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ABSTRACT 

 
 
 
 
 

MODELING, STABILITY ANALYSIS AND CONTROL SYSTEM DESIGN OF A 
SMALL-SIZED TILTROTOR UAV 

 
 
 
 
 

Çakıcı, Ferit 
 

M.Sc., Department of Electrical and Electronics Engineering 
 
Supervisor: Prof. Dr. M. Kemal Leblebicioğlu 

 
 
 
 

February 2009, 126 pages 
 
 
 
 
 

Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircrafts that 

can carry cameras, sensors, communications equipment or other payloads. Tiltrotor 

UAVs provide a unique platform that fulfills the needs for ever-changing mission 

requirements by combining the desired features; hovering like a helicopter and 

reaching high forward speeds like an airplane. In this work, the conceptual design 

and aerodynamical model of a realizable small-sized Tiltrotor UAV is constructed, 

the linearized state-space models are obtained around the trim points for airplane, 

helicopter and conversion modes, controllers are designed using Linear Quadratic 

Regulator (LQR) methods and gain-scheduling is employed to obtain a simulation 

for the whole flight envelope. The ideas for making a real flying model are 

established according to simulation results. 
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ÖZ 

 
 
 
 
 

DÖNER-ROTORLU (TILTROTOR) MİNİ İHA MODELLEMESİ, KARARLILIK 
ANALİZİ VE KONTROL SİSTEMİ TASARIMI 

 
 
 
 

Çakıcı, Ferit 
 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 
 

Tez Yöneticisi: Prof. Dr. M. Kemal Leblebicioğlu 
 
 
 
 

Şubat 2009, 126 sayfa 
 
 
 
 

İnsansız Hava Araçları (İHA) kameralar, algılayıcılar, iletişim araçları ve diğer faydalı 

yükleri taşıyabilen, uzaktan kumanda ile veya kendi kendine uçabilen hava 

araçlarıdır. Döner-rotorlu İHA’lar yapısal olarak sahip olduğu helikopter ve uçak 

modlarıyla, bu hava araçlarının havada asılı kalma ve yüksek seyir hızı gibi tercih 

edilen özelliklerini bünyesinde barındıran bir hava platformu olarak, kullanım 

alanlarındaki değişken ihtiyaçlara cevap verebilecek bir yapıya sahiptir. Bu 

çalışmada, model uçak malzemeleriyle üretilebilecek döner-rotorlu bir mini İHA’nın 

kavramsal tasarımı yapılmış, aerodinamik modeli oluşturulmuş, helikopter, uçak ve 

geçiş modları için denge noktaları hesaplanarak doğrusal modelleri elde edilmiş, 

LQR (Linear Quadratic Regulator) yöntemiyle doğrusal kontrolcüler tasarlanmış ve 

bütün uçuş zarfı için kazanç ayarlama (Gain-scheduling) yöntemiyle kontrol 

sisteminin benzetimi gerçekleştirilmiştir. Elde edilen sonuçlar çerçevesinde, gerçek 

bir modelin prototipinin oluşturulmasına yönelik fikirler öne sürülmüştür. 

 
 
 
Anahtar Kelimeler: İHA, Döner-Rotor, Optimal, Kontrol, Optimizasyon. 
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION 

INTRODUCTION 

 

 

 

Aerial vehicles have proved their usefulness in military (combat, deployment of 

units, patrolling, surveillance, reconnaissance, etc.) and civil areas (transport, 

search and rescue, fire-fighting, etc.) of application over a hundred years, with 

enhancing their capabilities over time, and fulfilling ever-changing requirements. 

Starting with aerostats, following with aerodynes, they have become one of the 

major subjects of the scientifical research community; always using the latest 

technology with big budgets.  

The most popular aerial vehicles, helicopters and airplanes have become available 

in easing human life, and providing a large range of abilities with mass-numbered 

productions. The low speed limits of airplanes and high speed limits of helicopters 

have made their usage areas different from each other. Although, a lot of effort has 

been spent to combine the advantages of these aircrafts into one platform with 

eliminating disadvantages; like tiltwings and tailsitters, and none has been 

successful enough to go into production, until tiltrotors.  

A tiltrotor aircraft combined the vertical lift capability of a helicopter with the speed 

and range of a turboprop airplane. As the name implies, a tiltrotor aircraft uses 

tiltable rotating propellers, or proprotors, for lift and propulsion. For vertical flight, the 

proprotors are angled to direct their thrust upwards providing lift. In this mode of 

operation the aircraft is essentially identical to a helicopter. As the aircraft gains 

forward speed, the proprotors are slowly tilted forward, with the blades eventually 

becoming perpendicular to the ground. In this mode, the wings provide the lift, and 

the wings' greater efficiency helps the tiltrotor achieve its high speed. In this mode, 

the aircraft is essentially a turboprop aircraft. Although the choice of using a 
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comparable helicopter instead of a tiltrotor does not seem to be feasible for today, 

according to Leishman [1], it sure holds its potential for the future.  

Aside from cargo and transport missions, unmanned aerial vehicles (UAVs) have 

become popular with accomplishing a number of military roles like reconnaissance 

and attack, and a growing number of civil usages, for over a few decades. UAVs 

have lowered the operating costs and potential risks, and extended their capabilities 

with eliminating the need for an onboard human pilot. UAVs can be remotely 

controlled or flown autonomously based on pre-programmed flight plans or more 

complex dynamic automation systems. Small-sized UAVs of airplane and helicopter 

types have been developed and are currently in use in many mission-specific areas. 

Being inspired by the capabilities of Tiltrotors and UAVs, the leading idea discussed 

in this thesis is based on the conceptual design of a small-sized Tiltrotor UAV. 

1.1. Purpose and Scope of the Thesis 

This study aims to assert an initial conceptual design for a small-sized Tiltrotor UAV, 

explore its dynamics, and determine control strategies and requirements for a 

manufacturable model that can be realized with the hobbyist’s model airplane parts. 

With that purpose, simulation programs are prepared in order to obtain the 

numerical results for the design phases. 

The geometrical design of the aircraft is realized with modeling of all the 

components individually, and then combining them together in order to form the full 

aircraft model. Then, aerodynamical model is constructed based on the geometrical 

model, and it is used to simulate the aircraft in flight, with the purpose of obtaining 

the forces and moments generated. Trim points have been calculated for navigation 

states, that encapsulates the entire flight envelope. Analytic and numerical 

linearization techniques are utilized in order to obtain linearized state-space models 

around the trim points. The stability characteristics of the aircraft are examined from 

the linearized models, with the inspection of the eigenvalues. An LQR (Linear 

Quadratic Regulator) based optimal control system is designed in order to control 

the Tiltrotor UAV for the overall flight envelope. 

When the aircraft gains forward speed in level flight, it is expected that the trim 

points will guide Tiltrotor UAV from helicopter mode to conversion mode, and when 
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the cruise speed is reached, finally to the airplane mode. In these mode transitions, 

the trends in the trim input values are expected to tell us, how the conversion is 

accomplished from the control point of view. Considering the power requirements, 

less power should be required in the airplane mode and descends, much power in 

the helicopter mode and ascends, and in-between power levels for the conversion 

modes. 

 Although the main textbooks about helicopters and airplanes make certain 

assumptions, for the sake of simplicity, these assumptions are avoided wherever 

possible, for the sake of revealing the true characteristics of this conceptual aircraft. 

1.2. Previous Works 

The number of scientifical studies about tiltrotors and tiltrotor UAVs found in the 

literature is less then helicopters and airplanes, because of the chronological 

development phases of these types of aircrafts. 

Early Tiltrotor studies started in the 1940’s. Later, Bell Helicopter Company 

developed the first successful Tiltrotor XV-3 in 1960’s, yielding the development of 

the XV-15 by Bell/Army/NASA Team in 1973. The experience gained from the XV-

15 fostered the V-22 Osprey. Bell, teamed with AgustaWestland, is currently 

developing the commercial BA609, and the firm has also developed a Tiltrotor UAV, 

the TR918 Eagle Eye (Bell [2]). Current research on the four-rotor version of the V-

22 with two tandem sets of fixed wings and four tilting rotors is still in progress. 

An innovative conceptual design study for a heavy lift Mono-Tiltrotor has been 

proposed by Preator [3], that integrates a tilting coaxial-rotor, an aerodynamically 

deployed folding wing, and an efficient cargo handling system. T-Wing: a tandem-

wing tailsitter UAV concept demonstator has been implemented by Castillo [25], with 

LQR control. 

Linear modeling and stability analysis for a tiltrotor has been performed by 

Kleinhesselink [4] and Klein [5]. It is shown that Tiltrotors, V-22 and XV-15 have 

similar unstable characteristics in the helicopter modes, and similar stable 

characteristics in the airplane modes. 
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Hobbyist’s model propellers’ performance has been investigated by Merchant [6], 

which are proprietary informations for manufacturers. 

LQR control of a quadrotor has been implemented by Cowling [7], and a small-sized 

helicopter model is controlled with LQR by Karasu [8]. 

1.3. Contributions 

The main contribution aimed in this thesis, is the introduction of the conceptual 

design of a small-sized Tiltrotor UAV, which may perform well in reconnaissance, 

surveillance, search-rescue and disaster observation missions, with its vertical take 

off-landing and high-speed, efficient level flight capabilities. 

Also, with the help of GUI-based softwares prepared in this work, modeling, 

trimming, linearization, investigation of stability characteristics, and control system 

design have become easy, allowing the designer to make any trade-offs for the 

initial design, in order to meet the desired performance specifications. 

Tiltrotors have helicopter-like controls in the helicopter mode, helicopter-airplane-like 

controls in the conversion modes, and airplane-like controls in the airplane mode. 

The idea asserted in this thesis for controls, is that two tiltrotors where RPMs and 

tilts can be set independent of each other, for all modes of operations. 

Tiltrotor UAV’s aerodynamical simulations are conducted using look-up tables of 

aerodynamical coefficients of airfoils, instead of using simplified formulas, due to the 

increased nonlinearity of these coefficients in small-scale, in order to obtain more 

realistic results. 

A general trim algorithm is proposed in order to obtain trim conditions for the overall 

flight envelope. In addition, an LQR based control system design for tiltrotors is 

proposed. 

This work was presented (Çakıcı [26]) in the 50th Annual Conference of Turkish 

National Committee of Automatic Control (TOK 2008) on 13-15 November 2008, 

which was organized by Istanbul Technical University, in Istanbul, Turkey. 
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1.4. Outline of the Chapters 

Chapter 1: This chapter makes an introduction, sets the purpose, determines the 

scope and gives information about relevant previous studies. 

Chapter 2: This chapter reveals the mathematical modeling and underlying ideas 

for composing the geometrical and aerodynamical model of the conceptual Tiltrotor 

UAV. First, the reference frames and variables are defined. The assumptions and 

espousals are introduced. Then, the models for environment, motion, fuselage, 

propeller, wings and airfoils are derived. 

Chapter 3: In this chapter, stability analysis is performed with identifying the nature 

of the trim algorithm, linearization concepts, and inspection of the eigenvalues of the 

linearized system to observe its stability characteristics. 

Chapter 4: This chapter contains the underlying theorems and methods used in 

designing the control system of the Tiltrotor UAV. LQR is discussed as the control 

system for the linearized models.  

Chapter 5: In this chapter, the modeling and simulation programs prepared in this 

study are explained, with the addition of implementation methods of theoretical 

background, which was set in Chapter 3 and Chapter 4. 

Chapter 6: In this chapter, the simulations performed and their results are 

presented with comments and discussions. 

Chapter 7: The studies conducted for this thesis are criticized and summarized as a 

conclusion. 

Chapter 8: The ideas for the future works that may follow this research are stated in 

this chapter. 
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CHAPTER 2 

2. MATHEMATICAL MODELING 

 

MATHEMATICAL MODELING 

 

 

 

Since the dynamics of the aerial vehicles are very complex, the accurate models for 

a large portion of the flight envelope are difficult to collect. However, some 

techniques have been developed like mathematical modeling and system 

identification, different but complementary techniques. By mathematical modeling, 

the linear models at trim points are calculated. The main drawback of this technique 

is the requirement of many physical parameters. The system identification technique 

requires the treatment of the time response data or the frequency-response data 

obtained from the flight tests. The main problem with this technique is the difficulty of 

simulating the full envelope and realizing the flight tests, which are expensive and 

time-consuming. By combining these two techniques, accurate models may be 

generated for the flight simulations.  

Since the small-sized Tiltrotor UAV is a conceptual design, only the mathematical 

modeling technique is used in this thesis. 

2.1. Reference Frames 

When formulating and solving problems in flight dynamics, a number of frames of 

reference must be used for specifying variables such as relative positions, velocities, 

components of vectors (forces, velocities, accelerations etc.), and elements of 

matrices (aerodynamic derivatives, inertia tensor etc.). The equations of motion may 

be written from the standpoint of an observer fixed in any of the reference frames; 

the choice being only a matter of convenience and preference, and formulae must 

be available for transforming quantities of interest from one frame to another (Etkin 

[9]). 



 

 
7 

Note that, for every frame of interest, x-axis is denoted by red, y-axis is denoted by 

green and z-axis is denoted by blue color. 

2.1.1. Inertial Reference Frame (Inertial Axes, IF ) 

In every dynamics problem, there must be an inertial reference frame, either 

explicitly defined, or lurking implicitly in the background. This frame is fixed, or in 

uniform rectilinear translation relative to the distant stars. 

It is called the inertial frame, because Newton’s Law of Inertia holds in it, along with 

his other laws; Law of Acceleration and Law of Reciprocal Actions. An inertial 

reference frame is a coordinate system that is not accelerating and not rotating, 

which means having constant linear velocity, including standing still as shown in 

Figure 1. An object within this frame will only change its velocity if an actual non-

zero net force is applied to it. 

