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The purpose of this thesis is to design a decoupled backstepping sliding
mode control method for underactuated systems under uncertainties and
disturbances. The sliding mode control technique is an effective robust control
approach to overcome model uncertainties and external disturbances. However, the
sliding mode control method can manage parametric uncertainties only in
combination with other methods such as backstepping control. The backstepping
control design is mainly used to deal with the control of the nonlinear systems with
parametric uncertainties. In the present thesis, the sliding mode control technique
and the backstepping control technique are combined owing to their merits using a
decoupling algorithm to control underactuated systems. Since the design
methodology is based on the Lyapunov theorem, the stability of the system is
guaranteed. The effectiveness of the proposed method is verified by the
experimental results of the controller which is applied to an inverted pendulum on
a cart system as an example of underactuated systems. The simulations and the
experimental results show that the decoupled backstepping sliding mode control
achieves a satisfactory control performance and the proposed method provides a
robust performance to overcome parametric uncertainties where the decoupled
sliding mode control fails.

Keywords: Backstepping control, sliding mode control, underactuated systems
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DOKTORA TEZi

BELIRSIZLIK ALTINDAKI EKSIK EYLEYICILI SISTEMLERIN
AYRIKLASTIRILMIS GERi ADIMLAMALI KAYAN KiPLi KONTROL
METODU iLE KONTROLU

Baris ATA

CUKUROVA UNIVERSITESI
FEN Bi;iMLERi ENSTITUSU
BIiLGiSAYAR MUHENDISLiGi ANABILIiM DALI

Danisman : Prof. Dr. Ramazan COBAN
Yil: 2019, Sayfa: 99
Jiiri : Prof. Dr. Ramazan COBAN

: Prof. Dr. Ilyas EKER

: Do¢. Dr. M. Fatih AKAY

: Dr. Ogr. Uyesi Cigdem ACI

: Dr. Ogr. Uyesi Esra SARAC ESSizZ

Bu tezin amac belirsizlik ve bozucular altindaki eksik eyleyicili sistemler
icin bir ayriklagtirllmis geri adimlamali kayan kipli kontrol yonteminin
tasarlanmasidir. Kayan kipli kontrol, model belirsizlikleri ve dis bozuculara kars1
etkili bir giirbliz kontrol yaklasimidir. Ancak kayan kipli kontrol metodu sadece
geri adimlamali kontrol gibi bagka yontemlerle birlikte kullanildiginda parametrik
belirsizliklerle basa ¢ikabilir. Geri adimlamali kontrol yonteminin baglica kullanim
alam1 parametrik belirsizlikler igeren dogrusal olmayan sistemlerin giirbiiz
kontroliidiir. Bu tez ¢alismasinda her iki yontemin de basarili yonlerinden
faydalanmak icin kayan kipli kontrol ve geri adimlamali kontrol yontemleri bir
ayriklastirma algoritmasi kullanarak birlestirilmigtir. Kontroloriin tasarim yontemi
Lyapunov teoremine dayandigi i¢in sistemin kararliligi garanti altina alinmustir.
Onerilen yéntemin bagarimi, kontroloriin eksik eyleyicili sistemlerin bir 6rnegi
olan arabali ters sarka¢ sistemine uygunlamasi ile dogrulanmigtir. Benzetim
sonuglart ve deneysel sonuglar onerilen ayriklastirilimis geri adimlamali kayan
kipli kontrol yoOnteminin tatmin edici bir kontrol performani sagladigini
gostermistir. Ayrica, ayriklastinlmis kayan kipli kontrol yOnteminin basarisiz
oldugu parametrik belirsizliklerin {istesinden gelmede Onerilen metod giirbiiz bir
kontrol performansi saglamistir.

Anahtar kelimeler: Geri adimlamali kontrol, kayan kipli kontrol, eksik eyleyicili
sistemler
11



EXTENDED ABSTRACT

In this thesis, a decoupled backstepping sliding mode control method
proposed to control underactuated systems under uncertainties and disturbances.
Underactuated systems are mechanical systems with less number of actuators than
their degrees of freedom. Control of the underactuated mechanical systems have
seen an enormous interest in the control engineering field because of their
advantages such as having low complexity and cost due to fewer actuators used in
the system.

The inverted pendulum on a cart system is a benchmark tool used in
control laboratories since the 1950s. Also, the inverted pendulum on a cart system
is an example of the underactuated systems which the position of the cart and the
angle of the pendulum are controlled by just one actuator.

In this study, the sliding mode control method and backstepping control
method is combined owing to their merits. The sliding mode control technique has
been recognized as an effective control method against the model uncertainties and
external disturbances and the backstepping control method can deal with the
parametric uncertainties on the control of the nonlinear systems. Therefore,
combining the sliding mode control and backstepping methods will lead a design
which is immune to model uncertainties, parametric uncertainties, and external
disturbances.

One of the main drawbacks of the sliding mode control method on the
control of the underactuated system is that the conventional sliding mode control
cannot be applied to underactuated systems directly because of their highly coupled
dynamics. Researchers proposed partial linearization methods to model regular
form of the inverted pendulum on a cart system in the literature to overcome this
drawback. Some parameters of the system are neglected in these methods due to
the complex nature of the inverted pendulum on a cart system. However, a more

realistic model of the system is needed for experimental studies. Therefore, instead
11



of partial linearization of the system, a decoupling algorithm for sliding mode
control proposed in the literature is used in this study to design a backstepping
sliding mode controller.

In this thesis, stabilizing the pendulum at the upright position while
bringing the cart a desired position is selected as the main control object. To this
end, the complete mathematical model of the inverted pendulum on a cart system is
derived and the DC motor characteristics are added to the mathematical model of
the inverted pendulum on a cart system to create a more realistic model. After that,
a decoupled sliding mode controller and a decoupled backstepping sliding mode
controller are designed to accomplish the control objective.

The decoupled sliding mode control and the proposed decoupled
backstepping sliding mode control are tested on simulation using the derived
mathematical model of the inverted pendulum on a cart model. The simulation
results prove the stability and the effectiveness of both methods. The decoupled
sliding mode control and the proposed decoupled backstepping sliding mode
control methods are compared in two simulation tests for different initial
conditions to investigate their performance on the inverted pendulum on a cart
system without parametric uncertainties. These simulations are repeated with
parametric uncertainties. Comparison results are presented by figures and error
based performance indices.

Overall, the simulation results have shown that the proposed decoupled
backstepping sliding mode control method is more efficient than the conventional
decoupled sliding mode control method.

After obtaining satisfactory performance on the simulation tests, the
decoupled sliding mode control and the proposed decoupled backstepping sliding
mode control methods are applied to a real plant. Experiments have performed on
Feedback's 33-200 digital pendulum mechanical unit. The simulation tests are
recreated on the experimental setup to provide a clearer view about the

performance of the proposed method. The decoupled sliding mode control and the
v



proposed decoupled backstepping sliding mode control methods are compared in
two experimental tests for different initial conditions to investigate their
performance on the real system without parametric uncertainties. These two
experiments are repeated with parametric uncertainties. Experimental comparison
results are presented by figures and error based performance indices.

These experiments show that the proposed decoupled backstepping sliding
mode control method manages to handle parametric uncertainty and control the
cart position successfully where the decoupled sliding mode control fails. Overall,
the experimental results have shown that the proposed decoupled backstepping
sliding mode control method is more efficient than the conventional decoupled

sliding mode control method.






GENISLETILMIS OZET

Bu tezde, belirsizlik ve bozucular altindaki eksik eyleyicili sistemlerin
kontrolii i¢in bir ayriklastirilmig geri adimlamali kayan kipli kontrol yontemi
Onerilmistir. Serbestlik derecesinden daha az sayida eyleyiciye sahip mekanik
sistemler eksik eyleyicili sistemler olarak adlandirilmaktadir. Daha az eyleyiciye
sahip olmalar1 nedeniyle diisilk karmasiklik ve maliyet gibi avantajlara sahip olan
eksik eyleyicili mekanik sistemlerin kontrolii, kontrol miihendisligi alaninda genis
bir ilgi gébrmektedir.

Arabal1 ters sarkag sistemi 1950’lerden beri kontrol laboratuvarlarinda bir
karsilastirma araci olarak kullanilmaktadir. Ayrica arabanin pozisyonu ve sarkacin
acisinin tek bir eyleyiciyle kontrol edilmesi nedeniyle arabali ters sarkag sistemi
eksik eyleyicili sistemlere bir 6rnek olusturmaktadir.

Bu c¢aligmada, kayan kipli kontrol ve geri adimlamali kontrol yontemleri
sagladiklar1 faydalar nedeniyle bir arada kullanilmigtir. Kayan kipli kontrol
yontemi model belirsizliklerine ve dis bozuculara kars: etkili bir kontrol yontemi
olarak bilinmektedir. Geri adimlamali kontrol yontemi ise dogrusal olmayan
sistemlerin kontroliinde parametrik belirsizlikler ile baga c¢ikabilmektedir. Bu
nedenle, kayan kipli kontrol ve geri adimlamali kontrol yontemlerinin
birlestirilmesi model belirsizliklerine, parametrik belirsizliklere ve dis bozuculara
bagisik bir tasarima yol agacaktir.

Kayan kipli kontrol yonteminin en 6nemli dezavantajlarindan biri klasik
kayan kipli kontrol yonteminin yiiksek baglasik yapilari nedeniyle eksik eyleyicili
sistemlere dogrudan uygulanamamasidir. Literatiirde arastirmacilar bu sorunu
agsmak icin arabali ters sarkaci diizenli formda modellenmesine yardimci olan kismi
dogrusallagtirma metodlart 6nermislerdir. Bu yontemlerde arabali ters sarkag
sisteminin karmasik dogasi nedeniyle sistemin kimi parametreleri gbéz ardi
edilmistir. Ancak deneysel c¢aligmalar i¢in daha gergek¢i modellere ihtiyag

duyulmaktadir. Bu nedenle, bu ¢aligsmada bir geri adimlamali kayan kipli kontrolor
Vil



tasarlamak icin kismi dogrusallagtirma yontemleri yerine yine literatiirde yer alan
bir ayriklastirma algoritmasi kullanilmigtir.

Bu tezde, arabayi baslangi¢ konumundan istenen bir konuma hareket
ettirirken sarkaci dik pozisyonda dengede tutmak temel kontrol hedefi olarak
belirlenmistir. Bu amacla arabali ters sarkag¢ sisteminin tam matematiksel modeli
elde edilmg ve daha gergek¢i bir model yaratabilmek igcin DC motor
karakteristikleri de bu modele dahil edilmistir. Ardindan kontrol hedefine
ulasabilmek i¢in bir ayriklastirilmis kayan kipli kontroloér ve bir ayriklagtirilmis
geri adimlamali kayan kipli kontrolor tasarlanmustir.

Elde edilen arabali ters sarka¢ sisteminin tam matematiksel modeli
kullanilarak  ayriklagtirillmigs kayan kipli kontrol yontemi ve Onerilen
ayriklastirilmis geri adimlamali kayan kipli kontrol yontemi benzetim modelleri ile
test edilmistir. Ayriklastirilmis kayan kipli kontrol yontemi ve Onerilen
ayriklastirilmis geri adimlamali kayan kipli kontrol yontemi performanslarinin
incelenmesi igin parametrik belirsizlik icermeyen iki ayr1 benzetim testinde farkli
baslangig kosullari i¢in karsilagtirilmistir. Ardindan bu testler parametrik belirsizlik
altinda tekrar edilmistir. Karsilastirma sonuglar1 grafikler ve hata tabanli
performans indisleri yardimiyla sunulmustur.

Sonug olarak benzetim sonuglar1 6nerilen ayriklastirilmis geri adimlamali
kayan kipli kontrol yonteminin ayriklastirilmis kayan kipli kontrol yontemine gore
daha etkili oldugunu gstermistir.

