KOCAELI| UNIVERSITESI * FEN BILIMLERiI ENSTITUSU

YAPAY ZEKA YONTEMLERIYLE OYUN GELISTIRME

YUKSEK LiSANS TEZi

Bilgisayar Miih. Gokalp GURBUZER

Anabilim Dah: Bilgisayar Miihendisligi
Danmisman: Dog¢. Dr. Adnan KAVAK

KOCAELI, 2008

KOCAELI UNIVERSITESI * FEN BILIMLERI ENSTITUSU

YAPAY ZEKA YONTEMLERIYLE OYUN GELISTIRME

YUKSEK LISANS TEZI

Bilgisayar Miihendisi Gokalp GURBUZER

Tezin Enstitiiye Verildigi Tarih: 26 Mayis 2008
Tezin Savunuldugu Tarih: 08 Temmuz 2008

Tez Danismam Uye Uye
Dog. Dr. Adnan KAVAK Yrd. Dog, Dr. H. Epkin DEMIRAY Yrd. Dog. Dr. Mustafa TURKBOYLARI
1]

KOCAELI, 2008

ONSOZ ve TESEKKUR

Makinelerin karsilastiklari ve daha 6énceden gérmemis olduklari sorunlari ¢ézmesini
amaglayan Yapay Zekd, ilk kez 1956 yillinin yaz aylarinda Darmouth
Universitesinde yapilan bir konferansta ortaya ¢ikmistir. ilk yillarinda ¢ok hizli bir
ivme yakalayan ve pek c¢ok insani hayrete dislren yapay zek& programlari,
ilerleyen yillarda ayni ivmeyi ne yazik ki koruyamamistir. Bunun nedeni, insanlarin
kolaylikla ¢6zdugu sorunlari bir makineye anlatmanin zorlugu ve makinelerin o
zamanki islem gucu kisitlariydi. Ne var ki, son yirmi yildir gok yuksek bir hizla
ilerleyen teknoloji, karmasik yapay zekdya olanak saglayacak donanimlarin
uretilmesini saglamig ve modern yapay zekanin ilerlemesinde buyuk katkida
bulunmustur. Gunimuzde, en kolay ve en etkin olarak programlanabilen aygitlar
bilgisayarlar oldugu igin yapay zeka bir bilgisayar bilimi olmustur ve halen pek ¢ok

uygulamada etkin olarak kullaniimaktadir.

Yapay zeka ydntemleriyle oyun gelistirme tezimin tamamlanmasi sirecinde; yontem
kuramlarinin gesitlendiriimesi ve tamamlanmasinda c¢ok degerli katkisi olan
agabeyim Y. Muh. Goékhan GURBUZER'e, tezin ydnlendirilmesinde destegini
esirgemeyen tez danismanim sayin Dog. Dr. Adnan KAVAK’a, tez calismalarim igin
daha fazla zaman ayirmami saglayan patronum sayin Dr. Riza Can BERKAN’a ve
yoneticim Altug Bilgin ALTINTAS’a tesekkurd borg biliim. Ayrica her zaman
yanimda olan, beni bugiine yetistirmis bulunan annem Nilgin GURBUZER ve

babam Kirgat GURBUZER’e sonsuz minnet duygularimi sunarim.

iCINDEKILER

ONSOZ ve TESEKKUR ...ttt eae e [
ICINDEKILER ...ttt ettt e e te e eeeeteereens i
SEKILLER DIZINI ...ttt iv
TABLOLAR DIZINI ... Vv
o] LY LT = I = Vi
(@ 74 =3 E O vii
INGILIZCE OZET ..ottt viii
(I €1 =1 TR 1
1.1 Yapay ZeKa'nin TanIMI ... 1
1.1.1 A= = W oV T =T o1 o 1 PRSP 1
1.1.2 Yapay Zeka&'NIN tanimMi.....oouuiuiiiiiiieie et e e eeaees 1
1.1.3 Zeki Makinenin tanimi........ccccooooiiiiiiii 2
1.1.3.1 TUFING SINAVI i 2
1.2 Yapay Zek@'nin Kullanim Alanlart...........cccccoiiiie 2
1.3 Yapay Zek&'da EQitim v& AMACI..........ooommiiiiiii e, 3
1.4 Kullanilan Yapay ZeKa..........ccoiii 4
1.4.1 (o3 =T o = TP 4
1.4.2 RPG. 4
2 YAPAY ZEKA YONTEMLERI......coouiiieiee oottt 6
2.1 Yapay Zek&'da Kullanilan Karar Mekanizmalaricccooeeeiiiiiiiieeeen 6
211 Sonlu durum MaKINEIENuuuiiiiiiiiiiiiiiii e eeeeeeneenes 6
2.1.2 Oznel beklenen yarar (SEU)ccooeeoeioe et 7
213 Karar agdaclart ..., 8
214 MINIMAX .o 10
21.5 Alfa/betakesintileri.......ccccooeiiiiiii 12
216 Yapay Sinir @glart ..o 13
2.1.6.1 Yapay Sinir @91 YapPHAITuuuuuieiieiiiiiiiiiiiieiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeenaeee 15
2.1.6.2 Yapay sinir aglarinda egitimooooiiiiiiiiii e, 16
217 BulaniK mantiK ... 17
21.71 Bulanik Kural tabloSucoouueiiie e 18
21.7.2 BulaniKIastirma..........cooooiiii 18
21.7.3 Bulanik ¢ikartim motoru............ccooiiiiiiiiiicc e 19
21.74 10] =T o - T 20
21.8 Bulanik Sinir @glart ... 21
2.1.8.1 Bulanik model ve iliskin agd yapisinin ¢ikarimi...........cccooooeeiiiiiiiiienneenn, 21
2.1.8.2 Bulanik ag yapisinin katmanlari ve islevleri.........cccccccooiiiiiiiiiiiiieenn, 22
2.1.8.3 Bulanik aglarda egitim ... 23
2.1.84 leri yayilim ve LS YONEMI.......ccoveiee e 24
2.1.8.5 Geriye yayilim ve gradyan indirgemesiyle egitim.............c.ccccovveeeene. 26
2.1.9 Genetik algoritmalar...........ocuuiiiiiiiie s 26
2.2 EGitim yONtemMIEri....coooeeieeeeeee 27
2.2.1 Hata gudlmIll OGrenim........coooeeiiiiicee e 27
222 Egitici tarafindan 6Frenim ... 28
2.2.3 KesSifle OFrenimoooii i 28
3 YAPAY ZEKA ORNEK UYGULAMALARIcooviieeieeeeeeeeeeeeeeeeeee e 29

3.1 Gelistirme OrtamIcooe e 29

3.2 Gelistirilen OYUNIArcooiiiiieee e 29
3.2.1 Tic tac toe — bir ZEKA OYUNUcoveeiiieeic e 29
3.2.1.1 Oyunun ve kurallarin tanimlanmast ..., 29
3.2.1.2 Kullanilan yapay zek& modeli.............coovviiiiiiiiiiiiicce e, 29
3.21.3 Oyunun calistirilmasi Ve araylzccceeeieeeeiiiiiiiiiiee e 33
3.2.2 RPG — bir ¢atiSma OYUNUcooiiiiiiiiiei e 34
3.2.2.1 Oyunun ve kurallarinin tanimlanmasi ... 34
3.2.2.1.1 Oyunlailgiligenel bilgiler ..., 34
3.2.2.2 Oyunun caligtiriimasi ve araylzl............coooeeeeeeeieeiieeeeeeeeeeeeeeeeeeeee 36
3.2.2.3 Kullanilan yapay ZeKa...............uuuuuuiiiiiiiiiiiiiiiiiiiiieeeee 38
3.2.2.3.1 Karar meKanizmalar!uoiiiiiiii e 38
3.2.24 Yapay zeka’ nin €gitimi...........oooiiiiiiiiii e 41
3.2.24.1 N KB AUIUMU oo e e e e e e e 46
4 BULGULAR VE TARTISMA ..ottt 48
4.1 Kullanilan Yontemlerin BasariSi............ceiiiiiiiiiiiiiiccii e 48
411 LI (o3 ¢T3 o = TSRS 48
4.1.2 RPG et 53
4.1.2.1 BaslangiC KOSUIIAIToooiiiiiii e 53
41.2.2 TSt SONUGIAIT ... e e e e e eeeeees 54
5 SONUCLAR VE YORUM ...ttt 58
ST | =Y 071 1E- 1= = TSRO 60
L Y S 61
] RSP 63
(@Y€ 1 =103 1Y 11T 102

SEKILLER DiZziNi

Sekil 2.1: Ornek Sonlu Durum MaKinesi [4].........eoveeeeeeeeeeeee e 7
Sekil 2.2: Ornek Karar AGac! [6].........coueiueeieeeeeeeeee e 9
Sekil 2.3: MiniMax Arama AGACH [7]...cceeureaeie e 11
Sekil 2.4: Alfa-Beta Kesintisine Uygun Bir Arama AGaci [7]......cccoooeveeiiiiieiiieeeeeen 12
Sekil 2.5: Yapay Sinir AQI DUGUMU [8] cevvvueeiiiieeieeeeee e 14
Sekil 2.6: ileri Besleme Yapay Sinir AG1[9] ..covveoveioeieiee e 15
Sekil 2.7: Tsukamoto Modeli Bulanik Sistem Cizelgesi ..., 17
Sekil 2.8: Bulanik Uyelik FONKSIyONIar [13]......cccveereoeriieeeeeeeee e 19
Sekil 2.9: Bulanik Cikis Uyelik Fonksiyonlari Birlegimi [14]........ccoooeviveeiveeeeeeeenee. 20
Sekil 2.10: ANFIS MimMariSi....ccccciieeeeieeeeeeeee e 22
Sekil 3.1: Ornek Bir Tic Tac Toe Oyun DUrUMU..........cc.oeouriueeeeeeeeeeeeeeeeeeeevene 30
Sekil 3.2: Tic tac toe arama adaclceiiieeiiiiiiicce e 31
Sekil 3.3: Arama Agacinin Doldurulmas!cooooeeioeeeeeeeeeeee e 32
Sekil 3.4: Tic Tac Toe Aclilis Ekran GOrlntlsUieueeiiiieeiiiiiiiiiise e 33
Sekil 3.5: RPG Acilis EKran GOrlntlsUcceeiiiiiiiiiiiieeeecceeeicces e 37
Sekil 3.6: RPG Karar Sonlu Durum MakKinesicccooiiiiiiiiiiiiciii e, 38
Sekil 3.7: RPG Yapay Zeka Egitim Algoritmastccoooeeeeeeeieeeeeeeeeeeeeeeeeee 45
Sekil 4.1: Tic Tac Toe Hamle 1(INSAN)c.coveviueieeeeeeeeceeeeeeeeeee e 48
Sekil 4.2: Tic Tac Toe Hamle 2(Bilgisayar)............ceeeiiiieiiiiiiiiices e 49
Sekil 4.3: Tic Tac Toe Hamle 3 (INSAN)cc.coviuiiieeieeecceceeeeeeee e 49
Sekil 4.4: Tic Tac Toe Hamle 4 (BilgiSayar)........cooooviooooeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 50
Sekil 4.5: Tic Tac Toe Hamle 5 (INSAN)ccceeieieeeee e, 50
Sekil 4.6: Tic Tac Toe Hamle 6 (Bilgisayar).............ueeeiiiieiiiiiiiiccieeeeeeeeeeee e, 51
Sekil 4.7: Tic Tac Toe Hamle 7 (INSAN)cc.coviueieeeeeeececeeeeeeee e 51
Sekil 4.8: Tic Tac Toe Hamle 8 (Bilgisayar).............uuceeiiiiiiiiiiiiiicee e 52
Sekil 4.9: Tic Tac Toe Hamle 9 (INSAN)ooeeieeeeece e, 52

TABLOLAR DiZziNi

Tablo 2.1:
Tablo 2.2:
Tablo 2.3:
Tablo 4.1:
Tablo 4.2:
Tablo 4.3:
Tablo 4.4:
Tablo 4.5:
Tablo 4.6:
Tablo 5.1:

Ornek Tsukamoto Bulanik Kural Tablosuccccceeveveeeveeeeeeeeennen. 18
Ornek Sugeno Bulanik Kural TabloSuU............cccceevevueoueeieeieieceeve e 18
ANFIS Bulanik Kural TabloSu...........ccoovviviiiiiiiieeeeeeeeeeee 21
2'ye 2 Sabit Konumlu Test Sonuglari...........cccouvceeiiiiiiiiieiicee e, 54
2'ye 2 Rastgele Konumlu Test Sonuglart ... 55
1'e 2 Sabit Konumlu Test Sonuglart...........cooooeeiiiiiiiiiiiicee e, 55
1'e 2 Rastgele Konumlu Test Sonuglari..........ccccoceeeiiiiiiiiiiiii e, 56
2'ye 1 Sabit Konumlu Test Sonuglar ... 57
2'ye 1 Rastgele Konumlu Test Sonuglart ..., 57
Tic Tac Toe Test SONUGIArToovviiiiiii e, 59

SIMGELER

AC: Yaratigin zirh seviyesi, ([-10, 10] araliginda)

HP: Yaratigin mevcut can puanlari,

LS: Least Squares, en dlsuk kareler,

SEU: Subjective Expected Ultility, 6znel beklenen yarar,

THACO: 0 AC’li bir bagka yaratiga vurmak icin atilmasi gereken en dusiik zar

vi

YAPAY ZEKA YONTEMLERIYLE OYUN GELISTIRME

Gokalp GURBUZER

Anahtar Kelimeler: Yapay Zeka, Makine Ogrenmesi, Oyun Zekasi, Yapay Zeka
Egitimi

Ozet: Yapay Zeka, giinimiizde bilgisayar bilimlerinin en gézde dallarindan biridir ve
yapay zeka bilim dali, makinelerin zeki davranmalarini saglamaya calisarak onlarin
daha ¢ok ve daha cesitli sorunlarla tek baslarina basa ¢ikmalarini saglar. Stphesiz
ki ginUmuzde yapay zekanin gelismesindeki payi en yuksek olan sektdrlerden biri
ise bilgisayar oyunlari sektorudur. Gunimuzdeki bilgisayar oyunlari dinya satrang
sampiyonlarini ve dama ustalarini bile yenebilmektedir. Bu motivasyon ile yola
¢ikilan bu galismada oncelikle yapay zekanin tanimi irdelenmis, yapay zekaya
yardimci hesaplama ydntemleri ortaya konmustur. Bu hesaplama yéntemlerinden
MiniMax, Tic Tac Toe adli sifir toplam, sira tabanh ve tam bilgili oyun igin; egitim
yontemlerinden Hata Gudimli Egitim ise sifir olmayan toplamli, sira tabanli ve eksik
bilgili bir oyun olan RPG olmak Uzere, iki adet farkli oyun programlanarak
glinimuzdeki ya da belki yarinki bir oyunda programlanan yapay zekanin ne gibi
Ozellikler gostermesi gerektigi ortaya konmaya ¢alisiimistir.

Vii

GAME PROGRAMMING USING ARTIFICIAL INTELLIGENCE METHODS

Gokalp GURBUZER

Keywords: Artificial Intelligence, Machine Learning, Game Intelligence, Artificial
Intelligence Training

Abstract: Artificial Intelligence is one of the most popular branches of the computer
science and it aims to make machines act intelligently, rendering them able to cope
with more in number and more complex problems by themselves. Without a doubt,
one of the most active sectors which aid artificial intelligence development today is
the video game sector, which created programs that can beat world chess
champions and checkers masters. This work is a quest motivated by these causes,
which first identifies artificial intelligence, then explain the computation methods that
aid artificial intelligence science. The work then states two Al programmed games;
which include Tic Tac Toe, a zero-sum, turn-based, full-information game and RPG,
which is a non-zero-sum, turn-based, imperfect-information game based on
Tolkien’s world and tries to understand what an Al should be like in a video game of
today and perhaps tomorrow.

viii

1 GIRIS

1.1 Yapay Zekad’nin Tanimi

1.1.1 Zek&’nin tanimi

Yapay Zek&y1 tanimlamadan dnce zeka kavraminin tanimina bakmak yararh olur.
Her ne kadar sik kullanilan ve kulaga basit gelen bir kavram olsa da zeka,
tanimlamasi glic ve pek cok bilim dalindan pek ¢ok otoritenin birbirinden farkl

tanimladigi bir kavramdir.

