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ABSTRACT 

Internet of Things is a fast growing technology for information collection, communications 

and processing.  Successful applications of Internet of Things aim to interconnect objects 

with varied capabilities within the same heterogeneous network. The goal is to allow the 

network entities to cooperate and make their resources available in order to perform the 

demanded task. However for variety of Internet of Things objects minimizing the energy to 

be spent for task allocation purposes will be one of the primary constraints. Currently, 

almost all existing studies employ heuristic optimizations to cope with different aspects of 

task allocation problems without taking into consideration the heterogeneous nature of IoT 

objects in terms of their computation and energy levels. In this thesis, the problem of task 

allocation in Internet of Things is addressed. The problem is modeled using task groups 

and virtual objects concept by adopting evolutionary based methods. Considering different 

design requirements of different applications, we have proposed seven novel protocols to 

meet the requirements of different application scenarios. The proposed protocols are 

tailored to meet different goals of energy efficiency, extended operational and stability 

periods, and maximized computation power. To the best of our knowledge, our work is 

among the first works to propose task groups and virtual objects based framework to solve 

the task allocation problem in IoT, and the first work that adopts meta-heuristic methods 

for this purpose. To evaluate the proposed protocols several evaluation metrics are 

considered, such as: energy efficiency, number of operational rounds, length of stability 

periods, average available energy in virtual objects, computation power, computation time, 

and the quality of the proposed evolutionary algorithm. The performance of the protocols 

are analyzed and benchmarked by comparing them with the most relative work in the 

literature through extensive simulations. The results have proved the superiority of the 

proposed protocols. 
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ÖZET 

Nesnelerin İnterneti (Nİ), bilgi toplamak, iletişim ve bilgi işlemek için kullanılan 

gelişmekte olan bir teknolojidir. Nİ’nin başarılı uygulamaları, farklı kabiliyetlere sahip 

olan nesneleri bir heterojen ağ çatısı altında birbirine bağlı bir şekilde tutar. Amaç ağda 

bulunan nesnelerin kaynaklarını bulundurup ve dinamik bir şekilde işbirliği yaparak 

istenilen bir görevi yerine getirmektir. Ancak Nİ’nin birçok cihaz için görev dağılımında  

harcanacak enerjiyi minimize etmek hayati bir önem taşımaktadır. Günümüzde, bu konu 

ile ilgili mevcut çalışmaların hemen hemen tümü nesnelerin farklı enerji seviyelerini ve 

çeşitli işletim güçlerini dikkate almadan sezgisel en iyileme yöntemlerini kullanarak görev 

dağılımının farklı sorunlarını çözmeye uğraşmıştır. Bu tezde nesnelerin İnternetin’de görev 

dağolım problemi ele alınmıştır. Problem görev grupları ve sanal nesneler kavramını 

kullanarak evrimsel yöntemler çatısı altında modellenmiştir. Ayrıca, farklı uygulamaların 

farklı tasarım özelliklerini düşünerek, farklı uygulama senaryoların gereksinimlerini 

karşılıyabilen yedi yeni protokol geliştirilmiştir. Geliştirilen protokoller, enerji verimliliği, 

uzatılmış operasyonel ve stabil süreler ve işleme gücü artırmak gibi hedeflere uyacak 

şekilde tasarlanmıştır. Bilgimiz dahilinde çalışmamız Nİ’de görev dağılımı problemi için 

görev grupları ve sanal nesneler kavramı tabanlı bir çözüm çerçevesi öneren ilk çalışmalar 

arasındadır. Ayrıca, meta sezgisel yöntemleri kullanarak bu problemi çözen ilk çalışmadır. 

Geliştirilen protokollerin performansını değerlendirmek için, enerji verimliliği, 

operasyonel tur sayısı, stabil sürelerin uzunluğu, sanal nesnelerde ortalama enerji miktarı, 

hesaplama gücü, gereken hesaplama zamanı ve önerilen evrimsel algoritmanın kalitesi gibi 

çeşitli değerlendirme metrikleri kullanılmıştır. Protokollerin performansı analiz edilmiş ve 

literatürdeki en ilgili çalışmayla karşılaştırılmıştır. Sonuçlar geliştirilen protokollerin 

performans üstünlüğünü kanıtladı. 
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1. INTRODUCTION 

 

Motivation 

 

Recent advances in information, communication, and internet technologies impose a new 

form of life that is open to emergence of new breakthroughs. Internet of Things (IoT) is an 

emerging and fast growing technology, which links digital and physical entities together to 

enable a whole new class of applications and services by means of appropriate information 

and communication technologies [1]. For a wide variety of application domains, including 

agriculture, manufacturing, transportation, healthcare, environment surveillance, smart 

buildings, and many others, IoT is a significant approach to improve the flow of 

information across their organizational structures [2–4].  

 

IoT concept aims to interconnect objects with different capabilities within the same 

heterogeneous network. Most of these entities suffer from lack of sufficient resources such 

as ‘‘energy’’. For example, in wireless sensor networks, sensor nodes are often battery 

powered, and therefore have strictly limited energy reserve [5]. More extensive and 

continuous use of wireless network services will only aggravate this problem. Thus, for 

most of IoT systems, reducing the energy consumption (e.g., for communication or 

performing a given task) is a primary constraint. However, even today, research is still 

focused on performance and (low power) circuit design. There has been substantial 

research in the hardware aspects of mobile communications energy-efficiency, such as 

low-power electronics, power-down modes, and energy efficient modulation. However, 

due to fundamental physical limitations, progress towards further energy-efficiency will 

become mostly an architectural and software-level issue. Due to these limitations, there is a 

lot of focus on finding the best energy efficient at all layers of the networking protocol 

stack. For example, at the network layer, it is highly desirable to find methods for energy-

efficient task allocation, route discovery and relaying of data from the objects to an 

external control station so that the lifetime of the network is maximized [6].  

 

One way to minimize the effect of this resource constraint is enabling network entities to 

cooperate and make their resources available to perform the given tasks. In other words, 

the entities executing the same application should cooperate to reach the optimal allocation 
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of tasks among themselves. However, task allocation problem with the goal of increasing 

the lifetime of the network as well as identifying which tasks to be assigned to which 

objects is not a trivial task. Generally, when an object is in transmit mode, the transceiver 

drains much more energy from the battery than the microprocessor in active state or the 

sensors and the memory chip. The ratio between the energy needed for transmitting and for 

processing a bit of information is usually assumed to be much larger than one (more than 

one hundred or one thousand in most commercial platforms). For this reason, the 

communication protocols need to be designed according to paradigms of energy efficiency, 

while this constraint is less restrictive for processing tasks [7]. Then, the design of energy 

efficient task allocation protocols that consider the communication overhead is a very 

peculiar issue of IoT. 

 

It is important to consider some key features that characterize many of IoT objects:  

i) Available resources (energy, processing, memory, object ability of perform a given 

task) are often limited. This is the case, for example, of battery powered nodes, which 

have limited energy amounts.  

ii) For a variety of IoT entities, minimizing the energy to be spent for communication/ 

computing purposes will be a primary constraint. Thereby the need to devise solutions 

that tend to optimize energy usage (even at the expenses of performance) will become 

more and more attractive.  

iii) Objects may provide redundant information that is not unique but can be generated by 

set of different objects which are capable of performing the same task.  

iv) The number of objects in the IoT is quickly overcoming the number of hosts in the 

traditional networks and most of these have a low reliability due mostly to the mobility 

and energy. This entails for a new paradigm of communication according to which 

objects coordinate with the other objects in groups and provide a unified service to the 

application that requires the service. 

v) The heterogeneity of the network in terms of capabilities and characteristics of the 

objects coupled with the need of an optimal creation of communications for energy 

efficient optimization. 

 

Task allocation is a procedure of choosing, subdividing, coordinating and assigning the 

correct tasks to the correct entities. It is usually performed considering different aspects 
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such as network topology, energy constraints and processing capabilities of the network 

entities. However, most of the existing methods have generic and limited scope in 

extending resources regarding the application assigned to the network [8]. Moreover, 

although the problem of task allocation is extensively studied in the field of Wireless 

Sensor Networks (WSNs), the task allocation problem in IoT networks is an open research 

issue. IoT introduces much more dynamic and heterogeneous scenarios when compared to 

WSNs. In WSNs the nodes are managed by the same system and have similar 

characteristics whereas the IoT objects are grouped opportunistically as they provide 

cooperative services and then they have to find the way to act in a coordinated way [9]. In 

addition, the size and heterogeneity of the network in terms of capabilities and 

characteristics of the objects coupled with the need of an optimal creation of 

communications for energy efficient optimization make the problem of task allocation a 

very challenging procedure.  

 

In its abstract level, we can consider the problem of task allocation as a special clustering 

problem. Accordingly, the optimal selection of task allocators with a high residual energy 

that is scattered in the area can be seen as an NP-hard problem [10]. Computational 

Intelligence (CI) is the study of adaptive mechanisms that enable or facilitate intelligent 

behavior in complex and changing environments. These mechanisms include paradigms 

that exhibit an ability to learn or adapt to new situations, generalize, abstract, discover, and 

associate. Different approaches of CI, including Evolutionary Algorithms (EAs), swarm 

intelligence, and more recently, harmony search, have been used by different researchers 

for energy-aware cluster-based routing. These algorithms are examples of population-

based meta-heuristic algorithms, which have two important components: intensification 

and diversification [11]. For the algorithm to be efficient and effective, it must be able to 

generate a diverse range of solutions, including the potentially optimal solutions, so as to 

explore the whole search space effectively, while it intensifies its search around the 

neighborhood for an optimal or a nearly optimal solution. For EAs, genetic operators, such 

as crossover or reproductive recombination, mutation, and selection are used to evolve 

population's solutions based on their fitness (i.e., objective) function. With this in mind, the 

researchers must draw attention to consider the EA based methods in task allocation in 

IoT. 
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For all of the aforementioned reasons and to complete the lack of academic studies it is 

necessary to give a comprehensive and a systematic framework for task allocation problem 

in IoT. Thus a common middleware can be designed in order to ensure interoperability 

among different devices. 

 

Thesis contributions 

 

In this thesis we addressed the problem of task allocation in IoT. The thesis begins by 

presenting a comprehensive survey of concept, characteristics, technologies, applications 

and research challenges for IoT which have been developed and became popular in recent 

years. Then, the thesis tackles the problem of task allocation in IoT based applications 

considering special features and design characteristics of these applications. In this context, 

we considered a realistic and two basic scenarios and adopted meta-heuristic methods to 

solve this problem.  

 

In the first scenario we assume that each object is capable of performing only a single task. 

Then, to cope with different requirements of the applications, we propose two sets of 

protocols: protocols with the goal of maximizing the network lifetime and protocols with 

the main goal of extending the stability period of the network. For typical applications 

(e.g., smart environments) we modeled a task allocation problem as a single objective 

optimization problem with the main goal to minimize energy consumption. We proposed 

two protocols with different objective models that can have a positive impact on the overall 

performance of the network. The objective models are tailored to meet the goal of 

minimizing the energy expenditures for communication in the process of tasks allocation to 

ensure maximal network longevity. On the other hand, for crucial applications (e.g., 

environmental monitoring, factory automation), we are motivated by the fact that most IoT 

based networks are heterogeneous especially in terms of energy levels. Hence, we 

proposed two more protocols with the goal of minimizing energy consumption as well as 

maximizing the stability periods to ensure stable and balanced operation of whole network. 

To validate the proposed protocols, we applied an extensive MATLAB based analysis and 

used more than 105 various test instances in the simulations. We evaluated the protocols 

by using different measurements and benchmarking parameters and compare them with the 

most relevant algorithm in the literature. 
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In the second scenario a more realistic and complex scenario is considered where objects 

are capable of performing a variety of tasks and can be members of more than one group. 

In this context we developed two novel protocols. The first protocol formats the problem 

of task allocation as a meta-heuristic optimization problem with the goal of increasing 

stability and operational periods of the network by developing a novel single objective 

optimization algorithm. This algorithm designed with an elegant objective function and 

heterogeneity aware heuristics that can cooperate to achieve the optimal goal of the 

algorithm. This thesis presents the first attempt to utilize EAs in this direction. The key 

idea of the proposed protocol is to hypothesize a possible energy-based heuristics for the 

individual solution's initialization, fitness evaluation, and mutation to properly maintain 

longer stability periods. The second protocol jointly formulates the computational power 

utilization and energy efficiency problems in task allocation of IoT as a novel Multi-

Objective Optimization Problem (MOP). To the best of our knowledge, this is the first 

work attempting to address computational power utilization and energy efficiency 

problems in task allocation of IoT as a MOP. Also in this study, we modified the most 

relative method to the stated problem, namely CBATA [8, 12], and redirect its goal toward 

energy efficiency by developing M-CBATA algorithm. To evaluate these protocols, we 

performed extensive MATLAB based analysis and application layer simulations based on 

OMNeT++ using several benchmarking metrics.  

 

Thesis outline 

 

 Chapter 2: presents a general view of IoT, explaining their main characteristics and 

issues, introducing the applications in which the IoT are used. Later, the chapter 

explains the major challenges in IoT including the task allocation problem as one of the 

main problems in IoT. Finally, the chapter ends stating CBATA protocol as it the most 

relevant algorithm in the literature. 

 Chapter 3: presents the concept of meta-heuristics and evolutionary algorithms defining 

both single objective and multi-objective optimization problems. Also this chapter 

presents the major components and characteristics of these problems. Finally, this 

chapter introduces the conceptual algorithmic framework for EAs. 

 Chapter 4: presents the proposed task allocation protocols in the context of IoT. The 

chapter begins by defining the problem and describing the system model. Then, the 



6 

 

general layout of each of the proposed protocols is given. The components and 

evolutionary operators are, then, explained in details in both formal and informal ways. 

 Chapter 5: contains simulation results and discussions. It begins with introducing the 

required test-bed settings for the playgrounds and the protocols parameters. The results 

of the proposed protocols are, then, compared with the results of the most related work 

in the literature. In this chapter, the results of protocols of the first scenario are 

presented first. Then, the results of the protocols of the second and the more complex 

scenario are provided supported by the application layer simulation results that are 

calculated by the network simulator OMNeT++. Energy efficiency, duration of the 

stability and operational periods, computational power optimization, computational time 

and evolutionary algorithm quality are used as evaluation metrics. 

 Chapter 6: presents conclusion remarks of the whole work of this thesis, summarizing 

the results and giving some candidate future research directions. 
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2. TASK ALLOCATION PROBLEM IN IoT 

 

The International Telecommunications Union (ITU) suggested that the “Internet of Things 

will connect the world's objects in both a sensory and intelligent manner” [13]. IoT is an 

environment that contains different embedded devices interacting with each other to 

perform tasks related to information collection, communications and processing. 

Successful applications of IoT aim to interconnect objects with various capabilities within 

the same heterogeneous network. The goal is to allow network entities to cooperate and 

make their resources available in order to perform the demanded task. However, assigning 

tasks to group of heterogeneous objects that are equipped with limited resources poses a 

challenging task. The most limited and valuable resource for variety of IoT objects is 

battery power. Therefore, improving the energy efficiency in task allocation process is one 

of the primary objectives. 

 

This chapter provides an exposition of the fundamental aspects of IoT, and presents some 

of their applications as they are identified as one of the most important technologies in the 

recent years. Afterwards, the main issues and characteristics of this technology will be 

highlighted. Later, the major problems and challenges encountered while implementing 

IoT systems are explained. The main body of this chapter is elaborated in the final section 

where the details of the task allocation problem in IoT are explained and recapitulated with 

a main focus on the task groups and virtual object concept as it are realized to succeed to 

provide energy-efficient solutions.  

 

2.1. Background 

 

Nowadays, around four billions people around the world use the Internet for browsing the 

Web, sending and receiving emails, accessing multimedia content and services, playing 

games, using social networking applications and many other tasks. According to a report 

prepared by information and communication technologies agency for the United Nations, 

50.1% of the world population is active internet user since September 2016 (See Figure 

2.1) [14]. 

 

                                                           
 Data are calculated in December of each year except for 2016. 
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Figure 2.1. The raped development of the internet from 1995 

In parallel with the developing of Internet and communication technologies, smart and 

connectable objects have started to take more places in our daily lives. The capability of 

these objects to access to the Internet and connect and exchange information with each 

other over the Internet at an unprecedented rate has realized the idea of the Internet of 

Things (IoT). The IoT smart objects are expected to reach over 500 billion entities 

deployed globally by the end of 2020 [15]. The data that will be collected from all the IoT 

objects are expected be very huge and diverse. Very different types of data can be obtained 

from many different applications, such as the number of vehicles at an intersection from 

the smart traffic lights, the density of people in a region from the mobile phones, the 

average indoor temperature from the air conditioners in the houses, or the rainfall intensity 

of an area from the vehicle wipers. Similarly, IoT can be used in the renewable energy 

market as well as in providing a better life for people in terms of food, clothing, housing, 

transportation, education and entertainment [16]. 

 

IoT refers to networks of objects that communicate with other objects and with computers 

through the Internet and exchange information about their status and/or the surrounding 

environment.  “Things” may include virtually any object for which remote communication, 

data collection, or control might be useful, such as vehicles, appliances, medical devices, 

electric grids, transportation infrastructure, manufacturing equipment, or building systems 
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[17]. The concept of IoT originated at the Auto-ID Center at the Massachusetts Institute of 

Technology (MIT) by Kevin Ashton in 1999 [18]. In the early stages, radio frequency 

identification systems are used to connect devices and transmit information via radio 

frequency to the Internet to achieve intelligent identification and management. The 

importance of IoT quickly realized by some researchers; therefore, several organizations 

established research groups to discuss possible architectures and standards while trying to 

develop practicable IoT systems. As shown in Table 2.1, definitions of IoT can be found in 

different researches, such as United States, European, Japan, and China. Although 

definitions from different organizations are somehow different, the requirements for IoT 

are essentially the same, such as being able to integrate heterogeneous devices, ubiquitous 

data exchange, localization and tracking capabilities, and even being able to make the 

simple decision by themselves. To provide better services for the end user, the intelligence 

has become a vital issue of IoT [19].  

 

In 2005, the International Telecommunication Union (ITU) formally identified the concept 

of the IoT at the world summit on the information society in Tunisia and released an ITU 

Internet report that provided an in-depth introduction to the IoT and its effects on 

businesses and individuals around the world [20]. The report contained information on key 

emerging technologies, market opportunities, and policy implications. In the report, the 

IoT is described as follows: connections will multiply and create an entirely new dynamic 

network of networks, namely, the IoT. This trend has led to a promising IoT concept that is 

an emerging field of study [3, 21-23]. Nowadays, the IoT vision provides a large set of 

opportunities to users, manufacturers and companies. In fact, IoT technologies have wide 

applicability in many productive sectors including, e.g., environmental monitoring, health-

care, inventory and product management, workplace and home support, security and 

surveillance [23]. 
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Table 2.1. The definitions and standards of IoT according to different research groups 

 

Organization Web link 

MIT http://www.autoidlabs.org/ 

EPCglobal http://www.gs1.org/epcglobal 

National Intelligence Council http://www.fas.org/irp/nic/disruptive 

European Commission http://cordis.europa.eu/fp7/ict/enet/home_en.html 

European Commission 
http://www.smart-systems-integration.org/ 

public/internet-of-things 

Ubiquitous ID Center http://www.uidcenter.org/ 

Internet of Things China http://www.iotcn.org.cn/ 

 

2.2. The Concept of IoT 

 

IoT is an emerging paradigm for information collection, communications and processing. 

In literature there are different definitions for the concept of IoT. Due to the multifaceted 

nature of IoT concept, definitions must be made on the basis of internet, things and their 

meanings [24]. In what follows some of the most used and prominent definitions are listed: 

 

 A world-wide network of interconnected objects uniquely addressable based on 

standard communication protocols [2]. 

 A global infrastructure for information collection that provides advanced services by 

interconnected objects based on current and evolving information and communication 

technologies [25]. 

 A network of intelligent objects with the ability to act according to the environmental 

conditions, to share information, data and resources and to be organized automatically 

[26]. 

 

Radio-Frequency IDentification (RFID) tags are considered to be the basic idea behind IoT 

concept, thus, all of the objects that are equipped with radio tags may be able to 

communicate with other objects equally tagged through internet or any other protocols, to 

collaborate and to reach a common goal [27]. As could be seen in Figure 2.2, objects (or 

things) can be RFID tags, sensors, actuators, mobile phones, etc. which through unique 

addressing schemes, are able to interact with each other and cooperate with their 
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neighbors. In IoT the complex tasks are divided into several simple sub-tasks, each is 

assigned to an IoT object, in this way the performance of the entire system is improved 

[28]. From a conceptual standpoint, the IoT concept builds on three pillars, related to the 

ability of smart objects to be identifiable (anything identifies itself), communicable 

(anything communicates) and intractable (anything interacts). 

 

 
 

Figure 2.2. Internet of Things 

 

From a system-level perspective, IoT can be looked at as a highly dynamic and radically 

distributed networked system, composed of a very large number of smart objects 

producing and consuming information. The ability to interface with the physical realm is 

achieved through the presence of devices able to sense physical phenomena and translate 

them into a stream of information data, as well as through the presence of devices able to 

trigger actions having an impact on the physical realm (through suitable actuators) [1]. 

 

2.3. Elements of IoT 

 

The main motive of IoT is to make the things or objects in the world to be connected and 

able to share information automatically just like people sharing information [1]. To 

accomplish this motive, there are many technologies that help the things to communicate 

among them. 

 

Internet of  
Things 
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2.3.1. Radio frequency identification (RFID) 

 

Radio Frequency IDentification (RFID) is a wireless technology that is used for 

identification of objects [29]. Due to its reduced cost and increased abilities of tracking the 

location, status of objects and remote reading, it is more preferred than the usual bar code 

technology. It is the root cause factor for an object to be identified so that it can be 

connected to the internet. RFID uses radio waves to identify things and transfer its 

information to the RFID reader without physical contact [30]. 

 

2.3.2. Wireless sensor networks (WSNs) 

 

Wireless Sensor Networks (WSNs) play a vital role in connecting the physical world to the 

information world [30]. These networks monitor the changes happening in the environment 

and report them so that corresponding responses can be taken. WSN contain many 

independent nodes that communicate among themselves with the help of wireless radio. 

The nodes contain a sensor (collecting data), microcontroller (computing data and 

controlling), memory (storing program and data), radio transceiver (for communication 

with other nodes) and battery (power supply) [31]. These sensors work together to collect 

data and send the results to the base station. 

 

2.3.3. Embedded systems and nanotechnology 

 

Embedded systems are intelligent and things with embedded intelligence become smart 

things. These make things perform certain actions automatically. For example a smart 

washing machine can wash and dry clothes automatically without human intervention. 

Nanotechnology is used to inject intelligence in things which are called smart devices (e.g., 

smart phones, smart watches, smart glasses, etc.). These smart devices are able to process 

information, self-configure and take independent decisions [32]. They are connected with 

the help of LAN, GPRS, WSN, Wi-Fi, 3G, etc.  
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2.4. Technologies of the IoT 

 

2.4.1. Communication 

 

Due to the heterogeneous nature of IoT objects, communication technologies with different 

characteristics can be used in the communication of these objects. Typically, most of the 

objects must operate using low power in noisy environments with lossy communication 

links. Examples of the communication protocols that are used in IoT include WiFi, IEEE 

802.15.4, Bluetooth, Z-wave, LTE and LPWAN technologies. 

 

The main communication technology used in IoT is WiFi that uses radio waves to 

exchange data among objects within 100 m range [33]. On the other hand, Bluetooth 

provides communication links to exchange data between devices over short distances using 

short-wavelength radio to minimize power consumption. In this context, the Bluetooth 

Special Interest Group (SIG) produced Bluetooth 4.1 that provides Bluetooth Low Energy 

as well as high-speed and IP connectivity to support IoT [3, 34]. Recently, this group has 

developed Bluetooth 4.2 and later Bluetooth 5.0 with more supportive features for IoT 

applications. Compared with older versions, Bluetooth 4.2 has provided lower energy 

consumption, more reliable connections and longer packet transmissions. Bluetooth 4.2 has 

also introduced the IPSP 6 (Internet Protocol Support Profile 6) protocol, which facilitates 

the connection of intelligent objects in smart homes. On June 16, 2016, Bluetooth 5.0 is 

announced during a media event in London. Bluetooth 5.0 has four times the 

communication range, two times the transmission rate, and eight times the data 

transmission capacity of older versions of Bluetooth [35]. All these advances are important 

to allow the intelligent objects to be connected throughout a smart home. 

 

LTE (Long-Term Evolution) is a standard wireless communication protocol for high-speed 

data transfer (300 Mbit/s) between mobile phones based on GSM/EDGE and 

UMTS/HSPA network technologies [36]. LTE provides multicasting and broadcasting 

services for fast-travelling devices. LTE-A (LTE Advanced) is an improved version of 

LTE including bandwidth extension which supports up to 100 MHz, downlink and uplink 

spatial multiplexing, extended coverage, higher throughput and lower latencies[36, 37]. 
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Finally, the LPWAN (Low Power Wide Area Network) is a long-range and cost-effective 

wireless communication technology that provides optimum power and resource 

management [38]. The main goal of LPWAN is to connect devices with low power and at 

a low bit rate over long distances using low bandwidth. In this way, this technology could 

be used in many M2M (Machine to Machine) and IoT applications that have limited 

budgets and energy problems. There are many standards development organizations and 

private industry alliances that make researches on this technology. These organizations 

have developed several platforms which support LPWAN, such as SIGFOX [39], 

LORAWAN [40], INGENU [41] and TELENSA [42]. These platforms have used a variety 

of features and techniques to achieve longer communication range, lower power 

consumption and higher scalability. Table 2.2 summarizes some of the technical 

characteristics of these platforms [43, 44]. 

 

Table 2.2. Technical specifications of some LPWAN platforms 

 

Model 

SIGFOX LORAWAN INGENU TELENSA 

UNB DBPSK(UL), 

GFSK(DL) 
CSS 

RPMA-DSSS(UL), 

CDMA(DL) 
UNB 2-FSK 

Band 868/915 MHz 
433/868/780/915 

MHz 
2.4 GHz 

SUB-GHZ 

Bandsı 

Data Rate 100 bps 50 kbps 19.5 kbps 346 Mbps 

Coverage range 
(km) 

10 (Urban), 50  

(Rural) 
5 (Urban), 15 

(Rural) 
15 (Urban) 1 (Urban) 

Advanced error 

correction 
× ✓ ✓ ✓ 

Topology Star Star of Stars Star/Tree Star 

packet Size 12B Up to 250 Byte 10KB 65KB 

Roaming ✓ ✓ ✓ ✓ 

Authentication and 

Encryption 
No Encryption AES 128b 

16B hash, AES 

256b 

At the 

development 

stage 

 

In addition to the aforementioned protocols, RFID, 6LoWPAN, Ultra-Wide Bandwidth 

(UWB) and Near Field Communication (NFC) are some of the special short-distance 

communication technologies used in IoT applications. RFID consist of a tag and a reader. 

RFID tag represents a simple chip or label to identify the objects. RFID reader uses radio 

waves to send query signals to the label and retransmits the signal from the label to a 

database connected to a processing center. The objects are then detected from the reflected 

signals [45]. 6LoWPAN is the abbreviation of IPv6 over low-power Wireless Personal 

Area Networks- WPAN (IPv6 over Low power WPAN). 6LoWPAN is a Mesh network of 

nodes with low resources (energy, processing and memory units). Each node in this 
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network has a unique IPv6 address and can connect directly to the Internet and the cloud 

using IEEE 802.15.4 and open IP standards [46, 47]. NFC is a wireless communication 

technology uses the ISO 18092 standard to provide communication with radio frequency 

over short distances. NFC operates in a high frequency band (at 13,56 MHz) and supports 

data rates up to 424 kbps with a range up to 10 cm [48]. UWB is designed to support the 

communications in small ranges using low energy and high bandwidth. The use of this 

technology has recently increased to connect sensor nodes [49]. 

 

2.4.2. Sensing 

 

The IoT sensing means collecting of data from related objects within the network and 

sending it back to a data warehouse, database, or cloud. The gathered data is analyzed to 

perform certain actions based on the required tasks. The IoT sensors can be smart sensors, 

actuators or wearable sensing devices. To connect the sensor network to the Internet a 

standard based on the Internet Protocol could be used. For example, single board 

computers integrated with sensors and built-in TCP/IP and security functionalities are 

typically used in IoT products [50, 51]. 

 

2.4.3. Computation 

 

In IoT computation, there are two components hardware and software.  Processing units 

such as microcontrollers and microprocessors and software applications provide the 

computation capability for the IoT. Various hardware platforms with microcontrollers and 

microprocessors were developed to run IoT applications. Examples of these platforms are 

Arduino [52], Intel Galileo [53, 54], WiSense [3], Raspberry PI [55, 56], Gadgeteer [57], 

BeagleBone and BeagleBone Black [58-60], Cubieboard [61], UDOO [62], Z1 [63] and 

Mulle [64].  

 

On the other hand, many software platforms are utilized to provide IoT functionalities. 

Among these platforms, Operating Systems (OSs) are important since they run for the 

whole activation time of a device. There are several Real-Time Operating Systems (RTOS) 

that can provide supports for IoT applications. For instance, the Contiki RTOS [65] has 

been used widely in IoT scenarios. Contiki has a simulator called Cooja which allows 

researcher and developers to simulate IoT and WSN applications. TinyOS [66], LiteOS 
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[67] and Riot OS [68] are also examples of RTOS that are designed for IoT environments. 

Moreover, some auto industry leaders in partnership with Google established the Open 

Auto Alliance (OAA). OAA is planning to bring new features to Android platform that 

provide support for Internet of Vehicles (IoV) paradigm [69]. Some features of these 

operating systems are provided in Table 2.3. 

 

Table 2.3. The most commonly used operating systems in IoT 

 

Operating 

System 

Language 

Support 

Minimum 

Memory 

Event Based 

Programming 

Multi-

threading 

Dynamic 

memory 

TinyOS [66] nesC 1 KB Yes Partial Yes 

Contiki [65] C 2 KB Yes Yes Yes 

LiteOS [67] C 4 KB Yes Yes Yes 

Riot OS [68] C/C++ 1,5 KB No Yes Yes 

Android [70] Java - Yes Yes Yes 

 

Finally, cloud platforms play an important role in the computation in IoT. Smart objects 

can send the large data to the cloud for real-time processing. IoTCloud, OpenIoT, NimBits 

and Hadoop are examples of cloud platforms that support IoT [3]. 

 

2.4.4. Identification and addressing 

 

Identification is used to provide an open identity to each object within the network. 

Identification is important to name and match services with their demand. Many 

identification methods are available for IoT. Examples of these methods include Electronic 

Product Codes (EPC) and Ubiquitous codes (uCode) [71].  

 

Addressing the IoT objects is also important to distinguish between object ID and its 

address. Object ID refers to its name whereas object’s address refers to its address within a 

communications network [72]. 

2.4.5. Semantics 

Semantic in the IoT refers to the ability to extract knowledge smartly by different machines 

to provide the required services. Knowledge extraction includes discovering and using 
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resources, modeling information, and recognizing and analyzing data. Thus, semantic 

represents the brain of the IoT as it used to send demands to the right resource. The 

requirement of IoT applications of Semantic is solved using semantic web technologies 

such as the Resource Description Framework (RDF) and the Web Ontology Language 

(OWL) [73]. Recently, the World Wide Web consortium (W3C) has recommended the 

Efficient XML Interchange (EXI) format for a semantic service in the IoT [74]. EXI is 

important in the context of the IoT because it is designed to optimize XML applications for 

resource-constrained environments. In addition, EXI reduces the need for bandwidth 

without affecting resources such as battery life, code size, energy consumed for processing, 

and memory size. It converts XML messages to binary to reduce the required bandwidth 

and minimize the required storage size [3]. 

 

2.5. The main services of IoT 

 

IoT has wide range of applications in many areas from home and office automation to 

production line and retail product tracking. To improve the development, optimization and 

speed of each IoT application one or more of IoT services are required. In general, IoT 

services can be categorized into four classes: Identity-related Services, Information 

Aggregation Services, Collaborative-Aware Services and Ubiquitous Services [3, 75, 76]. 

 

 Identity-related Services: The most basic and important services that are used in other 

types of services. Identity-related services are used whenever the identity information of 

the objects in the IoT application is needed. Every application that needs to bring real 

world objects to the virtual world has to identify those objects. 

 Information Aggregation Services: These services are needed to collect and summarize 

raw sensory measurements that are needed to be processed and reported to the IoT 

application. 

 Collaborative-Aware Services: These services are used together with the information 

aggregation services. The main goal of these services is to use the obtained data by the 

information aggregation services to make decisions and react accordingly. 

 Ubiquitous Services: These services are used with the collaborative-aware services. 