Benzetim testlerinden elde edilen tatmin edici sonuglarin ardindan
ayriklastirilmis kayan kipli kontrol ve Onerilen ayriklastirilmig geri adimlamali
kayan kipli kontrol yontemleri gercek bir sisteme uygulanmistir. Deneyler Feedbak
firmasinin 33-200 dijital sarka¢ mekanik {initesi iizerinde gerceklestirilmistir.
Onerilen yontemin performansi hakkinda daha net bir bakis agis1 elde edebilmek
icin benzetim testleri deney diizenegi iizerinde yeniden gergeklestirilmistir.
Ayriklastirtlmis kayan kipli kontrol yontemi ve Onerilen ayriklastirilmis geri

adimlamali  kayan kipli kontrol yontemi gercek sistem {izerindeki
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performanslariin incelenmesi ig¢in parametrik belirsizlik igermeyen iki ayri
deneysel testte farkli baslangi¢ kosullari i¢in karsilastirilmistir. Ardindan bu testler
parametrik belirsizlik altinda tekrar edilmistir. Deneysel kargilastirma sonuglari
grafikler ve hata tabanl performans indisleri yardimiyla sunulmustur.

Deneysel sonuglar onerilen ayriklagtirilimis geri adimlamali kayan kipli
kontrol yonteminin, ayriklastirilmis kayan kipli kontrol yonteminin basarisiz
oldugu parametrik belirsizliklerle basa ¢ikarak arabanin pozisyonunu basarili bir
sekilde kontrol edebildigini gostermistir. Sonug olarak deneysel sonuglar onerilen
ayriklagtirilmis geri adimlamali kayan kipli kontrol yonteminin ayriklastirilmis
kayan kipli kontrol yontemine gore daha etkili sonuglar ortaya koydugunu

gostermistir.
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1. INTRODUCTION

Underactuated systems are mechanical systems with less number of
actuators than their degrees of freedom. Underactuated systems are widely used in
real-time applications such as underwater vehicles (Woods et al., 2012), robotics
(Oryschuk et al., 2009; Zeng-Guang Hou et al., 2009) and aerospace (Olfati-Saber,
2001). Underactuated systems can be classified by the reason of underactutaion
(Olfati-Saber, 2001). A system can become underactuated by the dynamics of the
system by nature (Hussein and Bloch, 2008), by design to reduce the cost (Walsh
et al., 1994; Spong, 1995), by artificially induced for a research purpose (Spong,
1987) or by actuator failure.

Consequently, underactuated systems have at least one unactuated degree
of freedom; hence, they consume less energy and their cost and complexity are low
due to fewer actuators used in the systems. Because of these advantages, the
control and analysis of underactuated mechanical systems have seen an enormous
interest and active research since the 1990s (Spong, 1998; Yu and Liu, 2013;
Huang et al., 2018). However, controlling an underactuated mechanical system
presents a challenging problem than fully actuated systems. Hereby, a wide range
of underactuated systems is used as benchmark tools to design and compare
different control techniques, such as the beam and ball system, the translational
oscillator with rotational actuator system and the inverted pendulum on a cart
system (She et al., 2012; Zhang et al., 2017; Shah and Rehman, 2018)

The inverted pendulum on a cart system is an example of the underactuated
system in which both the angle of the rod and the position of the cart are controlled
by only one actuator. Also, other characteristics of the system such as nonlinearity
and instability turn inverted pendulum on a cart system into a challenging problem
in the field of control engineering. The control of inverted pendulum on a cart is a
classical example to verify the effectiveness and performance of control

techniques. As a consequence inverted pendulums have been classic tools in the
1
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control laboratories since the 1950s (Astrdom and Furuta, 2000). Also, the control
of the inverted pendulum on a cart system has been determined as a benchmark
control problem by the International Federation of Automatic Control (Davison,
1990). Moreover, the dynamics of the inverted pendulum on a cart system are
fundamental to maintenance balance problem and resembles many real systems
such as two-wheeled robots (Jeong and Takahashi, 2007), bipedal walking (Kuo,
2007), humanoid robots (Elhasairi and Pechev, 2015) and rocket thrusters
(Anderson, 1988).

The inverted pendulum on a cart system consists of a cart moving along a
rail and a rod which is hinged to cart. The cart is moved by a DC motor. The DC
motor supplies some force needed for the motion of the cart via a pulley-belt
mechanism. It is well known that the inverted pendulum on a cart system has two
equilibrium point: One of them is stable and it corresponds to the downward
position of the pendulum, and the other one is unstable and corresponds to the
upright position of the pendulum. Therefore, moving the cart while maintaining the
pendulum in the upright position using an appropriate continuous feedback signal
can be considered as the main control problem (Ata and Coban, 2015). Various
control techniques have been proposed to control an inverted pendulum on a cart
system, such as energy-based control (Spong, 1996; Astrom and Furuta, 2000;
Siuka and Schoberl, 2009), PID control (Chang et al., 2002; Subudhi et al., 2012),
linear quadratic regulator (Kumar and Jerome, 2013; Ata and Coban, 2017), fuzzy
control (Zhang et al., 2011; Nejadfard et al., 2013) and sliding mode control (SMC)
(Lo and Kuo, 1998; Adhikary and Mahanta, 2013; Mahjoub et al., 2015; Ata and
Coban, 2019).

The SMC technique is a particular type of variable structure control (VSC)
method and it has been recognized as an effective robust control approach to model
uncertainties and external disturbances (Utkin, 1977; Utkin, 1992). The
conventional SMC occurs in two phases; reaching phase and sliding phase. In the

reaching phase, the system states are forced from an initial condition to a pre-
2
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defined sliding surface. The system can handle matched uncertainties and certain
disturbances when the states reach the sliding surface. The reaching phase is
followed by the sliding phase where the system states are restricted to stay on the
sliding surface and slides on the surface to an equilibrium (Utkin, 1992). Although
the SMC technique is a robust method and it has a straight forward design
procedure, it has a drawback called the chattering phenomenon (Utkin and Lee,
2006). The chattering effect can be caused by unmodeled dynamics or the finite
sampling rate of digital controllers (Utkin and Lee, 2006) and extensive research is
counting for chattering removal (Levant, 1993; Levant, 2003; Lee and Utkin, 2007;
Wang and Adeli, 2012; Furat and Eker, 2014). Besides, the conventional SMC
cannot be used directly on underactuated systems due to their coupled dynamics,
the decoupled sliding mode control (DSMC) technique can be used to overcome
this drawback (Lo and Kuo, 1998). The DSMC technique provides a method to
decouple a nonlinear system into two subsystems which have different control
objectives. Using the DSMC method, the second subsystem can be incorporated
into the first subsystem (Lo and Kuo, 1998). Moreover, the SMC can manage
parametric uncertainties in combination with other methods such as backstepping
control (Coban, 2017a).

The backstepping technique is a nonlinear control method based on the
Lyapunov theorem and also known as adding an integrator (Freeman and
Kokotovi¢, 1996). In the backstepping control, some of the states are used as
virtual control signals in control law design, and the virtual signals satisfy the
selected Lyapunov function in each step of the design process. Hence, the stability
of the overall system can be guaranteed. The backstepping control design is mainly
used to deal with the robust control of the nonlinear systems with parametric
uncertainties (Wang and Stengel, 2002).

Hereby, the SMC and the backstepping techniques can be combined to
design a robust controller to uncertainties and disturbances (Lu et al., 2011;

Adhikary and Mahanta, 2013; Coban, 2017a). The backstepping sliding mode
3
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control offers an improvement in steady-state error compared to the backstepping
control and the SMC; also, it rejects disturbance and improves robustness against
the parametric uncertainty (Coban, 2017b).

Research interest in controlling the inverted pendulum on a cart system (Lo
and Kuo, 1998; Adhikary and Mahanta, 2013; Mahjoub et al., 2015) using the
SMC continues in recent years. Mahjoub et al. proposed first-order and second-
order sliding mode controllers for underactuated systems considering inverted
pendulum on a cart system (Mahjoub et al., 2015). They used a stabilization
method (Voytsekhovsky and Hirschorn, 2008) to approximate the inverted
pendulum on a cart system with an input-output linearizable control system and
presented the results using simulation tests. Adhikary and Mahanta combined
backstepping and SMC methods and proposed an integral backstepping sliding
mode controller for stabilization of the inverted pendulum on a cart system
(Adhikary and Mahanta, 2013). They used Man and Lin’s approach (Man and Lin,
2010) to partially linearize the inverted pendulum on a cart system and presented
the results using simulation tests. Coban and Ata presented a decoupled sliding
mode controller for inverted pendulum on a cart system (Coban and Ata, 2017).
They used the decoupling algorithm proposed by Lo and Kuo (Lo and Kuo, 1998)
to apply the SMC to an inverted pendulum on a cart system and presented the
results using experimental tests.

Young et al. specified that the real test for the sliding mode research
community will be the willingness of control engineers to experiment with the
SMC method in their professional practice (Young et al., 1999). Although the SMC
technique has been widely used, researchers have generally preferred simulations
rather than the real systems; especially in the control of the inverted pendulum on a
cart system (Lo and Kuo, 1998; Lin and Mon, 2005; Park and Chwa, 2009;
Adhikary and Mahanta, 2013; Mahjoub et al., 2015). Complex nature of the
inverted pendulum on a cart system leads to neglect some parameters of the system

in these simulations such as cart friction coefficient and pendulum damping
4
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coefficient. Also, the effect of the actuator to the inverted pendulum on a cart
system has neglected in simulations (Lo and Kuo, 1998; Adhikary and Mahanta,
2013; Mabhjoub et al., 2015).

The aim of this thesis is to propose a decoupled backstepping sliding mode
control (DBSMC) method for underactuated systems with uncertainty. An inverted
pendulum on a cart system is selected as a benchmark example for underactuated
systems to examine the effectiveness of the proposed method. Stabilizing the
pendulum at the upright position while bringing the cart a desired position is
selected as the main control object. The complete mathematical model of the
inverted pendulum on a cart system is derived according to its movement
characteristics. The DC motor characteristics are added to the mathematical model
of the inverted pendulum on a cart system to create a more realistic mathematical
model. A decoupled sliding mode controller and a decoupled backstepping sliding
mode controller are designed to control an inverted pendulum on a cart system.
Since the design methodology of both controllers is based on the Lyapunov
theorem, the stability of the system is guaranteed. The DSMC and the proposed
DBSMC are simulated using the complete mathematical model of the inverted
pendulum on a cart with DC motor system to investigate the stability of the
controllers. The DSMC and the proposed DBSMC methods compared in
simulation tests to investigate their performance on the inverted pendulum on a cart
system with and without parametric uncertainties. After simulation tests, The
DSMC and the proposed DBSMC methods experimentally applied an inverted
pendulum on a cart system. Several simulation and experimental results are
presented to show the effectiveness of the proposed algorithm. The results confirm
the fact that the proposed DBSMC is more effective compared to the DSMC and
the DBSMC provides a robust control on the systems with parametric uncertainties
where the DSMC fails.

The rest of the thesis is organized as follows: In Chapter 2, a complete

mathematical model of the inverted pendulum with DC motor is derived. In
5
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Chapter 3, theoretical backgrounds of the SMC and the backstepping approach are
explained. The basic principles of the DSMC and the DBSMC designs are
presented. In Chapter 4, the DSMC and the DBSMC designs for the inverted
pendulum on a cart system are presented. Simulation and experimental results are

presented with not only graphical results but also various statistical analyses.

Conclusions are drawn in Chapter 5.
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2. INVERTED PENDULUM ON A CART

The inverted pendulum on a cart system consists of a cart moving along a
rail and a rod which is hinged to the cart. The cart is moved by a DC motor. The
DC motor supplies some force needed for the motion of the cart via a pulley-belt
mechanism. Dynamics of the inverted pendulum system can be represented as a set
of equations which is called mathematical model. Either this model can be
represented in transfer function form or state space form. In this section, the
complete mathematical model of the inverted pendulum on a cart system has been

derived.

2.1. Dynamics of the Inverted Pendulum on a Cart System

The parametric representation of the inverted pendulum system is shown in
Figure 2.1. Let x be the displacement of the cart from the initial position and 6 is
the angle in the vertical direction. m and / are the mass and the length of the
pendulum, respectively; M is the mass of the cart; g is the acceleration due to
gravity; and F is the force applied to the cart. Besides these parameters, J, is the
moment of inertia; d is the pendulum damping coefficient, and 4 is the cart friction
coefficient which are not shown in Figure 2.1. The inverted pendulum on a cart
system parameters are presented in Table 1.