John McCarthy tarafindan yapilan tanima goére “Zeka, yasamdaki amaglara ulagsma
yetisinin hesapsal yanidir”. Yapay Zeka bilimi bu tanimdan yola ¢ikarak zekanin
hesapsal tabanini arastirarak ¢dézmeye calisir. Ancak yine John McCarthy’nin
belirttigi gibi “Zeka, kendi icinde —tamami henlz anlasilamamis- mekanizmalar
barindirir’ bu yizden Yapay Zek&'nin ¢éziminl arastirdigi her sorunun yaniti ayni

olmamaktadir ve farkli ¢gézimler ile asiimaya calisilir. [1]

1.1.2 Yapay Zeka@’nin tanimi

Yapay Zek&'nin tek bir kesin tanimi bulunmamakla birlikte ad babasi olan John
McCarthy 1956’da Yapay Zek@yi “Zeki makineler, Ozellikle de zeki bilgisayar
programlari yapma bilimi ve muhendisligidir” diyerek tanimlamistir. Ancak yine John
McCarthy’'ye gore “Benzer bir is olan ‘bilgisayarlar aracilii ile insan zekasini
anlamaya calismayla’ ilgili olmasina ragmen kendisini sadece biyolojik olarak

gbzlemlenebilen yontemler ile sinirlandirmaz”. [1]

1.1.3 Zeki Makinenin tanimi

1.1.3.1 Turing sinavi

Bir makinenin zeki olma kavramini ilk kez tanimlayan kisi Alan Turing’dir. Turing’e
oyunculu bir sinavi vermesi gerekir. insan oyunculardan birisi juri olur ve ayri ayri
her iki oyuncuyla da — hangisinin insan hangisinin bilgisayar oldugunu bilmeden -
etkilesimde bulunur. Eger juri oyuncu, etkilesimde bulundugu oyuncularin hangisinin
insan hangisinin makine oldugunu ayirt edemezse makine sinavi vermis olur ve zeki

bir makine olarak nitelendirilebilir. [2]

Bu sinava yapay zeka yazininda “Turing Sinavi” olarak adlandirilir. Turing sinavinin
tam bir zeki makine tanimi yapabildigine iligkin farkli gorisler vardir. Zira Turing
makinesi bir zekd tanimindan yola ¢ikmak yerine bir makineyi bir insanla
karsilastirdigi icin gercek zekanin degil insana benzerligin sinavi oldugu asikardir.
Yine de ilk somut tanimi Turing vermistir ve butin yapay zeka bilim cevreleri

tarafindan bilinen bir sinavdir.

1.2 Yapay Zeka@’nin Kullanim Alanlari

Yapay zekanin kullanim alanlari her gegen gun git gide artmaktadir. Bazi kullanim

alanlarr;

e Oriinti tanima

o Optik karakter tanima

o Elyazisi tanima

o Konusma tanima

o Yulztanima

e Yapay yaraticihk

o Bilgisayar gorisu, sanal gergeklik ve gorintu isleme
e Yapay zeka sinama

e Oyun kurami ve stratejik planlama

e Oyun yapay zekasi ve bilgisayar oyuncular

¢ Dogal dil isleme, ceviri ve sohbet botlari
¢ Dogrusal olmayan kontrol ve robotik

e Yapay yasam

o Otomatiklestiriimis kavrama (Automated resoning)
e Otomasyon

e Biyolojiden ilham alinmis hesaplama

e Kavram madenciligi

e Veri madenciligi

e Bilgi temsili

e Anlam tabanl internet

o E-posta ¢oplik stizmesi

¢ Robotik

o Davranig tabanli robotik

o Kavrayici

o Sibernetik

o Evrimsel robotik

e Karma zeka sistemi

e Zekiajan

e Zeki kontroldur. [3]

1.3 Yapay Zeka’da Egitim ve Amaci

Yapay zekada egitimin amaci, belirli sorunlarla bas etmek Uzere tasarlanmis olan
yapay zekanin kendini gelistirmesi, ileride karsisina c¢ikabilecek daha farkl
durumlarda da dogru adimlar izleyebilmesini saglamaktir. Genel anlamda yapay
zeké egitimi, birer minimizasyon ya da maksimizasyon sorunlaridir ve optimizasyon

kuramlarindan bolca yararlanir.

Yapay zekanin egitiimesi, sistemin kendi kendine daha gelismis bir yapay zeka
ortaya koymasini saglar. Ogrenen makineler, égrenmeyenlere gore daha fazla

sayida ve c¢esitte sorunlarla bas edebilir.

1.4 Kullanilan Yapay Zeka

Bu tezde, iki adet yapay zekali oyun bulunmaktadir. Birisi eski bir zekad oyunu olan
Tic Tac Toe, bir digeri ise Tolkien dinyasindan ortaya ¢ikmis bir oyun tiriinden

esinlenmis RPG’dir.

1.4.1 Tic tac toe

Tic Tac Toe oyunu, sira tabanli bir tahta oyunudur. iki oyuncu da kendi sirasi
geldiginde kendi isaretini tahtanin istedigi yerine yerlestirir. isaretleriyle diiz bir sira

yapan oyuncu oyunun galibi olur.

Tic Tac Toe yaziliminda, John von Neumann'in ortaya koydugu MiniMax yontemi

kullaniimistir.

1.4.2 RPG

RPG, Role Playing Game sozcuklerinin kisaltmasidir ve aslinda bir oyun degil, bir
oyun turt adidir. Oyunda karsi karsiya gelen iki dusman grup, birbirlerini ellerindeki
silahlariyla dldirmeye caligmaktadirlar. Butiin elemanlari 6len grup oyunun maglubu

sayilir.

RPG, sira tabanh bir tahta oyunu olmasina ragmen bilinemeyecek unsurlar
icerdiginden MiniMax algoritmasi kullanilmamistir. Bunun yerine her el sonunda,
hangi dismana saldirilacaginin ortaya konuldugu bir degerlendirme fonksiyonu

kullaniimistir.

Elinizde bulunan “Yapay Zeka Yontemleriyle Oyun Gelistirme” adli tez ¢alismasinda,
oncelikle yapay zekada kullanilan baglica yontemler siralanmigtir. Bu ydntemlerden
MiniMax; sifir toplaml, tam bilgili ve sira tabanli bir oyun olan Tic Tac Toe’da
kullanilmistir. Ikinci bir oyun olan RPG'de ise bir agirlikli toplamlar yéntemi
kullaniimig ve agirliklarin optimizasyonu igin bir hata gudumld egitim yontemi

Onerilmigtir.

Bu caligmanin ikinci boéliminde Yapay Zek&'da kullanilan baglica yontemleri,
dclncu boéliminde yazar tarafindan gelistirilmis ve yukarida belirtiimis olan iki
bilgisayar oyunu ve Yapay Zeka tasarimlarini, dérdinct bélim olan “Bulgular ve
Tartisma” béliminde ortaya konulmus olan Yapay Zeka yontemlerinin basarimlarini
ve son bdlim olan “Sonuglar ve Yorum” béliminde bu ¢alismanin genel basarimini
ve ileride bu tezi basvuru amach olarak kullanacak arastirmacilara Onerileri

bulacaksiniz.

2 YAPAY ZEKA YONTEMLERI

2.1 Yapay Zeka’da Kullanilan Karar Mekanizmalari

2.1.1 Sonlu durum makineleri

Sonlu durum makineleri, sonlu sayida durumlarin bulundugu ve bu durumlar
arasindaki gecislerin belirli kurallara baglandigi bir karar verme ydntemidir. Sonlu

durum makineleri temel olarak doért bilesenden olusur:

Durum
Baslangi¢ Durumu
Alfabe
Gecis Fonksiyonu

Sonlu durum makinelerinde, durumlar arasi gecis, tanim uzay! alfabe olan gegcis
fonksiyonunun sonucuna gore yapilir. Id Software’in efsanevi oyunlarindan Quake

oyunundaki roket mermisinin durum gizelgesi Sekil 2.1°de verilmigtir:

Finish Spawn

Touch was

owner

Collision

5 sec. timeout

Hit sky

Exploded

Sekil 2.1: Ornek Sonlu Durum Makinesi [4]

Sonlu durum makineleri genellikle karar vermekten c¢ok karar kalibi belirlemeye
yonelik bir ydntem olarak kullanilir. Ornegin FPS tarzi bir oyunda bilgisayar, saglk
durumunun kéta gittigini distintyorsa geri ¢ekilme durumuna girer. Bu durumda

alacagi kararlarin olusturdugu uzay diger durumlardakinden farkli olur.

2.1.2 Oznel beklenen yarar (SEU)

Oznel beklenen yarar, 1954 yilinda Leonard Jimmie Savage tarafindan ortaya
atilmis bir karar kurami ydntemidir. Bayes olasiliyi kuramina dayanan bir 6znel

olasilik analizi ile 6znel bir yarar fonksiyonunu bir araya getirir.

Savage ispatlamistir ki [5] bir kesin olmayan olayin olasi sonuglari {x;} ise ve her
birinin kisiye olan yarari (utility) u(x;) , ve her birinin meydana gelme olasiligi P(x;) ise

kisinin Oznel Beklenen Yarari (SEU) Denklem 2.1°de verilmistir.

SEU = Zu(xi)~P(xi) (2.1)

Alinan bir karar sonuglari {y;}'ye getirir ve bu sefer beklenen yarar Denklem 2.2’deki

gibi olur.

SEU =X u(y,)- P(y;) (2.2)

SEU yéntemi, olasi bitlin sonuglarin, sonuglarin olasiliklarinin ve éznel olan yarar
fonksiyonlarinin kusursuz sekilde bilindigini kabul eder ve bu ylzden
hesaplanabilme yoéninden eksik kalir. Yine de mikro-uzay problemlerine

uygulanabilirligi ylksektir.

SEU ydéntemi, bir ajanin mantikh bir sekilde davranmasinin ne anlama geldigini ilk
kez aksiyomlanabilmis bir yolla anlatilabildigi ilk kuram olma 6zelligi nedeniyle, karar

verme konusunda onemli bir kuramdir.

2.1.3 Karar agaglari

Karar Agagclari, stratejik kararlarin veriimesinde yardimci olarak kullanilan birer
cizelgedir. Cizelge bir ajaca benzer ve adacin her dali o an alinabilecek bir karari
simgeler. Alinan her bir kararin getirisi ve goétiriisi muhasebe edilir ve basari
ylzdesi ile carpilir. Bu hesaplamadan en yiksek puanla ¢ikan olasilik en karl

olasilik olarak degerlendirilebilir. Sekil 2.2, drnek bir karar agacini resmetmektedir.

(0.3) Commercial grade
5805,000
EV = 268,500 {l
(0.6] Residential grade
sullun: <] $695.000
(.65 00D) EV = 417,000
Submit application™ . - 875000
(0.5) Success B = 75000 [0.1) No certification {] (+4105 0001
(-$100,000) EV = |-10,500]
' EV = §287,500 30 <] (-$100,000)
{05 Failure Don't submit application
: <] 5100000
{0.8) Success
<] 5390000
(510,000 EV=$310,000
(0.2) Fallure
ﬂ [-510,000)
<] 50

Neither

Sekil 2.2: Ornek Karar Agaci [6]

Ornek sirketin senaryosuna gére, ellerindeki iki projeden en c¢ok birini yapabilecek
olan sirketin hareket algilayicli ya da duman ve yangin algilayicisi projelerinden
birisini segmesi gerekmektedir. Yangin algilayicisi projesinin baslangic maliyeti
100.000%’dir ve basari olasiligi %50°dir. Eger sirket projeyi gelistirmekte basaril
olursa projeyi sektordeki diger batin Grlnler gibi bir standartlara uygunluk testinden
gegirecektir. Testin maliyeti 5.000$’dir ve eger ticari uygunluk alirsa (olasilik %30)
projenin getirisi 1.000.000$ olacaktir. %60 olan diger bir olasilikta yalnizca evler igin
bir uygunluk alinmakta ve ticari uygunluga goére daha az olan 800.000% getiri
saglamaktadir. Proje hi¢ bir uygunluk alamazsa (%10 olasilik) projenin yatirim

masraflari ¢ope gidecektir.

Hareket algilayicisinin ise baslangic maliyeti 10.000$ ve basari olasiigi %80°dir.
Projede basari saglanirsa elde edilecek kazang 400.000%’d1r.

Karar agaglari doldurulurken, SEU yéntemindeki gibi, batin olasiliklarin bilinmesi
gereklidir. Agacin her bir digimunin beklenen deger (EV) formili Denklem 2.3’te

verilmistir.

EV,= Z(Gelir,. — Gider,)- P(i)
i (2.3)

Dikkat edilirse, karar agaclarinin aslinda yarar fonksiyonu digimdeki kar olan bir

SEU uygulamasi oldugu soylenebilir.

Bilgisayar da bir oyunda bir karar vermek durumunda kaldiginda ayni sekilde bir
karar agaci yaratip, bu karar agacindaki hesaplamalara gére EV degeri en yliksek
yolu secmesi saglanabilir. Ancak 6zellikle hesaplamalardan cok reflekslerin etkili
oldugu hizli oyunlarda (6rnegin FPS tarzi oyunlarda) karar agaclari ¢ok daha basit

olabilir, hatta Veri Madenciliginde kullanildi§i Gizere eder-ise kurallarindan olusabilir.

2.1.4 MiniMax

Bilgisayar oyunlarinda Yapay Zek& uygulamalarinda kullanilan algoritmalardan birisi
de karar kuramindan gelen MiniMax yontemidir. Algoritma, temelinde sira tabanli,
tam bilgili, sifir toplam oyunlarda kullaniimak Uzere tasarlanmigtir; ancak diger
turlerde kullanilmak Gzere degigtirilebilir. Yontem, olasi en yuksek zararin en aza

indirgenmesi olarak tanimlanabilir.

0, 6 parametresini kestiren fonksiyon ve R(8, 0), risk fonksiyonu (genellikle kayip

fonksiyonunun integrali olarak alinir) olmak Uzere;

supg R(6,8) = infs supg R(8, 8) (2.4)

Oldugu noktadaki R fonksiyonu MiniMax fonksiyonudur.

MiniMax fonksiyonu, temelinde sira tabanli, tam bilgili, sifir toplam oyunlarda

kullanilir; ancak diger tirlerde kullaniimak izere degisikliklerde bulunulabilir.

10

Oyunda Min ve Max adinda iki oyuncu vardir ve bilgisayar, bu iki oyuncunun da
oynayabilecedi batln olasiliklari ¢gikartarak kendisi i¢in en iyi oyun durumunu elde
etmeye calisir. Algoritma, bir arama agacina dayanir (Sekil 2.3) . Arama agacinin
her digimi oyunun bir durumunu (ya da kisaca bir oyunu) tutar. Bir dGgimin alt
dugumleri ise o durumdan sonraki olasi durumlari tutar. Min ve Max ile isaretlenmis

seviyeler o seviyede oynayacak olan oyuncuyu gosterir.

MAY

14

4
B f‘ 7]

Sekil 2.3: MiniMax Arama Agaci [7]

Agac; derinlemesine (depth-first), o anki oyun durumundan baglayarak oyunun son
durumuna kadar hesaplanir ve oyunu sonlandiran bir hamle bulundugunda oyun
sonucu Max'e gbre yorumlanir. Daha sonra agacin dallarindaki dugumler asagidan
yukariya dogru, hesaplanan degerlerle doldurulur. Max'in oynadigl durumlari
gOsteren dugumler kendi gocuklarinin en buyuk degerini alirken Min'in oynadigi

durumlari gésteren dugumler cocuklarinin en disik degerini alir.

Sonug olarak, arama agacindaki degerler o durumun Max igin ne kadar iyi bir oyun
sonucu oldugunu gosterir. Max, bir hamle yaparken bu digimlerden en blyuk
degerlisini segmek isteyecektir. Buna karsilik, Min de Max'in durumunu
kotulestirmeye (yani kendi durumunu iyilestirmeye) c¢alisacak bir hamle

yapacagindan bu Max'in hamle sec¢imini zorlastiracaktir.

MiniMax yontemini kullanan bir algoritma EK-A’daki s6zde-kod ile gerceklestirilebilir.

11

2.1.5 Alfa/ beta kesintileri

MiniMax ydéntemi, oyunda olasi buitin hamlelerin bellekte bir aga¢ yapisinda
tutulmasi ve aramanin bitlin adac¢ Uzerinden yapildigi icin Ozellikle satrang gibi
hamle uzay! blyUk oyunlarda islem yukund arttirdigi igin Alfa/Beta kesintileri teknigi

kullanilir.

Alfa-Beta kesintileri Sekil 2.4’e benzer agaclarda kullanilabilecek bir yontemdir:

VD

Lan

C) [[

Sekil 2.4: Alfa-Beta Kesintisine Uygun Bir Arama Agdaci [7]

WK

La%

A ve B digumleri MIN sirasinda oldugundan A'nin degeri olan 3'ten klglk bir sayi
B'nin degeri olarak segilecek olursa B'nin bir sonraki adimda A'yl gecemeyecegi

kesindir ve B digumuyle daha fazla zaman kaybetmeye gerek yoktur.

