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Bu tez 5 bölümden oluşmaktadır. İlk bölüm giri̧s kısmına ayrılmı̧stır. İkinci bölümde,
çalı̧sma boyunca kullanılacak olan bazıtemel kavramlar iki alt başlıkta verilmi̧stir.

Üçüncü bölümde, yakınsaklık yapılarıve yakınsama uzaylarına yer verilmi̧stir. Nesneleri
sonlu derinlikli yakınsama uzayları, morfizmleri bu uzaylar arasında tanımlıyakınsama
dönüşümleri olan kategori Conv ile gösterilir. Conv kategorisinin temel özellikleri ve-
rilmi̧stir ve Top kategorisi ile arasındaki ili̧skiler incelenmi̧stir.

Dördüncü bölümde, yaklaşma uzaylarını karakterize eden temel yapılar ve bu uzaylar
arasında tanımlıbüzülme dönüşümleri ifade edilerek Ap kategorisinin temel özellikleri ve-
rilmi̧stir. Beşinci bölümde, nesneleri yakınsama-yaklaşma uzayları, morfizmleri bu uzaylar
arasında tanımlıbüzülme dönüşümleri olan Cap kategorisi ifade edilerek temel özellikleri
verilmi̧stir. Ayrıca, Cap kategorisinin Conv ve Ap kategorileri ile arasındaki ili̧skiler ince-
lenmi̧stir.

Son bölümde ise tez ile ilgili genel bir değerlendirme yapılmı̧stır.
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This thesis consists of five chapters. The first chapter is designated as the introduction.
In the second chapter, some basic terms and concepts which shall be used throughout this
study are provided under two sub-headings.

The third chapter adresses convergence structures and convergence spaces. The category
whose objects are finitely deep convergence spaces, whose morphisms are convergence
morphisms defined between these spaces is denoted by Conv. The main features of the
category Conv are specified and its relations with the category Top are examined.

In the fourth chapter, the main features of the category Ap are explained by specifying the
essential structures characterizing approach spaces and the contractions defined between
these spaces. In the fifth chapter, the category Cap, the objects of which are convergence-
approach spaces and the morphisms of which are the contractions defined between such
spaces, are explained and their main features are specified. In addition, the relations
between the category Cap and the categories Conv and Ap are examined.

The last chapter serves as a general assessment of the thesis.
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Dr. Sevda SAĞIROĞLU PEKER’e, eğitim hayatım boyunca arkamda olan anne ve
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4. YAKLAŞMA UZAYLARI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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SİMGELER DİZİNİ

P [0,∞]
F(X) X kümesi üzerinde tanımlıtüm süzgeçlerin ailesi
U(X) X kümesi üzerinde tanımlıtüm ultrasüzgeçlerin ailesi
F −→ x F süzgeci x noktasına yakınsar
F(F) F süzgecinden daha ince olan süzgeçlerin ailesi
U(F) F süzgecinden daha ince olan ultrasüzgeçlerin ailesi
Nτ (x) x noktasının τ topolojisine göre komşuluklar süzgeci
clτ (A) A kümesinin τ topolojisine göre kapanı̧sı
Vξ(x) x noktasının ξ bağıntısına göre yöresel süzgeci
Bd (x, ε) d metriğine göre x merkezli ε yarıçaplıaçık yuvar
2X X kümesinin tüm alt kümelerinin ailesi
δ Uzaklık fonksiyonu
λ Limit operatörü (veya Cap-limit)
limξF F süzgecinin ξ bağıntısına göre limit noktalarının kümesi
Set Nesneleri kümeler, morfizmleri fonksiyonlar olan kategori
Top Nesneleri topolojik uzaylar, morfizmleri sürekli fonksiyonlar

olan kategori
X<ω X kümesinin sonlu elemanlıalt kümelerinin ailesi
Z+ Pozitif tam sayılar kümesi
Rω Reel terimli dizilerin kümesi
p Noktasal yakınsaklık yapısı(Örnek 3.12)
v Standart yakınsaklık yapısı(Örnek 3.2)
C (X, Y ) X ve Y topolojik uzaylarıarasında tanımlısürekli fonksiyonların

kümesi
|D| D kategorisinin nesnelerinin sınıfı
MorD (X, Y ) D kategorisinin X ve Y nesneleri arasında tanımlımorfizmlerinin

kümesi
C (ξ, σ) (X, ξ), (Y, σ) yakınsama uzaylarıarasında tanımlımorfizmlerin kümesi
c C (v , v) üzerinde tanımlısürekli yakınsaklık yapısı(Örnek 3.16)
[ξ, σ] C (ξ, σ) üzerinde tanımlısürekli yakınsaklık yapısı
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1. GİRİŞ

Genel topoloji, analiz alanında bilinen yakınsaklık ve süreklilik kavramlarının daha

geni̧s bir çerçeve içerisinde incelenmesi isteğinden doğmuştur. İlk adım, Frechet

tarafından 1906 yılında ifade edilen metrik uzay kavramıdır. Metrik uzaylar; ana-

lizin yakınsaklık ve süreklilik gibi temel kavramlarıüzerine çalı̧sılırken oldukça kul-

lanı̧slıolmasına rağmen, örneğin fonksiyon uzaylarında noktasal yakınsaklı̆gıifade

etmek için yeterli olmamı̧stır. Bu sorun, metrik uzaylarıiçeren daha geni̧s bir sınıf

olan topolojik uzayların, Hausdorff ve Kuratowski tarafından tanımlanmasıile kıs-

men ortadan kaldırılmı̧stır. Tychonoff tarafından tanımlanan çarpım topoloji ise,

noktasal yakınsaklı̆gıkarakterize ederek sorunu çözmüştür. Fonksiyon uzaylarında

yakınsaklı̆ga ili̧skin çalı̧smalar geli̧stirilirken, topolojik olarak karakterize edilemeyen

yakınsaklık kavramlarının varlı̆gıfark edilmi̧stir. Örneğin, 1921 de Hahn tarafından

tanımlanan sürekli yakınsaklık kavramıtopolojik olarak karakterize edilememekte-

dir. X ve Y iki topolojik uzay olsun, ve

e : X × C(X, Y ) −→ Y

(x, f) −→ f(x)

biçiminde tanımlansın. F, C(X, Y ) üzerinde bir süzgeç ve f ∈ C(X, Y ) olduğunda,

herhangi bir x ∈ X ve X üzerinde x noktasına yakınsak herhangi bir G süzgeci için,

e (G × F) = {e (G× F ) | G ∈ G, F ∈ F} ailesinin ürettiği süzgeç Y içinde f (x) nok-

tasına yakınsıyor ise, F süzgeci f fonksiyonuna sürekli yakınsaktır denir (Hahn

1921). Herhangi bir X topolojik uzayı için, C(X, Y ) kümesi üzerinde, sürekli

yakınsaklı̆gıkarakterize eden bir topolojinin mevcut olmadı̆gıgösterilmi̧stir (Arens,

Dugundji 1951). Sonsuz boyutlu analizde, sürekli yakınsaklık kavramı, topolojik

uzaylar çerçevesinde ifade edilememektedir. 1951 de, Arens ve Dugundji, özel ola-

rak, X topolojik uzayının lokal kompakt bir Hausdorff uzayıolmasıdurumunda,

C(X, Y ) kümesi üzerinde, sürekli yakınsaklı̆gı karakterize eden topolojinin kom-

pakt açık topoloji olduğunu göstermi̧stir. Sürekli yakınsaklık kavramının yanısıra,

topolojik olarak karakterize edilemeyen başka yakınsaklık yapıları da mevcuttur.

Örneğin, [0, 1] kümesi üzerinde sınırlıve ölçülebilir reel değerli fonksiyonların uzayı
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üzerinde tanımlı hemen hemen her yerde yakınsaklı̆gı üretecek bir topoloji mev-

cut değildir. Bu nedenlerle yakınsaklık, topolojiden bağımsız olarak ele alınmaya

başlanmı̧stır.

Frechet ve Urysohn, topolojik uzaylarda, dizilerin yakınsaklı̆gına ili̧skin pek çok

çalı̧sma yapmı̧stır. Ancak topolojik uzaylarda yakınsaklık kavramıüzerine yapılan

çalı̧smalarda Cartan tarafından tanımlanan süzgeçler önemli rol oynar. Çünkü, bir

topolojik uzayda dizilerin ve ağların yakınsaklı̆gısüzgeçler ile karakterize edilebilmek-

tedir. 1950’li yılların başlarında, Kowalsky ve Fischer, Yakınsaklık Yapısı(Con-

vergence Structure) kavramınıortaya koymuşlardır. Yakınsaklık teorisi; yakın-

saklık yapılarıile donatılmı̧s kümeler üzerindeki matematiksel özellikleri, topolojik

uzaylarda olduğu üzere açık ve kapalıkümeleri kullanmak yerine, süzgeçlere ili̧skin

yakınsaklık kavramınıkullanarak inceler.

1948 yılında Choquet, bir süzgecin yakınsaklı̆gının aksiyomlar halinde ifade edildiği

pseudo-topolojik ve pretopolojik yapılara ili̧skin teorisini sunmuştur. 1954 yılında

Kowalsky, bir süzgecin yakınsaklı̆gını, Choquet’nin aksiyomlarından daha az sınır-

layıcıaksiyomlar ile ifade ederek teorinin geli̧simine katkısağlamı̧stır. 1965 yılında

Cook ve Fischer, Hahn tarafından tanımlanan sürekli yakınsaklık kavramının topolo-

jik olmayan bir yakınsaklık yapısına kaŗsılık geldiğini göstermi̧stir. Dolayısıyla

yakınsaklık teorisi, bir topoloji tarafından üretilmeyen yakınsaklık yapılarını in-

celeyebilme yeterliliğine ek olarak, topolojik uzaylar üzerinde de önemli sonuçlar

vermektedir. 2016 da Dolecki ve Mynard yakınsaklık teorisine ili̧skin kavramları

“Convergence Foundations of Topology”adlıkitapta derlemi̧stir.

Nesneleri sonlu derinlikli yakınsama uzayları, morfizmleri sonlu derinlikli yakınsama

uzaylarıarasında tanımlıyakınsama dönüşümleri olan Conv kategorisi, Top ka-

tegorisinin bir süperkategorisidir. Kategori teori; bir D kategorisinin, nesneleri

üzerinde herhangi bir koşul olmaksızın, nesneleri arasında tanımlımorfizmler kümesi

üzerinde, X, Y ∈ |D| olmak üzere;

e : X ×MorD(X, Y ) −→ Y

(x, f) −→ f(x)
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fonksiyonunumorfizm kılacak biçimde en kaba yapıya sahip olan kategorileri, kartezyen

kapalıkategoriler adıaltında sınıflandırmı̧stır. Top kategorisi kartezyen kapalı

değildir, ancak Conv kategorisi kartezyen kapalıdır (Preuss 1987). Kartezyen

kapalılık, homotopi teori, cebirsel topoloji ve fonksiyonel analiz gibi alanlarda oldukça

kullanı̧slıolduğundan, bu alanlarda yakınsaklık üzerine yapılan çalı̧smalar için Conv

kategorisi, Top kategorisine kıyasla daha uygundur. Bir topolojik kategorinin, kartezyen

kapalı olmamasının birçok uygulamada dezavantajı olduğu görülmüştür. Steen-

rod, topolojik cebir ve homotopi teoride Top kategorisi yerine, Top kategorisinin

kartezyen kapalıbir altkategorisi olan kompakt üretilmi̧s Hausdorffuzaylarının oluş-

turduğu Haus kategorisi ile çalı̧sılmasını önermi̧stir (Steenrod 1967). Dubuc ve

Porta, topolojik cebir alanında, kartezyen kapalıbir kategori ile çalı̧smanın önem

ve avantajlarınıifade etmi̧stir (Dubuc ve Porta 1971)

Yakınsama uzaylarıile ili̧skili bir kavram olan “Yaklaşma Uzayları(Approach Spaces)”,

ilk olarak 1987 yılında Lowen tarafından ortaya konmuştur. Bu uzayların tanım-

lanmasında ana fikir, bir nokta ve bir küme arasındaki uzaklık kavramıdır. Lowen,

bu teorisinde, uzaklık fonksiyonu adınıverdiği ve belli özellikleri sağlayan bir fonk-

siyon yardımıyla, metrik yapının bulunmadı̆gıherhangi bir topolojik uzayda da bir

noktanın bir kümeye olan uzaklı̆gının ölçülebileceğini ifade etmi̧stir. Yaklaşma uzay-

ları, uzaklık fonksiyonu kavramının yanısıra, bu kavrama matematiksel olarak eş

ve yakınsaklık yapıları ile ili̧skili olan, limit operatörü kavramı ile de karakteri-

ze edilebilmektedir. Nesneleri yaklaşma uzayları, morfizmleri yaklaşma uzayları

arasında tanımlı büzülme dönüşümleri olan kategori Ap ile gösterilir. Ap kate-

gorisi bir topolojik kategoridir. Top kategorisinin bir süperkategorisi olup kartezyen

kapalıdeğildir (Lowen 1987). 1988 yılında Lowen ve Colebunders limit operatörlerini

zayıflatarak elde ettikleri yeni yapılarla donattıklarıkümeleri nesne kabul eden ve

morfizmleri bu nesneler arasında tanımlıbüzülme dönüşümleri olanCap kategorisini

tanımlamı̧stır. Cap kategorisi Conv ve Ap kategorilerinin bir süperkategorisi olup

kartezyen kapalıdır.

Bu tez çalı̧smasında; Conv kategorisinin nesnelerinin ve morfizmlerinin bazıözel-

likleri; ayrıca Conv kategorisinin Ap ve Cap kategorileri ile ili̧skileri incelenmi̧stir.
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2. TEMEL KAVRAMLAR

Bu bölüm iki kısma ayrılmı̧stır. Birinci bölümde; topolojik uzaylar, metrik uzaylar

ve süzgeç teoriye ili̧skin bazıtemel kavramlar, ikinci bölümde; kategori teoriye ili̧skin

bazıtemel kavramlar ifade edilecektir.

2.1 Topolojik Uzaylar, Metrik Uzaylar ve Süzgeç Teoriye İli̧skin Bazı

Temel Kavramlar

Tanım 2.1 (X,6) kısmi sıralı bir küme olsun. Eğer, X kümesinin iki elemanlı

her alt kümesi, X içinde infimum ve supremum değerlerine sahip ise, (X,6) ikilisine

latis denir. X kümesinin her alt kümesi, X içinde infimum ve supremum değerlerine

sahip ise, (X,6) ikilisine tam latis adıverilir.

Eğer,X kümesinin iki elemanlıher alt kümesi,X içinde yalnızca infimum(supremum)

değerine sahip ise, (X,6) ikilisine inf-yarılatis(sup-yarılatis) adıverilir. Özel

olarak, X kümesinin her alt kümesi, X içinde yalnızca infimum(supremum) değerine

sahip ise, (X,6) inf-yarılatisine(sup-yarılatisine) infimuma(supremuma) göre

kapalıdır denir (Bourbaki 1966).

Tanım 2.2 X bir küme ve F ⊂ 2X olsun. F ailesi

F1) ∅ /∈ F

F2) F ⊂ G ve F ∈ F⇒ G ∈ F

F3) F,G ∈ F⇒ F ∩G ∈ F

özelliklerini sağlıyor ise F ailesine X kümesi üzerinde bir süzgeç adı verilir. X

kümesi üzerinde tanımlı süzgeçlerin ailesi F(X) ile gösterilecektir. F,G ∈ F(X)

olmak üzere;

F 6 G ⇔ F ⊂ G

biçiminde tanımlanan “6”bağıntısı, F(X) üzerinde bir kısmi sıralama bağıntısıdır.

Eğer; F 6 G ise, G süzgeci F süzgecinden daha incedir ya da F süzgeci G süzgecin-
4



den daha kabadır denir. Ayrıca, F, G ∈ F(X) olmak üzere;

F ⊂ G ve ∃G ∈ G : G /∈ F

oluyor ise, F < G yazılır ve G süzgeci F süzgecinden kesin incedir ya da F süzgeci

G süzgecinden kesin kabadır denir (Bourbaki 1966).

Tanım 2.3 X bir küme ve B ⊂ 2X olsun. B ailesi,

i) ∅ /∈ B

ii) B1, B2 ∈ B : ∃C ∈ B 3 C ⊂ B1 ∩B2

özelliklerini sağlıyor ise, B ailesine X kümesi üzerinde bir süzgeç tabanıadıverilir.

B ailesinin X kümesi üzerinde ürettiği süzgeç B↑ ile gösterilir ve

B↑ := {F ⊂ X | ∃B ∈ B : B ⊂ F}

biçiminde tanımlanır (Bourbaki 1966).

Tanım 2.4 X bir küme ve A ⊂ 2X ise,

A↑ := {B ⊂ X | ∃A ∈ A : A ⊂ B}

biçiminde tanımlanır ve bu aileye A ailesinin yı̆gınıadıverilir (Mynard 2016).

A ailesi X kümesi üzerinde bir süzgeç tabanıise, Tanım 2.3 gereğince, A↑ ailesi, X

kümesi üzerinde bir süzgeç olacaktır. Özel olarak, A ailesi yerine A ⊂ X alınırsa,

A↑ := {B ⊂ X | A ⊂ B} ailesi X kümesi üzerinde bir süzgeçtir. Benzer şekilde, bir

x ∈ X noktasının X kümesi üzerinde ürettiği süzgeç
•
x ile gösterilir ve

•
x := {A ⊂ X | x ∈ A}

biçiminde tanımlanır.

Tanım 2.5 X bir küme olsun ve {xn}n∈Z+ ile, terimleri X kümesine ait olan bir

dizi gösterilsin. Bu durumda; {xn}n∈Z+ dizisinin X kümesi üzerinde ürettiği süzgeç

(xn)↑ ile gösterilir ve her n ∈ Z+ için, An := {xk | n 6 k ∈ Z+} olmak üzere;

(xn)↑ :=
{
B ⊂ X | ∃n ∈ Z+ : An ⊂ B

}
5



biçiminde tanımlanır. Bu şekilde tanımlanan süzgeçlere dizisel süzgeç adıverilir

(Mynard 2016).

X kümesi üzerinde tanımlıtüm dizisel süzgeçlerin kümesi E(X) ile gösterilir,

E(X) :=
{

(xn)↑n∈Z+ | (xn)n∈Z+ ∈ Xω
}

dir.

Tanım 2.6 X bir küme, J 6= ∅ bir indis kümesi olsun ve D = (Fj)j∈J ile, X kümesi

üzerinde tanımlısüzgeçlerin bir ailesi gösterilsin. Bu durumda; D ailesinin öğelerinin

infimumu
∧
j∈J
Fj ile gösterilir.

∧
j∈J
Fj, X kümesi üzerinde bir süzgeçtir ve

∧
j∈J
Fj =

⋂
j∈J

Fj

dir (Bourbaki 1966).

(F(X),6) bir inf-yarı latis olup infimuma göre kapalıdır. Ancak, F,G ∈ F(X)

olmak üzere; F ve G süzgeçlerini içeren en dar aile F ∪ G olup bu aile bir süzgeç

olmak zorunda değildir.

Tanım 2.7 X bir küme ve F,G ∈ F(X) olsun. Bu durumda;

∀F ∈ F, ∀G ∈ G : F ∩G 6= ∅

oluyor ise F ve G süzgeçleri iç içedir denir ve bu durum F#G biçiminde gösterilir

(Mynard 2016).

Önerme 2.1 X bir küme ve F,G ∈ F(X) olmak üzere; F ve G süzgeçlerinin supre-

mumunun mevcut olması için gerek ve yeter koşul F#G olmasıdır. F#G olması

durumunda;

F
∨
G = {F ∩G | F ∈ F, G ∈ G}

dir (Bourbaki 1966).
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Önerme 2.2 X bir küme, J 6= ∅ bir indis kümesi ve (Fj)j∈J ⊂ F(X) olsun. Bu

durumda;

B :=

{⋂
j∈I
Fj | I ⊂ J<ω, j ∈ I, Fj ∈ Fj

}
biçiminde tanımlıB ailesi, X kümesi üzerinde bir süzgeç tabanıise, (Fj)j∈J ailesinin

supremumu mevcut olup
∨
j∈J
Fj = B↑ dır (Bourbaki 1966).

Tanım 2.8 X ve Y iki küme, F ∈ F(X) ve f : X −→ Y bir fonksiyon olsun. Bu

durumda; F süzgecinin f fonksiyonu altındaki görüntüsü f(F) ile gösterilir ve

f(F) := {f(F ) | F ∈ F}

biçiminde tanımlanır (Mynard 2016).

f(F) ailesi Y kümesi üzerinde bir süzgeç olmak zorunda değildir ancak bir süzgeç

tabanıdır. f(F) ailesinin ürettiği süzgeç f [F] ile gösterilecektir.

Tanım 2.9 X bir küme ve F ∈ F(X) olsun. F süzgecinin keseni secF ile gösterilir

ve

secF := {A ⊆ X | ∀F ∈ F : A ∩ F 6= ∅}

biçiminde tanımlanır (Mynard 2016).

F ⊂ secF olup secF ailesi süzgeç olmak zorunda değildir.

Tanım 2.10 X bir küme, J 6= ∅ bir indis kümesi ve F ∈ F(J) olsun. Bu durumda;

σ : J −→ F(X)

j −→ σ(j)

bir fonksiyon olmak üzere; σ fonksiyonunun F süzgecine göre köşegen süzgeci,

∑
σ(F) :=

∨
A∈σ(F)

⋂
G∈A
G =

∨
F∈F

⋂
j∈F

σ(j)

biçiminde tanımlanır (Kowalsky 1954).
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Yukarıda tanımlanan σ fonksiyonu, her bir j ∈ J indisine F(X) ailesinin bir tek

ögesini kaŗsılık getirmektedir. Bu nedenle; {σ(j)}j∈J ailesi, X kümesi üzerinde

tanımlısüzgeçlerin bir seçimi olarak adlandırılır.

Örnek 2.1 (X, τ) bir topolojik uzay olsun ve

σ : X −→ F(X)

x −→ σ(x) := Nτ (x)

biçiminde tanımlansın. Bu durumda; {Nτ (x)}x∈X ailesi, X kümesi üzerinde tanımlı

süzgeçlerin bir seçimidir.

Tanım 2.11 L 6= ∅ herhangi bir indis kümesi olmak üzere; her λ ∈ L için Jλ 6= ∅

ve (Xλj)j∈Jλ,λ∈L bir kümeler ailesi olsun. Bu durumda; I =
∏
λ∈L

Jλ olmak üzere;

aşağıdaki eşitlikler mevcuttur.⋃
λ∈L

(⋂
j∈Jλ

Xλj

)
=

⋂
f∈I

(⋃
λ∈L

Xλ,f(λ)

)
⋂
λ∈L

(⋃
j∈Jλ

Xλj

)
=

⋃
f∈I

(⋂
λ∈L

Xλ,f(λ)

)

(Bourbaki 1966).

Tanım 2.12 (X, τ) bir topolojik uzay, F ∈ F(X) ve x ∈ X olsun. Bu durumda; N τ (x) 6
F ise, x noktasıF süzgecinin τ topolojisine göre bir limit noktasıdır denir ve bu du-

rum F
τ−→ x biçiminde gösterilir (Bourbaki 1966).

Önerme 2.3 (X, τ) ve (Y, τ
′
) iki topolojik uzay ve f : (X, τ) −→ (Y, τ

′
) bir fonk-

siyon olsun. Bu durumda; aşağıdaki önermeler denktir.

i) f fonksiyonu süreklidir

ii) F ∈ F(X) olmak üzere; F τ−→ x ise, f [F]
τ ′−→ f(x) dir (Bourbaki 1966).