The complete mathematical model of the inverted pendulum on a cart
system can be derived from the Newton’s laws of motion according to its
movement characteristics. The motion of the inverted pendulum on a cart system
consists of the linear motion of the motor driven cart in the X-axis and the
rotational motion of the pendulum in the X-Y plane. Hence there will be two

dynamic equations.
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Figure 2.1. Parametric representation of the inverted pendulum on a cart system

Table 2.1. Inverted pendulum on a cart system parameters

Parameter Meaning Unit
X Displacement of cart m
0 Pendulum angle rad
m Mass of pendulum kg
/ Length of pendulum m
M Mass of cart M
g Acceleration of gravity m/s®
F Force applied to the cart N
Jp Moment of inertia kgm?
b Friction coefficient Ns/m
d Damping coefficient Nms/rad
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Let P and N be vertical and horizontal components of the force applied on
the cart as shown in Figure 2.2. Considering Figure 2.1, x; and y,, , coordinates of

center of gravity of the mass can be defined as follows:

xg =x—Isin(6(1)) (2.1)

yo =lcos(6(1)). (2.2)

6(t) will be presented as ¢ in the rest of the study for simplification.

Noting that

%(sin(&)) =cos(6)0

and

2

?(sin(e)) =—sin(0)6" +cos(0)0,

the horizontal reaction force N can be written as
N=m(jé+9zlsin(6’)—élcos(9)). (2.3)

The force F applied on the cart is equal to the sum of the forces due to
acceleration, friction component of force that opposes the linear motion of the cart,

and the horizontal reaction:

F=Mi+bx+N. 2.4)
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Figure 2.2. Free body diagram of the inverted pendulum on a cart system

Substituting Equation (2.3) into Equation (2.4), one has
F = Mg+ b+ m(%—lcos(0) + Flsin(6)). 2.5)

Rearranging Equation (2.5) gives the first equation of motion for the

inverted pendulum on a cart system as follows:
F=(M +m)i+bx +ml6” sin(0) - mlf cos (). (2.6)

The forces perpendicular to the pendulum should be added up to obtain the
second equation of motion for the inverted pendulum on a cart system. Considering

Figure (2.2), the vertical force P can be calculated via the weight of the pendulum.
Let y; be the displacement of pendulum from the pivot. Hence, P can be defined

as

2

d
P—mg =mE(lcos(9)). (2.7)

10
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Noting that

%(cos(&)) =—sin(6)6

and

2

d_(cos(é’)) =—cos(0)0° —sin(0)0,

ar’
Equation (2.7) can be rewritten as
szg—mlé2 cos(ﬁ)—mlésin(é’). (2.8)

Noting that the torque equation 7 = [ ® F where the notation ® indicates

vector product, the torque equation can be written as

X y z
7 =|-Isin(@) lcos(6) 0
N P 0 (2.9)
= (—1)”3 2[(—P)(—l sin(H)) - (—NZ cos(H))]
Equation (2.9) can be rearranged as
T =PIsin(8)+ Nlcos(0). (2.10)

Also, the torque 7 can be defined as follows:

11
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r=J,0+d0. (2.11)
Equating Equation (2.10) and Equation (2.11) yields
Plsin(0)+ Nlcos(0)=J,6+d6. (2.12)

Substituting Equation (2.3) and Equation (2.8) into Equation (2.12), one

has

J,0+d6 =-ml*0sin® (6)—mi*0” cos(0)sin () + mglsin(0)

o A (2.13)
+mljc'cos(9) —ml*6 cos® (49) + ml*6* sin(é’)cos(@).

Rearranging Equation (2.13) yields

J,0+d0=mglsin(0)+mlicos(0) - m*d(cos’ (0) +sin’ (0)).  (2.14)

Using the well-known trigonometric equation cos’ (0) +sin’ (0) =1,

Equation (2.14) can be rewritten as follows:
(Jp +ml2)9—mglsin(é’)—mb’écos(@)+d9=0. (2.15)

Consequently, Equation (2.6) and Equation (2.15) are the equations of
motion for the inverted pendulum on a cart system that describe the translational

motion and the rotational motion respectively.

12



2. INVERTED PENDULUM ON A CART Baris ATA

2.2. Nonlinear Model of the Inverted Pendulum on a Cart System
The equations of motion for inverted pendulum on a cart from above can

also be rearranged into series of differential equations. From Equation (2.6) and

Equation (2.15) ¥ and 6 can be shown as, respectively,

—bx +mlf cos(0) - mlo* sin(0)+ F

X = 2.16
¥ M+m ( )
G mglsin(6)+mljc'czos(9)—d9 ‘ @17
J,+ml
Substituting Equation (2.17) into Equation (2.6), one has
Isin(0)+mlicos(0)—do

F:(M+m)jé+b)'c—mlcos(0) e sm( ) i xczos( )

J,+ml (2.18)

+ml6’ sin(0).
Rearranging Equation (2.18) yields

F(J, +ml*)=(J, +ml*)(M +m)5+(J, +ml* )bk
—m*I>gsin(@)cos(0)—m’I* cos® (0) ¥ (2.19)
+mld@cos(0)+(J, +ml* )mi6’ sin(0).

p

Collecting X terms on the left-hand-side in Equation (2.19) yields

13



2. INVERTED PENDULUM ON A CART Baris ATA

(7, +ml*)(M +m)5—m’P cos’ (0) & =—(J, +ml” )b
+m’I> g cos(0)sin(0)
~mldcos(0) (2.20)
~(J, +ml* )mi6” sin ()
+F(Jp + mlz).

Equation (2.20) can be rewritten as

—(Jp+ml2)b5c+m *gcos(0)sin(0)—midfcos(0)

(Jp+m12)(M+m) m’l* cos ( )
—(Jp+mlz)m19251n (J +mlz)
(Jp+mlz)(M+m)— *I* cos’ (0)

X=

2.21)

Similarly substituting Equation (2.16) into Equation (2.15), one has

(7, +ml*)0 - mglsin(0)

—mlcos(@)(

—bx +mlo cos(6) - mlé? sin(6) + FJ ) (2.22)
+d@=0.
M+m

Rearranging Equation (2.22) yields
(Jp + mlz)(M +m)é—(M + m)mglsin(é?)
+ml cos(0)bx —m’I> cos” (0)0 +m’I* cos(0)sin(0) 6 (2.23)

—mlcos(6)F +(M +m)d9 =0.

Collecting @ terms on the left-hand-side in Equation (2.23) yields

14
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(J, +ml*)(M +m)f—m’I* cos® ()6 = (M +m)mglsin(0)

—ml cos(6)bx
, (2.24)
—m*[? cos(0)sin ()6’
~(M +m)d@+mlcos(0)F.
Equation (2.24) can be arranged as follows:
b (M +m)mglsin(8)—mibcos(0)x —m’I* cos(0)sin(0) 6
) (Jpanlz)(M-l—m)—mzl2 cos’ (6)
(2.25)

.\ —(M+m)d¢9+mlcos(¢9)F
(Jp + mlz)(M +m)—m’I’ cos’ (49)

Let the states be x, x, 8, and 0:

X, x
X, X
x| |6l
x| |0

state equations of the inverted pendulum on a cart system can be shown as

(2.26)

X, =X,
_ —(Jp +m12)bx2 +m’I*g cos(x, )sin(x; ) —mldx, cos(x, )
BT (Jp+m12)(M+m)—mzl2 cos’ (x3) 2.27)
—(Jp +ml2)m1x42 sin(x3)+(Jp +m12)F
(Jp +mlz)(M+m)—mzl2 cos’ (x;)

i = x, (2.28)

15
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X, =

(M +m)mglsinx, —mibcos(x, ) x, —m*I* cos(x; )sin(x, ) x,
(Jp+mlz)(M+m) m’l> cos’ (x;)
s —(M +m)dx, +mlcos(x,)F ‘
(Jp +mlz)(M+m)—mzl2 cos’(x;)

(2.29)

2.3. DC Motor Model
In the inverted pendulum on a cart system, the cart is driven by a DC
motor. To create a more realistic model, the motor characteristics should be added

to the mathematical model of the inverted pendulum on a cart system (Ata and

Coban, 2017).

Fixed
field

Rotor

v (1)

Armature
circuit _ e(t)
i(t)

O ()

Figure 2.3. DC Motor schematics

A motor is an electromechanical component that gives a movement output
for a voltage input. That is a mechanical output generated by an electrical input
(Nise, 2010). In this section, the transfer function is derived for a particular kind of
electromechanical system called armature-controlled DC servomotor (Mablekos,

1980). The motor’s schematic is shown in Figure 2.3.

16



2. INVERTED PENDULUM ON A CART Baris ATA

In Figure 2.3, the fixed field stands for a magnetic field which is developed

by stationary permanent magnets or a stationary electromagnet and armature stands

for a rotating circuit which current i(t) flows through the magnetic field and feels

a force. The resulting torque turns the rotating member of the motor, rotor.

A conductor moving at right angles to a magnetic field generates voltage at
the terminals of the conductor equal to e= B/ v, where e is the voltage, B is the

magnetic field flux density, /. is the length of the conductor, and v is the velocity of
the conductor normal to the magnetic field. Since the current-carrying armature is
rotating in a magnetic field, its voltage is proportional to speed and named as back

electromotive force. Thus, it is formulated by

(2.30)

where K, is the back electromotive force constant and d6, (¢)/d(t)=w(t)is the

angular velocity of the motor. Taking the Laplace transform of Equation (2.30)

gives

V,(s)=K,s6,(s). (2.31)

m

The relation v, (t) between the armature current i (t) and the applied

armature voltage e(t) can be shown by writing a loop equation around the Laplace

transformed armature circuit:

RI(s)+LsI(s)+V,(s)=E(s) (2.32)

17
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where L and R are the rotor circuit inductance and the rotor circuit resistance,
respectively.

The torque developed by the motor is proportional to the armature current:

T,(s)=K(s) (2.33)

m

where T, is the torque, and K, is the torque constant, which depends on the motor

and magnetic field characteristics.

Rearranging Equation (2.33) yields

I(s)z

Kitzn (). (234)

Substituting Equation (2.31) and Equation (2.34) into Equation (2.32)

gives

(BALILG) L kg (5)=E(s). (239)

t

The torque developed by the motor also can be written as follows:
T,(s)=(,s* +Ds)0,(s) (2.36)

where D is the viscous damping and J,, is the inertia of the motor.

Substituting Equation (2.36) in Equation (2.35) yields

18
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(R+ Ls)(Jms2 + Ds)@m (s)
K

t

+K,s6, (s)=E(s). (2.37)

Equation (2.37) can be rewritten as

0}71 (S) _ Kt (2 38)
E(S) - (R+Ls)(Jms2 +Ds)+KbKts ' '

Equation (2.38) is the transfer function of the DC motor between input

(voltage) and output (angular position).

Noting that
do
( )_ dtm =S0m(S),
8. (s) = a)gs)
(s)

@
and substituting

instead of 6, (S) in Equation (2.38) and Equation (2.35)
s

yields, respectively:

o(s) _ K,
E(s) (R+Ls)(J,s+D)+K,K,~ (239
%mﬂ(g:]sm . (2.40)

t

In order to obtain torque developed by the motor and to get rid of angular

velocity, substituting (s) from Equation (2.39) into Equation (2.40) yields

19
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(R+Ls)T,(s) K, B
K, s ((RJrLs)(Jms +D)+K,K, ]E(S) =Es). @4b

Collecting E(s) terms on the right-hand-side in Equation (2.41) yields

R+Ls K. K
T (s)=E(s)— bt E(s). 2.42
x =B G D) gk 2 (2:42)
Rearranging Equation (2.42) yields
R+ Ls K, K
T (s)=|1- — E(s). 2.43
k) ( (R+Ls)(Jms+D)+KbKJ (s) (243

Equation (2.43) can be rewritten as

Kt _ KbKt
g (S):R+Ls( (R+Ls)(Jms+D)+KbKt]E(S)' (249

Equation (2.44) is the motor torque equation without angular velocity a)(s) in the

equation.

