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Yrd. Doç. Dr. Nihat YILMAZ 

 

Bu tez çalışmasında, Elektroansefalogram (EEG) kayıtlarının otomatik olarak 

değerlendirilip, uyku evreleri içinde N-REM (Hızlı Göz Hareketleri Olmayan)     

Evre 2’ nin bulunmasında önemli bir bileşen olan uyku iğciklerinin bulunması

amaçlanmıştır. 
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Bu çalışmada, önerilen metot iki adım içermektedir. İlk adımda ham EEG 

sinyallerinden zaman domeninde altı ve frekans domeninde dört özellik çıkarılmıştır. 

Ham EEG sinyallerinden Frekans domeni özelliklerinin çıkarılmasında Welch 

Spectral Analiz yöntemi kullanılmıştır. İkinci adımda ise yapay sinir ağları ile 

Levenberg-Marquardt algoritması kullanılarak daha önceden uyku uzmanı tarafından 

elle değerlendirilen uyku iğcikleri sınıflandırılmıştır. Uyku iğciklerinin 

sınıflandırılmasında LM-YSA kullanılarak elde edilen sınıflama doğruluğu zaman 

domeni özellikleri için % 100’ dür (Gizli katmandaki düğüm sayısı on için). 

 

Çalışmada kullanılan uyku EEG sinyalleri Selçuk Üniversitesi Meram Tıp

Fakültesi Uyku Laboratuvarında yapılan uyku skorlandırma çalışmaları dâhilinde, 

Yrd. Doç. Dr. Şebnem Yosunkaya ve ekibi tarafından kaydedilmiştir. Çalışma 3 

hastada, toplam 712 epok üzerinde test edilmiştir.  

 

Son olarak; elde edilen sonuçlar, önerilen tanıma sisteminin uyku iğciklerinin 

otomatik olarak bulunmasında güvenle kullanılabileceğini göstermiştir. Aynı

zamanda bu sistem N-REM evre 2’ nin belirlenmesinde çok önemli bir parametredir. 

 

Anahtar Kelimeler – Uyku iğciği, Özellik Çıkarımı, İstatiksel Ölçümler, Welch 

Yöntemi, EEG Veri Kümeleri, Yapay Sinir Ağları.
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In this study, it was aimed that detection of Sleep-Spindles which is the one of 

important components determining N-REM (Non-Rapid Eye Movement) Stage 2 in 

the sleep stages,  by automatically evaluation of Electroencephalogram (EEG) 

records. 

 



iv

In this study, the proposed method consists of two steps. In the first step, six 

time domain features and four frequency domain features have been extracted from 

raw EEG signals. The extraction of frequency domain features from raw EEG 

signals, Welch spectral analysis has been used. In the second step, artificial neural 

network (ANN) with LM (Levenberg-Marquardt) has been used to classify the sleep 

spindles evaluated before hand by sleep expert physicians. The obtained 

classification accuracies for time domain features set in the classification of sleep 

spindles are 100%  by using LM-ANN (for ten node in hidden layer). 

 

The sleep EEG signals used in this study are recorded with in support of sleep 

scoring studies carried out in Selcuk University Meram Faculty of Medicene 

Department Sleep Laboratory by Asst. Prof. Dr. Şebnem YOSUNKAYA and her 

team. The study is tested on 3 patients with 712 epochs.  

 

Finally, the obtained results have presented that the proposed recognition 

system could be confidently used in the automatic classification of sleep spindles. 

And also, this system is a very important parameter in the determination of N-REM  

Stage 2. 

 

Keywords – Slip spindles, Feature extraction, Statistical Measurements, Welch 

Method, EEG Data Set, Artificial Neural Networks. 
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1. GİRİŞ 

Organizmanın çevreyle iletişiminin, değişik şiddette uyaranlarla geri 

döndürülebilir bir biçimde geçici, kısmi ve periyodik olarak kaybolması durumu 

olarak tanımlanan uyku, insanoğlunun her zaman çok ilgilendiği konular içerisinde 

yer almıştır. Bunun nedeni her birimizin günlük işlevselliğimizi sürdürebilmek için 

uyku uyumaya ihtiyacımızın olmasıdır. Günlük aktivitelerimizi devam ettirebilmek 

ve gün içerisinde çalışmalarımızda daha verimli olabilmek için her gün belirli bir 

süre uyumamız gerekmektedir (Dursun 2008). 

 Bu uyku süreci çeşitli evreler içermekte ve bu evrelerin karakterize edilmesinde 

sinir hücrelerinin oluşturduğu elektriksel aktivitelerinin yapısal bileşimi rol 

oynamaktadır. 

 Sleep Spindle yani uyku iğcikleri, uykunun Non-Rem Evre 2 diye tanımlanan 

bölümünün karakteristik dalga şeklidir (Dursun 2008). 

 İğciklerin oluşumu ve işlevi hakkında tam bir fikir birliği olmamakla birlikte 

kabul gören iki varsayım vardır. Birinci varsayıma göre iğcikler, motor çıkışın ve

algı geçişlerinin bastırılması yoluyla uyku halinin sürdürülmesini sağlayan 

salınımlardır. İkinci varsayıma göre ise iğcikler, talamo-kortikal alanda önceki 

deneyimlerin bütünleştirilmesi için gereken işlevlerin bir araya getirilmesine 

yardımcı olur. Hipersomniyak ve insomniyak denekler üzerinde yapılan çalışmalar 

iğcik yoğunluklarının hastalığın türü ile bağlantılı olarak değiştiğini göstermekte ve 

iğciklerin uyku sürecini düzenleyici işlevinin olduğu bulgusunu 

kuvvetlendirmektedir (Eroğul vd 1999).  

 Tıp alanında hastalıkların teşhisinde ve bu alanda yapılan araştırmalarda 

kullanılan EEG (Elektroensefalogram) işaretleri beynin sinirsel aktivitesi sonucu 

elde edilen biyoelektrik tabanlı işaretlerdir. Bu işaretler beynin fonksiyonları ve

çalışması ile ilgili çok miktarda bilgi barındırır. Bu bilgilerin kullanılabilir hale 

gelmesi için sinyal işleme alanındaki uzmanlar çok çeşitli araştırmalar 

yapmaktadırlar. 

 EEG sinyallerinin spektral analizlerine ek olarak, sınıflandırma 

problemlerindeki başarılı uygulama yöntemlerinden dolayı yapay zekâ 
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uygulamalarının bir çeşidi olan yapay sinir ağları (YSA) biyomedikal sinyal işleme 

alanında çalışan uzmanların sıklıkla başvurduğu bir sınıflayıcı olmuştur. 

 YSA’nin öğrenme yeteneği, araştırmacıları cezbeden en önemli özelliklerinden 

birisidir. Çünkü YSA herhangi bir olay hakkında, doğrusal olsun ya da olmasın,

girdiler ve çıktılar arasındaki ilişkiyi eldeki mevcut örneklerden öğrenir ve daha önce 

hiç karşılaşılmamış olayları, önceki örneklerden çağrışımlar yaparak olaya çözümler 

üretir. İşte bu özellik YSA’ daki zeki davranışın da temelini teşkil eder (Polikar 

1999). 

 1987 yılında yapılan ilk yapay sinir ağları sempozyumundan sonra YSA 

uygulamaları yaygınlaşmıştır. Günümüzde, YSA ile ilgili araştırmalar yapan çok 

sayıda bilim adamı ve araştırma grupları vardır ( Batar 2005 ). 

 Uyku iğciklerinin sezimi ve incelenmesi konusunda farklı yöntemler 

önerilmiştir (Eroğul vd 1999). İğcikleri modellemek için Zygierewicz (2000) uyumlu 

dalgacık yöntemini kullanmıştır. Eroğul vd (1999) dalgacık dönüşümü ile birlikte 

Teager enerji işlecini iğciklerin yerinin belirlenmesi için kullanmıştır. Görür vd 

(2002) kısa zamanlı Fourier dönüşümünü öznitelik bulmak için, iğciklerin yerinin 

belirlenmesi için de Çok Katmanlı Perseptron ve Destek Vektör Makinesi 

kullanmışlardır. Duman F. ve arkadaşları (2009), çalışmalarında EEG sinyallerinin 

analizinden sonra karar ağacı algoritmasıyla uyku iğciklerinin tesbit edilmesi, 

yerlerinin kesin olarak bulunmasını sağlamış ve bunun için üç farklı yol 

kullanmışlardır. Bunlar STFT (Shirt Time Fourier Transform), MUSIC (Multiple 

Signal Classification) Algoritması ve TEO (Teager Energy Operator) dur. 

 Bu tez çalışmasında ise uyku laboratuarlarında, uyku dönemlerinin belirlenmesi 

için çalışan uzmanların uyku iğciği olarak adlandırdıkları ve özellikle uykunun 

NREM Evre 2 olarak nitelendirilen dönemlerinde ortaya çıkan EEG dalga şeklinden 

zaman domeni özellikleri ve Welch metodu kullanılarak frekans domeninde özellik 

çıkartımı yapılarak YSA ile sınıflandırılması ve sonuçta incelenen sinyalde uyku 

iğciği olup olmadığının bulunması amaçlanmaktadır. 

 Bu tez çalışmasının birinci bölümünde konuya giriş yapılmış yapılan çalışma 

hakkında tanımlara yer verilmiştir. İkinci bölümde tez konusuyla ilgili yapılan 

literatür çalışması bulunmaktadır. Üçüncü bölümde EEG hakkında bilgi verilmekte 
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dördüncü bölümde ise uyku ve uykunun gece boyunca yaşanan evreleri 

anlatılmaktadır. 

 Beşinci bölümde çalışmada kullanılan materyalden bahsedilmiş ve önerilen 

sistemin gerçekleştirilmesinde nasıl bir metod kullanıldığına yer verilmiştir. Altıncı

bölümde çalışmada ortaya çıkan deneysel sonuçlar tartışılmıştır. Buradan elde edilen 

sonuçlar yedinci bölümde değişik açılardan irdelenmiş ve bu alanda çalışma yapmayı

düşünenlere önerilerde bulunulmuştur.  

 Son olarak sekizinci bölümde çalışmada faydalanılan kaynaklar verilmiştir. 
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2. LİTERATÜR ARAŞTIRMASI 

 

Sweldens (1994), çalışmasında bir fonksiyonun dalgacık sabitlerini bu 

fonksiyonun örneklerinden hesaplanması üzerine interpolasyon, quadrature eşitlik ve 

filtreleme metotlarıyla uygulamalar sunmuştur. 

 Anderson ve ark. (1995), çalışmalarında EEG işaretleri yardımıyla zihinsel 

durumun tanımlanması amacıyla yapay sinir ağları kullanmışlardır. 

 Grap (1995), makalesinde geleneksel Fourier metotları, Dalgacık teorisi ve 

analizlerinin gelişimini inceleyerek sinyal işleme alanı temelli çeşitli karşılaştırmalar 

yapmış, ayrıca henüz gelişen dalgacık analizinin uygulama alanlarından bahsetmiştir. 

 Kalaycı ve Özdamar (1995), giriş ve çıkış datasının sinyalin karakteristik 

özelliklerini gösterebilecek şekilde işlenebilmesi durumunda yapay sinir ağlarının

daha iyi sonuç verdiğini gösteren bir çalışma yapmışlardır. 

 Dograhmi ve ark. (1997), çalışmasında EEG kayıtlarının spektral analiz temelli 

sınıflandırılmasını amaçlayarak elektrot sayısının ve uygulanan spektral analiz 

yöntemi özelliklerinin bir sınıflandırıcı gibi kullanılması konusunu incelemişlerdir. 

 Mckeown ve ark. (1997), EEG işaretlerinin analizi ve uyarı değişikliklerinin 

bulunması amacıyla istatistiksel yöntemler kullanarak bir çalışma yapmışlardır. 

 Jung ve ark. (1998), çalışmasında uyku ve uyanıklık durumlarının yapay sinir 

ağları ile sınıflandırılmasında, ham EEG işaretlerinden ziyade Fourier Dönüşümü 

alınmış EEG’ nin daha uygun sonuçlar verdiğini gözlemlemişlerdir. 

 Miner (1998), bu raporda geleneksel Fourier metotları, Dalgacık teorisi ve 

analizlerinin gelişimini inceleyerek sinyal işleme alanı temelli çesitli karşılaştırmalar 

yapılmış, ayrıca sürekli ve ayrık dalgacık analizi algoritmaları verilmiştir. 

 Torrence ve ark. (1998), çalışmalarında yaygın olarak kullanılan temel dalgacık

fonksiyonları sınıflandırılmış, özellikleri verilerek ayrık zaman diziler için sürekli 

dalgacık dönüşümü yaklaşıklığı verilmiştir. Sonlu uzunlukta zaman serilerine             

Pencerelenmiş Fourier ve Dalgacık dönüşümü uygulayarak istatistik önem ile 

güvenirlik aralığı analizleri yapmışlardır. 

 Önal ve ark. (1998), EEG sinyallerindeki epileptik sürecin Dalgacık Dönüşümü 

yöntemi ile belirlenmesini amaçlayarak bir çalışma yapmışlar ve bu çalışmada 
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parsiyel nöbet geçiren 3 yaşındaki bir çocuktan alınan gerçek EEG işareti kullanarak 

epileptik süreçte özellikle düşük frekans bandı δ’ nın etkinliğini göstermişlerdir. 

 Güneş ve ark. (1998), EEG işaretlerine Dalgacık Dönüşümü teknikleri 

uygulayarak, Sürekli ve Ayrık Dalgacık Dönüşümlerinin üstünlüklerini göstermeyi 

amaçlayan bir çalışma yapmışlardır. 

 Güneş (1999), EEG işaretlerinin Dalgacık Analizi ve diğer parametrik 

yöntemlerle karşılaştırılması konulu bir tez çalışması yapmıştır. 

 Suleesathira ve ark. (2000), deterministik, durağan olmayan sinyallerin 

gösteriminin ayrık evrimsel dönüşümle yapılabilirliği konusunda çalışmışlardır. 

 Girault ve ark. (2000), çalışmalarında durağan olmayan benzetim ve gerçek 

sinyaller üzerinde FFT, AR, Zamanla değişen parametrik model yaklaşımı

metotlarını kullanmışlar, frekans kestirimi için de karşılaştırma maksadıyla spektral 

ağırlık merkezi hesabıyla değerlendirmelerde bulunmuşlardır. 

 Güler İ. (2001), çalışmasında EEG sinyallerini AR (autoregressive method) 

kullanarak analiz etmiştir. Bu çalışmada parametreler maksimum olabilirlik kestirimi 

(MLE) yöntemi kullanılarak belirlenmiştir. 

 Kıymık ve ark. (2004), gerçek zamanlı uygulamalar için EEG sinyallerindeki 

epileptik sürecin belirlenmesinde STFT (Shirt Time Fourier Transform) ve Dalgacık

Analiz yöntemlerini kapsayan bir çalışma yapmışlar ve bu çalışmada Dalgacık

Dönüşümü’ nün diğer spektral analiz yöntemi olan STFT’ ye oranla daha başarılı

sonuçlar verdiğini göstermişlerdir. 

 Acır N. ve arkadaşları (2004), yapay sinir ağları kullanarak EEG de uyku 

iğciklerini otomatik olarak tanıyan sistemi önermişlerdir. 

 Álvarez, D., ve arkadaşları (2009), çalışmalarında apne hipapne sendromunda 

apneik olayların bulunmasına fuzzy logic tabanlı bir çözüm önerisi getirmişlerdir. 

 Duman F. ve arkadaşları (2009), çalışmalarında EEG sinyallerinin analizinden 

sonra karar ağacı algoritmasıyla uyku iğciklerinin tesbit edilmesi, yerlerinin kesin 

olarak bulunması sağlanmış ve bunun için üç farklı yol kullanılmıştır. Bunlar STFT 

(Shirt Time Fourier Transform), MUSIC (Multiple Signal Classification) Algoritması

ve TEO (Teager Energy Operator) dur. 
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3. EEG 

 

3.1. EEG’ nin Tarihsel Gelişimi 

 

Beyinde bir takım elektriksel faaliyetlerin var olduğu 1875 yılında Caton adlı

bir bilim adamı tarafından hayvanlar üzerinde yaptığı deneyler sonucunda ortaya 

atılmıştır. 1929 yılında ise ilk defa insan beyninde elektriksel aktivitenin varlığı 

Alman Psikiyatrist Hans Berger tarafından kafaya konulan elektrotlar ve bunlara 

bağlı bir galvanometre düzeneği sayesinde keşfedilmiştir. Dünya bu olayı Berger’ in 

"Beyin tarafından üretilen zayıf elektrik akımlarını grafiksel olarak kağıt üzerinde 

kaydetmek kafatasını açmadan mümkün olmuştur" şeklinde yaptığı beyan ile 

öğrenmiştir. Bu gelişme devrimsel bir buluş olmuştur. Aslında Berger, Klinik 

Nörofizyoloji adıyla tamamen yeni ve çok önemli bir tıbbi bilim dalını keşfetmiştir. 