 

 

Figure 1. Inertial frame. 

 

2.1.2. Earth Reference Frame (Earth Surface Axes, EF ) 

Since hypersonic and space flight is out of the scope of this study, the rotation of the 

Earth relative to IF  can be neglected, and any reference frame fixed to the Earth 

can be used as an inertial frame. There are two Earth-fixed frames of interest as 

shown in Figure 2,  

Origin 
x-axis 

y-axis 
z-axis 

Inertial Frame has no acceleration 

and angular velocity with respect to 

the distant stars. 

IF  
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Figure 2. Earth frames. 

 

• Earth Center Frame, ECF , is used when Earth’s rotation is 

considered, 

• Earth Surface Frame, EF , is used with its origin close to the vehicle, 

and z-axis directed vertically downward from the surface to the center of the Earth, 

x-y axis is the local horizontal plane, where x-axis points to the north and y-axis 

points to the east. 

In this study, small velocities and short distances are considered on the surface of 

the Earth, so the Earth surface frame, EF , is used with flat-Earth approximation. 

2.1.3. Vehicle-Carried Reference Frame (Vehicle Carried Axes, VF ) 

This is a reference frame in which, the origin is attached to the vehicle at the center 

of gravity (c.g) as shown in Figure 3. Z-axis is directed vertically downward, i.e., in 

the same direction of the local g  (gravitational acceleration) vector. The other axes 

are directed parallel to the Earth frame’s corresponding axes. Since the origin of the 

Earth frame is in close proximity to the vehicle, the curvature of the Earth is 

considered to be negligible, with flat-Earth approximation. 

ECF  

x 

y 

z 
EF  

z 
y 

x 

Longitude, λ  

Latitude, µ  Equator 

Reference Meridian 

North Pole 

South Pole 
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Figure 3. Vehicle-carried frame. 

 

2.1.4. Body-Fixed Reference Frame (Body Axes, BF ) 

Any set of axes fixed in a rigid body is a body-fixed reference frame. The body axis 

system (Figure 4) is the conventional NACA (National Advisory Committee on 

Aeronautics) orthogonal aircraft axis system. The origin of the body axes is the 

mass c.g. A particular set of body axes with special properties are principal axes of 

inertia, denoted by BF . Looking from the cockpit, the nose of the aircraft points the 

x-axis, right side points y-axis and z-axis points downward according to right hand 

rule. The conventional variables associated with the body frame are given in Table 

1. 

 

Table 1. Body frame variables. 

 Force 
Linear 

Velocity 
Moment 

Angular 
Velocity 

x-axis X  u  L  p  

y-axis Y  v  M  q  

z-axis Z  w  N  r  

Units ( )Nsmkg =2  ( )sm  ( )Nmsmkg =22  ( )sdeg  

y 

x 

z 
EF  

VF  

Vehicle c.g. 

g  

Flight 
Path 
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Figure 4. Body frame and variables. 

 

2.1.5. Rotations Between Frames 

Consider two frames VF  and BF . VF  is fixed and BF  is the rotated frame about an 

axis of VF  with a constant angle as shown in Figure 5. This is achieved by a rotation 

matrix ( )axisangleRot , . This matrix is obtained by writing the principal axis of BF  in 

terms of the principle axis of VF , meaning dot products of corresponding principal 

axes: 

 

 

Figure 5. Rotation about x-axis of VF . 

x
V  

yV  

zV  yB  

x
B  

zB  
φ  φ  

BF , 

VF , 

uX ,  

wZ ,  vY ,  

pL,  

qM ,  rN ,  

BF  
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( ) [ ]





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
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
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zzzyzx

yzyyyx

xzxyxx

zyxRxRot ,φ . 

Since the dot product equals the multiplication of magnitudes of the vectors and the 

cosine of the angle between them; 

( )abbaba αcos=⋅ , 

Considering only the principal axes, which have the magnitude of 1; 

1=a , 1=b , ( )abba αcos=⋅ . 

the equation becomes 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

cos90cos90cos

90coscos90cos
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

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xzxyxx
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( ) ( ) ( )
( ) ( ) 
















−=

φφ

φφφ

cossin0

sincos0

001

, xRot V . 

Making the same calculations for the other axes yields the following results; 

( )
( ) ( )

( ) ( )















−

=

θθ

θθ

θ

cos0sin

010

sin0cos

, yRot V , ( )
( ) ( )
( ) ( )















 −

=

100

0cossin

0sincos

, ψψ

ψψ

ψ zRot V . 

Any vector V
V  in VF  can be represented as V

B  in BF , with the following rotation 

formula; 

( ) VaxisangleRotV
VB ⋅= , . 

When making rotations between frames, X-Y-Z fixed Euler angles, which are also 

named as roll, pitch, yaw angles are used, where each of 3 rotations takes place 
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about an axis in the fixed reference frame. The order of rotations is roll-pitch-yaw, 

since fixed angles are used, rotation matrices are pre-multiplied (Craig [24]), 

( ) ( ) ( )axisxRotaxisyRotaxiszRotRB

V −⋅−⋅−= ,,, φθψ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 















−

+−+

++−

=

φθφθθ

φθψφψφθψφψθψ

φθψφψφθψφψθψ

coscossincossin

cossinsinsincossinsinsincoscoscossin

cossincossinsinsinsincoscossincoscos

B

V R . 

where B

V

V

B
RR ′= . 

2.2. Models 

The following assumptions and espousals are made while obtaining the models; 

• IGE (In Ground Effect) condition is not considered in Tiltrotor UAV model, 

due to the placement of rotors, having them high from the ground more than 

2 times the diameter of the rotor. The aircraft operates out of ground effect. 

• Components of the Tiltrotor UAV are assumed to have no interaction 

between each other. The airframe is out of propeller wake influence. 

• The conversion assumes quasi-steady motion. The higher order propeller, 

control and inflow dynamics are much faster than the fuselage motions and 

have time to reach their steady state well within the typical time constants of 

the whole aircraft response modes. 

• The blades of the propellers are assumed to be rigid, having no feathering, 

flapping, lead and lag motion. 

• Inflow through the propeller is uniform. 

• RPM for the propellers is a constant direct input, governor is not used as in 

the real airplanes. 

• The wings are considered to be rigid, having no deflection under stress. 

• Wings and propeller blades have constant NACA 0012 airfoil sections. 
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• Medium variables are calculated for Ankara, Turkey (39o52’N, 32o52’E, 

Altitude: 850 m. Temperature: 25 oC) with the atmosphere at rest. These 

variables are assumed to be fixed for all simulations. 

• The centripetal and Coriolis acceleration, associated with the Earth’s rotation 

are neglected, assuming flat-Earth approximation. 

2.2.1. Environmental Model 

The medium that the aircraft experiences, has many variables like temperature, 

pressure, density, viscosity, speed of sound and gravitational acceleration. The 

environmental model (Figure 6) is used to determine the atmospheric variables and 

gravitational acceleration of the Earth, which are used in other models as inputs. 

 

 

Figure 6. Environmental model. 

 

2.2.1.1. Atmosphere Model 

The International Standard Atmosphere (ISA [10]) is an atmospheric model of how 

the pressure, temperature, density, and viscosity of the Earth's atmosphere change 

over a wide range of altitudes. It consists of tables of values at various altitudes, 

plus some formulas by which those values were derived. The ISA model divides the 

atmosphere into layers with linear temperature distributions. The other values are 

computed from basic physical constants and relationships. 

 

Temperature, ( )KT  

Altitude, ( )mh  

Pressure, ( )PaP  
Density, ( )3mkgρ  

Viscosity, ( )mskgµ  
Speed of Sound, ( )sma  

 

ISO 
Atmosphere 

Model 

Latitude, ( )degφ  
Gravitational 
Acceleration, ( )2smg  

 

WGS84 Gravity 
Model 
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2.2.1.2. Gravity Model 

The precise strength of the Earth's gravity varies depending on latitude and altitude 

due to the Earth’s geoid shape. Sea-level gravitational acceleration increases from 

about 2780.9 sm  at the equator to about 2832.9 sm  at the poles, so an object 

will weigh about 0.5% more at the poles than at the equator. The approximated 

values of g , as a function of latitude µ  and altitude h  is obtained by using the WGS 

(World Geodetic System) 84 ellipsoidal gravity formula: 

( ) hg
622 10086.32sin0000058.0sin0053024.01780327.9 −×−−+= µµ , 

where 

( )2smg  : gravitational acceleration, 

( )mh  : altitude, 

( )degµ  : latitude. 

 

2.2.2. Motion Model (6-DOF) 

The equations of motion have been derived in the body frame, whose orientation is 

defined according to the vehicle-carried frame, which was defined in the inertial 

frame, where Newton’s laws are valid. The application of Newton's laws of motion to 

an aircraft in flight, leads to the assembly of a set of nonlinear differential equations 

for the evolution of the aircraft response trajectory and attitude with time.  

The motion of a rigid body in 3-dimensions is governed by its mass Bm  and inertia 

tensor BI , including aerodynamic loads, gravitational forces and inertial forces and 

moments. A dynamic relationship is formed in the following fashion, in order to 

obtain the nonlinear dynamics of the motion; 

( )tuxFx ,,=& ,  

where  

:x  state variables, :u  input variables, :t  time. 



 

 
15 

In flight dynamics, there are 12 variables used as state variables. They can be 

categorized as shown in Table 2. 

 

Table 2. State variables for motion model, [ ]ı

eee zyxrqpwvux ψθφ= . 

DYNAMICS KINEMATICS 

TRANSLATION 
( )sm  

ROTATION 
( )srad  

ROTATION 
( )rad  

TRANSLATION 
( )m  

u  v  w  p  q  r  φ  θ  ψ  
ex  ey  ez  

 

The input variables for the motion of a vehicle are the net forces and moments 

acting on the vehicle. The input variables are defined as shown in Table 3. 

 

Table 3. Input variables for motion model, [ ]ı
NMLZYXu = . 

FORCES, ( )N  MOMENTS, ( )Nm  

X  Y  Z  L  M  N  

 

2.2.2.1. Translational Kinematics  

Considering the translational motion of the aircraft, this is direct transformation 

changing linear velocities ( )wvu ,, , from BF  into 
VF : 
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2.2.2.2. Rotational Kinematics 

This transformation is obtained by sequential transformation of axes and angular 

velocities, as shown by Etkin [10]: 



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
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&

&

&
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2.2.2.3. Translational Dynamics 

Considering that the mass of the aircraft is constant, the state variables related to 

translational dynamics can be calculated according to Newton’s Second Law: the 

summation of all external forces acting on a rigid body is equal to the time rate of 

change of the linear momentum of the body: 

( )
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After performing some calculations and leaving the derivatives of the state variables 

alone at the left side, we obtain 
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2.2.2.4. Rotational Dynamics 

Considering that the inertia tensor BI , is not changing when expressed in the body 

frame (i.e. 0=BI& ), applying Euler's formula; the summation of the external 

moments acting on a rigid body is equal to the time rate of change of the angular 

momentum: 

( ) BBBBBBBBBBB wIwwIwIHwHH
dt
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dt
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×+= & . After consecutive calculations; 
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2.2.2.5. Equations of Motion 

The equations of motion for a rigid body are constructed according to the block 

diagram model shown in Figure 7. resulting the following matrix form; 
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According to Figure 7, if we know about the world (gravitational acceleration) and 

aircraft (net forces, net moments, mass, inertia tensor) dynamics, then we can 

calculate the state variables (linear velocities, angular velocities, angular position 

and translational position) in the world. 

 

 

Figure 7. Motion model. 
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2.2.3. Tiltrotor Model 

The tiltrotor simulation model created in this study is named as “Tiltrotor UAV“. It has 

a mass and an inertia tensor, which is calculated at the c.g. of the body. These 

values are determined according to avionics equipments’ and mechanical part's total 

masses, and distribution of these masses in the aircraft’s total volume. 

2.2.3.1. Conceptual Design 

Tiltrotor UAV has two force generating plants stationed at the both sides of the body. 

These powerplants are like propellers on a real tiltrotor aircraft, which provide thrust 

with a tilt angle. The control variables, both rotational speeds ( )RPM21, ΩΩ and tilt 

angles ( )deg, 21 θθ  of the propellers are can be set independent of each other, but 

they are not completely independent, from the control point of view. 

The fuselage of Tiltrotor UAV carries all of the avionics equipments (battery, power 

unit, processor unit, GPS, INS, RF Link) inside, and constitutes a structural frame to 

hold other parts (propellers and wings) together. Two identical wings are stationed 

at the both sides of the fuselage in order to provide the main source of lift. Horizontal 

and vertical tail wings are fixed at the back of the aircraft in order to increase stability 

by providing the aircraft pitch and yaw moments. The main properties and 

components of Tiltrotor UAV are presented in the Figure 8,9. 

 

 

Figure 8. Tiltrotor UAV’s components. 
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Figure 9. Tiltrotor UAV’s properties. 

 

2.2.3.2. Physical Design 

Tiltrotor UAV model is constructed using Component Designer and UAV Designer 

programs explained in Chapter 5. First, the c.g. of the aircraft is calculated according 

to the design reference frame, the inertia tensor is obtained for the c.g. The list of 

components and their physical parameters used in Tiltrotor UAV are listed in Table 

4. 