Let the force equation induced by the motor torque:
nl

F(s)=—T,(s) (2.45)
r

where » and n, are radius of pulley and gear ratio, respectively. The torque in

Equation (2.45) can be rewritten as

20
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T, (s)=F(s)—. (2.46)

Substituting Equation (2.46) in Equation (2.44) yields

n, Kt _ KbKt
Fls)= (7) R+Ls [l (R+Ls)(J,s+D)+K,K, JE(S)' (247

In place of force F in the inverted pendulum equations of motion, DC
motor armature voltage E (s) can be used as the input. Towards this end,
rearranging Equation (2.40) yields
K

L E(s). (2.48)

_ K,K,
R+ Ls

T, (s)z a)(s)+

Letting translational velocity — angular velocity equation as
n, \dx(t
w(t)= (—Zjﬁ (2.49)

where 7, is gear ratio and taking Laplace transform of both sides of the Equation

(2.49) yields
a)(s)z(n—zjsx(s). (2.50)

Using Equation (2.48) and Equation (2.46), the force can be written as
follows:

21
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F(s):_(%jﬁw(s){ﬂjLE(s). @.51)

R+ Ls r JR+Ls

Substituting Equation (2.50) into Equation (2.51), one has

F(s) z—(ﬂj(n—zjﬁsx(s)+(ﬂjLE(s). 2.52)

r r JR+Ls ¥y JR+Ls

Motor inductance L has a limited effect on the DC motor system, hence it
is possible to take L =0 for transfer function (Ata, 2014). For simplification,
substituting L =0 in Equation (2.52) yields

F(s):—Kﬂj(n—zj%sx(s)—i—(ﬂj%E(s). 2.53)

7

Taking the inverse Laplace transform of Equation (2.53) gives a

differential equation whose inputs are motor armature voltage e(t) and

translational velocity of the cart )'c(t), and output is the force F (t) applied on the

cart.

F(t):—(ﬂ](n—z)%x(z)+(ﬂj%e(0. (2.54)

Therefore, with Equation (2.54) electromechanical signal conversation

from voltage to force is achieved.
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2.4. Inverted Pendulum on a Cart System with DC Motor
Equation (2.26) through Equation (2.29) can be rearranged by substituting
Equation (2.54) into them

% =x, 2.55)
i = $x, +(ocos(x3)sin(x3)+)/sin(2x3)x42 +mcos(x;)x, + Au 2.56)
v+ pcos’ (x,)

= x, 2.57)
. ux,cos(x;)+Isin(x; )+ ox, + pcos(x; )sin(x;)x,’
X, =

¢ w + pcos’ (x,) 258

gcos(x; )u
v+ pcos’ (x,)

where

o221 50)

¢ = mzlzg >
y=—(J, +ml*)ml

n=-mld,

(35
()

3=(M+m)mgl,
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o=—(M +m)d ,

s-al(2)5)
y=(0, o)),

and

uze(t).

Considering parametric uncertainties and external disturbances the state
equations of the inverted pendulum on a cart system presented in Equation (2.55)

to Equation (2.58) can be written as follows:

X =48
S, (¢x2 +g@cos(x;)sin(x, )+ ysin(x;)x,> +7cos(x, )x4)
4 v + poos’ (x,)
A
ey LI ()
v+ pcos’ (x;)
. (2.59)
X, =X,
.5, (,ux2 cos(x, )+ Isin(x; )+ ox, +pcos(x3)sin(x3)x42)
T v + pcos’ (x;)
s gcos(x;)u Le

v+ pcos’ (x;)

where 6, and 6, stand for the parametric uncertainties as constants; & (¢)and
&, (t) the total amounts of external disturbances and unmatched uncertainties. & (¢)

and &, (¢) are assumed to bounded as |§1 (t)| <& .. and |§2 (t)| <& -
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3. DESIGN METHODS

3.1. Sliding Mode Control

The SMC is a special type of VSC method which is insensitive to the
matched uncertainties and disturbances (Utkin, 1977). Accordingly, the SMC has
been a widely used technique for handling nonlinear systems with undetermined
dynamics and disturbances (Utkin, 1977; Utkin, 1992).

The objective of the SMC is to enforce the sliding modes in a pre-defined
surface known as sliding surface in the state space of a given system using a
discontinuous control.

The conventional SMC occurs in two phases; reaching phase and sliding
phase. In the reaching phase, the system states are forced from an initial condition
to a pre-defined sliding surface. The reaching phase is followed by the sliding
phase. In this phase the system states are restricted to stay on the sliding surface
and slides on the surface to an equilibrium. The reaching phase and the sliding
phase are shown in Figure 3.1 where e and é denote the tracking error of a given
system and its derivative respectively.

Correspond to these two phases, a conventional sliding mode controller
consists of two control laws. The first control law is switching control which drives
the system state trajectory to the pre-defined sliding surface. In the literature a
signum function sign() is employed to create a discontinuous switching control

law. The sign () function shown in Figure 3.2 can be defined as

-1 if s<0
sign(s)=40 if s=0
1 if s>0

The second control law equivalent control is used when the system is in the

sliding phase.
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Sliding Surface

Sliding Phase
Reaching Phase

Figure 3.1. Reaching and sliding phases of the SMC

Yun

Figure 3.2. Signum function
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Reaching
Phage

=
Chattering

Figure 3.3. Chattering phenomenon in the SMC approach

Despite of its advantages, the SMC technique has a main drawback called
chattering phenomenon which refers to finite frequency, finite amplitude
oscillations of the control input. Hence, the chattering phenomenon can lead to
unacceptable control accuracy.

There are two essential causes to lead chattering. First, the limited
switching frequency can lead chattering because the ideal SMC approach requires
infinite switching frequency (Young et al., 1999). Second, unmodelled dynamics of
the system come from actuators and sensors can cause a high frequency oscillation
on the sliding surface (Yu and Kaynak, 2009) as shown in Figure 3.3

Avoiding the chattering has been a challenging problem in the SMC
approach. There have been various efficient methods to minimize the potential
chattering. Boundary layer solution is one of the most used methods to overcome
the chattering (Slotine and Li, 1991). The boundary layer approach is based on the
use of a continuous approximation of the signum function in the switching control
law.

Commonly a saturation function has been used instead of signum function.

The saturation function shown in Figure 3.4 is defined by
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5/ 8)= sign (s/A) if s/ A[=1
A V)N it [s/a<1

where A denotes a boundary level as shown in Figure 3.5.

Figure 3.4. Saturation function

Sliding Surface Ae

Figure 3.5. Sliding surface with the boundary layer approach
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A sliding mode controller for a single input single output system can be
designed as follows. Dynamical equations of a general single input single output

non-linear system can be described by

%(0) =x,(1)
%, (1) =61 (%) + g(u(r) +5(2) 3.1
y(® =X, (1)

where f(x) and g(x) are nonlinear functions, x =|x, xz]T is the state vector; &
is the parametric uncertainty; & (t) is the total amounts of external disturbances and
unmatched uncertainties ; y(f) is the output; and u(¢) is the control input. £(¢) is

where &

max

is a positive constant. In order

max

assumed to be bounded as |§(t)| <

to design a sliding mode controller for this system, a sliding surface can be defined

as
s(t) =ke(t)+eé(t) (3.2)
using the tracking error

e(t) = y(0) - y,(1), (3.3)

where £, is a real positive constant and y, (t ) is the desired output.

Considering a Lyapunov function

V(s)z%sz(t) (3.4)

29



3. DESIGN METHODS Baris ATA

and differentiating V'(s) yield
V(s)=s(t)s(t)
=s(1)(ke(r)+é(1))
=s(t)(ke(t)+3(1)-¥,(2)) (3.5)
=s(t)(ke(r)+ %, -, (1))
= s(t) (ke(1)+ 5 (x) + g(x)u(t) + E@) -, (1))-

V(s) in Equation (3.5) will be negative definite if the control law is

defined as
u(t)=u,, (t)+u,() (3.6)
with
U, (1) = ﬁ(—kle'(t) —5f(x)+53,(1)), (3.7)
u, (1) =— glx) Ksign(s(1)), (3.8)
and
1 s()>0
sign(s(t))=10, s(t)=0 (3.9)
-1 s(t) <0
where K > & >|&(1).

Substituting Equation (3.6) into Equation (3.5) yields
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V()= s (1) ke () + 61 (x) =3, () + & (), (1) + 1, (1)) + £ (1) ]
=s(t)[ ke(t)+ 81 (x)=3,(¢)
() (k)07 (5) 5, ()60 (1) £00)
=s(t)[ g(x)u,, (t)+&(t)] (3.10)
< —Ks(t)sign(s(2))+ & s (2)

<—|s()|(K = &,0)
0.

A

where K > & 2|§(t)| ;

According to the Lyapunov theorem, due to the fact that V' (s) is negative

definite, the system trajectory will be driven to sliding surface and remain in there

until the origin is reached asymptotically.

Using sign(s(7)) function will lead the chattering. A boundary level with

width A can be defined and sign(s(t)) function can be replaced with a saturation

function in Equation (3.8) to overcome this problem as follows:

u,, () =— ! Ksat(s(r)/ A) (3.11)
g(x)
with
ign(l'), |0|>1
sat(r) = 1 S€n@) Il (3.12)
r, M <1
where A>0.
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3.2. Decoupled Sliding Mode Control

The SMC design can be applied to systems presented in the canonical
form. Nevertheless, the dynamic representation of the inverted pendulum on a cart
system presented in Equation (2.59) has a form shown below rather than the

canonical form

X, (1) = x,(1)

%, (1) =6, /(%) + g ()u(t) + 5, (1)
X, (1) = x, ()

X, (1) =0,/,(x) + g, (X)u(@) + &, (?)

(3.13)

where xz[xl,xz,x3,x4]T is the state vector; f,(x), g,(x), f,(x) and g,(x) are
nonlinear functions; u(#) is the control input; &, and o, are the parametric
uncertainties as constants; and & () and &,(¢) are the total amounts of external
disturbances and unmatched uncertainties. & () and &, (f) are assumed to be
bounded as |§1(t)|Sg"]maX and |§2(t)|S§2maX where & . and &, are positive

constants.

The decoupled control idea can be used to design a controller to control both
the displacement and the angle in the inverted pendulum on a cart system. The
main idea behind the decoupled sliding mode control is to decouple the whole
system into two subsystems and define a sliding surface for each subsystem. The
control objective of a sliding mode controller is to drive the sliding surface to zero,
hence using an intermediate variable to transfer value from a sliding surface to the
other can lead to control both subsystems simultaneously. To design a decoupled
sliding mode controller for this system two different sliding surfaces can be

defined as follows (Lo and Kuo, 1998; Coban and Ata, 2017):
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SSl(t)zklel(t)+é1(t) (3.14)

85:(0) = kye, (1) + 6, () (3.15)

using the tracking errors

e(t) =y - ya(?) (3.16)

and
et) =y, - ydz(t) (3.17)

where k; and k, are real positive constants, and ¢ (f) and e,(¢) are tracking errors
for the cart displacement and pendulum angle, respectively. sg,(f) in Equation

(3.15) can be transformed to a decoupled sliding surface as
$52(0) =k, (e, (1) = 25 () +¢,(1) (3.18)

with z(¢) is a value transferred from sg,(¢#) and defined as

S5, (2)

zs(t)zsa{A jz&,, 0<z,, <1 (3.19)

Sz

where z, is the upper bound of z¢(#) and Ay is the boundary level as constants.
z,, , the upper bound of the intermediate variable z guarantees that sg,(¢) will be
limited. After the sliding surface sg(#) becomes zero, sg,(#) will be driven to

zero too, thanks to z; .
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Considering a Lyapunov function
Vs(ss,) = Ssz (t) (3.20)

and differentiating V(sg,) yield

Vi (550) = 85,(D)S55 (2)
=55, (k, (&,(0) — 25(0)) + &, (1))
= 55, () (ky (&, (1) = 25()) + 3, (1) = 31, (1))
=55, (K (&,(0) = 25(0)) + X, — 3,1, (1))
=55, (O] ky (&,(0) = 25(0))

+6, /() + &, (u(0) + & (1) = 35 (1) ]-

(3.21)

VS (sg,) in Equation (3.21) will be negative definite if the control law for

u(t) in Equation (3.21) is defined as

U (t):u&,q (¢)+usg,, () (3.22)
with

g, (1) = ﬁ[—kz (&)= 2,(1)) = 5, £,(0) + 1 (1) ] (3.23)

ug, ()= —ﬁKSsign(sS2 (t)) s (3.24)

where KS > §2max 2 |§2 (t)| :
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Substituting Equation (3.22) into Equation (3.21) yields

Vs (85,)= Ssz(t)[kz (éz (1) -z (f))
8,1, (0) + €5 (0) (115, (0) + 5, () + & () = 5, (1) ]
=55, (1) ks (&,(0) = 25(0) + 8,15 (x) = 3, ()
+&> (x)ﬁ(_kz (éz (1) -z (l)) =8, (X)) + Vg, (t))

+g, (x)ug, (¢)+ 5(1)]

=S5 (t)[g2 (x)ug,, (1) + <, (t)l
=—Ksg, (1)sign(ss, (1)) + 55, ()&, (¢)
<K |55, (D] + 555 () &

< _|Ssz (t)|(Ks - é:zmax)
0.

