

KOCAELĐ ÜNĐVERSĐTESĐ * FEN BĐLĐMLERĐ ENSTĐTÜSÜ

YAPAY ZEKÂ YÖNTEMLERĐYLE OYUN GELĐŞTĐRME

YÜKSEK LĐSANS TEZĐ

Bilgisayar Müh. Gökalp GÜRBÜZER

Anabilim Dalı: Bilgisayar Mühendisliği

Danışman: Doç. Dr. Adnan KAVAK

KOCAELĐ, 2008

i

ÖNSÖZ ve TEŞEKKÜR

Makinelerin karşılaştıkları ve daha önceden görmemiş oldukları sorunları çözmesini

amaçlayan Yapay Zekâ, ilk kez 1956 yılının yaz aylarında Darmouth

Üniversitesi’nde yapılan bir konferansta ortaya çıkmıştır. Đlk yıllarında çok hızlı bir

ivme yakalayan ve pek çok insanı hayrete düşüren yapay zekâ programları,

ilerleyen yıllarda aynı ivmeyi ne yazık ki koruyamamıştır. Bunun nedeni, insanların

kolaylıkla çözdüğü sorunları bir makineye anlatmanın zorluğu ve makinelerin o

zamanki işlem gücü kısıtlarıydı. Ne var ki, son yirmi yıldır çok yüksek bir hızla

ilerleyen teknoloji, karmaşık yapay zekâya olanak sağlayacak donanımların

üretilmesini sağlamış ve modern yapay zekânın ilerlemesinde büyük katkıda

bulunmuştur. Günümüzde, en kolay ve en etkin olarak programlanabilen aygıtlar

bilgisayarlar olduğu için yapay zekâ bir bilgisayar bilimi olmuştur ve halen pek çok

uygulamada etkin olarak kullanılmaktadır.

Yapay zekâ yöntemleriyle oyun geliştirme tezimin tamamlanması sürecinde; yöntem

kuramlarının çeşitlendirilmesi ve tamamlanmasında çok değerli katkısı olan

ağabeyim Y. Müh. Gökhan GÜRBÜZER’e, tezin yönlendirilmesinde desteğini

esirgemeyen tez danışmanım sayın Doç. Dr. Adnan KAVAK’a, tez çalışmalarım için

daha fazla zaman ayırmamı sağlayan patronum sayın Dr. Rıza Can BERKAN’a ve

yöneticim Altuğ Bilgin ALTINTAŞ’a teşekkürü borç bilirim. Ayrıca her zaman

yanımda olan, beni bugüne yetiştirmiş bulunan annem Nilgün GÜRBÜZER ve

babam Kürşat GÜRBÜZER’e sonsuz minnet duygularımı sunarım.

ii

ĐÇĐNDEKĐLER

ÖNSÖZ ve TEŞEKKÜR .. i
ĐÇĐNDEKĐLER ... ii
ŞEKĐLLER DĐZĐNĐ .. iv

TABLOLAR DĐZĐNĐ ... v

SĐMGELER .. vi
ÖZET .. vii
ĐNGĐLĐZCE ÖZET ... viii
1 GĐRĐŞ .. 1

1.1 Yapay Zekâ’nın Tanımı ... 1

1.1.1 Zekâ’nın tanımı .. 1

1.1.2 Yapay Zekâ’nın tanımı ... 1

1.1.3 Zeki Makinenin tanımı .. 2

1.1.3.1 Turing sınavı .. 2

1.2 Yapay Zekâ’nın Kullanım Alanları .. 2

1.3 Yapay Zekâ’da Eğitim ve Amacı .. 3

1.4 Kullanılan Yapay Zekâ ... 4

1.4.1 Tic tac toe .. 4

1.4.2 RPG ... 4

2 YAPAY ZEKÂ YÖNTEMLERĐ .. 6

2.1 Yapay Zekâ’da Kullanılan Karar Mekanizmaları .. 6

2.1.1 Sonlu durum makineleri ... 6

2.1.2 Öznel beklenen yarar (SEU) .. 7

2.1.3 Karar ağaçları .. 8

2.1.4 MiniMax ... 10

2.1.5 Alfa / beta kesintileri ... 12

2.1.6 Yapay sinir ağları ... 13

2.1.6.1 Yapay sinir ağı yapıları ... 15

2.1.6.2 Yapay sinir ağlarında eğitim ... 16

2.1.7 Bulanık mantık ... 17

2.1.7.1 Bulanık kural tablosu .. 18

2.1.7.2 Bulanıklaştırma ... 18

2.1.7.3 Bulanık çıkartım motoru .. 19

2.1.7.4 Durulama .. 20

2.1.8 Bulanık sinir ağları ... 21

2.1.8.1 Bulanık model ve ilişkin ağ yapısının çıkarımı....................................... 21

2.1.8.2 Bulanık ağ yapısının katmanları ve işlevleri .. 22

2.1.8.3 Bulanık ağlarda eğitim .. 23

2.1.8.4 Đleri yayılım ve LS yöntemi .. 24

2.1.8.5 Geriye yayılım ve gradyan indirgemesiyle eğitim 26

2.1.9 Genetik algoritmalar ... 26

2.2 Eğitim yöntemleri ... 27

2.2.1 Hata güdümlü öğrenim ... 27

2.2.2 Eğitici tarafından öğrenim .. 28

2.2.3 Keşifle öğrenim .. 28

3 YAPAY ZEKÂ ÖRNEK UYGULAMALARI ... 29

iii

3.1 Geliştirme Ortamı .. 29

3.2 Geliştirilen Oyunlar .. 29

3.2.1 Tic tac toe – bir zekâ oyunu ... 29

3.2.1.1 Oyunun ve kuralların tanımlanması .. 29

3.2.1.2 Kullanılan yapay zekâ modeli ... 29

3.2.1.3 Oyunun çalıştırılması ve arayüz ... 33

3.2.2 RPG – bir çatışma oyunu ... 34

3.2.2.1 Oyunun ve kurallarının tanımlanması ... 34

3.2.2.1.1 Oyunla ilgili genel bilgiler .. 34

3.2.2.2 Oyunun çalıştırılması ve arayüzü.. 36

3.2.2.3 Kullanılan yapay zekâ ... 38

3.2.2.3.1 Karar mekanizmaları .. 38

3.2.2.4 Yapay zekâ’nın eğitimi .. 41

3.2.2.4.1 N < 5 durumu ... 46

4 BULGULAR VE TARTIŞMA .. 48

4.1 Kullanılan Yöntemlerin Başarısı ... 48

4.1.1 Tic tac toe .. 48

4.1.2 RPG ... 53

4.1.2.1 Başlangıç koşulları ... 53

4.1.2.2 Test sonuçları ... 54

5 SONUÇLAR VE YORUM .. 58

5.1 Đleri Çalışmalar .. 60

KAYNAKLAR ... 61

EKLER ... 63

ÖZGEÇMĐŞ .. 102

iv

ŞEKĐLLER DĐZĐNĐ

Şekil 2.1: Örnek Sonlu Durum Makinesi [4] ... 7

Şekil 2.2: Örnek Karar Ağacı [6] ... 9

Şekil 2.3: MiniMax Arama Ağacı [7] .. 11

Şekil 2.4: Alfa-Beta Kesintisine Uygun Bir Arama Ağacı [7] 12

Şekil 2.5: Yapay Sinir Ağı Düğümü [8] ... 14

Şekil 2.6: Đleri Besleme Yapay Sinir Ağı [9] .. 15

Şekil 2.7: Tsukamoto Modeli Bulanık Sistem Çizelgesi .. 17

Şekil 2.8: Bulanık Üyelik Fonksiyonları [13] .. 19

Şekil 2.9: Bulanık Çıkış Üyelik Fonksiyonları Birleşimi [14] 20

Şekil 2.10: ANFIS Mimarisi... 22

Şekil 3.1: Örnek Bir Tic Tac Toe Oyun Durumu .. 30

Şekil 3.2: Tic tac toe arama ağacı .. 31

Şekil 3.3: Arama Ağacının Doldurulması .. 32

Şekil 3.4: Tic Tac Toe Açılış Ekran Görüntüsü ... 33

Şekil 3.5: RPG Açılış Ekran Görüntüsü .. 37

Şekil 3.6: RPG Karar Sonlu Durum Makinesi ... 38

Şekil 3.7: RPG Yapay Zekâ Eğitim Algoritması .. 45

Şekil 4.1: Tic Tac Toe Hamle 1(Đnsan) ... 48

Şekil 4.2: Tic Tac Toe Hamle 2(Bilgisayar) ... 49

Şekil 4.3: Tic Tac Toe Hamle 3 (Đnsan) .. 49

Şekil 4.4: Tic Tac Toe Hamle 4 (Bilgisayar) .. 50

Şekil 4.5: Tic Tac Toe Hamle 5 (Đnsan) ... 50

Şekil 4.6: Tic Tac Toe Hamle 6 (Bilgisayar) .. 51

Şekil 4.7: Tic Tac Toe Hamle 7 (Đnsan) .. 51

Şekil 4.8: Tic Tac Toe Hamle 8 (Bilgisayar) .. 52

Şekil 4.9: Tic Tac Toe Hamle 9 (Đnsan) .. 52

v

TABLOLAR DĐZĐNĐ

Tablo 2.1: Örnek Tsukamoto Bulanık Kural Tablosu .. 18

Tablo 2.2: Örnek Sugeno Bulanık Kural Tablosu .. 18

Tablo 2.3: ANFIS Bulanık Kural Tablosu .. 21

Tablo 4.1: 2'ye 2 Sabit Konumlu Test Sonuçları ... 54

Tablo 4.2: 2'ye 2 Rastgele Konumlu Test Sonuçları ... 55

Tablo 4.3: 1'e 2 Sabit Konumlu Test Sonuçları ... 55

Tablo 4.4: 1'e 2 Rastgele Konumlu Test Sonuçları ... 56

Tablo 4.5: 2'ye 1 Sabit Konumlu Test Sonuçları ... 57

Tablo 4.6: 2'ye 1 Rastgele Konumlu Test Sonuçları ... 57

Tablo 5.1: Tic Tac Toe Test Sonuçları ... 59

vi

SĐMGELER

AC: Yaratığın zırh seviyesi, ([-10, 10] aralığında)
HP: Yaratığın mevcut can puanları,
LS: Least Squares, en düşük kareler,
SEU: Subjective Expected Utility, öznel beklenen yarar,
THAC0: 0 AC’li bir başka yaratığa vurmak için atılması gereken en düşük zar

vii

YAPAY ZEKÂ YÖNTEMLERĐYLE OYUN GELĐŞTĐRME

Gökalp GÜRBÜZER

Anahtar Kelimeler: Yapay Zekâ, Makine Öğrenmesi, Oyun Zekâsı, Yapay Zekâ
Eğitimi

Özet: Yapay Zekâ, günümüzde bilgisayar bilimlerinin en gözde dallarından biridir ve
yapay zekâ bilim dalı, makinelerin zeki davranmalarını sağlamaya çalışarak onların
daha çok ve daha çeşitli sorunlarla tek başlarına başa çıkmalarını sağlar. Şüphesiz
ki günümüzde yapay zekânın gelişmesindeki payı en yüksek olan sektörlerden biri
ise bilgisayar oyunları sektörüdür. Günümüzdeki bilgisayar oyunları dünya satranç
şampiyonlarını ve dama ustalarını bile yenebilmektedir. Bu motivasyon ile yola
çıkılan bu çalışmada öncelikle yapay zekânın tanımı irdelenmiş, yapay zekâya
yardımcı hesaplama yöntemleri ortaya konmuştur. Bu hesaplama yöntemlerinden
MiniMax, Tic Tac Toe adlı sıfır toplam, sıra tabanlı ve tam bilgili oyun için; eğitim
yöntemlerinden Hata Güdümlü Eğitim ise sıfır olmayan toplamlı, sıra tabanlı ve eksik
bilgili bir oyun olan RPG olmak üzere, iki adet farklı oyun programlanarak
günümüzdeki ya da belki yarınki bir oyunda programlanan yapay zekânın ne gibi
özellikler göstermesi gerektiği ortaya konmaya çalışılmıştır.

viii

GAME PROGRAMMING USING ARTIFICIAL INTELLIGENCE METHODS

Gökalp GÜRBÜZER

Keywords: Artificial Intelligence, Machine Learning, Game Intelligence, Artificial
Intelligence Training

Abstract: Artificial Intelligence is one of the most popular branches of the computer
science and it aims to make machines act intelligently, rendering them able to cope
with more in number and more complex problems by themselves. Without a doubt,
one of the most active sectors which aid artificial intelligence development today is
the video game sector, which created programs that can beat world chess
champions and checkers masters. This work is a quest motivated by these causes,
which first identifies artificial intelligence, then explain the computation methods that
aid artificial intelligence science. The work then states two AI programmed games;
which include Tic Tac Toe, a zero-sum, turn-based, full-information game and RPG,
which is a non-zero-sum, turn-based, imperfect-information game based on
Tolkien’s world and tries to understand what an AI should be like in a video game of
today and perhaps tomorrow.

1

1 GĐRĐŞ

1.1 Yapay Zekâ’nın Tanımı

1.1.1 Zekâ’nın tanımı

Yapay Zekâ’yı tanımlamadan önce zekâ kavramının tanımına bakmak yararlı olur.

Her ne kadar sık kullanılan ve kulağa basit gelen bir kavram olsa da zekâ,

tanımlaması güç ve pek çok bilim dalından pek çok otoritenin birbirinden farklı

tanımladığı bir kavramdır.

John McCarthy tarafından yapılan tanıma göre “Zekâ, yaşamdaki amaçlara ulaşma

yetisinin hesapsal yanıdır”. Yapay Zekâ bilimi bu tanımdan yola çıkarak zekânın

hesapsal tabanını araştırarak çözmeye çalışır. Ancak yine John McCarthy’nin

belirttiği gibi “Zekâ, kendi içinde –tamamı henüz anlaşılamamış- mekanizmalar

barındırır” bu yüzden Yapay Zekâ’nın çözümünü araştırdığı her sorunun yanıtı aynı

olmamaktadır ve farklı çözümler ile aşılmaya çalışılır. [1]

1.1.2 Yapay Zekâ’nın tanımı

Yapay Zekâ’nın tek bir kesin tanımı bulunmamakla birlikte ad babası olan John

McCarthy 1956’da Yapay Zekâ’yı “Zeki makineler, özellikle de zeki bilgisayar

programları yapma bilimi ve mühendisliğidir” diyerek tanımlamıştır. Ancak yine John

McCarthy’ye göre “Benzer bir iş olan ‘bilgisayarlar aracılığı ile insan zekâsını

anlamaya çalışmayla’ ilgili olmasına rağmen kendisini sadece biyolojik olarak

gözlemlenebilen yöntemler ile sınırlandırmaz”. [1]

2

1.1.3 Zeki Makinenin tanımı

1.1.3.1 Turing sınavı

Bir makinenin zeki olma kavramını ilk kez tanımlayan kişi Alan Turing’dir. Turing’e

göre bir makinenin zeki sayılabilmesi için makine; birisi kendisi, ikisi insan olan üç

oyunculu bir sınavı vermesi gerekir. Đnsan oyunculardan birisi jüri olur ve ayrı ayrı

her iki oyuncuyla da – hangisinin insan hangisinin bilgisayar olduğunu bilmeden -

etkileşimde bulunur. Eğer jüri oyuncu, etkileşimde bulunduğu oyuncuların hangisinin

insan hangisinin makine olduğunu ayırt edemezse makine sınavı vermiş olur ve zeki

bir makine olarak nitelendirilebilir. [2]

Bu sınava yapay zekâ yazınında “Turing Sınavı” olarak adlandırılır. Turing sınavının

tam bir zeki makine tanımı yapabildiğine ilişkin farklı görüşler vardır. Zira Turing

makinesi bir zekâ tanımından yola çıkmak yerine bir makineyi bir insanla

karşılaştırdığı için gerçek zekânın değil insana benzerliğin sınavı olduğu aşikârdır.

Yine de ilk somut tanımı Turing vermiştir ve bütün yapay zekâ bilim çevreleri

tarafından bilinen bir sınavdır.