 Berger, (1930)’ da ise Elektroensefolagram adı verilen bu dalgaların gözün 

açılıp kapanmasıyla değiştiğini ortaya koydu. 

Fakat Berger’ in kullandığı elektrotlar EEG' nin detaylı topografik ölçümü için 

çok büyüktüler. Bu durum Gray Walter adındaki İngiliz bilim adamınca bertaraf 

edildi. 1936' da kafatasına çok sayıda küçük elektrod yerleştirilmesi ile beyinde 

tümör etrafındaki elektriksel aktivitenin belirlendiğini ve içindekinin kaybolduğunu

ispatladı.

EEG'nin iki boyutlu haritalarını oluşturma olasılıklarıyla pekişerek Walter 

1957'de toposkopu icat etti. Toposkop, her biri kafatasına tutturulmuş bir çift 

elektroda bağlı 22 katod ışık tüp (TV tüpü benzeri) bulundurur. Toposkopun 

elektrodları ve ilgili tüpleri iki boyutlu geometrik düzlem üzerinde ayarlandı, tıpkı

her tüpün beyinde belirli alanların EEG ölçümlerini oluşturan bir kısım ritimlerin 

yoğunluğunun betimlemesi gibi. Gray Walter deneklerine birkaç zihinsel görev 

vererek EEG ritimlerinin farklı yollarla, farklı zamanda ve beynin farklı bölümleriyle 

değiştiği sonucunu görmüştür. Örneğin, ilk olarak dinlenme halindeki alfa ritminin, 

dikkat isteyen zihinsel bir etkinlik esnasında neredeyse tüm beyinden kaybolduğunu

ve daha hızlı olan beta dalgalarının hakim oldukları gözlemlenmiştir. 
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Epileptik noktaların tespitinde toposkopun büyük yardımı olabileceği

gerçeğinin yanı sıra çok karmaşık ve pahalı olması ticari başarısını ve yaygın

kullanımını engellemiştir. Beyin elektriksel etkinliğinin topografik yaklaşımı 80' li 

yıllarda masaüstü bilgisayarlarıyla birlikte yeniden doğmuştur. EEG beyin 

topografisi günümüzde renkli beyin haritalaması olarak da anılmaktadır. 

 

3.2. EEG nedir? 

 

Beyinin biyoelektrik aktivitesinin incelenmesine ve uygun amplifikasyon ve 

yazdırma sistemleri kullanılarak kağıt üzerinde işlenmesi yöntemine 

elektroensefalografi denir. EEG yöntemini kullanarak beyinde çeşitli sebeplerden 

dolayı ortaya çıkan hastalıklar için bazen kesin veriler elde edemezken bazen de 

hastalığa ait küçük bir veri sonucu teşhis yapılabilmektedir. Bazı değişiklikler 

hastalığa sebep olan durumun saptanmasını sağlarken bazı değişiklikler de metabolik 

olayın çeşitleri konusunda bilgi vermektedir. 

 Bu yöntem beynin yapısal işlevlerinden çok fonksiyonel durumu hakkında bilgi 

verir. Bu nedenle yapısal görüntüleme yöntemlerinden MRG (Manyetik Rezonans 

Görüntüleme), BT (Bilgisayarlı Tomografi) gibi gelişmelere rağmen önemini 

korumaktadır. Bu yöntemler daha çok birbirini tamamlayıcı işlevler olan yapısal ve 

fonksiyonel inceleme üzerinde etkili olmaktadırlar. Yapısal inceleme sonucu 

gözlemlenen patolojik bulguların olmadığı durumlarda EEG önem taşımaktadır. 

 

3.3. EEG Cihazının Temel Çalışma Şekli ve Uygulanması

EEG cihazlarında genel olarak kafatasının çeşitli yerlerinden aynı anda kayıt

yapabilen 8, 16 veya daha fazla sayıda ayrı amplifikatörler bulunmaktadır. 

Amplifikatörler beyinden alınan sinyalleri yükseltirler ve mürekkeple yazan 

kalemleri hareket ettirerek veya özel bir kağıdı yakma yöntemiyle kayıt alınmasını



8

sağlarlar. Kalemler saniyede 3cm. hızla ilerleyen kağıda voltaj değişimlerini çizerler. 

Oluşan dalgaların frekans aralığı 0.5 ile 35 Hz. Arasında değişmektedir. Böylece 

beyin dalgalarının voltaj zaman grafiği elde edilir. Standart voltaj kalibrasyonu 7 

mm. 50 µV olacak şekildedir. 

 EEG tamamen ağrısız ve zararsız bir inceleme yöntemidir. Saçlı deriden 

kayıtlanan potansiyellerin çoğu piramidal hücrelerdeki toplam sinaptik 

potansiyellerin ekstrasellüler akımlarla ilişkisinin sonucudur. Bu potansiyeller 

sonucu alınan kayıtlar montaj adı verilen bağlantılarla değerlendirilir. Eskiden 

kullanılan EEG aletlerinde (yukarda bahsedilen) o andaki kayıt kağıda yapılır ve 

parametreleri sonradan değiştirilemez. Oysa şimdi kullanılan dijital EEG cihazlarının

en önemli avantajı kayıt yapılan montajdan daha sonra diğer montajlara 

geçilebilmesi, amplitüd ve diğer parametrelerin her olgu için ve her bulgu için 

yeniden ayarlanarak en sağlıklı bilginin sağlanmasıdır.  

 Genelde EEG çekimi yaklaşık 30 dakika sürer, çekimden önce elektrotların

yerleşimi çok önemli bir hazırlık aşamasıdır. Elektrotlar beynin sağ ve sol lopuna 

göre simetrik biçimde yerleştirilmelidir. Bu da hemisferler arası kıyaslamanın

sağlıklı yapılabilmesi için gereklidir. Loplara yerleştirilen elektrotlar lopun adının

baş harfine göre solda tek sayı ile sağda çift sayı ile ifade edilir. Örneğin sol arka 

frontal için F7 sağ ön frontal için F4 kullanılır.  

 Yerleştirilen elektrot sayısı yaklaşık 20 civarındadır. Genelde elektrotların

yerleştirileceği noktalar uluslararası 10 - 20 sistemine göre yapılır. Elektrotlar kafa 

derisi üzerine uygun yapışkan ve elektriği geçiren bir macunla yapıştırılarak ya da 

şapka şeklinde kauçuk bantlarla sıkıştırılarak yerleştirilir ve bazı özel  pastalar ya da 

tuzlu su ile iletkenlikleri sağlanır. 

 EEG çekimi öncesinde hastanın saçlarının temiz olması önem taşır. EEG 

çekimi süresince hasta sakin bir şekilde gözleri kapalı oturmalıdır. EEG teknisyenin 

talimatlarınca hasta gözlerini açıp kapayabilir.  

 Tüm EEG çekimlerinde hiperventilasyon uygulanır. Bunun sebebi bir epileptik 

odağı aktifleştirmektir. Ayrıca EEG’ de uygulanması gereken önemli bir aktivasyon 

da aralıklı ışık uyarımıdır.  
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3.4. EEG Değerlendirilmesi 

 

EEG bulgularının değerlendirilebilmesi için öncelikle normal EEG 

özelliklerinin çok iyi bilinmesi gereklidir. Her EEG çekiminde önce temel aktivite 

değerlendirilir. Normal temel aktivite yaşla, uyanıklık durumuyla, açlık gibi bazı

fizyolojik durumlarla çok belirgin farklılıklar gösterir. Üç aylık bir bebek için normal 

sayılan aktivite 3 yaşında bir çocuk için patolojiktir. Ya da derin uykuda olan bir 

erişkinin EEG aktivitesi aynı kişi uyanıkken görüldüğünde ciddi bir patolojik bulgu 

anlamına gelebilir.  

 EEG de beynin hemisferleri arasında simetri vardır, bu nedenle iki yarıkürenin 

kıyaslanması önemlidir. Bunun dışında EEG değerlendirirken en önemli sorun 

artefaktların ayırt edilebilmesidir. Artefaktlar EEG kaydında yer alan, ancak 

beyinden kaynaklanmayan (göz hareketleri, hareket ve kas artefaktı, elektrot 

kayması, terleme gibi) çeşitli mekanik-elektriksel potansiyellerin sonucudur. 

Deneyimli bir kişinin hemen tanıyabileceği bazı artefaktlar kolayca patolojik beyin 

aktiviteleri sanılabilir. 

 EEG çekimi sırasında hastanın kullandığı ilaçlar ve varsa metabolik 

problemleri mutlaka kaydedilmelidir. Çünkü bazı ilaçların ve metabolik durumların

EEG üzerinde etkileri belirgindir. Ayrıca epileptik hastanın nöbeti ile EEG çekimi 

arasındaki süre, yani EEG’nin postiktal mi yoksa interiktal dönemde mi yapıldığı 

bazı bulguların yorumu açısından önem taşır. 

 EEG sonucunda yorum yaparken görülen bulguları tanımlamayı yeğlemek ve 

EEG bulgusu ile klinik tanı arasında yanlış olabilecek bir yakıştırma yapmamak 

gerekir. EEG değerlendirmesini bu konuda deneyimli uzmanların yapması ancak her 

hekimin sonuçları yorumlayabilmesi gereklidir.  
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3.5. EEG İşaretlerinin Elektriksel Özellikleri 

 

EEG işaretlerinin frekans bileşenleri klinik bakımdan oldukça önemli olduğu

gibi, farklı bölgelerden alınan benzer EEG işaretleri arasındaki faz ilişkileri de 

sayısal anlamda oldukça ilgi çekicidir. Bu türden bilgiler, EEG’ nin kaynağının

incelenmesinde çok faydalı olup beyin çalışması ile ilgili daha birçok bilginin elde 

edilmesine olanak sağlar. Kafatasına yerleştirilen elektrotlar yardımıyla alınan EEG 

sinyallerinin genliği tepeden tepeye 1–100 µV ve frekans bandı ise 0.5 - 35 Hz 

aralığındadır. Ölçümler açık beyin ameliyatları gibi durumlarda beyin üzerinden 

doğrudan alındığı takdirde, genlik değeri 10 kat daha artar. EEG’ de oluşan farklı

frekansların oluşum mekanizmaları henüz tam olarak açıklanamamıştır. 

 EEG, EKG ve EMG işaretlerinde olduğu gibi şekil bakımından değil, kapsadığı 

frekanslara göre değerlendirilmektedir. Çünkü EEG işaretleri periyodik değildir; 

genlik, faz ve frekansları sürekli olarak zaman içerisinde değişir. Bu sebeple anlamlı

bir veri elde edebilmek için ölçümlerin oldukça uzun bir sürede yapılması gerekir. 

EEG işaretlerinin ana frekansı ile beyin aktivitesi yakından ilişkilidir. Aktivite ile 

frekans birlikte yükselir. Tablo 3.1, EEG işaretleri,  kapsadıkları frekans bantları ve

bu bantlara verilen özel isimler ile birlikte aşağıdaki gibi verilmiştir. 

 

Tablo 3.1 EEG dalga şekilleri 

 
Dalga Tipi Özelliği

Beta > 13 Hz 

Alfa 13-8 Hz 

Teta 7-3 Hz 

Delta 2-0.5 Hz max. 
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3.6. EEG Dalga Şekilleri 

 

Alfa Dalgaları: Alfa dalgaları 8–13 Hz arasındaki beyin dalgalarıdır. Uyanık normal 

ve sakin kimselerde görülür. Yoğun şekilde oksipital bölgede ortaya çıkar, genlikleri 

5 µV kadardır. Uyku durumunda yok olurlar. Uyanık kişi dikkatini özel bir şeye 

yöneltirse α dalgaları yerine, daha yüksek frekanslı, fakat düşük genlikli EEG 

işaretleri (β dalgaları) meydana gelir. Şekil 3.1’ de Alfa dalgası görülmektedir 

(Yazgan ve Korurek 1996). 

 

Şekil 3.1 Alfa dalga şekli 
 

Beta Dalgaları: Beta dalgaları, Frekansları 13 Hz’ in üzerindeki beyin dalgalarıdır. 

25 Hz’ e ve nadir hallerde 50 Hz’ e kadar uzanırlar. Saçlı derinin parietal ve frontal 

bölgelerinde belirgin olarak kaydedilebilir. Beta-I (BI) ve Beta-II (BII) diye ikiye 

ayrılırlar. BII dalgalarının frekansı, BI’ inkinin iki iki mislidir ve α dalgalarında

olduğu gibi zihinsel aktivitenin artması ile ortadan kalkarlar ve yerlerine düşük

genlikli asenkron işaretler oluşur. BII dalgaları, merkezi sinir sisteminin kuvvetli 

aktivasyonunda veya gerginlik hallerinde ortaya çıkar. Şekil 3.2’ de Beta dalgası

görülmektedir (Yazgan ve Korurek 1996). 
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Şekil 3.2 Beta dalga şekli 
 

Teta Dalgaları: Teta dalgaları 3–7 Hz arasındaki dalgalardır. Özellikle, çocuklarda 

parietal ve temporal bölgelerde ortaya çıkarlar. Yetişkinlerde de duygusal gerginlik, 

düş kırıklığı durumlarında ortaya çıkarlar. Genlikleri 100 µV (p-p)’ den küçüktür. 

Şekil 3.3’ de Teta dalgası görülmektedir (Yazgan ve Korurek 1996). 

Şekil 3.3 Teta dalga şekli 
 

Delta Dalgaları: Delta dalgaları 2–0,5 Hz’ in altındaki beyin dalgalarıdır. Bazı

durumlarda 0,5 Hz’ in altına da düşer. Süt çocuklarında ve ağır organik beyin 

hastalıklarında görülür. Genlikleri–100 µV (p-p)’ den küçüktür. Şekil 3.4’ de Delta 

dalgası görülmektedir (Yazgan ve Korurek 1996). 
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Şekil 3.4 Delta dalga şekli 
 

Gamma Dalgaları: Bazı araştırmacılar tarafından kullanılmaktadır. Bazı

araştırmacılar da bu dalgaların yerine, BII dalgalarını kullanmaktadır. Genlikleri, 2 

µV (pp)’ den daha küçüktür. Kafanın merkezinde, genlikleri daha büyüktür. 

Uykunun karakteristik belirtisini taşırlar (Yazgan ve Korurek 1996). 
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4. UYKU ve UYKU EVRELERİ

4.1. Uyku 

 

Uyku insanoğlunun her zaman çok ilgilendiği konular içerisinde yer almıştır. 

Bunun nedeni her birimizin günlük işlevselliğimizi sürdürebilmek için uyku 

uyumaya ihtiyacımızın olmasıdır. Günlük aktivitelerimizi devam ettirebilmek için, 

verimli olabilmek için her gün belirli bir süre uyumamız gerekmektedir. 

 Her insan, ömrünün üçte birini uyuyarak geçirir. Her gün yaşadığımız ve

gerçekte büyük bir mucize olan uyku genellikle bilinenin aksine tüm vücut 

sistemlerinin pasifleştiği bir dinlenme süresi değildir. Çünkü uyku esnasında vücut 

aktif bir yenilenme sürecine girer. Tüm bu verilenler ışığında uykunun bir tanımını

şöyle yapabiliriz. 

 Uyku; organizmanın çevreyle iletişiminin, değişik şiddette uyaranlarla geri 

döndürülebilir bir biçimde geçici, kısmi ve periyodik olarak kaybolması durumudur. 

 Uykunun başlaması, eş zamanlı olarak meydana gelen bir dizi faaliyet sonucu 

olmaktadır. Retiküler Aktivasyon Sistemi (RAS) ile çevresel sinir sistemi arasındaki 

pozitif geribildirim döngüsünün engellenmesi (ketlenmesi), uyku merkezlerinin 

engelleyici etkileri ve uykuyu oluşturan kimyasal ajanların (nörotransmiterlerin) 

birikmesi uyanıklıktan uykuya geçişe yol açmaktadır. Ayrıca, uykuya geçerken vücut 

ısısı ve kortizol düzeyi düşmekte, melatonin salgısı artmaktadır. Organizma, 

“sirkadien ritm” e uygun olarak uykuya girişe hazırlanmakta, sinir sisteminde korteks 

altı bölgelerde, locus coeruleus’ da (LC) engellenme başlamakta, giderek dorsal 

raphe çekirdeklerinde (DR) faaliyetin arttığı dikkati çekmektedir. Bunun sonucu, 

eşzamanlı olarak derin uyku ortaya çıkmakta, uyku derinleştikçe sinir sistemindeki 

engellenme derinleşmektedir (Uykuder 1. Uyku Bozuklukları Kongre Kitabı, 2008). 

 Özetle düzenli uyku vücudun performansını artırırken, kronik uykusuzluk 

işgücünü azaltmakta ve mental yetenekleri kısıtlamaktadır. Uyku döneminde başta 

merkezi sinir sistemi olmak üzere, solunum, dolaşım ve kas iskelet sistemi gibi, 

organizmanın büyük bir bölümünün günlük yıpranması tamir edilmektedir. Uykuda 
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bir bozukluk olduğunda tamir edilemeyen sistemler verimsiz çalışmaya 

başlamaktadır. 

