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ABSTRACT 
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Co-Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

December 2018, 190 pages 

 

 

Business Process Management (BPM) gains growing attention by generic process design and 
execution capabilities empowered by process-aware information systems. During execution of these 
transactional information systems, end-users leave traces in the form of event logs, which can be used 
as a main data source for behavior analysis. Process mining encompasses the techniques for 
automatically discovering process from these event logs, checking conformance between the reference 
process model and process executions, as well as analyzing, predicting and enhancing the 
performance of business processes. With the emergence of new shared economical models and 
system architectures, monolithic process perspective is evolved through cross-organizational 
applications. While contemporary information systems provide functionality for process management 
within the organizations, a systematic approach to support and analyze multi-organizational processes 
is missing. Cross-organizational process mining supports the use of commonality and collaboration for 
process configuration. However, this functionality creates the challenge of dealing with variability 
across organizations.  

In this study, we propose a three phased cross-organizational process mining framework in order to 
extract the commonalities among different organizations serving the same business values. While 
dominant behavior extraction phase initially derives the sequence of tasks expressing the most typical 
behavior within the process instances, sequence alignment phase measures the degree of similarities 
between the process candidates by confidence enhanced cost functioning, and depicts the 
neighborhood among these alternatives in terms of process families. At process configuration phase, 
common regions that indicate a functional inheritance or abstractions in the process families are 
visualized at sequence alignment matrices and interpreted by new feature sets, namely identical and 
maximal identical pair. According to the experimental results, proposed approach presents a viable and 
robust cost function in incorporating the business context at process similarity measurement and 
clustering the process alternatives into process families.     

Keywords: Cross-Organizational Process Mining, Process Families, Multi-Sequence and Pairwise 
Alignment, Dominant Behavior, Identical and Maximal Identical Pairs. 
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Süreç duyarlı bilgi sistemleri tarafından iyileştirilen genel süreç tasarımı ve yürütme işlevleri ile İş 
Süreçleri Yönetimi alanı artan bir ilgili toplamaktadır. Bu bilgi sistemlerinin yürütülmesi sırasında elde 
edilen olay günlükleri, son kullanıcı davranış analizlerinde ana veri kaynağı olarak kullanılabilir. Süreç 
madenciliği, bu günlüklerden iş süreçlerinin otomatik keşfedilmesi ve referans süreç modeli ile süreç 
gerçekleştirimi arasında uygunluk kontrolünün yapılmasının yanı sıra, iş süreci performanslarının 
analizi, tahmini ve geliştirilmesini de kapsar. Yeni paylaşım ekonomisi modelleri ve sistem mimarilerinin 
ortaya çıkışıyla, tekil süreç perspektifi organizasyonlar arası uygulamalara doğru evrilmiştir. Güncel 
bilgi sistemleri, organizasyonel bağlamda süreç yönetimi için işlevsellik sunarken, çoklu-organizasyonel 
süreçleri desteklemek ve analiz etmek için gerekli sistematik yaklaşımdan uzaktır. Organizasyonlar 
arası süreç madenciliği, süreç yapılandırması için benzerliğin ve işbirliğinin kullanımını destekler. 
Bununla birlikte, bu işlevsellik organizasyonlar arasında ortaya çıkan değişkenliklere çözüm bulma 
zorunluluğunu da yaratır. 

Bu çalışmada aynı süreçlere odaklanan farklı organizasyonlar arasındaki benzerlikleri ortaya çıkarmak 
için üç aşamalı bir organizasyonlar arası süreç madenciliği çerçevesi sunuyoruz. Baskın davranışın 
çıkarımı aşaması, süreç örneklerinde gözlemlenen en tipik davranışı ifade eden görev dizisini 
türetirken, dizi hizalama aşamasında ise güvene dayalı maliyet işlevine göre süreç alternatifleri 
arasındaki benzerlik derecesi ölçülüp, ilgili süreç alternatifleri arasındaki komşuluklar süreç aileleri 
üzerinden görselleştirilir. Son olarak süreç yapılandırılması aşamasında, süreç ailelerinde tespit edilen 
fonksiyonel benzerlikler ve soyutlamalar dizi hizalama matrislerinde görselleştirilip, özdeş veya azami 
özdeş çiftleriyle yorumlanır. Deney sonuçlarına göre önerilen yaklaşım, süreç bağlamına göre benzerlik 
ölçümünde ve süreç alternatiflerinin kümelenmesinde uygulanabilir ve sağlam bir benzerlik ölçümü 
sunmaktadır. 

Anahtar Sözcükler: Organizasyonlar Arası Süreç Madenciliği, Süreç Aileleri, Çok Sıralı ve Çift Yönlü 
Hizalama, Baskın Davranış, Özdeş ve Azami Özdeş Çiftler. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The tendency towards more open economies has enforced the evolution of globalization, which 

suggests that the world is a single broad market that can be accessed by all industries and 
organizations. The transformations that happened in the markets are so rapid and volatile that only the 
most flexible and agile form of organizations can adapt to these trends of change. Indeed, ultimate 
action at this enterprise transformation is to achieve a holistic and sustainable business process 
management (BPM) with adequate key performance indicators (KPI’s). The process orchestration 
throughout the value chain of the underlying organizations is possible by the process-aware 
information systems, which are information systems that manage and orchestrate major business 

processes at organizations. While these information systems are intensively implemented, their 
business value and functionality they provide are limited due to how processes are traditionally 
designed [1]. Unfortunately, process design is influenced by the personal perceptions and reference 
process models are mostly normative such that they reflect what should be done rather than the actual 
process executions. Consequently, process design tends to be incomplete, subjective and at a coarse-
grained level [2, 3]. Actually, major problems emerge because processes are actually performed 
differently than they are designed [3, 4]. 

Process mining is anticipated as a solution to handle these limitations by distilling end-user behavior 
patterns from event logs and discovers the process knowledge [1, 4, 5, 6, 7, 8]. It encompasses the 
techniques of discovering processes automatically, checking the conformance between the reference 
process model and process executions, as well as analyzing, predicting and enhancing the 
performance of business processes [9]. Event logs reflect what the process owners or end users 
perform at the operational level. Thus, unlike the traditional design-centric approach, process mining is 
not biased by subjective perceptions [10]. 

With the emergence of new shared economy models and information system architectures, e.g. shared 
BPM infrastructures and cloud computing [11], the scope of process-aware information systems is 
extended towards cross-organizational applications. While these contemporary information systems 
are intensively utilized at organizations, they serve a limited functionality to fulfill the business 
requirements of multi-organizational processes [12, 13]. For instance, enterprise resource planning 
(ERP) systems focus on specific functionalities determined for an exact purpose [12, 14]. These 
information systems are configured through a time-consuming customization phase and these 
customizations are relatively data-centric and relatively complex, i.e. processes are hindered at the 
application tables [13]. Moreover, large installment core acts as an inhibiting factor that complicates the 
software refactoring and process-centric transformation [13]. Multi-tenant processes, i.e. organizations 
executing the same processes at a shared or distributed architecture, require a more systematic 
treatment to deal with the variability across the organizations. The requirement for such information 
systems makes the monolithic perspective of former process mining techniques evolve through a new 
era, namely cross-organizational process mining. This new type of process mining focuses on 
exploiting the commonalities between the organizations, and collaboration [11, 15]. These settings are 
fundamental for configurable process models, which provide generic structures representing possible 
variations of a process in an integrated, single process model [16]. To build up configurable process 
models by integrating different process variants, first, they need to be compared by measuring their 
similarity and deviations. 
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While process similarity measurement is hindered by different modeling notations, task labeling styles 
and terminology, process similarity has been measured by three complementary aspects: the task 
labels, dependencies between the tasks and the process semantics [17, 18]. Current techniques have 
most measured the similarity between process models, in other words model-model similarity, based 
on a semantic and syntactic comparison of task labels and process models together [21]. This makes it 
feasible to adapt algorithms from information retrieval (IR) and graph theory for measuring process 
similarity [19]. However, such adaptations have been found to be inadequate to take the process 
behavior into account, for example, when two process variations look similar in terms of task labels or 
process structure, but may behave quite distinct [19]. As an alternative, log-model similarity 
measurement uses the behavior of a process model by instantiating the state space or enumerating all 
possible traces by implementing trace equivalence, bisimulation or branch simulation techniques [20]. 
Although various similarity measures overcome potential scalability problems emerged by trace 
enumarations and reflect the process branchings at process behavior in a polynomial time, they 
majorly promise a limited binary (true/false) similarity response instead of the similarity degree [20, 21]. 
Additionally, they do not assign priorities (or weights) to the sub-processes according to their execution 
frequencies [20]. Although process mining has overwhelmed various problems encountered at handling 
real life use cases, there exist still challenging issues that should be handled in the context of process 
mining applications on event logs and one of these topics is process diagnostics, i.e. measuring the 
compliance between reference and actual models, interpreting for related process variants at 
organization repositories [19, 21]. In both model-model and log-model similarity measurement, 
diagnostics of processes at the model level is time-consuming and sometimes infeasible, especially 
when dealing with flexible processes delimited by concept drift, i.e. the characteristics of underlying 
process alter over time [21]. Respectively, similarity measurement on the basis of process execution 
semantics, in other words log-log similarity measurement, bypasses the requirement of such reference 
process models.  

Due to these limitations observed in current process similarity metrics at cross-organizational 
applications, we propose a cross-organizational process mining framework for extracting the 
commonalities among different organizations serving the same business values. For this purpose, we 
aim to segregate the organizations into process clusters, in other words process families, by measuring 

the similarity according to process executions. As shown in Figure 1.1, the underlying framework 
consists of three phases: dominant behavior extraction, sequence alignment and process 
configuration. 

 

Figure 1.1. The Overview for Proposed Three-Phased Cross-Organizational Process Mining 
Framework and Major Outcomes. 

Dominant behavior extraction phase initially derives the representative sequence that decodes the 
dominant behavior, i.e. a typical or common intended behavior that can act as the backbone of the 
underlying process. Unlike the model-model and log-model similarity measurements, this exemplary 
behavior acts an appropriate abstraction for the corresponding process behavior by eliminating the 
ultimate requirement for well-defined reference process modeling. In addition to the dominant behavior, 
this phase summarizes the confidence values, which are the intra-dependencies of consecutive task 
pairs sharing an incorporated business context. Accordingly, this confidence notion reflects the 
moment of choice at the process behavior and provides insights about the level of inter-dependencies 
between the tasks or activities. 
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The following phase, sequence alignment employs the adaptations of Needleman-Wunsch (NW) 
algorithm, which basically proposes a dynamic programming (DP) paradigm to find out the optimal 
alignment between two amino acid sequences [22]. Indeed, sequence alignment is an essential tool in 
Bioinformatics domain to identify the similarity between two biological sequences to understand their 
structures or functions [22, 23]. Our major motivation of sequence alignment phase is to measure the 
degree of similarities between the process alternatives according to the overlapping regions that are 
detected by two sequence alignment adaptations: Multi-Sequence Alignment (MSA) and Pairwise 
Alignment (PA). Primarily, MSA depicts the commonalities in terms of process family tree, which is a 
dendrogram-like guide tree that progressively captures the distance among the process alternatives. 
As the former NW adaptation, PA segregates the process alternatives by various clustering algorithms 
in terms of similarity scores as the distance attributes. However, there may emerge various challenges 
in sequence alignment adaptation such as determining the cost function at edit operations. While BOM 
and BLOSUM pay-off matrices are frequently used in Bioinformatics literature [22], we develop a 
dynamic cost functioning based on the confidence values obtained at dominant behavior extraction 
phase. The fundamental motivation of confidence enhanced cost functioning is to eliminate the edit 

operations that contradict with the underlying business context: while the substitution of contrasting 
activities and inDel (insertion/deletion) operations of activities with little compatibility for the 
corresponding business rules should be avoided by dynamically determined penalty scores, the tasks 
with complementary business circumstance should be encouraged to be substituted or inserted at 
practical costs.   

As the final phase, process configuration visualizes the sequence alignments among the process 
alternatives that are assigned to the same process family. The deviations and exceptional process 
behaviors are emphasized by the regions that are rarely filled with gap symbol (–), as emphasized in 
[21], conserved regions that are detected by the identical and maximal identical pairs feature sets (IP 
and maxIP) emphasize a functional inheritance among the underlying process alternatives. 
Consequently, these conserved regions can be used to create various abstractions at a desirable level 
of granularity for configurable process modeling and the divergences across the process alternatives 
can be dealt with configurable elements.  

The major contributions of the proposed cross-organizational process mining framework are as follows: 

 The approach focuses on the sequential dominant behavior of process alternatives. In this 
way, the requirement for the existence of a reference process model is relaxed, which is a 
common limitation in current approaches [20, 21]. 

 Sequence alignment techniques have been applied as a preprocessing step on the event logs 
in the process mining literature [21, 23, 34, 60, 61, 62]. As a distinction in this study, we adapt 
sequence alignment on process model variants of the same process in order to measure the 
degree of similarity on a continuous scale, instead of a limited atomic similarity response. 

 This work is the first to adapt NW algorithm with robust cost function to construct process 
clusters that highlight the major commonalities among the process alternatives. This cost 
function relies on the business context such that, edit operations are dynamically valuated 
according to the compliance of operation to the corresponding business rules. 

 As the business value, the alignments of process alternatives that are assigned to the same 
process family can play a significant role in process configuration such that, conserved 
regions detected by maximal identical pairs (maxIP) with higher frequency and coverage are 
interpreted as an evidence of common behavior and manifestation of these concurrent 
behaviors highlight a functional inheritance at process enactment. 

This study is composed of seven chapters. Enterprise transformations and paradigm shifts observed in 
process mining research area are analyzed in Chapter 2. Prior aspects and approaches in process 
discovery, process similarity measurement and process configuration fields are summarized in Chapter 
3. Chapter 4 highlights the background information for former concepts that are intensively addressed 
at following sections. The details about the proposed three phased cross-organizational process mining 
framework are given in Chapter 5. Experimental analyses of the proposed framework with respect to 
four distinct use cases are handled in Chapter 6. Finally, the limitations and suggestions about the 
future work are explained and the concluding remarks are summarized in Chapter 7.  
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CHAPTER 2 

 

 

PROBLEM ANALYSIS 

 

 

 

2.1. Globalization and Enterprise Transformation 

Due to the globalization, organizations face serious challenges that enforce rapid and sustainable 

enterprise transformation. This transformation implies the strategical business agility to respond to the 
competitors’ reactions (e.g. new competitor or product intrusions to the market) and the ability to 
predict new opportunities at the market. Indeed, this transformation has a direct effect on the Business 
Process Management (BPM) such that, there has emerged a paradigm shift from data-oriented 
towards process-oriented organizational structures. The degree of this enterprise transformation may 

vary from Business Process Intelligence (BPI), which is a common key word for the techniques under 
the Business Intelligence (BI) technology [8], to the paradigm shift in the processes supported by the 
organization. 

Actually managing critical business processes seek the development of contemporary information 
systems with the capability of monitoring and supporting the corresponding business processes. Such 
information systems are called process-aware information systems (PAIS) that offer generic process 

modeling and execution functionalities to bridge the perceived gap between the organization and the 
software by controlling and monitoring the information flow [24]. Enterprise Resource Planning (ERP), 
Workflow Management Systems (WFMS), Customer Relationship Management (CRM), Supply Chain 
Management (SCM) and Product Data Management (PDM) software can be classified as process-
aware information systems [1, 6]. 

Despite process-aware information systems promise management of the tasks, it is delimited with a set 
of fundamental problems that result in critical barriers at practical use. Major drawback of such an 
information system is that the reference process models generated at process design phase lead to a 
lack of flexibility, which means an incapability to transform the processes without loss of any identity 
and functionality [1]. Indeed, process design phase is often orchestrated by a small group of 
consultants, process observers and domain experts and these stakeholders state what should be done 
rather than describing the actual business process [2, 10]. As shown in Figure 2.1, traditional process 
design majorly concentrates on the design and configuration phases, which are dominated by the 
managerial ideas on refining the business practices. Consequently, there happens a representation 
gap between process design and process enactment [7] and the final design is often incomplete, 
subjective and at a too high level [1, 2].  
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Figure 2.1. Traditional Process Design Life Cycle versus Process Mining [10].  

Moreover, the flexibility notion denotes the ability to yield to change without loss of identity and 
business process flexibility is the capability to react to the external changes (e.g. concept drift) by 
adapting the sub-processes that are affected and required to be revised [1]. However traditional 
process design is inflexible to these changes, due to the strong push-oriented nature of routing, which 
imposes what to do instead of letting a free choice to the process observers [1]. This push-oriented 
nature of process design results in context tunneling, i.e. the end-users have no overview or a holistic 
idea about the underlying process [10]. This phenomenon is also in parallel with the scientific 
management and standardization of the work ideas of Frederick W. Taylor to partition the work in order 
to make it easy-allocated. The causality in the enterprise transformation can be modeled as a 
reinforcement cycle as shown in Figure 2.2. 

 

Figure 2.2. Reinforcement Cycle for Traditional Approach in Workflow Technology. 
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2.2. Process Mining 

As stated above, the impact of process-aware information systems is limited by the difficulties 
encountered at the process design phase [7]. Respectively, reference process models are often 
normative in the sense that they reflect what should be done rather than the actual process execution 
[10]. This requires an expensive and time-consuming process analysis, which may be infeasible from 
an economical perspective. Instead of manually designing the process, it is proposed to reverse the 
underlying procedure by a more objective and automated way of design, which collects the process 
knowledge and discovers the underlying process patterns from this low-level process history called 
event logs [10]. 

The term process mining is concerned with this objective approach to discover, monitor and improve 
the real processes by distilling the process knowledge from event logs. Hence process mining 
describes a family of posteriori process models, which exploits end-user behaviors embedded at the 
event logs in contrast to the ideal picture at apriori reference process modeling [25] as shown in Figure 
2.1. Indeed, process mining is unbiased towards the perceptions or normative decisions unlike 
traditional process design [6, 7]. However, if the process observers bypass the underlying process-
aware information system by various alternative work-arounds that are quite different from the business 
rules and standard operations procedures, the event logs may deviate from the actual case [10]. 
Indeed, process mining is not an instrument to re-design the process models, it is better to compare 
the manually designed reference models with the discovered ones. 

Respectively, the fundamental information at the event logs should cover the following attributes: 

i. Each event refers to an activity (i.e. an atomic task in the process). 
ii. Each event refers to a case (or process instance). Processes are by definition case-based, 

i.e. every piece of work is performed for a specific case [2].  
iii. Each event can have an originator (i.e. the end-user executing or initiating the activity). 
iv. Events have a timestamp and are totally ordered by case identifier. 

The only assumption about process mining is the possibility to collect such a process history in terms 
of event logs. Process mining can be distinguished into three perspectives: 

 Process perspective. The process perspective concentrates on the control-flow aspect, i.e. 
the ordering of the tasks. The major goal is to derive a good behavioral characterization from 
process executions [15]. 

 Organizational perspective. The organizational perspective concentrates on the originator 

attribute of the event logs. The goal is to figure the interactions between the process 
observers at the underlying organization by categorizing the process observers in terms of 
profiles or roles. The derived interactions are depicted by social network analysis (SNA). 

 Case perspective. This perspective majorly focuses on the case features. Certainly, process 

instances are featured by the values of the corresponding data elements, e.g. the travel 
destination and advanced payment option of a travel request at travel management business 
process. Alternatively, this case perspective figures out the correlation between the activity 
occurrences and the process features. 

Respectively, process mining is related to the process execution phase where much flexibility is 
potential such that, the more ways in which process observers deviate, the more variability is to be 
observed at end-user behavior analysis. In this aspect, there are three basic types of process mining: 

a. Process discovery. The aim of process discovery is to extract information from the event logs 
in the form of process models. The forms of extracted process model vary such as event 
process chain (EPC) diagram, petri-nets, sociograms or time charts describing the process 
performance. Process discovery does not require a predefined apriori process model, but 
discovered process patterns can be used as the baseline at delta analysis, which compares 
these discovered process patterns that characterize actual process executions with the apriori 
process model [6, 7]. 
The major challenge at process discovery is to convert extracted process patterns into valid 
process modeling notations. Additionally, this representation should avoid any spaghettiness 
that may increase the complexity of process discovery. 



8 
 

b. Conformance checking. Unlike the process discovery, conformance checking requires an 
apriori process model to compare observed process patterns and the to-be business process. 
Hence it is possible to perceive the discrepancies between process design and actual process 
behaviors by conformance checking. Additionally, the bottlenecks and rarely active process 
fragments can be detected. 
Rediscovery problem is a critical issue at conformance checking such that, the process mining 
algorithm is required to be able to extract a process model that is behaviorally equivalent to 
the reference process model, from which the complete event logs are generated [15]. 

c. Extension. Like conformance checking, extension requires an apriori process model which is 
enriched with new aspects obtained at process discovery. For instance, process mining 
applications can be implemented at ERP systems to simplify and improve the customizations 
steps [26].  

Figure 2.3 summarizes the types of process mining. 

 

Figure 2.3. Types of Process Mining [25]. 

Beside the capabilities and functionalities provided by process mining, there are various challenges 
that are basically common at data mining domain: 

 Completeness. Complex and spaghetti-like business processes may exhibit alternative or 
parallel patterns and the event logs may not typically reflect all of these possible process 
sequences and inter-leavings [10]. Moreover, certain process executions may have a low 
probability (i.e. surprise-type relations) and therefore remain undetected.  

 Noise. Some parts of the event logs can be incorrect, incomplete or addressed to the process 
exceptions. These events can be distorted due to the human by-effect or various technical 
problems [10]. Also there may happen missing event logs, if some of the activities are 
performed manually or handled at an external system [10]. 

Increasingly, professional organizations are looking for the benefits of sharing their best practices 
among their stakeholders and this era is mostly called as shared economy [27]. While cloud computing 

focuses on the sharing of information technology (IT) investments and the assets to achieve significant 
cost reductions, software as a service (SaaS) is another complimentary notion which refers to a new 
software distribution model. It is a repository that hosts various applications from distinct vendors or 
service providers [12]. 

Since multi-tenant infrastructure also enables to hold the event logs of multiple organizations, 
monolithic perspective of traditional process mining (i.e. process discovery or conformance checking 
within a single organization) is evolved through cross-organizational process mining. This type of 
process mining handles the major similarities between the process structures and end-user behaviors 
throughout the cross-analysis and the challenges about horizontal or vertical segmentation of the tasks 
and business processes [28]. Although cross-organizational process mining promises various business 
values, there are major limitations for its implementation in cooperative organizations. These are the 
identification of the commonalities and discrepancies between the ways they actually work and the 
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integration of these possible process variations into a single adaptive model [27]. Instead of dealing 
with the variability over the organizations, enforcing the “one size fit all” aspect to all requirements and 
preferences is infeasible [12].  

Due to the challenge of dealing with the variability across the organizations, two major settings are 
emphasized: 

 Collaboration. Collaboration setting refers to the process instances handling of a distinct 
process distributed over different organizations. This option highlights the interoperability 

among different organizations. The corresponding process is analog to the “jigsaw puzzle” 
metaphor, i.e. the process is cut into loosely-coupled tasks [15]. This process fragmenting 
is also called as horizontal partitioning. The major challenge about this form of cross-
organizational process management is the myopicism, which means the organizations only 
focus on a limited process fragment [15]. 

 Exploiting commonality. In this setting, the major goal is not to distribute the tasks 

associated to a business scenario. Instead, it is aimed to share the experiences, business 
knowledge or common best practices among the organizations executing essentially similar 
processes [15]. This setting can be addressed to vertical partitioning that uses the case 
dimension to partition the process over several organizations. This can be conceptualized 
as the “spot the difference” metaphor such that, while the commonalities among 
organizations are analyzed, the deviations are handled as process interleaving [15]. This 
setting also results in the challenge of dealing with the variability among the organizations.       
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2.3. Similarity Measurement and Process Configuration 

As the organizations reach higher maturity levels at BPM applications, they tend to accumulate 
extensive number of reference process models. Actually, these models constitute a valuable asset or 
intellectual property to business process improvement [17, 18]. Moreover, new legislations such as 
Sarbanes-Oxley (SOX) emphasize on the corporate governance and operational efficiency to audit the 
organizations [29]. This close monitoring of processes refers to the concept business alignment which 
is related to the conformance between the apriori reference process models and the process 
enactments. 

Process models are mostly not created from scratch and the incompliance with business requirements 
and the duplications of process models should be avoided. Hence the size of process model 
repositories enforces the automated process similarity measurement and process querying. In addition 
to process model refactoring by the ERP vendors, multi-national organizations can easily localize or 
identify more specialized processes by this process query functionality [30]. Current efforts in BPM 
community focus on process similarity measurement based on the task labels or the dependencies 
between the tasks at the reference process models [21]. While process model matching is inspired by 
the schema and ontology matching [19], these approaches may not sufficiently take the process 
behavior into account [18] such that, two processes may look quite similar in terms of task labels and 
the process structure, but may behave differently. Hence the analysis of behavioral similarity is 
complicated by two perspectives: 

 There is a large variety of languages and notations for process modeling. The lack of 
associations among these languages results in significant discrepancies and subtle semantic 
issues [31]. 

 Task labels can be formulated in terms of different grammatical ways with syntactically 
different terms [32]. 

The classical approaches to compare the process behaviors focus on the dynamics of process models 
by constructing the set of process behaviors into a state space or by enumerating all possible traces. 
As the weakest notion, trace equivalence considers the process equivalence if the set of traces is 
executed in the identical way. This aspect is not feasible, since the underlying trace set should be 
finite, i.e. the number of traces needs to be bounded [31]. Trace equivalence also ignores the moment 
of choice by overemphasizing the order of activities [20]. As a relaxation for trace equivalence, 
bisimulation attempts to capture the inter-leavings in polynomial time [20]. Consequently, these 
process similarity measures aim at a true/false response rather than the degree of similarity. Moreover, 
they interpret all components of the process model as equally important. However, there should be a 
balance between rarely active and significant fragments of a process model, likewise as indicated by 
the process vein and process arteries analogy of De Medeiros et al. [20].    

In addition to the process equivalence, process diagnostics is another challenging topic in process 
mining. According to control-flow discovery perspective, process diagnostics encompasses process 
performance analysis, anomaly detection, inspection of interesting patterns [21, 23]. Research at 
diagnosing processes is focused on finding appropriate approaches that analyze the processes in 
order to detect diagnostic information over some performance metrics [21]. Most real-life business 
processes are not strictly delimited by the underlying process-aware information systems and highly-
deviated processes constitute the flexible environments [33]. These environments are characterized by 

the allowance of a wide range of process behavior, which causes a stereotypical unstructured process 
models called spaghetti models. One major factor that contributes this diversity at process execution is 
the tacit process variant assumption [34]. Therefore, the diagnostics of the processes at the model 
level is time-consuming and infeasible when dealing with flexible environments. Respectively, a viable 
solution for a better understanding of process semantics is to take care of the process semantics at the 
event logs and to find similar sequence of activities common across the traces. These fragments 
signify some sort of common functionality assessed by the process [7]. 

When contemporary BPM systems are evaluated in the context of cross-organizational application, the 
technology of BPM is lack-of-content, which means the generic solution is inadequate to support out-
of-the-box business requirements or customer-specific processes [12, 14]. Likewise, ERP vendors tend 
to serve best practices in industry-specific adhoc applications. Such solutions are configured 
throughout a time-consuming and relatively complex configuration phase and these configurations 
make it impossible to elaborate the interdependencies among certain parameter settings. ERP vendors 
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tend to feature data-centric solutions to support particular processes at the organizational knowledge 
base [12, 14]. However, their large installment core and complexity make it hard to refactor and align 
their software components towards process-centric form [12, 14]. 

Due to the limitations of these information systems, this process-centric aspect requires a systematic 
treatment of process configuration and configurable process modeling [101]. Process configuration is 
concerned with managing the business process families that are partially or totally similar with respect 
to some aspects. The basic idea is to build an abstract and generic model that unifies the variances 
among the corresponding process family [13]. A configurable process model describes a family of 
similar process models and can be evaluated as the root of the underlying family. All variants in the 
family are derived from the configurable process model thorough a series of configuration [13]. Figure 
2.4 depicts the relation between process configuration and configurable process models. 

 

Figure 2.4. The Relation between Process Configuration and Configurable Process Models [13]. The 
configured model has less behavior due to the removal of potential behaviors during configuration. In 
other words, the desired behavior needs to be carved-out throughout the process configuration steps. 

Despite the fact that; the reference models provided by ERP vendors offer little support for design by 
reuse, configurable process models can be built upon as the least common multiple of process variants 
[16]. Additionally, the analogy with the inheritance of dynamic behavior at object-oriented programming 
paradigm enriches the process configuration concept such that, each superclass of the subclass (i.e. 
reference process model) can be evaluated as the configured process variant as shown in Figure 2.5. 
That means configuration is the inverse form of inheritance that transforms the subclass into super-
class. 

 

Figure 2.5. Process Configuration as the Inverse Form of Inheritance [16]. 
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2.4. Research Questions 

In order to overcome the shortcomings inherited from process equivalence notions, the purpose of this 
study is to design a quantitative process similarity metric to measure structural and behavioral 
similarities with respect to the process behaviors emphasized at the event logs. In this aspect, it is 
aimed to introduce a new concept named dominant behavior, which is a common subsequence of 
activities at event logs that are found to recur across the process instances, and use this runtime 
information to compare process alternatives.  

Actually this concept respectively highlights a new perspective to the process diagnosis such that, the 
commonality or deviations among the process alternatives are uncovered by analyzing just dominant 
behavior; thereby avoiding the requirement for well-defined reference process models. In other words, 
dominant behavior concept enables the log-log similarity measurement and discovered process 
patterns can be compared with the patterns of other process alternatives. Hence this study widens the 
existing scope of process variant analysis by incorporating the actual behavior of the process 
alternatives, i.e. runtime perspective.  

The region of high similarity between the dominant behaviors of distinct process alternatives might be 
the evidence of common functionality. [33, 34] propose the manifestation of these overlapping sub-
processes as features will enable the clustering of process alternatives. Furthermore, adapting these 
common patterns at process configuration domain propose a way of abstraction, which is found a 
valuable feature indicated as a requirement for configurable process models [13].  

In parallel with the purpose of the study, the research questions to be investigated are presented in 
Table 2.1. 

Table 2.1. Research Questions and Details. 
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Process mining is an emerging discipline that provides a wide-range of approaches to discover 
patterns by distilling event logs, which are the baseline for end user behavior analysis [1, 4, 5, 6, 7, 8]. 
Process mining is anticipated as the remedy to handle discrepancies between the process enactment 
and reference process models created at process design phase [1]. In this chapter, process mining is 
handled in three categories. Prior studies about the process discovery field are given in Section 3.1. In 
Section 3.2, it is aimed to cover two major aspects in process similarity measurement: sequence 
alignment adaptations in process mining and delta analysis approaches based on the sets of traces. 
Finally contemporary aspects in process configuration are described in Section 3.3. 

  

 

3.1. Process Discovery 

Prior studies in process discovery field can be classified into three prescriptive types: 

 Correlation-based approaches focus on extracting strong correlations, frequent patterns, 
associations or casual connections among activities in the event logs. 

 Classification-based approaches aim to induce a rule set from event logs and build a classifier 
to predict the type of log-based relations as causal (c), exclusive (e), parallel (p) and inverse 
casual relation (i). 

 Clustering-based approaches mode each event as an observation at a properly identified 

space of features in term weights and construct process model by combining the 
corresponding clusters, which hold transactions sharing the same structure and the same 
unexpected behavior [34, 58, 59]. 

The idea of applying process discovery in the context of process mining was first introduced in [4]. In 
this study, two key points are handled. The first point is to discover a process structure generating 
activities appearing in a given event log set. The second one is to define the relational conditions. As a 
shortcoming, there is not any requirement to identify the nature of AND, OR and XOR gateways 
according to the nature of process structures. Moreover process graphs are acyclic. The sole way to 
deal with these iterative process behaviors is to list and enumerate all initiatives of the underlying 
activity [17, 20, 50]. Unfortunately, this requires unifying the activity labels and activity occurrences to 
eliminate the redundancies. 

Cook and Wolf investigated similar issues in the context of software engineering domain. In [5] they 
designated three approaches for process discovery ranging from the purely algorithmic to purely 
statistical: one using neural networks named RNET, one using a purely algorithmic approach named 
KTAIL and one Markovian approach named MARKOV. The approach covering these three methods is 
to handle underlying process discovery issue as a grammar inference. Respectively, the event logs 



14 
 

characterizing the process behavior are transformed into common sentences structures in the 
corresponding language and the grammar of this language is then restricted according to the formal 
process modeling notations.  Major shortcoming of this grammar inference is that the underlying 
methods generally do not support seeding the underlying algorithm with aprori information about the 
process model in order to formulate the major process structure. Additionally grammar inference 
methods focus on a single state machine. In the typical process model, activities generally occur 
concurrently, which produce a process stream that may have non-deterministic orderings of activities. 
Cook and Wolf consider KTAIL and MARKOV methods as the most promising approaches, while 
RNET method is not mature to be used in practical applications. KTAIL method builds a finite state 
machine where states are complex if their successive behaviors are identical. Finite state machine 
(FSM) is the preferred representation in this study not to make software process prescribing more 
sophisticated. Actually FSMs are quite convenient, relatively simple and sufficiently powerful for 
describing historical patterns of actual behavior. Additionally, the results presented in [5] are limited to 
sequential behavior.  

