiler sırasıyla birinci-  
derece ve ikinci- derece faz geçiş çizgilerini ve dolu daireler dinamik 
üçlükritik noktayı temsil ederler. B dinamik çift kritik son nokta, TP 
dinamik üçlü nokta ve QP dinamik dörtlü noktadır. (a) h = 0.1, (b) h = 
0.6, (c) h = 0.7, (d) h = 0.9, (e) h = 1.25.  



3. BÖLÜM 

 

İKİ ALT ÖRGÜLÜ KİNETİK İZOTROPİK SPİN-1 BLUME-EMERY-
GRİFFİTHS (BEG) SİSTEMİ 

 
 

3.1. Model ve Ortalama- Alan Dinamik Denklemleri 

 

3.1.1. Modelin Tanıtımı 
 
İtici (K<0) bikuadratik etkileşme parametreli, kinetik izotropik spin-1 Blume-Emery-

Griffiths (BEG) Ising modeli, A ve B gibi iki alt örgülü Ising model olup, A alt örgüsü 

Si
A = ±1, 0 ve B alt örgüsü Sj

B = ±1, 0 spin değerlerine sahiptir. Sistem dört adet düzen 

parametresine sahiptir. Bu düzen parametreleri, 

ortalama mıknatıslanmalar, 

A
A im S≡ , B

B jm S≡ ,        (3.1) 

ortalama kuadropol momentler, 

( )2A
A iq 3 S 2≡ − , ( )2B

B jq 3 S 2≡ − ,      (3.2) 

 

şeklinde tanımlanır. 

İki alt örgülü izotropik BEG sisteminin Hamiltonyen ifadesi: 

 

A B A B A B
i j i j i j

<ij> <ij> i j

=-J S S -K Q Q -H S + S ,
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑Η      (3.3) 

 

burada ij  toplamın en yakın komşu çiftler üzerinden alınacağını gösterir. J ve K sıra-

sıyla bilineer ve biqadratik etkileşme parametreleridir. H ise zamanla değişen salınımlı 

dış manyetik alandır (H = H0cos(wt)). 
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3.1.2. Ortalama- alan Dinamik Dinamik Denklemlerinin Elde Edilmesi 
 
Bu kesimde zamana bağlı salınımlı dış manyetik alan altında iki alt örgülü izotropik 

spin-1 BEG modeli için, sistemin davranışını tam olarak tanımlayan ortalama- alan di-

namik denklemleri elde edilecektir. Bunun için Glauber modelini kullanacağız ve 

master denkleminden yararlanacağız. 

 

Modelin iki alt örgülü durumu için Master eşitliği aşağıdaki gibi verilir. Bu eşitlik yazı-

lırken B alt örgüsünde bulunan spinlerin bir an için sabit olduğu düşünülmüştür. Yani 

geçişler sadece A örgüsü üzerindeki spinler arasında meydana gelmektedir. 

 

A 'A
i i

A 'A
i i

A A A A A A A A A A A
A 1 2 3 N i i i A 1 2 3 N

i S ¹S

A A A A A A ' A
i i i A 1 2 3 N

i S ¹S

d P (S ,S ,S ,...S ;t) = ( W (S S )) P (S ,S ,S ,...S ;t)
dt

                                              + ( W (S S )) P (S ,S ,S ,...S ;t), 

′− →

′ →

∑ ∑

∑ ∑
     (3.4) 

 

burada, A A 'A
i i iW (S S )→  i. spinin A

iS  durumundan 'A
iS  durumuna ve A 'A A

i i iW (S S ),→ 'A
iS  

durumundan A
iS durmuna  birim zamandaki geçiş olasılığıdır. A A A

A 1 2 NP (S ,S , ,S ;t)… , 

A A A
1 2 NS ,S , ,S…  spin konfigürasyonunda ki ihtimaliyet fonksiyonu ve 

A A 'A
A 1 2 NP (S ,S , ,S ; t), … A A 'A

1 2 NS ,S , ,S…  spin konfigürasyonunda ki ihtimaliyet fonksiyo-

nudur. Sistem mutlak T sıcaklığında ısı banyosu ile temas halinde olduğu için, her spin 
A
iS  durumundan 'A

iS durmuna birim zamanda geçiş olasılığıyla değişebilir. Denge du-

rumunda,  

 

A A A
A 1 2 N

d P (S ,S , ,S ;t) = 0
dt

… ,        (3.5) 

olduğundan denklem (3.4)’ den olasılık yoğunlukları oranının  

 
A A A AA A A

1 2 i Ni i i
A A A A A A A

i i i 1 2 i N

P(S ,S , ,S , ,S )W (S S )
W (S S ) P(S ,S , ,S , ,S )

′′→
=

′ →
… …
… …

,      (3.6) 

 

olduğu rahatlıkla görülebilir. Buradan 
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1 2 3 NP(S ,S ,S ,...S )αexp( βH),−        (3.7) 

 

ile tanımlanan genel kanonik dağılım ifadesinden faydalınılırsa olasılık yoğunluğu  

 

( )
( )

'
i

A A
i iA A A

i i i A A
i i

S

exp E(S S )1W (S S )
exp E(S S )

′−βΔ →
′→ =

τ ′−βΔ →∑
,     (3.8) 

 

şeklinde verilir. Burada  B1/ k T,β =  Bk  Boltzmann faktörü, 
' A

iS
∑  toplamı ise 'A

iS , müm-

kün üç değeri, A
iS′ =±1, 0, üzerinden alındığını göstermektedir. A 'A

i iE(S S )Δ → , herhan-

gi bir spinin A
iS  durumundan A

iS′  durumuna geçişi sırasında sistemin enerjisindeki 

meydana gelen değişmedir ve Hamiltonyen ifadesinden yararlanarak 

 

( ) ( )A A A A A B A 2 A 2 B 2
i i i i j i i j

j j

E (S S ) (S S )(H J S ) (S ) (S ) 3K (3S ) 2
⎛ ⎞

′ ′ ′Δ → =− − + − − −⎜ ⎟
⎝ ⎠

∑ ∑ , (3.9) 

 

şeklinde yazılır. 

