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OZET

Uygulanabilirliginden dolayr Banach Biiziilme ilkesi matematigin yan1 sira diger bilim
dallarinda da olduk¢a 6nemli bir yere sahiptir. Bu tez ¢alismasinda oncelikle tek degerli
doniisiimler, ardindan da kiime degerli doniisiimler i¢in bazi sabit nokta teoremleri verilerek
Banach Biiziilme Ilkesi literatiirde var olan ¢alismalardan farkli yonlerde genisletilmistir.
Bunun igin yakin zamanda tanimlanan M-metrik uzay tizerinde Caristi tipi biiziilme
donlisiimii tanimlanarak bu tek degerli doniisiimler ve bazi genellestirilmis Caristi tipi
dontigiimleri i¢in sabit nokta teoremleri ifade ve ispat edilmistir. Diger taraftan M-metrik
uzay lizerindeki topolojik yapilar incelenerek bu topolojilere gore kiime degerli doniisiimler
icin Feng-Liu tipi sabit nokta teoremi verilmistir. Calismamizi bir iist noktaya tasimak adina
Feng-Liu’nun tekniklerini kullanarak kiime degerli F-biiziilme doniisiimii i¢in iki yeni sabit
nokta teoremi elde edilmistir. Calismamizin sonunda M-metrik uzay kavrami genisletilerek
bu yeni uzayda tanimli karma kiime degerli doniisiimler i¢in bazi sabit nokta teoremleri
verilmistir. Ayrica her bir boliimde elde edilen sonuglar 6nemli 6rneklerle desteklenmistir.
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ABSTRACT
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mathematics because of its applicability. In this thesis, Banach contraction principle is
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some fixed point theorems are given for the mixed multivalued mapppings on this new space.
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SIMGELER VE KISALTMALAR

Bu ¢alismada kullanilmis simgeler agiklamalari ile birlikte asagida sunulmustur.

Simgeler Aciklamalar
P(X) X’in biitlin alt kiimelerinin ailesi
c(X) X’in kapal1 biitiin alt kiimelerinin ailesi
CB(X) X’in kapal1 ve sinirl biitiin alt kiimelerinin ailesi
Tin M-metrigin tirettigi topoloji
T Dizisel topoloji
T, M,y -metrigin iirettigi topoloji
Cn(X) T, € gore X in biitlin kapali alt kiimelerinin ailesi
C,(X) T¢'e gore X’in biitiin kapali alt kiimelerinin ailesi
Pm M-metrik tarafindan iiretilen kismi metrik
d,. pm kismi metrik tarafindan {iretilen metrik
Am T topolojisine goére A € X nin kapanist
As T, topolojisine gore A € X nin kapanist
N Dogal sayilar kiimesi
R Reel sayilar kiimesi
limsup x,, (x,) € R dizisinin tst limiti
n—oo
liminf x,, (x,) € R dizisinin alt limiti

n—-oo



1. GIRIS

X bostan farkli bir kiime ve T:X — X bir doniisiim olsun. Bu durumda Tx = x olacak
sekildeki x € X noktasi T doniisiimiiniin bir sabit noktasi olarak adlandirilir. Diger taraftan
T kiime degerli bir doniisiim ise yani, P(X) ailesi X’in bostan farkli biitiin altkiimelerinin
ailesi olmak tizere T: X — P(X) olacak sekildeki T doniisiimii icin x € Tx olacak sekildeki
X € X noktas1 T doniisiimiiniin sabit noktas1 olarak adlandirilir. Lineer olmayan bir integral
denklemin veya birinci mertebeden periyodik bir diferensiyel denklemin ¢oziimlerinin
varhigini gésterirken sabit nokta teorisi kullanildigi gibi stratejik oyunlarda Nash dengesinin
varlig i¢in gerekli durumlarin hesaplanmasinda da sabit nokta teoriden faydalanilabilir. Bu
nedenle sabit nokta teori matematigin yani sira diger alanlarda da 6nemli uygulama ve
caligma alanlarina sahiptir. Bu anlamda en iyi bilinen ve metrik uzaylarda sabit nokta

teorinin baslangici olarak kabul edilen sonu¢ Banach Biiziilme ilkesidir:

(X, d) bir metrik uzay ve T: X — X herhangi bir doniistim olsun. Eger her x,y € X igin
d(Tx,Ty) < kd(x,y)

olacak sekilde bir k € [0,1) var ise T doniisiimiine bir biiziilme dénitisiimii denir.

Banach, 1922 yilinda tam metrik uzaylar {izerinde tanimli her biiziilme doniisiimiiniin bir tek
sabit noktaya sahip oldugunu gostermistir[1]. Ardindan ¢ok sayida bilim insan1 tarafindan
bu ilkenin birgok genellestirmesi ifade edilmistir[2-6]. Bu kimi zaman ¢ok c¢esitli
genellestirilmis metrik uzaylar kimi zaman da farkli tipte biiziilme doniistimleri ile
saglanmistir. Bu baglamda Caristi tarafindan tanimlanan Caristi doniisiimii ile Banach
biliziilme ilkesini genisleten ve sabit nokta teori i¢in ¢ok 6nemli sonucglardan biri elde
edilmistir[7]. Ran ve Reuring, kismi sirali metrik uzay kavramini tanimlayarak biiziilme
doniistimii tizerindeki kosulu zayiflatmis ve sonuglarini matris denklemlere uygulamiglardir
[8]. Diger taraftan Wardowski belirli 6zelliklere sahip F:(0,00) - R fonksiyonlarini
kullanarak F-biiziilme doniisiimiinii tanimlamis ve bu doniisiim ile yeni bir sabit nokta
teoremi ispatlamistir. Bu F fonksiyonlarinin F ailesini tanimlamis boylece Banach biiziilme
ilkesi de dahil olmak {izere literatiirde iyi bilinen biiziilmeleri elde etmistir[9]. Son

zamanlarda standart metrik uzaylar, M-metrik uzaylar ve hatta M,-metrik uzaylara



genisletilerek bu uzaylarda tek degerli dontigiimler i¢in bazi sabit nokta teoremleri elde
edilmistir[10-13]. Tek degerli doniisiimler i¢in yapilan bu ¢alismalar disinda ilk olarak 1941
yilinda Kakutani tarafindan sonlu boyutlu Banach uzaylarinda kiime degerli doniisiimler i¢in
sabit nokta teorisi ¢alisilmistir[14]. Ardindan bu ¢alisma 1950 y1linda Bohnenblust ve Karlin
tarafindan sonsuz boyutlu Banach uzaylarina genisletilmistir[15]. Metrik uzaylarda ise kiime
degerli doniisiimler i¢in sabit nokta teorisinin ilk ¢alismasi1 Nadler tarafindan kiime degerli
biiziilme doniigiimii tanimu verilerek yapilmustir. (X, d) bir metrik uzay ve CB(X), X nin

biitiin kapali ve sinirl altkiimelerinin ailesi olmak tizere her A, B € CB(X) igin,

H: CB(X) X CB(X) — [0,), H(A,B) = max {sup d(x,B), sup d(y,A)}
XEA YEB

seklinde tanimlanan dontisim Hausdorff metrigi olarak adlandirilir. T: X — CB(X) kiime
degerli bir doniisiim olmak tizere eger her x,y € X i¢in, H(Tx,Ty) < Ad(x,y) olacak
sekilde 0 < A < 1 varise T ye kiime degerli biiziilme doniisiimii denir. Nadler, 1969 yilinda
tam metrik uzaylar lizerinde tanimli her kiime degerli biiziilme doniistimiiniin bir sabit
noktaya sahip oldugunu gostermistir[16]. Nadler’in ardindan Reich, 6nce X’in bostan farkli
kompakt altkiimeleri olan K (X) ailesi ve k: (0, 00) — [0,1) seklinde tanimli her t € (0, o)

icin limsup k(r) < 1 6zelligine sahip k fonksiyonunu g6z Oniine alarak x # y olacak

rott
sekildeki her x,y € X icin H(Tx,Ty) < k(d(x,y))d(x,y) esitsizligini saglayan
T:X - K(X) donisiimiiniin sabit noktasinin varligini géstermis ardindan K (X) ailesi yerine
CB(X) alindiginda ayni esitsizligi saglayan T doniislimii i¢in sonucun gegerli olup

olmadigini incelemistir. Mizoguchi ve Takahashi ise her t € [0, o) i¢in limsup k(r) < 1

rott
kosulu altinda Reich’in sorusuna pozitif cevap vermistir [17-19]. Ancak Feng ve Liu,
Nadler’in sonucunu Hausdorff metrigi kullanmadan literatiirdeki diger ¢alismalardan ¢ok

farkl1 bir yonde genisletmislerdir [20].

Bu tez c¢alismasinda oOncelikle M-metrik uzaylari tizerinde Caristi dondsiimleri
tanimlanmistir. Ardindan bu doniistimler ve bazi genellestirilmis Caristi tipi doniistimler i¢in
sabit nokta teoremleri elde edilmis, boylece literatiirde var olan ¢calismalar genisletilmistir.
Ayrica, M-metrik uzaylar1 iizerinde tanimli kiime degerli doniistimler ve kiime degerli
F-biiziilme doniistimleri i¢in bazi Feng-Liu tipi sabit nokta teoremleri verilmistir. Sonrasinda
ise My-metrik uzay kavrami tanimlanarak bu uzay iizerinde tanimli karma kiime degerli

donisiimler i¢in bazi sabit nokta teoremleri elde edilmistir.



2. TEMEL TANIM VE TEOREMLER

Bu boliimde ¢alismanin ilerleyen kisimlarinda kullanacagimiz temel tanim ve teoremlere yer

verilmistir.
2.1. Temel Tanimlar
2.1.1. Tanim[10]

X # @ bir kiime olmak tizere m: X X X — [0, o) fonksiyonu eger her x,y, z € X i¢in,

ml) m(x,y) = m(x,x) =m(y,y) ©x =y
m2) my, = min{m(x, x),m(y,y)} < m(x,y)
m3) m(x,y) = m(y,x)

m4) m(x, :V)_mxy =< (m(x’ Z)_mxz) + (m(y' Z)_myz)

sartlarin1 sagliyorsa bu dontisime X tizerinde bir M-metrik denir ve (X, m) ikilisine de
M-metrik uzay denir. Tanimdan agiktir ki her standart metrik uzay ve her kismi metrik uzay

bir M-metrik uzaydir. Ancak tersi her zaman dogru degildir.
2.1.2. Tanim
(X, m) bir M-metrik uzay, (x,) € X bir dizi ve x € X olmak lizere,

i) (x,) dizisinin x noktasmma M-yakinsak olmasi ic¢in gerek ve yeter kosul
lim m(xy,, x) —m,_, = 0 olmasidir.
n—->oco
ii) Eger (x,) dizisi i¢gin lim m(x,, x,,,) var ve sonlu ise bu diziye M-Cauchy dizisidir
n,m-—oo
denir.

iii) Eger (X,m) uzaymnda her M-Cauchy dizisi bir x € X noktasina M-yakinsak ve

lim m(x,, x,,) = m(x, x) ise bu uzaya M-tamdir denir.
n,m—oo



2.1.3. Tamim[7]
(X, d) bir metrik uzay ve T: X — X bir doniistim olsun. Eger her x € X i¢in,
d(x, Tx) < p(x) — @(Tx)

olacak sekilde alt yar1 siirekli bir ¢: X — [0, ) fonksiyonu varsa T’ye Caristi doniisiimii

denir.

2.1.4. Tamim[21, 22]

(X, d) bir metrik uzay olsun. Bu durumda C (X), X nin biitiin kapali altkiimelerinin ailesi ve

CB(X) ise X nin biitiin kapal1 ve smirl1 altkiimelerinin ailesi olmak {izere her A, B € C(X)

igin, H(A, B) = max {sup d(x,B), supd(y,A) } seklinde tanimlanan
X€EA YEB

H: C(X) X C(X) — [0, ) doniisiimii Hausdorft uzaklig1 olarak adlandirilir. Burada eger

H doniistimii CB (X) lizerinde tanimlanirsa bir metrik ifade eder.
2.1.5. Tanim

X,Y bostan farkli kiimeler ve T:X = Y bir donilisim olsun. Bu durumda X’in her

elemanini Y’ nin bir elemanina esleyen T doniisiimiine tek degerli doniisiim denir.
2.1.6. Tanim

X bostan fakli bir kiime ve T: X — X tek degerli bir doniisiim olsun. Bu durumda Tx = x

olacak sekildeki x € X noktasina T doniisiimiiniin sabit noktas1 denir.
2.1.7. Tanim
X,Y bostan farkli kiimeler olsun. Bu durumda X’in her elemanini Y’ nin bir alt kiimesine

esleyen T doniigiimiine kiime degerli doniisiim denir ve T: X — P(Y) seklinde gosterilir.

Burada P(Y), Y nin biitiin alt kiimelerinin ailesidir.



2.1.8. Tanim

X bostan fakli bir kiime ve T: X — P(X) kiime degerli bir doniisim olsun. Bu durumda

x € Tx olacak sekildeki x € X noktasina T doniisiimiiniin sabit noktas1 denir.
2.1.9. Tanim[23]

X, Y bostan fakli kiimeler olmak {izere X in her bir elemanini ya Y nin bir eleman1 ya da
Y’nin bir alt kiimesi ile esleyen doniisiime, yani hem tek degerli hem de kiime degerli bir
doniisiime karma kiime degerli bir doniisiimdiir denir ve T:X — Y U P(Y) seklinde

gosterilir.
2.1.10. Tanim

X bir topolojik uzay, f: X — R bir fonksiyon ve x, € X olsun. Bu durumda eger,
f(x0) < sup inf f(x) = liminf f(x)
VEUy, xev X—Xg

oluyorsa f fonksiyonuna x, noktasinda alt yari siirekli bir fonksiyon ve eger,

nf sup f(x) = limsup f(x) < f(x,)

i
VEUxy xev X-xg

oluyorsa f fonksiyonuna x, noktasinda iist yari siirekli bir fonksiyon denir. Eger f
fonksiyonu her x € X noktasinda alt yar1 siirekli(iist yart siirekli) ise bu durumda f

fonksiyonuna alt yari siireklidir(iist yar1 stireklidir) denir.
2.1.11. Tamim

X bir topolojik uzay, f: X — R bir fonksiyon ve x, € X olsun. Bu durumda x,, = x, olacak

sekildeki her (x,) € X dizisi i¢in f(xg) < liminf f(x,,) ise f fonksiyonuna x, noktasinda
n—->oo

alt yar1 siirekli bir fonksiyon denir. Eger f fonksiyonu her x € X noktasinda alt yar1 siirekli

ise bu durumda f fonksiyonuna alt yar1 stireklidir denir.



