
A FLEXIBLE APPROACH FOR CONTEXT-AWARE SERVICE SELECTION IN

AGENT-MEDIATED E-COMMERCE

by

Murat Şensoy

B. S., Chemical Engineering, Boğaziçi University, 2001

M. S., Computer Engineering, Boğaziçi University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2008

ii

A FLEXIBLE APPROACH FOR CONTEXT-AWARE SERVICE SELECTION IN

AGENT-MEDIATED E-COMMERCE

APPROVED BY:

Assist. Prof. Pınar Yolum

(Thesis Supervisor)

Prof. Levent Akın

Assist. Prof. Ayşe Bener

Prof. Oğuz Dikenelli

Assist. Prof. Yücel Saygın

DATE OF APPROVAL: 12.06.2008

iii

ACKNOWLEDGEMENTS

I am deeply indebted to all people who helped and inspired me during the preparation

of this dissertation: Pınar Yolum, Levent Akın, Yücel Saygın, Ayşe Bener, Suzan Üsküdarlı,

Cem Say, Ethem Alpaydın, Tunga Güngör, Munindar Singh, Reyhan Aydoğan, Akın Günay,

Çetin Meriçli and many present and past members of Boğaziçi University Artificial Intelli-

gence Laboratory (AILab). I am also grateful to my colleagues from department of Computer

Engineering at Kültür University, especially to Murat Taylı for his priceless encouragement

and support during my PhD studies. I specially thank Jie Zhang and Robin Cohen from

University of Waterloo for their sincere cooperation during my research on deception.

I want to express my heartfelt thanks to my supervisor Pınar Yolum. Without her

support, advice, guidance and inspiration, the work presented in this dissertation would not

have been possible. I am also profoundly thankful to my family and my fiance Burcu Yılmaz

for their support and encouragement; not only during my studies but also all through my life.

This research has been partially supported by Boğaziçi University Scientific Research

Projects (under grants BAP05A104, BAP06A103 and BAP07A102) and The Scientific and

Technological Research Council of Turkey (TUBITAK) by a CAREER Award under grant

105E073. I specially thank these institutions for their support.

Some results in this dissertation have previously been published: the research related

to ontology-based service representation and selection in Chapter 3 appeared in [1–5]; the

research related to the deceptive information filtering described in Chapter 4 has been pub-

lished in [6]; the research related to cooperative evolution of service ontologies in Chapter 5

has been published in [7–9]; finally, the research on choosing an efficient service selection

mechanism among alternatives in Chapter 6 appeared in [10].

iv

ABSTRACT

A FLEXIBLE APPROACH FOR CONTEXT-AWARE SERVICE

SELECTION IN AGENT-MEDIATED E-COMMERCE

Selecting the right parties to interact with is a fundamental problem in open and dy-

namic environments. The problem is exemplified when the number of interacting parties is

high and the parties reasons for selecting others vary. In this dissertation, we examine the

problem of service selection in an e-commerce setting where consumer agents cooperate to

identify service providers that would satisfy their service needs the most. There are three

major challenges related to service selection: (i) representing consumers’ past dealings with

providers, (ii) handling deceptive information about providers and (iii) managing evolution

of consumers’ service needs and semantics.

Previous approaches represent consumers’ past dealings with providers only as a rat-

ing. There are two important weaknesses related to this representation. One, ratings are

given in a particular context. Even though the context is crucial for interpreting the ratings

correctly, ratings do not contain any contextual information explicitly. Two, ratings do not

explicitly state what kind of a service a provider supplies. A rating merely represents sub-

jective opinion of a rater about the services of a particular provider. Because, the satisfaction

criteria and the expectations of the rater are unknown, it is almost impossible to make sense

of a rating.

This dissertation deals with these two weaknesses in two steps. First, we extend a clas-

sical rating-based approach by adding a representation of context. This addition improves

the accuracy of selected service providers only when two consumers with the same service

request are assumed to be satisfied with the same service. Next, we replace over-all ratings

with detailed experiences of consumers. The experiences are represented with an ontology

that can semantically capture the requested service and the received service in detail. When

v

a service consumer decides to share its experiences with a second service consumer, the re-

ceiving consumer evaluates the experience using its own context and satisfaction criteria. By

sharing experiences rather than ratings, the service consumers can model service providers

more accurately and thus can select service providers that are better suited for their needs.

In many settings, consumers may prefer to be dishonest about their past dealings with

providers. In deceptive environments where there are liars among the consumers, successful

service selection becomes a harder challenge. To deal with this, we propose a method to

evaluate consumers’ trustworthiness in a distributed setting on the basis of the consumers’

shared experiences. We integrate this method to the experience-based service selection to

filter out deceptive information during service selection. Our experiments show that using

the integrated approach, service consumers can select the service providers for their needs

more accurately even if a significant portion of the consumers are liars.

Communication among consumers requires a common vocabulary to facilitate success-

ful information exchange. One way to achieve this is to assume the existence of a common

ontology among communicating consumers. However, in this case, consumers with evolving

service needs may not use the system, especially if the existing concepts in the common on-

tology become insufficient after some time. To handle this, we propose an approach in which

consumer agents can add new service concepts into their service ontologies and teach others

services from their ontologies by exchanging service descriptions. This leads to a society of

agents with different but overlapping ontologies where mutually accepted services emerge

based on agents’ exchange of service descriptions.

With these contributions, this dissertation proposes an integrated approach for service

selection, which is flexible enough to enable consumers to evolve their service semantics over

time; context-aware and consumer-oriented to enable consumers to use their own satisfaction

criteria and context during service selection; and robust to deception to lead satisfactory

service selections even in highly deceptive environments.

vi

ÖZET

ETMEN ARACILI E-TİCARET’DE BAĞLAM FARKI GÖZETEN

SERVİS SEÇİMİ İÇİN ESNEK BİR YAKLAŞIM

Açık ve dinamik ortamlarda etkileşim için taraf seçimi önemli bir problemdir. Bu

problem etkileşen tarafların sayısının fazla olmasıyla ve tarafların birbirlerini seçme sebe-

plerinin değişmesiyle daha da zorlaşmaktadır. Bu tezde, servis müşterisi etmenlerin servis

ihtiyaçlarını en iyi şekilde karşılayacak servis sağlayıcıları seçmek için yardımlaştıkları bir

e-ticaret ortamında, servis seçimi problemi incelenmiştir. Servis seçimi ile ilgili üç temel

mesele bulunmaktadır: (i) müşterilerin servis sağlayıcılarla geçmiş ilişkilerinin betimlen-

mesi, (ii) servis sağlayıcılar ile ilgili yanıltıcı bilgilerin ayıklanması, (iii) müşterilerin gelişen

servis ihtiyaçlarının ve bunların anlamsal ilişkilerinin yönetilmesi.

Daha önceki yaklaşımlar müşterilerin servis sağlayıcılarla olan geçmiş ilişkilerini be-

timlerken sadece reytingleri kullanmaktadırlar. Reytingler ile ilgili iki temel problem bu-

lunmaktadır. İlk olarak, reytingler belirli bir bağlamda verilirler. Ait oldukları bağlam reyt-

ingleri değerlendirmek için çok önemli olmasına karşın reytingler herhangi bir bağlamsal

bilgiyi açıkça içermezler. İkinci olarak ise, reytingler bir servis sağlayıcının verdiği servisin

özelliklerini açıkça belirtmezler. Bir reyting bir müşterinin sadece belirli bir servis sağlayıcı

ile ilgili sübjektif fikrini ifade eder. Reytingleri veren müşterilerin memnuniyet kriterleri ve

beklentileri bilinemeyeceği için reytingleri yorumlamak neredeyse imkansızdır.

Bu tez reytingler ile ilgili belirtilen bu iki problemi iki basamakta çözmektedir. İlk

olarak, klasik reytingler bağlam bilgisi eklenerek geliştirilmektedir. Bu ekleme ile bir-

likte servis sağlayıcı seçme doğruluğu sadece aynı servis talebinde bulunan müşterilerin

aynı servislerle memnun oldukları varsayıldığında artırmaktadır. İkinci olarak, müşterilerin

tecrübeleri, talep ettikleri ve aldıkları servisleri detaylı ve anlamsal olarak ifade edebilen

bir ontoloji ile betimlenmektedir. Bir müşteri başka bir müşteri ile geçmiş tecrübelerini

vii

paylaşmaya karar verdiğinde, paylaşılan tecrübeleri alan müşteri, bu tecrübeleri kendi bağlam

ve memnuniyet kriterlerine göre değerlendirebilmektedir. Reytinglerin yerine tecrübelerini

paylaşarak, servis müşterileri servis sağlayıcıları daha doğru modelleyebilmekte ve böylece

kendi ihtiyaçlarına en uygun servis sağlayıcıları daha iyi seçebilmektedirler.

Bir çok ortamda, müşteri etmenler servis sağlayıcılarla olan geçmiş ilişkileri hakkında

dürüst olmamayı tercih edebilir. Müşterilerin arasında yalancıların var olduğu yanıltıcı or-

tamlarda, başarılı servis seçimi daha da zor bir problem olmaktadır. Bu problemle başa

çıkabilmek için, müşterilerin güvenilirliklerini paylaştıkları tecrübelere dayanarak dağınık

bir ortamda ölçen bir metod önerilmiştir. Bu metod önerilen tecrübe tabanlı servis seçme

yöntemine, servisleri seçerken yanıltıcı bilgileri ayıklamak için entegre edildi. Deneylerimiz

gösterdi ki, bu entegre yöntemi kullanarak servis müşterileri ihtiyaçları için en uygun servis

sağlayıcıları müşterilerin önemli bir çoğunluğu yalancı olsa bile doğrulukla seçebilmektedirler.

Müşteri etmenler arasında başarılı bir bilgi alışverişini sağlayabilmek ortak bir kelime

hazinesini gerektirmektedir. Bunu başarmanın bir yolu iletişim kuran müşteriler arasında

ortak bir ontolojinin varlığını farzetmektir. Ancak, bu ontolojide var olan kavramlar bir

süre sonra yetersiz kaldığında, servis ihtiyaçları gelişen müşteriler oluşturulan sistemi kul-

lanamayabilirler. Bu durumla başa çıkabilmek için, servis müşterilerin ontolojilerine yeni

servis kavramlarını ekleyebilmelerini sağlayacak ve servis tanımlarını değiş tokuş ederek bu

servisleri birbirlerine öğretmelerine olanak verecek bir metod önerilmiştir. Bu metod etmen-

lerin birbirlerinden farklı ancak çakışan ontolojilere sahip olmalarına yol açmaktadır; öyleki

müşterilerce karşılıklı olarak kabul edilen servisler, servis tanımlarının değiş tokuşuyla or-

taya çıkmaktadır.

Tüm bu katkılarla, bu tez servis seçimi için entegre bir yaklaşım önermektedir. Bu

yaklaşım müşterilerin servis kavramlarını zamanla geliştirmelerine olanak sağlayacak kadar

esnek, servis seçimi sırasında müşterilerin kendi memnuniyet kriterlerini ve bağlamlarını

kullanmalarına olanak sağlayacak kadar bağlam farkı gözeten ve müşteri odaklı, ayrıca

yanıltıcı ortamlarda bile başarılı servis seçimi yapabilecek kadar aldatmaya dayanıklıdır.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . vi

LIST OF FIGURES . xii

LIST OF TABLES . xvi

LIST OF SYMBOLS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

1.1. Research Challenges . 5

1.2. Objectives . 7

1.3. Organization of the Dissertation . 8

2. OVERVIEW OF THE LITERATURE . 10

2.1. Representation . 10

2.1.1. Resource Description Framework (RDF) and RDF Schema (RDFS) 12

2.1.2. Ontology Interchange Language (OIL) 13

2.1.3. DARPA Agent Markup Language+OIL (DAML+OIL) 13

2.1.4. Web Ontology Language (OWL) 14

2.1.5. OWL-S: An OWL based Ontology for Web Services 15

2.1.6. Semantic Web Rule Language . 17

2.2. Peer-to-Peer Communication . 18

2.2.1. Blind Search Approaches . 19

2.2.2. Informed Search Approaches . 21

2.3. Trust and Reputation Systems . 23

2.3.1. Beta Reputation System . 27

2.3.2. Robust Reputation System for Mobile Ad-Hoc Networks 30

2.3.3. TRAVOS . 31

2.3.4. Yu and Singh’s Model of Trust . 33

3. ONTOLOGY-BASED SERVICE REPRESENTATION AND SELECTION . . . 35

3.1. A Rating-Based Approach for Context-Aware Service Selection 35

3.1.1. Context Ontology . 36

ix

3.1.2. Selecting Service Providers . 39

3.2. Evaluation of the Rating-Based Approach 40

3.2.1. Simulation Environment Factors 41

3.2.2. Simulation Results . 44

3.3. An Experience-Based Approach for Context-Aware Service Selection . . . 47

3.3.1. Base Level Ontology . 48

3.3.2. Domain Level Ontology . 50

3.3.3. Exchanging Experiences . 51

3.3.4. Service Selection Using Experiences 55

3.3.4.1. Decision Making Using GM 56

3.3.4.2. Decision Making Using CBR 58

3.4. Evaluation of Experience-Based Approaches 59

3.4.1. Experience-Based Approach: GM 60

3.4.2. Experience-Based Approach: CBR 62

3.4.3. Additional Simulation Factors . 64

3.4.4. Using Different Classification Methods for Service Selection 66

3.5. Discussion . 67

3.5.1. Usage . 67

3.5.2. Summary of Results . 69

3.5.3. Related Work . 70

4. CONTEXT-AWARE SERVICE SELECTION UNDER DECEPTION 73

4.1. Effects of Deceptive Experiences in Context-Aware Service Selection . . . 74

4.1.1. Behavior of Liars . 75

4.1.2. Influence of Extremely Negative Experiences 75

4.1.3. Empirical Analysis of Deception 76

4.2. Filtering out Deceptive Experiences . 77

4.2.1. Private Credit of Advisors . 78

4.2.2. Public Credit of Advisors . 80

4.2.3. Trustworthiness of Advisors . 81

4.3. Evaluation . 82

4.3.1. Service Selection Approaches for Benchmarks 83

4.3.2. Simulation Environment . 84

x

4.3.3. Experimental Results . 85

4.3.3.1. Deceptive Environments without Subjectivity and Varia-

tion on Context . 85

4.3.3.2. Deceptive and Subjective Environments without Variation

on Context . 87

4.3.3.3. Reliable Environments with Variation on Context and No

Subjectivity . 90

4.3.4. Summary of Results . 91

4.4. Discussion . 93

4.4.1. Related Work . 93

4.4.2. Overview of the Contributions . 94

5. COOPERATIVE EVOLUTION OF SERVICE ONTOLOGIES 96

5.1. Describing Services . 98

5.2. Similarity Between Services . 100

5.3. Interactions of Consumers . 101

5.3.1. Emergence of New Service Concepts 102

5.3.2. Discovering Others . 104

5.4. Updating Service Ontologies . 106

5.5. Experimental Results . 109

5.5.1. Simulation Environment . 109

5.5.2. Simulation Results . 111

5.6. Discussion . 115

5.6.1. Extensions to the Proposed Approach 116

5.6.2. Related Work . 117

6. ON CHOOSING AN EFFICIENT SERVICE SELECTION MECHANISM . . . 121

6.1. Learning to Choose Among Service Selection Mechanisms 122

6.1.1. Reinforcement Learning . 123

6.1.1.1. SARSA Algorithm . 124

6.1.1.2. Reward Function . 125

6.1.2. Discretization of Continuous State Space 126

6.2. Comparison of Service Selection Mechanisms 128

6.3. Experimental Evaluation . 131

xi

6.4. Discussion . 134

7. CONCLUSION . 136

7.1. Dissertation Overview . 136

7.2. Real-Life Applications . 139

7.3. Future Work . 140

REFERENCES . 142

xii

LIST OF FIGURES

Figure 2.1. A simple RDF triple . 12

Figure 2.2. A part of a simple OWL ontology 14

Figure 2.3. Top level of the service ontology . 16

Figure 2.4. SWRL example for the rule: hasParent(?x, ?z)∧hasBrother(?y, ?z) ⇒
hasUncle(?x, ?y) . 18

Figure 2.5. 1% and 99% quantiles of beta(p|8, 2) 29

Figure 2.6. Illustration of ρX,K Estimation Process (5 bins are used) 33

Figure 3.1. Context ontology for online shopping domain 37

Figure 3.2. A context-aware rating that is about buying a notebook from a seller

named TechnoShop . 38

Figure 3.3. Example SWRL rule for similar demands 38

Figure 3.4. Consumers change their demands with probability 0.2 (PCD=0.2), but

have the same satisfaction criteria if their service demands are similar

(Rsubj=0) . 45

Figure 3.5. Half of the consumers having similar demands have conflicting sat-

isfaction criteria (Rsubj=0.5), but the consumers do not change their

service demands over time (PCD=0) 46

xiii

Figure 3.6. Consumers change their service demands (PCD=0.2) and their satisfac-

tion criteria are conflicting (Rsubj=0.5) 47

Figure 3.7. Base level ontology . 49

Figure 3.8. Domain level ontology for online shopping 52

Figure 3.9. An experience that is about buying a notebook from a seller named

TechnoShop . 53

Figure 3.10. Algorithm of consumer agents . 54

Figure 3.11. Half of the consumers having similar demands have conflicting sat-

isfaction criteria (Rsubj=0.5), but the consumers do not change their

service demands over time (PCD=0) 60

Figure 3.12. Consumers change their demands with probability 0.2 (PCD=0.2), but

have overlaping satisfaction criteria (Rsubj=0) 61

Figure 3.13. Consumers change their service demands (PCD=0.2) and their satisfac-

tion criteria are conflicting (Rsubj=0.5) 62

Figure 3.14. Performance of SPSCBR decreases when PI = 0.001 65

Figure 3.15. Performance of SPSCBR decreases even further when PI = 0.01 . . . 66

Figure 4.1. Drop in the performance of experience-based service selection (SPSGM)

when 0 ≤ Rliars ≤ 0.5, where PI = 0, PCD = 0 and Rsubj = 0 77

Figure 4.2. TRAVOS, BRS and SPS∗
GM have similarly good performances when

Rliar = 0.2 and there is no subjectivity or variation on context during

the experiment (Rsubj = 0.0 and PCD = 0.0) 86

xiv

Figure 4.3. Performance of BRS sharply decreases when the ratio of liars is in-

creased to 0.5 (Rliar = 0.5, Rsubj = 0.0 and PCD = 0.0) 87

Figure 4.4. As the ratio of liars increases, the performance of BRS decreases con-

siderably while the performances of SPS∗
GM and TRAVOS are slightly

affected (Rsubj = 0.0 and PCD = 0.0) 88

Figure 4.5. As the ratio of liars increases, BRS’s error in determining liars in-

creases dramatically with respect to the errors of TRAVOS and SPS∗
GM

(Rsubj = 0.0 and PCD = 0.0) . 89

Figure 4.6. Performance of the rating-based approaches decreases in the case of

subjectivity (Rsubj = 0.5), even though all of the consumers are honest

(Rliar = 0.0) and there is no variation on context (PCD = 0.0) 90

Figure 4.7. When the consumers have different tastes (Rsubj = 0.5) and there is no

variation on context (PCD = 0.0), ratio of successful service selections

decreases much more sharply for TRAVOS and BRS as Rliar increases 91

Figure 4.8. Average ratio of successful service selections decreases dramatically

for TRAVOS and BRS, when the context is allowed to vary during

service selection (Rsubj = 0.0 and Rliar = 0.0) 92

Figure 5.1. An example search message, service interest table of the receiver, the

computed similarities, and the returned search results 105

Figure 5.2. Service ontology of a neighbor . 106

Figure 5.3. Service ontology of the consumer; (1) initial, (2) after adding Hotel-

ValetParking, (3) after adding ValetParking, (4) After adding HotelSer-

vice concept . 108

xv

Figure 5.4. Average ratio of adoption and creation of new service concepts by the

consumers . 112

Figure 5.5. Number of new service concepts, unique new service concepts, known

service concepts, and useful known service concepts for a consumer . 114

Figure 5.6. Average ratio of known useful service concepts 115

Figure 6.1. SARSA reinforcement learning algorithm 125

Figure 6.2. Modified version of SARSA algorithm with the proposed discretization

of continuous state space . 129

xvi

LIST OF TABLES

Table 3.1. Dimensions of service space and their ranges 42

Table 3.2. Average ratio of satisfaction for different Rsubj values (PCD is set to 0) 62

Table 3.3. Average ratio of satisfaction for different Rsubj and PCD values 63

Table 3.4. Average ratio of satisfaction for different Rsubj and PCD values 63

Table 3.5. Time consumption of SPSGM and SPSCBR in milliseconds 64

Table 3.6. Performances of different classification methods for service selection . 67

Table 5.1. Service concepts and roles using them in the 0th epoch 111

Table 6.1. Service selection performances of different mechanisms 130

Table 6.2. Average time required for service selection mechanisms in milliseconds 131

Table 6.3. Performance of the reinforcement learning approach 133

xvii

LIST OF SYMBOLS/ABBREVIATIONS

e An experience

Ftaste Taste function

g Discriminant

l Satisfaction level

p Probability

PCD Variation in context

PI Probability of indeterminism for service providers

R Reputation

Rliar Ratio of liars

Rpri Private credit

Rpub Public credit

Rsubj Ratio of subjectivity

si Score of an experience i

T r(A) Trustworthiness of A

w Weight

α Alpha parameter of a beta probability distribution function

β Beta parameter of a beta probability distribution function

γ Confidence measure

Γ Gamma function

ε Maximum acceptable level of error

ρ Binary rating

φ Maximum acceptable deviation from the majority

AI Artificial Intelligence

APS Adaptive Probabilistic Search

BRS Beta Reputation System

CBR Case-Based Reasoning

DAML DARPA Agent Markup Language

xviii

DAML + OIL DARPA Agent Markup Language+OIL

DHT Distributed Hash Tables

DL Description Logic

GM Gaussian Model

KIF Knowledge Interchange Format

MAS Multiagent Systems

OIL Ontology Interchange Language

OML Ontology Markup Language

OWL Web Ontology Language

P2P Peer-to-Peer

PDF Probability Distribution Function

QoS Quality of Service

QRP Query Routing Protocol

RDF Resource Description Framework

RDF (S) Resource Description Framework and Schema

RDFS Resource Description Framework Schema

RI Routing Indices

RL Reinforcement Learning

SHOE Simple HTML Ontology Extension

SPSCAR Service Selection using Context-Aware Ratings

SPSCBR Service Selection using experiences and Case-Based Reasoning

SPSDT Service Selection using experiences and C4.5 Decision Trees

SPSGM Service Selection using experiences and Gaussian Model

SPSNB Service Selection using experiences and Naive Bayes

SPSRR Service Selection using Random Ratings

SPSSR Service Selection using Selective Ratings

SWRL Semantic Web Rule Language

TTL Time-to-Live

XOL XML-based Ontology Exchange Language

1

1. INTRODUCTION

Electronic commerce (e-commerce) is concerned with a broad range of issues includ-

ing payment mechanisms, advertising, directory services, security, trust and reputation, and

so on. Agent technologies can be applied to any of these areas where an autonomous behav-

ior is desired. Hence, e-commerce becomes a major application area of agent technologies.

As a result, a new paradigm, called agent-mediated e-commerce, emerges as an important

extension of e-commerce in which agent technologies are used effectively [11]. In agent-

mediated e-commerce, there are two main sides interacting with each other: service con-

sumers and service providers. Service consumers are autonomous agents that are interested

in receiving services for their human users. Service providers are intelligent entities that offer

some services with varying quality and properties. In this setting, service consumers interact

with service providers to satisfy their users’ service needs. Service consumers and providers

operate on the Web, which is not managed by a central authority that can monitor all agents’

activities and ensure that everyone acts in the best interest of others [12, 13]. Openness of

the Web implies that for a given service description, a plethora of service providers with

substantially different service offerings will exist. A service consumer that is interested in

receiving a particular service should then need to select a subset of the service providers that

will satisfy its service needs in the best way.

Selection of the most satisfactory service providers for a specific service demand is

known as the Service Selection problem in the literature [14, 15]. In service selection ap-

proaches, service consumers share valuable information about the service providers (e.g.,

ratings, referrals, and so on) and they usually depend on the shared information during ser-

vice selection because their knowledge about the providers is usually limited.

Service selection has been widely studied in the literature from different directions.

The most widely used approaches are variants of reputation systems in which the consumers

rate the service providers and share these ratings with other consumers. A consumer that is

looking for a service provider can check the ratings of a provider from the reputation system

and decide to select the provider accordingly. Typically, the ratings are kept in a central

2

server, which aggregates the ratings in various ways to help others decide whether a service

provider will act as expected [16]. E-bay1 is a well-known web site that uses a reputation

system. E-Bay gives buyers the opportunity to rate each seller as positive, negative, or neu-

tral (i.e. 1, -1, 0) after completion of a transaction. After collecting ratings from sellers

in a centralized manner, e-Bay computes the reputation scores for each buyer. Reputation

score of each buyer is simply the sum of positive ratings minus the sum of negative ratings.

Reputation systems have also applications in the service domains other than e-commerce.

Expert sites such as AskMe2 use these systems to help their users decide on experts to ask

their questions. In this context, service providers are the human experts that are willing to

answer questions and the services are their answers to these questions. Depending on the

quality of her answers, the users can rate an expert on the system. Then, these ratings are

centrally aggregated and a reputation score is displayed for each expert. Most of the com-

mercial reputation systems also allow their users to leave their comments or reviews on the

system. However, these comments are in natural language and meant to be read by human

users instead of machines. Therefore, they cannot be interpreted by machines (e.g., software

agents) for the computation of reputation scores. Traditional reputation systems are suitable

for the closed settings where a central authority (such as a company) can monitor the overall

system. E-bay and expert sites are examples of these closed systems. However, the tradi-

tional reputation systems are not directly applicable in open systems [14], where there is no

central authority.

Since reputation systems are not directly applicable, it is necessary to find approaches

that are distributed. Most distributed approaches to service selection consider trust among

entities [14, 17, 18]. Trust captures a truster’s expectation from a trustee for a particular ser-

vice. Whereas different formalizations of trust exists, most formalizations are not expressive

enough. That is, typically a truster’s trust in the trustee is represented by a mere rating. How-

ever, the episode that leads to the rating is as important for understanding the rationale for

the rating as the rating itself [19]. For example, a service consumer may give a low rating

to a service provider that delivers a book two days late. If the delivery date is not significant

for a second service consumer, the first service consumer’s low rating will not be significant,

1http://www.ebay.com
2http://www.askme.com

3

either. Hence, it is important that ratings are evaluated within their scope considering the

satisfaction criteria of the raters. Scope of a rating is the context in which the rater has ex-

perienced the service, and satisfaction criteria of the rater are not known to others. Because

ratings are not expressive enough to represent context and satisfaction criteria of the con-

sumers are not known for the rated services, rating-based service selection approaches (such

as trust and reputation systems) are not context-aware and suffer from subjectivity [20].

For exactly the same service interest (context) and the same service supplied for this

service interest, different consumers may give marginally different ratings depending on

their satisfaction criteria. That is, different consumers on the Web may have highly different

satisfaction criteria for the same service. For example, a consumer buying a book may expect

it to be delivered within one week and not tolerate any delay. However, for another consumer,

one or two days delay in the delivery may be acceptable. Therefore, evaluation of these two

consumers of a specific provider may change if the provider’s service is delivered with some

delay. As a result, a service selection approach should be flexible enough to work in the

settings where consumers have highly different satisfaction criteria for the same services.

If a service selection approach cannot handle the differences in the consumers’ satisfaction

criteria, the shared information among the consumers may suffer from the subjectivity (i.e.,

ratings given by different consumers for the same services may conflict).

Rating-based approaches implicitly assume that satisfaction criteria of consumers and

behavior of providers do not change significantly in different contexts. However, behavior of

the service providers and expectations of the service consumers may considerably change in

different contexts. For example, while a provider usually delivers products on time, it may

not deliver a special type of product (e.g., fridges) on time as expected. Similarly, while a

consumer usually values price more than quality, the same consumer considers quality as the

only metric when buying a birthday present. Hence, a service selection approach should be

context-aware while evaluating the shared information about the service providers.

Service selection approaches depend on the information from other consumers while

making service decisions. However, there is no guarantee that consumers honestly share

the information about the service providers. Some consumers may disseminate deceptive

4

information to mislead others. Especially in open systems like the one we are addressing

in this dissertation, handling deceptive information may be more difficult, because there is

no central authority monitoring the behavior of participants in these systems. If the de-

ceptive information is not detected and removed during service selection, service selection

approaches may definitely fail [20]. As a result, a service selection approach should have a

mechanism to handle deceptive information in order to make successful service selections

even in deceptive environments.

The Web is a highly dynamic environment where consumers’ service needs evolve

over time. A service selection approach should be flexible enough to work for new service

needs that were not known to the community before. This may require evolution of the lan-

guage between the consumers to accommodate new vocabulary representing the new service

needs; otherwise the consumers may not properly express their evolving service needs and

they cannot share related information about the service providers. Consider a service se-

lection approach that enables consumers to request information for a specific service. The

consumers should have mutual understanding of the services they request and the general

context. If the needs of the consumers change over time, the consumers will be obliged to

request new services that are possibly unknown to other consumers. In such situations, the

consumers should have a method to express a new service request, describe it properly and

possibly teach it to other consumers so that others can be helpful for identifying potential

service providers.

In order to enhance current service selection approaches to handle context-awareness

and subjectivity, consumers should be given representations that are more expressive than

ratings. Semantic Web technologies such as ontologies provide a foundation that allows se-

mantic data to be shared [21]. For example, using an ontology, it is possible to semantically

describe the interactions between a consumer and a provider in detail. Then, this represen-

tation of past dealings with the provider can easily be interpreted by other consumers using

ontological reasoning [22].

Accordingly, this dissertation develops an approach for distributed service selection

that allows consumers to semantically represent and share their past experiences with the

5

service providers using ontologies [1]. An experience captures an episode of a customer

with a provider and can be thought of as a record of what service the customer has requested

and received in return. In this way, experience-based approaches allow the objective facts of

the experiences (rather than subjective opinions, i.e., ratings) to be communicated to the other

party. A consumer that receives other consumers’ particular experiences can interpret what

they have experienced with the providers and evaluate the providers using its own satisfaction

criteria and context. Although this approach removes subjectivity inherent to ratings, it is

still vulnerable to deception, because some consumers may lie about their past experiences.

Therefore, we propose a method for filtering deceptive experiences and integrate it into our

service selection approach. Finally, we propose a mechanism to enable consumers to evolve

their service semantics to accommodate the fact that their service needs may evolve over

time.

1.1. Research Challenges

This section summarizes the main research challenges related to the distributed context-

aware service selection that we address in this dissertation.

Consumers look for the service providers that satisfy their service needs the most.

Therefore, consumers may communicate to share valuable information about the past deal-

ings of service providers. During this communication, it is essential for the parties to under-

stand each other properly. Therefore, consumers should use a shared representation while

they are interacting with one another. Ontologies provide a common grounding for com-

munication between different parties [23, 24]. Ontology languages such RDF3 and OWL

have become Web standards [25]. Hence, different consumer agents developed by different

organizations can easily communicate with each other using ontologies written in these lan-

guages. Ontologies can easily represent concepts and relations between the concepts, as well

as axioms and rules regarding these concepts and relations. Although ontologies are power-

ful tools for representing semantic information, how they can be used for service selection is

an open question.

3http://www.w3.org/TR/rdf-syntax-grammar

6

Most of the current approaches in multiagent systems assume that the agents share

an ontology through which they can communicate properly [3, 14]. In the service selection

domain, this assumption cannot account for the fact that consumers’ needs may evolve over

time and new concepts may be necessary for describing consumers’ evolving service needs.

However, a service selection approach should be able to accommodate this, since in many

e-commerce settings, individuals learn new concepts and services from different sources,

add them to their ontology, and further form service requests that are based on these new

concepts. It is a challenge to design a representation that can accommodate evolution.

Consumers may need to retrieve information about service providers (e.g., consumers’

past experiences) related to their current service interests. For example, a consumer that

wants to buy a notebook may interact with other consumers to collect experiences related to

buying a notebook. Current P2P information retrieval approaches propose several solutions

for locating interested information (e.g., documents and files) in large communities. How-

ever, these approaches are designed to use syntactic matches, instead of semantic matches.

For example, these approaches may not locate an experience about buying IBM Thinkpad

T60 because they are not aware that it is actually an instance of a notebook. Moreover, in

these approaches, the search results are ranked using a global similarity metric (e.g., edit

distance, frequency of search words and so on). However, in the problem we are addressing,

the notion of similarity may have different meanings for different consumers. For example,

quality of the service may dominate over its price for some consumers, whereas the price

may be more important for other consumers. For the former case, similarity between service

interests may depend mainly on the similarity between their quality attributes, while for lat-

ter case, similarity may depend mainly on the similarity between the constraints on the price.

As a result, current approaches for information retrieval may not be convenient for retriev-

ing semantic information in context-aware service selection, because context-awareness and

semantics are not included in their design.

In many settings, a consumer may prefer to be dishonest about its past dealings with

the providers. For example, the consumers may provide untruthful experiences to promote

some providers or cooperate with other providers to drive a provider out of the system. If a

trust mechanism is incorporated into the system, untrustworthy consumers can be detected

7

and their effect on the system can easily be inhibited. So, it is important to detect who is

trustworthy in agent-mediated e-commerce. Consumers should rank other consumers ac-

cording to their trustworthiness and handle the information flow considering this ranking.

For example, if a consumer considers another consumer untrustworthy, it should neglect the

information provided by this consumer. Each consumer may have different metrics to define

who is trustworthy and who is not. Techniques to enable consumers to effectively compute

trustworthiness of others should be developed.

After collecting past experiences about the providers from other consumers, a con-

sumer should interpret these experiences and decide on a service provider that is expected

to provide the most satisfactory service. There are many methods for decision making in

the literature (e.g., decision trees, case-based reasoning and so on). However, these meth-

ods are not designed for handling semantic information. Hence, these algorithms may need

to be enhanced before they can be used for the proposed context-aware service selection

framework.

1.2. Objectives

The aim of the dissertation is, therefore, to provide techniques to solve the challenges

related to the context-aware service selection problem. This aim is further developed into the

following objectives:

1. To develop ontology-based representations for the description of consumers’ past expe-

riences with the service providers, so as to replace current rating-based representations

with semantically rich representations.

2. To design different methods for decision making, based on the proposed representa-

tions of the past experiences.

3. To integrate trust mechanisms to the proposed service selection framework, so as to

handle possible deceptive information problem.

4. To enable consumers to evolve their service semantics so as to represent their evolving

service needs better without obstructing the communication between them.