 

4.2. Uyku Evreleri ve Uyku Evreleme 

 

Uyku bozukluklarının tanısı için “altın standart” yöntem olan polisomnografi; 

uyku sırasında, nörofizyolojik, kardiyorespiratuar, diğer fizyolojik ve fiziksel 

parametrelerin belli bir periyod, genellikle gece boyunca, eş zamanlı ve devamlı

olarak kaydedilmesi” şeklinde tanımlanabilir. (Uykuder 1. Uyku Bozuklukları

Kongre Kitabı, 2008)

1968 yılında Rechtschaffen ve Kales’  in (R&K) editörlüklerini yaptığı 12 

araştırmacı, insan uyku evrelerinin standart terminoloji, teknik ve skorlama el 

kitabını hazırlamışlardır. Yakın geçmişe kadar uyku evrelerinin skorlaması bu

grubun belirlediği prensipler esas alınarak yapılmakta ve sağlıklı bir kişide normal 

uyku; NREM 1, 2, 3, 4 ve REM olmak üzere iki ana bölüm ve 5 evreden 

oluşmaktaydı.

Amerikan Uyku Tıbbı Akademisi’nin (American Academy of Sleep Medicine-

AASM), Dr. Iber Conrad başkanlığında oluşturduğu bir çalışma grubu uzun süren 

çalışmalar sonunda, uyku ve ilişkili olayların skorlanması konusunda yeni kuralları

belirlemiş ve 2007 yılında bir manüel olarak yayınlanmıştır. Artık günümüzde bu 

uzlaşı raporu kuralları esas alınmaktadır. Buna göre;  

 

A. Uyku evreleri uyanıklık (W), evre I (N 1), evre II (N2), evre III (N3) ve REM (R)’ 

den oluşmaktadır (Non-REM evre 4 uyku terminolojisinden kaldırılmıştır).  

B. Uyku epoklara göre skorlanır

1. Uyku evrelerinin skorlanması için 30 saniyelik epoklara ihtiyaç vardır.  

2. Her epok bir evre ile isimlendirilir.  

3. İki evre aynı epokta yer alıyorsa, epoğun yarısından fazlası hangi evre ise o 

evre olarak adlandınlır.  
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4.2.1. Uyku evreleri 

 

4.2.1.1. Evre W (uyanıklık evresi) 

 

W evresi, uyanıklık evresidir ve en alert durumdan uykuya dalmak üzere olan 

duruma kadar değişen bir yelpaze içerir.  

 W evresinde, gözler kapalıyken genellikle alfa ritmi izlenir. Gözler açıkken 

alfa’nın ritmisitesi olmaksızın düşük amplitudlü aktivite içeren EEG paterni izlenir. 

İnsanların %10’unda gözler kapalı iken alfa dalgaları izlenmez, %lO’unda ise çok 

azdır. Bu kişilerde göz açık ya da kapalı iken EEG paterni aynıdır. 

 W evresinde, EOG’de 0.5-2 Hz frekansında hızlı göz hareketleri (göz 

kırpmaları) izlenir. Uykuya dalmak üzereyken göz kırpmaların sıklığı yavaşlar, göz 

kırpmaların yerini yavaş göz hareketleri alır, bu arada alfa ritmi sebat eder. Eğer 

gözler açıksa istekli hızlı göz hareketleri ya da okuyan göz hareketleri izlenebilir.  

 

Tanımlar:  

Alfa ritmi: 8-13 Hz frekanslardadır. Gözler kapalı iken ve oksipital bölgeden alınır, 

gözler açılınca zayıflar. 

Göz kırpma: 0.5-2 Hz’ lik vertikal göz hareketleridir. 

Okuyan göz hareketleri: Ters istikametlerde önce yavaş sonra takibinde hızlı faz 

içeren göz hareketleridir.  

Hızlı göz hareketleri: R evresinde geçerli olmakla beraber uyanık, göz açık ve kişi

çevreyi gözleri ile tararken de görülür. İrregüler, sert, keskin pikler tarzında dalgalar 

mevcuttur.  

 Şekil 4.1’ de Uyanıklık (W) evresine ait PSG sinyal kaydı bulunmaktadır.  
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Şekil 4.1 Uyanıklık (W) Evresine ait PSG sinyal kaydı

4.2.1.2. NREM Evre I 

 

NREM Evre I’ de Verteks keskin dalgaları bulunabilir ama NREM Evre I 

evresini skorlamak için gerekli değildir. 

 EOG’ de, NREM Evre I’ de yavaş göz hareketleri izlenir ama NREM Evre I 

diye skorlamak için bu şart değildir. NREM Evre I boyunca çene EMG aktivitesi 

değişkendir ama sıklıkla W evresine göre amplitüdü düşüktür. Tıpkı alfa ritimlerinin 

yavaş göz hareketlerinden önce başlaması gibi uyku latansı alfa ritmi 

oluşturamayanlara göre daha kısa olabilir. NREM Evre I uyku zamanının %2 - 5’ ini 

içerir. Eğer kişi uykunun bu evresinde uyandırılırsa etrafında olup bitenden tamamen 

haberdar olmamasına karşın genellikle uyumadığını uyanık olduğunu söyleyecektir. 

 

Tanımlar:  

Yavaş göz hareketleri (SEM): En az 0.5 sn’ nin üstünde bir defleksiyonla başlayan 

konjuge, düzenli, sinüzoidal göz hareketleridir.  

Düşük amplitüd, karışık frekanslı aktivite: 4-7 Hz’ lik aktivite baskın durumdadır.  

Verteks keskin dalgaları (V dalgaları): Maksimum 0.5 saniyelik keskin uçlu 

dalgalardır, santral bölgelerden alınır, bazal aktiviteden net olarak ayrılabilir.  
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Uyku başlangıcı (sleep onset): W dışındaki herhangi bir uyku evresinin ilk 

görüldüğü epoktur (olguların çoğunda, genellikle NREM Evre I).  

 Şekil 4.2’ de NREM Evre I’ e ait PSG sinyal kaydı bulunmaktadır.  

 

Şekil 4.2 NREM Evre I e ait PSG sinyal kaydı

4.2.1.3. NREM Evre II 

 

EOG’ de genellikle NREM Evre II’ de göz hareketleri aktivitesi yoktur, ama 

bazen SEM sebat eder. NREM Evre II evresinde, EMG amplitüdü değişkendir, ama 

genellikle W’ den düşük hatta R kadardır. Bu evre total uykunun % 45-55’ ini içerir. 

Uykunun bu evresinde bilinç, kişi uyandırıldığında uykuda olduğunu

hatırlayabilmesine yeterli olacak şekilde EEG paternleri görülür. 

 

Tanımlar:  

K Kompleksi: İyi ayırt edilen negatif keskin ve onu takip eden pozitif komponenti 

vardır, toplam süresi 0.5 saniyeden uzundur, maksimum amplitüd frontal 
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derivasyonlardan sağlanır. Bir arousal’ ı K kompleksine eşlik eden arousal kabul 

etmek için K kompleksinden sonra en fazla 1 saniye içinde gelişmiş olması gerekir.  

Uyku iğciği: 12-14 Hz’lik (11-16 da olabilir) frekanstadır, 0.5 saniyeden uzun süren, 

en yüksek amplitüdün santral derivasyonlardan alındığı peşpeşe küçük dalgalardan 

oluşur.  

 Uyku iğcikleri thalamokortikal salınımların güdümüyle kortekste 

gözlemlenebilen geçici dalga biçimleridir. İğcik aktivitesi uykunun 2. döneminde 

yoğun olmak üzere diğer NREM uyku evrelerinde nadiren de olsa mevcuttur. Yaşın

ilerlemesiyle, yaşam boyu var olan uyku iğciklerinin yoğunluklarında azalma, 

frekansında artma görülmektedir (A.Nicolas 2001). 

İğciklerin oluşumu ve işlevi hakkında tam bir fikir birliği olmamakla birlikte 

kabul gören iki varsayım vardır. Birinci varsayıma göre iğcikler, motor çıkışın ve

algı geçişlerinin bastırılması yoluyla uyku halinin sürdürülmesini sağlayan 

salınımlardır. İkinci varsayıma göre ise iğcikler, talamo-kortikal alanda önceki 

deneyimlerin bütünleştirilmesi için gereken işlevlerin bir araya getirilmesine 

yardımcı olur. Hipersomniyak ve insomniyak denekler üzerinde yapılan çalışmalar 

iğcik yoğunluklarının hastalığın türü ile bağlantılı olarak değiştiğini göstermekte ve 

iğciklerin uyku sürecini düzenleyici işlevinin olduğu bulgusunu 

kuvvetlendirmektedir (Eroğul vd 1999).  

 İğciklerin geçici rejim özelliklerini ve arka plan EEG (elektroansefalografi) 

işaretlerine göre daha düşük genliklere sahip olmaları gözle ayırt edilmelerini ve 

ayrıştırmalarını güçleştirir. İğciklerin otomatik sezimi ve dalga biçimlerinin analizi 

nesnel olarak değerlendirilebilmeleri için önemlidir (Eroğul vd 1999).  

 Şekil 4.3’ de K kompleksi ve Uyku iğciği bulunan bir PSG sinyal kaydı

bulunmaktadır.  
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Şekil 4.3 K kompleksi ve uyku iğciği bulunan bir PSG kaydı

Şekil 4.4’ de NREM Evre II’ ye ait PSG sinyal kaydı bulunmaktadır. 

 

Şekil 4.4 NREM Evre II’ ye ait PSG sinyal kaydı
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4.2.1.4. NREM Evre III 

 

NREM evre III’ de uyku iğcikleri sebat edebilir. NREM evre III’ de göz 

hareketleri tipik değildir ve EMG amplitüdü değişkendir, sıklıkla NREM evre III’ 

dekine göre düşük hatta bazen R’ deki kadardır. Bu evre uykunun en derin, en 

iyileştirici ve en uygun dinlenme noktasıdır. Yavaş dalgalı uyku evresidir. Frekansı

0.5-2 Hz arasındaki sinyaller mevcuttur bu sinyaller Delta dalgalarıdır. NREM evre 

III’ tüm gece uykusunun %20-25 ini içerir. Kişiyi uyandırmak daha zordur. Bu 

esnada derin ve rüyasız bir uyku durumu vardır. Çocuklarda büyüme hormonu 

özellikle derin uyku döneminde (Evre III ) salınır. 

 

Tanımlar:  

Yavaş dalga aktivitesi: Delta dalgalarının frekansı 0.5-2 Hz’ dir. Frontal bölgeden 

alınan dalganın amplitüdü >75 mikro volttur. 

 Şekil 4.5’ de NREM Evre III’ e ait PSG sinyal kaydı bulunmaktadır. 

 

Şekil 4.5 NREM Evre III 
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4.2.1.5. REM Evresi 

REM evresindeki düşük amplitüd, karışık frekanslı aktivite NREM evre I’ e 

benzer. Bazı kişilerde alfa aktivitesi NREM evre I’ den çok R’ de izlenir. R’ deki alfa 

aktivitesi W’ a göre 1-2 Hz daha yavaştır.  

 Aşağıdaki fenomenler R evresini, şüpheli durumlarda skorlamaya yardımcı

olur.  

a) Testere dişi dalgaları

b) Geçici kas akitivitesi  

c) Özellikle gecenin ilk R epizotunda, R’ de K kompleksi ve uyku iğciği

izlenebilir ama hızlı göz hareketleri yok ve sadece düşük EMG söz konusu ise 

NREM evre II olarak skorlanmalıdır. 

 

Tüm gece uykusunun % 20-25 ini kapsar. EEG’ de düşük voltajlı hızlı aktivite 

gözlenir. Rüyaların % 80' inin REM sırasında görüldüğü bilinmektedir. Bu evrede 

görülen rüyalar hatırlanır (bu evrede kalıcı bellek kaydı vardır). 90 dakikada bir, 5-30 

dakikalık süreçler halinde ortaya çıkar. REM sırasında beyindeki kan akım

üzerindeki çalışmalar, kan akımının ve oksijen  kullanımının uyanıklığa benzer 

tarzda artışlar gösterdiğine işaret etmektedir. Tüm vücutta kas tonusu azalır. Kalp 

atımları, solunum sayısı ve kan basıncı düzensizleşir. Bazı düzensiz kas hareketleri   

(göz hareketleri gibi) oluşur. Bu evre uykunun diğer evrelerinin arasına 

serpiştirilmiştir. 

 

Tanımlar:  

REM: 0.5 sn’ lik defleksiyonla başlayan konjüge, düzensiz, keskin pikli göz 

hareketleridir.  

Düşük EMG tonüsü: EMG aktivitesi diğer herhangi bir evreden daha yüksek 

değildir, genellikle bütün kaydın en düşük seviyesine sahiptir.  

Testere dişi dalgalar: Santral bölgelerden alınan, maksimum 2-6 Hz dalgalı keskin 

uçlu, üçgenimsi, genellikle REM göz hareketlerine eşlik eden dalgalardır.  

Geçici kas aktivitesi: Genellikle 0.25 saniyeden kısa süreli bazaldeki düşük EMG 

tonüsüne süperpoze kısa, irregüler EMG aktivitesi patlamaları şeklindedir. Çene ve 
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bacak EMG’ sinde olduğu kadar EEG ve EOG’ de de izlenebilir. Bu aktivite hızlı

göz hareketleri ile beraber maksimumdur.  

 Şekil 4.6’ da REM Evresi’ ne ait PSG sinyal kaydı bulunmaktadır. 

 

Şekil 4.6 REM Evresi’ ne ait PSG sinyal kaydı
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4.2.2. Yaşa göre uyku evrelerinin dağılımı

Uyku evrelerinin dağılımı yaşla değişkenlik gösterir. REM süresinde yaşla 

değişiklik olmazken, çocuklar erişkinlere kıyasla daha fazla yaşlılar ise daha az 

yavaş dalga uykusu (NREM Evre 3) uyurlar. Yaşa göre  uyku evrelerinin dağılımı

Tablo 4.1’ de verilmiştir. 

 

Tablo 4.1  Yaşa göre uyku evrelerinin dağılımı

UYKU 

EVRELERİ

ÇOCUK GENÇ 

ERİŞKİN

YAŞLI 

Uyanık < 5 >

REM = 20-25 = 

NREM-1 < 1-5 > 

NREM-2 = 40-50 > 

NREM-3 > 20-25 < 

TOPLAM saat 10-12 8-10 6-8 

4.2.3. Örnek bir uyku modeli  

 

Şekil 4.7’ deki grafikte sarı hat uyanıklık dönemini simgelemektedir. Uyku 

başlangıcında süratle yüzeyel uykudan derin uykuya geçilir. Genellikle uykuya 

daldıktan sonra 1 saat içinde  NREM döneminin en derin basamağı olan üçüncü 

basamağa girilir. Daha sonra uykunun derinliği azalır ve ilk REM dönemine geçilir.  
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Şekil 4.7 Sekiz saatlik örnek bir uyku süreci 
 

Bu ilk REM dönemi 5-10 dakika devam eder. Bundan sonra NREM ve onu 

izleyen REM’ den oluşan ve 80–100 dakika süren periyotlar uyku sırasında peş peşe

4-6 kez meydana gelir. REM’ in toplam süresi, uykunun toplam süresinin % 20-25’ i 

kadardır. 

 Rem döneminde uykunun en hafif dönemine ulaşırız. Bu noktada uyanma 

ihtimalimiz çok yüksektir veya çevremizdeki sesler, hareketler, içimizdeki ağrılar 

veya üzüntülerle aniden uyanıp canlanabiliriz. Tekrar uykuya geri dönersek, bütün 

devreler yeniden başlar.  

 Uykunun ilk üçte birinde NREM’ in derin basamakları egemen durumdadır. 

Uykunun ortasında ve ikinci yarısında yavaş dalgalı uyku süresi kısalır, REM 

döneminin süresi ise genellikle uzar. 
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4.3. Polisomnografi 

 

OSAS tanısı için “altın standart” tanı yöntemi olan “polisomnografi” (PSG) 

Yunanca ye Romence köklerden oluşmuş bir kelimedir. Bu terim ilk kez 1974 

yılında Holland ve arkadaşları tarafından kullanılmıştır. 

 "Uyku sırasında, norofizyolojik, kardiyorespiratuar, diğer fizyolojik ye fiziksel 

parametrelerin belli bir periyod, genellikle gece boyunca, eş zamanlı ve devamlı

olarak kaydedilmesi" şeklinde tanımlanabilir (Uykuder 1. Uyku Bozuklukları Kongre 

Kitabı, 2008). 

 Bu yöntemle uyku evreleri ile birçok fizyolojik parametre ayrıntılı olarak 

izlenmekte ve çeşitli organ ve sistemlerin fonksiyonu, uyku ve uyanıklık sırasındaki 

etkileşimleri konusunda bilgi sağlanmaktadır. 