 
B B 2
j j

j j

x H J S ve y 3K (3(S ) 2))= + = −∑ ∑ ,      (3.10) 

ile tanımlanırsa, (3.9) denklemi, 

 
A A A A A A 2 A 2

i i i i i iE (S S ) (S S )x ((S ) (S ) )y′ ′ ′Δ → = − − − − ,   (3.11) 

 

Şeklinde yazılır. Öncelikle A
iS  durumundan 'A

iS durumuna mümkün olan tüm enerji 

değişimlerini hesaplayabiliriz. Bulunan bu enerji değişimi ifadeleri (3.8) denkleminde 

yerine yazalırsa, her A 'A
i iS S→  geçişi için olasılık yoğunlukları şu şekilde elde edilir. 

 

A A
i i

1 exp( y)W (1 0) W ( 1 0) ,
2cosh( x) exp( y)

−β
→ = − → =

τ β + −β
             (3.12.a) 
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A A
i i

1 exp( x)W (1 1) W (0 1) ,
2cosh( x) exp( y)

−β
→ − = → − =

τ β + −β
             (3.12.b) 

 

A A
i i

1 exp( x)W (0 1) W ( 1 1) ,
2cosh( x) exp( y)

β
→ = − → =

τ β + −β
             (3.12.c) 

 
A

iW (0 0)=0→ ,                  (3.12.d) 

A
iW (1 1)=0→ ,                  (3.12.e) 

A
iW (-1 -1)=0→ .                   (3.12.f)  

Olasılık yoğunluğu ifadelerine dikkat edilirse A A 'A
i i iW (S S )→ ’nin A

iS ’ya bağlı olmadı-

ğını kolayca görebiliriz ve A A ' A A ' A
i i i i iW (S S ) W (S )→ =  yazabiliriz. Bu durumda 

 
A A A

i i iW (1 0)=W (-1 0)=W (0),→ →                 (3.13.a) 

 
A A A

i i i iW (-1 1)=W (0 1)=W (1),→ →                 (3.13.b) 

 
A A A

i i iW (1 -1)=W (0 -1)=W (-1),→ →                 (3.13.c) 

 

olduğu görülür. Buna göre (3.4) ile verilen master denklemi 
 

A A
i i

A A
i i

A A A A A A A A A A A
1 2 N i ii 1 2 i N

i S S

A A A A A A A
i i 1 2 i N

i S S

d P (S ,S , ,S ; t) W (S ) P (S ,S , ,S , ,S ; t)
dt

W (S )P (S ,S , ,S , ,S ; t) ,

′≠

′≠

⎛ ⎞
′= − ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

′+ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

… … …

… …

         (3.14) 

 
şekline dönüşür. Master denkleminden yararlanılarak sistemin genel diferansiyel denk-

lemleri şu şekilde elde edilir. 

( )

B
j

j
k kA A

B B 2
j j

j j

2sinh J S H
d S S ,
dt

2cosh J S H exp -3(K 3(S ) 2 )

⎛ ⎞
β +⎜ ⎟
⎝ ⎠τ = − +

⎛ ⎞ ⎛ ⎞
β + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑
(3.15) 
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( )

( )

2 2
k kA A

B 2
j

j

B B 2
j j

j j

d 3S -2 = - 3S -2
dt

3exp -3(K 3(S ) -2 )
                        +1- ,

2cosh J S +H +exp -3(K 3(S ) -2 )

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑

  

(3.16) 

 

şeklinde veya ortalama- alan yaklaşımı kullanılarak 
 

( )( )
B
j 0

i iA A B B
j 0 j

2sinh (Jz S H cos(wt))d S S ,
dt 2cosh (Jz S H cos(wt)) exp 3 Kz Q

β +
τ = − +

β + + − β
 (3.17) 

 

( )( )
( )( )

B
j

i iA A B B
j 0 j

3exp 3 Kz Qd Q Q 1 ,
dt 2cosh (Jz S H cos(wt)) exp 3 Kz Q

− β
τ = − + −

β + + − β
 (3.18) 

olarak bulunur. Bulunan bu diferansiyel denklem 
 

[ ]
[ ] [ ]

B
A A

B B

2sinh (1/ T)(m h cos )d m m ,
d 2cosh (1/ T)(m h cos ) exp 3kq / T

+ ξ
Ω = − +

ξ + ξ + −
   (3.19) 

 

[ ]
[ ] [ ]

B
A A

B B

3exp 3kq / Td q q 1 ,
d 2cosh (1/ T)(m h cos ) exp 3kq / T

−
Ω = − + −

ξ + ξ + −
   (3.20) 

şeklinde yazılabilir. Burada A i A
m S≡ , B j B

m S≡  A i A
q Q≡ , B j B

q Q≡  

wtξ = , 1T ( zJ)−= β , Kk=
J

, 0h=H /zJ,  ve wΩ = τ . 

Şimdi, A örgüsünde bulunan spinlerin bir an için sabit kaldıklarını ve B örgüsünde bu-

lunan spinlerin değiştiğini varsayalım. Bundan önceki hesaplamalara benzer olarak B 

örgüsü için ortalama- alan dinamik denklemlerini elde ederiz. 