8

By fulfilling these objectives, this dissertation proposes a flexible framework for context-

aware service selection. This framework enables successful service selection; (i) in dynamic

environments where service interest of consumers evolve over time; (ii) in deceptive envi-

ronments where a significant portion of consumers are liars; and (iii) in diverse environments

where the consumers frequently change the context of their service demands and their satis-

faction criteria vary significantly.

1.3. Organization of the Dissertation

The remainder of the dissertation is organized as follows:

In Chapter 2, we present a general overview of the literature related to representation,

information retrieval and trust and reputation systems. In Chapter 3, we extend a classical

rating-based approach by adding a representation of context. For this purpose, an ontology is

proposed. This addition improves the accuracy of selected service providers only when two

consumers with the same service request are assumed to be satisfied with the same service.

Next, we replace ratings with detailed experiences of consumers. The experiences are rep-

resented using a proposed ontology that can capture the requested service and the received

service in detail. When a service consumer decides to share its experiences with a second

service consumer, the receiving consumer evaluates the experience using its own context and

satisfaction criteria. By sharing experiences rather than ratings, the service consumers can

model service providers more accurately and thus can select service providers that are better

suited for their needs. In Chapter 4, we propose a deceptive information filtering approach

tailored for experience-based service selection and integrate this approach into the proposed

framework. Our experiments show that using the proposed approach, service consumers can

select the service providers for their needs more accurately even if a significant portion of

them are liars.

In Chapter 5, we propose an approach to enable consumers to add new service con-

cepts into their ontologies when necessary, without obstructing the communication between

them. Using this approach, agents not only add new service concepts into their service on-

tologies, but also teach others service concepts from their ontologies by exchanging service

9

descriptions. This leads to a society of agents with different but overlapping ontologies

where mutually accepted services emerge based on agents’ exchange of service descriptions.

Our simulations of societies show that allowing cooperative evolution of local service on-

tologies facilitates better representation of agents’ needs. Further, through cooperation, not

only more useful services emerge over time, but also ontologies of agents having similar

service needs become aligned gradually.

In this dissertation, we propose novel service selection approaches. Although, there

are various service selection approaches available in the literature, each approach (including

the ones proposed in this dissertation) has different strengths and weaknesses for different

settings. In Chapter 6, we propose a novel approach for consumers to learn how to choose

the most useful service selection mechanism among different alternatives in dynamic envi-

ronments. In this approach, consumers continuously observe outcomes of different service

selection mechanisms. Using their observations and a reinforcement learning algorithm,

consumers learn to choose the most useful service selection mechanism with respect to their

trade-offs. Lastly, in Chapter 7, we review the work presented and sketch the perspectives

for further research.

10

2. OVERVIEW OF THE LITERATURE

With the coming of information age, concepts like e-mail, e-learning and e-commerce

are introduced into our lives and automation of our daily activities became an indispensable

obligation. Now, autonomous systems are replacing automated systems. As a result, the

Multiagent Systems (MAS) is emerged as an important field of research. In MAS, software

agents autonomously interact with their environment to fulfill desires of their owners. Agent

mediated e-Commerce is an important research area in this scope. This section roughly

summarizes the approaches regarding to the service selection in agent mediated e-commerce.

In a fully distributed environment, communicating parties should use a common lan-

guage in order to communicate properly. This mandates a common representation of con-

cepts and domain knowledge. In Section 2.1, we summarize approaches for knowledge

representation. In agent-mediated e-commerce, agents may discover the service interests of

one another and collect the information of their interest in a peer-to-peer setting. Hence, in

Section 2.2, we overview the approaches for peer-to-peer communication and information

retrieval. As the number of autonomous agents in the environment increases, determination

of right parties to communicate with becomes harder. Trust becomes an essential param-

eter during interactions and constitution of trust between agents is a non-trivial issue. In

Section 2.3, we overview approaches for the constitution of trust and reputation.

2.1. Representation

In order to represent domain knowledge, ontologies are usually used. Ontologies pro-

vide a shared and common description of concepts and relationships of a domain in a com-

puter readable form. The main objective of an ontology is to enable communication and

interoperability between parties by providing a shared conceptualization. An ontology can

be represented in various ways. However, an ontology must contain a vocabulary of concepts

and relations as well as specification of their meanings. Ontologies usually exist within a hi-

erarchy. Meta-ontologies are used to define concepts of domain and generic ontologies. A

generic ontology, also called top ontology, specifies general concepts which can be used in

11

different domains. On the other hand, a domain ontology is used to define concepts and

relations in a specific domain of application. Different types of ontologies can be used in

conjunction with each other for better representation and management of knowledge.

An ontology may take a variety of forms depending on the language it is represented

in. There are a lot of potential representation languages for ontology definition. These lan-

guages range from highly informal languages such as natural languages to formal languages.

For the sake of machine readability, formal languages are more promising for ontology rep-

resentation. Some well-known formal ontology representation languages are KIF, CycL,

Ontolingua, Frame logic, SHOE, RDF(S), XOL, OML, OIL, DAML+OIL and OWL.

Berners-Lee et al. define the Semantic Web as an extension of the current web in

which information is given well-defined meaning, better enabling computers and people to

work in cooperation [26]. It will bring structure to the meaningful content of Web pages and

will enable software agents to carry out sophisticated tasks for their users. In order to fulfill

this new semantic oriented structure of the web, ontologies and languages for the expression

of those languages is an obligation. Today, there are several ontology languages becom-

ing web standards. Some of them are based on XML syntax, such as Ontology Exchange

Language (XOL), SHOE (which was previously based on HTML), Ontology Markup Lan-

guage (OML), Resource Description Framework (RDF), Ontology Interchange Language

(OIL), DARPA Agent Markup Language+OIL (DAML+OIL) and Web Ontology Language

(OWL).

Languages such as RDF, OIL, DAML+OIL and OWL depend on Description Logic [27].

These languages are shortly explained in this section. Description logic provides powerful

tools for describing concepts and relations. Description logic inherits a lot from the early re-

search on Semantic Web and defines a formal semantics for the description of concepts and

relations. Classification taxonomies can be automatically derived from these descriptions.

Whereas the concept hierarchy is modeled explicitly in frame-based systems, a distinguish-

ing feature of description logics is that concepts and concept hierarchy do not have to be

defined explicitly. A concept can be defined in terms of descriptions specifying the proper-

ties that objects must satisfy in order to belong to the concept.

12

2.1.1. Resource Description Framework (RDF) and RDF Schema (RDFS)

RDF(S) is developed by W3C for describing Web resources. It provides a way of

specifying the semantics of data using XML syntax in a standardized and interoperable man-

ner. Moreover, RDF(S) provides mechanisms to explicitly represent services, processes, and

business models and allows recognition of non-explicit information. The RDF data model

well fits to the semantic webs formalism. In RDF representation, resources are described

by RDF expressions and are always named by URIs. Resources may have properties, which

define specific aspects of or relations between the resources. RDFS is used to define the

relationships between properties and resources. RDFS provide a basic schema for RDF and

could directly be used to describe ontologies. In RDF(S), predefined properties can be used

to model instance-of or subclass-of relationships as well as domain and range restrictions

of attributes. An RDF document consists of triples. All RDF triples are asserted facts. An

RDF triple consists of a subject, a predicate, and an object. The assertion of an RDF triple

says that some relationship, indicated by the predicate, holds between the things denoted by

subject and object of the triple. A simple RDF triple is shown in Figure 2.1.

<foaf:knows>

<foaf:Person>

<foaf:nick>Cal</foaf:nick>

<foaf:name>Cal Henderson</foaf:name>

<foaf:mbox sha1sum>2971b1c2fd1...5671d1c4e32</foaf:mbox sha1sum>

<rdfs:seeAlso rdf:resource=”http://www.iamcal.com/foaf.xml”/>

</foaf:Person>

</foaf:knows>

Figure 2.1. A simple RDF triple

The primitives used by RDFS for defining knowledge model are similar to that of

frame-based approaches. However, RDFS provides reified second-order logic as in CycL

and KIF and RDF expressions are terms in meta expressions. Neither Frame Logic nor most

Description Logic based languages provide such expressiveness. In RDF(S), properties are

defined globally and are not encapsulated as attributes in class definitions. Hence, a frame

ontology can only be expressed by reifying the property names with class name suffixes. Al-

13

though RDF(S) provides a rather strong reification mechanisms and has serious contributions

to the ontology representation research, it provides limited expressiveness power and lacks

for a standard of describing logical axioms . So, RDF(S) is extended by several ontology

languages.

2.1.2. Ontology Interchange Language (OIL)

OIL is developed in the OntoKnowledge project to enable semantic interoperability

between Web resources. The problem with most of the ontology representation languages is

their high expressive power that is provided without any means of control. So, no reasoning

support has ever been provided for these languages. OntoKnowledge project started OIL as

a very simple and limited core language. By restricting initial complexity and making con-

trolled extension on OIL, researchers in OntoKnowledge project added reasoning support

to the language. Its syntax and semantics are based on the preceding ontology languages;

OKBC, XOL, and RDF(S). Modeling primitives in OIL are similar to that of frame-based

approaches. On the other hand, formal semantics and reasoning support in OIL is inher-

ited from description logic approaches. So OIL has decidability and an efficient inference

mechanism. OIL is built on the top of RDF(S). It has four levels; Core OIL, Standard OIL,

Instance OIL and Heavy OIL. Core OIL provides a direct mapping of OIL primitives to

RDF(S) primitives. Standard OIL is the complete OIL model and provides more primitives

than the defined in RDF(S). Instance OIL provides instances of concepts and roles and Heavy

OIL is reserved for the future extensions to OIL and it may include additional representa-

tional and reasoning capabilities.

2.1.3. DARPA Agent Markup Language+OIL (DAML+OIL)

The DARPA agent markup language (DAML) aims to enable the next generation of

the web, which is a transition from a web simply displaying content to that actually infers

the meaning of the content. The DAML program has generated the DAML+OIL markup

language on the top of RDF(S). As its name implies, DAML+OIL shares the same objective

as OIL and there is a close relationship between DAML+OIL and OIL. The DAML inherits

many aspects from OIL, and the capabilities of the two languages are relatively similar.

14

2.1.4. Web Ontology Language (OWL)

OWL was initiated as a revision to the DAML+OIL by W3C. So, it is regarded as an

extension of RDF. OWL is part of the growing stack of W3C recommendations regarding

the Semantic Web. OWL aims at to be a standard ontology language for the web with an

interchangeable ontology format. It unifies three important aspects from previous work on

ontologies. It takes powerful knowledge modeling primitives from frame systems. It inherits

efficient reasoning support from Description Logics. Lastly, it uses a syntax which is com-

patible with the current Web standards. OWL uses RDF’s flexible approach to representing

data. A part of a simple OWL ontology is shown in Figure 2.2.

<owl:Class rdf:about=”/ka.daml#Institute”>

<rdfs:subClassOf>

<owl:Class rdf:about=”file:/ka.daml#Organization”/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”file:/ka.daml#hasParts”/>

<owl:allValuesFrom>

<owl:Class rdf:about=”file:F/ka.daml#ResearchGroup”/>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Figure 2.2. A part of a simple OWL ontology

OWL adds more vocabulary to RDF Schema for describing properties and classes such

as relations between classes (e.g. disjointness), equality, cardinality (e.g. ’exactly one’),

characteristics of properties (e.g. symmetry), and enumerated classes. Increasing expres-

siveness considerably reduces the reasoning capabilities and decidability of the language. In

order to avoid this trade off as much as possible, OWL provides three increasingly expres-

sive sublanguages; OWL Lite, OWL DL and OWL Full. Each of these sublanguages is an

extension of its simpler predecessor.

15

OWL Lite has a lower formal complexity than OWL DL and OWL Full. OWL Lite is

a sublanguage of OWL DL that supports only a subset of the OWL language constructs. It is

particularly targeted at the users who want to start with a relatively simple basic set of fea-

tures. Some semantic restrictions are applied to OWL lite in order to guarantee decidability.

For example, while it supports cardinality constraints, it only permits cardinality values of 0

or 1.

OWL DL is a sublanguage of OWL Full. DL in its name is an acronym for Descrip-

tion Logic. OWL DL provides the maximum expressiveness while retaining computational

completeness and decidability. Computational completeness means that all conclusions are

guaranteed to be computable. Decidability means that all computations will finish in finite

time. There are currently several reasoners for OWL DL, such as KAON2, JENA, FaCT,

FaCT++, RACER and Pellet.

OWL Full has the maximum expressiveness with no computational guarantees. It uses

all semantic and syntactic properties of RDF and additional constructs of OWL. For exam-

ple, in OWL Full a class can be treated simultaneously both as a collection of individuals

and as an individual. These powerful expressiveness of OWL FULL makes it unlikely to

develop a reasoning software supporting every feature of OWL Full. Hence, a complete

implementation of a reasoner supporting OWL Full does not currently exist.

2.1.5. OWL-S: An OWL based Ontology for Web Services

With the semantic web, it will be possible to access Web resources by content rather

than just by keywords. New generation of Web markup languages such as OWL [25,28] and

its predecessor DAML+OIL [29,30] is an important advancement in this regard. So, creation

of ontologies for any domain and the instantiation of these ontologies in the description

of Web sites (or Web resources) are now possible. Most important web resources are the

ones that provide services. These resources are called Web Services. While introducing

the Semantic Web and its goals in this section, we stated that Semantic Web will enable

software agents to carry out sophisticated tasks for their users. In order to make use of

Web Services, software agents should be able to discover, compose, invoke, and monitor

16

Web resources providing particular services. Moreover, software agents need computer-

interpretable descriptions of these services. A service description should contain what the

service does, how it works and how it will be accessed. Semantic markup languages for

Web Services aim to make these descriptions within an interchangeable format. OWL-S4

(formerly known as DAML-S) is an ontology of services, which is developed as a part of

the DARPA Agent Markup Language program. This ontology has three sub-ontologies;

the service profile, the process model and the grounding. The service profile is used for

advertising and discovering services. The process model gives a detailed description of a

service’s operation and the grounding provides details on how to interoperate with a service.

Figure 2.3 depicts these sub-ontologies of the service ontology.

Figure 2.3. Top level of the service ontology

The service profile describes what the service does. It gives sufficient information to a

service consumer, which can be either a service-seeking agent or a matchmaking agent acting

on the behalf of a service-seeking agent, to determine whether the service meets its needs.

The service profile does not only be used for the description of service capabilities but also

it can be used for the description of the service demand of a service consumer. By service

demand, we mean the needs of a service consumer regarding a specific service domain.

So, the service profile provides a dual-purpose representation both for service providers and

service consumers.

The service model describes how the service works. This description may be used

4http://www.w3.org/Submission/OWL-S

17

by a service consumer to perform detailed analysis of whether the service really meets its

needs. Service consumer can also use the service model to monitor the execution of the

service. Moreover, the service model can be useful to compose service descriptions from

multiple services to perform a specific task and to coordinate the activities of the different

participants during the service enactment.

A service grounding describes the details of how an agent can access a service. This

description usually covers a communication protocol, required message formats, and other

service-specific details such as port numbers used in contacting the service.

To sum up, the service profile provides the information needed for an agent to discover

a service. On the other hand, the service model and service grounding provide enough in-

formation for an agent to make use of a service. Therefore, OWL-S, as a whole, enables

software agents to automatically discover, invoke, compose, and monitor Web resources of-

fering services, under specified constraints.

2.1.6. Semantic Web Rule Language

Semantic Web Rule Language5 (SWRL) is proposed to combine sub-languages of

the OWL Web Ontology Language (OWL DL and Lite) with the Rule Markup Language6

(RuleML). SWRL extends the set of OWL axioms to include Horn-like rules (a∧b ⇒ c) [31].

Hence, SWRL enables Horn-like rules to be combined with an OWL ontology. Each SWRL

rule is in the form of an antecedent (body) and consequent (head). A SWRL rule can be inter-

preted as: whenever the conditions specified in the body hold, then the conditions specified

in the head must also hold.

Both the body and the head of a rule may consist of zero or more atoms. Multiple atoms

are treated as a conjunction. Therefore, a rule with multiple atoms can easily transformed

into multiple rules with single atom, using the Lloyd-Topor transformations [32]. An empty

rule body is treated as trivially true (i.e. satisfied by every interpretation), so the rule head

5http://www.w3.org/Submission/SWRL
6http://www.ruleml.org

18

must also be satisfied by every interpretation. However, an empty rule head is treated as

trivially false (i.e., not satisfied by any interpretation), so the rule body must also not be

satisfied by any interpretation. Atoms in these rules can be in the form of C(x), P (x, y),

sameAs(x, y) or differentFrom(x, y), where C is an OWL description, P is an OWL

property, and x, y are either variables, OWL individuals or OWL data values. Figure 2.4

demonstrates a simple SWRL rule for the definition of Uncle concept; the rule states that Y

is an uncle of X if it is the brother of X’s father.

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#swrlexample"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom swrlx:property="hasParent">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="hasBrother">
 <ruleml:var>x2</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property="hasUncle">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>

Figure 2.4. SWRL example for the rule:

hasParent(?x, ?z) ∧ hasBrother(?y, ?z) ⇒ hasUncle(?x, ?y)

2.2. Peer-to-Peer Communication

During service selection, service consumers may need to locate service providers of

their interest or other service consumers from which they can request information (ratings or

referrals) about these service providers. However, locating right parties is not a trivial task in

an open system, because there is no central authority for indexing every service consumers

or provider together with their specialties. Nonetheless, there is a solid literature on the Peer-

to-Peer(P2P) information discovery and retrial. Therefore, some of the approaches from the

literature can be adopted in order to locate parties to interact with.

P2P search protocols can be classified into two main categories depending on how the

search is conducted; blind and informed search. In a blind search, peers have no information

related to location of the documents of their interest. Therefore, other peers are randomly

19

probed to locate these documents. So, blind search protocols are usually very simple and they

require peers to maintain minimum amount of knowledge. On the other hand, in informed

search protocols, peers maintain additional information about locations of the documents.

This information is used for the future searches. Unlike blind search protocols, informed

search protocols decide which peers to contact with depending on this additional information.

P2P search protocols can also be classified depending on how the network structure

is modified to facilitate the searching. Some protocols arrange network structure and build

a new network topology in accordance with locations of the documents in the network or

locations of computationally powerfully peers. Therefore, the connections between peers

are set in a special manner to support an efficient and productive searching scheme. On the

other hand, some protocols do not change network structure and do not rearrange connections

between the peers. So, network structure evolves chaotically and it is maintained as is. In

this section, some P2P searching protocols are briefly explained according to the categories

cited above.

2.2.1. Blind Search Approaches

Gnutella [33] implements a decentralized file search approach. It does not reorganize

network structure and peers do not maintain information about file locations. So, Gnutella

is an example of Blind Search protocols without Network Reorganization. During a search,

various peers are randomly asked if they have the desired file. This is accomplished using a

technique called controlled flooding. A peer initiates a query message by sending it to all of

its neighbors, which are peers connected to it. After a peer receives a query message it checks

whether it has the desired file or not and informs initiator of the query if it has the desired

file. Each query message has a Time-to-Live (TTL) attribute. Each time a peer receive a

query message, it checks this attribute and decrements its value. If TTL becomes zero, the

query message is not forwarded to other peers; otherwise it is forwarded to the neighbors

of the peer receiving the message. So, the generated network traffic for search operation is

limited. By implementing such an unstructured search approach, Gnutella is not affected by

the joins and leaves of the peers. However, scalability of the resultant network is influenced

because of the high degree of flooding.

20

FastTrack is based on the Gnutella protocol. Main drawback of Gnutella is its scala-

bility problems. FastTrack overcomes this drawback by introducing heterogeneity between

peers. There are two types of peers in the P2P network supernodes and regular peers. The

supernodes are peers, which have computer power, bandwidth and availability. These peers

are connected to each other and constitute a top level topology. Other peers, namely nor-

mal peers, are connected to these peers. So, FastTrack forms a two-level topology on the

P2P network. Introduction of supernodes improves scalability, because these peers handle

traffic and routing on behalf of weak peers connected to them. This approach is also used

in popular P2P applications such as KaZaa, Morpheus, iMesh and MLdonkey. In KaZaa,

peers dynamically elect supernodes. Then, these supernodes form an unstructured network.

Each regular peer is connected to a supernode. Whenever a regular peer initiates a query, it

forwards the message only to its supernode. Then the supernode uses query flooding to lo-

cate content on the behalves of the regular peer. Although scalability is improved somehow

with the introduction of supernodes, flooding is still resulted in a high volume of network

traffic. Additionally, planned attacks to the supernodes may results in serious damages in the

network.

Another blind search approach is Random Walks [34]. Random Walks is similar to

the Gnutella protocol, but peers do not send query messages to all of their neighbors. After

taking a query message, a peer forwards this message to a randomly chosen neighbor. So,

overall network load due to a search is reduced considerably. Random Walks uses the prop-

erties of network topology. If the network topology has a power-law degree distribution as

in most of the social networks, high degree nodes and the peers available for a long time will

experience high query loads.

The Logical Clustering [35] approach does not change the actual network topology

but it creates dynamic logical clusters by circulating messages called wanderers. Main mo-

tivation of these logical clusters is to improve quality of service (QoS) regarding the search

response time. The P2P networks have a dynamic nature and their size can become very

huge. The clustering divides the network into small groups called clusters such that QoS

constraints such as time requirements will hold. These clusters are created on the basis of

the time in which peers want to be supplied with information. A wanderer is responsible

21

for the creation and maintenance of a cluster. This wanderer must be able to visit all peers

in that cluster within a given time constraint. Communication between different clusters is

accomplished by the wanderers dedicated to these logical clusters. These wanderers choose

one peer from each cluster and these peers are connected and construct a tree like structure.

This tree is used for spreading messages between clusters during a search. So, the number

of messages circulating in the network is reduced considerably.

2.2.2. Informed Search Approaches

Query Routing Protocol (QRP) [36] uses additional information about the locations of

the documents in the network. In QRP, each peer maintains a routing table. Entries in this

routing table include hashed keywords, which are used to describe locally offered files. Peers

regularly exchange these entries with their neighbors by propagating them up to several hops

away. In order to code a set of keywords in a transmittable and concise form, bloom filters

are used. If a peer receives routing table entries from its neighbors, the peer merges these

entries with its routing table. Peers use routing tables to decide which of the neighbors it

is worth routing a search query, because their routing tables contain information regarding

the documents in their neighborhood and further. In order to decrease the number of hops

required to locate a desired document, routing tables should be propagated by peers as far

as possible. However, propagating routing tables decreases the validity or recentness of the

information due to network dynamics; routing tables of leaving peers will continue to effect

routing tables of others.

Routing Indices (RI) approach [37] is similar to QRP, but it does not use bloom filters

to summarize content located in their neighborhood. The purpose of RI is to allow peers to

select the best neighbors to forward a search query message. It uses a data structure called

routing indices which return a list of neighbors ranked according to their goodness for a

specific search query. The notion of goodness may change depending on the implementation

but, in [37], the goodness of a peer is taken as the number of documents related to the

query in its neighborhood. In order to accomplish this task, documents in the network are

categorized. Each peer maintains an IR structure for each of its neighbors. This IR structure

indicates how many documents of which category could be found through that neighbor.

22

When a new neighbor is added to the neighborhood of a peer, this peer aggregates its IR

structures related to its other neighbors and sends this aggregate to its new neighbor. So

the new neighbor gets a comprehensive view of its new neighborhood. In order to keep

IR structures valid and recent, each peer informs its neighbors about the changes such as

addition or removal of documents or joins/leaves of other neighbors.

Adaptive Probabilistic Search (APS) [38] uses feedback from previous searches to

probabilistically guide future searches. Each peer maintains an index table, which summa-

rizes which objects (documents or files) were requested by each of its neighbors. Weights

in this index table are used to compute the probability of choosing neighbors for forwarding

a search query. So, the probability of choosing a neighbor to find a particular document

depends on previous search results. This approach depends on the fact that many of the

requested files are usually close to the requesters [39]. So, by forwarding new queries to pre-

vious requesters, the probability of finding the requested documents increases. Hence, the

P2P network demonstrates a self-learning property. Unlike RI and QRP, this approach does

not require additional information regarding the placements of documents in the network.

This property makes it more robust to changes in network topology. However, this approach

may lead to some sort of starvation; popular files could be located very fast, while other files

could not easily be located.

In order to overcome the scalability limitations of previous P2P search systems, Dis-

tributed Hash Tables (DHT) approach is developed. Some important P2P content search

systems such as CAN [40] and Chord [41] use this approach. In DHT, documents are asso-

ciated with a key which is produced by a common hashing algorithm. Hashing can be done

on the content of the document or its name or both depending on the application. Output of

this hashing algorithm constitutes an ID space. For example, if the algorithm is producing

64 bit hexadecimal keys, set of all 64 bit hexadecimal keys constitutes the ID space. Every

peer in the P2P network is responsible for storing a certain range of keys. So, each peer

is responsible for a partition of ID space. Network structure is arranged by routing tables

locally stored on individual peers. A routing table is composed of a list of other peers with

addresses and range of the keys they are responsible for. So the network topology is tightly

controlled by placing information about documents at the precisely specified locations de-

23

fined by their keys. DHT based systems provide a highly scalable P2P network because of

careful information placement and tightly controlled network topology. However, network

structure becomes less reliable, in case the user population is very transient. Additionally,

difficulties related to load balancing can reduce the performance of the network. For ex-

ample, some peers may be overloaded because the range of keys, which they store, belongs

to very popular documents. So these peers could not response to all of queries due to their

limited capacity.

Zhang et al. proposed a multiagent approach for P2P information retrieval systems [42].

In the paper, each agent is modeled using five components: a collection, a collection descrip-

tor, a local search engine, an agent-view structure and a control center. Collection is the

collection of documents located in the agent. Collection descriptor is the language model

of the collection, which is concise representation or signature of the collection. A local

search engine is used to search the documents in the collection of the agent. The agent-view

structure of an agent contains information about the collection descriptors of other agents in

the neighborhood. An agent-view is analogous to the routing table of a network router. The

control center is responsible for accepting queries and performing the distributed search algo-

rithm. The initial topology of the agent society is randomly created using a method inspired

from Gnutella. Then, agent-view reorganization algorithm (AVRA) is run to dynamically

reorganize the underlying agent-view topology. This algorithm makes agents to share and

aggregate their agent-views. This algorithm dynamically adapts the topology by placing se-

mantically similar agents together to form loose content clusters. This clustered topology

is used to speed up the distributed search task. The proposed approach associates virtual

clusters with collection descriptors and reorganizes those content based clusters dynami-

cally. Hence, it increases the performance of the distributed search algorithms by dividing

the space into content-based clusters.

2.3. Trust and Reputation Systems

Trust and reputation systems are on the center of most Internet mediated service se-

lection and provision architectures. In these systems, the basic idea is to enable parties rate

each other and use the aggregated ratings to derive a trust or reputation score. These scores

24

can be used by parties in the service selection in the future. Notions of trust and reputation

are frequently used in the agent mediated e-commerce literature. These notions can easily

be confused with each other. There can be different definitions of trust. McKnight and Cher-

vany [43] define trust as the extent to which one party is willing to depend on something

or somebody in a given situation with a feeling of relative security, even though negative

consequences are possible. On the other hand, reputation is defined in Oxford dictionary

as what is generally said or believed about a person’s or thing’s character or standing. This

definition overlaps with what is usually understood from the word ’reputation’ in the liter-

ature. Reputation is be derived quantitatively from the underlying social network. While

trust is usually personal and subjective phenomenon, reputation is global. The difference

between trust and reputation can be illustrated by the following statements [20]: (i) I trust

you because of your good reputation, (ii) I trust you despite your bad reputation. The first

statement reflects that the trust is originated from the good reputation of the other party.

On the other hand, the second statement reflects that the trust is originated from the private

knowledge such as previous experiences or intimate relationship between two parties and it

overrules any reputation. These two statements reveal that personal experiences are more

important in the constitution of trust than the referrals or reputation, which can be regarded

as the aggregation of others’ level of trust to a person.

Reputation systems can be can be classified as Centralized and Distributed Reputation

Systems. In centralized reputation systems, information about a member is collected as

ratings from other members by a central authority. Then, this central authority computes

a reputation score for the member and makes this score publicly available. This score is

later used by other members to decide whether or not to transact with the member. These

systems depend on the observation that transactions with reputable members will result in

more favorable outcomes on the average, when all transactions are considered.

Unlike centralized systems, in a distributed system, there is no central location for sub-

mitting ratings or obtaining reputation scores. In these systems, ratings are distributed over

the network and the members should discover, collect and aggregate these ratings to compute

reputation scores. After a transaction, each participant simply records its opinion with the

other party (rating) and provides this information to others if it is requested. Before decid-

25

ing to transact with a member, other members compute the reputation score of the member

based on the received ratings. Distributed reputation systems are robust to failures, because

there is no single point of failure, and they are suitable for open systems. However, these

systems have two challenges. Firstly, a distributed and scalable communication protocol is

necessary to enable participants to discover and collect rating from other members of the

community. Secondly, a reputation computation method is required, which will be used by

each member to derive reputation scores of other members based on the received ratings and

other information. P2P search methods, which are stated in Section 2.2, can be used to over-

come the first challenge. Hence, this section mainly focuses on the current approaches for

the second challenge. Computation of reputation scores from ratings is the most important

research question also for the centralized reputation systems.

One of the simplest solutions for this question is simply summing the ratings. Sur-

prisingly, the most famous auction site in the World, e-Bay, uses this simple approach to

compute reputation scores [44]. After an auction is completed, both the buyer and the seller

can give the other party a rating of +1 (positive), 0 (neutral), or -1 (negative) in addition to

their textual comments. Then, e-Bay simply sums these ratings to compute one’s reputation

score. Actually, e-Bay displays several aggregates of these ratings to its members; (1) the

difference between the number of positive and negative feedback rating which is actually the

sum of ratings, (2) the percentage of positive feedback ratings, (3) the date when the seller

registered with e-Bay, (4) a complete record of the comments received by each seller. So,

e-Bay enhances its reputation mechanism. Another approach in this category is to average

ratings instead of just summing them up. Numerous commercial web sites such as Epinions 7

and Amazon8 uses this approaches to compute reputation scores. More advanced approaches

in this category use a weighted average of all the ratings to compute reputation scores. In

these approaches, a rating is weighted depending on the several factors such as reputation of

the rater, age of the rating, distance between rating and current score [20].

FIRE [18] is a trust and reputation model consisting of four components: interaction

trust, role-based trust, witness reputation and certified reputation. Interaction trust is related

7http://www.epinions.com
8http://www.amazon.com

26

to experiences resulted from direct interactions of an agent with other agents. This is accom-

plished by rating the attributes of the transaction, including price, quality and delivery date

with a range of [-1,+1] (-1 for absolute negative, 0 for neutral and +1 for absolute positive).

Experiences are summed with weights such that more recent ones have higher weights. In

this way, an agent can build a trust model of another agent. Also, the agent can score the

reliability of this trust model using the number and deviation of the ratings used in the compu-

tation. Role-based trust models result from the role-based relationships between two agents

(e.g. owned by the same organization, acquaintance). For this purpose, rules can be defined

to assign role-based trust values. Witness reputation of a target agent is built by making use

of past experiences of other agents (witnesses). Certified reputation is related to ratings used

by the rated agent as certifications of its past performance. It allows an agent to prove its

achievable performance as viewed by previous interaction partners. These four types of trust

components and their reliability are combined in order to obtain a composite trust value and

its reliability. FIRE system assumes that the agents report their trust information truthfully.

Abdul-Rahman and Hailes [45] proposed a discrete trust model. They used four de-

grees of agent trustworthiness, which are stated as vt (very trustworthy), t (trustworthy), u

(untrustworthy) and vu (very untrustworthy). For each participant and context, the agent

maintains a tuple with the number of past experiences in each category, vt, t, u and vu. For

instance, if tuple for a participant in a specific context is (3, 4, 0, 0), it means that in 3 out of

7 interactions, the participant was very trustworthy and in 4 out of 7 interactions, it was only

trustworthy. For the future interactions, this participant is classified as trustworthy by the

agent because the maximum value in the tuple belongs to trustworthy. Whenever the agent

has had personal experience with the participant, this tuple is updated and trustworthiness

is recalculated. Derived trustworthiness values can also be used to weight referrals. For

example, suppose a participant A informs X that another participant B is vt, but X’s eval-

uation for B’s trustworthiness with respect to its own experiences is only t. X weights the

referrals from A accordingly before taking them into account. So, referrals from participants

who are recognized to overrate will be downgraded, and referrals from participants who are

recognized to underrate will be upgraded.

The REGRET reputation system is proposed by Sabater and Sierra [46, 47]. Sabater

27

and Sierra defined three dimensions of reputation; individual dimension, social dimension

and ontological dimension. Individual dimension is derived from direct interaction with a

participant. On the other hand, social dimension of a participant’s reputation is derived from

the information coming from other members of the society and the social relations. Social

dimension may be very important in the lack of direct interactions. However, social relations

may have different forms such as competitive relation or cooperative relation. In order to

increase the reliability of social information, REGRET uses fuzzy rules. Lastly, ontological

dimension of reputation is derived from the contextual information related to interactions.

REGRET computes reputation of a participant using these three dimensions of reputation.

Yolum and Singh proposed to use PageRank [48] for reputation calculations [49] in re-

ferral networks. PageRank is a metric used by Google to rank Web pages. Yolum and Singh

study P2P service networks consisting of autonomous agents who seek and provide infor-

mation services among their neighbours. Here, the agents track each other’s trustworthiness

locally and can give and receive referrals as well. In the model proposed, agents interact

with each other through referral graphs. A referral graph is a directed graph where the nodes

denote agents and an edge denotes that the source of the edge has referred to the target of the

edge. In this graph, an increase in the number of links to an agent leads to an increase in its

PageRank value. Then, reputation of the agent is derived from its PageRank value.

One of the main problems in the current trust and reputation systems is unfair ratings.

Unfortunately, many of the approaches in the literatures assume that agents share their ratings

honestly. However, this is not a realistic assumption in open systems where there is no

central authority to monitor who is telling the truth and who is not. In the literature, there

are several approaches that develop methods for handling unfair ratings while computing

trustworthiness. Some of these approaches are shortly described in the following sections.

2.3.1. Beta Reputation System

In Beta Reputation System (BRS), reputation scores of service providers are computed

by statistically updating beta probability density functions (PDF) [50]. The reputation score

of a provider is represented by the beta PDF parameters (α, β). These parameters represent

28

the amount of positive and negative ratings, respectively.

The beta distributions are a family of statistical distribution functions that are char-

acterized by two parameters α and β. The beta distribution denoted as Beta(p|α, β) is

defined as in Equation 2.1, where Γ is the gamma function and α, β > 0. Expected value of

Beta(p|α, β) is defined as in Equation 2.2 and used to shortly characterize the distribution.

