

EFFICIENT TASK ALLOCATION IN INTERNET OF THINGS BASED

SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

GAZİ UNIVERSITY

BY

Enan Ameen Khalil SAFFAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

FEBRUARY 2019

iv

EFFICIENT TASK ALLOCATION IN INTERNET OF THINGS BASED SYSTEMS

(Ph. D. Thesis)

Enan Ameen Khalil SAFFAR

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

February 2019

ABSTRACT

Internet of Things is a fast growing technology for information collection, communications

and processing. Successful applications of Internet of Things aim to interconnect objects

with varied capabilities within the same heterogeneous network. The goal is to allow the

network entities to cooperate and make their resources available in order to perform the

demanded task. However for variety of Internet of Things objects minimizing the energy to

be spent for task allocation purposes will be one of the primary constraints. Currently,

almost all existing studies employ heuristic optimizations to cope with different aspects of

task allocation problems without taking into consideration the heterogeneous nature of IoT

objects in terms of their computation and energy levels. In this thesis, the problem of task

allocation in Internet of Things is addressed. The problem is modeled using task groups

and virtual objects concept by adopting evolutionary based methods. Considering different

design requirements of different applications, we have proposed seven novel protocols to

meet the requirements of different application scenarios. The proposed protocols are

tailored to meet different goals of energy efficiency, extended operational and stability

periods, and maximized computation power. To the best of our knowledge, our work is

among the first works to propose task groups and virtual objects based framework to solve

the task allocation problem in IoT, and the first work that adopts meta-heuristic methods

for this purpose. To evaluate the proposed protocols several evaluation metrics are

considered, such as: energy efficiency, number of operational rounds, length of stability

periods, average available energy in virtual objects, computation power, computation time,

and the quality of the proposed evolutionary algorithm. The performance of the protocols

are analyzed and benchmarked by comparing them with the most relative work in the

literature through extensive simulations. The results have proved the superiority of the

proposed protocols.

Science Code : 92407

Key Words : Task allocation, resource management, energy efficiency, stability

period, computation power, evolutionary algorithms, multi-objective

optimization, Internet of Things (IoT)

Page Number : 176

Supervisor : Prof. Dr. Suat Özdemir

v

IoT TABANLI SİSTEMLERDE ETKİN GÖREV DAĞILIMI

(Doktora Tezi)

Enan Ameen Khalil SAFFAR

GAZİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

Şubat 2019

ÖZET

Nesnelerin İnterneti (Nİ), bilgi toplamak, iletişim ve bilgi işlemek için kullanılan

gelişmekte olan bir teknolojidir. Nİ’nin başarılı uygulamaları, farklı kabiliyetlere sahip

olan nesneleri bir heterojen ağ çatısı altında birbirine bağlı bir şekilde tutar. Amaç ağda

bulunan nesnelerin kaynaklarını bulundurup ve dinamik bir şekilde işbirliği yaparak

istenilen bir görevi yerine getirmektir. Ancak Nİ’nin birçok cihaz için görev dağılımında

harcanacak enerjiyi minimize etmek hayati bir önem taşımaktadır. Günümüzde, bu konu

ile ilgili mevcut çalışmaların hemen hemen tümü nesnelerin farklı enerji seviyelerini ve

çeşitli işletim güçlerini dikkate almadan sezgisel en iyileme yöntemlerini kullanarak görev

dağılımının farklı sorunlarını çözmeye uğraşmıştır. Bu tezde nesnelerin İnternetin’de görev

dağolım problemi ele alınmıştır. Problem görev grupları ve sanal nesneler kavramını

kullanarak evrimsel yöntemler çatısı altında modellenmiştir. Ayrıca, farklı uygulamaların

farklı tasarım özelliklerini düşünerek, farklı uygulama senaryoların gereksinimlerini

karşılıyabilen yedi yeni protokol geliştirilmiştir. Geliştirilen protokoller, enerji verimliliği,

uzatılmış operasyonel ve stabil süreler ve işleme gücü artırmak gibi hedeflere uyacak

şekilde tasarlanmıştır. Bilgimiz dahilinde çalışmamız Nİ’de görev dağılımı problemi için

görev grupları ve sanal nesneler kavramı tabanlı bir çözüm çerçevesi öneren ilk çalışmalar

arasındadır. Ayrıca, meta sezgisel yöntemleri kullanarak bu problemi çözen ilk çalışmadır.

Geliştirilen protokollerin performansını değerlendirmek için, enerji verimliliği,

operasyonel tur sayısı, stabil sürelerin uzunluğu, sanal nesnelerde ortalama enerji miktarı,

hesaplama gücü, gereken hesaplama zamanı ve önerilen evrimsel algoritmanın kalitesi gibi

çeşitli değerlendirme metrikleri kullanılmıştır. Protokollerin performansı analiz edilmiş ve

literatürdeki en ilgili çalışmayla karşılaştırılmıştır. Sonuçlar geliştirilen protokollerin

performans üstünlüğünü kanıtladı.

Bilim Kodu : 92407

Anahtar

Kelimeler

: Görev dağılımı, kaynak yönetimi, enerji verimliliği, stabil süre, işleme

gücü, evrimsel algoritmalar, çok amaçlı optimizasyon, Nesnelerin

İnterneti (Nİ)

Sayfa Adedi : 176
Danışman : Prof. Dr. Suat Özdemir

vi

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to the Almighty ALLAH the Most

Gracious for His grace and sustenance upon my life for the successful completion of this

thesis. This thesis would not have been possible without the guidance, the advice and the

support of several individuals who contributed in the completion of this work. First and

foremost, I would like to express my appreciation to my supervisor Dr. Suat Özdemir,

Professor at the Department of Computer Engineering, Gazi University for his directions,

constructive comments, intellectual guidance, advice, and constant encouragements

especially when I was confused. Heartfelt thanks to him, for not only supporting me as a

supervisor, but also as a big brother. Also, I would like to express my special appreciation

to Dr. Süleyman Tosun, whose valuable comments enriched my research. Moreover, I

would like to thank Dr. Bara’a A. Attea, Professor at the Department of Computer science,

University of Baghdad who was the first to teach me the scientific research methods and I

will always remember and appreciate her helps. Finally and most of all, I am very grateful

to my family especially my parents, they taught me the value of knowledge and the

importance of being honest.

vii

TABLE OF CONTENTS

Page

ABSTRACT .. iv

ÖZET ... v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. xi

LIST OF TABLES .. xiv

LIST OF ALGORITHMS .. xvii

LIST OF ABBREVIATIONS AND SYMBOLS .. xviii

1. INTRODUCTION .. 1

2. TASK ALLOCATION PROBLEM IN IoT .. 7

2.1. Background ... 7

2.2. The Concept of IoT... 10

2.3. Elements of IoT .. 11

2.3.1. Radio frequency identification (RFID) .. 12

2.3.2. Wireless sensor networks (WSNs) ... 12

2.3.3. Embedded systems and nanotechnology .. 12

2.4. Technologies of the IoT .. 13

2.4.1. Communication .. 13

2.4.2. Sensing ... 15

2.4.3. Computation ... 15

2.4.4. Identification and addressing ... 16

2.4.5. Semantics ... 16

2.5. The main services of IoT .. 17

viii

Page

2.6. Architecture of IoT ... 18

2.7. Platforms of IoT ... 21

2.8. Applications of IoT ... 23

2.9. Challenges of IoT ... 26

2.10. Task Allocation in IoT .. 31

2.10.1. Major challenges in task allocation in IoT ... 31

2.10.2. Literature review .. 33

2.11. The Concept of Task Groups and Virtual Objects (The Clustering) 37

2.12. Consensus Based Approach for Task Allocation (CBATA) 40

2.12.1. Virtual objects selection ... 41

2.12.2. Consensus-based negotiation and task allocation................................. 42

2.13. Problem complexity .. 43

3. METAHEURISTICS AND EVOLUTIONARY OPTIMIZATION 45

3.1. Metaheuristics ... 45

3.2. Evolutionary Algorithms (EAs) ... 48

3.2.1. General algorithmic framework of EA .. 49

3.2.2. Problem related aspects .. 51

3.2.3. Parameter control in EAs ... 53

3.3. Description of some important issues in EAs ... 54

3.3.1. Solution infeasibility .. 54

3.3.2. Exploration and exploitation .. 54

3.4. Evolutionary Multi-objective Optimization ... 55

3.4.1. Multi-objective optimization problems (MOPs) 56

3.4.2. Dominance concept and Pareto optimality .. 57

ix

Page

3.4.3. Elitist non-dominated sorting genetic algorithm II (NSGA-II) 59

4. THE PROPOSED TASK ALLOCATION PROTOCOLS WITH

METAHEURISTIC METHODOLOGY ... 63

4.1. Problem Definition and System Model .. 65

4.2. Overview of the Proposed Protocols in Context of Scenario #1 66

4.2.1. Virtual objects election phase .. 72

4.2.2. Association phase ... 85

4.2.3. Toward stability aware protocols ... 85

4.3. Overview of the Proposed Protocols in Context of Scenario #2 88

4.3.1. Modified-CBATA (M-CBATA) .. 89

4.3.2. Steady task allocation protocol (STAP) ... 92

4.3.3. Multi-objective task allocation protocol (MOTAP) 99

5. SIMULATION RESULTS AND DISCUSSION ... 109

5.1. Performance Analysis of Protocols in Context of Scenario #1 110

5.1.1. Simulation environment ... 110

5.1.2. Network energy model ... 112

5.1.3. Parameters and rules settings in the evolutionary task allocation

algorithms .. 112

5.1.4. Results of ETAP1 and ETAP2 ... 113

5.1.5. Results of SETAP1 and SETAP2 (The effect of energy aware

heuristic on ETAP1 and ETAP2) .. 124

5.2. Performance Analysis of Protocols in Context of Scenario #2 128

5.2.1. Simulation environment ... 128

5.2.2. Parameters and rules settings for network energy model and the

evolutionary task allocation algorithms ... 129

5.2.3. Results of simulation (by MATLAB simulator) 130

x

Page

5.2.4. Results of simulation (by OMNeT++ simulator) 149

6. CONCLUSIONS AND FUTURE WORK .. 153

6.1. Conclusions .. 153

6.2. Summary of Thesis Contributions .. 154

6.3. Summary of the Simulation Results ... 156

6.4. Future Research .. 159

REFERENCES .. 161

CURRICULUM VITAE .. 175

xi

LIST OF FIGURES

Figure Page

Figure 2.1. The raped development of the internet from 1995 8

Figure 2.2. Internet of Things ... 11

Figure 2.3. The taxonomy of Internet of Things ... 18

Figure 2.4. Architecture of IoT (a): Three layered model (b): Middle-ware based

model (c): Five layered model ... 19

Figure 2.5. Applications domains of IoT and relevant major scenarios 24

Figure 2.6. The concept of task groups and virtual objects .. 40

Figure 2.7. A reference scenario for CBATA ... 41

Figure 3.1. Detailed overview of EA .. 52

Figure 3.2. Multi-objective optimization problem based on domination concept

while maximizing two objectives .. 59

Figure 4.1. First-order radio model ... 66

Figure 4.2. The concept of task groups and virtual objects in scenario #1 67

Figure 4.3. The conceptual visualization of the proposed evolutionary

task allocation protocols in scenario #1 ... 70

Figure 4.4. Examples for genotype (a) and phenotype (b) individuals of evolutionary

task allocation protocols in scenario #1 ... 74

Figure 4.5. Two-point cut and cross fill .. 82

Figure 4.6. An example of mutation ... 83

Figure 4.7. The concept of task groups and virtual objects in scenario #2 89

Figure 4.8. Illustrative example for CBATA and M-CBATA

(a): A network with two task groups

(b): Object i joined to the network

(c): Object j joined to the network

(d): Object k joined to the network .. 91

Figure 4.9. Population visualization in STAP ... 95

Figure 4.10. The General layout of MOTAP .. 101

xii

Page

Figure 4.11. Examples for genotype (a) and phenotype (b) individuals of MOTAP 103

Figure 5.1. Average dissipated energy in 5 test instances for different object

density settings ... 116

Figure 5.2. Average dissipated energy in 5 test instances for different number of

tasks .. 117

Figure 5.3. Average dissipated energy in each task group for 5 test instances

with network dimension = 200 ×200,

object density = 250 and number of tasks = 6 ... 118

Figure 5.4. Average number of rounds until each task group becomes

non-operational for Objects density = 250 ... 121

Figure 5.5. Average number of rounds until each task group becomes

non-operational for Objects density = 500 ... 122

Figure 5.6. Convergence of ETAP1 toward optimal solution for

50 generations + initialization phase .. 123

Figure 5.7. Convergence of ETAP2 toward optimal solution

for 50 generations + initialization phase. ... 123

Figure 5.8. Number of rounds until each task group becomes unstable

for network with Objects density = 250 .. 125

Figure 5.9. Number of rounds until each task group becomes unstable

for network with Objects density = 500 ... 126

Figure 5.10. Average dissipated energy in 5 test instances for

different network dimensions .. 133

Figure 5.11. Average dissipated energy in 5 test instances for

different number of objects .. 134

Figure 5.12. Average dissipated energy in 5 test instances for

different number of tasks ... 134

Figure 5.13. Average dissipated energy in each task group ... 135

Figure 5.14. Average dissipated energy of virtual objects for different network

dimensions ... 137

Figure 5.15. Average dissipated energy of virtual objects for different number of

objects .. 137

xiii

Page

Figure 5.16. Average dissipated energy of virtual objects for different number of

tasks.. 138

Figure 5.17. Average energy of virtual objects in each task group for number of

objects = 200, network dimensions

= 200 ×200 unit and number of tasks = 6 .. 139

Figure 5.18. Average number of rounds until each task group becomes

non-operational .. 141

Figure 5.19. Average number of rounds until each task group becomes unstable 142

Figure 5.20. Average processing power of virtual objects in each task group

for number of tasks = 6 .. 144

Figure 5.21. Convergence of evolutionary algorithm in STAP toward optimal

solution for 100 generations + initialization phase 145

Figure 5.22. Convergence of evolutionary algorithm in MOTAP toward

optimal solution for 100 generations + initialization phase

(a): Convergence of first objective (processing power)

(b): Convergence of second objective (energy efficiency) 146

Figure 5.23. Non-dominated solutions of MOTAP for one network 146

Figure 5.24. Number of rounds until each task group becomes non-operational 150

Figure 5.25. Number of rounds until each task group becomes unstable 151

xiv

LIST OF TABLES

Table Page

Table 2.1. The definitions and standards of IoT According to different research

groups ... 10

Table 2.2. Technical specifications of some LPWAN platforms 14

Table 2.3. The most commonly used operating systems in IoT 16

Table 2.4. Characteristics of some software platforms used in IoT framework 23

Table 5.1. Average dissipated energy (in joules) in 5 test instances for

200 × 200 network scale, 250 object and 4 task

groups and different packet error rates ... 111

Table 5.2. Parameters and rules used in the evolutionary algorithms of scenario #1 113

Table 5.3. Average dissipated energy (in joules) in 5 test instances for different

network scales .. 114

Table 5.4. Average dissipated energy (in joules) in 5 test instances for different

object density settings .. 114

Table 5.5. Average dissipated energy (in joules) for 5 test instances for different

number of tasks .. 115

Table 5.6. Average dissipated energy in each task group for 5 test instances

with network dimension = 200 ×200, object density =

250 and number of tasks = 6 .. 118

Table 5.7. Average dissipated energy in each task group for 5 test instances

with object density = 250, number of tasks = 4 and different

network dimensions .. 119

Table 5.8. Average dissipated energy in each task group for 5 test instances

with network dimension = 200 ×200, number of tasks

= 4 and different object density .. 120

Table 5.9. The mean value of virtual objects energies (in joules) for 8 task groups 124

Table 5.10. Average dissipated energy (in joules) in 5 test instances for different

network scales in a single round .. 127

Table 5.11. Average dissipated energy (in joules) in 5 test instances for different

number of objects in a single round .. 127

xv

Page

Table 5.12. Average dissipated energy (in joules) in 5 test instances for different

number of tasks in a single round .. 127

Table 5.13. Network energy model parameters settings ... 129

Table 5.14. MOTAP parameters and rules ... 130

Table 5.15. Average dissipated energy (in joules) in 5 test instances for different

network scales ... 131

Table 5.16. Average dissipated energy (in joules) in 5 test instances for different

object density settings ... 132

Table 5.17. Average dissipated energy (in joules) for 5 test instances for different

number of tasks ... 132

Table 5.18. Average dissipated energy (in joules) for 5 test instances in each task

group .. 135

Table 5.19. Average dissipated energy of virtual objects (in joules) for different

network scales ... 136

Table 5.20. Average dissipated energy of virtual objects (in joules) for different

object density settings ... 136

Table 5.21. Average dissipated energy of virtual objects (in joules) for different

number of tasks ... 136

Table 5.22. Average energy of virtual objects (in joules) in each task

group for number of objects = 200, network dimensions

= 200 ×200 unit and number of tasks = 6 .. 140

Table 5.23. Average number of rounds until each task group becomes

non-operational for different object density .. 141

Table 5.24. Average number of rounds until each task group becomes unstable for

different object density .. 142

Table 5.25. Average processing power of virtual objects (in MHz) in each task

group for number of tasks = 6 ... 143

Table 5.26. Time duration (in seconds) for each protocol for different network

scales ... 147

Table 5.27. Time duration (in seconds) for each protocol for different number of

objects .. 148

xvi

Page

Table 5.28. Time duration (in seconds) for each protocol for different number of

tasks ... 148

Table 5.29. STAP and MOTAP objective functions’ values for different number

of generations .. 149

Table 5.30. Number of rounds until each task group becomes non-operational

for 5 random generated networks .. 150

Table 5.31. Number of rounds until each task group becomes unstable for 5 random

generated networks .. 152

Table 6.1. Evaluation summary for the energy efficiency of scenario #1 protocols 157

Table 6.2. Evaluation summary for the energy efficiency of scenario #2 protocols 157

Table 6.3. Evaluation summary for the operational period of ETAP1, ETAP2 and

CBATA within the context of scenario #1 ... 157

Table 6.4. Evaluation summary for the operational period of scenario #2 protocols 157

Table 6.5. Evaluation summary for the stability period of scenario #1 protocols 158

Table 6.6. Evaluation summary for the stability period of scenario #2 protocols 158

Table 6.7. Evaluation summary for the computation power of scenario #2 protocols ... 158

xvii

LIST OF ALGORITHMS

Algorithm Page

Algorithm 3.1. General algorithmic framework of Evolutionary Algorithm (EA) 51

Algorithm 3.2. Algorithmic Framework of NSGA-II ... 62

Algorithm 4.1. Outline of the evolutionary algorithm trajectory.................................... 69

Algorithm 4.2. Initial population generation algorithm for protocols in scenario #1 75

Algorithm 4.3. Population initialization algorithm in SETAP1 and SETAP2 86

xviii

LIST OF ABBREVIATIONS AND SYMBOLS

The symbols and abbreviations used in this study are presented below with their meanings.

Symbol Meaning

 𝑷𝒐𝒑𝒕 Optimal election probability

 𝒑𝒄 Probability of recombination

𝐦𝐫 Mutation rate

𝑬𝑫𝑨 Energy for data aggregation

𝑬𝑹𝒙 Reception energy

𝑬𝑻𝒙 Transmission energy

𝑬𝒆𝒍𝒆𝒄 Energy dissipation per bit for the transceiver circuit

𝑲𝒐𝒑𝒕 Desired percentage of virtual objects

𝒑𝒎 Probability of mutation

𝜺𝒂𝒎𝒑 Energy amplifier

DV Crowding distance value

MHz Mega Hertz

Ω Search space/search space

𝑪 Cluster

𝑵 Population size

𝑻 Tasks of the network

𝒏 Number of objects/Length of decision variables

𝒕 A task

𝔸 Network area

𝔸ℙ Access point

𝜱 Evaluation function

Abbreviation Meaning

ADS Application Deployment Server

BFM Bit Flop Mutation

BTS Binary Tournament Selection

xix

Abbreviation Meaning

CA Certificate Authority

CBATA Consensus Based Approach for Task Allocation

CCS Central Control Station

CI Computational Intelligence

EA Evolutionary Algorithm

EMO Evolutionary Multi-objective Optimization

ETAP1 Evolutionary Task Allocation Protocol-1

ETAP2 Evolutionary Task Allocation Protocol-2

EVOP EVolutionary Operator

ICT Information and Communications Technology

ID IDentification

IM Indication Message

IoT Internet of Thing

ITU International Telecommunications Union

LPWAN Low Power Wide Area Network

LTE Long-Term Evolution

M2M Machine to Machine

M-CBATA Modified-CBATA

MIT Massachusetts Institute of Technology

MOEA Multi-Objective Evolutionary Algorithm

MOP Multi-objective Optimization Problem

MOTAP Multi-Objective Task Allocation Protocol

NFC Near Field Communication

NSGA-II elitist Non-dominated Sorting Genetic Algorithm II

OS Operating System

RFID Radio-Frequency Identification

RTOS Real-Time Operating System

SETAP1 Stable Evolutionary Task Allocation Protocol-1

SETAP2 Stable Evolutionary Task Allocation Protocol-2

SNR Signal-to-Noise Ratio

SOP Single-objective Optimization Problem

STAP Steady Task Allocation Protocol

xx

Abbreviation Meaning

TG Task Group

TID Task IDentification

UWB Ultra-Wide Bandwidth

VO Virtual Object

WSN Wireless Sensor Network

1

1. INTRODUCTION

Motivation

Recent advances in information, communication, and internet technologies impose a new

form of life that is open to emergence of new breakthroughs. Internet of Things (IoT) is an

emerging and fast growing technology, which links digital and physical entities together to

enable a whole new class of applications and services by means of appropriate information

and communication technologies [1]. For a wide variety of application domains, including

agriculture, manufacturing, transportation, healthcare, environment surveillance, smart

buildings, and many others, IoT is a significant approach to improve the flow of

information across their organizational structures [2–4].

IoT concept aims to interconnect objects with different capabilities within the same

heterogeneous network. Most of these entities suffer from lack of sufficient resources such

as ‘‘energy’’. For example, in wireless sensor networks, sensor nodes are often battery

powered, and therefore have strictly limited energy reserve [5]. More extensive and

continuous use of wireless network services will only aggravate this problem. Thus, for

most of IoT systems, reducing the energy consumption (e.g., for communication or

performing a given task) is a primary constraint. However, even today, research is still

focused on performance and (low power) circuit design. There has been substantial

research in the hardware aspects of mobile communications energy-efficiency, such as

low-power electronics, power-down modes, and energy efficient modulation. However,

due to fundamental physical limitations, progress towards further energy-efficiency will

become mostly an architectural and software-level issue. Due to these limitations, there is a

lot of focus on finding the best energy efficient at all layers of the networking protocol

stack. For example, at the network layer, it is highly desirable to find methods for energy-

efficient task allocation, route discovery and relaying of data from the objects to an

external control station so that the lifetime of the network is maximized [6].

One way to minimize the effect of this resource constraint is enabling network entities to

cooperate and make their resources available to perform the given tasks. In other words,

the entities executing the same application should cooperate to reach the optimal allocation

2

of tasks among themselves. However, task allocation problem with the goal of increasing

the lifetime of the network as well as identifying which tasks to be assigned to which

objects is not a trivial task. Generally, when an object is in transmit mode, the transceiver

drains much more energy from the battery than the microprocessor in active state or the

sensors and the memory chip. The ratio between the energy needed for transmitting and for

processing a bit of information is usually assumed to be much larger than one (more than

one hundred or one thousand in most commercial platforms). For this reason, the

communication protocols need to be designed according to paradigms of energy efficiency,

while this constraint is less restrictive for processing tasks [7]. Then, the design of energy

efficient task allocation protocols that consider the communication overhead is a very

peculiar issue of IoT.

It is important to consider some key features that characterize many of IoT objects:

i) Available resources (energy, processing, memory, object ability of perform a given

task) are often limited. This is the case, for example, of battery powered nodes, which

have limited energy amounts.

ii) For a variety of IoT entities, minimizing the energy to be spent for communication/

computing purposes will be a primary constraint. Thereby the need to devise solutions

that tend to optimize energy usage (even at the expenses of performance) will become

more and more attractive.

iii) Objects may provide redundant information that is not unique but can be generated by

set of different objects which are capable of performing the same task.

iv) The number of objects in the IoT is quickly overcoming the number of hosts in the

traditional networks and most of these have a low reliability due mostly to the mobility

and energy. This entails for a new paradigm of communication according to which

objects coordinate with the other objects in groups and provide a unified service to the

application that requires the service.

v) The heterogeneity of the network in terms of capabilities and characteristics of the

objects coupled with the need of an optimal creation of communications for energy

efficient optimization.

Task allocation is a procedure of choosing, subdividing, coordinating and assigning the

correct tasks to the correct entities. It is usually performed considering different aspects

3

such as network topology, energy constraints and processing capabilities of the network

entities. However, most of the existing methods have generic and limited scope in

extending resources regarding the application assigned to the network [8]. Moreover,

although the problem of task allocation is extensively studied in the field of Wireless

Sensor Networks (WSNs), the task allocation problem in IoT networks is an open research

issue. IoT introduces much more dynamic and heterogeneous scenarios when compared to

WSNs. In WSNs the nodes are managed by the same system and have similar

characteristics whereas the IoT objects are grouped opportunistically as they provide

cooperative services and then they have to find the way to act in a coordinated way [9]. In

addition, the size and heterogeneity of the network in terms of capabilities and

characteristics of the objects coupled with the need of an optimal creation of

communications for energy efficient optimization make the problem of task allocation a

very challenging procedure.

In its abstract level, we can consider the problem of task allocation as a special clustering

problem. Accordingly, the optimal selection of task allocators with a high residual energy

that is scattered in the area can be seen as an NP-hard problem [10]. Computational

Intelligence (CI) is the study of adaptive mechanisms that enable or facilitate intelligent

behavior in complex and changing environments. These mechanisms include paradigms

that exhibit an ability to learn or adapt to new situations, generalize, abstract, discover, and

associate. Different approaches of CI, including Evolutionary Algorithms (EAs), swarm

intelligence, and more recently, harmony search, have been used by different researchers

for energy-aware cluster-based routing. These algorithms are examples of population-

based meta-heuristic algorithms, which have two important components: intensification

and diversification [11]. For the algorithm to be efficient and effective, it must be able to

generate a diverse range of solutions, including the potentially optimal solutions, so as to

explore the whole search space effectively, while it intensifies its search around the

neighborhood for an optimal or a nearly optimal solution. For EAs, genetic operators, such

as crossover or reproductive recombination, mutation, and selection are used to evolve

population's solutions based on their fitness (i.e., objective) function. With this in mind, the

researchers must draw attention to consider the EA based methods in task allocation in

IoT.

4

For all of the aforementioned reasons and to complete the lack of academic studies it is

necessary to give a comprehensive and a systematic framework for task allocation problem

in IoT. Thus a common middleware can be designed in order to ensure interoperability

among different devices.

Thesis contributions

In this thesis we addressed the problem of task allocation in IoT. The thesis begins by

presenting a comprehensive survey of concept, characteristics, technologies, applications

and research challenges for IoT which have been developed and became popular in recent

years. Then, the thesis tackles the problem of task allocation in IoT based applications

considering special features and design characteristics of these applications. In this context,

we considered a realistic and two basic scenarios and adopted meta-heuristic methods to

solve this problem.

In the first scenario we assume that each object is capable of performing only a single task.

Then, to cope with different requirements of the applications, we propose two sets of

protocols: protocols with the goal of maximizing the network lifetime and protocols with

the main goal of extending the stability period of the network. For typical applications

(e.g., smart environments) we modeled a task allocation problem as a single objective

optimization problem with the main goal to minimize energy consumption. We proposed

two protocols with different objective models that can have a positive impact on the overall

performance of the network. The objective models are tailored to meet the goal of

minimizing the energy expenditures for communication in the process of tasks allocation to

ensure maximal network longevity. On the other hand, for crucial applications (e.g.,

environmental monitoring, factory automation), we are motivated by the fact that most IoT

based networks are heterogeneous especially in terms of energy levels. Hence, we

proposed two more protocols with the goal of minimizing energy consumption as well as

maximizing the stability periods to ensure stable and balanced operation of whole network.

To validate the proposed protocols, we applied an extensive MATLAB based analysis and

used more than 105 various test instances in the simulations. We evaluated the protocols

by using different measurements and benchmarking parameters and compare them with the

most relevant algorithm in the literature.

5

In the second scenario a more realistic and complex scenario is considered where objects

are capable of performing a variety of tasks and can be members of more than one group.

In this context we developed two novel protocols. The first protocol formats the problem

of task allocation as a meta-heuristic optimization problem with the goal of increasing

stability and operational periods of the network by developing a novel single objective

optimization algorithm. This algorithm designed with an elegant objective function and

heterogeneity aware heuristics that can cooperate to achieve the optimal goal of the

algorithm. This thesis presents the first attempt to utilize EAs in this direction. The key

idea of the proposed protocol is to hypothesize a possible energy-based heuristics for the

individual solution's initialization, fitness evaluation, and mutation to properly maintain

longer stability periods. The second protocol jointly formulates the computational power

utilization and energy efficiency problems in task allocation of IoT as a novel Multi-

Objective Optimization Problem (MOP). To the best of our knowledge, this is the first

work attempting to address computational power utilization and energy efficiency

problems in task allocation of IoT as a MOP. Also in this study, we modified the most

relative method to the stated problem, namely CBATA [8, 12], and redirect its goal toward

energy efficiency by developing M-CBATA algorithm. To evaluate these protocols, we

performed extensive MATLAB based analysis and application layer simulations based on

OMNeT++ using several benchmarking metrics.

Thesis outline

 Chapter 2: presents a general view of IoT, explaining their main characteristics and

issues, introducing the applications in which the IoT are used. Later, the chapter

explains the major challenges in IoT including the task allocation problem as one of the

main problems in IoT. Finally, the chapter ends stating CBATA protocol as it the most

relevant algorithm in the literature.

 Chapter 3: presents the concept of meta-heuristics and evolutionary algorithms defining

both single objective and multi-objective optimization problems. Also this chapter

presents the major components and characteristics of these problems. Finally, this

chapter introduces the conceptual algorithmic framework for EAs.

 Chapter 4: presents the proposed task allocation protocols in the context of IoT. The

chapter begins by defining the problem and describing the system model. Then, the

6

general layout of each of the proposed protocols is given. The components and

evolutionary operators are, then, explained in details in both formal and informal ways.

 Chapter 5: contains simulation results and discussions. It begins with introducing the

required test-bed settings for the playgrounds and the protocols parameters. The results

of the proposed protocols are, then, compared with the results of the most related work

in the literature. In this chapter, the results of protocols of the first scenario are

presented first. Then, the results of the protocols of the second and the more complex

scenario are provided supported by the application layer simulation results that are

calculated by the network simulator OMNeT++. Energy efficiency, duration of the

stability and operational periods, computational power optimization, computational time

and evolutionary algorithm quality are used as evaluation metrics.

 Chapter 6: presents conclusion remarks of the whole work of this thesis, summarizing

the results and giving some candidate future research directions.

7

2. TASK ALLOCATION PROBLEM IN IoT

The International Telecommunications Union (ITU) suggested that the “Internet of Things

will connect the world's objects in both a sensory and intelligent manner” [13]. IoT is an

environment that contains different embedded devices interacting with each other to

perform tasks related to information collection, communications and processing.

Successful applications of IoT aim to interconnect objects with various capabilities within

the same heterogeneous network. The goal is to allow network entities to cooperate and

make their resources available in order to perform the demanded task. However, assigning

tasks to group of heterogeneous objects that are equipped with limited resources poses a

challenging task. The most limited and valuable resource for variety of IoT objects is

battery power. Therefore, improving the energy efficiency in task allocation process is one

of the primary objectives.

This chapter provides an exposition of the fundamental aspects of IoT, and presents some

of their applications as they are identified as one of the most important technologies in the

recent years. Afterwards, the main issues and characteristics of this technology will be

highlighted. Later, the major problems and challenges encountered while implementing

IoT systems are explained. The main body of this chapter is elaborated in the final section

where the details of the task allocation problem in IoT are explained and recapitulated with

a main focus on the task groups and virtual object concept as it are realized to succeed to

provide energy-efficient solutions.

2.1. Background

Nowadays, around four billions people around the world use the Internet for browsing the

Web, sending and receiving emails, accessing multimedia content and services, playing

games, using social networking applications and many other tasks. According to a report

prepared by information and communication technologies agency for the United Nations,

50.1% of the world population is active internet user since September 2016 (See Figure

2.1) [14].

 Data are calculated in December of each year except for 2016.

8

Figure 2.1. The raped development of the internet from 1995

In parallel with the developing of Internet and communication technologies, smart and

connectable objects have started to take more places in our daily lives. The capability of

these objects to access to the Internet and connect and exchange information with each

other over the Internet at an unprecedented rate has realized the idea of the Internet of

Things (IoT). The IoT smart objects are expected to reach over 500 billion entities

deployed globally by the end of 2020 [15]. The data that will be collected from all the IoT

objects are expected be very huge and diverse. Very different types of data can be obtained

from many different applications, such as the number of vehicles at an intersection from

the smart traffic lights, the density of people in a region from the mobile phones, the

average indoor temperature from the air conditioners in the houses, or the rainfall intensity

of an area from the vehicle wipers. Similarly, IoT can be used in the renewable energy

market as well as in providing a better life for people in terms of food, clothing, housing,

transportation, education and entertainment [16].

IoT refers to networks of objects that communicate with other objects and with computers

through the Internet and exchange information about their status and/or the surrounding

environment. “Things” may include virtually any object for which remote communication,

data collection, or control might be useful, such as vehicles, appliances, medical devices,

electric grids, transportation infrastructure, manufacturing equipment, or building systems

0

10

20

30

40

50

60

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

Ju
n

e
 2

0
1

6

Se
p

t.
 2

0
1

6

% World Population

9

[17]. The concept of IoT originated at the Auto-ID Center at the Massachusetts Institute of

Technology (MIT) by Kevin Ashton in 1999 [18]. In the early stages, radio frequency

identification systems are used to connect devices and transmit information via radio

frequency to the Internet to achieve intelligent identification and management. The

importance of IoT quickly realized by some researchers; therefore, several organizations

established research groups to discuss possible architectures and standards while trying to

develop practicable IoT systems. As shown in Table 2.1, definitions of IoT can be found in

different researches, such as United States, European, Japan, and China. Although

definitions from different organizations are somehow different, the requirements for IoT

are essentially the same, such as being able to integrate heterogeneous devices, ubiquitous

data exchange, localization and tracking capabilities, and even being able to make the

simple decision by themselves. To provide better services for the end user, the intelligence

has become a vital issue of IoT [19].

In 2005, the International Telecommunication Union (ITU) formally identified the concept

of the IoT at the world summit on the information society in Tunisia and released an ITU

Internet report that provided an in-depth introduction to the IoT and its effects on

businesses and individuals around the world [20]. The report contained information on key

emerging technologies, market opportunities, and policy implications. In the report, the

IoT is described as follows: connections will multiply and create an entirely new dynamic

network of networks, namely, the IoT. This trend has led to a promising IoT concept that is

an emerging field of study [3, 21-23]. Nowadays, the IoT vision provides a large set of

opportunities to users, manufacturers and companies. In fact, IoT technologies have wide

applicability in many productive sectors including, e.g., environmental monitoring, health-

care, inventory and product management, workplace and home support, security and

surveillance [23].

10

Table 2.1. The definitions and standards of IoT according to different research groups

Organization Web link

MIT http://www.autoidlabs.org/

EPCglobal http://www.gs1.org/epcglobal

National Intelligence Council http://www.fas.org/irp/nic/disruptive

European Commission http://cordis.europa.eu/fp7/ict/enet/home_en.html

European Commission
http://www.smart-systems-integration.org/

public/internet-of-things

Ubiquitous ID Center http://www.uidcenter.org/

Internet of Things China http://www.iotcn.org.cn/

2.2. The Concept of IoT

IoT is an emerging paradigm for information collection, communications and processing.

In literature there are different definitions for the concept of IoT. Due to the multifaceted

nature of IoT concept, definitions must be made on the basis of internet, things and their

meanings [24]. In what follows some of the most used and prominent definitions are listed:

 A world-wide network of interconnected objects uniquely addressable based on

standard communication protocols [2].

 A global infrastructure for information collection that provides advanced services by

interconnected objects based on current and evolving information and communication

technologies [25].

 A network of intelligent objects with the ability to act according to the environmental

conditions, to share information, data and resources and to be organized automatically

[26].

Radio-Frequency IDentification (RFID) tags are considered to be the basic idea behind IoT

concept, thus, all of the objects that are equipped with radio tags may be able to

communicate with other objects equally tagged through internet or any other protocols, to

collaborate and to reach a common goal [27]. As could be seen in Figure 2.2, objects (or

things) can be RFID tags, sensors, actuators, mobile phones, etc. which through unique

addressing schemes, are able to interact with each other and cooperate with their

11

neighbors. In IoT the complex tasks are divided into several simple sub-tasks, each is

assigned to an IoT object, in this way the performance of the entire system is improved

[28]. From a conceptual standpoint, the IoT concept builds on three pillars, related to the

ability of smart objects to be identifiable (anything identifies itself), communicable

(anything communicates) and intractable (anything interacts).

Figure 2.2. Internet of Things

From a system-level perspective, IoT can be looked at as a highly dynamic and radically

distributed networked system, composed of a very large number of smart objects

producing and consuming information. The ability to interface with the physical realm is

achieved through the presence of devices able to sense physical phenomena and translate

them into a stream of information data, as well as through the presence of devices able to

trigger actions having an impact on the physical realm (through suitable actuators) [1].

2.3. Elements of IoT

The main motive of IoT is to make the things or objects in the world to be connected and

able to share information automatically just like people sharing information [1]. To

accomplish this motive, there are many technologies that help the things to communicate

among them.

Internet of
Things

12

2.3.1. Radio frequency identification (RFID)

Radio Frequency IDentification (RFID) is a wireless technology that is used for

identification of objects [29]. Due to its reduced cost and increased abilities of tracking the

location, status of objects and remote reading, it is more preferred than the usual bar code

technology. It is the root cause factor for an object to be identified so that it can be

connected to the internet. RFID uses radio waves to identify things and transfer its

information to the RFID reader without physical contact [30].