 

[ ]
[ ] [ ]

A
B B

A A

2sinh (1/ T)(m h cos )d m m ,
d 2cosh (1/ T)(m h cos ) exp 3kq / T

+ ξ
Ω = − +

ξ + ξ + −
   (3.21) 
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[ ]
[ ] [ ]

AB
B

A A

3exp 3kq / Tdq q 1 .
d 2cosh (1/ T) (m h cos ) exp 3kq / T

−
Ω = − + −

ξ + ξ + −
  (3.22) 

 

Son olarak bu noktayı da belirtelim ki, bu çeşit ortalama- alan dinamik çalışmasında 

spin değişimlerinin korelasyonları gibi sınırlamalar üzerine durulmamış, bu teorik ça-

lışma dinamik faz diyagramlarını tanımlamak için yapılmıştır. Bu aynı zamanda dina-

mik çoklu kritik noktaların varlığını kestirmeyi de sağlamaktadır. 

 

3.2. Dinamik Düzen Parametreleri ve Dinamik Faz Dönüşüm Noktaları 

 

Bu kesimde, sistemde mevcut olan fazları bulmak için (3.19) -(3.22) de verilen ortala-

ma- alan dinamik denklemleri, Adams- Moulton kestirme ve düzeltme yöntemi kullanı-

larak nümerik olarak çözülerek dinamik düzen parametrelerinin zamana bağlı davranışı 

incelenecektir. Daha sonra, (3.19-22) denklemleri Adams- Moulton kestirme ve düzelt-

me, ve Romberg integrasyon yöntemleri kullanılarak nümerik olarak çözülülecek ve 

dinamik düzen parametrelerinin davranışları indirgenmiş sıcaklığın bir fonksiyonu ola-

rak incelenerek, dinamik faz geçiş noktaları tespit edilecek ve dinamik faz geçişlerinin 

doğası (sürekli ve kesikli, yani birinci ve ikinci derece faz geçişleri) karakterize edile-

cektir. Bu amaçlar için, öncelikle dinamik denklemlerin (Denklem 3.19-22) kararlı çö-

zümlerini, T, k ve h parametreleri değiştiği zaman hesaplayacağız. Denklem 3.19-22’nin 

kararlı çözümleri 2π periyodlu ξ’ nin bir fonksiyonu olacaktır ki bunlar, 

 
( ) ( )A Am 2 mξ + π = ξ  ve ( ) ( )B Bm 2 m ,ξ + π = ξ                  (3.23) 

 

( ) ( )A Aq 2 qξ + π = ξ   ve  ( ) ( )B Bq 2 q .ξ + π = ξ                                (3.24) 

 
Böylece, çözümler sahip oldukları ya da olmadıkları özelliklerine göre dört tip çözüm-

den biri olabilir.   

 

( ) ( )A Am mξ + π = − ξ  ve ( ) ( )B Bm mξ + π = − ξ                  (3.25) 

 

( ) ( )A Aq qξ + π = − ξ  ve ( ) ( )B Bq qξ + π = − ξ                  (3.26) 
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Denklem (3.25) ve (3.26) için birinci tip çözüm, simetrik çözüm olarak adlandırılır ve 

düzensiz duruma veya düzensiz faza karşılık gelir. Bu çözümde, alt örgü mıknatıslan-

maları Am  ve Bm  birbirine eşittir ( Am  = Bm ), Am  ve Bm  sıfır değeri civarında salınır 

ve dış manyetik alana uyum gösterir. Diğer taraftan, kuadrupol düzen parametreleri de 

Aq  ve Bq  birbirine eşit ( Aq  = Bq ) ve sıfırdan farklı bir değer etrafında salınır ve sıcak-

lık sonsuza gittiğinde q = 3 2
kS -2 tanımından sıfır değeri civarında salınır. İkinci tip 

çözümü denklem (3.25) ve (3.26)’e uymaz ve simetrik olmayan çözüm olarak adlandırı-

lır ki bu çözüm ferromanyetik çözüme karşılık gelir. Bu çözümde, Am  ve Bm  birbirine 

eşit ( Am  = Bm ), ve alt örgü kuadrupol momentler de birbirine eşittir ( Aq  = Bq ) ve sı-

fırdan farklı bir değerde salınırlar. Bu durumda, mıknatıslanma ve kuadrupol düzen pa-

rametreleri dış manyetik alanı takip etmezler, sıfır değerinde salınmak yerine sıfırdan 

farklı bir değerde salınırlar, yani Am  ve Bm  ±1 civarında salınırsa bu simetrik olmayan 

çözüm ferromanyetik faza karşılık gelir. Üçüncü tip çözüm denklem (3.25)’e uyar ve 

denklem (3.26)’e uymaz ve antikuadrupol ya da staggered çözüm diye adlandırılır. Bu 

çözümde, Am  ve Bm  birbirine eşit ( Am  = Bm ) ve sıfır değeri etrafında salınırlar ve dış 

manyetik alana uyarlar. Diğer taraftan, Aq  ve Bq  birbirine eşit değildir ve dış manyetik 

alana uymayarak sıfırdan farklı bir değer etrafında salınırlar. Dördüncü tip çözüm ise 

(3.25) ve (3.26)’e uymaz ve yine simetrik olmayan çözüm olarak adlandırılır, bu çözüm 

ferrimanyetik (i) çözüme karşılık gelir. Bunun nedeni ise, Am  ve Bm  birbirine eşit de-

ğildir ( Am ≠ Bm ) ve sıfırdan farklı bir değer civarında salınırlar. Diğer taraftan, 

kuadrupol düzen parametreleri Aq  ve Bq  birbirine eşit değildir ( Aq ≠ Bq ) ve sıfırdan 

farklı bir değer civarında salınırlar. Bu durumda mıknatıslanma ve kuadrupol düzen 

parametreleri dış manyetik alana uymazlar. Bu gerçekler açık bir şekilde (3.25) ve 

(3.26) ile verilen dinamik denklemlerin nümerik olarak çözülmesiyle görülür. (3.25) ve 

(3.26) numaralı denklemler, verilen parametreler ve başlangıç değerleri için Adams- 

Moulton kestirme ve düzeltme yöntemi kullanılarak çözüldü ve çözümler Şekil 3.1 ve 