Beta(p|α, β) =
Γ(α + β)

Γ(α) × Γ(β)
p(α−1)(1 − p)β (2.1)

E(Beta(p|α, β)) =
α

α + β
(2.2)

For a single transaction, the reputation system enables a consumer to rate a provider both

positively and negatively, by arbitrary amounts. This rating takes the form of a vector ρ =

[r, s], where r ≥ 0 and s ≥ 0 and they represent the positive and negative components of the

rating respectively. That is, for a satisfactory transaction ρ+ is [1, 0] and for a dissatisfactory

transaction ρ− is [0, 1]. A particular rating of the consumer X of provider Z at time t is

denoted as ρX
Z,t. X’s aggregated rating of Z can be calculated by summing all of its previous

ratings as shown in Equation 2.3.

ρt(X, Z) =
∑
tR<t

ρX
Z,tR

(2.3)

If a consumer does not have direct interactions with Z, it can collect aggregated ratings of

other consumers to Z and using Equation 2.4, the consumer can calculate Z’s aggregate

rating.

ρt(Z) =
∑
X∈S

ρt(X, Z) (2.4)

Once aggregated ratings for a particular service provider are known, it is possible to calculate

the reputation probability distribution for that provider, which is expressed as Beta(ρt(Z)) =

Beta(ρ|r + 1, s + 1), where ρt(Z) = [r, s]. Expected value of this distribution is used as the

29

reputation score of the provider Z, denoted as Rt(Z).

Rt(Z) = E[Beta(ρt(Z))] =
r + 1

r + s + 2
(2.5)

In beta reputation system, an endogenous method is used to filter unfair ratings. This filter-

ing algorithm is iteratively executed whenever Z’s reputation score must be recalculated. It

assumes the existence of cumulative rating vectors ρt(X, Z) for each rater X in the com-

munity. The basic principle of the filtering algorithm is to verify that overall score R t(Z)

falls between the q quantile (lower) and 1 − q quantile (upper) of ρt(X, Z) for each rater X .

Whenever this is not the case for a given rater, its cumulative rating is considered unfair, and

excluded.

.

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 d

en
si

ty
 b

et
a

(p
 |

8,
2

)

Probability p

0.01 quantile 0.99 quantile

Figure 2.5. 1% and 99% quantiles of beta(p|8, 2)

Let consumer X give an aggregate rating ρ(X, Z) = [7, 1] for Z. Then, reputation

distribution for Z according to X’s rating is defined by Beta(p|8, 2), which is shown in

Figure 2.5. Assume that q = 0.01, so 1% percent of data fall below and 99% fall above

the lower quantile. If the overall rating score Rt(Z) stays within the margins defined by the

quantiles in the figure, then X ’s rating is regarded as fair. Otherwise, it is regarded as unfair

and excluded. For example, if Rt(Z) < 0.45 or Rt(Z) > 0.98, X’s rating is regarded as

unfair. This approach depends on the assumption that majority of the ratings are fair and

it does not consider the personal observations of the consumers while determining unfair

ratings.

30

2.3.2. Robust Reputation System for Mobile Ad-Hoc Networks

Buchegger and Boudec propose a robust reputation system for mobile ad-hoc networks

(RRSMAN) [51]. In this section, we describe this approach shortly in the context of service

selection. In RRSMAN, a service consumer in the network maintains first-hand information

and a reputation rating about each service provider.

The first-hand information record of the consumer X for a service provider Z has the

form of FX,Z = (α, β). In this notation, α and β are the parameters of the Beta distribu-

tion assumed by X in its Bayesian view of Z’s behavior. These parameters are initiated as

(1, 1) and updated after X’s each transaction with Z as shown in Equation 2.6 and 2.7. In

these equations, u is a discount factor for past experiences and s is 1.0 if the transaction is

satisfactory, otherwise it is 0.0.

α = u.α + s (2.6)

β = u.β + (1 − s) (2.7)

The reputation rating RX,Z is also defined by two parameters, α′ and β ′. These parameters

are also initiated as (1, 1). However, they are updated in two cases: (1) when first-hand

information is updated (2) when a first-hand information (FK,Z) published by some other

consumer K is received. In the first case, the update is the same as the update of the first-

hand information using the observation s ∈ {0, 1}. In the second case, RX,Z is updated using

FK,Z using Equation 2.8, where w is a small positive constant.

RX,Z = RX,Z + w.FK,Z (2.8)

Buchegger and Boudec propose a exogenous method to filter unfair first-hand infor-

mation published by consumers. For this purpose, they use Trust Ratings. Trust rating of

X to K is denoted as TX,K and defined as (γ, δ). Initially, TX,K = (γ, δ) = (1, 1) and it

31

is updated whenever a first-hand information is received from K. Let X have a reputation

rating RX,Z = (α, β) about the provider X and let X receive FK,Z = (αF , βF), which is

the first-hand information of K about Z. Then, X updates (γ, δ) using Equation 2.9 and

2.10. In the equations, s = 1.0 if FK,Z passes deviation test in Equation 2.11, otherwise

s = 0.0. In the deviation test, d is a positive constant (deviation threshold). Trusfulness of K

is determined using TX,K . Therefore, RX,Z is updated with FK,Z only if E[TX,K] is greater

than a threshold such as 0.5.

γ = v.γ + s (2.9)

δ = v.δ + (1 − s) (2.10)

|E[Beta(p|αF , βF)] − E[Beta(p|α, β)]| < d (2.11)

2.3.3. TRAVOS

This is also a probabilistic approach to model a consumer’s trust on a service provider

using its individual experiences [52]. If a truster, namely consumer X , has complete in-

formation about a trustee, namely provider Z, then, according to X , the probability that Z

produces satisfactory services can easily be expressed by a beta distribution. Parameters of

this distribution is computed using the set of all interaction outcomes X has observed about

Z. The level of trust τX,Z is defined at time t as the expected value of the beta distribution

given the set of outcomes O1:t
X,Z . Let mt

X,Z and nt
X,Z be the number of successful and un-

successful interactions for X with Z, respectively. Then, level of trust τX,Z is defined as in

Equation 2.12.

τX,Z = E[Beta(p|α, β)] (2.12)

α = mt
X,Z + 1 (2.13)

32

β = nt
X,Z + 1 (2.14)

If the confidence of the computed trust value is low, consumer X computes the reputation of

the provider Z using the opinions of the other consumers. Received opinion of the consumer

K about Z at time t is defined as Rt
K,Z = (mt

K,Z, nt
K,Z). The consumer X , aggregates these

opinions using Equation 2.15. This aggregation can be used to calculate shape parameters

for a beta distribution as shown in Equation 2.16 and 2.17, to give a trust value determined

by the opinions provided from others.

MX,Z =
∑
i=0

mt
Ki,Z

, and NX,Z =
∑
i=0

nt
Ki,Z

(2.15)

α′ = M t
X,Z + 1 (2.16)

β ′ = N t
X,Z + 1 (2.17)

TRAVOS estimates the probability that a rater’s stated opinion of a service provider is accu-

rate using an exogenous method. Let Rr
K,Z = (mr

K,Z , nr
K,Z) be the stated opinion of K about

Z. The Er is the expected value of a beta distribution Dr, such that αr = mr
K,Z + 1 and

βr = nr
K,Z + 1. Accuracy of K’opinion about Z, denoted as ρK,Z , is computed as follows.

First, interval [0,1] is divided into N bins and the one that contains E r is determined.

This bin is called bino. The outcomes of all previous interactions for which K provided an

opinion to X are considered. Let HX,K be the set of all pairs of the form (OX,A; RK,A),

where A is any service provider that K provided opinion about, and OX,A is the outcome of

the X’s interaction with A. Third, the subset H r
X,K ∈ HX,K , which comprises all pairs for

which the opinion falls in bino are found. From this set, we count the total number of pairs in

Hr
X,K for which the interaction outcome was successful (denoted Csuccess) and, similarly, for

those which were not successful (denoted Cfail). Then we define a beta distribution Do with

parameters αo = Csuccess +1 and βo = Cfail +1. Accuracy of the K’s rating is computed as

portion of the total area under Do that lies in the interval defined by bino. If the accuracy of

an opinion is low (e.g., less than 0.5), it is regarded as unfair. Figure 2.6 shows an illustration

33

of how the accuracy ρX,K is estimated.

Figure 2.6. Illustration of ρX,K Estimation Process (5 bins are used)

2.3.4. Yu and Singh’s Model of Trust

Yu and Singh proposed a model, which uses Dempster-Shafer theory of evidence to

calculate reputation scores [53, 54]. Dempster-Shafer theory of evidence allows the explicit

representation of ignorance and combination of evidence. In Dempster-Shafer theory of ev-

idence, the combination of evidence is expressed by Dempster’s combination rules, which

allow to combine multiple sources of evidence. In the model of Yu and Singh, each agent

stores a history of its direct interactions with other participants. In this history, an interaction

with a participant is represented by a set of values that reflect the quality of the interaction,

namely QoS. There are three QoS categories in this model; trustworthy, uncertain and un-

trustworthy. Each agent defines two thresholds (upper and lower thresholds) to differentiate

between these QoS categories. In other words, using these thresholds, an agent can catego-

rize an interaction with a specific participant into one of these three QoS categories. Using

this information together with Dempster-Shafer theory of evidence, an agent can calculate

the probability that a participant gives a service within a specific QoS category. The partici-

pant being evaluated is considered as trustworthy if the difference between the probabilities

that the service belongs to the trustworthy category and it belongs to untrustworthy cate-

gory is greater than a threshold for the trustworthiness. For these calculations, only the most

recent information in the history is considered. In this model, an agent can ask for informa-

tion about other participants if direct interactions with these participants are not available.

When a participant is requested for information about another participant, it can provide the

information about the participant only if this participant is in its interaction history. If not,

34

it will provide referrals that can be queried to obtain the requested information. In order to

aggregate the information collected from different participants about a specific participant,

Dempster’s rule of combination is used. This approach uses information from other partic-

ipants in the lack of direct interactions. So it does not combine direct interactions with the

information gathered from other participants.

Yu and Singh also propose a rating-based service selection algorithm that handles the

unfair ratings using a version of weighted majority algorithm [55]. In their algorithm for

service selection, weights are assigned to the raters. These weights are initiated as 1.0 and

they can be considered as the trustworthiness of the corresponding raters. The algorithm

makes predictions about service providers based on the weighted sum of the ratings provided

by those raters. This idea is summarized in Equation 2.18, where λj denotes the predicted

rating for the provider under consideration in trial j, wj
i is the weight of the rater i and lastly

rj
i ∈ [0, 1] is the rating of the rater i to the provider.

λj =

∑n
i=0 wj

i r
j
i∑

wj
i

(2.18)

Yu and Singh propose to tune the weights of the raters after an unsuccessful prediction so

that the weights assigned to the unsuccessful raters are decreased. They assume that the

ratings of dishonest raters may conflict with the observations of the consumer receiving these

ratings. By decreasing the weights of these raters over time, unfair ratings are filtered. The

consumer X updates the weight of the rater K using Equation 2.19 and Equation 2.20, where

ρj ∈ [0, 1] denotes the observation of X after it makes a transaction with the provider for

which the rating rj
K is given by K.

wj+1
K = wj

K × θK (2.19)

θK = 1 − |rj
K − ρj |

2
(2.20)

It seems that θ ≤ 1.0 all the time. Therefore, weights of raters cannot increase with their

successful ratings, but they decrease with any of their unsuccessful ratings.

35

3. ONTOLOGY-BASED SERVICE REPRESENTATION AND

SELECTION

This chapter develops two novel approaches that allow consumer agents (simply de-

noted as consumers) to make context-aware service selections. In these approaches, con-

sumers use ontologies to express the context of their interactions with service providers. The

first of these approaches makes the context of ratings explicit so that the consumers evalu-

ate the ratings within their scope. The second approach enables consumers to record their

experiences with service providers in detail. An experience contains the consumer’s service

demand and the provided service in response to the service demand. More specifically, an

experience expresses the story between the consumer and the provider regarding a specific

service demand. Equipped with such a description, any consumer receiving an experience

can evaluate the service provider according to its own criteria using the objective data in the

experience.

The rest of this chapter is organized as follows. Section 3.1 explains the proposed

rating-based approach for the context-aware service selection. Section 3.2 experimentally

evaluates the rating-based approach. Section 3.3 explains the proposed experience-based ap-

proach for the context-aware service selection in detail and proposes two different decision-

making schemes. Section 3.4 presents the experimental evaluation of the experience-based

approach. Section 3.5 summarizes our contribution, discusses our results, and compares our

work to related work in the literature.

3.1. A Rating-Based Approach for Context-Aware Service Selection

We consider an architecture where service consumers are looking for service providers

to handle their service demands. A service demand is expressed in terms of well-defined

constraints on attributes of a service such as service completion time, service price, and so

on. If a given service does not meet those constraints, we expect the owner of the demand

to be unsatisfied. However, another service consumer having weaker demand constraints

could potentially be satisfied. If consumers only expose their levels of satisfaction (e.g., with

36

a plain rating), the former service consumer will reveal a low level of satisfaction to the

latter consumer. Even though the latter service consumer might have been satisfied with the

service provider, it will not choose to interact with the service provider. Instead, if the latter

consumer recognizes the scope of the rating, it can infer that the former consumer could be

misleading. This shows that the ratings should be made more expressive. In order to increase

the expressiveness, service consumers use a common ontology called context ontology for

the specified service domain [56]. This ontology covers the domain level knowledge and

fundamental concepts such as service demand, service provider, and rating.

3.1.1. Context Ontology

Figure 3.1 demonstrates the context ontology for an online shopping domain. This

ontology is used to represent context-aware ratings denoted as ContextAwareRating. A

context-aware rating mainly represents what a service consumer has requested from a ser-

vice provider (service demand) and its evaluation of what is received at the end (service

rating). Hence, each ContextAwareRating should represent a service demand, a provider

supplying the service for this demand, its rating and the date for the supplied service.

Service demands are represented by Demand class in the ontology. Properties of

Demand class are hasShoppingItem, toLocation, hasDeliveryType, hasDeliveryDuration,

hasShipmentCost and hasPrice. These properties refer to shopping items, delivery loca-

tion, delivery type, delivery duration, shipment cost and price, respectively. Some boolean

properties are also included in this set of properties: isRefundable and hasConsumerSup-

port. These properties indicate whether the transaction is refundable or not and whether

consumer support is provided or not. Service consumers represent their service interests us-

ing these domain level properties. For example, hasPrice property is used to represent the

money a consumer is willing to pay for a service. The range of hasShoppingItem property

is ShoppingItem class. This class has properties, hasQuantity, hasUnitPrice and hasQuality.

The range of hasQuality property is Quality class. This class describes quality properties

of shopping items. Service providers in the ontology are represented by ServiceProvider

class. Each context-aware rating is related to a plain rating value by data type property

hasRating. Overall, a ContextAwareRating represents a service demand and the quality

37

of provided service in terms of ratings. A rating can be +1 (positive) or -1 (negative). If the

consumer is satisfied with the provided service for its service demand, it gives the provider

a positive rating otherwise it gives a negative rating. The date of the supplied services may

be important while evaluating the ratings. For example, a service provider may degrade its

service quality by time and a service consumer may want to weight context-aware ratings

according to their ages. For this reason, hasDate property is added to the ontology. An

example of context-aware rating and its representation is given in Example 1 and Figure 3.2,

respectively.

Class

Demand

ObjectProperty
hasShoppingItem

Class
shoppingItem

DataTypeProperty
hasQuantity

DataTypeProperty
hasUnitPrice

DataTypeProperty
hasDeliveryDuration

Class
DeliveryType

ObjectProperty
hasDeliveryType

hasShipmentCost
DataTypeProperty

xsd: double

DataTypeProperty

hasPrice

Class
Location

ObjectProperty
toLocation

DataTypeProperty
hasCustomerSupport

DataTypeProperty
isRefundable

xsd: boolean

xsd: double

xsd: integer

domain

domain

domain

domain

domain

domain

domain

domain

range

range

range

range

range

range

range

range

range

range

ObjectProperty
hasQuality

Class
Quality

domain

range

Class
SimilarDemand

Class
ContexAwareRatingisA

Class
ServiceProvider

ServiceConsumer
Class

ObjectProperty
hasOwner

ObjectProperty
hasProvider

domain

DataTypeProperty
hasDate

DataTypeProperty
hasRating

xsd: integer

xsd: date

domain domain

range

range

ObjectProperty
hasDemand

range

domain

Figure 3.1. Context ontology for online shopping domain

Example 1: In his experience (represented in Figure 3.2), the buyer states that he ordered

an IBM ThinkPad T60 notebook from a seller named TechnoShop on 15 October 2007. He

requested the merchandise to be delivered to New York within 14 days. The service of

TechnoShop for this demand was bad, so it is given a negative rating.

A service consumer may want to communicate to other service consumers with similar

demands. But similarity is a subjective concept and may change for each consumer. To allow

a consumer to express its description of a similar demand, SimilarDemand class is included

in the context ontology. SimilarDemand class is a subclass of Demand. A service consumer

38

<owlx:Individual owlx:name="ContextAwareRatingInstance">
<owlx:type owlx:name="ContextAwareRating" />
<owlx:ObjectPropertyValue owlx:property="hasDemand">
<owlx:Individual owlx:name="demandInstance" />
</owlx:ObjectPropertyValue>
<owlx:DataPropertyValue owlx:property="hasRating">
<owlx:DataValue owlx:datatype="&xsd;int">0</owlx:DataValue>
</owlx:DataPropertyValue>
<owlx:DataPropertyValue owlx:property="hasDate">
<owlx:DataValue owlx:datatype="&xsd;Date">2007-10-15</owlx:DataValue>
</owlx:DataPropertyValue>
<owlx:ObjectPropertyValue owlx:property="hasProvider">
<owlx:Individual owlx:name="TechnoShop" />
</owlx:ObjectPropertyValue>
</owlx:Individual>

<owlx:Individual owlx:name="demandInstance">
<owlx:type owlx:name="Demand" />
<owlx:ObjectPropertyValue owlx:property="hasOwner">
<owlx:Individual owlx:name="MuratSensoy" />
</owlx:ObjectPropertyValue>
<owlx:ObjectPropertyValue owlx:property="hasShoppingItem">
<owlx:Individual owlx:name="#IBM_ThinkPad_T60" />
</owlx:ObjectPropertyValue>
<owlx:ObjectPropertyValue owlx:property="toLocation">
<owlx:Individual owlx:name="NewYork" />
</owlx:ObjectPropertyValue>
<owlx:DataPropertyValue owlx:property="hasDeliveryDuration">
<owlx:DataValue owlx:datatype="&xsd;Integer">14</owlx:DataValue>
</owlx:DataPropertyValue>
</owlx:Individual>

Figure 3.2. A context-aware rating that is about buying a notebook from a seller named

TechnoShop

can express what a similar demand is with respect to its similarity criteria using Semantic

Web Rule Language (SWRL) [31]. A simple rule for similarity is shown in Figure 3.3. In

this rule, the consumer states that a demand is similar demand only if it concerns a book and

requires a delivery duration less than or equal to 14 days.

<ruleml:imp>
 <ruleml:_head>
 <swrlx:classAtom>
 <owlx:Class owlx:name="#SimilarDemand"/><ruleml:var> DEMAND </ruleml:var>
 </swrlx:classAtom>
 </ruleml:_head>
 <ruleml:_body>
 <swrlx:DataPropertyValue swrlx:property="#hasDeliveryDuration">
 <ruleml:var>DEMAND</ruleml:var><ruleml:var>DURATION </ruleml:var>
 </swrlx:DataPropertyValue>
 <swrlx:individualPropertyAtom swrlx:property="&ex;#hasShoppingItem">
 <ruleml:var>DEMAND</ruleml:var><owlx:Individual owlx:name="&ex;#book"/>
 </swrlx:individualPropertyAtom>
 <swrlx:predicateAtom swrlx:predicate="..#ifTrue">
 <owlx:DataValue owlx:datatype="..#string">$1 <= 14 </owlx:DataValue>
 <ruleml:var>DURATION</ruleml:var>
 </swrlx:predicateAtom>
 </ruleml:_body>
</ruleml:imp>

Figure 3.3. Example SWRL rule for similar demands

SWRL is introduced as a way to integrate rules with OWL-DL ontologies (see Sec-

tion 2.1 for details). Unlike other rule languages such as RuleML [57], SWRL is pur-

posely constrained to make automated reasoning more tractable. Hence, using SWRL rules,

consumers can represent logical axioms and reasoning on those axioms can be made in a

tractable manner. That is, if a consumer has a particular service demand and a list of others’

service demands, then it can apply the SWRL rule representing its similar demand defini-

tion to select those demands which were similar to that of its own. If the consumer makes

its SWRL rule for similar demands public, other consumers can also use this expression of

39

similarity to reason about whether their past service demands were similar to the demand of

the consumer or not. A Description Logic (DL) reasoner with OWL support can be used for

the reasoning on similarity [27].

3.1.2. Selecting Service Providers

Let us consider a service consumer that uses context-aware ratings to select appropri-

ate service providers for its current service demand. The consumer collects context-aware

ratings, instead of plain ratings, from other consumers so that service demands in these

context-aware ratings are similar to the current service demand of the consumer.

After collecting sufficient number of context-aware ratings in a repository, the service

consumer weights the context-aware ratings according to the similarity between the service

demands within these context-aware ratings and its current service demand. Similarity met-

rics and computation of similarity depends on the consumer. Then, the set of context-aware

ratings are divided into subsets so that each subset belongs to one service provider. Finally,

ratings in each subset are averaged using the computed weights and the weighted average is

assigned as the aggregated rating of the corresponding service provider. Equation 3.1 shows

computation of the aggregated rating, ARi, given by a consumer for the provider i:

ARi =
∑

j

rj
i × wj × Rj∑

t rt
i × wt

(3.1)

where, j refers to a context-aware rating, wj is the weight of j, Rj refers the rating within j

and rj
i has value 1 only if i is the service provider within j, otherwise its value is 0. After

computing aggregated ratings, the consumer chooses the provider with highest aggregated

rating. That is, this formula aggregates ratings using the similarity of their contexts to the

current service demand of the consumer. Hence, a provider’s aggregated rating is computed

as high only if the produced services by the provider for the similar service demands have

highly rated by the other consumers.

40

3.2. Evaluation of the Rating-Based Approach

In order to demonstrate the performance of the proposed methods, we implemented

a simulator and conducted exhaustive simulations on it. The simulator is implemented in

Java. KAON29 is used as OWL-DL reasoner. Simulations are run on a computer with a 1.66

GHz Intel Core Duo CPU and 1.0 GB RAM under Windows OS. Simulations are repeated

10 times in order to increase the reliability. Only the mean values of the results are reported

in this section. Although we estimate and report the mean values, these mean values may

not reflect the true mean values. The reason is that the estimated mean values may vary

from sample to sample. Hence, we may compute a confidence interval that generates a

lower and upper limit for the mean values. This interval estimate gives an indication of how

much uncertainty there is in our estimate of the true mean values. The narrower the interval,

the more precise is our estimate. In order to compute confidence intervals of the mean

values, t-test is used when the number of samples is small (e.g., 10 samples). Therefore, our

simulation results are also analyzed with t-test for 95% confidence interval [58]. Our tests

show that with 95% probability, the true mean values deviate at most 4% from the calculated

mean values.

We conduct simulations to measure the performance of our model in selecting an ap-

propriate service provider. In the simulator, different service provider selection strategies

are implemented and compared with each other in terms of achieved satisfaction through

numerous experiments. These strategies are as follows:

1. Service provider selection using context-aware ratings (SPSCAR): This strategy is

proposed in Section 3.1.

2. Service provider selection using selective ratings (SPSSR): In this strategy, the service

consumer uses the plain ratings from other consumer agents. However, the ratings

are taken from those agents that have had similar demands with respect to similarity

criteria of the agent. That is, SPSCAR and SPSSR actually use the information from

the same service consumers for a given decision process. SPSSR uses plain ratings

while SPSCAR uses context-aware ratings.

9http://kaon2.semanticweb.org

41

3. Service provider selection using random ratings (SPSRR): This strategy collects plain

ratings from randomly chosen service consumers. Most of the previous rating based

approaches do not differentiate between the consumers using their previous service in-

terests. Hence, these approaches just collect ratings from consumers that are willing to

rate the providers. This strategy represents these approaches. For comparison reasons,

number of consumers to be requested for ratings is equal to that of the other strategies,

SPSSR and SPSCAR.

There are two important facts to note about the simulations. First, the simulations

enforce agents to make decisions based on others’ experiences rather than their own previous

experiences. This is done on purpose to test how well agents can find information from other

sources. Second, as frequently seen in real world, service consumers periodically change

their service demands. This is done to mimic variations on context.

3.2.1. Simulation Environment Factors

In our simulations, service characteristics of a service provider are generated as the

following. A service space is defined so that all possible services are represented within this

service space. Dimensions of the service space and their ranges are tabulated in Table 3.1.

Each service provider has a multidimensional region called service region in this service

space. This region is randomly generated. The service space and the service regions have

15 dimensions. A service region covers all of the services produced by the service provider.

If a consumer that is located in Istanbul orders two books titled Anagrams from the service

provider, the service that the provider delivers will be constructed as follows: The properties

that are specified (shopping item, quantity and location) will be fixed if they stay within the

service region of the provider. For the remaining attributes, the service provider will choose

random values making sure that the values stay in the range of its service region. So, for this

example, the degree of freedom for generating services will be reduced to 12.

Given the service constraints, the simulation environment generates the demand of the

service consumer. To do so, the demand space is constructed by removing dimensions of

service space that do not belong to Demand class. Then a random region in this demand

42

Table 3.1. Dimensions of service space and their ranges

Dimension Name Type Range

hasShoppingItem Integer 1 - 1000

toLocation Integer 1 - 100

hasDeliveryType Integer 1 - 6

hasDeliveryDuration Integer 1 - 60

hasShipmentCost Double 0 - 250

hasPrice Double 10 - 11000

hasUnitPrice Double 1 - 100

hasQuantity Integer 1 - 100

hasQuality Integer 1 - 10

isRefundable Boolean 0 - 1

hasConsumerSupport Boolean 0 - 1

didRecieveMerchandise Boolean 0 - 1

hasStockInconsistency Boolean 0 - 1

isAsDescribed Boolean 0 - 1

isDamaged Boolean 0 - 1

space is chosen. The center of this region represents the demanded service. In response

to this demand, the chosen provider provides a service. If the provided service for this

demand stays within the margins of demand region, then the service consumer gets satisfied,

otherwise it gets dissatisfied. The simulation environment guarantees that each demand can

be satisfied by at least one service provider.

Next, the simulator creates the similar demand criteria for the service consumer. This is

again done by creating a new region (similar demand region). Essentially, this is the demand

region after some dimensions have been removed. The number of dimensions to be removed

and these dimensions are chosen randomly. Service demands staying within the margins of

the similar demand region are classified as similar demand by the consumer.

43

There are two important factors in the simulations:

1. Variations in the context of service demands. As noted before, each service consumer

changes its demand characteristics after receiving a service. This is done with a pre-

defined probability (PCD). After changing its demand characteristics, the service con-

sumer collects information for its new service demand. Each service consumer has a

probability of requesting a service for any epoch. This probability is uniformly chosen

between 0 and 1. In other words, only around 50% of consumers consume a service at

a given epoch.

2. Variations in service satisfaction (Subjectivity). Even though a service consumer X

regards the service demand of consumer Y as a similar demand, this does not mean

that Y and X share the same satisfaction criteria. Therefore, a service dissatisfying Y

may satisfy X and vice versa. This fact is also imitated in the simulations. A parameter

called ratio of subjectivity (Rsubj) defines what ratio of the service consumers having

similar service demands with respect to similarity criteria of X will have satisfaction

criteria conflicting with the satisfaction criteria of X . So, ratings of these consumers

will probably mislead the consumer X during service selection.

The simulation environment is setup with 10 service providers and 200 service con-

sumers. Simulations are run for 100 epochs. When the simulations start, agents do not

have any prior experiences with service providers. As the simulations advance, agents gain

experiences and collect context-aware ratings.

When there is no subjectivity (Rsubj = 0) in the environment, each service demand is

satisfied by two service providers in the system. Therefore, probability of random service

selection is 0.2 for this case. However, when there is some subjectivity in the environment

(Rsubj > 0), exactly one service provider can satisfy a service demand. In this case, prob-

ability of random service selection decreases to 0.1. To sum up, for any service demand,

there exists at least one service provider that can satisfy this demand completely. Hence, a

successful service selection approach should always find a satisfactory service provider for

any service demand, while random selection of the providers will not achieve more than 20%

success on the average in any setting.

44

3.2.2. Simulation Results

With this setup, we are interested in understanding how the variations in context of

service demands (PCD) and the differences in consumers’ satisfaction criteria (Rsubj) will

affect finding service providers successfully. To study this, we will have service selection

approaches that use plain ratings from consumers (SPSRR and SPSSR) and the proposed

service selection approach that uses context-aware ratings instead of plain ratings.

We initially run simulations for the case that consumers do not change their service

demands over time (PCD = 0) and satisfaction criteria of the consumers having similar

service demands are the same (Rsubj = 0). In this setting, we observe that, satisfaction

ratios of SPSCAR and SPSSR approach 1.0. This means that these approaches are equally

good in this setting and they lead to satisfactory service selections almost all the time. On

the other hand, ratio of decisions resulted in satisfaction is constant around 0.2 for SPSRR,

which is the performance of random service selection. Note that, in this setting, consumers

never change their service demands and if two consumers have similar contexts, any provider

satisfying one of them will also satisfy another. Hence, ratings taken from consumers having

similar contexts will always lead to satisfaction. Unfortunately, these assumptions are not

reasonable for many real-life scenarios where consumers change their service demands over

time (PCD > 0) and satisfaction criteria of the consumers are different even though their

service interest are the same (Rsubj > 0). Therefore, we examine performances of the service

selection approaches for more realistic settings.

Figure 3.4 shows our simulation results when the parameters are set as PCD=0.2 and

Rsubj=0. This means that a consumer will change its service demand with a probability

of 0.2 after receiving a service. Figure 3.4 indicates that the performance of SPSSR de-

creases sharply with time, whereas the performance of SPSCAR is constant around 100%

satisfaction. The decrease in the performance of SPSSR is due to the fact that ratings of

a consumer reflect the aggregation of its past transactions for all of its previous demands.

In other words, as consumers change their demands, their ratings become more misleading

than before. However, SPSCAR can differentiate ratings for different contexts and evaluates

each rating within its scope. Hence, as seen in the Figure 3.4, SPSCAR leads to decisions

45

with 100% satisfaction but satisfaction ratio of SPSSR decreases and approaches to that of

SPSRR as consumers change their demands. Satisfaction ratio is low and constant around

0.2 for SPSRR. This is equal to the performance of the random service selection.

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
RR

SPS
SR

SPS
CAR

Figure 3.4. Consumers change their demands with probability 0.2 (PCD=0.2), but have the

same satisfaction criteria if their service demands are similar (Rsubj=0)

Figure 3.5 shows the simulation results for PCD=0, and Rsubj=0.5. This is the case

when the consumers do not change the context of their service demands and approximately

half of the consumers owning similar contexts will have conflicting satisfaction criteria. For

this setting, SPSCAR and SPSSR have almost the same performance. Moreover, the per-

formance of SPSSR does not decrease over time, because consumers using SPSSR do not

change their service demands over time (PCD=0). Approximately 50-60% of the selected ser-

vices leads to the satisfaction of service consumers both for SPSSR and SPSCAR, because

approximately half of the ratings for the same context will reflect the taste of the consumer

making service decision (Rsubj=0.5). So, the consumer will make a wrong decision around

half of the time. For these settings, satisfaction ratio of SPSRR is constant around 0.1, which

is equal to success probability of random service selection. Hence, we can conclude that a

rating-based approach does not result in a service selection performance better than that of

the random service selection in this environment if the raters are selected randomly.

Unlike SPSSR, SPSCAR is robust to the variations in context of service demands

46

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
RR

SPS
SR

SPS
CAR

Figure 3.5. Half of the consumers having similar demands have conflicting satisfaction

criteria (Rsubj=0.5), but the consumers do not change their service demands over time

(PCD=0)

(PCD), because it can differentiate between the ratings that are given in different contexts.

That is, it aggregates only the ratings that are given in the context of current service demand,

while SPSSR considers each rating equally even though they are given in different contexts.

Therefore, performance of SPSCAR is insensitive to PCD parameter. On the other hand, both

SPSSR and SPSCAR are seriously affected by the subjectivity (Rsubj), because both of these

approaches depend on the subjective opinions by using ratings. Figure 3.6 shows simulation

results for the parameters PCD=0.2 and Rsubj=0.5. Performance of SPSCAR is similar in

both Figure 3.5 and Figure 3.6, because in both cases environment is highly subjective; half

of the consumers having similar service interests give positive ratings to different providers

(Rsubj = 0.5). However, the performance of SPSSR is lower than that of SPSCAR and

continuously decreases over time, because consumers’ ratings become more misleading as

they change the context of their service demands (PCD = 0.2).

Our experiments show that, using SPSCAR, consumers can successfully represent the

context of their ratings. Hence, each rating is evaluated in its scope to lead satisfactory ser-

vice selections when there is no subjectivity in the environment (Rsubj = 0). Our simulations

also show that, in subjective environments (Rsubj > 0), representing context-information to-

47

0 10 20 30 40 50 60 70 80 90
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
RR

SPS
SR

SPS
CAR

Figure 3.6. Consumers change their service demands (PCD=0.2) and their satisfaction

criteria are conflicting (Rsubj=0.5)

gether with the ratings is not enough for successful service selection, because the ratings

reflect the subjective opinions of the consumers. Therefore, in the next section, we propose

another representation that is not only context-aware but also robust to subjectivity in the

environment.

3.3. An Experience-Based Approach for Context-Aware Service Selection

By using context-aware ratings, consumers can explicitly express the scope of ratings

and can use ratings for context-aware service selection. However, ratings will reflect the

subjective opinion of the raters. In order to minimize the subjectiveness of rating-based

approaches, we propose to use an objective experience-based approach in this section. In this

approach, experience of a consumer with a provider is represented using ontologies. This

representation contains the requested service and the supplied service in detail. Example 2

demostrates a simple experience. By using experiences, other consumers can evaluate the

supplied services with respect to their own evaluation criteria.

Example 2: In his experience, the buyer states that he ordered an IBM ThinkPad T60 note-

book from a seller named TechnoShop on 15 October 2007. He requested the merchandise

48

to be delivered to New York within 14 days. The seller received $700 for the product and

delivered the merchandise within 7 days without requesting any extra money for shipping.

However, the delivered product was not refundable and TechnoShop did not provide any

customer support.

In order to represent experiences, the ontology in Figure 3.1 is extended appropriately.

The new ontology is called the experience ontology. The experience ontology covers the

fundamental concepts (such as demand, service, commitment and experience), which exist

in the base level ontology and domain specific concepts and properties, which exist in the

domain level ontology. Using these concepts and properties, a service consumer can express

the details of its dealings with different service providers.