(3.25)

A

where K, >¢&, 2> |§2 (t)| .

According to the Lyapunov theorem, due to the fact that VS (s) is negative

definite, the system trajectory will be driven to sliding surface and remain in there
until the origin is reached asymptotically.
Therewith, a decoupled sliding mode controller for an underactuated

system can be presented as in Equation (3.22).

3.3. Backstepping

The sliding mode control can handle any kind of matched uncertainties;
however, it has a deficiency to handle parametric uncertainties. In order to manage
this drawback, both the backstepping control and SMC techniques can be
combined. Backstepping is a nonlinear stabilization technique of “adding an

integrator” (Freeman and Kokotovi¢, 1996) which is mainly used to deal with the
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robust control of the nonlinear systems with parametric uncertainties and the
nonlinear functions assumed to be known (Yao and Tomizuka, 2001).

The backstepping design method is described by Khalil as follows (Khalil,
2002). Consider a system

a(r)=1(a(r)+g(a(1)A(1) (3.26)
B(t)=u(t) (3.27)

where f(a (t)) and g(a(t)) are known functions, [ar,ﬂ]T is the state

vector and u(t ) is the control input. Equation (3.26) can be stabilized by a state

feedback control law ,B(Z) =;((0{(t)) with ;((O) =0 as

a(t)=/(a(1))+g(a(1))2(al7)- (3.28)

Hence, the origin of Equation (3.28) is asymptotically stable. Considering a

Lyapunov function V (a (t)) will satisfies the inequality

Tl o) ) ) = () 329

where W(a(l)) is positive definite.

Adding and subtracting g(a(t)) ;((a(t)) on Equation (3.26), the system

equations Equation (3.26) and Equation (3.27) can be rewritten as

36



3. DESIGN METHODS Baris ATA

a= (f(a(t)) +g(a(t));g(a(t))) - g(a(t))(ﬂ(t) —;((a(t))) . (3.30)
B(t)=u(t) (3.31)

Changing of variables z, (t)z ﬂ(t)— ;((a(t)) and substituting it into system

equations Equation (3.30) and Equation (3.31) yields

a(1) =((@(0)) + g(@(0) x(@() + g(a(0)2 (1) (3.32)
z, () =u(t)- 7(a(t)). (3.33)

Since f(a(l)), g(a(t)) and ;((a(t))are known, the derivative of

Y4 (a (Z)) with respect of time can be defined as

dy(a(1) _ox(a(t)
dt da(1)

(f(a(t))+2(a(1)B(1)). (3.34)

Taking v, (l) = u(t)— ;((l) in the system in Equation (3.32) and Equation

(3.33) results in

a(0)=(f(a(0) + £(a(0) 2 (1)) + 2{ex(t)) 2, (1) (.39)
z, (1) =v, (1) (3.36)

where the first component of Equation (3.35) f(a(t))+g(a(t));((a(t)) has

asymptotically stable origin when the input is zero. Hence, v, (t) can be designed

to stabilize the overall system. Considering a Lyapunov function
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V(1) 5(1)) = V(a(t))-i—%zbz (1) (3.37)

and differentiating it with respect to time and using Equation (3.35) and Equation

(3.36) results in
=L ) el a0
N 8V(a(t))

da(r)

S—W(a(t))Jng(a(t))zb(t)+zb (), (1),

8a(t)

g(a(t))z,(6)+z,(1)v, (1) (3.38)

Choosing

v, (1) = —T(Z)g(a(t))—kbzb () (3.39)
where k&, >0 yields
V.<-W(a(t))-k,z’(1). (3.40)

Since V. is negative definite, the origin on a=0 and z,=0 will be
asymptotically stable. Since ;((0) =0, it is also concluded that the origin on a =0
and £ =0 will be asymptotically stable.

Consequently, substituting v, (t), z, (t), and j((a(t)) into Equation (3.33),

the backstepping control law can be written as
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—zb (0{ t )
=v, () + 7 (a(t))
—%g(u(z»—kﬁb<t>+z<a<t>>
_6V(a(t))
da(r)
ovtato)

_ i CED) e (eclo) -k, ()~ (1)

g(a(0)=k, (B(t)-2(a(1))+ #(a(1)) (3.41)

3.4. Backstepping Sliding Mode Control
The steps of the backstepping sliding mode control (BSMC) can be designed

as follows. Consider a general single input single output nonlinear system

described in Equation (3.1) and let the tracking error e(t) be defined as in Equation

(3.3). The derivative of the error can be presented as

ety =%y, (1)

. (3.42)
=x,(1) =y, (t)
Consider a Lyapunov function
Vi (€)= e (1) (3.43)

which is positive definite by the definition. Time derivate of V) (e) is obtained as

follows:
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Vi (e) = e(t)é(t)

=e(t)(x,() -y, (1)). (3.44)
Letting
X, (1) =s,(t) = be(t) + y, (1)
as a virtual control and rearranging the Equation (3.41) yields
Vo, (e)=e(t)s,(t)-be’(t), b >0 (3.45)

where the sliding variable s,(¢) = x,(t) +be(t) -y, (1). V, (e)=-be’ (t)<0 for
s, =0, therefore, Vm(e) is negative definite. To design a backstepping controller

the next step is required.

Selecting the second Lyapunov function as
1,
Vi (e)=Vy (e) +§SB ) (3.46)

and with the help of Equation (3.1) time derivative of the Lyapunov function in

Equation (3.43) yields

Vpa(€) =V, (€) +55(1)3, (1) G
=V (e)+ 5,8 () + gy () + EO +be(D) =3, (¢).
In order to realize that V,,(e) is negative definite, the backstepping controller law

can be designed as follows:
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o, (1) = ﬁ(—ﬂ(x) —e(t)—bé(t) + 3, (1) - bys() (3.48)

where b, and b, are positive constants. Hence, V,,(e) becomes
Vpa(€) ==be* (1) = bys,” (1) + £(0)s, (1) (3.49)

To guarantee the stability of the system a switching control law can be

defined as follows:

ug, (£)=— ! ) Bsign(s,(1)). (3.50)

g\x

where B is a positive constant.
Putting the control laws in Equation (3.48) and Equation. (3.50) together
gives the robust control law known as backstepping sliding mode control which

can be defined as

u, (f) = %(—5 f(x)—e(t)=bé(r) + 3, —bys(t) — Bsign(s, (1)) (3.51)
g(x

With the help of Equation (3.51), the time derivative of the Lyapunov

function in Equation (3.47) can be rewritten as

Vys(e) =—be* (1) —bys,” (£) + E(t)s, (1) — Bls, (1)

<=be* (1) = b,s;" (1) —|s5(D|(B— &) (3.52)
<0
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where B> ¢

max

2 |§(t)| . Since V,,(e) is negative definite, the system trajectory will

be driven to sliding surface and remain in there until the origin is reached

asymptotically. Consequently, the stability of the overall system is guaranteed.

3.5. Decoupled Backstepping Sliding Mode Control

The BSMC technique can be applied to systems presented in the canonical
form as in SMC. However, using the presented BSMC method, a decoupled
backstepping sliding mode controller can be designed for an underactuated system

as in Equation (3.14). To this end, two different tracking errors can be defined as

e (t)=x ()=, (1) (3.53)

e, (t)=x,(1)=y,, (1) (3.54)

and time-derivating them result in

él(t)=xl(r)—fd1(t) (3.55)
=x,(t) = ¥ (2)

éz(l‘):xg(t)_)‘./dz(t) (3.56)
=x,(0) = Vs (t)

Considering a Lyapunov function candidate

V(@)= 120 G

and differentiating it with respect to time results in
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Vi (e) =e,(1)é, (1)

3.58
=ez(t)(x4(t)—yd2 (t)) ( )

In this step of the DBSMC design, two different sliding surfaces can be
chosen unlike the BSMC

Spi (D) =ce (1) +¢,(t) (3.59)

Spa () =y, (1) +6,(1). (3.60)

where ¢, and c, are real positive constants.

Letting

x,(t)=5p,()—c,e, () + ¥, (t) (3.61)
from s, in Equation (3.60) and substituting it into Equation (3.58), one has

Vi (e)=e, (t)s,,(t)—c,e,”. (3.62)

V,,(e) =—c,e,’(t) will be negative definite, if onlys,,(#)=0. Therefore,

in order to ensure the stability of the DBSMC, the Lyapunov function for the next

step can be chosen as follows:
1
Vpa(e)= VD1(6)+§SD22 (). (3.63)

Using Equation (3.13), the time derivative of the Equation (3.63) is
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Vpa(€) =V (€) + 5, (D)3, (1)
= &,(1)sp, (1) — ¢y, (1)
8y (0)(8,.1,(x) + &, (), (1))
8, ()& () + 6,6, () = 3, (1))

(3.64)

In order to ensure V,,(e) is negative definite, the decoupled backstepping

control law can be chosen as

g (0= S (5) () ~:6,0)
o (3.65)
+m(yd2 (l) —8p, (t))

where ¢, is a real positive constant. To ensure the stability of the system a

switching control law can be defined as follows:

u,, (t)=- ! ) Csign (s, (1)) (3.66)

&

where C is a real positive constant.
The control law u,(t) can be defined as putting the control laws in

Equation (3.65) and Equation (3.66) together
up () =up,, () +up, (1) (3.67)

Substitution of Equation (3.67) into Equation (3.64) results in
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VD2(6) = —C2€22 (- csSoz2 () + &, ()sp, (1) — C|SD2 (t)|
< —6," (1) = €55, (D) =[5, (D] (C = &y ) (3.68)
<0

The time derivative of the Lyapunov function ¥,, will be negative definite where

C 2 §2max 2 |§2 (t)| .

To create a decoupled controller a virtual sliding surface s, can be

considered as

s,(O)=c,(e (1) —zp) +6(7) (3.69)
with z, is a value transferred from s,, and defined as

zp () =sat(sp, (6)/ Ay, )z, 0<z,, <1 (3.70)

where z,, is the upper bound of the z,(f) and guarantees that s,(f) will be
limited.

Consequently, substituting s,(¢) in Equation (3.69) into the Equation
(3.67) for s,,(t) gives the DBSMC law for a general underactuated system as

presented in Equation (3.13)

1

u, ()= —(_52f2 (x)— ey () —cye, (t))
gZ(lx) (3.71)
+ 2.(%) (j}dz (t) —¢;8,(1) — Csign(s, (t)))
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4. RESULTS AND DISCUSSIONS

4.1. Controller Design
The steps of the controller designs for the inverted pendulum on a cart
system using both the DSMC and the DBSMC methods are presented in the

following subsections.

4.1.1. The DSMC Design for the Inverted Pendulum on a Cart System

Using the inverted pendulum on a cart model introduced in Equation (2.59)
and the decoupled sliding mode controller presented in Equation (3.22), a
decoupled sliding mode controller for the inverted pendulum on a cart system can

be designed as follows:

Tracking errors ¢ (7) and e,(z) can be defined as the error of cart

displacement and the errors of the pendulum angle, respectively. Using tracking

errors, the sliding surfaces can be defined as

Spst (t) =kpsi (xl (t) —Yai (t)) +(x2 (Z) —Va (t)) (4.1)

Sps2 (t) = kg, (x3 (t) Va2 (t) ~Zps (t)) +(X4 (Z) — Va2 (Z)) (4.2)
where

Zps (t) = sat (SDL(Z)) Zpsus 0<z,, <1. (4.3)

Hence the control law for the decoupled sliding mode controller for the

inverted pendulum on a cart can be defined as
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1 . .
Ups (t) = W[_é‘zfz (x) =kps, (x4 (t) Va2 (t) ~Zps (t)):l
£ (4.4)

" gzl(x) (=K pssign sy (1))

b

where K, >&, 2|9€2 (t)

x, cos(x; )+ Isin(x, ) + ox, + pcos(x, )sin(x; ) x,”

3= v+ poos’ (x,)

and
_ gcos(xy)
8(x)= v+ pcos’(x,)
with
el 3282
r)\r R
3=(M+m)mgl,
p:_mZZZ ,
o=—(M+m)d ,
n \( K
=mil | 2L || 22
o H r J( R D
and,
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l//=(Jp +m12)(M+m).