1.2 Yapay Zekâ’nın Kullanım Alanları

Yapay zekânın kullanım alanları her geçen gün git gide artmaktadır. Bazı kullanım

alanları;

• Örüntü tanıma

o Optik karakter tanıma

o El yazısı tanıma

o Konuşma tanıma

o Yüz tanıma

• Yapay yaratıcılık

• Bilgisayar görüşü, sanal gerçeklik ve görüntü işleme

• Yapay zekâ sınama

• Oyun kuramı ve stratejik planlama

• Oyun yapay zekâsı ve bilgisayar oyuncular

3

• Doğal dil işleme, çeviri ve sohbet botları

• Doğrusal olmayan kontrol ve robotik

• Yapay yaşam

• Otomatikleştirilmiş kavrama (Automated resoning)

• Otomasyon

• Biyolojiden ilham alınmış hesaplama

• Kavram madenciliği

• Veri madenciliği

• Bilgi temsili

• Anlam tabanlı internet

• E-posta çöplük süzmesi

• Robotik

o Davranış tabanlı robotik

o Kavrayıcı

o Sibernetik

o Evrimsel robotik

• Karma zekâ sistemi

• Zeki ajan

• Zeki kontroldür. [3]

1.3 Yapay Zekâ’da Eğitim ve Amacı

Yapay zekâda eğitimin amacı, belirli sorunlarla baş etmek üzere tasarlanmış olan

yapay zekânın kendini geliştirmesi, ileride karşısına çıkabilecek daha farklı

durumlarda da doğru adımlar izleyebilmesini sağlamaktır. Genel anlamda yapay

zekâ eğitimi, birer minimizasyon ya da maksimizasyon sorunlarıdır ve optimizasyon

kuramlarından bolca yararlanır.

Yapay zekânın eğitilmesi, sistemin kendi kendine daha gelişmiş bir yapay zekâ

ortaya koymasını sağlar. Öğrenen makineler, öğrenmeyenlere göre daha fazla

sayıda ve çeşitte sorunlarla baş edebilir.

4

1.4 Kullanılan Yapay Zekâ

Bu tezde, iki adet yapay zekâlı oyun bulunmaktadır. Birisi eski bir zekâ oyunu olan

Tic Tac Toe, bir diğeri ise Tolkien dünyasından ortaya çıkmış bir oyun türünden

esinlenmiş RPG’dir.

1.4.1 Tic tac toe

Tic Tac Toe oyunu, sıra tabanlı bir tahta oyunudur. Đki oyuncu da kendi sırası

geldiğinde kendi işaretini tahtanın istediği yerine yerleştirir. Đşaretleriyle düz bir sıra

yapan oyuncu oyunun galibi olur.

Tic Tac Toe yazılımında, John von Neumann’ın ortaya koyduğu MiniMax yöntemi

kullanılmıştır.

1.4.2 RPG

RPG, Role Playing Game sözcüklerinin kısaltmasıdır ve aslında bir oyun değil, bir

oyun türü adıdır. Oyunda karşı karşıya gelen iki düşman grup, birbirlerini ellerindeki

silahlarıyla öldürmeye çalışmaktadırlar. Bütün elemanları ölen grup oyunun mağlubu

sayılır.

RPG, sıra tabanlı bir tahta oyunu olmasına rağmen bilinemeyecek unsurlar

içerdiğinden MiniMax algoritması kullanılmamıştır. Bunun yerine her el sonunda,

hangi düşmana saldırılacağının ortaya konulduğu bir değerlendirme fonksiyonu

kullanılmıştır.

Elinizde bulunan “Yapay Zekâ Yöntemleriyle Oyun Geliştirme” adlı tez çalışmasında,

öncelikle yapay zekâda kullanılan başlıca yöntemler sıralanmıştır. Bu yöntemlerden

MiniMax; sıfır toplamlı, tam bilgili ve sıra tabanlı bir oyun olan Tic Tac Toe’da

kullanılmıştır. Đkinci bir oyun olan RPG’de ise bir ağırlıklı toplamlar yöntemi

kullanılmış ve ağırlıkların optimizasyonu için bir hata güdümlü eğitim yöntemi

önerilmiştir.

5

Bu çalışmanın ikinci bölümünde Yapay Zekâ’da kullanılan başlıca yöntemleri,

üçüncü bölümünde yazar tarafından geliştirilmiş ve yukarıda belirtilmiş olan iki

bilgisayar oyunu ve Yapay Zekâ tasarımlarını, dördüncü bölüm olan “Bulgular ve

Tartışma” bölümünde ortaya konulmuş olan Yapay Zekâ yöntemlerinin başarımlarını

ve son bölüm olan “Sonuçlar ve Yorum” bölümünde bu çalışmanın genel başarımını

ve ileride bu tezi başvuru amaçlı olarak kullanacak araştırmacılara önerileri

bulacaksınız.

6

2 YAPAY ZEKÂ YÖNTEMLERĐ

2.1 Yapay Zekâ’da Kullanılan Karar Mekanizmaları

2.1.1 Sonlu durum makineleri

Sonlu durum makineleri, sonlu sayıda durumların bulunduğu ve bu durumlar

arasındaki geçişlerin belirli kurallara bağlandığı bir karar verme yöntemidir. Sonlu

durum makineleri temel olarak dört bileşenden oluşur:

•••• Durum
•••• Başlangıç Durumu
•••• Alfabe
•••• Geçiş Fonksiyonu

Sonlu durum makinelerinde, durumlar arası geçiş, tanım uzayı alfabe olan geçiş

fonksiyonunun sonucuna göre yapılır. Id Software’in efsanevi oyunlarından Quake

oyunundaki roket mermisinin durum çizelgesi Şekil 2.1’de verilmiştir:

7

Sonlu durum makineleri genellikle karar vermekten çok karar kalıbı belirlemeye

yönelik bir yöntem olarak kullanılır. Örneğin FPS tarzı bir oyunda bilgisayar, sağlık

durumunun kötü gittiğini düşünüyorsa geri çekilme durumuna girer. Bu durumda

alacağı kararların oluşturduğu uzay diğer durumlardakinden farklı olur.

2.1.2 Öznel beklenen yarar (SEU)

Öznel beklenen yarar, 1954 yılında Leonard Jimmie Savage tarafından ortaya

atılmış bir karar kuramı yöntemidir. Bayes olasılığı kuramına dayanan bir öznel

olasılık analizi ile öznel bir yarar fonksiyonunu bir araya getirir.

Savage ispatlamıştır ki [5] bir kesin olmayan olayın olası sonuçları {xi} ise ve her

birinin kişiye olan yararı (utility) u(xi) , ve her birinin meydana gelme olasılığı P(xi) ise

kişinin Öznel Beklenen Yararı (SEU) Denklem 2.1’de verilmiştir.

() ()∑ ⋅=
i

ii xPxuSEU (2.1)

Collision

Touch was

owner

Spawn

Move

Die

Touch

Finish Spawn

Hit sky

Exploded

5 sec. timeout

Şekil 2.1: Örnek Sonlu Durum Makinesi [4]

8

Alınan bir karar sonuçları {yi}’ye getirir ve bu sefer beklenen yarar Denklem 2.2’deki

gibi olur.

() ()∑ ⋅=
i

ii yPyuSEU (2.2)

SEU yöntemi, olası bütün sonuçların, sonuçların olasılıklarının ve öznel olan yarar

fonksiyonlarının kusursuz şekilde bilindiğini kabul eder ve bu yüzden

hesaplanabilme yönünden eksik kalır. Yine de mikro-uzay problemlerine

uygulanabilirliği yüksektir.

SEU yöntemi, bir ajanın mantıklı bir şekilde davranmasının ne anlama geldiğini ilk

kez aksiyomlanabilmiş bir yolla anlatılabildiği ilk kuram olma özelliği nedeniyle, karar

verme konusunda önemli bir kuramdır.

2.1.3 Karar ağaçları

Karar Ağaçları, stratejik kararların verilmesinde yardımcı olarak kullanılan birer

çizelgedir. Çizelge bir ağaca benzer ve ağacın her dalı o an alınabilecek bir kararı

simgeler. Alınan her bir kararın getirisi ve götürüsü muhasebe edilir ve başarı

yüzdesi ile çarpılır. Bu hesaplamadan en yüksek puanla çıkan olasılık en kârlı

olasılık olarak değerlendirilebilir. Şekil 2.2, örnek bir karar ağacını resmetmektedir.

9

Şekil 2.2: Örnek Karar Ağacı [6]

Örnek şirketin senaryosuna göre, ellerindeki iki projeden en çok birini yapabilecek

olan şirketin hareket algılayıcı ya da duman ve yangın algılayıcısı projelerinden

birisini seçmesi gerekmektedir. Yangın algılayıcısı projesinin başlangıç maliyeti

100.000$’dır ve başarı olasılığı %50’dir. Eğer şirket projeyi geliştirmekte başarılı

olursa projeyi sektördeki diğer bütün ürünler gibi bir standartlara uygunluk testinden

geçirecektir. Testin maliyeti 5.000$’dır ve eğer ticari uygunluk alırsa (olasılık %30)

projenin getirisi 1.000.000$ olacaktır. %60 olan diğer bir olasılıkta yalnızca evler için

bir uygunluk alınmakta ve ticari uygunluğa göre daha az olan 800.000$ getiri

sağlamaktadır. Proje hiç bir uygunluk alamazsa (%10 olasılık) projenin yatırım

masrafları çöpe gidecektir.

Hareket algılayıcısının ise başlangıç maliyeti 10.000$ ve başarı olasılığı %80’dir.

Projede başarı sağlanırsa elde edilecek kazanç 400.000$’dır.

Karar ağaçları doldurulurken, SEU yöntemindeki gibi, bütün olasılıkların bilinmesi

gereklidir. Ağacın her bir düğümünün beklenen değer (EV) formülü Denklem 2.3’te

verilmiştir.

() ()∑ ⋅−=
i

iid iPGiderGelirEV

 (2.3)

10

Dikkat edilirse, karar ağaçlarının aslında yarar fonksiyonu düğümdeki kâr olan bir

SEU uygulaması olduğu söylenebilir.

Bilgisayar da bir oyunda bir karar vermek durumunda kaldığında aynı şekilde bir

karar ağacı yaratıp, bu karar ağacındaki hesaplamalara göre EV değeri en yüksek

yolu seçmesi sağlanabilir. Ancak özellikle hesaplamalardan çok reflekslerin etkili

olduğu hızlı oyunlarda (örneğin FPS tarzı oyunlarda) karar ağaçları çok daha basit

olabilir, hatta Veri Madenciliğinde kullanıldığı üzere eğer-ise kurallarından oluşabilir.

2.1.4 MiniMax

Bilgisayar oyunlarında Yapay Zekâ uygulamalarında kullanılan algoritmalardan birisi

de karar kuramından gelen MiniMax yöntemidir. Algoritma, temelinde sıra tabanlı,

tam bilgili, sıfır toplam oyunlarda kullanılmak üzere tasarlanmıştır; ancak diğer

türlerde kullanılmak üzere değiştirilebilir. Yöntem, olası en yüksek zararın en aza

indirgenmesi olarak tanımlanabilir.

δ, θ parametresini kestiren fonksiyon ve R(θ, δ), risk fonksiyonu (genellikle kayıp

fonksiyonunun integrali olarak alınır) olmak üzere;

���� ���� 	
� �
��� ���� ���� 	� (2.4)

Olduğu noktadaki R fonksiyonu MiniMax fonksiyonudur.

MiniMax fonksiyonu, temelinde sıra tabanlı, tam bilgili, sıfır toplam oyunlarda

kullanılır; ancak diğer türlerde kullanılmak üzere değişikliklerde bulunulabilir.

11

Oyunda Min ve Max adında iki oyuncu vardır ve bilgisayar, bu iki oyuncunun da

oynayabileceği bütün olasılıkları çıkartarak kendisi için en iyi oyun durumunu elde

etmeye çalışır. Algoritma, bir arama ağacına dayanır (Şekil 2.3) . Arama ağacının

her düğümü oyunun bir durumunu (ya da kısaca bir oyunu) tutar. Bir düğümün alt

düğümleri ise o durumdan sonraki olası durumları tutar. Min ve Max ile işaretlenmiş

seviyeler o seviyede oynayacak olan oyuncuyu gösterir.

Şekil 2.3: MiniMax Arama Ağacı [7]

Ağaç; derinlemesine (depth-first), o anki oyun durumundan başlayarak oyunun son

durumuna kadar hesaplanır ve oyunu sonlandıran bir hamle bulunduğunda oyun

sonucu Max‘e göre yorumlanır. Daha sonra ağacın dallarındaki düğümler aşağıdan

yukarıya doğru, hesaplanan değerlerle doldurulur. Max'in oynadığı durumları

gösteren düğümler kendi çocuklarının en büyük değerini alırken Min'in oynadığı

durumları gösteren düğümler çocuklarının en düşük değerini alır.

Sonuç olarak, arama ağacındaki değerler o durumun Max için ne kadar iyi bir oyun

sonucu olduğunu gösterir. Max, bir hamle yaparken bu düğümlerden en büyük

değerlisini seçmek isteyecektir. Buna karşılık, Min de Max'in durumunu

kötüleştirmeye (yani kendi durumunu iyileştirmeye) çalışacak bir hamle

yapacağından bu Max'in hamle seçimini zorlaştıracaktır.

MiniMax yöntemini kullanan bir algoritma EK-A’daki sözde-kod ile gerçekleştirilebilir.

12

2.1.5 Alfa / beta kesintileri

MiniMax yöntemi, oyunda olası bütün hamlelerin bellekte bir ağaç yapısında

tutulması ve aramanın bütün ağaç üzerinden yapıldığı için özellikle satranç gibi

hamle uzayı büyük oyunlarda işlem yükünü arttırdığı için Alfa/Beta kesintileri tekniği

kullanılır.

Alfa-Beta kesintileri Şekil 2.4’e benzer ağaçlarda kullanılabilecek bir yöntemdir:

Şekil 2.4: Alfa-Beta Kesintisine Uygun Bir Arama Ağacı [7]

A ve B düğümleri MIN sırasında olduğundan A'nın değeri olan 3'ten küçük bir sayı

B'nin değeri olarak seçilecek olursa B'nin bir sonraki adımda A'yı geçemeyeceği

kesindir ve B düğümüyle daha fazla zaman kaybetmeye gerek yoktur.

B'nin ilk çocuğunun değeri 2 olduğu bilindiği anda diğer çocukların değerleri 2'den

büyük olması koşulunda en küçük değer kalacak olan 2'nin B'nin değeri olacağı,

diğer çocukların değerlerinin 2'den küçük olması koşulunda ise B'nin değerinin 2'den

küçük (ve dolayısıyla MAX sırasında A'nın değeri olan 3'ü geçemeyecek) bir değer

alacağından B ile ilgilenmeye gerek yoktur.

Ya da kısaca;

alfa = bilinen en iyi MAX değeri ve beta = bilinen en iyi MIN değeri olmak üzere,

1. MAX düğümlerinde, herhangi bir yolu izlemeye başlamadan önce, bir önceki

yolun değerini beta değeri ile karşılaştır. Eğer değer beta'dan büyükse bu

düğümü atla

13

2. MIN düğümlerinde, herhangi bir yolu izlemeye başlamadan önce, bir önceki

yolun değerini alfa değeri ile karşılaştır. Eğer değer alfa'dan küçükse bu düğümü

atla

Alfa-Beta kesintileri, MiniMax algoritmasında yapay zekâ kalitesini düşürmeden

önemli hız kazancı doğurabilir. Ancak bu hızlanmanın ölçeği arama ağacının

yapısına bağlıdır. MAX düğümlerinin değerleri küçükten büyüğe doğru sıralı ise, ya

da MIN düğümlerinin değerleri büyükten küçüğe sıralı gelmişse alfa-beta

kesintilerinin performansa bir katkısı bulunmaz.

2.1.6 Yapay sinir ağları

Yapay Sinir Ağları, omurgalı hayvanların sinir sistemlerinden esinlenerek ortaya

konulan iteratif, öğrenmeye dayalı bir kestirim yöntemidir. Birbirleri ile iyi iletişimleri

bulunan sinir hücreleri (düğümler) kendisinden önceki düğümden gelen veriyi basit

işlemler (ağırlık çarpanı ve düğüm ağırlığı toplamsalı kullanarak) yaparak bir sonraki

düğüme iletir. En son düğümde elde edilen sonuç, eğitim verisi ile karşılaştırılır, eğer

sonucun iyileştirilmesi gerekiyorsa YSA parametreleri güncellenir.

Bir düğümün çıktısı, kendisine gelen girdilere ve her bir girdiye atanmış olan

ağırlıklara bağlıdır. Bir yapay sinir ağı düğümünün matematiksel modeli Şekil 2.5 ve

Denklem 2.4 ile Denklem 2.5’te gösterilmiştir.

14

Şekil 2.5: Yapay Sinir Ağı Düğümü [8]

�� � � ��� � ������ (2.4) �� � ����� (2.5)

Etkinleştirme fonksiyonu, önceden belirlenmiş bir fonksiyondur ve amacı sinir

çıkışını belirli bir aralıkta (genellikle [-1, 1]) arasında tutmaktır. En yaygın doğrusal

olmayan etkinleştirme fonksiyonları sigmoid ve hiperbolik tanjant fonksiyonlarıdır.

Denklem 2.6 sigmoid fonksiyonu, Denklem 2.7 ise hiperbolik tanjant fonksiyonunun

tanımını vermektedir.

����� � ��� !"�#$ (2.6)
����� � %&�' ()$* + � �, !#$�� !#$ (2.7)

2.1.6.1 Yapay sinir ağı yapılar

Yapay sinir ağlarının sınıflandırılması

Sık kullanılan topolojiler ileri beslemeli ağlar (feed forward networks) ve

(recurrent networks) olarak ayrılabilir.

