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Boylamsal veriler, aynı birimlerden belirli zaman aralıklarında elde edilen tekrarlı 

ölçümlerden oluşurken, yaşam verileri takip edilen herhangi bir olayın gerçekleşmesine 

kadar geçen süreden oluşmaktadır. Bu iki tip verinin ayrı analizleri için literatürde farklı 

yöntemler bulunmaktadır. Ancak birlikte toplanan bu iki veri, aralarında ilişki 

olduğunda yansız ve etkin sonuçlar elde etmek için birlikte analiz edilmelidir. Bileşik 

model, bu iki verinin paylaşılmış parametre modeli ile birleştirilmesiyle elde edilmekte 

ve boylamsal alt model ve yaşam çözümlemesi alt modellerinden oluşmaktadır. 

 

Literatürde sıkça kullanılan standart bileşik model yapısı, boylamsal verilerin doğrusal 

karma etkili model ve yaşam verilerinin Cox regresyon modelinin paylaşılmış 

parametre modeliyle birleştirilmesiyle elde edilmektedir. Ancak Cox regresyon 

modelinin uygulanabilmesi için orantılı tehlikeler varsayımının sağlanması 

gerekmektedir. Varsayımın sağlanmadığı durumlarda ve yaşam verilerinin bilinen bir 

dağılıma sahip olduğu durumlarda parametrik regresyon yöntemleri kullanılmalıdır. 

Bileşik modelleme de orantılı tehlikeler varsayımının sağlanmadığı durumlarda da 

yaşam çözümlemesi alt modeli parametrik yaşam çözümlemesi modelleri ile 

yapılmalıdır.  

 

Çalışmada standart bileşik model, iki sürecin ayrı analizleri ve Üstel, Weibull, Log-

lojistik, Log-normal ve Gamma parametrik alt modelleri ile elde edilen bileşik modeller 

literatürde yer alan Primer Biliyer Siroz verilerine uygulanmıştır. İlk olarak orantılı 
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tehlikeler varsayımı test edilmiş ve varsayımın sağlanmadığı görülmüştür. Varsayım 

sağlanmadığından dolayı parametrik bileşik modeller incelenmiş ve Weibull parametrik 

alt model ile doğrusal karma etkili modelin bileşik modellemesi en iyi model olarak 

belirlenmiştir. Standart bileşik model ile Weibull parametrik bileşik model sonuçları 

karşılaştırıldığında, istatistiksel açıdan önemli farklılıklar bulunmuştur. Boylamsal ve 

yaşam verilerinin ayrı analizi için doğrusal karma etkili model ve Weibull parametrik 

model sonuçları incelenmiş ve Weibull parametrik bileşik model ile kıyaslanmıştır. 

Buna göre, Weibull parametrik model parametrelerinin tehlike oranlarının Weibull 

parametrik bileşik modelden yüksek olduğu tespit edilmiştir. Weibull parametrik 

modelde boylamsal gözlem zamana bağlı açıklayıcı değiken olarak alınmış ve yaşam 

süresine etkileri araştırılmıştır. Analiz sonucunda Weibull parametrik modelin, 

boylamsal gözlemin yaşam süresine etkisini, Weibull parametrik bileşik modelden daha 

küçük verdiği gözlemlenmiştir.  

 

 

Anahtar Kelimeler: Yaşam çözümlemesi, Boylamsal veri, Bileşik model, Parametrik 

bileşik model 
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Longitudinal data consist of repeated measurements obtained from the same units at 

certain time intervals, while survival data consists of time until the occurrence of any 

event under consideration. There are different methods in the literature for separate 

analysis of longitudinal and survival data. Nevertheless, these two data, particularly 

collected together in clinical studies, should be analyzed together to obtain unbiased and 

effective results when there is a relationship between each other. The joint model is 

obtained by combining these two data with the shared parameter model, and consists of 

longitudinal sub models and survival sub models. 

 

The standard joint model structure frequently used in the literature is obtained by 

combining the linear mixed effect model for longitudinal data and shared parameter 

models of Cox regression model for survival data. However, in order to apply Cox 

regression model the proportional hazard assumption must be satisfied. Parametric 

regression methods should be used in cases where the assumption is not provided, and 

when the survival data has a known distribution. In cases where the assumption of 

proportional hazard is not provided in joint modelling, the survival analysis sub model 

should be made with parametric survival analysis models.  

 

In this study, standard joint model, separate analysis of longitudinal and survival data 

and joint model obtained with Exponential, Weibull, Log-logistic, Log-normal and 

Gamma parametric sub models have been applied to data set of Primary Biliary 
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Cirrhosis in the literature. Firstly, the assumption of proportional hazard has been 

checked and found that the assumption is not provided. Because the assumption is not 

satisfied, parametric joint models have been examined and the joint modeling of the 

linear mixed effect model with parametric sub model is determined as the best model. 

When the standard joint model and Weibull parametric joint model results have been 

compared, statistically significant differences have been found. For separate analysis of 

longitudinal and survival data, the results of the linear mixed effect model and the 

Weibull parametric model have also been investigated and compared with the results of 

Weibull parametric joint model. Accordingly, the parameters of Weibull parametric 

model are determined to have higher hazard ratios than the parameters of Weibull 

parametric joint model. In addition, while Weibull parametric model is established, 

longitudinal observation have been considered as the independent variable but 

dependent on time and its effect on survival time has been investigated. At the end of 

the analysis, it has been observed that the effect of Weibull parametric model on the 

survival times of longitudinal observation is smaller than the Weibull parametric joint 

model. 

 

 

Keywords: Survival analysis, Longitudinal data, Joint model, Parametric joint model 
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1. GİRİŞ 

 

Yaşam verileri, takip edilen herhangi bir olayın gerçekleşmesine kadar geçen süreden 

oluşurken, boylamsal veriler aynı birimlere ait özelliklerin zaman içerisinde tekrarlı 

olarak ölçülmesinden elde edilmektedir.  

 

Boylamsal ve yaşam süresi verilerini ayrı ayrı analiz eden birçok popüler yöntem 

bulunmaktadır (Guo ve Carlin, 2004). Yaşam süresi verilerini analiz etmek için yaygın 

olarak kullanılan yöntemler; yarı parametrik bir yöntem olan Cox regresyon modeli ve 

parametrik regresyon yöntemleridir. Cox regresyon modeli kullanılmadan önce orantılı 

tehlikeler varsayımının sağlanıp sağlanmadığı kontrol edilmelidir. Varsayımın 

sağlanmadığı durumlarda genelleştirilmiş Cox regresyon, tabakalandırılmış Cox 

regresyon veya parametrik regresyon yöntemleri kullanılmalıdır.  

 

Boylamsal verilerin çözümlemesinde ise popüler olarak kullanılan yöntemler; Doğrusal 

karma etkili model (DKEM - Linear Mixed Effect Models) ve genelleştirilmiş tahmin 

denklemleridir (GTD - Generalized Estimating Equations) (Mondal, 2017).  

 

Boylamsal ve yaşam süresi verilerinin ilişkili olduğu durumlarda ayrı analiz yapmak 

uygun olmayabilir (Guo ve Carlin, 2004). Bu nedenle, bazı araştırmacılar alternatif 

olarak bu iki tip verinin bileşik modellemesini önermişlerdir.  

 

Bileşik modelleme genellikle, tekrarlı ölçümlerden oluşan boylamsal verileri ve yaşam 

süresini içeren yaşam verilerini birleştirmek için kullanılmaktadır (Wulfsohn ve Tsiatis, 

1997). Bileşik modellemenin temel amacı, bağımsız değişkenlerin boylamsal ve yaşam 

verileri üzerine etkilerini incelemektir. Bu modelleme yaklaşımı biyomedikal 

araştırmalarda sıklıkla kullanılmaktadır. Özellikle klinik çalışmalarda, boylamsal 

gözlemler yaşam süresi verileriyle birlikte elde edilmektedir. Örneğin; literatürde 

bileşik modelleme uygulaması olarak sıklıkla kullanılan HIV çalışmasında, hastalığın 

göstergesi olarak kullanılan CD4 hücre sayıları zaman boyunca tekrarlı olarak ölçülmüş 

ve AIDS hastalığı olana kadar geçen süre veya her birim için ölüm gözlemlenene kadar 

geçen süre incelenmiştir (Wulfsohn ve Tsiatis, 1997; Guo ve Carlin, 2004; Wu ve ark., 

2012). Kanser çalışmaları da bileşik model literatüründe sıklıkla kullanılmıştır (Pauler 

ve Finkelstein, 2002; Lima ve Taylor, 2009). Prostat kanseri çalışmalarında, prostata ait 
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özel değerlerin zaman içerisinde sürekli ölçülmesiyle elde edilen ölçümler ile hastalığın 

yeniden nüksetmesi durumu birlikte modellenmiştir (Pauler ve Finkelstein, 2002). 

 

Tek değişkenli yaşam ve boylamsal veri için temel bileşik model üzerine ilk çalışmalar 

Self ve Pawitan (1992), DeGruttola ve Tu (1994), Tsiatis, DeGruttola ve Wulfsohn 

(1995), Faucett ve Thomas (1996) ve Wulfsohn ve Tsiatis (1997) tarafından yapılmıştır. 

Self ve Pawitan (1992), bileşik modelin parametre tahminlerini elde etmek için iki 

aşamalı yaklaşımı önermişlerdir. Birinci aşamada rastgele etkileri tahmin etmek için en 

küçük kareler yöntemini kullanmışlar ve ikinci aşamada bu tahminleri Cox regresyon 

modelinin kısmi olabilirlik fonksiyonunda kullanarak, boylamsal ölçümlerin 

tahminlerini elde etmişlerdir. DeGruttola ve Tu (1994) yaşam süresini parametrik olarak 

modelleyen basit olabilirlik çıkarımına dayanan bileşik modellemeyi incelemişlerdir. 

Tsiatis, DeGruttola ve Wulfsohn (1995), Self ve Pawitan’ın (1992) önerdiği iki aşamalı 

yaklaşımdan farklı olan iki aşamalı yaklaşımı önermişlerdir. Boylamsal ölçümler için 

normal dağılmış hatalara sahip bir model varsaymışlar ve EM algoritmasıyla modeli 

tahmin etmişlerdir. Daha sonra bu tahminleri, yaşam verilerinin parametrelerini tahmin 

etmek için orantılı tehlikeler modelleri ve Cox regresyon modelinde kullanmışlardır. 

Faucett ve Thomas (1996) sadece gözlemlenmiş verilerden oluşan tüm modelin 

bilinmeyen parametrelerinin bileşik sonsal dağılımını elde etmek için Markov zincirleri, 

Gibbs algoritmasını kullanmışlardır. Wulfsohn ve Tsiatis (1997) Cox regresyon modeli 

ve boylamsal süreç için doğrusal karma etkili modelden oluşan bileşik model için tam 

olabilirlik yaklaşımını önermişlerdir.  

 

Henderson, Diggle ve Dobson (2000) boylamsal ölçümler ve yaşam süreleri için sıralı 

korelasyon ve rastgele etkiler içeren iki durağan Gauss sürecini benimseyen genel bir 

model oluşturmuşlardır. Sıralı korelasyon süreci, eğilimin (trend) zamanla değişmesine 

olanak tanır ve süreçteki düzensiz eğilimle ilgili olarak gelişen biyolojik 

dalgalanmalardan kaynaklandığı düşünülebilecek birimler arası korelasyon yapısına izin 

verir (Henderson, Diggle ve Dobson, 2000; Wang ve Taylor, 2001).  

 

Tsiatis ve Davidian (2001) rastgele etkilerin üzerinde dağılım varsayımı gerektirmeyen 

bileşik model parametrelerinin tahmin edilmesi için basit bir model önermişlerdir. 

Koşullu skor yaklaşımı olarakta bilinen bu yaklaşımda, rastgele etkiler sorunlu 

parametreler olarak kabul edilir ve uygun bir yeterli istatistik üzerinde belirlenerek 
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bileşik model için yarı parametrik tahminler elde edilir. Bu modelin parametrik 

modellerden daha az kullanışlı olduğu ifade edilmektedir (San, 2013). 

Song, Davidian ve Tsiatis (2002) bileşik modelin tahmininde kullanılan rastgele 

etkilerin normallik varsayımının ihlal edildiği durumlarda parametre tahminleri için 

olabilirlik temelli bir yaklaşım önermişlerdir. Yaklaşımı EM algoritması kullanarak 

HIV klinik verisi üzerinde ve simülasyonlar ile test etmişlerdir. Dobson ve Henderson 

(2003) bileşik model varsayımlarını test edebilmek için koşullu artıkları kullanmışlardır.  

 

Tseng, Hsieh ve Wang (2005) hızlandırılmış başarısızlık süresi ve ölçüm hataları içeren 

boylamsal veriler varlığında, bileşik modelleme olabilirlik fonksiyonunun maksimize 

edilmesi üzerine çalışmışlardır. Modeldeki bilinmeyen parametrelerin tahminini elde 

etmek için Monte Carlo EM algoritmasını kullanmışlar ve bu prosedürün performansını 

simülasyonlar ve gerçek veri üzerinde incelemişlerdir. Ayrıca, modelin yanlış 

tanımlanmasına karşılık sağlamlık elde etmek için, standart hataların tahminlerinin 

sıkıştırılmış (sandwich) tahmin ediciler ile bulunmasını önermişlerdir. 

 

Hsieh, Tseng ve Wang (2006) bileşik modelin olabilirlik tahminlerinden elde edilen 

standart hataların güvenilir tahminlerini elde etmek için bootstrap yaklaşımını 

önermişlerdir. Rizopoulos, Verbeke ve Molenberghs (2008) bileşik modellemede 

rastgele etkilerin dağılımının yanlış tanımlanmasındaki etkisini araştırmışlardır. 

Araştırma sonucu, belirli tahmin ediciler için birim başına boylamsal ölçümlerin 

artmasıyla, rastgele etkilerin dağılımının yanlış tanımlanmasının çıkarım prosedürü 

üzerinde daha az etkiye sahip olacağını göstermişlerdir. 

 

Birçok klinik çalışmada, hastalar takip süresi içinde birden fazla olay yaşayabilir ve bu 

tip olaylar yarışan riskler olarak adlandırılmaktadır. Elashoff, Li ve Li (2008), 

Williamson ve ark. (2008) ve Hu, Li ve Li (2009) yarışan riskler ve çoklu başarısızlık 

durumunda bileşik modelleme üzerine çalışmalar yapmışlardır. Li ve ark. (2009) 

yarışan riskler ve boylamsal sıralı ölçümlerden oluşan bileşik modellemeyi 

önermişlerdir. Boylamsal sıralı ölçümler için kısmi orantılı odds modellerini gizli 

rastgele değişkenler ile yaşam sürelerine bağlamışlardır. Kısmi orantılı odds modeli, 

sıralı gözlemler için kullanılan popüler orantılı odss modelinin genişletilmiş 

versiyonudur. Oluşturdukları bileşik modelin parametre tahminlerini elde etmek için 

EM algoritmasını kullanmışlardır. Rizopoulos (2010) boylamsal ve yaşam verilerinin 

bileşik model tahminlerini elde etmek için R paket programında “JM” paketini 
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geliştirmiştir. Rizopoulos, Verbeke ve Molenberghs (2010) model varsayımlarını test 

etmek için çoklu etki artıklarını önermişlerdir. Albert ve Shih (2010) çoklu boylamsal 

gözlemler ve kesikli yaşam süresi verilerinin bileşik modellemesi için yeni bir yaklaşım 

önermişlerdir. Bu yaklaşım, olay süresinde koşullanan ikili doğrusal karma model ile 

boylamsal gözlemlerin tüm ikili kombinasyonlarını modelleyerek, olay süresindeki 

çoklu boylamsal gözlemlerin koşullu dağılımlarını tahmin etmeyi amaçlamaktadır. 

Sweeting ve Thompson (2011) iki aşamalı yaklaşım ile paylaşılmış rastgele parametre 

modelini karşılaştırmışlardır. Çalışma sonucunda, iki aşamalı yaklaşımın boylamsal ve 

yaşam süresi verileri arasındaki ilişkiyi yanlı tahmin ettiğini bulmuşlardır.  

 

Su ve Wang (2012) soldan kesilmiş (left truncation) yaşam verileri ve boylamsal 

gözlemlerin bileşik modellemesini incelemişlerdir. Literatürde yer alan standart bileşik 

modelleme olabilirlik yaklaşımlarının, durdurulmuş gözlemlerin olduğu yaşam verileri 

ve boylamsal verilerin bileşik modelleme tahminlerinde yansız ve etkin sonuçlar verse 

de soldan kesilmiş verilerin olması durumunda aynı performansı göstermediğini 

açıklamışlar ve bu sorunu ortadan kaldırmak için yeni bir olabilirlik yaklaşımı 

önermişlerdir. Önerdikleri yaklaşımın yansız ve etkin tahminler verdiğini, AIDS kohort 

çalışması ve simülasyonlar ile göstermişlerdir. Lima ve ark. (2012) parametre 

tahminleri için bileşik modellemede gizli sınıf (latent class) durumunu incelemiş ve 

bileşik gizli sınıf modelini önermişlerdir. Bileşik gizli sınıf modeli, boylamsal bağımsız 

değişkenler ve olay riski arasındaki ilişkiyi tamamen yakaladığını varsayarak elde edilir. 

