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The purpose of this thesis is to design a decoupled backstepping sliding 

mode control method for underactuated systems under uncertainties and 
disturbances. The sliding mode control technique is an effective robust control 
approach to overcome model uncertainties and external disturbances. However, the 
sliding mode control method can manage parametric uncertainties only in 
combination with other methods such as backstepping control. The backstepping 
control design is mainly used to deal with the control of the nonlinear systems with 
parametric uncertainties. In the present thesis, the sliding mode control technique 
and the backstepping control technique are combined owing to their merits using a 
decoupling algorithm to control underactuated systems. Since the design 
methodology is based on the Lyapunov theorem, the stability of the system is 
guaranteed. The effectiveness of the proposed method is verified by the 
experimental results of the controller which is applied to an inverted pendulum on 
a cart system as an example of underactuated systems. The simulations and the 
experimental results show that the decoupled backstepping sliding mode control 
achieves a satisfactory control performance and the proposed method provides a 
robust performance to overcome parametric uncertainties where the decoupled 
sliding mode control fails. 
 
Keywords: Backstepping control, sliding mode control, underactuated systems  
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AYRIKLAŞTIRILMIŞ GERİ ADIMLAMALI KAYAN KİPLİ KONTROL 

METODU İLE KONTROLÜ
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Bu tezin amacı belirsizlik ve bozucular altındaki eksik eyleyicili sistemler 

için bir ayrıklaştırılmış geri adımlamalı kayan kipli kontrol yönteminin 
tasarlanmasıdır. Kayan kipli kontrol, model belirsizlikleri ve dış bozuculara karşı 
etkili bir gürbüz kontrol yaklaşımıdır. Ancak kayan kipli kontrol metodu sadece 
geri adımlamalı kontrol gibi başka yöntemlerle birlikte kullanıldığında parametrik 
belirsizliklerle başa çıkabilir. Geri adımlamalı kontrol yönteminin başlıca kullanım 
alanı parametrik belirsizlikler içeren doğrusal olmayan sistemlerin gürbüz 
kontrolüdür. Bu tez çalışmasında her iki yöntemin de başarılı yönlerinden 
faydalanmak için kayan kipli kontrol ve geri adımlamalı kontrol yöntemleri bir 
ayrıklaştırma algoritması kullanarak birleştirilmiştir. Kontrolörün tasarım yöntemi 
Lyapunov teoremine dayandığı için sistemin kararlılığı garanti altına alınmıştır. 
Önerilen yöntemin başarımı, kontrolörün eksik eyleyicili sistemlerin bir örneği 
olan arabalı ters sarkaç sistemine uygunlaması ile doğrulanmıştır. Benzetim 
sonuçları ve deneysel sonuçlar önerilen ayrıklaştırılımış geri adımlamalı kayan 
kipli kontrol yönteminin tatmin edici bir kontrol performanı sağladığını 
göstermiştir. Ayrıca, ayrıklaştırılmış kayan kipli kontrol yönteminin başarısız 
olduğu parametrik belirsizliklerin üstesinden gelmede önerilen metod gürbüz bir 
kontrol performansı sağlamıştır. 

 
Anahtar kelimeler: Geri adımlamalı kontrol, kayan kipli kontrol, eksik eyleyicili 

sistemler 
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EXTENDED ABSTRACT 

 

In this thesis, a decoupled backstepping sliding mode control method 

proposed to control underactuated systems under uncertainties and disturbances. 

Underactuated systems are mechanical systems with less number of actuators than 

their degrees of freedom. Control of the underactuated mechanical systems have 

seen an enormous interest in the control engineering field because of their 

advantages such as having low complexity and cost due to fewer actuators used in 

the system. 

The inverted pendulum on a cart system is a benchmark tool used in 

control laboratories since the 1950s. Also, the inverted pendulum on a cart system 

is an example of the underactuated systems which the position of the cart and the 

angle of the pendulum are controlled by just one actuator.   

In this study, the sliding mode control method and backstepping control 

method is combined owing to their merits.  The sliding mode control technique has 

been recognized as an effective control method against the model uncertainties and 

external disturbances and the backstepping control method can deal with the 

parametric uncertainties on the control of the nonlinear systems. Therefore, 

combining the sliding mode control and backstepping methods will lead a design 

which is immune to model uncertainties, parametric uncertainties, and external 

disturbances. 

One of the main drawbacks of the sliding mode control method on the 

control of the underactuated system is that the conventional sliding mode control 

cannot be applied to underactuated systems directly because of their highly coupled 

dynamics. Researchers proposed partial linearization methods to model regular 

form of the inverted pendulum on a cart system in the literature to overcome this 

drawback. Some parameters of the system are neglected in these methods due to 

the complex nature of the inverted pendulum on a cart system. However, a more 

realistic model of the system is needed for experimental studies. Therefore, instead 
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of partial linearization of the system, a decoupling algorithm for sliding mode 

control proposed in the literature is used in this study to design a backstepping 

sliding mode controller. 

In this thesis, stabilizing the pendulum at the upright position while 

bringing the cart a desired position is selected as the main control object. To this 

end, the complete mathematical model of the inverted pendulum on a cart system is 

derived and the DC motor characteristics are added to the mathematical model of 

the inverted pendulum on a cart system to create a more realistic model. After that, 

a decoupled sliding mode controller and a decoupled backstepping sliding mode 

controller are designed to accomplish the control objective. 

The decoupled sliding mode control and the proposed decoupled 

backstepping sliding mode control are tested on simulation using the derived 

mathematical model of the inverted pendulum on a cart model. The simulation 

results prove the stability and the effectiveness of both methods. The decoupled 

sliding mode control and the proposed decoupled backstepping sliding mode 

control methods are compared in two simulation tests for different initial 

conditions to investigate their performance on the inverted pendulum on a cart 

system without parametric uncertainties. These simulations are repeated with 

parametric uncertainties. Comparison results are presented by figures and error 

based performance indices.  

Overall, the simulation results have shown that the proposed decoupled 

backstepping sliding mode control method is more efficient than the conventional 

decoupled sliding mode control method. 

After obtaining satisfactory performance on the simulation tests, the 

decoupled sliding mode control and the proposed decoupled backstepping sliding 

mode control methods are applied to a real plant. Experiments have performed on 

Feedback's 33-200 digital pendulum mechanical unit. The simulation tests are 

recreated on the experimental setup to provide a clearer view about the 

performance of the proposed method. The decoupled sliding mode control and the 



 

V 

proposed decoupled backstepping sliding mode control methods are compared in 

two experimental tests for different initial conditions to investigate their 

performance on the real system without parametric uncertainties. These two 

experiments are repeated with parametric uncertainties. Experimental comparison 

results are presented by figures and error based performance indices.  

These experiments show that the proposed decoupled backstepping sliding 

mode control method manages to handle parametric uncertainty and control the 

cart position successfully where the decoupled sliding mode control fails. Overall, 

the experimental results have shown that the proposed decoupled backstepping 

sliding mode control method is more efficient than the conventional decoupled 

sliding mode control method. 
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GENİŞLETİLMİŞ ÖZET 

 

Bu tezde, belirsizlik ve bozucular altındaki eksik eyleyicili sistemlerin 

kontrolü için bir ayrıklaştırılmış geri adımlamalı kayan kipli kontrol yöntemi 

önerilmiştir. Serbestlik derecesinden daha az sayıda eyleyiciye sahip mekanik 

sistemler eksik eyleyicili sistemler olarak adlandırılmaktadır. Daha az eyleyiciye 

sahip olmaları nedeniyle düşük karmaşıklık ve maliyet gibi avantajlara sahip olan 

eksik eyleyicili mekanik sistemlerin kontrolü, kontrol mühendisliği alanında geniş 

bir ilgi görmektedir. 

Arabalı ters sarkaç sistemi 1950’lerden beri kontrol laboratuvarlarında bir 

karşılaştırma aracı olarak kullanılmaktadır. Ayrıca arabanın pozisyonu ve sarkacın 

açısının tek bir eyleyiciyle kontrol edilmesi nedeniyle arabalı ters sarkaç sistemi 

eksik eyleyicili sistemlere bir örnek oluşturmaktadır. 

Bu çalışmada, kayan kipli kontrol ve geri adımlamalı kontrol yöntemleri 

sağladıkları faydalar nedeniyle bir arada kullanılmıştır. Kayan kipli kontrol 

yöntemi model belirsizliklerine ve dış bozuculara karşı etkili bir kontrol yöntemi 

olarak bilinmektedir. Geri adımlamalı kontrol yöntemi ise doğrusal olmayan 

sistemlerin kontrolünde parametrik belirsizlikler ile başa çıkabilmektedir. Bu 

nedenle, kayan kipli kontrol ve geri adımlamalı kontrol yöntemlerinin 

birleştirilmesi model belirsizliklerine, parametrik belirsizliklere ve dış bozuculara 

bağışık bir tasarıma yol açacaktır. 

Kayan kipli kontrol yönteminin en önemli dezavantajlarından biri klasik 

kayan kipli kontrol yönteminin yüksek bağlaşık yapıları nedeniyle eksik eyleyicili 

sistemlere doğrudan uygulanamamasıdır. Literatürde araştırmacılar bu sorunu 

aşmak için arabalı ters sarkacı düzenli formda modellenmesine yardımcı olan kısmi 

doğrusallaştırma metodları önermişlerdir. Bu yöntemlerde arabalı ters sarkaç 

sisteminin karmaşık doğası nedeniyle sistemin kimi parametreleri göz ardı 

edilmiştir. Ancak deneysel çalışmalar için daha gerçekçi modellere ihtiyaç 

duyulmaktadır. Bu nedenle, bu çalışmada bir geri adımlamalı kayan kipli kontrolör 
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tasarlamak için kısmi doğrusallaştırma yöntemleri yerine yine literatürde yer alan 

bir ayrıklaştırma algoritması kullanılmıştır. 

Bu tezde, arabayı başlangıç konumundan istenen bir konuma hareket 

ettirirken sarkacı dik pozisyonda dengede tutmak temel kontrol hedefi olarak 

belirlenmiştir. Bu amaçla arabalı ters sarkaç sisteminin tam matematiksel modeli 

elde edilmş ve daha gerçekçi bir model yaratabilmek için DC motor 

karakteristikleri de bu modele dahil edilmiştir. Ardından kontrol hedefine 

ulaşabilmek için bir ayrıklaştırılmış kayan kipli kontrolör ve bir ayrıklaştırılmış 

geri adımlamalı kayan kipli kontrolör tasarlanmıştır. 

Elde edilen arabalı ters sarkaç sisteminin tam matematiksel modeli 

kullanılarak ayrıklaştırılmış kayan kipli kontrol yöntemi ve önerilen 

ayrıklaştırılmış geri adımlamalı kayan kipli kontrol yöntemi benzetim modelleri ile 

test edilmiştir. Ayrıklaştırılmış kayan kipli kontrol yöntemi ve önerilen 

ayrıklaştırılmış geri adımlamalı kayan kipli kontrol yöntemi performanslarının 

incelenmesi için parametrik belirsizlik içermeyen iki ayrı benzetim testinde farklı 

başlangıç koşulları için karşılaştırılmıştır. Ardından bu testler parametrik belirsizlik 

altında tekrar edilmiştir. Karşılaştırma sonuçları grafikler ve hata tabanlı 

performans indisleri yardımıyla sunulmuştur. 

Sonuç olarak benzetim sonuçları önerilen ayrıklaştırılmış geri adımlamalı 

kayan kipli kontrol yönteminin ayrıklaştırılmış kayan kipli kontrol yöntemine göre 

daha etkili olduğunu gstermiştir. 

Benzetim testlerinden elde edilen tatmin edici sonuçların ardından 

ayrıklaştırılmış kayan kipli kontrol ve önerilen ayrıklaştırılmış geri adımlamalı 

kayan kipli kontrol yöntemleri gerçek bir sisteme uygulanmıştır. Deneyler Feedbak 

firmasının 33-200 dijital sarkaç mekanik ünitesi üzerinde gerçekleştirilmiştir. 