2.3.2. Wireless sensor networks (WSNs)

Wireless Sensor Networks (WSNs) play a vital role in connecting the physical world to the

information world [30]. These networks monitor the changes happening in the environment

and report them so that corresponding responses can be taken. WSN contain many

independent nodes that communicate among themselves with the help of wireless radio.

The nodes contain a sensor (collecting data), microcontroller (computing data and

controlling), memory (storing program and data), radio transceiver (for communication

with other nodes) and battery (power supply) [31]. These sensors work together to collect

data and send the results to the base station.

2.3.3. Embedded systems and nanotechnology

Embedded systems are intelligent and things with embedded intelligence become smart

things. These make things perform certain actions automatically. For example a smart

washing machine can wash and dry clothes automatically without human intervention.

Nanotechnology is used to inject intelligence in things which are called smart devices (e.g.,

smart phones, smart watches, smart glasses, etc.). These smart devices are able to process

information, self-configure and take independent decisions [32]. They are connected with

the help of LAN, GPRS, WSN, Wi-Fi, 3G, etc.

13

2.4. Technologies of the IoT

2.4.1. Communication

Due to the heterogeneous nature of IoT objects, communication technologies with different

characteristics can be used in the communication of these objects. Typically, most of the

objects must operate using low power in noisy environments with lossy communication

links. Examples of the communication protocols that are used in IoT include WiFi, IEEE

802.15.4, Bluetooth, Z-wave, LTE and LPWAN technologies.

The main communication technology used in IoT is WiFi that uses radio waves to

exchange data among objects within 100 m range [33]. On the other hand, Bluetooth

provides communication links to exchange data between devices over short distances using

short-wavelength radio to minimize power consumption. In this context, the Bluetooth

Special Interest Group (SIG) produced Bluetooth 4.1 that provides Bluetooth Low Energy

as well as high-speed and IP connectivity to support IoT [3, 34]. Recently, this group has

developed Bluetooth 4.2 and later Bluetooth 5.0 with more supportive features for IoT

applications. Compared with older versions, Bluetooth 4.2 has provided lower energy

consumption, more reliable connections and longer packet transmissions. Bluetooth 4.2 has

also introduced the IPSP 6 (Internet Protocol Support Profile 6) protocol, which facilitates

the connection of intelligent objects in smart homes. On June 16, 2016, Bluetooth 5.0 is

announced during a media event in London. Bluetooth 5.0 has four times the

communication range, two times the transmission rate, and eight times the data

transmission capacity of older versions of Bluetooth [35]. All these advances are important

to allow the intelligent objects to be connected throughout a smart home.

LTE (Long-Term Evolution) is a standard wireless communication protocol for high-speed

data transfer (300 Mbit/s) between mobile phones based on GSM/EDGE and

UMTS/HSPA network technologies [36]. LTE provides multicasting and broadcasting

services for fast-travelling devices. LTE-A (LTE Advanced) is an improved version of

LTE including bandwidth extension which supports up to 100 MHz, downlink and uplink

spatial multiplexing, extended coverage, higher throughput and lower latencies[36, 37].

14

Finally, the LPWAN (Low Power Wide Area Network) is a long-range and cost-effective

wireless communication technology that provides optimum power and resource

management [38]. The main goal of LPWAN is to connect devices with low power and at

a low bit rate over long distances using low bandwidth. In this way, this technology could

be used in many M2M (Machine to Machine) and IoT applications that have limited

budgets and energy problems. There are many standards development organizations and

private industry alliances that make researches on this technology. These organizations

have developed several platforms which support LPWAN, such as SIGFOX [39],

LORAWAN [40], INGENU [41] and TELENSA [42]. These platforms have used a variety

of features and techniques to achieve longer communication range, lower power

consumption and higher scalability. Table 2.2 summarizes some of the technical

characteristics of these platforms [43, 44].

Table 2.2. Technical specifications of some LPWAN platforms

Model

SIGFOX LORAWAN INGENU TELENSA

UNB DBPSK(UL),

GFSK(DL)
CSS

RPMA-DSSS(UL),

CDMA(DL)
UNB 2-FSK

Band 868/915 MHz
433/868/780/915

MHz
2.4 GHz

SUB-GHZ

Bandsı

Data Rate 100 bps 50 kbps 19.5 kbps 346 Mbps

Coverage range
(km)

10 (Urban), 50

(Rural)
5 (Urban), 15

(Rural)
15 (Urban) 1 (Urban)

Advanced error

correction
× ✓ ✓ ✓

Topology Star Star of Stars Star/Tree Star

packet Size 12B Up to 250 Byte 10KB 65KB

Roaming ✓ ✓ ✓ ✓

Authentication and

Encryption
No Encryption AES 128b

16B hash, AES

256b

At the

development

stage

In addition to the aforementioned protocols, RFID, 6LoWPAN, Ultra-Wide Bandwidth

(UWB) and Near Field Communication (NFC) are some of the special short-distance

communication technologies used in IoT applications. RFID consist of a tag and a reader.

RFID tag represents a simple chip or label to identify the objects. RFID reader uses radio

waves to send query signals to the label and retransmits the signal from the label to a

database connected to a processing center. The objects are then detected from the reflected

signals [45]. 6LoWPAN is the abbreviation of IPv6 over low-power Wireless Personal

Area Networks- WPAN (IPv6 over Low power WPAN). 6LoWPAN is a Mesh network of

nodes with low resources (energy, processing and memory units). Each node in this

15

network has a unique IPv6 address and can connect directly to the Internet and the cloud

using IEEE 802.15.4 and open IP standards [46, 47]. NFC is a wireless communication

technology uses the ISO 18092 standard to provide communication with radio frequency

over short distances. NFC operates in a high frequency band (at 13,56 MHz) and supports

data rates up to 424 kbps with a range up to 10 cm [48]. UWB is designed to support the

communications in small ranges using low energy and high bandwidth. The use of this

technology has recently increased to connect sensor nodes [49].

2.4.2. Sensing

The IoT sensing means collecting of data from related objects within the network and

sending it back to a data warehouse, database, or cloud. The gathered data is analyzed to

perform certain actions based on the required tasks. The IoT sensors can be smart sensors,

actuators or wearable sensing devices. To connect the sensor network to the Internet a

standard based on the Internet Protocol could be used. For example, single board

computers integrated with sensors and built-in TCP/IP and security functionalities are

typically used in IoT products [50, 51].

2.4.3. Computation

In IoT computation, there are two components hardware and software. Processing units

such as microcontrollers and microprocessors and software applications provide the

computation capability for the IoT. Various hardware platforms with microcontrollers and

microprocessors were developed to run IoT applications. Examples of these platforms are

Arduino [52], Intel Galileo [53, 54], WiSense [3], Raspberry PI [55, 56], Gadgeteer [57],

BeagleBone and BeagleBone Black [58-60], Cubieboard [61], UDOO [62], Z1 [63] and

Mulle [64].

On the other hand, many software platforms are utilized to provide IoT functionalities.

Among these platforms, Operating Systems (OSs) are important since they run for the

whole activation time of a device. There are several Real-Time Operating Systems (RTOS)

that can provide supports for IoT applications. For instance, the Contiki RTOS [65] has

been used widely in IoT scenarios. Contiki has a simulator called Cooja which allows

researcher and developers to simulate IoT and WSN applications. TinyOS [66], LiteOS

16

[67] and Riot OS [68] are also examples of RTOS that are designed for IoT environments.

Moreover, some auto industry leaders in partnership with Google established the Open

Auto Alliance (OAA). OAA is planning to bring new features to Android platform that

provide support for Internet of Vehicles (IoV) paradigm [69]. Some features of these

operating systems are provided in Table 2.3.

Table 2.3. The most commonly used operating systems in IoT

Operating

System

Language

Support

Minimum

Memory

Event Based

Programming

Multi-

threading

Dynamic

memory

TinyOS [66] nesC 1 KB Yes Partial Yes

Contiki [65] C 2 KB Yes Yes Yes

LiteOS [67] C 4 KB Yes Yes Yes

Riot OS [68] C/C++ 1,5 KB No Yes Yes

Android [70] Java - Yes Yes Yes

Finally, cloud platforms play an important role in the computation in IoT. Smart objects

can send the large data to the cloud for real-time processing. IoTCloud, OpenIoT, NimBits

and Hadoop are examples of cloud platforms that support IoT [3].

2.4.4. Identification and addressing

Identification is used to provide an open identity to each object within the network.

Identification is important to name and match services with their demand. Many

identification methods are available for IoT. Examples of these methods include Electronic

Product Codes (EPC) and Ubiquitous codes (uCode) [71].

Addressing the IoT objects is also important to distinguish between object ID and its

address. Object ID refers to its name whereas object’s address refers to its address within a

communications network [72].

2.4.5. Semantics

Semantic in the IoT refers to the ability to extract knowledge smartly by different machines

to provide the required services. Knowledge extraction includes discovering and using

17

resources, modeling information, and recognizing and analyzing data. Thus, semantic

represents the brain of the IoT as it used to send demands to the right resource. The

requirement of IoT applications of Semantic is solved using semantic web technologies

such as the Resource Description Framework (RDF) and the Web Ontology Language

(OWL) [73]. Recently, the World Wide Web consortium (W3C) has recommended the

Efficient XML Interchange (EXI) format for a semantic service in the IoT [74]. EXI is

important in the context of the IoT because it is designed to optimize XML applications for

resource-constrained environments. In addition, EXI reduces the need for bandwidth

without affecting resources such as battery life, code size, energy consumed for processing,

and memory size. It converts XML messages to binary to reduce the required bandwidth

and minimize the required storage size [3].

2.5. The main services of IoT

IoT has wide range of applications in many areas from home and office automation to

production line and retail product tracking. To improve the development, optimization and

speed of each IoT application one or more of IoT services are required. In general, IoT

services can be categorized into four classes: Identity-related Services, Information

Aggregation Services, Collaborative-Aware Services and Ubiquitous Services [3, 75, 76].

 Identity-related Services: The most basic and important services that are used in other

types of services. Identity-related services are used whenever the identity information of

the objects in the IoT application is needed. Every application that needs to bring real

world objects to the virtual world has to identify those objects.

 Information Aggregation Services: These services are needed to collect and summarize

raw sensory measurements that are needed to be processed and reported to the IoT

application.

 Collaborative-Aware Services: These services are used together with the information

aggregation services. The main goal of these services is to use the obtained data by the

information aggregation services to make decisions and react accordingly.

 Ubiquitous Services: These services are used with the collaborative-aware services.

They are intended to provide collaborative services to anyone, at any time, in anywhere.

18

The aforementioned concept of IoT and all of its related subjects and technologies are

summarized in Figure 2.3.

Figure 2.3. The taxonomy of Internet of Things

2.6. Architecture of IoT

The basic architecture of IoT consists of three layers. This architecture has been widely

used to describe the IoT approach [19, 77-80]. As it can be seen in Figure 2.4 (a), the three

layered architecture consists of the perception, network and application layers. The

perception layer (also called the sensing layer or the technology layer) is the bottom layer.

Internet of Things
(IoT)

Elements of IoT Services
of IoT

RFID Tages

Wireless
Sensor

Networks
Sensing

Embedded
Systems and

Nanotechnolog
y
 Semantics

Computation

Hardwa
re

Identification
and Addressing

Softwar
e

Identificati
on

Smart sensores,

wearable sensing
devices, embeded

sensors, actuators

RDF, OWL, EXI

WiFi, IEEE
802.15.4, Z-

wave, LTE-A,

Bluetooth,

LPWAN, RFID,

6LoWPAN,

NFC, UWB

Addressing

Information
Aggregation

Services

Collaborative-
Aware

Services

Arduino, Intel Galileo,

WiSense, Raspberry PI,

Gadgeteer, BeagleBone,
BeagleBone Black,

Cubieboard, UDOO, Z1,

Mulle

RTOS (Contiki, LiteOS,

TinyOS, Riot OS,

Android)
Cloud (IoTCloud,

OpenIoT, NimBits,

Hadoop)

EPC,

uCode
IPv4, IPv6

Identity-
related

Services

Ubiquitous
Services

Technologies
of IoT

Communication

19

This layer can be regarded as the hardware or physical layer and it is responsible of data

collection process. The intermediate layer is the network layer. This layer is responsible for

linking the perception layer and the application layer so that things can be passed from the

perception layer to the application layer and systems, applications, services can be passed

from the application layer to the perception layer. The application layer provides services

and applications by analyzing and integrating the information received from the other two

layers.

Although the three layered architecture is the basic model, other models that can bring

more abstraction to the IoT architecture are also proposed in literature. Figures 2.4 (b) and

(c) show the middle-ware based model and five layered model architectures, respectively.

Figure 2.4. Architecture of IoT (a): Three layered model (b): Middle-ware based model (c):

Five layered model

Middle-ware model adds the gateway and middleware layers to the basic three layered

model of IoT [2], [81]. In middle-ware model the perception layer can be called the edge

layer and it is used to provide a definition for data gathering. Unlike the three layered

model which uses only one layer (i.e., the network layer) to connect the perception layer to

the application layer, the middle-ware model uses the gateway layer together with the

network layer to manage the communications in the IoT environment and to transmit

messages between the objects and systems. The middleware layer is another layer added to

 (c)

Business Layer

Application Layer

 Service Management
Layer

 Object Abstraction
Layer

 Objects Layer

 (b)

 Application Layer

 Network Layer

 Perception Layer

Application Layer

 Middleware Layer

 Network Layer

 Access Gateway Layer

 Perception Layer

 (a)

20

the middle-ware models structure. This layer is often used to provide a more flexible

interface between hardware and applications. Finally, the top layer of the middle-ware

model is the application layer. This layer has the same functionality and definition as the

application layer in the three layered model.

The five layered model is another model used in the IoT architecture [82-84]. A brief

discussion of the five layers of this model (not to be confused with the TCP/IP layers) is

presented below:

 Objects layer: The first layer of the five layered model is the object layer (also called the

perception layer). This layer is represents the physical sensors of the IoT that perform

information gathering and processing. In addition, this layer digitizes and transfers data

to the object abstraction layer through secure channels. The big data created by the IoT

are initiated at this layer.

 Object abstraction Layer: Exports the data generated at the objects layer to the service

management layer using secure channels. The data transfer can be performed using

various technologies such as RFID, 3G, GSM, UMTS, WiFi, Bluetooth, Infrared,

ZigBee etc. Furthermore operations such as cloud computing and data management are

handled in this layer.

 Service management layer: Also known as middleware layer. This layer matches

requests with services based on addresses and names. Also, this layer processes the

received data, makes decisions and provides the necessary services. Finally, the service

management layer enables the IoT applications to work with heterogeneous objects

without considering a specific hardware platform.

 Application layer: This layer is responsible of providing the services requested by

customers.

 Business layer: This layer also known as management layer, it manages the overall IoT

system activities and services. The responsibilities of this layer are building a business

model, graphs, flowcharts, etc. based on the data received from the application layer. At

the same time, this layer carries out designing, analyzing, implementation, evaluation,

monitoring and development of components related to the IoT system.

21

2.7. Platforms of IoT

Section 2.4.3 has sight the light on some of the IoT platforms from the perspective of

computation. These platforms can be divided into software and hardware platforms. This

section focuses on the software platforms of IoT.

The purpose of any device in the IoT network is to communicate and exchange information

with other devices and/or with cloud-based applications. The gap between the IoT devices

and the data in the network is filled by the IoT platforms. An IoT platform provides links

among objects and the data of the network. It also maintains background applications for

understanding and analyzing the data. In this context, there are several IoT software

platforms such as Appcelerator, AWS IoT, Ericsson Framework, IBM IoT Foundation

Device Cloud and ThingWorx. Making a choice among these platforms is dependent on

different features such as device management and integration support, information

security, data gathering protocols, data analysis and visualization [85, 86]. These features

are briefly summarized below:

 Device Management and Integration Support: Device management is one of the most

important features expected from any IoT software platform. The platform should be

able to monitor the status of objects and track their operation status, manage

configuration and software updates, and provide device level error checking and error

reporting techniques. At the end of the day, the platform must be able to provide users

with device-level statistics. On the other hand, integration support is another important

feature expected from the IoT software platform. APIs must provide access to essential

operations and data. This access is usually accomplished through REST-APIs

(REpresentational State Transfer APIs).

 Information Security: The information security that is required to operate an IoT

software platform is much higher than the information security required for general

applications and services. Generally, the network connection between the IoT objects

and the IoT platform must be encrypted with a strong encryption mechanism to avoid

potential eavesdropping. However, most of the low-cost and low-powered objects

involved in IoT platforms cannot support an advanced access control measures. In this

case, the IoT software platform itself should implement alternative measures to solve

device level security issues. For example, separation of IoT traffic into private

22

networks, strong information security techniques at the cloud application level,

requiring regular password updates, supporting software updates only by the way of

authentication, and so on increase the security level of the IoT platform.

 Data gathering protocols: Another important issue which needs attention is the types of

protocols used for data communication between the components of an IoT software

platform. An IoT software platform may need to manage millions or even billions of

objects. Lightweight communication and data gathering protocols should be used to

ensure low energy consumption and low network bandwidth functionality.

 Data Analysis: The data collected from the objects of IoT must be analyzed in an

intelligent way to obtain meaningful information. There are four data analysis methods

that can be used within the framework of IoT: real time, batch analysis, predictive and

interactive analysis [87]. Real-time data analysis performs on-the-fly analysis on the

streaming data. An example operation includes the real-time streaming on the cloud

applications. Batch analysis runs operations on an accumulated data set. Thus,

operations take place at scheduled time intervals and may take several hours or days.

Predictive analysis focuses on making estimations based on various statistical

techniques and machine learning methods. Finally, interactive analysis performs

multiple exploration analysis on both streaming data and accumulated data set.

 Visualization: The proper viewing of the information is another important requirement

that is expected from the IoT software platform. Visualization is carried out together

with the data analysis. Thus, the IoT software platform must provide the required tools

and APIs to visualize the data gathered from the objects as well as the information

obtained after the data analysis.

Table 2.4 summarizes the features of some IoT software platforms.

23

Table 2.4. Characteristics of some software platforms used in IoT framework

IoT Software

Platform

Device

Management

Integration

Support
Security

Data

Gathering

Protocols

Data

Analysis
Visualization

Appcelerator × REST API
SSL, IPsec,

AES-256

MQTT,

HTTP
Real Time ✓

AWS IoT ✓ REST API
TLS, SigV4,

X.509

MQTT,

HTTP1.1
Real Time ✓

Ericsson

Framework
✓ REST API

SSL/TSL,

Authentication

(SIM based)

CoAP

Real

Time,

Predictive

Analysis

×

IBM IoT

Foundation

Device

Cloud

✓
REST and

Real

TimeAPIs

TLS, IBM

Cloud SSO,

LDAP

MQTT,

HTTPS
Real Time ✓

EVRYTHNG -

IoT × REST API SSL
MQTT,CoAP,

WebSockets
Real Time ✓

ThingWorx ✓ REST API
ISO 27001,

LDAP

MQTT,

AMQP,

XMPP,

CoAP,

DDS,

WebSockets

Real

Time,

Predictive

Analysis

✓

2lemetry - IoT ✓

Salesforce,

Heroku,

ThingWorx

APIs

SSL,

ISO 27001,

SAS70 Type II

audit

MQTT, CoAP

,

STOMP,

M3DA

Real Time ×

2.8. Applications of IoT

The Applications that are developed within the framework of IoT can be classified

according to types of network availability, coverage, scalability, heterogeneity,

repeatability, and user participation and impact [4, 88]. IoT can be seen as an important

technology that improves the flow of information between the organizational structures of

these applications. Figure 2.5 shows the application areas of IoT and some scenarios

related to them.

IoT have applications in a wide variety of fields, including agriculture, manufacturing

industry, transportation, healthcare services, environment monitoring, smart buildings, and

many other areas [89]. Next, some areas of IoT application are presented:

24

Figure 2.5. Applications domains of IoT and relevant major scenarios

 Transportation: IoT can be applied to produce intelligent transportation Systems. In

intelligent transportation systems public and private transportations can interact, and

choose the best paths to avoid delays and congestions. Another example of using IoT in

transportation is smart parking. Finding a parking space in a busy city center can be

time consuming and leads to increased traffic congestion. Installing a sensor that detects

if there is a vehicle in each space can be used to provide drivers with information on

whether there are empty parking spaces at any time.

 Environment monitoring: IoT technology can be successfully applied to environmental

monitoring applications. In this case the most important role depends on the ability of

distributed and self-managed sensors to detect natural phenomena (e.g., temperature,

Applications Domains of IoT

Transportation
and Logistics

Healthcare
Services

Smart
Environments

Personal and
Social

Applications

Logistics

Intelligent
Transportation

Systems

Smart Parking

Environmental
Monitoring

Tracking

Telemedicine

Ambient
Assisted Living

Sensing

Industrial
Automation

Smart
Agriculture

Smart
Homes and
Buildings

Social
Networks

Historical
Queries

Improved
Game Rooms

25

wind, rainfall, river height etc.). Real-time information processing, coupled with the

ability of a large number of devices to communicate among them, can provides a solid

platform to detect and monitor abnormal events that may endanger human and animal

life [90].

 Healthcare Services: IoT plays a crucial role in healthcare services. It can be used in

many ways such as tracking the number of patients in a hospital, identifying the right

patient for the right medicine and monitoring a patient’s health conditions from a

remote place which is known as Telemedicine [91]. Telemedicine includes remotely

providing treatment, diagnosis and treatment. Ambient assisted living provides technical

systems for elderly people who are alone at home and need to be monitored. The

patient’s health status is periodically sensed using RFID and sensors. The doctor from a

remote location provides medical assistance based on the information received.

 Industrial Manufacture: In manufacture IoT can be used in industrial automation.

Industrial automation ensures that goods being mass produced with lower costs and

consistent quality. Moreover, IoT can affect factory operations in many different forms:

from identifying of risky conditions to efficient logistics management [92], from task

scheduling to machine status monitoring [93]. In such scenarios, sensors are

ubiquitously placed along a networked production line to monitor operations. Data

collected by the network is sent to a computer or a server to be processed. On the basis

of decisions made after the processing, actuators can be triggered. In such a complex

scenario, some messages such as scheduling of urgent tasks or warning messages of

risky situations need more priority than others.

 Agriculture: In the field of intelligent agriculture, IoT can be widely used [94, 95]. In

smart agriculture systems, IoT can be used to increase agricultural production and

reducing environmental pollution caused by abusing agricultural chemicals. Moreover,

IoT can be helpful in monitoring growth of plants. Plants are fitted with RFID tags and

sensors. When there is a drastic or unexpected change in the growth of plant due to

temperature / humidity, the sensors sense this and the RFID tags send information to the

reader and are shared across the internet. Then, the farmer or scientist can access this

information from a remote place and take necessary actions.

 Smart homes and buildings: Equipping buildings with advanced IoT technologies may

help in both reducing the consumption of resources associated to buildings (such as

electricity, water) as well as in improving the satisfaction level of people living in the

26

building. The effect is large both in economic terms (reduced operational expenditures)

as well as environmental cleaning terms (reducing the carbon emissions associated to

buildings). In this application, a key role is played by sensors, which are used to both

monitor resource consumptions as well as to predict and identify the needs of current

users [1].

 Security and surveillance: Security surveillance has become a necessity for enterprise

buildings, shopping centers, factories, car parks and many other public places. IoT

technologies can be used to greatly enhance the performance of existing solutions in this

area [1]. IoT can provide cheaper and less invasive alternatives to the widespread

deployment of cameras while at the same time preserving users’ privacy. Ambient

sensors can be used to detect the presence of dangerous chemicals. Sensors monitoring

the behavior of people may be used to assess the presence of people acting in a

suspicious way. Efficient early warning systems can therefore be built. Personal

identification by means of RFID or similar technologies is also an option.

 Personal and social applications: The applications of this area are designed with the goal

of the establishing and developing of social relations [2]. These applications are also

used for creating social networks, tracking and questioning past behaviors and

transactions, and prevention of losses and thefts. Sharing the current location and

activity information, determining the location of lost items that attached with RFID tags

and similar functions can also be achieved by this technology.

2.9. Challenges of IoT

The main concept of IoT is the extensive presence of interconnected objects. In IoT

anything, conveniently tagged, may be able to communicate with other objects equally

tagged through internet or any other protocols, to collaborate and to reach a common goal.

Although many IoT based systems have been developed, there are many design challenges

encountered by the researchers and developers. Given foreword the complexity of the IoT

concept and the design challenges for its enabling technologies, a number of obstacles need

to be overcome for IoT to achieve its vision. Bellow the main challenges for IoT are

presented [96]:

 Constrained resources: The things composing the IoT are often resource constrained.

Available resources on object such as electrical energy, memory, processing, and object

27

capability to perform a demanded task, are often limited. IoT objects need energy for

sensing, communicating and processing information. If objects isolated from the electric

grid they must rely on batteries (most of the object are battery powered). Replacement

of these batteries can be impossible or a problem, even if energy consumption is highly

efficient. That is especially the case for applications using large numbers of objects or

they are placed at locations that are difficult to access. This is the case, for example, of

wireless sensor nodes, which are often battery powered, and therefore have limited

energy amounts. Another example is represented by the scarce processing capabilities of

RFID tags. To maintain the constrained computational capacity in a most efficient

manner, it needs to possess only computational capabilities for the task it has to

perform.

 Heterogeneity: IoT concept relies on the implementation of network systems of

cooperative intelligent objects with key interoperability capabilities. The devices taking

part in the system are expected to have very different characteristics and capabilities in

terms of computational and communication functionalities. In fact, one of the most

important factors that make the IoT concept work efficiently and accurately is the

integration of several technologies and communications solutions. However, such a

high level of heterogeneity brings efficient management challenges at both the

architectural and protocol levels.

 Scalability: The number of objects that are connected in an IoT system is much higher

than the number of computers connected in the conventional Internet (may be in several

times) [97]. As IoT concept implies that every object that is appropriately tagged can be

a part of the IoT system, scalability issues arise at different levels, including:

o Naming and addressing.

o Data communication and networking.

o Information and knowledge management.

o Service provisioning and management.

There are two approaches to deal with these challenges:

i) Reducing the number of messages and the amount of data transmitted throughout all

the layers of the system [98].

ii) Choosing a small cluster of objects that are able to execute a demanded task [99].

28

 Identification: Identifying of objects is one of the primary issues in IoT. In order to be

able to address the billions of objects in the IoT, the system first need to be able to

identify them with a unique ID. Currently, in the conventional Internet the IPv4 protocol

identifies each node using a 4-byte address [100]. However, it is well known that the

number of available IPv4 addresses is decreasing rapidly and will become insufficient

in the very near future [101]. To this end, a much better choice is using IPv6 protocol

which with its 128-bit addresses provides more suitable solution to address a larger

number of devices [102]. However, more efficient and appropriate solutions need to be

developed to meet the specific requirements of IoT environment such as bandwidth

efficiency, energy-efficient and capabilities of working with limited hardware resources.

 Searching and discovering: In IoT, like in all distributed networks, a group of nodes

want to cooperate to perform a given task. In order to perform this cooperation objects

need to learn of the existence of each other. Therefore, searching and discovering

services are fundamental of any distributed computing system [103]. Usually, in IoT

context the exact location of the other objects and form of stored data are initially

unknown to the requester. So an intermediate block can be used to extract this

information.

 Mobility: A large part of IoT objects are not stationary, but have a certain degree of

mobility. In IoT many services are expected to be established by mobile users or

objects, therefore, mobility is taken place among the other challenges of IoT [3]. An

example of this situation is a person who owns various devices and he is mobile during

the daily activity of his life. This person may make data queries or request to activate

other things, which will be probably also in movement. It’s clear that mobility is not a

negligible situation in the context of IoT since the fundamental concept of IoT is the

ability of accessing and managing objects independently from where they are located.

Therefore, IoT management and resource mobility schemes should be developed

accordingly.

 Security and privacy: Due to the tight entanglement with the physical environment,

security is critical to the widespread use of IoT applications. IoT systems should be

designed with security and privacy-preserving in consideration. In this respect, three

main challenges require innovative approaches and should be subject of researches.

These challenges are data confidentiality, privacy and secrecy. Data confidentiality

refers to protecting data from being accessed by unauthorized parties. In other words,

29

only the persons who are authorized should gain access to data and based on their

authorization level only these persons should have the ability to modify the data.

Privacy refers to the rules by which a person or group owning information control with

whom to share information and under what conditions. In terms of Secrecy, it means

that only the sender and intended receiver should be able to understand the contents of

the transmitted message. Security should be considered a key system-level property, and

be taken into account in the design of architectures and methods for IoT solutions.

Solutions for security problems of IoT represent a key importance for acceptance of this

technology by users. In order to make the IoT based objects and applications more

reliable and attack resistant, the following issues need to be addressed:

o Data confidentiality: Data transmission, retrieval and processing are an integral part

of any IoT application. Most of these data are personal data or information thus; such

a sensitive data is needed to be protected using an encryption mechanism. Wherever

the data is online secure Socket Layer Protocols (SSL) can be used to ensure that

data is accessible only by authorized parties. However, the data must also be

protected within the wireless protocol. These sensitive data is expected to be

confidential and encrypted while being transmitted wirelessly. All of the suggested

solutions for data privacy are based on encryption techniques. However, the

traditional encryption techniques are inefficient in terms of resources consuming

(consume a large amount of energy and bandwidth from both the sender and the

receiver). Therefore these techniques cannot be applied to the resources limited IoT

objects. There is requirement to develop new solutions to be implemented in the

framework of IoT regardless of resource constraints.

o Authentication: Authenticating of data being received (or transmitted to other

objects) in IoT applications is challenging and open research filed. In traditional

networks, authentication can be applied using several techniques. Examples of these

methods are password, pre-shared key, and public key cryptosystems. However, the

heterogeneity and complexity of objects and networks in IoT applications make these

methods unsuitable for IoT systems. Furthermore, the rapidly increasing number of

objects can make key management difficult or in some cases an impossible

procedure. For example, although public-key cryptosystems have advantage for

constructing authentication schemes or authorization systems, the lack of a global

root Certificate Authority (global root CA) hinders many theoretically feasible

30

schemes from actually being deployed. Without the global root CA, it becomes very

challenging to design an authentication system for IoT. Furthermore, it may be

infeasible to issue a certificate to each object in IoT since the total number of objects

is often huge [104]. Therefore, the authentication methods for IoT should take into

account the different design features and characteristics of IoT applications.

 Device management: Management of objects is of paramount importance for the

development of the IoT applications. Objects should not only be able to connect and

communicate over a wide number of communication technologies, but also these

objects should be remote or self-managed. The device management process is complex,

and includes a lot of different actions, such as switching on/off the device, configuring

the device/network, updating firmware/software, recovering from errors, monitoring the

device/network and gathering data and connectivity statistics [105]. Solutions for an

efficient device management should take into account the heterogeneity of objects and

the limitations of their existing resources. Furthermore, a large amount of efforts is

required to distribute and configure objects in many IoT applications; this is the case for

example in WSNs. This problem is an obstacle to the adaptation and long-term

sustainability of large-scale applications. One of the most important solutions to

increase the applicability of large-scale IoT applications is to use configurable

middleware. This middleware layer should provide intelligent device management that

supports self-configuration, self-optimization and self-improvement and maintenance.

For example, gateway devices should be able to detect objects, configure detected

objects, identify faulty nodes, and make decisions to eliminate errors [106]. In this

context, many of the standardized device management solutions such as TR-069 [107],

SNMP [108] and NETCONF [109] are not suitable for the management of resource

restricted objects. Such solutions are generally used for the management of resource-

rich devices such as routers, switches, and smartphones. Devices management solutions

for IoT applications should take into account the design characteristics of IoT, such as

scalability and limited resources.

In addition to the previously mentioned challenges, other difficulties encountered in IoT

applications can be listed as follows:

 Availability of internet at everywhere and at no or low cost.

 Low-cost smart sensing system development.

31

 Fault Tolerance.

 QoS management.

 Acceptability among the society.

2.10. Task Allocation in IoT

Task allocation is a procedure of choosing, subdividing, coordinating and assigning the

correct tasks to the correct entities [110]. In IoT task allocation with the goal of satisfying

the specific design features of IoT applications as well as identifying which tasks to be

assigned to which objects is not a trivial process. Given the IoT paradigm and the

requirements of IoT applications, the objects involved in the execution of the same

application should be cooperates and coordinated to reach the optimal allocation of tasks

among them. The objects should execute tasks to reach the global application target and to

satisfy the relevant requirements while optimizing the network performance in terms of

resources used. This issue should be continuously addressed to dynamically adapt the

system to changes in terms of application requirements and network topology.

2.10.1. Major challenges in task allocation in IoT

IoT poses various challenges to research community. This section briefly summarizes

some of the major challenges faced while solving task allocation problem in IoT:

 Network deployment: Careful management of the network, where objects are randomly

deployed in uniform or non-uniform distribution, is necessary in order to ensure entire

area coverage and also to ensure that the energy consumption is also uniform across the

network.

 Data aggregation: The network resources optimization is not only focused on the

reduction of messages transmission power, but also includes convenient data processing

that reduces the amount of data that are transmitted over the data sinks. This is the

principle behind node clustering protocols, such as LEACH [111], in which cluster head

nodes aggregate data and reduce transmitted data volume, which in turn reduces the

overall transmission energy consumption of the network.

 Constrained resources: Most of IoT objects have limited amount of energy, memory,

processing, and object capability to perform a given task. This is the case, for example,

32

in battery powered wireless sensors. Thus, for most of IoT systems, reducing the energy

consumption (e.g., for communication or performing a given task) is a primary

constraint. One way to minimize the effect of this resource constraint is enabling

network entities to cooperate and make their resources available to perform the given

tasks. In other words, the entities executing the same application should cooperate to

reach the optimal allocation of tasks among themselves. However, task allocation

problem with the goal of increasing the lifetime of the network as well as identifying

which tasks to be assigned to which objects is not a trivial task.

 Uniform energy consumption: Task allocation schemes should ensure that energy

dissipation across the IoT network should be balanced and the task allocator should be

rotated in order to balance the network energy consumption.

 Heterogeneous network: Heterogeneity which regards both object capabilities and

characteristic parameters makes resource allocation operation a challenging task.

Heterogeneity not only entails heterogeneity among devices, but also heterogeneity

among roles that the same device can assume. For example, a temperature sensing node

could be used both to periodically send sensed data to a server for monitoring purposes.

 Integrity: The key issue is that for connecting and integrating all the objects into the

IoT, there are many different technologies and protocol which introduce fragmentation

in a scenario that should be rich of interoperability. IoT interoperability involves not

only the ability of objects to exchange information but also includes the capability for

interaction and joint execution of common tasks [112].

 Scalability: Given the size of a distributed heterogeneous system such as the IoT

network, the optimal creation of communities and the task allocation within are not

trivial issues. Furthermore, when an IoT network is deployed, in some cases, new nodes

need to be added to the network in order to cover more area, prolong the life time of the

current network or increase the accuracy of some tasks by achieving a certain level of

redundancy. In all these cases the task allocation scheme should be able to adapt to

changes in the topology of the network.

 Data redundancy: Objects may provide information that is not unique but can be

generated by set of different nodes which for example are capable to sense the same

physical measure of the same geographical. When the task allocation scheme assign

tasks to a set of objects the level of data replication should be considered.

33

 Dynamic nature: Typical IoT networks are characterized by the dynamic behavior of

their objects. In fact, emerging applications in smart environments such as smart cities

and smart homes, where IoT is preponderant, are often based on opportunistic networks.

In opportunistic networks, connections among nodes are created dynamically in an

infrastructure-less way [113]. In such a dynamic context, with frequent and quick

changes of scenario, task allocation approach should be adopted to such dynamic

environment when assigning tasks or forwarding a messages.

 Topology change: IoT is strictly related to ubiquitous networking, which is

characterized by a huge number of nodes deployed over an extensive area. The network

is not only made of static or semi-static devices as it is in traditional networks, but

topology changes quickly, so that it is impossible for objects to be able to know the

whole network topology. As a consequence, challenges arise with respect to

autonomous reconfiguration and interoperation of nodes when tasks are being allocated.

For instance, it may happen that there are no nodes available to perform a given task at

the desired geographical location and at a given time.

All these challenges portrait a very complex and dynamic network, where all objects need

to collaborate in order to reason and allocate available resources among themselves with

the aim of executing the applications assigned to the network.

2.10.2. Literature review

Task allocation is usually performed considering different aspects such as network

topology, energy constraints and processing capabilities of the network entities. However,

most of the existing methods have generic and limited scope in extending resources

regarding the application assigned to the network [8]. Moreover, although the problem of

task allocation is extensively studied in the field of WSNs, the task allocation problem in

IoT networks is an open research issue.

In [114] the authors proposed an energy-balanced allocation protocol for real time WSN

applications. They formulated the problem using both Integer Linear Programming (ILP)

and a polynomial time 3-phase heuristic. In their model, they assumed that each node is

equipped with discrete dynamic voltage scaling. Although their protocols succeed in

34

improving the lifetime of the network, they considered only homogeneous networks, which

are not common in real life scenarios.

The same energy problem is studied in [115]. The authors provided an adaptive task

allocation algorithm that aims at reducing the overall energy consumption by achieving a

fair energy balance among the sensor nodes in the overall network. The proposed

algorithm achieved a good level of adaptation to environmental changes and uncertain

network conditions by using centralized and distributed message exchanged mechanisms

between the nodes and task allocator. However, these mechanisms introduced considerable

increments in packet overheads.

The authors of [116] developed a centralized solution for task allocation in WSNs. In this

work, the application assigned to the network is divided into a sequence of distributed

tasks to be assigned to each sensor device. Then, the energy consumed to perform each

task is then considered to compute a cost function allowing the evaluation of each

deployment solution. In this method the application assigned to the network can be

performed in different approaches: gathered data can be immediately sent to a sink or it

can be processed before being transmitted. In the second approach the size of data to be

sent would be smaller, and therefore the transmission energy consumption would be lower

than the second approach. However, this is achieved at the expense of consuming more

energy for processing.

Another centralized algorithm is proposed in [117]. The algorithm is located at a gateway

which is supposed to be equipped with sufficient power supplies. The algorithm adopted an

adaptive intelligent task mapping scheme coupled with a scheduling mechanism based on a

genetic algorithm to provide real-time guarantees. Finally, in order to extend the network

lifetime a hybrid fitness function is embedded in the algorithm to ensure workload

balancing among the collaborative nodes.

In [118], in an effort to reduce the overall energy consumption of the sensor network

system while meeting the deadline requirement, the authors developed an energy-efficient

tasks scheduling scheme that makes a trade-off between energy saving and QoS-

guaranteeing. The proposed method aims to minimize the execution energy while

allocating a set of real-time tasks with dependencies onto a heterogeneous sensor network.