On the other hand, the technique of Weijters and Aalst [7] can deal with noise at the event logs and 
can also be used to validate business processes by uncovering and measuring the discrepancies 
between the prescriptive models (e.g. reference models given in business blueprints) and actual 
process executions. Compared to Cook and Wolf’s prior approach, Weijters and Aalst focused on 
business processes with concurrent behavior, i.e. detecting concurrency is one of the fundamental 
concerns. Therefore AND/OR/XOR gateways are aimed to be explicitly distinguished in the process 
model. To accomplish this goal, WorkFlow nets, which are a subset of Petri nets, is integrated with 
techniques from machine learning. Moreover Weijters and Aalst proposed local and global metrics, 
which are quite distinct from the proposed metrics (i.e. entropy, event type counts, periodicity and 
causality) given in [5], to find explicit representations for a broad range of process models.     

Proposed technique in [7] is composed of three steps: (i) construction of dependency/frequency table, 
(ii) generation of a dependency/frequency graph based on the dependency/frequency table and (iii) 

revision of the Workflow net out of dependency/frequency graph and dependency/frequency table. 
Dependency/frequency table composes the following attributes from event logs: the overall frequency 
of activity A (notation of #A), the frequency of activity A directly preceded by task B (notation of #B<A), 
the frequency of activity A directly followed by task B (notation of #A>B), a local metric that indicates 

the strength of the dependency relation between activity A and activity B (notation of $A→LB) and A 
more global metric that indicates the strength of the dependency relation (notation of $A→B) as stated 
in [7]. 

After dependency/frequency table is constructed, dependency scores between activity pairs are 
calculated. As the last step, dependency scores and the information at dependency/frequency table are 
combined to detect the types of AND/OR/XOR gateways. Respectively, dependency score, which is 
approximately equal to total number of incoming or outgoing transitions of the underlying activity, 
implies an AND-connection, while dependency scores complementing each other to total number of 
incoming or outgoing transitions of the underlying activity implies an OR-connection. Unfortunately 
proposed mining technique in [35] has still limitations with handling complex interleaving process 
structures in combination with short (one-step) loops. Proposed mining technique in the underlying 
study is realized as a tool named Little Thumb. 

Formal approaches stated above are based on the assumption of a weak notion of completeness and 
noise-free event log. Actually in practical settings, event logs are rarely complete and noise free. Hence 
HeuristicMiner approach stated in [36] anticipates three threshold settings to handle this issue: (i) the 
dependency score, (ii) the positive observation score and (iii) the relative to best threshold.  
Approaches that lack of the capability of detecting the nature of AND/OR/XOR gateways suppose that 
the corresponding threshold setting is unnecessary for dependency relations according to “all activities 
connected” heuristic. As the major novelty of [36], Weijters et al. proposed a solid measurement to 
express the type of splits and joins instead of the intuitive heuristic approaches like in [35].  

In the following study [2], Weijters and Aalst introduced two additional parameters: noise factor N and a 

threshold value δ. The value of δ is derived from N, the number of lines in the event logs (#L) and the 
number of activity types in the related business process. Then frequencies given in 
dependency/frequency table are compared with δ to determine whether underlying relation is adequate 
to be indicated in the process model. Weijters and Aalst enhanced a novel approach to the present 
approach in [7], which resides in the fact that they use a global learning approach, named logistic 
regression model and find a threshold value that can be used to detect direct successions in [3]. As the 
basic material, dependency/frequency table is used as in [7]. Addition to existing parameters in 
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dependency/frequency table, the frequency of task B directly succeeded by another task A, but before 
the next appearance of B (i.e. notation of B>>>A) and the frequency of task A directly succeeded by 
another task B, but before the next appearance of A (notation of A>>>B) parameters are taken into 
consideration.  

Additionally local and global metrics introduced in [7], which indicate the local and global strength of the 
relation are revised in [3] and a new metric, namely causality, is introduced, n is the number of 
activities between A and B, then causality metric is incremented with a factor δn, where δ is a causality 
factor, i.e. δЄ[0,1]. Respectively, causality is an adaptation of global metric introduced in [7] in terms of 
long term successions.   

Model emphasized in [3] is to harmonize these three metrics described above and to find a threshold 
probability P to determine whether two activities A and B can are in type of direct succession or 
succession relation. Global learning method proposed in [3] uses information embedded in event logs 
to interpret the direct successor relations between events. This method is able to find almost all direct 
connections in the presence of parallelism, noise and an incomplete event log. In [24] Maruster, 
Weijters and Bosch implemented another adaptation of this method on simulated hospital event logs, 
containing information about which medical actions took place over time. Technique in [24] cannot 
cover all kind of Workflow nets, as shown in one experiment involving none-free-choice showed.   

 In [6], the goal of proposed method, named alpha algorithm, is twofold: first of all, a mining algorithm is 
sought to rediscover sound Workflow nets, i.e. based on a complete event log the corresponding 
workflow process model can be derived without any extra behaviors. Second, given such an algorithm, 
it is aimed to detect the type of the rediscovered workflow nets. Clearly, this class set should be as 
large as possible. Note that in the prior studies [2, 3, 5, 7, 37] there is not any mining algorithm which is 
able to rediscover all sound Workflow nets. As a way of representation, Maruster, Weijters and Aalst 
attempted to construct concrete Petri net for a broad range of process models rather than a set of 
dependency relation between events like in [7]. 

Actually the preliminary results presented in [2, 3, 7, 37] only provide heuristics and basically handle on 
issues such as noise, basic parallelism, basic closed loops. The approach described in [6] differs from 
prior approaches in the sense that; it is proven that for certain subclasses (e.g. non-free choice, basic 
and arbitrary loops, hidden tasks, noise, basic and complex parallelism) it is possible to find the right 
process model by alpha algorithm. Also this algorithm can mine timed event logs and interpret several 
kinds of temporal information (e.g. waiting/synchronization times, flow times, utilization) to performance 
metrics. On the other hand, the major limitation of alpha algorithm is that certain kind of similar tasks 
having the same title cannot be detected. In other words, task labels are not unified. 

In [10], distinct tools, which are driven by different problem areas in process mining, are described as 
follows: 

 EMiT (Enhanced Mining Tool) is a graphic-based process model tool that includes various 
type of performance metrics. Due to its graphical-based structure, it is able to handle 
rediscovery problem effectively.  

 Little Thumb, which is firstly introduced in [7], concentrates on incomplete event logs and 
noise. However at a noisy and incomplete situation, single erroneous events can completely 
deteriorate the derivation of a right conclusion. For this reason Little Thumb is a heuristic-type 
mining technique which is robust to noise and the incompleteness issues at the event log.   

 Although approaches previously presented assume that each task should be labeled with a 
unique task identifier within the process in the graphical models, it is not possible to assign 
multiple blocks addressed to the same task. InWoLvE (Inductive Workflow Learning via 
Examples) attempts to deal with duplicate tasks with lattice of task mappings in the event 
logs, which is inherited from machine learning and grammatical inference. Between the 
mappings, there is a partial ordering and the corresponding mapping lattice is featured by only 
the most or the least general specific likelihood element. 

 Process Miner, exploits the properties of block-structured workflows with a composition of 
nested blocks. These blocks are characterized by the operands and constants. While 
constants refer to the tasks or sub-processes embodied at the underlying process, operands 
determine the process flow or process behavioral characteristics.       

In [38], Aalst et al. aimed to validate the applicability of process mining in other practical areas. The 
industrial application in this study involves one of the twelve offices of the Dutch National Public Works 
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Department, which is primarily responsible for the construction and maintenance of the road and water 
infrastructure in its providence. The focus of this study is not limited to the control-flow perspective. In 
this case study, the organizational and case perspectives are also handled. As a supporting tool, ProM 
framework, which integrates EMiT, Little Thumb and MiSoN tools, is introduced in this application. 

As a hybrid methodology in process mining, Gomez et al. introduced Application Usage Mining concept 
in [26]. Application usage mining is explained as the analysis of the user’s behavior in the business 
application systems (e.g. ERP) by applying the basic approaches, notions and methods dedicated to 
web usage mining. The major distinction between web usage mining and process mining is such that, 
while visitors have the freedom to navigate through the web pages, the employee should optimally 
perform the assigned tasks along with the usage of the business application systems.  

Alternatively, Weijters and Aalst introduced a new progress of process discovery issue at a more 
robust and confident level in [3] using a data-driven approach called logistic regression model, which is 
capable of tagging the causality relations at the event logs. The corresponding logistic regression 
approach requires an input threshold value that is used to determine whether there is a direct 
regression among the tasks. The usage of global threshold emerges some shortcomings about the 
robustness problem. In this aspect, [24] aims to use machine learning techniques to perform 
classification rules for (i) casual relations and (ii) parallel/exclusive relations assuming the existence of 
noisy information in event log and imbalance in execution priorities. The instantiation of a so-called 
dependency/frequency table from the event log information is the starting point of the method likewise 
in [7]. Afterwards three relational metrics, i.e. causality metric (CM), local metric (LM) and global metric 
(GM), are calculated for each activity pair occurred in process instances. Relational metrics and 
dependency/frequency table materials based on prior studies in [7] and [38]. 

Actually the causality, local and global metrics have been developed specifically to be used as 
predictor attributes for determining decision rule sets. They are less practical predicates for deciding 
the type of process behavior types. Last operation in [24] is to detect the existing log-based relations 
between tasks by applying the predictive features of the introduced metrics to the learning schema 
generated in dependency/frequency table. In this operation Ripper is chosen as the appropriate 
learning algorithm, which induces minimal description-length rule sets.  

Because of supervised nature of classification, a training dataset has to be provided, each of which has 
been labeled with a target class. Each instance in training dataset is labeled according to the log-based 
relations that can exist between two tasks: (c) for causal, (e) for exclusive, (p) for parallel and (i) for an 
inverse casual relation. As a result, the contribution of [24] is to complement the work reported in [6] 
such that, it resolves shortcomings of the alpha algorithm, in dealing with issues about causality and 
parallel/exclusive relations exhibition in noise and incomplete process logs.  

Respectively, correlation and classification based techniques disregard the non-structural event log 
data that is still kept by various information systems. The corresponding data composes of information 
about activity executors, timestamps, parameter values, as well as different performance measures. 

In [39] Chiaravalloti et al. presented an enhanced process mining approach, where different process 
alternatives are discovered by segregating the process streams according to structural attributes and 
performance metrics. These behavioral and performance measures are presented by proper auxiliary 
domains. The basic issue about this multi-auxiliary domain is the quantifying the relevance of these 
domains. 

In parallel to [39], [40] concentrated on the adaptation of data mining techniques for process mining 
through hierarchical clustering of the event logs, in which each trace is featured as an observation of a 
properly identified space of features. As a major distinction in this study, previous approach in [39] is 
extended by proposing a process discovery algorithm that both discovers the behavioral structural of a 
given business process and enrich the discovered schema with some interesting global constraints. 
These constraints are relatively rich in notation and highly correlated to the corresponding business 
context in process structure. Thus these global constraints are often expressed using other complex 
formalisms, mainly associated with clear semantics. 

Lastly, [41] aimed to precisely investigate the unconnected process patterns, which are sets of the 
behaviors that frequently occur together in some event log data. The corresponding approach uses a 
set of frequent patterns as input and discovers the interconnections at the subset of these frequent 
pattern set. Proposed technique in [41] can be used for unifying sets of arbitrary sub-processes that 
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are very often executed together and may be abstractly focused as a sub-process in the workflow 
schema. Hence these unconnected patterns can be used to denote interesting and useful correlations 
among sub-processes which are seemingly not related with each other. 

In [42], a new approach for process discovery was introduced by adapting from-to chart for analyzing 
the event logs. This approach is composed of two components: from-to chart and process flow branch 
discovery. From-to chart is an analytical tool, which is basically used in monitoring material handling 
routes between operations, machines, departments or work centers on the production floor. The 
underlying approach inherits this tool from facility layout domain and adapts it in process discovery field 
as the basic bookkeeping material in monitoring transitions among activities occurred in process 
instances and figuring out if there exists any specific order of the occurrences for representing in 
process model. In [43], underlying process discovery approach was further improved by Genetic 
Algorithms for rearranging the from-to chart in order to search the sub-optimal arrangement at process 
modeling. In the previous work, this rearrangement operation is performed by a permutative fashion, 
which leads to an exponential increase in total processing time at handling relatively complex business 
processes. In [44], Esgin and Karagoz extended the work in [43] by extraction of AND/OR/XOR 
gateways. Through this extension, the type of connections are discovered for each parallel 
predecessor or successor of underlying activities by interpreting the structure of dependency/frequency 
graph and the final scores at from-to chart. Hence dependency/frequency graph is converted into a 
block-oriented model named control flow graph.   
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3.2. Process Similarity Measurement 

As the starting point, we focus on the surveys at process model similarity domain [19, 32]. In [19], 
Becker and Laue presented a comparative study about business process similarity and concentrate on 
four major trends in this domain: (i) approaches based on correspondence between process model 
elements (i.e. nodes and edges) (ii) the applicability of graph algorithms on similarity calculation (iii) 
causal dependencies between activities in process models and (iv) approaches based on the sets of 
traces. The survey given in [19] served as a complementary paper and commentary to [30], which is 
one of the first major conference papers on this topic. Dijkman et al. [19] highlighted the challenge of 
process model similarity even if process models depict exactly the same behavior at the same process 
detail level with the same objective, this similarity measure might be a combination of behavioral 
representation, task labeling styles and modeling notations.  

In [30], Dongen et al. defined the concept of causal footprint, which is a set of essential behavioral 
restrictions determined by the process structure. The causal footprint combines two distinct relations 
among the nodes: look-back links (i.e. the execution of the source of underlying link leads to the 
execution of at least one of the targets) and look-ahead links (i.e. the execution of the target of 
underlying link is preceded by the execution of at least one of the sources). For calculating similarity, 
corresponding vector model, which is a major technique in information retrieval (IR), is adapted. In this 
adaptation, the set of terms is built upon the union over nodes, look-back and look-ahead links and the 
weights are determined due to the size of the terms. The similarity between footprint vectors is 
measured by the cosine similarity.  

In [31], Mendling et al. extended this abstract process representation of the process behavior with 
causality graphs and causal closure concepts. Rather than verifying the entire process model, causality 
graph captures the approximate intended behavior of the process at a high level. Causal closure holds 
the smallest possible span of this causality graph. Mendling et al. emphasized the advantage of causal 
footprints such as; these process abstractions hold the information about the sequence of activities 
according to their direct succession. Additionally they are robust with respect to the problems such as 
termination or finite size issues of state space which determines atomic behavioral similarity 
measurements. In [45], Dijkman et al. made extensions to causality footprint technique by introducing 
two additional similarity metrics: label and structural similarity. While label similarity is obtained by 
calculating the optimal equivalence mapping between the nodes of the process models being 
compared, structural similarity is based on graph edit distance. This technique searches the minimum 

number of edit operation (i.e. node deletion or insertion, node substitution and edge deletion or 
insertion) that convert the given process structure to the target one.  In [17], Dumas et al. reviewed the 
NP-hard computing of graph edit distance in structural similarity by A* algorithm, heuristics search and 
similarity flooding. A* algorithm progressively builds up the partial mapping of larger size graph, until 

the instance of a larger mapping happens infeasible with a lower edit distance. In this basic form, this 
algorithm constructs one-to-one node mappings by considering elementary edit operations. 
Respectively, heuristic search is a greedy technique that iteratively maintains a mapping list holding the 
most similar nodes without any existence at current mapping state. Alternatively, similarity flooding 
holds the pair of nodes and edges with their adjacent neighboring elements. 

In [20], Medeiros et al. presented major disadvantages of prior techniques in process similarity 
measurement, i.e. trace equivalence and bisimulation. In trace equivalence, two process models are 
considered equivalent in the case of identical execution logs. This notion is seemingly erroneous in two 
aspects: (i) the set of traces may be infinite (ii) trace equivalence cannot catch the moment of choice. 
Bisimulation can be performed in polynomial time. In addition to these shortcomings, these equivalence 
notions result in binary answer instead of the degree of similarity.  Hence they introduce the concept of 
observed behavior, which enables to compare infinite number of execution sequences and consider 
the relevance among these traces. This concept is in parallel with the behavioral pseudometric to 
evaluate the transition systems as shown in [46].  Since observed behavior checks the enabled 
transitions (i.e. the moment of choice) in process models, this idea results in the behavioral precision 
and recall metrics.   

Aalst proposed an abstraction for the matching between observed and modeled behavior named 
frequency profile in [47]. Indeed process execution may deviate from the prescriptive or descriptive 
process model given at business blueprint. Additionally at various contemporary information systems, 
there is a lack of process monitoring functionality to integrate the transaction logs with corresponding 
use-case. Aalst formulated an integer programming (IP) to check whether the modeled behavior and 
the observed behavior match. IP is built upon Petri-net firing rule and frequency profiles as the 
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constraints. Likewise in [47], Kunze et al. proposed a behavioral profile, which is a Jaccard coefficient 
related metric to measure process similarity in [48]. This metric evaluates the behavioral relations 
between pairs of process activities in the context of strict order, exclusiveness and interleaving order 
relation. 

Current tendencies in BPM field covers the similarity measurements based on the semantic and 
syntactic correlations between the task labels and behavioral features obtained from the control flow 
aspect of the corresponding business process. This means an adaptation of the algorithms from the 
fields of information retrieval and graph theory. On the other hand, approaches based on execution 
traces or event logs (e.g. the approaches emphasized in [20, 47]) may not adequately take the 
behavior of a process model into account, since process executions cannot be logged through a case 
perspective as stated in [47]. This rationale is called unlabeled event logs. In [18], Wang et al. defined 
incidence matrix and coverability tree concepts built upon Petri-nets and introduce the concept of 
principal transition sequences (PTS) to construct a good conceptualization for the essence of the 
behavior of a process model. While coverability tree is one of the fundamental methods for behavioral 
analysis of Petri nets to overcome infinite state space and reachability tree dilemma, principal transition 
sequences act as a characterization of transition sequences that lead from the initial marking to the 
final state. The similarity of principal transition sequences is based on longest common sub-sequence 
concept.  

In parallel to [18], Zha et al. emphasized the concept of transition adjacency relations (TAR), which are 
the genes of firing sequences in Petri-nets [49]. Although firing sequences are a good process 
approximation for the behavior of process behavior, they can be impractical to explore the high 
complex state space of concurrent process models. Therefore prior approaches such as causal 
footprints [30, 31, 45] or observed behavior [20, 47] are based on substitute representations. However 
the results of these similarity notions are incomparable, because there is lack of consensus on the 
process similarity concept. In this aspect, TAR is not like a look-ahead and look-back relation given in 
[30], which can be derived from the process structure. The generation of TAR set requires exploring 
the state space of a process. TAR can be instantiated by reachable marking graph of a given 
Workflow-net. At this graph, each node represents reachable marking states and each edge implies a 
process flow. On the other hand, instantiating this reachable graph is computationally expensive, since 
the complexity of this graph is exponentially correlated with the number of nodes. 

Measuring compliance with reference process models is also a significant issue in process similarity 
measurement. Gerke et al. highlighted the limitation of existing approaches for measuring compliance 
as the assumption that the compliance is solely based upon the notion of process equivalence in [50]. 
This is due to (i) difference at the process granularity, (ii) partial or limited view of process mining and 
(iii) overemphasis of the order of activities. In this aspect, Gerke et al. defined process compliance in 
the context of compliance degree and compliance maturity. According to Rosemann [51], finding the 
exact level of detail in process modeling is one of the potential pitfalls in BPM community. 
Vanderfeesten et al. [52] elaborated on quality metrics for business process modeling and emphasize 
the adaptation of software engineering related metrics (i.e. coupling, cohesion, complexity, modularity 
and size) to process similarity measurement. We propose a set of structural influence factors, which 
are based on the metrics given in [50, 51, 52], to analyze the understandability of the process models.  

In [29], Rozinat and Aalst tackled the conformance checking problem between descriptive (or 
prescriptive) process models and process execution in two dimensions: fitness and appropriateness. 
While fitness measures the association between the event logs and process execution variants, 
appropriateness is the degree of simplicity in which the process model describes the observed 
behavior. Rozinat and Aalst revisited the quality of process discovery in [53].  They propose new 
quality perspectives (e.g. accuracy, process minimalism and completeness) and noise generation 
based on Hidden Markov Models (HMM). 

Although the goal of process mining is to discover process model, these models tend to be very 
confusing and difficult to understand for relatively flexible environments. These generated models are 
usually called spaghetti models. In this aspect, trace alignment aims to align traces (i.e. finite sequence 
of activities) in such a way that the event logs can be analyzed easily. This operation can be designed 
as a preprocessing phase where the event logs are interpreted, filtered or divided into distinct clusters. 
Hence it complements current process mining approaches that focus on process discovery and 
conformance checking functionalities. 



20 
 

In [23], Bose and Aalst presented initial success stories demonstrating that emerging process mining 
discipline can benefit from techniques developed for Bioinformatics. They adopted the sequence 
patterns (e.g. sequence motif such as tandem repeats and maximal repeats) in bioinformatics and 
proposed a means to form abstractions over these patterns. Using these abstractions as a basis, a 
two-phase approach to process discovery is introduced. The first phase preprocesses the event logs 
according to the process abstractions obtained for a predefined detailed level and the second phase 
aims to discover the process model with an adaptive zooming functionality. As a result, trace alignment 
can assists in answering a variety of process diagnostics questions. 

Bose and Aalst handled the process diagnostics, which is one of the challenging topics in process 
mining in [21]. Process diagnostics covers a wide range of applications such as process performance 
analysis, anomaly detection, diagnostics and inspection of interesting end-user behavior patterns. 
When dealing with concept drift in real-life processes, diagnostics of processes at model level may turn 
out to be infeasible and time-consuming. Trace alignment approach that is introduced in [23] is 
discussed towards pairwise and multi-trace alignment aspects. While biological sequences tend to be 
homogeneous, heterogeneity of event logs and variation in the length of these event logs for semi-
structured environments (e.g. health care industry) may result in impractical dynamic programming 
implementation for multi-trace alignment. Therefore Bose and Aalst adopted sum-of-pairs (SP), which 
is one of the most popular scoring mechanisms for multi-sequence alignment of genomic sequences.           

As stated before, traditional process mining algorithms have various shortcomings in coping with 
complex spaghetti-like process structures, which are hard to interpret and visualize. In [21], a context-
aware approach is proposed to overcome this problem. The approach, namely generic edit distance 
framework, aims to segregate process traces in such a way that; each trace cluster builds up a lean 
lasagna-like process model. Additionally several approaches for trace clustering, i.e. bag-of-activities, 
k-gram model and hamming distance, their issues and challenges are investigated in [21]. While prior 
approaches do not consider the functional validity of any edit operations, generic edit distance 
framework proposes a robust cost function that avoids edit operations that are infeasible in the 
business context. Bose and Aalst proposed two quality metrics to evaluate the goodness of trace 
clustering: (i) generated process models should have a high degree of fitness (ii) the process models 
should be less complex. 

In [54], Stolfa et al. implemented sequence alignment methods to a real-life use-case, namely SAP 
invoice process. They aimed to adjust sequence alignment to be able to determine similarity between 
distinct business processes. In this aspect, they compared the longest common substring (LCS), the 
longest common subsequence (LCSS) and the time-wrapped longest common subsequence (TWLCS). 
While LCSS is more tolerant to slight distortion in the sequence ordering than LCS, TWLCS is more 
robust to minor distortions and to time non-linearity. Additionally they performed a quite distinct data 
preparation procedure where the events are categorized according to their duration and activity types 
(e.g. verification, creation, approval and posting). 

Likewise in [54], Goa et al. emphasized the NP-hard computational complexity of LCS in measuring the 
similarity of traces in [55]. Hence they extend the Hungarian method to select the best matching that 
maximizes the sum of semantic similarity degrees between activity pairs. Then approximate longest 
common sub-trace is defined to measure the commonality of traces. Juan applied string coding and 
comparison to analyze the process logic difference between business processes in [56]. Process paths 
embedded into process models are identified and encoded into process path strings. Process path 
strings, which are filtered by semantic similarity degree (SSD) threshold, are analyzed in three 
concerns: unique activities, processing mode and processing sequence.       

In [34], Song et al. demonstrated that proposed trace clustering approach, based on event log profiles, 
i.e. activity and originator profiles, can improve process mining results in real flexible environments. 
The proposed divide-and-conquer approach is based on a set of profiles, each quantifying a number of 
features from a specific perspective. Based on derived feature matrices, several distance metrics (e.g. 
Euclidean, Hamming and Jaccard distance) are applied to compute relative distance among use-cases 
in the event log. Quality threshold clustering, which determines the maximum cluster diameter with 
respect to quality threshold, and agglomerative hierarchical clustering (AHC), which is usually 
illustrated by dendrogram, is implemented at trace clustering step.  This profiling paradigm is also 
handled in [57]. Rao et al. introduced a profile for a multi-sequence alignment as a sequence of 
compositions and each composition holds the frequencies of each character (activities) at alignment. 
Indeed, the relative distance of distance functions with respect to alignments reflects a distinct aspect 
in evaluating distance function to cluster tandem repeats.     
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In addition to generic edit distance metric introduced in [21], Bose and Aalst described the concept of 
conserved patterns, which are sub-sequence of high similarity shared within process instance in [58]. 
These regions are formalized by various features, i.e. maximal pair, maximal repeat, super maximal 
repeat and near super maximal repeat. The authors also suggested several statistical metrics in 
evaluating the significance of clusters such as average cluster density and silhouette width. Primitive 
tandem arrays and conserved pattern features introduced in [58] are converted into equivalence 
classes in [33]. Then abstractions of conserved patterns are depicted as Hasse diagram. Due to 
dealing with complex constructs, the exact conserved pattern definitions are relaxed through 
approximate definitions and efficient suffix-tree constructions are adopted to handle very long event 
sequences. 

As stated in [21, 58], multiple sequence alignment of genomic sequences, namely sum-of-pairs 
methods, is applicable to improve the NP-complete problem. But current trace clustering methods 
suffer from the divergence between clustering and evaluation biases. In [59], De Weerdt et al. 
addressed this gap by an active learning approach that concurrently mines and evaluates process 
models during clustering step. Hence this concurrent and proactive trace clustering is accomplished by 
a forward-looking procedure that only adds process instances with better fitness score to current 
cluster. Instances that are not assigned to current cluster are handled at the following selection and 
look-ahead iteration.  Alternatively, sequence mining method introduced in [60] proposes to cluster 
traces by a learning model that combines first-order Markov models with expectation-maximization 
(EM) algorithm. Hence the assignment of sequence to clusters is determined according to the 
probability of each cluster to generate the given trace. Additionally in [60], Veiga and Ferreira revised 
the preprocessing steps by discarding the most recurring events and sequences. This is motivated by 
the fact that spaghetti models are chaotic due to the contribution of these frequent events.  

Respectively, both methods in [59, 60] are computationally expensive. Hence to handle the bias 
between clustering and evaluation, Evermann et al. focused on designation of a distance metric that 
allows the adaptation of generic multivariate clustering method in [61]. This proposed approach, i.e. 
AlignCluster, uses the Smith-Waterman-Gotoh algorithm for sequence alignment to compute process 
similarity, applies multi-dimensional normalization to construct a feature set for vector representation 
and applies K-means clustering in oppose to agglomerative clustering applied in [34, 57, 62]. 
Underlying trace clustering method removes duplicated traces and assigns equal weight to each 
unique trace at preprocessing step. The authors evaluated four quality dimensions of fitness, precision, 
generalization and simplicity. Simplicity dimension is enriched with three new metrics: the cyclomatic 
number, the coefficient of connectivity and the density.  

Actually dropping or pruning the events and sequences with low support emphasized in [60, 61] is in 
parallel to frequent and strong sequence concept in [63]. Lesh et al. adapted sequence mining as a 
preprocessor to determine feature set for standard classification algorithms such as Naïve Bayes and 
Winnow. In [40], Greco et al. introduced a process mining framework to identify different variants of the 
underlying process. It is an iterative, hierarchical refinement of process discovery, where traces with 
similar behavior are clustered together with a specialized schema called workflow schema (WS). The 
quality of mined model is evaluated according to two quality metrics: completeness and soundness. 

Definitely, a complete process model is such that all event logs are compliant with some instance of the 
model (similar to fitness), while a sound model implies that all possible enactments are registered by 
the event logs (similar to minimality or behavioral appropriateness given in [24]). 

In [64], Mendling and Strembeck discussed the process understandability as a particular quality aspect 
in twofold manner. First, three factors categories (i.e. personal, structural and textual) are identified in 
order to evaluate understandability issue. According to experimental findings, process observer’s 
background (theory attribute) and the underlying process model’s separability feature (separability 
attribute) are positively correlated with process understandability. On the other hand, activity label 
length (textlength attribute) has a negative significance. In this study, it is also aimed to analyze the 
correlation between the professional experience of process observers and the similarity measurement 
concern of proposed approach. The analysis, which interprets the correlation between the professional 
experience of process observers and the similarity measurement concern of Pairwise Alignment, is 
based on an analogy with theory attribute given in [64]. 

Esgin and Karagoz [65] proposed a distance metric, which is built on the vector model from information 
retrieval and an abstraction of process behavior as process triple. Process triple is a set that covers 

transaction existence and interactions (successor/predecessors of each transaction) among activities. 
This metric takes structural and behavioral perspectives into account.  Alternatively in [66], it is aimed 
to demonstrate that process similarity measurement can benefit from sequence mining techniques, 
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which are strengthened with standard Needleman-Wunsch algorithm to quantify the similarities and 
discrepancies. Unlike [65], the proposed approach evaluates just consensus activity sequences by 
avoiding the requirement for well-structured process models. A new alignment approach called 
Confidence Aware Needleman-Wunsch (CANW) is introduced in [67] by the determination of 
insertion/deletion (inDel) scores in business context-aware fashion according to the interactions among 
activities. In [68], match/mismatch scoring is revised in such a way that opportunity cost function is 
introduced for replacement of current prefixes that are quite different. Consequently, the adaptation of 
sequence alignment to process mining domain has highlighted a new perspective to similarity 
measurement; deviations and violations are uncovered by analyzing just event logs and thereby 
avoiding the requirement for well-defined reference process models. 

Sequence alignment adaptation in prior studies is realized by preprocessing event logs with 
abstractions at a desired level of granularity. Hence event logs are split into homogenous subsets and 
more structured process models are discovered for each subset. Alternatively in this study, proposed 
framework measures the degree of process similarity on log-log sequence alignment basis and 
segregates the process alternatives into more homogeneous process families. Relatively significant 
common patterns in these facets are visualized and interpreted by new feature sets.  
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3.3. Process Configuration 

Traditional process mining techniques focus on monolithic processes in a particular organization. 
However, with the emergence of new shared economical models and information systems 
architectures (e.g. shared business process management infrastructures (SBPMI) and cloud 
computing), the perspective of process mining research area is extended towards cross-organizational 
applications. Cross-organizational process mining is an emerging concept, due to the distribution or 
replication of similar processes over multiple organizations. In [15], van der Aalst explored the 
possibilities of intra- and inter-organizational process mining. For this purpose, two basic settings are 
handled: (i) collaboration and (ii) exploiting commonality. While collaboration aims to distribute the work 
associated to a case over different organizations throughout an interoperability manner, exploiting the 
commonality focuses on sharing best practices, knowledge or a common infrastructure. Additionally, 
these two settings are extended with horizontal and vertical partitioning concepts. Vertical partitioning 

is related to the case dimension to group the work, i.e. the cases are distributed over several 
organizations, horizontal partitioning is based on the process dimension, i.e. the process is divided into 
sub-processes and assigned to distinct organizations. Although these partitioning strategies are crucial 
for intra- and inter-organizational process mining, there emerge new challenges such as a myopic 
attitude at horizontal partition and the effect of infrequent (surprise-typed) events at analyzing the 
commonalities. 