3.3.1. Base Level Ontology

The base level ontology (Figure 3.7) consists of the domain-independent infrastructure

of the experience ontology. The main class in the base level ontology is the Experience class.

Instances of this class represent the experiences of service consumers in the system. As in the

real life, an experience in the ontology contains information about what a service consumer

has requested from a service provider and what the service consumer has received at the end.

To conceptualize the service demand and the received service of the consumer, Demand and

Service classes are included in the base level ontology. Both the demand and the supplied

service concepts are descriptions of a service for a specific domain and hence share a number

of properties. These shared properties are captured in the Description class in the base level

ontology. The domain level ontology contains extensions to this class. Domain-dependent

properties of Description class can be used to describe service demands, supplied services,

responsibilities and fulfillments of sides during transactions. These properties are shown in

domain level ontology (Figure 3.8).

Each Description class has a date and an owner that is also represented as a class. For

a demand, the owner is a service consumer and for a service, the owner is a service provider.

The date value keeps the date of demanded service or the provided service.

49

ConditionalCommitment
Class

Class
Description

Class
Owner

ObjectProperty
hasOwner

Class
PreCondition

Class
Responsibility

Class
Fulfillment

Class
Demand

ObjectProperty
hasPreCondition

ObjectProperty
hasResponsibility

Class
Service

Class
SimilarDemand

ObjectProperty
hasFulfillment

Commitment
Class

ObjectProperty
hasCommitment

Class

Experience
ObjectProperty

hasService
ObjectProperty

hasDemand

Class
ServiceProvider

ServiceConsumer
Class

isA

isA

isA

isA

isA

isA

isA

isA

isA

domain

domain

domain

domain

domain

domain

range
range

range

range

range

rangerange

xsd: date

DataTypeProperty
hasDate

Figure 3.7. Base level ontology

An owner may have commitments toward others to carry out responsibilities [59]. A

commitment always has an instance of responsibility. This means that the owner of the

commitment is responsible for the realization of conditions described in the responsibility

instance. Example 3 demonstrates a simple responsibility instance. Commitment and Re-

sponsibility classes are used to express commitments and responsibilities, respectively in

the experience ontology. Fulfillments are accomplishments of responsibilities and are de-

noted with the Fulfillment class. Owners of responsibilities or fulfillments can be service

consumers or providers depending on the context.

Example 3: Consider a service provider that is responsible for delivering particular goods

to New York City with a shopping cost of $5. In the ontology, this can be represented as

an instance of a Commitment class, where the instance of the Responsibility of the commit-

ment has toLocation property referring to New York City and has hasShipmentCost property

referring to $5.

Transactions between the consumers and providers are usually based on business con-

tracts. The contracts can be represented by conditional commitments. Unlike commit-

ments, conditional commitments have preconditions. For example, a conditional commit-

ment CC(X, Y, P, Q) denotes that if the precondition P is carried out by Y , X will be

50

committed to carry out responsibility Q. In this definition, Y is the owner of the precondi-

tion and X is the owner of responsibility. ConditionalCommitment and Precondition classes

are used in the ontology to specify conditional commitments and preconditions. Conditional

commitments can be used to represent contracts and offers made by service consumers and

providers. An example case is demonstrated in Example 4.

Example 4: A service consumer can offer to pay an additional $100 for one week early

delivery. If the provider makes the shipment one week early, the consumer is committed to

pay $1100 for a product whose actual value is only $1000. Service providers can also make

offers using conditional commitments.

3.3.2. Domain Level Ontology

Since the base level ontology deals only with domain independent concepts, a second

ontology is necessary to capture domain dependent concepts and properties. The domain

level ontology is developed for this purpose. The core class of domain level ontology is De-

scription class. Domain specific properties of Description class are used to describe service

demands, supplied services, responsibilities and fulfillments of parties during transactions.

A domain level ontology for online shopping is shown in Figure 3.8.

The properties of the Description class in this ontology are the same as the properties

of the Demand class in the context ontology, which is explained in Section 3.1.1. However,

the properties of Description class have slightly different meanings for different sub-classes

of Description class. For example, hasPrice property refers to the money a consumer is

willing to pay for a service if it is used to describe a service demand. This property refers to

the money the consumer is requested to pay for the supplied service if it is used to describe

provided service. If hasPrice is used to describe a responsibility, hasPrice refers to the

money a service consumer promises to pay for a service or it refers to the money a service

provider will accept for a service, depending on the owner of the responsibility. For the first

case, service consumer is the owner of responsibility and for the second case owner is service

provider. If hasPrice is used to describe a fulfillment of a service consumer, hasPrice refers

51

to the money paid by the service consumer for the specified service.

The properties of Description have different semantics also for Precondition class. For

example, if hasPrice property is used to describe precondition P in conditional commitment

CC(X, Y, P, Q), this property refers the amount of money Y should pay out for X to carry

out responsibility Q. If the precondition is realized, owner of the conditional commitment

will be responsible for the realization of the responsibilities described by the Responsibility

instance Q.

In addition to properties of Description class, concepts in the ontology may also have

domain-specific properties that other concepts do not have. For example, for consumer goods

domain, properties such as didRecieveMerchandise, hasStockInconsistency, isAsDescribed

and isDemaged are included as properties of Service class in domain level ontology. The

property didRecieveMerchandise is used to state whether the merchandise is received by

the consumer or not. The semantics of hasStockInconsistency property is derived from the

comments of online shopping consumers. During shopping, a product is seen in stock on the

Web. However, after ordering, delivery of the product takes very long time and the consumer

is informed that the product is not in the stock. This situation is expressed by a service

consumer using hasStockInconsistency property. Other properties can also be added to this

ontology.

Service consumers maintain, exchange, and interpret experiences related to the providers.

These experiences are expressed using the OWL ontology proposed in this section. There-

fore, they can be interpreted easily by the agents using an OWL reasoner such as KAON2 or

Pellet [60]. In Figure 3.9, we demonstrate how the experience in Example 2 can be repre-

sented using the proposed experience ontology.

3.3.3. Exchanging Experiences

A consumer society emerges as a result of consumers’ need to retrieve experiences of

other consumers. Initially, each service consumer knows only a subset of all consumers in the

society and lists these consumers in an acquaintance list. An acquaintance list is a dynamic

52

Class
Description Class

Service

DataTypeProperty
isDamaged

DataTypeProperty
didRecieveMerchandise

DataTypeProperty
hasStockInconsistency

DataTypeProperty
isAsDescribed

ObjectProperty
hasShoppingItem

Class
shoppingItem

DataTypeProperty
hasQuantity

DataTypeProperty
hasUnitPrice

DataTypeProperty
hasDeliveryDuration

Class
DeliveryType

ObjectProperty
hasDeliveryType

hasShipmentCost
DataTypeProperty

xsd: double

DataTypeProperty

hasPrice

Class
Location

ObjectProperty
toLocation

DataTypeProperty
hasCustomerSupport

DataTypeProperty
isRefundable

xsd: boolean

xsd: double

xsd: integer

xsd: boolean

isA

domain

domain

domain

domain

domain

domain

domaindomain

domain

domain

domain

range

range

range

range

range

range

range

range
range

range

range

range

range

range

ObjectProperty
hasQuality

Class
Quality

domain

range

Figure 3.8. Domain level ontology for online shopping

list of service consumers having service demands classified as similar demand by the owner

of the list. When a new service consumer joins the society, its acquaintance list is populated

with a small number of randomly chosen service consumers. Note that the acquaintance lists

are not symmetric: because X is on Y ’s acquaintance list does not mean that Y will be on

X’s list.

Each consumer compiles other agents’ experiences in an experience repository. Each

time a service consumer makes a decision, it uses the experiences in this repository. The

service consumer refreshes and updates its experience repository periodically by removing

old experiences and adding newly found experiences.

When the system starts to function, the service consumers do not have any experiences.

When a service consumer X needs experiences for reasoning on which service provider to

choose, it should discover other service consumers having a similar demand and should

populate its acquaintance list with those service consumers and their service demands. In

order to accomplish this, the consumer follows the procedure summarized the algorithm in

Figure 3.10.

In this algorithm, when a service consumer decides to receive a service, it checks its

53

<owlx:Individual owlx:name="ExperienceInstance">
 <owlx:type owlx:name="Experience" />
 <owlx:ObjectPropertyValue owlx:property="hasDemand">
 <owlx:Individual owlx:name="demandInstance" />
 </owlx:ObjectPropertyValue>
 <owlx:ObjectPropertyValue owlx:property="hasService">
 <owlx:Individual owlx:name="serviceInstance" />
 </owlx:ObjectPropertyValue>
</owlx:Individual>
<owlx:Individual owlx:name="demandInstance">
 <owlx:type owlx:name="Demand" />
 <owlx:ObjectPropertyValue owlx:property="hasOwner">
 <owlx:Individual owlx:name="MuratSensoy" />
 </owlx:ObjectPropertyValue>
 <owlx:DataPropertyValue owlx:property="hasDate">
 <owlx:DataValue owlx:datatype="&xsd;Date">2007-10-15</owlx:DataValue>
 </owlx:DataPropertyValue>
 <owlx:ObjectPropertyValue owlx:property="hasShoppingItem">
 <owlx:Individual owlx:name="#IBM_ThinkPad_T60" />
 </owlx:ObjectPropertyValue>
 <owlx:ObjectPropertyValue owlx:property="toLocation">
 <owlx:Individual owlx:name="NewYork" />
 </owlx:ObjectPropertyValue>
 <owlx:DataPropertyValue owlx:property="hasDeliveryDuration">
 <owlx:DataValue owlx:datatype="&xsd;Integer">14</owlx:DataValue>
 </owlx:DataPropertyValue>
</owlx:Individual>

<owlx:Individual owlx:name="serviceInstance">
 <owlx:type owlx:name="Service" />
 <owlx:ObjectPropertyValue owlx:property="hasOwner">
 <owlx:Individual owlx:name="TechnoShop" />
 </owlx:ObjectPropertyValue>
 <owlx:ObjectPropertyValue owlx:property="hasShoppingItem">
 <owlx:Individual owlx:name="#IBM_ThinkPad_T60" />
 </owlx:ObjectPropertyValue>
 <owlx:DataPropertyValue owlx:property="hasDeliveryDuration">
 <owlx:DataValue owlx:datatype="&xsd;Integer">7</owlx:DataValue>
 </owlx:DataPropertyValue>
 <owlx:DataPropertyValue owlx:property="recivedMerchandise">
 <owlx:DataValue owlx:datatype="&xsd;boolean">true</owlx:DataValue>
 </owlx:DataPropertyValue>
 <owlx:DataPropertyValue owlx:property="isRefundable">
 <owlx:DataValue owlx:datatype="&xsd;boolean">false</owlx:DataValue>
 </owlx:DataPropertyValue>
 <owlx:DataPropertyValue owlx:property="hasCustomerSupport">
 <owlx:DataValue owlx:datatype="&xsd;boolean">false</owlx:DataValue>
 </owlx:DataPropertyValue>
 <owlx:DataPropertyValue owlx:property="hasShipingCost">
 <owlx:DataValue owlx:datatype="&xsd;Integer">0</owlx:DataValue>
 </owlx:DataPropertyValue>
 <owlx:DataPropertyValue owlx:property="hasPrice">
 <owlx:DataValue owlx:datatype="&xsd;Integer">700</owlx:DataValue>
 </owlx:DataPropertyValue>
</owlx:Individual>

Figure 3.9. An experience that is about buying a notebook from a seller named TechnoShop

experience repository (Lines 1-5). In order to make a reliable decision, the service con-

sumer should compute the minimum number of experiences for decision making within a

99% confidence interval [58, 61] (Line 3). If the number of experiences in the repository

is not enough to perform this computation, the service consumer collects new experiences

(Lines 6-25). However, in order to collect new experiences, the consumer should have suf-

ficient number of acquaintances, so that it can ask for their experiences. For this reason, the

consumer checks the number of its acquaintances (Lines 7-9). If it does not have sufficient

number of acquaintances, it should increase the number of its acquaintances (Lines 10-19).

To discover new acquaintances and collect interested experiences, consumers use a

protocol. The protocol is based on three message types: Peer Discovery Message (PDM),

Request for Acquaintances Message (RAM) and Request for Experience Message (REM). In

order to learn new acquaintances, a service consumer sends PDM or RAM messages. Both

PDM and RAM messages contain a SWRL rule that expresses the similar demand criteria of

the originator of the message (Line 6, Line 10 and Line 15). When a consumer Y receives

a PDM message, it checks if its service demands are similar to that of the originator X . If

so, it notifies X and X adds Y as a new acquaintance entry in its acquaintance list. This

entry contains identity of Y and its demands classified as similar demand by the similarity

criteria of X . The consumer Y also forwards the request to a set of service consumers in its

acquaintance list. Y selects consumers having demands similar to demand of the originator

to forward the request. If there is no such consumer, Y randomly selects consumers from

54

its acquaintance list. How long the request is going to be forwarded is controlled using a

time-to-live field. All other consumers that receive the request act the same way Y does.

When Y receives a RAM message from the originator X , it checks its acquaintance list for

entries containing consumers having demands similar to the demand of X . Then, Y sends

these entries to X . So, X can add these entries to its acquaintance list.

1: isShopping = decideShopping()
2: if (isShopping) then
3: Nexp = getRequiredNumberOfExperiences()
4: ExpSize = ExperienceRepository.size()
5: while (ExpSize < Nexp) do
6: similarity = createSWRLRuleForSimilarity()
7: Nacq = getMinimumNumberOfAcquaintances(N)
8: AcqSize = AcquaintanceList.size()
9: if (AcqSize < Nacq) then
10: pdm = createPDM(similarity)
11: newAcquaintances = propagateMessage(pdm);
12: AcquaintanceList.add(newAcquaintances)
13: AcqSize = AcquaintanceList.size()
14: while (AcqSize < Nacq) do
15: ram = createRAM(similarity)
16: newAcquaintances = propagateMessage(ram);
17: AcquaintanceList.add(newAcquaintances)
18: AcqSize = AcquaintanceList.size()
19: end while
20: end if
21: rem = createREM(similarity)
22: newExperiences = propagateMessage(rem);
23: ExperienceRepository.add(newExperiences)
24: ExpSize = ExperienceRepository.size()
25: end while
26: SelectServiceProvider(ExperienceRepository)
27: end if

Figure 3.10. Algorithm of consumer agents

The service consumer populates it acquaintance list through PDM and RAM messages

(Lines 10-12 and Lines 15-17). After having sufficient number of acquaintances, the con-

sumer uses REM to collect new experiences (Lines 21-24). An REM message also contains

a rule for expressing similar demand criteria of the sender. When service consumer Y gets an

REM message from service consumer X , it evaluates its demands in its experiences using

the similarity criteria in the REM . Later, it can send its experiences to X if the experiences

55

have similar demands with respect to similarity criteria encapsulated in the REM , so that

X can populate its experience repository with these experiences. After collecting sufficient

number of experiences, X uses the experiences in its repository for decision making (Line

26). Next section describes this procedure.

The protocol that is summarized above is also used by our rating-based approach in

Section 3.1 to gather context-aware ratings. The only difference is that REM messages are

used to request context-aware ratings instead of experiences.

3.3.4. Service Selection Using Experiences

In experience-based service selection, first a consumer collects related experiences

from other consumers as explained in Section 3.3.3. For example, if the consumer needs to

buy a notebook, it searches for the experiences that are related to “buying a notebook”. After

collecting related experiences, the consumer evaluates each experience using its satisfaction

criteria. Each consumer has an internal taste function Ftaste (namely satisfaction criteria) to

evaluate its transactions with the service providers in the context of its service demands. In

real life, the taste of a consumer may change over time. Hence, this function should be time

dependent. We assume that taste function of the consumer is unknown to other consumers.

In a real-life application, a consumer agent can easily elicit its taste function from its human

user using a user interface. Once the consumer has the taste function, it can easily compute

its expected level of satisfaction for a specific transaction given the service demand and

the supplied service within the transaction. Hence, using the taste function, the consumer

can also interpret an experience and compute its level of satisfaction using the data in the

experience. In other words, the consumer can produce its expected level of satisfaction for

the experience by asking itself how satisfied it would be, had it lived the experience under

consideration. Example 5 demonstrates how experiences can be interpreted differently by

different consumers.

Example 5: Consider the experience in Figure 3.9 (explained in Example 2) and assume that

there are two different consumers (Bob and Lucy) who received this experience. For Bob,

56

delivery duration and price are crucial whereas customer support or being refundable are not

important. On the other hand, for Lucy, being refundable and having customer support are

indispensable. Therefore, for Bob, TechnoShop is a very good provider and deserves a good

rating, because it delivers products within one week without requesting any extra money.

However, for Lucy, TechnoShop is not preferable. However, by plain ratings, Bob’s positive

ratings of TechnoShop would have misled Lucy.

Information in the experiences can be used for the modeling of provider behaviors

for different service demands. For this purpose, parametric classification methods such as

the Multivariate Gaussian Model (GM) can be used. Experience data can also be used by

non-parametric methods such as Case-Based Reasoning (CBR) for service selection. In this

section, we explain how these methods can be used to select appropriate service providers.

3.3.4.1. Decision Making Using GM. In this approach, a service consumer models each

service provider using the experience data available in its repository and selects a provider

with the highest probability to satisfy its needs. For this purpose, the consumer uses paramet-

ric classification and builds a multidimensional Gaussian model for each service provider [62],

as follows.

Demand and service specifications within experiences are received in the form of on-

tologies, but then they are converted into the internal representation of the service consumer.

Demand and commitment information in each experience is represented as a vector. Each

field in this vector is extracted from the experience ontology. These fields correspond to

property values in the experience ontology such as service price. Then, supplied service for

this demand is classified as satisfied or dissatisfied with respect to satisfaction criteria of

the consumer using the taste function and ontological reasoning [22]. After that the (vector,

class) pairs are used as training set. For each class, covariance and mean values are extracted

from the training set. Then, a discriminant function is defined to compute the probability of

satisfaction [62]. The service consumer performs this computation for every service provider

and chooses the provider with the highest satisfaction probability.

57

The equations below formulate this computation. In these equations, Ci refers to the

ith class. Note that there are two classes; the first class is satisfied and the second class is

dissatisfied. For the ith class, mean and covariance are represented by μi and Σi, respec-

tively. Equation 3.2 formulates the class likelihood p(X|Ci); the probability that the demand

X is observed in class Ci. Equation 3.3 formulates the posterior probability p(Ci|X); the

probability that the demand X is in class Ci. In Equation 3.3, p(X) refers to the probability

that demand X is observed and it is computed as p(X) = p(X|C1) + p(X|C2) in this case.

Similarly, p(Ci) refers to the prior probability that the class Ci is observed. Lastly, the dis-

criminant function for the ith class, gi(X), is formulated as in Equation 3.4. The higher the

computed g1(X) value is, the more likely the provider under consideration satisfies X .

p(X|Ci) =
exp

[−1
2
(X − μi)

T Σ−1
i (X − μi)

]
(2π)2/d |Σi|1/2

(3.2)

p(Ci|X) =
p(X|Ci)p(Ci)

p(X)
(3.3)

gi(X) = log[p(Ci|X)] + log[p(Ci)] (3.4)

Consider that Bob in Example 5 wants to buy a notebook. For this purpose, first he

collects experiences about the notebook providers and then estimates the probability of sat-

isfaction for each provider as described above. In this example, Bob needs to compute the

probability that TechnoShop produces a satisfactory service. Initially, Bob uses his satisfac-

tion criteria to evaluate the supplied services within the collected experiences about Tech-

noShop. He labels each experience as satisfied or dissatisfied. Using a Gaussian distribution

function, Bob estimates the probabilities that his current demand is observed among the sat-

isfied demands and dissatisfied demands as in Equation 3.2. Those probabilities are denoted

as p(X|C1) and p(X|C2) respectively, where X is the data vector representing Bob’s current

demand about buying a notebook. Then, using Bayes’ rule, Bob estimates the probability

that TechnoShop produces a satisfactory service given his current service demand, denoted as

p(C1|X). Lastly, Bob calculates the discriminant function g1(X) to quantify the preferability

of TechnoShop using Equation 3.4 and uses this value to decide about TechnoShop.

58

3.3.4.2. Decision Making Using CBR. CBR is an approach for problem solving and learn-

ing. In CBR, existing problems and their solutions are encapsulated into a case structure and

are stored in a case-base. When a new problem is encountered, the most similar past cases

are retrieved from the case-base and their solutions are used or modified to conform to the

new situation [63]. The intuition is that if two problems are similar, the solutions to these

problems will probably be similar, too.

The most important challenge in the CBR is the selection of metrics for the similar-

ity, since the performance of CBR systems critically depends on these metrics. Also, most

CBR approaches are centralized. This implies that illy constructed metrics for the similarity

could drastically affect the performance of the whole system. The proposed approaches in

the previous sections can be combined to construct a context-aware, flexible and distributed

CBR approach for the service selection. In this approach, each consumer uses its consumer

society as a distributed case-base. Additionally, unlike the classic CBR systems, each con-

sumer can represent its own similarity metrics using an OWL ontology and SWRL rules.

Using these well-defined similarity metrics, the consumer queries the consumer society for

similar experiences (cases) using the procedure explained in Section 3.3.3. After retrieving

the similar experiences, the consumer computes a score for each retrieved experience. The

computation depends on the following factors:

1. Recency: The new experiences are preferred over old experiences since they are likely

to hold again in the near future. For this reason, each experience is assigned a recency

value. The newer the experience, the larger the recency value.

2. Similarity: This is a factor that measures the similarity of the current demand with the

examined experience. The similarity value ranges between 0 and 1, where 0 denotes

total difference and 1 denotes identical demands.

3. Satisfaction: This is an important factor that measures how satisfied the current con-

sumer agent would be, had it lived the examined experience. The consumer evaluates

the supplied service depending on its current service demand and its own satisfaction

criteria and obtains its expected degree of satisfaction.

59

We combine these factors using the formula below:

si = recencyi × simi × sati (3.5)

where, si is the computed score for the experience i, recencyi is the recency factor, simi

is the similarity factor and sati is the satisfaction factor. After computing the scores for

each experience, the consumer picks the experience with the highest score and selects the

provider supplying the service within this experience. The proposed CBR system uses OWL

ontologies for the representation of cases (experiences) and distributes the case-base such

that it can be searched with individually defined similarity metrics.

3.4. Evaluation of Experience-Based Approaches

In this section, we evaluate the proposed experience-based service selection tech-

niques. In the simulations, we devise two more strategies that use experience-based service

selection:

1. Service provider selection using Gaussian Model (SPSGM): This strategy is proposed

in Section 3.3.4.1.

2. Service provider selection using CBR (SPSCBR): This strategy is proposed in Sec-

tion 3.3.4.2.

By varying the aforementioned factors (i.e., service demand and service satisfaction), we are

interested in understanding the strengths and weaknesses of the proposed strategies, espe-

cially in terms of the ratio of satisfaction and the required computational time for selecting

services. The simulation environment is set up as explained in Section 3.2. In our simula-

tions, commitments and contracts between the consumers and the providers are not included.

Simulations are repeated 10 times in order to increase the reliability. Only the mean values

of the results are demonstrated in this section. The simulation results are analyzed with t-test

for 95% confidence interval [58]. Our tests show that with 95% probability, the true mean

values deviate at most 3% from the calculated mean values.

60

3.4.1. Experience-Based Approach: GM

This section summarizes the results of the simulations for SPSGM . Figure 3.11 shows

the simulation results for PCD=0, and Rsubj=0.5. In these settings, consumers do not change

their service demands over time, but for each consumer, approximately half of the consumers

having similar service demands will have satisfaction criteria conflicting with that of the

consumer. Hence, these consumers provide misleading ratings. Figure 3.11 indicates that

only around 50% of the services lead to satisfaction of service consumers if these service

consumers use SPSSR. On the other hand, service consumers using SPSGM are almost

always satisfied with the supplied services, because unlike rating-based approaches, it does

not depend on the subjective opinions of the consumers.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
RR

SPS
SR

SPS
GM

Figure 3.11. Half of the consumers having similar demands have conflicting satisfaction

criteria (Rsubj=0.5), but the consumers do not change their service demands over time

(PCD=0)

Figure 3.12 shows simulation results for parameters PCD=0.2 and Rsubj=0. The value

of PCD (0.2) implies that the consumers change their service demands with probability 0.2

after making a service decision. For these settings, SPSGM leads to decisions with 100%

satisfaction but satisfaction ratio of SPSSR decreases over time as consumers change their

service demands. Simulation results of SPSCAR for the same settings (see Figure 3.4) are

the same as the results of SPSGM in Figure 3.12. This means that performances of SPSCAR

61

and SPSGM are similar when there is no subjectivity in the environment (Rsubj=0). That is,

both of these approaches are equally successful when the consumers do not have conflicting

satisfaction criteria for similar demands.

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
RR

SPS
SR

SPS
GM

Figure 3.12. Consumers change their demands with probability 0.2 (PCD=0.2), but have

overlaping satisfaction criteria (Rsubj=0)

Figure 3.13 shows simulation results when there is subjectivity and variation in context

(PCD=0.2 and Rsubj=0.5). For these settings, performance of SPSSR decreases further.

However, for SPSGM , satisfaction ratio is around 1.0 after 7th epoch (before 7th epoch,

there are not enough experiences accumulated in the environment for the modeling of service

providers).

In order to see the influences of subjectivity and context variations on the satisfac-

tion ratios achieved by SPSGM and SPSSR strategies, simulations are repeated for differ-

ent Rsubj and PCD values. Average ratios of satisfactions for these simulations are shown

in Table 3.2 and Table 3.3. The tables indicate that the performance of SPSSR decreases

considerably with an increase in the value of Rsubj or PCD. Combinatorial effect of these pa-

rameters on the performance of SPSSR is a more dramatic decrease in the service selection

performance. However, the simulations show that the proposed method, SPSGM , is robust

to subjectivity and variation on context, because it is context-aware and does not depend on

the subjective opinions of others (e.g., ratings). Unlike SPSSR, the performance of SPSGM

62

does not change with changing Rsubj and PCD values, as well as the achieved satisfaction is

around 100% if service consumers use SPSGM for decision making.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
RR

SPS
SR

SPS
GM

Figure 3.13. Consumers change their service demands (PCD=0.2) and their satisfaction

criteria are conflicting (Rsubj=0.5)

Table 3.2. Average ratio of satisfaction for different Rsubj values (PCD is set to 0)

Rsubj 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SPSGM 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96

SPSSR 0.96 0.85 0.76 0.68 0.61 0.56 0.38 0.28 0.19 0.09 0.003

3.4.2. Experience-Based Approach: CBR

Both SPSGM and SPSCBR use the experiences as the representation of consumers’

past dealings with the providers. However, they use different decision making processes. In

order to see the effect of these different decision making processes in service selection, we

compare their performances through simulations.

This section summarizes results of the simulations for SPSCBR and compares its per-

formance with that of SPSGM . Initially, there are two primary variables in the simulations:

PCD and Rsubj . We measure the average satisfaction ratio of the strategies when Rsubj equals

63

Table 3.3. Average ratio of satisfaction for different Rsubj and PCD values

PCD SPSGM SPSSR

Rsubj = 0 Rsubj = 0.5 Rsubj = 0 Rsubj = 0.5

0.0 0.96 0.96 0.96 0.56

0.1 0.97 0.96 0.79 0.36

0.2 0.97 0.96 0.63 0.32

0.4 0.97 0.96 0.50 0.26

0.6 0.97 0.96 0.44 0.18

0.8 0.97 0.98 0.42 0.18

1.0 0.97 0.97 0.40 0.19

0 and 0.5 as well as when PCD varies from 0 to 1. In Table 3.4, we immediately note that

for all values of PCD, both SPSGM and SPSCBR achieve equally high average satisfaction

ratio, while SPSSR achieves a fluctuating value as seen Table 3.3, because of its sensitivity

to context change (PCD) and subjectivity (Rsubj). Unlike the rating-based approaches such

as SPSSR, SPSGM and SPSCBR are robust to Rsubj and PCD. Moreover, the performance

of these two strategies are impressive and equal.

Table 3.4. Average ratio of satisfaction for different Rsubj and PCD values

PCD SPSGM SPSCBR

Rsubj = 0 Rsubj = 0.5 Rsubj = 0 Rsubj = 0.5

0.0 0.96 0.96 0.96 0.96

0.1 0.97 0.96 0.97 0.96

0.2 0.97 0.96 0.97 0.96

0.4 0.97 0.96 0.97 0.96

0.6 0.97 0.96 0.97 0.96

0.8 0.97 0.98 0.97 0.98

1.0 0.97 0.97 0.97 0.97

Although the performance of SPSGM and SPSCBR are the same, the time they use

to select the providers are different. Table 3.5 presents the average time consumed by each

approach during our simulations. The table shows that SPSCBR is much more efficient than

SPSGM in terms of time consumption. Moreover, we can conclude that SPSCBR is better

64

than SPSGM in these settings, because it can find the satisfactory providers much faster.

Table 3.5. Time consumption of SPSGM and SPSCBR in milliseconds

PCD SPSGM SPSCBR

Rsubj = 0 Rsubj = 0.5 Rsubj = 0 Rsubj = 0.5

0.0 1250 1081 448 270

0.1 3016 2879 680 651

0.2 5376 4292 982 674

0.4 7015 7976 1078 1287

0.6 10154 8163 1586 680

0.8 14983 21610 2555 3360

1.0 20377 17711 2583 1272

3.4.3. Additional Simulation Factors

So far, we have deliberately assumed that providers always provide the same quality of

service consistently. However, some providers may have nondeterministic nature and may

supply marginally different services at different instances of time for the same service de-

mand and conditions. Now, we introduce a new variable PI that denotes the probability of

nondeterminism on the provider side. This probability denotes how much providers devi-

ate from their expected behavior. Consider a provider that usually produces unsatisfactory

services for a specific service demand. If this provider produces a perfect service for this

service demand in a transaction with a consumer, this kind of nondeterminism may mislead

the consumers in their future decisions.

Since we have not modeled this situation in the previous experiments, we have implic-

itly assumed that PI equals 0, which means that there is no nondeterminism in the behavior

of providers. In other words, for a particular service demand, a service provider will either be

satisfactory or dissatisfactory independent of when the service is demanded. In the settings

where behaviors of providers are predictable and free of nondeterminism, SPSCBR can eas-

ily replace SPSGM . Moreover, in terms of computational efficiency, SPSCBR outperforms

SPSGM in these settings.

65

In the origin of the CBR approach, there is an assumption that if a provider satisfies

a service demand that is similar to or the same as the current demand of a consumer, the

provider will probably satisfy the consumer’s current demand, too. When PI is set to zero,

this assumption always holds. Providers produce similar services for the same or very similar

service demands. These services deviate insignificantly from each other so that the deviation

does not affect the consumers’ degree of satisfaction. However, in realistic environments,

some providers may infrequently provide marginally different services for the same or simi-

lar service demands. The experiences containing these service instances may be misleading

for the consumers. In order to simulate such situations, PI is set to very small probability

values. In the following simulations, with these probabilities, each provider deviates from its

usual service offering in favor of consumers by producing perfect services for the consumers.

Figure 3.14 and Figure 3.15 show simulation results for PI = 0.001 and PI = 0.01,

respectively. The main result is that when the achieved satisfaction is considered, SPSCBR

is sensitive to the PI parameter such that the achieved satisfaction decreases with an increase

in the value of PI . However, the performance of SPSGM does not change with variations in

PI and is constant around 100% satisfaction.

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
CBR

SPS
GM

Figure 3.14. Performance of SPSCBR decreases when PI = 0.001

66

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

R
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

SPS
CBR

SPS
GM

Figure 3.15. Performance of SPSCBR decreases even further when PI = 0.01

3.4.4. Using Different Classification Methods for Service Selection

In Section 3.3.4.1, we propose to use parametric classification with multivariate Gaus-

sian model for decision making. The resulting experience-based service selection approach

is called as SPSGM . The main idea in SPSGM is the computation of the probability that a

provider produces a satisfactory service for a given demand. Once a training set is derived

as explained in Section 3.3.4.1, other classification methods can also be used to compute this

probability. Hence, these methods can also be used for experience-based service selection.

In this section, we measure the performances of Naive Bayes and C4.5 Decision Tree classi-

fiers when they are used for experience-based service selection. Table 3.6 shows our results

for the performances of these approaches for different values of PCD, Rsubj, and PI . In the

table, SPSNB and SPSDT refer to the experience-based service selection approaches that

use Naive Bayes and C4.5 Decision Tree classifiers, respectively. The table shows that using

different classifiers for experience-based service selection does not change the service selec-

tion performance considerably. In other words, service selection performances of SPSGM ,

SPSNB, and SPSDT are almost the same and do not significantly change with the different

values of PCD, Rsubj, and PI . Hence, we can conclude that different classification meth-

ods can be used with experiences to make context-aware service selections that are robust to

subjectivity and nondeterminism.

67

Table 3.6. Performances of different classification methods for service selection

PCD Rsubj PI SPSGM SPSNB SPSDT

0 0 0 0.96 0.94 0.92

0.2 0 0 0.97 0.95 0.93

0 0.5 0 0.95 0.95 0.95

0.2 0.5 0 0.96 0.96 0.95

0.2 0.5 0.001 0.97 0.95 0.94

0.2 0.5 0.01 0.96 0.95 0.95

3.5. Discussion

Selecting an appropriate service provider is a must in open settings. However, identify-

ing the correct service providers is difficult. Previous research on service provider selection

is mainly based on recording and aggregating ratings of consumers. Most of the previous

rating-based approaches are similar to SPSRR in the sense that they do not differentiate

between the raters based on the raters’ previous service interests. Alternatively, this chap-

ter presents our research on ontology-based service selection and proposes a framework for

the service selection problem. We show that better service providers can be chosen when

consumers represent their experiences with ontologies.

3.5.1. Usage

The services that are mentioned here can easily be thought of as Web services. In this

research, we have not been concerned about how Web services describe the access to their

services. We implicitly assume that consumers can locate the service producers and access

their services. However, in real life, the consumers would need to benefit from a mechanism

that identifies how the service providers can be accessed. To this end, standard description

languages such as WSDL can be used [64].

In the protocol that we have used in Section 3.3.3, the agents use others’ experiences to

68

find service providers. However, two interesting cases can take place. First, the agents may

know each other but not know the service providers. This will mean that initially nobody

will have enough experiences to guide others. To cope with this problem, directories such as

UDDI registries can be used [65]. Agents may initially look up the service providers from

these registries and have interactions with these service providers. When enough experi-

ences have been accumulated, then the system will continue to function as explained above.

Second, the agents may not even be aware of each other. This is the well-known problem of

bootstrapping. This means that the agents will need a mechanism to find acquaintances. In

order to get some initial acquaintances, service consumers may sign in to another directory

called consumer directory. They may provide their identity and IP address to the directory

and the consumer directory may provide the consumer with a small number of initial ac-

quaintances. This is a common method for P2P systems. After locating some acquaintances,

the system will continue functioning as explained in Section 3.3.3.

