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ÖNSÖZ ve TEŞEKKÜR 

 

Makinelerin karşılaştıkları ve daha önceden görmemiş oldukları sorunları çözmesini 

amaçlayan Yapay Zekâ, ilk kez 1956 yılının yaz aylarında Darmouth 

Üniversitesi’nde yapılan bir konferansta ortaya çıkmıştır. Đlk yıllarında çok hızlı bir 

ivme yakalayan ve pek çok insanı hayrete düşüren yapay zekâ programları, 

ilerleyen yıllarda aynı ivmeyi ne yazık ki koruyamamıştır. Bunun nedeni, insanların 

kolaylıkla çözdüğü sorunları bir makineye anlatmanın zorluğu ve makinelerin o 

zamanki işlem gücü kısıtlarıydı. Ne var ki, son yirmi yıldır çok yüksek bir hızla 

ilerleyen teknoloji, karmaşık yapay zekâya olanak sağlayacak donanımların 

üretilmesini sağlamış ve modern yapay zekânın ilerlemesinde büyük katkıda 

bulunmuştur. Günümüzde, en kolay ve en etkin olarak programlanabilen aygıtlar 

bilgisayarlar olduğu için yapay zekâ bir bilgisayar bilimi olmuştur ve halen pek çok 

uygulamada etkin olarak kullanılmaktadır. 

Yapay zekâ yöntemleriyle oyun geliştirme tezimin tamamlanması sürecinde; yöntem 

kuramlarının çeşitlendirilmesi ve tamamlanmasında çok değerli katkısı olan 

ağabeyim Y. Müh. Gökhan GÜRBÜZER’e, tezin yönlendirilmesinde desteğini 

esirgemeyen tez danışmanım sayın Doç. Dr. Adnan KAVAK’a, tez çalışmalarım için 

daha fazla zaman ayırmamı sağlayan patronum sayın Dr. Rıza Can BERKAN’a ve 

yöneticim Altuğ Bilgin ALTINTAŞ’a teşekkürü borç bilirim. Ayrıca her zaman 

yanımda olan, beni bugüne yetiştirmiş bulunan annem Nilgün GÜRBÜZER ve 

babam Kürşat GÜRBÜZER’e sonsuz minnet duygularımı sunarım. 
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YAPAY ZEKÂ YÖNTEMLERĐYLE OYUN GELĐŞTĐRME 
 

Gökalp GÜRBÜZER 

 

 
Anahtar Kelimeler: Yapay Zekâ, Makine Öğrenmesi, Oyun Zekâsı, Yapay Zekâ 
Eğitimi 
 
Özet: Yapay Zekâ, günümüzde bilgisayar bilimlerinin en gözde dallarından biridir ve 
yapay zekâ bilim dalı, makinelerin zeki davranmalarını sağlamaya çalışarak onların 
daha çok ve daha çeşitli sorunlarla tek başlarına başa çıkmalarını sağlar. Şüphesiz 
ki günümüzde yapay zekânın gelişmesindeki payı en yüksek olan sektörlerden biri 
ise bilgisayar oyunları sektörüdür. Günümüzdeki bilgisayar oyunları dünya satranç 
şampiyonlarını ve dama ustalarını bile yenebilmektedir. Bu motivasyon ile yola 
çıkılan bu çalışmada öncelikle yapay zekânın tanımı irdelenmiş, yapay zekâya 
yardımcı hesaplama yöntemleri ortaya konmuştur. Bu hesaplama yöntemlerinden 
MiniMax, Tic Tac Toe adlı sıfır toplam, sıra tabanlı ve tam bilgili oyun için; eğitim 
yöntemlerinden Hata Güdümlü Eğitim ise sıfır olmayan toplamlı, sıra tabanlı ve eksik 
bilgili bir oyun olan RPG olmak üzere, iki adet farklı oyun programlanarak 
günümüzdeki ya da belki yarınki bir oyunda programlanan yapay zekânın ne gibi 
özellikler göstermesi gerektiği ortaya konmaya çalışılmıştır.  
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GAME PROGRAMMING USING ARTIFICIAL INTELLIGENCE METHODS 
 

Gökalp GÜRBÜZER 

 

 
Keywords: Artificial Intelligence, Machine Learning, Game Intelligence, Artificial 
Intelligence Training 
 
Abstract:  Artificial Intelligence is one of the most popular branches of the computer 
science and it aims to make machines act intelligently, rendering them able to cope 
with more in number and more complex problems by themselves. Without a doubt, 
one of the most active sectors which aid artificial intelligence development today is 
the video game sector, which created programs that can beat world chess 
champions and checkers masters. This work is a quest motivated by these causes, 
which first identifies artificial intelligence, then explain the computation methods that 
aid artificial intelligence science. The work then states two AI programmed games; 
which  include Tic Tac Toe, a zero-sum, turn-based, full-information game and RPG, 
which is a non-zero-sum, turn-based, imperfect-information game based on 
Tolkien’s world and tries to understand what an AI should be like in a video game of 
today and perhaps tomorrow. 
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1 GĐRĐŞ 

 

1.1 Yapay Zekâ’nın Tanımı 

 

1.1.1 Zekâ’nın tanımı 

 

Yapay Zekâ’yı tanımlamadan önce zekâ kavramının tanımına bakmak yararlı olur. 

Her ne kadar sık kullanılan ve kulağa basit gelen bir kavram olsa da zekâ, 

tanımlaması güç ve pek çok bilim dalından pek çok otoritenin birbirinden farklı 

tanımladığı bir kavramdır. 

John McCarthy tarafından yapılan tanıma göre “Zekâ, yaşamdaki amaçlara ulaşma 

yetisinin hesapsal yanıdır”. Yapay Zekâ bilimi bu tanımdan yola çıkarak zekânın 

hesapsal tabanını araştırarak çözmeye çalışır. Ancak yine John McCarthy’nin 

belirttiği gibi “Zekâ, kendi içinde –tamamı henüz anlaşılamamış- mekanizmalar 

barındırır” bu yüzden Yapay Zekâ’nın çözümünü araştırdığı her sorunun yanıtı aynı 

olmamaktadır ve farklı çözümler ile aşılmaya çalışılır. [1] 

 

1.1.2 Yapay Zekâ’nın tanımı 

 

Yapay Zekâ’nın tek bir kesin tanımı bulunmamakla birlikte ad babası olan John 

McCarthy 1956’da Yapay Zekâ’yı “Zeki makineler, özellikle de zeki bilgisayar 

programları yapma bilimi ve mühendisliğidir” diyerek tanımlamıştır. Ancak yine John 

McCarthy’ye göre “Benzer bir iş olan ‘bilgisayarlar aracılığı ile insan zekâsını 

anlamaya çalışmayla’ ilgili olmasına rağmen kendisini sadece biyolojik olarak 

gözlemlenebilen yöntemler ile sınırlandırmaz”. [1] 
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1.1.3 Zeki Makinenin tanımı 

 

1.1.3.1 Turing sınavı 

 

Bir makinenin zeki olma kavramını ilk kez tanımlayan kişi Alan Turing’dir. Turing’e 

göre bir makinenin zeki sayılabilmesi için makine; birisi kendisi, ikisi insan olan üç 

oyunculu bir sınavı vermesi gerekir. Đnsan oyunculardan birisi jüri olur ve ayrı ayrı 

her iki oyuncuyla da – hangisinin insan hangisinin bilgisayar olduğunu bilmeden - 

etkileşimde bulunur. Eğer jüri oyuncu, etkileşimde bulunduğu oyuncuların hangisinin 

insan hangisinin makine olduğunu ayırt edemezse makine sınavı vermiş olur ve zeki 

bir makine olarak nitelendirilebilir. [2] 

Bu sınava yapay zekâ yazınında “Turing Sınavı” olarak adlandırılır. Turing sınavının 

tam bir zeki makine tanımı yapabildiğine ilişkin farklı görüşler vardır. Zira Turing 

makinesi bir zekâ tanımından yola çıkmak yerine bir makineyi bir insanla 

karşılaştırdığı için gerçek zekânın değil insana benzerliğin sınavı olduğu aşikârdır. 

Yine de ilk somut tanımı Turing vermiştir ve bütün yapay zekâ bilim çevreleri 

tarafından bilinen bir sınavdır. 

 

1.2 Yapay Zekâ’nın Kullanım Alanları 

 

Yapay zekânın kullanım alanları her geçen gün git gide artmaktadır. Bazı kullanım 

alanları; 

• Örüntü tanıma 

o Optik karakter tanıma 

o El yazısı tanıma 

o Konuşma tanıma 

o Yüz tanıma 

• Yapay yaratıcılık 

• Bilgisayar görüşü, sanal gerçeklik ve görüntü işleme 

• Yapay zekâ sınama 

• Oyun kuramı ve stratejik planlama 

• Oyun yapay zekâsı ve bilgisayar oyuncular 
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• Doğal dil işleme, çeviri ve sohbet botları 

• Doğrusal olmayan kontrol ve robotik 

• Yapay yaşam 

• Otomatikleştirilmiş kavrama (Automated resoning) 

• Otomasyon 

• Biyolojiden ilham alınmış hesaplama 

• Kavram madenciliği 

• Veri madenciliği 

• Bilgi temsili 

• Anlam tabanlı internet 

• E-posta çöplük süzmesi 

• Robotik 

o Davranış tabanlı robotik 

o Kavrayıcı 

o Sibernetik 

o Evrimsel robotik 

• Karma zekâ sistemi 

• Zeki ajan 

• Zeki kontroldür. [3] 

 

1.3 Yapay Zekâ’da Eğitim ve Amacı 

 

Yapay zekâda eğitimin amacı, belirli sorunlarla baş etmek üzere tasarlanmış olan 

yapay zekânın kendini geliştirmesi, ileride karşısına çıkabilecek daha farklı 

durumlarda da doğru adımlar izleyebilmesini sağlamaktır. Genel anlamda yapay 

zekâ eğitimi, birer minimizasyon ya da maksimizasyon sorunlarıdır ve optimizasyon 

kuramlarından bolca yararlanır.  

Yapay zekânın eğitilmesi, sistemin kendi kendine daha gelişmiş bir yapay zekâ 

ortaya koymasını sağlar. Öğrenen makineler, öğrenmeyenlere göre daha fazla 

sayıda ve çeşitte sorunlarla baş edebilir. 
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1.4 Kullanılan Yapay Zekâ 

 

Bu tezde, iki adet yapay zekâlı oyun bulunmaktadır. Birisi eski bir zekâ oyunu olan 

Tic Tac Toe, bir diğeri ise Tolkien dünyasından ortaya çıkmış bir oyun türünden 

esinlenmiş RPG’dir. 

 

1.4.1 Tic tac toe 

 

Tic Tac Toe oyunu, sıra tabanlı bir tahta oyunudur. Đki oyuncu da kendi sırası 

geldiğinde kendi işaretini tahtanın istediği yerine yerleştirir. Đşaretleriyle düz bir sıra 

yapan oyuncu oyunun galibi olur. 

Tic Tac Toe yazılımında, John von Neumann’ın ortaya koyduğu MiniMax yöntemi 

kullanılmıştır. 

 

1.4.2 RPG 

 

RPG, Role Playing Game sözcüklerinin kısaltmasıdır ve aslında bir oyun değil, bir 

oyun türü adıdır. Oyunda karşı karşıya gelen iki düşman grup, birbirlerini ellerindeki 

silahlarıyla öldürmeye çalışmaktadırlar. Bütün elemanları ölen grup oyunun mağlubu 

sayılır. 

RPG, sıra tabanlı bir tahta oyunu olmasına rağmen bilinemeyecek unsurlar 

içerdiğinden MiniMax algoritması kullanılmamıştır. Bunun yerine her el sonunda, 

hangi düşmana saldırılacağının ortaya konulduğu bir değerlendirme fonksiyonu 

kullanılmıştır. 

Elinizde bulunan “Yapay Zekâ Yöntemleriyle Oyun Geliştirme” adlı tez çalışmasında, 

öncelikle yapay zekâda kullanılan başlıca yöntemler sıralanmıştır. Bu yöntemlerden 

MiniMax; sıfır toplamlı, tam bilgili ve sıra tabanlı bir oyun olan Tic Tac Toe’da 

kullanılmıştır. Đkinci bir oyun olan RPG’de ise bir ağırlıklı toplamlar yöntemi 

kullanılmış ve ağırlıkların optimizasyonu için bir hata güdümlü eğitim yöntemi 

önerilmiştir. 
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Bu çalışmanın ikinci bölümünde Yapay Zekâ’da kullanılan başlıca yöntemleri, 

üçüncü bölümünde yazar tarafından geliştirilmiş ve yukarıda belirtilmiş olan iki 

bilgisayar oyunu ve Yapay Zekâ tasarımlarını, dördüncü bölüm olan “Bulgular ve 

Tartışma” bölümünde ortaya konulmuş olan Yapay Zekâ yöntemlerinin başarımlarını 

ve son bölüm olan “Sonuçlar ve Yorum” bölümünde bu çalışmanın genel başarımını 

ve ileride bu tezi başvuru amaçlı olarak kullanacak araştırmacılara önerileri 

bulacaksınız. 
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2 YAPAY ZEKÂ YÖNTEMLERĐ 

 

2.1 Yapay Zekâ’da Kullanılan Karar Mekanizmaları 

 

2.1.1 Sonlu durum makineleri 

 

Sonlu durum makineleri,  sonlu sayıda durumların bulunduğu ve bu durumlar 

arasındaki geçişlerin belirli kurallara bağlandığı bir karar verme yöntemidir. Sonlu 

durum makineleri temel olarak dört bileşenden oluşur: 

•••• Durum 
•••• Başlangıç Durumu 
•••• Alfabe 
•••• Geçiş Fonksiyonu 
 
Sonlu durum makinelerinde, durumlar arası geçiş, tanım uzayı alfabe olan geçiş 

fonksiyonunun sonucuna göre yapılır. Id Software’in efsanevi oyunlarından Quake 

oyunundaki roket mermisinin durum çizelgesi Şekil 2.1’de verilmiştir: 
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Sonlu durum makineleri genellikle karar vermekten çok karar kalıbı belirlemeye 

yönelik bir yöntem olarak kullanılır. Örneğin FPS tarzı bir oyunda bilgisayar, sağlık 

durumunun kötü gittiğini düşünüyorsa geri çekilme durumuna girer. Bu durumda 

alacağı kararların oluşturduğu uzay diğer durumlardakinden farklı olur. 

 

2.1.2 Öznel beklenen yarar (SEU) 

 

Öznel beklenen yarar, 1954 yılında Leonard Jimmie Savage tarafından ortaya 

atılmış bir karar kuramı yöntemidir.  Bayes olasılığı kuramına dayanan bir öznel 

olasılık analizi ile öznel bir yarar fonksiyonunu bir araya getirir. 

Savage ispatlamıştır ki [5] bir kesin olmayan olayın olası sonuçları {xi} ise ve her 

birinin kişiye olan yararı (utility) u(xi) , ve her birinin meydana gelme olasılığı P(xi) ise 

kişinin Öznel Beklenen Yararı (SEU) Denklem 2.1’de verilmiştir. 

 

( ) ( )∑ ⋅=
i

ii xPxuSEU          (2.1) 

Collision 

Touch was 

owner 

Spawn 

Move 

Die 

Touch 

Finish Spawn 

Hit sky 

Exploded 

5 sec. timeout 

Şekil 2.1: Örnek Sonlu Durum Makinesi  [4] 
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Alınan bir karar sonuçları {yi}’ye getirir ve bu sefer beklenen yarar Denklem 2.2’deki 

gibi olur. 

 

( ) ( )∑ ⋅=
i

ii yPyuSEU   (2.2) 

 

SEU yöntemi, olası bütün sonuçların, sonuçların olasılıklarının ve öznel olan yarar 

fonksiyonlarının kusursuz şekilde bilindiğini kabul eder ve bu yüzden 

hesaplanabilme yönünden eksik kalır. Yine de mikro-uzay problemlerine 

uygulanabilirliği yüksektir. 

SEU yöntemi, bir ajanın mantıklı bir şekilde davranmasının ne anlama geldiğini ilk 

kez aksiyomlanabilmiş bir yolla anlatılabildiği ilk kuram olma özelliği nedeniyle, karar 

verme konusunda önemli bir kuramdır. 

