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OZET

BOYLAMSAL VE YASAM VERILERININ PARAMETRIK
BIiLESiK MODELLEMESI

Elif DIiL

Yiiksek Lisans, Istatistik Boliimii
Tez Damismani: Prof. Dr. Duru KARASOY

Ocak, 2019, 64 Sayfa

Boylamsal veriler, ayn1 birimlerden belirli zaman araliklarinda elde edilen tekrarh
Ol¢timlerden olusurken, yasam verileri takip edilen herhangi bir olaym gerceklesmesine
kadar gecen siireden olugmaktadir. Bu iki tip verinin ayr1 analizleri i¢in literatiirde farkl
yontemler bulunmaktadir. Ancak birlikte toplanan bu iki veri, aralarinda iliski
oldugunda yansiz ve etkin sonuglar elde etmek icin birlikte analiz edilmelidir. Bilesik
model, bu iki verinin paylasilmis parametre modeli ile birlestirilmesiyle elde edilmekte

ve boylamsal alt model ve yasam ¢6ziimlemesi alt modellerinden olugmaktadir.

Literatiirde sik¢a kullanilan standart bilesik model yapisi, boylamsal verilerin dogrusal
karma etkili model ve yasam verilerinin Cox regresyon modelinin paylasilmis
parametre modeliyle birlestirilmesiyle elde edilmektedir. Ancak Cox regresyon
modelinin  uygulanabilmesi i¢in orantili tehlikeler varsayimmin saglanmasi
gerekmektedir. Varsayimim saglanmadigi durumlarda ve yasam verilerinin bilinen bir
dagilima sahip oldugu durumlarda parametrik regresyon yontemleri kullanilmalidir.
Bilesik modelleme de orantili tehlikeler varsayiminin saglanmadigi durumlarda da
yasam c¢oOziimlemesi alt modeli parametrik yasam ¢Oziimlemesi modelleri ile

yapilmalidir.

Calismada standart bilesik model, iki siirecin ayr1 analizleri ve Ustel, Weibull, Log-
lojistik, Log-normal ve Gamma parametrik alt modelleri ile elde edilen bilesik modeller

literatiirde yer alan Primer Biliyer Siroz verilerine uygulanmustir. ilk olarak orantili



tehlikeler varsayimi test edilmis ve varsayimin saglanmadigi goriilmiistiir. Varsayim
saglanmadigindan dolay1 parametrik bilesik modeller incelenmis ve Weibull parametrik
alt model ile dogrusal karma etkili modelin bilesik modellemesi en iyi model olarak
belirlenmistir. Standart bilesik model ile Weibull parametrik bilesik model sonuglar1
karsilastirildiginda, istatistiksel agidan onemli farkliliklar bulunmustur. Boylamsal ve
yagam verilerinin ayri analizi i¢in dogrusal karma etkili model ve Weibull parametrik
model sonuglar1 incelenmis ve Weibull parametrik bilesik model ile kiyaslanmustir.
Buna gore, Weibull parametrik model parametrelerinin tehlike oranlarinmn Weibull
parametrik bilesik modelden yiiksek oldugu tespit edilmistir. Weibull parametrik
modelde boylamsal gozlem zamana bagh aciklayici degiken olarak alinmis ve yasam
stiresine etkileri arastirilmigtir. Analiz  sonucunda Weibull parametrik modelin,
boylamsal gézlemin yasam siiresine etkisini, Weibull parametrik bilesik modelden daha

kiigiik verdigi gbzlemlenmistir.

Anahtar Kelimeler: Yasam ¢6ziimlemesi, Boylamsal veri, Bilesik model, Parametrik

bilesik model



ABSTRACT

PARAMETRIC JOINT MODELLING OF LONGITUDINAL AND
SURVIVAL DATA

Elif DIiL

Master of Science, Department of Statistics
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January, 2019, 64 pages

Longitudinal data consist of repeated measurements obtained from the same units at
certain time intervals, while survival data consists of time until the occurrence of any
event under consideration. There are different methods in the literature for separate
analysis of longitudinal and survival data. Nevertheless, these two data, particularly
collected together in clinical studies, should be analyzed together to obtain unbiased and
effective results when there is a relationship between each other. The joint model is
obtained by combining these two data with the shared parameter model, and consists of

longitudinal sub models and survival sub models.

The standard joint model structure frequently used in the literature is obtained by
combining the linear mixed effect model for longitudinal data and shared parameter
models of Cox regression model for survival data. However, in order to apply Cox
regression model the proportional hazard assumption must be satisfied. Parametric
regression methods should be used in cases where the assumption is not provided, and
when the survival data has a known distribution. In cases where the assumption of
proportional hazard is not provided in joint modelling, the survival analysis sub model

should be made with parametric survival analysis models.

In this study, standard joint model, separate analysis of longitudinal and survival data
and joint model obtained with Exponential, Weibull, Log-logistic, Log-normal and

Gamma parametric sub models have been applied to data set of Primary Biliary



Cirrhosis in the literature. Firstly, the assumption of proportional hazard has been
checked and found that the assumption is not provided. Because the assumption is not
satisfied, parametric joint models have been examined and the joint modeling of the
linear mixed effect model with parametric sub model is determined as the best model.
When the standard joint model and Weibull parametric joint model results have been
compared, statistically significant differences have been found. For separate analysis of
longitudinal and survival data, the results of the linear mixed effect model and the
Weibull parametric model have also been investigated and compared with the results of
Weibull parametric joint model. Accordingly, the parameters of Weibull parametric
model are determined to have higher hazard ratios than the parameters of Weibull
parametric joint model. In addition, while Weibull parametric model is established,
longitudinal observation have been considered as the independent variable but
dependent on time and its effect on survival time has been investigated. At the end of
the analysis, it has been observed that the effect of Weibull parametric model on the
survival times of longitudinal observation is smaller than the Weibull parametric joint

model.

Keywords: Survival analysis, Longitudinal data, Joint model, Parametric joint model
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1. GIRIS

Yasam verileri, takip edilen herhangi bir olayin gergeklesmesine kadar gegen siireden
olusurken, boylamsal veriler ayni birimlere ait 6zelliklerin zaman igerisinde tekrarl

olarak Olciilmesinden elde edilmektedir.

Boylamsal ve yasam siiresi verilerini ayr1 ayri analiz eden bir¢ok popiiler yontem
bulunmaktadir (Guo ve Carlin, 2004). Yasam siiresi verilerini analiz etmek i¢in yaygin
olarak kullanilan yontemler; yar1 parametrik bir yontem olan Cox regresyon modeli ve
parametrik regresyon yontemleridir. Cox regresyon modeli kullanilmadan 6nce orantili
tehlikeler varsayimimnin saglanip saglanmadigr kontrol edilmelidir. Varsayimin
saglanmadig1r durumlarda genellestirilmis Cox regresyon, tabakalandirilmis Cox

regresyon veya parametrik regresyon yontemleri kullanilmalidir.

Boylamsal verilerin ¢6ziimlemesinde ise popiiler olarak kullanilan yontemler; Dogrusal
karma etkili model (DKEM - Linear Mixed Effect Models) ve genellestirilmis tahmin
denklemleridir (GTD - Generalized Estimating Equations) (Mondal, 2017).

Boylamsal ve yasam siiresi verilerinin iligkili oldugu durumlarda ayri1 analiz yapmak
uygun olmayabilir (Guo ve Carlin, 2004). Bu nedenle, bazi arastirmacilar alternatif

olarak bu iki tip verinin bilesik modellemesini dnermislerdir.

Bilesik modelleme genellikle, tekrarli 6l¢iimlerden olusan boylamsal verileri ve yasam
sliresini i¢eren yasam verilerini birlestirmek i¢in kullanilmaktadir (Wulfsohn ve Tsiatis,
1997). Bilesik modellemenin temel amaci, bagimsiz degiskenlerin boylamsal ve yasam
verileri lizerine etkilerini incelemektir. Bu modelleme yaklasimi biyomedikal
arastirmalarda siklikla kullanilmaktadir. Ozellikle klinik calismalarda, boylamsal
gdzlemler yasam siiresi verileriyle birlikte elde edilmektedir. Ornegin; literatiirde
bilesik modelleme uygulamasi olarak siklikla kullanilan HIV ¢aligmasinda, hastaligin
gostergesi olarak kullanilan CD4 hiicre sayilar1 zaman boyunca tekrarli olarak 6l¢iilmiis
ve AIDS hastaligi olana kadar gecen siire veya her birim i¢in 6liim gézlemlenene kadar
gecen siire incelenmistir (Wulfsohn ve Tsiatis, 1997; Guo ve Carlin, 2004; Wu ve ark.,
2012). Kanser ¢alismalar1 da bilesik model literatiiriinde siklikla kullanilmistir (Pauler

ve Finkelstein, 2002; Lima ve Taylor, 2009). Prostat kanseri ¢alismalarinda, prostata ait



0zel degerlerin zaman igeriSinde siirekli 6l¢iilmesiyle elde edilen dlgiimler ile hastaligin

yeniden niiksetmesi durumu birlikte modellenmistir (Pauler ve Finkelstein, 2002).

Tek degiskenli yasam ve boylamsal veri i¢in temel bilesik model tizerine ilk ¢alismalar
Self ve Pawitan (1992), DeGruttola ve Tu (1994), Tsiatis, DeGruttola ve Wulfsohn
(1995), Faucett ve Thomas (1996) ve Wulfsohn ve Tsiatis (1997) tarafindan yapilmistir.
Self ve Pawitan (1992), bilesik modelin parametre tahminlerini elde etmek igin iki
asamali yaklagimi 6nermislerdir. Birinci asamada rastgele etkileri tahmin etmek i¢in en
kiiciik kareler yontemini kullanmiglar ve ikinci asamada bu tahminleri Cox regresyon
modelinin kismi olabilirlik fonksiyonunda kullanarak, boylamsal dl¢iimlerin
tahminlerini elde etmislerdir. DeGruttola ve Tu (1994) yasam siiresini parametrik olarak
modelleyen basit olabilirlik ¢ikarimmna dayanan bilesik modellemeyi incelemislerdir.
Tsiatis, DeGruttola ve Wulfsohn (1995), Self ve Pawitan’in (1992) 6nerdigi iki asamali
yaklagimdan farkli olan iki asamali yaklagimi 6nermislerdir. Boylamsal 6l¢timler icin
normal dagilmig hatalara sahip bir model varsaymiglar ve EM algoritmasiyla modeli
tahmin etmislerdir. Daha sonra bu tahminleri, yasam verilerinin parametrelerini tahmin
etmek igin orantili tehlikeler modelleri ve Cox regresyon modelinde kullanmiglardir.
Faucett ve Thomas (1996) sadece gozlemlenmis verilerden olusan tiim modelin
bilinmeyen parametrelerinin bilesik sonsal dagilimimi elde etmek i¢in Markov zincirleri,
Gibbs algoritmasmni kullanmiglardir. Wulfsohn ve Tsiatis (1997) Cox regresyon modeli
ve boylamsal siire¢ i¢in dogrusal karma etkili modelden olusan bilesik model i¢in tam

olabilirlik yaklasimini 6nermislerdir.

Henderson, Diggle ve Dobson (2000) boylamsal dlgtimler ve yasam siireleri igin sirali
korelasyon ve rastgele etkiler iceren iki duragan Gauss siirecini benimseyen genel bir
model olusturmuglardir. Sirali korelasyon siireci, egilimin (trend) zamanla degigmesine
olanak tanir ve siliregcteki diizensiz egilimle 1ilgili olarak gelisen biyolojik
dalgalanmalardan kaynaklandig1 diisiiniilebilecek birimler arasi korelasyon yapisina izin

verir (Henderson, Diggle ve Dobson, 2000; Wang ve Taylor, 2001).

Tsiatis ve Davidian (2001) rastgele etkilerin tizerinde dagilim varsayimi gerektirmeyen
bilesik model parametrelerinin tahmin edilmesi igin basit bir model Onermislerdir.
Kosullu skor yaklasimi olarakta bilinen bu yaklasimda, rastgele etkiler sorunlu

parametreler olarak kabul edilir ve uygun bir yeterli istatistik iizerinde belirlenerek



bilesik model i¢in yar1 parametrik tahminler elde edilir. Bu modelin parametrik
modellerden daha az kullanish oldugu ifade edilmektedir (San, 2013).

Song, Davidian ve Tsiatis (2002) bilesik modelin tahmininde kullanilan rastgele
etkilerin normallik varsayimmin ihlal edildigi durumlarda parametre tahminleri icin
olabilirlik temelli bir yaklasim Onermislerdir. Yaklagimi EM algoritmas: kullanarak
HIV klinik verisi lizerinde ve simiilasyonlar ile test etmislerdir. Dobson ve Henderson

(2003) bilesik model varsayimlarini test edebilmek i¢in kosullu artiklar: kullanmiglardir.

Tseng, Hsieh ve Wang (2005) hizlandirilmis basarisizlik siiresi ve 6lglim hatalar1 iceren
boylamsal veriler varliginda, bilesik modelleme olabilirlik fonksiyonunun maksimize
edilmesi tizerine ¢aligmiglardir. Modeldeki bilinmeyen parametrelerin tahminini elde
etmek icin Monte Carlo EM algoritmasini kullanmislar ve bu prosediiriin performansini
simiilasyonlar ve gercek veri iizerinde incelemislerdir. Ayrica, modelin yanlis
tanimlanmasina karsilik saglamlik elde etmek icin, standart hatalarm tahminlerinin

sikistirilmig (sandwich) tahmin ediciler ile bulunmasini 6nermislerdir.

Hsieh, Tseng ve Wang (2006) bilesik modelin olabilirlik tahminlerinden elde edilen
standart hatalarin giivenilir tahminlerini elde etmek icin bootstrap yaklasimini
onermiglerdir. Rizopoulos, Verbeke ve Molenberghs (2008) bilesik modellemede
rastgele etkilerin dagiliminin yanlis tanimlanmasindaki etkisini arastrmiglardir.
Arastirma sonucu, belirli tahmin ediciler i¢in birim basmma boylamsal 6l¢iimlerin
artmastyla, rastgele etkilerin dagilimimin yanlis tanimlanmasmin g¢ikarim prosediirii

iizerinde daha az etkiye sahip olacagini gostermislerdir.

Bir¢ok klinik ¢alismada, hastalar takip siiresi i¢inde birden fazla olay yasayabilir ve bu
tip olaylar yarisan riskler olarak adlandirilmaktadir. Elashoff, Li ve Li (2008),
Williamson ve ark. (2008) ve Hu, Li ve Li (2009) yarisan riskler ve ¢oklu basarisizlik
durumunda bilesik modelleme {izerine ¢alismalar yapmislardir. Li ve ark. (2009)
yarigan riskler ve boylamsal sirali Olgiimlerden olusan bilesik modellemeyi
onermislerdir. Boylamsal sirali Olgiimler igin kismi orantili odds modellerini gizli
rastgele degiskenler ile yasam siirelerine baglamiglardir. Kismi orantili odds modeli,
siral1 gozlemler i¢in kullanilan popiiler orantili odss modelinin genisletilmis
versiyonudur. Olusturduklar1 bilesik modelin parametre tahminlerini elde etmek igin
EM algoritmasimi kullanmiglardir. Rizopoulos (2010) boylamsal ve yasam verilerinin

bilesik model tahminlerini elde etmek i¢in R paket programinda “JM” paketini
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gelistirmistir. Rizopoulos, Verbeke ve Molenberghs (2010) model varsayimlarmi test
etmek icin ¢oklu etki artiklarinit 6nermiglerdir. Albert ve Shih (2010) ¢oklu boylamsal
gozlemler ve kesikli yasam siiresi verilerinin bilesik modellemesi igin yeni bir yaklagim
onermislerdir. Bu yaklasim, olay siiresinde kosullanan ikili dogrusal karma model ile
boylamsal gozlemlerin tiim ikili kombinasyonlarint modelleyerek, olay siiresindeki
coklu boylamsal goézlemlerin kosullu dagilimlarini tahmin etmeyi amaclamaktadir.
Sweeting ve Thompson (2011) iki asamali yaklasim ile paylagilmis rastgele parametre
modelini karsilastirmiglardir. Calisma sonucunda, iki asamali yaklasimim boylamsal ve

yasam siiresi verileri arasindaki iliskiyi yanli tahmin ettigini bulmuslardir.

Su ve Wang (2012) soldan kesilmis (left truncation) yasam verileri ve boylamsal
gozlemlerin bilesik modellemesini incelemislerdir. Literatiirde yer alan standart bilesik
modelleme olabilirlik yaklagimlarinin, durdurulmus gézlemlerin oldugu yasam verileri
ve boylamsal verilerin bilesik modelleme tahminlerinde yansiz ve etkin sonuglar verse
de soldan kesilmis verilerin olmasi durumunda ayni performansit gostermedigini
aciklamiglar ve bu sorunu ortadan kaldirmak i¢in yeni bir olabilirlik yaklasimi
onermislerdir. Onerdikleri yaklasimm yansiz ve etkin tahminler verdigini, AIDS kohort
caligmasi ve simiilasyonlar ile gostermislerdir. Lima ve ark. (2012) parametre
tahminleri i¢in bilesik modellemede gizli simif (latent class) durumunu incelemis ve
bilesik gizli sin1f modelini 6nermislerdir. Bilesik gizli sinif modeli, boylamsal bagimsiz
degiskenler ve olay riski arasindaki iligkiyi tamamen yakaladigin1 varsayarak elde edilir.
Onerdikleri modeli, paylasilmis rastgele etkili modelle karsilastrnuslar ve modelin
performansini degerlendirmislerdir. Crowther ve ark. (2012) bilesik modelin yasam
¢oziimlemesi kismui i¢in, kisitlanmus kiibik splinelar1 kullanarak logaritmik temel tehlike

modelleri i¢in esnek parametrik yaklasimi tanimlamislardir.

Efendi ve ark. (2013) siirekli ve ikili boylamsal gézlemler ile yasam siiresi verilerini
birlestiren bir model Onermislerdir. Liu ve Li (2014) cok degiskenli boylamsal
gozlemler ile yasam verilerinin bilesik model tahmininde Bayesci bilesik model tahmin
edicilerini kullanmiglardir. Tang ve Tang (2015) ¢ok degiskenli yasam siiresi ve
boylamsal verileri i¢in yar1 parametrik ¢cok degiskenli ¢arpik-normal (skew-normal)

bilesik modeli 6nermislerdir.

Hickey ve ark. (2016) bilesik modelleme ile literatiirde gelistirilen yontemleri, ¢ok

degiskenli boylamsal gozlemler iceren bilesik modelleme yOntemlerini, model
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varsayimlarini, birlestirme ve parametre tahmin yontemlerini ve bilesik modellemenin
yazilim araglarmi 6zetleyen bir ¢alisma yapmislardir. Rizopoulos (2016) bilesik model
parametre tahmini icin Monte Carlo algoritmasini kullanarak bayesci tahminleri elde

eden, R programinda bulunan “JMBayes” paketini gelistirmistir.

Hickey ve ark. (2018) birden fazla boylamsal goézlemleri igeren bilesik modelin
parametre tahminlerini elde etmek icin, R paket programinda “JoineRML” paket

programini gelistirmislerdir.

