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OZET

Yiiksek Lisans Tezi

YAKINSAKLIK YAPILARI VE YAKLASMA UZAYLARININ
BIR GENISLEMESI: CAP KATEGORISI

Esra ALKAYA

Ankara Universitesi
Fen Bilimleri Enstitiisii
Matematik Anabilim Dali

Damgman: Dog. Dr. Sevda SAGIROGLU PEKER

Bu tez 5 boliimden olusmaktadir. ilk boliim giris kismina ayrilmistir. Ikinci boliimde,
caligma boyunca kullanilacak olan bazi temel kavramlar iki alt baglikta verilmistir.

Uciincii boliimde, yakinsaklik yapilar: ve yakinsama uzaylarina yer verilmistir. Nesneleri
sonlu derinlikli yakinsama uzaylari, morfizmleri bu uzaylar arasinda tanimli yakinsama
donitigiimleri olan kategori Conv ile gosterilir. Conv kategorisinin temel ozellikleri ve-
rilmistir ve Top kategorisi ile arasindaki iligkiler incelenmigtir.

Dordiincii boliimde, yaklagma uzaylarini karakterize eden temel yapilar ve bu uzaylar
arasinda taniml biiziilme doniigiimleri ifade edilerek Ap kategorisinin temel 6zellikleri ve-
rilmistir. Beginci boliimde, nesneleri yakinsama-yaklagsma uzaylari, morfizmleri bu uzaylar
arasinda tanimh biiziilme doniigiimleri olan Cap kategorisi ifade edilerek temel 6zellikleri
verilmigtir. Ayrica, Cap kategorisinin Conv ve Ap kategorileri ile arasindaki iligkiler ince-
lenmigtir.

Son boliimde ise tez ile ilgili genel bir degerlendirme yapilmigtir.

Aralik 2018, 81 sayfa

Anahtar Kelimeler: Yakinsaklik yapilari, yakinsama uzaylari, yaklagsma uzaylari,
uzaklik fonksiyonu, limit operatorii, yakinsama-yaklagma uzaylari, kartezyen kapali
kategori
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ABSTRACT

Master Thesis

CONVERGENCE STRUCTURES AND
AN EXTENSION OF APPROACH SPACES: CATEGORY CAP

Esra ALKAYA

Ankara University
Graduate School of Natural and Applied Sciences
Department of Mathematics

Supervisor: Assoc. Prof. Dr. Sevda SAGIROGLU PEKER

This thesis consists of five chapters. The first chapter is designated as the introduction.
In the second chapter, some basic terms and concepts which shall be used throughout this
study are provided under two sub-headings.

The third chapter adresses convergence structures and convergence spaces. The category
whose objects are finitely deep convergence spaces, whose morphisms are convergence
morphisms defined between these spaces is denoted by Conv. The main features of the
category Conv are specified and its relations with the category Top are examined.

In the fourth chapter, the main features of the category Ap are explained by specifying the
essential structures characterizing approach spaces and the contractions defined between
these spaces. In the fifth chapter, the category Cap, the objects of which are convergence-
approach spaces and the morphisms of which are the contractions defined between such
spaces, are explained and their main features are specified. In addition, the relations
between the category Cap and the categories Conv and Ap are examined.

The last chapter serves as a general assessment of the thesis.

December 2018, 81 pages

Key Words: Convergence structures, convergence spaces, approach spaces, distance,
limit operator, convergence-approach spaces, cartesian closed category
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SIMGELER DiZiNi

[0, o0

X kiimesi iizerinde tanimh tiim siizgeclerin ailesi

X kiimesi iizerinde tanimh tiim ultrasiizgeclerin ailesi

§ siizgeci x noktasina yakinsar

3§ siizgecinden daha ince olan siizgeglerin ailesi

3§ stizgecinden daha ince olan ultrasiizgeclerin ailesi

2 noktasimin 7 topolojisine gore komsuluklar siizgeci

A kiimesinin 7 topolojisine gore kapanist

x noktasiin ¢ bagintisina gore yoresel siizgeci

d metrigine gore x merkezli € yarigaph acik yuvar

X kiimesinin tiim alt kiimelerinin ailesi

Uzaklik fonksiyonu

Limit operatorii (veya Cap-limit)

§ siizgecinin £ bagintisina gore limit noktalarimin kiimesi
Nesneleri kiimeler, morfizmleri fonksiyonlar olan kategori
Nesneleri topolojik uzaylar, morfizmleri siirekli fonksiyonlar

olan kategori

X kiimesinin sonlu elemanli alt kiimelerinin ailesi

Pozitif tam sayilar kiimesi

Reel terimli dizilerin kiimesi

Noktasal yakinsaklik yapist (Ornek 3.12)

Standart yakinsaklik yapist (Ornek 3.2)

X ve Y topolojik uzaylar1 arasinda taniml siirekli fonksiyonlarin
kiimesi

D kategorisinin nesnelerinin sinifi

D kategorisinin X ve Y nesneleri arasinda tanimli morfizmlerinin
kiimesi

(X, &), (Y, o) yakinsama uzaylar1 arasinda tanimli morfizmlerin kiimesi
C (v, v) iizerinde tammh siirekli yakimsaklik yapisi (Ornek 3.16)
C' (&, 0) iizerinde tanimh siirekli yakisaklik yapisi
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1. GIRIiS

Genel topoloji, analiz alaninda bilinen yakinsaklik ve siireklilik kavramlarinin daha
genis bir cerceve icerisinde incelenmesi isteginden dogmustur. Ilk adim, Frechet
tarafindan 1906 yilinda ifade edilen metrik uzay kavramidir. Metrik uzaylar; ana-
lizin yakinsaklik ve siireklilik gibi temel kavramlar iizerine g¢alisilirken oldukca kul-
lanigl olmasina ragmen, ¢rnegin fonksiyon uzaylarinda noktasal yakinsakligi ifade
etmek icin yeterli olmamigtir. Bu sorun, metrik uzaylari iceren daha genig bir sinif
olan topolojik uzaylarin, Hausdorff ve Kuratowski tarafindan tanimlanmasi ile kis-
men ortadan kaldirilmigtir. Tychonoff tarafindan tamimlanan carpim topoloji ise,
noktasal yakinsakligi karakterize ederek sorunu ¢ozmiistiir. Fonksiyon uzaylarinda
yakinsakliga iligkin caligmalar geligtirilirken, topolojik olarak karakterize edilemeyen
yakinsaklik kavramlarinin varhigr fark edilmistir. Ornegin, 1921 de Hahn tarafindan
tanimlanan siirekli yakinsaklik kavrami topolojik olarak karakterize edilememekte-

dir. X ve Y iki topolojik uzay olsun, ve

e: XxCOX)Y) — Y
(z, f) — f(=)

bigiminde tanimlansi. §, C(X,Y’) iizerinde bir siizge¢ ve f € C(X,Y’) oldugunda,
herhangi bir z € X ve X iizerinde z noktasina yakinsak herhangi bir G siizgeci i¢in,
e(GxgF)={e(GxF)|GeqG,F cF} ailesinin iirettigi siizgeg Y iginde f (z) nok-
tasina yakinsiyor ise, § siizgeci f fonksiyonuna siirekli yakinsaktir denir (Hahn
1921). Herhangi bir X topolojik uzay1 i¢in, C(X,Y’) kiimesi iizerinde, siirekli
yakinsaklhig karakterize eden bir topolojinin mevcut olmadigi gosterilmistir (Arens,
Dugundji 1951). Sonsuz boyutlu analizde, siirekli yakinsaklik kavrami, topolojik
uzaylar cergevesinde ifade edilememektedir. 1951 de, Arens ve Dugundji, ¢zel ola-
rak, X topolojik uzaymin lokal kompakt bir Hausdorff uzayr olmasi durumunda,
C(X,Y) kiimesi iizerinde, siirekli yakinsakligi karakterize eden topolojinin kom-
pakt acik topoloji oldugunu géstermistir. Siirekli yakinsaklik kavraminin yani sira,
topolojik olarak karakterize edilemeyen bagka yakinsaklik yapilari da mevcuttur.

Ornegin, [0, 1] kiimesi iizerinde siirh ve olciilebilir reel degerli fonksiyonlarin uzay:
1



tizerinde tanimli hemen hemen her yerde yakinsakligi iiretecek bir topoloji mev-
cut degildir. Bu nedenlerle yakinsaklik, topolojiden bagimsiz olarak ele alinmaya

baglanmigtir.

Frechet ve Urysohn, topolojik uzaylarda, dizilerin yakinsakligina iliskin pek cok
calisma yapmistir. Ancak topolojik uzaylarda yakimsaklik kavrami iizerine yapilan
caligmalarda Cartan tarafindan tanimlanan siizgegler 6nemli rol oynar. Ciinkii, bir
topolojik uzayda dizilerin ve aglarin yakinsaklig: stizgecler ile karakterize edilebilmek-
tedir. 1950’li yillarin baglarinda, Kowalsky ve Fischer, Yakinsaklik Yapis1 (Con-
vergence Structure) kavramini ortaya koymuslardir. Yakinsaklik teorisi; yakin-
saklik yapilar: ile donatilmig kiimeler {izerindeki matematiksel 6zellikleri, topolojik
uzaylarda oldugu tizere agik ve kapali kiimeleri kullanmak yerine, siizgeglere iligkin

yakinsaklik kavramini kullanarak inceler.

1948 yilinda Choquet, bir siizgecin yakinsakliginin aksiyomlar halinde ifade edildigi
pseudo-topolojik ve pretopolojik yapilara iligkin teorisini sunmusgtur. 1954 yilinda
Kowalsky, bir siizgecin yakinsakligini, Choquet’nin aksiyomlarindan daha az simir-
layic1 aksiyomlar ile ifade ederek teorinin gelisimine katki saglamigtir. 1965 yilinda
Cook ve Fischer, Hahn tarafindan tanimlanan siirekli yakinsaklik kavraminin topolo-
jik olmayan bir yakinsaklik yapisina karsilik geldigini gostermistir. Dolayisiyla
yakinsaklik teorisi, bir topoloji tarafindan iiretilmeyen yakinsaklik yapilarini in-
celeyebilme yeterliligine ek olarak, topolojik uzaylar iizerinde de tnemli sonuglar
vermektedir. 2016 da Dolecki ve Mynard yakinsaklik teorisine iligskin kavramlar:

“Convergence Foundations of Topology” adh kitapta derlemistir.

Nesneleri sonlu derinlikli yakinsama uzaylari, morfizmleri sonlu derinlikli yakinsama
uzaylar1 arasinda tanimh yakinsama doniisiimleri olan Conv kategorisi, Top ka-
tegorisinin bir siiperkategorisidir. Kategori teori; bir D kategorisinin, nesneleri
iizerinde herhangi bir kosul olmaksizin, nesneleri arasinda taniml morfizmler kiimesi

iizerinde, X,Y € |D| olmak iizere;

e: XXxMorp(X,)Y) — Y
() — f(x)



fonksiyonunu morfizm kilacak bicimde en kaba yapiya sahip olan kategorileri, kartezyen
kapal1 kategoriler adi altinda siniflandirmistir. Top kategorisi kartezyen kapal
degildir, ancak Conv kategorisi kartezyen kapalidir (Preuss 1987). Kartezyen
kapalilik, homotopi teori, cebirsel topoloji ve fonksiyonel analiz gibi alanlarda oldukga
kullanigh oldugundan, bu alanlarda yakinsaklik {izerine yapilan caligmalar i¢in Conv
kategorisi, Top kategorisine kiyasla daha uygundur. Bir topolojik kategorinin, kartezyen
kapali olmamasinin bircok uygulamada dezavantaji oldugu goriilmiigtiir. Steen-
rod, topolojik cebir ve homotopi teoride Top kategorisi yerine, Top kategorisinin
kartezyen kapali bir altkategorisi olan kompakt tiretilmis Hausdorff uzaylarinin olus-
turdugu Haus kategorisi ile galigilmasimi ¢nermistir (Steenrod 1967). Dubuc ve
Porta, topolojik cebir alaninda, kartezyen kapali bir kategori ile calismanin 6nem

ve avantajlarin ifade etmigtir (Dubuc ve Porta 1971)

Yakinsama uzaylar ile iligkili bir kavram olan “Yaklagma Uzaylar1 (Approach Spaces)”,
ilk olarak 1987 yilinda Lowen tarafindan ortaya konmustur. Bu uzaylarin tanim-
lanmasinda ana fikir, bir nokta ve bir kiime arasindaki uzaklik kavramidir. Lowen,
bu teorisinde, uzaklik fonksiyonu adini verdigi ve belli ¢zellikleri saglayan bir fonk-
siyon yardimiyla, metrik yapinin bulunmadigi herhangi bir topolojik uzayda da bir
noktanin bir kiimeye olan uzaklhiginin olciilebilecegini ifade etmistir. Yaklagsma uzay-
lar1, uzaklik fonksiyonu kavraminin yam sira, bu kavrama matematiksel olarak es
ve yakinsaklik yapilar ile iligkili olan, limit operatorii kavrami ile de karakteri-
ze edilebilmektedir. Nesneleri yaklagsma uzaylari, morfizmleri yaklasma uzaylar
arasinda tanmiml biiziilme doniistimleri olan kategori Ap ile gosterilir. Ap kate-
gorisi bir topolojik kategoridir. Top kategorisinin bir siiperkategorisi olup kartezyen
kapali degildir (Lowen 1987). 1988 yilinda Lowen ve Colebunders limit operatorlerini
zayiflatarak elde ettikleri yeni yapilarla donattiklar: kiimeleri nesne kabul eden ve
morfizmleri bu nesneler arasinda taniml biiziilme doniigiimleri olan Cap kategorisini
tanimlamigtir. Cap kategorisi Conv ve Ap kategorilerinin bir siiperkategorisi olup

kartezyen kapalidir.

Bu tez galismasinda; Conv kategorisinin nesnelerinin ve morfizmlerinin baz1 6zel-

likleri; ayrica Conv kategorisinin Ap ve Cap kategorileri ile iligkileri incelenmistir.

3



2. TEMEL KAVRAMLAR

Bu boliim iki kisma ayrilmigtir. Birinci boliimde; topolojik uzaylar, metrik uzaylar
ve siizgec teoriye iligkin bazi temel kavramlar, ikinci boliimde; kategori teoriye iligkin

bazi temel kavramlar ifade edilecektir.

2.1 Topolojik Uzaylar, Metrik Uzaylar ve Siizge¢ Teoriye Iliskin Bazi

Temel Kavramlar

Tanim 2.1 (X, <) kismi sirali bir kiime olsun. Eger, X kiimesinin iki elemanh
her alt kiimesi, X i¢inde infimum ve supremum degerlerine sahip ise, (X, <) ikilisine
latis denir. X kiimesinin her alt kiimesi, X i¢inde infimum ve supremum degerlerine

sahip ise, (X, <) ikilisine tam latis ad1 verilir.

Eger, X kiimesinin iki elemanli her alt kiimesi, X iginde yalmzca infimum (supremum)
degerine sahip ise, (X, <) ikilisine inf-yar1 latis(sup-yar1 latis) adi verilir. Ozel
olarak, X kiimesinin her alt kiimesi, X i¢inde yalnizca infimum(supremum) degerine
sahip ise, (X, <) inf-yar latisine(sup-yar1 latisine) infimuma(supremuma) gore

kapalidir denir (Bourbaki 1966).

Tanim 2.2 X bir kiime ve § C 2X olsun. F ailesi
F1) 0 ¢ 5

F2) FCGuve FegF=GeF

F3) FGegF=FNGeg

ozelliklerini saghyor ise § ailesine X kiimesi {izerinde bir siizgeg adi verilir. X
kiimesi iizerinde tamimh siizgeglerin ailesi F(X) ile gosterilecektir. §,G € F(X)

olmak iizere;

§<G&FCh

bigiminde tanmimlanan “<” bagmtisi, F(X) iizerinde bir kismi siralama bagintisidir.

Eger; § < G ise, G siizgeci § siizgecinden daha incedir ya da § siizgeci G siizgecin-
4



den daha kabadir denir. Ayrica, §, G € F(X) olmak iizere;
§CGvedGeG:G¢F

oluyor ise, § < G yazilir ve G siizgeci § siizgecinden kesin incedir ya da § siizgeci

G siizgecinden kesin kabadir denir (Bourbaki 1966).

Tamm 2.3 X bir kiime ve B C 2% olsun. B ailesi,
)0 ¢B
ii) B;,BoeB:3C e B>C C BN By

ozelliklerini sagliyor ise, B ailesine X kiimesi iizerinde bir siizgeg tabani adi verilir.

B ailesinin X kiimesi tizerinde {irettigi stizge¢ B! ile gosterilir ve
B'.={FcX|3BeB:BCF}

bigiminde tamimlanir (Bourbaki 1966).

Tanim 2.4 X bir kiime ve A C 2% ise,
Al:={BC X |3Ac A: AC B}
bigiminde tanimlanir ve bu aileye A ailesinin y1gin1 adi verilir (Mynard 2016).

A ailesi X kiimesi {izerinde bir siizge¢ tabam ise, Tamim 2.3 geregince, A' ailesi, X
kiimesi iizerinde bir siizge¢ olacaktir. Ozel olarak, A ailesi yerine A C X alinirsa,
Al:={B C X | A C B} ailesi X kiimesi iizerinde bir siizgectir. Benzer sekilde, bir

z € X noktasmin X kiimesi {izerinde iirettigi siizge¢ @ ile gosterilir ve
t:={ACX |zeA}

biciminde tanimlanir.

Tanim 2.5 X bir kiime olsun ve {z,}, .+ ile, terimleri X kiimesine ait olan bir

dizi gosterilsin. Bu durumda; {z,}, .,+ dizisinin X kiimesi tizerinde tirettigi siizgeg

(z,)1 ile gosterilir ve her n € ZT igin, A, := {z} | n < k € ZT} olmak tizere;

(z,)':=={BC X |3neZ":A,CB}
5



bigiminde tamimlanir. Bu sekilde tanmimlanan siizgeclere dizisel siizgeg adi verilir

(Mynard 2016).

X kiimesi iizerinde tamimli tiim dizisel siizgeclerin kiimesi E(X) ile gosterilir,

E(X) = { (t)}czs | @a)nczr € X}

dir.

Tanim 2.6 X bir kiime, J # () bir indis kiimesi olsun ve D = (8)) e ile, X kiimesi
tizerinde taniml siizgeglerin bir ailesi gosterilsin. Bu durumda; D ailesinin 6gelerinin

infimumu /\S’j ile gosterilir. /\Sj, X kiimesi iizerinde bir siizgectir ve
jeJ jeJ

A& =3
JjeJ jeJ

dir (Bourbaki 1966).

(F(X), <) bir inf-yar latis olup infimuma gore kapaldir. Ancak, §,G € F(X)
olmak tizere; § ve G siizgeclerini igeren en dar aile § U G olup bu aile bir siizgeg

olmak zorunda degildir.

Tanim 2.7 X bir kiime ve §,G € F(X) olsun. Bu durumda;
VFeF, VGeG:FNG#0D

oluyor ise § ve G siizgegleri i¢ icedir denir ve bu durum §#G biciminde gosterilir

(Mynard 2016).

Onerme 2.1 X bir kiime ve §, G € F(X) olmak {izere; § ve G stizgeclerinin supre-
mumunun mevcut olmasi i¢in gerek ve yeter kosul §#G olmasidir. F#G olmasi

durumunda;

SVG={FNG|FegF, Geg}

dir (Bourbaki 1966).



Onerme 2.2 X bir kiime, J # () bir indis kiimesi ve (8),e; € F(X) olsun. Bu

durumda;

B:={ﬂFjlch<“,jeI, Fje&}

jel
bi¢iminde tammh B ailesi, X kiimesi tizerinde bir stizge¢ tabani ise, (§;);; ailesinin

supremumu mevcut olup \/& = B! dir (Bourbaki 1966).
jeJ

Tanim 2.8 X ve Y iki kiime, § € F(X) ve f : X — Y bir fonksiyon olsun. Bu

durumda; § stizgecinin f fonksiyonu altindaki goriintiisii f(§) ile gosterilir ve

f@) ={f(F) | F €3}

bi¢iminde tanimlanir (Mynard 2016).

f(F) ailesi Y kiimesi iizerinde bir siizge¢ olmak zorunda degildir ancak bir siizgeg

tabamidir. f(§) ailesinin iirettigi siizgeg f[F] ile gosterilecektir.

Tanim 2.9 X bir kiime ve § € F(X) olsun. § stizgecinin keseni sec § ile gosterilir
ve

secF ={ACX|VFeF:AnF #0}
bigiminde tanimlanmr (Mynard 2016).

$ C sec§ olup sec§ ailesi siizge¢ olmak zorunda degildir.