Đleri beslemeli ağ topolojisi, b

bağlanan ve veri akışı yalnızca ileriye doğru giden yapay s

Türev işlemlerinin daha kolay hesaplanmasını sağladığı için diğer topolojilere göre

daha çok kullanılır ve yapay sinir ağı den

Şekil 2.6, örnek bir ileri besleme ağı topolojisini gö

Eğer ağın sinirleri arasında aynı katmanda ya da bulunduğu katmanlardan daha

geride bulunan sinirlere bağları olan

15

Yapay sinir ağı yapıları

Yapay sinir ağlarının sınıflandırılması sinir ağının yapısına (topolojisine) göre yapılır.

topolojiler ileri beslemeli ağlar (feed forward networks) ve

(recurrent networks) olarak ayrılabilir.

Đleri beslemeli ağ topolojisi, bütün sinirleri yalnızca bir sonraki ağ katmanına

ve veri akışı yalnızca ileriye doğru giden yapay sinir ağı topoloji türüdür.

Türev işlemlerinin daha kolay hesaplanmasını sağladığı için diğer topolojilere göre

daha çok kullanılır ve yapay sinir ağı denildiğinde genellikle akla ilk gelen topolojidir.

örnek bir ileri besleme ağı topolojisini gösterir.

Şekil 2.6: Đleri Besleme Yapay Sinir Ağı [9]

inirleri arasında aynı katmanda ya da bulunduğu katmanlardan daha

geride bulunan sinirlere bağları olanlar varsa ağ bir devirli yapay sinir ağ

sinir ağının yapısına (topolojisine) göre yapılır.

topolojiler ileri beslemeli ağlar (feed forward networks) ve devirli ağlar

ütün sinirleri yalnızca bir sonraki ağ katmanına

inir ağı topoloji türüdür.

Türev işlemlerinin daha kolay hesaplanmasını sağladığı için diğer topolojilere göre

akla ilk gelen topolojidir.

inirleri arasında aynı katmanda ya da bulunduğu katmanlardan daha

yapay sinir ağıdır.

16

2.1.6.2 Yapay sinir ağlarında eğitim

Yapay sinir ağlarının eğitiminde gözetmenli, gözetmensiz ya da desteklenmiş eğitim

yöntemleri kullanılır. Gözetmenli yapay sinir ağları, geri yayılım (back-propagation)

kullanılarak yapay sinir ağının çıktılarının toplam hatasını azaltmaya çalışır. Bunun

için ilk yapılması gereken şey bir hata fonksiyonu seçmektir. Hata fonksiyonu olarak

karesel ortalama fonksiyonu uygundur. Denklem 2.8 toplam n adet eğitim çifti içeren

eğitim kümesi ile eğitilen, çıkış vektörü o, hedef vektörü t olan bir yapay sinir ağının

karesel ortalama hatasını ortaya koymaktadır.

- � � ./0 1 20.*30�� (2.8)

Yapay sinir ağlarının eğitim problemi, bu hata değerinin minimize edilmesidir. Hücre

çıkışlarını belirleyen etkinleştirme fonksiyonları sürekli ve türevlenebilir

fonksiyonlardan seçildiği, hücre çıkışlarının kendi girişlerine ait ağırlıklarına bağlı

olduğundan ve eğitimde değiştirilebilinecek tek parametre hücre girişlerinin

ağırlıkları olduğundan E gradyan indirgeme (gradient descent) yöntemi ile sıfıra

yakınsayabilir [10]. Denklem 2.9a gradyan indirgeme yöntemi ile toplam 4 adet

ağırlık değeri bulunan bir yapay sinir ağındaki E hatasını mimimize etmek için ilgili

ağırlık değerine eklenmesi gereken farkı göstermektedir. Denklemdeki γ değeri

önceden belirlenmiş bir eğitim sabitidir. [11]

5- � � �6�78 � 9697: � ; � 9697<� (2.9a)

=�0 � 1> � 9697? (2.9b)
�0�2 @ A� � �0�2� @ =�0 (2.9c)

Gözetmensiz eğitimde yapay sinir ağına giriş çıkış çiftleri verilmez. Onun yerine sinir

ağı verilen girişlere çıktılar üretir ve çıktının hatasını kendisi tahmin etmeye

çalışabilir [12]. Gözetmensiz eğitimin sık kullanıldığı amaçlar arasında sınıflandırma,

istatistiksel dağılım çözümleri, sıkıştırma ve süzme (filtreleme) bulunur.

17

Desteklenmiş eğitim, hem gözetmenli eğitimi hem de gözetmensiz eğitimi andırır.

Desteklenmiş eğitimde yapay sinir ağına girdi-çıktı çiftleri verilmez, ancak sinir

ağının verdiği çıktıya göre bir “ödül” ya da “ceza” verilerek arzulanan hedefe

yaklaşması sağlanır. Yapay sinir ağı, ödülü arttırmak ya da cezayı azaltmak için

hücreler arası ağırlıklarda güncellemelerde bulunur.

2.1.7 Bulanık mantık

Bulanık mantık sistemleri, çözülmesi istenen problemlerin uzmanlarına ya da bilgi

bankalarına başvurularak oluşturulan eğer-ise (if-then) kurallarının sürekli üyelik

fonksiyonları ve bu fonksiyonlarla ilişkilendirilen dilsel sözcüklere dayanır. Şekil 2.7

bir Tsukamoto bulanık sistemin bileşenlerini göstermektedir.

Şekil 2.7: Tsukamoto Modeli Bulanık Sistem Çizelgesi

Bir başka bulanık model olan Sugeno modelinde ise durulama olmaz; çünkü Bulanık

Çıkartım Motorunun çıkış değeri duru değerlerdir.

18

2.1.7.1 Bulanık kural tablosu

Bulanık kural tablosu bulanık çıkartım motorunun çalışmasını belirleyen eğer-ise

kurallarından oluşan bir tablodur. Tablodaki kurallarda bulunan “eğer” ifadeleri, dilsel

sözcükler barındırır. Tablo 2.1 olası bir Tsukamoto modeli araç durdurma sisteminin

olası bulanık kural tablosunun bir bölümünü ortaya koymaktadır.

Tablo 2.1: Örnek Tsukamoto Bulanık Kural Tablosu

HIZ HIZLANMA
UYGULANACAK

FREN MĐKTARI

Çok düşük Sıfır Çok az

Düşük Sıfır Az

Orta Sıfır Orta

Aynı sistemin Sugeno modeli kural tablosunun bir bölümü ise Tablo 2.2’de

verilmiştir. Çıkış verileri bulanık değil, duru değerlerdir.

Tablo 2.2: Örnek Sugeno Bulanık Kural Tablosu

HIZ HIZLANMA
UYGULANACAK

FREN MĐKTARI

Çok düşük Sıfır c1 * V+d1

Düşük Sıfır c2 * V+d2

Orta Sıfır c3 * V+d3

2.1.7.2 Bulanıklaştırma

Bulanıklaştırma, kesin değerleri bulanık çıkartım motorunun anlayacağı duruma

getirmek anlamına gelir. Bulanıklaştırma işi, bulanık kural tablosunda belirlenen

girdilerin sayısında ve tepe değerleri 1 olan sürekli üyelik fonksiyonları

tanımlamaktır. En sık kullanılan üyelik fonksiyonları gauss, üçgen ve yamuk sürekli

fonksiyonlarıdır. Her bir üyelik fonksiyonu giriş uzayının belirli değerleri arasına

hâkimdir ve üyelik fonksiyonunun tanımlı olduğu aralığa dilsel olarak anlamlı bir ad

verilir. Şekil 2.8, 5 adet üyelik fonksiyonu içeren ve bir aracın hızını bulanıklaştıran

bir bulanıklaştırma örneği göstermektedir.

19

Şekil 2.8: Bulanık Üyelik Fonksiyonları [13]

Şekil 2.8’deki örnekte giriş değeri -0,2 olan bir araç hem PS (positive-small) hem de

Z (zero) hem de NS (negative-small) üyeliklerine dâhildir.

2.1.7.3 Bulanık çıkartım motoru

Bulanık çıkartım motoru, sistemin çıkışını kurallar tablosuna dayanarak ortaya

çıkartma işini üstlenir. Çıkışı yine bulanık bir sonuç kümesi olan bulanık çıkartım

motorunun işi iki aşamadan oluşur.

Đlk aşama olan toplama (aggregation), kural tablosunun “eğer” kısımlarını hesaplar.

Birden fazla üyelik fonksiyonunun üyeliğine giren değerler için değerlerin minimumu

(MIN çıkartım motoru), çarpımı (PROD çıkartım motoru) ya da belirlenen başka

fonksiyonlar kullanılabilir.

Đkinci aşama olan birleştirme (composition) ise kural tablosunun “ise” kısımlarındaki

değerleri hesaplar. Birden fazla üyelik fonksiyonunun üyeliğine giren çıkış değerleri

için değerlerin en büyüğü (MIN çıkartım motoru), toplamı (PROD çıkartım motoru)

ya da belirlenen başka fonksiyonlar kullanılabilir.

Đkinci aşamanın sonunda, durulanacak olan değerler

karşılık düştüğü çıkış üyelik fonksiyonlarının birleştirme aşamasından çıkan

birleşimleridir.

2.1.7.4 Durulama

Durulama aşaması, bulanık

birleşiminin tekil ve net bir değer olarak ortaya

motorundan elde edilen

verilmiştir.

Şekil 2

20

için değerlerin en büyüğü (MIN çıkartım motoru), toplamı (PROD çıkartım motoru)

belirlenen başka fonksiyonlar kullanılabilir.

Đkinci aşamanın sonunda, durulanacak olan değerler, sisteme verilen girişlerin

karşılık düştüğü çıkış üyelik fonksiyonlarının birleştirme aşamasından çıkan

Durulama aşaması, bulanık çıkartım motorundan gelen üyelik fonksiyonları

tekil ve net bir değer olarak ortaya koyulduğu aşamadır.

motorundan elde edilen çıkış üyelik fonksiyonları birleşimine bir örnek Ş

2.9: Bulanık Çıkış Üyelik Fonksiyonları Birleşimi [1

için değerlerin en büyüğü (MIN çıkartım motoru), toplamı (PROD çıkartım motoru)

, sisteme verilen girişlerin

karşılık düştüğü çıkış üyelik fonksiyonlarının birleştirme aşamasından çıkan

çıkartım motorundan gelen üyelik fonksiyonları

koyulduğu aşamadır. Çıkartım

iyonları birleşimine bir örnek Şekil 2.9’da

[14]

21

Birleşim kümesinden duru ve net bir değer çıkartmanın yine birden fazla yolu vardır.

Bunlardan bazıları maksimumların merkezi (CoM – center of maximum), ağırlık

merkezi (CoA – center of area), maksimum ortalama (MoM – mean of maximum)

yöntemleridir.

Bulanık mantık sistemleri özellikle kontrol alanında yaygınlaşan bir kullanım alanına

sahiptir.

2.1.8 Bulanık sinir ağları

Uyarlanabilir Ağ Yapılı Bulanık Çıkartım Sistemleri (ANFIS – Adaptive Neuro-Fuzzy

Inference System) ya da kısaca Bulanık Sinir Ağları, standart Bulanık Çıkartım

Sistemlerinin Yapay Sinir Ağı Modeline oturtulmuş biçimidir. Sistem, başlangıçta

tanımlanmış bir bulanık Sugeno ya da Tsukamoto modelinin çıkışlarını üretecek bir

ağ yapısı ile tanımlanır ve bulanık modelin üyelik fonksiyon parametreleri, yapay

sinir ağlarında kullanılan eğitim yöntemleri ile güncellenir. [13]

2.1.8.1 Bulanık model ve ilişkin ağ yapısının çıkarımı

Yukarda da belirtildiği gibi, ANFIS yapısı önceden tanımlanmış olan bir bulanık

çıkartım modelinin çıkışını verecek bir yapay sinir ağı yapısındadır. Örnek bir iki

girişli ve iki kurallı Sugeno sistemi ve ona ilişkin bulanık kurallar Tablo 2.3’te, ilişkin

ANFIS sistemi Şekil 2.10’da verilmiştir:

Tablo 2.3: ANFIS Bulanık Kural Tablosu

Girişler: x y

Üyelik Fonksiyonları: A1 , A2 B1 , B2

Kurallar: Eğer x A1 ve y B1 ise f1 = p1(x) + q1(y)+r1

Eğer x A2 ve y B2 ise f2 = p2(x) + q2(y)+r2

2.1.8.2 Bulanık ağ y

ANFIS yapısında her katman bir sonraki katmana bağlıdır ve her katmanda bulanık

sistemin işleyişinin farklı bir adımı gerçeklenir.

1. katmandaki hücreler giriş değerlerinin üyelik fonksiyonları çıkışlarını verir. (

A1(x) ve A2(x) , y için B

2. katmandaki hücreler PI hücreleri olarak adlandırılır ve çıkış olarak kendisine gelen

bütün sinyallerin aritmetiksel çarpımını verir.

�0 � B0��� � C0���

wi değerleri, işlenen kuralın tetik değer

3. katmandaki hücreler N hücreleri olarak adlandırılır ve normalize edilmiş tetik

değerlerini üretir: i’nci N hücresi için;

22

Şekil 2.10: ANFIS Mimarisi

yapısının katmanları ve işlevleri

ANFIS yapısında her katman bir sonraki katmana bağlıdır ve her katmanda bulanık

sistemin işleyişinin farklı bir adımı gerçeklenir.

1. katmandaki hücreler giriş değerlerinin üyelik fonksiyonları çıkışlarını verir. (

(x) , y için B1(y) ve B2(y))

2. katmandaki hücreler PI hücreleri olarak adlandırılır ve çıkış olarak kendisine gelen

bütün sinyallerin aritmetiksel çarpımını verir. i’nci PI hücresi için;

işlenen kuralın tetik değeri olarak adlandırılır.

3. katmandaki hücreler N hücreleri olarak adlandırılır ve normalize edilmiş tetik

nci N hücresi için;

ANFIS yapısında her katman bir sonraki katmana bağlıdır ve her katmanda bulanık

1. katmandaki hücreler giriş değerlerinin üyelik fonksiyonları çıkışlarını verir. (x için

2. katmandaki hücreler PI hücreleri olarak adlandırılır ve çıkış olarak kendisine gelen

(2.10)

3. katmandaki hücreler N hücreleri olarak adlandırılır ve normalize edilmiş tetik

23

�DEEE � 7?� 7 (2.11)

4. katmandaki hücreler her bir kuralın giriş değerlerine göre çıkışını hesaplar ve 5.

katmana normalize edilmiş ağırlığı ile bu fonksiyon çıkışının aritmetik çarpımını iletir.

i’nci hücre için;

�DEEE � F0 � �DEEE � �G0 � � @ H0 � I0� (2.12)

5. katman SĐGMA adı verilen tek bir hücreden oluşur ve bütün 4. katman çıkışlarının

aritmetiksel toplamını döndürür.

F � � �DEEE � F0 � � 7?�J?� 7? (2.13)

Tablo 2.3 verilmiş olan Sugeno modelini Denklemler (2.10 – 2.13) ile tamamen

gerçekleyen bir ANFIS yapısı böylece tanımlanmış olur. f çıkış değerine dikkat

edilecek olursa ağırlıklı ortalama yöntemi kullanılmış bir Sugeno sisteminin çıkış

fonksiyonuna eşit olduğu görülebilir.

2.1.8.3 Bulanık ağlarda eğitim

Elde ettiğimiz yapının uyarlanabilirliği, bu yapının eğitimi ile mümkün olmaktadır.

Örnek ANFIS yapısının çıkış denklemini bir tümevarım için kullanalım:

F � 7878�7: � F� @ 7:78� 7: � F* (2.14a)

� ��EEEE � �G�� @ H�� @ I�� @ �*EEEE � �G*� @ H*� @ I*� (2.14b)

� ���EEEE��G� @ ���EEEE��H� @ ���EEEE�I� @ ��*EEEE��G* @ ��*EEEE��H* @ ��*EEEE�I* (2.14c)

24

Denklemi, f çıkışının pi, qi ve ri sonuç/doğrusal (consequent) değişkenleri üzerinde

doğrusal olduğunu gösterir. Bulanık Sugeno sisteminin diğer parametreleri de

(üyelik fonksiyonlarına ait parametreler) koşul/doğrusal olmayan (premise)

değişkenler olarak adlandırılır.

Eğitim işleyişi temel olarak iki aşamaya ayrılabilir: Đlk aşama, ileri geçişte (forward

pass), mevcut bulanık sistemde 4. katmana kadar olan çıkışlar hesaplanır ve bu

noktada doğrusal parametreler LS yöntemi kullanılarak güncellenir. Đkinci aşama,

geri geçişte (backward pass), bulanık sistem çıkışının hata sinyalleri geri

döndürülerek gradyan azaltımı yöntemi ile doğrusal olmayan parametreler

güncellenir. Bu eğitim yöntemine karma eğitim (hybrid learning) adı verilmiştir.