Bilesik modelleme iizerine Tiirkiye’de sinirli sayida ¢calisma bulunmaktadir. Ulgen ve
Asar (2017) bilesik modelleme igin egitsel ve derleme niteligindeki ¢aligmalarinda,
boylamsal alt model i¢in dogrusal karma etkili model ve yasam verileri i¢in
genisletilmis Cox regresyon modelini PAQUID verisine uygulamislar ve bilesik model
tahminlerini, dogrusal karma etkili model ve genellestirilmis Cox regresyon modelinin
ayr1 analizleri ile kiyaslamislardir. Turgal (2016) bilesik modelin yasam ¢oziimlemesi
kismi i¢in Cox regresyon modeli ve boylamsal kisim i¢in dogrusal karma etkili modeli
kullanmigtir. Turgal, Erdogan ve Kose (2017) simiilasyon ¢alismalar1 ile zamana baglh
degiskenlerin ¢esitli O6rneklem biiyiikliiklerinin ve varyans-kovaryans yapilarinin

performanslarimi incelemislerdir.

Calismanin ikinci boliimiinde boylamsal veri ve bu verilerin analizi hakkinda genel
bilgiler verilmistir. Boylamsal veri analizinde parametrik regresyon yontemi olarak
siklikla kullanilan GTD ve DKEM incelenmistir. Bilesik modellemenin boylamsal alt
modelinde kullanilan dogrusal karma etkili modelin parametre tahmin yontemlerine

deginilmistir.

Calismanin iiclincli boliimiinde yasam ¢oziimlemesi detayl sekilde incelenmistir. Yar1
parametrik regresyon yontemi olan Cox regresyon yontemi ve yasam ¢oziimlemesinde

kullanilan parametrik yasam ¢oziimlemesi yontemleri tanitilmistir.

Calismanin dordiincii boliimiinde ise boylamsal ve yasam ¢oziimlemesi slirecini
paylasilmis parametre modelleri ile baglayan bilesik model ayrmtili olarak
incelenmistir. 1k olarak boylamsal alt model igin dogrusal karma etkili model ve yasam
coziimlemesi i¢in Cox regresyon modelinin kullanildig1 standart bilesik model yapisi

ele alinmistir. Daha sonra orantili tehlikeler varsayimmin saglanmadigi ve yasam



stiresinin belirli bir parametrik dagilim gosterdigi durumlar igin parametrik alt modeller
ile bilesik modelleme yontemleri tanitilmis ve bilesik model parametre tahmin

yontemleri ayrmntili olarak incelenmistir.

Besinci kisimda ise literatiirde yer alan Primer Biliyer Siroz (PBS) verisi iizerinde
standart bilesik model, parametrik bilesik modeller ve iki siirecin ayr1 ayri analizleri

yapilarak, sonuglar yorumlanmustir.

Bu ¢alismanin amaci, boylamsal ve yasam verilerinin iliskili oldugu durumlarda
kullanilan bilesik modellemeyi incelemek ve literatiirde siklikla kullanilan standart
bilesik modellemenin orantili tehlikeler varsayimini saglamadigi durumlarda alternatif
olarak kullanilabilecek parametrik bilesik model yapilarini tanitmaktir. Bu amagla veri
seti lizerinde standart bilesik modelleme, iki siirecin ayri analizi ve farkli parametrik

bilesik modeller incelenip, yorumlar yapilmistir.



2. BOYLAMSAL VERI

Panel veri olarak da bilinen boylamsal veriler, ayni birimlere ait 6zelliklerin belirli
zaman araliklarinda tekrarli olarak Olgiilmesi ile elde edilmektedir (Sousa, 2011).
Birimler; haneler, kuruluslar ve bireylerden olusabilir. Boylamsal veriler farkli zaman
noktalarinda tekrarli dlciimlerden elde edildiginden dolayi, zaman serileri ve klasik
regresyon analizinden ziyade Ozel istatistiksel yOntemlerle analiz edilmelidir

(Fitzmaurice, Laird ve Ware, 2011).

Boylamsal ¢aligmalarda kayip veri oldukga yaygindir (Ibrahim ve Molenberghs, 2009).
Ornegin; calismanin tiim birimleri belirli bir zamanda ¢alismaya katilmayabilir veya
bazi birimler ¢alisma sona ermeden 6nce ¢alismay1 birakabilirler. Tiim birimler ayni
zaman noktasinda ayni tekrarli 6lgiimlere sahip olamayacagindan dolay1 veri dengesiz
(unbalanced) olarak elde edilebilir. Bu nedenle dengesiz ve kayip veri varliginda
boylamsal verileri analiz edecek teknikler kullanilmahdir (Fitzmaurice, Laird ve Ware,
2011).

Boylamsal veri analizinde amag, bagimli degiskende zaman igerisindeki degisimi ve bu
degisime neden olan etkenleri ortaya c¢ikartmaktir. Bu veri setinin analizinde,
parametrik regresyon, parametrik olmayan regresyon ve yar1 parametrik regresyon gibi
cesitli regresyon yontemleri kullanilmaktadir. En sik kullanilan parametrik yontemler;

GTD ve DKEM’dir (Kalkan, 2014).

2.1. Genellestirilmis Tahmin Denklemleri

Liang ve Zeger (1986), boylamsal verilerin analizi i¢gin DKEM’e alternatif olarak
GTD’yi onermislerdir (Ballinger, 2004). Klinik ve biyomedikal ¢aligmalarda yaygin
olarak kullanilmaktadir (Wang, 2014). GTD siirekli, siraly, iKili ve sayim verisi yapisina
sahip verilerin analizinde kullanilmaktadir (Ghisletta ve Spini, 2004).

GTD ve DKEM dengeli ve dengesiz boylamsal verilerin analizi i¢in
kullanilabilmektedir (Kalkan, 2014). Ancak, bu iki yontem model tahminlerinde
farklilik gostermektedir. DKEM, ayni birimlerin gozlemleri arasinda korelasyonu

belirlemek i¢in rastgele etkileri kullanarak bireysel bir yaklasim sergilerken, GTD



parametrelerin tahminleri i¢in kitle temelli yar1 olabilirlik yontemlerini kullanmaktadir

(Wedderburn, 1974; Crowder, 1995).

Tez c¢alismasinda, bilesik modelin  boylamsal kismi i¢in  DKEM  modeli

kullanilacagindan dolayi, DKEM modeli ayrintili olarak incelenmistir.

2.2. Dogrusal Karma Etkili Model

Laird ve Ware (1982), birimler aras1 ve birimler igindeki degisimi igeren boylamsal
veriler igin dogrusal bir model Onermislerdir. Eksik veri ve denekler arasindaki
dengesizlik durumunda model tahminleri yansiz ve tutarli sonuglar verdigi i¢in en ¢ok

tercih edilen yontemlerden biridir (Hedeker ve Gibbons, 2006; Doganay, 2007).

Dogrusal karma veya rastgele etkili modelde bagimli degisken, birimden birime rastgele
etkiyle degisen regresyon katsayilarina sahip bagimsiz degiskenlerin dogrusal bir formu
olarak kabul edilir. Birimler arasindaki bu farklilagsma 6l¢iilmeyen faktorlerden dolay:
ortaya ¢ikmaktadir (Diggle ve ark., 2002). Bagimli degisken rastgele ve sabit etkiler
kullanilarak modellenmektedir (Bates ve ark., 2015).

Degiskenlerin diizeyleri 6nceden belirlenmisse bu degisken diizeyleri sabit etkiler
olarak adlandmrilir. Eger degiskenin diizeyleri daha genis bir kitleden rastgele olarak
secilmigse bu etkiler rastgele olarak adlandirilmaktadir. Karma etkili model hem sabit
hem rastgele etkileri iginde barindirmaktadir (Doganay, 2007). DKEM’de, sabit etkiler
tiim birimler i¢in ortak kabul edilir ve kitle etkisini gosterirken, rastgele etkiler birimden

birime degisir ve birimlerin kitle degerlerinden sapmalarin1 géstermektedir (Vittinghoff

ve ark., 2005; Mondal, 2017).

Genel olarak DKEM,

Yi =XiB+ZDb +¢ (2.1)
seklindedir (Harville, 1977; Laird ve Ware, 1982; Verbeke ve Molenberghs, 2000).

Burada;
Vi =(Yip, Yigreer Yim, )', i. birim i¢in tekrarli 6lgimlerden olusan m, x1 boyutlu vektor,
S px1 boyutlu sabit etkiler vektori,

X;: m, x1 boyutlu sabit etkilere karsilik gelen tasarim matrisi,

b.: qx1 boyutlu rastgele etkiler vektortii,



Z,: rastgele etkiler b, ’ye karsilik gelen m; xq boyutlu tasarim matrisi,

& = (&1, &2y 161 )" My x1 boyutlu drneklem veya dlgiim hatalar vektoriidiir.

Rastgele etkilerin b ~N(0,G) seklinde ¢ok degiskenli normal dagilima sahip oldugu
varsayllmaktadir. Burada, G rastgele etkiler icin kovaryans matrisidir. Orneklem hatas1
& 'nin ise rastgele etkilerden bagimsiz (Cov(b,&)=0) ve & ~N(O,R) seklinde ¢ok
degiskenli normal dagilima sahip oldugu varsayilmaktadwr. R, Orneklem hatasi igin

kovaryans matrisini géstermektedir (Fitzmaurice, Laird ve Ware, 2011).

2.2.1. Dogrusal Karma Etkili Modellerde Parametre Tahmini

DKEM’de parametre tahmini i¢in en cok olabilirlik (ECO) yontemi kullanilir
(Rizopoulos, 2012a). En ¢ok olabilirlik tahminleri (ECOT) olabilirlik fonksiyonunun
maksimize edilmesi ile elde edilmektedir (Fitzmaurice, Laird ve Ware, 2011). Bir
modelde gozlemlerin bagimsiz oldugu varsayilirsa, olabilirlik fonksiyonu her birimin
yogunluk fonksiyonu ile basitge hesaplanabilir (Asimow ve Maxwell, 2015). Ancak,
karma modellerdeki gibi tekrarli Olg¢limler oldugunda gozlemler bagimsiz
olmayacagindan dolay:r Glgiimler igin bilesik olabilirlik fonksiyonu kullaniimalidir
(Fitzmaurice, Laird ve Ware, 2011).

Esitlik 2.1°de tekrarli Olglimler Y,’nin bagimsiz oldugu varsayilirsa, olabilirlik
fonksiyonu (£(0)) tekrarli dlgiimlerin ¢ok degiskenli normal olasilik yogunluk

fonksiyonlarmin toplami seklinde yazilabilir. 8 ’nin ECOT’sini hesaplamak igin asagida
belirtilen  log-olabilirlik ~ fonksiyonunun  maksimize edilmesi  gerekmektedir
(Fitzmaurice, Laird ve Ware, 2011):

N 13 13 ]
1(0) = -Elog(zﬁ)-EZIog Vi I-E{Z(yi - XiBIV(Y; - Xiﬁ)} (2.2)
i=1 i=1
Burada N :£Z miJ toplam gozlem saymi, M, i. birim i¢in tiim gozlem sayismi ve
i=1

| V.|, varyans-kovaryans matrisi V, =ZiGZi’+UZIni ‘nin determinantin1 gostermektedir

(Rizopoulos, 2012a).



Skor fonksiyonunu (log-olabilirlik fonksiyonunun (Esitlik 2.2) £ ’ya gore tiirevi) sifira
esitleyerek ve denklemi ¢dzerek f’nm ECOT elde edilebilir. ilk iki terim S ’y1

icermediginden dolay1 log-olabilirlik fonksiyonunu maksimize etmek icin bu terimler
ihmal edilebilir. Ayrica {igiincii terim negatif isaretli oldugundan dolayi, log-olabilirlik

fonksiyonunun g ’ya gore maksimizasyonu basitce elde edilebilir ve agagidaki gibidir

(Fitzmaurice, Laird ve Ware, 2011):

i(yi - XilB),\/i_l(yi - XiIB) . (2.3)

Esitlik 2.3 minimize edilerek, A ’nin en kiiciik kareler (EKK) tahmin edicisi

n -1
[3={;(xivilxi)} 2 (XM7Y (2.4)
bigiminde elde edilir. Bu formiil V,’nin bilindigi varsayimi altinda uygulanir ancak
genellikle V; bilinmez ve veriden tahmin edilerek elde edilir (Fitzmaurice, Laird ve
Ware, 2011). g’min verilen bir degeri i¢in ((6,,0>) fonksiyonunun maksimize
edilmesiyle V,’nin ECOT’si elde edilebilir (Rizopoulos, 2012a). V,’nin ECOT’si

alindiktan sonra, Esitlik 2.4’te V,’nin tahmin edicisi yerine \7, yazilarak £ ’nin

ECOT’si asagidaki gibi elde edilebilir:

n 1 n

B Z{Z(Xﬁ\/ilxi)} D (XVity) (2.5)
i=1 i1

V,’nin tahmini i¢in kisitlanmis en ¢ok olabilirlik tahmin edicileri (RECOT) de

kullanilabilir (Harville, 1977; Rizopoulos, 2012a). V,’nin RECOT tahmininde,

olabilirlik f’y1 icermez ve V, cinsinden tanimlanmistir (Fitzmaurice, Laird ve Ware,

2011; Rizopoulos, 2012a).
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3. YASAM COZUMLEMESI

Yasam c¢Oziimlemesi, takip edilen olayin gerceklesmesine kadar gegen siirenin
¢oziimlemesini igermektedir (Chernick ve Friis, 2003). Siire; yasam siiresi, basarisizlik
siiresi veya olay siiresini ifade etmektedir (Rizopoulos, 2012a). Ornegin, hastaneden
¢ikana kadar gegen siire, HIV hastalarinda 6liim veya AIDS tanisi konulana kadar gegen

siire olabilir.

Genellikle olaylarda birimlerin bir kismi igin olay gdozlemlenebilir. Diger olaylar i¢in
olayin ger¢eklesme zamani mevcut takip zamanindan daha biiyiiktir ve olay
gozlemlenmeyebilir. Bu tip olaylarla yasam ¢6éziimlemesinde sik sik karsilagiimakta ve
bu durumda siire durdurulmus siire olarak adlandirilmaktadir (Sullivan, 2012).
Durdurma temel olarak ti¢ nedenden dolay1 gériilmektedir (Kleinbaum ve Klein, 2012):

= (Calismanimn sonuna kadar ilgilenilen olaym gozlemlenmemesi,

= Birimlerin, ¢alisma devam ederken ¢alismadan ¢ekilmesi,

= Birimlerin ilgilenilen olaymm disinda baska bir olaydan dolayi calismadan

ayrilmasi.

Durdurma bilgi igeren (informative) veya bilgi icermeyen (non-informative) seklinde de
ortaya cikabilir. Bir kisi test sonuglarmin kotiilesmesinden dolay1r ¢alismadan ¢ikarsa
durdurma bilgi igeren (rastgele olmayan) olarak kabul edilir ve basarisizlik orani hala
calismada olanlardan farkli olabilir. Eger bir kisinin g¢alismadan ayrilmasi test

sonuglarindan bagimsizsa durdurma bilgi icermeyen olarak tanimlanir (Rizopoulos,

2012a).

Standart yasam ¢o6ziimlemesinde durdurmanin bilgi icermeyen oldugu varsayilir
(Allison, 2010). Bu ¢o6ziimlemede genellikle yasam siirelerinin dagilimlar1 yasam
fonksiyonu (survival function) ve tehlike fonksiyonu (hazard function) ile
gosterilmektedir (Bewick, Cheek ve Ball, 2004).

Yasam Fonksiyonu
T, F(t)=P(T <t) birikimli dagilim fonksiyonu ve f(t) olasilik yogunluk fonksiyonu
ile yasam siiresi igin siirekli rastgele degiskeni gostersin. Yasam fonksiyonu S(t),

olayin t zamanindan sonra meydana gelme olasilig1 olarak tanimlanir ve
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S(t)=P(T >t) =1—-F(t) = jt “ f (x)dx (3.1)

bi¢iminde ifade edilir (Pintilie, 2006). Yasam fonksiyonunun 6zellikleri;
= Artmayan bir fonksiyondur
= t=0 iken; S(t)=S(0) =1
= t=o0 iken; S(t)=S(x)=0
seklindedir (Kleinbaum ve Klein, 2012). t zamanma karsi S(t) yasam olasiliklarinin

grafigi ¢izilerek yasam egrisi elde edilebilir (Bewick, Cheek ve Ball, 2004).

Tehlike Fonksiyonu

Tehlike fonksiyonu, t zamaninda yasayan bir birimin anlik olay hizin1 géstermektedir

ve

P(t<T <t+ot|T >t
ht) = lim 1 24 +ot| )},t>0
5t—0 ot

_ lim P(t<T <t+6t)
Cas0|  SP(T > 1)

im { F(t+t) - F(t)}
20| StP(T > 1)

_f0

T S(b) (32)

bi¢iminde tanimlanir (Pintilie, 2006). Burada, f(t) yasam siiresi i¢in T rastgele
degiskeninin olasilik yogunluk fonksiyonunu gostermektedir. H(t) birikimli tehlike

fonksiyonu, t =zamanma kadar olusan birikimli tehlike olarak tanimlanabilir

(Rizopoulos, 2012a):

t
H(t) = jo h(u)du (3.3)
S(t), h(t) veya H(t) fonksiyonlarmin biri bilinirse, diger iki fonksiyon,

h(t =—§log(8(t»

H(t) = —log(S(1))
S(t) = exp(— H(t)) = exp {— [!hu) du} (3.4)

seklinde tanimlanir (Pintilie, 2006).
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Yasam ¢oziimlemesi, temel olarak ¢alismanin baslangic noktasindan itibaren herhangi
bir zamanda meydana gelen basarisizligin tehlikesi veya riski ile ilgilenir. Bu nedenle
coziimlemelerde ¢ogunlukla tehlike fonksiyonu modellenmektedir. Bu modellemenin
iki ana hedefi vardir: 1) Hangi bagimsiz (agiklayici) degiskenlerin tehlike fonksiyonu
iizerinde etkisi oldugunu incelemek, 2) Calismadaki birimlerin tehlike fonksiyonlarmi

incelemektir (Collett, 2003).

Yasam stiresi ve bir veya daha fazla bagimsiz degisken (yas, cinsiyet, ik gibi)
arasindaki iliskiyi incelemek i¢in yar1 parametrik ve parametrik yasam ¢oziimlemesi

modelleri kullanilmaktadir (Fox, 2008).

3.1. Cox Regresyon Modeli

Cox (1972) tarafindan onerilen Cox regresyon modeli (orantili tehlikeler modeli),
yagsam ¢Oziimlemesinde popiiler olarak kullanilan yar1 parametrik regresyon modelidir
(Fox ve Weisberg, 2011). Bu model yasam siiresi ile bir veya daha fazla bagimsiz
degisken arasindaki iligkiyi incelemektedir (Singh ve Mukhopadhyay, 2011). i. birim

icin Cox regresyon modeli;

hi (t]x;) =hy(t) exp(B'X;) (3.5)
bigimindedir (Rizopoulos, 2012a). Burada, h,(t) bagimsiz degisken igermeyen birimin

!

temel tehlike fonksiyonu, X =(Xj,...,X;,) p bagimsiz degisken vektériini ve /S

modeldeki bagimsiz degiskenlerin katsayilar vektorinii gostermektedir (Ata, Karasoy
ve Sozer, 2008).

Cox regresyon modelinde, temel tehlike fonksiyonu belirlenmemis oldugundan dolay1
yar1 parametrik bir modeldir (Fox ve Weisberg, 2011). Model tahmini i¢in temel tehlike
fonksiyonun sekli hakkinda bir varsayim bulunmamaktadir (Ahmed, Vos ve Holbert,
2007). Cox regresyon modeli, tehlike oranmmin zaman boyunca sabit oldugunu
varsaymaktadir (Bewick, Cheek ve Ball, 2004). Bu nedenle, Cox regresyon modeli
uygulanmadan 6nce “orantililik” varsayimmnin kontrol edilmesi gerekmektedir (Persson,
2002).