Şekil 3.2 de gösterildi. Bu şekillerde yedi farklı çözüm görülmektedir. Sistemde, d, f 

fazları ile birlikte beş tane bir arada var olan faz mevcuttur. Bir arada var olan çözümler, 

f ve d çözümlerin bir arada bulunduğu f + d karma fazı, a ve d çözümlerin bir arada bu-

lunduğu a + d karma fazı, f ve a çözümlerin bir arada bulunduğu f + a karma fazı, f, a ve 

d çözümlerin bir arada bulunduğu f + a + d karma fazı, f ve i çözümlerin bir arada bu-
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lunduğu f + i fazlarıdır. Şekil 3.1(a)’da yalnızca simetrik çözüm elde edildi ve bundan 

dolayı sadece düzensiz (d) çözüm vardır. mA ve mB sıfır değeri etrafında salınmakta ve 

alt örgü kuadrupol momentler de birbirine eşittir (qA = qB) ve sıfırdan farklı bir değerde 

salınırlar. Bu, d fazına karşılık gelmektedir. Şekil 3.1(b)’de yalnızca simetrik olmayan 

çözüm bulunmaktadır ve mA ve mB birbirine eşit ve ±1 değer etrafında salınmakta ve qA 

ve qB sıfırdan farklı bir değer etrafında salınmaktadır. Bundan dolayı sadece 

ferromanyetik (f) çözüm vardır. Bu çözümler başlangıç değerlerine bağlı değildir. Şekil 

3.1(c)’de mA ve mB başlangıç değerlerine göre ya birbirine eşit ve sıfırdan farklı bir 

değer etrafında salınmakta ya da birbirine eşit ve sıfır etrafında salınmaktadır. mA ve mB 

sıfır etrafında salınırken qA ve qB birbirlerinden eşit ve sıfırdan farklı bir değer etrafında 

salınmaktadır. Buradan sistemde f + d karma fazı olduğu anlaşılmaktadır. Şekil 

3.1(d)’de mA ve mB sıfır etrafında salınırken qA ve qB başlangıç değerlerine göre ya bir-

birine eşit ve sıfırdan farklı bir değer etrafında salınmakta ya da birbirinden farklı ve 

yine sıfırdan farklı değer etrafında salınmaktadır, yani sistemde a + d karma fazı mev-

cuttur. Şekil 3.2(a)’da mA ve mB başlangıç değerlerine göre ya birbirine eşit ve sıfırdan 

farklı bir değer etrafında salınmakta ya da birbirine eşit ve sıfır etrafında salınmaktadır. 

mA ve mB sıfır etrafında salınırken qA ve qB birbirlerinden ve sıfırdan farklı bir değer 

etrafında salınmaktadır. Böylece sistemde f + a karma fazı olduğu Şekil 3.2(a)’dan ko-

laylıkla görülmektedir. Şekil 3.2(b), Şekil 3.2(a)’ya benzer fakat burada f + a + d fazları 

mevcuttur. Şekil 3.2(c)’de ise mA ve mB başlangıç değerlerine göre ya birbirine eşit ve 

sıfırdan farklı bir değer etrafında salınmakta ya da birbirinden farklı ve yine sıfırdan 

farklı değer etrafında salınmaktadır. Bunun anlamı ise sistemde f + i karma fazı bulun-

maktadır. Şekil 3.1(a) ve (b)’de ki çözümler başlangıç değerlerine bağlı değil iken, Şekil 

3.1(c) ve (d) ile Şekil 3.2’de ki çözümler başlangıç değerlerine bağlıdır. 
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Şekil 3.1.  İki alt örgülü izotropik spin-1 BEG modeli için alt örgü mıknatıslanmala-

rın ve alt örgü kuadrupol momentlerin zamanla değişimi. a) Sistemde sa-
dece düzensiz (d) faz mevcuttur, (k = -0.1, h = 1, T = 0.625). b) Sistemde 
sadece ferromanyetik (f) faz mevcuttur, (k = -0.1, h = 0.125, T = 0.25). c) 
Sistemde hem ferromanyetik (f) faz hem de düzensiz (d) faz mevcuttur, 
(k = -0.1, h = 0.75, T = 0.125). d) Sistemde hem antikuadrupolar (a) faz 
hem de düzensiz (d) faz mevcuttur, (k = -0.3, h = 1.25, T = 0.25). 
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Şekil 3.2.  İki alt örgülü izotropik spin-1 BEG modeli için alt örgü mıknatıslanmala-

rın ve alt örgü kuadrupol momentlerin zamanla değişimi. a) Sistemde 
hem ferromanyetik (f) faz hem de antikuadrupolar (a) faz mevcuttur, (k = 
-0.3, h = 0.5, T = 0.375).b) Sistemde ferromanyetik (f) faz, 
antikuadrupolar (a) faz hem de düzensiz (d) faz mevcuttur, (k = -0.25, h 
= 0.7, T = 0.125). c) Sistemde hem ferromanyetik (f) faz hem de 
ferrimanyetik (i) faz mevcuttur, (k = -0.3, h = 0.125, T = 0.2).  
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Yukarıdaki şekillere bakıldığında sistemde yedi farklı faz mevcut olduğu görülmektedir. 

Bu fazlar, sırasıyla d, f, f + d, a + d, f + a, f + a + d ve f+ i, fazlarıdır. Bu yedi fazın ara-

sındaki dinamik faz sınırlarını belirleyebilmemiz için, dinamik faz geçiş noktalarını 

hesaplamalı ve daha sonra bu noktalar kullanılarak sistemin dinamik faz diyagramları 

sunulabilir. Dinamik faz geçiş sıcaklıkları (DFG), bir peryot başına ortalama düzen pa-

rametrelerinin ya da dinamik düzen parametrelerinin davranışının indirgenmiş sıcaklığın 

bir fonksiyonu olarak incelenmesiyle elde edilecektir. 