The proposed context-aware ratings and context-aware experiences both assume that

the agents share a common ontology. In open systems, one way to enable this is to allow the

agents to download the ontology from a well-defined resource. The base ontology will be

the same for all the domains. However, the domain ontology will differ based on the domain.

For different domains, we expect the domain experts to come up with ontologies that capture

the specifics of the domains.

After receiving a service, an agent needs to create feedback information about the

service. This information corresponds to the Service class in the base-level ontology. Some

of the necessary information about the service may be generated by the agent, whereas some

information may need to be generated by the user of the agent. For example, the agent

may know when the requested service has actually been received, but may not have enough

knowledge to evaluate the quality of the service. For such cases, the agent’s user must be

eager to provide information to the agent through some predefined software interface.

69

3.5.2. Summary of Results

We have introduced and studied two main approaches for service selection. The first

proposed approach, SPSCAR, is based on ratings and it enriches the rating data with the

context information using ontologies. The second proposed approach is based on capturing

the experiences of consumers through ontologies. Through simulations, we have shown that

the proposed approaches improve the decisions of the service consumers and increase the

overall satisfaction significantly compared with the previous rating-based service selection

approaches.

SPSSR is a variant of distributed collaborative filtering approach for rating-based ser-

vice selection. It uses plain ratings from those consumers that have had a similar service

demand in the past. Ontologies are used to determine these consumers. Then, these con-

sumers are contacted for their ratings. SPSSR outperforms SPSRR. The performance of

SPSSR decreases over time as the consumers change their demand characteristics and drops

to the level of SPSRR.

Unlike SPSSR, SPSCAR is robust to changes in the demand characteristics of the

consumers. The performance of SPSCAR is always better than the performance of SPSRR

and SPSSR. However, it is vulnerable to changes in the parameter Rsubj , because ratings

reflect the satisfaction criteria and taste of the raters. Even though the consumers have the

same service demands, their ratings may be highly different for the same service provided

for this service demand. Our finding is that any rating-based approach will experience the

same vulnerability.

The best approach in terms of achieved ratio of satisfaction is the experience-based ap-

proach. When service providers do not change the quality of their services, both SPSGM and

SPSCBR perform equally well in finding service providers (they achieve about 100% satis-

faction). However, SPSCBR finds the service providers in a shorter time than SPSGM . On

the other hand, if the service providers vary their service offerings even a small percentage,

then SPSCBR performs much worse than SPSGM .

70

Although experience-based approach is the best service selection approach in this

chapter, it requires service consumers to record their experiences in substantial detail. This

may be exhaustive or such information may not be available. Under such circumstances,

the proposed rating-based approach, SPSCAR, can be preferred by service consumers over

experience based approach even though SPSCAR has some disadvantages with respect to

experience-based approach in terms of achieved ratio of satisfaction.

3.5.3. Related Work

Current service provider selection strategies accept ratings as first-class citizens, but

do not allow more expressive representations like we have here. Whereas rating-based ap-

proaches assume that the ratings are given and taken in similar contexts (e.g., in response to

similar service demand), we can make the context explicit. This allows agents to evaluate

others’ experiences based on their needs. Thus, the use of context information and experi-

ences improves the satisfaction rate of the consumers.

FIRE [18] is a trust and reputation model consisting of four components: interaction

trust, role-based trust, witness reputation and certified reputation. Witness reputation com-

ponent is directly related to our approach since it allows agents to locate others by making

use of other agents’ past experiences. However, in FIRE the past experiences are captured

only as ratings. However, in our approach, agents exchange their experiences in the form

of ontologies so that they can represent their demands, received services, and so on in more

depth.

Sen and Sajja [66] develop a reputation-based trust model that is used for selecting

processor agents for processor tasks. Each processor agent can vary its performance over

time. Agents are looking for processor agents to send their tasks to using only evidence from

others. Sen and Sajja propose a probabilistic algorithm to guarantee finding a trustworthy

processor. In our framework, service demands among agents are not equivalent; hence a

provider that is trustworthy for a consumer need not be so for a different consumer. Hence,

each agent can select a different provider for its needs.

71

Yolum and Singh study properties of referral networks for service selection, where re-

ferrals are used among the service consumers to locate the service providers [14]. Current

applications of referral networks also rely on exchanging ratings. Hence, the suffer from

circulation of subjective information. However, it would be interesting to combine refer-

ral networks with the ontology representation here so that agents can exploit the power of

ontologies for knowledge representation as well as referrals for accurate routing.

Zhang et. al. propose a multiagent approach for distributed information retrieval

task [42]. In their work, each agent has a view of its environment called agent-view. The

agent-view structure of an agent contains information about language models of documents

owned by each agent. An agent-view reorganization algorithm is run to dynamically reor-

ganize the underlying agent-view topology. An agent-view is analogous to acquaintance list

structure in our work. Zhang et al.’s protocol does not use ontologies or description logic

reasoners during information retrieval. However, if their protocol is modified to accommo-

date the experience ontology and DL reasoners, their protocol can be used for retrieving

experiences instead of the protocol that we have used in Section 3.3.3.

Soh and Chen propose a multiagent approach to improve distributed information re-

trieval performance by balancing ontological and operational factors [67]. In this work,

collaborating agents enhance their performance by learning ontologically and operationally.

Soh and Chen show that their proposed approach is able to improve the quality of the col-

laborations in terms of the response time, quality of the retrieved results, the number of

neighbors contacted and message complexity. A similar approach can also be applied to our

work in order to improve the quality of collaboration.

Maximilien and Singh develop a QoS ontology to represent the quality levels of service

agents and the preferences of the consumers [15]. Their representation of QoS attributes is

richer (such as availability, capacity, and so on), however, their ontology does not represent

commitments and thus business contracts as part of the ontology. Further, their system does

not allow reasoning by agents individually as we have developed here.

CBR is used in centralized recommendation systems to automatically estimate con-

72

sumer preferences. Aguzzoli et. al. propose a collaborative cased based recommendation

system for the music market [68]. The proposed system is hosted by an online shopping

site. During their online shopping, consumers choose sound tracks and add them to their

shopping chart, which is called a partial compilation. The system inspects the partial compi-

lation of a consumer and recommends new sound tracks using a case-base. This case-base is

composed of the recorded compilations of consumers, who have previously visited the web

site and used this system. Matching of sound tracks between the partial compilation and the

compilations in the case-base is used for the computation of similarity between compilations.

Then, the sound tracks that are included in the similar compilations are recommended to the

consumer. A similar approach for recommending restaurants are proposed by Burke [69].

This system is hosted by a website, which is similar to a catalog for the restaurants. The sys-

tem records the browsed restaurants as cases and recommends new restaurants to the users

depending on their browsing histories.

Limthanmaphon and Zhang propose a web service composition approach [70]. They

use CBR for service discovery. The definition of preassembly composite service cases are

stored in a case-base. The definition of a composite service includes the set of services it

includes and relationships between these services. When a user has a new request for a

composite service, similarity measure is used to find the closest cases in the case-base. As

similarity measure, matching between the definitions of composite services are used. Then,

the preassembly service with the highest similarity value is suggested to the user. However,

none of these case-based approaches use an ontology in conjunction with a case-base as we

have done here.

So far, we have assumed that agents exchange their experiences or context-aware rat-

ings honestly. However, some consumers may want to defame some providers because of

personal or commercial reasons by disseminating deceptive information about the providers.

This situation imposes the requirement of using a trust mechanism so that some consumers

could be ranked as trustful and others could be ranked as distrustful (cheater or slanderer).

As a result, in Chapter 4, we develop an approach for handling deceptive information and

integrate it into the experience-based service selection.

73

4. CONTEXT-AWARE SERVICE SELECTION UNDER

DECEPTION

In Chapter 3, we have showed that when consumers speak the truth, the proposed

experience-based approach outperform the rating-based approaches in terms of providing

consumer satisfaction, especially in populations where the satisfaction criteria of the users

vary [1,3]. However, in many settings, consumers may prefer to be dishonest about their ex-

periences. As a result, if a consumer cannot differentiate between honest and deceptive expe-

riences of others, deceptive experiences may mislead the consumer [6]. Hence, one needs to

identify deceptive experiences and disregard them when selecting a service provider. In this

chapter, we propose a method to allow consumers to model the trustworthiness of other con-

sumers. Unlike the many deceptive information filtering in the literature [50,52], this method

combines consumers’ personal observations about the providers and public knowledge of the

others.

In summary, in this chapter, we propose an integrated approach for context-aware

service selection in deceptive environments. This approach effectively combines: (1) the

experience-based service selection approach in Chapter 3 that makes context-aware service

selections using the shared consumer experiences, and (2) an information filtering method

that computes trustworthiness of the consumers and identifies deceptive experiences. This

method filters out deceptive experiences, before they are used for the selection of service

providers. We evaluate the performance of the proposed approach using extensive exper-

iments in different settings. We compare it with two recent rating-based service selection

approaches from the literature. Our experiments show that using the proposed approach,

service consumers can successfully select satisfactory service providers even if a significant

ratio of consumers are liars, and even if the satisfaction criteria and the context of consumers

vary considerably over time. Moreover, our integrated approach significantly outperforms

the rating-based approaches in those settings.

74

The rest of this chapter is organized as follows. Section 4.1 describes the effects of

deceptive information in the context-aware service selection proposed in Chapter 3. Sec-

tion 4.2 presents our method for the computation of consumers’ trustworthiness and filtering

out deceptive experiences received from untrustworthy consumers. Section 4.3 experimen-

tally evaluates our integrated approach for context-aware service selection with comparisons

to well-known rating-based service selection approaches. We offer concluding remarks in

Section 4.4.

4.1. Effects of Deceptive Experiences in Context-Aware Service Selection

In experience-based approaches, consumers use the experiences of others. Experiences

are more expressive than ratings. A negative rating may be given by a consumer because of

various reasons such as late delivery, insufficient consumer support or the worst case; defrau-

dation where the consumer pays for a service, but never receives the paid service. Ratings do

not distinguish between these; a negative rating means only the dissatisfaction of the rater.

However, experiences can express the actual story; what is requested and what is actually

received. It is apparent that defraudation is much more serious reason for the consumer

dissatisfaction. When a consumer encounters an experience including defraudation made

by a provider , the consumer will probably never consider the provider for a transaction.

However, experiences are produced by consumers and some consumers may want to defame

some providers because of personal or commercial reasons. This situation imposes the re-

quirement of using a trust mechanism so that some consumers could be ranked as trustful

and others could be ranked as distrustful (liar). As a result, our framework should have an

integrated collaborative trust mechanism.

In this section, we describe how the expressiveness of experiences can be abused by

some malicious consumers to mislead others during service selection. For this purpose,

we first describe the behavior of malicious consumers, and then we empirically analyze the

possible effects of deceptive experiences in the context-aware service selection.

75

4.1.1. Behavior of Liars

In the rating-based service selection literature, behavior of a liar is usually defined

using a simple formula; r ′ = r − 1, where 0 ≤ r ≤ 1 is the true rating of the liar and

0 ≤ r′ ≤ 1 is the deceptive rating that the liar shares with others. This way, the liar is

assumed to mislead others as much as possible (it gives bad ratings for good providers and

good ratings for bad providers). In this chapter, we follow the same way, but we redefine

this behavior for the case of experience-based service selection, where consumers share their

ontology-based past experiences instead of ratings.

In experience-based service selection, liars modify their experiences before sharing,

so that they mislead the other consumers the most. This is achieved by disseminating awful

experiences about the good providers and perfect experiences about the bad providers. That

is, if the liar demanded a notebook within 7 days from a provider in the past and it is delivered

on time, the liar states in its experience that the merchandise was not received even though

the money is paid out or the notebook was delivered after 120 days. This way, extremely

negative experiences about the good service providers are disseminated by the liars. On

the other hand, if an experience contains an unsatisfactory service, the liar modifies the

experience before sharing so that the received service looks like it has satisfied the demand

of the customer. For example, if the liar demanded a notebook within 7 days from a provider

in the past, but delivery was made after 30 days, the liar states in its experience that the

notebook was delivered within 7 days.

4.1.2. Influence of Extremely Negative Experiences

Since there are many highly rated sellers in the marketplaces such as e-Bay, buyers

have become very sensitive to any negative feedback. Cabral and Hortacsu examine e-Bay

to figure out the effects of negative and positive reviews on the behaviors of buyers and

sellers [71]. They show that when a seller in e-Bay receives a negative review for the

first time, his sales’ growth decreases by 14%. Similarly, using data on e-Bay, Lucking-

Reiley demonstrates that negative feedback (e.g., negative user reviews) has a statistically

significant effect on users’ biddings during auctions, but positive feedback does not [72]. In

76

other words, once a seller has negative feedback, the number of bids put for the seller drops

significantly, while a similar effect is not observed for positive feedback.

These researches reveal that consumers are dramatically affected by the negative re-

views about the providers in real life, even though there are a significant number of positive

reviews for those providers. The liars defined in this chapter disseminate extremely negative

experiences about the good service providers. Those negative experiences are different from

ordinary negative experiences, because they contain extremely repulsive information about

the service providers, such as defraudation. In real life, such information may have a great

impact on the consumers’ service decisions. In order to imitate this, we implement service

consumers so that they prefer not to select a provider if they receive extremely negative expe-

riences about the provider. That is, the number of positive experiences about a provider does

not matter, if a consumer receives several extremely negative experiences about the provider

and these experience are not filtered out, the consumer does not choose the provider. This

type of sensitivity to deceptive information makes successful service selection much harder

for experience-based service selection, because even a few unfiltered deceptive experiences

may seriously affect the performance of service selection. However, rating-based service

selection approaches do not have the same sensitivity to deceptive information, because they

do not have any information about the rational of a negative rating.

4.1.3. Empirical Analysis of Deception

In this section, we present the performance of the experience-based service selection

approach in Chapter 3 when there are liars in the environment. For our evaluations in this

section, we select SPSGM , which is shown to be the best experience-based service selection

method in Chapter 3. In our experiments, parameter Rliar defines the ratio of liars in the

consumer society. We use the same environmental setup and parameters in Chapter 3. For

each value of Rliar, simulations are run for 100 epochs and average ratio of successful service

selections is calculated for each Rliar value. Results of our simulations are summarized on

Figure 4.1. In order to see the effect of deceptive information better, we set the parameters

other than Rliars to zero (PI = 0, PCD = 0 and Rsubj = 0) throughout the simulations.

77

Figure 4.1 shows that, when there are no liars in the environment, experience-based

service selection leads to successful service selections almost all the time (success at around

97% of the cases on the average). However, when 10% of the consumers are liars, perfor-

mance of service selection sharply decreases below 0.35. This is the effect of extremely

negative experiences disseminated by the liars about the satisfactory providers. For higher

ratio of liars, the performance of service selection approach reaches to 0.0, because the con-

sumers mostly select providers among the bad ones. This is intuitive, because in this setting

there are many extremely negative experiences about the good providers and considerable

amount of positive experiences about the bad providers. Hence, the sincere experiences dis-

seminated by the honest consumers are overwhelmed by the experiences disseminated by

the liars in the environment. As a result, mostly the bad providers are considered for service

selection while the ratio of liars among the consumers increases.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
liar

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

Figure 4.1. Drop in the performance of experience-based service selection (SPSGM) when

0 ≤ Rliars ≤ 0.5, where PI = 0, PCD = 0 and Rsubj = 0

4.2. Filtering out Deceptive Experiences

In this section, we describe how deceptive experiences are determined and filtered

out during service selection. From now on, we call consumers that share their experiences

with others “advisors”. This terminology is used to comply with the trust and reputation

literature, where agents that share their ratings with others are usually called “advisors”. A

78

consumer can estimate the trustworthiness of an advisor by combining two different sources

of information; private and public credits of the advisor. The private credit of the advisor is

calculated by the consumer, based on the experiences the advisor supplies of providers with

whom the consumer has already had some personal experiences. If private credit cannot be

calculated with confidence, a public credit is calculated, based on the advisor’s experiences

with all providers in the environment. A weighted combination of the private and the public

credits is derived, based on the estimated reliability of the private credit value. This combined

value then represents the trustworthiness of the advisor. After that, the experiences received

from the less trustworthy consumers are finally regarded as deceptive and filtered out during

service selection. Note that during those calculations, we only consider the experiences

related to the current demand of the consumer, because only those experiences are used for

the service selection, so the context of those experiences is the same as the current one.

In other words, trustworthiness of advisors is calculated in a context-dependent way. This

enables an advisor to be regarded as trustworthy in one context while the advisor may be

regarded as untrustworthy in another context.

4.2.1. Private Credit of Advisors

Our approach allows a consumer C to evaluate the private credit of an advisor A by

comparing their experiences for their commonly encountered providers {P0, P1, ..., Pm}. For

each of the commonly encountered provider Pi, A has the experience vector EA,Pi
and C has

the experience vector EC,Pi
. The experiences in EA,Pi

and EC,Pi
are ordered according to

their recency. The experiences are then partitioned into different elemental time windows.

The length of an elemental time window may be fixed (e.g. three days) or adapted by the

frequency of the transactions with the provider Pi, similar to the way proposed in [73],

where the length is smaller when the frequency of the transactions is high, and larger when

the frequency is low. It should also be considerably small so that there is no need to worry

about the changes of providers’ behavior within each elemental time window.

We define a pair of experiences (eA,Pi
, eC,Pi

), such that eA,Pi
is one of the experiences

in EA,Pi
, eC,Pi

is one of the experiences in EC,Pi
, and eA,Pi

corresponds to eC,Pi
. Two ex-

periences, eA,Pi
and eC,Pi

, are correspondent only if the experience eC,Pi
is the most recent

79

experience in its time window, and the experience eA,Pi
is the closest and prior to the experi-

ence eC,Pi
. We consider experiences provided by C after those by A, in order to incorporate

into C’s experiences anything learned from A, before taking an action. According to the

solution proposed in [74], by keeping only the most recent experiences, we can avoid the

issue of advisors’ “flooding” the system. No matter how many experiences are provided

by one advisor in a time window, we only keep the most recent one. Then, we count the

number of experience pairs for Pi, denoted as NPi
. The total number of experience pairs for

all commonly encountered providers (Nall) will be calculated by summing up the number of

experience pairs for each commonly encountered provider as follows:

Nall =
m∑

i=0

NPi
(4.1)

For each pair of experience (eA,Pi
, eC,Pi

), the consumer C converts eA,Pi
and eC,Pi

to its

satisfaction levels based on its own taste function F C
taste as follows:

lA,Pi
= F C

taste(eA,Pi
), lC,Pi

= F C
taste(eC,Pi

) (4.2)

We define the experience pair (eA,Pi
, eC,Pi

) as a positive experience pair if lA,Pi
is the same

as lC,Pi
. Otherwise, the pair is called as a negative experience pair.

We examine experience pairs for all commonly encountered providers. Suppose there

are Np number of positive pairs. The number of negative pairs will be Nall −Np. The private

credit of the advisor A is estimated as the probability that A will provide truthful experiences

to C. By truthful experiences, we mean the experiences whose converted satisfaction levels

are the same as the ones of the personal experiences of C. Because there is only incom-

plete information about the advisor, the best way of estimating this probability is to use the

expected value of the probability. The expected value of a continuous random variable is

dependent on a probability density function, which is used to model the probability that a

variable will have a certain value. Because of its flexibility and the fact that it is the conjugate

prior for distributions of binary events [75], the beta family of probability density functions

is commonly used to represent probability distributions of binary events (see, e.g. the gener-

80

alized trust models BRS [76] and TRAVOS [52]). Therefore, the private credit of A can be

calculated as in Eqauation 4.5.

α = Np + 1 (4.3)

β = Nall − Np + 1 (4.4)

Rpri(A) = E[Pr(A)] =
α

α + β
(4.5)

In Equation 4.5, Pr(A) is the beta probability density function for the probability that A will

provide truthful experiences to C, and E[Pr(A)] is the expected value of this probability

density function.

4.2.2. Public Credit of Advisors

If the consumer C has a few or no personal experiences about the providers that the

advisor A has experience with, then private credit of A cannot be computed by C with con-

fidence. In this case, the consumer C calculates A’s public credit in addition to its private

credit. For this purpose, experiences given by A is examined to determine if they are consis-

tent with the majority of the experiences given by the other advisors for the same providers.

Consistency of an experience eA,Pi
with the majority is computed as follows. First, the con-

sumer C determines the experiences provided by other advisors about the same provider, Pi.

Suppose that n other advisors (A0 . . . An−1) also have given C their experiences about the

provider Pi. Let one of the experiences given by the advisor Aj be eAj ,Pi
, where 0 ≤ j < n

and eAj ,Pi
corresponds to eA,Pi

. In other words, similar to the calculation of private credit,

eA,Pi
and eAj ,Pi

are within the same time window, eAj ,Pi
is prior to eA,Pi

, and they are the

most recent experiences in the corresponding time window. Hence, we guarantee that the

conflicts between the experiences in our calculations are not due to the behavior change of

the providers, but instead due to dishonest reporting. Second, those experiences provided by

other advisors about Pi are converted to the consumer C’s satisfaction levels, using Equa-

tion 4.2. In this case, we use 1 to represent satisfactory experiences and 0 to represent

dissatisfactory experiences. Then, we calculate the average satisfaction level (avg) as in

81

Equation 4.6. The experience eA,Pi
of the advisor A is considered a consistent experience if

|F C
taste(eA,Pi

) − avg| ≤ φ; otherwise, eA,Pi
is considered as an inconsistent experience. In

our calculations, 0 < φ < 0.5 is the maximum acceptable deviation from the majority.

avg =

∑n−1
j=0 F C

taste(eAj ,Pi
)

n
(4.6)

Suppose that the advisor A provides in total N ′
all experiences for the current demand of C.

If there are Nc consistent experiences among those experiences, the inconsistent experiences

provided by A will be N ′
all − Nc. In a similar way as estimating the private credit, the

public credit of the advisor A is estimated as the probability that A will provide consistent

experiences for the current demand of C. It can be calculated as in Eqauation 4.9.

α′ = Nc + 1 (4.7)

β ′ = N ′
all − Nc + 1 (4.8)

Rpub(A) =
α′

α′ + β ′ (4.9)

Eqauation 4.9 indicates that public credit of an advisor is high as long as it gives experiences

consistent with the experiences of the majority.

4.2.3. Trustworthiness of Advisors

In order to estimate the trustworthiness of the advisor A, we combine the private credit

and the public credit values. The private credit and the public credit values are assigned

different weights. The weights are determined by the reliability of the estimated private

credit value. For this purpose, we first determine the minimum number of experience pairs

needed for C to be confident about the calculated private credit of A. The Chernoff Bound

theorem [61] provides a bound for the probability that the estimation error of private credit

exceeds a threshold, given the number of pairs. Accordingly, the minimum number of pairs

82

can be determined as in Equation 4.10.

Nmin = − 1

2ε2
ln

1 − γ

2
(4.10)

In Equation 4.10, ε is the maximum error that can be accepted by C, and γ is the confidence

measure. If the total number of experience pairs used for the calculation of the private credit

is larger than or equal to Nmin, the consumer C is confident about the calculated private

credit value. Hence, this value is used as the trustworthiness of A. However, if the used

experience pairs are less than Nmin, the consumer C combines the private and the public

credit values as a weighted sum. The weight (or reliability) of the private credit value can be

measured as follows:

w =

⎧⎨
⎩

Nall

Nmin
if Nall < Nmin;

1 otherwise.
(4.11)

The trustworthiness of A is calculated by combining the private and public credit values as

follows:

Tr(A) = wRpri(A) + (1 − w)Rpub(A) (4.12)

4.3. Evaluation

We extend our simulator in Chapter 3 to measure the performance of our approach

in selecting an appropriate service provider in deceptive environments. In the implementa-

tion of the proposed approach, we set the maximum acceptable deviation from the majority

φ = 0.1, the acceptable level of error ε = 0.4 and the confidence measurement γ = 0.6

during the calculations of advisors’ trust values. This setting is purposefully chosen to give

more weight to the personal observations (private credit) rather than the information from

others (public credit). After calculating the trust values using private and public credits, we

regard an advisor as a liar if its trustworthiness is less than 0.5. We integrate the proposed

deceptive information filtering approach into SPSGM to measure the achieved performance

83

improvement in deceptive environments. We call the integrated experience-based service se-

lection approach as SPS∗
GM . We also implement two different service selection approaches

from the literature and compare them with SPS∗
GM . Those approaches are explained briefly

in the next section (for details see Section 2.3).

4.3.1. Service Selection Approaches for Benchmarks

There are many rating-based service selection approaches in the literature. We use

three of those approaches to make benchmark comparisons with our approach. Those ap-

proaches are shortly explained below. In order to make more reliable comparisons, the

rating-based approaches and SPS∗
GM use the same information sources in our experiments.

While SPS∗
GM uses experiences, the rating-based approaches use ratings from the same

sources (advisors).

The beta reputation system (BRS) is proposed by Jøsang and Ismail [76]. It estimates

reputations of service providers using a probabilistic model. This model is based on the beta

probability density function, which can be used to represent probability distributions of bi-

nary events. In this approach, consumers propagate their ratings about providers. A rating of

the consumer c to the provider p is in the form of r = [g, b], where g is the number of c’s good

interactions with p and b is the number of c’s bad interactions with p. Ratings from differ-

ent consumers about the same provider are combined by simply computing the total number

of good interactions and the total number of bad interactions with the provider. These two

numbers are used to compute the parameters of a beta distribution function that represents

the reputation of the provider. To handle unfair ratings provided by other consumers (advi-

sors), Whitby et al. extend the BRS to filter out those ratings that do not comply with the

significant majority of the ratings by using an iterated filtering approach [50]. Hence, this

approach assumes that significant majority of the advisors honestly share their ratings (see

Section 2.3.1 for the detailed description).

Trust and reputation in the context of inaccurate information sources (TRAVOS) is

proposed by Teacy et al. [52]. Similar to BRS, it uses beta probability density functions

to compute consumers’ trust on service providers. The main difference between BRS and

84

TRAVOS is the way they filter out unfair ratings. While BRS uses the majority of ratings to

filter out unfair ratings about the providers, TRAVOS uses the personal observations about

those providers to detect and filter out unfair ratings. Hence, unlike BRS, TRAVOS does not

assume that the majority of ratings are fair (see Section 2.3.3 for the detailed description).

4.3.2. Simulation Environment

We use the same simulation environment in Section 4.1.3. Only one of the service

providers can satisfy a given service demand. When the simulations start, agents do not

have any prior experiences with service providers. At each epoch, with a probability of 0.5,

a consumer requests a service for its current service demand. Then, it collects experiences

related to similar service demands from other consumers in order to use for service selection.

In our simulations, we force consumers to make service decisions based on the information

from others rather than their own previous experiences. In this way, we can test the abilities

of our approach better against subjectivity, unreliability and context-awareness.

In this section, we use rating-based service selection approaches for benchmark com-

parisons. In this case, liars give bad ratings to good service providers and good ratings to

bad service providers, analogous to the experience-based case described in Section 4.1. For-

mally, if the true rating of a liar to a provider is r, the liar modifies the rating as r ′ = 1 − r

before sharing with the other consumers to mislead the others as much as possible [20].

Our main performance metric is success in service selection. We measure it as the ratio

of service decisions resulted in satisfaction as in Chapter 3. Intuitively, in deceptive envi-

ronments, the success in service selection should be correlated with the amount of filtered

deceptive information during service selection. As the amount of unfiltered deceptive infor-

mation increases, the performance of service selection approaches is expected to decrease.

Our supplementary performance metric is the error in identifying liars among the advisors

during service selection.

85

4.3.3. Experimental Results

In this section, we evaluate the performance of our integrated service selection ap-

proach in three steps. First, we examine our approach in deceptive environments when there

is no subjectivity and variation on context. Second, we investigate the performance change

when subjectivity is included in the experiments. Lastly, we consider reliable environments

with no subjectivity and inspect the performance of our approach when consumers are al-

lowed to change the context of their service demands.

4.3.3.1. Deceptive Environments without Subjectivity and Variation on Context. In this set-

ting, consumers do not change their service demands (PCD = 0.0). Therefore, the context of

their service selections does not change during the experiments. Moreover, consumers with

the similar demands have the same taste (Rsubj = 0.0), so the consumers with similar service

demands are satisfied with the same providers. In order to learn the effect of deception in

this setting, we repeat our experiments for different percentages of liars.

Figure 4.2 shows the ratio of successful service selections in one of our experiments

where only 20% of consumers are liars (Rliar = 0.2). In this setting, performances of

SPS∗
GM , TRAVOS and BRS are almost the same. Those approaches can successfully deter-

mine satisfactory service providers. Figure 4.3 shows another experiment in the same setting

where 50% of the consumers are liars (Rliar = 0.5). As shown in the figure, performances

of SPS∗
GM and TRAVOS decrease slightly, when the percentage of liars is increased from

20% to 50%. However, in this case, the performance of BRS decrease dramatically.

Those experiments show that some of the service selection approaches are significantly

affected by deceptive information disseminated by the liars in the society. In order to see the

effect of deceptive information more clearly, we conduct simulations for different ratios of

liars, by varying the value of the Rliar parameter. Figure 4.4 shows the average ratio of

successful service selections through the experiments for different ratios of liars. The figure

shows that the performances of SPS∗
GM and TRAVOS do not decrease significantly as the

percentage of liars increases in the society. Although TRAVOS is slightly more sensitive to

86

the ratio of liars than SPS∗
GM , both of these approaches have a very good performance in

determining satisfactory service providers. Unlike SPS∗
GM and TRAVOS, BRS is extremely

sensitive to the percentage of liars and eventually its performance approaches to 0.0 as the

ratio of liars approaches 0.8.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

TRAVOS
BRS

SPS*
GM

Figure 4.2. TRAVOS, BRS and SPS∗
GM have similarly good performances when

Rliar = 0.2 and there is no subjectivity or variation on context during the experiment

(Rsubj = 0.0 and PCD = 0.0)

Figure 4.4 shows that performance of BRS for Rliar > 0.2 decreases considerable with

respect to TRAVOS and SPS∗
GM . In order to understand the reasons behind this observa-

tion, in Figure 4.5 we plot the average error in determining liars for BRS, TRAVOS and

SPS∗
GM . As shown in Figure 4.5, when the ratio of liars becomes greater than 0.2, BRS’s

error in determining liars dramatically increases. This means that BRS starts misclassifying

liars as honest and honest consumers as liars when the ratio of liars increases. This is an

expected result because BRS is designed for environments where a significant majority of

the consumers are honest. The high amount of error in determining liars implies the usage of

more ratings from liars and fewer ratings from honest consumers. Therefore, in the case of

BRS, filtering ratings may lead to less successful service selection. Unlike BRS, TRAVOS

and SPS∗
GM have very low ratios of error. SPS∗

GM and TRAVOS fail to determine liars in at

most 5% and 6% of the cases respectively, while BRS’s error in determining liars approaches

100%. In this part of our evaluations, we show that BRS fails in service selection when there

87

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

TRAVOS
BRS

SPS*
GM

Figure 4.3. Performance of BRS sharply decreases when the ratio of liars is increased to 0.5

(Rliar = 0.5, Rsubj = 0.0 and PCD = 0.0)

are a significant number of liars in the environment. Next, we repeat our experiments for the

case where consumers have different tastes for similar service demands.

4.3.3.2. Deceptive and Subjective Environments without Variation on Context. In this set-

ting, consumers do not change their service demands (PCD = 0.0) as in the previous setting.

However, this time, half of the consumers having similar service demands have conflicting

satisfaction criteria (Rsubj = 0.5). Figure 4.6 demonstrates the results of an experiment

where there are no liars among the consumers (Rliar = 0.0). The figure shows that perfor-

mances of rating-based approaches are significantly lower than the performance of SPS∗
GM

in general during the simulations. This is the effect of subjectivity on the rating-based service

selection, because in the case where there is no subjectivity (PCD = 0.0, Rliar = 0.0 and

Rsubj = 0.0), performances of the four service selection approaches are the same as shown

in Figure 4.4. Vulnerability of rating-based approaches to subjectivity is expected, because

rating-based approaches assume that there is no subjectivity among the consumers [20]. That

is, they assume that every consumer gives good ratings to “good” providers and “bad” rat-

ings to bad providers. However, in the case of subjectivity (Rsubj = 0.5), the definition of

“good” and “bad” depends on each consumer and may change significantly from consumer

to consumer as in real life.

88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
liar

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

TRAVOS
BRS

SPS*
GM

Figure 4.4. As the ratio of liars increases, the performance of BRS decreases considerably

while the performances of SPS∗
GM and TRAVOS are slightly affected (Rsubj = 0.0 and

PCD = 0.0)

In this setting, the performance of TRAVOS is much better than the performance

of BRS. The main reason for this performance difference is that TRAVOS can success-

fully identify advisors whose ratings conflict with personal observations. In other words,

TRAVOS labels advisors with conflicting taste as liars and it removes their ratings during

service selection. In this way, it enables consumers to use ratings from others with similar

taste. Although TRAVOS is not proposed to handle subjectivity, its mechanism of filter-

ing out unfair ratings works well for removing subjectivity during service selection. This is

because both subjectivity and deception ultimately result in consumers disseminating con-

flicting ratings for the same providers. Note that when subjectivity is high as in our setting,

BRS has the worst performance.

Half of the consumers are liars in Figure 4.3 and have different tastes in Figure 4.6.

These figures show that the effect of subjectivity is more severe than that of the deception

for TRAVOS and BRS. The main reason for this observation is the fact that it is harder to

determine consumers (advisors) with different taste than the liars. That is, ratings of a honest

consumer and a liar for the same providers always conflict. However, if two consumers are

both honest but their satisfaction criteria are different as in the case of subjectivity, their

ratings conflict only for the providers that satisfy one of those consumers. On the other hand,

89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
liar

A
ve

ra
ge

 r
at

io
 o

f e
rr

or
 in

 d
et

er
m

in
in

g
lia

rs

TRAVOS
BRS

SPS*
GM

Figure 4.5. As the ratio of liars increases, BRS’s error in determining liars increases

dramatically with respect to the errors of TRAVOS and SPS∗
GM (Rsubj = 0.0 and

PCD = 0.0)

ratings of those consumers are consistently negative for the other providers (ones which do

not satisfy any of those consumers). For example, in our experiments, two consumers with

different tastes give conflicting ratings only for two of the providers while their ratings are

consistently negative for the rest. Therefore, determining consumers with different taste is

more difficult than determining liars.

In many real-life settings, deceptive and subjective information exist together. In order

to see the combined effect of subjectivity and deception during service selection, we change

the ratio of liars when there exists subjectivity in our experiments. We show our results in

Figure 4.7. Our experiments show that for SPS∗
GM , increasing the ratio of liars from 0 to

0.8 results in a small decrease in the ratio of successful service selections; the decrease is

only from 0.96 to 0.86. If we compare the performance of TRAVOS, and BRS, we see that

TRAVOS has the best performance in terms of the success in service selection. However,

TRAVOS is more sensitive to deception and subjectivity than SPS ∗
GM ; its performance de-

creases from 0.85 to 0.42 in Figure 4.7 when the ratio of liars is increased from 0 to 0.8.

