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ÖZET 

Uygulanabilirliğinden dolayı Banach Büzülme İlkesi matematiğin yanı sıra diğer bilim 

dallarında da oldukça önemli bir yere sahiptir. Bu tez çalışmasında öncelikle tek değerli 

dönüşümler, ardından da küme değerli dönüşümler için bazı sabit nokta teoremleri verilerek 

Banach Büzülme İlkesi literatürde var olan çalışmalardan farklı yönlerde genişletilmiştir. 

Bunun için yakın zamanda tanımlanan M-metrik uzay üzerinde Caristi tipi büzülme 

dönüşümü tanımlanarak bu tek değerli dönüşümler ve bazı genelleştirilmiş Caristi tipi 

dönüşümleri için sabit nokta teoremleri ifade ve ispat edilmiştir. Diğer taraftan M-metrik 

uzay üzerindeki topolojik yapılar incelenerek bu topolojilere göre küme değerli dönüşümler 

için Feng-Liu tipi sabit nokta teoremi verilmiştir. Çalışmamızı bir üst noktaya taşımak adına 

Feng-Liu’nun tekniklerini kullanarak küme değerli F-büzülme dönüşümü için iki yeni sabit 

nokta teoremi elde edilmiştir. Çalışmamızın sonunda M-metrik uzay kavramı genişletilerek 

bu yeni uzayda tanımlı karma küme değerli dönüşümler için bazı sabit nokta teoremleri 

verilmiştir. Ayrıca her bir bölümde elde edilen sonuçlar önemli örneklerle desteklenmiştir.  
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ABSTRACT 

Banach contraction principle has an important place in other branchs of sciences as well as 

mathematics because of its applicability. In this thesis, Banach contraction principle is 

expanded in different directions from existing studies in literature by giving some fixed point 

theorems for the single valued mappings followed by for multivalued mappings. For this 

purpose, Caristi type contraction mapping concept on M-metric space recently defined is 

described and fixed point theorems for this single valued mappings and some generalized 

Caristi mappings are expressed and proved. On the other hand, topological structures on M-

metric spaces are examined and then Feng-Liu type fixed point theorems are given for 

multivalued mappings according to these topologies. To carry our search to higher point, 

two new fixed point theorems multivalued F-contraction mappings are obtained by using 

Feng-Liu’s techniques. At the end of our thesis, M-metric space concept is extended and 

some fixed point theorems are given for the mixed multivalued mapppings on this new space. 

In addition, the results obtained in each section are supported nontrivial examples.  
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SİMGELER VE KISALTMALAR 

 

Bu çalışmada kullanılmış simgeler açıklamaları ile birlikte aşağıda sunulmuştur.  

 

Simgeler     Açıklamalar  

 

𝑷(𝑿)                                                  𝑋’in bütün alt kümelerinin ailesi 

𝑪(𝑿)                                                  𝑋’in kapalı bütün alt kümelerinin ailesi 

𝑪𝑩(𝑿)                                               𝑋’in kapalı ve sınırlı bütün alt kümelerinin ailesi 

𝝉𝒎                                                      𝑀-metriğin ürettiği topoloji 

𝝉𝒔                                                       Dizisel topoloji     

𝝉𝒎𝒃                                                    𝑀𝑏-metriğin ürettiği topoloji 

𝑪𝒎(𝑿)                                               𝜏𝑚’e göre 𝑋’in bütün kapalı alt kümelerinin ailesi 

𝑪𝒔(𝑿)                                                𝜏𝑠’e göre 𝑋’in bütün kapalı alt kümelerinin ailesi 

𝒑𝒎                                                     𝑀-metrik tarafından üretilen kısmi metrik 

𝒅𝒑𝒎                                                    𝑝𝑚 kısmi metrik tarafından üretilen metrik 

𝑨𝒎̅̅ ̅̅                                                      𝜏𝑚 topolojisine göre 𝐴 ⊆ 𝑋’nin kapanışı  

𝑨𝒔̅̅ ̅                                                      𝜏𝑠 topolojisine göre 𝐴 ⊆ 𝑋’nin kapanışı 

ℕ                                                        Doğal sayılar kümesi 

ℝ  Reel sayılar kümesi 

𝐥𝐢𝐦𝐬𝐮𝐩
𝒏→∞

𝒙𝒏              (𝑥𝑛) ⊆ ℝ  dizisinin üst limiti 

𝐥𝐢𝐦𝐢𝐧𝐟
𝒏→∞

𝒙𝒏              (𝑥𝑛) ⊆ ℝ  dizisinin alt limiti 
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1. GİRİŞ 

  

𝑋 boştan farklı bir küme ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Bu durumda 𝑇𝑥 = 𝑥 olacak 

şekildeki 𝑥 ∈ 𝑋 noktası 𝑇 dönüşümünün bir sabit noktası olarak adlandırılır. Diğer taraftan  

𝑇 küme değerli bir dönüşüm ise yani, 𝑃(𝑋) ailesi 𝑋’in boştan farklı bütün altkümelerinin 

ailesi olmak üzere 𝑇: 𝑋 → 𝑃(𝑋) olacak şekildeki 𝑇 dönüşümü için 𝑥 ∈ 𝑇𝑥 olacak şekildeki 

𝑥 ∈ 𝑋 noktası 𝑇 dönüşümünün sabit noktası olarak adlandırılır. Lineer olmayan bir integral 

denklemin veya birinci mertebeden periyodik bir diferensiyel denklemin çözümlerinin 

varlığını gösterirken sabit nokta teorisi kullanıldığı gibi stratejik oyunlarda Nash dengesinin 

varlığı için gerekli durumların hesaplanmasında da sabit nokta teoriden faydalanılabilir. Bu 

nedenle sabit nokta teori matematiğin yanı sıra diğer alanlarda da önemli uygulama ve 

çalışma alanlarına sahiptir. Bu anlamda en iyi bilinen ve metrik uzaylarda sabit nokta 

teorinin başlangıcı olarak kabul edilen sonuç Banach Büzülme İlkesidir: 

 

(𝑋, 𝑑) bir metrik uzay ve 𝑇: 𝑋 → 𝑋 herhangi bir dönüşüm olsun. Eğer her 𝑥, 𝑦 ∈ 𝑋 için   

 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦)  

 

olacak şekilde bir 𝑘 ∈ [0,1) var ise 𝑇 dönüşümüne bir büzülme dönüşümü denir.  

 

Banach, 1922 yılında tam metrik uzaylar üzerinde tanımlı her büzülme dönüşümünün bir tek 

sabit noktaya sahip olduğunu göstermiştir[1]. Ardından çok sayıda bilim insanı tarafından 

bu ilkenin birçok genelleştirmesi ifade edilmiştir[2-6]. Bu kimi zaman çok çeşitli 

genelleştirilmiş metrik uzaylar kimi zaman da farklı tipte büzülme dönüşümleri ile 

sağlanmıştır. Bu bağlamda Caristi tarafından tanımlanan Caristi dönüşümü ile Banach 

büzülme ilkesini genişleten ve sabit nokta teori için çok önemli sonuçlardan biri elde 

edilmiştir[7]. Ran ve Reuring, kısmi sıralı metrik uzay kavramını tanımlayarak büzülme 

dönüşümü üzerindeki koşulu zayıflatmış ve sonuçlarını matris denklemlere uygulamışlardır 

[8]. Diğer taraftan Wardowski belirli özelliklere sahip  Ϝ: (0,∞) → ℝ fonksiyonlarını 

kullanarak Ϝ-büzülme dönüşümünü tanımlamış ve bu dönüşüm ile yeni bir sabit nokta 

teoremi ispatlamıştır. Bu  Ϝ fonksiyonlarının ℱ ailesini tanımlamış böylece Banach büzülme 

ilkesi de dahil olmak üzere literatürde iyi bilinen büzülmeleri elde etmiştir[9]. Son 

zamanlarda standart metrik uzaylar, 𝑀-metrik uzaylar ve hatta 𝑀𝑏-metrik uzaylara 
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genişletilerek bu uzaylarda tek değerli dönüşümler için bazı sabit nokta teoremleri elde 

edilmiştir[10-13]. Tek değerli dönüşümler için yapılan bu çalışmalar dışında ilk olarak 1941 

yılında Kakutani tarafından sonlu boyutlu Banach uzaylarında küme değerli dönüşümler için 

sabit nokta teorisi çalışılmıştır[14]. Ardından bu çalışma 1950 yılında Bohnenblust ve Karlin 

tarafından sonsuz boyutlu Banach uzaylarına genişletilmiştir[15]. Metrik uzaylarda ise küme 

değerli dönüşümler için sabit nokta teorisinin ilk çalışması Nadler tarafından küme değerli 

büzülme dönüşümü tanımı verilerek yapılmıştır. (𝑋, 𝑑) bir metrik uzay ve 𝐶𝐵(𝑋), 𝑋 nin 

bütün kapalı ve sınırlı altkümelerinin ailesi olmak üzere her  𝐴, 𝐵 ∈ 𝐶𝐵(𝑋) için, 

 

𝐻 ∶ 𝐶𝐵(𝑋) × 𝐶𝐵(𝑋) → [0,∞), 𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥 {𝑠𝑢𝑝
𝑥∈𝐴

𝑑(𝑥, 𝐵), 𝑠𝑢𝑝
𝑦∈𝐵

𝑑(𝑦, 𝐴) }  

 

şeklinde tanımlanan dönüşüm Hausdorff metriği olarak adlandırılır. 𝑇: 𝑋 → 𝐶𝐵(𝑋) küme 

değerli bir dönüşüm olmak üzere eğer her 𝑥, 𝑦 ∈ 𝑋 için,  𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦)  olacak 

şekilde 0 ≤ 𝜆 < 1 var ise 𝑇 ye küme değerli büzülme dönüşümü denir. Nadler, 1969 yılında 

tam metrik uzaylar üzerinde tanımlı her  küme değerli büzülme dönüşümünün bir sabit 

noktaya sahip olduğunu göstermiştir[16]. Nadler’in ardından Reich, önce 𝑋’in boştan farklı 

kompakt altkümeleri olan 𝐾(𝑋) ailesi ve 𝑘: (0,∞) → [0,1) şeklinde tanımlı her  𝑡 ∈ (0,∞) 

için limsup
𝑟→𝑡+

𝑘(𝑟) < 1 özelliğine sahip 𝑘 fonksiyonunu göz önüne alarak 𝑥 ≠ 𝑦 olacak 

şekildeki her 𝑥, 𝑦 ∈ 𝑋 için 𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) eşitsizliğini sağlayan                    

𝑇: 𝑋 → 𝐾(𝑋)  dönüşümünün sabit noktasının varlığını göstermiş ardından 𝐾(𝑋) ailesi yerine 

𝐶𝐵(𝑋) alındığında aynı eşitsizliği sağlayan 𝑇 dönüşümü için sonucun geçerli olup 

olmadığını incelemiştir. Mizoguchi ve Takahashi ise her 𝑡 ∈ [0,∞) için limsup
𝑟→𝑡+

𝑘(𝑟) < 1 

koşulu altında Reich’in sorusuna pozitif cevap vermiştir [17-19]. Ancak Feng ve Liu, 

Nadler’in sonucunu Hausdorff metriği kullanmadan literatürdeki diğer çalışmalardan çok 

farklı bir yönde genişletmişlerdir [20].  

 

Bu tez çalışmasında öncelikle 𝑀-metrik uzayları üzerinde Caristi dönüşümleri 

tanımlanmıştır. Ardından bu dönüşümler ve bazı genelleştirilmiş Caristi tipi dönüşümler için 

sabit nokta teoremleri elde edilmiş, böylece literatürde var olan çalışmalar genişletilmiştir. 

Ayrıca, 𝑀-metrik uzayları üzerinde tanımlı küme değerli dönüşümler ve küme değerli                   

Ϝ-büzülme dönüşümleri için bazı Feng-Liu tipi sabit nokta teoremleri verilmiştir. Sonrasında 

ise 𝑀𝑏-metrik uzay kavramı tanımlanarak bu uzay üzerinde tanımlı karma küme değerli 

dönüşümler için bazı sabit nokta teoremleri elde edilmiştir.   
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2. TEMEL TANIM VE TEOREMLER 

 

Bu bölümde çalışmanın ilerleyen kısımlarında kullanacağımız temel tanım ve teoremlere yer 

verilmiştir. 

 

2.1. Temel Tanımlar 

 

2.1.1. Tanım[10] 

 

𝑋 ≠ ∅ bir küme olmak üzere 𝑚:𝑋 × 𝑋 → [0,∞) fonksiyonu eğer her 𝑥, 𝑦, 𝑧 ∈ 𝑋 için, 

 

𝑚1) 𝑚(𝑥, 𝑦) = 𝑚(𝑥, 𝑥) = 𝑚(𝑦, 𝑦) ⇔ 𝑥 = 𝑦 

𝑚2) 𝑚𝑥𝑦 = min {𝑚(𝑥, 𝑥),𝑚(𝑦, 𝑦)} ≤ 𝑚(𝑥, 𝑦) 

𝑚3) 𝑚(𝑥, 𝑦) = 𝑚(𝑦, 𝑥) 

𝑚4) 𝑚(𝑥, 𝑦)−𝑚𝑥𝑦 ≤ (𝑚(𝑥, 𝑧)−𝑚𝑥𝑧) + (𝑚(𝑦, 𝑧)−𝑚𝑦𝑧) 

 

şartlarını sağlıyorsa bu dönüşüme 𝑋 üzerinde bir 𝑀-metrik denir ve (𝑋,𝑚) ikilisine de          

𝑀-metrik uzay denir. Tanımdan açıktır ki her standart metrik uzay ve her kısmi metrik uzay 

bir 𝑀-metrik uzaydır. Ancak tersi her zaman doğru değildir.  

 

2.1.2. Tanım 

 

(𝑋,𝑚) bir 𝑀-metrik uzay, (𝑥𝑛) ⊆ 𝑋 bir dizi ve 𝑥 ∈ 𝑋 olmak üzere, 

 

i) (𝑥𝑛) dizisinin 𝑥 noktasına 𝑀-yakınsak olması için gerek ve yeter koşul          

 lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥 = 0 olmasıdır.       

ii)  Eğer (𝑥𝑛) dizisi için lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) var ve sonlu ise bu diziye 𝑀-Cauchy dizisidir  

denir. 

iii) Eğer  (𝑋,𝑚) uzayında her 𝑀-Cauchy dizisi bir 𝑥 ∈ 𝑋 noktasına 𝑀-yakınsak ve  

lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 𝑚(𝑥, 𝑥) ise bu uzaya 𝑀-tamdır denir. 
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2.1.3. Tanım[7]  

 

(𝑋, 𝑑) bir metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer her 𝑥 ∈ 𝑋 için,  

 

𝑑(𝑥, 𝑇𝑥) ≤ 𝜑(𝑥) − 𝜑(𝑇𝑥) 

 

olacak şekilde alt yarı sürekli bir 𝜑:𝑋 → [0,∞) fonksiyonu varsa 𝑇’ye Caristi dönüşümü 

denir.  

 

2.1.4. Tanım[21, 22]  

 

(𝑋, 𝑑) bir metrik uzay olsun. Bu durumda 𝐶(𝑋), 𝑋 nin bütün kapalı altkümelerinin ailesi ve 

𝐶𝐵(𝑋) ise 𝑋 nin bütün kapalı ve sınırlı altkümelerinin ailesi olmak üzere her 𝐴, 𝐵 ∈ 𝐶(𝑋) 

için, 𝐻(𝐴, 𝐵) = max {sup
𝑥∈𝐴

𝑑(𝑥, 𝐵),  sup
𝑦∈𝐵

𝑑(𝑦, 𝐴) } şeklinde tanımlanan                                                

H ∶ C(X) × C(X) → [0,∞) dönüşümü Hausdorff uzaklığı olarak adlandırılır. Burada eğer      

𝐻 dönüşümü 𝐶𝐵(𝑋) üzerinde tanımlanırsa bir metrik ifade eder. 

 

2.1.5. Tanım 

 

𝑋, 𝑌 boştan farklı kümeler ve 𝑇: 𝑋 → 𝑌 bir dönüşüm olsun. Bu durumda 𝑋’in her 

elemanını 𝑌’nin bir elemanına eşleyen 𝑇 dönüşümüne tek değerli dönüşüm denir.   

 

2.1.6. Tanım 

 

X boştan faklı bir küme ve 𝑇: 𝑋 → 𝑋 tek değerli bir dönüşüm olsun. Bu durumda 𝑇𝑥 = 𝑥 

olacak şekildeki 𝑥 ∈ 𝑋  noktasına 𝑇 dönüşümünün sabit noktası denir. 

 

2.1.7. Tanım 

 

𝑋, 𝑌 boştan farklı kümeler olsun. Bu durumda 𝑋’in her elemanını Y’nin bir alt kümesine 

eşleyen T dönüşümüne küme değerli dönüşüm denir ve 𝑇: 𝑋 → 𝑃(𝑌) şeklinde gösterilir. 

Burada 𝑃(𝑌), 𝑌 nin bütün alt kümelerinin ailesidir. 
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2.1.8. Tanım 

 

𝑋 boştan faklı bir küme ve 𝑇: 𝑋 → 𝑃(𝑋) küme değerli bir dönüşüm olsun. Bu durumda        

𝑥 ∈ 𝑇𝑥 olacak şekildeki 𝑥 ∈ 𝑋 noktasına T dönüşümünün sabit noktası denir. 

 

2.1.9. Tanım[23] 

 

𝑋, 𝑌 boştan faklı kümeler olmak üzere 𝑋’in her bir elemanını ya 𝑌’nin bir elemanı ya da 

𝑌’nin bir alt kümesi ile eşleyen dönüşüme, yani hem tek değerli hem de küme değerli bir 

dönüşüme karma küme değerli bir dönüşümdür denir ve 𝑇: 𝑋 → 𝑌 ∪ 𝑃(𝑌) şeklinde 

gösterilir. 

 

2.1.10. Tanım 

 

𝑋 bir topolojik uzay, 𝑓: 𝑋 → ℝ bir fonksiyon ve 𝑥0 ∈ 𝑋 olsun. Bu durumda eğer, 

 

𝑓(𝑥0) ≤ sup
𝑉∈𝑈𝑥0

inf
𝑥∈𝑉
𝑓(𝑥) = liminf

𝑥→𝑥0
𝑓(𝑥) 

 

oluyorsa 𝑓 fonksiyonuna 𝑥0 noktasında alt yarı sürekli bir fonksiyon ve eğer, 

 

inf
𝑉∈𝑈𝑥0

sup
𝑥∈𝑉

𝑓(𝑥) = limsup
𝑥→𝑥0

𝑓(𝑥) ≤ 𝑓(𝑥0) 

 

oluyorsa 𝑓 fonksiyonuna 𝑥0 noktasında üst yarı sürekli bir fonksiyon denir.  Eğer 𝑓 

fonksiyonu her 𝑥 ∈ 𝑋 noktasında alt yarı sürekli(üst yarı sürekli)  ise bu durumda 𝑓 

fonksiyonuna alt yarı süreklidir(üst yarı süreklidir) denir.  

 

2.1.11. Tanım 

 

𝑋 bir topolojik uzay, 𝑓: 𝑋 → ℝ bir fonksiyon ve 𝑥0 ∈ 𝑋 olsun. Bu durumda 𝑥𝑛 → 𝑥0 olacak 

şekildeki her (𝑥𝑛) ⊆ 𝑋 dizisi için 𝑓(𝑥0) ≤ liminf
𝑛→∞

𝑓(𝑥𝑛) ise 𝑓 fonksiyonuna 𝑥0 noktasında 

alt yarı sürekli bir fonksiyon denir. Eğer 𝑓 fonksiyonu her 𝑥 ∈ 𝑋 noktasında alt yarı sürekli 

ise bu durumda 𝑓 fonksiyonuna alt yarı süreklidir denir.  
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2.2. Temel Teoremler 

 

2.2.1. Teorem (Banach Büzülme ilkesi) 

 

(𝑋, 𝑑) bir tam metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer her 𝑥, 𝑦 ∈ 𝑋 için,  

 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) 

 

eşitsizliğini sağlayacak şekilde bir 𝑘 ∈ [0,1) var ise bu dönüşüm 𝑋’de bir tek sabit noktaya 

sahiptir.  Ayrıca her 𝑥0 ∈ 𝑋 başlangıç noktası için (𝑓𝑛(𝑥0)) dizisi bu sabit noktaya yakınsar.   

 

2.2.2. Teorem 

 

𝑋 bir topolojik uzay, 𝑓: 𝑋 → ℝ bir fonksiyon olsun. Bu durumda 𝑓 fonksiyonunun alt yarı 

sürekli olması için gerek ve yeter şart her 𝛼 ∈ ℝ için 𝑓−1((−∞,𝛼]) = {𝑥 ∈ 𝑋: 𝑓(𝑥) ≤  𝛼} 

kümesinin kapalı olmasıdır.  

 

 2.2.1. Lemma 

 

(𝑋, 𝑝) bir kısmi metrik uzay olmak üzere 𝑑𝑝: 𝑋 × 𝑋 → [0,∞) dönüşümü her 𝑥, 𝑦 ∈ 𝑋 için,  

 

𝑑𝑝(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) − 𝑝(𝑦, 𝑦)  

 

şeklinde tanımlansın. Bu durumda 𝑑𝑝 dönüşümü 𝑋 üzerinde bir metrik olup (𝑋, 𝑑𝑝) ikilisi 

standart metrik uzaydır. 

 

2.2.2. Lemma 

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve 𝑀𝑥𝑦 = max {𝑚(𝑥, 𝑥),𝑚(𝑦, 𝑦)} şeklinde tanımlanmak üzere her 

𝑥, 𝑦 ∈ 𝑋 için,  

 

𝑝𝑚(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) − 𝑚𝑥𝑦 +𝑀𝑥𝑦 

ve 
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𝑑𝑝𝑚(𝑥, 𝑦) = 2(𝑚(𝑥, 𝑦) − 𝑚𝑥𝑦) + (𝑀𝑥𝑦 −𝑚𝑥𝑦) 

 

şeklinde tanımlanan 𝑝𝑚, 𝑑𝑝𝑚: 𝑋 × 𝑋 → [0,∞) dönüşümleri 𝑋 üzerinde sırasıyla kısmi 

metrik ve standart metriktir.   