 

Dinamik düzen parametreleri, dinamik alt örgü mıknatıslanmaları (MA, MB ) ve dinamik 

alt örgü kuadrupol momentleri (QA, QB ) 

 
2

A A
0

1M m ( )d ,
2

π

= ξ ξ
π ∫   

2

B B
0

1M m ( )d ,
2

π

= ξ ξ
π ∫    

(3.27)  

ve 
2

A A
0

1Q q ( )d ,
2

π

= ξ ξ
π ∫   

2

B B
0

1Q q ( )d .
2

π

= ξ ξ
π ∫    (3.28) 

 

formülleri ile tanımlanır. MA, MB, QA ve QB ’nin davranışı, h ve k’nın bir kaç değeri 

için indirgenmiş sıcaklığın bir fonksiyonu olarak, Romberg integrasyon yöntemi ile 

Adams-Moulton kestirme ve düzeltme gibi nümerik metodların birleştirilmesiyle ince-

lendi. Yedi faz arasındaki dinamik faz sınırlarının ve dinamik faz geçiş noktalarının 

nasıl hesaplandığını ve dinamik faz sınırların nasıl elde edildiği Şekil 3.3 ve Şekil 

3.4’de gösterilmiştir. Bu şekillerde kalın çizgi MA ve MB ’yi, ince çizgi QA ve QB ’yi 

temsil etmektedir. Tt ve TC, sırasıyla MA ve MB, QA ve QB için birinci- derece ve ikinci- 

derece faz geciş (yada kritik) sıcaklıklarını, TCQ ise yalnızca QA ve QB için ikinci- dere-

ce faz geçiş sıcaklığını göstermektedir. Şekil 3.3, k = -0.17 ve h = 0.25 için MA, MB, QA 

ve QB ’nin davranışlarını indirgenmiş sıcaklığın bir fonksiyonu olarak göstermektedir. 

Bu şekilde, sıfır sıcaklıkta MA = MB =1 ve QA = QB = 1 değerindedir ve düzen paramet-

releri indirgenmiş sıcaklık artarken sürekli olarak sıfıra azalmaktadır, bundan dolayı 

TC=0.614’de ikinci- derece faz geçişi meydana gelmektedir. Diğer taraftan, QA ve QB 

birbirine eşit olarak TC sıcaklığına kadar azalmakta ve TC sıcaklığında keskin dönüş 

yaptıktan sonra indirgenmiş sıcaklık artarken sıfıra azalmakta ve son olarak sıcaklık 

sonsuza giderken sıfır olmaktadır. Bu durumda, dinamik faz geçişi f fazından d fazına 



39 
 

olmaktadır ve çözüm MA, MB, QA ve QB ’nin başlangıç değerlerine bağlı değildir. Şekil 

3.4, iki farklı başlangıç değeri için, k = -0.25 ve h = 0.5 değerleri için MA ve MB, QA ve 

QB ’nin sıcaklıkla değişimlerini göstermektedir. Şekil 3.4(a) için başlangıç değerleri MA  

= MB =1 ve QA = QB =1 ve Şekil 3.4(b) için başlangıç değerleri MA =1, MB =0 and QA 

=1, QB =-2 dir. Şekil 3.4(a), Şekil 3.3’e benzerdir. MA = MB ve QA =QB, indirgenmiş 

sıcaklık artarken sıfıra doğru sürekli olarak azalmakta ve böylece TC = 0.503 sıcaklığın-

da ikinci- derece faz geçişi meydana gelmektedir. Şekil 3.4(b)’de, sistem peşpeşe iki faz 

geçişi geçirmektedir. Bu geçişlerin birincisi a fazından (MA= MB =0 ve QA ≠ QB ≠ 0) f 

fazına birinci- derece faz geçişi (Tt = 0.205) meydana gelmektedir, ikincisi ise f fazın-

dan d fazına (MA = MB =0 ve QA = QB ≠ 0) TC = 0.503 sıcaklığında ikinci- derece faz 

geçişi meydana gelmektedir. Şekil 3.4(a) ve 3.4(b)’den sistemde Tt sıcaklığına kadar 

f+a karma fazının, Tt ve TC sıcaklıkları arasında f fazının, TC sıcaklığından sonra d fazı-

nın olduğu kolaylıkla görülebilir ve bu gerçekler Şekil 3.5(d) faz diyagramında h=0.5 

için açıkca görülebilir.  
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Şekil 3.3.  Dinamik mıknatıslanmaların, MA ve MB, (kalın çizgi) ve dinamik 
kuadrupol momentlerin, QA ve QB, (ince çizgi) indirgenmiş sıcaklığa 
bağlı olarak davranışları. Sistemde ikinci- derece faz geçişi meydana 
gelmektedir, (TC = 0.614), (k = -0.17 ve h = 0.25). 
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Şekil 3.4.  Dinamik mıknatıslanmaların, MA ve MB, (kalın çizgi) ve dinamik 

kuadrupol momentlerin, QA ve QB, (ince çizgi) indirgenmiş sıcaklığa 
bağlı olarak davranışları, (k = -0.25 ve h = 0.5). a) Şekil 3.3 ile aynı fakat 
TC = 0.503. b) Birbirini takip eden iki faz geçişi meydana gelmektedir. 
Birincisi a fazından f fazına (Tt = 0.205), ikincisi f fazından d fazına 
ikinci- derece faz geçişi (TC = 0.503). 
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3.3. Dinamik Faz Diyagramları 

 

Dinamik faz geçiş noktalarını elde ettikten sonra sistemin dinamik faz diyagramlarını 

(T, h) düzleminde elde edebiliriz. İndirgenmiş bikuadratik etkileşme parametresinin itici 

olduğu yani k<0 durumları için elde edilen yedi temel faz diyagramı Şekil 3.5(a)-(g)’de 

gösterilmiştir. Bu şekillerde sürekli ve kesik çizgiler sırasıyla ikinci- derece ve birinci- 

derece faz geçiş çizgilerini göstermektedir. Faz diyagramlarında, içi dolu küreler dina-

mik üçlükritik noktayı, B çift kritik son noktayı, Z dinamik sıfır-sıcaklık kritik noktayı, 

E dinamik kritik sonlu noktayı, P dinamik beşli noktayı ve A dinamik çoklu kritik nok-

tayı, göstermektedir. Bu kesimde, indirgenmiş bikuadratik etkileşim parametresinin (k) 

çeşitli değerleri için (T, h) düzleminde faz diyagramları sunulacak ve sistemin k para-

metresine bağlılığı incelenecektir. 