They are intended to provide collaborative services to anyone, at any time, in anywhere. 
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The aforementioned concept of IoT and all of its related subjects and technologies are 

summarized in Figure 2.3. 

 

 

 

Figure 2.3. The taxonomy of Internet of Things 

2.6. Architecture of IoT 

The basic architecture of IoT consists of three layers. This architecture has been widely 

used to describe the IoT approach [19, 77-80]. As it can be seen in Figure 2.4 (a), the three 

layered architecture consists of the perception, network and application layers. The 

perception layer (also called the sensing layer or the technology layer) is the bottom layer. 
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This layer can be regarded as the hardware or physical layer and it is responsible of data 

collection process. The intermediate layer is the network layer. This layer is responsible for 

linking the perception layer and the application layer so that things can be passed from the 

perception layer to the application layer and systems, applications, services can be passed 

from the application layer to the perception layer. The application layer provides services 

and applications by analyzing and integrating the information received from the other two 

layers. 

 

Although the three layered architecture is the basic model, other models that can bring 

more abstraction to the IoT architecture are also proposed in literature. Figures 2.4 (b) and 

(c) show the middle-ware based model and five layered model architectures, respectively. 

 

 

Figure 2.4. Architecture of IoT (a): Three layered model (b): Middle-ware based model (c): 

Five layered model 

 

Middle-ware model adds the gateway and middleware layers to the basic three layered 

model of IoT [2], [81]. In middle-ware model the perception layer can be called the edge 

layer and it is used to provide a definition for data gathering. Unlike the three layered 

model which uses only one layer (i.e., the network layer) to connect the perception layer to 

the application layer, the middle-ware model uses the gateway layer together with the 

network layer to manage the communications in the IoT environment and to transmit 

messages between the objects and systems. The middleware layer is another layer added to 
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the middle-ware models structure. This layer is often used to provide a more flexible 

interface between hardware and applications. Finally, the top layer of the middle-ware 

model is the application layer. This layer has the same functionality and definition as the 

application layer in the three layered model. 

 

The five layered model is another model used in the IoT architecture [82-84]. A brief 

discussion of the five layers of this model (not to be confused with the TCP/IP layers) is 

presented below: 

 

 Objects layer: The first layer of the five layered model is the object layer (also called the 

perception layer). This layer is represents the physical sensors of the IoT that perform 

information gathering and processing. In addition, this layer digitizes and transfers data 

to the object abstraction layer through secure channels. The big data created by the IoT 

are initiated at this layer. 

 Object abstraction Layer: Exports the data generated at the objects layer to the service 

management layer using secure channels. The data transfer can be performed using 

various technologies such as RFID, 3G, GSM, UMTS, WiFi, Bluetooth, Infrared, 

ZigBee etc. Furthermore operations such as cloud computing and data management are 

handled in this layer. 

 Service management layer: Also known as middleware layer. This layer matches 

requests with services based on addresses and names. Also, this layer processes the 

received data, makes decisions and provides the necessary services. Finally, the service 

management layer enables the IoT applications to work with heterogeneous objects 

without considering a specific hardware platform. 

 Application layer: This layer is responsible of providing the services requested by 

customers.  

 Business layer: This layer also known as management layer, it manages the overall IoT 

system activities and services. The responsibilities of this layer are building a business 

model, graphs, flowcharts, etc. based on the data received from the application layer. At 

the same time, this layer carries out designing, analyzing, implementation, evaluation, 

monitoring and development of components related to the IoT system. 
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2.7. Platforms of IoT 

 

Section 2.4.3 has sight the light on some of the IoT platforms from the perspective of 

computation. These platforms can be divided into software and hardware platforms. This 

section focuses on the software platforms of IoT. 

 

The purpose of any device in the IoT network is to communicate and exchange information 

with other devices and/or with cloud-based applications. The gap between the IoT devices 

and the data in the network is filled by the IoT platforms. An IoT platform provides links 

among objects and the data of the network. It also maintains background applications for 

understanding and analyzing the data. In this context, there are several IoT software 

platforms such as Appcelerator, AWS IoT, Ericsson Framework, IBM IoT Foundation 

Device Cloud and ThingWorx. Making a choice among these platforms is dependent on 

different features such as device management and integration support, information 

security, data gathering protocols, data analysis and visualization [85, 86]. These features 

are briefly summarized below: 

 

 Device Management and Integration Support: Device management is one of the most 

important features expected from any IoT software platform. The platform should be 

able to monitor the status of objects and track their operation status, manage 

configuration and software updates, and provide device level error checking and error 

reporting techniques. At the end of the day, the platform must be able to provide users 

with device-level statistics. On the other hand, integration support is another important 

feature expected from the IoT software platform. APIs must provide access to essential 

operations and data. This access is usually accomplished through REST-APIs 

(REpresentational State Transfer APIs). 

 Information Security: The information security that is required to operate an IoT 

software platform is much higher than the information security required for general 

applications and services. Generally, the network connection between the IoT objects 

and the IoT platform must be encrypted with a strong encryption mechanism to avoid 

potential eavesdropping. However, most of the low-cost and low-powered objects 

involved in IoT platforms cannot support an advanced access control measures. In this 

case, the IoT software platform itself should implement alternative measures to solve 

device level security issues. For example, separation of IoT traffic into private 
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networks, strong information security techniques at the cloud application level, 

requiring regular password updates, supporting software updates only by the way of 

authentication, and so on increase the security level of the IoT platform. 

 Data gathering protocols: Another important issue which needs attention is the types of 

protocols used for data communication between the components of an IoT software 

platform. An IoT software platform may need to manage millions or even billions of 

objects. Lightweight communication and data gathering protocols should be used to 

ensure low energy consumption and low network bandwidth functionality. 

 Data Analysis: The data collected from the objects of IoT must be analyzed in an 

intelligent way to obtain meaningful information. There are four data analysis methods 

that can be used within the framework of IoT: real time, batch analysis, predictive and 

interactive analysis [87]. Real-time data analysis performs on-the-fly analysis on the 

streaming data. An example operation includes the real-time streaming on the cloud 

applications. Batch analysis runs operations on an accumulated data set. Thus, 

operations take place at scheduled time intervals and may take several hours or days. 

Predictive analysis focuses on making estimations based on various statistical 

techniques and machine learning methods. Finally, interactive analysis performs 

multiple exploration analysis on both streaming data and accumulated data set. 

 Visualization: The proper viewing of the information is another important requirement 

that is expected from the IoT software platform. Visualization is carried out together 

with the data analysis. Thus, the IoT software platform must provide the required tools 

and APIs to visualize the data gathered from the objects as well as the information 

obtained after the data analysis. 

 

Table 2.4 summarizes the features of some IoT software platforms. 
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Table 2.4. Characteristics of some software platforms used in IoT framework 

 

IoT Software 

Platform 

Device 

Management 

Integration 

Support 
Security 

Data 

Gathering 

Protocols 

Data 

Analysis 
Visualization 

Appcelerator × REST API 
SSL, IPsec, 

AES-256 

MQTT, 

HTTP 
Real Time ✓ 

AWS IoT ✓ REST API 
TLS,  SigV4, 

X.509 

MQTT, 

HTTP1.1 
Real Time ✓ 

Ericsson 

Framework 
✓ REST API 

SSL/TSL, 

Authentication 

(SIM based) 

CoAP 

Real 

Time, 

Predictive 

Analysis 

× 

IBM IoT 

Foundation 

Device 

Cloud 

✓ 
REST and  

Real 

TimeAPIs 

TLS, IBM 

Cloud SSO, 

LDAP 

MQTT, 

HTTPS 
Real Time ✓ 

EVRYTHNG - 

IoT × REST API SSL 
MQTT,CoAP, 

WebSockets 
Real Time ✓ 

ThingWorx ✓ REST API 
ISO 27001, 

LDAP 

MQTT, 

AMQP, 

XMPP, 

CoAP, 

DDS, 

WebSockets 

Real 

Time, 

Predictive 

Analysis 

✓ 

2lemetry - IoT ✓ 

Salesforce, 

Heroku, 

ThingWorx 

APIs 

SSL, 

ISO 27001, 

SAS70 Type II 

audit 

MQTT, CoAP

,  

STOMP, 

M3DA 

Real Time × 

 

2.8. Applications of IoT 

 

The Applications that are developed within the framework of IoT can be classified 

according to types of network availability, coverage, scalability, heterogeneity, 

repeatability, and user participation and impact [4, 88]. IoT can be seen as an important 

technology that improves the flow of information between the organizational structures of 

these applications. Figure 2.5 shows the application areas of IoT and some scenarios 

related to them. 

 

IoT have applications in a wide variety of fields, including agriculture, manufacturing 

industry, transportation, healthcare services, environment monitoring, smart buildings, and 

many other areas [89]. Next, some areas of IoT application are presented: 
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Figure 2.5. Applications domains of IoT and relevant major scenarios 

 

 Transportation: IoT can be applied to produce intelligent transportation Systems. In 

intelligent transportation systems public and private transportations can interact, and 

choose the best paths to avoid delays and congestions. Another example of using IoT in 

transportation is smart parking. Finding a parking space in a busy city center can be 

time consuming and leads to increased traffic congestion. Installing a sensor that detects 

if there is a vehicle in each space can be used to provide drivers with information on 

whether there are empty parking spaces at any time. 

 Environment monitoring: IoT technology can be successfully applied to environmental 

monitoring applications. In this case the most important role depends on the ability of 

distributed and self-managed sensors to detect natural phenomena (e.g., temperature, 
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wind, rainfall, river height etc.). Real-time information processing, coupled with the 

ability of a large number of devices to communicate among them, can provides a solid 

platform to detect and monitor abnormal events that may endanger human and animal 

life [90]. 

 Healthcare Services: IoT plays a crucial role in healthcare services. It can be used in 

many ways such as tracking the number of patients in a hospital, identifying the right 

patient for the right medicine and monitoring a patient’s health conditions from a 

remote place which is known as Telemedicine [91]. Telemedicine includes remotely 

providing treatment, diagnosis and treatment. Ambient assisted living provides technical 

systems for elderly people who are alone at home and need to be monitored. The 

patient’s health status is periodically sensed using RFID and sensors. The doctor from a 

remote location provides medical assistance based on the information received. 

 Industrial Manufacture: In manufacture IoT can be used in industrial automation. 

Industrial automation ensures that goods being mass produced with lower costs and 

consistent quality. Moreover, IoT can affect factory operations in many different forms: 

from identifying of risky conditions to efficient logistics management [92], from task 

scheduling to machine status monitoring [93]. In such scenarios, sensors are 

ubiquitously placed along a networked production line to monitor operations. Data 

collected by the network is sent to a computer or a server to be processed. On the basis 

of decisions made after the processing, actuators can be triggered. In such a complex 

scenario, some messages such as scheduling of urgent tasks or warning messages of 

risky situations need more priority than others. 

 Agriculture: In the field of intelligent agriculture, IoT can be widely used [94, 95]. In 

smart agriculture systems, IoT can be used to increase agricultural production and 

reducing environmental pollution caused by abusing agricultural chemicals. Moreover, 

IoT can be helpful in monitoring growth of plants. Plants are fitted with RFID tags and 

sensors. When there is a drastic or unexpected change in the growth of plant due to 

temperature / humidity, the sensors sense this and the RFID tags send information to the 

reader and are shared across the internet. Then, the farmer or scientist can access this 

information from a remote place and take necessary actions. 

 Smart homes and buildings: Equipping buildings with advanced IoT technologies may 

help in both reducing the consumption of resources associated to buildings (such as 

electricity, water) as well as in improving the satisfaction level of people living in the 
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building. The effect is large both in economic terms (reduced operational expenditures) 

as well as environmental cleaning terms (reducing the carbon emissions associated to 

buildings). In this application, a key role is played by sensors, which are used to both 

monitor resource consumptions as well as to predict and identify the needs of current 

users [1]. 

 Security and surveillance: Security surveillance has become a necessity for enterprise 

buildings, shopping centers, factories, car parks and many other public places. IoT 

technologies can be used to greatly enhance the performance of existing solutions in this 

area [1]. IoT can provide cheaper and less invasive alternatives to the widespread 

deployment of cameras while at the same time preserving users’ privacy. Ambient 

sensors can be used to detect the presence of dangerous chemicals. Sensors monitoring 

the behavior of people may be used to assess the presence of people acting in a 

suspicious way. Efficient early warning systems can therefore be built. Personal 

identification by means of RFID or similar technologies is also an option. 

 Personal and social applications: The applications of this area are designed with the goal 

of the establishing and developing of social relations [2]. These applications are also 

used for creating social networks, tracking and questioning past behaviors and 

transactions, and prevention of losses and thefts. Sharing the current location and 

activity information, determining the location of lost items that attached with RFID tags 

and similar functions can also be achieved by this technology. 

 

2.9. Challenges of IoT 

 

The main concept of IoT is the extensive presence of interconnected objects. In IoT 

anything, conveniently tagged, may be able to communicate with other objects equally 

tagged through internet or any other protocols, to collaborate and to reach a common goal. 

Although many IoT based systems have been developed, there are many design challenges 

encountered by the researchers and developers. Given foreword the complexity of the IoT 

concept and the design challenges for its enabling technologies, a number of obstacles need 

to be overcome for IoT to achieve its vision. Bellow the main challenges for IoT are 

presented [96]: 

 

 Constrained resources: The things composing the IoT are often resource constrained. 

Available resources on object such as electrical energy, memory, processing, and object 
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capability to perform a demanded task, are often limited. IoT objects need energy for 

sensing, communicating and processing information. If objects isolated from the electric 

grid they must rely on batteries (most of the object are battery powered). Replacement 

of these batteries can be impossible or a problem, even if energy consumption is highly 

efficient. That is especially the case for applications using large numbers of objects or 

they are placed at locations that are difficult to access. This is the case, for example, of 

wireless sensor nodes, which are often battery powered, and therefore have limited 

energy amounts. Another example is represented by the scarce processing capabilities of 

RFID tags. To maintain the constrained computational capacity in a most efficient 

manner, it needs to possess only computational capabilities for the task it has to 

perform. 

 Heterogeneity:  IoT concept relies on the implementation of network systems of 

cooperative intelligent objects with key interoperability capabilities. The devices taking 

part in the system are expected to have very different characteristics and capabilities in 

terms of computational and communication functionalities. In fact, one of the most 

important factors that make the IoT concept work efficiently and accurately is the 

integration of several technologies and communications solutions. However, such a 

high level of heterogeneity brings efficient management challenges at both the 

architectural and protocol levels. 

 Scalability: The number of objects that are connected in an IoT system is much higher 

than the number of computers connected in the conventional Internet (may be in several 

times) [97]. As IoT concept implies that every object that is appropriately tagged can be 

a part of the IoT system, scalability issues arise at different levels, including: 

o Naming and addressing. 

o Data communication and networking. 

o Information and knowledge management. 

o Service provisioning and management. 

There are two approaches to deal with these challenges: 

i) Reducing the number of messages and the amount of data transmitted throughout all 

the layers of the system [98]. 

ii) Choosing a small cluster of objects that are able to execute a demanded task [99]. 
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 Identification: Identifying of objects is one of the primary issues in IoT. In order to be 

able to address the billions of objects in the IoT, the system first need to be able to 

identify them with a unique ID. Currently, in the conventional Internet the IPv4 protocol 

identifies each node using a 4-byte address [100]. However, it is well known that the 

number of available IPv4 addresses is decreasing rapidly and will become insufficient 

in the very near future [101]. To this end, a much better choice is using IPv6 protocol 

which with its 128-bit addresses provides more suitable solution to address a larger 

number of devices [102]. However, more efficient and appropriate solutions need to be 

developed to meet the specific requirements of IoT environment such as bandwidth 

efficiency, energy-efficient and capabilities of working with limited hardware resources. 

 Searching and discovering: In IoT, like in all distributed networks, a group of nodes 

want to cooperate to perform a given task. In order to perform this cooperation objects 

need to learn of the existence of each other. Therefore, searching and discovering 

services are fundamental of any distributed computing system [103]. Usually, in IoT 

context the exact location of the other objects and form of stored data are initially 

unknown to the requester. So an intermediate block can be used to extract this 

information. 

 Mobility: A large part of IoT objects are not stationary, but have a certain degree of 

mobility. In IoT many services are expected to be established by mobile users or 

objects, therefore, mobility is taken place among the other challenges of IoT [3]. An 

example of this situation is a person who owns various devices and he is mobile during 

the daily activity of his life. This person may make data queries or request to activate 

other things, which will be probably also in movement. It’s clear that mobility is not a 

negligible situation in the context of IoT since the fundamental concept of IoT is the 

ability of accessing and managing objects independently from where they are located. 

Therefore, IoT management and resource mobility schemes should be developed 

accordingly. 

 Security and privacy: Due to the tight entanglement with the physical environment, 

security is critical to the widespread use of IoT applications.  IoT systems should be 

designed with security and privacy-preserving in consideration. In this respect, three 

main challenges require innovative approaches and should be subject of researches. 

These challenges are data confidentiality, privacy and secrecy. Data confidentiality 

refers to protecting data from being accessed by unauthorized parties. In other words, 
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only the persons who are authorized should gain access to data and based on their 

authorization level only these persons should have the ability to modify the data. 

Privacy refers to the rules by which a person or group owning information control with 

whom to share information and under what conditions. In terms of Secrecy, it means 

that only the sender and intended receiver should be able to understand the contents of 

the transmitted message. Security should be considered a key system-level property, and 

be taken into account in the design of architectures and methods for IoT solutions. 

Solutions for security problems of IoT represent a key importance for acceptance of this 

technology by users. In order to make the IoT based objects and applications more 

reliable and attack resistant, the following issues need to be addressed: 

o Data confidentiality: Data transmission, retrieval and processing are an integral part 

of any IoT application. Most of these data are personal data or information thus; such 

a sensitive data is needed to be protected using an encryption mechanism. Wherever 

the data is online secure Socket Layer Protocols (SSL) can be used to ensure that 

data is accessible only by authorized parties. However, the data must also be 

protected within the wireless protocol. These sensitive data is expected to be 

confidential and encrypted while being transmitted wirelessly. All of the suggested 

solutions for data privacy are based on encryption techniques. However, the 

traditional encryption techniques are inefficient in terms of resources consuming 

(consume a large amount of energy and bandwidth from both the sender and the 

receiver). Therefore these techniques cannot be applied to the resources limited IoT 

objects. There is requirement to develop new solutions to be implemented in the 

framework of IoT regardless of resource constraints. 

o Authentication: Authenticating of data being received (or transmitted to other 

objects) in IoT applications is challenging and open research filed. In traditional 

networks, authentication can be applied using several techniques. Examples of these 

methods are password, pre-shared key, and public key cryptosystems. However, the 

heterogeneity and complexity of objects and networks in IoT applications make these 

methods unsuitable for IoT systems. Furthermore, the rapidly increasing number of 

objects can make key management difficult or in some cases an impossible 

procedure. For example, although public-key cryptosystems have advantage for 

constructing authentication schemes or authorization systems, the lack of a global 

root Certificate Authority (global root CA) hinders many theoretically feasible 
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schemes from actually being deployed. Without the global root CA, it becomes very 

challenging to design an authentication system for IoT. Furthermore, it may be 

infeasible to issue a certificate to each object in IoT since the total number of objects 

is often huge [104]. Therefore, the authentication methods for IoT should take into 

account the different design features and characteristics of IoT applications. 

 Device management: Management of objects is of paramount importance for the 

development of the IoT applications. Objects should not only be able to connect and 

communicate over a wide number of communication technologies, but also these 

objects should be remote or self-managed. The device management process is complex, 

and includes a lot of different actions, such as switching on/off the device, configuring 

the device/network, updating firmware/software, recovering from errors, monitoring the 

device/network and gathering data and connectivity statistics [105].  Solutions for an 

efficient device management should take into account the heterogeneity of objects and 

the limitations of their existing resources. Furthermore, a large amount of efforts is 

required to distribute and configure objects in many IoT applications; this is the case for 

example in WSNs. This problem is an obstacle to the adaptation and long-term 

sustainability of large-scale applications. One of the most important solutions to 

increase the applicability of large-scale IoT applications is to use configurable 

middleware. This middleware layer should provide intelligent device management that 

supports self-configuration, self-optimization and self-improvement and maintenance. 

For example, gateway devices should be able to detect objects, configure detected 

objects, identify faulty nodes, and make decisions to eliminate errors [106]. In this 

context, many of the standardized device management solutions such as TR-069 [107], 

SNMP [108] and NETCONF [109] are not suitable for the management of resource 

restricted objects. Such solutions are generally used for the management of resource-

rich devices such as routers, switches, and smartphones. Devices management solutions 

for IoT applications should take into account the design characteristics of IoT, such as 

scalability and limited resources. 

 

In addition to the previously mentioned challenges, other difficulties encountered in IoT 

applications can be listed as follows: 

 Availability of internet at everywhere and at no or low cost. 

 Low-cost smart sensing system development. 
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 Fault Tolerance. 

 QoS management.  

 Acceptability among the society. 

 

2.10. Task Allocation in IoT 

 

Task allocation is a procedure of choosing, subdividing, coordinating and assigning the 

correct tasks to the correct entities [110].  In IoT task allocation with the goal of satisfying 

the specific design features of IoT applications as well as identifying which tasks to be 

assigned to which objects is not a trivial process. Given the IoT paradigm and the 

requirements of IoT applications, the objects involved in the execution of the same 

application should  be cooperates and coordinated to reach the optimal allocation of tasks 

among them. The objects should execute tasks to reach the global application target and to 

satisfy the relevant requirements while optimizing the network performance in terms of 

resources used. This issue should be continuously addressed to dynamically adapt the 

system to changes in terms of application requirements and network topology. 

 

2.10.1. Major challenges in task allocation in IoT 

 

IoT poses various challenges to research community. This section briefly summarizes 

some of the major challenges faced while solving task allocation problem in IoT: 

 

 Network deployment: Careful management of the network, where objects are randomly 

deployed in uniform or non-uniform distribution, is necessary in order to ensure entire 

area coverage and also to ensure that the energy consumption is also uniform across the 

network.  

 Data aggregation: The network resources optimization is not only focused on the 

reduction of messages transmission power, but also includes convenient data processing 

that reduces the amount of data that are transmitted over the data sinks. This is the 

principle behind node clustering protocols, such as LEACH [111], in which cluster head 

nodes aggregate data and reduce transmitted data volume, which in turn reduces the 

overall transmission energy consumption of the network. 

 Constrained resources: Most of IoT objects have limited amount of energy, memory, 

processing, and object capability to perform a given task. This is the case, for example, 
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in battery powered wireless sensors. Thus, for most of IoT systems, reducing the energy 

consumption (e.g., for communication or performing a given task) is a primary 

constraint. One way to minimize the effect of this resource constraint is enabling 

network entities to cooperate and make their resources available to perform the given 

tasks. In other words, the entities executing the same application should cooperate to 

reach the optimal allocation of tasks among themselves. However, task allocation 

problem with the goal of increasing the lifetime of the network as well as identifying 

which tasks to be assigned to which objects is not a trivial task. 

 Uniform energy consumption: Task allocation schemes should ensure that energy 

dissipation across the IoT network should be balanced and the task allocator should be 

rotated in order to balance the network energy consumption.  

 Heterogeneous network: Heterogeneity which regards both object capabilities and 

characteristic parameters makes resource allocation operation a challenging task. 

Heterogeneity not only entails heterogeneity among devices, but also heterogeneity 

among roles that the same device can assume. For example, a temperature sensing node 

could be used both to periodically send sensed data to a server for monitoring purposes. 

 Integrity: The key issue is that for connecting and integrating all the objects into the 

IoT, there are many different technologies and protocol which introduce fragmentation 

in a scenario that should be rich of interoperability. IoT interoperability involves not 

only the ability of objects to exchange information but also includes the capability for 

interaction and joint execution of common tasks [112]. 

 Scalability: Given the size of a distributed heterogeneous system such as the IoT 

network, the optimal creation of communities and the task allocation within are not 

trivial issues. Furthermore, when an IoT network is deployed, in some cases, new nodes 

need to be added to the network in order to cover more area, prolong the life time of the 

current network or increase the accuracy of some tasks by achieving a certain level of 

redundancy. In all these cases the task allocation scheme should be able to adapt to 

changes in the topology of the network.  

 Data redundancy: Objects may provide information that is not unique but can be 

generated by set of different nodes which for example are capable to sense the same 

physical measure of the same geographical. When the task allocation scheme assign 

tasks to a set of objects the level of data replication should be considered. 
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 Dynamic nature: Typical IoT networks are characterized by the dynamic behavior of 

their objects. In fact, emerging applications in smart environments such as smart cities 

and smart homes, where IoT is preponderant, are often based on opportunistic networks. 

In opportunistic networks, connections among nodes are created dynamically in an 

infrastructure-less way [113]. In such a dynamic context, with frequent and quick 

changes of scenario, task allocation approach should be adopted to such dynamic 

environment when assigning tasks or forwarding a messages. 

 Topology change: IoT is strictly related to ubiquitous networking, which is 

characterized by a huge number of nodes deployed over an extensive area. The network 

is not only made of static or semi-static devices as it is in traditional networks, but 

topology changes quickly, so that it is impossible for objects to be able to know the 

whole network topology. As a consequence, challenges arise with respect to 

autonomous reconfiguration and interoperation of nodes when tasks are being allocated. 

For instance, it may happen that there are no nodes available to perform a given task at 

the desired geographical location and at a given time.  

 

All these challenges portrait a very complex and dynamic network, where all objects need 

to collaborate in order to reason and allocate available resources among themselves with 

the aim of executing the applications assigned to the network. 

 

2.10.2. Literature review 

 

Task allocation is usually performed considering different aspects such as network 

topology, energy constraints and processing capabilities of the network entities. However, 

most of the existing methods have generic and limited scope in extending resources 

regarding the application assigned to the network [8]. Moreover, although the problem of 

task allocation is extensively studied in the field of WSNs, the task allocation problem in 

IoT networks is an open research issue. 

 

In [114] the authors proposed an energy-balanced allocation protocol for real time WSN 

applications. They formulated the problem using both Integer Linear Programming (ILP) 

and a polynomial time 3-phase heuristic. In their model, they assumed that each node is 

equipped with discrete dynamic voltage scaling. Although their protocols succeed in 
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improving the lifetime of the network, they considered only homogeneous networks, which 

are not common in real life scenarios.  

 

The same energy problem is studied in [115]. The authors provided an adaptive task 

allocation algorithm that aims at reducing the overall energy consumption by achieving a 

fair energy balance among the sensor nodes in the overall network. The proposed 

algorithm achieved a good level of adaptation to environmental changes and uncertain 

network conditions by using centralized and distributed message exchanged mechanisms 

between the nodes and task allocator. However, these mechanisms introduced considerable 

increments in packet overheads.  

 

The authors of [116] developed a centralized solution for task allocation in WSNs. In this 

work, the application assigned to the network is divided into a sequence of distributed 

tasks to be assigned to each sensor device. Then, the energy consumed to perform each 

task is then considered to compute a cost function allowing the evaluation of each 

deployment solution. In this method the application assigned to the network can be 

performed in different approaches: gathered data can be immediately sent to a sink or it 

can be processed before being transmitted. In the second approach the size of data to be 

sent would be smaller, and therefore the transmission energy consumption would be lower 

than the second approach. However, this is achieved at the expense of consuming more 

energy for processing.  

 

Another centralized algorithm is proposed in [117]. The algorithm is located at a gateway 

which is supposed to be equipped with sufficient power supplies. The algorithm adopted an 

adaptive intelligent task mapping scheme coupled with a scheduling mechanism based on a 

genetic algorithm to provide real-time guarantees. Finally, in order to extend the network 

lifetime a hybrid fitness function is embedded in the algorithm to ensure workload 

balancing among the collaborative nodes.  

 

In [118], in an effort to reduce the overall energy consumption of the sensor network 

system while meeting the deadline requirement, the authors developed an energy-efficient 

tasks scheduling scheme that makes a trade-off between energy saving and QoS-

guaranteeing. The proposed method aims to minimize the execution energy while 

allocating a set of real-time tasks with dependencies onto a heterogeneous sensor network.  
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Furthermore, in order to find an optimal allocation that meets user’s deadline, the method 

adopts the divide-and-conquer. The method portions the tasks into tasks partitions and then 

optimally solves the scheduling problem in branches with several sequential tasks by 

modeling the branches as a Markov Decision Process. Then, sensors failure can be handled 

by rescheduling part of the tasks graph.  

 

EBSEL, the Energy-Balancing task Scheduling and allocation heuristic whose main 

purpose is to Extend the network’s Lifetime, through energy balancing is proposed in 

[119]. EBSEL has four phases in which tasks are combined into groups in order to 

minimize the communication energy but preserve possible parallelism. These phases are 

task grouping phase, node selection phase, threshold calculation phase, and task allocation 

phase. The goal of task grouping phase is to form groups of tasks in order to reduce the 

communication cost, without sacrificing parallelism. In node selection phase a number of 

sensor nodes, out of the total nodes is selected to be allocated the tasks. Threshold 

calculation phase attempts to extend the lifetime of the nodes. It sets an approximate 

energy threshold for achieving energy balancing, and tries to avoid severe energy depletion 

of the selected nodes. While allocating the groups, the nodes will not be depleted beyond 

this threshold. Finally, task allocation phase maps the task groups to the nodes while 

maintaining energy-balancing. It accomplish the energy balancing by allocating the task 

group with the highest computational energy to the node with the highest remaining energy 

 

Recently, in [119] the authors suggested Logic Gate-based Evolutionary Algorithm 

(LGEA) to solve the problem of task allocation in WSNs. The problem is formulated as a 

binary multi-objective optimization problem with the goal of minimizing the number of 

active nodes and the computation and communication load distribution. The algorithm 

introduces an original logic gate mechanism as perturbation operator to search for the best 

task allocation scheme and satisfied the task workload and connectivity by considering 

them as the constraints of the problem.  

 

To tackle the problem of dynamism of a distributed network, the authors of [121] 

developed a decentralized lifetime maximization algorithm that determines the distribution 

of tasks among the nodes in the network. The algorithm is formulated as distributed 

optimization algorithm based on a gossip communication scheme with the goal of 
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extending network lifetime. The algorithm uses iterative and asynchronous local 

optimizations of the task allocations among neighboring nodes. 

 

Similar approaches are studied in [122] and [123]. In [122], a particle swarm optimization 

method based the distributed algorithm is proposed. The major drawback of these works is 

that they do not take into account the deadline of the applications assigned to the network. 

In [123], an adaptive decentralized task allocation algorithm for heterogeneous WSNs is 

proposed. This algorithm is based on non-cooperative game theory and focuses on 

reducing the overall energy consumption and task execution time.  

 

In [124], a middleware algorithm, named SACHSEN, for resource allocation in 

heterogeneous WSNs that run multiple applications is presented. SACHSEN starts with a 

locality-aware service discovery and extracts important information in order to generate 

primary task-sensor assignment. Then, each application is decomposed into multiple tasks 

by applying a divide-and-conquer strategy and recursive decomposition is used in each 

category to divide a generic service into more specific services until all the decomposed 

services cannot be further divided. Finally, SACHSEN exploits resource heterogeneity to 

make effective task-sensor assignments explicitly taking performance requirements of 

application into account. 

 

All the aforementioned works focus only on task allocation in WSNs. However, the focus 

of this work is different as it considers more complex IoT scenarios. IoT introduces much 

more heterogeneous scenarios than WSNs. In WSNs, the nodes are managed by the same 

system and have similar characteristics whereas the IoT objects are grouped 

opportunistically as they provide cooperative services. Therefore, IoT objects must find a 

way to coordinate the given job [9].   

 

In [125], the authors dealt with the problem of task allocation in IoT from a different 

perspective. They assumed that IoT resources are not able to interact with each other 

directly to perform a given task. Instead, the interaction between resources can be done via 

service gateways which are deployed in an IoT environment along with the IoT resources. 

Then, they transformed the resource allocation problem into a variant of the degree 

constrained minimum spanning tree problem. In order to solve this problem the authors 
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proposed a service resource allocation approach which minimizes data transmissions 

between the devices in the network. 

 

In [8] and [12] the authors developed a heuristic approach namely Consensus Based 

Approach for Task Allocation (CBATA). This approach has adopted the concept of task 

group and virtual objects to formulate the problem of task allocation in IoT with the main 

goal of fault tolerance. This method and the concept of task groups and virtual object will 

be explained in the next sections within this chapter. 

 

Other studies for task allocation in IoT could be found in [126] and [127]. In these works, 

the aim is to find the available objects that can perform the needed task to enable service 

execution. However, none of these works focus on finding the best configuration for 

optimal resource allocation. 

 

2.11. The Concept of Task Groups and Virtual Objects (The Clustering) 

 

The concept of virtual objects is presented in an attempt to provide conceptualizations for 

the IoT domain. Several works such as, [128-130] missioned the notation of virtual object. 