 

2.2.3. Lemma[24, 25] 

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve (𝑥𝑛) ⊆ 𝑋 bir dizi olsun. O zaman,  

i) (𝑥𝑛) dizisi (𝑋, 𝑝𝑚) kısmi metrik uzayında bir Cauchy dizisidir gerek ve yeter şart (𝑋, 𝑑𝑝𝑚)     

uzayında bir Cauchy dizisidir. 

ii) (𝑋, 𝑝𝑚) tam kısmi metrik uzaydır gerek ve yeter şart (𝑋, 𝑑𝑝𝑚) tam standart metrik 

uzaydır. 

ifadeleri doğrudur. 

 

2.2.4. Lemma 

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve (𝑥𝑛) ⊆ 𝑋 bir dizi olsun. O zaman,  

i) (𝑥𝑛) dizisi (𝑋,𝑚) 𝑀-metrik uzayında bir 𝑀-Cauchy dizisidir gerek ve yeter şart (𝑋, 𝑑𝑝𝑚)     

uzayında bir Cauchy dizisidir. 

ii) (𝑋,𝑚) 𝑀-tam 𝑀-metrik uzaydır gerek ve yeter şart (𝑋, 𝑑𝑝𝑚) tam standart metrik uzaydır. 

ifadeleri doğrudur. 

 

İspat 

 

i)  (𝑥𝑛) ⊆ 𝑋 bir 𝑀-Cauchy dizisi olsun. Bu durumda lim
𝑛,𝑘→∞

𝑚(𝑥𝑛, 𝑥𝑘) = 𝛼 olacak şekilde 

bir 𝛼 ∈ ℝ sayısı var olup buradan lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛) = 𝛼 elde edilir. O halde, 

 

lim
𝑛,𝑘→∞

𝑑𝑝𝑚(𝑥𝑛, 𝑥𝑘) = 2(𝑚(𝑥𝑛, 𝑥𝑘) − 𝑚𝑥𝑛𝑥𝑘) + (𝑀𝑥𝑛𝑥𝑘 −𝑚𝑥𝑛𝑥𝑘) = 0 

     

     olur ki buradan (𝑥𝑛) ⊆ 𝑋, (𝑋, 𝑑𝑝𝑚) uzayında bir Cauchy dizisidir. Şimdi aksini kabul 

edelim. Yani, (𝑥𝑛) ⊆ 𝑋, (𝑋, 𝑑𝑝𝑚) uzayında bir Cauchy dizisi olsun. Bu durumda 𝜀 = 1 

için 𝑛, 𝑘 ≥ 𝑛0 olduğundan 𝑑𝑝𝑚(𝑥𝑛, 𝑥𝑘) < 1 olacak şekilde 𝑛0 ∈ ℕ sayısı vardır. Buna 
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göre, 

 

𝑚(𝑥𝑛, 𝑥𝑛) = 𝑚(𝑥𝑛, 𝑥𝑛) − 𝑚(𝑥𝑛0 , 𝑥𝑛0) + 𝑚(𝑥𝑛0 , 𝑥𝑛0) 

                    ≤ |𝑚(𝑥𝑛, 𝑥𝑛) − 𝑚(𝑥𝑛0 , 𝑥𝑛0)| + 𝑚(𝑥𝑛0 , 𝑥𝑛0) 

                    = 𝑀𝑥𝑛𝑥𝑛0 −𝑚𝑥𝑛𝑥𝑛0 +𝑚(𝑥𝑛0 , 𝑥𝑛0) 

                    ≤ 𝑑𝑝𝑚(𝑥𝑛, 𝑥𝑛0) + 𝑚(𝑥𝑛0 , 𝑥𝑛0) 

                    ≤ 1 + 𝑚(𝑥𝑛0 , 𝑥𝑛0) 

  

     olduğundan (𝑚(𝑥𝑛, 𝑥𝑛)), ℝ de sınırlı bir dizidir. O halde lim
𝑘→∞

(𝑚(𝑥𝑛𝑘 , 𝑥𝑛𝑘)) = 𝛼 olacak 

şekilde 𝛼 ∈ ℝ sayısı ve (𝑚(𝑥𝑛𝑘 , 𝑥𝑛𝑘)) alt dizisi vardır. Diğer taraftan (𝑥𝑛) ⊆ 𝑋, 

(𝑋, 𝑑𝑝𝑚) uzayında bir Cauchy dizisi olduğundan bir 𝜀 > 0 için 𝑛, 𝑘 ≥ 𝑛1 olduğunda,  

 

|𝑚(𝑥𝑛, 𝑥𝑛) − 𝑚(𝑥𝑘, 𝑥𝑘)| ≤ 𝑑𝑝𝑚(𝑥𝑛, 𝑥𝑘) < 𝜀 

 

     olacak şekilde 𝑛1 doğal sayısı vardır. Bu yüzden (𝑚(𝑥𝑛, 𝑥𝑛)), ℝ de bir Cauchy dizisi 

olup 

 

lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛) = lim
𝑛,𝑘→∞

𝑚𝑥𝑛𝑥𝑘 = lim
𝑛,𝑘→∞

𝑀𝑥𝑛𝑥𝑘 = 𝛼    

      

     elde edilir. Şimdi,  

 

|𝑚(𝑥𝑛, 𝑥𝑘) − 𝛼|  ≤ |(𝑚(𝑥𝑛, 𝑥𝑘) − 𝑚𝑥𝑛𝑥𝑘) + (𝑀𝑥𝑛𝑥𝑘 −𝑚𝑥𝑛𝑥𝑘)| 

                                                                                           +|2𝑚𝑥𝑛𝑥𝑘 −𝑀𝑥𝑛𝑥𝑘 − 𝛼| 

                                ≤ |2(𝑚(𝑥𝑛, 𝑥𝑘) − 𝑚𝑥𝑛𝑥𝑘) + (𝑀𝑥𝑛𝑥𝑘 −𝑚𝑥𝑛𝑥𝑘)| 

                                                                                           +|2𝑚𝑥𝑛𝑥𝑘 −𝑀𝑥𝑛𝑥𝑘 − 𝛼| 

                                = 𝑑𝑝𝑚(𝑥𝑛, 𝑥𝑘) + |2𝑚𝑥𝑛𝑥𝑘 −𝑀𝑥𝑛𝑥𝑘 − 𝛼| 

      

     elde edilir ki buradan lim
𝑛,𝑘→∞

 𝑚(𝑥𝑛, 𝑥𝑘) = 𝛼 yazabiliriz. Bu ise (𝑥𝑛) dizisinin (𝑋,𝑚)                  

𝑀-metrik uzayında bir 𝑀-Cauchy dizisi olduğunu gösterir. 
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ii) (𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay ve (𝑥𝑛) ⊆ 𝑋, (𝑋, 𝑑𝑝𝑚) uzayında bir Cauchy dizisi olsun. 

Bu durumda i) den (𝑥𝑛) dizisinin (𝑋,𝑚) 𝑀-metrik uzayında bir 𝑀-Cauchy dizisi 

olduğunu söyleyebiliriz. (𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay olduğundan, 

 

lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥 = 0 

     ve  

lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 𝑚(𝑥, 𝑥) 

     

     olacak şekilde 𝑥 ∈ 𝑋 vardır. Buna göre, 

 

lim
𝑛→∞

𝑑𝑝𝑚(𝑥𝑛, 𝑥) = lim
𝑛→∞

2(𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥) + (𝑀𝑥𝑛𝑥 −𝑚𝑥𝑛𝑥) = 0 

 

     elde edilir ki bu ise (𝑋, 𝑑𝑝𝑚) uzayının tam metrik uzay olduğunu gösterir. Şimdi ise kabul 

edelim ki (𝑋, 𝑑𝑝𝑚) uzayı tam metrik uzay ve (𝑥𝑛) ⊆ 𝑋 bir 𝑀-Cauchy dizisi olsun. Bu 

durumda i) den (𝑥𝑛) dizisinin (𝑋, 𝑑𝑝𝑚) uzayında bir Cauchy dizisi olduğunu 

söyleyebiliriz ve bu yüzden lim
𝑛→∞

𝑑𝑝𝑚(𝑥𝑛, 𝑥) = 0 olacak şekilde bir 𝑥 ∈ 𝑋 vardır. O halde 

lim
𝑛→∞

2(𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥) + (𝑀𝑥𝑛𝑥 −𝑚𝑥𝑛𝑥) = 0 olduğundan,  

 

     lim
𝑛→∞

2(𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥) = 0 ve lim
𝑛→∞

(𝑀𝑥𝑛𝑥 −𝑚𝑥𝑛𝑥) = 0  

  

     yazabiliriz. İspatı tamamlamak için lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 𝑚(𝑥, 𝑥) olduğunu göstermemiz 

yeterlidir. Yukarıda gösterdik ki lim
𝑛→∞

(𝑀𝑥𝑛𝑥 −𝑚𝑥𝑛𝑥) = 0 eşitliği vardır. Buradan                          

lim
𝑛→∞

 𝑚(𝑥𝑛, 𝑥𝑛) = 𝑚(𝑥, 𝑥) elde edilir. Aynı zamanda (𝑥𝑛) ⊆ 𝑋 bir 𝑀-Cauchy dizisi 

olduğundan lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 𝑚(𝑥, 𝑥) yazılabilir. Böylece (𝑋,𝑚) uzayının 𝑀-tam     

𝑀-metrik uzay olduğunu göstermiş oluruz.  

 

2.2.1.Sonuç  

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve (𝑥𝑛) ⊆ 𝑋 bir dizi olsun. O zaman,  

i) (𝑥𝑛) dizisi (𝑋,𝑚) 𝑀-metrik uzayında bir 𝑀-Cauchy dizisidir gerek ve yeter şart (𝑋, 𝑝𝑚)    
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kısmi metrik uzayında bir Cauchy dizisidir. 

ii) (𝑋,𝑚) 𝑀-tam 𝑀-metrik uzaydır gerek ve yeter şart (𝑋, 𝑝𝑚) tam kısmi metrik uzaydır. 

ifadeleri doğrudur. 
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3. TEK DEĞERLİ DÖNÜŞÜMLER İÇİN SABİT NOKTA 

TEOREMLERİ 

 

Bu bölümde öncelikle 𝑀-metrik uzaylarda Caristi tip büzülme dönüşümü tanımlandı ve daha 

sonra ise 𝑀-metrik uzaylarda Caristi tip sabit nokta teoremleri bazı genelleştirmeleri ile ifade 

ve ispat edilmiştir. 

 

3.1. 𝑴-Metrik Uzaylarda Caristi Tip Sabit Nokta Teoremleri 

 

Banach sabit nokta teoremini literatürde var olan çalışmalardan farklı bir şekilde genişleten 

ve Caristi tarafından verilen aşağıdaki sabit nokta teoremi ile bu bölüme başlayalım [7]: 

 

3.1.1. Teorem 

 

(𝑋, 𝑑) tam metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer öyle bir 𝜑:𝑋 → [0,∞) alt yarı 

sürekli fonksiyonu var ve her 𝑥 ∈ 𝑋 için, 

 

𝑑(𝑥, 𝑇𝑥) ≤ 𝜑(𝑥) − 𝜑(𝑇𝑥)                                                                                                          (3.1) 

 

eşitsizliği sağlanıyor ise 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir. 

 

Bae [26] ve Suzuki [27]’nin çalışmalarında olduğu gibi literatürde Caristi’nin çalışmasını 

genişletmekle ilgilenen birçok bilim insanı bulunmaktadır [28, 29]. Acar ve arkadaşları [30] 

Caristi tip sabit nokta teoremini kısmi metrik uzaylarda aşağıdaki şekilde ispatlamışlardır. 

Dikkat edilmelidir ki onlar bunu yaparken 𝑝 kısmi metriği sadece standart metrik olduğunda 

doğru olan Eş. 3.1’i Eş. 3.2 ile değiştirmişlerdir: 

 

3.1.2. Teorem 

 

(𝑋, 𝑝) tam kısmi metrik uzay, 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer (𝑋, 𝑑𝑝) uzayında alt yarı 

sürekli bir 𝜑:𝑋 → [0,∞) fonksiyonu var ve her 𝑥 ∈ 𝑋 için, 

 

𝑝(𝑥, 𝑇𝑥) ≤ 𝑝(𝑥, 𝑥) + 𝜑(𝑥) − 𝜑(𝑇𝑥)                                                                                                       (3.2) 

 

eşitsizliği sağlanıyor ise 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  
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Yakın zamanda Abodayeh ve arkadaşları [31] Caristi tip sabit nokta teoremini 𝑀-metrik 

uzaylarda verebilmek için Caristi’nin eşitsizliğinin 𝑀-metrik uzaylardaki versiyonu olarak 

Eş. 3.3’ü düşündüler ve aşağıdaki Teorem 3.1.3’ü ifade ettiler.    

 

3.1.3. Teorem 

 

(𝑋,𝑚) tam 𝑀-metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer alt yarı sürekli bir                    

𝜑:𝑋 → [0,∞) fonksiyonu var ve her 𝑥 ∈ 𝑋 için, 

 

𝑚(𝑥, 𝑇𝑥) ≤ 𝑚𝑥𝑇𝑥 +𝜑(𝑥) − 𝜑(𝑇𝑥)                                                                                                       (3.3) 

 

eşitsizliği sağlanıyor ise 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  

 

Ancak aşağıdaki örnek bu sonucun uygun genişleme olmadığını göstermektedir. Bu örnekte 

𝑇 dönüşümü Teorem 3.1.3’ün bütün hipotezlerini sağlamasına rağmen bir sabit noktaya 

sahip değildir.  

  

Örnek 

 

𝑋 = [0,∞) ve bu küme üzerindeki 𝑚:𝑋 × 𝑋 → [0,∞) metriği                                           

𝑚(𝑥, 𝑦) = 𝑚𝑖𝑛{𝑥, 𝑦} şeklinde tanımlansın. Bu durumda (𝑋,𝑚) 𝑀-tam 𝑀-metrik uzaydır. 

(Dikkat edilmelidir ki bu uzayda her (𝑥𝑛) dizisi her noktaya 𝑀-yakınsaktır). Eğer biz  

𝑇: 𝑋 → 𝑋 dönüşümünü her 𝑥 ∈ 𝑋 için 𝑇𝑥 = 𝑥 + 1 ve 𝜑:𝑋 → [0,∞) dönüşümünü her 𝑥 ∈ 𝑋 

için 𝜑(𝑥) = 𝑐 (𝑐 > 0 sabit) şeklinde tanımlarsak 𝜑, 𝜏𝑚 topolojisine göre alt yarı sürekli ve 

𝑇 dönüşümü Eş. 3.3’ü sağlar. Ancak 𝑇 dönüşümü bir sabit noktaya sahip değildir.  

 

Bu problemi gidermek için Caristi’nin eşitsizliğinin 𝑀-metrik uzaylardaki versiyonu olarak 

iki yeni eşitsizliği tanımladık ve böylece bu eşitsizlikleri dikkate alarak Caristi sabit nokta 

teoremini 𝑀-metrik uzaylara uygun şekilde genişlettik:  

 

𝑚(𝑥, 𝑇𝑥) − 𝑚𝑥𝑇𝑥 +𝑀𝑥𝑇𝑥 ≤ 𝑚(𝑥, 𝑥) + 𝜑(𝑥) − 𝜑(𝑇𝑥)                                                              (3.4) 

ve 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝜑(𝑥) − 𝜑(𝑇𝑥)                                                                  (3.5) 
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3.1.1. Tanım 

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer 𝜏𝑑𝑝𝑚  topolojisine göre alt 

yarı sürekli bir 𝜑: 𝑋 → [0,∞) fonksiyonu var ve her 𝑥 ∈ 𝑋 için Eş. 3.4 sağlanıyor ise bu 

durumda 𝑇’ye tip-(I) Caristi dönüşümü denir.  

 

3.1.4. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzayı üzerinde tanımlı her tip-(I) Caristi dönüşümü bu uzayda bir 

sabit noktaya sahiptir. 

 

İspat 

 

𝑇 dönüşümü tip-(I) Caristi dönüşümü olduğundan 𝜏𝑑𝑝𝑚 topolojisine göre alt yarı sürekli bir 

𝜑:𝑋 → [0,∞) fonksiyonu var ve her 𝑥 ∈ 𝑋 için, 

 

𝑚(𝑥, 𝑇𝑥) − 𝑚𝑥𝑇𝑥 +𝑀𝑥𝑇𝑥 ≤ 𝑚(𝑥, 𝑥) + 𝜑(𝑥) − 𝜑(𝑇𝑥) 

 

eşitsizliği sağlanır. Bu durumda her 𝑥 ∈ 𝑋 için, 

 

𝑝𝑚(𝑥, 𝑇𝑥) ≤ 𝑝𝑚(𝑥, 𝑥) + 𝜑(𝑥) − 𝜑(𝑇𝑥) 

 

elde edilir. Diğer taraftan Sonuç 2.2.1’den (𝑋, 𝑝𝑚) tam kısmi metrik uzaydır. O halde 

Teorem 3.1.2’yi kullanarak 𝑇 dönüşümünün bir sabit noktaya sahip olduğunu söyleyebiliriz. 

 

3.1.2. Tanım 

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer 𝜏𝑑𝑝𝑚  topolojisine göre alt 

yarı sürekli bir 𝜑: 𝑋 → [0,∞) fonksiyonu var ve her 𝑥 ∈ 𝑋 için Eş. 3.5 sağlanıyor ise bu 

durumda 𝑇’ye tip-(II) Caristi dönüşümü denir.  
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3.1.5. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzayı üzerinde tanımlı her tip-(II) Caristi dönüşümü bu uzayda bir 

sabit noktaya sahiptir. 

 

İspat 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzayı olduğundan Sonuç 2.2.1’den (𝑋, 𝑝𝑚) tam kısmi metrik 

uzaydır. 𝑇 dönüşümü tip-(II) Caristi dönüşümü olduğundan 𝜏𝑑𝑝𝑚 topolojisine göre alt yarı 

sürekli bir 𝜑:𝑋 → [0,∞) fonksiyonu var ve her 𝑥 ∈ 𝑋 için, 

 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝜑(𝑥) − 𝜑(𝑇𝑥) 

 

eşitsizliği sağlanır. Buna göre iki durum söz konusudur: 

 

a) Eğer 𝑀𝑥𝑇𝑥 = 𝑚(𝑇𝑥, 𝑇𝑥) ise, 

 

     𝑚(𝑥, 𝑇𝑥) ≤ 𝑚𝑥𝑇𝑥 +𝜑(𝑥) − 𝜑(𝑇𝑥) 

     ve 

𝑀𝑥𝑇𝑥 = 𝑚(𝑇𝑥, 𝑇𝑥) ≤ 𝑚𝑥𝑇𝑥 + 𝜑(𝑥) − 𝜑(𝑇𝑥) 

 

elde edilir. Bu iki eşitsizlik taraf tarafa toplanırsa, 

 

      𝑚(𝑥, 𝑇𝑥) + 𝑀𝑥𝑇𝑥 ≤ 2𝑚𝑥𝑇𝑥 + 2𝜑(𝑥) − 2𝜑(𝑇𝑥) 

                                       = 𝑚𝑥𝑇𝑥 +𝑚(𝑥, 𝑥) + 2𝜑(𝑥) − 2𝜑(𝑇𝑥) 

   

     ve böylece 

 

      𝑚(𝑥, 𝑇𝑥) − 𝑚𝑥𝑇𝑥 +𝑀𝑥𝑇𝑥 ≤ 𝑚(𝑥, 𝑥) + 2𝜑(𝑥) − 2𝜑(𝑇𝑥) 

 

     olur. Buradan ise 

 

     𝑝𝑚(𝑥, 𝑇𝑥) ≤ 𝑝𝑚(𝑥, 𝑥) + 2𝜑(𝑥) − 2𝜑(𝑇𝑥) 

 

     eşitsizliği elde edilir. 
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b) Eğer 𝑀𝑥𝑇𝑥 = 𝑚(𝑥, 𝑥) ise Eş. 3.5’den 𝜑(𝑥) − 𝜑(𝑇𝑥) ≥ 0 olup 

 

     𝑚(𝑥, 𝑇𝑥) − 𝑚𝑥𝑇𝑥 +𝑀𝑥𝑇𝑥 ≤ 𝜑(𝑥) − 𝜑(𝑇𝑥) + 𝑀𝑥𝑇𝑥 

                                                      = 𝑚(𝑥, 𝑥) + 𝜑(𝑥) − 𝜑(𝑇𝑥) 

                                                      ≤ 𝑚(𝑥, 𝑥) + 2𝜑(𝑥) − 2𝜑(𝑇𝑥) 

     olup buradan 

 

     𝑝𝑚(𝑥, 𝑇𝑥) ≤ 𝑝𝑚(𝑥, 𝑥) + 2𝜑(𝑥) − 2𝜑(𝑇𝑥) 

 

     eşitsizliği elde edilir. Şimdi 𝛽: 𝑋 → [0,∞) dönüşümünü her 𝑥 ∈ 𝑋 için 𝛽(𝑥) = 2𝜑(𝑥) 

olacak şekilde tanımlayalım. Bu durumda 𝛽, 𝜏𝑑𝑝𝑚  topolojisine göre alt yarı sürekli bir 

fonksiyon olur. (𝑋, 𝑝𝑚) tam kısmi metrik uzay olup ve 𝑇 dönüşümü a) ve b) durumlarının 

her ikisinde de her 𝑥 ∈ 𝑋 için, 

 

      𝑝𝑚(𝑥, 𝑇𝑥) ≤ 𝑝𝑚(𝑥, 𝑥) + 𝛽(𝑥) − 𝛽(𝑇𝑥) 

 

     eşitsizliğini sağladığından 𝑋’de bir sabit noktaya sahiptir. 

 

Burada Caristi eşitsizliğinin 𝑀-metrik uzaylardaki versiyonu için önerdiğimiz iki eşitsizlik 

eğer çakışırlarsa Teorem 3.1.4 ile Teorem 3.1.5 aynı şeyi ifade edecektir. Bu nedenle 

aşağıdaki örnekler, Eş. 3.5’in Eş. 3.4’den kesinlikle daha genel olduğunu göstermesi 

bakımından önemlidir.  