 

i-) k = -0.1 için (T, h) düzleminde faz diyagramı Şekil 3.5(a) gösterilmiştir. Bu 

faz diyagramında, yüksek indirgenmiş sıcaklıkta (T) ve yüksek indirgenmiş manyetik 

alan genliğinde (h), düzensiz (d) faz mevcuttur, h ve T’ nin düşük değerlerinde ise çö-

zümler ferromanyetik (f) faz gözlenmektedir. Bu iki bölge arasındaki dinamik faz sınırı, 

f ve d, ikinci- derece faz geçiş çizgisidir. İndirgenmiş sıcaklığın düşük ve indirgenmiş 

manyetik alan genliğinin belirli değerlerinde f ve d fazının birlikte bulunduğu f + d 

karma fazı bulunmaktadır. f + d karma fazı, f fazı ve d fazından birinci- derece faz geçiş 

çizgisiyle ayrılmıştır. Sistem aynı zamanda her iki birinci- derece faz geçiş çizgisini 

birleştiren ve birinci- dereceden ikinci- dereceye faz geçişini gösteren yalnızca bir di-

namik üçlükritik nokta sergilemektedir. Bu faz diyagramının benzeri, kinetik spin-1/2 

[56], spin-1 [66, 91], spin-3/2 [67, 68] (bu çalışmalarda f fazı yerine f3/2 fazı gelmekte-

dir) ve spin-2 [84, 85] (bu çalışmalarda f fazı yerine f2 fazı gelmektedir) Ising sistemle-

rinde elde edilmiştir. Ayrıca bu faz diyagramı karma spin (1/2, 1) [90] ve (1, 3/2) [89] 

Ising sistemlerinde de elde edilmiştir. Yalnız bu çalışmalarda f fazı yerine i fazı gelmek-

tedir. 

 

ii-) k = -0.14 için (T, h) düzleminde faz diyagramı Şekil 3.5(b)’de sunulmuştur. 

Sistemde bir adet üçlükritik nokta, bir adet çift kritik son nokta (B) ve bir adet dinamik 

sıfır-sıcaklık kritik nokta (Z) vardır. Bu faz diyagramında, iki temel faz f, d ve üç adette 

bir arada faz bölgesi f+d, a+d, f+a+d bulunmaktadır. Bu fazlar arasındaki faz sınırları, f 
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ile f +d, f+d ile f+a+d,f+a+d ile d ve f+d ile d fazları birbirinden birinci- derece, f ile d 

fazıda ikinci -derece dinamik faz sınırıyla ayrılmıştır.  

 

iii-) Şekil 3.5(c), k = -0.17 değerinde elde edilen dinamik faz diyagramlarını gös-

termektedir. Bu faz diyagramı Şekil 3.7(b)’ye benzemektedir, fakat T’nin düşük değer-

lerinde ve h’nin belirli değerlerinde f+i karma fazı oluşmaktadır. f+i karma fazı ile f fazı 

arasındaki dinamik faz sınırı ikinci- derece faz geçiş çizgisidir. Bu yüzden sistemde 

Şekil 3.5(b) den farklı olarak üç tane dinamik sıfır-sıcaklık kritik nokta (Z) mevcuttur. 

iv-) k = -0.25 için (T, h) düzleminde faz diyagramı şekil 3.5(d) de verilmiştir. 

Sistemde f ve d fazları ile birlikte dört tane bir arada var olan faz, f+i, f+a, f+a+d ve a+d 

karma fazı bulunmaktadır. f ile d fazı, a+d ile d fazı, f+i ile f fazı ve f+a ile a+d fazı 

arasındaki dinamik faz sınırları ikinci- derece faz geçiş çizgileri olup, diğer tüm fazlar 

arasındaki sınırlar birinci- derece faz geçiş çizgileridir. Sistemde bir dinamik üçlükritik 

nokta, birlikte iki tane dinamik sıfır-sıcaklık kritik nokta (Z), bir tane dinamik kritik 

sonlu nokta (E) ve bir tane de dinamik multikritik nokta (A) vardır.  

 

v-) Şekil 3.5(e)’de görülen faz diyagramı k = -0.30 değeri için elde edilmiştir. 

Elde edilen bu şekil, Şekil 3.5(d)’ye benzerdir fakat bir kaç farklılık vardır. (1) T’nin 

düşük değerlerinde meydana gelen i + d karma fazı büyümüştür. (2) T ve h’nin küçük 

değerlerinde f fazı oluşmuştur. Oluşan bu f fazı ile f + i karma fazı arasında dinamik faz 

sınırı ikinci- derece faz geçiş çizgisidir.  

 

vi-) k = -0.33 değeri için elde edilen faz diyagramı Şekil 3.5(f)’de sunulmuştur. 