The chord length c ( )m  for the main wings is designed to be large, in order to 

provide more pitch moment in the conversion mode, so that the fuselage of the 

Tiltrotor UAV tilts more easily. Typical helicopter main rotor’s blade twists are on the 

order of o10 , and the proprotor blades have a blade twist magnitude of o40  for the 

XV-15, o47  for the V-22 (Kleinhesselink [4]). The blade twists for tiltrotors are 

neither optimal for a helicopter nor an airplane, instead the proprotor twists are a 

compromise between helicopter performance and airplane performance. 

Considering this compromise, the blade twists for the propeller blades are chosen to 

be o45 . 
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Table 4. The physical parameters of the Tiltrotor UAV’s components. 

Name 
Mass 
(kg) 

C.G. 
(m) 

Inertia Tensor 
(kg m2) 

Features 

Fuselage 1 
















0

0

0

 

















0242.000

00217.00

000042.0

 - 

Main 
Wings 

0.7 
















−

−

0105.0

0

1718.0

 

















−

−

2410.000044.0

00564.00

0044.001868.0
 

Airfoil : NACA0012 
Wing Span: 2 m 
Dihedral : -20 deg at 
0.7 m. 

mcmc tiproot 3.0,75.0: =  

Horizontal 
Tail 0.25 















−

0

0

0919.0

 

















0248.000

00054.00

000196.0

 
Airfoil : NACA0012 
Wing Span: 0.8 m 

mcmc tiproot 2.0,3.0: =  

Vertical 
Tail 

0.25 














−

0

0

0900.0

 

















0129.000

00056.00

000077.0

 
Airfoil : NACA0012 
Wing Span: 0.6 m 

mcmc tiproot 2.0,3.0: =  

Propeller 
1 

0.4 














−

0

0

0525.0
 

















027.000

00027.00

000021.0

 

Airfoil : NACA0012 
Blade Root: 0.05 m 
Blade Tip: 0.35 m 
Twist : 45 deg 
Rot : CCW 

Propeller 
2 

0.4 














−

0

0

0525.0

 

















027.000

00027.00

000021.0

 

Airfoil : NACA0012 
Blade Root: 0.05 m 
Blade Tip: 0.35 m 
Twist : 45 deg 
Rot : CW 

 

The components designed in Component Designer program are placed at the 

desired positions and orientations as listed in Table 5, according to the design 

reference frame. The combination of these components gives the resultant mass 

and center of gravity and inertia tensor of the Tiltrotor UAV. 

Due to Tiltrotor UAV’s unique geometrical design, it has helicopter modes, 

conversion modes and airplane modes of operation. XV-15 and V-22 achieves 

mode transitions with changing the thrust vectors of the tiltrotors, and the fuselage is 

kept parallel to the Earth surface. Tiltrotor UAV achieves mode transitions with 

changing the fuselage pitch with the help of tiltrotors as shown in Figure 10. 
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Table 5. The locations of components of the Tiltrotor UAV. 

Component Tiltrotor UAV 

Name 
Position 

(m) 

Orientation 

(deg) 

Mass 

(kg) 

Inertia Tensor 

(kg m2) 

Fuselage [ ]001.0  [ ]000  

Main Wings [ ]000  [ ]000  

Vertical Tail  [ ]001−  [ ]0090  

Horizontal Tail [ ]001−  [ ]0100 −  

Propeller 1 [ ]04.035.0  [ ]000  

Propeller 2 [ ]04.035.0 −  [ ]000  

3 
















−

−

0463.100061.0

07193.00

0061.003506.0

 

 

 

Figure 10. Mode transitions of Tiltrotor UAV. 
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Conversion is achieved by changing 
the pitch of the Tiltrotor UAV, by 
controlling tilt angles and rotational 
speeds of the rotors. 
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2.2.3.3. Equations of Tiltrotor UAV Model 

The net forces and moments acting on the c.g. of the Tiltrotor UAV (Figure 11) is 

calculated with summing all of the force and moments, resulted on the components: 

FRFRFRFRFRFRF
PR

PR

BPR

PR

BWI

WT

BVT

VT

BHT

HT

BFU

FU

BB 2

2

1

1 ⋅+⋅+⋅+⋅+⋅+⋅= , 

MRFRPMRFRP

MRFRPMRFRP

MRFRPFRPM

PR

PR

BPR

PR

B

PR

BPR

PR

BPR

PR

B

PR

B

VT

VT

BVT

VT

B

VT

BHT

HT

BHT

HT

B

HT

B

WI

WI

BWI

WI

B

WI

BFU

FU

B

FU

BB

2

2

2

22

1

1

1

11 ⋅+⋅×+⋅+⋅×

+⋅+⋅×+⋅+⋅×

+⋅+⋅×+⋅×=

. 

 

 

Figure 11. Tiltrotor UAV model. 
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2.2.4. Drag Model 

Drag is the resultant force exerted on a moving object in a fluid, in the opposite 

direction of the movement. Objects having a reference area moving through a fluid 

will experience a drag force proportional to their respective drag coefficients, 
dC : 

dSCVD
2

2

1
ρ−= , 

where, ( ):2
mS  projected frontal area, ( ):2

smV  Velocity perpendicular to the 

projected frontal area. 

The drag coefficient for a cube: 05.1 , for a large rectangular prism: 82.0 , for a short 

rectangular prism: 15.1  are given in the reference [29]. Since the fuselage was 

modeled as a rectangular prism of desired dimensions, 00.1=dC  is used as an 

average. Bertin [30] showed that, the drag coefficient changes according the 

Reynolds number and Mach number, but since the fuselage considered in this 

model is small in dimensions, which will result in small drag force, drag coefficient is 

assumed to be fixed, for simplification. So, the drag force is a result of the 

interaction between the crossectional area of the fuselage and the incoming air. 

[ ] ( )2
mSSSS zyx=  are the effective frontal, side and vertical drag areas of the 

fuselage and [ ] ( )2
smwvuV

B =  are the fuselage velocities with respect to the 

air (see Karasu [8]). So the fuselage drag is calculated as follows, with 00.1=dC : 

















−=

















=
2

2

2

2

1

wS

vS

uS

Z

Y

X

F

z

y

x

D

D

D

FU ρ . 

 

 

Figure 12. Fuselage drag model. 
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2.2.5. Wings Model 

Tiltrotor UAV has two identical wings, located at the both sides of the body. The 

wings axis, WIF  is defined for the wings, whose origin is stationed at the c.g. of the 

wings. The center of WIF  is placed at WI

B
P , with respect to the aircraft c.g. Each 

wing starts from 0r , extending to R  spanwise, and it is composed of airfoil sections 

as seen in Figure 13. 

The primary objective of the wings is to overcome weight, so that we can use the 

propellers only to provide forward thrust, in the level flight.  

 

 

Figure 13. Wings. 

 

The blade element theory (BET, Leishman [11]) is used in order to calculate the 

aerodynamics of the wings. The BET assumes that each blade section acts as a 

quasi-two dimensional airfoil to produce aerodynamic forces and moments. Wings’ 

resultant forces and moments can be obtained by integrating the sectional airloads 

at each wing element over the spanlength of the wing. 
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2.2.5.1. Inflow Dynamics 

In order to obtain the inputs for the airfoil dynamics (Figure 14), inflow and angle of 

attack must be determined for every airfoil section. The aerial velocity of every airfoil 

( AF ) is calculated with considering inertial velocity V
B , angular velocity W

B  and 

the location of AF  in BF ; 

( )( )VPRPWRV B

AF

WI

WI

B

WI

BB

B

AFAF ++×= , 

where ( )BWIB

WI
FofyRotR ,θ= . 

When calculating the air inflow velocity, considering AF  is stationary, there are two 

components of interest which are tangential and parallel velocities. The 

aerodynamic forces are assumed to arise solely from the velocity and angle of 

attack normal to the leading edge of the blade section. The effect of the radial 

component velocity is ignored in accordance with the independence principle 

(Leishman [11]). 

x

AF

T VV =− , 

z

AF

P VV =− . 

Then the inflow angle is; 









=








=

x

AF

z

AF

T

P

V

V

V

V
arctanarctanφ . 

Then the angle of attack becomes; 

φθα −=∞
AFAF . 

Also the air inflow velocity is calculated as follows; 

22

z

AF

x

AFAF
VVV +=∞ . 
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Figure 14. Wing airfoil inflow model. 

 

2.2.5.2. Airfoil Dynamics 

Since we have calculated inflow and angle of attack for the airfoils, we can use them 

as inputs for the airfoil model obtained in Chapter 2.2.7., which will result in the 

forces and moments on the airfoil as shown in Figure 15.  

 

 

Figure 15. Wing airfoil dynamics. 

 

2.2.5.3. Integration of Forces and Moments 

The integration of all of the forces and moments for all airfoil sections of the wings 

gives the net forces and net moments as shown in Figure 16. Calculating the net 

forces of the wings; 
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∫∫
−

− 















−

−

+

















−

−

=
R

r

L

D

AF

WI

R

r

L

D

AF

WIWI
dy

dF

dF

Rdy

dF

dF

RF

00

00 . 

Calculating the net moment of the wings: 

∫∫
















+

















−

−

×
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














+



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











+










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





−

−

×






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
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


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−

−
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Figure 16. Wings model. 

 

2.2.6. Propeller Model 

Tiltrotor UAV has two propellers, located at the both sides of the body. Each 

propeller has a power plant, rotating with a given RPM, turning the blades. One of 

the propellers is rotated CW, and the other one is rotated CCW in order to balance 

the moment generated due to rotation. 
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We define a new axis system, PR

B
F  for each propeller, whose origin is at the hub 

center and positioned at PR

B
P . Also, it may be tilted around y-axis of PR

B
F , 

independent of each other. 

Each propeller has NB  (number of blades) identical blades, which starts from 0r , 

extending to R  spanwise. Every blade has identical structures, and composed of 

identical airfoil sections with a geometrical twist angle and position as seen in Figure 

17. 

The inputs for the propeller model, are the angular speed generated by the power 

plant ( )RPMΩ  and angular position of the propeller ( )degTILTθ  as shown in Figure 

18. The outputs of the propeller model are the forces FPR , [ ]PRPRPR ZYX  and 

moments MPR , [ ]PRPRPR NML  defined in PRF . 

 

 

Figure 17. Propeller blade. 

 

The blade element theory (BET - Leishman [11]) forms the basis of most modern 

analysis of rotor aerodynamics. The BET assumes that each blade section acts as a 

quasi-two dimensional airfoil to produce aerodynamic forces and moments. 

Propeller outputs can be obtained by integrating the sectional airloads at each blade 

element over the length of the blade and averaging the result over a rotor revolution. 

Airfoil Sections 

θ  

x-y Plane of 



 

 
30 

2.2.6.1. Inflow Dynamics 

In order to calculate the forces and moments generated by the propeller, ∞V  and 

∞α  must be determined for every airfoil section of every blade according to current 

situation (aircraft's velocities and tilt angle of main rotor).  

Inertial velocity of the PRF  is calculated considering tilt angle TILTθ  of the propeller, 

angular velocity W
B  and translational velocity V

B  of the Tiltrotor UAV: 

( )VPWRV
B

PR

BB

B

PRPR +×= , 

where  

( )PRTILTB

PR
FofyRotR ,θ= . 

Inertial velocity of the airfoil is calculated considering Ω  ( RPM , rotational velocity, 

CCW around x-axis of PRF ), location of the airfoil r  (radius in the y-z plane of PRF ), 

angular position of the airfoil φ , inertial velocity of the propeller V
PR , and the 

induced velocity, iV . Induced inflow velocity is multiplied by 1− , since it was defined 

as the speed of the air sucked by the propeller; 

( )












 ′







−Ω+= i

PR

PRPR

AFAF
VrVFofxRotRV 0

2

60
,

π
φ ,  

V

V

V

V
AF

P

R

T

−=

















. 

The effect of the radial component of velocity RV , on the aerodynamic calculations 

is ignored in accordance with the independence principle (Leishman [11]). So, ∞V
AF  

and ∞αAF  is calculated as follows; 

22

TP

AF
VVV +=∞ , ( )TP

AF
VVarctan=φ , φθα AFAFAF −=∞ . 
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Figure 18. Propeller and variables. 
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Figure 19. Airfoil inflow dynamics. 

 

2.2.6.2. Airfoil Dynamics 

Since we have calculated inflow velocity and angle of attack for the airfoils, we can 

use them as inputs for the airfoil dynamics obtained in Chapter 2.2.7., which will 

result the forces and moments (Figure 20) on the airfoil.  

 

 

Figure 20. Wing airfoil dynamics. 

 

2.2.6.3. Integration of Forces and Moments 

Using the forces on the airfoil sections are calculated in Chapter 2.2.7., we can take 

the integral of airfoil forces spanwise and radially, then take the mean of it and then 
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multiply it with the number of blades. This results the average forces and moments 

generated by the propeller. 

The formation of trailed vortex at the tip of each blade produces a high local inflow 

over the tip region and effectively reduces the lifting capability there. This is referred 

to as a tip loss. A simple tip loss factor B  is used to account for this physical effect 

such that the product BR  corresponds to an effective blade radius. Although, B  

changes with inflow and number of blades, a good approximation is 95.0=B  

(Leishman [11]). 

RBRe ⋅= . 

The forces generated by the propeller is calculated as follows: 

( )
( ) ( )
( ) ( )

∫ ∫
















−

−

=

















=
π

φ

φφ

φφ

φ

π

2

0 0 sin,

cos,

,

2

1
eR

r

D

D

L

PR

PR

PR

PR
ddr

rdF

rdF

rdF

NB

Z

Y

X

F . 