Önerilen yöntemin performansı hakkında daha net bir bakış açısı elde edebilmek 

için benzetim testleri deney düzeneği üzerinde yeniden gerçekleştirilmiştir. 

Ayrıklaştırılmış kayan kipli kontrol yöntemi ve önerilen ayrıklaştırılmış geri 

adımlamalı kayan kipli kontrol yöntemi gerçek sistem üzerindeki  
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performanslarının incelenmesi için parametrik belirsizlik içermeyen iki ayrı 

deneysel testte farklı başlangıç koşulları için karşılaştırılmıştır. Ardından bu testler 

parametrik belirsizlik altında tekrar edilmiştir. Deneysel karşılaştırma sonuçları 

grafikler ve hata tabanlı performans indisleri yardımıyla sunulmuştur. 

Deneysel sonuçlar önerilen ayrıklaştırılımış geri adımlamalı kayan kipli 

kontrol yönteminin, ayrıklaştırılmış kayan kipli kontrol yönteminin başarısız 

olduğu parametrik belirsizliklerle başa çıkarak arabanın pozisyonunu başarılı bir 

şekilde kontrol edebildiğini göstermiştir. Sonuç olarak deneysel sonuçlar önerilen 

ayrıklaştırılmış geri adımlamalı kayan kipli kontrol yönteminin ayrıklaştırılmış 

kayan kipli kontrol yöntemine göre daha etkili sonuçlar ortaya koyduğunu 

göstermiştir.   
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1. INTRODUCTION   

 

Underactuated systems are mechanical systems with less number of 

actuators than their degrees of freedom. Underactuated systems are widely used in 

real-time applications such as underwater vehicles (Woods et al., 2012), robotics 

(Oryschuk et al., 2009; Zeng-Guang Hou et al., 2009) and aerospace (Olfati-Saber, 

2001). Underactuated systems can be classified by the reason of underactutaion 

(Olfati-Saber, 2001).  A system can become underactuated by the dynamics of the 

system by nature (Hussein and Bloch, 2008), by design to reduce the cost (Walsh 

et al., 1994; Spong, 1995), by artificially induced for a research purpose (Spong, 

1987) or by actuator failure.  

Consequently, underactuated systems have at least one unactuated degree 

of freedom; hence, they consume less energy and their cost and complexity are low 

due to fewer actuators used in the systems. Because of these advantages, the 

control and analysis of underactuated mechanical systems have seen an enormous 

interest and active research since the 1990s (Spong, 1998; Yu and Liu, 2013; 

Huang et al., 2018). However, controlling an underactuated mechanical system 

presents a challenging problem than fully actuated systems. Hereby, a wide range 

of underactuated systems is used as benchmark tools to design and compare 

different control techniques, such as the beam and ball system, the translational 

oscillator with rotational actuator system and the inverted pendulum on a cart 

system (She et al., 2012; Zhang et al., 2017;  Shah and Rehman, 2018) 

The inverted pendulum on a cart system is an example of the underactuated 

system in which both the angle of the rod and the position of the cart are controlled 

by only one actuator. Also, other characteristics of the system such as nonlinearity 

and instability turn inverted pendulum on a cart system into a challenging problem 

in the field of control engineering. The control of inverted pendulum on a cart is a 

classical example to verify the effectiveness and performance of control 

techniques. As a consequence inverted pendulums have been classic tools in the 
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control laboratories since the 1950s (Åström and Furuta, 2000).  Also, the control 

of the inverted pendulum on a cart system has been determined as a benchmark 

control problem by the International Federation of Automatic Control (Davison, 

1990).  Moreover, the dynamics of the inverted pendulum on a cart system are 

fundamental to maintenance balance problem and resembles many real systems 

such as two-wheeled robots (Jeong and Takahashi, 2007), bipedal walking (Kuo, 

2007), humanoid robots (Elhasairi and Pechev, 2015) and rocket thrusters 

(Anderson, 1988). 

The inverted pendulum on a cart system consists of a cart moving along a 

rail and a rod which is hinged to cart. The cart is moved by a DC motor. The DC 

motor supplies some force needed for the motion of the cart via a pulley-belt 

mechanism. It is well known that the inverted pendulum on a cart system has two 

equilibrium point: One of them is stable and it corresponds to the downward 

position of the pendulum, and the other one is unstable and corresponds to the 

upright position of the pendulum. Therefore, moving the cart while maintaining the 

pendulum in the upright position using an appropriate continuous feedback signal 

can be considered as the main control problem (Ata and Coban, 2015). Various 

control techniques have been proposed to control an inverted pendulum on a cart 

system, such as energy-based control (Spong, 1996; Åström and Furuta, 2000; 

Siuka and Schöberl, 2009), PID control (Chang et al., 2002; Subudhi et al., 2012), 

linear quadratic regulator (Kumar and Jerome, 2013; Ata and Coban, 2017), fuzzy 

control (Zhang et al., 2011; Nejadfard et al., 2013) and sliding mode control (SMC) 

(Lo and Kuo, 1998; Adhikary and Mahanta, 2013; Mahjoub et al., 2015; Ata and 

Coban, 2019).  

The SMC technique is a particular type of variable structure control  (VSC) 

method and it has been recognized as an effective robust control approach to model 

uncertainties and external disturbances (Utkin, 1977; Utkin, 1992).  The 

conventional SMC occurs in two phases; reaching phase and sliding phase. In the 

reaching phase, the system states are forced from an initial condition to a pre-
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defined sliding surface. The system can handle matched uncertainties and certain 

disturbances when the states reach the sliding surface. The reaching phase is 

followed by the sliding phase where the system states are restricted to stay on the 

sliding surface and slides on the surface to an equilibrium (Utkin, 1992). Although 

the SMC technique is a robust method and it has a straight forward design 

procedure, it has a drawback called the chattering phenomenon (Utkin and Lee, 

2006). The chattering effect can be caused by unmodeled dynamics or the finite 

sampling rate of digital controllers (Utkin and Lee, 2006) and extensive research is 

counting for chattering removal (Levant, 1993; Levant, 2003; Lee and Utkin, 2007; 

Wang and Adeli, 2012; Furat and Eker, 2014). Besides, the conventional SMC 

cannot be used directly on underactuated systems due to their coupled dynamics, 

the decoupled sliding mode control (DSMC) technique can be used to overcome 

this drawback (Lo and Kuo, 1998). The DSMC technique provides a method to 

decouple a nonlinear system into two subsystems which have different control 

objectives. Using the DSMC method, the second subsystem can be incorporated 

into the first subsystem (Lo and Kuo, 1998). Moreover, the SMC can manage 

parametric uncertainties in combination with other methods such as backstepping 

control (Coban, 2017a).  

The backstepping technique is a nonlinear control method based on the 

Lyapunov theorem and also known as adding an integrator (Freeman and 

Kokotović, 1996). In the backstepping control, some of the states are used as 

virtual control signals in control law design, and the virtual signals satisfy the 

selected Lyapunov function in each step of the design process. Hence, the stability 

of the overall system can be guaranteed. The backstepping control design is mainly 

used to deal with the robust control of the nonlinear systems with parametric 

uncertainties (Wang and Stengel, 2002).  

Hereby, the SMC and the backstepping techniques can be combined to 

design a robust controller to uncertainties and disturbances (Lu et al., 2011; 

Adhikary and Mahanta, 2013; Coban, 2017a). The backstepping sliding mode 
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control offers an improvement in steady-state error compared to the backstepping 

control and the SMC; also, it rejects disturbance and improves robustness against 

the parametric uncertainty (Coban, 2017b).  

Research interest in controlling the inverted pendulum on a cart system (Lo 

and Kuo, 1998; Adhikary and Mahanta, 2013; Mahjoub et al., 2015) using the 

SMC continues in recent years. Mahjoub et al. proposed first-order and second-

order sliding mode controllers for underactuated systems considering inverted 

pendulum on a cart system (Mahjoub et al., 2015). They used a stabilization 

method (Voytsekhovsky and Hirschorn, 2008) to approximate the inverted 

pendulum on a cart system with an input-output linearizable control system and 

presented the results using simulation tests. Adhikary and Mahanta combined 

backstepping and SMC methods and proposed an integral backstepping sliding 

mode controller for stabilization of the inverted pendulum on a cart system 

(Adhikary and Mahanta, 2013). They used Man and Lin’s approach (Man and Lin, 

2010) to partially linearize the inverted pendulum on a cart system and presented 

the results using simulation tests. Coban and Ata presented a decoupled sliding 

mode controller for inverted pendulum on a cart system (Coban and Ata, 2017). 

They used the decoupling algorithm proposed by Lo and Kuo (Lo and Kuo, 1998) 

to apply the SMC to an inverted pendulum on a cart system and presented the 

results using experimental tests. 

Young et al. specified that the real test for the sliding mode research 

community will be the willingness of control engineers to experiment with the 

SMC method in their professional practice (Young et al., 1999). Although the SMC 

technique has been widely used, researchers have generally preferred simulations 

rather than the real systems; especially in the control of the inverted pendulum on a 

cart system (Lo and Kuo, 1998; Lin and Mon, 2005; Park and Chwa, 2009;  

Adhikary and Mahanta, 2013; Mahjoub et al., 2015). Complex nature of the 

inverted pendulum on a cart system leads to neglect some parameters of the system 

in these simulations such as cart friction coefficient and pendulum damping 
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coefficient. Also, the effect of the actuator to the inverted pendulum on a cart 

system has neglected in simulations (Lo and Kuo, 1998; Adhikary and Mahanta, 

2013; Mahjoub et al., 2015). 

The aim of this thesis is to propose a decoupled backstepping sliding mode 

control (DBSMC) method for underactuated systems with uncertainty. An inverted 

pendulum on a cart system is selected as a benchmark example for underactuated 

systems to examine the effectiveness of the proposed method.  Stabilizing the 

pendulum at the upright position while bringing the cart a desired position is 

selected as the main control object. The complete mathematical model of the 

inverted pendulum on a cart system is derived according to its movement 

characteristics. The DC motor characteristics are added to the mathematical model 

of the inverted pendulum on a cart system to create a more realistic mathematical 

model. A decoupled sliding mode controller and a decoupled backstepping sliding 

mode controller are designed to control an inverted pendulum on a cart system. 

Since the design methodology of both controllers is based on the Lyapunov 

theorem, the stability of the system is guaranteed. The DSMC and the proposed 

DBSMC are simulated using the complete mathematical model of the inverted 

pendulum on a cart with DC motor system to investigate the stability of the 

controllers. The DSMC and the proposed DBSMC methods compared in 

simulation tests to investigate their performance on the inverted pendulum on a cart 

system with and without parametric uncertainties. After simulation tests, The 

DSMC and the proposed DBSMC methods experimentally applied an inverted 

pendulum on a cart system. Several simulation and experimental results are 

presented to show the effectiveness of the proposed algorithm. The results confirm 

the fact that the proposed DBSMC is more effective compared to the DSMC and 

the DBSMC provides a robust control on the systems with parametric uncertainties 

where the DSMC fails. 

The rest of the thesis is organized as follows: In Chapter 2, a complete 

mathematical model of the inverted pendulum with DC motor is derived. In 
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Chapter 3, theoretical backgrounds of the SMC and the backstepping approach are 

explained. The basic principles of the DSMC and the DBSMC designs are 

presented. In Chapter 4, the DSMC and the DBSMC designs for the inverted 

pendulum on a cart system are presented. Simulation and experimental results are 

presented with not only graphical results but also various statistical analyses. 

Conclusions are drawn in Chapter 5. 
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2. INVERTED PENDULUM ON A CART  

 

The inverted pendulum on a cart system consists of a cart moving along a 

rail and a rod which is hinged to the cart. The cart is moved by a DC motor. The 

DC motor supplies some force needed for the motion of the cart via a pulley-belt 

mechanism. Dynamics of the inverted pendulum system can be represented as a set 

of equations which is called mathematical model. Either this model can be 

represented in transfer function form or state space form. In this section, the 

complete mathematical model of the inverted pendulum on a cart system has been 

derived.  