35

Furthermore, in order to find an optimal allocation that meets user’s deadline, the method

adopts the divide-and-conquer. The method portions the tasks into tasks partitions and then

optimally solves the scheduling problem in branches with several sequential tasks by

modeling the branches as a Markov Decision Process. Then, sensors failure can be handled

by rescheduling part of the tasks graph.

EBSEL, the Energy-Balancing task Scheduling and allocation heuristic whose main

purpose is to Extend the network’s Lifetime, through energy balancing is proposed in

[119]. EBSEL has four phases in which tasks are combined into groups in order to

minimize the communication energy but preserve possible parallelism. These phases are

task grouping phase, node selection phase, threshold calculation phase, and task allocation

phase. The goal of task grouping phase is to form groups of tasks in order to reduce the

communication cost, without sacrificing parallelism. In node selection phase a number of

sensor nodes, out of the total nodes is selected to be allocated the tasks. Threshold

calculation phase attempts to extend the lifetime of the nodes. It sets an approximate

energy threshold for achieving energy balancing, and tries to avoid severe energy depletion

of the selected nodes. While allocating the groups, the nodes will not be depleted beyond

this threshold. Finally, task allocation phase maps the task groups to the nodes while

maintaining energy-balancing. It accomplish the energy balancing by allocating the task

group with the highest computational energy to the node with the highest remaining energy

Recently, in [119] the authors suggested Logic Gate-based Evolutionary Algorithm

(LGEA) to solve the problem of task allocation in WSNs. The problem is formulated as a

binary multi-objective optimization problem with the goal of minimizing the number of

active nodes and the computation and communication load distribution. The algorithm

introduces an original logic gate mechanism as perturbation operator to search for the best

task allocation scheme and satisfied the task workload and connectivity by considering

them as the constraints of the problem.

To tackle the problem of dynamism of a distributed network, the authors of [121]

developed a decentralized lifetime maximization algorithm that determines the distribution

of tasks among the nodes in the network. The algorithm is formulated as distributed

optimization algorithm based on a gossip communication scheme with the goal of

36

extending network lifetime. The algorithm uses iterative and asynchronous local

optimizations of the task allocations among neighboring nodes.

Similar approaches are studied in [122] and [123]. In [122], a particle swarm optimization

method based the distributed algorithm is proposed. The major drawback of these works is

that they do not take into account the deadline of the applications assigned to the network.

In [123], an adaptive decentralized task allocation algorithm for heterogeneous WSNs is

proposed. This algorithm is based on non-cooperative game theory and focuses on

reducing the overall energy consumption and task execution time.

In [124], a middleware algorithm, named SACHSEN, for resource allocation in

heterogeneous WSNs that run multiple applications is presented. SACHSEN starts with a

locality-aware service discovery and extracts important information in order to generate

primary task-sensor assignment. Then, each application is decomposed into multiple tasks

by applying a divide-and-conquer strategy and recursive decomposition is used in each

category to divide a generic service into more specific services until all the decomposed

services cannot be further divided. Finally, SACHSEN exploits resource heterogeneity to

make effective task-sensor assignments explicitly taking performance requirements of

application into account.

All the aforementioned works focus only on task allocation in WSNs. However, the focus

of this work is different as it considers more complex IoT scenarios. IoT introduces much

more heterogeneous scenarios than WSNs. In WSNs, the nodes are managed by the same

system and have similar characteristics whereas the IoT objects are grouped

opportunistically as they provide cooperative services. Therefore, IoT objects must find a

way to coordinate the given job [9].

In [125], the authors dealt with the problem of task allocation in IoT from a different

perspective. They assumed that IoT resources are not able to interact with each other

directly to perform a given task. Instead, the interaction between resources can be done via

service gateways which are deployed in an IoT environment along with the IoT resources.

Then, they transformed the resource allocation problem into a variant of the degree

constrained minimum spanning tree problem. In order to solve this problem the authors

37

proposed a service resource allocation approach which minimizes data transmissions

between the devices in the network.

In [8] and [12] the authors developed a heuristic approach namely Consensus Based

Approach for Task Allocation (CBATA). This approach has adopted the concept of task

group and virtual objects to formulate the problem of task allocation in IoT with the main

goal of fault tolerance. This method and the concept of task groups and virtual object will

be explained in the next sections within this chapter.

Other studies for task allocation in IoT could be found in [126] and [127]. In these works,

the aim is to find the available objects that can perform the needed task to enable service

execution. However, none of these works focus on finding the best configuration for

optimal resource allocation.

2.11. The Concept of Task Groups and Virtual Objects (The Clustering)

The concept of virtual objects is presented in an attempt to provide conceptualizations for

the IoT domain. Several works such as, [128-130] missioned the notation of virtual object.

However, all these works consider the virtual objects simply as the digital parallels of the

physical objects and focus more on the middleware framework rather than the modeling of

related information. As a result, the absence of a common format for virtual objects causes

problems of interaction and communication, since there is no standardized ways to obtain

the actions or services associated with a virtual object [112].

In the last years, several researchers were focused on proposing an architecture for the IoT.

These works led to evolution of the definition of virtual object, and of its functionalities.

Virtual objects are not anymore only digital interfaces to the real world but now provide a

semantic enrichment of the data acquired, which makes easier the discovery of services

[112]. For example, the CONVERGENCE project [131] used the Versatile Digital Item

(VDI) as a common container for all kinds of digital contents that include one or more

resources and metadata. This definition is similar to the one provided in [132] with a

many-to-one association between real objects and VDI. However, the CONVERGENCE

project provides a first attempt to implement the discovery of a particular VDI in the

virtualization layer.

38

Another example is SENSEI [133]. SENSEI enables the integration of heterogeneous and

distributed Sensor and Actuator Networks (SAN) into a homogenous framework for real

world information and interactions. It provides an abstraction level of resources

corresponding to the real world consisting of Entities of Interest (EoI). Resources may be

associated with one or more EoIs for which they can either provide information or provide

control over their surrounding environment, thus providing the same type of association of

CONVERGENCE. In SENSEI, resources acquire the ability to enhance the data received

by the sensors with environmental information.

Since then, several interesting definitions of virtual object are presented in literature. In

[134], physical entities are represented in the digital world via virtual entities, which have

two fundamental properties. Firstly, while ideally there is only one physical entity for each

virtual entity, it is possible that the same physical entity can be associated to several virtual

entities. Secondly, virtual entities are a synchronized representation of a given set of

aspects of the physical entity. The association between virtual and physical entity is

achieved by connecting one or more Information and Communications Technology (ICT)

devices to the physical entity so as to provide the technological interface for interacting

with the virtual world. The physical object is decomposed in its functionalities thus

providing a one-to-many correspondence with the virtual entities. In COMPOSE [135], the

focus was on objects service composition and for this reason they need to abstract the

heterogeneity of physical objects in terms of computing power, protocols and

communication mechanisms, by introducing the concept of Service Object. The Service

Object then represents a standard internal digital representation that makes easier the

creation of COMPOSE services and applications. Finally, in [136], a virtual object is a

virtual representation of an ICT object that may be associated to one (or more) real-world

objects. The term real-world object refers to any object that exists in the real/physical

world and then can be classified both as ICT objects, such as, an email or a smartphone,

and a non-ICT object, such as, a person or a fruit; an important trait of this project is that

also a real-world object can be associated to one or more virtual objects. The virtualization

layer, where all the virtual objects are located, acts as a management level that manages

and provides interfaces for accessing virtual object to other components.

39

This thesis adopts the concept of virtuality coupled with the concept of task groups to

formulate the problem of task allocation in IoT based applications. It frequently happens in

most IoT applications that some objects perform the same task, such as measuring the

humidity and/or the temperature, monitoring traffic congestions, tracking the movement of

objects or persons, detecting the risky conditions in public facilities, and so on. However,

not all objects have usually the same amount of resources to be dedicated to the same tasks

and the set of objects that can cooperate in performing a given operations changes quickly

as opportunistic behaviors make the scenario quite dynamic. Accordingly, a group of

objects that are performing similar and replaceable tasks can be defined as a task group. It

is obvious that in most IoT applications there may be several task groups and most of them

intersect with each other. This can be attribute to the existence of different objects with

diverse skills belong to several task groups. From each task group some objects (or an

object) are selected to represent the task group. These objects are called Virtual Objects

(VOs) [137]. VOs virtualize the physical objects connecting to them in the cyberspace and

they are in charge of processing the requests to these physical objects. In other words, the

IoT objects are partitioned into task groups each of them contains the objects performing

the same task. Then, in each task group some objects are selected as VOs and the rest of

the task group objects are clustered and connected to one virtual object. At this point,

allocating proper resources to the required task is the duty of VOs. Given an example to

illustrate the concept of task groups and virtual objects, assume a network that performs

two tasks T1 and T2 (See Figure 2.6). Then, the network is partitioned into two task

groups: TG1 and TG2. TG1 contains all the objects that capable of performing T1 whereas

TG2 contains the T2 objects. TG1 and TG2 could intersect when some objects are capable

of performing T1 and T2. As a result these objects belong to both task groups at the same

time. Then, from each task group, some objects are selected as VOs to visualize the task

group in the cyberspace and to assign the relevant task to the task group.

40

Figure 2.6. The concept of task groups and virtual objects

2.12. Consensus Based Approach for Task Allocation (CBATA)

One of the famous and attractive task allocation protocols in IoT is Consensus Based

Approach for Task Allocation (CBATA) [8, 12]. CBATA is a heuristic method which

designed to solve the problem of resource allocation and management in IoT

heterogeneous networks with the main goal of fault tolerance. The algorithm uses the

concept of task groups and virtual objects to formulate the problem. In this method a group

of nodes that are capable of performing the same tasks are organized into the same task

group. Given an example, suppose that the network is performing a temperature sensing in

a specific area: only those nodes that are equipped with a temperature sensor and that are

deployed within that area are included in the task group related to this task. These task

groups are assigned with the relevant task by the Application Deployment Server (ADS),

which could decide which exact node should perform each needed task. In CBATA the

central server leaves the task groups to autonomously decide how to distribute the burden

of tasks among them without the need for the central server to keep the role of single

physical node controller. Accordingly, the IoT is made of VOs. These VOs are activated

by the ADS. The VO role may be implemented by an object in the task group and is in

41

charge of processing the requests generated by the central server and forwarding

configuration messages to the other physical nodes (note that the VO may coincide with

the only single physical node that is capable of implementing the required task). At this

point, allocating the proper resources to the required task is a duty of the objects in the task

group. Figure 2.7 provides a sketch of the above described reference scenario. The central

server, or a leader node, transmits the activation signal to the VO. Since the VO is

responsible for keeping track of the physical nodes that belong to the same task group it

leads, it knows which nodes the activation signal is addressed to. Therefore, it is able to

forward the activation signal to the appropriate nodes, on the basis of their belonging to a

determined task group.

Figure 2.7. A reference scenario for CBATA

2.12.1. Virtual objects selection

The scenario proposed in CBATA is that of an opportunistic IoT, where nodes

continuously join and leave the network. CBATA adopts the concept of virtual objects by

choosing the first node in each task group as a VO and the next node in the list is selected

as vice-virtual object (vice-VO). Then, the role of task allocator is carried out by the VOs.

When a VO depletes its energy the vice-VO becomes a virtual object within the

corresponding task group and the next node in the list becomes a vice-VO. To accomplish

this procedure VOs and vice-VO periodically exchange Hello and Acknowledgment

42

messages. Although, this method provides robustness against links and nodes failures, it is

obvious that it requires a heavy message exchange procedure which is very intensive with

regard to communication, computation, storage, and energy overheads.

2.12.2. Consensus-based negotiation and task allocation

In order for nodes to start a negotiation, they need to have already joined the related task

group. As soon as a node 𝑖 joins the network, it broadcasts to its one-hop neighbors the

information related to the tasks that it is able to perform. Accordingly, the VOs related to

those specific tasks add node 𝑖 to the list of nodes that belong to their task groups, and

reply with an acknowledgement. If node 𝑖 is the second node in that list, they designate it

as the vice-VO, and the acknowledgement contains this information. If no VO is associated

to one or more tasks yet, node 𝑖 is designated as VO for those tasks. Then, node 𝑖 notifies

the ADS its designation as VO and/or vice-VO.

VOs periodically send Hello messages to their related vice-VOs. One of the following

things might happen:

 The VO sends the Hello message and the vice-VO acknowledges the message. No

further actions are performed.

 The VO sends the Hello message and the vice-VO does not acknowledge the message.

In this case the VO assumes that the vice-VO is not reachable. If present, the VO

designates the second node on its list as vice-VO and informs it, which in turns informs

the ADS.

 The VO does not send the Hello message when it is supposed to do it. The vice-VO

notices that the VO is not reachable. It broadcasts a request to know which nodes

belong to its task group. The first one to reply is designated as vice-VO. Information

about the failed VO and the new vice-VO is delivered to the ADS.

In order to avoid communication overhead, when a VO notices that it is about to leave the

task group (e.g., for depletion of residual energy, or because it is moving) it notifies it to its

vice-VO, sending the list of the nodes belonging to the task group. Then, the vice-VO

becomes the VO, and the next node on the list becomes the vice-VO. Relevant information

is delivered to the ADS.

43

When an application requires the execution of a given task, the ADS sends an activation

signal to the appropriate VOs, which forward it to their list of nodes. Then, the negotiation

algorithm is started. The negotiation algorithm includes is a collection of laws that

regulates the interaction and the exchange of information between nodes in a group which

needs to reach a coordination to achieve common goals. If the ADS does not succeed in

reaching a VO, it tries to contact its vice-VO. If even the vice-VO does not reply, the ADS

assumes that no nodes are available anymore for the related task, and thus it cannot be

activated. Once the VO has sent the activation signal to all the nodes in the group, then

they start the consensus algorithm. What happens is that each node sends to all its

neighbors (one-hop broadcast) the consensus messages for the reference task group,

containing data that specifies the update values for the algorithm. Then they check whether

the task group to which this message is related is of interest to them, i.e., they belong to

this task group. If yes, they process the data further and then exploit this information in the

next iteration of the algorithm.

2.13. Problem complexity

In its abstract level, we can consider the interplay of task groups and virtual objects as a

special clustering problem as each task group is clustered based on the selection of virtual

objects. The problem of clustering a set of 𝑛 points into 𝑘 clusters under some objective

functions is known to be an NP-hard problem even when the points to be grouped are

restricted to lie in two dimensional Euclidean space [138].

In contest of IoT, clustering of each task group for keeping the total distance to a

minimum, or in other words, the optimal selection of the virtual objects with high residual

energy that scattered in the area can be seen as NP-hard problem. Consider a 100-object of

each task group example, to perform an exhausted search of all possible solutions require

[138]:

(𝐶100
1 + 𝐶100

2 ⋯ + 𝐶100
100) × 𝑇 = (2100 − 1) × 𝑇 (2.1)

44

different combination which is far too large to be handled by existing computer resources.

In this equation, 𝑇 is the number of task groups in the network (i.e., the number of tasks

that the network is capable of performing).

The existing solutions in literature to this problem are based on heuristic approaches. A

good clustering algorithm is the one that does not require frequent topology re-construction

as this will lead to frequent information exchange among the nodes in the network. This

will eventually lead to high computation overheard. Evolutionary algorithms typically

intend to find a good solution in a reasonable amount of computing time. They have been

successfully applied to many NP-hard problems such as multi-processor task scheduling,

optimization, and traveling salesman problems [139].

45

3. METAHEURISTICS AND EVOLUTIONARY OPTIMIZATION

Metaheuristic algorithms are sophisticated heuristic algorithms aim to find a solution using

higher level techniques by combining lower level techniques and tactics for exploration

and exploitation of the large solution spaces. In those problem domains where the

complexity makes the use of exact techniques unaffordable, employing of metaheuristics

has steadily gained popularity and usage. Nowadays, these techniques exhibit a remarkable

success record, and are considered cutting-edge methods for solving hard optimization

problems. Thus, whenever new problem domains arise, metaheuristic is one of the primary

weapons in our solving arsenal.

In this thesis the problem of task allocation in IoT is modeled by adopting the concept of

task groups and virtual objects. Accordingly, the optimal selection of the virtual objects

with a high residual energy that is scattered in the area can be seen as one of the NP-hard

and combinatorial problems [10]. Solutions to NP-hard problems involve searches through

vast spaces of possible solutions. Metaheuristic algorithms are applied successfully to a

variety of NP-hard problems. One of the most promising and prominent approaches in

metaheuristics is Evolutionary Algorithms (EAs). EAs are generic, population-based

metaheuristic optimization algorithms that use bio-inspired mechanisms to maintain

simultaneous search of multiple basins of attraction and to eliminate noise in evaluating

solution quality.

The aim of this chapter is to briefly present the main concept and characteristics of

metaheuristics with a focus on EAs. The presentation will be given in both informal and

formal ways. Afterwards, the conceptual framework and the parameter control needed in

the design of problem specific EAs are presented. Finally, the chapter ends with a formal

overview of the Multi-Objective Evolutionary Algorithms (MOEAs) presenting the

algorithmic framework of elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II)

as one of the prominent MOEAs published to date.

3.1. Metaheuristics

The term “heuristics” originates from the greek word “heuriskein” which means to

“discover” or “find” or “search” by trials and errors. Heuristics are popularly known as

46

rules of thumb, educated guesses, intuitive judgments or simply common sense. In more

precise terms, heuristics stand for strategies using readily accessible though loosely

applicable information to control problem solving processes in human beings and

machines. Heuristic algorithms typically attempt to find a good solution to an optimization

problem in a reasonable amount of computing time. However, there is no guarantee to find

the optimal solution, though it might find a better or improved solution than an educated

guess. Broadly speaking, heuristic methods are local search methods because their searches

focus on the local variations, and the optimal or best solution can be located outside this

local region. However, a high-quality feasible solution in the local region of interest will

usually be accepted as a good solution in many optimization problems in practice if time is

the major constraint [140].

Two different types of heuristics are identified up to now [141]. Constructive Heuristics

and Search Heuristics (Heuristic Search Strategies). Constructive heuristics are mainly

problem specific and try to construct one single solution with best possible quality by

carefully selecting promising solution elements. Search heuristics implement a search in

the solution space of a given problem during which they examine many different solutions

in order to find the best possible one. Three problem-independent, basic principles of

heuristic search can be identified: repeated solution construction where a new solution is

obtained by constructing a new one from scratch, repeated solution modification where a

new solution is obtained by modifying an existing one, and repeated solution

recombination where a new solution is obtained by recombining two or more existing

solutions.

The actual realization of the basic principle itself, however, is a problem specific issue,

since it has to be defined how a solution may be constructed, modified or recombined. This

distinction between problem independent and problem specific aspects of search heuristics

reveals a major advantage: the search strategies and the problem specific parts can be

implemented independently from each other. This means that it is possible to implement

search strategies in a completely abstract way, like a framework. Later, when it comes to a

concrete application, it is of course necessary to implement the problem specific parts (e.g.,

a solution modification mechanism). But once this is done, they can typically easily be

“plugged” into an already existing (search) framework and it is possible to run the

associated strategies. Hence abstraction allows the reuse components of search heuristics

47

and may avoid that the respective method has to be implemented from a scratch for each

new problem. The abstract parts can be regarded as an upper or “meta” level of a search

heuristic, leading to the term “metaheuristic” [141].

Metaheuristic algorithms are advanced heuristic algorithms. Because “meta” means

“beyond” or “higher level”, metaheuristic literally means to find the solution using higher

level techniques, though certain trial-and-error processes are still used. Broadly speaking,

metaheuristic is an iterative master process that guides and modifies the operations of

subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a

complete (or incomplete) single solution or a collection of solutions at each iteration. The

subordinate heuristics may be high (or low) level procedures, or a simple local search, or

just a construction method [142]. In recent years [140], the word metaheuristics refers to

all modern higher-level algorithms, including Evolutionary Algorithms (EAs) Simulated

Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), Bee Algorithms (BA), Firefly Algorithm (FA), and Harmony Search

Algorithm (HSA).

In general there are two important components in modern metaheuristics: exploitation (or

intensification) and exploration (or diversification) [142]. For an algorithm to be efficient

and effective, it must be able to generate a diverse range of solutions including the

potentially optimal solutions so as to explore the whole search space effectively, while it

intensifies its search around the neighborhood of an optimal or nearly optimal solution. In

order to do so, every part of the search space must be accessible though not necessarily

visited during the search. Diversification is often in the form of randomization with a

random component attached to a deterministic component in order to explore the search

space effectively and efficiently, while intensification is the exploitation of past solutions

so as to select the potentially good solutions via elitism or use of memory or both. In other

words; Intensification is to search carefully and intensively around good solutions found in

the past search. Diversification, on the contrary, is to guide the search to unvisited regions.

In general, metaheuristics can be classified into three categories according to the solution

method [143, 141]: metaheuristics based on solution construction, metaheuristics based on

solution modification, and metaheuristics based on solution recombination. Metaheuristics

based on solution construction methods do not perform search, they construct a single

solution in an iterative fashion by evaluating all remaining solution elements and according

48

to their performance add them to the partial solution. Elements are added as long as the

solution is improved. If this is not the case anymore, the construction is stopped and the

final solution is returned. Metaheuristics based on solution modification introduce the

principle of repeatedly modifying solutions such as to, finally, obtain better ones. Finally,

metaheuristics based on solution recombination introduce how search by recombination

can be performed and that multiple solutions can be used to apply recombination. In the

following section, the essence of Evolutionary Algorithms (EAs) is presented in some

details as these are considered the most prominent, interesting, useful, easy-to-understand,

and hot research topics in the field of metaheuristics.

3.2. Evolutionary Algorithms (EAs)

Evolutionary algorithms (EAs) are generic, population-based metaheuristic optimization

algorithms that use biology-inspired mechanisms like selection and variation. The

population approach allows simultaneous search of multiple basins of attraction and

eliminates noise in evaluating solution quality. The selection operator nudges the search

toward superior solutions, whereas the variation operators promote wider exploration [142,

144].

Classical EAs, include Genetic Algorithms (GAs), Evolution Strategy (ES), Evolutionary

Programming (EP), and Genetic Programming (GP). All these methods are random based

solution space searching metaheuristic algorithms. In the following, the basic EA structural

terms and concepts are defined where the described terms’ meanings are normally

analogous to their genetic counterparts. A structure or individual is an encoded solution to

some problem. Typically, an individual is represented as a string (or string of strings)

corresponding to a biological genotype. A genotype describes the genetic composition of

an individual as inherited from its parents. Genotypes provide a mechanism to store

experiential evidence as gathered by parents. This genotype defines an individual organism

when it is expressed (decoded) into a phenotype. A phenotype is the expressed behavioral

traits of an individual in a specific environment. A genotype is composed of one or more

chromosomes, where each chromosome is composed of separate genes which take on

certain values (alleles) from some genetic alphabet. A locus identifies a gene’s position

within the chromosome. Thus, each individual decodes into a set of parameters used as

input to the function under consideration. Finally, a given set of chromosomes is termed a

49

population, and a number of individual solutions are created to form an initial population.

The following steps are then repeated iteratively until a solution has been found which

satisfies a pre-defined termination criterion. Each individual is evaluated using a fitness

function that is specific to the problem being solved. Based upon their fitness values, a

number of individuals are chosen to be parents. New individuals, or offspring, are

produced from those parents using reproduction operators. The fitness values of those

offspring are determined. Finally, survivors may be selected from the old population and

the offspring to form the new population of the next generation [144- 147].

The following subsections aim to enable readers to get a smooth touch with the concept of

EAs. Essential definition with a focus on the generic meta-level of the EA is given next.

Moreover, the relation to the problem-specific level is also considered important in

designing any EA, and therefore treated explicitly in a separate subsection. Finally, one of

the main difficulties that a user faces when applying an EA (or, as a matter of fact, any

metaheuristic method) to solve a given problem is to decide on an appropriate set of

parameter values. For example, before running the algorithm, the user typically has to

specify values for a number of parameters, such as population size, selection rate, and

operator probabilities. The third subsection will present briefly how to automate control of

these parameters.

3.2.1. General algorithmic framework of EA

Just as in nature, Evolutionary Operators (EVOPs) operate on an EA‘s population,

attempting to generate solutions with higher and higher fitness. The three major EVOPs

associated with EAs are mutation, recombination, and selection. In the selection operation,

the above average individuals with a proportion to their fitness values are selected

(reproduced) to form a mating pool and become parents of the next generation’s

individuals more often than below average individuals. The selection EVOP effectively

gives strings with higher fitness, a higher probability of contributing one or more children

in the succeeding generation. Then the information contained in the good individual has

more chances to be preserved and passed onto the next generation. Information exchange

between two (or more) parents and small changes in the offspring promote the search for

better individuals. Combining these two factors, the population will gradually increase in

their fitness until the optimal or near optimal solution has been found [144, 148].

50

To formally define an EA, its general algorithm will be described in mathematical terms,

allowing for exact specification of various EA instantiations. In this framework, each EA is

associated with a non-empty set 𝐼 called the EA’s individual space. Each individual, 𝑎 ∈

 𝐼, normally represents a candidate solution to the problem in interest that being solved by

the EA. Individuals are often represented as a vector, where the vector’s dimensions are

analogous to a chromosome’s genes. In the (generational) population transformations, the

resulting collection of μ individuals is denoted via Iμ, and the population transformations

are denoted by the relationship 𝑇 ∶ 𝐼𝜇 → 𝐼𝜆, where 𝜇, 𝜆 ∈ ℕ indicating succeeding

populations may contain the same or different numbers of individuals. The framework also

represents all population sizes, evolutionary operators, and parameters as sequences. This

is due to the fact that different EAs use these factors in slightly different ways. The general

algorithm thus recognizes and explicitly identifies this nuance. Having discussed the

relevant background terminology, an EA is then defined as [144, 149]:

Definition (Evolutionary Algorithm): Let 𝐼 be a non-empty set (the individual space),

 {μ(𝑖)}𝑖∈ℕ 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑍+(The parent population sizes), {𝜆(𝑖)}𝑖∈ℕ 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑍+

(the offspring population sizes), 𝛷 ∶ 𝐼 → ℝ a fitness function, 𝜄: ∪𝑖=1
∞ (𝐼μ)(𝑖) →

 {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (the termination criterion), 𝜒 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, 𝑟 a sequence {𝑟(𝑖)} of

recombination operators 𝑟(𝑖): 𝕩𝑟
(𝑖)

 → 𝛤(Ω𝑟
(𝑖)

, 𝛤(𝐼μ(𝑖)
, 𝐼𝜆(𝑖)

)), 𝑚 a sequence {𝑚(𝑖)} of

mutation operators 𝑚(𝑖): 𝕩𝑚
(𝑖)

 → 𝛤(Ω𝑚
(𝑖)

, 𝛤(𝐼μ(𝑖)
, 𝐼𝜆(𝑖)

)), 𝑠 a sequence {𝑆(𝑖)} of selection

operators 𝑠(𝑖): 𝕩𝑠
(𝑖)

× 𝛤(𝐼, ℝ) → 𝛤(Ω𝑠
(𝑖)

, 𝛤((𝐼𝜆(𝑖)+𝜒μ), 𝐼μ(𝑖+1)
)), Θ𝑟

(𝑖)
 ∈ 𝕩𝑟

(𝑖)
 (the

recombination parameters),Θ𝑚
(𝑖)

 ∈ 𝕩𝑚
(𝑖)

 (the mutation parameters),and Θ𝑠
(𝑖)

 ∈ 𝕩𝑠
(𝑖)

 (the

selection parameters).

Accordingly, Algorithm 3.1 is called an algorithmic framework of Evolutionary Algorithm

(EA).

51

Algorithm 3.1. General algorithmic framework of Evolutionary Algorithm (EA)

3.2.2. Problem related aspects

All elements of the general algorithmic framework of EA are more or less problem

dependent. However, the mutual exclusion among these elements can help to visualize the

dependency to the problem. Figure 3.1 emphasizes problem dependent, partly problem

dependent and problem independent components of the general solution processing scheme

[141, 144].

𝑡 ∶= 0; // t is the generation number

Initialize 𝑃(0) ∶= {𝑎1(0), … , 𝑎μ(0)} ∈ 𝐼μ(0)
;

Evaluate 𝑃(0) ∶= {Φ(𝑎1(0)), … , Φ(𝑎μ(0))};

While (𝜄{𝑃(0), … , 𝑃(𝑡)}) ≠ 𝑡𝑟𝑢𝑒) 𝑑𝑜

Recombine: 𝑃 ′(𝑡) ≔ 𝑟
Θ𝑟

(𝑡)
(𝑡)

(𝑃(𝑡));

Mutate: 𝑃′′(𝑡) ≔ 𝑚
Θ𝑚

(𝑡)
(𝑡)

(𝑃 ′(𝑡));

Evaluate 𝑃′′(𝑡) ∶= {Φ(𝑎1(𝑡)), … , Φ(𝑎𝜆(𝑡))};

select:

if 𝜒

then (𝑡 + 1) ≔ 𝑆
(Θ𝑠

(𝑡)
,Φ)

(𝑡)
 (𝑃𝜄𝜄(𝑡));

else 𝑃(𝑡 + 1) ≔ 𝑆
(Θ𝑠

(𝑡)
,Φ)

(𝑡)
 (𝑃𝜄𝜄(𝑡) ∪ 𝑃(𝑡));

fi

𝑡 ∶= 𝑡 + 1;

od

52

Figure 3.1. Detailed overview of EA

Obviously evaluation is fully problem dependent. Interestingly, the following components

are referred to as partly problem dependent:

53

 Initialization

 Recombination

 Mutation

The reason is that solution coding, like binary or permutation, is used to describe the

genotype structure of an individual, i.e., how the representation of the solutions is chosen.

Hence those operators are referred to as partly problem dependent here. The main

advantage is the applicability of generic crossover and mutation operators, i.e., no problem

specific operators must be developed.

The remaining two components, selection and replacement, are problem independent, as

they typically only consider the solution quality.

3.2.3. Parameter control in EAs

One of the main issues related the description of a specific EA is the specification of its

components, such as the choice of representation, selection, recombination, and mutation

operators, thereby setting a framework while still leaving quite a few items undefined. For

instance, a given EA might be stated by using binary representation, uniform crossover,

bit-flip mutation, tournament selection, and generational replacement. For a full

specification, however, further details have to be given, for instance, the population size,

the probability of mutation and crossover, and the tournament size. These data called the

algorithm parameters or strategy parameters. They important to complete the definition of

the EA and they are necessary to produce an executable version. The values of these

parameters greatly determine whether the algorithm will find an optimal or near-optimal

solution and whether it will find such a solution efficiently [144, 148].

Globally, two major forms of setting parameter values can be distinguished: parameter

tuning and parameter control. By parameter tuning we mean the commonly practiced

approach that amounts to finding good values for the parameters before the run of the

algorithm and then running the algorithm using these values, which remain fixed during

the run. Parameter control forms an alternative, as it amounts to starting a run with initial

parameter values that are changed during the run [142, 144].

54

3.3. Description of Some Important Issues in EAs

The next two subsections discuss how to deal with infeasible solutions and how to

maintain the necessary exploration and exploitations in the EA problem solving procedure.

3.3.1. Solution infeasibility

Another important point in EAs is how to deal with infeasible solutions. Basically

infeasible solution is no solution at all, because it violates at least one constraint, so the

result is unusable. Typically, the occurrence of infeasible solutions depends on the design

of the recombination and mutation operators [141].

Basically, there are three options to deal with infeasible solutions [141, 150]:

1. discard infeasible solutions,

2. penalize infeasible solutions, and

3. repair infeasible solutions.

Each of the three options has advantages and disadvantages. Obviously the easiest method

for handling infeasible solutions is to discard them. But if finding a solution is

computationally expensive this method will not be appropriate. The second approach is

penalizing infeasible solutions. That is, the amount of infeasibility must somehow be

measured and then worsens the quality of the solution, i.e., the fitness of a solution

degrades. This raises another problem of finding a penalty function which allows infeasible

solutions but drives the search into the feasible area in the search space. The last option is

repairing the infeasible solution. Repairing an infeasible solution is problem dependent and

requires certain design decisions. In some cases repairing a solution is as difficult as

constructing a feasible solution to the given problem.

3.3.2. Exploration and exploitation

Exploration and exploitation (a.k.a., diversification and intensification, respectively) are

the two cornerstones of problem solving by search. They are often used to categorize

distinct phases of the search process. Roughly speaking, exploration is the generation of

55

new individuals from the untested regions of the search space, while exploitation means

the concentration of the search in the vicinity of known good solutions. Evolutionary

search processes are often referred to in terms of a trade-off between exploration and

exploitation. Too much of exploitation can lead to a propensity to focus the search too

quickly, while too much exploration leads to slow convergence rates [151].

In EAs, search operators (mutation and recombination) and selection have been

characterized by their contribution to the explorative and exploitative aspects of the search.

Selection is commonly seen as the source of exploitation, while exploration is attributed to

the operators of mutation and recombination. Selection operator selects individuals for

mating or reproduction from already existed solutions according to their fitness

concentrating the search in the vicinity of known good solutions. The search operators

generate new solutions forming the random part of the algorithm. They explore new

regions of the search space to ensure the necessary diversity to fuel the evolutionary

process [152].

3.4. Evolutionary Multi-objective Optimization

EAs are developed to solve real-world problems, such as clustering and scheduling. Many

of these problems involve the simultaneous optimization of several competing objectives

and constraints that are difficult, if not impossible, to be solved without the aid of powerful

optimization algorithms. One way to deal with them is to combine all objectives into one

single fitness function. However, the drawback is that one must explicitly state the

influence of each part in the overall fitness function. This gets even harder if the unit of

measurement is different for every objective. Multi-Objective Evolutionary Algorithms

(MOEA) are efficient optimization methods used in solving problems with multiple

conflicting objectives in various branches of engineering, science, and commerce. The goal

of MOEAs is to provide the decision maker with a complete set of solutions such that no

other solutions in the search space are better than them with respect to all the considered

objectives.

This section describes the application of evolutionary techniques to a particular class of

problems, namely multi-objective optimization. First, an introduction to this class of

problems and definitions of multi-objective optimization and single objective optimization

56

problems is presented. An important explanations and notations of Pareto optimality is

given next. Finally, this section ends by presenting algorithmic framework of elitist Non-

dominated Sorting Genetic Algorithm II (NSGA-II) as one of the attractive and prominent

MOEAs.

3.4.1. Multi-objective optimization problems (MOPs)

In order to develop an understanding of MOPs and the ability to design MOEAs to solve

them, a series of formal non-ambiguous definitions are required. To give a simple

illustration, we begin by defining the Single-objective Optimization Problems (SOPs) as

follows [149]:

Definition (Single-objective Optimization Problem): General SOP is defined as minimizing

(or maximizing) 𝑓(𝑥) subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = {1, … , 𝑚}, and ℎ𝑗(𝑥) = 0, 𝑗 = {1, … , 𝑝}

𝑥 ∈ Ω. Then, a solution minimizes (or maximizes) the scalar 𝑓(𝑥) where 𝑥 is a n-

dimensional decision variable vector 𝑥 = (𝑥1, … , 𝑥𝑛) from some search space Ω.

In this definition, 𝑔𝑖(𝑥) ≤ 0 and ℎ𝑗(𝑥) = 0 represent the inequality and equality

constraints respectively, that must be fulfilled while optimizing (minimizing or

maximizing) 𝑓(𝑥). Ω contains all possible 𝑥 that can be used to satisfy an evaluation of

𝑓(𝑥) and its constraints. Also in this definition, the “decision variable vector 𝑥” is a vector

of the numerical quantities for which values are to be chosen in an optimization problem.

In practice it turns out that a great many applications that have traditionally been tackled

by defining a single objective function (quality function) have at their heart a MOP that has

been transformed into SOP in order to make optimization tractable [151]. MOPs (as a

rule) present a possibly uncountable set of solutions, which when evaluated, produce

vectors whose components represent trade-offs in objective space. A decision maker then

implicitly chooses an acceptable solution (or solutions) by selecting one or more of these

vectors. Then, the MOP (also called multicriteria optimization, multiperformance or vector

optimization problem) can be informaly defined as the problem of finding [151, 153]:

57

“A vector of decision variables which satisfies constraints and optimizes a vector function

whose elements represent the objective functions. These functions form a mathematical

description of performance criteria which are usually in conflict with each other. Hence,

the term “optimize” means finding such a solution which would give the values of all the

objective functions acceptable to the decision maker.”

More precisely, MOPs are those problems where the goal is to optimize 𝑘 objective

functions simultaneously. This may involve the maximization of all 𝑘 functions, the

minimization of all k functions or a combination of maximization and minimization of

these k functions. Formally, the general MOP (global minimum or maximum problem) can

be then defined as follows [151,152, 154-159]:

Definition (Multi-objective Optimization Problem): General MOP is defined as minimizing

(or maximizing) 𝐹(𝑥) = [𝑓1(𝑥), … , 𝑓𝑘(𝑥)] subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = {1, … , 𝑚},

and ℎ𝑗(𝑥) = 0, 𝑗 = {1, … , 𝑝} 𝑥 ∈ Ω. An MOP solution minimizes (or maximizes) the

components of a vector 𝐹(𝑥) where 𝑥 is a n-dimensional decision variable vector 𝑥 =

[𝑥1, … , 𝑥𝑛] from some search space Ω.

In the definition above, it is noted that 𝑔𝑖(𝑥) ≤ 0 and ℎ𝑗(𝑥) = 0 represent constraints that

must be fulfilled while minimizing (or maximizing) 𝐹(𝑥) and Ω contains all possible 𝑥 that

can be used to satisfy an evaluation of 𝐹 (𝑥).

3.4.2. Dominance concept and Pareto optimality

In an MOP of 𝑘 functions, 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥) one candidate solution 𝑥1 may be better

than another solution x2, with respect to 𝑓𝑖 (i.e., without loss of generality, for

maximization problem 𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2)), but worse with respect to 𝑓𝑗 (i.e., for

maximization problem 𝑓𝑗(𝑥1) > 𝑓𝑗(𝑥2). In other words, solution 𝑥1 has a mutually better

than and mutually worse than relation with solution 𝑥2. Thus, 𝑥1 and 𝑥2 have a non-

domination relationship (this also known as Pareto dominance). In more general

formalization, MOP can be redefined according to the domination concept as: finding a

vector 𝑥∗ = [𝑥1
∗, … 𝑥𝑛

∗] optimizing the vector function 𝐹(𝑥) = [𝑓1(𝑥), … , 𝑓𝑘(𝑥)] where

𝑥 = [𝑥1, … , 𝑥𝑛] is the decision variables vector. Here, the optimization of 𝐹(𝑥) is based on

58

the domination concept. To understand the domination concept, let us consider two

arbitrary solutions 𝕌 and 𝕍 from the solution space Ω, both of which have scores according

to some set of objective values. Then, solution 𝕌 is said to dominate 𝕍 if and only if the

following two conditions hold [5,149,160-162]:

 Solution 𝕌 is no worse than solution 𝕍 in all objectives. For example and without loss

of generality in maximization, the word “no worse” means 𝑓𝑖(𝕌) ≮ 𝑓𝑖(𝕍) for all 𝑖 =

 1, 2, . . . , 𝑘.