Tanim 2.10 X bir kiime, J # () bir indis kiimesi ve § € F(J) olsun. Bu durumda;
o: J— F(X)
j— o(j)

bir fonksiyon olmak iizere; ¢ fonksiyonunun § siizgecine gore kbsegen siizgeci,

Yo® =V 9=V

Aeo(F)GeA Fegjel

bigiminde tamimlanir (Kowalsky 1954).



Yukarida tamimlanan o fonksiyonu, her bir j € J indisine F(X) ailesinin bir tek
ogesini karsiik getirmektedir. Bu nedenle; {o(j)},c; ailesi, X kiimesi {izerinde

taniml siizgecglerin bir secgimi olarak adlandirilir.

Ornek 2.1 (X,7) bir topolojik uzay olsun ve
o: X — FX)
r — o(x):=N.(2)
bi¢iminde tammlansin. Bu durumda; {N;(z)}, .y ailesi, X kiimesi tizerinde tanimh

stizgeclerin bir se¢imidir.

Tamim 2.11 L # () herhangi bir indis kiimesi olmak tizere; her A € L igin Jy # ()

ve (X),)jener bir kiimeler ailesi olsun. Bu durumda; [ = HJ)\ olmak {izere;

AL
asagidaki egitlikler mevcuttur.

U(n=) = N(Us)

AeL \jeJy feI \\eL
M (UXAJ-) - U (ﬂXA,f(M)
zeL \jeJy feI \\eL

(Bourbaki 1966).

Tamim 2.12 (X, 7) bir topolojik uzay, § € F(X) ve z € X olsun. Budurumda; NV, (z) <
§ ise, z noktas1 § siizgecinin 7 topolojisine gore bir limit noktasidir denir ve bu du-

rum § — 7 biciminde gosterilir (Bourbaki 1966).

Onerme 2.3 (X,7) ve (Y,7) iki topolojik uzay ve f : (X,7) — (Y, 7') bir fonk-
siyon olsun. Bu durumda; agagidaki tnermeler denktir.
i) f fonksiyonu siireklidir

ii) § € F(X) olmak iizere; § — x ise, f[g] -, f(z) dir (Bourbaki 1966).

Tamim 2.13 X bir kiime ve § € F(X) olsun. Eger, X kiimesi iizerinde § siizgecin-
den kesin ince bir siizge¢ bulunamiyor ise § siizgecine ultrasiizgeg adi verilir (Bourbaki

1966).



X kiimesi iizerinde tammh tiim ultrastizgeclerin ailesi U(X) ile gosterilecektir. §
€ F(X) olmak iizere; § siizgecinden ince olan tiim siizgeglerin (ultrasiizgeglerin)
ailesi F(F)(U(F)) ile, A C X olmak iizere A siizgecinden ince tiim siizgeglerin
(ultrasiizgeglerin) ailesi F(A)(U(A)) ile gosterilecektir.

Onerme 2.4 (X,7) bir topolojik uzay, § € F(X) ve x € X olsun. § siizgecinin
x noktasina yakinsak olmasi i¢in gerek ve yeter kosul § siizgecinden ince olan tiim

ultrasiizgeclerin = noktasina yakimsak olmasidir (Bourbaki 1966).

Lemma 2.1 X bir kiime, § € F(X) olsun ve her &/ € U(J) i¢in en azindan bir

Sy € U segilebilsin. Bu durumda; sonlu elemanh bir Uy C U(F) kiimesi, U Su €S

Z/{GUS
olacak bicimde mevcuttur (Lowen 1987).

Onerme 2.5 J, L ve X bos kiimeden farkl: ii¢ kiime, § € F(J),0 : J — F(X) ve
v : L — F(J) iki fonksiyon olsun. Bu durumda; agagidaki esitlikler mevcuttur;

B> e@) = (W)

Fegjer

{HXe@®= [) Xe®)
)

pe [1U(a(h)
J€d

@Yo®= (1 [ e
pg};[JU(a(j))UEU(S)

(iv) Her j € J i¢in o(j) ve § ultrasiizgeg ise, > o(F) de bir ultrasiizgectir (Lowen
1997).

Tanim 2.14 X bir kiime, / herhangi bir indis kiimesi olmak tizere; {(Yy,70)},c;
topolojik uzaylarin bir ailesi olsun ve {fy : X — (Yp,79)}y.,; fonksiyon ailesi ve-

rilsin. Bu durumda;

Sy = {f;l(Ug) ‘ Uy € 7'9}

bigiminde tanimli olmak iizere, S = US@ ailesi, X kiimesi {izerinde bir topoloji

el
i¢in alt tabandir. X kiimesi tizerinde S ailesi tarafindan tiretilen topolojiye, { fs}.;

ailesine kargilik gelen baglangi¢ topolojisi adi verilir (Bourbaki 1966).
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Tanim 2.15 [ # () herhangi bir indis kiimesi ve Y belirli tipte matematiksel
yapilarin bir ailesi olsun. (Y),, ile, her i € I igin ) ailesine ait bir 6; yapisi
ile donatilmig kiimelerin ailesi, ve S ile ) ailesine eglik eden fonksiyon ailesi goste-

rilsin. X bir kiime olmak iizere; {f; | X — (VY;,6;)},.; fonksiyon ailesi verilsin. Bu

iel
durumda; her X' kiimesi ve X' tizerinde tanimli her 0 yapist i¢in, X iizerinde, >
ailesine ait bir 6 yapisi;

i) g: X' — X fonksiyonu S ailesine aittir

ii) Her i € I igin f;og: X — Y fonksiyonu S ailesine aittir

onermeleri denk olacak bigimde tamimlanabiliyor ise, ¢ yapismna, {fi},.,; ailesine

kargilik gelen baglangig yapisi adi verilir (Bourbaki 1966).

Tanmim 2.16 X bir kiime olmak iizere; x : X x X — X fonksiyonu; her x,y,z € X
icin x x (yx z) = (xxy) * z Ozelligini saghyor ise (X, ) ikilisine yarigrup adi verilir

(Halicioglu 2014).

2.2 Kategori Teoriye Iliskin Baz1 Temel Kavramlar

Bir kiime iizerinde tanimlanabilen matematiksel yapilarin simflandirilmasi, ortak

ozelliklerinin ve aralarindaki iligkilerin irdelenmesi kategori teorinin araclar ile miimkiindiir.

Tanim 2.17 Bir D kategorisi agagida verilen parcalardan olusur:

i) Elemanlar1 D-nesnelerden olusan ve |D| biciminde ifade edilen bir simif,

ii) D-nesnelerin herhangi bir (X,Y") ¢ifti igin X kiimesinden Y kiimesine tanimh
tiim morfizmleri igeren ve Morp(X,Y) bigiminde gosterilen morfizmler kiimesi,
iii) Her X € |D| i¢in Ix : X — X bigiminde tanimh birim doniigtimler,

iv) D-nesnelerden olugan her (XY, Z) tigliisii i¢in,

o: Morp(X,Y)x Morp(Y,Z) — Morp(X,Z)
(f,9) — foyg

bi¢iminde tanimh ve

VX,Y,T € |D|,Vf € Morp(X,Y),Vg € Morp(T,X): folx =fvelxog=g
10



ozelligini saglayan bilegke iglemi. (Adamek 1990).

Bir C kategorisinin tiim morfizmleri Mor(C) ile gosterilecektir. Nesneleri kiimeler,
morfizmleri kiimeler arasinda tanimli fonksiyonlar olan kategori Set ile, nesneleri
topolojik uzaylar, morfizmleri topolojik uzaylar arasinda taniml siirekli fonksiyonlar

olan kategori Top ile gosterilir.

Tanim 2.18 A ve C iki kategori olsun. Bu durumda; agagidaki ozellikler saglaniyor
ise A kategorisi C kategorisinin bir alt kategorisidir denir.

i) [A] C[C]

ii) VA, B € |A| : Mora(A, B) C More(A, B)

iii) A kategorisi iizerinde tanimh bilegke iglemi, C kategorisi iizerinde taniml bilegke
isleminin A ya kisitlamasidir.

iv) Her A € |A| igin I, birim morfizmi, A ve C kategorilerinde ayni morfizmdir
(Adamek 1990).

Top kategorisi Set kategorisinin bir alt kategorisidir.

Tanmim 2.19 C ve D iki kategori, F': C — D doniigtimii,
VAe|C|: F(A) € |D|,

VA,B € |C|,Vf € Morc(A,B) : F(f) € Morp(F(A), F(B))
olacak bi¢cimde tanimli bir déniigiim olsun. F' doniigiimii,

i) VA€ |C|: F(1a) = Ip
ii) Vf,g € Mor (C): F(fog)=F(f)oF(g)

ozelliklerini sagliyor ise, F' doniigiimiine C kategorisinden D kategorisine tanimli bir

funktor adi verilir (Adamek 1990).

Tanim 2.20 C ve D iki kategori ve F' : C — D tanimh bir funktor olsun. Bu

durumda;

i) F, morfizmler tizerinde birebir ise F' funktoruna gémiilme (embedding) funk-

toru denir.
11



ii) VA, B € |C| i¢in F' : Morc(A,B) — Morp(F (A), F (B)) doniistimii birebir ise
F' funktoruna diizenli (faithful) funktor denir.

iii) VA, B € |C| igin F : Morc(A, B) — Morp(F (A), F (B)) doniisiimii orten ise F
funktoruna dolu (full) funktor denir (Adamek 1990).

C kategorisinden D kategorisine tanimli en azindan bir dolu funktor bulunabiliyor
ise, C kategorisine D kategorisinin dolu alt kategorisi ad1 verilir. Top kategorisi

Set kategorisinin bir dolu alt kategorisidir.

Tanmim 2.21 C ve D iki kategori, C kategorisi D kategorisinin bir alt kategorisi
olsun. F': C — D funktoru, her C € |C| i¢in F(C) := C ve her f € Mor(C) i¢in
F(f) := f bigiminde tanimh ise, F' funktoruna igerme funktoru denir (Adamek

1990).

Tanmim 2.22 C ve D iki kategori, F' : C — D taniml bir funktor olsun. Bu durumda;
G : D — C biciminde tanimli, G o F' = id¢ ve F o G = idp olacak bicimde bir G
funktoru var ise, F' funktoruna izomorfizm adi verilir. Ayrica, C ve D kategorileri

izomorf kategorilerdir denir (Adamek 1990).

Tanim 2.23 Bir D kategorisinin nesneleri; kiimeler ve bu kiimeler iizerinde taniml
belirli tipte matematiksel yapilardan olusan ikililer ise, yani; U : D — Set bigi-
minde tanimh en azindan bir diizenli funktor bulunabiliyor ise D kategorisine belirli
(concrete) kategori, U doniigiimiine ise unutkan (forgetful) funktor ad: verilir

(Adamek 1990).

Set ve Top kategorileri belirli kategoridir.
Kategori teorinin kavramlari kullanilarak, Tanim 2.15 asagidaki sekilde giincellen-

migtir.

Tanmim 2.24 D bir belirli kategori, X bir kiime, I herhangi bir indis kiimesi olsun.

Bu durumda; D-nesnelerin bir (X;&;)ier ailesi ve {f; : X — (X;,&;)},.; fonksiyon

iel
ailesi icin, X tizerinde bir tek & D-yapisi,

12



i) V(Y,0) € |D] igin g : (Y,0) — (X, &) D-morfizmdir
ii) Vie I igin fiog: (Y,0) — (X;,§;) doniigimii D-morfizmdir
onermeleri denk olacak bicimde tanimlanabiliyor ise, {§ D-yapisina { f;},.; ailesine

karsilik gelen baglangi¢ yapisi adi verilir (Preuss 1987).

Tanim 2.25 D bir belirli kategori olmak iizere; asagidaki ozellikler saglaniyor ise,

D kategorisine topolojik kategori adi verilir.

i) D kategorisinin baglangi¢ yapilar1 mevcuttur.

ii) Her X kiimesi i¢gin, X iizerinde tanimlanabilen D-yapilarin ailesi kismi sirali bir
kiimedir.

iii) Tek elemanl bir kiime iizerinde bir tek D-yap1 tanimhdir (Preuss 1987).

Top kategorisi topolojik kategoridir. Ayrica, nesneleri metrik uzaylar, morfizmleri
metrik uzaylar arasinda tanimli genislemeyen doniisiimler olan kategori Met ile
gosterilir. Met kategorisi basglangi¢ yapilarina sahip olmadigindan bir topolojik

kategori degildir.

Tanim 2.26 A ve C iki kategori, A kategorisi C kategorisinin bir alt kategorisi ve
F : A — C bir icerme funktoru olsun. Bu durumda;
i) C kategorisinin her X nesnesi igin, A kategorisinin bir X 4 nesnesi ve bir ry :
X — X 4 morfizmi, A kategorisinin her Y nesnesi ve her f € More(X,Y) igin, bir
tek

ff:X4y—Y

A-morfizmi, f*oryxy = f olacak bigimde tanimlanabiliyor ise, A kategorisine C kate-
gorisinin yansimali alt kategorisi denir. Bu durumda; X 4 nesnesine X nesnesinin
A-yansimasi adi verilir.
ii) C kategorisinin her X nesnesi i¢in, A kategorisinin bir X 4 nesnesi ve bir mx :
X4 — X morfizmi, A kategorisinin her Y nesnesi ve her f € More(X,Y) igin, bir
tek

[ Y — Xy

A-morfizmi, m, o f, = [ olacak bicimde tammlanabiliyor ise, A kategorisine C
13



kategorisinin ko-yansimali alt kategorisi denir. Bu durumda; X 4 nesnesine X

nesnesinin .4-ko-yansimasi adi verilir (Herrlich 1983).

Met kategorisi Top kategorisinin ko-yansimali bir alt kategorisidir.

Tanim 2.27 A ve C iki kategori, A kategorisi C kategorisinin bir dolu alt kate-
gorisi olsun. Bu durumda, “=<” ile C-yapilarin ailesi iizerinde taniml kismi siralama

bagintis1 gosterilmek iizere;

i) Her (X,¢) € |C] igin £4 < £ olacak bigimde en azindan bir £ , A-yapis1 bulu-
nabiliyor ve her (Y,n) € |A|, her f: (X,£) — (Y,n) C-morfizmi i¢in

oo (X864 — (Yin)
z  — fiz)=f(2)
fonksiyonu bir A-morfizm oluyor ise A kategorisine C kategorisinin bi-yansimali
alt kategorisi denir.
ii) Her (X,&) € |C] igin £ = &4 olacak bigimde en azindan bir £, A-yapist bulu-
nabiliyor ve her (Y, n) € |A|, her f: (Y,n) — (X, §) C-morfizmi i¢in

for (Yim) — (X,€4)
z  — (@)= f(=)
fonksiyonu bir A-morfizm oluyor ise A kategorisine C kategorisinin bi-ko-yansimali
alt kategorisi denir (Preuss 2002).
Bir C kategorisinin bi-yansimali her alt kategorisi, yansimali bir alt kategorisidir.

Benzer sekilde, bi-ko-yansimali her alt kategorisi, ko-yansimali bir alt kategorisidir.

Tanim 2.28 C bir topolojik kategori, A kategorisi C kategorisinin bir dolu alt kate-
gorisi, X bir kiime, [ herhangi bir indis kiimesi ve {(X;, ;) },.; A-nesnelerin bir ailesi

olsun. Bu durumda; {f; : X — (X;,§,)}

i€l
s; bir fonksiyon ailesi ve §, X kiimesi ii-
zerinde tanimh { f;},., fonksiyon ailesine kargilik gelen baslangi¢ C-yap1 olmak {izere;
(X, &) ikilisi bir A-nesne oluyor ise, A kategorisine C kategorisi i¢inde baglangig

yapilarina gore kapalidir denir (Preuss 2002).
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Onerme 2.6 A ve C iki kategori, A kategorisi C kategorisinin bir dolu alt kategorisi
olsun. Bu durumda; A kategorisinin C kategorisinin bi-yansimali bir alt kategorisi ol-
masi i¢in gerek ve yeter kosul A kategorisinin C kategorisi iginde baglangi¢ yapilarina

gore kapali olmasidir (Preuss 2002).

Tamim 2.29 D bir topolojik kategori olsun. Bu durumda; her (X, Y’) D-nesne cifti
icin Morp(X,Y) kiimesi iizerine, X ve Y iizerinde tammh D-yapilar yardimiyla
bir [X, Y] D-yapisi; agagidaki ozellikleri saglayacak bigimde inga edilebiliyor ise, D
kategorisi kartezyen kapalidir denir.
CC,)
e: XX Morp(X,)Y) — Y
(z, f) — ez, f) = f(=)

fonksiyonu bir D-morfizmdir.

CC,) Her Z € |D| ve her f: X x Z — Y D-morfizmi i¢in

f*: Z — Morp(X,Y)
2 — [7(2):= f(z,2)

bi¢iminde tanmiml bir D-morfizmi; f = e o (idy X f*) olacak bigimde mevcuttur

(Preuss 2002).
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3. YAKINSAMA UZAYLARI

Bu boliimde; yakinsaklik yapisi kavrami ve bu kavram yardimiyla tanimlanan yakin-

sama uzaylar: ifade edilecek ve bu uzaylarin temel 6zellikleri incelenecektir.
3.1 Yakinsaklik Yapilar:

X bir kiime, ¢ C F(X) x X ve § € F(X) olsun. Bu durumda; (§,z) € £ olmas
durumu,
x € lime§
bi¢iminde ifade edilir ve z noktas1 § siizgecinin & bagintisina gore limit noktasidir
ya da § siizgeci ¢ bagmtisina gére x noktasina yakimsaktir denir. 8 C 2% bir siizgec
tabani ise,
limeB = limeB'

bi¢iminde tanimlanir. Diger yandan, ¢ bagintisina gore bir x noktasina yakinsayan

tiim siizgeclerin ailesi lz’mgl(m) ile gosterilir,
limg'(z) = {§ € F(X) | (§,2) € &}

dir (Mynard 2016).

Tanim 3.1 X bir kiime, £ C F(X) x X olsun. Bu durumda;
i) VF, G e F(X)2>F <G :limeg C limeG
ii) Vo € X : & € limex (merkezil)

ozelliklerinden ilkini saglayan & bagintisina X kiimesi iizerinde bir 6nyakinsaklik
yapisi, her ikisini saglayan £ bagintisina X kiimesi iizerinde bir yakinsaklik yapisi
adi1 verilir. € bagintis1 X kiimesi iizerinde bir (6n)yakinsaklik yapisi ise (X, £) ikilisine

(6n)yakinsama uzay: adi verilir (Kowalsky 1954, Fischer 1959, Mynard 2016).

Bir ¢ (6n)yakinsaklik yapisinin, tizerinde tamiml oldugu X kiimesi 6zel olarak be-

lirtilmek istendiginde & y gosterimi kullanilacaktir.
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Ornek 3.1 X bir kiime olmak iizere; X iizerinde,
VF € F(X) : limp,F=10

bi¢iminde tamimlanan ()x bagmtisi bir onyakinsaklik yapisi olup bu yapiya bos

onyakinsaklik yapisi adi verilir. § = T igin, lim@X% = () oldugundan x= ¢ limg, x

olup 0x bagmntisi, X kiimesi tizerinde bir yakimsaklik yapisi degildir (Dolecki 2009).

Ornek 3.2 R iizerinde,

. {(&,x)eF(R)XM ﬂm—%,wﬂlneZ*}TéS}

bi¢iminde tanimlanan v bagintis1 bir yakinsaklik yapisi olup bu yapiya R tizerinde

tamimh standart yakinsaklik yapisi adi verilir (Dolecki 2009).

Ispat. 3, G € F(R), § < G ve (§,7) € v olsun. Bu durumda;

r——x+—||nez <F <G
n n

olup (G,x) € v dir. Diger yandan, 2 € R olmak {izere;

1 1 T .
{]m——,x—l——bnEZ”L} <z
n n

oldugundan (z,z) € v dir. =

Ornek 3.3 R iizerinde, Ornek 3.2 de tammlanan standart yakinsaklik yapisi ele

ahIlSlIl.
n/nez+ n)n

olmak tizere; R iizerinde,
Sequ := {(S,x) € FR) xR | I(xy)nez+ € R > (acn)TTLeZJr <3, ze limv(xn)lbe%}

bigiminde tanimlanan Seqv bagintisi bir yakinsaklik yapisi olup bu yapiya dizisel

yakinsaklik yapisi adi verilir (Dolecki 2009).
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Ispat. §, G € F(R), § <G ve (§,2) € Sequ olsun. Bu durumda;
A xp)nez+ € RY 2 (35n);€Z+ <F<Gvezxe lz’mv(xn);62+

oldugundan, (G,r) € Sequv dir. Diger yandan, sayilabilir bir kiimenin iirettigi siizgeg

dizisel oldugundan z € E(R) dir. O halde, ($n)l€Z+ — Z olarak ele almrsa v, R

iizerinde bir yakinsaklik yapisi oldugundan x € lim,2 olup z € limSeqvi elde edilir.