2.1.8.4 Đleri yayılım ve LS yöntemi

LS yöntemi genel olarak,

� � ��F��K� @ �*F*�K�@L L L @�3F3�K� (2.15)

Şeklinde tanımlanan sistemlerde m ≥ n adet bilinen giriş – istenen çıkış ikilisi

kullanarak sistemi en az hata ile yansıtan θ bilinmeyen parametrelerini bulmak için

Denklem (2.16-2.17d) tanım ve denklemleri kullanır:

() () ()
() () ()

() () ()









=+++

=+++

=+++

mnmnmm

nn

nn

yufufuf

yufufuf

yufufuf

θθθ

θθθ

θθθ

...

...

...

2211

22222121

11212111

M
 (2.16)

yA =θ , öyle ki; (2.17a)

25

B � M F��K�� ; F3�K��N O NF��KP� ; F3�KP�QPR3 (2.17b)
� � M��N�3Q3R� (2.17c)
� � M ��N�PQPR� (2.17d)

m > n olduğu koşullarda θ matrisinin tersi alınamayacağından tam duyarlı (sıfır

hatalı) bir sonuç ortaya konamayabilir. Bunun için Denklem 2.17a’ya bir hata

parametresi eklenir ve bu hatanın karesini en aza indirgeyecek bir θ̂ sütun vektörü

hesaplanır:

B� @ S � � (2.18a) S � � 1 B� (2.18b) -��� � �* STS � �* �� 1 B��T�� 1 B�� (2.18c)
969� � �* U1BT�� 1 B�� 1 BT�� 1 B��V � 1BT�� 1 B�� � W (2.18d) 1BT� 1 BTB� � W (2.18e) �X � �BTB�,�BT� (2.18f)

LS yöntemi ANFIS sistemin ileri geçişine uygulanırken bilinen parametreler olarak

iw , xi ve yi alınırken; pi, qi ve ri parametrelerinin uygun değerleri aranır. Diğer bir

deyişle A matrisi iw , xi ve yi parametrelerini içeren m x n boyutlarında bir matris, θ

de; pi, qi ve ri doğrusal parametrelerini barındıran n x 1 lik bir sütun vektörüdür.

26

2.1.8.5 Geriye yayılım ve gradyan indirgemesiyle eğitim

Gradyan indirgemesi ile eğitim yöntemi, yapay sinir ağlarında sık kullanılan bir

eğitim yöntemidir. Temelde amaç, yapay sinir ağından elde edilen çıkışın hatasının

karesini hata fonksiyonunun yapay sinir ağı parametrelerine göre türevini sıfırlayarak

en aza indirmektir. Yapay sinir ağlarında bu parametreler sinir hücrelerine gelen

sinyallerin ağırlıkları iken ANFIS sistemlerde Denklem 2.14a’da belirtilmiş olan koşul

parametrelerdir. Denklemler (2.19a-2.20), karesel hatanın ve bu hatanın gradyan

indirgemesi kullanılarak geriye yayılımının hesabını vermektedir.

S � �Y Z 1 F

 (2.19a) - � �* S* (2.19b)

[��� � [� 1 \ 969]$ (2.20)

Denklem 2.20’de, α sayıları ANFIS sistemin koşul değişkenlerinin her birini temsil

etmektedir. Denklem 2.14a’ya dayanarak Denklem 2.20’deki türevin wi değerlerine

bağlı olduğu söylenebilir. Bir adım daha ileriye gidilirse Denklem 2.10’un da wi

değerlerinin de girişlerin üyelik fonksiyonlarına bağlı olduğu görülür. Açıktır ki, üyelik

fonksiyonları da kendi parametrelerine bağlıdır. Sonuç olarak Denklem 2.20, her bir

üyelik fonksiyonu üzerinde işletildiğinde bir sonraki eğitim adımında (epoch) hatayı

sıfıra biraz daha yaklaştıracak bir değere ulaşacaktır.

2.1.9 Genetik algoritmalar

Genetik algoritmalar, arama ve optimizasyon barındıran birer uyarlanabilir stokastik

optimizasyon algoritmasıdır. Genetik algoritmalar ilk kez 1975 yılında Holland

tarafından kullanılmıştır.

27

Temel fikir, doğal seçilimin basit bir örneğini işleterek verilen çözümler arasından en

iyi olanı seçmektir. Đlk aşama örnek çözümlerin mutasyonu ya da rastgele

değiştirilmesinden oluşur. Đkinci adım bir seçilim adımıdır ve genellikle doğal seçilimi

öykünen bir uygunluk fonksiyonunun değerlendirmesi eşliğinde yapılır. Bu iki adım,

en uygun çözüm bulununcaya kadar yinelenir [15].

Genetik algoritmalar, pek çok farklı uygunluk fonksiyonu ve çaprazlama yöntemi

kullansa da temel algoritma Ek – B’deki gibidir.

2.2 Eğitim yöntemleri

Öğrenme terimi psikolojide, bir varlığın davranışlarının verilen bir durumda ya da

verilen durumla birlikte yinelenen deneyimlerine bağlı olarak değişmesi olarak

tanımlanır. Yapay Zekâda, makine öğrenimi (ya da eğitimi) bir Yapay Zekâ

sisteminin başarımını zaman içinde arttırması olarak tanımlanabilir [16].

2.2.1 Hata güdümlü öğrenim

Hata güdümlü öğrenim, makinenin bir sorunu çözerken önce hatalar yapmasını ve

sonraki adımlarda bu hataları yinelememesini sağlamaktır. Bu öğrenim yöntemi,

insanların öğrenim yoluyla benzerlikler gösterir. Bir insan nasıl bir kere yaptığı bir

hatadan bir şeyler öğreniyor ve aynı hatayı ya da benzer hataları aynı ya da benzer

sorunları çözerken yapmıyorsa bir makine de benzer şekilde programlanabilir.

Đlk bakışta yapay sinir ağlarındaki “Gözetmenli Eğitim”e benzer gibi görünse de

aslında “Gözetmensiz Eğitim”e benzemektedir; çünkü gözetmenli eğitimdeki gibi

dışarıdan alınan eğitim verileri yoktur. Sistem kendi hata fonksiyonlarını kendisi

çıkartmak durumundadır.

28

2.2.2 Eğitici tarafından öğrenim

Eğirici tarafından öğrenim, makinenin hangi durumda nasıl davranması gerektiğinin

işin bir uzmanı tarafından makineye aktarıldığı öğrenim çeşididir. Örneğin bir

bilinmeyenli bir denklemi çözerken öğretici, makineye “bilinmeyenleri eşitliğin

soluna, bilinenleri sağına taşı” diyerek makineye sorunu çözebilmesi için yardım

edebilir. Buradaki temel sorun eğiticinin makineyle anlaşma yoludur.

2.2.3 Keşifle öğrenim

Keşifle öğrenim diğer öğrenim yöntemlerinden biraz daha farklıdır. Öğrenimin amacı

bir hedefe ulaşmak değil, yalnızca daha fazla bilgi sahibi olmak ve veri tabanındaki

kavram zenginliğini arttırmaktır. Makinenin yaptığı tek şey yeni bir şeyler

öğrenebileceği ilgi çekici bilgilerin bulunduğu kaynakları aramaktır. Eğitim sonu da

keşfedilecek hiçbir şeyin kalmadığı nokta değil, verilmiş görevlerle ilgili yeterince

bilgi sahibi olunduğu noktadır.

Makine, verilen görevleri bir “ilgi çekicilik” sıralamasına koyar ve bazı görevlerdeki

bazı bilgilere gerekli ilgi çekiciliğin altında kaldığından bakmaz. Đlgi çekicilik de yine

bir matematiksel fonksiyon olarak belirtilir ve keşifle öğrenmenin en büyük

sorunlarından biridir; çünkü çok iyi seçilmemiş bir ilgi çekicilik fonksiyonu makinenin

çok gerekli bilgileri görmezden gelmesine neden olabilir.

29

3 YAPAY ZEKÂ ÖRNEK UYGULAMALARI

3.1 Geliştirme Ortamı

Tic Tac Toe ve RPG oyun yazılımları Windows ortamında Microsoft’un .NET

Framework 2.0 kitaplıkları kullanılarak C# dili ile yazılmıştır. Yazılımın

çalıştırılabilmesi için Microsoft .NET Framework 2.0’ın bilgisayara kurulması

gerekmektedir. Yazılım Mono kitaplıkları üzerinde denenmemiştir.

3.2 Geliştirilen Oyunlar

3.2.1 Tic tac toe – bir zekâ oyunu

3.2.1.1 Oyunun ve kuralların tanımlanması

Tic Tac Toe, 3x3’lük bir tahtanın boş olan bir karesine, iki oyuncunun sırayla kendi

işaretlerini koymalarından oluşur. Dikey, yatay ya da çapraz üçlüyü tamamlayan

oyuncu oyunu kazanır. Eğer toplam 9 hamle sonunda hiç bir oyuncu bir üçlü

yapamazsa oyun berabere sonuçlanır.

3.2.1.2 Kullanılan yapay zekâ modeli

Tic Tac Toe,

• Sıra tabanlı,

• Tam bilgili,

• ve sıfır toplam bir oyun olduğu için makinelere MiniMax yöntemiyle oynatılabilir.

Tic Tac Toe, arama ağacında çok fazla düğüm içermeyeceğinden (toplam

362880) MiniMax algoritması yalın olarak kullanılmıştır.

büyütülmek istenirse yalın MiniMax çok yavaş kalabilir, zira

toplam düğüm sayısı

hem aramada daha zor olurlar

aramaları sınırlandırılmalıdır

Tic Tac Toe’da kullanılan oyun so

verilmiştir.

S � ^_`�G4a�SI� � U�b&c

Şekil 3.1’deki durumda bilgisayar önce Şekil 3.

ile işaretli alanlar o seferde yapılan hamleyi gösterir

• Đlk başlayan oyuncu bilgisayardır

• Bilgisayarın işareti çemberdir

olarak belirlenmiştir.

Şekil

30

Tic Tac Toe, arama ağacında çok fazla düğüm içermeyeceğinden (toplam

MiniMax algoritması yalın olarak kullanılmıştır. Eğer oyun tahtası

k istenirse yalın MiniMax çok yavaş kalabilir, zira 5x5’lik bir tahta için

toplam düğüm sayısı 15,5*1024 olur. Büyük ağaçlar makineler için hem saklamada

hem aramada daha zor olurlar, bu yüzden alfa-beta kesintileri gibi yöntemlerle ağaç

dırılmalıdır.

kullanılan oyun sonu değerlendirme fonksiyonu denklem

U�b&c�GdSeSf/K`2g`Bhd`S� � AWW� @ �i 1 `/jShS�S4

urumda bilgisayar önce Şekil 3.2’deki arama ağacını çıkartır. Kırmızı

ile işaretli alanlar o seferde yapılan hamleyi gösterir. Başlangıç koşulları,

Đlk başlayan oyuncu bilgisayardır

Bilgisayarın işareti çemberdir

Şekil 3.1: Örnek Bir Tic Tac Toe Oyun Durumu

Tic Tac Toe, arama ağacında çok fazla düğüm içermeyeceğinden (toplam 9! =

Eğer oyun tahtası

5x5’lik bir tahta için

. Büyük ağaçlar makineler için hem saklamada

beta kesintileri gibi yöntemlerle ağaç

nu değerlendirme fonksiyonu denklem 3.1’de

`/jShS�S4�V (3.1)

arama ağacını çıkartır. Kırmızı

. Başlangıç koşulları,

31

Şekil 3.2: Tic tac toe arama ağacı

Arama ağacında ilerlerken oyun sonunu getiren bir hamle bulunduğunda yukarıdaki

fonksiyon kullanılarak oyun sonu değerlendirmesi yapılır. Her bir ağaç seviyesinin

MAX ve MIN olduklarına bakarak ağaç, Şekil 3.3’te olduğu gibi aşağıdan yukarıya

doğru doldurulur:

Arama ağacında, MAX düğümleri k

MIN düğümleri kendi çocuklarının en küçük değerlerini alır. Doğru parçaları

yanlarındaki her sayı, o doğru parçası ile bağlanan düğümün (doğru parçasının

hemen altındaki düğümün) değeridir. Yukarıdaki durumda

olduğundan max(-301,300,

düğümü seçecektir; yani işaretini

Tic Tac Toe Oyunun karar mekaniz

verilmiştir.

32

Şekil 3.3: Arama Ağacının Doldurulması

Arama ağacında, MAX düğümleri kendi çocuklarının en büyük değerlerini alırken,

MIN düğümleri kendi çocuklarının en küçük değerlerini alır. Doğru parçaları

yanlarındaki her sayı, o doğru parçası ile bağlanan düğümün (doğru parçasının

hemen altındaki düğümün) değeridir. Yukarıdaki durumda, bilgisayar MAX oyuncusu

301,300,-301) fonksiyonunu işletip, 300 sonucunu veren ortadaki

düğümü seçecektir; yani işaretini tahtanın ortasına koyacaktır.

Tic Tac Toe Oyunun karar mekanizmasını ortaya koyan C# kodu EK

endi çocuklarının en büyük değerlerini alırken,

MIN düğümleri kendi çocuklarının en küçük değerlerini alır. Doğru parçaları

yanlarındaki her sayı, o doğru parçası ile bağlanan düğümün (doğru parçasının

, bilgisayar MAX oyuncusu

fonksiyonunu işletip, 300 sonucunu veren ortadaki

masını ortaya koyan C# kodu EK-C’de

33

3.2.1.3 Oyunun çalıştırılması ve arayüz

Oyun C# ile yazılmış bir Windows Form uygulamasıdır. Oyunun gereksinimleri kendi

çalıştırılabilir (.EXE) dosyası ve KONTROLLER.DLL dosyasıdır. Oyun çalıştırıldığı

zaman Şekil 3.4 ile gösterilen ekran ile karşılaşılır.

Şekil 3.4: Tic Tac Toe Açılış Ekran Görüntüsü

Menü çubuğundaki düğmelerden “Oynat Uğurcuğum” hamle sırasının bilgisayarda

olduğunu belirtir, ancak ilk hamleyi insan oyuncu yapmalıdır. Bunun amacı

başlangıçtaki arama ağacının bir nebze olsun küçültülmesidir.

Đkinci düğme “Yeni Oyun” düğmesi, mevcut oyunu sonlandırır ve oyun tahtasını

temizler.

Oyuncu, istediği alana sol faresi ile tıklayarak işaretini koyabilir. Programın yapay

zekâsının biraz daha özel durumlarda sınanabilmesi için sağ fare tuşu kullanılarak

istenilen yere bilgisayarın işareti konulabilir. Bilgisayarın hamle yapması istendiğinde

“Oynat Uğurcuğum” düğmesine basılmalıdır. Böylece program, arama ağacı

oluşturup MiniMax algoritmasını işletir.

34

3.2.2 RPG – bir çatışma oyunu

3.2.2.1 Oyunun ve kurallarının tanımlanması

RPG, “Role Playing Game”in kısaltılmış halidir ve oyun yapı itibariyle tam bir oyun

olmaktan çok, yapay zekâlı RPG oyunları için bir yazılım kitaplığı (framework)

şeklindedir.

RPG, aslında bir oyun tarzı adıdır. RPG tarzı oyunlarda oyuncular kendilerine bir

karakter yaratıp, karakterleri ile hayali bir dünyada geçen bir maceraya atılırlar. RPG

tarzı oyunların önemli bir bölüm John Ronald Reuel Tolkien’in kitaplarında anlattığı

“Orta Dünya”ya benzeyen diyarlarda geçer. Tolkien tasvirlerine dayanan RPG

oyunlarına genellikle FRP (Fantasy Role Playing) adı verilir ve FRP oyunlardaki

ırklar Tolkien’in Orta Dünya’sı ile büyük benzerlikler taşır.

3.2.2.1.1 Oyunla ilgili genel bilgiler

Söz konusu oyunun tanımlanması için öncelikle RPG tarz oyunlara özgü bazı

terimleri açıklığa kavuşturmak gerekmektedir:

3.2.2.1.1.1 Terimler

AC: Armor Class. Bir yaratığın üzerindekilerin (kendi teni de dahil) onu saldırılara

karşı koruma gücü. -10 ile +10 arası bir değer alır ve düşük AC alınacak darbelerin

sayısını azaltır.

HP: Hit Point. Bit yaratığın arda kalan toplam can puanları sayısı. Yaratığın aldığı

her bir darbe can puanlarından belirli bir miktar götürür ve can puanları sıfır ya da

sıfırdan küçük olursa yaratık ölmüştür.

Parti: Aynı amacı güden oyuncular topluluğudur. RPG tarzı oyunlar genellikle bir

parti yaratığın başından geçen olaylar olarak anlatılır.

35

THAC0: To Hit Armor Class Zero. Ham vuruş şansı değeri, yani AC’si sıfır olan bir

yaratığa vuruş şansı değeri. 1ile 20 arası bir değerdir ve silah ile kullananın

uyumuna göre değişir. Usta bir dövüşçüsünün iyi kullandığı bir silahta THAC0 değeri

düşüktür, yani düşük THAC0 vuruş olasılığını arttırır.