B'nin ilk cocugunun degeri 2 oldugu bilindigi anda diger cocuklarin degerleri 2'den
blylk olmasi kosulunda en kiglik deger kalacak olan 2'nin B'nin dederi olacagi,
diger cocuklarin degerlerinin 2'den kiigik olmasi kosulunda ise B'nin degerinin 2'den
kiguk (ve dolayisiyla MAX sirasinda A'nin degeri olan 3'0 gegemeyecek) bir deger

alacagindan B ile ilgilenmeye gerek yoktur.
Ya da kisaca;
alfa = bilinen en iyi MAX degeri ve beta = bilinen en iyi MIN degeri olmak uzere,

1. MAX duagumlerinde, herhangi bir yolu izlemeye baslamadan énce, bir dnceki
yolun degerini beta degeri ile karsilastir. Eger deder beta'dan buylkse bu

digumu atla

12

2. MIN dugumlerinde, herhangi bir yolu izlemeye baslamadan dnce, bir dnceki
yolun degerini alfa degeri ile karsilastir. Eger deger alfa'dan kiglkse bu dugumu

atla

Alfa-Beta kesintileri, MiniMax algoritmasinda yapay zeka kalitesini disirmeden
onemli hiz kazanci dogurabilir. Ancak bu hizlanmanin o6lgedi arama agacinin
yapisina baghdir. MAX dagumlerinin degerleri kiigikten buyige dogru sirall ise, ya
da MIN duagumlerinin deg@erleri buyukten kicgude sirali gelmisse alfa-beta

kesintilerinin performansa bir katkisi bulunmaz.

2.1.6 Yapay sinir aglan

Yapay Sinir Aglari, omurgali hayvanlarin sinir sistemlerinden esinlenerek ortaya
konulan iteratif, 6grenmeye dayali bir kestirim yontemidir. Birbirleri ile iyi iletisimleri
bulunan sinir hiicreleri (digumler) kendisinden énceki digimden gelen veriyi basit
islemler (agirlik carpani ve diagum agirligi toplamsali kullanarak) yaparak bir sonraki
dugume iletir. En son digimde elde edilen sonug, egitim verisi ile karsilastirilir, eger

sonucun iyilestiriimesi gerekiyorsa YSA parametreleri gtincellenir.

Bir didgumun ciktisi, kendisine gelen girdilere ve her bir girdiye atanmig olan
agirliklara baglidir. Bir yapay sinir agi dugumuanin matematiksel modeli Sekil 2.5 ve

Denklem 2.4 ile Denklem 2.5’te gdsterilmistir.

13

Fixed input xy =% 1

1p O Wi = b (bias)

X3¢ J—H'ﬁ'

Activation

Function
C} Output
E ED('J —*
L lillijﬂijlﬂ
. Junetion
. \1
.11
Inypat Synaplic Threshold
siznals Weizhts
Sekil 2.5: Yapay Sinir Ag1 Digumu [8]
Vg = Z;;lwkj . Xj (24)
Vie = (W) (2.5)

Etkinlestirme fonksiyonu, 6nceden belirlenmis bir fonksiyondur ve amaci sinir
cikigini belirli bir aralikta (genellikle [-1, 1]) arasinda tutmaktir. En yaygin dogrusal
olmayan etkinlestirme fonksiyonlari sigmoid ve hiperbolik tanjant fonksiyonlaridir.
Denklem 2.6 sigmoid fonksiyonu, Denklem 2.7 ise hiperbolik tanjant fonksiyonunun

tanimini vermektedir.

o) = T]—-cvk (2.6)

@(vy) = tanh (vz—k) = l_e::: (2.7)

1+e

14

2.1.6.1 Yapay sinir ag: yapilari

Yapay sinir aglarinin siniflandirilmasi sinir aginin yapisina (topolojisine) goére yapilir.
Sik kullanilan topolojiler ileri beslemeli aglar (feed forward networks) ve devirli aglar

(recurrent networks) olarak ayrilabilir.

ileri beslemeli ag topolojisi, bitiin sinirleri yalnizca bir sonraki ag katmanina
baglanan ve veri akigi yalnizca ileriye dogru giden yapay sinir agi topoloji tiridur.
Turev islemlerinin daha kolay hesaplanmasini sagladigi icin diger topolojilere gore
daha c¢ok kullanilir ve yapay sinir agi denildiginde genellikle akla ilk gelen topolojidir.

Sekil 2.6, 6rnek bir ileri besleme agi topolojisini gosterir.

INPUT 1
INPUT 2

INFUT 3 B
L_aoi—) OUTPUTH

INPUT 4

INPUT B

INPUTE

INPUT T

eeooooQoPOPTY

Sekil 2.6: ileri Besleme Yapay Sinir Agi [9]

Eger agin sinirleri arasinda ayni katmanda ya da bulundugu katmanlardan daha

geride bulunan sinirlere baglari olanlar varsa ag bir devirli yapay sinir agidir.

15

2.1.6.2 Yapay sinir aglarinda egitim

Yapay sinir aglarinin egitiminde gézetmenli, gbézetmensiz ya da desteklenmis egitim
yontemleri kullanilir. Gézetmenli yapay sinir aglari, geri yayilim (back-propagation)
kullanilarak yapay sinir aginin ¢iktilarinin toplam hatasini azaltmaya calisir. Bunun
icin ilk yapiimasi gereken sey bir hata fonksiyonu segmektir. Hata fonksiyonu olarak
karesel ortalama fonksiyonu uygundur. Denklem 2.8 toplam n adet egditim ¢ifti iceren
egitim kimesi ile egitilen, cikig vektord o, hedef vektori t olan bir yapay sinir aginin

karesel ortalama hatasini ortaya koymaktadir.

E =¥ 4llo; — tll? (2.8)

Yapay sinir aglarinin egitim problemi, bu hata degerinin minimize edilmesidir. Hlicre
cikiglarini belirleyen etkinlestirme fonksiyonlari sdrekli ve tlrevlenebilir
fonksiyonlardan secildigi, hiicre cikislarinin kendi giriglerine ait agirliklarina bagl
oldugundan ve egitimde degistirilebilinecek tek parametre hicre giriglerinin
agirliklari oldugundan E gradyan indirgeme (gradient descent) yontemi ile sifira
yakinsayabilir [10]. Denklem 2.9a gradyan indirgeme yontemi ile toplam [adet
agirhk degeri bulunan bir yapay sinir agindaki E hatasini mimimize etmek icin ilgili
agirhik degerine eklenmesi gereken farki gdstermektedir. Denklemdeki y degeri

onceden belirlenmis bir egitim sabitidir. [11]

VE = (;_wi’:TEZ""’;_vi) (2.9a)
Aw; = —y - :—j (2.9b)
Wi(t + 1) = Wi(t) + Aw; (290)

Gozetmensiz egitimde yapay sinir agina giris ¢ikis ciftleri verilmez. Onun yerine sinir
ag! verilen giriglere ciktilar Gretir ve giktinin hatasini kendisi tahmin etmeye
calisabilir [12]. Gézetmensiz egitimin sik kullanildi§1 amagclar arasinda siniflandirma,

istatistiksel dagilim ¢ézimleri, sikistirma ve stizme (filtreleme) bulunur.

16

Desteklenmig egitim, hem gdzetmenli egitimi hem de gbzetmensiz egitimi andirir.
Desteklenmis egditimde yapay sinir agina girdi-gikti giftleri verilmez, ancak sinir
aginin verdigi ciktiya gore bir “6dul” ya da “ceza” verilerek arzulanan hedefe
yaklasmasi saglanir. Yapay sinir agi, 6dulid arttirmak ya da cezayi azaltmak igin

hicreler arasi agirliklarda gincellemelerde bulunur.

2.1.7 Bulanik mantik

Bulanik mantik sistemleri, ¢ézllmesi istenen problemlerin uzmanlarina ya da bilgi
bankalarina basvurularak olusturulan eger-ise (if-then) kurallarinin sirekli Gyelik
fonksiyonlari ve bu fonksiyonlarla iliskilendirilen dilsel sézciklere dayanir. Sekil 2.7

bir Tsukamoto bulanik sistemin bilesenlerini géstermektedir.

[Bulanik Kural Tablosu }

Y

Bulaniklagtirma]—) Bulanik Gikartim Mataru

Sekil 2.7: Tsukamoto Modeli Bulanik Sistem Cizelgesi

Bir baska bulanik model olan Sugeno modelinde ise durulama olmaz; glinki Bulanik

Cikartim Motorunun ¢ikis degeri duru degerlerdir.

17

2.1.7.1 Bulanik kural tablosu

Bulanik kural tablosu bulanik c¢ikartim motorunun calismasini belirleyen eger-ise
kurallarindan olusan bir tablodur. Tablodaki kurallarda bulunan “eder” ifadeleri, dilsel
sdzcukler barindirir. Tablo 2.1 olasi bir Tsukamoto modeli ara¢g durdurma sisteminin

olasi bulanik kural tablosunun bir bélumunU ortaya koymaktadir.

Tablo 2.1: Ornek Tsukamoto Bulanik Kural Tablosu

UYGULANACAK
HIZ HIZLANMA .
FREN MIKTARI
Cok dusuk Sifir Cok az
Dusuk Sifir Az
Orta Sifir Orta

Ayni sistemin Sugeno modeli kural tablosunun bir bolumu ise Tablo 2.2'de

verilmigtir. Cikis verileri bulanik degil, duru degerlerdir.

Tablo 2.2: Ornek Sugeno Bulanik Kural Tablosu

UYGULANACAK
HIZ HIZLANMA)
FREN MIKTARI
Cok dusuk Sifir cq ¥ V+d,
Dusuk Sifir Cy * V+d,
Orta Sifir C3 * V+ds

2.1.7.2 Bulaniklastirma

Bulaniklastirma, kesin degerleri bulanik gikartim motorunun anlayacagi duruma
getirmek anlamina gelir. Bulaniklastirma isi, bulanik kural tablosunda belirlenen
girdilerin sayisinda ve tepe degerleri 1 olan slrekli Uyelik fonksiyonlari
tanimlamaktir. En sik kullanilan tyelik fonksiyonlari gauss, l¢gen ve yamuk sirekli
fonksiyonlaridir. Her bir Gyelik fonksiyonu giris uzayinin belirli degerleri arasina
hakimdir ve uyelik fonksiyonunun tanimh oldugu araliga dilsel olarak anlamli bir ad
verilir. Sekil 2.8, 5 adet Uyelik fonksiyonu igeren ve bir aracin hizini bulaniklastiran

bir bulaniklastirma 6rnegi gostermektedir.

18

— NB
— NS
—Z

PS

Sekil 2.8: Bulanik Uyelik Fonksiyonlari [13]

Sekil 2.8’deki drnekte giris degeri -0,2 olan bir arag hem PS (positive-small) hem de

Z (zero) hem de NS (negative-small) Gyeliklerine dahildir.

2.1.7.3 Bulanik ¢ikartim motoru

Bulanik ¢ikartim motoru, sistemin c¢ikisini kurallar tablosuna dayanarak ortaya
cikartma igini Ustlenir. Cikisi yine bulanik bir sonu¢ kiimesi olan bulanik cikartim

motorunun igi iki asamadan olusur.

ilk asama olan toplama (aggregation), kural tablosunun “eger” kisimlarini hesaplar.
Birden fazla tyelik fonksiyonunun Gyeligine giren degerler icin degerlerin minimumu
(MIN c¢ikartim motoru), carpimi (PROD ¢ikartim motoru) ya da belirlenen bagka

fonksiyonlar kullanilabilir.

ikinci asama olan birlestirme (composition) ise kural tablosunun “ise” kisimlarindaki

degerleri hesaplar. Birden fazla Gyelik fonksiyonunun Uyeligine giren ¢ikis degerleri

19

icin degerlerin en bayugu (MIN ¢ikartim motoru), toplami (PROD c¢ikartim motoru)

ya da belirlenen baska fonksiyonlar kullanilabilir.

ikinci asamanin sonunda, durulanacak olan degerler, sisteme verilen girislerin
karsilik dustigid cikis Uyelik fonksiyonlarinin birlestirme asamasindan c¢ikan

birlesimleridir.

2.1.7.4 Durulama

Durulama agamasi, bulanik c¢ikartim motorundan gelen Uyelik fonksiyonlar
birlesiminin tekil ve net bir deger olarak ortaya koyuldugu asamadir. Cikartim
motorundan elde edilen ¢ikis Uyelik fonksiyonlari birlesimine bir 6érnek Sekil 2.9'da

verilmistir.

u(pig} degree of membership
1.0

Upg(spj) =0.531227

Wy [Spjl =0 468773 \

N

MS 1
0.0 . 5 »5pi
=50 -2 0. 2.5 50 zensttrwty
spj =1-3021633

centroid

Sekil 2.9: Bulanik Cikis Uyelik Fonksiyonlari Birlesimi [14]

20

Birlesim kimesinden duru ve net bir deger ¢ikartmanin yine birden fazla yolu vardir.
Bunlardan bazilari maksimumlarin merkezi (CoM — center of maximum), agirlik
merkezi (CoA — center of area), maksimum ortalama (MoM — mean of maximum)

yontemleridir.

Bulanik mantik sistemleri 6zellikle kontrol alaninda yayginlasan bir kullanim alanina

sahiptir.

2.1.8 Bulanik sinir aglan

Uyarlanabilir A§ Yapili Bulanik Cikartim Sistemleri (ANFIS — Adaptive Neuro-Fuzzy
Inference System) ya da kisaca Bulanik Sinir Aglari, standart Bulanik Cikartim
Sistemlerinin Yapay Sinir Ag1 Modeline oturtulmus bigimidir. Sistem, baslangicta
tanimlanmis bir bulanik Sugeno ya da Tsukamoto modelinin ¢ikiglarini Uretecek bir
ag yapisi ile tanimlanir ve bulanik modelin Uyelik fonksiyon parametreleri, yapay

sinir aglarinda kullanilan egitim yéntemleri ile gincellenir. [13]

2.1.8.1 Bulanik model ve iligkin ag yapisinin gikarimi

Yukarda da belirtildigi gibi, ANFIS yapisi 6nceden tanimlanmis olan bir bulanik
cikartim modelinin gikisini verecek bir yapay sinir agi yapisindadir. Ornek bir iki
girisli ve iki kuralli Sugeno sistemi ve ona iliskin bulanik kurallar Tablo 2.3'te, iligkin
ANFIS sistemi Sekil 2.10’da verilmistir:

Tablo 2.3: ANFIS Bulanik Kural Tablosu

Girigler: X y

Uyelik Fonksiyonlari: | A;, A, B,, B,

Kurallar: Eger x A; ve y By ise f; = ps(X) + q1(y)+ry
Egder x A, ve y By ise f; = pa(X) + ga(y)+r2

21

Girig Katmanm 1. Katmain 2. Katrman 3. Katman
—— ey —r ——

Sekil 2.10: ANFIS Mimarisi

2.1.8.2 Bulanik ag yapisinin katmanlari ve iglevleri

ANFIS yapisinda her katman bir sonraki katmana bagldir ve her katmanda bulanik

sistemin isleyisinin farkli bir adimi gerceklenir.

1. katmandaki hticreler giris de@erlerinin Uyelik fonksiyonlari ¢ikislarini verir. (x igin
A1(x) ve Ax(x) , y igin B4(y) ve By(y))

2. katmandaki hicreler PI hicreleri olarak adlandirilir ve ¢ikis olarak kendisine gelen

batin sinyallerin aritmetiksel garpimini verir. i'nci P1 hicresi igin;

w; = A;(x) - Bi(y) (2.10)

w; deg@erleri, islenen kuralin tetik degeri olarak adlandirilir.

3. katmandaki hdcreler N hucreleri olarak adlandirilir ve normalize edilmis tetik

degerlerini Uretir: inci N hicresi icin;

22

W= (2.11)

4. katmandaki hicreler her bir kuralin giris degerlerine goére ¢ikisini hesaplar ve 5.
katmana normalize edilmis agirhigi ile bu fonksiyon ¢ikisinin aritmetik carpimini iletir.

i'nci hlcre icin;

wofi=w-(pi-x+q;-1) (2.12)

5. katman SIGMA ad! verilen tek bir hiicreden olugur ve biitiin 4. katman cikislarinin

aritmetiksel toplamini dondurdr.

f=3w- =5k (2.13)

Tablo 2.3 verilmis olan Sugeno modelini Denklemler (2.10 — 2.13) ile tamamen
gercekleyen bir ANFIS yapisi bdylece tanimlanmis olur. f cikis degerine dikkat
edilecek olursa agirlikh ortalama yontemi kullaniimis bir Sugeno sisteminin ¢ikis

fonksiyonuna esit oldugu goérilebilir.