 

2.1.3 Karar ağaçları 

 

Karar Ağaçları, stratejik kararların verilmesinde yardımcı olarak kullanılan birer 

çizelgedir. Çizelge bir ağaca benzer ve ağacın her dalı o an alınabilecek bir kararı 

simgeler. Alınan her bir kararın getirisi ve götürüsü muhasebe edilir ve başarı 

yüzdesi ile çarpılır. Bu hesaplamadan en yüksek puanla çıkan olasılık en kârlı 

olasılık olarak değerlendirilebilir.  Şekil 2.2, örnek bir karar ağacını resmetmektedir. 
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Şekil 2.2: Örnek Karar Ağacı [6] 

Örnek şirketin senaryosuna göre, ellerindeki iki projeden en çok birini yapabilecek 

olan şirketin hareket algılayıcı ya da duman ve yangın algılayıcısı projelerinden 

birisini seçmesi gerekmektedir. Yangın algılayıcısı projesinin başlangıç maliyeti 

100.000$’dır ve başarı olasılığı %50’dir. Eğer şirket projeyi geliştirmekte başarılı 

olursa projeyi sektördeki diğer bütün ürünler gibi bir standartlara uygunluk testinden 

geçirecektir. Testin maliyeti 5.000$’dır ve eğer ticari uygunluk alırsa (olasılık %30) 

projenin getirisi 1.000.000$ olacaktır. %60 olan diğer bir olasılıkta yalnızca evler için 

bir uygunluk alınmakta ve ticari uygunluğa göre daha az olan 800.000$ getiri 

sağlamaktadır. Proje hiç bir uygunluk alamazsa (%10 olasılık) projenin yatırım 

masrafları çöpe gidecektir. 

Hareket algılayıcısının ise başlangıç maliyeti 10.000$ ve başarı olasılığı %80’dir. 

Projede başarı sağlanırsa elde edilecek kazanç 400.000$’dır. 

Karar ağaçları doldurulurken, SEU yöntemindeki gibi, bütün olasılıkların bilinmesi 

gereklidir. Ağacın her bir düğümünün beklenen değer (EV) formülü Denklem 2.3’te 

verilmiştir. 

 

( ) ( )∑ ⋅−=
i

iid iPGiderGelirEV

  (2.3)
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Dikkat edilirse, karar ağaçlarının aslında yarar fonksiyonu düğümdeki kâr olan bir 

SEU uygulaması olduğu söylenebilir. 

 

Bilgisayar da bir oyunda bir karar vermek durumunda kaldığında aynı şekilde bir 

karar ağacı yaratıp, bu karar ağacındaki hesaplamalara göre EV değeri en yüksek 

yolu seçmesi sağlanabilir. Ancak özellikle hesaplamalardan çok reflekslerin etkili 

olduğu hızlı oyunlarda (örneğin FPS tarzı oyunlarda) karar ağaçları çok daha basit 

olabilir, hatta Veri Madenciliğinde kullanıldığı üzere eğer-ise kurallarından oluşabilir. 

 

2.1.4 MiniMax 

 

Bilgisayar oyunlarında Yapay Zekâ uygulamalarında kullanılan algoritmalardan birisi 

de karar kuramından gelen MiniMax yöntemidir. Algoritma, temelinde sıra tabanlı, 

tam bilgili, sıfır toplam oyunlarda kullanılmak üzere tasarlanmıştır; ancak diğer 

türlerde kullanılmak üzere değiştirilebilir. Yöntem, olası en yüksek zararın en aza 

indirgenmesi olarak tanımlanabilir. 

 

δ, θ parametresini kestiren fonksiyon ve  R(θ, δ), risk fonksiyonu (genellikle kayıp 

fonksiyonunun integrali olarak alınır) olmak üzere; 

 

���� ���� 	
� � 
��� ���� ���� 	� (2.4) 

 

Olduğu noktadaki R fonksiyonu MiniMax fonksiyonudur. 

MiniMax fonksiyonu, temelinde sıra tabanlı, tam bilgili, sıfır toplam oyunlarda 

kullanılır; ancak diğer türlerde kullanılmak üzere değişikliklerde bulunulabilir. 
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Oyunda Min ve Max adında iki oyuncu vardır ve bilgisayar, bu iki oyuncunun da 

oynayabileceği bütün olasılıkları çıkartarak kendisi için en iyi oyun durumunu elde 

etmeye çalışır. Algoritma, bir arama ağacına dayanır (Şekil 2.3) . Arama ağacının 

her düğümü oyunun bir durumunu (ya da kısaca bir oyunu) tutar. Bir düğümün alt 

düğümleri ise o durumdan sonraki olası durumları tutar. Min ve Max ile işaretlenmiş 

seviyeler o seviyede oynayacak olan oyuncuyu gösterir. 

 

Şekil 2.3: MiniMax Arama Ağacı [7] 

Ağaç; derinlemesine (depth-first), o anki oyun durumundan başlayarak oyunun son 

durumuna kadar hesaplanır ve oyunu sonlandıran bir hamle bulunduğunda oyun 

sonucu Max‘e göre yorumlanır. Daha sonra ağacın dallarındaki düğümler aşağıdan 

yukarıya doğru, hesaplanan değerlerle doldurulur. Max'in oynadığı durumları 

gösteren düğümler kendi çocuklarının en büyük değerini alırken Min'in oynadığı 

durumları gösteren düğümler çocuklarının en düşük değerini alır.  

Sonuç olarak, arama ağacındaki değerler o durumun Max için ne kadar iyi bir oyun 

sonucu olduğunu gösterir. Max, bir hamle yaparken bu düğümlerden en büyük 

değerlisini seçmek isteyecektir. Buna karşılık, Min de Max'in durumunu 

kötüleştirmeye (yani kendi durumunu iyileştirmeye) çalışacak bir hamle 

yapacağından bu Max'in hamle seçimini zorlaştıracaktır. 

MiniMax yöntemini kullanan bir algoritma EK-A’daki sözde-kod ile gerçekleştirilebilir. 
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2.1.5 Alfa / beta kesintileri 

 

MiniMax yöntemi, oyunda olası bütün hamlelerin bellekte bir ağaç yapısında 

tutulması ve aramanın bütün ağaç üzerinden yapıldığı için özellikle satranç gibi 

hamle uzayı büyük oyunlarda işlem yükünü arttırdığı için Alfa/Beta kesintileri tekniği 

kullanılır. 

Alfa-Beta kesintileri Şekil 2.4’e  benzer ağaçlarda kullanılabilecek bir yöntemdir:  

 

Şekil 2.4: Alfa-Beta Kesintisine Uygun Bir Arama Ağacı [7] 

A ve B düğümleri MIN sırasında olduğundan A'nın değeri olan 3'ten küçük bir sayı 

B'nin değeri olarak seçilecek olursa B'nin bir sonraki adımda A'yı geçemeyeceği 

kesindir ve B düğümüyle daha fazla zaman kaybetmeye gerek yoktur. 

B'nin ilk çocuğunun değeri 2 olduğu bilindiği anda diğer çocukların değerleri 2'den 

büyük olması koşulunda en küçük değer kalacak olan 2'nin B'nin değeri olacağı, 

diğer çocukların değerlerinin 2'den küçük olması koşulunda ise B'nin değerinin 2'den 

küçük (ve dolayısıyla MAX sırasında A'nın değeri olan 3'ü geçemeyecek) bir değer 

alacağından B ile ilgilenmeye gerek yoktur.  

Ya da kısaca; 

alfa = bilinen en iyi MAX değeri ve beta = bilinen en iyi MIN değeri olmak üzere, 

1. MAX düğümlerinde, herhangi bir yolu izlemeye başlamadan önce, bir önceki 

yolun değerini beta değeri ile karşılaştır. Eğer değer beta'dan büyükse bu 

düğümü atla 
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2. MIN düğümlerinde, herhangi bir yolu izlemeye başlamadan önce, bir önceki 

yolun değerini alfa değeri ile karşılaştır. Eğer değer alfa'dan küçükse bu düğümü 

atla 

Alfa-Beta kesintileri, MiniMax algoritmasında yapay zekâ kalitesini düşürmeden 

önemli hız kazancı doğurabilir. Ancak bu hızlanmanın ölçeği arama ağacının 

yapısına bağlıdır. MAX düğümlerinin değerleri küçükten büyüğe doğru sıralı ise, ya 

da MIN düğümlerinin değerleri büyükten küçüğe sıralı gelmişse alfa-beta 

kesintilerinin performansa bir katkısı bulunmaz. 

 

2.1.6 Yapay sinir ağları 

 

Yapay Sinir Ağları, omurgalı hayvanların sinir sistemlerinden esinlenerek ortaya 

konulan iteratif, öğrenmeye dayalı bir kestirim yöntemidir. Birbirleri ile iyi iletişimleri 

bulunan sinir hücreleri (düğümler) kendisinden önceki düğümden gelen veriyi basit 

işlemler (ağırlık çarpanı ve düğüm ağırlığı toplamsalı kullanarak) yaparak bir sonraki 

düğüme iletir. En son düğümde elde edilen sonuç, eğitim verisi ile karşılaştırılır, eğer 

sonucun iyileştirilmesi gerekiyorsa YSA parametreleri güncellenir. 

Bir düğümün çıktısı, kendisine gelen girdilere ve her bir girdiye atanmış olan 

ağırlıklara bağlıdır. Bir yapay sinir ağı düğümünün matematiksel modeli Şekil 2.5 ve 

Denklem 2.4 ile Denklem 2.5’te gösterilmiştir. 
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Şekil 2.5: Yapay Sinir Ağı Düğümü [8] 

 

�� � � ��� � ������   (2.4) �� � ����� (2.5) 

 

Etkinleştirme fonksiyonu, önceden belirlenmiş bir fonksiyondur ve amacı sinir 

çıkışını belirli bir aralıkta (genellikle [-1, 1]) arasında tutmaktır. En yaygın doğrusal 

olmayan etkinleştirme fonksiyonları sigmoid ve hiperbolik tanjant fonksiyonlarıdır. 

Denklem 2.6 sigmoid fonksiyonu, Denklem 2.7 ise hiperbolik tanjant fonksiyonunun 

tanımını vermektedir. 

 

����� � ��� !"�#$  (2.6) 
����� � %&�' ()$* + � �, !#$�� !#$  (2.7) 

 

  



 

2.1.6.1 Yapay sinir ağı yapılar

 

Yapay sinir ağlarının sınıflandırılması 

Sık kullanılan topolojiler ileri beslemeli ağlar (feed forward networks) ve 

(recurrent networks) olarak ayrılabilir.

Đleri beslemeli ağ topolojisi, b

bağlanan ve veri akışı yalnızca ileriye doğru giden yapay s

Türev işlemlerinin daha kolay hesaplanmasını sağladığı için diğer topolojilere göre 

daha çok kullanılır ve yapay sinir ağı den

Şekil 2.6, örnek bir ileri besleme ağı topolojisini gö

Eğer ağın sinirleri arasında aynı katmanda ya da bulunduğu katmanlardan daha 

geride bulunan sinirlere bağları olan
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Yapay sinir ağı yapıları 

Yapay sinir ağlarının sınıflandırılması sinir ağının yapısına (topolojisine) göre yapılır.

topolojiler ileri beslemeli ağlar (feed forward networks) ve 

(recurrent networks) olarak ayrılabilir. 

Đleri beslemeli ağ topolojisi, bütün sinirleri yalnızca bir sonraki ağ katmanına 

ve veri akışı yalnızca ileriye doğru giden yapay sinir ağı topoloji türüdür.

Türev işlemlerinin daha kolay hesaplanmasını sağladığı için diğer topolojilere göre 

daha çok kullanılır ve yapay sinir ağı denildiğinde genellikle akla ilk gelen topolojidir.

örnek bir ileri besleme ağı topolojisini gösterir.  

Şekil 2.6: Đleri Besleme Yapay Sinir Ağı [9] 

inirleri arasında aynı katmanda ya da bulunduğu katmanlardan daha 

geride bulunan sinirlere bağları olanlar varsa ağ bir devirli yapay sinir ağ

 

sinir ağının yapısına (topolojisine) göre yapılır. 

topolojiler ileri beslemeli ağlar (feed forward networks) ve devirli ağlar 

ütün sinirleri yalnızca bir sonraki ağ katmanına 

inir ağı topoloji türüdür. 

Türev işlemlerinin daha kolay hesaplanmasını sağladığı için diğer topolojilere göre 

akla ilk gelen topolojidir. 

 

inirleri arasında aynı katmanda ya da bulunduğu katmanlardan daha 

yapay sinir ağıdır. 
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2.1.6.2 Yapay sinir ağlarında eğitim 

 

Yapay sinir ağlarının eğitiminde gözetmenli, gözetmensiz ya da desteklenmiş eğitim 

yöntemleri kullanılır. Gözetmenli yapay sinir ağları, geri yayılım (back-propagation) 

kullanılarak yapay sinir ağının çıktılarının toplam hatasını azaltmaya çalışır. Bunun 

için ilk yapılması gereken şey bir hata fonksiyonu seçmektir. Hata fonksiyonu olarak 

karesel ortalama fonksiyonu uygundur. Denklem 2.8 toplam n adet eğitim çifti içeren 

eğitim kümesi ile eğitilen, çıkış vektörü o, hedef vektörü t olan bir yapay sinir ağının 

karesel ortalama hatasını ortaya koymaktadır. 

 

- � � ./0 1 20.*30��  (2.8) 

 

Yapay sinir ağlarının eğitim problemi, bu hata değerinin minimize edilmesidir. Hücre 

çıkışlarını belirleyen etkinleştirme fonksiyonları sürekli ve türevlenebilir 

fonksiyonlardan seçildiği, hücre çıkışlarının kendi girişlerine ait ağırlıklarına bağlı 

olduğundan ve eğitimde değiştirilebilinecek tek parametre hücre girişlerinin 

ağırlıkları olduğundan E gradyan indirgeme (gradient descent) yöntemi ile sıfıra 

yakınsayabilir [10]. Denklem 2.9a gradyan indirgeme yöntemi ile toplam 4 adet 

ağırlık değeri bulunan bir yapay sinir ağındaki E hatasını mimimize etmek için ilgili 

ağırlık değerine eklenmesi gereken farkı göstermektedir. Denklemdeki γ değeri 

önceden belirlenmiş bir eğitim sabitidir. [11] 

 

5- � � �6�78 � 9697: � ; � 9697<�  (2.9a) 

=�0 � 1> � 9697?  (2.9b) 
�0�2 @ A� �  �0�2� @  =�0  (2.9c) 

 

Gözetmensiz eğitimde yapay sinir ağına giriş çıkış çiftleri verilmez. Onun yerine sinir 

ağı verilen girişlere çıktılar üretir ve çıktının hatasını kendisi tahmin etmeye 

çalışabilir [12]. Gözetmensiz eğitimin sık kullanıldığı amaçlar arasında sınıflandırma, 

istatistiksel dağılım çözümleri, sıkıştırma ve süzme (filtreleme) bulunur. 
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Desteklenmiş eğitim, hem gözetmenli eğitimi hem de gözetmensiz eğitimi andırır. 

Desteklenmiş eğitimde yapay sinir ağına girdi-çıktı çiftleri verilmez, ancak sinir 

ağının verdiği çıktıya göre bir “ödül” ya da “ceza” verilerek arzulanan hedefe 

yaklaşması sağlanır. Yapay sinir ağı, ödülü arttırmak ya da cezayı azaltmak için 

hücreler arası ağırlıklarda güncellemelerde bulunur. 

 

2.1.7 Bulanık mantık 

 

Bulanık mantık sistemleri, çözülmesi istenen problemlerin uzmanlarına ya da bilgi 

bankalarına başvurularak oluşturulan eğer-ise (if-then) kurallarının sürekli üyelik 

fonksiyonları ve bu fonksiyonlarla ilişkilendirilen dilsel sözcüklere dayanır. Şekil 2.7 

bir Tsukamoto bulanık sistemin bileşenlerini göstermektedir. 

 

Şekil 2.7: Tsukamoto Modeli Bulanık Sistem Çizelgesi 

Bir başka bulanık model olan Sugeno modelinde ise durulama olmaz; çünkü Bulanık 

Çıkartım Motorunun çıkış değeri duru değerlerdir. 
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2.1.7.1 Bulanık kural tablosu 

 

Bulanık kural tablosu bulanık çıkartım motorunun çalışmasını belirleyen eğer-ise 

kurallarından oluşan bir tablodur. Tablodaki kurallarda bulunan “eğer” ifadeleri, dilsel 

sözcükler barındırır. Tablo 2.1 olası bir Tsukamoto modeli araç durdurma sisteminin 

olası bulanık kural tablosunun bir bölümünü ortaya koymaktadır. 