Tanım 2.13 X bir küme ve F ∈ F(X) olsun. Eğer, X kümesi üzerinde F süzgecin-

den kesin ince bir süzgeç bulunamıyor ise F süzgecine ultrasüzgeç adıverilir (Bourbaki

1966).
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X kümesi üzerinde tanımlıtüm ultrasüzgeçlerin ailesi U(X) ile gösterilecektir. F

∈ F(X) olmak üzere; F süzgecinden ince olan tüm süzgeçlerin (ultrasüzgeçlerin)

ailesi F(F)(U(F)) ile, A ⊂ X olmak üzere A↑ süzgecinden ince tüm süzgeçlerin

(ultrasüzgeçlerin) ailesi F(A)(U(A)) ile gösterilecektir.

Önerme 2.4 (X, τ) bir topolojik uzay, F ∈ F(X) ve x ∈ X olsun. F süzgecinin

x noktasına yakınsak olmasıiçin gerek ve yeter koşul F süzgecinden ince olan tüm

ultrasüzgeçlerin x noktasına yakınsak olmasıdır (Bourbaki 1966).

Lemma 2.1 X bir küme, F ∈ F(X) olsun ve her U ∈ U(F) için en azından bir

SU ∈ U seçilebilsin. Bu durumda; sonlu elemanlıbir Us ⊆ U(F) kümesi,
⋃
U∈Us

SU ∈ F

olacak biçimde mevcuttur (Lowen 1987).

Önerme 2.5 J, L ve X boş kümeden farklıüç küme, F ∈ F(J), σ : J → F(X) ve

γ : L→ F(J) iki fonksiyon olsun. Bu durumda; aşağıdaki eşitlikler mevcuttur;

(i)
∑
σ(F) =

⋃
F∈F

⋂
j∈F

σ(j),

(ii)
∑
σ(F) =

⋂
ρ∈

∏
j∈J

U(σ(j))

∑
ρ(F),

(iii)
∑
σ(F) =

⋂
ρ∈

∏
j∈J

U(σ(j))

⋂
U∈U(F)

∑
ρ(U),

(iv) Her j ∈ J için σ(j) ve F ultrasüzgeç ise,
∑
σ(F) de bir ultrasüzgeçtir (Lowen

1997).

Tanım 2.14 X bir küme, I herhangi bir indis kümesi olmak üzere; {(Yθ, τ θ)}θ∈I
topolojik uzayların bir ailesi olsun ve {fθ : X −→ (Yθ, τ θ)}θ∈I fonksiyon ailesi ve-

rilsin. Bu durumda;

Sθ :=
{
f−1
θ (Uθ) | Uθ ∈ τ θ

}
biçiminde tanımlıolmak üzere, S =

⋃
θ∈I

Sθ ailesi, X kümesi üzerinde bir topoloji

için alt tabandır. X kümesi üzerinde S ailesi tarafından üretilen topolojiye, {fθ}θ∈I
ailesine kaŗsılık gelen başlangıç topolojisi adıverilir (Bourbaki 1966).
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Tanım 2.15 I 6= ∅ herhangi bir indis kümesi ve
∑

belirli tipte matematiksel

yapıların bir ailesi olsun. (Yi)i∈I ile, her i ∈ I için
∑

ailesine ait bir θi yapısı

ile donatılmı̧s kümelerin ailesi, ve S ile
∑
ailesine eşlik eden fonksiyon ailesi göste-

rilsin. X bir küme olmak üzere; {fi | X −→ (Yi, θi)}i∈I fonksiyon ailesi verilsin. Bu

durumda; her X
′
kümesi ve X

′
üzerinde tanımlıher θ

′
yapısıiçin, X üzerinde,

∑
ailesine ait bir θ yapısı;

i) g : X
′ −→ X fonksiyonu S ailesine aittir

ii) Her i ∈ I için fi ◦ g : X
′ −→ Yi fonksiyonu S ailesine aittir

önermeleri denk olacak biçimde tanımlanabiliyor ise, θ yapısına, {fi}i∈I ailesine

kaŗsılık gelen başlangıç yapısıadıverilir (Bourbaki 1966).

Tanım 2.16 X bir küme olmak üzere; ? : X×X −→ X fonksiyonu; her x, y, z ∈ X

için x ? (y ? z) = (x ? y) ? z özelliğini sağlıyor ise (X, ?) ikilisine yarıgrup adıverilir

(Halıcıoğlu 2014).

2.2 Kategori Teoriye İli̧skin BazıTemel Kavramlar

Bir küme üzerinde tanımlanabilen matematiksel yapıların sınıflandırılması, ortak

özelliklerinin ve aralarındaki ili̧skilerin irdelenmesi kategori teorinin araçlarıile mümkündür.

Tanım 2.17 Bir D kategorisi aşağıda verilen parçalardan oluşur:

i) ElemanlarıD-nesnelerden oluşan ve |D| biçiminde ifade edilen bir sınıf,

ii) D-nesnelerin herhangi bir (X, Y ) çifti için X kümesinden Y kümesine tanımlı

tüm morfizmleri içeren ve MorD(X, Y ) biçiminde gösterilen morfizmler kümesi,

iii) Her X ∈ |D| için IX : X −→ X biçiminde tanımlıbirim dönüşümler,

iv) D-nesnelerden oluşan her (X, Y, Z) üçlüsü için,

◦ : MorD(X, Y )×MorD(Y, Z) −→MorD(X,Z)

(f, g) −→ f ◦ g

biçiminde tanımlıve

∀X, Y, T ∈ |D| ,∀f ∈MorD(X, Y ),∀g ∈MorD(T,X) : f ◦ IX = f ve IX ◦ g = g
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özelliğini sağlayan bileşke i̧slemi. (Adamek 1990).

Bir C kategorisinin tüm morfizmleri Mor(C) ile gösterilecektir. Nesneleri kümeler,

morfizmleri kümeler arasında tanımlı fonksiyonlar olan kategori Set ile, nesneleri

topolojik uzaylar, morfizmleri topolojik uzaylar arasında tanımlısürekli fonksiyonlar

olan kategori Top ile gösterilir.

Tanım 2.18 A ve C iki kategori olsun. Bu durumda; aşağıdaki özellikler sağlanıyor

ise A kategorisi C kategorisinin bir alt kategorisidir denir.

i) |A| ⊂ |C|

ii) ∀A,B ∈ |A| : MorA(A,B) ⊂MorC(A,B)

iii) A kategorisi üzerinde tanımlıbileşke i̧slemi, C kategorisi üzerinde tanımlıbileşke

i̧sleminin A ya kısıtlamasıdır.

iv) Her A ∈ |A| için IA birim morfizmi, A ve C kategorilerinde aynımorfizmdir

(Adamek 1990).

Top kategorisi Set kategorisinin bir alt kategorisidir.

Tanım 2.19 C ve D iki kategori, F : C → D dönüşümü,

∀A ∈ |C| : F (A) ∈ |D| ,

∀A,B ∈ |C| ,∀f ∈MorC(A,B) : F (f) ∈MorD(F (A), F (B))

olacak biçimde tanımlıbir dönüşüm olsun. F dönüşümü,

i) ∀A ∈ |C| : F (IA) = IF (A)

ii) ∀f, g ∈Mor (C) : F (f ◦ g) = F (f) ◦ F (g)

özelliklerini sağlıyor ise, F dönüşümüne C kategorisinden D kategorisine tanımlıbir

funktor adıverilir (Adamek 1990).

Tanım 2.20 C ve D iki kategori ve F : C → D tanımlı bir funktor olsun. Bu

durumda;

i) F , morfizmler üzerinde birebir ise F funktoruna gömülme (embedding) funk-

toru denir.
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ii) ∀A,B ∈ |C| için F : MorC(A,B) → MorD(F (A) , F (B)) dönüşümü birebir ise

F funktoruna düzenli (faithful) funktor denir.

iii) ∀A,B ∈ |C| için F : MorC(A,B)→MorD(F (A) , F (B)) dönüşümü örten ise F

funktoruna dolu (full) funktor denir (Adamek 1990).

C kategorisinden D kategorisine tanımlıen azından bir dolu funktor bulunabiliyor

ise, C kategorisine D kategorisinin dolu alt kategorisi adıverilir. Top kategorisi

Set kategorisinin bir dolu alt kategorisidir.

Tanım 2.21 C ve D iki kategori, C kategorisi D kategorisinin bir alt kategorisi

olsun. F : C −→ D funktoru, her C ∈ |C| için F (C) := C ve her f ∈ Mor(C) için

F (f) := f biçiminde tanımlıise, F funktoruna içerme funktoru denir (Adamek

1990).

Tanım 2.22 C veD iki kategori, F : C → D tanımlıbir funktor olsun. Bu durumda;

G : D → C biçiminde tanımlı, G ◦ F = idC ve F ◦ G = idD olacak biçimde bir G

funktoru var ise, F funktoruna izomorfizm adıverilir. Ayrıca, C ve D kategorileri

izomorf kategorilerdir denir (Adamek 1990).

Tanım 2.23 Bir D kategorisinin nesneleri; kümeler ve bu kümeler üzerinde tanımlı

belirli tipte matematiksel yapılardan oluşan ikililer ise, yani; U : D −→ Set biçi-

minde tanımlıen azından bir düzenli funktor bulunabiliyor ise D kategorisine belirli

(concrete) kategori, U dönüşümüne ise unutkan (forgetful) funktor adıverilir

(Adamek 1990).

Set ve Top kategorileri belirli kategoridir.

Kategori teorinin kavramlarıkullanılarak, Tanım 2.15 aşağıdaki şekilde güncellen-

mi̧stir.

Tanım 2.24 D bir belirli kategori, X bir küme, I herhangi bir indis kümesi olsun.

Bu durumda; D-nesnelerin bir (Xi,ξi)i∈I ailesi ve {fi : X −→ (Xi, ξi)}i∈I fonksiyon

ailesi için, X üzerinde bir tek ξ D-yapısı,
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i) ∀(Y, σ) ∈ |D| için g : (Y, σ) −→ (X, ξ) D-morfizmdir

ii) ∀i ∈ I için fi ◦ g : (Y, σ) −→ (Xi, ξi) dönüşümü D-morfizmdir

önermeleri denk olacak biçimde tanımlanabiliyor ise, ξ D-yapısına {fi}i∈I ailesine

kaŗsılık gelen başlangıç yapısıadıverilir (Preuss 1987).

Tanım 2.25 D bir belirli kategori olmak üzere; aşağıdaki özellikler sağlanıyor ise,

D kategorisine topolojik kategori adıverilir.

i) D kategorisinin başlangıç yapılarımevcuttur.

ii) Her X kümesi için, X üzerinde tanımlanabilen D-yapıların ailesi kısmi sıralıbir

kümedir.

iii) Tek elemanlıbir küme üzerinde bir tek D-yapıtanımlıdır (Preuss 1987).

Top kategorisi topolojik kategoridir. Ayrıca, nesneleri metrik uzaylar, morfizmleri

metrik uzaylar arasında tanımlı geni̧slemeyen dönüşümler olan kategori Met ile

gösterilir. Met kategorisi başlangıç yapılarına sahip olmadı̆gından bir topolojik

kategori değildir.

Tanım 2.26 A ve C iki kategori, A kategorisi C kategorisinin bir alt kategorisi ve

F : A −→ C bir içerme funktoru olsun. Bu durumda;

i) C kategorisinin her X nesnesi için, A kategorisinin bir XA nesnesi ve bir rX :

X −→ XA morfizmi, A kategorisinin her Y nesnesi ve her f ∈MorC(X, Y ) için, bir

tek

f ∗ : XA −→ Y

A-morfizmi, f ∗ ◦ rX = f olacak biçimde tanımlanabiliyor ise, A kategorisine C kate-

gorisinin yansımalıalt kategorisi denir. Bu durumda; XA nesnesine X nesnesinin

A-yansımasıadıverilir.

ii) C kategorisinin her X nesnesi için, A kategorisinin bir XA nesnesi ve bir mX :

XA −→ X morfizmi, A kategorisinin her Y nesnesi ve her f ∈MorC(X, Y ) için, bir

tek

f∗ : Y −→ XA

A-morfizmi, mx ◦ f∗ = f olacak biçimde tanımlanabiliyor ise, A kategorisine C
13



kategorisinin ko-yansımalıalt kategorisi denir. Bu durumda; XA nesnesine X

nesnesinin A-ko-yansımasıadıverilir (Herrlich 1983).

Met kategorisi Top kategorisinin ko-yansımalıbir alt kategorisidir.

Tanım 2.27 A ve C iki kategori, A kategorisi C kategorisinin bir dolu alt kate-

gorisi olsun. Bu durumda, “�”ile C-yapıların ailesi üzerinde tanımlıkısmi sıralama

bağıntısıgösterilmek üzere;

i) Her (X, ξ) ∈ |C| için ξA � ξ olacak biçimde en azından bir ξA A-yapısıbulu-

nabiliyor ve her (Y, η) ∈ |A| , her f : (X, ξ) −→ (Y, η) C-morfizmi için

f ∗ : (X, ξA) −→ (Y, η)

x −→ f ∗(x) := f(x)

fonksiyonu bir A-morfizm oluyor ise A kategorisine C kategorisinin bi-yansımalı

alt kategorisi denir.

ii) Her (X, ξ) ∈ |C| için ξ � ξA olacak biçimde en azından bir ξA A-yapısıbulu-

nabiliyor ve her (Y, η) ∈ |A| , her f : (Y, η) −→ (X, ξ) C-morfizmi için

f∗ : (Y, η) −→ (X, ξA)

x −→ f ∗(x) := f(x)

fonksiyonu birA-morfizm oluyor iseA kategorisine C kategorisinin bi-ko-yansımalı

alt kategorisi denir (Preuss 2002).

Bir C kategorisinin bi-yansımalıher alt kategorisi, yansımalıbir alt kategorisidir.

Benzer şekilde, bi-ko-yansımalıher alt kategorisi, ko-yansımalıbir alt kategorisidir.

Tanım 2.28 C bir topolojik kategori, A kategorisi C kategorisinin bir dolu alt kate-

gorisi,X bir küme, I herhangi bir indis kümesi ve {(Xi, ξi)}i∈I A-nesnelerin bir ailesi

olsun. Bu durumda; {fi : X −→ (Xi, ξi)}i∈I bir fonksiyon ailesi ve ξ, X kümesi ü-

zerinde tanımlı{fi}i∈I fonksiyon ailesine kaŗsılık gelen başlangıç C-yapıolmak üzere;

(X, ξ) ikilisi bir A-nesne oluyor ise, A kategorisine C kategorisi içinde başlangıç

yapılarına göre kapalıdır denir (Preuss 2002).
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Önerme 2.6 A ve C iki kategori, A kategorisi C kategorisinin bir dolu alt kategorisi

olsun. Bu durumda; A kategorisinin C kategorisinin bi-yansımalıbir alt kategorisi ol-

masıiçin gerek ve yeter koşul A kategorisinin C kategorisi içinde başlangıç yapılarına

göre kapalıolmasıdır (Preuss 2002).

Tanım 2.29 D bir topolojik kategori olsun. Bu durumda; her (X, Y ) D-nesne çifti

için MorD(X, Y ) kümesi üzerine, X ve Y üzerinde tanımlıD-yapılar yardımıyla

bir [X, Y ] D-yapısı; aşağıdaki özellikleri sağlayacak biçimde inşa edilebiliyor ise, D

kategorisi kartezyen kapalıdır denir.

CC1)

e : X ×MorD(X, Y ) −→ Y

(x, f) −→ e (x, f) := f(x)

fonksiyonu bir D-morfizmdir.

CC2) Her Z ∈ |D| ve her f : X × Z −→ Y D-morfizmi için

f ∗ : Z −→ MorD(X, Y )

z −→ f ∗ (z) := f(x, z)

biçiminde tanımlıbir D-morfizmi; f = e ◦ (idX × f ∗) olacak biçimde mevcuttur

(Preuss 2002).
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3. YAKINSAMA UZAYLARI

Bu bölümde; yakınsaklık yapısıkavramıve bu kavram yardımıyla tanımlanan yakın-

sama uzaylarıifade edilecek ve bu uzayların temel özellikleri incelenecektir.

3.1 Yakınsaklık Yapıları

X bir küme, ξ ⊆ F(X) × X ve F ∈ F(X) olsun. Bu durumda; (F, x) ∈ ξ olması

durumu,

x ∈ limξF

biçiminde ifade edilir ve x noktasıF süzgecinin ξ bağıntısına göre limit noktasıdır

ya da F süzgeci ξ bağıntısına göre x noktasına yakınsaktır denir. B ⊂ 2X bir süzgeç

tabanıise,

limξB := limξB
↑

biçiminde tanımlanır. Diğer yandan, ξ bağıntısına göre bir x noktasına yakınsayan

tüm süzgeçlerin ailesi lim−1
ξ (x) ile gösterilir,

lim−1
ξ (x) = {F ∈ F(X) | (F, x) ∈ ξ}

dir (Mynard 2016).

Tanım 3.1 X bir küme, ξ ⊆ F(X)×X olsun. Bu durumda;

i) ∀F,G ∈ F(X) 3 F 6 G : limξF ⊂ limξG

ii) ∀x ∈ X : x ∈ limξ
•
x (merkezil)

özelliklerinden ilkini sağlayan ξ bağıntısına X kümesi üzerinde bir önyakınsaklık

yapısı, her ikisini sağlayan ξ bağıntısına X kümesi üzerinde bir yakınsaklık yapısı

adıverilir. ξ bağıntısıX kümesi üzerinde bir (ön)yakınsaklık yapısıise (X, ξ) ikilisine

(ön)yakınsama uzayıadıverilir (Kowalsky 1954, F ischer 1959,Mynard 2016).

Bir ξ (ön)yakınsaklık yapısının, üzerinde tanımlıolduğu X kümesi özel olarak be-

lirtilmek istendiğinde ξX gösterimi kullanılacaktır.
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Örnek 3.1 X bir küme olmak üzere; X üzerinde,

∀F ∈ F(X) : lim∅XF = ∅

biçiminde tanımlanan ∅X bağıntısı bir önyakınsaklık yapısı olup bu yapıya boş

önyakınsaklık yapısıadıverilir. F =
•
x için, lim∅X

•
x = ∅ olduğundan x /∈ lim∅X

•
x

olup ∅X bağıntısı, X kümesi üzerinde bir yakınsaklık yapısıdeğildir (Dolecki 2009).

Örnek 3.2 R üzerinde,

v :=

{
(F,x) ∈ F(R)× R |

{]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
6 F

}

biçiminde tanımlanan v bağıntısıbir yakınsaklık yapısıolup bu yapıya R üzerinde

tanımlıstandart yakınsaklık yapısıadıverilir (Dolecki 2009).

İspat. F, G ∈ F(R), F 6 G ve (F,x) ∈ v olsun. Bu durumda;{]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
6 F 6 G

olup (G,x) ∈ v dir. Diğer yandan, x ∈ R olmak üzere;{]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
6 •
x

olduğundan (
•
x, x) ∈ v dir.

Örnek 3.3 R üzerinde, Örnek 3.2 de tanımlanan standart yakınsaklık yapısı ele

alınsın.

E(R) :=
{

(xn)↑n∈Z+ | (xn)n∈Z+ ∈ Rω
}

olmak üzere; R üzerinde,

Seqv :=
{

(F,x) ∈ F(R)× R | ∃(xn)n∈Z+ ∈ Rω 3 (xn)↑n∈Z+ 6 F, x ∈ limv(xn)↑n∈Z+
}

biçiminde tanımlanan Seqv bağıntısıbir yakınsaklık yapısıolup bu yapıya dizisel

yakınsaklık yapısıadıverilir (Dolecki 2009).
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İspat. F, G ∈ F(R), F 6 G ve (F,x) ∈ Seqv olsun. Bu durumda;

∃(xn)n∈Z+ ∈ Rω 3 (xn)↑n∈Z+ 6 F 6 G ve x ∈ limv(xn)↑n∈Z+

olduğundan, (G,x) ∈ Seqv dir. Diğer yandan, sayılabilir bir kümenin ürettiği süzgeç

dizisel olduğundan
•
x ∈ E(R) dir. O halde, (xn)↑n∈Z+ =

•
x olarak ele alınırsa v , R

üzerinde bir yakınsaklık yapısıolduğundan x ∈ limv
•
x olup x ∈ limSeqv

•
x elde edilir.

Örnek 3.4 X bir küme olmak üzere, X üzerinde,

ı :=
{

(F,x) ∈ F(X)×X | F =
•
x
}

biçiminde tanımlanan ı bağıntısıbir yakınsaklık yapısıolup bu yapıya diskre yakın-

saklık yapısıadıverilir (Dolecki 2009).

İspat. F,G ∈ F(X), F 6 G ve (F,x) ∈ ı olsun. Bu durumda; F =
•
x olup

•
x, X

kümesi üzerinde bir ultrasüzgeç olduğundan, G =
•
x olmalıdır. Dolayısıyla, (G,x) ∈ ı

dır. Ayrıca, ı bağıntısının tanımından, her x ∈ X için (
•
x, x) ∈ ı olacağıaçıktır.

Örnek 3.5 X bir küme olmak üzere, X üzerinde,

o := {(F,x) ∈ F(X)×X | F ∈ F(X), x ∈ X}

biçiminde tanımlanan o bağıntısıbir yakınsaklık yapısıolup bu yapıya düzensiz

yakınsaklık yapısıadıverilir (Dolecki 2009).

Tanım 3.2 X bir küme ve ξ, X kümesi üzerinde bir yakınsaklık yapısıolsun. Bu

durumda; F,G ∈ F(X) ve herhangi bir x ∈ X için, (F, x) ∈ ξ ve (G, x) ∈ ξ

olduğunda, (F ∩ G, x) ∈ ξ oluyor ise ξ bağıntısına sonlu derinlikli denir. (X, ξ)

ikilisine sonlu derinlikli yakınsama uzayıadıverilir (Dolecki 2009).

Örnek 3.2, Örnek 3.3, Örnek 3.4 ve Örnek 3.5 de verilen her bir yakınsaklık yapısının

sonlu derinlikli olduğu kolaylıkla gösterilebilir.
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Örnek 3.6 X bir küme, x∞ /∈ X olsun ve F, G ile, X kümesi üzerinde tanımlı, iç

içe olmayan iki süzgeç gösterilsin. Bu durumda; Y = X ∪{x∞} ve H ∈ F(Y ) olmak

üzere; Y kümesi üzerinde,

x ∈ X ve (H, x) ∈ ξ ⇐⇒ H =
•
x (3.1)

ve

(H, x∞) ∈ ξ ⇐⇒ F ∩
•

(x∞) 6 H veya G ∩
•

(x∞) 6 H (3.2)

biçiminde tanımlanan ξ bağıntısıbir yakınsaklık yapısıolup sonlu derinlikli değildir

(Mynard 2016).

İspat. ξ bağıntısının, Y üzerinde bir yakınsaklık yapısı olduğu kolaylıkla göste-

rilebilir. Ancak, ξ yakınsaklık yapısı sonlu derinlikli değildir. F ve G, X kümesi

üzerinde tanımlı, iç içe olmayan iki süzgeç olmak üzere; H := {F ∪ {x∞} | F ∈ F}

veK := {G ∪ {x∞} | G ∈ G} olarak alınırsa, F∧
•

(x∞) 6 H ve G∧
•

(x∞) 6 K olacaktır.
Bu durumda; (3.2) den, x∞ ∈ limξH ∩ limξ K dir. Ancak, x∞ /∈ limξH ∩ K dır.