Önerdikleri modeli, paylaşılmış rastgele etkili modelle karşılaştırmışlar ve modelin 

performansını değerlendirmişlerdir. Crowther ve ark. (2012) bileşik modelin yaşam 

çözümlemesi kısmı için, kısıtlanmış kübik splineları kullanarak logaritmik temel tehlike 

modelleri için esnek parametrik yaklaşımı tanımlamışlardır.  

 

Efendi ve ark. (2013) sürekli ve ikili boylamsal gözlemler ile yaşam süresi verilerini 

birleştiren bir model önermişlerdir. Liu ve Li (2014) çok değişkenli boylamsal 

gözlemler ile yaşam verilerinin bileşik model tahmininde Bayesci bileşik model tahmin 

edicilerini kullanmışlardır. Tang ve Tang (2015) çok değişkenli yaşam süresi ve 

boylamsal verileri için yarı parametrik çok değişkenli çarpık-normal (skew-normal) 

bileşik modeli önermişlerdir. 

 

Hickey ve ark. (2016) bileşik modelleme ile literatürde geliştirilen yöntemleri, çok 

değişkenli boylamsal gözlemler içeren bileşik modelleme yöntemlerini, model 
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varsayımlarını, birleştirme ve parametre tahmin yöntemlerini ve bileşik modellemenin 

yazılım araçlarını özetleyen bir çalışma yapmışlardır. Rizopoulos (2016) bileşik model 

parametre tahmini için Monte Carlo algoritmasını kullanarak bayesci tahminleri elde 

eden, R programında bulunan “JMBayes” paketini geliştirmiştir. 

 

Hickey ve ark. (2018) birden fazla boylamsal gözlemleri içeren bileşik modelin 

parametre tahminlerini elde etmek için, R paket programında “JoineRML” paket 

programını geliştirmişlerdir.  

 

Bileşik modelleme üzerine Türkiye’de sınırlı sayıda çalışma bulunmaktadır. Ülgen ve 

Asar (2017) bileşik modelleme için eğitsel ve derleme niteliğindeki çalışmalarında, 

boylamsal alt model için doğrusal karma etkili model ve yaşam verileri için 

genişletilmiş Cox regresyon modelini PAQUID verisine uygulamışlar ve bileşik model 

tahminlerini, doğrusal karma etkili model ve genelleştirilmiş Cox regresyon modelinin 

ayrı analizleri ile kıyaslamışlardır. Turgal (2016) bileşik modelin yaşam çözümlemesi 

kısmı için Cox regresyon modeli ve boylamsal kısım için doğrusal karma etkili modeli 

kullanmıştır. Turgal, Erdoğan ve Köse (2017) simülasyon çalışmaları ile zamana bağlı 

değişkenlerin çeşitli örneklem büyüklüklerinin ve varyans-kovaryans yapılarının 

performanslarını incelemişlerdir. 

 

Çalışmanın ikinci bölümünde boylamsal veri ve bu verilerin analizi hakkında genel 

bilgiler verilmiştir. Boylamsal veri analizinde parametrik regresyon yöntemi olarak 

sıklıkla kullanılan GTD ve DKEM incelenmiştir. Bileşik modellemenin boylamsal alt 

modelinde kullanılan doğrusal karma etkili modelin parametre tahmin yöntemlerine 

değinilmiştir. 

 

Çalışmanın üçüncü bölümünde yaşam çözümlemesi detaylı şekilde incelenmiştir. Yarı 

parametrik regresyon yöntemi olan Cox regresyon yöntemi ve yaşam çözümlemesinde 

kullanılan parametrik yaşam çözümlemesi yöntemleri tanıtılmıştır. 

 

Çalışmanın dördüncü bölümünde ise boylamsal ve yaşam çözümlemesi sürecini 

paylaşılmış parametre modelleri ile bağlayan bileşik model ayrıntılı olarak 

incelenmiştir. İlk olarak boylamsal alt model için doğrusal karma etkili model ve yaşam 

çözümlemesi için Cox regresyon modelinin kullanıldığı standart bileşik model yapısı 

ele alınmıştır. Daha sonra orantılı tehlikeler varsayımının sağlanmadığı ve yaşam 
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süresinin belirli bir parametrik dağılım gösterdiği durumlar için parametrik alt modeller 

ile bileşik modelleme yöntemleri tanıtılmış ve bileşik model parametre tahmin 

yöntemleri ayrıntılı olarak incelenmiştir. 

 

Beşinci kısımda ise literatürde yer alan Primer Biliyer Siroz (PBS) verisi üzerinde 

standart bileşik model, parametrik bileşik modeller ve iki sürecin ayrı ayrı analizleri 

yapılarak, sonuçlar yorumlanmıştır. 

 

Bu çalışmanın amacı, boylamsal ve yaşam verilerinin ilişkili olduğu durumlarda 

kullanılan bileşik modellemeyi incelemek ve literatürde sıklıkla kullanılan standart 

bileşik modellemenin orantılı tehlikeler varsayımını sağlamadığı durumlarda alternatif 

olarak kullanılabilecek parametrik bileşik model yapılarını tanıtmaktır. Bu amaçla veri 

seti üzerinde standart bileşik modelleme, iki sürecin ayrı analizi ve farklı parametrik 

bileşik modeller incelenip, yorumlar yapılmıştır. 
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2. BOYLAMSAL VERİ 

 

Panel veri olarak da bilinen boylamsal veriler, aynı birimlere ait özelliklerin belirli 

zaman aralıklarında tekrarlı olarak ölçülmesi ile elde edilmektedir (Sousa, 2011). 

Birimler; haneler, kuruluşlar ve bireylerden oluşabilir. Boylamsal veriler farklı zaman 

noktalarında tekrarlı ölçümlerden elde edildiğinden dolayı, zaman serileri ve klasik 

regresyon analizinden ziyade özel istatistiksel yöntemlerle analiz edilmelidir 

(Fitzmaurice, Laird ve Ware, 2011). 

 

Boylamsal çalışmalarda kayıp veri oldukça yaygındır (Ibrahim ve Molenberghs, 2009). 

Örneğin; çalışmanın tüm birimleri belirli bir zamanda çalışmaya katılmayabilir veya 

bazı birimler çalışma sona ermeden önce çalışmayı bırakabilirler. Tüm birimler aynı 

zaman noktasında aynı tekrarlı ölçümlere sahip olamayacağından dolayı veri dengesiz 

(unbalanced) olarak elde edilebilir. Bu nedenle dengesiz ve kayıp veri varlığında 

boylamsal verileri analiz edecek teknikler kullanılmalıdır (Fitzmaurice, Laird ve Ware, 

2011). 

 

Boylamsal veri analizinde amaç, bağımlı değişkende zaman içerisindeki değişimi ve bu 

değişime neden olan etkenleri ortaya çıkartmaktır. Bu veri setinin analizinde, 

parametrik regresyon, parametrik olmayan regresyon ve yarı parametrik regresyon gibi 

çeşitli regresyon yöntemleri kullanılmaktadır. En sık kullanılan parametrik yöntemler; 

GTD ve DKEM’dir (Kalkan, 2014). 

 

2.1. Genelleştirilmiş Tahmin Denklemleri 

Liang ve Zeger (1986), boylamsal verilerin analizi için DKEM’e alternatif olarak 

GTD’yi önermişlerdir (Ballinger, 2004). Klinik ve biyomedikal çalışmalarda yaygın 

olarak kullanılmaktadır (Wang, 2014). GTD sürekli, sıralı, ikili ve sayım verisi yapısına 

sahip verilerin analizinde kullanılmaktadır (Ghisletta ve Spini, 2004).  

 

GTD ve DKEM dengeli ve dengesiz boylamsal verilerin analizi için 

kullanılabilmektedir (Kalkan, 2014). Ancak, bu iki yöntem model tahminlerinde 

farklılık göstermektedir. DKEM, aynı birimlerin gözlemleri arasında korelasyonu 

belirlemek için rastgele etkileri kullanarak bireysel bir yaklaşım sergilerken, GTD 



8 

 

parametrelerin tahminleri için kitle temelli yarı olabilirlik yöntemlerini kullanmaktadır 

(Wedderburn, 1974; Crowder, 1995). 

 

Tez çalışmasında, bileşik modelin boylamsal kısmı için DKEM modeli 

kullanılacağından dolayı, DKEM modeli ayrıntılı olarak incelenmiştir. 

 

2.2. Doğrusal Karma Etkili Model 

Laird ve Ware (1982), birimler arası ve birimler içindeki değişimi içeren boylamsal 

veriler için doğrusal bir model önermişlerdir. Eksik veri ve denekler arasındaki 

dengesizlik durumunda model tahminleri yansız ve tutarlı sonuçlar verdiği için en çok 

tercih edilen yöntemlerden biridir (Hedeker ve Gibbons, 2006; Doğanay, 2007). 

 

Doğrusal karma veya rastgele etkili modelde bağımlı değişken, birimden birime rastgele 

etkiyle değişen regresyon katsayılarına sahip bağımsız değişkenlerin doğrusal bir formu 

olarak kabul edilir. Birimler arasındaki bu farklılaşma ölçülmeyen faktörlerden dolayı 

ortaya çıkmaktadır (Diggle ve ark., 2002). Bağımlı değişken rastgele ve sabit etkiler 

kullanılarak modellenmektedir (Bates ve ark., 2015).  

 

Değişkenlerin düzeyleri önceden belirlenmişse bu değişken düzeyleri sabit etkiler 

olarak adlandırılır. Eğer değişkenin düzeyleri daha geniş bir kitleden rastgele olarak 

seçilmişse bu etkiler rastgele olarak adlandırılmaktadır. Karma etkili model hem sabit 

hem rastgele etkileri içinde barındırmaktadır (Doğanay, 2007). DKEM’de, sabit etkiler 

tüm birimler için ortak kabul edilir ve kitle etkisini gösterirken, rastgele etkiler birimden 

birime değişir ve birimlerin kitle değerlerinden sapmalarını göstermektedir (Vittinghoff 

ve ark., 2005; Mondal, 2017).  

 

Genel olarak DKEM, 

   i i i i iy X Z b                         (2.1) 

şeklindedir  (Harville, 1977; Laird ve Ware, 1982; Verbeke ve Molenberghs, 2000). 

Burada; 

1 2( , , , ) 
ii i i imy y y y , i. birim için tekrarlı ölçümlerden oluşan 1im  boyutlu vektör, 

 : 1p  boyutlu sabit etkiler vektörü, 

iX : 1im  boyutlu sabit etkilere karşılık gelen tasarım matrisi, 

ib : 1q  boyutlu rastgele etkiler vektörü, 
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iZ : rastgele etkiler ib ’ye karşılık gelen im q  boyutlu tasarım matrisi, 

1 2( , , , )     
ii i i im  1im  boyutlu örneklem veya ölçüm hataları vektörüdür. 

 

Rastgele etkilerin (0, )ib N G  şeklinde çok değişkenli normal dağılıma sahip olduğu 

varsayılmaktadır. Burada, G  rastgele etkiler için kovaryans matrisidir. Örneklem hatası       

 i ’nin ise rastgele etkilerden bağımsız ( ( , ) 0 i iCov b ) ve (0, ) i iN R  şeklinde çok 

değişkenli normal dağılıma sahip olduğu varsayılmaktadır. iR  örneklem hatası için 

kovaryans matrisini göstermektedir (Fitzmaurice, Laird ve Ware, 2011).  

 

2.2.1. Doğrusal Karma Etkili Modellerde Parametre Tahmini 

DKEM’de parametre tahmini için en çok olabilirlik (EÇO) yöntemi kullanılır 

(Rizopoulos, 2012a). En çok olabilirlik tahminleri (EÇOT) olabilirlik fonksiyonunun 

maksimize edilmesi ile elde edilmektedir (Fitzmaurice, Laird ve Ware, 2011). Bir 

modelde gözlemlerin bağımsız olduğu varsayılırsa, olabilirlik fonksiyonu her birimin 

yoğunluk fonksiyonu ile basitçe hesaplanabilir (Asimow ve Maxwell, 2015). Ancak, 

karma modellerdeki gibi tekrarlı ölçümler olduğunda gözlemler bağımsız 

olmayacağından dolayı ölçümler için bileşik olabilirlik fonksiyonu kullanılmalıdır 

(Fitzmaurice, Laird ve Ware, 2011). 

 

Eşitlik 2.1’de tekrarlı ölçümler iy ’nin bağımsız olduğu varsayılırsa, olabilirlik 

fonksiyonu      ( ( ) ) tekrarlı ölçümlerin çok değişkenli normal olasılık yoğunluk 

fonksiyonlarının toplamı şeklinde yazılabilir.  ’nın EÇOT’sini hesaplamak için aşağıda 

belirtilen log-olabilirlik fonksiyonunun maksimize edilmesi gerekmektedir 

(Fitzmaurice, Laird ve Ware, 2011): 

-1

1 1

1 1
( ) - log(2 ) - log | | - ( - ) ( - )

2 2 2
   

 

 
  

 
 

n n

i i i i i i

i i

N
l V y X V y X         (2.2) 

Burada 
1

 
  
 


n

i

i

N m  toplam gözlem sayını, im  i. birim için tüm gözlem sayısını ve 

| V |i , varyans-kovaryans matrisi 
2  

ii i i nV Z GZ ’nin determinantını göstermektedir 

(Rizopoulos, 2012a).  
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Skor fonksiyonunu (log-olabilirlik fonksiyonunun (Eşitlik 2.2)  ’ya göre türevi) sıfıra 

eşitleyerek ve denklemi çözerek  ’nın EÇOT elde edilebilir. İlk iki terim  ’yı 

içermediğinden dolayı log-olabilirlik fonksiyonunu maksimize etmek için bu terimler 

ihmal edilebilir. Ayrıca üçüncü terim negatif işaretli olduğundan dolayı, log-olabilirlik 

fonksiyonunun  ’ya göre maksimizasyonu basitçe elde edilebilir ve aşağıdaki gibidir 

(Fitzmaurice, Laird ve Ware, 2011): 

1

1

( ) ( ) 



 
n

i i i i i

i

y X V y X .             (2.3) 

Eşitlik 2.3 minimize edilerek,  ’nın en küçük kareler (EKK) tahmin edicisi 

1

1 1

1 1

ˆ ( ) ( )



 

 

 
   

 
 

n n

i i i i i i

i i

X V X X V y                                                          (2.4) 

biçiminde elde edilir. Bu formül iV ’nin bilindiği varsayımı altında uygulanır ancak 

genellikle iV  bilinmez ve veriden tahmin edilerek elde edilir (Fitzmaurice, Laird ve 

Ware, 2011).  ’nın verilen bir değeri için 
2( , ) b  fonksiyonunun maksimize 

edilmesiyle iV ’nin EÇOT’si elde edilebilir (Rizopoulos, 2012a). iV ’nin EÇOT’si 

alındıktan sonra, Eşitlik 2.4’te iV ’nin tahmin edicisi yerine ˆ
iV  yazılarak  ’nın 

EÇOT’si aşağıdaki gibi elde edilebilir: 

1

1 1

1 1

ˆ ˆ ˆ(X V X ) (X V )



 

 

 
   

 
 

n n

i i i i i i

i i

y            (2.5) 

iV ’nin tahmini için kısıtlanmış en çok olabilirlik tahmin edicileri (REÇOT) de 

kullanılabilir (Harville, 1977; Rizopoulos, 2012a). iV ’nin REÇOT tahmininde, 

olabilirlik  ’yı içermez ve iV  cinsinden tanımlanmıştır (Fitzmaurice, Laird ve Ware, 

2011; Rizopoulos, 2012a).  
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3. YAŞAM ÇÖZÜMLEMESİ 

 
Yaşam çözümlemesi, takip edilen olayın gerçekleşmesine kadar geçen sürenin 

çözümlemesini içermektedir (Chernick ve Friis, 2003). Süre; yaşam süresi, başarısızlık 

süresi veya olay süresini ifade etmektedir (Rizopoulos, 2012a). Örneğin, hastaneden 

çıkana kadar geçen süre, HIV hastalarında ölüm veya AIDS tanısı konulana kadar geçen 

süre olabilir. 