Tablo 2.1: Örnek Tsukamoto Bulanık Kural Tablosu 

HIZ HIZLANMA 
UYGULANACAK  

FREN MĐKTARI 

Çok düşük Sıfır Çok az 

Düşük Sıfır Az 

Orta Sıfır Orta 

 

Aynı sistemin Sugeno modeli kural tablosunun bir bölümü ise Tablo 2.2’de 

verilmiştir. Çıkış verileri bulanık değil, duru değerlerdir. 

Tablo 2.2: Örnek Sugeno Bulanık Kural Tablosu 

HIZ HIZLANMA 
UYGULANACAK  

FREN MĐKTARI 

Çok düşük Sıfır c1 * V+d1 

Düşük Sıfır c2 * V+d2 

Orta Sıfır c3 * V+d3 

 

2.1.7.2  Bulanıklaştırma 

 

Bulanıklaştırma, kesin değerleri bulanık çıkartım motorunun anlayacağı duruma 

getirmek anlamına gelir. Bulanıklaştırma işi, bulanık kural tablosunda belirlenen 

girdilerin sayısında ve tepe değerleri 1 olan sürekli üyelik fonksiyonları 

tanımlamaktır. En sık kullanılan üyelik fonksiyonları gauss, üçgen ve yamuk sürekli 

fonksiyonlarıdır. Her bir üyelik fonksiyonu giriş uzayının belirli değerleri arasına 

hâkimdir ve üyelik fonksiyonunun tanımlı olduğu aralığa dilsel olarak anlamlı bir ad 

verilir.  Şekil 2.8, 5 adet üyelik fonksiyonu içeren ve bir aracın hızını bulanıklaştıran 

bir bulanıklaştırma örneği göstermektedir. 
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Şekil 2.8: Bulanık Üyelik Fonksiyonları [13] 

Şekil 2.8’deki örnekte giriş değeri  -0,2 olan bir araç hem PS (positive-small) hem de 

Z (zero) hem de NS (negative-small) üyeliklerine dâhildir. 

 

2.1.7.3 Bulanık çıkartım motoru 

 

Bulanık çıkartım motoru, sistemin çıkışını kurallar tablosuna dayanarak ortaya 

çıkartma işini üstlenir. Çıkışı yine bulanık bir sonuç kümesi olan bulanık çıkartım 

motorunun işi iki aşamadan oluşur.  

Đlk aşama olan toplama (aggregation), kural tablosunun “eğer” kısımlarını hesaplar. 

Birden fazla üyelik fonksiyonunun üyeliğine giren değerler için değerlerin minimumu 

(MIN çıkartım motoru), çarpımı (PROD çıkartım motoru) ya da belirlenen başka 

fonksiyonlar kullanılabilir. 

Đkinci aşama olan birleştirme (composition) ise kural tablosunun “ise” kısımlarındaki 

değerleri hesaplar.  Birden fazla üyelik fonksiyonunun üyeliğine giren çıkış değerleri 



 

için değerlerin en büyüğü (MIN çıkartım motoru), toplamı (PROD çıkartım motoru) 

ya da belirlenen başka fonksiyonlar kullanılabilir.

Đkinci aşamanın sonunda, durulanacak olan değerler

karşılık düştüğü çıkış üyelik fonksiyonlarının birleştirme aşamasından çıkan 

birleşimleridir. 

 

2.1.7.4 Durulama 

 

Durulama aşaması, bulanık 

birleşiminin tekil ve net bir değer olarak ortaya

motorundan elde edilen 

verilmiştir. 

Şekil 2
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için değerlerin en büyüğü (MIN çıkartım motoru), toplamı (PROD çıkartım motoru) 

belirlenen başka fonksiyonlar kullanılabilir. 

Đkinci aşamanın sonunda, durulanacak olan değerler, sisteme verilen girişlerin 

karşılık düştüğü çıkış üyelik fonksiyonlarının birleştirme aşamasından çıkan 

Durulama aşaması, bulanık çıkartım motorundan gelen üyelik fonksiyonları 

tekil ve net bir değer olarak ortaya koyulduğu aşamadır.

motorundan elde edilen çıkış üyelik fonksiyonları birleşimine bir örnek Ş

2.9: Bulanık Çıkış Üyelik Fonksiyonları Birleşimi [1

 

için değerlerin en büyüğü (MIN çıkartım motoru), toplamı (PROD çıkartım motoru) 

, sisteme verilen girişlerin 

karşılık düştüğü çıkış üyelik fonksiyonlarının birleştirme aşamasından çıkan 

çıkartım motorundan gelen üyelik fonksiyonları 

koyulduğu aşamadır. Çıkartım 

iyonları birleşimine bir örnek Şekil 2.9’da 

 

[14] 
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Birleşim kümesinden duru ve net bir değer çıkartmanın yine birden fazla yolu vardır. 

Bunlardan bazıları maksimumların merkezi (CoM – center of maximum), ağırlık 

merkezi (CoA – center of area), maksimum ortalama (MoM – mean of maximum)  

yöntemleridir.  

Bulanık mantık sistemleri özellikle kontrol alanında yaygınlaşan bir kullanım alanına 

sahiptir. 

 

2.1.8 Bulanık sinir ağları 

 

Uyarlanabilir Ağ Yapılı Bulanık Çıkartım Sistemleri (ANFIS – Adaptive Neuro-Fuzzy 

Inference System) ya da kısaca Bulanık Sinir Ağları, standart Bulanık Çıkartım 

Sistemlerinin Yapay Sinir Ağı Modeline oturtulmuş biçimidir. Sistem, başlangıçta 

tanımlanmış bir bulanık Sugeno ya da Tsukamoto modelinin çıkışlarını üretecek bir 

ağ yapısı ile tanımlanır ve bulanık modelin üyelik fonksiyon parametreleri, yapay 

sinir ağlarında kullanılan eğitim yöntemleri ile güncellenir. [13] 

 

2.1.8.1 Bulanık model ve ilişkin ağ yapısının çıkarımı 

 

Yukarda da belirtildiği gibi, ANFIS yapısı önceden tanımlanmış olan bir bulanık 

çıkartım modelinin çıkışını verecek bir yapay sinir ağı yapısındadır. Örnek bir iki 

girişli ve iki kurallı Sugeno sistemi ve ona ilişkin bulanık kurallar Tablo 2.3’te, ilişkin 

ANFIS sistemi Şekil 2.10’da verilmiştir: 

Tablo 2.3: ANFIS Bulanık Kural Tablosu 

Girişler: x y  

Üyelik Fonksiyonları: A1 , A2 B1 , B2  

Kurallar: Eğer x A1 ve y B1 ise f1 = p1(x) + q1(y)+r1 

Eğer x A2 ve y B2 ise f2 = p2(x) + q2(y)+r2 

 

 



 

 

2.1.8.2 Bulanık ağ y

 

ANFIS yapısında her katman bir sonraki katmana bağlıdır ve her katmanda bulanık 

sistemin işleyişinin farklı bir adımı gerçeklenir.

1. katmandaki hücreler giriş değerlerinin üyelik fonksiyonları çıkışlarını verir. (

A1(x) ve A2(x) , y için B

2. katmandaki hücreler PI hücreleri olarak adlandırılır ve çıkış olarak kendisine gelen 

bütün sinyallerin aritmetiksel çarpımını verir. 

 

�0 � B0��� � C0���   

 

wi değerleri, işlenen kuralın tetik değer

3. katmandaki hücreler N hücreleri olarak adlandırılır ve normalize edilmiş tetik 

değerlerini üretir:  i’nci N hücresi için;
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Şekil 2.10: ANFIS Mimarisi 

yapısının katmanları ve işlevleri 

ANFIS yapısında her katman bir sonraki katmana bağlıdır ve her katmanda bulanık 

sistemin işleyişinin farklı bir adımı gerçeklenir. 

1. katmandaki hücreler giriş değerlerinin üyelik fonksiyonları çıkışlarını verir. (

(x) , y için B1(y) ve B2(y)) 

2. katmandaki hücreler PI hücreleri olarak adlandırılır ve çıkış olarak kendisine gelen 

bütün sinyallerin aritmetiksel çarpımını verir. i’nci PI hücresi için;  

 

işlenen kuralın tetik değeri olarak adlandırılır. 

3. katmandaki hücreler N hücreleri olarak adlandırılır ve normalize edilmiş tetik 

nci N hücresi için; 

 

ANFIS yapısında her katman bir sonraki katmana bağlıdır ve her katmanda bulanık 

1. katmandaki hücreler giriş değerlerinin üyelik fonksiyonları çıkışlarını verir. (x için 

2. katmandaki hücreler PI hücreleri olarak adlandırılır ve çıkış olarak kendisine gelen 

 

(2.10) 

3. katmandaki hücreler N hücreleri olarak adlandırılır ve normalize edilmiş tetik 
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�DEEE � 7?� 7   (2.11) 

 

4. katmandaki hücreler her bir kuralın giriş değerlerine göre çıkışını hesaplar ve 5. 

katmana normalize edilmiş ağırlığı ile bu fonksiyon çıkışının aritmetik çarpımını iletir. 

i’nci hücre için;  

 

�DEEE � F0 � �DEEE � �G0 � � @ H0 � I0� (2.12) 

 

5. katman SĐGMA adı verilen tek bir hücreden oluşur ve bütün 4. katman çıkışlarının 

aritmetiksel toplamını döndürür. 

 

F � � �DEEE � F0 � � 7?�J?� 7?  (2.13) 

 

Tablo 2.3 verilmiş olan Sugeno modelini Denklemler (2.10 – 2.13) ile tamamen 

gerçekleyen bir ANFIS yapısı böylece tanımlanmış olur. f çıkış değerine dikkat 

edilecek olursa ağırlıklı ortalama yöntemi kullanılmış bir Sugeno sisteminin çıkış 

fonksiyonuna eşit olduğu görülebilir.  

 

2.1.8.3 Bulanık ağlarda eğitim 

 

Elde ettiğimiz yapının uyarlanabilirliği, bu yapının eğitimi ile mümkün olmaktadır. 

Örnek ANFIS yapısının çıkış denklemini bir tümevarım için kullanalım: 

 

F � 7878�7: � F� @ 7:78� 7: � F* (2.14a) 

� ��EEEE � �G�� @ H�� @ I�� @ �*EEEE � �G*� @ H*� @ I*� (2.14b) 

� ���EEEE��G� @ ���EEEE��H� @ ���EEEE�I� @ ��*EEEE��G* @ ��*EEEE��H* @ ��*EEEE�I*  (2.14c) 
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Denklemi, f çıkışının pi, qi ve ri sonuç/doğrusal (consequent) değişkenleri üzerinde 

doğrusal olduğunu gösterir. Bulanık Sugeno sisteminin diğer parametreleri de 

(üyelik fonksiyonlarına ait parametreler) koşul/doğrusal olmayan (premise) 

değişkenler olarak adlandırılır. 

Eğitim işleyişi temel olarak iki aşamaya ayrılabilir: Đlk aşama, ileri geçişte (forward 

pass), mevcut bulanık sistemde 4. katmana kadar olan çıkışlar hesaplanır ve bu 

noktada doğrusal parametreler LS yöntemi kullanılarak güncellenir. Đkinci aşama, 

geri geçişte (backward pass), bulanık sistem çıkışının hata sinyalleri geri 

döndürülerek gradyan azaltımı yöntemi ile doğrusal olmayan parametreler 

güncellenir. Bu eğitim yöntemine karma eğitim (hybrid learning) adı verilmiştir. 

 

2.1.8.4 Đleri yayılım ve LS yöntemi 

 

LS yöntemi genel olarak,  

 

� � ��F��K� @ �*F*�K�@L L L @�3F3�K� (2.15) 

  

Şeklinde tanımlanan sistemlerde m ≥ n adet bilinen giriş – istenen çıkış ikilisi 

kullanarak sistemi en az hata ile yansıtan θ bilinmeyen parametrelerini bulmak için 

Denklem (2.16-2.17d)  tanım ve denklemleri kullanır: 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )









=+++

=+++

=+++

mnmnmm
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nn

yufufuf

yufufuf

yufufuf

θθθ

θθθ

θθθ

...

...

...

2211

22222121

11212111

M
 (2.16) 

 

yA =θ , öyle ki; (2.17a) 
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B � M F��K�� ; F3�K��N O NF��KP� ; F3�KP�QPR3   (2.17b) 
� � M��N�3Q3R� (2.17c) 
� � M ��N�PQPR�  (2.17d) 

 

m > n olduğu koşullarda θ matrisinin tersi alınamayacağından tam duyarlı (sıfır 

hatalı) bir sonuç ortaya konamayabilir. Bunun için Denklem 2.17a’ya bir hata 

parametresi eklenir ve bu hatanın karesini en aza indirgeyecek bir θ̂  sütun vektörü 

hesaplanır: 

 

B� @ S � �  (2.18a) S � � 1 B� (2.18b) -��� � �* STS � �* �� 1 B��T�� 1 B�� (2.18c) 
969� � �* U1BT�� 1 B�� 1 BT�� 1 B��V � 1BT�� 1 B�� � W (2.18d) 1BT� 1 BTB� � W         (2.18e) �X � �BTB�,�BT�  (2.18f) 

 

LS yöntemi ANFIS sistemin ileri geçişine uygulanırken bilinen parametreler olarak 

iw , xi ve yi alınırken; pi, qi ve ri parametrelerinin uygun değerleri aranır. Diğer bir 

deyişle A matrisi iw , xi ve yi parametrelerini içeren m x n boyutlarında bir matris, θ 

de; pi, qi ve ri doğrusal parametrelerini barındıran n x 1 lik bir sütun vektörüdür. 
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2.1.8.5 Geriye yayılım ve gradyan indirgemesiyle eğitim 

 

Gradyan indirgemesi ile eğitim yöntemi, yapay sinir ağlarında sık kullanılan bir 

eğitim yöntemidir. Temelde amaç, yapay sinir ağından elde edilen çıkışın hatasının 

karesini hata fonksiyonunun yapay sinir ağı parametrelerine göre türevini sıfırlayarak 

en aza indirmektir. Yapay sinir ağlarında bu parametreler sinir hücrelerine gelen 

sinyallerin ağırlıkları iken ANFIS sistemlerde Denklem 2.14a’da belirtilmiş olan koşul 

parametrelerdir. Denklemler (2.19a-2.20), karesel hatanın ve bu hatanın gradyan 

indirgemesi kullanılarak geriye yayılımının hesabını vermektedir. 

 

S � �Y Z 1 F  

 (2.19a) - � �* S*  (2.19b) 

[��� � [� 1 \ 969]$  (2.20) 

 

Denklem 2.20’de, α sayıları ANFIS sistemin koşul değişkenlerinin her birini temsil 

etmektedir. Denklem 2.14a’ya dayanarak Denklem 2.20’deki türevin wi değerlerine 

bağlı olduğu söylenebilir. Bir adım daha ileriye gidilirse Denklem 2.10’un da wi 

değerlerinin de girişlerin üyelik fonksiyonlarına bağlı olduğu görülür. Açıktır ki, üyelik 

fonksiyonları da kendi parametrelerine bağlıdır. Sonuç olarak Denklem 2.20, her bir 

üyelik fonksiyonu üzerinde işletildiğinde bir sonraki eğitim adımında (epoch) hatayı 

sıfıra biraz daha yaklaştıracak bir değere ulaşacaktır. 

 

2.1.9 Genetik algoritmalar 

 

Genetik algoritmalar, arama ve optimizasyon barındıran birer uyarlanabilir stokastik 

optimizasyon algoritmasıdır. Genetik algoritmalar ilk kez 1975 yılında Holland 

tarafından kullanılmıştır. 
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Temel fikir, doğal seçilimin basit bir örneğini işleterek verilen çözümler arasından en 

iyi olanı seçmektir. Đlk aşama örnek çözümlerin mutasyonu ya da rastgele 

değiştirilmesinden oluşur. Đkinci adım bir seçilim adımıdır ve genellikle doğal seçilimi 

öykünen bir uygunluk fonksiyonunun değerlendirmesi eşliğinde yapılır. Bu iki adım, 

en uygun çözüm bulununcaya kadar yinelenir [15]. 

Genetik algoritmalar, pek çok farklı uygunluk fonksiyonu ve çaprazlama yöntemi 

kullansa da temel algoritma Ek – B’deki gibidir.  