In the study of Buijs et al. [11], process models and intended behaviors of the organizations are cross-
compared as a means to supplement the representation. While the capabilities of Shared Business 
Process Management Infrastructure (SBPMI) at cross-organizational process mining are emphasized, 
they introduce dotted chart as a mean of visualization of the process enactments of distinct 
organizations. In a dotted chart, each dot refers to a single event execution where the color indicates 
the activity type. Each row stands for a process instance; the horizontal axis represents the time. In 
[27], prior process variant management is extended with process alignment matrix that allows for log-
model comparison which is strengthened with the feedbacks from process observers. Hence log-log 
comparison paradigm and incorporating the actual behavior of process variants, i.e. runtime 
perspective, given in [11] are enriched towards this comparison aspect. Alternatively, Yilmaz and 
Karagoz proposed a four staged solution in cross-organizational process mining in [28]. This 
framework compares groups of process variants in order to provide critical feedbacks on the potentially 
significant parts of the process maps.  Random initialization based K-Means++ approach is used as the 
clustering algorithm to group the organizations. Then sum-of-squared errors are plotted as the 
recommendation to the process observers to determine the appropriate cluster size.  

In [16], Gottschalk et al. discussed the theoretical representation for configurable process models and 
the dependency among these models within the context of the inheritance of process behavior. Despite 
the fact that; SAP (or other ERP vendors) reference models offer little support for design by reuse, 
configurable process models can be built upon as the least common multiple of process variants. 
Additionally analogy with the inheritance of dynamic behavior at object-oriented programming paradigm 
enriches the process configuration concept. Hence each superclass of the sub-class (i.e. reference 
process model) can be evaluated as the configured process variant. In other words, process 
configuration is the inverse form of inheritance that transforms the subclass into super-class. 

 In [12], cross-organizational process mining for configurable services in shared architectures is 
elaborated. Van der Aalst highlights the challenges of contemporary BPM and ERP systems to deal 
with the variability across organizations. While current BPM tools aim to create generic process 
modeling services to process-aware information systems and are not capable to response 
unstandardized out-of-box requirements, complex installment baseline of ERP systems are too static to 
be adapted from data-centric solutions towards process-centric ones [13]. As in [28], clustering is 
evaluated as appropriate technique to group process variants in [12]. Similarly, the dilemma between 
process configuration and mining is formularized in [13]. In classical system implementation, 
organizations make adhoc customizations to compensate their requirements. But this is undesirable for 
supporting cross-organizational (multi-tenant) processes.  As the theoretical basis, causal nets are 
adapted as a new formalism to deal with the challenges in process configuration. In [14], van der Aalst 
et al. defined a configuration guideline (or a roadmap) to characterize all correct process configurations 
at design phase without any restrictions on the modeling class. Adriansyah et al. proposed a technique 
to allocate a penalty cost to particular deviations and find the alignment between observed behavior 
(i.e. event logs) and modeled behavior due to this costing in [69]. In this context, skipped and inserted 
activity concepts are manifested.  
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As a sub-issue in process configuration, Nguyen et al. presented a comparison of sequence mining 
techniques for deviance mining in [70]. This is a family of techniques to explain the reasons why 
underlying process deviates from proposed or expected execution patterns. The paper compares 
frequent pattern mining and discriminative mining. Frequent pattern mining manages the frequent 
structures (e.g. tandem repeat, maximal repeat etc.) as boolean features, the features in discriminative 
mining are traced within and across the traces. In oppose to model delta analysis perspective in [70], 
van Beest et al. handled deviance mining application via a log delta analysis perspective in [9]. 

Respectively, model delta analysis is based on manual comparison with discovered process models. 
Hence it is error-prone and inapplicable to complex processes. The method encodes event logs as 
event structures enhanced with frequency information.   
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CHAPTER 4 

 

 

BACKGROUND 

 

 

 

4.1. From-to Chart Adaptation 

 

4.1.1. From-to Chart as a Basic Analytical Tool 

As in Facility Layout Problem (FLP) domain, the basic from-to chart is a square matrix for summarizing 

material handling between related operations, machines, departments or work centers on the 
production floor with high volume production rate [71, 72]. The sequence of operations is written down 
the left-hand side of the form and across the top. While the horizontal sequence of activities is the from 
side of the matrix, the vertical sequence of activities is the to matrix [73]. This analytical technique is 
useful for designing relative locations of operations, demonstrating the material flow patterns, showing 
the degree of self-sufficiency of each operation, Interpreting possible production control problems, 
planning the inter-relationships between several products, representing the quantitative relationships 
between the operations, evaluating the alternative flow patterns and improving the distances traveled 
during a process [71]. 

The number of rows and columns in the matrix is equal to the number of operations under 
consideration. Additionally the operation titles are listed in identical order across the top of the columns 
and down the row on the left hand side of the matrix. Initial row or column sequence may represent 
geographical arrangement in the plant, logical arrangement of process flow or proposed sequence as 
represented in Figure 4.1. 

 
Figure 4.1. From-to Chart as a Basic Analytical Tool at Plant Layout [71]. 

Basic data for entry into from-to chart are prepared by tabulating the flow paths of each part, product or 
material in such a way that, for each move of related entity from operation i to operation j, current score 
at the (i,j)th element of matrix is incremented by one. Thus accumulated scores at each element 

represent the total number of moves from and to the underlying operation. Data entry into the matrix 
can be calculated in several ways, depending on objective or desired result of the analysis [71]. Scores 
may also represent the number of moves between operations, the quantity of material moved per time 
period, the weight of material moved per time period, the combination of quantity × weight per time 
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period. Constructed from-to chart has to be analyzed for better arrangements of operations to reduce 
handling, costs, distances and production control problems, etc. [71]. Major use cases occurred at 
from-to chart are as follows: 

i. All entries below the diagonal indicate backtracking, i.e., backwards from the order indicated 

by the numbers representing the operations. 
ii. All entries in the upper right or far right indicate skipping past several adjacent operations to 

get to their next operation. 
iii. Items moving from one operation to an adjacent operation result in the marks falling in the 

elements along and just above the diagonal. This represents straight-line (direct) flow.  

These use cases at the from-to chart given in Figure 4.1 are visualized according to the type of use-
cases as shown in Figure 4.2. 

 
Figure 4.2. Major Use Cases Occurred at From-to Chart. 

Intuitively it is seen that the best layout can be devised by rearranging the columns and rows to put the 
elements with relatively larger scores just above the diagonal and fewer ones below the line [71]. 
Indeed, this arrangement may be possible for one material, but it is not possible for all materials at 
production portfolio systematically. 

According to [72], the from-to chart is a descriptive material to reduce a large volume data into a 
workable formation and the construction of from-to chart does not result directly in the solution of a 
layout problem. On the other hand, a more quantitative approach to minimize material handling is 
obtained by taking moments of the accumulated score at each element around the diagonal and aiming 
for the lowest total moment (Z) at the current state of from-to chart [71]. The number of elements away 
from the diagonal is used as the distance from the diagonal, i.e. moment arm1. Objective function to 
minimize the total moment of from-to chart is formulated as given in Equation 4.1: 

pijfZMin

N

i

N

j

ij 
 1 1

 (4.1) 

While fij indicates total move (transition) from operation i to operation j, p is the backtracking penalty 

point assigned to each entry below the diagonal. Back-tracking penalty point is parameterized to 
enforce the model towards a straight-line arrangement [73]. 

 

4.1.2. Rule Induction at From-to Chart 

In the traditional use of from-to chart, total score of each element is directly taken into consideration in 
rearrangement of the matrix. However, this state is exaggerated by the amounts of data stream being 

                                                 
1 To make moment computation simple, suppose all operations (machines) are of the same size and the distance 
between the working points of each pair of adjacent operation (machine) is just one unit.     
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collected and stored at the matrix. Therefore a requirement of rule induction procedure is emerged [74]. 
This evaluation step aims to prune down the weak scores before rearrangement and eliminate their 
effect on the dominant behavior as stated in [42].  

Basically, there are three evaluation metrics introduced in [42]: confidence for from-to chart (confFTC), 
support for from-to chart (suppFTC) and modified lift (ML). These metrics act as the major threshold to 
control the level of robustness and complexity of the discovered process model constructed from large 
amounts of data. 

Definition (confidence for from-to chart, confFTC). It is the ratio of transitions that are from 
predecessor A to successor B (|A > B|), to the total number of transitions which are initiated by activity 
A (i.e. |A >*|, row total of activity A at from-to chart), as given in Equation 4.2. This metric is the basis 
for inDel (insertion/deletion) scoring at sequence alignment phase. 
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confFTC metric is similar to the local metric (LM) introduced in [3]. LM implies the probability of 
succession relation by comparing the value of |A > B| versus |B > A| as given in Equation 4.3. 
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In general, it can be said that, LM can have a value (i) close to 1.0 when there is a strong succession 
relation between A and B, (ii) in the neighborhood of 0.5 when there exists an equal probability for both 
a succession between A and B and between B and A and (iii) zero when there exists no succession 
relation between A and B as stated in [3]. 

Definition (support for from-to chart, suppFTC). Support for from-to chart is the ratio of transitions 

that are from predecessor A to successor B, to the total number of process instances at the training 
dataset (i.e. #L), as given in Equation 4.4. 
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Due to the effect of #L parameter, suppFTC metric evaluates the overall frequency of activities A and 
B. Similarly, the global metric (GM) given in [3] aims to measure similar global effect through Equation 
4.5: 
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Definition (modified lift, ML). Thresholds defined over support and confidence metrics are to be 

parameterized by process engineers. Thus relatively lower confFTC and suppFTC threshold values 
may result in overfitting. To tackle this problem, a correlation measure called modified lift, which is 
calculated as given in Equation 4.6, can be used to augment the support-confidence framework. 
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In this formula, |A > B| is the total number of transitions from activity A to activity B, |A >*| is the total 
number of transitions initiated by activity A (i.e. row total of activity A at from-to chart), |* >B| is total 
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number of transitions attained to activity B (i.e. column total of activity B at from-to chart), and #G is 
grand total of scores at the from-to chart. According to modified lift value, scores in from-to chart are 
interpreted and processed as follows: 

i. If the modified lift value is greater than 1, this implies that activities A and B are positively 
correlated, meaning that the occurrence of activity A potentially triggers the occurrence of 
activity B. Thus the score at element (A,B) in from-to chart does not change. 

ii. If the modified lift value is equal to 1, this implies that activities A and B are independent and 
there is no correlation between these two activities. Thus the score at element (A,B) in from-to 
chart is reset to zero. 

iii. If the modified lift value is less than 1, this implies that activities A and B are negatively 
correlated, meaning that the occurrence of activity A discourages the occurrence of activity B. 
Thus the score at element (A,B) in from-to chart is multiplied by -1. This negative factor is 
defined as Big M method in linear programming [75]. 
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4.2. Genetic Algorithms Adaptation at Dominant Behavior Extraction 

Genetic Algorithms (GA), which is a type of evolutionary algorithms, became popular by the research of 

John Holland in the early 1970s. It is a search algorithm that aims to find the best or approximate 
solutions for optimization or search problems. In this algorithm, a solution set is called a chromosome, 
and a value in a solution set is called a gene. In order to use genetic algorithm over a problem, the 
problem has to satisfy the following characteristics [76]: 

 The final solution obtained using GA should not be expected to be the global optimal. 
 The solution (i.e. chromosome) should consist of a series of values (gene), and every solution 

should be of the same length.  
 The intermediate solutions should easily be evaluated according to the problem. 
 The set of all possible solutions must be known clearly by the system, and a subset of 

solutions should easily be generated even if they are far from being the best solutions to the 
problem. 

The power of GA depends on the origins of evolution theory [77]. By simulating the genetic process in 
real life, GA are able to evolve the solutions to dominant behavior extraction by selecting the strongest 
individuals and mating them, if they are appropriately encoded. Indeed, a problem might have several 
peak points (local optimal) in search space. Unlike to other myopic local search algorithms (e.g. hill-
climbing search), GA can abandon inefficient local optimal by the undirected jumps triggered by 
crossover and mutation stages [77]. 

In this study, GA engine component that is adapted to dominant behavior extraction phase aims to find 
the dominant behavior within the process with the minimum total moment value (Z objective function 
given in Equation 4.1) in from-to chart. Unlike the prior permutative (brute-force) approach introduced in 
[42], which attempts to traverse all search space and is burdened with quadratic assignment problem 
(QAP), GA based dominant behavior extraction iteratively searches the global or sub-global optimum 
without exhausting the solution space in a parallel process starting from a set of feasible solutions 
(population) and it generates the candidate solutions in random fashion [78]. Although permutative 
approach is highly-dependent to the process complexity (i.e. the number of activities), GA relaxes this 
dependency, lowers the computational complexity and diminishes the total processing time intervals to 
practical and feasible levels. The basic GA stages are as follows: 

i. Initialization. In this stage, an initial population is generated. This generation can be done in 
two different ways: random selection of the initial population and selection of potential 
individuals that satisfy the schema. According to Holland’s schemata theorem [79], it is a 
pattern of gene values that may be represented by a substring of characteristics. It is 
assumed that an individual’s high fitness (or high probability for mating) is due to the fact that 
it inherits good schemata. 

ii. Fitness Score Calculation. Fitness score, i.e. f(z), returns a single numerical fitness or figure 
of merit, which is in proportion to the utility or ability of the underlying chromosome to solve 
the problem [79]. 

iii. Selection. Selection stage is where the evolutionary theory steps in. In this stage, the 
successive population is generated by selecting individuals from the current population using 
a philosophy that is based on including the better individuals (survival of the fittest).  

iv. Crossover. The major point in GA design is the balance between two opposite forces: while 

selection aims to shrink the diversity of population by unifying the content of the 
corresponding population, crossover and mutation attempt to increase the diversity of 
population by indirect jumps at the search space [78]. Additionally, the initial population is 
quite diverse early in the process, so crossover frequently takes larger steps in exploring the 
search space early in the search process and smaller steps later on when most individuals 
are quite similar [77].    

v. Mutation. Mutation randomly alters each gene value at the offspring chromosome with relative 
small probability (typically with P(M)=0.02). In higher order domain alphabets, e.g. facility 
layout problem and 8-queen problem [77], in which binary coding is not appropriate, mutation 
takes the form of altering the current gene value with a random value that is chosen from the 
gene range with the mutation probability [80]. 
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CHAPTER 5 

 

 

PROPOSED APPROACH 

 

 

 

Within the scope of this study, we aim to present a cross-organizational process mining framework that 
can identify commonalities among the organizations performing essentially the same process and to 
highlight the evolution of corresponding process alternatives (variants) according to duplication or 
divergence from these common regions. Underlying framework consists of three phases: dominant 
behavior extraction, sequence alignment and process configuration. Dominant behavior extraction 
phase initially derives the representative exemplary sequence that reflects the dominant behavior of 
the process, i.e. a typical or common intended behavior that can constitute the backbone of the 
process.  

As the second phase, alignments among discovered dominant behaviors are performed by two 
different techniques: Multi-Sequence Alignment (MSA) and Pairwise Alignment (PA) both of which are 

Needleman-Wunsch algorithm adaptations with dynamic cost functioning. Dynamic cost derivation for 
edit operations within alignment is based on confidence values, which is the frequency of consecutive 
pair of activities sharing an incorporated business context in the event logs. While in Multi-Sequence 
Alignment technique, the intermediate pairwise alignments are combined together following a 
dendrogram-like structure namely process family tree, various clustering algorithms (e.g. K-Means, 
expectation maximization (EM) and agglomerative hierarchical clustering (AHC)) are applied at 
Pairwise Alignment technique to determine the underlying process families, which are the clusters of 
process alternatives sharing similar functionality and business context. 

As the final phase in process configuration, multi-sequence or pairwise alignments among process 
variants are visualized at the alignment matrices. The functional inheritance among the process 
variants is interpreted by the feature sets namely identical and maximal identical pairs (IP and maxIP). 
The overview of proposed approach is given in Figure 5.1. 
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Figure 5.1. The Overview for Proposed Three-Phased Cross-Organizational Process Mining Framework. This framework consists of three phases: dominant 
behavior extraction, sequence alignment and process configuration. 
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5.1. Dominant Behavior Extraction 

This phase aims to perform transformation from the event logs to the dominant behavior. The event 
logs are often referred to as history or audit trail, which typically contain the behavioral information 
about events assigned to an activity and process instance [10]. Dominant behavior is the most 
common and typical behavior that is embedded in multi-set of event logs. Data transformation in 
dominant behavior extraction phase is depicted in Figure 5.2. 

 

Figure 5.2. Data Transformation from Event Logs to Dominant Behavior. The multi-set of event logs is 
converted into single line dominant behavior with respect to many-to-one (N:1) cardinality. The 
operational-level interactions among activities and activity enabling are summarized at from-to chart 
and these values are converted to confidence tables. 

 

5.1.1. The Concept of Dominant Behavior 

When process observers attempt to compare business processes, they mostly take the graphical 
structures of the corresponding processes into account. They check whether the tasks occur in both 
process models and have similar successive connections or not [17, 20]. While informal process 
models, which are not designed in term of Business Process Modeling Notations (BPMN), are too 
imprecise and unclear, formal modeling languages are hard to understand by the process observers 
[50]. Additionally, process mining algorithms tend to discover complex spaghetti-like process models 
that are hard to comprehend while handling unstructured environments with concept drift [21]. 

Since there happens significant discrepancies between reference process structures and process 
behavioral patterns, it sounds sensible to measure the process equivalence according to actual 
process executions, which are defined by firing sequences (activity enabling sequences) emphasized 

at event logs [17, 20, 50]. The classical approach is to derive a state space or to enumerate all possible 
process streams and then compare the candidate models based on these abstractions. Trace 
equivalence and bisimulation are typical equivalence notions used for comparing formal models on 
such basis [20, 31]. Unfortunately, these techniques are only valid for the process models with formal 
description within an appropriate semantic and finite behavior which can be solidified by the number of 
traces or states [20, 31]. Moreover such notions provide an atomic true-false answer. In reality there 
will seldom be a perfect fit. Partial similarities in full firing sequences (i.e. partly-fitting sequences) 
should also be scored [81]. Indeed, it is focused on the degree of similarity, i.e. a continuous value 
between 0 (quite distinct) and 1 (totally similar). Respectively, prior measurement metrics tend to 
interpret all sub-processes and events as if they are equally important and probable. But there should 
be a balance between rarely active and significant fragments of the process model [82], likewise the 
process vein and process arteries analogy in [20]. Equivalence notions stated above are summarized 
in Table 5.1. 
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Table 5.1. Advantages and Disadvantages of Model-Model and Log-Model Equivalence Notions [20, 
31]. 

 

Instead of prior process model-based approaches in measuring similarities between business 
processes, in this study we propose a quantitative approach that is based on common subsequence of 
behaviors captured in the event logs. Such repetitive behaviors are expected to occur within a process 
instance or across process instances and reflects some domain significance in terms of major use 
cases given in Section 4.1.1. Hence business observers can learn whether there are interesting 
execution patterns in the event logs. This new perspective to process mining uncovers the deviations 
and similarities by analyzing these common behaviors, thereby avoiding the requirement for well-
structured process models. This most common (likely) and typical behavior obtained on the basis of 
event logs is figured out by a representative sequence called dominant behavior. 

Definition (dominant behavior). Dominant behavior is the sequence of activities with the length of m, 
<a1, a2…am>, that satisfies the objective function given in Equation 4.1. There exists an indexing 
function ind: ai → {A, B…N} that maps ith activity at dominant behavior to a unique activity label in 
activity type vocabulary (domain) with the size of n. 
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While the underlying linear program (LP) tends to assign the activity couples with relatively strong 
interactions, i.e. fai,aj total number of transitions from predecessor ai to successor aj, to neighboring 
positions in the dominant behavior. Potential backtrackings such that j>i, are given a high penalty point 
p, which is parameterized at dominant behavior extraction. As a result, the compactness (i.e. the 
tendency towards more straight-line or direct type use cases emphasized in Section 4.1.1) of the 
underlying activity sequence is improved. Indeed, the dominant behavior handles the enabled 
transitions emphasized within event logs and considers these process behaviors, i.e. it is not just 
validated whether a task in a process trace is probable, but its successive relations within the 
corresponding process trace are also taken into account. 

Hence the following enhancements are addressed by the concept of dominant behavior: 

 Prior equivalence notions are only applicable for the process models that are designed by 
formal modeling notations and represent finite behavior [30]. Moreover, an atomic response 
rather than a degree of similar is required [31]. It is aimed to measure the similarity on a 
continuous basis. 



35 

 

 Partial fits is applicable and valuable. i.e. small local deviations between process models do 
not imply a complete missfit. 

 The moment of choice in terms of succession firing at branching of process models is 
considered, since the goal is the task enabling shown by fai,aj at dominant behavior 
formulation. 

Dominant behavior extraction phase consists of two steps: (i) Data transformation and filtering, (ii) 
Genetic Algorithms based dominant behavior extraction. 

 

5.1.2. Data Transformation and Filtering 

The starting point of dominant behavior extraction phase is the instantiation of the from-to chart by 
retrieving all enabled activity labels from the event logs. Basically, event log dataset consists of four 
major attributes: activityID, caseID, originator and timestamp. Figure 5.3 exemplifies a sample set of 
event logs involving 9 events. 

 
Figure 5.3. Event Logs in the form of <timestamp, originator, activityID, caseID> for Travel 
Management Process with caseID=172 and 173. 

For populating the from-to chart table, event logs are grouped by process instances and then ordered 
by timestamp in ascending order. Hence transaction streams that comply with the original execution 
are constructed. Then, predecessor (P) and successor (S) tasks are parsed for each transition in 
transaction streams and the current score of (P,S)th element at the from-to chart is incremented 
iteratively [66]. As a result, all transitions among activities in process instances are recorded at from-to 
chart. 

Then total scores at from-to chart are analyzed by the evaluation metrics given in Section 4.1.2: 
confidence for from-to chart (confFTC) and support for from-to chart (suppFTC). Such an evaluation 
step is required to prune weak scores prior to dominant behavior extraction and eliminate their effect 
on the fittest activity sequence as stated in [42]. Figure 5.4 summarizes the event log transformation 
and filtering steps. 

 

Figure 5.4. Event Logs Transformation and Filtering Steps. 
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5.1.3. Genetic Algorithms Based Dominant Behavior Extraction 

This operation is the engine component of dominant behavior extraction phase, which aims to 
construct the consensus activity sequence with the minimum total moment value (Z in Equation 4.1) at 
the from-to chart. As stated in Section 4.2, this optimal (or sub-optimal) activity sequence 
conceptualizes typical intended behavior that is found to recur within process instances with some 
domain significance. The pseudo code for GA-based dominant behavior extraction is given in Algorithm 
5.1: 

Algorithm 5.1: GA-based Dominant Behavior Extraction(from-to chart) 
1: REFRESH schema, initPopulation, currPopulation, newPopulation, domBeh 
2: if schemaApplied IS TRUE then 
3:    CONSTRUCT schema 
4:    GENERATE initPopulation WITH schema 
5: else    
6:    RANDOM GENERATE initPopulation 
7: endif 
8: COMPUTE FITNESS for initPopulation 
9: COPY initPopulation TO currPopulation 

10: INIT I 
11: while i ≤ maxIteration do   
12:    while size of newPopulation  < maxSize do  
13:       SELECT parent1 AND parent2 FROM currPopulation 
14:       [child1, child2]  CROSSOVER parent1 AND parent2  
15:       MUTATE [child1, child2] 
16:       ADD [child1, child2] TO newPopulation 
17:    endwhile        
18:    COMPUTE FITNESS for newPopulation 
19:    COPY newPopulation TO currPopulation 
20:    CLEAR newPopulation 
21:    if currPopulation IS CONVERGED then  
22:       TERMINATE 
23:    endif 
24:    INCREMENT i by 1 
25: endwhile 
26: dominant behavior  SEARCH currPopulation WITH MAX(fitness)  

The mapping of basic GA notations into the business process modeling domain is as follows; a 
candidate solution set (i.e. chromosome or genotype encoding the dominant behavior) possessed by 
an individual is represented as an activity sequence and each value in this solution representation (i.e. 
gene) corresponds to a unique activity label. Finally, the genetic information encapsulated by 
chromosome is converted to an organism or phenotype (e.g. business process model). Figure 5.5 
depicts the basic GA notations adapted to business process modeling domain. 
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Figure 5.5. Mapping of basic GA Notations into Business Process Modeling Domain. 

The GA stages stated in Section 4.2 are adapted as follows: 

Initialization. In the case of schema application, scores that are recorded at from-to chart are 

retrieved and sorted in descending order. Then a top-down search is performed to create a non-
intermittent schema with a predefined maximum length2. Such maximal limit for the length of 
schema is important, since relatively longer schema may restrict the distribution of initial 
population at a certain portion of the search space and it would be less probable for indirect jumps 
to find out alternative solution paths. A sample initialization is shown in Figure 5.6. 
 
Fitness Score Calculation. As far as GA are concerned, it is preferred to maximize a given better 
fitness score in order to provide more opportunities especially in selection stage. Therefore the 
inverse of the objective function given in Equation 4.1 is used as the denominator of the fitness 
function to search for the solution with the minimum value. The numerator of the fitness function is 
set to the total scores in the from-to chart.  
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According to Equation 5.1, the best fitting individuals are selected according to the fitness function 
f(z) that aims to maximize the compactness of the dominant behavior by favoring the activities with 
higher scores to adjacent (neighboring) positions. Due to the moment notation, the maximum 
value for fitness function is theoretically 1.0, i.e. all non-zero scores at from-to chart are aligned 
just above the diagonal. 
 
Selection. As the selection method, roulette wheel selection is applied. Roulette wheel selection is 
a kind of random selection type where individual i has a probability of fi(z)/∑f(z) to be selected as a 
parent to mate. Since higher fitness score means higher chance to mate, the random choice is 
biased towards the fitness score. 

 

                                                 
2 Non-intermittent schema implies that the underlying schema does not include undefined (#) gene value.      
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Crossover. In our solution, crossover is not applied to all pairs of parents selected for mating. The 
default likelihood of crossover is set as P(C)=0.8. If the crossover is bypassed, the offspring are 
produced by simply duplicating the parents. Otherwise, a random crossover gene position is 
selected and chromosome subsets are exchanged according to this position.  

Mutation. Conventional mutation and crossover framework may cause problems with 
chromosomes legality, e.g. multiple copies of a given activity type may occur at the offspring. 
Therefore we propose an alternative mutation scheme that automatically swaps the duplicate gene 
value with a randomly selected unobserved one. Hence a uniform chromosome that satisfies the 
chromosome legality is reproduced.    

Population Convergence. As a termination condition, if at least 95% of the individuals at the 
current population are in the convergence band3, no more new population should be generated. In 
order to promote the premature convergence, convergence ratio parameter has to be determined 
appropriately. Finally, gene sequence (genotype) of the individual with the maximum fitness score 
at the last population decodes the dominant behavior. Figure 5.6 gives a sample run for GA-based 
dominant behavior extraction phase.  

 

Figure 5.6. A Sample Run for GA-based Dominant Behavior Extraction. The genotype (ABCDE), i.e. 
dominant behavior, constitutes the backbone for the phenotype, i.e. business process model. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 The interval of convergence band is delimited as [(1-convergence ratio), 1]. 
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5.1.4. Design of Experimental Runs for Dominant Behavior Extraction 

Dominant behavior extraction phase is configured according to two sets of parameters: process 
discovery parameters and Genetic Algorithms parameters. Table 5.2 summarizes the underlying 
runtime parameters and their features: 

Table 5.2. Dominant Behavior Extraction Runtime Parameters. 

 

According to tacit process variant assumption, which states the fact that there is no available 

knowledge on how to partition the set of cases [48], there may arise an inductive biasness at dominant 
behavior extraction. To minimize this occurrence, N consecutive runs with varying process discovery 
and Genetic Algorithms parameter settings are performed and N distinct or quite similar versions of 

dominant behaviors per process alternative are extracted. In the following section, an illustrative 
example for dominant behavior extraction phase is given. 

An Illustrative Example for Dominant Behavior Extraction. As the starting point, 3 synthetic 

process variants are considered. 1000 process instances per process variant are synthetically 
generated according to the reference process models given in Figure 5.7. 

 

Figure 5.7. Process Models per Synthetic Process Variant (process variant1–3). 
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Then 5 sample runs are configured and performed according to the process discovery and Genetic 
Algorithms parameters given in Table 5.3. At the corresponding uses cases handled in Experimental 
Analysis Chapter, the number of sample runs is determined according to the cartesian multiplication of 
the runtime parameters given in Table 5.2. Figure 5.8 shows the user interface of ProMiner software, 
which is used to discover process patterns from event logs in the form of dependency/frequency and 
control flow graphs. This program was developed in the scope of the author’s Master of Science 
dissertation [83]. 

Table 5.3. Process Discovery and Genetic Algorithms Parameters Configuration per Process Discovery 
Run. In order to eliminate potential inductive biasness, underlying runtime parameters are configured 
according to process engineers and domain expert’s feedbacks. 

 

 

 

Figure 5.8. User Interface of ProMiner Software. As an example, process discovery and Genetic 
Algorithms parameters are configured for variant2 and process discovery run=2. 

As the output of this phase, dominant behavior in the form of consensus activity sequences and final 
states of from-to chart that summarizes the interactions among activities are generated as shown in 
Table 5.4 and 5.5 respectively. Additionally, each process discovery run is evaluated according to the 
following attributes: 

 Completeness. This is the fraction of the traces in the event log that may be the result of some 
enactment at the corresponding process model. It is relevant with accuracy aspect of process 
discovery. 
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 Soundness. Soundness measures the fraction of the enactments at the corresponding 
process model PM that find some correspondence in the event logs. It is also similar to 
minimality, behavioral appropriateness or precision. Details about completeness and 
soundness metrics are given in Section 6.3.1. 

 Average transition length. Average transition length measures the compactness of the 
process discovery in terms of transition length. According to the fitness function given in 
Equation 5.1, dominant behavior extraction enforces GA engine component to assign the 
activities with relatively strong interdependency to adjacent (neighboring) positions at 
dominant behavior. 

 Average transition number per activity. This measure is related to the effectiveness of 
confidence and support threshold framework in filtering relatively weak interactions. Process 
discovery with higher average transition number may tend to be spaghetti-like process model. 

 Total processing time. Total processing time is the total cycle time of a single process 
discovery run. This cycle time is directly proportional to the size of training dataset, population 
size, maximum iteration number and verification method selection (e.g. N-fold cross validation 
with extremely high fold number N).   

Table 5.4. Runtime Information per Process Discovery Run. Each process discovery run is evaluated 
according to completeness, soundness, average transition length, average transition number per 
activity and total processing time attributes. 

 

Table 5.5. Final State of From-to Chart per Process Discovery Run. These from-to chart instances are 
crucial for calculating confidence values (confFTC) at sequence alignment phase. 

 

In addition to this runtime information, ProMiner software converts the discovered process knowledge 
in two distinct forms: (i) dependency/frequency graph and (ii) control flow graph. 
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5.2. Sequence Alignment 

There is a well-known metaphor in biology; if any two protein sequences (e.g. DNA, RNA) are similar, 
they have also similar functions or 3D structures [22]. Sequence analysis in bioinformatics domain 

often compares this similarity between two biological sequences to understand their structures or 
functionalities. Some sample applications of sequence analysis are predicting the biological function of 
a gene, finding the evolution distance, a common region in two genomes or repeats within a genome. 
For example, tandem repeats are related to various mechanisms such as protein binding [23]. 

Similarly, in process diagnostics, common subsequences of activities in event logs that are found to 
repeat within a process instance or across process instances highlight some domain significance such 
as direct succession between the activities with relatively high inter-dependency. Additionally, the 
discrepancies, exceptional behavior and niche-type events are handled according to the reference 
processes and we employ a sequence alignment mechanism in order to compare the process variants 
for spotting the similarities by analyzing the dominant behavior. 

 

5.2.1. Preliminaries on Sequence Alignment 

Needleman-Wunsch (NW) algorithm, using the dynamic programming approach, aims to find the global 

optimal alignment between two amino acid sequences [22]. The basic motivation of NW algorithm is to 
generate a global optimal alignment by progressively calling the previous solutions that optimize the 
alignment of smaller subsequences [23]. The challenge is to find an alignment that is as simple and 
informative as possible. Rather than local optimal alignment algorithms, e.g. Smith-Waterman, we 
focus on the global optimal alignments because of the following reasons: 

 The requirement for handling of the whole process execution. Since local optimal alignments 
only handle a fragment of the dominant behavior, it is not suitable for finding common patterns 
that can converge the entire trace of the underlying process execution. 

 Alignment shrinkage due to the noisy event logs. The common fragments tend to be short due 
to the noise at the event logs. This rationale may propagate into the alignment shrinkage for 
the local optimal alignment algorithms with non-informative shorter commonalities detected 
among the process alternatives.  