 

Genellikle olaylarda birimlerin bir kısmı için olay gözlemlenebilir. Diğer olaylar için 

olayın gerçekleşme zamanı mevcut takip zamanından daha büyüktür ve olay 

gözlemlenmeyebilir. Bu tip olaylarla yaşam çözümlemesinde sık sık karşılaşılmakta ve 

bu durumda süre durdurulmuş süre olarak adlandırılmaktadır (Sullivan, 2012). 

Durdurma temel olarak üç nedenden dolayı görülmektedir (Kleinbaum ve Klein, 2012): 

 Çalışmanın sonuna kadar ilgilenilen olayın gözlemlenmemesi, 

 Birimlerin, çalışma devam ederken çalışmadan çekilmesi, 

 Birimlerin ilgilenilen olayın dışında başka bir olaydan dolayı çalışmadan 

ayrılması. 

 

Durdurma bilgi içeren (informative) veya bilgi içermeyen (non-informative) şeklinde de 

ortaya çıkabilir. Bir kişi test sonuçlarının kötüleşmesinden dolayı çalışmadan çıkarsa 

durdurma bilgi içeren (rastgele olmayan) olarak kabul edilir ve başarısızlık oranı hala 

çalışmada olanlardan farklı olabilir. Eğer bir kişinin çalışmadan ayrılması test 

sonuçlarından bağımsızsa durdurma bilgi içermeyen olarak tanımlanır (Rizopoulos, 

2012a). 

 

Standart yaşam çözümlemesinde durdurmanın bilgi içermeyen olduğu varsayılır 

(Allison, 2010). Bu çözümlemede genellikle yaşam sürelerinin dağılımları yaşam 

fonksiyonu (survival function) ve tehlike fonksiyonu (hazard function) ile 

gösterilmektedir (Bewick, Cheek ve Ball, 2004). 

 

Yaşam Fonksiyonu 

T, (t) P(T t) F  birikimli dağılım fonksiyonu ve (t)f  olasılık yoğunluk fonksiyonu 

ile yaşam süresi için sürekli rastgele değişkeni göstersin. Yaşam fonksiyonu (t)S , 

olayın t zamanından sonra meydana gelme olasılığı olarak tanımlanır ve 



12 

 

(t) P(T t) 1 F(t) (x)dx


     tS f            (3.1) 

biçiminde ifade edilir (Pintilie, 2006). Yaşam fonksiyonunun özellikleri; 

 Artmayan bir fonksiyondur 

 0t  iken; S(t) (0) 1 S  

 t  iken; S(t) ( ) 0  S  

şeklindedir (Kleinbaum ve Klein, 2012). t  zamanına karşı (t)S  yaşam olasılıklarının 

grafiği çizilerek yaşam eğrisi elde edilebilir (Bewick, Cheek ve Ball, 2004). 

 

Tehlike Fonksiyonu 

Tehlike fonksiyonu, t  zamanında yaşayan bir birimin anlık olay hızını göstermektedir 

ve 

 
0

|
(t) lim , 0







    
  

 
t

P t T t t T t
h t

t
 

      
 

0
lim

(T t)





   
  

 
t

P t T t t

tP
 

      
0

(t ) F(t)
lim

(T t)





  
  

 t

F t

tP
 

      
(t)

(t)


f

S
              (3.2) 

biçiminde tanımlanır (Pintilie, 2006). Burada, (t)f  yaşam süresi için T rastgele 

değişkeninin olasılık yoğunluk fonksiyonunu göstermektedir. H(t)  birikimli tehlike 

fonksiyonu, t  zamanına kadar oluşan birikimli tehlike olarak tanımlanabilir 

(Rizopoulos, 2012a): 

0
(t) (u) 

t

H h du                    (3.3) 

S(t) , h(t)  veya H(t)  fonksiyonlarının biri bilinirse, diğer iki fonksiyon, 

h(t) log(S(t))



 

t
 

H(t) log(S(t))   

 0
(t) exp( H(t)) exp (u)du   

t

S h            (3.4) 

şeklinde tanımlanır (Pintilie, 2006). 
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Yaşam çözümlemesi, temel olarak çalışmanın başlangıç noktasından itibaren herhangi 

bir zamanda meydana gelen başarısızlığın tehlikesi veya riski ile ilgilenir. Bu nedenle 

çözümlemelerde çoğunlukla tehlike fonksiyonu modellenmektedir. Bu modellemenin 

iki ana hedefi vardır: 1) Hangi bağımsız (açıklayıcı) değişkenlerin tehlike fonksiyonu 

üzerinde etkisi olduğunu incelemek, 2) Çalışmadaki birimlerin tehlike fonksiyonlarını 

incelemektir (Collett, 2003).  

 

Yaşam süresi ve bir veya daha fazla bağımsız değişken (yaş, cinsiyet, ırk gibi) 

arasındaki ilişkiyi incelemek için yarı parametrik ve parametrik yaşam çözümlemesi 

modelleri kullanılmaktadır (Fox, 2008).  

 

3.1. Cox Regresyon Modeli  

Cox (1972) tarafından önerilen Cox regresyon modeli (orantılı tehlikeler modeli), 

yaşam çözümlemesinde popüler olarak kullanılan yarı parametrik regresyon modelidir 

(Fox ve Weisberg, 2011). Bu model yaşam süresi ile bir veya daha fazla bağımsız 

değişken arasındaki ilişkiyi incelemektedir (Singh ve Mukhopadhyay, 2011). i. birim 

için Cox regresyon modeli; 

0h (t | x ) (t)exp( x )i i ih             (3.5) 

biçimindedir (Rizopoulos, 2012a). Burada, 0 (t)h  bağımsız değişken içermeyen birimin 

temel tehlike fonksiyonu, 1(x , , x ) i i ipx  p bağımsız değişken vektörünü ve   

modeldeki bağımsız değişkenlerin katsayılar vektörünü göstermektedir (Ata, Karasoy 

ve Sözer, 2008). 

 

Cox regresyon modelinde, temel tehlike fonksiyonu belirlenmemiş olduğundan dolayı 

yarı parametrik bir modeldir (Fox ve Weisberg, 2011). Model tahmini için temel tehlike 

fonksiyonun şekli hakkında bir varsayım bulunmamaktadır (Ahmed, Vos ve Holbert, 

2007). Cox regresyon modeli, tehlike oranının zaman boyunca sabit olduğunu 

varsaymaktadır (Bewick, Cheek ve Ball, 2004). Bu nedenle, Cox regresyon modeli 

uygulanmadan önce “orantılılık” varsayımının kontrol edilmesi gerekmektedir (Persson, 

2002). 

 

Cox regresyon modelinin regresyon katsayılarının tahmininde kısmi olabilirlik (Partial 

likelihood - KO) tahmin edicileri kullanılmaktadır (Cox, 1972; Lewis, 2017). r  tane 

ayrık başarısızlık (olay) sürelerine ve n r  tanesi durdurulmuş yaşam sürelerine sahip n 
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birime ait bir veri seti olsun. Her başarısızlık zamanında sadece bir tane olay olduğunu 

varsayalım. KO yöntemi için sıralanmış başarısızlık sürelerine ihtiyaç duyulmaktadır 

(Collett, 2003): 

(1) (2) (r)  t t t              (3.6) 

Burada (j)t  j. sıralı başarısızlık süresini göstermektedir. 

Cox (1972), Eşitlik (3.5)’de verilen Cox regresyon modeli için kısmi olabilirlik 

fonksiyonu aşağıdaki gibi formüle etmiştir: 

(j)

(j)

1

(t )

exp( x )
( )

exp( x )
















r

j l

l R

L                        (3.7) 

Burada, 

(j)x ; j. sıralı başarısızlık süresi (j)t ’de başarısız olan bağımsız değişken vektörü, 

(j)(t )R  (risk kümesi); (j)t ’de riskte olan birimlerin kümesidir. 

 

Olabilirlik fonksiyonunun tahmini, başarısızlık süresine sahip birimler üzerindedir 

ancak risk altında bulunan birimler olabilirlik fonksiyonun paydasında katkıda 

bulunurlar (Collett, 2003). 

 

n birim için gözlenen yaşam süresi 1 2, , , nt t t  ve  i  gösterge değişkeni olsun. 

1,2, ,ni olmak üzere i. yaşam süresi it , durdurulmuş ise 0 i , diğer durumlarda 

1 i  değerini alır (Collett, 2003). Eşitlik (3.7)’deki olabilirlik fonksiyonu, 

1

(t )

exp( x )
( )

exp( x )










 
 

  
 

 




i

i

n
i

i l

l R

L                       (3.8) 

biçiminde yazılabilir. Burada (t )iR  it  zamanındaki risk kümesini göstermektedir ve bu 

eşitliğe karşılık gelen log-olabilirlik fonksiyonu aşağıdaki gibi ifade edilmektedir: 

1 ( )

log ( ) x log exp( x )   
 

  
   

  
 

i

n

i i l

i l R t

L          (3.9) 

Newton-Raphson gibi bazı sayısal maksimizasyon yöntemleri kullanılarak log-

olabilirlik fonksiyonundaki   parametrelerinin EÇOT’leri elde edilebilir (Collett, 

2003). 
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3.2. Parametrik Modeller 

Yaşam süresinin belli bir dağılıma sahip olduğu durumlarda parametrik yöntemlerden 

yararlanılmalıdır (Collett, 2003; Klein ve Moeschberger, 1997; Hosmer, Lemeshow ve 

May, 2008). Yaygın olarak kullanılan dağılımlar: Üstel, Weibull, Log-lojistik, Log-

normal ve Gamma dağılımıdır. 

 

3.2.1. Üstel Dağılım 

Üstel model, yaşam çözümlemesinde kullanılan en basit parametrik yöntemdir ve 

tehlikenin zaman boyunca sabit olma varsayımına dayanmaktadır. Yaşam süresi   

parametresi ile Üstel dağılıma sahip ise, olasılık yoğunluk fonksiyonu 

11 ( t) 10, 0
(t)

0 0

 
    

 


e t
f

t
         (3.10) 

biçiminde tanımlanır. Üstel dağılımın yaşam fonksiyonu, tehlike fonksiyonu ve 

birikimli tehlike fonksiyonu sırasıyla aşağıdaki gibi elde edilebilir (Karasoy ve Tutkun, 

2016): 

1

(t) e   tS  

1 1(t) , 0   h   

1H(t)   t                                                                                                             (3.11) 

 

3.2.2. Weibull Dağılımı 

Weibull model, ilk olarak Waloddi Weibull (1939) tarafından önerilmiş ve iki pozitif 

parametre ile Üstel modelin genelleştirilmiş halidir. Modeldeki ikinci parametre tehlike 

fonksiyonunun farklı şekillerine ve modelin büyük esnekliğini sağlamaktadır. Modelin 

esnekliği, yaşam ve tehlike fonksiyonlarının basit oluşundan dolayı Weibull model 

deneysel çalışmalarda uygulama kolaylığı sağlamaktadır (Liu, 2012). Weibull 

dağılımının tehlike, yaşam, birikimli tehlike ve olasılık yoğunluk fonksiyonları 

sırasıyla, 

1 1 1(t) ( t)    h  

1S(t) exp ( t)      

1H(t) ( t)   
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11 1 1 ( t) 1f(t) ( t) , 0, , 0
     

      e t        (3.12)      

şeklinde tanımlanabilir (Karasoy ve Tutkun, 2016). 1   ve   sırasıyla dağılımın ölçek 

ve şekil parametreleridir. 1   olduğunda Weibull dağılımı Üstel dağılıma 

dönüşmektedir (McCool, 2012). 

 

3.2.3. Log-lojistik Dağılım 

Yaşam süresinin logaritması ( log( )T ) lojistik dağılıma sahip ise, yaşam süresi Log-

lojistik dağılıma sahiptir. Log-lojistik dağılımın tehlike, yaşam, birikimli tehlike ve 

olasılık yoğunluk fonksiyonları sırasıyla aşağıdaki gibidir: 

 
1

1(t) 1  


 h t t  

 
1

S(t) 1 


  t  

(t) log 1    H t  

  
2

1f(t) 1 0, 0, 0    


    t t t                (3.13) 

(Klein ve Moeschberger, 1997; Steensmeier ve Jones, 2004; Hosmer, Lemeshow ve 

May, 2008).   ve   sırasıyla dağılımın ölçek ve şekil parametreleridir. Log-lojistik 

dağılım önce artan, daha sonra azalan ya da monoton azalan tehlike fonksiyonu için 

kullanılabilir (Karasoy ve Tutkun, 2016). 

 

3.2.4. Log-normal Dağılım 

McAlister (1879) tarafından önerilen Log-normal dağılım, logaritması alınan bir 

değişkenin normal dağılım göstermesi olarak tanımlanabilir (Karasoy ve Tutkun, 2016). 

Dağılımın tehlike, yaşam, birikimli tehlike ve olasılık yoğunluk fonksiyonları sırasıyla, 

  
11

2 1 2 1 1 2
log

(t) exp log 2 (2 ) 1


    





       
     

  

t
h t t  

  1S(t) 1 log       t  

  1(t) log 1 log       H t  

     
1

2 11 2
2(t) exp log 2 2 0, 2    

      f t t t      (3.14) 
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şeklinde tanımlanır (Evans, Hastings ve Peacock, 2000; Hosmer, Lemeshow ve May, 

2008). (z)  standart normal dağılımın birikimli dağılım fonksiyonunu göstermektedir 

(Klein ve Moeschberger, 1997). 

 

3.2.5. Gamma Dağılımı 

İki parametreli Gamma dağılımı ( ( , ) G ) Üstel dağılımın özel bir durumundan 

oluşmaktadır. Gamma modellerinin yaşam ve tehlike fonksiyonları kapalı şekilde ifade 

edilemediğinden dolayı yaşam çözümlemesinde sınırlı olarak kullanılmaktadır (Liu, 

2012). Gamma dağılımının tehlike, yaşam ve olasılık yoğunluk fonksiyonları sırasıyla 

aşağıdaki gibi tanımlanabilir: 

 
 

1

1

0

(t)

( )

  

 




 



 


 


 

 
 


t

x

t e
h

x e dx

 

 
1

(t)
( )

 





 


x

t

S x e  

1

f(t) , 0, 0, 0
( )

  
 



 

   


tt e
t                   (3.15) 

Gamma dağılımı, 1   olduğunda Üstel dağılıma dönüşmektedir. Tehlike fonksiyonu, 

1   olduğu durumda monoton artan, 1   olduğunda sabit ve 1   olduğu durumda 

monoton azalan bir yapıya sahiptir (Rodriguez, 2010). 
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4. BOYLAMSAL VE YAŞAM VERİLERİNİN PARAMETRİK 

BİLEŞİK MODELLEMESİ 

 
Boylamsal veriler tekrarlı ölçümlerden oluşurken, yaşam verileri aynı birimlerde 

ilgilenilen olay gerçekleşene kadar geçen süreyi içermektedir. Bu iki veri seti, tekrarlı 

ölçümlerin yaşam verileriyle ilişkili olduğu anlaşılana kadar ayrı ayrı analiz edilmiştir 

(McCrink, Marshall ve Cairns, 2013). Ancak, bu iki verinin ayrı modellemesi 

sonucunda ölçüm hataları ve kayıp veri sorunları ortaya çıkmaktadır. 

 

Bileşik modelleme genel olarak; boylamsal verilerin yaşam verileri üzerine etkilerini 

araştırmak (Faucett ve Thomas, 1996; Wulfsohn ve Tsiatis, 1997; Wang ve Taylor, 

2001; Brown ve Ibrahim, 2003), iki verinin birlikte etkilerini araştırmak (Henderson, 

Diggle ve Dobson, 2000; Guo ve Carlin, 2004; Zeng ve Cai, 2005) ve bağımsız 

değişkenlerin bu iki veri seti üzerine etkilerini incelemek için kullanılmaktadır.  

 

Boylamsal ve yaşam süresi verilerinin birlikte modellenebilmesi için, bileşik olabilirlik 

yöntemlerinden yararlanılmalıdır. Bileşik olabilirlik yapısı, karma-model (pattern-

mixture) ve seçilmiş modeller (selection-model) gibi farklı model stratejileriyle elde 

edilmektedir (Sousa, 2011). Bu modeller rastgele etkiler eklenilerek genişletilebilir ve 

rastgele seçim modeli, rastgele karma model ve rastgele etkili model olarak adlandırılır 

(Pericleous, 2016). Sousa (2011) ve McCrink, Marshall ve Cairns (2013), farklı bileşik 

modelleme stratejilerini aşağıdaki gibi basitçe açıklamışlardır. Y , T  ve B  sırasıyla 

boylamsal verileri, yaşam verilerini ve rastgele etkileri gösterdiğinde, 

Seçilmiş Model; [Y,T,B] [B][Y | B][T | Y] , 

Karma-Model; [Y,T,B] [B][T | B][Y | T] , 

Rastgele Etkili Model;[Y,T,B] [B][Y | B][T | B]  

biçiminde olmaktadır. 