2.2. Temel Teoremler

2.2.1. Teorem (Banach Biiziilme ilkesi)

(X, d) bir tam metrik uzay ve T: X — X bir doniisiim olsun. Eger her x,y € X i¢in,

d(Tx,Ty) < kd(x,y)

esitsizligini saglayacak sekilde bir k € [0,1) var ise bu doniisiim X de bir tek sabit noktaya
sahiptir. Ayrica her x, € X baslangi¢ noktasi i¢in (f™(x,)) dizisi bu sabit noktaya yakinsar.

2.2.2. Teorem

X bir topolojik uzay, f: X = R bir fonksiyon olsun. Bu durumda f fonksiyonunun alt yari
siirekli olmasi igin gerek ve yeter sart her a € R i¢in f~1((—,a]) = {x € X: f(x) < a}
kiimesinin kapali olmasidir.

2.2.1. Lemma

(X, p) bir kismi metrik uzay olmak lizere d,,: X X X — [0, c0) doniistimii her x, y € X i¢in,

d,(x,y) = 2p(x,y) —p(x,x) —p(y,¥)

seklinde tanimlansin. Bu durumda d,, doniisiimii X {izerinde bir metrik olup (X, d,) iKilisi

standart metrik uzaydir.

2.2.2. Lemma

(X, m) bir M-metrik uzay ve M,, = max{m(x, x), m(y,y)} seklinde tanimlanmak iizere her

x,y € X i¢in,

pm(X,}/) = m(x:y) — Myy + Mxy

Ve



dp,,(x,y) = 2(m(x,y) = myy) + (Myy — )

seklinde tammlanan pp,, d, :X XX — [0,00) doniisiimleri X {izerinde sirasiyla kismi

metrik ve standart metriktir.

2.2.3. Lemma[24, 25]

(X, m) bir M-metrik uzay ve (x,) S X bir dizi olsun. O zaman,

i) (xy) dizisi (X, pp,) kismi metrik uzayinda bir Cauchy dizisidir gerek ve yeter sart (X, d,, )
uzayinda bir Cauchy dizisidir.

i) (X,pm) tam kismi metrik uzaydir gerek ve yeter sart (X,d, ) tam standart metrik
uzaydir.

ifadeleri dogrudur.

2.2.4. Lemma

(X, m) bir M-metrik uzay ve (x,) € X bir dizi olsun. O zaman,

) (xp,) dizisi (X, m) M-metrik uzayimnda bir M-Cauchy dizisidir gerek ve yeter sart (X, d, )
uzayinda bir Cauchy dizisidir.

i) (X, m) M-tam M-metrik uzaydir gerek ve yeter sart (X, d,, ) tam standart metrik uzaydir.

ifadeleri dogrudur.
fspat

i) (x,,) € X bir M-Cauchy dizisi olsun. Bu durumda llicm m(x,, x;) = a olacak sekilde
n,k—oo

bir « € R sayis1 var olup buradan lim m(x,, x,,) = a elde edilir. O halde,
n—->oo
nlli(r_r)loodpm(xnl Xi) = z(m(xn» Xi) — mxnxk) + (Mxnxk - mxnxk) =0
olur ki buradan (x,,) € X, (X,d,_) uzayinda bir Cauchy dizisidir. $imdi aksini kabul

edelim. Yani, (x,) € X, (X,d,, ) uzaymda bir Cauchy dizisi olsun. Bu durumda ¢ = 1

i¢in n, k = n, oldugundan d,, (xn,x;) < 1 olacak sekilde ny € N sayis1 vardir. Buna



gore,

M(Xp, Xp) = M(Xn, Xp) — m(an; xno) + m(xno' xno)
< |m(xn, Xp) — m(xno,xn0)| + m(xno,xno)
= Mxnxno o mxnxno + m(xno’ xno)

S dpm (xn’ xno) + m(xno’ xno)

<1+ m(xp,,%n,)

oldugundan (m(xn, xn)), R de sinirlt bir dizidir. O halde Ilim (m (xnk, xnk)) = a olacak

sekilde a € Rsayis1 ve (m(xnk,xnk)) alt dizisi vardir. Diger taraftan (x,) S X,

(X , dpm) uzayinda bir Cauchy dizisi oldugundan bir € > 0 i¢in n, k > n, oldugunda,
Im(xn, x7) — m(xp, )| < dpy, (X, %) < €

olacak sekilde n,; dogal sayis1 vardir. Bu ylizden (m(xn,xn)), R de bir Cauchy dizisi

olup
711_)1’{)10 M (X, Xp) = n,llir_r)loomxnxk = lim My, 2, = @
elde edilir. Simdi,

ImQep, xx) —al < |(m(xn: Xk) — mxnxk) + (Mxnxk - mxnxk)l

+|2mxnxk - Mxnxk - al
= |2(m(xn’ xk) - mxnxk) + (Mxnxk - mxnxk)|
+|2mxnxk - Mxnxk - al

=d, (xnx) + |2mxnxk — My, x, — a|

elde edilir ki buradan llim m(x,, x;) = a Yyazabiliriz. Bu ise (x,,) dizisinin (X, m)
n,k—oo

M-metrik uzayinda bir M-Cauchy dizisi oldugunu gosterir.



i) (X,m) M-tam M-metrik uzay ve (x,) € X, (X,d,_) uzaynda bir Cauchy dizisi olsun.
Bu durumda i) den (x,) dizisinin (X, m) M-metrik uzayinda bir M-Cauchy dizisi
oldugunu soyleyebiliriz. (X, m) M-tam M-metrik uzay oldugundan,

lim m(xp, x) —my , =0
n—-oo

ve

lim m(x,, x,) = m(x, x)
n,m—oo

olacak sekilde x € X vardir. Buna gore,
lim dy,, (o, %) = Tlli_r)IJOZ(m(xn, X) =My x) + (My,x — My ) =0

elde edilir ki buise (X, d, ) uzayinin tam metrik uzay oldugunu gosterir. Simdi ise kabul
edelim ki (X, d, ) uzay: tam metrik uzay ve (x,) € X bir M-Cauchy dizisi olsun. Bu
durumda i) den (x,) dizisinin (X,d, ) uzayinda bir Cauchy dizisi oldugunu

soyleyebiliriz ve bu yiizden 1&1_1)1010 dp, (xn,x) = 0 olacak sekilde bir x € X vardir. O halde

7lir{}oZ(m(x,,L, x) — mxnx) + (Mxnx - mxnx) = 0 oldugundan,
iirg)Z(m(xn, X) — mxnx) =0ve ,lirf}o(Mxnx - mxnx) =0

yazabiliriz. Ispat: tamamlamak igin lim m(x,, x,) = m(x, x) oldugunu gdstermemiz
n,m—oco

yeterlidir. Yukarida gosterdik ki lim (Mxnx — mxnx) =0 esitligi vardir. Buradan
n—->oo
lim m(x,, x,) = m(x,x) elde edilir. Ayn1 zamanda (x,) € X bir M-Cauchy dizisi
n—-oo
oldugundan lim m(x,, x,;,) = m(x,x) yazilabilir. Boylece (X, m) uzayinin M-tam
n,m—-oo

M-metrik uzay oldugunu gostermis oluruz.
2.2.1.Sonug

(X, m) bir M-metrik uzay ve (x,,) S X bir dizi olsun. O zaman,

i) (x,) dizisi (X, m) M-metrik uzayinda bir M-Cauchy dizisidir gerek ve yeter sart (X, p,,)
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kismi metrik uzayinda bir Cauchy dizisidir.
ii) (X, m) M-tam M-metrik uzaydir gerek ve yeter sart (X, p,,) tam kismi metrik uzaydir.

ifadeleri dogrudur.
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3. TEK DEGERLI DONUSUMLER ICIN SABIT NOKTA
TEOREMLERI

Bu boéliimde 6ncelikle M-metrik uzaylarda Caristi tip biiziilme doniisiimii tanimlandi ve daha
sonra ise M-metrik uzaylarda Caristi tip sabit nokta teoremleri bazi1 genellestirmeleri ile ifade

ve ispat edilmistir.
3.1. M-Metrik Uzaylarda Caristi Tip Sabit Nokta Teoremleri

Banach sabit nokta teoremini literatlirde var olan ¢alismalardan farkli bir sekilde genisleten

ve Caristi tarafindan verilen asagidaki sabit nokta teoremi ile bu boliime baglayalim [7]:
3.1.1. Teorem

(X, d) tam metrik uzay ve T: X — X bir doniisiim olsun. Eger 6yle bir ¢: X — [0, o) alt yari

stirekli fonksiyonu var ve her x € X ig¢in,
d(x,Tx) < ¢(x) — ¢(Tx) (3.1)
esitsizligi saglaniyor ise T doniisiimii X de bir sabit noktaya sahiptir.

Bae [26] ve Suzuki [27]’nin ¢alismalarinda oldugu gibi literatiirde Caristi’nin ¢aligmasini
genisletmekle ilgilenen birgok bilim insan1 bulunmaktadir [28, 29]. Acar ve arkadaslari [30]
Caristi tip sabit nokta teoremini kismi metrik uzaylarda asagidaki sekilde ispatlamiglardir.
Dikkat edilmelidir ki onlar bunu yaparken p kismi metrigi sadece standart metrik oldugunda

dogru olan Es. 3.1°1 Es. 3.2 ile degistirmislerdir:
3.1.2. Teorem

(X, p) tam kismi metrik uzay, T: X — X bir doniistim olsun. Eger (X, d,) uzayinda alt yar

stirekli bir ¢: X — [0, o) fonksiyonu var ve her x € X i¢in,

p(x,Tx) < p(x,x) + p(x) — @(Tx) (3.2)

esitsizligi saglaniyor ise T donilisiimii X’de bir sabit noktaya sahiptir.
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Yakin zamanda Abodayeh ve arkadaslar1 [31] Caristi tip sabit nokta teoremini M-metrik
uzaylarda verebilmek igin Caristi’nin esitsizliginin M-metrik uzaylardaki versiyonu olarak

Es. 3.371 diisiindiiler ve asagidaki Teorem 3.1.3’i ifade ettiler.

3.1.3. Teorem

(X,m) tam M-metrik uzay ve T:X — X bir donlisim olsun. Eger alt yar1 siirekli bir

@: X — [0, ) fonksiyonu var ve her x € X igin,

m(x, Tx) < My, + @(x) — @(Tx) (3.3)

esitsizligi saglaniyor ise T donilisiimii X’de bir sabit noktaya sahiptir.

Ancak asagidaki 6rnek bu sonucun uygun genisleme olmadigini géstermektedir. Bu 6rnekte
T dontistimii Teorem 3.1.3’{in biitiin hipotezlerini saglamasina ragmen bir sabit noktaya

sahip degildir.

Ornek

X =[0,) ve bu kiime tizerindeki m: X X X - [0, ) metrigi
m(x,y) = min{x, y} seklinde tanimlansin. Bu durumda (X, m) M-tam M-metrik uzaydir.
(Dikkat edilmelidir ki bu uzayda her (x,) dizisi her noktaya M-yakinsaktir). Eger biz
T:X — X donligiimiinii her x € X icin Tx = x + 1 ve ¢: X — [0, 0) doniisiimiini her x € X
icin @ (x) = ¢ (c > 0 sabit) seklinde tanimlarsak ¢, T, topolojisine gore alt yari siirekli ve

T doniistimii Es. 3.3°1 saglar. Ancak T doniisiimii bir sabit noktaya sahip degildir.

Bu problemi gidermek i¢in Caristi’nin esitsizliginin M-metrik uzaylardaki versiyonu olarak
iki yeni esitsizligi tanimladik ve bdylece bu esitsizlikleri dikkate alarak Caristi sabit nokta

teoremini M-metrik uzaylara uygun sekilde genislettik:

m(x, Tx) — Myry + My, < m(x,x) + p(x) — @(Tx) (3.4)
ve
max{m(x,Tx), m(Tx,Tx)} < myr, + @(x) — @(Tx) (3.5)
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3.1.1. Tanim

(X, m) bir M-metrik uzay ve T: X — X bir doniisiim olsun. Eger Tq, topolojisine gore alt

yari siirekli bir ¢: X — [0, 00) fonksiyonu var ve her x € X icin Es. 3.4 saglaniyor ise bu

durumda T’ye tip-(I) Caristi doniisiimii denir.
3.1.4. Teorem

(X, m) M-tam M-metrik uzay1 {izerinde tanimli her tip-(I) Caristi doniisimii bu uzayda bir

sabit noktaya sahiptir.
fspat

T doniisiimii tip-(I) Caristi doniistimii oldugundan pomtopolojisine gore alt yar siirekli bir

@: X = [0, ) fonksiyonu var ve her x € X igin,

m(x, Tx) — Myry + Myrx < m(x, %) + @(x) — ¢(Tx)
esitsizligi saglanir. Bu durumda her x € X i¢in,

Pm (%, Tx) < pm(x, %) + @ (x) — (Tx)

elde edilir. Diger taraftan Sonug¢ 2.2.1’den (X, p,,) tam kismi metrik uzaydir. O halde

Teorem 3.1.2’yi kullanarak T doniistimiiniin bir sabit noktaya sahip oldugunu sdyleyebiliriz.
3.1.2. Tamim

(X, m) bir M-metrik uzay ve T: X — X bir doniisiim olsun. Eger Ta,, topolojisine gore alt

yari siirekli bir ¢: X — [0, o) fonksiyonu var ve her x € X i¢in Es. 3.5 saglaniyor ise bu

durumda T’ye tip-(II) Caristi donligiimii denir.
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3.1.5. Teorem

(X, m) M-tam M-metrik uzay1 tizerinde tanimli her tip-(II) Caristi doniisimii bu uzayda bir

sabit noktaya sahiptir.
fspat

(X, m) M-tam M-metrik uzay1 oldugundan Sonug¢ 2.2.1’den (X,p,,) tam kismi metrik
uzaydir. T doniisiimii tip-(II) Caristi doniisiimii oldugundan pomtopolojisine gore alt yar1

stirekli bir ¢: X — [0, o) fonksiyonu var ve her x € X igin,
max{m(x,Tx), m(Tx,Tx)} < Myr, + @(x) — (Tx)
esitsizligi saglanir. Buna gore iki durum s6z konusudur:

a) Eger Myr, = m(Tx, Tx) ise,

m(x,Tx) < Myry + @(x) — @(Tx)
ve

My, = m(Txr Tx) < Myry + ¢(x) - ‘p(Tx)

elde edilir. Bu iki esitsizlik taraf tarafa toplanirsa,

m(x, Tx) + Myry < 2myry + 20(x) — 2¢0(Tx)
= My + M(x,x) + 2¢0(x) — 2¢0(Tx)

ve boylece

m(x, Tx) — Myry + My, < m(x,x) + 2¢0(x) — 2¢0(Tx)

olur. Buradan ise

Pm (%, Tx) < pim(x,X) + 290 (x) — 2¢0(Tx)

esitsizligi elde edilir.
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b) Eger M,.r,, = m(x,x) ise Es. 3.5°den ¢ (x) — ¢(Tx) = 0 olup

m(x, Tx) — Myrx + Myrx < @(x) — @(Tx) + Myry
=m(x,x) + ¢(x) — ¢(Tx)
<m(x,x) + 2¢(x) — 2¢(Tx)

olup buradan

Pm (%, Tx) < P (x, x) + 2¢(x) — 2¢0(Tx)

esitsizligi elde edilir. Simdi 8: X — [0, ) donlisimiini her x € X i¢in B(x) = 2¢(x)
olacak sekilde tanimlayalim. Bu durumda £, Ta, topolojisine gore alt yari siirekli bir

fonksiyon olur. (X, p,;,) tam kismi metrik uzay olup ve T doniisiimii a) ve b) durumlarinin

her ikisinde de her x € X i¢in,

Pm (%, Tx) < pim(x,x) + B(x) = B(Tx)

esitsizligini sagladigindan X de bir sabit noktaya sahiptir.