Gerçekten, F ve G, iç içe olmayan iki süzgeç olduğundan, Tanım 2.7 den,

∃F0 ∈ F ve ∃G0 ∈ G için F0 ∩G0 = ∅

dir. Bu durumda; A = F0 ∪ {x∞} ∈ F ∩
•

(x∞) ve B = G0 ∪ {x∞} ∈ G ∩
•

(x∞) olarak

alınırsa, A /∈ K ve B /∈ H olacaktır. Dolayısıyla, A /∈ H ∩ K ve B /∈ H ∩ K olup

x∞ /∈ limξH ∩K elde edilir.

Tanım 3.3 X bir küme olsun. ξ ve σ ileX kümesi üzerinde tanımlıiki (ön)yakınsaklık

yapısıgösterilsin. Bu durumda;

ξ � σ ⇐⇒ ∀F ∈ F(X) : limξF ⊆ limσF

biçiminde tanımlanan “�” bağıntısı, X üzerinde tanımlı yakınsaklık yapılarının

ailesi üzerinde bir kısmi sıralama bağıntısıolup ξ � σ olmasıdurumunda, ξ yapısıσ

yapısından daha incedir (σ yapısıξ yapısından daha kabadır) denir (Dolecki 2009).
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Örnek 3.7 X bir küme ve I bir indis kümesi olmak olmak üzere, {ξi}i∈I ile, X

üzerinde tanımlıyakınsaklık yapılarının ailesi gösterilsin. Bu durumda;

∀i ∈ I : oX � ξi � ∅X (3.3)

dir. Ayrıca, R üzerinde, v ve Seqv yakınsaklık yapılarıele alınırsa v � Seqv dir

(Mynard 2016) .

İspat. (3.4) sıralamasının gerçeklendiği açıktır. F ∈ F(R) ve x ∈ limSeqv F olsun.

Bu durumda; Örnek 3.3 den,

∃(xn)n∈Z+ ∈ Rω 3 (xn)↑n∈Z+ 6 F ve x ∈ limv(xn)↑n∈Z+

dir. (xn)↑n∈Z+ 6 F, x ∈ limv(xn)↑n∈Z+ ve v , R kümesi üzerinde bir yakınsaklık yapısı

olduğundan, Tanım 3.1 (i) den, x ∈ limv F elde edilir.

Önerme 3.1 X bir küme ve ξ ⊆ F(X)× X bir önyakınsaklık yapısı olsun. ξ

bağıntısının X kümesi üzerinde bir yakınsaklık yapısı olması için gerek ve yeter

koşul ξ bağıntısının ı diskre yakınsaklık yapısından kaba olmasıdır (Mynard 2016) .

İspat. ξ, X kümesi üzerinde bir yakınsaklık yapısı, F ∈ F(X) ve x ∈ limıF olsun.

Bu durumda; Örnek 3.4 de açıklandı̆gıüzere, F =
•
x dır. ξ bir yakınsaklık yapısı

olduğundan, x ∈ limξ
•
x elde edilir. O halde, (3.3) den, ξ � ı elde edilir. Diğer

yandan, ξ, X kümesi üzerinde bir önyakınsaklık yapısıve ξ � ı olsun. Bu durumda;

(3.3) den, her F ∈ F(X) için limıF ⊂ limξF dir. F :=
•
x alınırsa, limı

•
x ⊂ limξ

•
x

olup x ∈ limı
•
x olduğundan, x ∈ limξ

•
x elde edilir.

Tanım 3.4 (X, ξ) bir yakınsama uzayıve x ∈ X olsun. Bu durumda; x noktasının

ξ yakınsaklık yapısına göre yöresel süzgeci Vξ(x) ile gösterilir ve

Vξ(x) :=
∧

x∈limξF

F (3.4)

biçiminde tanımlanır (Dolecki 2009).
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Örnek 3.8 a) R üzerinde, Örnek 3.2 de verilen standart yakınsaklık yapısıv ele

alınırsa,

Vv(x) =

{]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
olup her x ∈ R için x ∈ limv Vv(x) dir.

b) R üzerinde, Örnek 3.3 de tanımlanan Seqv bağıntısıele alınsın. Bu durumda; her

x ∈ R için,

VSeqv(x) =
⋂
E∈E(R)

Vv (x)6E

E

dir (Mynard 2016) .

İspat. (a) da verilen eşitlik kolaylıkla gösterilebilir. (b) de verilen eşitliği gösterelim.

VSeqv(x) 6
⋂
E∈E(R)

Vv (x)6E

E olduğunu göstermek için, A := {E ∈ E (R) | Vv(x) 6 E} olmak

üzere; A ⊂ {F ∈ F(R) | x ∈ limSeqvF} olduğunu göstermek yeterlidir. E ∈ A ise,

Vv(x) 6 E dir. Ayrıca, her x ∈ R için x ∈ limvVv(x) olduğundan, x ∈ limvE

olacaktır. O halde, E ∈ {F ∈ F(R) | x ∈ limSeqvF} dir. Diğer yandan, A ∈
⋂
E∈E(R)

Vv (x)6E

E

olsun. Bu durumda; Vv(x) 6 E olacak biçimdeki her E ∈ E (R) için A ∈ E dir.

x ∈ limSeqvF olacak biçimde herhangi bir F ∈ F(R) alınırsa,

∃E ∈ E (R) 3 E 6 F ve x ∈ limvE

olup E 6 F olduğundan A ∈ F elde edilir. O halde,
⋂
E∈E(R)

Vv (x)6E

E 6 VSeqv(x) dir.

(X, ξ) bir yakınsama uzayıve x ∈ X olmak üzere; (3.5) ile ifade edilen Vξ(x) süzgeci,

ξ yakınsaklık yapısına göre x noktasına yakınsamak zorunda değildir.

Örnek 3.9 R üzerinde Seqv yakınsaklık yapısı ele alınırsa, her x ∈ R için x /∈

limSeqv VSeqv(x) dir (Mynard 2016).

İspat. Her x ∈ R için x /∈ limSeqv VSeqv(x) olduğunu göstermek için

VSeqv(x) = Vv(x)
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eşitliğine ihtiyacımız vardır. Örnek 3.7 den, v � Seqv olup

lim−1
Seqv(x) = {F ∈ F (R) | x ∈ limSeqvF} ⊂ {F ∈ F (R) | x ∈ limvF} = lim−1

v (x)

olduğundan,

Vv(x) =
∧

F∈lim−1v (x)

F ⊂
∧

F∈lim−1Seqv (x)

F = VSeqv(x)

elde edilir. Diğer yandan,
⋂
E∈E(R)

Vv (x)6E

E 6 Vv(x) olduğu gösterilirse, Örnek 3.8 b) gereğince

VSeqv(x) 6 Vv(x) olacaktır. U ∈
⋂
E∈E(R)

Vv (x)6E

E olsun ve U /∈ Vv(x) olduğunu kabul edelim.

Bu durumda;

∀n ∈ Z+ :

]
x− 1

n
, x+

1

n

[
6⊂ U

olacaktır. Böylece,

∀n ∈ Z+ : ∃yn ∈
]
x− 1

n
, x+

1

n

[
∩ (X − U)

seçilebilir. An = {yk | k > n ∈ Z+} olmak üzere; Ey := {An | n ∈ Z+}↑ biçiminde

tanımlanırsa, her n ∈ Z+ için An∩U = ∅ olup U /∈ Ey dir. Diğer yandan, x ∈ limv Ey
yani Vv(x) 6 Ey olur. Ancak, Vv(x) 6 E olacak biçimdeki her E ∈ E (R) için U ∈ E

olduğundan, bu bir çeli̧skidir. Böylece eşitliğin ispatıtamamlanır. Şimdi, bir x ∈ R

için x ∈ limSeqv Vv(x) olduğunu kabul edelim. Örnek 3.3 de verilen Seqv bağıntısının

tanımından, Vv(x) süzgeci en azından bir sayılabilir küme içermelidir. Böylece çeli̧ski

elde edilir.

Örnek 3.10 (X, d) bir metrik uzay, F ∈ F(X), x ∈ X olsun ve Nd(x) ile, x nok-

tasının d metriğine göre komşuluklar süzgeci gösterilsin. Bu durumda;

x ∈ lim
d̃
F⇐⇒ Nd(x) 6 F (3.5)

biçiminde tanımlanan d̃ bağıntısı, X kümesi üzerinde sonlu derinlikli bir yakınsaklık

yapısıdır. Ayrıca, Vd̃(x) = Nd(x) dir (Mynard 2016).

İspat. F,G ∈ F (X) , F 6 G ve x ∈ lim
d̃
F olsun. Bu durumda; (3.6) dan, Nd(x) 6

F 6 G olup x ∈ lim
d̃
G dir. Ayrıca, her x ∈ X için, Nd(x) 6 •

x olup (3.6) dan,
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x ∈ lim
d̃

•
x elde edilir. O halde, d̃ bağıntısıX üzerinde bir yakınsaklık yapısıdır. F,

G ∈ F (X) ve x ∈ lim
d̃
F∩lim

d̃
G ise, Nd(x) 6 F veNd(x) 6 G olupNd(x) 6 F∩G dir.

Dolayısıyla, x ∈ lim
d̃

(F ∩ G) olup d̃ sonlu derinliklidir. Son olarak, Vd̃(x) = Nd(x)

eşitliğini gösterelim. x ∈ X olmak üzere; (3.6) dan, X üzerinde tanımlı bir F

süzgecinin d̃ bağıntısına göre x noktasına yakınsak olmasıiçin gerek ve yeter koşul,

Nd(x) süzgecinden ince olmasıdır. Bu durumda; (3.5) den, x noktasına yakınsayan

bütün süzgeçlerin infimumu Vd̃(x) = Nd(x) olacağıaçıktır.

Tanım 3.5 (X, ξ) bir yakınsama uzayı olsun. Eğer; X kümesi üzerinde ξ = d̃

olacak biçimde bir d metriği mevcut ise ξ yakınsaklık yapısına metrikleşebilirdir

denir (Mynard 2016).

Örnek 3.11 i) R üzerinde Örnek 3.2 de verilen standart yakınsaklık yapısıv ele

alınsın ve d ile R üzerinde tanımlıstandart metrik gösterilsin. Bu durumda; d̃ = v

olup v yakınsaklık yapısımetrikleşebilirdir.

ii) Bir X kümesi üzerinde Örnek 3.4 de verilen diskre yakınsaklık yapısıı ele alınsın

ve d ile, X üzerinde tanımlıdiskre metrik gösterilsin. Bu durumda; ı = d̃ olup ı

yakınsaklık yapısımetrikleşebilirdir (Mynard 2016).

İspat. i) d metriğine göre herhangi bir x reel sayısının komşuluklar ailesi,

Nd(x) := {V ⊂ R | ∃ε > 0 : Bd (x, ε) ⊂ V }

dir. d̃ = v eşitliğini gösterelim: F ∈ F(R) ve x ∈ limv F ise,{]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
6 F (3.6)

dir. Ayrıca, U ∈ Nd(x) ise

∃δ > 0 : Bd(x, δ) ⊂ U

olup 1
n0
< δ olacak biçimde en azından bir n0 ∈ Z+ vardır. Bu durumda;

Bd

(
x,

1

n0

)
=

]
x− 1

n0

, x+
1

n0

[
⊂ Bd(x, δ) ⊂ U
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ve (3.7) den, U ∈ F elde edilir. Dolayısıyla, Nd(x) 6 F olup x ∈ limd̃ F dir. O halde,

d̃ � v dir. Diğer yandan,{]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
6 Nd(x)

olduğundan v � d̃ dır.

ii) d ile, X üzerinde tanımlıdiskre metrik gösterildiğine göre, x ∈ R ve r > 0 için,

Bd(x, r) :=

 {x} , 0l r 6 1 ise

R , r > 1 ise

olup Nd(x) =
•
x dır. F ∈ F(X) ve x ∈ limı F ise, Örnek 3.4 den, F =

•
x olup (3.6)

dan, x ∈ limd̃ F elde edilir. Diğer yandan, F ∈ F(X) için x ∈ limd̃ F yani Nd(x) 6 F
ise, F =

•
x olup x ∈ limı F dir.

Örnek 3.12 RR üzerinde tanımlı τ p noktasal yakınsaklık topolojisine göre bir f

fonksiyonunun komşuluklar ailesi,

Nτp(f) :=

{
V | ∃F ⊂ R<ω,∃r > 0 için max

x∈F
|f(x)− g(x)| < r ⇒ g ∈ V

}
dir. Bu durumda; RR üzerinde,

p :=
{

(f,F) ∈ RR × F(RR) | Nτp(f) 6 F
}

biçiminde tanımlıp bağıntısıbir yakınsaklık yapısıolup bu yapıya noktasal yakın-

saklık yapısıadıverilir. p sonlu derinliklidir ve metrikleşemeyen bir yakınsaklık

yapısıdır (Mynard 2016).

İspat. F, G ∈ F(RR), F 6 G ve f ∈ limpF olsun. Bu durumda; p bağıntısının

tanımından, Nτp(f) 6 F 6 G olup f ∈ limpG dir. Ayrıca, her f ∈ RR için,
•
f ∈

F(RR) ve Nτp(f) 6
•
f olduğundan f ∈ limp

•
fdır. O halde, p bağıntısıRR üzerinde

bir yakınsaklık yapısıdır. F, G ∈ F(RR) ve f ∈ limpF ∩ limpG ise, Nτp(f) 6 F ve
Nτp(f) 6 G olup Nτp(f) 6 F ∩ G dir. Dolayısıyla, f ∈ limp (F ∩ G) olup p sonlu

derinliklidir.
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3.2 Yakınsama Uzaylarıve Temel Özellikleri

Bir X kümesi üzerinde tanımlıyakınsaklık yapılarının ailesi, (3.3) ile verilen “�”

kısmi sıralama bağıntısına göre bir latistir. C ile, X üzerinde tanımlıyakınsaklık

yapılarının ailesi gösterilmek üzere; ξ, σ ∈ C için,

ξ ∨ σ : = {(F, x) ∈ F(X)×X | x ∈ limξF ve x ∈ limσF}

ξ ∧ σ : = {(F, x) ∈ F(X)×X | x ∈ limξF veya x ∈ limσF}

dir. D ⊂ C olmak üzere;

∨
D :=

∨
ξ∈D

ξ = {(F, x) ∈ F(X)×X | ∀ξ ∈ D : x ∈ limξF} (3.7)

ve ∧
D :=

∧
ξ∈D

ξ = {(F, x) ∈ F(X)×X | ∃ξ ∈ D : x ∈ limξF} (3.8)

dir. Ayrıca,

lim∨
D
F =

⋂
ξ∈D

limξF ve lim∧
DF =

⋃
ξ∈D

limξF (3.9)

eşitlikleri gerçeklenir (Mynard 2016).

Teorem 3.1 Bir X kümesi üzerinde tanımlıyakınsaklık yapılarının ailesi, “�”

kısmi sıralama bağıntısına göre tam latistir. Özel olarak, X kümesi üzerinde tanımlı

sonlu derinlikli yakınsaklık yapılarının ailesi latis olup herhangi bir alt ailesinin

supremumunu içerir (Mynard 2016).

İspat. C, X üzerinde tanımlı yakınsaklık yapılarının ailesi olsun. Herhangi bir

D ⊂ C için (3.8) ve (3.9) da tanımlanan
∨
D ve

∧
D bağıntılarının X üzerinde

yakınsaklık yapısıolduğu açıktır. A ile, C ailesinin sonlu derinlikli ögelerinin her-

hangi bir alt ailesi gösterilsin. Bu durumda;
∨
A :=

∨
σ∈A

σ sonlu derinlikli bir

yakınsaklık yapısıdır. Gerçekten, F,G ∈ F(X) ve x ∈ lim∨
A F ∩ lim∨

A G ise (3.10)

ile verilen ilk eşitlikten, her σ ∈ A için x ∈ limσ F ∩ limσ G olup A ailesinin ögeleri

sonlu derinlikli olduğundan, x ∈ limσ F∩G dir. Dolayısıyla, x ∈ lim∨
A F∩G dir.
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Tanım 3.6 (X, ξ), (Y, σ) iki yakınsama uzayıve f : X −→ Y bir fonksiyon ol-

sun. Bu durumda; her F ∈ F(X) için f(limξ F) ⊂ limσ f [F] oluyor ise f fonksi-

yonuna yakınsama dönüşümü adıverilir (Dolecki 2009).

Tanım 3.6 dan,

f yakınsama dönüşümü⇐⇒ [(F, x) ∈ ξ ⇒ (f [F], f(x)) ∈ σ]

önermesinin gerçeklendiği açıktır. İki yakınsama dönüşümünün bileşkesinin de bir

yakınsama dönüşümü olduğu kolaylıkla gösterilebilir. (X, ξ) uzayından (Y, σ) uza-

yına tanımlıtüm yakınsama dönüşümlerinin kümesi C(ξ, σ) ile gösterilecektir.

Önerme 3.2 (X, ξ) ve (X, σ) iki yakınsama uzayı olsun. Bu durumda; σ � ξ

olmasıiçin gerek ve yeter koşul,

idX : (X, ξ) −→ (X, σ)

x −→ id(x) := x

birim fonkiyonunun yakınsama dönüşümü olmasıdır (Dolecki 2009).

Örnek 3.13 R üzerinde, Örnek 3.2 ve Örnek 3.3 de verilen v ve Seqv yakınsaklık

yapılarıele alınsın. Bu durumda; Örnek 3.7 de açıklandı̆gıüzere; v � Seqv olup

Önerme 3.3 den, id : (R, Seqv) −→ (R, v) fonksiyonu bir yakınsama dönüşümüdür

(Dolecki 2009).

Örnek 3.14 (X, τ) ve (Y, τ
′
) iki topolojik uzay, f : (X, τ) −→ (Y, τ

′
) sürekli bir

fonksiyon olsun. Bu durumda;

ξτ :=
{

(F, x) ∈ F(X)×X | F τ−→ x
}

ve

ξτ ′ :=

{
(G, y) ∈ F(Y )× Y | G τ

′

−→ y

}
sırasıyla X ve Y üzerinde sonlu derinlikli iki yakınsaklık yapısıdır, ve f ∈ C (ξτ , ξτ ′ )

dir (Mynard 2016).
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Önerme 3.3 (X, ξ) ve (Y, τ) iki yakınsama uzayı olsun ve D ile, bir Z kümesi

üzerinde tanımlıyakınsaklık yapılarının bir ailesi gösterilsin. Bu durumda;

C(ξ,
∨
σ∈D

σ) =
⋂
σ∈D

C(ξ, σ) ve C(
∧
σ∈D

σ, τ) =
⋂
σ∈D

C(σ, τ) (3.10)

eşitlikleri gerçeklenir. Ayrıca,

⋃
σ∈D

C(ξ, σ) ⊂ C(ξ,
∧
σ∈D

σ) ve
⋃
σ∈D

C(σ, τ) ⊂ (
∨
σ∈D

σ, τ) (3.11)

dir (Mynard 2016).

İspat. f ∈ C
(
ξ,
∨
σ∈D

σ

)
olsun. Bu durumda; sırasıyla Tanım 3.6 ve (3.10) ile verilen

ilk eşitlik kullanılırsa, F ∈ F(X) için

f(limξF) ⊂ lim∨
σ∈D

σ
f [F] =

⋂
σ∈D

limσf [F] ⊂ limσf [F]; ∀σ ∈ D

elde edilir. Dolayısıyla, her σ ∈ D için f ∈ C (ξ, σ) dır. Tersine, her σ ∈ D için

f ∈ C (ξ, σ) ise, F ∈ F(X) için f(limξ F) ⊂ limσ f [F] olacaktır. Böylece,

f(limξF) ⊂
⋂
σ∈D

limσf [F]

olup (3.10) ile verilen ilk eşitlikten, f ∈ C
(
ξ,
∨
σ∈D

σ

)
elde edilir. (3.11) ile verilen

ikinci eşitlik benzer şekilde gösterilebilir. Diğer yandan; f ∈
⋃
σ∈D

C(ξ, σ) ise, en

azından bir σ ∈ D için f ∈ C(ξ, σ) dır. Bu durumda;

∀F ∈ F(X) : f(limξF) ⊂ limσf [F]

olur. Ayrıca, limσ f [F] ⊂
⋃
σ∈D

limσ f [F] olduğundan, (3.10) ile verilen ikinci eşitlikten,

f ∈ C(ξ,
∧
σ∈D

σ) dir. (3.12) ile verilen ikinci kapsama benzer şekilde gösterilebilir.

Önerme 3.4 X bir küme, (Y, β) bir yakınsama uzayıve f : X −→ (Y, β) bir fonk-

siyon olsun. Bu durumda; β yakınsaklık yapısına kaŗsılık, X kümesi üzerinde, f

fonksiyonunu yakınsama dönüşümü kılan yakınsaklık yapılarının en kabasımevcut-

tur (Dolecki 2009).
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İspat. I(X) ile, X kümesi üzerinde tanımlıyakınsaklık yapılarının ailesi gösterilsin

ve

SI := {σ ∈ I(X) | f ∈ C(σ, β)}

biçiminde tanımlansın. Bu durumda; ı ∈ SI olduğundan SI 6= ∅ dir. Diğer yandan,

Teorem 3.1 den
∧
σ∈SI

σ ∈ I(X) olup (3.11) ile verilen ikinci eşitlikten,

f :

(
X,
∧
σ∈SI

σ

)
−→ (Y, β)

biçiminde tanımlıf fonksiyonu yakınsama dönüşümüdür. Dolayısıyla,
∧
σ∈SI

σ ∈ SI

dır.

Tanım 3.7 X bir küme, (Y, σ) bir yakınsama uzayıve f : X −→ (Y, σ) bir fonk-

siyon olsun. Bu durumda; f fonksiyonunu yakınsama dönüşümü kılacak biçimde X

kümesi üzerinde tanımlıyakınsaklık yapılarının en kabasına, (f, σ) ikilisine kaŗsılık

gelen başlangıç yakınsaklık yapısıadıverilir ve f−σ ile gösterilir (Dolecki 2009).

Tanımın anlamlıolduğu aşağıdaki önermeden açıktır.

Önerme 3.5 X bir küme, (Y, σ) bir yakınsama uzayı ve f : X −→ (Y, σ) bir

fonksiyon olsun. Bu durumda;

f−σ = {(F, x) ∈ F(X)×X | (f [F], f(x)) ∈ σ} , (3.12)

her F ∈ F(X) için

limf−σ
F = f−1(limσf [F]) (3.13)

ve f−σ , f için başlangıç yakınsaklık yapısıdır (Dolecki 2009).