Tablo 4.2’ de standart PSG parametrelerigörülmektedir. 

 

Tablo 4.2 Standart polisomnografi parametreleri 
 

Standart  polisomnografi  parametreleri
1. Elekroensefalografi (EEG) 
2. Elektraokulografi (EOG) 
3. Elektramyografi (EMG-submentalis) 
4. Ora-nasal hava akımı
5. Torako-abdominal hareketler 
6. Oksijen satürasyonu 
7. Elektrokardiyografi (EKG) 
8. Elektromyografi (EMG-tibialis.) 
9. Vücut pozisyonu 

EEG, EOG, submental EMG; uyku evrelemesini, yüzeyel uyku (NREM evre 

1,2), derin uyku (evre 3) ve REM uykusunun ayrımını ve bu sırada oluşabilecek 

patolojik  bulguların değerlendirilmesini sağlar.  
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Ora-nasal hava akımı ve solunumsal çabanın değerlendirilmesi (torako-

abdominal hareketler) apnenin varlığı, tipini (obstriktüf, santral, mikst ayrımı ) ve

süresini saptamamızı sağlar.   

 Oksijen satürasyonunun izlenmesi, postapneik ve/veya nonapneik 

desatürasyonların varlığını, derecesini ve süresini saptar. 

 Nabız ve EKG kaydı ile kardiyak patolojilerin (ritim bozuklukları, miyokard 

iskemisi, ventriküler hipertrofisi vs.) ve apneik epizotlarla ilişkisinin saptanması

mümkün olur. 

EMG tibialis ile, uyku sırasındaki periyodik bacak hareketleri araştırılır. 

 

4.4. Uyku Laboratuarı

PSG için ilk gereksinim, yalnızca bir hastanım incelenebileceği, yeterli 

genişlikte, tuvalet, banyosu bulunan bir uyku odasıdır. Çevresel uyaranların uyku 

üzerine etkisini elimine etmek ve hastanın rahat bir ortamda uyuyabilmesini 

sağlamak amacıyla PSG, sesten, gürültüden arındırılmış, klimatize edilmiş ve tam 

karanlık sağlanabilecek bir odada uygulanmalıdır. Rahat bir yatak ve kayıt kalitesinin 

yüksek olması için yeterli teknik imkanlar bulunmalıdır.  

 Bir infrared ışık kaynağı ve düşük ışık video kamera, teknisyene uyku 

laboratuarındaki hastayı uzaktan görsel ve işitsel izleme olanağı tanır. 

4.5. Hastanın Hazırlanması

Genellikle saat 20.00' de hasta uyku laboratuarına alınır. Hastaya yapılacak 

işlem hakkında bilgi verilir. Daha önceden broşür, mektup, telefon ve-veya kişisel 

görüşme ile bilgilendirilmiş hastaların laboratuara uyumu daha iyi olmaktadır.  
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Çalışma öncesi hastanın uyku özellikleri ile ilgili bir anket uygulanır ve çalışma 

sonunda hastaya tekrar bir anket uygulanarak gece ki uykusuna yönelik sorgulama 

yapılır.  

 Hastanın normal uyku ritminin kaydedilebilmesi için, çalışmadan birkaç gün 

önce uyku düzenini etkileyen ilaçlar kesilir. Skorlamayı önemli ölçüde etkilemeleri 

nedeniyle, bu ilaçlar uzun yarılanma ömürleri dikkate alınarak çalışmadan 5-10 gün 

önce kestirilir. 

 Çalışma günü ağır fiziksel egzersiz yapmaktan kaçınılır. Hastanın kahve, siyah 

çay ve alkol alması yasaklanır. Hafif bir akşam yemeğinden sonra uygun bir elbise 

giyerek ve tuvalet ihtiyacını gidererek çalışma için hazırlanır.  

 Teknisyen hastanın vücuduna çeşitli sensörler yerleştirir. Bağlantıları kontrol 

eder, kalibrasyonlarını yapar. Bu işlem 30-60 dakika süre alır. Hasta yatağa alınır ve 

ışık söndürülerek çalışma başlatılır. 

 

4.6. Hastanın İzlenmesi 

 

Hastanın izlenmesi nörofizyolojik izlem, respiratuar izlem, kardiyovasküler 

izlem ve diğer parametreler adı altında dört ana bölümden oluşmaktadır. Bu kısımda 

özellikle bizim için daha fazla önem taşıyan Nörofizyolojik izlem anlatılacak olup 

diğerlerinden kısaca bahsedilecektir.       

4.6.1. Nörofizyolojik izlem 

 

PSG' de temel kanallar EEG, EOG ve EMG' dir. Uyku ve uyanıklığın objektif 

olarak gösterilmesinin başlıca dayanağı ise beynin elektriksel aktivitesinin 

kaydedildiği EEG' dir. 
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4.6.1.1. EEG kanalları

EEG değerlendirilmesi dalganın amplitüd ve frekansı, bunun yanında bazı

spesifik paternler göz önüne alınarak yapılır. EEG aktivitesi alfa, beta, teta ve delta 

dalgaları olarak tanımlanabilir. Tablo 4.3’ de EEG dalga şekilleri ve hangi evrelerde 

görüldüğü, Tablo 4.4’ de ise çeşitli spesifik uyku paternleri görülmektedir. 

 

Tablo 4.3 EEG dalga şekilleri 
 

Dalga Tipi Özelliği Görüldüğü evre 

Beta > 13 Hz Uyanık, aktif kişi

Alfa 8-13 Hz Gözler kapalı, sakin 

uyanıklık

Teta 3-7 Hz Hafif uyku 

Delta 0.5-2 Hz max.  NREM derin uyku 

Tablo 4.4 Çeşitli EEG paternleri 

EEG Paterni Özelliği Görüldüğü Evre 

Uyku iğcikleri 12-14 Hz, >0.5 sn NREM evre 2 

K kompleksleri Keskin negatif, daha 

yavaş pozitif, >0.5 sn 

NREM evre 2 

Vertex keskin 

dalgaları

Keskin negatif 

defleksiyonlar 

Nrem evre 1 

Uyku EEG si nörolojide kullanılan klinik EEG’ den önemli farklılıklar gösterir. 

Başın üzerine çok sayıda elektrot yerleştirilen klinik EEG nin aksine uyku EEG’ 

sinde başa sadece birkaç elektrot yerleştirilir (En az 1 kanal EEG kaydı gereklidir). 

 



30

Çoğunlukla da uyku iğciklerinin ve K komplekslerinin en iyi kaydedildiği C3 

veya C4 bölgeleri kullanılır. 

 Altın veya gümüş kaplı EEG elektrotları yüzey temizlendikten sonra 10-20 

sistemine göre kollodium ile kafa derisine sıkıca yapıştırılır. Şekil 4.8’ de bu sistem 

ayrıntılı olarak gösterilmiştir. 

 

Şekil 4.8 Uluslar arası 10-20 sistemi 

 

REM evresindeki hızlı göz hareketlerinin ve erken NREM Evre-I uykusundaki 

yavaş dairesel göz hareketlerinin saptanması için sağ ve sol EOG elektrodları her iki 

göz dış kantusuna biri yukarıda, diğeri aşağıda olacak şekilde yerleştirilir. Bu şekilde 

vertikal göz hareketleri de kaydedilmiş olur.  
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4.6.1.2. EOG kanalları

Uyku sırasında göz hareketleri kaydının iki temel nedeni vardır. Bunlar; 

1- REM döneminin en karakteristik bulgusu olan hızlı göz hareketleri 

saptanır.  Böylece uyku evrelemesi için çok önemli bir kriter kaydedilmiş

olur. 

2- Uykunun başlangıcında görülen yavaş göz hareketleri  (SEM) ve NREM 

Evre 1’ e  geçişin bulgusudur.  

 

EOG kaydı için en az iki kanal gereklidir. Sağ ve sol EOG elektrotları her iki 

göz dış kantusunun (üst göz kapağı iç ve dış köşesinde yer alan deri kıvrımları arası)

hafif letareline (dışyan), biri 1 cm yukarıda, diğeri ise 1 cm aşağıda olacak şekilde 

yerleştirilir. Bu sayede hem horizantel hem de vertikal göz hareketleri kaydedilmiş

olur. Şekil 4.9’ da EOG elektrodları bağlantı şekli görülmektedir. 

 

Şekil 4.9 EOG elektrotları bağlantı şekli 
 

Genel olarak bunların dışında hastaya EMG aktivitelerinin ölçülmesi için 

çeneye ve bacağa EMG elektrotları, dolaşım sistemi genel bilgisi için EKG 

elektrotları, ora-nasal hava akımının ölçülmesi için ora-nasal kanül ve termistör, 

oksijen saturasyonunu ölçmek için pulsoksimetre, torako-abdominal hareketler için  

göğüs ve karın kemeri, horlama için horlama sensörü, uyku pozisyonunun 

belirlenmesi için ise pozisyon sensörleri takılır.  
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Tüm bu elektrotların takılmasından sonra kayıt alma işlemi için hazırlanmış 
hastanın görüntüsü Şekil 4.10’ da görülmektedir.  
 

Şekil 4.10 Polisomnografi kayıt öncesi hasta bağlantıları

4.7. Veri Toplanması (Kayıt)  

 

Klasik PSG uygulamasında biyolojik sinyaller kağıt üzerine mürekkep ile 

devamlı olarak kaydedilir. Bu şekilde saniyede 10 mm’ lik hızla her kayıt sayfasında

(epok) 30 sn’ lik bir kayıt yapılmış olur. Sekiz saatlik bir kayıt sonrasında ise bu 

sistemle 432 m uzunluğunda ve yaklaşık 13 kg ağırlığında bir kağıt birikmektedir. 

Yüksek kağıt maliyeti, kağıt ve kalemler ile ilgili mekanik problemler, kayıt

kağıtlarının saklanması gibi güçlükler klasik PSG’ nin majör kısıtlamalarıdır. 

 Bu nedenle komputerize PSG’ ler geliştirilmiştir. Dijital sistemlerde veriler 

DAT kasetlere, optik disklere veya CD’ lere kaydedilerek klasik PSG’ lerin maliyet 
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ve depolama sorunları aşılmıştır. Ancak özellikle klinik çalışmalar için yine de klasik 

sistemlere ihtiyaç duyulmaktadır. Şekil 4.11’ de bilgisayar destekli polisomnografi 

cihazının kayıt arayüzü görülmektedir. 

 

Şekil 4.11 Bilgisayar destekli polisomnografi cihazının kayıt arayüzü 
 

PSG için genellikle uygulanan yöntem tüm gece boyunca (full-night) veya en 

az 6 saatlik kayıt yapılmasıdır. Uykuda solunum bozukluklarının değerlendirilmesi 

için yarı gece (half-night veya split-night) çalışmalar da uygulanmıştır. “Split-night” 

çalışmalarda gecenin ilk yarısında tanı, ikinci yarısında ise CPAP titrasyonu yapılır. 

Ancak bu yöntemle uykuda solunum bozukluğunun ağırlığını saptamada hata 

yapılabilir. Çünkü apne epizodlarının özellikle sıklaştığı REM dönemine, daha çok 

gecenin ikinci yarısında girilir. Bu nedenle sağlıklı olanı tüm gece yapılan 

çalışmalardır. 
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5. MATERYAL VE METOD 

 

5.1. Üzerinde Çalışılan Veriye Ait Özellikler  
 

Bu çalışmada kullanılan EEG sinyalleri; Selçuk Üniversitesi Meram Tıp

Fakültesi Göğüs Hastalıkları Anabilim Dalı Uyku Laboratuarına uyku rahatsızlıkları

sebebiyle başvuran üç ayrı hastadan alınmıştır. EEG kayıtları ortalama 7–8 saat 

boyunca kafatası üzerine 10-20 sistemine göre yerleştirilmiş iki elektrot yardımıyla 

C3-A2 kanalından alınan verilerden oluşmaktadır. Sinyallerin örnekleme frekansı

128 Hz. dir. Hastalar içerisinde Hasta 1 (39 yaşında - kadın)’ den 500 epokluk,  

toplam 15000 sn’ lik kayıt, Hasta 2 (55 yaşında - kadın)’ den 88 epokluk, toplam 

2640 sn’ lik kayıt ve Hasta 3 (33 yaşında - erkek)’ den 124 epokluk, toplam 3720 sn’ 

lik kayıt olmak üzere genel toplamda 712 epokluk, 21360 sn. lik (5 saat, 56 

dakikalık) kayıt alınarak çalışmada kullanılmıştır. Epokların 356’ sının içerisinde en 

az bir tane spindle vardır. Burada adı geçen epoklar her biri 30 sn. lik sinyal 

parçalarıdır. 

 Tablo 5.1’ de çalışmada EEG kayıtları kullanılan hastalara ait istatiksel veriler 

bulunmaktadır.   

 

Tablo 5.1 Hastalara ait istatiksel değerler 
 

ADI SOYADI CİNSİYET YAŞ KİLO BOY 
Hasta 1 Erkek 33 83 177 
Hasta 2 Kadın 39 60 158 
Hasta 3 Kadın 55 84 160 

5.1.1. Spindle bulunan epok 

 

Şekil 5.1’ de Hasta 1’ den alınan evre 2 ye ait spindle bulunan bir EEG kaydı

görülmektedir.  
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Şekil 5.1 Evre 2 ye ait spindle bulunan epok 
 

5.1.2. Spinle bulunmayan epok 

 

Şekil 5.2’ de Hasta 1’ den alınan rem evresine ait spindle bulunmayan bir EEG 

kaydı görülmektedir. 

 

Şekil 5.2 REM evresine ait spindle bulunmayan epok 
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5.2. Önerilen Sistemin Akış Diyagramı

Bu tez çalışmasında uyku bozukluklarının tanısı için uyku laboratuarlarında 

hastalardan alınan kayıtlardan faydalanılarak, uyku evrelerinin belirlenmesinde 

özellikle Evre 2 olarak nitelendirilen uyku bölümünün tespit edilmesinde bir işaret 

olarak gösterilen sleep spindle yani uyku iğciklerinin bilgisayar yardımıyla 

bulunmasına yönelik bir yöntem önerilmiştir. 

 Daha önceki bölümlerde hastanın test için nasıl hazırlandığı, PSG cihazının

yapısı, hastadan hangi parametrelere ait kayıtların hangi elektrotlar yardımıyla 

alındığı anlatılmıştı.

Bu kısımda PSG cihazından alınan kayıtların işlenebilir kayıtlar haline 

getirilmesi süreci Şekil 5.3’ de gösterilen sistemin akış diyagramından da 

faydalanılarak anlatılacaktır. Bu süreç şu şekilde işlemektedir. 
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Şekil 5.3 Önerilen sistemin akış diyagramı

5.2.1. EEG de C3-A2 kanalındaki sinyalin alınması

PSG cihazı, yaklaşık boyutu 90 MB. olan ham dataları cihazın adını sembolize 

eden bir dosya formatıyla SD kart üzerine kayıt eder. Bu dosyanın işlenebilir hale 

getirilebilmesi için bazı programlar vasıtasıyla .edf, .ascii ve son olarak da .dat dosya 

formatına dönüştürülür.     

 İlk olarak dosya, cihazın kendi ara yüz programı sayesinde .edf ( European 

Data Format) dosya formatına dönüştürülür. Şekil 5.4’ de bu dönüştürme ara yüzü 

görülmektedir. 
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Şekil 5.4 Dataların .edf dosya formatına dönüşümü 
 

Buradan elde edilen .edf dosyası daha sonra EDF to ASCII dosya dönüştürme 

programı ile ASCII dosyasına dönüştürülür. Şekil 5.5’ de bu dönüştürme ara yüzü 

görülmektedir. Dönüştürme ara yüzünde kaynak dosya, hedef dosya ve 

dönüştürülecek EEG kanalı seçilerek dönüştürme işi yapılır. Biz EEG kanalını

C3-A2 olarak seçtik. 
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Şekil 5.5 Dataların .ascii dosya formatına dönüşümü 
 

Son olarak elde edilen .ascii uzantılı dosya Edit Plus adlı program yardımıyla 

açılır ve .dat dosya formatında farklı kaydedilerek sinyal işleme sırasında

kullanacağımız dosya formatına ulaşılmış olur. Şekil 5.6’ da görüldüğü gibi hastaya 

ait yaklaşık 8 saatlik veri 4.323.840 adet satır ve bir sütundan oluşan matris 

formatına dönüştürülmüş olur.  
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Şekil 5.6 Dataların .dat dosya formatına dönüşümü 
 

5.2.2. Filtreleme 

 

Elimizdeki ham sinyal ilk olarak bir bant geçiren filtreden geçirilir. Sinyalin 

filtrelenmesinde 6. dereceden 0,5 Hz – 35 Hz frekans bandını geçiren Butterworth 

IIR dijital filtre kullanılmıştır. Burada seçilen aralık daha önceden de anlatıldığı gibi 

delta, teta, alfa ve beta olarak tanımlanan EEG sinyallerinin bulunduğu frekans 

bandıdır. 0,5 Hz altındaki ve 35 Hz üstündeki frekansların, rutin saçlı deri kayıtları

açısından sınırlı bir klinik yararı vardır. Çünkü çoğunlukla bu aktivitenin serebral 
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kökenli olup olmadığı açık değildir (Fisch 1997, Tükel 1979). Bu filtre Matlab da 

aşağıdaki alt program ile tasarlanmıştır. 