 

2.1. Dynamics of the Inverted Pendulum on a Cart System 

The parametric representation of the inverted pendulum system is shown in 

Figure 2.1. Let x be the displacement of the cart from the initial position and θ is 

the angle in the vertical direction. m and l are the mass and the length of the 

pendulum, respectively; M is the mass of the cart; g is the acceleration due to 

gravity; and F is the force applied to the cart. Besides these parameters, Jp is the 

moment of inertia; d is the pendulum damping coefficient, and b is the cart friction 

coefficient which are not shown in Figure 2.1. The inverted pendulum on a cart 

system parameters are presented in Table 1. 

The complete mathematical model of the inverted pendulum on a cart 

system can be derived from the Newton’s laws of motion according to its 

movement characteristics. The motion of the inverted pendulum on a cart system 

consists of the linear motion of the motor driven cart in the X-axis and the 

rotational motion of the pendulum in the X-Y plane. Hence there will be two 

dynamic equations. 
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Figure 2.1. Parametric representation of the inverted pendulum on a cart system  
 

Table 2.1. Inverted pendulum on a cart system parameters 
Parameter Meaning Unit  

x Displacement of cart m 

θ Pendulum angle rad 

m Mass of pendulum kg 

l Length of pendulum m 

M Mass of cart M 

g Acceleration of gravity m/s2 

F Force applied to the cart N 

Jp Moment of inertia kgm2 

b Friction coefficient  Ns/m  

d Damping coefficient Nms/rad 
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Let ܲ	and ܰ be vertical and horizontal components of the force applied on 

the cart as shown in Figure 2.2. Considering Figure 2.1, Gx  and Gy , coordinates of 

center of gravity of the mass can be defined as follows:  

 

  sinGx x l t    (2.1) 

  cosGy l t .  (2.2) 

 

 t  will be presented as   in the rest of the study for simplification. 

Noting that 

 

    sin cos
d

dt
     

 

and 

 

      
2

2
2

sin sin cos
d

dt
        , 

 

the horizontal reaction force N can be written as 

 

    2 sin cosN m x l l       . (2.3) 

 

The force F applied on the cart is equal to the sum of the forces due to 

acceleration, friction component of force that opposes the linear motion of the cart, 

and the horizontal reaction: 

 

F Mx bx N    .  (2.4) 
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Figure 2.2. Free body diagram of the inverted pendulum on a cart system  

 

Substituting Equation (2.3) into Equation (2.4), one has 

 

    2cos sinF Mx bx m x l l           . (2.5) 

 

Rearranging Equation (2.5) gives the first equation of motion for the 

inverted pendulum on a cart system as follows: 

 

     2 sin cos .F M m x bx ml ml           (2.6) 

 

The forces perpendicular to the pendulum should be added up to obtain the 

second equation of motion for the inverted pendulum on a cart system. Considering 

Figure (2.2), the vertical force P can be calculated via the weight of the pendulum. 

Let Gy  be the displacement of pendulum from the pivot. Hence, P can be defined 

as 

 

  
2

2
cos

d
P mg m l

dt
  .  (2.7) 
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Noting that 

 

    cos sin
d

dt
      

 

and 

 

      
2

2
2

cos cos sin
d

dt
        , 

 

Equation (2.7) can be rewritten as 

 

   2 cos sinP mg ml ml       . (2.8) 

 

Noting that the torque equation l F  
 

 where the notation   indicates 

vector product, the torque equation can be written as 

 

   

         1 3

sin cos 0

0

1 sin cos .

x y z

l l

N P

z P l Nl

  

 

 
   
   

       

  




 (2.9) 

 

Equation (2.9) can be rearranged as 

 

   sin cosPl Nl    .  (2.10) 

 

Also, the torque  can be defined as follows: 
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pJ d     .  (2.11) 

 

Equating Equation (2.10) and Equation (2.11) yields 

 

   sin cos pPl Nl J d       . (2.12) 

 

Substituting Equation (2.3) and Equation (2.8) into Equation (2.12), one 

has 

 

       
       

2 2 2 2

2 2 2 2

sin cos sin sin

cos cos sin cos .

pJ d ml ml mgl

mlx ml ml

       

     

    

  

   

 
 (2.13) 

 

Rearranging Equation (2.13) yields 

 

        2 2 2sin cos cos sinpJ d mgl mlx ml             . (2.14) 

 

Using the well-known trigonometric equation    2 2cos sin 1   , 

Equation (2.14) can be rewritten as follows: 

 

     2 0pJ ml mglsin mlxcos d         . (2.15) 

 

Consequently, Equation (2.6) and Equation (2.15) are the equations of 

motion for the inverted pendulum on a cart system that describe the translational 

motion and the rotational motion respectively.  
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2.2. Nonlinear Model of the Inverted Pendulum on a Cart System 

The equations of motion for inverted pendulum on a cart from above can 

also be rearranged into series of differential equations. From Equation (2.6) and 

Equation (2.15) x  and   can be shown as, respectively, 

 

   2cos sinbx ml ml F
x

M m

      




 
  (2.16) 

   
2

sin cos

p

mgl mlx d

J ml

  


 




 . (2.17) 

 

Substituting Equation (2.17) into Equation (2.6), one has 

 

     

 

2

2

sin cos
( ) cos

sin .

p

mgl mlx d
F M m x bx ml

J ml

ml

  


 

  
       



 


 (2.18) 

 

Rearranging Equation (2.18) yields 

 

      
     
     

2 2 2

2 2 2 2 2

2 2

sin cos cos

cos sin .

p p p

p

F J ml J ml M m x J ml bx

m l g m l x

mld J ml ml

  

   

     

 

  

 


 

 (2.19) 

 

Collecting x  terms on the left-hand-side in Equation (2.19) yields 
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      
   
 

   
 

2 2 2 2 2

2 2

2 2

2

cos

cos sin

cos

sin

.

p p

p

p

J ml M m x m l x J ml bx

m l g

mld

J ml ml

F J ml



 

 

 

     





 

 

  




 (2.20) 

 

Equation (2.20) can be rewritten as 

 

       
    

     
    

2 2 2

2 2 2 2

2 2 2

2 2 2 2

cos sin cos

cos

ml sin
.

cos

p

p

p p

p

J ml bx m l g mld
x

J ml M m m l

J ml J ml F

J ml M m m l

   



 



   


  

   


  




  (2.21) 

 

Similarly substituting Equation (2.16) into Equation (2.15), one has 

 

   

     

2

2

sin

cos sin
cos 0.

pJ ml mgl

bx ml ml F
ml d

M m

 

   
 

 

    
     



    (2.22) 

 

Rearranging Equation (2.22) yields  

 

      
       
   

2

2 2 2 2 2 2

sin

cos cos cos sin

cos 0.

pJ ml M m M m mgl

ml bx m l m l

ml F M m d

 

     

 

   

  

   



 


 (2.23) 

 

Collecting   terms on the left-hand-side in Equation (2.23) yields 
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        
 
   

   

2 2 2 2

2 2 2

cos sin

cos

cos sin

cos .

pJ ml M m m l M m mgl

ml bx

m l

M m d ml F

   



  

 

    





  

 






 (2.24) 

 

Equation (2.24) can be arranged as follows: 

 

         
    

   
    

2 2 2

2 2 2 2

2 2 2 2

sin cos cos sin

cos

cos
.

cos

p

p

M m mgl mlb x m l

J ml M m m l

M m d ml F

J ml M m m l

    




 


  


  

  


  



  (2.25) 

 

Let the states be x , x ,  ,  and   : 

 

 

1

2

3

4

x x

x x

x

x




   
   
   
   
   

  





, 

 

state equations of the inverted pendulum on a cart system can be shown as 

 

1 2x x   (2.26) 

       
    

     
    

2 2 2
2 3 3 4 3

2 2 2 2 2
3

2 2 2
4 3

2 2 2 2
3

cos sin cos

cos

ml sin

cos

p

p

p p

p

J ml bx m l g x x mldx x
x

J ml M m m l x

J ml x x J ml F

J ml M m m l x

   


  

   


  



 (2.27) 

3 4x x   (2.28) 
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       
    

   
    

2 2 2
3 3 2 3 3 4

4 2 2 2 2
3

4 3

2 2 2 2
3

sin cos cos sin

cos

cos
.

cos

p

p

M m mgl x mlb x x m l x x x
x

J ml M m m l x

M m dx ml x F

J ml M m m l x

  


  

  


  



 (2.29) 

 

2.3. DC Motor Model 

In the inverted pendulum on a cart system, the cart is driven by a DC 

motor. To create a more realistic model, the motor characteristics should be added 

to the mathematical model of the inverted pendulum on a cart system (Ata and 

Coban, 2017). 

 

 

Figure 2.3. DC Motor schematics 
 

A motor is an electromechanical component that gives a movement output 

for a voltage input. That is a mechanical output generated by an electrical input 

(Nise,  2010). In this section, the transfer function is derived for a particular kind of 

electromechanical system called armature-controlled DC servomotor (Mablekos, 

1980). The motor’s schematic is shown in Figure 2.3. 
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In Figure 2.3, the fixed field stands for a magnetic field which is developed 

by stationary permanent magnets or a stationary electromagnet and armature stands 

for a rotating circuit which current  i t  flows through the magnetic field and feels 

a force. The resulting torque turns the rotating member of the motor, rotor. 

A conductor moving at right angles to a magnetic field generates voltage at 

the terminals of the conductor equal to ce Bl v , where e is the voltage, B is the 

magnetic field flux density, lc is the length of the conductor, and v is the velocity of 

the conductor normal to the magnetic field. Since the current-carrying armature is 

rotating in a magnetic field, its voltage is proportional to speed and named as back 

electromotive force. Thus, it is formulated by 

 

   m
b b

d t
v t K

dt


   (2.30) 

 

where bK  is the back electromotive force constant and      md t d t t  is the 

angular velocity of the motor. Taking the Laplace transform of Equation (2.30) 

gives 

 

   b b mV s K s s .  (2.31) 

 

The relation  bv t  between the armature current  i t  and the applied 

armature voltage  e t  can be shown by writing a loop equation around the Laplace 

transformed armature circuit: 

 

       bRI s LsI s V s E s     (2.32) 
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where L  and R  are the rotor circuit inductance and the rotor circuit resistance, 

respectively. 

The torque developed by the motor is proportional to the armature current: 

 

   m tT s K I s   (2.33) 

 

where mT  is the torque, and  tK  is the torque constant, which depends on the motor 

and magnetic field characteristics.  

Rearranging Equation (2.33) yields 

 

   1
m

t

I s T s
K

 .  (2.34) 

 

Substituting Equation (2.31) and Equation (2.34) into Equation (2.32) 

gives 

 

       m
b m

t

R Ls T s
K s s E s

K



  . (2.35) 

 

The torque developed by the motor also can be written as follows: 

 

     2
m m mT s J s Ds s    (2.36) 

 

where D  is the viscous damping and mJ  is the inertia of the motor. 

Substituting Equation (2.36) in Equation (2.35) yields 
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    
   

2
m m

b m
t

R Ls J s Ds s
K s s E s

K




 
  . (2.37) 

 

Equation (2.37) can be rewritten as  

 
    2

m t

m b t

s K

E s R Ls J s Ds K K s




  
. (2.38) 

 

Equation (2.38) is the transfer function of the DC motor between input 

(voltage) and output (angular position). 

Noting that  

 

   m
m

d
s s s

dt

   , 

 
( )m

s
s

s


   

 

and substituting 
 s

s


 instead of  m s  in Equation (2.38) and Equation (2.35) 

yields, respectively: 

 

 
    

t

m b t

s K

E s R Ls J s D K K




  
, (2.39) 

       m
b

t

R Ls T s
K s E s

K



   . (2.40) 

 

In order to obtain torque developed by the motor and to get rid of angular 

velocity, substituting  s  from Equation (2.39) into Equation (2.40) yields 
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   
      m t

b
t m b t

R Ls T s K
K E s E s

K R Ls J s D K K

 
      

. (2.41) 

 

Collecting  E s  terms on the right-hand-side in Equation (2.41) yields 

 

        b t
m

t m b t

K KR Ls
T s E s E s

K R Ls J s D K K


 

  
. (2.42) 

 

Rearranging Equation (2.42) yields 

 

      1 b t
m

t m b t

K KR Ls
T s E s

K R Ls J s D K K

 
      

. (2.43) 

 

Equation (2.43) can be rewritten as 

 

      1t b t
m

m b t

K K K
T s E s

R Ls R Ls J s D K K

 
       

. (2.44) 

 

Equation (2.44) is the motor torque equation without angular velocity  s  in the 

equation. 