Cox regresyon modelinin regresyon katsayilarinm tahmininde kismi olabilirlik (Partial
likelihood - KO) tahmin edicileri kullanilmaktadir (Cox, 1972; Lewis, 2017). r tane

ayrik basarisizlik (olay) siirelerine ve n—r tanesi durdurulmus yasam siirelerine sahip n
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birime ait bir veri seti olsun. Her basarisizlik zamaninda sadece bir tane olay oldugunu
varsayalim. KO yOntemi i¢in siralanmis basarisizlik Siirelerine ihtiya¢ duyulmaktadir

(Collett, 2003):
ty <ty <...<t, (3.6)

Burada t; j. sirali basarisizlik siiresini gostermektedir.

Cox (1972), Esitlik (3.5)’de verilen Cox regresyon modeli i¢in kismi olabilirlik

fonksiyonu asagidaki gibi formiile etmistir:

T exp(Bxg)
L(ﬂ)—lj:! S exp(f'x) (3.7)
I<R(tg)
Burada,

Xg ; J- sirali basarisizhik siiresi t; *de basarisiz olan bagimsiz degisken vektord,

R(t;) (risk kiimesi); t; ’de riskte olan birimlerin kiimesidir.

Olabilirlik fonksiyonunun tahmini, basarisizlik siiresine sahip birimler tizerindedir
ancak risk altinda bulunan birimler olabilirlik fonksiyonun paydasinda katkida
bulunurlar (Collett, 2003).

n birim igin gozlenen yasam siresi t,t,,...,t. ve o, gosterge degiskeni olsun.

i=12,...,nolmak iizere i. yasam siiresi t;, durdurulmus ise &, =0, diger durumlarda
0, =1 degerini alir (Collett, 2003). Esitlik (3.7)’deki olabilirlik fonksiyonu,
S
] exp(B'x)
L(B) = p (3.8)
li:_l[ Z exp(B'x,)

1eR(t;)

bi¢iminde yazilabilir. Burada R(t;) t, zamanindaki risk kiimesini gostermektedir ve bu

esitlige karsilik gelen log-olabilirlik fonksiyonu asagidaki gibi ifade edilmektedir:

logL(B) =5 {ﬂ'xi— log ¥ exp(ﬂ’X.)} (39)
i1 1R ()

Newton-Raphson gibi bazi sayisal maksimizasyon yontemleri kullanilarak log-

olabilirlik fonksiyonundaki S parametrelerinin ECOT’leri elde edilebilir (Collett,
2003).

14



3.2. Parametrik Modeller

Yasam siiresinin belli bir dagilima sahip oldugu durumlarda parametrik yontemlerden
yararlanilmalidir (Collett, 2003; Klein ve Moeschberger, 1997; Hosmer, Lemeshow ve
May, 2008). Yaygm olarak kullanilan dagilimlar: Ustel, Weibull, Log-lojistik, Log-

normal ve Gamma dagilimidir.

3.2.1. Ustel Dagihm

Ustel model, yasam ¢oziimlemesinde kullamlan en basit parametrik yontemdir ve
tehlikenin zaman boyunca sabit olma varsayimina dayanmaktadir. Yasam stiresi A

parametresi ile Ustel dagilima sahip ise, olasilik yogunluk fonksiyonu

(3.10)

“1,—(c7't) -1
£()= o e t>0,07 >0
0 t<0

bigiminde tanimlanir. Ustel dagiimin yasam fonksiyonu, tehlike fonksiyonu ve
birikimli tehlike fonksiyonu sirasiyla asagidaki gibi elde edilebilir (Karasoy ve Tutkun,
2016):

S(ty=e "

h)=c, o >0

Ht) =o't (3.11)

3.2.2. Weibull Dagilim

Weibull model, ilk olarak Waloddi Weibull (1939) tarafindan 6nerilmis ve iki pozitif
parametre ile Ustel modelin genellestirilmis halidir. Modeldeki ikinci parametre tehlike
fonksiyonunun farkli sekillerine ve modelin biiylik esnekligini saglamaktadir. Modelin
esnekligi, yasam ve tehlike fonksiyonlarmin basit olusundan dolayr Weibull model
deneysel ¢alismalarda uygulama kolayhigi saglamaktadir (Liu, 2012). Weibull
dagiliminin tehlike, yasam, birikimli tehlike ve olasilik yogunluk fonksiyonlar1

sirasyla,
h(®)=o"y(o™ 1)
S(t) =exp[ (ot |
H(H) = (o 1)’
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ft)y=c"y(c "ty g t>0, y,0"'>0 (3.12)
seklinde tanimlanabilir (Karasoy ve Tutkun, 2016). o™ ve y swrastyla dagilimmn dlgek

ve sekil parametreleridir. =1 oldugunda Weibull dagilimi Ustel dagilima
dontigmektedir (McCool, 2012).

3.2.3. Log-lojistik Dagihm

Yasam siiresinin logaritmasi (log(T)) lojistik dagilima sahip ise, yasam siiresi Log-

lojistik dagilima sahiptir. Log-lojistik dagilimin tehlike, yasam, birikimli tehlike ve
olasilik yogunluk fonksiyonlari sirastyla agsagidaki gibidir:

h(t) = ayt’™ (1+ at’ )71
St) =(1+at’)
H(t) =log[1+at” ]

f(t) = (ayt7*l)(1+ at” )72 t>0, >0, >0 (3.13)

(Klein ve Moeschberger, 1997; Steensmeier ve Jones, 2004; Hosmer, Lemeshow ve

May, 2008). a ve y sirasiyla dagilmin 6lgek ve sekil parametreleridir. Log-lojistik

dagilim 6nce artan, daha sonra azalan ya da monoton azalan tehlike fonksiyonu igin
kullanilabilir (Karasoy ve Tutkun, 2016).

3.2.4. Log-normal Dagihm

McAlister (1879) tarafindan Onerilen Log-normal dagilim, logaritmasi alinan bir
degiskenin normal dagilim gdstermesi olarak tanimlanabilir (Karasoy ve Tutkun, 2016).

Dagilimin tehlike, yasam, birikimli tehlike ve olasilik yogunluk fonksiyonlari sirasiyla,

-t 20|y oo 094
S(t) =1-¢[ (logt — 1) o |
H(®) =log {1-¢[ (logt - u1) o ]}

1

N

f() = exp{—(logt —uy 2’10"2}(t0')_l (27)2  t>0, 0>2 (3.14)
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seklinde tanimlanir (Evans, Hastings ve Peacock, 2000; Hosmer, Lemeshow ve May,

2008). ¢(z) standart normal dagilimm birikimli dagilim fonksiyonunu gostermektedir
(Klein ve Moeschberger, 1997).

3.2.5. Gamma Dagilimi

Iki parametreli Gamma dagilimi (G(A,7)) Ustel dagilimin 6zel bir durumundan

olusmaktadir. Gamma modellerinin yasam ve tehlike fonksiyonlar1 kapali sekilde ifade
edilemediginden dolay1 yasam c¢oziimlemesinde sinirli olarak kullanilmaktadir (Liu,
2012). Gamma dagiliminin tehlike, yasam ve olasilik yogunluk fonksiyonlari sirasiyla

asagidaki gibi tanimlanabilir:

() = — At e
[!Fiy)(ﬂx)ﬂ e“deF(y)
T )“ AX

S)=|—— B

=1t

2T

f(t)——, t>0, >0, >0 (3.15)

I'(y)

Gamma dagilimi, =1 oldugunda Ustel dagilima doniismektedir. Tehlike fonksiyonu,
y >1 oldugu durumda monoton artan, y =1 oldugunda sabit ve y <1 oldugu durumda

monoton azalan bir yapiya sahiptir (Rodriguez, 2010).
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4, BOYLAMSAL VE YASAM VERILERININ PARAMETRIK
BIiLESiK MODELLEMESI

Boylamsal veriler tekrarli olg¢iimlerden olusurken, yasam verileri ayni birimlerde
ilgilenilen olay gerceklesene kadar gecen siireyi icermektedir. Bu iki veri seti, tekrarl
Olglimlerin yasam verileriyle iliskili oldugu anlasilana kadar ayri ayr1 analiz edilmistir
(McCrink, Marshall ve Cairns, 2013). Ancak, bu iki verinin ayri modellemesi

sonucunda Ol¢iim hatalar1 ve kayip veri sorunlar1 ortaya ¢cikmaktadir.

Bilesik modelleme genel olarak; boylamsal verilerin yasam verileri {izerine etkilerini
arastirmak (Faucett ve Thomas, 1996; Wulfsohn ve Tsiatis, 1997; Wang ve Taylor,
2001; Brown ve lbrahim, 2003), iki verinin birlikte etkilerini arastirmak (Henderson,
Diggle ve Dobson, 2000; Guo ve Carlin, 2004; Zeng ve Cai, 2005) ve bagimsiz

degiskenlerin bu iki veri seti lizerine etkilerini incelemek i¢in kullanilmaktadir.

Boylamsal ve yasam siiresi verilerinin birlikte modellenebilmesi igin, bilesik olabilirlik
yontemlerinden yararlanilmalidir. Bilesik olabilirlik yapisi, karma-model (pattern-
mixture) ve se¢ilmis modeller (Selection-model) gibi farkli model stratejileriyle elde
edilmektedir (Sousa, 2011). Bu modeller rastgele etkiler eklenilerek genisletilebilir ve
rastgele secim modeli, rastgele karma model ve rastgele etkili model olarak adlandirilir
(Pericleous, 2016). Sousa (2011) ve McCrink, Marshall ve Cairns (2013), farkli bilesik
modelleme stratejilerini asagidaki gibi basitge agiklamuslardir. Y, T ve B sirasiyla
boylamsal verileri, yasam verilerini ve rastgele etkileri gosterdiginde,

Secilmis Model; [Y, T,B]=[B][Y|BI[T] Y],

Karma-Model; [Y,T,B]=[B][T|B][Y|T],

Rastgele Etkili Model;[Y, T,B]=[B][Y | B][T| B]

biciminde olmaktadir.

Karma modelde temel ilgi boylamsal kisim iizerine odaklanmisken, secilmis modelde
ilgi DKEM ile modellenen boylamsal gézlemlere sahip yasam siiresi verilerine
odaklanmugtir (Sousa, 2011; Pericleous, 2016). Rastgele etkili modellerde (paylasilmis
parametre modelleri olarak da adlandirilir) ise boylamsal ve yasam siireci bagimsiz

paylasilmis rastgele etkiler ile baglanmaktadir (Sousa, 2011; McCrink, Marshall ve
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Cairns, 2013). Bu tez galismasinda bilesik modelin olabilirligi, iki siireci paylasiimis
rastgele etkilerle baglayan karma model ile gosterilmistir.

Literatiirdeki temel bilesik model, boylamsal veriler icin DKEM (boylamsal alt model)
ve yagsam verileri i¢in Cox regresyon modelinin (yasam c¢oziimlemesi alt modeli)
paylasilmig rastgele etkiler ile birbirine baglanmasi ile elde edilmektedir (Wu ve ark.,
2012). Ancak figlinci bolimde de bahsedildigi gibi Cox regresyon modelinin
uygulanabilmesi i¢in orantililik varsayimmin saglanmasi gerekmektedir. Varsayim
saglanmadig1 durumlarda, yasam ¢oziimlemesi alt modeli, yasam verilerinin belirli bir
dagilima sahip oldugu durumlar da parametrik regresyon yontemleri kullanilarak

olusturulmalidir.

4.1. Yasam Coziimlemesi Alt Modeli

T, i. birim (i =1,...,n) icin gercek yasam siiresini ve T, gozlemlenmis yasam siiresini
gostersin. i. birim i¢in C, durdurulmus siire olmak iizere & = (T, <C,) olay gostergesi
0, =0 oldugunda durdurulmus olayr ve &, =1 oldugunda diger durumlari gdstersin
(Rizopoulos, 2012a; Wu ve ark., 2012). T ve C,’nin minimumu T, olmak iizere, i.
birim i¢in gézlemlenmis yasam siiresi verisi (Ti,Ci) seklinde yazilabilir. Y;(t), i. birim
icin zamana bagli bagimsiz degiskenlerin t zamaninda Olclilmiis goézlemlenmis

degerleri olsun. Gozlemlenmis boylamsal veriler t; zamaninda VY, (i=1...,n;

J=1...,m,) dlgiimlerinden elde edilmektedir (Rizopoulos, 2012a).

m.(t), t zamanindaki g6zlemlenmemis boylamsal verileridir ve 6lgiim hatalari

icermektedir. Bir olay igin m.(t) ve tehlike arasindaki iliskiyi incelemek igin Cox

regresyon modeli,

(€M 0. a) _(!!m{P[tsT, <t+5t5|tTi Zt,Ml(t),al]}

hi(t| M; (1), &) =hy (1) exp{7,ai +am, (0}1 t>0 (4.1)
biciminde yazilabilir (Rizopoulos, 2012a). Burada, M,(t)= {mi (s),0<s <t} yasam
siiresi igerisinde 6lgiim hatalarindan arindirilmis boylamsal bagimsiz degiskeni, h,(.)

temel tehlike fonksiyonunu, o temel bagimsiz degiskenleri (tedavi gostergesi, hastalik
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Oykiisii gibi) ve y bagimsiz degiskenlere karsilik gelen regresyon katsayilar: vektoriinii
gostermektedir. o, boylamsal verilerin t zamanindaki yasam siirelerine etkilerini
gostermektedir (Rizopoulos, 2012a). « =0 boylamsal ve yasam verileri arasinda iligki
olmadigini ifade etmektedir (Rizopoulos, Verbeke ve Lesaffre, 2009; Rizopoulos,
2012b). Esitlik 4.1°deki tehlike modeli, t zamaninda meydana gelen bir olaymn
tehlikesinin, zamana bagiml bagimsiz degiskenlerin (M, (t) ) mevcut degerlerine bagl
oldugunu varsaymaktadir (Rizopoulos, 2012a). Ancak, yasam fonksiyonu igin bu
varsayim gegerli degildir. Yasam fonksiyonu ve birikimli tehlike fonksiyonu arasindaki

iligkiden, tiim ortak bagimsiz degiskenlere (M, (t)) ait yasam fonksiyonu,

S,(tIM; (1), @) =P (T, >t[M; (1) «)

S,(t|M; (1), &) =exp (—j‘ ho(S)exp{y'e;, +am(s)} dsJ (4.2)

seklinde elde edilebilir (Rizopoulos, 2012a).

Esitlik 4.1’in ¢oziimlenmesi i¢in temel tehlike fonksiyonunun (h()) seg¢ilmesi

gerekmektedir. Orantili tehlikeler varsayimmin saglandigi durumlarda bilesik model
yasam ¢Oziilmesi alt modeli i¢in standart Cox regresyon modeli, orantili tehlikeler
varsayiminin saglanmadig1 ve tehlike fonksiyonun bilinen bir olasilik dagilimina sahip
oldugu durumlarda parametrik regresyon modelleri kullanilir (Rizopoulos, 2012a). Bu

durumda, parametrik yasam ¢6ziimlemesi alt modellerinden yararlanilir.

4.2. Parametrik Yasam Coziimlemesi Alt Modelleri

Parametrik yasam ¢oziimlemesi alt modelleri, boylamsal alt modelin DKEM ile yasam
coziimlemesi alt modelinin orantili tehlikeler varsayimini saglamadigi ve yasam
verilerinin parametrik dagilimlara uygunluguna gére Weibull, Ustel, Log-lojistik, Log-
normal ve Gamma yasam ¢Oziimlemesi alt modellerinin paylagilmis parametre
modelleri ile birlestirilmesiyle elde edilmektedir. Esitlik 4.1’de ifade edilen yasam
cozlimlemesi alt modelinin, parametrik modeller i¢in yeniden tanimlanmasi
gerekmektedir (Pericleous, 2016).

Zamanin fonksiyonu olmak tizere h(t) 'nin, asagidaki gibi iki nemli durumu vardir:

h(t): {Iog (t), izlandirilmis basarisizlik stiresi modelleri

t, diger parametrik modeller
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I. birim i¢in h(t) fonksiyonu,

h(t;) = (L) +ox¢g (4.3)
bigiminde tanimlanabilir (Pericleous, 2016). Burada o, dlgek parametresi, & uygun
yasam ¢oziimlemesi dagilimindan gelen hatalardir ve g (t;),

4 (t) = ami(t) + Miy (4.4)
seklindedir (Hosmer, Lemeshow ve May 2008; Pericleous, 2016). y, zamandan
bagimsiz (time-independent) agiklayici degiskenler olan M. ’yi baglayan regresyon
katsayisidir. i. birim i¢in parametrik yagam ¢6ziimlemesi alt modeli h (t),

h(t) = afX() f+2b ]+ My +oxe (4.5)

biciminde yazilabilir.

4.2.1. Weibull Yasam Coziimlemesi Alt Modeli

Esitlik 3.12°de verilen Weibull dagilimina ait yasam fonksiyonunda A=o" olarak
yeniden tanimlanirsa,

S(t; 4, 7) =exp{-At"} (4.6)
elde edilir ve siireye logaritmik doniisiim uygulanirsa (s =logt),

s=logT = s+ oW (4.7)

ifadesi yazilabilir. Burada, W u¢ deger dagilimmi (extreme value distribution)

gostermektedir ve sirasiyla olasilik yogunluk ve yasam fonksiyonu asagida verilmistir:

f,, W) = o exp{w—exp{w}}

S, (W) = exp{—expfu}} (4.8)
Log yasam siiresinin olasilik yogunluk ve yasam fonksiyonlarini elde etmek i¢in
W =o'(s— ) yazilmalidrr. i. birim i¢in Weibull dagilimmin log yasam ¢oziimlemesi

alt modeli,
logT; (t;) = 44 (t;) +o <& (4.9)
biciminde ifade edilir ve & ug¢ deger dagilimini gostermektedir. Esitlik 3.12 ve Esitlik

4.4’den yararlanarak, Weibull yasam ¢ozlimlemesi alt modelinin olasilik yogunluk ve

yasam fonksiyonlar1 sirasiyla asagidaki gibi yazilabilir (Pericleous, 2016):
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exp(Vo) )

f (-|-I | bi : (9, t) — (texp[ 7 (ti)])exp(lla—(texp[ﬂi (D))
S(T, | b;; 6, 1) = exp| —(texp[ 14 (t,)]) ™ | (4.10)
Boylamsal alt model igin, Y;(t;) olgiimlerinin ve rastgele etkilerin olasilik yogunluk

fonksiyonu sirasiyla,
p(Y; |b;;0) = (27[69_-2)_1/2 exp[—(Y; (tij) —m; (tij ))2(263)_1] ’ (4.11)

p(b,;0) = (27z|G|)’% exp(-2'bG b ) (4.12)

bi¢iminde tanimlanabilir (Pericleous, 2016).

4.2.2. Ustel Yasam Coziimlemesi Alt Modeli

Ustel yasam ¢dziimlemesi alt modelini elde etmek icin, boylamsal alt modelin DKEM
ile ve yasam ¢dziimlemesi modelinin Ustel dagilim ile modellenmesi gerekmektedir.

Ustel yasam siiresi alt modelinin i. birim i¢in log yasam siiresi,
logT, (t;) = 44 (t;) +o x¢ (4.13)

bi¢iminde yazilabilir ve burada, hatalar Ustel dagilmaktadir. Esitlik 3.11°de gosterilen
Ustel dagilimin yasam ve olasilik yogunluk fonksiyonlarindan yararlamlarak elde
edilen, Ustel yasam c¢oziimlemesi alt modelinin olasilik yogunluk ve yasam
fonksiyonlar1 sirasiyla,

f (T, | b,;6,t) = (texpl4 (t,)]) P @D

S(T; | b;;0,t) =exp [_(texp[ﬂi (tl)])] (4.14)
bi¢ciminde elde edilebilir. Boylamsal alt modelin, boylamsal lgimlerinin ve rastgele
etkilerinin olasilik yogunluk fonksiyonlar1 ise sirasiyla Esitlik 4.11 ve Esitlik 4.12°deKi

gibi olusturulmalidir.