Burada Caristi esitsizliginin M-metrik uzaylardaki versiyonu i¢in onerdigimiz iki esitsizlik
eger cakisirlarsa Teorem 3.1.4 ile Teorem 3.1.5 ayni seyi ifade edecektir. Bu nedenle
asagidaki ornekler, Es. 3.5’in Es. 3.4’den kesinlikle daha genel oldugunu gostermesi

bakimindan dnemlidir.

Ornek

+
X =[0,1]U {2} ve m: X X X — [0, c0)déntistimii  m(x,y) = % olarak tanimlansin. Bu

durumda Ta,, topolojisi reel sayilar iizerindeki alisilmis topoloji ile cakistigindan ve X € R

kapali oldugundan (X, d,, ) tam metrik uzaydir. O halde Lemma 2.2.4’den (X, m) M-tam

M-metrik uzaydir. Simdi T: X — X ve ¢: X — [0, 00) doniigiimlerini her x € X i¢in sirasiyla,

, x=1
Tx =
x d.d.

Ve
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, x=0

1
— , X*0vex+#2
X

, X=2

seklinde tanimlayalim. O halde ¢ doniistimii Ta, topolojisine gore alt yar1 siirekli bir

fonksiyon ve T dontisimii Es. 3.5°1 saglar. Dikkat edilmelidir ki T doniisimi Es. 3.4°1

saglamaz. Gergekten, x = 1 igin Tx = 2 olup,

m(x, Tx) — Myryx + Myre < m(x,x) + @(x) — @(Tx)

3
S=1+2<1+9(1) - 9@

3$3 7
2 4

elde edilir. Bu nedenle bu 6rnek i¢in Teorem 3.1.5°i kullanabilirken Teorem 3.1.4°u

kullanamayiz.
Ornek

X =[0,0) ve m:X XX — [0,00), m(x,y) = |x —y| + min{x, y} olarak tanimlansin. Bu
durumda Ta,, topolojisi reel sayilar tizerindeki alisilmis topoloji ile cakistigindan ve X € R
kapali oldugundan (X, d,, ) tam standart metrik uzaydir. O halde Lemma 2.2.4’den (X, m)
M-tam M-metrik uzaydir. Simdi T:X — X doniisiimii her x € X igin Tx =+/x ve

@: X — [0, 00) donilisimii

0o , x=0
1

px) = -, 0<x<1
x d.d.

seklinde tanimlansin. O halde ¢ doniisiimii Ta,, topolojisine gore alt yar1 siirekli bir

fonksiyon ve T doniisiimii Es. 3.5’1 saglar. Ancak 3\/% < x < 1 araligindaki x noktalari i¢in

Es. 3.4 saglanmaz. Bu yiizden T doniisiimii bir sabit noktaya sahip oldugunu sdyleyebilmek

icin Teorem 3.1.5°1 kullanabilirken Teorem 3.1.4’1 kullanamayiz.
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3.2. Caristi Sabit Nokta Teoreminin M-Metrik Uzaylardaki Bazi1 Genellestirmeleri

Daha once literatiirde Bae, Suzuki veya Acar ve arkadaslarinin ¢alismalarinda oldugu gibi
Caristi tip sabit nokta teoreminin birgok genellestirmesi bulundugunu belirtmistik [26, 27,

32]. Bu boliimde ise onlarin sonuglari M-metrik uzaylarda ifade ve ispat edilmistir.
3.2.1. Teorem

(X, m) M-tam M-metrik uzay ve ¢:X — [0,0), 74, topolojisine gore alt yar1 siirekli ve
Y: X — [0,0) bir u > 0 sayisi igin sirastyla asagidaki esitsizlikleri saglayan fonksiyonlar

olsunlar:

m(x,y) =m(y,y) = @) < ¢(x) (3.6)
ve

sup {w(x):x €X,p(x) < yig§¢(y) +u} < oo,

Eger T: X - X doniisiimii her x € X igin,

max{m(x,Tx), m(Tx,Tx)} < myr, + P){p(x) — @ (Tx)} (3.7)
esitsizligini sagliyor ise X de bir sabit noktaya sahiptir.

fspat

Eger ¥ (x) > 0ise Es. 3.7°den @(Tx) < ¢(x) olur. Simdi kabul edelim ki 1 (x) = 0 olsun.
Bu durumda m(x, Tx) = m(Tx, Tx) olup Es. 3.6’dan ¢(Tx) < ¢(x) elde edilir. O halde
her x € X i¢in ¢ (Tx) < ¢(x) esitsizligi saglanir. Simdi u > 0 sayis1 igin Y kiimesini ve y

reel sayisin1 asagidaki sekilde tanimlayalim:

Y = {x €EX: ¢p(x) < inf p(y) +,u}
yeX
ve

y = supyp(w).

wEY
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(X,m) M-tam M-metrik uzay oldugundan ve Lemma 2.2.4°den (X,d, ) tam metrik
uzaydir. Bunun yaninda ¢, Ta, topolojisine gore alt yar1 siirekli oldugundan
Y, X’intg, topolojisine gore kapali bir alt kiimesidir. Bu yiizden (Y, dj, ) tam metrik uzay

olup (Y, m) M-tam M-metrik uzaydir. Diger taraftan infimum tanimindan dolay1 Y kiimesi
bostan farklidir. Her x € X i¢in ¢ (Tx) < ¢(x) oldugundan T (Y) € Y dir. Ayricaherx € Y

i¢in,

max{m(x, Tx), m(Tx, Tx)} < myr, + P {p(x) — @(Tx)}
= max{m(x,Tx), m(Tx,Tx)} < myr, + y{p(x) — @(Tx)}

olup eger her x €Y igin ¢:Y — [0,00) fonksiyonu ¢(x) = ye(x) olarak tanimlanirsa

¢ doniistimii Ta, topolojisine gore alt yar siireklidir. Buna gore T:Y — Y doniistimii her

x €Y igin,
max{m(x, Tx), m(Tx,Tx)} < Myr, + p(x) — p(Tx)

esitsizligini sagladigindan Teorem 3.1.5’1 kullanarak T doniisiimiiniin bir sabit noktaya sahip

oldugunu soyleyebiliriz.
Uyari

Eger m bir standart metrik ise Es. 3.6 otomatik olarak saglanir. Boylece [27]’deki Teorem 2

bizim ¢alismamizin 6zel bir hali olur.
3.2.2. Teorem

(X,m) M-tam M-metrik uzay, ¢:X — [0,0) fonksiyonu Es. 3.6’y1 saglayan Ta,
topolojisine gore alt yari siirekli ve c¢: [0, 00) — [0, ) iist yar siirekli bir fonksiyon olsun.

Eger T: X - X donlistimii her x € X i¢in,

max{m(x,Tx), m(Tx,Tx)} < Myr, + max{c(q)(x)), c((p(Tx))}{(p(x) —@(Tx)}

esitsizligini sagliyor ise X de bir sabit noktaya sahiptir.
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fspat

Kabul edelim ki y > ¢ ( inf (p(W)) ve inf @(w) = t, olsun. Hipotezden c {ist yar1 siirekli
wEeX wEeX

bir fonksiyon oldugundan t € [t,, t, + 1] oldugunda c(t) < y + u olacak sekilde bir 4 > 0
sayisit vardir. Teorem 3.2.1in ispatinda oldugu gibi her x € X i¢in ¢ (Tx) < ¢(x) oldugu
gosterilebilir. Diger taraftan eger biz y:X — [0,00) fonksiyonunu her x € X igin
Y(x) = max{c(fp(x)),c(go(Tx))} seklinde tanimlarsak ¢@(x) < t, + 1 olacak sekildeki
her x € X i¢in ¢ (Tx) < ty + p olup buradan ¥ (x) < y + u elde edilir. Bu durumda agik¢a
goriilebilir ki sup {zp(x): x€X, plx) < ;rel)f( p(y) + u} <y+u<oo dir. O halde

Teorem 3.2.1°1 kullanarak T doniisiimiiniin bir sabit noktaya sahip oldugunu sdyleyebiliriz.
3.2.3. Teorem

(X,m) M-tam M-metrik uzay ve ¢:X — [0,c0) fonksiyonu Es. 3.6’y1 saglayan 74,
topolojisine alt yar1 siirekli ve c:[0,00) = [0,00) azalmayan bir fonksiyon olsun. Eger

T:X — X doniisimii her x € X i¢in,

max{m(x,Tx),m(Tx,Tx)} < Myr, + c(<p(x)){<p(x) — @(Tx)} (3.8)
veya
max{m(x, Tx), m(Tx,Tx)} < myr, + c(o(Tx)){p(x) — ¢(Tx)} (3.9)

esitsizligini sagliyor ise X’de bir sabit noktaya sahiptir.
fSpat

Teorem 3.2.1’in ispatinda oldugu gibi her x € X i¢in ¢(Tx) < ¢(x) oldugu gosterilebilir.
Hipotezden ¢ doniisiimii azalmayan oldugundan c((p(Tx)) < c(tp(x))’dir. Bu nedenle
burada T donisimi i¢in Es. 3.8 1 arastirmamiz yeterlidir. Eger ¥:X — [0, o)

fonksiyonunu her  x € X igin (x) = c(<p(x)) seklinde tanimlarsak,

sup {lp(x):x EX, p(x) < 3i/rg}f((p(y) + 1} <c <Ji/rel)f((p(y) + 1) < o

olup Teorem 3.2.1’den T doniisiimii bir sabit noktaya sahiptir.
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3.2.4. Teorem

(X,m) M-tam M-metrik uzay ve ¢:X — [0,00) fonksiyonu Es. 3.6’y1 saglayan Ta,
topolojisine gore alt yar1 siirekli ve c: [0, 00) — [0, ) {ist yar1 siirekli bir fonksiyon olsun.

Eger T: X = X doniistimii her x € X igin,

m(x,Tx) < @p(x)

ve

max{m(x,Tx), m(Tx,Tx)} < myr, + c(m(x, Tx)){p(x) — p(Tx)}
ise X’de bir sabit noktaya sahiptir.

fspat

Simdi ¥:X — [0,00) fonksiyonunu her x € X i¢in Y(x) = c(m(x,Tx)) seklinde
tanimlayalim. Bu durumda ¢(x) < llel)f( ¢@(y) + 1 olacak sekildeki her x € X i¢in,
y

Y(x) < supf{c(t):0 <t <m(x,Tx)}
< sup{c(t):0 <t < p(x)}

< sup {c(t): 0<t<infe(y)+ 1}
yeX
elde edilir. Bu durumda,

sup {I/J(x):x €EX,o(x) < infp(y)+ 1} < max{c(t): 0<t<infoe(y) + 1} < o
YEX YyeEX

olup Teorem 3.2.1°den T doniisiimii bir sabit noktaya sahiptir.
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4. KUME DEGERLiI DONUSUMLER iCIN SABIT NOKTA
TEOREMLERI

Banach 1922 yilinda kendi adiyla bilinen Banach biiziilme ilkesini ispatlamistir[1]. Bu
ilkenin uygulanabilirligi ve 6neminden dolay1r bir¢cok yazar tarafindan farkli sekillerde
genisletilmeye calisilmistir. 1969 yilinda Nadler tam metrik uzaylar {izerinde tanimli her
kiime degerli biiziilme doniisiimiiniin bir sabit noktasinin var oldugunu gostermistir[16].
Boylece Banach biiziilme ilkesi literatiirde var olan caligmalardan farkli bir sekilde
genellestirilmis oldu. Nadler’in ardindan birgok yazar hem tam metrik uzay hem de diger
soyut uzaylarda kiime degerli doniisiimler icin sabit nokta teorisini gelistirmeye
calismuslardir[17-19, 33-36]. Ozellikle Feng ve Liu, Nadler’in sonucunu Hausdorff metrigi
kullanmadan {istelik kiime degerli doniistimiin deger kiimesini CB(X) yerine C(X) alarak

digerlerinden farkli yonde genisletmislerdir[20].

4.1. M-Metrik Uzaylarda Feng-Liu Tip Kiime Degerli Déniisiimler icin Sabit Nokta
Teoremleri

Matthews metrik uzaylardan daha genel olan kismi metrik uzay kavramini tanimlamis ve bu
uzayda bazi temel sabit nokta teoremlerini ispatlamistir[24]. Bunun iizerine bir¢ok yazar
tarafindan kismi metrik uzaylarda hem tek degerli hem de kiime degerli doniistimler i¢in
sabit nokta problemleri tizerine ¢alisilmistir[37-39]. Son zamanlarda Asadi ve arkadaslari
kismi metrik uzay kavramini M- metrik uzay kavramina genisletmisler ve M- metrik uzaylar
tizerinde tek degerli doniisiimler i¢in bazi sabit nokta teoremlerini elde etmislerdir [10]. Bu
boliimde oncelikle M-metrik uzaylar tizerindeki topolojik yapilar tartisilmistir. Ardindan bu
topolojilere gére M-metrik uzayin kapali alt kiimeleri dikkate alinarak Feng-Liu tip kiime
degerli doniistimler i¢in bazi sabit nokta teoremlerini elde edilmistir[40]. Bunlar1 vermeden
once standart metrik uzaylar iizerinde Feng ve Liu tarafindan ispatlanmis teoremi ifade

edelim:
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4.1.1. Teorem [20]

(X, d) bir tam metrik uzay ve T: X — C(X) kiime degerli bir doniisiim olsun. Her x € X i¢in,

d(y,Ty) < cd(x,y).

esitsizligini saglayan bir y € I} = {y € Tx:bd(x,y) < d(x,Tx)} ve 0 <c<b <1 var
olsun. Eger f(x) = d(x,Tx) fonksiyonu alt yar1 siirekli ise T doniisimii X’de bir sabit
noktaya sahiptir.