 

Örnek 

 

𝑋 = [0,1] ∪ {2}  ve 𝑚:𝑋 × 𝑋 → [0,∞)dönüşümü                               olarak tanımlansın. Bu  

durumda 𝜏𝑑𝑝𝑚  topolojisi reel sayılar üzerindeki alışılmış topoloji ile çakıştığından ve 𝑋 ⊆ ℝ 

kapalı olduğundan (𝑋, 𝑑𝑝𝑚) tam metrik uzaydır. O halde Lemma 2.2.4’den (𝑋,𝑚) 𝑀-tam 

𝑀-metrik uzaydır. Şimdi 𝑇: 𝑋 → 𝑋 ve 𝜑:𝑋 → [0,∞)  dönüşümlerini her 𝑥 ∈ 𝑋 için sırasıyla, 

 

𝑇𝑥 = {
2 , 𝑥 = 1 

𝑥 , d. d.
 

ve 

𝑚(𝑥, 𝑦) =
𝑥 + 𝑦

2
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𝜑(𝑥) =

{
 
 

 
 

0 , 𝑥 = 0

2 +
1

𝑥
, x ≠ 0 ve x ≠ 2

7

4
,  x = 2

 

 

şeklinde tanımlayalım. O halde 𝜑 dönüşümü 𝜏𝑑𝑝𝑚  topolojisine göre alt yarı sürekli bir 

fonksiyon ve 𝑇 dönüşümü Eş. 3.5’i sağlar. Dikkat edilmelidir ki 𝑇 dönüşümü Eş. 3.4’ü 

sağlamaz. Gerçekten, 𝑥 = 1 için 𝑇𝑥 = 2 olup, 

 

𝑚(𝑥, 𝑇𝑥) − 𝑚𝑥𝑇𝑥 +𝑀𝑥𝑇𝑥 ≤ 𝑚(𝑥, 𝑥) + 𝜑(𝑥) − 𝜑(𝑇𝑥) 

                             
3

2
− 1 + 2 ≤ 1 + 𝜑(1) − 𝜑(2) 

                                             
3

2
≰ 3 −

7

4
 

 

elde edilir. Bu nedenle bu örnek için Teorem 3.1.5’i kullanabilirken Teorem 3.1.4’ü 

kullanamayız.  

 

Örnek 

 

𝑋 = [0,∞) ve 𝑚:𝑋 × 𝑋 → [0,∞), 𝑚(𝑥, 𝑦) = |𝑥 − 𝑦| + 𝑚𝑖𝑛{𝑥, 𝑦} olarak tanımlansın. Bu  

durumda 𝜏𝑑𝑝𝑚  topolojisi reel sayılar üzerindeki alışılmış topoloji ile çakıştığından ve 𝑋 ⊆ ℝ 

kapalı olduğundan (𝑋, 𝑑𝑝𝑚) tam standart metrik uzaydır. O halde Lemma 2.2.4’den (𝑋,𝑚) 

𝑀-tam 𝑀-metrik uzaydır. Şimdi 𝑇: 𝑋 → 𝑋 dönüşümü her 𝑥 ∈ 𝑋 için 𝑇𝑥 = √𝑥 ve                

𝜑:𝑋 → [0,∞) dönüşümü 

 

𝜑(𝑥) = {

0 , 𝑥 = 0
1

𝑥
, 0 < 𝑥 ≤ 1

𝑥 , 𝑑. 𝑑.

 

 

şeklinde tanımlansın. O halde 𝜑 dönüşümü 𝜏𝑑𝑝𝑚  topolojisine göre alt yarı sürekli bir 

fonksiyon ve 𝑇 dönüşümü Eş. 3.5’i sağlar. Ancak √
1

4

3
< 𝑥 < 1 aralığındaki 𝑥 noktaları için 

Eş. 3.4 sağlanmaz. Bu yüzden 𝑇 dönüşümü bir sabit noktaya sahip olduğunu söyleyebilmek 

için Teorem 3.1.5’i kullanabilirken Teorem 3.1.4’ü kullanamayız.  
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3.2. Caristi Sabit Nokta Teoreminin 𝑴-Metrik Uzaylardaki Bazı Genelleştirmeleri 

 

Daha önce literatürde Bae, Suzuki veya Acar ve arkadaşlarının çalışmalarında olduğu gibi 

Caristi tip sabit nokta teoreminin birçok genelleştirmesi bulunduğunu belirtmiştik [26, 27, 

32]. Bu bölümde ise onların sonuçları 𝑀-metrik uzaylarda ifade ve ispat edilmiştir. 

 

3.2.1. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay ve 𝜑:𝑋 → [0,∞), 𝜏𝑑𝑝𝑚  topolojisine göre alt yarı sürekli ve            

𝜓:𝑋 → [0,∞) bir 𝜇 > 0 sayısı için sırasıyla aşağıdaki eşitsizlikleri sağlayan fonksiyonlar 

olsunlar: 

 

𝑚(𝑥, 𝑦) = 𝑚(𝑦, 𝑦) ⇒ 𝜑(𝑦) ≤ 𝜑(𝑥)                                                                                  (3.6) 

ve 

𝑠𝑢𝑝 {𝜓(𝑥): 𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ inf
𝑦∈𝑋

𝜑(𝑦) +𝜇 } < ∞.  

 

Eğer 𝑇: 𝑋 → 𝑋 dönüşümü her 𝑥 ∈ 𝑋 için, 

 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝜓(𝑥){𝜑(𝑥) − 𝜑(𝑇𝑥)}                                              (3.7) 

 

eşitsizliğini sağlıyor ise 𝑋’de bir sabit noktaya sahiptir.  

 

İspat 

 

Eğer 𝜓(𝑥) > 0 ise Eş. 3.7’den 𝜑(𝑇𝑥) ≤ 𝜑(𝑥) olur. Şimdi kabul edelim ki 𝜓(𝑥) = 0 olsun. 

Bu durumda 𝑚(𝑥, 𝑇𝑥) = 𝑚(𝑇𝑥, 𝑇𝑥) olup Eş. 3.6’dan 𝜑(𝑇𝑥) ≤ 𝜑(𝑥) elde edilir. O halde 

her 𝑥 ∈ 𝑋 için 𝜑(𝑇𝑥) ≤ 𝜑(𝑥) eşitsizliği sağlanır. Şimdi 𝜇 > 0 sayısı için 𝑌 kümesini ve 𝛾 

reel sayısını aşağıdaki şekilde tanımlayalım: 

 

𝑌 = {𝑥 ∈ 𝑋:  𝜑(𝑥) ≤ inf
𝑦∈𝑋

𝜑(𝑦) +𝜇} 

ve 

𝛾 = sup
𝑤∈𝑌

𝜓(𝑤). 
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(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay olduğundan ve Lemma 2.2.4’den (𝑋, 𝑑𝑝𝑚) tam metrik 

uzaydır. Bunun yanında 𝜑, 𝜏𝑑𝑝𝑚  topolojisine göre alt yarı sürekli olduğundan                               

𝑌, 𝑋’in 𝜏𝑑𝑝𝑚  topolojisine göre kapalı bir alt kümesidir. Bu yüzden (𝑌, 𝑑𝑝𝑚) tam metrik uzay 

olup (𝑌,𝑚)  𝑀-tam 𝑀-metrik uzaydır. Diğer taraftan infimum tanımından dolayı 𝑌 kümesi 

boştan farklıdır. Her 𝑥 ∈ 𝑋 için 𝜑(𝑇𝑥) ≤ 𝜑(𝑥) olduğundan 𝑇(𝑌) ⊆ 𝑌 dir. Ayrıca her 𝑥 ∈ 𝑌 

için, 

 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝜓(𝑥){𝜑(𝑥) − 𝜑(𝑇𝑥)} 

  ⇒ max {𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝛾{𝜑(𝑥) − 𝜑(𝑇𝑥)} 

 

olup eğer her 𝑥 ∈ 𝑌 için 𝜙: 𝑌 → [0,∞) fonksiyonu 𝜙(𝑥) = 𝛾𝜑(𝑥) olarak tanımlanırsa               

 𝜙 dönüşümü 𝜏𝑑𝑝𝑚  topolojisine göre alt yarı süreklidir. Buna göre 𝑇: 𝑌 → 𝑌 dönüşümü her 

𝑥 ∈ 𝑌 için, 

 

max{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝜙(𝑥) − 𝜙(𝑇𝑥) 

 

eşitsizliğini sağladığından Teorem 3.1.5’i kullanarak 𝑇 dönüşümünün bir sabit noktaya sahip 

olduğunu söyleyebiliriz.  

 

Uyarı 

 

Eğer 𝑚 bir standart metrik ise Eş. 3.6 otomatik olarak sağlanır. Böylece [27]’deki Teorem 2 

bizim çalışmamızın özel bir hali olur. 

 

3.2.2. Teorem 

 

(𝑋,𝑚)  𝑀-tam 𝑀-metrik uzay, 𝜑:𝑋 → [0,∞) fonksiyonu Eş. 3.6’yı sağlayan 𝜏𝑑𝑝𝑚  

topolojisine göre alt yarı sürekli ve 𝑐: [0,∞)  → [0,∞) üst yarı sürekli bir fonksiyon olsun. 

Eğer 𝑇: 𝑋 → 𝑋 dönüşümü her 𝑥 ∈ 𝑋 için, 

 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 +𝑚𝑎𝑥{𝑐(𝜑(𝑥)), 𝑐(𝜑(𝑇𝑥))}{𝜑(𝑥) − 𝜑(𝑇𝑥)}                                             

 

eşitsizliğini sağlıyor ise 𝑋’de bir sabit noktaya sahiptir.  
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İspat 

 

Kabul edelim ki 𝛾 > 𝑐 ( inf
𝑤∈𝑋

𝜑(𝑤)) ve inf
𝑤∈𝑋

𝜑(𝑤) = 𝑡0 olsun. Hipotezden 𝑐 üst yarı sürekli 

bir fonksiyon olduğundan 𝑡 ∈ [𝑡0, 𝑡0 + 𝜇] olduğunda 𝑐(𝑡) < 𝛾 + 𝜇 olacak şekilde bir 𝜇 > 0 

sayısı vardır. Teorem 3.2.1’in ispatında olduğu gibi her 𝑥 ∈ 𝑋 için 𝜑(𝑇𝑥) ≤ 𝜑(𝑥) olduğu 

gösterilebilir. Diğer taraftan eğer biz 𝜓:𝑋 → [0,∞) fonksiyonunu her 𝑥 ∈ 𝑋 için            

𝜓(𝑥) = 𝑚𝑎𝑥{𝑐(𝜑(𝑥)), 𝑐(𝜑(𝑇𝑥))} şeklinde tanımlarsak 𝜑(𝑥) ≤ 𝑡0 + 𝜇 olacak şekildeki 

her 𝑥 ∈ 𝑋 için 𝜑(𝑇𝑥) ≤ 𝑡0 + 𝜇 olup buradan 𝜓(𝑥) < 𝛾 + 𝜇 elde edilir. Bu durumda açıkça 

görülebilir ki 𝑠𝑢𝑝 {𝜓(𝑥): 𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ inf
𝑦∈𝑋

𝜑(𝑦) + 𝜇} ≤ 𝛾 + 𝜇 < ∞ dır. O halde                      

Teorem 3.2.1’i kullanarak 𝑇 dönüşümünün bir sabit noktaya sahip olduğunu söyleyebiliriz. 

 

3.2.3. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay ve 𝜑:𝑋 → [0,∞) fonksiyonu Eş. 3.6’yı sağlayan 𝜏𝑑𝑝𝑚  

topolojisine alt yarı sürekli ve 𝑐: [0,∞) → [0,∞) azalmayan bir fonksiyon olsun. Eğer 

𝑇: 𝑋 → 𝑋 dönüşümü her 𝑥 ∈ 𝑋 için, 

 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝑐(𝜑(𝑥)){𝜑(𝑥) − 𝜑(𝑇𝑥)}                                    (3.8) 

veya 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝑐(𝜑(𝑇𝑥)){𝜑(𝑥) − 𝜑(𝑇𝑥)}                                  (3.9)         

 

eşitsizliğini sağlıyor ise 𝑋’de bir sabit noktaya sahiptir.  

 

İspat 

 

Teorem 3.2.1’in ispatında olduğu gibi her 𝑥 ∈ 𝑋 için 𝜑(𝑇𝑥) ≤ 𝜑(𝑥) olduğu gösterilebilir. 

Hipotezden 𝑐 dönüşümü azalmayan olduğundan 𝑐(𝜑(𝑇𝑥)) ≤ 𝑐(𝜑(𝑥))’dir. Bu nedenle 

burada 𝑇 dönüşümü için Eş. 3.8’ i araştırmamız yeterlidir.  Eğer 𝜓:𝑋 → [0,∞) 

fonksiyonunu her      𝑥 ∈ 𝑋 için 𝜓(𝑥) = 𝑐(𝜑(𝑥)) şeklinde tanımlarsak, 

 

 𝑠𝑢𝑝 {𝜓(𝑥): 𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ inf
𝑦∈𝑋

𝜑(𝑦) + 1} ≤ 𝑐 ( inf
𝑦∈𝑋

𝜑(𝑦) + 1) < ∞ 

 

olup Teorem 3.2.1’den 𝑇 dönüşümü bir sabit noktaya sahiptir. 
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3.2.4. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay ve 𝜑:𝑋 → [0,∞) fonksiyonu Eş. 3.6’yı sağlayan 𝜏𝑑𝑝𝑚  

topolojisine göre alt yarı sürekli ve 𝑐: [0,∞) → [0,∞) üst yarı sürekli bir fonksiyon olsun. 

Eğer 𝑇: 𝑋 → 𝑋 dönüşümü her 𝑥 ∈ 𝑋 için, 

 

 𝑚(𝑥, 𝑇𝑥) ≤ 𝜑(𝑥)  

ve 

𝑚𝑎𝑥{𝑚(𝑥, 𝑇𝑥),𝑚(𝑇𝑥, 𝑇𝑥)} ≤ 𝑚𝑥𝑇𝑥 + 𝑐(𝑚(𝑥, 𝑇𝑥)){𝜑(𝑥) − 𝜑(𝑇𝑥)} 

 

ise 𝑋’de bir sabit noktaya sahiptir. 

 

İspat 

 

Şimdi 𝜓:𝑋 → [0,∞) fonksiyonunu her 𝑥 ∈ 𝑋 için 𝜓(𝑥) = 𝑐(𝑚(𝑥, 𝑇𝑥)) şeklinde 

tanımlayalım. Bu durumda  𝜑(𝑥) ≤ inf
𝑦∈𝑋

𝜑(𝑦) + 1 olacak şekildeki her 𝑥 ∈ 𝑋 için, 

 

𝜓(𝑥) ≤ 𝑠𝑢𝑝{𝑐(𝑡): 0 ≤ 𝑡 ≤ 𝑚(𝑥, 𝑇𝑥)} 

           ≤ 𝑠𝑢𝑝{𝑐(𝑡): 0 ≤ 𝑡 ≤ 𝜑(𝑥)} 

           ≤ 𝑠𝑢𝑝 {𝑐(𝑡): 0 ≤ 𝑡 ≤ inf
𝑦∈𝑋

𝜑(𝑦) + 1 } 

 

elde edilir. Bu durumda, 

 

𝑠𝑢𝑝 {𝜓(𝑥): 𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ inf
𝑦∈𝑋

𝜑(𝑦) + 1} ≤ max {𝑐(𝑡): 0 ≤ 𝑡 ≤ inf
𝑦∈𝑋

𝜑(𝑦) + 1} < ∞ 

 

olup Teorem 3.2.1’den 𝑇 dönüşümü bir sabit noktaya sahiptir. 
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4. KÜME DEĞERLİ DÖNÜŞÜMLER İÇİN SABİT NOKTA 

TEOREMLERİ 

 

Banach 1922 yılında kendi adıyla bilinen Banach büzülme ilkesini ispatlamıştır[1]. Bu 

ilkenin uygulanabilirliği ve öneminden dolayı birçok yazar tarafından farklı şekillerde 

genişletilmeye çalışılmıştır. 1969 yılında Nadler tam metrik uzaylar üzerinde tanımlı her 

küme değerli büzülme dönüşümünün bir sabit noktasının var olduğunu göstermiştir[16]. 

Böylece Banach büzülme ilkesi literatürde var olan çalışmalardan farklı bir şekilde 

genelleştirilmiş oldu. Nadler’in ardından birçok yazar hem tam metrik uzay hem de diğer 

soyut uzaylarda küme değerli dönüşümler için sabit nokta teorisini geliştirmeye 

çalışmışlardır[17-19, 33-36]. Özellikle Feng ve Liu, Nadler’in sonucunu Hausdorff metriği 

kullanmadan üstelik küme değerli dönüşümün değer kümesini 𝐶𝐵(𝑋) yerine 𝐶(𝑋) alarak 

diğerlerinden farklı yönde genişletmişlerdir[20]. 

 

4.1. 𝑴-Metrik Uzaylarda Feng-Liu Tip Küme Değerli Dönüşümler İçin Sabit Nokta 

Teoremleri 

 

Matthews metrik uzaylardan daha genel olan kısmi metrik uzay kavramını tanımlamış ve bu 

uzayda bazı temel sabit nokta teoremlerini ispatlamıştır[24]. Bunun üzerine birçok yazar 

tarafından kısmi metrik uzaylarda hem tek değerli hem de küme değerli dönüşümler için 

sabit nokta problemleri üzerine çalışılmıştır[37-39]. Son zamanlarda Asadi ve arkadaşları 

kısmi metrik uzay kavramını 𝑀- metrik uzay kavramına genişletmişler ve 𝑀- metrik uzaylar 

üzerinde tek değerli dönüşümler için bazı sabit nokta teoremlerini elde etmişlerdir [10]. Bu 

bölümde öncelikle 𝑀-metrik uzayları üzerindeki topolojik yapılar tartışılmıştır. Ardından bu 

topolojilere göre 𝑀-metrik uzayın kapalı alt kümeleri dikkate alınarak Feng-Liu tip küme 

değerli dönüşümler için bazı sabit nokta teoremlerini elde edilmiştir[40]. Bunları vermeden 

önce standart metrik uzaylar üzerinde Feng ve Liu tarafından ispatlanmış teoremi ifade 

edelim: 

 

 

 

 

 

 



22 

 

4.1.1. Teorem [20] 

 

(𝑋, 𝑑) bir tam metrik uzay ve 𝑇: 𝑋 → 𝐶(𝑋) küme değerli bir dönüşüm olsun. Her 𝑥 ∈ 𝑋 için, 

 

𝑑(𝑦, 𝑇𝑦) ≤ 𝑐𝑑(𝑥, 𝑦). 

 

eşitsizliğini sağlayan bir 𝑦 ∈ 𝐼𝑏
𝑥 = {𝑦 ∈ 𝑇𝑥: 𝑏𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑇𝑥)} ve 0 < 𝑐 < 𝑏 < 1 var 

olsun. Eğer 𝑓(𝑥) = 𝑑(𝑥, 𝑇𝑥) fonksiyonu alt yarı sürekli ise 𝑇 dönüşümü 𝑋’de bir sabit 

noktaya sahiptir.  

 

Şimdi kabul edelim ki (𝑋,𝑚) bir 𝑀-metrik uzay olsun. Bu durumda 𝑈 ⊆ 𝑋 dizisel açıktır 

gerek ve yeter koşul her 𝑥 ∈ 𝑈 ve bu nokta için lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) = 0 olacak şekildeki her 

(𝑥𝑛) ⊆ 𝑋 dizisi sonunda 𝑈 kümesinin içinde kalır. Eğer bu uzaydaki bütün dizisel açık 

kümelerin ailesini 𝜏𝑠 ile gösterirsek bu aile 𝑋 üzerinde bir topoloji belirtir ve bu topolojiye 

dizisel topoloji denir. Çalışmanın devamında bu topolojiye göre herhangi bir 𝐴 ⊆ 𝑋’in 

kapanışı 𝐴𝑠̅̅ ̅ ve bütün kapalı alt kümlerinin ailesi 𝐶𝑠(𝑋) ile gösterilmiştir.  

 

Diğer taraftan bir (𝑋,𝑚) bir 𝑀-metrik uzay ve 𝑥 ∈ 𝑋 olmak üzere 𝑥 merkezli 𝑟 > 0 çaplı 

açık yuvar, 

 

𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋:𝑚(𝑥, 𝑦) < 𝑚𝑥𝑦 + 𝑟} 

 

şeklinde tanımlanır. O halde bir 𝑈 ⊆ 𝑋 açık olması için gerek ve yeter koşul her 𝑥 ∈ 𝑈 için 

𝐵(𝑥, 𝑟) ⊆ 𝑈 olacak şekilde 𝑟 > 0 reel sayısının var olmasıdır. Eğer bu uzaydaki bütün açık 

kümelerin ailesi 𝜏𝑚 ile gösterirsek bu aile 𝑋 üzerinde bir topoloji belirtir. Çalışmanın 

devamında bu topolojiye göre herhangi bir 𝐴 ⊆ 𝑋’in kapanışı 𝐴𝑚̅̅ ̅̅  ve bütün kapalı alt 

kümelerinin ailesi 𝐶𝑚(𝑋) gösterilmiştir. 

 

Uyarı 

 

(𝑋,𝑚) bir 𝑀-metrik uzay olmak üzere bu uzay üzerindeki 𝜏𝑠 topolojisi 𝜏𝑚 topolojisinden 

daha incedir. Ancak tersi doğru değildir. Öncelikle 𝜏𝑚 ⊆ 𝜏𝑠 olduğunu ardından bir örnekle 

𝜏𝑠 ⊆ 𝜏𝑚 sağlanmadığını gösterelim. Şimdi 𝑈 ∈ 𝜏𝑚, 𝑥 ∈ 𝑈  ve lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) = 0 olacak 
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şekildeki (𝑥𝑛) ⊆ 𝑋 dizisini alalım. 𝑈 ∈ 𝜏𝑚 𝑣𝑒 𝑥 ∈ 𝑈 olduğundan 𝐵(𝑥, 𝑟) ⊆ 𝑈 olacak 

şekilde bir 𝑟 > 0 reel sayısı vardır. Diğer yandan  lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) = 0 olduğundan 𝑟 > 0 

sayısı için 𝑛 ≥ 𝑛0 olduğunda  𝑚(𝑥𝑛, 𝑥) < 𝑟 ⇒ 𝑚(𝑥𝑛, 𝑥) < 𝑟 + 𝑚𝑥𝑛𝑥 olacak şekilde               

𝑛0 ∈ ℕ sayısı vardır. O halde 𝑛 ≥ 𝑛0 olacak şekildeki her 𝑛 için 𝑥𝑛 ∈ 𝐵(𝑥, 𝑟) ⊆ 𝑈  olup 

𝑈 ∈ 𝜏𝑠 dir. Burada 𝑈 keyfi olduğundan 𝜏𝑚 ⊆ 𝜏𝑠 dir. 