Bu faz diyagramı Şekil 3.5(e)’ye benzer fakat Şekil 3.5(e)’den farklı olarak indirgenmiş 

sıcaklığın ve indirgenmiş manyetik alan genliğinin küçük değerlerinde oluşan f fazı 

kaybolmuştur ve sistemde bulunan diğer f faz bölgesi küçülmüştür. Diğer taraftan, f+ i 

ve f + a karma fazları arasında faz sınırıları T nin yüksek değerlerinde ikinci- derece ve 

t nin düşük değerlerinde birinci- derece faz geçişi oluşmakta ve böylece sistemde dina-

mik üçlükritik nokta meydana gelmektedir. Bunun yanı sıra sistemde bir tane dinamik 

sıfır-sıcaklık kritik nokta (Z) ve bir tane dinamik beşli nokta (P) mevcuttur. 

 

vii-) Şekil 3.5(g)’de sunulan faz diyagramı k = -0.50 değeri için elde edilmiştir. 

Şekil 3.5(g), Şekil 3.5(f)’ye benzemekle beraber bir kaç değişiklik vardır. f + i karma 
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fazı ve f fazı kaybolmuştur. Bu faz diyagramında f+a ile a+d ve a+d karma fazları ile d 

fazı arasındaki dinamik faz sınırları ikinci- derece faz geçiş çizgileri olup, diğer tüm faz 

sınırları ise birinci- derece faz geçiş çizgileridir. 

 

Şekil 3.5.(b)-(g)’ deki dinamik faz diyagramları spin-1 BEG [91] çalışmasında da elde 

edilmiştir. 
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Şekil 3.5.  İki alt örgülü izotropik spin-1 BEG modelinin (T, h) düzleminde dinamik 

faz diyagramları. Sistemde düzensiz (d), ferromanyetik (f) ve beş karma 
faz bölgesi mevcuttur, bunlar f+d, a+d, f+a+d, f + i ve f+a karma fazları-
dır. Kesikli ve sürekli çizgiler sırasıyla birinci- derece ve ikinci-  derece 
faz geçiş çizgilerini ve içi dolu daireler dinamik üçlükritik noktayı, B çift 
kritik son nokta, Z dinamik sıfır sıcaklık kritik noktayı, E dinamik kritik 
sonlu noktayı, P dinamik beşli noktayı ve A dinamik çoklu kritik nokta-
yı, göstermektedir. (a) k = -0.10, (b) k = -0.14, (c) k = -0.17, (d) k = -
0.25, (e) k = -0.30, (f) k = -0.33 (g) k = -0.50. 



4. BÖLÜM 
 

SONUÇ VE TARTIŞMA 
 

Bu tez çalışmasında, zamana bağlı salınımlı dış manyetik alanın varlığında keyfi bilineer 

(J) ve bikuadratik (K) etkileşme Hamiltonyenli kinetik spin-1 Ising modelinin, izotropik 

spin-1 BEG modeli diye de adlandırılır, kararlı çözümleri tek ve iki alt örgülü durumları 

için ortalama-alan yaklaşımı ile incelendi. Ortalama-alan dinamik denklemleri elde etmek 

için Glauber-tipi stokhastik dinamik kullanıldı.  

 

Tek alt örgülü kinetik izotropik spin-1 BEG sistemde varolan fazları elde etmek için, ilk 

olarak Adams-Moulton kestirme düzeltme yöntemi kullanılmasıyla ortalama 

mıknatıslanmanın ve ortalama kuadrupol momentin zamana bağlı olarak davranışları 

incelendi. Sistemde, düzensiz (d) ve ferromanyetik (f) olmak üzere iki temel faz ile bu 

fazların bir arada bulunduğu üç adet karma faz, bunlar f ve d fazlarının bir arada olduğu 

f+d karma fazı, f ve fq fazlarının bir arada olduğu f+fq karma fazı ve d fazlarının bir arada 

olduğu fq+d karma fazı, bulundu. Daha sonra, indirgenmiş bikuadratik etkileşme 

parametresinin (k=K/J) farklı değerleri için dinamik mıknatıslanmanın ve kuadrupolün, 

yani dinamik düzen parametrelerinin, sıcaklığa göre davranışları Adams- Moulton kestirme 

düzeltme yöntemi ve Romberg integrasyon yöntemi kullanılarak incelendi ve sonuçta; 

dinamik faz geçiş sıcaklıkları tespit edildi ve dinamik faz geçişlerinin doğası (sürekli ve 

kesikli, yani birinci- ve ikinci- derece faz geçişleri) karakterize edildi. Lyapunov üstelleri 

de hesaplanarak çözümlerin kararlılığı ve dinamik faz geçiş noktalarının doğru ve eksiksiz 

bulunduğu kontrol edildi. Dinamik faz geçiş noktalarından kullanılarak sistemin dinamik 

faz diyagramları, indirgenmiş bikuadratik etkileşme parametresinin (k) farklı değerleri için 

(T, h) düzleminde ve indirgenmiş dış manyetik alan genliğinin (h) farklı değerleri için (k, 

T) düzleminde elde edildi. (T, h) düzleminde altı ve (k, T) düzleminde beş adet temel 
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dinamik faz diyagramı elde edildi. Sistemde d ve f temel fazları ile bu fazların bir arada 

olduğu f+d, f+fq ve fq+d karma fazlarıda elde edildi. Ayrıca, (T, h) düzlemindeki dinamik 

faz diyagramları, dinamik üçlükritik nokta, dinamik üçlü nokta (TP) ve dinamik dörtlü 

nokta (QP)’ yi ve (k, T) düzlemindeki dinamik faz diyagramları, dinamik üçlükritik nokta, 

dinamik dörtlü nokta (QP) ve dinamik çift kritik son nokta (B)’yi de içerdiği görüldü. 