The decoupled sliding mode controller for the inverted pendulum on a cart
in Equation (4.4) can be rewritten using the saturation function to avoid the

chattering as

ps (1) = 1 [_521[2 (%) = kps, (x4 (£) = a2 (1) = 2 (t))]
2,(x) (4.5)
’ gzl(x) (_KDSSa[(SDS2 (t)/ADSS ))

4.1.2. The DBSMC Design for Inverted Pendulum on a Cart System

Using the inverted pendulum on a cart model introduced in Equation (2.59)
and the decoupled backstepping sliding mode controller presented in Equation
(3.71), a decoupled backstepping sliding mode controller for the inverted
pendulum on a cart system can be designed as follows

Tracking errors e, and e, can be defined as the error of cart displacement
and the error of the pendulum angle, respectively. Using tracking errors, the sliding

surfaces can be defined as

Spa1 (t) =Cppi ('xl (t) —Vai (t)) + (xz (t) - ydl (t)) (4-6)
Spp2 (t) =Cpp (xs (t) Va2 (t)) +(x4 (t) ~ Vi (t)) 4.7)

and the virtual sliding surface can be considered as

Spp (t) =Cpp (xa (t) Va2 (t) ~Zpp (t)) + (x4 (t) — Va2 (t)) (4.8)
where
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Zpg (t) = sat [SDLO)J Zpgs 0<zy,, <1. (4.9)

DBz

Hence the control law for the decoupled backstepping sliding mode

controller for the inverted pendulum on a cart can be defined as

L

pel) =
o) g, (%)

[_é‘zfz (x)- (x3 =Y (t)) ~Cpp2 (x4(t) Va2 (t))]
(4.10)

it gzl(x) (j}d2 (t) —Cpp3Spp (1) — Cppsign(s,, (t)))

where Cpp, > &, 2|§2 (t)

b

x, cos(x; )+ Isin(x, ) + ox, + pcos(x, )sin(x; ) x,”

f()= v+ pcos®(x;)

and

_ geos(x;)
8:(x)= v+ pcos’(x,)

with
ronfoo(2)25)
$=(M +m)mgl ,

p:_mZZZ,
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and,
z//:(Jp +m12)(M+m).

The decoupled backstepping sliding mode controller for the inverted
pendulum on a cart in Equation (4.10) can be rewritten using the saturation

function to avoid the chattering as

1

Upy (1) :m[_é}fz (x)— (x3 (D)= Y (I)) ~Cpp2 (x4(t) e (Z))] 4.11)
! gzl(x) (j}dz (t) _CDB3SDB(t) _CDBsat(SDB (t)/ADBS ))

4.2. Simulation Results
The simulation setup, simulation results, and comparison results are

presented in the following subsections.

4.2.1. Simulation Setup

The inverted pendulum on a cart system model described in Equation
(2.59) is simulated using MATLAB and Simulink software. The inverted
pendulum and DC motor parameters used in simulations are given in Table 4.1 and
Table 4.2 respectively. The decoupled sliding mode controller introduced in
Equation (4.5) and the decoupled backstepping sliding mode controller introduced

in Equation (4.11) are modeled to control simulated system. Block diagrams of the
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decoupled sliding mode controller and the decoupled backstepping sliding mode
controller are shown in Figure 4.1 and Figure 4.2, respectively. Also, the controller
parameters chosen by trial and error are given in Table 4.3. For all simulations,

simulation time and step size are chosen as 7=10 sec and h=0.001 sec,

respectively.

u |Inverted Pendulum)| P
DSMC on a Cart Model P

Figure 4.1. Block diagram of the decoupled sliding mode controller simulation

r
——
—

U llnverted Pendulum X

on a Cart Model 0
0

Backstepping DSMC

Figure 4.2. Block diagram of the decoupled backstepping sliding mode controller
simulation
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Table 4.1. Parameters of the inverted pendulum on a cart system (Feedback
Instruments, 2006)

Parameter Value

m 0.2 kg

/ 0.3m

M 2.3 kg

g 9.81 m/s?

J, 0.009 kgm®

b 0.005 Ns/m

d 0.0005 Nms/rad

Table 4.2. Parameters of the DC motor (Feedback Instruments, 2006)

Parameter Value
R 250

r 0.0314 m
K, 0.05
K, 0.05
n; 18.84
n, 0.986

Table 4.3. Parameters of the controllers

Parameter Value
kpsis Cpm 1
kpsys Cppa 40
Cpg3 10
K,s, Cpp 30
Zpsus Zpau 0.97
Aps. s Apg. 5
Apg s Apge 6
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4.2.2. The DSMC Simulation Results
This simulation is carried out to investigate the stability and the

performance of the decoupled sliding mode controller for the inverted pendulum on
a cart system with parametric uncertainty &, =1. The goals of this simulation are
to show the changes on the position of the cart x, pendulum angel 6, and the

control signal u based on initial conditions of [xo X, 6, 90} and the reference

signal r .

In this simulation test, for reference signal »=0.1 and initial conditions
[xo %, 6, 90]:[0 0 0.1 0], cart position, pendulum angel, and the

control signal are plotted and shown in Figure 4.3, Figure 4.4, and Figure 4.5,

respectively.
0- 1 5 L] | | L | | | L] | | | | |
o1 pF
0.05 -
E o -
>
-0.05 -
O011 -
_0 15 1 1 1 1 i 1 1
0 1 2 3 4 5 6 7 8 9 10

t(sec)
Figure 4.3. Cart position x for =0.1 and [xo % 0, 90]=[O 0 0.1 0] on
the DSMC simulation
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01 L L L L L L L] L] L]
0.05 .
-
g
S oF
-0.05 .
1 1 1 L L i Il b I
0 1 2 3 4 5 6 7 8 9 10
t(sec)

Figure 4.4. Pendulum angle 6 for »=0.1 and [xo x, 6, 90]=[0 0 0.1 0]
on the DSMC simulation

05 L) L L] | L] L] Ll L}
or
-0.5 -
S -1 -
=
-1.5 -
-2 -
‘2 5 L L L L L L i | oL L
0 1 2 3 - 5 6 7 8 9 10
t(sec)

Figure 4.5. Control signal u for r=0.1 and [xo X, 6, 90]:[0 0 0.1 0]
on the DSMC simulation

The decoupled sliding mode controller managed to keep the pendulum in
upright position (& =0 rad), while bringing the cart from the initial position 0 m to
desired position 0./ m as shown in Figure 4.3. The settling time of the position is

3.3885 sec with 11.81 percent overshoot and 135.18 percent undershoot.
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The pendulum angle came to -0.065 rad from the initial position and then
move to 0.02 rad in about 1.7 sec, after that it has settled to desired position 0 rad
in 2.8932 sec as shown in Figure 4.4.

The control signal u started from -2.5 V" and came to 0.4 V in about 1 sec
then it has reached 0 ¥ in about 3 sec as shown in Figure 4.5. Also, it met the
physical constraint which the control signal must be in the range of -2.5 V and +2.5
V.

The main objective of the controller is to force the system trajectory to zero

in a finite time and keep them at that point. Considering the errors e (¢) for the
position and e,(¢#) for the pendulum angle, the errors versus their first-time

derivatives are illustrated for position and angle in Figure 4.6 and Figure 4.7,
respectively.

Since the sliding surfaces of the decoupled sliding mode controller are
based on the error and its time derivative, it is expected that the sliding surfaces

also converges to the zero. Considering the first sliding surface as s,, the value
derived from s, as z and the second sliding surface as s, ; the sliding surfaces of

the controller versus time are shown in Figure 4.8, Figure 4.9, and Figure 4.10 for

s,, z,and s, , respectively.
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Figure 4.6. Motion of system trajectories for position on the DSMC simulation

0.8 T 7 =
06 -
§ 0.4 "
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Figure 4.7. Motion of system trajectories for pendulum angle on the DSMC
simulation
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| | L] L]
0 2 4 6 8 10
t(sec)
Figure 4.8. Motion of the first sliding surface on the DSMC simulation
| | ] | | ]
O -
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005 -
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t(sec)
Figure 4.9. Motion of the z on the DSMC simulation
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t(sec)
Figure 4.10. Motion of the second sliding surface on the DSMC simulation
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4.2.3. The DBSMC Simulation Results
This simulation is carried out to investigate the stability and the

performance of the proposed decoupled backstepping sliding mode controller for
the inverted pendulum on a cart system with parametric uncertainty 0, =1. The

goals of this simulation are to show the changes on the position of the cart x,

pendulum angel &, and the control signal u based on initial conditions of
[xo X, 6, 90] and the reference signal r .

In this simulation test, for reference signal »=0.1 and initial conditions
[xo % 6, éo]z[O 0 0.1 0], cart position, pendulum angel, and the

control signal are plotted and shown in Figure 4.11, Figure 4.12, and Figure 4.13,

respectively.
01F
E o i
3
0.1 -
0 2 4 6 8 10
t(sec)
Figure 4.11. Cart position x for »=0.1 and [xo % 6, 90]=[0 0 0.1 0]
on the DBSMC simulation
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0.1 | L | L} |
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-0.05 -
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Figure 4.12. Pendulum angle o for r=0.1 and
(% % 6, 6,]=[0 0 0.1 0] on the DBSMC

simulation
0.5 | | L | | |
0 -
-0.5 =
S . -
-}

-1.5 =
) o

2.5 - i A .

0 2 4 6 8 10

t(sec)
Figure 4.13. Control signal u for r=0.1 and [xo % 0, 90]=[0 0 0.1 0]
on the DBSMC simulation

The decoupled backstepping sliding mode controller managed to keep the
pendulum in upright position (8 =0 rad), while bringing the cart from the initial
position 0 m to desired position 0./ m as shown in Figure 4.11. The settling time of
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the position is 3.6533 sec with 8.50 percent overshoot and 119.53 percent
undershoot.

The pendulum angle came to -0.07 rad from the initial position and then
move to 0.01 rad in about 1.6 sec, after that it has settled to desired position 0 rad
in 2.9832 sec as shown in Figure 4.12.

The control signal u started from -2.5 V" and came to 0.3 V in about 1 sec
then it has reached 0 V' in about 3 sec as shown in Figure 4.13. Also, it met the
physical constraint which the control signal must be in the range of -2.5 V and +2.5

V.

0.6 ¥ T T
05 . L
04} 1
_ 03} 1
°
Z 02f 1
Q
©
01F -
oF .
01F .
-0.2 . . .
0 0.1 0.2
el(t)
Figure 4.14. Motion of system trajectories for cart position on the DBSMC
simulation

The main objective of the controller is to force the system trajectory to zero

in a finite time and keep them at that point. Considering the errors e, (¢) for the

position and e,(f) for the pendulum angle, the errors versus their first-time
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derivatives are illustrated for position and angle in Figure 4.14 and Figure 4.15,
respectively.

Since the sliding surfaces of the decoupled backstepping sliding mode
controller are based on the error and its time derivative, it is expected that the
sliding surfaces also converges to the zero. Considering the first sliding surface as

s,, the value derived from s, as z and the second sliding surface as s,; the

sliding surfaces of the controller versus time are shown in Figure 4.16, Figure 4.17,

and Figure 4.18 for s,, z, and s, , respectively.

de2(t)/dt

-0.2 = i =
-0.1 -0.05 0 0.05
e2(t)
Figure 4.15. Motion of system trajectories for pendulum angle on the DBSMC
simulation
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0 2 4 6 8 10
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Figure 4.16. Motion of the first sliding surface on the DBSMC simulation
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Figure 4.17. Motion of the z on the DBSMC simulation
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Figure 4.18. Motion of the second sliding surface on the DBSMC simulation
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4.2.4. Comparison Results for Simulation

The DSMC and the proposed DBSMC methods are compared in four
different simulation tests to investigate their performance on the inverted pendulum
on a cart system.

In the first test, for reference signal »=0.3 and initial conditions
[xo X, 06, éo]z[O 0 0.1 0] with parametric uncertainty &, =1, cart
position x, pendulum angel &, and the control signal u# for both DSMC and

DBSMC are plotted and shown in Figure 4.19, Figure 4.20, and Figure 4.21,

respectively.