 

2.2 Eğitim yöntemleri 

 

Öğrenme terimi psikolojide, bir varlığın davranışlarının verilen bir durumda ya da 

verilen durumla birlikte yinelenen deneyimlerine bağlı olarak değişmesi olarak 

tanımlanır. Yapay Zekâda, makine öğrenimi (ya da eğitimi) bir Yapay Zekâ 

sisteminin başarımını zaman içinde arttırması olarak tanımlanabilir [16].  

 

2.2.1 Hata güdümlü öğrenim 

 

Hata güdümlü öğrenim, makinenin bir sorunu çözerken önce hatalar yapmasını ve 

sonraki adımlarda bu hataları yinelememesini sağlamaktır. Bu öğrenim yöntemi, 

insanların öğrenim yoluyla benzerlikler gösterir. Bir insan nasıl bir kere yaptığı bir 

hatadan bir şeyler öğreniyor ve aynı hatayı ya da benzer hataları aynı ya da benzer 

sorunları çözerken yapmıyorsa bir makine de benzer şekilde programlanabilir.  

Đlk bakışta yapay sinir ağlarındaki “Gözetmenli Eğitim”e benzer gibi görünse de 

aslında “Gözetmensiz Eğitim”e benzemektedir; çünkü gözetmenli eğitimdeki gibi 

dışarıdan alınan eğitim verileri yoktur. Sistem kendi hata fonksiyonlarını kendisi 

çıkartmak durumundadır. 
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2.2.2 Eğitici tarafından öğrenim 

 

Eğirici tarafından öğrenim, makinenin hangi durumda nasıl davranması gerektiğinin 

işin bir uzmanı tarafından makineye aktarıldığı öğrenim çeşididir. Örneğin bir 

bilinmeyenli bir denklemi çözerken öğretici, makineye “bilinmeyenleri eşitliğin 

soluna, bilinenleri sağına taşı” diyerek makineye sorunu çözebilmesi için yardım 

edebilir. Buradaki temel sorun eğiticinin makineyle anlaşma yoludur. 

 

2.2.3 Keşifle öğrenim 

 

Keşifle öğrenim diğer öğrenim yöntemlerinden biraz daha farklıdır. Öğrenimin amacı 

bir hedefe ulaşmak değil, yalnızca daha fazla bilgi sahibi olmak ve veri tabanındaki 

kavram zenginliğini arttırmaktır. Makinenin yaptığı tek şey yeni bir şeyler 

öğrenebileceği ilgi çekici bilgilerin bulunduğu kaynakları aramaktır. Eğitim sonu da 

keşfedilecek hiçbir şeyin kalmadığı nokta değil, verilmiş görevlerle ilgili yeterince 

bilgi sahibi olunduğu noktadır. 

Makine, verilen görevleri bir “ilgi çekicilik” sıralamasına koyar ve bazı görevlerdeki 

bazı bilgilere gerekli ilgi çekiciliğin altında kaldığından bakmaz. Đlgi çekicilik de yine 

bir matematiksel fonksiyon olarak belirtilir ve keşifle öğrenmenin en büyük 

sorunlarından biridir; çünkü çok iyi seçilmemiş bir ilgi çekicilik fonksiyonu makinenin 

çok gerekli bilgileri görmezden gelmesine neden olabilir. 
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3 YAPAY ZEKÂ ÖRNEK UYGULAMALARI 

 

3.1 Geliştirme Ortamı 

 

Tic Tac Toe ve RPG oyun yazılımları Windows ortamında Microsoft’un .NET 

Framework 2.0 kitaplıkları kullanılarak C# dili ile yazılmıştır. Yazılımın 

çalıştırılabilmesi için Microsoft .NET Framework 2.0’ın bilgisayara kurulması 

gerekmektedir. Yazılım Mono kitaplıkları üzerinde denenmemiştir. 

 

3.2 Geliştirilen Oyunlar 

 

3.2.1 Tic tac toe – bir zekâ oyunu 

 

3.2.1.1 Oyunun ve kuralların tanımlanması 

 

Tic Tac Toe, 3x3’lük bir tahtanın boş olan bir karesine, iki oyuncunun sırayla kendi 

işaretlerini koymalarından oluşur. Dikey, yatay ya da çapraz üçlüyü tamamlayan 

oyuncu oyunu kazanır. Eğer toplam 9 hamle sonunda hiç bir oyuncu bir üçlü 

yapamazsa oyun berabere sonuçlanır. 

 

3.2.1.2 Kullanılan yapay zekâ modeli 

 

Tic Tac Toe, 

• Sıra tabanlı, 

• Tam bilgili, 

• ve sıfır toplam bir oyun olduğu için makinelere MiniMax yöntemiyle oynatılabilir. 



 

Tic Tac Toe, arama ağacında çok fazla düğüm içermeyeceğinden (toplam 

362880) MiniMax algoritması yalın olarak kullanılmıştır.

büyütülmek istenirse yalın MiniMax çok yavaş kalabilir, zira 

toplam düğüm sayısı

hem aramada daha zor olurlar

aramaları sınırlandırılmalıdır

Tic Tac Toe’da kullanılan oyun so

verilmiştir. 

 

S � ^_`�G4a�SI� � U�b&c
 

Şekil 3.1’deki durumda bilgisayar önce Şekil 3.

ile işaretli alanlar o seferde yapılan hamleyi gösterir

• Đlk başlayan oyuncu bilgisayardır

• Bilgisayarın işareti çemberdir 

 

olarak belirlenmiştir.  

Şekil 
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Tic Tac Toe, arama ağacında çok fazla düğüm içermeyeceğinden (toplam 

MiniMax algoritması yalın olarak kullanılmıştır. Eğer oyun tahtası 

k istenirse yalın MiniMax çok yavaş kalabilir, zira 5x5’lik bir tahta için 

toplam düğüm sayısı 15,5*1024 olur. Büyük ağaçlar makineler için hem saklamada 

hem aramada daha zor olurlar, bu yüzden alfa-beta kesintileri gibi yöntemlerle ağaç 

dırılmalıdır. 

kullanılan oyun sonu değerlendirme fonksiyonu denklem 

U�b&c�GdSeSf/K`2g`Bhd`S� � AWW� @ �i 1 `/jShS�S4

urumda bilgisayar önce Şekil 3.2’deki arama ağacını çıkartır. Kırmızı 

ile işaretli alanlar o seferde yapılan hamleyi gösterir. Başlangıç koşulları,

Đlk başlayan oyuncu bilgisayardır 

Bilgisayarın işareti çemberdir  

 

 

Şekil 3.1: Örnek Bir Tic Tac Toe Oyun Durumu 

Tic Tac Toe, arama ağacında çok fazla düğüm içermeyeceğinden (toplam 9! = 

Eğer oyun tahtası 

5x5’lik bir tahta için 

. Büyük ağaçlar makineler için hem saklamada 

beta kesintileri gibi yöntemlerle ağaç 

nu değerlendirme fonksiyonu denklem 3.1’de 

`/jShS�S4�V (3.1) 

arama ağacını çıkartır. Kırmızı 

. Başlangıç koşulları, 
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Şekil 3.2: Tic tac toe arama ağacı 

Arama ağacında ilerlerken oyun sonunu getiren bir hamle bulunduğunda yukarıdaki 

fonksiyon kullanılarak oyun sonu değerlendirmesi yapılır. Her bir ağaç seviyesinin 

MAX ve MIN olduklarına bakarak ağaç, Şekil 3.3’te olduğu gibi aşağıdan yukarıya 

doğru doldurulur: 

 



 

Arama ağacında, MAX düğümleri k

MIN düğümleri kendi çocuklarının en küçük değerlerini alır. Doğru parçaları 

yanlarındaki her sayı, o doğru parçası ile bağlanan düğümün (doğru parçasının 

hemen altındaki düğümün) değeridir. Yukarıdaki durumda

olduğundan max(-301,300,

düğümü seçecektir; yani işaretini

 

Tic Tac Toe Oyunun karar mekaniz

verilmiştir. 

 

 

32 

Şekil 3.3: Arama Ağacının Doldurulması 

Arama ağacında, MAX düğümleri kendi çocuklarının en büyük değerlerini alırken, 

MIN düğümleri kendi çocuklarının en küçük değerlerini alır. Doğru parçaları 

yanlarındaki her sayı, o doğru parçası ile bağlanan düğümün (doğru parçasının 

hemen altındaki düğümün) değeridir. Yukarıdaki durumda, bilgisayar MAX oyuncusu 

301,300,-301)  fonksiyonunu işletip, 300 sonucunu veren ortadaki 

düğümü seçecektir; yani işaretini tahtanın ortasına koyacaktır. 

Tic Tac Toe Oyunun karar mekanizmasını ortaya koyan C# kodu EK

 

 

endi çocuklarının en büyük değerlerini alırken, 

MIN düğümleri kendi çocuklarının en küçük değerlerini alır. Doğru parçaları 

yanlarındaki her sayı, o doğru parçası ile bağlanan düğümün (doğru parçasının 

, bilgisayar MAX oyuncusu 

fonksiyonunu işletip, 300 sonucunu veren ortadaki 

masını ortaya koyan C# kodu EK-C’de 
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3.2.1.3 Oyunun çalıştırılması ve arayüz 

 

Oyun C# ile yazılmış bir Windows Form uygulamasıdır. Oyunun gereksinimleri kendi 

çalıştırılabilir (.EXE) dosyası ve KONTROLLER.DLL dosyasıdır. Oyun çalıştırıldığı 

zaman Şekil 3.4 ile gösterilen ekran ile karşılaşılır. 

 

Şekil 3.4: Tic Tac Toe Açılış Ekran Görüntüsü 

Menü çubuğundaki düğmelerden “Oynat Uğurcuğum” hamle sırasının bilgisayarda 

olduğunu belirtir, ancak ilk hamleyi insan oyuncu yapmalıdır. Bunun amacı 

başlangıçtaki arama ağacının bir nebze olsun küçültülmesidir. 

Đkinci düğme “Yeni Oyun” düğmesi, mevcut oyunu sonlandırır ve oyun tahtasını 

temizler. 

Oyuncu, istediği alana sol faresi ile tıklayarak işaretini koyabilir. Programın yapay 

zekâsının biraz daha özel durumlarda sınanabilmesi için sağ fare tuşu kullanılarak 

istenilen yere bilgisayarın işareti konulabilir. Bilgisayarın hamle yapması istendiğinde 

“Oynat Uğurcuğum” düğmesine basılmalıdır. Böylece program, arama ağacı 

oluşturup MiniMax algoritmasını işletir. 
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3.2.2 RPG – bir çatışma oyunu 

 

3.2.2.1 Oyunun ve kurallarının tanımlanması 

 

RPG, “Role Playing Game”in kısaltılmış halidir ve oyun yapı itibariyle tam bir oyun 

olmaktan çok, yapay zekâlı RPG oyunları için bir yazılım kitaplığı (framework) 

şeklindedir.  

RPG, aslında bir oyun tarzı adıdır. RPG tarzı oyunlarda oyuncular kendilerine bir 

karakter yaratıp, karakterleri ile hayali bir dünyada geçen bir maceraya atılırlar. RPG 

tarzı oyunların önemli bir bölüm John Ronald Reuel Tolkien’in kitaplarında anlattığı 

“Orta Dünya”ya benzeyen diyarlarda geçer. Tolkien tasvirlerine dayanan RPG 

oyunlarına genellikle FRP (Fantasy Role Playing) adı verilir ve FRP oyunlardaki 

ırklar Tolkien’in Orta Dünya’sı ile büyük benzerlikler taşır.  

 

3.2.2.1.1 Oyunla ilgili genel bilgiler 

 

Söz konusu oyunun tanımlanması için öncelikle RPG tarz oyunlara özgü bazı 

terimleri açıklığa kavuşturmak gerekmektedir: 

 

3.2.2.1.1.1 Terimler 

 

AC: Armor Class. Bir yaratığın üzerindekilerin (kendi teni de dahil) onu saldırılara 

karşı koruma gücü. -10 ile +10 arası bir değer alır ve düşük AC alınacak darbelerin 

sayısını azaltır. 

HP: Hit Point. Bit yaratığın arda kalan toplam can puanları sayısı. Yaratığın aldığı 

her bir darbe can puanlarından belirli bir miktar götürür ve can puanları sıfır ya da 

sıfırdan küçük olursa yaratık ölmüştür. 

Parti: Aynı amacı güden oyuncular topluluğudur. RPG tarzı oyunlar genellikle bir 

parti yaratığın başından geçen olaylar olarak anlatılır. 
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THAC0: To Hit Armor Class Zero. Ham vuruş şansı değeri, yani AC’si sıfır olan bir 

yaratığa vuruş şansı değeri. 1ile 20 arası bir değerdir ve silah ile kullananın 

uyumuna göre değişir. Usta bir dövüşçüsünün iyi kullandığı bir silahta THAC0 değeri 

düşüktür, yani düşük THAC0 vuruş olasılığını arttırır. 

Yaratık: Bilgisayar ya da insan, oyunun hikâyesinde yer alan, herhangi bir eylemi 

gerçekleştirebilen varlıklardır. Yaratıklar, oyunda insan ırkından olabileceği gibi 

cüce, elf, hatta ejderha ve köpek olabilir. 

 

3.2.2.1.1.2 Kurallar 

 

RPG tarzı oyunlarda karakterlerin birbirleriyle ve çevrelerindeki dünya ile 

etkileşimlerinin önemli bir bölümü zarlar aracılığıyla yapılır. Genel olarak bir eylemin 

gerçekleştirilebilmesi için 1-20 arası bir zorluk zarı vardır. Eylemi gerçekleştirmek 

isteyen oyuncu (yaratık) bir 20 yüzlü zar atar, eğer eyleme ilişkin avantaj ya da 

dezavantajları varsa atılan zara artı ya da eksi olarak yansıtılır ve eğer sonuç zorluk 

zarının değerinden büyükse oyuncu eylemi gerçekleştirebilir. Örneğin, AD&D II 

kurallarında (Advanced Dungeons and Dragons II – bir FRP oyun kural kümesi, 

oyunumuzda kullanılan kurallar) bir başka yaratığa saldırı esnasında vurmak için 

atılan 20’lik zar,  oyuncunun ham vuruş şansı değerinden büyük olmalıdır. Eğer 

vuruş başarılı olursa, bu kez de saldırganın vereceği zararı ortaya koymak için 

saldırganın silahının vuruş gücüne bakılır. Örneğin 2d4 bir sopa için iki kez dörtlük 

zar atılarak verilecek zarar bulunur ve savunan taraftan bu değer kadar (en az 2, en 

çok 8) can puanı (HP) eksiltilir. Benzer şekilde vuruş gücü 1d6 olan bir kısa kılıcın 

vereceği zar 1-6 HP, 2d5 olan bir geniş kılıcın vuruş gücü ise 2-10 HP arasıdır. 

 

3.2.2.1.1.3 Oyunun tanımlanması 

 

RPG, an itibariyle 8x8 bir tahta üzerinde iki düşman partinin karşılaşması ve 

birbirleriyle savaşmaları şeklinde geçmektedir. Partilerin birbirlerinin düşmanlığından 

haberdar olmaları, her bir oyuncunun ayrı ayrı kime saldıracağını ortaya koymaları 

ise yapay zekâ ile gerçeklenmiştir. 
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Oyun başladığında yaratıklar rasgele yerlere konuşlanırlar ve her “Next Move” 

düğmesine basıldığında yaratıklar bir sonraki adımlarını hesaplarlar. 

Yapay zekâ motoru her oyuncuyla ayrım gözetmeksizin ayrı ayrı oynayarak en iyi 

hamleyi bulmaya çalışır ve en iyi olarak değerlendirdiği hamleyi yapar. 

Oyun, partilerden herhangi birinin yaratıkları tamamen ölünceye kadar, yani HP 

değerleri sıfır ya da daha küçük kalana kadar sürer. 

 

3.2.2.2 Oyunun çalıştırılması ve arayüzü 

 

RPG, C#.NET ile yazılmış bir Windows Form uygulamasıdır ve UI.EXE dosyası 

çalıştırılarak başlatılır. Oyunun yapay zekâsı her bir oyuncunun parametrelerini 

atamak için bir XML dosyasına gereksinim duyar. Bu XML dosyasının adı 

AI.CONFIG.XML olmak durumundadır. Örnek bir yapılandırma dosyası EK-D’de 

bulunabilir. Eğer bir bilgisayar oyuncusu için değer ataması yapılmamışsa, program 

bu değerlere toplamları A edecek şekilde rastgele değerler atar. 