İspat. η := {(F, x) ∈ F(X)×X | (f [F], f(x)) ∈ σ} olarak alınsın. η bir yakınsaklık

yapısıdır. Gerçekten, F 6 G ise, f [F] 6 f [G] dir. Dolayısıyla, (F, x) ∈ η ise, σ,

Y kümesi üzerinde bir yakınsaklık yapısıolduğundan (G, x) ∈ η olacaktır. Diğer

yandan, σ, Y kümesi üzerinde bir yakınsaklık yapısıolduğundan her x ∈ X için,

({f(x)}• , f(x)) ∈ σ dir. Ayrıca, {f(x)}• = f [
•
x] olduğundan (

•
x, x) ∈ η olur. (3.13)
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eşitliğini gösterelim. F ∈ F(X) ve x ∈ X olmak üzere; (F, x) ∈ η ise, (f [F], f(x)) ∈ σ

dir. Bu durumda; f ∈ C(η, σ) olup Tanım 3.7 de,

f−σ := inf {ξ ⊆ F(X)×X | f ∈ C(ξ, σ)}

biçiminde tanımlandı̆gından, f−σ � η dir. Diğer yandan, F ∈ F(X) için x ∈ limf−σ
F

ise, f fonksiyonunu yakınsama dönüşümü kılacak biçimde, X üzerinde tanımlıen

azından bir ξ yakınsaklık yapısı için x ∈ limξF dir. Bu durumda; (f [F], f(x)) ∈

σ olup (F, x) ∈ η yani, x ∈ limη F olur. Dolayısıyla η � f−σ dır. Şimdi (3.14)

eşitliğini gösterelim. Tanım 3.7 den, f ∈ C(f−σ , σ) olduğundan, her F ∈ F(X)

için f(limf−σ
F) ⊂ limσf [F] elde edilir. Diğer yandan, x ∈ f−1(limσ f [F]) ise, f(x) ∈

limσf [F] olup (3.13) eşitliğinden, x ∈ limf−σ
F elde edilir. Son olarak, f−σ bağıntısının

başlangıç yapısıolduğunu gösterelim. (Z, τ) bir yakınsama uzayıve g ∈ C(τ , f−σ )

olsun. Bu durumda;

∀F ∈ F(Z) için g(limτF) ⊂ limf−σ
g[F]

dir. f ∈ C(f−σ , σ) ve g[F] ∈ F(X) olduğundan,

f(limf−σ
g[F]) ⊂ limσf [g[F]]

olup

(f ◦ g)(limτF) ⊆ f(limf−σ
g[F]) ⊆ limσ(f ◦ g)[F]

elde edilir. Dolayısıyla, f ◦ g ∈ C(τ , σ) dir. Tersine, f ◦ g ∈ C(τ , σ) ve x ∈ g(limτF)

olsun. Bu durumda; x = g(z) olacak biçimde en azından bir z ∈ limτF vardır.

Hipotezden, (f ◦ g)(limτF) ⊂ limσ(f ◦ g)[F] olduğundan,

(f ◦ g)(z) ∈ limσ(f ◦ g)[F] = limσf [g[F]]

olup f (x) ∈ limσf [g[F]] dir. Bu durumda; (3.14) den, x ∈ limf−σ
g[F] elde edilir.

Dolayısıyla g ∈ C(τ , f−σ ) dir. Tanım 2.15 gereğince f−σ başlangıç yapısıdır.

Önerme 3.6 X ve Y iki küme, σ, Y kümesi üzerinde sonlu derinlikli bir yakınsaklık

yapısı, f : X −→ (Y, σ) bir fonksiyon olsun. Bu
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durumda; f−σ sonlu derinlikli bir yakınsaklık yapısıdır (Mynard 2016).

İspat. F, G ∈ F(X) ve x ∈ limf−σ
F∩limf−σ

G olsun. Bu durumda; (3.14) eşitliğinden,

f(x) ∈ limσf [F]∩limσf [G] dir. σ, Y kümesi üzerinde sonlu derinlikli bir yakınsaklık

yapısıolduğundan, f(x) ∈ limσ (f [F] ∩ f [G]) olacaktır. Diğer yandan,

f [F] ∩ f [G] 6 f [F ∩ G]

olduğundan f(x) ∈ limσf [F ∩ G] olup (3.14) den, x ∈ limf−σ
(F ∩ G) elde edilir.

Önerme 3.7 X ve Y iki küme olsun, σ ve ξ ile, Y kümesi üzerinde tanımlı iki

yakınsaklık yapısıgösterilsin. Bu durumda; ξ � σ ise, f−ξ � f−σ dır (Mynard 2016).

İspat. F ∈ F(X) olmak üzere; x ∈ limf−σ
F ise, (3.14) eşitliğinden, x ∈ f−1(limσf [F])

dir. ξ � σ olduğundan,

f−1(limσf [F]) ⊆ f−1(limξf [F]) = limf−ξ
F

olup x ∈ limf−ξ
F elde edilir.

Önerme 3.8 (X, ξ), (Y, σ) iki yakınsama uzayıve f : X −→ Y bir fonksiyon olsun.

Bu durumda;

f ∈ C(ξ, σ)⇐⇒ f−σ � ξ

dir (Mynard 2016).

Tanım 3.8 X bir küme, I 6= ∅ bir indis kümesi, {(Yi, ηi)}i∈I sonlu derinlikli yakın-

sama uzaylarının bir ailesi olsun ve {fi | X −→ (Yi, ηi)}i∈I fonksiyon ailesi verilsin.

Bu durumda; {fi}i∈I ailesinin her bir ögesini yakınsama dönüşümü kılacak biçimde,

X kümesi üzerinde tanımlıen kaba yakınsaklık yapısımevcut olup bu yapıya {fi}i∈I
ailesine kaŗsılık gelen başlangıç yakınsaklık yapısıadıverilir. Bu yapıS−η ile

gösterilir ve

S−η :=
∨
i∈I

(fi)
−
ηi

biçiminde tanımlanır (Mynard 2016).

Tanımın anlamlıolduğu aşağıdaki önermede görülecektir.

30



Önerme 3.9 X bir küme, I 6= ∅ bir indis kümesi, {(Yi, ηi)}i∈I sonlu derinlikli

yakınsama uzaylarının bir ailesi olsun ve {fi | X −→ (Yi, ηi)}i∈I fonksiyon ailesi

verilsin. Bu durumda; S−η =
∨
i∈I

(fi)
−
ηi
bağıntısı, {fi | X −→ (Yi, ηi)}i∈I ailesi için

başlangıç yakınsaklık yapısıdır. Ayrıca, herhangi bir F ∈ F (X) için,

x ∈ limS−η
F⇐⇒ ∀i ∈ I : fi(x) ∈ limηifi[F] (3.14)

dir. Her i ∈ I için ηi bağıntıları sonlu derinlikli olduğunda S
−
η bağıntısı sonlu

derinliklidir (Dolecki 2009).

İspat. Tanım 3.7, (3.8) ve (3.13) eşitlikleri kullanılarak, (3.15) ile verilen denklik

kolaylıkla gösterilebilir. (Z, τ) bir yakınsama uzayı ve g ∈ C
(
τ , S−η

)
olsun. Bu

durumda; Tanım 3.6 dan, her F ∈ F (Z) için

g (limτF) ⊂ limS−η
g[F] (3.15)

dir. g[F] ∈ F(X) ve her i ∈ I için fi ∈ C
(

(fi)
−
ηi
, ηi

)
olduğundan,

fi (g (limτF)) ⊂ limηifi[g[F]]

dir. Böylece,

(fi ◦ g) (limτF) ⊂ limηi (fi ◦ g) [F]

olup her i ∈ I için fi ◦ g ∈ C(τ , ηi) elde edilir. Diğer yandan, (Z, τ) bir yakınsama

uzayıve her i ∈ I için fi ◦ g ∈ C(τ , ηi) olsun. Bu durumda; F ∈ F (Z) olmak üzere,

x ∈ g(limτF) ise, x = g(z) olacak biçimde en azından bir z ∈ limτF vardır. Her

i ∈ I için (fi ◦ g)(limτF) ⊂ limηi(fi ◦ g)[F] olduğundan,

(fi ◦ g)(z) ∈ limηi(fi ◦ g)[F]

dir. (3.15) kullanılırsa, g ∈ C
(
τ , S−η

)
olduğu elde edilir. Dolayısıyla, S−η bağıntısı,

{fi}i∈I ailesine kaŗsılık gelen başlangıç yakınsaklık yapısıdır. Her i ∈ I için ηi bağın-

tılarısonlu derinlikli olduğunda, (3.15) ile verilen S−η bağıntısının sonlu derinlikli bir

yakınsaklık yapısıolduğu, Teorem 3.1 ve Önerme 3.6 dan açıktır.
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Tanım 3.9 {(Xi, ξi)}i∈I yakınsama uzaylarının bir ailesi ve X :=
∏
i∈I
Xi olsun. Bu

durumda; X kümesi üzerinde, her i ∈ I için

pi : X −→ Xi

z −→ pi (z) := zi

biçiminde tanımlıkoordinat fonksiyonlarınıyakınsama dönüşümü kılacak biçimde

tanımlıen kaba yakınsaklık yapısına çarpım yakınsaklık yapısıdenir,
∏
i∈I
ξi ile

gösterilir ve Tanım 3.8 gereğince

∏
i∈I
ξi :=

∨
i∈I

(pi)
−
ξi

biçiminde tanımlanır. F ∈ F(X) olmak üzere, (3.15) den

z ∈ lim∏
i∈I

ξi
F⇐⇒ ∀i ∈ I : pi(z) ∈ limξipi[F]

önermesi gerçeklenir (Dolecki 2009).

(X, ξ), (Y, σ) iki yakınsama uzayıise, X ×Y kümesi üzerinde tanımlıçarpım yakın-

saklık yapısıξ × σ ile gösterilir ve

ξ × σ := (p1)−ξ ∨ (p2)−σ

biçiminde tanımlanır. H ∈ F(X × Y ) olmak üzere;

(x, y) ∈ limξ×σH ⇐⇒ x ∈ limξp1[H] ve y ∈ limσp2[H] (3.16)

dir.

Önerme 3.10 RR üzerinde, noktasal yakınsaklık yapısıp ele alınsın. Her x ∈ R

için, Rx := R ve vx := v olmak üzere;
∏
x∈R

Rx kümesi üzerinde tanımlıçarpım yakın-

saklık yapısı, RR üzerinde tanımlınoktasal yakınsaklık yapısı ile çakı̧sır (Mynard

2016).

İspat.

id ∈ C
(
p,
∏
x∈R

vx

)
ve id ∈ C

(∏
x∈R

vx, p

)
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olduğu gösterilirse, Önerme 3.2 gereğince ispat tamamlanır. F ∈ F(RR) ve f ∈ limp F

olsun.
ex : RR −→ Rx

f −→ ex(f) := f(x)

biçiminde tanımlıolmak üzere; Tanım 3.9 gereğince,
∏
x∈R

vx bağıntısı, {ex}x∈R fonksi-

yon ailesine kaŗsılık gelen çarpım yakınsaklık yapısıolup
∏
x∈R

vx =
∨
x∈R

(ex)
−
vx
dir. Bu

durumda; f ∈ lim∨
x∈R

(ex)−vx

F olduğunu göstermek için, (3.15) gereğince,

∀x ∈ R : ex(f) = f(x) ∈ limvxex[F]

olduğunu göstermek yeterli olacaktır. f ∈ limp F olduğundan, Nτp(f) 6 F olup

∀K ∈ Nτp(f) : ∃F ∈ F 3 F ⊂ K (3.17)

dir. Örnek 3.12 den faydalanılırsa, S := {x} ∈ R<ω ve n ∈ Z+ olmak üzere;

r := 1
n
> 0 seçimi için,

Kx,n =

{
g ∈ RR | |f(x)− g(x)| < 1

n

}
∈ Nτp(f)

olacaktır. (3.18) den, Kx,n ∈ F olduğundan,

∀x ∈ R,∀n ∈ Z+ : ∃Kx,n ∈ F 3 ex (Kx,n) ⊂
]
f(x)− 1

n
, f(x) +

1

n

[
olup

{]
f(x)− 1

n
, f(x) + 1

n

[
| n ∈ Z+

}↑ 6 ex[F] olacaktır. Dolayısıyla, her x ∈ R

için f (x) ∈ limvxex[F] olup istenilen elde edilir. Diğer yandan, F ∈ F(RR) ve

f ∈ lim∏
x∈R

vx
F ise,

∏
x∈R

vx =
∨
x∈R

(ex)
−
vx
eşitliği ve (3.15) den,

∀x ∈ R : ex(f) = f(x) ∈ limvxex[F]

dir. Böylece, {]
f(x)− 1

n
, f(x) +

1

n

[
| n ∈ Z+

}↑
6 ex[F]

olup

∀x ∈ R,∀n ∈ Z+ : ∃Fx,n ∈ F 3 ex(Fx,n) ⊂
]
f(x)− 1

n
, f(x) +

1

n

[
(3.18)
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dir. f ∈ limp F olduğunu göstermek için, Nτp(f) 6 F olduğunu göstermemiz gerekir.
K ∈ Nτp(f) olsun. Bu durumda;

∃S ∈ R<ω,∃r > 0 3 max
x∈S
|f(x)− g(x)| < r ⇒ g ∈ K (3.19)

önermesi gerçeklenir. k ∈ Z+ olmak üzere; S := {x1, ...., xk} ve bir n0 ∈ Z+ için

S kümesinin her bir ögesine, (3.19) kullanılarak bir Fxi,n0 ∈ F kaŗsılık getirilebilir.

F :=

k⋂
i=1

Fxi,n0 ∈ F olarak alınırsa, F ⊂ K olup Nτp(f) 6 F elde edilir. Gerçekten,

h ∈ F ise,

(∀i)(1 6 i 6 k) : h ∈ Fxi,n0

ve

(∀i)(1 6 i 6 k) : exi(h) = h(xi) ∈ exi(Fi) ⊂
]
f(xi)−

1

n0

, f(xi) +
1

n0

[
olur. Dolayısıyla, her i ∈ {1, ...., k} için |h(xi)− f(xi))| < 1

n0
olup

max
16i6k

|h(xi)− f(xi))| <
1

n0

dır. Bu durumda; (3.20) den, h ∈ K elde edilir.

Önerme 3.11 Her x ∈ R için Rx := R, vx := v ve

ex : RR −→ Rx
f −→ ex(f) := f(x)

biçiminde tanımlıolmak üzere; RR üzerinde tanımlınoktasal yakınsaklık yapısıp,

{ex}x∈R fonksiyon ailesinin ögelerini yakınsama dönüşümü kılan en kaba yakınsaklık

yapısıdır. Yani;

p =
∨
x∈R

(ex)
−
vx

dir (Mynard 2016).

İspat. Tanım 3.9 ve Önerme 3.10 dan açıktır.

R üzerinde, Örnek 3.2 de verilen standart yakınsaklık yapısıv ele alındı̆gında, (R, v)

metrikleşebilir bir yakınsama uzayıolmasına rağmen,
∏
x∈R

Rx üzerinde, Örnek 3.12
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de verilen noktasal yakınsaklık yapısıp ele alındı̆gında,

(∏
x∈R

Rx, p

)
metrikleşebilir

değildir. RR üzerinde tanımlınoktasal yakınsaklık yapısı;
∏
x∈R

Rx üzerinde tanımlı

çarpım yakınsaklık yapısı ile çakı̧stı̆gından, metrikleşebilen yakınsama uzaylarının

çarpımımetrikleşebilir olmak zorunda değildir.

Örnek 3.15 v, R üzerinde tanımlıstandart yakınsaklık yapısı, Vv(x), x noktasının

v bağıntısına göre yöresel süzgeci olsun ve

e : R× RR −→ R

(x, f) −→ e(x, f) := f(x)

fonksiyonunu ele alalım. Bu durumda; her F ∈ F(RR) ve her x ∈ R için,

e[Vv(x)× F] :=

{⋃
g∈F

g (Vx) | Vx ∈ Vv(x), F ∈ F
}↑

(3.20)

ailesi R üzerinde bir süzgeçtir. RR üzerinde,

s :=
{

(F, f) ∈ F(RR)× RR | ∀x ∈ R : f(x) ∈ limve[Vv(x)× F]
}

(3.21)

biçiminde tanımlanan s bağıntısı, bir önyakınsaklık yapısıdır (Mynard 2016).

İspat. e[Vv(x)× F] ailesinin süzgeç olduğunu göstermek için

S :=

{⋃
g∈F

g (Vx) | Vx ∈ Vv(x), F ∈ F
}

ailesinin süzgeç tabanıolduğunu göstermek yeterli olacaktır. ∅ /∈ S olduğu açıktır.

Diğer yandan, S1, S2 ∈ S ise,

∃V (1)
x , V (2)

x ∈ Vv(x), ∃F1, F2 ∈ F 3 S1 =
⋃
g∈F1

g
(
V (1)
x

)
ve S2 =

⋃
g∈F2

g
(
V (2)
x

)
dir. O halde, S3 =

⋃
g∈F1∩F2

g
(
V

(1)
x ∩ V (2)

x

)
∈ S ve böylece S3 ⊂ S1 ∩ S2 dir. Şimdi, s

bağıntısının bir önyakınsaklık yapısıolduğunu gösterelim: F, G ∈ F(RR), F 6 G ve
f ∈ limsF olsun. Bu durumda; (3.22) den, her x ∈ R için f(x) ∈ limve[Vv(x)× F]

olur. Diğer yandan, U ∈ e[Vv(x)× F] ise,

∃Vx ∈ Vv(x),∃F ∈ F :
⋃
f∈F

f(Vx) ⊂ U
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dir. Ayrıca, F 6 G olduğundan,
⋃
f∈F

f(Vx) ∈ e[Vv(x) × G] olup U ∈ e[Vv(x) × G]

dir. O halde, v bağıntısıR üzerinde bir yakınsaklık yapısı olduğundan, f(x) ∈

limve[Vv(x)× G] olup f ∈ limsG elde edilir.

Örnek 3.15 in bir özel hali, aşağıdaki örnek ile ifade edilir.

Örnek 3.16 v ve Vv(x), Örnek 3.15 de verildiği gibi alınsın ve

e : R× C (v , v) −→ R

(x, f) −→ e(x, f) := f(x)

fonksiyonunu ele alalım. Her F ∈ F(C (v , v)) için,

e[Vv(x)× F] :=

{⋃
g∈F

g (Vx) | Vx ∈ Vv(x), F ∈ F
}↑

ailesi R üzerinde bir süzgeçtir. C (v , v) üzerinde,

c := {(F, f) ∈ F(C (v , v))× C (v , v) | ∀x ∈ R : f(x) ∈ limve[Vv(x)× F]} (3.22)

biçiminde tanımlıc bağıntısı, bir yakınsaklık yapısıdır (Mynard 2016).

İspat. Her F ∈ F(C (v , v)) için, e[Vv(x)×F] ailesinin R üzerinde bir süzgeç olduğu

ve c bağıntısının bir önyakınsaklık yapısı olduğu Örnek 3.13 ün ispatına benzer

şekilde gösterilebilir. O halde,

∀f ∈ C (v , v) : f ∈ limc

•
f

önermesinin gerçeklendiğini göstermemiz yeterli olacaktır. Aşağıda verilen,

(i) ∀ f ∈ C (v , v) : f ∈ limc

•
f

(ii) ∀ x ∈ R, ∀ f ∈ RR : f(x) ∈ limv f [Vv(x)]

(iii) f ∈ C (v , v)

önermelerinin denk olduğu gösterilirse, ispat tamamlanır. (i) ⇒ (ii) önermesinin

gerçeklendiğini gösterelim. Her f ∈ C (v , v) için f ∈ limc

•
f ise, (3.23) den,

∀x ∈ R : f(x) ∈ limve[Vv(x)×
•
f ]

olacaktır. Bu durumda; e[Vv(x) ×
•
f ] 6 f [Vv(x)] olduğu gösterilirse, ispat tamam-

lanır. K ∈ e[Vv(x)×
•
f ] olsun. Bu durumda;

∃Vx ∈ Vv(x), ∃F ∈
•
f 3

⋃
g∈F

g(Vx) ⊂ K
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dir. f ∈ F olduğundan,

f(Vx) ⊂
⋃
g∈F

g(Vx) ⊂ K

olur. Böylece, Vx ∈ Vv(x) olduğundan, K ∈ f [Vv(x)] elde edilir. (ii) ⇒ (i) ön-

ermesini ispatlamak için her x ∈ R ve her f ∈ RR için f(x) ∈ limv f [Vv(x)] ol-

sun. Bu durumda; f [Vv(x)] 6 e[Vv(x) ×
•
f ] olduğu gösterilirse, ispat tamamlanır.

K ∈ f [Vv(x)] ise, f(Vx) ⊂ K olacak biçimde en azından bir Vx ∈ Vv(x) vardır.

F := {f} olarak alınırsa, F ∈
•
f ve

⋃
f∈F

f(Vx) = f(Vx) ⊂ K

olduğundan K ∈ e[Vv(x) ×
•
f ] elde edilir. Dolayısıyla, her x ∈ R için f(x) ∈

limv e[Vv(x) ×
•
f ] olup (3.23) den, f ∈ limc

•
f elde edilir. Şimdi, (ii) önermesinin

gerçeklendiğini ve f /∈ C (v , v) olduğunu kabul edelim. Bu durumda;

∃F ∈ F(R) : f(limvF) * limvf [F]

dir. Dolayısıyla,

∃x ∈ limvF : f(x) /∈ limvf [F]

olacaktır. (3.5) den, Vv(x) 6 F olup f [Vv(x)] 6 f [F] elde edilir. Böylece, f(x) /∈

limvf [Vv(x)] olur. Bu ise (ii) önermesi ile çeli̧sir. O halde kabulümüz yanlı̧stır.

(iii) ⇒ (ii) önermesinin gerçeklendiğini gösterelim. f ∈ C (v , v) ve x ∈ X ise,

x ∈ limvVv(x) olacağından f(x) ∈ limv f [Vv(x)] elde edilir.

Önerme 3.12 C (v , v) kümesi üzerinde tanımlısürekli yakınsaklık yapısıc,

e : R× C (v , v) −→ R

(x, f) −→ e(x, f) := f(x)

fonksiyonunu yakınsama dönüşümü kılan en kaba yakınsaklık yapısıdır (Mynard

2016).

İspat. S := {θi}i∈I ile, her i ∈ I için, e ∈ C (v × θi, v) koşulunu sağlayan, C (v , v)

üzerinde tanımlıyakınsaklık yapılarının ailesi gösterilsin.
∧
i∈I

(v × θi) = v ×
∧
i∈I
θi
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olduğundan ve (3.11) ile verilen ikinci eşitlikten, e ∈ C
(
v ×

∧
i∈I
θi, v

)
dir. O halde,

c =
∧
i∈I
θi olduğu gösterilirse, ispat tamamlanır.

(i) G ∈ F (C (v , v)) ve f ∈ lim∧
i∈I

θi
G olsun. Bu durumda; (3.9) dan, f ∈ limθi0

G

olacak biçimde en azından bir i0 ∈ I vardır. Her i ∈ I için e ∈ C (v × θi, v)

olduğundan, her x ∈ X için

e
(
limv×θi0 (Vv(x)× G)

)
⊂ limve[Vv(x)× G] (3.23)

dir. f ∈ limθi0
G ve x ∈ limvVv(x) olduğundan, (3.17) den,

(x, f) ∈ limv×θi0 (Vv(x)× G)

dir. (3.24) kullanılırsa,

e(x, f) = f(x) ∈ limve[Vv(x)× G]

elde edilir. Dolayısıyla, (3.23) den, f ∈ limc G olup c �
∧
i∈I
θi olduğu görülür.