In order to calculate the moments, we take the integral of the product of the moment 

arms and forces. In the presence of a change in the rotational speed, this change it 

is multiplied with the inertia tensor: 

( ) ( )
( ) ( )

( )




















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
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


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=
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
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






= ∫ ∫
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2.2.6.4. Conservation of Momentum 

The propeller produces upward thrust by driving a column of air downwards through 

the rotor plane. In other words, the rotor disc supports a thrust created by the action 

of the air on the blades. By Newton's law, there must be an equal and opposite 

reaction of the rotor on the air. As a result, the air in the rotor wake acquires a 

velocity increment, directed opposite to the thrust direction (Johnson [12]). A 

relationship between the thrust produced and the velocity communicated to the air 
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can be obtained by the application of Newtonian mechanics – the laws of 

conservation of mass, momentum and energy – to the overall process. This 

approach is referred as the momentum theory for propellers, corresponding 

essentially to the theory set out by Glauert for aircraft propellers (Seddon [13]). 

In momentum theory for propellers, the rotor is conceived as an "actuator disc", 

across which there is a sudden increase of pressure, uniformly spread. In hover, the 

column of air passing through the disc is a clearly defined streamtube above and 

below the disc; outside this streamtube the air is assumed to be undisturbed and no 

rotation is imparted to the flow. 

When we consider the air mass flow rate, m& , through the actuator disc area A ; 

AUm ρ=& , 

where 

ix

PR
VVU += . 

The application of the conservation of momentum for the mass flow rate, in a normal 

direction to the disc gives; 

( ) ( ) ∞∞ =−+= ix

PR

ix

PR
VmVmVVmT &&& . 

By applying the conservation of energy, we obtain; 
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So the momentum rate becomes; 

( )ix

PR

ii VVAVVmT +== ρ22 & . 
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Figure 21. Propeller inflow dynamics. 

 

Since the momentum rate is equal to force, it is equal to the thrust of the propeller, 

which is also a function of iV : 

( ) ( )ix

PR

iix

PR
VVAVVF += ρ2 . 

In order to find the value of iV , we minimize the function below; 

( )( )i
V

i VfV
i

minarg= ,  

where  

( ) ( ) ( )ix

PR

iix

PR

i VVAVVFVf ++=− ρ2 . 

Generalized Pattern Search (GPS, Nacedal [14]) is used in order to solve this 

minimization problem. 

With the inclusion of the dynamic inflow model, the propeller model becomes as 

shown in Figure 22. 
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Figure 22. Propeller model. 

 

2.2.7. Airfoil Model 

An airfoil (in American English, or aerofoil in British English) is the shape of a wing 

or blade (of a propeller, rotor or turbine) or sail as seen in cross-section. 

 

 

Figure 23. Airfoil properties. 
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An airfoil shaped body moved through a fluid produces a force perpendicular to the 

motion is called lift. Subsonic flight airfoils have a characteristic shape with a 

rounded leading edge, followed by a sharp trailing edge (Figure 23), often with 

asymmetric camber. 

The input variables for an airfoil are the freestream velocity ( ( )smV∞ , relative air 

velocity), angle of attack ( ( )degα ) and pitch angle ( ( )degθ ). Calculations made 

together with atmospheric variables and airfoil data result in sectional lift 

( ( )mNdFl ), sectional drag ( ( )mNdFd ) and sectional moment ( ( )NdM ). The 

inputs and outputs of an airfoil are shown in Figure 24.  

 

 

Figure 24. Airfoil aerodynamic variables. 

 

2.2.7.1. Aerodynamic Variables 

The ratio of the speed of the airflow to that of the speed of sound ( a ) is called the 

Mach number and can be interpreted as a ratio of inertial forces in the fluid to 

forces resulting from compressibility. In order to avoid compressibility related 

problems like, wave drag and shock induced stall at the transonic speeds, the 

airfoils in the simulation are operated in the subsonic region. The Mach number is 

calculated as follows, 

a

V
Ma ∞= . 

∞V  
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dL  
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LdF  

DdF  

φ  

dM  
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In fluid mechanics, the Reynolds number is the ratio of inertial forces to viscous 

forces and, consequently, it quantifies the relative importance of these two types of 

forces for the given flow conditions. It is one of the most important dimensionless 

numbers in fluid dynamics and is used, usually along with other dimensionless 

numbers, to provide a criterion for determining dynamic similitude. When two 

geometrically similar flow patterns, in perhaps different fluids with possibly different 

flow rates, have the same values for the relevant dimensionless numbers, then they 

are said to be dynamically similar, and will have similar flow geometry. The 

Reynolds number is calculated as follows; 

µ

ρ

µ

ρ cV

cV

cV

forcesviscous

forcesinertial ∞

∞

∞ ===
2

2

/

/
Re . 

Dynamic pressure is calculated with the following formula for all airfoil sections of 

the propeller blades and wings, 

2

2

1
∞∞∞ = Vq ρ . 

2.2.7.2. Aerodynamic Coefficients 

As an airfoil travels through the air, the air is separated into two regions on the 

upper and lower surface of the airfoil, considering laminar flow for low Reynolds 

numbers below the speed of sound. When the angle of attack is positive for a 

symmetrical airfoil, the air on the upper surface travels a longer path than on the 

lower surface. Since the air separated on the leading edge must combine on the 

trailing edge, the air on the upper surface travels faster than on the lower surface. 

This results a higher air speed on the upper surface, resulting lower pressure. This 

pressure distribution is shown in Figure 25, for 5 degrees of angle of attack of NACA 

0012 symmetrical airfoil. 

The resultant forces and moments acting on a typical section of the blade are the 

net result of the action of the distributed pressure and viscous shear forces. These 

forces and moments are obtained by integrating the local values of pressure and 

shear stress acting normal and parallel to the surface around the airfoil (Leishman 

[11]). The aerodynamic coefficients MDL CCC ,,  are formed in the following fashion; 
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Sq

L
CL

∞

= , 
Sq

D
CD

∞

= , 
Scq

M
CM

∞

= , 

where ( ) :NL  lift, ( ) :ND  drag, ( ) :NmM  moment, ( ):2mS  crossectional area, 

( ) :mc  chord length, resulting in dimensionless numbers. 

 

 

Figure 25. Airfoil pressure distributions. 

 

Although the calculations for lift, drag and moment are straightforward, the 

calculation of pressure distributions of air, over the airfoil's surface depend on the 

geometry of the airfoil involving CFD (Computational Fluid Dynamics) solutions, 

which is out of the scope of this work. In order to overcome this difficulty, a 

simulation program, XFOIL (Drela [15]) is used in order to obtain the sectional 

aerodynamic coefficients for different airfoils. Sectional aerodynamical coefficients 

are defined for unit span as follows (Leishman [11]): 
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cq

dL
Cl

∞

= , 
cq

dD
Cd

∞

= , 2
cq

dM
Cm

∞

= , 

where ( ) :mNdL  lift per unit span, ( ) :mNdD  drag per unit span, ( ) :NM  moment 

per unit span, ( ) :mc  chord length, resulting in dimensionless 
mdl CCC ,, . Sectional 

aerodynamical coefficients will be used throughout the simulations and called simply 

as aerodynamical coefficients. 

XFOIL simulations are run for a range of angles of attack, with respect to different 

Reynolds numbers, and dl CC ,  and mC  surfaces are obtained as shown in Figure 

26. Since XFOIL does not give results for the high angles of attack ranges, the 

present data is interpolated according to the results of experimental data obtained 

by Sheldahl [16] and formulas for high angle of attack presented by Leishman [11]:  

( )( )02sin1.1 αα −=lC , :0α  zero lift angle of attack, 

( )( )02cos05.1135.1 αα −−=dC , 

( ) ( )( )00 2sin11.0sin5.0 αααα −+−−=mC . 

 

 

Figure 26. Aerodynamic coefficient surfaces for NACA0012. 

 

The aerodynamic coefficient surfaces are used as look up tables, throughout 

Tiltrotor UAV simulations as, 

lC  dC  
mC  
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( )AFf
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l

Re,,α=

















. 

2.2.7.3. Forces and Moments 

The forces and moments per span length for the airfoil sections are calculated as 

follows; 

cqCdL l ∞= , 

cqCdD d ∞= , 

2
cqCdM m ∞= , 

The lift dL and drag dD act perpendicular and parallel to the resultant flow velocity 

∞V . These forces can be resolved perpendicular and parallel to the rotor disk plane 

giving; 

αθφ −= ,  

φφ sincos dDdLdFL −= ,  

φφ cossin dDdLdFD += . 

The full model for an airfoil section is summarized as, 
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ρ cV∞=Re . 
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Figure 27. Airfoil dynamics. 
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CHAPTER 3 

3. TRIMMING, LINEARIZATION AND STABILITY ANALYSIS 

 

TRIMMING, LINEARIZATION AND STABILITY ANALYSIS 

 

 

 

The mechanics of aircraft flight can be described in terms of three aspects – trim, 

linearization and stability. These three make up the flying characteristics of the 

aircraft. 

Stability analysis requires linearization about a trim point and an examination of the 

eigenvalues and eigenvectors of the system. This is useful when examining the 

system responses to step inputs, frequency response and other stability 

characteristics of a dynamic system. The main assumption underlying in the stability 

and trim analysis is that the higher order rotor and inflow dynamics are much faster 

than the fuselage motions and have time to reach their steady state well within the 

typical time constants of the whole aircraft response modes (Padfield [17]). 

The trim and stability analysis can be based on one of the three possible axes 

systems: wind axes, stability axes, and body axes. Although each system is valid, 

there are two reasons for using the body axes system in this study. First, the other 

systems loose their significance in hover. Second, aircrafts are equipped with inertial 

measurement units like gyros and accelerometers, giving measurements in body 

axes. 

3.1. Trimming 

The general principle of flight with any aircraft is that the aerodynamic, inertial and 

gravitational forces and moments about three mutually perpendicular axes are in 

balance at all times. When this balance is achieved, the aircraft is said to be 

trimmed. An aircraft is trimmed when the resultant forces and moments on the 

aircraft are zero, for a non-rotational flight. More generally, the trim can be defined 
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as the equilibrium point, where the rates of the aerodynamic state variables are 

zero. 

The derived variables in the motion model, can be divided into two groups as 

aerodynamic and navigation variables. The aerodynamic variables are 

[ ]θφ,,,,,,, rqpwvu , which are used in aerodynamical calculations, where the 

remaining variables [ ]eee zyx ,,,ψ  are used in navigation calculations, as shown in 

Figure 28. Because, ignoring the changes in the medium variables like wind, 

pressure and gravitational acceleration, the heading angle and the position of the 

aircraft have no effect on aerodynamical calculations. 

 

 

Figure 28. Aerodynamic and navigation variables in the motion model. 

 

The physical meaning of trim point is the equilibrium point of aircraft motion that is to 

be the nulling of the aerodynamic variable derivatives. At the trim point, the rates of 

change of the Euler angles φ  and θ  are both zero 0== θφ && , so that the 

gravitational force components are constant. If 0≠≠ θφ && , then the weight vector in 

the body axes would be changing in time, resulting changes in the aerodynamic 
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variables. The heading angle ψ , is not important in the flight dynamics; it will be 

used only for navigation purposes. 

The trim problem concerns the determination of control inputs [ ]eeee 2211 ,,, ΩΩ θθ , 

Euler angles [ ]ee θφ , , translational and rotational velocities [ ]eeeeee rqpwvu ,,,,,  

required to hold the aircraft in equilibrium. The aircraft may be climbing, turning at 

large angles of incidence and sideslip, but if the Euler angles, translational and 

rotational velocities are constant with the controls fixed, then the aircraft is in trim. 

Since trim is an aerodynamical equilibrium, the derivatives of the aerodynamic 

variables are set to zero. Therefore, navigation variables determine the flight 

condition, where we want to reach the trim, so they are prescribed by the navigation 

algorithm. If we rewrite the motion model for the trim point: 
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with transformations 
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So, there are 12 equations, 16 variables ( ,,,,,,,, 2211 eeeeeeee pwvuΩΩ θθ  

)eeeeeeee zyxrq &&&& ,,,,,,, ψθφ , 0=eψ  being fixed, then we need to prescribe 4 

variables in order to obtain a trim solution. A conventional selection of the prescribed 

variables, as stated by Padfield [17], are: 

( )smV fe  : flight speed, 

( )degfeγ  : flight path angle, 

( )se degψ&  : turn rate, 

( )degeβ  : side-slip angle. 

These variables require the definitions of new frames and variables, other than 

already defined. In order to be compatible with the control system defined in Chapter 

4 and to use the variables and frames already defined, 
eeee zyx &&&& ,,,ψ  are chosen to 

be the prescribed variables, where feV , feγ  and eβ  define eee zyx &&& ,,  uniquely for the 

static case, so they are merely transformations of the conventional prescribed 

variables.  

Considering the general case of transformation equations, the angular and linear 

velocities in the body frame are functions of Euler angles and navigation variables, 

so we can define a new frame between the body frame and vehicle-carried frame, 

which is oriented by eψ  around z-axis, according to the vehicle-carried frame. In this 

frame yaw angle will always be zero, pitch and roll angles are to be determined with 

the trim algorithm. Although we can choose 
ez&  arbitrarily, 

eψ&  and 
ee yx &&  cannot be 

chosen arbitrarily, resulting in two options as straight and rotational flight. In this 

work, only straight flight is inspected when calculating the trim points. 

For straight flight 0=eψ&  and eee zyx &&& ,,  can be chosen arbitrarily, and for the 

rotational flight ee yx &&  are functions of 0≠eψ& . If a nonzero Earth frame velocity in 

the y-axes 0≠ey& , were to be considered, then ( )eee xy &&arctan=ψ  and 

( ) ( )22

eee
yxxy && +=

•

: linear speed in the x-y plane of the vehicle-carried frame. 