2.1.8.3 Bulanik aglarda egitim

Elde ettigimiz yapinin uyarlanabilirligi, bu yapinin egitimi ile mumkin olmaktadir.

Ornek ANFIS yapisinin gikis denklemini bir timevarim igin kullanalim:

w w
f=amm hitosm 2 (2.14a)
=Wy (P1X + 1y +11) + Wz - (P2X + @2y +72) (2.14Db)
= (Wyx)p1 + (W1y)qy + (W)ry + (Wax)p, + (W2y)q, + (Wo)r, (2.14c)

23

Denklemi, f ¢ikisinin p; q; ve r; sonug/dogrusal (consequent) degiskenleri Uzerinde
dogrusal oldugunu gosterir. Bulanik Sugeno sisteminin diger parametreleri de
(Gyelik fonksiyonlarina ait parametreler) kosul/dogrusal olmayan (premise)

degiskenler olarak adlandirilir.

Egitim isleyisi temel olarak iki asamaya ayrilabilir: ilk asama, ileri geciste (forward
pass), mevcut bulanik sistemde 4. katmana kadar olan cikislar hesaplanir ve bu
noktada dogrusal parametreler LS yontemi kullanilarak giincellenir. ikinci asama,
geri geciste (backward pass), bulanik sistem c¢ikisinin hata sinyalleri geri
dondirilerek gradyan azaltimi yéntemi ile dogrusal olmayan parametreler

guncellenir. Bu egitim yontemine karma egitim (hybrid learning) adi verilmigtir.

2.1.8.4 ileri yayilim ve LS ydntemi

LS yontemi genel olarak,

y=01fiw) + 0, ,W+... +0, f (W) (2.15)

Seklinde tanimlanan sistemlerde m = n adet bilinen giris — istenen c¢ikis ikilisi
kullanarak sistemi en az hata ile yansitan 0 bilinmeyen parametrelerini bulmak icin

Denklem (2.16-2.17d) tanim ve denklemleri kullanir:

ﬁ(ul)gl +fz(”1)‘92 +---+fn(”1)

0, =y,
:fl(uz)el+f2(”z)‘92+---+fn(”2)9n = (2.16)

fl(um)‘91 +f2(”m)‘92 +..+ f, (”m)0,1 =Vm

A6 =y, oyle ki; (2.17a)

24

FACOEER fn(ul)]

A= : (2.17D)
—fl(um) fn(um) mxn
0,

o=|:] (2.17c)
-971 nxi
[V1

y=|: (2.17d)
LYm I

m > n oldugu kosullarda 6 matrisinin tersi alinamayacagindan tam duyarli (sifir

hatali) bir sonug ortaya konamayabilir. Bunun icin Denklem 2.17a’ya bir hata

parametresi eklenir ve bu hatanin karesini en aza indirgeyecek bir 0 situn vektdri

hesaplanir:

Ad+e=y (2.18a)
e=y—Af (2.18b)
E(®) =3eTe =2 (y — AO)" (y — A0) (2.18c)
2 = L(~AT(y — A6) — A(y — A6)) = —AT(y — A6) = 0 (2.18d)
_ATy — ATA = 0 (2.18e)
0 = (ATA)" 14Ty (2.18f)

LS yontemi ANFIS sistemin ileri gecisine uygulanirken bilinen parametreler olarak

w,, X ve y; alinirken; p;, q; ve r; parametrelerinin uygun degerleri aranir. Diger bir

deyisle A matrisi w,, x; ve y; parametrelerini iceren m x n boyutlarinda bir matris, 6

de; p;, Qi ve r, dogrusal parametrelerini barindiran n x 1 lik bir stitun vektortdur.

25

2.1.8.5 Geriye yayillim ve gradyan indirgemesiyle egitim

Gradyan indirgemesi ile egitim yontemi, yapay sinir aglarinda sik kullanilan bir
egitim yontemidir. Temelde amag, yapay sinir agindan elde edilen ¢ikisin hatasinin
karesini hata fonksiyonunun yapay sinir agi parametrelerine gore turevini sifirlayarak
en aza indirmektir. Yapay sinir aglarinda bu parametreler sinir hlcrelerine gelen
sinyallerin agirliklari iken ANFIS sistemlerde Denklem 2.14a’da belirtilmig olan kogul
parametrelerdir. Denklemler (2.19a-2.20), karesel hatanin ve bu hatanin gradyan

indirgemesi kullanilarak geriye yaylliminin hesabini vermektedir.

e=Yset —f
(2.19a)
E = %ez (2.19b)
0E
Ag+1 = A — 7767]((2.20)

Denklem 2.20°de, a sayilari ANFIS sistemin kosul degiskenlerinin her birini temsil
etmektedir. Denklem 2.14a’ya dayanarak Denklem 2.20’deki tirevin w; degerlerine
bagh oldugu séylenebilir. Bir adim daha ileriye gidilirse Denklem 2.10'un da w;
degerlerinin de girislerin Gyelik fonksiyonlarina baglh oldugu goérular. Aciktir ki, Gyelik
fonksiyonlari da kendi parametrelerine baglidir. Sonug olarak Denklem 2.20, her bir
dyelik fonksiyonu Uzerinde igletildiginde bir sonraki egitim adiminda (epoch) hatayi

sifira biraz daha yaklastiracak bir degere ulasacaktir.

2.1.9 Genetik algoritmalar

Genetik algoritmalar, arama ve optimizasyon barindiran birer uyarlanabilir stokastik
optimizasyon algoritmasidir. Genetik algoritmalar ilk kez 1975 yilinda Holland

tarafindan kullaniimistir.

26

Temel fikir, dogal secilimin basit bir 6rnedini isleterek verilen ¢ézlimler arasindan en
iyi olani segmektir. ilk asama ornek coziimlerin mutasyonu ya da rastgele
degistiriimesinden olusur. ikinci adim bir segilim adimidir ve genellikle dogal segilimi
oykUnen bir uygunluk fonksiyonunun degerlendirmesi esliginde yapilir. Bu iki adim,

en uygun ¢6zUm bulununcaya kadar yinelenir [15].

Genetik algoritmalar, pek cok farkli uygunluk fonksiyonu ve caprazlama yontemi

kullansa da temel algoritma Ek — B’deki gibidir.

2.2 Egitim yontemleri

Ogrenme terimi psikolojide, bir varhgin davraniglarinin verilen bir durumda ya da
verilen durumla birlikte yinelenen deneyimlerine bagli olarak degigsmesi olarak
tanimlanir. Yapay Zekada, makine d6grenimi (ya da egitimi) bir Yapay Zeka

sisteminin basarimini zaman iginde arttirmasi olarak tanimlanabilir [16].

2.21 Hata gudumli 6grenim

Hata gudimli 6grenim, makinenin bir sorunu ¢bézerken dnce hatalar yapmasini ve
sonraki adimlarda bu hatalari yinelememesini saglamaktir. Bu 6drenim yontemi,
insanlarin 6grenim yoluyla benzerlikler gosterir. Bir insan nasil bir kere yaptigi bir
hatadan bir seyler 6greniyor ve ayni hatayl ya da benzer hatalari ayni ya da benzer

sorunlari ¢dzerken yapmiyorsa bir makine de benzer sekilde programlanabilir.

ik bakista yapay sinir aglarindaki “Gézetmenli Egitim’e benzer gibi goriinse de
aslinda “Gozetmensiz Egitim"e benzemektedir; ¢lnki gbézetmenli egitimdeki gibi
disaridan alinan egitim verileri yoktur. Sistem kendi hata fonksiyonlarini kendisi

¢lkartmak durumundadir.

27

2.2.2 Egitici tarafindan 6grenim

Egirici tarafindan 6grenim, makinenin hangi durumda nasil davranmasi gerektiginin
isin bir uzmani tarafindan makineye aktarildigi 6grenim cesididir. Ornegin bir
bilinmeyenli bir denklemi c¢ozerken 0&gretici, makineye “bilinmeyenleri esitligin
soluna, bilinenleri sadina tas1” diyerek makineye sorunu ¢dzebilmesi i¢in yardim

edebilir. Buradaki temel sorun egiticinin makineyle anlasma yoludur.

2.2.3 Kegsifle 6grenim

Kesifle 6grenim diger 6grenim yontemlerinden biraz daha farkhidir. Ogrenimin amaci
bir hedefe ulagsmak degil, yalnizca daha fazla bilgi sahibi olmak ve veri tabanindaki
kavram zenginligini arttirmaktir. Makinenin yaptigi tek sey yeni bir seyler
o6grenebilecedi ilgi ¢ekici bilgilerin bulundugu kaynaklari aramaktir. Egitim sonu da
kesfedilecek hicbir seyin kalmadigi nokta dedgil, verilmis gorevlerle ilgili yeterince

bilgi sahibi olundugu noktadir.

Makine, verilen gorevleri bir “ilgi gekicilik” siralamasina koyar ve bazi gorevlerdeki
bazi bilgilere gerekli ilgi gekiciligin altinda kaldigindan bakmaz. ilgi gekicilik de yine
bir matematiksel fonksiyon olarak belirtilir ve kesifle 6grenmenin en buyuk
sorunlarindan biridir; ¢lnki ¢ok iyi secgilmemis bir ilgi ¢ekicilik fonksiyonu makinenin

cok gerekli bilgileri gérmezden gelmesine neden olabilir.

28

3 YAPAY ZEKA ORNEK UYGULAMALARI

3.1 Geligtirme Ortami

Tic Tac Toe ve RPG oyun yazilimlari Windows ortaminda Microsoftun .NET
Framework 2.0 kitapliklari kullanilarak C# dili ile yazilmistir. Yazilimin
calistirilabilmesi igin Microsoft .NET Framework 2.0’in bilgisayara kurulmasi

gerekmektedir. Yazilim Mono kitapliklari Gzerinde denenmemistir.

3.2 Geligtirilen Oyunlar

3.2.1 Tic tac toe — bir zeka oyunu

3.2.1.1 Oyunun ve kurallarin tanimlanmasi

Tic Tac Toe, 3x3’luk bir tahtanin bos olan bir karesine, iki oyuncunun sirayla kendi
isaretlerini koymalarindan olusur. Dikey, yatay ya da capraz Ug¢liyl tamamlayan
oyuncu oyunu kazanir. Eger toplam 9 hamle sonunda hi¢ bir oyuncu bir Ggli

yapamazsa oyun berabere sonuglanir.

3.2.1.2 Kullanilan yapay zeka modeli

Tic Tac Toe,

e Sira tabanli,
o Tam bilgili,

e ve sifir toplam bir oyun oldugu i¢in makinelere MiniMax yéntemiyle oynatilabilir.

29

Tic Tac Toe, arama agacinda ¢ok fazla digum icermeyeceginden (toplam 9! =
362880) MiniMax algoritmasi yalin olarak kullaniimistir. Eger oyun tahtasi
blyatiimek istenirse yalin MiniMax ¢ok yavas kalabilir, zira 5x5’lik bir tahta igin
toplam diigim sayisi 15,5*10* olur. Bilyiik agaclar makineler igin hem saklamada
hem aramada daha zor olurlar, bu ylzden alfa-beta kesintileri gibi ydntemlerle agag¢

aramalari sinirlandiriimalidir.

Tic Tac Toe’da kullanilan oyun sonu degerlendirme fonksiyonu denklem 3.1°de

verilmistir.

e = sgn(player) - ((max(pieceCountOnALine) - 100) + (9 — nodeLevel)) (3.1)

Sekil 3.1°deki durumda bilgisayar 6nce Sekil 3.2'deki arama agacini ¢ikartir. Kirmizi

ile isaretli alanlar o seferde yapilan hamleyi gdsterir. Baglangi¢ kosullari,

e Ik baslayan oyuncu bilgisayardir

o Bilgisayarin isareti cemberdir

olarak belirlenmistir.

Sekil 3.1: Ornek Bir Tic Tac Toe Oyun Durumu

30

Sekil 3.2: Tic tac toe arama agaci

Arama agacinda ilerlerken oyun sonunu getiren bir hamle bulundugunda yukaridaki
fonksiyon kullanilarak oyun sonu degerlendirmesi yapilir. Her bir agag seviyesinin
MAX ve MIN olduklarina bakarak agag, Sekil 3.3'te oldugu gibi asagidan yukariya
dogru doldurulur:

31

Sekil 3.3: Arama Agacinin Doldurulmasi

Arama agacinda, MAX digumleri kendi ¢ocuklarinin en blyik degerlerini alirken,
MIN dugumleri kendi cocuklarinin en kugik degerlerini alir. Dogru pargalari
yanlarindaki her sayi, o dogru pargasi ile baglanan digumuin (dogru pargasinin
hemen altindaki digumin) degeridir. Yukaridaki durumda, bilgisayar MAX oyuncusu
oldugundan max(-301,300,-301) fonksiyonunu igletip, 300 sonucunu veren ortadaki

digumu secgecektir; yani isaretini tahtanin ortasina koyacaktir.

Tic Tac Toe Oyunun karar mekanizmasini ortaya koyan C# kodu EK-C’'de
verilmistir.

32

3.2.1.3 Oyunun galistiriimasi ve arayiiz

Oyun C# ile yazilmis bir Windows Form uygulamasidir. Oyunun gereksinimleri kendi
calistinlabilir (.EXE) dosyasi ve KONTROLLER.DLL dosyasidir. Oyun calistirildigi

zaman Sekil 3.4 ile gosterilen ekran ile karsilasilir.

Tik Tek Tog

Sekil 3.4: Tic Tac Toe Aglilis Ekran Gorintlisi

Menu cubugundaki digmelerden “Oynat Ugurcugum” hamle sirasinin bilgisayarda
oldugunu belirtir, ancak ilk hamleyi insan oyuncu yapmalidir. Bunun amaci

baslangictaki arama agacinin bir nebze olsun kigultiimesidir.

ikinci digme “Yeni Oyun” diigmesi, mevcut oyunu sonlandirir ve oyun tahtasini

temizler.

Oyuncu, istedigi alana sol faresi ile tiklayarak isaretini koyabilir. Programin yapay
zekasinin biraz daha 6zel durumlarda sinanabilmesi i¢in sag fare tusu kullanilarak
istenilen yere bilgisayarin igsareti konulabilir. Bilgisayarin hamle yapmasi istendiginde
“Oynat Ugurcugum” dugmesine basiimaldir. Bdylece program, arama agdaci

olusturup MiniMax algoritmasini igletir.

33

3.2.2 RPG - bir ¢gatisma oyunu

3.2.2.1 Oyunun ve kurallarinin tanimlanmasi

RPG, “Role Playing Game”in kisaltiimis halidir ve oyun yapi itibariyle tam bir oyun
olmaktan c¢ok, yapay zekadli RPG oyunlari icin bir yaziim kitaphgi (framework)

seklindedir.

RPG, aslinda bir oyun tarzi adidir. RPG tarzi oyunlarda oyuncular kendilerine bir
karakter yaratip, karakterleri ile hayali bir dinyada gecen bir maceraya atilirlar. RPG
tarzi oyunlarin énemli bir bélim John Ronald Reuel Tolkien’in kitaplarinda anlattigi
“Orta Dunya”ya benzeyen diyarlarda geger. Tolkien tasvirlerine dayanan RPG
oyunlarina genellikle FRP (Fantasy Role Playing) adi verilir ve FRP oyunlardaki

irklar Tolkien’in Orta Dlnya’si ile buylk benzerlikler tasir.

3.2.2.1.1 Oyunla ilgili genel bilgiler

S6z konusu oyunun tanimlanmasi icin oncelikle RPG tarz oyunlara 6zgu bazi

terimleri agikhda kavusturmak gerekmektedir:

3.2.2.1.1.1 Terimler

AC: Armor Class. Bir yaratigin Gzerindekilerin (kendi teni de dahil) onu saldirilara
karsi koruma gucu. -10 ile +10 arasi bir deger alir ve dusik AC alinacak darbelerin

sayisini azaltir.

HP: Hit Point. Bit yaratigin arda kalan toplam can puanlari sayisi. Yaratigin aldigi
her bir darbe can puanlarindan belirli bir miktar gétirtr ve can puanlari sifir ya da

sifirdan kicuk olursa yaratik dlmustur.

Parti: Ayni amaci giden oyuncular toplulugudur. RPG tarzi oyunlar genellikle bir

parti yaratigin basindan gecen olaylar olarak anlatilir.