Let T1 and T2 be two sequences, namely source and target sequences. Needleman-Wunsch matrix (F) 
indexed by i and j, is constructed where the value F(i,j) is the score of the best alignment between the 
prefix Ti

1 of T1 and the prefix Tj
2 of T2. F(i,j) is initialized by F(0,0)=0 and then proceeds to fill the matrix 

from top left to bottom right. It is possible to calculate F(i,j) according to neighboring values, F(i-1,j), F(i-
1,j-1) and F(i,j-1). There are three possible ways that the best score F(i,j) of an alignment up to 
subsequences Ti

1 and Tj
2 can be obtained as given in Equation 5.2. 
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In Equation 5.2, M(Ti
1,Tj

2), I1(Ti
1,Tj

2,Ti+1
1) and I2(Tj

2,Ti
1,Tj+1

2)
 

refer to Match/Mismatch and 
Insertion/Deletion (i.e. inDel) edit operations, respectively. While these edit operations are valuated 
according to payoff matrices PAM or BLOSUM in bioinformatics literature [22], we use dynamic cost 
functioning which is based on confidence values extracted from confidence table generated at 
dominant behavior extraction phase. The basic idea of this confidence enhanced cost functioning is to 
associate the actual frequency of activity combinations that have common and specific business 
context according to the confidence values with the expected frequencies and then interpret whether 
they occur in a correlated and dependent fashion or not. 

In order to consider the best alignment, we need a merit for associating similarity degree with the 
alignment. The value at the bottom right cell of the NW matrix, F(|T1|,|T2|), is the similarity score, i.e. 
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simScr(T1,T2), for the alignment of sequences T1 and T2. In order to find out the optimal alignment, we 
must backtrack the path of choices by Equation 5.2 that led to this best score, i.e., we move from the 
current cell (i,j) to one of the neighboring cells from which the value F(i,j) is calculated. At backtracking 
step, pair of symbols is added to alignment as follows: 

 Ti
1 and Tj

2 if the move is to (i-1,j-1). This denotes the substitution of activity labels among 
sequences T1 and T2.  

 Ti
1 and the gap symbol – if the move is to (i-1,j). This denotes the deletion of activity Ti

1 at 
sequence T1 and the insertion of activity Ti

1 to sequence T2. 

 The gap symbol – and Tj
2 if the move is to (i,j-1). This denotes the insertion of activity Tj

2 to 
sequence T1 and the deletion of activity Tj

2 at sequence T2. 

Backtracking operation is terminated at the starting point (0,0). Figure 5.9 shows a sample alignment 

and backtracking procedure between two sequences, T1 (ATCTA) and T2 (ATGCTT). While NW matrix 

(F) holds the scores per iteration, backtracking table shows the optimal alignment through diagonal, 
vertical or horizontal moves. 

 
Figure 5.9. A Sample Alignment and Backtracking Procedure between T1 and T2 with 1.0 similarity 
score. Iteration and trace-back once iteration has been completed (NW matrix (F) at left-hand side) 
backtracking begins (backtracking table at right-hand side). During backtracking, the pairwise 
alignment between the two input sequences is constructed. 

 

5.2.2. Multi-Sequence Alignment 

Multi-Sequence Alignment is the progressive alignment technique that utilizes the adapted Needleman-

Wunsch algorithm iteratively to achieve the multiple alignment of a set of dominant behavior sequences 
belonging to distinct organizations. Then it constructs process families depicting the relative distance 
and similarities among organizations. This iterative application of NW algorithm constructs a tree 
structure that shows process families structured according to the commonalities and differences among 
process variants. The two important features of this process family tree are its topology, or branching 
order, and its branch length, which ought to be proportional to normalized similarity score. 

According to the conceptual perspective, Multi-Sequence Alignment technique is composed of two 
major data structures: (i) individual set and (ii) alignment run set. 

 Individual set is a bag of individual lists, where each individual list represents all active 
individuals per unique alignment run (denoted by alignmentRunID). 

 Each individual in an individual list consists of one or more sequences (i.e. at base level 
(level=1) an individual is composed of the original dominant behavior sequence, then aligned 
and combined forms of the underlying sequences at following higher levels) and a level 
attribute. This level attribute shows the level of process family tree at which the underlying 
individual is valid. 
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 Sequence holds the element list and a process alternative (or process variant) attribute. The 
process alternative indicates the ancestor organization to which underlying dominant behavior 
sequence belongs to. 

 Element is an atomic entity that is composed of original character (i.e. the character used in 
visualizing process family tree) and an indel character array. This indel (insertion/deletion) 
character array holds the bag of characters that are inserted at the previous levels according 
to “once-a gap always-a gap” policy stated in [84, 85]. By this array, current element is able to 
inherit and imitate the behaviors of these previously inserted characters. 

 Alignment run set is a bag of alignment run lists, which holds all performed pairwise 
alignments per unique alignment run. 

 Alignment summarizes the characteristics of relevant alignment operation, i.e. source and 

target individuals (therefore it checks the validity and existence of the individuals at the 
underlying level), level and the similarity scores (e.g. similarity/normalized similarity scores 
and structural/behavioral similarity scores). In the case of optimality of the current alignment, a 
combined individual, which is a compound of aligned forms of source and target individuals, is 
created and passed to the next level as a new individual. 

Figure 5.10 depicts the above mentioned structures of Multi-Sequence Alignment technique. 

 
Figure 5.10. The Data Structure of Multi-Sequence Alignment (MSA) Technique. MSA object consists 
of two major data structures: individual set and alignment run set. 

Similar to the “once-a gap, always-a gap” policy in CLUSTALW [84, 85], we consider the capability of 
multi-character inheritance within a gap symbol (–) due to the nature of progressive alignment. Figure 
5.11 shows the details about the underlying behavior inheritance. 
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Figure 5.11. Gap Symbol Representation in Multi-Sequence Alignment. The gap symbol (–) is firstly 
inserted to variant2 (pv2) at level=1 and this representation is retained at the following levels up to root 
node is left. Cutting level determines the set of clusters, namely process families. While original 
character attribute, which holds the character used in process family display, is set as gap (–), indel 
character array holds characters inserted at previous levels. Hence, gap symbol inherits and imitates 
the behavior of these previously inserted characters within inDel (insertion/deletion) edit operations. 

Due to the use of multi-character inheritance within a gap symbol (–) in multi-sequence alignment, the 
confidence metric introduced in Equation 4.2 is revised as average confidence (avgConfFTC) denoted 
in Equation 5.3. In this equation, Iik stands for the element at the ith position of sequence k that belongs 
to individual I, ch refers to the reference character or activity label. While dir is the direction of 
confidence computation, i.e. f–forward, b–backward and i–insertion, |Iik| is the total length of indel 
character array of the underlying element. 
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(5.3) 

The basic motivation of confidence-based cost functioning in Multi-Sequence Alignment is to interpret 
the actual frequency of activity pairs that have common business conditions and notated with the 
expected frequency of co-occurrence of activity ch if it occurs at the proposed direction, dir.   

Calculating the Alignment Score for Combined Schema. Although one of the most popular scoring 

mechanisms for the multiple sequence alignment of genomic sequences is the sum-of-pairs (SP) [21, 
62, 84], we prefer to generalize the dynamic programming paradigm of Pairwise Alignment approach to 
Multi-Sequence Alignment. Hence the generic objective function of Needleman-Wunsch algorithm 
given in Equation 5.2 is adjusted according to the conceptual perspective of Multi-Sequence Alignment 
technique as given in Equation 5.4: 
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Let S and T be two individuals or process variants (i.e. S stands for source and T for target individual) 

that compose one or more sequences at the current level (i.e. dominant behavior sequence at the base 
level (level=1), then aligned and combined forms of these sequences at following levels), 
matchScr(Si

k,Tj
l), indelScrT(Tj

l,Si
k) and indelScrS(Si

k,Tj
l)  multipliers4 in Equation 5.5 stand for 

Match/Mismatch and Indel (insertion/deletion) edit operators that are determined at confidence 
enhanced dynamic cost function. Dividing the total score by the Cartesian product of source and target 
individual’s length (|S|.|T|) is similar to the scoring scheme in CLUSTALW [84]. 

In the case of matching (Si,m
k=Tj,n

l, e.g. Si,m
k stands for mth inDel character of element at the ith position 

of sequence k that belongs to source (S) individual), a normalized match score is calculated via 
normMatch(Si,m

k,Tj,n
l) given in Equation 5.6. If the confidence values of current elements are highly 

significant (avgConfFTC>>>confThr) confidence-enhanced dynamic cost function tends to preserve 
this current pattern by assigning highly positive matching score. Dynamic cost function also assigns a 
default confThr value (confidence threshold) to the match case as shown in Equation 5.5. 

On the other hand, if the current characters are different (Si,m
k≠Tj,n

l), an average opportunity cost 

(oppCostI(Ii,mk, I j,n
l) given in Equation 5.7)5 is calculated to measure the reactions of source and target 

individual to the replacement of current prefixes. Dynamic cost function initially assigns a default –
confThr value to the mismatch case as shown in Equation 5.5. This value changes according to the 
outcome of the opportunity cost such that, the substitution of uncorrelated or contrasting elements is 
highly penalized by log2 base, while substituting activities are encouraged to be replaced according to 
substantive business knowledge. Since the predecessor and successor of current prefixes are 
subjected at the opportunity cost, the idea behind this metric is similar to the flooding phenomenon of 
3-gram distance emphasized in [62]. 
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On the other hand, the inDel scoring is handled as the combination of two edit operations as denoted in 
Equation 5.8: insertion and deletion. As in the opportunity cost, confidence enhanced dynamic cost 
function assigns a default –confThr value to the inDel and this default value can be exaggerated by 

insertion and deletion of elements not conforming to business context. Insertion cost (insCostI(Ii,mk, I j,n
l) 

given in Equation 5.9) compares the as-is situation with the relative cost of inserting the character from 

                                                 
4 log2 base at matchScr(Si

k,T
j
l), indelScrT(T

j
l,S

i
k) and indelScrS(Si

k,T
j
l) parameters reflect exponentially decrease at 

cost functioning. This log-odds score effect is also emphasized in [21, 33, 34, 62]. 
5 I stands for non-I individual, e.g. S implies T. 
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other individual ( I j,n
l) between the current character (Ii,mk) and its successor element (Ii+1

k). The 
potential cost of deletion character Ij,nl from individual I is handled by deletion cost (delCostI(Ij,nk) given 
in Equation 5.10). Hence business context driven inDel scores are generated for each element at 
Needleman-Wunsch matrix. 
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Insertion and deletion of activities cannot happen in a random fashion. The inDel scoring enables the 
insertion of activities concerning (and preserving) a functionality between the underlying activity pairs. 
On the contrary, the insertion or deletion of activities violating the business conditions is dynamically 
penalized by indelScr component. Figure 5.12 exemplifies an iteration for element (2,3) in the 
underlying Needleman-Wunsch matrix (F). 

 

Figure 5.12. A Sample Iteration for Element (2,3) in NW Matrix (F). The major discrepancy from the 
classical NW algorithm given in Figure 5.9 is instead of static payoff matrix application, the edit 
operations are valuated according to business context that is implicitly given in the confidence table of 
each process variant. 

Backtracking for Constructing the Combined Schema. The basic update and backtracking 

operations of NW algorithm (i.e. the wave-front concept of NW algorithm [86]) are retained in Multi-
Sequence Alignment technique except for the following point: while backtracking throughout the 
Needleman-Wunsch matrix (F), the pair of elements is added to indel character array of current 
elements as follows:  

 Si,m
k and Tj,n

l if the move is to (i-1,j-1). The value change at simScr(S,T) due to this move is 
assigned to structural similarity. This region of high similarity shared between dominant 
behaviors is the evidence of common functionality and manifestation of these commonly used 
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sub-sequences might indicate a functionality inheritance among process variants according to 
process configuration in BPM [80].  

 Si,m
k and the gap symbol (–) if the move is to (i-1,j) or (–) and Tj,n

l if the move is to (i,j-1). The 
value change at simScr(S,T) due to this move is assigned to behavioral similarity. Hence 
discrepancies and extraordinary behaviors are pinpointed at the sub-regions that are 
intensively filled with gap symbol (−). 

After all alignments at the current level are completed, the similarity scores are normalized according to 
the minimum/maximum (MIN/MAX) similarity scores of source individual (S). Afterwards, normalized 
similarity scores of the alignments are summarized at the similarity matrix for each level of the process 
family tree. The alignment with the maximum normalized similarity score is selected as optimal and a 
combined individual (i.e. compound of aligned forms of individuals S and T) is created and passed to 
the next level. Alignment and combining, firstly, the most similar individuals, and then gradually adding 
more distant ones at the following levels continues up to a single combined individual (i.e. root) is left.  

The major outcome of multi-sequence alignment process is depicted in Figure 5.13 through its 
application on 5 process variants (wabo1-wabo5) for Environmental Permit Application process [11]. 
Initially, sequence alignment is applied on all pairwise combinations of dominant behaviors of process 
variants. As seen in the figure, at base level (level=1), alignment between wabo2 and wabo3 is the 
least costly (i.e., most similar) one among all pairwise alignments. At level 2, we have 4 entities to 
align: three individual process dominant behaviors and one combined form of 2 aligned dominant 
behaviors. At level 5, all process alternatives are aligned and a single combined alignment schema is 
formed highlighting the common regions and divergences. 

 

Figure 5.13. Sample Process Family Tree for Environmental Permit Application Process. Multi-
Sequence Alignment is applied with confidence enhanced scoring functionality and MIN/MAX 
normalization. Cutting level determines the set of clusters, namely process families, for the 
corresponding alignment run. 

Pseudo codes for Multi-Sequence Alignment and Alignment operations are given in Algorithm 5.2 and 
Algorithm 5.3 respectively. 

Algorithm 5.2: MultiSequenceAlignment(process runtime data, confidence tables) 
1: REFRESH currIndividualList, currAlignmentRun, currAlignmentRunList 
2: INIT alignRun  
3: while alignRun ≤ maxAlignRun do 
4:    INIT currIndividualList FOR alignRun 
5:    INSERT currIndividualList INTO individualSet 
6:    CREATE currAlignmentRunList FOR alignRun 
7:    INSERT currAlignmentRunList INTO alignmentRunSet 
8:    INIT levelInd 
9:    while levelInd ≤ maxLevel do 

10:       currIndividualList  SELECT individualList FROM individualSet FOR alignRun 
11:       INIT srcIndv 
12:       while srcIndv ≤ numbIndv(currIndividualList) do 
13:         CHECK level of srcIndv ?= levelInd 
14:         INIT trgIndv 
15:         while trgIndv ≤ numbIndv(currIndividualList) do 
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16:            CHECK level of trgIndv ?= levelInd 
17:            CREATE currAlignmentRun WITH srcIndv, trgIndv, levelInd 
18:            INSERT currAlignmentRun INTO currAlignmentRunList 
19:            ALIGN currAlignmentRun 
20:            SET characteristics FOR currAlignmentRun 
21:            CALCULATE MIN/MAX SimScr FOR currAlignmentRunList 
22:          endwhile 
23:          NORMALIZE similarity score AT levelInd FOR currAlignmentRunList 
24:          optAlignRun  GET optimal alignment run AT levelInd 
25:          INSERT combined individual of optAlignRun TO currIndividualList BY levelInd+1 
26:          COPY non-optimal individuals AT currIndividualList BY levelInd+1 
27:       endwhile 
28:    endwhile 
29:    BUILD process family tree FOR alignRun 
30: endwhile 
31: GET the most frequent process family tree FOR ALL alignRun 

 

Algorithm 5.3: Align(currAlignmentRun) 
1: REFRESH NWTable 
2: srcIndv  srcIndv attribute of currAlignmentRun 
3: trgIndv  trgIndv attribute of currAlignmentRun 
4: level  level attribute of currAlignmentRun 
5: INIT I 
6: while i ≤ length(srcIndv) do 
7:    INIT j 
8:    while j ≤ length(trgIndv) do 
9:       INIT diagonalScr, horizontalScr, verticalScr 

10:       INIT ns 
11:       while ns < numbSeq(srcIndv) do 
12:          INIT nt 
13:          while nt < numbSeq(trgIndv) do 
14:             CALCULATE diagonalScr  diagonalScr + matchScr(srcIndvi

ns,trgIndvj
nt) 

15:             CALCULATE horizontalScr  horizontalScr + indelScrsrcIndv(srcIndvi
ns,trgIndvj

nt) 
16:             CALCULATE verticalScr  verticalScr + indelScrsrcIndv(trgIndvj

nt,srcIndvi
ns) 

17:          endwhile 
18:       endwhile 
19:       newObj  CREATE NWObject WITH i, j, diagonalScr, horizontalScr, verticalScr 
20:       INSERT newObj INTO NWTable 
21:    endwhile 
22: endwhile 

The complexity of Multi-Sequence Alignment technique is approximately O(n3l2), where n stands for the 
number of candidate process variants (|PV|) and l denotes average length of the sequence (or 
individual). 

An Illustrative Example for Multi-Sequence Alignment. In this part, the illustrative example given in 
Section 5.1.4 is detailed by Multi-Sequence Alignment phase for a sample alignment run, i.e. run=2. 
According to the reference process models and runtime parameter configurations, the runtime 
information (i.e. from-to chart, confidence table and consensus activity sequence coding the dominant 
behavior per process variant) for 5 distinct example runs is obtained at Dominant Behavior Extraction 
phase.  Figure 5.14 summarizes the runtime information for the underlying alignment run. 
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Figure 5.14. Runtime Information per Process Variant (process variant1–3) for run=2. 

At the base level (level=1) of Multi-Sequence Alignment, all candidate base-level process variants are 
aligned on pairwise basis. Then similarity scores obtained through pairwise alignments are 
summarized as given in Table 5.6. Each similarity score is normalized according to the source 
individual’s (S) MIN/MAX values. Due to the highest normalized similarity scores (nSimScr), variant2 
and variant3 are selected as the closest individuals and they are combined and transferred as a new 
individual to the next level as shown in Figure 5.15. 

Table 5.6. Similarity Matrix at level=1. Similarity scores (simScr) are normalized according to source 
individual MIN/MAX values. Hence alignment(pv2,pv3) is selected and a new individual (i.e. compound 
of aligned forms of process variants pv2 and pv3) is created and passed to the next level (level=2). 

 

 

 
Figure 5.15. Needleman-Wunsch Matrix (F) and Backtracking Table for Alignment alignment(pv2,pv3) at 
level=1. 

At the following and final level, priorly combined individual replaces the process variants variant2 and 
variant3. Matching and inDel edit operation are valuated according to each inherited variant’s 
confidence tables. Accumulated scores are then normalized by the Cartesian product of source 
(variant2, variant3) and target individuals (variant1) length. While similarity matrix given in Table 5.7 
summarizes the similarity and normalized similarity scores for level=2, Needleman-Wunsch matrix (F) 
and backtracking table of optimal alignment (alignment((pv2,pv3),pv1)) are given in Figure 5.16. 
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Table 5.7. Similarity Matrix at level=2. 

 

 

 
Figure 5.16. Needleman-Wunsch (F) Matrix and Backtracking Table for Alignment 
alignment((pv2,pv3),pv1) at level=2. 

Consequently as shown in Figure 5.17, process family tree, a dendrogram-like output displaying the 
grouping of process alternatives, similarities and differences is created for run=2. The cluster contents 
at a predefined cutting-level are referred to as process families. If a predefined cutting level is 
considered on this tree, variant2 and variant3 are composing a process cluster, i.e. cluster1 for run=2. 

Additionally, overlapping region (i.e. AB) emphasizes a functional inheritance for the underlying 
process variants, i.e. variant2 and variant3. 

 

Figure 5.17. Process Family Tree for Sample Run for run=2. While cluster1 is composed of process 
variants variant2 and variant3, variant1 is assigned to cluster2. 

The results of the Multi-Sequence Alignment phase is stored as an alignment matrix, and overlapping 
regions are analyzed by identical pairs feature sets for process configuration as explained in Section 
5.3. The underlying multi-sequence alignment phase is implemented at prototype software named 
Confidence Enhance Multi-Sequence Alignment (ConfEnhMSA). Details about the functionality and 
interface design are given in Appendix A. 
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5.2.3. Process Family Construction by Pairwise Alignment 

Pairwise Alignment technique is an adaptation of NW algorithm and also a former version of Multi-
Sequence Alignment, which exploits the similarity scores between process variants (pv) on a pairwise 
alignment basis. While confidence-enhanced cost functioning constitutes the baseline for Pairwise 
Alignment and all equations in Multi-Sequence Alignment are valid for this NW adaptation, this 
technique is performed at only base-level (level=1). 

Due to the progressive alignment nature of Multi-Sequence Alignment, the process families, which are 
the clusters grouping the process variants (i.e. organizations), are built upon by dendrogram formation. 
As an alternative approach to form process families, we can group the process variants on the basis of 
the pairwise alignment scores. For this aim, we apply a data preprocessing step that transforms the 

similarity scores into distance attributes. As the similarity scores obtained by Pairwise Alignment are 
highly-correlated to the confidence tables of both source and target process variant, these scores 
should be normalized and this normalization should hold the following properties: 

i. dist(pv0, pv1) ≥ 0, all pv0, pv1 Є PV, the set of all process models (non-negativity property) 
ii. dist(pv0, pv1) = dist(pv1, pv0) all pv0, pv1 Є PV (symmetry property)  
iii. dist(pv0, pv1) = 0, pv0 Ξ pv1   
iv. dist(pv0, pv1) + dist(pv1, pv2) ≥ dist(pv0, pv2) (triangle inequality property)  

According to these properties, cosine similarity is applied as a way to normalize the similarity scores 
(simScr) and convert these values to [-1, 1] value range. Prior to cosine similarity calculation, process 
variant vector concept is defined as follows: 

Definition (process variant vector, pvi
k). Let pvi

k be a vector of (source) process variant i at 
alignment run k holding similarity scores (simScr) with each of the process variants j. The term weight j 
(pvij

k) is the similarity score between process variant i and j at alignment run k. 

Definition (cosine similarity, cosSimk(pvi,pvj)). Let pvi
k and pvj

k be the corresponding similarity 

vectors for process variants i and j at alignment run k respectively. As stated in [91], cosine similarity 
between variants i and j denoted by cosSimk(pvi,pvj) is the cosine of the angle between those similarity 
vectors, given in Equation 5.11. The value of cosine similarity ranges from -1 (quite distinct) to +1 
(equivalent). 
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Figure 5.18 demonstrates the normalization of similarity scores (simScr) through cosine similarity 
(cosSim) for the illustrative example. Figures 5.19 and 5.20 depict similarity scores and cosine 
similarity values per alignment run for variant1 and variant3 as the source process variants 
(alternatives). 
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Figure 5.18. Preprocessing Step for Pairwise Alignment. Similarity scores (simScr) obtained are 
normalized into cosine similarity values (cosSim) for sample run=1. 

 

Figure 5.19. Similarity (simScr) and Cosine Similarity (cosSim) Values for variant1 as Source Process 
Variant (X-axis:alignment runID, Y-axis:similarity score). The [0.8, 1.0] cosine similarity range highlights 
a significant commonality among variant1 and variant2. 

 

Figure 5.20. Similarity (simScr) and Cosine Similarity (cosSim) Values for variant3 as Source Process 
Variant (X-axis:alignment runID, Y-axis:similarity score). While cosine similarity between variant2 and 
variant3 pinpoints a significant commonality, there happens a distinction between the corresponding 
variants at run=4.  
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Prior to process clustering, cosine similarity values (cosSim) are transformed into distance attributes 

(dist). This transformation is applied according to dist(pvi,pvj)=√1-cosSim(pvi,pvj)
2
 formula. In this 

aspect, dist(pvi,pvj) attribute refers to the distance between source process variant i (pvi) and candidate 
process variant j (pvj). Additionally, each transformed instance (or observation) has a nominal attribute, 
namely target class, indicating relevant source process variant. This attribute is important to interpret 
the content of the process families (clusters) and to create the confusion matrix. Figure 5.21 
demonstrates the transformation from cosine similarity (cosSim(pvi,pvj)) to distance attribute 
(dist(pvi,pvj)). 

 

 

Figure 5.21. Preprocessing Step for Pairwise Alignment. Cosine similarity values are converted into 
distance attributes. Hence each line for the underlying alignment run implies to a distinct instance (or 
observation). Reference nominal attribute is used to interpret the content of the clusters. 

Finally, we apply various clustering algorithms (e.g. K-Means or agglomerative hierarchical clustering 
(AHC)6) to partition the process variants (or organizations) into process families, where predictor 
variables are related to the distance attribute values, i.e. dist(pvi,pvj). As stated in [34, 41, 62], 
agglomerative hierarchical clustering is widely applied at trace clustering application in process mining 
domain.  Figure 5.22 shows the instance plot, which visualizes each distinct instance according to the 
distance attributes (dist_varianti), with 15 instances for the sample case (i.e. 5 alignment runs ˟ 3 

process alternatives). Although, the distance values are staggered at [0.25, 0.5] interval, especially the 
distance values at run=4 may result in a process clustering between variant2 and variant3. 

                                                 
6  Clustering algorithms are applied with MEAN criteria (i.e. the mean distance of a merged cluster) and Eucledian 
distance function at Weka 3.8 software. 
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Figure 5.22. Instance Plot for Sample Case (X-axis:distance attributeID, Y-axis:distance value). Due to 
the overlapping instances, the number of instance lines is lessened and the color of these lines is 
turned into darker color.  
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5.3. Process Configuration 

Complying with the software as-a service (SaaS) paradigm, which refers to a software distribution 
model that hosts the applications or solution services at a distributed system by a vendor or service 
provider and they made available these products to customers over a network upon request [12], the 
recordings of event logs can be provided in a unified manner across the organizations. Moreover 
process variants and configurations can be managed and related to the process enactment. The 
monolithic view of traditional process mining is evolving through cross-organizational process mining to 
analyze and support these multi-tenant processes. The basic idea of process configuration is to 
generate a model that does not address the corresponding process alternatives to a sole process but 
unifies them into a family of processes [13]. Hence the configured model has fever number of activities 
due to the removal of potential behaviors during configuration. While collaboration setting aims the 
interoperability among different organizations by distributing the processes over different process 
observers, exploiting the commonality aims to share the process knowledge and deal with the 
variability among the organizations. 

In this aspect, process configuration phase aims to explore common patterns of activity invocations at 
organizations within the same process family. These common patterns are defined by two feature sets: 
identical pairs (IP) and maximal identical pairs (maxIP). Afterwards these structures are visualized by 
alignment matrix on alignment run basis.  

    

5.3.1. Feature Sets Derivations 

Similar regions (i.e. sequence of activities) that are common across a set of traces in event logs 
emphasize some sort of common functionality for the underlying process. Alternatively, a region that is 
pinpointed by high similarity measurements between multiple sequences can be a proof of functionality 
share among the corresponding process candidates [33, 34]. Indeed, deriving these overlapping 
regions by feature sets enable the clustering of process alternatives such that, process alternatives 
sharing relatively frequent and longer covered regions enforce these alternatives to be assigned to the 
same process family. We formally define these common process constructs in terms of two feature 
sets:  

Definition (identical pairs, IP). An identical pair (IP) in a multi-sequence or pairwise alignment run, Ai, 
is a pair of matching subsequences x and y such that, the activity to the immediate neighbor of 
subsequence x is different from the symbol to the immediate neighbor of subsequence y. This feature 
set is similar to maximal pair in [58]. 

Definition (maximal identical pairs, maxIP). A maximal pair (maxIP) is defined as an IP that is never 
subsumed as a substring of any other IPs at any alignment run and the length of underlying IP should 
be greater than 1-unit.  

Table 5.8 exemplifies the derivation of maximal identical pairs feature sets of the process family for the 
illustrative example. Derived maximal identical pairs are characterized by three attributes: Order refers 
to the length of the maximal identical pair and frequency is the occurrence rate throughout all alignment 
runs. Coverage holds the span of the subsequence with respect to the total length of alignment.  

Table 5.8. Derivation of IP and maxIP Feature Sets at Process Families. IPs in grey-shaded regions 
(AB, D and E) in Figure 5.17 pinpoint high similarity shared between sequences. 
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5.3.2. Alignment Visualization 

Process mining employs various visualization methods varying from presentation of overview results to 
presenting directed insights, merging different analysis directions. However, most of the current 
visualization methods in process mining fall short when dealing with large datasets of event logs. 
Visualization is also intensively used in different areas within bioinformatics [23]. Especially, sequence 
exploration and visualization techniques can be adapted to analyze process similarity measurement 
outcomes [11, 27]. Respectively, we design the alignment matrix, which decomposes the aligned 
elements (e.g. the gap symbol or activity labels) on the alignment run basis. This view of the alignment 
matrix provides a holistic insight, in which discrepancies and extraordinary activity invocations are 
viewed in regions that are pinpointed with the gap symbol (–). Additionally, concurrent activity 
invocations indicated by maxIP may manifest a shared business context among process alternatives. 

Table 5.9 shows the alignment matrix summarizing all alignment runs, at which process alternatives 
variant2 and variant3 are both assigned to the same process family, i.e. alignment run 1, 2, 3 and 5. 
While gap symbol (–) is highlighted in red color, identical pairs are grey-shaded. Correspondingly, the 
maxIP, i.e. AB (with average 1.0 frequency and 0.33 coverage values) emphasizes a process 
semantics commonality for the underlying process variants. 

Table 5.9. Alignment Matrix for {variant2, variant3} Process Family. Average coverage refers to total 
span of IPs at the corresponding alignment run. 

 

Accordingly, it is aimed to depict and explore this expression of commonly invoked sub-processes 
among similar process alternatives in the same process family. These conserved regions can be 
interpreted as a functional inheritance at enactments of process alternatives and we can adapt these 
regions as a mean to form abstractions at configurable process models as shown in Section 6.5.2.   
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CHAPTER 6 

 

 

EXPERIMENTAL ANALYSIS 

 

 

 

6.1. Overview for Experimental Analysis 

In this chapter, dominant behavior extraction, sequence alignment and process configuration phases 
are briefly evaluated with respect to the use cases, which are Travel Management, Loan Application, 
Environmental Permit Application and Period-End Closing. These real-life use cases can be 
characterized by data source and data type attributes as follows: 

a. Data source. The problem domain is the universe that covers the as-is and to-be process 
models, the organizations, process observers (or domain experts), standard operation 
procedures and the business rules. The data source refers to the source from which event 
logs or reference process models are gathered. These sources are process-aware information 
systems as well as process mining knowledge base or repositories (e.g. APROMORE7). 

b. Data type. In process-aware information systems, the event logs are staggered around the 
transactional database tables and it may be infeasible to assign the transactions (or events 
executions) to the process instances (cycles). This issue is called unlabeled event log 

rationale in the literature [47, 87]. Due to the difficulty of collecting real-life event log data from 
information systems, we developed a program to generate the event logs according to 
reference process structures and Petri net’s firing rule. Details about synthetic event log 
generation are given in Section 6.2.2. 
In the case of process mining knowledge base, the benchmark event log is converted from 
XES (IEEE Standard for eXtensible Event Stream) standard to the custom text file format that 
is used in the process discovery algorithm implementation.    

The experiments are designed to evaluate the phases of the corresponding framework. As stated in 
Chapter 5, proposed approach is composed of three phases: dominant behavior extraction, sequence 
alignment and process configuration. 

 Dominant behavior extraction. In the context of generalization, simplicity, precision and fitness 

quality dimensions emphasized in process discovery [20, 23, 53], dominant behavior 
extraction performance is evaluated in terms of completeness and soundness metrics. While, 
the completeness is similar to fitness in [23, 89] and recall in [19, 50], the soundness 
resembles minimality or behavioral appropriateness in [89] and precision in [19, 23, 50]. In 
addition to quality metrics, we analyze the performance of Genetic Algorithms (GA) engine 
applied at dominant behavior extraction. Hence various data visualization and statistical tests 
are applied to analyze the effect of GA drivers (i.e. schema application, population size and 
probability of crossover) at population convergence. 
 

 Sequence alignment. This core phase includes two major approaches: Pairwise and Multi-
Sequence Alignment and Pairwise Alignment within two distinct settings: single-reference and 

                                                 
7 APROMORE (Advanced Process Analytics Platform) is an open-source business analytics platform that combines 
current process mining approaches with the functionalities of process model repositories (www.apromore.org). 
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multi-reference. At Single-Reference Pairwise Alignment setting, a unique and predefined 
process alternative is selected as the reference and all sequence alignment runs are applied 
for this single reference-candidate combination. On the other hand, each process alternative 
is selected as reference for once at multi-reference setting and all reference-candidate 
combinations are handled at alignment runs. In the case of Single-Reference Pairwise 
Alignment application, we aim to measure the performance of the underlying approach to 
reflect the perception of process observers in process similarity measurement. Therefore we 
collect the intuitive judgments in process similarity measurements by a questionnaire that 
includes the process maps of reference and all candidate process alternatives. We analyze 
these ordinal similarity rankings at likert charts and then various information retrieval (IR) 
metrics (i.e. cosine similarity, discount cumulative gain) and recall/precision framework 

adapted from [24] are applied to measure the correlations between the results of proposed 
approaches and intuitive judgments. Additionally, we introduce semantic similarity metric, 
which is based on identical pairs (IP) at sequence alignments and the likelihood between 
distance function concepts in [57]. This metric interprets the fundamental mechanism that 
determines the alignment context (i.e. matching or inDel edit operations) of the dominant 
behavior and cost function according to the process structures. We analyze the performance 
of Pairwise Alignment in comparison to the former version of the approach in the literature, 
namely standard NW-Needleman Wunsch and CANW-Confidence-aware Needleman 
Wunsch approaches introduced in [66, 67]. 
 