(ii) e−v � v × c sıralaması ispatlanarak; Önerme 3.8 den, e ∈ C (v × c, v) yani,

c ∈ S olduğu görülürse,
∧
i∈I
θi � c elde edilir. e−v � v × c olduğunu gösterelim:

G ∈ F(R× C (v , v)) ve (x, f) ∈ limv×c G olsun. Bu durumda; (3.17) den,

x ∈ limvp1[G] ve f ∈ limcp2[G]

dir. Buradan, {]
x− 1

n
, x+

1

n

[
| n ∈ Z+

}↑
6 p1[G] (3.24)

ve

f(x) ∈ limve[Vv(x)× p2[G]] (3.25)

elde edilir. Diğer yandan, (3.25) den,

∀n ∈ Z+ : ∃A ∈ G 3 p1 (A) ⊂
]
x− 1

n
, x+

1

n

[
dır. K ∈ e[Vv(x)× p2[G]] ise,

∃n ∈ Z+ : ∃G ∈ G 3 e
(]
x− 1

n
, x+

1

n

[
× p2(G)

)
⊂ K
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olacaktır. Bu durumda;

e (p1 (A)× p2(G)) ⊂ e

(]
x− 1

n
, x+

1

n

[
× p2(G)

)
⊂ K

olur. S := G ∩ A biçiminde tanımlanırsa, S ∈ G ve e(S) ⊂ K olup K ∈ e[G] dir. O

halde,

e[Vv(x)× p2[G]] 6 e[G] (3.26)

olduğu açıktır. (3.26) kullanılırsa, e (x, f) ∈ limv e[G] olup (3.14) eşitliğinden,

(x, f) ∈ lime−v
G elde edilir.

3.3 Conv Kategorisi ve Temel Özellikleri

Nesneleri sonlu derinlikli yakınsama uzayları, morfizmleri sonlu derinlikli yakınsama

uzaylarıarasında tanımlıyakınsama dönüşümleri olan kategori Conv ile gösterile-

cektir. Bu bölümde; Conv kategorisinin bazıtemel özellikleri ve Top kategorisi ile

arasındaki ili̧skiler incelenecektir.

Teorem 3.2 Conv kategorisi bir topolojik kategoridir (Mynard 2016).

İspat. Conv kategorisi belirli kategoridir ve başlangıç yapılarına göre kapalıolduğu

Önerme 3.9 da gösterilmi̧stir. Ayrıca, X := {a} kümesi üzerinde tanımlanabilecek

tek yakınsaklık yapısıdüzensiz yakınsaklık yapısıolup bu yapısonlu derinliklidir. I

bir indis kümesi olmak üzere; herhangi birX kümesi üzerinde tanımlısonlu derinlikli

yakınsaklık yapılarının ailesi {ξi}i∈I , j ∈ I olmak üzere;

ξi � ξj ⇐⇒ idX : (X, ξj) −→ (X, ξi) yakınsama dönüşümü

biçiminde tanımlanan “�”bağıntısına göre kısmi sıralıdır. Dolayısıyla, Tanım 2.25

den, Conv kategorisinin topolojik bir kategori olduğu açıktır.

Önerme 3.13 (X, ξ) sonlu derinlikli bir yakınsama uzayıolsun. Bu durumda;

τ ξ := {O ⊂ X | ∀F ∈ F(X) : O ∩ limξF 6= ∅ ⇒ O ∈ F} (3.27)

biçiminde tanımlanan τ ξ ailesi X kümesi üzerinde bir topolojidir (Mynard 2016).

39



İspat. I 6= ∅ bir indis kümesi ve (Oi)i∈I ⊂ τ ξ olsun. F ∈ F(X) ve
(⋃
i∈I
Oi

)
∩limξF 6=

∅ ise,

∃x ∈ X 3 x ∈ limξF ve x ∈
⋃
i∈I
Oi

dir. Bu durumda; Oi0 ∩ limξF 6= ∅ olacak biçimde en azından bir i0 ∈ I vardır.

Oi0 ∈ τ ξ olduğundan (3.28) den, Oi0 ∈ F olup
⋃
i∈I
Oi ∈ F dir. Diğer yandan, J sonlu

elemanlıbir indis kümesi ve (Oi)i∈J ⊂ τ ξ olsun. F ∈ F(X) ve
(⋂
i∈J
Oi

)
∩ limξF 6= ∅

ise,

∃z ∈ X 3 z ∈ limξF ve z ∈
⋂
i∈J
Oi

dir. Bu durumda; her i ∈ J için Oi ∩ limξF 6= ∅ olup (3.28) den, Oi ∈ F ve J sonlu

elemanlıolduğundan,
⋂
i∈J
Oi ∈ F elde edilir. τ ξ ailesi keyfibirleşim ve sonlu arakesite

göre kapalıolduğundan ∅ ve X ∈ τ ξ dir.

Tanım 3.10 (X, ξ) bir yakınsama uzayıolmak üzere;

τ ξ = {O ⊂ X | ∀F ∈ F(X) 3 O ∩ limξF 6= ∅ ⇒ O ∈ F}

biçiminde tanımlanan topolojiye, ξ bağıntısının ürettiği topoloji denir (Mynard

2016).

Önerme 3.14 (X, τ) bir topolojik uzay olsun. Bu durumda;

ξτ :=
{

(F, x) ∈ F(X)×X | F τ−→ x
}

(3.28)

biçiminde tanımlanan ξτ bağıntısı, X kümesi üzerinde sonlu derinlikli bir yakınsaklık

yapısıdır (Herrlich, Bentley ve Lowen 1991).

İspat. F,G ∈ F(X), F 6 G ve (F, x) ∈ ξτ olsun. Bu durumda; Tanım 2.12 ve (3.29)

dan, Nτ (x) 6 F 6 G olup (G, x) ∈ ξτ elde edilir. Diğer yandan, her x ∈ X için

Nτ (x) 6 •
x olduğundan x ∈ limξτ

•
x dir. Son olarak, ξτ bağıntısının sonlu derinlikli

olduğunu gösterelim. (F, x) ∈ ξτ ve (G, x) ∈ ξτ olsun. Bu durumda; Nτ (x) 6 F ve
Nτ (x) 6 G olup Nτ (x) 6 F ∩ G dir. Dolayısıyla, F ∩ G τ−→ x olup (F ∩ G, x) ∈ ξτ
elde edilir.
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Tanım 3.11 (X, ξ) bir yakınsama uzayıolsun. Bu durumda; X kümesi üzerinde,

ξ = ξτ olacak biçimde bir τ topolojisi mevcut ise, ξ bağıntısına topolojik yakın-

saklık yapısı, (X, ξ) ikilisine topolojik yakınsama uzayıadı verilir (Mynard

2016).

Örnek 3.17 X bir küme olsun ve τ := {∅, X} biçiminde tanımlansın. Bu durumda;

(3.29) dan, τ topolojisinin ürettiği topolojik yakınsaklık yapısı,

ξτ := {(F,x) ∈ F(X)×X | {X} 6 F}

biçiminde tanımlıdır. Örnek 3.5 de tanımlanan düzensiz yakınsaklık yapısı ξτ ile

çakı̧stı̆gından, düzensiz yakınsaklık yapısıtopolojiktir (Mynard 2016).

Tanım 3.12 (X, ξ) bir yakınsama uzayıve x ∈ X olsun. Bu durumda; x noktasının

ξ bağıntısına göre komşuluklar ailesi Nξ(x) ile gösterilir ve

Nξ(x) := {V ⊂ X | ∃O ∈ τ ξ 3 x ∈ O ⊂ V } (3.29)

biçiminde tanımlanır (Mynard 2016).

Önerme 3.15 (X, τ) bir topolojik uzay olsun. ξτ ile, X üzerinde τ topolojisinin

ürettiği topolojik yakınsaklık yapısıgösterilsin. Bu durumda;

τ =
{
O ⊂ X | ∀F ∈ F(X) : O ∩ limξτF 6= ∅ ⇒ O ∈ F

}
,

yani τ = τ ξτ dir.

İspat. U ∈ τ olsun. Her F ∈ F(X) için, U ∩ limξτF 6= ∅ ise, x ∈ U ve x ∈ limξτF

olacak biçimde en azından bir x ∈ X vardır. Bu durumda; sırasıyla U ∈ Nτ (x) ve

(3.29) gereğince Nτ (x) 6 F elde edilir. Dolayısıyla, U ∈ F yani, U ∈ τ ξτ dur. Diğer
yandan, U ∈ τ ξτ ve U 6= ∅ olsun. Bu durumda; (3.28) den,

∀F ∈ F(X) 3 U ∩ limξτF 6= ∅ ⇒ U ∈ F

önermesi gerçeklenir. Herhangi bir x ∈ U için, F = Nτ (x) alınırsa, Nτ (x)
τ−→ x

olduğundan (3.29) gereğince, x ∈ U ∩ limξτ Nτ (x) olur. Dolayısıyla, U ∈ Nτ (x) elde

edilir. Sonuç olarak U ∈ τ olur.
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Önerme 3.16 (X, ξ) bir topolojik yakınsama uzayıolsun ve τ ξ ile, X üzerinde, ξ

bağıntısına kaŗsılık gelen topoloji gösterilsin. Bu durumda;

ξ =
{

(F, x) ∈ F(X)×X | F τξ−→ x
}
,

yani ξ = ξτξ dir.

İspat. ξ topolojik yakınsaklık yapısı olduğundan, ξ = ξκ olacak biçimde bir κ

topolojisi mevcuttur, ve (3.29) dan,

ξ = ξκ :=
{

(F, x) ∈ F(X)×X | F κ−→ x
}

biçiminde tanımlanır. (F, x) ∈ ξ alınırsa; Nκ (x) 6 F dir. O halde Nτξ(x) 6 Nκ (x)

olduğu gösterilirse (F, x) ∈ ξτξ olacaktır. U ∈ Nτξ(x) ise, x ∈ O ⊂ U olacak biçimde

en azından bir O ∈ τ ξ vardır. Bu durumda;

∀F ∈ F(X) : O ∩ limξF 6= ∅ ⇒ O ∈ F

önermesi gerçeklenir. F = Nκ (x) seçilirse, (Nκ (x) , x) ∈ ξ olduğundan, x ∈ O ∩

limξNκ (x) ve böylece O ∈ Nκ (x) olup U ∈ Nκ (x) elde edilir. Böylece, (F, x) ∈

ξτξ olduğu görülür. Diğer yandan, (F, x) ∈ ξτξ olsun. Bu durumda; (3.29) dan,

Nτξ(x) 6 F dir. ξ topolojik yakınsaklık yapısıolduğundan, ξ = ξκ olacak biçimde,

X üzerinde bir κ topolojisi mevcuttur. Önerme 3.15 kullanılırsa, τ ξ = κ olacaktır.

Bu durumda; Nτξ(x) = Nκ (x) eşitliği elde edilir. Dolayısıyla, (F, x) ∈ ξ dir.

Önerme 3.17 X bir küme olmak üzere; τ ve τ ′ ile X üzerinde tanımlıiki topoloji

gösterilsin. Bu durumda;

τ ⊆ τ
′ ⇐⇒ ξτ � ξτ ′

önermesi gerçeklenir.

İspat. τ ⊆ τ
′
,F ∈ F(X) ve x ∈ limξ

τ
′ F olsun. Bu durumda; (3.29) dan, Nτ ′ (x) 6 F

dir. Nτ (x) 6 Nτ ′ (x) olduğundan (3.29) dan, x ∈ limξτ F elde edilir. Dolayısıyla,

ξτ � ξτ ′ dir. Diğer yandan, ξτ � ξτ ′ olsun. Önerme 3.15 gereğince, τ ξτ = τ ve

τ ξ
τ
′ = τ

′
olduğundan, τ ξτ ⊆ τ ξ

τ
′ sıralaması gösterilirse ispat tamamlanır. O ∈

τ ξτ ,F ∈ F(X) ve O ∩ limξ
τ
′F 6= ∅ olsun. ξτ � ξτ ′ olduğundan, O ∩ limξτF 6= ∅

olacaktır. Böylece (3.28) kullanılırsa, O ∈ F elde edilir. O halde, O ∈ τ ξ
τ
′ dir.
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Örnek 3.18 X boş kümeden farklıbir küme olmak üzere,X üzerinde tanımlıdiskre

yakınsaklık yapısıtopolojiktir (Mynard 2016).

Örnek 3.19 RR üzerinde tanımlı noktasal yakınsaklık topolojisi, Örnek 3.12 de

tanımlanan p noktasal yakınsaklık yapısınıüretir. Dolayısıyla, RR üzerinde tanımlı

noktasal yakınsaklık yapısıtopolojiktir (Mynard 2016).

Önerme 3.18 (X, τ) ve (Y, τ
′
) iki topolojik uzay olmak üzere; aşağıdaki önermeler

denktir.

i) f : (X, τ) −→ (Y, τ
′
) fonksiyonu süreklidir.

ii) f ∈ C(ξτ , ξτ ′ ) dir.

İspat. Önerme 2.3 ve Tanım 3.6 dan açıktır.

Önerme 3.19 X bir küme, (Y, σ) bir topolojik yakınsama uzayıve f : X −→ (Y, σ)

bir fonksiyon olsun. Bu durumda; X kümesi üzerinde tanımlı, (f, σ) ikilisine kaŗsılık

gelen başlangıç yapısıf−σ topolojiktir (Mynard 2016).

İspat. (Y, σ) bir topolojik yakınsama uzayıise Tanım 3.11 den, Y kümesi üzerinde,

σ = στ olacak biçimde bir τ topolojisi mevcuttur. X üzerinde, f fonksiyonuna

kaŗsılık gelen başlangıç topolojisi

τ in :=
{
f−1(W ) ⊆ X | W ∈ τ

}
ele alınırsa, f−σ = ξτ in dir. Gerçekten, Tanım 2.14 den,

f : (X, τ in) −→ (Y, τ)

fonksiyonu sürekli olup Önerme 3.18 den, f ∈ C(ξτ in , στ ) dir. Dolayısıyla, Önerme

3.8 den, f−σ � ξτ in elde edilir. Son olarak, ξτ in � f−σ olduğu gösterilirse ispat

tamamlanır. F ∈ F(X) ve x ∈ limf−σ
F olsun. Bu durumda; (3.14) eşitliğinden,

f(x) ∈ limσ f [F] olup, σ = στ olduğundan ve (3.29) dan, Nτ (f(x)) 6 f [F] dir. x ∈

limξτin
F olduğunu göstermek için Nτ in(x) 6 F olduğunu göstermek yeterli olacaktır.

U ∈ Nτ in(x) ise, x ∈ f−1(W ) ⊂ U olacak biçimde en azından bir W ∈ τ vardır.
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Bu durumda; W ∈ Nτ (f(x)) olup W ∈ f [F] elde edilir. Dolayısıyla, F ⊂ f−1(W )

olacak biçimde en azından bir F ∈ F vardır. Ayrıca, f−1(W ) ⊂ U olduğundan

U ∈ F dir.

(X, τ) bir topolojik uzay olmak üzere; (3.29) ile verilen,

ξτ :=
{

(F, x) ∈ F(X)×X | F τ−→ x
}

bağıntısı, X kümesi üzerinde sonlu derinlikli bir yakınsaklık yapısıolup Önerme 3.14

ve Önerme 3.18 gereğince

Top
F−→ Conv

f −→ f

τ −→ ξτ

biçiminde tanımlıF funktoru bir dolu funktordur. O halde, Top kategorisi Conv

kategorisinin bir dolu alt kategorisidir.

Teorem 3.3 Top kategorisi Conv kategorisinin bi-yansımalıbir alt kategorisidir

(Preuss 1987).

İspat. Top kategorisinin Conv kategorisinin bir dolu alt kategorisi olduğu açıktır.

(X, ξ) sonlu derinlikli bir yakınsama uzayıolsun ve J bir indis kümesi olmak üzere;

S := {τ j}j∈J ile, her j ∈ J için ξτ j � ξ koşulunu sağlayan, X kümesi üzerinde

tanımlıtopolojilerin ailesi gösterilsin. Örnek 3.5 den, S 6= ∅ dir. ξ bağıntısının Top-

yansımasıξtr ile gösterilir ve {idj : X −→ (X, τ j)}j∈J ailesine kaŗsılık gelen başlangıç

topolojisi τ in =
∨
j∈J

τ j olmak üzere; ξ
tr := ξτ in biçiminde tanımlanır. Gerçekten,

idX : (X, ξ) −→ (X, ξtr)

bir yakınsama dönüşümüdür: F ∈ F(X) ve x ∈ limξ F olsun, x ∈ limξtr F olduğunu

göstermek için, (3.29) gereğince, Nτ in(x) 6 F olduğunu göstermemiz gerekir. V ∈
Nτin

(x) ise,

∃J ′ ∈ J<w 3 ∀j ∈ J ′ : Wj ∈ τ j ve x ∈
⋂
j∈J ′

Wj ⊂ V
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dir. Diğer yandan, her j ∈ J için ξτ j � ξ ve x ∈ limξ F olduğundan, her j ∈ J

için x ∈ limξτj
F elde edilir. Bu durumda; (3.29) dan, her j ∈ J için Nτ j(x) 6 F

ve dolayısıyla her j ∈ J
′
için Wj ∈ F olacaktır. J

′
sonlu elemanlı olduğundan,⋂

j∈J ′
Wj ∈ F olup V ∈ F elde edilir. O halde idX bir yakınsama dönüşümüdür. Son

olarak, (Y, τ
′
) herhangi bir topolojik uzay ve

f : (X, ξ) −→ (Y, ξτ ′ )

x −→ f(x)

biçiminde tanımlıbir yakınsama dönüşümü olmak üzere;

f ∗ : (X, τ in) −→ (Y, τ
′
)

x −→ f ∗(x) = f(x)

fonksiyonunun sürekli olduğunu göstermemiz gerekir. Önerme 3.18 gereğince, f ∗ ∈

C
(
ξtr, ξτ ′

)
olduğunu yani, f−ξ

τ
′ � ξτ in olduğunu göstermemiz yeterli olacaktır. f ∈

C (ξ, ξτ ′ ) olduğundan, Önerme 3.8 den, f
−
ξ
τ
′ � ξ dir. Ayrıca, Önerme 3.19 gereğince

f−ξ
τ
′ topolojik bir yakınsaklık yapısı olduğundan, X üzerinde, f−ξ

τ
′ = ξσ olacak

biçimde bir σ topolojisi mevcuttur. S ile ξ yakınsaklık yapısından daha kaba yakın-

saklık yapısıüreten topolojilerin ailesi gösterildiğine göre, σ ∈ S dir. Bu durumda;

σ ⊆ τ in olup Önerme 3.17 den, f−ξ
τ
′ � ξτ in elde edilir.

Tanım 3.13 (X, ξ) ve (Y, σ) sonlu derinlikli yakınsama uzayları olsun. Bu du-

rumda;

e : X × C(ξ, σ) −→ Y

(x, f) −→ e(x, f) := f(x)

fonksiyonunu yakınsama dönüşümü kılan, C(ξ, σ) üzerinde tanımlıen kaba yakın-

saklık yapısına sürekli yakınsaklık yapısıadıverilir ve [ξ, σ] ile gösterilir (Preuss

1987).

Önerme 3.20 (X, ξ) ve (Y, σ) sonlu derinlikli yakınsama uzaylarıve

e : X × C(ξ, σ) −→ Y

(x, f) −→ e(x, f) := f(x)
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olmak üzere;

[ξ, σ] = {(F, f) ∈ F (C(ξ, σ))× C(ξ, σ) | ∀x ∈ X, ∀G ∈ F(X) 3

(G, x) ∈ ξ : (e[G × F], f(x)) ∈ σ}
(3.30)

eşitliği gerçeklenir ve [ξ, σ] sonlu derinliklidir (Preuss 1987).

İspat. Q := (θi)i∈I ile, C(ξ, σ) kümesi üzerinde tanımlıve e fonksiyonunu yakın-

sama dönüşümü kılan tüm yakınsaklık yapılarının ailesi gösterilsin. Bu durumda;

ı ∈ Q olduğundan Q 6= ∅ dir. Her i ∈ I için e−σ � ξ×θi olduğundan, e−σ �
∧
i∈I

(ξ×θi)

dir. O halde; Önerme 3.8 den,
∧
i∈I

(ξ× θi) bağıntısının, X ×C(ξ, σ) kümesi üzerinde

e fonksiyonunu yakınsama dönüşümü kıldı̆gıaçıktır. Ayrıca,

∧
i∈I

(ξ × θi) = ξ ×
∧
i∈I
θi (3.31)

olduğundan, C(ξ, σ) kümesi üzerinde
∧
i∈I
θi bağıntısı ele alındı̆gında, e fonksiyonu

bir yakınsama dönüşümü olacaktır. Bu durumda; Tanım 3.13 göz önüne alınırsa,

[ξ, σ] :=
∧
i∈I
θi dir. O halde, (3.31) eşitliğini göstermek için,

∧
i∈I
θi = {(F, f) | ∀x ∈ X, ∀G ∈ F(X) 3

(G, x) ∈ ξ : (e[G × F], f(x)) ∈ σ}

eşitliğini göstermemiz gerekir. F ∈ F(C (ξ, σ)) ve f ∈ lim∧
i∈I

θi
F olsun. Bu durumda;

(3.9) dan, f ∈ limθi0
F olacak biçimde en azından bir i0 ∈ I vardır. Q ailesinin tanımı

gereği e ∈ C(ξ × θi0 , σ) olduğundan, her x ∈ X ve x ∈ limξG olacak biçimdeki her

G ∈ F(X) için, Tanım 3.6 dan,

e
(
limξ×θi0 (G × F)

)
⊂ limσe[G × F]

yazılabilir. Bu durumda; (3.17) den, (x, f) ∈ limξ×θi0 (G × F) olacağından, f (x) ∈

limσe[G×F] elde edilir. Diğer yandan, her x ∈ X ve x ∈ limξG olacak biçimdeki her

G ∈ F(X) için f(x) ∈ limσe[G × F] olsun. Bu durumda; (x, f) ∈ e−1 (limσe[G × F])

dir. (3.32) den, e fonksiyonu için başlangıç yapısıξ ×
∧
i∈I
θi olduğundan, (3.14) den,
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(x, f) ∈ limξ× ∧
i∈I

θi (G × F) olup (3.17) den, f ∈ lim∧
i∈I

θi
F elde edilir. Böylece ispat

tamamlanır. [ξ, σ] bağıntısının sonlu derinlikli olduğunu gösterelim. (F, f) ∈ [ξ, σ]

ve (H, f) ∈ [ξ, σ] olsun. Bu durumda;

∀x ∈ X, ∀G ∈ F(X) 3 (G, x) ∈ ξ : (e[G × F], f(x)) ∈ σ

ve

∀x ∈ X, ∀G ∈ F(X) 3 (G, x) ∈ ξ : (e[G ×H], f(x)) ∈ σ

olup σ sonlu derinlikli bir yakınsaklık yapısıolduğundan,

(e[G × F] ∩ e[G ×H], f(x)) ∈ σ

dır. Ayrıca,

e[G × F] ∩ e[G ×H] = e[(G × F) ∩ (G ×H)]

ve

(G × F) ∩ (G ×H) ⊂ G × (F ∩H)

olduğundan, (e[G × (F ∩H)], f (x)) ∈ σ olup (F ∩H, f) ∈ [ξ, σ] elde edilir.

Teorem 3.4 Conv kategorisi kartezyen kapalıdır (Preuss 1987).