4.2.3. Log-lojistik Yasam Coziimlemesi Alt Modeli

Esitlik 3.13°te verilen Log-lojistik dagilimin yasam fonksiyonunun parametreleri
y=0" ve A=exp{~c 'u} seklinde yeniden tanimlanirsa ve siirenin logaritmasi

alinirsa y =logt,

S(y; 4,7) =L+ Aexp{ry})~ (4.15)

olarak tanimlanir ve Y dogrusal modeli gostermektedir:
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Y =logT = u+oxW.
W standart lojistik dagilimin rastgele degiskenini gostermektedir ve olasilik yogunluk

fonksiyonu ve yasam fonksiyonu sirastyla,
f, (W) =exp(w)o " (L+exp{w})?,
Sw (W) = @+exp{w})™ (4.16)

bi¢iminde tanimlanabilir (Pericleous, 2016).

Log-lojistik yasam c¢oziimlemesi alt modelini elde etmek i¢in, boylamsal alt model
DKEM ile yasam siiresi alt modeli Log-lojistik dagilim kullanilarak modellenmistir.
Weibull dagilim igin Esitlik 4.9°da verilen denklemde &; Log-lojistik dagilim gosterdigi
durumda Log-lojistik yasam ¢oziimlemesi alt modeli elde edilmektedir. Log-lojistik

yasam ¢Ozlimlemesi alt modelinin olasilik yogunluk ve yasam fonksiyonlar: sirasiyla,

f(yip,0)= exp{o-’l Vi— 4 )}0:1 @+ eXp{G*1 Vi— 44 )})72 ,
S(y;; 14, 0) =[L+exp{o (y,— )} (4.17)

seklinde tanimlanabilir. Boylamsal alt model i¢in, boylamsal 6l¢limlerin ve rastgele
etkilerin olasilik yogunluk fonksiyonlar1 sirasiyla Esitlik 4.11 ve Esitlik 4.12°deki gibi

elde edilmektedir.

4.2.4. Log-normal Yasam Coziimlemesi Alt Modeli

Log-normal yasam ¢oziimlemesi alt modeli i¢in, diger parametrik modeller gibi
boylamsal alt model icin DKEM ve yasam c¢oziimlemesi i¢in Log-normal dagilim

kullanilmalidir. Log-normal yasam siiresi alt modelinin i. birim i¢in log yasam siiresi,
logT;(t;) = w4 (t;) +o <& (4.18)
olarak tanimlanabilir ve & normal dagilim gostermektedir (Pericleous, 2016). Esitlik

3.14’te verilen Log-normal dagilimin yasam ve olasilik yogunluk fonksiyonundan
yararlanilarak elde edilen, Log-normal yasam ¢Oziimlemesi alt modelinin olasilik

yogunluk ve yasam fonksiyonlar1 sirasiyla,

20"

Yoy
f(y.;ﬂ.,o—)—exp[(T-(t.)a(er) ) (Y.#.)}

Sy, 14, 0) ={1—¢((y%‘”i)ﬂ (4.19)
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biciminde tanimlanabilir. Bilesik modelin boylamsal kism1 i¢in boylamsal dlgiimlerin
ve rastgele etkilerin olasilik yogunluk fonksiyonlar: ise sirasiyla Esitlik 4.11 ve Esitlik
4.12°de verilen esitliklerle elde edilmektedir.

4.3. Boylamsal Alt Model

Tehlike modelindeki (Esitlik 4.1) tehlike fonksiyonunun (h(t)) t zamaninda boylamsal
verilere (m(t)) bagh oldugu varsayilmaktadir (Wu ve ark., 2012). Bununla birlikte,
Olgtim hatalarma sahip boylamsal verilerde goriilebilmektedir. Bu nedenle, boylamsal
verilerin bir olaymn tehlikesine etkisini arastirmak i¢in, her birimin m,(t) tahminlerine
ihtiyag duyulmaktadir. Mevcut boylamsal veriler (y; ={y;(t;),j=12.....,m;}) icin

DKEM kullanilarak tahminler elde edilebilmektedir (Rizopoulos, 2012a). Esitlik 2.1°e

benzer bir bigimde boylamsal alt model,

yi(®) =x®)B+zOb +&(1),
yi(®) =m ) +&(),

m;(t) = x (1) B+ z/ ()b,
(4.20)

bigiminde yazilabilir. Burada, X (t) ve z,(t) swrasiyla sabit etkiler () ve rastgele
etkiler (b,) igin tasarim vektorleridir. Rastgele etkiler G varyans kovaryans matrisi ve

O ortalama ile ¢ok degiskenli normal dagilima sahiptir (Fitzmaurice, Laird ve Ware,
2011). Hata terimleri (& (t)) Oortalama ve o® varyansla normal dagilima sahiptir ve

bagimsizdir (Rizopoulos, 2012a).

Daha once belirtildigi gibi, yasam ¢oziimlemesi fonksiyonu (Esitlik 4.2) boylamsal
verilerin 6lgiim hatalarindan arindirilmig gergek degerlerine dayanir ve bu nedenle S, (t)
"nin dogru tahmini i¢in M, (t) *nin iyi bir tahminini elde etmek 6nemlidir. Yani, x;(t) ve
Z,(t) *deki zaman yapisinin, temel bagimsiz degiskenler ve varsayilan zaman yapist ile

arasindaki muhtemel etkilesim terimlerinin ayrintili bir bicimde belirlenmesi

gerekmektedir. Ornegin, birimler dogrusal olmayan boylamsal &lgiimler igeriyorsa,

X (t) ve z(t) i¢in yiiksek mertebeden polinomlar veya splineler cinsinden ifade edilen,

zaman fonksiyonlarmnin yiiksek boyutlu vektorlerinin kullanilmas: Onerilmektedir

(Rizopoulos, 2012a).
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4.4, Bilesik Model Parametre Tahmini

Bilesik model parametre tahmini igin genellikle iki asamali yaklasim (Two-Stage
Methods) ve bilesik olabilirlik yontemi kullanilmaktadir (Wu ve ark., 2012).

4.4.1. iki Asamal Yaklasim

Bilesik model literatiiriinde birka¢ farkli iki asamali yaklagim kullanilmistir (Self ve
Pawitan, 1992; Tsiatis, DeGruttola ve Wulfsohn 1995; Wu ve ark., 2012). Self ve
Pawitan (1992) birinci adimda en kiigiik kareler yontemini kullanarak rastgele etkileri

tahmin edip; ikinci adimda bu tahminleri Cox modelin kismi olabilirliginde yer alan

M. (t) *nin uygun degerlerini belirlemek i¢in kullanmiglardir. Bilesik modelde parametre

tahmini i¢in Tsiatis, DeGruttola ve Wulfsohn (1995) Esitlik 4.1 ve 4.3°in

birlestirilmesine dayanan bir diger iki asamali yaklasim yontemini 6nermislerdir.

Iki asamali yaklasim asagidaki gibi islemektedir (Wu ve ark., 2012):
1. Boylamsal aciklayic1 degiskenler DKEM kullanilarak modellenebilir bdylece
aciklayici degiskenlerin birime 6zgii degerleri tahmin edilebilir.
2. Yasam ¢oziimlemesi modeli, 1. adimda modellenen degerler kullanilarak tahmin

edilebilir.

Bu yaklasim, Cox regresyon modelinin parametre tahminlerindeki yanlilig
azaltmaktadir (Wulfsohn ve Tsiatis, 1997; Yu ve ark., 2004). Yaklasimin uygulamasi
basittir ve mevcut yazilimlar kullanilarak parametre tahminlerine olanak saglamaktadir
(Wu ve ark., 2012). Buna ragmen, bu yontem her bir modelin tahmin asamasinda yasam
stireci ve boylamsal siiregten es zamanli olarak bilgi kullanamaz (Wu ve ark., 2012; Yu
ve ark., 2004). Ik asamada sadece boylamsal sonuglarin kullaniimasi, DKEM’de yanli
tahminler olusturabilmektedir ve bunun sonucu olarak ikinci asamada, yasam
coziimlemesi parametre tahminlerinde yanli ve etkisiz sonuclar ortaya ¢ikabilmektedir
(Tbrahim, Chu ve Chen, 2010). Bu durum, Dafni ve Tsiatis (1998); Tsiatis ve Davidian
(2001); Ye, Lin ve Taylor (2008a); Sweeting ve Thompson (2011) tarafindan
simiilasyon ¢aligsmalar1 ile gosterilmistir. Bu nedenle, yanliligi ortadan kaldirmak igin
bilesik modelleme literatiiriinde, yaklagimlar yerine tam olasilik yaklagim yontemine

odaklanilmistir (Rizopoulos, 2012a).
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4.4.2. Bilesik Olabilirlik Yontemi

Bilesik modelleme literatiiriinde temel tahmin yontemi olarak yari parametrik en ¢ok
olabilirlik yontemi kullanilmaktadir (Wulfsohn ve Tsiatis, 1997; Henderson, Diggle ve
Dobson, 2000; Hsieh, Tseng, ve Wang, 2006; Rizopoulos, 2012a; Wu ve ark., 2012).
Bu yontemde, boylamsal ve yasam verilerinin bilesik olabilirligi kullanilmaktadir (Wu

ve ark., 2012).

En cok olabilirlik tahminleri, gézlemlenmis verinin ({Ti,é'i,yi}) bilesik dagilimina

karsilik gelen log-olabilirlik fonksiyonundan elde edilebilmektedir. Bilesik dagilim

taniminda, boylamsal ve yasam verilerinin arasindaki ve tekrarli gozlemler arasindaki

iligkinin zaman bagimsiz (time-independent) rastgele etkiler (b,) tarafindan

aciklanacagi varsayilmaktadir (Rizopoulos, 2012a). Boylamsal ve yasam verileri

rastgele etkilerden bagimsizdir ve bilesik dagilimu,

p(T.6, Y, 10;:0)=p(T.,d |b:6)p(y; |b:6), (4.21)

m;

p(yilbi;e):H {yi(tij)lbi;e} (4.22)

j=L
bi¢iminde yazilabilir. Burada,

y;: i. birimin boylamsal gézlemlerinin m, x1 boyutlu vektorii,
0= (6’{, 19; , 0;) tiim parametreler vektord,

6, : yasam verisi parametreleri,

6, : boylamsal veri parametreleri,

6, : rastgele etkilerin kovaryans matrisi parametrelerini

gostermektedir (Rizopoulos, 2010; Rizopoulos, 2012a).

Tekrarli 6lgiimler ve gozlemlenmis yasam verilerinin i. birim i¢in log-olabilirlik

fonksiyonu asagidaki gibi yazilabilir (Wulfsohn ve Tsiatis, 1997; Rizopoulos, 2012a):

log p(T;. 3, v;:0) =log [ p(T;. 3, y;, b;; 6)

=log [ p(T,.5 |bi:a,ﬁ){r_[ p{yi<ti,-)|bi:ey}}p(bi:eb)db. (4.23)

Yasam ¢oziimlemesi kismmm p(T;,d; |b;;6,, B) kosullu yogunlugu,
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p(T,.& 10,6, 8)=h (T IM,(T,);:6, 8)" (T, IM; (T,): 6, )
=[hy (T, )exp{y'e +am, (T)] exp[ j hy (U) exp { ¥, +om, (u)}du} (4.24)

bigiminde yazilabilir. Burada, ¢«; temel agiklayict degiskenleri, y regresyon
katsayilarini, m.(t) t zamaninda Slgiilen boylamsal gozlemleri ve B boylamsal alt
modeldeki karma etkiler parametrelerini gostermektedir. h,(-) Esitlik 4.2°de verilen

yasam fonksiyonu veya bilinen bir dagilimin tehlike fonksiyonu veya pargali-sabit
model (piecewise-constant) olabilir (Rizopoulos, 2012a).

Esitlik 4.5’ten, boylamsal gozlemler ve rastgele etkilerin bilesik yogunluk fonksiyonu
asagidaki gibi ifade edilebilir (Rizopoulos, 2012a):

p(y;1b:0)p Hp{y.(t.,nb.,e} (b;6,)

= (27) ™" exp{—||yi -X8-2p| [20%)
x(277) ™' det(G)¥* exp{-bG b, /2} (4.25)

Burada, ||X||={Z. xf}]/2 Oklid vektér normunu ve ¢, rastgele etkiler vektériiniin

boyutunu gostermektedir.

Tim birimler i¢in gdzlemlenen verilerin log-olabilirligi,

€6)=Y10g p(T,.5,y;:6) (4.26)

seklinde tanimlanabilir (Wulfsohn ve Tsiatis, 1997; Rizopoulos, 2012a). Temel tehlike

disindaki tiim parametreler parametrik en ok olabilirlik yontemiyle, temel tehlike h, (+)

ise parametrik olmayan en ¢ok olabilirlik yontemi ile tahmin edilmektedir (Wulfsohn ve
Tsiatis, 1997). Esitlik 4.26’'min  @’ya gore maksimize edilebilmesi i¢cin EM
(Expectation-Maximization) algoritmasi kullanilabilir. EM tekniginde rastgele etkiler
“eksik veri” olarak kabul edilmektedir (Rizopoulos, 2012a). Baz1 arastirmacilar, bilesik
modelin maksimizasyonu i¢in “Gauss-Hermite Yaklasimi” ve “Monte-Carlo Yaklagimi”
gibi iterasyon yontemleri kullanmiglardir (Wulfsohn ve Tsiatis, 1997; Henderson,
Diggle ve Dobson, 2000; Song, Davidian ve Tsiatis, 2002; Rizopoulos, 2012a).
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4.4.2.1. EM Algoritmasi

EM algoritmasi, eksik verilerin var oldugu durumlarda parametrelerin en ¢ok olabilirlik
tahminlerini elde etmek i¢in kullanilabilir (Dempster, Laird ve Rubin, 1977; Bilmes,
1998). Bu algoritma genellikle veride eksik deger bulundugunda ve olabilirlik
fonksiyonunun optimizasyonunun zor oldugu durumlarda kullanilmaktadir. Algoritma,
E ve M adimlarindan olusmaktadir ve E-adiminda kosullu olasiliklarla mevcut
parametre tahminleri ve gozlemlenmis verilerle eksik gézlemler hesaplanmaktadir; M-
adiminda ise birimci adimdan yararlanilarak kosullu olasiliklar hesaplanmaktadir

(Bilmes, 1998; Borman, 2006).

Y ve Y™, tiim veri vektorii Y ’nin sirasiyla gozlemlenmis ve eksik veri kismini

gostersin (Rizopoulos, 2012a). i. birim i¢in, ¢ (¢c=0,1,...,) iterasyonda tahmin edilen
maksimizator 0° ve Q(6]6"”) bilesik log-olabilirligin olasiligini gostersin. Sadece
gozlemlenmis veri kullanilarak, tiim veri modellerinin & parametrelerini tahmin etmek
icin EM algoritmas1 asagidaki gibi islemektedir (Rizopoulos, 2012a; Givens ve Hoeting,
2013):

(1) E-adimi: Gozlemlenmis veriler varhiginda, tiim verilerin log-olabilirliginin beklenen
degeri,

Q(016%)=E{logp(y:6) |y*;6"}

= [logp(y™, y°;0)p(y" 1 y*;0% ) dy" (4.27)
(ii) M-adimz: 0°ya gore Q(6[6" ) maksimize et ve

(111) Yakinsama olana kadar E-adimma git.

EM algoritmasi sayisal olarak kararlidir (stable) (Lange, 2010; Rizopoulos, 2012a). Bu

algoritmada, gozlemlenen verinin log-olabilirligi her iterasyonda artmaktadir
logp(y°; 68°*?) > logp(y°; 8*) (Dempster, Laird ve Rubin, 1977). Ancak, verilerde ¢ok

fazla eksik degerin bulundugu durumlarda yakinsama orani yavas olmaktadir (Lange,

2010; Rizopoulos, 2012a).

E-Adim

1. birim i¢in asagidaki model dikkate alinirsa,
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hy (| M; (1), ) = hy (1) eXpD/’O‘i +a{xi’(t)ﬂ+zi,(t) b, }] ,

yi () =X ®S+Z/Ob +&(1) (4.28)
b ~N(0,G), &®~N(0o0)

0=(0.0,.8,), 0,=(p.c*), 6,=vech(G) ve 6 =('a.8,) vektdrleri il tim

parametreler vektoriinii ve 6, , h,() temel tehlike fonksiyonundaki parametreleri

gostermektedir. Gozlemlenmis veri log-olabilirligini maksimize edecek § parametre
degerlerini elde etmek icin, tiim verilere ait log-olabilirligin (Esitlik 4.26) beklenen

degerinin maksimize edilmesi gerekmektedir (Rizopoulos, 2012a).
Q(#10™)=>"[ log p(T,.5.y;b;;0)p(b; T, 5, y;:0% )d b,
=" [{log p(T;, & Ib;;6,, 8) +1og p(y; 1b;;6, ) +log p(b;;6, )}

xp(bi [T, 8, y;;0 )db, (4.29)
Q(¢9| 6’“‘”) belirlemek igin, “Gauss-Hermite Integrasyon Yaklasimi” ve “Monte-Carlo

Yaklasimi1” uygulanmalhidir (Rizopoulos, 2012a).

M-Adimi
Tiim verilerin log-olabilirligi i¢ pargadan olusmaktadir (Rizopoulos, 2012a);

log p(T;.4;, ¥;,b;;6) =1logp(T;. & |b; 6, B)+logp(y; |b;6, ) +logp(b;; 6, ) (4.30)
6’ya gore Q(49| Q(ic))’yi maksimize etmek i¢in, ilgili parametreye gore pargalarin tek

tek maksimize edilmesi gerekmektedir. Rastgele etkilerin kovaryans matrisi ve
boylamsal verideki 6l¢iim hatalarinin varyansi asagidaki gibi kapali formda sirasiyla
ifade edilebilir (Rizopoulos, 2012a):

3 b, +bby
n

o 0= XB-ZhY (v =XA=Zb) p(bi [T, &,y 0 )b
N

X8 (%8 _zNzibi)+ 2(2Z b ) +bZZ (4.31)

Burada,
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N = Z m. , calismadaki toplam gozlem sayisi,

i=1

b =E(b,1T,.5,¥,:0”) = [bp(b; [T, 5, y,:6% ) db

vb, =Var (b, T, 8.y;:0“ )= [ (b —b,)zp(bi |T.,5,,y;:60" ) db, gostermektedir.

Yukaridaki kapali formdan p ve yasam ¢oziimlemesi alt modelindeki 6, ’nin
parametrelerinin ¢6ziimii elde edilemeyeceginden dolay1 M-adiminda Newton-Raphson
iterasyonlar1 kullanilmaktadir (Rizopoulos, 20123):

-1

t = Ut

@\
(it+1) (it) oS (‘9t ) (it)
0 I A N s(el ) (4.32)

Burada, ,B(m ve 9?0, sirastyla 8 ve 6, ’nin mevcut iterasyondaki degerleridir ve
oS ( ﬂ(m ) /aﬂ ve 88(6’?0 ) /80t Hessian matrisinin kargilik gelen siitunlaridir. S ve 6,

’nin skor vektorlerinin elemanlari,

,3)2 zi Xi’{yi _zxiﬂ_zibi} rasx(T)

O

s

—exp(res)[ [ ho(@ax(8)exp[ ar{X(8) f+ Z(S)b ]
<p(Bi1T;.8,,vi; 0)dsclh 4.39)

S(r)=2a [cz —exp(ra) [ [ o) exp[ a{X(9)8+Z(9)b,}]

xp(byIT;, &, y;;6)dsdlb | (4.34)

S(a) =6 {XT)A+2T)B | -exp(ra) [ [ hy(s)exp[a {x ()5 +2Z(©b}]

xp(b | T;, 3, y;;6)dsdby (4.35)
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oy (T;6,) , 7. 00 (s:6,) : :
S(Hho):zi:é‘i hoTéoho_eXp(Vai)JJ.o hoaT;Oexp[a{Xi(s)ﬁ"‘zi(S)bu}]

xp(b|T;, 3, y;;6)dsdby (4.36)

bi¢iminde ifade edilebilir (Rizopoulos, 2012a).