Multi-Reference Pairwise Alignment is able to return normalized similarity scores and these 
scores can be converted to distance attribute. Hence various clustering algorithms are applied 
with these distance values and the content of derived process families is compared with prior 

studies in literature handling the same use case. Due to the progressive alignment fashion of 
Multi-Sequence Alignment, it is also possible to analyze the topology and the branching 
orders of the process family tree at different cutting levels. Likewise in Multi-Reference 
Pairwise Alignment, the content of process families (clusters) is compared with prior studies in 
the literature. Additionally, the clustering quality of the alignment modes are interpreted 
according to intra-cluster distance, inter-cluster distance and silhouette measure metrics. 
 

 Process configuration. This phase aims to explore common (conserved) patterns or deviations 

at dominant behavior alignments. These patterns are the basis for deriving abstractions and 
process encapsulations at configurable process models and they are refined by identical pairs 
(IP) and maximal identical pairs (maxIP) feature sets. Then, it is aimed to manually design the 
configurable process models according to these common or deviated regions. 

The overview for experimental analysis phase is depicted in Figure 6.1. 
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 Figure 6.1. Overview for Experimental Analysis. 

 

 

6.2. Use Cases 

The use cases that are handled in the context of experimental analysis are evaluated with respect to 
problem and solution domain aspects as follows in Table 6.1. While Loan Application and 

Environmental Permit Application are benchmark use cases that are referenced in process mining 
literature, Travel Management and Period End Closing use cases depend on the author’s SAP 
experience. This fact affected the source system and data set type features of the underlying use 
cases as given in Table 6.1. 

Although tacit process variant assumption states the fact that there may be more than one process 
variant in a single event log, it is assumed there exists a single valid process variant per organizations 
(or process candidate).                
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Table 6.1. Use Cases with respect to Problem and Solution Domain Aspect. 
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6.2.1. Process Description and Event Log Dataset 

Travel Management business process (alias: TRV) is a hybrid business process that is both executed 

at SAP/FI (SAP Financial Management) and SAP/HR (SAP Human Resources) modules. In this 
aspect, personnel relevant data (e.g. personnelID, travel request, personnel level and grade) and 
detailed information about the corresponding travel request (e.g. travel request creation or cancelation, 
the travel duration and destination) are managed at SAP/HR module, whereas finance relevant 
transactions (e.g. advance payment term/conditions and expense payment) are managed at SAP/FI 
module. Respectively, travel management business process aims to manage all travel-specific 
transactions including trip booking and expense accounting related to the corresponding travel request. 

The source information system for the corresponding business process is SAP8. SAP provides a wide 
range of reference model repository, which is expressed in terms of Event-driven Process Chain (EPC) 
diagram. This knowledge base aims to hold the best-practices to describe the stakeholders to 
customize, implement and use the ERP system in a more efficient manner. These reference business 
models are dedicated to different industries which are composed of manufacturing, telecommunication, 
service and software development [26]. In several ERP implementations, these process models are 
directly referred as business blueprint. This documentation is a composition of software requirement 
specification (SRS) and software design document (SDD) and it is also used as a contract between the 
client and the ERP vendor.  

Indeed, the process enactment may be quite different from the reference process model; the system 
conceptualization in terms of SRS and SDD documentations may be inconsistent with the business 
requirements or the process observers may seek process workarounds instead of standardized know-
how’s. As the starting point, we handle the reference process models, which are proposed in the 
business blueprint document for 6 distinct SAP project implementations. While one of these process 
models is evaluated as reference, the latter models are categorized as candidate as shown in Figure 
6.2. The activity vocabulary (i.e. the value range that holds all valid activity labels or transaction codes 
in SAP) is composed of nine activities as follows; CREA-Travel request create, DISP-Travel request 
display, ADVN-Advance payment, CONF-Travel request confirmation, CNCL-Travel request canceled, 
CMPL-Travel completed, EXPS-Expense payment, ACCN-Transfer to accounting and CHCK-Last 
check. Table 6.2 summarizes process execution characteristics per each process alternatives. 

 

Reference Process Model 

 

 

Candidate1 Process Model 

 

                                                 
8 SAP is the abbreviation of “Systems, Applications and Product” for German Enterprise Resource Planning (ERP) 
System vendor. 
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Candidate2 Process Model 

 

 

Candidate3 Process Model 

 

 

Candidate4 Process Model 

 

 

Candidate5 Process Model 

Figure 6.2. Proposed Process Models for Reference (reference) and Candidate Process Alternatives 
(candi) for Travel Management Use Case.  

250 synthetic process instances are generated per process alternative by event log generator 
introduced in Section 6.2.2. 

Table 6.2. Process Execution Characteristics for Travel Management Use Case. 
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The second example is a real-life use case namely Loan Application (alias: LA) of a financial institute, 

providing small consumer credit through a webpage [15, 27]. While reference process model (denoted 
by reference) depicts idealized process imposed in the business blueprint, all four process alternatives 
(denoted by candi) describe the process alternatives for handling loan applications. Even though the 
processes slightly differ, each process is initiated by sending an e-mail (activity A) and in the end either 
accepts (activity E) or rejects (activity F) the application [15, 27].  

Activity vocabulary consists of 9 activities as follows: A–send e-mail to applicant, B–send check credit 
request, C–calculate capacity, D–check system, E–accept, F–reject, G–send e-mail, H–process check 
credit request response and I–check paper archive. The reference process model and process variants 
are given in Figure 6.3. 

 

Reference Process Model 

 

 

Candidate1 Process Model 

 

 

Candidate2 Process Model 

 

Candidate3 Process Model 

 

 

Candidate4 Process Model 

Figure 6.3. Proposed Process Models for Reference (reference) and Candidate Process Alternatives 
(candi) for Loan Application Use Case. 
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The event logs for Loan Application use case are obtained from process mining repository and then 
converted from XES format to the internal text file format that is valid for the corresponding process 
discovery application [88]. Table 6.3 summarizes process execution characteristics for each process 
alternatives. 

Table 6.3. Process Execution Characteristics for Loan Application Use Case.

 

Environmental Permit Application (alias:WABO) business process in Configurable Services for Local 
Governments (CoSeLoG) project, which investigates the similarities and deviations between processes 
of different municipalities in Netherlands, aims to handle the building permits process [15, 27]. Five 
municipalities from CoSeLoG project are collaborating on the underlying business process and jointly 
selected and configured a shared information system, i.e. Shared Business Process Management 
Infrastructure (SBPMI), to support this process. The long-term goal of the municipalities is to centralize 
and standardize the process to reduce the operational costs [15, 27]. Therefore, it is beneficial for the 
municipalities to share their proven best practices, to understand individual discrepancies between 
these process alternatives and pinpoint the commonalities among them. This gradual progress can be 
feasible by using cross-organizational process similarity measurement. 

The event log dataset contains records of receiving phase for the building permit application process in 
5 municipalities (i.e. waboi). The corresponding process alternatives are analogous since the 
corresponding activity vocabulary is unified for all the municipalities [15, 27]. In this dataset [90], there 
are 1214 process instances, 2142 events and 27 activities as the lump sum. Table 6.4 summarizes 
process execution characteristics per each process alternatives and activity vocabulary is given in 
Table 6.5. 

Table 6.4. Process Execution Characteristics for Environmental Permit Application Use Case. 

 

Table 6.5. Activity Vocabulary and Activity Label Mappings (CoSeLog activityID:activityID) for 

Environmental Permit Application Use Case.  

CoSeLoG 
ActivityID 

Description ActivityID 

540 Objection to disposal submitted B 

546   % 

550 Treat objection C 

560 Objection wrapped up F 

590 Received request for preliminary verdict G 

600 Treat preliminary verdict H 

610 Preliminary verdict wrapped up I 

630 Appeal set J 

640 Received request for preliminary verdict K 

670 Treat appeal L 
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680 Appeal wrapped up M 

700 Higher objection started N 

730 Contested disposal affected O 

740 Verdict given by court Q 

755   } 

760 New decision or new evaluation P 

765 Phase start 2 R 

766 New decision or new evaluation S 

770 Establish decision phase original decree T 

775 Decision phase definite U 

790 Establish decision phase of the verdict of court Y 

550_1 Treat objection subcase D 

550_2 Treat objection subcase finished E 

650_1   ? 

650_2   + 

780_1 Create decree for the purpose of the disposal of the court V 

780_2 Connect disposal court W 

780_3 Register date of disposal of court X 

STRT Start A 

FNSH End Z 

 

Figure 6.4 depicts the reference process models per process alternative in the form of process maps, 
which denotes the business processes in different business process modeling notations such that; 

 Process maps are shown in terms of (process) tree and process is triggered at the root node. 
 While ˄ stands for an AND-type gateway, ˅ symbol refers to an OR-type gateway and ˟ is 

used as XOR-type gateway. All process alternatives are valid in terms of gateway type. 
 → symbol denotes a direct-successor transition among the left and right-hand side of the 

process tree. This notation refers to an in-order traversal at process trees such that, at first the 
left sub-process is decomposed (or traversed) and then right sub-process follows this 
decomposition. 

 ז symbol refers to a process termination.  

 

 
wabo1 Process Map 
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wabo2 Process Map 

 

 

wabo3 Process Map 

 

 
wabo4 Process Map 

 

 
wabo5 Process Map 

Figure 6.4. Proposed Process Maps for Process Alternatives (waboi) for Environmental Permit 
Application Use Case. 

As the last use case, Period-End Closing is a real-life business process, which is managed at SAP/CO 
(Controlling) module. This business process majorly aims to distribute the overhead costs among cost 
centers, calculate the activity unit price for each work centers and finalize unit manufacturing costs for 
semi-finished and finished products. As a result, periodically incurred fixed and variable costs are 
transferred to major outcomes (i.e. finished products and services) of the organization, the variance 
between plan and actual costs is analyzed and the cost of goods sold (COGS) is revaluated in an 
organizational profitability perspective. 
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Due to the industry standards and business requirements, different SAP components (or sub-modules) 
are configured throughout the customization phase. For instance, while Cost Center Accounting (CCA) 
component is crucial for both manufacturing and service industry, especially Product Costing (PC) is 
solely valid for the organizations in manufacturing industry. According to author’s SAP consultancy 
experience, 5 organizations (namely clients) with distinct SAP/CO component configurations are 
determined within scope of this case study. As stated in [27, 28], it is sometimes infeasible to retrieve 
event-log data in the form of <caseID, activityID>. Since the vast array of events is staggered around 

various application tables at the process-aware information system and it becomes difficult to correlate 
the events to specific process instances [27, 28].  

SAP transactions related to Period-End Closing business process are collected from SAP systems via 
ST03-Workload Monitor transaction and each transaction is mapped to an activityID. Hence 400 
process instances for each organization (i.e. each financial period×plant cartesian refers to a distinct 
process instance) are retrieved from source SAP system. Table 6.6 gives the details and 
characteristics of the underlying organizations and active SAP/CO component set. Basically, client2 
and client4 are evaluated as service industry and latter organizations can be grouped as manufacturing 
industry set. 

Table 6.6. Client Characteristics for Period-End Closing Use Case. While client2 and client4 are 
operating in service industry, latter clients are active in manufacturing industry. Active SAP/CO 
components alter due to this domain variety.

 

The activity vocabulary consists of 45 activities that are valid at the reference business processes and 
the activityID is the concatenation of three codes: (i) original SAP transaction code, (ii) sub-step of the 
underlying transaction code (e.g. CRE-Costing Run Creation, SEL-Selection, DTR-Sequence 
Determination, SNG-Single Level Price Determination, MLT-Multi Level Price Determination, MRK-
Mark Material Price, REV-Post Closing Reverse, RVL-Revaluation of Consumption/Settlement, INT-
Initial settlement) and (iii) execution variant for the underlying transaction code (e.g. MNT-Maintenance, 
PRD-Production, CRS-Courses). Table 6.7 summarizes the valid activities in the form of SAP 
transaction code, sub-step and execution variant. 

Table 6.7. Activity Dictionary for Period-End Closing Use Case. activityID is the concatenation of SAP 
transaction code, sub-step and execution variant occurred at reference process maps. Each 
transaction code is assigned to at least one SAP/CO component. 

ActivityID Description 
SAP 

Transaction 
Substep Variant 

SAP/CO 
Component 

CKMDUVMAT 
Distribution of Physical 
Inventory Differences 

CKMDUVMAT     ML 

CKME Activation of Planned Prices CKME     ML 

CKMH 
Single-Level Price 
Determination 

CKMH     ML 

CKMI Post Closing CKMI     ML 

CKMLCP_CRE Cockpit Actual Costing CKMLCP CRE   ML 

CKMLCP_DTR_MNT Cockpit Actual Costing CKMLCP DTR MNT ML 

CKMLCP_DTR_PRD Cockpit Actual Costing CKMLCP DTR PRD ML 
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CKMLCP_MLT_PRD Cockpit Actual Costing CKMLCP MLT PRD ML 

CKMLCP_MRK_PRD Cockpit Actual Costing CKMLCP MRK PRD ML 

CKMLCP_PST_PRD Cockpit Actual Costing CKMLCP PST PRD ML 

CKMLCP_REV_MNT Cockpit Actual Costing CKMLCP REV MNT ML 

CKMLCP_RVL_MNT Cockpit Actual Costing CKMLCP RVL MNT ML 

CKMLCP_RVL_PRD Cockpit Actual Costing CKMLCP RVL PRD ML 

CKMLCP_SEL_MNT Cockpit Actual Costing CKMLCP SEL MNT ML 

CKMLCP_SEL_PRD Cockpit Actual Costing CKMLCP SEL PRD ML 

CKMLCP_SNG_PRD Cockpit Actual Costing CKMLCP SNG PRD ML 

CO88 
Actual Settlement: 
Production/Process Order 

CO88     PC 

COGI 
Processing Goods Movements 
with Errors 

COGI     PC 

CPTD 
Actual Template Allocation: 
Production Order 

CPTD     PC 

FS10N Balance Display FS10N     CCA 

KB31N Enter Statistical Key Figures KB31N     CCA 

KBK6 Manual Actual Price KBK6     CCA 

KKAO 
WIP Calculation: Collective 
Processing 

KKAO     PC 

KO8G_INT_CRS 
Actual Settlement: 
Internal/Maintenance Orders 

KO8G INT CRS IO 

KO8G_INT_MNT 
Actual Settlement: 
Internal/Maintenance Orders 

KO8G INT MNT PM 

KO8G_RVL_CRS 
Actual Settlement: 
Internal/Maintenance Orders 

KO8G RVL CRS IO 

KO8G_RVL_MNT 
Actual Settlement: 
Internal/Maintenance Orders 

KO8G RVL MNT PM 

KOC4 
Cost Analysis: 
Internal/Maintenance Orders 

KOC4     PM/IO 

KON2 
Actual Revaluation: 
Internal/Maintenance Orders 

KON2     PM/IO 

KP46 
Change Statistical Key Figure 
Plan Data 

KP46     CCA 

KSII_CRS 
Actual Price Determination: 
Cost Centers 

KSII   CRS IO 

KSII_MNT 
Actual Price Determination: 
Cost Centers 

KSII   MNT PM 

KSII_PRD 
Actual Price Determination: 
Cost Centers 

KSII   PRD PC 

KSS2_CRS 
Actual Cost Splitting: Cost 
Centers 

KSS2   CRS IO 

KSS2_MNT 
Actual Cost Splitting: Cost 
Centers 

KSS2   MNT PM 

KSS2_PRD 
Actual Cost Splitting: Cost 
Centers 

KSS2   PRD PC 

KSU5 Execute Actual Assessment KSU5     CCA 

KSV5 Execute Actual Distribution KSV5     CCA 

ME23N Display Purchase Order ME23N     CCA 

MMPV Close Periods MMPV     CCA 

MMRV 
Allow Posting to Previous 
Period 

MMRV     CCA 

OKP1 Maintain Period Lock OKP1     CCA 

As the starting point, reference process models, which are designed as to-be process models at 

business blueprints, are analyzed in order to get the insight about proposed business processes. Even 
though the reference processes are slightly different due to the active SAP/CO components and their 
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configurations, each reference process is initiated by CKMLCP_CRE (Cockpit Actual Costing–Costing 
Run Creation) or KB31N (Enter Statistical Key Figures) activities and terminated by OKP1 (Maintain 
Period Lock). Figure 6.5 depicts reference process maps for underlying clients. 

 

Client1 Process Model 

 

 

Client2 Process Model 
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Client3 Process Model 

 

 

Client4 Process Model 

 

 

Client5 Process Model 

Figure 6.5. Proposed Process Maps for Process Alternatives (clienti) for Period-End Closing Use Case. 
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6.2.2. Synthetic Event Log Generation 

As stated in [47], when we apply process mining techniques to ERP systems, we confront the problem 
about collecting the operational data, i.e. event logs, from the source system: The transactional logs of 
ERP system are not appropriate to monitor the individual cases (or process instances). Instead, ERP 
system only monitors the execution logs of specific transactions without any relation within a case 
identifier [47]. Additionally, ERP systems are highly data-centric, i.e. the transactional data is staggered 
through the operational database tables. Although SAP tools like Reverse Business Engineer (RBE) 
log the transaction frequencies and these transactions are linked to event process chain (EPC) 
formatted reference process models, they cannot be assigned to individual cases [47]. Due to these 
limitations, we develop a program, that automatically generates synthetic event logs for the given 
process model structure and process profile according to Petri net firing rule as follows [10]: 

Definition (Petri net). A Petri net is a triple (P, T, F) such that,  

 P is a finite set of places. A place p is called an input place of a transition t if there exists a 
directed arc from p to t. Otherwise it is called an output place of transition t if there exists a 
directed arc from t to p. 

 T is a finite set of transitions. 

 F is a set of arcs (flow relation). 

At any time a place contains any tokens, it is shown as black dot [10]. The state, called as marking, 

holds the current distribution of these tokens over places and the number of existing tokens is varying. 
The marking procedure of Petri net is defined as Petri net firing rule as follows [10]: 

 A transition t is said to be enabled if each input place p contains at least one token. 
 An enabled transition may fire. If a transition t fires, then t consumes one token from each 

input place p and produces one token for each output place p of t. 

In addition to the Petri net firing rule, automated event log generation requires two data lists: (i) activity 
list and (ii) Petri net list. The activity list holds the activity type (i.e. I-initiator, O-ordinary, C-connector 
and S-sink) and the priority (i.e. the probability of activity occurrence changing between 0 and 100) per 
activity. Petri net list converts the graph-based process model into tabular format, in which each 
transition is enlisted as predecessor, successor and transition type (i.e. AND/OR/XOR join or split-type 
gateway and direct succession). Table 6.8 exemplifies the activity list and Petri net for the reference 
process model given in Figure 6.2. 

Table 6.8. Activity List and Petri Net Lists for Reference Process Model. The activity list holds the 
activity type and priority (e.g. there happens an XOR branching after ADVN activity is fired. CONF 
activity will be tokenized with 90% priority). Petri net list converts the graph-based process model into a 
tabular form.   
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According to Petri-net’s firing rule and the data list requirements, synthetic event logs are generated as 
follows: 

i. As the starting point, the initiator activity (I-typed) of the underlying business process (e.g. 
CREA-Travel request create) is fired and the successors of the initiator (ADVN-Advance 
payment) are tokenized.  

ii. Then one of the tokenized activities is selected according to the priority value at activity list 
and then randomly selected activity is fired. Due to this firing, the successors of fired activity 
are tokenized. 

iii. If fired activity is connected to its predecessor by an AND-split, then other AND-splitted 
successors are highly prioritized at the next firing step.  For XOR-split option, the unfired 
successors are suppressed for the current process cycle. On the other hand, OR-splitted 
successors are conditionally fired according to OR threshold.  

iv. The AND-joined activity waits for all predecessors to be fired and tokenized. Then it 
propagates the tokenization to subsequent successor(s). This tokenization and firing iteration 
is continued up to a sink-typed (S-typed) activity is fired. 

In addition to this algorithm, various parameters are used for handling specific conditions: 

 Surprise effect is used in order to call unexpected process cycle terminations. For instance, 

bankruptcy is a niche case in banking financial processes and this relatively least probable 
case can be taken into consideration by the surprise effect. 

 Noise factor is used to generate noisy event logs that deteriorate the Petri-net firing rule. 

 OR-split gateway specifies that one or more of the tokenized successors will be fired in the 
case of OR-split. OR threshold reflects this conditional firing. 
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6.3. Dominant Behavior Extraction Analysis 

This phase mainly aims to find out the dominant behavior, which refers to the common subsequence of 
activities recurring across process instances with certain domain significance. This domain information 
is a kind of generalization for the process knowledge that is highlighted at the event logs. According to 
tacit process variant assumption, which states the fact there may be more than one process variant in 
a single event log, and there is no available knowledge on how to partition the set of cases [48], there 
may arise an inductive biasness at dominant behavior extraction. To minimize this bias, 25 consecutive 
runs are performed with varying process discovery and Genetic Algorithms parameter settings and 25 
versions of dominant behaviors per process alternative are extracted. The details about corresponding 
process discovery and Genetic Algorithms parameter settings are given in Section 5.1.4. 

 

6.3.1. Process Discovery Based Analysis 

There are various efforts in the literature towards measuring the quality of process models. In [52], 
Vanderfeesten et al. aim to adapt software engineering quality metrics (e.g. coupling, cohesion, 
complexity, modularity and size) into business process modeling domain as guiding principles. 
Additionally according to [53], it is important to realize the fact that there is never a single learned 
model for a given event log, since there are syntactically different process models having similar 
behaviors and an infinite number of models can be discovered for a given set of event logs [17, 20]. In 
addition to this rationale, process discovery algorithms have to handle the following issues: 

 Dealing with incompleteness. Incompleteness is the anomaly that reflects only a part of the 

process behavior is observed at the event logs. Since the number of interleavings among 
concurrent activities increases in an exponential fashion, total completeness is an impractical 
assumption [53]. 

 Further abstraction. For relatively complex business processes, discovering a spaghetti-like 
process model is more probable. Instead of possible exceptions, i.e. process veins in [20], the 
main process flow, i.e. process arteries in [20], might be focused to deal with noise that is a 
rare or infrequent behavior not representative for typical behavior [53]. In this aspect of 
abstraction, although interpretability is increased, this leads to models with low precision and 
fitness values. 

In the context of these four main quality dimensions (generalization, simplicity, precision and fitness), 
we design a conformance checker that supports two metrics for judging the quality of process 
discovery at dominant behavior extraction phase: completeness and soundness. 

Definition (Completeness). Completeness of the process model PM is the fraction of the traces in the 

event log that may be the result of some enactment at the corresponding process model [30] as given 
in Equation 6.1.  

 
 

 P

P
P

Ls

PMsLs
LPMsscompletene




,  (6.1) 

In this aspect, the completeness metric is similar to fitness in [23, 89] and recall in [19, 50]. 

Definition (Soundness). A totally complete model may support not only the traces provided in the 

event logs, but also an arbitrary number of execution patterns that are registered. Such a condition can 
be measured by another metric named soundness. Soundness measures possible process 
enactments at the corresponding process model PM that find some correspondence in the event logs 
[30]. 
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1,  (6.2) 

The soundness metric is similar to minimality or behavioral appropriateness in [24] and precision in [19, 

23, 50]. Theoretically, high soundness implies that many activities in the process model have limited 
correspondence in the event logs. At completeness calculation, these corresponding free activities 
cause a biased high completeness than they are attained to an event in the event log [11]. 

As shown in in Figure 6.6, having high completeness and low soundness values, extracted dominant 
behaviors capture most of the events in the process logs at Travel Management use case. However, 
dominant behavior can be partially captured for process alternative cand3. This is possibly due to high 
variation with the process executions due to high connectivity and low density characteristics of 
process alternative cand3 and high sensitivity to confidence and support thresholds. 

 

Figure 6.6. Average Completeness and Soundness Values per Process Alternatives (candi) for Travel 
Management Use Case. 

For Period-End Closing use case, process alternatives with an average 97.3% completeness and 0-
valued soundness levels highlight the fact that; the underlying process discovery mechanism shows a 
good balance between completeness and soundness quality metrics according to Figure 6.7. 

 

Figure 6.7. Average Completeness and Soundness Values per Process Alternatives (clienti) for Period-
End Closing Use Case. 

In addition to completeness and soundness metrics, we aim to analyze the understandability of the 
process model in structural perspective. This structural influence factor set is composed of connectivity, 
density and average transition length (ATL): 

 Connectivity is the average number of transitions (edges) per activity (node) at discovered or 

proposed process model (i.e. |T|/|A|). 

 Density is the ratio between total number of activities (nodes) and total number of blocks 

(activities and AND/OR/XOR gateways) at discovered or proposed process model (i.e. 
|A|/(|A|+|C|)).  
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 Average transition length (ATL) is the average length per transition at discovered or proposed 

process model. The unit length between two adjacent activities is assumed as 1 unit for this 
factor computation. 

While connectivity and density factors resemble coupling and cohesion design principle introduced in 
[52], average transition length measures the compactness of the dominant behavior, lower average 
transition length converging to 1 value implies a compact dominant behavior, i.e. dominant behavior 
that tends towards assigning activities with relatively stronger interactions at neighboring positions. 
Table 6.9 summaries the structural factors per process alternative. 

Table 6.9. Structural Factors per Process Alternatives for Travel Management Use Case. 

 

Potentially, process alternative cand3 is more vulnerable to changes at confidence and support 

threshold according to higher connectivity, since process alternatives with higher connectivity tends to 
have a higher likelihood towards spaghetti-like models and this feature increases the risk of pruning 
down by confidence or support threshold. Likewise, process alternative cand4 with lower density is also 

sensitivity to these thresholds. Hence the change at [0.3, 0.5] confidence interval results in the loss of 
process behavior at process discovery and significant reductions at completeness as shown in Figure 
6.8. Stabilization after 0.5 confidence threshold value means that only core process behaviors (i.e. 
direct successive typed transitions introduced at section 4.1.1) are left for the process alternatives 
except cand5. As a result, this mechanism results in lower average completeness as shown in Figure 
6.6.    

 

Figure 6.8. Confidence Threshold versus Completeness per Process Alternatives (candi) for Travel 
Management Use Case (X-axis:confidence threshold, Y-axis:completeness). Respectively, more 
spaghetti-like process alternatives (e.g. cand3 and cand4) are more vulnerable for the changes at 
confidence threshold. Higher connectivity or lower density refers to weak transitions and these process 
behaviors are pruned down easily by the increase of confidence threshold value. 

Respectively at Period-End Closing use case, lasagna-like process alternatives, which are 
characterized by higher density and lower connectivity metrics, are more robust to the increase of 
confidence threshold. As shown in Table 6.10 and Figure 6.9, process alternative client4 is a compact 
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candidate with 1.18 connectivity and 0.85 density values. These characteristics indicate that there 
exists hardly any AND/OR/XOR connectors (gateways) and activities are mostly connected with direct-
successive transitions. Additionally, 1.14 average transition length (ATL) also emphasizes this rationale 
such that, relatively minimal ATL values refer to a process model connected with only direct-successive 
transitions. On the other hand, process alternatives client3 and client5 tend to be spaghetti-like 
processes with lower density and higher connectivity. Weak-order transitions at these process 
alternatives are vulnerable to be pruned down by the increase of confidence and support threshold. 
Hence this pruning down diminishes the coverage of the dominant behavior and completeness. 

Table 6.10. Structural Factors per Process Alternatives for Period-End Closing Use Case. 

 

 

 

Figure 6.9. Confidence Threshold versus Completeness per Process Alternatives (clienti) for Period-
End Closing Use Case. Respectively more lasagna-like process alternatives (e.g. cand4) are more 
robust to the changes at confidence threshold. On the other hand, the effect of the changes at 
confidence threshold is significant for spaghetti-lie process alternatives (i.e. client3 and client5) 
according to the decreasing trend at completeness curves. 

Process discovery analyses for other use cases are given in Appendix B. 

 

6.3.2. Genetic Algorithms Based Analysis 

Another enhancement at dominant behavior extraction phase is the GA engine adaptation that aims to 
find the dominant behavior with the fittest solution. Unlike to prior brute-force approach introduced in 
[42], three drivers are analyzed to interpret the performance and robustness of GA engine in Section 
6.3.2: schema application, crossover probability and population size.  

One of the most popular researches in Genetics Algorithms field has been done by Holland based on 
Schema Theory [22]. Accordingly, it is assumed that good schemata characteristic has a important 
effect on the individual’s high fitness score and the likelihood of obtaining better approximations to the 
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underlying problem increases by inheriting the characteristics of these good schemata at the following 
populations [78, 79, 80]. If we focus on the effects of crossover and mutation framework on schema 
application, the likelihood of individuals with higher fitness will increase exponentially due to the effect 
of schema application and vice versa [78]. 

In this aspect, we attempt to handle the motivation of schema in Genetic Algorithms application within 
the context of Travel Management use case. Hence the process discovery runs for process alternative 
cand1 are analyzed with or without schema runtime configuration9. According to Figures 6.10 and 6.11, 
the individuals encoded with a predefined schema receive an exponentially increasing number of trials 
while the number of individuals with less fit schemata will decrease in successive generations 
tremendously. Hence a relatively rapid start phase is detected for the process discovery runs with 
schema (i.e. average fitness score series evolves to the maximum series more rapidly for the runs with 
schema) and population convergence requires less iteration due to the schema. 

 

Figure 6.10. Maximum, Average and Minimum Fitness Score Series (without schema) for Travel 
Management Use Case. 

 
Figure 6.11. Maximum, Average and Minimum Fitness Score Series (with schema) for Travel 
Management Use Case. Since schema is a sub-pattern of gene values which inherits more 
characteristics of higher fitness score, a relatively rapid ramp-up phase is detected for the process 
discovery runs with schema application. Hence the convergence of average fitness series to maximum 
requires less iteration due to the schema. 

                                                 
9In addition to schema application, process discovery and GA parameters are configured as follows:  
confidence/support threshold=0.15, backtracking penalty point=2, population size=150, P(crossover)=0.80   



80 

 

In addition to visualization of process discovery runs, it is aimed to statistically analyze the effect of 
schema by comparing difference between maximum and average fitness scores (maxfitness–avgfitness) by 
dependent t-test. According to the t-value (-3.684 versus t0.05,59), the null hypothesis, H0, which states 

that there is no clear distinction between average fitness scores series for the process discovery run 
with or without schema, is rejected. Negative outcome implies that; initialization with a schema has a 
positive affect towards generating higher fitness score at next populations. The result of t-test (α=0.05 
and CI=95%) is given in Table 6.11.   

Table 6.11. Dependent t-test for Schema Application at Dominant Behavior Extraction with respect to 
the maxfitness–avgfitness Values for Travel Management Use Case. 

 

The main criticism of schema theory is the assumption that ignores the effect of crossover and 
mutation on the genetic variation. While this assumption is not a reasonable generalization, schema 
theory does not lead to any valid inference about the variations of population fitness over evolution 
iterations [22]. For this reason, we aim to analyze the effect of crossover at population convergence.  
While selection and schema application are respectively conservative operators that intend to reduce 
the diversity of population and simplify the content of population, crossover and mutation framework 
tends to increase the diversity of the corresponding population [79].  

As shown in Figure 6.12, the process discovery runs at Travel Management use case with relatively 
low probability of crossover may be more conservative by traversing only a sub-region of the search 
space. This rationale can be realized by the slow start phase of maximum or average fitness series and 
the fluctuations at the minimum fitness series. On the other hand as shown in Figure 6.13, the runs 
with high probability of crossover frequently take larger steps in exploring the search space early by the 
effect of diversity at the initial population. Then smaller improvements occur when most individuals are 
quite similar at the corresponding population. This rationale can be seen at the steady-state phase of 
the average fitness series and lessen fluctuations at the minimum fitness series. 

  

Figure 6.12. Maximum, Average and Minimum Fitness Score Series (P(crossover)=0.2) for Travel 
Management Use Case. 
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Figure 6.13. Maximum, Average and Minimum Fitness Score Series (P(crossover)=0.8) for Travel 
Management Use Case. Underlying process discovery problem might have several peak points (local 
optima) in search space. Unlike to other myopic local search algorithms (e.g. hill-climbing search), GA 

tends to abandon inefficient local optimality by the undirected jumps triggered due to the crossover 
operation.  

As a result, process discovery runs with lower crossover probability and without schema application are 
tend to behave like myopic local search, since there is a risk to stagger at local optima regions and 
premature population convergence. 