 

Karma modelde temel ilgi boylamsal kısım üzerine odaklanmışken, seçilmiş modelde 

ilgi DKEM ile modellenen boylamsal gözlemlere sahip yaşam süresi verilerine 

odaklanmıştır (Sousa, 2011; Pericleous, 2016). Rastgele etkili modellerde (paylaşılmış 

parametre modelleri olarak da adlandırılır) ise boylamsal ve yaşam süreci bağımsız 

paylaşılmış rastgele etkiler ile bağlanmaktadır (Sousa, 2011; McCrink, Marshall ve 
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Cairns, 2013). Bu tez çalışmasında bileşik modelin olabilirliği, iki süreci paylaşılmış 

rastgele etkilerle bağlayan karma model ile gösterilmiştir. 

Literatürdeki temel bileşik model, boylamsal veriler için DKEM (boylamsal alt model) 

ve yaşam verileri için Cox regresyon modelinin (yaşam çözümlemesi alt modeli) 

paylaşılmış rastgele etkiler ile birbirine bağlanması ile elde edilmektedir (Wu ve ark., 

2012). Ancak üçüncü bölümde de bahsedildiği gibi Cox regresyon modelinin 

uygulanabilmesi için orantılılık varsayımının sağlanması gerekmektedir. Varsayım 

sağlanmadığı durumlarda, yaşam çözümlemesi alt modeli, yaşam verilerinin belirli bir 

dağılıma sahip olduğu durumlar da parametrik regresyon yöntemleri kullanılarak 

oluşturulmalıdır. 

 

4.1. Yaşam Çözümlemesi Alt Modeli 

*

iT , i. birim ( 1, ,i n ) için gerçek yaşam süresini ve iT  gözlemlenmiş yaşam süresini 

göstersin. i. birim için iC  durdurulmuş süre olmak üzere 
*(T )  i i iI C  olay göstergesi 

0 i  olduğunda durdurulmuş olayı ve 1 i  olduğunda diğer durumları göstersin 

(Rizopoulos, 2012a; Wu ve ark., 2012). 
*

iT  ve iC ’nin minimumu iT  olmak üzere, i. 

birim için gözlemlenmiş yaşam süresi verisi  ,i iT C  şeklinde yazılabilir. (t)iy , i. birim 

için zamana bağlı bağımsız değişkenlerin t  zamanında ölçülmüş gözlemlenmiş 

değerleri olsun. Gözlemlenmiş boylamsal veriler ijt  zamanında ijy  ( 1, ,i n ; 

1, ,m ij ) ölçümlerinden elde edilmektedir (Rizopoulos, 2012a). 

 

(t)im , t  zamanındaki gözlemlenmemiş boylamsal verileridir ve ölçüm hataları 

içermektedir. Bir olay için ( )im t  ve tehlike arasındaki ilişkiyi incelemek için Cox 

regresyon modeli, 

* *

0

| , (t),
(t | (t), ) lim



 




           
  

i i i i

i i i
t

P t T t t T t
h

t
 

 0(t | (t), ) (t)exp (t) , 0      i i i i ih h m t          (4.1) 

biçiminde yazılabilir (Rizopoulos, 2012a). Burada,  ( ) ( ), 0   i it m s s t  yaşam 

süresi içerisinde ölçüm hatalarından arındırılmış boylamsal bağımsız değişkeni, 
0
(.)h  

temel tehlike fonksiyonunu, 
i
 temel bağımsız değişkenleri (tedavi göstergesi, hastalık 
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öyküsü gibi) ve   bağımsız değişkenlere karşılık gelen regresyon katsayıları vektörünü 

göstermektedir.  , boylamsal verilerin t  zamanındaki yaşam sürelerine etkilerini 

göstermektedir (Rizopoulos, 2012a). 0   boylamsal ve yaşam verileri arasında ilişki 

olmadığını ifade etmektedir (Rizopoulos, Verbeke ve Lesaffre, 2009; Rizopoulos, 

2012b). Eşitlik 4.1’deki tehlike modeli, t zamanında meydana gelen bir olayın 

tehlikesinin, zamana bağımlı bağımsız değişkenlerin    ( (t)im ) mevcut değerlerine bağlı 

olduğunu varsaymaktadır (Rizopoulos, 2012a). Ancak, yaşam fonksiyonu için bu 

varsayım geçerli değildir. Yaşam fonksiyonu ve birikimli tehlike fonksiyonu arasındaki 

ilişkiden, tüm ortak bağımsız değişkenlere ( (t)iM ) ait yaşam fonksiyonu, 

 *(t | (t), ) | (t),    i i i i i iS P T t  

 0

0

(t | (t), ) exp (s)exp (s)   
 

    
 

t

i i i i iS h m ds                    (4.2) 

şeklinde elde edilebilir (Rizopoulos, 2012a). 

 

Eşitlik 4.1’in çözümlenmesi için temel tehlike fonksiyonunun (
0
(.)h ) seçilmesi 

gerekmektedir. Orantılı tehlikeler varsayımının sağlandığı durumlarda bileşik model 

yaşam çözülmesi alt modeli için standart Cox regresyon modeli, orantılı tehlikeler 

varsayımının sağlanmadığı ve tehlike fonksiyonun bilinen bir olasılık dağılımına sahip 

olduğu durumlarda parametrik regresyon modelleri kullanılır (Rizopoulos, 2012a). Bu 

durumda, parametrik yaşam çözümlemesi alt modellerinden yararlanılır.  

 

4.2. Parametrik Yaşam Çözümlemesi Alt Modelleri 

Parametrik yaşam çözümlemesi alt modelleri, boylamsal alt modelin DKEM ile yaşam 

çözümlemesi alt modelinin orantılı tehlikeler varsayımını sağlamadığı ve yaşam 

verilerinin parametrik dağılımlara uygunluğuna göre Weibull, Üstel, Log-lojistik, Log-

normal ve Gamma yaşam çözümlemesi alt modellerinin paylaşılmış parametre 

modelleri ile birleştirilmesiyle elde edilmektedir. Eşitlik 4.1’de ifade edilen yaşam 

çözümlemesi alt modelinin, parametrik modeller için yeniden tanımlanması 

gerekmektedir (Pericleous, 2016). 

Zamanın fonksiyonu olmak üzere (t)h ’nin, aşağıdaki gibi iki önemli durumu vardır: 

log( ),hızlandırılmış başarısızlık süresi modelleri
(t);

,diğer parametrik modeller





t
h

t
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i. birim için (t)h  fonksiyonu, 

(t ) (t )    i i i ih                                                                                                     (4.3) 

biçiminde tanımlanabilir (Pericleous, 2016). Burada  , ölçek parametresi,  i  uygun 

yaşam çözümlemesi dağılımından gelen hatalardır ve (t )i i , 

(t ) (t)   i i i im                                                                                                    (4.4) 

şeklindedir (Hosmer, Lemeshow ve May 2008; Pericleous, 2016).  , zamandan 

bağımsız (time-independent) açıklayıcı değişkenler olan  i
’yi bağlayan regresyon 

katsayısıdır. i. birim için parametrik yaşam çözümlemesi alt modeli (t)ih , 

(t) [x (t) z b ]          i i i i i ih                      (4.5) 

biçiminde yazılabilir.  

 

4.2.1. Weibull Yaşam Çözümlemesi Alt Modeli 

Eşitlik 3.12’de verilen Weibull dağılımına ait yaşam fonksiyonunda 1    olarak 

yeniden tanımlanırsa, 

( ; , ) exp{ }   S t t             (4.6) 

elde edilir ve süreye logaritmik dönüşüm uygulanırsa ( logs t ), 

log    s T W              (4.7) 

ifadesi yazılabilir. Burada, W  uç değer dağılımını (extreme value distribution) 

göstermektedir ve sırasıyla olasılık yoğunluk ve yaşam fonksiyonu aşağıda verilmiştir: 

1(w) exp{w exp{w}}  Wf  

(w) exp{ exp{w}} WS             (4.8) 

Log yaşam süresinin olasılık yoğunluk ve yaşam fonksiyonlarını elde etmek için 

1(s )  W  yazılmalıdır. i. birim için Weibull dağılımının log yaşam çözümlemesi 

alt modeli, 

logT (t ) (t )    i i i i i             (4.9) 

biçiminde ifade edilir ve  i  uç değer dağılımını göstermektedir. Eşitlik 3.12 ve Eşitlik 

4.4’den yararlanarak, Weibull yaşam çözümlemesi alt modelinin olasılık yoğunluk ve 

yaşam fonksiyonları sırasıyla aşağıdaki gibi yazılabilir (Pericleous, 2016): 
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exp(1/ )exp(1/ (texp[ (t )]) )
(T | b ; , t) (texp[ (t )])

   
 i i

i i i if  

exp(1/ )S(T | b ; , t) exp (texp[ (t )])     i i i i
        (4.10) 

Boylamsal alt model için, (t )i ijY  ölçümlerinin ve rastgele etkilerin olasılık yoğunluk 

fonksiyonu sırasıyla, 

2 1 2 2 2 1p(Y | b ; ) (2 ) exp[ (Y (t ) m (t )) (2 ) ]     i i e i ij i ij e ,                           (4.11) 

   
1

1 12p(b ; ) 2 exp 2 
   i i iG bG b         (4.12) 

biçiminde tanımlanabilir (Pericleous, 2016). 

 

4.2.2. Üstel Yaşam Çözümlemesi Alt Modeli 

Üstel yaşam çözümlemesi alt modelini elde etmek için, boylamsal alt modelin DKEM 

ile ve yaşam çözümlemesi modelinin Üstel dağılım ile modellenmesi gerekmektedir. 

Üstel yaşam süresi alt modelinin i. birim için log yaşam süresi, 

logT (t ) (t )    i i i i i           (4.13) 

biçiminde yazılabilir ve burada, hatalar Üstel dağılmaktadır. Eşitlik 3.11’de gösterilen 

Üstel dağılımın yaşam ve olasılık yoğunluk fonksiyonlarından yararlanılarak elde 

edilen, Üstel yaşam çözümlemesi alt modelinin olasılık yoğunluk ve yaşam 

fonksiyonları sırasıyla, 

exp( (texp[ (t )]))
(T | b ; , t) (texp[ (t )])

  
 i i

i i i if , 

 S(T | b ; , t) exp (texp[ (t )])  i i i i                     (4.14) 

biçiminde elde edilebilir. Boylamsal alt modelin, boylamsal ölçümlerinin ve rastgele 

etkilerinin olasılık yoğunluk fonksiyonları ise sırasıyla Eşitlik 4.11 ve Eşitlik 4.12’deki 

gibi oluşturulmalıdır. 

 

4.2.3. Log-lojistik Yaşam Çözümlemesi Alt Modeli 

Eşitlik 3.13’te verilen Log-lojistik dağılımın yaşam fonksiyonunun parametreleri 

1    ve 
1exp{ }     şeklinde yeniden tanımlanırsa ve sürenin logaritması 

alınırsa logy t , 

1S(y; , ) (1 exp{ y})                (4.15) 

olarak tanımlanır ve Y  doğrusal modeli göstermektedir: 
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Y logT     W . 

W  standart lojistik dağılımın rastgele değişkenini göstermektedir ve olasılık yoğunluk 

fonksiyonu ve yaşam fonksiyonu sırasıyla, 

1 2(w) exp(w) (1 exp{w})   Wf , 

1(w) (1 exp{w}) WS           (4.16) 

biçiminde tanımlanabilir (Pericleous, 2016). 

Log-lojistik yaşam çözümlemesi alt modelini elde etmek için, boylamsal alt model 

DKEM ile yaşam süresi alt modeli Log-lojistik dağılım kullanılarak modellenmiştir. 

Weibull dağılım için Eşitlik 4.9’da verilen denklemde  i  Log-lojistik dağılım gösterdiği 

durumda Log-lojistik yaşam çözümlemesi alt modeli elde edilmektedir. Log-lojistik 

yaşam çözümlemesi alt modelinin olasılık yoğunluk ve yaşam fonksiyonları sırasıyla, 

1 1 1 2( ; , ) exp{ (y )} (1 exp{ (y )})            i i i i i if y , 

1 1S( ; , ) [1 exp{ (y )}]      i i i iy         (4.17) 

şeklinde tanımlanabilir. Boylamsal alt model için, boylamsal ölçümlerin ve rastgele 

etkilerin olasılık yoğunluk fonksiyonları sırasıyla Eşitlik 4.11 ve Eşitlik 4.12’deki gibi 

elde edilmektedir. 

 

4.2.4. Log-normal Yaşam Çözümlemesi Alt Modeli 

Log-normal yaşam çözümlemesi alt modeli için, diğer parametrik modeller gibi 

boylamsal alt model için DKEM ve yaşam çözümlemesi için Log-normal dağılım 

kullanılmalıdır. Log-normal yaşam süresi alt modelinin i. birim için log yaşam süresi, 

logT (t ) (t )    i i i i i                      (4.18) 

olarak tanımlanabilir ve  i  normal dağılım göstermektedir  (Pericleous, 2016). Eşitlik 

3.14’te verilen Log-normal dağılımın yaşam ve olasılık yoğunluk fonksiyonundan 

yararlanılarak elde edilen, Log-normal yaşam çözümlemesi alt modelinin olasılık 

yoğunluk ve yaşam fonksiyonları sırasıyla, 

1
12

2

(T (t ) (2 ) ) (y )
( ; , ) exp

2

  
 



  
 
  

i i i i
i if y , 

i(y )
S( ; , ) 1


  



   
    

  

i
i iy          (4.19) 
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biçiminde tanımlanabilir. Bileşik modelin boylamsal kısmı için boylamsal ölçümlerin 

ve rastgele etkilerin olasılık yoğunluk fonksiyonları ise sırasıyla Eşitlik 4.11 ve Eşitlik 

4.12’de verilen eşitliklerle elde edilmektedir. 

 

4.3. Boylamsal Alt Model 

Tehlike modelindeki (Eşitlik 4.1) tehlike fonksiyonunun ( (t)ih ) t zamanında boylamsal 

verilere ( (t)im ) bağlı olduğu varsayılmaktadır (Wu ve ark., 2012). Bununla birlikte, 

ölçüm hatalarına sahip boylamsal verilerde görülebilmektedir. Bu nedenle, boylamsal 

verilerin bir olayın tehlikesine etkisini araştırmak için, her birimin (t)im  tahminlerine 

ihtiyaç duyulmaktadır. Mevcut boylamsal veriler (  (t ), j 1,2, ,m ij i ij iy y ) için 

DKEM kullanılarak tahminler elde edilebilmektedir (Rizopoulos, 2012a). Eşitlik 2.1’e 

benzer bir biçimde boylamsal alt model, 

(t) (t) (t) (t)    i i i i iy x z b , 

(t) (t) (t) i i iy m , 

(t) (t) (t)  i i i im x z b                       

(4.20) 

biçiminde yazılabilir. Burada, (t)ix  ve (t)iz  sırasıyla sabit etkiler (  ) ve rastgele 

etkiler ( ib ) için tasarım vektörleridir. Rastgele etkiler G  varyans kovaryans matrisi ve 

0 ortalama ile çok değişkenli normal dağılıma sahiptir (Fitzmaurice, Laird ve Ware, 

2011). Hata terimleri ( (t) i ) 0 ortalama ve 2  varyansla normal dağılıma sahiptir ve 

bağımsızdır (Rizopoulos, 2012a). 

 

Daha önce belirtildiği gibi, yaşam çözümlemesi fonksiyonu (Eşitlik 4.2) boylamsal 

verilerin ölçüm hatalarından arındırılmış gerçek değerlerine dayanır ve bu nedenle (t)iS

’nin doğru tahmini için (t)i ’nin iyi bir tahminini elde etmek önemlidir. Yani, (t)ix  ve 

(t)iz ’deki zaman yapısının, temel bağımsız değişkenler ve varsayılan zaman yapısı ile 

arasındaki muhtemel etkileşim terimlerinin ayrıntılı bir biçimde belirlenmesi 

gerekmektedir. Örneğin, birimler doğrusal olmayan boylamsal ölçümler içeriyorsa, 

(t)ix  ve (t)iz  için yüksek mertebeden polinomlar veya splineler cinsinden ifade edilen, 

zaman fonksiyonlarının yüksek boyutlu vektörlerinin kullanılması önerilmektedir 

(Rizopoulos, 2012a). 
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4.4. Bileşik Model Parametre Tahmini 

Bileşik model parametre tahmini için genellikle iki aşamalı yaklaşım (Two-Stage 

Methods) ve bileşik olabilirlik yöntemi kullanılmaktadır (Wu ve ark., 2012). 