4.4.2.2. Integrasyon Yaklasimi

Bilesik olabilirlik yapisindaki integrallerin analitik olarak hesaplamasi olduk¢a zordur.
Yasam fonksiyonunun tanimindaki integral, kapal formlu bir ¢6ziime sahip degildir ve
bu nedenle hesaplanmasi i¢in 15-noktali Gauss-Kronrod kurali gibi sayisal bir yontem
kullanilmalidir. ki modeli birbirine baglayan rastgele etkiler, bilesik modellemeyi
kolaylastirsa da rastgele etkilerin integrallerindeki zorluk, tahminleri hesaplamada

oldukga zor bir yapiya neden olmaktadir (Rizopoulos, 2012b).

Bu modellerin olabilirliginin hesaplanmasi i¢in Gauss karesel (quadrature) kurallari
(Pinheiro ve Bates, 1995; Lesaffre ve Spiessens, 2001; Pinheiro ve Chao, 2006) ve
Monte Carlo 6rneklemesi (McCulloch, 1997; Booth ve Hobert, 1999) gibi standart
sayisal integrasyon teknikleri literatiirde sik¢a kullanilmistir. Buna ragmen, bu
yontemlerde integral boyutlar1 arttikca hesaplama zorlugu c¢ekmektedir ve rastgele
etkilerin yapisi daha karmasik hale gelmektedir (Rizopoulos, 2012b). Cok yiiksek
boyutlu rastgele etkilerin bulundugu bilesik modellemede, standart Gauss-Hermite
yaklasimina alternatif olarak Ye, Lin ve Taylor (2008b) ve Rizopoulos, Verbeke ve

Lesaffre (2009) tarafindan onerilen Laplace yaklasimi da kullanilabilmektedir.

Rizopoulos (2012b) bilesik modelleme olabilirliginin ¢6ziimii igin alternatif olarak
uyarlamali Gauss-Hermite yaklasiminin yeniden oOlgeklendirilmesine dayanan bir
integrasyon yontemi Onermistir. Bu yaklasimda ilk 6nce boylamsal veriler DKEM ile
tahmin edilmektedir ve her birim i¢in verilen boylamsal degiskenlerle rastgele etkilerin
sonsal dagiliminin konum ve 6lgek parametreleri hakkinda kesin bilgi elde edilmektedir.
Bu bilgi daha sonra bilesik modelin skor vektorii ve log-olabilirliginin tanimindaki
karmagik integralleri yeniden 6lgeklendirmek igin kullanilmaktadir (Rizopoulos, 2012b;
Turgal, 2016).
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Uyarlamali Gauss-Hermite yaklasimi i¢in skor vektorlerinin hesaplanmasinda gerekli
olan Gauss-Hermite yaklasiminin bilinmesi gerekmektedir (Turgal, 2016). Bilesik

olabilirligin (Esitlik 4.26) skor vektorii asagidaki formda yeniden yazilirsa,

ol 0
S(0) = 557 = X~ toa [ (T, 116;0)p(y10:0) p(0;0)co
=2 [A(6.b)p(b 1T, 5, y;:6)db (4.37)

bi¢iminde olur (Rizopoulos, 2012b).

Burada,  A(),  A(0,b)=0{log p(T;.5; |b;;0)+logp (y; |b;0)+ logp (i 0} /00
tarafindan elde edilen tiim verilerin skor vektoridiir. Skor vektoriiniin (Esitlik 4.37)
formiiliindeki integraller kapali formda ¢oziime sahip olmadigi i¢in sayisal yontemler
kullanilmalidir. Literatiirde en ¢ok tercih edilen Gauss-Hermite kurallari, 6nceden
belirlenmis apsislerde integrant 6l¢iimlerinin agirhikli toplamlar: tarafindan integrali
yaklastirmaktadir (Press ve ark., 2007). Bu karesel kural altinda ve rastgele etkilerin

A()’nin her formu i¢in skor vektorii asagidaki gibi hesaplanmaktadir (Rizopoulos,

2012h):
E{A(6.b)IT.8,v::0} [ A(6.6)p (b, |T;. 5, y;:0)db

=292 % 7 AB.b N2)p(b, 2| T, 8,y 0)exp(a ) (4.38)

t,eoat

Burada, q rastgele etkiler vektoriiniin boyutunu, Zt . K karesel noktast igin
1erlg

ZtK:l ...Z;zl ifadelerinin kisaltmasi ve b =(by,...,b,,), 7, agwrliklarma karsilik

gelen apsisleri gostermektedir. K karesel noktalarin sayis1 arttikga, yaklasimin kalitesi
artmaktadir. Buna ragmen Gauss-Hermite kurali, her rastgele etki icin apsislerin

Kartezyen ¢arpimi iizerinde integrant hesaplamalar1 gerektirmesinden dolay1, q arttikca

hesaplama yiikii artmaktadir (Rizopoulos, 2012b).

Gauss-Hermite yaklagimini etkileyen bir diger kritik nokta, integrantlarin ana kitlesinin
konumuna gore karesel noktalarm konumlaridir. Yani, g(b)=A(6, b) p(bIT.d,;; 9)
sifirdan uzak bir nokta etrafinda konumlanmigsa veya g(b)’deki yayilma exp(—b’b)
agirhik fonksiyonundan oldukca farkliysa, g(b) ’nin biiyiik ¢ogunlugu karesel kuraldaki

apsislerin konumlandig1 yerde konumlanmayacagindan dolayi, ¢ok biiyiik K igin bile
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Gauss-Hermite kuralint dogrudan g(b)’ye uygulamak ¢ok zayif yaklasima neden

olabilmektedir (Pinheiro ve Bates, 1995). Bu problemi ¢6zmek i¢in onerilen uyarlanmis
Gauss-Hermite kurali, optimizasyon algoritmasinin her bir iterasyonunda integranti

uygun bir bigimde ortalayip 6lgmektedir (Rizopoulos, 2012b):

%) (4.39)

T

E{A(0.0)IT,.6,Y,:0} =272 3 7A@} N2)p(EN2| T, 5, Y:: 0) exp(

toty

Burada,

f,=b+V2B ",
b, =argmax, {log p(T;. 5, y;, b; 0)}
B., H,=-0%log p(T,,,,y;,b;8)/cbab’ |,_; "nin Choleski faktdriinii ifade etmektedir.

Bu doniistimiin kullanilmasiyla, integrant yaklasik olarak N (0,2‘11) dagiliminin

yogunlugu gibi davranmaktadir ve Gauss-Hermite kuralinin agirlik fonksiyonu bu

dagilima orantili oldugundan dolay1 optimal yaklasim elde edilmektedir.

Uyarlanmig Gauss-Hermite kuralinda ayni biiyiikliikte bir yaklagim hatasi elde etmek

icin standart Gauss-Hermite kuralindan daha az karesel nokta kullanilmasi

gerekmektedir. Ancak, mod Bi "nin konumunun ve her iterasyonda her birim igin iKinci

derece tlirev matrisi I-AIi ‘nin hesaplanmasi, islem yiikiinii arttirmaktadir (Rizopoulos,

2012D).

Uyarlanmig Gauss-Hermite kuralindaki zorluk, mod Bi ve H. matrislerini hesaplamak

icin kullanilan, rastgele etkilerin sonsal dagiliminin p(bi |Ti,5i,yi;t9) Ozelliklerinden

gelmektedir. Yeniden olceklendirilmis uyarlanmis Gauss-Hermite kurali uygulanarak,

hesaplama yiikii azaltilabilmektedir (Rizopoulos, 2012b).

Yogunluk log-6lceginde yeniden yazilirsa,
l0g p(bT,,6,,¥::0) = 3 log p{¥,(t,)[b,:6, j+log p(b;; )

j=1

+log p(T;. 5, 1b: G, p) (4.40)
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bi¢iminde tanimlanabilir ve n, arttikca gdzlemledigimiz yogunluk ile aymidir. Birinci
terim  log p(y; |b;;6,) :Zj log p{yi (t;) | bi;ﬁy} DKEM’in  logaritmasidir. b, ’de

kareseldir ve ¢ok degiskenli normal dagilimin sekline benzemektedir (Rizopoulos,
2012b). Ozellikle, Bayesyen merkezi limit teoreminin (Cox ve Hinkley, 1974) bir

varyasyonu kullanarak ve genel kosullar altinda, n — oo elde edilebilir:

p(8 1T, 8. %::0) SN, AY) (2.41)
Burada, b =argmax, {Iog p(v, |b;49y)} ve H;=—"log p(y, |b;6,)/abdb'| _; *yi

gostermektedir (Rizopoulos, 2012b). Bu durum uygulamada, n, arttik¢a her bir birim

icin integrantin yeniden Ol¢eklendirme ve merkezlendirilmesinin, sadece boylamsal

veriler igin DKEM’den gelen bilgiler kullanilarak hesaplanabilecegini gostermektedir.

Yeniden oOl¢eklendirilmis uyarlanmig Gauss-Hermite kuralinda, ilk olarak DKEM

tahmin edilmektedir ve daha sonra deneysel Bayes tahminleri 5, ve onlarin kovaryans

matrisi H.* hesaplanmaktadir (Rizopoulos, 2012b):

E{A(6.0)IT.8,y:0}~ 2% 3" mABFN2)p(iN2|T, 5,y Oexp()  (4.42)

tynty
Bu yontem, standart Gauss-Hermite kuralinda kullanilandan daha az karesel nokta
kullanilmas1 ve uyarlanmis Gauss-Hermite kuralinin her iterasyonunda karesel
noktalarin zorunlu yer degistirilmesini 6nlediginden dolay1 diger yaklagimlara gére daha

avantajlidir (Rizopoulos, 2012Db).

4.4. Bilesik Model Secim Kriterleri

Bilesik model parametre tahmininin en ¢ok olabilirlik yontemiyle yapilabilecegi 4.4.2.
boliimde gosterilmistir. Model testi icin olabilirlik oran prosediirii disinda, sifir

hipotezini test etmek i¢in alternatif yontemler Rizopoulos (2012a) tarafindan ifade

edilmistir;
H,:0=0, (4.43)
H,:0+#6, '
e Olabilirlik Oran Testi (Likelihood Ratio Test, LRT)
LRT = -2 {f(éo - f(é))} (4.44)
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éo ve @, sifir ve alternatif hipotezler altimda en ¢ok olabilirlik tahmin
edicileridir.
e Skor Testi

U=S'@G) 1G] s@). 16)= _j_&zﬁ (99>

S(-) ve I(-), alternatif hipotez altinda test edilen modelin skor fonksiyonu ve

(4.45)

0=0

gbzlemlenmis bilgi matrisini gostermektedir.

e Wald Testi
W =(0-6,)1(6)(6-6,) (4.46)
Sifir hipotezi i¢cin, p test edilen parametre sayis1 olmak lizere, asimptotik olarak ;(5

dagilimi gostermektedirler (Diaz, 2014).

Bu testlerin genel dezavantaji, sadece iki i¢ ige ge¢mis modelleri test etmek icin
kullanilmalaridir (Diaz, 2014). i¢ ice olmayan modellerin karsilastiriimasini yapmak
icin Akaike Bilgi Kriteri (Akaike's Information Criterion-AlIC) ve Bayesci Bilgi Kriteri

(Bayesian Information Criterion- BIC) kullanilmalidir:

AIC=-2logL+2p

BIC =-2log L+ pIn(n) (4.47)
Burada, L modelin olabilirlik fonksiyonunu, n toplam goézlem sayismi ve P

modeldeki bilinmeyen parametre sayisini gostermektedir.
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5. UYGULAMA

Calismamizda farkli parametrik bilesik model yapilarini incelemek igin literatiirde yer
alan PBS verisi kullanilmigtir (Mayo Clinic, Primary Biliary Cirrhosis, sequential data).
Veriler, Ocak 1924-Mayis 1984 yillarinda Mayo Klinikte goriilen 312 hasta iizerinde
PBS’nin ilerlemesini incelemek igin toplanmistir (Murtaugh ve ark., 1994). Farkl
hastaliklar ve nedenlerden dolay1 karacigerde hasarlar olugsmasi ve zamanla karacigerin
sertlesmesi, kiiclilmesi ve islevini yerine getirememesi gibi sorunlara neden olan PBS,
karaciger nakli disinda etkili bir tedavinin bulunmadig1 kronik bir karaciger hastaligidir
(Gordon ve ark., 1987; Esquivel ve ark., 1988). Karaciger sirozunda tedavi, hastaligin
evresine ve nedenine gore farklilik gostermektedir. Hastaligin siddeti Child skoruna
gore belirlenmektedir (Sonsuz, 2007). Child skoru A, B ve C seklinde ve A’dan C’ye
gidildik¢e hastaligin seviyesi artmaktadir (Christensen ve ark., 1984; Danalioglu, 1995).
Child skoruna asit, sarilik ve serum bilirubin gibi degerler ile karar verilmektedir ve bu

degerlerin artmasi karaciger sirozunun ilerledigini gostermektedir.

PBS veri setindeki 312’1 hastanin 158’1 D-penisilin ilacim1 almis ve diger 154 hasta
placebo grubu olarak belirlenmistir. Serum bilirubin seviyeleri belirli zaman
araliklarinda (6 ay ve sonrasinda her yil) tekrarlh olarak Olclilmiistiir ve toplam 1945
dengesiz boylamsal dl¢iimden olugsmaktadir. Caligmanin temel amaci, serum bilirubin

ve 6liim zamani arasindaki iliskiye tedavinin etkisini arastirmaktir.

Yasam ¢oziimlemesi ve bilesik modelleme literatiiriinde, PBS verisi kullanilarak bir¢cok
calisma yapilmistir. Murtaugh ve ark. (1994) PBS verisini analiz etmek i¢in Cox
regresyon modelini kullanmiglardir. Pasha ve Dickson (1997) PBS’nin bagimsiz
degiskenleri i¢in yasam tahminlerini ve farkli agiklayici degiskenler kullanarak Cox
regresyon model tahminlerini incelemislerdir. Albert ve Shih (2010) kesikli yasam
stiresi ve ¢ok degiskenli boylamsal gbzlemlerin bilesik modellemesi igin Onerdikleri
yaklagimi PBS veri seti {izerinde test etmislerdir. Yan (2011) PBS verisinin Kaplan-
Meier tahminlerini ve zaman bagiml agiklayici degisken igeren Cox regresyon model
tahminlerini incelemistir. Crowther ve ark, (2013) siirekli boylamsal gézlemler ve
yasam verilerinin bilesik model tahminlerini elde etmek i¢cin STATA programinda
“stim” komutunu gelistirmislerdir. Bu komut kullanarak, boylamsal alt model i¢in

dogrusal karma etkili model ve yasam verileri igin Ustel, Weibull, Gompertz orantil
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tehlike modelleri ve esnek parametrik modellerin bilesik model tahminleri elde
edilmektedir. Caligmalarinda, Weibull orantili tehlike alt modeli ve dogrusal karma
etkili modelin bilesik tahminlerini elde etmek i¢in PBS verisi iizerinde bir uygulama
yapmiglardir. Hsieh, Ding ve Wang (2013) boylamsal ve yasam verilerinin tahminlerini
elde etmek i¢in yeni bir olabilirlik yaklagimi énermigler ve dnerdikleri yaklagimi PBS
verisinde test etmislerdir. Mbohning, Bleakley ve Lavielle (2015) dogrusal olmayan
karma etkili model ile bilesik olabilirlik iizerine ¢alismislardir. Thevaraja (2018) PBS

verisinin yasam ¢0ziimlemesi degerlerini SAS programi kullanarak elde etmistir.

Calismada, yasam ¢oziimlemesi alt modeli i¢in Cox regresyon modelinin kullanildig:
standart bilesik model ve farkli parametrik alt modellerin sonuglar1 incelenmistir.
Ayrica iki siirecin ayri analizleri yapilarak parametrik bilesik model sonuglariyla
kiyaslamas1 yapilmistir. Ayr1 analizde, boylamsal gozlemler i¢in dogrusal karma etkili
model ve yasam verileri i¢in boylamsal gozlem olan serum bilirubin degerleri zamana
baglh bagimsiz degisken olarak modele alinarak, Weibull parametrik yasam
¢oziimlemesi modeli kullanilmistir. Model tahminlerini elde etmek i¢in Stata
programinda; gsem, streg ve xtreg komutlar1 ve R programinda; Ime, coxph ve
jointModel paketlerinden yararlanilmistir. Analiz sonuglarindan elde edilen p degerleri

a =0.05 anlamlilik diizeyinde kiyaslanmistir.

Uygulamada, hastalarin izlenmeye baglandigindan 6liim gerceklesene kadar gecen siire
yasam siiresi (y1l) olarak almmistir. Burada basarisizlik 6liim olarak kabul edilmistir.
Diger hastalar durdurulmus olarak ifade edilmistir. Calisma sonunda 312 hastadan 140’1
(%44.9) 6lmiis ve 172 (%55.1) hastada durdurma gozlemlenmistir. Veri seti, her hasta
icin klinik, biyokimyasal ve demografik risk faktorlerini igermektedir. Demografik
faktorler; hastalarm yasi ve cinsiyeti, Biyokimyasal faktorler; ilag (D-penisilin ve
placebo grubu), asit (karaciger yetmezligi sebebiyle karin bolgesinde su birikmesi
durumu-var/yok), hepatomegali (karaciger biiyiimesi durumu-var/yok), deride bozukluk
(derideki kan damar1 bozukluklari-var/yok), ddem (el ve ayaklarda sislik durumu-
yok/ilag kullanimina ragmen 6dem/var) ve histolojik evreden olusmaktadir. Calisma
kapsaminda biyokimyasal 6zellik olarak serum bilirumin (mg/dl) degerleri alinmigtir.

Kullanilan degiskenler ve diizeyleri Cizelge 5.1°de detayl1 olarak verilmistir.
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Cizelge 5.1. Kullanilan agiklayici degigkenler ve diizeyleri

Degisken Diizeyler n %
Cinsiyet 1- Kadin 276 88.5
2- Erkek 36 115
Ilag 1- D-penisilin 158 50.6
2- Placebo 154 49.4
Asit 1- Yok 247 79.2
2- Var 41 131
Hepatomegali 1- Yok 131 42.0
2- Var 157 50.3
Deride Bozukluk 1- Yok 188 60.3
2- Var 100 32.1
Odem 1- Yok 43 13.8
2- Tlaca Ragmen Odem 64 20.5
3- Var 205 65.7
Histolojik Evre 1- Evre 1 11 3.5
2- Evre2 45 14.4
3-Evre 3 102 32.7
4- Evre 4 154 49.4

Boylamsal gozlem olan serum bilirubin degerleri, Sekil 5.1’de histogram grafiginden de
goriildiigi gibi saga carpik bir dagilim gosterdiginden dolayr hesaplamalarda

logaritmasi (log(serBilir)) aliarak kullanilmistir.