Program çalıştırıldığında ekrana gelen görüntü Şekil 3.5’teki gibidir. 
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Şekil 3.5: RPG Açılış Ekran Görüntüsü 

Ekranda görülen büyük alan, 8x8 boyutlarındaki çatışma alanını temsil eder ve 

üzerindeki her portre bir oyuncuyu belirtir. 

Çatışma alanının sağındaki metin kutusu, programın bildirilerinin yazıldığı ileti 

kutusudur. 

Đleti kutusunun hemen altındaki “Next Move” düğmesi, programa bir sonraki eli 

oynamasını söyler. 

Kullanıcı “Next Move” düğmesine her bastığında program her bir oyuncu için bir 

sonraki hamleyi hesaplar ve çatışma alanını yeniden çizer. Partilerden birisine ait 

bütün oyuncular öldüğünde oyun biter ve “Next Move” düğmesi işe yaramaz. 
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3.2.2.3 Kullanılan yapay zekâ 

 

RPG,  

• Eksik bilgili (karşıdaki oyuncuya vurma olasılığı ve verilen zarar gibi rastgele 

unsurlar içeren)  

• Sıra tabanlı 

• Sıfırdan farklı toplam bir oyundur. 

Ayrıca, RPG’de amaç oyundaki duruma göre değişkendir. Bu yüzden, daha önce 

bahsedilmiş olan MiniMax yöntemi ile bir çözüme varmak çok zorlaşır. Bu belgede 

sunulan çözüm, geleneksel çözümlerle ortak noktası bulunan bir başka çözümdür. 

 

3.2.2.3.1 Karar mekanizmaları 

 

3.2.2.3.1.1  RPG’nin karar mekanizması 

RPG’de bilgisayarın yapacağı eylemi belirleyen sonlu durum makinesi an itibariyle 

Şekil 3.6’daki gibidir: 

 

 

 

Başla 

Saldır 

Eylem 

Yok 

Düşman var 

El sonu 

Düşman 

yok 

El sonu 

Şekil 3.6: RPG Karar Sonlu Durum Makinesi 
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3.2.2.3.1.2 Durumlar 

 

Başla: Başlangıç için durum ve yapay zekânın her elin başında bulunduğu durum. 

Saldır: Saldırılacak düşmanın seçildiği ve saldırıldığı durum. 

Eylem Yok: Herhangi bir eylemin gerçekleştirilmediği durum. 

 

3.2.2.3.1.3 Saldırılacak düşmanın seçilmesi: 

 

Oyunda her oyuncu, kendi sırası geldiğinde bir başka yaratığa saldırır. RPG’de 

yapay zekâ, saldırılacak düşmanı seçerken her bir düşman için aşağıdaki 

parametreleri hesaplar: 

α: Hedef yaratığın durumu için önceden belirlenmiş bir değer. Varsayılan değerler 

Denklem 3.2’de verilmiştir. Çatışma ve normal α değerlerinin sayısal değerlerinden 

çok oranları önemlidir. Burada da alınan değerlerde, çatışma halindeki bir rakibin 

ağırlığının, çatışmayla ilgilenmeyen bir rakibinkinden iki kat fazla olması 

amaçlanmıştır 

 

[0 � k WLl� jKIKm0 � na2opmaWLql� jKIKm0 � `/Ima4 r        (3.2) 

 

β: Eldeki silahın maksimum vuruş gücüne göre hedef yaratığı öldürmek için geçmesi 

gerekecek el sayısıdır ve Denklem 3.3’te verilmiştir. Denklem 3.3’teki π sayısı, 

eldeki silahın maksimum vuruş gücü, ρ ise oyuncunun el başına vuruş hakkı 

sayısını belirtir. 

HPi ve HPoyuncu: Sırasıyla i. rakibin ya da sırası gelen oyuncunun kalan can puanı 

miktarı. 

 

s0 � tu?v �w (3.3) 
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γ: Hedef yaratığın yaptığı saldırılarda kaybedilmiş can puanları toplamı. 

ε: Hedef yaratığın son saldırısından dolayı kaybedilen can puanı miktarı. 

θ: Hedef yaratığın kontrol edilen yaratığa olan uzaklığı ile kontrol edilen yaratığın 

elindeki silahın menzili. Eğer hedef yaratık menzil içiyse sıfır. Denklem 3.4a’daki δ 

değeri iki oyuncu arasındaki mesafenin silah menzilinden farkını, dist fonksiyonu, iki 

oyuncu arasındaki mesafeyi, φ ise mevcut silahın menzilini göstermektedir. 

 

	0 � jd^2�/�K`eK� d� 1  � (3.4a) �0 � b&c �W� 	0�  (3.4b) 

 

µ: Kontrol edilen yaratığın kalan can puanları miktarının ε’a oranı. 

 

x0 � tuyz{|"{}?  (3.5) 

 

Bu parametreleri kullanarak ortaya konan skor her bir düşman yaratık için 

hesaplanır ve en yüksek skora sahip yaratığa saldırılır. Skor hesaplaması 

Denklemler (3.6-3.11)’de gösterildiği şekilde yapılır. Denklem 3.11’de s, skoru 

belirtir. 

 

a0 � ~] � [0  (3.6)    _0 � ~� � >0  (3.7) m0 � ~� � x0  (3.8) �0 � ~� � ��?  (3.9) 
20 � ~� � ��? (3.10) 
^0 � a0 @ _0 @ m0 @ �0  @ 20  (3.11) 
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3.2.2.4 Yapay zekâ’nın eğitimi 

 

Yapay Zekâ’nın hangi düşmana saldıracağını belirlediği skor fonksiyonun tanımı 

Denklem (3.6-3.11)’de verilmiştir. Bu fonksiyonun genelleştirilmiş ve açılmış hali 

Denklem 3.12’de verilmiştir. 

 

~� � �0�� @ ~* � �0�* @ ~� � �0�� @ ~� � �0�� @ ~� � �0�� � ^e/IS0 (3.12) 

 

Toplamda ` adet düşmanı olan bir yaratığın en yüksek skor en üstteki olmak üzere 

oluşturacağı skor tablosu Denklem 3.13’teki gibidir (scorei yerine kısaltmak için si 

yazılmıştır). 

 

~� � ���� @ ~* � ���* @ ~� � ���� @ ~� � ���� @ ~� � ���� � ^�  ~� � �*�� @ ~* � �*�* @ ~� � �*�� @ ~� � �*�� @ ~� � �*�� � ^*   N  ~� � �3�� @ ~* � �3�* @ ~� � �3�� @ ~� � �3�� @ ~� � �3�� � ^3   (3.13) 

 

Bu denklemlerin matris formu ise Denklem (3.14a-3.14b)’de verilmiştir. 

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��
� �

���
��~�~*~�~�~����

�� �
���
���
^�^*^�^�N̂3���

���  (3.14a) 
� � ~ � ^  (3.14b) 
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Yapay Zekâ’nın eğitiminin temelinde saldırılacak yaratığın deneme-yanılmayla 

bulunmaya çalışılmasıdır. Bunun için algoritma, her bir yaratığın si değerinin diğer 

değerlerden daha yüksek olmasını sağlamak durumundadır. Bunu sağlamak için her 

bir yaratık için; yaratığın si değerini, bilinen ki’lerce en yüksek kılınan skor olan s1 ile 

0’dan büyük ama 0’a çok yakın bir δ değeriyle toplamına eşitleyip Denklem 

3.14a’den yeni bir s vektörü oluşturulur. Bu vektörün s2’ye göre yapılmış durumu 

Denklemler (3.15a-3.15b) ile gösterilmiştir. 

 
����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��

� �
���
���
~*8 ~*:~*�~*�~*� ���

��� �
���
���

^�^� @ 	^�^�N̂3 ���
���  (3.15a) 

� � ~* � ^*  (3.15b) 

 

Yeni denklemde s2 vektörünün 2. satırdaki değerin en yüksek değer olacağı aşikâr 

olduğu için skor fonksiyonunun katsayıları Denklem 3.15b’de verilen k2 vektörünü 

skor listesinde zirveye taşıyacaktır. 2. satırdaki değerlere sahip olan yaratığı ilk 

saldırılacak yaratık kılacak skor fonksiyonu ağırlıklarını oluşturan sayılardan oluşan 

k2 vektörünü elde etmek için Denklemler (3.16a-3.16b) kullanılır. 

 

�,� � � � ~* � �,� � ^* (3.16a) ~* � �,� � ^*  (3.16b) 

 

Denklem 3.16b, X matrisinin kare matris olmadığı durumlarda kare olmayan 

matrisler birer tekil matris olduğu için kullanılamaz. Bu yüzden Denklem 3.16b 

genelleştirilmelidir.  Kare olmayan matrisler içeren denklemlerde matris sözde ters 

(Moore-Penrose tersi) ile bulunur. K2 vektörünü yalnız bırakmak için denklemin her 

iki tarafı da soldan X matrisinin sözde tersi ile çarpılır. Sözde ters ile X matrisinin 

çarpılmış durumu Denklemler (3.17a-3.17b)’de gösterilmiştir.  
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�� � � � ~* � �� � ^*  (3.17a) ~* � �� � ^*  (3.17b) 

 

Moore-Penrose tersi;  -kare olsun olmasın- her matris için mevcuttur ve matrisin –

eğer varsa- gerçek, soldan ya da sağdan tersini verir.  Bir matrisin Moore-Penrose 

tersi, o matrisin tekil değer ayrışımından yola çıkılarak bulunur [17]. m x n 

boyutlarındaki bir A matrisinin tekil değer ayrışımı Denklem 3.18’de verilmiştir. 

 

B � � � � � �� (3.18) 

 
Denklemde; U, m x n boyutlarında bir üniter matris, V* n x n boyutlarında üniter bir 

matris olan V’nin tümleyen (konjuge) transpozesi, D ise m x n boyutlarında, köşegen 

üzerinde sıfırdan büyük sayılar içeren, köşegen dışındaki sayıları sıfır olan bir 

matristir. V ile U matrisleri birbirlerine göre ortonormaldir. 

A matrisinin Moore-Penrose tersi, Denklem 3.19’da verilmiştir. 

 

B� � � � �� � �� (3.19) 

 

Denklem 3.17b kullanılarak K2 vektörü çözüldükten sonra oyun yapay zekâ 

tarafından K2 vektörünün elemanları yeni katsayılar olarak alınarak baştan sona 

kadar oynanır. Oyunun başlangıç koşulları yazılımın yapılandırma dosyasında 

belirlenmiştir. Oyun sona erdiğinde yapay zekâ’nın K2 vektörüyle elde ettiği başarıyı 

belirlemek için bir değerlendirme fonksiyonu kullanılır. Örnek bir değerlendirme 

fonksiyonu denklem 3.20’de verilmiştir. HPparti1, eğitilen yapay zekâ oyuncusunun 

partisinde bulunan yaratıkların (dostların) can puanlarını belirtirken HPparti2, karşı 

partide bulunan yaratıkların (düşmanların) can puanlarını belirtir. 

 

-* � � �����Z0 � 1 � �����Z0 * (3.20) 
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Eğitimin bir sonraki adımında, eğitim başlangıcındaki skor listesine göre 3. sırada 

olan yaratığın skoru en yükseğe taşınmaya çalışılır. Bunun için de Denklem 

3.15a’ya benzer bir denklem olan Denklem 3.21a oluşturulur. 

 

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��
� �

���
���
~�� ~�*~��~��~�� ���

��� �
���
���

^�^*^� @ 	^�N̂3 ���
��� (3.21a) 

� � ~� � ^� (3.21b) 

 

k3 vektörünü çözümlemek için yine Moore-Penrose tersi yöntemi kullanılır ve 

denklem 3.22b elde edilir. 

 

�� � � � ~� � �� � ^�  (3.22a) ~� � �� � ^�  (3.22b) 

 

Yapay zekâ, skor fonksiyonu katsayılar olarak k3 vektörünün elemanlarını kullanarak 

oyunu baştan sona oynar ve oyun sonunda Denklem 3.23 ile E3 değerini elde eder. 

 

-� � � �����Z0� 1 � �����Z0* (3.23) 

 

Değerlendirme fonksiyonu değerlerinin en büyüğü olan değeri sağlayan k vektörü 

eğitimin en iyi değeri olarak kabul edilir. Eğitimin algoritma akış çizelgesi Şekil 3.7’de 

verilmiştir.  
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Başla 

d � W 

�0 � �� � �0

i. düşman için yeni skor katsayılarını 

hesapla 

-0 � � �����Z0� 1  � �����Z0* 

i. düşman için oyun sonu değerlendirmesi 

yap 

i = i + 1 

i ≤ N 

j = i, öyle ki max(E) = Ei 

k’ = kj 

Bitir 

E 

H 

Oyunu baştan sona 

oyna 

Oyunun başlangıç 

koşullarını karşıla 

Şekil 3.7: RPG Yapay Zekâ Eğitim Algoritması 
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3.2.2.4.1 N < 5 durumu 

 

Skor tablosundaki düşman sayısının skor fonksiyonu katsayıları sayısından, yani 

5’ten küçük olduğu durumlarda 5 elemanlı bir vektörü elde etmek için 5’ten az 

sayıda denklem kullanmanın yetersiz olacağından ötürü, bu durumlarda k vektörünü 

duyarlılık analizi ile kırpmak gerekir. 

Duyarlılık analizinde, k vektöründeki her bir elemanın s vektörü değerlerini ne kadar 

değiştirdiğini bulmak için k vektöründeki her bir eleman belirli bir küçük sayı 

oranında arttırılır. Değişimin oransal olması önemlidir; çünkü duyarlılık analizindeki 

sonuç s vektörünün eski durumuna göre oranıdır. Duyarlılığı belirli bir oranın altında 

kalan k vektörü değerleri, s vektörü değerlerini çok etkilemedikleri için göz ardı edilir, 

vektörden o eğitim için koparılır. Yeni denklem sistemi ve matris ile vektörlerin 

boyutları denklem 3.24’te verilmiştir. 

 

���PRP� � ~��PR�� � ^��PR�� (3.24) 

 

Denklem 3.24’te de görüldüğü gibi, s vektörünün boyutlarında bir değişim 

olmamaktadır. 

 

k vektöründeki bir eleman olan ki (i ≤ 5)’nin s vektörünü etkileme miktarını bulmak 

için ki sayısı kendisinin 0,01 katıyla çarpılır ve toplam skora olan katkısı bulunur. 

Denklemler (3.25a-3.25c), i = 1 için duyarlılık analizini gösterir. 

����� ���* ���� ���� �����*�� �*�* �*�� �*�� �*��N N N N N�3�� �3�* �3�� �3�� �3��
� �

���
��~� @ WLWA ~*~�~�~� ���

�� �
���
���
�^��^*�^��^��N̂3����

���
�
  (3.25a) 

� � ~�� � ^��  (3.25b) 
�� �  A 1 � ¡¢� ¡¢8  (3.25c) 
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Her 5 değer için de Ci değerleri bulunduktan sonra en düşük  (5 – n) adet katsayı 

değeri formülden çıkartılmak üzere denklem 3.26 elde edilir. 

 

����� ���* ; ���3�*�� �*�* ; �*�3N N N N�3�� �3�* �3�� �3�3
� � �~� ~*N~3 � �

���
���
^�^*^�^�N̂3���

���  (3.26) 

 

Bu aşamadan sonra algoritma denklem 3.15b  gibi sürdürülür. Duyarlılık analizi skor 

fonksiyonunun değerlerini görmezden geldiği için eğitimin kalitesinin düşme olasılığı 

vardır. Bu yüzden eğitimlerin başarısı “5 ya da daha fazla düşman” ve “5’ten az 

düşman” olarak iki ayrı yoldan izlenmelidir. 
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4 BULGULAR VE TARTIŞMA 

 

4.1 Kullanılan Yöntemlerin Başarısı 

 

4.1.1 Tic tac toe 

 

MiniMax algoritmasının etkinliği Tic Tac Toe oyununda açıkça görülebilir. Bilgisayar, 

insana karşı oyun kaybetmemektedir. Buna karşın 3x3’lük bir oyun tahtasının bile ne 

kadar çok işlem gücü gerektirdiği oyundaki ilk hamlenin bekleme süresinden de 

anlaşılmaktadır. Örnek bir oyun Şekil 4.1 – Şekil 4.9 arası verilmiştir.  

Oyunun açılışını insan oyuncu yapmıştır ve işaretini 5. kareye koymayı tercih 

etmiştir. 