 

Örnek  

 

𝑋 = {0} ∪ [1,∞) ve 𝑚(𝑥, 𝑦) =
𝑥+𝑦

2
 olsun. Bu durumda (𝑋,𝑚) bir 𝑀-metrik uzaydır. Açıktır 

ki 𝑋’in her tek nokta altkümesi dizisel açıktır. Bu yüzden 𝜏𝑠, 𝑋 üzerinde ayrık topolojidir. 

Diğer taraftan 𝑥 ∈ 𝑋 ve 𝑟 > 0 olarak alınırsa, 𝐵(𝑥, 𝑟) = (𝑥 − 2𝑟, 𝑥 + 2𝑟) ∩ 𝑋 olup 𝑥 = 0 

dışındaki hiçbir {𝑥} tek nokta alt kümesi 𝜏𝑚 topolojisine göre açık değildir. Bu nedenle       

𝜏𝑠 ⊈ 𝜏𝑚 elde edilir.  

 

4.1.1. Lemma 

 

Bir 𝑀-metrik uzayda alınan bir dizinin 𝑀-yakınsaklığı ile dizinin 𝜏𝑚 yakınsaklığı çakışır. 

Gerçekten, (𝑋,𝑚) bir 𝑀-metrik uzay, (𝑥𝑛) ⊆ 𝑋 bir dizi ve (𝑥𝑛) dizisi 𝑥 ∈ 𝑋 noktasına         

𝑀-yakınsak olsun. O zaman  lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥 = 0 dır. Şimdi kabul edelim ki                    

𝑈 ∈ 𝜏𝑚 ve 𝑥 ∈ 𝑈 olsun. O halde 𝑈 ∈ 𝜏𝑚 olduğundan 𝐵(𝑥, 𝑟) ⊆ 𝑈 olacak şekilde bir 𝑟 > 0 

reel sayısı vardır. Diğer taraftan lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥 = 0 olduğundan 𝑛 ≥ 𝑛0 olduğunda 

𝑚(𝑥𝑛, 𝑥) − 𝑚𝑥𝑛𝑥 < 𝑟 olacak şekilde bir 𝑛0 ∈ ℕ sayısı vardır. Buna göre 𝑛 ≥ 𝑛0 olduğunda                               

𝑥𝑛 ∈ 𝐵(𝑥, 𝑟) ⊆ 𝑈  olduğundan (𝑥𝑛) dizisi 𝑥 ∈ 𝑋 noktasına 𝜏𝑚 topolojisine göre yakınsaktır. 

Benzer şekilde eğer (𝑥𝑛) dizisi 𝑥 ∈ 𝑋 noktasına 𝜏𝑚 topolojisine göre yakınsak ise 𝑥 

noktasına 𝑀-yakınsak olduğu gösterilebilir. 

 

4.1.2. Lemma  

 

(𝑋,𝑚) bir 𝑀-metrik uzay, 𝐴 ⊆ 𝑋 ve 𝑥 ∈ 𝑋 olsun. Eğer 𝑚(𝑥, 𝐴) = 0 ⇒ 𝑥 ∈ 𝐴𝑠̅̅ ̅ ⊆ 𝐴𝑚̅̅ ̅̅  dır. 
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İspat 

 

𝑚(𝑥, 𝐴) = 0, 𝑥 ∈ 𝑈 ve 𝑈 ∈ 𝜏𝑠 olsun. İnfimum tanımından her 𝑛 ∈ ℕ için 𝑚(𝑥, 𝑥𝑛) <
1

𝑛
 

olacak şekilde 𝑥𝑛 ∈ 𝐴 vardır. Bu durumda lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) = 0 olup 𝑈 ∈ 𝜏𝑠 ve 𝑥 ∈ 𝑈 

olduğundan 𝑛 ≥ 𝑛0 olduğunda 𝑥𝑛 ∈ 𝑈 olacak şekilde bir 𝑛0 ∈ ℕ vardır. Böylece, 𝑛 ≥ 𝑛0 

olduğunda 𝑥𝑛 ∈ 𝑈 ∩ 𝐴 elde edilir ki buradan 𝑈 ∩ 𝐴 ≠ ∅ yani 𝑥 ∈ 𝐴𝑠̅̅ ̅ dır.  

 

Uyarı 

 

Eğer 𝑥 ∈ 𝐴𝑚̅̅ ̅̅  ise 𝑚(𝑥, 𝐴) = 0 olmak zorunda değildir. Gerçekten eğer 𝑋 = {0} ∪ [1,∞) ve 

𝑚(𝑥, 𝑦) =
𝑥+𝑦

2
 olarak alınırsa bu durumda (𝑋,𝑚) bir 𝑀-metrik uzaydır. 𝐴 = [1,2) ve 𝑥 = 1 

olarak alınırsa 𝑥 ∈ 𝐴𝑚̅̅ ̅̅  fakat 𝑚(𝑥, 𝐴) > 0 dır. 

 

4.1.1. Önerme 

 

(𝑋,𝑚) bir 𝑀-metrik uzay, 𝐴 ⊆ 𝑋 ve 𝑥 ∈ 𝑋 olsun. Bu durumda 𝑥 ∈ 𝐴𝑚̅̅ ̅̅  olması için gerek ve 

yeter koşul inf {𝑚(𝑥, 𝑦) − 𝑚𝑥𝑦: 𝑦 ∈ 𝐴} = 0 olmasıdır.  

 

İspat 

 

Kabul edelim ki inf {𝑚(𝑥, 𝑦) − 𝑚𝑥𝑦: 𝑦 ∈ 𝐴} = 0 ve 𝑟 > 0 olsun. İnfimum tanımından 

𝑚(𝑥, 𝑦𝑟) − 𝑚𝑥𝑦𝑟 < 𝑟 olacak şekilde bir 𝑦𝑟 ∈ 𝐴 vardır. Buradan 𝑦𝑟 ∈ 𝐵(𝑥, 𝑟) olup               

𝑦𝑟 ∈ 𝐴 ∩ 𝐵(𝑥, 𝑟) elde edilir. Bu yüzden 𝑥 ∈ 𝐴𝑚̅̅ ̅̅  dır. Şimdi tersine 𝑥 ∈ 𝐴𝑚̅̅ ̅̅  olsun. Her         

𝑛 ∈ ℕ için 𝑚(𝑥, 𝑦𝑛) − 𝑚𝑥𝑦𝑛 <
1

𝑛
 olacak şekilde 𝑦𝑛 ∈ 𝐴 vardır. O halde her 𝑛 ∈ ℕ için                       

inf  {𝑚(𝑥, 𝑦) − 𝑚𝑥𝑦: 𝑦 ∈ 𝐴} ≤ 𝑚(𝑥, 𝑦𝑛) − 𝑚𝑥𝑦𝑛 <
1

𝑛
 olduğundan 𝑛 → ∞ için limit 

alındığında inf  {𝑚(𝑥, 𝑦) − 𝑚𝑥𝑦: 𝑦 ∈ 𝐴} = 0 elde edilir.  

  

(𝑋,𝑚) bir 𝑀-metrik uzayı üzerinde 𝑇: 𝑋 → 𝐶𝑠(𝑋) küme değerli dönüşümü tanımlannsın. 

Pozitif bir 𝑏 ∈ (0,1) sayısı ve 𝑥 ∈ 𝑋 için 𝑚(𝑥, 𝑇𝑥) = 𝑖𝑛𝑓{𝑚(𝑥, 𝑦): 𝑦 ∈ 𝑇𝑥} olmak üzere 

 

𝑇𝑏
𝑥(𝑚) = {𝑦 ∈ 𝑇𝑥: 𝑏𝑚(𝑥, 𝑦) ≤ 𝑚(𝑥, 𝑇𝑥)} 
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kümesini tanımlayalım. Bu durumda eğer 𝑚(𝑥, 𝑇𝑥) > 0 ise her 𝑏 ∈ (0,1) için 𝑇𝑏
𝑥(𝑚) 

kümesi boştan farklıdır. Gerçekten, 𝑚(𝑥, 𝑇𝑥) > 0 ise 𝜀 = (
1

𝑏
− 1)𝑚(𝑥, 𝑇𝑥) pozitif reel 

sayısı için infimum tanımından öyle bir 𝑦 ∈ 𝑇𝑥 var ve 𝑚(𝑥, 𝑦) < 𝑚(𝑥, 𝑇𝑥) + 𝜀 eşitsizliğini 

sağlar. O halde bu eşitsizlikte 𝜀 yerine yazılırsa istenilen 𝑦 ∈ 𝑇𝑥 noktasının var olduğu 

görülür. Ancak standart metrik uzaylarda tanımlanan 𝐼𝑏
𝑥 kümesinden farklı olarak 

𝑚(𝑥, 𝑇𝑥) = 0 ise 𝑇𝑏
𝑥(𝑚) kümesi boş küme olabilir. Aşağıdaki örnek bu gerçeği 

göstermektedir: 

 

Örnek 

 

𝑋 = {−1,−1 +
1

𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ} ve bu küme üzerinde 𝑚:𝑋 × 𝑋 → [0,∞) dönüşümünü  

 

𝑚(𝑥, 𝑦) = {
1 , 𝑥 = 𝑦 = −1

|𝑥 − 𝑦| , 𝑑. 𝑑.
 

 

ve 𝑇: 𝑋 → 𝐶𝑠(𝑋) dönüşümünü her 𝑥 ∈ 𝑋 için 𝑇𝑥 = 𝑋 olacak şekilde tanımlayalım. Açıktır 

ki (𝑋,𝑚) bir 𝑀-metrik uzaydır. Şimdi 𝑥 = −1 noktası için 𝑚(𝑥, 𝑇𝑥) = 0 olurken her          

𝑦 ∈ 𝑇𝑥 için 𝑚(𝑥, 𝑦) > 0 olduğundan 𝑇𝑏
𝑥(𝑚) = ∅ dir.  

 

Şimdi bu bölümde vereceğimiz temel teoremlerimizi ifade ve ispat edelim: 

 

4.1.2. Teorem 

 

(𝑋,𝑚) bir 𝑀-tam 𝑀-metrik uzay, 𝑇: 𝑋 → 𝐶𝑚(𝑋) küme değerli bir dönüşüm ve               

𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için, 

 

𝑚(𝑦, 𝑇𝑦) ≤ 𝑐𝑚(𝑥, 𝑦) 

ve  

 𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦) 
  

    (4.1) 

 

eşitsizliklerini sağlayan bir 𝛼, 𝑏, 𝑐 ∈ (0,1) ve 𝑦 ∈ 𝑇𝑏
𝑥(𝑚) var olsun. Eğer 𝑐 < 𝑏 ve                

𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonu 𝜏𝑚 topolojisine göre alt yarı sürekli ise 𝑇 dönüşümü 𝑋’de bir 

sabit noktaya sahiptir.  
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İspat 

 

Kabul edelim ki 𝑥0 ∈ 𝑋 keyfi olsun. Eğer 𝑚(𝑥0, 𝑇𝑥0) = 0 ise o zaman 𝑥0 ∈  𝑇𝑥0
𝑚̅̅ ̅̅ ̅̅ ̅ = 𝑇𝑥0 

olduğundan 𝑥0 noktası 𝑇 dönüşümünün bir sabit noktasıdır. O halde 𝑚(𝑥0, 𝑇𝑥0) > 0 olsun. 

O zaman öyle bir 𝑥1 ∈ 𝑇𝑏
𝑥0(𝑚) var öyle ki, 

 

𝑚(𝑥1, 𝑇𝑥1) ≤ 𝑐𝑚(𝑥0, 𝑥1) 

ve  

𝛼𝑚(𝑥1, 𝑥1) ≤ 𝑚(𝑥0, 𝑥1) 

 

sağlanır. Benzer şekilde gösterilebilir ki eğer 𝑚(𝑥1, 𝑇𝑥1) = 0 ise 𝑥1 noktası 𝑇 dönüşümünün 

bir sabit noktasıdır. Buna göre 𝑚(𝑥1, 𝑇𝑥1) > 0 olsun. Hipotezden öyle bir 𝑥2 ∈ 𝑇𝑏
𝑥1(𝑚) var 

öyle ki, 

 

𝑚(𝑥2, 𝑇𝑥2) ≤ 𝑐𝑚(𝑥1, 𝑥2) 

ve  

𝛼𝑚(𝑥2, 𝑥2) ≤ 𝑚(𝑥1, 𝑥2) 

 

eşitsizlikleri sağlanır. Bu şekilde devam ederek her 𝑛 ∈ ℕ için 𝑚(𝑥𝑛, 𝑇𝑥𝑛) > 0                          

olmak üzere 𝑥𝑛+1 ∈ 𝑇𝑏
𝑥𝑛(𝑚), 

 

𝑚(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝑐𝑚(𝑥𝑛, 𝑥𝑛+1)                                                                                        (4.2) 

ve  

𝛼𝑚(𝑥𝑛+1, 𝑥𝑛+1) ≤ 𝑚(𝑥𝑛, 𝑥𝑛+1)                                                                                          (4.3) 

 

olacak şekilde 𝑋 de bir (𝑥𝑛) dizisi vardır. Ayrıca her 𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ 𝑇𝑏
𝑥𝑛(𝑚) olduğundan 

 

𝑏𝑚(𝑥𝑛, 𝑥𝑛+1) ≤ 𝑚(𝑥𝑛, 𝑇𝑥𝑛)                                                                                               (4.4) 

 

yazabiliriz. Eş. 4.2 ve Eş. 4.4’den yararlanarak her 𝑛 ∈ ℕ için,  

 

                                                                                                                                          (4.5) 

                                                                                                                                                                                                                                    

𝑚(𝑥𝑛, 𝑇𝑥𝑛) ≤ (
𝑐

𝑏
)
𝑛

𝑚(𝑥0, 𝑇𝑥0) 
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                          (4.6) 

 

eşitlikleri elde edilir. Eş. 4.3, Eş. 4.5 ve Eş. 4.6 birlikte kullanılırsa,  

 

lim
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) = lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛+1) = lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛) = 0. 

 

yazılabilir. Şimdi 𝑚 > 𝑛 olacak şekildeki 𝑛,𝑚 ∈ ℕ için, 

 

𝑚(𝑥𝑛, 𝑥𝑚) − 𝑚𝑥𝑛𝑥𝑚 ≤ (𝑚(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑥𝑛𝑥𝑛+1) + (𝑚(𝑥𝑛+1, 𝑥𝑚) − 𝑚𝑥𝑛+1𝑥𝑚) 

                                  ≤ (𝑚(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑥𝑛𝑥𝑛+1) + (𝑚(𝑥𝑛+1, 𝑥𝑛+2) − 𝑚𝑥𝑛+1𝑥𝑛+2) 

                                                                                                                 +(𝑚(𝑥𝑛+2, 𝑥𝑚) − 𝑚𝑥𝑛+2𝑥𝑚) 

                             ≤ (𝑚(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑥𝑛𝑥𝑛+1) +⋯+ (𝑚(𝑥𝑚−1, 𝑥𝑚) − 𝑚𝑥𝑚−1𝑥𝑚) 

     ≤ 𝑚(𝑥𝑛, 𝑥𝑛+1) + 𝑚(𝑥𝑛+1, 𝑥𝑛+2)…+𝑚(𝑥𝑚−1, 𝑥𝑚) 

                                  ≤ (
𝑐

𝑏
)
𝑛

𝑚(𝑥0, 𝑥1) + (
𝑐

𝑏
)
𝑛+1

𝑚(𝑥0, 𝑥1) + ⋯+ (
𝑐

𝑏
)
𝑚−1

𝑚(𝑥0, 𝑥1) 

                                      ≤ [
(
𝑐
𝑏
)
𝑛

1 −
𝑐
𝑏

]𝑚(𝑥0, 𝑥1) 

 

 olup 𝑐 < 𝑏 ve lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛) = 0 olduğundan 

 

lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 0 

 

elde edilir. Böylece (𝑥𝑛) bir 𝑀-Cauchy dizisidir. Hipotezden (𝑋,𝑚) bir 𝑀-tam 𝑀-metrik 

uzay olduğundan  

 

lim
𝑛→∞

𝑚(𝑥𝑛, 𝑧) − 𝑚𝑥𝑛𝑧 = 0 

ve 

lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 𝑚(𝑧, 𝑧) 

 

olacak şekilde 𝑧 ∈ 𝑋 vardır. Şimdi gösterelim ki 𝑧 noktası 𝑇 dönüşümünün bir sabit 

noktasıdır. Gerçekten, lim
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) =0 ve 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonu 𝜏𝑚 

𝑚(𝑥𝑛, 𝑥𝑛+1) ≤ (
𝑐

𝑏
)
𝑛

𝑚(𝑥0, 𝑥1) 
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topolojisine göre alt yarı sürekli olduğundan, 

 

0 ≤ 𝑚(𝑧, 𝑇𝑧) = 𝑓(𝑧) ≤ liminf
𝑛→∞

𝑓(𝑥𝑛) = liminf
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) = 0 

 

olup 𝑚(𝑧, 𝑇𝑧) = 0 elde edilir. Böylece 𝑧 ∈  𝑇𝑧𝑚̅̅ ̅̅ ̅̅ = 𝑇𝑧 olup 𝑧 ∈ 𝑋, 𝑇 dönüşümünün bir sabit 

noktasıdır. 

 

4.1.1. Tanım 

 

(𝑋,𝑚) 𝑀-metrik uzayında her 𝑀-Cauchy dizisi bir 𝑥 ∈ 𝑋 noktasına 𝜏𝑠 topolojisine göre 

yakınsak ise bu uzaya 𝑆-tamdır denir.  

 

Şimdi eğer biz Teorem 4.1.2’de 𝑇: 𝑋 → 𝑋 dönüşümünü 𝐶𝑚(𝑋) değerli yerine 𝐶𝑠(𝑋) ve                          

𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonunu 𝜏𝑚 topolojisine göre alt yarı sürekli olması yerine 𝜏𝑠 

topolojisine göre alt yarı sürekli kabul edersek aşağıdaki teoremi elde ederiz. Bu teorem 

𝐶𝑠(𝑋) ailesi 𝐶𝑚(𝑋) ailesinden daha geniş olduğu için önemlidir. 

 

4.1.3. Teorem 

 

(𝑋,𝑚) bir 𝑆-tam 𝑀-metrik uzay, 𝑇: 𝑋 → 𝐶𝑠(𝑋) küme değerli bir dönüşüm ve 𝑚(𝑥, 𝑇𝑥) > 0 

olacak şekildeki her 𝑥 ∈ 𝑋 için öyle bir   var öyle ki, 

 

𝑚(𝑦, 𝑇𝑦) ≤ 𝑐𝑚(𝑥, 𝑦) 

ve  

𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦) 

 

eşitsizliklerini sağlayan bir 𝑦 ∈ 𝑇𝑏
𝑥(𝑚) ve 𝛼, 𝑏, 𝑐 ∈ (0,1) var olsun. Eğer  𝑐 < 𝑏 ve                  

𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonu 𝜏𝑠 topolojisine göre alt yarı sürekli ise 𝑇 dönüşümü 𝑋’de bir 

sabit noktaya sahiptir.  

 

İspat 

 

Teorem 4.1.2’de olduğu gibi yapılarak gösterilebilir ki 𝑋’de bir (𝑥𝑛) 𝑀-Cauchy dizisi vardır. 

Hipotezden (𝑋,𝑚) bir 𝑆-tam 𝑀-metrik uzay olduğundan (𝑥𝑛) dizisinin  𝜏𝑠 topolojisine göre 
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yakınsak olacağı bir 𝑧 ∈ 𝑋 vardır. Diğer taraftan Teorem 4.1.2’nin ispatında olduğu gibi 

yapılarak lim
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) =0 olduğu gösterilebilir. Hipotezden 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) 

fonksiyonu 𝜏𝑠 topolojisine göre alt yarı sürekli olduğundan, 

 

0 ≤ 𝑚(𝑧, 𝑇𝑧) = 𝑓(𝑧) ≤ liminf
𝑛→∞

𝑓(𝑥𝑛) = liminf
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) = 0 

 

elde edilir. Böylece 𝑧 noktasının 𝑇 dönüşümünün bir sabit noktası olduğu gösterilmiş olur. 

 

Daha önce ifade ettiğimiz gibi her standart metrik uzay bir 𝑀-metrik uzay ve standart metrik 

uzaylarda Eş. 4.1 otomatik olarak sağlanacağından Feng-Liu sabit nokta teoremi olan 

Teorem 4.1.1’i Teorem 4.1.2’nin bir sonucu olarak ifade edebiliriz. Ayrıca yine her kısmi 

metrik uzayın bir 𝑀-metrik uzay olması ve kısmi metrik tanımından dolayı Eş. 4.1 

sağlanacağından aşağıdaki teoremi de Teorem 4.1.2’nin bir sonucu olarak verebiliriz. 

 

4.1.1. Sonuç 

 

(𝑋, 𝑝) bir tam kısmi metrik uzay, 𝑇: 𝑋 → 𝐶(𝑋) küme değerli bir dönüşüm ve 𝑝(𝑥, 𝑇𝑥) > 0 

olacak şekildeki her 𝑥 ∈ 𝑋 için, 

 

𝑝(𝑦, 𝑇𝑦) ≤ 𝑐𝑝(𝑥, 𝑦) 

 

eşitsizliğini sağlayan bir 𝑦 ∈ 𝑇𝑏
𝑥(𝑝) ve 0 < 𝑐 < 𝑏 < 1 var olsun. Eğer 𝑓(𝑥) = 𝑝(𝑥, 𝑇𝑥) 

fonksiyonu alt yarı sürekli ise 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  

 

İspat 

 

Burada sadece Teorem 4.1.2’nin hipotezinde yer alan Eş. 4.1’nin sağlandığını göstermemiz 

yeterlidir. Kısmi metrik uzay tanımından dolayı her 𝑥, 𝑦 ∈ 𝑋 için 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦) olup               

her 𝛼 ∈ (0,1) için 𝛼𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦) elde edilir. Böylece Teorem 4.1.2’nin bütün 

hipotezleri sağlandığından 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  

 

Aşağıda vereceğimiz iki örnek Teorem 4.1.2 ve Teorem 4.1.3’ü karşılaştırmamıza olanak 

sağlamaktadır. Bu örneklerin ilkinde uzayın 𝑀-tam olmasına rağmen 𝑆-tam olmadığı 

gösterilerek Teorem 4.1.2’nin önemi diğerinde ise 𝑇 dönüşümünün görüntü kümesinin 

𝐶𝑚(𝑋)’e ait olmayıp 𝐶𝑠(𝑋)’e ait olmasından dolayı Teorem 4.1.3’ün önemi 

vurgulanmaktadır.  
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Örnek  

 

𝑋 = {0} ∪ [1,∞) olsun. Bu durumda eğer 𝑚:𝑋 × 𝑋 → [0,∞) dönüşümü her 𝑥, 𝑦 ∈ 𝑋 için  

                           şeklinde tanımlanırsa (𝑋,𝑚) ikilisi 𝑀-tam 𝑀-metrik uzaydır. Şimdi eğer 

 

𝑇: 𝑋 → 𝐶𝑚(𝑋) dönüşümünü her 𝑥 ∈ 𝑋 için,   

 

𝑇𝑥 = {

{0,1} , 𝑥 ∈ {0} ∪ [1,2]

{
𝑥

2
, 𝑥} , 𝑥 > 2

 

 

şeklinde tanımlarsak 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonu 𝑋 üzerindeki alışılmış topoloji olan 𝜏𝑚 

topolojisine göre alt yarı süreklidir. Diğer taraftan 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋  

için öyle bir 𝑦 ∈ 𝑇0,75
𝑥 (𝑚) var öyle ki 𝛼, 𝑐 = 0,5 olmak üzere  

 

𝑚(𝑦, 𝑇𝑦) ≤ 𝑐𝑚(𝑥, 𝑦)  

ve  

𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦) 

  

eşitsizlikleri sağlanır. O halde Teorem 4.1.2’yi kullanarak 𝑇 dönüşümünün 𝑋’de bir sabit 

noktaya sahip olduğunu söyleyebiliriz.  