 

5.2.2.1. Filtreleme alt programı

n =6; Wn = [0.5 35]/128; 

ftype = 'bandpass';

[b,a] = butter(n,Wn,ftype); 

y=filter(b,a,x);      

x=y 

 

5.2.3. Segmantasyon 
 

Segmantasyon yaklaşık 8 saatlik verinin 30 sn süreler ile parçalanması sağlayan 

alt program kümesi tarafından yapılır. Parçalanan her bir 30 sn lik bölüme bir epok 

denir. EEG sinyallerinin uyku laboratuarlarında incelenmesi 30 sn lik bu sinyal 

parçaları üzerinden yapılır. Matlab da segmantasyon şu alt program marifetiyle 

yapılır. 

 

5.2.3.1. Segmantasyon Alt Programı

k=1; 

for i=1:3840:h 

for j=0:3839 

 x_eeg_epok(j+1,k)=x(j+i); 

end 

k=k+1; 

end 

x_eeg_epok=x_eeg_epok'; 
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5.3. Özellik Çıkarımı

Bu tez çalışmasında EEG verilerinin işlenmesinde, pencereleme ve Welch 

metodları, kullanılmıştır. Sinyalleri segmentlere ayırmak için kullanılan pencereleme 

yöntemi ve sinyalin içerdiği frekans bileşenlerini gösteren, güç spektral yoğunluğunu

elde edebilmek için kullanılan Welch metodu aşağıda anlatılmıştır. 

5.3.1. Zaman domeni özellik çıkarımı

Bir işaretin, incelenebilecek olan ve işareti karakterize eden birçok zaman 

domeni ölçümü veya parametresi vardır. Bunların en önemlisi işaretin ortalama ve 

efektif değerleridir. 

 EEG işaretlerini analiz etmek ve beynin aktiviteleri hakkında bilgi sahibi olmak 

için frekans domeninde olduğu kadar zaman domeninde de pek çok parametre 

kullanılmaktadır.  

 Bu tez çalışmasında zaman domenine ait 6 özellikli uyku iğciği veri kümesini 

elde etmek için istatiksel ölçümler kullanılmıştır. PSG cihazından elde edilen EEG 

sinyallerine ait zaman domeni özellikleri Tablo 5.2’ de özetlenmiştir. Kullanılan 

zaman domeni özellikleri: ortalama değer, standart sapma, maksimum tepe değeri, 

eğrilik, basıklık ve şekil faktörü özellikleridir. 
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Tablo 5.2 Zaman domeni özellikleri 
 

1. Ortalama değer: 
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6. Şekil faktörü (Shape factor): 
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Burada, )(nx , Nn ,...,2,1= için bir zaman serisidir. N ise, veri noktalarının sayısıdır.

5.3.2. Frekans domeni özellik çıkarımı

EEG sinyallerinden frekans domeninde özellik çıkartımı işleminde, Welch 

metodu pencereleme işleminde ise hamming pencere modeli kullanılmıştır ve 

Hamming pencere sayısı 128 olarak seçilmiştir. Eşitlik 5.1’ de k frekans 

domenindeki özellik sayısı olmak üzere; 

 

1
2

nFFTk = + (5.1) 

 

olduğu için elde edilen özellik sayısı 65 olarak bulunmuştur.  

 Frekans domenine ait elde ettiğimiz 65 özellikli uyku iğciği veri kümesinin 

boyutunu azaltmak için istatiksel ölçümler kullanılarak özellik sayımız 4’ e 
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indirilmiştir. Frekans domeni için özellik azaltımında kullanılan ve Tablo 5.3’ de 

özetlenen istatiksel özellikler: ortalama değer, standart sapma, maksimum tepe değeri 

ve minimum değerdir. 

 

Tablo 5.3 Frekans domeni özellikleri 
 

1. Ortalama değer: 
1
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m
n

X x n N
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=∑
2. Standart sapma: 
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−
=
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3. Minimum değeri: min ( )px x n=

4. Maksimum tepe değeri: max ( )px x n=

5.3.2.1. Welch metodu yardımı ile güç spektrum yoğunluğunun (Power 

Spectrum Density-PSD) hesaplanması

Spektral analiz bize bir sinyalin frekans içeriği hakkında bilgi verir. Bazı

durumlarda, sinyallerin frekans bilgileri, zaman bölgesi çözümünden daha yararlı

açılımlar sağlarlar. EEG, EKG, EMG, EOG gibi pek çok biyolojik sinyal, frekans 

bölgesinde işlendiği zaman, ihtiyacımız olan tanısal bilgileri bize rahatlıkla sağlar.          

Bir sinyalin spektrumunun başarısı, sinyalin periyodik, sonlu uzunlukta ve gürültüsüz 

olmasına bağlıdır. Pek çok biyolojik uygulamada, sinyal ya sonsuz uzunlukta yada 

analiz için yeterli uzunluktadır. Bu her iki durumda biyolojik sinyallerin analizinde 

problem olabilmektedir. Bunun yanı sıra, biyolojik sinyaller çoğunlukla gürültü ve 

artefaktlar ile bozulmuşlardır. Oysa gerçek sinyalin bir kısmı analiz edilebilse 

ve/veya gürültü sinyal boyunca olsa, bütün spektrum analiz yöntemleri mutlaka 

gerçek spektruma yaklaşır. Farklı spektrum analiz yaklaşımları özel spektral 

özelliklerin yaklaşım doğruluğunu artırmak için çalışır (Semmlov 2004). 

 Genel olarak spektrum yaklaşım yöntemleri iki grupta incelenmektedir. Welch 

metodunun da içinde bulunduğu, spektral yaklaşım veya parametrik olmayan 

yaklaşım olarak adlandırılan ilk kategori, spektrumun tamamının şekli ile ilgilenir. 
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İkinci kategori olan parametrik yaklaşımda ise spektrumun tamamının yanında yerel 

özelliklerini de dikkate alır (Semmlov 2004).  

 Autoregressive Model parametrik spektrum yaklaşımının en popüler 

yöntemlerinden biridir. Parametrik olmayan yöntemlerin Hızlı Fourier Dönüşümüne 

(HFD) göre avantajları olmakla birlikte kısa veri uzunluklarında sınırlı frekans 

çözünürlükleri dezavantajları olarak sayılabilir (Ifeachor ve Jervis 2002). 

 Sonlu enerjisi olmayan ve dolayısıyla Fourier dönüşümü alınamayan, 

sinyallerin sonlu ortalama güçleri vardır ve güç spektral yoğunluğu ile karakterize 

edilirler (Proakis ve ark. 1992). Güç spekrum yoğunluğu (PSD) diğer bir deyişle güç 

spektrumunun en basit şekli periodogram ile ifade edilir. Welch metodu periodogram 

metoduna yeni düzenlemeler eklenerek elde edilmiş bir yöntemdir. Bu sebeple 

Welch metodunun daha iyi anlaşılabilmesi için öncelikle periodogram metodu ve 

Barlett metodunun anlatılması faydalı olacaktır. 

 

5.3.2.1.1. Periodogram metodu 

 

Güç spektrumu temelde otokorelasyon fonksiyonunun Fourier dönüşümü 

olarak da tanımlanabilir. Sonlu enerjisi olmayan ve dolayısıyla Fourier dönüşümü 

alınamayan stabil rasgele sinyaller bir ortalama güce sahiptir ve güç spektral 

yoğunluğu ile karakterize edilirler (Proakis ve ark. 1992). x(t) durağan rastgele bir 

sinyali göstermektedir ve Eşitlik 5.2’ deki gibi  tanımlanabilir. 

[ ] [ ]110 ,.......,)( −== NK XXXXtx (5.2) 

 

N örnekli [ ]KX verisinin periodogramı ( )( )fPXX , [ ]KX verisinin Ayrık Fourier 

Dönüşümünün ( )AFD  ( )( )jwF karesi olarak Eşitlik 5.3’ deki gibi tanımlanabilir.  

( ) ( ) 2jwFfPXX = (5.3) 

Eğer N veri noktası var ise en az N noktada AFD hesaplanır ve Nkf K =

frekansında Eşitlik 5.4’ deki gibi tanımlanır.. 



46

( ) 1,....,1,01
21

0

2
−==






 ∑

−

=

Π− Nkenx
NN

kP
N

n

N
nkj

XX  (5.4) 

 

Pratik olarak sık örneklenmeyen spektrumlarda sürekli ( )fPXX  yaklaşımına 

göre kayda değer bir sonuç elde edilemez. Bu problemin aşılması ( )fPXX ’in ek 

frekanslarda da hesaplanması yoluyla sağlanabilir. Aynı şekilde, sıfır eklemesi 

yapılarak dizinin uzunluğu arttırılabilir ve daha sonra ( )fPXX daha yoğun 

frekanslarda hesaplanabilir. Böylece veri dizisinin büyüklüğü L noktaya arttırılarak L

noktada AFD alınır. Bir sinyale sıfır eklenmiş ve NL > noktada AFD’ si 

hesaplanmış olması spektral yaklaşımda frekans çözünürlüğünü iyileştirmemektedir. 

Bu yanlızca daha yüksek frekansta, ölçülen spektrumun interpolasyonunu sağlar. 

Spektral yaklaşımda, frekans çözünürlüğü ( )fPXX  veri kaydının N uzunluğu ile 

tanımlanır (Proakis ve ark. 1992). 

5.3.2.1.2. Bartlett metodu 

 

Periyodogramdaki varyansı indirgemek için önerilen Bartlett metodu üç 

adımdan teşekkül etmiştir. Birinci adımda, N noktalı veri dizisi üst üste binmeyen K

tane segmente bölünür. Her bir segmentin uzunluğu M olan K tane veri segmenti için 

veri yapısı:

( ) ( )iMnXnX İ += 1,....,1,0 −= Ki 1-M,0,1,n …= (5.5) 

 

Eşitlik 5.5’ deki gibi  tanımlanır ve periodogram hesabı her bir segment için ayrı ayrı

yapılır. 
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Bartlett güç spektrumun yaklaşımını hesaplamak için ise K tane segmentin 

periodogramlarının ortalaması alınır (Proakis ve ark. 1992). Eşitlik 5.7 elde edilir. 

 

( ) ( )∑
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=

=
1

0

1 K

i

i
XX

B
XX fP

K
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5.3.2.1.3.  Welch metodu (Modifiye edilmiş periodogramların ortalaması)

Welch metodunda Bartlett metoduna göre iki yeni revizyon yapılmıştır. İlk 

olarak Welch metodunda veri segmentlerinin üst üste binmesine izin verilmektedir. 

Bundan başka her segmente pencereleme işlemi uygulanmaktadır (Proakis ve ark. 

1992). Welch metodunda veri segmentleri Eşitlik 5.8’ deki gibi ifade edilebilir. 

( ) ( )iDnXnX i += 1,....,1,0 −= Li 1-M,0,1,n …= (5.8) 

 

ifadede i.D, i. segment için başlangıç noktası olarak verilmiştir. D=M olması halinde 

segmentlerde üst üste binme yoktur. D=M/2 olması halinde ise ardışık veri 

segmentleri arasında %50 üst üste binme vardır ve L=2K olarak bulunur (Proakis ve 

ark. 1992). Eğer üst üste binme %50 - %75 civarında olursa, verinin en çok özelliği

muhafaza edilmiş olur (Ifeachor ve Jervis 2002). 

Welch metodunda Bartlett metoduna göre yapılan ikinci revizyon ise 

periodogramın hesaplanması için veri segmentlerinin pencerelenmesidir. Sonuç 

olarak her segment için düzenlenmiş periodogram, Eşitlik 5.9’ daki 
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ifadeyle tanımlanır. İfadede w(n) pencere fonksiyonu ve U da pencere 

fonksiyonundaki güç için normalizasyon faktörüdür. 
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48

Welch güç spektrum yaklaşımı, bu revize edilmiş periodogramların

ortalamasıdır (Proakis ve ark. 1992). Eşitlik 5.11’ de görülmektedir. 

( ) ( )fP
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i

i
XX

W
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−

=
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1

0
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Welch yaklaşımının sonucu olarak ulaşılmak istenen değer,  

( )[ ] ( )[ ] ( )[ ]fPjEfPjE
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0

1
(5.12) 

 

Eşitlik 5.12 yardımıyla bulunur. Burada bulunan değer Bartlett metodu ile bulunan 

değer ile aynıdır. ∞→N ve ∞→M olursa, bu değer gerçek güç spektral 

yoğunluğuna yakınsar. İşte bu sebeple büyük N ve M değerleri için Welch güç 

spektrum yoğunluğu tarafsızdır. Bu koşullar altında Welch metodunun varyansı sıfıra 

yakınsar (Ifeachor ve Jervis 2002). 

 Ayrıca Welch metoduna göre L=K durumunda üst üste binme,  
 

[ ] ( )fP
K

PW
21var 






≈ (5.13) 

 

Eşitlik 5.13’ deki gibi ifade edilir. Bu değer aynı koşullar altındaki Bartlett 

varyansına eşittir. %50 binme olduğu zaman ise aşağıdaki gösterilir. Bu değer 

Bartlett varyansından daha azdır ve Eşitlik 5.14’ deki gibi ifade edilir. (Ifeachor ve 

Jervis 2002, Proakis ve ark. 1992) 
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5.3.2.1.4.  Welch yöntemi ile frekans domeni özelliklerini bulan alt program 

kodları

for i=1:r, 

 x_eeg_epok_1welch(i,:)=pwelch(x_eeg_epok(i,:),128, 64, 128, 128)'; 

end 

x_eeg_epok_1welch=x_eeg_epok_1welch'; 

 [q,k]=size(x_eeg_epok_1welch); 

 

for p=1:k, 

eeg_1_feature_7(:,p)=min(x_eeg_epok_1welch(:,p),[],1); 

eeg_2_feature_8(:,p)=max(x_eeg_epok_1welch(:,p),[],1); 

eeg_3_feature_9(:,p)=std(x_eeg_epok_1welch(:,p),0,1); 

eeg_4_feature_10(:,p)=mean(x_eeg_epok_1welch(:,p),1); 

 end 

 

eeg_1_feature_7=eeg_1_feature_7'; 

eeg_2_feature_8=eeg_2_feature_8'; 

eeg_3_feature_9=eeg_3_feature_9'; 

eeg_4_feature_10=eeg_4_feature_10'; 

 

5.3.2.2. Pencereleme metodu 

 

Pencereleme işleminin amacı, spektral sızma ve lekelenmelerin zararlı

etkilerini uygun bir pencere yardımıyla en aza indirmektir (Semmlov 2004). Bir 

sinyal sonsuz uzunlukta bir segment de olsa ya periyodiktir ya da periyodik değildir. 

Bunun yanı sıra benzer dalga şekillerinin sadece belirli bir bölümü sınırlı belleğe

sahip bir bilgisayara sunulabilir ve bu durumda da dalganın nasıl parçalara ayrılacağı 

önem kazanır (Hayes 1996). 



50

En basit haliyle bir segment basitçe bir dalga şeklinden kesilir ve bu bütün 

veriye rectangular pencerenin uygulanması ile aynıdır. Analiz sadece dalganın

pencerelenmiş bölümü ile sınırlıdır. Rectangular dışındaki pencere şekilleri, istenilen 

şekille dalganın zaman domeninde çarpılmasıdır (Semmlov 2004). 

 Bunun yanında pencereleme, hem zaman domeninde (veri pencereleri) hem de 

frekans domeninde (frekans pencereleri) yapılabilir. Çünkü zaman domeninde 

çarpma frekans domeninde konvolüsyon işlemi ile aynıdır. Frekans domeninde 

pencereleme, frekans domeni penceresi ile sinyal spektrumunun konvolüsyonu 

şeklinde uygulanır (Ifeachor ve Jervis 2002). 

 Güç spektrumu yönteminde pencere seçimi etkili bir faktördür. Çünkü bir veri 

seçildiği zaman pencerenin frekans karakteristiği spektral sonucun bir parçası olur. 