However, all these works consider the virtual objects simply as the digital parallels of the 

physical objects and focus more on the middleware framework rather than the modeling of 

related information. As a result, the absence of a common format for virtual objects causes 

problems of interaction and communication, since there is no standardized ways to obtain 

the actions or services associated with a virtual object [112]. 

 

In the last years, several researchers were focused on proposing an architecture for the IoT. 

These works led to evolution of the definition of virtual object, and of its functionalities. 

Virtual objects are not anymore only digital interfaces to the real world but now provide a 

semantic enrichment of the data acquired, which makes easier the discovery of services 

[112]. For example, the CONVERGENCE project [131] used the Versatile Digital Item 

(VDI) as a common container for all kinds of digital contents that include one or more 

resources and metadata. This definition is similar to the one provided in [132] with a 

many-to-one association between real objects and VDI. However, the CONVERGENCE 

project provides a first attempt to implement the discovery of a particular VDI in the 

virtualization layer. 
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Another example is SENSEI [133]. SENSEI enables the integration of heterogeneous and 

distributed Sensor and Actuator Networks (SAN) into a homogenous framework for real 

world information and interactions. It provides an abstraction level of resources 

corresponding to the real world consisting of Entities of Interest (EoI). Resources may be 

associated with one or more EoIs for which they can either provide information or provide 

control over their surrounding environment, thus providing the same type of association of 

CONVERGENCE. In SENSEI, resources acquire the ability to enhance the data received 

by the sensors with environmental information. 

 

Since then, several interesting definitions of virtual object are presented in literature. In 

[134], physical entities are represented in the digital world via virtual entities, which have 

two fundamental properties. Firstly, while ideally there is only one physical entity for each 

virtual entity, it is possible that the same physical entity can be associated to several virtual 

entities. Secondly, virtual entities are a synchronized representation of a given set of 

aspects of the physical entity. The association between virtual and physical entity is 

achieved by connecting one or more Information and Communications Technology (ICT) 

devices to the physical entity so as to provide the technological interface for interacting 

with the virtual world. The physical object is decomposed in its functionalities thus 

providing a one-to-many correspondence with the virtual entities. In COMPOSE [135], the 

focus was on objects service composition and for this reason they need to abstract the 

heterogeneity of physical objects in terms of computing power, protocols and 

communication mechanisms, by introducing the concept of Service Object. The Service 

Object then represents a standard internal digital representation that makes easier the 

creation of COMPOSE services and applications. Finally, in [136], a virtual object is a 

virtual representation of an ICT object that may be associated to one (or more) real-world 

objects. The term real-world object refers to any object that exists in the real/physical 

world and then can be classified both as ICT objects, such as, an email or a smartphone, 

and a non-ICT object, such as, a person or a fruit; an important trait of this project is that 

also a real-world object can be associated to one or more virtual objects. The virtualization 

layer, where all the virtual objects are located, acts as a management level that manages 

and provides interfaces for accessing virtual object to other components. 

 



39 

 

This thesis adopts the concept of virtuality coupled with the concept of task groups to 

formulate the problem of task allocation in IoT based applications. It frequently happens in 

most IoT applications that some objects perform the same task, such as measuring the 

humidity and/or the temperature, monitoring traffic congestions, tracking the movement of 

objects or persons, detecting the risky conditions in public facilities, and so on. However, 

not all objects have usually the same amount of resources to be dedicated to the same tasks 

and the set of objects that can cooperate in performing a given operations changes quickly 

as opportunistic behaviors make the scenario quite dynamic. Accordingly, a group of 

objects that are performing similar and replaceable tasks can be defined as a task group. It 

is obvious that in most IoT applications there may be several task groups and most of them 

intersect with each other. This can be attribute to the existence of different objects with 

diverse skills belong to several task groups. From each task group some objects (or an 

object) are selected to represent the task group. These objects are called Virtual Objects 

(VOs) [137]. VOs virtualize the physical objects connecting to them in the cyberspace and 

they are in charge of processing the requests to these physical objects. In other words, the 

IoT objects are partitioned into task groups each of them contains the objects performing 

the same task. Then, in each task group some objects are selected as VOs and the rest of 

the task group objects are clustered and connected to one virtual object. At this point, 

allocating proper resources to the required task is the duty of VOs. Given an example to 

illustrate the concept of task groups and virtual objects, assume a network that performs 

two tasks T1 and T2 (See Figure 2.6). Then, the network is partitioned into two task 

groups: TG1 and TG2. TG1 contains all the objects that capable of performing T1 whereas 

TG2 contains the T2 objects. TG1 and TG2 could intersect when some objects are capable 

of performing T1 and T2. As a result these objects belong to both task groups at the same 

time. Then, from each task group, some objects are selected as VOs to visualize the task 

group in the cyberspace and to assign the relevant task to the task group. 
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Figure 2.6. The concept of task groups and virtual objects 

 

2.12. Consensus Based Approach for Task Allocation (CBATA) 

 

One of the famous and attractive task allocation protocols in IoT is Consensus Based 

Approach for Task Allocation (CBATA) [8, 12]. CBATA is a heuristic method which 

designed to solve the problem of resource allocation and management in IoT 

heterogeneous networks with the main goal of fault tolerance. The algorithm uses the 

concept of task groups and virtual objects to formulate the problem. In this method a group 

of nodes that are capable of performing the same tasks are organized into the same task 

group. Given an example, suppose that the network is performing a temperature sensing in 

a specific area: only those nodes that are equipped with a temperature sensor and that are 

deployed within that area are included in the task group related to this task. These task 

groups are assigned with the relevant task by the Application Deployment Server (ADS), 

which could decide which exact node should perform each needed task. In CBATA the 

central server leaves the task groups to autonomously decide how to distribute the burden 

of tasks among them without the need for the central server to keep the role of single 

physical node controller. Accordingly, the IoT is made of VOs. These VOs are activated 

by the ADS. The VO role may be implemented by an object in the task group and is in 
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charge of processing the requests generated by the central server and forwarding 

configuration messages to the other physical nodes (note that the VO may coincide with 

the only single physical node that is capable of implementing the required task). At this 

point, allocating the proper resources to the required task is a duty of the objects in the task 

group. Figure 2.7 provides a sketch of the above described reference scenario. The central 

server, or a leader node, transmits the activation signal to the VO. Since the VO is 

responsible for keeping track of the physical nodes that belong to the same task group it 

leads, it knows which nodes the activation signal is addressed to. Therefore, it is able to 

forward the activation signal to the appropriate nodes, on the basis of their belonging to a 

determined task group. 

 

 
 

Figure 2.7. A reference scenario for CBATA 

 

2.12.1. Virtual objects selection 

 

The scenario proposed in CBATA is that of an opportunistic IoT, where nodes 

continuously join and leave the network. CBATA adopts the concept of virtual objects by 

choosing the first node in each task group as a VO and the next node in the list is selected 

as vice-virtual object (vice-VO). Then, the role of task allocator is carried out by the VOs. 

When a VO depletes its energy the vice-VO becomes a virtual object within the 

corresponding task group and the next node in the list becomes a vice-VO. To accomplish 

this procedure VOs and vice-VO periodically exchange Hello and Acknowledgment 
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messages. Although, this method provides robustness against links and nodes failures, it is 

obvious that it requires a heavy message exchange procedure which is very intensive with 

regard to communication, computation, storage, and energy overheads.  

 

2.12.2. Consensus-based negotiation and task allocation 

 

In order for nodes to start a negotiation, they need to have already joined the related task 

group. As soon as a node 𝑖 joins the network, it broadcasts to its one-hop neighbors the 

information related to the tasks that it is able to perform. Accordingly, the VOs related to 

those specific tasks add node 𝑖 to the list of nodes that belong to their task groups, and 

reply with an acknowledgement. If node 𝑖 is the second node in that list, they designate it 

as the vice-VO, and the acknowledgement contains this information. If no VO is associated 

to one or more tasks yet, node 𝑖 is designated as VO for those tasks. Then, node 𝑖 notifies 

the ADS its designation as VO and/or vice-VO.  

 

VOs periodically send Hello messages to their related vice-VOs. One of the following 

things might happen: 

 The VO sends the Hello message and the vice-VO acknowledges the message. No 

further actions are performed. 

 The VO sends the Hello message and the vice-VO does not acknowledge the message. 

In this case the VO assumes that the vice-VO is not reachable. If present, the VO 

designates the second node on its list as vice-VO and informs it, which in turns informs 

the ADS. 

 The VO does not send the Hello message when it is supposed to do it. The vice-VO 

notices that the VO is not reachable. It broadcasts a request to know which nodes 

belong to its task group. The first one to reply is designated as vice-VO. Information 

about the failed VO and the new vice-VO is delivered to the ADS. 

 

In order to avoid communication overhead, when a VO notices that it is about to leave the 

task group (e.g., for depletion of residual energy, or because it is moving) it notifies it to its 

vice-VO, sending the list of the nodes belonging to the task group. Then, the vice-VO 

becomes the VO, and the next node on the list becomes the vice-VO. Relevant information 

is delivered to the ADS. 
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When an application requires the execution of a given task, the ADS sends an activation 

signal to the appropriate VOs, which forward it to their list of nodes. Then, the negotiation 

algorithm is started. The negotiation algorithm includes is a collection of laws that 

regulates the interaction and the exchange of information between nodes in a group which 

needs to reach a coordination to achieve common goals. If the ADS does not succeed in 

reaching a VO, it tries to contact its vice-VO. If even the vice-VO does not reply, the ADS 

assumes that no nodes are available anymore for the related task, and thus it cannot be 

activated. Once the VO has sent the activation signal to all the nodes in the group, then 

they start the consensus algorithm. What happens is that each node sends to all its 

neighbors (one-hop broadcast) the consensus messages for the reference task group, 

containing data that specifies the update values for the algorithm. Then they check whether 

the task group to which this message is related is of interest to them, i.e., they belong to 

this task group. If yes, they process the data further and then exploit this information in the 

next iteration of the algorithm. 

 

2.13. Problem complexity 

 

In its abstract level, we can consider the interplay of task groups and virtual objects as a 

special clustering problem as each task group is clustered based on the selection of virtual 

objects. The problem of clustering a set of 𝑛 points into 𝑘 clusters under some objective 

functions is known to be an NP-hard problem even when the points to be grouped are 

restricted to lie in two dimensional Euclidean space [138]. 

 

In contest of IoT, clustering of each task group for keeping the total distance to a 

minimum, or in other words, the optimal selection of the virtual objects with high residual 

energy that scattered in the area can be seen as NP-hard problem. Consider a 100-object of 

each task group example, to perform an exhausted search of all possible solutions require 

[138]: 

 

(𝐶100
1 + 𝐶100

2 ⋯ + 𝐶100
100) × 𝑇 = (2100 − 1) × 𝑇 (2.1) 
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different combination which is far too large to be handled by existing computer resources. 

In this equation, 𝑇 is the number of task groups in the network (i.e., the number of tasks 

that the network is capable of performing). 

 

The existing solutions in literature to this problem are based on heuristic approaches. A 

good clustering algorithm is the one that does not require frequent topology re-construction 

as this will lead to frequent information exchange among the nodes in the network. This 

will eventually lead to high computation overheard. Evolutionary algorithms typically 

intend to find a good solution in a reasonable amount of computing time. They have been 

successfully applied to many NP-hard problems such as multi-processor task scheduling, 

optimization, and traveling salesman problems [139].  
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3. METAHEURISTICS AND EVOLUTIONARY OPTIMIZATION 

 

Metaheuristic algorithms are sophisticated heuristic algorithms aim to find a solution using 

higher level techniques by combining lower level techniques and tactics for exploration 

and exploitation of the large solution spaces. In those problem domains where the 

complexity makes the use of exact techniques unaffordable, employing of metaheuristics 

has steadily gained popularity and usage. Nowadays, these techniques exhibit a remarkable 

success record, and are considered cutting-edge methods for solving hard optimization 

problems. Thus, whenever new problem domains arise, metaheuristic is one of the primary 

weapons in our solving arsenal. 

 

In this thesis the problem of task allocation in IoT is modeled by adopting the concept of 

task groups and virtual objects. Accordingly, the optimal selection of the virtual objects 

with a high residual energy that is scattered in the area can be seen as one of the NP-hard 

and combinatorial problems [10]. Solutions to NP-hard problems involve searches through 

vast spaces of possible solutions. Metaheuristic algorithms are applied successfully to a 

variety of NP-hard problems. One of the most promising and prominent approaches in 

metaheuristics is Evolutionary Algorithms (EAs).  EAs are generic, population-based 

metaheuristic optimization algorithms that use bio-inspired mechanisms to maintain 

simultaneous search of multiple basins of attraction and to eliminate noise in evaluating 

solution quality. 

 

The aim of this chapter is to briefly present the main concept and characteristics of 

metaheuristics with a focus on EAs. The presentation will be given in both informal and 

formal ways. Afterwards, the conceptual framework and the parameter control needed in 

the design of problem specific EAs are presented. Finally, the chapter ends with a formal 

overview of the Multi-Objective Evolutionary Algorithms (MOEAs) presenting the 

algorithmic framework of elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

as one of the prominent MOEAs published to date. 

3.1. Metaheuristics 

The term “heuristics” originates from the greek word “heuriskein” which means to 

“discover” or “find” or “search” by trials and errors. Heuristics are popularly known as 
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rules of thumb, educated guesses, intuitive judgments or simply common sense. In more 

precise terms, heuristics stand for strategies using readily accessible though loosely 

applicable information to control problem solving processes in human beings and 

machines. Heuristic algorithms typically attempt to find a good solution to an optimization 

problem in a reasonable amount of computing time. However, there is no guarantee to find 

the optimal solution, though it might find a better or improved solution than an educated 

guess. Broadly speaking, heuristic methods are local search methods because their searches 

focus on the local variations, and the optimal or best solution can be located outside this 

local region. However, a high-quality feasible solution in the local region of interest will 

usually be accepted as a good solution in many optimization problems in practice if time is 

the major constraint [140]. 

 

Two different types of heuristics are identified up to now [141]. Constructive Heuristics 

and Search Heuristics (Heuristic Search Strategies). Constructive heuristics are mainly 

problem specific and try to construct one single solution with best possible quality by 

carefully selecting promising solution elements. Search heuristics implement a search in 

the solution space of a given problem during which they examine many different solutions 

in order to find the best possible one. Three problem-independent, basic principles of 

heuristic search can be identified: repeated solution construction where a new solution is 

obtained by constructing a new one from scratch, repeated solution modification where a 

new solution is obtained by modifying an existing one, and repeated solution 

recombination where a new solution is obtained by recombining two or more existing 

solutions. 

 

The actual realization of the basic principle itself, however, is a problem specific issue, 

since it has to be defined how a solution may be constructed, modified or recombined. This 

distinction between problem independent and problem specific aspects of search heuristics 

reveals a major advantage: the search strategies and the problem specific parts can be 

implemented independently from each other. This means that it is possible to implement 

search strategies in a completely abstract way, like a framework. Later, when it comes to a 

concrete application, it is of course necessary to implement the problem specific parts (e.g., 

a solution modification mechanism). But once this is done, they can typically easily be 

“plugged” into an already existing (search) framework and it is possible to run the 

associated strategies. Hence abstraction allows the reuse components of search heuristics 
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and may avoid that the respective method has to be implemented from a scratch for each 

new problem. The abstract parts can be regarded as an upper or “meta” level of a search 

heuristic, leading to the term “metaheuristic” [141]. 

 

Metaheuristic algorithms are advanced heuristic algorithms. Because “meta” means 

“beyond” or “higher level”, metaheuristic literally means to find the solution using higher 

level techniques, though certain trial-and-error processes are still used. Broadly speaking, 

metaheuristic is an iterative master process that guides and modifies the operations of 

subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a 

complete (or incomplete) single solution or a collection of solutions at each iteration. The 

subordinate heuristics may be high (or low) level procedures, or a simple local search, or 

just a construction method [142]. In recent years [140], the word metaheuristics refers to 

all modern higher-level algorithms, including Evolutionary Algorithms (EAs) Simulated 

Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Bee Algorithms (BA), Firefly Algorithm (FA), and Harmony Search 

Algorithm (HSA). 

 

In general there are two important components in modern metaheuristics: exploitation (or 

intensification) and exploration (or diversification) [142]. For an algorithm to be efficient 

and effective, it must be able to generate a diverse range of solutions including the 

potentially optimal solutions so as to explore the whole search space effectively, while it 

intensifies its search around the neighborhood of an optimal or nearly optimal solution. In 

order to do so, every part of the search space must be accessible though not necessarily 

visited during the search. Diversification is often in the form of randomization with a 

random component attached to a deterministic component in order to explore the search 

space effectively and efficiently, while intensification is the exploitation of past solutions 

so as to select the potentially good solutions via elitism or use of memory or both. In other 

words; Intensification is to search carefully and intensively around good solutions found in 

the past search. Diversification, on the contrary, is to guide the search to unvisited regions. 

In general, metaheuristics can be classified into three categories according to the solution 

method [143, 141]: metaheuristics based on solution construction, metaheuristics based on 

solution modification, and metaheuristics based on solution recombination. Metaheuristics 

based on solution construction methods do not perform search, they construct a single 

solution in an iterative fashion by evaluating all remaining solution elements and according 
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to their performance add them to the partial solution. Elements are added as long as the 

solution is improved. If this is not the case anymore, the construction is stopped and the 

final solution is returned. Metaheuristics based on solution modification introduce the 

principle of repeatedly modifying solutions such as to, finally, obtain better ones. Finally, 

metaheuristics based on solution recombination introduce how search by recombination 

can be performed and that multiple solutions can be used to apply recombination. In the 

following section, the essence of Evolutionary Algorithms (EAs) is presented in some 

details as these are considered the most prominent, interesting, useful, easy-to-understand, 

and hot research topics in the field of metaheuristics. 

 

3.2. Evolutionary Algorithms (EAs) 

 

Evolutionary algorithms (EAs) are generic, population-based metaheuristic optimization 

algorithms that use biology-inspired mechanisms like selection and variation. The 

population approach allows simultaneous search of multiple basins of attraction and 

eliminates noise in evaluating solution quality. The selection operator nudges the search 

toward superior solutions, whereas the variation operators promote wider exploration [142, 

144]. 

 

Classical EAs, include Genetic Algorithms (GAs), Evolution Strategy (ES), Evolutionary 

Programming (EP), and Genetic Programming (GP).  All these methods are random based 

solution space searching metaheuristic algorithms. In the following, the basic EA structural 

terms and concepts are defined where the described terms’ meanings are normally 

analogous to their genetic counterparts. A structure or individual is an encoded solution to 

some problem. Typically, an individual is represented as a string (or string of strings) 

corresponding to a biological genotype. A genotype describes the genetic composition of 

an individual as inherited from its parents. Genotypes provide a mechanism to store 

experiential evidence as gathered by parents. This genotype defines an individual organism 

when it is expressed (decoded) into a phenotype. A phenotype is the expressed behavioral 

traits of an individual in a specific environment. A genotype is composed of one or more 

chromosomes, where each chromosome is composed of separate genes which take on 

certain values (alleles) from some genetic alphabet. A locus identifies a gene’s position 

within the chromosome. Thus, each individual decodes into a set of parameters used as 

input to the function under consideration. Finally, a given set of chromosomes is termed a 
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population, and a number of individual solutions are created to form an initial population. 

The following steps are then repeated iteratively until a solution has been found which 

satisfies a pre-defined termination criterion. Each individual is evaluated using a fitness 

function that is specific to the problem being solved. Based upon their fitness values, a 

number of individuals are chosen to be parents. New individuals, or offspring, are 

produced from those parents using reproduction operators. The fitness values of those 

offspring are determined. Finally, survivors may be selected from the old population and 

the offspring to form the new population of the next generation [144- 147]. 

 

The following subsections aim to enable readers to get a smooth touch with the concept of 

EAs. Essential definition with a focus on the generic meta-level of the EA is given next. 

Moreover, the relation to the problem-specific level is also considered important in 

designing any EA, and therefore treated explicitly in a separate subsection. Finally, one of 

the main difficulties that a user faces when applying an EA (or, as a matter of fact, any 

metaheuristic method) to solve a given problem is to decide on an appropriate set of 

parameter values. For example, before running the algorithm, the user typically has to 

specify values for a number of parameters, such as population size, selection rate, and 

operator probabilities. The third subsection will present briefly how to automate control of 

these parameters. 

 

3.2.1. General algorithmic framework of EA 

 

Just as in nature, Evolutionary Operators (EVOPs) operate on an EA‘s population, 

attempting to generate solutions with higher and higher fitness. The three major EVOPs 

associated with EAs are mutation, recombination, and selection. In the selection operation, 

the above average individuals with a proportion to their fitness values are selected 

(reproduced) to form a mating pool and become parents of the next generation’s 

individuals more often than below average individuals. The selection EVOP effectively 

gives strings with higher fitness, a higher probability of contributing one or more children 

in the succeeding generation. Then the information contained in the good individual has 

more chances to be preserved and passed onto the next generation. Information exchange 

between two (or more) parents and small changes in the offspring promote the search for 

better individuals. Combining these two factors, the population will gradually increase in 

their fitness until the optimal or near optimal solution has been found [144, 148]. 
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To formally define an EA, its general algorithm will be described in mathematical terms, 

allowing for exact specification of various EA instantiations. In this framework, each EA is 

associated with a non-empty set 𝐼 called the EA’s individual space. Each individual, 𝑎 ∈

 𝐼, normally represents a candidate solution to the problem in interest that being solved by 

the EA. Individuals are often represented as a vector, where the vector’s dimensions are 

analogous to a chromosome’s genes. In the (generational) population transformations, the 

resulting collection of μ individuals is denoted via Iμ, and the population transformations 

are denoted by the relationship 𝑇 ∶  𝐼𝜇  →  𝐼𝜆, where 𝜇, 𝜆 ∈  ℕ indicating succeeding 

populations may contain the same or different numbers of individuals. The framework also 

represents all population sizes, evolutionary operators, and parameters as sequences. This 

is due to the fact that different EAs use these factors in slightly different ways. The general 

algorithm thus recognizes and explicitly identifies this nuance. Having discussed the 

relevant background terminology, an EA is then defined as [144, 149]: 

 

Definition (Evolutionary Algorithm): Let 𝐼 be a non-empty set (the individual space), 

 {μ(𝑖)}𝑖∈ℕ 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑍+(The parent population sizes),  {𝜆(𝑖)}𝑖∈ℕ 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑍+ 

(the offspring population sizes), 𝛷 ∶  𝐼 →  ℝ a fitness function, 𝜄:  ∪𝑖=1
∞ (𝐼μ)(𝑖)  →

 {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (the termination criterion), 𝜒 ∈  {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, 𝑟 a sequence {𝑟(𝑖)} of 

recombination operators 𝑟(𝑖): 𝕩𝑟
(𝑖)

 → 𝛤(Ω𝑟
(𝑖)

, 𝛤(𝐼μ(𝑖)
, 𝐼𝜆(𝑖)

)), 𝑚 a sequence {𝑚(𝑖)} of 

mutation operators 𝑚(𝑖): 𝕩𝑚
(𝑖)

 → 𝛤(Ω𝑚
(𝑖)

, 𝛤(𝐼μ(𝑖)
, 𝐼𝜆(𝑖)

)), 𝑠 a sequence {𝑆(𝑖)} of selection 

operators 𝑠(𝑖): 𝕩𝑠
(𝑖)

× 𝛤(𝐼, ℝ) → 𝛤(Ω𝑠
(𝑖)

, 𝛤((𝐼𝜆(𝑖)+𝜒μ), 𝐼μ(𝑖+1)
)), Θ𝑟

(𝑖)
 ∈  𝕩𝑟

(𝑖)
 (the 

recombination parameters),Θ𝑚
(𝑖)

 ∈  𝕩𝑚
(𝑖)

 (the mutation parameters),and Θ𝑠
(𝑖)

 ∈  𝕩𝑠
(𝑖)

  (the 

selection parameters).  

 

Accordingly, Algorithm 3.1 is called an algorithmic framework of Evolutionary Algorithm 

(EA). 
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Algorithm 3.1. General algorithmic framework of Evolutionary Algorithm (EA) 

 

 

 

3.2.2. Problem related aspects 

 

All elements of the general algorithmic framework of EA are more or less problem 

dependent. However, the mutual exclusion among these elements can help to visualize the 

dependency to the problem. Figure 3.1 emphasizes problem dependent, partly problem 

dependent and problem independent components of the general solution processing scheme 

[141, 144]. 

 

𝑡 ∶=  0;     // t  is the generation number 

Initialize 𝑃(0) ∶= {𝑎1(0), … , 𝑎μ(0)}  ∈  𝐼μ(0)
; 

Evaluate 𝑃(0) ∶= {Φ(𝑎1(0)), … , Φ(𝑎μ(0))}; 

While (𝜄{𝑃(0), … , 𝑃(𝑡)}) ≠ 𝑡𝑟𝑢𝑒) 𝑑𝑜 

Recombine: 𝑃 ′(𝑡) ≔  𝑟
Θ𝑟

(𝑡)
(𝑡)

(𝑃(𝑡)); 

Mutate: 𝑃′′(𝑡) ≔  𝑚
Θ𝑚

(𝑡)
(𝑡)

(𝑃 ′(𝑡)); 

Evaluate 𝑃′′(𝑡) ∶= {Φ(𝑎1(𝑡)), … , Φ(𝑎𝜆(𝑡))}; 

select: 

if 𝜒 

then (𝑡 + 1) ≔  𝑆
(Θ𝑠

(𝑡)
,Φ)

(𝑡)
 (𝑃𝜄𝜄(𝑡)); 

else 𝑃(𝑡 + 1) ≔  𝑆
(Θ𝑠

(𝑡)
,Φ)

(𝑡)
 (𝑃𝜄𝜄(𝑡) ∪ 𝑃(𝑡)); 

fi 

𝑡 ∶=  𝑡 + 1;  

od 
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Figure 3.1. Detailed overview of EA 

 

Obviously evaluation is fully problem dependent. Interestingly, the following components 

are referred to as partly problem dependent: 
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 Initialization 

 Recombination 

 Mutation 

 

The reason is that solution coding, like binary or permutation, is used to describe the 

genotype structure of an individual, i.e., how the representation of the solutions is chosen. 

Hence those operators are referred to as partly problem dependent here. The main 

advantage is the applicability of generic crossover and mutation operators, i.e., no problem 

specific operators must be developed. 

 

The remaining two components, selection and replacement, are problem independent, as 

they typically only consider the solution quality. 

 

3.2.3. Parameter control in EAs 

 

One of the main issues related the description of a specific EA is the specification of its 

components, such as the choice of representation, selection, recombination, and mutation 

operators, thereby setting a framework while still leaving quite a few items undefined. For 

instance, a given EA might be stated by using binary representation, uniform crossover, 

bit-flip mutation, tournament selection, and generational replacement. For a full 

specification, however, further details have to be given, for instance, the population size, 

the probability of mutation and crossover, and the tournament size. These data called the 

algorithm parameters or strategy parameters. They important to complete the definition of 

the EA and they are necessary to produce an executable version. The values of these 

parameters greatly determine whether the algorithm will find an optimal or near-optimal 

solution and whether it will find such a solution efficiently [144, 148]. 

 

Globally, two major forms of setting parameter values can be distinguished: parameter 

tuning and parameter control. By parameter tuning we mean the commonly practiced 

approach that amounts to finding good values for the parameters before the run of the 

algorithm and then running the algorithm using these values, which remain fixed during 

the run. Parameter control forms an alternative, as it amounts to starting a run with initial 

parameter values that are changed during the run [142, 144]. 
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3.3. Description of Some Important Issues in EAs 

 

The next two subsections discuss how to deal with infeasible solutions and how to 

maintain the necessary exploration and exploitations in the EA problem solving procedure. 

 

3.3.1. Solution infeasibility 

 

Another important point in EAs is how to deal with infeasible solutions. Basically 

infeasible solution is no solution at all, because it violates at least one constraint, so the 

result is unusable. Typically, the occurrence of infeasible solutions depends on the design 

of the recombination and mutation operators [141].  

 

Basically, there are three options to deal with infeasible solutions [141, 150]: 

 

1. discard infeasible solutions, 

2. penalize infeasible solutions, and 

3. repair infeasible solutions. 

 

Each of the three options has advantages and disadvantages. Obviously the easiest method 

for handling infeasible solutions is to discard them. But if finding a solution is 

computationally expensive this method will not be appropriate. The second approach is 

penalizing infeasible solutions. That is, the amount of infeasibility must somehow be 

measured and then worsens the quality of the solution, i.e., the fitness of a solution 

degrades. This raises another problem of finding a penalty function which allows infeasible 

solutions but drives the search into the feasible area in the search space. The last option is 

repairing the infeasible solution. Repairing an infeasible solution is problem dependent and 

requires certain design decisions. In some cases repairing a solution is as difficult as 

constructing a feasible solution to the given problem. 

 

3.3.2. Exploration and exploitation 

 

Exploration and exploitation (a.k.a., diversification and intensification, respectively) are 

the two cornerstones of problem solving by search. They are often used to categorize 

distinct phases of the search process. Roughly speaking, exploration is the generation of 
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new individuals from the untested regions of the search space, while exploitation means 

the concentration of the search in the vicinity of known good solutions. Evolutionary 

search processes are often referred to in terms of a trade-off between exploration and 

exploitation. Too much of exploitation can lead to a propensity to focus the search too 

quickly, while too much exploration leads to slow convergence rates [151]. 

 

In EAs, search operators (mutation and recombination) and selection have been 

characterized by their contribution to the explorative and exploitative aspects of the search. 

Selection is commonly seen as the source of exploitation, while exploration is attributed to 

the operators of mutation and recombination. Selection operator selects individuals for 

mating or reproduction from already existed solutions according to their fitness 

concentrating the search in the vicinity of known good solutions. The search operators 

generate new solutions forming the random part of the algorithm. They explore new 

regions of the search space to ensure the necessary diversity to fuel the evolutionary 

process [152]. 

 

3.4. Evolutionary Multi-objective Optimization 

 

EAs are developed to solve real-world problems, such as clustering and scheduling. Many 

of these problems involve the simultaneous optimization of several competing objectives 

and constraints that are difficult, if not impossible, to be solved without the aid of powerful 

optimization algorithms. One way to deal with them is to combine all objectives into one 

single fitness function. However, the drawback is that one must explicitly state the 

influence of each part in the overall fitness function. This gets even harder if the unit of 

measurement is different for every objective. Multi-Objective Evolutionary Algorithms 

(MOEA) are efficient optimization methods used in solving problems with multiple 

conflicting objectives in various branches of engineering, science, and commerce. The goal 

of MOEAs is to provide the decision maker with a complete set of solutions such that no 

other solutions in the search space are better than them with respect to all the considered 

objectives. 

 

This section describes the application of evolutionary techniques to a particular class of 

problems, namely multi-objective optimization. First, an introduction to this class of 

problems and definitions of multi-objective optimization and single objective optimization 
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problems is presented. An important explanations and notations of Pareto optimality is 

given next. Finally, this section ends by presenting algorithmic framework of elitist Non-

dominated Sorting Genetic Algorithm II (NSGA-II) as one of the attractive and prominent 

MOEAs. 

 

3.4.1. Multi-objective optimization problems (MOPs) 

 

In order to develop an understanding of MOPs and the ability to design MOEAs to solve 

them, a series of formal non-ambiguous definitions are required. To give a simple 

illustration, we begin by defining the Single-objective Optimization Problems (SOPs) as 

follows [149]: 

 

Definition (Single-objective Optimization Problem): General SOP is defined as minimizing 

(or maximizing) 𝑓(𝑥) subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = {1, … , 𝑚}, and ℎ𝑗(𝑥) = 0, 𝑗 = {1, … , 𝑝} 

𝑥 ∈ Ω. Then, a solution minimizes (or maximizes) the scalar 𝑓(𝑥) where 𝑥 is a n-

dimensional decision variable vector 𝑥 = (𝑥1, … , 𝑥𝑛) from some search space Ω.  

 

In this definition,  𝑔𝑖(𝑥) ≤ 0 and ℎ𝑗(𝑥) = 0 represent the inequality and equality 

constraints respectively, that must be fulfilled while optimizing (minimizing or 

maximizing) 𝑓(𝑥). Ω contains all possible 𝑥 that can be used to satisfy an evaluation of 

𝑓(𝑥)  and its constraints. Also in this definition, the “decision variable vector 𝑥” is a vector 

of the numerical quantities for which values are to be chosen in an optimization problem. 