1.0007 Mean = 3,67
Std. Dev.'= 5,373
N=1.945

500

600

Siklik

400

200

T T 1 T T
0,00 10,00 20,00 30,00 40,00 50,00

SerumBilirubin

Sekil 5.1. Serum bilirubin degerlerinin histogram grafigi.
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Ilag degiskeninin boylamsal ve yasam verileri arasindaki iliskiyi ayrintili incelemek

icin, ila¢ degiskeninin boylamsal 6l¢iim grafikleri ve Kaplan-Meier tahminlerine ait

grafikler Sekil 5.2°de verilmistir.

0 1000 2000 3000 4000 5000

1 1
D-penicil

1.0

1 1
placebo

— llac=placebo
-~ llac=D-Penisilin

08
1

08
serBilir

0.4

0z
1

0.0
1

0 1000 2000 3000 40

Sdre(Yil)

T T T
00 5000

Olcim Zamani

Sekil 5.2. Ila¢ degiskeninin Kaplan-Meier ve boylamsal l¢iim grafikleri

Sekil 5.2°de verilen Kaplan-Meier grafigine gore ilk 4 yilda D-penisilin ilacmi

kullananlarm kullanmayanlara gore yasam olasiliklarinin daha yiiksek oldugu ancak 4

yil sonrasinda yasam olasiliklarmin benzerlilik gdsterdigi soylenebilir. Iki tedavi

yontemine gore log(serBilir) degerlerinin grafigi incelendiginde placebo grubunun

serum bilirubin degerlerinin D-penisilin tedavisini olanlara gére daha yiiksek oldugu

ancak yine Ol¢iim degerlerinin birbirlerine yakin oldugu yorumu yapilabilir. Ilag

degiskenin diizeyleri arasinda anlamli bir farklilik olup olmadigini test etmek i¢in log-

rank testi uygulandiginda, p=0.992 olarak bulunmustur. Log-rank test sonucuna gore de

ila¢ degiskenin diizeyleri arasinda anlamli bir fark olmadig1 s6ylenebilir.

Boylamsal ve yasam verilerinin bilesik model yapisini inceleyebilmek igin, durdurma

ve Olen hastalar i¢in log(serBilir) degerlerinin grafigi Sekil 5.3’te verilmistir.
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Sekil 5.3. Log(serBilir) degerlerinin zamansal grafikleri

Sekil 5.3 incelendiginde, 6len hastalarin durdurma goézlemlenen hastalara gore daha
keskin bir egilim sergiledigi goriilmektedir. Bu, boylamsal gozlem ile yasam siiresi
arasinda pozitif bir ilisgkinin gostergesidir ve sonu¢ olarak boylamsal gozlem

seviyelerindeki artisin 6liimle dogrudan iliskili oldugu goriilmektedir.

5.1. Boylamsal ve Yasam Verilerinin Bilesik Coziimlemesi

4. boliimde belirtildigi gibi standart bilesik model yasam ¢oziimlemesi alt modeli i¢in
Cox regresyon ve boylamsal alt model i¢in dogrusal karma etkili modelin paylagilmis
parametre modeli ile birlestirilmesine dayanmaktadir. Ancak yasam ¢oOziimlemesi
literatiirtinde ve 3. boliimde belirtildigi gibi Cox regresyon modeli uygulanmadan 6nce
orantili tehlikeler varsayimi kontrol edilmelidir. Orantili tehlikeler varsayimmimin
saglanmadigi durumlarda, yasam ¢oOziimlemesinde Cox regresyon modeli yerine,
parametrik regresyon yontemleri kullanilmalidir. Ayni durum bilesik modelin yasam
coziimlemesi alt modeli i¢in de gecerlidir. Bu nedenle bilesik model kurulmadan 6nce
orantili tehlikeler varsayimini test etmek icin grafiksel yontemler ve Schoenfeld artiklari

kullanilmis ve sonuglar sirasiyla Sekil 5.4 ve Cizelge 5.2°de verilmistir.
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Sekil 5.4. Degiskenlerin orantili tehlikeler varsayimu i¢in grafikler

41



Cizelge 5.2. Degiskenlerin orantili tehlikeler varsayimi i¢in Schoenfeld artiklari ile

yagsam siiresinin ranki arasindaki iligski sonuglar1

r Ki-Kare p
Cinsiyet2 0.1349 2.73 0.0982
flag2 -0.0355 0.18 0.6755
Asit2 -0.1061 1.55 0.2132
Hepatome2 -0.0819 0.85 0.3563
DeriBoz2 -0.1125 1.65 0.1995
Odem2 0.1405 3.11 0.0778
Odem3 0.1584 3.82 0.0506
HistolojikEvre2 -0.0949 1.27 0.2605
HistolojikEvre3 -0.0250 0.09 0.7598
HistolojikEvre4 -0.0220 0.07 0.7885

Cizelge 5.2°de verilen sonuglar incelendiginde, tiim degiskenlerin orantili tehlikeler

varsayimini sagladigi ( p >« ) goriilmiistiir. Orantili tehlikeler varsayimmi incelemek

icin tek bir yontem yetersiz oldugundan, varsayim kontrolii grafiksel yontemlerle de
incelenmistir. Sekil 5.4’te degiskenlerin In(t) ’ye karsi —In(—In(S(t))) grafikleri
incelendiginde cinsiyet, ilag, hepatomegali ve histolojik evre degiskenlerinin diizeyleri
cakistigindan dolayr orantili tehlikeler varsayiminin saglanmadigi soylenebilir.
Varsayim saglanmadigindan dolayi, yasam verileri i¢cin Cox regresyon modelinin
kullanilmas1 uygun degildir. Ancak yine de parametrik bilesik modellerle
kiyaslayabilmek i¢in yasam c¢oziimlemesi alt modeli icin Cox regresyon modeli ve
boylamsal alt model i¢in dogrusal karma etkili modelin bilesik model tahminleri

Cizelge 5.3’de verilmistir.
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Cizelge 5.3. Standart bilesik model sonuglari

—~

B Std. hata z p
Sabit Terim 0.4352 0.2714 1.6033 0.1089
Yas -0.0038 0.0051 -0.7409 0.4588
Cinsiyet2 0.2369 0.1704 1.3904 0.1644
flac2 0.1283 0.1053 1.2185 0.2230
Asit2 0.1043 0.0415 2.5118 0.0120
Boylamsal ™ enatome2 -0.0183 0.0247 -0.7427 0.4577
Mﬁgel DeriBoz2 0.0640 0.0287 2.2273 0.0259
Odem2 0.1798 0.0344 5.2289 0.0000
Odem3 0.2706 0.0537 5.0434 0.0000
HistolojikEvre2 |  0.0340 0.0646 0.5256 0.5992
HistolojikEvre3 |  0.1021 0.0669 1.5259 0.1270
HistolojikEvre4 0.1642 0.1642 2.2939 0.0218
Yas 0.0306 0.0097 3.1460 0.0017
Cinsiyet2 0.3957 0.2537 1.5596 0.1188
[lag2 0.2125 0.1840 1.1552 0.2480
Asit2 0.2925 0.2292 1.2758 0.2020
Cox Hepatome?2 -1.6163 0.2042 0.2042 0.0000
Alt DeriBoz2 -0.6230 0.1994 -3.1249 0.0018
Model Odem? 0.8477 0.2421 3.5012 0.0005
Odem3 2.0730 0.2692 7.7003 0.0000
HistolojikEvre2 | -1.7986 0.7371 -2.4401 0.0147
HistolojikEvre3 | -1.4441 0.5745 -2.5138 0.0119
HistolojikEvre4 | -0.4095 0.5468 -0.7488 0.4540
Assoct 1.3913 0.1161 11.9833 0.0000

Cizelge 5.3’de kurulan standart bilesik modele gore, boylamsal alt modelde asit, deride
bozukluk, 6dem ve histlojikevre4 degiskenleri istatistiksel olarak anlamhi (p<a)
bulunmusgtur. Cox regresyon alt modelinde ise yas, hepatomegali, deride bozukluk,
odem, histolojikevre2 ve histolojikevre3 degiskenleri istatistiksel olarak anlamli
bulunmustur. Cox alt modelindeki tahmini assoct degiskeni iki siireci birlestiren
parametre tahminidir (iliskilendirme parametresi) ve Esitlik 4.1’de «a katsaymi
gostermektedir. Analiz sonucunda iligkilendirme parametresi istatistiksel olarak ( p <«
) anlamli bulunmasi, boylamsal gozlem ile yasam siireci arasmnda iliski oldugunu
gostermektedir. Serum bilirubin &lgimlerindeki artigin 6liim riskinde de artisa neden

olacag1 yorumu yapilabilir.
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Ancak Sekil 5.3 ve Cizelge 5.2°de goriildiigii gibi orantili tehlikeler varsaymu
saglanmadigindan dolayr bilesik modelin yasam c¢oziimlemesi alt modeli i¢in Cox
regresyonun kullanilmasi uygun degildir. Bu nedenle, yasam ¢6ziimlemesi alt modeli
icin Ustel, Weibull, Log-normal, Log-lojistik ve Gamma parametrik alt modellerine

bakilmistir ve sonuglar sirasiyla Cizelge 5.4 - 5.8°de verilmistir.

Cizelge 5.4. Ustel parametrik bilesik model sonuclar1

—~

B Std. hata z p
Sabit Terim 0.6638 0.2923 2.27 0.023
Yas -0.0082 0.0054 -1.52 0.129
Cinsiyet2 0.4923 0.1769 2.78 0.005
flag2 0.0939 0.1117 0.84 0.401
Asit2 0.1416 0.0506 2.80 0.005
Boylamsal ™ enatome2 -0.0190 0.0288 -0.66 0.510
Mﬁl}el DeriBoz2 0.1144 0.0334 3.42 0.001
Odem2 0.4018 0.0393 10.21 0.000
Odem3 0.6640 0.0569 11.67 0.000
HistolojikEvre2 | -0.1186 0.0741 -1.60 0.110
HistolojikEvre3 |  0.0320 0.0762 0.42 0.674
HistolojikEvre4 |  0.2302 0.0818 2.81 0.005
Yas -0.0514 0.0119 -4.31 0.000
Cinsiyet2 -0.5668 0.3428 -1.65 0.098
flag2 -0.3827 0.2351 -1.63 0.103
Asit2 -0.4779 0.2260 -2.11 0.034
Ustel Hepatome2 0.9773 0.1983 4.93 0.000
Alt DeriBoz2 0.1947 0.1961 0.99 0.321
Model Odem2 -0.9384 0.2323 -4.04 0.000
Odem3 -2.0893 0.2345 -8.91 0.000
HistolojikEvre2 |  1.3061 0.9242 1.41 0.158
HistolojikEvre3 | 0.3144 0.7577 0.41 0.678
HistolojikEvre4 | -0.5661 0.7365 -0.77 0.442
Assoct -1.3978 0.1130 -12.37 0.000

Cizelge 5.4’te yasam coziimlemesi icin Ustel alt model ile boylamsal veriler i¢in
dogrusal karma etkili modelin bilesik model tahminleri verilmistir. Boylamsal alt
modelde cinsiyet, asit, deride bozukluk, 6dem ve histolojikevre4 degiskenleri, Ustel alt
modelde ise yas, asit, hepatomegali ve 6dem degiskenleri istatistiksel olarak anlamli

bulunmustur ( p <e«). Iliskilendirme parametresi assoct katsayisi istatistiksel olarak
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anlamli bulundugundan dolayi, serum bilirubin degerleri arttikga yasam siiresinin

azaldig1 sOylenebilir.

Cizelge 5.5. Weibull parametrik bilesik model sonuglar1

—~

B Std. hata z p
Sabit Terim 0.6535 0.2943 2.22 0.026
Yas -0.0079 0.0055 1.42 0.155
Cinsiyet?2 0.4905 0.1781 2.75 0.006
flag2 0.0945 0.1125 0.84 0.401
Asit2 0.1408 0.0506 2.78 0.005
Boylamsal ™ enatome2 -0.0205 0.0288 0.71 0.475
Mﬁgel DeriBoz2 0.1139 0.0334 341 0.001
Odem2 0.3977 0.0393 10.11 0.000
Odem3 0.6492 0.0569 11.40 0.000
HistolojikEvre2 | -0.1207 0.0741 -1.63 0.104
HistolojikEvre3 |  0.0241 0.0763 0.32 0.752
HistolojikEvre4 |  0.2189 0.0818 2.68 0.007
Yas -0.0431 0.0092 -4.64 0.000
Cinsiyet2 -0.4022 0.2682 -1.50 0.134
flag2 -0.3059 0.1809 -1.69 0.091
Asit2 -0.3434 0.1627 211 0.035
Weibull Hepatome2 0.7130 0.1491 478 0.000
Alt DeriBoz2 0.1397 0.1392 1.00 0.315
Model Odem2 -0.6588 0.1725 -3.82 0.000
Odem3 -1.5090 0.1957 771 0.000
HistolojikEvre2 | 0.9656 0.6554 1.47 0.141
HistolojikEvre3 |  0.2690 0.5366 0.50 0.616
HistolojikEvred | -0.3743 0.5217 -0.72 0.473
Assoct -1.1569 0.0943 -12.27 0.000

Yasam ¢oziimlemesi igin Weibull alt model ile boylamsal verilerin dogrusal karma
etkili modelle bilesik model sonuglar1 Cizelge 5.5’te verilmistir. Buna gore boylamsal
alt modelde cinsiyet, asit, deride bozukluk, 6dem ve histolojik evre4 degiskenleri,
Weibull alt modelde yas, asit, hepatomegali ve 6dem degiskenleri istatistiksel olarak

anlamli bulunmustur ( p < ). Assoct katsayis1 da anlamli bulundugundan dolayi, serum

bilirubin 6lgtimlerindeki artigin yasam siiresinde kisalmaya neden olacagi sdylenebilir.
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Cizelge 5.6. Log-normal parametrik bilesik model sonuglar1

—~

B Std. hata z p
Sabit Terim 0.6712 0.2932 2.29 0.022
Yas -0.0082 0.0055 150 0.135
Cinsiyet2 0.4922 0.1774 277 0.006
flag2 0.0960 0.1121 0.86 0.391
Asit2 0.1384 0.0507 273 0.006
Boylamsal ™ enatome2 -0.0184 0.0289 -0.64 0.524
Mﬁgel DeriBoz2 0.1128 0.0335 3.37 0.001
Odem2 0.3993 0.0394 10.13 0.000
Odem3 0.6605 0.0571 1157 0.000
HistolojikEvre2 | -0.1216 0.0741 -1.64 0.101
HistolojikEvre3 |  0.0232 0.0763 0.30 0.761
HistolojikEvre4 |  0.2162 0.0818 2.64 0.008
Yas -0.0395 0.0095 -4.15 0.000
Cinsiyet2 -0.5272 0.2785 -1.89 0.058
flag2 -0.2811 0.1907 147 0.140
Asit2 -0.3950 0.2014 -1.96 0.050
Log- Hepatome2 0.7002 0.1687 415 0.000
”OXI‘t‘a' DeriBoz2 -0.0210 0.1606 -0.13 0.896
Model Odem? -0.7349 0.1809 ~4.06 0.000
Odem3 -1.7067 0.2270 752 0.000
HistolojikEvre2 | 1.2052 0.5783 2.08 0.037
HistolojikEvre3 |  0.3813 0.4556 0.84 0.403
HistolojikEvre4 | -0.1955 0.4417 -0.44 0.658
Assoct ~1.1330 0.1000 1133 0.000

Cizelge 5.6’da verilen Log-normal bilesik model sonuglarina gore, boylamsal alt
modelde cinsiyet, asit, deride bozukluk, 6dem ve histolojikevre4 degiskenleri, Log-
normal alt modelde ise yas, asit, hepatomegali, 6dem, histolojikevre2 ve assoct
degiskenleri istatistiksel olarak anlamli bulunmustur ( p < ). Serum bilirubin 6l¢iimleri
ile yasam siiresi arasinda iliski bulunmaktadir. Serum bilirubin degerlerindeki artisin

yasam siiresinde kisalmaya neden olacagi s6ylenebilir.
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Cizelge 5.7. Log-lojistik parametrik bilesik model sonuglar1

—~

B Std. hata z p

Sabit Terim 0.6571 0.2941 2.23 0.025

Yas -0.0079 0.0055 -1.44 0.151

Cinsiyet2 0.4913 0.1780 2.76 0.006

flag2 0.0955 0.1124 0.85 0.396

Asit2 0.1383 0.0507 2.73 0.006

Boylamsal ™ enatome2 -0.0199 0.0288 -0.69 0.489
Mﬁgel DeriBoz2 0.1138 0.0334 3.40 0.001
Odem?2 0.3980 0.0394 10.11 0.000

Odem3 0.6534 0.0570 11.46 0.000
HistolojikEvre2 | -0.1215 0.0741 -1.64 0.101
HistolojikEvre3 |  0.0233 0.0762 0.31 0.760
HistolojikEvre4 | 0.2171 0.0818 2.65 0.008

Yas -0.0419 0.0094 -4.46 0.000

Cinsiyet2 -0.4663 0.2748 -1.70 0.090

flag2 -0.2817 0.1858 -1.52 0.129

Asit2 -0.3838 0.1796 -2.14 0.033

Log-lojistik | Hepatome2 0.7241 0.1592 4.55 0.000
Alt DeriBoz2 0.0715 0.1513 0.47 0.636
Model Odem2 -0.6852 0.1745 -3.93 0.000
Odem3 -1.5498 0.2077 -7.46 0.000
HistolojikEvre2 |  0.9881 0.6268 1.58 0.115
HistolojikEvre3 |  0.3057 0.5153 0.59 0.553
HistolojikEvre4 | -0.3343 0.5011 -0.67 0.505
Assoct -1.1499 0.0972 -11.83 0.000

Cizelge 5.7°de verilen Log-lojistik parametrik bilesik model sonuglar1 incelendiginde,
boylamsal alt model icin cinsiyet, asit, deride bozukluk, 6dem ve histolojikevre4
degiskenlerinin, yasam ¢oziimlemesi alt modelinde ise yas, asit, hepatomegali ve 6dem
(p<a).

[liskilendirme parametresine gdre, serum bilirubin dl¢iimlerinde artisin yasam siiresinde

degiskenlerinin istatistiksel olarak anlamli oldugu goriilmektedir

kisalmaya neden olacagi soylenebilir.
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Cizelge 5.8. Gamma parametrik bilesik model sonuglar1

—~

B Std. hata z p
Sabit Terim 0.6560 0.2941 2.23 0.026
Yas -0.0078 0.0055 -1.43 0.151
Cinsiyet2 0.4911 0.1780 2.76 0.006
flac2 0.0949 0.1124 0.84 0.398
Asit2 0.1401 0.0506 2.77 0.006
Boylamsal ™ enatome2 -0.0203 0.0288 -0.71 0.480
Mﬁgel DeriBoz2 0.1136 0.0334 3.40 0.001
Odem2 0.3982 0.0393 10.12 0.000
Odem3 0.6518 0.0570 11.45 0.000
HistolojikEvre2 | -0.1209 0.0741 -1.63 0.103
HistolojikEvre3 |  0.0242 0.0763 0.32 0.750
HistolojikEvre4 | 0.2187 0.0818 2.67 0.008
Yas -0.0429 0.0095 -4.53 0.000
Cinsiyet?2 -0.4345 0.2733 -1.59 0.112
[lag2 -0.3058 0.1853 -1.65 0.099
Asit2 -0.3547 0.1707 -2.08 0.038
Gamma Hepatome?2 0.7297 0.1548 4.71 0.000
Alt DeriBoz2 0.1198 0.1461 0.82 0.412
Model Odem? -0.6870 0.1755 -3.91 0.000
Odem3 -1.5713 0.1996 -7.87 0.000
HistolojikEvre2 |  1.0084 0.6478 1.56 0.120
HistolojikEvre3 |  0.2992 0.5301 0.56 0.572
HistolojikEvre4 | -0.3546 0.5155 -0.69 0.492
Assoct -1.1665 0.7272 9.23 0.000

Gamma alt model ile boylamsal alt modelin paylasiimis parametre ile bilesik model
sonuglar1 Cizelge 5.8’de verilmistir. Boylamsal alt modelde cinsiyet, asit, deride
bozukluk, 6dem ve histolojikevre4 degiskenleri, Gamma alt model de ise yas, asit,
hepatomegalli,

bulunmustur ( p<«). Boylamsal 6l¢iim olan serum bilirubin degerlerindeki artigin

odem ve iligskilendirme parametresi

yasam siiresinde kisalmaya neden olacagi sdylenebilir.