İspat. Önerme 3.20 de (X, ξ) ve (Y, σ) sonlu derinlikli yakınsama uzayları ve-

rildiğinde, (3.31) eşitliği ile ifade edilen [ξ, σ] bağıntısının C(ξ, σ) kümesi üzerinde,

e : X × C(ξ, σ) −→ Y

(x, f) −→ e(x, f) := f(x)

fonksiyonunu yakınsama dönüşümü kıldı̆gıgösterilmi̧stir. Bu durumda; Conv kate-

gorisinin kartezyen kapalıolduğunu göstermek için, [ξ, σ] bağıntısının, Tanım 2.29 da

verilen (CC2) koşulunu sağladı̆gınıgöstermek yeterli olacaktır. (Z, η) bir yakınsama

uzayıolsun ve

f : X × Z −→ Y

(x, z) −→ f(x, z)
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biçiminde tanımlıyakınsama dönüşümünü ele alalım. Bu durumda;

f ∗ : Z −→ C(ξ, σ)

z −→ f ∗(z) : (X, ξ) −→ (Y, σ)

x −→ f ∗(z) (x) := f(x, z)

fonksiyonu için, f = e ◦ (idX × f ∗) eşitliği gerçeklenir. f ∗ ∈ C (η, [ξ, σ]) olduğu

gösterilirse ispat tamamlanır: W ∈ F(Z) ve s ∈ f ∗(limηW) olsun. Bu durumda;

∃x ∈ X, ∃z ∈ limηW 3 s (x) := f ∗(z) (x) = f (x, z)

dir. (G, x) ∈ ξ olacak biçimde herhangi bir G ∈ F(X) alınırsa, (3.17) den, (x, z) ∈

limξ×η (G ×W) olacaktır. Diğer yandan, f fonksiyonu yakınsama dönüşümü olduğun-

dan,

f(limξ×η (G ×W)) ⊂ limσf [G ×W ]

olup f ∗(z) (x) = f (x, z) ∈ limσf [G×W ] elde edilir. Ayrıca, f [G×W ] ⊂ e[G×f ∗[W ]]

olduğundan, s(x) = f ∗(z)(x) ∈ limσe[G × f ∗[W ]] dir. Bu durumda; (3.31) den,

s ∈ lim[ξ,σ] f
∗[W ] olur. Dolayısıyla, f ∗ fonksiyonu bir yakınsama dönüşümüdür.
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4. YAKLAŞMA UZAYLARI

Yaklaşma uzayları; matematiksel olarak birbirine eş kavramlar olan birçok yapıile

karakterize edilebilir. Bu kavramlardan en çok kullanılanlar; uzaklık fonksiyonu ve

limit operatörüdür. Bu bölümde; ilk olarak, uzaklık fonksiyonu ve limit operatörü

kavramlarıtanımlanarak temel özellikleri verilecek ve bu kavramların matematik-

sel olarak birbirine eş yapılar olduğu açıklanacaktır. Daha sonra, bu kavramlar

yardımıyla yaklaşma uzaylarıve yaklaşma uzaylarıarasında tanımlımorfizmler ifade

edilerek Ap kategorisi tanımlanacak ve temel özellikleri verilecektir.

Bu çalı̧sma boyunca [0,∞] kapalıaralı̆gıP ile gösterilecektir. P, üzerinde tanımlı

alı̧sılmı̧s sıralama bağıntısı, tam latis ve toplamsal yarıgrup yapısıile ele alınacaktır.

x ∈ [0,∞) olmak üzere;

x+∞ =∞,∞−∞ = 0,∞+∞ =∞

∞− x =∞ ve ∞+ x =∞

olarak kabul edilecektir. P kümesi üzerinde bir çıkarma i̧slemine ihtiyaç duyul-

duğunda,

∀a, b ∈ P : a	 b = (a− b) ∨ 0

biçiminde tanımlı“	”i̧slemi kullanılacaktır. Lowen, metrik ve quasimetrik kavram-

larınıalı̧sılandan daha genel fonksiyonlar için kullanır. X bir küme olmak üzere,

d : X × X −→ [0,∞] fonksiyonu; her x ∈ X için d(x, x) = 0 koşulunu ve üçgen

eşitsizliğini sağlıyor ise d fonksiyonuna X kümesi üzerinde bir quasimetrik, d qua-

simetriğinin simetri koşulunu sağlamasıdurumunda ise d fonksiyonuna X kümesi ü-

zerinde birmetrik adıverilir. Bu bölümden itibaren metrik ve quasimetrik ifadeleri

Lowen-anlamında kullanılacaktır.
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Tanım 4.1 X boş kümeden farklıbir küme ve

δ : X × 2X −→ P

biçiminde tanımlıbir fonksiyon olsun. Her A ⊆ X ve her ε ∈ P için,

A(ε) := {z ∈ X | δ (z, A) 6 ε}

biçiminde tanımlıolmak üzere;

D1) ∀x ∈ X, ∀A ⊆ X : x ∈ A⇒ δ(x,A) = 0,

D2) ∀x ∈ X : δ(x, ∅) =∞,

D3) ∀x ∈ X, ∀A,B ⊆ X : δ(x,A ∪B) = min {δ(x,A), δ(x,B)} ,

D4) ∀x ∈ X, ∀A ⊆ X, ∀ε ∈ P : δ(x,A) 6 δ(x,A(ε)) + ε

özellikleri sağlanıyor ise, δ fonksiyonuna uzaklık fonksiyonu adı verilir (Lowen

1987).

Önerme 4.1 X 6= ∅ bir küme ve δ : X × 2X → P biçiminde tanımlıbir uzaklık

fonksiyonu olmak üzere; aşağıdaki özellikler sağlanır.

(i) ∀x ∈ X, ∀A,B ⊆ X için A ⊆ B ⇒ δ(x,B) 6 δ(x,A)

(ii) ∀x ∈ X, ∀A ⊂ 2X 3 A sonlu elemanlı: δ(x,
⋃
A) = min

A∈A
δ(x,A),

(iii) ∀x ∈ X, ∀A,B ⊆ X : δ(x,A) 6 δ(x,B) + sup
b∈B

δ(b, A)

dır (Lowen 1987).

Örnek 4.1 (X, d) bir metrik uzay olmak üzere;

δd : X × 2X 7−→ P

(x,A) −→ δd (x,A) := inf
a∈A

d (x, a)

biçiminde tanımlıδd fonksiyonu, bir uzaklık fonksiyonudur (Lowen 1987).

Örnek 4.2 (X, τ) bir topolojik uzay olmak üzere;

δτ : X × 2X 7−→ P

(x,A) −→ δτ (x,A) :=

 0 , x ∈ clτ (A) ise

∞ , x /∈ clτ (A) ise

biçiminde tanımlıδτ fonksiyonu, bir uzaklık fonksiyonudur (Lowen 2015).
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İspat. Her A ⊆ X için, A ⊂ clτ (A) olduğundan δτ (x,A) = 0 dır. clτ (∅) = ∅

olduğundan x /∈ clτ (∅) olup δτ (x, ∅) = ∞ dur. x ∈ X ve A,B ⊆ X olsun. Bu

durumda;

δτ (x,A ∪B) = 0 ⇔ x ∈ clτ (A ∪B)

⇔ x ∈ (clτ (A) ∪ clτ (B))

⇔ min {δτ (x,A) , δτ (x,B)} = 0

ve benzer şekilde, δτ (x,A ∪B) =∞ olmasıiçin gerek ve yeter koşul,

min {δτ (x,A) , δτ (x,B)} =∞

olmasıdır. Son olarak, (D4) özelliğinin gerçeklendiğini gösterelim. ε = ∞ durumu

açıktır. ε <∞ ise, δτ fonksiyonunun tanımından,

A(ε) = {x ∈ X | δτ (x,A) = 0} = clτ (A)

olup clτ (A) = clτ (clτ (A)) olduğundan, δτ (x,A) = δτ (x, clτ (A)) elde edilir. Bu

durumda; δτ (x,A) 6 δτ (x,A
(ε))+ε eşitsizliği gerçeklenir. Dolayısıyla, δτ bir uzaklık

fonksiyonudur.

Örnek 4.3
dP : P× P −→ P

(x, y) −→ dP(x, y) := x	 y

biçiminde tanımlıdP quasimetriği yardımıyla,

δP : P× 2P 7−→ P

(x,A) −→ δP (x,A) :=

 x	 supA , A 6= ∅ ise

∞ , A = ∅ ise

(4.1)

biçiminde tanımlanan δP fonksiyonu, bir uzaklık fonksiyonudur (Lowen 2015).

İspat. A ⊆ P ve x ∈ A ise, A 6= ∅ olup (4.1) den,

δP (x,A) = x	 supA = (x− supA) ∨ 0

dır. x ∈ A olduğundan, x 6 supA olup δP (x,A) = 0 dır. (D2) özelliğinin gerçek-

lendiği açıktır. (D3) özelliğinin gerçeklendiğini gösterelim: A,B ⊆ P olsun. x =∞
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durumu açıktır. x ∈ [0,∞[ olsun. A∪B 6= ∅ ise, A 6= ∅ veya B 6= ∅ olacaktır. A 6= ∅

ve B 6= ∅ ise,

min {δP (x,A) , δP (x,B)} = min {(x− supA) ∨ 0, (x− supB) ∨ 0}

olacaktır. supA 6 sup (A ∪B) ve supB 6 sup (A ∪B) olduğundan,

x− sup (A ∪B) 6 (x− supA) ∧ (x− supB)

dir. O halde,

(x− supA) ∧ (x− supB) 6 x− sup (A ∪B)

eşitsizliği gösterilirse ispat tamamlanır. x − sup (A ∪B) = x − sup
c∈A∪B

c < α olsun.

Bu durumda; sup
c∈A∪B

c > x − α olup en azından bir c0 ∈ A ∪ B için c0 > x − α ve

dolayısıyla

∃c0 ∈ A : c0 > x− α veya ∃c0 ∈ B : c0 > x− α

dır. O halde, x−supA < α veya x−supB < α olupmin {x− supA, x− supB} < α

olacaktır. A 6= ∅ ve B = ∅ ise,

δP (x,A ∪B) = δP (x,A) = x	 supA

olup eşitlik gerçeklenir. A ∪ B = ∅ ise, A = ∅ ve B = ∅ olup eşitlik gerçeklenir.

Dolayısıyla, δP fonksiyonu (D3) koşulunu sağlar. Son olarak (D4) özelliğinin gerçek-

lendiğini gösterelim: A ⊆ P olmak üzere; ε = ∞ ya da δP
(
x,A(ε)

)
= ∞ durumu

açıktır. ε < ∞ ve x = ∞ olduğunda eşitsizliğin gerçeklendiği kolaylıkla göste-

rilebilir. ε < ∞ ve A = ∅ ise A(ε) = ∅ olup eşitsizlik gerçeklenir. ε < ∞, A 6= ∅ ve

δP (x,A) =∞ ise, x =∞ ve supA <∞ olur. Bu durumda;

A(ε) = {z | δP (z, A) 6 ε}

= {z | (z − supA) ∨ 0 6 ε} = [0, supA+ ε]

olup supA <∞ olduğundan eşitsizlik gerçeklenir. ε <∞, x ∈ [0,∞[ ve δP
(
x,A(ε)

)
<

∞ olsun. x 6 supA ise, δP (x,A) = 0 olup eşitsizlik gerçeklenir. x > supA(ε) ise,

x − supA = x − supA(ε) + ε olup eşitsizlik gerçeklenir. supA < x < supA(ε) ise,

supA(ε) − supA = ε olduğundan

0 6 x− supA 6
(
x− supA(ε)

)
∨ 0 + ε

olup eşitsizlik gerçeklenir.
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Örnek 4.4
dE : P× P −→ P

(x, y) −→ dE(x, y) := |x− y|

biçiminde tanımlıdE metriği yardımıyla,

δE : P× 2P 7−→ P

(x,A) −→ δE (x,A) :=


0 , x =∞, A sınırsız ise

∞ , x =∞, A sınırlıise

inf
a∈A
|x− a| , x ∈ R+ ise

(4.2)

biçiminde tanımlanan δE fonksiyonu, bir uzaklık fonksiyonudur (Lowen 2015).

İspat. A ⊆ P olsun. x = ∞ ∈ A ise, A kümesi sınırsız olacaktır. Bu durumda;

δE (x,A) = 0 dır. x ∈ [0,∞[ ve x ∈ A ise, δE (x,A) = inf
a∈A
|x− a| = 0 elde edilir.

Dolayısıyla, δE fonksiyonu (D1) koşulunu sağlar. ∅ sınırlıkabul edildiğinden, x =∞

ise, δE (x, ∅) =∞ olacağıtanımdan açıktır. x ∈ [0,∞[ ise,

δE (x, ∅) = inf
a∈∅
|x− a| =∞

dur. Dolayısıyla, δE fonksiyonu (D2) koşulunu sağlar. x ∈ P ve A,B ⊆ P olsun.

x = ∞ olmak üzere; A ve B kümeleri sınırlıise, A ∪ B kümesi sınırlıolup eşitlik

gerçeklenir. x =∞ olmak üzere; A ve B kümelerinden en az biri sınırsız ise, A ∪B

kümesi sınırsız olup eşitlik gerçeklenir. x ∈ [0,∞[ olması durumunda, infimum

tanımıgereği

δE (x,A ∪B) = inf
c∈A∪B

|x− c| 6 inf
a∈A
|x− a| ∧ inf

b∈B
|x− b|

olacaktır. Diğer yandan, δE (x,A ∪B) < β ise,

∃c ∈ A ∪B : |x− c| < β

dır. Bu durumda; c ∈ A veya c ∈ B olacağından,

δE (x,A) = inf
a∈A
|x− a| < β veya δE (x,B) = inf

b∈B
|x− b| < β

olup eşitsizlik gerçeklenir. Dolayısıyla, δE fonksiyonu, (D3) koşulunu sağlar. Son

olarak, (D4) özelliğinin gerçeklendiğini gösterelim: A kümesi sınırsız ise, her ε ∈ P
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için A(ε) sınırsız olup x = ∞ olduğunda eşitsizlik gerçeklenir. A kümesi sınırlı,

x =∞ ve ε <∞ olmasıdurumunda,

A(ε) = {y | δE (y, A) < ε} =

{
y | inf

a∈A
|y − a| < ε

}
olacaktır. Herhangi bir y ∈ A(ε) alınırsa,

inf
a∈A
|y − a| < ε ⇒ ∃ay ∈ A : |y − ay| < ε

⇒ ∃ay ∈ A : y < ay + ε

elde edilir. A sınırlıolduğundan, her a ∈ A için a < M olacak biçimde bir M ∈ R+

mevcuttur. δ = M + ε alınırsa;

∀y ∈ A(ε) : y < M + ε

olup A(ε) sınırlıdır. Bu durumda eşitsizlik gerçeklenir. x ∈ R+ olsun. Herhangi bir

b ∈ A(ε) için,

δE (x,A) = inf
a∈A
|x− a| = inf

a∈A
|x− b+ b− a|

6 inf
a∈A

(|x− b|+ |b− a|)

= |x− b|+ inf
a∈A
|b− a|

= |x− b|+ δE(b, A) 6 |x− b|+ ε

olup

δE (x,A) 6 inf
b∈A(ε)

|x− b|+ ε

= δE(x,A(ε)) + ε

eşitsizliği elde edilir.

Yaklaşma uzaylarınıkarakterize eden bir diğer kavram olan limit operatörü, yakın-

saklık yapılarına benzer özelliklere sahiptir ve bir noktanın, bir süzgecin limit noktası

olmaya ne kadar yakın olduğunu ölçen bir fonksiyon olarak değerlendirilebilir.

Tanım 4.2 X bir küme olmak üzere, λ : F(X) −→ PX fonksiyonu, aşağıdaki

özellikleri sağlıyor ise λ fonksiyonuna X üzerinde bir limit operatörü adıverilir.
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L1) ∀x ∈ X için λ(
•
x) (x) = 0,

L2) J 6= ∅ bir indis kümesi olmak üzere; her (Fj)j∈J ⊂ F(X) için

λ

(⋂
j∈J
Fj

)
= sup

j∈J
λFj,

L3) Her F ∈ F (X) ve her σ : X −→ F(X) fonksiyonu için,

λ (
∑
σ (F)) 6 λF+ sup

x∈X
λ (σ (x)) (x)

dir (Lowen 1987).

Örnek 4.5 (X, τ) bir topolojik uzay olsun. Bu durumda;

λ : F(X) 7−→ PX

F −→ λF : X 7−→ P

x −→ λF (x) :=

 0 , F
τ−→ x ise

∞ , F
τ

6−→ x ise

(4.3)

biçiminde tanımlıλ fonksiyonu, X kümesi üzerinde bir limit operatörüdür (Lowen

1987).

İspat. Her x ∈ X için Nτ (x) 6 •
x olduğundan, λ(

•
x) (x) = 0 dır. (L2) koşulunun

gerçeklendiğini gösterelim: J 6= ∅ bir indis kümesi, (Fj)j∈J ⊂ F(X) ve x ∈ X olmak

üzere; λ

(⋂
j∈J
Fj

)
(x) = 0 yani,

⋂
j∈J
Fj

τ−→ x olsun. Bu durumda; her j ∈ J için

Nτ (x) 6 Fj dolayısıyla her j ∈ J için λFj (x) = 0 olup

λ

(⋂
j∈J
Fj

)
= sup

j∈J
λFj

eşitliği gerçeklenir. λ

(⋂
j∈J
Fj

)
(x) =∞ olmasıdurumunda da eşitliğin gerçeklendiği

benzer şekilde gösterilebilir. (L3) koşulunun gerçeklendiğini gösterelim: F ∈ F(X),

x ∈ X ve σ : X −→ F(X) bir fonksiyon olsun. λ (
∑
σ (F)) (x) = 0 olmasıduru-

munda eşitsizlik gerçeklenir. λ (
∑
σ (F)) (x) = ∞ ise (4.3) den,

∑
σ (F) süzgeci,

(X, τ) topolojik uzayında x noktasına yakınsak değildir. O halde,

∃V ∈ Nτ (x) 3 V /∈
∑
σ (F)

55



olup Önerme 2.5 (i) den,

∀F ∈ F için V /∈
⋂
x∈F

σ (x)

ve dolayısıyla,

∀F ∈ F için ∃x0 ∈ F 3 V /∈ σ (x0)

olduğu görülür. Bu durumda; Nτ (x0) 
 σ (x0) olup λ (σ (x0)) (x0) = ∞ olacağın-

dan, eşitsizliğin sağ tarafı∞ olarak elde edilir. Böylece (L3) koşulu sağlanır.

Örnek 4.6 X bir küme ve her A ⊆ X için,

θA : X 7−→ P

x −→ θA (x) :=

 0 , x ∈ A ise

∞ , x /∈ A ise

biçiminde tanımlanmak üzere;

λ : F(X) 7−→ PX

F −→ λF :=

 θ{x} , F =
•
x ise

∞ , F 6= •
x ise

(4.4)

biçiminde tanımlıλ fonksiyonu, X kümesi üzerinde bir limit operatörüdür (Lowen

1987).

İspat. (L1) koşulunun sağlandı̆gıaçıktır. (L2) koşulunun sağlandı̆gınıgösterelim:

J 6= ∅ bir indis kümesi, (Fj)j∈J ⊂ F(X) ve x ∈ X olsun. Bu durumda;
⋂
j∈J
Fj =

•
x

ise, her j ∈ J için
⋂
j∈J
Fj 6 Fj ve

•
x ultrasüzgeç olduğundan, her j ∈ J için Fj =

•
x

olmalıdır. Dolayısıyla, sup
j∈J

λFj = θ{x} elde edilir. Diğer yandan,
⋂
j∈J
Fj 6=

•
x ise,

∃B ∈
⋂
j∈J
Fj 3 x /∈ B

dir. Bu durumda; her j ∈ J için Fj 6=
•
x olup sup

j∈J
λFj (x) =∞ elde edilir. Dolayısıyla,

λ fonksiyonu (L2) koşulunu sağlar. Son olarak, F ∈ F (X) ve σ : X −→ F(X)

fonksiyonu için,

λ (
∑
σ (F)) 6 λF+ sup

x∈X
λ (σ (x)) (x)
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eşitsizliğinin gerçeklendiğini göstermemiz gerekir. x ∈ X ve
∑
σ (F) =

•
x ise,

λ (
∑
σ (F)) = θ{x} olup eşitsizliğin sol tarafı0 olacaktır. x ∈ X ve

∑
σ (F) 6= •

x

olsun. Bu durumda; bir G ∈
∑
σ (F) için x /∈ G dir. Önerme 2.5 (i) den,

G ∈
∑
σ (F)⇐⇒ ∃F0 ∈ F 3 ∀z ∈ F0 : G ∈ σ (z)

dir. Bu durumda; x ∈ F0 ise,

sup
x∈X

σ (x) (x) > sup
z∈F0

σ (z) (z) =∞

ve x /∈ F0 ise, F 6=
•
x olup λF (x) =∞ olacağından eşitsizlik gerçeklenir, (L3) koşulu

sağlanır.

Bir X kümesi üzerinde, uzaklık fonksiyonu veya limit operatörü verildiğinde, verilen

yapıyardımıyla diğer yapıelde edilebilir. Aşağıda verilen teoremler yardımıyla,

uzaklık fonksiyonu ve limit operatörü kavramlarının eş matematiksel kavramlar

olduğu elde edilmi̧stir.

Teorem 4.1 (δ ⇒ λ) X bir küme ve δ, X üzerinde bir uzaklık fonksiyonu olsun.

Bu durumda;

λ : F(X) 7−→ PX

F −→ λF := sup
U∈secF

δU

fonksiyonu, X kümesi üzerinde bir limit operatörüdür. Ayrıca,

∀x ∈ X ve ∀A ⊆ X için δ(x,A) = inf
U∈U(A)

λU(x)

dir (Lowen 1987).

Teorem 4.2 (λ ⇒ δ) X bir küme ve λ, X üzerinde bir limit operatörü olsun. Bu

durumda;

δ : X × 2X 7−→ P

(x,A) −→ δ (x,A) := inf
U∈U(A)

λU (x)

fonksiyonu, X üzerinde bir uzaklık fonksiyonudur. Ayrıca,

∀F ∈ F (X) ,∀x ∈ X için λF (x) = sup
U∈secF

δ (x, U)

dir (Lowen 1987).
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Tanım 4.3 X ve X
′
iki küme, δ ve δ

′
sırasıyla X ve X

′
üzerinde tanımlıiki uzaklık

fonksiyonu ve f : X → X
′
bir fonksiyon olsun. Bu durumda, her A ⊆ X ve her

x ∈ X için,

δ
′
(f (x) , f (A)) 6 δ (x,A)

eşitsizliği gerçekleniyor ise, f fonksiyonuna (X, δ) dan (X, δ
′
) ye tanımlıbir büzülme

dönüşümü adıverilir (Lowen 1987).

Örnek 4.7 X bir küme olmak üzere; her A ⊆ X için

δA : (X, δ) 7−→ (P, δP)

x −→ δA (x) := δ (x,A)

biçiminde tanımlıδA fonksiyonu bir büzülme dönüşümüdür (Lowen 1987).

İspat. x ∈ X ve B ⊆ X olsun. B = ∅ ise δ (x,B) = ∞ olup Tanım 4.3 de verilen

eşitsizlik gerçeklenir. B 6= ∅ olsun. (4.1) den,

δP (δA (x) , δA (B)) = δA (x)	 sup
b∈B

δA (b)

dir. Bu durumda; Önerme 4.1 (iii) ve 	 i̧sleminin tanımından,

δP (δA (x) , δA (B)) 6
(
δ (x,B) + sup

b∈B
δA (b)

)
	 sup

b∈B
δA (b)

= δ (x,B) ∨ 0 = δ (x,B)

elde edilir. Dolayısıyla, δA fonksiyonu bir büzülme dönüşümüdür.

Örnek 4.8 (X, τ) ve (Y, τ
′
) iki topolojik uzay olmak üzere; f : (X, τ) −→ (Y, τ

′
)

sürekli bir fonksiyon ise, f : (X, δτ ) −→ (Y, δτ ′ ) fonksiyonu bir büzülme dönüşümüdür

(Lowen 1987).

Tanım 4.4 X bir küme, δ ve δ
′
, X üzerinde tanımlıiki uzaklık fonksiyonu olsun.