 

In practice it turns out that a great many applications that have traditionally been tackled 

by defining a single objective function (quality function) have at their heart a MOP that has 

been transformed into SOP in order to make optimization tractable [151].  MOPs (as a 

rule) present a possibly uncountable set of solutions, which when evaluated, produce 

vectors whose components represent trade-offs in objective space. A decision maker then 

implicitly chooses an acceptable solution (or solutions) by selecting one or more of these 

vectors. Then, the MOP (also called multicriteria optimization, multiperformance or vector 

optimization problem) can be informaly defined as the problem of finding [151, 153]: 
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“A vector of decision variables which satisfies constraints and optimizes a vector function 

whose elements represent the objective functions. These functions form a mathematical 

description of performance criteria which are usually in conflict with each other. Hence, 

the term “optimize” means finding such a solution which would give the values of all the 

objective functions acceptable to the decision maker.” 

 

More precisely, MOPs are those problems where the goal is to optimize 𝑘 objective 

functions simultaneously. This may involve the maximization of all 𝑘 functions, the 

minimization of all k functions or a combination of maximization and minimization of 

these k functions. Formally, the general MOP (global minimum or maximum problem) can 

be then defined as follows [151,152, 154-159]: 

 

Definition (Multi-objective Optimization Problem): General MOP is defined as minimizing 

(or maximizing) 𝐹(𝑥) = [𝑓1(𝑥), … , 𝑓𝑘(𝑥)] subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = {1, … , 𝑚}, 

and ℎ𝑗(𝑥) = 0, 𝑗 = {1, … , 𝑝} 𝑥 ∈ Ω. An MOP solution minimizes (or maximizes) the 

components of a vector 𝐹(𝑥) where 𝑥 is a n-dimensional decision variable vector 𝑥 =

[𝑥1, … , 𝑥𝑛] from some search space Ω.  

 

In the definition above, it is noted that 𝑔𝑖(𝑥) ≤ 0 and ℎ𝑗(𝑥) = 0 represent constraints that 

must be fulfilled while minimizing (or maximizing) 𝐹(𝑥) and Ω contains all possible 𝑥 that 

can be used to satisfy an evaluation of 𝐹 (𝑥). 

 

3.4.2. Dominance concept and Pareto optimality 

 

In an MOP of 𝑘 functions, 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥) one candidate solution 𝑥1 may be better 

than another solution x2, with respect to 𝑓𝑖 (i.e., without loss of generality, for 

maximization problem 𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2) ), but worse with respect to 𝑓𝑗 (i.e., for 

maximization problem 𝑓𝑗(𝑥1) > 𝑓𝑗(𝑥2). In other words, solution 𝑥1 has a mutually better 

than and mutually worse than relation with solution 𝑥2. Thus, 𝑥1 and 𝑥2 have a non-

domination relationship (this also known as Pareto dominance). In more general 

formalization, MOP can be redefined according to the domination concept as: finding a 

vector 𝑥∗ = [𝑥1
∗, … 𝑥𝑛

∗] optimizing the vector function 𝐹(𝑥) = [𝑓1(𝑥), … , 𝑓𝑘(𝑥)] where 

𝑥 = [𝑥1, … , 𝑥𝑛] is the decision variables vector. Here, the optimization of 𝐹(𝑥) is based on 
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the domination concept. To understand the domination concept, let us consider two 

arbitrary solutions 𝕌 and 𝕍 from the solution space Ω, both of which have scores according 

to some set of objective values. Then, solution 𝕌 is said to dominate 𝕍 if and only if the 

following two conditions hold [5,149,160-162]: 

 

 Solution 𝕌 is no worse than solution 𝕍 in all objectives. For example and without loss 

of generality in maximization, the word “no worse” means 𝑓𝑖(𝕌) ≮ 𝑓𝑖(𝕍) for all 𝑖 =

 1, 2, . . . , 𝑘. 

 Solution 𝕌 is strictly better than solution 𝕍 in at least one objective. For example in 

maximization, the word “strictly better” means 𝑓𝑖(𝕌) > 𝑓𝑖(𝕍) for at least one 𝑖 ∈

 1, 2, . . . , 𝑘. 

 

For conflicting objectives, there exists no single solution that dominates all others, and we 

will call a solution global non-dominated (or Pareto Optimal) if it is not dominated by any 

other solution in the search space. The goal of multi-objective optimization algorithms is to 

preserve the global non-dominated points (or at least the near-global non-dominated 

points) in objective space and associated solution points in decision space to provide the 

decision maker with a set of non-dominated solutions 𝑥∗. Hence, a global non-dominated 

set (also called Pareto Optimal Set) can be defined as: among a set of solutions in the 

solution space Ω, the non-dominated solutions set Ω′are those that are not dominated by 

any member of the set Ω. All non-dominated solutions possess the attribute that their 

quality cannot be increased with respect to any of the objective functions without 

detrimentally affecting one of the others (see Figure 3.2). The set of all non-dominated 

solutions in one front is called non-dominated front, Pareto set or Pareto front. 
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Figure 3.2. Multi-objective optimization problem based on domination concept while 

maximizing two objectives 

 

EAs have a proven ability to identify high-quality solutions in high-dimensional search 

spaces containing difficult features such as discontinuities and multiple constraints. When 

coupled with their population-based nature and their ability for finding and preserving 

diverse sets of good solutions, it is not surprising that EA-based methods are currently the 

state of the art in many multi-objective optimization problems [151]. 

 

3.4.3. Elitist non-dominated sorting genetic algorithm II (NSGA-II) 

 

EAs designed for MOPs are called Multi-Objective EAs (MOEAs), and this kind of 

optimization is called Evolutionary Multi-objective Optimization (EMO). EAs have 

attracted to solve MOPs due to their ability to search for multiple solutions in parallel (so 

that a family of feasible solutions to the problem is found) as well as handle complex 

features such as multimodality, and disjoint objective spaces [145, 161, 163, 164]. In 

literature, there have been many approaches to EMOs. All have the following common 

primary goals [158]: 

 

 Preserve global non-dominated points (or at least their nearest points) in objective space 

and associated solution points in decision space. 
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 Continue to make algorithmic progress towards the global non-dominated set in 

objective function space. 

 Maintain a good diversity and distribution of generated solutions along the non-

dominated front. 

 Provide the decision maker with enough but yet limited number of non-dominated 

points for selection resulting in decision variable values. 

 

An example of the classical MOEAs is elitist Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) [161, 162, 165]. NSGA-II is one of the most attractive and prominent MOEAs 

published to date [160]. NSGA-II is a population-based optimization algorithm that assigns 

fitness based on dividing the population into a number of fronts of equal domination. To 

achieve this, the algorithm iteratively seeks all the non-dominated points in the population 

that have not been labeled as belonging to a previous front. It then labels the new set as 

belonging to the current front, and increments the front count, repeating until all solutions 

have been labeled. Each point in a given front gets as its raw fitness the count of all 

solutions in inferior fronts. In this algorithm the diversity is implemented by considering 

the members from that individual’s front [152]. 

 

The general framework of NSGA-II (as presented in Algorithm 3.2) begins with an initial 

population of solutions and employs Genetic Algorithm (GA) with the traditional 

crossover and mutation operators. The selection process is derived by sorting the 

individuals according to a ranking and crowding distance schemes. All non-dominated 

individuals are classified into one front based on non-domination. Then, this group of 

classified individuals is ignored and another front of non-dominated individuals is 

considered. The process continues until all individuals in the population are classified. 

Individuals in the first front form completely non-dominant set in the current population 

whereas Individuals in the second front become dominated by the individuals in the first 

front and the fronts go so on. Each individual in each front assigned a rank (a dummy 

fitness) value based on the front in which it belongs. Individuals in the first front are given 

a rank value 1 and individuals in the second front are given rank value 2 and so on. Once 

the non-dominated sort is completed, a crowding distance is then calculated and added to 

each individual in the population in front-wise manner. The crowding distance 

computation requires sorting each front according to each objective function value in 

ascending order of magnitude. Then, for each objective function, the boundary individuals 
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(solutions with smallest and largest function values) are assigned an infinite distance value. 

All other intermediate individuals are assigned a Distance Value (DV) equal to the 

absolute normalized difference in the function values of two adjacent individuals (previous 

and next individuals) as in the equation below: 

 

DV(current individual) = 𝑓𝑖(Current individual) +
𝑓𝑖(𝑛𝑒𝑥𝑡) − 𝑓𝑖(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

𝑓𝑖(𝑚𝑎𝑥) − 𝑓𝑖(𝑚𝑖𝑛)
  (3.1) 

 

where 𝑓𝑖 is the fitness function ∀𝑖 ∈ (1, … , 𝑘), 𝑚𝑎𝑥 is the maximum value in this front for 

𝑓𝑖, and 𝑚𝑖𝑛 is the minimum value in this front for 𝑓𝑖. Then, this calculation is continued 

with other objective functions. The overall crowding distance value is calculated as the 

sum of individual distance values corresponding to each objective. The crowding distance 

is a measure of how close an individual is to its neighbors. A large average crowding 

distance value results in better diversity in the population. Within the selection and 

population reduction phases, a binary tournament selection method is used and individuals 

are compared based on their contribution to the diversity of the population. Binary 

tournament selection operator criterion is based on the non-domination and crowded 

comparison. Individuals with lesser ranks of non-dominant fronts or with equal ranks (i.e., 

belong to same front) but with greater crowding distances are selected to form matting 

pool. Since individuals in the first front have minimum rank value, they always get more 

copies than the rest of the population. This allows search for non-dominated regions, and 

results in convergence of the population toward such regions. Finally, after selection and 

variation operations (crossover and mutation operators), population with the current 

individuals (parents) and off-springs is sorted again based on non-domination and only the 

best 𝑁 individuals are selected, where 𝑁 is the population size. The selection is based on 

the rank value and on the crowding distance value in the last front. This evolutionary 

process continues until a previously determined stopping criterion is met. 
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Algorithm 3.2. Algorithmic Framework of NSGA-II  
 

Input:   

 Multi-objective problem F(x) = (f1(x), … , fk(x)) , k is number of objective 

functions 

 Population size, N 

 Stopping criterion, τ  

Output: 

 First front of the non-domination fronts 

 

Step 1 – Setup 

 gen = 0. 

 Initialize random population of solutions, = {P1, … , PN} . 

 Evaluate objectives vector fi(Pj), ∀i ∈ {1, … , k}, ∀j ∈ {1, … , N}. 

 Assign rank r(Pi), ∀i ∈ {1, … , N} based on non-domination fronts. 

 Assign crowding distance rank c(Pi), ∀i ∈ {1, … , N} 

 

Step 2 – Update:  

 Generate a new population Pi
′ = {P1

′, … , PN
′ } where Child Pi

′ is obtained by 

using binary tournament selection, recombination, and mutation. 

 For each Parent in P and Child in P′ 

i. Assign rank based on non-domination. 

ii. Generate sets of non-dominated vectors. 

iii. Determine crowding distance between points on each front.  

iv. Elitist selection: The new generation is filled by each front subsequently until 

the population size exceeds the current population size. If by adding all the 

individuals in front 𝑗 the population exceeds 𝑁 then individuals in front 𝑗 are 

selected based on their crowding distance in the descending order until the 

population size is 𝑁. 

 

Step 3 – Stopping criteria 

 If τ = True, then stop and output is the first non-dominated front, otherwise 

gen =  gen + 1, go to Step 2. 
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4. THE PROPOSED TASK ALLOCATION PROTOCOLS WITH 

METAHEURISTIC METHODOLOGY 
 

IoT is an environment that contains different embedded devices interacting with each other 

to perform tasks related to information collection, communications and processing. 

Successful applications of IoT aim to interconnect objects with various capabilities within 

the same heterogeneous network. The goal is to allow network entities to cooperate and 

make their resources available to reach the optimal allocation of tasks among themselves in 

order to perform the demanded task.  However, assigning tasks to group of heterogeneous 

objects that are equipped with limited resources poses a challenging task. The most limited 

and valuable resource for variety of IoT objects is battery power. Therefore, minimizing 

the energy consumption in task allocation process is one of the primary objectives. 

 

The problem of task allocation is extensively studied in the field of WSNs. However, the 

task allocation problem in IoT is an open research issue. Currently, almost all existing 

studies employ heuristic optimizations to cope with different aspects of task allocation 

problems without considering the heterogeneity in terms of energy levels and 

computational power of network entities. CBATA [8, 12] is an interesting and prominent 

work that attempts to solve the problem of task allocation in IoT by applying heuristic 

steps while employing task groups and virtual objects concept. Although, CBATA 

provides robustness against links and nodes failures, it requires a heavy message exchange 

procedure which is very intensive with regard to communication, computation, storage, 

and energy overheads. To the best of our knowledge, no attempt has been made to employ 

task groups and virtual objects-based framework to solve the problem of task allocation in 

IoT using meta-heuristic methods. The work in this thesis is among the first works to 

propose task groups and virtual objects based framework to solve task allocation problem 

in IoT and the first work that adopts meta-heuristic methods for this purpose. Moreover, it 

represents the first work attempting to address computational power utilization and energy 

efficiency problems in task allocation of IoT as a MOP. 

 

The first part of this chapter is devoted to present four task allocation protocols in IoT 

using EA technique. In these protocols the scenario where each object is capable of 

performing one task and can be a member in one task group is assumed. These for 

protocols are: Evolutionary Task Allocation Protocol-1 (ETAP1), Evolutionary Task 
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Allocation Protocol-2 (ETAP2), Stable Evolutionary Task Allocation Protocol-1 

(SETAP1) and Stable Evolutionary Task Allocation Protocol-2 (SETAP2). ETAP1 and 

ETAP2 are designed for application that is supposed to work in typical environments with 

the goal of minimizing the energy expenditures for tasks allocation to ensure maximal 

network longevity. Their proposed objective functions take into consideration the energies 

and the distance between the objects to form efficient clusters in terms of network lifetime, 

and energy consumption. On the other hand, SETAP1 and SETAP2 are designed for 

crucial applications motivating by the fact that most IoT based networks are heterogeneous 

especially in terms of energy levels. The key idea of SETAP1 and SETAP2 is to 

hypothesize a possible energy based heuristic for individual solution initialization and 

mutation to properly maintain longer stability periods. 

 

The second part of this chapter, assumes a more realistic and complex scenario where 

objects are capable of performing a variety of tasks and can be members in more than one 

group. In this context two novel protocols are proposed. These protocols are: Steady Task 

Allocation Protocol (STAP) and Multi-Objective Task Allocation Protocol (MOTAP). 

STAP formats the problem of task allocation as a meta-heuristic optimization problem with 

the goal of increasing stability and operational periods of the network by developing a 

novel single objective optimization algorithm. MOTAP jointly formulates the 

computational power utilization and energy efficiency problems in task allocation of IoT as 

a novel MOP. Again, up to the best of our knowledge, this is the first work attempting to 

address computational power utilization together with energy efficiency problems in task 

allocation of IoT. Also considering this scenario, we modified the most relative method to 

the stated problem, namely CBATA [8, 12], and redirect its goal toward energy efficiency 

by developing Modified-CBATA (M-CBATA) algorithm. 

 

This chapter organized as follows: the chapter begins by defining the problem and the 

solution concept used in this thesis for task allocation and then describes the system model. 

Afterwards, ETAP1 and ETAP2 that are developed within the framework of the first 

scenario are presented by giving an overview of their algorithmic framework. The 

operations and operators that are used in the protocols, such as the way in which the virtual 

objects will be elected and the evolutionary operators used for that are then explained. This 

is followed by explaining the association and a formal layout of the proposed protocols. 

Later, the details of the heuristics that required to redirect the goal of ETAP1 and ETAP2 
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toward stability awareness protocols (i.e., SETAP1 and SETAP2) are presented. The 

protocols of the second scenario are then presented, beginning by explaining the 

environment of the second scenario. Thereafter, giving an illustrative example the 

modified version of CBATA (i.e., M-CBATA) is presented. Later, STAP protocol with its 

conceptual framework and its ejected energy aware heuristics is explained. Finally, the 

chapter is closed with presenting the details of MOTAP and defining its operations and 

operators both formally and informally.  

 

4.1. Problem Definition and System Model 

 

In our protocols, to model IoT network, we assume a static two-dimensional area 𝔸 with 

size (𝕏𝑚𝑎𝑥, 𝕐𝑚𝑎𝑥). The internet coverage is provided in this area via an access point 𝔸ℙ 

located at the center of the area (e.g., 𝔸ℙ located at (𝕏𝑚𝑎𝑥/2, 𝕐𝑚𝑎𝑥/2)). We also assume 

that 𝔸 has a set 𝑂 of 𝑛 objects with known coordinates O = {(𝑂1𝑥,𝑦
) , (𝑂2𝑥,𝑦

) , … , (𝑂𝑛𝑥,𝑦
)}. 

These objects are randomly deployed in 𝔸 (1 ≤ ∀𝑖 ≤ 𝑛 | 𝑂𝑖𝑥,𝑦
= ([0, 𝕏𝑚𝑎𝑥], [0, 𝕐𝑚𝑎𝑥])) 

and they are equipped with different energy levels. Furthermore, we assume that the IoT 

network is capable of performing 𝑇 different tasks simultaneously. 

  

In our protocols, each task in the network is represented by a group of virtual objects. 

These virtual objects are responsible of assigning the task to their connected objects. In 

order to define our task allocation system that is based on task groups and virtual objects 

concept, we assume that a task 𝑡, ∀𝑡 ∈ {1, … , 𝑇} is needed to be performed. Each virtual 

object that belongs to the task group of task t sends Indication Messages (IMs) to their 

connected objects to inform them that the task associated with the task group (i.e., task 𝑡) is 

needed to be performed. Then, task group objects that received IMs perform the task and 

send the results back to the virtual objects. Virtual objects aggregate these result messages 

and send the aggregated results to 𝔸ℙ to be available in the cyberspace. 

 

To calculate power consumption for transmitting and receiving data packets among 

network objects, virtual objects and access point, we employed the first-order radio model 

[166], which is illustrated in Figure 4.1.  
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Figure 4.1. First-order radio model 

 

In first-order radio model the energy expenditures are measured as a function of distance. 

That is, the energy consumption to transmit a message of k-bit over a distance 𝑑 is: 

 

𝐸𝑇𝑥(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 × 𝑘 + 𝜀𝑎𝑚𝑝 × 𝑘 × 𝑑2  (4.1) 

 

while the energy consumption to receive this message is: 

 

𝐸𝑅𝑥(𝑘) = 𝐸𝑒𝑙𝑒𝑐 × 𝑘  (4.2) 

 

in the above equations, 𝐸𝑒𝑙𝑒𝑐 represents the energy dissipated per bit to run the transmitter 

or the receiver circuit and 𝜀𝑎𝑚𝑝 represents an electronic amplifier used in transmitter 

circuit to convert a low-power radio-frequency signal into a higher power signal in order to 

achieve an acceptable Signal-to-Noise Ratio (SNR). We also consider data aggregation in 

our protocol.  We suppose that the data gathered at vertical objects are processed before 

being transmitted. In this case, the number of bits to be sent would be smaller, and 

therefore the transmission energy consumption would be lower.  

 

4.2. Overview of the Proposed Protocols in Context of Scenario #1 

 

This scenario considers the IoT platforms where each object in the network is capable of 

performing only one task (e.g., measuring the humidity, record the temperature, monitoring 
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traffic congestions, tracking the movement of objects or persons, detecting the risky 

conditions in public facilities, and so on). Accordingly, a group of objects that are capable 

of performing similar and replaceable tasks can be classified under one a task group. It is 

obvious that in most IoT applications there may be several task groups in the network. 

From each task group some objects (or an object) are selected to be virtual objects that 

represent the task group. The rest of the objects within the task group are then clustered 

and connected to one virtual object. Figure 4.2 gives visualize illustration of scenario #1. 

 

In the context of this scenario four protocols are developed. These protocols are ETAP1 

and ETAP2 and their stability redirected protocols SETAP1 and SETAP2. In their 

essential, the proposed evolutionary task allocation protocols are centralized protocols 

where the Central Control Station (CCS) has to determine the task allocation configuration 

in terms of virtual objects in each task group. The CCS uses evolutionary algorithm as a 

tool (with a problem specific specializations) for creating an energy efficient clusters (i.e., 

by selecting the appropriate objects as virtual objects) at each task group for a given 

number of objects.  

 

 
 

Figure 4.2. The concept of task groups and virtual objects in scenario #1 
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The configurations for task allocation in the proposed protocols consist of two phases: 

election phase and association phase. In the election phase, virtual objects are chosen using 

an adopted evolutionary algorithm. The evolutionary algorithm in the election phase begins 

with generating an initial population of solutions. The complete solutions are encoded as 

individuals that determine where the virtual objects and member objects are located in each 

task group in the network. At this step, each individual is evaluated and assigned a fitness 

value based on the estimated energy consumption, which is determined by the proposed 

objective function parameters. The population approach allows simultaneous search of 

multiple basins of attraction and eliminates noise in evaluating solution quality. After the 

population initialization phase, the evolutionary loop begins, where individuals go through 

evolutionary operators –selection and variation operators– with pre-determined 

probabilities to improve the quality of the individuals. In selection operator, the above 

average individuals with a proportion to their fitness values are selected (reproduced) to 

form a mating pool and become parents of the next generation’s individuals more often 

than below average individuals. On the other hand, in variation operator, which consists of 

evolutionary recombination and evolutionary mutation, new unexplored solutions are 

derived. Recombination involves exchanging information between two (or more) parents 

from the mating pool to produce new offspring while mutation involves posing small 

changes in the offspring in order to promote the search for better individuals. At the end of 

each variation operator the fitness value is calculated and assigned to offspring individuals. 

It is obvious that, the selection operator pokes the search toward superior solutions, 

whereas the variation operators promote wider exploration. The variation operators are 

followed by an elitism selection. In elitism selection the best 𝑁 individuals are selected and 

allowed to be transformed to next generation, where 𝑁 is the population size. These 

operations iterated for a number of generations until the termination criteria is satisfied. 

Then, the best individual solution will be used to seed the next phase- the association 

phase. In association phase, the non-virtual object members of each task group are 

associated to their virtual objects to form clusters. The general framework of 

evolutionary algorithms that the evolutionary task allocation protocols follow is depicted in 

Algorithm 4.1. 
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Algorithm 4.1. Outline of the evolutionary algorithm trajectory 

 

Input:   

 An optimization problem 𝔽(𝕏), where 𝕏 is n-dimensional decision variable 𝕏 =

{χ1, … , χn} 

 Population size, N 

 Termination criterion τ → {true, false} 

Output: 

 Best solution in the last generation according to fitness values 

Begin: 

 

Step 1 – Initialize Population: 

 gen =  0 

 Initialize random population of solutions, I0 = {I1
0, … , IN

0 }  

 Calculate fitness value Φ ∶  Ii
0  →  ℝ  , ∀i ∈ {1, … , N}. 

 

Step 2 – Perform Evolutionary Loop:  

 Perform Selection: P(gen) = {S(Igen)1, … , S(Igen)k}, where S is selection 

operator and k is the size of mating pool 

 Perform Recombination: P′(gen) = {R(P(gen))}, where R is recombination 

operator 

 Calculate fitness value Φ ∶  P′(gen)  →  ℝ . 

 Perform Mutation: P′′(gen) = {M( P′(gen))}, where M is mutation operator 

 Calculate fitness value Φ ∶  P′′(gen)  →  ℝ . 

 Perform Elitist selection:  Igen+1  = the best N individuals from the 

set {P⋃P′⋃P′′} 

 

Step 3 – Test Stopping criteria: 

 if (τ {gen} }) = true), then stop and the output is the best solution in the last 

generation, otherwise gen =  gen + 1, go to Step 2 

End. 

 

The conceptual visualization of the proposed evolutionary task allocation protocols is 

shown in Figure 4.3. 
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Figure 4.3. The conceptual visualization of the proposed evolutionary task allocation 

protocols in scenario #1 

 

Thus, the conceptual evolutionary based task allocation protocols can be described 

informally as follows:  
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1. Set the playground parameters: Include network dimensions (𝕏max, 𝕐max), Access point 

location (𝔸ℙ𝑥,𝑦) (i.e., 𝔸ℙ𝑥,𝑦 = (𝕏𝑚𝑎𝑥/2, 𝕐𝑚𝑎𝑥/2)), Number of objects (𝑛), 

Coordinates  of objects (𝑂1𝑥,𝑦
) , … , (𝑂𝑛𝑥,𝑦

), Objects’ energy (𝐸𝑂1
), … , (𝐸𝑂𝑛

), Number 

of tasks that the network is capable of performing (𝑇), Objects tasks ( 𝑡𝑂1
), … , (𝑡𝑂𝑛

), 

Amplifier energy 𝜀𝑎𝑚𝑝, Transceiver circuit energy (𝐸𝑒𝑙𝑒𝑐), and Data aggregation 

energy (𝐸𝐷𝐴). 

2. Set the evolutionary algorithm parameters: Include population size (𝑁), Probability of 

recombination ( 𝑝𝑐), Probability of mutation (𝑝𝑚), Mutation rate (𝑚𝑟) and Number of 

generations. 

3. Virtual objects election phase:  

a. Population Initialization: Generate an initial EA population.  

b. Objective function evaluation: Calculate the fitness function of each individual in the 

population. 

c. Evolutionary operators: Create a new population of individuals through: 

 Selections: Select individual mates from old population to form the mating pool 

using tournament selection. 

 Recombination: Make offspring between two randomly selected mates from the 

mating pool via two-point crossover operator. 

 Mutation: Mutate a ratio of 𝑝𝑚 × 𝑁 of mates from the mating pool. 

 Correction mechanism: Ensure the feasibility of the new offspring. 

 Evaluate: Calculate the fitness function of each individual in the new population. 

d. Elitism: Selects the fittest N individuals from the set of parents and offspring. 

e. Replace: Use the new population instead of the old one for further run of the virtual 

object election algorithm. 

f. Stop: Test if the stopping condition of the EA is satisfied. If such, get the best 

individual found in the current population based on its fitness. If not, go to step c. 

g. Decoding: Decode the genotype of the best individual into its phenotype. 

4. Association phase: CCS associates each the non-virtual object members of each task 

group to their virtual objects to form clusters. 
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4.2.1. Virtual objects election phase 

 

Selecting the appropriate collection of virtual objects at each task group has critical 

importance for energy efficient task allocation.  During the virtual objects election phase, 

an EA is adopted to form the selection of virtual objects and partitions each task group into 

clusters accordingly. The process of EA begins by generating an initial population of 

candidate solutions. Each of these individuals is evaluated using a fitness function. Then, 

these individuals go through evolutionary genetic operators which include selection and 

variation operators (i.e., recombination and mutation). These evolutionary operators are 

applied with pre-determined probabilities for exploring new solutions and to improve the 

quality of the existing individuals. Each of the variation operators is then followed by a 

feasibility insurance mechanism. Finally, an elitism mechanism is applied to restrict the 

number of the individuals to the pre-determined population size. This evolutionary process 

is repeated until the termination condition is satisfied. Then, the solution with the best 

objective value is chosen as the final solution. The following subsections present each step 

of the virtual objects election phase in both informal and formal details. 

 

Individual’s genotype encoding/ phenotype decoding 

 

EAs encode the decision variables (or input parameters) of the underlying problem into 

solution strings of individuals or chromosomes.  Containers of the string are called genes. 

The position and the value in the string of a gene are called locus and allele, respectively.  

Each individual represents a complete and candidate solution to the given problem, 

encoded in a form that facilitates the evaluation of objectives and the execution of variation 

operators. This form represents the necessary information required by the algorithm and 

encoded as the individual‘s genotype. Genotype denotes the coding of the variables from 

the problem space into the solution space. In contrast, phenotype represents the decoding 

of genotype (i.e., the variables themselves).  

 

In the context of EAs, the proposed evolutionary task allocation protocols consider a 

population of individuals. Let P be a set of population individuals. That is |𝑃| = 𝑁 ( 𝑁 is 

population size). In our algorithms each individual 𝐼𝑖 ∈ 𝑃, ∀𝑖 ∈ (1, … , 𝑁) is regarded as a 

fixed length vector of size equal to the total number of objects in in the IoT network. Thus, 

for an IoT network with 𝑛 objects, the individual consists of 𝑛 genes. In these individuals 
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each object is mapped into a gene. A gene value (allele) can be either 1 or 0 and it 

indicates whether the object represented by this gene is a virtual object or not, respectively. 

In this manner, the genotype representation of population 𝑃 = 𝐼𝑁 = {𝐼1, … , 𝐼𝑁} of N 

individual solutions can be formally specified as follows: 

 

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}  

 

𝐼𝑗,𝑡
𝑖 = {

1      𝑖f object 𝑗 is a virtual object 
0      otherwise                                  

  (4.3) 

 

where 𝑇 is the number of task groups in the network (i.e., 𝑇 is the number of tasks that can 

be performed in the network). For example, 𝐼1,3
2  means the first gene (i.e., object) of the 

second individual of the population belongs to task group 3. 

 

This representation implicitly facilitates the formation of the selection of virtual objects at 

each task group. Gene j represents the corresponding objects’ identification numbers (IDs). 

Each ID can be used to retrieve the corresponding object’s information such as object’s x, y 

coordinates, energy level and the task that is capable of performing. 

 

While the genotype has a particular set of genes in the genome representation, the 

phenotype, on the other hand, has the physical characteristic of the corresponding 

genotype. So we need a decoding operator to map the individual from the genotype 

representation in the problem space to a real solution in the phenotype space. Formally, a 

gene 𝑗 of individual 𝑖 in the proposed evolutionary task allocation protocols is decoded 

using the following equation: 

 

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}  

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑗 = {
virtual_object               if Gene𝑗

𝑖 = 1 

 𝑛𝑜𝑛_virtual_object      if Gene𝑗
𝑖 = 0  

  (4.4) 

 

Figure 4.4 depicts genotype and phenotype examples for an IoT network capable of 

performing 4 tasks and consists of 250 objects from the initial population. Figure 4.4 (a), 

represents the genotype solution corresponded to the phenotype in Figure 4.4 (b). The 
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Loci 

Alleles 

 1                  10                29                 56               92                 113             130 

 0         …         1         …        0        …          0        …        1          …         1         …       0 

159               180             200             224              235              241              250 

  1         …        0         …        0        …         1          …       0         …         0         …       0 

phenotype task allocation solution clarifies the form of: Access point, virtual objects of 

each Task Group (TG), and member objects (non-virtual objects) in each task group. 

 

 

(a) Genotype                                  

 

 

 

 

 

(b) Phenotype 

 

 

Figure 4.4. Examples for genotype (a) and phenotype (b) individuals of evolutionary task 

allocation protocols in scenario #1 
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Population initialization 

 

In initialization phase, techniques based on randomness are usually used to generate the 

initial population. In our evolutionary task allocation protocol, in order to maintain more 

genetic diversity in initial population, we applied two methods for initialization as shown 

in Algorithm 4.2.  

 

Algorithm 4.2. Initial population generation algorithm for protocols in scenario #1 

 

 

Input:   

 IoT network = {𝑂𝑖,𝑡, … , 𝑂𝑛,𝑡}, where 𝑡 ∈ {1, … , 𝑇} 

 Population size, 𝑁 

Output: 

 Initial population, IN(0) 

Begin: 

Step 1 –Setup: 

 𝐼(0) =  θ 

 Set PC = 1 

Step 2 – Operation:  

 if randomPC ≤ 0.5  

Then 

 2.1: Set 𝑇𝐶 = 1 

 2.2: Let  𝑇𝐺 be a set of all objects belong to the task group 𝑇𝐶 ,𝑇𝐺 =

{∀𝑂𝑖,𝑡 ∈ IoT network, 𝑡 = 𝑇𝐶} 

 2.3: Let 𝑂𝑢,𝑡 be a random object belongs to TG  

 2.4: Set 𝐼𝑢,𝑇𝐶
𝑃𝐶 = 1 

 2.5: ∀𝑂𝑣,𝑡 ∈ 𝑇𝐺, 𝑣 ≠ 𝑢 set 𝐼𝑣,𝑇𝐶
𝑃𝐶 = 0 

 2.6: if 𝑇𝐶 ≠ 𝑇,then 𝑇𝐶 = 𝑇𝐶 + 1go to step 2.2, otherwise go to step 3 

Else 

 2.7: Set TC = 1 

 2.8: Let  TG be a set of all objects belong to the task group TC ,TG = {∀Oi,t ∈

IoT network, t = TC} 

 2.9: Obtain, Kopt = √
|TG|

2π
 

2

0,765
 and Popt =

Kopt

|TG|
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Algorithm 4.2 (Continue). Initial population generation algorithm for protocols in scenario 

#1 

 

 
 

Each of these methods is applied with the probability of 0,5. Thus, each method creates the 

half of the individuals in the initial population. In the first method, an object in each task 

group is chosen randomly to become a virtual object within the corresponding task group. 

In the second method, in each task group each object becomes a virtual object with the 

probability of 𝑃𝑜𝑝𝑡, where 𝑃𝑜𝑝𝑡  is the optimal election probability used in [167].  𝑃𝑜𝑝𝑡 is 

calculated as: 

 

𝑃𝑜𝑝𝑡 =
𝐾𝑜𝑝𝑡

𝑙
  (4.5) 

 

where 𝑙 is the number of objects in a task group and 𝐾𝑜𝑝𝑡 is the desired percentage of 

virtual objects in this task group. The calculation of  𝐾𝑜𝑝𝑡  is derived from [167] and [168]. 