Bütün pencereler iki tip artefakt üretir: analob (mainlob) ve yanlob (sidelob) 

(Semmlov 2004). Pencere tarafından üretilen artefakt pencerenin Fourier dönüşümü 

alınarak bulunabilir. Gerçek spektrum analob denilen artefakt ile genişletilir ve yan 

lob adı verilen ek pikler üretilir. Eğer işlem, yakın frekans uzayındaki iki dar bantlı

sinyalin çözümünde ise en dar bantlı pencere (rectangular) tercih edilir. Bir güçlü ve 

bir zayıf sinyal söz konusu ise güçlü sinyallerin yan loblarının zayıf sinyaller 

tarafından yok edilmesini önlemek için hızla azalan yan lobları olan pencereler tercih 

edilir. Eğer iki tane orta derecede güçlü sinyal var ise (bunlardan biri zayıf sinyale 

daha yakın diğeri daha uzak olduğu zaman) orta derecede dar analob ve orta 

derecede zayıflayan loblar en iyi çözümdür. Genellikle bir sinyale hangi tipte 

pencere uygulanacağının bulunması için farklı tipte pencerelerle denemeler 

yapılması gerekmektedir (Semmlov 2004). Tablo 5.4’ de en sık kullanılan pencere 

tipleri ve eşitlikleri verilmiştir (Stearns ve David 1988). 
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Tablo 5.4  Pencere tipleri ve eşitlikleri 
 

5.3.2.2.1. Pencereleme işlemi 

 

Bant geçiren filtre’den geçen EEG sinyallerinin her biri çerçevelere bölünür. 

Bu çalışmada pencereleme işleminde hamming pencereleme metodu kullanılmıştır. 

Eşitlik 5.15’ de Hamming pencereleme metoduna ait eşitlik verilmiştir. 

 

( )( )0.54 0.46*cos 2* * / 1 0

0
n

n N n N
W

yada

π − − ≤ < =  
 

(5.15) 

 

Şekil 5.7’ de  128 pencereye ayrılmış Spindle bulunan EEG sinyalinin Welch 

yöntemi sonucu güç spektrum yoğunluğu görülmektedir. Burada bulunan pikler 

spindle olarak belirtilen frekans aralığında bileşenler olduğunu yani bu epok üzerinde 

spinle bulunduğunu gösteriyor. 
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Şekil 5.7  128 pencereye ayrılmış Spindle bulunan EEG sinyalinin Welch yöntemi 
sonucu güç spektrum yoğunluğu

5.3.3. Özellik azaltımı

YSA için giriş vektörünün seçimi, gerçekten önemli bir konudur. Girişler kötü 

seçildiğinde kullanılan bu kötü girişlerle, en iyi sınıflandırıcı bile beklenen 

performansı göstermeyebilir. Bu nedenle sınıflandırılacak veriyi en iyi temsil edecek 

şekilde YSA’ nın giriş vektörlerinin seçimi yapılmalıdır (Güler ve Übeyli 2005). 

 Özellik seçme ve boyut azaltımı yöntemleri; veri kümesinde bulunan ilgisiz 

veya gereksiz özellikleri uzaklaştırmak ve veri dağılımını daha uygun ve 

ayrıştırılabilir bir hale getirmek için uygulanır. Bu sayede, sınıflandırıcının hem 

hesaplama maliyeti azalmaktadır hem de sınıflama performansı artmaktadır. 

 Bu çalışmada özellik azaltımı EEG sinyallerinin frekans domeni özellikleri 

üzerinde istatiksel ölçümler kullanılarak yapılmıştır. 
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5.4. Yapay Sinir Ağları Kullanılarak Uyku İğciklerinin Sınıflandırılması

Bu kısımda hastadan alınan ve işlenebilir veriler haline getirilen kayıtların,

çeşitli metodlarla işlendikten sonra akış diyagramında son kısım olan sınıflama 

aşaması anlatılacaktır. Öncelikle sınıflandırmada kullanılan yapay sinir ağları

hakkımda bilgi verilerek sınıflamanın safhaları anlatılacaktır. 

 

5.4.1. Yapay sinir ağları

Pek çok tanımı bulunan yapay sinir ağları basit olarak, beyindeki sinirlerin 

çalışmasından esinlenilerek sistemlere öğrenme, hatırlama, bilgiler arasında ilişkiler 

oluşturma gibi yetenekleri kazandırmayı amaçlayan bilgi işleme algoritmalarıdır. 

 Yapay sinir ağında hesaplamalar, öğrenme adı verilen süreçle yapılmaktadır. 

İyi bir başarım elde edebilmek için, sinir hücresi, nöron veya işleme birimi adı

verilen, basit hesaplama hücreleri arasında uygun bağlantılar kullanır. Nöronlar, 

bağlantılar üzerinden işaret göndererek birbirlerini etkiler. Bu bağlantıların herbirinin 

kendine özgü bir ağırlık katsayısı vardır. Uyarlamalı hesaplanabilen bu ağırlıklar, 

bilgiyi, doğru olarak bildirir. Genellikle bilgi, ağ boyunca dağıldığı için, bağlantı

ağırlıklarını önceden belirlemek mümkün değildir. Bu sebeple, ağırlıkların

değiştirileceği bir öğrenme işlemi gereklidir. Haykin (1999) tarafından yapılan 

tanımda; “ Bir sinir ağı, basit işlem birimlerinden oluşan, deneyimsel bilgileri 

biriktirmeye yönelik doğal bir eğilimi olan ve bunların kullanılmasını sağlayan 

yoğun bir şekilde paralel dağıtılmış bir işlemcidir.” denilir.  

 

Bu işlemcinin beyin ile benzerlik gösteren iki özelliği vardır: 

1. Bilgi, ağ tarafından bir öğrenme süreciyle çevreden elde edilir. 

2. Elde edilen bilgileri biriktirmek için sinaptik ağırlıklar olarak da bilinen nöronlar 

arası bağlantı güçleri kullanılır (Yurtoğlu, 2005). 

 

Ağın bilgiyi ortamdan almasını sağlayan öğrenme işlemi, öğrenme algoritması

adıyla bilinen, ağın sinaptik ağırlıklarını güncelleyerek istenen modele ulaşılmasını
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sağlayan fonksiyonlardır. Öğrenme işlemi üç tiptir: eğiticili öğrenme, eğiticisiz 

öğrenme ve özdenetimli öğrenme. Bu öğrenme şekilleri, ağdaki ağırlıkları eğitmek 

için hata işareti kullanılarak tanımlanır. Eğiticili öğrenmede, ortamın dışından bir 

eğitici, her çıkış nöronu için hata üretir. Eğiticisiz öğrenmede, hata işareti üretilmez, 

bunun yerine, ağırlıkları değiştirmek için kullanılmak üzere, nöronlar arasındaki 

hatalar üretilir. Özdenetimli öğrenmede ise sistem, girişlerin istatistiksel düzenini 

belirledikten sonra, sınıflamayı başaracak beceriyi oluşturur. 

 Eğiticili öğrenmede, nöronları birleştiren ağırlıklar, eğitici tarafından ayrıntılı

hata bilgileri ağa uygulanacak şekilde yerleştirilirler. Pekçok durumda ağ, giriş-çıkış 

çiftleri kullanılarak eğitilir. Bu öğrenme işleminin performansı, eğitim kümesi 

kullanılarak istenen sonuca ulaşılabilmesi ve eğitilen ağın genelleştirilebilmesiyle 

ölçülür. 

 

5.4.1.1. Çok katmanlı algılayıcı yapay sinir ağları

Yapay sinir ağları, hücrelerin birbirleri ile çeşitli şekillerde bağlanmalarından 

oluşur. Hücre çıkışları, ağırlıklar üzerinden diğer hücrelere ya da kendilerine giriş

olarak bağlanabilir ve bağlantılarda gecikme birimi de kullanılabilir. Hücrelerin 

bağlantı şekillerine, öğrenme kurallarına ve aktivasyon fonksiyonlarına göre çeşitli 

YSA yapıları geliştirilmiştir .  

Geri yayılmayla eğitilen çok katmanlı algılayıcı (Rumelhart ve McClelland, 

1986), yapay sinir ağı sınıflandırıcıları içinde en ünlüsü ve en yaygın kullanılanıdır. 

Lineer olmayan aktivasyon fonksiyonlu ve tek gizli katmanlı ağların en çok kabul 

gören sınıflandırıcılar olduğu bilinmektedir. Doğru biçimde eğitildiklerinde, herhangi 

bir örüntüyü belirleyen özellik kümesini giriş vektörü olarak alıp, istenilen 

sınıflandırmayı yapabilecek güce sahiptirler. Çok Katmanlı Algılayıcı (ÇKA) Sinir 

Ağları çok çeşitli tanıma ve tahmin görevlerini yerine getirmek için kullanılan 

parametrik olmayan tekniklerdir (Haykın 1994, Basheer ve Hajmeer, 2000, 

Chaudhuri ve Bhattacharya, 2000). Öğrenme ve genelleme yeteneği, düşük eğitim 

gereksinimleri, eğitimden sonra hızlı işlem yapabilme ve kolay gerçekleştirim gibi 

özelliklere sahiptirler. Bir ÇKA Sinir Ağı, giriş değişkenlerini temsil eden düğümlere 
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sahip giriş katmanı farklı sınıflara temsil eden çıkış katmanı ve verilerdeki doğrusal 

dışılığı yakalamak için düğümler içeren bir veya daha fazla gizli katmandan oluşur. 

Gizli katmandaki her j düğümü, kendilerine gelen her  ix sinyalini ilgili jiw

ağırlığıyla çarptıktan sonra toplayarak çıkış değerini Eşitlik 5.16’ daki toplam 

fonksiyonu ile hesaplar (Sağıroğlu 2003).  

 

)(∑= ijij xwfy (5.16) 

 

Yukarıdaki eşitlikde f, düğüme gelen tüm sinyallerin ağırlıklı toplamını bir 

çıkış değerine dönüştüren aktivasyon fonksiyonudur.  

 Aktivasyon fonksiyonu olarak kullanılabilecek birkaç seçenek vardır. Bu tez 

çalışmasında Sigmoid fonksiyon kullanılmıştır. Bu fonksiyon Eşitlik 5.17’ de 

görülüyor. 
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Eşitlik 5.17’ de Q0 terimi, sinir hücresinin sıcaklık değeridir. Sıcaklık ne kadar 

büyükse, Sigmoid fonksiyonu o kadar yavaş olur. Çok küçük sıcaklıklarda ise bir 

adım fonksiyonuna dönüşür.  

 Giriş örüntülerinin uygun sınıflandırılması için gerekli bilgi, ağırlıklar 

tarafından tutulur. İlk başta, belirli bir problem için ağırlıklar bilinmez. Uygun 

ağırlıklar bilinmediği sürece ağ hiçbir zaman sorunu çözemez. Uygun ağırlıkları

bulma işlemine eğitme denir. Eğitme işlemi, bir grup giriş vektörüne karşılık gelen 

uygun sınıfların ağa verilmesiyle gerçekleşir. Bu şekilde, her giriş vektörüne karşılık

beklenen çıkışların ağa verilmesi işlemine öğretici yardımıyla eğitme denir 

(Sağıroğlu 2003).  

 Ağın eğitilmesi işlemi, eğitme setindeki vektörlerin yanlış sınıflandırılması

oranı belirli bir sınır değerin altına ininceye kadar devam eder. Ağ, gerçekte ona 

öğretildiğinden başka bir problemi çözemez. Eğer eğitme kümesi iyi seçilmişse ve 
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eğitme algoritması etkinse, ağ eğitme seti dışındaki verilere de belli oranda doğru 

olarak sınıflandırabilir. Bu kavram ağın genelleme yeteneği olarak bilinir.  

 Yapay sinir ağlarının tanıma işleminde kullanılması iki aşamada düşünülebilir. 

Eğitme aşamasında, ağ ağırlıkları problem kümesinin özelliklerini yansıtacak şekilde 

adapte edilir. İkinci aşama test aşamasıdır ve ağırlıklar eğitme işleminin sonundaki 

değerlerini korur. Ağa eğitme setinden farklı test verileri yüklenir ve bir 

sınıflandırma yapması beklenir.  

 Bir ağı eğitme işlemi, önceden tespit edilmiş beklenen bir değere ulaşana kadar 

devam eder. Bu bizi ağın toplam hatası kavramına götürür. Öğretici yardımıyla 

eğitmede, elimizdeki eğitme seti için beklenen değeri bilmemiz gerekir. Bu yüzden 

eğitme setinin uygun seçimi, başarılı bir sınıflandırma işlemi için çok önemlidir. 

Eğitme seti uygun boyda olmalı ve problem uzayını tam olarak yansıtmalıdır

(Sağıroğlu 2003).  

 Geri yayılmalı eğitim algoritmasında, ortalama kare hatası (mean squared error) 

olarak bilinen hata kriteri olabilir (Rumelhart ve McClelland 1986). Aslında bu

fonksiyon tek hata kriteri değildir. Sürekli ve diferansiyel başka bir hata fonksiyonu 

da kullanılabilir. Fakat başka fonksiyon seçerken dikkatli olunmalıdır, çünkü bu yeni 

fonksiyon işlemlere ek yük getirebilir. Ayrıca seçilen fonksiyon, beklenen ve 

gerçekte oluşan çıkış değerleri arasında anlamlı bir fark ölçümü sağlamalıdır. 

Ortalama kare hatası fonksiyonu Eşitlik 5.18’ deki gibi tanımlanır. 

 
2

1

)(
2
1∑

=

−=
N

j
pjpjp OtE (5.18) 

 

Burada, Ep, p vektör için hatayı, tpj j sinir hücresi için beklenen değeri (yani eğitme 

setindeki ilgili çıkış değerini) ve Opj, j çıkış düğümünün gerçek değerini 

göstermektedir. Hataların karesini almakla, beklenen değerden uzakta olan çıkış 

değerlerinin toplam hatayı oluşturması sağlanmaktadır. Eğer üssü daha çok 

büyütürsek, bu etki daha da artacaktır. 
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5.4.1.2. Levenberg – Marquardt algoritması

Geriye yayılım algoritması, yapay sinir ağlarında en çok kullanılan 

algoritmadır. Geriye yayılım öğrenmesi sırasında ağ, her giriş örüntüsünü, çıkış 

nöronlarında sonuç üretmek üzere gizli katmanlardaki nöronlardan geçirir. Daha 

sonra çıkış katmanındaki hataları bulabilmek için, beklenen sonuçla, elde edilen 

sonuç karşılaştırılır. Bundan sonra, çıkış hatalarının türevi çıkış katmanından geriye 

doğru gizli katmanlara geçirilir. Hata değerleri bulunduktan sonra, nöronlar kendi 

hatalarını azaltmak için ağırlıklarını ayarlar. Ağırlık değiştirme eşitlikleri, ağdaki 

performans fonksiyonunu en küçük yapacak şekilde düzenlenir.  

 İleri beslemeli ağlarda kullanılan öğrenme algoritmaları, performans 

fonksiyonunu en küçük yapacak ağırlıkları ayarlayabilmek için, performans 

fonksiyonunun gradyenini kullanırlar. Geriye yayılım algoritması da, ağ boyunca 

gradyen hesaplamalarını geriye doğru yapar. En basit geriye yayılım öğrenme 

algoritması gradyen azalması algoritmasıdır. Bu algoritmada ağırlıklar, performans 

fonksiyonunun azalması yönünde ayarlanır. Fakat bu yöntem, pekçok problem için 

çok yavaş kalmaktadır. Bu algoritmadan daha hızlı, daha yüksek performanslı

algoritmalar da vardır.  

 Hızlı algoritmalar genel olarak iki kategoriye ayrılabilirir. İlk kategorideki 

algoritmalar, deneme yanılma tekniklerini kullanarak, standart gradyen azalması

(steepest descent) yönteminden daha iyi sonuçlar verebilir. Deneme-yanılma 

işlemlerini kullanan geriye yayılım algoritmaları; momentum terimli geriye yayılım, 

öğrenme hızı değişen geriye yayılım ve esnek geriye yayılım algoritmalarıdır. Hızlı

algoritmaların ikinci kategorisindeki algoritmalar, standart sayısal optimizasyon 

yöntemlerini kullanır. Bu algoritmalar; eşlenik gradyen öğrenme algoritması,

Newton öğrenme algoritmaları ve Levenberg – Marquardt öğrenme algoritmasıdır. 

 Öğrenme algoritmaları, kendisinden önce geliştirilen algoritmalara alternatif 

olarak ortaya çıkmıştır ve önceki algoritmaların iyi yönlerini geliştirip, kötü yönlerini 

azaltmaya yönelmiştir. Levenberg – Marquardt algoritması da, Newton ve Gradyen 

Azalması algoritmalarının en iyi özelliklerinden oluşur ve kısıtlamalarını ortadan 

kaldırır. 
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Eşlenik gradyen öğrenme algoritmasına alternatif olarak sunulan Newton 

yöntemlerinde, temel adım Hessian matrisini elde etmektir. Hessian matrisi, 

performans fonksiyonunun ağırlıklara göre ikinci dereceden türevlerinden oluşan bir 

matristir. Hessian matrisi, ağırlık uzayının farklı doğrultularındaki gradyen 

değişimini gösterir. 

 

( )
2

2

( )
( 1)
E nH n

w n
∂=

∂ −
(5.19) 

 

Burada H Hessian matrisi, E performans fonksiyonu, w ağın sinaptik ağırlığıdır. 