In parallel to this outcome, we also aim to analyze the effect of population size at population 
convergence. Generally speaking, the larger the training dataset the better process modeling, although 
the returns begin to diminish once a certain volume of training data is exceeded [89]. Similarly 
population size encourages the offspring selection to utilize the available genetic information in the 
current population to the maximum level in terms of achieving new and even better solution candidates 
for the successive generations [57]. For typical Genetic Algorithms applications, the suggested 
population size is between 10-160 individuals [30]. Hence population size affects the efficiency and 
performance of Genetic Algorithms.  

In this aspect, we attempt to handle the effect of population size in Genetic Algorithms application in 
the context of Loan Application use case. Hence process discovery runs for process alternative cand1 
are analyzed with distinct population size settings, i.e. pSize=100 versus pSize=500. According to 
Figure 6.14, lower population size configuration guides the process discovery runs to generate poor 
solutions. This rationale can be realized by the slow start phase of maximum or average fitness series 
and the fluctuations at the minimum fitness series. On the contrary as in Figure 6.15, runs with larger 
population size frequently take larger steps in exploring the search space early by the effect of genetic 
diversity at the initial population. Then smaller improvements occur when most individuals are quite 
similar at the corresponding population. But the use of larger populations does not always improve the 
solution accuracy and only increases required computational resources. 
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Figure 6.14. Maximum, Average and Minimum Fitness Score Series (pSize=100) for Loan Application 
Use Case. 

 

 
Figure 6.15. Maximum, Average and Minimum Fitness Score Series (pSize=500) for Loan Application 
Use Case.   

In parallel to visualization of process discovery runs, it is aimed to statistically analyze the effect of 
population size by comparing average fitness scores (avgfitness) by dependent t-test. According to the t-
value (-2.212 versus t0.05,199), the null hypothesis, H0, which states that there is no clear distinction 

between average fitness scores series for the process discovery run due to population size, is rejected. 
Negative outcome implies that; process discovery runs with larger population size tends to generate 
stronger individuals with higher fitness scores for the next generations. The result of t-test (α=0.05 and 
CI=95%) is given in Table 6.12.   
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Table 6.12. Dependent  t-test for Population Size at Dominant Behavior Extraction with respect to the 
avgfitness Values for Loan Application Use Case. 

 

Runtime information (i.e. dominant behavior sequence, completeness, soundness, average transition 
length, average transition number per activity and total process time) about dominant behavior 
extraction phase for all use cases is given in Appendix C.  

According to the results of process discovery based analysis, process candidates with higher 
connectivity and lower density tend to generate spaghetti-like process models that are hard to interpret 

by process observers. Therefore this characteristic increases the risk of pruning by confidence/support 
threshold and results in the loss of process behavior at process discovery. Unlike to spaghetti-like 
process models, lasagna-like process candidates with lower connectivity and higher density are more 
robust to the increases at confidence threshold. Moreover, lower ATL highlights the mechanism with 

respect to compactness, which is encouraged by assigning the activity pairs with stronger succession 
to consecutive neighboring positions at the sequence. 

Moreover, the rationale hindered by Holland’s schema theorem is validated by statistical tests such 
that, process discovery runs with schema requires less iterations to reach to the population 
convergence according to the difference between the maximal and average fitness scores. 
Alternatively, process discovery with lower crossover probability and limited population size tend to 
behave like myopic local search due to the risk of congesting at local optimal points. On the contrary, 
opposite GA configuration has a better performance in exploring the search space by the effect of 
genetic diversity. Then smaller improvements happen when most individuals become quite similar at 
the following populations. 
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6.4. Sequence Alignment Analysis 

 

6.4.1. Single-Reference Pairwise Alignment Based Analysis 

As expressed in the cetaris paribus rule, which means with other conditions remaining the same; other 

things being equal, Single-Reference Pairwise Alignment is designed by fixing one of the process 
alternatives as reference and altering the latter process alternatives as candidate iteratively. 
Accordingly, the confidence tables and extracted dominant behaviors are inherited from dominant 
behavior extraction phase and corresponding similarity scores are calculated in the context of two 
components as introduced in Section 5.2.2: 

 The value change at similarity score due to replacement (match or mismatch) move is 
handled as structural similarity (strSim). This implicitly conserved region is the evidence of 
common functionality and business context overlapping between process alternatives.  

 The value change at similarity score due to inDel (insertion and deletion) move is handled as 
behavioral similarity (bhvrSim). The regions that are rarely filled with gap symbol (−) 
emphasize the deviations and exceptional behaviors among the process alternatives. 

Total, structural and behavioral similarity scores for Travel Management use case are given in Figures 
6.16, 6.17 and 6.18 respectively. Visually, process alternative cand3 is the most similar candidate to 
the reference. While structural similarities of process alternatives cand2, cand3 and cand5 are too 

closed, the major distinction is in the result of behavioral similarities, which are totally negative. This 
negative behavioral similarity scores highlights the rationale such that, insertion or deletion operation is 
strongly discouraged or penalized by the business context, which is encoded by the confidence tables. 

 

Figure 6.16. Total Similarity Score (sim) per Single-Reference Pairwise Alignment Run and Process 

Alternatives (candi) for Travel Management Use Case (X-axis:alignment runID, Y-axis:similarity 

score). 
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Figure 6.17. Structural Similarity Score (strSim) per Single-Reference Pairwise Alignment Run and 
Process Alternatives (candi) for Travel Management Use Case (X-axis:alignment runID, Y-
axis:structural similarity score). 

 

Figure 6.18. Behavioral Similarity Score (bhvrSim) per Single-Reference Pairwise Alignment Run and 
Process Alternatives (candi) for Travel Management Use Case (X-axis:alignment runID, Y-
axis:behavioral similarity score). 

In addition to Single-Reference Pairwise Alignment technique, process similarity measurement is 
performed by prior alignment approaches, i.e. NW-classical Needleman Wunsch and CANW-
Confidence-aware Needleman Wunsch algorithms, to validate the leverage effect of the confidence 
enhanced cost functioning introduced in Section 5.2.2. In [66], Esgin and Karagoz initially aim to 
demonstrate that process mining can benefit from the sequence mining techniques, which are 
strengthened with standard Needleman-Wunsch algorithm (NW) to quantify the similarities and 
discrepancies. This prior algorithm evaluates the dominant behaviors by avoiding the requirement for 
well-structured process models. Edit distance metric values in [66] are set to confidence from-to chart 
threshold (confThr) value. Afterwards, a new alignment approach called CANW-Confidence-aware 

Needleman Wunsch is introduced in [67]. According to CANW, inDel scores are determined with 
respect to the interactions among activities. Hence, these insertion and deletion operations are 
dynamically determined in a context-aware fashion. While, these interactions are figured out by 
confidence metric (confFTC) given at Equation 4.2 and case-based inDel scores are calculated for 
each iteration by this metric. On the other hand, default match (or mismatch) values are set to the 
confidence from-to chart threshold (confThr) value. Figures 6.19 and 6.20 show the total similarity 
scores for Travel Management use case that are measured by CANW and NW approaches 
respectively. 
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Figure 6.19. Total Similarity Score (sim) per CANW Run and Process Alternatives (candi) for Travel 
Management Use Case (X-axis:alignment runID, Y-axis:similarity score). 

 

Figure 6.20. Total Similarity Score (sim) per NW Run and Process Alternatives (candi) for Travel 
Management Use Case (X-axis:alignment runID, Y-axis:similarity score). 

In parallel to Travel Management use case, total, structural and behavioral similarity scores for Loan 
Application use case are measured by Single-Reference Pairwise Alignment runs as shown in Figures 
6.21, 6.22 and 6.23 respectively. Visually, process alternative cand4 is the most similar candidate to 
reference. While structural similarities of process alternatives cand2 and cand3 dominate the similarity 

measurements, the major distinction is the result of behavioral similarities, which are totally negative. 
This negative behavioral similarity scores highlight the mechanism such that, lasagna-like process 
alternatives with limited activity vocabulary are more conservative to the insertion or deletion 
operations that violate the business context. On the other hand, high connectivity and low density 
feature of process alternative cand4 make it possible to evolve the process structure towards the 
reference, since this characteristic lessens the sparsity of the confidence table and tends to generate 
positive inDel scores.  
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Figure 6.21. Total Similarity Score (sim) per Single-Reference Pairwise Alignment Run and Process 
Alternatives (candi) for Loan Application Use Case (X-axis:alignment runID, Y-axis:similarity score). 

 

Figure 6.22. Structural Similarity Score (strSim) per Single-Reference Pairwise Alignment Run and 
Process Alternatives (candi) for Loan Application Use Case (X-axis:alignment runID, Y-axis:structural 
similarity score). 
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Figure 6.23. Behavioral Similarity Score (bhvrSim) per per Single-Reference Pairwise Alignment Run 
and Process Alternatives (candi) for Loan Application Use Case (X-axis:alignment runID, Y-
axis:behavioral similarity score). 

Figures 6.24 and 6.25 show the total similarity scores for Loan Application use case that are measured 
by CANW and NW approaches. As seen in the figures, the value range of similarity scores for these 
prior approaches shrinks to [-4.0, 4.0] interval due to the limitations and incapabilities within prior cost 
functioning such that, confidence metric (confFTC) may provide limited deviations and diversity at 
valuating the edit operations.  

 

Figure 6.24. Total Similarity Score (sim) per CANW Run and Process Alternatives (candi) for Loan 
Application Use Case (X-axis:alignment runID, Y-axis:similarity score). 
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Figure 6.25. Total Similarity Score (sim) per CANW Run and Process Alternatives (candi) for Loan 
Application Use Case (X-axis:alignment runID, Y-axis:similarity score). 

 

6.4.1.1. Intuitive Judgment Based Analysis 

The validation of alignment approaches is based on the comparison of similarity measurements with 
the intuitive judgments of professional process observers specialized on various ERP systems. 
Accordingly, various information retrieval (IR) metrics and recall/precision framework are adapted into 
process similarity measurement. Then we elaborate on the accuracy of these metrics in comparison to 
intuitive judgment based validation. Indeed, handling of these judgments as the ground truth or 
benchmark in process similarity measurement is also preferred in previous studies such as [30, 91]. 
Basically, the intuitive judgments were collected by a questionnaire, at which the process maps of 
reference and candidate process alternatives are listed. 25 process observers (or domain experts with 
different process expertise) visually analyzed and ranked the process alternatives according to the 
similarity to the reference. Then these responses are converted to likert-chart, which are the tables 
summarizing the likelihood rankings of each candidate process alternatives (ci) with respect to the 

reference. Additionally, the likelihood rankings of the process alternatives are also measured according 
to prior NW adaptations. Underlying rankings for Travel Management use case are transformed into 
the likert-charts as shown in Table 6.13. 

Table 6.13. Likert Charts for Intuitive Judgments (IJ) and Alignment Approaches for Travel Management 
Use Case.  Column indexes (e.g. p=1 the most and p=5 the least similar process alternative) denote trial 
numbers for relevant likelihood ranking position p. Weight coefficient holds the average likelihood of 
corresponding process alternative, ci, and rank is the nominal position for ci. 
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According to the rank values in Table 6.13, there emerges a perfect commonality between the intuitive 
judgments and Pairwise Alignment in the first glance. These results are then evaluated under 
information retrieval (IR) related metrics, i.e. cosine similarity and discounted cumulative gain (DCG). In 
order to apply cosine similarity, we priorly construct likert-chart vectors that convert the results at the 
likert-charts to vector format. 

Definition (likert-chart vectors). Let LCx be a likert-chart of alignment approach x holding relative 
rankings of each process alternative ci. For alignment approach x we define likert-chart vector lcx

 
such 

that, term weight lcxi is the weight coefficient of process alternative ci at likert-chart LCx.  Table 6.14 
summarizes the likert-chart vectors per alignment approaches. 

Table 6.14. Likert-Chart Vectors (lcx) per Alignment Approach and Term Weights (lcxi) for Travel 

Management Use Case. 

 

Definition (cosine similarity). Let lcx and lcy be the corresponding likert-chart vectors for alignment 
approaches x and y respectively. Cosine similarity between approaches x and y denoted by 
cosSim(x,y) is cosine of the angle between those likert-chart vectors, lcx and lcy as given in Equation 
6.3. The value of cosSim(x,y) ranges from –1 (quite distinct) to +1 (equivalent). 
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(6.3) 

According to cosine similarity values given in Figure 6.26, Pairwise Alignment is the most similar 
approach to the intuitive judgments with a similarity value of 0.993.  Likewise, process observers rank 
the process variants according to the similarity insights with the reference process alternative for Loan 
Application use case. Then these rankings and the likelihood rankings of prior NW adaptations are 
converted to the likert chart as given in Table 6.15. 

Table 6.15. Likert Charts for Intuitive Judgments (IJ) and Alignment Approaches for Loan Application 
Use Case.   

 

These results are then evaluated under cosine similarity according the likert-chart vector transformation. 
As shown in Table 6.16, we priorly construct the likert-chart vectors and then apply cosine similarity 
given in Equation 6.3. 



91 

 

Table 6.16. Likert-Chart Vectors (lcx) per Alignment Approach and Term Weights (lcxi) for Loan 
Application Use Case. 

 

According to cosine similarity values given in Figure 6.27, Pairwise Alignment is the most similar 
approach to the intuitive judgments with a 0.98 similarity value.  

As an alternative metric, discounted cumulative gain (DCG) is a popular measure for evaluating the 
information retrieval and related tasks for evaluating web search [100]. It is based on two assumptions:  

 Respectively, higher relevant documents are more practical than the marginally relevant 
document [100]. This relevance is figured by graded relevance given in Equation 6.4.  

 According to logarithmic relation given in Equation 6.5, the usefulness of the relevant 
document is directly proportional to the ranked position [100], i.e. higher i value implies lower 
rank. This is due to the low probability to be examined.  

Firstly, graded relevance (rel) as a metric of usefulness or gain is determined for each process 
alternative (ci) by the weight coefficient values at intuitive judgments likert-chart (LCIJ). In other words, 
intuitive judgments are evaluated as the ground truth. 
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As given in Equation 6.4, graded relevance (relci) is the reciprocal of weight coefficient of process 
alternative ci at intuitive judgments (IJ) likert-chart. Graded relevance values and their distribution 
according to likelihood rankings for Travel Management use case are given in Tables 6.17. 

Table 6.17. Graded Relevance (reli) Values per Intuitive Judgments and Alignment Approach for Travel 
Management Use Case. Alternative orders are determined according to the rank attribute in Table 
6.13. 

 

Definition (discount cumulative gain). DCG does highly relevant process alternatives appearing 

lower at the likelihood ranking tends to be penalized, since the graded relevance value diminishes 
logarithmically proportional to the position i at the ranking [100]. The DCG accumulated for a particular 
alignment approach x is given in Equation 6.5.   

According to DCG values given in Figure 6.26, Pairwise Alignment is the most similar alignment 
approach to the intuitive judgments (IJ) with a 1.442 DCG value (and 1.0 normalized DCG value) for 
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Travel Management use case. Hence, it can be concluded that, Pairwise Alignment approach 
appropriately reflects the perceptions of process observers and there is a significant consistency 
between discount cumulative gain and cosine similarity metrics. 

 

Figure 6.26. Similarity Metrics (cosine similarity, DCG and normalized DCG) per Alignment Approach for 

Travel Management Use Case. Pairwise Alignment challenges prior approaches according to relatively 
higher similarity values. 

Alternatively, graded relevance values and their distribution according to likelihood rankings for Loan 
Application use case are given in Tables 6.18. 

Table 6.18. Graded Relevance (reli) Values per Intuitive Judgments and Alignment Approach for Loan 
Application Use Case. Alternative orders are determined according to the rank attribute in Table 6.15. 

 

DCG given in Equation 6.5 has two advantages compared to other IR metrics. First, DCG allows each 
retrieved document has graded relevance while most traditional ranking measures only focus on binary 
relevance (i.e. relevant or irrelevant). Second, DCG implicates a discount function over the rank while 
other IR metrics uniformly weight all ranking positions. This diminishing value effect is reflected by the 
logarithmic denominator emphasized in Equation 6.5.  

According to DCG values given in Figure 6.27, Pairwise Alignment approach is the most similar 
alignment approach to the intuitive judgments (IJ) with a 0.991 DCG value (and 0.99 normalized DCG 
value) for Loan Application use case. Hence, it can be concluded that; Pairwise Alignment 
appropriately reflects the perceptions of process observers. 
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Figure 6.27. Similarity Metrics (cosine similarity, DCG and normalized DCG) per Alignment Approach for 
Loan Application Use Case. Pairwise Alignment challenges prior approaches according to relatively 
higher similarity values. 

It is also possible to check the quality of the similarity rankings proposed by each alignment approach 
according to the responses of process observers. Similar to [91], two quality metrics are adapted from 
information retrieval domain: recall and precision. 

Definition (recall). Recall quantifies how much of the intuitive judgments (i.e. process alternative 
likelihood rankings, LRIJ) is complied with the rankings of the underlying alignment approach x (LRx). 
Recall metric is similar to fitness in [89]. 

Definition (precision). Precision measures the ratio of the likelihood rankings belonging to the 
alignment approach x (LRx) that finds some correspondence in the intuitive judgments (LRIJ). 

While recall value of alignment approach x for intuitive judgment i, i.e. LRx,i, is the average value 
obtained with respect to m alignment runs, precision value of alignment approach x at alignment run j, 
i.e. LRx,j, is the average value obtained with respect to n intuitive judgments. These metrics are given in 
Equations 6.6 and 6.7 respectively: 
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As shown in Figure 6.28, Pairwise Alignment that is closer to the top-right corner show a good balance 
between recall and precision for Travel Management use case in such a way that, it tends to repeat 
likelihood rankings proposed by process observers, while disregarding uncommon rankings. 
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Figure 6.28. Recall versus Precision Correlation per Alignment Approach for Travel Management Use 
Case. Pairwise Alignment, i.e. the outermost blue series, performs better in terms of 0.602 average 
recall and precision values. On the other hand, the performances of the prior approaches, i.e. CANW 
and NW, are approximately 0.379 and 0.291. 

Alternatively, it is aimed to analyze the correlation between the professional experience of process 
observers and the similarity measurement concern of the approaches. Hence as the experience factor, 
the participants were asked about their professional experience duration at business process modeling 
field and this influence factor is categorized at 4 levels: lead consultant (LC), senior consultant (SC), 
consultant (C) and assistant consultant (AC). When we solely focus on the responses belonging to lead 
(LC) and senior-level (SC) process observers by omitting the responses from less experienced 
participants, there occurs an improvement at precision values such that, average precision value of 
Pairwise Alignment is improved to 0.745 value (23.75% increase) and the discrepancy between 
Pairwise Alignment and prior alignment approaches is extended as shown in Figure 6.29. This 
outcome highlights that the similarity scoring at Pairwise Alignment significantly overlaps with the tacit 
similarity mechanism of expert level process observers.   
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Figure 6.29. Plot of Precision Series per Alignment Approach (after experience factor analysis) for Travel 
Management Use Case. There is a significant consistency between the perceptions of experienced 
process observers and Pairwise Alignment approach such that, average recall (and precision) value of 
the corresponding approach is augmented from 0.602 to 0.745 value after eliminating the responses of 
less-experienced (AC and C-level) participant. 

Similar to Travel Management use case, Pairwise Alignment that is closer to the top-right corner show 
a good balance of recall and precision for Loan Application use case as shown in Figure 6.30. It tends 
to repeat likelihood rankings proposed by the process observers, while disregarding uncommon 
rankings. 

 

Figure 6.30. Recall versus Precision Correlation per Alignment Approach for Loan Application Use 
Case. Pairwise Alignment, i.e. the outermost series, performs better in terms of 0.534 average recall and 
precision values. On the other hand, the performances of the prior approaches, i.e. CANW and NW, are 
approximately 0.42 and 0.305. 



96 

 

In order to analyze whether there is a basic parallelism between the professional experience of process 
observers and similarity measurements, we majorly handle the process similarity ranking responses 
that are belonged to more experienced process observers (i.e. lead or senior-level consultants). When 
the recall/precision framework analysis dataset is reduced due to this omitting, average precision value 
of Pairwise Alignment is improved to 0.748 level and the discrepancy between Pairwise Alignment and 
prior approaches is extended as shown in Figure 6.31. 

 

Figure 6.31. Plot of Precision Series per Alignment Approach (after experience factor analysis) for Loan 
Application Use Case. There is a significant consistency between the perceptions of experienced 
process observers and Pairwise Alignment approach such that, average precision value of the 
corresponding approach is augmented by approximately 40% after eliminating the responses of less-
experienced (AC and C-level) participant. 

Consequently, according to cosine similarity and discount cumulative gain metrics, Single-Reference 
Pairwise Alignment is highly correlated with the perceptions of process observers. According to recall 
and precision framework emphasized in [91], Single-Reference Pairwise Alignment shows a good 
balance according to this framework. Alternatively, there is a strong parallelism between the similarity 
scoring of Single-Reference Pairwise Alignment and the tacit similarity assessment mechanism of 
more experienced process owners due to significant improvement at the average precision value. 

 

6.4.1.2. Comparison with Prior NW Adaptations 

This section introduces the fundamental mechanism that determines the alignment of dominant 
behaviors and similarity scoring proposed in [66, 67]. Trying to estimate the effect of distance functions 
strictly from scores is sometimes insufficient and it might lead to wrong conclusions. To overcome 
these difficulties we propose a metric named semantic similarity, based on relative distances between 

distance functions concept in [57]. Semantic similarity compares the aligned dominant behavior 
sequences and it criticizes the identical pairs (IPs) repeats at these sequences by ignoring the 
similarity score values of these alignment operations.  

Definition (semantic similarity). Let align1 and align2 be two sequence alignments with respect to the 
two alignment approaches A1 and A2. Semantic similarity (semSim) is the ratio of identical pairs (i.e. IP, 
the same pair of activities positions at both alignments) to the total length of alignments, align1 and 
align2. 
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Respectively at Loan Application use case, the process alternatives with higher connectivity 
(connectivity≥1) and lower density (density≤1) features, e.g. reference and cand4, are structurally more 
spaghetti-like. These structural characteristics result in non-sparse confidence tables that are 
conjugated by AND/OR/XOR gateways and this status of confidence tables make the inDel operations 
more feasible and practical in sequence alignment respectively. 

CANW is like the intermediate form at the progress from classical NW adaptation to Pairwise Alignment 
approach. This evolutionary progress emerges an inequality between match and inDel operations at 
confidence enhanced costing function such that, while inDel operations are highly sensitive to business 
context in terms of confidence values, match operation is fixed to the confidence for from-to chart 
threshold (confThr). Consequently, CANW is biased towards matching operation and Pairwise 
Alignment behaves like CANW due to similar inDel costing functions given in Equations 5.8, 5.9 and 
5.10. As a result, behavioral similarity scores dominate the similarity measurements for spaghetti-like 
process alternative, i.e. cand4, as shown in Figure 6.23. Figure 6.32 highlights the semantic similarity 
between alignment approaches in the context of process alternative cand4. 

 

Figure 6.32. Semantic Similarity (semSim) for cand4 at Loan Application Use Case (X-axis:alignment 
runID, Y-axis:semantic similarity score). Semantic similarity between Pairwise Alignment and CANW 
with an average value of 0.967 emphasize a strong overlapping in terms of identical pairs (IP). 

Although process alternative cand4 is one of the most similar process alternatives according to the 
intuitive judgments (IJ) and there is a strong semantic similarity between Pairwise Alignment and 
CANW, this likelihood is not observed in the context of IR-related metrics as shown in Figure 6.27. The 
underlying reason of this contradiction is the nature of semantic similarity such that, this metric is solely 
based on the task label similarity, which measures semantic and syntactic similarity based on various 
string edit distance and morphological analysis. Therefore it ignores magnitude of the similarity scores 
and the nominal likelihood rankings of these alignments. This sounds sensible, as the distribution of 
similarity scores is very much dependent on the balance between the cost function of matching and 
inDel operations.  

Details about Single-Reference Pairwise Alignment (i.e. aligned forms of dominant behavior sequences 
per PA, CANW and NW approaches and similarity scores) are given in Appendix D. 
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6.4.2. Multi-Reference Pairwise Alignment Based Analysis 

Pairwise Alignment is an adaptation of Needleman-Wunsch algorithm, which exploits the similarity 
scores between process alternatives on pairwise basis. While confidence enhanced cost function given 
at Equations 5.4 - 5.10 are also valid for Pairwise Alignment, this technique is performed at only base-
level (level=1). As stated in section 6.1, Pairwise Alignment is performed in two options: single-
reference and multi-reference. In Travel Management and Loan Application use cases, one of the 
process alternatives is fixed as reference and latter alternatives are selected as candidate. On the 
other hand, Multi-Reference Pairwise Sequence Alignment refers to a combinatorial reference 

selection (i.e. 𝐶 (
𝑛
2
)) such that, each process alternative is set as reference once and set as candidate 

for (n -1) times. 

Figures 6.33 - 6.37 show the similarity scores per process alternative as reference for Environment 
Permit Application use case. As seen in Figure 6.36, the representation gap between wabo4 and latter 
process alternatives emphasize the rationale that, wabo4 process alternative tends to behave like a 
singleton that is quite different from other candidates. Additionally, wabo4 is represented as the lowest 
trend at all figures except Figure 6.36. Although such a similarity gap is also valid for wabo1 in Figure 
6.33, wabo1 normalizes this situation by converging to other process alternatives, i.e. wabo2 and 
wabo3, at the following multi-reference alignment runs as shown in Figure 6.34 and 6.35.  Additionally, 
there is a strong commonality between process alternatives wabo2 and wabo3, which results in a 
precipitated process family instantiation at process clustering.   

 

Figure 6.33. Total Similarity Score (simScr) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo1) (X-axis:alignment runID, Y-axis:similarity score). 
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Figure 6.34. Total Similarity Score (simScr) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo2) (X-axis:alignment runID, Y-axis:similarity score). 

 

 

Figure 6.35. Total Similarity Score (simScr) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo3) (X-axis:alignment runID, Y-axis:similarity score). 
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Figure 6.36. Total Similarity Score (simScr) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo4) (X-axis:alignment runID, Y-axis:similarity score). 

 

Figure 6.37. Total Similarity Score (simScr) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo5) (X-axis:alignment runID, Y-axis:similarity score). 

Actually the corresponding similarity scores (simScr) are significantly dependent to the runtime 
configurations for each alignment run, which are: 

 Confidence threshold (confThr) determined at the underlying alignment run 
 Composition of the sequence (i.e. the order of tasks) figured out by the dominant behavior for 

source and target individuals 
 The corresponding confidence table valid for the underlying process alternative and 

alignment run 

There emerges a requirement for the preprocessing step to normalize biased similarity scores and 
convert these values to proper distance attributes before process clustering. As stated in [92], cosine 
similarity is an appropriate measurement to transform the similarity scores and it holds the properties of 
distance metric, i.e. non-negativity, symmetry, zero-value and triangle inequality properties. Hence, the 
cosine of the angle between two Eucledian vectors is not affected by the scalar transformation. In this 
aspect as stated in section 5.2.3, each reference process alternative i is converted to a process variant 
vector pvi

k for each alignment run k, and term weight (pvij
k) constitutes the similarity score (simScr) 

between the underlying process alternatives i and j at alignment run k. 
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Then cosine similarity between the process variant vectors pvi
k and pvj

k is measured as the angle 
between these two n-dimensional process vectors according to Equation 5.11. The value of cosine 
similarity ranges from -1 (quite distinct) to +1 (equivalent). Following the cosine similarity 
transformation, normalized similarity values should be converted into distance metrics, i.e. dist(pvi,pvj). 
Indeed, natural transformation such as dist(pvi,pvj) = 1- cosSim(pvi,pvj) does not guarantee the triangle 

inequality.  As stated in [92], the transformation dist(pvi,pvj)=√1-cosSim(pvi,pvj)
2
 is applied to produce 

distance metric. As a result, each process alternative at an alignment run is converted to an instance 
with 5 numerical (dist_waboi) and 2 categorical type (i.e. runID and reference as target class) 
attributes. Totally 125 instances (25 alignment run x 5 process alternatives) are obtained for 
Environmental Permit Application use case prior to process clustering step. Figure 6.39 exemplifies the 
preprocessing step for alignment run 17. Details about cosine similarity transformation for 
Environmental Permit Application use case are given in Appendix E1. 

Indeed, business process clustering is a practical concept to reengineer the current process models or 
to extract the major commonalities among the process candidates in order to support new process 
designs. While hierarchical clustering (agglomerative or divisive) is applied in [93, 94], IR-based 
multimodal search, DBSCAN and k-Means clustering algorithms are also preferred in [94, 95, 96].  In 
conformance with the prior studies [15, 27, 28] handling Environmental Permit Application use case, 
the number of clusters (numbCluster) is set as 2 and 3 respectively and Expectation Maximization 
(EM), Hierarchical Clustering (HC) and Simple K-Means are applied with various distance functions 
(e.g. manhattan, eucledian and minkowski distance functions) as clustering algorithms. Table 6.19 
summarizes the clustering results. 

According to the clustering content and the number of incorrectly clustered instances with 3 clusters 
(numbCluster=3), all three clustering algorithms return with the exact outcome: while process 
alternatives wabo2, wabo3 and wabo5 are grouped in the same cluster, process alternative wabo1 and 
wabo4 are held at distinct clusters. Respectively, Expectation Maximization and Simple K-Means 
algorithms have a better accuracy than Hierarchical Clustering. As the natural effect of the increase at 
the cluster number, sum of the within distance at Simple K-Means algorithm diminishes by an average 
value of 35%. A similar result is also emphasized in [94] such that, K-Means algorithm does not 
progress the clustering steps upon the prior clustering instances. Hence it results better in clustering in 
terms of intra- and inter-cluster distance metrics than gained with hierarchical algorithm. Additionally, 
the log likelihood value of 2.102 for Expectation Maximization application with 3 clusters signals for a 
better fit to the testing data and it is proposed to choose the model with the largest log likelihood value 
for local maxima [74]. 

As given in Figure 6.38, the instance plots, which visualizes each distinct instance according to the 
distance attributes (dist_waboi), clarifies the clustering mechanism such that, the distinction at 
dist_wabo4 attribute (i.e. peak values at dist_wabo4 column for both plots) signifies the singleton-type 
cluster for process alternative wabo4. This dissociation (or segregation) is partially viable for process 
alternative wabo1. Relatively high average values for dist_wabo1 attribute (i.e. 0.651, 0.611 and 0.596 
for wabo2, wabo3 and wabo5 respectively) hinder any convergence between wabo1 and cluster2 
{wabo2, wabo3, wabo5}. 

The second instance plot handles the intra-cluster distance (or cohesion) for cluster2.  The average 
distance of 0.469 between process alternatives wabo2 and wabo3 highlights a relatively significant 

commonality between corresponding business context. This neighborhood between these two process 
variants can be evaluated as an early convergence at clustering iterations. Additionally, the bold thick 
red and orange lines at the second instance plot also emphasize such an alternative neighborhood 
between process alternatives wabo3 and wabo5 with an average distance of 0.426. 



102 

 

 

Figure 6.38. Instance Plots for {wabo1,wabo4} and {wabo2, wabo3, wabo5} Process Clusters for 
Environmental Permit Application Use Case (X-axis:distance attributeID, Y-axis:distance value). 
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Figure 6.39. Example Preprocessing Step at Alignment Run 17 for Environmental Permit Application Use Case. Preprocessing step consists of two 
operations: cosine similarity transformation and distance metric conversion. As a result, each process alternative at a single alignment run is turned into an 
instance consisting of 5 numeric distance attributes and 2 categorical attributes (i.e. runID and reference as target class).  
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Table 6.19. Process Clustering Results for Environmental Permit Application Use Case. According to the clustering content and the number of incorrectly 
clustered instances with 3 clusters (numbCluster), all three clustering algorithms return with the exact outcome: while process alternatives wabo2, wabo3 and 
wabo5 are grouped in the same cluster, process alternative wabo1 and wabo4 are held at distinct clusters. 
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Likewise in Environmental Permit Application use case, Multi-Reference Pairwise Alignment comes up 
with 5 similarity score graphs for Period-End Closing use case given in Figures 6.40 - 6.44. As shown 
in Figures 6.41 and 6.43, although there happens a solid discrepancy between process alternatives 
client2 and client4, the lack of some Product Costing and Material Ledger functionalities may result in a 

posterior neighborhood for these process alternatives. Alternatively, there is a significant correlation 
between process alternatives client1 and client3, which shows similar process behavior and responses 
to the runtime configurations that are characterized by process discovery and GA parameters. The 
secondary positioning of these process alternatives in Figures 6.40 and 6.42 strengthens this outcome, 
while the primary position is always addressed to the reference itself. Respectively, the relative position 
of client5 shown in Figure 6.44 implies a posterior grouping with client1 and client3 at the following 
clustering iterations. 