Simdi kabul edelim ki (X, m) bir M-metrik uzay olsun. Bu durumda U € X dizisel agiktir

gerek ve yeter kosul her x € U ve bu nokta i¢in lim m(x,, x) = 0 olacak sekildeki her
n—-oo

(xn) € X dizisi sonunda U kiimesinin i¢inde kalir. Eger bu uzaydaki biitiin dizisel agik
kiimelerin ailesini 74 ile gosterirsek bu aile X {izerinde bir topoloji belirtir ve bu topolojiye
dizisel topoloji denir. Calismanin devaminda bu topolojiye gore herhangi bir A € X’in

kapanig1 AS ve biitiin kapal1 alt kiimlerinin ailesi C;(X) ile gdsterilmistir.

Diger taraftan bir (X, m) bir M-metrik uzay ve x € X olmak iizere x merkezli r > 0 ¢apli

acik yuvar,
B(x,r) = {y EX:m(x,y) < my, + r}

seklinde tanimlanir. O halde bir U € X agik olmasi i¢in gerek ve yeter kosul her x € U i¢in
B(x,r) S U olacak sekilde r > 0 reel sayisinin var olmasidir. Eger bu uzaydaki biitiin agik
kiimelerin ailesi 7, ile gosterirsek bu aile X iizerinde bir topoloji belirtir. Calismanin
devaminda bu topolojiye gore herhangi bir A € X’in kapanisi A™ ve biitiin kapali alt

kiimelerinin ailesi Cp, (X) gosterilmistir.

Uyar

(X, m) bir M-metrik uzay olmak iizere bu uzay tizerindeki t topolojisi t,, topolojisinden
daha incedir. Ancak tersi dogru degildir. Oncelikle 7,, € 7, oldugunu ardindan bir 6rnekle

Tg € T,, saglanmadigini gosterelim. Simdi U € 7,,,x € U ve 111_{1;10 m(x,,x) = 0 olacak
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sekildeki (x,) € X dizisini alalm. U € t,, ve x € U oldugundan B(x,r) € U olacak
sekilde bir r > 0 reel sayist vardir. Diger yandan 711,1—1;{)10 m(xy,x) = 0 oldugundan r > 0
sayist i¢in m =mn, oldugunda m(x,,x) <71 = m(x,,x) <1+ m, ,olacak sekilde
ny € N sayisi vardir. O halde n > n olacak sekildeki her n igin x,, € B(x,r) € U olup

U € 74 dir. Burada U keyfi oldugundan 7, € 7, dir.

Ornek

X ={0}U[1,0)vem(x,y) = xzﬂolsun. Bu durumda (X, m) bir M-metrik uzaydir. Agiktir

Ki X’in her tek nokta altkiimesi dizisel agiktir. Bu yiizden tg, X iizerinde ayrik topolojidir.
Diger taraftan x € X ve r > 0 olarak alimirsa, B(x,r) = (x — 2r,x + 2r) n X olup x = 0
disindaki higbir {x} tek nokta alt kiimesi t,, topolojisine gore agik degildir. Bu nedenle

T4 & 1, elde edilir.
4.1.1. Lemma

Bir M-metrik uzayda alinan bir dizinin M-yakinsaklig1 ile dizinin 7, yakinsaklig1 cakisir.

Gergekten, (X, m) bir M-metrik uzay, (x,,) € X bir dizi ve (x,) dizisi x € X noktasina

M-yakmsak olsun. O zaman lim m(x,,x) —m, , =0 dir. Simdi kabul edelim ki
n—-oo

U € 1, ve x € U olsun. O halde U € t,, oldugundan B(x,r) € U olacak sekilde bir r > 0

reel sayisi vardir. Diger taraftan lim m(x,,x) —m,, , = 0 oldugundan n = n, oldugunda
n—-oo

m(xp, x) — my_, <1 olacak sekilde bir ny € N sayis1 vardir. Buna gére n = n, oldugunda

Xy € B(x,7r) € U oldugundan (x,) dizisi x € X noktasina 7, topolojisine gore yakinsaktir.
Benzer sekilde eger (x,) dizisi x € X noktasina t,, topolojisine gore yakinsak ise x
noktasina M-yakinsak oldugu gosterilebilir.

4.1.2. Lemma

(X, m) bir M-metrik uzay, A € X ve x € X olsun. Eger m(x,A) = 0 = x € AS € A™ dr.
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fspat

m(x,A) =0, x € U ve U € 15 olsun. infimum tanimindan her n € N i¢in m(x, x,,) <%
olacak sekilde x,, € A vardir. Bu durumda lim m(x,,x) =0 olup U€ 1, ve x €U
n—-o0o

oldugundan n > n; oldugunda x,, € U olacak sekilde bir n, € N vardir. Boylece, n = n,

oldugunda x,, € U n A elde edilir ki buradan U N A # @ yani x € AS dir.
Uyari

Eger x € A™ ise m(x, A) = 0 olmak zorunda degildir. Gercekten eger X = {0} U [1, o) ve
m(x,y) = xzi olarak alinirsa bu durumda (X, m) bir M-metrik uzaydir. A = [1,2) vex = 1

olarak aliirsa x € A™ fakat m(x, A) > 0 dur.
4.1.1. Onerme

(X, m) bir M-metrik uzay, A € X ve x € X olsun. Bu durumda x € A™ olmasi igin gerek ve

yeter kosul inf {m(x, y) — Myy:y € A} = 0 olmasidr.
fspat

Kabul edelim ki inf {m(x, y) —Myyty € A} =0 ve r > 0 olsun. infimum tanimindan
m(x,y) — My, <71 olacak sekilde bir y. € A vardir. Buradan y. € B(x,7) olup

y, € AN B(x,7) elde edilir. Bu yiizden x € A™ dir. Simdi tersine x € A™ olsun. Her

n €N icin m(x,y,) — My, <% olacak sekilde y,, € A vardir. O halde her n € N i¢in
inf {m(x, y) =Myt y € A} < m(x, yp) — Myy, < % oldugundan n — oo igin limit

alindiginda inf {m(x,y) — Myy:y € A} = 0 elde edilir.

(X, m) bir M-metrik uzay1 tizerinde T: X — C4(X) kiime degerli donlisiimii tanimlannsin.

Pozitif bir b € (0,1) sayis1 ve x € X igin m(x, Tx) = inf{m(x,y):y € Tx} olmak lizere

TY(m) = {y € Tx:bm(x,y) < m(x,Tx)}
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kiimesini tanimlayalim. Bu durumda eger m(x,Tx) > 0 ise her b € (0,1) i¢in Ty (m)
kiimesi bostan farklidir. Gergekten, m(x,Tx) > 0 ise € = (% — 1) m(x, Tx) pozitif reel

sayis1 i¢in infimum tanimindan Gyle bir y € Tx var ve m(x,y) < m(x, Tx) + ¢ esitsizligini
saglar. O halde bu esitsizlikte € yerine yazilirsa istenilen y € Tx noktasinin var oldugu
gortiliir. Ancak standart metrik uzaylarda tanimlanan [} kiimesinden farkli olarak
m(x,Tx) =0 ise T;(m) kiimesi bos kiime olabilir. Asagidaki ornek bu gercegi

gostermektedir:

Ornek
X = {—1, -1+ %:n >1,ne€e N} ve bu kiime {lizerinde m: X X X — [0, o) doniisiimiinii

_ 1 , x=y=-1
m(x, y) _{Ix—yl , d.d.

ve T: X - C,(X) doniisiimiinii her x € X i¢in Tx = X olacak sekilde tanimlayalim. Agiktir
ki (X,m) bir M-metrik uzaydir. Simdi x = —1 noktas: i¢in m(x,Tx) = 0 olurken her

y € Tx igin m(x,y) > 0 oldugundan T (m) = @ dir.
Simdi bu boliimde verecegimiz temel teoremlerimizi ifade ve ispat edelim:
4.1.2. Teorem

(X,m) bir M-tam M-metrik uzay, T:X —= C,,(X) kime degerli bir doniisiim ve
m(x, Tx) > 0 olacak sekildeki her x € X i¢in,

m(y,Ty) < cm(x,y)
ve

am(y,y) < m(x,y) (4.1)

esitsizliklerini saglayan bir a,b,c € (0,1) ve y € Ty (m) var olsun. Eger ¢ < b ve
f(x) = m(x, Tx) fonksiyonu t,,, topolojisine gore alt yari siirekli ise T dontisiimii X de bir

sabit noktaya sahiptir.
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fspat

Kabul edelim ki x, € X keyfi olsun. Eger m(x,, Tx,) = 0 ise 0 zaman x, € Tx,"" = Tx,
oldugundan x, noktasi T doniisiimiiniin bir sabit noktasidir. O halde m(x,, Tx,) > 0 olsun.

O zaman dyle bir x; € T, °(m) var dyle ki,

m(xy, Txq) < cm(xg,x1)
ve

am(xq,x1) < m(xg,xq1)

saglanir. Benzer sekilde gosterilebilir ki eger m(x;, Tx;) = 0 ise x; noktasi T doniisiimiiniin
bir sabit noktasidir. Buna gére m(xy, Tx;) > 0 olsun. Hipotezden dyle bir x, € T, * (m) var

oyle ki,

m(x,, Tx,) < cm(xq, X3)
ve

am(xz, x;) < m(xy,xz)

esitsizlikleri saglanir. Bu sekilde devam ederek her n € N i¢in m(x,, Tx,) >0

olmak iizere x4, € T, " (M),

m(xn+1rTxn+1) < Cm(xn: xn+1) (4-2)
ve
am(xn+1:xn+1) < m(xn’xn+1) (43)

olacak sekilde X de bir (x,,) dizisi vardir. Ayrica her n € N igin x,,,, € Tbx" (m) oldugundan
bm(xn, xn+1) < m(xn; Txn) (44)

yazabiliriz. Es. 4.2 ve Es. 4.4’den yararlanarak her n € N igin,

n

m(x,, Tx,) < (%) m(xg, Txo) (4.5)
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m(x,, Xp41) < (%)n m(xo, x1) (4.6)

esitlikleri elde edilir. Es. 4.3, Es. 4.5 ve Es. 4.6 birlikte kullanilirsa,

lim m(x,, Tx,) = limm(x,, x,4+1) = limm(x,, x,) = 0.
n—->oo n—->oo n—->oo
yazilabilir. Simdi m > n olacak sekildeki n,m € N igin,

M@, Xm) — My x, < (MO, Xna1) = Mz, ) + (MO X)) — My, 1)
< (M0, Xn41) = Mapny) + (MEnt1, Xna2) = My ixnsy)
+(m(xn+2' xm) - mxn+2xm)
< (Mt Xpa1) = My, ) + oo+ (MGe1, X)) — My, )

< m(xnt xn+1) + m(xn+1'xn+2) .t m(xm—l'xm)

< (%)n m(xg, x1) + (g)nﬂ m(xg, x1) + -+ + (g)m_l m(xg, X1)
)

_¢
b

m(xo, 1)

olup ¢ < b ve limm(x,, x,) = 0 oldugundan
n—-oo

lim m(x,,x,) =0
n,m-—oo

elde edilir. Boylece (x,) bir M-Cauchy dizisidir. Hipotezden (X, m) bir M-tam M-metrik
uzay oldugundan

limm(x,,z) —my, , =0
n—>oco

ve

lim m(x,, x,,,) = m(z,z)
n,m—oo

olacak sekilde z € X vardir. Simdi gosterelim ki z noktast T doniisiimiiniin bir sabit

noktasidir. Gergekten, lim m(x,,Tx,) =0 ve f(x)=m(x,Tx) fonksiyonu 1,
n—->oo
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topolojisine gore alt yar stirekli oldugundan,

0 <m(z,Tz) = f(z) < liminf f(x,) = liminfm(x,, Tx,) =0
n—-oo n—o0o

olupm(z, Tz) = 0 elde edilir. Boylece z € Tz™ = Tzolup z € X, T déntisiimiiniin bir sabit

noktasidir.

4.1.1. Tanim

(X, m) M-metrik uzaymda her M-Cauchy dizisi bir x € X noktasina 7, topolojisine gore

yakinsak ise bu uzaya S-tamdir denir.

Simdi eger biz Teorem 4.1.2°’de T: X — X doniisiimiinii C,,(X) degerli yerine C;(X) ve
f(x) = m(x, Tx) fonksiyonunu t,, topolojisine gore alt yari siirekli olmasi yerine g
topolojisine gore alt yari siirekli kabul edersek asagidaki teoremi elde ederiz. Bu teorem

Cs(X) ailesi C,, (X) ailesinden daha genis oldugu i¢in 6nemlidir.
4.1.3. Teorem

(X, m) bir S-tam M-metrik uzay, T: X — C4(X) kiime degerli bir doniigiim ve m(x, Tx) > 0
olacak sekildeki her x € X icin dyle bir var dyle ki,

m(y,Ty) < cm(x,y)
ve

am(y,y) <m(x,y)
esitsizliklerini saglayan bir y € Ty'(m) ve a,b,c € (0,1) var olsun. Eger c¢<b ve

f(x) = m(x, Tx) fonksiyonu 7, topolojisine gore alt yari siirekli ise T doniisiimii X de bir

sabit noktaya sahiptir.
fSpat

Teorem 4.1.2°de oldugu gibi yapilarak gosterilebilir ki X’de bir (x,,) M-Cauchy dizisi vardr.

Hipotezden (X, m) bir S-tam M-metrik uzay oldugundan (x,,) dizisinin t topolojisine gore
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yakinsak olacagi bir z € X vardir. Diger taraftan Teorem 4.1.2’nin ispatinda oldugu gibi

yapilarak  lim m(x,, Tx,) =0 oldugu gosterilebilir. Hipotezden f(x) = m(x,Tx)
n—-oo

fonksiyonu 7, topolojisine gore alt yari siirekli oldugundan,
0 <m(z,Tz) = f(z) < liminf f(x,,) = liminfm(x,, Tx,) =0
n—->oo n—-oo
elde edilir. Boylece z noktasinin T doniislimiiniin bir sabit noktast oldugu gosterilmis olur.