 Solution 𝕌 is strictly better than solution 𝕍 in at least one objective. For example in

maximization, the word “strictly better” means 𝑓𝑖(𝕌) > 𝑓𝑖(𝕍) for at least one 𝑖 ∈

 1, 2, . . . , 𝑘.

For conflicting objectives, there exists no single solution that dominates all others, and we

will call a solution global non-dominated (or Pareto Optimal) if it is not dominated by any

other solution in the search space. The goal of multi-objective optimization algorithms is to

preserve the global non-dominated points (or at least the near-global non-dominated

points) in objective space and associated solution points in decision space to provide the

decision maker with a set of non-dominated solutions 𝑥∗. Hence, a global non-dominated

set (also called Pareto Optimal Set) can be defined as: among a set of solutions in the

solution space Ω, the non-dominated solutions set Ω′are those that are not dominated by

any member of the set Ω. All non-dominated solutions possess the attribute that their

quality cannot be increased with respect to any of the objective functions without

detrimentally affecting one of the others (see Figure 3.2). The set of all non-dominated

solutions in one front is called non-dominated front, Pareto set or Pareto front.

59

Figure 3.2. Multi-objective optimization problem based on domination concept while

maximizing two objectives

EAs have a proven ability to identify high-quality solutions in high-dimensional search

spaces containing difficult features such as discontinuities and multiple constraints. When

coupled with their population-based nature and their ability for finding and preserving

diverse sets of good solutions, it is not surprising that EA-based methods are currently the

state of the art in many multi-objective optimization problems [151].

3.4.3. Elitist non-dominated sorting genetic algorithm II (NSGA-II)

EAs designed for MOPs are called Multi-Objective EAs (MOEAs), and this kind of

optimization is called Evolutionary Multi-objective Optimization (EMO). EAs have

attracted to solve MOPs due to their ability to search for multiple solutions in parallel (so

that a family of feasible solutions to the problem is found) as well as handle complex

features such as multimodality, and disjoint objective spaces [145, 161, 163, 164]. In

literature, there have been many approaches to EMOs. All have the following common

primary goals [158]:

 Preserve global non-dominated points (or at least their nearest points) in objective space

and associated solution points in decision space.

60

 Continue to make algorithmic progress towards the global non-dominated set in

objective function space.

 Maintain a good diversity and distribution of generated solutions along the non-

dominated front.

 Provide the decision maker with enough but yet limited number of non-dominated

points for selection resulting in decision variable values.

An example of the classical MOEAs is elitist Non-dominated Sorting Genetic Algorithm II

(NSGA-II) [161, 162, 165]. NSGA-II is one of the most attractive and prominent MOEAs

published to date [160]. NSGA-II is a population-based optimization algorithm that assigns

fitness based on dividing the population into a number of fronts of equal domination. To

achieve this, the algorithm iteratively seeks all the non-dominated points in the population

that have not been labeled as belonging to a previous front. It then labels the new set as

belonging to the current front, and increments the front count, repeating until all solutions

have been labeled. Each point in a given front gets as its raw fitness the count of all

solutions in inferior fronts. In this algorithm the diversity is implemented by considering

the members from that individual’s front [152].

The general framework of NSGA-II (as presented in Algorithm 3.2) begins with an initial

population of solutions and employs Genetic Algorithm (GA) with the traditional

crossover and mutation operators. The selection process is derived by sorting the

individuals according to a ranking and crowding distance schemes. All non-dominated

individuals are classified into one front based on non-domination. Then, this group of

classified individuals is ignored and another front of non-dominated individuals is

considered. The process continues until all individuals in the population are classified.

Individuals in the first front form completely non-dominant set in the current population

whereas Individuals in the second front become dominated by the individuals in the first

front and the fronts go so on. Each individual in each front assigned a rank (a dummy

fitness) value based on the front in which it belongs. Individuals in the first front are given

a rank value 1 and individuals in the second front are given rank value 2 and so on. Once

the non-dominated sort is completed, a crowding distance is then calculated and added to

each individual in the population in front-wise manner. The crowding distance

computation requires sorting each front according to each objective function value in

ascending order of magnitude. Then, for each objective function, the boundary individuals

61

(solutions with smallest and largest function values) are assigned an infinite distance value.

All other intermediate individuals are assigned a Distance Value (DV) equal to the

absolute normalized difference in the function values of two adjacent individuals (previous

and next individuals) as in the equation below:

DV(current individual) = 𝑓𝑖(Current individual) +
𝑓𝑖(𝑛𝑒𝑥𝑡) − 𝑓𝑖(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

𝑓𝑖(𝑚𝑎𝑥) − 𝑓𝑖(𝑚𝑖𝑛)
 (3.1)

where 𝑓𝑖 is the fitness function ∀𝑖 ∈ (1, … , 𝑘), 𝑚𝑎𝑥 is the maximum value in this front for

𝑓𝑖, and 𝑚𝑖𝑛 is the minimum value in this front for 𝑓𝑖. Then, this calculation is continued

with other objective functions. The overall crowding distance value is calculated as the

sum of individual distance values corresponding to each objective. The crowding distance

is a measure of how close an individual is to its neighbors. A large average crowding

distance value results in better diversity in the population. Within the selection and

population reduction phases, a binary tournament selection method is used and individuals

are compared based on their contribution to the diversity of the population. Binary

tournament selection operator criterion is based on the non-domination and crowded

comparison. Individuals with lesser ranks of non-dominant fronts or with equal ranks (i.e.,

belong to same front) but with greater crowding distances are selected to form matting

pool. Since individuals in the first front have minimum rank value, they always get more

copies than the rest of the population. This allows search for non-dominated regions, and

results in convergence of the population toward such regions. Finally, after selection and

variation operations (crossover and mutation operators), population with the current

individuals (parents) and off-springs is sorted again based on non-domination and only the

best 𝑁 individuals are selected, where 𝑁 is the population size. The selection is based on

the rank value and on the crowding distance value in the last front. This evolutionary

process continues until a previously determined stopping criterion is met.

62

Algorithm 3.2. Algorithmic Framework of NSGA-II

Input:

 Multi-objective problem F(x) = (f1(x), … , fk(x)) , k is number of objective

functions

 Population size, N

 Stopping criterion, τ

Output:

 First front of the non-domination fronts

Step 1 – Setup

 gen = 0.

 Initialize random population of solutions, = {P1, … , PN} .

 Evaluate objectives vector fi(Pj), ∀i ∈ {1, … , k}, ∀j ∈ {1, … , N}.

 Assign rank r(Pi), ∀i ∈ {1, … , N} based on non-domination fronts.

 Assign crowding distance rank c(Pi), ∀i ∈ {1, … , N}

Step 2 – Update:

 Generate a new population Pi
′ = {P1

′, … , PN
′ } where Child Pi

′ is obtained by

using binary tournament selection, recombination, and mutation.

 For each Parent in P and Child in P′

i. Assign rank based on non-domination.

ii. Generate sets of non-dominated vectors.

iii. Determine crowding distance between points on each front.

iv. Elitist selection: The new generation is filled by each front subsequently until

the population size exceeds the current population size. If by adding all the

individuals in front 𝑗 the population exceeds 𝑁 then individuals in front 𝑗 are

selected based on their crowding distance in the descending order until the

population size is 𝑁.

Step 3 – Stopping criteria

 If τ = True, then stop and output is the first non-dominated front, otherwise

gen = gen + 1, go to Step 2.

63

4. THE PROPOSED TASK ALLOCATION PROTOCOLS WITH

METAHEURISTIC METHODOLOGY

IoT is an environment that contains different embedded devices interacting with each other

to perform tasks related to information collection, communications and processing.

Successful applications of IoT aim to interconnect objects with various capabilities within

the same heterogeneous network. The goal is to allow network entities to cooperate and

make their resources available to reach the optimal allocation of tasks among themselves in

order to perform the demanded task. However, assigning tasks to group of heterogeneous

objects that are equipped with limited resources poses a challenging task. The most limited

and valuable resource for variety of IoT objects is battery power. Therefore, minimizing

the energy consumption in task allocation process is one of the primary objectives.

The problem of task allocation is extensively studied in the field of WSNs. However, the

task allocation problem in IoT is an open research issue. Currently, almost all existing

studies employ heuristic optimizations to cope with different aspects of task allocation

problems without considering the heterogeneity in terms of energy levels and

computational power of network entities. CBATA [8, 12] is an interesting and prominent

work that attempts to solve the problem of task allocation in IoT by applying heuristic

steps while employing task groups and virtual objects concept. Although, CBATA

provides robustness against links and nodes failures, it requires a heavy message exchange

procedure which is very intensive with regard to communication, computation, storage,

and energy overheads. To the best of our knowledge, no attempt has been made to employ

task groups and virtual objects-based framework to solve the problem of task allocation in

IoT using meta-heuristic methods. The work in this thesis is among the first works to

propose task groups and virtual objects based framework to solve task allocation problem

in IoT and the first work that adopts meta-heuristic methods for this purpose. Moreover, it

represents the first work attempting to address computational power utilization and energy

efficiency problems in task allocation of IoT as a MOP.

The first part of this chapter is devoted to present four task allocation protocols in IoT

using EA technique. In these protocols the scenario where each object is capable of

performing one task and can be a member in one task group is assumed. These for

protocols are: Evolutionary Task Allocation Protocol-1 (ETAP1), Evolutionary Task

64

Allocation Protocol-2 (ETAP2), Stable Evolutionary Task Allocation Protocol-1

(SETAP1) and Stable Evolutionary Task Allocation Protocol-2 (SETAP2). ETAP1 and

ETAP2 are designed for application that is supposed to work in typical environments with

the goal of minimizing the energy expenditures for tasks allocation to ensure maximal

network longevity. Their proposed objective functions take into consideration the energies

and the distance between the objects to form efficient clusters in terms of network lifetime,

and energy consumption. On the other hand, SETAP1 and SETAP2 are designed for

crucial applications motivating by the fact that most IoT based networks are heterogeneous

especially in terms of energy levels. The key idea of SETAP1 and SETAP2 is to

hypothesize a possible energy based heuristic for individual solution initialization and

mutation to properly maintain longer stability periods.

The second part of this chapter, assumes a more realistic and complex scenario where

objects are capable of performing a variety of tasks and can be members in more than one

group. In this context two novel protocols are proposed. These protocols are: Steady Task

Allocation Protocol (STAP) and Multi-Objective Task Allocation Protocol (MOTAP).

STAP formats the problem of task allocation as a meta-heuristic optimization problem with

the goal of increasing stability and operational periods of the network by developing a

novel single objective optimization algorithm. MOTAP jointly formulates the

computational power utilization and energy efficiency problems in task allocation of IoT as

a novel MOP. Again, up to the best of our knowledge, this is the first work attempting to

address computational power utilization together with energy efficiency problems in task

allocation of IoT. Also considering this scenario, we modified the most relative method to

the stated problem, namely CBATA [8, 12], and redirect its goal toward energy efficiency

by developing Modified-CBATA (M-CBATA) algorithm.

This chapter organized as follows: the chapter begins by defining the problem and the

solution concept used in this thesis for task allocation and then describes the system model.

Afterwards, ETAP1 and ETAP2 that are developed within the framework of the first

scenario are presented by giving an overview of their algorithmic framework. The

operations and operators that are used in the protocols, such as the way in which the virtual

objects will be elected and the evolutionary operators used for that are then explained. This

is followed by explaining the association and a formal layout of the proposed protocols.

Later, the details of the heuristics that required to redirect the goal of ETAP1 and ETAP2

65

toward stability awareness protocols (i.e., SETAP1 and SETAP2) are presented. The

protocols of the second scenario are then presented, beginning by explaining the

environment of the second scenario. Thereafter, giving an illustrative example the

modified version of CBATA (i.e., M-CBATA) is presented. Later, STAP protocol with its

conceptual framework and its ejected energy aware heuristics is explained. Finally, the

chapter is closed with presenting the details of MOTAP and defining its operations and

operators both formally and informally.

4.1. Problem Definition and System Model

In our protocols, to model IoT network, we assume a static two-dimensional area 𝔸 with

size (𝕏𝑚𝑎𝑥, 𝕐𝑚𝑎𝑥). The internet coverage is provided in this area via an access point 𝔸ℙ

located at the center of the area (e.g., 𝔸ℙ located at (𝕏𝑚𝑎𝑥/2, 𝕐𝑚𝑎𝑥/2)). We also assume

that 𝔸 has a set 𝑂 of 𝑛 objects with known coordinates O = {(𝑂1𝑥,𝑦
) , (𝑂2𝑥,𝑦

) , … , (𝑂𝑛𝑥,𝑦
)}.

These objects are randomly deployed in 𝔸 (1 ≤ ∀𝑖 ≤ 𝑛 | 𝑂𝑖𝑥,𝑦
= ([0, 𝕏𝑚𝑎𝑥], [0, 𝕐𝑚𝑎𝑥]))

and they are equipped with different energy levels. Furthermore, we assume that the IoT

network is capable of performing 𝑇 different tasks simultaneously.

In our protocols, each task in the network is represented by a group of virtual objects.

These virtual objects are responsible of assigning the task to their connected objects. In

order to define our task allocation system that is based on task groups and virtual objects

concept, we assume that a task 𝑡, ∀𝑡 ∈ {1, … , 𝑇} is needed to be performed. Each virtual

object that belongs to the task group of task t sends Indication Messages (IMs) to their

connected objects to inform them that the task associated with the task group (i.e., task 𝑡) is

needed to be performed. Then, task group objects that received IMs perform the task and

send the results back to the virtual objects. Virtual objects aggregate these result messages

and send the aggregated results to 𝔸ℙ to be available in the cyberspace.

To calculate power consumption for transmitting and receiving data packets among

network objects, virtual objects and access point, we employed the first-order radio model

[166], which is illustrated in Figure 4.1.

66

Figure 4.1. First-order radio model

In first-order radio model the energy expenditures are measured as a function of distance.

That is, the energy consumption to transmit a message of k-bit over a distance 𝑑 is:

𝐸𝑇𝑥(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 × 𝑘 + 𝜀𝑎𝑚𝑝 × 𝑘 × 𝑑2 (4.1)

while the energy consumption to receive this message is:

𝐸𝑅𝑥(𝑘) = 𝐸𝑒𝑙𝑒𝑐 × 𝑘 (4.2)

in the above equations, 𝐸𝑒𝑙𝑒𝑐 represents the energy dissipated per bit to run the transmitter

or the receiver circuit and 𝜀𝑎𝑚𝑝 represents an electronic amplifier used in transmitter

circuit to convert a low-power radio-frequency signal into a higher power signal in order to

achieve an acceptable Signal-to-Noise Ratio (SNR). We also consider data aggregation in

our protocol. We suppose that the data gathered at vertical objects are processed before

being transmitted. In this case, the number of bits to be sent would be smaller, and

therefore the transmission energy consumption would be lower.

4.2. Overview of the Proposed Protocols in Context of Scenario #1

This scenario considers the IoT platforms where each object in the network is capable of

performing only one task (e.g., measuring the humidity, record the temperature, monitoring

67

traffic congestions, tracking the movement of objects or persons, detecting the risky

conditions in public facilities, and so on). Accordingly, a group of objects that are capable

of performing similar and replaceable tasks can be classified under one a task group. It is

obvious that in most IoT applications there may be several task groups in the network.

From each task group some objects (or an object) are selected to be virtual objects that

represent the task group. The rest of the objects within the task group are then clustered

and connected to one virtual object. Figure 4.2 gives visualize illustration of scenario #1.

In the context of this scenario four protocols are developed. These protocols are ETAP1

and ETAP2 and their stability redirected protocols SETAP1 and SETAP2. In their

essential, the proposed evolutionary task allocation protocols are centralized protocols

where the Central Control Station (CCS) has to determine the task allocation configuration

in terms of virtual objects in each task group. The CCS uses evolutionary algorithm as a

tool (with a problem specific specializations) for creating an energy efficient clusters (i.e.,

by selecting the appropriate objects as virtual objects) at each task group for a given

number of objects.

Figure 4.2. The concept of task groups and virtual objects in scenario #1

68

The configurations for task allocation in the proposed protocols consist of two phases:

election phase and association phase. In the election phase, virtual objects are chosen using

an adopted evolutionary algorithm. The evolutionary algorithm in the election phase begins

with generating an initial population of solutions. The complete solutions are encoded as

individuals that determine where the virtual objects and member objects are located in each

task group in the network. At this step, each individual is evaluated and assigned a fitness

value based on the estimated energy consumption, which is determined by the proposed

objective function parameters. The population approach allows simultaneous search of

multiple basins of attraction and eliminates noise in evaluating solution quality. After the

population initialization phase, the evolutionary loop begins, where individuals go through

evolutionary operators –selection and variation operators– with pre-determined

probabilities to improve the quality of the individuals. In selection operator, the above

average individuals with a proportion to their fitness values are selected (reproduced) to

form a mating pool and become parents of the next generation’s individuals more often

than below average individuals. On the other hand, in variation operator, which consists of

evolutionary recombination and evolutionary mutation, new unexplored solutions are

derived. Recombination involves exchanging information between two (or more) parents

from the mating pool to produce new offspring while mutation involves posing small

changes in the offspring in order to promote the search for better individuals. At the end of

each variation operator the fitness value is calculated and assigned to offspring individuals.

It is obvious that, the selection operator pokes the search toward superior solutions,

whereas the variation operators promote wider exploration. The variation operators are

followed by an elitism selection. In elitism selection the best 𝑁 individuals are selected and

allowed to be transformed to next generation, where 𝑁 is the population size. These

operations iterated for a number of generations until the termination criteria is satisfied.

Then, the best individual solution will be used to seed the next phase- the association

phase. In association phase, the non-virtual object members of each task group are

associated to their virtual objects to form clusters. The general framework of

evolutionary algorithms that the evolutionary task allocation protocols follow is depicted in

Algorithm 4.1.

69

Algorithm 4.1. Outline of the evolutionary algorithm trajectory

Input:

 An optimization problem 𝔽(𝕏), where 𝕏 is n-dimensional decision variable 𝕏 =

{χ1, … , χn}

 Population size, N

 Termination criterion τ → {true, false}

Output:

 Best solution in the last generation according to fitness values

Begin:

Step 1 – Initialize Population:

 gen = 0

 Initialize random population of solutions, I0 = {I1
0, … , IN

0 }

 Calculate fitness value Φ ∶ Ii
0 → ℝ , ∀i ∈ {1, … , N}.

Step 2 – Perform Evolutionary Loop:

 Perform Selection: P(gen) = {S(Igen)1, … , S(Igen)k}, where S is selection

operator and k is the size of mating pool

 Perform Recombination: P′(gen) = {R(P(gen))}, where R is recombination

operator

 Calculate fitness value Φ ∶ P′(gen) → ℝ .

 Perform Mutation: P′′(gen) = {M(P′(gen))}, where M is mutation operator

 Calculate fitness value Φ ∶ P′′(gen) → ℝ .

 Perform Elitist selection: Igen+1 = the best N individuals from the

set {P⋃P′⋃P′′}

Step 3 – Test Stopping criteria:

 if (τ {gen} }) = true), then stop and the output is the best solution in the last

generation, otherwise gen = gen + 1, go to Step 2

End.

The conceptual visualization of the proposed evolutionary task allocation protocols is

shown in Figure 4.3.

70

Figure 4.3. The conceptual visualization of the proposed evolutionary task allocation

protocols in scenario #1

Thus, the conceptual evolutionary based task allocation protocols can be described

informally as follows:

71

1. Set the playground parameters: Include network dimensions (𝕏max, 𝕐max), Access point

location (𝔸ℙ𝑥,𝑦) (i.e., 𝔸ℙ𝑥,𝑦 = (𝕏𝑚𝑎𝑥/2, 𝕐𝑚𝑎𝑥/2)), Number of objects (𝑛),

Coordinates of objects (𝑂1𝑥,𝑦
) , … , (𝑂𝑛𝑥,𝑦

), Objects’ energy (𝐸𝑂1
), … , (𝐸𝑂𝑛

), Number

of tasks that the network is capable of performing (𝑇), Objects tasks (𝑡𝑂1
), … , (𝑡𝑂𝑛

),

Amplifier energy 𝜀𝑎𝑚𝑝, Transceiver circuit energy (𝐸𝑒𝑙𝑒𝑐), and Data aggregation

energy (𝐸𝐷𝐴).

2. Set the evolutionary algorithm parameters: Include population size (𝑁), Probability of

recombination (𝑝𝑐), Probability of mutation (𝑝𝑚), Mutation rate (𝑚𝑟) and Number of

generations.

3. Virtual objects election phase:

a. Population Initialization: Generate an initial EA population.

b. Objective function evaluation: Calculate the fitness function of each individual in the

population.

c. Evolutionary operators: Create a new population of individuals through:

 Selections: Select individual mates from old population to form the mating pool

using tournament selection.

 Recombination: Make offspring between two randomly selected mates from the

mating pool via two-point crossover operator.

 Mutation: Mutate a ratio of 𝑝𝑚 × 𝑁 of mates from the mating pool.

 Correction mechanism: Ensure the feasibility of the new offspring.

 Evaluate: Calculate the fitness function of each individual in the new population.

d. Elitism: Selects the fittest N individuals from the set of parents and offspring.

e. Replace: Use the new population instead of the old one for further run of the virtual

object election algorithm.

f. Stop: Test if the stopping condition of the EA is satisfied. If such, get the best

individual found in the current population based on its fitness. If not, go to step c.

g. Decoding: Decode the genotype of the best individual into its phenotype.

4. Association phase: CCS associates each the non-virtual object members of each task

group to their virtual objects to form clusters.

72

4.2.1. Virtual objects election phase

Selecting the appropriate collection of virtual objects at each task group has critical

importance for energy efficient task allocation. During the virtual objects election phase,

an EA is adopted to form the selection of virtual objects and partitions each task group into

clusters accordingly. The process of EA begins by generating an initial population of

candidate solutions. Each of these individuals is evaluated using a fitness function. Then,

these individuals go through evolutionary genetic operators which include selection and

variation operators (i.e., recombination and mutation). These evolutionary operators are

applied with pre-determined probabilities for exploring new solutions and to improve the

quality of the existing individuals. Each of the variation operators is then followed by a

feasibility insurance mechanism. Finally, an elitism mechanism is applied to restrict the

number of the individuals to the pre-determined population size. This evolutionary process

is repeated until the termination condition is satisfied. Then, the solution with the best

objective value is chosen as the final solution. The following subsections present each step

of the virtual objects election phase in both informal and formal details.

Individual’s genotype encoding/ phenotype decoding

EAs encode the decision variables (or input parameters) of the underlying problem into

solution strings of individuals or chromosomes. Containers of the string are called genes.

The position and the value in the string of a gene are called locus and allele, respectively.

Each individual represents a complete and candidate solution to the given problem,

encoded in a form that facilitates the evaluation of objectives and the execution of variation

operators. This form represents the necessary information required by the algorithm and

encoded as the individual‘s genotype. Genotype denotes the coding of the variables from

the problem space into the solution space. In contrast, phenotype represents the decoding

of genotype (i.e., the variables themselves).

In the context of EAs, the proposed evolutionary task allocation protocols consider a

population of individuals. Let P be a set of population individuals. That is |𝑃| = 𝑁 (𝑁 is

population size). In our algorithms each individual 𝐼𝑖 ∈ 𝑃, ∀𝑖 ∈ (1, … , 𝑁) is regarded as a

fixed length vector of size equal to the total number of objects in in the IoT network. Thus,

for an IoT network with 𝑛 objects, the individual consists of 𝑛 genes. In these individuals

73

each object is mapped into a gene. A gene value (allele) can be either 1 or 0 and it

indicates whether the object represented by this gene is a virtual object or not, respectively.

In this manner, the genotype representation of population 𝑃 = 𝐼𝑁 = {𝐼1, … , 𝐼𝑁} of N

individual solutions can be formally specified as follows:

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}

𝐼𝑗,𝑡
𝑖 = {

1 𝑖f object 𝑗 is a virtual object
0 otherwise

 (4.3)

where 𝑇 is the number of task groups in the network (i.e., 𝑇 is the number of tasks that can

be performed in the network). For example, 𝐼1,3
2 means the first gene (i.e., object) of the

second individual of the population belongs to task group 3.

This representation implicitly facilitates the formation of the selection of virtual objects at

each task group. Gene j represents the corresponding objects’ identification numbers (IDs).

Each ID can be used to retrieve the corresponding object’s information such as object’s x, y

coordinates, energy level and the task that is capable of performing.

While the genotype has a particular set of genes in the genome representation, the

phenotype, on the other hand, has the physical characteristic of the corresponding

genotype. So we need a decoding operator to map the individual from the genotype

representation in the problem space to a real solution in the phenotype space. Formally, a

gene 𝑗 of individual 𝑖 in the proposed evolutionary task allocation protocols is decoded

using the following equation:

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}

𝑂𝑏𝑗𝑒𝑐𝑡𝑗 = {
virtual_object if Gene𝑗

𝑖 = 1

 𝑛𝑜𝑛_virtual_object if Gene𝑗
𝑖 = 0

 (4.4)

Figure 4.4 depicts genotype and phenotype examples for an IoT network capable of

performing 4 tasks and consists of 250 objects from the initial population. Figure 4.4 (a),

represents the genotype solution corresponded to the phenotype in Figure 4.4 (b). The

74

Loci

Alleles

 1 10 29 56 92 113 130

 0 … 1 … 0 … 0 … 1 … 1 … 0

159 180 200 224 235 241 250

 1 … 0 … 0 … 1 … 0 … 0 … 0

phenotype task allocation solution clarifies the form of: Access point, virtual objects of

each Task Group (TG), and member objects (non-virtual objects) in each task group.

(a) Genotype

(b) Phenotype

Figure 4.4. Examples for genotype (a) and phenotype (b) individuals of evolutionary task

allocation protocols in scenario #1

75

Population initialization

In initialization phase, techniques based on randomness are usually used to generate the

initial population. In our evolutionary task allocation protocol, in order to maintain more

genetic diversity in initial population, we applied two methods for initialization as shown

in Algorithm 4.2.

Algorithm 4.2. Initial population generation algorithm for protocols in scenario #1

Input:

 IoT network = {𝑂𝑖,𝑡, … , 𝑂𝑛,𝑡}, where 𝑡 ∈ {1, … , 𝑇}

 Population size, 𝑁

Output:

 Initial population, IN(0)

Begin:

Step 1 –Setup:

 𝐼(0) = θ

 Set PC = 1

Step 2 – Operation:

 if randomPC ≤ 0.5

Then

 2.1: Set 𝑇𝐶 = 1

 2.2: Let 𝑇𝐺 be a set of all objects belong to the task group 𝑇𝐶 ,𝑇𝐺 =

{∀𝑂𝑖,𝑡 ∈ IoT network, 𝑡 = 𝑇𝐶}

 2.3: Let 𝑂𝑢,𝑡 be a random object belongs to TG

 2.4: Set 𝐼𝑢,𝑇𝐶
𝑃𝐶 = 1

 2.5: ∀𝑂𝑣,𝑡 ∈ 𝑇𝐺, 𝑣 ≠ 𝑢 set 𝐼𝑣,𝑇𝐶
𝑃𝐶 = 0

 2.6: if 𝑇𝐶 ≠ 𝑇,then 𝑇𝐶 = 𝑇𝐶 + 1go to step 2.2, otherwise go to step 3

Else

 2.7: Set TC = 1

 2.8: Let TG be a set of all objects belong to the task group TC ,TG = {∀Oi,t ∈

IoT network, t = TC}

 2.9: Obtain, Kopt = √
|TG|

2π

2

0,765
 and Popt =

Kopt

|TG|

76

Algorithm 4.2 (Continue). Initial population generation algorithm for protocols in scenario

#1

Each of these methods is applied with the probability of 0,5. Thus, each method creates the

half of the individuals in the initial population. In the first method, an object in each task

group is chosen randomly to become a virtual object within the corresponding task group.

In the second method, in each task group each object becomes a virtual object with the

probability of 𝑃𝑜𝑝𝑡, where 𝑃𝑜𝑝𝑡 is the optimal election probability used in [167]. 𝑃𝑜𝑝𝑡 is

calculated as:

𝑃𝑜𝑝𝑡 =
𝐾𝑜𝑝𝑡

𝑙
 (4.5)

where 𝑙 is the number of objects in a task group and 𝐾𝑜𝑝𝑡 is the desired percentage of

virtual objects in this task group. The calculation of 𝐾𝑜𝑝𝑡 is derived from [167] and [168].

To calculate 𝐾𝑜𝑝𝑡, we assume that objects of each task group are uniformly distributed in

an area 𝔸 = 𝕄 × 𝕄. For simplicity, we ignore the energy dissipation for transmitting and

reserving IMs. Thus, for assigning a task and reserving the results, the energy dissipated in

a virtual object is given by the following formula:

𝐸𝑉𝑂 = (
𝑙

𝐶
− 1) × 𝑘 × 𝐸𝑒𝑙𝑒𝑐 +

𝑙

C
× 𝑘 × EDA + 𝑘 × 𝜀𝑎𝑚𝑝 × 𝑑𝑡𝑜 𝔸ℙ

2 (4.6)

where 𝐶 is the number of clusters (i.e., the number of virtual objects) in a task group, 𝑘 is

the number of bits to be sent or received, 𝐸𝐷𝐴 is the energy dissipated for data aggregation

 2.10: ∀j ∈ TG

if randomj,TC ≤ Popt then Ij,TC
PC = 1

if randomj,TC > Popt then Ij,TC
PC = 0

 2.11: if TC ≠ T,then TC = TC + 1go to step 2.8

Step 3 – Perform Concatenation:

 𝐼(0) = I(0) ∪ IPC

Step 4 – Test Stopping condition:

 If PC = N, then stop and output is I(0), otherwise PC = PC + 1, go to Step 2

End.

77

and 𝑑𝑡𝑜 𝔸ℙ is the average distance between a virtual object and the access point. The energy

spent in a non-virtual object entity is equal to:

𝐸𝑂 = 𝑘 × 𝐸𝑒𝑙𝑒𝑐 + 𝑘 × 𝜀𝑎𝑚𝑝 × 𝑑𝑡𝑜 VO
2 (4.7)

In Equation (4.7), 𝑑𝑡𝑜 𝑉𝑂 is average distance between a cluster member and its virtual

object. The area occupied by each cluster is approximately
𝕄2

2
, by assuming that this area is

a circle with the radius 𝑅 =
𝕄

√𝜋𝐶
. Considering the uniform distribution of objects, it can be

shown that:

𝑑𝑡𝑜 VO
2 = ∫ ∫ (𝑥2 + 𝑦2) 𝑝(𝑥, 𝑦)

𝑦=𝕐max

𝑦=0

𝑥=𝕏max

𝑥=0
𝑑𝑥𝑑𝑦 =

𝕄2

2𝜋𝐶
 (4.8)

where 𝑝(𝑥, 𝑦) is object distribution. The energy spent in a virtual object cluster during a

task execution for communication and aggregation (ignoring the nature of the task itself) is

given by:

𝐸𝑉𝑂−𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ≈ 𝐸𝑉𝑂 +
𝑙

𝐶
× 𝐸𝑂 (4.9)

The total energy dissipated in a task group is equal to:

𝐸𝑇𝐺 = 𝑘 (2𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙 EDA + 𝜀𝑎𝑚𝑝(𝐶𝑑𝑡𝑜 𝔸ℙ
2 + 𝑙𝑑𝑡𝑜 VO

2)) (4.10)

By differentiating 𝐸𝑇𝐺 and setting its derivative with respect to 𝐶 to zero, we can obtain the

optimal number of virtual objects (i.e., optimal number of clusters) as:

𝐾𝑜𝑝𝑡 = √
𝑙

2𝜋
×

𝕄

𝑑𝑡𝑜 𝔸ℙ
 (4.11)

The average distance from a virtual object to the access point is given by [169]:

𝑑𝑡𝑜 𝔸ℙ = ∫ √𝑥2 + 𝑦2 1

𝔸
𝑑𝔸 = 0,765

𝕄

2𝔸
 (4.12)

78

In this way, the desired percentage of virtual objects in a task group (𝐾𝑜𝑝𝑡) becomes:

𝐾𝑜𝑝𝑡 = √
𝑙

2𝜋

2

0,765
 (4.13)

Each gene 𝑗 ∈ {1, … , 𝑛} in each task group 𝑡 ∈ {1, … , 𝑇} belongs to each individual,

𝐼𝑖, ∀𝑖 ∈ {1, … , 𝑁}, is randomly initialized with 1s and 0s according to 𝑃𝑜𝑝𝑡 of the desired

percentage of virtual objects as:

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}

𝐼𝑗,𝑡
𝑖 = {

1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚𝑗,𝑡 ≤ 𝑃𝑜𝑝𝑡

0 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚𝑗,𝑡 > 𝑃𝑜𝑝𝑡
 (4.14)

Fitness evaluations

To quantify the quality of each individual, a fitness value measured by an objective

function Φ is assigned to each solution. An objective function measures how good an

individual solution is for task allocation problem by differentiating between good and bad

solutions. The objective function accomplishes this by interpreting the individual in terms

of physical representation and evaluates its fitness based on desired traits (in the solution).

The fitness function forms the bridge between the task allocation problem itself and the

evolutionary algorithm.

All objective functions used in evolutionary task allocation protocols of scenario #1

represent minimization problems, where the most fitted individuals will have the lowest

numerical value of the associated function. The following describes the fitness parameters

used to form the fitness function in Evolutionary Task Allocation Protocol-1 (ETAP1) and

Evolutionary Task Allocation Protocol-2 (ETAP2):

 Evolutionary Task Allocation Protocol-1 (ETAP1): The goal of ETAP1 objective

function Φ𝐸𝑇𝐴𝑃1 is to minimize the total energy dissipated in the network for

communication in the process of task allocation. It achieves this goal by forming the

selection of virtual objects in a manner that minimizes the energy consumption at each

79

task group. In our protocols, virtual objects are responsible for assigning tasks to their

connected objects. The total energy spent for this operation represents the energy

consumed for task allocation. Φ𝐸𝑇𝐴𝑃1, quantifies this operation by summing: the total

energy spent by virtual objects to send IMs to their connected objects, the total energy

consumed by these objects to receive the IMs, and the total dissipated energy by virtual

objects to receive, aggregate and send the aggregated messages to 𝔸ℙ. It is clear that the

overall energy dissipated in all task groups represents the total energy dissipated in the

network. Formally speaking, the objective function used to evaluate the individual

solutions in ETAP1 protocol becomes:

Φ𝐸𝑇𝐴𝑃1 = ∑ ((∑ ∑ 𝐼𝑀_𝐸𝑇𝑋𝑣,𝑗
+

|𝑂𝑣𝑡
|

𝑗=1

|𝑉𝑂𝑡|
𝑣=1 𝐼𝑀_𝐸𝑅𝑋 + 𝐸𝑇𝑋𝑗,𝑣

+ 𝐸𝑅𝑋 + 𝐸𝐷𝐴) +𝑇
𝑡=1

∑ 𝐸𝑇𝑋𝑣,𝐴𝑃

|𝑉𝑂𝑡|
𝑣=1) (4.15)

where T is the number of the tasks that the IoT network can perform (i.e., the number of

task groups), |𝑉𝑂𝑡| is the number of virtual objects at the 𝑡th task group, |𝑂𝑣𝑡
| is the

number of objects associated to the 𝑣th virtual object of the 𝑡th task group and

𝐼𝑀_𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2
𝑎𝑛𝑑 𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2

 are energy consumptions for transmitting

indication messages and result messages from object1 to object2, respectively. 𝐼𝑀_𝐸𝑅𝑋

and 𝐸𝑅𝑋 determine the energy spent for receiving IM by IoT objects and the energy

spent for receiving data (or result) messages by virtual objects. 𝐸𝐷𝐴 is energy dissipated

for data aggregating.

 Evolutionary Task Allocation Protocol-2 (ETAP2): From Equation 1, it is deduced that

the consumed energy in a transmission depends on the distance between the source and

the destination. That is the longer the transmission distance is, the larger the dissipated

energy will be. Based on this fact, we formulate the objective function of ETAP2

as ΦETAP2. ΦETAP2 is composed of two parts: compactness (i.e., intra-distance) and

separation (i.e., inter-distance). The compactness part aims to minimize the distances

between the virtual objects and their connected objects to reduce the energy

consumption when virtual objects send indication messages to their connected objects

or when these objects transmit data to their associated virtual objects. On the other

hand, separation part aims to maximize the distances among virtual objects of each task

80

group to form a good distribution of virtual objects within each task group. The

compactness part of ΦETAP2is the sum of all distances between the network objects and

their associated virtual objects whereas the separation part is the total distances among

virtual objects of each task group. For normalization purposes both compactness and

separation part are divided by the number of the tasks that the IoT network can perform.

In this way ΦETAP2can be quantified by:

Φ𝐸𝑇𝐴𝑃2 =
(𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 \𝑇)

(𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 \𝑇)
=

(∑ (∑ ∑ 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣,𝑂𝑏𝑗𝑒𝑐𝑡𝑗)
|𝑂𝑣𝑡|

𝑗=1

|𝑉𝑂𝑡|
𝑣=1)𝑇

𝑡=1) \𝑇

(∑ (∑ ∑ ∀𝑣≠𝑢,𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣,𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑢)
|𝑉𝑂𝑡|
𝑢=1

|𝑉𝑂𝑡|
𝑣=1)𝑇

𝑡=1) \𝑇
 (4.16)

where 𝑇 is the number of the tasks that the IoT network can perform (i.e., the number of

task groups), |𝑉𝑂𝑡| is the number of virtual objects at the tth task group, and |𝑂𝑣𝑡
| is the

number of objects associated to the vth virtual object of the tth task group. 𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣

and 𝑂𝑏𝑗𝑒𝑐𝑡𝑗 are the vth virtual object of the tth task group and the 𝑗th object associated

with that virtual object, respectively. 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣, 𝑂𝑏𝑗𝑒𝑐𝑡𝑗) and 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣, 𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑢)

are the Euclidean distances. The Euclidean distances for 𝑑(𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣, 𝑂𝑏𝑗𝑒𝑐𝑡𝑗) can be

calculated as √(𝑥𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣
− 𝑥𝑂𝑏𝑗𝑒𝑐𝑡𝑗

)2 + (𝑦𝑉𝑜𝑏𝑗𝑒𝑐𝑡𝑣
− 𝑦𝑂𝑏𝑗𝑒𝑐𝑡𝑗

)2. Finally, it is worth to

note that the denominator in Equation 15 needs to be maximized while the numerator

needs to be minimized. As a result, the objective function is formulated as minimization

problem. It is also worth to mention that parameter 𝑇 could be excluded from the

formula and it is included only for normalization and analytical purposes.