To calculate 𝐾𝑜𝑝𝑡, we assume that objects of each task group are uniformly distributed in 

an area 𝔸 = 𝕄 × 𝕄. For simplicity, we ignore the energy dissipation for transmitting and 

reserving IMs. Thus, for assigning a task and reserving the results, the energy dissipated in 

a virtual object is given by the following formula: 

 

𝐸𝑉𝑂 = (
𝑙

𝐶
− 1) × 𝑘 × 𝐸𝑒𝑙𝑒𝑐 +

𝑙

C
× 𝑘 ×  EDA + 𝑘 × 𝜀𝑎𝑚𝑝 × 𝑑𝑡𝑜 𝔸ℙ

2   (4.6) 

where 𝐶 is the number of clusters (i.e., the number of virtual objects) in a task group, 𝑘 is 

the number of bits to be sent or received,  𝐸𝐷𝐴 is the energy dissipated for data aggregation 

 2.10: ∀j ∈ TG 

if randomj,TC ≤ Popt then Ij,TC
PC = 1 

if randomj,TC > Popt then Ij,TC
PC = 0 

 2.11: if TC ≠ T,then TC = TC + 1go to step 2.8 

Step 3 – Perform Concatenation: 

 𝐼(0) = I(0) ∪ IPC 

Step 4 – Test Stopping condition: 

 If PC = N, then stop and output is I(0), otherwise PC =  PC + 1, go to Step 2 

End. 
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and 𝑑𝑡𝑜 𝔸ℙ is the average distance between a virtual object and the access point. The energy 

spent in a non-virtual object entity is equal to: 

 

𝐸𝑂 = 𝑘 × 𝐸𝑒𝑙𝑒𝑐 + 𝑘 × 𝜀𝑎𝑚𝑝 × 𝑑𝑡𝑜 VO
2   (4.7) 

 

In Equation (4.7), 𝑑𝑡𝑜 𝑉𝑂 is average distance between a cluster member and its virtual 

object. The area occupied by each cluster is approximately 
𝕄2

2
, by assuming that this area is 

a circle with the radius 𝑅 =
𝕄

√𝜋𝐶
. Considering the uniform distribution of objects, it can be 

shown that: 

 

𝑑𝑡𝑜 VO
2 = ∫ ∫ (𝑥2 + 𝑦2) 𝑝(𝑥, 𝑦)

𝑦=𝕐max

𝑦=0

𝑥=𝕏max

𝑥=0
𝑑𝑥𝑑𝑦 =

𝕄2

2𝜋𝐶
  (4.8) 

 

where 𝑝(𝑥, 𝑦) is object distribution. The energy spent in a virtual object cluster during a 

task execution for communication and aggregation (ignoring the nature of the task itself) is 

given by: 

 

𝐸𝑉𝑂−𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ≈ 𝐸𝑉𝑂 +
𝑙

𝐶
× 𝐸𝑂  (4.9) 

 

The total energy dissipated in a task group is equal to: 

 

𝐸𝑇𝐺 = 𝑘 (2𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙 EDA + 𝜀𝑎𝑚𝑝(𝐶𝑑𝑡𝑜 𝔸ℙ
2 + 𝑙𝑑𝑡𝑜 VO

2 ))  (4.10) 

 

By differentiating 𝐸𝑇𝐺  and setting its derivative with respect to 𝐶 to zero, we can obtain the 

optimal number of virtual objects (i.e., optimal number of clusters) as: 

 

𝐾𝑜𝑝𝑡 = √
𝑙

2𝜋
×

𝕄

𝑑𝑡𝑜 𝔸ℙ
  (4.11) 

 

The average distance from a virtual object to the access point is given by [169]: 

 

𝑑𝑡𝑜 𝔸ℙ = ∫ √𝑥2 + 𝑦2 1

𝔸
𝑑𝔸 = 0,765

𝕄

2𝔸
  (4.12) 
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In this way, the desired percentage of virtual objects in a task group (𝐾𝑜𝑝𝑡) becomes: 

 

𝐾𝑜𝑝𝑡 = √
𝑙

2𝜋
 

2

0,765
  (4.13) 

 

Each gene 𝑗 ∈ {1, … , 𝑛} in each task group 𝑡 ∈ {1, … , 𝑇} belongs to each individual, 

𝐼𝑖, ∀𝑖 ∈ {1, … , 𝑁}, is randomly initialized with 1s and 0s according to 𝑃𝑜𝑝𝑡 of the desired 

percentage of virtual objects as: 

 

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇} 

 

𝐼𝑗,𝑡
𝑖 = {

1       𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚𝑗,𝑡 ≤ 𝑃𝑜𝑝𝑡 

0        𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚𝑗,𝑡 > 𝑃𝑜𝑝𝑡
  (4.14) 

 

Fitness evaluations 

 

To quantify the quality of each individual, a fitness value measured by an objective 

function Φ is assigned to each solution. An objective function measures how good an 

individual solution is for task allocation problem by differentiating between good and bad 

solutions. The objective function accomplishes this by interpreting the individual in terms 

of physical representation and evaluates its fitness based on desired traits (in the solution). 

The fitness function forms the bridge between the task allocation problem itself and the 

evolutionary algorithm.  

 

All objective functions used in evolutionary task allocation protocols of scenario #1 

represent minimization problems, where the most fitted individuals will have the lowest 

numerical value of the associated function. The following describes the fitness parameters 

used to form the fitness function in Evolutionary Task Allocation Protocol-1 (ETAP1) and 

Evolutionary Task Allocation Protocol-2 (ETAP2): 

 Evolutionary Task Allocation Protocol-1 (ETAP1): The goal of ETAP1 objective 

function Φ𝐸𝑇𝐴𝑃1 is to minimize the total energy dissipated in the network for 

communication in the process of task allocation. It achieves this goal by forming the 

selection of virtual objects in a manner that minimizes the energy consumption at each 
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task group. In our protocols, virtual objects are responsible for assigning tasks to their 

connected objects. The total energy spent for this operation represents the energy 

consumed for task allocation. Φ𝐸𝑇𝐴𝑃1, quantifies this operation by summing: the total 

energy spent by virtual objects to send IMs to their connected objects, the total energy 

consumed by these objects to receive the IMs, and the total dissipated energy by virtual 

objects to receive, aggregate and send the aggregated messages to 𝔸ℙ. It is clear that the 

overall energy dissipated in all task groups represents the total energy dissipated in the 

network. Formally speaking, the objective function used to evaluate the individual 

solutions in ETAP1 protocol becomes: 

 

Φ𝐸𝑇𝐴𝑃1  = ∑ ((∑ ∑ 𝐼𝑀_𝐸𝑇𝑋𝑣,𝑗
+

|𝑂𝑣𝑡
|

𝑗=1

|𝑉𝑂𝑡|
𝑣=1 𝐼𝑀_𝐸𝑅𝑋 + 𝐸𝑇𝑋𝑗,𝑣

+ 𝐸𝑅𝑋 + 𝐸𝐷𝐴) +𝑇
𝑡=1

∑ 𝐸𝑇𝑋𝑣,𝐴𝑃

|𝑉𝑂𝑡|
𝑣=1 )  (4.15) 

 

where T is the number of the tasks that the IoT network can perform (i.e., the number of 

task groups), |𝑉𝑂𝑡| is the number of virtual objects at the 𝑡th task group, |𝑂𝑣𝑡
| is the 

number of objects associated to the 𝑣th virtual object of the 𝑡th task group and 

𝐼𝑀_𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2
𝑎𝑛𝑑 𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2

 are energy consumptions for transmitting 

indication messages and result messages from object1 to object2, respectively. 𝐼𝑀_𝐸𝑅𝑋 

and 𝐸𝑅𝑋 determine the energy spent for receiving IM by IoT objects and  the energy 

spent for receiving data (or result) messages by virtual objects. 𝐸𝐷𝐴 is energy dissipated 

for data aggregating.  

 Evolutionary Task Allocation Protocol-2 (ETAP2): From Equation 1, it is deduced that 

the consumed energy in a transmission depends on the distance between the source and 

the destination. That is the longer the transmission distance is, the larger the dissipated 

energy will be. Based on this fact, we formulate the objective function of ETAP2 

as ΦETAP2. ΦETAP2 is composed of two parts: compactness (i.e., intra-distance) and 

separation (i.e., inter-distance). The compactness part aims to minimize the distances 

between the virtual objects and their connected objects to reduce the energy 

consumption when virtual objects send indication messages to their connected objects 

or when these objects transmit data to their associated virtual objects. On the other 

hand, separation part aims to maximize the distances among virtual objects of each task 
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group to form a good distribution of virtual objects within each task group. The 

compactness part of ΦETAP2is the sum of all distances between the network objects and 

their associated virtual objects whereas the separation part is the total distances among 

virtual objects of each task group. For normalization purposes both compactness and 

separation part are divided by the number of the tasks that the IoT network can perform. 

In this way ΦETAP2can be quantified by: 

 

Φ𝐸𝑇𝐴𝑃2 =
(𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 \𝑇)

(𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 \𝑇)
=

(∑ (∑ ∑ 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣,𝑂𝑏𝑗𝑒𝑐𝑡𝑗)
|𝑂𝑣𝑡|

𝑗=1

|𝑉𝑂𝑡|
𝑣=1 )𝑇

𝑡=1 )  \𝑇

(∑ (∑ ∑ ∀𝑣≠𝑢,𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣,𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑢)
|𝑉𝑂𝑡|
𝑢=1

|𝑉𝑂𝑡|
𝑣=1 )𝑇

𝑡=1 )  \𝑇
  (4.16) 

 

where 𝑇 is the number of the tasks that the IoT network can perform (i.e., the number of 

task groups), |𝑉𝑂𝑡| is the number of virtual objects at the tth task group, and |𝑂𝑣𝑡
| is the 

number of objects associated to the vth virtual object of the tth task group. 𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣 

and 𝑂𝑏𝑗𝑒𝑐𝑡𝑗 are the vth virtual object of the tth task group and the 𝑗th object associated 

with that virtual object, respectively. 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣, 𝑂𝑏𝑗𝑒𝑐𝑡𝑗) and 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣, 𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑢) 

are the Euclidean distances. The Euclidean distances for 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣, 𝑂𝑏𝑗𝑒𝑐𝑡𝑗) can be 

calculated as  √(𝑥𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣
− 𝑥𝑂𝑏𝑗𝑒𝑐𝑡𝑗

)2 + (𝑦𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣
− 𝑦𝑂𝑏𝑗𝑒𝑐𝑡𝑗

)2. Finally, it is worth to 

note that the denominator in Equation 15 needs to be maximized while the numerator 

needs to be minimized. As a result, the objective function is formulated as minimization 

problem. It is also worth to mention that parameter 𝑇 could be excluded from the 

formula and it is included only for normalization and analytical purposes.  

 

The evolutionary process 

 

In the evolutionary process, selection operator provides exploitation (i.e., intensification), 

compared with the exploration for new and better solutions (i.e., diversification) which 

provided by recombination and mutation operators. In the following each of the 

evolutionary operators that is used in evolutionary task allocation protocols of scenario #1 

is illustrated: 

 

 Selection operator: In the context of EA, the next component is selection operator. 

Selection acts as a force to increase the mean quality of solutions in the population. It 
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preserves the good solutions by electing parents with superior fitness values and 

transferring them to the mating pool for reproduction in the next generation. In our 

proposed protocols we adopted Binary Tournament Selection (BTS) as selection 

operator since it is simple and effective [23]. BTS selects the best individual based on 

its fitness value from two randomly selected individuals of the population and repeats 

this operation N times to create the mating pool of the size equal to the size of 

population. The formal definition of BTS,𝑆𝐵𝑇𝑆: 𝐼^2 → 𝐼′, is as follows: Let 𝑟1, 𝑟2 

~𝑈{1, … , 𝑁} be two uniformly distributed random numbers from the set {1, … , 𝑁} and 

let 𝐼𝑟1, 𝐼𝑟2be two individual solutions. Then, our selection operator becomes as follows: 

 

𝐼𝑖′
∀ 𝑖 ∈ {1, … , 𝑁} = {

𝐼𝑟1       𝑖𝑓 Φ(𝐼𝑟1) ≤ Φ(𝐼𝑟2)

𝐼𝑟2       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.               
  (4.17) 

 

 Recombination: In recombination a cut and cross fill based method is applied. In this 

method a ratio of (pc ×
N

2
,where pc is probability of recombination) of pair of parents 

are chosen randomly from mating pool for recombination. Then, two cut points are 

randomly chosen in each task group and the segment of genes between these cut points 

of the two parent individuals are exchanged with each other. Formally, let r1and r2be 

two random numbers selected from the range {1, … , N} and let Ir1
′
, Ir2

′
be two 

individuals randomly selected based on r1and r2  from the mating pool. For each task 

group TGt, ∀t ∈ {1, … , T} we generate two random cut points c1and c2 in the 

range {1, … , |TGt| − 1}, where |TGt| is tth task group size. Then, the recombination 

operation for each task group can be represented as follows: 

 

𝐼𝑖𝑡,𝑡
𝑟1

′′

= (𝐼1𝑡,𝑡
𝑟1

′

, … , 𝐼𝑐1𝑡,𝑡
𝑟1

′

, 𝐼𝑐1+1,𝑡
𝑟2

′

, … , 𝐼𝑐2−1,𝑡
𝑟2

′

, 𝐼𝑐2𝑡,𝑡
𝑟1

′

, … , 𝐼|𝑇𝐺𝑡|𝑡,𝑡
𝑟1

′

)

𝐼𝑖𝑡,𝑡
𝑟2

′′

= (𝐼1𝑡,𝑡
𝑟2

′

, … , 𝐼𝑐1,𝑡
𝑟2

′

, 𝐼𝑐1+1𝑡,𝑡
𝑟1

′

, … , 𝐼𝑐2−1𝑡,𝑡
𝑟1

′

, 𝐼𝑐2,𝑡
𝑟2

′

, … , 𝐼|𝑇𝐺𝑡|𝑡,𝑡
𝑟2

′

)
  (4.18) 

 

where it ∀i ∈ {1, … , |TGt|} is a gene that belongs to the 𝑡th  task group. This operation 

is iterated ∀𝑡 ∈ {1, … , 𝑇}. Figure 4.5 depicts an example of two-point cut and cross fill 

based recombination. The figure captured for 250 object and network with 4 task 

groups. 
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Figure 4.5. Two-point cut and cross fill 

 

 Mutation: The next variation operator is mutation. A ratio of 𝑝𝑚 ×

𝑁 (where 𝑝𝑚 is probability of mutation) of population individuals are undergone the 

mutation operation. For mutation operator a Bit Flop Mutation (BFM) method is 

adopted. BFM is a unary variation operator applied to each gene in each task group with 

mutation rate of 𝑚𝑟. Once a gene is chosen for mutation, its value is flipped from 1 to 0 

and vice versa as follows: 

 

 

 

 

 

Parent 1 Parent 2 

Child 1 Child 2 
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∀𝑡 ∈ {1, … , 𝑇} 

 

𝐼𝑖𝑡,𝑡
𝑟′′′

= {
𝐼𝑖𝑡,𝑡

𝑟′
               𝑖𝑓  𝑟𝑎𝑛𝑑𝑜𝑚 >  𝑚𝑟 

1 − 𝐼𝑖𝑡,𝑡
𝑟′

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
 (4.19) 

 

In Equation (4.19),  𝑟 is a random number in range {1, … , 𝑁}, 𝐼𝑟′
is an individual chosen 

randomly based on 𝑟 from the mating pool and finally, 𝑖𝑡 ∀𝑖 ∈ {1, … , |𝑇𝐺𝑡|} is a gene 

belongs to the 𝑡th task group. Again, the operation is repeated for each task group. 

Figure 4.6 depicts an example of mutation. In this figure the network consists of 250 

objects and capable of performing 4 tasks (i.e., there are 4 task groups in the network). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. An example of mutation 

Parent 

Child 
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 Correction mechanism: In order to guarantee the validity of the new solutions both 

recombination and mutation operators are followed by a feasibility insurance 

mechanism that tests and repairs the infeasible individual solutions. This mechanism 

tests each task group and randomly selects a virtual object for task groups that become 

without virtual objects due to execution of variation operators. 

 Elitism selection: The execution of variation operators creates new sets of candidate 

solutions (offspring individuals) from the already existing solutions in matting pool 

(parent individuals). Therefore, an elitism scheme is needed to restrict the number of 

individuals in the population to N individuals (hence, N is the population size). In our 

protocols, an elitism mechanism based on fitness values is applied. That is, parents and 

offspring individual sets are concatenated and sorted in ascending order and then only 

the first N individuals are truncated and transferred to the next generation. In this way 

we retained the best individuals (or a few best individuals) in the next generation and 

prevented the loss of the fittest members of the population.  

 

Termination criterion 

 

The most common terminating condition used in evolution algorithms is to allow the 

algorithm to run to a maximum number of generations. In our protocols, the algorithm 

terminates when the specified number of generations is reached. In the last generation the 

solution with the best fitness value (minimum value) is selected to ensure that the 

transmission power required by each object in the process of task allocation is minimized 

and hence the total energy dissipation in the network decreases.  

 

Finally, the selected best individual solution that obtained by the evolutionary algorithm 

undergo through the decoding process. In the decoding process the genotype of the best 

individual is decoded to obtain the phenotype result. The best individual solution 𝐵𝑒𝑠𝑡_𝐼  

can be formally specified as: 

 

∄Ii ∈ P, ∀i ∈ (1, … , N): Φ(Ii) < Φ(𝐵𝑒𝑠𝑡_𝐼   )   (4.20) 

 

where, 𝑃 is the population set, 𝑁 is population size, and Φ is fitness function. 
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4.2.2. Association phase 

 

In this phase, connections are established among the nodes based on the roles that were 

assigned during the first phase (i.e., virtual objects election phase). The CCS determines 

for each non virtual object entity to which virtual object it belongs by choosing the virtual 

object that requires the minimum communication energy at each task group. Based on 

Euclidean distances, the virtual object with minimum distance will be chosen in order to 

achieve minimum energy consumption. 

 

Formally speaking, let |𝑉𝑂𝑡−𝑏𝑒𝑠𝑡| be the number of virtual objects elected by the best 

individual, Best_I  in the task group 𝑡, and let 𝑂𝑡,  be a non-virtual object member in task 

group 𝑡, then: 

 

∀𝑖, 𝑗 ∈ {1, … , |𝑉𝑂𝑡−𝑏𝑒𝑠𝑡|}  

 

𝑂𝑡 ∈ 𝐶𝑖 , 𝑑(𝑂𝑡, 𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝑂𝑏𝑗𝑒𝑐𝑡𝑖) < 𝑑(𝑂𝑡, 𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝑂𝑏𝑗𝑒𝑐𝑡𝑗)   (4.21) 

 

where, 𝐶𝑖 is cluster consists of 𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝑂𝑏𝑗𝑒𝑐𝑡𝑖 and all its connected objects, 𝑑 is the 

Euclidean distance. 

 

4.2.3. Toward stability aware protocols 

 

In an attempt to harness the strength of the proposed evolutionary protocols toward 

stabilization purpose, we exploit the variation in energy levels of objects and redirected the 

proposed ETAP1 and ETAP2 toward stability awareness goal. The so-called Stable 

Evolutionary Task Allocation Protocol-1 (SETAP1) and Stable Evolutionary Task 

Allocation Protocol-2 (SETAP2) are derived from ETAP1 and ETAP2 with the goal of 

maximizing the time interval before the death of the first virtual object in each task group. 

The basic idea of SETAP1 and SETAP2 is to inject an energy aware heuristic in both 

population initialization and mutation operator of ETAP1 and ETAP2 to be collaborated 

with the proposed fitness functions in order to maintain a robust performance.  
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In population initialization we modified the initialization phase previously described in 

Algorithm 4.2.  In the modified algorithm shown in Algorithm 4.3, only objects with 

energy level greater than (or at least equal to) the average energy level in each task group 

are allowed to become a virtual object in that task group. Accordingly, in the first method 

of initialization phase, in each task group a random object with energy level greater or 

equal to the average energy level in the corresponding task group is chosen to become a 

virtual object. In the second method, each gene 𝑗 ∈ {1, … , 𝑛} in each task group 𝑡 ∈

{1, … , 𝑇} belongs to each individual, 𝐼𝑖 , ∀𝑖 ∈ {1, … , 𝑁}, can be initialized with 1s and 0s as 

follows: 

 

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}  

 

𝐼𝑗,𝑡
𝑖 = {

1       𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚𝑗,𝑡 ≤ 𝑃𝑜𝑝𝑡  ∧ 𝐸𝑛𝑒𝑟𝑔𝑦(𝑜𝑏𝑗𝑒𝑐𝑡𝑗,𝑡) ≥ 𝐸𝑎𝑣𝑔𝑡

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                          
 (4.22) 

 

where, Popt is the desired percentage of the virtual objects in each task group defined in 

Equation (4.5) and  Eavgt
 is average energy level in the tth task group. 

 

Algorithm 4.3. Population initialization algorithm in SETAP1 and SETAP2 

 

 

Input:   

 IoT network = {𝑂𝑖,𝑡, … , 𝑂𝑛,𝑡}, ∀𝑡 ∈ {1, … , 𝑇} 

 Population size, 𝑁 

 A set of average energy levels for each task group, 𝐸𝑎𝑣𝑔𝑡
, ∀ 𝑡 ∈ {1, … , 𝑇} 

Output: 

 Initial population, IN(0) 

Begin: 

Step 1 – Setup: 

 𝐼(0) =  θ 

 Set PC = 1 

Step 2 – Operation:  

 if randomPC ≤ 0.5  

Then 

 2.1: Set 𝑇𝐶 = 1 
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Algorithm 4.3 (Continue). Population initialization algorithm in SETAP1 and SETAP2 

 

 
 

Associated with each individual is a fitness value measured by an objective function,𝛷, 

which numerically quantifies how good that individual is for the task allocation problem. 

For SETAP1 and SETAP2, the objective functions are as defined previously in Equations 

(4.15) and (4.16), respectively.  

 

Both selection and recombination operators are also as defined previously in Equation 

(4.17) and Equation (4.18), respectively. The mutation operator, on the other hand, has an 

additional heuristic. Each gene in each task group of the individual selected for mutation is 

 2.2: Let  TG be a set of all objects belong to the task group TC ,TG = {∀Oi,t ∈

IoT network, t = TC} 

 2.3: Let Ou,t be a random object belongs to TG 

 2.4: if Energy(objectu,t) < EavgTC
then go to Step 2.3 

 2.5: Set Iu,TC
PC = 1 

 2.6: ∀Ov,t ∈ TG, v ≠ u set Iv,TC
PC = 0 

 2.7: if TC ≠ T,then TC = TC + 1go to step 2.2, otherwise go to step 3 

Else 

 2.8: Set TC = 1 

 2.9: Let  TG be a set of all objects belong to the task group TC ,TG = {∀Oi,t ∈

IoT network, t = TC} 

 2.10: Obtain, Kopt = √
|TG|

2π
 

2

0.765
 and Popt =

Kopt

|TG|
 

 2.11: ∀j ∈ TG 

 if randomj,TC ≤ Popt ∧ Energy(objectj,TC) ≥ EavgTC
 then Ij,TC

PC = 1 

 if randomj,TC > Popt then Ij,TC
PC = 0 

 2.12: if TC ≠ T,then TC = TC + 1go to step 2.9 

Step 3 – Concatenation: 

 𝐼(0) = 𝐼(0) ∪ IPC 

Step 4 – Stopping condition: 

 if PC = N, then stop and output is I(0), otherwise PC =  PC + 1, go to Step 2 

End. 
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mutated by applying BFM with mutation rate of 𝑚𝑟. Here, in this heuristic only objects 

with above average energy level are considered under mutation. Once a gene is chosen for 

mutation, its value is inverted from 1 to 0 and vice versa: 

 

∀𝑟 ∈ {1, … , 𝑁},  𝑖𝑡 ∀𝑖 ∈ {1, … , |𝑇𝐺𝑡|} 𝑎𝑛𝑑 ∀𝑡 ∈ {1, … , 𝑇}  

 

𝐼𝑖𝑡,𝑡
𝑟′′′

= {
1 − 𝐼𝑖𝑡,𝑡

𝑟′
         𝑖𝑓 𝐸𝑛𝑒𝑟𝑔𝑦(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑡,𝑡) ≥ 𝐸𝑎𝑣𝑔𝑡

∧  𝑟𝑎𝑛𝑑𝑜𝑚 ≤  𝑚𝑟 

𝐼𝑖𝑡,𝑡
𝑟′

                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                       
  (4.23) 

 

In the Equation (4.23), 𝑇𝐺𝑡is a set of all objects that belong to task group 𝑡, ∀𝑡 ∈ {1, … , 𝑇} 

and 𝑖𝑡 ∀𝑖 ∈ {1, … , |𝑇𝐺𝑡|} is a gene belongs to the 𝑡th task group.  

 

4.3. Overview of the Proposed Protocols in Context of Scenario #2 

 

This scenario considers the applications of IoT where objects are capable of performing 

several tasks. In a these applications, some of the task groups may intersect as the network 

may contain several objects with different skills belonging to several task groups.  Each 

task group is assigned to a relevant task by a virtual object(s) which virtualize the physical 

objects connected to them in the cyberspace and they are in charge of processing the 

requests to these physical objects. To understand this scenario, assume that the network is 

performing a humidity and temperature sensing in a specific area. In this case, the network 

contains two task groups: humidity measurement task group, which contains only the 

objects that are equipped with humidity sensors, and temperature measurement task group, 

which includes the objects that are equipped with temperature sensors. It is obvious that 

these two task groups could intersect when some objects are equipped with both humidity 

and temperature sensors. Then, in each task group, some objects are selected as virtual 

objects. The rest of the task group objects are clustered and connected to one virtual object. 

At this point, allocating proper resources to the required task is the duty of the virtual 

objects. It is worth to mention that, objects that are participated in several task groups 

could be virtual objects in more than one task group. Figure 4.7 depicts the concept of task 

groups and virtual objects in scenario #2.  
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Figure 4.7. The concept of task groups and virtual objects in scenario #2 

 

In the context of scenario #2, two protocols are developed and an existing work in the 

literature is modified to fit the energy efficiency requirement of task allocation problem. 

All of these protocols are located at a CCS responsible of determining the task allocation 

configuration in terms of the virtual objects and the connections in each task group. These 

protocols are Modified-CBATA (M-CBATA) which is the modified version of the existing 

work in [8] and [12], Steady Task Allocation Protocol (STAP), and Multi-Objective Task 

Allocation Protocol (MOTAP). Starting with M-CBATA, the next subsections present 

illustrations for each of these protocols. 

 

4.3.1. Modified-CBATA (M-CBATA) 

 

The authors in [8] and [12] proposed Consensus Based Approach for Task Allocation 

(CBATA) to solve the problem of resource allocation in IoT networks. CBATA is a 

heuristic approach that employs the concept of task groups and virtual objects to formulate 

the problem of task allocation. In this algorithm, the first object is selected as virtual object 

in each task group and the next object in the list is selected as vice-virtual object. 

Considering that the objects have different capabilities to perform variety of tasks, one of 

the main drawbacks of this method is the big probability of some objects to be a virtual 

object in many task groups. It is clear that being a virtual object is a very energy 

consuming operation and being a virtual object in many task groups increases this effect. 
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Therefore, objects that are virtual objects in many task groups quickly deplete their 

energies leading to very short stability and operational periods. As an example, let us 

consider the network in Figure 4.8 (a).  The network is composed of two task groups (TG1 

and TG2), where each task group has its virtual object assigned to it (i.e., VO1 assigned to 

TG1 and VO2 assigned to TG2). Now, assume an object 𝑖 that is capable of performing 

tasks 1, 2, 3, and 4 is joined to the network. In this example, the virtual objects VO1 and 

VO2 are assigned to task groups TG1 and TG2, and no virtual object has been yet assigned 

to task groups 3 and 4. Thus, VO1 and VO2 add object 𝑖 to their list of objects and 

acknowledge it. Obviously, object 𝑖 does not receive acknowledgements for task groups 3 

and 4. Hence, object 𝑖  assumes the role of VO3 and VO4 and then it informs the CCS (see 

Figure 4.8 (b)). 

 

In the previous example, object 𝑖 undertook the duty of being virtual object in two task 

groups. The situation could be more severe if an object that is associated with large number 

of task groups that do not have virtual objects is joined to the network. Considering this 

drawback, we modified CBATA in such a way that, no object will be a virtual object in 

more than one task group if it is possible. We named the modified CBATA algorithm as 

Modified-CBATA (M-CBATA). The goal of M-CBATA is to minimize the number of 

objects that are virtual objects in more than one task group or at least reduce the number of 

task groups that the object is virtual object in them. In M-CBATA, when an object joins to 

the network it sequentially tests the following steps and performs one or more of them 

accordingly: 
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Figure 4.8. Illustrative example for CBATA and M-CBATA (a): A network with two task 

groups (b): Object 𝑖 joined to the network (c): Object 𝑗 joined to the network 

(d): Object 𝑘 joined to the network 

 

1. If the object is associated with one or more tasks that their task groups have no virtual 

objects yet, the object becomes a virtual object in these task groups.  

2. If the object is associated with some tasks and their task groups have virtual objects that 

are associated with more than one task group then: 

a. If the object already selected as virtual object in another task group, then it associates 

itself to these virtual objects. 

b. If the object is not selected as a virtual object, then it informs one of the virtual 

objects (i.e., the virtual objects that are associated with more than one task group) to 

exclude itself from being a virtual object. The newly joined object announces itself 

as the new virtual object in the corresponding task group.  

c. If the object is associated with task groups that have virtual objects and those virtual 

objects are associated with one task group, then the object joins to those virtual 

objects. 
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Illustrative Example 

 

Let us reconsider the example in Figure 4.8 (a). When the object 𝑖 wants to join the 

network (see Figure 4.8 (b)) it tests the network. Since task groups 3 and 4 have no virtual 

objects assigned to them, object 𝑖 performs step 1 and becomes a virtual object in these 

task groups. Since task groups 1 and 2 have their virtual objects assigned to them and each 

of these virtual objects are assigned to one task group, object 𝑖 performs step 3 and 

associate itself with VO1 and VO2.  Now, let us assume the following scenarios: 

 

 Suppose that an object 𝑗 that can execute tasks 4 and 5 wants to join the network (see 

Figure 4.8 (c)). Since there is no virtual object assigned to task group 5 the object 𝑗 

performs step 1 and announces itself as VO5. On the other hand, although object 𝑖 (i.e., 

VO4) is virtual object in more than one task group; object 𝑗  follows step 2-a and joins 

to VO4 to perform task 4 and takes no action since object 𝑗 has already been selected as 

VO5. 

 Suppose that an object 𝑘 that can perform tasks 1, 2 and 4 wants to join the network 

(see Figure 4.8 (d)). Since VO1 and VO2 both are objects which are virtual objects in 

only one task group, object 𝑘 follows step 3 and associates itself with VO1 and VO2. 

Then, object 𝑘 follows step 2-b and informs object 𝑖 to exclude itself from being VO4 

and object 𝑘 announce itself as VO4 informing the list of objects belonging to task 

group 4. At this point, all virtual objects in the network are virtual objects in only one 

task group. 

 

4.3.2. Steady task allocation protocol (STAP) 

 

STAP aims to boost the energy efficiency of the task allocation in the direction of 

maximizing the stability period (the time interval until the first virtual object depletes its 

energy in each task group) as well as increasing the operational period (the interval until all 

virtual objects deplete their energies in each task group).  In order to accomplish this goal 

we developed a single objective optimization algorithm with heterogeneity aware 

heuristics to ensure more extension of stability and operational periods. The proposed 

algorithm attempts to select objects with energy levels above the average energy level of a 

task group to be virtual objects at that task group and also attempts to reduce energy 
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consumptions of these virtual objects. It forms the collaboration between an efficient 

object function and heterogeneity aware heuristics injected to population initialization and 

mutation operators. The next subsections shade the light on the special design futures of 

system model and the algorithmic framework of STAP. 

 

System model for STAP 

 

STAP formulate the problem using the system model defined in Section 4.1. In addition, 

STAP assumes a heterogeneous IoT objects. These objects are heterogeneous in terms of 

their energy levels and the number and the type of tasks they perform (i.e., each object is 

capable of performing 𝑡𝑜|𝑡𝑜 ≤ 𝑇 tasks).  