Therefore, we can confidently state that SPS∗
GM is much more robust to deception and sub-

jectivity than TRAVOS, and BRS.

90

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

TRAVOS
BRS

SPS*
GM

Figure 4.6. Performance of the rating-based approaches decreases in the case of subjectivity

(Rsubj = 0.5), even though all of the consumers are honest (Rliar = 0.0) and there is no

variation on context (PCD = 0.0)

4.3.3.3. Reliable Environments with Variation on Context and No Subjectivity. Unlike the

previous settings, in this setting, consumers change their service demands with probability

PCD after receiving a service. Moreover, all of the consumers are honest (Rliar = 0.0)

and their satisfaction criteria are similar if their service demands are also similar (Rsubj =

0.0). Figure 4.8 summarizes the average ratio of successful service selections for different

approaches when the value of PCD is varied from 0.0 to 1.0. Figure 4.8 indicates that the

performance of the rating-based approaches decreases sharply when PCD > 0, whereas the

performance of the proposed approach is near to 1.0. This sharp performance decrease is

intuitive, because ratings of a consumer reflect the aggregation of its past transactions with

the providers. Assume that a provider BookHeaven is an expert on selling books, but not

competent in selling music CDs. Assume that Bob recently made 5 transactions for 5 items

from BookHeaven: 2 books and 3 CDs. Because BookHeaven is an expert on book selling,

the transactions related to the books were successful, but the transactions related to the CDs

were not. In this case, the overall rating of Bob for BookHeaven is bad, because number

of unsuccessful transactions is higher than that of the successful transactions. If another

consumer wants to buy a book, the rating of Bob for BookHeaven will be misleading. In other

words, as consumers change their demands, their ratings about the providers become more

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
liar

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

TRAVOS
BRS

SPS*
GM

Figure 4.7. When the consumers have different tastes (Rsubj = 0.5) and there is no variation

on context (PCD = 0.0), ratio of successful service selections decreases much more sharply

for TRAVOS and BRS as Rliar increases

misleading, depending on the variation in the expertise of the providers. However, SPS ∗
GM

differentiates between the experiences belonging to different contexts. It can easily recognize

that BookHeaven can provide a satisfactory service if a book is demanded, but it cannot

produce a satisfactory service if a music CD is asked for. Hence, as seen in the Figure 4.8,

SPS∗
GM almost always leads to satisfactory service decisions. Its ratio of successful service

selections does not go below 0.94 while the performances of the rating-based approaches

decrease to 0.3.

4.3.4. Summary of Results

We compare our approach with two rating-based service selection approaches from the

literature; BRS and TRAVOS. In environments where there is no deception, variation on con-

text and subjectivity, these rating-based approaches have the same performance as SPS∗
GM .

All of the service selection approaches can successfully determine the most satisfactory ser-

vice providers in this case. Unfortunately, this setting is far from being realistic in many

real-life scenarios. In the case where there are liars among the consumers, the performance

of BRS dramatically decreases. The decrease is sharp when the ratio of liars increases. How-

ever, TRAVOS and SPS∗
GM almost always make satisfactory service selections, even if most

92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
CD

A
ve

ra
ge

 r
at

io
 o

f d
ec

is
io

ns
 r

es
ul

te
d

in
 s

at
is

fa
ct

io
n

TRAVOS
BRS

SPS*
GM

Figure 4.8. Average ratio of successful service selections decreases dramatically for

TRAVOS and BRS, when the context is allowed to vary during service selection

(Rsubj = 0.0 and Rliar = 0.0)

of the consumers in the society are liars.

When the consumers are allowed to have different tastes for the same service demands,

rating-based approaches suffer from the subjectivity. Although, subjectivity dramatically af-

fects the performance of BRS, the performance of TRAVOS decreases only 10%. TRAVOS

achieves relatively better performance than BRS by determining and eliminating ratings from

the consumers having different tastes. Unlike the rating-based approaches, SPS∗
GM is not

considerably affected by the subjectivity. This is intuitive because, unlike rating-based ap-

proaches, SPS∗
GM does not depend on the subjective opinions of other consumers during

service selection. If there is not only subjectivity but also liars among the consumers, the

performance of TRAVOS decreases dramatically while SPS∗
GM is only affected slightly in

this setting.

Consumers may vary the context of their service demands regularly as in many real-life

settings. Even if consumers have the same taste and are always honest, variation in context

may result in serious decreases in the performances of service selection approaches. Our

experiments show that rating-based approaches are very sensitive to the variation of context.

93

If consumers frequently change their service demands, their ratings become more confus-

ing than before. As a result, TRAVOS and BRS fail in selecting the satisfactory service

providers. On the other hand, SPS∗
GM can differentiate between different experiences de-

pending on their contexts. Hence, our approach is not affected by the frequent changes in

the context of service demands and almost always selects satisfactory service providers.

4.4. Discussion

In this section, we first compare our approach with the related work and then conclude

with an overview of the chapter.

4.4.1. Related Work

Because current service selection approaches are based on ratings, deceptive informa-

tion filtering problem in service selection is referred as unfair ratings in the literature [20].

Unfair ratings problem is receiving more attention with the establishment of the notion of

open systems, where there is no central authority monitoring the behavior of participants in

the system.

There are several approaches developed to handle unfair ratings in service selection

(details can be found in Chapter 2). However, these approaches are designed to be effective

only in limited situations. For example, Whitby et al. [50] extend the beta reputation system

proposed by Jøsang and Ismail [50] to cope with unfair ratings by filtering out the ratings that

do not comply with the ratings of the majority. This approach works only in the situations

where the majority of the agents are trustworthy. Dellarocas [73] develops a cluster filtering

approach to separate unfairly high ratings and fair ratings. However, this approach cannot

handle unfairly low ratings [77]. Teacy et al. [52] propose the TRAVOS model to cope with

inaccurate ratings provided by agents about the service providers. However, this model uses

only the personal observations about the service providers and disregards the valuable public

information. In the case of insufficient personal observations, this approach cannot be used.

Zhang and Cohen [78] have proposed an approach to allow consumers to model the trust-

worthiness of other consumers. This centralized rating-based method combines consumers’

94

personal observations about providers and public knowledge of the others held centrally by

the system. In this chapter, we adapt this approach to evaluate the trustworthiness of con-

sumers in a decentralized way in a distributed setting on the basis of the consumers’ shared

experiences, which is context-aware and able to handle consumer subjectivity.

Our work is distinguished from the literature as follows. Our approach does not depend

on ratings, which are subjective and uninformative about the context; instead our approach

uses ontology-based experiences, which are objective and capture contextual information.

Therefore, our approach enables the computation of trustworthiness for a specific context.

Similarly, current deceptive information filtering approaches consider consumers as liars if

these consumers have different satisfaction criteria. This problem is called subjectivity prob-

lem in rating-based systems. Unlike rating-based approaches, our approach can successfully

handle subjectivity while computing trustworthiness. Therefore, honest consumers having

conflicting satisfaction criteria are not regarded as liars in our approach.

4.4.2. Overview of the Contributions

As the number of service providers increases dramatically on the Web, it gets harder

to select an appropriate provider for a particular service demand. Traditional approaches to

service selection are usually based on the exchange of ratings among consumers in a mul-

tiagent system. The main challenge here is the fact that consumers’ tastes and expectations

may vary considerably for the same service. Therefore, ratings may be significantly mislead-

ing if the raters and the consumers using their ratings do not share similar tastes. Moreover,

the problem of service selection becomes more challenging when some of the consumers

disseminate deceptive information about the providers.

In this chapter, we enhance our service selection framework so that it is not only

consumer-oriented and context-aware, but also robust to deceptive information disseminated

by malicious consumers. In our framework, service consumers semantically describe their

past experiences with service providers, so that any consumer can interpret the experiences

of others using its own satisfaction criteria and context. If these experiences are not indi-

cated truthfully, they may be misinterpreted by consumers, as they make decisions about

95

which service providers to select.

In order to cope with deception, we propose an approach for modeling the trustwor-

thiness of consumers in a multiagent system – one that allows for a weighted combination

of personal credit and public credit of the consumers that share their experiences, in order to

determine whether the consumer is a liar. In order to be sensitive to the different satisfac-

tion criteria that consumers have, we evaluate the experiences that are shared by consumers

according to the taste function (Ftaste) of each consumer, as part of the reasoning about

deception.

We then integrate this method for detecting deception into our service selection frame-

work, in order to filter out deceptive information. The result is an overall method for ser-

vice provider selection that offers definite improvements over other methods that do not

adequately account for subjectivity, context-awareness and untruthfully shared experiences

together. We experimentally show that better service providers can be chosen using our ap-

proach, even if consumers have different tastes, they change context of their service demands

over time or a significant portion of them are liars.

Although the proposed experience-based service selection approaches in Chapter 3 and

Chapter 4 are successful in identifying satisfactory service providers, these approaches have

a weakness: assumption of a static, shared service ontology among agents. This assumption

cannot account for the fact that a shared service ontology may become insufficient over time,

while service interests of the consumers evolve in many real-life settings. In Chapter 5, we

propose a distributed approach for the evolution and maintenance of service ontologies [7,9].

This approach is not only useful for service selection in agent mediated e-commerce, but

also useful for other service selection domains. Therefore, we explain it with a broader

perspective considering the services in a general sense.

96

5. COOPERATIVE EVOLUTION OF SERVICE ONTOLOGIES

In the previous chapters, we propose different service selection approaches that are

based on semantic description of consumers’ past experiences, instead of ratings. While

these approaches are successful in identifying service providers, they assume common ser-

vice semantics. That is, these approaches assume that the agents share a service representa-

tion, such as an ontology, through which the agents can represent their service needs and past

experiences in the best way possible. This assumption cannot account for the fact that service

interests of the users continuously evolve in real life. This means that agents representing

those users may need to use new service concepts to describe the new service interests. This

requires agents to dynamically modify their vocabulary.

The need for new services stems from several facts. One, the consumer may be in need

of composed services. Individual services may be expressible by the common ontology, but

if the consumer always requests multiple services together, it may prefer to express its service

need compositely. Example 6 demonstrates such a composite service need. Two, the service

needs of the consumer may evolve in time. Thus, the consumer may actually construct a new

service description that does not exist before and start demanding this service. Example 7

demonstrates such a service need.

Example 6: A consumer wants to purchase a book and wants it to be delivered to an address.

Assume that there is no service concept composed of both purchasing and delivering, so the

consumer creates two service instances: one for purchasing and one for delivering. Then, it

collects information from other agents related to these service needs. Using the collected in-

formation, it discovers that ProviderA sells books and ProviderB makes deliveries. Since

the consumer requests both services, it is in need of a provider that does both services for it-

self. However, since its ontology does not have a specific concept to represent the composed

service, the consumer is left to make two individual service requests.

Example 7: Assume that a concept like valet parking is not known by any of the consumers

97

in the society. Assume that a consumer represents a human user which is is very busy and

does not want to waste her time searching for an appropriate place to park her car. Instead,

she wants a new type of parking service in which an attendant parks her car on the behalf of

her. The consumer has formulated a new service to express her parking needs.

The above examples show how a consumer may become aware of a new service need

and why it would prefer to add it into its ontology. However, addition of a new service

concept into the local ontology of a consumer does not only affect the consumer’s local

ontology but also it gradually affects local ontologies and preferences of other consumers

that it interacts with, as in the real life.

The need for individual ontologies to evolve on their own brings in a major problem

of ontology alignment. If the consumers do not exchange information about their ontologies

frequently, they can end up with disjoint ontologies, which will obstruct their communica-

tion. Hence, if consumers are allowed to add new service concepts into their ontologies, they

should also be offered a mechanism with which they can notify others about their ontology

changes. It is up to other consumers to decide whether these changes are of interest to them

or not. That is, no consumer needs to keep track of all changes in others’ ontologies. By

cooperatively exchanging information about their service ontologies, consumers can build

on the service concepts evolved by others, rather than reinventing the same services individ-

ually.

Accordingly, this chapter proposes a distributed approach for the creating and dissem-

ination of new service concepts and evolution of service ontologies in the context of service

selection. If a consumer cannot formulate its service need using the existing service concepts

in its ontology, it first queries other consumers to find a suitable service concept that corre-

sponds to its current service need. If such a service concept does not exist, the consumer

can generate a new service concept to express its service need and inserts the concept into

its service ontology. While using the new service concept when interacting with others, the

consumer first checks if the correspondent agent is aware of the concept that is used in the

interaction. If the correspondent consumer does not know the concept, then the consumer

98

sends a description of the concept to the correspondent consumer. The correspondent con-

sumer can then add the concept into its ontology using this description and if it finds the

service concept useful, it can use it in its forthcoming interactions with others. This way,

the semantics of new service concepts circulate and get established in the consumer society.

With this approach, we investigate the following questions:

1. How well can the consumers’ service ontologies evolve so that the service needs of the

consumers can be represented as concisely and accurately as possible?

2. How much of the ontology evolutions are due to individual efforts and how much are

generated by cooperation?

3. How much of the learned services are useful for the consumers and how much of the

useful services do they learn?

The rest of this chapter is organized as follows. In Section 5.1 and Section 5.2, we

explain our insight of service ontologies. Then, in Section 5.3, we present our approach to

enable consumers to agree upon the services and in Section 5.4 we propose an algorithm to

add new service concepts to ontologies. Lastly, we experimentally evaluate our approach in

Section 5.5 and discuss our work with references to the literature in Section 5.6.

5.1. Describing Services

Each consumer has access to a common meta-ontology that contains primitive con-

cepts and properties. This ontology is static and does not contain any service concept. This

ontology is public; i.e., may be downloaded from a well-defined resource. It constitutes a

grounding for describing service concepts and sharing these description between the con-

sumers.

Each consumer has a local service ontology. This ontology contains the service con-

cepts known by the consumer in a specific service domain. Each service concept has a

description. This description is made using only the concepts and the relations from the com-

mon meta-ontology. Therefore, each consumer can interpret this description correctly and

understand what the service does. Description of a service concept contains the properties

99

of the service. Each property of the service is defined as a combination of an OWL Property

and its range or value and denoted in the rest of the chapter as (OWLProperty;RangeOrValue).

A service concept gets its semantic meaning from its properties and from nothing else. That

is, semantic meaning of a concept is not related to the syntax or lexical properties of its

name. This is intuitive, because services are already defined fully by their properties in real

life. That is, usually properties of a service uniquely identify it. Example 8 illustrates the

description of services from their properties. As a characteristic of taxonomies in ontologies,

a service concept inherits the semantic meaning of its ancestors in the service ontology. Let

SA and SB be two service concepts with different names. These services are semantically

equivalent if their sets of properties are equal. Similarly, let SC and SD be two semantically

different service concepts. SD is a specialization of SC if it has every property that SC has.

Example 8: Assume that the parking service already exists in the service ontology and its

description has only one property; (hasAction; Park). This means that any service that con-

tains (hasAction; Park) in its description is also a parking service. The valet parking ser-

vice is described using only two properties; (hasAction; Park) and (hasActor; Attendant).

The second property contains a restriction on the range of the OWL property hasActor. This

restriction states that actor of the parking action must be an attendant, and not the owner of

the car. If another service concept is described using exactly the same properties with the

valet parking service, one can easily infer that this service is equivalent to ”valet parking”,

even if it has another name.

While interpreting service descriptions, a consumer uses ontological reasoning. For

example, assume that hotel valet parking service is described using two properties; (has-

Action;Park) and (hasActor;HotelAttendant). Again, assume that HotelAttendant is a sub-

concept of Attendant in the common meta-ontology. Therefore, the consumer can easily in-

fer a new property (hasActor;Attendant) from the property (hasActor;HotelAttendant). This

implies that the description of hotel valet parking actually contains three properties; (hasAc-

tion;Park), (hasActor;HotelAttendant) and implicitly (hasActor;Attendant). Therefore, this

service is a specialization (sub-concept) of valet parking service, because it has the every

property of valet parking.

100

Each consumer has a unique identifier such as a URI and a unique name-space. For

example, the consumer representing John Doe has a unique identifier http://agent.johndoe

and its name-space contains every name starting with this URI. When the consumer creates

a new service concept such as Valet Parking, it gives a name to this service concept within

its name-space such as http://agent.johndoe/valetparking. This way, name conflicts between

the service concepts that are created by different consumers are prevented.

5.2. Similarity Between Services

Two service concepts can be compared to each other in terms of semantic similar-

ity [79]. Several metrics for measuring the semantic similarity exist. We start with Tversky’s

similarity metric [80]. It considers the common and different properties of two concepts in

the computation of similarity and assumes that two concepts are similar as much as they

have common properties. However, we think that each property does not have the same im-

portance in the computation of similarity. Therefore, we apply a weighting scheme to the

properties of the concepts. In this work, similarity between two concepts a and b is computed

using Equation 5.1.

Sim(a, b) =

∑
p∈U(a)∩U(b) wa

p∑
p∈U(a) wa

p +
∑

p∈U(b)−U(a) wa
p

(5.1)

In Equation 5.1, U(a) is a set that contains the properties of service a including the

ones inherited from its ancestor services and wa
p is the importance of the property p for the

service a. The importance of a property is determined by its level of inheritance. That is,

a property is more important if it is inherited from the higher levels of the hierarchy. The

intuition behind this assumption is as follows. In an ontology, if two concepts are different

in terms of their most general properties (those that are inherited from higher levels in the

hierarchy), these concepts will be apart in the ontology hierarchy. However, if they are

different only in their most specific properties (those that are not inherited), they will be

close in the ontology hierarchy. For instance, sibling concepts are different in their most

specific properties. Therefore, importance of the property p for the service a (namely wa
p) is

101

computed as 1 +
∑

c∈P (a) f(c, p), where P (a) is the set of all ancestors of a in the service

ontology, and f(c, p) = 1 if the service concept c has the property p (p ∈ U(c)); otherwise

f(c, p) = 0. This means that the weight of the property p will be bigger if more ancestors of

the service a has it.

5.3. Interactions of Consumers

Equipped with the above, a consumer can compare its service description to other

service descriptions and find out if they are equivalent or similar. This is useful in two

settings: One, when a consumer formulates a new service description, it can contact other

consumers and ask them if they have previously formulated the same service description.

If so, the existing URI for the service can be used, removing the necessity to create a new

identifier. Two, an consumer can query other consumers for the same or similar service

descriptions to find out other consumers that have had the same or similar service needs in

the past. When the consumer gets hold of this information, it can contact the consumers to

discuss potential service providers.

In order to get information related to its current service interest, the consumer interacts

with its neighbors, which are defined as those consumers that are interested in the same or

similar services. To select its neighbors to contact, each consumer models other consumers in

the society by keeping track of their service interests from previous interactions. To do this,

each consumer keeps a table called Service Interest Table for maintaining the list of known

service concepts and the identifiers of the consumers that have used each of these concepts in

their interaction with the consumer. When the consumer needs information related to a spe-

cific service, it finds table entries belonging to the most similar service concepts in its service

interest table. Similarity between service concepts is computed using their descriptions as

explained in Section 5.2. The consumers that are referenced in these entries are selected as

the neighbors of the consumer. Then, the consumer interacts with those neighbors. During

these interactions, the consumer should properly express its current service need to the other

party in order to get the most related information.

102

5.3.1. Emergence of New Service Concepts

If a consumer encounters difficulties in representing its current service need using the

service concepts in its service ontology, a new service concept referring to the service need

is required. This new concept may either already exist in the society but the consumer may

not be aware of it or the concept may be totally new to the entire society. In order to differen-

tiate between these two cases, the consumer first creates a description of its desired service

concept and assigns a unique name to it using its name-space. Example 9 demonstrates a

simple case.

Example 9: John Doe wants to use valet parking service in a hotel during his travel. There-

fore, his agent looks for the hotels that provide a valet parking service. Assume that the agent

does not have a valet parking concept in its ontology. Hence, it cannot express its service

need directly. As a result, it creates a description for its desired service. In this case, this de-

scription is composed of two properties; (hasAction;Park) and (hasActor;HotelAttendant).

Then, it chooses a name for the desired service concept; for example, it calls the desired

concept as http://agent.johndoe/valetparkinginhotel.

After describing the desired service concept, the consumer sends a Service Inquiry

Message to its neighbors to find out if the service concept is already known to its neighbors.

This message contains the description of the desired service and the name assigned by the

consumer. Upon receiving the service inquiry message, a neighbor inspects the service con-

cepts in its ontology to find a semantic match with the desired service concept and informs

the requesting consumer if there is a match or not. If a semantic match is found, then the

neighbor sends the name of the matched concept in its ontology to the requesting consumer.

Therefore, the consumer can add the desired service concept into its ontology with this name

as described in Section 5.4. This way, the consumer and its neighbor address this service

concept with the same name in their ontologies.

If the consumer receives different names from its neighbors for the same service in-

quiry message, it notes that these names are synonyms, because they refer to the same service

103

concept. If none of the neighbors locates the desired service concept within their service on-

tologies, the consumer concludes that this service concept is not known by any of its neigh-

bors. In this case, the consumer places the concept into its local ontology with the name

that is stated in the service inquiry message. Note that concept names are created within the

name-spaces of the consumers. That is, it is not possible for two consumers to create two

different service concepts and give the same name to them. Therefore, each concept name is

unique and associated with only one service concept in the agent society. By giving unique

names to the new service concepts, we remove the probability of name conflicts.

At the end of the procedure above, the consumer adds the new service concept into its

service ontology. During its cooperation with its neighbors, the consumer gathers important

information about the service concept. The consumer shares the gathered information with

its neighbors by sending a Service Consolidation Message. This message contains the de-

scription of the service concept, and its name in the consumer’s ontology. It also contains

the identifiers of the neighbors that already know the service concept and the names of this

service concept within their ontologies (referred as ”synonyms”). When a neighbor receives

a service consolidation message, it adds the described service concept into its ontology with

the referred name if its ontology does not contain the service concept yet. Furthermore, the

neighbor stores the referred synonyms to remember how the same service concept is ad-

dressed by others. Therefore, the consumer and the neighbors can understand each other

during their future communications regarding this service concept.

In many approaches to ontology evolution, agents do not cooperate while creating

and adding new concepts into their ontologies. Therefore, they independently add the se-

mantically equivalent concepts with different names into their ontologies. This results in

the requirement of finding mappings between the concepts in different ontologies for com-

municating properly. However, in the proposed approach, when a consumer generates a new

service concept to represent its new service needs, it teaches this service concept to its neigh-

bors by sharing the description of the concept or the neighbors inform the consumer about

the service concept if the concept is already known by them. This leads to an interactive

learning of new services. Hence, mutually understood service concepts emerge as a result of

consumers’ social interactions.

104

Moreover, this approach leads to cooperative evolution of service ontologies. When a

consumer learns a useful concept from its neighbors, it can directly use it or create another

concept that builds on the learned concept to describe its service needs better. Hence, more

accurate concepts that describe the service needs are cooperatively and iteratively created.

5.3.2. Discovering Others

The approach explained above depends on the social interactions of a consumer with

other consumers that have similar service interests. In this approach, when it needs to learn a

new service concept, the consumer communicates with others that have used a similar service

concept in their interactions. For example, if the consumer needs a new service that is a type

of valet parking offered by hotels, it communicates with the consumers that are interested in

valet parking services or hotel services. These consumers are determined using the service

interest table of the consumer. In many cases, the agent may need to expand this table by

discovering new consumers with a specific service interest. In this section, we propose a

simple P2P search mechanism for this purpose.

In order to get the identifiers of the consumers with a specific service interest, the

consumer generates a Search Message. This message contains the identifier of the message

originator, the name of the service concept that represents the service interest, the desired

number of search results that should be returned by the receiver and lastly a time-to-live

(TTL) value to define how long the message should be forwarded. Then, using its service

interest table, the consumer chooses a subset of its neighbors to whom the search message

will be sent as explained in Section 5.3.1. Figure 5.1 shows a search message. In this

message, the message originator states that it is looking for five consumers that are interested

in HotelValetParking or a similar service. In the figures and tables throughout this chapter,

we omit the name-space prefixes for the service concept names (e.g., http://agent.johndoe/),

because of space limitations.

When another consumer receives this message, it checks whether the service concept

in the message is known or not. If this concept is not known by the receiver yet, it requests

for the description of the service concept from the message originator and adds the concept

105

into its service ontology as explained in Section 5.4. The receiving consumer processes the

message as follows. First, it computes the similarity of the service concept in the message

to the service concepts in its service interest table. Then, it sends the table entries belonging

to the most similar concepts along with the concept names to the originator of the search

message and the message originator updates its service interest table using these entries. The

receiver decides the number of entries to be sent using the number defined in the search

message. The receiver also updates its service interest table by adding the name of the

message originator to the related service concept entry. As a result, the receiver remembers

the service interest of the message originator and uses this information in the future. If

TTL value of the message is greater than one, the receiver decrements the TTL value of

the message and forwards the message to its neighbors that are most related to the service

concept in the message.

Using these simple interactions, consumers learn service interests of each other, update

their service interest tables, and use these tables in their future interactions. During the

interactions of the consumers, if unknown service concepts are encountered by a consumer,

the consumer requests for the description of these concepts from the consumers that have

used these concepts in their interactions. Then, these concepts are added to the ontology of

the consumer using the procedure in Section 5.4.

Received Search Message Service Interest Table
Originator agent.johndoe ConceptName Consumers
Service Concept HoteValetParking Parking Cons0;Cons3;Cons10;Cons12
DesiredResults 5 ValetParking Cons0;Cons16
TTL 3 HoteValetParking Cons11;Cons23;Cons34
 HotelService Cons11,Cons20

Similarity to HotelValetParking
Parking 0.4286 Returned Search Results
ValetParking 0.7143 ConceptName Consumers
HoteValetParking 1.0 HoteValetParking Cons11;Cons23;Cons34
HotelService 0.5714 ValetParking Cons0;Cons16

Figure 5.1. An example search message, service interest table of the receiver, the computed

similarities, and the returned search results

106

5.4. Updating Service Ontologies

A new service concept is added into a service ontology using its description and on-

tological reasoning. In a service ontology, each service concept is described in terms of its

properties. An example service ontology is shown in Figure 5.2. Each service concept inher-

its the properties of its ancestors. A property implies another one if it is a specialization of the

latter. For example, in Figure 5.2, HotelValetParking concept inherits (hasActor;Attendant)

from ValetParking and (hasActor;HotelAttendant) from HotelService. The latter property

implies the former, because HotelAttendant is defined as a sub-concept of Attendant in the

shared meta-ontology. Therefore, HotelValetParking can be described using only two prop-

erties; (hasActor;HotelAttendant) and (hasAction;Park).

Service

ParkingService

ValetParking

HotelService

isA

HotelValetParking

Park

ha
sA

cti
on

Attendant

ha
sA

ct
or

isA

isA

isA

HotelAttendant
hasActor

Room

RoomService

isA

isA

hasLocation

Figure 5.2. Service ontology of a neighbor

In this chapter, we assume that service concepts are precisely described by their prop-

erties. Hence, if the properties of two service concepts are equivalent, then they are semanti-

cally equivalent. Consider Example 9. The agent in the example describes its desired service

concept using two properties; (hasActor;HotelAttendant) and (hasAction;Park). When the

neighbor referred in Figure 5.2 gets this description, it can trivially match the desired concept

with HotelValetParking concept in its ontology.

A consumer learns new service concepts using their descriptions. When the consumer

receives a description of a service concept Snew, it searches for a semantic match in its

ontology using the approach above. If the consumer cannot find a semantically equal service

107

concept in its ontology, Snew should be added as a new concept into the service ontology

of the consumer. For this purpose, the consumer first defines the parent(s) of Snew in its

ontology. A service concept SP in the consumer’s ontology is a parent of Snew, if Snew is a

specialization of SP , but not that of SP ’s any subconcept. As stated before in Section 5.1,

Snew is a specialization of SP if every property of SP can be inferred from the properties of

Snew. Example 10 shows how parents of a new service concept are determined.

Example 10: Agent of John Doe generates a new service concept and gives this concept

a name, http://agent.johndoe/restaurantvaletparking. Then, the agent wants to teach this

concept to the agent referred in Figure 5.2. It defines this concept using two properties;

(hasAction;Park) and (hasActor;RestaurantAttendant). Assume that RestaurantAttendant is

a sub-concept of Attendant in the shared meta-ontology. When the agent referred in Fig-

ure 5.2 gets this description, it can conclude that this service is a specialization of Service,

ParkingService, and ValetParking concepts. However, only the most specific one, namely

ValetParking, is the parent of the new service concept. As a result, the agent adds the new

concept into its ontology as a sub-concept of ValetParking with the referred name.

After defining the parents of Snew, it is placed into the ontology as a sub-concept of

these parents. Some of the properties of Snew are also owned by its parents. Therefore, the

new concept inherits these properties from its parents. However, Snew may have some other

properties that are not owned by its parents in the ontology. These properties are directly

added to the new concept in the ontology. Example 11 shows how a new service concept is

placed into the ontology.

Example 11: The agent in Example 10 adds the new service concept as a subconcept of

ValetParking and uses the referred name http://agent.johndoe/restaurantvaletparking as its

name. This new service concept inherits (hasAction;Park) from its ancestors, but not (has-

Actor;RestaurantAttendant). So this property is attached to the new service concept in the

ontology.

Lastly, we may need to modify some of the existing parent-child relationships of SP ,

108

which is a parent of Snew. Let SX be a sub-concept of SP . If SX is also a specialization

of Snew, by definition SP cannot be the parent of SX any more. Instead, Snew should be

the new parent of SX in the ontology. Therefore, we modify the parent-child relationships

accordingly.

Consider an example scenario in which the neighbor referred in Figure 5.2 teaches ser-

vice concepts from its ontology to a consumer. This consumer has only one service concept

in its ontology. This concept is named Service and does not have any property. Figure 5.3

shows the initial service ontology of the consumer and its change after the addition of Hotel-

ValetParking, ValetParking and HotelService concepts, respectively.

Service

HotelValetParking

Park

ha
sA

cti
on

HotelAttendant

hasActor

is
A

Service

1 2

4

Service

ValetParking

HotelValetParking

Park

hasAction

Attendant

hasActor

isA

HotelAttendant
hasA

cto
r

is
A

3

Service

ValetParking

HotelValetParking

Park

hasActio
n

Attendant

hasActor

isA

HotelAttendant

hasA
cto

r

isA

HotelService

isAisA

Figure 5.3. Service ontology of the consumer; (1) initial, (2) after adding

HotelValetParking, (3) after adding ValetParking, (4) After adding HotelService concept

When the consumer receives the description of HotelValetParking from the neighbor, it

adds HotelValetParking as a subconcept of Service. Note that any service concept is trivially

a specialization of Service, because Service does not have any property. In this example, the

new service concept does not inherit any of its properties from its parent in the ontology, so

all of its properties are directly attached to it as shown in the second sub-figure of Figure 5.3.

When the consumer receives the description of ValetParking from the neighbor, it de-

termines that Service is the parent of this new service concept. Hence, ValetParking is also

added into the ontology as a subconcept of Service. Description of ValetParking contains

two properties; (hasAction;Park) and (hasActor;Attendant) . These properties can be in-

109

ferred from the properties of HotelValetParking. Therefore, HotelValetParking is set as a

sub-concept of ValetParking. Note that, now HotelValetParking inherits (hasAction;Park)

from its parent (see the third sub-figure of Figure 5.3).

Lastly, the consumer receives the description of HotelService from the neighbor. It has

only one property; (hasActor;HotelAttendant). This service concept is also added into the

ontology as a subconcept of Service. In this time, previously added service concept Hotel-

ValetParking is its specialization. Therefore, HotelValetParking is set as a sub-concept of

HotelService as shown in the fourth sub-figure of Figure 5.3. Notice that now HotelValet-

Parking has two parents and inherits all of its properties from those parents.

5.5. Experimental Results

We have conducted simulations to evaluate our approach. In the simulations, 100 con-

sumer agents are used. In the beginning of the simulations, each consumer agent is given

identities of three randomly chosen consumers to overcome bootstrapping. Initial interac-

tions are done with these agents. Throughout the simulations, service inquiry or search

messages are sent to at most two neighbors and TTL values of the search messages are set to

1, because of the small size of the simulated agent society.

Consumer agents are implemented in Java and JENA10 is used as OWL reasoner. Sim-

ulations are run on a computer with a 1.66 GHz Intel Core Duo CPU and 1.0 GB RAM under

Windows OS. Next, we describe the simulation environment and the results of our simula-

tions. Simulations are repeated 10 times in order to increase the reliability. Only the mean

values of the results are demonstrated in this section.

5.5.1. Simulation Environment

For the simulations, we select Food and Beverage Services domain. In real life, differ-

ent restaurants have different service offerings, which are usually called Food Menus. Each

service concept in this domain is described by a list of foods and beverages that are served

10http://jena.sourceforge.net

110

or delivered to a consumer together for a meal. For example, KFC Hot Wings Menu is an

instance of Chicken Wing Menu concept that contains a number of fried chicken wings, a

bunch of fried potatoes, and a cup of drink.

To facilitate meaningful generation of service needs, we have designed roles for agents.

These roles are similar to the real life roles such as student, parent, and so on. These roles

define the behaviors of consumers by specifying their service needs and characteristics. For

example, for dinner, the consumers playing vegetarian role usually demand a cup of veg-

etable soup, some pasta or rice, and a salad. In our simulations, there are 10 distinct roles

and each agent is assigned exactly one role. Each agent has a personality ontology that con-

tains information about the role that the agent plays. The consumer agent can reason about

its service needs using this ontology and shape its behaviors and preferences appropriately.

In other words, the roles enable generation of service needs during the simulation. Roles

of the consumers are set at the beginning and properties of the roles do not change during

a simulation. This means that consumers playing the same role continuously have the same

service needs during the simulations.

For the simulations, we extended W3C’s food ontology [25] and we use the resulting

ontology as the shared meta-ontology. This ontology has more than 200 concepts, 1020

individuals and 60 properties. In the beginning of simulations, each consumer agent has the

same service ontology. This ontology contains only 10 shared service concepts such as pizza

service, salad service and so on. Each of these service concepts contains only one type of

food. For example, an instance of pizza service contains an instance of pizza and nothing

else. However, each service need that is imposed by the roles is composed of several food

types. Hence, none of these shared service concepts is enough to represent a service need

on its own. Therefore, in the beginning of the simulations, a consumer having a service

need must request several services together to satisfy its service need. For example, in the

beginning, the consumer playing vegetarian role must demand several services together such

as soup service, pasta or rice service and salad service, because there is not a service concept

that contains a soup, rice or pasta, and a salad together. This may result in problems in real

life. For example, you want to have some soup and pasta. However, there is not a food

service that contains soup and pasta together. Instead, there is a soup service offered by a

111

restaurant and a pasta service that is offered by another restaurant. Hence, you have to make

two different orders from two different restaurants. If the pasta arrives much earlier than the

soup, you should either eat pasta before the soup or wait for the soup and let the pasta get

cold.