The evolutionary process

In the evolutionary process, selection operator provides exploitation (i.e., intensification),

compared with the exploration for new and better solutions (i.e., diversification) which

provided by recombination and mutation operators. In the following each of the

evolutionary operators that is used in evolutionary task allocation protocols of scenario #1

is illustrated:

 Selection operator: In the context of EA, the next component is selection operator.

Selection acts as a force to increase the mean quality of solutions in the population. It

81

preserves the good solutions by electing parents with superior fitness values and

transferring them to the mating pool for reproduction in the next generation. In our

proposed protocols we adopted Binary Tournament Selection (BTS) as selection

operator since it is simple and effective [23]. BTS selects the best individual based on

its fitness value from two randomly selected individuals of the population and repeats

this operation N times to create the mating pool of the size equal to the size of

population. The formal definition of BTS,𝑆𝐵𝑇𝑆: 𝐼^2 → 𝐼′, is as follows: Let 𝑟1, 𝑟2

~𝑈{1, … , 𝑁} be two uniformly distributed random numbers from the set {1, … , 𝑁} and

let 𝐼𝑟1, 𝐼𝑟2be two individual solutions. Then, our selection operator becomes as follows:

𝐼𝑖′
∀ 𝑖 ∈ {1, … , 𝑁} = {

𝐼𝑟1 𝑖𝑓 Φ(𝐼𝑟1) ≤ Φ(𝐼𝑟2)

𝐼𝑟2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (4.17)

 Recombination: In recombination a cut and cross fill based method is applied. In this

method a ratio of (pc ×
N

2
,where pc is probability of recombination) of pair of parents

are chosen randomly from mating pool for recombination. Then, two cut points are

randomly chosen in each task group and the segment of genes between these cut points

of the two parent individuals are exchanged with each other. Formally, let r1and r2be

two random numbers selected from the range {1, … , N} and let Ir1
′
, Ir2

′
be two

individuals randomly selected based on r1and r2 from the mating pool. For each task

group TGt, ∀t ∈ {1, … , T} we generate two random cut points c1and c2 in the

range {1, … , |TGt| − 1}, where |TGt| is tth task group size. Then, the recombination

operation for each task group can be represented as follows:

𝐼𝑖𝑡,𝑡
𝑟1

′′

= (𝐼1𝑡,𝑡
𝑟1

′

, … , 𝐼𝑐1𝑡,𝑡
𝑟1

′

, 𝐼𝑐1+1,𝑡
𝑟2

′

, … , 𝐼𝑐2−1,𝑡
𝑟2

′

, 𝐼𝑐2𝑡,𝑡
𝑟1

′

, … , 𝐼|𝑇𝐺𝑡|𝑡,𝑡
𝑟1

′

)

𝐼𝑖𝑡,𝑡
𝑟2

′′

= (𝐼1𝑡,𝑡
𝑟2

′

, … , 𝐼𝑐1,𝑡
𝑟2

′

, 𝐼𝑐1+1𝑡,𝑡
𝑟1

′

, … , 𝐼𝑐2−1𝑡,𝑡
𝑟1

′

, 𝐼𝑐2,𝑡
𝑟2

′

, … , 𝐼|𝑇𝐺𝑡|𝑡,𝑡
𝑟2

′

)
 (4.18)

where it ∀i ∈ {1, … , |TGt|} is a gene that belongs to the 𝑡th task group. This operation

is iterated ∀𝑡 ∈ {1, … , 𝑇}. Figure 4.5 depicts an example of two-point cut and cross fill

based recombination. The figure captured for 250 object and network with 4 task

groups.

82

Figure 4.5. Two-point cut and cross fill

 Mutation: The next variation operator is mutation. A ratio of 𝑝𝑚 ×

𝑁 (where 𝑝𝑚 is probability of mutation) of population individuals are undergone the

mutation operation. For mutation operator a Bit Flop Mutation (BFM) method is

adopted. BFM is a unary variation operator applied to each gene in each task group with

mutation rate of 𝑚𝑟. Once a gene is chosen for mutation, its value is flipped from 1 to 0

and vice versa as follows:

Parent 1 Parent 2

Child 1 Child 2

83

∀𝑡 ∈ {1, … , 𝑇}

𝐼𝑖𝑡,𝑡
𝑟′′′

= {
𝐼𝑖𝑡,𝑡

𝑟′
 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 > 𝑚𝑟

1 − 𝐼𝑖𝑡,𝑡
𝑟′

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.19)

In Equation (4.19), 𝑟 is a random number in range {1, … , 𝑁}, 𝐼𝑟′
is an individual chosen

randomly based on 𝑟 from the mating pool and finally, 𝑖𝑡 ∀𝑖 ∈ {1, … , |𝑇𝐺𝑡|} is a gene

belongs to the 𝑡th task group. Again, the operation is repeated for each task group.

Figure 4.6 depicts an example of mutation. In this figure the network consists of 250

objects and capable of performing 4 tasks (i.e., there are 4 task groups in the network).

Figure 4.6. An example of mutation

Parent

Child

84

 Correction mechanism: In order to guarantee the validity of the new solutions both

recombination and mutation operators are followed by a feasibility insurance

mechanism that tests and repairs the infeasible individual solutions. This mechanism

tests each task group and randomly selects a virtual object for task groups that become

without virtual objects due to execution of variation operators.

 Elitism selection: The execution of variation operators creates new sets of candidate

solutions (offspring individuals) from the already existing solutions in matting pool

(parent individuals). Therefore, an elitism scheme is needed to restrict the number of

individuals in the population to N individuals (hence, N is the population size). In our

protocols, an elitism mechanism based on fitness values is applied. That is, parents and

offspring individual sets are concatenated and sorted in ascending order and then only

the first N individuals are truncated and transferred to the next generation. In this way

we retained the best individuals (or a few best individuals) in the next generation and

prevented the loss of the fittest members of the population.

Termination criterion

The most common terminating condition used in evolution algorithms is to allow the

algorithm to run to a maximum number of generations. In our protocols, the algorithm

terminates when the specified number of generations is reached. In the last generation the

solution with the best fitness value (minimum value) is selected to ensure that the

transmission power required by each object in the process of task allocation is minimized

and hence the total energy dissipation in the network decreases.

Finally, the selected best individual solution that obtained by the evolutionary algorithm

undergo through the decoding process. In the decoding process the genotype of the best

individual is decoded to obtain the phenotype result. The best individual solution 𝐵𝑒𝑠𝑡_𝐼

can be formally specified as:

∄Ii ∈ P, ∀i ∈ (1, … , N): Φ(Ii) < Φ(𝐵𝑒𝑠𝑡_𝐼) (4.20)

where, 𝑃 is the population set, 𝑁 is population size, and Φ is fitness function.

85

4.2.2. Association phase

In this phase, connections are established among the nodes based on the roles that were

assigned during the first phase (i.e., virtual objects election phase). The CCS determines

for each non virtual object entity to which virtual object it belongs by choosing the virtual

object that requires the minimum communication energy at each task group. Based on

Euclidean distances, the virtual object with minimum distance will be chosen in order to

achieve minimum energy consumption.

Formally speaking, let |𝑉𝑂𝑡−𝑏𝑒𝑠𝑡| be the number of virtual objects elected by the best

individual, Best_I in the task group 𝑡, and let 𝑂𝑡, be a non-virtual object member in task

group 𝑡, then:

∀𝑖, 𝑗 ∈ {1, … , |𝑉𝑂𝑡−𝑏𝑒𝑠𝑡|}

𝑂𝑡 ∈ 𝐶𝑖 , 𝑑(𝑂𝑡, 𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝑂𝑏𝑗𝑒𝑐𝑡𝑖) < 𝑑(𝑂𝑡, 𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝑂𝑏𝑗𝑒𝑐𝑡𝑗) (4.21)

where, 𝐶𝑖 is cluster consists of 𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝑂𝑏𝑗𝑒𝑐𝑡𝑖 and all its connected objects, 𝑑 is the

Euclidean distance.

4.2.3. Toward stability aware protocols

In an attempt to harness the strength of the proposed evolutionary protocols toward

stabilization purpose, we exploit the variation in energy levels of objects and redirected the

proposed ETAP1 and ETAP2 toward stability awareness goal. The so-called Stable

Evolutionary Task Allocation Protocol-1 (SETAP1) and Stable Evolutionary Task

Allocation Protocol-2 (SETAP2) are derived from ETAP1 and ETAP2 with the goal of

maximizing the time interval before the death of the first virtual object in each task group.

The basic idea of SETAP1 and SETAP2 is to inject an energy aware heuristic in both

population initialization and mutation operator of ETAP1 and ETAP2 to be collaborated

with the proposed fitness functions in order to maintain a robust performance.

86

In population initialization we modified the initialization phase previously described in

Algorithm 4.2. In the modified algorithm shown in Algorithm 4.3, only objects with

energy level greater than (or at least equal to) the average energy level in each task group

are allowed to become a virtual object in that task group. Accordingly, in the first method

of initialization phase, in each task group a random object with energy level greater or

equal to the average energy level in the corresponding task group is chosen to become a

virtual object. In the second method, each gene 𝑗 ∈ {1, … , 𝑛} in each task group 𝑡 ∈

{1, … , 𝑇} belongs to each individual, 𝐼𝑖 , ∀𝑖 ∈ {1, … , 𝑁}, can be initialized with 1s and 0s as

follows:

∀𝑖 ∈ {1, … , 𝑁}, ∀𝑗 ∈ {1, … , 𝑛} and ∀𝑡 ∈ {1, … , 𝑇}

𝐼𝑗,𝑡
𝑖 = {

1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚𝑗,𝑡 ≤ 𝑃𝑜𝑝𝑡 ∧ 𝐸𝑛𝑒𝑟𝑔𝑦(𝑜𝑏𝑗𝑒𝑐𝑡𝑗,𝑡) ≥ 𝐸𝑎𝑣𝑔𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.22)

where, Popt is the desired percentage of the virtual objects in each task group defined in

Equation (4.5) and Eavgt
 is average energy level in the tth task group.

Algorithm 4.3. Population initialization algorithm in SETAP1 and SETAP2

Input:

 IoT network = {𝑂𝑖,𝑡, … , 𝑂𝑛,𝑡}, ∀𝑡 ∈ {1, … , 𝑇}

 Population size, 𝑁

 A set of average energy levels for each task group, 𝐸𝑎𝑣𝑔𝑡
, ∀ 𝑡 ∈ {1, … , 𝑇}

Output:

 Initial population, IN(0)

Begin:

Step 1 – Setup:

 𝐼(0) = θ

 Set PC = 1

Step 2 – Operation:

 if randomPC ≤ 0.5

Then

 2.1: Set 𝑇𝐶 = 1

87

Algorithm 4.3 (Continue). Population initialization algorithm in SETAP1 and SETAP2

Associated with each individual is a fitness value measured by an objective function,𝛷,

which numerically quantifies how good that individual is for the task allocation problem.

For SETAP1 and SETAP2, the objective functions are as defined previously in Equations

(4.15) and (4.16), respectively.

Both selection and recombination operators are also as defined previously in Equation

(4.17) and Equation (4.18), respectively. The mutation operator, on the other hand, has an

additional heuristic. Each gene in each task group of the individual selected for mutation is

 2.2: Let TG be a set of all objects belong to the task group TC ,TG = {∀Oi,t ∈

IoT network, t = TC}

 2.3: Let Ou,t be a random object belongs to TG

 2.4: if Energy(objectu,t) < EavgTC
then go to Step 2.3

 2.5: Set Iu,TC
PC = 1

 2.6: ∀Ov,t ∈ TG, v ≠ u set Iv,TC
PC = 0

 2.7: if TC ≠ T,then TC = TC + 1go to step 2.2, otherwise go to step 3

Else

 2.8: Set TC = 1

 2.9: Let TG be a set of all objects belong to the task group TC ,TG = {∀Oi,t ∈

IoT network, t = TC}

 2.10: Obtain, Kopt = √
|TG|

2π

2

0.765
 and Popt =

Kopt

|TG|

 2.11: ∀j ∈ TG

 if randomj,TC ≤ Popt ∧ Energy(objectj,TC) ≥ EavgTC
 then Ij,TC

PC = 1

 if randomj,TC > Popt then Ij,TC
PC = 0

 2.12: if TC ≠ T,then TC = TC + 1go to step 2.9

Step 3 – Concatenation:

 𝐼(0) = 𝐼(0) ∪ IPC

Step 4 – Stopping condition:

 if PC = N, then stop and output is I(0), otherwise PC = PC + 1, go to Step 2

End.

88

mutated by applying BFM with mutation rate of 𝑚𝑟. Here, in this heuristic only objects

with above average energy level are considered under mutation. Once a gene is chosen for

mutation, its value is inverted from 1 to 0 and vice versa:

∀𝑟 ∈ {1, … , 𝑁}, 𝑖𝑡 ∀𝑖 ∈ {1, … , |𝑇𝐺𝑡|} 𝑎𝑛𝑑 ∀𝑡 ∈ {1, … , 𝑇}

𝐼𝑖𝑡,𝑡
𝑟′′′

= {
1 − 𝐼𝑖𝑡,𝑡

𝑟′
 𝑖𝑓 𝐸𝑛𝑒𝑟𝑔𝑦(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑡,𝑡) ≥ 𝐸𝑎𝑣𝑔𝑡

∧ 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝑚𝑟

𝐼𝑖𝑡,𝑡
𝑟′

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.23)

In the Equation (4.23), 𝑇𝐺𝑡is a set of all objects that belong to task group 𝑡, ∀𝑡 ∈ {1, … , 𝑇}

and 𝑖𝑡 ∀𝑖 ∈ {1, … , |𝑇𝐺𝑡|} is a gene belongs to the 𝑡th task group.

4.3. Overview of the Proposed Protocols in Context of Scenario #2

This scenario considers the applications of IoT where objects are capable of performing

several tasks. In a these applications, some of the task groups may intersect as the network

may contain several objects with different skills belonging to several task groups. Each

task group is assigned to a relevant task by a virtual object(s) which virtualize the physical

objects connected to them in the cyberspace and they are in charge of processing the

requests to these physical objects. To understand this scenario, assume that the network is

performing a humidity and temperature sensing in a specific area. In this case, the network

contains two task groups: humidity measurement task group, which contains only the

objects that are equipped with humidity sensors, and temperature measurement task group,

which includes the objects that are equipped with temperature sensors. It is obvious that

these two task groups could intersect when some objects are equipped with both humidity

and temperature sensors. Then, in each task group, some objects are selected as virtual

objects. The rest of the task group objects are clustered and connected to one virtual object.

At this point, allocating proper resources to the required task is the duty of the virtual

objects. It is worth to mention that, objects that are participated in several task groups

could be virtual objects in more than one task group. Figure 4.7 depicts the concept of task

groups and virtual objects in scenario #2.

89

Figure 4.7. The concept of task groups and virtual objects in scenario #2

In the context of scenario #2, two protocols are developed and an existing work in the

literature is modified to fit the energy efficiency requirement of task allocation problem.

All of these protocols are located at a CCS responsible of determining the task allocation

configuration in terms of the virtual objects and the connections in each task group. These

protocols are Modified-CBATA (M-CBATA) which is the modified version of the existing

work in [8] and [12], Steady Task Allocation Protocol (STAP), and Multi-Objective Task

Allocation Protocol (MOTAP). Starting with M-CBATA, the next subsections present

illustrations for each of these protocols.

4.3.1. Modified-CBATA (M-CBATA)

The authors in [8] and [12] proposed Consensus Based Approach for Task Allocation

(CBATA) to solve the problem of resource allocation in IoT networks. CBATA is a

heuristic approach that employs the concept of task groups and virtual objects to formulate

the problem of task allocation. In this algorithm, the first object is selected as virtual object

in each task group and the next object in the list is selected as vice-virtual object.

Considering that the objects have different capabilities to perform variety of tasks, one of

the main drawbacks of this method is the big probability of some objects to be a virtual

object in many task groups. It is clear that being a virtual object is a very energy

consuming operation and being a virtual object in many task groups increases this effect.

90

Therefore, objects that are virtual objects in many task groups quickly deplete their

energies leading to very short stability and operational periods. As an example, let us

consider the network in Figure 4.8 (a). The network is composed of two task groups (TG1

and TG2), where each task group has its virtual object assigned to it (i.e., VO1 assigned to

TG1 and VO2 assigned to TG2). Now, assume an object 𝑖 that is capable of performing

tasks 1, 2, 3, and 4 is joined to the network. In this example, the virtual objects VO1 and

VO2 are assigned to task groups TG1 and TG2, and no virtual object has been yet assigned

to task groups 3 and 4. Thus, VO1 and VO2 add object 𝑖 to their list of objects and

acknowledge it. Obviously, object 𝑖 does not receive acknowledgements for task groups 3

and 4. Hence, object 𝑖 assumes the role of VO3 and VO4 and then it informs the CCS (see

Figure 4.8 (b)).

In the previous example, object 𝑖 undertook the duty of being virtual object in two task

groups. The situation could be more severe if an object that is associated with large number

of task groups that do not have virtual objects is joined to the network. Considering this

drawback, we modified CBATA in such a way that, no object will be a virtual object in

more than one task group if it is possible. We named the modified CBATA algorithm as

Modified-CBATA (M-CBATA). The goal of M-CBATA is to minimize the number of

objects that are virtual objects in more than one task group or at least reduce the number of

task groups that the object is virtual object in them. In M-CBATA, when an object joins to

the network it sequentially tests the following steps and performs one or more of them

accordingly:

91

Figure 4.8. Illustrative example for CBATA and M-CBATA (a): A network with two task

groups (b): Object 𝑖 joined to the network (c): Object 𝑗 joined to the network

(d): Object 𝑘 joined to the network

1. If the object is associated with one or more tasks that their task groups have no virtual

objects yet, the object becomes a virtual object in these task groups.

2. If the object is associated with some tasks and their task groups have virtual objects that

are associated with more than one task group then:

a. If the object already selected as virtual object in another task group, then it associates

itself to these virtual objects.

b. If the object is not selected as a virtual object, then it informs one of the virtual

objects (i.e., the virtual objects that are associated with more than one task group) to

exclude itself from being a virtual object. The newly joined object announces itself

as the new virtual object in the corresponding task group.

c. If the object is associated with task groups that have virtual objects and those virtual

objects are associated with one task group, then the object joins to those virtual

objects.

92

Illustrative Example

Let us reconsider the example in Figure 4.8 (a). When the object 𝑖 wants to join the

network (see Figure 4.8 (b)) it tests the network. Since task groups 3 and 4 have no virtual

objects assigned to them, object 𝑖 performs step 1 and becomes a virtual object in these

task groups. Since task groups 1 and 2 have their virtual objects assigned to them and each

of these virtual objects are assigned to one task group, object 𝑖 performs step 3 and

associate itself with VO1 and VO2. Now, let us assume the following scenarios:

 Suppose that an object 𝑗 that can execute tasks 4 and 5 wants to join the network (see

Figure 4.8 (c)). Since there is no virtual object assigned to task group 5 the object 𝑗

performs step 1 and announces itself as VO5. On the other hand, although object 𝑖 (i.e.,

VO4) is virtual object in more than one task group; object 𝑗 follows step 2-a and joins

to VO4 to perform task 4 and takes no action since object 𝑗 has already been selected as

VO5.

 Suppose that an object 𝑘 that can perform tasks 1, 2 and 4 wants to join the network

(see Figure 4.8 (d)). Since VO1 and VO2 both are objects which are virtual objects in

only one task group, object 𝑘 follows step 3 and associates itself with VO1 and VO2.

Then, object 𝑘 follows step 2-b and informs object 𝑖 to exclude itself from being VO4

and object 𝑘 announce itself as VO4 informing the list of objects belonging to task

group 4. At this point, all virtual objects in the network are virtual objects in only one

task group.

4.3.2. Steady task allocation protocol (STAP)

STAP aims to boost the energy efficiency of the task allocation in the direction of

maximizing the stability period (the time interval until the first virtual object depletes its

energy in each task group) as well as increasing the operational period (the interval until all

virtual objects deplete their energies in each task group). In order to accomplish this goal

we developed a single objective optimization algorithm with heterogeneity aware

heuristics to ensure more extension of stability and operational periods. The proposed

algorithm attempts to select objects with energy levels above the average energy level of a

task group to be virtual objects at that task group and also attempts to reduce energy

93

consumptions of these virtual objects. It forms the collaboration between an efficient

object function and heterogeneity aware heuristics injected to population initialization and

mutation operators. The next subsections shade the light on the special design futures of

system model and the algorithmic framework of STAP.

System model for STAP

STAP formulate the problem using the system model defined in Section 4.1. In addition,

STAP assumes a heterogeneous IoT objects. These objects are heterogeneous in terms of

their energy levels and the number and the type of tasks they perform (i.e., each object is

capable of performing 𝑡𝑜|𝑡𝑜 ≤ 𝑇 tasks).

The network in STAP is partitioned into T task groups with each contains the objects that

are capable of performing similar tasks. At each task group some objects that satisfies

specific design features are selected to be virtual objects. These virtual objects are

responsible of representing the task group and allocating tasks to the objects connecting to

them. Task allocation is done by the virtual objects by sending an Indication Messages

(IMs) to their connected objects. As the objects can participate in multiple task groups it is

important to attach Task Identification TID (i.e., TID = 𝑡) with each IM, here t represents

the demanded task. Then, each object resaves the IM performs the task that is assigned in

the TID and sends the results back to the virtual object. Virtual objects aggregate the data

and send the aggregated results to 𝔸ℙ.

The algorithmic framework in STAP

STAP is centralized algorithm located at CCS that is equipped with unlimited resources. It

needs to operate one time in order to forms the selection of virtual objects and partitions

the network into clusters accordingly. As a single objective evolutionary optimization

algorithm, the algorithmic framework of STAP uses the general underlying of the EAs

which is presented in Figure 4.3.

STAP begins by considering a population of individuals 𝑃 of size 𝑁 (i.e., |𝑃| = 𝑁). Each

individual 𝐼𝑖 ∈ 𝑃, ∀𝑖 ∈ (1, … , 𝑁) is divided into a set of sub-individuals. Each sub-

individual represents a task group and is expressed as a fixed length vector of size equal to

94

the number of objects (𝑛). In this manner, each gene can be represented as 𝐼𝑖(𝑗,𝑘),, ∀𝑖 ∈

(1, … , 𝑁), ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛) where 𝑇 is the number of task groups in the

network (i.e., the number of tasks that the network is capable of performing). Each gene

encodes one object in the network in each task group and it is represented by an allele that

can take a value of 1, 0 or −1. The allele takes the value of 1 if the object is a virtual object

and the value of 0 if the object is not a virtual object but a member of the task group.

Finally, it takes the value of −1 if the corresponding object is not a member of the task

group. Figure 4.9 illustrates an abstract view of a population. Accordingly, a

population 𝑃 = {𝐼1, 𝐼2, … , 𝐼𝑁}, can be formalized as:

∀𝑖 ∈ (1, … , 𝑁), ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛)

𝐼𝑖(𝑗,𝑘) = {

1 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑉𝑂𝑗

0 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑉𝑂𝑗

−1 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝

 (4.24)

where, VOj is the set of virtual objects in the jth task group. For example, I2(4,1) = 1

means that the 1st gene (i.e., the first object in the network) of the 4th sub-individual (i.e.,

the fourth task group) of the 2nd individual of the population is a virtual object in the 4th

task group.

95

Figure 4.9. Population visualization in STAP

In the initialization phase, in order to maintain more genetic diversity, STAP employs two

methods to set the initial population. Each method is applied with probability of 0,5 to

each individual. In both methods a heterogeneity aware heuristic are applied to support the

energy efficiency of the selected virtual objects towards more extension of stability and

operational periods. The heterogeneity aware heuristics ensure that only objects with

energy levels above the average energy level of the task group are permitted to be virtual

objects. In the first method, an object has the property of satisfying the heterogeneity aware

heuristic condition is selected randomly from each task group to carry out the duty of being

a virtual object within the task group. The second method uses the principle of optimal

election probability presented in [167]. In this method, in each task group the virtual

objects are determined according to heterogeneity aware heuristic condition and the

optimal election probability 𝑃𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡 𝑙⁄ , where 𝑙, is the number of objects in each task

group, and 𝐾𝑜𝑝𝑡 = √(𝑙/2𝜋) 2/0,765 is the optimal number of constructed clusters in

each task group [167]. In this manner, each gene is initialized as follows:

96

∀𝑖 ∈ (1, … , 𝑁) , ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛)

 𝐼𝑖(𝑗,𝑘) =

{

1 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝐸(𝑂𝑏𝑗𝑒𝑐𝑡𝑘) > 𝐸(𝐴𝑣𝑔𝑗) ∧ 𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 ≤ 𝑃𝑜𝑝𝑡

0 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 > 𝑃𝑜𝑝𝑡

−1 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝

 (4.24)

where, 𝐸(𝑂𝑏𝑗𝑒𝑐𝑡𝑘) is the energy of the 𝑗th object and 𝐸(𝐴𝑣𝑔𝑗) is the average energy of

𝑗th task group.

To measure the quality of each solution quantitatively an objective function 𝛷 that is

subject to minimization is attached to each individual. The objective function of STAP,

 ΦSTAP aims to minimize energy consumptions of virtual objects as well as maximizing the

mean value of their energies. 𝛷𝑆𝑇𝐴𝑃, is composed of three parts: Individual virtual objects

dissipated energy, 𝑉𝑂𝐷𝑖𝑠𝐸, the total number of task groups for objects that are

simultaneously assigned as virtual objects in multiple task groups, TGmulti_VO, and the

average energy of virtual objects, VOE. The first part (i.e., VODisE) attempts to minimize

the average energy consumption of virtual objects. In STAP virtual objects are responsible

of assigning tasks to their connected objects. 𝑉𝑂𝐷𝑖𝑠𝐸, attempts to minimize the average

energy consumed of virtual objects to perform this operation. This can be quantified by

summing: the total energy spent by virtual objects to send IMs to their connected objects

and the total energy dissipated by virtual objects to receive, aggregate and send the

aggregated messages to 𝔸ℙ. Accordingly, 𝑉𝑂𝐷𝑖𝑠𝐸 can be formalized as follows:

 𝑉𝑂𝐷𝑖𝑠𝐸 = ∑ (
(∑ ∑ 𝐼𝑀𝐸𝑇𝑋𝑙,𝑜

+
|𝑂𝑙𝑗

|

𝑜=1

|𝑉𝑂𝑗|

𝑙=1 𝐷𝑎𝑡𝑎𝐸𝑅𝑋
+ 𝐸𝐷𝐴)

+ ∑ 𝐸𝑇𝑋𝑙,𝐴𝑃

|𝑉𝑂𝑗|

𝑙=1

)𝑇
𝑗=1 |𝑉𝑂|⁄ (4.25)

where, |𝑉𝑂𝑗| is the number of virtual objects in the 𝑗th task group, |𝑂𝑙𝑗
| is the number of

objects connected to the 𝑙th virtual object of the 𝑗th task group. 𝐼𝑀_𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2
, is

energy expenditure for sending indication message from 𝑜𝑏𝑗𝑒𝑐𝑡1 to 𝑜𝑏𝑗𝑒𝑐𝑡2. 𝐷𝑎𝑡𝑎_𝐸𝑅𝑋,

determine the energy spent for receiving result messages by virtual objects. 𝐸𝐷𝐴, and

𝐸𝑇𝑋𝑙,𝐴𝑃
 are energy consumed for data aggregation and energy for sending aggregated

97

message from virtual object 𝑙 to 𝔸ℙ, respectively. Finally, |𝑉𝑂| is the total number of

virtual objects in the network.

The second part of, 𝛷𝑆𝑇𝐴𝑃, 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂 considers the fact that being a virtual object is

extremely energy consuming operation. So, it attempts to minimize the number of task

groups that an object is virtual object at them to at most one task group.

Formally, 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂, can be expressed as:

∀𝑘 ∈ (1, … , 𝑛)

𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂 = ∑ (|𝑉𝑂(𝑂𝑘)|𝑛
𝑘=1 | |𝑉𝑂(𝑂𝑘)| > 1) (4.26)

where, |𝑉𝑂(𝑂𝑘)|, is the number of task groups that object 𝑂𝑘 is virtual object at them.

Note, if the virtual objects is represent only one task group, then 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂 is set to 0.

Finally, the goal of the third part of the objective function 𝑉𝑂𝐸 , is maximizing the mean

value of energy of virtual objects by selecting objects with high energy level as virtual

objects as follows:

𝑉𝑂𝐸 =
∑ ∑ 𝐸𝑉𝑂𝑙

|𝑉𝑂𝑗|

𝑙=1
𝑇
𝑗=1

|𝑉𝑂|
 (4.27)

where, 𝐸𝑉𝑂𝑙
, is the energy amount of the 𝑙th virtual object of the 𝑗th task group. Then, by

combining the three parts we can calculate 𝛷𝑆𝑇𝐴𝑃 as follows:

 𝛷𝑆𝑇𝐴𝑃 =
 𝑉𝑂𝐷𝑖𝑠𝐸 + 𝑇𝐺𝑚𝑢𝑙𝑡𝑖_𝑉𝑂

𝑉𝑂𝐸
 (4.28)

The next component is the evolutionary genetic operators which includes selection and

variation operators. Selection is an intensification operator acts as a force to increase the

mean quality of solutions in the population. In STAP we applied the canonical binary

tournament selection which elects the individual with the superior fitness value from two

randomly selected individuals of the population set transferring it to the mating pool. This

98

operation is repeated 𝑁 times to build a mating pool of the size equal to the size of

population.

On the other hand, variation operators are diversification operators used to explore new

and better solutions. Variation operators include recombination and mutation. In

recombination, a proportion, 𝑃𝐶 × 𝑁 2⁄ (where 𝑃𝐶 is probability of recombination) of

pairs of parents are chosen from the mating pool and undergo 2-point multilevel cut and

cross fill. For each sub-individual from the pair of parents, two cut points ,1 ≤ 𝑐𝑝1, 𝑐𝑝2 ≤

 𝑛 − 1, are randomly selected and the genes at 𝑐𝑝1 … 𝑐𝑝2 are swapped between the

participated sub-individual. In mutation, a multilevel bit flop mutation is applied on a

portion 𝑃𝑀 × 𝑁 (where 𝑃𝑀 is probability of mutation) of individuals in the mating pool.

Each gene with a value of allele not equal to −1 at each sub-individual is mutated with a

mutation rate of 𝑚𝑟 . If the value of the allele is 1, then is directly flipped to 0. However,

the value of allele is flipped to 1 from 0 only if the energy of the corresponding object is

greater than the average energy of its task group. Formally, mutation operator can be

expressed as follows:

∀𝑘 ∈ (1, … , 𝑛), ∀𝑗 ∈ (1, … , 𝑇)

𝐼𝑟(𝑗,𝑘)
′ = {

𝐼𝑟(𝑗,𝑘) 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 > 𝑚𝑟 ∨ 𝐼𝑟(𝑗,𝑘) = −1

0 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝑚𝑟 ∧ 𝐼𝑟(𝑗,𝑘) = 1

1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝑚𝑟 ∧ 𝐼𝑟(𝑗,𝑘) = 0 ∧ 𝐸(𝑂𝑏𝑗𝑒𝑐𝑡𝑘) > 𝐸(𝐴𝑣𝑔𝑗)

 (4.29)

where, 𝑟 is a random number in range {1, … , 𝑁}, 𝐼𝑟
′ is an individual chosen randomly based

on 𝑟 from the mating pool. This operation repeated sequentially for each sub-

individual ∀𝑗 ∈ (1, … , 𝑇).

Executing variation operators creates new sets of candidate solutions, thus a correction

mechanism is applied to guarantee the validity of the new solutions. Thus, if a task group

becomes without a virtual object an object with energy level greater than the average

energy of the task group is randomly selected and assigned as a virtual object within the

task group.

99

In population reduction phase, an elitism selection is applied where the parent individuals

of the population combined with the new solutions generated by the variation operators.

The combined set is then sorted in ascending order based on the value of objective function

and the first 𝑁 individuals are preserved and transferred to the next generation.

This evolutionary process is repeated until the termination condition is satisfied. In STAP,

the algorithm terminates when the specified number of generations is reached. Then, the

solution with the best objective value is chosen as the final solution. The best individual is

then decoded and undergo through association phase. In association phase, the CCS

constructs the clusters and builds the connections between the virtual objects and non-

virtual objects entities based on the Euclidean distances.

4.3.3. Multi-objective task allocation protocol (MOTAP)

MOTAP aims to increase the energy efficiency of the network as well as maximizing the

computation power utilization of virtual objects while assigning tasks to objects. However,

selecting the virtual objects that maximize the total computational power in use could

conflict with the goal of energy efficiency. For instance, selecting a large number of

objects as virtual objects to maximize the total computational power is inefficient since a

large number of virtual objects will consume more energy and in turn, degrade the energy

efficiency of the network. Therefore, it is desirable to maximize the total computational

power in use while minimizing the number of virtual objects (i.e., maximizing the mean

value of computational power) in each task group. However, minimizing the number of

virtual objects increases the energy load on individual virtual objects and therefore

decreases the stability period (i.e., the time interval in which the first virtual object

completely depletes its energy in each task group). The same situation occurs when an

object with several skills and high computational power is selected as a virtual object in

many task groups.

Multi-Objective Evolutionary Algorithms (MOEAs) involve optimizing a number of

objectives that conflict with each other and providing an optimal decision with a set of

trade-off solutions between the conflicting objectives. Thus, MOTAP uses the underlying

of MOEAs in order to jointly formulate the computational power utilization and energy

100

efficiency problems in task allocation of IoT as a novel Multi-objective Optimization

Problem (MOP).

The next subsections illustrate the special design features of MOTAP and sight the light on

its algorithmic framework.

System model for MOTAP

MOTAP uses the system model defined in Section 4.1 with some application specific

design features. MOTAP assumes that the IoT objects are equipped with different energy

levels and have different computation power capabilities supplied with processors with

different frequencies. Furthermore, MOTAP assumes that the IoT network is eligible of

performing T tasks and each object is capable of performing 𝑡𝑜 (𝑡𝑜 ≤ 𝑇) tasks.

In our model, the network is partitioned into different task groups, each of which contains

the objects that are capable of performing the corresponding task of the task group. In each

task group, a set of objects are selected as virtual objects to represent the task group and

they act as the task allocator within their groups. When, a task 𝑡, ∀𝑡 ∈ {1, … , 𝑇}, is needed

to be performed, the virtual objects of the task group corresponding t sends Indication

Messages (IMs) to their connected objects. Each IM is attached with a Task Identification

TID (i.e., TID = 𝑡) since the objects can participate in multiple task groups. Then, the

objects perform the task that is assigned in the TID after receiving the IMs and send the

results back to the virtual objects. Virtual objects perform data aggregation and send the

aggregated results to 𝔸ℙ.

The algorithmic framework of multi-objective task allocation protocol (MOTAP)

MOTAP is a centralized protocol resides in the CCS that is equipped with unlimited

resources. Although there are several variants of MOEAs, it is out of the scope of this

thesis to investigate the applicability of different MOEAs. MOTAP adopts a custom

designed framework based on elitist Non-Dominated Sorting Genetic Algorithm II

(NSGA-II) as its underlying algorithmic paradigm.

The evolutionary process of the general framework of MOTAP (see Figure 4.10) can be

illustrated as follows:

101

Figure 4.10. The General layout of MOTAP

Individuals encoding in the solution space: MOTAP It begins by considering a population

𝑃 which consists of a group of 𝑁 individuals. Each individual 𝐼𝑖 ∈ 𝑃, ∀𝑖 ∈ (1, … , 𝑁) is

divided into a set of sub-individuals. Each of these sub-individuals represents a task group

in the network and its length equal to the number of objects (𝑛). MOTAP uses the

structural view that is presented in Figure 4.9 to store the population. In this structure, each

gene encodes one object in the network in each task group and takes a value of −1, 0 or 1

as follows:

102

 -1: if the object is not a member of the task group.

 0: if the object is a member of the task group but it is not a virtual object.

 1: if the object is a member of the task group and it is a virtual object in that task group.

Figure 4.11 (a) and (b) show genotype and phenotype examples in MOTAP, respectively.

This figure abstracts a 200 × 200 Unit IoT network capable of performing 4 tasks and

consists of 50 objects from the initial population. Figure 4.11 (a), represents the genotype

solution corresponded to the phenotype in Figure 4.11 (b). The phenotype solution clarifies

the form of: Access point, virtual objects of each Task Group (TG), and member objects

(non-virtual objects) in each task group. The tasks of each object are specified by arrow to

the right of the object. Red colored tasks mean the object is a virtual object in the

corresponding task group.

103

(a) Genotype

(b) Phenotype

Figure 4.11. Examples for genotype (a) and phenotype (b) individuals of MOTAP

Population initialization: In the initialization phase, MOTAP employs two strategies to

ensure better exploration of different points in the search space. Each strategy creates half

of the population with a probability of 0,5 to create each individual. In the first strategy, an

object in each task group is chosen randomly to become a virtual object within the task

group. In other words, a gene from the set of gens corresponding the set of objects belong

104

to the task group in each sub-individual is chosen randomly and its allele value is set to 1.