 

Şekil 4.1: Tic Tac Toe Hamle 1(Đnsan) 

Yapılan hamleye karşılık olarak yapay zekâ, oyuncunun 1. çaprazdan oyunu 

kazanmasını engellemek ve 1. yatay sıra ile 1. düşey sıradan oyunu kazanabilmek 

için işaretini 1. kareye koymuştur. Bilgisayarın yaptığı ilk hamle olan hamle 2 Şekil 

4.2’de gösterilmiştir. 
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Şekil 4.2: Tic Tac Toe Hamle 2(Bilgisayar) 

Bilgisayarın yaptığı hamleye karşılık olarak insan oyuncu, ikinci çaprazdan sayıya 

gitmek üzere 3. kareye işaretini koymuştur. Đnsan oyuncunun 2. hamlesi üzerine 

oyunun durumu Şekil 4.3’te verilmiştir. 

 

Şekil 4.3: Tic Tac Toe Hamle 3 (Đnsan) 

Yapay zekâ oyuncusu rakibinin sayı yapmasını engellemek ve 1. düşey sıradan 

sayıya gitmek için işaretini 7. kareye bırakır ve oyun Şekil 4.4’teki duruma gelir. 



50 
 

 

Şekil 4.4: Tic Tac Toe Hamle 4 (Bilgisayar) 

Đnsan oyuncu, bilgisayarın sayısını engellemek ve 2. yatay sıradan kendi sayısına 

ulaşabilmek için işaretini 4. kareye koyar. Oyundaki 5. hamle olan bu hamleyle 

oyunun durumu Şekil 4.5’teki gibi olur. 

 

Şekil 4.5:  Tic Tac Toe Hamle 5 (Đnsan) 

Đnsan rakibinin sayısına engel olmak isteyen program, işaretini 6. kareye koyarak 

oyunu Şekil 4.6’daki duruma getirir. 
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Şekil 4.6: Tic Tac Toe Hamle 6 (Bilgisayar) 

Son sayı şansını da kullanmak isteyen insan oyuncu 4. işaretini 8. kareye koyar. 

Son durum şekil 4.7’de verilmiştir. 

 

Şekil 4.7: Tic Tac Toe Hamle 7 (Đnsan) 

Đnsan rakibinin son sayısını da engelleyecek olan program, işaretini 2. kareye 

koyarak oyundaki beraberliğin kesinleşmesini sağlar. Oyundaki 8. hamle olan bu 

hamle sonunda oyun tahtası Şekil 4.8’deki gibidir. 
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Şekil 4.8: Tic Tac Toe Hamle 8 (Bilgisayar) 

Đnsan oyuncunun 9. kareden başka kullanabileceği kare kalmadığından işaretini 9. 

kareye koyar ve böylece oyun berabere sonuçlanmış olur. 

 

Şekil 4.9: Tic Tac Toe Hamle 9 (Đnsan) 
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Şekiller 4.4, 4.6 ve 4.8’de görüldüğü gibi program, insanın her sayı teşebbüsünü 

engellemekte ve oyuncuya yenilmemektedir. Bunun nedeni, programın MiniMax 

yöntemini kullanarak oyunu baştan sona defalarca oynaması ve kendisi için en iyi 

sonuca yönelik olan hamleyi yapmasıdır. MiniMax algoritması en yüksek kaybı 

minimize ettiğinden insan oyuncu hiç hata yapmadan oynar ve oyunu 8. hamleye 

kadar devam ettirebilse bile yapay zekâ; insana yenilmeyecek, berabere kalarak 

kazancı olmamasına rağmen kaybını da sıfırlayacaktır. Eğer insan oyuncu yanlış bir 

hamle yaparsa yapay zekâ en iyi oyununu oynayarak bu sefer kazancını maksimize 

etmeye, yani en kısa sürede oyunu kazanmaya çalışacaktır. 

Tic tac toe’daki değerlendirme fonksiyonu kazanılan oyunlarda 0’dan büyük, 

kaybedilen oyunlarda 0’dan küçük ve berabere kalınan oyunlarda 0 ürettiği için 

yapay zekâ; kazanmayı beraberliğe ve yenilgiye, beraberliği ise yenilgiye tercih 

etmekte ve buna göre hamle yapmaktadır. 

 

4.1.2 RPG 

 

RPG’nin başarımını ölçmek için farklı yapılandırmaları olan yapay zekâ oyuncuları 

birbirleriyle savaştırılır. Her yapılandırmada, Denklemler (3.6-3.10) arası verilen 

sabit katsayılar değiştirilir. Her test, başlangıç koşulları farklı olan eş güçteki 

oyuncuları sınar. 

 

4.1.2.1 Başlangıç koşulları 

 

Başlangıç koşullarında, oyunda iki adet düşman parti bulunmaktadır ve partilerde 

bulunan yaratıklara dair ayrıntılı bilgiler şöyledir: 

Parti 1 

1. AC = 3, HP = 50, THAC0 = 16, Silah = Ok/Yay (1d10, menzil = 10) 

2. AC = 3, HP = 20, THAC0 = 16 Silah = Kısa kılıç (2d5, menzil = 1) 

Parti 1’deki yapay zekâ oyuncularının değerlendirme fonksiyonu sabit katsayıları WLq 

olarak belirlenmiştir.  
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Parti 2 

1. AC = 3, HP = 50, THAC0 = 16, Silah = Ok/Yay (1d10, menzil = 10) 

2. AC = 3, HP = 20, THAC0 = 16 Silah = Kısa kılıç (2d5, menzil = 1) 

Parti 2’deki yapay zekâ oyuncularının değerlendirme fonksiyonu sabit katsayıları her 

oyun başında rastgele atanmaktadır. 

 

4.1.2.2 Test sonuçları 

 

Tablolar (4.1-4.6)’da kullanılan, (�) işareti, o oyunun galibinin sütununa konmuştur. 

2’ye 2 oynanan ve her bir oyuncunun yeri önceden belirlenmiş olan 10 ardışık 

oyunun test sonuçları Tablo 4.1’de gösterilmiştir. Sonuçlara göre katsayıları rastgele 

seçilen Parti 2, %80 başarı sağlamıştır. 

Tablo 4.1: 2'ye 2 Sabit Konumlu Test Sonuçları 

Oyun 
Parti 1 (Sabit 

Katsayılı) 

Parti 2 (Rastgele 

Katsayılı) 

1  � 

2  � 

3  � 

4  � 

5 �  

6  � 

7  � 

8  � 

9 �  

10  � 

 

2’ye 2 oynanan ve her bir oyuncunun başlangıç konumu rastgele olarak belirlenmiş 

10 ardışık oyunun test sonuçları Tablo 4.2’de verilmiştir. Sonuçlara göre Parti 2, yine 

%80 başarı sergilemiştir. 
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Tablo 4.2: 2'ye 2 Rastgele Konumlu Test Sonuçları 

Oyun 
Parti 1 (Sabit 

Katsayılı) 
Parti 2 (Rastgele Katsayılı) 

1  � 

2  � 

3  � 

4 �  

5  � 

6 �  

7  � 

8  � 

9  � 

10  � 

 

Parti 1’den 1, Parti 2’den 2 oyuncunun oynadığı ve her bir oyuncunun başlangıç 

konumunun sabit olduğu 5 ardışık oyunun test sonuçları Tablo 4.3’te verilmiştir. 1’e 

2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük olduğundan, tabloya 

başarı ölçütü olarak diğer partideki oyuncuların kalan can puanları eklenmiştir.  

Tablo 4.3: 1'e 2 Sabit Konumlu Test Sonuçları 

Oyun 

Parti 1 

(Sabit 

Katsayılı, 1 

Oyuncu) 

Parti 2 

(Rastgele 

Katsayılı, 2 

Oyuncu) 

Parti 2 

Oyuncu 1 

Kalan Can 

Parti 2 

Oyuncu 2 

Kalan Can 

1  � 15 12 

2  � 24 17 

3  � 31 16 

4  � 10 20 

5  � 11 10 
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Parti 1’den 1, Parti 2’den 2 oyuncunun oynadığı ve her bir oyuncunun başlangıç 

konumunun rastgele olduğu 5 ardışık oyunun test sonuçları Tablo 4.4’te verilmiştir. 

1’e 2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük olduğundan, tabloya 

başarı ölçütü olarak diğer partideki oyuncuların kalan can puanları eklenmiştir.  

Tablo 4.4: 1'e 2 Rastgele Konumlu Test Sonuçları 

Oyun 

Parti 1 

(Sabit 

Katsayılı, 1 

Oyuncu) 

Parti 2 

(Rastgele 

Katsayılı, 2 

Oyuncu) 

Parti 2 

Oyuncu 1 

Kalan Can 

Parti 2 

Oyuncu 2 

Kalan Can 

1  � 26 16 

2  � 36 20 

3  � 38 11 

4  � 29 20 

5  � 26 10 

 

Parti 1’den 2, Parti 2’den 1 oyuncunun oynadığı ve her bir oyuncunun başlangıç 

konumunun önceden belirlenmiş olduğu 5 ardışık oyunun test sonuçları Tablo 4.5’te 

verilmiştir. 1’e 2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük 

olduğundan, tabloya başarı ölçütü olarak diğer partideki oyuncuların kalan can 

puanları eklenmiştir.  
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Tablo 4.5: 2'ye 1 Sabit Konumlu Test Sonuçları 

Oyun 

Parti 1 

(Sabit 

Katsayılı, 2 

Oyuncu) 

Parti 2 

(Rastgele 

Katsayılı, 1 

Oyuncu) 

Parti 1 

Oyuncu 1 

Kalan Can 

Parti 1 

Oyuncu 2 

Kalan Can 

1 �  28 1 

2 �  27 14 

3 �  3 5 

4 �  19 15 

5 �  14 15 

 

Parti 1’den 2, Parti 2’den 1 oyuncunun oynadığı ve her bir oyuncunun başlangıç 

konumunun rastgele olduğu 5 ardışık oyunun test sonuçları Tablo 4.6’da verilmiştir. 

1’e 2 çatışmada sayıca az olan tarafın kazanma olasılığı düşük olduğundan, tabloya 

başarı ölçütü olarak diğer partideki oyuncuların kalan can puanları eklenmiştir. Parti 

2’deki tek oyuncu, oyunlardan birini kazanmayı başarmıştır. 

Tablo 4.6: 2'ye 1 Rastgele Konumlu Test Sonuçları 

Oyun 

Parti 1 

(Sabit 

Katsayılı, 2 

Oyuncu) 

Parti 2 

(Rastgele 

Katsayılı, 1 

Oyuncu) 

Parti 1 

Oyuncu 1 

Kalan Can 

Parti 1 

Oyuncu 2 

Kalan Can 

1 �  14 16 

2  � 0 0 

3 �  30 12 

4 �  7 20 

5 �  24 14 
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5 SONUÇLAR VE YORUM 

 

Yapay zekâ, günümüzdeki bilgisayarların daha çok ve daha çeşitli sorunlarla başa 

çıkabilmesini sağlayan optimizasyonların bir araya getirilmesidir. Karmaşık dünya 

sorunları matematiksel olarak ele alınıp, bir bilgisayar üzerine programlanabilir 

duruma getirilerek ortaya konulan yapay zekâ günümüzde bilgisayar bilimlerinin en 

çok gelişime açık dalları arasındadır ve gittikçe yaygınlığını arttırmaktadır. 

Bilgisayar oyunlarında yapay zekâ ise temel olarak insanları eğlendirebilecek 

düzeyde onlarla mücadele edebilen programlar geliştirmek olarak tanımlanabilir; 

çünkü hiç kazanamadıkları oyunları oynamak insanlara bir süre sonra sıkıcı gelebilir. 

Bu yüzden oyun üreticileri genellikle oyunları için yazdıkları yapay zekâ 

programlarını belirli değişkenlere bağlayarak kullanıcının isteği üzerine yapay zekâyı 

köreltecek ya da zekileştirecek şekilde bu değişkenleri değiştirmeyi seçerler. 

Elbette bir bilgisayar oyunu yalnızca yapay zekâ programlamasından ibaret değildir, 

ancak bu çalışmada oyun programlamasının ortaya konmak istenen kısmı yapay 

zekâdır. Bu yüzden elinizde bulunan bu çalışmada yapay zekâda kullanılabilecek 

yöntemlerin bir kısmı sıralanmış ve iki adet programlama örneği ile örneklenmeye 

çalışılmıştır.  

Đlk örnekte verilmiş olan Tic Tac Toe oyunu, insan için oynaması basit bir oyunun 

bile bilgisayarca ne kadar zor olduğunu ve tam bilgili sıfır toplamlı oyunlarda doğru 

yapay zekâ programlamasıyla bilgisayarın nasıl yenilemez olduğunu göstermeyi 

amaçlamaktadır. 

Tic Tac Toe, MiniMax algoritmasını kullanan basit bir uygulamadır ve ardışık 10 

oyun süresince iyi bir insan Tic Tac Toe oyuncusuna yenilmemiştir. Bunun nedeni, 

4. bölümde de verildiği üzere, MiniMax algoritmasının oyunun sonuna kadar olası 

bütün hamleleri hesaplayarak aralarından bilgisayarın kazancını en yükseğe çıkaran 

ya da kaybını en aza indirgeyen hamleyi ortaya koymasıdır. Ardışık 10 oyunun 

sonuçları ve programın her bir hamleyi hesaplamak için harcadığı süreler Tablo 

5.1’de verilmiştir. 
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Tablo 5.1: Tic Tac Toe Test Sonuçları 

Oyun 1.Hamle 

Süresi (ms) 

2. Hamle 

Süresi (ms) 

3. Hamle 

Süresi (ms) 

4. Hamle 

Süresi (ms) 

Kazanan 

1 918 18 0 0 Berabere 

2 952 26 1 0 Berabere 

3 8903 14 0 0 Berabere 

4 1069 23 0 0 Berabere 

5 1049 22 1 0 Berabere 

6 1041 27 0 - Bilgisayar 

7 1072 20 3 0 Berabere 

8 918 14 - - Bilgisayar 

9 932 15 0 0 Berabere 

10 1014 13 0 0 Berabere 

 

Đkinci örnek olan RPG oyununda, sıfır toplam olmaması ve rastgelelik içerdiğinden 

bir tam bilgili oyun olmaması nedeniyle, bir değerlendirme fonksiyonu kullanılarak 

saldırılacak düşmanın seçilmesi sorunu aşılmaya çalışılmış ve önemli ölçüde başarı 

sağlanmıştır. Test sonuçlarına göre Denklemler (3.6-3.10) arası verilmiş olan sabit 

katsayılar programın hedefini seçmesinde önemli rol oynamaktadır ve en doğru 

kararı verebilmesi için yapay zekânın bu katsayıları optimize etmesi şarttır. 

Bu katsayıların en doğru şekilde güncellenmesi için yapay zekâ bölüm 3.2.2.4’te 

anlatılan eğitim yöntemi ile eğitilerek insan oyuncuların karşısına çıkmaya hazır 

duruma getirilebilir. Bu çalışmada sunulan eğitim yöntemi, matris işlemlerine 

dayanmaktadır ve belirlenmiş yapılandırmaya sahip bir ortamda en iyi sonucu 

verecek olan katsayıları bulabilir. 

Bu tezin içindeki yazılımların tamamı C# programlama diliyle yazılmıştır. Ancak, 

gerek ücretsiz açık kaynaklı kütüphanelerin sayısı ve kalitesi, gerek uygulama 

geliştirme ortamlarının darlığı nedeniyle; böylesi bir çalışmada mecbur kalınmadıkça 

C#’ın kullanılmaması önerilir. Alternatif programlama dilleri olarak JAVA ve LISP 

incelenebilir. 
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5.1 Đleri Çalışmalar 

 

MiniMax algoritması, yapısı itibariyle işletilmesi zor bir algoritmadır ve Tic Tac Toe 

oyununda yalın MiniMax’in yavaşlığı özellikle ilk hamlelerde hissedilmektedir.  

Tic Tac Toe’nun hızlandırılması için aynı oyunları temsil eden ağaç dalları birden 

çok kez üretilmek yerine, bu oyunları çıkartan farklı oyun yollarının hepsi bu eş 

oyunlara bağlanılabilir. Bu yönteme “eş oyunları bulma” yöntemi adı verilir.  

Đkinci bir yöntem ise alfa-beta kesintilerini kullanmak olabilir. Alfa-beta kesintileri, 

uygun dizilmiş oyun ağaçlarında çok önemli zaman ve işlem kazancı sağlayabilir. 

leAncak alfa-beta kesintilerinin verimli çalışabilmesi için öncelikle oyun ağacının 

uygun şekilde sıralanması gerekmektedir. Bu sıralama için de başka algoritmaların 

koşturulması gerekmektedir. 