Performans fonksiyonu, duruma göre toplam ani hata veya ortalama karesel hata 

olarak alınabilir. 
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1

1 1( )
2

N

ort j
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N ε=

= = ∑ ∑  (5.20) 

 

Burada N eğitim kümesindeki toplam örüntü sayısını, ej hata işaretini, C ağın çıkış 

katmanındaki bütün nöronları içeren kümeyi göstermektedir. dj istenen değer, yj ağın

çıkışı olmak üzere hata işareti, 

 

( ) ( ) ( )j je n d n y n= − (5.21) 

 

olarak bulunabilir. Hessian matrisi hesaplandıktan sonra, tersi bulunarak ağırlıklar 

yenilenebilir. Ancak Hessian matrisi çok karmaşık ve ileri beslemeli bir yapay sinir 

ağı için hesaplanması zor bir matristir. Newton yöntemlerinin içinde, ikinci 

dereceden türevlerin hesaplanmadan işlem yapılan bir sınıf vardır. Bu sınıftaki 

yöntemler, Quasi–Newton yöntemleri olarak adlandırılırlar. Quasi–Newton 

yöntemleri, algortimanın heriterasyonunda, Hessian matrisinin yaklaşık bir şeklini 

kullanır. 

 Levenberg–Marquardt algoritması da Quasi–Newton yöntemleri gibi, Hessian 

matrisinin yaklaşık değerini kullanır. Levenberg–Marquardt algoritması için Hessian 

matrisinin yaklaşık değeri şu şekilde bulunabilir: 
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( ) ( ) ( )TH n J n J n Iµ= +  (5.22) 

 

Eşitlik 5.22’ da µ Marquardt parametresi, I ise birim matristir. Burada J matrisi, 

Jakobien matrisi olarak adlandırılır ve ağ hatalarının ağırlıklara göre birinci 

türevlerinden oluşur: 

( ) ( )
( )1
e n

J n
w n
∂

=
∂ −

(5.23) 

 

Eşitlik 5.23’ de e, ağ hataları vektörüdür. Jakobien matrisi, hesaplamada 

Hessian matrisinden daha kolay olduğu için tercih edilir. Ağın gradyeni, 

 

( ) ( ) ( )Tg n J n e n= (5.24) 

 

olarak hesaplanır ve ağırlıklar Eşitlik 5.24’ e göre değiştirilir: 

 

( ) ( ) ( ) ( )1
1w n w n H n g n

−
+ = −     (5.25) 

 

Marquardt parametresi, µ, skaler bir sayıdır. Eğer µ sıfırsa, bu yöntem yaklaşık

Hessian matrisini kullanan Newton algoritması; eğer µ büyük bir sayı ise, küçük 

adımlı gradyen azalması yöntemi haline gelir. Newton yöntemleri, en küçük hata 

yakınlarında daha hızlı ve kesindir. Her başarılı adımdan sonra, yani performans 

fonksiyonunun azalmasında µ azaltılır ve sadece deneme niteliğindeki bir adım

performans fonksiyonunu yükseltecekse µ arttırılır. Bu yöntemle, algoritmanın her 

iterasyonunda, performans fonksiyonu daima azaltılır. 

 

Genel olarak Levenberg – Marquardt algoritması yavaş yakınsama 

probleminden etkilenmez. Burada hedef, performans fonksiyonun en küçük yapacak 

ağırlık değerini bulmaktadır (M. Oğuz 2001, S. H. Ngia 2000). 
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5.4.2. Yapay sinir ağlarının eğitilmesi  

 

Yapay sinir ağlarında işlemci elemanlar arasındaki bağlantıların ağırlık

değerlerinin değiştirilmesi işlemi “ağın eğitilmesi” olarak tanımlanır. Başlangıç

aşamasında rastgele atanan bu ağırlık değerleri, ağa gösterilen örneklerle 

değiştirilmektedir. Burada hedeflenen, ağa gösterilen örnekler için doğru çıktıları

üretecek ağırlık değerlerinin bulunmasıdır. Yapay sinir ağlarının eğitilmesinde 

kullanılan girdi ve çıktı çiftlerinden oluşan veri kümesine “eğitim seti” denilmektedir 

(Baş 2006). 

 Yapay sinir ağlarının eğitimi, belli kurallar dahilinde yapılmaktadır. Bu 

kurallara öğrenme kuralları adı verilmektedir. Ağırlıklar öğrenme kurallarına göre 

değiştirilir. Bir yapay sinir ağında ağırlıkların doğru değerlere ulaşması, çözüm 

aranan problem konusunda ağın genellemeler yapabilme yeteneğini kazanması

olarak ifade edilir. Genelleme, yapay sinir ağının eğitiminde kullanılmamış, ancak 

aynı evrenden gelen girdi-çıktı örneklerini doğru sınıflandırabilme yeteneği olarak 

tanımlanır. Ağın genelleme kabiliyetini kazanması işlemine “ağın öğrenmesi” denir 

(Baş 2006). 

 Yapay sinir ağlarında öğrenmenin iki aşaması vardır. Birinci aşamada ağa

gösterilen örnek için ağın üreteceği çıktı belirlenir. Bu çıktı değerinin doğruluk 

derecesine göre, ikinci aşamada ağın bağlantılarının sahip olduğu ağırlıklar 

değiştirilir. Ağın çıktısının belirlenmesi ve ağırlıkların değiştirilmesi öğrenme 

kuralına bağlı olarak farklı biçimlerde olmaktadır (Baş 2006). 

 Bir yapay sinir ağının eğitim aşaması bittikten sonra, ağın öğrenip 

öğrenmediğini  yani ağın performansını ölçmek için denemeler yapılarak ağın test 

edilmesi gerekmektedir. Bir yapay sinir ağının test edilmesi için ağın eğitimi 

sırasında görmediği, veri seti içerisinde eğitimden arta kalan diğer bir ifadeyle test 

amaçlı olarak ayrılan örnekler kullanılır. Test amaçlı olarak ayrılan bu örneklere “test 

seti” adını verilir. Test işleminde ağın ağırlık değerleri değiştirilmemektedir. 

Örnekler ağa gösterilmekte ve ağ eğitimi sırasında belirlenen ağırlık değerlerini 

kullanarak daha önce görmediği bu örnekler için çıktılar üretmektedir. Elde edilen 

çıktıların doğruluk dereceleri ağın öğrenmesi hakkında bilgi vermektedir. Sonuç ne 

kadar iyi olursa eğitimin performansı da o kadar iyi demektir (Öztemel, 2003). 
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Eğitim ve test setlerinin oluşturulmasında yeterli eğitim ve test verisi miktarının

ne olması gerektiği önemli bir ayrıntıdır. Eğer veri bulma problemi yoksa , yapay 

sinir ağı mümkün olduğu kadar çok veriyle eğitilmelidir. Eğitim verisinin yeterli 

olup olmadığı konusun test etmek için eğitim verisi miktarı artırılarak, bunun ağın

performansında bir değişikliğe sebep olup olmadığına bakılır. Ancak bunun mümkün 

olmadığı durumlarda yapay sinir ağının eğitim ve test verileri üzerindeki 

performansının yakın olması da verilerin yeterli olduğuna ilişkin bir gösterge olarak 

kabul edilebilir. Bununla birlikte eğitim setinin içermesi gereken veri miktarı değişik 

yapay sinir modellerine ve özellikle problemin gösterdiği karmaşıklığa göre farklılık

göstermektedir (Baş 2006). 

 

5.5. Tez Çalışmasında Önerilen YSA Modeli 

 

Bu tez çalışmasında; geriye yayılım (back-propagation) algoritmasının bir türü 

olan Levenberg – Marquardt algoritmasına dayananan ve danışmalı öğrenme metodu 

kullanılan bir YSA modeli önerilmiştir. 

 Bu tez çalışmasının yapay sinir ağlarının eğitilmesi aşamasında EEG 

sinyallerinden elde edilen veri kümeleri, 3 ayrı hastadan alınan spindle bulunan 361 

epok, spindle bulunmayan 361 epok olmak üzere toplam 722 epoktan oluşmaktadır. 

Çalışmada spindle bulunan ve spindle bulunmayan epoklara ait verilerin yarısı

eğitme diğer yarısı ise test verisi olarak kullanılmıştır. Sınıflandırma aşamasında gizli 

katmandaki düğüm sayısı 1, 5, 8, 10, 15, 20 ve 25 olarak ayrı ayrı test edilmiş, bu

şekilde eğitilmiş olan sistemin sınıflama doğrulukları, hassasiyet ve seçicilik 

değerleri ayrı ayrı hesaplanmıştır. Sonuç olarak en yüksek sınıflama doğruluğunun

hangi gizli düğüm sayısıyla elde edildiği bulunmuş ve sistem bu model üzerine 

tasarlanmıştır. 

 Aşağıda Şekil 5.8’ de zaman domenindeki veriler üzerinde sınıflama yapan ve  

en yüksek sınıflama doğruluğu elde ettiğimiz 10 tane gizli düğüm sayısına sahip 

YSA modelinin basit yapısı görülmektedir. Bu modelde zaman domenine ait 6 adet 
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giriş, gizli katman ve spindle var veya spindle yok olarak sonuç veren 2 adet çıkış 

bulunmaktadır. 

 

Şekil 5.8 Zaman domeni için tasarlanan ve en yüksek sınıflama doğruluğu elde 
edilen YSA Mimarisi 
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6. DENEYSEL SONUÇLAR 

 

Bu tez çalışmasında, Selçuk Üniversitesi Meram Tıp Fakültesi Göğüs

Hastalıkları Anabilim Dalı Uyku Laboratuarı Bölümü’ ne uyku rahatsızlıkları

sebebiyle  başvuran üç ayrı hastadan alınan 361 adet spindle bulunan epok, 361 adet 

spindle bulunmayan epok olmak üzere toplam 722 epoktan oluşan veri kümesi 

üzerinde çalışılmıştır.  

 Çalışmada spindle bulunan ve spindle bulunmayan epoklara ait verilerin yarısı

eğitme diğer yarısı ise test verisi olarak kullanılmıştır. Sınıflandırma aşamasında gizli 

katmandaki düğüm sayısı 1, 5, 8, 10, 15, 20 ve 25 olarak ayrı ayrı test edilmiş, bu

şekilde eğitilmiş olan sistemin sınıflama doğrulukları, hassasiyet ve seçicilik 

değerleri ayrı ayrı hesaplanmıştır. Sonuç olarak en yüksek sınıflama doğrulunun 

hangi düğüm sayısıyla elde edildiği bulunmuş ve yapay sinir ağı mimarisi bu şekilde 

oluşturulmuştur. 

 Şekil 6.1’ de çalışmada kullandığımız spindle bulunan 1 epokluk  (30 saniyelik) 

EEG işareti görülmektedir.  

 

Şekil 6.1 Spindle bulunan 1 Epokluk ( 30 saniyelik ) EEG işareti 
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Şekil 6.2’ de ise spindle bulunmayan 1 epokluk ( 30 saniyelik ) EEG işareti 

görülmektedir.  

 

Şekil 6.2  Spindle bulunmayan 1 Epokluk ( 30 saniyelik ) EEG işareti 
 

Zaman ve frekans domeni özellikleri çıkartılarak yapay sinir ağlarıyla yarısı

eğitim yarısı test verisi olarak kullanılmak şartıyle eğitme ve sınıflandırma işlemine 

tabi tutulan  veriler performans kriterleri açısından incelenerek şu sonuçlara 

varılmıştır. 

 

6.1. Performans Kriterleri  

 

Herhangi bir modelin test performansı sınıflama doğruluğu (CA), belirlilik 

(specificity-SPE) ve hassasiyet (sensitivity-SEN) ile hesaplanabilmektedir. Bu 

analizlerin yapılabilmesi için ağın ürettiği çıkış ile uzman görüşüyle belirlenmiş
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hedef çıkış değerleri aşağıda verilen kriterlere göre değerlendirilir (Tarrasenko ve 

ark. 1998, Dirgenali ve Kara 2006). 

Karmaşıklık Matrisi: Gerçek değerler ile sistemin ürettiği çıkış değerlerini gösteren 

bir matristir. Örnek bir karmaşıklık matrisi Tablo 6.1’ de gösterilmektedir. 

 

Tablo 6.1 Karmaşıklık matrisi 
 

Karmaşıklık matrisi Negatif Pozitif 

Negatif Doğru Negatif (DN) Yanlış Pozitif (YP) 

Pozitif Yanlış Negatif (YN) Doğru Pozitif (DP) 

a) Doğru pozitif (DP): Uzman tarafından hastalıklı olarak işaretlenen epok, YSA 

tarafından da hastalıklı olarak bulmuştur. 

b) Doğru negatif (DN): Uzman tarafından normal olarak işaretlenmiş epok,  YSA 

tarafından da normal olarak bulunmuştur. 

c) Yanlış pozitif (YP): Uzman tarafından normal olarak tanımlanmış epok, YSA 

tarafından hastalıklı olarak bulunmuştur. 

d) Yanlış negatif (YN): Uzman tarafından hastalıklı olarak tanımlanmış epok, YSA 

tarafından normal olarak tespit etmiştir. 

 

Bulunan bu kriterlere bağlı olarak sınıflama doğruluğu (CA), belirlilik (SPE) ve 

hassasiyet (SEN) Eşitlik 6.1, 6.2 ve 6.3’ e göre hesaplanır

6.1.1. Sınıflama doğruluğu (CA) 

 

Sınıflandırma işleminin tamamlanmasının ardından, sonuç ürünün 

doğruluğunun belirlenmesi gerekir. Burada sınıflandırma doğruluğu ortaya çıkar.         
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Sınıflama doğruluğu sınıflandırma sonuçları ile kontrol alanları karşılaştırılarak elde 

edilir. Eşitlik  6.1 kullanılarak sınıflama doğruluğu bulunur. 

 

( )% DP DNCA
DP DN YP YN

+=
+ + +

 (6.1) 

 

6.1.2.  Hassasiyet (SEN) 

 

Sınıflandırıcının hastalıklı veriyi tespit etme yeteneğidir. Hassasiyet Eşitlik 6.2 

uyarınca hesaplanır. 

 

( ) ( ) 100% ×
+

=
YNDP

DPSEN  (6.2) 

 

6.1.3. Seçicilik (SPE) 

 

Sınıflandırıcının normal veriyi tespit etme yeteneğidir. Seçicilik 6.3 deki eşitlik 

yardımıyla hesaplanır. 

 

( ) ( ) 100% ×
+

=
YPDP

DNSPE  (6.3) 

 

6.2. Elde Edilen Test Sonuçları

Karmaşıklık matrislerine ait veriler ve elde edilen sonuçlar her bir hasta için 

aşağıdaki gibi bulunmuştur. 

 Zaman domeninde Hasta 1’ e ait karmaşıklık matrisi Tablo 6.2’ de verilmiştir. 
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Tablo 6.2 Zaman domeninde Hasta 1’ e ait  karmaşıklık matrisi 
 

Gerçek/Tahmin 
edilen 

Spindle Non-spindle Gizli 
katmandaki 
düğüm sayısı

Spindle  31 0 
Non-spindle 0 31 

1

Spindle  18 13 
Non-spindle 20 11 

5

Spindle  31 0 
Non-spindle 0 31 

8

Spindle  31 0 
Non-spindle 0 31 

10 

Spindle  31 0 
Non-spindle 0 31 

15 

Spindle  31 0 
Non-spindle 0 31 

20 

Spindle  31 0 
Non-spindle 0 31 

25 

Frekans domeninde Hasta 1’ e ait karmaşıklık matrisi Tablo 6.3’ de verilmiştir. 

 

Tablo 6.3 Frekans domeninde Hasta 1’ e ait  karmaşıklık matrisi 
 

Gerçek/Tahmin 
edilen 

Spindle Non-spindle Gizli 
katmandaki 
düğüm sayısı

Spindle  29 2 
Non-spindle 18 13 

1

Spindle  31 0 
Non-spindle 28 3 

5

Spindle  31 0 
Non-spindle 29 2 

8

Spindle  28 3 
Non-spindle 11 20 

10 

Spindle  31 0 
Non-spindle 29 2 

15 

Spindle  30 1 
Non-spindle 0 31 

20 

Spindle  30 1 
Non-spindle 21 10 

25 
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Zaman ve Frekans domeninde Hasta 1’e ait karmaşıklık matrisi Tablo 6.4’ de 

verilmiştir. 

 

Tablo 6.4 Zaman ve Frekans domeninde Hasta 1’ e ait  karmaşıklık matrisi 
 

Gerçek/Tahmin 
edilen 

Spindle Non-spindle Gizli 
katmandaki 
düğüm sayısı

Spindle  27 4 
Non-spindle 0 31 

1

Spindle  22 9 
Non-spindle 29 2 

5

Spindle  27 4 
Non-spindle 8 23 

8

Spindle  28 3 
Non-spindle 1 30 

10 

Spindle  29 2 
Non-spindle 1 30 

15 

Spindle  30 1 
Non-spindle 0 31 

20 

Spindle  31 0 
Non-spindle 1 30 

25 
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Hasta 1’ e ait kayıtlarda yapay sinir ağları kullanılarak zaman ve frekans 

domenlerinde sleep spindlların sınıflandırılması sonucu  elde edilen sonuçlar Tablo 

6.5’ de verilmiştir. 