Table 5.1 shows the service concepts and the roles that use these concepts in the be-

ginning of the simulations. During the simulation, each consumer tries to express its service

need as concisely as possible (i.e., using a single concept). To do so, at each epoch, the

consumer tries to create a new service concept with a small probability (0.1). A new service

concept is created by either combining two existing service concepts as in Example 6 or

adding a new property to an existing service concept as in Example 7. If the service concept

to be created is learned from others, the consumer uses the learned service concept rather

than recreating it.

Table 5.1. Service concepts and roles using them in the 0th epoch

Service Concept Name Roles Using The Service Concept

SoupService Role5, Role4, Role2, Role0

DessertService Role8, Role7

AlcoholicBeverageService Role8, Role5, Role4, Role0

NonAlcoholicBeverageService Role9, Role8, Role7, Role6

PizzaService Role7, Role6, Role2, Role0

PastaService Role9, Role6, Role2

RiceService Role4, Role3, Role2, Role1

SaladService Role5, Role4, Role3, Role0

SeaFoodService Role6, Role5, Role4, Role2, Role1

MeatService Role8, Role6, Role5, Role3, Role1, Role0

5.5.2. Simulation Results

With the above setup, we first investigate whether the consumers have actually been

successful in formulating their service needs concisely as desired. Table 5.1 show the initial

112

configuration of the environment, where consumers use around four service concepts to de-

scribe their service needs. However, in our simulations, this number sharply decreases over

time and on the average it becomes 1 in the 15th epoch. That is, after this point, new service

concepts emerge so that every consumer can and does use only one service concept to de-

scribe its service need. The first plot in Figure 5.4 shows that starting from the 15th epoch,

the ratio of new service concepts used by a consumer reaches 1; meaning that any service

concept used by a consumer to describe its service need is a new service concept (i.e., did

not exist in the starting service ontology).

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

Ratio of new services in the services
used by a consumer

Ratio of the services created by a consumer
in the new services used by the consumer

Figure 5.4. Average ratio of adoption and creation of new service concepts by the

consumers

For example, the consumers playing Role7 cooperatively create a new service concept

before 15th epoch and use only the instances of this new service concept to describe their

needs thereafter. This new service concept contains a dessert, an alcohol-free beverage, and

a pizza. This confirms that our approach can enable consumers to create new and more

expressive service descriptions to satisfy their service needs.

Next, we study whether consumers create accurate service concepts based only on

their experiences or whether they have benefited from interactions with others. This is a

crucial point, since the proposed approach is meant to help agents evolve their ontologies

cooperatively. The second plot in Figure 5.4 shows the ratio of the service concepts created

by a consumer to the new service concepts used by the consumer. In the beginning, this ratio

113

is 0.4, which means that on the average 40% of the new service concepts used by a consumer

are created by the consumer. On the other hand, this ratio rapidly decreases and approaches

0.1, which means that only 10% of the new service concepts used by a consumer is created by

the consumer. The remaining service concepts are created by other consumers and adopted

by this consumer. This proves that there is a powerful cooperation between the consumers.

They teach each other new service concepts and furthermore the taught service concepts are

adopted and used to describe service needs of the consumers in the society. As stated before,

this situation leads to the cooperative creation of new service concepts, because new service

concepts are created using the learned ones.

Another interesting question is how well each agent becomes aware of the service

concepts created by other agents. To study this point, we make a distinction between unique

and replica service concepts. A service concept is unique at the time it is created if nobody

in the system has created another service concept with the same meaning. A service concept

is a replica if an equivalent service concept has been previously created by another agent in

the system before (but not known by the creator of the service concept).

Figure 5.5 shows plots related to this question. The first plot is the number of new

service concepts created through the simulations. After the 15th epoch, there are 92 new

service concepts in the environment. This number includes the unique service concepts as

well as the replicas. The second plot, on the other hand, shows only the number of unique

service concepts, which is equal to 75. Put together, these numbers reveal that 82% of the

new concepts in the environment are unique and only 18% of them are replicas. This result

confirms that consumers become aware of the useful service concepts instead of reinventing

them by creating replicas.

Next, we study how much of the service concepts are learned by an agent on the av-

erage and whether the agent misses out important service concepts in the society. The third

plot in Figure 5.5 is the average number of unique service concepts known by a consumer.

Consumers do not have the knowledge of whether a service concept is unique or replica,

because each consumer has a limited knowledge of the environment. If the consumer knows

two service concepts with the same meaning, it considers the one that is learned earlier as

114

unique and the other service as replica (synonym). The dashed line in the figure shows that

the average number of unique service concepts known by a consumer stabilizes at 11 after

the 15th epoch. This shows that the consumers know only a small portion of the service

concepts in the environment.

The last result shown in the figure is the average number of known unique service con-

cepts that are useful for the consumer. In this case, we count the unique service concepts

known by a consumer only if these service concepts are useful for the consumer in defining

its service needs. For example, for the consumers playing Role7, a service concept contain-

ing only a pizza and an alcohol-free beverage is useful, so we count this service concept for

the consumers playing Role7. However, we do not count this service concept for the con-

sumers playing Role2, because these consumers do not demand alcohol-free beverages with

pizza (see Table 5.1). Figure shows that the number of useful unique service concepts for a

consumer is around 8 out of the 11 unique service concepts it knows. These two observations

show that (1) consumers learn a small proportion of the service concepts in the environment,

and (2) this small proportion is enough for agents to represent their service needs. Hence,

they learn only enough to express their needs, and no more.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Epoch

N
um

be
r

of
 n

ew
 s

er
vi

ce
s

Number of new services in the environment
Number of unique new services in the environment
Average number of unique new services known
by a consumer

Average number of known unique new services
useful for a consumer

Figure 5.5. Number of new service concepts, unique new service concepts, known service

concepts, and useful known service concepts for a consumer

A concrete conclusion of Figure 5.5 is that most of the service concepts learned by

consumers are useful. An immediate question is how much of the useful and frequently used

115

service concepts are known by a consumer. This is important to find out since knowing useful

service concepts that are not used in communication is rarely of value. Figure 5.6 plots the

average ratio of useful unique concepts known by a consumer to the useful unique concepts

in the environment. To calculate this, we weight every service concept in the environment

by considering whether the service concept is useful for describing the consumer’s service

needs as well as how frequent the service concept is used. The frequency of service concepts

is calculated by counting the number of occurrences of the service concepts in communica-

tions of all the consumers. As Figure 5.6 shows the ratio of known useful service concepts

dramatically increases and approaches 0.9, which means that each consumer knows most

of the useful unique service concepts, which are frequently used by the consumers in the

society.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

Figure 5.6. Average ratio of known useful service concepts

5.6. Discussion

This chapter proposes a novel approach for cooperative evolution of service ontologies.

Our simulations show that consumer ontologies evolve considerably so that at the end of the

simulations each consumer is able to represent its service need as concisely as possible. The

evolutions are not only due to individual effort but mostly a result of cooperation. That is,

most of the service concepts used by each consumer are devised by others in the society.

Furthermore, the consumers learn a small portion of the service concepts that emerge in

116

the society, making sure that most of the learned service concepts are useful for them in

representing their service needs. Finally, consumers learn most of the useful, frequently

used service concepts in the society. Thus, through cooperation, agents can have different

but evolving ontologies, yet they can communicate with those that are similar to them to

represent their needs.

5.6.1. Extensions to the Proposed Approach

Main contribution of our research is the techniques that are proposed in Section 5.3

for the cooperative evolution of service ontologies in a P2P setting. In this chapter, we

assume that service concepts can be described by the agents using a shared meta-ontology

that is composed of fundamental concepts and properties. This ontology should carefully be

designed by domain experts so that it can be used to describe any new service concept in

the domain. This may require considerable amount of human effort and may not be possible

in some settings. The proposed techniques in this chapter can also be used together with

other concept description models. However, each concept description model has its own

advantages and disadvantages over the description model that is used in this chapter. For

example, in the example-based concept learning literature, a concept is described using its

instances (positive examples) and its non-instances (negative examples) [81, 82]. Although

this concept description model does not require a shared meta-ontology, it requires instances

to be shared among agents (e.g., through a public directory). We can easily integrate this

example-based description model into the proposed framework.

For example, in Web Services domain, we can describe Book Selling service concept

using its positive and negative examples. In this case, UDDI [65] entries related to book

selling concept (e.g., Amazon book selling service) can be used as the positive examples and

UDDI entries that are not related to book selling (e.g., New York Times newspaper selling

service) can be used as the negative examples. When an agent gets this description, it can

learn the Book Selling concept using the examples in the description as explained in [81,82].

Furthermore, it can compute the semantic similarity or equivalence between two service

concepts using these examples and machine learning techniques as described by Doan et.

al. [83]. Doan et. al. also offer a method for testing subsumption between two concepts

117

using examples. This is equivalent to testing whether a concept is a specialization of an-

other concept or not. Therefore, a service concept can easily be placed into an ontology

using its example-based description, using a method similar to the method in Section 5.4.

Using the approaches above, we can easily replace our concept description model with the

example-based concept description model. Similarly, we can switch between different con-

cept description models to use our framework in a broader range of real-life applications.

Example-based concept learning can easily be integrated into this work as shortly de-

scribed above. Although the quality of concept learning highly depends on the quality of

the given examples, previous approaches do not specifically address the problem of how to

select the most useful examples for the learner. In [8], as an extension of the research in

this chapter, we extend current example-based concept learning approaches using a novel

active learning approach. The proposed approach enables agents to teach each other con-

cepts from their ontologies using examples. Unlike other example-based concept learning

approaches, our approach enables the learner to elicit the most informative and useful ex-

amples interactively from the teacher. Hence, the learner participates to the learning process

actively. We empirically compare the proposed approach with the previous concept learning

approaches. Our experiments show that using the proposed approach, agents can learn new

concepts successfully and with fewer examples.

5.6.2. Related Work

The necessity for individual ontologies to evolve on their own results in a major prob-

lem of ontology alignment. There are substantial amount of research related to ontology

alignment and reconciliation in the literature [82–86]. Similarity-based approaches for on-

tology alignment are powerful and flexible enough for aligning ontologies expressed in lan-

guages like OWL. In these approaches, similarity between the concepts from two different

ontologies is computed and the concepts that are similar to each other are mapped to align

these two ontologies. Some other approaches use syntactic or lexical properties of concepts’

names in addition to semantic similarity metrics. They use string matching algorithms or

lexical databases like WordNet. We believe that semantic similarity is much more important

than syntactic similarity, because similarity or dissimilarity between the names of concepts

118

may be highly misleading.

Afsharchi et. al. [82] use an instance based approach for learning concepts. In that

setting, when an agent confronts an unknown concept, it chooses teacher agents among its

neighborhood and these teachers teach the concept to the agent by providing positive and

negative examples of the concept. Then, the agent uses a machine learning approach to

learn the properties of the new concept. This approach is similar to the approach of Sen and

Kar [81] in the sense that agents teach each other concepts by providing examples. This

approach is not practical for cases where there is not a sufficient number of instances shared

by the agents.

Stephens et. al. [84] propose an approach for the reconciliation of independent on-

tologies. They argue that if two ontologies share no concept in common, they cannot be

reconciled. However, if they share concepts with a third ontology then the third ontology

might provide a semantic bridge to relate these ontologies. Their approach makes use of

different techniques such as string matching and lexical databases in order to measure the

semantic distance between two concepts. However, they do not allow ontologies to evolve

cooperatively as we have done here.

Williams [85] proposes a methodology and algorithms for improving the mutual un-

derstanding of two agents. In this approach, agents develop a common feature description

of a particular concept using knowledge sharing and machine learning techniques in a peer-

to-peer setting. So, they gradually arrive at consensus on the concepts and they develop

mappings between the concepts in their ontologies. However, Williams’ approach does not

support cooperative ontology evolution.

Steels [87] allows differences in the ontologies of the agents. Steels uses a method

called language games to minimize these differences and generate shared ontologies from

the differentiated ontologies. The language games depend on a trial and error phase in the

communication. In practical applications, this may not be possible all the time.

Aberer et. al. [86] propose an approach for the global semantic agreements. They

119

assume that mappings between two different ontologies are already made by skilled human

experts. These mappings are exchanged by the agents and global semantic agreements are

reached using the properties of the exchanged mappings. Laera et. al. [88] use argumenta-

tion over concept mappings to reach global semantic agreements. Similar to Aberer et. al.,

in Laera et. al.’s approach, mappings between concepts are assumed to be made beforehand

by a mapping engine. Each mapping has a confidence value for different agents. By us-

ing argumentation theory together with these mappings, an agreement over heterogeneous

ontologies are reached dynamically.

Our work distinguishes from the literature in several ways. In the other approaches,

ontologies of agents evolve independently. Each agent creates new concepts on its own and

adds them into its ontology. This results in highly different ontologies. Then, the mentioned

approaches are used to align these ontologies. In our approach, ontologies evolve coopera-

tively. That is, a consumer learns new service concepts from its neighbors and furthermore

creates new ones using the learned service concepts. As a result, not only more useful ser-

vice concepts emerge over time, but also service ontologies of the consumers having similar

service needs become aligned over time. Additionally, our approach has a proactive nature.

In our approach, a consumer prohibits its future communication problems by informing its

neighbors about the created service concepts before using them.

In Chapter 3, we develop several service selection approaches and augment these

approaches with mechanishs for filtering deceptive information and ontology evolution in

Chapter 4 and Chapter 5, respectively. Current research on service selection in the litera-

ture show that there is no single solution for the problem of service selection that works

perfectly in every setting and for every consumer. Each solution has different strengths and

weaknesses for different settings. For example, the proposed context-aware service selec-

tion approaches in this dissertation are better than rating-based approaches in terms of the

achieved satisfaction, but they require consumers to record their experiences objectively us-

ing an ontology. This results in the problem of choosing the best service selection approach

for a particular consumer and its environment. In Chapter 6, we introduce this problem

in detail and propose an approach for consumers to learn how to choose the most useful

service selection mechanisms among different alternatives in dynamic environments [10].

120

In this approach, consumers continuously observe outcomes of different service selection

mechanisms. Using their observations and a reinforcement learning algorithm, consumers

learn to choose the most useful service selection mechanism with respect to their trade-offs.

Moreover, this approach enables consumers to switch between different service selection

mechanisms intelligently, as the properties of the environment changes dynamically.

121

6. ON CHOOSING AN EFFICIENT SERVICE SELECTION

MECHANISM

In a real-life implementation of consumer agents, there should be at least one service

selection mechanism embedded in the agent. This service selection mechanism is used by

the agent to decide on a service provider to interact with. However, which service selection

mechanism to implement in an agent is a difficult task for an agent developer for at least two

reasons.

First, each mechanism has its own advantages and disadvantages over the others under

different settings. In our previous research (see Chapter 3), we have observed that if the

consumers in the environment have almost the same taste, providers satisfying one consumer

tend to satisfy another consumer, too. Rating-based mechanisms are simple and fast as well

as effective in terms of achieved satisfaction in this setting. On the other hand, if the tastes

of consumers are highly different, rating-based mechanisms may have a bad performance in

terms of achieved satisfaction [3, 4] (they are inversely affected by the subjectivity). This

means that when the environment is static and consumers have similar preferences, rating-

based mechanisms may give perfect results in a fast way in such an environment. On the

other hand, an experience-based mechanism may be preferable if the consumers’ preferences

and tastes vary. Hence, under different situations, the same service selection mechanism has

highly different utilizations for the same consumers.

Second, the expectations of consumers from a service selection mechanism may vary.

For example, one consumer may trade off time for performance. That is, the consumer may

prefer to find service providers faster even when that means the best service provider will not

be found. On the other hand, another consumer may prefer the slower mechanism because

of the fact that its achieved satisfaction is higher.

Ideally, the consumer agent should be able to choose the service selection mechanism

to use based on its current trade-offs as well as its observation of the environment. To ac-

complish this, we propose agents to learn the pros and cons of service selection mechanisms

122

to use in dynamic environments and to decide on the mechanism at run time. As a learning

technique, we employ reinforcement learning (RL) since it allows agents to learn from their

actions in the environment [89]. Through simulations, we show that using our proposed ap-

proach, consumers can successfully learn to select the most useful mechanisms for service

selection under different configurations of the environment.

The rest of this chapter is organized as follows: Section 6.1 explains the proposed ap-

proach, with necessary background knowledge. Section 6.2 gives a brief overview of service

selection mechanisms that are used in this work and provides their performance evaluation.

Section 6.3 provides our experimental results. Finally, Section 6.4 summarizes our contribu-

tion and compares it to relevant literature.

6.1. Learning to Choose Among Service Selection Mechanisms

In real life, given a number of service selection mechanisms, we expect service con-

sumers to pick a mechanism that is most suitable for their current situation. For example,

if the consumer is in a hurry, it might prefer a service selection mechanism that will find it

a service provider quickly; whereas at other times, the quality of the found service provider

may be more important. Making choices between service selection mechanisms would be

trivial if agents could observe and characterize their environment perfectly. However, this

is rarely the case. Most often, agents are not aware of the service demands of other agents,

those agents’ past experiences, their expectations and so on. Interestingly, the performance

of most service selection mechanisms (time and quality-wise) are dependent of these char-

acteristics of the environment. Therefore, we need to provide consumer agents with means

to detect which mechanism to use in their environment to satisfy QoS constraints such as the

time required for service selection or desired ratio of satisfaction.

In different configurations of the environment, a service selection mechanism may have

different utilizations for a consumer. Therefore, if the agent finds out that its environment is

changing, then the consumer should switch to another service selection mechanism that has

better utilization for that specific setting. For this purpose, the consumer should continuously

observe the environment and should learn the best service selection mechanism for itself

123

under different configurations of the environment. This intuition becomes more concrete

when we analyze the different parameters of an environment.

6.1.1. Reinforcement Learning

Reinforcement learning (RL) [89] is an ideal learning technique to enable agents to

learn the environment and thus decide on which strategy to use in that particular situation.

That is why we propose to use RL for choosing a service selection mechanism in dynamic

environments.

Let us review the basic structure of an RL algorithm. In RL, there is a learning agent

and an environment that is observed by this agent. The environment has a set of discrete

states. At each state, there exists a set of available actions for the agent. When the agent

takes an action in a state, it receives a reward in turn and also the observed state of the

environment may change as a result of this action. The action to be taken in each state is

determined by the policy adopted by the agent. After a set of trial-and-error interactions with

the environment, the agent learns an optimal policy for choosing the best action in a given

state of the environment so that the total reward is maximized [89].

In RL, the environment is defined by a finite set of states S = {s1, s2, . . . , sN}, and

the agent has a finite set of actions A = {a1, a2, . . . , aM}. In this setting, the agent observes

the state of the environment st ∈ S in time t, and chooses an action at ∈ A, and receives

a scalar reward rt+1 after executing at. Each state has a value in terms of the maximum

discounted reward expected in that state. Value of a state is formulated in Equation 6.1.

Thus, the purpose of RL is to construct an optimal action policy that maximizes the expected

discounted reward in each state. In the equation, γ, (0 < γ < 1), is a discount factor so that

distant rewards are less important. The equation expresses that expected value of a state, st,

is the weighted sum of the rewards received when starting in the state st and following the

current policy.

V (st) = E

[∞∑
i=1

γi−1rt+1

]
(6.1)

124

The action selection at each step is based on Q-values, which are related to the goodness

of the actions. The Q-value, Q(s, a), is the total discounted reward that the agent would

receive when it starts at a state s, performs an action a, and behaves optimally thereafter.

The Q-values can be estimated by Temporal Difference Learning (TD) [90] methods such as

Q-Learning [91] and SARSA [89]. In this work, we choose to use SARSA reinforcement

learning algorithm [89] (shown in Figure 6.1). SARSA has two important advantages com-

pared to other approaches [92]. First, it has better convergence guarantees compared to other

RL approaches such as Q-learning. Secondly, it learns much more rapidly and in the early

part of learning, its average policy is better than that of the other RL approaches.

6.1.1.1. SARSA Algorithm. In the algorithm shown in Figure 6.1, initial Q-values are set to

zero and the current state s is determined (Line 1). While the current state is not the terminal

state of the agent (Line 2-9), the agent selects an action a using a policy (π) derived from the

Q-values (Line 3). There may be different ways of deriving a policy from Q-values. One of

the most popular approaches is ε − greedy. In this approach, with probability ε, we choose

an action uniformly randomly among all possible actions. This is called exploration. As

well as, with probability 1 − ε, we choose the action having the maximum Q-value (π(s) =

maxai
Q(s, ai)) and this is called exploitation. We do not want to explore indefinitely, so we

start with a high ε value and continuously decrease it at each time step (e.g., ε = 1/t). After

determining a using π, a is executed (Line 3). As a result an immediate reward is taken and

a new state is observed s′ (Line 4). SARSA algorithm is different from other TD approaches

such as Q-Learning in a way that it uses the current policy to update Q-values. Therefore, in

the algorithm, the action that should be taken in state s′ is also determined using the policy π

(Line 5). Then, s, a, r, s′, and a′ are used to update Q(s, a) (Line 7). In the update formula

of Q-values, γ is the discount factor and η is the learning rate (0 < η < 1). Discount factor

is used to weight immediate rewards more heavily than future rewards. The closer γ is to

1 the greater the weight of future rewards. The learning rate controls how much weight we

give to the recent reward, as opposed to the old Q-value estimate. We typically start with a

high learning rate and lower the learning rate as time progresses. After updating Q-value, s

and a are updated properly for the next time step (Line 8).

125

1: Initialization: initialize all Q(s,a) value to zero and observe the current state s
2: while (s is not terminal state) do
3: Select an action a using policy derived from Q (e.g., using ε − greedy) and execute it.
4: Observe immediate reward r and the new state s′

5: Choose the action a′ in state s′ using policy derived from Q (e.g., using ε − greedy)
6: Update Q(s, a):
7: Q(s, a) ← Q(s, a) + η × (r + γ × Q(s′, a′) − Q(s, a))
8: s ← s′, a ← a′

9: end while

Figure 6.1. SARSA reinforcement learning algorithm

6.1.1.2. Reward Function. The reward function (r) that we use with SARSA algorithm

is given in Equation 6.2. In the equation, E(Saction) and E(Taction) denote the expected

ratio of satisfaction and the expected time required for the chosen action, respectively. This

reward function reflects the trade-offs of the service consumers. According to the reward

function, a consumer is given a negative reward after choosing an action if there is another

action with an expected ratio of satisfaction that is at least 10% better than that of the chosen

action. Even though there is no such action, the consumer gets a negative reward again if

the chosen action is at least 10% slower than another action whose ratio of satisfaction is at

most 1% worse than that of the chosen action. If none of these cases occurs, the agent gets a

positive reward. Using this reward function, consumers learn to choose fast service selection

strategies without trading off the ratio of satisfaction more than 10%.

We select this reward function deliberately because of two reasons; (i) in many settings,

cost of choosing a bad service provider may be higher than choosing a good provider in long

time. In the first case, a consumer loses money, while in the second case it loses time.

Hence, consumers may prefer much slower service selection strategies if these strategies

are significantly more successful than the others (e.g., their success rate is at least 10%

better than others) (ii) for many consumers, time is also very valuable. Therefore, they

prefer a faster service selection strategy over others if its service selection performance is

not considerably lower than that of the other strategies (e.g., at most 1% lower). Altough the

agents can use any reward functions reflecting their trade-offs, we believe that the reward

function in Equation 6.2 successfully represents the general considerations cited above.

126

During its life-time, the consumer continuously computes and revises E(Saction) and

E(Taction). For each action, the consumer records the time required for the action and the

result of the action in terms of the degree of satisfaction. By simply averaging these val-

ues over time, the consumer computes E(Taction) and E(Saction), respectively. In order to

handle highly dynamic environments, the consumer uses only the recent information in its

computations (i.e., information from the last 20 time steps).

r(act) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if ∃X| (E(SX)−E(Sact))
E(Sact)

> .1

−1 if ∃X|abs((E(SX)−E(Sact))
E(Sact)

) < .01 ∧ (E(Tact)−E(TX)))
E(TX)

> .1

+1 otherwise

(6.2)

6.1.2. Discretization of Continuous State Space

In our setting of RL, states of the environment are different configurations of the en-

vironment and the actions are different service selection strategies. We can model the states

of the environment using the PCD, Rsubj , and PI parameters, as described in Chapter 3.

However, agents cannot observe these parameters directly, but they can observe the result

of their actions. Intuitively, there is a correlation between the performance of the service

selection strategies and these parameters. This intuition enables us to describe states of the

environment using the expected ratio of satisfaction of the different service selection strate-

gies, instead of the parameters like PCD, Rsubj, or PI . For example, if we consider two

service selection mechanisms A and B, a state can be characterized by a consumer using

the expected success of A and B. Therefore, the consumer observes the states of the en-

vironment as the pairs of different E(SA) and E(SB) values. However, this state space is

continuous and needs to be converted into a discrete state space for RL.

By dividing continuous state space to discrete states, we are trying to map different

configurations of the environment to a number of discrete states. If the number of discrete

states is too small, then highly different configurations of the environment will be mapped to

127

the same discrete state. This will decrease the accuracy of the RL algorithm considerably. If

the number of states is set to a number that is much bigger than the optimal number of states,

then it will take too much time to train the RL algorithm and at the end, some states will have

almost identical Q-values, because of the redundancy of the states. To tackle this problem,

we propose to decide on the number of discrete states dynamically. Initially, we start with

only one discrete state. We continuously observe the environment and try to estimate the

possible states that the environment may be in. Then, we group these possible states into

clusters by using k-means clustering algorithm. Each cluster is represented by one discrete

state. If any cluster of the possible states is too diverse to be represented by only one discrete

state, then this cluster is divided into two clusters and a new discrete state is created to

represent the new cluster of possible states. Q-values of the discrete state representing the

divided cluster is used as the initial estimates of the new state’s Q-values. This way, we

incrementally increase the number of discrete states only if it is required. This approach

has several advantages. First, it prohibits the introduction of redundant states. Second,

this approach does not require the knowledge of maximum number of states. Third, this

approach increases the convergence rate of Q-values by incrementally introducing the new

states and by using pre-computed Q-values as the initial estimates of these states’ Q-values.

Algorithm in Figure 6.2 presents a modified version of SARSA algorithm with the proposed

discretization of continuous state space.

wcvi =

∑
L∈ci

[∑n−1
j=0 |L[j] − centeri[j]|

]
|ci| (6.3)

In this algorithm, every state has a label. This label is an n-tuple, where n is the number

of available service selection mechanisms and each element of the n-tuple is of (E(SXi
):

the expected ratio of satisfaction of the service selection mechanism Xi. Initially we have

only one state and its label is set to (0, . . . , 0) (Line 1). During the life time of the agent,

it continuously computes expected ratio of satisfaction for each action and creates a label

Labelt at time t using computed E(SXi
) values (Lines 5–6). Labelt is added to state-space

set (Line 7). This set is initiated as an empty set (Line 1) and populated with Labelt at each

time step. Labels of the states and Labelt are used to determine the next state after taking

an action. After taking an action, the distance between computed Labelt and the labels of

128

the states are compared. The state having a label closest to Labelt is set as the current state,

s′ (Line 9). With a probability Pupdate, we update state labels by running k-means algo-

rithm [62] on state-space set. We initiate k-means algorithm with k centers (k is the number

of states). These initial centers are the current labels of the states (Line 15). New clusters

and cluster centers are defined after running k-means algorithm. Each state si has a corre-

sponding cluster ci. We compute within-cluster variance, (wcvi) for each cluster ci using the

center of the cluster and the labels within the cluster (see Equation 6.3). If, for any cluster ci,

wcvi exceeds a predefined threshold (Line 16), a new state is created (snew) (Line 17). One

of the labels in ci is set as the label of snew (Line 18) and Q-values of si is copied to snew’s

Q-values (Line 19). After creation of new states, we run k-means algorithm again (Line 21).

This procedure is repeated until wcv for each cluster is below the threshold. Then, we set

the center of each cluster as the new label of the corresponding state (Lines 23–25). Using

this approach, we increase the number of states only it is required. Furthermore, increasing

the number of states does not affect the performance of the RL algorithm much, because

we initialize Q-values of new states with the Q-values of the most similar states. As time

advances, Q-values of new states are differentiated by SARSA algorithm.

6.2. Comparison of Service Selection Mechanisms

To evaluate the proposed approach, we perform simulations using four service selec-

tion mechanisms that the agents can choose from at run time according to their trade-offs.

These service selection approaches are described in Chapter 3 in detail. The first two mech-

anisms are the rating-based service selection approaches; Selective Ratings (SPSSR) and

the proposed Context-Aware Ratings (SPSCAR). The second two mechanisms are the pro-

posed experience-based service selection approaches based on Gaussian Model (SPSGM)

and Case-Based Reasoning (SPSCBR).

In Chapter 3, we demonstrate the performance of these service selection mechanisms

in terms of their success in service selection. In this section, we also tabulate their average

time requirements during service selection. We have two metrics to evaluate each service se-

lection mechanism. Our first metric is the average ratio of decisions resulted in satisfaction

(S) and our second metric is the average time required for selecting a service provider (T).

129

1: Initialization: Create sinit with Label {0, . . . , 0}, initialize all Q(sinit, a) values to zero,
States ← {sinit}, StateSpace ← {}

2: s = sinit

3: while (alive()) do
4: Select an action a in state s using policy derived from Q, and execute it
5: Update E(RXi) for all of n mechanisms using the data in the lastN time steps
6: Labelt ←

{
E(RX0), . . . , E(RX(n−1))

}
7: add Labelt to StateSpace

8: r ← getReward()
9: s′ ← minsi

∑n−1
j=0 |si.Label[j] − Labelt[j]|

10: Choose the action a′ in state s′ using policy derived from Q

11: Update Q(s, a):
12: Q(s, a) ← Q(s, a) + η × (r + γ × Q(s′, a′) − Q(s, a))
13: s ← s′, a ← a′

14: if (Rand() < Pupdate) then
15: KMeans(StateSpace,States)
16: while (∃ci|wcvi > Threshold) do
17: Create new state snew

18: select one label from ci and assign it as the Label of snew

19: snew.QV alues ← si.QV alues

20: add snew to States

21: KMeans(StateSpace,States)
22: end while
23: for each si ∈ States do
24: si.Label ← ci.center

25: end for
26: end if
27: end while

Figure 6.2. Modified version of SARSA algorithm with the proposed discretization of

continuous state space

For different values of the parameters PCD, Rsubj , and PI , Table 6.1 and Table 6.2 show the

performance of each mechanism in terms of the achieved satisfaction and time requirements,

respectively. Table 6.1 summarize that service decisions of a consumer usually results in

satisfaction of the consumer if the consumer uses SPSGM . Moreover, the performance of

SPSGM in terms of ratio of satisfaction does not change much with different values of PCD,

Rsubj, and PI . On the other hand, as shown in Table 6.2, time requirements of SPSGM is

much more than that of other mechanisms. Performance of each service selection mecha-

nism is equally good in terms of the achieved satisfaction when PCD, Rsubj, and PI are set

to zero. However, increasing PCD results in a serious decrease in the performance of SPSSR

in terms of the ratio of satisfaction. Performance of the mechanisms other than SPSSR is not

affected by PCD considerably. Performances of SPSSR and SPSCAR in terms of the ratio

of satisfaction decrease considerable as Rsubj increases. SPSSR is faster than SPSCAR in

all cases. Unlike the experience-based mechanisms, the rating-based mechanisms achieve a

130

low ratio of satisfaction as Rsubj increases [3], because satisfaction criteria of the consumers

get more differentiated as Rsubj increases. Table 6.2 reveals that time requirements of the

rating-based mechanisms are much less than that of the experience-based mechanisms, be-

cause aggregation of experiences is much more costly than aggregation of ratings in terms of

time. Performance of SPSCBR in terms of the ratio of satisfaction is quite well for PI = 0

and does not change significantly when PCD or Rsubj changes. Furthermore, in terms of

time performance, SPSCBR outperforms SPSGM . On the other hand, the performance of

SPSCBR in terms of the ratio of satisfaction significantly decreases if nondeterminism is

observed (PI > 0).

In summary, SPSGM is the best service selection mechanism when the ratio of satis-

faction is concerned. Unlike the performance of SPSGM , performance of other mechanisms

in terms of the ratio of satisfaction is badly affected as PCD, Rsubj , or PI increases. PCD

affects the performance of SPSSR, Rsubj affects the performances of SPSSR and SPSCAR,

and lastly PI affects the performance of SPSCBR. Order of the mechanisms from the fastest

one to the slowest one is SPSSR, SPSCAR, SPSCBR, and SPSGM . This order does not

change as PCD, Rsubj , or PI changes.

Table 6.1. Service selection performances of different mechanisms

PCD Rsubj PI SSR SCAR SCBR SGM

0 0 0 0.9617 0.9616 0.9616 0.9616

0.2 0 0 0.6287 0.9671 0.9670 0.9670

0 0.5 0 0.5687 0.5930 0.9551 0.9551

0.2 0.5 0 0.3189 0.4838 0.9599 0.9599

0 0 0.01 0.9636 0.9271 0.6369 0.9630

0.2 0 0.01 0.6135 0.9229 0.6421 0.9650

0 0.5 0.01 0.5687 0.5798 0.4892 0.9579

0.2 0.5 0.01 0.3064 0.4965 0.4785 0.9592

131

Table 6.2. Average time required for service selection mechanisms in milliseconds

PCD Rsubj PI TSR TCAR TCBR TGM

0 0 0 1.78 7.55 448.11 1250.75

0.2 0 0 2.26 21.24 981.59 5376.60

0 0.5 0 1.54 5.45 269.48 1080.53

0.2 0.5 0 1.96 13.78 674.10 4291.46

0 0 0.01 1.51 8.53 497.75 1623.09

0.2 0 0.01 1.63 23.47 1050.02 6163.32

0 0.5 0.01 1.33 5.66 363.83 1217.55

0.2 0.5 0.01 1.34 6.57 401.70 1737.57

6.3. Experimental Evaluation

In this section, we evaluate our approach for choosing the most suitable service se-

lection mechanisms in different configurations of the environment using simulations. We

use the same simulation settings in Chapter 3. However, each consumer agent is given four

different service selection mechanisms; SPSSR, SPSCAR, SPSCBR, and SPSGM . These

consumers use the proposed approach to learn how to choose the most profitable service se-

lection mechanism in their environment. In order to make our evaluations easily understand-

able, we assume that consumers have the same trade-offs between the time requirements and

ratio of satisfaction. These trade-offs are embedded in the reward function that is explained

in Section 6.1.1.2.