Let the force equation induced by the motor torque: 

 

   1
m

n
F s T s

r
   (2.45) 

 

where r  and 1n  are radius of pulley and gear ratio, respectively. The torque in 

Equation (2.45) can be rewritten as 
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   
1

m

r
T s F s

n
 .                                                                                   (2.46) 

 

Substituting Equation (2.46) in Equation (2.44) yields 

 

      1 1t b t

m b t

K K Kn
F s E s

r R Ls R Ls J s D K K

             
. (2.47) 

 

In place of force F  in the inverted pendulum equations of motion, DC 

motor armature voltage  E s  can be used as the input. Towards this end, 

rearranging Equation (2.40) yields 

 

     b t t
m

K K K
T s s E s

R Ls R Ls
  

 
. (2.48) 

 

Letting translational velocity – angular velocity equation as  

 

   2
dx tn

t
r dt

    
 

  (2.49) 

 

where 2n  is gear ratio and taking Laplace transform of both sides of the Equation 

(2.49) yields 

 

   2n
s sx s

r
    

 
.  (2.50) 

 

Using Equation (2.48) and Equation (2.46), the force can be written as 

follows: 
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     1 1b t tK K Kn n
F s s E s

r R Ls r R Ls
            

. (2.51) 

 

Substituting Equation (2.50) into Equation (2.51), one has 

 

     1 2 1b t tK K Kn n n
F s sx s E s

r r R Ls r R Ls
               

. (2.52) 

 

Motor inductance L  has a limited effect on the DC motor system, hence it 

is possible to take 0L   for transfer function (Ata, 2014). For simplification, 

substituting 0L   in Equation (2.52) yields 

 

     1 2 1b t tK K Kn n n
F s sx s E s

r r R r R
          
    

. (2.53) 

 

Taking the inverse Laplace transform of Equation (2.53) gives a 

differential equation whose inputs are motor armature voltage  e t  and 

translational velocity of the cart  x t , and output is the force  F t  applied on the 

cart.  

 

     1 2 1b t tK K Kn n n
F t x t e t

r r R r R
          
    

 . (2.54) 

 

Therefore, with Equation (2.54) electromechanical signal conversation 

from voltage to force is achieved. 
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2.4. Inverted Pendulum on a Cart System with DC Motor 

Equation (2.26) through Equation (2.29) can be rearranged by substituting 

Equation (2.54) into them 

 

1 2x x   (2.55) 

       
 

2
2 3 3 3 4 3 4

2 2
3

cos sin sin cos

cos

x x x x x x x u

x
x

    
 


   


  (2.56) 

3 4x x   (2.57) 

       
 

 
 

2
2 3 3 4 3 3 4

4 2
3

3

2
3

cos sin cos sin

cos

cos

cos

x x x x x x x
x

x

x u

x

   
 


 

  








 (2.58) 

 

where 

 

 2 1 2 b t
p

K Kn n
J ml b

r r R


           
    

, 

2 2m l g  , 

 2
pJ ml ml    , 

mld   , 

 2 1 t
p

Kn
J ml

r R


        
   

, 

1 2 b tK Kn n
ml b

r r R


          
    

, 

 M m mgl   , 

2 2m l   , 
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( )M m d    , 

1 tKn
ml

r R


       
   

, 

  2
pJ ml M m    , 

and 

 

 u e t .  

 

Considering parametric uncertainties and external disturbances the state 

equations of the inverted pendulum on a cart system presented in Equation (2.55) 

to Equation (2.58) can be written as follows: 

 

        
 

 

        
 

 
 

1 2

2
1 2 3 3 3 4 3 4

2 2
3

12
3

3 4

2
2 2 3 3 4 3 3 4

4 2
3

3
22

3

cos sin sin cos

cos

( )
cos

cos sin cos sin

cos

cos
( )

cos

x x

x x x x x x x

x

u
t

x

x x

x x x x x x x
x

x

x u
t

x

x
    

 
 

 

    

 




 



  



 




  




















 (2.59) 

 

where 1  and 2  stand for the parametric uncertainties as constants; 1( )t and 

2 ( )t the total amounts of external disturbances and unmatched uncertainties. 1( )t

and 2 ( )t  are assumed to bounded as 1 1max( )t   and 2 2max( )t  . 
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3. DESIGN METHODS 

 

3.1. Sliding Mode Control  

The SMC is a special type of VSC method which is insensitive to the 

matched uncertainties and disturbances (Utkin, 1977). Accordingly, the SMC has 

been a widely used technique for handling nonlinear systems with undetermined 

dynamics and disturbances (Utkin, 1977; Utkin, 1992).  

The objective of the SMC is to enforce the sliding modes in a pre-defined 

surface known as sliding surface in the state space of a given system using a 

discontinuous control. 

The conventional SMC occurs in two phases; reaching phase and sliding 

phase. In the reaching phase, the system states are forced from an initial condition 

to a pre-defined sliding surface. The reaching phase is followed by the sliding 

phase. In this phase the system states are restricted to stay on the sliding surface 

and slides on the surface to an equilibrium. The reaching phase and the sliding 

phase are shown in Figure 3.1 where e and e denote the tracking error of a given 

system and its derivative respectively. 

Correspond to these two phases, a conventional sliding mode controller 

consists of two control laws. The first control law is switching control which drives 

the system state trajectory to the pre-defined sliding surface. In the literature a 

signum function sign() is employed to create a discontinuous switching control 

law. The sign () function shown in Figure 3.2 can be defined as  

 

1             0

( ) 0               0

1               0

if s

sign s if s

if s

 
 
 

 

 

The second control law equivalent control is used when the system is in the 

sliding phase. 
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Figure 3.1. Reaching and sliding phases of the SMC 

 

 
Figure 3.2. Signum function 
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Figure 3.3. Chattering phenomenon in the SMC approach 

 

Despite of its advantages, the SMC technique has a main drawback called 

chattering phenomenon which refers to finite frequency, finite amplitude 

oscillations of the control input. Hence, the chattering phenomenon can lead to 

unacceptable control accuracy. 

There are two essential causes to lead chattering. First, the limited 

switching frequency can lead chattering because the ideal SMC approach requires 

infinite switching frequency (Young et al., 1999). Second, unmodelled dynamics of 

the system come from actuators and sensors can cause a high frequency oscillation 

on the sliding surface (Yu and Kaynak, 2009) as shown in Figure 3.3 

Avoiding the chattering has been a challenging problem in the SMC 

approach. There have been various efficient methods to minimize the potential 

chattering. Boundary layer solution is one of the most used methods to overcome 

the chattering (Slotine and Li, 1991). The boundary layer approach is based on the 

use of a continuous approximation of the signum function in the switching control 

law. 

Commonly a saturation function has been used instead of signum function. 

The saturation function shown in Figure 3.4 is defined by 
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 
sign (s/ )       if    / 1

/
s/                  if    / 1

s
sat s

s

        
 

 

where  denotes a boundary level as shown in Figure 3.5. 

 

 
Figure 3.4. Saturation function 

 

 
Figure 3.5. Sliding surface with the boundary layer approach 
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A sliding mode controller for a single input single output system can be 

designed as follows. Dynamical equations of a general single input single output 

non-linear system can be described by 

 

1 2

2

1

( ) ( )

( ) ( )

y(t) =x (t)

( ) ( ) ( )

x t x t

x t f x g x u t t 

  


   (3.1) 

 

where ( )f x  and ( )g x  are nonlinear functions,  1 2

T
x x x  is the state vector;   

is the parametric uncertainty;  t  is the total amounts of external disturbances and 

unmatched uncertainties ; ( )y t  is the output; and ( )u t  is the control input.  t  is 

assumed to be bounded as max( )t   where max is a positive constant.  In order 

to design a sliding mode controller for this system, a sliding surface can be defined 

as 

 

1( ) ( ) ( )s t k e t e t     (3.2) 

 

using the tracking error 

 

 ( )  ( ) -  de t y t y t ,  (3.3) 

 

where 1k  is a real positive constant and  dy t  is the desired output. 

Considering a Lyapunov function 

 

 21
( )

2
tV s s   (3.4) 
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and differentiating ( )V s  yield 

 
        
      

  

1

1

1 2

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

d

d

d

V s s t s t

s t k e t e t

s t k

s t

e t y t y

k

s t k e t f

t

e t x

tx g x u t yt

y t

 



 





  

 

















 

 

  

 

 (3.5) 

 

( )V s  in Equation (3.5) will be negative definite if the control law is 

defined as 

 

     eq swu t u t u t    (3.6) 

 

with 

 

  1

1
( ) ( ) ( )

( )eq du tt k e t f x
g x

y     , (3.7) 

 1
( ) sign ( )

( )swu t K s t
g x

  ,  (3.8) 

 

and  

 

  
1,             ( ) 0

0,             ( ) 0

1,            ( ) 0

s t

sign s t s t

s t


 
 

  (3.9) 

 

where  maxK t   .  

Substituting Equation (3.6) into Equation (3.5) yields 
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                
       

              

       
     
 

1

1

1

max

max

( )

1

( )

sign ( )

( )

0.

d eq sw

d

d sw

sw

V s s t k e t f x y g x u t u t t

s t k e t f x y

g x k e t f x g x u t t
g x

s t g x u t

t

t

t

Ks t s s t

s K

t

y

t

t

 



 







       
   


      


    
  

  



  

 

 

 (3.10) 

 

where  maxK t   .    

According to the Lyapunov theorem, due to the fact that ( )V s  is negative 

definite, the system trajectory will be driven to sliding surface and remain in there 

until the origin is reached asymptotically. 

Using  sign ( )s t  function will lead the chattering. A boundary level with 

width   can be defined and  sign ( )s t  function can be replaced with a saturation 

function in Equation (3.8) to overcome this problem as follows: 

 

 1
( ) sat ( ) /

( )swu t K s t
g x

     (3.11) 

 

with 

 

sign( ),      1
sat( )

,                1

       
  (3.12) 

 

where 0  . 
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3.2. Decoupled Sliding Mode Control  

The SMC design can be applied to systems presented in the canonical 

form. Nevertheless, the dynamic representation of the inverted pendulum on a cart 

system presented in Equation (2.59) has a form shown below rather than the 

canonical form 

 

1 2

2 1 1 1 1

3 4

4 2 2 2 2

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

x t x t

x t f x g x u t t

x t x t

x t f x g x u t t

 

 


  


  






 (3.13) 

 

where  1 2 3 4, , ,
T

x x x x x  is the state vector; 1( )f x , 1( )g x , 2 ( )f x  and 2 ( )g x  are 

nonlinear functions; ( )u t  is the control input; 1  and 2  are the parametric 

uncertainties as constants; and 1( )t  and 2 ( )t  are the total amounts of external 

disturbances and unmatched uncertainties. 1( )t  and 2 ( )t  are assumed to be 

bounded as 1 1max( )t   and 2 2max( )t   where  1max  and x2ma  are positive 

constants. 