Bu durumda;

idX : (X, δ
′
) 7−→ (X, δ)

x −→ idX (x) := x

birim fonksiyonu büzülme dönüşümü oluyor ise, δ
′
fonksiyonu δ fonksiyonundan

daha incedir (veya δ fonksiyonu δ
′
fonksiyonundan daha kabadır) denir. Bu durum

δ 6 δ
′
biçiminde gösterilir (Lowen 1987).
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Önerme 4.2 X ve X
′
iki küme, λ ve λ

′
sırasıyla X ve X

′
üzerinde tanımlı iki

limit operatörü ve f : X → X
′
bir fonksiyon olsun. Bu durumda; f fonksiyonunun

büzülme dönüşümü olmasıiçin gerek ve yeter koşul,

∀F ∈ F (X) : λ
′
(f [F]) ◦ f ≤ λF

olmasıdır (Lowen 1987).

O halde, uzaklık fonksiyonu veya limit operatörü kavramlarından herhangi biri ile

donatılmı̧s bir küme, aynımatematiksel varlı̆gıifade eder.

Tanım 4.5 X bir küme olmak üzere; S ile, X üzerinde tanımlıbir uzaklık fonksi-

yonu veya bir limit operatörü gösterilsin. Bu durumda; S, X üzerinde bir yaklaşma

yapısıolarak adlandırılır. (X,S) ikilisine ise yaklaşma uzayıadıverilir (Lowen

1987).

X bir küme olmak üzere; X üzerinde Örnek 4.2 de tanımlanan δτ fonksiyonu ele

alındı̆gında, X üzerinde tanımlıher τ topolojisine kaŗsılık bir uzaklık fonksiyonu

tanımlanabileceği görülmüştür. (X, δ) bir yaklaşma uzayıolmak üzere; X üzerinde

tanımlıbir τ topolojisi için δ = δτ oluyor ise (X, δ) ikilisine topolojik yaklaşma

uzayıadıverilir. Benzer şekilde, X üzerinde tanımlıbir d metriği için δ = δd oluyor

ise (X, δ) ikilisi metrik yaklaşma uzayıolarak adlandırılır.

Nesneleri yaklaşma uzayları, morfizmleri yaklaşma uzaylarıarasında tanımlıbüzülme

dönüşümleri olan kategori Ap ile gösterilir. Ap kategorisi bir topolojik kategoridir.

(X, τ) ve (Y, τ
′
) iki topolojik uzay olmak üzere; f : X −→ Y biçiminde tanımlı

bir f fonksiyonunun sürekli olmasıiçin gerek ve yeter koşul f : (X, δτ ) −→ (Y, δτ ′ )

fonksiyonunun büzülme dönüşümü olmasıdır. Dolayısıyla,

Top
F−→ Ap

τ −→ δτ

f −→ f

biçiminde tanımlıF funktoru bir dolu funktor olduğundan Top kategorisi Ap ka-

tegorisinin bir dolu alt kategorisidir. Ayrıca, Top kategorisi Ap kategorisinin yansı-

malıve ko-yansımalıbir alt kategorisidir. Ap kategorisi Conv kategorisinin aksine
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kartezyen kapalı değildir, ancak kartezyen kapalı bir süperkategoriye sahiptir

(Lowen 1987). Bu kategori, 5. bölümde incelenecektir.
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5. YAKINSAMA-YAKLAŞMA UZAYLARI

Bu bölümde; yakınsama-yaklaşma uzaylarıve yakınsama-yaklaşma uzaylarıarasında

tanımlımorfizmler ifade edilerek, sırasıyla 3.3 ve 4. bölümde verilen Conv ve Ap

kategorilerinin bir süperkategorisi tanımlanacaktır. Yakınsama-yaklaşma uzaylarını

karakterize eden matematiksel yapılar, yakınsaklık yapılarına benzer özelliklere sahip

olup yaklaşma uzaylarınıkarakterize eden limit operatörlerinin Tanım 4.2 de verilen

(L3) koşulu kaldırılarak ve (L2) koşulu zayıflatılarak tanımlanmı̧stır. Yakınsama-

yaklaşma ifadesi yerine kısalık bakımından Cap (convergence-approach) ifadesi kul-

lanılacaktır.

Tanım 5.1 X bir küme, λ : F(X) −→ PX bir fonksiyon olsun. Bu durumda;

i) ∀x ∈ X için λ(
•
x) (x) = 0

ii) ∀F, G ∈ F(X) için λ(F ∩ G) = λF ∨ λG

özellikleri sağlanıyor ise, λ fonksiyonunaX kümesi üzerinde bir yakınsama-yaklaşma

limit operatörü (kısaca Cap-limit), (X,λ) ikilisine ise yakınsama-yaklaşma

uzayı(kısaca Cap-uzay) adıverilir (Lowen 1988).

Her sonlu derinlikli yakınsaklık yapısına kaŗsılık bir Cap-limit tanımlanabileceği,

aşağıda verilen önerme ile açıklanmı̧stır.

Önerme 5.1 (X, ξ) sonlu derinlikli bir yakınsama uzayıolsun. Bu durumda;

λξ : F(X) 7−→ PX

F −→ λξF : X 7−→ P

x −→ λξF (x) :=

 0 , (F, x) ∈ ξ ise

∞ , (F, x) /∈ ξ ise

(5.1)

biçiminde tanımlanan λξ fonksiyonu, X kümesi üzerinde bir Cap-limittir. λξ fonksi-

yonuna, ξ bağıntısına kaŗsılık gelen Cap-limit adıverilir (Lowen 1988).

İspat. ξ, X kümesi üzerinde bir yakınsaklık yapısıolduğundan, her x ∈ X için

(
•
x, x) ∈ ξ olup (5.1) den, λξ(

•
x) (x) = 0 dır. Diğer yandan, F, G ∈ F(X) olmak
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üzere; her x ∈ X için, λξF (x) ∨ λξG (x) = 0 ise (F, x) ∈ ξ ve (G, x) ∈ ξ olur. ξ, X

kümesi üzerinde sonlu derinlikli bir yakınsaklık yapısıolduğundan, (F ∩ G, x) ∈ ξ

olup (5.1) den, λξ(F ∩ G) (x) = 0 dır. Ayrıca, her x ∈ X için, λξ(F ∩ G) (x) = 0

ise, (5.1) den, (F ∩ G, x) ∈ ξ olup Tanım 3.1 (i) den, (F, x) ∈ ξ ve (G, x) ∈ ξ olur.

Dolayısıyla, λξF (x) ∨ λξG (x) = 0 dır. Diğer yandan, her x ∈ X için,

λξF (x) ∨ λξG (x) =∞⇔ λξ(F ∩ G) (x) =∞

önermesinin gerçeklendiği benzer şekilde gösterilebilir. O halde, her F, G ∈ F(X)

için λ(F ∩ G) = λF ∨ λG olup ispat tamamlanır.

Tanım 5.2 (X,λ) ve (X
′
, λ
′
) iki Cap-uzay ve f : X → X

′
bir fonksiyon olsun. Bu

durumda;

∀F ∈ F(X) : λ
′
(f [F]) ◦ f 6 λF

eşitsizliği gerçekleniyor ise, f fonksiyonuna, Cap-uzaylar arasında tanımlıbir büzülme

dönüşümü adıverilir (Lowen 1988).

(X,λ) ve (Y, λ
′
) iki Cap-uzay olmak üzere; X ve Y uzaylarıarasında tanımlıtüm

büzülme dönüşümlerinin kümesi, MorCap(X, Y ) veyaMorCap(λ, λ
′
) ile gösterilecek-

tir.

Tanım 5.3 X bir küme, λ ve λ
′
, X üzerinde tanımlı iki Cap-limit olsun. Bu

durumda;

idX : (X,λ
′
) 7−→ (X,λ)

x −→ idX (x) := x

birim fonksiyonu büzülme dönüşümü oluyor ise, λ
′
fonksiyonu λ fonksiyonundan

daha incedir (veya λ fonksiyonu λ
′
fonksiyonundan daha kabadır) denir ve λ 6 λ

′

biçiminde gösterilir (Lowen 1988).

Tanım 5.4 Nesneleri Cap-uzaylar, morfizmleri Cap-uzaylar arasında tanımlıbüzülme

dönüşümleri olan kategori Cap ile gösterilir (Lowen 1988).
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Teorem 5.1 X bir küme, J herhangi bir indis kümesi, {(Xj, λj)}j∈J Cap-uzayların

bir ailesi olsun ve {fj : X −→ (Xj, λj)}j∈J fonksiyon ailesi verilsin. Bu durumda;

λin : F(X) 7−→ PX

F −→ λinF := sup
j∈J

λj(fj[F]) ◦ fj
(5.2)

biçiminde tanımlıλin fonksiyonu, X kümesi üzerinde bir Cap-limittir. λin fonksi-

yonuna, {fj}j∈J ailesine kaŗsılık gelen başlangıç Cap-limit adı verilir (Lowen

1988).

İspat. {(Xj, λj)}j∈J Cap-uzayların bir ailesi ve her j ∈ J , herhangi bir x ∈ X için

{fj(x)}• = fj[
•
x] olduğundan,

λj(fj[
•
x])(fj (x)) = 0

olur. O halde, (5.2) den, λin(
•
x) (x) = 0 dır. Diğer yandan, F, G ∈ F(X) olmak

üzere, her j ∈ J için,

fj[F ∩ G] = fj[F] ∩ fj[G]

ve λj, Xj kümesi üzerinde bir Cap-limit olduğundan, herhangi bir x ∈ X için,

λin(F ∩ G) (x) = sup
j∈J

λj(fj[F ∩ G]) (fj (x))

= sup
j∈J

λj (fj[F] ∩ fj[G]) (fj (x))

= sup
j∈J

[λj(fj[F]) (fj (x)) ∨ λj(fj[G])(fj (x))]

= sup
j∈J

λj(fj[F]) (fj (x)) ∨ sup
j∈J

λj(fj[G]) (fj (x))

= λinF (x) ∨ λinG (x)

eşitliği gerçeklenir. O halde, λin fonksiyonu, X kümesi üzerinde bir Cap-limittir.

Son olarak, λin fonksiyonunun {fj}j∈J ailesine kaŗsılık gelen başlangıç yapısıolduğu

gösterilirse ispat tamamlanır. (X
′
, λ
′
) ∈ |Cap| , g : X

′ −→ X bir fonksiyon ve her

j ∈ J için fj ◦ g ∈ MorCap(X
′
, Xj) olsun. g fonksiyonunun büzülme dönüşümü

olduğunu göstermek için, F ∈ F(X
′
) olmak üzere; Tanım 5.2 gereğince,

λin (g[F]) ◦ g 6 λ
′
F

eşitsizliğini göstermemiz gerekir. Hipotezden, her j ∈ J için λj((fj ◦g)[F])◦(fj ◦g) 6
λ
′
F olduğunu biliyoruz. Bu durumda;

sup
j∈J

λj(fj(g[F])) ◦ (fj ◦ g) 6 λ
′
F
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olup (5.2) den, λin (g[F]) ◦ g 6 λ
′
F elde edilir. Diğer yandan, (X

′
, λ
′
) ∈ |Cap| ve

g ∈MorCap(X
′
, X) olsun. Her j ∈ J için, fj ◦g : X

′ −→ Xj fonksiyonunun büzülme

dönüşümü olduğunu göstermek için, F ∈ F(X
′
) olmak üzere;

λj((fj ◦ g)[F]) ◦ (fj ◦ g) 6 λ
′
F

eşitsizliğini göstermemiz gerekir. Hipotezden, her F ∈ F(X
′
) için λin (g[F])◦g 6 λ

′
F

olup (5.2) den,

sup
j∈J

λj(fj[g[F]]) ◦ (fj ◦ g) = sup
j∈J

λj((fj ◦ g)[F]) ◦ (fj ◦ g) 6 λ
′
F

elde edilir. O halde, her j ∈ J için

λj((fj ◦ g)[F]) ◦ (fj ◦ g) 6 λ
′
F

olup ispat tamamlanır.

Örnek 5.1 (X,λ) ve (Y, λ
′
) iki Cap-uzay olsun. Bu durumda; H ∈ F(X × Y ) ve

(x, y) ∈ X × Y olmak üzere; X × Y kümesi üzerinde,

(λ× λ′)H (x, y) := λ (p1[H]) (x) ∨ λ′ (p2[H]) (y) (5.3)

biçiminde tanımlanan λ × λ
′
fonksiyonuna çarpım Cap-limit adıverilir (Lowen

1988).

Teorem 5.2 Cap kategorisi bir topolojik kategoridir (Lowen 1988).

İspat. (X,λ) ve (Y, λ
′
) iki Cap-uzay olmak üzere;

U : MorCap(X, Y ) 7−→ MorSet(X, Y )

f −→ U(f) := f

biçiminde tanımlıU dönüşümü morfizmler üzerinde birebir olduğundan düzenli bir

funktor olup Cap kategorisi bir belirli kategoridir. I bir indis kümesi olmak üzere;

herhangi bir X kümesi üzerinde tanımlıCap-limitlerin ailesi {λi}i∈I , i, j ∈ I olmak

üzere;

λi 6 λj ⇐⇒ idX : (X,λj) −→ (X,λi) büzülme dönüşümü
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biçiminde tanımlanan “6”bağıntısına göre kısmi sıralıdır. Ayrıca, X = {x} olmak

üzere; X kümesi üzerinde, her F ∈ F(X) için,

λF : X −→ P

x −→ λF (x) := 0

biçiminde bir tek Cap-limit tanımlanabilir. Diğer yandan, Teorem 5.1 de, Cap

kategorisinin başlangıç yapılarına sahip olduğu gösterilmi̧stir.

Önerme 5.2 X ve Y iki Cap-uzay olsun. F ∈ F (X), Ψ ∈ F (MorCap(X, Y )) ve

her ϕ ∈ Ψ, F ∈ F için

ϕ(F ) := {g (x) | g ∈ ϕ, x ∈ F} =
⋃
g∈ϕ

g(F ) (5.4)

olmak üzere;

ΨF := {ϕ(F ) | ϕ ∈ Ψ, F ∈ F}↑ (5.5)

biçiminde tanımlıΨF ailesi Y kümesi üzerinde bir süzgeçtir (Lowen 1988).

İspat. F ∈ F (X), Ψ ∈ F (MorCap(X, Y )) ve S := {ϕ(F ) | ϕ ∈ Ψ, F ∈ F} olmak

üzere; S ailesinin Y kümesi üzerinde bir süzgeç tabanıolduğunu göstermemiz gerekir.

Her ϕ ∈ Ψ ve her F ∈ F için ϕ(F ) 6= ∅ olup ∅ /∈ S dir. Diğer yandan, K,H ∈ S

ise, (5.5) den, ϕ1(F1) = K ve ϕ2(F2) = H olacak biçimde ϕ1, ϕ2 ∈ Ψ ve F1, F2 ∈ F

vardır. Bu durumda; ϕ1 ∩ ϕ2 ∈ Ψ ve F1 ∩ F2 ∈ F için S := (ϕ1 ∩ ϕ2) (F1 ∩ F2) ∈ S

olup

S ⊆ ϕ1(F1) ∩ ϕ2(F2) = K ∩H

elde edilir. Böylece ispat tamamlanır.

(X,λX) ve (Y, λY ) iki Cap-uzay, Ψ ∈ F(MorCap(X, Y )), f ∈ MorCap(X, Y ) olsun,

ve

L(Ψ, f) := {α ∈ P | ∀F ∈ F(X) : λY (ΨF) ◦ f 6 λXF ∨ α} (5.6)

biçiminde ele alınsın. ∞ ∈ L(Ψ, f) olup L(Ψ, f) 6= ∅ dir ve tanımıgereği L(Ψ, f)

kümeleri, P kümesinin [βf ,∞] biçiminde alt aralıklarıdır. Eğer, {f} ∈ Ψ ise (5.5)

den, F ∈ F(X) için f [F] ⊂ ΨF elde edilir. λY , Y kümesi üzerinde bir Cap-limit

olduğundan, Tanım 5.1 (ii) den,

λY (ΨF) ◦ f 6 λY (f [F]) ◦ f
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yazılabilir. Ayrıca, f ∈MorCap(X, Y ) olduğundan, her α ∈ P için,

λY (f [F]) ◦ f 6 λXF ∨ α

ve böylece

λY (ΨF) ◦ f 6 λXF ∨ α (5.7)

eşitsizliği gerçeklenir. Dolayısıyla, L(Ψ, f) = P olacaktır. Diğer yandan, f ∈

MorCap(X, Y ) 3 {f} /∈ Ψ olsun. Bu durumda; x ∈ X ve F ∈ F(X) olmak üzere;

λXF (x) = 0 ise, λY (ΨF) (f (x)) 6= 0 olabileceğinden,

λY (ΨF) ◦ f 6 λXF ∨ α

eşitsizliğinin gerçeklenebilmesi için λY (ΨF) (f (x)) 6 α olmalıdır. Dolayısıyla, L(Ψ, f)

kümesi içinde bahsi geçen α ∈ P ögeleri, Y kümesi üzerinde tanımlıΨF süzgecinin

Ψ süzgecine ait olmayan bir f fonksiyonu için, f (x) değerine yakınsama derecesini

sınırlandırır.

Örnek 5.2 (X,λX) ve (Y, λY ) iki Cap-uzay, Ψ ∈ F(MorCap(X, Y )) ve f ∈MorCap(X, Y )

olsun. Bu durumda;

λ : F(MorCap(X, Y )) 7−→ PMorCap(X,Y )

Ψ −→ λΨ := inf L(Ψ, ·)
(5.8)

biçiminde tanımlı λ fonksiyonu, MorCap(X, Y ) üzerinde bir Cap-limittir (Lowen

1988).

İspat. f ∈ MorCap(X, Y ) olsun. Bu durumda; her F ∈ F(X) ve her α ∈ P için

λY (f [F])◦f 6 λXF∨α eşitsizliği gerçeklenir. Ayrıca, (5.5) gereğince, (
•
f)F ∈ F (Y ) ve

f [F] = (
•
f)F olduğundan, λY ((

•
f)F) ◦ f 6 λXF∨α eşitsizliği gerçeklenir. Dolayısıyla,

(5.6) dan, L(
•
f, f) = P ve (5.8) den,

λ(
•
f)(f) = inf L(

•
f, f) = 0

olup λ fonksiyonu için, Tanım 5.1 de verilen (i) koşulu sağlanır. Diğer yandan,

Ψ,Φ ∈ F(MorCap(X, Y )) ve αΨ, αΦ > 0 olmak üzere;

L(Ψ, f) := [αΨ,∞] ve L(Φ, f) := [αΦ,∞]
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olarak ele alınırsa, L(Ψ, f) ∩ L(Φ, f) = [αΨ ∨ αΦ,∞] olacaktır. Bu durumda; (5.8)

den,

λΨ(f) ∨ λΦ(f) = inf L(Ψ, f) ∨ inf L(Φ, f)

= αΨ ∨ αΦ

= inf(L(Ψ, f) ∩ L(Φ, f))

dir. O halde,

L(Ψ, f) ∩ L(Φ, f) = L(Ψ ∩ Φ, f) (5.9)

eşitliği gösterilirse, ispat tamamlanır. (5.9) eşitliğini göstermek için,

ΨF ∩ ΦF = (Ψ ∩ Φ)
F

olduğunu görmek yeterlidir. S ∈ ΨF ∩ ΦF ise, (5.5) den,

∃σ ∈ Ψ,∃F1 ∈ F 3 σ (F1) ⊂ S

ve

∃ψ ∈ Φ,∃F2 ∈ F 3 ψ (F2) ⊂ S

dir. F3 := F1 ∩ F2 ∈ F ve µ := σ ∪ ψ ∈ Ψ ∩ Φ olarak ele alınırsa, µ (F3) ∈ (Ψ ∩ Φ)
F

olup µ (F3) ⊂ S olduğundan S ∈ (Ψ ∩ Φ)
F
olacaktır. Tersine, S ∈ (Ψ ∩ Φ)

F
ise,

∃µ ∈ Ψ ∩ Φ,∃K ∈ F 3 µ (K) ⊂ S

dir. Bu durumda; µ (K) ∈ ΨF ∩ ΦF olup S ∈ ΨF ∩ ΦF elde edilir. Dolayısıyla, (5.9)

eşitliğinde, eşitliğin her iki tarafının infimumu alınırsa (5.8) den, λ(Ψ∩Φ) = λΨ∨λΦ

elde edilir. O halde λ fonksiyonu için, Tanım 5.1 de verilen (ii) koşulu sağlanır.

Önerme 5.1 de, sonlu derinlikli bir yakınsaklık yapısına bir Cap-limitin nasıl kaŗsılık

getirileceği ifade edilmi̧stir. Bu durumda, aşağıdaki sonuç verilebilir.

Önerme 5.3 (X, ξ) ve (Y, σ) iki sonlu derinlikli yakınsama uzayıolsun. Bu du-

rumda; aşağıdaki önermeler denktir.

i) f ∈ C(ξ, σ)

ii) f ∈MorCap(λξ, λσ)

(Lowen 1988).
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Teorem 5.3 Conv kategorisi Cap kategorisinin bir dolu alt kategorisidir (Lowen

1988).

İspat. (X, ξ) bir yakınsama uzayıolmak üzere; her F ∈ F(X) ve her x ∈ X için

λξF (x) :=

 0 , (F, x) ∈ ξ ise

∞ , (F, x) /∈ ξ ise

biçiminde tanımlanırsa,

Conv
F−→ Cap

f −→ f

ξ −→ λξ

F funktoru bir dolu funktordur.

Önerme 5.4 (X,λ) bir Cap-uzay olmak üzere;

ξλ := {(F, x) ∈ F(X)×X | λF(x) <∞} (5.10)

bağıntısıX üzerinde sonlu derinlikli bir yakınsaklık yapısıdır (Lowen 1988).

İspat. λ, X kümesi üzerinde bir Cap-limit olduğundan, her x ∈ X için λ(
•
x) (x) = 0

olup (
•
x, x) ∈ ξλ dır. Diğer yandan, F,G ∈ F(X), F 6 G ise, her x ∈ X için Tanım

5.1 (ii) den, λG (x) 6 λF (x) elde edilir. Bu durumda; (F, x) ∈ ξλ ise, λF(x) < ∞

ve böylece λG(x) < ∞ olacağından (G, x) ∈ ξλ elde edilir. ξλ bağıntısının sonlu

derinlikli olduğunu gösterelim: F,G ∈ F(X) olmak üzere; (F, x) ∈ ξλ ve (G, x) ∈ ξλ
ise, λF(x) < ∞ ve λG(x) < ∞ dir. Bu durumda; λF(x)∨ λG(x) < ∞ olup λ, X

kümesi üzerinde bir Cap-limit olduğundan, λ (F ∩ G) (x) <∞ olacaktır. Dolayısıyla,

(F ∩ G, x) ∈ ξλ elde edilir.

Önerme 5.5 (X,λ) bir Cap-uzay olmak üzere; aşağıdaki önermeler denktir.

i) λ, X kümesi üzerinde tanımlısonlu derinlikli bir ξ yakınsaklık yapısıtarafından

üretilir.

ii) Her F ∈ F(X) için λF(X) ⊂ {0,∞} dir.

(Lowen 1988).
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İspat. λ, X kümesi üzerinde tanımlısonlu derinlikli bir ξ yakınsaklık yapısıtarafın-

dan üretiliyor ise, λ = λξ olup (5.1) den, her F ∈ F(X) için λF(X) ⊂ {0,∞} dir.

Diğer yandan; her F ∈ F(X) için λF(X) ⊂ {0,∞} ise, (5.10) da verilen ξλ için (5.1)

gereğince, λξλ = λ eşitliği gerçeklenir.