Ornek 3.4 X bir kiime olmak iizere, X iizerinde,
2= {({S’,x) EF(X)x X |§= m}

bi¢iminde tanimlanan ¢ bagintisi bir yakinsaklik yapisi olup bu yapiya diskre yakin-

saklik yapis1 ad1 verilir (Dolecki 2009).

Ispat. 3.6 € F(X), § < G ve (§,2) € ¢ olsun. Bu durumda; § = z olup 7, X
kiimesi iizerinde bir ultrasiizge¢ oldugundan, G = 2 olmahdur. Dolayisiyla, (G,z) € 1

dir. Ayrica, © bagintisinin tanimindan, her z € X i¢in (J.C, x) € 1 olacag agiktir. m

Ornek 3.5 X bir kiime olmak iizere, X iizerinde,
0:={F2) e FX)x X |§FeFX),ze X}

bi¢iminde tanimlanan o bagintisi bir yakinsaklik yapisi olup bu yapiya diizensiz

yakinsaklik yapisi adi verilir (Dolecki 2009).

Tanim 3.2 X bir kiime ve &, X kiimesi iizerinde bir yakinsaklik yapisi olsun. Bu
durumda; §,G € F(X) ve herhangi bir 2z € X igin, (F,z) € £ ve (G,x) € &
oldugunda, (§ NG, x) € £ oluyor ise ¢ bagmtisina sonlu derinlikli denir. (X ¢)

ikilisine sonlu derinlikli yakinsama uzayi adi verilir (Dolecki 2009).

Ornek 3.2, Ornek 3.3, Ornek 3.4 ve Ornek 3.5 de verilen her bir yakinsaklik yapisimin

sonlu derinlikli oldugu kolaylikla gosterilebilir.
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Ornek 3.6 X bir kiime, z ¢ X olsun ve §, G ile, X kiimesi iizerinde tanimli, i
ige olmayan iki siizgeg gosterilsin. Bu durumda; Y = X U{z.} ve H € F(Y) olmak

iizere; Y kiimesi iizerinde,
reXve(Ha)ele=H=1 (3.1)

ve

(H,200) € € = F N (2a0) < H veya G (00) < H (3.2)

bi¢iminde tanmimlanan £ bagintisi bir yakinsaklik yapisi olup sonlu derinlikli degildir

(Mynard 2016).

Ispat. ¢ bagmtismin, Y iizerinde bir yakinsakhik yapisi oldugu kolaylikla goste-
rilebilir. Ancak, £ yakinsaklik yapisi sonlu derinlikli degildir. § ve G, X kiimesi
tizerinde tamiml, i¢ ige olmayan iki siizgeg olmak iizere; H := {F U {xy} | F € §}
ve K :={GU {2} | G € G} olarak alinirsa, S/\(a:;o) < Hve Q/\(x;o) < K olacaktir.
Bu durumda; (3.2) den, zo € lim¢ H N lime IO dir. Ancak, 2o ¢ limeH N K dur.
Gergekten, § ve G, i¢ ice olmayan iki siizge¢ oldugundan, Tanim 2.7 den,

EIFgegveaGoEgiQinFoﬁGo:@

dir. Bu durumda; A = Fo U {2} € N (2a) ve B = GoU {2} € G N (2s) olarak
alimirsa, A ¢ K ve B ¢ H olacaktir. Dolayisiyla, A ¢ HNK ve B ¢ H N K olup
Too ¢ lime HN K elde edilir. m

Tanim 3.3 X bir kiime olsun. £ ve o ile X kiimesi iizerinde tanimli iki (6n)yakinsaklik

yapisi gosterilsin. Bu durumda;
- o0<=V§ e F(X):lime§ Clim,§

biciminde tamimlanan “>” bagntisi, X iizerinde tanimlh yakinsaklik yapilarinin
ailesi iizerinde bir kismi siralama bagintisi olup £ > ¢ olmasi durumunda, & yapisi o

yapisindan daha incedir (o yapis: ¢ yapisindan daha kabadir) denir (Dolecki 2009).
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Ornek 3.7 X bir kiime ve I bir indis kiimesi olmak olmak tizere, {&}ier ile, X

iizerinde tanimh yakinsaklik yapilarinin ailesi gosterilsin. Bu durumda;
ViEI:O)(jfij@X (33)

dir. Ayrica, R iizerinde, v ve Seqv yakinsaklik yapilari ele alinirsa v < Seqv dir

(Mynard 2016) .

Ispat. (3.4) siralamasinin gergeklendigi agiktir. § € F(R) ve o € limg,g, § olsun.
Bu durumda; Ornek 3.3 den,

A(xp)nez+ € RY 5 (avn)lleZ+ <Fvex e limv(ycn)jl€Z+

dir. (z,)!

nez+ S8, @ € limy, (:L‘n)LeZ+ ve v, R kiimesi iizerinde bir yakinsaklik yapisi

oldugundan, Tanim 3.1 (i) den, x € lim, § elde edilir. =

Onerme 3.1 X bir kiime ve £ C F(X)x X bir 6nyakinsaklik yapisi olsun. &
bagintisinin X kiimesi {izerinde bir yakinsaklik yapisi olmasi igin gerek ve yeter

kogul ¢ bagintisinin ¢ diskre yakinsaklik yapisindan kaba olmasidir (Mynard 2016) .

Ispat. ¢, X kiimesi iizerinde bir yakmsaklik yapisi, § € F(X) ve = € lim,§ olsun.
Bu durumda; Ornek 3.4 de aciklandig iizere, § = 2 dir. & bir yakinsaklik yapisi
oldugundan, z € lz'mga.c elde edilir. O halde, (3.3) den, £ =< 1 elde edilir. Diger
yandan, &, X kiimesi iizerinde bir 6nyakinsaklik yapisi ve £ < 2 olsun. Bu durumda;
(3.3) den, her § € F(X) i¢in lim,§ C lime§ dir. § := T alinirsa, lim,x C limgz;:

olup x € lim, & oldugundan, z € lz’mgf.v elde edilir. m

Tamim 3.4 (X, &) bir yakinsama uzay1 ve z € X olsun. Bu durumda; x noktasinin

¢ yakinsaklik yapisina gore yoresel siizgeci Ve(z) ile gosterilir ve
V)= A 3 (3.4
z€lime§

bi¢iminde tanimlanir (Dolecki 2009).
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Ornek 3.8 a) R iizerinde, Ornek 3.2 de verilen standart yakinsaklik yapisi v ele

Vy(x) = Hx—%,ﬁﬂmew}T

olup her = € R i¢in z € lim, V,(x) dir.

aliirsa,

b) R iizerinde, Ornek 3.3 de tanimlanan Seqv bagmtisi ele alimsin. Bu durumda; her

x € R icin,

VSeqv ﬂ &

EcE(R)
Vo(z)<E

dir (Mynard 2016) .
Ispat. (a) da verilen esitlik kolayhkla gsterilebilir. (b) de verilen esitligi gosterelim.

Vseqn(®) < ﬂ £ oldugunu gostermek igin, A := {€ € E(R) | V,(z) < £} olmak
ECE(R)
Vy(2)<E
tizere; A C {§F € F(R) | © € limgeq§} oldugunu gostermek yeterlidir. £ € A ise,
Vo(x) < & dir. Ayrica, her z € R igin = € lim,V,(z) oldugundan, = € lim,E

olacaktir. O halde, £ € {§ € F(R) | € limgeq§} dir. Diger yandan, A € ﬂ &
ECE(R)
Vo (x)<E

olsun. Bu durumda; V,(x) < € olacak bi¢imdeki her £ € E (R) i¢in A € & dir.

T € limgeq,§ olacak bicimde herhangi bir § € F(R) alimirsa,
EcE(R)>ELF verx €lim,é&

olup £ < § oldugundan A € § elde edilir. O halde, ﬂ E < Vseq(z) dir. m

E€E(R
Vv(a:)<5

(X, &) bir yakinsama uzay1 ve x € X olmak tizere; (3.5) ile ifade edilen Ve(z) stizgeci,

¢ yakinsaklik yapisina gore x noktasina yakinsamak zorunda degildir.

Ornek 3.9 R iizerinde Sequv yakinsaklik yapisi ele alimirsa, her z € R icin ¢
limgeqy Vseq () dir (Mynard 2016).

Ispat. Her z € R icin o ¢ limgegy Vseqo(2) oldugunu gostermek igin

Vseqn() = V()
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esitligine ihtiyacimiz vardir. Ornek 3.7 den, v < Seqv olup
limg,,,(z) ={§ € F (R) | z € limseq,T} C {F € F(R) | x € lim, T} = lim, " (x)

oldugundan,

Vv(x) - /\ S C /\ S - VSeqv(x)

Felimy  (x) Felimg,,, (@)

elde edilir. Diger yandan, ﬂ £ < V,(z) oldugu gosterilirse, Ornek 3.8 b) geregince

ECE(R)
Vo (2)<E
Vseqn(r) < V,(x) olacaktir. U € ﬂ € olsun ve U ¢ V,(z) oldugunu kabul edelim.
ECE(R)
Vo (2)<E
Bu durumda;
1 1
Vn e Z* :]x——,x—l——[gZU
n n

olacaktir. Boylece,

1 1
‘v’nGZ*:Elynelm—ﬁ,x—i-—[ﬂ(X—U)

n

secilebilir. A, = {yx | k >n € Z*} olmak iizere; &, := {A, | n € Z*}' biciminde
tamimlanirsa, her n € Z* icin A, NU = @ olup U ¢ &, dir. Diger yandan, x € lim, &,
yani V,(z) < &, olur. Ancak, V,(z) < & olacak bicimdeki her £ € E(R) icin U € £
oldugundan, bu bir celigkidir. Boylece esitligin ispati tamamlanir. Simdi, bir x € R
igin € limg,y, V,(7) oldugunu kabul edelim. Ornek 3.3 de verilen Sequ bagmtisinin
tammindan, V, (z) siizgeci en azindan bir sayilabilir kiime igermelidir. Boylece geligki

elde edilir. =

Ornek 3.10 (X,d) bir metrik uzay, § € F(X), € X olsun ve Ny(z) ile,  nok-

tasinin d metrigine gore komsuluklar siizgeci gosterilsin. Bu durumda;
x € lim_§ <= Ny(z) < § (3.5)

bi¢iminde tanimlanan d bagintisi, X kiimesi iizerinde sonlu derinlikli bir yakinsaklik

yapisidir. Ayrica, V;i(z) = Ny(z) dir (Mynard 2016).

Ispat. 3 GcF(X),§<Gverc lim_§ olsun. Bu durumda; (3.6) dan, Ny(x) <

§ < Golup z € lim G dir. Aynca, her z € X igin, Na(z) < 2 olup (3.6) dan,
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x € limgy.c elde edilir. O halde, d bagntis1 X {izerinde bir yakimsaklik yapisidir. §,
G € F(X)vex € lim_§Nlim_G ise, Ny(r) < § ve Ny(z) < G olup Ny(z) < FNG dir.
Dolaysiyla, = € lim_(F N G) olup d sonlu derinliklidir. Son olarak, V;(x) = Ny(x)
esitligini gosterelim. = € X olmak iizere; (3.6) dan, X iizerinde tamimh bir §
stizgecinin d bagintisina gore x noktasina yakinsak olmasi i¢in gerek ve yeter kosul,
Ny(z) stizgecinden ince olmasidir. Bu durumda; (3.5) den, x noktasina yakinsayan

biitiin siizgeclerin infimumu Vj(x) = Ny(z) olacag: agiktir. m

Tamim 3.5 (X, &) bir yakinsama uzay1 olsun. Eger; X kiimesi iizerinde § = d
olacak bicimde bir d metrigi mevcut ise ¢ yakinsaklik yapisina metriklesebilirdir

denir (Mynard 2016).

Ornek 3.11 i) R tizerinde Ornek 3.2 de verilen standart yakinsaklik yapisi v ele

alinsin ve d ile R iizerinde tamimh standart metrik gosterilsin. Bu durumda; d = v

olup v yakinsaklik yapisi metriklegebilirdir.

i) Bir X kiimesi tizerinde Ornek 3.4 de verilen diskre yakinsaklik yapisi 2 ele almsin
ve d ile, X {izerinde tamimli diskre metrik gosterilsin. Bu durumda; + = d olup 1

yakinsaklik yapisi metriklegebilirdir (Mynard 2016).
ispat. i) d metrigine gore herhangi bir = reel sayisinin komsuluklar ailesi,
Ny(z) ={VCR|Fe>0:By(x,e) CV}

dir. d = v esitligini gosterelim: § € F(R) ve x € lim, § ise,

n

1 1 !
x—ﬁ,x+— |neZ <F (3.6)
dir. Ayrica, U € Ny(z) ise
30 > 0: By(z,0) C U

olup nio < ¢ olacak bi¢imde en azindan bir ng € Z* vardir. Bu durumda;

1 1 1
By (w,—) :}x——,x—l——[CBd(x,(S) cU
o o g
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ve (3.7) den, U € § elde edilir. Dolayisiyla, Ny(z) < § olup = € lim;§ dir. O halde,
d < v dir. Diger yandan,

fJo Lo Himez) <o

oldugundan v < d dur.
ii) d ile, X iizerinde tamiml diskre metrik gosterildigine gore, x € R ve r > 0 igin,
r} , 0<r<1ise
By(z,r) := &
R , 7 >11ise
olup Ny(z) = = dir. § € F(X) ve z € lim, § ise, Ornek 3.4 den, § = = olup (3.6)
dan, z € lim;§ elde edilir. Diger yandan, § € F(X) icin = € lim;§ yani NVy(z) < §

ise, § = T olup x € lim, § dir. m

Ornek 3.12 R iizerinde tammbh 7p noktasal yakinsaklik topolojisine gore bir f

fonksiyonunun komguluklar ailesi,
N-(f) = {V | IF C R™¥,3r > 0 igin ma}%c|f(x) —g(z)|<r=gc¢ V}
Te
dir. Bu durumda; R® iizerinde,

p={(f,%) e REx F(RY) | N, (f) <}

bi¢iminde tanimli p bagintisi bir yakinsaklik yapisi olup bu yapiya noktasal yakin-
saklik yapis1 adi verilir. p sonlu derinliklidir ve metriklesemeyen bir yakinsaklik

yapisidir (Mynard 2016).

Ispat. 3, G €¢ F(R®), § < Gve f € lim,§ olsun. Bu durumda; p bagmntisinin
tammindan, N, (f) < § < G olup f € lim,G dir. Ayrica, her f € RF icin, } €
F(R®) ve N, (f) < } oldugundan f € limp}dlr. O halde, p bagintis1 R® iizerinde
bir yakinsakhk yapisidir. §, G € F(R®) ve f € lim,§ N lim,G ise, N; (f) < § ve
N:(f) < G olup NV, (f) < NG dir. Dolayisiyla, f € lim, (§NG) olup p sonlu

derinliklidir. =
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3.2 Yakinsama Uzaylar1 ve Temel Ozellikleri

Bir X kiimesi iizerinde tamml yakinsaklik yapilarmin ailesi, (3.3) ile verilen “=<”
kismi siralama bagintisina gore bir latistir. € ile, X tizerinde tanimh yakinsaklik

yapilarinin ailesi gosterilmek {izere; &, o € € icin,

Evo @ ={(F,z) e F(X) x X |z € limF ve x € lim,F}

ENo @ ={(F,2) e F(X) x X | x € limF veya x € lim,§}

dir. ® C € olmak tizere;

Vo= V= {F2) eF(X)x X |V, €Dz € limF} (3.7)
£e®
ve
AD = N\¢={F2) eF(X)x X |3 €Dz limF} (3.8)
£e®
dir. Ayrica,
limy ) o8 = (limeS ve limp o = | Jlime (3.9)
£ed £Em

esitlikleri gerceklenir (Mynard 2016).

Teorem 3.1 Bir X kiimesi iizerinde tanimh yakimsaklik yapilarinin ailesi, “<”
kismi siralama bagintisina gore tam latistir. Ozel olarak, X kiimesi iizerinde tanimlh
sonlu derinlikli yakinsaklik yapilarinin ailesi latis olup herhangi bir alt ailesinin

supremumunu igerir (Mynard 2016).

Ispat. ¢, X {izerinde tanmiml yakimsaklik yapilarmmn ailesi olsun. Herhangi bir
D C € igin (3.8) ve (3.9) da tamimlanan \/@ ve /\@ bagintilarimin X {izerinde
yakinsaklik yapisi oldugu agiktir. A ile, € ailesinin sonlu derinlikli 6gelerinin her-

hangi bir alt ailesi gosterilsin. Bu durumda; \/.A = \/0 sonlu derinlikli bir

oeA
yakinsaklik yapisidir. Gergekten, §,G € F(X) ve x € limy 4§ Nlimy 4 G ise (3.10)

ile verilen ilk egitlikten, her ¢ € A i¢in = € lim, § N lim, G olup A ailesinin 6geleri

sonlu derinlikli oldugundan, z € lim, § NG dir. Dolaysiyla, € limy 4 §NG dir. =
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Tanim 3.6 (X,¢), (Y,0) iki yakinsama uzay1 ve f : X — Y bir fonksiyon ol-
sun. Bu durumda; her § € F(X) icin f(lim,§) C lim, f[§] oluyor ise f fonksi-

yonuna yakinsama doéniisiimii adi verilir (Dolecki 2009).

Tanim 3.6 dan,
[ yakinsama déniistimi < [(§,z) € £ = (f[3], f(z)) € o]

onermesinin gerceklendigi aciktir. Iki yakinsama doniisiimiiniin bileskesinin de bir
yakinsama doniigiimii oldugu kolaylikla gosterilebilir. (X, ¢) uzaymdan (Y, o) uza-

yina tammh tiim yakinsama doéniisiimlerinin kiimesi C'(§, o) ile gosterilecektir.

Onerme 3.2 (X,¢) ve (X, o) iki yakisama uzay1 olsun. Bu durumda; o < ¢

olmasi i¢in gerek ve yeter kosul,
dx: (X,§) — (X0
r — id(z):==x

birim fonkiyonunun yakisama déniigiimii olmasidir (Dolecki 2009).

Ornek 3.13 R iizerinde, Ornek 3.2 ve Ornek 3.3 de verilen v ve Sequ yakimsaklik
yapilari ele alimsin. Bu durumda; Ornek 3.7 de aciklandig iizere; v < Sequ olup
Onerme 3.3 den, id : (R, Seqv) — (R, v) fonksiyonu bir yakinsama doniistimiidiir

(Dolecki 2009).

Ornek 3.14 (X,7) ve (Y,7) iki topolojik uzay, f : (X,7) — (Y,7) siirekli bir

fonksiyon olsun. Bu durumda;
£ = {(g,m) EF(X)x X |§ x}

ve
€= {(g,y> EF(Y)xY |G o y}

sirastyla X ve Y iizerinde sonlu derinlikli iki yakinsaklik yapisidir, ve f € C'(£,,&.1)
dir (Mynard 2016).
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Onerme 3.3 (X,¢) ve (Y,7) iki yakinsama uzay1 olsun ve @ ile, bir Z kiimesi

tizerinde tanimh yakinsaklik yapilarinin bir ailesi gosterilsin. Bu durumda;

ﬂC’f’a ve C( /\0’7’ ﬂC(O’,T) (3.10)

Ue@ cED cED oED

esitlikleri gergeklenir. Ayrica,

UC’(f,U)CC(f,/\J ve UC’UT (Vo,71) (3.11)

oceD oeD oeD o€D

dir (Mynard 2016).