 

Burada dikkat edilmelidir ki 𝐶𝑚(𝑋) ⊆ 𝐶𝑠(𝑋) olmasına rağmen (𝑋,𝑚) bir 𝑆-tam 𝑀-metrik 

uzay olmadığından Teorem 4.1.3’ü kullanamayız. Gerçekten eğer (𝑥𝑛) = (1 +
1

𝑛
)                  

𝑀- Cauchy dizisi alınırsa 𝜏𝑠 topolojisine göre yakınsak olmadığı görülecektir.  

 

Örnek 

 

                                              olmak üzere eğer 𝑚:𝑋 × 𝑋 → [0,∞) dönüşümü her 𝑥, 𝑦 ∈ 𝑋 

için, 
 

𝑚(𝑥, 𝑦) =

{
 
 

 
 1 ,

𝑥 = 0 ve 𝑦 ≠ 0
veya

𝑥 ≠ 0 ve 𝑦 = 0

min {𝑥, 𝑦} , 𝑑. 𝑑.

  

𝑚(𝑥, 𝑦) =
𝑥 + 𝑦

2
 

𝑋 = {0,1,
1

𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ} 
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şeklinde tanımlanırsa, bu durumda 𝜏𝑚 = {∅,𝑋, 𝑋\{0}, {0}}  ve 𝜏𝑠 dizisel topolojisi 

∅, 𝑋, {0}, 𝑈1𝑚 = {1,
1

𝑟
: 𝑟 ≥ 𝑚, 𝑟 ∈ ℕ} ve 𝑈𝑛𝑚 = {

1

𝑛
,
1

𝑟
: 𝑟 ≥ 𝑚, 𝑟 ∈ ℕ} , 𝑛 < 𝑚, 𝑛,𝑚 ∈ ℕ 

kümelerinin sonlu kesişim ve keyfi birleşimlerinden meydana gelen aile olup (𝑋,𝑚) bir         

𝑆-tam 𝑀-metrik uzaydır. Şimdi eğer  𝑇: 𝑋 → 𝐶𝑠(𝑋) dönüşümünü her 𝑥 ∈ 𝑋 için,  

 

𝑇𝑥 = {
{0,
1

2
} , 𝑥 = 0

{0} , 𝑑. 𝑑.

 

 

şeklinde tanımlarsak 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonu 𝑋 üzerindeki 𝜏𝑠 topolojisine göre alt yarı 

süreklidir. Diğer taraftan 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için öyle bir 𝑦 ∈ 𝑇0,7
𝑥 (𝑚) 

var öyle ki 𝛼, 𝑐 = 0,25 olmak üzere 

 

𝑚(𝑦, 𝑇𝑦) ≤ 𝑐𝑚(𝑥, 𝑦)  

ve  

 𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦) 

  

eşitsizlikleri sağlanır. O halde Teorem 4.1.3’ü kullanarak 𝑇 dönüşümünün 𝑋’de bir sabit 

noktaya sahip olduğunu söyleyebiliriz. Ancak bu örnek için Teorem 4.1.2’yi uygulayamayız. 

Gerçekten, 𝑥 = 0 için 𝑇𝑥 = {0,
1

2
} olup bu küme 𝜏𝑚 topolojisine göre kapalı değildir. Yani, 

𝑇𝑥 ∉ 𝐶𝑚(𝑋) dir. 

 

4.2. 𝑴-Metrik Uzaylarda Küme Değerli 𝑭-Büzülme Dönüşümleri İçin İki Sabit Nokta 

Teoremi 

 

Bu bölümde Wardowski tarafından tanımlanan 𝐹-Büzülme dönüşümü yardımıyla 𝑀-metrik 

uzaylarda küme değerli dönüşümler için bazı sabit nokta teoremleri ifade edilerek hem 

Banach büzülme ilkesi hem de literatürde var olan çalışmalar oldukça farklı şekilde 

genişletilmiştir. Bunun için öncelikle 𝐹-Büzülme dönüşümü tanımını ardından bu büzülme 

yardımıyla ispatlanan sabit nokta teoremini hatırlatalım: 

 

Aşağıdaki (𝐹1) − (𝐹3) koşullarını sağlayan bütün Ϝ: (0,∞) → ℝ fonksiyonlarının ailesini ℱ 

ile gösterelim:  
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(𝐹1) Ϝ kesin artandır, yani 𝛼 < 𝛽 olacak şekildeki her 𝛼, 𝛽 ∈ (0,∞) için Ϝ(𝛼) < Ϝ(𝛽)’dır, 

(𝐹2) Pozitif tam sayıların her {𝑎𝑛} dizisi için lim
𝑛→∞

𝑎𝑛 = 0 dır gerek ve yeter koşul 

lim
𝑛→∞

Ϝ( 𝑎𝑛) = −∞ olmasıdır. 

(𝐹3) lim
𝛼→0+

𝛼𝑘Ϝ(𝛼) = 0 olacak şekilde bir 𝑘 ∈ (0,1) vardır. 

 

4.2.1. Tanım [9] 

 

(𝑋, 𝑑) bir metrik uzay ve 𝑇: 𝑋 → 𝑋 bir dönüşüm olsun. Eğer 𝑑(𝑇𝑥, 𝑇𝑦) > 0 olacak şekildeki 

her 𝑥, 𝑦 ∈ 𝑋 için, 

 

𝜏 +  Ϝ(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ Ϝ(𝑑(𝑥, 𝑦)) 

 

eşitsizliğini sağlayan bir Ϝ ∈ ℱ ve 𝜏 > 0 var ise 𝑇’ye 𝑋 üzerinde 𝐹-büzülme dönüşümü 

denir. 

 

4.2.1. Teorem [9] 

 

(𝑋, 𝑑) bir tam metrik uzay ve 𝑇: 𝑋 → 𝑋 bir 𝐹-büzülme dönüşümü olsun. O zaman 𝑇 

dönüşümü bir tek 𝑥∗ ∈ 𝑋 sabit noktasına sahiptir ve her 𝑥 ∈ 𝑋 için {𝑇𝑛𝑥} dizisi bu sabit 

noktaya yakınsar.  

 

Ardından birçok yazar ℱ ailesini dikkate alarak metrik uzaylar üzerindeki sabit nokta 

teoremlerini genişletmiştir. Bu bağlamda metrik uzay üzerinde kompakt küme değerli 

dönüşümler için bazı sabit nokta teoremleri elde edilmiştir. Diğer taraftan kompakt küme 

değerli 𝐹-büzülme dönüşümlerinden farklı olarak aşağıda tanımlanan (𝐹4) özelliği dikkate 

alınarak metrik uzaylar üzerinde kapalı küme değerli 𝐹-büzülme dönüşümleri için bazı sabit 

nokta teoremleri elde edilmiştir[41-45]: 

 

(𝐹4) 𝑖𝑛𝑓𝐴 > 0 olacak şekildeki her 𝐴 ⊆ (0,∞) için Ϝ(inf 𝐴) = 𝑖𝑛𝑓Ϝ(𝐴)  dır. 

 

Bundan sonraki bölümde (𝐹1) − (𝐹4) koşullarını sağlayan bütün Ϝ: (0,∞) → ℝ 

fonksiyonlarının ailesini ℱ∗ ile gösterilecektir.  

 



33 
 

Bu bölümde ℱ ve ℱ∗ aileleri dikkate alınarak (𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay üzerinde 

tanımlanmış küme değerli dönüşümler için iki yeni sabit nokta teoremi elde edilmiştir. 

Öncelikle ℱ∗ ailesi düşünülerek 𝐶𝑚(𝑋) küme değerli dönüşümler için bir sonuç ardından da 

Ϝ dönüşümü üzerindeki (𝐹4) koşulunu kaldırmak için 𝐶𝑚(𝑋) ailesinden bağımsız ve aşağıda 

ifade edilecek olan 𝑋’in belirli özelliklerine sahip alt kümelerinin 𝐴(𝑋) ailesi tanımlanarak 

𝐴(𝑋) küme değerli dönüşümler için bir sabit nokta teoremi elde edilmiştir [46]. 

 

(𝑋,𝑚) bir 𝑀-metrik uzay olsun. Bu durumda aşağıdaki özelliklere sahip 𝑋’in bütün 𝐴 alt 

kümelerinin ailesini 𝐴(𝑋) ile gösterelim: Her 𝑥 ∈ 𝑋 için, 

 

 

              (4.7) 

 

Eğer (𝑋,𝑚) bir standart metrik uzay ise o zaman açıktır ki, 

 

𝐴(𝑋) = {𝐴 ⊆ 𝑋: ∀𝑥 ∈ 𝑋, ∃𝑎𝑥 ∈ 𝐴,𝑚(𝑥, 𝐴) = 𝑚(𝑥, 𝑎𝑥) } 

 

ve aynı zamanda 𝐴(𝑋) ⊆ 𝐶𝑚(𝑋) = 𝐶𝑠(𝑋) olarak elde edilir. Ayrıca dikkat edilmelidir ki 

𝑋’in her kompakt altkümesi 𝐴(𝑋)’e aittir. 

 

Eğer (𝑋,𝑚) bir 𝑀-metrik uzay ise o zaman 𝐴(𝑋) ⊆ 𝐶𝑠(𝑋) olup 𝐴(𝑋) ile 𝐶𝑚(𝑋) arasında 

bir ilişki yoktur. Aşağıdaki uyarı ve örnekler bu gerçekleri göstermektedir: 

 

Uyarı 

 

(𝑋,𝑚) bir 𝑀-metrik uzay ve 𝐴 ∈ 𝐴(𝑋) olsun. Gösterelim ki 𝐴 ∈ 𝐶𝑠(𝑋) dir. Bunu yapmak 

için 𝐴𝑐 ∈ 𝜏𝑠 olduğunu göstermemiz yeterlidir. Şimdi 𝑥 ∈ 𝐴𝑐 ve (𝑥𝑛), 𝑋’de                      

lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥) = 0 olacak şekilde herhangi bir dizi olsun. Bu durumda 𝑥 ∈ 𝐴𝑐 olduğu için 

𝑥 ∉ 𝐴 ve 𝐴 ∈ 𝐴(𝑋) olduğundan 𝑚(𝑥, 𝐴) > 0 dır. Kabul edelim ki (𝑥𝑛) dizisinin kuyruğu 

𝐴𝑐’nin içinde kalmaz. Yani, her 𝑘 ∈ ℕ için doğal sayıların 𝑛𝑘 ≥ 𝑘 olacak şekilde artan bir  

(𝑛𝑘) dizisi vardır öyle ki 𝑥𝑛𝑘 ∈ 𝐴’dır. Ayrıca lim
𝑘→∞

𝑚(𝑥𝑛𝑘 , 𝑥) = 0 olduğundan, 

 

 

{
𝑚(𝑥, 𝐴) = 0 ⇒ 𝑥 ∈ 𝐴

ve
𝑚(𝑥, 𝐴) > 0 ⇒ ∃𝑎𝑥 ∈ 𝐴,𝑚(𝑥, 𝐴) = 𝑚(𝑥, 𝑎𝑥).
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𝑚(𝑥, 𝐴) = inf{𝑚(𝑥, 𝑎): 𝑎 ∈ 𝐴} 

                ≤ inf{𝑚(𝑥, 𝑥𝑛𝑘): 𝑘 ∈ ℕ} = 0 

 

olarak bulunur. 𝐴 ∈ 𝐴(𝑋) olduğundan 𝑥 ∈ 𝐴 elde edilir ki bu 𝑥 ∈ 𝐴𝑐 olması ile çelişir.            

O halde kabul yanlış (𝑥𝑛) dizisinin kuyruğu 𝐴𝑐’nin içinde kalır. Yani 𝐴𝑐 ∈ 𝜏𝑠 olup buradan 

𝐴 ∈ 𝐶𝑠(𝑋) sonucu elde edilir. 

 

Örnek 

 

                             ve                                  olsun. O halde  𝜏𝑚 topolojisi 𝑋 üzerinde alışılmış  

 

topolojidir. Eğer                                      kümesini şeklinde tanımlarsak 𝐴 ∈ 𝐶𝑚(𝑋)’dir. 

Ancak  𝑥 = 1 ve her 𝑎 ∈ 𝐴 için, 

 

𝑚(1, 𝐴) =
1

2
< 𝑚(1, 𝑎) 

 

olduğundan 𝐴 ∉ 𝐴(𝑋)’dir. 

 

Örnek 

 

                   ve 𝑚(𝑥, 𝑦) = min {𝑥, 𝑦} olsun. O zaman  𝜏𝑚 , 𝑋 üzerinde ayrık olmayan 

topolojidir. Eğer  𝐴 = [
1

2
, 1] şeklinde alırsak açıktır ki 𝐴 ∈ 𝐴(𝑋) fakat 𝐴 ∉ 𝐶𝑚(𝑋)’dir. 

 

Örnek 

 

𝑋 = [0,∞) ve bu küme üzerindeki 𝑚:𝑋 × 𝑋 → [0,∞) dönüşümünü                                         

𝑚(𝑥, 𝑦) = |𝑥 − 𝑦| + min{𝑥, 𝑦} şeklinde tanımlayalım. Bu durumda  𝜏𝑚, 𝑋 üzerinde 

alışılmış topolojidir. Eğer  𝐴 = [0,
1

2
) şeklinde alırsak gösterebiliriz ki 𝐴 ∈ 𝐴(𝑋) fakat                   

𝐴 ∉ 𝐶𝑚(𝑋)’dir. Gerçekten, 𝑚(𝑥, 𝐴) = 0 ise 𝑥 = 0 ∈ 𝐴’dır. Eğer 𝑚(𝑥, 𝐴) > 0 ise 

𝑚(𝑥, 𝐴) = 𝑥 ve bu yüzden 𝑎𝑥 = 0 ∈ 𝐴 için 𝑚(𝑥, 𝐴) = 𝑚(𝑥, 𝑎𝑥)’dır. O halde Eş. 4.7 her    

𝑥 ∈ 𝑋 için doğru olduğundan 𝐴 ∈ 𝐴(𝑋)’dir. Ancak, 𝐴𝑐 = [
1

2
, ∞) ∉  𝜏𝑚 olduğundan              

𝐴 ∉ 𝐶𝑚(𝑋)’dir. 

𝑋 = {
1

𝑛
: 𝑛 ∈ ℕ} 𝑚(𝑥, 𝑦) =

𝑥 + 𝑦

2
 

𝐴 = {
1

𝑛
: 𝑛 > 2, 𝑛 ∈ ℕ} 

𝑋 = [
1

4
, 1] 
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(𝑋,𝑚) bir 𝑀-metrik uzay olmak üzere 𝑃(𝑋) ile 𝑋’in bütün altkümelerinin ailesini 

gösterelim. 𝑇: 𝑋 → 𝑃(𝑋) küme değerli bir dönüşüm,  Ϝ ∈ ℱ ve 𝜎 ≥ 0 şeklinde olmak üzere 

𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için Ϝ𝜎
𝑥 ⊆ 𝑋 kümesi aşağıdaki şekilde tanımlansın: 

 

 Ϝ𝜎
𝑥 = {𝑦 ∈ 𝑇𝑥: Ϝ(𝑚(𝑥, 𝑦)) ≤ Ϝ(𝑚(𝑥, 𝑇𝑥)) + 𝜎}. 

 

Açıktır ki 𝜎1 ≤ 𝜎2 için  𝐹𝜎1
𝑥 ≤ 𝐹𝜎2

𝑥 ’dir. Şimdi aşağıdaki durumlar için 𝐹𝜎
𝑥 ailesini inceleyelim: 

 Eğer 𝑇: 𝑋 → 𝐴(𝑋) şeklinde tanımlı bir dönüşüm ise 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 

𝑥 ∈ 𝑋 ve her 𝜎 ≥ 0 için Ϝ𝜎
𝑥 ≠ ∅’dır. 

 Eğer 𝑇: 𝑋 → 𝐶𝑚(𝑋) şeklinde tanımlı bir dönüşüm ise bazı 𝑥 ∈ 𝑋 ve 𝜎 > 0 için Ϝ𝜎
𝑥  boş 

kümeye eşit olabilir. Gerçekten,                              ve                               şeklinde alınırsa   
 

bu durumda (𝑋,𝑚) bir 𝑀-metrik uzaydır. Şimdi eğer 𝑇: 𝑋 → 𝐶𝑚(𝑋) ve Ϝ: (0,∞) → ℝ 

dönüşümleri sırasıyla, 

 

𝑇𝑥 = {
{
1

𝑛
: 𝑛 > 2, 𝑛 ∈ ℕ} , 𝑥 = 1

𝑋 , 𝑑. 𝑑.

 

ve 

Ϝ(𝛼) =

{
 
 

 
 𝐼𝑛𝛼 , 𝛼 ≤

1

2

2𝛼 , 𝛼 >
1

2

. 

 

olacak şekilde tanımlanırsa bu durumda 𝑥 = 1 ve 𝜎 =
1

2
 için,  

 

Ϝ1
2

1 = {𝑦 ∈ 𝑇1: Ϝ(𝑚(1, 𝑦)) ≤ Ϝ(𝑚(1, 𝑇1)) +
1

2
} 

           = {𝑦 ∈ {
1

𝑛
: 𝑛 > 2, 𝑛 ∈ ℕ} : 2. (

1 + 𝑦

2
) ≤ 𝐼𝑛

1

2
+
1

2
} 

           = {𝑦 ∈ {
1

𝑛
: 𝑛 > 2, 𝑛 ∈ ℕ} : 1 + 𝑦 ≤ 𝐼𝑛

1

2
+
1

2
} 

           = {𝑦 ∈ {
1

𝑛
: 𝑛 > 2, 𝑛 ∈ ℕ} : 𝑦 ≤ 𝐼𝑛

1

2
−
1

2
} 

           = ∅ 
      

     olup böylece istenilen gösterilmiş olur. 

𝑋 = {
1

𝑛
: 𝑛 ∈ ℕ} 𝑚(𝑥, 𝑦) =

𝑥 + 𝑦

2
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 Eğer 𝑇: 𝑋 → 𝐶𝑚(𝑋) (hatta 𝑇: 𝑋 → 𝑃(𝑋)) ve Ϝ ∈ 𝐹∗ olsun. O zaman 𝑚(𝑥, 𝑇𝑥) > 0 olacak 

şekildeki her 𝑥 ∈ 𝑋 ve her 𝜎 > 0 için Ϝ𝜎
𝑥 ≠ ∅’dır. Gerçekten, (𝐹4) özelliğini kullanarak, 

 

Ϝ 𝜎
𝑥 = {𝑦 ∈ 𝑇𝑥: Ϝ(𝑚(𝑥, 𝑦)) ≤ Ϝ(𝑚(𝑥, 𝑇𝑥)) + 𝜎} 

     = {𝑦 ∈ 𝑇𝑥: Ϝ(𝑚(𝑥, 𝑦)) ≤ Ϝ(inf {𝑚(𝑥, 𝑦): 𝑦 ∈ 𝑇𝑥}) + 𝜎} 

 = {𝑦 ∈ 𝑇𝑥: Ϝ(𝑚(𝑥, 𝑦)) ≤ inf {Ϝ(𝑚(𝑥, 𝑦)): 𝑦 ∈ 𝑇𝑥} + 𝜎} 

    ≠ ∅ 

 

elde ederiz. 

 

Şimdi yukarıdaki durumları dikkate alarak iki yeni sonucumuzu ifade ve ispat edelim: 

 

4.2.2. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay, 𝑇: 𝑋 → 𝐴(𝑋) küme değerli bir dönüşüm ve Ϝ ∈ ℱ olsun. Bu 

durumda 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için, 

 

𝜏 + Ϝ(𝑚(𝑦, 𝑇𝑦)) ≤ Ϝ(𝑚(𝑥, 𝑦))
ve

𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦)
}                                                                                        (4.8) 

 

eşitsizliklerini sağlayacak şekilde bir 𝑦 ∈ Ϝ 𝜎
𝑥  ve 0 < 𝛼 < 1, 0 < 𝜏 var olsun. Eğer                

0 ≤ 𝜎 <  𝜏  ve 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) dönüşümü 𝜏𝑚 topolojisine göre alt yarı sürekli ise 𝑇 

dönüşümü 𝑋’de bir sabit noktaya sahiptir. 