 

Tek alt örgülü çalışmada (T, h) ve (k, T) düzlemlerinde elde edilen dinamik faz 

diyagramlarının bir kısmı daha önce yapılan çalışmalarda elde edilmesine karşın bir kısmı 

şu ana kadar yapılan çalışmalarda elde edilmemiştir. (T, h) düzleminde elde edilen dinamik 

faz diyagramlarından, Şekil 2.7.(a)’daki faz diyagramı tek spin Ising sistemlerinde [66, 83-

85] (Kaynak 66 ve 84’ de verilen çalışmalarda, f + fq karma fazı yerine sırasıyla f + p ve f2 

+ p karma fazları gelmektedir) ve karma spin [86, 89, 90] (Kaynak 86 ve 89’ da verilen 

çalışmalarda f ve fq fazlarının yerine sırasıyla i ve a fazları, Kaynak 90 ile verilen 

çalışmada f + fq karma fazı yerine i + p karma fazı gelmektedir) elde edilmiştir. Şekil 

2.7.(b), 2.7.(c) [83] ve Şekil 2.7.(f) ’deki [83, 85] (Kaynak 85 ile verilen çalışmada f fazı 

yerine f2 fazı gelmektedir) faz diyagramlarının benzerleri daha önce yapılan çalışmalarda 

elde edilmesine rağmen 2.7.(d) ve 2.7.(e)’ deki diğer iki dinamik faz diyagramı ilk kez bu 

sistemde elde edilmiştir. (k, T) düzleminde elde edilen dinamik faz diyagramlarından 

sadece Şekil 2.8.(a) ve 2.8.(c) önceki çalışmalarda elde edilmemiştir. Şekil 2.8.(b), 

2.8.(d)’de [87, 92] (Kaynak 92 ile verilen çalışmada f fazı yerine f3/2 fazı gelmektedir) ve 

Şekil 2.8.(e)’de [87, 89, 92] (Kaynak 89 da verilen çalışmada f ve fq fazlarının yerine 

sırasıyla i ve a fazları, Kaynak 92 de verilen çalışmada f fazı yerine f3/2 fazı gelmektedir) 

elde edilen faz diyagramları daha önce yapılan çalışmalarda elde edilmiştir. 

 

İki alt örgülü, itici (K<0) bikuadratik etkileşme parametreli, kinetik izotropik spin-1 BEG 

sisteminde mevcut olan fazları elde etmek için, ilk olarak ortalama mıknatıslanmaların ve 

ortalama kuadrupol momentlerin zamana bağlı olarak davranışları, Adams- Moulton 

kestirme düzeltme yöntemi kullanılmasıyla incelendi ve sistemde düzensiz (d) ve 

ferromanyetik (f) olmak üzere iki temel faz ve bu fazların birarada bulunduğu beş adet 

karma faz, bunlar f + d, a + d, f + a, f + a + d ve f + i karma fazlarıdır. Daha sonra, 

indirgenmiş bikuadratik etkileşme parametresinin (k) farklı değerleri için dinamik 
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mıknatıslanma ve kuadrupol düzen parametrelerinin, sıcaklığın bir fonksiyonu olarak 

davranışları Adams- Moulton kestirme düzeltme yöntemi ve Romberg integrasyon yöntemi 

kullanılarak incelenerek dinamik faz geçiş sıcaklıkları tespit edildi ve dinamik faz 

geçişlerinin doğası (sürekli ve kesikli) karakterize edildi. Dinamik faz geçiş sıcaklıkları 

kullanılarak sistemin dinamik faz diyagramları, indirgenmiş bikuadratik etkileşme 

parametresinin (k) farklı değerleri için (T, h) düzleminde elde edildi. (T, h) düzleminde 

yedi farklı temel dinamik faz diyagramı elde edildi. Sistemde d ve f temel fazları ile bu 

fazların bir arada olduğu f + d, a + d, f + a, f + a + d ve f + i karma fazlarıda elde edildi. 

Ayrıca dinamik faz diyagramlarında, dinamik üçlükritik nokta, dinamik double kritik sonlu 

nokta (Z), dinamik kritik sonlu nokta (E), dinamik beşli nokta (P) ve dinamik çoklu kritik 

nokta (A) elde edildi. Hem tek alt örgülü hemde iki alt örgülü kinetik izotropik spin-1 BEG 

sistemlerinin dinamik faz diyagramları incelendiğinde, sistemlerin davranışının kuvvetli bir 

şekilde indirgenmiş bikuadratik etkileşme parametresine (k) bağlı olduğu görülmektedir. 

 

Diğer taraftan iki alt örgülü çalışmada (T, h) düzlemlerinde elde edilen dinamik faz 

diyagramlarından Şekil 3.5.(a)’daki faz diyagramı daha önce kinetik spin-1/2 [56], spin-1 

[66, 91], spin-3/2 [67, 68] (bu çalışmalarda f fazı yerine f3/2 fazı gelmektedir) ve spin-2 [84, 

85] (bu çalışmalarda f fazı yerine f2 fazı gelmektedir) Ising sistemlerinde elde edilmiştir. 

Ayrıca bu faz diyagramı karma spin (1/2, 1) [90] ve (1, 3/2) [89] Ising sistemlerinde de elde 

edilmiştir. Yalnız bu çalışmalarda f fazı yerine i fazı gelmektedir. Elde edilen diğer bütün 

dinamik faz diyagramları bu çalışma dışında sadece spin-1 BEG [91] çalışmasında elde 

edilmiştir.  

 

Son olarak, belirtmek gerekir ki, ortalama- alan yaklaşımının eksikliğinden dolayı bazı 

birinci-dereceden faz geçiş sıcaklıkları ve özel noktalar yapay birinci-dereceden faz geçiş 

sıcaklıkları ve yapay özel noktalar olabilir. Bu yüzden sistem Dinamik Monte Carlo (DMC) 

simülasyonları ile daha kesin olarak incelenebilir. Biz bu çalışmanın, DMC hesaplamaları 

veya renormalizasyon grup (RG) teknikleri gibi daha kesin sonuç veren metotlarla yapılan 

çalışmalara bir temel oluşturacağı düşüncesindeyiz. 
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