Ispat. f € C (5 .V 0) olsun. Bu durumda; sirasiyla Tanim 3.6 ve (3.10) ile verilen
o€D
ilk esitlik kullamlirsa, § € F(X) icin

f(lime§) C lim \V o fI5 ﬂ lim, f[§] C lim, f[§]; Vo € D

oceD gED

elde edilir. Dolayisiyla, her 0 € © igin f € C (&, 0) dir. Tersine, her ¢ € ® i¢in
feC(o)ise, § € F(X) igin f(lime §) C lim, f[§] olacaktir. Boylece,

f(lime§) C ﬂ lim, f[§

oED

olup (3.10) ile verilen ilk esitlikten, f € C (5, V 0) elde edilir. (3.11) ile verilen

ceD
ikinci egitlik benzer sekilde gosterilebilir. Diger yandan; f € UC’ (&,0) ise, en
ceD

azindan bir ¢ € ® i¢in f € C(£, 0) dir. Bu durumda;
VE € F(X) : f(lime§) C lim, f[F]

olur. Ayrica, lim, f[§] C U lim, f[§] oldugundan, (3.10) ile verilen ikinci esitlikten,

o€D
feC& N o)dir. (3.12) ile verilen ikinci kapsama benzer gekilde gosterilebilir. m
oe®D

Onerme 3.4 X bir kiime, (Y, §) bir yakinsama uzay1 ve f : X — (Y, ) bir fonk-
siyon olsun. Bu durumda; § yakinsaklik yapisina kargihik, X kiimesi iizerinde, f
fonksiyonunu yakinsama doniisiimii kilan yakinsaklik yapilarinin en kabasi mevcut-

tur (Dolecki 2009).
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Ispat. I(X ) ile, X kiimesi tizerinde tanimh yakinsaklik yapilarinin ailesi gosterilsin

ve

Spi={oecI(X)| feC(o,p)}

bigiminde tanimlansin. Bu durumda; ¢« € S; oldugundan S; # () dir. Diger yandan,

Teorem 3.1 den /\ o € I(X) olup (3.11) ile verilen ikinci esitlikten,

oEST

f:<X,/\a>—><m>

oEeST

bigiminde tamimlh f fonksiyonu yakinsama doniigiimiidiir. Dolayisiyla, /\ o€ Sy

oeST
dir. m

Tanim 3.7 X bir kiime, (Y, o) bir yakinsama uzay1 ve f : X — (Y, o) bir fonk-
siyon olsun. Bu durumda; f fonksiyonunu yakinsama doéniisiimii kilacak bicimde X
kiimesi tizerinde taniml yakinsaklik yapilarinin en kabasina, (f, o) ikilisine karsilik
gelen baglangi¢ yakinsaklik yapisi adi verilir ve f. ile gosterilir (Dolecki 2009).

Tanimin anlamh oldugu agsagidaki énermeden agiktir.

Onerme 3.5 X bir kiime, (Y,0) bir yakinsama uzay1 ve f : X — (Y,0) bir

fonksiyon olsun. Bu durumda;

fo =A@, 2) e F(X) x X | (f[3], f(x)) € o}, (3.12)

her § € F(X) i¢in
lim;§ = = (lim, f[§]) (3.13)

ve f, f i¢in basglangi¢ yakinsaklik yapisidir (Dolecki 2009).

Ispat. 1 := {(3,2) € F(X) x X | (f[§], f(z)) € o} olarak alinsm. 7 bir yakimsaklik
yapisidir. Gergekten, § < G ise, f[§] < f[G] dir. Dolaysiyla, (§,z) € 7 ise, o,
Y kiimesi iizerinde bir yakinsaklik yapisi oldugundan (G,z) € n olacaktir. Diger

yandan, o, Y kiimesi iizerinde bir yakinsaklik yapisi oldugundan her z € X igin,

({f(2)}*, f(z)) € o dir. Ayrica, {f(z)}* = f[z] oldugundan (z,z) € 5 olur. (3.13)
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esitligini gosterelim. § € F(X) ve z € X olmak iizere; (§,x) € nise, (f[§], f(x)) € o
dir. Bu durumda; f € C(n, o) olup Tamim 3.7 de,

fo =mf{ CF(X) x X | feC(§0)}

bigiminde tanimlandigindan, f,;” < 7 dir. Diger yandan, § € F(X) i¢in z € lim ;- §
ise, f fonksiyonunu yakinsama doniisiimii kilacak bicimde, X {izerinde tanimli en
azindan bir ¢ yakinsaklik yapisi icin © € lim§ dir. Bu durumda; (f[§], f(z)) €
o olup (§,x) € n yani, x € lim,§ olur. Dolayisiyla n < f dir. Simdi (3.14)
esitligini gosterelim. Tamm 3.7 den, f € C(f,,0) oldugundan, her § € F(X)
icin f(lim,-§) C lim, f[§] elde edilir. Diger yandan, € f~*(lim, f[§]) ise, f(z) €
lim, f[§] olup (3.13) esitliginden, x € lim,-§ elde edilir. Son olarak, f;~ bagmntisinin
baslangic yapisi oldugunu gosterelim. (Z,7) bir yakinsama uzay1 ve g € C(7, f)

olsun. Bu durumda;
V3§ € F(Z) icin g(lim,§) C lim - g[S]
dir. f € C(f;,0) ve g[§] € F(X) oldugundan,

f(limy-g[8]) C limo fg[3]]

olup

(f o g)(lim:F) C f(lim - g[§]) C lims(f o 9)[3]
elde edilir. Dolayisiyla, fog € C(7,0) dir. Tersine, fog € C(71,0) ve z € g(lim,§)
olsun. Bu durumda; x = g¢(z) olacak bigimde en azindan bir z € [im,§ vardir.

Hipotezden, (f o g)(lim,§) C lim,(f o g)[§] oldugundan,

(f o g)(2) € lim,(f o g)[F] = lims f[g[S]]

olup f(z) € lim,f[g[§]] dir. Bu durumda; (3.14) den, = € lim,-g[§] elde edilir.
Dolayisiyla g € C(r, f.7) dir. Tamim 2.15 geregince f, baglangi¢ yapisidir. m

Onerme 3.6 X veY iki kiime, o, Y kiimesi iizerinde sonlu derinlikli bir yakinsaklik

yapisi, f: X — (Y, o) bir fonksiyon olsun. Bu
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durumda; f, sonlu derinlikli bir yakinsaklik yapisidir (Mynard 2016).
Ispat. §,G € F(X)ver € lim ;-§Nlim -G olsun. Bu durumda; (3.14) esitliginden,
f(x) € lim, f[§]Nlim, f[G] dir. o, Y kiimesi iizerinde sonlu derinlikli bir yakinsaklik
yapist oldugundan, f(z) € lim, (f[§] N f[G]) olacaktir. Diger yandan,

fBINfIGl < fENg]

oldugundan f(z) € lim, f[§ N G] olup (3.14) den, x € lim;— (F N G) elde edilir. m

Onerme 3.7 X ve Y iki kiime olsun, o ve ¢ ile, Y kiimesi iizerinde tamml iki

yakinsaklik yapisi gosterilsin. Bu durumda; £ < o ise, fg = fo dir (Mynard 2016).

Ispat. § € F(X) olmak iizere; z € lim ;& ise, (3.14) esitliginden, z € f~"(lim, f[§])

dir. £ < ¢ oldugundan,
FHlimg f[S]) € 1 (lime f[T)) = lz'mfgS
olup x € lz'mfé—s elde edilir. m

Onerme 3.8 (X, ¢), (Y,0) iki yakinsama uzayi ve f : X — Y bir fonksiyon olsun.
Bu durumda;

fel§o) = [, 2¢

dir (Mynard 2016).

Tamim 3.8 X bir kiime, I # () bir indis kiimesi, {(Y;,7;)},.; sonlu derinlikli yakin-

sama uzaylarmin bir ailesi olsun ve {f; | X — (Y;,n,) }.., fonksiyon ailesi verilsin.

iel
Bu durumda; {f;},.; ailesinin her bir 6gesini yakinsama doniigtimii kilacak bi¢imde,

X kiimesi tizerinde taniml en kaba yakinsaklik yapis1 mevcut olup bu yapiya { f;},c;

ailesine kargilik gelen baslangi¢ yakinsaklik yapisi adi verilir. Bu yap1 S ile

gosterilir ve

s, =\ (fi),,

iel
bigiminde tanimlanmir (Mynard 2016).

Tanimin anlamh oldugu asagidaki énermede goriilecektir.
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Onerme 3.9 X bir kitme, I # () bir indis kiimesi, {(¥;,7;)};c; sonlu derinlikli
yakinsama uzaylarmin bir ailesi olsun ve {f; | X — (Y, 7;)},c, fonksiyon ailesi

verilsin. Bu durumda; S, = \/ (fi),, bagmtisy, {f; | X — (Yi,m;)},c; ailesi igin
iel
baglangi¢ yakinsaklik yapisidir. Ayrica, herhangi bir § € F (X) igin,

z € limg-§ <= Vi€ I: fi(x) € limy, i3] (3.14)

dir. Her ¢ € I i¢in n; bagmtilar1 sonlu derinlikli oldugunda S,  bagmtis1 sonlu

derinliklidir (Dolecki 2009).

Ispat. Tanm 3.7, (3.8) ve (3.13) esitlikleri kullanilarak, (3.15) ile verilen denklik
kolaylikla gosterilebilir. (Z,7) bir yakinsama uzay1 ve g € C (7’, S, ) olsun. Bu
durumda; Tanim 3.6 dan, her § € F (Z) i¢in

g (lim;§) C limg-g[3] (3.15)
dir. g[§] € F(X) ve heri € I igin f; € C <(fl)7; ,ni) oldugundan,

fi (g (lim,g)) C lim,, fi[g[8]]

dir. Boylece,
(fiog) (lim:§) C lim, (fio g)[3]

olup her i € I igin f; o g € C(7,mn;) elde edilir. Diger yandan, (Z,7) bir yakinsama
uzay1 ve her i € [ igin f;0g € C(7,n;) olsun. Bu durumda; § € F (Z) olmak {izere,
xr € g(lim,F) ise, x = g(z) olacak bigimde en azindan bir z € lim,§ vardir. Her

i € Iigin (f; o g)(lim.§) C limy, (f; o 9)[§] oldugundan,

(fiog)(2) € limy,(fi o g)[3]

dir. (3.15) kullanilirsa, g € C' (7’, S, ) oldugu elde edilir. Dolayisiyla, S,° bagmntisi,
{fi};e; ailesine karsilik gelen baglangic yakinsaklik yapisidir. Her 7 € [ igin 7; bagin-
tilar1 sonlu derinlikli oldugunda, (3.15) ile verilen S.° bagmtisinm sonlu derinlikli bir

yakinsaklik yapisi oldugu, Teorem 3.1 ve Onerme 3.6 dan aciktir. m
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Tanim 3.9 {(X;,&;)},.,; yakinsama uzaylarmin bir ailesi ve X := J]X; olsun. Bu
il
durumda; X kiimesi {izerinde, her ¢ € [ igin
i X — ;X}

z — pi(2) =z

bigiminde taniml koordinat fonksiyonlarimi yakinsama doniigiimii kilacak bigimde
tanimli en kaba yakinsaklik yapisina ¢arpim yakinsaklik yapisi denir, Hé‘l ile

i€l
gosterilir ve Tanim 3.8 geregince

Hfz = \/ (p@);
iel i€l
bigiminde tanimlanir. § € F(X) olmak iizere, (3.15) den
z € limHé § <= Viel:pz) € limep[]
el

onermesi gergeklenir (Dolecki 2009).

(X, &), (Y, o) iki yakinsama uzayi ise, X x Y kiimesi iizerinde tanimh ¢arpim yakin-

saklik yapisi £ X o ile gosterilir ve
£ x 0= (p); V (pa),
bi¢iminde tamimlanir. H € F(X X Y') olmak tizere;
(z,y) € limexo, H <= x € limep1[H] ve y € lim,p2[H] (3.16)

dir.

Onerme 3.10 RX iizerinde, noktasal yakinsaklik yapisi p ele alinsm. Her z € R

icin, R, := R ve v, := v olmak {izere; H]Rm kiimesi tizerinde tanimh ¢arpim yakin-
z€R
saklik yapisi, R® iizerinde tanimh noktasal yakmsakhk yapisi ile cakigir (Mynard

2016).

ispat.

id e C <p, Hvx> ve 1d e C (H%;P)

x€R rER
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oldugu gosterilirse, Onerme 3.2 geregince ispat tamamlanir. § € F(RR) ve f € lim,, §

olsun.
e, RE — R,
[ elf) = f(2)
bigiminde tanimh olmak iizere; Tanim 3.9 geregince, 1_[113j bagmntisi, {e, }, p fonksi-
z€R
yon ailesine kargilik gelen ¢arpim yakinsaklik yapisi olup Hfux = \/ (€z),, dir. Bu

zER zeR

durumda; f € lim\/ _ § oldugunu gostermek icin, (3.15) geregince,
€x)y,

zER

Ve e R:e.(f) = f(x) € lim,, e.[F]

oldugunu gostermek yeterli olacaktir. f € lim, § oldugundan, N, (f) < § olup
VK e N;,(f):FFeF>FCK (3.17)

dir. Ornek 3.12 den faydalamlirsa, S := {2} € R<¥ ve n € ZT olmak iizere;

o 1 . « e .
r:= ~ > ( segimi i¢in,

Ken={0 € B [17(0) - g(0)] < -} € 4,01

olacaktir. (3.18) den, K, , € § oldugundan,

1 1
VeeRVneZ:3K,,, €F e, (Kpn) C ]f(x) - ﬁ,f(x) + —

n

olup {]f(z)— 2, f(z)+L[|n€ Z*}T < e,[§] olacaktir. Dolayisiyla, her z € R

igin f(x) € lim,,e,[§] olup istenilen elde edilir. Diger yandan, § € F(R¥) ve
fe limH S ise, Hvx = \/ (€z),, esitligi ve (3.15) den,

zER T€R
x€R

Vo e R:e,(f) = f(x) € lim,,e,[3]

dir. Boylece,

{]f(x) L <x>+%[|ne Z+}T < e8]
olup
VeeR,VneZ:3F,, €F e, (F,n) C ]f(x) - %,f(x) + %{ (3.18)
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dir. f € lim, § oldugunu gostermek icin, N> (f) < § oldugunu gostermemiz gerekir.
K € N, (f) olsun. Bu durumda;

EISER<‘”,EIT>09m€a§<|f(x)—g(x)|<r:>g€K (3.19)

onermesi gergeklenir. k € ZT olmak iizere; S := {x1,....,x;} ve bir ng € Z* i¢in

S kiimesinin her bir tgesine, (3.19) kullamlarak bir F, ,, € § karsihk getirilebilir.

k
F = ﬂFxno € § olarak alimirsa, F' C K olup NTP (f) < § elde edilir. Gergekten,
i=1
h € F ise,
(Vi) 1 <i<k):heF,nq

ve

()<< B) s e, () = h(a) € €n(F) © | o) = o fla) +

0 no

olur. Dolaysiyla, her i € {1,....,k} igin |h(z;) — f(x;))] < n—lo olup

max 1) — f(22))] < —

1<i<k No

dir. Bu durumda; (3.20) den, h € K elde edilir. =

Onerme 3.11 Her z € Ricin R, :=R, v, := v ve

e, RRE — R,

[ ealf) = f(z)

biciminde tanmiml olmak iizere; R¥ {izerinde tamiml noktasal yakinsaklik yapisi p,
{€x},cp fonksiyon ailesinin dgelerini yakinsama doniistimii kilan en kaba yakinsaklik

yapisidir. Yani;

p="\/ (e,

zeR

dir (Mynard 2016).

Ispat. Tamm 3.9 ve Onerme 3.10 dan aciktir. m

R iizerinde, Ornek 3.2 de verilen standart yakisaklik yapis1 v ele alindiginda, (R, v)

metriklegebilir bir yakinsama uzay1 olmasina ragmen, HRw tizerinde, Ornek 3.12
Tz€R
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de verilen noktasal yakinsaklik yapisi p ele alindiginda, (HRI’ p) metriklesebilir

Tz€R
degildir. R® iizerinde tamimli noktasal yakinsaklik yapisi; HRJ@ tizerinde taniml

zeR
carpim yakinsaklik yapisi ile cakistigindan, metriklegebilen yakinsama uzaylariin

carpimi metriklesebilir olmak zorunda degildir.

Ornek 3.15 v, R iizerinde tamml standart yakmsaklik yapisi, V, (x), x noktasinin

v bagintisina gore yoresel siizgeci olsun ve
e: RxRF — R
(,f) — el f):=f(z)

fonksiyonunu ele alalim. Bu durumda; her § € F(R®) ve her z € R i¢in,

.
e[Vo(x) x §] := {Ug (Vo) | Vi € Vyo(x), F € g} (3.20)

geF

ailesi R tizerinde bir siizgectir. R® iizerinde,
s:={(3,f) e F(R®) xR¥ | Vz e R: f(z) € lim,e[V,(x) x F]} (3.21)
bigiminde tanimlanan s bagintisi, bir ényakinsaklik yapisidir (Mynard 2016).

Ispat. e[V, (x) x §] ailesinin siizge¢ oldugunu gostermek icin

S = {Ug(%)|Vw€Vv(x),FES}

geF
ailesinin siizgeg taban oldugunu gostermek yeterli olacaktir. () ¢ S oldugu agiktir.
Diger yandan, Sp, .5, € S ise,
WD VA ey (2),3F, F,eFsS = U g (Vm(l)) ve Sy = U g (Vm(z))

geR geF,

dir. O halde, S5 = |J ¢ (v;” N vx(z)) € S ve boylece Sy C Sy N S, dir. Simdi, s

geF1NFy
bagntisinin bir ényakinsaklik yapist oldugunu gosterelim: g, G € F(RR), § < G ve

f € limF olsun. Bu durumda; (3.22) den, her = € R igin f(x) € lim,e[V,(x) x §]
olur. Diger yandan, U € e[V, (z) x §] ise,
AV, €Vy(x),3F €§: | Jf(Va) CU

feF
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dir. Ayrica, § < G oldugundan, Uf(VI) € e[Vy(x) x G] olup U € ¢[V,(z) x G]
fer
dir. O halde, v bagmtis1 R iizerinde bir yakinsaklik yapisi oldugundan, f(z) €

limye[V,(z) x G] olup f € lim,G elde edilir. =

Ornek 3.15 in bir ézel hali, asagidaki 6rnek ile ifade edilir.

Ornek 3.16 v ve V,(z), Ornek 3.15 de verildigi gibi alinsin ve
e: RxC(v,v) — R

(Imf) - e(Iaf) :f(ZL’)
fonksiyonunu ele alalim. Her § € F(C' (v, v)) igin,

'
eV,(z) x §] := {Ug(Vx) | V. € Vy(2), F € S}

geF

ailesi R iizerinde bir siizgegtir. C' (v, v) iizerinde,
c:={(F f) e F(C(v,v) xC(v,v)|VreR: f(z) €lime[V,(x) xF]|} (3.22)
bi¢iminde tamimli ¢ bagmtisi, bir yakinsaklik yapisidir (Mynard 2016).

Ispat. Her § € F(C (v, v)) icin, e[V,(z) x §] ailesinin R {izerinde bir siizge¢ oldugu
ve ¢ bagmtismm bir ényakinsaklik yapisi oldugu Ornek 3.13 iin ispatina benzer

sekilde gosterilebilir. O halde,
VfeC(v,0): f€limef

onermesinin gerceklendigini gostermemiz yeterli olacaktir. Asagida verilen,
i)V feC(v,v): felimf
(i) Ve eRY feRR: f(z) € lim, f[V,(2)]
(iii) f € C (v, v)
onermelerinin denk oldugu gosterilirse, ispat tamamlanir. (i) = (ii) 6nermesinin
gergeklendigini gosterelim. Her f € C' (v, v) igin f € limcj.” ise, (3.23) den,
Ve e R: f(x) € limye[Vy(x) X f]

olacaktir. Bu durumda; e[V, (z) X J.”] < f[V(2)] oldugu gosterilirse, ispat tamam-
lanir. K € e[V, (x) x }] olsun. Bu durumda;

W, €Vo(),3F € f3 [ Jg(Vo) C K

geF
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dir. f € F oldugundan,

C Ug(V

geF
olur. Boylece, V, € V,(x) oldugundan, K € f[V,(x)] elde edilir. (ii) = (i) 6n-
ermesini ispatlamak igin her z € R ve her f € R® i¢in f(x) € lim, f[V,(2)] ol-
sun. Bu durumda; f[V,(x)] < e[V,(x) X }] oldugu gosterilirse, ispat tamamlanir.
K € f[V,(x)] ise, f(V,) C K olacak bigimde en azindan bir V, € V,(x) vardir.
F :={f} olarak alimirsa, F' € } ve

Urva)=rva) c K

fer

oldugundan K € e[V,(z) x f] elde edilir. Dolayisiyla, her z € R icin f(z) €
lim, e[V, (z) x }] olup (3.23) den, f € limc].” elde edilir. Simdi, (ii) 6nermesinin

gergeklendigini ve f ¢ C (v, v) oldugunu kabul edelim. Bu durumda;

IF € F(R) : f(limy§) ¢ lim, f[§]

dir. Dolayisiyla,
Jz € limy§ : f(x) ¢ lim, f[3]

olacaktir. (3.5) den, V,(z) < § olup f[V,(z)] < f[3] elde edilir. Boylece, f(x) ¢

limy, f[Vy(2)] olur. Bu ise (ii) onermesi ile celigir. O halde kabuliimiiz yanhgtir.
(iii) = (ii

x € lim,V,

) onermesinin gergeklendigini gosterelim. f € C(v,v) ve x € X ise,
,(x) olacagindan f(x) € lim, f[V,(x)] elde edilir. =

Onerme 3.12 C (v, v) kiimesi iizerinde tamml stirekli yakinsaklik yapisi c,

e: RxC(v,vy) — R
(, f) — ez, f) = f(x)

fonksiyonunu yakimsama doniigiimii kilan en kaba yakinsaklik yapisidir (Mynard

2016).