 

4.4.1. İki Aşamalı Yaklaşım 

Bileşik model literatüründe birkaç farklı iki aşamalı yaklaşım kullanılmıştır (Self ve 

Pawitan, 1992; Tsiatis, DeGruttola ve Wulfsohn 1995; Wu ve ark., 2012). Self ve 

Pawitan (1992) birinci adımda en küçük kareler yöntemini kullanarak rastgele etkileri 

tahmin edip; ikinci adımda bu tahminleri Cox modelin kısmi olabilirliğinde yer alan 

(t)im ’nin uygun değerlerini belirlemek için kullanmışlardır. Bileşik modelde parametre 

tahmini için Tsiatis, DeGruttola ve Wulfsohn (1995) Eşitlik 4.1 ve 4.3’ün 

birleştirilmesine dayanan bir diğer iki aşamalı yaklaşım yöntemini önermişlerdir. 

 

İki aşamalı yaklaşım aşağıdaki gibi işlemektedir (Wu ve ark., 2012): 

1. Boylamsal açıklayıcı değişkenler DKEM kullanılarak modellenebilir böylece 

açıklayıcı değişkenlerin birime özgü değerleri tahmin edilebilir. 

2. Yaşam çözümlemesi modeli, 1. adımda modellenen değerler kullanılarak tahmin 

edilebilir.   

 

Bu yaklaşım, Cox regresyon modelinin parametre tahminlerindeki yanlılığı 

azaltmaktadır (Wulfsohn ve Tsiatis, 1997; Yu ve ark., 2004). Yaklaşımın uygulaması 

basittir ve mevcut yazılımlar kullanılarak parametre tahminlerine olanak sağlamaktadır 

(Wu ve ark., 2012). Buna rağmen, bu yöntem her bir modelin tahmin aşamasında yaşam 

süreci ve boylamsal süreçten eş zamanlı olarak bilgi kullanamaz (Wu ve ark., 2012; Yu 

ve ark., 2004). İlk aşamada sadece boylamsal sonuçların kullanılması, DKEM’de yanlı 

tahminler oluşturabilmektedir ve bunun sonucu olarak ikinci aşamada, yaşam 

çözümlemesi parametre tahminlerinde yanlı ve etkisiz sonuçlar ortaya çıkabilmektedir 

(Ibrahim, Chu ve Chen, 2010). Bu durum, Dafni ve Tsiatis (1998); Tsiatis ve Davidian 

(2001); Ye, Lin ve Taylor (2008a); Sweeting ve Thompson (2011) tarafından 

simülasyon çalışmaları ile gösterilmiştir. Bu nedenle, yanlılığı ortadan kaldırmak için 

bileşik modelleme literatüründe, yaklaşımlar yerine tam olasılık yaklaşım yöntemine 

odaklanılmıştır (Rizopoulos, 2012a). 
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4.4.2. Bileşik Olabilirlik Yöntemi 

Bileşik modelleme literatüründe temel tahmin yöntemi olarak yarı parametrik en çok 

olabilirlik yöntemi kullanılmaktadır (Wulfsohn ve Tsiatis, 1997; Henderson, Diggle ve 

Dobson, 2000; Hsieh, Tseng, ve Wang, 2006; Rizopoulos, 2012a; Wu ve ark., 2012). 

Bu yöntemde, boylamsal ve yaşam verilerinin bileşik olabilirliği kullanılmaktadır (Wu 

ve ark., 2012). 

 

En çok olabilirlik tahminleri, gözlemlenmiş verinin ( , ,i i iT y ) bileşik dağılımına 

karşılık gelen log-olabilirlik fonksiyonundan elde edilebilmektedir. Bileşik dağılım 

tanımında, boylamsal ve yaşam verilerinin arasındaki ve tekrarlı gözlemler arasındaki 

ilişkinin zaman bağımsız (time-independent) rastgele etkiler ( ib ) tarafından 

açıklanacağı varsayılmaktadır (Rizopoulos, 2012a). Boylamsal ve yaşam verileri 

rastgele etkilerden bağımsızdır ve bileşik dağılımı, 

   , , | ; , | ; ( | ; )    i i i i i i i i ip T y b p T b p y b ,       (4.21) 

   
1

| ; (t ) | ; 



im

i i i ij i

j

p y b p y b          (4.22) 

biçiminde yazılabilir. Burada, 

iy : i. birimin boylamsal gözlemlerinin 1im  boyutlu vektörü, 

 , ,      t y b  tüm parametreler vektörü, 

t : yaşam verisi parametreleri, 

 y : boylamsal veri parametreleri, 

b : rastgele etkilerin kovaryans matrisi parametrelerini 

göstermektedir (Rizopoulos, 2010; Rizopoulos, 2012a). 

 

Tekrarlı ölçümler ve gözlemlenmiş yaşam verilerinin i. birim için log-olabilirlik 

fonksiyonu aşağıdaki gibi yazılabilir (Wulfsohn ve Tsiatis, 1997; Rizopoulos, 2012a):  

   log , , ; log , , ,b ;    i i i i i i i ip T y p T y db  

      log , | b ; , ( ) | ; ;    
 

  
 
 i i i t i ij i y i b i

j

p T p y t b p b db      (4.23) 

Yaşam çözümlemesi kısmının  , | ; ,  i i i tp T b  koşullu yoğunluğu, 
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       , | ; , | ; , | ; ,


        
i

i i i t i i i i t i i i i tp T b h T T S T T  

     0 0
0

exp (T ) exp (u)exp ( )


               
ii

T

i i i i i ih T m h m u du     (4.24) 

biçiminde yazılabilir. Burada,  i  temel açıklayıcı değişkenleri,   regresyon 

katsayılarını, (t)im  t zamanında ölçülen boylamsal gözlemleri ve   boylamsal alt 

modeldeki karma etkiler parametrelerini göstermektedir. 0 ( )h  Eşitlik 4.2’de verilen 

yaşam fonksiyonu veya bilinen bir dağılımın tehlike fonksiyonu veya parçalı-sabit 

model (piecewise-constant) olabilir (Rizopoulos, 2012a). 

 

Eşitlik 4.5’ten, boylamsal gözlemler ve rastgele etkilerin bileşik yoğunluk fonksiyonu 

aşağıdaki gibi ifade edilebilir (Rizopoulos, 2012a): 

       
1

| ; ; (t ) | ; ;   



im

i i i i ij i y i b

j

p y b p b p y b f b  

   22 22 exp 2  


   im

i i i iy X Z b  

   
2 1 2 12 det(G) exp 2

   bq

i ibG b         (4.25) 

Burada,  
1 2

2  ii
x x  Öklid vektör normunu ve bq  rastgele etkiler vektörünün 

boyutunu göstermektedir. 

 

Tüm birimler için gözlemlenen verilerin log-olabilirliği, 

 
1

( ) log , , y ;  



n

i i i

i

p T           (4.26) 

şeklinde tanımlanabilir (Wulfsohn ve Tsiatis, 1997; Rizopoulos, 2012a). Temel tehlike 

dışındaki tüm parametreler parametrik en çok olabilirlik yöntemiyle, temel tehlike  0 h  

ise parametrik olmayan en çok olabilirlik yöntemi ile tahmin edilmektedir (Wulfsohn ve 

Tsiatis, 1997). Eşitlik 4.26’nın  ’ya göre maksimize edilebilmesi için EM 

(Expectation-Maximization) algoritması kullanılabilir. EM tekniğinde rastgele etkiler 

“eksik veri” olarak kabul edilmektedir (Rizopoulos, 2012a). Bazı araştırmacılar, bileşik 

modelin maksimizasyonu için “Gauss-Hermite Yaklaşımı” ve “Monte-Carlo Yaklaşımı” 

gibi iterasyon yöntemleri kullanmışlardır (Wulfsohn ve Tsiatis, 1997; Henderson, 

Diggle ve Dobson, 2000; Song, Davidian ve Tsiatis, 2002; Rizopoulos, 2012a). 
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4.4.2.1. EM Algoritması 

EM algoritması, eksik verilerin var olduğu durumlarda parametrelerin en çok olabilirlik 

tahminlerini elde etmek için kullanılabilir (Dempster, Laird ve Rubin, 1977; Bilmes, 

1998). Bu algoritma genellikle veride eksik değer bulunduğunda ve olabilirlik 

fonksiyonunun optimizasyonunun zor olduğu durumlarda kullanılmaktadır. Algoritma, 

E ve M adımlarından oluşmaktadır ve E-adımında koşullu olasılıklarla mevcut 

parametre tahminleri ve gözlemlenmiş verilerle eksik gözlemler hesaplanmaktadır; M-

adımında ise birimci adımdan yararlanılarak koşullu olasılıklar hesaplanmaktadır 

(Bilmes, 1998; Borman, 2006). 

 
oY  ve mY , tüm veri vektörü Y ’nin sırasıyla gözlemlenmiş ve eksik veri kısmını 

göstersin (Rizopoulos, 2012a). i. birim için, c  ( 0,1, ,c ) iterasyonda tahmin edilen 

maksimizatör (ic)  ve  ( )|  icQ  bileşik log-olabilirliğin olasılığını göstersin. Sadece 

gözlemlenmiş veri kullanılarak, tüm veri modellerinin   parametrelerini tahmin etmek 

için EM algoritması aşağıdaki gibi işlemektedir (Rizopoulos, 2012a; Givens ve Hoeting, 

2013): 

(i) E-adımı: Gözlemlenmiş veriler varlığında, tüm verilerin log-olabilirliğinin beklenen 

değeri, 

   ( ) (ic)| logp(y; ) | y ;    ic oQ  

   (ic)logp , ; | ;  
m o m o my y p y y dy         (4.27) 

(ii) M-adımı:  ’ya göre  ( )|  icQ  maksimize et ve  

(iii) Yakınsama olana kadar E-adımına git. 

 

EM algoritması sayısal olarak kararlıdır (stable) (Lange, 2010; Rizopoulos, 2012a). Bu 

algoritmada, gözlemlenen verinin log-olabilirliği her iterasyonda artmaktadır

(ic 1) (ic)logp(y ; ) logp(y ; )  o o
 (Dempster, Laird ve Rubin, 1977). Ancak, verilerde çok 

fazla eksik değerin bulunduğu durumlarda yakınsama oranı yavaş olmaktadır (Lange, 

2010; Rizopoulos, 2012a). 

 

E-Adımı 

i. birim için aşağıdaki model dikkate alınırsa, 
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 0(t | (t), ) (t)exp (t) z (t)b           i i i i i i ih h x ,                            

(t) (t) (t) (t)    i i i i iy x z b           (4.28) 

(0,G)ib N ,      
2(t) (0, ) i N  

 , ,       t y b ,  2,   y , (G) b vech  ve  
0

, ,   
 t h
 vektörleri ile tüm 

parametreler vektörünü ve 
0

h , 0 ( )h  temel tehlike fonksiyonundaki parametreleri 

göstermektedir. Gözlemlenmiş veri log-olabilirliğini maksimize edecek ̂  parametre 

değerlerini elde etmek için, tüm verilere ait log-olabilirliğin (Eşitlik 4.26) beklenen 

değerinin maksimize edilmesi gerekmektedir (Rizopoulos, 2012a). 

     (ic) (ic)| log , , y ,b ; b | , , y ; b     



 i i i i i i i i i

i

Q p T p T d                

      log , | b ; , log y | b ; log b ;       i i i t i i y i b

i

p T p p  

 (ic)b | , , y ;  i i i i ip T db           (4.29) 

 (ic)| Q  belirlemek için, “Gauss-Hermite İntegrasyon Yaklaşımı” ve “Monte-Carlo 

Yaklaşımı” uygulanmalıdır (Rizopoulos, 2012a). 

 

M-Adımı 

Tüm verilerin log-olabilirliği üç parçadan oluşmaktadır (Rizopoulos, 2012a); 

       log , , ,b ; logp , | ; , logp | ; logp ;        i i i i i i i t i i y i bp T y T b y b b    (4.30) 

 ’ya göre  (ic)| Q ’yi maksimize etmek için, ilgili parametreye göre parçaların tek 

tek maksimize edilmesi gerekmektedir. Rastgele etkilerin kovaryans matrisi ve 

boylamsal verideki ölçüm hatalarının varyansı aşağıdaki gibi kapalı formda sırasıyla 

ifade edilebilir (Rizopoulos, 2012a):                          



 i i ii

vb b b
G

n
  

   
2

( ) | , , ;
ˆ

   


   

  i i i i i i i i i i i i ii

y X Z b y X Z b p b T y db

N
 

     2        

 i i i i i i i i i i i i ii

y X y X Z b iz Z Z vb b Z Z b

N
                                     (4.31) 

Burada, 
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1


n

i

i

N m , çalışmadaki toplam gözlem sayısı, 

   (it) (it)b | , , y ; b | , , y ;     i i i i i i i i i i ib E T b p T db  

     
2

(it) (it)b | , , y ; b | , , y ;     i i i i i i i i i i i ivb Var T b b p T db  göstermektedir. 

 

Yukarıdaki kapalı formdan   ve yaşam çözümlemesi alt modelindeki t ’nin 

parametrelerinin çözümü elde edilemeyeceğinden dolayı M-adımında Newton-Raphson 

iterasyonları kullanılmaktadır (Rizopoulos, 2012a): 

 
 

1
(it)

(it 1) (it) (it)


  






 
 

   
 

 

S

S  ,       

 
 

1
( )

( 1) ( ) ( )


  






 
 

   
 

 

it

t
it it it

t t t

t

S

S          (4.32) 

Burada, 
(it)

  ve 
(it)

 t , sırasıyla   ve t ’nın mevcut iterasyondaki değerleridir ve 

 
(it)

  S  ve  
(it)

  t tS  Hessian matrisinin karşılık gelen sütunlarıdır.   ve t

’nın skor vektörlerinin elemanları, 

 
 

2
( )


 



  
 
 i i i i ii

i i i

X y X Z b
S x T  

   0
0

exp (s) (s)exp (s) (s)     
     

iT

i i i i ih x x z b  

 | , , y ;  i i i i ip b T dsdb           (4.33) 

 

     0
0

exp (s)exp (s) (s)             
 

iT

i i i i i i

i

S h x z b  

 | , , y ;  


 i i i i ip b T dsdb           (4.34) 

 

       0
0

( ) ( ) exp (s)exp (s) (s)                
iT

i i i i i i i i i i

i

S x T z T b h x z b  

 | , , y ;  i i i i ip b T dsdb           (4.35) 
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     0 0

0

0 0

0 0

0

(T ; ) (s; )
exp exp (s) (s)

 
     

 

 
        

 
iTi h h

h i i i i i

i h h

h h
S x z b  

 | , , y ;  i i i i ip b T dsdb           (4.36) 

biçiminde ifade edilebilir (Rizopoulos, 2012a). 

 

4.4.2.2. İntegrasyon Yaklaşımı 

Bileşik olabilirlik yapısındaki integrallerin analitik olarak hesaplaması oldukça zordur. 

Yaşam fonksiyonunun tanımındaki integral, kapalı formlu bir çözüme sahip değildir ve 

bu nedenle hesaplanması için 15-noktalı Gauss-Kronrod kuralı gibi sayısal bir yöntem 

kullanılmalıdır. İki modeli birbirine bağlayan rastgele etkiler, bileşik modellemeyi 

kolaylaştırsa da rastgele etkilerin integrallerindeki zorluk, tahminleri hesaplamada 

oldukça zor bir yapıya neden olmaktadır (Rizopoulos, 2012b). 

 

Bu modellerin olabilirliğinin hesaplanması için Gauss karesel (quadrature) kuralları 

(Pinheiro ve Bates, 1995; Lesaffre ve Spiessens, 2001; Pinheiro ve Chao, 2006) ve 

Monte Carlo örneklemesi (McCulloch, 1997; Booth ve Hobert, 1999) gibi standart 

sayısal integrasyon teknikleri literatürde sıkça kullanılmıştır. Buna rağmen, bu 

yöntemlerde integral boyutları arttıkça hesaplama zorluğu çekmektedir ve rastgele 

etkilerin yapısı daha karmaşık hale gelmektedir (Rizopoulos, 2012b). Çok yüksek 

boyutlu rastgele etkilerin bulunduğu bileşik modellemede, standart Gauss-Hermite 

yaklaşımına alternatif olarak Ye, Lin ve Taylor (2008b) ve Rizopoulos, Verbeke ve 

Lesaffre (2009) tarafından önerilen Laplace yaklaşımı da kullanılabilmektedir. 

 

Rizopoulos (2012b) bileşik modelleme olabilirliğinin çözümü için alternatif olarak 

uyarlamalı Gauss-Hermite yaklaşımının yeniden ölçeklendirilmesine dayanan bir 

integrasyon yöntemi önermiştir. Bu yaklaşımda ilk önce boylamsal veriler DKEM ile 

tahmin edilmektedir ve her birim için verilen boylamsal değişkenlerle rastgele etkilerin 

sonsal dağılımının konum ve ölçek parametreleri hakkında kesin bilgi elde edilmektedir. 