Teorem 5.4 Conv kategorisi Cap kategorisinin bi-yansımalıbir alt kategorisidir

(Lowen 1988).

İspat. Cap kategorisi bir topolojik kategoridir ve Teorem 5.3 de, Conv kate-

gorisinin Cap kategorisinin bir dolu alt kategorisi olduğu gösterilmi̧stir. (X,λ) bir

Cap-uzay olmak üzere;

λ∗ : F(X) −→ PX

F −→ λ∗F : X −→ P

x −→ λ∗F (x) :=

 0 , λF(x) <∞

∞ , λF(x) =∞

(5.11)

biçiminde tanımlıλ∗ fonksiyonu X kümesi üzerinde bir Cap-limit olup λ∗ 6 λ dır.

λ, X kümesi üzerinde bir Cap-limit olduğundan, her x ∈ X için λ(
•
x) (x) = 0 olup

(5.11) den, λ∗(
•
x) (x) = 0 dır. Dolayısıyla λ∗ fonksiyonu, Tanım 5.1 de verilen (i)

koşulunu sağlar. F, G ∈ F(X) ve x ∈ X olmak üzere;

λF(x) <∞ ve λG(x) <∞

ise, λ, X kümesi üzerinde bir Cap-limit olduğundan λ (F ∩ G) (x) < ∞ olup (5.11)

den,

λ∗F (x) ∨ λ∗G (x) = 0 = λ∗ (F ∩ G) (x)

elde edilir. Eğer,

λF(x) =∞ ve λG(x) =∞

ise, λ (F ∩ G) (x) = ∞ olup (5.11) den, λ∗F (x) ∨ λ∗G (x) = ∞ = λ∗ (F ∩ G) (x)

elde edilir. λF(x) = ∞ ve λG(x) < ∞ olmasıdurumunda da λ∗F (x) ∨ λ∗G (x) =

λ∗ (F ∩ G) (x) eşitliği benzer şekilde gösterilebilir. Dolayısıyla, λ∗ fonksiyonu, Tanım

5.1 de verilen (ii) koşulunu sağlar. λ∗ 6 λ olduğunu göstermek için, Tanım 5.3
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gereğince,

idX : (X,λ) −→ (X,λ∗)

x −→ idX (x) := x

fonksiyonun büzülme dönüşümü olduğunu, yani, her F ∈ F(X) ve herhangi bir x ∈

X için λ∗F(x) 6 λF(x) eşitsizliğini göstermemiz gerekir. λF(x) =∞ ve λ∗F(x) = 0

durumlarıiçin eşitsizliğin gerçeklendiği açıktır. λF(x) <∞ ise, (5.11) den, λ∗F(x) =

0 dır. λ∗F(x) = ∞ ise, (5.11) den, λF(x) = ∞ olup λ∗F(x) 6 λF(x) eşitsizliği

gerçeklenir. Dolayısıyla, λ∗ 6 λ dır. Diğer yandan, her F ∈ F(X) için λ∗F(X) ⊂

{0,∞} olduğundan, Önerme 5.5 gereğince, λ∗, X kümesi üzerinde tanımlı bir ξ

yakınsaklık yapısından üretilir. (5.10) dan,

ξ := {(F, x) ∈ F(X)×X | λF(x) <∞}

bağıntısıbir yakınsaklık yapısıolup λ∗ = λξ dir. λ
∗ = λξ eşitliğini göstermek için,

F ∈ F(X) ve x ∈ X olmak üzere; λ∗F(x) = λξF(x) eşitliğini göstermemiz gerekir.

λ∗F(x) = 0 ise, (5.11) den, λF(x) < ∞ olup ξ bağıntısının tanımından, (F, x) ∈ ξ

dir. Bu durumda; (5.1) den, λξF(x) = 0 dır. λ∗F(x) =∞ ise, (5.11) den, λF(x) =∞

olup ξ bağıntısının tanımından, (F, x) /∈ ξ dir. Bu durumda; (5.1) den, λξF(x) =∞

dır. Son olarak, (Y, σ) herhangi bir yakınsama uzayıve f : (X,λ) −→ (Y, λσ) bir

büzülme dönüşümü olmak üzere;

f ∗ : (X, ξ) −→ (Y, σ)

x −→ f ∗(x) := f(x)

biçiminde tanımlı f ∗ fonksiyonunun bir yakınsama dönüşümü olduğu gösterilirse,

ispat tamamlanır. F ∈ F(X) ve x ∈ limξ F olsun. Bu durumda; (5.1) den, λξF (x) =

0 olup λ∗ = λξ olduğundan λ
∗F (x) = 0 dır. Hipotezden, f ∈ MorCap(X, Y ) olup

F ∈ F(X) ve x ∈ X için

λσ (f [F]) (f (x)) 6 λF(x) (5.12)

eşitsizliği gerçeklenir. λ∗F (x) = 0 olduğundan (5.11) gereğince λF(x) < ∞ olup

(5.12) den, λσ (f [F]) (f (x)) <∞ elde edilir. Bu durumda; λσ, σ bağıntısına kaŗsılık

gelen Cap-limit olduğundan (5.1) den, λσ (f ∗[F]) (f ∗ (x)) = 0 olur. Dolayısıyla,

f ∗ (x) ∈ limσ f
∗[F] elde edilir.
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Teorem 5.5 Conv kategorisi Cap kategorisinin bi-ko-yansımalıbir alt kategori-

sidir (Lowen 1988).

İspat. Cap kategorisi bir topolojik kategoridir ve Teorem 5.3 de, Conv kate-

gorisinin Cap kategorisinin bir dolu alt kategorisi olduğu gösterilmi̧stir. (X,λ) bir

Cap-uzay olmak üzere;

λ∗ : F(X) −→ PX

F −→ λ∗F : X −→ P

x −→ λ∗F(x) :=

 0 , λF(x) = 0

∞ , λF(x) > 0

biçiminde tanımlıλ∗ fonksiyonu X kümesi üzerinde bir Cap-limit olup λ 6 λ∗ dır.

(X,λ) bir Cap-uzay olduğundan, her x ∈ X için λ(
•
x)(x) = 0 olup λ∗(

•
x)(x) = 0

dır. F, G ∈ F(X) ve x ∈ X olsun. λF(x) = 0 ve λG(x) = 0 ise, λ bir Cap-limit

olduğundan λ (F ∩ G) (x) = 0 olup

λ∗F(x) ∨ λ∗G(x) = 0 = λ∗ (F ∩ G) (x)

elde edilir. λF(x) > 0 ve λG(x) > 0 ise, λ bir Cap-limit olduğundan λ (F ∩ G) (x) > 0

olup

λ∗F(x) ∨ λ∗G(x) =∞ = λ∗ (F ∩ G) (x)

elde edilir. λF(x) = 0 ve λG(x) > 0 olmasıdurumunda da eşitlik benzer şekilde gös-

terilebilir. Dolayısıyla, λ∗ X üzerinde bir Cap-limittir. λ 6 λ∗ olduğunu göstermek

için, Tanım 5.3 gereğince, her F ∈ F(X) ve herhangi bir x ∈ X için λF(x) 6 λ∗F(x)

eşitsizliğini göstermemiz gerekir. λF(x) = 0 ve λ∗F(x) = ∞ durumlarıiçin eşitsi-

zliğin gerçeklendiği açıktır. λ∗F(x) = 0 ise λF(x) = 0 ve λ∗F(x) =∞ ise λF(x) > 0

olup λF(x) 6 λ∗F(x) eşitsizliği gerçeklenir. Dolayısıyla, λ 6 λ∗ dır. Diğer yandan,

her F ∈ F(X) için λ∗F(X) ⊂ {0,∞} olduğundan, Önerme 5.6 gereğince, λ∗, X

üzerinde tanımlıbir ξ yakınsaklık yapısından üretilir. Bu durumda; X üzerinde,

ξ := {(F, x) ⊂ F(X)×X | λF(x) = 0}

biçiminde tanımlanan ξ yakınsaklık yapısıiçin λ∗ = λξ dir. ξ bağıntısının bir yakın-

saklık yapısıolduğu açıktır. F ∈ F(X) ve x ∈ X olmak üzere; λ∗F(x) = 0 ise,
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λF(x) = 0 olup ξ bağıntısının tanımından, (F, x) ∈ ξ dir. Bu durumda; (5.1) den,

λξF(x) = 0 dır. λ∗F(x) =∞ ise, λF(x) > 0 olup (F, x) /∈ ξ olduğundan λξF(x) =∞

dur. Dolayısıyla, λ∗ = λξ dir. Ayrıca, (Y, σ) herhangi bir yakınsama uzayı ve

f : (Y, λσ) −→ (X,λ) bir büzülme dönüşümü ise,

f∗ : (Y, σ) −→ (X, ξ)

y −→ f ∗(y) := f(y)

biçiminde tanımlı f∗ fonksiyonunun yakınsama dönüşümü olduğu Teorem 5.4 de

verilen ispata benzer şekilde gösterilebilir.

Teorem 5.6 Ap kategorisiCap kategorisinin bi-yansımalıbir alt kategorisidir (Lowen

1988).

İspat. Cap kategorisi bir topolojik kategoridir ve Ap kategorisinin Cap kate-

gorisinin bir dolu alt kategorisi olduğu açıktır. Ap kategorisinin Cap kategorisi

içinde başlangıç yapılarına göre kapalıolduğu gösterilirse Önerme 2.6 gereğince is-

pat tamamlanır. Ap kategorisinin Cap kategorisi içinde başlangıç yapılarına göre

kapalıolduğunu göstermek için, Tanım 2.28 den, X bir küme, J herhangi bir indis

kümesi, {(Xj, λj)}j∈J yaklaşma uzaylarının bir ailesi ve {fj : X −→ (Xj, λj)}j∈J bir

fonksiyon ailesi olmak üzere; X kümesi üzerinde (5.2) de,

λin : F(X) −→ PX

F −→ λinF := sup
j∈J

λj(fj[F]) ◦ f

biçiminde tanımlanan başlangıç Cap-limitin bir limit operatörü olduğunu göster-

memiz gerekir. λin, X kümesi üzerinde bir Cap-limit olduğundan her x ∈ X için

λin(
•
x)(x) = 0 dır. Dolayısıyla, λin fonksiyonu Tanım 4.2 de verilen (L1) koşulunu

sağlar. K bir indis kümesi ve her k ∈ K için Fk ∈ F(X) olsun. Bu durumda;

sırasıyla,

fj

[⋂
k∈K

Fk

]
=
⋂
k∈K

fj[Fk]
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eşitliği ve her j ∈ J için λj fonksiyonunun Xj üzerinde bir limit operatörü olduğu

kullanılırsa,

λin

(⋂
k∈K

Fk

)
= sup

j∈J
λj

(
fj

[⋂
k∈K

Fk

])
◦ fj

= sup
j∈J

λj

(⋂
k∈K

fj[Fk]

)
◦ fj

= sup
j∈J

sup
k∈K

λj (fj[Fk]) ◦ fj

= sup
k∈K

λinFk

eşitliği elde edilir. Dolayısıyla, λin fonksiyonu (L2) koşulunu sağlar. Son olarak, λin

fonksiyonunun (L3) koşulunu sağladı̆gınıgösterelim: F ∈ F(X),

σ : X −→ F (X)

y −→ σ (y)

bir fonksiyon ve

ε := sup
y∈X

λin (σ (y)) (5.13)

biçiminde tanımlansın. z ∈ Xj olmak üzere Xj kümesi üzerinde,

Rj : Xj −→ F(Xj)

z −→ Rj(z) :=


⋂

y∈f−1j (z)

fj[σ(y)] , z ∈ fj (X)

•
z , z /∈ fj (X)

biçiminde bir süzgeç seçimi tanımlayalım. Bu durumda; her j ∈ J ve her F ∈ F(X)

için ∑
Rj(fj[F]) ⊂ fj [

∑
σ(F)] (5.14)

dir. Gerçekten, W ∈
∑
Rj(fj[F]) ise, Önerme 2.5 (i) den, W ∈

⋃
A∈fj [F]

⋂
z∈A
Rj(z) dir.

W ∈ fj [
∑
σ(F)] olduğunu göstermek için,

∃K ∈
∑
σ(F) : fj (K) ⊂ W

olduğunu göstermemiz gerekir. Hipotezden,

∃A ∈ fj[F] ve ∀z ∈ A : W ∈ Rj(z)
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dir ve dolayısıyla fj (F ) ⊂ A olacak biçimde en azından bir F ∈ F vardır. Bu

durumda; her e ∈ F için W ∈ Rj(fj (e)) olup

Rj (fj (e)) =
⋂

y∈f−1j (fj(e))

fj[σ (y)]

olduğundan,

∀e ∈ F ve ∀y ∈ f−1
j (fj (e)) : W ∈ fj[σ (y)]

dir. Ayrıca, e ∈ f−1
j (fj (e)) olduğundan W ∈ fj[σ (e)] olup fj (Oe) ⊂ W olacak

biçimde en azından bir Oe ∈ σ (e) vardır. K :=
⋃
e∈F

Oe biçiminde tanımlanırsa,

K ∈
∑
σ(F) ve fj (K) ⊂ W olup (5.14) elde edilir. Diğer yandan, Xj kümesinin

Xj = fj (X) ∪ (Xj − fj (X)) biçiminde ifade edilebileceği dikkate alınırsa,

z /∈ fj (X) ise λj(Rj(z))(z) := λj(ż)(z) = 0 (5.15)

ve

z ∈ fj (X) ise λj(Rj(z))(z) := λj

 ⋂
y∈f−1j (z)

fj[σ(y)]

 (z) (5.16)

dir. Sırasıyla her j ∈ J için λj limit operatörü olduğundan ve (5.13) kullanılarak

λj

 ⋂
y∈f−1j (z)

fj(σ(y))

 (z) = sup
y∈f−1j (z)

λj (fj[σ(y)]) (z)

6 sup
y∈X

sup
j∈J

λj (fj[σ(y)]) (fj(y))

= sup
y∈X

λin (σ(y)) = ε

eşitsizliği elde edilir. Her j ∈ J için εj := sup
z∈Xj

λj(Rj(z))(z) biçiminde tanımlanırsa,

εj = sup
z∈fj(X)∪(Xj−fj(X))

λj(Rj(z))(z) (5.17)

= sup
z∈fj(X)

λj(Rj(z))(z) ∨ sup
z /∈fj(X)

λj(Rj(z))(z)

yazılabilir. (5.15) ve (5.16) kullanılırsa, (5.13) den, her j ∈ J için

εj 6 sup
y∈X

sup
j∈J

λj (fj[σ(y)]) (fj(y)) = ε

olur. Dolayısıyla, sup
j∈J

εj 6 ε elde edilir. Bu durumda;

λin [
∑
σ(F)] = sup

j∈J
λj (fj [

∑
σ(F)]) ◦ fj
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olup (5.14) kullanılırsa,

λin [
∑
σ(F)] 6 sup

j∈J
λj (
∑
Rj(fj[F])) ◦ fj

elde edilir. Her j ∈ J için, λj, Xj kümesi üzerinde bir limit operatörü olduğundan,

λin [
∑
σ(F)] 6 sup

j∈J
(λj (fj [F]) ◦ fj + εj)

6 sup
j∈J

λj (fj [F]) ◦ fj + sup
j∈J

εj

6 λinF+ ε

eşitsizliği elde edilir.

Teorem 5.7 Cap kategorisi kartezyen kapalıdır (Lowen 1988).

İspat. Cap kategorisinin kartezyen kapalı olduğunu göstermek için, (X,λX) ve

(Y, λY ) iki Cap-uzay olmak üzere; MorCap(X, Y ) kümesi üzerinde, Tanım 2.29 da

ifade edilen (CC1) ve (CC2) koşullarınısağlayan bir Cap-limitin mevcut olduğunu

göstermemiz gerekir. MorCap(X, Y ) kümesi üzerinde, (5.8) ile verilen λ fonksiyonu

ele alınırsa,

e : (X,λX)× (MorCap(X, Y ), λ) −→ (Y, λY )

(x, f) −→ e (x, f) := f(x)

fonksiyonu bir büzülme dönüşümü olacaktır. Gerçekten, H ∈ F(X×MorCap(X, Y ))

ise,

F := p1[H] ∈ F(X) ve Ψ := p2[H] ∈ F(MorCap(X, Y ))

olur. Ayrıca, F × ϕ ∈ F × Ψ ise, p1 (H1) ⊂ F ve p2 (H2) ⊂ ϕ olacak biçimde

H1, H2 ∈ H vardır. Bu durumda;

H1 ⊂ p−1
1 (F ) ve H2 ⊂ p−1

2 (ϕ)

olup H1 ∩ H2 ⊂ p−1
1 (F ) ∩ p−1

2 (ϕ) = F × ϕ elde edilir. O halde, H1 ∩ H2 ∈ H

olduğundan F × ϕ ∈ H olup F × Ψ 6 H dir. (x, f) ∈ X ×MorCap(X, Y ) ise (5.3)

den,

(λX × λ)H(x, f) = λXF(x) ∨ λΨ(f) (5.18)

= λXF(x) ∨ inf L (Ψ, f)

= inf {λXF(x) ∨ α | α ∈ L(Ψ, f)}
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dir. (5.6) gereğince, her α ∈ L (Ψ, f) için λY (ΨF) ◦ f 6 λXF ∨ α olduğundan,

λY (ΨF) ◦ f 6 inf {λXF(x) ∨ α | α ∈ L(Ψ, f)} (5.19)

eşitsizliği elde edilir. O halde, (5.18) ve (5.19) dan,

λY (ΨF) ◦ f 6 (λX × λ)H(x, f) (5.20)

olur. F × Ψ 6 H ve dolayısıyla e[F × Ψ] 6 e[H] olup, λY , Y kümesi üzerinde bir

Cap-limit olduğundan,

λY (e[H])(f(x)) 6 λY (e[F×Ψ])(f(x))

elde edilir. Diğer yandan; e[F×Ψ] = ΨF olduğundan,

λY (e[H])(f(x)) = λY (ΨF)(f(x))

olup (5.20) eşitsizliği kullanılırsa,

λY (e[H])(f(x)) 6 (λX × λ)H(x, f)

elde edilir. Dolayısıyla e fonksiyonu bir büzülme dönüşümüdür. MorCap(X, Y )

kümesi üzerinde, (5.8) ile verilen λ fonksiyonu ele alındı̆gında, Tanım 2.29 da ifade

edilen (CC2) koşulunun sağlandı̆gınıgöstermek için, herhangi bir (Z, λZ) Cap-uzayı

ve
f : X × Z −→ Y

(x, z) −→ f(x, z)

biçiminde tanımlıher büzülme dönüşümü için,

f ∗ : Z −→ MorCap(X, Y )

z −→ f ∗(z)(x) := f(x, z)

fonksiyonunun büzülme dönüşümü olduğunu göstermemiz gerekir. (x, z) ∈ X × Z,

H ∈ F(X × Z) ve G ∈ F(Z) olsun. f fonksiyonu büzülme dönüşümü olduğundan,

λY (f [H])(f(x, z)) 6 (λX × λZ)H(x, z) (5.21)

eşitsizliği gerçeklenir. Ayrıca, F ∈ F(X) olmak üzere; f ∗ fonksiyonunun tanımı

gereği ve (5.5) den, f ∗[G]F ∈ F(Y ) ve

f ∗[G]F = f [F× G] (5.22)
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dir. (5.22) eşitliğini gösterelim: (5.5) den,

f ∗[G]F = {S (F ) | S ∈ f ∗[G], F ∈ F}↑

dir. H ∈ f ∗[G]F ise,

∃S ∈ f ∗[G], ∃F ∈ F 3 S (F ) ⊂ H

olup S ∈ f ∗[G] olduğundan f ∗ (G) ⊂ S olacak biçimde en azından bir G ∈ G vardır.

Buradan,

f ∗ (G) (F ) =
⋃

g∈f∗(G)

g (F ) ⊂ S (F ) ⊂ H

yazılabilir. Bu durumda; f (F ×G) ⊂
⋃

g∈f∗(G)

g (F ) olduğu gösterilirse, H ∈ f [F×G]

olacaktır. Gerçekten, y ∈ f (F ×G) ise y = f (x, z) olacak biçimde en azından bir

x ∈ F ve en azından bir z ∈ G vardır. Böylece,

∃g0 := f ∗ (z) ∈ f ∗ (G) için g0 (x) = f ∗ (z) (x) = f (x, z) = y

olup y ∈
⋃

g∈f∗(G)

g (F ) dir. Dolayısıyla, f ∗[G]F ⊂ f [F × G] elde edilir. Diğer yandan,

H ∈ f [F×G] ise, f (F ×G) ⊂ H olacak biçimde en azından bir F ∈ F ve en azından

bir G ∈ G vardır. S := f ∗ (G) ∈ f ∗[G] olarak alınırsa, S (F ) = f ∗ (G) (F ) ∈ f ∗[G]F

olacaktır. k ∈ S (F ) ise k = g (y) olacak biçimde en azından bir g ∈ S ve en azından

bir y ∈ F vardır. Bu durumda; g ∈ S olduğundan, g = f ∗ (z) olacak biçimde en

azından bir z ∈ G vardır. Buradan, k = f ∗ (z) (y) = f (y, z) ∈ f (F ×G) elde edilir.

Dolayısıyla, S (F ) ⊂ f (F ×G) ve böylece S (F ) ⊂ H olup f [F × G] ⊂ f ∗[G]F elde

edilir. Yani, f ∗[G]F = f [F× G] dir. Bu eşitlikten,

λY (f ∗[G]F)(f
∗(z)(x)) = λY (f [F× G])(f(x, z))

olup sırasıyla (5.21) eşitsizliği ve (5.3) kullanılırsa,

λY (f ∗[G]F)(f
∗(z)(x)) 6 (λX × λZ)H(x, z)

6 λXF (x) ∨ λZG (z)

elde edilir. Bu durumda; (5.6) dan, λZG(z) ∈ L(f ∗[G], f ∗(z)) olup (5.8) den,

λ(f ∗[G])(f ∗(z)) = inf L (f ∗[G], f ∗(z))

6 λZG(z)

eşitsizliği gerçeklenir. O halde, f ∗ fonksiyonu büzülme dönüşümüdür.
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6. TARTIŞMA VE SONUÇ

Yakınsaklık kavramı matematiğin pek çok alanında önem taşımaktadır. Analiz

alanında bilinen birçok yakınsaklık örneği, genel topoloji sayesinde daha geni̧s bir

çerçeve içinde incelenebilmektedir. Ancak topoloji, bilinen tüm yakınsaklık kavram-

larını ifade edebilmek için yeterli olmamı̧stır. Yakınsaklık üzerine yapılan çalı̧s-

malarda, topolojik olarak karakterize edilemeyen yakınsaklık örneklerinin varlı̆gının

fark edilmesiyle birlikte yakınsaklık, topolojiden bağımsız olarak ele alınmaya başlan-

mı̧s ve yakınsaklık teorisi doğmuştur.

Bu çalı̧smanın büyük bir kısmınıtopolojik uzayların daha geni̧s bir sınıfıolan yakın-

sama uzaylarına ayırdık. Yakınsaklık teorisinin temel araçları olan yakınsaklık

yapılarının özelliklerini inceleyerek yakınsama uzaylarını nesne kabul eden Conv

kategorisinin temel özelliklerini, Top ve Cap kategorileri ile arasındaki ili̧skileri in-

celedik. Bundan sonraki çalı̧smalarımızda, topolojik olarak karakterize edilemeyen

yakınsaklık örneklerini ele alarak bu kavramlara yakınsaklık yapılarıkaŗsılık getirip

getiremeyeceğimizi araştıracağız.
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