Ispat. S :={0,},; ile, her i € I igin, e € C (v x ;,v) kosulunu saglayan, C (v, v)

tizerinde tanimh yakinsaklik yapilarinin ailesi gosterilsin. /\ (vx6;) =vx /\91»
iel iel
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oldugundan ve (3.11) ile verilen ikinci egitlikten, e € C (v X /\Qi, v) dir. O halde,
iel
c= /\97; oldugu gosterilirse, ispat tamamlanir.
il
(i) G € F(C(v,v)) ve f € lim/\ G olsun. Bu durumda; (3.9) dan, f € limy, G
i€l
olacak bigimde en azindan bir i € I vardir. Her i € [ igin e € C (v X 0;,v)

oldugundan, her x € X icin
e (limyxo,, (Vo(z) X G)) C limye[Vy () x G] (3.23)
dir. f € limg, G ve x € lim,V,(z) oldugundan, (3.17) den,

(z, f) € limyxa,, (Vu(z) X G)

dir. (3.24) kullanilirsa,
e(x, f) = f(x) € limye[V,y(z) X G|

elde edilir. Dolayisiyla, (3.23) den, f € lim,G olup ¢ =< /\Hi oldugu goriiliir.
iel
(ii) e; = v X ¢ siralamasi ispatlanarak; Onerme 3.8 den, ¢ € C (v X ¢, v) yani,

¢ € § oldugu goriiliirse, /\91- =< ¢ elde edilir. e

v

=< v X ¢ oldugunu gosterelim:
iel
GeFRxC(v,v)) ve (z, f) € lim,x. G olsun. Bu durumda; (3.17) den,

x € lim,p1[G] ve f € limep,[G]

dir. Buradan,

N
Hx—%,x—i—%{\neZ*} < pl9] (3.24)
f(z) € limye[V,(x) X pa[G]] (3.25)

elde edilir. Diger yandan, (3.25) den,
. 1 1
VneZ"™:3AeGopm(A) C |z ——,x+—

dir. K € e[V,(z) X p2[G]] ise,

E|7”L€Z+ZHGEQB@(]J?—%,Z’—F%{XPQ(G))CK
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olacaktir. Bu durumda;

e (pr (A) X pa(@) c€<]x—%,x+ﬂ><p2(c;)> CK

olur. S := G N A bigiminde tamimlanirsa, S € G ve ¢(S) C K olup K € e[G] dir. O
halde,

e[Vy(x) x p2[F]] < e[d] (3.26)

oldugu agiktir. (3.26) kullamlirsa, e (z, f) € lim,e[G] olup (3.14) esitliginden,
(z, f) € lim,- G elde edilir. m

3.3 Conv Kategorisi ve Temel Ozellikleri

Nesneleri sonlu derinlikli yakinsama uzaylari, morfizmleri sonlu derinlikli yakinsama
uzaylar1 arasinda tanimli yakinsama doniisiimleri olan kategori Conv ile gosterile-
cektir. Bu boliimde; Conv kategorisinin bazi temel 6zellikleri ve Top kategorisi ile

arasindaki iligkiler incelenecektir.

Teorem 3.2 Conv kategorisi bir topolojik kategoridir (Mynard 2016).

Ispat. Conv kategorisi belirli kategoridir ve baslangic yapilarima gore kapali oldugu
Onerme 3.9 da gosterilmistir. Ayrica, X := {a} kiimesi {izerinde tanimlanabilecek
tek yakinsaklik yapisi diizensiz yakinsaklik yapisi olup bu yap1 sonlu derinliklidir. 1
bir indis kiimesi olmak iizere; herhangi bir X kiimesi iizerinde taniml sonlu derinlikli

yakinsaklik yapilarmin ailesi {¢,},_;, j € I olmak tizere;

il
§ & = idx : (X,§;) — (X,§;) yakinsama doniigtimii

bi¢iminde tanimlanan “=<” bagmtisina gore kismi siralidir. Dolayisiyla, Tanim 2.25

den, Conv kategorisinin topolojik bir kategori oldugu agiktir. m

Onerme 3.13 (X, ¢) sonlu derinlikli bir yakinsama uzay1 olsun. Bu durumda;
Te ={0OCX|VFeF(X):0NlimF #0= 0 € F} (3.27)

bi¢iminde tamimlanan 7, ailesi X kiimesi tizerinde bir topolojidir (Mynard 2016).
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Ispat. I # () bir indis kiimesi ve (O;)ic; C 7¢ olsun. § € F(X) ve <UOZ> Nlime§ #
i€l
() ise,

HxEXBxelimggvexEUOi
iel
dir. Bu durumda; O;, N lime§ # () olacak bigimde en azindan bir ig € I vardir.
O;, € T¢ oldugundan (3.28) den, O;, € § olup |JO, € § dir. Diger yandan, J sonlu

i€l
elemanl bir indis kiimesi ve (O;);e; C ¢ olsun. § € F(X) ve (ﬂ Oi) Nlime§ # 0
icJ
ise,

326X92€lim53vez€ﬂOi
icJ
dir. Bu durumda,; her i € J igin O; N lime§ # 0 olup (3.28) den, O; € § ve J sonlu
elemanl oldugundan, ﬂ O; € § elde edilir. 7 ailesi keyfi birlesim ve sonlu arakesite
gore kapali oldugundal;JQ) ve X € ¢ dir. m

Tanim 3.10 (X, ¢) bir yakinsama uzay1 olmak iizere;
Te={0OCX|VFeFX)20NlmF#0= 0 €F}

bigiminde tanimlanan topolojiye, ¢ bagitisinin iirettigi topoloji denir (Mynard

2016).

Onerme 3.14 (X, 7) bir topolojik uzay olsun. Bu durumda;
5,:{@ﬂgeFujxX¢gi;x} (3.28)

bi¢ciminde tanimlanan £ = bagintisi, X kiimesi iizerinde sonlu derinlikli bir yakinsaklik

yapisidir (Herrlich, Bentley ve Lowen 1991).

Ispat. §,G € F(X), § < G ve (§,z) € &, olsun. Bu durumda; Tanim 2.12 ve (3.29)
dan, N (z) < § < G olup (G,x) € . elde edilir. Diger yandan, her z € X igin
N-(z) < & oldugundan = € limg 2 dir. Son olarak, & bagmtismmn sonlu derinlikli
oldugunu gosterelim. (F,z) € &, ve (G, x) € &, olsun. Bu durumda; N, (z) < § ve
N;(z) < G olup N, (z) < FNG dir. Dolayisiyla, §NG —— x olup (§NG,z) € &

elde edilir. m
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Tanim 3.11 (X, ¢) bir yakinsama uzay1 olsun. Bu durumda; X kiimesi iizerinde,
& = ¢, olacak bicimde bir 7 topolojisi mevcut ise, { bagintisina topolojik yakin-
saklik yapisi, (X, ¢) ikilisine topolojik yakinsama uzayi adi verilir (Mynard
2016).

Ornek 3.17 X bir kiime olsun ve 7 := {(}, X} bigiminde tamimlansin. Bu durumda;

(3.29) dan, 7 topolojisinin iirettigi topolojik yakimsaklik yapisi,
& ={@ ) € F(X) x X | {X} < 3§}

biciminde tanimhidir. Ornek 3.5 de tamimlanan diizensiz yakmsaklik yapisi &, ile

cakistigindan, diizensiz yakinsaklik yapisi topolojiktir (Mynard 2016).

Tanim 3.12 (X, ¢) bir yakinsama uzay1 ve x € X olsun. Bu durumda; z noktasinin

¢ bagmtisina gore komguluklar ailesi N¢(x) ile gosterilir ve
Ne(z) ={VCX|30ergs32€0CV} (3.29)

bigiminde tanimlanir (Mynard 2016).

Onerme 3.15 (X,7) bir topolojik uzay olsun. ¢, ile, X tizerinde 7 topolojisinin

iirettigi topolojik yakinsaklik yapisi gosterilsin. Bu durumda;
T={0CX|VFeFX):0Nlim§#0= 0 €F},
yani 7 = 7¢_dir.

Ispat. U € 7 olsun. Her § € F(X) icin, U N lime § # 0 ise, v € U ve © € lime §
olacak bigimde en azindan bir z € X vardir. Bu durumda; sirasiyla U € N, () ve
(3.29) geregince N (z) < § elde edilir. Dolayisiyla, U € § yani, U € 7¢_ dur. Diger
yandan, U € 7¢_ ve U # () olsun. Bu durumda; (3.28) den,

V§eF(X)sUNlime §#0=>UcF

onermesi gergeklenir. Herhangi bir x € U igin, § = N, (z) alnrsa, N, (z) —— z
oldugundan (3.29) geregince, z € U Nlim¢_ N7 (z) olur. Dolayisiyla, U € N, (z) elde

edilir. Sonug olarak U € 7 olur. m
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Onerme 3.16 (X, ¢) bir topolojik yakinsama uzay: olsun ve T¢ ile, X tizerinde, &

bagintisina kargilik gelen topoloji gosterilsin. Bu durumda;
¢={E) e F(X)x X | § 5 a},
yani £ = 575 dir.

Ispat. ¢ topolojik yakinsaklik yapisi oldugundan, ¢ = ¢, olacak bicimde bir &

topolojisi mevcuttur, ve (3.29) dan,
§=6 = {@E ) eFL) x X |§ o)

bi¢iminde tammlamr. (§,z) € § almrsa; N, (z) < § dir. O halde N7, (z) <N, (2)
oldugu gosterilirse (§,z) € ,, olacaktir. U € N:(z) ise, z € O C U olacak bi¢imde

en azindan bir O € 7, vardir. Bu durumda;
VFeFX):0NlimF #£0=0¢€5F

onermesi gergeklenir. § = N, (z) segilirse, (N, (z),z) € £ oldugundan, z € O N
limeN,; (x) ve boylece O € N, (z) olup U € N, () elde edilir. Boylece, (§,z) €
&;, oldugu goriiliir. Diger yandan, (F,x) € &, olsun. Bu durumda; (3.29) dan,
N,

e (r) < § dir. ¢ topolojik yakinsaklik yapisi oldugundan, § = &, olacak bigimde,

X iizerinde bir & topolojisi mevcuttur. Onerme 3.15 kullanilirsa, T¢ = K olacaktir.

Bu durumda; N, (x) = N () esitligi elde edilir. Dolayisiyla, (§,z) € £ dir. =

Onerme 3.17 X bir kiime olmak iizere; T ve 7 ile X iizerinde tammb iki topoloji
gosterilsin. Bu durumda;

TCT = §, &
onermesi gerceklenir.

Ispat. 7 C 7, F € F(X)vex € limg , § olsun. Bu durumda; (3.29) dan, No(2) <F
dir. N:(z) < N (z) oldugundan (3.29) dan, = € lim,_ § elde edilir. Dolaysiyla,
¢, = & dir. Diger yandan, £, < £ olsun. Onerme 3.15 geregince, Te, = T Ve
Te, = 7" oldugundan, Te, C Te, siralamas1 gosterilirse ispat tamamlanir. O €
¢, 8 € F(X) ve ON lime ,§ # 0 olsun. ¢, =< & oldugundan, O N lime § # 0
olacaktir. Boylece (3.28) kullanilirsa, O € § elde edilir. O halde, O € e, dir. m

42



Ornek 3.18 X bos kiimeden farkli bir kiime olmak iizere, X iizerinde taniml diskre

yakinsaklik yapisi topolojiktir (Mynard 2016).

Ornek 3.19 REF iizerinde tamml noktasal yakinsaklik topolojisi, Ornek 3.12 de
tanimlanan p noktasal yakinsaklik yapisin iiretir. Dolayisiyla, R iizerinde tanimh

noktasal yakinsaklik yapisi topolojiktir (Mynard 2016).

Onerme 3.18 (X,7) ve (Y, 7) iki topolojik uzay olmak iizere; asagidaki énermeler
denktir.

i) f:(X,7) — (Y,7) fonksiyonu siireklidir.

ii) f € C(&,,€,0) dir.

Ispat. Onerme 2.3 ve Tamm 3.6 dan aciktir. m

Onerme 3.19 X bir kiime, (Y, ) bir topolojik yakinsama uzayi ve f : X — (Y, 0)
bir fonksiyon olsun. Bu durumda; X kiimesi iizerinde tamml, (f, o) ikilisine kargilik

gelen baglangic yapisi f topolojiktir (Mynard 2016).

Ispat. (Y, o) bir topolojik yakinsama uzay: ise Tamm 3.11 den, Y kiimesi iizerinde,
o = o, olacak bicimde bir 7 topolojisi mevcuttur. X iizerinde, f fonksiyonuna

karsilik gelen baglangic topolojisi
T ={[T'W)CX|Wer}
ele ahmirsa, f; = ¢, dir. Gergekten, Tanmim 2.14 den,
[ (X Tin) — (Y, 7)

fonksiyonu siirekli olup Onerme 3.18 den, f € C(¢,, ,0,) dir. Dolayisiyla, Onerme
3.8 den, f; = &, elde edilir. Son olarak, §,. = f; oldugu gosterilirse ispat
tamamlanir. § € F(X) ve x € lim;- § olsun. Bu durumda; (3.14) esitliginden,
f(x) € lim, f[§] olup, 0 = o, oldugundan ve (3.29) dan, N, (f(z)) < f[§] dir. z €
limg 3§ oldugunu gostermek igin N;. (r) < §F oldugunu gostermek yeterli olacaktir.

UeN,, (z)ise, z € f~1(W) C U olacak bi¢gimde en azindan bir W € 7 vardir.
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Bu durumda; W € N (f(x)) olup W € f[F] elde edilir. Dolaysiyla, F C f~*(W)
olacak bigimde en azindan bir F' € § vardir. Ayrica, f~'(W) C U oldugundan
UeFdir. m

(X, 7) bir topolojik uzay olmak tizere; (3.29) ile verilen,
£ = {(%’,x) EF(X)x X |§ x}

bagintisi, X kiimesi iizerinde sonlu derinlikli bir yakimsaklik yapisi olup Onerme 3.14

ve Onerme 3.18 geregince

Top L Conv
fo— f
T — 57’
bi¢iminde tamimhi F' funktoru bir dolu funktordur. O halde, Top kategorisi Conv

kategorisinin bir dolu alt kategorisidir.

Teorem 3.3 Top kategorisi Conv kategorisinin bi-yansimali bir alt kategorisidir

(Preuss 1987).

Ispat. Top kategorisinin Conv kategorisinin bir dolu alt kategorisi oldugu aciktir.
(X, €) sonlu derinlikli bir yakinsama uzay1 olsun ve J bir indis kiimesi olmak iizere;
S = {7;},c; ile, her j € J i¢in {, = ¢ kosulunu saglayan, X kiimesi {izerinde
taniml topolojilerin ailesi gosterilsin. Ornek 3.5 den, S # 0 dir. ¢ bagmtisinin Top-
yansimasi £ ile gosterilir ve {id; : X — (X, Tj)}j ¢ ; ailesine kargilik gelen baglangig

topolojisi 7, = \/ 7, olmak tizere; £ := §,,. biciminde tanimlanir. Gergekten,
jeJ

Z'dX : (X7 5) - (X7 gtr)

bir yakinsama doniistimiidiir: § € F(X) ve x € lim¢ § olsun, = € limgr § oldugunu
gostermek igin, (3.29) geregince, N, () < § oldugunu gostermemiz gerekir. V €
N, (x) ise,

3 eJvavjed Wierjvexe W, CV
jeJ’
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dir. Diger yandan, her j € J i¢in §, =< { ve z € lim¢ § oldugundan, her j € J
i¢in z € lim¢_ § elde edilir. Bu durumda; (3.29) dan, her j € J i¢in N, (z) < §
J

ve dolaysiyla her j € J icin W, € § olacaktir. J' sonlu elemanli oldugundan,
(N W; € § olup V € § elde edilir. O halde idy bir yakinsama doniistimiidiir. Son
jeJ’

olarak, (Y, 7') herhangi bir topolojik uzay ve

[+ (X8 — Y.&)

x  — f(z)
biciminde tanimh bir yakinsama doéniisiimii olmak {izere;

o (Xorw) — (Y1)
r  — fz)=flz)

fonksiyonunun siirekli oldugunu gostermemiz gerekir. Onerme 3.18 geregince, f* €
C (§”,§T/) oldugunu yani, f;, < &, —oldugunu gostermemiz yeterli olacaktwr. f €
C (&,€ ) oldugundan, (")nerm; 3.8 den, f,, < ¢ dir. Ayrica, Onerme 3.19 geregince
fe, topolojik bir yakmsakhik yapisi oldllgundan, X tzerinde, fi, = &, olacak
bi;imde bir ¢ topolojisi mevcuttur. § ile ¢ yakinsaklik yapisindan d;ha kaba yakin-
saklik yapisi iireten topolojilerin ailesi gosterildigine gore, o € S dir. Bu durumda,;

o C Tin olup Onerme 3.17 den, fe, 2&;,, elde edilir. =

Tanim 3.13 (X,¢) ve (Y, o) sonlu derinlikli yakinsama uzaylari olsun. Bu du-

rumda;

e: XxCo) — Y
(l’,f) - e(x,f) = f(l')
fonksiyonunu yakinsama doniigiimii kilan, C'(§, o) iizerinde tammh en kaba yakin-

saklik yapisina siirekli yakinsaklik yapisi adi verilir ve [€, o] ile gosterilir (Preuss

1987).

Onerme 3.20 (X, ¢) ve (Y, 0) sonlu derinlikli yakinsama uzaylar1 ve

e: Xx(Co) — Y

(z, f) — e(z, [f) = f(x)
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olmak {izere;

€0l = {@ f) e F(C(§,0)) x C(§,0) |Vr € X,VG € F(X) 5

(3.30)
(G,z) € &: (elG x B, f(x)) € 0}
esitligi gergeklenir ve [, o] sonlu derinliklidir (Preuss 1987).
Ispat. Q := (6,)ic; ile, C(&,0) kiimesi iizerinde tamml ve e fonksiyonunu yakin-

sama doniisiimii kilan tiim yakinsaklik yapilarinin ailesi gosterilsin. Bu durumda;
1 € Q oldugundan Q # () dir. Her i € [ igin e, < £ x 6; oldugundan, e, < /\(f x 0,;)
iel
dir. O halde; Onerme 3.8 den, /\(f x 0;) bagintisinin, X x C'(&, o) kiimesi tizerinde
i€l
e fonksiyonunu yakinsama doéniigtimii kildigi aciktir. Ayrica,

AE x6:) =& x N\o; (3.31)

i€l el

oldugundan, C(&,0) kiimesi iizerinde /\92- bagmtisi ele alindiginda, e fonksiyonu
i€l
bir yakinsama doniigimii olacaktir. Bu durumda; Tanim 3.13 goz oniine alinirsa,

€, 0] = /\01- dir. O halde, (3.31) esitligini gostermek igin,

el

Nbi= {(@.f) |z e X VG €F(X)>

el

(G z) €& (elg x B, fz)) € o}

esitligini gostermemiz gerekir. § € F(C (£, 0)) ve f € lim /\ § olsun. Bu durumda;
0;
i€l
(3.9) dan, f € limg, § olacak bigimde en azindan bir iy € I vardir. Q ailesinin tanim
geregi e € C(§ x 0,,,0) oldugundan, her x € X ve x € lim¢G olacak bigimdeki her

G € F(X) i¢in, Tanim 3.6 dan,
e (limgxeio (G x F)) C limyelG x F]

yazilabilir. Bu durumda; (3.17) den, (z, f) € limgxe,, (G X §) olacagindan, f (z) €
limye[G x §] elde edilir. Diger yandan, her = € X ve z € lim¢G olacak bigimdeki her
G € F(X) igin f(x) € limye|G x §] olsun. Bu durumda; (z, f) € e~ (limye[G X F])
dir. (3.32) den, e fonksiyonu igin baglangi¢ yapisi £ x /\Oi oldugundan, (3.14) den,

el
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(x, f) € limex p g, (G x ) olup (3.17) den, f € lim/\ § elde edilir. Boylece ispat
i€l 0;

i€l
tamamlanir. [£, o] bagmtisimin sonlu derinlikli oldugunu gosterelim. (§, f) € [, o]

ve (H, f) € [€, 0] olsun. Bu durumda;

Vee X,VG e F(X)>3(G,z)e:(e]g x5, f(x)e€ao
ve

Ve e X,VG € F(X)> (G,z) €{: (e][G xH], f(x)) €0

olup o sonlu derinlikli bir yakinsaklik yapisi oldugundan,
(el x F]Nelg xH], f(z)) €0

dir. Ayrica,
elg x §]Ne[g x H] = €[(G xF) N (G x H)]

ve

(GxF)NGxH)CGx(FNH)

oldugundan, (e[G x (FNH)], f (x)) € o olup (FNH, f) € [£,0] elde edilir. m

Teorem 3.4 Conv kategorisi kartezyen kapahdir (Preuss 1987).