 

Tablo 6.5 Yapay sinir ağları kullanılarak zaman ve frekans domenlerinde sleep 

spindlların sınıflandırılması sonucu  elde edilen sonuçlar (Hasta 1) 

 
Performans Ölçüm Kriteri 

Kullanılan Özellik 

Kümesi  

Gizli Katmandaki 

Düğüm Sayısı Sınıflama 

Doğruluğu (%) 

Hassasiyet (%) Seçicilik (%) 

 

Zaman domeni 

özellikleri 

1** 

5

8** 

10** 

15** 

20** 

25** 

100 

46,77 

100 

100 

100 

100 

100 

100 

47,36 

100 

100 

100 

100 

100 

100 

45,83 

100 

100 

100 

100 

100 

Frekans domeni 

özellikleri 

1

5

8

10 

15 

20** 

25 

67,74 

54,83 

53,22 

77,41 

53,22 

98,38 

64,51 

61,70 

52,54 

51,66 

71,79 

51,66 

100 

58,82 

86,67 

100 

100 

86,96 

100 

96,88 

90,91 

Hem zaman hem 

frekans domeni 

özellikleri 

1

5

8

10 

15 

20** 

25** 

93,55 

38,70 

80,64 

93,54 

95,16 

98,38 

98,38 

100 

43,13 

77,14 

96,55 

96,67 

100 

96,88 

88,57 

18,18 

85,19 

90,91 

93,75 

96,88 

100 

NOT: Test işleminde 31 spindle ve 31 non spindle içeren veri kullanılmış ve en iyi performans ** ile 
işaretlenmiştir.  
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Zaman domeninde Hasta 2’ ye ait karmaşıklık matrisi Tablo 6.6’ da verilmiştir. 
 

Tablo 6.6 Zaman domeninde Hasta 2’ ye ait  karmaşıklık matrisi 
 

Gerçek/Tahmin 
edilen 

Spindle Non-spindle Gizli 
katmandaki 
düğüm sayısı

Spindle  125 0 
Non-spindle 0 125

1

Spindle  125 0 
Non-spindle 0 125

5

Spindle  115 10 
Non-spindle 0 125

8

Spindle  125 0 
Non-spindle 0 125

10 

Spindle  124 1 
Non-spindle 0 125

15 

Spindle  122 3 
Non-spindle 0 125

20 

Spindle  118 7 
Non-spindle 5 120

25 

Frekans domeninde Hasta 2’ ye ait karmaşıklık matrisi Tablo 6.7’ de 

verilmiştir. 

 
Tablo 6.7 Frekans domeninde Hasta 2’ ye ait  karmaşıklık matrisi 

 
Gerçek/Tahmin 

edilen 
Spindle Non-spindle Gizli 

katmandaki 
düğüm sayısı

Spindle  125 0 
Non-spindle 125 0 

1

Spindle  124 1 
Non-spindle 125 0 

5

Spindle  125 0 
Non-spindle 125 0 

8

Spindle  125 0 
Non-spindle 125 0 

10 

Spindle  125 0 
Non-spindle 125 0 

15 

Spindle  115 10 
Non-spindle 30 95 

20 

Spindle  125 0 
Non-spindle 125 0 

25 
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Zaman ve Frekans domeninde Hasta 2’ ye ait karmaşıklık matrisi Tablo 6.8’ de 

verilmiştir. 

 
Tablo 6.8 Zaman ve Frekans domeninde Hasta 2’ ye ait  karmaşıklık matrisi 

 
Gerçek/Tahmin 

edilen 
Spindle Non-spindle Gizli 

katmandaki 
düğüm sayısı

Spindle  125 0 
Non-spindle 0 125

1

Spindle  125 0 
Non-spindle 0 125

5

Spindle  114 11 
Non-spindle 0 125

8

Spindle  96 29 
Non-spindle 1 124

10 

Spindle  121 4 
Non-spindle 1 124

15 

Spindle  117 8 
Non-spindle 2 123

20 

Spindle  84 41 
Non-spindle 3 122

25 
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Hasta 2’ ye ait kayıtlarda yapay sinir ağları kullanılarak zaman ve frekans 

domenlerinde sleep spindlların sınıflandırılması sonucu  elde edilen sonuçlar Tablo 

6.9’ da verilmiştir. 

 

Tablo 6.9 Yapay sinir ağları kullanılarak zaman ve frekans domenlerinde sleep 
spindlların sınıflandırılması sonucu  elde edilen sonuçlar (Hasta 2) 
 

Performans Ölçüm Kriteri 

Kullanılan 

Özellik Kümesi  

Gizli Katmandaki 

Düğüm Sayısı Sınıflama 

Doğruluğu (%) 

Hassasiyet (%) Seçicilik (%) 

 

Zaman domeni 

özellikleri 

1** 

5** 

8

10** 

15 

20 

25 

100 

100 

96 

100 

99,6 

98,8 

95,2 

100 

100 

100 

100 

100 

100 

95,93 

100 

100 

92,59 

100 

99,21 

97,66 

94,49 

Frekans domeni 

özellikleri 

1

5

8

10 

15 

20** 

25 

50,00 

49,6 

50 

50 

50 

84 

50 

50,00 

49,80 

50 

50 

50 

79,31 

50,00 

0,00 

0,00 

0,00 

0,00 

0,00 

90,48 

0,00 

Hem zaman hem 

frekans domeni 

özellikleri 

1** 

5** 

8

10 

15 

20 

25 

100 

100 

95,6 

88 

98 

96 

82,4 

100 

100 

100 

98,97 

99,18 

98,32 

96,55 

100 

100 

91,91 

81,05 

96,88 

93,89 

74,85 

NOT: Test işleminde 125 spindle ve 125 non spindle içeren veri kullanılmış ve en iyi performans ** 
ile işaretlenmiştir.  
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Zaman domeninde Hasta 3’ e ait karmaşıklık matrisi Tablo 6.10’ da verilmiştir. 

 

Tablo 6.10 Zaman domeninde Hasta 3’ e ait  karmaşıklık matrisi 
 

Gerçek/Tahmin 
edilen 

Spindle Non-spindle Gizli 
katmandaki 
düğüm sayısı

Spindle  17 5 
Non-spindle 0 22

1

Spindle  22 0 
Non-spindle 0 22

5

Spindle  18 4 
Non-spindle 0 22

8

Spindle  22 0 
Non-spindle 0 22

10 

Spindle  22 0 
Non-spindle 0 22

15 

Spindle  20 2 
Non-spindle 0 22

20 

Spindle  21 1 
Non-spindle 0 22

25 

Frekans domeninde Hasta 3’ e ait karmaşıklık matrisi Tablo 6.11’ de 

verilmiştir. 

 
Tablo 6.11 Frekans domeninde Hasta 3’ e ait  karmaşıklık matrisi 

 
Gerçek/Tahmin 

edilen 
Spindle Non-spindle Gizli 

katmandaki 
düğüm sayısı

Spindle  22 0 
Non-spindle 22 0 

1

Spindle  14 8 
Non-spindle 18 4 

5

Spindle  19 3 
Non-spindle 21 1 

8

Spindle  19 3 
Non-spindle 22 0 

10 

Spindle  19 3 
Non-spindle 22 0 

15 

Spindle  16 6 
Non-spindle 20 2 

20 

Spindle  21 1 
Non-spindle 22 0 

25 
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Zaman ve Frekans domeninde Hasta 3’ e ait karmaşıklık matrisi Tablo 6.12’ de 

verilmiştir. 

 

Tablo 6.12 Zaman ve Frekans domeninde Hasta 3’ e ait  karmaşıklık matrisi 
 

Gerçek/Tahmin 
edilen 

Spindle Non-spindle Gizli 
katmandaki 
düğüm sayısı

Spindle  18 4 
Non-spindle 18 4 

1

Spindle  2 20
Non-spindle 0 22

5

Spindle  20 2 
Non-spindle 0 22

8

Spindle  22 0 
Non-spindle 0 22

10 

Spindle  19 3 
Non-spindle 22 0 

15 

Spindle  17 5 
Non-spindle 22 0 

20 

Spindle  13 9 
Non-spindle 21 1 

25 
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Hasta 3’ e ait kayıtlarda yapay sinir ağları kullanılarak zaman ve frekans 

domenlerinde sleep spindlların sınıflandırılması sonucu  elde edilen sonuçlar Tablo 

6.13’ de verilmiştir. 

 

Tablo 6.13 Yapay sinir ağları kullanılarak zaman ve frekans domenlerinde sleep 
spindlların sınıflandırılması sonucu  elde edilen sonuçlar (Hasta 3) 
 

Performans Ölçüm Kriteri 

Kullanılan Özellik 

Kümesi  

Gizli Katmandaki 

Düğüm Sayısı Sınıflama 

Doğruluğu (%) 

Hassasiyet (%) Seçicilik (%) 

 

Zaman domeni 

özellikleri 

1

5** 

8

10** 

15** 

20 

25 

88,64 

100 

90,90 

100 

100 

95,45 

97,72 

100,00 

100 

100 

100 

100 

100 

100,00 

81,48 

100 

84,62 

100 

100 

91,67 

95,65 

Frekans domeni 

özellikleri 

1** 

5

8

10 

15 

20 

25 

50,00 

40,90 

45,45 

43,18 

43,18 

40,90 

47,72 

50,00 

43,75 

47,5 

46,34 

46,34 

44,44 

48,84 

0,00 

33,33 

25,00 

0,00 

0,00 

25,00 

0,00 

Hem zaman hem 

frekans domeni 

özellikleri 

1

5

8

10** 

15 

20 

25 

50,00 

54,54 

95,45 

100 

43,18 

38,63 

31,81 

50 

100 

100 

100 

46,34 

43,59 

38,24 

50 

52,38 

91,67 

100 

0,00 

0,00 

10,00 

NOT: Test işleminde 22 spindle ve 22 non spindle içeren veri kullanılmış ve en iyi performans ** ile 
işaretlenmiştir.  
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EEG Sinyallerinden elde edilen zaman domeni özelliklerine göre Spindle ve 

Non-Spindle verilerinin dağılım grafiği Şekil 6.3’ de verilmiştir. 

 

Bu grafikten anlaşılıyor ki sadece zaman domeni özellikleri  kullanılarak 

spindle ve non-spindle durumları kolaylıkla ayırt edilebilir. Burada grafik sadece ilk 

üç özellik kullanılarak çizdirilmiştir. İlk üç özellik kullanılmasına rağmen lineer bir 

dağılımın elde edilmesi, zaman domeninde spindle bulma işinin sadece üç özellikle 

bile kolaylıkla yapılabileceğini göstermektedir.  

 

Şekil 6.3 Zaman domeninde lineer dağılımı gösteren grafik 
 



77

EEG Sinyallerinden elde edilen frekans domeni özelliklerine göre Spindle ve 

Non-Spindle verilerinin dağılım grafiği Şekil 6.4’ de verilmiştir. 

 

Bu grafikten anlaşılıyor ki sadece frekans domeni özellikleri  kullanılarak 

spindle ve non-spindle durumlarını ayırt etmek zordur. Welch yöntemi kullanılarak 

Frekans domeni özelliklerine göre spindle ve non-spindle veri kümesi lineer olarak 

ayrılamayan bir veri dağılımına sahiptir. Bu sebeple Welch yöntemi kullanılarak 

yapılan frekans domeni analizi nadiren yüksek sınıflama doğruluğu verse de spindle 

bulma adına kullanışlı bir metod değildir. 

 

Şekil 6.4 Frekans Domeninde Non-Lineer dağılımı gösteren grafik 
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7. SONUÇLAR ve ÖNERİLER 

 

7.1. Sonuçlar 

 

Bu tez çalışmasında uyku laboratuarlarında, uyku dönemlerinin belirlenmesi 

için çalışan uzmanların uyku iğciği olarak adlandırdıkları ve özellikle uykunun 

NREM Evre 2 olarak nitelendirilen dönemlerinde ortaya çıkan EEG dalga şeklinin 

bilgisayar marifetiyle bulunması amaçlanmıştır. 

 Bu amaç doğrultusunda hastalardan alınan EEG sinyallerinin zaman domeni 

özellikleri ve Welch metodu kullanılarak frekans domeninde özellik çıkartımları

yapılarak yapay sinir ağları ile sınıflandırılması sonucunda incelenen sinyalde uyku 

iğciği olup olmadığının bulan bir sistem önerilmiştir. 

 Özellik çıkarımı sonucunda elde edilen veri setlerinin içerisinde işimize 

yaramayacak özelliklerin sınıflama performansımızı azaltacağı, ilgisiz verilerle 

çalışmanın sistemimizde zaman ve emek kaybına sebep olacağı düşünülerek özellikle 

frekans domeninde elde edilen özellikler istatiksel ölçümler kullanılarak  

azaltılmıştır. 

 Zaman domeninde elde edilen altı ve frekans domeninde, özellik azaltımından 

sonra elde edilen dört  özellikten oluşan veri kümesinin %50 si eğitme,    % 50 si test 

için kullanılmıştır.  

 Yapay sinir ağlarının eğitilmesinin ardından  test veri kümesinin 

sınıflandırılması yapılmıştır. Sınıflandırma aşamasında gizli katmandaki düğüm

sayısı 1, 5, 8, 10, 15, 20 ve 25 olarak ayrı ayrı test edilmiş, bu şekilde eğitilmiş olan 

sistemin sınıflama doğrulukları, hassasiyet ve seçicilik değerleri ayrı ayrı

hesaplanmıştır. Sonuç olarak en yüksek sınıflama doğrulunun hangi düğüm sayısıyla 

elde edildiği bulunmuş ve sistem bu model üzerine tasarlanmıştır. 

 Zaman domeninde gizli katmandaki düğüm sayısı 10 olarak tasarlanan YSA 

mimarisiyle, üzerinde çalışılan tüm hastalarda %100 sınıflama doğruluğu elde 

edilmiştir. 
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Buradan EEG sinyalleri içerinde sleep spindle bulma işinde sadece zaman 

domeni üzerinde çalışılarak %100 başarı sağlanabileceği sonucuna ulaşılmıştır.  

 Bu sonucu daha başka bilimsel verilere dayandırarak sonucu desteklemek adına 

zaman ve frekans özelliklerinin ilk üçü kullanılarak spindle bulunan ve spindle 

bulunmayan EEG sinyallerinin veri dağılım grafiği matlap programıyla 

çizdirilmiştir. Elde edilen grafikler bulunan sonucu destekler niteliktedir. 

 

Şekil 7.1 Zaman domeninde lineer dağılımı gösteren grafik 
 

Bu grafikte zaman domenindeki özelliklerin sadece üç tanesi kullanılmasına

rağmen spindle ve non-spinle verilerin lineer bir şekilde ayrıştığını yani incelenen 

epokta spindle olup olmadığının zaman domeninde kolaylıkla bulunabileceği

görülmektedir. Bu da bizim bulduğumuz sonucu desteklemektedir.  

 Frekans domeninde aynı işlemi yaptığımızda ise Şekil 7.2’ deki grafiğe göre 

spindle ve non-spinle verilerin non-lineer olarak yani birbirine karışmış biçimde bir 
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dağılıma sahip olduğu görülmektedir. Bu sebeple Welch yöntemi kullanılarak 

yapılan frekans domeni analizi nadiren yüksek sınıflama doğruluğu verse de spindle 

bulma adına kullanışlı bir metod değildir. 

 

Şekil 7.2 Frekans Domeninde Non-Lineer dağılımı gösteren grafik 
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7.2. Öneriler 

 

Bu tez çalışmasında üzerinde uyku iğcikleri bulunan ve bulunmayan EEG 

işaretleri  arasındaki farklılıklar değerlendirilmiş ve yapay sinir ağları da kullanılarak 

bilgisayar destekli bir sistem ortaya çıkarılmıştır. 

 Tasarlanan bu sistem otomatik uyku evreleme sistemlerinde Evre II’ nin 

bulunması görevini yüksek doğrulukla yerine getirebilir. 

 Kullanılan YSA modeli yeniden ele alınarak farklı eğitme algoritması kullanan 

diğer yapay sinir ağı algoritmaları ile de karşılaştırılabilir ve sistemlerin 

verimlilikleri üzerinde değerlendirmeler yapılabilir. 

 Bu tez çalışmasında özellik çıkarımında kullanılan Welch metodu ve istatistiki 

özellikler dışında farklı özellik çıkarma yöntemleri denenerek, YSA veya başka

sınıflandırma teknikleri kullanılarak sistemlerin elde ettiği sınıflama doğrulukları

arasında karşılaştırmalar yapılabilir. 
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