 

The network in STAP is partitioned into T task groups with each contains the objects that 

are capable of performing similar tasks. At each task group some objects that satisfies 

specific design features are selected to be virtual objects. These virtual objects are 

responsible of representing the task group and allocating tasks to the objects connecting to 

them. Task allocation is done by the virtual objects by sending an Indication Messages 

(IMs) to their connected objects. As the objects can participate in multiple task groups it is 

important to attach Task Identification TID (i.e., TID = 𝑡) with each IM, here t represents 

the demanded task. Then, each object resaves the IM performs the task that is assigned in 

the TID and sends the results back to the virtual object. Virtual objects aggregate the data 

and send the aggregated results to 𝔸ℙ. 

 

The algorithmic framework in STAP 

 

STAP is centralized algorithm located at CCS that is equipped with unlimited resources. It 

needs to operate one time in order to forms the selection of virtual objects and partitions 

the network into clusters accordingly. As a single objective evolutionary optimization 

algorithm, the algorithmic framework of STAP uses the general underlying of the EAs 

which is presented in Figure 4.3. 

 

STAP begins by considering a population of individuals 𝑃 of size 𝑁 (i.e., |𝑃| = 𝑁). Each 

individual 𝐼𝑖 ∈ 𝑃, ∀𝑖 ∈ (1, … , 𝑁) is divided into a set of sub-individuals. Each sub-

individual represents a task group and is expressed as a fixed length vector of size equal to 
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the number of objects (𝑛). In this manner, each gene can be represented as 𝐼𝑖(𝑗,𝑘),, ∀𝑖 ∈

(1, … , 𝑁), ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛) where 𝑇 is the number of task groups in the 

network (i.e., the number of tasks that the network is capable of performing). Each gene 

encodes one object in the network in each task group and it is represented by an allele that 

can take a value of 1, 0 or −1. The allele takes the value of 1 if the object is a virtual object 

and the value of 0 if the object is not a virtual object but a member of the task group. 

Finally, it takes the value of −1 if the corresponding object is not a member of the task 

group. Figure 4.9 illustrates an abstract view of a population. Accordingly, a 

population 𝑃 = {𝐼1, 𝐼2, … , 𝐼𝑁}, can be formalized as: 

 

∀𝑖 ∈ (1, … , 𝑁), ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛) 

 

𝐼𝑖(𝑗,𝑘) = {

1         𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧  𝑂𝑏𝑗𝑒𝑐𝑡𝑘  ∈  𝑉𝑂𝑗

0          𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧  𝑂𝑏𝑗𝑒𝑐𝑡𝑘  ∉  𝑉𝑂𝑗

−1          𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝                                      

 (4.24) 

 

where, VOj is the set of virtual objects in the jth task group. For example,  I2(4,1) = 1 

means that the 1st gene (i.e., the first object in the network) of the 4th sub-individual (i.e., 

the fourth task group) of the 2nd individual of the population is a virtual object in the 4th 

task group. 
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Figure 4.9.  Population visualization in STAP 

 

In the initialization phase, in order to maintain more genetic diversity, STAP employs two 

methods to set the initial population. Each method is applied with probability of 0,5 to 

each individual. In both methods a heterogeneity aware heuristic are applied to support the 

energy efficiency of the selected virtual objects towards more extension of stability and 

operational periods. The heterogeneity aware heuristics ensure that only objects with 

energy levels above the average energy level of the task group are permitted to be virtual 

objects. In the first method, an object has the property of satisfying the heterogeneity aware 

heuristic condition is selected randomly from each task group to carry out the duty of being 

a virtual object within the task group. The second method uses the principle of optimal 

election probability presented in [167]. In this method, in each task group the virtual 

objects are determined according to heterogeneity aware heuristic condition and the 

optimal election probability 𝑃𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡 𝑙⁄ , where 𝑙, is the number of objects in each task 

group, and 𝐾𝑜𝑝𝑡 = √(𝑙/2𝜋)   2/0,765 is the optimal number of constructed clusters in 

each task group [167]. In this manner, each gene is initialized as follows: 
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∀𝑖 ∈ (1, … , 𝑁) , ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛)  

 

 𝐼𝑖(𝑗,𝑘) =

{

1   𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝐸(𝑂𝑏𝑗𝑒𝑐𝑡𝑘) > 𝐸(𝐴𝑣𝑔𝑗) ∧ 𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 ≤ 𝑃𝑜𝑝𝑡

0    𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 > 𝑃𝑜𝑝𝑡                                                

−1   𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝                                                                                         

 (4.24) 

 

where, 𝐸(𝑂𝑏𝑗𝑒𝑐𝑡𝑘) is the energy of the 𝑗th object and 𝐸(𝐴𝑣𝑔𝑗) is the average energy of 

𝑗th task group. 

 

To measure the quality of each solution quantitatively an objective function 𝛷  that is 

subject to minimization is attached to each individual. The objective function of STAP, 

 ΦSTAP aims to minimize energy consumptions of virtual objects as well as maximizing the 

mean value of their energies.  𝛷𝑆𝑇𝐴𝑃, is composed of three parts: Individual virtual objects 

dissipated energy, 𝑉𝑂𝐷𝑖𝑠𝐸, the total number of task groups for objects that are 

simultaneously assigned as virtual objects in multiple task groups, TGmulti_VO, and the 

average energy of virtual objects, VOE. The first part (i.e., VODisE) attempts to minimize 

the average energy consumption of virtual objects. In STAP virtual objects are responsible 

of assigning tasks to their connected objects.   𝑉𝑂𝐷𝑖𝑠𝐸, attempts to minimize the average 

energy consumed of virtual objects to perform this operation. This can be quantified by 

summing: the total energy spent by virtual objects to send IMs to their connected objects 

and the total energy dissipated by virtual objects to receive, aggregate and send the 

aggregated messages to 𝔸ℙ. Accordingly,  𝑉𝑂𝐷𝑖𝑠𝐸 can be formalized as follows:  

 

 𝑉𝑂𝐷𝑖𝑠𝐸 =  ∑ (
(∑ ∑ 𝐼𝑀𝐸𝑇𝑋𝑙,𝑜

+
|𝑂𝑙𝑗

|

𝑜=1

|𝑉𝑂𝑗|

𝑙=1 𝐷𝑎𝑡𝑎𝐸𝑅𝑋
+ 𝐸𝐷𝐴)

+ ∑ 𝐸𝑇𝑋𝑙,𝐴𝑃

|𝑉𝑂𝑗|

𝑙=1

)𝑇
𝑗=1 |𝑉𝑂|⁄   (4.25) 

 

where, |𝑉𝑂𝑗| is the number of virtual objects in the 𝑗th task group, |𝑂𝑙𝑗
| is the number of 

objects connected to the 𝑙th virtual object of the 𝑗th task group. 𝐼𝑀_𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2
, is 

energy expenditure for sending indication message from 𝑜𝑏𝑗𝑒𝑐𝑡1 to 𝑜𝑏𝑗𝑒𝑐𝑡2. 𝐷𝑎𝑡𝑎_𝐸𝑅𝑋, 

determine the energy spent for receiving result messages by virtual objects. 𝐸𝐷𝐴, and 

𝐸𝑇𝑋𝑙,𝐴𝑃
 are energy consumed for data aggregation and energy for sending aggregated 
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message from virtual object 𝑙 to 𝔸ℙ, respectively. Finally, |𝑉𝑂| is the total number of 

virtual objects in the network. 

 

The second part of, 𝛷𝑆𝑇𝐴𝑃, 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂 considers the fact that being a virtual object is 

extremely energy consuming operation. So, it attempts to minimize the number of task 

groups that an object is virtual object at them to at most one task group. 

Formally, 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂, can be expressed as: 

 

∀𝑘 ∈ (1, … , 𝑛)  

 

𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂 =  ∑ (|𝑉𝑂(𝑂𝑘)|𝑛
𝑘=1 | |𝑉𝑂(𝑂𝑘)| > 1)  (4.26) 

 

where, |𝑉𝑂(𝑂𝑘)|, is the number of task groups that object 𝑂𝑘 is virtual object at them. 

Note, if the virtual objects is represent only one task group, then 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂 is set to 0. 

 

Finally, the goal of the third part of the objective function 𝑉𝑂𝐸 , is maximizing the mean 

value of energy of virtual objects by selecting objects with high energy level as virtual 

objects as follows: 

 

𝑉𝑂𝐸 =
∑ ∑ 𝐸𝑉𝑂𝑙

|𝑉𝑂𝑗|

𝑙=1
𝑇
𝑗=1

|𝑉𝑂|
  (4.27) 

 

where, 𝐸𝑉𝑂𝑙
, is the energy amount of the 𝑙th virtual object of the  𝑗th task group. Then, by 

combining the three parts we can calculate  𝛷𝑆𝑇𝐴𝑃 as follows: 

 

 𝛷𝑆𝑇𝐴𝑃 =
 𝑉𝑂𝐷𝑖𝑠𝐸 + 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂

𝑉𝑂𝐸
  (4.28) 

 

The next component is the evolutionary genetic operators which includes selection and 

variation operators. Selection is an intensification operator acts as a force to increase the 

mean quality of solutions in the population. In STAP we applied the canonical binary 

tournament selection which elects the individual with the superior fitness value from two 

randomly selected individuals of the population set transferring it to the mating pool. This 
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operation is repeated 𝑁 times to build a mating pool of the size equal to the size of 

population.  

 

On the other hand, variation operators are diversification operators used to explore new 

and better solutions. Variation operators include recombination and mutation. In 

recombination, a proportion, 𝑃𝐶 × 𝑁 2⁄ (where 𝑃𝐶 is probability of recombination) of 

pairs of parents are chosen from the mating pool and undergo 2-point multilevel cut and 

cross fill.  For each sub-individual from the pair of parents, two cut points ,1 ≤  𝑐𝑝1, 𝑐𝑝2 ≤

 𝑛 −  1, are randomly selected and the genes at  𝑐𝑝1 … 𝑐𝑝2 are swapped between the 

participated sub-individual. In mutation, a multilevel bit flop mutation is applied on a 

portion 𝑃𝑀 × 𝑁 (where 𝑃𝑀 is probability of mutation) of individuals in the mating pool. 

Each gene with a value of allele not equal to −1 at each sub-individual is mutated with a 

mutation rate of 𝑚𝑟 . If the value of the allele is 1, then is directly flipped to 0. However, 

the value of allele is flipped to 1 from 0 only if the energy of the corresponding object is 

greater than the average energy of its task group. Formally, mutation operator can be 

expressed as follows:  

 

∀𝑘 ∈ (1, … , 𝑛), ∀𝑗 ∈ (1, … , 𝑇)  

 

𝐼𝑟(𝑗,𝑘)
′ = {

𝐼𝑟(𝑗,𝑘)     𝑖𝑓  𝑟𝑎𝑛𝑑𝑜𝑚 >  𝑚𝑟  ∨ 𝐼𝑟(𝑗,𝑘) = −1                                                 

0            𝑖𝑓  𝑟𝑎𝑛𝑑𝑜𝑚 ≤  𝑚𝑟  ∧ 𝐼𝑟(𝑗,𝑘) = 1                                                     

1            𝑖𝑓  𝑟𝑎𝑛𝑑𝑜𝑚 ≤  𝑚𝑟  ∧ 𝐼𝑟(𝑗,𝑘) = 0 ∧ 𝐸(𝑂𝑏𝑗𝑒𝑐𝑡𝑘) > 𝐸(𝐴𝑣𝑔𝑗)  

 (4.29) 

 

where, 𝑟 is a random number in range {1, … , 𝑁}, 𝐼𝑟
′  is an individual chosen randomly based 

on 𝑟 from the mating pool. This operation repeated sequentially for each sub-

individual ∀𝑗 ∈ (1, … , 𝑇). 

 

Executing variation operators creates new sets of candidate solutions, thus a correction 

mechanism is applied to guarantee the validity of the new solutions. Thus, if a task group 

becomes without a virtual object an object with energy level greater than the average 

energy of the task group is randomly selected and assigned as a virtual object within the 

task group. 
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In population reduction phase, an elitism selection is applied where the parent individuals 

of the population combined with the new solutions generated by the variation operators. 

The combined set is then sorted in ascending order based on the value of objective function 

and the first 𝑁 individuals are preserved and transferred to the next generation. 

 

This evolutionary process is repeated until the termination condition is satisfied.  In STAP, 

the algorithm terminates when the specified number of generations is reached. Then, the 

solution with the best objective value is chosen as the final solution. The best individual is 

then decoded and undergo through association phase. In association phase, the CCS 

constructs the clusters and builds the connections between the virtual objects and non-

virtual objects entities based on the Euclidean distances. 

 

4.3.3. Multi-objective task allocation protocol (MOTAP) 

 

MOTAP aims to increase the energy efficiency of the network as well as maximizing the 

computation power utilization of virtual objects while assigning tasks to objects. However, 

selecting the virtual objects that maximize the total computational power in use could 

conflict with the goal of energy efficiency. For instance, selecting a large number of 

objects as virtual objects to maximize the total computational power is inefficient since a 

large number of virtual objects will consume more energy and in turn, degrade the energy 

efficiency of the network. Therefore, it is desirable to maximize the total computational 

power in use while minimizing the number of virtual objects (i.e., maximizing the mean 

value of computational power) in each task group. However, minimizing the number of 

virtual objects increases the energy load on individual virtual objects and therefore 

decreases the stability period (i.e., the time interval in which the first virtual object 

completely depletes its energy in each task group). The same situation occurs when an 

object with several skills and high computational power is selected as a virtual object in 

many task groups. 

 

Multi-Objective Evolutionary Algorithms (MOEAs) involve optimizing a number of 

objectives that conflict with each other and providing an optimal decision with a set of 

trade-off solutions between the conflicting objectives. Thus, MOTAP uses the underlying 

of MOEAs in order to jointly formulate the computational power utilization and energy 
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efficiency problems in task allocation of IoT as a novel Multi-objective Optimization 

Problem (MOP). 

 

The next subsections illustrate the special design features of MOTAP and sight the light on 

its algorithmic framework. 

 

System model for MOTAP 

 

MOTAP uses the system model defined in Section 4.1 with some application specific 

design features. MOTAP assumes that the IoT objects are equipped with different energy 

levels and have different computation power capabilities supplied with processors with 

different frequencies. Furthermore, MOTAP assumes that the IoT network is eligible of 

performing T tasks and each object is capable of performing 𝑡𝑜 (𝑡𝑜 ≤ 𝑇) tasks. 

 

In our model, the network is partitioned into different task groups, each of which contains 

the objects that are capable of performing the corresponding task of the task group. In each 

task group, a set of objects are selected as virtual objects to represent the task group and 

they act as the task allocator within their groups. When, a task 𝑡, ∀𝑡 ∈ {1, … , 𝑇}, is needed 

to be performed, the virtual objects of the task group corresponding t sends Indication 

Messages (IMs) to their connected objects. Each IM is attached with a Task Identification 

TID (i.e., TID = 𝑡) since the objects can participate in multiple task groups. Then, the 

objects perform the task that is assigned in the TID after receiving the IMs and send the 

results back to the virtual objects. Virtual objects perform data aggregation and send the 

aggregated results to 𝔸ℙ. 

 

The algorithmic framework of multi-objective task allocation protocol (MOTAP) 

 

MOTAP is a centralized protocol resides in the CCS that is equipped with unlimited 

resources. Although there are several variants of MOEAs, it is out of the scope of this 

thesis to investigate the applicability of different MOEAs. MOTAP adopts a custom 

designed framework based on elitist Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II) as its underlying algorithmic paradigm. 

The evolutionary process of the general framework of MOTAP (see Figure 4.10) can be 

illustrated as follows: 
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Figure 4.10. The General layout of MOTAP 

 

Individuals encoding in the solution space: MOTAP It begins by considering a population 

𝑃 which consists of a group of 𝑁 individuals. Each individual 𝐼𝑖 ∈ 𝑃, ∀𝑖 ∈ (1, … , 𝑁) is 

divided into a set of sub-individuals. Each of these sub-individuals represents a task group 

in the network and its length equal to the number of objects (𝑛). MOTAP uses the 

structural view that is presented in Figure 4.9 to store the population. In this structure, each 

gene encodes one object in the network in each task group and takes a value of −1, 0 or 1 

as follows: 
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 -1: if the object is not a member of the task group. 

 0: if the object is a member of the task group but it is not a virtual object. 

 1: if the object is a member of the task group and it is a virtual object in that task group. 

 

Figure 4.11 (a) and (b) show genotype and phenotype examples in MOTAP, respectively.  

This figure abstracts a 200 × 200 Unit IoT network capable of performing 4 tasks and 

consists of 50 objects from the initial population. Figure 4.11 (a), represents the genotype 

solution corresponded to the phenotype in Figure 4.11 (b). The phenotype solution clarifies 

the form of: Access point, virtual objects of each Task Group (TG), and member objects 

(non-virtual objects) in each task group. The tasks of each object are specified by arrow to 

the right of the object. Red colored tasks mean the object is a virtual object in the 

corresponding task group. 
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(a) Genotype 

 

(b) Phenotype 

 
 

Figure 4.11. Examples for genotype (a) and phenotype (b) individuals of MOTAP 

 

Population initialization: In the initialization phase, MOTAP employs two strategies to 

ensure better exploration of different points in the search space. Each strategy creates half 

of the population with a probability of 0,5 to create each individual. In the first strategy, an 

object in each task group is chosen randomly to become a virtual object within the task 

group. In other words, a gene from the set of gens corresponding the set of objects belong 
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to the task group in each sub-individual is chosen randomly and its allele value is set to 1. 

The second strategy adopts the principle of optimal election probability [167]. According 

to Heinzelman et al. [167], the percentage of virtual objects in each task group can be 

determined by an optimal election probability 𝑃𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡 𝑙⁄  where, 𝑙 is the number of 

objects in each task group, and 𝐾𝑜𝑝𝑡 is the optimal number of constructed clusters in each 

task group which is previously calculated in Equation (4.13). Then, each gene is randomly 

initialized to −1, 0 or 1 depending on the membership of the corresponding object to the 

task group and 𝑃𝑜𝑝𝑡 of the desired percentage of virtual objects as follows: 

 

∀𝑖 ∈ (1, … , 𝑁) , ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛) 

 

𝐼𝑖(𝑗,𝑘), = {

1         𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧  𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 ≤ 𝑃𝑜𝑝𝑡 

0          𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧  𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 > 𝑃𝑜𝑝𝑡

−1          𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝                                            

 (4.30) 

 

Objective functions evaluation: 𝛷: 𝑃𝑖 → 𝑅2 denotes the objective function vector that is 

assigned to each individual. This vector attaches a quality measure to each individual. In 

MOTAP, there are two objective functions: ℱ1 and  ℱ2, where both are subject to 

maximization. ℱ1 involves maximizing the mean value of computation power of virtual 

objects. It accomplishes this by selecting objects with powerful processing unites as virtual 

objects while minimizing the total number of virtual objects in each task group. Formally, 

𝛷ℱ1
can be calculated as follows: 

 

Φℱ1
=

∑ ∑ 𝑝𝑝(𝑉𝑂𝑡𝑙
)

|𝑉𝑂𝑡|

𝑙=1
𝑇
𝑗=1

∑ |𝑉𝑂𝑡|𝑇
𝑗=1

  (4.31) 

 

In the equation above, |𝑉𝑂𝑡| represents the number of virtual objects at the 𝑡th task group, 

and 𝑝𝑝(𝑉𝑂𝑡𝑙
) represents the processing power (i.e., processing unit’s capacity) of the 𝑙th 

virtual object of the tth task group. It is obvious that the genotype coding in of MOTAP 

facilitates the computation of 𝛷ℱ1
, which can be expressed as: 

 

Φℱ1
=

∑ ∑ pp(1tl
)

|1′st|

l=1
T
j=1

∑ |1′st|T
j=1

  (4.32) 
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In this equation, |1′𝑠𝑡| is the number of 1’s (i.e., the number of virtual objects) at the 𝑡th 

sub-individual and  𝑝𝑝(1𝑡𝑙
) is the processing power of the lth virtual object of the 𝑡th task 

group. 

 

 ℱ2 maximizes the stability of each task group and minimizes energy dissipation for task 

allocation, which is expressed as communication overhead. It consists two parts: 

stability, 𝑆, and energy efficiency, 𝐸𝐹. 𝑆 maximizes the stability of each task group by 

ensuring that only the objects with high energy levels could be selected as virtual object. 

Hence, it maximizes the mean value of virtual objects’ energy. 𝑆 also considers the fact 

that being a virtual object is an energy consuming operation. So, it attempts to minimize 

the number of objects that are virtual objects in more than one task group. However, while 

𝑆 extends the stability periods of task groups, it also extends the operational periods of 

these groups.  𝑆 can be formally expressed as follows: 

 

𝑆 =  
∑ [∑ 𝐸(𝑉𝑂𝑡𝑙

)] / |𝑉𝑂𝑡|
|𝑉𝑂𝑡|

𝑙=1
𝑇
𝑗=1

|𝑚𝑢𝑙𝑡𝑖_𝑇𝐺(𝑉𝑂)|
  (4.33) 

 

where,  𝐸(𝑉𝑂𝑡𝑙
) is the energy equipped with 𝑙th virtual object of the 𝑡th task group and 

|𝑚𝑢𝑙𝑡𝑖_𝑇𝐺(𝑉𝑂)| is the number of objects that are virtual objects in more than one task 

groups. 𝑆 is expressed as maximization and the value at the denominator is minimized. 

 

The second part of  ℱ2 is energy efficiency (𝐸𝐹) with the goal of minimizing the total 

energy consumption for task allocation. This goal is conducted by selecting the virtual 

objects such that the energy consumption from the communication overhead for assigning 

tasks and receiving results at each task group is minimized. We formally define  𝐸𝐹 as: 

 

𝐸𝐹 =  

∑ ((∑ ∑ 𝐼𝑀_𝐸𝑇𝑋𝑙,𝑗
+

|𝑂𝑙𝑡
|

𝑗=1

|𝑉𝑂𝑡|
𝑙=1 𝐼𝑀_𝐸𝑅𝑋 + 𝐸𝑇𝑋𝑗,𝑙

+ 𝐸𝑅𝑋 + 𝐸𝐷𝐴) + ∑ 𝐸𝑇𝑋𝑙,𝐴𝑃

|𝑉𝑂𝑡|
𝑙=1 )𝑇

𝑡=1   (4.35) 

 

where, |𝑂𝑙𝑡
| is the number of objects connected to the 𝑙th virtual object of the 𝑡th task 

group and 𝐼𝑀_𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2
and 𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2

 are the energy expenditures for sending 

the indication and result messages from 𝑜𝑏𝑗𝑒𝑐𝑡1 to 𝑜𝑏𝑗𝑒𝑐𝑡2, respectively. 𝐼𝑀_𝐸𝑅𝑋 and 𝐸𝑅𝑋 
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determine the energy consumption for receiving IM by IoT objects and  the energy 

consumption for receiving data (or result) messages by virtual objects. 𝐸𝐷𝐴 is the energy 

dissipated for data aggregation.  

 

Then, by combining Equations (4.34) and (4.35), we can calculate 𝛷ℱ2
as follows: 

 

Φℱ2
= 𝑆/𝐸𝐹  (4.36) 

 

Variation operators and reduction selection: Variation operators are used to alter the task 

allocation solutions found in the population and explore new points of the search space. 

They include recombination and mutation operators. In recombination, a ratio of pairs of 

randomly selected parents (𝑃𝐶 × 
𝑁

2
, where 𝑃𝐶 is probability of recombination) undergo 2-

point multilevel cut and cross fill. For each pair of parents, the recombination is divided 

into 𝑇 levels, where 𝑇 is the number of sub-individuals as well as the number of task 

groups. At each level two cut points ,1 ≤  𝑐𝑝1, 𝑐𝑝2 ≤  𝑛 −  1, are randomly selected and 

then, each sub-individual of the participating parents is swapped at genes cp1 and −cp2. 

This operation is repeated at each level until all sub-individuals are subject to 2-point cut 

and cross fill. Formally, let 𝐼𝑟1
,𝐼𝑟2

 be a pair of parent individuals randomly selected from 

the range {1, . . . , 𝑁} of the population. Then, the following operation is repeated at each 

level ∀𝑗 ∈ (1, … , 𝑇): 

 

∀𝑘 ∈ (1, … , 𝑛) 

 

Ir1(j,k)
′ = (

Ir1(j,1), … , Ir1(j,cp1), Ir2(j,cp1+1),

… , Ir2(j,cp1−1), Ir1(j,cp2), … , Ir1(j,n)
)

Ir2(j,k)
′ = (

Ir2(j,1), … , Ir2(j,cp1), Ir1(j,cp1+1), …

, Ir1(j,cp1−1), Ir2(j,cp2), … , Ir2(j,n)
)

  (4.37) 

 

In mutation, a proportion  𝑃𝑀 × 𝑁 (where 𝑃𝑀 is probability of mutation) individuals in 

the population are mutated. When an individual 𝐼𝑟 is chosen for mutation, each gene at 

each sub-individual with an allele not equal to −1 is mutated with a mutation rate of 𝑚𝑟 by 

applying Bit Flop Mutation (BFM). In BFM, once a gene is chosen for mutation, its value 

is flipped from 1 to 0 and vice versa: 
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∀𝑘 ∈ (1, … , 𝑛) 

 

𝐼𝑟(𝑗,𝑘)
′ = {

𝐼𝑟(𝑗,𝑘)               𝑖𝑓  𝐼𝑟(𝑗,𝑘) = −1 𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 >  𝑚𝑟  

1 − 𝐼𝑟(𝑗,𝑘)       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
 (4.38) 

 

This operation is repeated for each sub-individual ∀𝑗 ∈ (1, … , 𝑇). 

 

Reduction selection is used to restrict the population size to 𝑁. In reduction selection phase 

of MOTAP, an elitism scheme based on non-domination and crowding distance concept is 

applied. Thus, the individuals with lower ranks of non-dominant fronts or with equal ranks 

(i.e., individuals belonging to the same front) but with greater crowding distances are 

selected to be transferred to the next generation. 

 

The termination criterion: The termination criterion in MOTAP is a pre-specified number 

of generations. In the last generation, the non-dominated solutions of the first front are 

introduced to the decision maker. These solutions represent a set of optimal trade-off 

solutions between the conflicting objectives of computation power and energy efficiency. 

 

The decision maker at this point is responsible of selecting the most appropriate individual 

to the network from the set of non-dominated solutions. Then, selected solution is decoded 

and transferred to the association phase where the clusters are constructed and the 

connections between virtual objects and non-virtual objects entities are established. 
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5. SIMULATION RESULTS AND DISCUSSION 

 

This chapter presents the experimental results of the proposed evolutionary task allocation 

protocols. In literature, there is no existing work for the problem of task allocation that 

considers the heterogeneous IoT network in terms of energy levels using the concept of 

task groups and virtual objects in an evolutionary algorithm framework. Hence, in the 

simulations, for the purpose of benchmarking our protocols, we compared our methods 

with the most relevant algorithm in the literature (CBATA) [8, 12]. For simulation 

purposes, CBATA is implemented from the scratch to test its energy consumption 

performance. The evaluations consider different performance measures related to the 

energy efficiency, duration of the stability and operational periods, computational power 

utilization and evolutionary algorithm quality. 

 

This chapter is mainly divided into two parts. The first part demonstrates the performance 

of the protocols that are developed within the framework of scenario #1. This part begins 

by investigating the performance of ETAP1 and ETAP2 in terms of energy efficiency, 

number of operational rounds, and the quality of the proposed evolutionary algorithm. 

Next, the simulations examine the effects of energy aware heuristics and evaluate the 

performance of SETAP1 and SETAP2 in terms of length of stability periods and average 

available energy in virtual objects. On the other hand, the second part investigates the 

performance of the protocols in the context of scenario #2. In order to evaluate MOTAP, 

STAP and M-CBATA, several evaluation metrics related to computational power 

optimization, energy efficiency, duration of the stability, and operational periods are used. 

Moreover, the quality of the EA that is used to develop STAP is measured by adopting 

convergence to optimal solution metric. Furthermore, in order to evaluate the quality of our 

multi-objective optimization algorithm that is used in MOTAP, additional measurements 

such as the diversity maintained in the non-dominate optimal set and the consistent 

convergence to the optimal solutions are considered. 

 

 

 

 

 



110 

 

5.1. Performance Analysis of Protocols in Context of Scenario #1 

 

This section expounds the performance of ETAP1, ETAP2, SETAP1, and SETAP2 against 

the most relevant work in exist literature (CBATA). The evaluation taking place 

considering different performance evaluation metrics related to the energy efficiency, 

duration of the stability and operational periods and evolutionary algorithm quality. Energy 

efficiency is measured by calculating the total dissipated energy in the network and the 

total dissipated energy in each task group. Additionally, in order to give a deeper insight, 

the execution of tasks is broken up into rounds and assumed the most extreme case where 

at each round all tasks are needed to be performed. Then, the number of rounds until the 

network or task groups become non-operational is depicted. The stability period in a task 

group is defined as the time interval before the death of the first virtual object in that task 

group. We evaluated the length of the stability periods of the proposed protocols by 

transferring task allocation process into rounds and obtaining the number of rounds till a 

virtual object explodes its energy in each task group. Finally, the quality of the proposed 

evolutionary algorithms is evaluated in terms of consistent convergence to the optimal 

solution. 

 

The next subsections begin by illustrating the simulation environment and the control 

parameters’ settings that used to obtain the experimental results. Then, the analysis results 

of ETAP1 and ETAP2 against CBATA are presented. Finally, the results of the stability 

aware protocols (i.e., SETA1 and SETAP2) are investigated. 

 

5.1.1. Simulation environment 

 

The simulation environment is designed adopting a custom simulator using MATLAB. 

MATLAB is a high-level language and interactive environment to analyze and design 

systems for solving different engineering and scientific problems [170, 171]. The custom 

designed simulator enables us to generate random network topologies, to execute the 

protocols on the generated topologies, to obtain the desired evaluation metrics, and to 

benchmark the outputs of the simulations. The communication links in this simulator are 

assumed to be bi-directional. Moreover, to maintain the poor radio conditions in most IoT 

applications, a retransmission mechanism that retransmits erroneous or lost packets up to 5 

times is applied. The simulations are executed under several bit error rates to evaluate the 
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effect of retransmission mechanism. It is observed that increasing the packet error rate by 

1% increases the total energy consumption 3,2% on average (See Table 5.1). However, 

only the worst-case scenario, which is the case when we have 10% packet error rate is 

given. We experimentally observed and selected this error rate as a severe network 

condition. 

 

Table 5.1. Average dissipated energy (in joules) in 5 test instances for 200 × 200 network 

scale, 250 object and 4 task groups and different packet error rates 

 

Packet Error Rate ETAP1 ETAP2 Packet Error Rate ETAP1 ETAP2 

0% 0,27934 0,59381 6% 0,33320 0,71314 

1% 0,28772 0,61221 7% 0,34352 0,73809 

2% 0,29750 0,63118 8% 0,35279 0,75580 

3% 0,30583 0,65011 9% 0,36125 0,77545 

4% 0,31500 0,66961 10% 0,36874 0,78384 

5% 0,32508 0,69237 - - - 

 

In the experiment, 𝑛 objects are randomly deployed in a square shaped area with the 

dimensions of 𝑀 × 𝑀 unit. This means that the horizontal and vertical coordinates of each 

object are randomly selected between zero and the maximum value of the dimension. The 

internet coverage in this area is provided by an access point 𝔸ℙ located at the center of the 

area. The network is capable of performing 𝑇 tasks. In the simulation it is assumed that 

each object can perform one task and a task number between [1, 𝑇] is randomly associated 

to each object. The simulation is mainly divided into three groups based on number of 

objects (𝑛), number of tasks in the network (𝑇) and the dimension of the area (𝑀). Unless 

otherwise stated, we suppose a default setting for these parameters (i.e., 𝑛 = 250, 𝑀 =

200, 𝑇 = 4) and then to get different simulation scenarios we vary value of one parameter 

while fixing values of other two parameters. For number of objects we vary the value of 𝑛 

from 200 to 600 objects with an incremental value of 50. In this way we generated 9 

different test instances. For number of tasks in the network, 𝑇 takes 5 different values (2; 4; 

6; 8 and 10). Finally, we changed the area dimensions to 7 different values from 100 to 250 

with an incremental value of 25. To insure fairness of simulations regarding the 

aforementioned randomness in objects’ coordinates, objects’ energy levels and the tasks 

are associated with each object. We generated 5 different network topologies for each 

simulation settings. Then, to maintain the probabilistic feature of the evolutionary task 
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allocation protocols each of these settings, are executed 5 times. Then, the average result of 

each network is obtained and the final results are calculated by averaging the results of the 

networks. Hence, the overall simulation tests a total of 525 random networks for each 

protocol. 

 

5.1.2. Network energy model 

 

Each object is randomly initialized with an energy value between [0,5;  2] Joules. For 

network energy model we adopted first-order radio model [166] with its default parameter 

settings. In this model the energy needed to run transceiver circuit is set to 𝐸𝑒𝑙𝑒𝑐 =

 50 nJ/bit. The energy expenditures in amplifier is 𝜀𝑎𝑚𝑝 = 100 pJ/bit/m2. The message 

size in our protocols is set to 4000 bits for data messages and 8 bits for indication 

messages. Another parameter also taken into account is the energy spent for data 

aggregation, which is set to 𝐸𝐷𝐴 = 5 nJ/bit. 