 

İspat 

 

Kabul edelim ki 𝑇 dönüşümü bir sabit noktaya sahip olmasın. Bu durumda her 𝑥 ∈ 𝑋 için 

𝑚(𝑥, 𝑇𝑥) > 0’dır. Gerçekten 𝑚(𝑥, 𝑇𝑥) = 0 ise bu durumda 𝑇𝑥 ∈ 𝐴(𝑋) olduğu için              

𝑥 ∈ 𝑇𝑥’dir. O halde her 𝑥 ∈ 𝑋 için 𝑚(𝑥, 𝑇𝑥) > 0 olur ki bu durumda 𝑇𝑥 ∈ 𝐴(𝑋) 

olduğundan her 0 ≤ 𝜎 için Ϝ 𝜎
𝑥  kümesi boştan farklıdır. Şimdi kabul edelim ki 𝑥0 ∈ 𝑋 

başlangıç noktası olsun.  
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Bu durumda,  

                         

 
𝜏 + Ϝ(𝑚(𝑥1, 𝑇𝑥1)) ≤ Ϝ(𝑚(𝑥0, 𝑥1))

ve
𝛼𝑚(𝑥1, 𝑥1) ≤ 𝑚(𝑥0, 𝑥1)

 

 

 olacak şekilde 𝑥1 ∈ Ϝ 𝜎
𝑥0 var ve 𝑥1 ∈ 𝑋 için,  

 

𝜏 + Ϝ(𝑚(𝑥2, 𝑇𝑥2)) ≤ Ϝ(𝑚(𝑥1, 𝑥2))
ve

𝛼𝑚(𝑥2, 𝑥2) ≤ 𝑚(𝑥1, 𝑥2)
 

 

olacak şekilde 𝑥2 ∈ Ϝ 𝜎
𝑥1 vardır. Bu şekilde devam edilerek her 𝑛 ∈ ℕ için  

 

𝜏 + Ϝ(𝑚(𝑥𝑛+1, 𝑇𝑥𝑛+1)) ≤ Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1))
ve

𝛼𝑚(𝑥𝑛+1, 𝑥𝑛+1) ≤ 𝑚(𝑥𝑛, 𝑥𝑛+1)
}                                                                           (4.9) 

 

eşitsizliklerini sağlayan 𝑥𝑛+1 ∈ Ϝ 𝜎
𝑥𝑛 olacak şekilde bir (𝑥𝑛) dizisi elde edilir. Biz (𝑥𝑛) 

dizisinin bir 𝑀-Cauchy dizisi olduğunu göstermek istiyoruz. Her 𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ Ϝ 𝜎
𝑥𝑛 

olduğundan aşağıdaki eşitsizlik vardır: 

 

Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1)) ≤ Ϝ(𝑚(𝑥𝑛, 𝑇𝑥𝑛)) +  𝜎                                                                          (4.10) 

 

Eş. 4.9 ve Eş. 4.10 birlikte değerlendirildiğinde her 𝑛 ∈ ℕ için, 

 

Ϝ(𝑚(𝑥𝑛+1, 𝑇𝑥𝑛+1)) ≤ Ϝ(𝑚(𝑥𝑛, 𝑇𝑥𝑛)) +  𝜎 − 𝜏                  

ve                                                

Ϝ(𝑚(𝑥𝑛+1, 𝑥𝑛+2)) ≤ Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1)) +  𝜎 − 𝜏                                

 

eşitsizlikleri elde edilir. Bu şekilde devam edilerek her 𝑛 ∈ ℕ için,     

             

Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1)) ≤ Ϝ(𝑚(𝑥0, 𝑥1)) +  n(𝜎 − 𝜏)                                                                 (4.11) 
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Ϝ(𝑚(𝑥𝑛, 𝑇𝑥𝑛)) ≤ Ϝ(𝑚(𝑥0, 𝑇𝑥0)) + n(𝜎 − 𝜏)                                                                        (4.12) 

 

olup Eş. 4.11’ den lim
𝑛→∞

Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1)) = −∞ elde edilir. (𝐹2) ve (𝐹3) özelliklerinden 

yararlanılarak sırasıyla lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛+1) = 0 ve lim
𝑛→∞

(𝑚(𝑥𝑛, 𝑥𝑛+1))
𝑘
Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1)) = 0 

olacak şekilde bir 𝑘 ∈ (0,1) varlığı gösterilir. Bu durumda tekrardan Eş. 4.11 kullanıldığında 

her 𝑛 ∈ ℕ için, 

 

 (𝑚(𝑥𝑛, 𝑥𝑛+1))
𝑘
Ϝ(𝑚(𝑥𝑛, 𝑥𝑛+1)) − (𝑚(𝑥𝑛, 𝑥𝑛+1))

𝑘
Ϝ(𝑚(𝑥0, 𝑥1)) 

                                                                                 ≤ (𝑚(𝑥𝑛, 𝑥𝑛+1))
𝑘
 n(𝜎 − 𝜏) ≤ 0                (4.13) 

 

olup 𝑛 → ∞ için limit alındığında  

 

 lim
𝑛→∞

𝑛(𝑚(𝑥𝑛, 𝑥𝑛+1))
𝑘
= 0                                                                                                     (4.14) 

 

elde edilir. Eş. 4.14’den 𝑛 ≥ 𝑛1 olduğunda 𝑛(𝑚(𝑥𝑛, 𝑥𝑛+1))
𝑘
≤ 1 olacak şekilde bir          

𝑛1 ∈ ℕ vardır. Böylece her 𝑛 ≥ 𝑛1 için, 

 
 

                                                                                                                                        (4.15) 

                      

 

eşitsizliği elde edilir. Şimdi 𝑚 > 𝑛 ≥ 𝑛1 olacak şekildeki 𝑚, 𝑛 ∈ ℕ için üçgen eşitsizliği ve 

Eş. 4.15’ den dolayı, 

 

𝑚(𝑥𝑛, 𝑥𝑚) − 𝑚𝑥𝑛𝑥𝑚 ≤ (𝑚(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑥𝑛𝑥𝑛+1) + ⋯+ (𝑚(𝑥𝑚−1, 𝑥𝑚) − 𝑚𝑥𝑚−1𝑥𝑚) 

                                       ≤ 𝑚(𝑥𝑛, 𝑥𝑛+1) + 𝑚(𝑥𝑛+1, 𝑥𝑛+2) + ⋯+𝑚(𝑥𝑚−1, 𝑥𝑚) 

                                       ≤ ∑ 𝑚(𝑥𝑖, 𝑥𝑖+1) ≤∑𝑚(𝑥𝑖, 𝑥𝑖+1)

∞

𝑖=𝑛

𝑚−1

𝑖=𝑛

≤∑
1

𝑖
1
𝑘

∞

𝑖=𝑛

 

 

 

eşitsizliğini yazabiliriz.              serinin yakınsaklığından dolayı 𝑛 → ∞ için limit alındığında  

 

𝑚(𝑥𝑛, 𝑥𝑚) − 𝑚𝑥𝑛𝑥𝑚 → 0 elde edilir. Ayrıca Eş. 4.9 ve Eş. 4.15 eşitsizlikleri dikkate 

𝑚(𝑥𝑛, 𝑥𝑛+1) ≤
1

𝑛
1
𝑘

 

∑
1

𝑖
1
𝑘

∞

𝑖=1
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alındığında görülecektir ki lim
𝑛→∞

𝑚(𝑥𝑛, 𝑥𝑛) = 0 olup 𝑛,𝑚 → ∞ için 𝑚(𝑥𝑛, 𝑥𝑚) → 0 elde 

edilir. Böylece (𝑥𝑛) dizisinin bir 𝑀-Cauchy dizisi olduğunu söyleyebiliriz. (𝑋,𝑚) 𝑀-tam 

𝑀-metrik uzay olduğundan (𝑥𝑛) dizisinin 𝑀-yakınsak olduğu ve                               

lim
𝑛,𝑚→∞

𝑚(𝑥𝑛, 𝑥𝑚) = 𝑚(𝑧, 𝑧) olacak şekilde bir 𝑧 ∈ 𝑋 noktasının var olduğunu 

söyleyebiliriz. Diğer taraftan Eş. 4.12 ve (𝐹2) özelliğinden yararlanarak               

lim
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) = 0 elde edilir. Hipotezden 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) dönüşümü 𝜏𝑚 topolojisine 

göre alt yarı sürekli ve (𝑥𝑛) dizisi 𝑧 ∈ 𝑋  noktasına 𝑀-yakınsak olduğundan, 

 

0 < 𝑓(𝑧) = 𝑚(𝑧, 𝑇𝑧) ≤ liminf
𝑛→∞

𝑓(𝑥𝑛)= liminf
𝑛→∞

𝑚(𝑥𝑛, 𝑇𝑥𝑛) = 0 

 

elde edilir ki bu bir çelişkidir. O halde kabul yanlış 𝑇 dönüşümü 𝑋’de bir sabit noktaya 

sahiptir.  

 

Aşağıdaki teoremde olduğu gibi 𝐶𝑚(𝑋) küme değerli dönüşümler için sabit nokta teoreminin 

verilebilmesi için ℱ ailesi yerine  ℱ∗ ailesi göz önüne alınmalıdır: 

 

4.2.3. Teorem 

 

(𝑋,𝑚) 𝑀-tam 𝑀-metrik uzay, 𝑇: 𝑋 → 𝐶𝑚(𝑋) küme değerli bir dönüşüm ve Ϝ ∈ ℱ∗ olsun. 

Bu durumda 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için, 

 

𝜏 + Ϝ(𝑚(𝑦, 𝑇𝑦)) ≤ Ϝ(𝑚(𝑥, 𝑦))
ve

𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦)
}                                                                                        (4.16) 

 

eşitsizliklerini sağlayacak şekilde bir 𝑦 ∈ Ϝ 𝜎
𝑥  ve 0 < 𝛼 < 1, 0 < 𝜏 var olsun. Eğer                       

0 < 𝜎 <  𝜏 olup 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) dönüşümü 𝜏𝑚 topolojisine göre alt yarı sürekli ise 𝑇 

dönüşümü 𝑋’de bir sabit noktaya sahiptir. 

 

İspat 

 

Kabul edelim ki 𝑇 dönüşümü bir sabit noktaya sahip olmasın. Bu durumda her 𝑥 ∈ 𝑋 için 

𝑚(𝑥, 𝑇𝑥) > 0 dır. Gerçekten 𝑚(𝑥, 𝑇𝑥) = 0 ise bu durumda 𝑥 ∈ 𝑇𝑥𝑚̅̅ ̅̅ ̅̅ = 𝑇𝑥 olduğu için              

𝑥 ∈ 𝑇𝑥’dir. Ϝ ∈ ℱ∗ olduğundan 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için ve her 0 < 𝜎 
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için Ϝ 𝜎
𝑥  kümesi boştan farklıdır. İspatın kalan kısmı Teorem 4.2.2’nin ispatında olduğu gibi                     

𝑇𝑧 ∈ 𝐶𝑚(𝑋) dikkate alınarak tamamlanır. 

 

Şimdi ise aşağıda vereceğimiz örnek ile hem Teorem 4.2.3 varken neden Teorem 4.2.2’ye 

ihtiyaç duyulduğunu hem de Teorem 4.2.3’ün bilinen Feng-Liu sabit nokta teoremini içeren 

ve dördüncü bölümün ilk kısmında yer alan Teorem 4.1.2’nin bir genelleştirmesi olduğunu 

göstermesi amaçlanmaktadır.  

 

Örnek 

 

                                             olmak üzere bu küme üzerindeki  m: X × X → [0,∞) dönüşümü 
 

𝑚(𝑥, 𝑦) = 𝑥 + 𝑦 şeklinde tanımlansın. Bu durumda (X,m) 𝑀-tam 𝑀-metrik uzaydır.      

Şimdi 𝑇: 𝑋 → 𝐴(𝑋) dönüşümünü, 

 

𝑇𝑥 =

{
 

 {
1

(𝑛 + 1)2
} , 𝑥 =

1

𝑛2

{0} , 𝑥 = 0

 

 

ve Ϝ: (0,∞) → ℝ dönüşümünü ise 

 

Ϝ(𝛼) =

{
 

 
𝐼𝑛𝛼

√𝛼
, 0 < 𝛼 ≤ 1

1 + 𝛼 , 𝛼 > 1

 

 

şeklinde tanımlarsak Ϝ ∈ ℱ\ℱ∗ ve 𝑓(𝑥) = 𝑚(𝑥, 𝑇𝑥) fonksiyonu 𝜏𝑚 topolojisine göre alt yarı 

süreklidir. Teorem 4.2.2’nin bütün hipotezlerinin sağlandığını göstermek için Eş. 4.16 ile 

verilen büzülme koşulunun 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 ve 𝛼, 𝜎 < 𝜏 = 2,5 için 

sağlandığını göstermeliyiz. Gerçekten, 𝑥 =
1

𝑛2
, n ≥ 2 için 𝑦 =

1

(𝑛+1)2
∈ Ϝ 𝜎

1

𝑛2 alırsak               

Eş. 4.16’ dan, 

 

𝜏 + Ϝ(𝑚(𝑦, 𝑇𝑦)) ≤ Ϝ(𝑚(𝑥, 𝑦)) ⇔ 𝜏 + Ϝ(
1

(𝑛 + 1)2
+

1

(𝑛 + 2)2
) ≤ Ϝ (

1

𝑛2
+

1

(𝑛 + 1)2
) 

X = {0,
1

𝑛2
: n ≥ 2, n ∈ ℕ} 
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                                           ⇔ 𝜏 + Ϝ(
2𝑛2 + 6𝑛 + 5

(𝑛 + 1)2(𝑛 + 2)2
) ≤ Ϝ(

2𝑛2 + 2𝑛 + 1

𝑛2(𝑛 + 1)2
) 

 

 olup Ϝ dönüşümünün tanımını kullanarak her 𝑛 ≥ 2 için, 

 

𝑔(𝑛) = [𝐼𝑛 (
2𝑛2 + 2𝑛 + 1

𝑛2(𝑛 + 1)2
)

𝑛(𝑛 + 1)

√2𝑛2 + 2𝑛 + 1
] − [𝐼𝑛 (

2𝑛2 + 6𝑛 + 5

(𝑛 + 1)2(𝑛 + 2)2
)
(𝑛 + 1)(𝑛 + 2)

√2𝑛2 + 6𝑛 + 5
] 

 

olmak üzere 𝜏 ≤ 𝑔(𝑛) dir.  Aşağıdaki çizelge ve grafikte görüldüğü gibi 𝑔: {2,3, … } → ℝ 

fonksiyonu artan olduğu için en küçük değerini 𝑛 = 2 için alır. Buna göre 𝑔(2) = 2,50725 

olduğundan 𝜏 ≤ 𝑔(2) olup Eş. 4.16 koşulu sağlanır. Sonuç olarak Teorem 4.2.2’nin bütün 

koşulları sağlanır ve gerçekten 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  

 

 

 

Diğer taraftan Teorem 4.1.2’nin büzülme koşulu dışında bütün koşulları sağlanır. Gerçekten, 

𝑥 =
1

𝑛2
, n ≥ 2 için 𝑚(𝑥, 𝑇𝑥) > 0 dır. O halde 𝑇𝑥 = {

1

(𝑛+1)2
} olduğundan                                           

𝑦 =
1

(𝑛+1)2
∈ 𝑇𝑏

𝑥(𝑚) almalıyız. Şimdi kabul edelim ki 𝑐 < 𝑏 olacak şekildeki bir                 

𝑏, 𝑐 ∈ (0,1) için Teorem 4.1.2’nin büzülme koşulu sağlansın. Bu durumda  n ≥ 2 için, 

 

𝑚(
1

(𝑛 + 1)2
, 𝑇

1

(𝑛 + 1)2
) ≤ 𝑐𝑚 (

1

𝑛2
,

1

(𝑛 + 1)2
) 

                                                                            ⇔ 𝑚 (
1

(𝑛 + 1)2
,

1

(𝑛 + 2)2
) ≤ 𝑐𝑚(

1

𝑛2
,

1

(𝑛 + 1)2
) 

                                                                      ⇔
1

(𝑛 + 1)2
+

1

(𝑛 + 2)2
≤ 𝑐 (

1

𝑛2
+

1

(𝑛 + 1)2
) 
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                                                                      ⇔
1

(𝑛 + 1)2
+

1

(𝑛 + 2)2
≤ 𝑐 (

1

𝑛2
+

1

(𝑛 + 1)2
) 

                                      ⇔

1
(𝑛 + 1)2

+
1

(𝑛 + 2)2

1
𝑛2
+

1
(𝑛 + 1)2

≤ 𝑐 

 

olup 𝑛 → ∞ için limit alındığında 1 ≤ 𝑐 elde edilir ki bu bir çelişkidir. O halde Teorem 4.1.2 

bu örneğe uygulanamaz. 

 

4.3. 𝑴𝒃-Metrik Uzaylarda Karma Küme Değerli Dönüşümler İçin Sabit Nokta 

Teoremleri 

 

Bir önceki bölümde (4.1 ve 4.2) Asadi ve arkadaşları tarafından üretilen standart metrik 

uzayların bir genelleştirmesi olan 𝑀-metrik uzaylar ve bu uzay üzerinde tanımlı dönüşümler 

için bazı sabit nokta teoremleri literatürde var olan çalışmaları genişletecek şekilde ifade ve 

ispat edildi. Diğer taraftan literatürde Czerwik tarafından tanımlanan standart metrik 

uzayların bir başka genelleştirmesi olan 𝑏-metrik uzay kavramı bulunmaktadır[47]. Yakın 

zamanda Mlaiki ve arkadaşları hem 𝑀-metrik hem de 𝑏-metriği dikkate alarak bu uzayları 

genişletecek şekilde 𝑀𝑏-metrik kavramını aşağıdaki şekilde tanımladılar [11]: 

 

4.3.1. Tanım  

 

𝑋 ≠ ∅ bir küme ve 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü eğer her 𝑥, 𝑦, 𝑧 ∈ 𝑋 için,  

 

𝑚𝑏1) 𝑚𝑏(𝑥, 𝑦) = 𝑚𝑏(𝑥, 𝑥) = 𝑚𝑏(𝑦, 𝑦) ⇔ 𝑥 = 𝑦, 

𝑚𝑏2) 𝑚𝑏𝑥𝑦 = min{𝑚𝑏(𝑥, 𝑥),𝑚𝑏(𝑦, 𝑦)} ≤ 𝑚𝑏(𝑥, 𝑦), 

𝑚𝑏3) 𝑚𝑏(𝑥, 𝑦) = 𝑚𝑏(𝑦, 𝑥), 

𝑚𝑏4) 𝑚𝑏(𝑥, 𝑦) − 𝑚𝑏𝑥𝑦 ≤ 𝑠{(𝑚𝑏(𝑥, 𝑧)−𝑚𝑏𝑥𝑧) + (𝑚𝑏(𝑦, 𝑧)−𝑚𝑏𝑦𝑧)} − 𝑚𝑏(𝑧, 𝑧)            

         olacak şekilde 𝑠 ≥ 1 reel sayısı vardır. 

 

şartlarını sağlıyorsa bu dönüşüme 𝑋 üzerinde bir 𝑀𝑏-metrik denir ve (𝑋,𝑚𝑏) ikilisine de          

𝑀𝑏-metrik uzay denir. Buradaki 𝑠 reel sayısına 𝑀𝑏-metriğin katsayısı denir.  
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Uyarı 

 

𝑋 üzerinde tanımlanan bir 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) 𝑀𝑏-metriğin tanımından anlaşılacağı üzere      

herhangi bir 𝑥 ∈ 𝑋 için 𝑚𝑏(𝑥, 𝑥) sıfıra eşit olmayabilir. Ancak Mlaiki ve arkadaşları 

tarafından verilen yukarıdaki tanımın 𝑚𝑏4) koşulunda 𝑥 = 𝑦 = 𝑧 için 0 ≤ −𝑚𝑏(𝑥, 𝑥) olup 

𝑚𝑏 metriği negatif olmayan değerler aldığından 𝑚𝑏(𝑥, 𝑥) = 0 elde edilir. Bu problemin 

üstesinden gelmek için 𝑚𝑏4) koşulu yerine aşağıdaki 𝑚𝑏4) 
∗ koşulunu önerdik: 

 

𝑚𝑏4)
∗ Her 𝑥, 𝑦, 𝑧 ∈ 𝑋 için öyle bir  𝑠 ≥ 1 reel sayısı var öyle ki aşağıdaki eşitsizlik sağlanır: 

            𝑚𝑏(𝑥, 𝑦) − 𝑚𝑏𝑥𝑦 ≤ 𝑠{(𝑚𝑏(𝑥, 𝑧)−𝑚𝑏𝑥𝑧) + (𝑚𝑏(𝑦, 𝑧)−𝑚𝑏𝑦𝑧)} 

         

Bu bölümün devamında 𝑀𝑏-metrik uzay kavramı için 𝑚𝑏1) , 𝑚𝑏2) , 𝑚𝑏3)  ile birlikte bizim 

tanımladığımız 𝑚𝑏4) 
∗ koşulunu kullanacağız. Tanımdan açıktır ki her 𝑀-metrik uzay ve                

𝑏-metrik uzay aynı zamanda 𝑀𝑏-metrik uzaydır. Ancak tersi her zaman doğru olmayabilir. 

Aşağıdaki örnek bu gerçeği göstermektedir. 

 

Örnek 

 

𝑋 = [0,∞) ve bu küme üzerindeki 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü                                        

𝑚𝑏(𝑥, 𝑦) = min{𝑥
𝑝, 𝑦𝑝} + |𝑥 − 𝑦|𝑝, 𝑝 > 1 şeklinde tanımlanırsa bu dönüşüm 𝑋 üzerinde 

𝑠 = 2𝑝 katsayısı ile bir 𝑀𝑏-metriktir. Ancak, bu dönüşüm ne 𝑀-metrik ne de 𝑏-metriktir. 

Aynı zamanda 𝑥 = 𝑦 = 𝑧 ≠ 0 için 𝑚𝑏4) koşulu sağlanmadığından, bu dönüşüm Mlaiki ve 

arkadaşlarının tanımına göre 𝑀𝑏-metrik değildir. 

 

(𝑋,𝑚𝑏) bir 𝑀𝑏-metrik uzay ve 𝑥 ∈ 𝑋 olmak üzere 𝑥 merkezli 𝑟 > 0 çaplı açık yuvar, 

 

𝐵(𝑚𝑏 , 𝑥, 𝑟) = {𝑦 ∈ 𝑋:𝑚𝑏(𝑥, 𝑦) < 𝑚𝑏𝑥𝑦 + 𝑟} 

 

şeklinde tanımlanır. Bir 𝑈 ⊆ 𝑋 açık olması için gerek ve yeter koşul her 𝑥 ∈ 𝑈 için 

𝐵(𝑚𝑏 , 𝑥, 𝑟) ⊆ 𝑈 olacak şekilde 𝑟 > 0 reel sayısının var olmasıdır. 𝑋’in bütün açık 

altkümelerinin ailesini 𝜏𝑚𝑏  ile gösterirsek bu aile 𝑋 üzerinde bir topoloji belirtir. Bu bölümün 

devamında bir 𝐴 ⊆ 𝑋’in 𝜏𝑚𝑏  topolojisine göre kapanışını 𝐴𝑏 ve 𝜏𝑚𝑏  topolojisine göre 𝑋’in 

bütün kapalı altkümelerinin ailesini C𝑏(𝑋) ile göstereceğiz. Her kısmi metrik uzay aynı 

zamanda 𝑀𝑏-metrik uzay ve her kısmi metrik 𝑝 boştan farklı bir 𝑋 kümesi üzerinde bir          
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𝑇0-topolojisi üretmesine rağmen 𝜏𝑚𝑏  topolojisi bir 𝑇0-topolojisi olmayabilir. Gerçekten,     

𝑋 = [0,1] ve bu küme üzerindeki 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü  𝑚𝑏(𝑥, 𝑦) = min {𝑥, 𝑦} 

şeklinde tanımlanırsa 𝑠 = 2 katsayısı ile (𝑋,𝑚𝑏) bir 𝑀𝑏-metrik uzaydır. Bu durumda her 

𝑟 > 0 ve her 𝑥 ∈ 𝑋 için, 

  

𝐵(𝑚𝑏 , 𝑥, 𝑟) = {𝑦 ∈ 𝑋:𝑚𝑏(𝑥, 𝑦) < 𝑚𝑏𝑥𝑦 + 𝑟} 

                      = {𝑦 ∈ 𝑋: 0 < 𝑟} = 𝑋 

 

olup 𝜏𝑚𝑏 = {∅,𝑋} olduğundan bir 𝑇0-topolojisi değildir.  