For different configuration of the environment, actions of a consumer are rewarded

differently. For example, in case of Rsubj = 0 and PCD = 0, a consumer should choose

SPSSR. In this configuration of the environment, SPSSR is much faster than other mecha-

nisms, even though performance of other mechanisms in terms of ratio of satisfaction is not

significantly better than that of SPSSR. Therefore, the consumer gets a positive reward if it

chooses SPSSR; otherwise it gets a negative reward. However, if the value of PCD increases

to 0.2, performance of SPSSR in terms of ratio of satisfaction decreases significantly. In

132

this case, SPSSR is still much faster than other mechanisms, but there are other mechanisms

that have a ratio of satisfaction at least 10% better than that of SPSSR (see Table 6.1 and

Table 6.2). Therefore, choosing SPSSR results in a negative reward.

The best of the four service selection mechanisms in terms of the ratio of satisfaction is

SPSGM . Hence, we measure the performance of our approach in terms of the performance of

SPSGM . When a consumer has a service demand, it uses the proposed approach to chooses

a service selection mechanism using the computed policy as explained in Section 6.1. Then,

the consumer selects a service provider using the chosen mechanism. We measure the aver-

age ratio of satisfaction (SRL) and the average time required for service selection (TRL) when

the proposed approach is used. We also measure the average ratio of satisfaction (SGM) and

the average time required for service selection (TGM) if the consumers had used only the

SPSGM in their service selections.

Table 6.3 shows the results of our simulations. The first three columns refer to the

parameters that are used to configure the simulation environment. Next two columns are the

average ratio of satisfaction for SPSGM and the proposed RL approach, respectively. The

last column is the ratio of TGM to TRL. In the first eight rows, there is only one environ-

ment configuration during the simulations. On the other hand, in the last row, environment

gradually changes starting from the first configuration to the eighth configuration during the

simulation.

In the first configuration of the environment (PCD = 0, Rsubj = 0, PI = 0), all of

the service selection mechanisms have almost the same ratio of satisfaction. Therefore, the

proposed approach chooses SPSSR and SPSCAR most of the time, because performance of

these two mechanisms are very good in terms of both the achieved satisfaction and the time

required for service selection. In this setting, using the proposed approach, the consumers

can make as satisfactory service selections as they do using SPSGM . Moreover, using the

proposed approach the consumers make service selections 74 times faster than they do using

SPSGM .

In the second configuration of the environment (PCD = 0.2, Rsubj = 0, PI = 0),

133

Table 6.3. Performance of the reinforcement learning approach

Configuration ID PCD Rsubj PI SGM SRL TGM/TRL

1 0 0 0 0.9616 0.9616 74.43

2 0.2 0 0 0.9670 0.8940 45.09

3 0 0.5 0 0.9551 0.9227 8.79

4 0.2 0.5 0 0.9599 0.9040 6.29

5 0 0 0.01 0.9630 0.9562 86.25

6 0.2 0 0.01 0.9650 0.8598 9.72

7 0 0.5 0.01 0.9579 0.8989 2.84

8 0.2 0.5 0.01 0.9592 0.8588 1.17

9 0-0.2 0-0.5 0-0.01 0.9751 0.9123 4.5

SPSSR is not as good as other strategies any more. Hence, the proposed approach does not

prefer SPSSR. Although SPSCAR, SPSCBR and SPSGM have almost the same perfor-

mance in terms of achieved satisfaction, the proposed approach chooses SPSCAR most of

the time. This is due to the fact that SPSCAR is much faster than SPSCBR and SPSGM . As

a result, using the proposed approach, consumers select satisfactory services in around 90%

of their service selections. This is achieved in a way that 45 times faster than SPSGM .

In the third and fourth configurations, performances of SPSSR and SPSCAR are worse

than that of SPSCBR or SPSGM in terms of achieved satisfaction, because both of them

are badly influenced as Rsubj increases. As a result, the proposed approach chooses either

SPSCBR or SPSGM in service selection. The primary choice of our approach is SPSCBR,

because it is much faster than SPSGM . As a result, the proposed approach achieves sat-

isfaction in 92% and 90% of the cases in a way 8.79 and 6.29 times faster than SPSGM ,

respectively for these two configurations.

In the fifth configuration (PCD = 0, Rsubj = 0, PI = 0.01), SPSCBR has a low

ratio of satisfaction, because SPSCBR is badly influenced as PI increases. Therefore, our

approach chooses between SPSSR, SPSCAR and SPSGM , which have almost the same

134

ratio of satisfaction in this setting. Most of the time, SPSSR is chosen by our approach,

because it is much faster than SPSCAR and SPSGM . As a result, the proposed approach

achieves almost the same ratio of satisfaction as SPSGM does in a way 86.25 times faster

than SPSGM .

In the sixth configuration of the environment (PCD = 0.2, Rsubj = 0, PI = 0.01), only

SPSCAR and SPSGM have a desirable performance in terms of the ratio of satisfaction.

In this case, the proposed approach chooses the faster mechanism, SPSCAR, rather than

SPSGM . Hence, the proposed approach achieves satisfaction in 86% of the cases. In this

setting, the proposed approach results in service selections that are 9.72 times faster than that

of SPSGM .

In the seventh and eighth configurations, the performance of SPSSR, SPSCAR and

SPSCBR are much worse than that of SPSGM in terms of the ratio of satisfaction. As

a result, our approach chooses mostly SPSGM . In these settings, the proposed approach

achieves satisfaction in 90% and 86% of the cases, respectively for these two configurations.

We lastly conduct simulations in which configuration of the environment is changed

from the first configuration to the eighth configuration. In this challenging case, using the

proposed approach, consumers select satisfactory services in 91% of their service selections

in a way 4.5 times faster than SPSGM .

The worst performance of the proposed approach in terms of achieved satisfaction is

in the eighth configuration. In this case, SRL is around 10% worse than SGM . Hence, in any

configuration of the environment, the proposed approach is not outperformed significantly

more than 10% by any service selection mechanism, in terms of the ratio of satisfaction. This

is the trade-off exactly stated in the reward function.

6.4. Discussion

Service selection mechanisms vary in their success rate as well as time requirements.

Existence of different service selection mechanisms gives rise to a major problem: how to

135

choose the most appropriate service selection mechanism among a range of alternatives.

This problem is amplified when the environment is dynamic. Our proposed approach allows

agents to learn how to choose the most useful service selection mechanism among different

alternatives in dynamic environments. The proposed approach examines the environment

and learns to differentiate between different service selection mechanisms with respect to

the trade-offs of the consumers. Our experimental results show that consumers choose the

most useful service selection mechanism using the proposed approach. The performance

of the proposed approach does not significantly go below the lower-bound defined by the

trade-offs of the consumers. Even in the case that the environment changes dramatically, the

proposed approach exhibits a good performance in terms of both the ratio of satisfaction and

the time required for service selection.

To the best of our knowledge there is no approach for choosing one selection mecha-

nism among different alternatives. However, there are various service selection mechanisms

proposed in the literature. Some of these approaches are shortly described in the previous

chapters. These approaches are stand alone approaches and do not concern choosing a useful

service selection mechanism among different alternatives as we do in this work.

Techniques for combining different classifier exist in the literature. For example, Or-

tega et. al. propose an approach that takes a collection of existing classifiers and learning al-

gorithms and creates a combined classifier that takes advantage of all of these classifiers [93].

The basic idea of their approach is that each classifier has a particular sub-domain for which

it is most reliable. By combining different classifiers, Ortega et. al. create a classifier that is

reliable for a range of different sub-domains. Although this type of approaches are similar

to our approach in a sense that they combine different mechanisms to come up with a better

one, they are specifically proposed for the classification problems and they cannot be used

directly in the service selection problem that we are addressing in this chapter.

136

7. CONCLUSION

This dissertation concludes with a review of the work presented with respect to the

objectives set in Chapter 1. Lastly, some directions for future work are suggested.

7.1. Dissertation Overview

As the number of service providers increases dramatically on the Web, it gets harder

to select an appropriate provider for a particular service demand. Although Semantic Web

technologies such as ontologies and ontological reasoning [21] are promising for intelligent,

consumer-oriented and context-aware selection of service providers, current approaches for

service selection follow fairly traditional ways. The most widely used service selection ap-

proaches depend on capturing and manipulating ratings [20]. In rating-based approaches,

the consumers rate the service providers and share their ratings with other consumers. Then,

the shared ratings are aggregated to determine the most satisfactory service providers.

Ratings are simply the numbers that do not say anything about the context they belong

to. Hence, rating-based service selection approaches fail when the providers have highly

different service characteristics (e.g., QoS) in different context. Moreover, ratings reflect the

subjective opinion of the raters. Therefore, ratings may be significantly misleading if the

raters and the consumers using their ratings do not share similar tastes or the context.

In this dissertation, we develop a flexible approach for context-aware service selec-

tion in four steps. First, we propose an ontology-based representation to enhance classical

ratings with semantic description of their context in Chapter 3. Using this representation,

ratings can be differentiated depending on their context. This way service selection perfor-

mance of rating-based approaches are increased for the cases that service consumers change

the context of their service demands. However, this approach fails when consumers have

conflicting satisfaction criteria. Second, we replace over-all ratings with detailed experi-

ences of consumers. An experience roughly corresponds to machine understandable form of

a user review on the Web in that it captures an episode of the customer with a provider and

137

can be thought of as a record of what service the customer has requested and received in re-

turn. Contrary to user reviews, an experience contains only objective information rather than

subjective evaluations. For instance, while a user review in real life may state that the price

of the experienced service was fair, an experience states only the actual price of the service

(e.g., $100). Hence, any consumer receiving an experience can semantically evaluate the

service provider according to its own satisfaction criteria using the detailed data in the expe-

rience. For example, while for one consumer, $100 is fair for the service, for another one it

is exorbitant. This way, subjectiveness inherent to the ratings are removed from the service

selection. Resulting service selection approach is context-aware and consumer-oriented in a

way that it enables consumers to use their own satisfaction criteria and context during service

selection. We empirically show that this experience-based service selection approach leads

to satisfactory service selections even if the satisfaction criteria and the context of consumers

vary considerably over time.

Third, we show that context-aware service selection is sensitive to deceptive informa-

tion in Chapter 4. That is, when malicious consumers disseminate untruthful experiences

about the providers, service selection performance decreases dramatically. To handle decep-

tion during service selection, we propose a filtering approach by which experiences received

from untrustworthy consumers are filtered out during service selection. A consumer com-

putes the trustworthiness of another consumer by comparing the experiences received from

this consumer with its personal experiences and the experiences received from the other

consumers in the society. This way, public and private knowledge about the providers is

combined to compute trustworthiness of the consumers. We integrate the filtering approach

to the proposed service selection approach. The result is an overall method for service se-

lection. We empirically compare our approach with well know approaches from the service

selection literature [50,52] and show that it offers definite improvements over other methods

that do not adequately account for subjectivity, context-awareness and untruthfully shared

information together.

The proposed service selection approach is superior to the rating-based service selec-

tion approaches at a cost of using a richer representation. That is, in order to use the proposed

approach, consumers should use a common semantics such as a shared ontology, which is as-

138

sumed to be enough for representing their service needs and past experiences. In literature,

a static shared ontology among the agents is usually assumed to facilitate communication

between the agents. Therefore, we make the same assumptions until Chapter 5. However,

service needs of a consumer may evolve over time and the service concepts within the static

ontology may rapidly become insufficient to represent the consumer’s new service needs and

experiences. Therefore, as the fourth step, we propose a distributed approach for evolution

and maintenance of service ontologies for service selection in Chapter 5. In this approach,

a consumer queries its neighborhood to learn a suitable concept if the concepts in its local

ontology are not sufficient to describe its current service need. If such a concept is not known

by its neighbors, the consumer creates the concept, and teaches it to its neighborhood. This

way, the consumer prohibits its future communication problems by informing its neighbors

about the created concept before using it. Our experiments show that the proposed approach

leads consumers to have different but overlapping service ontologies as their service needs

evolve. However, they can still communicate with each other, because service ontologies of

the consumers having similar service interests are aligned over time.

With these contributions, we fulfill all of our objectives set in Chapter 1. The results

is an overall approach for service selection that is not only flexible, consumer-oriented and

context-aware, but is also robust to deceptive information disseminated by malicious con-

sumers.

There is no single solution for the problem of service selection that works perfectly in

every setting and for every consumer. Each solution has different strengths and weaknesses

for different settings. For example, the proposed service selection approach in this disser-

tation is better than rating-based approaches in terms of the achieved satisfaction, but it re-

quires consumers to record and interpret their experiences using an ontology. This results in

the problem of choosing the best service selection approach among alternatives for a partic-

ular consumer and its environment. Therefore, apart from the objectives set in the Chapter 1,

we introduce a new research problem in Chapter 6 and we lastly propose a meta method

for consumers to learn how to choose the most useful service selection mechanism among

different alternatives in dynamic environments with respect to their trade-offs. Through the

simulations, we show that not only the consumers choose the useful and efficient service

139

selection mechanism using the proposed method, but also the service selection performance

of the proposed method does not go below the lower-bound defined by the consumers’ trade-

offs.

7.2. Real-Life Applications

This dissertation develops a service selection approach that has many practical bene-

fits for real life. In this approach, human users are represented by consumer agents that may

continuously interact with their human users through graphical user interfaces in a real-life

application. These agents semantically describe their users’ past interactions with the service

providers. Then, using these semantic descriptions of past experiences, the agents can make

satisfactory service decisions depending on their own context and satisfaction criteria. There-

fore, this approach paves the way to industrial applications that enable consumer-oriented,

context-aware and flexible service selections.

In practice, the agents may be developed by various software companies. However,

they can still communicate and cooperate to make service selection if they comply with the

proposed OWL ontologies and the communication protocols. Human users can download

these agents from software repositories and then these agents can interact with their human

users to learn their service demands, satisfaction criteria for these demands and past experi-

ences. Based on the gathered information, the agents can make service decisions on behalf

of their human users as explained in this dissertation.

Our approach depends on agents to discover others in a P2P setting. In the proposed

protocols, agents may have some initial acquaintances to start communication. In real life,

this can be achieved using a directory that the agents can sign in when they enter to the sys-

tem. That is, when an agent enters the system, it can register its identity to the directory and

receive some initial list of acquaintances to interact with. These initial acquaintances may be

chosen randomly or some heuristics may be used to choose them for a specific agent (e.g.,

based on location, service interests and so on). Using these initial acquaintances, the agents

may discover other agents having similar service demands and may collect experiences re-

lated to these service demands by interacting with the discovered agents.

140

Currently, there are many centralized rating-based systems to select service providers

(e.g., the reputation system of e-Bay). However, the system proposed in this dissertation does

not depend on ratings. Therefore, we cannot directly use the accumulated information about

the providers in these legacy systems. Hence, the proposed system may have a bootstrapping

problem in real life. That is, initially nobody will have enough experiences to guide others in

the system. On the other hand, in order to start up the system, we can use service registries

where service providers are listed according to their service offerings (e.g., e-Bay’s database

of sellers). After listing service providers, the agents may select suitable service providers

using the existing legacy systems (e.g., e-Bay’s reputation system) and record their experi-

ences with the selected providers as proposed in this dissertation. After enough number of

experiences is accumulated in the system, the agents can start using the proposed system

completely.

7.3. Future Work

In Chapter 3, we have assumed that agents exchange their experiences or context-

aware ratings willingly. However, in open settings, there can be times when the agents do

not prefer to cooperate with other agents. This could stem from two facts: (1) The users

of the agents may not want to record their experiences as needed by the system and (2) the

users may not be willing to exchange this information. Hence, incentives must be created for

users to record and exchange their experiences. Incentive creation is an interesting problem

that has received attention in the literature [94, 95]. Such techniques can complement our

work to create incentives for exchanging experiences. Moreover, capturing complex business

interactions may result in better representations of contracts in our simulations. This will

enable us to benefit from the ontologies even more.

In Chapter 4, we have evaluated the performance of our approach in detecting the

possible liars being fairly consistent in lying. For future work, in our evaluations, it would

be worthwhile to explore the case where some liars lie only in a specific context while being

honest in other contexts. It would also be worthwhile to consider other types of liars from

the literature, such as Exaggerated Positive and Exaggerated Negative defined in [55]. The

performance of detecting these types of liars would then be evaluated and compared against

141

competing approaches.

In Chapter 6, we propose a method for consumers to choose most suitable service se-

lection mechanism among alternatives. We consider this as an important research problem,

because many service selection approaches are proposed in the literature and many others

will be proposed in the future. Hence, it becomes very important to choose the most proper

one among alternatives with respect to the trade-offs of the consumers. As a future work,

we plan to extend our approach to enable online addition of new service selection mecha-

nisms to the learning algorithm. We also want to add our work a social dimension so that the

consumers can recommend each other new service selection mechanisms. Then, the recom-

mended mechanisms can be added to the learning algorithm on the fly. These are interesting

directions for further research.

142

REFERENCES

1. Şensoy, M. and P. Yolum, “Ontology-Based Service Representation and Selection”,

IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 8, pp. 1102–

1115, 2007.

2. Şensoy, M., F. C. Pembe, H. Zırtıloğlu, P. Yolum, and A. Bener, “Experience-based

service provider selection in agent-mediated E-Commerce”, Engineering Applications

of Artificial Intelligence, Vol. 20, No. 3, pp. 325–335, 2007.

3. Şensoy, M. and P. Yolum, “A Context-Aware Approach for Service Selection Using

Ontologies”, Proceedings of the Fifth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pp. 931–938, 2006.

4. Şensoy, M. and P. Yolum, “A Comparative Study of Reasoning Techniques for Service

Selection”, Proceedings of the Fifth International Workshop on Agents and Peer-to-Peer

Computing (AP2PC), pp. 91–102, 2006.

5. Şensoy, M., “A Framework For Ontology-Based Service Selection in Dynamic Environ-

ments”, Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI), pp.

1947–1948, 2007.

6. Şensoy, M. and P. Yolum, “Experimental Evaluation of Deceptive Information Filtering

In Context-Aware Service Selection”, Proceedings of the 11th International Workshop

on Trust in Agent Societies, pp. 153–165, 2008.

7. Şensoy, M. and P. Yolum, “A Cooperation-Based Approach For Evolution Of Service

Ontologies”, Proceedings of the Seventh International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pp. 837–844, 2008.

8. Şensoy, M. and P. Yolum, “Active Concept Learning for Ontology Evolution”, Pro-

ceedings of the 18th European Conference on Artificial Intelligence (ECAI), 2008, To

143

Appear.

9. Şensoy, M. and P. Yolum, “Cooperative Evolution of Service Ontologies”, Proceedings

of the Sixth International Joint Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS), pp. 1301–1303, 2007.

10. Şensoy, M. and P. Yolum, “On Choosing An Efficient Service Selection Mechanism In

Dynamic Environments”, Proceedings of the Ninth International Workshop on Agent-

Mediated Electronic Commerce (AMEC IX), pp. 99–112, 2007.

11. Nwana, H. S., J. Rosenschein, T. Sandholm, C. Sierra, P. Maes, and R. Guttmann,

“Agent-mediated electronic commerce: issues, challenges and some viewpoints”, Pro-

ceedings of the Second International Conference on Autonomous agents (AGENTS), pp.

189–196, ACM Press, New York, NY, USA, 1998.

12. Ramaswamy, L., B. Gedik, and L. Liu, “A Distributed Approach to Node Clustering in

Decentralized Peer-to-Peer Networks”, IEEE Transactions on Parallel and Distributed

Systems (TPDS), Vol. 16, No. 9, pp. 1–16, 2005.

13. Zhong, N., J. Liu, and Y. Y. Yao, “In Search of the Wisdom Web”, IEEE Computer,

Vol. 35, No. 11, pp. 27–31, November 2002.

14. Yolum, P. and M. P. Singh, “Engineering Self-Organizing Referral Networks for Trust-

worthy Service Selection”, IEEE Transactions on Systems, Man, and Cybernetics, Vol.

A35, No. 3, pp. 396–407, 2005.

15. Maximilien, M. and M. P. Singh, “A Framework and Ontology for Dynamic Web Ser-

vices Selection”, IEEE Internet Computing, Vol. 8, No. 5, pp. 84–93, 2004.

16. Sabater, J. and C. Sierra, “Reputation and Social Network Analysis in Multi-Agent Sys-

tems”, Proceedings of the First International Joint Conference on Autonomous Agents

and MultiAgent Systems (AAMAS), pp. 475–482, 2002.

17. Yu, B. and M. P. Singh, “Emergence of Agent-based Referral Networks”, Proceedings of

144

the First International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pp. 1268–1269, 2002.

18. Huynh, T. D., N. R. Jennings, and N. Shadbolt, “FIRE: An Integrated Trust and Reputa-

tion Model for Open Multi-agent Systems.”, Proceedings of 16th European Conference

on Artificial Intelligence, pp. 18–22, 2004.

19. Castelfranchi, C. and R. Falcone, “Principles of trust for MAS: cognitive anatomy,social

importance, and quantification”, Proceedings of the Third International Conference on

Multiagent Systems, pp. 72–79, 1998.

20. Jøsang, A., R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems for

Online Service Provision”, Decision Support Systems, Vol. 43, No. 2, pp. 618–644,

2007.

21. Feigenbaum, L., I. Herman, T. Hongsermeier, E. Neumann, and S. Stephens, “The Se-

mantic Web in Action”, Scientific American, Vol. 297, No. 6, pp. 90–97, 2007.

22. Pan, J. Z., “A Flexible Ontology Reasoning Architecture for the Semantic Web”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 19, No. 2, pp. 246–260, 2007.

23. Gruber, T. R., “Toward principles for the design of ontologies used for knowledge shar-

ing”, International Journal of Human-Computer Studies, Vol. 43, No. 5-6, pp. 907–928,

1995.

24. Staab, S. and R. Studer (editors), Handbook on Ontologies, International Handbooks on

Information Systems, Springer, 2004.

25. McGuinness, D. L. and F. V. Harmelen, “OWL Web Ontology Language Overview”,

http://www.w3.org/TR/owl-features, 2003.

26. Berners-Lee, T., J. Hendler, and O. Lassila, “The Semantic Web”, Scientific Ameri-

can.Com, 2001.

145

27. Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider (ed-

itors), The Description Logic Handbook: Theory, Implementation and Applications,

Cambridge University Press, 2003.

28. Horrocks, I., P. Patel-Schneider, and F. V. Harmelen, “From SHIQ and RDF to OWL:

The making of a web ontology language”, Journal of Web Semantics, Vol. 1, No. 1, pp.

7–26, 2003.

29. Hendler, J. and D. L. McGuinness, “DARPA Agent Markup Language”, IEEE Intelligent

Systems, Vol. 15, No. 6, pp. 72–73, 2001.

30. Harmelen, F. V., P. F. Patel-Schneider, and I. Horrocks, “Reference description of

the DAML+OIL ontology markup language”, http://www.daml.org/2001/03/reference,

2001.

31. Horrocks, I., P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and

M. Dean, “A Semantic Web Rule Language Combining OWL and RuleML”,

http://www.w3.org/Submission/SWRL, 2004.

32. Lloyd, J. W. (editor), Foundations of logic programming, Springer series in symbolic

computation. Springer-Verlag, New York, 1987.

33. Steinmetz, R. and K. Wehrle (editors), Peer-to-Peer Systems and Applications, Springer

Verlag, 2005.

34. Adamic, L., B. Huberman, R. Lukose, and A. Puniyani, “Search in power law networks”,

Physical Review, Vol. 64, 2001.

35. Unger, H. and M. Wulff, “Cluster-building in P2P-Community Networks”, Proceedings

of Parallel and Distributed Computing and Systems (PDCS), pp. 680–685, 2002.

36. Rohrs, C., “Query routing for the Gnutella network”, http://rfcgnutella.sourceforge.net,

2001.

146

37. Crespo, A. and H. Garcia-Molina, “Routing indices for peer-to-peer systems”, Proceed-

ings of 22thInternational Conference on Distributed Computing Systems (ICDCS), pp.

23–33, 2002.

38. Tsoumakos, D. and N. Roussopoulos, “Adaptive probabilistic search for peer-to-peer

networks”, Proceedings of the Third International Conference on Peer-to-Peer Comput-

ing (P2P), pp. 102–110, 2003.

39. Ripeanu, M. and I. Foster, “Mapping the Gnutella network: Macroscopic properties of

large-scale peer-to-peer systems”, Lecture Notes in Computer Science, Vol. 2429, pp.

85–93, 2002.

40. Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content

Addressable Network”, Proceedings of the Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, pp. 161–172, 2001.

41. Stoica, I., R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable

Peer-To-Peer Lookup Service for Internet Applications”, Proceedings of the 2001 ACM

SIGCOMM Conference, pp. 149–160, 2001.

42. Zhang, H., W. B. Croft, B. Levine, and V. Lesser, “A Multi-agent Approach for Peer-

to-Peer based Information Retrieval System”, Proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 456–

463, 2004.

43. McKnight, D. and N. Chervany, “The Meanings of Trust”, Technical Report MISRC

Working Paper Series 96-04, University of Minnesota, Management Information Sys-

tems Reseach Center, 1996.

44. Resnick, P. and R. Zeckhauser, “Trust Among Strangers in Internet Transactions: Em-

pirical Analysis of eBay’s Reputation System”, Baye, M. (editor), Advances in Applied

Microeconomics: The Economics of the Internet and E-Commerce, Vol. 11, Elsevier

Science, 2002.

147

45. Abdul-Rahman, A. and S. Hailes, “Supporting trust in virtual communities”, Proceed-

ings of the Hawaii International Conference on Systems Sciences, pp. 1–9, 2000.

46. Sabater, J. and C. Sierra, “REGRET: A reputation model for gregarious societies”, Pro-

ceedings of the Fifth International Conference on Autonomous Agents (AGENTS), pp.

61–69, 2001.

47. Sabater, J. and C. Sierra, “Social ReGreT, a reputation model based on social relations”,

ACM SIGecom Exchanges, Vol. 3, No. 1, pp. 44–56, 2002.

48. Page, L., S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:

Bringing Order to the Web”, Technical report, Stanford Digital Library Technologies

Project, 1998.

49. Yolum, P. and M. P. Singh, “Emergent Properties of Referral Systems”, Proceedings

of the Second International Joint Conference on Autonomous Agents and MultiAgent

Systems (AAMAS), pp. 592–597, 2003.

50. Whitby, A., A. Jøsang, and J. Indulska, “Filtering out unfair ratings in bayesian reputa-

tion systems”, The ICFAIN Journal of Management Research, Vol. 4, No. 2, pp. 48–64,

2005.

51. Buchegger, S. and J. Y. Le Boudec, “A Robust Reputation System for P2P and Mobile

Ad-hoc Networks”, Proceedings of the Second Workshop on the Economics of Peer-to-

Peer Systems, 2004.

52. Teacy, W., J. Patel, N. Jennings, and M. Luck, “TRAVOS: Trust and Reputation in the

Context of Inaccurate Information Sources”, Autonomous Agents and Multi-Agent Sys-

tems, Vol. 12, No. 2, pp. 183–198, March 2006.

53. Yu, B. and M. P. Singh, “Towards a probabilistic model of distributed reputation man-

agement”, Proceedings of the Fourth Workshop on Deception, Fraud and Trust in Agent

Societies, pp. 125–137, 2001.

148

54. Yu, B. and M. P. Singh, “An evidential model of distributed reputation management”,

Proceedings of the First International Joint Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS), pp. 294–301, 2002.

55. Yu, B. and M. Singh, “Detecting Deception in Reputation Management”, Proceedings

of the Second International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pp. 73–80, 2003.

56. Fensel, D., J. Hendler, H. Lieberman, and W. Wahlster, Spinning the Semantic Web, The

MIT Press, Cambridge, MA, 2003.

57. Hirtle, D., H. Boley, B. Grosof, M. Kifer, M. Sintek, S. Tabet, and G. Wagner, “Schema

Specification of RuleML 0.91”, http://www.ruleml.org/0.91, 2006.

58. Montgomery, D. C., Design and analysis of experiments, John Wiley and Sons, West

Sussex, 2001.

59. Singh, M. P., “An Ontology for Commitments in Multiagent Systems: Toward a Uni-

fication of Normative Concepts”, Artificial Intelligence and Law, Vol. 7, pp. 97–113,

1999.

60. Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical OWL-DL

reasoner”, Web Semantics, Vol. 5, No. 2, pp. 51–53, 2007.

61. Mui, L., M. Mohtashemi, and A. Halberstadt, “A Computational Model of Trust and

Reputation”, Proceedings of the 35th Hawaii International Conference on System Sci-

ence (HICSS), pp. 2431–2439, 2002.

62. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley and Sons,

West Sussex, 2001.

63. Aamodt, A. and E. Plaza, “Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches”, Artificial Intelligence Communications, Vol. 7,

No. 1, pp. 39–59, 1994.

149

64. Chinnici, R., J. J. Moreau, A. Ryman, and S. Weerawarana, “Web Services Description

Language (WSDL) Version 2.0”, http://www.w3.org/TR/wsdl20, 2006.

65. Clement, L., A. Hately, C. V. Riegen, and T. Rogers, “UDDI Version 3.0.2”,

http://uddi.org/pubs/uddi v3.htm, 2004.

66. Sen, S. and N. Sajja, “Robustness of Reputation-Based Trust: Boolean Case”, Proceed-

ings of the First International Joint Conference on Autonomous Agents and MultiAgent

Systems (AAMAS), pp. 288–293, 2002.

67. Soh, L.-K. and C. Chen, “Balancing Ontological and Operational Factors in Refining

Multiagent Neighborhoods”, Proceedings of Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pp. 745–752, 2005.

68. Aguzzoli, S., P. Avesani, and P. Massa, “Collaborative Case-Based Recommender Sys-

tems”, Proceedings of the Sixth European Conference on Advances in Case-Based Rea-

soning: Lecture Notes in Computer Science, Vol. 2416, pp. 460–474, Springer-Verlag,

2002.

69. Burke, R., “A Case-Based Reasoning Approach to Collaborative Filtering”, Advances in

Case-Based Reasoning, pp. 370–379, Springer Verlag, 2000.

70. Limthanmaphon, B. and Y. Zhang, “Web Service Composition with Case-Based Rea-

soning”, Australasian Database Conference, pp. 201–208, 2003.

71. Cabral, L. and A. Hortacsu, “The Dynamics of Seller Reputation: Theory and Evidence

from eBay”, Working Paper 10363, National Bureau of Economic Research, March

2004.

72. Lucking-Reiley, D. H., “Auctions on the Internet: What’s being auctioned, and how?”,

Journal of Industrial Economics, Vol. 48, No. 3, pp. 227–252, 2000.

73. Dellarocas, C., “Immunizing online reputation reporting systems against unfair ratings

and discriminatory behavior”, Proceedings of the Second ACM conference on Electronic

150

commerce, pp. 150–157, 2000.

74. Zacharia, G., A. Moukas, and P. Maes, “Collaborative Reputation Mechanisms in Elec-

tronic Marketplaces”, Proceedings of the 32nd Hawaii International Conference on Sys-

tem Sciences (HICSS-32), pp. 8026–8032, Maui, Hawaii, January 1999.

75. Russell, S. and P. Norvig, Artificial Intelligence: A Modern Approach, Second Edition,

Prentice Hall, Englewood Cliffs, New Jersey, 2002.

76. Jøsang, A. and R. Ismail, “The Beta Reputation System”, Proceedings of the 15th Bled

Electronic Commerce Conference e-Reality: Constructing the e-Economy, pp. 48–64,

June 2002.

77. Zhang, J. and R. Cohen, “A Personalized Approach to Address Unfair Ratings in Multi-

agent Reputation Systems”, Proceedings of the 10th International Workshop on Trust in

Agent Societies, 2006.

78. Zhang, J. and R. Cohen, “A Comprehensive Approach For Sharing Semantic Web Trust

Ratings”, Computational Intelligence journal, Vol. 23, No. 3, pp. 302–319, 2007.

79. Lin, D., “An Information-theoretic Definition of Similarity”, Proceedings of the 15th

International Conference on Machine Learning, pp. 296–304, Morgan Kaufmann, San

Francisco, CA, 1998.

80. Tversky, A., “Features of Similarity”, Psychological Review, Vol. 84, No. 4, pp. 327–

352, 1977.

81. Sen, S. and P. Kar, “Sharing a concept”, Working Notes of the AAAI-02 Spring Sympo-

sium, pp. 55–60, 2002.

82. Afsharchi, M., B. Far, and J. Denzinger, “Ontology Guided Learning to Improve Com-

munication among Groups of Agents”, Proceedings of the Fifth International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930, 2006.

151

83. Doan, A., J. Madhaven, R. Dhamankar, P. Domingos, and A. Helevy, “Learning to match

ontologies on the semantic web”, VLDB Journal, pp. 303–319, 2003.

84. Stephens, L. M., A. K. Gangam, and M. N. Huhns, “Constructing Consensus Ontologies

for the Semantic Web: A Conceptual Approach”, World Wide Web, Vol. 7, No. 4, pp.

421–442, 2004.

85. Williams, A. B., “Learning to Share Meaning in a Multi-Agent System”, Autonomous

Agents and Multi-Agent Systems, Vol. 8, No. 2, pp. 165–193, 2004.

86. Aberer, K., P. Cudre-Mauroux, and M. Hauswirth, “Start making sense: The Chatty Web

approach for global semantic agreements”, Journal of Web Semantics, Vol. 1, No. 1, pp.

89–114, 2003.

87. Steels, L., “The Origins of Ontologies and Communication Conventions in Multi-Agent

Systems”, Autonomous Agents and Multi-Agent Systems, Vol. 1, No. 2, pp. 169–194,

October 1998.

88. Laera, L., I. Blacoe, V. Tamma, T. Payne, J. Euzenat, and T. Bench-Capon, “Argumen-

tation over Ontology Correspondences in MAS”, Proceedings of the Sixth International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1285–

1292, 2007.

89. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,

Cambridge, 1998.

90. Tesauro, G., “Temporal difference learning and TD-Gammon”, Communications of the

ACM, Vol. 38, No. 3, pp. 58–68, 1995.

91. Watkins, C. J. C. H. and P. Dayan, “Q-learning”, Machine Learning, Vol. 8, No. 3, pp.

279–292, 1992.

92. Whiteson, S., M. E. Taylor, and P. Stone, “Empirical Studies in Action Selection for

Reinforcement Learning”, Adaptive Behavior, Vol. 15, No. 1, pp. 33–50, 2007.

152

93. Ortega, J., M. Koppel, and S. Argamon, “Arbitrating Among Competing Classifiers Us-

ing Learned Referees”, Knowledge and Information Systems, Vol. 3, No. 4, pp. 470–490,

2001.

94. Jurca, R. and B. Faltings, “An incentive compatible reputation mechanism”, Proceedings

of the Second International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pp. 1026–1027, 2003.

95. Zhang, J. and R. Cohen, “Design of a Mechanism for Promoting Honesty in E-

Marketplaces”, Proceedings of the 22nd Conference on Artificial Intelligence (AAAI),

pp. 1495–1500, 2007.