 

5.1.3. Parameters and rules settings in the evolutionary task allocation algorithms 

 

In the simulation, all routing protocols assume the following: 

 

 The central control station is aware of its location and these of the IoT objects.  

 The central control station and the IoT objects are stationary during the simulation.  

 The central control station is equipped with unlimited amount of energy. 

 

Other parameter settings that complete the characteristics of the evolutionary task 

allocation protocols are: binary tournament selection, two-point crossover with 0,6 

recombination probability ( 𝑝𝑐), bit flop mutation with Mutation probability (𝑝𝑚) = 0,03 

and mutation rate (𝑚𝑟) = 0,02, population reduction based on elitism selection and 

population size (𝑁) of 50 individuals allowed to evolve for 50 generations. Table 5,2 

summarizes the particular rules and control parameters that are used in the evolutionary 

algorithm. 
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Table 5.2. Parameters and rules used in the evolutionary algorithms of scenario #1 

 

Population size (𝑁) 50  

Stopping criteria Number of generations = 50 

Selection mechanism Binary Tournament selection (BTS)  

Recombination operator Two-point crossover 

Mutation operator Bit Flop Mutation (BFM) 

Recombination probability( 𝑝𝑐) 0,6  

Mutation probability(𝑝𝑚) 0,03 

Mutation rate (𝑚𝑟) 0,02 

Replacement policy Tournament selection based elitism 

 

5.1.4. Results of ETAP1 and ETAP2 

 

The next subsections evaluate ETAP1 and ETAP2 against CBATA considering different 

performance evaluation metrics related to the energy efficiency, duration of the operational 

period and evolutionary algorithm quality. 

 

Protocols evaluation for energy efficiency 

 

Tables 5.3 and 5.4 present the performance of ETAP1, ETAP2 against CBATA regarding 

to total dissipated energy in the network for task allocation. The results in Table 5.3 are 

obtained by varying network scale and setting number of objects and number of tasks that 

the network can perform to 250 objects and 4 tasks, respectively. In Table 5.4, the results 

are for network with 4 tasks, 200 × 200 unit side length and different objects densities. 

Moreover, the results in these tables are averaged over 5 test instances and the best results 

are shown in italic font. From these results it can be observed that both ETAP1 and ETAP2 

outperform CBATA. ETAP1 with its objective function that directly deals with energy 

consumption performs better than ETAP2. ETAP1directly tackles the problem of energy 

consumption in task allocation by minimizing the total energy needs for this operation. On 

the other hand, ETAP2 deals with the problem indirectly by forming the problem as 

function to distance and attempts to compose a good distribution of virtual objects within 

each task group. As can be expected, energy consumption increases when network scale 

increases or the number of object increases. However, the increase rate in ETAP1 and 

ETAP2 are much less than the increase rate in CBATA. For example in Table 5.3, one can 

see that, the energy dissipation in ETAP1 in the most extreme case in this scenario (when 
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network side length is 250) is less than the energy dissipation in CBATA in the most slight 

case (i.e., when network side length is 100) by 45,15 milijoule. The savings obtained in 

this simulation seem to be negligible; however, it should be noted that each object is 

equipped with an energy value between [0,5; 2] Joules. Also in this table, the average 

increment in energy consumption at each increment of 25 × 25 unit of network size is 

38,712 milijoule, 93,385 milijoule and 274,452 milijoule in ETAP1, ETAP2 and CBATA, 

respectively. The last two columns in the table summarize the gain percentage of ETAP1 

and ETAP2 over CBATA. 

 

Table 5.3. Average dissipated energy (in joules) in 5 test instances for different network 

scales 

 

Network 

Side Length 
ETAP1 ETAP2 CBATA 

ETAP1 

gain over 

CBATA 

ETAP2 gain 

over 

CBATA 

100 0,13647 0,22353 0,41389 67,02% 45,99% 

125 0,15889 0,27794 0,63432 74,95% 56,18% 

150 0,19032 0,34504 0,84772 77,54% 59,29% 

175 0,22679 0,43837 1,10410 79,45% 60,29% 

200 0,26496 0,65772 1,52680 82,64% 56,92% 

225 0,31443 0,66562 1,88100 83,28% 64,61% 

250 0,36874 0,78384 2,06060 82,10% 61,96% 

 

Table 5.4. Average dissipated energy (in joules) in 5 test instances for different object 

density settings 

 

Number of 

Objects 
ETAP1 ETAP2 CBATA 

ETAP1 

gain over 

CBATA 

ETAP2 

gain over 

CBATA 

200 0,22026 0,49525 1,0885 79,76% 54,50% 

250 0,26999 0,51884 1,5260 82,30% 66,00% 

300 0,30875 0,64170 1,8607 83,40% 65,51% 

350 0,34148 0,80132 1,8931 81,96% 57,67% 

400 0,38107 0,86787 2,3330 83,66% 62,80% 

450 0,41409 0,93076 2,5528 83,77% 63,53% 

500 0,44988 0,95843 2,6295 82,89% 63,55% 

550 0,48696 1,00990 2,9359 83,41% 65,60% 

600 0,52240 1,15840 3,8259 86,34% 69,72% 
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Another outcome that supports the previous results is presented in Table 5.5. This table 

illustrates protocols performance in terms of energy consumption in the network for task 

allocation for network dimension of 200 × 200 unit, 250 objects, and up to 10 tasks. In 

these results ETAP1 outperforms both CBATA and ETAP2. In turn ETAP2 performs 

better than CBATA. In ETAP1 and ETAP2 energy consumptions grow in parallel with 

increased number of tasks and fixed number of objects and network dimension. CBATA 

depicts an opposite behavior where energy consumption degrades when the number of 

tasks increases. Although this behavior has positive affect on energy consumption, it could 

be neglected considering the limited computational power of IoT objects which may be 

capable of performing several though limited number of tasks [3]. 

 

Table 5.5. Average dissipated energy (in joules) for 5 test instances for different number of 

tasks 

 

Number of 

Tasks 
ETAP1 ETAP2 CBATA 

ETAP1 

gain over 

CBATA 

ETAP2 

gain over 

CBATA 

2 0,21515 0,40125 1,4969 85,62% 73,19% 

4 0,26837 0,58609 1,3806 80,56% 57,54% 

6 0,29768 0,59308 1,3784 78,40% 56,97% 

8 0,32584 0,56590 1,4738 77,89% 61,60% 

10 0,34815 0,68737 1,3641 74,47% 49,61% 

 

Figures 5.1 and 5.2 qualitatively depict the performance of the protocols in terms of total 

dissipated energy in the network to allocate tasks to objects for different number of objects 

and different number of tasks, respectively. The results indicate that ETAP1 performs 

better than ETAP2 and CBATA; on the other hand, ETAP2 performs better than CBATA. 

Considering different evaluation metrics, as seen in Figure 5.1, increasing the number of 

objects from 200 to 600 increases energy dissipation by 0,30214; 0,66315 and 2,7374 in 

ETAP1, ETAP2 and CBATA, respectively. In these results the averages of increase ratios 

in energy consumption are 0,037768; 0,082894 and 0,342175 Joule for each of ETAP1, 

ETAP2 and CBATA. The increase ratio of CBATA (i.e., 0,342175 Joule) indicates a great 

disparity in the behavior of the protocol compared to both ETAP1 and ETAP2. One can 

attribute that to the behavior of CBATA which selects only one virtual object in each task 

group and replace it only when it depletes its energy. In contrast with that, both ETAP1 

and ETAP2 maintain a load balance and distribute the burden of task allocation among 
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good selected virtual objects in each task group. Another evaluation metric can be obtained 

from Figure 5.2. In this figure, the big gap in energy dissipation between both ETAP1 and 

ETAP2, and CBATA becomes more obvious. When the number of tasks is equal to 2, 

CBATA consumes 1.4969 Joule for task allocation. This value in ETAP2 is 0,40125 and 

0,21515 in ETAP2. Increasing the number of tasks to 6 increases the energy consumption 

to 1,3784; 0,59308 and 0,29768 Joule in CBATA, ETAP2 and ETAP1, respectively. The 

results show that ETAP1 makes the best score followed by ETAP2. 

 

 
 

Figure 5.1. Average dissipated energy in 5 test instances for different object density 

settings 
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Figure 5.2. Average dissipated energy in 5 test instances for different number of tasks 

 

For detailed view, Figure 5.3 and Tables 5.6, 5.7 and 5.8 investigate energy dissipation in 

each task group that resulted from task allocation. The results of Figure 5.3 are obtained in 

a network with 200 unit side length, 250 objects, and 6 task groups. On the other hand, the 

results in Tables 5.6, 5.7 and 5.8 are obtained with default setting of the network while 

varying number of network tasks, network dimensions, and number of objects respectively. 

In these tables the best results are indicated by italic font. The results are averaged over 5 

test instances with each executed 5 times.  It is worth to note that, the total energy in the 

network is distributed evenly among all task groups in the network in this scenario. It is 

clear that ETAP1 evenly selects the virtual objects in the network as a result energy 

expenditures are evenly distributed among objects of the network in different task groups. 

This situation is different in CBATA. Thus, there are big differences among energy 

consumptions of different task groups. In ETAP2 this situation is less severe. For example 

in Figure 5.3 and Table 5.6 only task group 3 and task group 5 consume more energy 

compared to other task groups. Quantitatively (also from Figure 5.3 and Table 5.6), the 

energy differences between one task group and another are 0,00234; 0,02008 and 0,0571 

for ETAP1, ETAP2, and CBATA, respectively.  
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Figure 5.3. Average dissipated energy in each task group for 5 test instances with network 

dimension = 200 ×200, object density = 250 and number of tasks = 6 

 

Table 5.6. Average dissipated energy in each task group for 5 test instances with network 

dimension = 200 ×200, object density = 250 and number of tasks = 6 

 

Task Group ETAP1 ETAP2 CBATA 

1 0,0511 0,0953 0,1867 

2 0,0500 0,0940 0,2561 

3 0,0464 0,1245 0,2171 

4 0,0514 0,0865 0,2670 

5 0,0495 0,1033 0,1971 

6 0,0494 0,0895 0,2544 
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Table 5.7. Average dissipated energy in each task group for 5 test instances with object 

density = 250, number of tasks = 4 and different network dimensions 

 

Network 

Dimension 

ETAP1 ETAP2 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

100 × 100 0,0337 0,0338 0,0346 0.0344 0,0529 0,0498 0,0649 0,0559 

125 × 125 0,0423 0,0377 0,0406 0.0382 0,0524 0,0683 0,0815 0,0757 

150 × 150 0,0462 0,0477 0,0494 0.0470 0,0764 0,1067 0,0661 0,0958 

175 × 175 0,0596 0,0554 0,0531 0.0587 0,1062 0,1052 0,0957 0,1312 

200 × 200 0,0700 0,0653 0,0622 0.0675 0,1272 0,1878 0,2008 0,1420 

225 × 225 0,0763 0,0809 0,0765 0.0807 0,1735 0,2009 0,1273 0,1640 

250 × 250 0,0869 0,0962 0,0921 0.0935 0,1827 0,1998 0,1806 02207 

Network  

Dimension 

CBATA 

TG1 TG2 TG3 TG4 

100 × 100 0,1110 0,0848 0,1125 0,1056 

125 × 125 0,1724 0,1788 0,1409 0,1422 

150 × 150 0,2061 0,2236 0,1908 0,2273 

175 × 175 0,2900 0,3013 0,1896 0,3232 

200 × 200 0,4175 0,4004 0,3613 0,3476 

225 × 225 0,4204 0,4188 0,5419 0,4998 

250 × 250 0,4428 0,4440 0,5364 0,6374 
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Table 5.8. Average dissipated energy in each task group for 5 test instances with network 

dimension = 200 ×200, number of tasks = 4 and different object density 

 

Number of 

Objects 

ETAP1 ETAP2 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

200 0,0499 0,0553 0,0603 0,0547 0,1616 0,1091 0,1026 0,1220 

250 0,0680 0,0666 0,0688 0,0665 0,1373 0,1224 0,1346 0,1245 

300 0,0755 0,0758 0,0806 0,0769 0,1560 0,1695 0,1447 0,1715 

350 0,0878 0,0854 0,0844 0,0839 0,1498 0,2501 0,2392 0,1621 

400 0,0980 0,0933 0,0951 0,0946 0,1507 0,2406 0,2456 0,2309 

450 0,1016 0,1016 0,1037 0,1072 0,1864 0,2529 0,1999 0,2915 

500 0,1124 0,1148 0,1109 0,1117 0,2310 0,2146 0,2735 0,2393 

550 0,1236 0,1166 0,1230 0,1238 0,2310 0,2806 0,1847 0,3137 

600 0,1369 0,1288 0,1259 0,1308 0,3928 0,2004 0,2780 0,2871 

Number of 

Objects 

CBATA 

TG1 TG2 TG3 TG4 

200 0,2591 0,2666 0,2663 0,2966 

250 0,4556 0,3673 0,3597 0,3434 

300 0,3826 0,5124 0,4555 0,5102 

350 0,5020 0,4574 0,5100 0,4237 

400 0,6090 0,5165 0,5186 0,6890 

450 0,6642 0,4494 0,7457 0,6935 

500 0,5128 0,6865 0,6528 0,7774 

550 0,8354 0,6547 0,7551 0,6907 

600 0,8178 0,9885 0,8573 1,1623 

 

Protocols evaluation for duration of the operational period 

 

In order to give a deeper insight of the performance of the protocols, Figures 5.4 and 5.5 

breaks the execution of tasks into rounds and depicts the most extreme case that all tasks 

are needed to be performed at each round assuming a continuous and a uniform arrival of 

tasks. Figure 5.4 and Figure5.5 show the number of rounds until each task group become 

non-operational (i.e., all its virtual objects deplete their energies) for scenarios that object’s 

densities are 250 and 500, respectively. In both scenarios and in all task groups the longer 

operational time (i.e., the largest number of rounds) is achieved by ETAP1 followed by 

ETAP2 whereas CBATA becomes at the last rank. The reason is that both ETAP1 and 

ETAP2 with their main goal of minimizing energy consumption maintain a load balance 

and distribute the burden of task allocation among good selected virtual objects in each 

task group. Thus, when one virtual object in a task group depletes its energy the set of rest 
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virtual objects take the duty of keeping the operation continuity of that task group. On the 

other hand, CBATA selects only one virtual object in each task group. This lead to faster 

depletion of a virtual object’s energy and thus shorter operational period. In Figures 5.4, 

the average numbers of rounds of all task groups are 1848,05; 339,45 and 66 for ETAP1, 

ETAP2 and CBATA. In Figures 5.5, the values are 1086,25; 216,05 and 40,8. In both 

scenarios the huge superiority of ETAP1 over both ETAP2 and CBATA is very obvious.  

 

 

 
Figure 5.4. Average number of rounds until each task group becomes non-operational for 

objects density = 250 
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Figure 5.5. Average number of rounds until each task group becomes non-operational for 

objects density = 500 

 

Protocols evaluation for evolutionary algorithm quality 

 

For the sake of demonstrating the quality of the proposed evolutionary algorithms, the 

convergence to optimal solution metric is employed. This evaluation metric states that, 

solutions must evolve and converge to an optimal solution in an organized manner 

throughout the process of evolutionary algorithm loop [151]. In this context, Figures 5.6 

and 5.7 visualizes quality of the proposed evolutionary algorithms regarding to 

convergence metric Figure 5.6 shows the best solution in each generation as well as in 

initial population in terms of fitness values for ETAP1. Figure 5.7 depicts the same results 

for ETAP2. The results are averaged over 5 test instances with default parameter settings. 

From the results, one can see that both ETAP1 and ETAP2 provide high-quality solutions 

that evolve orderly at each generation towards optimal solution. 
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Figure 5.6. Convergence of ETAP1 toward optimal solution for 50 generations + 

initialization phase 

 

 
 

Figure 5.7. Convergence of ETAP2 toward optimal solution for 50 generations + 

initialization phase 
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5.1.5. Results of SETAP1 and SETAP2 (The effect of energy aware heuristic on 

ETAP1 and ETAP2) 

 

The goal of the heuristics injected to ETAP1 and ETAP2 insure that only the objects with 

energy levels greater than average energy level in each task group are allowed to be virtual 

objects. These heuristics increase the mean value of energy of the virtual objects in each 

task group. Table 5.9 supports this claim. This table presents the mean value of virtual 

object energies for each task group. In this simulation the results are calculated in each 

case for 5 simulation settings with network dimension =200 × 200, the number of objects 

= 250 and the number of tasks = 8. Then, each simulation setting is executed 5 times and 

the results are averaged over execution results and the best results are shown in italic font. 

Table 5.9 reports that the mean values of virtual object energies in SETAP1 and SETAP2 

are greater than other protocols. The table also reports that the heuristics injected to 

ETAP1 and ETAP2 are succeed in raising energy levels of virtual objects. It is worth to 

note that in some task groups (e.g., task group 3 and 5) the mean values of virtual objects 

energies in CBATA are greater than the values in ETAP1 and ETAP2. However, ETAP1 

and ETAP2 with their less energy consumptions (as shown in Table 5.6) success in 

achieving better energy efficiency. The last two columns in the table summarize the gain 

percentage of ETAP1 and ETAP2 over CBATA. 

 

Table 5.9. The mean value of virtual objects energies (in joules) for 8 task groups 

 

Task  

Group 
SETAP1 SETAP2 ETAP1 ETAP2 CBATA 

SETAP1 

gain over  

CBATA 

SETAP2  

gain over  

CBATA 

1 1,6442 1,4930 1,2384 1,2963 1,0595 35,56% 29,03% 

2 1,6618 1,7226 1,3788 1,2644 1,1089 33,27% 35,62% 

3 1,5469 1,5654 1,2546 1,2831 1,3547 12,42% 13,45% 

4 1,5789 1,6022 1,2442 1,1101 1,0612 32,78% 33,76% 

5 1,5193 1,4717 1,1890 1,1456 1,3836 08,93% 05,98% 

6 1,6364 1,6655 1,3353 1,2912 0,7998 51,12% 51,97% 

7 1,6433 1,6462 1,3069 1,0990 1,1134 32,24% 32,36% 

8 1,6002 1,6689 1,1974 1,0742 0,8924 44,23% 46,52% 

 

Figure 5.8 and Figure 5.9 depicts the performance of the protocols in terms of stability 

periods. In these figures the execution of the protocols are break up into rounds supposing 

that all tasks are needed to be performed at each round in a continuous and a uniform 
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manner. The results are obtained for the scenarios of object’s density = 250 (Figure 5.8) 

and object’s density = 500 (Figure 5.9) to show the number of rounds until each task group 

becomes unstable (i.e., until a virtual object within a task group depletes its energy). In 

both Figures, it is clear that SETAP1 achieves longer stability periods in all task groups 

compared to other protocols. On the other hand, SETAP2 with its injected heuristics 

competes with ETAP1 and outperforms its unmodified version (ETAP2) as well as 

CBATA. 

 

 
 

Figure 5.8. Number of rounds until each task group becomes unstable for network with 

objects density = 250 
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Figure 5.9. Number of rounds until each task group becomes unstable for network with 

objects density = 500 

 

As it has been shown in Figures 5.8 and 5.9, SETAP1 and SETAP2 perform better than 

their unmodified versions (i.e., ETAP1 and ETAP2) in terms of extending the length of 

stability periods. However, to give a detailed view of the effect of injected heuristics in 

term of energy efficiency, Tables 5.10, 5.11 and 5.12 report the result of SETAP1 and 

SETAP2 in terms of dissipated energy in the network for different network scales, different 

number of objects, and different number of tasks, respectively.  For completeness we 

attached the results of ETAP1 and ETAP2 from Tables 5.3, 5.4 and 5.5 with the 

corresponding Tables of 5.10, 5.11 and 5.12. It is clear that although the heuristics 

succeeded in providing longer stability periods they negatively affected the performance of 

the protocols in terms of total dissipated energy in the network. Realizing this fact, the 

motivations of ETAP1 and ETAP2 in one hand and the motivations of SETAP1and 

SETAP2 in another hand for different application categories become more convenient.   
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Table 5.10. Average dissipated energy (in joules) in 5 test instances for different network 

scales in a single round 

 

Network 

Side Length 
SETAP1 ETAP1 SETAP2 ETAP2 

100 0,14023 0,13647 0,22515 0,22353 

125 0,16656 0,15889 0,28501 0,27794 

150 0,19374 0,19032 0,34584 0,34504 

175 0,23135 0,22679 0,43974 0,43837 

200 0,28048 0,26496 0,65902 0,65772 

225 0,32169 0,31443 0,66559 0,66562 

250 0,37376 0,36874 0,80028 0,78384 

 

Table 5.11. Average dissipated energy (in joules) in 5 test instances for different number of 

objects in a single round 

 

Number of 

Objects 
SETAP1 ETAP1 SETAP2 ETAP2 

200 0,23055 0,22026 0,49939 0,49525 

250 0,27613 0,26999 0,57787 0,51884 

300 0,30963 0,30875 0,64980 0,64170 

350 0,35412 0,34148 0,79989 0,80132 

400 0,39349 0,38107 0,89376 0,86787 

450 0,42281 0,41409 0,93579 0,93076 

500 0,44989 0,44988 0,96525 0,95843 

550 0,48923 0,48696 1,01431 1,00990 

600 0,52764 0,52240 1,16562 1,15840 

 

Table 5.12. Average dissipated energy (in joules) in 5 test instances for different number of 

tasks in a single round 

 

Number of 

Tasks 
SETAP1 ETAP1 SETAP2 ETAP2 

2 0,21984 0,21515 0,42857 0,40125 

4 0,27690 0,26837 0,61775 0,58609 

6 0,32231 0,29768 0,66596 0,59308 

8 0,34534 0,32584 0,61710 0,56590 

10 0,38426 0,34815 0,68931 0,68737 
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5.2. Performance Analysis of Protocols in Context of Scenario #2 

 

This subsection presents the simulation results of MOTAP and STAP comparing their 

performance against the most relevant algorithm in the literature, CBATA [8, 12] and the 

improved version of CBATA, M-CBATA. In comparisons several evaluation metrics 

related to computational power optimization, energy efficiency, duration of the stability 

and operational periods, and quality of the evolutionary algorithm are used. Moreover, in 

order to evaluate the quality of the proposed multi-objective optimization algorithm, 

additional measurements such as the diversity maintained in the non-dominate optimal set 

and the consistent convergence to the optimal solutions are considered. 

 

In the following subsections the simulations tools and environment that are used to obtain 

the results are illustrated. Then, the parameter settings for network energy model and the 

evolutionary algorithm are defined. Finally, the evaluation results and discussions of 

MOTAP, STAP, M-CBATA and CBATA are investigated by presenting the results of 

simulations obtained by MATLAB simulator and then those obtained by OMNeT++ 

simulator. 

 

5.2.1. Simulation environment 

 

In the simulations, we developed a custom designed simulation environment in MATLAB 

[170, 171] to compute theoretical simulation results. For more complex and realistic 

application layer simulations, we used the network simulation framework OMNeT++ 

[172]. Both MATLAB and OMNeT++ results verify each other. In the simulations, a bi-

directional communication links and 10% packet error rate are assumed. In case of a link 

failure, up to 5 times retransmission mechanism is implemented. 

 

As the inputs to our simulators, 5 random network topologies are generated. In each 

network topology, 𝑛 objects are randomly deployed in an M × M unit area and the internet 

coverage for these objects is provided by an access point 𝔸ℙ located at the center of the 

area. Each object is equipped with an energy resource and its level is randomly selected in 

the range [0,5; 2] joule. Moreover, each object is attached with a processing unit of a clock 

speed value that is randomly chosen between 16 and 322 MHz. Here, the assumed 16 

MHz and 322 MHz are the processing unit frequency of Arduino YÚN microcontroller 
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[173] and MIPS M5100 Core Processor [174], respectively. Both Arduino YÚN and MIPS 

M51xx Core Processor family are ideal for wide range of IoT, M2M, wearable, and other 

embedded and real-time applications [173, 174]. Finally, it is assumed that each object is 

assumed to be capable of performing up to T tasks with each task ID randomly selected 

from range of [1,T]. 

 

Our simulation scenarios are mainly divided into three groups according to dimension of 

the area (𝑀), objects density (𝑛), and number of tasks that the network is capable of 

performing (𝑇). Unless otherwise stated, the default settings for the simulations are 𝑛 =

 200, 𝑀 =  200 unit, and 𝑇 =  4. In order to generate different simulation scenarios the 

value of each parameter is varied while fixing values of other two parameters. In order to 

maintain the probabilistic feature of the evolutionary algorithms, each of the 5 network 

topologies is execute 5 times and the average result for each topology is obtained over 

these executions. Then, the final result for each setting is calculated by averaging the 

results of the networks. The network side length, 𝑀 takes 7 different values starting with 

100 up to 250 with an incremental value of 25. The number of objects in the network (n) 

takes 8 different values (50; 100; 150; 200; 250; 300; 350; and 400). Finally, the value of 

the number of tasks that the network could perform is changed to 5 different values from 2 

to 10 with incremental value of 2. Overall, the simulation performs 500 tests for each 

protocol. 

 

5.2.2. Parameters and rules settings for network energy model and the evolutionary 

task allocation algorithms 

 

The network energy model parameters take values identical to the values in Section 5.1.2. 

Table 5.13 lists the energy model parameters. 

 

Table 5.13. Network energy model parameters settings 

 

Energy for transceiver circuit ( 𝐸𝑒𝑙𝑒𝑐) 50 nJ/bit 

Energy for amplifier (𝜀𝑎𝑚𝑝) 100 pJ/bit/m2 

Energy for data aggregation ( 𝐸𝐷𝐴) 5 nJ/bit 

Data message size 4000 bit 

Indication message size 8 bit 
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In the simulation, the CCS is assumed to be aware of its location and those of the IoT 

objects. Moreover, the CCS is supposed to be equipped with unlimited amount of energy. 

Finally, both CCS and the IoT objects are supposed to be stationary during the simulation. 

 

The parameters’ settings of evolutionary algorithm used in STAP are similar to those listed 

in Table 5.2 with only difference in number of generations. In STAP the population is 

allowed to evolve for 100 generations. On the other hand, the particular rules and control 

parameters settings that used to complete the characteristics of MOTAP are: non-

domination and crowding distance concept based selection, two-point multilevel crossover 

with 0,6 recombination probability ( 𝑝𝑐), bit flop mutation with mutation probability (𝑝𝑚) 

= 0,03 and Mutation rate (𝑚𝑟) = 0,02, population reduction that adopts elitism scheme 

based on non-domination and crowding distance concept and population size (𝑁) of 50 

individuals allowed to evolve for 100 generations. Table 5.14 summarizes the particular 

rules and parameters’ settings of MOTAP. 

 

Table 5.14. MOTAP parameters and rules 

 

Population size (𝑁) 50 

Termination criteria Number of generations = 100 

Recombination operator 2-point multilevel cut and cross fill 

Mutation operator Bit Flop Mutation (BFM) 

Recombination probability ( 𝑝𝑐) 0.6 

Mutation probability (𝑝𝑚) 0.03 

Mutation rate (𝑚𝑟) 0.02 

Reduction selection 

Elitism scheme based on non-

domination and crowding distance 

concept 

 

5.2.3. Results of simulation (by MATLAB simulator) 

 

The next subsections evaluate the performance of STAP, MOTAP and M-CBATA against 

CBATA within the platform of MATLAB simulator. The evaluation considers several 

metrics in context of energy efficiency, duration of the stability and operational periods, 

computational power optimization, quality of the evolutionary algorithm, and computation 

time. 
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Protocols evaluation for energy efficiency 

 

Tables 5.15, 5.16 and 5.17 illustrate the performance of the protocols from the perspective 

of total energy consumed in the network to allocate tasks to the objects and retrieve the 

results. The results in Tables 5.15, 5.16 and 5.17 are obtained under the default simulation 

setting values with varying network dimensions, number of objects and number of 

networks tasks for the tables respectively. In these tables the best results are indicated by 

italic font. From the results it is clear that both STAP and MOTAP exhibit comparable 

performance and the best results are exchange between them.  Moreover, both (i.e., STAP 

and MOTAP) outperform CBATA and its modified version M-CBATA. Thus, STAP and 

MOTAP consume less energy for task allocation compared to CBATA and M-CBATA. 

STAP with its objective function in Equation 4.28 and MOTAP with its second objective 

in Equation 4.36 are very successful in minimizing the total energy that is dissipated in the 

network for the operation of task allocation. Another observation from the results is that 

both CBATA and M-CBATA are generally equal at their performance. The reason is that 

both algorithms form the selection of virtual objects in a blind manner regarding to energy 

consumptions. The main advantage of M-CBATA over CBATA is that it selects different 

virtual objects for each task group by distributing the load of being virtual object and 

extends the operational and stability periods. 

 

Table 5.15. Average dissipated energy (in joules) in 5 test instances for different network 

scales 

 

Network 

Side Length 
STAP MOTAP M-CBATA CBATA 

100 0,28115 0,301468 0,91704 0,94636 

125 0,32667 0,339224 1,18560 1,26910 

150 0,37996 0,392548 1,70760 1,66090 

175 0,44361 0,445192 2,17110 1,89030 

200 0,54295 0,523368 2,89860 3,14310 

225 0,62468 0,629360 3,92000 3,92200 

250 0,80566 0,701096 4,36240 4,28320 
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Table 5.16. Average dissipated energy (in joules) in 5 test instances for different object 

density settings 

 

Number of 

Objects 
STAP MOTAP M-CBATA CBATA 

50 0,25015 0,19262 0,80095 0,66806 

100 0,32248 0,32029 1,29830 1,58540 

150 0,43639 0,42126 2,34400 1,76020 

200 0,53060 0,52460 2,91530 2,76400 

250 0,64588 0,62822 3,51570 3,55150 

300 0,70987 0,72843 4,46310 4,70110 

350 0,79829 0,80395 5,03240 4,69960 

400 0,87933 0,90029 5,45800 5,88720 

 

Table 5.17. Average dissipated energy (in joules) for 5 test instances for different number 

of tasks 

 

Number of 

Tasks 
STAP MOTAP M-CBATA CBATA 

2 0,28596 0,28219 1,48160 1,99890 

4 0,52582 0,52658 2,63270 2,61580 

6 0,89300 0,86055 3,70190 3,77790 

8 1,42970 1,35360 5,35640 5,99170 

10 2,16930 1,89750 6,33310 5,54200 

 

Another considerable evaluation metric is scalability. It is obvious from results in Tables 

5.15, 5.16 and 5.17 that both STAP and MOTAP handle the scalability in a more efficient 

manner than M-CBATA and CBATA. For example, in Table 5.15 increasing the 

dimension of the network from 100 × 100 unit to 250 × 250 unit increases the energy 

consumption in STAP by 0,52451 joule and in MOTAP by 0,399628 joule. This value 

dramatically increases in M-CBATA and CBATA to 3,44536 and 3,33684 joules, 

respectively. Another example is captured from Table 5.16. In this table increasing the 

number of objects by 350 objects magnifies energy consumption by 0,62918 joule in STAP 

and by 0,399628 joule in MOTAP. Whereas, the energy spent magnification in M-CBATA 

is 3,44536 joule and in CBATA is 3,33684 joule. This can be attributed to behavior of 

STAP and MOTAP which degrade the energy load on each task group by selecting several 

virtual objects for each task group. On the other hand, regardless of the number of objects, 

M-CBATA and CBATA select one virtual object for each task group. This behavior of M-

CBATA and CBATA magnifies the energy load in each task group.  
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The results in Figures 5.10, 5.11 and 5.12 qualitatively supports the previous observations. 

The figures visualize the results in Tables 5.15, 5.16 and 5.17 respectively. It is clear from 

Figure 5.10 and Figure 5. 11, increasing the density of the objects, the dimension of 

network or the tasks that the network is capable of performing increase the energy 

consumption of the network in an uniform manner. 

 

 
 

Figure 5.10. Average dissipated energy in 5 test instances for different network dimensions 
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Figure 5.11. Average dissipated energy in 5 test instances for different number of objects 

 

 
 

Figure 5.12. Average dissipated energy in 5 test instances for different number of tasks 

 

A detailed view on energy dissipation in each task group is presented in Figure 5.13 and 

Table 5.18. In these results, the network side length is 200 units, the number of objects is 



135 

 

200, and the number of tasks is six. Moreover, the best results in Table 5.18 are indicated 

by italic font. The results clearly align with the previous results. 