The decoupled control idea can be used to design a controller to control both 

the displacement and the angle in the inverted pendulum on a cart system. The 

main idea behind the decoupled sliding mode control is to decouple the whole 

system into two subsystems and define a sliding surface for each subsystem. The 

control objective of a sliding mode controller is to drive the sliding surface to zero, 

hence using an intermediate variable to transfer value from a sliding surface to the 

other can lead to control both subsystems simultaneously. To design a decoupled 

sliding mode controller for this system two different sliding surfaces can be 

defined as follows (Lo and Kuo, 1998; Coban and Ata, 2017): 
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1 1 1 1( ) ( ) ( )Ss t k e t e t     (3.14) 

2 2 2 2( ) ( ) ( )Ss t k e t e t     (3.15) 

 

using the tracking errors 

 

 1 1 1( )  ( ) -  de t y t y t   (3.16) 

and 

 

 22 2( )  ( ) -  de t y t y t   (3.17) 

 

where 1k  and 2k  are real positive constants, and 1( )e t  and 2( )e t  are tracking errors 

for the cart displacement and pendulum angle, respectively. 2 ( )Ss t  in Equation 

(3.15) can be transformed to a decoupled sliding surface as 

 

 2 2 2 2 ( ) ( ) ) ( )(S Ss t k e t z t e t      (3.18) 

 

with ( )Sz t  is a value transferred from 1( )Ss t  and defined as 

 

1 ,
( )

1( )  sat     0  S
S Su Su

Sz

s t
z zt z

 
    

 (3.19) 

 

where Suz  is the upper bound of ( )Sz t  and Sz  is the boundary level as constants.

Suz , the upper bound of the intermediate variable Sz  guarantees that 2 ( )Ss t  will be 

limited. After the sliding surface 1( )Ss t  becomes zero, 2 ( )Ss t  will be driven to 

zero too, thanks to Sz . 
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Considering a Lyapunov function 

 

 2
2 2

1
( )

2S SSV ts s   (3.20) 

 

and differentiating 2( )S SV s  yield 

 

  
      
    
 

 

2 2 2

2 2 2 2

2 2 2 2

2 2 2

2

2

2 4

2 2

2 2 2

2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) .

( )

( )

( )

( )

S S S S

S S

S S d

S S d

S S

d

V s s t s

k

t

t y t y t

t

s t k e t z e t

s t k e t z

s t k e t z

s t z

t x y

te t

f x g x t y tt

t

u 



 





 

 

  
  



 

















 

 





 





 

 (3.21) 

 

2( )S SV s  in Equation (3.21) will be negative definite if the control law for 

 u t  in Equation (3.21) is defined as 

 

     S Seq Sswu t u t u t    (3.22) 

 

with 

 

   2 2 2 2
2

2

1
( ) ( ) ( )

( )
( )Seq S dt y tu t k e t z f x

g x
        , (3.23) 

 2
2

1
( ) sign ( )

( )Ssw S Su t K s t
g x

  ,  (3.24) 

 

where  2 max 2SK t   .  
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Substituting Equation (3.22) into Equation (3.21) yields 

 

 

   
       

      

     
       

 

2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2
2

2

2

2

2

2

2

2

2

2

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1
( )

g

( )

(

)

)

)

( )

(

n

(
(

si

)

S S S S

Seq Ssw d

S d

S d

Ssw

S Ssw

S

S S

V s s t k e t z

f x g x u t u t

s t k e t z f x y

g x k e t z f x
g x

g x u t t

s t g x u t t

K s t s

t

t y t

t t

t y t

 









  
     

    

    

  
    
 





 

 













     
 

 

2 2 2

2 2 2 max

2 2 max

( )

( )

( )

0.

S S

S S S

S S

t s t t

K s t s t

s t K









  

  



 (3.25) 

 

where  2max 2SK t   .   

 

According to the Lyapunov theorem, due to the fact that ( )SV s  is negative 

definite, the system trajectory will be driven to sliding surface and remain in there 

until the origin is reached asymptotically. 

Therewith, a decoupled sliding mode controller for an underactuated 

system can be presented as in Equation (3.22). 

 

3.3. Backstepping  

The sliding mode control can handle any kind of matched uncertainties; 

however, it has a deficiency to handle parametric uncertainties. In order to manage 

this drawback, both the backstepping control and SMC techniques can be 

combined. Backstepping is a nonlinear stabilization technique of “adding an 

integrator” (Freeman and Kokotović, 1996) which is mainly used to deal with the 
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robust control of the nonlinear systems with parametric uncertainties and the 

nonlinear functions assumed to be known (Yao and Tomizuka, 2001). 

The backstepping design method is described by Khalil as follows (Khalil, 

2002). Consider a system 

 

         t f t g t t       (3.26) 

   t u t    (3.27) 

 

where   f t  and   g t are known functions, ,
TT    is the state 

vector and  u t  is the control input. Equation (3.26) can be stabilized by a state 

feedback control law     t t    with  0 0   as 

 

          t f t g t t      . (3.28) 

 

Hence, the origin of Equation (3.28) is asymptotically stable. Considering a 

Lyapunov function   V t  will satisfies the inequality 

 

  
              

V t
f t g t t W t

t


    




  


 (3.29) 

 

where   W t is positive definite. 

Adding and subtracting      g t t    on Equation (3.26), the system 

equations Equation (3.26) and Equation (3.27) can be rewritten as 
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                  f t g t t g t t t            . (3.30) 

   t u t    (3.31) 

 

Changing of variables       bz t t t     and substituting it into system 

equations Equation (3.30) and Equation (3.31) yields  

 

                bt f t g t t g t z t         (3.32) 

      bz t u t t    .  (3.33) 

 

Since   f t ,   g t and   t  are known, the derivative of 

  t   with respect of time can be defined as 

 

     
          d t t

f t g t t
dt t

   
  




 


. (3.34) 

 

Taking      bv t u t t    in the system in Equation (3.32) and Equation 

(3.33) results in 

 

                bt f t g t t g t z t         (3.35) 

   bbz t v t   (3.36) 

 

where the first component of Equation (3.35)         f t g t t     has 

asymptotically stable origin when the input is zero. Hence,  bv t  can be designed 

to stabilize the overall system. Considering a Lyapunov function  
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         21
,

2c bV t t V t z t     (3.37) 

 

and differentiating it with respect to time and using Equation (3.35) and Equation 

(3.36) results in 

 

  
           
  
          

     
          .

c

b b b

b b b

V t
V f t g t t

t

V t
g t z t z t v t

t

V t
W t g t z t z t v t

t


   









 




 




 




   





 (3.38) 

 

Choosing  

 

    
      b b b

V t
v t g t k z t

t







  


 (3.39) 

 

where 0bk   yields 

 

    2
c b bV W t k z t   .  (3.40) 

 

Since cV  is negative definite, the origin on 0   and 0bz   will be 

asymptotically stable. Since  0 0  , it is also concluded that the origin on 0   

and 0  will be asymptotically stable. 

Consequently, substituting  bv t ,  bz t , and   t   into Equation (3.33), 

the backstepping control law can be written as  
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      
    

  
         

  
             

  
          
  
          .

b

b

b

b

b

b

u t z t t

v t t

V t
g t k z t t

t

V t
g t k t t t

t

V t
g t k t t

t

t
f t g t t

t

 

 


  




     




   



 
  



 

 


   




    




   




 









  (3.41) 

 

3.4. Backstepping Sliding Mode Control  

The steps of the backstepping sliding mode control (BSMC) can be designed 

as follows. Consider a general single input single output nonlinear system 

described in Equation (3.1) and let the tracking error  e t be defined as in Equation 

(3.3). The derivative of the error can be presented as 

 

 
 

1

2 .

( ) ( )

( )

d

d

e t x t y

x t y

t

t

 

 

  


  (3.42) 

 

Consider a Lyapunov function 

 

2
1

1
( ) ( )

2BV e e t   (3.43) 

 

which is positive definite by the definition. Time derivate of 1( )BV e  is obtained as 

follows: 
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  
1

2

( ) ( ) ( )

( ) ( ) .

B

d

V e e t e t

e t x tt y



 

 


  (3.44) 

 

Letting  

 

 2 1( ) ( ) ( )B d tx t s t b e t y     

 

as a virtual control and rearranging the Equation (3.41) yields 

 

2
1 1 1( ) ( ) ( ) ( ),        0B BV e e t s t b e t b    (3.45) 

 

where the sliding variable  2 1( ) ( ) ( )B d ts t x t b e t y    .  2
1 1( ) 0B tV e b e    for

0Bs  , therefore, 1( )BV e is negative definite. To design a backstepping controller 

the next step is required. 

Selecting the second Lyapunov function as 

 

2
2 1

1
( ) ( ) ( )

2B B BV e V e s t    (3.46) 

 

and with the help of Equation (3.1) time derivative of the Lyapunov function in 

Equation (3.43) yields 

 

  
2 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) .

B B B B

B B B d

V e V e s t s t

V e s t f x g x u t y tt b e t 

 

     

  
  

 (3.47) 

 

In order to realize that 2 ( )BV e  is negative definite, the backstepping controller law 

can be designed as follows: 
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  1 2

1
( ) ( ) ( ) ( ) ( )

( )
 Beq du t f x e t b e t y t b s t

g x
        (3.48) 

 

where 1b  and 2b  are positive constants. Hence, 2 ( )BV e  becomes 

 

2 2
2 1 2( ) ( ) ( ) ( ) ( )B B BV e b e t b s t t s t    . (3.49) 

 

To guarantee the stability of the system a switching control law can be 

defined as follows: 

 

1
( ) sign( ( ))

( )Bsw Bu t B s t
g x

  .  (3.50) 

 

where B  is a positive constant. 

Putting the control laws in Equation (3.48) and Equation. (3.50) together 

gives the robust control law known as backstepping sliding mode control which 

can be defined as 

 

  1 2

1
( ) ( ) ( ) ( ) ( ) s ) ign (

( )B d Bu t f x e t b e t y b s t B s t
g x

        . (3.51) 

 

With the help of Equation (3.51), the time derivative of the Lyapunov 

function in Equation (3.47) can be rewritten as 

 

 

2 2
2 1 2

2 2
1 2 max

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

B B B B

B B

V e b e t b s t t s t B s t

b e t b s t s t B





    

    





 (3.52) 

 



3. DESIGN METHODS                                                                             Barış ATA 

42 

where max ( )B t   . Since 2 ( )BV e  is negative definite, the system trajectory will 

be driven to sliding surface and remain in there until the origin is reached 

asymptotically. Consequently, the stability of the overall system is guaranteed. 

 

3.5. Decoupled Backstepping Sliding Mode Control  

The BSMC technique can be applied to systems presented in the canonical 

form as in SMC. However, using the presented BSMC method, a decoupled 

backstepping sliding mode controller can be designed for an underactuated system 

as in Equation (3.14). To this end, two different tracking errors can be defined as 

 

     1 1 1de t x t y t    (3.53) 

     22 3 de t x t y t    (3.54) 

 

and time-derivating them result in 

 

 
 

1 1 1

2 1

( ) ( )

( )

d

d

e t

t

x t y

x y

t

t

 

 

  


  (3.55) 

 
 

2 3 2

4 2

( ) ( )

( ) .

d

d

e t x t y

x t y

t

t

 

 

  


  (3.56) 

 

Considering a Lyapunov function candidate 

 

2
1 2

1
( ) ( )

2DV e e t   (3.57) 

 

and differentiating it with respect to time results in  
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  
1 2 2

2 4 2

( ) ( ) ( )

( ) ( ) .

D

d

V e e t e t

e t x t y t



 

 
  (3.58) 

 

In this step of the DBSMC design, two different sliding surfaces can be 

chosen unlike the BSMC  

 

1 1 1 1( ) ( ) ( )Ds t c e t e t     (3.59) 

2 2 2 2( ) ( ) ( )Ds t c e t e t   .  (3.60) 

 

where 1c  and 2c  are real positive constants. 