34

THACO: To Hit Armor Class Zero. Ham vurus sansi degeri, yani AC’si sifir olan bir
yaratiga vurus sansi de@eri. 1ile 20 arasi bir degerdir ve silah ile kullananin
uyumuna gore degisir. Usta bir doviscisunun iyi kullandidi bir silahta THACO degeri
disuktdr, yani disik THACO vurus olasiigini arttirir.

Yaratik: Bilgisayar ya da insan, oyunun hikayesinde yer alan, herhangi bir eylemi
gerceklestirebilen varliklardir. Yaratiklar, oyunda insan irkindan olabilecedi gibi

cuce, elf, hatta ejderha ve kdpek olabilir.

3.2.2.1.1.2 Kurallar

RPG tarzi oyunlarda karakterlerin birbirleriyle ve cevrelerindeki dinya ile
etkilesimlerinin 6nemli bir bolumu zarlar aracilhigiyla yapilir. Genel olarak bir eylemin
gerceklestirilebilmesi igin 1-20 arasi bir zorluk zari vardir. Eylemi gergeklestirmek
isteyen oyuncu (yaratik) bir 20 yizlU zar atar, eder eyleme iliskin avantaj ya da
dezavantajlari varsa atilan zara arti ya da eksi olarak yansitilir ve eger sonug zorluk
zarinin degerinden biylkse oyuncu eylemi gerceklestirebilir. Ornegin, AD&D Il
kurallarinda (Advanced Dungeons and Dragons Il — bir FRP oyun kural kiimesi,
oyunumuzda kullanilan kurallar) bir baska yaratiga saldiri esnasinda vurmak igin
atilan 20’lik zar, oyuncunun ham vurus sansi degerinden buylk olmalidir. Eger
vurus basarili olursa, bu kez de saldirganin verecegi zarari ortaya koymak igin
saldirganin silahinin vurus giiciine bakilir. Ornegin 2d4 bir sopa icgin iki kez dortliik
zar atilarak verilecek zarar bulunur ve savunan taraftan bu deger kadar (en az 2, en
¢ok 8) can puani (HP) eksiltilir. Benzer sekilde vurus glicii 1d6 olan bir kisa kilicin

verecegi zar 1-6 HP, 2d5 olan bir genis kilicin vurus guci ise 2-10 HP arasidir.

3.2.2.1.1.3 Oyunun tanimlanmasi

RPG, an itibariyle 8x8 bir tahta Uzerinde iki digsman partinin karsilagsmasi ve
birbirleriyle savagsmalari seklinde gegmektedir. Partilerin birbirlerinin digsmanligindan
haberdar olmalari, her bir oyuncunun ayri ayri kime saldiracagini ortaya koymalari

ise yapay zeka ile gergeklenmistir.

35

Oyun bagladidinda yaratiklar rasgele yerlere konuslanirlar ve her “Next Move”

digmesine basildiginda yaratiklar bir sonraki adimlarini hesaplarlar.

Yapay zek&d motoru her oyuncuyla ayrim goézetmeksizin ayri ayri oynayarak en iyi

hamleyi bulmaya c¢alisir ve en iyi olarak degerlendirdigi hamleyi yapar.

Oyun, partilerden herhangi birinin yaratiklari tamamen 6linceye kadar, yani HP

degerleri sifir ya da daha klguk kalana kadar surer.

3.2.2.2 Oyunun ¢alistirlimasi ve arayiizii

RPG, C#.NET ile yazilmis bir Windows Form uygulamasidir ve UL.LEXE dosyasi
calistinlarak basglatilir. Oyunun yapay zekasi her bir oyuncunun parametrelerini
atamak igin bir XML dosyasina gereksinim duyar. Bu XML dosyasinin adi
AI.CONFIG.XML olmak durumundadir. Ornek bir yapilandirma dosyasi EK-D’de
bulunabilir. Eger bir bilgisayar oyuncusu icin deder atamasi yapilmamigsa, program

bu degerlere toplamlari 1 edecek sekilde rastgele degerler atar.

Program calistirildiginda ekrana gelen goértnti Sekil 3.5’teki gibidir.

36

Cument State Messages

Weapon:
Bow and AmowsDiamage Type: Piercing Range:
Téringey ()

HP: 50

AC: 3

THACD: 16

WWeapon:

Bow and AmowsDamage Type: Piercing Range:
Eser [}

HP: 200

AC:3

THACD: 16

Weapon:

Short SwordDamage Type: Slashing Range: 1D

—
.

Sekil 3.5: RPG Agcilis Ekran Goérintisu

Ekranda gorilen biylk alan, 8x8 boyutlarindaki ¢catisma alanini temsil eder ve

uzerindeki her portre bir oyuncuyu belirtir.

Catisma alaninin sagindaki metin kutusu, programin bildirilerinin yazildigi ileti

kutusudur.

ileti kutusunun hemen altindaki “Next Move” diigmesi, programa bir sonraki eli

oynamasini soyler.

Kullanici “Next Move” dugmesine her bastiginda program her bir oyuncu igin bir
sonraki hamleyi hesaplar ve ¢atisma alanini yeniden cizer. Partilerden birisine ait

bltdn oyuncular 6ldiginde oyun biter ve “Next Move” digmesi ise yaramaz.

37

3.2.2.3 Kullanilan yapay zeka

RPG,

o Eksik bilgili (karsidaki oyuncuya vurma olasiligi ve verilen zarar gibi rastgele
unsurlar iceren)
e Sira tabanli

¢ Sifirdan farkl toplam bir oyundur.

Ayrica, RPG’'de amag¢ oyundaki duruma goére dediskendir. Bu ylzden, daha dnce
bahsedilmis olan MiniMax yontemi ile bir ¢éziime varmak ¢ok zorlasir. Bu belgede

sunulan ¢6zim, geleneksel ¢dziimlerle ortak noktasi bulunan bir baska ¢ézimdur.

3.2.2.3.1 Karar mekanizmalari

3.2.2.3.1.1 RPG’nin karar mekanizmasi
RPG’de bilgisayarin yapacagi eylemi belirleyen sonlu durum makinesi an itibariyle
Sekil 3.6’daki gibidir:

Diisman var

Basla El sonu

Diigman

El sonu

Sekil 3.6: RPG Karar Sonlu Durum Makinesi

38

3.2.2.3.1.2 Durumlar

Basla: Baslangic icin durum ve yapay zekanin her elin basinda bulundugu durum.
Saldir: Saldirilacak diismanin secildigi ve saldirildigi durum.

Eylem Yok: Herhangi bir eylemin gergeklestiriimedigi durum.

3.2.2.3.1.3 Saldinlacak diigmanin segilmesi:

Oyunda her oyuncu, kendi sirasi geldiginde bir baska yaratiga saldirir. RPG’de
yapay zeka, saldirlacak dismani secerken her bir disman igin asagidaki

parametreleri hesaplar:

a: Hedef yaratigin durumu igin dnceden belirlenmis bir deger. Varsayilan degerler
Denklem 3.2’de verilmigtir. Catisma ve normal a dederlerinin sayisal degerlerinden
¢ok oranlari 6nemlidir. Burada da alinan degerlerde, ¢atisma halindeki bir rakibin
agirhginin, catismayla ilgilenmeyen bir rakibinkinden iki kat fazla olmasi

amaclanmigtir

(3.2)

_ { 0.5, durum; = ¢atisma
£ 710.25, durum; = normal

B: Eldeki silahin maksimum vurus glicline gore hedef yaratigi 6ldirmek igin gegmesi
gerekecek el sayisidir ve Denklem 3.3te verilmistir. Denklem 3.3’teki 1 sayisi,
eldeki silahin maksimum vurus gicl, p ise oyuncunun el basina vurus hakki

sayisini belirtir.

HP; ve HPoyuncu: Sirasiyla i. rakibin ya da sirasi gelen oyuncunun kalan can puani

miktari.
_ HP;
Bi=r (3:3)

39

y: Hedef yaratigin yaptigi saldirilarda kaybedilmis can puanlari toplami.
€: Hedef yaratigin son saldirisindan dolayi kaybedilen can puani miktari.

0: Hedef yaratigin kontrol edilen yaratiga olan uzaklhgi ile kontrol edilen yaratigin
elindeki silahin menzili. Eger hedef yaratik menzil igiyse sifir. Denklem 3.4a’daki ©
degeri iki oyuncu arasindaki mesafenin silah menzilinden farkini, dist fonksiyonu, iki

oyuncu arasindaki mesafeyi, ¢ ise mevcut silahin menzilini géstermektedir.

6; = dist(oyuncu,i) — ¢ (3.4a)
Gi = max (0, 61) (34b)

p: Kontrol edilen yaratigin kalan can puanlari miktarinin €'a orani.

— HPoyuncu (35)

Wi .

Bu parametreleri kullanarak ortaya konan skor her bir disman yaratik icin
hesaplanir ve en yuksek skora sahip yaratiga saldirilir. Skor hesaplamasi
Denklemler (3.6-3.11)'de gosterildigi sekilde yapilir. Denklem 3.11'de s, skoru

belirtir.

a; =kg-a (3.6)
9i = ky v (3.7)
m; =Ryl (3.8)
bi = kg -5 (3.9)
Q=kw% (3.10)
si=a;+g;+m;+b; +t (3.11)

40

3.2.2.4 Yapay zeka’nin egitimi

Yapay Zeka’nin hangi dismana saldiracagini belirledigi skor fonksiyonun tanimi
Denklem (3.6-3.11)'de verilmistir. Bu fonksiyonun genellestiriimis ve aciimis hali

Denklem 3.12’de verilmisgtir.

by xiqgtky xip+ks xi3+ky x;4+ksx;5=score; (3.12)

Toplamda n adet digmani olan bir yaratidin en yiksek skor en Ustteki olmak Uzere
olusturacagi skor tablosu Denklem 3.13’teki gibidir (score; yerine kisaltmak igin s;

yazilmistir).

ky-x10+ky x15+ ks X13+ky X14+ks x15=35;

ki xp1+ky x5tk xp3+ky-Xxp4+ks-xy5=5;

k1 . xn'l + kz . xn’2 + k3 . xn,3 + k4_ . xn’4 + k5 . xn,s - STL (313)

Bu denklemlerin matris formu ise Denklem (3.14a-3.14b)’de verilmistir.

S1
x x x x x [kl]
1,1 1,2 1,3 1,4 1,5 S2
X21 X2 X3 X4 X5 21 |Is3]
. . . . kel =
T T k1= s, (3.14a)
xn,l xn,Z xn,3 xn,4 xn,S 4 :
5 S
n
X-k=s (3.14b)

41

Yapay Zek@nin egitiminin temelinde saldirilacak yaratigin deneme-yaniimayla
bulunmaya caligiimasidir. Bunun igin algoritma, her bir yaratigin s; degerinin diger
degerlerden daha ylksek olmasini saglamak durumundadir. Bunu saglamak icin her
bir yaratik igin; yaratigin s; degerini, bilinen k;'lerce en ylksek kilinan skor olan s; ile
O’'dan buyuk ama 0’a ¢ok yakin bir & degeriyle toplamina esitleyip Denklem
3.14a’den yeni bir s vektoru olusturulur. Bu vektorin s,’ye goére yapilmig durumu

Denklemler (3.15a-3.15b) ile gdsterilmistir.

k21 [Sl
X11 X122 X13 X14 X153 k, [S1 + 6|
X21 X22 X23 X4 Xo5 2 s
: : , , 2 [ke, =i Sj i (3.15a)
Xn1 Xn2 Xn3 Xna Xns £24 l J
25 Sn
X ky =5, (3.15b)

Yeni denklemde s, vektérinin 2. satirdaki degerin en yliksek deger olacagi asikar
oldugu icin skor fonksiyonunun katsayilari Denklem 3.15b’de verilen k, vektoérini
skor listesinde zirveye tasiyacaktir. 2. satirdaki degerlere sahip olan yaratigi ilk
saldirilacak yaratik kilacak skor fonksiyonu agirliklarini olusturan sayilardan olusan

k. vektorinu elde etmek icin Denklemler (3.16a-3.16b) kullanilir.

X_l'X'k2=X_1‘SZ (3163)
k2 = -1 "y (316b)

Denklem 3.16b, X matrisinin kare matris olmadigi durumlarda kare olmayan
matrisler birer tekil matris oldugu icin kullanilamaz. Bu ylzden Denklem 3.16b
genellestiriimelidir. Kare olmayan matrisler iceren denklemlerde matris sézde ters
(Moore-Penrose tersi) ile bulunur. K, vektérinu yalniz birakmak igin denklemin her
iki tarafi da soldan X matrisinin sézde tersi ile garpilir. S6zde ters ile X matrisinin

carpiimis durumu Denklemler (3.17a-3.17b)’'de gosterilmistir.

42

X+‘X‘k2:X+'SZ (3178)
k2:X+'SZ (317b)

Moore-Penrose tersi; -kare olsun olmasin- her matris igin mevcuttur ve matrisin —
eger varsa- gergek, soldan ya da sagdan tersini verir. Bir matrisin Moore-Penrose
tersi, o matrisin tekil deger ayrisimindan yola c¢ikilarak bulunur [17]. m X n

boyutlarindaki bir A matrisinin tekil deger ayrisimi Denklem 3.18’de verilmistir.

A=U-D-V* (3.18)

Denklemde; U, m x n boyutlarinda bir Gniter matris, V* n x n boyutlarinda tniter bir
matris olan V’nin timleyen (konjuge) transpozesi, D ise m x n boyutlarinda, késegen
Uzerinde sifirdan blylk sayilar iceren, késegen disindaki sayilari sifir olan bir

matristir. V ile U matrisleri birbirlerine gére ortonormaldir.

A matrisinin Moore-Penrose tersi, Denklem 3.19'da verilmistir.

A*=V.D* .U (3.19)

Denklem 3.17b kullanilarak K, vektéri c¢oézildikten sonra oyun yapay zeka
tarafindan K, vektorinin elemanlari yeni katsayilar olarak alinarak bastan sona
kadar oynanir. Oyunun baslangi¢c kosullari yazilimin yapilandirma dosyasinda
belirlenmistir. Oyun sona erdiginde yapay zeka’'nin K, vektoriyle elde ettigi basariyi
belirlemek igin bir degerlendirme fonksiyonu kullanilir. Ornek bir degerlendirme
fonksiyonu denklem 3.20'de verilmigtir. HPp.41, €gitilen yapay zek& oyuncusunun
partisinde bulunan yaratiklarin (dostlarin) can puanlarini belirtirken HPpar2, karsi

partide bulunan yaratiklarin (dismanlarin) can puanlarini belirtir.

E, = ZHPpartil _ZHPpartiZ (3.20)

43

Egitimin bir sonraki adiminda, egitim baslangicindaki skor listesine gore 3. sirada
olan yaratigin skoru en yuksege tasinmaya calisilir. Bunun igin de Denklem

3.15a’ya benzer bir denklem olan Denklem 3.21a olusturulur.

k31 —l Sl
X11 X12 X13 X14 X135 3 | S3
2
X21 X22 X23 X244 X235 s;+6

: : : : : -|k33 I = (3.21a)

. 4

k .

Xn1 Xn2 Xn3 Xn4 Xns [34 :

k35 Sn
X k3 =s;3 (3.21b)

ks vektorind c¢ozimlemek igin yine Moore-Penrose tersi yontemi kullanilir ve
denklem 3.22b elde edilir.

X+‘X‘k3:X+'S3 (3223)
ky = X* - 55 (3.22b)

Yapay zekd, skor fonksiyonu katsayilar olarak k; vektorinin elemanlarini kullanarak

oyunu bastan sona oynar ve oyun sonunda Denklem 3.23 ile E; de@erini elde eder.

E; = % HPpartil -2 HPpartiZ (323)

Degerlendirme fonksiyonu degerlerinin en blyugu olan degeri saglayan k vektorl
egitimin en iyi degeri olarak kabul edilir. Egitimin algoritma akis gizelgesi Sekil 3.7'de

verilmistir.

44

Oyunun baslangi¢

kosullarini karsila

i. disman icin yeni skor katsayilarini

hesapla

Oyunu bastan sona

oyna

i. disman i¢in oyun sonu degerlendirmesi

yap

E; = Z prartil - z prartiz

j =1, oyle ki max(E) = E;

K =k

Sekil 3.7: RPG Yapay Zeka Egitim Algoritmasi

45

3.2.2.41 N <5 durumu

Skor tablosundaki diisman sayisinin skor fonksiyonu katsayilari sayisindan, yani
5’ten kiglk oldugu durumlarda 5 elemanh bir vektéri elde etmek icin 5'ten az
saylda denklem kullanmanin yetersiz olacagindan 6turd, bu durumlarda k vektérind

duyarlihk analizi ile kirpmak gerekir.