Daha 6nce ifade ettigimiz gibi her standart metrik uzay bir M-metrik uzay ve standart metrik
uzaylarda Es. 4.1 otomatik olarak saglanacagindan Feng-Liu sabit nokta teoremi olan
Teorem 4.1.1°1 Teorem 4.1.2°nin bir sonucu olarak ifade edebiliriz. Ayrica yine her kismi
metrik uzaym bir M-metrik uzay olmasi ve kismi metrik tanimindan dolayr Es. 4.1

saglanacagindan asagidaki teoremi de Teorem 4.1.2°nin bir sonucu olarak verebiliriz.

4.1.1. Sonug

(X, p) bir tam kismi metrik uzay, T: X = C(X) kiime degerli bir doniisiim ve p(x,Tx) > 0
olacak sekildeki her x € X i¢in,

p(, Ty) < cp(x,y)

esitsizligini saglayan bir y € Ty (p) ve 0 < ¢ < b < 1 var olsun. Eger f(x) = p(x,Tx)

fonksiyonu alt yar1 siirekli ise T doniistimii X de bir sabit noktaya sahiptir.
fspat

Burada sadece Teorem 4.1.2’nin hipotezinde yer alan Es. 4.1’nin saglandigin1 géstermemiz
yeterlidir. Kismi metrik uzay tanimindan dolayr her x,y € X i¢in p(x,x) < p(x,y) olup
her a € (0,1) icin ap(x,x) < p(x,y) elde edilir. Boylece Teorem 4.1.2°nin biitiin

hipotezleri saglandigindan T doniisiimii X de bir sabit noktaya sahiptir.

Asagida verecegimiz iki ornek Teorem 4.1.2 ve Teorem 4.1.3’1 karsilastirmamiza olanak
saglamaktadir. Bu Orneklerin ilkinde uzayin M-tam olmasina ragmen S-tam olmadigi
gosterilerek Teorem 4.1.2°nin 6nemi digerinde ise T doniisiimiiniin goriintli kiimesinin
Cn(X)’e ait olmayip C¢(X)’e ait olmasindan dolayr Teorem 4.1.3’in Onemi

vurgulanmaktadir.
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Ornek

X = {0} U [1, ©) olsun. Bu durumda eger m: X X X — [0, ) doniisiimii her x, y € X igin
x+y

m(x,y) = seklinde tanimlanirsa (X, m) ikilisi M-tam M-metrik uzaydir. Simdi eger

T:X - C,,,(X) dontisiimiinii her x € X igin,

{013 , xe€{0}u]12]
Tx = x
{E,x} , x> 2

seklinde tanimlarsak f(x) = m(x, Tx) fonksiyonu X tizerindeki alisilmis topoloji olan t,,
topolojisine gore alt yari siireklidir. Diger taraftan m(x, Tx) > 0 olacak sekildeki her x € X

i¢in dyle bir y € Ty ,5(m) var dyle ki a, ¢ = 0,5 olmak tizere

m(y,Ty) < cm(x,y)
ve

am(y,y) <m(x,y)

esitsizlikleri saglanir. O halde Teorem 4.1.2°yi kullanarak T doniisiimiiniin X’de bir sabit

noktaya sahip oldugunu sdyleyebiliriz.

Burada dikkat edilmelidir ki C,,(X) S C4(X) olmasina ragmen (X, m) bir S-tam M-metrik
uzay olmadigindan Teorem 4.1.3’i kullanamayiz. Gergekten eger (x,) = (1 + %)

M- Cauchy dizisi alinirsa 74 topolojisine gore yakinsak olmadig: goriilecektir.
Ornek

1
X = {0,1,5271 >1,ne N} olmak iizere eger m: X X X — [0, 00) doniisiimii her x,y € X

1¢in,
( x=0vey#0
| 1 , veya
m(x,y)z{ x#0vey=0

lmin{x, y} o, d.d.
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seklinde tamimlamirsa, bu durumda t,, = {0,X,X\{0},{0}} ve 7, dizisel topolojisi
1 11
@,X,{O},Ulm={1,;:r2m,r€N} ve Unm={;,;:r2m,rEN},n<m,n,mEN

kiimelerinin sonlu kesisim ve keyfi birlesimlerinden meydana gelen aile olup (X, m) bir

S-tam M-metrik uzaydir. Simdi eger T: X — C4(X) doniisiimiinii her x € X igin,

{0y , d.d

seklinde tanimlarsak f(x) = m(x, Tx) fonksiyonu X tizerindeki 7 topolojisine gore alt yari
siireklidir. Diger taraftan m(x, Tx) > 0 olacak sekildeki her x € X i¢in dyle biry € Tg';(m)

var Oyle ki @, ¢ = 0,25 olmak iizere

m(y, Ty) < cm(x,y)
ve

am(y,y) < m(x,y)

esitsizlikleri saglanir. O halde Teorem 4.1.3’1 kullanarak T doniisiimiiniin X’de bir sabit

noktaya sahip oldugunu sdyleyebiliriz. Ancak bu 6rnek i¢in Teorem 4.1.2°yi uygulayamay1z.
Gergekten, x = 0 icin Tx = {O, %} olup bu kiime 7, topolojisine gore kapali degildir. Yani,

Tx ¢ C,,(X) dir.

4.2. M-Metrik Uzaylarda Kiime Degerli F-Biiziilme Déoniisiimleri icin ki Sabit Nokta
Teoremi

Bu bolimde Wardowski tarafindan tanimlanan F-Biiziilme doniistiimii yardimiyla M-metrik
uzaylarda kiime degerli doniistimler i¢in bazi sabit nokta teoremleri ifade edilerek hem
Banach biiziilme ilkesi hem de literatiirde var olan caligmalar oldukg¢a farkli sekilde
genisletilmistir. Bunun i¢in dncelikle F-Biiziilme doniisiimii tanimin1 ardindan bu biiziilme

yardimiyla ispatlanan sabit nokta teoremini hatirlatalim:

Asagidaki (F;) — (F3) kosullarini saglayan biitiin F: (0, 00) — R fonksiyonlarinin ailesini F

ile gosterelim:
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(F;) F kesin artandir, yani @ < f§ olacak sekildeki her @, B € (0, ) i¢in F(a) < F(B)’dur,

(F,) Pozitif tam sayilarin her {a,} dizisi i¢in lim a,, = 0 dir gerek ve yeter kosul
n—->0oo

lim F(a,) = —oo olmasidir.

n—-oo

(F3) lir(r)1+ a*F(a) = 0 olacak sekilde bir k € (0,1) vardur.
a—

4.2.1. Tanim [9]

(X, d) bir metrik uzay ve T: X — X bir doniisiim olsun. Eger d(Tx, Ty) > 0 olacak sekildeki
her x,y € X i¢in,

T+ F(d(Tx,Ty)) < F(d(x,y))

esitsizligini saglayan bir F € F ve 7 > 0 var ise T’ye X ilizerinde F-biiziilme doniistimii

denir.
4.2.1. Teorem [9]

(X,d) bir tam metrik uzay ve T:X — X bir F-biiziilme doniistimii olsun. O zaman T
dontisiimii bir tek x* € X sabit noktasina sahiptir ve her x € X igin {T™x} dizisi bu sabit

noktaya yakinsar.

Ardindan birgok yazar F ailesini dikkate alarak metrik uzaylar tizerindeki sabit nokta
teoremlerini genisletmistir. Bu baglamda metrik uzay iizerinde kompakt kiime degerli
doniistimler i¢in bazi sabit nokta teoremleri elde edilmistir. Diger taraftan kompakt kiime
degerli F-biiziilme doniisiimlerinden farkli olarak asagida tanimlanan (F,) 6zelligi dikkate
alinarak metrik uzaylar tizerinde kapali kiime degerli F-biiziilme doniisiimleri i¢in baz1 sabit

nokta teoremleri elde edilmistir[41-45]:
(F,) infA > 0 olacak sekildeki her A € (0, ) i¢in F(infA) = infF(A) dir.

Bundan sonraki bodlimde (F;)— (F,) kosullarin1 saglayan biitiin F:(0,0) - R

fonksiyonlarmin ailesini F, ile gosterilecektir.
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Bu bolimde F ve F, aileleri dikkate alinarak (X,m) M-tam M-metrik uzay {izerinde
tanimlanmis kiime degerli doniisiimler i¢in iki yeni sabit nokta teoremi elde edilmistir.
Oncelikle F, ailesi diisiiniilerek C,,(X) kiime degerli doniisiimler igin bir sonug ardindan da
F doniistimii tizerindeki (F,) kosulunu kaldirmak i¢in C,, (X) ailesinden bagimsiz ve asagida
ifade edilecek olan X’in belirli 6zelliklerine sahip alt kiimelerinin A(X) ailesi tanimlanarak

A(X) kiime degerli doniisiimler i¢in bir sabit nokta teoremi elde edilmistir [46].

(X, m) bir M-metrik uzay olsun. Bu durumda asagidaki 6zelliklere sahip X’in biitiin A alt

kiimelerinin ailesini A(X) ile gosterelim: Her x € X igin,

m(x,A)=0=>x€A
ve 4.7)
m(x,A) > 0= 3a, € A, m(x,A) = m(x, a,).

Eger (X, m) bir standart metrik uzay ise o zaman agiktir ki,
AX)={Ac X:Vx € X, 3a, € A,m(x,A) =m(x,a,) }

ve ayni zamanda A(X) € C,,(X) = C,(X) olarak elde edilir. Ayrica dikkat edilmelidir ki
X’in her kompakt altkiimesi A(X)’e aittir.

Eger (X, m) bir M-metrik uzay ise o zaman A(X) S C4(X) olup A(X) ile C,,(X) arasinda

bir iligki yoktur. Asagidaki uyar1 ve drnekler bu gergekleri gdstermektedir:
Uyari

(X, m) bir M-metrik uzay ve A € A(X) olsun. Gosterelim ki A € C4(X) dir. Bunu yapmak
icin A€ € t; oldugunu gostermemiz yeterlidir. Simdi x € A ve (x,), X’de
lim m(x,, x) = 0 olacak sekilde herhangi bir dizi olsun. Bu durumda x € A¢ oldugu igin
n—>oco

x & A ve A € A(X) oldugundan m(x, A) > 0 dir. Kabul edelim ki (x,,) dizisinin kuyrugu
A®’nin i¢inde kalmaz. Yani, her k € N i¢in dogal sayilarin n;, > k olacak sekilde artan bir

(ny) dizisi vardir dyle ki x,,, € A’dir. Ayrica 111_1:20 m(xnk, x) = 0 oldugundan,
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m(x,A) = inf{im(x,a):a € A}
< inf{m(x, x,, ):k € N} =0

olarak bulunur. A € A(X) oldugundan x € A elde edilir ki bu x € A olmas ile gelisir.
O halde kabul yanlis (x,,) dizisinin kuyrugu A¢’nin i¢inde kalir. Yani A€ € 7 olup buradan
A € C4(X) sonucu elde edilir.

Ornek

1 X+ o .
X = {—:n € N} ve m(x,y) = Ty olsun. O halde t,, topolojisi X tizerinde alisilmis
n

1
topolojidir. Eger A = {E:n >2,ne€ N} kiimesini seklinde tanimlarsak A € C,,(X)’dir.

Ancak x =1 ve her a € A igin,

1
m(1,4A) = 3 <m(1,a)
oldugundan A ¢ A(X)’dir.
Ornek

1
X = [le] ve m(x,y) = min{x,y} olsun. O zaman t,, , X tlizerinde ayrik olmayan
topolojidir. Eger A = [%, 1] seklinde alirsak agiktir ki A € A(X) fakat A ¢ C,,(X) dir.

Ornek

X =[0,0) ve bu  kiime Uzerindeki m: X X X — [0, ) dontsimiini
m(x,y) = |x — y| + min{x,y} seklinde tamimlayalim. Bu durumda t,,, X fizerinde
alisilmis topolojidir. Eger A = [O, %) seklinde alirsak gosterebiliriz ki A € A(X) fakat
A ¢ C,(X)dir. Gergekten, m(x,A) =0 ise x =0¢€ A’dir. Eger m(x,A) >0 ise
m(x,A) = x ve bu yiizden a, = 0 € A i¢in m(x,A) = m(x, a,)’dir. O halde Es. 4.7 her
x € X igin dogru oldugundan A € A(X)’dir. Ancak, A¢ = E,OO) ¢ T,, oldugundan
A ¢ C,(X) dir.
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(X,m) bir M-metrik uzay olmak iizere P(X) ile X’in biitiin altkiimelerinin ailesini
gosterelim. T: X — P(X) kiime degerli bir doniisiim, F € F ve o = 0 seklinde olmak iizere

m(x, Tx) > 0 olacak sekildeki her x € X i¢in F¥ € X kiimesi asagidaki sekilde tanimlansin:
FX = {y € Tx: F(m(x,y)) < F(m(x, Tx)) + a}.