Letting  

 

 4 2 2 2 2( ) ( ) ( )D dx tt s t c e t y      (3.61) 

 

from 2Ds  in Equation (3.60) and substituting it into Equation (3.58), one has 

 

2
1 2 2 2 2( ) ( ) ( )D DV e e t s t c e  .  (3.62) 

 

2
1 2 2( ) ( )DV e c e t   will be negative definite, if only 2 ( ) 0Ds t  . Therefore, 

in order to ensure the stability of the DBSMC, the Lyapunov function for the next 

step can be chosen as follows: 

 

2
2 1 2

1
( ) ( ) ( )

2D D DV e V e s t  .  (3.63) 

 

Using Equation (3.13), the time derivative of the Equation (3.63) is 
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 
  

2 1 2 2

2
2 2 2 2

2 2 2 2

2 2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

D D D D

D

D D

D d

V e V e s t

t

s t

e t s t c e t

s t f x g x u t

s t t c e t y





 

 

 

  

  

 

 (3.64) 

 

In order to ensure 2 ( )DV e  is negative definite, the decoupled backstepping 

control law can be chosen as 

 

  

2 2 2 2 2
2

2 3 2
2

1
( ) ( ) ( ) ( )

( )

1
( )

( )

Deq

d D

u t f x e t c e

t

t
g x

y c s t
g x

   

 




 (3.65) 

 

where 3c  is a real positive constant. To ensure the stability of the system a 

switching control law can be defined as follows: 

 

 2
2

1
( ) sign ( )

( )Dsw Du t C s t
g x

    (3.66) 

 

where C  is a real positive constant.  

The control law ( )Du t  can be defined as putting the control laws in 

Equation (3.65) and Equation (3.66) together 

 

( ) ( ) ( )D Deq Dswu t u t u t    (3.67) 

 

Substitution of Equation (3.67) into Equation (3.64) results in 
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 

2 2
2 2 2 3 2 2 2 2

2 2
2 2 3 2 2 2 max

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

D D D D

D D

V e c e t c s t t s t C s t

c e t c s t s t C





    

    





 (3.68) 

 

The time derivative of the Lyapunov function 2DV  will be negative definite where 

2max 2 ( )C t   . 

To create a decoupled controller a virtual sliding surface ds  can be 

considered as 

 

2 2 2( ) ( ( ) ) ( )d Ds t c e t z e t      (3.69) 

 

with Dz  is a value transferred from 1Ds  and defined as 

 

 1( ) sat ( ) / ,     0 1D D Dz Du Duz t s t z z     (3.70) 

 

where Duz  is the upper bound of the ( )Dz t  and guarantees that ( )ds t  will be 

limited. 

Consequently, substituting ( )ds t  in Equation (3.69) into the Equation 

(3.67) for 2 ( )Ds t  gives the DBSMC law for a general underactuated system as 

presented in Equation (3.13) 

 

 

  

2 2 2 2 2
2

2 3
2

1
( ) ( ) ( ) ( )

( )

1
( ) sign( ( )) .

( )

D

d d d

u t f x e t c e t
g x

y c s t C s t
g

t
x

   

  




 (3.71) 
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4. RESULTS AND DISCUSSIONS 

 

4.1. Controller Design 

The steps of the controller designs for the inverted pendulum on a cart 

system using both the DSMC and the DBSMC methods are presented in the 

following subsections. 

 

4.1.1. The DSMC Design for the Inverted Pendulum on a Cart System 

Using the inverted pendulum on a cart model introduced in Equation (2.59) 

and the decoupled sliding mode controller presented in Equation (3.22), a 

decoupled sliding mode controller for the inverted pendulum on a cart system can 

be designed as follows: 

Tracking errors  1e t  and  2e t  can be defined as the error of cart 

displacement and the errors of the pendulum angle, respectively. Using tracking 

errors, the sliding surfaces can be defined as 

 

           1 1 1 1 2 1DS DS d ds t k x t y t x t y t      (4.1) 

             22 3 2 4 2DS dS DS dDs t k x t y t z t x t y t       (4.2) 

 

where  

 

   1 ,             0 1DS DS
DS

u DSu
DSz

s t
z t sat z z

 
    

. (4.3) 

 

 Hence the control law for the decoupled sliding mode controller for the 

inverted pendulum on a cart can be defined as  
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        

  

22 2 4 2
2

2
2

1
( )

( )

1
sign ( )

( )

DS d DS

DS DS

DSt x t y tu f x k
g x

K

t

s t
g

z

x

   







  
 (4.4) 

 

where   2max 2DS tK    ,  

 

       
 

2
2 3 3 4 3 3 4

2 2
3

cos sin cos sin
( )

cos

x x x x x x x
f x

x

   
 

  



 

 

and 

 

   
 

3
2 2

3

cos

cos

x
g x

x


 




 

 

with 

 

1 2 b tK Kn n
ml b

r r R


          
    

, 

 M m mgl   , 

2 2m l   , 

( )M m d    , 

1 tKn
ml

r R


       
   

, 

 

and, 
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  2
pJ ml M m    . 

 

The decoupled sliding mode controller for the inverted pendulum on a cart 

in Equation (4.4) can be rewritten using the saturation function to avoid the 

chattering as 

 

 

        

  

2 2
2

2 24

2
2

1
( )

( )

1
( ) .

( )

DS DS

DS D

D

S DS

S d

s

t x t y t zu f x k
g x

K sat s t
g x

t   

 

 



 
 (4.5) 

 

4.1.2. The DBSMC Design for Inverted Pendulum on a Cart System 

Using the inverted pendulum on a cart model introduced in Equation (2.59) 

and the decoupled backstepping sliding mode controller presented in Equation 

(3.71), a decoupled backstepping sliding mode controller for the inverted 

pendulum on a cart system can be designed as follows 

Tracking errors 1e  and 2e  can be defined as the error of cart displacement 

and the error of the pendulum angle, respectively. Using tracking errors, the sliding 

surfaces can be defined as 

 

           1 1 1 1 2 1DB DB d ds t c x t y t x t y t      (4.6) 

           422 3 2 2dDBDB ds t c x t y t x t y t      (4.7) 

 

and the virtual sliding surface can be considered as 

 

             2 3 2 4 2DB d DDB B ds t c x t y t z t x t y t       (4.8) 

where  
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   1 ,             0 1DB DB
DB

u DBu
DBz

s t
z t sat z z

 
    

. (4.9) 

 

 Hence the control law for the decoupled backstepping sliding mode 

controller for the inverted pendulum on a cart can be defined as  

 

     

  

2 2 3 2 2 4 2
2

2 3
2

1
( ) ( )

( )

1
( ) sign( ( )) .

( ) ( )

( )

DB d DB d

d DB DB DB DB

u t y t x t y t

y

t f x x c
g x

c s tt C s t
g x

     

  

  


 (4.10) 

 

where  2max 2DB tC    , 

 

       
 

2
2 3 3 4 3 3 4

2 2
3

cos sin cos sin
( )

cos

x x x x x x x
f x

x

   
 

  



 

 

and 

 

   
 

3
2 2

3

cos

cos

x
g x

x


 




 

 

with 

 

1 2 b tK Kn n
ml b

r r R


          
    

, 

 M m mgl   , 

2 2m l   , 
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( )M m d    , 

1 tKn
ml

r R


       
   

, 

 

and, 

 

  2
pJ ml M m    . 

 

The decoupled backstepping sliding mode controller for the inverted 

pendulum on a cart in Equation (4.10) can be rewritten using the saturation 

function to avoid the chattering as 

 

 

     

    

2 2 3 2 2 4 2
2

2 3
2

1
( ) ( )

( )

1
( ) sat ( ) .

( )

( ) ( )DB d DB d

d DB DB DB DBDB s

t y t x t y tu t f x x c
g x

c s t C s t
g x

y t

     

  





 


 (4.11) 

 

4.2. Simulation Results 

The simulation setup, simulation results, and comparison results are 

presented in the following subsections. 

 

4.2.1. Simulation Setup 

The inverted pendulum on a cart system model described in Equation 

(2.59) is simulated using MATLAB and Simulink software. The inverted 

pendulum and DC motor parameters used in simulations are given in Table 4.1 and 

Table 4.2 respectively.  The decoupled sliding mode controller introduced in 

Equation (4.5) and the decoupled backstepping sliding mode controller introduced 

in Equation (4.11) are modeled to control simulated system. Block diagrams of the 
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decoupled sliding mode controller and the decoupled backstepping sliding mode 

controller are shown in Figure 4.1 and Figure 4.2, respectively. Also, the controller 

parameters chosen by trial and error are given in Table 4.3.  For all simulations, 

simulation time and step size are chosen as T=10 sec and h=0.001 sec, 

respectively. 

 

 
Figure 4.1. Block diagram of the decoupled sliding mode controller simulation 
 

 
Figure 4.2. Block diagram of the decoupled backstepping sliding mode controller 

simulation 
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Table 4.1. Parameters of the inverted pendulum on a cart system (Feedback 
Instruments, 2006) 

Parameter Value 

m 0.2 kg 

l 0.3 m 

M 2.3 kg 

g 9.81 m/s2

Jp 0.009 kgm2

b 0.005 Ns/m  

d 0.0005 Nms/rad 

 

Table 4.2. Parameters of the DC motor (Feedback Instruments, 2006) 
Parameter Value 

R 2.5 Ω 

r 0.0314 m 

Kt 0.05 

Kb 0.05

n1 18.84

n2 0.986  

 

Table 4.3. Parameters of the controllers 

Parameter Value 

1DSk , 1DBc   1 

2DSk , 2DBc   40 

3DBc   10 

DSK , DBC   30 

DSuz , DBuz   0.97 

DSz , DBz   5  

DSs , DBs   6 
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4.2.2. The DSMC Simulation Results 

This simulation is carried out to investigate the stability and the 

performance of the decoupled sliding mode controller for the inverted pendulum on 

a cart system with parametric uncertainty 2 1  . The goals of this simulation are 

to show the changes on the position of the cart x , pendulum angel  , and the 

control signal u  based on initial conditions of 0 0 0 0x x    
  and the reference 

signal r . 

In this simulation test, for reference signal 0.1r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
 , cart position, pendulum angel, and the 

control signal are plotted and shown in Figure 4.3, Figure 4.4, and Figure 4.5, 

respectively. 

 

 
Figure 4.3. Cart position x  for 0.1r   and  0 0 0 0 0 0 0.1 0x x     

  on 

the DSMC simulation 
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Figure 4.4. Pendulum angle   for 0.1r   and  0 0 0 0 0 0 0.1 0x x     

  

on the DSMC simulation 
 

 
Figure 4.5. Control signal u  for 0.1r   and  0 0 0 0 0 0 0.1 0x x     

  

on the DSMC simulation 
 

The decoupled sliding mode controller managed to keep the pendulum in 

upright position ( 0   rad), while bringing the cart from the initial position 0 m to 

desired position 0.1 m as shown in Figure 4.3. The settling time of the position is 

3.3885 sec with 11.81 percent overshoot and 135.18 percent undershoot. 
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The pendulum angle came to -0.065 rad from the initial position and then 

move to 0.02 rad in about 1.7 sec, after that it has settled to desired position 0 rad 

in 2.8932 sec as shown in Figure 4.4.  

The control signal u started from -2.5 V and came to 0.4 V in about 1 sec 

then it has reached 0 V in about 3 sec as shown in Figure 4.5. Also, it met the 

physical constraint which the control signal must be in the range of -2.5 V and +2.5 

V. 

The main objective of the controller is to force the system trajectory to zero 

in a finite time and keep them at that point. Considering the errors 1( )e t for the 

position and 2 ( )e t  for the pendulum angle, the errors versus their first-time 

derivatives are illustrated for position and angle in Figure 4.6 and Figure 4.7, 

respectively. 

Since the sliding surfaces of the decoupled sliding mode controller are 

based on the error and its time derivative, it is expected that the sliding surfaces 

also converges to the zero. Considering the first sliding surface as 1s , the value 

derived from 1s  as z  and the second sliding surface as 2s ;  the sliding surfaces of 

the controller versus time are shown in Figure 4.8, Figure 4.9, and Figure 4.10 for 

1s , z , and 2s , respectively. 
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Figure 4.6. Motion of system trajectories for position on the DSMC simulation 

 

 
Figure 4.7. Motion of system trajectories for pendulum angle on the DSMC 

simulation  
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Figure 4.8. Motion of the first sliding surface on the DSMC simulation 

 

 
Figure 4.9. Motion of the z on the DSMC simulation 

 

 
Figure 4.10. Motion of the second sliding surface on the DSMC simulation 
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4.2.3. The DBSMC Simulation Results 

This simulation is carried out to investigate the stability and the 

performance of the proposed decoupled backstepping sliding mode controller for 

the inverted pendulum on a cart system with parametric uncertainty 2 1  . The 

goals of this simulation are to show the changes on the position of the cart x , 

pendulum angel  , and the control signal u  based on initial conditions of 

0 0 0 0x x    
  and the reference signal r . 