Bu bilgi daha sonra bileşik modelin skor vektörü ve log-olabilirliğinin tanımındaki 

karmaşık integralleri yeniden ölçeklendirmek için kullanılmaktadır (Rizopoulos, 2012b; 

Turgal, 2016).  
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Uyarlamalı Gauss-Hermite yaklaşımı için skor vektörlerinin hesaplanmasında gerekli 

olan Gauss-Hermite yaklaşımının bilinmesi gerekmektedir (Turgal, 2016). Bileşik 

olabilirliğin (Eşitlik 4.26) skor vektörü aşağıdaki formda yeniden yazılırsa, 

     
( )

( ) log , | ; | ; ;


    
 

 
 

  
  i i i i i i i

i

S p T b p y b p b db  

   , | , , ;   i i i i i i

i

A b p b T y db          (4.37) 

biçiminde olur (Rizopoulos, 2012b).  

 

Burada, ( )A ,  ( ,b ) log (T , | b ; ) log ( | b ; ) log (b ; )         i i i i i i iA p p y p  

tarafından elde edilen tüm verilerin skor vektörüdür. Skor vektörünün (Eşitlik 4.37) 

formülündeki integraller kapalı formda çözüme sahip olmadığı için sayısal yöntemler 

kullanılmalıdır. Literatürde en çok tercih edilen Gauss-Hermite kuralları, önceden 

belirlenmiş apsislerde integrant ölçümlerinin ağırlıklı toplamları tarafından integrali 

yaklaştırmaktadır (Press ve ark., 2007). Bu karesel kural altında ve rastgele etkilerin 

( )A ’nın her formu için skor vektörü aşağıdaki gibi hesaplanmaktadır (Rizopoulos, 

2012b): 

      , | , , ; , | , , ;     i i i i i i i i i iE A b T y A b p b T y db  

1

22

, ,t

2 ( ,b 2)p(b 2 | T , , y ; )exp( )    
q

q

t t t i i i t

t

A b       (4.38) 

Burada, q  rastgele etkiler vektörünün boyutunu, 
1 , ,

qt t
K  karesel noktası için 

1 1 1  
K K

t tq
ifadelerinin kısaltmasını ve 1(b , ,b ) t t tqb ,  t  ağırlıklarına karşılık 

gelen apsisleri göstermektedir. K  karesel noktaların sayısı arttıkça, yaklaşımın kalitesi 

artmaktadır. Buna rağmen Gauss-Hermite kuralı, her rastgele etki için apsislerin 

Kartezyen çarpımı üzerinde integrant hesaplamaları gerektirmesinden dolayı, q  arttıkça 

hesaplama yükü artmaktadır (Rizopoulos, 2012b).  

 

Gauss-Hermite yaklaşımını etkileyen bir diğer kritik nokta, integrantların ana kitlesinin 

konumuna göre karesel noktaların konumlarıdır. Yani,    (b) , | , , ;   i i ig A b p b T y  

sıfırdan uzak bir nokta etrafında konumlanmışsa veya ( )g b ’deki yayılma exp( )b b  

ağırlık fonksiyonundan oldukça farklıysa, ( )g b ’nin büyük çoğunluğu karesel kuraldaki 

apsislerin konumlandığı yerde konumlanmayacağından dolayı, çok büyük K  için bile 
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Gauss-Hermite kuralını doğrudan ( )g b ’ye uygulamak çok zayıf yaklaşıma neden 

olabilmektedir (Pinheiro ve Bates, 1995). Bu problemi çözmek için önerilen uyarlanmış 

Gauss-Hermite kuralı, optimizasyon algoritmasının her bir iterasyonunda integrantı 

uygun bir biçimde ortalayıp ölçmektedir (Rizopoulos, 2012b): 

  
1

22

, ,t

ˆ ˆ ˆ, | , , ; 2 ( , r 2)p( 2 | T , , y ; )exp( )       
q

q

i i i i t t t i i i t

t

E A b T y A r r    (4.39) 

Burada, 

1ˆ ˆˆ 2  t i i tr b B b   

  ˆ argmax log , , ,b; i b i i ib p T y   

ˆ
iB ,  2

ˆ
ˆ log , , ,b; | 


   

i
i i i i b b

H p T y b b ’nin Choleski faktörünü ifade etmektedir.  

Bu dönüşümün kullanılmasıyla, integrant yaklaşık olarak  10,2 N  dağılımının 

yoğunluğu gibi davranmaktadır ve Gauss-Hermite kuralının ağırlık fonksiyonu bu 

dağılıma orantılı olduğundan dolayı optimal yaklaşım elde edilmektedir.  

 

Uyarlanmış Gauss-Hermite kuralında aynı büyüklükte bir yaklaşım hatası elde etmek 

için standart Gauss-Hermite kuralından daha az karesel nokta kullanılması 

gerekmektedir. Ancak, mod ˆib ’nin konumunun ve her iterasyonda her birim için ikinci 

derece türev matrisi ˆ
iH ’nin hesaplanması, işlem yükünü arttırmaktadır (Rizopoulos, 

2012b). 

 

Uyarlanmış Gauss-Hermite kuralındaki zorluk, mod ˆib  ve ˆ
iH  matrislerini hesaplamak 

için kullanılan, rastgele etkilerin sonsal dağılımının  b | , , ; i i i ip T y  özelliklerinden 

gelmektedir. Yeniden ölçeklendirilmiş uyarlanmış Gauss-Hermite kuralı uygulanarak, 

hesaplama yükü azaltılabilmektedir (Rizopoulos, 2012b). 

 

Yoğunluk log-ölçeğinde yeniden yazılırsa, 

   
1

log | , , ; log (t ) | b ; log (b ; )   


 
in

i i i i i ij i y i b

j

p b T y p y p  

log ( , | ; , )   i i i tp T b                      (4.40) 
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biçiminde tanımlanabilir ve in  arttıkça gözlemlediğimiz yoğunluk ile aynıdır. Birinci 

terim  log ( | ; ) log (t ) | b ; i i y i ij i yj
p y b p y  DKEM’in logaritmasıdır. ib ’de 

kareseldir ve çok değişkenli normal dağılımın şekline benzemektedir (Rizopoulos, 

2012b). Özellikle, Bayesyen merkezi limit teoreminin (Cox ve Hinkley, 1974) bir 

varyasyonu kullanarak ve genel koşullar altında, n  elde edilebilir: 

  1| , , ; (b ,H )  
p

i i i i i ip b T y          (4.41) 

Burada,   argmax log | b;i b i yb p y  ve  2 log | b; |


   
i

i i y b b
H p y b b ’yi 

göstermektedir (Rizopoulos, 2012b). Bu durum uygulamada, in  arttıkça her bir birim 

için integrantın yeniden ölçeklendirme ve merkezlendirilmesinin, sadece boylamsal 

veriler için DKEM’den gelen bilgiler kullanılarak hesaplanabileceğini göstermektedir. 

 

Yeniden ölçeklendirilmiş uyarlanmış Gauss-Hermite kuralında, ilk olarak DKEM 

tahmin edilmektedir ve daha sonra deneysel Bayes tahminleri ib  ve onların kovaryans 

matrisi 
1

iH  hesaplanmaktadır  (Rizopoulos, 2012b): 

  
1

22

, ,t

, | , , ; 2 ( , r 2)p( 2 | T , , y ; )exp( )       
q

q

i i i i t t t i i i t

t

E A b T y A r r          (4.42) 

Bu yöntem, standart Gauss-Hermite kuralında kullanılandan daha az karesel nokta 

kullanılması ve uyarlanmış Gauss-Hermite kuralının her iterasyonunda karesel 

noktaların zorunlu yer değiştirilmesini önlediğinden dolayı diğer yaklaşımlara göre daha 

avantajlıdır (Rizopoulos, 2012b). 

 

4.4. Bileşik Model Seçim Kriterleri 

Bileşik model parametre tahmininin en çok olabilirlik yöntemiyle yapılabileceği 4.4.2. 

bölümde gösterilmiştir. Model testi için olabilirlik oran prosedürü dışında, sıfır 

hipotezini test etmek için alternatif yöntemler Rizopoulos (2012a) tarafından ifade 

edilmiştir; 

0 0

1 0

:

:

 

 






H

H
            (4.43) 

 Olabilirlik Oran Testi (Likelihood Ratio Test, LRT) 

 0
ˆ ˆ2 ( ( ))   LRT          (4.44) 
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0̂  ve ̂ , sıfır ve alternatif hipotezler altında en çok olabilirlik tahmin 

edicileridir. 

 Skor Testi 

 
1

0 0 0

ˆ1

( )ˆ ˆ ˆ ˆ( ) ( ) ( ), ( )
 


   





 


    




n
i

i

S
U S S                  (4.45) 

( )S  ve ( )  , alternatif hipotez altında test edilen modelin skor fonksiyonu ve 

gözlemlenmiş bilgi matrisini göstermektedir. 

 Wald Testi 

0 0
ˆ ˆ ˆ( ) ( )( )       W          (4.46) 

Sıfır hipotezi için, p  test edilen parametre sayısı olmak üzere, asimptotik olarak 
2
p
 

dağılımı göstermektedirler (Diaz, 2014). 

 

Bu testlerin genel dezavantajı, sadece iki iç içe geçmiş modelleri test etmek için 

kullanılmalarıdır (Diaz, 2014). İç içe olmayan modellerin karşılaştırılmasını yapmak 

için Akaike Bilgi Kriteri (Akaike's Information Criterion-AIC) ve Bayesci Bilgi Kriteri 

(Bayesian Information Criterion- BIC) kullanılmalıdır: 

2log 2  AIC L p           

2log ln( )  BIC L p n           (4.47) 

Burada, L  modelin olabilirlik fonksiyonunu, n  toplam gözlem sayısını ve p  

modeldeki bilinmeyen parametre sayısını göstermektedir. 
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5. UYGULAMA 

 
Çalışmamızda farklı parametrik bileşik model yapılarını incelemek için literatürde yer 

alan PBS verisi kullanılmıştır (Mayo Clinic, Primary Biliary Cirrhosis, sequential data). 

Veriler, Ocak 1924-Mayıs 1984 yıllarında Mayo Klinikte görülen 312 hasta üzerinde 

PBS’nin ilerlemesini incelemek için toplanmıştır (Murtaugh ve ark., 1994). Farklı 

hastalıklar ve nedenlerden dolayı karaciğerde hasarlar oluşması ve zamanla karaciğerin 

sertleşmesi, küçülmesi ve işlevini yerine getirememesi gibi sorunlara neden olan PBS, 

karaciğer nakli dışında etkili bir tedavinin bulunmadığı kronik bir karaciğer hastalığıdır 

(Gordon ve ark., 1987; Esquivel ve ark., 1988). Karaciğer sirozunda tedavi, hastalığın 

evresine ve nedenine göre farklılık göstermektedir. Hastalığın şiddeti Child skoruna 

göre belirlenmektedir  (Sonsuz, 2007). Child skoru A, B ve C şeklinde ve A’dan C’ye 

gidildikçe hastalığın seviyesi artmaktadır (Christensen ve ark., 1984; Danalıoğlu, 1995). 

Child skoruna asit, sarılık ve serum bilirubin gibi değerler ile karar verilmektedir ve bu 

değerlerin artması karaciğer sirozunun ilerlediğini göstermektedir. 

 

PBS veri setindeki 312’i hastanın 158’i D-penisilin ilacını almış ve diğer 154 hasta 

placebo grubu olarak belirlenmiştir. Serum bilirubin seviyeleri belirli zaman 

aralıklarında (6 ay ve sonrasında her yıl) tekrarlı olarak ölçülmüştür ve toplam 1945 

dengesiz boylamsal ölçümden oluşmaktadır. Çalışmanın temel amacı, serum bilirubin 

ve ölüm zamanı arasındaki ilişkiye tedavinin etkisini araştırmaktır. 

 

Yaşam çözümlemesi ve bileşik modelleme literatüründe, PBS verisi kullanılarak birçok 

çalışma yapılmıştır. Murtaugh ve ark. (1994) PBS verisini analiz etmek için Cox 

regresyon modelini kullanmışlardır. Pasha ve Dickson (1997) PBS’nin bağımsız 

değişkenleri için yaşam tahminlerini ve farklı açıklayıcı değişkenler kullanarak Cox 

regresyon model tahminlerini incelemişlerdir. Albert ve Shih (2010) kesikli yaşam 

süresi ve çok değişkenli boylamsal gözlemlerin bileşik modellemesi için önerdikleri 

yaklaşımı PBS veri seti üzerinde test etmişlerdir. Yan (2011) PBS verisinin Kaplan-

Meier tahminlerini ve zaman bağımlı açıklayıcı değişken içeren Cox regresyon model 

tahminlerini incelemiştir. Crowther ve ark, (2013) sürekli boylamsal gözlemler ve 

yaşam verilerinin bileşik model tahminlerini elde etmek için STATA programında 

“stjm” komutunu geliştirmişlerdir. Bu komut kullanarak, boylamsal alt model için 

doğrusal karma etkili model ve yaşam verileri için Üstel, Weibull, Gompertz orantılı 
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tehlike modelleri ve esnek parametrik modellerin bileşik model tahminleri elde 

edilmektedir. Çalışmalarında, Weibull orantılı tehlike alt modeli ve doğrusal karma 

etkili modelin bileşik tahminlerini elde etmek için PBS verisi üzerinde bir uygulama 

yapmışlardır. Hsieh, Ding ve Wang (2013) boylamsal ve yaşam verilerinin tahminlerini 

elde etmek için yeni bir olabilirlik yaklaşımı önermişler ve önerdikleri yaklaşımı PBS 

verisinde test etmişlerdir. Mbohning, Bleakley ve Lavielle (2015) doğrusal olmayan 

karma etkili model ile bileşik olabilirlik üzerine çalışmışlardır. Thevaraja (2018) PBS 

verisinin yaşam çözümlemesi değerlerini SAS programı kullanarak elde etmiştir. 

 

Çalışmada, yaşam çözümlemesi alt modeli için Cox regresyon modelinin kullanıldığı 

standart bileşik model ve farklı parametrik alt modellerin sonuçları incelenmiştir. 

Ayrıca iki sürecin ayrı analizleri yapılarak parametrik bileşik model sonuçlarıyla 

kıyaslaması yapılmıştır. Ayrı analizde, boylamsal gözlemler için doğrusal karma etkili 

model ve yaşam verileri için boylamsal gözlem olan serum bilirubin değerleri zamana 

bağlı bağımsız değişken olarak modele alınarak, Weibull parametrik yaşam 

çözümlemesi modeli kullanılmıştır. Model tahminlerini elde etmek için Stata 

programında; gsem, streg ve xtreg komutları ve R programında; lme, coxph ve 

jointModel paketlerinden yararlanılmıştır. Analiz sonuçlarından elde edilen p değerleri 

0.05   anlamlılık düzeyinde kıyaslanmıştır. 

 

Uygulamada, hastaların izlenmeye başlandığından ölüm gerçekleşene kadar geçen süre 

yaşam süresi (yıl) olarak alınmıştır. Burada başarısızlık ölüm olarak kabul edilmiştir. 

Diğer hastalar durdurulmuş olarak ifade edilmiştir. Çalışma sonunda 312 hastadan 140’ı 

(%44.9) ölmüş ve 172 (%55.1) hastada durdurma gözlemlenmiştir. Veri seti, her hasta 

için klinik, biyokimyasal ve demografik risk faktörlerini içermektedir. Demografik 

faktörler; hastaların yaşı ve cinsiyeti, Biyokimyasal faktörler; ilaç (D-penisilin ve 

placebo grubu), asit (karaciğer yetmezliği sebebiyle karın bölgesinde su birikmesi 

durumu-var/yok), hepatomegali (karaciğer büyümesi durumu-var/yok), deride bozukluk 

(derideki kan damarı bozuklukları-var/yok), ödem (el ve ayaklarda şişlik durumu-

yok/ilaç kullanımına rağmen ödem/var) ve histolojik evreden oluşmaktadır. Çalışma 

kapsamında biyokimyasal özellik olarak serum bilirumin (mg/dl) değerleri alınmıştır. 