The second strategy adopts the principle of optimal election probability [167]. According

to Heinzelman et al. [167], the percentage of virtual objects in each task group can be

determined by an optimal election probability 𝑃𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡 𝑙⁄ where, 𝑙 is the number of

objects in each task group, and 𝐾𝑜𝑝𝑡 is the optimal number of constructed clusters in each

task group which is previously calculated in Equation (4.13). Then, each gene is randomly

initialized to −1, 0 or 1 depending on the membership of the corresponding object to the

task group and 𝑃𝑜𝑝𝑡 of the desired percentage of virtual objects as follows:

∀𝑖 ∈ (1, … , 𝑁) , ∀𝑗 ∈ (1, … , 𝑇), ∀𝑘 ∈ (1, … , 𝑛)

𝐼𝑖(𝑗,𝑘), = {

1 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 ≤ 𝑃𝑜𝑝𝑡

0 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∈ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝 ∧ 𝑟𝑎𝑛𝑑𝑜𝑚𝑘,𝑗 > 𝑃𝑜𝑝𝑡

−1 𝑖𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑘 ∉ 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑔𝑟𝑜𝑢𝑝

 (4.30)

Objective functions evaluation: 𝛷: 𝑃𝑖 → 𝑅2 denotes the objective function vector that is

assigned to each individual. This vector attaches a quality measure to each individual. In

MOTAP, there are two objective functions: ℱ1 and ℱ2, where both are subject to

maximization. ℱ1 involves maximizing the mean value of computation power of virtual

objects. It accomplishes this by selecting objects with powerful processing unites as virtual

objects while minimizing the total number of virtual objects in each task group. Formally,

𝛷ℱ1
can be calculated as follows:

Φℱ1
=

∑ ∑ 𝑝𝑝(𝑉𝑂𝑡𝑙
)

|𝑉𝑂𝑡|

𝑙=1
𝑇
𝑗=1

∑ |𝑉𝑂𝑡|𝑇
𝑗=1

 (4.31)

In the equation above, |𝑉𝑂𝑡| represents the number of virtual objects at the 𝑡th task group,

and 𝑝𝑝(𝑉𝑂𝑡𝑙
) represents the processing power (i.e., processing unit’s capacity) of the 𝑙th

virtual object of the tth task group. It is obvious that the genotype coding in of MOTAP

facilitates the computation of 𝛷ℱ1
, which can be expressed as:

Φℱ1
=

∑ ∑ pp(1tl
)

|1′st|

l=1
T
j=1

∑ |1′st|T
j=1

 (4.32)

105

In this equation, |1′𝑠𝑡| is the number of 1’s (i.e., the number of virtual objects) at the 𝑡th

sub-individual and 𝑝𝑝(1𝑡𝑙
) is the processing power of the lth virtual object of the 𝑡th task

group.

 ℱ2 maximizes the stability of each task group and minimizes energy dissipation for task

allocation, which is expressed as communication overhead. It consists two parts:

stability, 𝑆, and energy efficiency, 𝐸𝐹. 𝑆 maximizes the stability of each task group by

ensuring that only the objects with high energy levels could be selected as virtual object.

Hence, it maximizes the mean value of virtual objects’ energy. 𝑆 also considers the fact

that being a virtual object is an energy consuming operation. So, it attempts to minimize

the number of objects that are virtual objects in more than one task group. However, while

𝑆 extends the stability periods of task groups, it also extends the operational periods of

these groups. 𝑆 can be formally expressed as follows:

𝑆 =
∑ [∑ 𝐸(𝑉𝑂𝑡𝑙

)] / |𝑉𝑂𝑡|
|𝑉𝑂𝑡|

𝑙=1
𝑇
𝑗=1

|𝑚𝑢𝑙𝑡𝑖_𝑇𝐺(𝑉𝑂)|
 (4.33)

where, 𝐸(𝑉𝑂𝑡𝑙
) is the energy equipped with 𝑙th virtual object of the 𝑡th task group and

|𝑚𝑢𝑙𝑡𝑖_𝑇𝐺(𝑉𝑂)| is the number of objects that are virtual objects in more than one task

groups. 𝑆 is expressed as maximization and the value at the denominator is minimized.

The second part of ℱ2 is energy efficiency (𝐸𝐹) with the goal of minimizing the total

energy consumption for task allocation. This goal is conducted by selecting the virtual

objects such that the energy consumption from the communication overhead for assigning

tasks and receiving results at each task group is minimized. We formally define 𝐸𝐹 as:

𝐸𝐹 =

∑ ((∑ ∑ 𝐼𝑀_𝐸𝑇𝑋𝑙,𝑗
+

|𝑂𝑙𝑡
|

𝑗=1

|𝑉𝑂𝑡|
𝑙=1 𝐼𝑀_𝐸𝑅𝑋 + 𝐸𝑇𝑋𝑗,𝑙

+ 𝐸𝑅𝑋 + 𝐸𝐷𝐴) + ∑ 𝐸𝑇𝑋𝑙,𝐴𝑃

|𝑉𝑂𝑡|
𝑙=1)𝑇

𝑡=1 (4.35)

where, |𝑂𝑙𝑡
| is the number of objects connected to the 𝑙th virtual object of the 𝑡th task

group and 𝐼𝑀_𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2
and 𝐸𝑇𝑋𝑜𝑏𝑗𝑒𝑐𝑡1,𝑜𝑏𝑗𝑒𝑐𝑡2

 are the energy expenditures for sending

the indication and result messages from 𝑜𝑏𝑗𝑒𝑐𝑡1 to 𝑜𝑏𝑗𝑒𝑐𝑡2, respectively. 𝐼𝑀_𝐸𝑅𝑋 and 𝐸𝑅𝑋

106

determine the energy consumption for receiving IM by IoT objects and the energy

consumption for receiving data (or result) messages by virtual objects. 𝐸𝐷𝐴 is the energy

dissipated for data aggregation.

Then, by combining Equations (4.34) and (4.35), we can calculate 𝛷ℱ2
as follows:

Φℱ2
= 𝑆/𝐸𝐹 (4.36)

Variation operators and reduction selection: Variation operators are used to alter the task

allocation solutions found in the population and explore new points of the search space.

They include recombination and mutation operators. In recombination, a ratio of pairs of

randomly selected parents (𝑃𝐶 ×
𝑁

2
, where 𝑃𝐶 is probability of recombination) undergo 2-

point multilevel cut and cross fill. For each pair of parents, the recombination is divided

into 𝑇 levels, where 𝑇 is the number of sub-individuals as well as the number of task

groups. At each level two cut points ,1 ≤ 𝑐𝑝1, 𝑐𝑝2 ≤ 𝑛 − 1, are randomly selected and

then, each sub-individual of the participating parents is swapped at genes cp1 and −cp2.

This operation is repeated at each level until all sub-individuals are subject to 2-point cut

and cross fill. Formally, let 𝐼𝑟1
,𝐼𝑟2

 be a pair of parent individuals randomly selected from

the range {1, . . . , 𝑁} of the population. Then, the following operation is repeated at each

level ∀𝑗 ∈ (1, … , 𝑇):

∀𝑘 ∈ (1, … , 𝑛)

Ir1(j,k)
′ = (

Ir1(j,1), … , Ir1(j,cp1), Ir2(j,cp1+1),

… , Ir2(j,cp1−1), Ir1(j,cp2), … , Ir1(j,n)
)

Ir2(j,k)
′ = (

Ir2(j,1), … , Ir2(j,cp1), Ir1(j,cp1+1), …

, Ir1(j,cp1−1), Ir2(j,cp2), … , Ir2(j,n)
)

 (4.37)

In mutation, a proportion 𝑃𝑀 × 𝑁 (where 𝑃𝑀 is probability of mutation) individuals in

the population are mutated. When an individual 𝐼𝑟 is chosen for mutation, each gene at

each sub-individual with an allele not equal to −1 is mutated with a mutation rate of 𝑚𝑟 by

applying Bit Flop Mutation (BFM). In BFM, once a gene is chosen for mutation, its value

is flipped from 1 to 0 and vice versa:

107

∀𝑘 ∈ (1, … , 𝑛)

𝐼𝑟(𝑗,𝑘)
′ = {

𝐼𝑟(𝑗,𝑘) 𝑖𝑓 𝐼𝑟(𝑗,𝑘) = −1 𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 > 𝑚𝑟

1 − 𝐼𝑟(𝑗,𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.38)

This operation is repeated for each sub-individual ∀𝑗 ∈ (1, … , 𝑇).

Reduction selection is used to restrict the population size to 𝑁. In reduction selection phase

of MOTAP, an elitism scheme based on non-domination and crowding distance concept is

applied. Thus, the individuals with lower ranks of non-dominant fronts or with equal ranks

(i.e., individuals belonging to the same front) but with greater crowding distances are

selected to be transferred to the next generation.

The termination criterion: The termination criterion in MOTAP is a pre-specified number

of generations. In the last generation, the non-dominated solutions of the first front are

introduced to the decision maker. These solutions represent a set of optimal trade-off

solutions between the conflicting objectives of computation power and energy efficiency.

The decision maker at this point is responsible of selecting the most appropriate individual

to the network from the set of non-dominated solutions. Then, selected solution is decoded

and transferred to the association phase where the clusters are constructed and the

connections between virtual objects and non-virtual objects entities are established.

108

109

5. SIMULATION RESULTS AND DISCUSSION

This chapter presents the experimental results of the proposed evolutionary task allocation

protocols. In literature, there is no existing work for the problem of task allocation that

considers the heterogeneous IoT network in terms of energy levels using the concept of

task groups and virtual objects in an evolutionary algorithm framework. Hence, in the

simulations, for the purpose of benchmarking our protocols, we compared our methods

with the most relevant algorithm in the literature (CBATA) [8, 12]. For simulation

purposes, CBATA is implemented from the scratch to test its energy consumption

performance. The evaluations consider different performance measures related to the

energy efficiency, duration of the stability and operational periods, computational power

utilization and evolutionary algorithm quality.

This chapter is mainly divided into two parts. The first part demonstrates the performance

of the protocols that are developed within the framework of scenario #1. This part begins

by investigating the performance of ETAP1 and ETAP2 in terms of energy efficiency,

number of operational rounds, and the quality of the proposed evolutionary algorithm.

Next, the simulations examine the effects of energy aware heuristics and evaluate the

performance of SETAP1 and SETAP2 in terms of length of stability periods and average

available energy in virtual objects. On the other hand, the second part investigates the

performance of the protocols in the context of scenario #2. In order to evaluate MOTAP,

STAP and M-CBATA, several evaluation metrics related to computational power

optimization, energy efficiency, duration of the stability, and operational periods are used.

Moreover, the quality of the EA that is used to develop STAP is measured by adopting

convergence to optimal solution metric. Furthermore, in order to evaluate the quality of our

multi-objective optimization algorithm that is used in MOTAP, additional measurements

such as the diversity maintained in the non-dominate optimal set and the consistent

convergence to the optimal solutions are considered.

110

5.1. Performance Analysis of Protocols in Context of Scenario #1

This section expounds the performance of ETAP1, ETAP2, SETAP1, and SETAP2 against

the most relevant work in exist literature (CBATA). The evaluation taking place

considering different performance evaluation metrics related to the energy efficiency,

duration of the stability and operational periods and evolutionary algorithm quality. Energy

efficiency is measured by calculating the total dissipated energy in the network and the

total dissipated energy in each task group. Additionally, in order to give a deeper insight,

the execution of tasks is broken up into rounds and assumed the most extreme case where

at each round all tasks are needed to be performed. Then, the number of rounds until the

network or task groups become non-operational is depicted. The stability period in a task

group is defined as the time interval before the death of the first virtual object in that task

group. We evaluated the length of the stability periods of the proposed protocols by

transferring task allocation process into rounds and obtaining the number of rounds till a

virtual object explodes its energy in each task group. Finally, the quality of the proposed

evolutionary algorithms is evaluated in terms of consistent convergence to the optimal

solution.

The next subsections begin by illustrating the simulation environment and the control

parameters’ settings that used to obtain the experimental results. Then, the analysis results

of ETAP1 and ETAP2 against CBATA are presented. Finally, the results of the stability

aware protocols (i.e., SETA1 and SETAP2) are investigated.

5.1.1. Simulation environment

The simulation environment is designed adopting a custom simulator using MATLAB.

MATLAB is a high-level language and interactive environment to analyze and design

systems for solving different engineering and scientific problems [170, 171]. The custom

designed simulator enables us to generate random network topologies, to execute the

protocols on the generated topologies, to obtain the desired evaluation metrics, and to

benchmark the outputs of the simulations. The communication links in this simulator are

assumed to be bi-directional. Moreover, to maintain the poor radio conditions in most IoT

applications, a retransmission mechanism that retransmits erroneous or lost packets up to 5

times is applied. The simulations are executed under several bit error rates to evaluate the

111

effect of retransmission mechanism. It is observed that increasing the packet error rate by

1% increases the total energy consumption 3,2% on average (See Table 5.1). However,

only the worst-case scenario, which is the case when we have 10% packet error rate is

given. We experimentally observed and selected this error rate as a severe network

condition.

Table 5.1. Average dissipated energy (in joules) in 5 test instances for 200 × 200 network

scale, 250 object and 4 task groups and different packet error rates

Packet Error Rate ETAP1 ETAP2 Packet Error Rate ETAP1 ETAP2

0% 0,27934 0,59381 6% 0,33320 0,71314

1% 0,28772 0,61221 7% 0,34352 0,73809

2% 0,29750 0,63118 8% 0,35279 0,75580

3% 0,30583 0,65011 9% 0,36125 0,77545

4% 0,31500 0,66961 10% 0,36874 0,78384

5% 0,32508 0,69237 - - -

In the experiment, 𝑛 objects are randomly deployed in a square shaped area with the

dimensions of 𝑀 × 𝑀 unit. This means that the horizontal and vertical coordinates of each

object are randomly selected between zero and the maximum value of the dimension. The

internet coverage in this area is provided by an access point 𝔸ℙ located at the center of the

area. The network is capable of performing 𝑇 tasks. In the simulation it is assumed that

each object can perform one task and a task number between [1, 𝑇] is randomly associated

to each object. The simulation is mainly divided into three groups based on number of

objects (𝑛), number of tasks in the network (𝑇) and the dimension of the area (𝑀). Unless

otherwise stated, we suppose a default setting for these parameters (i.e., 𝑛 = 250, 𝑀 =

200, 𝑇 = 4) and then to get different simulation scenarios we vary value of one parameter

while fixing values of other two parameters. For number of objects we vary the value of 𝑛

from 200 to 600 objects with an incremental value of 50. In this way we generated 9

different test instances. For number of tasks in the network, 𝑇 takes 5 different values (2; 4;

6; 8 and 10). Finally, we changed the area dimensions to 7 different values from 100 to 250

with an incremental value of 25. To insure fairness of simulations regarding the

aforementioned randomness in objects’ coordinates, objects’ energy levels and the tasks

are associated with each object. We generated 5 different network topologies for each

simulation settings. Then, to maintain the probabilistic feature of the evolutionary task

112

allocation protocols each of these settings, are executed 5 times. Then, the average result of

each network is obtained and the final results are calculated by averaging the results of the

networks. Hence, the overall simulation tests a total of 525 random networks for each

protocol.

5.1.2. Network energy model

Each object is randomly initialized with an energy value between [0,5; 2] Joules. For

network energy model we adopted first-order radio model [166] with its default parameter

settings. In this model the energy needed to run transceiver circuit is set to 𝐸𝑒𝑙𝑒𝑐 =

 50 nJ/bit. The energy expenditures in amplifier is 𝜀𝑎𝑚𝑝 = 100 pJ/bit/m2. The message

size in our protocols is set to 4000 bits for data messages and 8 bits for indication

messages. Another parameter also taken into account is the energy spent for data

aggregation, which is set to 𝐸𝐷𝐴 = 5 nJ/bit.

5.1.3. Parameters and rules settings in the evolutionary task allocation algorithms

In the simulation, all routing protocols assume the following:

 The central control station is aware of its location and these of the IoT objects.

 The central control station and the IoT objects are stationary during the simulation.

 The central control station is equipped with unlimited amount of energy.

Other parameter settings that complete the characteristics of the evolutionary task

allocation protocols are: binary tournament selection, two-point crossover with 0,6

recombination probability (𝑝𝑐), bit flop mutation with Mutation probability (𝑝𝑚) = 0,03

and mutation rate (𝑚𝑟) = 0,02, population reduction based on elitism selection and

population size (𝑁) of 50 individuals allowed to evolve for 50 generations. Table 5,2

summarizes the particular rules and control parameters that are used in the evolutionary

algorithm.

113

Table 5.2. Parameters and rules used in the evolutionary algorithms of scenario #1

Population size (𝑁) 50

Stopping criteria Number of generations = 50

Selection mechanism Binary Tournament selection (BTS)

Recombination operator Two-point crossover

Mutation operator Bit Flop Mutation (BFM)

Recombination probability(𝑝𝑐) 0,6

Mutation probability(𝑝𝑚) 0,03

Mutation rate (𝑚𝑟) 0,02

Replacement policy Tournament selection based elitism

5.1.4. Results of ETAP1 and ETAP2

The next subsections evaluate ETAP1 and ETAP2 against CBATA considering different

performance evaluation metrics related to the energy efficiency, duration of the operational

period and evolutionary algorithm quality.

Protocols evaluation for energy efficiency

Tables 5.3 and 5.4 present the performance of ETAP1, ETAP2 against CBATA regarding

to total dissipated energy in the network for task allocation. The results in Table 5.3 are

obtained by varying network scale and setting number of objects and number of tasks that

the network can perform to 250 objects and 4 tasks, respectively. In Table 5.4, the results

are for network with 4 tasks, 200 × 200 unit side length and different objects densities.

Moreover, the results in these tables are averaged over 5 test instances and the best results

are shown in italic font. From these results it can be observed that both ETAP1 and ETAP2

outperform CBATA. ETAP1 with its objective function that directly deals with energy

consumption performs better than ETAP2. ETAP1directly tackles the problem of energy

consumption in task allocation by minimizing the total energy needs for this operation. On

the other hand, ETAP2 deals with the problem indirectly by forming the problem as

function to distance and attempts to compose a good distribution of virtual objects within

each task group. As can be expected, energy consumption increases when network scale

increases or the number of object increases. However, the increase rate in ETAP1 and

ETAP2 are much less than the increase rate in CBATA. For example in Table 5.3, one can

see that, the energy dissipation in ETAP1 in the most extreme case in this scenario (when

114

network side length is 250) is less than the energy dissipation in CBATA in the most slight

case (i.e., when network side length is 100) by 45,15 milijoule. The savings obtained in

this simulation seem to be negligible; however, it should be noted that each object is

equipped with an energy value between [0,5; 2] Joules. Also in this table, the average

increment in energy consumption at each increment of 25 × 25 unit of network size is

38,712 milijoule, 93,385 milijoule and 274,452 milijoule in ETAP1, ETAP2 and CBATA,

respectively. The last two columns in the table summarize the gain percentage of ETAP1

and ETAP2 over CBATA.

Table 5.3. Average dissipated energy (in joules) in 5 test instances for different network

scales

Network

Side Length
ETAP1 ETAP2 CBATA

ETAP1

gain over

CBATA

ETAP2 gain

over

CBATA

100 0,13647 0,22353 0,41389 67,02% 45,99%

125 0,15889 0,27794 0,63432 74,95% 56,18%

150 0,19032 0,34504 0,84772 77,54% 59,29%

175 0,22679 0,43837 1,10410 79,45% 60,29%

200 0,26496 0,65772 1,52680 82,64% 56,92%

225 0,31443 0,66562 1,88100 83,28% 64,61%

250 0,36874 0,78384 2,06060 82,10% 61,96%

Table 5.4. Average dissipated energy (in joules) in 5 test instances for different object

density settings

Number of

Objects
ETAP1 ETAP2 CBATA

ETAP1

gain over

CBATA

ETAP2

gain over

CBATA

200 0,22026 0,49525 1,0885 79,76% 54,50%

250 0,26999 0,51884 1,5260 82,30% 66,00%

300 0,30875 0,64170 1,8607 83,40% 65,51%

350 0,34148 0,80132 1,8931 81,96% 57,67%

400 0,38107 0,86787 2,3330 83,66% 62,80%

450 0,41409 0,93076 2,5528 83,77% 63,53%

500 0,44988 0,95843 2,6295 82,89% 63,55%

550 0,48696 1,00990 2,9359 83,41% 65,60%

600 0,52240 1,15840 3,8259 86,34% 69,72%

115

Another outcome that supports the previous results is presented in Table 5.5. This table

illustrates protocols performance in terms of energy consumption in the network for task

allocation for network dimension of 200 × 200 unit, 250 objects, and up to 10 tasks. In

these results ETAP1 outperforms both CBATA and ETAP2. In turn ETAP2 performs

better than CBATA. In ETAP1 and ETAP2 energy consumptions grow in parallel with

increased number of tasks and fixed number of objects and network dimension. CBATA

depicts an opposite behavior where energy consumption degrades when the number of

tasks increases. Although this behavior has positive affect on energy consumption, it could

be neglected considering the limited computational power of IoT objects which may be

capable of performing several though limited number of tasks [3].

Table 5.5. Average dissipated energy (in joules) for 5 test instances for different number of

tasks

Number of

Tasks
ETAP1 ETAP2 CBATA

ETAP1

gain over

CBATA

ETAP2

gain over

CBATA

2 0,21515 0,40125 1,4969 85,62% 73,19%

4 0,26837 0,58609 1,3806 80,56% 57,54%

6 0,29768 0,59308 1,3784 78,40% 56,97%

8 0,32584 0,56590 1,4738 77,89% 61,60%

10 0,34815 0,68737 1,3641 74,47% 49,61%

Figures 5.1 and 5.2 qualitatively depict the performance of the protocols in terms of total

dissipated energy in the network to allocate tasks to objects for different number of objects

and different number of tasks, respectively. The results indicate that ETAP1 performs

better than ETAP2 and CBATA; on the other hand, ETAP2 performs better than CBATA.

Considering different evaluation metrics, as seen in Figure 5.1, increasing the number of

objects from 200 to 600 increases energy dissipation by 0,30214; 0,66315 and 2,7374 in

ETAP1, ETAP2 and CBATA, respectively. In these results the averages of increase ratios

in energy consumption are 0,037768; 0,082894 and 0,342175 Joule for each of ETAP1,

ETAP2 and CBATA. The increase ratio of CBATA (i.e., 0,342175 Joule) indicates a great

disparity in the behavior of the protocol compared to both ETAP1 and ETAP2. One can

attribute that to the behavior of CBATA which selects only one virtual object in each task

group and replace it only when it depletes its energy. In contrast with that, both ETAP1

and ETAP2 maintain a load balance and distribute the burden of task allocation among

116

good selected virtual objects in each task group. Another evaluation metric can be obtained

from Figure 5.2. In this figure, the big gap in energy dissipation between both ETAP1 and

ETAP2, and CBATA becomes more obvious. When the number of tasks is equal to 2,

CBATA consumes 1.4969 Joule for task allocation. This value in ETAP2 is 0,40125 and

0,21515 in ETAP2. Increasing the number of tasks to 6 increases the energy consumption

to 1,3784; 0,59308 and 0,29768 Joule in CBATA, ETAP2 and ETAP1, respectively. The

results show that ETAP1 makes the best score followed by ETAP2.

Figure 5.1. Average dissipated energy in 5 test instances for different object density

settings

117

Figure 5.2. Average dissipated energy in 5 test instances for different number of tasks

For detailed view, Figure 5.3 and Tables 5.6, 5.7 and 5.8 investigate energy dissipation in

each task group that resulted from task allocation. The results of Figure 5.3 are obtained in

a network with 200 unit side length, 250 objects, and 6 task groups. On the other hand, the

results in Tables 5.6, 5.7 and 5.8 are obtained with default setting of the network while

varying number of network tasks, network dimensions, and number of objects respectively.

In these tables the best results are indicated by italic font. The results are averaged over 5

test instances with each executed 5 times. It is worth to note that, the total energy in the

network is distributed evenly among all task groups in the network in this scenario. It is

clear that ETAP1 evenly selects the virtual objects in the network as a result energy

expenditures are evenly distributed among objects of the network in different task groups.

This situation is different in CBATA. Thus, there are big differences among energy

consumptions of different task groups. In ETAP2 this situation is less severe. For example

in Figure 5.3 and Table 5.6 only task group 3 and task group 5 consume more energy

compared to other task groups. Quantitatively (also from Figure 5.3 and Table 5.6), the

energy differences between one task group and another are 0,00234; 0,02008 and 0,0571

for ETAP1, ETAP2, and CBATA, respectively.

118

Figure 5.3. Average dissipated energy in each task group for 5 test instances with network

dimension = 200 ×200, object density = 250 and number of tasks = 6

Table 5.6. Average dissipated energy in each task group for 5 test instances with network

dimension = 200 ×200, object density = 250 and number of tasks = 6

Task Group ETAP1 ETAP2 CBATA

1 0,0511 0,0953 0,1867

2 0,0500 0,0940 0,2561

3 0,0464 0,1245 0,2171

4 0,0514 0,0865 0,2670

5 0,0495 0,1033 0,1971

6 0,0494 0,0895 0,2544

119

Table 5.7. Average dissipated energy in each task group for 5 test instances with object

density = 250, number of tasks = 4 and different network dimensions

Network

Dimension

ETAP1 ETAP2

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

100 × 100 0,0337 0,0338 0,0346 0.0344 0,0529 0,0498 0,0649 0,0559

125 × 125 0,0423 0,0377 0,0406 0.0382 0,0524 0,0683 0,0815 0,0757

150 × 150 0,0462 0,0477 0,0494 0.0470 0,0764 0,1067 0,0661 0,0958

175 × 175 0,0596 0,0554 0,0531 0.0587 0,1062 0,1052 0,0957 0,1312

200 × 200 0,0700 0,0653 0,0622 0.0675 0,1272 0,1878 0,2008 0,1420

225 × 225 0,0763 0,0809 0,0765 0.0807 0,1735 0,2009 0,1273 0,1640

250 × 250 0,0869 0,0962 0,0921 0.0935 0,1827 0,1998 0,1806 02207

Network

Dimension

CBATA

TG1 TG2 TG3 TG4

100 × 100 0,1110 0,0848 0,1125 0,1056

125 × 125 0,1724 0,1788 0,1409 0,1422

150 × 150 0,2061 0,2236 0,1908 0,2273

175 × 175 0,2900 0,3013 0,1896 0,3232

200 × 200 0,4175 0,4004 0,3613 0,3476

225 × 225 0,4204 0,4188 0,5419 0,4998

250 × 250 0,4428 0,4440 0,5364 0,6374

120

Table 5.8. Average dissipated energy in each task group for 5 test instances with network

dimension = 200 ×200, number of tasks = 4 and different object density

Number of

Objects

ETAP1 ETAP2

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

200 0,0499 0,0553 0,0603 0,0547 0,1616 0,1091 0,1026 0,1220

250 0,0680 0,0666 0,0688 0,0665 0,1373 0,1224 0,1346 0,1245

300 0,0755 0,0758 0,0806 0,0769 0,1560 0,1695 0,1447 0,1715

350 0,0878 0,0854 0,0844 0,0839 0,1498 0,2501 0,2392 0,1621

400 0,0980 0,0933 0,0951 0,0946 0,1507 0,2406 0,2456 0,2309

450 0,1016 0,1016 0,1037 0,1072 0,1864 0,2529 0,1999 0,2915

500 0,1124 0,1148 0,1109 0,1117 0,2310 0,2146 0,2735 0,2393

550 0,1236 0,1166 0,1230 0,1238 0,2310 0,2806 0,1847 0,3137

600 0,1369 0,1288 0,1259 0,1308 0,3928 0,2004 0,2780 0,2871

Number of

Objects

CBATA

TG1 TG2 TG3 TG4

200 0,2591 0,2666 0,2663 0,2966

250 0,4556 0,3673 0,3597 0,3434

300 0,3826 0,5124 0,4555 0,5102

350 0,5020 0,4574 0,5100 0,4237

400 0,6090 0,5165 0,5186 0,6890

450 0,6642 0,4494 0,7457 0,6935

500 0,5128 0,6865 0,6528 0,7774

550 0,8354 0,6547 0,7551 0,6907

600 0,8178 0,9885 0,8573 1,1623

Protocols evaluation for duration of the operational period

In order to give a deeper insight of the performance of the protocols, Figures 5.4 and 5.5

breaks the execution of tasks into rounds and depicts the most extreme case that all tasks

are needed to be performed at each round assuming a continuous and a uniform arrival of

tasks. Figure 5.4 and Figure5.5 show the number of rounds until each task group become

non-operational (i.e., all its virtual objects deplete their energies) for scenarios that object’s

densities are 250 and 500, respectively. In both scenarios and in all task groups the longer

operational time (i.e., the largest number of rounds) is achieved by ETAP1 followed by

ETAP2 whereas CBATA becomes at the last rank. The reason is that both ETAP1 and

ETAP2 with their main goal of minimizing energy consumption maintain a load balance

and distribute the burden of task allocation among good selected virtual objects in each

task group. Thus, when one virtual object in a task group depletes its energy the set of rest

121

virtual objects take the duty of keeping the operation continuity of that task group. On the

other hand, CBATA selects only one virtual object in each task group. This lead to faster

depletion of a virtual object’s energy and thus shorter operational period. In Figures 5.4,

the average numbers of rounds of all task groups are 1848,05; 339,45 and 66 for ETAP1,

ETAP2 and CBATA. In Figures 5.5, the values are 1086,25; 216,05 and 40,8. In both

scenarios the huge superiority of ETAP1 over both ETAP2 and CBATA is very obvious.

Figure 5.4. Average number of rounds until each task group becomes non-operational for

objects density = 250

122

Figure 5.5. Average number of rounds until each task group becomes non-operational for

objects density = 500

Protocols evaluation for evolutionary algorithm quality

For the sake of demonstrating the quality of the proposed evolutionary algorithms, the

convergence to optimal solution metric is employed. This evaluation metric states that,

solutions must evolve and converge to an optimal solution in an organized manner

throughout the process of evolutionary algorithm loop [151]. In this context, Figures 5.6

and 5.7 visualizes quality of the proposed evolutionary algorithms regarding to

convergence metric Figure 5.6 shows the best solution in each generation as well as in

initial population in terms of fitness values for ETAP1. Figure 5.7 depicts the same results

for ETAP2. The results are averaged over 5 test instances with default parameter settings.

From the results, one can see that both ETAP1 and ETAP2 provide high-quality solutions

that evolve orderly at each generation towards optimal solution.

123

Figure 5.6. Convergence of ETAP1 toward optimal solution for 50 generations +

initialization phase

Figure 5.7. Convergence of ETAP2 toward optimal solution for 50 generations +

initialization phase

124

5.1.5. Results of SETAP1 and SETAP2 (The effect of energy aware heuristic on

ETAP1 and ETAP2)

The goal of the heuristics injected to ETAP1 and ETAP2 insure that only the objects with

energy levels greater than average energy level in each task group are allowed to be virtual

objects. These heuristics increase the mean value of energy of the virtual objects in each

task group. Table 5.9 supports this claim. This table presents the mean value of virtual

object energies for each task group. In this simulation the results are calculated in each

case for 5 simulation settings with network dimension =200 × 200, the number of objects

= 250 and the number of tasks = 8. Then, each simulation setting is executed 5 times and

the results are averaged over execution results and the best results are shown in italic font.

Table 5.9 reports that the mean values of virtual object energies in SETAP1 and SETAP2

are greater than other protocols. The table also reports that the heuristics injected to

ETAP1 and ETAP2 are succeed in raising energy levels of virtual objects. It is worth to

note that in some task groups (e.g., task group 3 and 5) the mean values of virtual objects

energies in CBATA are greater than the values in ETAP1 and ETAP2. However, ETAP1

and ETAP2 with their less energy consumptions (as shown in Table 5.6) success in

achieving better energy efficiency. The last two columns in the table summarize the gain

percentage of ETAP1 and ETAP2 over CBATA.

Table 5.9. The mean value of virtual objects energies (in joules) for 8 task groups

Task

Group
SETAP1 SETAP2 ETAP1 ETAP2 CBATA

SETAP1

gain over

CBATA

SETAP2

gain over

CBATA

1 1,6442 1,4930 1,2384 1,2963 1,0595 35,56% 29,03%

2 1,6618 1,7226 1,3788 1,2644 1,1089 33,27% 35,62%

3 1,5469 1,5654 1,2546 1,2831 1,3547 12,42% 13,45%

4 1,5789 1,6022 1,2442 1,1101 1,0612 32,78% 33,76%

5 1,5193 1,4717 1,1890 1,1456 1,3836 08,93% 05,98%

6 1,6364 1,6655 1,3353 1,2912 0,7998 51,12% 51,97%

7 1,6433 1,6462 1,3069 1,0990 1,1134 32,24% 32,36%

8 1,6002 1,6689 1,1974 1,0742 0,8924 44,23% 46,52%

Figure 5.8 and Figure 5.9 depicts the performance of the protocols in terms of stability

periods. In these figures the execution of the protocols are break up into rounds supposing

that all tasks are needed to be performed at each round in a continuous and a uniform

125

manner. The results are obtained for the scenarios of object’s density = 250 (Figure 5.8)

and object’s density = 500 (Figure 5.9) to show the number of rounds until each task group

becomes unstable (i.e., until a virtual object within a task group depletes its energy). In

both Figures, it is clear that SETAP1 achieves longer stability periods in all task groups

compared to other protocols. On the other hand, SETAP2 with its injected heuristics

competes with ETAP1 and outperforms its unmodified version (ETAP2) as well as

CBATA.

Figure 5.8. Number of rounds until each task group becomes unstable for network with

objects density = 250

126

Figure 5.9. Number of rounds until each task group becomes unstable for network with

objects density = 500

As it has been shown in Figures 5.8 and 5.9, SETAP1 and SETAP2 perform better than

their unmodified versions (i.e., ETAP1 and ETAP2) in terms of extending the length of

stability periods. However, to give a detailed view of the effect of injected heuristics in

term of energy efficiency, Tables 5.10, 5.11 and 5.12 report the result of SETAP1 and

SETAP2 in terms of dissipated energy in the network for different network scales, different

number of objects, and different number of tasks, respectively. For completeness we

attached the results of ETAP1 and ETAP2 from Tables 5.3, 5.4 and 5.5 with the

corresponding Tables of 5.10, 5.11 and 5.12. It is clear that although the heuristics

succeeded in providing longer stability periods they negatively affected the performance of

the protocols in terms of total dissipated energy in the network. Realizing this fact, the

motivations of ETAP1 and ETAP2 in one hand and the motivations of SETAP1and

SETAP2 in another hand for different application categories become more convenient.

127

Table 5.10. Average dissipated energy (in joules) in 5 test instances for different network

scales in a single round

Network

Side Length
SETAP1 ETAP1 SETAP2 ETAP2

100 0,14023 0,13647 0,22515 0,22353

125 0,16656 0,15889 0,28501 0,27794

150 0,19374 0,19032 0,34584 0,34504

175 0,23135 0,22679 0,43974 0,43837

200 0,28048 0,26496 0,65902 0,65772

225 0,32169 0,31443 0,66559 0,66562

250 0,37376 0,36874 0,80028 0,78384

Table 5.11. Average dissipated energy (in joules) in 5 test instances for different number of

objects in a single round

Number of

Objects
SETAP1 ETAP1 SETAP2 ETAP2

200 0,23055 0,22026 0,49939 0,49525

250 0,27613 0,26999 0,57787 0,51884

300 0,30963 0,30875 0,64980 0,64170

350 0,35412 0,34148 0,79989 0,80132

400 0,39349 0,38107 0,89376 0,86787

450 0,42281 0,41409 0,93579 0,93076

500 0,44989 0,44988 0,96525 0,95843

550 0,48923 0,48696 1,01431 1,00990

600 0,52764 0,52240 1,16562 1,15840

Table 5.12. Average dissipated energy (in joules) in 5 test instances for different number of

tasks in a single round

Number of

Tasks
SETAP1 ETAP1 SETAP2 ETAP2

2 0,21984 0,21515 0,42857 0,40125

4 0,27690 0,26837 0,61775 0,58609

6 0,32231 0,29768 0,66596 0,59308

8 0,34534 0,32584 0,61710 0,56590

10 0,38426 0,34815 0,68931 0,68737

128

5.2. Performance Analysis of Protocols in Context of Scenario #2

This subsection presents the simulation results of MOTAP and STAP comparing their

performance against the most relevant algorithm in the literature, CBATA [8, 12] and the

improved version of CBATA, M-CBATA. In comparisons several evaluation metrics

related to computational power optimization, energy efficiency, duration of the stability

and operational periods, and quality of the evolutionary algorithm are used. Moreover, in

order to evaluate the quality of the proposed multi-objective optimization algorithm,

additional measurements such as the diversity maintained in the non-dominate optimal set

and the consistent convergence to the optimal solutions are considered.

In the following subsections the simulations tools and environment that are used to obtain

the results are illustrated. Then, the parameter settings for network energy model and the

evolutionary algorithm are defined. Finally, the evaluation results and discussions of

MOTAP, STAP, M-CBATA and CBATA are investigated by presenting the results of

simulations obtained by MATLAB simulator and then those obtained by OMNeT++

simulator.

5.2.1. Simulation environment

In the simulations, we developed a custom designed simulation environment in MATLAB

[170, 171] to compute theoretical simulation results. For more complex and realistic

application layer simulations, we used the network simulation framework OMNeT++

[172]. Both MATLAB and OMNeT++ results verify each other. In the simulations, a bi-

directional communication links and 10% packet error rate are assumed. In case of a link

failure, up to 5 times retransmission mechanism is implemented.

As the inputs to our simulators, 5 random network topologies are generated. In each

network topology, 𝑛 objects are randomly deployed in an M × M unit area and the internet

coverage for these objects is provided by an access point 𝔸ℙ located at the center of the

area. Each object is equipped with an energy resource and its level is randomly selected in

the range [0,5; 2] joule. Moreover, each object is attached with a processing unit of a clock

speed value that is randomly chosen between 16 and 322 MHz. Here, the assumed 16

MHz and 322 MHz are the processing unit frequency of Arduino YÚN microcontroller

129

[173] and MIPS M5100 Core Processor [174], respectively. Both Arduino YÚN and MIPS

M51xx Core Processor family are ideal for wide range of IoT, M2M, wearable, and other

embedded and real-time applications [173, 174]. Finally, it is assumed that each object is

assumed to be capable of performing up to T tasks with each task ID randomly selected

from range of [1,T].