Parametrik bilesik modeller arasinda en iyi modeli belirlemek i¢in AIC ve BIC

istatistiksel olarak anlamli

degerlerine bakilmistir. Modellerin AIC ve BIC degerleri Cizelge 5.9°de verilmistir.

48




Cizelge 5.9. Parametrik bilesik modeller i¢in AIC ve BIC degerleri

Model AlC BIC
Ustel 4738.236 4894.281
Weibull 4721.314 4882.982
Log-normal 4742.735 4904.352
Log-lojistik 4727.06 4888.678
Gamma 4722 .846 4884.464

Cizelge 5.9°da verilen model karsilastirma kriterlerine gore, yasam c¢oziilmesi i¢in
Weibull alt model ve boylamsal gozlemler i¢in dogrusal karma etkili modelin
paylasilmig parametre modeli ile birlestirilmesiyle elde edilen modelin en iyi model
oldugu sdylenebilir. Boylamsal alt model sonuglarima gore, kadmlarin yillik serum
bilirubin degerlerinin erkeklere gore 0.49 birim arttig1, karaciger yetmezligi sebebiyle
karin bolgesinde su birikintisi olanlarin yillik serum bilirubin degerlerinin olmayanlara
gore 0.14 birim arttig1, deride kan bozuklugu olanlarin olmayanlara gore yillik serum
bilirubin degerlerinin 0.11 birim arttig1, ilag kullanirmina ragmen ellerinde ayaklarinda
sislik olanlarin olmayanlara gore yillik serum bilirubin degerlerinin 0.40 birim arttig,
ellerinde ve ayaklarinda sislik olanlarin olmayanlara goére yillik serum bilirubin
degerlerinin 0.65 birim attig1 ve hastaligin 4. evresinde olanlarin hastalifin 1. evresinde
olanlara gore yillik serum bilirubin degerlerinin 0.22 birim arttig1 yorumlar1 yapilabilir.
Weibull alt model sonuglarina gore yas ilerledik¢e yasam siiresinin kisaldigi, karaciger
yetmezligi sebebiyle karninda su birikintisi olanlarin olmayanlara goére yasam

stirelerinin  exp(0.3434) =1.41 kat daha kisa oldugu, karaciger biiylimesi olanlarin
olmayanlara gore yasam siirelerinin exp(0.7130)=2.04 ve ila¢ kullandigi halde

ellerinde ve ayaklarinda sislik olanlarin olmayanlara goére yasam siiresinin

exp(0.6588) =1.93 kat daha kisa, ellerinde ve ayaklarinda sislik olanlarin olmayanlara
gore yasam siirelerinin exp(1.5090) = 4.52 kat daha kisa oldugu s6ylenebilir. Assoct kat

sayisina gore serum bilirubin degerleri ile yasam siiresi arasinda giiglii bir iliski
bulunmaktadir. Serum bilirubin degerlerindeki artigin yasam siiresinde kisalmaya neden

oldugu yani 6liim riskinde artisa neden oldugu sdylenebilir.
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5.2. Boylamsal ve Yasam Verilerinin Ayr1 Coziimlemesi
Bilesik modelden elde edilen sonuglar1 kiyaslayabilmek i¢in, PBS veri setine boylamsal
analiz i¢in kullanilan dogrusal karma etkili model uygulanmistir ve model sonuglar1

Cizelge 5.10°da verilmistir.

Cizelge 5.10. Dogrusal karma etkili model sonuglar1

—~

B Std. hata z p
Sabit Terim -0.0679 0.3925 -0.17 0.863
Yas -0.0132 0.0049 -2.67 0.008
Cinsiyet2 0.4760 0.1539 3.09 0.002
Tlag2 -0.0166 0.0978 -0.17 0.866
Asit2 1.1179 0.2717 411 0.000
Hepatome2 0.7778 0.1539 5.05 0.000
DeriBoz2 0.4243 0.1468 2.89 0.000
Odem2 0.2944 0.1786 1.65 0.100
Odem3 0.4256 0.2645 1.61 0.109
HistolojikEvre2 0.0515 0.3805 1.35 0.177
HistolojikEvre3 0.6385 0.3459 1.85 0.066
HistolojikEvre4 0.7478 0.3483 2.15 0.033

Cizelge 5.10°da verilen dogrusal karma etkili model sonu¢larina gore; yas, cinsiyet, asit,
hepatomegali, deride bozukluk, 6dem ve histolojik evre4 degiskenleri istatistiksel olarak

anlaml1 bulunmustur.

Cizelge 5.9’da verilen bilesik model karsilastirmalar1 sonuglarina goére en iyi model,
Weibull parametrik bilesik model oldugundan dolayi, sonuglar1 kiyaslayabilmek i¢in
yasam verilerinin ayr1 analizi Weibull parametrik model ile yapilmistir ve sonuglar

Cizelge 5.11°de verilmistir.
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Cizelge 5.11. Weibull parametrik model sonuglar1

—~

B Std. hata z p
Sabit Terim 7.8327 0.9469 8.27 0.000
Yas -0.0309 0.0100 -3.08 0.002
Cinsiyet2 -0.4469 0.2399 -1.86 0.062
flag2 -0.1999 0.1761 -1.13 0.256
Asit2 -0.7177 0.2333 -3.08 0.002
Hepatome2 0.5186 0.1986 2.61 0.009
DeriBoz2 -0.0140 0.1945 -0.07 0.943
Odem2 -0.8790 0.2462 -3.57 0.000
Odem3 -1.7537 0.2927 -5.99 0.000
HistolojikEvre2 0.6030 0.9179 0.66 0.511
HistolojikEvre3 -0.3688 0.7476 -0.49 0.622
HistolojikEvre4 -1.0932 0.7361 -1.49 0.138
Log(serBilir)(t) -0.0001 0.0000 -2.92 0.004

Cizelge 5.11°de verilen Weibull parametrik model sonuglarma gore; yas, asit,
hepatomegali, 6dem ve zamana bagimli serum bilirubin degiskenleri istatistiksel olarak
anlamli bulunmustur ( p<ea). Weibull parametrik modelin tehlike oranlarinin ve
parametre tahminlerinin standart hatalarmin Weibull parametrik birlesik model
sonuclarindan daha yiiksek oldugu goriilmektedir. Weibull parametrik modele gore, el
ve ayaklarinda ila¢ kullanimina ragmen sislik olanlarin olmayanlara gére yasam siireleri
exp(0.8790) = 2.41 kat daha kisayken, Weibull parametrik bilesik alt model sonucuna
gore el ve ayaklarinda ila¢ kullanimina ragmen sislik olanlarmn olmayanlara gére yasam
stireleri exp(0.6588) =1.93 kat kisadir. Ek olarak, zamana bagimli serum bilirubin

degerleri ile yasam siiresi arasindaki iliski Weibull parametrik birlesik modele gore

daha zayif bulunmustur.

Ayrica Cox regresyon ile dogrusal karma etkili modelin paylasilmig parametre modeli
ile birlestirilmesiyle elde edilen standart bilesik model sonucuna gére yasam siiresi ile
serum bilirubin degerleri arasindaki iliski, Weibull parametrik birlesik modele goére

daha yiiksek bulunmustur.
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6. SONUCLAR

Bu caligmada, boylamsal ve yasam verilerinin bilesik modellemesi ve parametrik bilesik
model yapilart verilmis, yasam siiresinin orantili tehlikeler varsayimini saglamadigi

durumda kullanilabilecek olan parametrik bilesik model yontemleri anlatilmistir.

Ayni calisma kapsaminda elde edilen boylamsal ve yasam verilerinin ayri analizi
sonucunda Ol¢iim hatalar1 ve kayip veri sorunlari ortaya g¢ikmaktadir. Bu sorunlari
ortadan kaldirmak ve yansiz ve etkin tahminler elde etmek i¢in bilesik modelleme
iizerine ¢aligmalar son zamanlarda giderek artmaktadir. Genel olarak kullanilan standart
bilesik model yapisi, boylamsal gézlemlerin dogrusal karma etkili model ve yasam
verilerinin Cox regresyon modeliyle paylagilmis parametre modelleri yardimiyla
birlestirilmesine dayanmaktadir. Ancak yasam verilerine Cox regresyon modelinin
uygulanabilmesi igin orantili tehlikeler varsayiminin saglanmasi gerekmektedir.
Varsayimim saglanmadigi durumlarda tabakalandirilmis Cox regresyon, genellestirilmis
Cox regresyon veya yasam siiresinin bilinen bir dagilima uymasi durumunda parametrik
regresyon yontemleri kullanilmahidir. Varsayim saglanmadigi durumlarda yansiz ve
giivenilir sonuglar elde edebilmek i¢in bilesik model yasam ¢6ziilmesi alt modeli i¢in
Ustel, Weibull, Log-normal, Log-lojistik ve Gamma parametrik alt modelleri tercih

edilebilir.

Uygulamada oOncelikle standart bilesik model yapist incelenmistir. Bu model
kurulmadan 6nce orantili tehlikeler varsayimi1 Schoenfeld artiklar1 ve grafiksel yontemle
test edilmis ve orantili tehlikeler varsayiminin saglanmadigi goriilmiistiir. Ancak
parametrik bilesik modelleme sonuglari ile kiyaslama yapabilmek i¢in Cox regresyon ve
dogrusal karma etkili modelin bilesik analiz sonuglar1 verilmistir. Daha sonra yasam
¢dziimlemesi igin Ustel, Weibull, Log-normal, Log-lojistik ve Gamma alt modelleri ve
dogrusal karma etkili modelin paylasilmis parametre modeli ile birlestirilmesiyle elde
edilen parametrik bilesik model sonuglar1 verilmistir. Bu modellerden en iyi modele
karar vermek igin bilgi kriterlerine bakilmis ve Weibull parametrik bilesik model en iyi
model olarak bulunup, sonuglar ayrintili olarak yorumlanmistir. Daha sonra boylamsal
ve yasam verileri i¢in ayr1 ayr1 dogrusal karma etkili model ve Weibull parametrik
regresyon modeli kurulmustur. Weibull parametrik bilesik modelle kiyaslayabilmek i¢in

Weibull parametre modeline boylamsal gozlem olan serum bilirubin degeri zamana
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bagl degisken olarak eklenmistir. Model sonuclar1 incelendiginde yasam verileri igin
ayr1 analiz sonuglarinda, parametre standart hatalarinin ve tehlike oranlarinin bilesik
model yasam ¢oziimlemesi kismindan daha biiyiikk oldugu goriilmistiir. Ayrica, serum
bilirubin degerleri ile yasam siiresi arasindaki iligki ayr1 analizde bilesik analize gore

daha diisiik olarak bulunmustur.

Yasam verileri igin Cox regresyon modeli kullanilarak elde edilen standart bilesik
model sonuglartyla Weibull parametrik bilesik model sonuglar1 kiyaslandiginda, tehlike
oranlarinin ve parametre standart hatalarmin standart bilesik modelde daha yiiksek
oldugu goriilmiistiir. Ayrica serum bilirubin degerleri ile yasam siiresi arasindaki iliski

Weibull parametrik model de daha yiiksek bulunmustur.

Sonug olarak, boylamsal gozlem ve yasam verilerinin birlikte oldugu calismalarda ayri
analiz yapmak uygun degildir. Iki veri arasindaki iliskiyi dogru sekilde analiz etmek
icin bilesik modelleme kullanilmalidir. Ancak, Cox regresyon modeli ile dogrusal
karma etkili modelin bilesik modellemesi kullanilmadan ©Once orantili tehlikeler
varsayiminin incelenmesi gerekmektedir. Orantil1 tehlikeler varsayimi saglanmadiginda
ve verilerin bilinen dagilimlara uygunlugu s6z konusu oldugu durumlarda, yansiz ve
etkin parametre tahminleri icin bilesik modelin yasam ¢6ziimlemesi alt modeli

parametrik regresyon yontemleri ile yapilmalidir.

53



KAYNAKLAR

Ahmed, F. E., Vos, P. W. and Holbert, D., Modeling Survival in Colon Cancer: A
Methodological Review, Molecular Cancer, 6 (2007) 15.

Albert P. S. and Shih J. H., An Approach For Jointly Modeling Multivariate
Longitudinal Measurements and Discrete Time-To-Event Data, The Annals of
Applied Statistics, 4 (2010) 1517-1532.

Allison, P. D., Survival Analysis Using SAS: A Practical Guide, SAS Institute Inc., VVol.
2, North Carolina, USA, 2010.

Asimow, L. A. and Maxwell, M. M., Probability and Statistics with Applications: A
Problem Solving Text, ACTEX Publications Inc., Vol. 2, New Hartford, 2015.

Ata, N., Karasoy, D. ve Sozer, M. T., Orantisiz Hazardlar i¢in Parametrik ve Yari
Parametrik Yasam Modelleri, istatistik¢iler Dergisi, 1 (2008) 125-134.

Ballinger, G. A., Using Generalized Estimating Equations for Longitudinal Data
Analysis, Organizational Research Methods, 7 (2004) 127-150.

Bates, D., Machler, M., Bolker, B. M., and Walker, S. C., Fitting Linear Mixed-Effects
Models Using Ime4, Journal of Statistical Software, 67 (2015) 1-48.

Bewick, V., Cheek, L., and Ball, J., Statistics Review 12: Survival Analysis. Critical
Care, 8 (2004) 389-394.

Bilmes, J. A., A Gentle Tutorial of the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models, Technical Report
ICSI-TR-97-021, University of Berkeley, 1998.

Brown, E. R. and Ibrahim, J. G., A Bayesian Semiparametric Joint Hierarchical Model
for Longitudinal and Survival Data. Biometrics, 59 (2003) 221-228.

Borman, S., The Expectation Maximization Algorithm, A short tutorial, Retrieved from,
2006
http://www.csd.uwo.ca/faculty/olga/Courses/Fall2006/Papers/EM_algorithm.pdf

Booth, J. and Hobert, J., Maximizing Generalized Linear Mixed Model Likelihoods
with an Automated Monte Carlo EM Algorithm, Journal of The Royal
Statistical Society, Series B, 61 (1999) 265-285.

54


http://www.csd.uwo.ca/faculty/olga/Courses/Fall2006/Papers/EM_algorithm.pdf

Chernick, M. R. and Friis R. H., Introductory Biostatistics for The Health Sciences:
Modern Application Including Bootstrap, John Wiley and Sons, Vol. 1,
Hoboken, New Jersey, 2003.

Christensen, E., Schlichting, P., Fauerholdt L., Gluud, C., Andersen, P. K., Juhl, E.,
Poulsen, H. and Tygstrup, N., Prognostic Value of Childturcotte Criteria in
Medically Treated Cirrhosis, Hepatology 4 (1984) 430-435.

Collett D., Modelling Survival Data in Medical Research, Chapman and Hall/ CRC
Press, Vol. 3, U.S.A, 2003.

Cox, D. R., Regression Models and Life-Tables (With Discussion). Journal of the Royal
Statistical Society, Series B, 34 (1972) 187-220.

Cox, D. and Hinckley, D., Theoretical Statistics, Chapman and Hall/ CRC Press, Vol. 1,
U.S.A 1974,

Crowder, M., On the use of a working correlation matrix in using generalised linear
models for repeated measures, Biometrika, 82 (1995) 407—-410.

Crowther, M. C., Abramsa, K. R. and Lambert P. C., Flexible Parametric Joint
Modelling of Longitudinal and Survival Data, Statistics in Medicine, 31 (2012)
4456-4471.

Crowther, M. C., Abrams K. R. and Lambert P. C., Joint Modeling of Longitudinal and
Survival Data, The Stata Journal, 13 (2013) 165-184.

Dafni, U. G. and Tsiatis, A. A., Evaluating Surrogate Markers of Clinical Outcome
when Measured with Error, 54 (1998) 1445:1462.

Danalioglu, A., Karaciger Sirozu Nedeniyle Ex Olmus 100 Vakanin Retrospektif
Degerlendirilmesi, Uzmanlik Tezi, SSK Go6ztepe Hastanesi 2. Dahiliye Klinigi,
Istanbul, 1995.

DeGruttola, V. and Tu, X. M., Modelling Progression of CD4-Lymphocyte Count and
its Relationship to Survival Time, Biometrics, 50 (1994) 1003-1014.

Dempster, A., Laird, N. and Rubin, D., Maximum Likelihood from Incomplete Data via
the EM Algorithm, Journal of the Royal Statistical Society, Series B, 39 (1977)
1-38.

Dobson, A. and Henderson, R., Diagnostics for Joint Longitudinal and Dropout Time
Modeling, Biometrics, 59 (2003) 741-751.

55



Doganay, B., Uzunlamasina Calismalarin Analizinde Karma Etki Modelleri, Yiiksek
Lisans Tezi, Ankara Universitesi Saglik Bilimleri Enstitiisii, Ankara, 2007.

Diaz, L. C., Joint Modelling for Longitudinal and Time-to-Event Data. Application to
Liver Transplantation Data, Master Thesis, University of Santiago de
Compostela, Spain, 2014.

Diggle, P., Heagetry, P., Liang, K. Y., and Zeger, S. L., Analysis of Longitudinal Data.
Oxford University Press. Vol. 2, New York, 2002.

Efendi, A., Molenberghs, G., Njagi E. D. and Dendale, P., A Joint Model for
Longitudinal Continuous and Time-To-Event Outcomes with Direct Marginal
Interpretation, Biometrical Journal, 55 (2013) 572-588.

Elashoff, R., Li, G. and Li, N., A Joint Model for Longitudinal Measurements and
Survival Data in The Presence of Multiple Failure Types, Biometrics, 64 (2008)
762-771.

Esquivel, C. O., Thiel D. H. V., Demetris, A. J., Bernardos, A., lwatsuki, S., Markus,
B., Gordon, R. D., et al., Transplantation for Primary Biliary Cirrhosis,
Gastroenterology, 94 (1988) 1207-1216.

Evans M., Hastings N. and Peacock B., Statistical Distributions, Wiley and Sons, Vol.
3, NewYork, 2000.

Faucett, C. and Thomas, D., Simultaneously Modelling Censored Survival Data and
Repeatedly Measured Covariates: A Gibbs Sampling Approach, Statistics in
Medicine, 15 (1996) 1663-1685.

Fitzmaurice, G. M., Laird, N. M. and Ware, J. H., Applied Longitudinal Analysis, John
Wiley and Sons, Vol. 2, New York, 2011.

Fox, J., Cox Proportional-Hazards Regression for Survival Data, Appendix to An R and
SPLUS Companion to Applied Regression, SAGE Publications, Vol. 1,
California, (2008).

Fox, J. and Weisberg, S., Cox Proportional-Hazards Regression for Survival Data in R,
an Appendix to An R Companion to Applied Regression, SAGE Publications,
Vol. 2, California, (2011).

Ghisletta, P. and Spini, D., An Introduction to Generalized Estimating Equations and an
Application to Assess Selectivity Effects in a Longitudinal Study on Very Old
Individuals, Journal of Educational and Behavioral Statistics, 29 (2004) 421
437.