Ispat. Onerme 3.20 de (X,¢) ve (Y, 0) sonlu derinlikli yakinsama uzaylar ve-
rildiginde, (3.31) esitligi ile ifade edilen [¢, o] bagmtisimin C'(§, o) kiimesi iizerinde,

e: X xCo) — Y
(z, f) — e(z, f) = f(2)

fonksiyonunu yakinsama doniisiimii kildigi gosterilmistir. Bu durumda; Conv kate-
gorisinin kartezyen kapali oldugunu gostermek igin, [¢, o] bagintisimin, Tamm 2.29 da
verilen (C'Cy) kogulunu sagladigimi gostermek yeterli olacaktir. (Z,n) bir yakinsama
uzay1 olsun ve

fi XxZ — Y

(r,2)  — [lz,2)
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bi¢iminde tanimli yakinsama doniigiimiinii ele alalim. Bu durumda;
[ Z — C(o)
z — [2): (X,§) — (Y,0)
z — [1(2) () = f(z,2)

fonksiyonu i¢in, f = e o (idx x f*) esitligi gerceklenir. f* € C(n,[¢,0]) oldugu

gosterilirse ispat tamamlanir: W € F(Z) ve s € f*(lim, W) olsun. Bu durumda;
dr € X, 3z € lim,V 3 s(x) := f*(2) (x) = f(x,2)

dir. (G,z) € £ olacak bigimde herhangi bir G € F(X) alirsa, (3.17) den, (z,2) €
limey, (G x W) olacaktir. Diger yandan, f fonksiyonu yakinsama déniigiimii oldugun-
dan,

Flimexy (G X W) C limy fIG x W]

olup f*(z) (z) = f (x, 2) € lim, f|GxW)] elde edilir. Ayrica, f[GXW] C e[Gx f*[W]]
oldugundan, s(z) = f*(2)(z) € limyelG x f*[W]] dir. Bu durumda; (3.31) den,

s € limy o1 f*[W] olur. Dolayisiyla, f* fonksiyonu bir yakinsama dontigtimiidiir. m
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4. YAKLASMA UZAYLARI

Yaklagsma uzaylari; matematiksel olarak birbirine eg kavramlar olan bir¢ok yapi ile
karakterize edilebilir. Bu kavramlardan en ¢ok kullanilanlar; uzaklik fonksiyonu ve
limit operatoriidiir. Bu boliimde; ilk olarak, uzaklik fonksiyonu ve limit operatorii
kavramlar1 tamimlanarak temel ozellikleri verilecek ve bu kavramlarin matematik-
sel olarak birbirine es yapilar oldugu aciklanacaktir. Daha sonra, bu kavramlar
yardimiyla yaklagma uzaylar1 ve yaklagma uzaylar: arasinda tanimli morfizmler ifade

edilerek Ap kategorisi tanimlanacak ve temel 6zellikleri verilecektir.

Bu calisma boyunca [0, o] kapal araligi P ile gosterilecektir. P, iizerinde tanimh
aligilmig siralama bagintisi, tam latis ve toplamsal yarigrup yapisi ile ele alinacaktir.

z € [0,00) olmak iizere;
T+00=00,00—00=0,00+00=00

X0—T=00Veoo+xTr=00

olarak kabul edilecektir. P kiimesi iizerinde bir ¢ikarma islemine ihtiya¢ duyul-
dugunda,
Va,beP:acb=(a—0b)VO

biciminde tamiml “&” iglemi kullanilacaktir. Lowen, metrik ve quasimetrik kavram-
larin1 alisilandan daha genel fonksiyonlar i¢in kullanmir. X bir kiime olmak iizere,
d: X x X — [0,00] fonksiyonu; her z € X i¢in d(z,x) = 0 kogulunu ve ii¢gen
esitsizligini sagliyor ise d fonksiyonuna X kiimesi iizerinde bir quasimetrik, d qua-
simetriginin simetri kogulunu saglamasi durumunda ise d fonksiyonuna X kiimesi ii-
zerinde bir metrik adi verilir. Bu boliimden itibaren metrik ve quasimetrik ifadeleri

Lowen-anlaminda kullanilacaktir.
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Tanim 4.1 X bos kiimeden farkl bir kiime ve
§: X x2¥ —P
bi¢iminde tanimli bir fonksiyon olsun. Her A C X ve her ¢ € PP i¢in,
A® ={2ec X |5(z,A) <&}

bi¢iminde taniml olmak {izere;

D) Vze X,;VACX:x € A= 0(z,A) =0,

D,) Vo € X : §(z,0) = co

D3) Ve € X,VA,BC X :§(z, AU B) = min{d(x, A),d(x, B)},

Dy) Vz € X,VAC X,Ve € P: §(z,A) < §(z, A®)) + ¢

ozellikleri saglaniyor ise, ¢ fonksiyonuna uzaklik fonksiyonu adi verilir (Lowen

1987).

Onerme 4.1 X # 0 bir kiime ve 6 : X x 2¥ — P biciminde tamml bir uzaklk
fonksiyonu olmak iizere; asagidaki ozellikler saglanir.

(i) Vx € X,VA,BC X igin A C B = 0(«, B) < 6(z, A)

(ii) Vo € X,VA C 2% 5 A sonlu elemanh : U A) = m1n5 (x,A),

(iii) Vo € X,VA, B C X : §(x, A) < §(z, B) + supd(b, A)

dir (Lowen 1987). <

Ornek 4.1 (X, d) bir metrik uzay olmak tizere;

dg: X x2X¥ — P
(x,A) — d4(z,A) = mfd(m a)

acA

bi¢iminde tanimh §, fonksiyonu, bir uzaklik fonksiyonudur (Lowen 1987).

Ornek 4.2 (X,7) bir topolojik uzay olmak iizere;
d,: X x2%¥ — P
0 , zed,(A) ise
oo , x¢cl (A) ise

(x,A) — 9, (z,A) =

bi¢iminde tanmiml §, fonksiyonu, bir uzaklik fonksiyonudur (Lowen 2015).
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Ispat. Her A C X igin, A C cl, (A) oldugundan &, (z,A) = 0 dir. cl, (0) = 0
oldugundan = ¢ cl, (0) olup 6, (z,0) = oo dur. 2 € X ve A, B C X olsun. Bu

durumda;
4, (z,AUB)=0 & zecc,(AUB)

& ze(d, (A)Ucd,(B))
< min{d, (z,A),0, (z,B)} =0

ve benzer sekilde, d, (z, AU B) = oo olmasi i¢in gerek ve yeter kosul,
min {d, (z,A),d, (z,B)} = 0

olmasidir. Son olarak, (D4) 6zelliginin gergeklendigini gosterelim. ¢ = oo durumu

agiktir. £ < oo ise, ¢, fonksiyonunun tanimindan,
A® = {rx e X |6, (z,A) =0} = cl, (A)

olup cl, (A) = ¢l, (cl; (A)) oldugundan, §, (z, A) = §,(x,cl, (A)) elde edilir. Bu
durumda; §,(z, A) < 6,(x, A®) 4 ¢ esitsizligi gerceklenir. Dolayisiyla, . bir uzaklik

fonksiyonudur. m

Ornek 4.3
dp: PxP — P

(z,y) — dp(x,y) =28y

bi¢iminde tanimh dp quasimetrigi yardimiyla,

dop: Px2F — P
rd) — dpa Ay ] CORA L AZORe D
s P4, =
00 , A=10ise

bi¢iminde tamimlanan dp fonksiyonu, bir uzaklik fonksiyonudur (Lowen 2015).

Ispat. ACPvex € Aise, A+ () olup (4.1) den,
op (2, A) =z S supA = (z—supA) VO

dir. z € A oldugundan, x < sup A olup dp (x,A) = 0 dir. (D3) 6zelliginin gercek-

lendigi agiktir. (D3) 6zelliginin gergeklendigini gosterelim: A, B C P olsun. z = oo
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durumu agiktir. x € [0, 00[ olsun. AUB # () ise, A # () veya B # () olacaktir. A # ()
ve B #£ () ise,

min {dp (z, A),dp (z,B)} = min{(z —sup A) V0, (xr —sup B) vV 0}
olacaktir. sup A < sup (AU B) ve sup B < sup (A U B) oldugundan,
x—sup (AUB) < (z —sup A) A (z — sup B)

dir. O halde,
(x —sup A) A (x —supB) <z —sup (AU B)

esitsizligi gosterilirse ispat tamamlamir.  — sup (AU B) = z — sup ¢ < « olsun.
cceAUB

Bu durumda; sup ¢ > x — «a olup en azindan bir ¢g € AU B i¢in ¢y > = — a ve
ce AUB
dolayisiyla

Jeg€A:cog>r—aveyadeg € B:cg>x—«

dir. O halde, z—sup A < a veya x—sup B < a olup min {x —sup A, x — sup B} < «
olacaktir. A # () ve B = () ise,

dp (2, AUB) =dp (z,A) =xSsup A

olup esitlik gerceklenir. AU B = () ise, A = () ve B = () olup esitlik gerceklenir.
Dolayisiyla, dp fonksiyonu (Dg) kosulunu saglar. Son olarak (D) 6zelliginin gergek-
lendigini gosterelim: A C P olmak iizere; ¢ = oo ya da dp (m,A(E)) = 00 durumu
aciktir. ¢ < oo ve x = oo oldugunda esitsizligin gergeklendigi kolaylikla goste-
rilebilir. £ < co ve A = () ise A®) = () olup esitsizlik gerceklenir. £ < oo, A # ) ve
dp (x, A) = 0o ise, © = oo ve sup A < oo olur. Bu durumda;
A® = {z|dp(z,A) <&}
={z|(z—supA)V0<e}=[0,supA+¢]

olup sup A < oo oldugundan esitsizlik gerceklenir. € < oo,z € [0, o[ ve p (:1:, A(E)) <
oo olsun. x < sup A ise, dp (z, A) = 0 olup esitsizlik gerceklenir. z > sup A®) ise,
z —supA = z — sup A® + ¢ olup esitsizlik gerceklenir. sup A < z < sup A©® ise,
sup A®) — sup A = ¢ oldugundan

0<z—supA<K (x—supA(E))v0+5

olup esitsizlik gerceklenir. m
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Ornek 4.4
dg: PxP — P

($,y) - dE(xvy) = ‘:L‘ - Z/‘

biciminde tanimlh dg metrigi yardimiyla,

(5EZ IP)X2P — P

0 , T =00, A smirsiz ise
(4.2)
(¢, A) — dp(z,A):=1 o0 , © =00, Asmirh ise
inf |x —al] , ze€RTise
acA

bigiminde tanimlanan 05 fonksiyonu, bir uzaklik fonksiyonudur (Lowen 2015).

Ispat. A C Polsun. z = 0o € A ise, A kiimesi smirsiz olacaktir. Bu durumda;
dp(z,A) =0dwr. x € [0,00] ve z € Aise, 0 (x,A) = igﬂx —al = 0 elde edilir.
Dolayisiyla, d g fonksiyonu (Dy) kogulunu saglar. () simirh kabul edildiginden, x = oo
ise, 0 (x,0) = oo olacag tamimdan aciktir. = € [0, oof ise,

0p (z,0) = inf |z — a] = oo
a€l

dur. Dolayisiyla, dp fonksiyonu (D2) kosulunu saglar. € P ve A, B C P olsun.
x = oo olmak iizere; A ve B kiimeleri sinirh ise, A U B kiimesi sinirhi olup esitlik
gergeklenir. z = oo olmak iizere; A ve B kiimelerinden en az biri sinirsiz ise, AU B
kiimesi sinirsiz olup esitlik gergeklenir. = € [0, 00[ olmasi durumunda, infimum

tanimi geregi
dp(r,AUB) = inf |r—c¢| < inf |z —a| A inf |z — b
c€AUB acA beB
olacaktir. Diger yandan, dg (z, AU B) < [ ise,
dee AUB: |z —c|<p
dir. Bu durumda; ¢ € A veya ¢ € B olacagindan,

5E(x,A):;r€11f4|x—a| < B veya dg (z, B) :g££|x—b| <p

olup esitsizlik gergeklenir. Dolayisiyla, 05 fonksiyonu, (Dg) kogulunu saglar. Son

olarak, (Dy4) 6zelliginin gerceklendigini gosterelim: A kiimesi sinirsiz ise, her ¢ € P
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icin A®) smirsiz olup = oo oldugunda esitsizlik gerceklenir. A kiimesi siurls,

xr = 00 ve € < 00 olmasi durumunda,
A = {y ] 05 (. 4) <} = {u | iy —al <}
ac
olacaktir. Herhangi bir y € A®) alinirsa,

inf ly —a|<e = da,€A:|ly—qy<e
acA

= day, € A:y<a,+e¢

elde edilir. A simirh oldugundan, her a € A igin a < M olacak bi¢imde bir M € R*

mevcuttur. 6 = M + ¢ alinirsa;
Vye A® .y < M +¢

olup A®) smirhdir. Bu durumda esitsizlik gerceklenir. « € R* olsun. Herhangi bir

b e AL icin,

5E(x,A):;r€11f4|a7—a| = 61L1é1£|x—b—|—b—a|
< i — —
< Inf (Jz = b+ b —al)
= |z —b|+ inf |b — d
acA

= |z —bl+0g(bA) <|x—bl+¢

olup

o (x,A) < inf |z —b|+¢
be A©)

= gz, A®) 4 ¢

esitsizligi elde edilir. m

Yaklagma uzaylarimi1 karakterize eden bir diger kavram olan limit operatorii, yakin-
saklik yapilarina benzer 6zelliklere sahiptir ve bir noktanin, bir siizgecin limit noktasi

olmaya ne kadar yakin oldugunu olcen bir fonksiyon olarak degerlendirilebilir.

Tanim 4.2 X bir kiime olmak iizere, A : F(X) — P¥ fonksiyonu, agagidaki

ozellikleri sagliyor ise A fonksiyonuna X iizerinde bir limit operatorii ad: verilir.
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L) V2 € X icin M) (z) =0,

Lz) J # 0 bir indis kitmesi olmak tizere; her (§;),., C F(X) i¢in
A (ﬂ%) — SupAJ;,
jed i€

L3) Her § € F (X) ve her 0 : X — F(X) fonksiyonu igin,
Ao (8)) < AT+ supA (o () ()
re

dir (Lowen 1987).

Ornek 4.5 (X,7) bir topolojik uzay olsun. Bu durumda;

A F(X) —  PX
5 — A§: X — P (4.3)

0 , D xise
r — A§(z) =

oo , § A4 xise
bi¢iminde tanimh A fonksiyonu, X kiimesi iizerinde bir limit operatoriidiir (Lowen

1987).

ispat. Her z € X icin N, (z) < & oldugundan, A(z) (z) = 0 dir. (L) kogulunun
gerceklendigini gosterelim: J # () bir indis kiimesi, (§;) jes C F(X) ve z € X olmak
tizere; \ (ﬂ&) () = 0 yani, m&- — x olsun. Bu durumda; her j € J icin

jeJ jeJ
N; () < §; dolayisiyla her j € J icin A§,; (z) = 0 olup

’ (W) =%,

jed

esitligi gerceklenir. A (ﬂ&) (x) = oo olmas1 durumunda da egitligin gergeklendigi
jeJ

benzer gekilde gosterilebilir. (Lz) kogulunun gerceklendigini gosterelim: § € F(X),

r € X ve o : X — F(X) bir fonksiyon olsun. A (> o (§)) (z) = 0 olmas1 duru-

munda egitsizlik gerceklenir. A (Yo (§)) () = oo ise (4.3) den, > o (F) siizgeci,

(X, 7) topolojik uzaymda = noktasina yakinsak degildir. O halde,

AV EN,(2)2V ¢S o(F)
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olup Onerme 2.5 (i) den,

VF € §igin V ¢ ﬂa(x)

zeF

ve dolayisiyla,

VF € §igin dzg € F 3V ¢ 0 ()

oldugu goriiliir. Bu durumda; N; (x9) € o (zg) olup A (o (20)) (xg) = oo olacagin-

dan, esitsizligin sag tarafi oo olarak elde edilir. Boylece (Lgz) kogulu saglanir. m

Ornek 4.6 X bir kiime ve her A C X i¢gin,

Op: X — P

0 , z€Aise
r — Ou(x):=
oo , x¢ Alise
bi¢iminde tanimlanmak {izere;
A F(X) — PX
Oy, & =1 ise (4.4)
oo, §Fuxise

bi¢iminde tanimli A fonksiyonu, X kiimesi iizerinde bir limit operatoériidiir (Lowen

1987).

Ispat. (L;) kosulunun saglandigi aciktir. (Lg) kosulunun saglandigini gosterelim:

J # () bir indis kiimesi, (§;),., C F(X) ve z € X olsun. Bu durumda; ﬂgj =z

j€J
ise, her j € J icin ﬂgj < §j ve T ultrastizge¢ oldugundan, her j € J icin §; = T
jed
olmahdir. Dolayisiyla, supA§; = 0, elde edilir. Diger yandan, m&- £ T ise,
jeJ

jedJ

IBe()3;22¢B
JjeJ
dir. Budurumda; her j € Jicin §,; # 2 olup supAg; () = oo elde edilir. Dolayisiyla,
jeJ

A fonksiyonu (Ls) kogulunu saglar. Son olarak, § € F(X) ve 0 : X — F(X)
fonksiyonu i¢in,

A2 (8)) < AT +supA (o () ()

zeX
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esitsizliginin gerceklendigini gostermemiz gerekir. = € X ve Yo (F) = z ise,
A (>0 (F)) = Oy olup esitsizligin sol tarafi 0 olacaktir. = € X ve Y0 (F) # @
olsun. Bu durumda; bir G € >" 0 (F) i¢in 2 ¢ G dir. Onerme 2.5 (i) den,

Ged o))<= JheFoVzeFy:Geol(z)
dir. Bu durumda; z € Fj ise,

supo (z) (z) 2 supo (2) (z) =00

ve x & Fyise, § # 2 olup \§ (z) = oo olacagindan esitsizlik gergeklenir, (Lg) kogulu

saglanir. =

Bir X kiimesi iizerinde, uzaklik fonksiyonu veya limit operatorii verildiginde, verilen
yap1 yardimiyla diger yap1 elde edilebilir. Asagida verilen teoremler yardimiyla,
uzaklik fonksiyonu ve limit operatorii kavramlarimin es matematiksel kavramlar

oldugu elde edilmistir.

Teorem 4.1 (6 == ) X bir kiime ve §, X iizerinde bir uzakhk fonksiyonu olsun.

Bu durumda;
A F(X) — PX

g — A§F:= sup oy
Uesec§

fonksiyonu, X kiimesi iizerinde bir limit operatoriidiir. Ayrica,
Ve e X ve VA C X igin 6(x, A) = inf NA(z)
UEU(A)

dir (Lowen 1987).

Teorem 4.2 (A = §) X bir kiime ve A, X iizerinde bir limit operatorii olsun. Bu

durumda;
§: X x2¥ — P

(x,A) — d(x,A):= Z/{GI%EA)/\U (x)

fonksiyonu, X iizerinde bir uzaklik fonksiyonudur. Ayrica,
VS € F(X),Vx € X igin A§ () = sup d(z,U)
Uesec§
dir (Lowen 1987).
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Tanim 4.3 X ve X iki kiime, § ve (5,su"a51yla, X ve X' tizerinde tanimh iki uzaklik
fonksiyonu ve f : X — X' bir fonksiyon olsun. Bu durumda, her A C X ve her
r € X icin,

!

0 (f(x), f(A) <0 (x,A)
esitsizligi gercekleniyor ise, f fonksiyonuna (X, §) dan (X, d') ye tammh bir biiziilme

déniistimii ad verilir (Lowen 1987).

Ornek 4.7 X bir kiime olmak iizere; her A C X icin
5A : (X,d) — (]P),dlp)
r — da(x):=0(z,A)

bigiminde tanimli § 4 fonksiyonu bir biiziilme déniigtimiidiir (Lowen 1987).