Yaratık: Bilgisayar ya da insan, oyunun hikâyesinde yer alan, herhangi bir eylemi

gerçekleştirebilen varlıklardır. Yaratıklar, oyunda insan ırkından olabileceği gibi

cüce, elf, hatta ejderha ve köpek olabilir.

3.2.2.1.1.2 Kurallar

RPG tarzı oyunlarda karakterlerin birbirleriyle ve çevrelerindeki dünya ile

etkileşimlerinin önemli bir bölümü zarlar aracılığıyla yapılır. Genel olarak bir eylemin

gerçekleştirilebilmesi için 1-20 arası bir zorluk zarı vardır. Eylemi gerçekleştirmek

isteyen oyuncu (yaratık) bir 20 yüzlü zar atar, eğer eyleme ilişkin avantaj ya da

dezavantajları varsa atılan zara artı ya da eksi olarak yansıtılır ve eğer sonuç zorluk

zarının değerinden büyükse oyuncu eylemi gerçekleştirebilir. Örneğin, AD&D II

kurallarında (Advanced Dungeons and Dragons II – bir FRP oyun kural kümesi,

oyunumuzda kullanılan kurallar) bir başka yaratığa saldırı esnasında vurmak için

atılan 20’lik zar, oyuncunun ham vuruş şansı değerinden büyük olmalıdır. Eğer

vuruş başarılı olursa, bu kez de saldırganın vereceği zararı ortaya koymak için

saldırganın silahının vuruş gücüne bakılır. Örneğin 2d4 bir sopa için iki kez dörtlük

zar atılarak verilecek zarar bulunur ve savunan taraftan bu değer kadar (en az 2, en

çok 8) can puanı (HP) eksiltilir. Benzer şekilde vuruş gücü 1d6 olan bir kısa kılıcın

vereceği zar 1-6 HP, 2d5 olan bir geniş kılıcın vuruş gücü ise 2-10 HP arasıdır.

3.2.2.1.1.3 Oyunun tanımlanması

RPG, an itibariyle 8x8 bir tahta üzerinde iki düşman partinin karşılaşması ve

birbirleriyle savaşmaları şeklinde geçmektedir. Partilerin birbirlerinin düşmanlığından

haberdar olmaları, her bir oyuncunun ayrı ayrı kime saldıracağını ortaya koymaları

ise yapay zekâ ile gerçeklenmiştir.

36

Oyun başladığında yaratıklar rasgele yerlere konuşlanırlar ve her “Next Move”

düğmesine basıldığında yaratıklar bir sonraki adımlarını hesaplarlar.

Yapay zekâ motoru her oyuncuyla ayrım gözetmeksizin ayrı ayrı oynayarak en iyi

hamleyi bulmaya çalışır ve en iyi olarak değerlendirdiği hamleyi yapar.

Oyun, partilerden herhangi birinin yaratıkları tamamen ölünceye kadar, yani HP

değerleri sıfır ya da daha küçük kalana kadar sürer.

3.2.2.2 Oyunun çalıştırılması ve arayüzü

RPG, C#.NET ile yazılmış bir Windows Form uygulamasıdır ve UI.EXE dosyası

çalıştırılarak başlatılır. Oyunun yapay zekâsı her bir oyuncunun parametrelerini

atamak için bir XML dosyasına gereksinim duyar. Bu XML dosyasının adı

AI.CONFIG.XML olmak durumundadır. Örnek bir yapılandırma dosyası EK-D’de

bulunabilir. Eğer bir bilgisayar oyuncusu için değer ataması yapılmamışsa, program

bu değerlere toplamları A edecek şekilde rastgele değerler atar.

Program çalıştırıldığında ekrana gelen görüntü Şekil 3.5’teki gibidir.

37

Şekil 3.5: RPG Açılış Ekran Görüntüsü

Ekranda görülen büyük alan, 8x8 boyutlarındaki çatışma alanını temsil eder ve

üzerindeki her portre bir oyuncuyu belirtir.

Çatışma alanının sağındaki metin kutusu, programın bildirilerinin yazıldığı ileti

kutusudur.

Đleti kutusunun hemen altındaki “Next Move” düğmesi, programa bir sonraki eli

oynamasını söyler.

Kullanıcı “Next Move” düğmesine her bastığında program her bir oyuncu için bir

sonraki hamleyi hesaplar ve çatışma alanını yeniden çizer. Partilerden birisine ait

bütün oyuncular öldüğünde oyun biter ve “Next Move” düğmesi işe yaramaz.

38

3.2.2.3 Kullanılan yapay zekâ

RPG,

• Eksik bilgili (karşıdaki oyuncuya vurma olasılığı ve verilen zarar gibi rastgele

unsurlar içeren)

• Sıra tabanlı

• Sıfırdan farklı toplam bir oyundur.

Ayrıca, RPG’de amaç oyundaki duruma göre değişkendir. Bu yüzden, daha önce

bahsedilmiş olan MiniMax yöntemi ile bir çözüme varmak çok zorlaşır. Bu belgede

sunulan çözüm, geleneksel çözümlerle ortak noktası bulunan bir başka çözümdür.

3.2.2.3.1 Karar mekanizmaları

3.2.2.3.1.1 RPG’nin karar mekanizması

RPG’de bilgisayarın yapacağı eylemi belirleyen sonlu durum makinesi an itibariyle

Şekil 3.6’daki gibidir:

Başla

Saldır

Eylem

Yok

Düşman var

El sonu

Düşman

yok

El sonu

Şekil 3.6: RPG Karar Sonlu Durum Makinesi

39

3.2.2.3.1.2 Durumlar

Başla: Başlangıç için durum ve yapay zekânın her elin başında bulunduğu durum.

Saldır: Saldırılacak düşmanın seçildiği ve saldırıldığı durum.

Eylem Yok: Herhangi bir eylemin gerçekleştirilmediği durum.

3.2.2.3.1.3 Saldırılacak düşmanın seçilmesi:

Oyunda her oyuncu, kendi sırası geldiğinde bir başka yaratığa saldırır. RPG’de

yapay zekâ, saldırılacak düşmanı seçerken her bir düşman için aşağıdaki

parametreleri hesaplar:

α: Hedef yaratığın durumu için önceden belirlenmiş bir değer. Varsayılan değerler

Denklem 3.2’de verilmiştir. Çatışma ve normal α değerlerinin sayısal değerlerinden

çok oranları önemlidir. Burada da alınan değerlerde, çatışma halindeki bir rakibin

ağırlığının, çatışmayla ilgilenmeyen bir rakibinkinden iki kat fazla olması

amaçlanmıştır

[0 � k WLl� jKIKm0 � na2opmaWLql� jKIKm0 � `/Ima4 r (3.2)

β: Eldeki silahın maksimum vuruş gücüne göre hedef yaratığı öldürmek için geçmesi

gerekecek el sayısıdır ve Denklem 3.3’te verilmiştir. Denklem 3.3’teki π sayısı,

eldeki silahın maksimum vuruş gücü, ρ ise oyuncunun el başına vuruş hakkı

sayısını belirtir.

HPi ve HPoyuncu: Sırasıyla i. rakibin ya da sırası gelen oyuncunun kalan can puanı

miktarı.

s0 � tu?v �w (3.3)

40

γ: Hedef yaratığın yaptığı saldırılarda kaybedilmiş can puanları toplamı.

ε: Hedef yaratığın son saldırısından dolayı kaybedilen can puanı miktarı.

θ: Hedef yaratığın kontrol edilen yaratığa olan uzaklığı ile kontrol edilen yaratığın

elindeki silahın menzili. Eğer hedef yaratık menzil içiyse sıfır. Denklem 3.4a’daki δ

değeri iki oyuncu arasındaki mesafenin silah menzilinden farkını, dist fonksiyonu, iki

oyuncu arasındaki mesafeyi, φ ise mevcut silahın menzilini göstermektedir.

	0 � jd^2�/�K`eK� d� 1 � (3.4a) �0 � b&c �W� 	0� (3.4b)

µ: Kontrol edilen yaratığın kalan can puanları miktarının ε’a oranı.

x0 � tuyz{|"{}? (3.5)

Bu parametreleri kullanarak ortaya konan skor her bir düşman yaratık için

hesaplanır ve en yüksek skora sahip yaratığa saldırılır. Skor hesaplaması

Denklemler (3.6-3.11)’de gösterildiği şekilde yapılır. Denklem 3.11’de s, skoru

belirtir.

a0 � ~] � [0 (3.6) _0 � ~� � >0 (3.7) m0 � ~� � x0 (3.8) �0 � ~� � ��? (3.9)
20 � ~� � ��? (3.10)
^0 � a0 @ _0 @ m0 @ �0 @ 20 (3.11)

41

3.2.2.4 Yapay zekâ’nın eğitimi

Yapay Zekâ’nın hangi düşmana saldıracağını belirlediği skor fonksiyonun tanımı

Denklem (3.6-3.11)’de verilmiştir. Bu fonksiyonun genelleştirilmiş ve açılmış hali

Denklem 3.12’de verilmiştir.

~� � �0�� @ ~* � �0�* @ ~� � �0�� @ ~� � �0�� @ ~� � �0�� � ^e/IS0 (3.12)

Toplamda ` adet düşmanı olan bir yaratığın en yüksek skor en üstteki olmak üzere

oluşturacağı skor tablosu Denklem 3.13’teki gibidir (scorei yerine kısaltmak için si

yazılmıştır).

~� � ���� @ ~* � ���* @ ~� � ���� @ ~� � ���� @ ~� � ���� � ^� ~� � �*�� @ ~* � �*�* @ ~� � �*�� @ ~� � �*�� @ ~� � �*�� � ^* N ~� � �3�� @ ~* � �3�* @ ~� � �3�� @ ~� � �3�� @ ~� � �3�� � ^3 (3.13)

Bu denklemlerin matris formu ise Denklem (3.14a-3.14b)’de verilmiştir.

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��
� �

���
��~�~*~�~�~����

�� �
���
���
^�^*^�^�N̂3���

��� (3.14a)
� � ~ � ^ (3.14b)

42

Yapay Zekâ’nın eğitiminin temelinde saldırılacak yaratığın deneme-yanılmayla

bulunmaya çalışılmasıdır. Bunun için algoritma, her bir yaratığın si değerinin diğer

değerlerden daha yüksek olmasını sağlamak durumundadır. Bunu sağlamak için her

bir yaratık için; yaratığın si değerini, bilinen ki’lerce en yüksek kılınan skor olan s1 ile

0’dan büyük ama 0’a çok yakın bir δ değeriyle toplamına eşitleyip Denklem

3.14a’den yeni bir s vektörü oluşturulur. Bu vektörün s2’ye göre yapılmış durumu

Denklemler (3.15a-3.15b) ile gösterilmiştir.

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��

� �
���
���
~*8 ~*:~*�~*�~*� ���

��� �
���
���

^�^� @ 	^�^�N̂3 ���
��� (3.15a)

� � ~* � ^* (3.15b)

Yeni denklemde s2 vektörünün 2. satırdaki değerin en yüksek değer olacağı aşikâr

olduğu için skor fonksiyonunun katsayıları Denklem 3.15b’de verilen k2 vektörünü

skor listesinde zirveye taşıyacaktır. 2. satırdaki değerlere sahip olan yaratığı ilk

saldırılacak yaratık kılacak skor fonksiyonu ağırlıklarını oluşturan sayılardan oluşan

k2 vektörünü elde etmek için Denklemler (3.16a-3.16b) kullanılır.

�,� � � � ~* � �,� � ^* (3.16a) ~* � �,� � ^* (3.16b)

Denklem 3.16b, X matrisinin kare matris olmadığı durumlarda kare olmayan

matrisler birer tekil matris olduğu için kullanılamaz. Bu yüzden Denklem 3.16b

genelleştirilmelidir. Kare olmayan matrisler içeren denklemlerde matris sözde ters

(Moore-Penrose tersi) ile bulunur. K2 vektörünü yalnız bırakmak için denklemin her

iki tarafı da soldan X matrisinin sözde tersi ile çarpılır. Sözde ters ile X matrisinin

çarpılmış durumu Denklemler (3.17a-3.17b)’de gösterilmiştir.

43

�� � � � ~* � �� � ^* (3.17a) ~* � �� � ^* (3.17b)

Moore-Penrose tersi; -kare olsun olmasın- her matris için mevcuttur ve matrisin –

eğer varsa- gerçek, soldan ya da sağdan tersini verir. Bir matrisin Moore-Penrose

tersi, o matrisin tekil değer ayrışımından yola çıkılarak bulunur [17]. m x n

boyutlarındaki bir A matrisinin tekil değer ayrışımı Denklem 3.18’de verilmiştir.

B � � � � � �� (3.18)

Denklemde; U, m x n boyutlarında bir üniter matris, V* n x n boyutlarında üniter bir

matris olan V’nin tümleyen (konjuge) transpozesi, D ise m x n boyutlarında, köşegen

üzerinde sıfırdan büyük sayılar içeren, köşegen dışındaki sayıları sıfır olan bir

matristir. V ile U matrisleri birbirlerine göre ortonormaldir.

A matrisinin Moore-Penrose tersi, Denklem 3.19’da verilmiştir.

B� � � � �� � �� (3.19)

Denklem 3.17b kullanılarak K2 vektörü çözüldükten sonra oyun yapay zekâ

tarafından K2 vektörünün elemanları yeni katsayılar olarak alınarak baştan sona

kadar oynanır. Oyunun başlangıç koşulları yazılımın yapılandırma dosyasında

belirlenmiştir. Oyun sona erdiğinde yapay zekâ’nın K2 vektörüyle elde ettiği başarıyı

belirlemek için bir değerlendirme fonksiyonu kullanılır. Örnek bir değerlendirme

fonksiyonu denklem 3.20’de verilmiştir. HPparti1, eğitilen yapay zekâ oyuncusunun

partisinde bulunan yaratıkların (dostların) can puanlarını belirtirken HPparti2, karşı

partide bulunan yaratıkların (düşmanların) can puanlarını belirtir.

-* � � �����Z0 � 1 � �����Z0 * (3.20)

44

Eğitimin bir sonraki adımında, eğitim başlangıcındaki skor listesine göre 3. sırada

olan yaratığın skoru en yükseğe taşınmaya çalışılır. Bunun için de Denklem

3.15a’ya benzer bir denklem olan Denklem 3.21a oluşturulur.

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��
� �

���
���
~�� ~�*~��~��~�� ���

��� �
���
���

^�^*^� @ 	^�N̂3 ���
��� (3.21a)

� � ~� � ^� (3.21b)

k3 vektörünü çözümlemek için yine Moore-Penrose tersi yöntemi kullanılır ve

denklem 3.22b elde edilir.

�� � � � ~� � �� � ^� (3.22a) ~� � �� � ^� (3.22b)

Yapay zekâ, skor fonksiyonu katsayılar olarak k3 vektörünün elemanlarını kullanarak

oyunu baştan sona oynar ve oyun sonunda Denklem 3.23 ile E3 değerini elde eder.

-� � � �����Z0� 1 � �����Z0* (3.23)

Değerlendirme fonksiyonu değerlerinin en büyüğü olan değeri sağlayan k vektörü

eğitimin en iyi değeri olarak kabul edilir. Eğitimin algoritma akış çizelgesi Şekil 3.7’de

verilmiştir.

45

Başla

d � W

�0 � �� � �0

i. düşman için yeni skor katsayılarını

hesapla

-0 � � �����Z0� 1 � �����Z0*

i. düşman için oyun sonu değerlendirmesi

yap

i = i + 1

i ≤ N

j = i, öyle ki max(E) = Ei

k’ = kj

Bitir

E

H

Oyunu baştan sona

oyna

Oyunun başlangıç

koşullarını karşıla

Şekil 3.7: RPG Yapay Zekâ Eğitim Algoritması

46

3.2.2.4.1 N < 5 durumu

Skor tablosundaki düşman sayısının skor fonksiyonu katsayıları sayısından, yani

5’ten küçük olduğu durumlarda 5 elemanlı bir vektörü elde etmek için 5’ten az

sayıda denklem kullanmanın yetersiz olacağından ötürü, bu durumlarda k vektörünü

duyarlılık analizi ile kırpmak gerekir.

Duyarlılık analizinde, k vektöründeki her bir elemanın s vektörü değerlerini ne kadar

değiştirdiğini bulmak için k vektöründeki her bir eleman belirli bir küçük sayı

oranında arttırılır. Değişimin oransal olması önemlidir; çünkü duyarlılık analizindeki

sonuç s vektörünün eski durumuna göre oranıdır. Duyarlılığı belirli bir oranın altında

kalan k vektörü değerleri, s vektörü değerlerini çok etkilemedikleri için göz ardı edilir,

vektörden o eğitim için koparılır. Yeni denklem sistemi ve matris ile vektörlerin

boyutları denklem 3.24’te verilmiştir.