Aciktirki 0y < 0, igin F < F7.’dir. Simdi asagidaki durumlar igin F;* ailesini inceleyelim:

e Eger T: X —» A(X) seklinde tanimli bir dontistim ise m(x, Tx) > 0 olacak sekildeki her
x € X ve her o = 0 igin F} # @’dur.

e Eger T: X — C,,(X) seklinde tanimli bir doniisiim ise bazi x € X ve ¢ > 0 igin FX bos

. .. + .
kiimeye esit olabilir. Ger¢ekten, x = {l ‘ne N} ve m(x,y) = xz_y seklinde alinirsa
n

bu durumda (X, m) bir M-metrik uzaydir. Simdi eger T: X — C,,(X) ve F: (0,0) - R

doniigiimleri sirasiyla,

1
{—:n>2,nEN} , x=1
Tx =4
X ; d.d.
ve
( 1
I <—
na |, a_z
Fla) =
2a ,  a>—=

olacak sekilde tanimlanirsa bu durumdax = 1ve o = % i¢in,

F1 = {3’ € T1:F(m(1,y)) < F(m(1,T1)) + 1}
2

2
={y€{1:n>2n€N'Z(H—y><ln1+1}
n ' )\ 2 /7 2 2
={ye{l:n>2nEN:1+y<Inl+l}
n ' 2 2
={y€{l:n>2nEN'y<Inl—l}
n ' T2 2

olup boylece istenilen gosterilmis olur.
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e EgerT:X — C,(X) (hattaT: X — P(X)) ve F € F, olsun. O zaman m(x, Tx) > 0 olacak
sekildeki her x € X ve her ¢ > 0 i¢in Fy # @’dir. Gergekten, (F,) 6zelligini kullanarak,

F%, ={y € Tx:F(m(x,y)) < F(m(x,Tx)) + o}
= {y € Tx:F(m(x,y)) < F(inf{m(x,y):y € Tx}) + o}
= {y € Tx: F(m(x,y)) < inf(F(m(x,y)):y € Tx} + o}
* 0

elde ederiz.
Simdi yukaridaki durumlar dikkate alarak iki yeni sonucumuzu ifade ve ispat edelim:
4.2.2. Teorem

(X, m) M-tam M-metrik uzay, T: X - A(X) kiime degerli bir doniisiim ve F € F olsun. Bu
durumda m(x, Tx) > 0 olacak sekildeki her x € X i¢in,

T+ F(m(y, Ty)) < F(m(x,y))
)) (4.8)

am(y,y) < m(x,y)

esitsizliklerini saglayacak sekilde bir y € FY ve 0 <a <1, 0 <t var olsun. Eger
0<o< 1t Vve f(x) =m(x,Tx) donlisimii 7, topolojisine gore alt yar1 siirekli ise T

dontisiimii X de bir sabit noktaya sahiptir.
fSpat

Kabul edelim ki T doniisiimii bir sabit noktaya sahip olmasin. Bu durumda her x € X i¢in
m(x,Tx) > 0’dir. Gergekten m(x,Tx) =0 ise bu durumda Tx € A(X) oldugu igin
x € Tx’dir. O halde her x € X igin m(x,Tx) > 0 olur ki bu durumda Tx € A(X)
oldugundan her 0 < ¢ i¢in F% kiimesi bostan farklidir. Simdi kabul edelim ki x, € X

baslangi¢ noktas1 olsun.
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Bu durumda,

T+ F(m(xy, Txy)) < F(m(xg,x1))
ve
am(xy, x1) < m(x, xq)

olacak sekilde x; € F*° var ve x; € X igin,
o

T+ F(m(xz,sz)) < F(m(xl,xz))
ve
am(xy, x;) < m(xy, x;)

olacak sekilde x, € F! vardir. Bu sekilde devam edilerek her n € N igin

T+ F(m(xn+1J Txn+1)) < F(m(xn' xn+1))
ve 4.9

am(Xpy1, Xpt1) < M(Xp, Xny1)
esitsizliklerini saglayan x,.; € FX" olacak sekilde bir (x,) dizisi elde edilir. Biz (x,,)
dizisinin bir M-Cauchy dizisi oldugunu gostermek istiyoruz. Her n € N icin x,,; € F}*
oldugundan asagidaki esitsizlik vardir:
F(m(xn,xn+1)) < F(m(xn,Txn)) + 0 (4.10)

Es. 4.9 ve Es. 4.10 birlikte degerlendirildiginde her n € N igin,

F(m(xny1, TXny1)) < F(mQxp, Tx)) + 0 — 7

ve

F(m(xn+1rxn+2)) =< F(m(xn'xn+1)) to-1

esitsizlikleri elde edilir. Bu sekilde devam edilerek her n € N i¢in,

F(m(xn, xn+1)) < F(m(xo,xl)) + n(c—1) (4.11)
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(4.12)

F(m(x,, Tx,)) < F(m(xg, Tx)) + n(o — 1)
olup Es. 4.11° den lim F(m(xy, x,41)) = —o elde edilir. (F,) ve (F;) ézelliklerinden
n—oo

yararlanilarak sirasiyla lim m(x,, X,4+1) = 0 ve lim (m(xn,xn+1))kF(m(xn,xn+1)) =0
n—oo n—oo

olacak sekilde bir k € (0,1) varligi gosterilir. Bu durumda tekrardan Es. 4.11 kullanildiginda

her n € N igin,

(M Xns1)) F(M G Xns1)) = (MQeny Xnsn) ) F(m g, 1))

< (m(xn, xn+1))k nc—1)<0 (4.13)

olup n = oo i¢in limit alindiginda

(4.14)

lim n(m(xn, xn+1))k =0
n—oo
elde edilir. Es. 4.14’den n > n; oldugunda n(m(xn,xn+1))k < 1 olacak sekilde bir

n, € N vardir. Boylece her n > n, i¢in,

(4.15)

m(xnl xn+1) <

BN
VIS e

esitsizligi elde edilir. Simdi m > n > n, olacak sekildeki m,n € N igin {iggen esitsizligi ve

Es. 4.15° den dolayx,

m(xm xm) — My, xm < (m(xn: xn+1) - mxnxm_l) + -t (m(xm—li xm) - mxm_lxm)
< M(Xp, Xng1) + M(Xpp, Xpa2) + o0+ MK, X))
1

m-1 o ®
< Z m(x;, Xi41) < z m(x;, Xi41) < Z 1

i=n

o 1

esitsizligini yazabiliriz. 1 serinin yakinsakligindan dolay1 n — oo i¢in limit alindiginda
i=1 ik

M(Xp, Xpp) — My, . — 0 elde edilir. Ayrica Es. 4.9 ve Es. 4.15 esitsizlikleri dikkate
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alindiginda goriilecektir ki lim m(x,, x,) = 0 olup n,m — oo i¢in m(x,, x,,) — 0 elde
n—->oo

edilir. Boylece (x,,) dizisinin bir M-Cauchy dizisi oldugunu soyleyebiliriz. (X, m) M-tam

M-metrik  uzay  oldugundan  (x,)  dizisinin  M-yakinsak  oldugu  ve
lim m(x,, x,) =m(z,z) olacak sekilde bir z € X noktasinin var oldugunu

n,m— oo

sOyleyebiliriz. Diger taraftan Es. 4.12 ve (F,) Ozelliginden yararlanarak
lim m(x,, Tx,) = 0 elde edilir. Hipotezden f(x) = m(x, Tx) doniisimii 7, topolojisine

n—->oo

gore alt yari siirekli ve (x,,) dizisi z € X noktasina M-yakinsak oldugundan,

0 < f(z) =m(z,Tz) < liminff (x,) = liminfm(x,, Tx,) =0
n-oo n—-oo

elde edilir ki bu bir geliskidir. O halde kabul yanlhis T doniisimii X’de bir sabit noktaya
sahiptir.

Asagidaki teoremde oldugu gibi C,,, (X) kiime degerli doniistimler i¢in sabit nokta teoreminin

verilebilmesi i¢in F ailesi yerine F, ailesi géz 6niine alinmalidir:
4.2.3. Teorem

(X, m) M-tam M-metrik uzay, T: X = C,,(X) kiime degerli bir doniisiim ve F € F, olsun.
Bu durumda m(x, Tx) > 0 olacak sekildeki her x € X i¢in,

T+ F(m(y, Ty)) < F(m(x,y))
o (4.16)

am(y,y) < m(x,y)

esitsizliklerini saglayacak sekilde bir y € F% ve 0 <a <1, 0 <t var olsun. Eger
0 <o < tolup f(x) =m(x,Tx) doniisiimii T,, topolojisine gore alt yar1 siirekli ise T

dontistimii X de bir sabit noktaya sahiptir.
fSpat

Kabul edelim ki T doniisiimii bir sabit noktaya sahip olmasin. Bu durumda her x € X igin
m(x,Tx) > 0 dir. Ger¢ekten m(x,Tx) = 0 ise bu durumda x € Tx™ = Tx oldugu igin
x € Tx’dir. F € F, oldugundan m(x, Tx) > 0 olacak sekildeki her x € X i¢in ve her 0 < ¢
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icin F% kiimesi bostan farklidir. Ispatin kalan kism1 Teorem 4.2.2’nin ispatinda oldugu gibi

Tz € C,,(X) dikkate alinarak tamamlanir.

Simdi ise agagida verecegimiz drnek ile hem Teorem 4.2.3 varken neden Teorem 4.2.2°ye
ihtiya¢ duyuldugunu hem de Teorem 4.2.3’iin bilinen Feng-Liu sabit nokta teoremini igeren
ve dordiincili boliimiin ilk kisminda yer alan Teorem 4.1.2°nin bir genellestirmesi oldugunu

gbstermesi amaglanmaktadir.
Ornek

1
X= {OJE n=2,ne€ N} olmak iizere bu kiime iizerindeki m:X X X — [0, c0) d6niigiimii

m(x,y) = x + y seklinde tanimlansin. Bu durumda (X,m) M-tam M-metrik uzaydir.
Simdi T: X - A(X) doniistimiinii,

oo :
mrDs YTz
Tx = (n+1) n

{0} , x=0

ve F: (0, 00) —» R doniisiimiinii ise

Ina 0<a<l

[R— , a_
F(a>={\/5

k1+a , a>1

seklinde tanimlarsak F € F\F, ve f(x) = m(x, Tx) fonksiyonu t,, topolojisine gore alt yar1
streklidir. Teorem 4.2.2°nin biitiin hipotezlerinin saglandigini gostermek icin Es. 4.16 ile

verilen biiziilme kosulunun m(x, Tx) > 0 olacak sekildeki her x € X ve @, 0 < T = 2,5 i¢gin

|~

< < . . _ 1 .. _ nZ
saglandigim1 gostermeliyiz. Gergekten, x = —n= 2 igin y= D)2 € F7, alirsak
Es. 4.16’ dan,
+ F(m(y, Ty)) < F(m(x,y)) +F< ! + ! ><F<1+ ! )
S —+—
FrIU Y = IEY T i 02T v 27 T\ T (nt 12
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o iF 2n®+6n+5 <F2n2+2n+1
t ((n+1)2(n+2)2)_ (nz(n+1)2

olup F doéniisiimiiniin tanimin1 kullanarak her n > 2 igin,

()_ll <2n2+2n+1> nn+1) l—ll < 2n2+6n+5 )(n+1)(n+2)
gl = in n?(n+1)? J\2n2 +2n+1 " m+1)2(n+2)2)\V2n2 +6n+5

olmak iizere 7 < g(n) dir. Asagidaki ¢izelge ve grafikte gorildigi gibi g:{2,3,...} > R
fonksiyonu artan oldugu igin en kii¢iik degerini n = 2 i¢in alir. Buna gore g(2) = 2,50725
oldugundan 7 < g(2) olup Es. 4.16 kosulu saglanir. Sonug olarak Teorem 4.2.2’nin biitiin

kosullart saglanir ve gercekten T doniisiimii X de bir sabit noktaya sahiptir.

n g(n) n g(n)
2 2.50725 52 6.53959
——_— 7 3.87812 57 6.66699
= 12 4.55806 62 6.78385
o 17 5.01566 67 6.89180
i - 22 5.36102 72 6.99209
€ g 27 5.63848 77 17.08574
R 32 5.87037 82 7.17357
| 37 6.06958 87 7.25627
of 42 6.24417 92 7.33440
n 47 6.39958 97 7.40844

Oo " 12‘0 T 4‘0 T ‘:-IJ‘ o ‘o o ‘150

Diger taraftan Teorem 4.1.2’nin biiziilme kosulu disinda biitiin kosullar1 saglanir. Gergekten,

X =niz,n2 2 i¢gin m(x,Tx)>0 dir. O halde Tx= {ﬁ} oldugundan
y = (n+11)2 € Ty(m) almaliyiz. Simdi kabul edelim ki ¢ < b olacak sekildeki bir

b,c € (0,1) i¢in Teorem 4.1.2’nin biiziilme kosulu saglansin. Bu durumda n > 2 i¢in,

1 1 11
m((n T2 1)2> = cm (F'(n + 1)2)

1 Loy 11
em ((n T D2 (n+ 2)2> < mCE iy 2

1 1 _ 1
Cmr T T 22 —C<F+(n+1)2>
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1 4 1 < <1+ 1 )
@ J— _—
(n+1)2 (n+2)2_cn2 (n+ 1)2
1 + 1
(n+1)?  (n+2)?
&
T, 1 _
n? " (n+1)2

<c

olup n = oo igin limit alindiginda 1 < c elde edilir ki bu bir ¢eligkidir. O halde Teorem 4.1.2

bu 6rnege uygulanamaz.

4.3. My-Metrik Uzaylarda Karma Kiime Degerli Déniisiimler Icin Sabit Nokta
Teoremleri

Bir 6nceki boliimde (4.1 ve 4.2) Asadi ve arkadaslar1 tarafindan iiretilen standart metrik
uzaylarin bir genellestirmesi olan M-metrik uzaylar ve bu uzay iizerinde tanimli doniistimler
icin baz1 sabit nokta teoremleri literatiirde var olan ¢alismalar1 genisletecek sekilde ifade ve
ispat edildi. Diger taraftan literatiirde Czerwik tarafindan tanimlanan standart metrik
uzaylarin bir baska genellestirmesi olan b-metrik uzay kavrami bulunmaktadir[47]. Yakin
zamanda Mlaiki ve arkadaglari hem M-metrik hem de b-metrigi dikkate alarak bu uzaylari

genisletecek sekilde Mj-metrik kavramini asagidaki sekilde tanimladilar [11]:
4.3.1. Tanim
X # @ bir kiime ve m;,: X X X — [0, o) doniisiimii eger her x,y, z € X i¢in,

mp1) mp(x,y) = mp(x,x) =mp(y,y) © x =,

mp2) Mpy, = min{m, (x,x),m,(y,y)} < my(x,y),

mp3) my(x,y) = my(y,x),

mp4) my(x,y) — Mpxy < S{(mb (x,2)—Mpyz) + (mb , Z)_mbyz)} —my(2,2)

olacak sekilde s > 1 reel sayis1 vardir.

sartlarin1 sagliyorsa bu doniisiime X tizerinde bir My-metrik denir ve (X, m;,) ikilisine de

M,,-metrik uzay denir. Buradaki s reel sayisina Mj-metrigin katsayisi denir.
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Uyari

X tizerinde tanimlanan bir m;: X X X — [0, 00) M, -metrigin tanimindan anlasilacag lizere
herhangi bir x € X icin my(x,x) sifira esit olmayabilir. Ancak Mlaiki ve arkadaslari
tarafindan verilen yukaridaki tanimin m;4) kosulunda x = y = z i¢in 0 < —m,,(x, x) olup
m, metrigi negatif olmayan degerler aldigindan m;,(x,x) = 0 elde edilir. Bu problemin

iistesinden gelmek i¢in my4) kosulu yerine asagidaki m;4) * kosulunu 6nerdik:

mp4)* Her x,y,z € X icin 0yle bir s > 1 reel sayis1 var Oyle ki asagidaki esitsizlik saglanir:

my (xr :V) — Mpxy = S{(mb (x' Z)_mbxz) + (mb (y' Z)_mbyz)}

Bu boliimiin devaminda M, -metrik uzay kavrami i¢in my, 1) , m,2) , m;,3) ile birlikte bizim
tanimladigimiz my4) * kosulunu kullanacagiz. Tanimdan agiktir ki her M-metrik uzay ve
b-metrik uzay ayn1 zamanda M, -metrik uzaydir. Ancak tersi her zaman dogru olmayabilir.