Ispat. € X ve B C X olsun. B = () ise 6 (x, B) = oo olup Tanim 4.3 de verilen
esitsizlik gergeklenir. B # () olsun. (4.1) den,

dp (04 (),04(B)) =64 (x) ©supda (b)

beB

dir. Bu durumda; Onerme 4.1 (iii) ve © igleminin tamimindan,

beB beB

= 0(z,B)V0O=4(x,B)

(5[@ ((SA ([L’) ,(5,4 (B)) < (5 (33, B) + SU.p(SA (b)) ) sup(SA (b)

elde edilir. Dolayisiyla, § 4 fonksiyonu bir biiziilme doniistimiidiir. =

Ornek 4.8 (X,7) ve (Y,7') iki topolojik uzay olmak tizere; f : (X,7) — (Y,7)
stirekli bir fonksiyon ise, f : (X, d,) — (Y, 0_+) fonksiyonu bir biiziilme doniigtimiidiir

(Lowen 1987).

Tanim 4.4 X bir kiime, 6 ve 6/, X iizerinde tanimli iki uzaklik fonksiyonu olsun.
Bu durumda;
idy : (X,6) — (X,0)
x — idx (z):=x
birim fonksiyonu biiziilme doéniigiimii oluyor ise, 5 fonksiyonu ¢ fonksiyonundan
daha incedir (veya § fonksiyonu ¢ fonksiyonundan daha kabadir) denir. Bu durum

5 < & biciminde gosterilir (Lowen 1987).
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Onerme 4.2 X ve X' iki kiime, \ ve A sirasiyla X ve X' iizerinde tammh iki
limit operatorii ve f : X — X' bir fonksiyon olsun. Bu durumda; f fonksiyonunun

biiziilme doniigiimii olmasi i¢in gerek ve yeter kosul,
VE € F(X): N (fI3) o f < A3

olmasidir (Lowen 1987).

O halde, uzaklik fonksiyonu veya limit operatorii kavramlarindan herhangi biri ile

donatilmig bir kiime, ayni1 matematiksel varhig: ifade eder.

Tanmim 4.5 X bir kiime olmak iizere; G ile, X iizerinde tanmimh bir uzaklik fonksi-
yonu veya bir limit operatorii gosterilsin. Bu durumda; &, X tizerinde bir yaklagma
yapisi olarak adlandirihr. (X, &) ikilisine ise yaklasma uzay1 adi verilir (Lowen

1987).

X bir kiime olmak iizere; X iizerinde Ornek 4.2 de tanimlanan §, fonksiyonu ele
alindiginda, X iizerinde tanimli her 7 topolojisine karsilik bir uzaklik fonksiyonu
tanimlanabilecegi goriilmiigtiir. (X, d) bir yaklagma uzayi olmak iizere; X {izerinde
tanmiml bir 7 topolojisi i¢gin § = §, oluyor ise (X, ) ikilisine topolojik yaklagma
uzay1 adi verilir. Benzer sekilde, X iizerinde taniml bir d metrigi i¢in 6 = d, oluyor

ise (X, 9) ikilisi metrik yaklagsma uzay1 olarak adlandirilir.

Nesneleri yaklagma uzaylari, morfizmleri yaklasma uzaylar1 arasinda tanimli biiziilme
doniisiimleri olan kategori Ap ile gosterilir. Ap kategorisi bir topolojik kategoridir.
(X,7) ve (Y,7) iki topolojik uzay olmak iizere; f : X — Y biciminde tamml
bir f fonksiyonunun stirekli olmasi igin gerek ve yeter kosul f : (X,6,) — (Y,6./)

fonksiyonunun biiziilme doniigiimii olmasidir. Dolayisiyla,

Top RN Ap
T  — 0
f— 7
bi¢iminde tamimli F' funktoru bir dolu funktor oldugundan Top kategorisi Ap ka-
tegorisinin bir dolu alt kategorisidir. Ayrica, Top kategorisi Ap kategorisinin yansi-

mali ve ko-yansimali bir alt kategorisidir. Ap kategorisi Conv kategorisinin aksine
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kartezyen kapali degildir, ancak kartezyen kapali bir siiperkategoriye sahiptir
(Lowen 1987). Bu kategori, 5. boliimde incelenecektir.
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5. YAKINSAMA-YAKLASMA UZAYLARI

Bu boliimde; yakinsama-yaklagma uzaylar: ve yakinsama-yaklagsma uzaylar: arasinda
tanimli morfizmler ifade edilerek, sirasiyla 3.3 ve 4. boliimde verilen Conv ve Ap
kategorilerinin bir siiperkategorisi tanimlanacaktir. Yakinsama-yaklagma uzaylarini
karakterize eden matematiksel yapilar, yakinsaklik yapilarina benzer 6zelliklere sahip
olup yaklagma uzaylari karakterize eden limit operatorlerinin Tanim 4.2 de verilen
(Ls) kosulu kaldirilarak ve (Lg) kosulu zayiflatilarak tanimlanmigtir. Yakinsama-
yaklagma ifadesi yerine kisalik bakimindan Cap (convergence-approach) ifadesi kul-

lanilacaktar.

Tanim 5.1 X bir kiime, \ : F(X) — P¥ bir fonksiyon olsun. Bu durumda;

i) V2 € X icin A(z) (z) = 0

ii) V3, G € F(X) icin A(FNG) = AFV AG

ozellikleri saglaniyor ise, A fonksiyonuna X kiimesi iizerinde bir yakinsama-yaklagma
limit operatorii (kisaca Cap-limit), (X, )\) ikilisine ise yakinsama-yaklagma

uzay1 (kisaca Cap-uzay) adi verilir (Lowen 1988).

Her sonlu derinlikli yakinsaklik yapisina kargilik bir Cap-limit tanimlanabilecegi,

asagida verilen onerme ile aciklanmigtir.

Onerme 5.1 (X, ¢) sonlu derinlikli bir yakinsama uzay1 olsun. Bu durumda;

Ae: F(X) — PX

§ — AZ: X — P (5.1)
0, (3x)elise
r — AG(v) =

oo, (§,z)¢¢ise
bi¢iminde tanimlanan A¢ fonksiyonu, X kiimesi tizerinde bir Cap-limittir. A fonksi-

yonuna, £ bagintisina karsilik gelen Cap-limit adi verilir (Lowen 1988).

Ispat. &, X kiimesi iizerinde bir yakinsaklik yapisi oldugundan, her z € X icin

(z,z) € € olup (5.1) den, A¢(z)(z) = 0 dir. Diger yandan, §, G € F(X) olmak
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tizere; her x € X icin, A:§ (2) V AeG (z) = 0 ise (F,z) € { ve (G,x) € { olur. &, X
kiimesi {izerinde sonlu derinlikli bir yakinsaklik yapisi oldugundan, (§NG,z) € &
olup (5.1) den, A(FNG) (x) = 0 dir. Ayrica, her x € X igin, A¢(FNG)(x) =0
ise, (5.1) den, (FNG,x) € £ olup Tamim 3.1 (i) den, (F,z) € € ve (G,z) € £ olur.
Dolayisiyla, A\:§ (z) V AeG (x) = 0 dir. Diger yandan, her z € X igin,

A () V AG () = 00 & A(§ N G) (x) = o0

onermesinin gergeklendigi benzer gekilde gosterilebilir. O halde, her §, G € F(X)
icin A(FNG) = AF V AG olup ispat tamamlanir. m

Tamm 5.2 (X, \) ve (X', \) iki Cap-uzay ve f : X — X' bir fonksiyon olsun. Bu
durumda;

VFEF(X): XN (fl3]) o f <A

esitsizligi gercekleniyor ise, f fonksiyonuna, Cap-uzaylar arasinda taniml bir biiziilme

do6niistimii adi verilir (Lowen 1988).

(X, \) ve (Y, )\/) iki Cap-uzay olmak tizere; X ve Y uzaylar arasinda tammli tiim
biiziilme doniigtimlerinin kiimesi, Morcq,(X,Y) veya Morcqy(A, X) ile gosterilecek-

tir.

Tanim 5.3 X bir kiime, A\ ve )\/, X tiizerinde tanimli iki Cap-limit olsun. Bu
durumda;
idx : (X,\) — (X,

r — idx(x):=x

birim fonksiyonu biiziilme déniistimii oluyor ise, A\ fonksiyonu A\ fonksiyonundan
daha incedir (veya A fonksiyonu )Y fonksiyonundan daha kabadir) denir ve A < )Y

bigiminde gosterilir (Lowen 1988).

Tanim 5.4 Nesneleri Cap-uzaylar, morfizmleri Cap-uzaylar arasinda taniml biiziilme

doniigiimleri olan kategori Cap ile gosterilir (Lowen 1988).
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Teorem 5.1 X bir kiime, J herhangi bir indis kiimesi, {(X}, A;)};e; Cap-uzaylarin
bir ailesi olsun ve {f; : X — (X}, \;)}jes fonksiyon ailesi verilsin. Bu durumda;
Am: F(X) — PX
5 AinS = supA;(f;[T]) o f;

jeJ

(5.2)

bi¢iminde taniml )\;, fonksiyonu, X kiimesi iizerinde bir Cap-limittir. \;, fonksi-
yonuna, {f;};es ailesine kargihk gelen baslangigc Cap-limit adi verilir (Lowen

1938).

Ispat. {(X iy Aj) }ies Cap-uzaylarm bir ailesi ve her j € J, herhangi bir z € X i¢in
{f;(x)}* = f,[z] oldugundan,

A (fil)(f5 (x)) = 0
olur. O halde, (5.2) den, \i,(2) (#) = 0 dir. Diger yandan, §, G € F(X) olmak
iizere, her j € J icin,
fil§ngl = £[8n ;9]

ve \;, X; kiimesi {izerinde bir Cap-limit oldugundan, herhangi bir z € X igin,

Ain(FNG) (2) = i{lelJp/\j(fj[S NGl (f; (x))

= jgﬂj (fi[81 0 f;16) (f; (=)

= Sjilelg[)\j(fj [81) (5 () v A (F519]) (5 ()]

= j.lé?Aj(fj 1) (f; () v jg)\j(fj [9]) (f; (2))

= S (2) VNG ()
egitligi gerceklenir. O halde, )\;, fonksiyonu, X kiimesi iizerinde bir Cap-limittir.
Son olarak, \;, fonksiyonunun {f;},c; ailesine kargilik gelen baslangic yapisi oldugu
gosterilirse ispat tamamlamr. (X', \) € [Cap|, g : X' — X bir fonksiyon ve her
Jj € Jicin fjog € Morgg(X /,Xj) olsun. ¢ fonksiyonunun biiziilme doniisiimii

oldugunu gostermek igin, § € F(X') olmak iizere; Tanim 5.2 geregince,

Ain (9[8]) 0 g < NG

esitsizligini gostermemiz gerekir. Hipotezden, her j € Jigin \;((f;09)[F])o(fjog) <
NG oldugunu biliyoruz. Bu durumda;

!

?GIIJW(JZ‘ () o (fj09) AT
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olup (5.2) den, A\ (9[F]) 0 ¢ < A'F elde edilir. Diger yandan, (X', ) € [Cap| ve
g € Morgay(X', X) olsun. Her j € Jicin, fjog: X — X, fonksiyonunun biiziilme

doniisiimii oldugunu gostermek icin, § € F(X') olmak tizere;

N((fo 9B e (fiog) SAF

!

esitsizligini gostermemiz gerekir. Hipotezden, her § € F(X') icin A, (9[3])og < X' T
olup (5.2) den,

/

sup;(f;[9[8]]) o (fj 0 9) = supA;((fjog)[S]) o (fiog) < AT

jeJ jedJ

elde edilir. O halde, her j € J igin

N((fiog)B) o (fiog) <AF
olup ispat tamamlanir. m

Ornek 5.1 (X, ) ve (Y, \) iki Cap-uzay olsun. Bu durumda; H € F(X x Y) ve

(z,y) € X XY olmak tizere; X x Y kiimesi iizerinde,

(A x N)H (2,y) = A (pa[H]) () VA" (p2[H]) (9) (5-3)

bi¢ciminde tanimlanan A X N fonksiyonuna ¢arpim Cap-limit adi verilir (Lowen

1938).

Teorem 5.2 Cap kategorisi bir topolojik kategoridir (Lowen 1988).

ispat. (X, ) ve (Y;)\) iki Cap-uzay olmak iizere;

U: Morcep(X,Y) = Morg.(X,Y)
f — U(f):=f

bigiminde tanimh U doéniigiimii morfizmler iizerinde birebir oldugundan diizenli bir
funktor olup Cap kategorisi bir belirli kategoridir. [ bir indis kiimesi olmak iizere;
herhangi bir X kiimesi iizerinde tanimhi Cap-limitlerin ailesi {\;};cr, 4, € I olmak
izere;
Ni <A <= idx : (X, \;) — (X, \;) biiziilme doniistimii
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bigiminde tanimlanan “<” bagintisina gore kismi siralidir. Ayrica, X = {z} olmak
tizere; X kiimesi iizerinde, her § € F(X) i¢in,
AF: X — P
r — A(z):=0
bigiminde bir tek Cap-limit tanimlanabilir. Diger yandan, Teorem 5.1 de, Cap

kategorisinin baglangic yapilarina sahip oldugu gosterilmigtir. m

Onerme 5.2 X ve Y iki Cap-uzay olsun. § € F(X), U € F(Morc,(X,Y)) ve
her p € ¥, F' € § icin

p(F):={g(x)|gep veF}=|Jg(F) (5.4)
olmak tizere;
Uy :={o(F) | p €T, FegF} (5.5)

bi¢iminde tamimlh Wz ailesi Y kiimesi tizerinde bir siizgegtir (Lowen 1988).

Ispat. § € F(X), ¥ € F(Morca,(X,Y)) ve S := {¢(F) | ¢ € U, F € §} olmak
iizere; S ailesinin Y kiimesi iizerinde bir siizge¢ tabani oldugunu gostermemiz gerekir.
Her ¢ € U ve her F' € § i¢in p(F) # 0 olup @ ¢ S dir. Diger yandan, K, H € S
ise, (5.5) den, ¢, (F1) = K ve po(F3) = H olacak bi¢imde ¢, p, € ¥ ve Fy, Fy € §
vardir. Bu durumda; ¢, N, € U ve F1 N Fy € §Figin S := (o, Npy) (FANE) €8
olup

S Co(F1)Npy(Fr) = KNH

elde edilir. Boylece ispat tamamlanir. m

(X, Ax) ve (Y, \y) iki Cap-uzay, ¥ € F(Morce,(X,Y)), f € Morca,(X,Y) olsun,
ve

LW, f)={aeP|VFeF(X): \y(¥z)o f < AxFVa} (5.6)
bigiminde ele alinsin. oo € L(W, f) olup L(V, f) # 0 dir ve tanim geregi L(¥, f)
kiimeleri, P kiimesinin [, oo] bigiminde alt arahklaridir. Eger, {f} € V¥ ise (5.5)
den, § € F(X) i¢in f[§] C U; elde edilir. Ay, Y kiimesi tizerinde bir Cap-limit
oldugundan, Tamm 5.1 (ii) den,

Ay (W) o f <Ay (f[S]) o f
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yazilabilir. Ayrica, f € Morc,,(X,Y) oldugundan, her a € P icin,

Ay (f[8]) o f < Ax8Va

ve boylece

)\y (\Ifg) 0] f < )\XS‘V Vo (57)

esitsizligi gerceklenir. Dolayisiyla, L(¥, f) = P olacaktir. Diger yandan, f €
Morcq,(X,Y) > {f} ¢ ¥ olsun. Bu durumda; z € X ve § € F(X) olmak iizere;
AxS (z) = 0ise, Ay (V5) (f (x)) # 0 olabileceginden,

Ay (¥g)o f < Ax§Va

esitsizliginin gergeklenebilmesi i¢in Ay (W) (f (z)) < o olmahdir. Dolayisiyla, L(V, f)
kiimesi i¢inde bahsi gecen a € P tgeleri, Y kiimesi tizerinde tamiml Wy siizgecinin
U siizgecine ait olmayan bir f fonksiyonu i¢in, f (z) degerine yakinsama derecesini

simirlandirir.

Ornek 5.2 (X, \x) ve (Y, \y) iki Cap-uzay, ¥ € F(Morc,,(X,Y)) ve f € Morgg,(X,Y)

olsun. Bu durumda;

A F(Morcg,(X,Y)) —— PMorca(XY)

(5.8)
v — AU :=inf L(V,")

bi¢giminde tanimh A fonksiyonu, Morec,,(X,Y) iizerinde bir Cap-limittir (Lowen

1938).

Ispat. f € Morc,,(X,Y) olsun. Bu durumda; her § € F(X) ve her a € P igin
Ay (f[8])of < AxTVa esitsizligi gergeklenir. Ayrica, (5.5) geregince, (f)z € F (YY) ve

fI8] = (f)z oldugundan, )\y((})g) of < Ax§ V « esitsizligi gergeklenir. Dolayisiyla,
(5.6) dan, L(}, f) =P ve (5.8) den,

AF)(f) = mf L(f, f) = 0
olup A fonksiyonu igin, Tamim 5.1 de verilen (i) kosulu saglanir. Diger yandan,

U, 0 € F(Morca,(X,Y)) ve ay, agp > 0 olmak iizere;

LV, f) := [ag, 0] ve L(D, f) := [ag, ]
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olarak ele almirsa, L(W, f) N L(®, f) = [ay V e, 00| olacaktir. Bu durumda; (5.8)

den,
AU(F)VAD(f) = inf L(T, f) V inf L(D, f)
= ay Vas
= inf(L(T, f) N L(D, f))
dir. O halde,

L(Y, f) N L(®, f) = L(T N D, f) (5.9)

esitligi gosterilirse, ispat tamamlanir. (5.9) esitligini gostermek igin,

Vs NPz = (T NP)

5

oldugunu gormek yeterlidir. S € Uz N ®; ise, (5.5) den,
JoeV,dFeFs0(F)CS
ve
Jped IR eFo9Y(F) CS
dir. F3:=Fi N[y €§ vep:=ocUyp e VN olarak ele almirsa, p (F3) € (¥ NP
olup 4 (F3) C S oldugundan S € (¥ N @) olacaktir. Tersine, 5 € (¥ N P)_ ise,

JpevndIKeFopu(K)cCS

dir. Bu durumda; p (K) € U5 N &5 olup S € Uz N ;5 elde edilir. Dolayisiyla, (5.9)
esitliginde, esitligin her iki tarafinin infimumu alimirsa (5.8) den, A(WN®) = AUV AP

elde edilir. O halde A fonksiyonu i¢in, Tamim 5.1 de verilen (ii) kosulu saglanir. m

Onerme 5.1 de, sonlu derinlikli bir yakinsaklik yapisina bir Cap-limitin nasil karsilik

getirilecegi ifade edilmistir. Bu durumda, asagidaki sonug verilebilir.

Onerme 5.3 (X,¢) ve (Y,0) iki sonlu derinlikli yakinsama uzay1 olsun. Bu du-
rumda; asagidaki 6nermeler denktir.

i) feC(o)

ii) f € Morcap(Ae, Ay)

(Lowen 1988).
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Teorem 5.3 Conv kategorisi Cap kategorisinin bir dolu alt kategorisidir (Lowen

1938).

Ispat. (X, &) bir yakisama uzay1 olmak iizere; her § € F(X) ve her z € X icin

0, (8 x)€lise

O L G geise

bi¢iminde tanimlanirsa,
Conv s Cap
o — 7
& — X

F' funktoru bir dolu funktordur. =

Onerme 5.4 (X, )\) bir Cap-uzay olmak iizere;
& ={(F,x) e F(X) x X | \§(z) < oo} (5.10)
bagintist X iizerinde sonlu derinlikli bir yakinsaklhk yapisidir (Lowen 1988).

ispat. \, X kiimesi iizerinde bir Cap-limit oldugundan, her z € X icin A\(z) () = 0
olup (,z) € £, dir. Diger yandan, §,G € F(X), § < G ise, her # € X icin Tanim
5.1 (ii) den, AG () < AF (z) elde edilir. Bu durumda; (§,x) € £, ise, A§(z) < oo
ve boylece A\G(z) < oo olacagmdan (G,x) € £, elde edilir. &, bagntisinin sonlu
derinlikli oldugunu gosterelim: §,G € F(X) olmak iizere; (§,x) € &, ve (G,z) € &,
ise, \§(z) < oo ve AG(z) < oo dir. Bu durumda; AF(x)V AG(x) < oo olup A, X
kiimesi iizerinde bir Cap-limit oldugundan, A (§ N G) (z) < oo olacaktir. Dolayisiyla,
(§NG,z) €&, elde edilir. m

Onerme 5.5 (X, \) bir Cap-uzay olmak iizere; agagidaki 6nermeler denktir.
i) A, X kiimesi iizerinde tanimli sonlu derinlikli bir ¢ yakinsaklik yapisi tarafindan
tiretilir.
ii) Her § € F(X) igin A§(X) C {0, 00} dir.
(Lowen 1988).
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Ispat. A\, X kiimesi iizerinde taniml sonlu derinlikli bir ¢ yakinsaklik yapis: tarafin-
dan iiretiliyor ise, A = A¢ olup (5.1) den, her § € F(X) igin A§(X) C {0,00} dir.
Diger yandan; her § € F(X) i¢in AF(X) C {0, 00} ise, (5.10) da verilen &, igin (5.1)

geregince, \¢, = A esitligi gerceklenir. =

Teorem 5.4 Conv kategorisi Cap kategorisinin bi-yansimali bir alt kategorisidir

(Lowen 1988).