Duyarhlik analizinde, k vektdériindeki her bir elemanin s vektéri degerlerini ne kadar
degistirdigini bulmak icin k vektérindeki her bir eleman belirli bir kiglk sayi
oraninda arttirilir. Degisimin oransal olmasi 6nemlidir; ¢linki duyarlihk analizindeki
sonu¢ s vektorinin eski durumuna goére oranidir. Duyarhlii belirli bir oranin altinda
kalan k vektoru degerleri, s vektoru degerlerini cok etkilemedikleri icin g6z ardi edilir,
vektdrden o egitim icin koparilir. Yeni denklem sistemi ve matris ile vektorlerin

boyutlari denklem 3.24’te verilmistir.

X' mxm) * K mx1) = S mx1) (3.24)

Denklem 3.24'te de goéruldaga gibi, s vektérinin boyutlarinda bir degisim

olmamaktadir.

k vektoérindeki bir eleman olan k; (i < 5)'nin s vektérinl etkileme miktarini bulmak
icin k; sayisi kendisinin 0,01 katiyla carpilir ve toplam skora olan katkisi bulunur.

Denklemler (3.25a-3.25c), i = 1 i¢in duyarhlik analizini gosterir.

51
k,+ 0.01
X1 Xip Xz Xia Xis] |0 i 1 st
X21 X22 X23 Xz4 X5 k2 _ S% (3.25a)
: : : : : : 3 = .
ky Si
xn,l xn,Z xn,3 xn,4 xn,S k :
° s}]
X-ky=s1 (3.25b)
X si
C, = ‘1 -a (3.25¢)

46

Her 5 deger icin de C; degerleri bulunduktan sonra en disik (5 — n) adet katsayi

degeri formalden ¢ikartilmak Uzere denklem 3.26 elde edilir.

S1
X11 X12 t Xin kq Sy
X214 X227t Xom| |k, S3

xn,l xn,z xn,3 xn,n kn

f: -
|

Bu asamadan sonra algoritma denklem 3.15b gibi strduraltr. Duyarlilik analizi skor
fonksiyonunun degerlerini gérmezden geldigi icin egitimin kalitesinin diisme olasiligi
vardir. Bu yutzden egitimlerin basarisi “5 ya da daha fazla disman” ve “5’ten az

disman” olarak iKi ayri yoldan izlenmelidir.

47

4 BULGULAR VE TARTISMA

4.1 Kullanilan Yontemlerin Basarisi

411 Tic tac toe

MiniMax algoritmasinin etkinligi Tic Tac Toe oyununda agik¢a gorulebilir. Bilgisayar,
insana karsl oyun kaybetmemektedir. Buna karsin 3x3’lUk bir oyun tahtasinin bile ne
kadar ¢ok islem glici gerektirdigi oyundaki ilk hamlenin bekleme silresinden de

anlagilmaktadir. Ornek bir oyun Sekil 4.1 — Sekil 4.9 aras! verilmistir.

Oyunun agciligini insan oyuncu yapmistir ve isaretini 5. kareye koymay tercih
etmigtir.

Tik Tek Tog

Sekil 4.1: Tic Tac Toe Hamle 1(insan)

Yapilan hamleye karsilik olarak yapay zeka, oyuncunun 1. caprazdan oyunu
kazanmasini engellemek ve 1. yatay sira ile 1. disey siradan oyunu kazanabilmek
icin isaretini 1. kareye koymustur. Bilgisayarin yaptigi ilk hamle olan hamle 2 Sekil
4.2’de gosterilmigtir.

48

Tik Tek Tog

Sekil 4.2: Tic Tac Toe Hamle 2(Bilgisayar)

Bilgisayarin yaptigi hamleye karsilik olarak insan oyuncu, ikinci gaprazdan saylya
gitmek Uzere 3. kareye isaretini koymustur. insan oyuncunun 2. hamlesi izerine

oyunun durumu Sekil 4.3'te verilmigtir.

Tik Tek Tog

Sekil 4.3: Tic Tac Toe Hamle 3 (insan)

Yapay zek& oyuncusu rakibinin sayl yapmasini engellemek ve 1. diisey siradan

saylya gitmek icin isaretini 7. kareye birakir ve oyun Sekil 4.4’teki duruma gelir.

49

Tik Tek Tog

Sekil 4.4: Tic Tac Toe Hamle 4 (Bilgisayar)

insan oyuncu, bilgisayarin sayisini engellemek ve 2. yatay siradan kendi sayisina
ulagabilmek icin igaretini 4. kareye koyar. Oyundaki 5. hamle olan bu hamleyle

oyunun durumu Sekil 4.5’teki gibi olur.

Tik Tek Tog

Sekil 4.5: Tic Tac Toe Hamle 5 (insan)

insan rakibinin sayisina engel olmak isteyen program, isaretini 6. kareye koyarak

oyunu Sekil 4.6’daki duruma getirir.

50

B Tik Tek Tog

Sekil 4.6: Tic Tac Toe Hamle 6 (Bilgisayar)

Son say! sansini da kullanmak isteyen insan oyuncu 4. isaretini 8. kareye koyar.

Son durum sekil 4.7°de verilmigtir.

B Tik Tek Tog

Sekil 4.7: Tic Tac Toe Hamle 7 (insan)

insan rakibinin son sayisini da engelleyecek olan program, isaretini 2. kareye
koyarak oyundaki beraberligin kesinlesmesini saglar. Oyundaki 8. hamle olan bu

hamle sonunda oyun tahtasi Sekil 4.8’deki gibidir.

51

B Tik Tek Tog

Sekil 4.8: Tic Tac Toe Hamle 8 (Bilgisayar)

insan oyuncunun 9. kareden baska kullanabilecegi kare kalmadigindan isaretini 9.

kareye koyar ve bdylece oyun berabere sonuglanmis olur.

B Tik Tek Tog

Sekil 4.9: Tic Tac Toe Hamle 9 (insan)

52

Sekiller 4.4, 4.6 ve 4.8'de gdéruldugu gibi program, insanin her sayi tesebbusini
engellemekte ve oyuncuya yenilmemektedir. Bunun nedeni, programin MiniMax
yontemini kullanarak oyunu bastan sona defalarca oynamasi ve kendisi icin en iyi
sonuca yonelik olan hamleyi yapmasidir. MiniMax algoritmasi en yluksek kaybi
minimize ettiginden insan oyuncu hi¢ hata yapmadan oynar ve oyunu 8. hamleye
kadar devam ettirebilse bile yapay zek&; insana yenilmeyecek, berabere kalarak
kazanci olmamasina ragmen kaybini da sifirlayacaktir. Eger insan oyuncu yanlis bir
hamle yaparsa yapay zeka en iyi oyununu oynayarak bu sefer kazancini maksimize

etmeye, yani en kisa suirede oyunu kazanmaya calisacaktir.

Tic tac toe’daki degerlendirme fonksiyonu kazanilan oyunlarda 0’dan buyuk,
kaybedilen oyunlarda 0'dan klglk ve berabere kalinan oyunlarda 0 Grettigi icin
yapay zeka; kazanmayi beraberlie ve yenilgiye, beraberligi ise yenilgiye tercih

etmekte ve buna gore hamle yapmaktadir.

41.2 RPG

RPG’nin basarimini élgcmek icin farkh yapilandirmalari olan yapay zeka oyunculari
birbirleriyle savastirilir. Her yapilandirmada, Denklemler (3.6-3.10) arasi verilen
sabit katsayilar degistirilir. Her test, baslangic kosullari farkli olan es gucteki

oyunculari sinar.

4.1.2.1 Baslangi¢ kosullar

Baslangi¢ kosullarinda, oyunda iki adet digsman parti bulunmaktadir ve partilerde

bulunan yaratiklara dair ayrintili bilgiler soyledir:
Parti 1

1. AC =3, HP = 50, THACO = 16, Silah = Ok/Yay (1d10, menzil = 10)
2. AC =3, HP =20, THACO = 16 Silah = Kisa kili¢ (2d5, menzil = 1)

Parti 1°’deki yapay zeka oyuncularinin degerlendirme fonksiyonu sabit katsayilari 0.2

olarak belirlenmistir.

53

Parti 2

1. AC =3, HP = 50, THACO = 16, Silah = Ok/Yay (1d10, menzil = 10)
2. AC =3, HP =20, THACO = 16 Silah = Kisa kili¢ (2d5, menzil = 1)

Parti 2'deki yapay zeka oyuncularinin degerlendirme fonksiyonu sabit katsayilari her

oyun basinda rastgele atanmaktadir.

4.1.2.2 Test sonuglari

Tablolar (4.1-4.6)'da kullanilan, (v') isareti, o oyunun galibinin sitununa konmustur.

2'ye 2 oynanan ve her bir oyuncunun yeri 6nceden belirlenmis olan 10 ardisik
oyunun test sonuclari Tablo 4.1’de gdsterilmistir. Sonuclara gére katsayilari rastgele

segcilen Parti 2, %80 basari saglamigtir.

Tablo 4.1: 2'ye 2 Sabit Konumlu Test Sonuglari

Parti 1 (Sabit Parti 2 (Rastgele
Oyun
Katsayil) Katsayil)

1 v
2 v
3 v
4 v
5 v

6 v
7 v
8 v
9 v

10 v

2’ye 2 oynanan ve her bir oyuncunun baslangi¢ konumu rastgele olarak belirlenmis
10 ardigik oyunun test sonuglari Tablo 4.2’de verilmistir. Sonuglara gére Parti 2, yine

%80 basari sergilemisgtir.

54

Tablo 4.2: 2'ye 2 Rastgele Konumlu Test Sonuglari

Oyun Parti 1 (Sabit Parti 2 (Rastgele Katsayili)
Katsayili)

1 v
2 v
3 v
4 v

5 v
6 v

7 v
8 v
9 v
10 v

Parti 1’den 1, Parti 2’den 2 oyuncunun oynadigi ve her bir oyuncunun baslangi¢
konumunun sabit oldugu 5 ardisik oyunun test sonuglari Tablo 4.3’te verilmigtir. 1’e
2 catismada sayica az olan tarafin kazanma olasiligi distk oldugundan, tabloya

basari élgutl olarak diger partideki oyuncularin kalan can puanlari eklenmistir.

Tablo 4.3: 1'e 2 Sabit Konumlu Test Sonugclari

Parti 1 Parti 2
Parti 2 Parti 2
(Sabit (Rastgele
Oyun Oyuncu 1 | Oyuncu 2
Katsayili, 1 Katsayili, 2
Kalan Can | Kalan Can
Oyuncu) Oyuncu)
1 v 15 12
2 v 24 17
3 v 31 16
4 v 10 20
5 v 11 10

55

Parti 1°den 1, Parti 2’den 2 oyuncunun oynadigi ve her bir oyuncunun baslangi¢
konumunun rastgele oldugu 5 ardisik oyunun test sonuglari Tablo 4.4’te verilmigtir.
1’e 2 gatismada sayica az olan tarafin kazanma olasili§i disik oldugundan, tabloya

basari élgutl olarak diger partideki oyuncularin kalan can puanlari eklenmistir.

Tablo 4.4: 1'e 2 Rastgele Konumlu Test Sonuglari

Parti 1 Parti 2
. Parti 2 Parti 2
(Sabit (Rastgele
Oyun Oyuncu 1 | Oyuncu 2
Katsayili, 1 Katsayili, 2
Kalan Can | Kalan Can
Oyuncu) Oyuncu)
1 v 26 16
2 v 36 20
3 v 38 11
4 v 29 20
5 v 26 10

Parti 1’den 2, Parti 2’den 1 oyuncunun oynadigi ve her bir oyuncunun baslangi¢
konumunun énceden belirlenmis oldugu 5 ardisik oyunun test sonuglari Tablo 4.5'te
verilmistir. 1’'e 2 catismada sayica az olan tarafin kazanma olasiligi dusuk
oldugundan, tabloya basari 6l¢iti olarak diger partideki oyuncularin kalan can

puanlari eklenmigtir.

56

Tablo 4.5: 2'ye 1 Sabit Konumlu Test Sonuglari

Parti 1 Parti 2
. Parti 1 Parti 1
(Sabit (Rastgele
Oyun Oyuncu 1 | Oyuncu 2
Katsayili, 2 Katsayili, 1
Kalan Can | Kalan Can
Oyuncu) Oyuncu)
1 v 28 1
2 v 27 14
3 v 3 5
4 v 19 15
5 v 14 15

Parti 1°den 2, Parti 2’'den 1 oyuncunun oynadigi ve her bir oyuncunun baslangic
konumunun rastgele oldugu 5 ardisik oyunun test sonuglari Tablo 4.6'da verilmistir.
1’e 2 catismada sayica az olan tarafin kazanma olasili§i disiik oldugundan, tabloya

basari olcitl olarak diger partideki oyuncularin kalan can puanlari eklenmistir. Parti

2'deki tek oyuncu, oyunlardan birini kazanmayi basarmistir.

Tablo 4.6: 2'ye 1 Rastgele Konumlu Test Sonuglari

Parti 1 Parti 2
. Parti 1 Parti 1
(Sabit (Rastgele
Oyun Oyuncu 1 | Oyuncu 2
Katsayil, 2 Katsayil, 1
Kalan Can | Kalan Can
Oyuncu) Oyuncu)
1 v 14 16
2 v 0 0
3 v 30 12
4 v 7 20
S v 24 14

57

5 SONUCLAR VE YORUM

Yapay zeka, gunumuzdeki bilgisayarlarin daha ¢ok ve daha gesitli sorunlarla basa
¢ikabilmesini saglayan optimizasyonlarin bir araya getirilmesidir. Karmasik dinya
sorunlari matematiksel olarak ele alinip, bir bilgisayar Uzerine programlanabilir
duruma getirilerek ortaya konulan yapay zeka& gliinimuzde bilgisayar bilimlerinin en

cok gelisime agik dallari arasindadir ve gittikge yayginligini arttirmaktadir.

Bilgisayar oyunlarinda yapay zekad ise temel olarak insanlari eglendirebilecek
dizeyde onlarla micadele edebilen programlar gelistirmek olarak tanimlanabilir;
¢unkl hi¢ kazanamadiklari oyunlari oynamak insanlara bir stire sonra sikici gelebilir.
Bu yuzden oyun JUreticileri genellikle oyunlari icin yazdiklari yapay zeka
programlarini belirli degiskenlere baglayarak kullanicinin istegi Uzerine yapay zekay

koreltecek ya da zekilestirecek sekilde bu degiskenleri degistirmeyi segerler.

Elbette bir bilgisayar oyunu yalnizca yapay zeka programlamasindan ibaret degildir,
ancak bu galismada oyun programlamasinin ortaya konmak istenen kismi yapay
zekadir. Bu ylzden elinizde bulunan bu calismada yapay zekada kullanilabilecek
yontemlerin bir kismi siralanmis ve iki adet programlama 0Ornegi ile érneklenmeye

calisiimigtir.

ik &rnekte verilmis olan Tic Tac Toe oyunu, insan icin oynamasi basit bir oyunun
bile bilgisayarca ne kadar zor oldugunu ve tam bilgili sifir toplamh oyunlarda dogru
yapay zekad programlamasiyla bilgisayarin nasil yenilemez oldugunu goéstermeyi

amaclamaktadir.

Tic Tac Toe, MiniMax algoritmasini kullanan basit bir uygulamadir ve ardisik 10
oyun siresince iyi bir insan Tic Tac Toe oyuncusuna yenilmemistir. Bunun nedeni,
4. bolimde de verildigi Uzere, MiniMax algoritmasinin oyunun sonuna kadar olasi
bitin hamleleri hesaplayarak aralarindan bilgisayarin kazancini en yliksege ¢ikaran
ya da kaybini en aza indirgeyen hamleyi ortaya koymasidir. Ardisik 10 oyunun
sonuglari ve programin her bir hamleyi hesaplamak igin harcadigi sureler Tablo

5.1°de verilmistir.

58

Tablo 5.1: Tic Tac Toe Test Sonuglari

Oyun 1.Hamle 2. Hamle 3. Hamle 4. Hamle Kazanan
Siresi (ms) Sdresi (ms) Sdresi (ms) Siresi (ms)
1 918 18 0 0 Berabere
2 952 26 1 0 Berabere
3 8903 14 0 0 Berabere
4 1069 23 0 0 Berabere
5 1049 22 1 0 Berabere
6 1041 27 0 - Bilgisayar
7 1072 20 3 0 Berabere
8 918 14 - - Bilgisayar
9 932 15 0 0 Berabere
10 1014 13 0 0 Berabere

ikinci érnek olan RPG oyununda, sifir toplam olmamasi ve rastgelelik igerdiginden
bir tam bilgili oyun olmamasi nedeniyle, bir degerlendirme fonksiyonu kullanilarak
saldirilacak digsmanin secilmesi sorunu agilmaya calisiimis ve édnemli dlgiide basari
saglanmistir. Test sonuglarina gére Denklemler (3.6-3.10) arasi verilmis olan sabit
katsayilar programin hedefini se¢gmesinde énemli rol oynamaktadir ve en dogru

karari verebilmesi icin yapay zekanin bu katsayilari optimize etmesi sarttir.