In this simulation test, for reference signal 0.1r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
 , cart position, pendulum angel, and the 

control signal are plotted and shown in Figure 4.11, Figure 4.12, and Figure 4.13, 

respectively. 

 

 
Figure 4.11. Cart position x  for 0.1r   and  0 0 0 0 0 0 0.1 0x x     

  

on the DBSMC simulation 
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Figure 4.12. Pendulum angle   for 0.1r   and 

 0 0 0 0 0 0 0.1 0x x     
  on the DBSMC 

simulation 
 

 
Figure 4.13. Control signal u  for 0.1r   and  0 0 0 0 0 0 0.1 0x x     

  

on the DBSMC simulation 
 

The decoupled backstepping sliding mode controller managed to keep the 

pendulum in upright position ( 0   rad), while bringing the cart from the initial 

position 0 m to desired position 0.1 m as shown in Figure 4.11. The settling time of 
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the position is 3.6533 sec with 8.50 percent overshoot and 119.53 percent 

undershoot. 

The pendulum angle came to -0.07 rad from the initial position and then 

move to 0.01 rad in about 1.6 sec, after that it has settled to desired position 0 rad 

in 2.9832 sec as shown in Figure 4.12.  

The control signal u started from -2.5 V and came to 0.3 V in about 1 sec 

then it has reached 0 V in about 3 sec as shown in Figure 4.13. Also, it met the 

physical constraint which the control signal must be in the range of -2.5 V and +2.5 

V. 

 

 
Figure 4.14. Motion of system trajectories for cart position on the DBSMC 

simulation 
 

The main objective of the controller is to force the system trajectory to zero 

in a finite time and keep them at that point. Considering the errors 1( )e t for the 

position and 2 ( )e t  for the pendulum angle, the errors versus their first-time 
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derivatives are illustrated for position and angle in Figure 4.14 and Figure 4.15, 

respectively. 

Since the sliding surfaces of the decoupled backstepping sliding mode 

controller are based on the error and its time derivative, it is expected that the 

sliding surfaces also converges to the zero. Considering the first sliding surface as

1s , the value derived from 1s  as z  and the second sliding surface as 2s ;  the 

sliding surfaces of the controller versus time are shown in Figure 4.16, Figure 4.17, 

and Figure 4.18 for 1s , z , and 2s , respectively. 

 

 
Figure 4.15. Motion of system trajectories for pendulum angle on the DBSMC 

simulation 
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Figure 4.16. Motion of the first sliding surface on the DBSMC simulation 
 

 
Figure 4.17. Motion of the z on the DBSMC simulation 
 

 
Figure 4.18. Motion of the second sliding surface on the DBSMC simulation 
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4.2.4. Comparison Results for Simulation 

The DSMC and the proposed DBSMC methods are compared in four 

different simulation tests to investigate their performance on the inverted pendulum 

on a cart system. 

In the first test, for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
  with parametric uncertainty 2 1  , cart 

position x , pendulum angel  , and the control signal u  for both DSMC and 

DBSMC are plotted and shown in Figure 4.19, Figure 4.20, and Figure 4.21, 

respectively. 

 

 
Figure 4.19. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with 2 1   on comparison simulation 
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Figure 4.20. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
 with 2 1   on 

comparison simulation 
 

 
Figure 4.21. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with 2 1   on comparison simulation 
 

Although the DSMC has a slightly faster settling time than the DBSMC, 

the proposed method decreases overshoot and undershoot as shown in Figure 4.19. 

The settling time on the position for DSMC is 3.3246 sec with 7.38 percent 
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overshoot and 48.36 percent undershoot and the settling time on the position for 

DBSMC is 3.4929 sec with 5.75 percent overshoot and 45.71 percent undershoot. 

Both the DSMC and DBSMC manage to bring the pendulum upright position in 

2.9 sec as shown in Figure 4.20. The control signal u started from -2.5 V on both 

controllers then settled 0 in 2.2 sec on DSMC and, 2.3 sec on DBSMC, however, 

the DBSMC created a smoother control signal than DSMC as shown in Figure 

4.21. 

The performance of the controllers can also be measured by the 

performance indices which use the tracking error with the evaluation time, 

generally. Some of the error-based performance indices are formulated as follows: 

Integral Absolute Error (IAE): 

 

0
( )

T
e t dt   (4.12) 

 

Integral Squared Error (ISE): 

 

2

0
( )

T
e t dt   (4.13) 

 

Integral Time Absolute Error (ITAE): 

 

0
( )

T
t e t dt   (4.14) 

 

Integral Time Squared Error (ITSE): 

 

2

0
( )

T
te t dt .  (4.15) 
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The performances of the DSMC and the DBSMC based on performance 

indices for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
  with parametric uncertainty 2 1  are given 

in Table 4.4 and Table 4.5. 

 

Table 4.4. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
  with 2 1   

IAE ISE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 523.65 495.18 170.78 151.64 

Pendulum Angle 101.01 86.92 5.58 4.8 

Control Signal 1189.02 1178.91 865.43 941.61 

 

Table 4.5. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
  with 2 1   

ITAE ITSE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 410467 391571 99313 82496 

Pendulum Angle 105322 85305 3692 2466 

Control Signal 1122332 1020884 539543 416449 

 

The magnitudes of the performance indices are generally smaller in the 

DBSMC rather than the DSMC as shown in Table 4.4 and Table 4.5. 

Consequently, the DBSMC produced a more accurate control input than the 

DSMC. 

In the second test, the initial condition of the pendulum angle is started 

from 0.3 rad to create a more challenging control problem. In this test, for 
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reference signal 0.3r   and initial conditions  0 0 0 0 0 0 0.3 0x x     
  

with parametric uncertainty 2 1  , cart position x , pendulum angel  , and the 

control signal u  for both DSMC and DBSMC are plotted and shown in Figure 

4.22, Figure 4.23, and Figure 4.24, respectively. 

 

 
Figure 4.22. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 1   on comparison simulation 
 

Although the DSMC is 0.1 sec faster on settling time than the DBSMC, the 

proposed method decreases overshoot and undershoot as shown in Figure 4.22. The 

settling time on the position for DSMC is 3.8056 sec with 19.63 percent overshoot 

and 293.77 percent undershoot and the settling time on the position for DBSMC is 

3.9531 sec with 12.14 percent overshoot and 212.32 percent undershoot. Both the 

DSMC and DBSMC manage to bring the pendulum upright position in 3.4 sec as 

shown in Figure 4.23. The control signal u started from -2.5 V on both controllers 

then settled 0 in 4.12 sec on DSMC and, 3.88 sec on DBSMC. The DBSMC 

created a smoother control signal than DSMC as shown in Figure 4.24. 
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Figure 4.23. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
 with 2 1   on 

comparison simulation 
 

 
Figure 4.24. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 1   on comparison simulation 
 

The performances of the DSMC and the DBSMC based on performance 

indices for reference signal 0.3r   and initial conditions 
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 0 0 0 0 0 0 0.3 0x x     
  with parametric uncertainty 2 1   on 

comparison simulation are given in Table 4.6 and Table 4.7.  

 
Table 4.6. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
  with 2 1   

IAE ISE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 1622.30 1228.88 1322.05 783.19 

Pendulum Angle 357.83 262.994 61.78 42.0811 

Control Signal 4049.38 3116.48 7080.96 4814.25 

 

Table 4.7. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
  with 2 1   

ITAE ITSE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 1827784 1258751 1321328 652371 

Pendulum Angle 440350 268507 54715 25127 

Control Signal 4694616 3117558 6683092 3119900 

 

The magnitudes of all performance indices are smaller in the DBSMC 

rather than the DSMC as shown in Table 4.6 and Table 4.7. Consequently, the 

DBSMC produced a more accurate control input than the DSMC. 

In the third test, for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
 with parametric uncertainties parametric 

uncertainty 2 0.8   , cart position, pendulum angel, and the control signal for both 

DSMC and DBSMC are plotted and shown in Figure 4.25, Figure 4.26, and Figure 

4.27, respectively. 
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Figure 4.25. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with 2 0.8   on comparison simulation 
 

 
Figure 4.26. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
 with 2 0.8   on 

comparison simulation 



4. RESULTS AND DISCUSSIONS                                                          Barış ATA 

72 

 
Figure 4.27. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with 2 0.8   on comparison simulation 
 

Although the DSMC has 0.2 sec faster settling time than the DBSMC, the 

proposed method decreases overshoot and undershoot as shown in Figure 4.25. The 

settling time on the position for DSMC is 3.4210 sec with 18.25 percent overshoot 

and 49.22 percent undershoot and the settling time on the position for DBSMC is 

3.6488 sec with 10.70 percent overshoot and 45.65 percent undershoot. The 

DBSMC manage to bring the pendulum upright position faster than the DSMC as 

shown in Figure 4.26. The settling time on the pendulum angle for DSMC is 

4.3818 sec and the settling time on the pendulum angle for DBSMC is 3.0421 sec. 

The control signal u started from -2.5 V on both controllers then settled 0 in 3.5448 

sec on DSMC and, 3.19 sec on DBSMC. The DBSMC created a smoother control 

signal than DSMC as shown in Figure 4.27. 

The performances of the DSMC and the DBSMC based on performance 

indices for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.3 0x x     
 with parametric uncertainty 2 0.8   are given 

in Table 4.8 and Table 4.9.  
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Table 4.8. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
  with 2 0.8   

IAE ISE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 565 507 177 154 

Pendulum Angle 115 94 6 5 

Control Signal 1337 1225 939 947 

 

Table 4.9. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
  with 2 0.8   

ITAE ITSE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 521808 429018 108547 84689 

Pendulum Angle 141698 100820 4848 2962 

Control Signal 1513456 1168022 691147 478374 

 

The magnitudes of the performance indices are generally smaller in the 

DBSMC rather than the DSMC as shown in Table 4.8 and Table 4.9. 

Consequently, the DBSMC produced a more accurate control input than the 

DSMC. 

In the last simulation test, for reference signal 0.3r   and initial 

conditions  0 0 0 0 0 0 0.3 0x x     
  with parametric uncertainty 

2 0.8  , cart position, pendulum angel, and the control signal for both DSMC and 

DBSMC are plotted and shown in Figure 4.28, Figure 4.29, and Figure 4.30, 

respectively. 
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Figure 4.28. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 0.8   on comparison simulation 
 

 
Figure 4.29. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
 with 2 0.8   on 

comparison simulation 
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Figure 4.30. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 0.8   on comparison simulation 
 

Both the DSMC and DBSMC manage to bring the cart to the desired 

position in 4. sec, however, the proposed method decreases overshoot and 

undershoot as shown in Figure 4.28. The settling time on the position for DSMC is 

4.00 sec with 54.77 percent overshoot and 343 percent undershoot and the settling 

time on the position for DBSMC is 4.00 sec with 22.73 percent overshoot and 

213.63 percent undershoot.  

The DBSMC manage to bring the pendulum upright position faster than 

the DSMC as shown in Figure 4.29. The settling time on the pendulum angle for 

DSMC is 4.94 sec and the settling time on the pendulum angle for DBSMC is 3.35 

sec. 

The control signal u started from -2.5 V on both controllers then settled 0 in 

4.46 sec on DSMC and, 4.26 sec on DBSMC. The DBSMC created a smoother 

control signal than DSMC as shown in Figure 4.30. 

The performances of the DSMC and the DBSMC based on performance 

indices for reference signal 0.3r   and initial conditions 
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 0 0 0 0 0 0 0.3 0x x     
 with parametric uncertainty 2 0.8   are given 

in Table 4.10 and Table 4.11.  