Asagidaki 6rnek bu gergegi gostermektedir.
Ornek

X = [0, ) ve bu  kiime  iizerindeki mp: X X X - [0, ) dontigimii
my(x,y) = min{xP, yP} + |x — y|P, p > 1 seklinde tanimlanirsa bu doniisiim X tizerinde
s = 2P Kkatsayisi ile bir Mp-metriktir. Ancak, bu doniistim ne M-metrik ne de b-metriktir.
Ayni zamanda x = y = z # 0 i¢in my4) kosulu saglanmadigindan, bu doniisiim Mlaiki ve

arkadaslarinin tanimina gore Mj-metrik degildir.
(X, my) bir My,-metrik uzay ve x € X olmak tizere x merkezli r > 0 gapl agik yuvar,
B(my,x,7) ={y € Ximy(x,y) < Mpyy T r}

seklinde tanimlanir. Bir U € X agik olmast i¢in gerek ve yeter kosul her x € U i¢in
B(my,,x,r) € U olacak sekilde r > 0 reel sayisinin var olmasidir. X’in biitin acik

altkiimelerinin ailesini 7, ile gosterirsek bu aile X lizerinde bir topoloji belirtir. Bu boltimiin

devaminda bir A € X’in 7,,, topolojisine gore kapanigini AP ve Tpm,, topolojisine gore X’in
biitiin kapal1 altkiimelerinin ailesini C,(X) ile gosterecegiz. Her kismi metrik uzay ayni

zamanda M, -metrik uzay ve her kismi metrik p bostan farkli bir X kiimesi iizerinde bir



44

Ty-topolojisi iiretmesine ragmen t,,, topolojisi bir Tj-topolojisi olmayabilir. Gergekten,
X =[0,1] ve bu kiime tizerindeki m;: X X X — [0, ) dontsimi my(x,y) = min{x, y}
seklinde tanimlanirsa s = 2 katsayisi ile (X, my) bir My-metrik uzaydir. Bu durumda her

r > 0 ve her x € X igin,

B(my,x,r) = {y € X:my(x,y) < Mpyy +r}
={yeX:0<r}=X

olup 7,,, = {@, X} oldugundan bir T,-topolojisi degildir.
Uyari

(X, my,) ikilisi s > 1 katsayisi ile bir Mj,-metrik uzay ve My, = max{m,(x, x), m,(y,y)}

olmak tizere
bm(xr Y) = mb(x: y) - 2Tnbxy + bey

seklinde tamimlanan b,,: X X X — [0,0) dontsimii X iizerinde s > 1 katsayisi ile bir

b-metriktir.
4.3.1. Lemma

(X, my) ikilisi s > 1 katsayis ile bir My, -metrik uzay, (x,) X de bir dizi ve x € X olsun. Bu

durumda (x,,) dizisi x € X noktasina 7,,,, topolojisine gore yakinsaktir gerek ve yeter kosul

Tm
lim (mb (xp, x) — mbxnx) = 0 olmasidir. Gergekten, x, —3x ve r > 0 olsun. Buna gore
n—>oco

n > n, oldugunda x, € B(my, x,r) olacak sekilde bir ny € N sayis1 vardir. Buradan
n = ng oldugunda my, (xy,, x) < My, , + 1 olur ki boylece |mb (xp, x) — mbxnx| < relde

edilir. Bu ise lim (mb (xp, x) — mbxnx) = 0 olmas1 demektir. Ispatin diger tarafi Lemma
n—-oo

4.1.1°de oldugu gibi yapilabilir.
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4.3.2. Tanim
(X, my) bir My,-metrik uzay ve (x,) S X bir dizi olmak iizere,

i. Eger (x,,) dizisi i¢in lim my, (x,, x,,,) var ve sonlu ise bu diziye M, -Cauchy dizisidir denir.
n—-oo

ii. Eger (X, my) uzayinda her M, -Cauchy dizisi bir x € X noktasina Mj,-yakinsak ve

lim my, (x,, x,) = my(x, x) ise bu uzaya My, -tamdir denir.
n,m—oo

Asagidaki 6nerme ispatsiz verilecektir. Clinkii ispatt Lemma 2.2.4°de verilen ispata benzer

sekilde yapilabilir.
4.3.1. Onerme
(X, my,) bir My,-metrik uzay, (x,) S X bir dizi olsun. Bu durumda asagidaki ifadeler vardir:

i. (x,) bir My-Cauchy dizisidir gerek ve yeter kosul (x,,) dizisi (X, b,,) b-metrik uzayinda
bir Cauchy dizisidir.
ii. (X, my) My-tam Mj-metrik uzaydir gerek ve yeter kosul (X, b,,,) tam b-metrik uzaydir.

Bunun yaninda,

lim (my, (2, x) — mbxnx) =0
n—->0oo

lim b,,(x,,x) =0 & ve

e lim my (x,, X) = my(x, x)
n,m-oo

iliskisi vardir.

Bu boliime asagidaki diisiince ile devam edelim: (X, d) bir metrik uzay ve T:X — C(X)
kiime degerli bir doniisiim olsun. X iizerindeki tanimli bu T doniisiimii i¢in Feng-Liu sabit
nokta teoremi yardimiyla tek degerli doniisiimler icin sabit nokta teoremi elde edebiliriz.
Bunu yapmak i¢in standart metrik uzaylarda her tek nokta kiimesi kapali oldugundan her
x €X igin Tx’i tek nokta kiimesi almak yeterlidir. Ancak t,,, , T;-topolojisi
olamayabileceginden (hatta Ty-topolojisi olamayabilecegini gosterdik) bazi tek nokta

kiimeleri kapal1 olmayabilir. Bu ylizden benzer yolla tek degerli doniisiimler i¢in sabit nokta



46

teoremi elde edilemez. Bu problemi agmak i¢in Romaguera’nin ¢calismasinda oldugu gibi bir
(X,mp) My-metrik uzayr tizerinde tanimli X UC,(X) degerli T doniisiimiinii
diisiinecegiz[23]. Burada (X,m,;) bir My,-metrik uzay olmak tlizere T:X — X U Cp(X)
dontisimii her x € X i¢in Tx tek degerli veya Tx € C,(X) anlamina gelmektedir. Bu
dontistimler i¢in hem tek degerli hem de kiime degerli doniisiimler oldugundan [23]’de

oldugu gibi karma kiime degerli doniisiim kavramini kullanacagiz.
(X, my) bir My-metrik uzay ve T: X — X U C, (X) karma kiime degerli bir doniisiim olsun.

Pozitif bir sabit k € (0,1) ve x € X i¢in my(x,Tx) = inf{my(x,y):y € Tx} seklinde

tanimlanmak tizere,
T (my) = {y € Tx: kmy (x,y) < my (6, Tx))

seklinde tanimlansin. Burada eger |Tx| = 1 ise T (m;) bostan farklidir. Diger taraftan
|Tx| > 1vem,(x,Tx) > 0ise her k € (0,1) igin T (m;) bostan farklidir. Ancak |Tx| > 1
ve my(x,Tx) =0 ise T} (m,) bos kiimeye esit olabilir. Asagidaki ornek bu gercegi

gostermektedir.
Ornek

1
X = {0, -1,-1+ > 1,ne N} ve my: X X X - [0, ) doniisiimii asagidaki gibi

tanimlansin:
(0 : x =y €X\{-1}
2 ) x:y:—l
1 , x *+yei{0 -1
lx—y| , xqtye{—l,—1+%:n>1,neN}
\ 4 , d.d.

Bu durumda (X, m;), s = 4 katsayis1 ile bir My, -metrik uzaydir. Ancak m, doniisiimii X
lizerinde bir M-metrik degildir. Gergekten eger x = 0,y = —1 + i ve z = —1 alirsak bu

durumda M-metrigin m4) kosulu saglanmaz. Simdi T: X — X U C,(X) doniisiimiinii her

x €X igin Tx =X olacak sekilde tanimlayalim. O halde x = —1 i¢in |Tx| > 1 ve
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my, (x, Tx) = 0 olmasina ragmen her y € Tx i¢in m,, (x,y) > 0’dir. Buna goére her k € (0,1)

icin T;;*(m,) = @ olarak elde edilir.

Asagidaki lemma ve 6nerme ilerde verecegimiz sonuglar i¢in oldukg¢a 6nemli olup benzerleri

M-metrik uzaylarda ifade edildiginden ispatsiz olarak verildi.
4.3.2. Lemma

(X,my,) ikilisi s katsayist ile bir M,-metrik uzay, AS X ve x € X olsun. Eger

my(x,A) =0isex € AP dir,
4.3.2. Onerme

(X,my) bir M,-metrik uzay, ASX ve x€X olsun. Bu durumda

inf{mb (,y) — Mpyy:y € A} = 0 olmasi i¢in gerek ve yeter kosul x € AP olmasidur.

4.3.3. Tanim [23]

(X, p) bir kismi metrik uzay ve T karma degerli bir doniisiim olsun. Eger |Tx| = 1 ve her

n € N igin x4 € Tx, olmak tizere lim p(x,, x) = p(x, x) olacak sekildeki her (x,) € X
n—oo
dizisi i¢in p(Tx, Tx) = lim p(x,, Tx) ise T doniisiimii x-yoriingesel siireklidir denir. Eger
n—->0o

T doniisimi her x € X igin x-yoriingesel siirekli ise (X, p) uzayinda yoriingesel siireklidir

denir.
4.3.4. Tanim [12]

(X, my) bir M,,-metrik uzay ve T karma kiime degerli bir doniisiim olsun. Eger |Tx| = 1 ve

her n € N igin x,,,; € Tx, olmak iizere lim mj,(x,,x) = m,(x,x) olacak sekildeki her
n—-oo

stireklidir denir. Eger T doniisiimii her x € X i¢in x-alt yoriingesel siirekli ise (X, mp)

uzayinda alt yoriingesel stireklidir denir.
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Uyari

Eger T doniisiimii bir x noktasinda x-ydriingesel siirekli ise ayni zamanda x-alt yoriingesel

stireklidir. Ancak bunun tersi dogru olmayabilir. Asagidaki 6rnek bu gercegi gostermektedir:
Ornek

X = {(), -1,—-1+ l:n >1,ne N} ve my: X X X — [0, o) doniistimii asagidaki sekilde
n

tanimlansin:

! 1 x =y € {0,—1}

1
[lx—yl ~ x¢y€{—1,—1+%:n>1,neN}
d.d.

Bu durumda (X,m,;) ikilisi s =4 Xkatsayis1 ile bir My-metrik uzaydir. Ayrica

T:X — X U Cy(X) karma kiime degerli doniisiimii ise

X , xeX\{-1}
Tx =
{o} , x=-1

seklinde olmak tizere (x,) = (—1 + i) dizisini alalim. Agiktir ki her n € N i¢in
2n/ neN
Xn41 € Tx, = X ve lim my(x,, —1) = 0 = my(—1,—1) esitligi vardir. Diger taraftan
n—0o

x = —1 icin,

my,(Tx, Tx) = m,(0,0) = 0 < liminfm,, (x,, Tx) =liminfm, (x,,0) = 4
n—oo n—oo

olup T doniisiimii x = —1 noktasinda x-alt yoriingesel siirekli ancak x-yoriingesel siirekli

degildir.
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4.3.1. Teorem

(X, my) ikilisi s = 1 katsayzsi ile bir M, -tam M,-metrik uzay ve T: X — X U C,(X) karma
kiime degerli bir dontisim olsun. Bu durumda |Tx| =1 veya |Tx| > 1 oldugunda

my, (x, Tx) > 0 olacak sekildeki her x € X igin,

mp(y, Ty) < cmy(x,y)
ve

amy,(y,y) < my(x,y)

esitsizliklerini ve sc < k esitsizligini saglayan bir @, ¢, k € (0,1) ve y € T (my) var olsun.
Burada f(x) = m;, (x, Tx) doniisiimii alt yari siirekli ise my, (2, Tz) = 0 olacak sekilde bir
z € X noktas1 vardir. Bunun yaninda eger |Tz| > 1 ise z € X noktas1 T doniisiimiiniin bir
sabit noktasidir. Eger |Tz| = 1 ve T doniisimii z € X noktasinda z-alt yoriingesel siirekli

ise z € X noktas1 T doniisimiiniin bir sabit noktasidir.
fspat

n
Burada her mneN i¢in  x,., € Tx,, mb(xn,xnﬂ)s(%) mp(xy, %) Ve

n
my, (o, Txy) < (%) my, (xo, Txg) olacak sekilde (x,,) € X dizisinin varligini géstermemiz

yeterlidir. Kabul edelim ki x, € X baslangi¢ noktasi olsun. Buna gére iki durum vardir:

1. Durum: |Tx,| = 1 olsun. Bu durumda hipotezden, am,, (x;, x;) < my(xq,x;) kosuluna

uygun ve asagidaki esitsizlikleri saglayan x; € Tx, vardir:

kmy, (xo, x1) < my(xo, Txg)
ve

my (x1, Tx1) < cmy, (%9, x1)

Burada x; € X noktasi i¢in yine iki durum s6z konusudur: Eger |Tx;| =1 ise yine
hipotezden amy,(x,, x,) < my(xq,x;) kosuluna uygun ve asagidaki esitsizlikleri saglayan

X, € Tx, vardir:
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kmy, (x4, x2) < myp(xq, Txq)
ve

mp (%2, Tx;) < cmy, (x4, x3)

Simdi kabul edelim ki  |Tx;| > 1 olsun. Buna goére eger my,(x;,Tx;) =0 ise

x; € Tx;” =Tx; olup x; €X noktast T doniisimiiniin sabit noktasidir. O halde
my, (x4, Tx,) > 0 olsun. Bu durumda amy, (x4, x;) < my (x4, x,) kosuluna uygun asagidaki

esitsizlikleri saglayan x, € Tx; vardir:

kmy, (xq, x3) < my(xq, Txy)
ve

mp(xy, Txy) < cmp(xq, X7).