 

Figure 6.40. Total Similarity Score (simScr) per Pairwise Alignment Run for Period-End Closing Use 
case (reference:client1) (X-axis:alignment runID, Y-axis:similarity score). 

 
Figure 6.41. Total Similarity Score (simScr) per Pairwise Alignment Run for Period-End Closing Use 
case (reference:client2) (X-axis:alignment runID, Y-axis:similarity score). 
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Figure 6.42. Total Similarity Score (simScr) per Pairwise Alignment Run for Period-End Closing Use 
case (reference:client3) (X-axis:alignment runID, Y-axis:similarity score). 

 
Figure 6.43. Total Similarity Score (simScr) per Pairwise Alignment Run for Period-End Closing Use 
case (reference:client4) (X-axis:alignment runID, Y-axis:similarity score). 
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Figure 6.44. Total Similarity Score (simScr) per Pairwise Alignment Run for Period-End Closing Use 
Case (reference:client5) (X-axis:alignment runID, Y-axis:similarity score). 

As stated above, the similarity scores cannot be used as a direct indicator for process clustering, since 
these values are biased towards alignment runtime configurations, the context of the sequences 
representing dominant behavior and the activity interactions held at confidence table. Therefore the 
similarity scores should be normalized and converted into the distance attributes (i.e. dist_clienti). 

According to [92, 93], cosine similarity is an appropriate metric to normalize the similarity scores such 
that, each process alternative is turned into process variant vector (pvi

k) in which term weights 
correspond the similarity scores. As a following step, the transformation 

dist(pvi,pvj)=√
1
2⁄ (1-cosSim(pvi,pvj)) given in [92] is applied to convert the cosine similarity into 

distance metric. Consequently, each process variant vector is turned into an instance with 5 numerical 
(e.g. dist_clienti) and 2 categorical attributes (i.e. runID and reference as target class). Figure 6.46 

exemplifies the underlying similarity score transformation steps at Period-End Closing use case and 
details about cosine similarity transformation are given in Appendix E1. 

Afterwards, process alternatives are grouped according to the distance attributes (dist_clienti) to 
determine the process families. The results of process clustering can be used to derive generic 
process models by analyzing common patterns in each process family [93]. Indeed, clustering real-life 
business processes with respect to business category is also performed in [49]. Respectively, the 
number of clusters (numbCluster) is determined as 2 due to implicitly valid industry categories for 
Period-End Closing use case (i.e. manufacturing and service industries). Clustering run with 
numbCluster=3 setting is also performed to analyze the prior clustering iterations. According to this 
numbCluster settings, Expectation Maximization (EM), Hierarchical Clustering (HC) and Simple K-
Means clustering algorithms are applied with various distance functions (e.g. manhattan, eucledian and 
minkowski distance functions) as shown in Table 6.20.  

Clustering runs with numbCluster=2 setting have exactly the same outcome: while process alternatives 
client1, client3 and client5 are grouped in the same cluster, process alternatives client2 and client4 are 
assigned to the other cluster. According to the number of incorrectly clustered instances, simple K-
Means and EM clustering algorithms have a better accuracy than hierarchical clustering. This is 
potentially due to the myopic clustering strategy of hierarchical clustering which depends on the 
previously found sub-clusters. On the other hand, EM and simple K-Means are randomized algorithms 
and their runs are undeterministic, i.e. possibly resulting in several different clustering runs for the 
same data set and the number of clusters [94]. In the case of clustering run with numbCluster=3 
setting, the newly created cluster is useless for HC (cluster0) such that, no appropriate label can be 
assigned to this cluster. Unlikely, EM prefers to assign process alternative client5 to the new cluster 
(cluster1), and simple K-Means prefers to detach the prior cluster {client2,client4} into two singleton 
clusters. 
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According to the instance plots given in Figure 6.45, the peak values concentrated at around [0.65, 
0.85] interval highlights the significant segregation between {client2, client4} and {client1, client3, 
client5}. The average distance of value 0.449 between the process alternatives client2 and client4 

implies a loose cohesion between the corresponding business contexts. Hence this may refer to a late 
convergence for these process variants.  On the other hand, the thickness of red and blue lines at 
dist_client1 and dist_client3 attributes at the second instance plot (with an average distance of 0.27) 
emphasizes a relatively stronger commonality between the process alternatives client1 and client3. 
Correspondingly, process alternative cilent5 converges to process cluster {client1, client3} at the later 
clustering iterations. 

 

Figure 6.45. Instance Plots for {client2, client4} and {client1, client3, client5} for Period-End Closing 
Use Case (X-axis:distance attributeID, Y-axis:distance value). 

Details about Multi-Reference Pairwise Alignment for Environmental Permit Application and Period-End 
Closing use cases (i.e. aligned forms of dominant behavior sequences per reference selection and 
similarity scores) are given in Appendix E2. 
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Figure 6.46. Example Preprocessing Step at Alignment Run 1 for Period-End Closing Use Case. Preprocessing step consists of two operations: cosine 
similarity transformation and distance metric conversion. As a result, each process alternative at a single alignment run is turned into an instance consisting of 
n numeric distance attributes and 2 categorical attributes (i.e. runID and reference as target class).  
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Table 6.20. Process Clustering Results for Period-End Closing Use Case. While process alternatives client1, client3 and client5 are grouped in the same 
cluster, process alternatives client2 and client4 are assigned to the other cluster. According to the number of incorrectly clustered instances, simple K-Means 
and EM clustering algorithms have a better accuracy than HC. 
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6.4.3. Multi-Sequence Alignment Based Analysis 

 

6.4.3.1. Confidence Enhanced Sequence Alignment Analysis 

As stated in section 5.2.2, Multi-Sequence Alignment is a progressive alignment technique that utilizes 
a confidence enhanced costing function based on Equations 5.4 - 5.10 according to the progressive 
fashion and constructs the process families depicting the commonalities and discrepancies between 
the corresponding process alternatives. These cluster contents are illustrated by the process family 
tree which is the hierarchical arrangement of the process clusters. 

In order to analyze the effect of confidence enhanced costing function, that dynamically determines the 
cost of matching or inDel (insertion/deletion) edit operations according to the confidence values that 
reflect the business rules, alignment mode parameter is designed at the Confidence-Enhanced Multi-
Sequence Alignment application. This parameter has three settings: 

̶ Confidence Enhanced SA (sequence alignment). Matching and inDel operations are 

dynamically valuated by the corresponding element, whether it conforms the business rules 
that are figured out by the confidence values. Respectively, this mode applies the costing 
function given as Equations 5.4-5.10. 

̶ Classical NW (Needleman Wunsch). While matching operation is denoted by confidence 
threshold (+confThr) default value, mismatching or inDel operations are penalized by –confThr 
value. In other words, classical NW mode just applies the activity label similarity proposed in 
[66]. This label similarity between activities is computed from the activity labels using basic 
atomic syntactical comparison (the same or different). 

̶ Sum-of-Pairs (SP). SP is one of the most popular scoring mechanisms for the multiple 
sequence alignment of genomic sequences and it is also applied in process mining. In this 
technique, score for multi-sequence alignment of N sequences is calculated as the summation 
of the scores of all N˟(N-1)/2 ordinary pairwise alignments of each pair of input sequences of 
the original candidate multi-sequence alignment [21, 62, 84, 97]. 

The menu bar for alignment mode parameter at Confidence Enhanced Multi-Sequence Alignment 
application is shown in Figure 6.47. The effect of sum-of-pairs alignment mode is specifically criticized 
in Section 6.4.3.2. 

 

Figure 6.47. Alignment Mode for ConfEnhMSA (Confidence Enhanced Multi-Sequence Alignment) 
Application.  

Multi-Sequence Alignment is distinctly performed for Environmental Permit Application use case with 
these two alignment modes and process family tree is analyzed at cutting level level=3 for all 25 

alignment runs. The histogram given in Figure 6.48 summarizes the most frequent cluster contents for 
each alignment mode. Since classical NW mode just handles the activity label similarity and valuates 
the alignment operations on an atomic similarity scale, wabo1 and wabo2, i.e. the process alternatives 
modeled by more complex and deeper process maps with higher connectivity, are assigned to distinct 
singleton clusters for 18 and 14 alignment runs respectively. Moreover, {wabo3, wabo4, wabo5}, 
{wabo3, wabo5}, {wabo4} and {wabo1, wabo2} are other frequent cluster contents. On the other hand, 
confidence enhanced SA mode assigns process alternative wabo4 to a singleton cluster for 22 runs. 
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{wabo2, wabo3}, {wabo1, wabo5}, {wabo1, wabo3, wabo5} and {wabo1} constitute other frequent 
cluster contents. This outcome is respectively in parallel with Multi-Reference Pairwise Alignment. 
Figure 6.49 summarizes the range of process family tree topologies obtained throughout all alignment 
runs. Figures 6.50 and 6.51 depict the most frequent process family tree instances per alignment 
mode. 

 

Figure 6.48. Cluster Content Frequencies per Alignment Mode for Environmental Permit Application 
Use Case. 

As stated in section 6.4.2, the similarity scores are transformed into cosine similarity, in which 
cosSim(waboi,waboj)=1.0 implies a perfect match between the input process alternatives, waboi and 
waboj. According to Figure 6.52, when the alignment runs that are handled in detailed at the alignment 
matrices given in Tables 6.27 and 6.28 are focused, it is realized that cosSim(wabo2,wabo3) 
outperforms the average cosine similarity. Hence this strong commonality enforces the process 
alternatives wabo2 and wabo3 to instantiate the first cluster cluster0 at level=2 as shown in Figure 
6.50. Due to the increase at the distance between the centroid of cluster0 and the instances belonged 
to wabo1 and wabo5, process alternatives wabo1 and wabo5 are merged and instantiate the second 
cluster cluster1 at the next level. Actually the outlier-like behavior of process alternative wabo4 also 
affects these segregations at Multi-Sequence Alignment approach with confidence enhanced SA 
mode.  

Alternatively in order to interpret the mechanism of confidence enhanced cost functioning, the length 
and similarity score distributions are also analyzed for the root node of process family trees given in 
Figures 6.50 and 6.51. Since matching and inDel edit operations are scored by +/-confThr default 
values, total similarity score for Multi-Sequence Alignment with classical NW mode is staggered at [-4, -
1] interval as shown in Figure 6.53. 
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Figure 6.49. Range for Process Family Tree Topologies and Process Family Tree Frequency per Alignment Mode for Environmental Permit Application Use 
Case. Due to the runtime configuration (i.e. sequence content of dominant behavior and confidence threshold) and confidence values, each alignment run 
generates a process family tree that is unique or similar with the previous trees. Respectively, PT10 for confidence enhanced SA and PT16 for classical NW 
mode are the most frequent process family tree topologies.  
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Figure 6.50. Process Family Tree Instance for Multi-Sequence Alignment with Confidence Enhanced SA Mode at Environmental Permit Application Use case. 
At the cutting level (level=3), the clusters {wabo2, wabo3}, {wabo1, wabo5} and {wabo4} are instantiated. The underlying process tree topology is shown as 
PT10 in Figure 6.49. 

 

Figure 6.51. Process Family Tree Instance for Multi-Sequence Alignment with Classical NW Mode at Environmental Permit Application Use case. At the 
cutting level (level=3), the clusters {wabo3, wabo4, wabo5}, {wabo1} and {wabo2} are instantiated. The underlying process tree topology is shown as PT16 in 
Figure 6.49. 
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Since confidence threshold and the content of dominant behavior sequences are slightly altered 
throughout the alignment runs, there happens a steady-state phase after alignment run 7 for classical 
NW mode. On the other hand, confidence enhanced SA mode implies a more sensitive alignment 
costing with respect to significant fluctuations at similarity values as shown in Figure 6.53. 

 

Figure 6.52. Cosine Similarity Scores for Process Families {wabo2, wabo3} and {wabo1, wabo5} at 
Environmental Permit Application Use Case (X-axis:alignment runID, Y-axis:cosine similarity score). 

 
Figure 6.53. Total Similarity Scores per Alignment Mode for Environmental Permit Application Use 
Case (X-axis:alignment runID, Y-axis:similarity score). The confidence-aware dynamic cost functioning 
feature of confidence enhanced SA mode results in a wider range for similarity scores. 

Figure 6.54 highlights the rationale that Multi-Sequence Alignment with classical NW mode prefers the 
matching rather than the inDel edit operation with an average length of 19 units. Hence classical NW 
mode is enforced for mismatching and totally penalized due to the negative structural similarity as 
shown in Figure 6.55. Moreover, since classical NW mode always assigns the gap penalty of –confThr 
to the inDel edit operation, the behavioral similarity scores are almost stabilized at approximately -1.0 
level as shown in Figure 6.56. Controversially, positive structural similarity obtained at the alignments 
with confidence enhanced SA mode highlights the fact that, activity substitutions are encouraged to be 
replaced according to the substantive business knowledge. While this mode tends to highly penalize 
the inDel edit operations that contradict with the business context, approximately 52% of all alignment 
runs have a positive behavioral similarity scores as shown in Figure 6.56. 
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Figure 6.54. Alignment Length per Alignment Mode for Environmental Permit Application Use Case (X-
axis:alignment runID, Y-axis:alignment length). Classical NW mode has some limitations in reflecting 
the functional validity by assigning default +/-confThr value to matching and inDel operations. Hence it 
tends to apply matching operations and this implies relatively shorter alignments at the root node of 
process family tree. 

 

Figure 6.55. Structural Similarity Scores per Alignment Mode for Environmental Permit Application Use 
Case (X-axis:alignment runID, Y-axis:structural similarity score). 
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Figure 6.56. Behavioral Similarity Scores per Alignment Mode for Environmental Permit Application 
Use Case (X-axis:alignment runID, Y-axis:behavioral similarity score). 

Alternatively, Multi-Sequence Alignment is also distinctly performed for Period-End Closing use case 
with confidence enhanced SA and classical NW alignment modes. Due to valid business categorization 
for the corresponding use case (i.e. two distinct business categories as manufacturing and service), 
number of clusters (numbCluster) parameter is set as 2 and  the process family tree instances are 
analyzed at cutting level level=4 for all 25 alignment runs. Histogram given in Figure 6.57 summarizes 
the most frequent cluster contents such that, two distinct alignment modes have a consensus on 
{client2, client4} and {client1, client3, client5} process clustering. In fact, such an industry-based 

process clustering highlights the rationale that, industry level business requirements dominate and 
delimit the software component activations; therefore reference business models and the set of valid 
activities are determined according to these software components. Additionally, this clustering outcome 
is consistent with Multi-Reference Pairwise Alignment.  

In order to interpret the effect of confidence enhanced costing function and the hierarchical clustering 
mechanism (e.g. the topology and the branching order at process tree), it is also considered to analyze 
the cluster contents for numbCluster=3 setting as shown in Figure 6.58. While classical NW mode 
prefers to instantiate the clusters {client2, client4} and {client1, client3}, as an alternative confidence 
enhanced SA mode initially considers the process cluster {client1, client3, client5} with two singleton 
clusters for process alternatives client2 and client4 at level=3. This is due to strong distinction between 

the business context of the corresponding process alternatives in service industry, while confidence 
enhanced SA mode propagates the merge of process alternatives client2 and client4 to later clustering 
iterations because of weak commonalities between the corresponding business requirements, classical 
NW mode solely determines the activity label similarities to minimize the gap penalties (or negative 
behavioral similarities) due to improper inDel operations. Figure 6.60 summarizes the range of process 
family tree topologies obtained throughout all alignment runs and the frequencies of the corresponding 
process family trees according to the alignment mode. Figures 6.61 and 6.62 depict the most frequent 
process family tree instances per alignment mode. 
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Figure 6.57. Cluster Content Frequencies per Alignment Mode for Period-End Closing Use Case 
(numbCluster=2). 

 

Figure 6.58. Cluster Content Frequencies per Alignment Mode for Period-End Closing Use case 
(numbCluster=3). 

Likewise in Environmental Permit Application use case, it is better to visualize the cosine similarity 
measurements in order to interpret the mechanism of costing function at Multi-Sequence Alignment. 
These scores are used as the metric to transform the similarity scores that are highly correlated to the 
confidence threshold and valid confidence table at the corresponding alignment run. According to 
Figure 6.59, cosSim(client1,client3) is quite higher than average cosine similarity and other candidate 
pairs. Hence underlying significant relation enforces the process alternatives client1 and client3 to 
instantiate the first cluster cluster0 at level=2. Indeed, this process clustering is consistent according to 
the variety of SAP/CO components that perfectly match for these two process alternatives. Although 
the instantiation of cluster0 increases the average distance between the centroid of cluster0 and 
process alternative client5, there happens a late convergence of client5 to cluster0 at the following 
level (level=3). Finally, process alternatives operating at service industry (i.e. client2 and client4) are 
merged as cluster1 at level=4.   
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Figure 6.59. Cosine Similarity Scores for Process Families {client1, client3}, {client3, client5} and 
{client2, client4} at Period-End Closing Use Case (X-axis:alignment runID, Y-axis:cosine similarity 
score). 

As an alternative analysis, the characteristics of the root node at the process family tree are interpreted 

to evaluate the effect of business context-aware costing function. As shown in Figure 6.63, both 
alignment modes are conservative with respect to the matching edit operation such that, confidence 
enhanced SA mode often prefers the matching rather than inDel operation with an average length of 51 
units. This is due to the fact that; there is a significant behavioral discrepancy based on the business 
context between the manufacturing and service industries. For instance, insertion of product costing 
(PC) or material ledger (ML) related activities into service-type process alternatives’ sequence are 
discouraged by highly negative inDel costs given in Equations 5.9 and 5.10. Hence the substitution of 
uncorrelated or contrasting elements is highly penalized, while substitute activities are encouraged to 
be replaced according to substantive business knowledge. As a result, confidence enhanced SA mode 
tends to call matching and has relatively higher structural similarity than behavioral similarity as shown 
in Figures 6.64 and 6.65.  

Likewise, classical NW mode is specialized on matching due to the gap penalty assigned by inDel edit 
operation. Hence while structural similarity scores are damped by indispensable mismatching 
operations, behavioral similarity is stabilized at approximately -5.0 level, which is relatively better than 
the behavioral similarity scores obtained by confidence enhanced SA mode. Consequently, total 
similarity scores of classical NW mode are stabilized at -5.0 level as shown in Figure 6.66.  
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Figure 6.60. Range for Process Family Tree Topologies and Process Family Tree Frequency per Alignment Mode for Period-End Closing Use Case. 
Respectively, PT4 for confidence enhanced SA and PT3 for classical NW mode are the most frequent process family tree topologies. Because of strict 

discrepancies between the business requirements of the corresponding manufacturing and service industries, the range of process family trees is shrunk with 
respect to the range in Environmental Permit Application use case given in Figure 6.49. 
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Figure 6.61. Process Family Tree Instance for Multi-Sequence Alignment with Confidence Enhanced SA Mode at Period-End Closing Use Case. At the cutting 
level (level=4), the clusters {client2, client4} and {client1, client3, client5} are instantiated. The underlying process family tree topology is shown as PT4 in 
Figure 6.60. 
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Figure 6.62. Process Family Tree Instance for Multi-Sequence Alignment with Confidence Enhanced SA Mode at Period-End Closing Use Case. At the cutting 
level (level=4), the clusters {client2, client4} and {client1, client3, client5} are instantiated. The underlying process family tree topology is shown as PT3 in 
Figure 6.60. 
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Figure 6.63. Alignment Length per Alignment Mode for Period-End Closing Use Case (X-axis:alignment 
runID, Y-axis:alignment length). Due to the limitations of confidence-enhanced costing function that 

highly penalizes the insertion and substitution of uncorrelated or contrasting elements, confidence 
enhanced SA mode prefers the matching operation rather than inDel. 

 

Figure 6.64. Structural Similarity Scores per Alignment Mode for Period-End Closing Use Case (X-
axis:alignment runID, Y-axis:similarity score). 
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Figure 6.65. Behavioral Similarity Scores per Alignment Mode for Period-End Closing Use Case (X-
axis:alignment runID, Y-axis:behavioral similarity score). 

 

 
Figure 6.66. Total Similarity Scores per Alignment Mode for Period-End Closing Use Case (X-
axis:alignment runID, Y-axis:similarity score). 

Sample alignment run list and process tree outputs for alignment run 21 at Environmental Permit 
Application use case are given in Appendix F. 

 

6.4.3.2. Comparison with Prior Cost Functions 

As stated in Section 5.2, sequence alignment is a standard technique in bioinformatics domain for 
visualizing the correlations between the regions in a set of evolutionary-related structures. While the 
similarity among these structures can be determined by pairwise alignment, there is a fundamental 
requirement for multi-sequence alignment. Major reason is that pairwise alignment is insufficient to 
pinpoint the conserved regions among the sequences [22]. Adapting the definition of cost function to 
multi-sequence alignment affords various possibilities. One of the most popular scoring mechanisms 
for multi-sequence alignment is the sum-of-pairs (SP), which refers to the following calculation such 
that, in the case of multi-sequence alignment for N sequences, the multiple alignment score is the 
summation of the scores of all N˟(N-1)/2 ordinary pairwise alignments of each pair of input sequences 
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(seqi’s) at the original candidate multi-sequence alignment [21, 62, 84, 97]. The sum-of-pairs score of 
the multiple sequence alignment A is defined as Equation 6.9: 

 ji

nji,1

SP seqseqalignmentAscr ,)( 



 (6.9) 

In addition to the standard definition of sum-of-pairs given in [98], an arbitrary weight function w can be 
assigned to each pairwise alignment score score(seqi,seqj). Hence this form of sum-of-pairs is called 
weighted sum-of-pairs [99]. In the context of this analysis, it is aimed to compare the performance of 
confidence enhanced costing function with sum-of-pairs in terms of clustering quality metrics, i.e. inter- 
and intra-cluster distance and silhouette measure. 

Multi-Sequence Alignment with sum-of-pairs cost function is performed for Environmental Permit 
Application use case at cutting level level=3 for all 25 alignment runs. As shown in Figure 6.67, there is 
a major parallelism about cluster content with confidence enhanced SA mode such that, sum-of-pairs 
cost function prefers to assign process alternatives wabo4, wabo2 and partially wabo1 to singleton 
clusters. Additionally, {wabo1, wabo3, wabo5}, {wabo1, wabo5} and {wabo2, wabo3} constitute other 

frequent cluster contents. According to Figure 6.68, four additional process family tree topologies (i.e. 
process trees PT24-PT27) are instantiated with lower frequencies. Unlike to confidence enhanced SA 
mode, sum-of-pairs prefers to detach process alternative wabo2 from the cluster {wabo2, wabo3} as 
shown at process tree PT10 and to construct a singleton cluster for wabo2 as process tree PT1. This 
content shift lowers the frequency of process tree topology PT10 and initiates the other cluster {wabo1, 
wabo5} to merge with the process alternative wabo3. Figure 6.69 depicts the most frequent process 
family tree instance for sum-of-pairs mode. 

 

Figure 6.67. Cluster Content Frequencies per Alignment Mode for Environmental Permit Application 
Use Case. 
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Figure 6.68. Range for Process Family Tree Topologies and Process Family Tree Frequency Obtained by Sum-of-Pairs Mode for Environmental Permit 
Application Use Case. According to sum-of-pairs, relatively strong relation between the process alternatives wabo2 and wabo3 is canceled and this action 
makes wabo3 to combine with the prior cluster {wabo1, wabo5}.  
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Figure 6.69. Process Family Tree Instance for Multi-Sequence Alignment with Sum-of-Pairs Mode at Environmental Permit Application Use Case. At the 
cutting level (level=3), the clusters {wabo2, wabo3}, {wabo1, wabo5} and {wabo4} are instantiated. The underlying process tree topology is shown as PT1 in 
Figure 6.68. 
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Alternatively, the cluster contents at various predefined cutting levels (i.e. level=3 and level=4) and 

process family tree topologies with respect to sum-of-pairs mode are also evaluated for Period-End 
Closing use case. As shown at the histogram given in Figure 6.70, due to the industry level business 
requirements, it enforces the instances of {client2, client4} and {client1, client3, client5} process 

clustering according to sum-of-pairs mode. This implies a consensus with prior alignment modes. But 
according to the cluster contents for numbCluster=3 setting as shown in Figure 6.71, sum-of-pairs 
mode deviates from confidence enhanced SA mode by shifting towards the cluster contents {client2, 
client4}, client5 and {client1, client3} instead of client2, client4 and {client1, client3, client5} process 

clusters. This tendency highlights the rationale, according to sum-of-pairs mode, the cohesion between 
the process alternatives client2 and client4 is relatively stronger than the relation between client5 and 
the prior cluster {client1, client3}. Hence sum-of-pairs mode prefers to assign process alternative 
client5 to a singleton cluster rather than client4 as occurred for confidence enhanced SA mode. 
Actually, this loose coupling among the process alternative client5 and the cluster {client1, client3} is 
also emphasized by Multi-Reference Pairwise Alignment technique. 

 

Figure 6.70. Cluster Content Frequencies per Alignment Mode for Period-End Closing Use Case 
(numbCluster=2). 

 

Figure 6.71. Cluster Content Frequencies per Alignment Mode for Period-End Closing Use Case 
(numbCluster=3). 
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Figure 6.72. Range for Process Family Tree Topologies and Process Family Tree Frequency Obtained by Sum-of-Pairs Mode for Period End Closing Use 
Case. 
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As shown in Figure 6.72, the restriction at industry-level business requirements and SAP/CO 
component differentiation delimit the generation of new process family tree topologies in a such way 
that, only two new process trees (i.e. process trees PT16 and PT17) with lower frequencies are 
generated by sum-of-pairs mode. The shrinkage at the frequency of PT4 and the increase at the 
frequency of PT3 can be explained by the tendency of sum-of-pairs mode towards the late 
convergence of client5 to the coherent cluster {client1, client3} and sum-of-pairs mode tends to 
construct alternative process family tree topologies including the singleton cluster of client5 such as 
process trees PT1, PT11, PT16 and PT17.  While there is a clear difference between confidence 
enhanced SA and sum-of-pairs modes about the cluster contents at especially cutting level level=3, 
there happens a consensus between these alignment modes about the instance of the most frequent 
process family tree given in Figures 6.61.   

In addition to visualization based on cluster content and process family tree topologies, two distance 
metrics are adapted to process similarity measurement in order to interpret the quality of process 
clustering. These metrics aim to distinctly measure how similar the process variant to its neighboring 
candidates that are assigned to the same process cluster, compared to other process clusters. 

Definition (inter-cluster distance). Inter-cluster distance is the normalized form of the inter-cluster 
similarity, which measures the average cosine similarity between the process clusters, Ci and Cj, which 
are instantiated at the cutting level l of the process family tree, and exists at the cluster range set CN. 
Process cluster vector may constitute of one or more process variant vectors introduced in Section 
5.2.3 such that, ci is a process cluster vector holding the similarity score among the all candidate 
process cluster vector cj’s instantiated at the cutting level l and exists at the cluster range set CN. The 
term weight j of the process cluster vector ci (cij) is the similarity score obtained by aligning the 
corresponding process clusters ci and cj. Technically, inter-cluster distance refers to the coupling 
between the corresponding process clusters as given in Equation 6.10. 
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Definition (intra-cluster distance). Intra-cluster distance is the normalized form of the intra-cluster 

similarity, which measures the average cosine similarity between the base-level (level=1) process 
variants, pva and pvb, that are assigned to the same process cluster ci. The corresponding process 
cluster should be non-singleton type cluster at the cluster range set CN. Process variant vector 
notation is directly applied for the corresponding process variants as introduced in section 5.2.3, and 
the cosine of the angle between the corresponding process variant vectors denotes the cohesion 
among the process variants as given in Equation 6.11. 
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Figure 6.73 depicts a sample process cluster similarity and distance measurement for an alignment run 
that instantiates process tree PT10 at Environmental Permit Application use case. In the context of 
inter-cluster distance, cosine similarity is calculated according to the similarity scores obtained by 
pairwise alignment among all process clusters, i.e. cluster0, cluster1 and cluster2. At intra-cluster 
distance measurement, the pairwise alignments among the base-level process variants at the non-
singleton process clusters (i.e. cluster0 and cluster1) are used as the baseline. 

 



131 

 

 

Figure 6.73. A Sample Process Cluster Similarity and Distance Measurement for Environmental Permit 
Application Use Case. 

Intuitively, process clustering with higher inter-cluster distance and lower intra-cluster distance refers to 
a good balance at segregating the process alternatives according to their business requirements. As 
shown in Figure 6.74, while intra-cluster distance for both confidence enhanced SA and sum-of-pairs 
modes are staggered at [0.685, 0.692] interval, right-most distribution of the observations belonged to 
confidence enhanced SA mode highlights a better discrepancy among uncommon process clusters at 
Environmental Permit Application use case. 
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Figure 6.74. Cluster Distance Measurement per Alignment Mode for Environmental Permit Application 
Use Case (X-axis:inter-cluster distance value, Y-axis:intra-cluster distance value). The right-most 

distribution of confidence enhanced SA mode signals for a better quality at process cluster 
segregation. 

Respectively, the box-plot and whisker charts given in Figures 6.75 and 6.76 emphasize the 
corresponding mechanism such that, confidence enhanced SA mode shows a relatively normal 
distribution-like behavior with a higher median value than sum-of-pairs mode for inter-cluster distance 
(0.699 versus 0.698) as shown in Figure 6.75. On the other hand, the distributions for intra-cluster 
distance show apparently similar characteristics (e.g. median value and skewness). 

 

Figure 6.75. Box-Plot and Whisker Chart for Inter-Cluster Distance per Alignment Mode for 
Environmental Permit Application Use Case. 
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Figure 6.76. Box-Plot and Whisker Chart for Intra-Cluster Distance per Alignment Mode for 
Environmental Permit Application Use Case. 

In addition to visualization of the distance metrics, dependent t-test is applied for interpreting whether 
there is a significant distinction for the distribution of inter-cluster distance according alignment modes. 
According to the t-value (3.263 versus t0.05,24), the null hypothesis, H0, which states that there is no 
clear distinction between the inter-cluster distance measurements per alignment mode, is rejected and 
the p-value (p < 0.05) strengthens this outcome. Positive t-value implies that; process clustering with 
confidence enhanced SA mode segregates the process families into quite distinct groups within low 
coupling than sum-of-pairs mode. The result of t-test (α=0.05 and CI=95%) is given in Table 6.21.   

Table 6.21. Dependent t-test for Inter-Cluster Distance Measurement for Environmental Permit 
Application Use Case. 

 

Similar to Environmental Permit Application use case, similar visualization and statistical analysis are 
performed for Period End Closing use case. As shown in Figure 6.77, while cohesion due to intra-
cluster distance is staggered at [0.695, 0.705] interval, the right-most observations for confidence 
enhanced SA mode signal for a better performance at segregating the process alternatives at process 
clusters. 
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Figure 6.77. Cluster Distance Measurement per Alignment Mode for Period End Closing Use Case (X-
axis:inter-cluster distance value, Y-axis:intra-cluster distance value). 

As an alternative visualization, the underlying mechanism is also interpreted by box-plot and whisker 
charts given in Figures 6.78 and 6.79. While inter-cluster distance obtained by confidence enhanced 
SA mode has a higher median value (0.709 versus 0.708) and a wider distribution span (with respect to 
quartiles 1-3 and outlier values), intra-cluster distance distributions show similar characteristics 
(median and skewness) except the quartile3 and maximum values. 

 

Figure 6.78. Box-Plot and Whisker Chart for Inter-Cluster Distance per Alignment Mode for Period End 
Closing Use Case. 
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Figure 6.79. Box-Plot and Whisker Chart for Intra-Cluster Distance per Alignment Mode for Period End 
Closing Use Case. 

It is also possible to strengthen the underlying visualization outcomes by statistically analyzing the 
clustering quality in term of inter-cluster distance metric. According to the t-value (5.114 versus t0.05,24) 
and p-value (p < 0.05), the null hypothesis, H0, which states that there is no clear distinction between 

inter-cluster distance measurements per alignment mode, is rejected. Positive t-value emphasizes that 
process clustering performed by confidence enhanced SA mode appropriately segregates the process 
alternatives into quite distinct process families. The result of t-test (α=0.05 and CI=95%) is given in 
Table 6.22.   

Table 6.22. Dependent t-test for Inter-Cluster Distance Measurement for Period End Closing Use 
Case. 

 

While intra- and inter-cluster distance metrics evaluate the quality of process clustering in a dependent 
manner, these distance metrics are adapted and customized to process similarity measurement 
problem domain by cosine similarity and distance normalization. Respectively, there are various 
concepts that combine these inversely correlated metrics and interpret the consistency within the 
process clusters. In this aspect, the silhouette measure argues how similar a process variant is with the 
neighboring variants at the same process cluster compared to candidate clusters. Higher silhouette 
values indicate a coherent process clustering with a low coupling among distinct clusters.     