 

Uyarı 

 

(𝑋,𝑚𝑏) ikilisi 𝑠 ≥ 1 katsayısı ile bir 𝑀𝑏-metrik uzay ve 𝑀𝑏𝑥𝑦 = max {𝑚𝑏(𝑥, 𝑥),𝑚𝑏(𝑦, 𝑦)} 

olmak üzere 

 

𝑏𝑚(𝑥, 𝑦) = 𝑚𝑏(𝑥, 𝑦) − 2𝑚𝑏𝑥𝑦 +𝑀𝑏𝑥𝑦  

 

şeklinde tanımlanan 𝑏𝑚: 𝑋 × 𝑋 → [0,∞) dönüşümü 𝑋 üzerinde 𝑠 ≥ 1 katsayısı ile bir                   

𝑏-metriktir.  

 

4.3.1. Lemma 

 

(𝑋,𝑚𝑏) ikilisi 𝑠 ≥ 1 katsayısı ile bir 𝑀𝑏-metrik uzay, (𝑥𝑛) 𝑋’de bir dizi ve 𝑥 ∈ 𝑋 olsun.  Bu 

durumda (𝑥𝑛) dizisi 𝑥 ∈ 𝑋 noktasına 𝜏𝑚𝑏  topolojisine göre yakınsaktır gerek ve yeter koşul 

lim
𝑛→∞

(𝑚𝑏(𝑥𝑛, 𝑥) − 𝑚𝑏𝑥𝑛𝑥) = 0 olmasıdır.  Gerçekten, 𝑥𝑛
𝜏𝑚𝑏
→  𝑥 ve 𝑟 > 0 olsun. Buna göre 

𝑛 ≥ 𝑛0 olduğunda 𝑥𝑛 ∈ 𝐵(𝑚𝑏 , 𝑥, 𝑟) olacak şekilde bir 𝑛0 ∈ ℕ sayısı vardır. Buradan                   

𝑛 ≥ 𝑛0 olduğunda 𝑚𝑏(𝑥𝑛, 𝑥) < 𝑚𝑏𝑥𝑛𝑥 + 𝑟 olur ki böylece |𝑚𝑏(𝑥𝑛, 𝑥) − 𝑚𝑏𝑥𝑛𝑥| < 𝑟 elde 

edilir. Bu ise lim
𝑛→∞

(𝑚𝑏(𝑥𝑛, 𝑥) − 𝑚𝑏𝑥𝑛𝑥) = 0 olması demektir. İspatın diğer tarafı Lemma 

4.1.1’de olduğu gibi yapılabilir. 
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4.3.2. Tanım 

 

(𝑋,𝑚𝑏) bir 𝑀𝑏-metrik uzay ve (𝑥𝑛) ⊆ 𝑋 bir dizi olmak üzere, 

 

i. Eğer (𝑥𝑛) dizisi için lim
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑚) var ve sonlu ise bu diziye 𝑀𝑏-Cauchy dizisidir denir. 

ii. Eğer  (𝑋,𝑚𝑏) uzayında her 𝑀𝑏-Cauchy dizisi bir 𝑥 ∈ 𝑋 noktasına 𝑀𝑏-yakınsak ve  

lim
𝑛,𝑚→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑚) = 𝑚𝑏(𝑥, 𝑥) ise bu uzaya 𝑀𝑏-tamdır denir.  

 

Aşağıdaki önerme ispatsız verilecektir. Çünkü ispatı Lemma 2.2.4’de verilen ispata benzer 

şekilde yapılabilir. 

 

4.3.1. Önerme 

 

(𝑋,𝑚𝑏) bir 𝑀𝑏-metrik uzay, (𝑥𝑛) ⊆ 𝑋 bir dizi olsun. Bu durumda aşağıdaki ifadeler vardır: 

 

i. (𝑥𝑛) bir 𝑀𝑏-Cauchy dizisidir gerek ve yeter koşul (𝑥𝑛) dizisi (𝑋, 𝑏𝑚) 𝑏-metrik uzayında   

bir Cauchy dizisidir. 

ii. (𝑋,𝑚𝑏) 𝑀𝑏-tam 𝑀𝑏-metrik uzaydır gerek ve yeter koşul (𝑋, 𝑏𝑚) tam 𝑏-metrik uzaydır.    

Bunun yanında, 

 

lim
𝑛→∞

𝑏𝑚(𝑥𝑛, 𝑥) = 0 ⇔ {

lim
𝑛→∞

(𝑚𝑏(𝑥𝑛, 𝑥) − 𝑚𝑏𝑥𝑛𝑥) = 0

𝑣𝑒
lim

𝑛,𝑚→∞
𝑚𝑏(𝑥𝑛, 𝑥𝑚) = 𝑚𝑏(𝑥, 𝑥)

 

    

     ilişkisi vardır.  

 

Bu bölüme aşağıdaki düşünce ile devam edelim: (𝑋, 𝑑) bir metrik uzay ve  𝑇: 𝑋 → 𝐶(𝑋) 

küme değerli bir dönüşüm olsun. 𝑋 üzerindeki tanımlı bu 𝑇 dönüşümü için Feng-Liu sabit 

nokta teoremi yardımıyla tek değerli dönüşümler için sabit nokta teoremi elde edebiliriz. 

Bunu yapmak için standart metrik uzaylarda her tek nokta kümesi kapalı olduğundan her     

𝑥 ∈ 𝑋 için 𝑇𝑥’i tek nokta kümesi almak yeterlidir. Ancak 𝜏𝑚𝑏 , 𝑇1-topolojisi 

olamayabileceğinden (hatta 𝑇0-topolojisi olamayabileceğini gösterdik) bazı tek nokta 

kümeleri kapalı olmayabilir. Bu yüzden benzer yolla tek değerli dönüşümler için sabit nokta 



46 

 

teoremi elde edilemez. Bu problemi aşmak için Romaguera’nın çalışmasında olduğu gibi bir 

(𝑋,𝑚𝑏) 𝑀𝑏-metrik uzayı üzerinde tanımlı 𝑋 ∪ C𝑏(𝑋) değerli 𝑇 dönüşümünü 

düşüneceğiz[23]. Burada (𝑋,𝑚𝑏) bir 𝑀𝑏-metrik uzay olmak üzere 𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) 

dönüşümü her 𝑥 ∈ 𝑋 için 𝑇𝑥 tek değerli veya 𝑇𝑥 ∈ C𝑏(𝑋) anlamına gelmektedir. Bu 

dönüşümler için hem tek değerli hem de küme değerli dönüşümler olduğundan [23]’de 

olduğu gibi karma küme değerli dönüşüm kavramını kullanacağız.  

 

(𝑋,𝑚𝑏) bir 𝑀𝑏-metrik uzay ve 𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) karma küme değerli bir dönüşüm olsun. 

Pozitif bir sabit 𝑘 ∈ (0,1) ve 𝑥 ∈ 𝑋 için 𝑚𝑏(𝑥, 𝑇𝑥) = 𝑖𝑛𝑓{𝑚𝑏(𝑥, 𝑦): 𝑦 ∈ 𝑇𝑥} şeklinde 

tanımlanmak üzere, 

 

𝑇𝑘
𝑥(𝑚𝑏) = {𝑦 ∈ 𝑇𝑥: 𝑘𝑚𝑏(𝑥, 𝑦) ≤ 𝑚𝑏(𝑥, 𝑇𝑥)}  

 

şeklinde tanımlansın. Burada eğer |𝑇𝑥| = 1 ise 𝑇𝑘
𝑥(𝑚𝑏) boştan farklıdır. Diğer taraftan 

|𝑇𝑥| > 1 ve 𝑚𝑏(𝑥, 𝑇𝑥) > 0 ise her 𝑘 ∈ (0,1) için 𝑇𝑘
𝑥(𝑚𝑏) boştan farklıdır. Ancak |𝑇𝑥| > 1 

ve 𝑚𝑏(𝑥, 𝑇𝑥) = 0 ise 𝑇𝑘
𝑥(𝑚𝑏) boş kümeye eşit olabilir. Aşağıdaki örnek bu gerçeği 

göstermektedir. 

 

Örnek 

 

                                                            ve 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü aşağıdaki gibi 

 

tanımlansın: 

 

𝑚𝑏(𝑥, 𝑦) =

{
 
 

 
 

0 , 𝑥 = 𝑦 ∈ 𝑋\{−1}
2 , 𝑥 = 𝑦 = −1

1 , 𝑥 ≠ 𝑦 ∈ {0,−1}

|𝑥 − 𝑦| , 𝑥 ≠ 𝑦 ∈ {−1,−1 +
1

2𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ}

4 , 𝑑. 𝑑.

 

 

Bu durumda (𝑋,𝑚𝑏), 𝑠 = 4 katsayısı ile bir 𝑀𝑏-metrik uzaydır. Ancak 𝑚𝑏 dönüşümü 𝑋 

üzerinde bir 𝑀-metrik değildir. Gerçekten eğer 𝑥 = 0, 𝑦 = −1 +
1

2𝑛
 ve 𝑧 = −1 alırsak bu 

durumda 𝑀-metriğin 𝑚4) koşulu sağlanmaz. Şimdi 𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) dönüşümünü her     

𝑥 ∈ 𝑋 için 𝑇𝑥 = 𝑋 olacak şekilde tanımlayalım. O halde 𝑥 = −1 için |𝑇𝑥| > 1 ve 

𝑋 = {0,−1, −1 +
1

𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ} 
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𝑚𝑏(𝑥, 𝑇𝑥) = 0 olmasına rağmen her 𝑦 ∈ 𝑇𝑥 için 𝑚𝑏(𝑥, 𝑦) > 0’dır. Buna göre her 𝑘 ∈ (0,1) 

için 𝑇𝑘
−1(𝑚𝑏) = ∅ olarak elde edilir. 

 

Aşağıdaki lemma ve önerme ilerde vereceğimiz sonuçlar için oldukça önemli olup benzerleri 

𝑀-metrik uzaylarda ifade edildiğinden ispatsız olarak verildi.  

 

4.3.2. Lemma 

 

(𝑋,𝑚𝑏) ikilisi 𝑠 katsayısı ile bir 𝑀𝑏-metrik uzay, 𝐴 ⊆ 𝑋 ve 𝑥 ∈ 𝑋 olsun. Eğer                   

𝑚𝑏(𝑥, 𝐴) = 0 ise 𝑥 ∈ 𝐴𝑏 dır. 

 

4.3.2. Önerme 

 

(𝑋,𝑚𝑏) bir 𝑀𝑏-metrik  uzay, 𝐴 ⊆ 𝑋 ve 𝑥 ∈ 𝑋 olsun. Bu durumda                                           

inf{𝑚𝑏(𝑥, 𝑦) − 𝑚𝑏𝑥𝑦: 𝑦 ∈ 𝐴} = 0 olması için gerek ve yeter koşul 𝑥 ∈ 𝐴𝑏̅̅̅̅  olmasıdır.  

 

4.3.3. Tanım [23] 

 

(𝑋, 𝑝) bir kısmi metrik  uzay ve 𝑇 karma değerli bir dönüşüm olsun. Eğer |𝑇𝑥| = 1 ve her 

𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 olmak üzere lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥) = 𝑝(𝑥, 𝑥) olacak şekildeki her  (𝑥𝑛) ⊆ 𝑋 

dizisi için 𝑝(𝑇𝑥, 𝑇𝑥) = lim
𝑛→∞

𝑝(𝑥𝑛, 𝑇𝑥) ise 𝑇 dönüşümü 𝑥-yörüngesel süreklidir denir. Eğer 

𝑇 dönüşümü her 𝑥 ∈ 𝑋 için 𝑥-yörüngesel sürekli ise (𝑋, 𝑝) uzayında yörüngesel süreklidir 

denir.  

 

4.3.4. Tanım [12] 

 

(𝑋,𝑚𝑏) bir 𝑀𝑏-metrik  uzay ve 𝑇 karma küme değerli bir dönüşüm olsun. Eğer |𝑇𝑥| = 1 ve 

her 𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 olmak üzere lim
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑥) = 𝑚𝑏(𝑥, 𝑥) olacak şekildeki her      

(𝑥𝑛) ⊆ 𝑋 dizisi için 𝑚𝑏(𝑇𝑥, 𝑇𝑥) ≤ liminf
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑇𝑥) ise 𝑇 dönüşümü 𝑥-alt yörüngesel 

süreklidir denir. Eğer 𝑇 dönüşümü her 𝑥 ∈ 𝑋 için 𝑥-alt yörüngesel sürekli ise (𝑋,𝑚𝑏) 

uzayında alt yörüngesel süreklidir denir.  
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Uyarı  

 

Eğer 𝑇 dönüşümü bir 𝑥 noktasında 𝑥-yörüngesel sürekli ise aynı zamanda 𝑥-alt yörüngesel 

süreklidir. Ancak bunun tersi doğru olmayabilir. Aşağıdaki örnek bu gerçeği göstermektedir: 

 

Örnek 

 

                                                             ve 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü aşağıdaki şekilde 
 

tanımlansın: 

 

𝑚𝑏(𝑥, 𝑦) =

{
 
 

 
 

0 , 𝑥 = 𝑦 ∈ 𝑋

1 , 𝑥 ≠ 𝑦 ∈ {0,−1}

|𝑥 − 𝑦|
4

,
,
𝑥 ≠ 𝑦 ∈ {−1,−1 +

1

2𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ}

𝑑. 𝑑.

 

 

Bu durumda (𝑋,𝑚𝑏) ikilisi 𝑠 = 4 katsayısı ile bir 𝑀𝑏-metrik uzaydır. Ayrıca                                          

𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) karma küme değerli dönüşümü ise  

 

𝑇𝑥 = {
𝑋 , 𝑥 ∈ 𝑋\{−1}

{0} , 𝑥 = −1
 

 

şeklinde olmak üzere (𝑥𝑛) = (−1 +
1

2𝑛
)
𝑛∈ℕ

 dizisini alalım. Açıktır ki her 𝑛 ∈ ℕ için   

𝑥𝑛+1 ∈ 𝑇𝑥𝑛 = 𝑋 ve lim
𝑛→∞

𝑚𝑏(𝑥𝑛, −1) = 0 = 𝑚𝑏(−1,−1) eşitliği vardır. Diğer taraftan     

𝑥 = −1 için, 

 

 𝑚𝑏(𝑇𝑥, 𝑇𝑥) = 𝑚𝑏(0,0) = 0 < liminf
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑇𝑥) = liminf
𝑛→∞

𝑚𝑏(𝑥𝑛, 0) = 4  

 

olup 𝑇 dönüşümü 𝑥 = −1 noktasında 𝑥-alt yörüngesel sürekli ancak 𝑥-yörüngesel sürekli 

değildir.  

 

 

 

𝑋 = {0,−1,−1 +
1

𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ} 
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4.3.1. Teorem 

 

(𝑋,𝑚𝑏) ikilisi 𝑠 ≥ 1 katsayısı ile bir 𝑀𝑏-tam 𝑀𝑏-metrik uzay ve 𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) karma 

küme değerli bir dönüşüm olsun. Bu durumda |𝑇𝑥| = 1 veya |𝑇𝑥| > 1 olduğunda 

𝑚𝑏(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için,   

 

𝑚𝑏(𝑦, 𝑇𝑦) ≤ 𝑐𝑚𝑏(𝑥, 𝑦) 

ve 

𝛼𝑚𝑏(𝑦, 𝑦) ≤ 𝑚𝑏(𝑥, 𝑦) 

 

eşitsizliklerini ve 𝑠𝑐 < 𝑘 eşitsizliğini sağlayan bir 𝛼, 𝑐, 𝑘 ∈ (0,1) ve  𝑦 ∈ 𝑇𝑘
𝑥(𝑚𝑏) var olsun. 

Burada 𝑓(𝑥) = 𝑚𝑏(𝑥, 𝑇𝑥) dönüşümü alt yarı sürekli ise 𝑚𝑏(𝑧, 𝑇𝑧) = 0 olacak şekilde bir 

𝑧 ∈ 𝑋 noktası vardır. Bunun yanında eğer |𝑇𝑧| > 1 ise 𝑧 ∈ 𝑋 noktası 𝑇 dönüşümünün bir 

sabit noktasıdır. Eğer |𝑇𝑧| = 1 ve 𝑇 dönüşümü 𝑧 ∈ 𝑋  noktasında 𝑧-alt yörüngesel sürekli 

ise 𝑧 ∈ 𝑋 noktası 𝑇 dönüşümünün bir sabit noktasıdır. 

 

İspat 

 

Burada her 𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) ≤ (
𝑐

𝑘
)
𝑛

𝑚𝑏(𝑥0, 𝑥1) ve                 

𝑚𝑏(𝑥𝑛, 𝑇𝑥𝑛) ≤ (
𝑐

𝑘
)
𝑛

𝑚𝑏(𝑥0, 𝑇𝑥0) olacak şekilde (𝑥𝑛) ⊆ 𝑋 dizisinin varlığını göstermemiz 

yeterlidir. Kabul edelim ki 𝑥0 ∈ 𝑋 başlangıç noktası olsun. Buna göre iki durum vardır: 

 

1. Durum: |𝑇𝑥0| = 1 olsun. Bu durumda hipotezden, 𝛼𝑚𝑏(𝑥1, 𝑥1) ≤ 𝑚𝑏(𝑥0, 𝑥1)  koşuluna 

uygun ve aşağıdaki eşitsizlikleri sağlayan 𝑥1 ∈ 𝑇𝑥0 vardır: 

 

𝑘𝑚𝑏(𝑥0, 𝑥1) ≤ 𝑚𝑏(𝑥0, 𝑇𝑥0) 

ve 

𝑚𝑏(𝑥1, 𝑇𝑥1) ≤ 𝑐𝑚𝑏(𝑥0, 𝑥1)  

 

Burada 𝑥1 ∈ 𝑋 noktası için yine iki durum söz konusudur: Eğer |𝑇𝑥1| = 1 ise yine 

hipotezden 𝛼𝑚𝑏(𝑥2, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑥2) koşuluna uygun ve aşağıdaki eşitsizlikleri sağlayan 

𝑥2 ∈ 𝑇𝑥1 vardır: 
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𝑘𝑚𝑏(𝑥1, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑇𝑥1) 

ve 

𝑚𝑏(𝑥2, 𝑇𝑥2) ≤ 𝑐𝑚𝑏(𝑥1, 𝑥2)  

 

Şimdi kabul edelim ki  |𝑇𝑥1| > 1 olsun. Buna göre eğer 𝑚𝑏(𝑥1, 𝑇𝑥1) = 0 ise                              

𝑥1 ∈ 𝑇𝑥1
𝑏̅̅ ̅̅ ̅̅ = 𝑇𝑥1 olup 𝑥1 ∈ 𝑋 noktası 𝑇 dönüşümünün sabit noktasıdır. O halde 

𝑚𝑏(𝑥1, 𝑇𝑥1) > 0 olsun. Bu durumda 𝛼𝑚𝑏(𝑥2, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑥2) koşuluna uygun aşağıdaki 

eşitsizlikleri sağlayan 𝑥2 ∈ 𝑇𝑥1 vardır: 

 

 𝑘𝑚𝑏(𝑥1, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑇𝑥1) 

ve 

𝑚𝑏(𝑥2, 𝑇𝑥2) ≤ 𝑐𝑚𝑏(𝑥1, 𝑥2). 

 

2. Durum: |𝑇𝑥0| > 1 olsun. Bu durumda eğer 𝑚𝑏(𝑥0, 𝑇𝑥0) = 0 ise 𝑥0 ∈ 𝑇𝑥0
𝑏̅̅ ̅̅ ̅̅ = 𝑇𝑥0 olup 

𝑥0 ∈ 𝑋 noktası 𝑇 dönüşümünün bir sabit noktasıdır. O halde kabul edelim ki           

𝑚𝑏(𝑥0, 𝑇𝑥0) > 0 olsun. Hipotezden 𝛼𝑚𝑏(𝑥1, 𝑥1) ≤ 𝑚𝑏(𝑥0, 𝑥1) koşuluna uygun ve 

aşağıdaki eşitsizlikleri sağlayan 𝑥1 ∈ 𝑇𝑥0 vardır: 

 

𝑘𝑚𝑏(𝑥0, 𝑥1) ≤ 𝑚𝑏(𝑥0, 𝑇𝑥0) 

ve 

𝑚𝑏(𝑥1, 𝑇𝑥1) ≤ 𝑐𝑚𝑏(𝑥0, 𝑥1)  

 

1. Durum’a benzer şekilde eğer |𝑇𝑥1| = 1 ise yine hipotezden 𝛼𝑚𝑏(𝑥2, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑥2) 

koşuluna uygun ve aşağıdaki eşitsizlikleri sağlayan 𝑥2 ∈ 𝑇𝑥1 vardır: 

 

𝑘𝑚𝑏(𝑥1, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑇𝑥1), 

ve 

𝑚𝑏(𝑥2, 𝑇𝑥2) ≤ 𝑐𝑚𝑏(𝑥1, 𝑥2)  

 

Şimdi kabul edelim ki  |𝑇𝑥1| > 1 olsun. Buna göre eğer 𝑚𝑏(𝑥1, 𝑇𝑥1) = 0 ise                              

𝑥1 ∈ 𝑇𝑥1
𝑏̅̅ ̅̅ ̅̅ = 𝑇𝑥1 olup 𝑥1 ∈ 𝑋 noktası 𝑇 dönüşümünün sabit noktasıdır. O halde 

𝑚𝑏(𝑥1, 𝑇𝑥1) > 0 olsun. Bu durumda 𝑐 koşuluna uygun aşağıdaki eşitsizlikleri sağlayan   

𝑥2 ∈ 𝑇𝑥1 vardır: 
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𝑘𝑚𝑏(𝑥1, 𝑥2) ≤ 𝑚𝑏(𝑥1, 𝑇𝑥1) 

ve 

𝑚𝑏(𝑥2, 𝑇𝑥2) ≤ 𝑐𝑚𝑏(𝑥1, 𝑥2). 