Considering the new frame defined by eψ , linear velocities in x-axes and z-axes 
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being constant and zero in y-axes: results in 0==== eeee vrqp  and 

=ee wu , constant when 
eθ  is held fixed. 

Considering the trim point calculation for the straight flight, the prescribed navigation 

variables reduce to; 0,0 == ee y&&ψ , and =ee zx && , constant with 0=eψ . Also, roll 

angle is set to zero 0=eφ , since the Tiltrotor UAV has plane-symmetry property in 

x-z plane of the body frame, where 2 counter-rotating rotors balance the moments 

due to propeller rotation. Considering these, the transformation equations become: 
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where 0=ev  and =ee wu , constant when eθ  is held fixed.  

Having zero angular velocities 0=== eee rqp  in the body frame for the straight 

flight, the net moment acting on the aircraft must be equal to zero, since moment 

equations of RHS  depend merely on angular velocities in the body frame. Both of 

the propellers must be set to the same tilt angles etiltee ,21 θθθ ==  and same RPMs 

eee Ω=Ω=Ω 21
, in order to achieve moment balance for the aircraft, since they are 

counter-rotating. Eventually, we have 2 prescribed navigation variables 
ee zx && , 3 

aerodynamical variables, eee wu ,,θ  ( ee wu ,  are functions of eθ  and ee zx && ) and 2 

control inputs eetilt Ω,,θ , resulting in 3 effective variables eetilte Ω,, ,θθ  that must be 

determined by the trim algorithm for the straight flight. The trim equations for the 

straight flight can be rearranged as follows; 
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where 
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with all of the other variables are set to zero. There were 12 equations initially, 7 of 

these equations became definitions as 0======= eeeeeee NLYvrqp , due to 

straight flight conditions, symmetric structure of Tiltrotor UAV and synchronization of 

the control inputs, leaving only 5 equations. This treatment of the trim problem for 

the straight flight leaves out 7 variables ( )eeeeeetilte zxwu && ,,,,,, , θθΩ  to be 

determined, where 2 of them ( )ee zx && ,  were prescribed. So we need only 5 equations 

to obtain a solution for ( )eeeetilte wu ,,,, , θθΩ , which uniquely determines the trim 

solution for a straight flight.  

Considering the above espousals, the problem of finding trim solution can be stated 

as, “Find ( )eeeetilte wu ,,,, , θθΩ  given ( )ee zx && , ”. The algorithm constructed in order to 

obtain the trim solution for a straight flight is shown in Figure 29.  

First, all of the variables are initialized for the straight flight using prescribed 

navigation variables. Then, a cost-map is constructed by changing eetilte θθ ,, ,Ω  with 

fixed steps for a range of minimum and maximum values. Within the cost map, a 

feasible region is selected which minimizes the cost function; then a fine search is 

applied using Generalized Pattern Search (GPS) global optimization algorithm, in 

order to obtain the best result. 
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Figure 29. Trim algorithm for Tiltrotor UAV in straight flight. 
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GPS is one of the direct search methods for solving optimization problems that does 

not require any information about the gradient of the objective function. Unlike more 

traditional optimization methods that use information about the gradient or higher 

derivatives to search for an optimal point, a direct search algorithm searches a set of 

points around the current point, looking for one, where the value of the objective 

function is lower than the value at the other points. Since derivative calculation 

becomes computationally costly in numerical calculations, GPS is chosen over other 

optimization algorithms. 

We consider pattern-search methods that choose a certain set of search directions 

at each iterate and evaluate cost at a given step length along each of these 

directions. These candidate points form a “frame” around the current iterate. If a 

point with a significantly lower function value is found, it is adopted as the new 

iterate, and the center of the frame is shifted to this new point. Whether shifted or 

not, the frame may then be altered in some way (the set of search directions may be 

changed, or the step length may grow or shrink), and the process repeats. 

To define pattern-search methods, we introduce some notation. For the current 

iterate kx , we define kD  to be the set of possible search directions and ky  to be 

the line search parameter. The frame consists of the points kkk pyx + , for all 

kk Dp ∈ . When one of the points in the frame yields a significant decrease in f , we 

take the step and may also increase 
ky , so as to expand the frame for the next 

iteration. If none of the points in the frame has a significantly better function value 

than kf , we reduce ky  (contract the frame), set kk xx =+1 , and repeat. In either 

case, we may change the direction set kD  prior to the next iteration, subject to 

certain restrictions. The algorithm of pattern search may be summarized by the 

following algorithm: 

Given convergence tolerance toly , contraction parameter maxθ , sufficient 

decrease function [ ) R→∞,0:ρ  with ( )tρ  an increasing function of t  and 

( ) 0→ttρ as 0→t ; 

Choose initial point 0x , initial step length tolyy >0 , initial direction set 0D ; 

for ...,2,1=k  

if tolk yy <  

stop; 
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end (if) 
 

if ( ) ( ) ( )kxfpyxf kkkk ρ−<+  for some kk Dp ∈  

Set kkkk pyxx +←+1  for some such kp  ; 

Set kkk yy θ←+1  for some 1≥kθ ; (increase step length) 

else 

Set kk xx ←+1 ; 

Set kkk yy θ←+1 , where 10 max <≤< θθk ; (decrease step length) 

end (if) 
 

end (for). 

 
3.2. Linearization 

The motion model was constructed as below in a nonlinear form: 

( )tuxFx ,,=& . 

State variables: { }eee zyxrqpwvux ,,,,,,,,,,, ψθφ= , 

Inputs: { }NMLZYXu ,,,,,= . 

For the stability analysis we are only interested in aerodynamical state variables 

{ }θφ ,,,,,,, rqpwvu , so we can ignore navigation state variables { }eee zyx ,,,ψ . 

After rearrangement of the motion model, it becomes:  
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with  

θ,,, qwu : longitudinal state variables, φ,,, rpv : lateral state variables. 
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Using small perturbation theory we assume that, during disturbed motion, the 

aircraft's behavior can be described as a perturbation from the trim, written in the 

form: 

dxxx e += ,  

where :ex  trim point, :dx  perturbation. 

The Taylor series is a representation of a function as an infinite sum of terms 

calculated from the values of its derivatives at a single point. The Taylor series of a 

function ( )xf , that is infinitely differentiable in a neighborhood of a real or complex 

number a , is the power series: 

( ) ( ) ( ) ( ) ( ) ...
!3!2!1

32
+−

′′′
+−

′′
+−

′
+= ax

f
ax

f
ax

f
afxf , 

which in a more compact form can be written as: 

( ) ( )( )n

n

n

ax
n

af
xf −=∑

∞

=0

)(

!
. 

In our case, considering 

( )tuxFx ,,=& ,  

dxxx e =− , duuu e =− , 

and the Taylor's expansion of ( )tuxF ,,  for two variables and for any t , is as 

follows; 

( ) ( ) ...,,
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Considering ( ) 0, =ee uxF  for the trim point, small disturbances dxxx e += , and 

neglecting ... TOH  since the disturbances { }dudx,  are small making 

{ }∞∞
dudxdududxdx ...,,...,,,, 22  even much smaller, the equation becomes; 

( ) du
du

dF
dx

dx

dF
duudxxF

eeee uxux

ee

,,

, +=++ . 

The linearized equations of motion for the six degree of freedom, describing the 

perturbed motion about a trim condition can be written as: 

BuAxx +=& ,  

where 

{ }θφ,,,,,,, rqpwvux = : 18×  vector,  

{ }2211 ,,, ΩΩ= θθu : 14 ×  vector, 

:A  88×  matrix,  

:B  48×  matrix,  

and  

( )

ee uxdx

uxdF
A

,

,
= , 

( )

ee uxdu

uxdF
B

,

,
= . 

Since we have obtained the equations of motions as follows, we can divide it into 

two parts 1F  and 2F , where 1F  is analytically differentiable, and 2F  is not. 1F  is 

analytically differentiable because it is explicitly defined in terms of aerodynamic 

state variables. 2F  is not analytically differentiable because it is consisted of net 

forces and moments acting on the aircraft, obtained numerically based on the 

complex model of the Tiltrotor UAV. 
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Then A  and B  matrices can be written as follows; 
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Since ( )xF1  is algebraic, its derivative can be obtained analytically, and ( )uxF ,2  is 

a very complex function, so its derivative can not be obtained analytically. The 

derivative of ( )xF1  for the trim point is calculated as follows: 
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( )uxF ,2  has only forces and moments, as functions of state variables and aircrafts 

inputs. Since these forces and moments are produced with the interaction of all of 

the components of the aircraft, an analytic solution is not feasible. But, its derivatives 

according to state variables and inputs must be computed, in order to find 2A  and 

B  matrices. A general approach is as follows; 
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A fundamental assumption of aircraft motion linearization is that the external forces 

ZYX ,,  and moments NML ,,  can be represented as analytic functions of the 

disturbed motion variables and their derivatives, in the vicinity of the trim point. We 

assume that the forces and moments are first-order functions of the translational, 

rotational velocities and control inputs. Taylor's theorem for analytic functions then 

implies that if the force and moment functions and all its derivatives are known at 

any one point (i.e. the trim condition), then the behavior of that function anywhere in 

its analytic range can be estimated from an expansion of the function in a series 

about the known point (Padfield [17]). The requirement that the aerodynamic and 

dynamic loads be analytic functions of the motion and control variables is generally 

valid, except for the extreme conditions like stall, sharp discontinuities and 

hysteresis where the analytic behavior is not valid. The validity of linearization 

depends on the behavior of the perturbations at small amplitude, i.e., the motion and 

control disturbances become very small, then the dominant effect should be a linear 

one. The linear approximation also contains terms in the rates of change of 

perturbations with time, but we can neglect these considering all other degrees of 

freedom held fixed. Considering these approximations and Taylor's theorem, the 

forces and moments can then be written in the approximate form (square and 

products of disturbances are neglected, since they get smaller in magnitude) as 

follows: 
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In the following discussions, we will use a more convenient notation for derivatives 

in the following form: 

2
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All six forces and moments can be expanded in this manner as follows: 
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Analytic differentiation of the force and moment expressions is required to deliver 

the exact values of the derivatives. Since the force and moment calculations are 

very complex in nature, in practice a numerical method is employed for derivative 

calculations, leading to equivalent linearizations for finite amplitude motion. The 

forces and moments are perturbed by each of the states in turn, using two-sided 

backward - forward differencing method as follows: 

( ) ( )
du

duuXduuX
X ee

u
2

−−+
= . 

The numerical derivatives will converge to the analytic, true values as the 

perturbation size reduces to zero. If there is any significant nonlinearity at small 

amplitude, then the slope at the trim may not give the best 'fit' to the force over the 

amplitude range of interest.  

Following the calculation of the derivatives, 2A  and B  matrices are obtained as 

shown below; 
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In order to summarize, the linear model is obtained using the algorithm presented in 

Figure 30. 

 

 

Figure 30. Linearization algorithm. 
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3.3. Stability 

Considering all modes of operations of Tiltrotor UAV, both static stability and 

dynamic stability contribute to the flying qualities of an aircraft. Static stability refers 

to the initial tendency of the aircraft to return to its trimmed condition following a 

displacement. Dynamic stability considers the subsequent motion in time. Here we 

consider static stability of the aircraft with eigenvalues analysis considering zero-

input response, and BIBO (Bounded Input Bounded Output) stability considering 

zero-state response, where the initial conditions of the state variables are zero, 

while applying a non-zero control input. 

Following a general approach (Chen [27]), considering linear time-invariant 

dynamical equation, 

( ) ( ) ( )
( ) ( ),

,

tCxty

tButAxtx

=

+=&

 

where CBA ,,  are constant matrices and 0≥t , the system is; 

• BIBO stable, if and only if all of the poles of every entry of ( )sG  have 

negative real parts (impulse response is bounded), where 

( ) ( ) BAsICsG
1−

−= , 

• Stable in the sense of Lyapunov, if and only if all of the eigenvalues of A  

matrix have non-positive real parts and those with zero real parts are distinct 

roots of the minimal polynomial of A , 

• Asymptotically stable, if and only if all of the eigenvalues of A  matrix have 

negative real parts. 

For stability analysis, the aircraft motion can be considered to comprise a linear 

combination of natural modes, each having its own unique frequency, damping and 

distribution of the response variables. The linear approximation that allows this 

interpretation is extremely powerful in enhancing the physical understanding of the 

complex motions in disturbed flight. Free motion (unforced by the control inputs) of 
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the aircraft is defined by the homogeneous form of linearized motion model, using 

aerodynamic state variables: 

Axx =& , { }θφ ,,,,,,, rqpwvux = , 

where  

[ ] 0det =− AIλ ,  

iii wAw λ= ,  

:iλ  eigenvalues of A ,  

:iw  eigenvectors of A . 

Therefore, the free motion is a linear combination of natural modes, each with an 

exponential character in time defined by the eigenvalues, and a distribution among 

the states, defined by the eigenvectors where a positive real part indicates 

instability, a negative real part stability.  
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CHAPTER 4 

4. CONTROL SYSTEM DESIGN 

 

CONTROL SYSTEM DESIGN 

 

 

 

Optimal control theory, a modern extension of the calculus of variations, is a 

mathematical optimization method for deriving control policies. A standard optimal 

control problem involves a scalar performance index, a set of differential constraints 

(system dynamics), and boundary conditions. In the differential equations, the 

differentiated variables are called the states and the undifferentiated variables are 

called the controls. The objective is to find the control histories that drive the system 

from the initial conditions to the final conditions while optimizing the performance 

index (Hull [18]). 