Kullanılan değişkenler ve düzeyleri Çizelge 5.1’de detaylı olarak verilmiştir. 
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Çizelge 5.1. Kullanılan açıklayıcı değişkenler ve düzeyleri 

Değişken Düzeyler n % 

Cinsiyet 1- Kadın 

2- Erkek 

276 

36 

88.5 

11.5 

İlaç 1- D-penisilin 

2- Placebo 

158 

154 

50.6 

49.4 

Asit 1- Yok 

2- Var 

247 

41 

79.2 

13.1 

Hepatomegali 1- Yok 

2- Var 

131 

157 

42.0 

50.3 

Deride Bozukluk 1- Yok 

2- Var 

188 

100 

60.3 

32.1 

Ödem 1- Yok 

2- İlaca Rağmen Ödem 

3- Var 

43 

64 

205 

13.8 

20.5 

65.7 

Histolojik Evre 1- Evre 1 

2- Evre2 

3- Evre 3 

4- Evre 4 

11 

45 

102 

154 

3.5 

14.4 

32.7 

49.4 

 

Boylamsal gözlem olan serum bilirubin değerleri, Şekil 5.1’de histogram grafiğinden de 

görüldüğü gibi sağa çarpık bir dağılım gösterdiğinden dolayı hesaplamalarda 

logaritması (log(serBilir)) alınarak kullanılmıştır. 

 

Şekil 5.1. Serum bilirubin değerlerinin histogram grafiği. 
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İlaç değişkeninin boylamsal ve yaşam verileri arasındaki ilişkiyi ayrıntılı incelemek 

için, ilaç değişkeninin boylamsal ölçüm grafikleri ve Kaplan-Meier tahminlerine ait 

grafikler Şekil 5.2’de verilmiştir. 

 
 

Şekil 5.2. İlaç değişkeninin Kaplan-Meier ve boylamsal ölçüm grafikleri 

 

Şekil 5.2’de verilen Kaplan-Meier grafiğine göre ilk 4 yılda D-penisilin ilacını 

kullananların kullanmayanlara göre yaşam olasılıklarının daha yüksek olduğu ancak 4 

yıl sonrasında yaşam olasılıklarının benzerlilik gösterdiği söylenebilir. İki tedavi 

yöntemine göre log(serBilir) değerlerinin grafiği incelendiğinde placebo grubunun 

serum bilirubin değerlerinin D-penisilin tedavisini olanlara göre daha yüksek olduğu 

ancak yine ölçüm değerlerinin birbirlerine yakın olduğu yorumu yapılabilir. İlaç 

değişkenin düzeyleri arasında anlamlı bir farklılık olup olmadığını test etmek için log-

rank testi uygulandığında, p=0.992 olarak bulunmuştur. Log-rank test sonucuna göre de 

ilaç değişkenin düzeyleri arasında anlamlı bir fark olmadığı söylenebilir. 

 

Boylamsal ve yaşam verilerinin bileşik model yapısını inceleyebilmek için, durdurma 

ve ölen hastalar için log(serBilir) değerlerinin grafiği Şekil 5.3’te verilmiştir. 
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Şekil 5.3. Log(serBilir) değerlerinin zamansal grafikleri 

 

Şekil 5.3 incelendiğinde, ölen hastaların durdurma gözlemlenen hastalara göre daha 

keskin bir eğilim sergilediği görülmektedir. Bu, boylamsal gözlem ile yaşam süresi 

arasında pozitif bir ilişkinin göstergesidir ve sonuç olarak boylamsal gözlem 

seviyelerindeki artışın ölümle doğrudan ilişkili olduğu görülmektedir. 

 

5.1. Boylamsal ve Yaşam Verilerinin Bileşik Çözümlemesi 

4. bölümde belirtildiği gibi standart bileşik model yaşam çözümlemesi alt modeli için 

Cox regresyon ve boylamsal alt model için doğrusal karma etkili modelin paylaşılmış 

parametre modeli ile birleştirilmesine dayanmaktadır. Ancak yaşam çözümlemesi 

literatüründe ve 3. bölümde belirtildiği gibi Cox regresyon modeli uygulanmadan önce 

orantılı tehlikeler varsayımı kontrol edilmelidir. Orantılı tehlikeler varsayımının 

sağlanmadığı durumlarda, yaşam çözümlemesinde Cox regresyon modeli yerine, 

parametrik regresyon yöntemleri kullanılmalıdır. Aynı durum bileşik modelin yaşam 

çözümlemesi alt modeli için de geçerlidir. Bu nedenle bileşik model kurulmadan önce 

orantılı tehlikeler varsayımını test etmek için grafiksel yöntemler ve Schoenfeld artıkları 

kullanılmış ve sonuçlar sırasıyla Şekil 5.4 ve Çizelge 5.2’de verilmiştir.  
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Şekil 5.4. Değişkenlerin orantılı tehlikeler varsayımı için grafikler 
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Çizelge 5.2. Değişkenlerin orantılı tehlikeler varsayımı için Schoenfeld artıkları ile 

         yaşam süresinin rankı arasındaki ilişki sonuçları 

 r Ki-Kare p 

Cinsiyet2 0.1349 2.73 0.0982 

İlaç2 -0.0355 0.18 0.6755 

Asit2 -0.1061 1.55 0.2132 

Hepatome2 -0.0819 0.85 0.3563 

DeriBoz2 -0.1125 1.65 0.1995 

Ödem2 0.1405 3.11 0.0778 

Ödem3 0.1584 3.82 0.0506 

HistolojikEvre2 -0.0949 1.27 0.2605 

HistolojikEvre3 -0.0250 0.09 0.7598 

HistolojikEvre4 -0.0220 0.07 0.7885 

 

 

Çizelge 5.2’de verilen sonuçlar incelendiğinde, tüm değişkenlerin orantılı tehlikeler 

varsayımını sağladığı ( p ) görülmüştür. Orantılı tehlikeler varsayımını incelemek 

için tek bir yöntem yetersiz olduğundan, varsayım kontrolü grafiksel yöntemlerle de 

incelenmiştir. Şekil 5.4’te değişkenlerin ln( )t ’ye karşı ln( ln(S(t)))   grafikleri 

incelendiğinde cinsiyet, ilaç, hepatomegali ve histolojik evre değişkenlerinin düzeyleri 

çakıştığından dolayı orantılı tehlikeler varsayımının sağlanmadığı söylenebilir. 

Varsayım sağlanmadığından dolayı, yaşam verileri için Cox regresyon modelinin 

kullanılması uygun değildir. Ancak yine de parametrik bileşik modellerle 

kıyaslayabilmek için yaşam çözümlemesi alt modeli için Cox regresyon modeli ve 

boylamsal alt model için doğrusal karma etkili modelin bileşik model tahminleri 

Çizelge 5.3’de verilmiştir. 
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Çizelge 5.3. Standart bileşik model sonuçları 

     Std. hata z p 

Boylamsal 

Alt 

Model 

Sabit Terim 0.4352 0.2714 1.6033 0.1089 

Yaş -0.0038 0.0051 -0.7409 0.4588 

Cinsiyet2 0.2369 0.1704 1.3904 0.1644 

İlaç2 0.1283 0.1053 1.2185 0.2230 

Asit2 0.1043 0.0415 2.5118 0.0120 

Hepatome2 -0.0183 0.0247 -0.7427 0.4577 

DeriBoz2 0.0640 0.0287 2.2273 0.0259 

Ödem2 0.1798 0.0344 5.2289 0.0000 

Ödem3 0.2706 0.0537 5.0434 0.0000 

HistolojikEvre2 0.0340 0.0646 0.5256 0.5992 

HistolojikEvre3 0.1021 0.0669 1.5259 0.1270 

HistolojikEvre4 0.1642 0.1642 2.2939 0.0218 

Cox 

Alt 

Model 

Yaş 0.0306 0.0097 3.1460 0.0017 

Cinsiyet2 0.3957 0.2537 1.5596 0.1188 

İlaç2 0.2125 0.1840 1.1552 0.2480 

Asit2 0.2925 0.2292 1.2758 0.2020 

Hepatome2 -1.6163 0.2042 0.2042 0.0000 

DeriBoz2 -0.6230 0.1994 -3.1249 0.0018 

Ödem2 0.8477 0.2421 3.5012 0.0005 

Ödem3 2.0730 0.2692 7.7003 0.0000 

HistolojikEvre2 -1.7986 0.7371 -2.4401 0.0147 

HistolojikEvre3 -1.4441 0.5745 -2.5138 0.0119 

HistolojikEvre4 -0.4095 0.5468 -0.7488 0.4540 

Assoct 1.3913 0.1161 11.9833 0.0000 

 

Çizelge 5.3’de kurulan standart bileşik modele göre, boylamsal alt modelde asit, deride 

bozukluk, ödem ve histlojikevre4 değişkenleri istatistiksel olarak anlamlı ( p ) 

bulunmuştur. Cox regresyon alt modelinde ise yaş, hepatomegali, deride bozukluk, 

ödem, histolojikevre2 ve histolojikevre3 değişkenleri istatistiksel olarak anlamlı 

bulunmuştur. Cox alt modelindeki tahmini assoct değişkeni iki süreci birleştiren 

parametre tahminidir (ilişkilendirme parametresi) ve Eşitlik 4.1’de   katsayını 

göstermektedir. Analiz sonucunda ilişkilendirme parametresi istatistiksel olarak ( p

) anlamlı bulunması, boylamsal gözlem ile yaşam süreci arasında ilişki olduğunu 

göstermektedir. Serum bilirubin ölçümlerindeki artışın ölüm riskinde de artışa neden 

olacağı yorumu yapılabilir. 
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Ancak Şekil 5.3 ve Çizelge 5.2’de görüldüğü gibi orantılı tehlikeler varsayımı 

sağlanmadığından dolayı bileşik modelin yaşam çözümlemesi alt modeli için Cox 

regresyonun kullanılması uygun değildir. Bu nedenle, yaşam çözümlemesi alt modeli 

için Üstel, Weibull, Log-normal, Log-lojistik ve Gamma parametrik alt modellerine 

bakılmıştır ve sonuçlar sırasıyla Çizelge 5.4 - 5.8’de verilmiştir. 

 

Çizelge 5.4. Üstel parametrik bileşik model sonuçları 

     Std. hata z p 

Boylamsal 

Alt 

Model 

Sabit Terim 0.6638 0.2923 2.27 0.023 

Yaş -0.0082 0.0054 -1.52 0.129 

Cinsiyet2 0.4923 0.1769 2.78 0.005 

İlaç2 0.0939 0.1117 0.84 0.401 

Asit2 0.1416 0.0506 2.80 0.005 

Hepatome2 -0.0190 0.0288 -0.66 0.510 

DeriBoz2 0.1144 0.0334 3.42 0.001 

Ödem2 0.4018 0.0393 10.21 0.000 

Ödem3 0.6640 0.0569 11.67 0.000 

HistolojikEvre2 -0.1186 0.0741 -1.60 0.110 

HistolojikEvre3 0.0320 0.0762 0.42 0.674 

HistolojikEvre4 0.2302 0.0818 2.81 0.005 

Üstel 

Alt 

Model 

Yaş -0.0514 0.0119 -4.31 0.000 

Cinsiyet2 -0.5668 0.3428 -1.65 0.098 

İlaç2 -0.3827 0.2351 -1.63 0.103 

Asit2 -0.4779 0.2260 -2.11 0.034 

Hepatome2 0.9773 0.1983 4.93 0.000 

DeriBoz2 0.1947 0.1961 0.99 0.321 

Ödem2 -0.9384 0.2323 -4.04 0.000 

Ödem3 -2.0893 0.2345 -8.91 0.000 

HistolojikEvre2 1.3061 0.9242 1.41 0.158 

HistolojikEvre3 0.3144 0.7577 0.41 0.678 

HistolojikEvre4 -0.5661 0.7365 -0.77 0.442 

Assoct -1.3978 0.1130 -12.37 0.000 

 

Çizelge 5.4’te yaşam çözümlemesi için Üstel alt model ile boylamsal veriler için 

doğrusal karma etkili modelin bileşik model tahminleri verilmiştir. Boylamsal alt 

modelde cinsiyet, asit, deride bozukluk, ödem ve histolojikevre4 değişkenleri, Üstel alt 

modelde ise yaş, asit, hepatomegali ve ödem değişkenleri istatistiksel olarak anlamlı 

bulunmuştur ( p ). İlişkilendirme parametresi assoct katsayısı istatistiksel olarak 
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anlamlı bulunduğundan dolayı, serum bilirubin değerleri arttıkça yaşam süresinin 

azaldığı söylenebilir.   

 

Çizelge 5.5. Weibull parametrik bileşik model sonuçları 

     Std. hata z p 

Boylamsal 

Alt 

Model 

Sabit Terim 0.6535 0.2943 2.22 0.026 

Yaş -0.0079 0.0055 -1.42 0.155 

Cinsiyet2 0.4905 0.1781 2.75 0.006 

İlaç2 0.0945 0.1125 0.84 0.401 

Asit2 0.1408 0.0506 2.78 0.005 

Hepatome2 -0.0205 0.0288 -0.71 0.475 

DeriBoz2 0.1139 0.0334 3.41 0.001 

Ödem2 0.3977 0.0393 10.11 0.000 

Ödem3 0.6492 0.0569 11.40 0.000 

HistolojikEvre2 -0.1207 0.0741 -1.63 0.104 

HistolojikEvre3 0.0241 0.0763 0.32 0.752 

HistolojikEvre4 0.2189 0.0818 2.68 0.007 

Weibull 

Alt 

Model 

Yaş -0.0431 0.0092 -4.64 0.000 

Cinsiyet2 -0.4022 0.2682 -1.50 0.134 

İlaç2 -0.3059 0.1809 -1.69 0.091 

Asit2 -0.3434 0.1627 -2.11 0.035 

Hepatome2 0.7130 0.1491 4.78 0.000 

DeriBoz2 0.1397 0.1392 1.00 0.315 

Ödem2 -0.6588 0.1725 -3.82 0.000 

Ödem3 -1.5090 0.1957 -7.71 0.000 

HistolojikEvre2 0.9656 0.6554 1.47 0.141 

HistolojikEvre3 0.2690 0.5366 0.50 0.616 

HistolojikEvre4 -0.3743 0.5217 -0.72 0.473 

Assoct -1.1569 0.0943 -12.27 0.000 

 

Yaşam çözümlemesi için Weibull alt model ile boylamsal verilerin doğrusal karma 

etkili modelle bileşik model sonuçları Çizelge 5.5’te verilmiştir. Buna göre boylamsal 

alt modelde cinsiyet, asit, deride bozukluk, ödem ve histolojik evre4 değişkenleri, 

Weibull alt modelde yaş, asit, hepatomegali ve ödem değişkenleri istatistiksel olarak 

anlamlı bulunmuştur ( p ). Assoct katsayısı da anlamlı bulunduğundan dolayı, serum 

bilirubin ölçümlerindeki artışın yaşam süresinde kısalmaya neden olacağı söylenebilir. 
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Çizelge 5.6. Log-normal parametrik bileşik model sonuçları 

     Std. hata z p 

Boylamsal 

Alt 

Model 

Sabit Terim 0.6712 0.2932 2.29 0.022 

Yaş -0.0082 0.0055 -1.50 0.135 

Cinsiyet2 0.4922 0.1774 2.77 0.006 

İlaç2 0.0960 0.1121 0.86 0.391 

Asit2 0.1384 0.0507 2.73 0.006 

Hepatome2 -0.0184 0.0289 -0.64 0.524 

DeriBoz2 0.1128 0.0335 3.37 0.001 

Ödem2 0.3993 0.0394 10.13 0.000 

Ödem3 0.6605 0.0571 11.57 0.000 

HistolojikEvre2 -0.1216 0.0741 -1.64 0.101 

HistolojikEvre3 0.0232 0.0763 0.30 0.761 

HistolojikEvre4 0.2162 0.0818 2.64 0.008 

Log-

normal 

Alt 

Model 

Yaş -0.0395 0.0095 -4.15 0.000 

Cinsiyet2 -0.5272 0.2785 -1.89 0.058 

İlaç2 -0.2811 0.1907 -1.47 0.140 

Asit2 -0.3950 0.2014 -1.96 0.050 

Hepatome2 0.7002 0.1687 4.15 0.000 

DeriBoz2 -0.0210 0.1606 -0.13 0.896 

Ödem2 -0.7349 0.1809 -4.06 0.000 

Ödem3 -1.7067 0.2270 -7.52 0.000 

HistolojikEvre2 1.2052 0.5783 2.08 0.037 

HistolojikEvre3 0.3813 0.4556 0.84 0.403 

HistolojikEvre4 -0.1955 0.4417 -0.44 0.658 

Assoct -1.1330 0.1000 -11.33 0.000 

 

Çizelge 5.6’da verilen Log-normal bileşik model sonuçlarına göre, boylamsal alt 

modelde cinsiyet, asit, deride bozukluk, ödem ve histolojikevre4 değişkenleri, Log-

normal alt modelde ise yaş, asit, hepatomegali, ödem, histolojikevre2 ve assoct 

değişkenleri istatistiksel olarak anlamlı bulunmuştur ( p ). Serum bilirubin ölçümleri 

ile yaşam süresi arasında ilişki bulunmaktadır. Serum bilirubin değerlerindeki artışın 

yaşam süresinde kısalmaya neden olacağı söylenebilir. 
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Çizelge 5.7. Log-lojistik parametrik bileşik model sonuçları 

     Std. hata z p 

Boylamsal 

Alt 

Model 

Sabit Terim 0.6571 0.2941 2.23 0.025 

Yaş -0.0079 0.0055 -1.44 0.151 

Cinsiyet2 0.4913 0.1780 2.76 0.006 

İlaç2 0.0955 0.1124 0.85 0.396 

Asit2 0.1383 0.0507 2.73 0.006 

Hepatome2 -0.0199 0.0288 -0.69 0.489 

DeriBoz2 0.1138 0.0334 3.40 0.001 

Ödem2 0.3980 0.0394 10.11 0.000 

Ödem3 0.6534 0.0570 11.46 0.000 

HistolojikEvre2 -0.1215 0.0741 -1.64 0.101 

HistolojikEvre3 0.0233 0.0762 0.31 0.760 

HistolojikEvre4 0.2171 0.0818 2.65 0.008 

Log-lojistik 

Alt 

Model 

Yaş -0.0419 0.0094 -4.46 0.000 

Cinsiyet2 -0.4663 0.2748 -1.70 0.090 

İlaç2 -0.2817 0.1858 -1.52 0.129 

Asit2 -0.3838 0.1796 -2.14 0.033 

Hepatome2 0.7241 0.1592 4.55 0.000 

DeriBoz2 0.0715 0.1513 0.47 0.636 

Ödem2 -0.6852 0.1745 -3.93 0.000 

Ödem3 -1.5498 0.2077 -7.46 0.000 

HistolojikEvre2 0.9881 0.6268 1.58 0.115 

HistolojikEvre3 0.3057 0.5153 0.59 0.553 

HistolojikEvre4 -0.3343 0.5011 -0.67 0.505 

Assoct -1.1499 0.0972 -11.83 0.000 

 

Çizelge 5.7’de verilen Log-lojistik parametrik bileşik model sonuçları incelendiğinde, 

boylamsal alt model için cinsiyet, asit, deride bozukluk, ödem ve histolojikevre4 

değişkenlerinin, yaşam çözümlemesi alt modelinde ise yaş, asit, hepatomegali ve ödem 

değişkenlerinin istatistiksel olarak anlamlı olduğu görülmektedir ( p ). 