 

Bu şekilde devam edilerek her 𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ve 

 

𝑘𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) ≤ 𝑚𝑏(𝑥𝑛, 𝑇𝑥𝑛)                                                                                                     (4.17) 

𝑚𝑏(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝑐𝑚𝑏(𝑥𝑛, 𝑥𝑛+1)                                                                                                 (4.18) 

𝛼𝑚𝑏(𝑥𝑛+1, 𝑥𝑛+1) ≤ 𝑚𝑏(𝑥𝑛, 𝑥𝑛+1)                                                                                               (4.19) 

 

olacak şekilde (𝑥𝑛) ⊆ 𝑋 dizisi elde edilir.  Eş. 4.17 ve Eş. 4.18’den yararlanarak ise istenilen 

yani aşağıdaki koşulları sağlayan (𝑥𝑛) ⊆ 𝑋 dizisinin varlığı gösterilmiş olur: 

 

                                                                                                                                        (4.20) 
 

ve 

                                                                                                                                        (4.21) 

 

O halde Eş. 4.20 ve Eş. 4.21 kullanılarak, 

 

lim
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑇𝑥𝑛) = lim 
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) = 0                                                                   (4.22) 

 

elde edilir. Şimdi 𝑚 > 𝑛 olacak şekildeki 𝑚, 𝑛 ∈ ℕ için, 

 

𝑚𝑏(𝑥𝑛, 𝑥𝑚) − 𝑚𝑏𝑥𝑛𝑥𝑚 ≤ 𝑠{(𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑏𝑥𝑛𝑥𝑛+1) + (𝑚𝑏(𝑥𝑛+1, 𝑥𝑚) − 𝑚𝑏𝑥𝑛+1𝑥𝑚)} 

                                            ≤ 𝑠(𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑏𝑥𝑛𝑥𝑛+1) 

                                                                                          +𝑠2 {

                          
(𝑚𝑏(𝑥𝑛+1, 𝑥𝑛+2) − 𝑚𝑏𝑥𝑛+1𝑥𝑛+2) 

+ (𝑚𝑏(𝑥𝑛+2, 𝑥𝑚) − 𝑚𝑏𝑥𝑛+2𝑥𝑚)
} 

. 

. 

. 

                                            ≤ 𝑠(𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) − 𝑚𝑏𝑥𝑛𝑥𝑛+1) + ⋯ 

                                                                                         +𝑠𝑚−𝑛−1(𝑚𝑏(𝑥𝑚−1, 𝑥𝑚) − 𝑚𝑏𝑥𝑚−1𝑥𝑚) 

𝑚𝑏(𝑥𝑛, 𝑇𝑥𝑛) ≤ (
𝑐

𝑘
)
𝑛

𝑚𝑏(𝑥0, 𝑇𝑥0) 

𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) ≤ (
𝑐

𝑘
)
𝑛

𝑚𝑏(𝑥0, 𝑥1) 
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                                            ≤ 𝑠 (𝑚𝑏(𝑥𝑛, 𝑥𝑛+1)) + ⋯+ 𝑠
𝑚−𝑛−1(𝑚𝑏(𝑥𝑚−1, 𝑥𝑚)) 

                                            ≤ 𝑠 (
𝑐

𝑘
)
𝑛

𝑚𝑏(𝑥0, 𝑥1) + ⋯+ 𝑠
𝑚−𝑛 (

𝑐

𝑘
)
𝑚−1

𝑚𝑏(𝑥0, 𝑥1) 

                                            ≤ 𝑠 (
𝑐

𝑘
)
𝑛

𝑚𝑏(𝑥0, 𝑥1) {1 + ⋯+ (
𝑠𝑐

𝑘
)
𝑚−𝑛−1

} 

                                            ≤
𝑠 (
𝑐
𝑘
)
𝑛

1 −
𝑠𝑐
𝑘

𝑚𝑏(𝑥0, 𝑥1) 

 

elde edilir ki 𝑐 < 𝑘 olduğundan, 

 

lim
𝑛,𝑚→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑚) − 𝑚𝑏𝑥𝑛𝑥𝑚 = 0                                                                                          (4.23)              

 

elde edilir. Diğer taraftan Eş. 4.19’dan dolayı 

 

0 ≤ lim
𝑛→∞

𝛼𝑚𝑏(𝑥𝑛+1, 𝑥𝑛+1) 

    ≤ lim
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑛+1) = 0    

 

eşitsizliği vardır. Buna göre Eş. 4.23 ve Eş. 4.24 birlikte değerlendirildiğinde 

lim
𝑛,𝑚→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑚) = 0 elde edilir.  O halde (𝑥𝑛) ⊆ 𝑋 bir 𝑀𝑏-Cauchy dizisidir. (𝑋,𝑚𝑏) bir 

𝑀𝑏-tam 𝑀𝑏-metrik uzay olduğundan  

 

lim
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑧) − 𝑚𝑏𝑥𝑛𝑧 = 0                                                                                                (4.25) 

ve  

lim
𝑛,𝑚→∞

𝑚𝑏(𝑥𝑛, 𝑥𝑚) = 𝑚𝑏(𝑧, 𝑧)                                                                                              (4.26) 

  

olacak şekilde 𝑧 ∈ 𝑋 vardır. Şimdi gösterelim ki 𝑧 ∈ 𝑋, 𝑇 dönüşümünün sabit noktasıdır.    

Eş. 4.21, Eş. 4.24, Eş. 4.25 ve 𝑓(𝑥) = 𝑚𝑏(𝑥, 𝑇𝑥) dönüşümünün alt yarı sürekliliği birlikte 

değerlendirildiğinde 

 

0 ≤ 𝑚𝑏(𝑧, 𝑇𝑧) = 𝑓(𝑧) ≤ liminf
𝑛→∞

𝑓(𝑥𝑛) ≤ liminf
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑇𝑥𝑛) = 0 

 

yani, 𝑚𝑏(𝑧, 𝑇𝑧) = 0 elde edilir. Şimdi iki durum söz konusudur. Eğer |𝑇𝑧| > 1 ise                         

(4.24) 
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𝑧 ∈ 𝑇𝑧𝑏̅̅ ̅̅ ̅ = 𝑇𝑧 olup 𝑧 ∈ 𝑋 noktası 𝑇 dönüşümünün sabit noktasıdır. Eğer |𝑇𝑧| = 1 ise 

hipotezden 𝑇 dönüşümü 𝑧 noktasında 𝑧-alt yörüngesel sürekli olduğundan, 

 

𝑚𝑏(𝑇𝑧, 𝑇𝑧)≤ liminf
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑇𝑧) 

 

elde edilir. Şimdi 𝑚𝑏4) özelliğinden, 

 

𝑚𝑏(𝑥𝑛, 𝑇𝑧) − 𝑚𝑏𝑥𝑛𝑇𝑧 ≤ 𝑠{(𝑚𝑏(𝑥𝑛, 𝑧) − 𝑚𝑏𝑥𝑛𝑧) + (𝑚𝑏(𝑧, 𝑇𝑧) − 𝑚𝑏𝑧𝑇𝑧)} 

 

olur. Son eşitsizliğin her iki tarafının 𝑛 → ∞ için limiti alındığında 𝑚𝑏2) özelliğinden, 

 

0 ≤ 𝑚𝑏(𝑇𝑧, 𝑇𝑧)≤ liminf
𝑛→∞

𝑚𝑏(𝑥𝑛, 𝑇𝑧) = 0 

 

olup buradan 𝑚𝑏(𝑇𝑧, 𝑇𝑧) = 0 elde edilir. Diğer taraftan  𝑚𝑏(𝑧, 𝑧) = 0 ve 𝑚𝑏(𝑧, 𝑇𝑧) = 0 

olduğundan 𝑚𝑏1) özelliğinden 𝑧 = 𝑇𝑧 elde edilir. Böylece 𝑧, 𝑇 dönüşümünün sabit 

noktasıdır.  

 

Her standart metrik uzay, kısmi metrik uzay ve 𝑀-metrik uzay bir 𝑀𝑏-metrik uzay 

olduğundan aşağıdaki sonuçlar Teorem 4.3.1’den yararlanılarak elde edilebilir. 

 

4.3.1. Sonuç (Feng-Liu Sabit Nokta Teoremi) 

 

(𝑋, 𝑑) standart tam metrik uzay ve 𝑇: 𝑋 → 𝐶(𝑋) küme değerli dönüşüm olsun. Bu durumda 

her 𝑥 ∈ 𝑋 için, 

 

𝑑(𝑦, 𝑇𝑦) ≤ 𝑐𝑑(𝑥, 𝑦) 

 

eşitsizliğini sağlayan 0 < 𝑐 < 𝑘 < 1 ve 𝑦 ∈ 𝑇𝑘
𝑥(𝑑) var olsun. Eğer 𝑓(𝑥) = 𝑑(𝑥, 𝑇𝑥) 

dönüşümü alt yarı sürekli ise 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  
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İspat 

 

Standart metrik topolojisi 𝑇1-uzayı olduğundan 𝑋 ∪ C𝑏(𝑋) = C𝑏(𝑋)’dir. Diğer taraftan 

standart metriğin tanımından dolayı 𝑇 dönüşümü alt yörüngesel süreklidir ve Eş. 4.19 

otomatik olarak sağlanır. O halde Teorem 4.3.1’den dolayı 𝑇 dönüşümü bir sabit noktaya 

sahiptir.  

 

4.3.2. Sonuç 

 

(𝑋, 𝑝) tam kısmi metrik uzay ve 𝑇: 𝑋 → 𝑋 ∪ C𝑝(𝑋) karma küme değerli dönüşüm olsun. Bu 

durumda |𝑇𝑥| = 1 veya |𝑇𝑥| > 1 olduğunda 𝑝(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 için, 

 

𝑝(𝑦, 𝑇𝑦) ≤ 𝑐𝑝(𝑥, 𝑦) 

 

ve 𝑐 < 𝑘 eşitsizliklerini sağlayan bir 𝑐, 𝑘 ∈ (0,1) ve 𝑦 ∈ 𝑇𝑘
𝑥(𝑝) var olsun. Eğer                       

𝑓(𝑥) = 𝑝(𝑥, 𝑇𝑥) dönüşümü alt yarı sürekli ise 𝑇 dönüşümü 𝑋’de bir sabit noktaya sahiptir.  

 

İspat 

 

|𝑇𝑥| = 1 ve her 𝑛 ∈ ℕ için 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 olmak üzere lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥) = 𝑝(𝑥, 𝑥) olacak 

şekildeki herhangi bir (𝑥𝑛) ⊆ 𝑋 dizisini alalım. Kısmi metrik tanımından her zaman 

𝑝(𝑇𝑥, 𝑇𝑥) ≤ 𝑝(𝑥, 𝑇𝑥) olduğundan 𝑝(𝑇𝑥, 𝑇𝑥) ≤ liminf
𝑛→∞

𝑝(𝑥𝑛, 𝑇𝑥) = 𝑝(𝑥, 𝑇𝑥) olup 𝑇 

dönüşümü her 𝑥 ∈ 𝑋 noktasında 𝑥-alt yörüngesel süreklidir. O halde Teorem 4.3.1’den 

dolayı 𝑇 dönüşümü bir sabit noktaya sahiptir.  

 

4.3.3. Sonuç  

 

(𝑋,𝑚) ikilisi 𝑀-tam 𝑀-metrik uzay ve 𝑇: 𝑋 → 𝑋 ∪ C𝑚(𝑋) karma değerli dönüşüm olsun. 

Bu durumda |𝑇𝑥| = 1 veya |𝑇𝑥| > 1 olduğunda 𝑚(𝑥, 𝑇𝑥) > 0 olacak şekildeki her 𝑥 ∈ 𝑋 

için,  

 

𝑚(𝑦, 𝑇𝑦) ≤ 𝑐𝑚(𝑥, 𝑦) 

𝛼𝑚(𝑦, 𝑦) ≤ 𝑚(𝑥, 𝑦) 
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ve 𝑐 < 𝑘 eşitsizliklerini sağlayan bir 𝛼, 𝑐, 𝑘 ∈ (0,1) ve 𝑦 ∈ 𝑇𝑘
𝑥(𝑚) var olsun. Burada  

𝑓(𝑥) = 𝑚𝑏(𝑥, 𝑇𝑥) dönüşümü alt yarı sürekli ise 𝑚𝑏(𝑧, 𝑇𝑧) = 0 olacak şekilde bir 𝑧 ∈ 𝑋 

noktası vardır. Bunun yanında eğer |𝑇𝑧| > 1 ise 𝑧 ∈ 𝑋 noktası 𝑇 dönüşümünün bir sabit 

noktasıdır. Eğer |𝑇𝑧| = 1 ve 𝑇 dönüşümü 𝑧 ∈ 𝑋  noktasında 𝑧-alt yörüngesel sürekli ise      

𝑧 ∈ 𝑋 noktası 𝑇 dönüşümünün bir sabit noktasıdır. 

 

Aşağıdaki örneklerde tanımlanan uzaylar 𝑀-metrik uzay olmayıp 𝑀𝑏-metrik uzay olması ve 

sonuçlarımızı doğrular nitelikte olduğu için bu örnekler değerlidir.  

 

Örnek 

 

𝑋 = {0} ∪ [1,2) ∪ (2,∞) ve bu küme üzerindeki 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü aşağıdaki 

şekilde tanımlanırsa  (𝑋,𝑚𝑏) ikilisi 𝑠 = 3 katsayısı ile bir 𝑀𝑏-tam 𝑀𝑏-metrik uzaydır.  

 

𝑚𝑏(𝑥, 𝑦) =

{
 
 

 
 

0 , 𝑥 = 𝑦 = 0

1 , 𝑥 = 𝑦 ∈ 𝑋\{0}
𝑥 + 𝑦

2
, 𝑥 ≠ 𝑦 ∈ [1,2)

1,2 , 𝑑. 𝑑.

 

 

Ancak bu şekilde tanımlanan 𝑚𝑏 dönüşümü 𝑀-metrik değildir. Gerçekten, 𝑥 = 1,5, 𝑦 = 1,7 

ve 𝑧 ∈ (2,∞) alınırsa 𝑀-metrik tanımının 𝑚4) özelliği sağlanmaz. Şimdi                                  

𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) karma küme değerli dönüşümünü, 

 

𝑇𝑥 = {
𝑋 , 𝑥 = 3 +

1

2

0 , 𝑑. 𝑑.

 

 

şeklinde tanımlayalım. Bu durumda 𝑓(𝑥) = 𝑚𝑏(𝑥, 𝑇𝑥) dönüşümü 𝜏𝑚𝑏  topolojisine göre alt 

yarı süreklidir. Diğer taraftan |𝑇𝑥| = 1 veya |𝑇𝑥| > 1 olduğunda 𝑚𝑏(𝑥, 𝑇𝑥) > 0 olacak 

şekildeki her 𝑥 ∈ 𝑋 için 𝑐 = 0,1 < 𝑘 = 0,8 eşitsizliğini sağlayan bir 𝑐, 𝑘 ∈ (0,1) ve              

𝑦 = 0 ∈ 𝑇0,8
𝑥 (𝑚𝑏) var 𝑚𝑏(𝑦, 𝑇𝑦) ≤ 𝑐𝑚𝑏(𝑥, 𝑦)  ile her 𝛼 ∈ (0,1) için                       

𝛼𝑚𝑏(0,0) ≤ 𝑚𝑏(𝑥, 0) eşitsizlikleri sağlanır. Ayrıca 𝑇 dönüşümü her 𝑥 ∈ 𝑋\{3 +
1

2
} 

noktasında 𝑥-alt yörüngesel sürekli olduğundan Teorem 4.3.1’i kullanarak  𝑇 dönüşümünün 

bir sabit noktaya sahip olduğunu söyleyebiliriz.  
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Örnek 

 

                                                     ve bu küme üzerindeki 𝑚𝑏: 𝑋 × 𝑋 → [0,∞) dönüşümü ise  
 

aşağıdaki gibi tanımlansın. Bu durumda (𝑋,𝑚𝑏) ikilisi 𝑠 = 4 katsayısı ile bir 𝑀𝑏-tam                         

𝑀𝑏-metrik uzaydır: 

 

𝑚𝑏(𝑥, 𝑦) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 0 , 𝑥 = 𝑦 ∈ 𝑋\ {

1

2𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ}

min {𝑥, 𝑦} ,

𝑥 = 1 𝑣𝑒 𝑦 ∈ {
1

2𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ}

𝑣𝑒𝑦𝑎

𝑥 ∈ {
1

2𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ}  𝑣𝑒 𝑦 = 1

max {𝑥, 𝑦} , 𝑥, 𝑦 ∈ {
1

2𝑛
: 𝑛 > 1, 𝑛 ∈ ℕ}

1

2
,

𝑥 =
1

2𝑚 + 1
 𝑣𝑒 𝑦 =

1

2𝑛
: 𝑛 > 1,𝑚 ≥ 1, 𝑛,𝑚 ∈ ℕ

𝑣𝑒𝑦𝑎

𝑥 =
1

2𝑛
 𝑣𝑒 𝑦 =

1

2𝑚 + 1
: 𝑛 > 1,𝑚 ≥ 1, 𝑛,𝑚 ∈ ℕ

2 , 𝑑. 𝑑.

. 

 

Ancak  𝑚𝑏 dönüşümü bir 𝑀-metrik değildir. Gerçekten, 𝑥 = 1, 𝑦 =
1

2𝑛+1
 ve 𝑧 =

1

2𝑚
 alınırsa 

𝑀-metrik tanımının 𝑚4) özelliği sağlanmaz. Şimdi 𝑇: 𝑋 → 𝑋 ∪ C𝑏(𝑋) karma küme değerli 

dönüşümünü, 

 

𝑇𝑥 = {
{0} ∪ {

1

2𝑛 + 1
: 𝑛 ≥ 1, 𝑛 ∈ ℕ} , 𝑥 = 0

0 , 𝑑. 𝑑.

 

 

şeklinde tanımlarsak 𝑓(𝑥) = 𝑚𝑏(𝑥, 𝑇𝑥) dönüşümü 𝜏𝑚𝑏  topolojisine göre alt yarı süreklidir. 

Diğer taraftan |𝑇𝑥| = 1 veya |𝑇𝑥| > 1 olduğunda 𝑚𝑏(𝑥, 𝑇𝑥) > 0 olacak şekildeki her        

𝑥 ∈ 𝑋 için 𝑐 = 0,1 < 𝑘 = 0,5 eşitsizliğini sağlayan bir 𝑐, 𝑘 ∈ (0,1) ve 𝑦 = 0 ∈ 𝑇0,8
𝑥 (𝑚𝑏) 

var 𝑚𝑏(𝑦, 𝑇𝑦) ≤ 𝑐𝑚𝑏(𝑥, 𝑦) ile her 𝛼 ∈ (0,1) için 𝛼𝑚𝑏(0,0) ≤ 𝑚𝑏(𝑥, 0) eşitsizlikleri 

sağlanıyor olup 𝑇 dönüşümü |𝑇𝑥| = 1 olacak şekildeki her 𝑥 ∈ 𝑋 noktasında 𝑥-alt 

yörüngesel sürekli olduğundan Teorem 4.3.1’i kullanarak 𝑇 dönüşümünün bir sabit noktaya 

sahip olduğunu söyleyebiliriz.  

 

𝑋 = {0,1} ∪ {
1

𝑛
: 𝑛 > 2, 𝑛 ∈ ℕ} 



57 
 

5. SONUÇ VE ÖNERİLER 

 

İlk bölümde tek değerli ve küme değerli dönüşümler için sabit nokta teori uygulama 

alanlarıyla tanıtılarak önemine değinilmiş ve gelişiminin tarihsel süreci hakkında temel 

bilgilere yer verilmiştir.  

 

İkinci bölümde diğer bölümlerde yer alacak sonuçlarımıza hazırlık yapmak amacıyla temel 

tanım ve teoremlerimize yer verilmiştir.  

 

Üçüncü bölümde tek değerli dönüşümler için sabit nokta teoremlerine yer verilmiştir. Bunu 

yapmak için öncelikle 𝑀-metrik uzay üzerinde Caristi dönüşümü tanımlanmıştır. Ardından 

Caristi dönüşümleri ve bazı genelleştirilmiş Caristi dönüşümleri için sabit nokta teoremleri 

yardımıyla literatürdeki çalışmalar genişletilmiştir.  

 

Dördüncü bölümde küme değerli dönüşümler için sabit nokta teoremlerine yer verilmiştir. 

Öncelikle 𝑀-metrik uzaylar üzerinde farklı topolojik yapılar incelenmiştir. Ardından bu 

topolojiler dikkate alınarak bu topolojilere göre 𝑀-metrik uzaylar üzerinde tanımlı kapalı 

küme değerli dönüşümler için Feng-Liu tip sabit nokta teoremi elde edilmiştir. Daha sonra 

bu çalışmayı daha da genişletmek adına ℱ ve 𝑋’in belirli özelliklerine sahip altkümelerinin 

𝐴(𝑋) ailesi diğer taraftan ℱ∗ ve 𝐶𝑚(𝑋) ailesi birlikte dikkate alınarak küme değerli 

dönüşümler için iki yeni sabit nokta teoremi elde edilmiştir. Son olarak bu bölümde 

literatürde daha önce ortaya konmuş 𝑀𝑏-metrik uzay kavramı üzerinde var olan problem 

giderilerek yeniden tanımlanmış ve bu uzay üzerinde tanımlı karma küme değerli 

dönüşümler için Feng-Liu tip sabit nokta teoremi elde edilmiştir. 

 

Biz bu tez çalışmasında güncel kavramları literatürde var olan çalışmaları genişletecek 

şekilde ele aldık. Ancak, giriş kısmında belirttiğim çalışmalar dışında Banach Büzülme 

İlkesinin literatürde çok fazla genişlemesi bulunmaktadır. Bu bağlamda yakın zamanda 

tanımlanmış 𝑀-metrik uzay ve 𝑀𝑏-metrik uzay üzerinde elde edilecek yeni sonuçlar ile 

literatüre katkıda bulunulabilir.  
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