���PRP� � ~��PR�� � ^��PR�� (3.24)

Denklem 3.24’te de görüldüğü gibi, s vektörünün boyutlarında bir değişim

olmamaktadır.

k vektöründeki bir eleman olan ki (i ≤ 5)’nin s vektörünü etkileme miktarını bulmak

için ki sayısı kendisinin 0,01 katıyla çarpılır ve toplam skora olan katkısı bulunur.

Denklemler (3.25a-3.25c), i = 1 için duyarlılık analizini gösterir.

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��
� �

���
��~� @ WLWA ~*~�~�~� ���

�� �
���
���
�^��^*�^��^��N̂3����

���
�
 (3.25a)

� � ~�� � ^�� (3.25b)
�� � A 1 � ¡¢� ¡¢8 (3.25c)

47

Her 5 değer için de Ci değerleri bulunduktan sonra en düşük (5 – n) adet katsayı

değeri formülden çıkartılmak üzere denklem 3.26 elde edilir.

����� ���* ; ���3�*�� �*�* ; �*�3N N N N�3�� �3�* �3�� �3�3
� � �~� ~*N~3 � �

���
���
^�^*^�^�N̂3���

��� (3.26)

Bu aşamadan sonra algoritma denklem 3.15b gibi sürdürülür. Duyarlılık analizi skor

fonksiyonunun değerlerini görmezden geldiği için eğitimin kalitesinin düşme olasılığı

vardır. Bu yüzden eğitimlerin başarısı “5 ya da daha fazla düşman” ve “5’ten az

düşman” olarak iki ayrı yoldan izlenmelidir.

48

4 BULGULAR VE TARTIŞMA

4.1 Kullanılan Yöntemlerin Başarısı

4.1.1 Tic tac toe

MiniMax algoritmasının etkinliği Tic Tac Toe oyununda açıkça görülebilir. Bilgisayar,

insana karşı oyun kaybetmemektedir. Buna karşın 3x3’lük bir oyun tahtasının bile ne

kadar çok işlem gücü gerektirdiği oyundaki ilk hamlenin bekleme süresinden de

anlaşılmaktadır. Örnek bir oyun Şekil 4.1 – Şekil 4.9 arası verilmiştir.

Oyunun açılışını insan oyuncu yapmıştır ve işaretini 5. kareye koymayı tercih

etmiştir.

Şekil 4.1: Tic Tac Toe Hamle 1(Đnsan)

Yapılan hamleye karşılık olarak yapay zekâ, oyuncunun 1. çaprazdan oyunu

kazanmasını engellemek ve 1. yatay sıra ile 1. düşey sıradan oyunu kazanabilmek

için işaretini 1. kareye koymuştur. Bilgisayarın yaptığı ilk hamle olan hamle 2 Şekil

4.2’de gösterilmiştir.

49

Şekil 4.2: Tic Tac Toe Hamle 2(Bilgisayar)

Bilgisayarın yaptığı hamleye karşılık olarak insan oyuncu, ikinci çaprazdan sayıya

gitmek üzere 3. kareye işaretini koymuştur. Đnsan oyuncunun 2. hamlesi üzerine

oyunun durumu Şekil 4.3’te verilmiştir.

Şekil 4.3: Tic Tac Toe Hamle 3 (Đnsan)

Yapay zekâ oyuncusu rakibinin sayı yapmasını engellemek ve 1. düşey sıradan

sayıya gitmek için işaretini 7. kareye bırakır ve oyun Şekil 4.4’teki duruma gelir.

50

Şekil 4.4: Tic Tac Toe Hamle 4 (Bilgisayar)

Đnsan oyuncu, bilgisayarın sayısını engellemek ve 2. yatay sıradan kendi sayısına

ulaşabilmek için işaretini 4. kareye koyar. Oyundaki 5. hamle olan bu hamleyle

oyunun durumu Şekil 4.5’teki gibi olur.

Şekil 4.5: Tic Tac Toe Hamle 5 (Đnsan)

Đnsan rakibinin sayısına engel olmak isteyen program, işaretini 6. kareye koyarak

oyunu Şekil 4.6’daki duruma getirir.

51

Şekil 4.6: Tic Tac Toe Hamle 6 (Bilgisayar)

Son sayı şansını da kullanmak isteyen insan oyuncu 4. işaretini 8. kareye koyar.

Son durum şekil 4.7’de verilmiştir.

Şekil 4.7: Tic Tac Toe Hamle 7 (Đnsan)

Đnsan rakibinin son sayısını da engelleyecek olan program, işaretini 2. kareye

koyarak oyundaki beraberliğin kesinleşmesini sağlar. Oyundaki 8. hamle olan bu

hamle sonunda oyun tahtası Şekil 4.8’deki gibidir.

52

Şekil 4.8: Tic Tac Toe Hamle 8 (Bilgisayar)

Đnsan oyuncunun 9. kareden başka kullanabileceği kare kalmadığından işaretini 9.

kareye koyar ve böylece oyun berabere sonuçlanmış olur.

Şekil 4.9: Tic Tac Toe Hamle 9 (Đnsan)

53

Şekiller 4.4, 4.6 ve 4.8’de görüldüğü gibi program, insanın her sayı teşebbüsünü

engellemekte ve oyuncuya yenilmemektedir. Bunun nedeni, programın MiniMax

yöntemini kullanarak oyunu baştan sona defalarca oynaması ve kendisi için en iyi

sonuca yönelik olan hamleyi yapmasıdır. MiniMax algoritması en yüksek kaybı

minimize ettiğinden insan oyuncu hiç hata yapmadan oynar ve oyunu 8. hamleye

kadar devam ettirebilse bile yapay zekâ; insana yenilmeyecek, berabere kalarak

kazancı olmamasına rağmen kaybını da sıfırlayacaktır. Eğer insan oyuncu yanlış bir

hamle yaparsa yapay zekâ en iyi oyununu oynayarak bu sefer kazancını maksimize

etmeye, yani en kısa sürede oyunu kazanmaya çalışacaktır.

Tic tac toe’daki değerlendirme fonksiyonu kazanılan oyunlarda 0’dan büyük,

kaybedilen oyunlarda 0’dan küçük ve berabere kalınan oyunlarda 0 ürettiği için

yapay zekâ; kazanmayı beraberliğe ve yenilgiye, beraberliği ise yenilgiye tercih

etmekte ve buna göre hamle yapmaktadır.

4.1.2 RPG

RPG’nin başarımını ölçmek için farklı yapılandırmaları olan yapay zekâ oyuncuları

birbirleriyle savaştırılır. Her yapılandırmada, Denklemler (3.6-3.10) arası verilen

sabit katsayılar değiştirilir. Her test, başlangıç koşulları farklı olan eş güçteki

oyuncuları sınar.

4.1.2.1 Başlangıç koşulları

Başlangıç koşullarında, oyunda iki adet düşman parti bulunmaktadır ve partilerde

bulunan yaratıklara dair ayrıntılı bilgiler şöyledir:

Parti 1

1. AC = 3, HP = 50, THAC0 = 16, Silah = Ok/Yay (1d10, menzil = 10)

2. AC = 3, HP = 20, THAC0 = 16 Silah = Kısa kılıç (2d5, menzil = 1)

Parti 1’deki yapay zekâ oyuncularının değerlendirme fonksiyonu sabit katsayıları WLq

olarak belirlenmiştir.

54

Parti 2

1. AC = 3, HP = 50, THAC0 = 16, Silah = Ok/Yay (1d10, menzil = 10)

2. AC = 3, HP = 20, THAC0 = 16 Silah = Kısa kılıç (2d5, menzil = 1)

Parti 2’deki yapay zekâ oyuncularının değerlendirme fonksiyonu sabit katsayıları her

oyun başında rastgele atanmaktadır.

4.1.2.2 Test sonuçları

Tablolar (4.1-4.6)’da kullanılan, (�) işareti, o oyunun galibinin sütununa konmuştur.

2’ye 2 oynanan ve her bir oyuncunun yeri önceden belirlenmiş olan 10 ardışık

oyunun test sonuçları Tablo 4.1’de gösterilmiştir. Sonuçlara göre katsayıları rastgele

seçilen Parti 2, %80 başarı sağlamıştır.

Tablo 4.1: 2'ye 2 Sabit Konumlu Test Sonuçları

Oyun
Parti 1 (Sabit

Katsayılı)

Parti 2 (Rastgele

Katsayılı)

1 �

2 �

3 �

4 �

5 �

6 �

7 �

8 �

9 �

10 �

2’ye 2 oynanan ve her bir oyuncunun başlangıç konumu rastgele olarak belirlenmiş

10 ardışık oyunun test sonuçları Tablo 4.2’de verilmiştir. Sonuçlara göre Parti 2, yine

%80 başarı sergilemiştir.

55

Tablo 4.2: 2'ye 2 Rastgele Konumlu Test Sonuçları

Oyun
Parti 1 (Sabit

Katsayılı)
Parti 2 (Rastgele Katsayılı)

1 �

2 �

3 �

4 �

5 �

6 �

7 �

8 �

9 �

10 �

Parti 1’den 1, Parti 2’den 2 oyuncunun oynadığı ve her bir oyuncunun başlangıç

konumunun sabit olduğu 5 ardışık oyunun test sonuçları Tablo 4.3’te verilmiştir. 1’e

2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük olduğundan, tabloya

başarı ölçütü olarak diğer partideki oyuncuların kalan can puanları eklenmiştir.

Tablo 4.3: 1'e 2 Sabit Konumlu Test Sonuçları

Oyun

Parti 1

(Sabit

Katsayılı, 1

Oyuncu)

Parti 2

(Rastgele

Katsayılı, 2

Oyuncu)

Parti 2

Oyuncu 1

Kalan Can

Parti 2

Oyuncu 2

Kalan Can

1 � 15 12

2 � 24 17

3 � 31 16

4 � 10 20

5 � 11 10

56

Parti 1’den 1, Parti 2’den 2 oyuncunun oynadığı ve her bir oyuncunun başlangıç

konumunun rastgele olduğu 5 ardışık oyunun test sonuçları Tablo 4.4’te verilmiştir.

1’e 2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük olduğundan, tabloya

başarı ölçütü olarak diğer partideki oyuncuların kalan can puanları eklenmiştir.

Tablo 4.4: 1'e 2 Rastgele Konumlu Test Sonuçları

Oyun

Parti 1

(Sabit

Katsayılı, 1

Oyuncu)

Parti 2

(Rastgele

Katsayılı, 2

Oyuncu)

Parti 2

Oyuncu 1

Kalan Can

Parti 2

Oyuncu 2

Kalan Can

1 � 26 16

2 � 36 20

3 � 38 11

4 � 29 20

5 � 26 10

Parti 1’den 2, Parti 2’den 1 oyuncunun oynadığı ve her bir oyuncunun başlangıç

konumunun önceden belirlenmiş olduğu 5 ardışık oyunun test sonuçları Tablo 4.5’te

verilmiştir. 1’e 2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük

olduğundan, tabloya başarı ölçütü olarak diğer partideki oyuncuların kalan can

puanları eklenmiştir.

57

Tablo 4.5: 2'ye 1 Sabit Konumlu Test Sonuçları

Oyun

Parti 1

(Sabit

Katsayılı, 2

Oyuncu)

Parti 2

(Rastgele

Katsayılı, 1

Oyuncu)

Parti 1

Oyuncu 1

Kalan Can

Parti 1

Oyuncu 2

Kalan Can

1 � 28 1

2 � 27 14

3 � 3 5

4 � 19 15

5 � 14 15

Parti 1’den 2, Parti 2’den 1 oyuncunun oynadığı ve her bir oyuncunun başlangıç

konumunun rastgele olduğu 5 ardışık oyunun test sonuçları Tablo 4.6’da verilmiştir.

1’e 2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük olduğundan, tabloya

başarı ölçütü olarak diğer partideki oyuncuların kalan can puanları eklenmiştir. Parti

2’deki tek oyuncu, oyunlardan birini kazanmayı başarmıştır.

Tablo 4.6: 2'ye 1 Rastgele Konumlu Test Sonuçları

Oyun

Parti 1

(Sabit

Katsayılı, 2

Oyuncu)

Parti 2

(Rastgele

Katsayılı, 1

Oyuncu)

Parti 1

Oyuncu 1

Kalan Can

Parti 1

Oyuncu 2

Kalan Can

1 � 14 16

2 � 0 0

3 � 30 12

4 � 7 20

5 � 24 14

58

5 SONUÇLAR VE YORUM

Yapay zekâ, günümüzdeki bilgisayarların daha çok ve daha çeşitli sorunlarla başa

çıkabilmesini sağlayan optimizasyonların bir araya getirilmesidir. Karmaşık dünya

sorunları matematiksel olarak ele alınıp, bir bilgisayar üzerine programlanabilir

duruma getirilerek ortaya konulan yapay zekâ günümüzde bilgisayar bilimlerinin en

çok gelişime açık dalları arasındadır ve gittikçe yaygınlığını arttırmaktadır.

Bilgisayar oyunlarında yapay zekâ ise temel olarak insanları eğlendirebilecek

düzeyde onlarla mücadele edebilen programlar geliştirmek olarak tanımlanabilir;

çünkü hiç kazanamadıkları oyunları oynamak insanlara bir süre sonra sıkıcı gelebilir.

Bu yüzden oyun üreticileri genellikle oyunları için yazdıkları yapay zekâ

programlarını belirli değişkenlere bağlayarak kullanıcının isteği üzerine yapay zekâyı

köreltecek ya da zekileştirecek şekilde bu değişkenleri değiştirmeyi seçerler.

Elbette bir bilgisayar oyunu yalnızca yapay zekâ programlamasından ibaret değildir,

ancak bu çalışmada oyun programlamasının ortaya konmak istenen kısmı yapay

zekâdır. Bu yüzden elinizde bulunan bu çalışmada yapay zekâda kullanılabilecek

yöntemlerin bir kısmı sıralanmış ve iki adet programlama örneği ile örneklenmeye

çalışılmıştır.

Đlk örnekte verilmiş olan Tic Tac Toe oyunu, insan için oynaması basit bir oyunun

bile bilgisayarca ne kadar zor olduğunu ve tam bilgili sıfır toplamlı oyunlarda doğru

yapay zekâ programlamasıyla bilgisayarın nasıl yenilemez olduğunu göstermeyi

amaçlamaktadır.

Tic Tac Toe, MiniMax algoritmasını kullanan basit bir uygulamadır ve ardışık 10

oyun süresince iyi bir insan Tic Tac Toe oyuncusuna yenilmemiştir. Bunun nedeni,

4. bölümde de verildiği üzere, MiniMax algoritmasının oyunun sonuna kadar olası

bütün hamleleri hesaplayarak aralarından bilgisayarın kazancını en yükseğe çıkaran

ya da kaybını en aza indirgeyen hamleyi ortaya koymasıdır. Ardışık 10 oyunun

sonuçları ve programın her bir hamleyi hesaplamak için harcadığı süreler Tablo

5.1’de verilmiştir.

59

Tablo 5.1: Tic Tac Toe Test Sonuçları

Oyun 1.Hamle

Süresi (ms)

2. Hamle

Süresi (ms)

3. Hamle

Süresi (ms)

4. Hamle

Süresi (ms)

Kazanan

1 918 18 0 0 Berabere

2 952 26 1 0 Berabere

3 8903 14 0 0 Berabere

4 1069 23 0 0 Berabere

5 1049 22 1 0 Berabere

6 1041 27 0 - Bilgisayar

7 1072 20 3 0 Berabere

8 918 14 - - Bilgisayar

9 932 15 0 0 Berabere

10 1014 13 0 0 Berabere

Đkinci örnek olan RPG oyununda, sıfır toplam olmaması ve rastgelelik içerdiğinden

bir tam bilgili oyun olmaması nedeniyle, bir değerlendirme fonksiyonu kullanılarak

saldırılacak düşmanın seçilmesi sorunu aşılmaya çalışılmış ve önemli ölçüde başarı

sağlanmıştır. Test sonuçlarına göre Denklemler (3.6-3.10) arası verilmiş olan sabit

katsayılar programın hedefini seçmesinde önemli rol oynamaktadır ve en doğru

kararı verebilmesi için yapay zekânın bu katsayıları optimize etmesi şarttır.

Bu katsayıların en doğru şekilde güncellenmesi için yapay zekâ bölüm 3.2.2.4’te

anlatılan eğitim yöntemi ile eğitilerek insan oyuncuların karşısına çıkmaya hazır

duruma getirilebilir. Bu çalışmada sunulan eğitim yöntemi, matris işlemlerine

dayanmaktadır ve belirlenmiş yapılandırmaya sahip bir ortamda en iyi sonucu

verecek olan katsayıları bulabilir.

Bu tezin içindeki yazılımların tamamı C# programlama diliyle yazılmıştır. Ancak,

gerek ücretsiz açık kaynaklı kütüphanelerin sayısı ve kalitesi, gerek uygulama

geliştirme ortamlarının darlığı nedeniyle; böylesi bir çalışmada mecbur kalınmadıkça

C#’ın kullanılmaması önerilir. Alternatif programlama dilleri olarak JAVA ve LISP

incelenebilir.