 

Table 4.10. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
  with 2 0.8    

IAE ISE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 1997 1254 1760 764 

Pendulum Angle 439 280 77 43 

Control Signal 5045 3238 9395 4966 

 

Table 4.11. DSMC and DBSMC simulation performance indices for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
  with 2 0.8   

ITAE ITSE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 2655254 1346246 1965345 667655 

Pendulum Angle 658715 308456 85345 28070 

Control Signal 7125421 3480784 10907339 3487018 

 

The magnitudes of all performance indices are smaller in the DBSMC 

rather than the DSMC as shown in Table 4.10 and Table 4.11. Consequently, the 

DBSMC produced a more accurate control input than the DSMC. 

In the first simulation test, the conventional DSMC and the DBSMC 

methods compared for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
 . After that to simulate a more challenging 

problem the DSMC and the DBSMC methods compared for reference signal 

0.3r   and initial conditions  0 0 0 0 0 0 0.3 0x x     
 . In these tests 
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simulated with parametric uncertainty 2 1  .  In the third and fourth tests, first 

and second simulation tests are recreated with parametric uncertainty 2 0.8  .  

Overall, the simulation results have shown that the proposed DBSM method is 

more efficient than the conventional DSMC method.  

 

4.3. Experimental Results 

Satisfactory performance has obtained during the simulation tests, 

however, applying the proposed control method to a real plant will provide a 

clearer view about the performance. The experimental setup and results of 

experimental tests are presented in the following subsections. 

 

4.3.1. Experimental Setup 

Experiments have performed on Feedback's 33-200 digital pendulum 

mechanical unit which consists of a cart driven inverted pendulum and a belt with 

DC motor on adjustable feet as shown in Figure 4.31. The PC with PCI 1711 

Advantech card serves as the main control unit. The control signal is transferred to 

the Digital Pendulum Controller (DPC), which drives the DC motor. The cart 

position and the pendulum angle encoder signals are transferred to the DPC and 

then to the PC.  

In order to evaluate the performance of the proposed DBSMC, the DSMC 

and the DBSMC are applied to the inverted pendulum on a cart system having the 

parameters given in Table 4.1 and Table 4.2. Block diagrams of the DSMC and the 

DBSMC are shown in Figure 4.32 and Figure 4.33, respectively.  
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Figure 4.31. The inverted pendulum on a cart system  

 

The experimental setup has two physical constraints. The first one is the 

cart position which is physically bounded by the rail length which is 0.8 m. Since it 

is assumed that the initial cart position is in the middle of the rail, the position of 

the cart should be limited to 0.4x   m. Therefore, the controllers are designed to 

limit the maximum displacement of the cart to ±0.35 m. The second constraint is 

the bound of the control signal which must be in the range of −2.5 V and +2.5 V. 

The DSMC and the DBSMC parameters which are chosen by trial and error 

method with considering these constraints are given in Table 4.3. 
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Figure 4.32. Block diagram of the DSMC 
  

 
Figure 4.33. Block diagram of the DBSMC 

 

4.3.2. Experimental Comparison Results 

In the first experiment, both the DSMC and the DBSMC are applied to the 

inverted pendulum on a cart system with the parametric uncertainty 2 1  . Thus, 

the control methods are tested on own parametric uncertainties of the system 

without any additional parametric uncertainty. The test results of the cart position, 

pendulum angle and control signal for reference signal 0.3r   and initial 
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conditions  0 0 0 0 0 0 0.1 0x x     
  plotted and shown in Figure 4.34, 

Figure 4.35 and Figure 4.36, respectively.  

The settling time of position is 4.45 sec for the DSMC and 4.14 sec for the 

DBSMC; the overshoot and undershoot are 4.2 percent and 7.8 percent for the 

DSMC and 4.14 percent and 5.8 percent for the DBSMC, respectively. Both the 

DSMC and the DBSMC manage to bring the cart from the initial position to the 

desired position as shown in Figure 4.34. However, the DBSMC has a better 

performance to stabilize the position.  

 

 
Figure 4.34. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with 2 1   
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Figure 4.35. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
 with 2 1   

 

 
Figure 4.36. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with  2 1   
 

Figure 4.35 clearly shows that both controllers are able to keep the 

pendulum on the upright position. The chattering in the control signal is slightly 

lower in the DBSMC as compared the DSMC as shown in Figure 4.36.  
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The performances of the DSMC and the DBSMC based on performance 

indices for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
  with the parametric uncertainty 2 1   are 

given in Table 4.12 and Table 4.13.  

 

Table 4.12. DSMC and DBSMC experiment performance indices for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
  with 2 1   

IAE ISE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 449 364 96 71 

Pendulum Angle 75.61 63 1.38 0.87 

Control Signal 15185 14791 15472 13971 

 

Table 4.13. DSMC and DBSMC experiment performance indices for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
  with 2 1   

ITAE ITSE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 736437 479734 55228 34471 

Pendulum Angle 414072 373195 1887 1424 

Control Signal 142322735 146402953 134474143 130869680 

 

The magnitudes of the performance indices are generally smaller in the 

DBSMC rather than the DSMC as shown in Table 4.12 and Table 4.13. 

Consequently, the DBSMC produced a more accurate control input than the 

DSMC. 

In the second experiment, both the DSMC and the DBSMC are applied to 

the inverted pendulum on a cart system with the parametric uncertainty 2 1  . The 
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initial condition of the pendulum angle is changed to 0.3 rad to create a more 

challenging situation. The test results of the cart position, pendulum angle and 

control signal for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.3 0x x     
 plotted and shown in Figure 4.37, Figure 4.38 

and Figure 4.39, respectively.  

The settling time of position is 8.02 sec for the DSMC and 4.18 sec for the 

DBSMC; the overshoot and undershoot are 5.11 percent and 28.58 percent for the 

DSMC and 3.59 percent and 7.9 percent for the DBSMC, respectively. Both the 

DSMC and the DBSMC manage to bring the cart from the initial position to the 

desired position as shown in Figure 4.37. However, the DBSMC has a better 

performance to stabilize the position.  

 

 
Figure 4.37. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 1   
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Figure 4.38. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
 with  2 1   

 

 
Figure 4.39. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 1   
 

Both controllers are able to keep the pendulum on the upright position as 

shown in figure 4.38. However, the DBSMC has a better performance to stabilize 
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the pendulum angle.  The chattering in the control signal is slightly lower in the 

DSMC as compared the DBSMC as shown in Figure 4.39.  

The performances of the DSMC and the DBSMC based on performance 

indices for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
  with the parametric uncertainty 2 1   are 

given in Table 4.14 and Table 4.15.  

 

Table 4.14. DSMC and DBSMC experiment performance indices for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
  2 1   

IAE ISE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 664 417 163 87 

Pendulum Angle 126 96 12 7 

Control Signal 14236 15749 14132 16262 

 

Table 4.15. DSMC and DBSMC experiment performance indices for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
  2 1   

ITAE ITSE 

Tracking Error DSMC DBSMC DSMC DBSMC 

Cart Position 1410546 616975 123828 46374 

Pendulum Angle 287436 450702 3214 2346 

Control Signal 131990884 161302423 120905810 165443692 

 

The magnitudes of the performance indices are generally smaller in the 

DBSMC rather than the DSMC as shown in Table 4.14 and Table 4.15. 

Consequently, the DBSMC produced a more accurate control input than the 

DSMC. 
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In the third experiment, both the DSMC and the DBSMC are applied to the 

inverted pendulum on a cart system with the parametric uncertainty 2 0.8  . The 

test results of the cart position, pendulum angle and control signal for reference 

signal 0.3r   and initial conditions  0 0 0 0 0 0 0.1 0x x     
 plotted 

and shown in Figure 4.40, Figure 4.41 and Figure 4.42, respectively.  

 

 
Figure 4.40. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with 2 0.8   
 

Although the DSMC is able to bring and keep the pendulum at the upright 

position, it fails to stabilize the cart at the desired position as shown in Figure 4.40 

and Figure 4.41. On the other hand, the DBSMC manages to handle parametric 

uncertainty and control the cart position successfully with 4.4 sec settling time with 

5.24 percent overshoot and 5.76 percent undershoot. Besides, the DBSMC yields 

slightly lower chattering in the control signal compared to the DSMC as shown in 

Figure 4.42. 
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Figure 4.41. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.1 0x x     
 with 2 0.8   

 

 
Figure 4.42. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.1 0x x     



with  2 0.8   
 

Although the DSMC fails in the third experiment, the fourth experiment is 

carried to investigate the performance of the DBSMC in a more challenging 

situation. In the fourth experiment, both the DSMC and the DBSMC are applied to 
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the inverted pendulum on a cart system with the parametric uncertainty 2 0.8  . 

The initial condition of the pendulum angle is changed to 0.3 rad to create a more 

challenging situation. The test results of the cart position, pendulum angle and 

control signal for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.3 0x x     
 plotted and shown in Figure 4.43, Figure 4.44 

and Figure 4.45, respectively.  

 

 
Figure 4.43. Cart position x  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 0.8   
 

Although the DSMC is able to bring and keep the pendulum at the upright 

position, it fails to stabilize the cart at the desired position as shown in Figure 4.43 

and Figure 4.44. On the other hand, the DBSMC manages to handle parametric 

uncertainty and control the cart position successfully with 4.59 sec settling time 

with 5.04 percent overshoot and 24.5 percent undershoot. Besides, the DBSMC 

yields slightly lower chattering in the control signal compared to the DSMC as 

shown in Figure 4.45. 
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Figure 4.44. Pendulum angle   for 0.3r   and 

 0 0 0 0 0 0 0.3 0x x     
 with 2 0.8   

 

In the first experiment, conventional DSMC and the DBSMC methods 

compared for reference signal 0.3r   and initial conditions 

 0 0 0 0 0 0 0.1 0x x     
 . After that to create a more challenging 

problem the DSMC and the DBSMC methods compared for reference signal 

0.3r   and initial conditions  0 0 0 0 0 0 0.3 0x x     
 . These 

experiments carried with parametric uncertainty 2 1  . In the third and fourth 

tests, first two experiments are recreated with parametric uncertainty 2 0.8  . 

These experiments show that the DBSMC manages to handle parametric 

uncertainty and control the cart position successfully where the DSMC fails. 

Overall, the experimental results have shown that the proposed DBSM method is 

more efficient than the conventional DSMC method.  
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Figure 4.45. Control signal u  for 0.3r   and  0 0 0 0 0 0 0.3 0x x     



with 2 0.8   
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5. CONCLUSION AND FUTURE WORK 

 

In this study, a decoupled backstepping sliding mode control (DBSMC) 

method is proposed to control underactuated systems under uncertainties and 

disturbances. The proposed DBSMC keeps the advantages of the sliding mode 

control and overcomes the difficulties caused by the parametric uncertainties.  

In order to confirm the effectiveness of the proposed DBSMC, it is applied 

to an inverted pendulum on a cart system as a benchmark example for 

underactuated systems. The complete mathematical model of the inverted 

pendulum on a cart system is derived from the laws of motion according to 

movement characteristics of the system. To create a more realistic model, the DC 

motor characteristics are added to the mathematical model of the inverted 

pendulum on a cart system.  

Using the derived inverted pendulum on a cart model with DC motor, the 

system is simulated to investigate the stability and the performance of the proposed 

DBSMC for the inverted pendulum on a cart system. Simulation results show that 

the proposed DBSMC is managed to control the inverted pendulum on a cart 

system and it can be applied to real plants. Also, the simulation results prove that 

the proposed DBSMC produces a more accurate control input compared to the 

decoupled sliding mode control (DSMC). 

After obtaining a satisfactory performance of the proposed DBSMC during 

the simulations, the proposed DBSMC is applied to a real plant to provide a clearer 

view of the performance. The experimental results show that the DBSMC is more 

effective compared to the DSMC. Also, the experimental results prove that the 

DBSMC provides a robust control on the systems with parametric uncertainties 

where the DSMC fails.  

This study provides a basis for the application of the DBSMC to the 

underactuated systems. Future research can consider the potential of the DBSMC 
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method on different underactuated systems. Also, adding an adaptive scheme to the 

DBSMC might prove an important area for future research. 

In the present study, the parameters of the proposed DBSMC are chosen by 

the trial and error method. Intelligent optimization techniques can be integrated 

into the proposed DBSMC for parameter tuning in future works.  
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