2. Durum: |Tx,| > 1 olsun. Bu durumda eger m;, (xq, Txo) = 0 ise x, € Tx,” = Tx, olup
Xo € X noktast T donistimiiniin bir sabit noktasidir. O halde kabul edelim ki
my,(x9, Txy) > 0 olsun. Hipotezden am,; (xq,x;) < mp(xg,x;) kosuluna uygun ve

asagidaki esitsizlikleri saglayan x; € Tx, vardir:

kmy, (xo,x1) < my(xo, Tx)
ve

mp(x1, Txy) < cmy, (%0, %1)

1. Durum’a benzer sekilde eger |Tx,| = 1 ise yine hipotezden amy, (x;, x;) < my (x4, x3)

kosuluna uygun ve asagidaki esitsizlikleri saglayan x, € Tx; vardir:
kmb (le xZ) < my (xl; Txl)a
Ve

my(xy, Txy) < cmp (x4, X3)

Simdi kabul edelim ki  |Tx;| > 1 olsun. Buna gore eger m;,(x;,Tx;) =0 ise

x, € Tx,? = Txy olup x; € X noktast T doniistimiiniin sabit noktasidir. O halde
my, (x4, Tx;) > 0 olsun. Bu durumda ¢ kosuluna uygun asagidaki esitsizlikleri saglayan

X, € Tx, vardir:
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kmy (x4, x3) < my,(xq, Txq)
ve

mp (%2, Txz) < cmy (x4, x7).

Bu sekilde devam edilerek her n € N i¢in x,,,; € Tx,, ve

kmb (xn' xn+1) < my (xn; Txn) (4-17)
mp(Xn41, Txnp1) < cmp (X, Xp41) (4.18)
amy (xn+1rxn+1) < my (xnfxn+1) (4-19)

olacak sekilde (x,) € X dizisi elde edilir. Es.4.17 ve Es. 4.18’den yararlanarak ise istenilen

yani asagidaki kosullari saglayan (x,) € X dizisinin varlig1 gosterilmis olur:

C n
my(x,, Tx,) < (E) my, (xq, Txg) (4.20)
ve

C n
My (on, Xnsr) < (7)Mo (o, 1) (4.21)

O halde Es. 4.20 ve Es. 4.21 kullanilarak,

lim my, (x,, Tx,,) = lim my(x,, Xp41) =0 (4.22)
n—-oo n—oo
elde edilir. Simdi m > n olacak sekildeki m,n € N ig¢in,

myp (xn: xm) — Mpxpxm < S{(mb (xnf xn+1) - mbxnxn+1) + (mb (xn+1' xm) - mbxn+1xm)}
= S(mb (xn' xn+1) - mbxnxn+1)

2 (mb (xn+1' xn+2) - mbxn+1xn+2)

+s
+ (mb (xn+2'xm) - mbxn+2xm)

< S(mb (xnrxn+1) - mbxnxn+1) +

+Sm—n—1 (mb (xm—l' xm) - mbxm_lxm)
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<s (mb (x‘mxn+1)) + o+ Sm_n_l(mb (xm—l' xm))
n m-—1

<s (%) mp(xg, Xq) + =+ s™" (%) my, (X, X1)

n

<s (%) myp, (X, X1) {1 Tt (Sk_c)m_n_l}

£ n
< % mp (X0, x1)

k

elde edilir ki ¢ < k oldugundan,

lim my,(xp, X)) — My, =0 (4.23)
n,m— oo

elde edilir. Diger taraftan Es. 4.19°dan dolay1

0 < lim am;, (Xp41, Xp41)
am (4.24)
< limmy(xp, Xp41) =0
n—->oo

esitsizligi vardir. Buna gore Es. 4.23 ve Es. 4.24 birlikte degerlendirildiginde
lim my(x,, x,,,) = 0 elde edilir. O halde (x,,) € X bir M,-Cauchy dizisidir. (X, m;,) bir
n,m— oo

My -tam Mp-metrik uzay oldugundan

lim my, (xp, 2) — Mpy , = 0 (4.25)
n—-oo
ve

lim my,(x,, xn) = my(2,2) (4.26)
nm-oo

olacak sekilde z € X vardir. Simdi gosterelim ki z € X, T doniislimiiniin sabit noktasidir.
Es. 4.21, Es. 4.24, Es. 4.25 ve f(x) = m; (x, Tx) doniisimiiniin alt yar1 siirekliligi birlikte
degerlendirildiginde

0 <my(z,Tz) = f(z) < liminf f(x,) <liminfm,(x,, Tx,) =0
n—-oo n—-oo

yani, my(z,Tz) = 0 elde edilir. Simdi iki durum s6z konusudur. Eger |Tz| > 1 ise
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Z€TzP =Tz olup z € X noktas1 T doniisiimiiniin sabit noktasidir. Eger |Tz| =1 ise

hipotezden T doéniisiimii z noktasinda z-alt yoriingesel siirekli oldugundan,

my, (Tz, Tz) < liminfmy, (x,, Tz)
n—-oo
elde edilir. Simdi m,4) 6zelliginden,

my (xnr TZ) — Mpx,Tz < S{(mb (xn: Z) - mbxnz) + (mb (Z' TZ) - mszz)}
olur. Son esitsizligin her iki tarafinin n — oo i¢in limiti alindiginda m;2) 6zelliginden,

0 <my(Tz Tz) < liminfm, (x,,Tz) =0
n—oo

olup buradan m,(Tz, Tz) = 0 elde edilir. Diger taraftan m;(z,z) = 0 ve m,(z,Tz) =0
oldugundan m,1) o6zelliginden z = Tz elde edilir. Boylece z, T doniisiimiiniin sabit

noktasidir.

Her standart metrik uzay, kismi metrik uzay ve M-metrik uzay bir M,-metrik uzay

oldugundan asagidaki sonuglar Teorem 4.3.1’den yararlanilarak elde edilebilir.
4.3.1. Sonug (Feng-Liu Sabit Nokta Teoremi)

(X, d) standart tam metrik uzay ve T: X — C(X) kiime degerli doniisiim olsun. Bu durumda

her x € X i¢in,

d(y, Ty) < cd(x,y)

esitsizligini saglayan 0 < c <k <1 ve y € T¥(d) var olsun. Eger f(x) = d(x,Tx)

doniistimii alt yar siirekli ise T doniistimii X de bir sabit noktaya sahiptir.
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fspat

Standart metrik topolojisi T;-uzay1 oldugundan X U C,(X) = C,(X)’dir. Diger taraftan
standart metrigin tanimindan dolayr T doniisimi alt yoriingesel siireklidir ve Es. 4.19
otomatik olarak saglanir. O halde Teorem 4.3.1’den dolay1 T doniisiimii bir sabit noktaya

sahiptir.
4.3.2. Sonug

(X, p) tam kismi metrik uzay ve T: X — X U C, (X) karma kiime degerli doniisiim olsun. Bu

durumda |Tx| = 1 veya |Tx| > 1 oldugunda p(x, Tx) > 0 olacak sekildeki her x € X igin,

p(,Ty) < cp(x,y)

ve ¢ <k esitsizliklerini saglayan bir ¢,k € (0,1) ve y € T¥(p) var olsun. Eger

f(x) = p(x, Tx) doniistimii alt yar1 siirekli ise T doniistimii X’ de bir sabit noktaya sahiptir.
fspat

|Tx| =1 ve her n €N igin x,,; € Tx, olmak iizere lim p(x,,x) = p(x,x) olacak
n—-oo

sekildeki herhangi bir (x,) € X dizisini alahm. Kismi metrik tanimindan her zaman

p(Tx,Tx) < p(x,Tx) oldugundan p(Tx,Tx) < liminfp(x,, Tx) =p(x,Tx) olup T
n—oo

doniistimii her x € X noktasinda x-alt yoriingesel siireklidir. O halde Teorem 4.3.1’den

dolay1 T dontigiimii bir sabit noktaya sahiptir.

4.3.3. Sonug

(X, m) ikilisi M-tam M-metrik uzay ve T: X — X U C,,(X) karma degerli dontisiim olsun.
Bu durumda |Tx| = 1 veya |Tx| > 1 oldugunda m(x, Tx) > 0 olacak sekildeki her x € X

i¢in,

m(y, Ty) < cm(x,y)
am(y,y) < m(x,y)
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ve ¢ < k esitsizliklerini saglayan bir «,c,k € (0,1) ve y € Ty (m) var olsun. Burada
f(x) = my(x, Tx) dontisimi alt yar siirekli ise my(z,Tz) = 0 olacak sekilde bir z € X
noktasi vardir. Bunun yaninda eger |Tz| > 1 ise z € X noktas1 T doniisiimiiniin bir sabit
noktasidir. Eger |Tz| =1 ve T doniisimii z € X noktasinda z-alt yoriingesel siirekli ise

z € X noktas1 T doniisiimiiniin bir sabit noktasidir.

Asagidaki 6rneklerde tanimlanan uzaylar M -metrik uzay olmayip My -metrik uzay olmasi ve

sonuc¢larimizi dogrular nitelikte oldugu i¢in bu 6rnekler degerlidir.

Ornek

X ={0}U[1,2) U (2, ) ve bu kiime tizerindeki m;: X X X — [0, ) donilisiimii agagidaki

sekilde tanimlanirsa (X, my,) iKilisi s = 3 katsayist ile bir Mj,-tam M, -metrik uzaydir.

(0 , x=y=0
! 1, x=y€eXx\{0}
,Y) =14Xx +
my (%, ) Zy , x#ye€[12)
L1,2 ’ d.d.

Ancak bu sekilde tanimlanan m;, doniisiimii M -metrik degildir. Ger¢ekten, x = 1,5,y = 1,7
ve z€(2,0) alimirsa M-metrik tammmimin m4) Ozelligi saglanmaz. Simdi

T:X - X U Cy(X) karma kiime degerli doniistimiini,

seklinde tanimlayalim. Bu durumda f (x) = m,,(x, Tx) doniisiimii 7,,,, topolojisine gore alt
yar1 slireklidir. Diger taraftan |Tx| = 1 veya |Tx| > 1 oldugunda m, (x, Tx) > 0 olacak
sekildeki her x € X i¢in ¢ =0,1 < k = 0,8 esitsizligini saglayan bir ¢,k € (0,1) ve
y=0€Tgs(m,) var my(y,Ty) < cmy(x,y) ile her a€(0,1) igin
am,;,(0,0) < my,(x,0) esitsizlikleri saglanir. Ayrica T dontsimi her x € X\{3 + %}

noktasinda x-alt yoriingesel siirekli oldugundan Teorem 4.3.1°1 kullanarak T doniisiimiiniin

bir sabit noktaya sahip oldugunu soyleyebiliriz.
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Ornek

1
X=1{0,1}u {‘r_l n>2,ne N} ve bu kiime {izerindeki m,: X X X — [0, o) doniisiimii ise
asagidaki gibi tanimlansin. Bu durumda (X,m;) ikilisi s = 4 katsayisi1 ile bir Mj-tam

Mp,-metrik uzaydir:

( 1
0 , =yeX {—: > 1, EN}
xX=y \Zn n n
1
=1 €E{—:n>1, EN}
X vey {Zn n n
min{x,y} , veya
1
xe{%:n>1,nEN}vey=1
my(x,y) = < 1
b(6) max{x,y} , x,ye{%:n>1,nEN}
1
= = — >1, 21; ) EN
. X 2m+1vey o n m nm
= , veya
2 1
= — = c >
X o vey 1 n>1m=>=1nmeN
\ 2 ; d.d.

Ancak m, doniisiimii bir M-metrik degildir. Gergekten, x = 1,y = ﬁ vez = ﬁ alinirsa

M-metrik taniminin m4) 6zelligi saglanmaz. Simdi T: X — X U C,(X) karma kiime degerli

doniisiimiindi,

{O}U{ :nZl,nEN} , x=0

Tx = 2n+1

0 , d.d.

seklinde tanimlarsak f(x) = my(x, Tx) doniisiimii 7,,, topolojisine gore alt yar1 siireklidir.
Diger taraftan |Tx| =1 veya |Tx| > 1 oldugunda m,(x,Tx) > 0 olacak sekildeki her
x € X igin ¢ = 0,1 < k = 0,5 esitsizligini saglayan bir ¢,k € (0,1) ve y = 0 € Tys(m;)
var m,(y,Ty) < cmy(x,y) ile her a € (0,1) igin am,;(0,0) < m;(x,0) esitsizlikleri
saglaniyor olup T doniisimi |Tx| =1 olacak sekildeki her x € X noktasinda x-alt
yoriingesel siirekli oldugundan Teorem 4.3.1°1 kullanarak T doniisiimiiniin bir sabit noktaya

sahip oldugunu sdyleyebiliriz.
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5. SONUC VE ONERILER

Ik boliimde tek degerli ve kiime degerli doniisiimler icin sabit nokta teori uygulama
alanlariyla tanitilarak 6nemine deginilmis ve gelisiminin tarihsel siireci hakkinda temel

bilgilere yer verilmistir.

Ikinci béliimde diger béliimlerde yer alacak sonuglarimiza hazirlik yapmak amaciyla temel

tanim ve teoremlerimize yer verilmistir.

Ucgiincii boliimde tek degerli doniisiimler igin sabit nokta teoremlerine yer verilmistir. Bunu
yapmak i¢in oncelikle M-metrik uzay lizerinde Caristi doniigiimii tanimlanmistir. Ardindan
Caristi doniisiimleri ve bazi genellestirilmis Caristi doniisiimleri i¢in sabit nokta teoremleri

yardimiyla literatiirdeki ¢aligmalar genisletilmistir.

Dérdiincii boliimde kiime degerli dontistimler i¢in sabit nokta teoremlerine yer verilmistir.
Oncelikle M-metrik uzaylar iizerinde farkli topolojik yapilar incelenmistir. Ardindan bu
topolojiler dikkate alinarak bu topolojilere gore M-metrik uzaylar tizerinde tanimli kapali
kiime degerli doniisiimler i¢in Feng-Liu tip sabit nokta teoremi elde edilmistir. Daha sonra
bu calismay1 daha da genisletmek adina F ve X’in belirli 6zelliklerine sahip altkiimelerinin
A(X) ailesi diger taraftan F, ve C,,(X) ailesi birlikte dikkate alinarak kiime degerli
dontistimler i¢in iki yeni sabit nokta teoremi elde edilmistir. Son olarak bu boliimde
literatiirde daha 6nce ortaya konmus Mj,-metrik uzay kavrami iizerinde var olan problem
giderilerek yeniden tanimlanmis ve bu uzay lizerinde tanimli karma kiime degerli

doniisiimler i¢cin Feng-Liu tip sabit nokta teoremi elde edilmistir.

Biz bu tez ¢alismasinda giincel kavramlar literatiirde var olan g¢alismalar1 genisletecek
sekilde ele aldik. Ancak, giris kisminda belirttigim ¢alismalar disinda Banach Biiziilme
Ilkesinin literatiirde ¢ok fazla genislemesi bulunmaktadir. Bu baglamda yakin zamanda
tanimlanmig M-metrik uzay ve M,-metrik uzay iizerinde elde edilecek yeni sonuglar ile

literatiire katkida bulunulabilir.
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