 

 
 

Figure 5.13. Average dissipated energy in each task group 

 

Table 5.18. Average dissipated energy (in joules) for 5 test instances in each task group 

 

Task Group# STAP MOTAP M-CBATA CBATA 

1 0,15851 0,14495 0,59535 0,62550 

2 0,14111 0,14814 0,62389 0,60718 

3 0,12807 0,14005 0,64606 0,62173 

4 0,16863 0,15092 0,68090 0,64204 

5 0,13412 0,14649 0,66332 0,64438 

6 0,14468 0,14184 0,49240 0,63707 

 

Protocols evaluation for operational and stability periods 

 

The length of the operational and stability periods is directly determined by the amount of 

energy and by the energy efficiency of virtual objects. Greater amount of energy coupled 

with optimal use of the virtual objects’ available energy lead to extension in both 

operational and stability periods. Tables 5.19, 5.20, and 5.21 and their qualitative 
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representations in Figures 5.14, 5.15, and 5.16 depicts the average energy consumption of 

virtual objects with networks default settings and different network dimensions, different 

numbers of objects, and different number of networks tasks, respectively. The best results 

in Tables 5.19, 5.20, and 5.21 are specified by italic font. 

 

Table 5.19. Average dissipated energy of virtual objects (in joules) for different network 

scales 

 

Network 

Side Length 
STAP MOTAP M-CBATA CBATA 

100 0,0023014 0,0044194 0,028795 0,042191 

125 0,0026217 0,0043884 0,029080 0,070841 

150 0,0030248 0,0047299 0,029503 0,047350 

175 0,0034822 0,0050028 0,030014 0,105300 

200 0,0041447 0,0056077 0,031352 0,084352 

225 0,0043909 0,0063564 0,033352 0,051141 

250 0,0049590 0,0069147 0,033868 0,066381 

 

Table 5.20. Average dissipated energy of virtual objects (in joules) for different object 

density settings 

 

Number of 

Objects 
STAP MOTAP M-CBATA CBATA 

50 0,0034104 0,0039320 0,010541 0,022122 

100 0,0035954 0,0046025 0,016913 0,037430 

150 0,0037572 0,0052908 0,024930 0,058994 

200 0,0039846 0,0055409 0,031903 0,068875 

250 0,0042673 0,0063651 0,039015 0,140560 

300 0,0044266 0,0062358 0,046221 0,163070 

350 0,0045405 0,0067405 0,053408 0,167610 

400 0,0047949 0,0066480 0,060386 0,170330 

 

Table 5.21. Average dissipated energy of virtual objects (in joules) for different number of 

tasks 

 

Number of 

Tasks 
STAP MOTAP M-CBATA CBATA 

2 0,0029236 0,0054821 0,036027 0,054051 

4 0,0038314 0,0055912 0,030888 0,058851 

6 0,0052032 0,0065012 0,028655 0,074666 

8 0,0060637 0,0071712 0,028824 0,102160 

10 0,0074432 0,0083327 0,027983 0,112120 
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Figure 5.14. Average dissipated energy of virtual objects for different network dimensions 

 

 
 

Figure 5.15. Average dissipated energy of virtual objects for different number of objects 
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Figure 5.16. Average dissipated energy of virtual objects for different number of tasks 

 

It is obvious from the results in Tables 5.19, 5.20, and 5.21 and Figures 5.14, 5.15, and 

5.16 that STAP and MOTAP significantly perform better that both M-CBATA and 

CBATA. Also it is clear that STAP slightly outperforms MOTAP. The reason is that STAP 

is a single objective EA that has one goal of minimizing energy consumption of task 

allocation and optimizing the energy efficiency of virtual objects. On the other hand, 

MOTAP is MOEA that has two conflicted objectives of optimizing the energy efficiency 

of task allocation and utilizing the operational power of virtual objects. In MOTAP, none 

of these objectives can further optimize without deteriorating the other objectives.   

 

Another observation from these results is the advantage of the M-CBATA over CBATA. 

In CBATA there is big opportunity for an object to serve as virtual object at several task 

groups. This behavior magnifies energy spent of virtual objects. In contrast, in M-CBATA 

it is more likely for objects to be virtual objects in reduced number of task groups 

compared to CBATA regardless of the number of tasks that the object is capable of 

performing. This behavior minimizes the work load on individual virtual objects and 

results in reduced energy consumption. This observation becomes very clear in Table 5.21 

and Figure 5.17. Thus, increasing number of tasks at the same number of objects increases 

the number of tasks groups. This for CBATA means that an object could be serving within 
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larger number of task groups. Whereas in M-CBATA, since there is only one virtual object 

in each task group increasing number of virtual objects increases the number of clusters in 

the network which in turn means fewer number of objects at each task group that the 

virtual objects have to serve. 

 

One of the primary goals of STAP is selecting virtual objects with leveraged energy levels. 

This goal yields by the energy aware heuristic that are injected in mutation and population 

initialization phase. As can be seen from Figure 5.17 and Table 5.22 this goal is efficiently 

satisfied. The results show the energy of virtual objects in each task group for number of 

tasks = 6. In Table 5.22 the best results are indicated by italic font. STAP by selecting 

virtual objects with higher residual energy outperforms other rival protocols. 

 

 
 

Figure 5.17. Average energy of virtual objects in each task group for number of objects = 

200, network dimensions = 200 ×200 unit and number of tasks = 6 

 

 

 

 

 



140 

 

Table 5.22. Average energy of virtual objects (in joules) in each task group for number of 

objects = 200, network dimensions = 200 ×200 unit and number of tasks = 6 

 

Task Group# STAP MOTAP M-CBATA CBATA 

1 1,6635 1,4331 1,4581 1,4166 

2 1,6399 1,4317 1,2898 1,4290 

3 1,6173 1,4996 1,1409 1,2679 

4 1,6436 1,4816 1,2244 1,4178 

5 1,6141 1,4725 1,3113 1,4079 

6 1,6564 1,3775 1,2413 1,3245 

 

The results in Tables 5.23 and 5.24 and Figures 5.18 and 4.19 are obtained by breaking the 

execution of tasks into rounds and assuming the most extreme scenario where queries for 

execution of all tasks are arrive in a continuous and a uniform manner at each round. Table 

5.23 and Figure 5.18 depict the average length of the operational periods of each task 

group. Whereas, Table 5.24 and Figure 5.19 show the average length of stability period of 

each task group. The results in Tables 5.23 and 5.24 are captured for networks of 200 ×

200 unit dimension, 4 tasks and different number of objectives. On the other hand, Figures 

5.18 and 4.19 are obtained for the default setting network. The results come in align with 

the previous results and as can be seen STAP yields better performance in terms of 

stability and operational periods compared to other protocols. MOTAP with its energy 

efficient objective function comes at the second rank. On the other hand, M-CBATA with 

its modifications that minimize the work load on individual virtual objects and results in 

reduced energy consumption outperforms CBATA. It is worth to note that, in M-CBATA 

and CBATA operational and stability periods are identical since they select one virtual 

object at each task group. 

 

 

 

 

 

 

 

 

 



141 

 

Table 5.23. Average number of rounds until each task group becomes non-operational for 

different object density 

 

Number of 

Objects 

STAP MOTAP 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

50 601,80 738,40 562,00 1558,2 553,6 890,6 972,0 632,6 

100 1161,6 928,00 1194,2 1037,8 928,8 654,0 791,2 661,8 

150 924,00 1527,6 1488,4 955,8 600,2 598,6 652,4 515,2 

200 1189,8 1998,8 1584,8 1884,6 601,4 840,2 597,6 689,8 

250 1955,6 1312,4 996,00 1617,4 486,6 605,0 519,4 388,4 

300 1361,4 1308,0 1315,6 1656,8 643,6 477,8 354,4 706,4 

350 1290,4 1321,6 1344.0 766,60 650,2 443,0 564,6 429,8 

400 902,40 1404,0 1707,4 1333,4 546,4 554,0 922,6 466,8 

Number of 

Objects 

M-CBATA CBATA 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

50 93,4 174,2 127,2 121,8 70,0 51,8 79,2 34,6 

100 70,8 51,60 79,20 71,40 55,0 34,2 35,0 48,0 

150 43,4 47,60 53,80 53,40 31,4 24,0 32,0 25,0 

200 43,6 47,80 29,80 45,40 25,2 13,6 23,0 11,4 

250 33,8 29,00 32,80 38,80 8,40 8,20 16,0 7,80 

300 26,8 28,60 26,80 25,00 8,20 7,40 7,40 7,60 

350 16,0 23,20 22,60 33,20 13,8 10,6 8,80 16,4 

400 23,0 21,80 21,60 20,20 8,60 10,0 12,0 7,40 

 

 
 

Figure 5.18. Average number of rounds until each task group becomes non-operational 
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Table 5.24. Average number of rounds until each task group becomes unstable for different 

object density 

 

Number of 

Objects 

STAP MOTAP 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

50 293,0 343,2 312,4 438,6 198,2 195,8 205,4 247,4 

100 308,4 226,4 291,0 250,6 183,4 181,0 144,6 192,0 

150 237,4 221,6 272,6 224,4 187,0 158,6 154,0 162,8 

200 229,2 221,2 227,8 208,4 118,6 109,0 169,8 107,6 

250 191,2 197,2 207,2 207,8 123,2 129,0 108,0 136,4 

300 194,4 192,8 186,4 161,8 106,0 151,4 100,4 97,00 

350 189,0 185,8 177,8 193,6 105,4 91,60 122,8 77,40 

400 190,4 171,8 166,4 167,2 74,60 91,40 108,8 95,60 

Number of 

Objects 

M-CBATA CBATA 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

50 93,4 174,2 127,2 121,8 70,0 51,8 79,2 34,6 

100 70,8 51,60 79,20 71,40 55,0 34,2 35,0 48,0 

150 43,4 47,60 53,80 53,40 31,4 24,0 32,0 25,0 

200 43,6 47,80 29,80 45,40 25,2 13,6 23,0 11,4 

250 33,8 29,00 32,80 38,80 8,40 8,20 16,0 7,80 

300 26,8 28,60 26,80 25,00 8.20 7,40 7,40 7,60 

350 16,0 23,20 22,60 33,20 13,8 10,6 8,80 16,4 

400 23,0 21,80 21,60 20,20 8,60 10,0 12,0 7,40 

 

 
 

Figure 5.19. Average number of rounds until each task group becomes unstable 
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Protocols evaluation for computational power 

 

MOTAP considers the fact that virtual objects are the basic units of operations and 

attempts to select objects with high processing unit capacities as virtual objects. Table 5.25 

and Figure 5.20 illustrate the mean value of the processing units’ frequencies for the virtual 

objects at each task group when the number of tasks is six. The best results in Table 5.25 

are in italic font. MOTAP with its first objective function in Equation 4.31 succeeds at 

increasing the mean value of proceeding power of virtual objects compared to STAP, M-

CBATA and CBATA. 

 

On the other hand, except task group six, M-CBATA selects the virtual objects with higher 

computation power relative to CBATA. However, both M-CBATA and CBATA do not 

consider computation power when they select virtual objects. It is more likely for M-

CBATA to select objects with different levels of processing power at different task groups. 

In CBATA, an object with a low capacity processing power could be selected as virtual 

object at several task groups. 

 

Table 5.25. Average processing power of virtual objects (in MHz) in each task group for 

number of tasks = 6 
 

Task Group# STAP MOTAP M-CBATA CBATA 

1 161,47 298,47 163,20 149,00 

2 174,58 302,07 197,00 103,80 

3 175,39 296,00 209,00 145,60 

4 164,84 305,13 140,20 137,80 

5 165,57 305,28 209,00 127,80 

6 165,78 303,02 106,20 137,80 
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Figure 5.20. Average processing power of virtual objects in each task group for number of 

tasks = 6 

 

Protocols evaluation for evolutionary algorithm quality 

 

In order to demonstrating the quality of the proposed evolutionary algorithm in STAP, we 

employed convergence to optimal solution metric. Figure 5.21 visualizes quality of the 

proposed evolutionary algorithm in STAP regarding to convergence metric. The figure 

shows the best solution in each generation as well as in initial population in terms of fitness 

values. The results are obtained for a network under the default parameter settings (i.e., 

network dimensions= 200 × 200 unit, number of objects = 200, and number of networks’ 

tasks = 4). From the results, one can see that STAP provides high-quality solutions that 

evolve in an organized manner at each generation towards optimal solution. It is worth to 

mansion that in Figure 5.21 STAP evolved 56 times throughout the process of evolutionary 

algorithm. 
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Figure 5.21. Convergence of evolutionary algorithm in STAP toward optimal solution for 

100 generations + initialization phase 

 

Figures 5.22 and 5.23 demonstrate the efficiency of MOTAP as a multi objective 

optimization algorithm.  Both figures are obtained for a network with the default parameter 

settings. Figures 5.22(a) and (b) depict the convergence to optimal solution metric for first 

and second objectives of MOTAP respectively. On the other hand, Figure 5.23 shows the 

non-dominated solutions that are provided by MOTAP for one network. The 

𝑥, 𝑦 −coordinates correspond to computation power and energy efficiency objectives, 

respectively. We can observe from the results in Figure 5.22 and 5.23 that MOTAP 

provides high-quality solutions that maintain the diversity and covers the whole range 

between the two conflicted objectives. 
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Figure 5.22. Convergence of evolutionary algorithm in MOTAP toward optimal solution 

for 100 generations + initialization phase (a): Convergence of first objective 

(processing power) (b): Convergence of second objective (energy 

efficiency) 

 

 
 

Figure 5.23 Non-dominated solutions of MOTAP for one network 
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Protocols evaluation for computation time 

 

When using Intel Core i5 CPU 2.27GHz, EA-based protocols (STAP and MOTAP) take 

additional time to construct the task allocatıon configuration. This result comes naturally 

because these protocols handle more than one solution (as the case in M-CBATA and 

CBATA). For example, for 50 different individuals to be evolved in 100 generations STAP 

needs to process 5000 alternative solutions. The situation even worse in MOTAP which 

needs to evaluate two different objectives and perform domination based operations. In 

contrast, M-CBATA and CBATA constructs single solution for task allocatıon problem. 

Tables 5.26, 2.27, and 5.28 present the computation times for the protocols for different 

network scales, different number of objects, and different number of tasks. As it is 

expected, M-CBATA and CBATA execute in a shorter time compared to STAP and 

MOTAP. However, considering the technological advances of today’s microprocessors 

and their super speeds the huge difference in execution times could be ignored using high 

end systems. 

 

Table 5.26. Time duration (in seconds) for each protocol for different network scales 

 

Network 

Side Length 
STAP MOTAP M-CBATA CBATA 

100 103,821699 112,514876 0,051928 0,051238 

125 107,032598 117,837922 0,056326 0,055142 

150 103,427216 116,732613 0,053658 0,053233 

175 96,1988790 119,688508 0,051328 0,051163 

200 102,714103 121,264129 0,053716 0,055185 

225 104,558569 121,676684 0,052952 0,055348 

250 99,3646170 116,606447 0,054154 0,052953 
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Table 5.27. Time duration (in seconds) for each protocol for different number of objects 

 

Number of 

Objects 
STAP MOTAP M-CBATA CBATA 

50 20,462271 49,439396 0,015476 0,014475 

100 46,970431 72,025544 0,028854 0,027756 

150 71,300757 94,569715 0,038907 0,040615 

200 102,714103 121,264129 0,053716 0,055185 

250 135,925822 144,246529 0,066062 0,066095 

300 166,067310 164,381075 0,077712 0,077904 

350 206,766771 196,526132 0,093373 0,094018 

400 249,616927 235,196962 0,109013 0,108227 

 

Table 5.28. Time duration (in seconds) for each protocol for different number of tasks 

 

Number of 

Tasks 
STAP MOTAP M-CBATA CBATA 

2 71,289202 86,850474 0,031913 0,034245 

4 102,714103 121,264129 0,053716 0,055185 

6 126,075914 147,545239 0,074587 0,074004 

8 148,242618 171,841962 0,092857 0,090801 

10 182,077525 210,954588 0,114471 0,113979 

 

It is obvious that increasing the number of generation will negatively affect the 

computation time. Although, the increased number of generations could lead to better 

solutions by exploring wider regions of search space. Therefore, a trade-off between the 

quality of the solutions and the computation time should be considered when selecting the 

number of generations. Table 5.29 demonstrates the vales of the fitness function in STAP 

and MOTAP for different number of generations. The results are obtained for the default 

parameter setting of the simulation. It is clear that the generation number of 100 could 

better maintain this trade-off. 
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Table 5.29. STAP and MOTAP objective functions’ values for different number of 

generations 

 

Number of 

Generations 

Minimization Maximization 

Φ𝑆𝑇𝐴𝑃 Φ𝑀𝑂𝑇𝐴𝑃ℱ1
 Φ𝑀𝑂𝑇𝐴𝑃ℱ2

 

25 0,0030212 294,8000 10,6614 

50 0,0027608 286,6667 11,5872 

75 0,0024912 308,4545 11,2626 

100 0,0024666 316,2000 12,1810 

150 0,0025090 317,7143 11,6423 

200 0,0023897 301,5833 12,7094 

500 0,0022055 318,4167 12,8769 

 

5.2.4. Results of simulation (by OMNeT++ simulator) 

 

To validate the results obtained by Matlab simulator and to give a deeper view of the 

performance of the protocols, application layer based simulations are performed by 

executing STAP, MOTAP, M-CBATA, and CBATA using a powerful network simulator, 

OMNeT++. The simulations consider a realistic scenario where the executions of tasks are 

broken into several rounds and at each round a continuous and a uniform arrival of tasks is 

supposed. To verify the protocols in a most extreme and dramatic case, we assumed that all 

tasks must be performed at each round. Finally, considering the complexity of the 

simulation the protocols are applied on a network with 25 objects. The dimensions of the 

networks is set to 100 × 100 units and the number of tasks is set 4. Then, five network 

topologies are generated and the results are averaged over these topologies. Figure 5.24 

shows the number of rounds until each task group becomes non-operational (i.e., until all 

virtual objects completely consume their energies). Table 5.30 demonstrates the 

operational time of each task group for each of the generated 5 network topologies and 

attached with the table the average results of all networks. As it is expected, STAP 

outperforms other protocols. On the average of all task groups, STAP slightly outperforms 

MOTAP by 184,45 rounds. With a huge advantage STAP outperforms M-CBATA and 

CBATA by 922,25 and 1032,3 rounds respectively. On the other hand, MOTAP 

outperforms M-CBATA by 737,80 rounds and CBATA by 847,85 rounds. Finally, M-

CBATA with its property of reducing the energy load on each virtual object outperforms 

CBATA by 110,05 rounds.  
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Figure 5.24. Number of rounds until each task group becomes non-operational 
 

Table 5.30. Number of rounds until each task group becomes non-operational for 5 random 

generated networks 

 

Network# 
STAP MOTAP 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

1 1231 1121 719 923 911 1564 452 792 

2 1230 1622 934 875 1202 1508 672 796 

3 1857 1898 850 1024 1527 1245 561 885 

4 1434 880 551 1051 734 979 1147 845 

5 1025 1867 774 730 678 697 611 1101 

Average 

Results 
1355,4 1477,6 765,60 920,60 1010,4 1198,6 688,60 883,80 

Network# 
M-CBATA CBATA 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

1 320 135 164 124 66 66 66 66 

2 63 328 195 392 146 145 136 136 

3 172 270 229 297 79 78 78 78 

4 57 139 366 133 93 93 92 92 

5 253 267 159 88 156 64 156 64 

Average 

Results 
173,0 227,80 222,60 206,80 108,0 89,20 105,60 87,20 
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The performance of the protocols in terms of stability periods are shown in Figure 5.25 and 

Table 5.31. The results figure depicts the number of rounds until each task group becomes 

unstable (i.e., until a virtual object depletes its energy). Again, the best performance is 

captured by STAP. On the average of all task groups, STAP Compared to MOTAP 

produce longer stability periods by 86.40 rounds. Also, STAP outperforms M-CBATA and 

CBATA by 371,20 and 481,25 rounds respectively. On the other hand, MOTAP 

outperforms M-CBATA by 284,80 rounds and CBATA by 394,85 rounds. It is worth to 

note that since M-CBATA and CBATA select one virtual object for each task group their 

stability periods are similar to their operational periods. 

 

 
 

Figure 5.25. Number of rounds until each task group becomes unstable 
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Table 5.31. Number of rounds until each task group becomes unstable for 5 random 

generated networks 

 

Network# 
STAP MOTAP 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

1 823 364 503 522 718 285 425 483 

2 878 465 540 641 721 378 480 512 

3 830 886 538 436 717 729 467 347 

4 528 764 879 414 476 613 924 317 

5 633 257 261 413 250 454 175 376 

Average 

Results 
738,40 547,20 544,20 485,20 576,40 491,80 494,20 407,0 

Network# 
M-CBATA CBATA 

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4 

1 320 135 164 124 66 66 66 66 

2 63 328 195 392 146 145 136 136 

3 172 270 229 297 79 78 78 78 

4 57 139 366 133 93 93 92 92 

5 253 267 159 88 156 64 156 64 

Average 

Results 
173,0 227,80 222,60 206.80 108,0 89,20 105,60 87,20 
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1. Conclusions 

 

In this thesis the problem of task allocation is researched. The problem has been studied in 

the framework of IoT with the typical scenario where applications require the collaboration 

of different objects. The main challenges and constraints that make the task allocation in 

IoT an NP-hard are investigated. Then, to tackle with the problem task allocation and 

virtual object concept is adopted. 

 

An important element in this thesis was the development evolutionary based task allocation 

protocols that take the different requirements of variety of IoT applications into 

consideration. In the first stage the thesis considered the scenario where objects are capable 

of performing only one task.  Then, to increase the applicability of the proposed protocol a 

more complex and realistic scenario is assumed. In this scenario it is assumed that IoT 

objects have different skills and are capable of performing variety of tasks.  Within the 

framework of the first scenario, for typical applications (e.g., smart environments) two 

protocols namely, Evolutionary Task Allocation Protocol-1 (ETAP1) and Evolutionary 

Task Allocation Protocol-2 (ETAP2) are developed. The main goal of ETAP1 and ETAP2 

is to construct energy efficient task allocation topology by appropriate selection of virtual 

objects and suitable association of objects of each task group to the selected virtual objects. 

By accomplishing this goal, the operational period of each task group can be maximized to 

ensure extended network lifetime. Also within the framework of the first scenario, for 

security and reliability required applications (e.g., factory automation, environmental 

monitoring …) the goals of ETAP1 and ETAP2 are redirected towered stability awareness. 

The new derivative protocols are called Stabile Evolutionary Task Allocation Protocol-1 

(SETAP1) and Stabile Evolutionary Task Allocation Protocol-2 (SETAP2). The basic idea 

behind these protocols is to inject energy aware heuristic into population initialization 

phase and into mutation operator to insure only objects with high residual energy are 

allowed to be virtual objects. These heuristic ensure a longer period of time before the first 

virtual object depletes it energy at each task group. On the other hand, in the context of the 

second scenario where objects are capable of performing different tasks and the task 

groups can intersect with each other two protocols are developed. The first protocol is 
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Steady Task Allocation Protocol (STAP). This protocol designed with stability is in mind. 

STAP attempts to maximize the mean value of virtual objects’ energy whereas minimize 

their energy spends to insure longer stable performance. Finally, within the context of 

second scenario Multi-Objective Task Allocation Protocol (MOTAP) is proposed. The 

protocol considers the fact that each virtual object is a basic unit of computation. MOTAP 

attempts to build MOEA that maximize two contradicted objectives: computation power 

and energy efficiency. Also within the framework of this scenario, the most relative study 

in the literature is researched and its modified version is developed. Modified CBATA (M-

CBATA) is the modified version of CBATA (Consensus Based Approach for Task 

Allocation). The main goal of M-CBATA is to ensure that each task group has its own 

virtual object that has not been a virtual object in other task groups. This goal guarantees 

an extended operational and stability period of M-CBATA compared to CBATA. 

 

The propose protocols are extensively evaluated in a custom designed simulation 

environments using MATLAB and OMNeT++ simulators. In the simulation considering 

the randomness of the networks 5 network topologies are generated for each network 

setting. Then, the probabilistic feature of EA based protocols is considered and each 

network is executed 5 times. The final results are obtained by taking the average results of 

the execution and then averaging the results of the whole networks. The simulation results 

have demonstrated the superiority of the proposed protocols. 

 

It is clear from what was mentioned, that the thesis attempts to present a full set of 

protocols to solve the task allocation problem in IoT. These protocols can be tailored to fit 

wide range of IoT applications. In what follows the contributions of this thesis are 

summarized. Then, the summarized evaluation results of the protocols are provided. The 

chapter closes by presenting some open issues and future research directions. 

 

6.2. Summary of Thesis Contributions 

 

In summary, the main achievements of this thesis are as following: 

1. Presenting a comprehensive survey of the concept of IoT. 
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 Introducing a historical review of the concept of IoT technology. Highlighting the basic 

elements and technologies that helped for emergence of IoT. 

 Investigating characteristics, architecture, platforms and building blocks of this 

technology. 

 Defining the main services that enabled the wide range of IoT applications. 

 Reviewing applications domains of IoT and their relevant major scenarios. 

 Illustrating the challenges of this technology that can represent open research issues in 

the field of IoT. 

2. The thesis studies the problem of task allocation in IoT considering special features and 

design characteristics of this technique. Then, by adopting bio-inspired meta-heuristic 

methods and considering two different realistic scenarios several novel protocols with 

application specific characteristics that can tackle with the problem of task allocation in 

IoT are developed. To the best of our knowledge, this work is the first work that adopts 

meta-heuristic methods for this purpose. 

3. In the scenario where each object is capable of performing only a single task, two sets 

of protocols are proposed: ‘‘protocols with the goal of maximizing the network 

lifetime’’ and ‘‘protocols with the main goal of extending the stability period of the 

network’’. 

 For typical applications, two novel protocols with different objective models with the 

goals of minimizing energy consumption regarding to task allocation and maximizing 

the lifetime of the network are proposed. 

 For high reliability demanding crucial applications that require their entire task groups 

to be active for a long time, the concept of stability period is defined and two protocols 

with the goal of minimizing energy consumption and maximizing stability periods of 

each task group to ensure stable and balanced operation of whole network are proposed. 

4. In the second scenario a more realistic and complex scenario is considered where 

objects have different skills and could intersect with different groups. Within this 

context we developed two novel protocols as flowers:  
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 A bio-inspired single objective protocol with heterogeneity aware heuristics to insure 

reliably task allocation in terms of boosting the energy efficiency in the direction of 

extending the operational and the stability periods of the network. 

 A protocol that formulates the problem of task allocation as a MOOP that 

simultaneously maximizes two contradictory objectives: computational power 

utilization and energy efficiency. 

5. To evaluate the proposed protocols extensive MATLAB based analysis as well as 

application layer simulations based on OMNeT++ using several benchmarking metrics 

are applied. The results have demonstrated the superiority of the proposed protocol. 

 

6.3. Summary of the Simulation Results 

 

The formation of task allocation in IoT has turned out to be an NP-hard problem, and it 

attempts to satisfy various objectives such as increasing the operational time and the 

stability period and maximizing the computational power. The underlying works employee 

the task groups and virtual objects concept and present evolutionary-based task allocation 

protocols in IoT. The overall results of the proposed protocols, after performing extensive 

simulations based on MATLAB and OMNeT++ simulators can draw the following 

conclusions (in the tables below, the relation “>” reads “better than”, “<” reads “worse 

than”, and the relation “=” reads “equal performance”): 

 

 Energy efficiency: It means energy consumption for communication in the process of 

task allocation. Table 6.1 shows the overall evaluation for protocols of scenario #1 (i.e., 

ETAP1, ETAP2, SETAP1, SETAP2, and CBATA). In these results ETAP1 outperforms 

other protocols. Whereas, Table 6.2 presents the overall evaluation of STAP, MOTAP, 

M-CBATA and CBATA of scenario #2. Here, “=” is used between STAP and MOTAP 

since the two protocols show similar performance considering different settings of 

network dimension, number of objects, and number of tasks. Thus, in some cases STAP 

outperforms MOTAP, while on other cases MOTAP perform better than STAP. 
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Table 6.1. Evaluation summary for the energy efficiency of scenario #1 protocols 

 

Protocols CBATA ETAP1 ETAP2 SETAP1 SETAP2 

ETAP1 > - > > > 

ETAP2 > < - < > 

SETAP1 > < > - > 

SETAP2 > < < < - 

 

Table 6.2. Evaluation summary for the energy efficiency of scenario #2 protocols 

 

Protocols CBATA STAP MOTAP M-CBATA 

STAP > - = > 

MOTAP > = - > 

M-CBATA = < < - 

 

 Operational period: Regarding protocols of scenario #1, ETAP1 carry out longer 

operational period compared to other protocols. Table 6.3 summarizes the overall 

results of ETAP1, ETAP2 and CBATA in term of the operational period length. On the 

other hand, Table 6.4 shows the overall evaluation of protocols of scenario #2. This 

table reveals that STAP makes the longer operational periods in all task groups. 

 

Table 6.3. Evaluation summary for the operational period of ETAP1, ETAP2 and CBATA 

within the context of scenario #1 

 

Protocols CBATA ETAP1 ETAP2 

ETAP1 > - > 

ETAP2 > < - 

 

Table 6.4. Evaluation summary for the operational period of scenario #2 protocols 

 

Protocols CBATA STAP MOTAP M-CBATA 

STAP > - > > 

MOTAP > < - > 

M-CBATA > < < - 

 

 Stability period: With their energy aware heuristic SETAP1 and SETAP2 perform better 

than other protocols of scenario #1 regarding to stability period metric. Table 6.5 

summarizes the overall performance of scenario #1 protocols. Regarding to protocols of 



158 

 

scenario #2, STAP outperforms other protocols. The overall results of protocol of 

scenario #2 are presented in Table 6.6. 

 

Table 6.5. Evaluation summary for the stability period of scenario #1 protocols 

 

Protocols CBATA ETAP1 ETAP2 SETAP1 SETAP2 

ETAP1 > - > < < 

ETAP2 > < - < < 

SETAP1 > > > - > 

SETAP2 > > > < - 

 

Table 6.6. Evaluation summary for the stability period of scenario #2 protocols 

 

Protocols CBATA STAP MOTAP M-CBATA 

STAP > - > > 

MOTAP > < - > 

M-CBATA > < < - 

 

 Computation power: MOTAP achieves better performance compared to STAP, M-

CBATA, and CBATA. However, STAP, M-CBATA and CBATA do not consider 

computation power when they select virtual objects. It is more likely for M-CBATA to 

select objects with different levels of processing power at different task groups. Table 

6.7 presents the overall performance of scenario #2 protocols in term of computation 

power. 

 

Table 6.7. Evaluation summary for the computation power of scenario #2 protocols 

 

Protocols CBATA STAP MOTAP M-CBATA 

STAP > - < = 

MOTAP > > - > 

M-CBATA > = < - 

 

 Computation time: Naturally EA based task allocation protocols take more time in 

computation compared to CBATA. However, considering the high quality results of EA 

based protocols and the advances of microprocessors speeds, the extra time required for 

computation become tolerable. 
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6.4. Future Research 

 

In light of the results and discussions reported in this thesis, some of the open research 

issues that need to be explored further for future works in the area of task allocation in IoT 

are briefly listed as follows:  

 

 Future research work needs to focus on exploring more complex task allocation models. 

For instance, instead of using two level hierarchy (or in other words two hops from 

objects to their virtual objects and from virtual objects to central control station) it may 

be more efficient to formulate the problem as a multi-hop task allocation by adopting 

local virtual objects. In this way at each task group global virtual objects communicate 

with local virtual objects to allocate tasks to objects of the task group. Using multi-hop 

task allocation reduces the latency of data traveling to the central control station. 

 A complex communication models can be used. It is known that the strength of the 

transmitted signals is inversely proportional to the distance between sender and receiver. 

This fact can be used at the stage of virtual objects selection with the goal of 

maximizing the strength of the received signals from their objects in order to increase 

the reliability. 

 Furthermore, additional heuristics may be studied and applied in the construction of the 

objective function and/or other EA components to provide more network stability or 

longevity periods. 

 It may be an open research area to measure the effect of the type of evolutionary 

algorithm. Several types of evolutionary algorithms are suit well to different types of 

problems. An analytical work may re-implement the proposed protocols by applying   

different types of evolutionary algorithms. 

 In some applications, the optimization problem involves more than two contradictory 

objectives where the improvement on one objective leads to the deterioration of others. 

Considering the problem of task allocation maximizing of reliability of the received 

signals can be on expense of the energy and the computation power of the virtual 

objects. 

 Another interesting research inspired by realizing the mobility feature of most IoT 

objects. The communications between the virtual objects and their objects can be taken 

place on the opportunistic bases. In opportunistic networks, connections among nodes 
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are created dynamically in an infrastructure-less way: when forwarding a message, next 

hops are chosen opportunistically, on the basis of their likelihood to get the message 

closer to its destination [175]. 
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