- = =-DSMC
DBSMC -

0 2 4 6 8 10
t(sec)
Figure 4.19. Cart position x for »=0.3 and [xo % 0, 90] =[0 0 0.1 0]

with 6, =1 on comparison simulation
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T
£
Y

- = =-DSMC 4

DBSMC
0 2 4 6 8 10
t(sec)
Figure 4.20. Pendulum angle o for r=0.3 and

(% % 6, 6,]=[0 0 01 0]with &, =1

comparison simulation

- - - -DSMC |
DBSMC
0 2 4 6 8 10
t(sec)
Figure 4.21. Control signal u for » =0.3 and [xo % 0, 90]=[0 0 0.1 0]

with 6, =1 on comparison simulation

Although the DSMC has a slightly faster settling time than the DBSMC,

the proposed method decreases overshoot and undershoot as shown in Figure 4.19.

The settling time on the position for DSMC is 3.3246 sec with 7.38 percent
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overshoot and 48.36 percent undershoot and the settling time on the position for
DBSMC is 3.4929 sec with 5.75 percent overshoot and 45.71 percent undershoot.
Both the DSMC and DBSMC manage to bring the pendulum upright position in
2.9 sec as shown in Figure 4.20. The control signal u started from -2.5 J on both
controllers then settled 0 in 2.2 sec on DSMC and, 2.3 sec on DBSMC, however,
the DBSMC created a smoother control signal than DSMC as shown in Figure
4.21.

The performance of the controllers can also be measured by the
performance indices which use the tracking error with the evaluation time,
generally. Some of the error-based performance indices are formulated as follows:

Integral Absolute Error (IAE):

T
LMMw (4.12)
Integral Squared Error (ISE):

T
Lemm (4.13)
Integral Time Absolute Error (ITAE):

T
IO tle(t)|dt (4.14)
Integral Time Squared Error (ITSE):

Kﬁmm. (4.15)
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The performances of the DSMC and the DBSMC based on performance

indices for reference r=0.3 and

signal initial conditions

[xo % 6, 9’0]=[0 0 0.1 0] with parametric uncertainty &, =lare given

in Table 4.4 and Table 4.5.

Table 4.4. DSMC and DBSMC simulation performance indices for » =0.3 and
[x % 6 6,]=[0 0 0.1 0]with5,=1

IAE ISE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 523.65 | 495.18 170.78 151.64
Pendulum Angle 101.01 86.92 5.58 4.8
Control Signal 1189.02 | 1178.91 | 865.43 941.61

Table 4.5. DSMC and DBSMC simulation performance indices for » =0.3 and

(% % 6, 6,]=[0 0 0.1 0] with 5, =1

ITAE ITSE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 410467 | 391571 99313 82496
Pendulum Angle 105322 | 85305 3692 2466
Control Signal 1122332 | 1020884 | 539543 | 416449

The magnitudes of the performance indices are generally smaller in the
DBSMC rather than the DSMC as shown in Table 4.4 and Table 4.5.

Consequently, the DBSMC produced a more accurate control input than the
DSMC.

In the second test, the initial condition of the pendulum angle is started

from 0.3 rad to create a more challenging control problem. In this test, for
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reference signal r = 0.3 and initial conditions [xo % 6, 90]=[0 0 03 0]

with parametric uncertainty J, =1, cart position x, pendulum angel &, and the

control signal u for both DSMC and DBSMC are plotted and shown in Figure
4.22, Figure 4.23, and Figure 4.24, respectively.

- — - -DSMC
DBSMC

_.1 1 1 L 1
0 2 4 6 8 10

t(sec)
Figure 4.22. Cart position x for »=0.3 and [xo % 0, 90]=[0 0 03 0]

with 6, =1 on comparison simulation

Although the DSMC is 0.1 sec faster on settling time than the DBSMC, the
proposed method decreases overshoot and undershoot as shown in Figure 4.22. The
settling time on the position for DSMC is 3.8056 sec with 19.63 percent overshoot
and 293.77 percent undershoot and the settling time on the position for DBSMC is
3.9531 sec with 12.14 percent overshoot and 212.32 percent undershoot. Both the
DSMC and DBSMC manage to bring the pendulum upright position in 3.4 sec as
shown in Figure 4.23. The control signal u started from -2.5 7 on both controllers
then settled 0 in 4.12 sec on DSMC and, 3.88 sec on DBSMC. The DBSMC

created a smoother control signal than DSMC as shown in Figure 4.24.
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Figure 4.23. Pendulum angle o for r=0.3 and
(% % 6, 6,]=[0 0 03 o]with &=1  on

comparison simulation
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L 1 1
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t(sec)
Figure 4.24. Control signal u for » =0.3 and [xo %, 6, 90] =[0 0 03 0]

with 6, =1 on comparison simulation

The performances of the DSMC and the DBSMC based on performance

indices  for  reference  signal r=0.3 and  initial  conditions

69



4. RESULTS AND DISCUSSIONS Baris ATA

[xo X, 6, 90]=[0 0 03 0] with parametric uncertainty &,=1 on

comparison simulation are given in Table 4.6 and Table 4.7.

Table 4.6. DSMC and DBSMC simulation performance indices for » =0.3 and
[x % 6 6,]=[0 0 03 0]with 5, =1

IAE ISE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 1622.30 | 1228.88 | 1322.05 783.19
Pendulum Angle 357.83 | 262.994 | 61.78 42.0811
Control Signal 4049.38 | 3116.48 | 7080.96 | 4814.25

Table 4.7. DSMC and DBSMC simulation performance indices for » =0.3 and

(% % 6, 6,]=[0 0 03 0] with 5, =1

ITAE ITSE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 1827784 | 1258751 | 1321328 | 652371
Pendulum Angle 440350 | 268507 54715 25127
Control Signal 4694616 | 3117558 | 6683092 | 3119900

The magnitudes of all performance indices are smaller in the DBSMC
rather than the DSMC as shown in Table 4.6 and Table 4.7. Consequently, the
DBSMC produced a more accurate control input than the DSMC.

In the third test, for reference signal »=0.3 and initial conditions
[xo X, 6, éo]z[O 0 0.1 O]with parametric uncertainties parametric

uncertainty 0, =0.8 , cart position, pendulum angel, and the control signal for both

DSMC and DBSMC are plotted and shown in Figure 4.25, Figure 4.26, and Figure
4.27, respectively.
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- = =-DSMC
DBSMC

_0.2 1 1 L
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t(sec)
Figure 4.25. Cart position x for »=0.3 and [xo % 6, 90]=[0 0 0.1 0]

with 0, =0.8 on comparison simulation

- = =-DSMC
DBSMC

0 2 4 6 8 10
t(sec)
Figure 4.26. Pendulum angle 0 for r=0.3 and

[x % 6, 6,]=[0 0 01 0]with &=08 on

comparison simulation
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Figure 4.27. Control signal u for » =0.3 and [xo x, 6, 190] =[0 0 0.1 0]

with 0, =0.8 on comparison simulation

Although the DSMC has 0.2 sec faster settling time than the DBSMC, the
proposed method decreases overshoot and undershoot as shown in Figure 4.25. The
settling time on the position for DSMC is 3.4210 sec with 18.25 percent overshoot
and 49.22 percent undershoot and the settling time on the position for DBSMC is
3.6488 sec with 10.70 percent overshoot and 45.65 percent undershoot. The
DBSMC manage to bring the pendulum upright position faster than the DSMC as
shown in Figure 4.26. The settling time on the pendulum angle for DSMC is
4.3818 sec and the settling time on the pendulum angle for DBSMC is 3.0421 sec.
The control signal u started from -2.5 ¥ on both controllers then settled 0 in 3.5448
sec on DSMC and, 3.19 sec on DBSMC. The DBSMC created a smoother control
signal than DSMC as shown in Figure 4.27.

The performances of the DSMC and the DBSMC based on performance

indices for reference signal r=0.3 and initial conditions
[xo % 6, 90]=[0 0 0.3 0]with parametric uncertainty &, =0.8 are given

in Table 4.8 and Table 4.9.
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Table 4.8. DSMC and DBSMC simulation performance indices for » =0.3 and

[x % 6, 6,]=[0 0 0.1 0] with 5,=038

IAE ISE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 565 507 177 154
Pendulum Angle 115 94 6 5
Control Signal 1337 1225 939 947

Table 4.9. DSMC and DBSMC simulation performance indices for » =0.3 and

[x % 6, 6,]=[0 0 0.1 0] withs,=038

ITAE ITSE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 521808 | 429018 | 108547 84689
Pendulum Angle 141698 | 100820 4848 2962
Control Signal 1513456 | 1168022 | 691147 | 478374

The magnitudes of the performance indices are generally smaller in the
DBSMC rather than the DSMC as shown in Table 4.8 and Table 4.9.
Consequently, the DBSMC produced a more accurate control input than the
DSMC.

In the last simulation test, for reference signal »=0.3 and initial
conditions [xo %, 6, éo]z[o 0 03 0] with parametric uncertainty

0, =0.8, cart position, pendulum angel, and the control signal for both DSMC and

DBSMC are plotted and shown in Figure 4.28, Figure 4.29, and Figure 4.30,

respectively.

73



4. RESULTS AND DISCUSSIONS

Barnis ATA

1 1

= = = -DSMC
DBSMC

2 4
t(sec)

6

8 10

Figure 4.28. Cart position x for » =0.3 and [xo % 6, 6’0]=[0 0 03 0]

with 0, =0.8 on comparison simulation
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Figure 4.29. Pendulum angle for r=0.3 and

[x % 6, 6]=[0 0 03

comparison simulation
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Figure 4.30. Control signal u for » =0.3 and [xo % 6, 90]=[0 0 03 0]

<o

10

with 0, =0.8 on comparison simulation

Both the DSMC and DBSMC manage to bring the cart to the desired
position in 4. sec, however, the proposed method decreases overshoot and
undershoot as shown in Figure 4.28. The settling time on the position for DSMC is
4.00 sec with 54.77 percent overshoot and 343 percent undershoot and the settling
time on the position for DBSMC is 4.00 sec with 22.73 percent overshoot and
213.63 percent undershoot.

The DBSMC manage to bring the pendulum upright position faster than
the DSMC as shown in Figure 4.29. The settling time on the pendulum angle for
DSMC is 4.94 sec and the settling time on the pendulum angle for DBSMC is 3.35
sec.

The control signal u started from -2.5 ¥ on both controllers then settled 0 in
4.46 sec on DSMC and, 4.26 sec on DBSMC. The DBSMC created a smoother
control signal than DSMC as shown in Figure 4.30.

The performances of the DSMC and the DBSMC based on performance

indices for  reference signal r=0.3 and  initial conditions
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[xo X, 6, 90]=[0 0 0.3 0]with parametric uncertainty &, =0.8 are given

in Table 4.10 and Table 4.11.

Table 4.10. DSMC and DBSMC simulation performance indices for » = 0.3 and
(% % 6, 6,]=[0 0 03 0] with 5,=08

IAE ISE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 1997 1254 1760 764
Pendulum Angle 439 280 77 43
Control Signal 5045 3238 9395 4966

Table 4.11. DSMC and DBSMC simulation performance indices for » =0.3 and
[x % 6, 6,]=[0 0 03 0] with 5,=038

ITAE ITSE
Tracking Error DSMC | DBSMC DSMC DBSMC
Cart Position 2655254 | 1346246 | 1965345 | 667655
Pendulum Angle 658715 | 308456 85345 28070
Control Signal 7125421 | 3480784 | 10907339 | 3487018

The magnitudes of all performance indices are smaller in the DBSMC
rather than the DSMC as shown in Table 4.10 and Table 4.11. Consequently, the
DBSMC produced a more accurate control input than the DSMC.

In the first simulation test, the conventional DSMC and the DBSMC
methods reference r=0.3 and initial conditions

compared for signal

[xo % 6, 9’0]=[0 0 0.1 0]. After that to simulate a more challenging
problem the DSMC and the DBSMC methods compared for reference signal

r=0.3 and initial conditions [x, %, 6, 6,]=[0 0 0.3 0].In these tests
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simulated with parametric uncertainty &, =1. In the third and fourth tests, first
and second simulation tests are recreated with parametric uncertainty o6, =0.8.

Overall, the simulation results have shown that the proposed DBSM method is

more efficient than the conventional DSMC method.

4.3. Experimental Results

Satisfactory performance has obtained during the simulation tests,
however, applying the proposed control method to a real plant will provide a
clearer view about the performance. The experimental setup and results of

experimental tests are presented in the following subsections.