60

5.1 Đleri Çalışmalar

MiniMax algoritması, yapısı itibariyle işletilmesi zor bir algoritmadır ve Tic Tac Toe

oyununda yalın MiniMax’in yavaşlığı özellikle ilk hamlelerde hissedilmektedir.

Tic Tac Toe’nun hızlandırılması için aynı oyunları temsil eden ağaç dalları birden

çok kez üretilmek yerine, bu oyunları çıkartan farklı oyun yollarının hepsi bu eş

oyunlara bağlanılabilir. Bu yönteme “eş oyunları bulma” yöntemi adı verilir.

Đkinci bir yöntem ise alfa-beta kesintilerini kullanmak olabilir. Alfa-beta kesintileri,

uygun dizilmiş oyun ağaçlarında çok önemli zaman ve işlem kazancı sağlayabilir.

leAncak alfa-beta kesintilerinin verimli çalışabilmesi için öncelikle oyun ağacının

uygun şekilde sıralanması gerekmektedir. Bu sıralama için de başka algoritmaların

koşturulması gerekmektedir.

Üçüncü bir yöntem, programın gideceği hamle derinliğini azaltmaktır. Böylece

MiniMax algoritması oyunun bittiği hamlelere kadar değil, mevcut durumdan belirli

sayıda ileriye kadar işletilir ve değerlendirme fonksiyonu o noktada işletilerek yine en

yüksek MAX değeri ya da en düşük MĐN değeri üzerinden en kârlı hamle bulunmaya

çalışılabilir. Ancak unutulmamalıdır ki bu yöntem önemli ölçüde zamandan tasarruf

sağlasa da, yapay zekâyı köreltecek bir yöntemdir. Bir hamle derinliği yapay zekâyı

aptal kılacak değişikliklere neden olabilir.

RPG’nin eğitimi belirli senaryolar üzerine yapıldığından dolayı, eğitimin ortaya

koyacağı katsayı değerlerinin en uygun olduğu durumların sayısı sınırlıdır. Örneğin

2’ye 2 bir eğitim setiyle eğitilmiş bir yapay zekâ, 3’e 3’lük bir oyunda yanlış kararlar

verebilir. Bunun önüne geçmek için, RPG yapay zekâsının eğitim adımları, her bir

hamleden önce uygulanabilir. Böylece program her hamlesinden önce kendisini

bulunduğu duruma göre eğitir ve fonksiyon katsayılarını her hamlesinden önce

yeniden hesaplayabilir.

Böylesi bir eğitim kullanıldığında RPG’nin yöntemi, her el başında bütün oyunu

birkaç kez (düşman sayısı kez) oynayacağından biraz da olsa MiniMax’i

andıracaktır. Ancak, böylesi bir “anında eğitim”in bilgisayara matris hesaplarında

ciddi bir ek yük getireceği de göz ardı edilemez.

61

KAYNAKLAR

[1] McCarthy, J. Basic Questions. What is Artificial Intelligence, [Online], http://www-
formal.stanford.edu/jmc/whatisai/node1.html, 2007

[2] Jr., Jackson P.C. Introduction to Artificial Intelligence, Dover, 2-4, (1985)

[3] Applications of Artificial Intelligence, Wikipedia [Online],
http://en.wikipedia.org/wiki/Applications_of_artificial_intelligence, 2008

[4] Brownlee, J., Finite State Machines, Ai Depot. [Online] http://ai-
depot.com/FiniteStateMachines/FSM.html

[5] Savage, L. J. "The Foundations of Statistics", New York, Wile, (1954)

[6] R., Olivas. A Primer for Decision-making Professionals [Online]
http://www.projectsphinx.com/decision_trees/index.html, 2007

[7] Pinto, P., Minimax Explained, Ai Depot, [Online], http://ai-
depot.com/articles/minimax-explained/, 2002

[8] Artificial Neural Networks - A Neural Network Tutorial. Artificial Neural Networks -
A Neural Network Tutorial [Online], http://www.learnartificialneuralnetworks.com/,
2008

[9] Nose Picking using Neural Networks. Karthig's Log. [Online],
http://karthik3685.wordpress.com/2007/11/03/nose-picking-using-neural-networks/,
2007

[10] Becerikli, Y., Yapay Sinir Ağlarına Giriş Ders Notları, (2005)

[11] R., Rojas. "Neural Networks", Springer-Verlag, 151-174, 1996.

[12] Z., Ghahramani. "Unsupervised Learning", 2004.

[13] Karakuzu C., Gürbüzer G., "Single Target Tracking Using Adaptive Neuro-
Fuzzy Inference Systems", 2006.

[14] da Silva Borges, P.S. An Application of the Fuzzy Iterated Prisoner's Dilemma.
A model of strategy games based on the paradigm of the Iterated Prisoner's
Dilemma employing Fuzzy Sets. [Online],
http://www.eps.ufsc.br/teses96/borges/cap6/cap6.htm, 1996.

[15] Rowland T., Weisstein E. W. Genetic Algorithm. From MathWorld--A Wolfram
Web Resource. [Online] http://mathworld.wolfram.com/GeneticAlgorithm.html .

[16] Saloky T., Šeminský J."Artificial Intelligence and Machine Learning", SAMI
2005, 21 Ocak, 2005

62

[17] Petersen K.B., Pedersen M.S. "The Matrix Cookbook", 17-18, (2005)

63

EKLER

EK-A MiniMax sözde kodu

MinMax (GamePosition game) { return MaxMove (game); }

MaxMove (GamePosition game) {

if (GameEnded(game)) {

 return EvalGameState(game);

}

else {

 best_move < - {};

 moves <- GenerateMoves(game);

 ForEach moves {

 move <- MinMove(ApplyMove(game));

 if (Value(move) > Value(best_move)) {

 best_move < - move;

 }

 }

 return best_move;

}

}

MinMove (GamePosition game) {

best_move <- {};

moves <- GenerateMoves(game);

ForEach moves {

 move <- MaxMove(ApplyMove(game));

 if (Value(move) > Value(best_move)) {

64

 best_move < - move;

 }

}

return best_move;

}

65

EK-B Genetik Algoritma

1. [Başlat] n kromozomlu (çözüm adaylı) rastgele bir nüfus oluştur.

2. [Uygunluk] Her x kromozomu için F��� uygunluğunu değerlendir.

3. [Yeni nüfus] Yeni nüfus oluşana kadar,

a. [Seçilim] Uygunluklarına göre iki ebeveyn kromozom seç.

b. [Çaprazlama] Çaprazlama olasılığı kullanarak, her iki ebeveynden bir

yeni çocuk türet. Eğer çaprazlama yapılmazsa, çocuklar

ebeveynlerinin tam birer kopyası olur.

c. [Mutasyon]Mutasyon olasılığı kullanarak, yeni çocukların her bir

değişkenini değiştir.

d. [Kabullenme] Yeni çocukları yeni nüfusun içine koy.

4. [Güncelleme] Türetilmiş nüfusu kullan.

5. [Sınama] Eğer sonlandırma koşulu karşılandıysa dur ve eldeki nüfusun

arasından en iyi çözümü dön.

6. [Döngü] 2. adıma git.

66

EK-C Tic Tac Toe Oyunu Yapay Zekâ Kodu

using System;

using System.Collections.Generic;

using System.Text;

using System.Diagnostics;

using TicTacToe.Kontroller;

namespace TicTacToe

{

 public class OyunBittiEventArgs : EventArgs

 {

 public Oyuncular Kazanan;

 public OyunBittiEventArgs(Oyuncular kazanan)

 {

 Kazanan = kazanan;

 }

 }

 public delegate void OyunBittiDelegate(object sender, OyunBittiEventArgs e);

 class AramaAgaci

 {

67

 private List<AramaAgaci> _Cocuklar;

 private AramaAgaci _Baba = null;

 private Oyuncular[,] _Oyun;

 private int _Deger;

 private int _Nesil;

 private Oyuncular _Oynayan;

 /// <summary>

 /// Oyunu oynayan oyuncuyu belirtir.

 /// </summary>

 public Oyuncular Oynayan

 {

 get { return _Oynayan; }

 set { _Oynayan = value; }

 }

 /// <summary>

 /// Yeni bir arama ağacı nesnesi yaratır

 /// </summary>

 /// <param name="oyun">Oyun tahtasının anlık durumu</param>

 public AramaAgaci(Oyuncular[,] oyun)

 {

 _Cocuklar = new List<AramaAgaci>(0);

68

 _Oyun = oyun;

 _Nesil = 0;

 }

 /// <summary>

 /// Arama ağacının çocuklarına bir yenisini ekler

 /// </summary>

 /// <param name="oyun">Eklenecek çocuğun oyun durumu</param>

 /// <returns>Eklenen çocuk</returns>

 public AramaAgaci CocukEkle(Oyuncular[,] oyun)

 {

 AramaAgaci a = new AramaAgaci(oyun);

 _Cocuklar.Add(a);

 a.Baba = this;

 a._Nesil = this._Nesil + 1;

 return a;

 }

 /// <summary>

 /// Arama ağacı düğümünün babası (üst düğümü)

 /// </summary>

 public AramaAgaci Baba

 {

 get { return _Baba; }

69

 set { _Baba = value; }

 }

 /// <summary>

 /// Arama ağacının o anki oyununun değeri

 /// </summary>

 public int OyunDegeri

 {

 get { return _Deger; }

 set { _Deger = value; }

 }

 /// <summary>

 /// Arama ağacının o anki oyun durumu

 /// </summary>

 public Oyuncular[,] Oyun

 {

 get { return _Oyun; }

 }

 public List<AramaAgaci> Cocuklar

 {

 get { return _Cocuklar; }

 }

70

 public bool Babadir

 {

 get { return _Baba == null; }

 }

 public bool Torundur

 {

 get { return _Cocuklar.Count == 0; }

 }

 public int Nesil

 {

 get { return this._Nesil; }

 }

 }

 class Yz

 {

 /// <summary>

 /// YZ motorunun bilgilerinin trace ekranına verilip verilmeyeceğini belirler. Đlk

değeri true'dur.

 /// </summary>

 public bool TraceMessages = true;

 public event OyunBittiDelegate OnOyunBitti;

71

 private readonly int _TahtaBoyu;

 private readonly int _MaxNesil;

 private readonly int _DegerCarpan;

 private readonly int _BeraberlikDegeri = 0;

 /// <summary>

 /// Yeni bir Yapay Zeka Motoru nesnesi yaratır

 /// </summary>

 /// <param name="oyun"></param>

 public Yz(int tahtaBoyu)

 {

 if (TraceMessages)

 Trace.WriteLine("== YZ Motoru Çalıştırılıyor ==");

 _TahtaBoyu = tahtaBoyu;

 _MaxNesil = (int)(Math.Pow(_TahtaBoyu, 2) + 1);

 _DegerCarpan = (int)(Math.Pow(10, (int)(Math.Log10(_TahtaBoyu)) + 2));

 if (TraceMessages)

 Trace.WriteLine(" Tahta Boyu : " + tahtaBoyu);

 }

 /// <summary>

 /// Verilen oyunun oyuncuya göre değerlendirmesini yapar

 /// </summary>

72

 /// <param name="durum">Oyun tahtasının o anki durumunu içeren

matris</param>

 /// <param name="oyuncu">Durum değerlendirmesini yapacak

oyuncu</param>

 /// <returns>Oyun durumunun oyuncuya göre değeri. Yüksek değer iyi oyun

demektir.</returns>

 private int DurumDegerlendir(AramaAgaci oyun, Oyuncular oyuncu)

 {

 Oyuncular[,] durum = oyun.Oyun;

 //if (TraceMessages)

 // Trace.Write("Durum Değerlendirmesi (" + oyuncu.ToString() + "): " +

OyunGoster(durum));

 int enb = 0,nDoluOda = 0;

 // Satırları topla

 for (int i = 0; i < _TahtaBoyu; i++)

 {

 int satirDeger = 0;

 for (int j = 0; j < _TahtaBoyu; j++)

 {

 satirDeger += (int)oyuncu * (int)durum[i, j];

 if (durum[i, j] != Oyuncular.Hicbiri)

 nDoluOda++;

 }

 if (Math.Abs(satirDeger) > Math.Abs(enb))

73

 enb = satirDeger;

 }

 // Sütunları topla

 for (int j = 0; j < _TahtaBoyu; j++)

 {

 int sutunDeger = 0;

 for (int i = 0; i < _TahtaBoyu; i++)

 {

 sutunDeger += (int)oyuncu * (int)durum[i, j];

 }

 if (Math.Abs(sutunDeger) > Math.Abs(enb))

 enb = sutunDeger;

 }

 // Çaprazları topla

 int caprazDeger = 0;

 for (int i = 0; i < _TahtaBoyu; i++)

 {

 caprazDeger += (int)oyuncu * (int)durum[i, i];

 }

 if (Math.Abs(caprazDeger) > Math.Abs(enb))

 enb = caprazDeger;

74

 caprazDeger = 0;

 for (int i = 0; i < _TahtaBoyu; i++)

 {

 caprazDeger += (int)oyuncu * (int)durum[_TahtaBoyu - (1 + i), i];

 }

 if (Math.Abs(caprazDeger) > Math.Abs(enb))

 enb = caprazDeger;

 int retVal = 0;

 if (Math.Abs(enb) != _TahtaBoyu && nDoluOda == _TahtaBoyu *

_TahtaBoyu) // tahta dolu

 retVal = _BeraberlikDegeri; // beraberlik

 else

 retVal = enb * _DegerCarpan + (Math.Sign(enb) * (_MaxNesil -

oyun.Nesil));

 return retVal;

 }

 /// <summary>

 /// Oyun durumunun oyun sonunu işaret edip etmediğini belirtir

 /// </summary>

 /// <param name="durum">Oyun tahtasının anlık durumunu belirten Arama

Ağacı düğümü</param>

 /// <returns>true, eğer oyun belirtilen durumda bitiyorsa. false,

bitmiyorsa.</returns>

75

 public bool OyunBiter(AramaAgaci durum)

 {

 int i = DurumDegerlendir(durum, Oyuncular.Bilgisayar);

 if (i == _BeraberlikDegeri)

 {

 durum.OyunDegeri = i;

 return true;

 }

 else if (Math.Abs(i) / _DegerCarpan == _TahtaBoyu)

 {

 durum.OyunDegeri = i;

 return true;

 }

 else

 return false;

 }

 /// <summary>

 /// Verilen andan bir sonraki bütün olası oyunları çıkartır

 /// </summary>

 /// <param name="a">Oyun anı</param>

 /// <param name="oyuncu">Oyun sırası gelen oyuncu</param>

 private void OyunBul(AramaAgaci a, Oyuncular oyuncu)

 {

76

 if (oyuncu != Oyuncular.Hicbiri)

 {

 for (int i = 0; i < _TahtaBoyu; i++)

 {

 for (int j = 0; j < _TahtaBoyu; j++)

 {

 Oyuncular[,] yeniOyun = new Oyuncular[_TahtaBoyu, _TahtaBoyu];

 Array.Copy(a.Oyun, yeniOyun, _TahtaBoyu * _TahtaBoyu);

 if (yeniOyun[i, j] == Oyuncular.Hicbiri) // alan bos

 {

 yeniOyun[i, j] = oyuncu; // bulunan oyun

 a.Oynayan = oyuncu;

 a.CocukEkle(yeniOyun);

 }

 }

 }

 }

 }

 private AramaAgaci MaxOyna(AramaAgaci a)

 {

 //if (TraceMessages)

 // Trace.WriteLine("Max Oynuyor.");

 if (OyunBiter(a))

77

 {

 return a;

 }

 else

 {

 AramaAgaci enIyiOyun = null;

 OyunBul(a, Oyuncular.Bilgisayar); // agaci buyut

 //if (TraceMessages)

 // Trace.Write("Nesil : " + a.Nesil + "\nOlası Oyunlar :");

 //if (TraceMessages)

 // foreach (AramaAgaci b in a.Cocuklar)

 // Trace.Write(OyunGoster(b.Oyun));

 foreach (AramaAgaci b in a.Cocuklar)

 {

 AramaAgaci oyun = MinOyna(b);

 if (enIyiOyun == null || oyun.OyunDegeri > enIyiOyun.OyunDegeri)

 {

 b.OyunDegeri = oyun.OyunDegeri;

 enIyiOyun = b;

 }

 //if (oyun.OyunDegeri <= ((_TahtaBoyu - 1) * _DegerCarpan) &&

 // oyun.OyunDegeri > ((_TahtaBoyu - 1) + _DegerCarpan))

 //{

 // Trace.Write("Oyun bitecek lan olm !!");

78

 //}

 }

 Debug.Assert(enIyiOyun != null);

 if (TraceMessages)

 Trace.WriteLine("Max(" + a.Nesil + ") için en iyi oyun : " +

OyunGoster(enIyiOyun.Oyun) + "Değeri : " + enIyiOyun.OyunDegeri);

 return enIyiOyun;