Our simulation scenarios are mainly divided into three groups according to dimension of

the area (𝑀), objects density (𝑛), and number of tasks that the network is capable of

performing (𝑇). Unless otherwise stated, the default settings for the simulations are 𝑛 =

 200, 𝑀 = 200 unit, and 𝑇 = 4. In order to generate different simulation scenarios the

value of each parameter is varied while fixing values of other two parameters. In order to

maintain the probabilistic feature of the evolutionary algorithms, each of the 5 network

topologies is execute 5 times and the average result for each topology is obtained over

these executions. Then, the final result for each setting is calculated by averaging the

results of the networks. The network side length, 𝑀 takes 7 different values starting with

100 up to 250 with an incremental value of 25. The number of objects in the network (n)

takes 8 different values (50; 100; 150; 200; 250; 300; 350; and 400). Finally, the value of

the number of tasks that the network could perform is changed to 5 different values from 2

to 10 with incremental value of 2. Overall, the simulation performs 500 tests for each

protocol.

5.2.2. Parameters and rules settings for network energy model and the evolutionary

task allocation algorithms

The network energy model parameters take values identical to the values in Section 5.1.2.

Table 5.13 lists the energy model parameters.

Table 5.13. Network energy model parameters settings

Energy for transceiver circuit (𝐸𝑒𝑙𝑒𝑐) 50 nJ/bit

Energy for amplifier (𝜀𝑎𝑚𝑝) 100 pJ/bit/m2

Energy for data aggregation (𝐸𝐷𝐴) 5 nJ/bit

Data message size 4000 bit

Indication message size 8 bit

130

In the simulation, the CCS is assumed to be aware of its location and those of the IoT

objects. Moreover, the CCS is supposed to be equipped with unlimited amount of energy.

Finally, both CCS and the IoT objects are supposed to be stationary during the simulation.

The parameters’ settings of evolutionary algorithm used in STAP are similar to those listed

in Table 5.2 with only difference in number of generations. In STAP the population is

allowed to evolve for 100 generations. On the other hand, the particular rules and control

parameters settings that used to complete the characteristics of MOTAP are: non-

domination and crowding distance concept based selection, two-point multilevel crossover

with 0,6 recombination probability (𝑝𝑐), bit flop mutation with mutation probability (𝑝𝑚)

= 0,03 and Mutation rate (𝑚𝑟) = 0,02, population reduction that adopts elitism scheme

based on non-domination and crowding distance concept and population size (𝑁) of 50

individuals allowed to evolve for 100 generations. Table 5.14 summarizes the particular

rules and parameters’ settings of MOTAP.

Table 5.14. MOTAP parameters and rules

Population size (𝑁) 50

Termination criteria Number of generations = 100

Recombination operator 2-point multilevel cut and cross fill

Mutation operator Bit Flop Mutation (BFM)

Recombination probability (𝑝𝑐) 0.6

Mutation probability (𝑝𝑚) 0.03

Mutation rate (𝑚𝑟) 0.02

Reduction selection

Elitism scheme based on non-

domination and crowding distance

concept

5.2.3. Results of simulation (by MATLAB simulator)

The next subsections evaluate the performance of STAP, MOTAP and M-CBATA against

CBATA within the platform of MATLAB simulator. The evaluation considers several

metrics in context of energy efficiency, duration of the stability and operational periods,

computational power optimization, quality of the evolutionary algorithm, and computation

time.

131

Protocols evaluation for energy efficiency

Tables 5.15, 5.16 and 5.17 illustrate the performance of the protocols from the perspective

of total energy consumed in the network to allocate tasks to the objects and retrieve the

results. The results in Tables 5.15, 5.16 and 5.17 are obtained under the default simulation

setting values with varying network dimensions, number of objects and number of

networks tasks for the tables respectively. In these tables the best results are indicated by

italic font. From the results it is clear that both STAP and MOTAP exhibit comparable

performance and the best results are exchange between them. Moreover, both (i.e., STAP

and MOTAP) outperform CBATA and its modified version M-CBATA. Thus, STAP and

MOTAP consume less energy for task allocation compared to CBATA and M-CBATA.

STAP with its objective function in Equation 4.28 and MOTAP with its second objective

in Equation 4.36 are very successful in minimizing the total energy that is dissipated in the

network for the operation of task allocation. Another observation from the results is that

both CBATA and M-CBATA are generally equal at their performance. The reason is that

both algorithms form the selection of virtual objects in a blind manner regarding to energy

consumptions. The main advantage of M-CBATA over CBATA is that it selects different

virtual objects for each task group by distributing the load of being virtual object and

extends the operational and stability periods.

Table 5.15. Average dissipated energy (in joules) in 5 test instances for different network

scales

Network

Side Length
STAP MOTAP M-CBATA CBATA

100 0,28115 0,301468 0,91704 0,94636

125 0,32667 0,339224 1,18560 1,26910

150 0,37996 0,392548 1,70760 1,66090

175 0,44361 0,445192 2,17110 1,89030

200 0,54295 0,523368 2,89860 3,14310

225 0,62468 0,629360 3,92000 3,92200

250 0,80566 0,701096 4,36240 4,28320

132

Table 5.16. Average dissipated energy (in joules) in 5 test instances for different object

density settings

Number of

Objects
STAP MOTAP M-CBATA CBATA

50 0,25015 0,19262 0,80095 0,66806

100 0,32248 0,32029 1,29830 1,58540

150 0,43639 0,42126 2,34400 1,76020

200 0,53060 0,52460 2,91530 2,76400

250 0,64588 0,62822 3,51570 3,55150

300 0,70987 0,72843 4,46310 4,70110

350 0,79829 0,80395 5,03240 4,69960

400 0,87933 0,90029 5,45800 5,88720

Table 5.17. Average dissipated energy (in joules) for 5 test instances for different number

of tasks

Number of

Tasks
STAP MOTAP M-CBATA CBATA

2 0,28596 0,28219 1,48160 1,99890

4 0,52582 0,52658 2,63270 2,61580

6 0,89300 0,86055 3,70190 3,77790

8 1,42970 1,35360 5,35640 5,99170

10 2,16930 1,89750 6,33310 5,54200

Another considerable evaluation metric is scalability. It is obvious from results in Tables

5.15, 5.16 and 5.17 that both STAP and MOTAP handle the scalability in a more efficient

manner than M-CBATA and CBATA. For example, in Table 5.15 increasing the

dimension of the network from 100 × 100 unit to 250 × 250 unit increases the energy

consumption in STAP by 0,52451 joule and in MOTAP by 0,399628 joule. This value

dramatically increases in M-CBATA and CBATA to 3,44536 and 3,33684 joules,

respectively. Another example is captured from Table 5.16. In this table increasing the

number of objects by 350 objects magnifies energy consumption by 0,62918 joule in STAP

and by 0,399628 joule in MOTAP. Whereas, the energy spent magnification in M-CBATA

is 3,44536 joule and in CBATA is 3,33684 joule. This can be attributed to behavior of

STAP and MOTAP which degrade the energy load on each task group by selecting several

virtual objects for each task group. On the other hand, regardless of the number of objects,

M-CBATA and CBATA select one virtual object for each task group. This behavior of M-

CBATA and CBATA magnifies the energy load in each task group.

133

The results in Figures 5.10, 5.11 and 5.12 qualitatively supports the previous observations.

The figures visualize the results in Tables 5.15, 5.16 and 5.17 respectively. It is clear from

Figure 5.10 and Figure 5. 11, increasing the density of the objects, the dimension of

network or the tasks that the network is capable of performing increase the energy

consumption of the network in an uniform manner.

Figure 5.10. Average dissipated energy in 5 test instances for different network dimensions

134

Figure 5.11. Average dissipated energy in 5 test instances for different number of objects

Figure 5.12. Average dissipated energy in 5 test instances for different number of tasks

A detailed view on energy dissipation in each task group is presented in Figure 5.13 and

Table 5.18. In these results, the network side length is 200 units, the number of objects is

135

200, and the number of tasks is six. Moreover, the best results in Table 5.18 are indicated

by italic font. The results clearly align with the previous results.

Figure 5.13. Average dissipated energy in each task group

Table 5.18. Average dissipated energy (in joules) for 5 test instances in each task group

Task Group# STAP MOTAP M-CBATA CBATA

1 0,15851 0,14495 0,59535 0,62550

2 0,14111 0,14814 0,62389 0,60718

3 0,12807 0,14005 0,64606 0,62173

4 0,16863 0,15092 0,68090 0,64204

5 0,13412 0,14649 0,66332 0,64438

6 0,14468 0,14184 0,49240 0,63707

Protocols evaluation for operational and stability periods

The length of the operational and stability periods is directly determined by the amount of

energy and by the energy efficiency of virtual objects. Greater amount of energy coupled

with optimal use of the virtual objects’ available energy lead to extension in both

operational and stability periods. Tables 5.19, 5.20, and 5.21 and their qualitative

136

representations in Figures 5.14, 5.15, and 5.16 depicts the average energy consumption of

virtual objects with networks default settings and different network dimensions, different

numbers of objects, and different number of networks tasks, respectively. The best results

in Tables 5.19, 5.20, and 5.21 are specified by italic font.

Table 5.19. Average dissipated energy of virtual objects (in joules) for different network

scales

Network

Side Length
STAP MOTAP M-CBATA CBATA

100 0,0023014 0,0044194 0,028795 0,042191

125 0,0026217 0,0043884 0,029080 0,070841

150 0,0030248 0,0047299 0,029503 0,047350

175 0,0034822 0,0050028 0,030014 0,105300

200 0,0041447 0,0056077 0,031352 0,084352

225 0,0043909 0,0063564 0,033352 0,051141

250 0,0049590 0,0069147 0,033868 0,066381

Table 5.20. Average dissipated energy of virtual objects (in joules) for different object

density settings

Number of

Objects
STAP MOTAP M-CBATA CBATA

50 0,0034104 0,0039320 0,010541 0,022122

100 0,0035954 0,0046025 0,016913 0,037430

150 0,0037572 0,0052908 0,024930 0,058994

200 0,0039846 0,0055409 0,031903 0,068875

250 0,0042673 0,0063651 0,039015 0,140560

300 0,0044266 0,0062358 0,046221 0,163070

350 0,0045405 0,0067405 0,053408 0,167610

400 0,0047949 0,0066480 0,060386 0,170330

Table 5.21. Average dissipated energy of virtual objects (in joules) for different number of

tasks

Number of

Tasks
STAP MOTAP M-CBATA CBATA

2 0,0029236 0,0054821 0,036027 0,054051

4 0,0038314 0,0055912 0,030888 0,058851

6 0,0052032 0,0065012 0,028655 0,074666

8 0,0060637 0,0071712 0,028824 0,102160

10 0,0074432 0,0083327 0,027983 0,112120

137

Figure 5.14. Average dissipated energy of virtual objects for different network dimensions

Figure 5.15. Average dissipated energy of virtual objects for different number of objects

138

Figure 5.16. Average dissipated energy of virtual objects for different number of tasks

It is obvious from the results in Tables 5.19, 5.20, and 5.21 and Figures 5.14, 5.15, and

5.16 that STAP and MOTAP significantly perform better that both M-CBATA and

CBATA. Also it is clear that STAP slightly outperforms MOTAP. The reason is that STAP

is a single objective EA that has one goal of minimizing energy consumption of task

allocation and optimizing the energy efficiency of virtual objects. On the other hand,

MOTAP is MOEA that has two conflicted objectives of optimizing the energy efficiency

of task allocation and utilizing the operational power of virtual objects. In MOTAP, none

of these objectives can further optimize without deteriorating the other objectives.

Another observation from these results is the advantage of the M-CBATA over CBATA.

In CBATA there is big opportunity for an object to serve as virtual object at several task

groups. This behavior magnifies energy spent of virtual objects. In contrast, in M-CBATA

it is more likely for objects to be virtual objects in reduced number of task groups

compared to CBATA regardless of the number of tasks that the object is capable of

performing. This behavior minimizes the work load on individual virtual objects and

results in reduced energy consumption. This observation becomes very clear in Table 5.21

and Figure 5.17. Thus, increasing number of tasks at the same number of objects increases

the number of tasks groups. This for CBATA means that an object could be serving within

139

larger number of task groups. Whereas in M-CBATA, since there is only one virtual object

in each task group increasing number of virtual objects increases the number of clusters in

the network which in turn means fewer number of objects at each task group that the

virtual objects have to serve.

One of the primary goals of STAP is selecting virtual objects with leveraged energy levels.

This goal yields by the energy aware heuristic that are injected in mutation and population

initialization phase. As can be seen from Figure 5.17 and Table 5.22 this goal is efficiently

satisfied. The results show the energy of virtual objects in each task group for number of

tasks = 6. In Table 5.22 the best results are indicated by italic font. STAP by selecting

virtual objects with higher residual energy outperforms other rival protocols.

Figure 5.17. Average energy of virtual objects in each task group for number of objects =

200, network dimensions = 200 ×200 unit and number of tasks = 6

140

Table 5.22. Average energy of virtual objects (in joules) in each task group for number of

objects = 200, network dimensions = 200 ×200 unit and number of tasks = 6

Task Group# STAP MOTAP M-CBATA CBATA

1 1,6635 1,4331 1,4581 1,4166

2 1,6399 1,4317 1,2898 1,4290

3 1,6173 1,4996 1,1409 1,2679

4 1,6436 1,4816 1,2244 1,4178

5 1,6141 1,4725 1,3113 1,4079

6 1,6564 1,3775 1,2413 1,3245

The results in Tables 5.23 and 5.24 and Figures 5.18 and 4.19 are obtained by breaking the

execution of tasks into rounds and assuming the most extreme scenario where queries for

execution of all tasks are arrive in a continuous and a uniform manner at each round. Table

5.23 and Figure 5.18 depict the average length of the operational periods of each task

group. Whereas, Table 5.24 and Figure 5.19 show the average length of stability period of

each task group. The results in Tables 5.23 and 5.24 are captured for networks of 200 ×

200 unit dimension, 4 tasks and different number of objectives. On the other hand, Figures

5.18 and 4.19 are obtained for the default setting network. The results come in align with

the previous results and as can be seen STAP yields better performance in terms of

stability and operational periods compared to other protocols. MOTAP with its energy

efficient objective function comes at the second rank. On the other hand, M-CBATA with

its modifications that minimize the work load on individual virtual objects and results in

reduced energy consumption outperforms CBATA. It is worth to note that, in M-CBATA

and CBATA operational and stability periods are identical since they select one virtual

object at each task group.

141

Table 5.23. Average number of rounds until each task group becomes non-operational for

different object density

Number of

Objects

STAP MOTAP

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

50 601,80 738,40 562,00 1558,2 553,6 890,6 972,0 632,6

100 1161,6 928,00 1194,2 1037,8 928,8 654,0 791,2 661,8

150 924,00 1527,6 1488,4 955,8 600,2 598,6 652,4 515,2

200 1189,8 1998,8 1584,8 1884,6 601,4 840,2 597,6 689,8

250 1955,6 1312,4 996,00 1617,4 486,6 605,0 519,4 388,4

300 1361,4 1308,0 1315,6 1656,8 643,6 477,8 354,4 706,4

350 1290,4 1321,6 1344.0 766,60 650,2 443,0 564,6 429,8

400 902,40 1404,0 1707,4 1333,4 546,4 554,0 922,6 466,8

Number of

Objects

M-CBATA CBATA

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

50 93,4 174,2 127,2 121,8 70,0 51,8 79,2 34,6

100 70,8 51,60 79,20 71,40 55,0 34,2 35,0 48,0

150 43,4 47,60 53,80 53,40 31,4 24,0 32,0 25,0

200 43,6 47,80 29,80 45,40 25,2 13,6 23,0 11,4

250 33,8 29,00 32,80 38,80 8,40 8,20 16,0 7,80

300 26,8 28,60 26,80 25,00 8,20 7,40 7,40 7,60

350 16,0 23,20 22,60 33,20 13,8 10,6 8,80 16,4

400 23,0 21,80 21,60 20,20 8,60 10,0 12,0 7,40

Figure 5.18. Average number of rounds until each task group becomes non-operational

142

Table 5.24. Average number of rounds until each task group becomes unstable for different

object density

Number of

Objects

STAP MOTAP

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

50 293,0 343,2 312,4 438,6 198,2 195,8 205,4 247,4

100 308,4 226,4 291,0 250,6 183,4 181,0 144,6 192,0

150 237,4 221,6 272,6 224,4 187,0 158,6 154,0 162,8

200 229,2 221,2 227,8 208,4 118,6 109,0 169,8 107,6

250 191,2 197,2 207,2 207,8 123,2 129,0 108,0 136,4

300 194,4 192,8 186,4 161,8 106,0 151,4 100,4 97,00

350 189,0 185,8 177,8 193,6 105,4 91,60 122,8 77,40

400 190,4 171,8 166,4 167,2 74,60 91,40 108,8 95,60

Number of

Objects

M-CBATA CBATA

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

50 93,4 174,2 127,2 121,8 70,0 51,8 79,2 34,6

100 70,8 51,60 79,20 71,40 55,0 34,2 35,0 48,0

150 43,4 47,60 53,80 53,40 31,4 24,0 32,0 25,0

200 43,6 47,80 29,80 45,40 25,2 13,6 23,0 11,4

250 33,8 29,00 32,80 38,80 8,40 8,20 16,0 7,80

300 26,8 28,60 26,80 25,00 8.20 7,40 7,40 7,60

350 16,0 23,20 22,60 33,20 13,8 10,6 8,80 16,4

400 23,0 21,80 21,60 20,20 8,60 10,0 12,0 7,40

Figure 5.19. Average number of rounds until each task group becomes unstable

143

Protocols evaluation for computational power

MOTAP considers the fact that virtual objects are the basic units of operations and

attempts to select objects with high processing unit capacities as virtual objects. Table 5.25

and Figure 5.20 illustrate the mean value of the processing units’ frequencies for the virtual

objects at each task group when the number of tasks is six. The best results in Table 5.25

are in italic font. MOTAP with its first objective function in Equation 4.31 succeeds at

increasing the mean value of proceeding power of virtual objects compared to STAP, M-

CBATA and CBATA.

On the other hand, except task group six, M-CBATA selects the virtual objects with higher

computation power relative to CBATA. However, both M-CBATA and CBATA do not

consider computation power when they select virtual objects. It is more likely for M-

CBATA to select objects with different levels of processing power at different task groups.

In CBATA, an object with a low capacity processing power could be selected as virtual

object at several task groups.

Table 5.25. Average processing power of virtual objects (in MHz) in each task group for

number of tasks = 6

Task Group# STAP MOTAP M-CBATA CBATA

1 161,47 298,47 163,20 149,00

2 174,58 302,07 197,00 103,80

3 175,39 296,00 209,00 145,60

4 164,84 305,13 140,20 137,80

5 165,57 305,28 209,00 127,80

6 165,78 303,02 106,20 137,80

144

Figure 5.20. Average processing power of virtual objects in each task group for number of

tasks = 6

Protocols evaluation for evolutionary algorithm quality

In order to demonstrating the quality of the proposed evolutionary algorithm in STAP, we

employed convergence to optimal solution metric. Figure 5.21 visualizes quality of the

proposed evolutionary algorithm in STAP regarding to convergence metric. The figure

shows the best solution in each generation as well as in initial population in terms of fitness

values. The results are obtained for a network under the default parameter settings (i.e.,

network dimensions= 200 × 200 unit, number of objects = 200, and number of networks’

tasks = 4). From the results, one can see that STAP provides high-quality solutions that

evolve in an organized manner at each generation towards optimal solution. It is worth to

mansion that in Figure 5.21 STAP evolved 56 times throughout the process of evolutionary

algorithm.

145

Figure 5.21. Convergence of evolutionary algorithm in STAP toward optimal solution for

100 generations + initialization phase

Figures 5.22 and 5.23 demonstrate the efficiency of MOTAP as a multi objective

optimization algorithm. Both figures are obtained for a network with the default parameter

settings. Figures 5.22(a) and (b) depict the convergence to optimal solution metric for first

and second objectives of MOTAP respectively. On the other hand, Figure 5.23 shows the

non-dominated solutions that are provided by MOTAP for one network. The

𝑥, 𝑦 −coordinates correspond to computation power and energy efficiency objectives,

respectively. We can observe from the results in Figure 5.22 and 5.23 that MOTAP

provides high-quality solutions that maintain the diversity and covers the whole range

between the two conflicted objectives.

146

Figure 5.22. Convergence of evolutionary algorithm in MOTAP toward optimal solution

for 100 generations + initialization phase (a): Convergence of first objective

(processing power) (b): Convergence of second objective (energy

efficiency)

Figure 5.23 Non-dominated solutions of MOTAP for one network

147

Protocols evaluation for computation time

When using Intel Core i5 CPU 2.27GHz, EA-based protocols (STAP and MOTAP) take

additional time to construct the task allocatıon configuration. This result comes naturally

because these protocols handle more than one solution (as the case in M-CBATA and

CBATA). For example, for 50 different individuals to be evolved in 100 generations STAP

needs to process 5000 alternative solutions. The situation even worse in MOTAP which

needs to evaluate two different objectives and perform domination based operations. In

contrast, M-CBATA and CBATA constructs single solution for task allocatıon problem.

Tables 5.26, 2.27, and 5.28 present the computation times for the protocols for different

network scales, different number of objects, and different number of tasks. As it is

expected, M-CBATA and CBATA execute in a shorter time compared to STAP and

MOTAP. However, considering the technological advances of today’s microprocessors

and their super speeds the huge difference in execution times could be ignored using high

end systems.

Table 5.26. Time duration (in seconds) for each protocol for different network scales

Network

Side Length
STAP MOTAP M-CBATA CBATA

100 103,821699 112,514876 0,051928 0,051238

125 107,032598 117,837922 0,056326 0,055142

150 103,427216 116,732613 0,053658 0,053233

175 96,1988790 119,688508 0,051328 0,051163

200 102,714103 121,264129 0,053716 0,055185

225 104,558569 121,676684 0,052952 0,055348

250 99,3646170 116,606447 0,054154 0,052953

148

Table 5.27. Time duration (in seconds) for each protocol for different number of objects

Number of

Objects
STAP MOTAP M-CBATA CBATA

50 20,462271 49,439396 0,015476 0,014475

100 46,970431 72,025544 0,028854 0,027756

150 71,300757 94,569715 0,038907 0,040615

200 102,714103 121,264129 0,053716 0,055185

250 135,925822 144,246529 0,066062 0,066095

300 166,067310 164,381075 0,077712 0,077904

350 206,766771 196,526132 0,093373 0,094018

400 249,616927 235,196962 0,109013 0,108227

Table 5.28. Time duration (in seconds) for each protocol for different number of tasks

Number of

Tasks
STAP MOTAP M-CBATA CBATA

2 71,289202 86,850474 0,031913 0,034245

4 102,714103 121,264129 0,053716 0,055185

6 126,075914 147,545239 0,074587 0,074004

8 148,242618 171,841962 0,092857 0,090801

10 182,077525 210,954588 0,114471 0,113979

It is obvious that increasing the number of generation will negatively affect the

computation time. Although, the increased number of generations could lead to better

solutions by exploring wider regions of search space. Therefore, a trade-off between the

quality of the solutions and the computation time should be considered when selecting the

number of generations. Table 5.29 demonstrates the vales of the fitness function in STAP

and MOTAP for different number of generations. The results are obtained for the default

parameter setting of the simulation. It is clear that the generation number of 100 could

better maintain this trade-off.

149

Table 5.29. STAP and MOTAP objective functions’ values for different number of

generations

Number of

Generations

Minimization Maximization

Φ𝑆𝑇𝐴𝑃 Φ𝑀𝑂𝑇𝐴𝑃ℱ1
 Φ𝑀𝑂𝑇𝐴𝑃ℱ2

25 0,0030212 294,8000 10,6614

50 0,0027608 286,6667 11,5872

75 0,0024912 308,4545 11,2626

100 0,0024666 316,2000 12,1810

150 0,0025090 317,7143 11,6423

200 0,0023897 301,5833 12,7094

500 0,0022055 318,4167 12,8769

5.2.4. Results of simulation (by OMNeT++ simulator)

To validate the results obtained by Matlab simulator and to give a deeper view of the

performance of the protocols, application layer based simulations are performed by

executing STAP, MOTAP, M-CBATA, and CBATA using a powerful network simulator,

OMNeT++. The simulations consider a realistic scenario where the executions of tasks are

broken into several rounds and at each round a continuous and a uniform arrival of tasks is

supposed. To verify the protocols in a most extreme and dramatic case, we assumed that all

tasks must be performed at each round. Finally, considering the complexity of the

simulation the protocols are applied on a network with 25 objects. The dimensions of the

networks is set to 100 × 100 units and the number of tasks is set 4. Then, five network

topologies are generated and the results are averaged over these topologies. Figure 5.24

shows the number of rounds until each task group becomes non-operational (i.e., until all

virtual objects completely consume their energies). Table 5.30 demonstrates the

operational time of each task group for each of the generated 5 network topologies and

attached with the table the average results of all networks. As it is expected, STAP

outperforms other protocols. On the average of all task groups, STAP slightly outperforms

MOTAP by 184,45 rounds. With a huge advantage STAP outperforms M-CBATA and

CBATA by 922,25 and 1032,3 rounds respectively. On the other hand, MOTAP

outperforms M-CBATA by 737,80 rounds and CBATA by 847,85 rounds. Finally, M-

CBATA with its property of reducing the energy load on each virtual object outperforms

CBATA by 110,05 rounds.

150

Figure 5.24. Number of rounds until each task group becomes non-operational

Table 5.30. Number of rounds until each task group becomes non-operational for 5 random

generated networks

Network#
STAP MOTAP

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

1 1231 1121 719 923 911 1564 452 792

2 1230 1622 934 875 1202 1508 672 796

3 1857 1898 850 1024 1527 1245 561 885

4 1434 880 551 1051 734 979 1147 845

5 1025 1867 774 730 678 697 611 1101

Average

Results
1355,4 1477,6 765,60 920,60 1010,4 1198,6 688,60 883,80

Network#
M-CBATA CBATA

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

1 320 135 164 124 66 66 66 66

2 63 328 195 392 146 145 136 136

3 172 270 229 297 79 78 78 78

4 57 139 366 133 93 93 92 92

5 253 267 159 88 156 64 156 64

Average

Results
173,0 227,80 222,60 206,80 108,0 89,20 105,60 87,20

151

The performance of the protocols in terms of stability periods are shown in Figure 5.25 and

Table 5.31. The results figure depicts the number of rounds until each task group becomes

unstable (i.e., until a virtual object depletes its energy). Again, the best performance is

captured by STAP. On the average of all task groups, STAP Compared to MOTAP

produce longer stability periods by 86.40 rounds. Also, STAP outperforms M-CBATA and

CBATA by 371,20 and 481,25 rounds respectively. On the other hand, MOTAP

outperforms M-CBATA by 284,80 rounds and CBATA by 394,85 rounds. It is worth to

note that since M-CBATA and CBATA select one virtual object for each task group their

stability periods are similar to their operational periods.

Figure 5.25. Number of rounds until each task group becomes unstable

152

Table 5.31. Number of rounds until each task group becomes unstable for 5 random

generated networks

Network#
STAP MOTAP

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

1 823 364 503 522 718 285 425 483

2 878 465 540 641 721 378 480 512

3 830 886 538 436 717 729 467 347

4 528 764 879 414 476 613 924 317

5 633 257 261 413 250 454 175 376

Average

Results
738,40 547,20 544,20 485,20 576,40 491,80 494,20 407,0

Network#
M-CBATA CBATA

TG1 TG2 TG3 TG4 TG1 TG2 TG3 TG4

1 320 135 164 124 66 66 66 66

2 63 328 195 392 146 145 136 136

3 172 270 229 297 79 78 78 78

4 57 139 366 133 93 93 92 92

5 253 267 159 88 156 64 156 64

Average

Results
173,0 227,80 222,60 206.80 108,0 89,20 105,60 87,20

153

6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

In this thesis the problem of task allocation is researched. The problem has been studied in

the framework of IoT with the typical scenario where applications require the collaboration

of different objects. The main challenges and constraints that make the task allocation in

IoT an NP-hard are investigated. Then, to tackle with the problem task allocation and

virtual object concept is adopted.

An important element in this thesis was the development evolutionary based task allocation

protocols that take the different requirements of variety of IoT applications into

consideration. In the first stage the thesis considered the scenario where objects are capable

of performing only one task. Then, to increase the applicability of the proposed protocol a

more complex and realistic scenario is assumed. In this scenario it is assumed that IoT

objects have different skills and are capable of performing variety of tasks. Within the

framework of the first scenario, for typical applications (e.g., smart environments) two

protocols namely, Evolutionary Task Allocation Protocol-1 (ETAP1) and Evolutionary

Task Allocation Protocol-2 (ETAP2) are developed. The main goal of ETAP1 and ETAP2

is to construct energy efficient task allocation topology by appropriate selection of virtual

objects and suitable association of objects of each task group to the selected virtual objects.

By accomplishing this goal, the operational period of each task group can be maximized to

ensure extended network lifetime. Also within the framework of the first scenario, for

security and reliability required applications (e.g., factory automation, environmental

monitoring …) the goals of ETAP1 and ETAP2 are redirected towered stability awareness.

The new derivative protocols are called Stabile Evolutionary Task Allocation Protocol-1

(SETAP1) and Stabile Evolutionary Task Allocation Protocol-2 (SETAP2). The basic idea

behind these protocols is to inject energy aware heuristic into population initialization

phase and into mutation operator to insure only objects with high residual energy are

allowed to be virtual objects. These heuristic ensure a longer period of time before the first

virtual object depletes it energy at each task group. On the other hand, in the context of the

second scenario where objects are capable of performing different tasks and the task

groups can intersect with each other two protocols are developed. The first protocol is

154

Steady Task Allocation Protocol (STAP). This protocol designed with stability is in mind.

STAP attempts to maximize the mean value of virtual objects’ energy whereas minimize

their energy spends to insure longer stable performance. Finally, within the context of

second scenario Multi-Objective Task Allocation Protocol (MOTAP) is proposed. The

protocol considers the fact that each virtual object is a basic unit of computation. MOTAP

attempts to build MOEA that maximize two contradicted objectives: computation power

and energy efficiency. Also within the framework of this scenario, the most relative study

in the literature is researched and its modified version is developed. Modified CBATA (M-

CBATA) is the modified version of CBATA (Consensus Based Approach for Task

Allocation). The main goal of M-CBATA is to ensure that each task group has its own

virtual object that has not been a virtual object in other task groups. This goal guarantees

an extended operational and stability period of M-CBATA compared to CBATA.

The propose protocols are extensively evaluated in a custom designed simulation

environments using MATLAB and OMNeT++ simulators. In the simulation considering

the randomness of the networks 5 network topologies are generated for each network

setting. Then, the probabilistic feature of EA based protocols is considered and each

network is executed 5 times. The final results are obtained by taking the average results of

the execution and then averaging the results of the whole networks. The simulation results

have demonstrated the superiority of the proposed protocols.

It is clear from what was mentioned, that the thesis attempts to present a full set of

protocols to solve the task allocation problem in IoT. These protocols can be tailored to fit

wide range of IoT applications. In what follows the contributions of this thesis are

summarized. Then, the summarized evaluation results of the protocols are provided. The

chapter closes by presenting some open issues and future research directions.

6.2. Summary of Thesis Contributions

In summary, the main achievements of this thesis are as following:

1. Presenting a comprehensive survey of the concept of IoT.

155

 Introducing a historical review of the concept of IoT technology. Highlighting the basic

elements and technologies that helped for emergence of IoT.

 Investigating characteristics, architecture, platforms and building blocks of this

technology.

 Defining the main services that enabled the wide range of IoT applications.

 Reviewing applications domains of IoT and their relevant major scenarios.

 Illustrating the challenges of this technology that can represent open research issues in

the field of IoT.

2. The thesis studies the problem of task allocation in IoT considering special features and

design characteristics of this technique. Then, by adopting bio-inspired meta-heuristic

methods and considering two different realistic scenarios several novel protocols with

application specific characteristics that can tackle with the problem of task allocation in

IoT are developed. To the best of our knowledge, this work is the first work that adopts

meta-heuristic methods for this purpose.

3. In the scenario where each object is capable of performing only a single task, two sets

of protocols are proposed: ‘‘protocols with the goal of maximizing the network

lifetime’’ and ‘‘protocols with the main goal of extending the stability period of the

network’’.

 For typical applications, two novel protocols with different objective models with the

goals of minimizing energy consumption regarding to task allocation and maximizing

the lifetime of the network are proposed.

 For high reliability demanding crucial applications that require their entire task groups

to be active for a long time, the concept of stability period is defined and two protocols

with the goal of minimizing energy consumption and maximizing stability periods of

each task group to ensure stable and balanced operation of whole network are proposed.

4. In the second scenario a more realistic and complex scenario is considered where

objects have different skills and could intersect with different groups. Within this

context we developed two novel protocols as flowers:

156

 A bio-inspired single objective protocol with heterogeneity aware heuristics to insure

reliably task allocation in terms of boosting the energy efficiency in the direction of

extending the operational and the stability periods of the network.

 A protocol that formulates the problem of task allocation as a MOOP that

simultaneously maximizes two contradictory objectives: computational power

utilization and energy efficiency.

5. To evaluate the proposed protocols extensive MATLAB based analysis as well as

application layer simulations based on OMNeT++ using several benchmarking metrics

are applied. The results have demonstrated the superiority of the proposed protocol.

6.3. Summary of the Simulation Results

The formation of task allocation in IoT has turned out to be an NP-hard problem, and it

attempts to satisfy various objectives such as increasing the operational time and the

stability period and maximizing the computational power. The underlying works employee

the task groups and virtual objects concept and present evolutionary-based task allocation

protocols in IoT. The overall results of the proposed protocols, after performing extensive

simulations based on MATLAB and OMNeT++ simulators can draw the following

conclusions (in the tables below, the relation “>” reads “better than”, “<” reads “worse

than”, and the relation “=” reads “equal performance”):

 Energy efficiency: It means energy consumption for communication in the process of

task allocation. Table 6.1 shows the overall evaluation for protocols of scenario #1 (i.e.,

ETAP1, ETAP2, SETAP1, SETAP2, and CBATA). In these results ETAP1 outperforms

other protocols. Whereas, Table 6.2 presents the overall evaluation of STAP, MOTAP,

M-CBATA and CBATA of scenario #2. Here, “=” is used between STAP and MOTAP

since the two protocols show similar performance considering different settings of

network dimension, number of objects, and number of tasks. Thus, in some cases STAP

outperforms MOTAP, while on other cases MOTAP perform better than STAP.

157

Table 6.1. Evaluation summary for the energy efficiency of scenario #1 protocols

Protocols CBATA ETAP1 ETAP2 SETAP1 SETAP2

ETAP1 > - > > >

ETAP2 > < - < >

SETAP1 > < > - >

SETAP2 > < < < -

Table 6.2. Evaluation summary for the energy efficiency of scenario #2 protocols

Protocols CBATA STAP MOTAP M-CBATA

STAP > - = >

MOTAP > = - >

M-CBATA = < < -

 Operational period: Regarding protocols of scenario #1, ETAP1 carry out longer

operational period compared to other protocols. Table 6.3 summarizes the overall

results of ETAP1, ETAP2 and CBATA in term of the operational period length. On the

other hand, Table 6.4 shows the overall evaluation of protocols of scenario #2. This

table reveals that STAP makes the longer operational periods in all task groups.

Table 6.3. Evaluation summary for the operational period of ETAP1, ETAP2 and CBATA

within the context of scenario #1

Protocols CBATA ETAP1 ETAP2

ETAP1 > - >

ETAP2 > < -

Table 6.4. Evaluation summary for the operational period of scenario #2 protocols

Protocols CBATA STAP MOTAP M-CBATA

STAP > - > >

MOTAP > < - >

M-CBATA > < < -

 Stability period: With their energy aware heuristic SETAP1 and SETAP2 perform better

than other protocols of scenario #1 regarding to stability period metric. Table 6.5

summarizes the overall performance of scenario #1 protocols. Regarding to protocols of

158

scenario #2, STAP outperforms other protocols. The overall results of protocol of

scenario #2 are presented in Table 6.6.

Table 6.5. Evaluation summary for the stability period of scenario #1 protocols

Protocols CBATA ETAP1 ETAP2 SETAP1 SETAP2

ETAP1 > - > < <

ETAP2 > < - < <

SETAP1 > > > - >

SETAP2 > > > < -

Table 6.6. Evaluation summary for the stability period of scenario #2 protocols

Protocols CBATA STAP MOTAP M-CBATA

STAP > - > >

MOTAP > < - >

M-CBATA > < < -

 Computation power: MOTAP achieves better performance compared to STAP, M-

CBATA, and CBATA. However, STAP, M-CBATA and CBATA do not consider

computation power when they select virtual objects. It is more likely for M-CBATA to

select objects with different levels of processing power at different task groups. Table

6.7 presents the overall performance of scenario #2 protocols in term of computation

power.

Table 6.7. Evaluation summary for the computation power of scenario #2 protocols

Protocols CBATA STAP MOTAP M-CBATA

STAP > - < =

MOTAP > > - >

M-CBATA > = < -

 Computation time: Naturally EA based task allocation protocols take more time in

computation compared to CBATA. However, considering the high quality results of EA

based protocols and the advances of microprocessors speeds, the extra time required for

computation become tolerable.

159

6.4. Future Research

In light of the results and discussions reported in this thesis, some of the open research

issues that need to be explored further for future works in the area of task allocation in IoT

are briefly listed as follows:

 Future research work needs to focus on exploring more complex task allocation models.

For instance, instead of using two level hierarchy (or in other words two hops from

objects to their virtual objects and from virtual objects to central control station) it may

be more efficient to formulate the problem as a multi-hop task allocation by adopting

local virtual objects. In this way at each task group global virtual objects communicate

with local virtual objects to allocate tasks to objects of the task group. Using multi-hop

task allocation reduces the latency of data traveling to the central control station.

 A complex communication models can be used. It is known that the strength of the

transmitted signals is inversely proportional to the distance between sender and receiver.

This fact can be used at the stage of virtual objects selection with the goal of

maximizing the strength of the received signals from their objects in order to increase

the reliability.

 Furthermore, additional heuristics may be studied and applied in the construction of the

objective function and/or other EA components to provide more network stability or

longevity periods.

 It may be an open research area to measure the effect of the type of evolutionary

algorithm. Several types of evolutionary algorithms are suit well to different types of

problems. An analytical work may re-implement the proposed protocols by applying

different types of evolutionary algorithms.

 In some applications, the optimization problem involves more than two contradictory

objectives where the improvement on one objective leads to the deterioration of others.

Considering the problem of task allocation maximizing of reliability of the received

signals can be on expense of the energy and the computation power of the virtual

objects.