Üçüncü bir yöntem, programın gideceği hamle derinliğini azaltmaktır. Böylece 

MiniMax algoritması oyunun bittiği hamlelere kadar değil, mevcut durumdan belirli 

sayıda ileriye kadar işletilir ve değerlendirme fonksiyonu o noktada işletilerek yine en 

yüksek MAX değeri ya da en düşük MĐN değeri üzerinden en kârlı hamle bulunmaya 

çalışılabilir. Ancak unutulmamalıdır ki bu yöntem önemli ölçüde zamandan tasarruf 

sağlasa da, yapay zekâyı köreltecek bir yöntemdir. Bir hamle derinliği yapay zekâyı 

aptal kılacak değişikliklere neden olabilir. 

RPG’nin eğitimi belirli senaryolar üzerine yapıldığından dolayı, eğitimin ortaya 

koyacağı katsayı değerlerinin en uygun olduğu durumların sayısı sınırlıdır. Örneğin 

2’ye 2 bir eğitim setiyle eğitilmiş bir yapay zekâ, 3’e 3’lük bir oyunda yanlış kararlar 

verebilir. Bunun önüne geçmek için, RPG yapay zekâsının eğitim adımları, her bir 

hamleden önce uygulanabilir. Böylece program her hamlesinden önce kendisini 

bulunduğu duruma göre eğitir ve fonksiyon katsayılarını her hamlesinden önce 

yeniden hesaplayabilir.  

Böylesi bir eğitim kullanıldığında RPG’nin yöntemi, her el başında bütün oyunu 

birkaç kez (düşman sayısı kez) oynayacağından biraz da olsa MiniMax’i 

andıracaktır. Ancak, böylesi bir “anında eğitim”in bilgisayara matris hesaplarında 

ciddi bir ek yük getireceği de göz ardı edilemez. 
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EKLER 

 

EK-A MiniMax sözde kodu 

 

MinMax (GamePosition game) { return MaxMove (game); } 

 

MaxMove (GamePosition game) { 

if (GameEnded(game)) { 

  return EvalGameState(game); 

} 

else { 

  best_move < - {}; 

  moves <- GenerateMoves(game); 

  ForEach moves { 

    move <- MinMove(ApplyMove(game)); 

    if (Value(move) > Value(best_move)) { 

      best_move < - move; 

    } 

  } 

  return best_move; 

} 

} 

 

MinMove (GamePosition game) { 

best_move <- {}; 

moves <- GenerateMoves(game); 

ForEach moves { 

  move <- MaxMove(ApplyMove(game)); 

  if (Value(move) > Value(best_move)) { 
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    best_move < - move; 

  } 

}  

return best_move; 

} 
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EK-B Genetik Algoritma 

 

1. [Başlat] n kromozomlu (çözüm adaylı) rastgele bir nüfus oluştur. 

2. [Uygunluk] Her x kromozomu için F��� uygunluğunu değerlendir. 

3. [Yeni nüfus] Yeni nüfus oluşana kadar, 

a. [Seçilim] Uygunluklarına göre iki ebeveyn kromozom seç. 

b. [Çaprazlama] Çaprazlama olasılığı kullanarak, her iki ebeveynden bir 

yeni çocuk türet. Eğer çaprazlama yapılmazsa, çocuklar 

ebeveynlerinin tam birer kopyası olur. 

c. [Mutasyon]Mutasyon olasılığı kullanarak, yeni çocukların her bir 

değişkenini değiştir. 

d. [Kabullenme] Yeni çocukları yeni nüfusun içine koy. 

4. [Güncelleme] Türetilmiş nüfusu kullan. 

5. [Sınama] Eğer sonlandırma koşulu karşılandıysa dur ve eldeki nüfusun 

arasından en iyi çözümü dön. 

6. [Döngü] 2. adıma git. 
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EK-C Tic Tac Toe Oyunu Yapay Zekâ Kodu 

 

using System; 

using System.Collections.Generic; 

using System.Text; 

using System.Diagnostics; 

using TicTacToe.Kontroller; 

 

namespace TicTacToe 

{ 

    public class OyunBittiEventArgs : EventArgs 

    { 

        public Oyuncular Kazanan; 

 

        public OyunBittiEventArgs(Oyuncular kazanan) 

        { 

            Kazanan = kazanan; 

        } 

    } 

 

    public delegate void OyunBittiDelegate(object sender, OyunBittiEventArgs e); 

 

    class AramaAgaci 

    { 
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        private List<AramaAgaci> _Cocuklar; 

        private AramaAgaci _Baba = null; 

        private Oyuncular[,] _Oyun; 

        private int _Deger; 

        private int _Nesil; 

        private Oyuncular _Oynayan; 

 

        /// <summary> 

        /// Oyunu oynayan oyuncuyu belirtir. 

        /// </summary> 

        public Oyuncular Oynayan 

        { 

            get { return _Oynayan; } 

            set { _Oynayan = value; } 

        } 

  

 

        /// <summary> 

        /// Yeni bir arama ağacı nesnesi yaratır 

        /// </summary> 

        /// <param name="oyun">Oyun tahtasının anlık durumu</param> 

        public AramaAgaci(Oyuncular[,] oyun) 

        { 

            _Cocuklar = new List<AramaAgaci>(0); 



68 
 

            _Oyun = oyun; 

            _Nesil = 0; 

        } 

 

        /// <summary> 

        /// Arama ağacının çocuklarına bir yenisini ekler 

        /// </summary> 

        /// <param name="oyun">Eklenecek çocuğun oyun durumu</param> 

        /// <returns>Eklenen çocuk</returns> 

        public AramaAgaci CocukEkle(Oyuncular[,] oyun) 

        { 

            AramaAgaci a = new AramaAgaci(oyun); 

            _Cocuklar.Add(a); 

            a.Baba = this; 

            a._Nesil = this._Nesil + 1; 

            return a; 

        } 

 

        /// <summary> 

        /// Arama ağacı düğümünün babası (üst düğümü) 

        /// </summary> 

        public AramaAgaci Baba 

        { 

            get { return _Baba; } 
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            set { _Baba = value; } 

        } 

        /// <summary> 

        /// Arama ağacının o anki oyununun değeri 

        /// </summary> 

        public int OyunDegeri 

        { 

            get { return _Deger; } 

            set { _Deger = value; } 

        } 

 

        /// <summary> 

        /// Arama ağacının o anki oyun durumu 

        /// </summary> 

        public Oyuncular[,] Oyun 

        { 

            get { return _Oyun; } 

        } 

 

        public List<AramaAgaci> Cocuklar 

        { 

            get { return _Cocuklar; } 

        } 
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        public bool Babadir 

        { 

            get { return _Baba == null; } 

        } 

 

        public bool Torundur 

        { 

            get { return _Cocuklar.Count == 0; } 

        } 

 

        public int Nesil 

        { 

            get { return this._Nesil; } 

        } 

    } 

 

    class Yz 

    { 

        /// <summary> 

        /// YZ motorunun bilgilerinin trace ekranına verilip verilmeyeceğini belirler. Đlk 

değeri true'dur. 

        /// </summary> 

        public bool TraceMessages = true; 

        public event OyunBittiDelegate OnOyunBitti; 
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        private readonly int _TahtaBoyu; 

        private readonly int _MaxNesil; 

        private readonly int _DegerCarpan; 

        private readonly int _BeraberlikDegeri = 0; 

         

        /// <summary> 

        /// Yeni bir Yapay Zeka Motoru nesnesi yaratır 

        /// </summary> 

        /// <param name="oyun"></param> 

        public Yz(int tahtaBoyu) 

        { 

            if (TraceMessages) 

                Trace.WriteLine("== YZ Motoru Çalıştırılıyor =="); 

            _TahtaBoyu = tahtaBoyu; 

            _MaxNesil = (int)(Math.Pow(_TahtaBoyu, 2) + 1); 

            _DegerCarpan = (int)(Math.Pow(10, (int)(Math.Log10(_TahtaBoyu)) + 2)); 

            if (TraceMessages) 

                Trace.WriteLine("   Tahta Boyu : " + tahtaBoyu); 

        } 

 

        /// <summary> 

        /// Verilen oyunun oyuncuya göre değerlendirmesini yapar 

        /// </summary> 
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        /// <param name="durum">Oyun tahtasının o anki durumunu içeren 

matris</param> 

        /// <param name="oyuncu">Durum değerlendirmesini yapacak 

oyuncu</param> 

        /// <returns>Oyun durumunun oyuncuya göre değeri. Yüksek değer iyi oyun 

demektir.</returns> 

        private int DurumDegerlendir(AramaAgaci oyun, Oyuncular oyuncu) 

        { 

            Oyuncular[,] durum = oyun.Oyun; 

            //if (TraceMessages) 

            //    Trace.Write("Durum Değerlendirmesi (" + oyuncu.ToString() + "): " + 

OyunGoster(durum)); 

            int enb = 0,nDoluOda = 0; 

             

            // Satırları topla 

            for (int i = 0; i < _TahtaBoyu; i++) 

            { 

                int satirDeger = 0; 

                for (int j = 0; j < _TahtaBoyu; j++) 

                { 

                    satirDeger += (int)oyuncu * (int)durum[i, j]; 

                    if (durum[i, j] != Oyuncular.Hicbiri) 

                        nDoluOda++; 

                } 

                if (Math.Abs(satirDeger) > Math.Abs(enb)) 



73 
 

                    enb = satirDeger; 

            } 

 

            // Sütunları topla 

            for (int j = 0; j < _TahtaBoyu; j++) 

            { 

                int sutunDeger = 0; 

                for (int i = 0; i < _TahtaBoyu; i++) 

                { 

                    sutunDeger += (int)oyuncu * (int)durum[i, j]; 

                } 

                if (Math.Abs(sutunDeger) > Math.Abs(enb)) 

                    enb = sutunDeger; 

            } 

 

            // Çaprazları topla 

            int caprazDeger = 0; 

            for (int i = 0; i < _TahtaBoyu; i++) 

            { 

                caprazDeger += (int)oyuncu * (int)durum[i, i]; 

            } 

            if (Math.Abs(caprazDeger) > Math.Abs(enb)) 

                enb = caprazDeger; 
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            caprazDeger = 0; 

            for (int i = 0; i < _TahtaBoyu; i++) 

            { 

                caprazDeger += (int)oyuncu * (int)durum[_TahtaBoyu - (1 + i), i]; 

            } 

            if (Math.Abs(caprazDeger) > Math.Abs(enb)) 

                enb = caprazDeger; 

 

            int retVal = 0; 

            if (Math.Abs(enb) != _TahtaBoyu && nDoluOda == _TahtaBoyu * 

_TahtaBoyu)    // tahta dolu 

                retVal = _BeraberlikDegeri;   // beraberlik 

            else 

                retVal = enb * _DegerCarpan + (Math.Sign(enb) * (_MaxNesil - 

oyun.Nesil)); 

            return retVal; 

        } 

 

        /// <summary> 

        /// Oyun durumunun oyun sonunu işaret edip etmediğini belirtir 

        /// </summary> 

        /// <param name="durum">Oyun tahtasının anlık durumunu belirten Arama 

Ağacı düğümü</param> 

        /// <returns>true, eğer oyun belirtilen durumda bitiyorsa. false, 

bitmiyorsa.</returns> 
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        public bool OyunBiter(AramaAgaci durum) 

        { 

            int i = DurumDegerlendir(durum, Oyuncular.Bilgisayar); 

            if (i == _BeraberlikDegeri) 

            { 

                durum.OyunDegeri = i; 

                return true; 

            } 

            else if (Math.Abs(i) / _DegerCarpan == _TahtaBoyu) 

            { 

                durum.OyunDegeri = i; 

                return true; 

            } 

            else 

                return false; 

        } 

 

        /// <summary> 

        /// Verilen andan bir sonraki bütün olası oyunları çıkartır 

        /// </summary> 

        /// <param name="a">Oyun anı</param> 

        /// <param name="oyuncu">Oyun sırası gelen oyuncu</param> 

        private void OyunBul(AramaAgaci a, Oyuncular oyuncu) 

        { 
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            if (oyuncu != Oyuncular.Hicbiri) 

            { 

                for (int i = 0; i < _TahtaBoyu; i++) 

                { 

                    for (int j = 0; j < _TahtaBoyu; j++) 

                    { 

                        Oyuncular[,] yeniOyun = new Oyuncular[_TahtaBoyu, _TahtaBoyu]; 

                        Array.Copy(a.Oyun, yeniOyun, _TahtaBoyu * _TahtaBoyu); 

                        if (yeniOyun[i, j] == Oyuncular.Hicbiri) // alan bos 

                        { 

                            yeniOyun[i, j] = oyuncu;    // bulunan oyun 

                            a.Oynayan = oyuncu; 

                            a.CocukEkle(yeniOyun); 

                        } 

                    } 

                } 

            } 

        } 

 

        private AramaAgaci MaxOyna(AramaAgaci a) 

        { 

            //if (TraceMessages) 

            //    Trace.WriteLine("Max Oynuyor."); 

            if (OyunBiter(a)) 
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            { 

                return a; 

            } 

            else 

            { 

                AramaAgaci enIyiOyun = null; 

                OyunBul(a, Oyuncular.Bilgisayar);   // agaci buyut 

                //if (TraceMessages) 

                //    Trace.Write("Nesil : " + a.Nesil + "\nOlası Oyunlar :"); 

                //if (TraceMessages) 

                //    foreach (AramaAgaci b in a.Cocuklar) 

                //        Trace.Write(OyunGoster(b.Oyun)); 

                foreach (AramaAgaci b in a.Cocuklar) 

                { 

                    AramaAgaci oyun = MinOyna(b); 

                    if (enIyiOyun == null || oyun.OyunDegeri > enIyiOyun.OyunDegeri) 

                    { 

                        b.OyunDegeri = oyun.OyunDegeri; 

                        enIyiOyun = b; 

                    } 

                    //if (oyun.OyunDegeri <= ((_TahtaBoyu - 1) * _DegerCarpan) &&  

                    //    oyun.OyunDegeri > ((_TahtaBoyu - 1) + _DegerCarpan)) 

                    //{ 

                    //    Trace.Write("Oyun bitecek lan olm !!"); 
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                    //} 

                } 

                Debug.Assert(enIyiOyun != null); 

                if (TraceMessages) 

                    Trace.WriteLine("Max(" + a.Nesil + ") için en iyi oyun : " + 

OyunGoster(enIyiOyun.Oyun) + "Değeri : " + enIyiOyun.OyunDegeri); 

                return enIyiOyun; 

            } 

        } 

 

        private AramaAgaci MinOyna(AramaAgaci a) 

        { 

            //if (TraceMessages) 

            //    Trace.WriteLine("Min Oynuyor."); 

            if (OyunBiter(a)) 

            { 

                return a; 

            } 

            else 

            { 

                AramaAgaci enIyiOyun = null; 

                OyunBul(a, Oyuncular.Insan);   // agaci buyut 

                //if (TraceMessages) 

                //    Trace.Write("Nesil : " + a.Nesil + "\nOlası Oyunlar :"); 
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                //if (TraceMessages) 

                //    foreach (AramaAgaci b in a.Cocuklar) 

                //        Trace.Write(OyunGoster(b.Oyun)); 

                foreach (AramaAgaci b in a.Cocuklar) 

                { 

                    AramaAgaci oyun = MaxOyna(b); 

                    if (enIyiOyun == null || oyun.OyunDegeri < enIyiOyun.OyunDegeri) 

                    { 

                        b.OyunDegeri = oyun.OyunDegeri; 

                        enIyiOyun = b; 

                    } 

                } 

                Debug.Assert(enIyiOyun != null); 

                if (TraceMessages) 

                    Trace.WriteLine("Min(" + a.Nesil + ") için en iyi oyun : " + 

OyunGoster(enIyiOyun.Oyun) + "Değeri : " + enIyiOyun.OyunDegeri); 

                return enIyiOyun; 

            } 

        } 

 

        private int[] OyundanKoordinata(Oyuncular[,] ilkOyun, Oyuncular[,] 

sonrakiOyun) 

        { 

            for (int i = 0; i < _TahtaBoyu; i++) 
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            { 

                for (int j = 0; j < _TahtaBoyu; j++) 

                { 

                    if (ilkOyun[i, j] != sonrakiOyun[i, j]) 