 }

 }

 private AramaAgaci MinOyna(AramaAgaci a)

 {

 //if (TraceMessages)

 // Trace.WriteLine("Min Oynuyor.");

 if (OyunBiter(a))

 {

 return a;

 }

 else

 {

 AramaAgaci enIyiOyun = null;

 OyunBul(a, Oyuncular.Insan); // agaci buyut

 //if (TraceMessages)

 // Trace.Write("Nesil : " + a.Nesil + "\nOlası Oyunlar :");

79

 //if (TraceMessages)

 // foreach (AramaAgaci b in a.Cocuklar)

 // Trace.Write(OyunGoster(b.Oyun));

 foreach (AramaAgaci b in a.Cocuklar)

 {

 AramaAgaci oyun = MaxOyna(b);

 if (enIyiOyun == null || oyun.OyunDegeri < enIyiOyun.OyunDegeri)

 {

 b.OyunDegeri = oyun.OyunDegeri;

 enIyiOyun = b;

 }

 }

 Debug.Assert(enIyiOyun != null);

 if (TraceMessages)

 Trace.WriteLine("Min(" + a.Nesil + ") için en iyi oyun : " +

OyunGoster(enIyiOyun.Oyun) + "Değeri : " + enIyiOyun.OyunDegeri);

 return enIyiOyun;

 }

 }

 private int[] OyundanKoordinata(Oyuncular[,] ilkOyun, Oyuncular[,]

sonrakiOyun)

 {

 for (int i = 0; i < _TahtaBoyu; i++)

80

 {

 for (int j = 0; j < _TahtaBoyu; j++)

 {

 if (ilkOyun[i, j] != sonrakiOyun[i, j])

 {

 if (ilkOyun[i, j] == Oyuncular.Hicbiri)

 return new int[] { i, j };

 else

 throw new

 InvalidOperationException("OyundanKoordinata: Đki oyun

arasında tutarsızlık var");

 }

 }

 }

 throw new

 InvalidOperationException("OyundanKoordinata: Đki oyun arasında fark

yok");

 }

 private string OyunGoster(Oyuncular[,] oyun)

 {

 StringBuilder s = new StringBuilder("\n");

 for (int i = 0; i < _TahtaBoyu; i++)

 {

81

 s.Append("[\t");

 for (int j = 0; j < _TahtaBoyu; j++)

 {

 if (oyun[i, j] == Oyuncular.Bilgisayar)

 s.Append("O");

 else if (oyun[i, j] == Oyuncular.Insan)

 s.Append("X");

 else

 s.Append(" ");

 s.Append("\t");

 }

 s.Append("]\n");

 }

 return s.ToString();

 }

 public int[] HamleYap(Oyuncular[,] oyun)

 {

 AramaAgaci a = new AramaAgaci(oyun);

 AramaAgaci b = MaxOyna(a), c = b;

 //while (b.Nesil != a.Nesil + 1)

 // b = b.Baba;

 Oyuncular[,] o = b.Oyun;

 if (OyunBiter(c))

82

 RaiseOyunBitti(b.Oynayan);

 return OyundanKoordinata(oyun, o);

 }

 private void RaiseOyunBitti(Oyuncular o)

 {

 OyunBittiDelegate obe = OnOyunBitti;

 if (obe != null)

 {

 obe(this, new OyunBittiEventArgs(o));

 }

 }

 }

}

83

EK-D Örnek AI.CONFIG.XML Dosyası

<?xml version="1.0" encoding="utf-8" ?>

<ai-configuration xmlns="http://ajitatif.com/AiConfiguration.xsd">

 <configsets>

 <configset id="törüngey" description="configset for creature törüngey ">

 <modifiers>

 <state value="0.2"/>

 <turns-to-kill value="0.2"/>

 <hp-lost-to value="0.2"/>

 <range value="0.2"/>

 <threat value="0.2"/>

 <target-state-modifier-list>

 <state-modifier state-type="Battle" value="0.5"/>

 <state-modifier state-type="Normal" value="0.25"/>

 </target-state-modifier-list>

 </modifiers>

 </configset>

 <configset id="eser" description="configset for creature eser">

 <modifiers>

 <state value="0.2"/>

 <turns-to-kill value="0.2"/>

 <hp-lost-to value="0.2"/>

 <range value="0.2"/>

84

 <threat value="0.2"/>

 <target-state-modifier-list>

 <state-modifier state-type="Battle" value="0.5"/>

 <state-modifier state-type="Normal" value="0.25"/>

 </target-state-modifier-list>

 </modifiers>

 </configset>

 </configsets>

 <training>

 <training-set>

 <party>

 <creatures>

 <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="12"

pos-y="10" thac0="10" weapon="Shortbow" is-trainer="true" />

 <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="12"

pos-y="9" thac0="10" weapon="Shortbow" />

 </creatures>

 </party>

 <party>

 <creatures>

 <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="9"

pos-y="12" thac0="10" weapon="Shortbow" />

 <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="9"

pos-y="9" thac0="10" weapon="Shortbow" />

 </creatures>

85

 </party>

 </training-set>

 </training>

</ai-configuration>

86

EK-E RPG Yapay Zekâ Kodu

using System;

using System.Collections.Generic;

using System.Text;

using Rpg.Entity;

using System.Diagnostics;

using Rpg.Actions;

using Rpg.Entity.CreatureStates;

using Rpg.Rules;

using System.Xml;

using System.IO;

using System.Reflection;

using System.Globalization;

using Rpg.Common;

namespace Rpg.Ai

{

 public class AiPlayer : PlayerBase

 {

 #region Score Modifier Coefficients

 public double

 kState = 0.2,

87

 kTurnsToKill = 0.2,

 kHpLostTo = 0.2,

 kRange = 0.2,

 kThreat = 0.2;

 #endregion

 #region State Modifiers

 private readonly Dictionary<Type, double> _stateModifiers;

 #endregion

 private static string DefaultConfigFilename = "Ai.config.xml";

 private Realm _realm;

 private Creature _creatureControlled;

 private List<Creature> _hostileCreatures;

 private List<Creature> _friendlyCreatures;

 private List<AttackOrderListEntry> _attackOrderList;

 public List<AttackOrderListEntry> AttackOrderList

 {

 get { return _attackOrderList; }

 }

88

 public Creature CreatureControlled { get { return _creatureControlled; } }

 public AiPlayer(Creature creatureToControl)

 {

 _realm = Realm.GetInstance();

 _creatureControlled = creatureToControl;

 _creatureControlled.Stats.Player = this;

 _attackOrderList = new List<AttackOrderListEntry>();

 _stateModifiers = new Dictionary<Type, double>();

 InitializeStateModifiers();

 ReadConfigFromXml(DefaultConfigFilename,

creatureToControl.Stats.Name);

 UpdateCreatureAlignments();

 }

 public void UpdateCreatureAlignments()

 {

 _hostileCreatures = new List<Creature>();

 _friendlyCreatures = new List<Creature>();

 foreach (Creature c in _creatureControlled.Stats.Position.Board.Actors)

 {

89

 if (c != _creatureControlled && !c.IsDead())

 {

 if (c.GetAlignmentAgainst(_creatureControlled) ==

GetCreatureTypeParam.Hostile)

 {

 _hostileCreatures.Add(c);

 }

 else

 {

 _friendlyCreatures.Add(c);

 }

 AttackOrderListEntry aole = GetAttackListEntry(c);

 if (aole == null && _hostileCreatures.Contains(c))

 {

 aole = new AttackOrderListEntry();

 aole.TargetCreature = c;

 _attackOrderList.Add(aole);

 }

 }

 }

 }

 private void InitializeStateModifiers()

 {

90

 _stateModifiers.Add(typeof(Battle), 0.5);

 _stateModifiers.Add(typeof(Normal), 0.25);

 }

 private void UpdateAttackOrderList()

 {

 foreach (AttackOrderListEntry aole in _attackOrderList)

 {

 Type t = aole.TargetCreature.Stats.CreatureState.GetType();

 if (_stateModifiers.ContainsKey(t))

 {

 CalculateAttackOrderListEntry(aole);

 double stateModifier = _stateModifiers[t];

 double ttkModifier, rngModifier;

 if (kTurnsToKill == 0)

 {

 ttkModifier = 0;

 }

 else

 {

 ttkModifier = kTurnsToKill * (1.0 / Math.Max(1,

aole.NumberOfTurnsToKill));

 }

91

 if (kRange == 0)

 {

 rngModifier = 0;

 }

 else

 {

 rngModifier = kRange * (1.0 / Math.Max(1, aole.RangeModifier));

 }

 aole.Score =

 kState * stateModifier +

 ttkModifier +

 kHpLostTo * aole.HitPointsLostTo +

 rngModifier +

 kThreat * aole.ThreatModifier

 ;

 }

 }

 _attackOrderList.Sort();

 }

 private void CalculateAttackOrderListEntry(AttackOrderListEntry aole)

 {

92

 aole.RangeModifier =

 Math.Max(0,

 _creatureControlled.DistanceToCreature(aole.TargetCreature) -

_creatureControlled.Weapon.Range);

 if (_creatureControlled.Weapon.Damage.MaxRoll *

_creatureControlled.Stats.NumberOfAttacks == 0)

 {

 aole.NumberOfTurnsToKill = int.MaxValue;

 }

 else

 {

 aole.NumberOfTurnsToKill =

 aole.TargetCreature.Stats.HitPoints /

 (_creatureControlled.Weapon.Damage.MaxRoll *

_creatureControlled.Stats.NumberOfAttacks);

 }

 if (aole.LastDamageTaken == 0)

 {

 aole.ThreatModifier = 0;

 }

 else

 {

 aole.ThreatModifier = _creatureControlled.Stats.HitPoints /

aole.LastDamageTaken;

93

 }

 }

 public override void MakeMove()

 {

 ModifyCoefficients();

 UpdateAttackOrderList();

 if (_hostileCreatures.Count > 0)

 {

 //Creature target =

_creatureControlled.GetNearestCreature(GetCreatureTypeParam.Hostile);

 int targetIndex = _attackOrderList.Count - 1;

 Creature target = _attackOrderList[targetIndex].TargetCreature; // get the

first in the list

 while (target.IsDead())

 {

 if (targetIndex > 0)

 {

 target = _attackOrderList[--targetIndex].TargetCreature;

 continue;

 }

 break;

 }

 Debug.Assert(target != null);

94

 if (_creatureControlled.DistanceToCreature(target) >=

_creatureControlled.Weapon.Range)

 {

 MoveCreatureTowards(target.Stats.Position);

 }

 else

 {

 Attack.CreatureToCreature(_creatureControlled, target);

 }

 }

 UpdateCreatureAlignments();

 UpdateAttackOrderList();

 }

 private void ModifyCoefficients()

 {

 // get primary modifier

 double selfParty = (double)(_creatureControlled.Stats.HitPoints) /

_creatureControlled.Stats.MaxHitPoints,

 otherParty = 0;

 foreach (Creature creature in _friendlyCreatures)

 {

 selfParty += (double)(creature.Stats.HitPoints) /

creature.Stats.MaxHitPoints;

 }

95

 selfParty /= _friendlyCreatures.Count + 1;

 foreach (Creature creature in _hostileCreatures)

 {

 otherParty += (double)(creature.Stats.HitPoints) /

creature.Stats.MaxHitPoints;

 }

 otherParty /= _hostileCreatures.Count;

 double primaryModifier = selfParty / otherParty;

 }

 private void MoveCreatureTowards(BoardPosition boardPosition)

 {

 BoardPosition currentPos = _creatureControlled.Stats.Position;

 if (boardPosition.Board == currentPos.Board)

 {

 int signY = -1 * Math.Sign(currentPos.Point.Y - boardPosition.Point.Y);

 int signX = -1 * Math.Sign(currentPos.Point.X - boardPosition.Point.X);

 if (boardPosition.Point.X == currentPos.Point.X)

 {

 _creatureControlled.MoveBy(0, signY);

96

 }

 else if (boardPosition.Point.Y == currentPos.Point.Y)

 {

 _creatureControlled.MoveBy(signX, 0);

 }

 else

 {

 // move through either X or Y, selected by random

 int randomNumber = _realm.Randomizer.Next(0, 2);

 if (randomNumber == 0)

 {

 signX = 0;

 }

 else

 {

 signY = 0;

 }

 _creatureControlled.MoveBy(signX, signY);

 }

 }

 }

 private AttackOrderListEntry GetAttackListEntry(Creature creature)

 {

97

 AttackOrderListEntry aole = null;

 foreach (AttackOrderListEntry a in _attackOrderList)

 {

 if (a.TargetCreature == creature)

 {

 aole = a;

 break;

 }

 }

 return aole;

 }

 public override void AfterTakeDamage(Creature attacker, int damage)

 {

 base.AfterTakeDamage(attacker, damage);

 // update the Attack Order List

 AttackOrderListEntry aole = GetAttackListEntry(attacker);

 if (aole == null)

 {

 aole = new AttackOrderListEntry();

 aole.TargetCreature = attacker;

 _attackOrderList.Add(aole);

 }

 aole.HitPointsLostTo += damage;

98

 aole.LastDamageTaken = damage;

 }

 private void ReadConfigFromXml(string fileName, string configSetId)

 {

 _stateModifiers.Clear();

 NumberFormatInfo formatter = new NumberFormatInfo();

 formatter.NegativeSign = "-";

 formatter.PositiveSign = "+";

 formatter.NumberDecimalSeparator = ".";

 XmlDocument xmlDoc = new XmlDocument();

 xmlDoc.Load(fileName);

 XmlNamespaceManager nsManager = new

XmlNamespaceManager(xmlDoc.NameTable);

 nsManager.AddNamespace("ai", "http://ajitatif.com/AiConfiguration.xsd");

 XmlNode configSet =

 xmlDoc.SelectSingleNode(

 string.Format(@"//ai:configset[@id=""{0}""]", configSetId.ToLower())

 , nsManager);

 if (configSet == null)

 {

99

 if (string.Equals(configSetId, "default",

StringComparison.InvariantCultureIgnoreCase))

 {

 double k1 = _realm.Randomizer.NextDouble(),

 k2 = _realm.Randomizer.NextDouble(),

 k3 = _realm.Randomizer.NextDouble(),

 k4 = _realm.Randomizer.NextDouble(),

 k5 = _realm.Randomizer.NextDouble(),

 kTotal = k1 + k2 + k3 + k4 + k5;

 kHpLostTo = k1 / kTotal;

 kRange = k2 / kTotal;

 kState = k3 / kTotal;

 kThreat = k4 / kTotal;

 kTurnsToKill = k5 / kTotal;

 _stateModifiers.Add(typeof(Battle), 0.5);

 _stateModifiers.Add(typeof(Normal), 0.25);

 return;

 }

 else

 {

 ReadConfigFromXml();

 return;

 }

 }

100

 try

 {

 kHpLostTo =

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:hp-lost-

to/@value", nsManager).Value, formatter);

 kRange =

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:range/@value",

nsManager).Value, formatter);

 kState =

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:state/@value",

nsManager).Value, formatter);

 kThreat =

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:threat/@value",

nsManager).Value, formatter);

 kTurnsToKill =

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:turns-to-

kill/@value", nsManager).Value, formatter);

 XmlNode targetStateModifierListElement =

configSet.SelectSingleNode(@"./ai:modifiers/ai:target-state-modifier-list",

nsManager);

 Assembly entityAssembly = Assembly.GetAssembly(typeof(Battle));

 foreach (XmlNode elem in targetStateModifierListElement.ChildNodes)

 {

 string stateTypeString = elem.Attributes["state-type"].Value;

 Type stateType = Type.GetType(stateTypeString);

101

 if (stateType == null)

 {

 stateType =

Type.GetType(string.Format("Rpg.Entity.CreatureStates.{0}, {1}", stateTypeString,

entityAssembly.FullName), true, true);

 }

 double stateValue = Convert.ToDouble(elem.Attributes["value"].Value,

formatter);

 _stateModifiers.Add(stateType, stateValue);

 }

 }

 catch (Exception ex)

 {

 throw new Exception("Unable to parse the config file", ex);

 }

 }

 private void ReadConfigFromXml()

 {

 ReadConfigFromXml(DefaultConfigFilename, "default");

 }

 }

}

102

ÖZGEÇMĐŞ

1983 yılında Tekirdağ Đli’nin Çorlu ilçesinde doğdu. Đlk ve orta öğrenimini Ankara’da,
lise öğrenimini ise Đstanbul’da tamamladı. 2001 yılında girdiği Kocaeli Üniversitesi
Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü’nden 2005 yılı Haziran ayında
mezun oldu ve aynı yılın eylül ayında Kocaeli Üniversitesi Fen Bilimleri Enstitüsü
Bilgisayar Mühendisliği Bölümü’ne yüksek lisans eğitimine kabul edildi. 2006 yılı
Ekim ayı itibariyle hakia.com’un Đstanbul Đrtibat Ofisi’nde yazılım mühendisi olarak
çalışmaktadır ve bekârdır.