Ispat. Cap kategorisi bir topolojik kategoridir ve Teorem 5.3 de, Conv kate-
gorisinin Cap kategorisinin bir dolu alt kategorisi oldugu gosterilmistir. (X, \) bir

Cap-uzay olmak iizere;

X F(X) —  PX
F — NF: X — P (5.11)

' 4 0, A3(z) < oo
v = o0 , A§(z) =00

A\

bi¢iminde tanimh A\* fonksiyonu X kiimesi iizerinde bir Cap-limit olup A* < A dir.
A, X kiimesi iizerinde bir Cap-limit oldugundan, her z € X i¢in A(Z) (z) = 0 olup
(5.11) den, \*(z) (x) = 0 dir. Dolayisiyla A* fonksiyonu, Tamm 5.1 de verilen (i)

kogulunu saglar. §, G € F(X) ve z € X olmak {izere;
AF(z) < 0o ve AG(x) < o0

ise, A, X kiimesi iizerinde bir Cap-limit oldugundan A (F N G) () < oo olup (5.11)

den,
NF (@) VA'G(x)=0=X"(FNG) (v)

elde edilir. Eger,
AF(z) = 0o ve AG(x) = 0

ise, A(FNG)(x) = oo olup (5.11) den, \*F(z) VNG (z) = oo = X (FNG) ()
elde edilir. AF(x) = oo ve AG(r) < oo olmasi durumunda da A*§ () V \*G (x) =
A" (F N G) (x) esitligi benzer sekilde gosterilebilir. Dolayisiyla, A* fonksiyonu, Tanim

5.1 de verilen (ii) kogulunu saglar. A* < A oldugunu gostermek igin, Tanim 5.3
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geregince,
idx : (X,\) — (X, \)
r — idx(x) =z

fonksiyonun biiziilme déniigiimii oldugunu, yani, her § € F(X) ve herhangi bir z €
X igin A*§(z) < AF(2) esitsizligini gostermemiz gerekir. AF(z) = oo ve N*'F(z) =0
durumlari igin esitsizligin gergeklendigi agiktir. A§(x) < oo ise, (5.11) den, A*F(x) =
0 dir. N'F(z) = oo ise, (5.11) den, A§(x) = oo olup X' F(z) < A§(x) esitsizligi
gergeklenir. Dolayisiyla, \* < A dir. Diger yandan, her § € F(X) i¢in M'§(X) C
{0, 00} oldugundan, Onerme 5.5 geregince, \*, X kiimesi iizerinde tammh bir ¢

yakinsaklik yapisindan iiretilir. (5.10) dan,
E:={(F,z) e F(X) x X | \§(x) < o0}

bagintisi bir yakinsaklik yapisi olup A* = A¢ dir. A* = )¢ egitligini gostermek icin,
§ € F(X) ve x € X olmak tizere; \*§(z) = A:F(x) esitligini gostermemiz gerekir.
A E(x) = 0 ise, (5.11) den, A§(z) < oo olup & bagmtisimn tanimindan, (§,z) € £
dir. Budurumda; (5.1) den, A¢F(x) = 0 dir. A*F(x) = oo ise, (5.11) den, AF(z) = oo
olup ¢ bagmtisinin tammindan, (§,z) ¢ ¢ dir. Bu durumda; (5.1) den, A:F(z) = oo
dir. Son olarak, (Y, o) herhangi bir yakinsama uzay1 ve f : (X, \) — (Y, \,) bir

biiziilme doniistimii olmak iizere;

[ (X8 — Yo)
z  — f(2):=f(z)

biciminde tamimli f* fonksiyonunun bir yakinsama doniisiimii oldugu gosterilirse,
ispat tamamlamr. § € F(X) ve x € lim, § olsun. Bu durumda; (5.1) den, A§ () =
0 olup \* = A¢ oldugundan \*F () = 0 dir. Hipotezden, f € Morcq,(X,Y) olup
SeF(X)vere X igin

Ao (FI8]) (f (2)) < AS(2) (5.12)
esitsizligi gerceklenir. A*F (z) = 0 oldugundan (5.11) geregince A§(xz) < oo olup
(5.12) den, A, (f[§]) (f (z)) < oo elde edilir. Bu durumda; A,, o bagmtisina kargilik
gelen Cap-limit oldugundan (5.1) den, A, (f*[§]) (f*(z)) = 0 olur. Dolaysiyla,
f*(x) € lim, f*[§] elde edilir. =
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Teorem 5.5 Conv kategorisi Cap kategorisinin bi-ko-yansimali bir alt kategori-

sidir (Lowen 1988).

Ispat. Cap kategorisi bir topolojik kategoridir ve Teorem 5.3 de, Conv kate-
gorisinin Cap kategorisinin bir dolu alt kategorisi oldugu gosterilmigtir. (X, \) bir

Cap-uzay olmak iizere;

)\*:F(X) — PX
S — AT X — P

, AS(x) =
r — AS(x) = ! 8()

0
0o, AF(z)>0

V

bi¢ciminde tamimli A, fonksiyonu X kiimesi iizerinde bir Cap-limit olup A < A, dir.
(X, \) bir Cap-uzay oldugundan, her z € X i¢in A(z)(z) = 0 olup A\.(2)(z) = 0
dir. §,G € F(X) vexz € X olsun. A\§(z) = 0 ve AG(x) = 0 ise, A bir Cap-limit
oldugundan A (§ N G) (z) = 0 olup

AE(@) VAG(@) = 0= (FNG) (@)

elde edilir. AF(x) > 0ve AG(x) > 01ise, A bir Cap-limit oldugundan A (§NG) (z) > 0
olup
AS () VAG(r) =00 = N (FNG) (2)

elde edilir. AF(z) =0 ve AG(x) > 0 olmas1 durumunda da esitlik benzer sekilde gos-
terilebilir. Dolayisiyla, A, X iizerinde bir Cap-limittir. A < A, oldugunu géstermek
i¢in, Tanim 5.3 geregince, her § € F(X) ve herhangi bir z € X igin A§(z) < \.F(2)
esitsizligini gostermemiz gerekir. A§(z) = 0 ve A\ §(x) = oo durumlar igin esitsi-
zligin gergeklendigi agiktir. A\.F(z) = 0 ise A§(z) = 0 ve \§(x) = o0 ise AF(z) >0
olup A\F(z) < M\ (x) esitsizligi gergeklenir. Dolayisiyla, A < A, dir. Diger yandan,
her § € F(X) icin \.J(X) C {0,00} oldugundan, Onerme 5.6 geregince, \., X

tizerinde taniml bir £ yakinsaklik yapisindan iiretilir. Bu durumda; X {izerinde,
E:={(F,z) CF(X)x X | \§(z) =0}

biciminde tanmimlanan § yakinsaklik yapisi igin A, = A¢ dir. § bagintisinin bir yakin-

saklik yapisi oldugu agiktir. § € F(X) ve z € X olmak iizere; \.F(z) = 0 ise,
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AF(z) = 0 olup £ bagmtisimin tanimmindan, (§,z) € £ dir. Bu durumda; (5.1) den,
Ae§(x) = 0 dir. A F(x) = oo ise, AF(z) > 0 olup (F,z) ¢ £ oldugundan A\F(x) = oo
dur. Dolayisiyla, A\, = A¢ dir. Ayrica, (Y, o) herhangi bir yakinsama uzayi ve
f: (Y, As) — (X, A) bir biiziilme doniigiimii ise,

for Vo) — (X,§)
y [y = fy)

bigiminde tamimh f, fonksiyonunun yakinsama doniigiimii oldugu Teorem 5.4 de

verilen ispata benzer sekilde gosterilebilir. m

Teorem 5.6 Ap kategorisi Cap kategorisinin bi-yansimal bir alt kategorisidir (Lowen
1988).

Ispat. Cap kategorisi bir topolojik kategoridir ve Ap kategorisinin Cap kate-
gorisinin bir dolu alt kategorisi oldugu aciktir. Ap kategorisinin Cap kategorisi
icinde baslangic yapilarina gore kapal oldugu gosterilirse Onerme 2.6 geregince is-
pat tamamlanir. Ap kategorisinin Cap kategorisi i¢inde baglangi¢ yapilarina gore
kapali oldugunu gostermek icin, Tamim 2.28 den, X bir kiime, J herhangi bir indis
kiimesi, {(X;, A\;)} .., yaklasma uzaylarin bir ailesi ve {f; : X — (X, \;)}._, bir

JjeJ JjeJ

fonksiyon ailesi olmak iizere; X kiimesi iizerinde (5.2) de,

Ain: F(X) — P¥
> A =supA(fi[S]) o f
jed
bi¢iminde tanimlanan baglangic Cap-limitin bir limit operatorii oldugunu goster-
memiz gerekir. \;,, X kiimesi iizerinde bir Cap-limit oldugundan her x € X i¢in
Ain(%)(2) = 0 dir. Dolayisiyla, A;, fonksiyonu Tamm 4.2 de verilen (L;) kogulunu
saglar. K bir indis kiimesi ve her £ € K i¢in §; € F(X) olsun. Bu durumda;
sirasiyla,
fi [ﬂgk] = () fil&4]

keK keK
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esitligi ve her j € J i¢in ); fonksiyonunun X; {izerinde bir limit operatérii oldugu

kullanilirsa,

Ain (ﬂ@k) = Sg?Aj (fj [ﬂ&]) o f;
= SUpA, (ﬂf;[&}) o f;

jes keK

= sup sup); (f;[8x]) o f;

jeJ keK
= supAin S
keK

esitligi elde edilir. Dolayisiyla, A;, fonksiyonu (L) kogulunu saglar. Son olarak, \;,

fonksiyonunun (Lj3) kogulunu sagladigim gosterelim: § € F(X),

o: X — F(X)

y — o(y)
bir fonksiyon ve
£ 1= supAy, (o (v)) (5.13)
yeX

biciminde tanimlansin. z € X; olmak tizere X; kiimesi tizerinde,

R;: X; — F(Xj)
N filew)] . z€f(X)

2z — Ri(z) =< vefi '@

z 2 ¢ [ (X)

biciminde bir siizgeg se¢imi tammlayalim. Bu durumda; her j € J ve her § € F(X)
icin

2. Ri(fil8]) € f; 22 o(3)] (5.14)
dir. Gergekten, W € 3" R;(f;[F]) ise, Onerme 2.5 (i) den, W € |J [ R;(2) dir.

Acf;[8]€A
W e f; > o(F)] oldugunu gostermek igin,

dK €Y 0(F): fj(K)CcW
oldugunu gostermemiz gerekir. Hipotezden,

JA € f;[F] veVze A: W € Rj(2)
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dir ve dolayisiyla f; (F') C A olacak bigimde en azindan bir F' € § vardir. Bu
durumda; her e € F igin W € R;(f; (e)) olup
Ri(fie)= () Ffilew)
vel;  (fi(e)
oldugundan,

Ve € FveVy € f; (fi(e) : W € filo ()]

dir. Ayrica, e € fj_1 (fj (e)) oldugundan W € f;lo (e)] olup f; (O.) C W olacak

bigimde en azindan bir O, € o (e) vardir. K := |J O, bi¢iminde tammlanirsa,
eelr

K € > 0(F) ve f; (K) C W olup (5.14) elde edilir. Diger yandan, X, kiimesinin
X; = f; (X)U (X, — f; (X)) bigiminde ifade edilebilecegi dikkate alnirsa,

2 & i (X) ise N;(R;(2))(2) := A(2)(2) = 0 (5.15)

2 € f;(X) ise N(Ry())(2) =N [ () filow)] | (2) (5.16)

yel; ' (2)

dir. Siwrasiyla her j € J icin A; limit operatorii oldugundan ve (5.13) kullanilarak

M) flew) | z) = sup A (file@))) (2)

vel; ') VL)
< sup sup; (f5[o(y)]) (f5(v))
yeX jeJ
= suphin (0(y)) =€
yeX

esitsizligi elde edilir. Her j € J igin €, := sup A\;(R;(2))(2) biciminde tanimlanirsa,
zeX;

& = sup 2i(R;(2))(2) (5.17)

2€ [ (X)V(X;—f;(X))

= sup Aj(R;(2))(2) V. sup A;(R;(2))(2)
z€f;(X) 2¢ f;(X)

yazilabilir. (5.15) ve (5.16) kullanilirsa, (5.13) den, her j € J igin
g; <sup sup; (flo(y)]) (fi(y)) =€
yeX jeJ

olur. Dolayisiyla, supe; < € elde edilir. Bu durumda;
jeJ

Ain 22 0(F)] = ]ngp)\j (fi 2@ o fi
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olup (5.14) kullanilirsa,

Ain [220(F)] < 31611;& Q- R (fi[81) © f;

elde edilir. Her j € J i¢in, A;, X kiimesi tizerinde bir limit operat¢rii oldugundan,

Amfzja(gﬂ

N

sup (A; (f; [81) o fj + &)
J

sup); (f; []) o f; + supe;
jeJ jeJ
Am3”+5

N

N

esitsizligi elde edilir. m
Teorem 5.7 Cap kategorisi kartezyen kapalidir (Lowen 1988).

Ispat. Cap kategorisinin kartezyen kapali oldugunu géstermek icin, (X, \x) ve
(Y, Ay) iki Cap-uzay olmak iizere; Morcq,(X,Y') kiimesi tizerinde, Tamim 2.29 da
ifade edilen (C'Cy) ve (CCsy) kogullarimi saglayan bir Cap-limitin mevcut oldugunu
gostermemiz gerekir. Morc,,(X,Y) kiimesi tizerinde, (5.8) ile verilen X fonksiyonu

ele alinirsa,
e: (X, Ax) X (Morce,(X,Y),\) — (Y, \y)
(z, f) — e(z,[f) = f(z)
fonksiyonu bir biiziilme doniigtimii olacaktir. Gergekten, H € F(X X Morc.,(X,Y))
ise,
§:=pm[H] € F(X) ve ¥ :=py[H] € F(Morce,(X,Y))
olur. Ayrica, F' X ¢ € § x V¥ ise, p; (Hy) C F ve ps(Hy) C ¢ olacak bigimde
H,, Hy € 'H vardir. Bu durumda;

Hy, Cpi' (F) ve Hy Cpy'(p)

olup Hy N Hy C pi ' (F)Npyt(¢) = F x ¢ elde edilir. O halde, H, N Hy € H
oldugundan F' x ¢ € Holup § x ¥ < H dir. (z,f) € X X Morce,(X,Y) ise (5.3)

den,

Ax X MVH(z, f) = AxS(z) VAU(f) (5.18)
= AxS(x) vinf L (U, f)

= inf{\xF(x)Va|aec LT, f)}
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dir. (5.6) geregince, her a € L (¥, f) icin Ay (¥53) o f < Ax§ V a oldugundan,
Ay (U)o f <inf {\xF(z)Va|ae L(V, f)} (5.19)
esitsizligi elde edilir. O halde, (5.18) ve (5.19) dan,
M (T5) 0 f < (x X NH(z, f) (5.20)

olur. § x ¥ < H ve dolaysiyla e[§ x U] < e[H] olup, Ay, Y kiimesi iizerinde bir
Cap-limit oldugundan,

Ay (e[H])(f (@) < Ay (e[§ x W) (f())

elde edilir. Diger yandan; e[§ x ¥| = U; oldugundan,

Av (efH])(f () = Ay (¥5)(f (x))

olup (5.20) egitsizligi kullanilirsa,

Ay (e[H])(f(z)) < (Ax x A)H(z, [)

elde edilir. Dolayisiyla e fonksiyonu bir biiziilme doniistimiidiir. More.,(X,Y)
kiimesi tizerinde, (5.8) ile verilen A fonksiyonu ele alindiginda, Tanim 2.29 da ifade
edilen (C'Cy) kosulunun saglandigim gostermek igin, herhangi bir (Z, Az) Cap-uzay1

ve

f: XxZ — Y
(.2) — f(2,2)
biciminde tanmiml her biiziilme doéniisiimii icin,
[*1 Z — Morge,(X,Y)
2 — 1)) = flz,2)
fonksiyonunun biiziilme doniigiimii oldugunu gostermemiz gerekir. (z,z) € X x Z,

HeF(X xZ)veG e F(Z) olsun. f fonksiyonu biiziilme déniigiimii oldugundan,

Av (fH])(f (2, 2)) < (Ax X Az)H(z, 2) (5.21)

esitsizligi gergeklenir. Ayrica, § € F(X) olmak iizere; f* fonksiyonunun tanim

geregi ve (5.5) den, f*[Glz € F(Y) ve

f*19ls = f[8 < g (5.22)
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dir. (5.22) esitligini gosterelim: (5.5) den,
fGls={s(F)|Sefg, Feg)

dir. H € f*[G]; ise,
S € f*G],IF€eF>S(F)C H

olup § € f*[G] oldugundan f* (G) C S olacak bigimde en azindan bir G € G vardir.

Buradan,
fFGEFE) = U g(F)cS(F)CH
9ef*(@)
yazilabilir. Bu durumda; f (F x G) C | ¢ (F) oldugu gosterilirse, H € f[§ X G]
gef*(@)

olacaktir. Gergekten, y € f(F x G) ise y = f (z, z) olacak bigimde en azindan bir

x € F ve en azindan bir z € GG vardir. Boylece,
Ago = f7(2) € [7(G) i¢in go () = 7 (2) (z) = [ (z,2) =y
olupy e |J g(F) dir. Dolayisiyla, f*[Glz C f[F x G| elde edilir. Diger yandan,

9e*(@)
H e f[§xG]ise, f(F x G) C H olacak bigimde en azindan bir F' € § ve en azindan

bir G € G vardir. S := f*(G) € f*[G] olarak alinirsa, S (F) = f*(G) (F) € f*[Gl;z
olacaktir. k € S (F') ise k = g (y) olacak bi¢imde en azindan bir g € S ve en azindan
bir y € F vardir. Bu durumda; g € S oldugundan, g = f*(z) olacak bi¢imde en
azindan bir z € G vardir. Buradan, k = f* (2) (y) = f (y,2) € f (F x G) elde edilir.
Dolaysiyla, S (F) C f(F x G) ve boylece S (F) C H olup f[§ x G] C f*[G];z elde
edilir. Yani, f*[G]z = f[§ x G] dir. Bu esitlikten,

Ay (FH[G15) (f(2) () = A (f[8 x G))(f (2, 2))
olup sirasiyla (5.21) esitsizligi ve (5.3) kullanilirsa,
Ay (F191) (7 (2) () < (Ax X Az)H(z, 2)
< AxS (7)) VAZG (2)
elde edilir. Bu durumda; (5.6) dan, A\zG(z) € L(f*[G], f*(z)) olup (5.8) den,
AN (2) = inf L(f7(G], [*(2))
< AzG(2)

esitsizligi gergeklenir. O halde, f* fonksiyonu biiziilme doniigtimiidiir. m
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6. TARTISMA VE SONU(C

Yakinsaklik kavrami matematigin pek ¢ok alaminda onem tagsimaktadir. Analiz
alaninda bilinen bircok yakinsaklik 6rnegi, genel topoloji sayesinde daha genig bir
cerceve icinde incelenebilmektedir. Ancak topoloji, bilinen tiim yakinsaklik kavram-
larini ifade edebilmek icin yeterli olmamistir. Yakinsaklik iizerine yapilan calig-
malarda, topolojik olarak karakterize edilemeyen yakinsaklik dérneklerinin varliginin
fark edilmesiyle birlikte yakinsaklik, topolojiden bagimsiz olarak ele alinmaya baglan-

mis ve yakinsaklik teorisi dogmustur.

Bu calismanin biiyiik bir kismini topolojik uzaylarin daha genis bir sinifi olan yakin-
sama uzaylarina ayirdik. Yakinsaklik teorisinin temel araclari olan yakinsaklik
yapilarinin 6zelliklerini inceleyerek yakinsama uzaylarini nesne kabul eden Conv
kategorisinin temel 6zelliklerini, Top ve Cap kategorileri ile arasindaki iligkileri in-
celedik. Bundan sonraki calismalarimizda, topolojik olarak karakterize edilemeyen
yakinsaklik ¢rneklerini ele alarak bu kavramlara yakinsaklik yapilar: karsilik getirip

getiremeyecegimizi aragtiracagiz.
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