İlişkilendirme parametresine göre, serum bilirubin ölçümlerinde artışın yaşam süresinde 

kısalmaya neden olacağı söylenebilir. 
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Çizelge 5.8. Gamma parametrik bileşik model sonuçları 

     Std. hata z p 

Boylamsal 

Alt 

Model 

Sabit Terim 0.6560 0.2941 2.23 0.026 

Yaş -0.0078 0.0055 -1.43 0.151 

Cinsiyet2 0.4911 0.1780 2.76 0.006 

İlaç2 0.0949 0.1124 0.84 0.398 

Asit2 0.1401 0.0506 2.77 0.006 

Hepatome2 -0.0203 0.0288 -0.71 0.480 

DeriBoz2 0.1136 0.0334 3.40 0.001 

Ödem2 0.3982 0.0393 10.12 0.000 

Ödem3 0.6518 0.0570 11.45 0.000 

HistolojikEvre2 -0.1209 0.0741 -1.63 0.103 

HistolojikEvre3 0.0242 0.0763 0.32 0.750 

HistolojikEvre4 0.2187 0.0818 2.67 0.008 

Gamma 

Alt 

Model 

Yaş -0.0429 0.0095 -4.53 0.000 

Cinsiyet2 -0.4345 0.2733 -1.59 0.112 

İlaç2 -0.3058 0.1853 -1.65 0.099 

Asit2 -0.3547 0.1707 -2.08 0.038 

Hepatome2 0.7297 0.1548 4.71 0.000 

DeriBoz2 0.1198 0.1461 0.82 0.412 

Ödem2 -0.6870 0.1755 -3.91 0.000 

Ödem3 -1.5713 0.1996 -7.87 0.000 

HistolojikEvre2 1.0084 0.6478 1.56 0.120 

HistolojikEvre3 0.2992 0.5301 0.56 0.572 

HistolojikEvre4 -0.3546 0.5155 -0.69 0.492 

Assoct -1.1665 0.7272 9.23 0.000 

 

 

Gamma alt model ile boylamsal alt modelin paylaşılmış parametre ile bileşik model 

sonuçları Çizelge 5.8’de verilmiştir. Boylamsal alt modelde cinsiyet, asit, deride 

bozukluk, ödem ve histolojikevre4 değişkenleri, Gamma alt model de ise yaş, asit, 

hepatomegali, ödem ve ilişkilendirme parametresi istatistiksel olarak anlamlı 

bulunmuştur ( p ). Boylamsal ölçüm olan serum bilirubin değerlerindeki artışın 

yaşam süresinde kısalmaya neden olacağı söylenebilir. 

 

Parametrik bileşik modeller arasında en iyi modeli belirlemek için AIC ve BIC 

değerlerine bakılmıştır. Modellerin AIC ve BIC değerleri Çizelge 5.9’de verilmiştir. 
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Çizelge 5.9. Parametrik bileşik modeller için AIC ve BIC değerleri 

Model AIC BIC 

Üstel 4738.236 4894.281 

Weibull 4721.314 4882.982 

Log-normal 4742.735 4904.352 

Log-lojistik 4727.06 4888.678 

Gamma 4722.846 4884.464 

 

Çizelge 5.9’da verilen model karşılaştırma kriterlerine göre, yaşam çözülmesi için 

Weibull alt model ve boylamsal gözlemler için doğrusal karma etkili modelin 

paylaşılmış parametre modeli ile birleştirilmesiyle elde edilen modelin en iyi model 

olduğu söylenebilir. Boylamsal alt model sonuçlarına göre, kadınların yıllık serum 

bilirubin değerlerinin erkeklere göre 0.49 birim arttığı, karaciğer yetmezliği sebebiyle 

karın bölgesinde su birikintisi olanların yıllık serum bilirubin değerlerinin olmayanlara 

göre 0.14 birim arttığı, deride kan bozukluğu olanların olmayanlara göre yıllık serum 

bilirubin değerlerinin 0.11 birim arttığı, ilaç kullanımına rağmen ellerinde ayaklarında 

şişlik olanların olmayanlara göre yıllık serum bilirubin değerlerinin 0.40 birim arttığı, 

ellerinde ve ayaklarında şişlik olanların olmayanlara göre yıllık serum bilirubin 

değerlerinin 0.65 birim attığı ve hastalığın 4. evresinde olanların hastalığın 1. evresinde 

olanlara göre yıllık serum bilirubin değerlerinin 0.22 birim arttığı yorumları yapılabilir. 

Weibull alt model sonuçlarına göre yaş ilerledikçe yaşam süresinin kısaldığı, karaciğer 

yetmezliği sebebiyle karnında su birikintisi olanların olmayanlara göre yaşam 

sürelerinin exp(0.3434) 1.41  kat daha kısa olduğu, karaciğer büyümesi olanların 

olmayanlara göre yaşam sürelerinin exp(0.7130) 2.04  ve ilaç kullandığı halde 

ellerinde ve ayaklarında şişlik olanların olmayanlara göre yaşam süresinin 

exp(0.6588) 1.93  kat daha kısa, ellerinde ve ayaklarında şişlik olanların olmayanlara 

göre yaşam sürelerinin exp(1.5090) 4.52  kat daha kısa olduğu söylenebilir. Assoct kat 

sayısına göre serum bilirubin değerleri ile yaşam süresi arasında güçlü bir ilişki 

bulunmaktadır. Serum bilirubin değerlerindeki artışın yaşam süresinde kısalmaya neden 

olduğu yani ölüm riskinde artışa neden olduğu söylenebilir. 
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5.2. Boylamsal ve Yaşam Verilerinin Ayrı Çözümlemesi 

Bileşik modelden elde edilen sonuçları kıyaslayabilmek için, PBS veri setine boylamsal 

analiz için kullanılan doğrusal karma etkili model uygulanmıştır ve model sonuçları 

Çizelge 5.10’da verilmiştir. 

 

Çizelge 5.10. Doğrusal karma etkili model sonuçları 

    Std. hata z p 

Sabit Terim -0.0679 0.3925 -0.17 0.863 
Yaş -0.0132 0.0049 -2.67 0.008 

Cinsiyet2 0.4760 0.1539 3.09 0.002 
İlaç2 -0.0166 0.0978 -0.17 0.866 
Asit2 1.1179 0.2717 4.11 0.000 

Hepatome2 0.7778 0.1539 5.05 0.000 
DeriBoz2 0.4243 0.1468 2.89 0.000 
Ödem2 0.2944 0.1786 1.65 0.100 
Ödem3 0.4256 0.2645 1.61 0.109 

HistolojikEvre2 0.0515 0.3805 1.35 0.177 
HistolojikEvre3 0.6385 0.3459 1.85 0.066 
HistolojikEvre4 0.7478 0.3483 2.15 0.033 

 

Çizelge 5.10’da verilen doğrusal karma etkili model sonuçlarına göre; yaş, cinsiyet, asit, 

hepatomegali, deride bozukluk, ödem ve histolojik evre4 değişkenleri istatistiksel olarak 

anlamlı bulunmuştur. 

 

Çizelge 5.9’da verilen bileşik model karşılaştırmaları sonuçlarına göre en iyi model, 

Weibull parametrik bileşik model olduğundan dolayı, sonuçları kıyaslayabilmek için 

yaşam verilerinin ayrı analizi Weibull parametrik model ile yapılmıştır ve sonuçlar 

Çizelge 5.11’de verilmiştir. 
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Çizelge 5.11. Weibull parametrik model sonuçları 

    Std. hata z p 

Sabit Terim 7.8327 0.9469 8.27 0.000 

Yaş -0.0309 0.0100 -3.08 0.002 

Cinsiyet2 -0.4469 0.2399 -1.86 0.062 

İlaç2 -0.1999 0.1761 -1.13 0.256 

Asit2 -0.7177 0.2333 -3.08 0.002 

Hepatome2 0.5186 0.1986 2.61 0.009 

DeriBoz2 -0.0140 0.1945 -0.07 0.943 

Ödem2 -0.8790 0.2462 -3.57 0.000 

Ödem3 -1.7537 0.2927 -5.99 0.000 

HistolojikEvre2 0.6030 0.9179 0.66 0.511 

HistolojikEvre3 -0.3688 0.7476 -0.49 0.622 

HistolojikEvre4 -1.0932 0.7361 -1.49 0.138 

Log(serBilir)(t) -0.0001 0.0000 -2.92 0.004 

 

Çizelge 5.11’de verilen Weibull parametrik model sonuçlarına göre; yaş, asit, 

hepatomegali, ödem ve zamana bağımlı serum bilirubin değişkenleri istatistiksel olarak 

anlamlı bulunmuştur ( p ). Weibull parametrik modelin tehlike oranlarının ve 

parametre tahminlerinin standart hatalarının Weibull parametrik birleşik model 

sonuçlarından daha yüksek olduğu görülmektedir. Weibull parametrik modele göre, el 

ve ayaklarında ilaç kullanımına rağmen şişlik olanların olmayanlara göre yaşam süreleri 

exp(0.8790) 2.41  kat daha kısayken, Weibull parametrik bileşik alt model sonucuna 

göre el ve ayaklarında ilaç kullanımına rağmen şişlik olanların olmayanlara göre yaşam 

süreleri exp(0.6588) 1.93  kat kısadır. Ek olarak, zamana bağımlı serum bilirubin 

değerleri ile yaşam süresi arasındaki ilişki Weibull parametrik birleşik modele göre 

daha zayıf bulunmuştur. 

 

Ayrıca Cox regresyon ile doğrusal karma etkili modelin paylaşılmış parametre modeli 

ile birleştirilmesiyle elde edilen standart bileşik model sonucuna göre yaşam süresi ile 

serum bilirubin değerleri arasındaki ilişki, Weibull parametrik birleşik modele göre 

daha yüksek bulunmuştur.  
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6. SONUÇLAR 

 
Bu çalışmada, boylamsal ve yaşam verilerinin bileşik modellemesi ve parametrik bileşik 

model yapıları verilmiş, yaşam süresinin orantılı tehlikeler varsayımını sağlamadığı 

durumda kullanılabilecek olan parametrik bileşik model yöntemleri anlatılmıştır. 

 

Aynı çalışma kapsamında elde edilen boylamsal ve yaşam verilerinin ayrı analizi 

sonucunda ölçüm hataları ve kayıp veri sorunları ortaya çıkmaktadır. Bu sorunları 

ortadan kaldırmak ve yansız ve etkin tahminler elde etmek için bileşik modelleme 

üzerine çalışmalar son zamanlarda giderek artmaktadır. Genel olarak kullanılan standart 

bileşik model yapısı, boylamsal gözlemlerin doğrusal karma etkili model ve yaşam 

verilerinin Cox regresyon modeliyle paylaşılmış parametre modelleri yardımıyla 

birleştirilmesine dayanmaktadır. Ancak yaşam verilerine Cox regresyon modelinin 

uygulanabilmesi için orantılı tehlikeler varsayımının sağlanması gerekmektedir. 

Varsayımın sağlanmadığı durumlarda tabakalandırılmış Cox regresyon, genelleştirilmiş 

Cox regresyon veya yaşam süresinin bilinen bir dağılıma uyması durumunda parametrik 

regresyon yöntemleri kullanılmalıdır. Varsayım sağlanmadığı durumlarda yansız ve 

güvenilir sonuçlar elde edebilmek için bileşik model yaşam çözülmesi alt modeli için 

Üstel, Weibull, Log-normal, Log-lojistik ve Gamma parametrik alt modelleri tercih 

edilebilir. 

 

Uygulamada öncelikle standart bileşik model yapısı incelenmiştir. Bu model 

kurulmadan önce orantılı tehlikeler varsayımı Schoenfeld artıkları ve grafiksel yöntemle 

test edilmiş ve orantılı tehlikeler varsayımının sağlanmadığı görülmüştür. Ancak 

parametrik bileşik modelleme sonuçları ile kıyaslama yapabilmek için Cox regresyon ve 

doğrusal karma etkili modelin bileşik analiz sonuçları verilmiştir. Daha sonra yaşam 

çözümlemesi için Üstel, Weibull, Log-normal, Log-lojistik ve Gamma alt modelleri ve 

doğrusal karma etkili modelin paylaşılmış parametre modeli ile birleştirilmesiyle elde 

edilen parametrik bileşik model sonuçları verilmiştir. Bu modellerden en iyi modele 

karar vermek için bilgi kriterlerine bakılmış ve Weibull parametrik bileşik model en iyi 

model olarak bulunup, sonuçlar ayrıntılı olarak yorumlanmıştır. Daha sonra boylamsal 

ve yaşam verileri için ayrı ayrı doğrusal karma etkili model ve Weibull parametrik 

regresyon modeli kurulmuştur. Weibull parametrik bileşik modelle kıyaslayabilmek için 

Weibull parametre modeline boylamsal gözlem olan serum bilirubin değeri zamana 
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bağlı değişken olarak eklenmiştir. Model sonuçları incelendiğinde yaşam verileri için 

ayrı analiz sonuçlarında, parametre standart hatalarının ve tehlike oranlarının bileşik 

model yaşam çözümlemesi kısmından daha büyük olduğu görülmüştür. Ayrıca, serum 

bilirubin değerleri ile yaşam süresi arasındaki ilişki ayrı analizde bileşik analize göre 

daha düşük olarak bulunmuştur. 

 

Yaşam verileri için Cox regresyon modeli kullanılarak elde edilen standart bileşik 

model sonuçlarıyla Weibull parametrik bileşik model sonuçları kıyaslandığında, tehlike 

oranlarının ve parametre standart hatalarının standart bileşik modelde daha yüksek 

olduğu görülmüştür. Ayrıca serum bilirubin değerleri ile yaşam süresi arasındaki ilişki 

Weibull parametrik model de daha yüksek bulunmuştur.  

 

Sonuç olarak, boylamsal gözlem ve yaşam verilerinin birlikte olduğu çalışmalarda ayrı 

analiz yapmak uygun değildir. İki veri arasındaki ilişkiyi doğru şekilde analiz etmek 

için bileşik modelleme kullanılmalıdır. Ancak, Cox regresyon modeli ile doğrusal 

karma etkili modelin bileşik modellemesi kullanılmadan önce orantılı tehlikeler 

varsayımının incelenmesi gerekmektedir. Orantılı tehlikeler varsayımı sağlanmadığında 

ve verilerin bilinen dağılımlara uygunluğu söz konusu olduğu durumlarda, yansız ve 

etkin parametre tahminleri için bileşik modelin yaşam çözümlemesi alt modeli 

parametrik regresyon yöntemleri ile yapılmalıdır. 
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