Bu katsayilarin en dogru sekilde giincellenmesi igin yapay zekad bdlim 3.2.2.4te
anlatilan egitim yéntemi ile egitilerek insan oyuncularin karsisina ¢ikmaya hazir
duruma getirilebilir. Bu calismada sunulan egitim yontemi, matris iglemlerine
dayanmaktadir ve belirlenmis yapilandirmaya sahip bir ortamda en iyi sonucu

verecek olan katsayilari bulabilir.

Bu tezin igindeki yazilimlarin tamami C# programlama diliyle yaziimistir. Ancak,
gerek Ucretsiz acik kaynakli kutuphanelerin sayisi ve kalitesi, gerek uygulama
gelistirme ortamlarinin darligi nedeniyle; boylesi bir galismada mecbur kalinmadikga
C#1n kullanilmamasi o6nerilir. Alternatif programlama dilleri olarak JAVA ve LISP

incelenebilir.

59

5.1 lleri Gaigsmalar

MiniMax algoritmasi, yapisi itibariyle isletilmesi zor bir algoritmadir ve Tic Tac Toe

oyununda yalin MiniMax’in yavashgi 6zellikle ilk hamlelerde hissedilmektedir.

Tic Tac Toe’nun hizlandiriimasi icin ayni oyunlari temsil eden agac dallari birden
¢cok kez uretilmek yerine, bu oyunlari ¢ikartan farkli oyun yollarinin hepsi bu es

oyunlara baglanilabilir. Bu yénteme “es oyunlari bulma” yontemi adi verilir.

ikinci bir yéntem ise alfa-beta kesintilerini kullanmak olabilir. Alfa-beta kesintileri,
uygun dizilmis oyun agaclarinda ¢ok 6nemli zaman ve islem kazanci saglayabilir.
leAncak alfa-beta kesintilerinin verimli calisabilmesi igin dncelikle oyun agacinin
uygun sekilde siralanmasi gerekmektedir. Bu siralama igin de bagka algoritmalarin

kosturulmasi gerekmektedir.

Uglincli bir yéntem, programin gidece@i hamle derinligini azaltmaktir. Boylece
MiniMax algoritmasi oyunun bittigi hamlelere kadar degil, mevcut durumdan belirli
sayida ileriye kadar isletilir ve degerlendirme fonksiyonu o noktada isletilerek yine en
yiksek MAX degeri ya da en diisiik MIN degeri tizerinden en karli hamle bulunmaya
caligilabilir. Ancak unutulmamalidir ki bu yéntem 6nemli 6lgiide zamandan tasarruf
saglasa da, yapay zekayi koéreltecek bir ydontemdir. Bir hamle derinligi yapay zekayi

aptal kilacak degisikliklere neden olabilir.

RPG’nin egitimi belirli senaryolar Uzerine yapildigindan dolayi, egitimin ortaya
koyacagi katsay! degerlerinin en uygun oldugu durumlarin sayisi sinirhidir. Ornegin
2'ye 2 bir egitim setiyle egitilmis bir yapay zeka, 3’e 3’lik bir oyunda yanlis kararlar
verebilir. Bunun 6nline gegcmek icin, RPG yapay zekasinin egitim adimlari, her bir
hamleden 6nce uygulanabilir. Boylece program her hamlesinden 6nce kendisini
bulundugu duruma goére egitir ve fonksiyon katsayilarini her hamlesinden 6nce

yeniden hesaplayabilir.

Boylesi bir egitim kullanildiginda RPG’nin yéntemi, her el basinda butliin oyunu
birkag kez (disman sayisi kez) oynayacagindan biraz da olsa MiniMax
andiracaktir. Ancak, bdylesi bir “aninda egitim”in bilgisayara matris hesaplarinda

ciddi bir ek yik getirecedi de gbz ardi edilemez.

60

KAYNAKLAR

[1] McCarthy, J. Basic Questions. What is Atrtificial Intelligence, [Online], http://www-
formal.stanford.edu/jmc/whatisai/node1.html, 2007

[2] Jr., Jackson P.C. Introduction to Atrtificial Intelligence, Dover, 2-4, (1985)

[3] Applications of Artificial Intelligence, Wikipedia [Online],
http://en.wikipedia.org/wiki/Applications_of _artificial_intelligence, 2008

[4] Brownlee, J., Finite State Machines, Ai Depot. [Online] http:/ai-
depot.com/FiniteStateMachines/FSM.html

[5] Savage, L. J. "The Foundations of Statistics", New York, Wile, (1954)

[6] R., Olivas. A Primer for Decision-making Professionals [Online]
http://www.projectsphinx.com/decision_trees/index.html, 2007

[71 Pinto, P., Minimax Explained, Ai Depot, [Online], http:/ai-
depot.com/articles/minimax-explained/, 2002

[8] Artificial Neural Networks - A Neural Network Tutorial. Artificial Neural Networks -
A Neural Network Tutorial [Online], http://www.learnartificialneuralnetworks.com/,
2008

[9] Nose Picking using Neural Networks. Karthig's Log. [Online],
http://karthik3685.wordpress.com/2007/11/03/nose-picking-using-neural-networks/,
2007

[10] Becerikli, Y., Yapay Sinir Adlarina Girig Ders Notlari, (2005)

[11] R., Rojas. "Neural Networks", Springer-Verlag, 151-174, 1996.

[12] Z., Ghahramani. "Unsupervised Learning", 2004.

[13] Karakuzu C., Gurblzer G., "Single Target Tracking Using Adaptive Neuro-
Fuzzy Inference Systems", 2006.

[14] da Silva Borges, P.S. An Application of the Fuzzy Iterated Prisoner's Dilemma.
A model of strategy games based on the paradigm of the lterated Prisoner's
Dilemma employing Fuzzy Sets. [Online],
http://lwww.eps.ufsc.br/teses96/borges/cap6/cap6.htm, 1996.

[15] Rowland T., Weisstein E. W. Genetic Algorithm. From MathWorld--A Wolfram
Web Resource. [Online] http://mathworld.wolfram.com/GeneticAlgorithm.html .

[16] Saloky T., Seminsky J."Artificial Intelligence and Machine Learning", SAMI
2005, 21 Ocak, 2005

61

[17] Petersen K.B., Pedersen M.S. "The Matrix Cookbook", 17-18, (2005)

62

EKLER

EK-A MiniMax sozde kodu

MinMax (GamePosition game) { return MaxMove (game); }

MaxMove (GamePosition game) {
if (GameEnded(game)) {
return EvalGameState(game);
}
else {
best_ move < - {};
moves <- GenerateMoves(game);
ForEach moves {
move <- MinMove(ApplyMove(game));
if (Value(move) > Value(best_move)) {

best_move < - move;

}
}

return best_move;

MinMove (GamePosition game) {
best move <-{};
moves <- GenerateMoves(game);
ForEach moves {
move <- MaxMove(ApplyMove(game));

if (Value(move) > Value(best_move)) {

63

best_move < - move;

}
}

return best_move;

}

64

EK-B Genetik Algoritma

1.
2.
3.

[Baslat] n kromozomlu (¢6zim adayli) rastgele bir nifus olustur.

[Uygunluk] Her x kromozomu igin f(x) uygunlugunu degerlendir.

[Yeni nufus] Yeni nifus olusana kadar,

a.
b.

d.

[Secilim] Uygunluklarina goére iki ebeveyn kromozom seg.
[Caprazlama] Caprazlama olasihdi kullanarak, her iki ebeveynden bir
yeni cocuk tdret. EQger caprazlama yapilmazsa, c¢ocuklar
ebeveynlerinin tam birer kopyasi olur.

[Mutasyon]Mutasyon olasiidi kullanarak, yeni c¢ocuklarin her bir
degiskenini degistir.

[Kabullenme] Yeni ¢ocuklari yeni niifusun igine koy.

[Glncelleme] Turetilmis nifusu kullan.

[Sinama] Eger sonlandirma kosulu karsilandiysa dur ve eldeki nifusun

arasindan en iyi ¢ézimu don.

[Déngu] 2. adima git.

65

EK-C Tic Tac Toe Oyunu Yapay Zekd Kodu

using System;

using System.Collections.Generic;
using System.Text;

using System.Diagnostics;

using TicTacToe.Kontroller;

namespace TicTacToe

{

public class OyunBittiEventArgs : EventArgs

{

public Oyuncular Kazanan;

public OyunBittiEventArgs(Oyuncular kazanan)

{

Kazanan = kazanan;

public delegate void OyunBittiDelegate(object sender, OyunBittiEventArgs e);

class AramaAgaci

{

66

private List<AramaAgaci> _Cocuklar;
private AramaAgaci _Baba = null;
private Oyuncular[,] _Oyun;

private int _Deger;

private int _Nesil;

private Oyuncular _Oynayan;

/Il <summary>
/Il Oyunu oynayan oyuncuyu belirtir.
/Il </[summary>
public Oyuncular Oynayan
{
get { return _Oynayan; }

set { _Oynayan = value; }

/Il <summary>
/Il Yeni bir arama agaci nesnesi yaratir

/Il </[summary>

/Il <param name="oyun">Oyun tahtasinin anlik durumu</param>

public AramaAgaci(Oyuncular[,] oyun)

{

_Cocuklar = new List<AramaAgaci>(0);

67

_Oyun = oyun;

_Nesil = 0;

/Il <summary>
/Il Arama agacinin ¢ocuklarina bir yenisini ekler
/Il </[summary>
/Il <param name="oyun">Eklenecek ¢ocugun oyun durumu</param>
/Il <returns>Eklenen ¢ocuk</returns>
public AramaAgaci CocukEkle(Oyuncular[,] oyun)
{
AramaAgaci a = new AramaAgaci(oyun);
_Cocuklar.Add(a);
a.Baba = this;
a._Nesil = this._Nesil + 1;

return a;

/Il <summary>
/Il Arama agaci dugumunun babasi (lst diguma)
/Il </[summary>
public AramaAgaci Baba
{
get {return _Baba; }

68

set { _Baba = value; }
}
/Il <summary>
/Il Arama agacinin o anki oyununun degeri
/Il </[summary>
public int OyunDegeri
{
get { return _Deger; }

set { Deger = value; }

/Il <summary>
/Il Arama agacinin o anki oyun durumu
/Il </[summary>

public Oyuncular[,] Oyun

{

get{return _Oyun;}

public List<AramaAgaci> Cocuklar

{

get { return _Cocuklar; }

69

public bool Babadir

{

get {return Baba == null; }

public bool Torundur

{

get { return _Cocuklar.Count == 0; }

public int Nesil

{

get { return this._Nesil; }

class Yz

/Il <summary>

/11 YZ motorunun bilgilerinin trace ekranina verilip veriimeyecegini belirler. ilk

degeri true'dur.
/Il </[summary>
public bool TraceMessages = true;

public event OyunBittiDelegate OnOyunBitti;

70

private readonly int _TahtaBoyui;
private readonly int _MaxNesil;
private readonly int _DegerCarpan;

private readonly int _BeraberlikDegeri = 0;

/Il <summary>

/Il Yeni bir Yapay Zeka Motoru nesnesi yaratir
/Il </[summary>

/Il <param name="oyun"></param>

public Yz(int tahtaBoyu)

{
if (TraceMessages)
Trace.WriteLine("== YZ Motoru Calistiriliyor ==");
_TahtaBoyu = tahtaBoyu;
_MaxNesil = (int)(Math.Pow(_TahtaBoyu, 2) + 1);
_DegerCarpan = (int)(Math.Pow(10, (int)(Math.Log10(_TahtaBoyu)) + 2));
if (TraceMessages)
Trace.WriteLine(" Tahta Boyu : " + tahtaBoyu);
}

/Il <summary>
/Il Verilen oyunun oyuncuya gére degerlendirmesini yapar
/Il </[summary>

71

/Il <param name="durum">Qyun tahtasinin o anki durumunu igeren

matris</param>

/Il <param name="oyuncu">Durum degerlendirmesini yapacak

oyuncu</param>

Il <returns>Oyun durumunun oyuncuya gore degeri. Yluksek deger iyi oyun

demektir.</returns>
private int DurumDegerlendir(AramaAgaci oyun, Oyuncular oyuncu)
{
Oyuncular[,] durum = oyun.Oyun;
/fif (TraceMessages)

/I Trace.Write("Durum Degerlendirmesi (" + oyuncu.ToString() +"): " +

OyunGoster(durum));

int enb = 0,nDoluOda = 0;

/I Satirlari topla
for (inti = 0; i < _TahtaBoyu; i++)
{
int satirDeger = 0;
for (intj = 0; j < _TahtaBoyu; j++)
{
satirDeger += (intjoyuncu * (int)durumli, jJ;
if (durum(i, j] '= Oyuncular.Hicbiri)
nDoluOda++;

}

if (Math.Abs(satirDeger) > Math.Abs(enb))

72

enb = satirDeger;

/I Sutunlar topla
for (int j = 0; j < _TahtaBoyu; j++)
{
int sutunDeger = 0;
for (inti=0; i < _TahtaBoyu; i++)
{
sutunDeger += (int)oyuncu * (int)duruml[j, jl;
}
if (Math.Abs(sutunDeger) > Math.Abs(enb))

enb = sutunDeger;

/I Caprazlari topla
int caprazDeger = 0;
for (inti=0; i< _TahtaBoyu; i++)
{
caprazDeger += (int)oyuncu * (int)durum(i, i];
}
if (Math.Abs(caprazDeger) > Math.Abs(enb))

enb = caprazDeger,

73

caprazDeger = 0;
for (inti=0;i<_TahtaBoyu; i++)
{
caprazDeger += (int)oyuncu * (int)durum[_TahtaBoyu - (1 + i), i];
}
if (Math.Abs(caprazDeger) > Math.Abs(enb))

enb = caprazDeger;

int retVal = 0;

if (Math.Abs(enb) |= _TahtaBoyu && nDoluOda == _TahtaBoyu *
_TahtaBoyu) //tahta dolu

retVal = _BeraberlikDegeri; // beraberlik
else

retVal = enb * _DegerCarpan + (Math.Sign(enb) * (_MaxNesil -

oyun.Nesil));

return retVal;

/Il <summary>
/Il Oyun durumunun oyun sonunu isaret edip etmedigini belirtir
/Il </[summary>

/Il <param name="durum">Qyun tahtasinin anlik durumunu belirten Arama

Agaci digimi</param>

/Il <returns>true, eger oyun belirtilen durumda bitiyorsa. false,

bitmiyorsa.</returns>

74

public bool OyunBiter(AramaAgaci durum)

{

int i = DurumDegerlendir(durum, Oyuncular.Bilgisayar);
if (i == _BeraberlikDegeri)
{
durum.OyunDegeri = i;
return true;
}
else if (Math.Abs(i) / _DegerCarpan == _TahtaBoyu)
{
durum.OyunDegeri = i;
return true;
}
else

return false;

/Il <summary>

/I Verilen andan bir sonraki butlin olasi oyunlari ¢ikartir

/Il </[summary>

/Il <param name="a">Oyun ani</param>

/Il <param name="oyuncu">Oyun sirasi gelen oyuncu</param>

private void OyunBul(AramaAgaci a, Oyuncular oyuncu)

{

75

if (oyuncu != Oyuncular.Hicbiri)

{

for (inti=0; i< _TahtaBoyu; i++)

{

for (intj = 0; j < _TahtaBoyu; j++)

{

Oyuncular[,] yeniOyun = new Oyuncular[_TahtaBoyu, _TahtaBoyu];

Array.Copy(a.Oyun, yeniOyun, _TahtaBoyu * _TahtaBoyu);

if (yeniOyunl[i, j] == Oyuncular.Hicbiri) // alan bos

{

yeniOyun([i, j] = oyuncu; // bulunan oyun

a.Oynayan = oyuncu;

a.CocukEkle(yeniOyun);

private AramaAgaci MaxOyna(AramaAgaci a)
{

/lif (TraceMessages)

/I Trace.WriteLine("Max Oynuyor.");

if (OyunBiter(a))