Due to the desired features like, optimality, stability of the closed-loop system, good 

gain and phase margins, Linear Quadratic Regulator (LQR) is preferred in designing 

the control system of the Tiltrotor UAV. For the linear models of the Tiltrotor UAV, 

the results obtained in Chapter 3 are used. The controllers are obtained by the 

proper selection of LQR weighting matrices, for different trim points and transitions 

between them are obtained with gain scheduling method. 

4.1. Linear Quadratic Regulator 

The LQR algorithm is, at its core, just an automated way of finding an appropriate 

state-feedback controller. The advantage of a quadratic performance index, is that 

for a linear system it has a mathematical solution that yields a control law of the 

matrix form, K , where ( ) ( )tKxtu =* . Although the performance index may be 

chosen to define the problem as minimum-time control, terminal control, minimum-

energy control; tracking control is chosen in order to track the command history ( )tr , 

which reduces to regulator problem when command is not changing at the trim 

point. 
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The problem for the LQR is stated as follows; 

Design an optimal state-feedback controller, with finding the control law 

( ) ( )( )txktu =* , which causes the system 

( ) ( ) ( ),tButAxtx +=&  

to follow an optimal trajectory ( )tx*  that minimizes the performance index; 

( )( ) ( ) ( ) ( ) ( )( ) ,
2

1

0

dttRututQxtxtuJ

ft

TT

∫ +=  

providing that, 

• ( )BA,  is controllable, 

• ( )AQ,  is observable, 

• 0≥= TQQ  is symmetric and positive semi-definite, 

• 0>= T
RR  is symmetric and positive definite, 

• ,∞=ft  

where 

{ }θφ,,,,,,, rqpwvux = : 18×  vector, { }2211 ,,, ΩΩ= θθu : 14×  vector, 

:A  88×  matrix, :B  48×  matrix, :Q  88×  matrix, :R  44 ×  matrix. 

The optimal control law for this problem is obtained by applying Hamilton-Jacobi-

Bellman approach, which satisfies the necessary condition for optimality. The 

Hamilton-Jacobi equation to be solved for the linear time-invariant plant with 

quadratic performance index, takes the form of the matrix Riccati equation. This 

produces an optimal control law as a linear function of the state vector, which is 

always stable, providing that the system is controllable (Burns [19]).  

Considering the Hamiltonian function as, 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )tButAxttRututQxtxtH
TTT

+++= λ
2

1
, 

where  [ ] 4,0: Rtu f ∈  is optimization variable, 

[ ] 8,0: Rtx f ∈&  is equality constraint, 

[ ] 8,0: Rt f ∈λ  is Lagrange multiplier. 

Using Pontryagin’s necessary conditions for optimality (Geering [20]), 

( ) ( ) ( ) ( ) ( ) 0,, =
∂

∂
=

∂

∂
−=

∂

∂
t

u

H
tx

dt

d
t

H
t

dt

d
t

x

H T

λ
λ  

Then, equality constraints are, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ),

,

,

1
tBRtu

tButAxtx
dt

d

QtxAtt
dt

d

T

TTT

λ

λλ

−−=

+=

−−=

 

When the control equation is inserted into state equation, the problem becomes a 

set of differential equations with boundary constraints, 

( ) ( ) ( )

( ) ( ) ( ),

,

1
tBBRtAxtx

dt

d

QtxAtt
dt

d

T

TTT

λ

λλ

−−=

−−=

 

( ) 00 xx = , 

( ) ( ) ( ) 0== fff txtPtλ , 

where :P  88×  matrix. 

The two differential equations are homogeneous in ( )λ,x  and at the final time ft , 

the costate vector ( )etλ  is a linear function of the final state vector x(te). This leads 

(Costate equation) 

(State equation) 

(Control equation) 

(Initial condition) 

(Final condition, 
( ) ( ) == ff tPtx ,0 constant or  

( ) =ftx constant, ( ) 0=ftP ) 
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to the conjecture that the costate vector might be a linear function of the state vector 

at all times. Thus, introducing the transformation, 

( ) ( ) ( )txtPt =λ  with ( ) 0=ftP , 

differentiating with respect to time, 

( ) ( ) ( ) ( ) ( )tx
dt

d
tPtxtP

dt

d
t

dt

d T
+=λ , 

inserting costate and state equations, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )txtPBBRtAxtPtxtP
dt

d
tQxtxtPA

TT 1−−+=−− , 

writing in a more compact form, 

( ) ( ) ( ) ( ) ( )( ) 01 =−+++ −
xtPBBRtPAtPtPAQtP

TT& . 

Thus, the vector l
Rx ∈  in this equation may be an arbitrary vector, providing that 

the expression in the parenthesis is zero for all times, so that the states converge to 

the desired final state irrespective of the initial state. So the expression in the 

parenthesis may be written as follows; 

( ) ( ) ( ) ( ) ( )tPBBRtPAtPtPAQtP TT 1−−−−−=& ,  with ( ) 0=ftP . 

Kalman has shown that, if the system is completely controllable, if QRBA ,,,  are 

constant matrices, ( ) PtP →  a constant matrix as ∞→ft  (Kirk [28]). This means 

that satisfying the above conditions, then the optimal control law for an infinite-

duration process is stationary resulting in the Algebraic Riccati Equation (ARE). For 

this special case, P  has a solution for, 

,0 1
PBPBRPAPAQ

TT −−−−−=  

Solving ARE for P , and insertion of this to the control equation yields the control 

law; 
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( ) ( )

,

,

1
PBRK

tKxtu

T−=

−=
 

where :K 84 ×  matrix. Considering the stability of the closed loop system,  

( ) ( ) ( )
( )

,0)(

,8..1,

<

=−=

−=

i

i

real

iBKAeig

txBKAtx

λ

λ

&

 

guarantees the closed loop stability. Considering the Lyapunov function, PxxV
T= , 

• 0≥V  for all 8
Rx ∈ , is satisfied, 

• 0<V& , is satisfied with 

( )( ) ( )( )
( )
( )xPBPBRQx

xPBPBRPAPAx

PxPxBRBAxPxBRBAxPxV

TT

TTT

TTTT

1

1

11

2

−

−

−−

−−=

−+=

−++−+=&

. 

Thus, satisfying both conditions, LQR stabilizes the system asymptotically. 

Considering the tracking control, the problem is directed at applying a control ( )tu  to 

drive the system, so that the state vector ( )tx  follows a desired state trajectory ( )tr  

in optimal manner. This problem reduces to LQR problem when the command 

inputs are zero. Then the performance index becomes, 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) .
2

1

0

dttRututxtrQtxtrtuJ

ft

TT

∫ +−−=  

It is shown by Burns [19] that the constrained functional minimization of the cost 

function yields again the matrix Riccati equation obtained for the LQR, and the 

additional set of reverse-time state tracking equations; 

( ) ( ) ( ) ( )tQrtsPBBRAts
TT −−= −1

&  for finalpresent ttt << , 

and command input is, 
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( ) ( )tsBRtv T1−−= . 

Then the optimal control law becomes, 

( ) ( ) ( )tKxtvtu −=
* . 

Hence, when the desired state vector ( )tr  is known in advance, tracking errors are 

reduced by allowing the system to follow a command vector ( )tv  computed in 

advance using the reverse-time equation. In Chapter 3, we have calculated the trim 

points of the states for a range of navigation states. Consider that the aircraft 

operates in a trimmed navigation state, when we command the autopilot to move the 

aircraft from the current navigation state to another, we find the next state trim point 

to be reached from the previously calculated values. Then we have a prior 

knowledge of the desired state vector to be reached. Gain-scheduling is used while 

changing the navigation state, with employing small fixed steps for ( )tr . The 

controller waits until the states deviations are minimized in order to go to the next 

step. So, keeping the fixed steps very small, the overall trajectory of the states 

becomes like a continuous response. For the simulations, the control system block 

diagram is shown in Figure 31. 

 

 

Figure 31. Tracking LQR block diagram. 
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4.2. LQR Weight Selection 

In selecting a performance measure the designer attempts to define a mathematical 

expression which, when minimized indicates that the system is performing in the 

most desirable manner. Thus, choosing a performance measure is a translation of 

the system’s physical requirements into mathematical terms. In fact, the numerical 

value of the performance measure does not represent a physically meaningful 

quantity. 

The weighting matrices Q  and R  are used for shaping the compromise between 

keeping the state errors ( )( )extx −  and the control corrections ( )( )eutu − , 

respectively small during the whole mission (Geering [20]). 

Considering the cost function; Q  is related with the energy of the states, R  is 

related with the energy of the controlled inputs. In LQR, one seeks a controller that 

minimizes both energies; however, decreasing the energy of the states will require a 

large control signal and a small control signal will lead to large states deviation 

(Anderson [21]). 

The choice for the matrices Q  and R  is given by the Bryron’s rule; select Q  and R  

diagonal with +> 0ε : 

{ }8,...,2,1,
1

∈= iQii , 

{ }4,...,2,1,
1

∈= jR jj . 

In essence, the Bryson's rule scales the variables that appear in J , so that the 

weighting matrix is nondimensionalized, because the state and control vectors 

contain components of different units and magnitudes. 

4.3. Performance of the Controller 

In order to determine a performance criteria for the controller, the control effort is 

defined as follows; 

Maximum acceptable value of ε+
2

ix  

Maximum acceptable value of ε+
2

ju  
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( ) ( )( )∫ −=
ft

dttutuCE
0

2*
. :*

u trim inputs. 

In order to determine the transient characteristics of the controller, power spectral 

density is inspected for the control deviations from the trim points, which tells about 

the frequency distribution of the control effort: 

( ) ( )∫
∞

∞−

−= ττ τπ
deRfS

fj 2
, 

where  

( ) ( ) ( )( ) ( ) ( )( ) dttutututu
T

R

T

T
τττ +−+−= ∫∞→

*

0

*1
lim   

is the autocorrelation function. 
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CHAPTER 5 

5. MODELING AND SIMULATION PROGRAMS 

 

MODELING AND SIMULATION PROGRAMS 

 

 

 

All of the programs are prepared in MATLAB 7.6.0 (R2008A), using GUIDE for the 

graphical user interface, standard MATLAB language, SIMULINK and Embedded 

MATLAB Editor for the control system simulations. 

5.1. Airfoil Mapper 

The main function of this program is to obtain and arrange the aerodynamical 

coefficients ( )mdl CCC ,,  for an airfoil type, and then construct appropriate tables for 

the other programs to use as look-up tables. The program has two modes; mapper 

and simulator. A screenshot of this program is given in Figure 32. 

Before running the program, the aerodynamic coefficients for an airfoil type are 

obtained using XFOIL (Drela [15]), as shown in Figure 33, for the maximum range of 

applicable angles of attack and Reynolds numbers (i.e. 3030 +≤≤− AoA , 

2500000Re0 ≤≤ ). Airfoil’s coordinates (geometry of the airfoil) and the results 

obtained with XFOIL simulations (Figure 34), are loaded into Airfoil Mapper 

program. Then, aerodynamical coefficients are interpolated for π± , with using the 

interpolation formulas for high angles of attack (Chapter 2.2.7). After the 

interpolation process, the data required for the simulation of the airfoil is stored. 

In the simulation of the airfoil (Figure 35), the interpolated aerodynamical 

coefficients are used in order to ensure that no unidentified point is left in the angles 

of attack ππ +≤<− AoA . Simulation uses the chord length and span as user-

defined constants, in order to construct a wing of the same airfoil section type. When 

the translation velocity and pitch inputs are adjusted using the slidebars, the 

resulting inflow angle, angle of attack and Reynolds numbers are calculated. 
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Figure 32. A screenshot of Airfoil Mapper program. 

 

 

Figure 33. XFOIL simulation for NACA0012 airfoil. 
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Figure 34. XFOIL simulation results for NACA0012 airfoil. 

 

 

Figure 35. A screenshot of Airfoil Mapper program in simulation mode. 
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Using angles of attack and Reynolds numbers as the inputs of the look-up tables, 

the aerodynamical coefficients are obtained using ‘2D-spline interpolation’ method. 

The resultant forces and moments are calculated as mentioned in Chapter 2.2.7. 

5.2. Component Designer 

The main function of this program is to construct the data for the component models 

(fuselage, wing propeller) individually, that constitute full UAV model when combined 

in Chapter 5.3. Component Designer program, with its user-friendly graphical user 

interface, eases modeling and gives the user the opportunity of analyzing different 

models and compare the changes in the performance of existing models when a 

modification is applied. The screenshot of this program is given in Figure 36. 

 

 

Figure 36. A screenshot of the Component Designer program. 

 

The mass, center of gravity and moment of inertia of the components are computed 

according other parts’ physical properties automatically. The moment of inertia of 
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the parts are calculated utilizing the standard prism, full cylinder, plate, and rod 

moment of inertia formulas. The effect of displacements of parts from c.g. of the 

component are taken into account using parallel axis theorem,  

( )[ ]RRERRmII centerdisplaced ⊗−⋅+= 3 . 

The orientations of the parts according to component frame are considered using 

angular momentum of a rigid body, 

,

,

ω

ω
BBB

AAA

IH

IH

=

=
 

 [ ]
[ ]

ω

ω

ω

ω

BB

A
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HRH

=

=

=

=

=

−

−

1

1 1−=⇒ A

BA

A

BB RIRI . 

The c.g. of the component is calculated using the distributions of positions and 

masses of the parts in 3-dimensions. 

There are three main types of components that may be modeled in this program, 

with the following features; 

• Fuselage: is the main component of an aircraft that holds all other 

components together. In addition to the fuselage cab, other parts like, 

battery, GPS antenna, avionic equipments, communication components 

may be added inside the fuselage as shown in Figure 37. For every part 

added to the component, the physical parameters, position, orientation, 

mass and part type must be determined.  