56



Givens, G. H. and Hoeting, J. A., Computational Statistics, John Wiley and Sons, Vol.
2, Hoboken, New Jersey, 2013.

Gordon, R. D., lwatsuki, S., Tzakis, A. G., Esquivel, C. O., Todo, S., Makowka, L. and
Starzl, T. E., The Denver-Pittsburgh Liver Transplant Series, National Library
of Medicine National Institutes of Health, (1987) 43-50.

Guo, X. and Carlin, B. P., Separate and Joint Modeling of Longitudinal and Event Time
Data Using Standard Computer Packages, The American Statistician, 58 (2004)
16-24.

Harville, D. A., Maximum Likelihood Approaches to Variance Component Estimation
and to Related Problems, Journal of The American Statistical Association, 72
(1977) 320-338.

Hedeker D. And Gibbons R.D., Longitudinal Data Analysis, John Wiley and Sons, Vol.
1, Hoboken, New Jersey, 2006.

Henderson, R., Diggle, P. and Dobson, A., Joint Modeling of Longitudinal
Measurements and Event Time Data, Biostatistics, 1 (2000) 465-480.

Hickey, G. L., Philipson, P., Jorgensen, A. and Dona, R. K., Joint Modelling of
Time-to-Event and Multivariate Longitudinal Outcomes: Recent Developments
and Issues, BMC Medical Research Methodology, 16 (2016) 1-15.

Hickey, G. L., Philipson, P., Jorgensen, A. and Dona R. K., joineRML: A Joint Model
and Software Package for Time-To-Event and Multivariate Longitudinal
Outcomes, BMC Medical Research Methodology, 18 (2018) 1:24.

Hsieh, F., Tseng, Y. K. and Wang, J. L. Joint Modeling of Survival and Longitudinal
Data: Likelihood Approach Revisited, Biometrics, 62 (2006) 1037-1043.

Hsieh, F., Ding, J. and Wang, J. L., Method of Sieves to Jointly Model Survival and
Longitudinal Data, Statistica Sinica, 23 (2013) 1181-1213.

Hosmer D. W., Lemeshow S. and May S., Applied Survival Analysis: Regression
Modeling of Time-to-Event Data, John Wiley and Sons, Vol. 2, Hoboken, New
Jersey, 2008.

Hu, W. H., Li, G. and Li, N., A Bayesian Approach to Joint Analysis of Longitudinal

Measurements and Competing Risks Failure Time Data, Statistics in Medicine,
28 (2009) 1601- 1619.

57



Ibrahim, J. G., and Molenberghs, G., Missing Data Methods in Longitudinal Studies: A
Review, An Official Journal of the Spanish Society of Statistics and Operations
Research, 18 (2009) 1-43.

Ibrahim, J. G., Chu, H. and Chen, L. M., Basic Concepts and Methods for Joint Models
of Longitudinal and Survival Data, Journal of Clinical Oncology, 28 (2010)
2796-2801.

Kalkan, S. B., Boylamsal Verilerde Semiparametrik Karma Etki Modelleri ve Bir
Uygulama, Doktora Tezi, Marmara Universitesi Sosyal Bilimler Enstitiisii,
Istanbul, 2014.

Karasoy, D. ve Tutkun, N. A., Yasam Coziimlemesi, 1. Baski, Nobel Akademik
Yaymecilik, 2016.

Klein, J. P. and Moeschberger, M. L., Survival Analysis Techniques for Censored and
Truncated Data, Springer-Verlag, Vol. 2, New York, 1997.

Kleinbaum, D. G. and Klein, M., Survival analysis: A Self-Learning Text, Springer,
Vol. 3, New York, 2012.

Laird, N. M. and Ware, J. H., Random-Effects Models for Longitudinal Data,
Biometrics, 38 (1982) 963-974.

Lange, K., Numerical Analysis for Statisticians, Springer, Vol. 2, New York, 2010.

Lesaffre, E. and Spiessens, B., On The Effect of the Number of Quadrature Points in a
Logistic Random-Effects Model: An Example, Journal of the Royal Statistical
Society, Series C, 50 (2001) 325-335.

Lewis, T. H., Complex Survey Data Analysis with SAS, CRC Press Taylor and Francis
Group, Vol. 1, Virginia, 2017.

Li, N., Elashoff, R. M., Li, G., and Saver, J., Joint Modeling of Longitudinal Ordinal
Data and Competing Risks Survival Times and Analysis of the NINDS RT-PA
Stroke Trial, Statistics in Medicine, 29 (2009) 546-557.

Liang, K. and Zeger, S. L., Longitudinal Data Analysis Using Generalized Linear
Models, Biometrika, 73 (1986) 13-22.

Lima, C. P. and Taylor, J. M. G., Development and Validation of a Dynamic Prognostic

Tool for Prostate Cancer Recurrence Using Repeated Measures of Posttreatment
PSA: A Joint Modeling Approach, Biostatistics, 10 (2009) 535-549.

58



Lima, C. P., Joly, P., Dartigues, J. and Gadda, H. J., Joint Modelling of Multivariate
Longitudinal Outcomes and a Time-To-Event: A Nonlinear Latent Class
Approach, Computational Statistics and Data Analysis, 53 (2012) 1142-1154.

Liu, X., Survival Analysis: Models and Applications, John Wiley and Sons, Vol. 1,
Hoboken, New Jersey, 2012.

Liu, F. and Li, Q., A Bayesian Model for Joint Analysis of Multivariate Repeated
Measures and Time to Event Data in Crossover Trials, Statistical Methods in
Medical Research, 25 (2014) 2180-2192.

Mayo Clinic, Primary Biliary Cirrhosis, sequential data,
https://www.mayo.edu/research/documents/pbcseghtml/doc-10027141.

Mbohning, C., Bleakley, K. and Lavielle, M., Joint Modeling Of Longitudinal And
Repeated Time-To-Event Data using Nonlinear Mixed-Effects Models and the
SAEM algorithm, Journal of Statistical Computation and Simulation, 85 (2015)
1512-1528.

McCrink, L. M., Marshall, A. H. and Cairns, K. J., Advances in Joint Modelling: A
Review of Recent Developments with Application to the Survival of End Stage
Renal Disease Patients, International Statistical Review, 81 (2013) 249-2609.

McCool, J., Using the Weibull Distribution: Reliability, Modelin and Inference, John
Wiley and Sons, Vol. 1, Hoboken, New Jersey, 2012.

McCulloch, C., Maximum likelihood algorithms for generalized linear mixed models,
Journal of the American Statistical Association, 92 (1997) 162-170.

Mondal, P. K., Joint Modeling of Longitudinal Measurements and Survival Data with
Competing Risks: Application to Hiv/Aids Study, Doctora Thesis, University of
Saskatchewan, Canada, 2017.

Murtaugh, P., Dickson, E. R., Dam, G. V., Malinchoc, M., Grambsch, P. M.,
Langworthayn A. and Gips, C. H., Primary Biliary Cirrhosis: Prediction of
Short-Term Survival Based On Repeated Patient Visits, Hepatology, 20 (1994)
126-134.

Pasha, T. M. and Dickson, E. R., Survival Algorithms and Outcome Analysis in
Primary Biliary Cirrhosis, Seminars in Liver Disease, 17 (1997) 147-158.

Pauler, D. K. and Finkelstein, D. M., Predicting Time to Prostate Cancer Recurrence

Based on Joint Models for Non-Linear Longitudinal Biomarkers and Event Time
Outcomes, Statistics in Medicine, 21 (2002) 3897-3911.

59


https://www.mayo.edu/research/documents/pbcseqhtml/doc-10027141

Pericleous, P., Parametric Joint Modelling for Longitudinal and Survival Data, Doctoral
Thesis, School of Computing Sciences University of East Anglia, UK, 2016.

Persson, 1., Essays on the Assumption of Proportional Hazards in Cox Regression.
Doctoral Thesis, Uppsala University, Sweden, 2002.

Pinheiro, J. and Bates, D., Approximations to the Log-Likelihood Function in the
Nonlinear Mixed-Effects Model, Journal of Computational and Graphical
Statistics, 4 (1995) 12-35.

Pinheiro, J. and Chao, E., Efficient Laplacian and Adaptive Gaussian Quadrature
Algorithms for Multilevel Generalized Linear Mixed Models, Journal of
Computational and Graphical Statistics, 15 (2006) 58-81.

Pintilie, M., Competing Risks: A Practical Perspective, John Wiley and Sons, Vol. 1,
New York, 2006.

Press, W., Teukolsky, S., Vetterling, W. and Flannery, B., Numerical Recipes: The Art
of Scientific Computing, Cambridge University Press, Vol. 3, New York, 2007.

Rizopoulos, D., Verbeke, G. and Molenberghs, G., Shared Parameter Models under
Random Effects Misspecication, Biometrika 95 (2008) 63-74.

Rizopoulos, D., Verbeke, G. and Lesaffre, E., Fully Exponential Laplace
Approximations for the Joint Modelling of Survival and Longitudinal Data,
Journal of the Royal Society Statistical Methodology, 71 (2009) 637-654.

Rizopoulos, D., JM: An R Package for the Joint Modelling of Longitudinal and
Time-to-Event Data, Journal of Statistical Software, 35 (2010) 1-33.

Rizopoulos, D., Verbeke, G. and Molenberghs, G., Multiple-Imputation-Based
Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival
Outcomes, Biometrics, 66 (2010) 20-29.

Rizopoulos, D., Joint Models for Longitudinal and Time-to-Event Data with
Applications in R, CRC Press Taylor and Francis Group, Vol. 1, Boca Raton,
2012a.

Rizopoulos, D., Fast fitting of Joint Models for Longitudinal and Event Time Data
Using a Pseudo-Adaptive Gaussian Quadrature Rule, Computational Statistics
and Data Analysis, 56 (2012b) 491-501.

Rizopoulos, D., The R Package JMbayes for Fitting Joint Models for Longitudinal and
Time-to-Event Data Using MCMC, Journal of Statistical Software, 72 (2016) 1
45,

60



Rodriguez, G., Parametric Survival Models, Technical report, Princeton University,
New Jersey, 2010.

San, E. C. H., Joint Modelling of Survival and Longitudinal Data Under Nested Case
Control Sampling, Master Thesis, National University of Singapore, Singapure,
2013.

Self, S. and Pawitan, Y., Modeling a Marker of Disease Progression and Onset of
Disease, AIDS Epidemiology: Methodological Issues, Boston, Birkhuser, 231
255, 1992.

Singh, R. and Mukhopadhyay, K., Survival Analysis in Clinical Trials: Basics and must
Know Areas, Perspectives in Clinical Research, 2 (2011) 145-148.

Song, X., Davidian, M. and Tsiatis, A., A Semiparametric Likelihood Approach to Joint
Modeling of Longitudinal and Time-To-Event Data, Biometrics, 58 (2002) 742
753.

Sonsuz, A., Karaciger Sirozunda Hasta Takibi ve Klinik Sorunlar, I.U. Cerrahpasa Tip
Fakiiltesi Stirekli Tip Egitimi Etkinlikleri, 58 (2007) 99-112.

Sousa, I., A Review on Joint Modelling of Longitudinal Measurements and Time-to
Event, REVSTAT-Statistical Journal, 9 (2011) 57-81.

Steensmeier J. M. and Jones B. S., Event History Modeling: A Guide For Social
Scientists, Cambridge University Press, Vol. 1, Avenue of the Americans, New
York, 2004.

Su, Y. R. and Wang, J. L., Modeling Left-Truncated and Right-Censored Survival Data
with Longitudinal Covariates, The Annals of Statistics, 40 (2012) 1465-1488.

Sullivan, L. M., Essentials of Biostatistics in Public Health, Jones and Bartlett Learning,
Vol. 2, Sudbury, 2012.

Sweeting, M. J. and Thompson, S. G., Joint Modelling of Longitudinal and
Time-to-Event Data with Application to Predicting Abdominal Aortic Aneurysm
Growth and Rupture, Biometrical Journal, 53 (2011) 750-763.

Tang, A. M. and Tang, N. S., Semiparametric Bayesian Inference on Skew-Normal

Joint Modeling of Multivariate Longitudinal and Survival Data, Statistics in
Medicine, 34 (2015) 824-843.

61



Thevaraja, M., Survival Analysis for Primary Biliary Cirrhosis Data by using SAS,
2018. https://www.researchgate.net/publication/323915012_Survival_Analysis_
or_Primary_Biliary_Cirrhosis_Data_by _using_SAS

Tseng, Y., Hsieh, F. and Wang, J., Joint Modelling of Accelereated Failure Time and
Longitudinal Data, Biometrika, 92 (2005) 587-603.

Tsiatis, A. A., DeGruttola, V. and Wulfsohn, M. S., Modeling the Relationship of
Survival to Longitudinal Data Measured with Error: Applications to Survival
and CD4 Counts in Patients with AIDS, Journal of the American Statistical
Association, 90 (1995) 27-37.

Tsiatis, A. A. and Davidian, M., A Semiparametric Estimator for the Proportional
Hazards Model with Longitudinal Covariates Measured with Error, Biometrika,
88 (2001) 447-458.

Turgal, E., Sagkalim Verileri ile Boylamsal Verilerin Birlesik Modellenmesi ve Saglik
Alanma Bir Uygulama, Yiiksek Lisans Tezi, Ankara Universitesi Saglik
Bilimleri Enstitiisii, 2016.

Turgal, E., Erdogan, B. D. ve Kose, S. K., Tekrarli Gézlem ve Sagkalim Verilerinin
Birlesik Model Performans Degerlendirmesi: Bir Simiilasyon Caligmasi, XIX.
Ulusal ve Il. Uluslararas1 Biyoistatistik Kongresi, Antalya, 25-28 Ekim 2017,
Belek Antalya, 2017, 10-11.

Ulgen E. ve Asar, O., Tekrarli Gdzlem ve Sagkalim Verilerinin Bilesik Modellenmesi,
Tiirkiye Klinikleri Biyoistatistik Dergisi 9 (2017) 156-166.

Verbeke, G. and Molenberghs, G., Linear Mixed Models for Longitudinal Data,
Springer-Verlag, Vol. 1, New York, 2000.

Vittinghoff, E., Shiboski, S. C., Glidden, D. V. and Mcculloch, C. E., Regression
Methods in Biostatistics: Linear, Logistics, Survival and Repeated Measrures
Models, Springer-Verlag, Vol. 1, New York, 2005.

Wang, Y. and Taylor, J. M. G., Jointly Modeling Longitudinal and Event Time Data
with Application to Acquired Immunodeficiency Syndrome, Journal of the
American Statistical Association, 96 (2001) 895-905.

Wang, M., Generalized Estimating Equations in Longitudinal Data Analysis: A Review
and Recent Developments, Advances in Statistics, 2014 (2014) 1-11.

Wedderburn, R. W., Quasi-Likelihood Functions, Generalized Linear Models and The
Gauss-Newtonmethod, Biometrika, 61 (1974) 439-447.

62



Williamson, P. R., Kolamunnage-Dona, R., Philipson, P. and Marson, A. G., Joint
Modeling of Longitudinal and Competing Risks Data, Statistics in Medicine, 27
(2008) 6426-6438.

Wu, L., Liu, W., Yi, G. Y. and Huang, Y., Analysis of Longitudinal and Survival Data:
Joint Modeling, Inference Methods and Issues, Journal of Probability and
Statistics, 2012 (2012) 1:17.

Wulfsohn, M. S. and Tsiatis, A. A., A Joint Model for Survival and Longitudinal Data
Measured with Error, Biometrics, 53 (1997) 330-339.

Yan, Y. F., Survival Analysis Final Report: Data Analysis for the Sequential Primary
Biliary Cirrhosis Data, 2011.
http://www.stat.ncu.edu.tw/teacher/Tsengyk/final.pdf

Ye, W., Lin, X. and Taylor, J. M. G., Semiparametric Modeling of Longitudinal
Measurements and Time-To-Event Data: A Two-Stage Regression Calibration
Approach, Biometrics, 64 (2008a) 1238-1246.

Ye, W., Lin, X. and Taylor, J. M. G., A Penalized Likelihood Approach to Joint
Modeling of Longitudinal Measurements and Time-To-Event Data, Statistics
and Its Interface, 1 (2008b) 33-45.

Yu, M., Law, N. J, Taylor, J. M. G. and Sandler, H. M. Joint
Longitudinal-Survival-Cure Models and their Application to Prostate Cancer,
Statistica Sinica, 14 (2004) 835-862.

Zeng, D. and Cai, J., Asymptotic Results For Maximum Likelihood Estimators in Joint

Analysis of Repeated Measurements and Survival Time, Annals of Statistics, 33
(2005) 2132-2163.

63


http://www.stat.ncu.edu.tw/teacher/Tsengyk/final.pdf

EKLER

EK 1 - Tezden Tiiretilmis Bildiriler

DIL, E. and KARASOY, D., Parametric Joint Modelling for Longitudinal and Survival
Data, 11. International Statistics Days Conference, Mugla, 2018.

64



HACETTEPE UNIVERSITESI
FEN BILIMLERI ENSTITUSU
YUKSEK LiSANS/BOKTORA TEZ CALISMASI ORJINALLIK RAPORU

HACETTEPE UUNIVERSITESI
FEN BILIMLER ENSTiTUSU
ISTATISTIK ANABILiM DALI BASKANLIGI'NA

Tarih: 15/02/2019

Tez Bashg / Konusu: BOYLAMSAL YASAM VERILERININ PARAMETRIK BILESIK MODELLEMESi

Yukarida baghgi/konusu gosterilen tez calismamin a) Kapak sayfasi, b) Girig, c) Ana béliimler d) Sonug¢ kisimlarindan
olugan toplam 53 sayfalik kismna iliskin, 15/02/2019 tarihinde sahshm/tez danmismanim tarafindan Turnitin adh
intihal tespit programindan agagida belirtilen filtrelemeler uygulanarak alinmis olan orijinallik raporuna gére, tezimin
benzerlik oram % 7 ‘dir.

Uygulanan filtrelemeler:
1- Kaynakea haric
2-  Ahntilar haric/déhit™
3- 5 kelimeden daha az értiisme iceren metin kisimlar: harig

Hacettepe Universitesi Fen Bilimleri Enstitiisii Tez Caligmasi Orjinallik Raporu Alinmasi ve Kullanilmasi Uygulama
Esaslarr’'ni inceledim ve bu Uygulama Esaslari'nda belirtilen azami benzerlik oranlarina gére tez calismamin herhangi
bir intihal igermedigini; aksinin tespit edilecegi muhtemel durumda dogabilecek her tirli hukuki sorumlulugu kabul

ettigimi ve yukarida vermis oldugum bilgilerin dogru oldugunu beyan ederim.

Geregini saygilarimla arz ederim.

Adi Soyadi: Elif Dil

Ogrenci No: N17123726

Anabilim Dali: istatistik

Programi: Yiksek Lisans

Statiisii: Y.Lisans [ _] Doktora [ Batanlesik Dr.

DANISMAN ONAYI

UYGUNDUR.

Prof. Dr. Duru Karasoy




OZGECMIS

Adi Soyadi

Dogum yeri

Dogum tarihi

Medeni hali

Yazigma adresi
Telefon

Elektronik posta adresi

Yabanci dili

EGITIM DURUMU
Lisans

Yiksek Lisans

IS TECRUBESI

2010 - 2011 THY

: Elif DIL

: Eminonii

: 13/11/1993

. Evli

: Necip Fazil Kisakiirek Mh. Esenyurt/ Istanbul
: 0555878 81 93

. elifdil@hacettepe.edu.tr

. Ingilizce - 72.5

: 2011 - 2015 Sinop Universitesi Istatistik

: 2017 - 2019 Hacettepe Universitesi Istatistik