76

return a;

else

AramaAgaci enlyiOyun = null;
OyunBul(a, Oyuncular.Bilgisayar); // agaci buyut
/lif (TraceMessages)
/I Trace.Write("Nesil : " + a.Nesil + "\nOlasi Oyunlar :");
/lif (TraceMessages)
/I foreach (AramaAgaci b in a.Cocuklar)
1 Trace.Write(OyunGoster(b.Oyun));
foreach (AramaAgaci b in a.Cocuklar)
{
AramaAgaci oyun = MinOyna(b);
if (enlyiOyun == null || oyun.OyunDegeri > enlyiOyun.OyunDegeri)
{
b.OyunDegeri = oyun.OyunDegeri;
enlyiOyun = b;
}
/fif (oyun.OyunDegeri <= ((_TahtaBoyu - 1) * _DegerCarpan) &&
/I oyun.OyunDegeri > ((_TahtaBoyu - 1) + _DegerCarpan))
1§
/I Trace.Write("Oyun bitecek lan olm !I");

77

I
}
Debug.Assert(enlyiOyun != null);
if (TraceMessages)

Trace.WriteLine("Max(" + a.Nesil + ") icin en iyi oyun : " +

OyunGoster(enlyiOyun.Oyun) + "Degeri : " + enlyiOyun.OyunDegeri);

return enlyiOyun;

private AramaAgaci MinOyna(AramaAgaci a)
{

/fif (TraceMessages)

Il Trace.WriteLine("Min Oynuyor.");

if (OyunBiter(a))

{

return a;

else

AramaAgaci enlyiOyun = null;
OyunBul(a, Oyuncular.Insan); // agaci buyut
/lif (TraceMessages)

/I Trace.Write("Nesil : " + a.Nesil + "\nOlasi Oyunlar :");

78

/lif (TraceMessages)
/I foreach (AramaAgaci b in a.Cocuklar)
i Trace.Write(OyunGoster(b.Oyun));
foreach (AramaAgaci b in a.Cocuklar)
{
AramaAgaci oyun = MaxOyna(b);
if (enlyiOyun == null || oyun.OyunDegeri < enlyiOyun.OyunDegeri)
{
b.OyunDegeri = oyun.OyunDegeri;

enlyiOyun = b;

}

Debug.Assert(enlyiOyun != null);
if (TraceMessages)

Trace.WriteLine("Min(" + a.Nesil + ") icin en iyi oyun : " +

OyunGoster(enlyiOyun.Oyun) + "Degeri : " + enlyiOyun.OyunDegeri);

return enlyiOyun;

private int[] OyundanKoordinata(Oyuncular[,] ilkOyun, Oyuncularl,]

sonrakiOyun)

{

for (inti=0; i< _TahtaBoyu; i++)

79

for (intj = 0; j < _TahtaBoyu; j++)
{
if (ilkOyun(i, j] != sonrakiOyun[i, j])
{
if (ilkOyun(i, j] == Oyuncular.Hicbiri)
return new int[] {i, };
else
throw new

InvalidOperationException("OyundanKoordinata: iki oyun

arasinda tutarsizlik var");

}

}

throw new

InvalidOperationException("OyundanKoordinata: iki oyun arasinda fark

yok");

}

private string OyunGoster(Oyuncular[,] oyun)

{

StringBuilder s = new StringBuilder("\n");
for (inti=0; i< _TahtaBoyu; i++)

{

80

s.Append("[\t");
for (intj = 0; j < _TahtaBoyu; j++)
{
if (oyunli, j] == Oyuncular.Bilgisayar)
s.Append("Q");
else if (oyun[i, j] == Oyuncular.Insan)
s.Append("X");
else
s.Append(" ");
s.Append("\t");
}
s.Append("\n");

}

return s.ToString();

public int[] HamleYap(Oyuncular[,] oyun)

{
AramaAgaci a = new AramaAgaci(oyun);
AramaAgaci b = MaxOyna(a), ¢ = b;
/Iwhile (b.Nesil = a.Nesil + 1)
/I b=Db.Baba;
Oyuncular[,] o = b.Oyun;
if (OyunBiter(c))

81

RaiseOyunBitti(b.Oynayan);

return OyundanKoordinata(oyun, o);

private void RaiseOyunBitti(Oyuncular o)

{
OyunBittiDelegate obe = OnOyunBitti;
if (obe != null)
{
obe(this, new OyunBittiEventArgs(0));
}
}

82

EK-D Ornek AL.CONFIG.XML Dosyasi

<?xml version="1.0" encoding="utf-8" 7>
<ai-configuration xmlns="http://ajitatif.com/AiConfiguration.xsd">
<configsets>
<configset id="tortingey" description="configset for creature tériingey ">
<modifiers>
<state value="0.2"/>
<turns-to-kill value="0.2"/>
<hp-lost-to value="0.2"/>
<range value="0.2"/>
<threat value="0.2"/>
<target-state-modifier-list>
<state-modifier state-type="Battle" value="0.5"/>
<state-modifier state-type="Normal" value="0.25"/>
</target-state-modifier-list>
</modifiers>
</configset>
<configset id="eser" description="configset for creature eser">
<modifiers>
<state value="0.2"/>
<turns-to-kill value="0.2"/>
<hp-lost-to value="0.2"/>
<range value="0.2"/>

83

<threat value="0.2"/>
<target-state-modifier-list>
<state-modifier state-type="Battle" value="0.5"/>
<state-modifier state-type="Normal" value="0.25"/>
</target-state-modifier-list>
</modifiers>
</configset>
</configsets>
<training>
<training-set>
<party>

<creatures>

<creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="12"
pos-y="10" thac0="10" weapon="Shortbow" is-trainer="true" />

<creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="12"
pos-y="9" thac0="10" weapon="Shortbow" />

</creatures>
</party>
<paﬂy>

<creatures>

<creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="9"
pos-y="12" thac0="10" weapon="Shortbow" />

<creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="9"
pos-y="9" thac0="10" weapon="Shortbow" />

</creatures>

84

</party>
</training-set>
</training>

</ai-configuration>

85

EK-E RPG Yapay Zekad Kodu

using System;

using System.Collections.Generic;
using System.Text;

using Rpg.Entity;

using System.Diagnostics;

using Rpg.Actions;

using Rpg.Entity.CreatureStates;
using Rpg.Rules;

using System.Xml;

using System.IO;

using System.Reflection;

using System.Globalization;

using Rpg.Common;

namespace Rpg.Ai

{

public class AiPlayer : PlayerBase

{

#region Score Modifier Coefficients

public double

kState = 0.2,

86

kTurnsToKill = 0.2,

kHpLostTo = 0.2,

kRange = 0.2,
kThreat = 0.2;
#endregion

#region State Modifiers

private readonly Dictionary<Type, double> _stateModifiers;

#endregion

private static string DefaultConfigFilename = "Ai.config.xml";
private Realm _realm;

private Creature _creatureControlled;

private List<Creature> hostileCreatures;

private List<Creature> _friendlyCreatures;

private List<AttackOrderListEntry> _attackOrderList;

public List<AttackOrderListEntry> AttackOrderList

{

get { return _attackOrderList; }

87

public Creature CreatureControlled { get { return _creatureControlled; } }

public AiPlayer(Creature creatureToControl)
{
_realm = Realm.GetInstance();
_creatureControlled = creatureToControl;

_creatureControlled.Stats.Player = this;

_attackOrderList = new List<AttackOrderListEntry>();

_stateModifiers = new Dictionary<Type, double>();

InitializeStateModifiers();

ReadConfigFromXml(DefaultConfigFilename,

creatureToControl.Stats.Name);

UpdateCreatureAlignments();

public void UpdateCreatureAlignments()

{

_hostileCreatures = new List<Creature>();
_friendlyCreatures = new List<Creature>();

foreach (Creature c in _creatureControlled.Stats.Position.Board.Actors)

{

88

if (c 1= _creatureControlled && !c.IsDead())

{

if (c.GetAlignmentAgainst(_creatureControlled) ==

GetCreatureTypeParam.Hostile)

{

_hostileCreatures.Add(c);
}
else
{

_friendlyCreatures.Add(c);
}

AttackOrderListEntry aole = GetAttackListEntry(c);

if (aole == null && _hostileCreatures.Contains(c))

{

aole = new AttackOrderListEntry();
aole.TargetCreature = c;

_attackOrderList.Add(aole);

private void InitializeStateModifiers()

{

89

_stateModifiers.Add(typeof(Battle), 0.5);

_stateModifiers.Add(typeof(Normal), 0.25);

private void UpdateAttackOrderList()
{
foreach (AttackOrderListEntry aole in _attackOrderList)
{
Type t = aole.TargetCreature.Stats.CreatureState.GetType();
if (_stateModifiers.ContainsKey(t))

{

CalculateAttackOrderListEntry(aole);

double stateModifier = _stateModifiers[t];
double ttkModifier, rngModifier;

if (kKTurnsToKill == 0)

{

ttkModifier = 0;

else

ttkModifier = kTurnsToKill * (1.0 / Math.Max(1,
aole.NumberOfTurnsToKill));

}

90

if (kRange == 0)

{

rngModifier = 0;

else

rngModifier = kRange * (1.0 / Math.Max(1, aole.RangeModifier));

aole.Score =
kState * stateModifier +
ttkModifier +
kHpLostTo * aole.HitPointsLostTo +
rngModifier +

kThreat * aole.ThreatModifier

}

_attackOrderList.Sort();

private void CalculateAttackOrderListEntry(AttackOrderListEntry aole)

{

91

aole.RangeModifier =
Math.Max(O,

_creatureControlled.Distance ToCreature(aole.TargetCreature) -

_creatureControlled.Weapon.Range);

if (_creatureControlled.Weapon.Damage.MaxRoll *
_creatureControlled.Stats.NumberOfAttacks == 0)

{

aole.NumberOfTurnsToKill = int.MaxValue;

else

aole.NumberOfTurnsToKill =
aole.TargetCreature.Stats.HitPoints /

(_creatureControlled.Weapon.Damage.MaxRoll *

_creatureControlled.Stats.NumberOfAttacks);

}

if (aole.LastDamageTaken == 0)

{

aole.ThreatModifier = 0;

else

aole.ThreatModifier = _creatureControlled.Stats.HitPoints /

aole.LastDamageTaken;

92

public override void MakeMove()
{
ModifyCoefficients();
UpdateAttackOrderList();
if (_hostileCreatures.Count > 0)

{

/[Creature target =

_creatureControlled.GetNearestCreature(GetCreature TypeParam.Hostile);
int targetindex = _attackOrderList.Count - 1;

Creature target = _attackOrderList[targetindex].TargetCreature; // get the

first in the list

while (target.IsDead())

{

if (targetindex > 0)

{

target = _attackOrderList[--targetindex].TargetCreature;

continue;

break;

}

Debug.Assert(target != null);

93

if (_creatureControlled.DistanceToCreature(target) >=

_creatureControlled.Weapon.Range)

{

MoveCreatureTowards(target.Stats.Position);

else

Attack.CreatureToCreature(_creatureControlled, target);

}

UpdateCreatureAlignments();

UpdateAttackOrderList();

private void ModifyCoefficients()
{
/I get primary modifier

double selfParty = (double)(_creatureControlled.Stats.HitPoints) /

_creatureControlled.Stats.MaxHitPoints,
otherParty = 0;
foreach (Creature creature in _friendlyCreatures)

{

selfParty += (double)(creature.Stats.HitPoints) /

creature.Stats.MaxHitPoints;

}

94

selfParty /= _friendlyCreatures.Count + 1;

foreach (Creature creature in _hostileCreatures)

{

otherParty += (double)(creature.Stats.HitPoints) /

creature.Stats.MaxHitPoints;

}

otherParty /= _hostileCreatures.Count;

double primaryModifier = selfParty / otherParty;

private void MoveCreatureTowards(BoardPosition boardPosition)
{
BoardPosition currentPos = _creatureControlled.Stats.Position;
if (boardPosition.Board == currentPos.Board)
{
int signY = -1 * Math.Sign(currentPos.Point.Y - boardPosition.Point.Y);
int signX = -1 * Math.Sign(currentPos.Point.X - boardPosition.Point.X);
if (boardPosition.Point.X == currentPos.Point.X)

{

_creatureControlled.MoveBy(0, signY);

95

}

else if (boardPosition.Point.Y == currentPos.Point.Y)

{
_creatureControlled.MoveBy(signX, 0);
}
else
{

/I move through either X or Y, selected by random
int randomNumber = _realm.Randomizer.Next(0, 2);

if (randomNumber == 0)

{

signX = 0;
}
else
{

signY = 0;
}

_creatureControlled.MoveBy(signX, signY);

private AttackOrderListEntry GetAttackListEntry(Creature creature)

{

96

AttackOrderListEntry aole = null;
foreach (AttackOrderListEntry a in _attackOrderList)

{

if (a.TargetCreature == creature)
{
aole = a;

break;

}

return aole;

public override void AfterTakeDamage(Creature attacker, int damage)
{
base.AfterTakeDamage(attacker, damage);
/I update the Attack Order List
AttackOrderListEntry aole = GetAttackListEntry(attacker);
if (aole == null)
{
aole = new AttackOrderListEntry();
aole.TargetCreature = attacker;
_attackOrderList.Add(aole);
}
aole.HitPointsLostTo += damage;

97

aole.LastDamageTaken = damage,;

private void ReadConfigFromXml(string fileName, string configSetld)

_stateModifiers.Clear();

NumberFormatinfo formatter = new NumberFormatinfo();
formatter.NegativeSign = "-";

formatter.PositiveSign = "+";

formatter.NumberDecimalSeparator = ".";

XmIDocument xmIDoc = new XmIDocument();
xmlDoc.Load(fileName);

XmINamespaceManager nsManager = new

XmINamespaceManager(xmiDoc.NameTable);

nsManager.AddNamespace("ai", "http://ajitatif.com/AiConfiguration.xsd");

XmINode configSet =
xmIDoc.SelectSingleNode(
string.Format(@"//ai:configset[@id=""{0}""]", configSetld.ToLower())
, hsManager);
if (configSet == null)

{

98

if (string.Equals(configSetld, "default",

StringComparison.InvariantCulturelgnoreCase))
{

double k1 = _realm.Randomizer.NextDouble(),
k2 = _realm.Randomizer.NextDouble(),
k3 = _realm.Randomizer.NextDouble(),
k4 = realm.Randomizer.NextDouble(),
k5 = _realm.Randomizer.NextDouble(),
kTotal = k1 + k2 + k3 + k4 + k5;

kHpLostTo = k1 / kTotal;

kRange = k2 / kTotal;

kState = k3 / kTotal;

kThreat = k4 / kTotal;

kTurnsToKill = k5 / kTotal;

_stateModifiers.Add(typeof(Battle), 0.5);

_stateModifiers.Add(typeof(Normal), 0.25);

return;

else

ReadConfigFromXml();

return;

99

try

kHpLostTo =
Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:hp-lost-

to/@value", nsManager).Value, formatter);

kRange =
Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:range/@value",

nsManager).Value, formatter);

kState =
Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:state/@value",

nsManager).Value, formatter);

kThreat =
Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:threat/@value",

nsManager).Value, formatter);

kTurnsToKill =
Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:turns-to-

kill/@value", nsManager).Value, formatter);

XmINode targetStateModifierListElement =
configSet.SelectSingleNode(@"./ai:modifiers/ai:target-state-modifier-list",

nsManager);

Assembly entityAssembly = Assembly.GetAssembly(typeof(Battle));

foreach (XmINode elem in targetStateModifierListElement.ChildNodes)

{

string stateTypeString = elem.Attributes["state-type"].Value;

Type stateType = Type.GetType(stateTypeString);

100

if (stateType == null)

{

stateType =
Type.GetType(string.Format("Rpg.Entity.CreatureStates.{0}, {1}", stateTypeString,

entityAssembly.FullName), true, true);

}

double stateValue = Convert.ToDouble(elem.Attributes["value"].Value,

formatter);

_stateModifiers.Add(stateType, stateValue);

}

catch (Exception ex)

{

throw new Exception("Unable to parse the config file", ex);

private void ReadConfigFromXml()

{

ReadConfigFromXml(DefaultConfigFilename, "default");

101

OZGEGCMIS

1983 yilinda Tekirdag ili'nin Corlu ilgesinde dogdu. ilk ve orta dgrenimini Ankara’da,
lise dgrenimini ise istanbul’da tamamladi. 2001 yilinda girdigi Kocaeli Universitesi
Muhendislik Fakultesi Bilgisayar MUhendisligi Bolumi’'nden 2005 yili Haziran ayinda
mezun oldu ve ayni yilin eylil ayinda Kocaeli Universitesi Fen Bilimleri Enstitiisii
Bilgisayar Muhendisligi Bolumi’'ne ylksek lisans egitimine kabul edildi. 2006 yili
Ekim ay! itibariyle hakia.com’un istanbul irtibat Ofisi'nde yazilim mihendisi olarak
calismaktadir ve bekardir.

102