• Wing: may be designed as main, horizontal or vertical tail wing, or 

different configurations like V-tail or canard, from the selected airfoil 

types. This versatility is obtained by entering the physical design 

parameters in the desired way. A wing is symmetrical in the x-z plane of 

the design axis. For one side of the wing, airfoil types are selected, 
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positioned and oriented at the desired geometry. Then interpolation 

technique is used to determine the airfoil samples between the entered 

ones. A sample of wing modeling is shown in Figure 38, with airfoils, 

airfoil axes and the final model.  

 

 

Figure 37. Fuselage design. 

 

 

Figure 38. Wing design. 

 

• Propeller: has a powerplant (an electric motor modeled as a cylinder), a 

drive shaft (modeled as a rod) connecting powerplant to the propeller 

and a number of propeller blades. Blades are modeled like wings, but the 

difference is that a blade is duplicated according to the number of blades 
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 Fuselage Cab 
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in the propeller around x-axis of design frame. A sample of propeller 

modeling is shown in Figure 39.  

 

 

Figure 39. Propeller design. 

 

5.3. UAV Designer 

The main functions of this program (Figure 40) are to; 

• Construct the data for a UAV model with the combination of components 

(wing, fuselage and propeller), and their properties, 

• Run case simulations for given state and control inputs, resulting in the 

forces and moments, 

• Calculate trim points for given navigation inputs, obtaining trim states and 

trim inputs, 

• Linearize the UAV model at the trim point, resulting in state-space model 

and obtain eigenvalues, 

• Calculate trim points and linearized models for a range of navigation 

inputs, forming look-up tables for the control simulations, 

• Output the linearized model’s look-up tables with graphs for observation. 
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Figure 40. A screenshot of the UAV Designer program. 

 

In order to obtain the model of Tiltrotor UAV, the components designed in 

Component Designer program are placed at the desired positions and orientations. 

The combination of these components gives the resultant mass and center of gravity 

and moment of inertia of the UAV, using the same principles as in Chapter 5.2. 

Case simulations are run according to input states and control inputs using the 

algorithms stated in Chapter 2, resulting in the forces and moments of the 

components and the net forces and moments acting on the Tiltrotor UAV. In order to 

increase the computation speed, all of the component’s airfoils are formed as an 

array, containing their positions and orientations according to c.g. as shown in 

Figure 41, and then airfoil model is used to compute the forces and moments of 

each airfoil section. After that, all forces and moments are combined in the c.g. of 

the aircraft. The trim point is calculated with the algorithm stated in Chapter 3.1. 

Linearization is performed according to Chapter 3.2., using small perturbation theory 

around the trim point. 
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Figure 41. Airfoil sections in the Tiltrotor UAV. 

 

 When we run the program for trim point and linearization calculations for a range of 

navigation inputs, the look-up tables of trim states, trim inputs, power required and 

state-space models are obtained and graphed for inspection as shown in Figure 42. 

 

 

Figure 42. Tiltrotor UAV, trimmed and linearized for a range of navigation states. 
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5.4. LQR Control 

The main objective of this program (Figure 43) is to calculate the gains of the full-

state controller and to run simulations in order to follow command inputs in the 

vehicle-carried frame. The gains of the controller for the trim points are calculated, 

using the algorithm stated in Chapter 4.2. Algebraic Riccati equation formed in this 

algorithm is solved by using standard Matlab functions. When the linear controllers 

are computed, a Simulink model (Figure 44) is called from this program, with 

predetermined time dependent disturbances acting directly on the states, and 

navigation commands, which constitutes the initial navigation state and next 

navigation state to be reached. Simulation outputs the state and control variables in 

graphs for observation as shown in Figure 43. 

 

 

Figure 43. A screenshot of the LQR Control program. 
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Figure 44. SIMULINK model for LQR Control of Tiltrotor UAV. 

 

Before running the simulation, LQR Control program sets all of the aircraft’s related 

informations (trim states, trim inputs, linearized state-space models, controller 

parameters) as look-up tables for the Simulink model. Simulation model starts 

simulation with setting the initial condition of Tiltrotor UAV. Then the controller 

switches to tracking mode and sets the current navigation state incrementally in 

order to reach next navigation state. The controller monitors the changes in the 

states continuously, not knowing the time and magnitude of the disturbance. When 

there is a great change (which may be caused by a disturbance) in the states, the 

controller switches to regulator mode with setting the next navigation state to current 

navigation state, and stays in this mode until the deviations are minimized with the 

controls. When the next navigation state is reached, the simulation stops 

autonomously. Simulink model uses gain-scheduling in order to accomplish 

transitions between navigation states. 

Look-up Tables 

Autopilot 

State-Space 
Model Controller 
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CHAPTER 6 

6. RESULTS AND DISCUSSIONS 

 

RESULTS AND DISCUSSIONS 

 

 

 

6.1. NACA 0012 Airfoil Simulation 

A sample simulation is run for NACA0012 airfoil, at 12 degrees of pitch angle, with 

chord length and span length of 1 m. forming a wing, moving with velocity 

[ ] smV 5.206= , results [ ] NF 7.602.31 −−=  and [ ] NmM 03.40 −= . 

The operating point on the lift coefficient surface is shown with a black dotted line in 

Figure 45.  

 

 

Figure 45. Simulation results for NACA0012 airfoil at 20o pitch. 

 

[ ] smV 5.206=  

[ ] NF 7.602.31 −−=  

[ ] NmM 03.40 −=  
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The aerodynamical coefficient surfaces obtained (Figure 46) are compared to the 

data obtained by Sheldahl [16] and Cunningham [22], and similar trends of data are 

observed. If we consider the ratio of the lift coefficient to the drag coefficient as a 

performance criteria, it is clear that operating this airfoil for o12>AoA  and low 

Reynolds numbers is not efficient. When we look at the change of coefficients with 

Reynolds numbers, bigger numbers are desirable, forming a linear slope in the 

before-stall range, which are used as a linear coefficient slope in the simulation of 

large-scale helicopters and airplanes. But since we can not reach big velocities and 

Reynolds numbers in small-scale, the change of coefficients in this range forms a 

nonlinear trend. So, using look-up table method, as in this work, performs well in 

reflecting more realistic simulations. 

 

 

Figure 46. Aerodynamical coefficient surfaces of NACA0012 airfoil. 
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6.2. Tiltrotor UAV 

Tiltrotor UAV model is constructed using Component Designer and UAV Designer 

programs with properties given in Chapter 2.2.3.2. Using the body frame, x-axis 

pointing forward from the center of gravity, forms a plane of symmetry with z-axis 

pointing downwards, providing that y-axis being normal to this plane with the right-

hand rule. This symmetry forms the moment of inertia in the following form Philips 

[23]. Considering the moment of inertia calculated for Tiltrotor UAV, we see that the 

method used in the calculation gives parallel results to that of Philips [23], 
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6.3. Propeller Performance 

Looking at the inflow characteristics of the propeller as shown in Figure 46, the 

results obtained are similar to that of Seddon [13], for small descent, hover and 

forward velocities. This shows that the momentum theory has been successfully 

applied in the propeller simulation. Although, momentum theory can not simulate 

higher descent velocities, this problem is eliminated with limiting the navigation state 

velocities. 

 

 

Figure 47. Inflow characteristics of Propeller 1 operating at 2000 RPM. 

Momentum theory is 

valid in this range. 
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 The propeller generates thrust and moment symmetrically, in the case of axial 

velocities along x-axis; for a non-axial velocity the forces and moments become 

dissymmetrical, due to the periodic motion of the operating points of airfoil sections 

on the aerodynamical coefficients’ surfaces as shown in Figure 48. Although, this 

level of detail gives more realistic results, it makes calculation for the trim points 

more difficult. 

 

 

Figure 48. Non-axial motion of the propeller. 

 

 Thinking of the power requirements and thrust capacities of the Propeller 1, 

simulation results in Figure 49 show that, as RPM is increased then power and 

thrust increases. As the velocity in x-axis is increased, the power and thrust 

decreases. These characteristics, allow us to have enough thrust capacity for the 

overall flight envelope of Tiltrotor UAV. 
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Figure 49. Power requirements and thrust capacities of Propeller 1. 

 

 If we consider the overall performance of the propeller, a performance plot is 

obtained using the same methods as previously performed by Merchant [6], whose 

results were obtained in wind tunnel tests for different model airplane propellers. 

Merchant [6] defined the following performance variables; 

Advance Ratio:
Dn

V
=µ , 

60

RPM
n = , =D Prop. Dia. ( )m , :ρ Air density ( )3mkg , 

Thrust Coefficient: 
42

Dn

T
CT

ρ
= ,  :T  Thrust ( )N , 

Torque Coefficient:
52

Dn

M
CM

ρ
= ,  :M  Moment ( )Nm , 

Power Coefficient: 
53

Dn

P
CP

ρ
= ,  :P  Power ( )W ,  

Efficiency = 
P

T

C

C
µ . 

 

Although a direct comparison is not possible, since the specifications (airfoil 

sections and their distributions) of the model propellers are proprietary informations 

of the manufacturer companies, a comparison may be performed with the Master Air 

Screw 16-8 (3-blade) whose data were obtained by Merchant [6] in wind tunnel 

experiments. Figure 50 shows that the trends of the data are consistent. 

 

Thrust (N) Power (W) 
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Figure 50. Propeller performance graph. 

 

6.4. Trim Points 

The trim points are calculated with the algorithm stated in Chapter 3.1. A sample of 

the trim point simulation results is given in Table 6. 

 

Table 6. The trim point solution for [ ] smV 007= . 

u  

( )sm  

w

( )sm  

q

( )sdeg  

θ
( )deg  

v
( )sm  

p

( )sdeg  

r

( )sdeg  

φ  

( )deg  

S
ta

te
s
 

6.9152 1.0866 0 8.9297 0 0 0 0 

1θ ( )deg  1Ω ( )RPM  2Ω ( )RPM  2θ ( )deg  

In
p
u

ts
 

-1.3516 930.5000 930.5000 -1.3516 

Name 
x

B F  

( )N  

y

B F

( )N  

y

B F

( )N  

x

BM

( )Nm  

y

B M

( )Nm  

z

B M

( )Nm  

RHS 4.5630 0 -29.0406 0 0 0 
NET 4.5691 0 -29.0400 0 0 0 
Fuselage -1.0789 0 -0.1332 0 0.0238 0 
Main Wing 3.9795 0 -30.1626 0 -2.0313 0 
Vertical Tail -0.0778 0 0 0 0 0 
Horizontal Tail -0.3970 0 1.8167 0 1.7429 0 
Propeller 1 1.0716 0 -0.2805 -0.2844 0.1325 -0.5627 

O
u
tp

u
ts

 

Propeller 2 1.0716 0 -0.2805 0.2844 0.1325 0.5627 
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A total number of 135 trim points are calculated for a map of the navigation states as 

5.7,0.7...,,0.1,5.0,0.0=ex&  and 0.2,5.1...,,0.1,5.1,0.2 −−−=ez& . Considering the 

trim points calculated, as the forward velocity is increased in the vehicle-carried 

frame, the velocities in body frame change with u  being increased, θ  being 

decreased, w  increasing initially in the conversion mode, and then decreasing 

gradually as getting closer the airplane mode as shown in Figure 50, and φ,,,, rqpv  

all being equal to 0 . These trends show that, as we gain speed forward in the 

vehicle-carried frame, Tiltrotor UAV trim points guide the aircraft from helicopter 

mode to conversion mode, and when the cruise velocity is reached to the airplane 

mode, as expected. 

 

 

Figure 51. Trim state transitions. 

 

Thinking of trim inputs, as Tiltrotor UAV enters airplane mode, the tilt inputs of the 

rotors make them perpendicular to the Earth surface as expected. As observed in 

Figure 52, RPMs get smaller together with power, this is just because, the lift source 

( )smu  ( )smw  

( )degθ  
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being only propellers for hover, and main wings for the level flight. When the 

airplane mode is achieved, trying to reach higher speeds will make the inflow of the 

propellers get bigger, resulting that the propellers can not sustain the thrust for small 

RPMs, since blades are not pitch-controlled. This problem could be solved with the 

choice of a variable-pitch propeller, or just selecting more tilted propellers, with 

loosing some performance in hover. When the power requirements are examined, it 

is clear that Tiltrotor UAV would be needing much power in ascends and helicopter 

mode, and less power in descends and airplane mode as expected. 

 

 

Figure 52. Trim input transitions. 

 

6.5. State-Space Models 

The linear models are obtained by linearizing Tiltrotor UAV model at the trim points, 

according to algorithm stated in Chapter 3.2. The state-space model for the trim 

point in Table 6. is given in the following equation. Although we see that, the 

longitudinal and lateral states are uncoupled, we can not say the same thing for the 

Power ( )W  

( )deg2,1θ  

( )RPM2,1Ω  



 

 
89 

control inputs, so the state-space models are handled as a whole, instead of 

separating them into longitudinal and lateral equations. The control inputs 

2211 ,,, θθ ΩΩ  are not independent of each other, so one can not change them 

arbitrarily. 
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6.6. Stability 

Considering the stability of the Tiltrotor UAV, for all of the trim points calculated, the 

aircraft is not BIBO stable, nor stable in the sense of Lyapunov, nor asymptotically 

stable. Tiltrotor UAV has poor stability as an overall flight envelope criticisms, as 

shown in Figure 53. Hovering is unstable, as the aircraft gains speed in the 

conversion mode it becomes even more unstable, but as the speed increases more, 

letting the wings do work, it becomes more stable entering airplane mode. Thinking 

of level flight, increasing forward speed makes it more stable to some point, and 

after that point the stability decreases. The selection of the most stable trim point as 

the cruise speed, would be a wise choice. In our case, the cruise speed is 

determined as [ ] smV 007= .  