                    { 

                        if (ilkOyun[i, j] == Oyuncular.Hicbiri) 

                            return new int[] { i, j }; 

                        else 

                            throw new  

                                InvalidOperationException("OyundanKoordinata: Đki oyun 

arasında tutarsızlık var"); 

                    } 

                } 

            } 

            throw new 

                InvalidOperationException("OyundanKoordinata: Đki oyun arasında fark 

yok"); 

        } 

 

        private string OyunGoster(Oyuncular[,] oyun) 

        { 

            StringBuilder s = new StringBuilder("\n"); 

            for (int i = 0; i < _TahtaBoyu; i++) 

            { 
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                s.Append("[\t"); 

                for (int j = 0; j < _TahtaBoyu; j++) 

                { 

                    if (oyun[i, j] == Oyuncular.Bilgisayar) 

                        s.Append("O"); 

                    else if (oyun[i, j] == Oyuncular.Insan) 

                        s.Append("X"); 

                    else 

                        s.Append(" "); 

                    s.Append("\t"); 

                } 

                s.Append("]\n"); 

            } 

            return s.ToString(); 

        } 

 

        public int[] HamleYap(Oyuncular[,] oyun) 

        { 

            AramaAgaci a = new AramaAgaci(oyun); 

            AramaAgaci b = MaxOyna(a), c = b; 

            //while (b.Nesil != a.Nesil + 1) 

            //    b = b.Baba; 

            Oyuncular[,] o = b.Oyun; 

            if (OyunBiter(c)) 
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                RaiseOyunBitti(b.Oynayan); 

            return OyundanKoordinata(oyun, o); 

        } 

 

        private void RaiseOyunBitti(Oyuncular o) 

        { 

            OyunBittiDelegate obe = OnOyunBitti; 

            if (obe != null) 

            { 

                obe(this, new OyunBittiEventArgs(o)); 

            } 

        } 

    } 

} 
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EK-D Örnek AI.CONFIG.XML Dosyası 

 

<?xml version="1.0" encoding="utf-8" ?> 

<ai-configuration xmlns="http://ajitatif.com/AiConfiguration.xsd"> 

  <configsets> 

    <configset id="törüngey" description="configset for creature törüngey "> 

      <modifiers> 

        <state value="0.2"/> 

        <turns-to-kill value="0.2"/> 

        <hp-lost-to value="0.2"/> 

        <range value="0.2"/> 

        <threat value="0.2"/> 

        <target-state-modifier-list> 

          <state-modifier state-type="Battle" value="0.5"/> 

          <state-modifier state-type="Normal" value="0.25"/> 

        </target-state-modifier-list> 

      </modifiers> 

    </configset> 

    <configset id="eser" description="configset for creature eser"> 

      <modifiers> 

        <state value="0.2"/> 

        <turns-to-kill value="0.2"/> 

        <hp-lost-to value="0.2"/> 

        <range value="0.2"/> 
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        <threat value="0.2"/> 

        <target-state-modifier-list> 

          <state-modifier state-type="Battle" value="0.5"/> 

          <state-modifier state-type="Normal" value="0.25"/> 

        </target-state-modifier-list> 

      </modifiers> 

    </configset> 

  </configsets> 

  <training> 

    <training-set> 

      <party> 

        <creatures> 

          <creature hit-points="20" armor-class="5"  number-of-attacks="1" pos-x="12" 

pos-y="10" thac0="10" weapon="Shortbow" is-trainer="true" /> 

          <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="12" 

pos-y="9" thac0="10" weapon="Shortbow" /> 

        </creatures> 

      </party> 

      <party> 

        <creatures> 

          <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="9" 

pos-y="12" thac0="10" weapon="Shortbow" /> 

          <creature hit-points="20" armor-class="5" number-of-attacks="1" pos-x="9" 

pos-y="9" thac0="10" weapon="Shortbow" /> 

        </creatures> 
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      </party> 

    </training-set> 

  </training> 

</ai-configuration> 
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EK-E RPG Yapay Zekâ Kodu 

 

using System; 

using System.Collections.Generic; 

using System.Text; 

using Rpg.Entity; 

using System.Diagnostics; 

using Rpg.Actions; 

using Rpg.Entity.CreatureStates; 

using Rpg.Rules; 

using System.Xml; 

using System.IO; 

using System.Reflection; 

using System.Globalization; 

using Rpg.Common; 

 

namespace Rpg.Ai 

{ 

    public class AiPlayer : PlayerBase 

    { 

        #region Score Modifier Coefficients 

 

        public double  

            kState = 0.2, 
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            kTurnsToKill = 0.2, 

            kHpLostTo = 0.2, 

            kRange = 0.2, 

            kThreat = 0.2; 

 

        #endregion 

 

        #region State Modifiers 

 

        private readonly Dictionary<Type, double> _stateModifiers; 

 

        #endregion 

 

        private static string DefaultConfigFilename = "Ai.config.xml"; 

        private Realm _realm; 

        private Creature _creatureControlled; 

        private List<Creature> _hostileCreatures; 

        private List<Creature> _friendlyCreatures; 

        private List<AttackOrderListEntry>  _attackOrderList; 

 

        public List<AttackOrderListEntry> AttackOrderList 

        { 

            get { return _attackOrderList; } 

        } 
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        public Creature CreatureControlled { get { return _creatureControlled; } } 

 

        public AiPlayer(Creature creatureToControl) 

        { 

            _realm = Realm.GetInstance(); 

            _creatureControlled = creatureToControl; 

            _creatureControlled.Stats.Player = this; 

 

            _attackOrderList = new List<AttackOrderListEntry>(); 

            _stateModifiers = new Dictionary<Type, double>(); 

 

            InitializeStateModifiers(); 

            ReadConfigFromXml(DefaultConfigFilename, 

creatureToControl.Stats.Name); 

            UpdateCreatureAlignments(); 

        } 

 

        public void UpdateCreatureAlignments() 

        { 

            _hostileCreatures = new List<Creature>(); 

            _friendlyCreatures = new List<Creature>(); 

            foreach (Creature c in _creatureControlled.Stats.Position.Board.Actors) 

            { 
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                if (c != _creatureControlled && !c.IsDead()) 

                { 

                    if (c.GetAlignmentAgainst(_creatureControlled) == 

GetCreatureTypeParam.Hostile) 

                    { 

                        _hostileCreatures.Add(c); 

                    } 

                    else 

                    { 

                        _friendlyCreatures.Add(c); 

                    } 

                    AttackOrderListEntry aole = GetAttackListEntry(c); 

                    if (aole == null && _hostileCreatures.Contains(c)) 

                    { 

                        aole = new AttackOrderListEntry(); 

                        aole.TargetCreature = c; 

                        _attackOrderList.Add(aole); 

                    } 

                } 

            } 

        } 

 

        private void InitializeStateModifiers() 

        { 
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            _stateModifiers.Add(typeof(Battle), 0.5); 

            _stateModifiers.Add(typeof(Normal), 0.25); 

        } 

 

        private void UpdateAttackOrderList() 

        { 

            foreach (AttackOrderListEntry aole in _attackOrderList) 

            { 

                Type t = aole.TargetCreature.Stats.CreatureState.GetType(); 

                if (_stateModifiers.ContainsKey(t)) 

                { 

                    CalculateAttackOrderListEntry(aole); 

 

                    double stateModifier = _stateModifiers[t]; 

                    double ttkModifier, rngModifier; 

                    if (kTurnsToKill == 0) 

                    { 

                        ttkModifier = 0; 

                    } 

                    else 

                    { 

                        ttkModifier = kTurnsToKill * (1.0 / Math.Max(1, 

aole.NumberOfTurnsToKill)); 

                    } 
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                    if (kRange == 0) 

                    { 

                        rngModifier = 0; 

                    } 

                    else 

                    { 

                        rngModifier = kRange * (1.0 / Math.Max(1, aole.RangeModifier)); 

                    } 

 

                    aole.Score = 

                        kState * stateModifier + 

                        ttkModifier + 

                        kHpLostTo * aole.HitPointsLostTo + 

                        rngModifier + 

                        kThreat * aole.ThreatModifier 

                    ; 

                } 

            } 

            _attackOrderList.Sort(); 

        } 

 

        private void CalculateAttackOrderListEntry(AttackOrderListEntry aole) 

        { 
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            aole.RangeModifier =  

                Math.Max(0,  

                _creatureControlled.DistanceToCreature(aole.TargetCreature) - 

_creatureControlled.Weapon.Range); 

 

            if (_creatureControlled.Weapon.Damage.MaxRoll * 

_creatureControlled.Stats.NumberOfAttacks == 0) 

            { 

                aole.NumberOfTurnsToKill = int.MaxValue; 

            } 

            else 

            { 

                aole.NumberOfTurnsToKill = 

                    aole.TargetCreature.Stats.HitPoints / 

                    (_creatureControlled.Weapon.Damage.MaxRoll * 

_creatureControlled.Stats.NumberOfAttacks); 

            } 

            if (aole.LastDamageTaken == 0) 

            { 

                aole.ThreatModifier = 0; 

            } 

            else 

            { 

                aole.ThreatModifier = _creatureControlled.Stats.HitPoints / 

aole.LastDamageTaken; 
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            } 

        } 

 

        public override void MakeMove() 

        { 

            ModifyCoefficients(); 

            UpdateAttackOrderList(); 

            if (_hostileCreatures.Count > 0) 

            { 

                //Creature target = 

_creatureControlled.GetNearestCreature(GetCreatureTypeParam.Hostile); 

                int targetIndex = _attackOrderList.Count - 1; 

                Creature target = _attackOrderList[targetIndex].TargetCreature;  // get the 

first in the list 

                while (target.IsDead()) 

                { 

                    if (targetIndex > 0) 

                    { 

                        target = _attackOrderList[--targetIndex].TargetCreature; 

                        continue; 

                    } 

                    break; 

                } 

                Debug.Assert(target != null); 
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                if (_creatureControlled.DistanceToCreature(target) >= 

_creatureControlled.Weapon.Range) 

                { 

                    MoveCreatureTowards(target.Stats.Position); 

                } 

                else 

                { 

                    Attack.CreatureToCreature(_creatureControlled, target); 

                } 

            } 

            UpdateCreatureAlignments(); 

            UpdateAttackOrderList(); 

        } 

 

        private void ModifyCoefficients() 

        { 

            // get primary modifier 

            double selfParty = (double)(_creatureControlled.Stats.HitPoints) / 

_creatureControlled.Stats.MaxHitPoints,  

                otherParty = 0; 

            foreach (Creature creature in _friendlyCreatures) 

            { 

                selfParty += (double)(creature.Stats.HitPoints) / 

creature.Stats.MaxHitPoints; 

            } 



95 
 

 

            selfParty /= _friendlyCreatures.Count + 1; 

 

            foreach (Creature creature in _hostileCreatures) 

            { 

                otherParty += (double)(creature.Stats.HitPoints) / 

creature.Stats.MaxHitPoints; 

            } 

 

            otherParty /= _hostileCreatures.Count; 

 

            double primaryModifier = selfParty / otherParty; 

        } 

 

        private void MoveCreatureTowards(BoardPosition boardPosition) 

        { 

            BoardPosition currentPos = _creatureControlled.Stats.Position; 

            if (boardPosition.Board == currentPos.Board) 

            { 

                int signY = -1 * Math.Sign(currentPos.Point.Y - boardPosition.Point.Y); 

                int signX = -1 * Math.Sign(currentPos.Point.X - boardPosition.Point.X); 

                if (boardPosition.Point.X == currentPos.Point.X) 

                { 

                    _creatureControlled.MoveBy(0, signY); 
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                } 

                else if (boardPosition.Point.Y == currentPos.Point.Y) 

                { 

                    _creatureControlled.MoveBy(signX, 0); 

                } 

                else 

                { 

                    // move through either X or Y, selected by random 

                    int randomNumber = _realm.Randomizer.Next(0, 2); 

                    if (randomNumber == 0) 

                    { 

                        signX = 0; 

                    } 

                    else 

                    { 

                        signY = 0; 

                    } 

                    _creatureControlled.MoveBy(signX, signY); 

                } 

            } 

        } 

 

        private AttackOrderListEntry GetAttackListEntry(Creature creature) 

        { 
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            AttackOrderListEntry aole = null; 

            foreach (AttackOrderListEntry a in _attackOrderList) 

            { 

                if (a.TargetCreature == creature) 

                { 

                    aole = a; 

                    break; 

                } 

            } 

            return aole; 

        } 

 

        public override void AfterTakeDamage(Creature attacker, int damage) 

        { 

            base.AfterTakeDamage(attacker, damage); 

            // update the Attack Order List 

            AttackOrderListEntry aole = GetAttackListEntry(attacker); 

            if (aole == null) 

            { 

                aole = new AttackOrderListEntry(); 

                aole.TargetCreature = attacker; 

                _attackOrderList.Add(aole); 

            } 

            aole.HitPointsLostTo += damage; 
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            aole.LastDamageTaken = damage; 

        } 

 

        private void ReadConfigFromXml(string fileName, string configSetId) 

        { 

            _stateModifiers.Clear(); 

            NumberFormatInfo formatter = new NumberFormatInfo(); 

            formatter.NegativeSign = "-"; 

            formatter.PositiveSign = "+"; 

            formatter.NumberDecimalSeparator = "."; 

 

            XmlDocument xmlDoc = new XmlDocument(); 

            xmlDoc.Load(fileName); 

            XmlNamespaceManager nsManager = new 

XmlNamespaceManager(xmlDoc.NameTable); 

            nsManager.AddNamespace("ai", "http://ajitatif.com/AiConfiguration.xsd"); 

 

            XmlNode configSet =  

                xmlDoc.SelectSingleNode( 

                    string.Format(@"//ai:configset[@id=""{0}""]", configSetId.ToLower()) 

                    , nsManager); 

            if (configSet == null) 

            { 
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                if (string.Equals(configSetId, "default", 

StringComparison.InvariantCultureIgnoreCase)) 

                { 

                    double k1 = _realm.Randomizer.NextDouble(), 

                        k2 = _realm.Randomizer.NextDouble(), 

                        k3 = _realm.Randomizer.NextDouble(), 

                        k4 = _realm.Randomizer.NextDouble(), 

                        k5 = _realm.Randomizer.NextDouble(), 

                        kTotal = k1 + k2 + k3 + k4 + k5; 

                    kHpLostTo = k1 / kTotal; 

                    kRange = k2 / kTotal; 

                    kState = k3 / kTotal; 

                    kThreat = k4 / kTotal; 

                    kTurnsToKill = k5 / kTotal; 

                    _stateModifiers.Add(typeof(Battle), 0.5); 

                    _stateModifiers.Add(typeof(Normal), 0.25); 

                    return; 

                } 

                else 

                { 

                    ReadConfigFromXml(); 

                    return; 

                } 

            } 
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            try 

            { 

                kHpLostTo = 

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:hp-lost-

to/@value", nsManager).Value, formatter); 

                kRange = 

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:range/@value", 

nsManager).Value, formatter); 

                kState = 

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:state/@value", 

nsManager).Value, formatter); 

                kThreat = 

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:threat/@value", 

nsManager).Value, formatter); 

                kTurnsToKill = 

Convert.ToDouble(configSet.SelectSingleNode(@"./ai:modifiers/ai:turns-to-

kill/@value", nsManager).Value, formatter); 

 

                XmlNode targetStateModifierListElement = 

configSet.SelectSingleNode(@"./ai:modifiers/ai:target-state-modifier-list", 

nsManager); 

 

                Assembly entityAssembly = Assembly.GetAssembly(typeof(Battle)); 

 

                foreach (XmlNode elem in targetStateModifierListElement.ChildNodes) 

                { 

                    string stateTypeString = elem.Attributes["state-type"].Value; 

                    Type stateType = Type.GetType(stateTypeString); 
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                    if (stateType == null) 

                    { 

                        stateType = 

Type.GetType(string.Format("Rpg.Entity.CreatureStates.{0}, {1}", stateTypeString, 

entityAssembly.FullName), true, true); 

                    } 

                    double stateValue = Convert.ToDouble(elem.Attributes["value"].Value, 

formatter); 

                    _stateModifiers.Add(stateType, stateValue); 

                } 

            } 

            catch (Exception ex) 

            { 

                throw new Exception("Unable to parse the config file", ex); 

            } 

        } 

 

        private void ReadConfigFromXml() 

        { 

            ReadConfigFromXml(DefaultConfigFilename, "default"); 

        } 

    } 

} 
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