 Another interesting research inspired by realizing the mobility feature of most IoT

objects. The communications between the virtual objects and their objects can be taken

place on the opportunistic bases. In opportunistic networks, connections among nodes

160

are created dynamically in an infrastructure-less way: when forwarding a message, next

hops are chosen opportunistically, on the basis of their likelihood to get the message

closer to its destination [175].

161

REFERENCES

1. Miorandi, D. Sicari, S. De Pellegrini, F. and Chlamtac, I. (2012). Internet of things:

Vision, applications and research challenges. Ad Hoc Networks, 10 (7), 1497– 1516.

2. Atzori, L. Iera, A. and Morabito, G. (2010). The internet of things: A survey.

Computer Networks, 54 (15), 2787–2805.

3. Al-Fuqaha, A. Guizani, M. Mohammadi, M. Aledhari, M. and Ayyash, M. (2015).

Internet of things: A survey on enabling technologies, protocols, and

applications. IEEE Communications Surveys & Tutorials, 17 (4), 2347–2376.

4. Gubbi, J. Buyya, R. Marusic, S. and Palaniswami, M. (2013). Internet of Things (IoT):

A vision, architectural elements, and future directions. Future generation computer

systems, 29 (7), 1645–1660.

5. Khalil, E.A. and Ozdemir, S. (2017). Reliable and energy efficient topology control in

probabilistic Wireless Sensor Networks via multi-objective optimization. The Journal

of Supercomputing, 6 (73), 2632–2656.

6. Akyildiz, I. F. and Vuran, M. C. (2010). Wireless Sensor Networks (First Edition).

John Wiley & Sons Ltd.

7. Buratti, C. Conti, A. Dardari, D. and Verdone, R. (2009). An overview on wireless

sensor networks technology and evolution. Sensors, 9(9), 6869-6896.

8. Colistra, G. Pilloni, V. and Atzori, L. (2014). Task allocation in group of nodes in the

IoT: A consensus approach. In Communications (ICC), 2014 IEEE International

Conference, 3848-3853.

9. Pilloni, V. and Atzori, L. (2017). Consensus-based resource allocation among objects

in the internet of things. Annals of Telecommunications, 72(7-8), 415-429, 2017.

10. Jin, S. Zhou, M. and Wu, A.S. (2003). Sensor network optimization using a genetic

algorithm. In: Proceedings of the 7th world multiconference on systemics,

cybernetics and informatics, 109-116.

11. Yang, X.S. (2010). Nature-inspired metaheuristic algorithms (Second Edition).

Luniver Press.

12. Colistra, G. Pilloni, V. and Atzori, L. (2014). The problem of task allocation in the

internet of things and the consensus-based approach. Computer Networks, 73, 98–11.

13. Coetzee, L. and Eksteen, J. (2011). The Internet of Things-promise for the future? An

introduction. In IST-Africa Conference Proceedings, IEEE, 1-9.

14. Internet: Internet World Stats. International Website for up to date world Internet

Usage and Statistics. URL: http://www.internetworldstats.com/ (16.01.2017).

162

15. Macaulay, J. Buckalew, L. and Chung, G. (2015). Internet of Things in Logistics, A

collaborative report by DHL and Cisco on implications and use cases for the logistics

industry. DHL Trend Research|Cisco Consulting Services, Troisdorf, Germany,

2015.

16. Markets and Markets (M&M) Research Group. Internet of Things (IoT) & Machine-

To-Machine (M2M) communication market by Technologies & Platforms, M&M

Connections & IoT Components worldwide Market forecasts (2014–2019).

Researchandmarkets.com Publications, Dublin, Ireland, Technical Report, 2785177,

2014.

17. Rose, K. Eldridge, S. and Chapin, L. (2015). The Internet of Things (IoT): An

Overview-Understanding the Issues and Challenges of a More Connected World.

Internet Society, Geneva, Switzerland, Technical Report, October 2015.

18. Saha, H.N. Mandal, A. and Sinha, A. (2017). Recent trends in the Internet of

Things. 2017 IEEE 7th Annual Computing and Communication Workshop and

Conference (CCWC), Las Vegas, NV, 2017,1-4.

19. Tsai, C.W. Lai, C.F. and Athanasios, V.V. (2014). Future internet of things: open

issues and challenges. Wireless Networks, 20(8), 2201-2217.

20. The International Telecommunication Union. (2005) The Internet of Things. ITU

Internet Reports. 7th ed. Hammamet, Tunis, November 2005.

21. Satyanarayanan, M. Simoens, P. Xiaoö, Y. Pillai, P. Chen, Z. Ha, K. Hu, W. and

Amos, B. (2015). Edge analytics in the internet of things. IEEE Pervasive

Computing, 14(2), 24-31.

22. Want, R. Schilit, B.N. and Jenson, S. (2015). Enabling the internet of things. IEEE

Computer, 48(1), 28-35.

23. Wang, F. Hu, L. Hu, J. Zhou, J. and Zhao, K. (2017). Recent advances in the ınternet

of things: multiple perspectives. IETE Technical Review, 34(2), 122-132.

24. Aggarwal, C.C. Ashish, N. and Sheth, A. (2013). The Internet of Things: A Survey

from the Data-Centric Perspective. Managing and mining sensor data, C.C.

Aggarwal, Ed. Springer US, 383-428.

25. Alam, F. Mehmood, R. Katib, I. and Albeshri, A. (2016). Analysis of eight data

mining algorithms for smarter ınternet of things (IoT). Procedia Computer Science,

98, 437-442.

26. Madakam, S. Ramaswamy, R. and Tripathi, S. (2015). Internet of things (IoT): A

literature review. Journal of Computer and Communications, 3(5), 164-173.

27. Magrassi, P. Panarella, A. Deighton, N. and Johnson, G. (2001). Computers to

Acquire Control of the Physical World. Gartner Research Report, T-14-0301,

Stamford, USA.

163

28. Li, J. Wang, Y. and Sun, T. (2013). A Hybrid Genetic Algorithm For Task Scheduling

In Internet Of Things. ICIT 2013 The 6th International Conference on Information

Technology, Amman, Jordan.

29. Shen, G. and Liu, B. (2011). The visions, technologies, applications and security

issues of Internet of Things. E -Business and E-Government (ICEE), 2011

International Conference, Shanghai, China, 6-8 May 2011.

30. Tan, L. and Wang, N. (2010). Future internet: The Internet of Things. 2010 3rd

International Conference on Advanced Computer Theory and

Engineering(ICACTE), Chengdu, China, 20-22 August 2010.

31. Akyildiz, F. Su, W. Sankarasubramaniam, Y. and Cayirci, E. (2002). Wireless sensor

networks: a survey. Computer Networks, 38(4), 393-422.

32. Jain, D. Krishna, P.V. and Saritha, V. (2012). A Study on Internet of Things based

Applications. arXiv preprint, arXiv:1206.3891, 1-10.

33. Ferro, E. and Potorti, F. (2005). Bluetooth and Wi-Fi wireless protocols: A survey and

a comparison. IEEE Wireless Communications, 12(1), 12-26.

34. IEEE Standards Association. ()2011. IEEE Standard for Local and Metropolitan Area

Networks- Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). New

York, USA, IEEE Standard 802.15. 4-2011.

35. Collotta, M. Pau, G. Talty, T. and Tonguz, O.K. (2018). Bluetooth 5: A Concrete Step

Forward toward the IoT. IEEE Communications Magazine, 56(7), 125-131.

36. Crosby, G.V. and Vafa, F. (2013). Wireless sensor networks and LTE-A network

convergence. 38th Annual IEEE Conference on Local Computer Networks, Sydney,

Australia, 21-24 Oct. 2013.

37. Ghosh, A. Ratasuk, R. Mondal, B. Mangalvedhe, N. and Thomas, T. (2010). LTE-

Advanced: Next-generation wireless broadband technology. IEEE Wireless

Communications, 17(3), 10–22.

38. Xiong, X. Zheng, K. Xu, R. Xiang, W. and Chatzimisios, P. (2015). “Low power wide

area machine-to-machine networks: Key techniques and prototype”. IEEE

Communications Magazine, 53(9), 64-71.

39. Sigfox. French research and development organization. URL: http://www.sigfox.com/

(22.03.2017).

40. Sornin, N. Luis, M. Eirich, T. Kramp, T. and Hersent, O. (2015). Lorawan

specification. Beaverton, USA, LoRa Alliance, Technical Report, V1.0.

41. Ingenu. American research and development organization. URL:

https://www.ingenu.com/ (22.03.2017).

164

42. Telensa. An international organization makes intelligent city control systems. URL:

http://www.telensa.com/ (22.03.2017).

43. Sanchez-Iborra, R. and Cano, M.D. (2016). State of the art in LP-Wan solutions for

industrial IoT services. Sensors, 16(5), 708-722.

44. Raza, U. Kulkarni, P. and Sooriyabandara, M. (2017). Low power wide area networks:

An overview. IEEE Communications Surveys & Tutorials, 19(2), 855-873.

45. Want, R. (2006). An introduction to RFID technology. IEEE Pervasive Computing,

5(1), 25-33.

46. Mulligan, G. (2007). The 6LoWPAN architecture. 4th Workshop on Embedded

Networked Sensors, Cork, Ireland, 25-26 June, 2007.

47. Shelby, Z. and Bormann, C. (2009). 6LoWPAN: The Wireless Embedded Internet

(First Edition). Wiltshire, UK, John Wiley & Sons.

48. Want, R. (2011). Near field communication. IEEE Pervasive Computing, 10(3), 4-7.

49. Kshetrimayum, R.S. (2009). An introduction to UWB communication systems. IEEE

Potentials, 28(2), 9-13.

50. Thakare, S. Patil, A. and Siddiqui, A. (2016). The ınternet of things – emerging

technologies, challenges and application. International Journal of Computer

Applications, 149(10), 21-25.

51. Pilkington, K. (2014). Revolv teams up with Home Depot to keep your house

connected. Centre National d’Etudes des Telecommunications (CNET), 2014. URL:

https://www.cnet.com/news/revolv-teams-up-with-home-depot-to-keep-your-house-

connected/ (16.01.2017).

52. Doukas, C. (2012). Building Internet of Things with the ARDUINO (First Edition).

Dougherty, GA, USA, CreateSpace Independent Publishing Platform.

53. De-Sousa, M. (2015). Internet of Things with Intel Galileo (First Edition).

Birmingham, UK, Packt Publishing Ltd.

54. Intel Galileo Board. Intel: American multinational technology organization. URL:

http://ark.intel.com/products/78919/Intel-Galileo-Board (16.01.2017).

55. Raspberry PI. A UK-based charity that works to put the power of digital making into

the hands of people all over the world. URL: https://www.raspberrypi.org/

(16.01.2017).

56. Maksimović, M. Vujović, V. Davidović, N. Milošević, V. and Perišić, B. (2014).

Raspberry Pi as Internet of things hardware: performances and constraints. 1st

International Conference on Electrical, Electronic and Computing Engineering,

Vrnjačka Banja, Serbia, 2-5 June 2014.

165

57. Hodges, S. Taylor, S. Villar, N. Scott, J. Bial, D. and Fischer, P.T. (2013). Prototyping

connected devices for the ınternet of things. Computer, 46(2), 26-34.

58. Beagleboard. Community supported open hardware computers for making. URL:

https://beagleboard.org/ (16.01.2017).

59. Principi, E. Colagiacomo, V. Squartini, S. and Piazza, F. (2012). Low power high-

performance computing on the beagleboard platform. 5th European DSP Education

and Research Conference (EDERC), Amsterdam, Netherlands, 13-14 September

2012.

60. Kruger, C.P. and Hancke, G.P. (2014). Benchmarking Internet of things devices. 12th

IEEE International Conference on Industrial Informatics (INDIN), Porto Alegre,

Brazil, 27-30 July 2014.

61. Cubieboard. Chinese company develops a series of open source hardware. URL:

http://cubieboard.org/ (16.01.2017).

62. UDOO. unique open-source project bringing Mini PC with Android, Linux and

Arduino together in functional all-in-one embedded system. URL:

http://www.udoo.org/ (15.01.2017).

63. Zolertia. Spanish company offers hardware solutions for creating Internet of things

applications. URL: http://zolertia.io (16.01.2017).

64. Eistec. Mulle: Mulle wireless sensor platform. URL: http://www.eistec.se/mulle/

(16.01.2017).

65. Dunkels, A. Gronvall, B. and Voigt, T. (2004). Contiki-A lightweight and flexible

operating system for tiny networked sensors. 29th Annual IEEE International

Conference on Local Computer Networks (LCN’04), Tampa, FL, USA, 16-18 Nov.

2004.

66. Cao, Q. Abdelzaher, T. Stankovic, J. and He, T. (2008). The LiteOS operating system:

Towards Unix-like abstractions for wireless sensor networks. In Information

Processing in Sensor Networks, 2008. IPSN'08. International Conference, IEEE,

233–244, St. Louis, MO, USA, USA, 22-24 April 2008.

67. Levis, P. Madden, S. Polastre, J. Szewczyk, R. Whitehouse, K. Woo, A. Gay, D. Hill,

J. Welsh, M. Brewer, E. and Culler, D. (2005). Tinyos: An operating system for sensor

networks (First Edition). Heidelberg, Berlin, Springer, 2005.

68. Baccelli, E. Hahm, O. Gunes, M. Wahlisch, M. and Schmidt, T.C. (2013). RIOT OS:

Towards an OS for the Internet of Things. In Computer Communications Workshops

(INFOCOM WKSHPS), 2013 IEEE Conference, Turin, Italy, 14-19 April 2013.

69. Open Auto Alliance. A global alliance of technology and auto industry leaders

committed to bringing the Android platform to cars since 2015. URL:

http://www.openautoalliance.net/ (16.01.2017).

166

70. Android. Mobile operating system developed by Google. URL:

https://www.android.com/ (16.01.2017).

71. Koshizuka, N. and Sakamura, K. (2010). Ubiquitous ID: Standards for ubiquitous

computing and the Internet of Things. IEEE Pervasive Computing, 9(4), 98–101.

72. Kushalnagar, N. Montenegro, G. and Schumacher, C. (2007). IPv6 over low-power

wireless personal area networks (6LoWPANs): overview, assumptions, problem

statement, and goals (First Edition). Fremont, USA, Internet Engineering Task Force

(IETF), No. RFC 4919, 2007.

73. Barnaghi, P. Wang, W. Henson, C. and Taylor, K. (2012). Semantics for the Internet

of Things: Early progress and back to the future. International Journal on Semantic

Web and Information Systems (IJSWIS), 8(1), 1-21.

74. Schneider, J. Kamiya, T. Peintner, D. and Kyusakov, R. (2014). Efficient XML

Interchange (EXI) Format 1.0. (Second Edition). Cambridge, Massachusetts, USA,

World Wide Web Consortium, Recommend. REC-Exi-20110310.

75. Gigli, M. and Koo, S. (2011). Internet of Things: Services and applications

categorization. Advances in Internet of Things, 1(2), 27-31.

76. Xiaojiang, X. Jianli, W. and Mingdong, L. (2010). Services and key technologies of

the Internet of Things. ZTE Communications, 8(2), 26–29.

77. Desai, P. Sheth, A. and Anantharam, P. (2015). Semantic gateway as a service

architecture for IoT interoperability. 2015 IEEE International Conference on Mobile

Services, New York, NY, 27 June-2 July 2015.

78. Ning, H. and Hu, S. (2012). Technology classification, industry, and education for

future internet of things. International Journal of Communication Systems, 25(9),

1230-1241.

79. Yun, M. and Yuxin, B. (2010). Research on the architecture and key technology of

internet of things (IoT) applied on smart grid. In Proceedings of the International

Conference on Advances in Energy Engineering, Beijing, China, 19-20 June 2010.

80. Romero, C.D.G. Barriga, J.K.D. and Molano, J.I.R. (2016). Big data meaning in the

architecture of IoT for smart cities. Data Mining and Big Data: First International

Conference, DMBD 2016, Bali, Indonesia, 25-30 June, 2016.

81. Bandyopadhyay, D. and Sen, J. (2011). Internet of things: Applications and challenges

in technology and standardization. Wireless Personal Communications, 58(1), 49-69.

82. Khan, R. Khan, S.U. Zaheer, R. and Khan, S. (2012). Future Internet: The Internet of

Things architecture, possible applications and key challenges. 10th International

Conference on Frontiers of Information Technology, Islamabad, India, 17-19

December 2012.

167

83. Yang, Z. Yue, Y. Yang, Y. Peng, Y. Wang, X. and Liu, W. (2011). Study and

application on the architecture and key technologies for IoT. 2011 International

Conference on Multimedia Technology, Hangzhou, China, 26-28 July 2011.

84. Wu, M. Lu, TJ. Ling, F.Y. Sun, J. and Du, H.Y. (2010). Research on the architecture

of Internet of things. 3rd International Conference on Advanced Computer Theory

and Engineering (ICACTE), Chengdu, China, 20-22 August 2010.

85. Balamuralidhara, P. Misra, P. and Pal, A. (2013). Software platforms for internet of

things and M2M. Journal of the Indian Institute of Science, 93(3), 487-498.

86. Dayarathna, M. Comparing 11 IoT Development Platforms. URL:

https://dzone.com/articles/iot-software-platform-comparison (25.03.2017).

87. Perera, S. IoT Analytics: Using Big Data to Architect IoT Solutions. URL:

http://wso2.com/whitepapers/iot-analytics-using-big-data-to-architect-iot-solutions/

(25.03.2017).

88. Gluhak, A. Krco, S. Nati, M. Pfisterer, D. Mitton, N. and Razafindralambo, T. (2011).

A Survey on Facilities for Experimental Internet of Things Research, IEEE

Communications Magazine, 49(11), 58–67.

89. Abdmeziem, R. and Tandjaoui, D. (2014). Internet of Things: Concept, Building

blocks, Applications and Challenges. arXiv preprint, arXiv:1401.6877.

90. Giusto, D. Iera, A. Morabito, G. and Atzori, L. (2010). The Internet of Things: 20th

Tyrrhenian Workshop on Digital Communication (First Edition). New York, USA,

Springer-Verlag New York, 2010.

91. Jara, A.J. Zamora, M.A. and Skarmeta, A.F.G. (2009). An Ambient Assisted Living

System for Telemedicine with Detection of Symptoms. Editors: Mira, J. Ferrández,

J.M. Álvarez, J.R. de la Paz F. Toledo, F.J. Bioinspired Applications in Artificial and

Natural Computation Lecture Notes in Computer Science, 75-84, Heidelberg, Berlin,

Germany, Springer, Berlin, Heidelberg.

92. Resch, A. and Blecker, T. (2012). Smart Logistics–a Literature Review. Editors:

Blecker, T. Kersten, W. Ringle, C.M. Pioneering Supply Chain Design: A

Comprehensive Insight Into Emerging Trends, Technologies and Applications, 91-

102, Germany, Josef Eul Verlag Gmbh.

93. Hipp, C. Sellner, T. Bierkandt, J. and Holtewert, P. (2012). Smart factory: System

logic of the project epic. 1st International Conference on Smart Systems, Devices

and Technologies, Stuttgart, Germany, 27 May-1 June 2012.

94. Tong-Ke, F. (2013). Smart Agriculture based on cloud computing and IoT. Journal of

Convergence Information Technology, 8(2), 210-216.

95. Jayaraman, P.P. Yavari, A. Georgakopoulos, D. Morshed, A. and Zaslavsky, A.

(2016). Internet of things platform for smart farming: experiences and lessons learnt.

Sensors, 16(11), 1884.

168

96. Mukhopadhyay, S.C. and Suryadevara, N.K. (2014) Internet of Things: Challenges

and Opportunities. In: Mukhopadhyay S. (eds) Internet of Things. Smart Sensors,

Measurement and Instrumentation, vol 9. Springer, Cham.

97. Mattern, F. and Floerkemeier, C. (2010). From the Internet of Computers to the

Internet of Things. Editors: Sachs, K. Petrov, I. From Active Data Management to

Event-Based Systems and More, 242–259, Berlin, Germany, Springer, Berlin,

Heidelberg, 2010.

98. Li, S. Xu, L.D. and Wang, X. (2013). Compressed sensing signal and data acquisition

in wireless sensor networks and ınternet of things. IEEE Transactions on Industrial

Informatics, 9(4), 2177-2186.

99. Vlajic, N. and Xia, D. (2006). Wireless sensor networks: to cluster or not to cluster?.

International Symposium on World of Wireless, Mobile and Multimedia Networks,

Buffalo, New York, USA, 26-29 June 2006.

100. Postel, J. (1998). Internet official protocol standards. The Internet Society, Technical

report, United States, RFC 1800.

101. Goth, G. (2012). The End of IPv4 is Nearly Here — Really. IEEE Internet

Computing, 16(2), 7-11.

102. Weber, S. and Cheng, L. (2004). A survey of anycast in ipv6 networks. IEEE

Communications Magazine, 42(1), 127–132.

103. Edwards, W.K. (2006). Discovery systems in ubiquitous computing. IEEE Pervasive

Computing, 5(2), 70–77.

104. Zhang, Z.K. Cho, M.C.Y. Wang, C.W. Hsu, C.W. Chen, C.K. and Shieh, S. (2014).

IoT security: ongoing challenges and research opportunities. 7th International

Conference on Service-Oriented Computing and Applications, Matsue, Japan, 17-19

November 2014.

105. Borgia, E. (2014). The ınternet of things vision: key features, applications and open

issues. Computer Communications, Vol. 54, 1-31.

106. Chen, Y.K. (2012). Challenges and opportunities of internet of things. 17th Asia and

South Pacific Design Automation Conference, Sydney, NSW, Australia, 30 January-

2 February 2012.

107. Blackford, J. Digdon, P.M. and Aptean. (2013). CPE WAN Management Protocol.

Broadband Forum, Fremont, USA, Technical Report, TR-069.

108. Harrington, D. Presuhn, R. and Wijnen, B. An Architecture for Describing Simple

Network Management Protocol (SNMP) Management Frameworks. URL:

https://tools.ietf.org/html/rfc3411.html (28.03.2017).

109. Enns, R. Bjorklund, M. Schoenwaelder, J. and Bierman, A. Network Configuration

Protocol (NETCONF). URL: https://tools.ietf.org/html/rfc6241 (29.03.2017).

169

110. Gordon, D.M. (2002). The organization of work in social insect

colonies. Complexity, 8(1), 43-46.

111. Heinzelman, W.B. Chandrakasan, A. and Balakrishnan, H. (2002). An application-

specific protocol architecture for wireless microsensor networks. IEEE Transactions

on Wireless Communications, 1(4), 660-670.

112. Colistra, G. (2015). Task allocation in the Internet of Things. Doctoral dissertation,

Universita'degli Studi di Cagliari, Italy.

113. Huang, C.M. Lan, K.C. and Tsai, C.Z. (2008). A survey of opportunistic networks.

In Advanced Information Networking and Applications-Workshops (AINAW),.

22nd International Conference on. IEEE, 1672–1677, 2008.

114. Yu, Y. and Prasanna, V.K. (2005). Energy-balanced task allocation for collaborative

processing in wireless sensor networks. Mobile Networks and Applications, 10(1-2),

115-131.

115. Edalat, N. Xiao, W. Tham, C.K. Keikha, E. and Ong, L.L. (2009). A price-based

adaptive task allocation for wireless sensor network. In: Mobile Adhoc and Sensor

Systems, 2009. MASS’09. IEEE 6th International Conference, 2009, pp. 888-893.

116. Pilloni, V. andAtzori, L. (2011). Deployment of distributed applications in wireless

sensor networks. Sensors, 11(8), 7395-7419.

117. Jin, Y. Jin, J. Gluhak, A. Moessner, K. and Palaniswami, M. (2012). An intelligent

task allocation scheme for multihop wireless networks. IEEE Transactions on

Parallel and Distributed Systems. 23(3), 444-451.

118. Zhu, J. Li, J. and Gao, H. (2007). Tasks allocation for real-time applications in

heterogeneous sensor networks for energy minimization. In: Proceedings of the

Eighth ACIS International Conference on Software Engineering, Artificial

Intelligence. Networking, and Parallel/ Distributed Computing. Vol. 2, 20-25.

119. Abdelhak, S. Gurram, C.S. Ghosh, S. and Bayoumi, M. (2010). Energy-balancing task

allocation on wireless sensor networks for extending the lifetime, In: Circuits and

Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium, 2010, pp.

781-784.

120. Ferjani, A.A. Liouane, N. and Kacem, I. (2016). Task allocation for wireless sensor

network using logic gate-based evolutionary algorithm. In: Control, Decision and

Information Technologies (CoDIT), 2016 International Conference, 2016, pp. 654-

658.

121. Pilloni, V. Franceschelli, M. Atzori, L. and Giua, A. (2012). A decentralized lifetime

maximization algorithm for distributed applications in wireless sensor networks. In:

Communications (ICC), 2012 IEEE International Conference, 2012, pp. 1372-1377.

170

122. Shen, Y. and Ju, H. (2011). Energy-efficient task assignment based on entropy theory

and particle swarm optimization algorithm for wireless sensor networks. In:

Proceedings of the 2011 IEEE/ACM International Conference on Green Computing

and Communications, IEEE Computer Society, 2011, pp. 120–123.

123. Pilloni, V. Navaratnam, P. Vural, S. Atzori, L. and Tafazolli, R. (2013). Cooperative

task assignment for distributed deployment of applications in WSNs. IEEE

International Conference on Communications (ICC), Budapest, 2013, pp. 2229-

2234.

124. Li, W. Delicato, F.C. Pires, P.F. Lee, Y.C. Zomaya, A.Y. Miceli, C. and Pirmez, L.

(2014). Efficient allocation of resources in multiple heterogeneous wireless sensor

networks. Journal of Parallel and Distributed Computing, 74(1), 1775-1788.

125. Kim, M. and Ko, I.Y. (2015). An Efficient Resource Allocation Approach Based on a

Genetic Algorithm for Composite Services in IoT Environments. In: Web Services

(ICWS), 2015 IEEE International Conference, 2015, pp. 543-550.

126. Guinard, D. Trifa, V. Mattern, F. and Wilde, E. (2011). From the internet of things to

the web of things: Resource-oriented architecture and best practices. In: Architecting

the Internet of things, Springer, Berlin, Heidelberg, pp. 97-129.

127. Silverajan, B. and Harju, I. (2009). Developing network software and communications

protocols towards the internet of things. In: Proceedings of the Fourth International

ICST Conference on COMmunication System softWAre and middlewaRE, ACM,

2009, p 9.

128. Haller, S. (2010). The things in the internet of things. Poster at the (IoT 2010), Tokyo,

Japan, November, 2010, vol. 5, p. 26.

129. Chen, S.E. (1995). Quicktime vr: An image-based approach to virtual environment

navigation. In Proceedings of the 22nd annual conference on Computer graphics

and interactive technique,. ACM, 1995, pp. 29–38.

130. Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9),

25-32.

131. CONVERGENCE, (2010). Convergence. URL: http://www.ict-convergence.eu/.

(29.07.2018).

132. Römer, K. Schoch, T. Mattern, F. and Dübendorfer, T. (2004). Smart identification

frameworks for ubiquitous computing applications. Wireless Networks, 10(6), 689-

700.

133. Tsiatsis, V. Gluhak, A. Bauge, T. Montagut, F. Bernat, J. Bauer, M. Villalonga, C.

Barnaghi, P. and Krco, S. (2010). The SENSEI real world internet architecture. In:

Towards the Future Internet, IOS Press, pp. 247–256.

134. IoT-A project. Internet of things architecture, Ref. D1.2. URL: http://www.iot-a.eu.

(29.07.2018).

http://www.ict-convergence.eu/
http://www.iot-a.eu/

171

135. COMPOSE, (2012). Collaborative open market to place objects at your service. URL:

http://www.compose-project.eu/. (07.08.2018).

136. iCore, (2011). Empowering IoT through cognitive technologies. URL: http://www.iot-

icore.eu/. (08.08.2018).

137. Espada, J.P. Martínez, O.S. Bustelo, B.C.P.G. and Lovelle, J.M.C. (2011). Virtual

objects on the internet of things. International Journal of Artificial Intelligence and

Interactive Multimedia, 1(4), 23–29.

138. Jin, V. Zhou, M. and Wu, A.S. (2003). Sensor Network Optimization Using a Genetic

Algorithm. In: the Proceedings of the 7th World Multiconference on Systemics,

Cybernetics, and Informatics, Orlando, FL, July 2003.

139. Hoang, D.C. Yadav, P. Kumar, R. and Panda, S.K. (2010). A robust harmony search

algorithm based clustering protocol for wireless sensor networks. In: 2010 IEEE

International Conference on Communications Workshops (ICC), 2010.

140. Yang, X.S. (2009). Harmony search as a metaheuristic algorithm. In: Music-inspired

harmony search algorithm, Springer, Berlin, Heidelberg, 2009, pp. 1-14.

141. Zäpfel, G. Braune, R. and Bögl, M. (2010). Metaheuristic search concepts: A tutorial

with applications to production and logistics (First Edition). Springer Science &

Business Media.

142. Yu, X. and Gen, M. (2010). Introduction to evolutionary algorithms (First Edition).

Springer Science & Business Media.

143. Cotta, C. Sevaux, M. and Sörensen, K. (2008). Adaptive and multilevel

metaheuristics. Springer, Vol. 136.

144. Khalil, E.A. (2008). An Evolutionary Routing Protocol for Dynamic Clustering of

Wireless Sensor Networks. M.S. dissertation, University of Baghdad, Iraq.

145. Ahn, C.W. (2006). Advances in Evolutionary Algorithms Theory, Design and Practice

(First Edition). Part of the Studies in Computational Intelligence book series, Vol. 18,

Springer.

146. Engelbrecht, A.P. (2007). Computational Intelligence an Introduction (Second

Edition). John Wiley & Sons Ltd.

147. Sumathi, S. and Surekha, P. (2010). Computational Intelligence Paradigms: Theory

and Applications Using MATLAB, CRC Press.

148. Eiben, A.E. Michalewicz, Z. Schoenauer, M. and Smith, J.E. (2007). Parameter

control in evolutionary algorithms. In Parameter setting in evolutionary algorithms,

pp. 19-46, Springer, Berlin, Heidelberg.

http://www.compose-project.eu/
http://www.iot-icore.eu/
http://www.iot-icore.eu/
https://link.springer.com/bookseries/7092

172

149. Coello, C.A.C. Lamont, G.B. and Van-Veldhuizen, D.A. (2007). Evolutionary

algorithms for Solving Multi-Objective Problems (Second Edition). Springer, New

York, USA.

150. Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35(3), 268-308.

151. Eiben, A.E. and Smith, J.E. (2015). Introduction to evolutionary computing (Second

Edition). In natural computing series, Springer-Verlag, Berlin Heidelberg, 2015.

152. Eiben, A.E. and Schippers, C.A. (1998). On evolutionary exploration and

exploitation. Fundamenta Informaticae, 35(1-4), 35-50.

153. Osyczka, A. (1985). Multicriteria optimization for engineering design. In: Design

Optimization, pp. 193–227.

154. Chen, J. H. (2004). Theory and Applications of Efficient Multiobjective Evolutionary

Algorithms, Doctoral dissertation, Feng Chia University, Taichung, Taiwan, R.O.C.

155. Fonseca, C. M. and Fleming, P. J. (1995). An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary Computation, 3(1), 1-16.

156. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods

and applications. Doctoral dissertation, Swiss Federal Institute of Technology (ETH),

Zurich, Switzerland.

157. Coello, C.A.C. (2002). Theoretical and Numerical Constraint-Handling Techniques

used with Evolutionary Algorithms: A Survey of the State of the Art. Computer

Methods in Applied Mechanics and Engineering, 191(11–12), 1245– 1287.

158. Coello, C.A.C. and Lamont, G. B. (2004). Applications of Multi-Objective

Evolutionary Algorithms (First Edition). World Scientific, Singapore, 2004. ISBN

981-256-106-4.

159. Van-Veldhuizen, D.A. (1999). Multiobjective Evolutionary Algorithms:

Classifications, Analyses, and New Innovations. Doctoral dissertation, Department of

Electrical and Computer Engineering. Graduate School of Engineering. Air Force

Institute of Technology, Wright-Patterson AFB, Ohio.

160. Attea, B.A. Khalil, E.A. and Zdemir, S. (2014). Biologically inspired probabilistic

coverage for mobile sensor networks. Soft Computing, 18(11),2313-2322.

161. Deb, K. Pratap, A. Agarwal, S. and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2), 182-197.

162. Srinivas, N. and Deb, K. (1994). Muiltiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.

173

163. Lu, H. and Yen, G.G. (2003). Rank-density-based multiobjective genetic algorithm

and benchmark test function study. IEEE Transactions on Evolutionary

Computation, 7(4), 325-343.

164. Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A

comparative case study and the strength Pareto approach. IEEE Transactions on

Evolutionary Computation, 3(4), 257-271.

165. Deb, K. Pratap, A. Agarwal, S. and Meyarivan, T. (2000). A fast an elitist multi-

objective genetic algorithm: NSGA-II. In: Proceedings Parallel Problem Solving

from Nature VI, pp. 849-858.

166. Heinzelman, W.R. Chandrakasan, A. and Balakrishnan, H. (2000). Energy-efficient

communication protocol for wireless microsensor networks. In: System sciences,

Proceedings of the 33rd annual Hawaii international conference, 2000, p. 10.

167. Heinzelman, W.B. (2000). Application-Specific Protocol Architectures for Wireless

Networks. Doctoral dissertation, Massachusetts Institute of Technology, USA.

168. Smaragdakis, G. Matta, I. and Bestavros, A. (2004). SEP: A stable election protocol

for clustered heterogeneous wireless sensor networks. In: 2nd International

Workshop on Sensor and Actor Network Protocols and Applications (SANPA 2004),

Boston MA, Aug. 2004.

169. Bandyopadhyay, S. and Coyle, E.J. (2004). Minimizing communication costs in

hierarchically-clustered networks of wireless sensors. Computer Networks, 44(1), 1-

16.

170. The MathWorks, Inc. MATLAB Primer. (2017) URL:

https://www.mathworks.com/help/ matlab/index.html. (07.09.17).

171. Messac, A. (2015). Optimization in Practice with MATLAB: For Engineering

Students and Professionals, Cambridge University Press, Cambridge.

172. András Varga and OpenSim Ltd., (2016). OMNeT++ discrete event simulation system

version 5.3 user manual. URL:

https://www.omnetpp.org/doc/omnetpp/SimulationManual.pdf. (11.04.18).

173. “ARDUINO YÚN”, (2018). URL; https://store.arduino.cc/usa/arduino-yun,

(04.05.18).

174. “M-class m51xx core family”, (2018). URA:

https://www.mips.com/products/warrior/m-class-m51xx-core-family/. (04.05.2018).

175. Huang, C.M. Lan, K.C. and Tsai, C.Z. (2008). A survey of opportunistic networks. In:

Advanced Information Networking and Applications-Workshops (AINAW 2008),

IEEE, pp. 1672–1677.

https://www.mathworks.com/help/
https://www.omnetpp.org/doc/omnetpp/SimulationManual.pdf
https://store.arduino.cc/usa/arduino-yun
https://www.mips.com/products/warrior/m-class-m51xx-core-family/

174

175

CURRICULUM VITAE

Personal Information

Surname, Name : SAFFAR, Enan Ameen Khalil

Nationality : Iraq

Date and place of birth : 6 February 1986, Baghdad

Marital status : Single

Phone number : +90 543 853 91 22

E-mail : enanameen@yahoo.com

Education

Degree

PhD

School/ Program

University of Gazi / Computer engineering

Graduation Date

Ongoing

MSc University of Baghdad / Computer Science

2011

Undergraduate University of Baghdad / Computer Science 2008

High School Al-Iraq Al Gedid/Baghdad 2004

Professional Experience

Year Place of Work Position

2011-Ongoing Gazi Üniversitesi- KAVEM Research collaborator

Foreign Language

English, Turkish, Arabic

Publications

1. Khalil, E.A. Ozdemir, S. and Tosun, S. (2018). Evolutionary task allocation in Internet

of Things-based application domains. Future Generation Computer Systems, vol. 86,

pp. 121-133.

2. Khalil, E.A. and Ozdemir, S. (2018). Overview of Internet of Things: Concept,

Characteristics, Challenges and Opportunities. Pamukkale University Journal of

Engineering Sciences, 24(2), 311-326.

176

3. Khalil, E.A. and Ozdemir, S. (2017). Reliable and Energy Efficient Topology Control

in Probabilistic Wireless Sensor Networks via Multi-Objective Optimization. The

Journal of Supercomputing, Springer, 73(6), 2632-2656.

4. Attea, B.A. Khalil, E.A. and Cosar, A. (2015). Multi-objective evolutionary routing

protocol for efficient coverage in mobile sensor networks. Soft Computing, 19(10),

2983-2995.

5. Attea, B.A. Khalil, E.A. Ozdemir, S. Yildiz, O. (2015). A Multi-Objective Disjoint Set

Covers for Reliable Lifetime Maximization of Wireless Sensor Networks. Wireless

Personal Communications, Springer, 81(2), 819-838.

6. Khalil, E.A. and Ozdemir, S. (2015). Prolonging Stability Period of CDS Based

Wireless Sensor Networks. In: Wireless Communications and Mobile Computing

Conference (IWCMC), IEEE, pp. 776-781.

7. Khalil, E.A. and Ozdemir, S. (2015). CDS Based Reliable Topology Control in

Wireless Sensor Networks. In: Networks, Computers and Communications (ISNCC),

IEEE, pp. 1-5.

8. Attea, B.A. Khalil, E.A. Ozdemir, S. (2014). Biologically Inspired Probabilistic

Coverage for Mobile Sensor Networks. Soft Computing, Springer, 18(11), 2313-

2322.

9. Khalil, E.A. and Ozdemir, S. (2013). Energy Aware Evolutionary Routing Protocol

with Probabilistic Sensing Model andWake-Up Scheduling. In: Globecom Workshops

(GC Wkshps), 2013 IEEE, pp. 873-878.

10. Attea, B.A. and Khalil, E.A. (2013). Stable-aware evolutionary routing protocol for

wireless sensor networks. Wireless Personal Communications, Springer, 69(4), 1799-

1817.

11. Attea, B.A. and Khalil, E.A. (2012). A new evolutionary based routing protocol for

clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7),

1950-1957.

12. Khalil, E.A. and Attea, B.A. (2011). Energy-aware evolutionary routing protocol for

dynamic clustering of wireless sensor networks. Swarm and Evolutionary

Computation, 1(4), 195-203.

Hobbies

Reading, playing sports

GAZİ GELECEKTİR...

	Boş Sayfa
	Boş Sayfa