Comparing the placements of the eigenvalues with the results obtained by 

Kleinhesselink [4], for the XV-15 and Generic Tiltrotor Simulation model (GTRS), 

with roots: 
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Tiltrotor UAV has similar pole placements in helicopter and airplane modes, also 

faster, due to small weight and smaller moment of inertia. For the conversion mode, 

Tiltrotor UAV is very unstable compared to the XV-15, this difference comes from 

the structural properties and the method of conversion. The XV-15 keeps its 

fuselage always parallel to Earth frame, and achieves conversion by only tilting the 

rotors. But Tiltrotor UAV uses its big main wings and the resulting moment to 

accomplish conversion, which makes it very unstable, where tiltrotors are only used 

for balance. 

 

 

Figure 53. Changes in the stability of Tiltrotor UAV in different modes. 

 

Stability decreases from 
[ ] smV 007=  to 

[ ] smV 002.7=  

Stability increases from 
[ ] smV 008.6=  to 

[ ] smV 007=  
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The eigenvalue trajectories of Tiltrotor UAV starting from helicopter mode, and 

converting to airplane mode, is given in Figure 54. 

 

 

Figure 54. Eigenvalue trajectories from Helicopter to Airplane Mode. 

 

6.7. Flight Simulations 

A navigation system is not implemented in LQR Control simulation program, but 

using the method of changing next navigation state continuously and monitoring the 

current state with appropriate navigation algorithms, it may be applied in a way to 

reach the navigation purposes. The controller only controls the aerodynamical state 

variables, where yaw angle can be controlled with an outer-loop navigation 

controller, since roll and yaw is coupled when pitch is fixed. Although, command 

filtering needs to be employed in order to guarantee that the actuators follow the 

control inputs, it is not used in this simulation in order to see the ideal case. 

Before the control system design, the linearized models are inspected using the 

concepts, controllability and observability. It is observed that all navigation states 

Helicopter Mode Conversion Mode Airplane Mode 
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are controllable, and observable since full-state feedback is used in a way that we 

can measure the states perfectly. Also, the necessary conditions, stated in Chapter 

4.1, for being able to use LQR method are inspected, which are found to be 

applicable. 

 

 

Figure 55. The movement of closed-loop pole locations according to LQR weights. 
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The movement of the roots of the closed-loop system is observed in Figure 54, with 

changing the weighting ratios of the Q  and R  matrices of the LQR method. The 

result of this inspection is that the main contributor to the placement of the closed 

loop poles is the ratio between Q  and R  matrices, as the weights of the Q  matrix 

get bigger compared to the weights of R  matrix, the poles tend to move to more 

negative region, making the system more stable. The ratios changing within Q  and 

R  matrices just change the location of eigenvalues relative to each other, making 

the related state variable more stable. Although this method directs us to make the 

system more stable, it has a serious drawback; which is as we increase the weights 

of states compared to inputs, the norm of the feedback matrix K  gets bigger and 

bigger, resulting in very fast and large control deviations in the presence of small 

state disturbances, which sets us off the track from applicability. When we inspect 

the case of unit Q  and R  matrices, while changing the aircraft’s modes, studying 

the trends in the K  matrix (Figure 55); 

• For the helicopter mode, the biggest values indicate that the controller strives 

to maintain ( )sr deg , yaw rate, in order to keep the propellers parallel to the 

Earth surface.  

• For the conversion mode, the biggest values indicate that the controller tries 

control ( ) ( )deg,deg θsq  pitch rate and pitch heavily, meaning that the 

conversion is accomplished with strictly controlling these state variables. 

• For the airplane mode, all feedback gains are smaller compared to the other 

modes, because of the reduced unstability of the natural system. 

Applying Bryson’s rule as the method for the selection of LQR weights, allowing 

more deviations in the control inputs, in order to control states more strictly, the 

selected matrices are obtained using maximum allowable deviations, 

X maxdev [ ]1115.0115.05.0= , U maxdev [ ]525255= ,  
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Full-state feedback matrices, and system’s closed-loop eigenvalues are calculated 

using these weights (Figure 56). As seen from the graphs, Tiltrotor UAV is unstable 

in helicopter mode, becomes more unstable in conversion, and gains stability in the 

airplane mode. Looking at the closed-loop eigenvalues, we see that the closed-loop 

system is stable in all modes. Inspection of control inputs’ power spectral density 

gives us the idea of how fast the controller must be assuming that actuators follow 

the commands perfectly. It is expected that, the controller will be fastest in the 

conversion mode, due to aircraft’s high unstability. As a general deduction, controller 

speed is the trade-off for making the unstable system stable; when the system is 

more unstable, faster controls are required. 

Running the simulation model with initial navigation state [ ] smVi

V 000=  

(helicopter mode) and next navigation state [ ] smVn

V 007=  (airplane mode), we 

expect that, the control and state deviations should follow the trim points, as shown 

in Chapter 6.4. The control and state deviations obtained from the simulation are 

plotted in Figure 57, power spectral density of input deviations are plotted in Figure 

58. The graphs tell that conversion from helicopter to airplane mode is accomplished 

within 33 seconds of time and 120 meters of displacement in x-axis of Earth frame, 

with a total control effort of 0.65, following the trim points as expected. The biggest 

control effort is spent at times st 7=  and st 26= . Considering the velocity at those 

times in vehicle-carried frame, ( ) [ ] smVV 0027 = , ( ) [ ] smVV 00526 = . 

Looking at Figure 55., we see that the open-loop system was most unstable in these 

velocities, which explains the increase in the control effort. 

 

, and 



 

 
95 

 
 

Figure 56. Tiltrotor UAV’s open-loop and closed-loop eigenvalues. 

Conversion Mode [ ] smVV 002=  

Airplane Mode [ ] smVV 007=  

Helicopter Mode [ ] smVV 000=  

Conversion Mode [ ] smVV 005.3=  Conversion Mode [ ] smVV 005=  

Conversion Mode [ ] smVV 006=  

X : open-loop eigenvalues,     : closed-loop eigenvalues 
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Figure 57. Simulation results for conversion from Helicopter to Airplane Mode. 
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Figure 58. PSD of the inputs for conversion from Helicopter to Airplane Mode. 
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The power spectral densities for control deviations are calculated for consecutive 

intervals of s5 . As seen in Figure 59, control deviations are bigger and faster for 

navigation states ( ) [ ] smVV 0027 = , ( ) [ ] smVV 00526 = , compared the 

other navigation states. As a result, we will be needing faster control deviations 

when the open-loop system is more unstable. 

Running the same simulation with a triangle shaped disturbance of 

[ ]10000000=dx  (roll disturbance) between st 1311 ≤≤ , we expect 

that the controller should quit tracking mode in the presence of a disturbance, get 

into regulator mode and continue tracking after disturbance and its adverse affects 

are minimized. Results are graphed in Figure 59. This time, conversion is 

accomplished in 39 seconds of time and 145 meters of displacement with a control 

effort of 97.15. The results show that when the disturbance has affected the system, 

making the system feel rolling CCW around x-axis of body frame, it initially 

increased RPM1 and Tilt1, and reduced RPM2 and Tilt2. This change gave Tiltrotor 

UAV a negative roll rate ( )sp deg  in order to turn aircraft in the negative direction. 

After the disturbance vanished in 2 seconds, the controller reversed the control 

deviations in order to get back to the trim state, and reaching to the trim point in 

about 4 seconds. In fact, the controller left the tracking mode for the regulator mode, 

and waited in this mode until the disturbance and its adverse affects are minimized. 

Then, the controller got back to the tracking mode and finished conversion in 39 

seconds. As a result, the disturbance delayed the conversion, increased the 

displacement in the Earth frame, and total control effort, as expected.  

The power spectrum densities of control input deviations in the presence of 

disturbance are shown in Figure 60. It is clear that, the controller applies faster and 

bigger control deviations, when a disturbance is detected. 

This controller works properly if the disturbances have small magnitudes, small 

enough not to disturb the states of the system far away from the trim points. If such 

conditions occur, the linearized model is no longer valid, and control inputs slip out 

of the operating region. In order to overcome this problem, larger sets of linearized 

data, for both straight and rotational flight are required. 
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Figure 59. Conversion from Helicopter to Airplane Mode with disturbance. 

 

 

Figure 60. PSD of control input deviations for conversion from Helicopter to Airplane 
Mode with disturbance. 
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CHAPTER 7 

7. CONCLUSIONS 

 

CONCLUSIONS 

 

 

 

The main purpose of this study was to assert an initial conceptual design for a small-

sized Tiltrotor UAV, explore its dynamics, determine control strategies and 

requirements. With that purpose, simulation programs are prepared in order to 

obtain the numerical results for the design phases. 

Airfoil Mapper program gave the opportunity to model and analyze any type of 

airfoil, resulting with sufficient data for using airfoils as a structural element to 

compose wings and propeller blades. Component Designer program formed a 

backbone to design basic components of an aircraft. UAV Designer program 

equipped with trimming and linearization routines, provided the ability to design new 

types of conceptual UAVs with simulation and analysis tools. LQR Control program 

enabled the design of different optimal control strategies, for the control of designed 

UAVs. Although, these programs have a lot to add and improve, they have a lot 

more to offer for new designs and analysis. 

The initial conceptual design of the Tiltrotor UAV, performed well in simulations, 

accomplishing the conversion from helicopter mode to airplane mode in a 

reasonable amount of time and distance. But, the analysis showed the requirements 

for very fast actuators for the tilt and RPM changes, which are not easy to achieve in 

the real world; although slower controls may perform well in certain conditions, this 

makes it more vulnerable to disturbances. These high standard requirements 

resulted from the unstable nature of Tiltrotor UAV, which may be reduced with the 

addition of new control surfaces like a tail stabilizer or a free-wing design. 
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Although a navigation algorithm is not implemented in this work, the controller is 

designed to follow velocity commands in the Earth frame, so that an outer controller 

for navigation may be implemented easily. 
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CHAPTER 8 

8. FUTURE WORKS 

 

FUTURE WORKS 

 

 

 

Due to the popularity of UAVs, they have become the focus of the cutting-edge 

technologies. New designs emerge all over the world, with only limitations being the 

human mind. For example, “The Vulture Project” managed by DARPA (Defense 

Advanced Research Projects Agency - USA) is claiming to overtake the missions of 

satellites, with flying non-stop at high altitudes at least for 5 years, using only the 

sunlight as the power source. Considering military applications, operational UAVs 

have become ready for service, but there is a growing demand for crucial missions, 

in the heart of the battlefield. As the new sensor technologies are developed, new 

UAV designs are required in order to make the sensors accomplish its mission 

efficiently, where the sensor is the limiting factor, not UAV. It seems that, this trend 

will continue until UAVs take over even the throne of automobiles in transportation, 

who knows what is to come in the future. 

The ideas asserted in this thesis, have a lot more to study than performed in this 

work. With the help of the prepared simulation programs, the possibility of different 

design, analysis and simulation studies seems limitless. 

Considering the problems faced in this work, if the tail wings were designed with a 

degree of freedom to move or designed with rudder and elevators as in airplanes, or 

stabilizers in helicopters, the stability of the Tiltrotor UAV would be increased in a 

way making the control easier for the conversion modes near the plane mode, and 

the plane mode itself. This idea may be followed as an extension of this work in the 

future. 

One of the difficulties faced in this study, was finding a good trim point. This difficulty 

arose mostly from the complexity of the propeller model. When the trends of the 
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outputs of the propeller model is inspected, it is observed that the model could be 

simplified with polynomials of some degree. Model simplifications may be applied to 

the components and Tiltrotor UAV as a future work. 

From the inexpert practitioner’s point of view, the results of this work showed that, it 

is not easy to make a small-scale tiltrotor in one attempt, due to its unstable 

characteristics. First of all, one may analyze the characteristics of propellers 

experimentally as performed by Merchant [6], in order to fortify the propeller model 

used here. Then a quadrotor application may follow, which forms more stable 

characteristics at hover, making the practitioner experienced with the vertical flight. 

After that, experiments may be followed with model airplanes, for getting familiar 

with straight flight. Eventually the combinations of these two aircrafts may be 

practiced, finally resulting in a tiltrotor. Considering that V-22 Osprey, as said to be 

built upon the experience gained from XV-15, was available for service 15 years 

after, than initially planned (Leishman [1]), these steps seem to be a logical way to 

follow. 
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APPENDICES 

 

A. NOTATIONS FOR VARIABLES 

 

Figure 61. Notation for frames. 

 

 

Figure 62. Notation for vectoral variables. 

 

Figure 63. Notation for rotational operators. 

Name   : 
Abbreviation of the specific name of the variable 

 

 

F
 T  

Reference Frame: 
B – Body Frame 
V – Vehicle Frame 
E – Earth Frame 
EC – Earth Center  
         Frame 

Type          : 
F – Force 
M – Moment 
V – Linear Velocity 
W – Angular Velocity 
P – Position 
O – Orientation  

B  

F
 V  

Frame  Reference Frame: 
B – Body Frame 
V – Vehicle Frame 
E – Earth Frame 
EC – Earth Center Frame 

R
 

V  

B  

Reference Frame: 
B – Body Frame 
V – Vehicle Frame 
E – Earth Frame 
EC – Earth Center  
         Frame 

Reference Frame: 
B – Body Frame 
V – Vehicle Frame 
E – Earth Frame 
EC – Earth Center Frame 

Rotation 