4.3.1. Experimental Setup

Experiments have performed on Feedback's 33-200 digital pendulum
mechanical unit which consists of a cart driven inverted pendulum and a belt with
DC motor on adjustable feet as shown in Figure 4.31. The PC with PCI 1711
Advantech card serves as the main control unit. The control signal is transferred to
the Digital Pendulum Controller (DPC), which drives the DC motor. The cart
position and the pendulum angle encoder signals are transferred to the DPC and
then to the PC.

In order to evaluate the performance of the proposed DBSMC, the DSMC
and the DBSMC are applied to the inverted pendulum on a cart system having the
parameters given in Table 4.1 and Table 4.2. Block diagrams of the DSMC and the
DBSMC are shown in Figure 4.32 and Figure 4.33, respectively.
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Figure 4.31. The inverted pendulum on a cart system

The experimental setup has two physical constraints. The first one is the
cart position which is physically bounded by the rail length which is 0.8 m. Since it

is assumed that the initial cart position is in the middle of the rail, the position of

the cart should be limited to |x| <0.4 m. Therefore, the controllers are designed to

limit the maximum displacement of the cart to +0.35 m. The second constraint is
the bound of the control signal which must be in the range of —2.5 V and +2.5 V.
The DSMC and the DBSMC parameters which are chosen by trial and error

method with considering these constraints are given in Table 4.3.
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4.3.2. Experimental Comparison Results

In the first experiment, both the DSMC and the DBSMC are applied to the
inverted pendulum on a cart system with the parametric uncertainty 6, =1. Thus,
the control methods are tested on own parametric uncertainties of the system

without any additional parametric uncertainty. The test results of the cart position,

pendulum angle and control signal for reference signal »=0.3 and initial
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conditions [xo %, 6, éo]z[O 0 0.1 0] plotted and shown in Figure 4.34,

Figure 4.35 and Figure 4.36, respectively.

The settling time of position is 4.45 sec for the DSMC and 4.14 sec for the
DBSMC; the overshoot and undershoot are 4.2 percent and 7.8 percent for the
DSMC and 4.14 percent and 5.8 percent for the DBSMC, respectively. Both the
DSMC and the DBSMC manage to bring the cart from the initial position to the
desired position as shown in Figure 4.34. However, the DBSMC has a better

performance to stabilize the position.

1 I T
031
0.2 i
S
3
0.1t -
DSMC
0 DBSMC 7
0 5 10 15 20
t(sec)
Figure 4.34. Cart position x for »=0.3 and [xo X, 6, 90]:[0 0 0.1 0]

with &, =1
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Figure 4.35. Pendulum angle 0 for r=0.3 and
(% % 6, 6,]=[0 0 0.1 0]with5,=1

0 5 10 15 20
t(sec)
Figure 4.36. Control signal u for =03 and [x, %, 6, 6,]=[0 0 0.1 0]
with &, =1

Figure 4.35 clearly shows that both controllers are able to keep the
pendulum on the upright position. The chattering in the control signal is slightly

lower in the DBSMC as compared the DSMC as shown in Figure 4.36.
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The performances of the DSMC and the DBSMC based on performance

indices for  reference signal r=0.3 and  initial conditions

[xo % 6, éo]z[O 0 0.1 0] with the parametric uncertainty &, =1 are

given in Table 4.12 and Table 4.13.

Table 4.12. DSMC and DBSMC experiment performance indices for » =0.3 and
[x % 6, 6,]=[0 0 0.1 0]with 5, =1

IAE ISE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 449 364 96 71
Pendulum Angle 75.61 63 1.38 0.87
Control Signal 15185 | 14791 15472 13971

Table 4.13. DSMC and DBSMC experiment performance indices for » =0.3 and

(% % 6, 6,]=[0 0 0.1 0] with 5, =1

ITAE ITSE
Tracking Error DSMC DBSMC DSMC DBSMC
Cart Position 736437 479734 55228 34471
Pendulum Angle | 414072 373195 1887 1424
Control Signal 142322735 | 146402953 | 134474143 | 130869680

The magnitudes of the performance indices are generally smaller in the
DBSMC rather than the DSMC as shown in Table 4.12 and Table 4.13.

Consequently, the DBSMC produced a more accurate control input than the
DSMC.

In the second experiment, both the DSMC and the DBSMC are applied to

the inverted pendulum on a cart system with the parametric uncertainty 6, =1. The
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initial condition of the pendulum angle is changed to 0.3 rad to create a more
challenging situation. The test results of the cart position, pendulum angle and

control signal for reference signal »r=0.3 and initial conditions

[xo X, 6, 90] =[0 0 0.3 O0]plotted and shown in Figure 4.37, Figure 4.38

and Figure 4.39, respectively.

The settling time of position is 8.02 sec for the DSMC and 4.18 sec for the
DBSMC; the overshoot and undershoot are 5.11 percent and 28.58 percent for the
DSMC and 3.59 percent and 7.9 percent for the DBSMC, respectively. Both the
DSMC and the DBSMC manage to bring the cart from the initial position to the
desired position as shown in Figure 4.37. However, the DBSMC has a better

performance to stabilize the position.

DSMC 7
DBSMC
1 L 1 1 1 1
8 10 12 14 16 18 20
t(sec)
Figure 4.37. Cart position x for » =0.3 and [xo % 6, 90]=[0 0 03 0]

with &, =1
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Figure 4.38. Pendulum angle 0 for r=0.3 and
[x % 6 6,]=[0 0 03 0]with &, =1
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2
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Figure 4.39. Control signal u for r =03 and [x, %, 6, 6,]=[0 0 03 0]
with &5, =1

Both controllers are able to keep the pendulum on the upright position as

shown in figure 4.38. However, the DBSMC has a better performance to stabilize
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the pendulum angle. The chattering in the control signal is slightly lower in the
DSMC as compared the DBSMC as shown in Figure 4.39.
The performances of the DSMC and the DBSMC based on performance

indices for  reference signal r=0.3 and  initial conditions

[xo X, 06, 90]=[0 0 0.1 0] with the parametric uncertainty &, =1 are

given in Table 4.14 and Table 4.15.

Table 4.14. DSMC and DBSMC experiment performance indices for » =0.3 and
% % 6, 6,]=[0 0 03 0] 5,=1

IAE ISE
Tracking Error DSMC | DBSMC | DSMC DBSMC
Cart Position 664 417 163 87
Pendulum Angle 126 96 12 7
Control Signal 14236 | 15749 14132 16262

Table 4.15. DSMC and DBSMC experiment performance indices for » =0.3 and
(% % 6, 6,]=[0 0 03 0] 5,=1

ITAE ITSE
Tracking Error DSMC DBSMC DSMC DBSMC
Cart Position 1410546 616975 123828 46374
Pendulum Angle | 287436 450702 3214 2346
Control Signal 131990884 | 161302423 | 120905810 | 165443692

The magnitudes of the performance indices are generally smaller in the
DBSMC rather than the DSMC as shown in Table 4.14 and Table 4.15.

Consequently, the DBSMC produced a more accurate control input than the
DSMC.
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In the third experiment, both the DSMC and the DBSMC are applied to the

inverted pendulum on a cart system with the parametric uncertainty &, =0.8. The
test results of the cart position, pendulum angle and control signal for reference

signal 7=03 and initial conditions [x, % 6, 6,]|=[0 0 0.1 0]plotted

and shown in Figure 4.40, Figure 4.41 and Figure 4.42, respectively.

0.25

0.05 1 1 1 1 ! 1 1 L 1
0 2 4 6 8 10 12 14 16 18 20

t(sec)
Figure 4.40. Cart position x for » =0.3 and [xo % 6, 90]=[0 0 0.1 0]

with &, =0.8

Although the DSMC is able to bring and keep the pendulum at the upright
position, it fails to stabilize the cart at the desired position as shown in Figure 4.40
and Figure 4.41. On the other hand, the DBSMC manages to handle parametric
uncertainty and control the cart position successfully with 4.4 sec settling time with
5.24 percent overshoot and 5.76 percent undershoot. Besides, the DBSMC yields
slightly lower chattering in the control signal compared to the DSMC as shown in

Figure 4.42.
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Figure 4.41. Pendulum angle 0 for r=0.3 and

[x% % 6, 6,]=[0 0 0.1 0]with 5,=038

0 2 4 6 8 10 12 14 16 18 20
t(sec)
Figure 4.42. Control signal u for r =03 and [x, %, 6, 6,]=[0 0 0.1 0]
with &, =0.8

Although the DSMC fails in the third experiment, the fourth experiment is
carried to investigate the performance of the DBSMC in a more challenging

situation. In the fourth experiment, both the DSMC and the DBSMC are applied to
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the inverted pendulum on a cart system with the parametric uncertainty J, =0.8.

The initial condition of the pendulum angle is changed to 0.3 rad to create a more
challenging situation. The test results of the cart position, pendulum angle and

control signal for reference signal r=0.3 and initial conditions

[xo X, 6, 90] =[0 0 0.3 O0]plotted and shown in Figure 4.43, Figure 4.44

and Figure 4.45, respectively.

£
x
-0-1 L 1 1
0 5 10 15 20
t(sec)
Figure 4.43. Cart position x for » =0.3 and [xo X, 0, 90]=[0 0 03 0]

with &, =0.8

Although the DSMC is able to bring and keep the pendulum at the upright
position, it fails to stabilize the cart at the desired position as shown in Figure 4.43
and Figure 4.44. On the other hand, the DBSMC manages to handle parametric
uncertainty and control the cart position successfully with 4.59 sec settling time
with 5.04 percent overshoot and 24.5 percent undershoot. Besides, the DBSMC
yields slightly lower chattering in the control signal compared to the DSMC as

shown in Figure 4.45.
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Figure 4.44, Pendulum angle o for r=0.3 and
[x% % 6, 6,]=[0 0 03 0]with 5,=038

In the first experiment, conventional DSMC and the DBSMC methods

compared for reference  signal r=0.3 and initial  conditions

[xo % 0, 90]=[0 0 0.1 0]. After that to create a more challenging

problem the DSMC and the DBSMC methods compared for reference signal
r=0.3 and initial conditions [xo % 6, 90]:[0 0 03 0]. These

experiments carried with parametric uncertainty 6, =1. In the third and fourth

tests, first two experiments are recreated with parametric uncertainty &, =0.8.
These experiments show that the DBSMC manages to handle parametric
uncertainty and control the cart position successfully where the DSMC fails.
Overall, the experimental results have shown that the proposed DBSM method is

more efficient than the conventional DSMC method.
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0 5 10 15 20
t(sec)
Figure 4.45. Control signal u for » =0.3 and [xo X, 6, 90:|=[0 0 03 0]
with 5, =0.8
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5. CONCLUSION AND FUTURE WORK

In this study, a decoupled backstepping sliding mode control (DBSMC)
method is proposed to control underactuated systems under uncertainties and
disturbances. The proposed DBSMC keeps the advantages of the sliding mode
control and overcomes the difficulties caused by the parametric uncertainties.

In order to confirm the effectiveness of the proposed DBSMC, it is applied
to an inverted pendulum on a cart system as a benchmark example for
underactuated systems. The complete mathematical model of the inverted
pendulum on a cart system is derived from the laws of motion according to
movement characteristics of the system. To create a more realistic model, the DC
motor characteristics are added to the mathematical model of the inverted
pendulum on a cart system.

Using the derived inverted pendulum on a cart model with DC motor, the
system is simulated to investigate the stability and the performance of the proposed
DBSMC for the inverted pendulum on a cart system. Simulation results show that
the proposed DBSMC is managed to control the inverted pendulum on a cart
system and it can be applied to real plants. Also, the simulation results prove that
the proposed DBSMC produces a more accurate control input compared to the
decoupled sliding mode control (DSMC).

After obtaining a satisfactory performance of the proposed DBSMC during
the simulations, the proposed DBSMC is applied to a real plant to provide a clearer
view of the performance. The experimental results show that the DBSMC is more
effective compared to the DSMC. Also, the experimental results prove that the
DBSMC provides a robust control on the systems with parametric uncertainties
where the DSMC fails.

This study provides a basis for the application of the DBSMC to the
underactuated systems. Future research can consider the potential of the DBSMC
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method on different underactuated systems. Also, adding an adaptive scheme to the
DBSMC might prove an important area for future research.

In the present study, the parameters of the proposed DBSMC are chosen by
the trial and error method. Intelligent optimization techniques can be integrated

into the proposed DBSMC for parameter tuning in future works.
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