Definition (silhouette measure). Let inter_cl(i) be the average inter-cluster distance between the 
clusters at alignment run i and intra_cl(i) be the average intra-cluster distance among the process 
alternatives within the same process cluster at alignment run i. Silhouette measure is formulated as 
Equation 6.12: 
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Respectively for Environmental Permit Application use case, silhouette measure of confidence 
enhanced SA mode almost dominates all alignment runs with an average value of 0.51 as shown in 
Figure 6.80 and it has a higher median value within a right-skewed distribution (0.495 versus 0.471) as 
shown in Figure 6.81. Additionally, it is aimed to statistically analyze the performance of this alignment 
mode at process clustering by dependent t-test. According to t-value (2.159 versus t0.05,24) and p-value 
(p < 0.05), the null hypothesis, H0, which states that there is no clear distinction between the silhouette 
measure of the corresponding alignment modes, is rejected. The positive t-value implies that 
confidence enhanced SA mode generates a more compact process clustering with a good balance 
between cohesion and coupling. The result of t-test (α=0.05 and CI=95%) is given in Table 6.23.   

 

Figure 6.80. Silhouette Measure per Alignment Mode for Environmental Permit Application Use Case 
(X-axis:alignment runID, Y-axis:silhouette measure value). 

 

Figure 6.81. Box-Plot and Whisker Chart for Silhouette Measure per Alignment Mode for Environmental 
Permit Application Use Case. 
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Table 6.23. Dependent t-test for Silhouette Measurement for Environmental Permit Application Use 
Case. 

 

 

 

 

 

 

Alternatively, the silhouette measures of the underlying alignment modes are quite analogous at Period 
End Closing use case except the alignment run 5 as shown in Figures 6.82 and 6.83. While median 
values for confidence enhanced SA and sum-of-pairs modes are 0.492 and 0.451 respectively, 
confidence enhanced SA mode has a normal distribution. Respectively, the positive t-value (3.122) 
obtained at dependent t-test highlights the rationale such that, process clustering by confidence 
enhanced SA mode tends to assign the neighboring process alternatives sharing common business 
requirements or rules into the same process families and it segregates distinct process alternatives in a 
better and appropriate way. The result of t-test (α=0.05 and CI=95%) is given in Table 6.24.   

 

Figure 6.82. Silhouette Measure per Alignment Mode for Period End Closing Use Case (X-
axis:alignment runID, Y-axis:silhouette measure value). 
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Figure 6.83. Box-Plot and Whisker Chart for Silhouette Measure per Alignment Mode for Period End 
Closing Use Case. 

Table 6.24. Dependent t-test for Silhouette Measurement for Period End Closing Use Case. 

 

Respectively, sum-of-pairs cost function may turn into an impractical way to handle large sets of 
process alternatives and multi-sequence alignment with this scoring method turns into NP-complete for 
longer sequences. Indeed, total process time at confidence enhanced SA mode is approximately 50% 
shorter than total process time obtained by sum-of-pair mode as shown in Figure 6.84. 
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Figure 6.84. Cumulative Processing Time per Alignment Mode for Period End Closing Use Case (X-
axis:alignment run batch, Y-axis:cumulative processing time). 

Consequently, the clustering results for Multi-Reference Pairwise Alignment, Multi-Sequence Alignment 
with classical NW, sum-of-pairs and confidence enhanced SA modes, prior sum-of-pairs adaptation 
introduced in [21, 62, 84] and two prior results in the literature [27, 28] that handle Environmental 
Permit Application use case are cross-validated in Table 6.25. Multi-Reference Pairwise Alignment is 
consistent with Multi-Sequence Alignment at detecting the outlier-like process alternatives, i.e. 
especially wabo4 and wabo1. Additionally, sum-of-pairs mode tends to generate cross outcomes that 
harmonize the tendency of both Multi-Reference Pairwise Alignment and Multi-Sequence Alignment 
with confidence enhanced SA mode. Although, there is not an exact correlation between the proposed 
approaches and prior studies [27, 28], there happens a consensus on highlighting the commonalities 
between process alternatives wabo3 and wabo5. Moreover, the singleton clustering results of Multi-
Reference Pairwise Alignment and Multi-Sequence Alignment approaches are in parallel with the prior 
studies. 

Table 6.25. Cluster Instances for Multi-Reference Pairwise Sequence Alignment, Multi-Sequence 
Alignment, Prior Sum-of-Pairs Adaptations given in [21, 62, 84] and Prior Studies given in [27, 28] at 
Environmental Permit Application Use Case. Respectively, the first clustering content lines refer to 
relatively stronger results. 
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Similarly, the clustering results for Multi-Reference Pairwise Alignment, Multi-Sequence Alignment with 
classical NW, sum-of-pairs and confidence enhanced SA modes at Period End Closing use case are 
consistent as shown in Table 6.26. 

Table 6.26. Cluster Instances for Multi-Reference Pairwise Sequence Alignment and Multi-Sequence 
Alignment at Period End Closing Use Case. 

 

Consequently, the fundamental motivation of confidence enhanced SA mode is to eliminate the edit 
operations that contradict with the underlying business context: while the substitution of contrasting 
activities and inDel (insertion/deletion) operations of activities with little compatibility for the 
corresponding business rules should be avoided by dynamically determined penalty scores, the tasks 
with complementary business circumstance should be encouraged to be substituted or inserted at 
practical costs.   

Respectively, lasagna-like process variants with sparsely filled confidence table tend to be more 
conservative towards replacement rather than inDel operation that violates the business 
circumstances. This results in higher structural similarity and inhibits the alignment length at moderate 
lower levels.  On the contrary, spaghetti-like process variants with relatively full confidence tables are 
feasible for inDel operations. Alternatively according to silhouette measure, which indicates the balance 
between the intra- and inter-cluster distance, confidence enhanced SA mode instantiates more 
compact process clustering with maximum cohesion and minimum coupling rather than sum-of-pairs 
(SP).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

6.5. Process Configuration Analysis 

Process configuration phase aims to explore the common patterns of activity invocations at process 
alternatives that are assigned into the same process family at sequence alignment phase. The 
common patterns are characterized by two feature sets: identical pairs (IP) and maximal identical pairs 
(maxIP). 

 

6.5.1. Alignment Matrix Visualization and Identical Pair Derivation 

Before deriving the identical pair feature sets for Environmental Permit Application use case, the 
alignments at the process families are distinctly visualized by alignment matrix on alignment run basis. 
These matrices decompose the overlapping regions and deviations, i.e. exceptional behaviors that are 
captured in the regions sparsely filled with the gap symbol (-), and facilitates the interpretation of the 
conserved regions. Basically, each row indicates the aligned sequences belonging to source and target 
individual per alignment run and average coverage measures the ratio of identical pair span to the total 
alignment length. Each column holds the activity labels or the gap symbol (-) assigned by inDel 
operation. 

Tables 6.27 and 6.28 show the process families {wabo2, wabo3} and {wabo1, wabo5} instantiated at 
the process family tree given in Figure 6.50. As also shown in Figure 6.85, there is a strong correlation 
between average coverage and structural similarity such that, if the matching operations, which 
represent substitutive activities encouraging to be replaced according to the business context, 
dominate the underlying alignment run, the structural similarity tends to increase. Similarly, these 
matching operations pinpoint potential commonly-used process constructs among the process 
alternatives. 

Table 6.27. Alignment Matrix for {wabo2, wabo3} Process Family at Environmental Permit Application 
Use Case. Average coverage refers to total span of IPs at the corresponding alignment run. While gap 
symbol (–) is highlighted in red color, identical pairs are grey-shaded. 

 

Table 6.28. Alignment Matrix for {wabo1, wabo5} Process Family at Environmental Permit Application 

Use Case. 
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Figure 6.85. Similarity Scores and Coverage Percentage Correlation Analysis for {wabo2, wabo3} 
Process Family at Environmental Permit Application Use Case (X-axis:alignment runID, Y-
axis:similarity score and coverage percentage). 

As the following step, the conserved regions, which are shared by the process alternatives in the same 
process family, are identified by the feature sets, i.e. identical pairs (IP) and maximal identical pairs 
(maxIP), for Environmental Permit Application use case. These feature sets are also characterized by 
various attributes: order is the length of the underlying identical pairs, and frequency is the repetition of 
the identical pairs over the selected alignment runs. Coverage is the ratio between the order and total 
alignment length.  

Table 6.29 lists all the identical pairs derived at the process families given in Figure 6.50. As the rule of 
thumb, maxIP should never be subsumed as a substring of any other IPs at alignment runs and order 
of the underlying IP should exceed 1-unit limit. Hence all IPs except {AT} and {ATB} are eliminated and 
these two IPs are labeled as maxIP.  

Table 6.29. List of Derived Identical Pairs (IP) for Environmental Permit Application Use case. 

 

Likewise in Environmental Permit Application use case, the alignment matrices are also visualized for 
Period-End Closing use case to facilitate the interpretation of commonalities and deviations among the 
process alternatives at the same process clusters. Table 6.30 shows the Multi-Sequence Alignment 
matrix among the clients that are assigned to manufacturing industry cluster. Especially alignment runs 
that are dominated by maximal identical pairs (maxIPs) with relatively higher frequency and coverage, 
e.g. alignment runs 9, 10, 14, 15, 22, 23, 24 and 25, have relatively higher similarity and structural 
similarity scores. On the other hand, reduction at the coverage of identical pairs (e.g. alignment runs 
18-21) is penalized with negative behavioral similarity scores. This implies that inDel operation of 
alternative activities typically violates strict business rules of Period-End Closing process. Figure 6.86 
depicts this correlation between the structural similarity scores and coverage percentage of all IPs on 
alignment run basis. 
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Figure 6.86. Similarity Scores and Coverage Analysis for Process Family {client1, client3, client5} at 
Period-End Closing Use Case (X-axis:alignment runID, Y-axis:similarity score and coverage 
percentage). 

As shown in Table 6.31, all relevant alignment runs at service industry cluster are dominated by the 
maximal identical pairs. Likewise in manufacturing industry cluster, alignment runs with relatively lower 
coverage (e.g. alignment runs 4–6) result in lower similarity scores as shown in Figure 6.87. Negative 

behavioral similarity scores prove the conservative nature of Period-End Closing process towards inDel 
operation. 
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Table 6.30. Sequence Alignment Matrix for Process Family {client1, client3, client5} at Period-End Closing Use Case. Especially alignment runs dominated by 
maxIPs (e.g. :[)(+, KCLD and ZXU) and average coverage≥0.333 have relatively higher similarity scores stabilized at approximately 60.0 level as shown in 
Figure 6.86.  
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Table 6.31. Sequence Alignment Matrix for Process Family {client2, client4} at Period-End Closing Use 

Case. Diminish at the coverage returns with shrink at total and structural similarity values as shown in 
Figure 6.87. 

 
 

 

Figure 6.87. Similarity Scores and Coverage Analysis for Process Family {client2 ,client4} at Period-
End Closing Use Case (X-axis:alignment runID, Y-axis:similarity score and coverage percentage). 

Table 6.32 summarizes maximal identical pairs (maxIP) feature sets for each process family. 
Especially maxIPs with relative higher frequency and coverage can be interpreted as a significant 
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evidence of common behavior and manifestation of this commonality might indicate functional 
inheritance at the process enactments of organizations in the same process family.  

Table 6.32 Maximal Identical Pairs Feature Sets per Process Family for Period-End Closing Use Case. 

 

 

6.5.2. Configurable Process Modeling 

Common regions that are pinpointed by maxIPs can be conceptualized as abstraction or sub-
processes at higher level of process configurations. The deviations or variations among process 
alternatives are dealt with configurable elements. While applying the corresponding abstraction, two 
quality dimensions should also be taken into consideration: generalization and simplicity. 
Generalization is a desirable feature over observed behavior within a two-sided aspect such that, 
underfitting process model tends to over-generalize the obtained behavior from event logs while 
overfitting ones generate highly-specific outcomes that attempt to explain both distinct deviations and 
low-frequent patterns [23]. Simplicity is another quality dimension which can be enhanced with 
Occam’s Razor.  

As shown in Figure 6.88, the maxIP {STRT, 770, 540} is encapsulated as a sub-process (aka. 
WABO_INIT) at the primitive form of configurable process model. The corresponding process variants, 
i.e. wabo1 and wabo3, are obtained by configuring the generic process model elements. As stated in 

[13], configuration implies the removal of the possibilities and customization of the process according to 
the process-specific business rules. 
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Figure 6.88. Primitive Form of Configurable Process Model for Environmental Permit Application 
Process in {wabo1, wabo5} Process Family. 

Alternatively, Figure 6.89 depicts the configurable process model designated for Period-End Closing 
process devoted to the service industry. While conserved regions, which are pinpointed by maxIP 
feature set, are encapsulated as sub-processes, divergence among client2 and client4 are handled by 
configurable elements (e.g. XOR branching). While the maxIP {KSS2_MNT, KSII_MNT} is renamed as 
SRV_MAINTORD_MANG, {MMRV, MMPV, OKP1} is encapsulated as SRV_PER_CLS. 
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Figure 6.89. Configurable Process Model for Period-End Closing Process in Service Industry. 
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CHAPTER 7 

 

 

CONCLUSION 

 

 

 

7.1. Summary and Concluding Remarks 

 

Organizations executing the same processes at a shared architecture call for a more systematic 
treatment to deal with the variability across these organizations. The paradigm shift at the process-
aware information systems initiates a new era of process mining, called cross-organizational process 
mining. One of the challenging issues in this era is exploiting the commonalities, which act as the 
baseline for configurable process models [11, 15, 16]. Current aspects in process similarity 
measurement are mainly dedicated to model-model similarity measurement which implies the 
adaptations of informational retrieval and graph theory algorithms to semantic, syntactical comparison 
of the task labels and process structures [19, 21]. Unfortunately, these adaptations are inadequate to 
interpret the process behaviors in the context of process structures and task labels. Alternatively, log-
model similarity measurement reflects these confusing process dynamics by instantiating the state 
space or enumerating all possible process traces [17, 20, 50]. While various equivalence notions can 
be scaled to this exhaustive enumeration and reflect the moment of choice at process behavior, the 
atomic true/false response misleads the degree of similarity.  

In this aspect, we aim to develop a cross-organizational process mining framework for extracting the 
similarities among distinct organizations that execute exactly the same business processes. As the 
following step, these organizations are clustered into process families by the adaptations of NW 
algorithms on the basis of log-log similarity measurements. The following results and contributions are 
handled in the context of corresponding phases. 

 

7.1.1. Dominant Behavior Extraction Results and Contributions 

Dominant behavior extraction phase initially derives the exemplary sequence that decodes the 
dominant behavior, which is the most common sequence of behavior captured at the event logs due to 
the repetitive occurrence within or across the process instances with high domain significance. This 
new perspective at process diagnostics simplifies the process similarity measurement by analyzing just 
this extracted common behavior and thereby bypasses the ultimate requirement for apriori reference 
process models. 

As stated in the research questions given in Section 2.4, encapsulating all of the high-order process 
behaviors within a single sequence is seemingly inadequate. Therefore, the inter-dependencies among 
the consecutive activity pairs that share an incorporated business context are traced by confidence 
values. This confidence concept is introduced in [42], then revised as average confidence 
(avgConfFTC) denoted in Equation 5.3.  



150 

 

In order to evaluate the effect of dominant behavior on process discovery performance, two major 
issues (i.e. dealing with incompleteness and further abstraction) are revisited by the conformance 
checker supporting two metrics: completeness and soundness as given in Equations 6.1 and 6.2 
respectively. For the corresponding use cases, high completeness and low soundness at process 
discovery emphasize a good balance with respect to the quality dimensions. In addition to the balance 
among completeness and soundness, we introduce a structural influence factor set in order to analyze 
the understandability of the process models: connectivity, density and average transition length (ATL) 
as given in Section 6.3.1. Respectively, process candidates with higher connectivity and lower density 
tend to generate spaghetti-like process models that are hard to interpret by process observers. 
Therefore this characteristic increases the risk of pruning by confidence/support threshold and results 
in the loss of process behavior at process discovery. Unlike to spaghetti-like process models, lasagna-
like process candidates with lower connectivity and higher density are more robust to the increases at 
confidence threshold parameter. Moreover, lower ATL highlights the mechanism such that, dominant 
behavior tends to encourage compactness by assigning the activity pairs with stronger succession to 
consecutive neighboring positions at the sequence. This outcome initiates mostly straight-line (direct 
successive) transitions at the process discovery as stated in Section 4.1.1. 

Another enhancement at dominant behavior extraction phase is the GA engine adaptation that aims to 
find the dominant behavior with the fittest solution. Unlike to prior brute-force approach introduced in 
[42], three drivers are handled to interpret the performance and robustness of GA engine in Section 
6.3.2: schema application, crossover probability and population size. Indeed, the rationale hindered by 
Holland’s schema theorem is validated by statistical tests, which implies that process discovery runs 
with schema requires less iterations to reach to the population convergence according to the difference 
between the maximal and average fitness scores. On the other hand, the main criticism about schema 
theory is the assumption that ignores the effect of crossover and mutation framework at the genetic 
variation. Alternatively, process discovery with lower crossover probability and limited population size 
tend to behave like myopic local search due to the risk of congesting at local optimal points. On the 
contrary, opposite GA configuration has a better performance in exploring the search space by the 
effect of genetic diversity. Then smaller improvements happen when most individuals become quite 
similar at the following populations.  

 
7.1.2. Sequence Alignment and Process Configuration Results and 

Contributions 

At sequence alignment phase, two adaptations of NW algorithm are employed to measure the degree 
of similarity between the process alternatives. These adaptations, namely Pairwise Alignment and 
Multi-Sequence Alignment, are configured according to three distinct settings: Single- and Multi-
Reference Pairwise Alignment, Multi-Sequence Alignment. 

At Single-Reference Pairwise Alignment, the intuitive judgments in the form of similarity rankings are 
collected by the questionnaires and these rankings are converted to the likert-charts as the ground 
truth. Then various informational retrieval metrics, i.e. cosine similarity and discount cumulative gain, 

are adapted to measure the correlation between the proposed approaches and intuitive judgments. As 
shown in Figures 6.26 and 6.27, Single-Reference Pairwise Alignment is highly correlated with the 
perceptions of process observers better than the prior approaches given in [66, 67]. It is also validated 
the quality of similarity measurements with respect to recall and precision framework emphasized in 

[91]. Respectively, Single-Reference Pairwise Alignment shows a good balance between recall and 
precision with a higher mean value (e.g. 0.602 at Travel Management and 0.534 at Loan Application 
use case) as shown in Figures 6.28 and 6.30. Alternatively, there is a strong positive correlation 
between the scoring of Single-Reference Pairwise Alignment and the tacit similarity assessment 
mechanism of more experienced process observers due to solid improvements at the average 
precision value (i.e. 23.75% improvement for Travel Management and %40 improvement for Loan 
Application use case as shown in Figures 6.29 and 6.31). 

Clustering the process alternatives in multi-organizational environment is also emphasized in process 
mining literature such that, while hierarchical clustering (agglomerative or divisive) is applied in [93, 94], 
IR-based multimodal search, DBSCAN and K-Means clustering algorithms are also preferred in [94, 
95, 96]. Consequently, Expectation Maximization, Hierarchical Clustering and Simple K-Means are 
applied with various distance functions (e.g. Manhattan, Eucledian and Minkowski distance functions) 
at Multi-Reference Pairwise Alignment. According to the clustering results given in Tables 6.19 and 
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6.20, Expectation Maximization and Simple K-Means algorithms have a better accuracy than 
Hierarchical Clustering. This result is consistent with [94] such that, K-Means algorithm does not 
progress the clustering steps upon the prior clustering instances. Hence it results better in clustering in 
terms of intra- and inter-cluster distance metrics than obtained by hierarchical algorithm.  

As the third setting, Multi-Sequence Alignment is implemented in terms of 3 alignment modes: 
confidence enhanced sequence alignment (SA), sum-of-pairs and classical NW. While classical NW 
mode just applies the task label similarity search by syntactically comparing the activities in an atomic 
manner, inDel operation is always penalized by –confThr default value. Because of improper balance 
between the edit operations scoring, classical NW mode behaves conservative towards matching 
operation rather than inDel operation. This tendency results in shorter alignments that have lower 
behavioral similarity scores.   

Controversially, confidence enhanced SA mode dynamically valuates the edit operations by 
confidence-aware costing function based on Equations 5.4 - 5.9 such that, the basic idea of this 
function is to associate the actual frequency of consecutive activity pairs that have common and 
specific business context with expected frequencies and to interpret whether they occur in a dependent 
fashion or not. In the case of significant divergences among the business contexts or industry-level 
requirements, the substitution of contrasting activities are highly penalized, while substitute activities 
are encouraged to be replaced due the likelihood at business context. On the contrary, insertion or 
deletion of activities violating the business conditions is highly penalized by inDel operation. Generally, 
confidence enhanced SA mode tends to prefer matching operation and has relatively higher structural 
similarity scores rather than behavioral similarity. This inhibits the alignment length at moderate lower 
levels. Alternatively, sum-of-pairs mode is the summation of the scores of all possible pairwise 
alignments and this costing function is also priorly adapted in process mining literature [21, 62, 84].  

In addition to visual analysis based on cluster contents, process family tree frequencies and instances, 
two distinct metrics are designed for process similarity measurement: intra- and inter-cluster distance. 
These metrics interpret the quality of process clustering by measuring how similar the process variants 
to its neighboring candidates assigned to the same cluster compared to other clusters. Moreover, these 
two metrics are combined reciprocally within silhouette measure that indicates the balance between the 

cohesion within the cluster and the coupling between the clusters. Respectively, confidence enhanced 
SA mode builds more compact process clustering with maximal cohesion and minimal coupling rather 
than sum-of-pairs mode as shown in Figures 6.81 and 6.83. 

Consequently, Multi-Reference Pairwise Alignment is consistent with Multi-Sequence Alignment at 
detecting the outlier-like process alternatives. Additionally, sum-of-pairs mode tends to generate hybrid 

outcomes that combine the tendency of both Multi-Reference Pairwise Alignment and Multi-Sequence 
Alignment with confidence enhanced SA mode. Moreover, the singleton clustering results of both Multi-
Reference Pairwise Alignment and Multi-Sequence Alignment approaches are in parallel with the 
clustering outcomes obtained at prior studies [27, 28]. 

The contribution of this study can be summarized as follows: 

 Dominant behavior and confidence values provide a log-log similarity measurement which 
relaxes the requirement for the existence of a reference process model. 

 In process mining literature [21, 23, 34, 60, 61, 62], sequence alignment technique has been 
applied to preprocess the event logs prior to process discovery. In this study, sequence 
alignment is adapted to measure the degree of similarity among process alternatives. 

Confidence enhanced cost functioning employed at the NW adaptations appropriately 
eliminates the edit operations that contradict with the underlying business context. While the 
substitution of contrast activities and inDel operations of activities with little compatibility for 
the corresponding business rules are avoided dynamically, the tasks with complementary 
business circumstance are encouraged to be substituted or inserted at practical costs. 

 Respectively, prior process similarity measures, i.e. trace equivalence and bisimulation, aims 
to find out a true/false response rather than the degree of similarity and they handle all 
components of the corresponding process as equally important [30, 31]. On the contrary, 
proposed approach measures the degree of similarity on a continuous scale and it checks the 
balance between the rare active and significant fragments of the process in the context of 
missfiting. 
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 As the business value, the alignments of process alternatives that are assigned to the same 
process family can play a significant role in process configuration such that, conserved 
regions detected by maximal identical pairs (maxIP) with higher frequency and coverage are 

interpreted as an evidence of common behavior and manifestation of these concurrent 
behaviors highlight a functional inheritance at process enactment. Consequently, these 
regions can be refined as the abstractions at the design of configurable process models. 

 As the organizations reach higher maturity levels at BPM applications, they tend to 
accumulate extensive number of reference process models that constitute a valuable asset or 
intellectual property to business process improvement [17, 18]. Process models are mostly 
not created from scratch and the duplication of process models is probable. In this aspect, 
proposed approach can be adapted for process querying to search for the most common 
business processes and avoid potential redundancies at process modeling. 
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7.2. Limitations and Future Work 

 

One of the major functionalities of process-aware information systems is to execute the multiple 
instances of the underlying business process. The motivation of process mining discipline is to discover 
the process behavior from the runtime information of the process instances, assuming that is possible 
to record tasks as events and to assign these events to clearly defined process cycles. In other words, 
it is assumed that the case identifiers exist with process instances in the form of <caseID, eventID> 
event logs. These event logs are formally called labeled event logs. 

While the logs with automatically assigned case identifiers are classified as maturity level-4 or higher at 
logging [87], the process can execute in an environment of lower logging maturity level. As stated in 
[47], the event logs of most of the ERP systems do not allow for monitoring unique and individual 
process cycles. Instead, they only log the execution of the transactions without referring to the 
corresponding case. This is due to the fact that, these systems are mostly data-centric such that the 
event logs are staggered at the application tables with the lack of case identifier. Such kind of logs is 
called as unlabeled event logs [1, 8, 47]. To overcome this limitation at the business processes with 
unlabeled event logs, a program, which generates synthetic events logs for a given reference process 
structure and the process profile (e.g. activity type and execution probability) according to the Petri-net 
firing rule, is developed as stated in Section 6.2.2. While synthetic event log generation is applied for 
only Travel Management use case and logical case identifiers are defined by financial period×plant 
cartesian at Period End Closing use case, event logs are obtained from process mining repositories for 
latter use cases.  

Another limitation at process similarity measurement is the task label similarity that measures the 
similarity of the elements in the process model. The similarity between process model elements 
especially at model-model similarity measurement is calculated from the task labels according to the 
syntactic similarity measurement, the semantic measurement or the combination of both [17]. While 
syntactic measurement is based on various algorithms, e.g. string-edit distance, n-gram, morphological 
analysis and stop-word elimination, semantic techniques are related to the synonym relations captured 
in thesaurus, e.g. Wordnet [31]. In this study as given in Section 6.2.1, all task labels are unified at a 
coherent and single activity dictionary for each use case. 

Respectively, the potential problem of standard Multi-Sequence Alignment algorithm is the local 
optimality, which stems from myopic and greedy nature of progressive alignment strategy. This 
technique combines firstly the closest individuals and the topology of the process family tree is 
dependent to which individuals are accreted. Indeed, it is NP-hard to get global optimality at root and 
our ultimate goal is the content of process families at lower cutting levels [84, 85]. On the other hand, 
the complexity of Multi-Sequence Alignment adaptation in the proposed approach is approximately 
O(n3l2), where n stands for the number of candidate process variants (|PV|) and l denotes average 
length of the sequence (or individual). 

Process configuration phase in this study aims to derive common patterns of activity invocations 
among the process alternatives in the same process family. These commonalities are characterized by 
the identical pairs introduced by IP and maxIPs. As the future work, it is aimed to extend this study 
towards automated configurable process model generation such that, the process structures are 
defined as the least common multiple of all process variants by abstracting the overlapping conserved 
regions, and the divergence across the process alternatives are dealt with configurable process 
elements. 
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APPENDIX A – ConfEnhMSA User Guide 

 

 

 

Confidence Enhanced Multi-Sequence Alignment (aka. confEnhMSA) is the program that utilizes an 
adaptation of NW algorithm iteratively to achieve the multi-sequence alignment of a set of dominant 
behaviors. As the outcomes, confEnhMSA constructs the process family trees that depict the relative 
likelihood among the candidate process alternatives. Additionally, all valid alignments and NW tables 
are given in detailed. 

Technically, confEnhMSA is developed in Java and constitutes of following classes as given in Figure 
A.1. 

 

 

Figure A.1. List of Classes for confEngMSA Program. 

Figure A.2 shows the user interface at the initialization of confEnhMSA program. 
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Figure A.2. User Interface for confEnhMSA Program. 

 

1. Table Upload 

Prior to the execution of multi-sequence alignment, two input tables should be uploaded: runtime and 
confidence tables. 

 Runtime table holds the alignment runID (i.e. a code for uniquely identifying a single alignment 
run), relevant confidence tableID assigned to the alignment run, the confidence threshold 
(confThr) and the consensus activity sequences that hold the dominant behavior per process 

alternative. 
 Confidence table holds the confidence values of the predecessor/successor activity pairs per 

confidence tableID. 

Sample formats for runtime and confidence table are given in Figures A.3 and A.4 respectively. 

 

Figure A3. Sample Format of Runtime Table. 

 

Figure A.4. Sample Format of Confidence Table. 

These input tables can be uploaded via Table Upload menu bar item as shown in Figure A5. After 
uploading the runtime and confidence tables, the paths of the underlying files, number of alignment 
runs, the maximum level for process trees and estimated number of iterations fields at the user 
interface are filled automatically.  
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Figure A.5. Table Upload Menu Bar Item Selection. 

  

2. Additional Configurations 

Additional configurations prior to multi-sequence alignment execution are as follows: 

 Mode setting. One of the confEnhMSA functionalities is the confidence-enhanced cost 
functioning which avoid the edit operations that do not make sense according to business 
context such that; the substitution of uncorrelated, contrasting activities or indel operations 
(insertion/deletion) of activities not conforming to the business rules should be penalized, 
while complementary tasks should be encouraged to be replaced or inserted at sensible 
costs.  
 
Additionally, classical NW pay-off matrices for extra what-if analysis (i.e. +confThr for 
matching, -confThr for mismatching and indel edit operations) can be applied. Mode setting 
can be configured from Mode menu bar item as shown Figure A.6. 

 

Figure A.6. Mode Menu Bar Item Selection. 

 Combine source and target individuals for all alignments. In the case of optimality for the 
current level, a combined individual (i.e. the compound of aligned forms of source and target 
individuals) is created and passed to the next level. But this combined individual creation can 
be performed for all alignments without any optimality check.  

 Show direction codes at NW table. As one of the outcomes, NW table for each alignment is 
delisted. At these tables, the backtracking directions (horizontal, vertical and diagonal) can be 
denoted. 

 Normalization by MIN/MAX similarity scores of the source individual. After all alignments at 
the current level are completed, the similarity scores are normalized according to the 
minimum/maximum (MIN/MAX) similarity scores of source individual. As an alternative, these 
similarity scores can be directly evaluated without any normalization for additional what-if 
analysis. 

After completing the additional configurations, Run button should be pressed to execute the multi-
sequence alignment. 

 

3. The Output Tables 

There are majorly three output tables in csv format as follows: 

i. Process tree. All candidate individuals and the optimal individual with its similarity scores are 
listed  from the root node to the base level. 
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ii. Alignment run list. All alignments with source, target individuals and similarity scores are given 
in alignment runID and level basis. 

iii. NW table list. The structures of NW tables per alignment are depicted with/without 
backtracking directions. 

Figures A.7 - A.9 show the sample file contents respectively. 

 

Figure A.7. Sample Content for Process Tree Output. 

 

 

Figure A.8. Sample Content for Alignment Run List Output. 
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Figure A.9. Sample Content for NW Table Output. 
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APPENDIX B – Extra Process Discovery Analysis 

 

 

 

While completeness measures the fraction of the traces in the event log that have some 
correspondence at the discovered process model, soundness is related to the simplicity and minimality 
which is also emphasized by Occam’s Razor. According to Figure B.1 for Loan Application use-case, 
process alternatives cand2, cand3 and cand4 have approximately 100% completeness values, which 
indicate high accuracy at extracting the dominant behavior. On the other hand, dominant behavior is 
partially discovered for process alternatives reference and cand1. This is due to the spaghetti-like 
process structure dominated with higher connectivity and lower density ratios given in Table B.1. 

 
Figure B.1. Average Completeness and Soundness Values per Process Alternatives (candi) for Loan 
Application Use Case. 

Table B.1. Structural Factors per Process Alternatives for Loan Application Use Case. 

 

Respectively, weak-order transitions at process alternatives reference and cand1 are more tend to be 
eliminated by the increase at the confidence and support threshold. Hence this pruning down 
diminishes the coverage of the dominant behavior and completeness. As shown in Figure B.2, the 
AND/OR/XOR gateways and weak-order transitions initiated by these gateways are effected by the 
change at [0.3, 0.5] confidence interval. On the contrary, the process behaviors at structured (lasagna-
like) process alternatives (i.e. cand2, cand3 and cand4) are more robust to these changes at 
confidence threshold. 
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Figure B.2. Confidence Threshold versus Completeness per Process Alternatives (candi) for Loan 
Application Use Case. Respectively more lasagna-like process alternatives (e.g. cand2, cand3 and 
cand4) are more robust to the changes at confidence threshold such that; lower connectivity or higher 
density refers to direct-successor type transitions and these process behaviors resist to the increase of 
confidence threshold value. 

As seen in Figure B.3, dominant behavior runs mostly capture the behavior at a certain degree, having 
either completeness over 75% for Environmental Permit Application Use-Case. Respectively, for 
process alternatives wabo2 wabo5 only some of the behavior can be captured by dominant behavior. 
This is possibly due to high variation at the event logs due to the XOR-gateways. 

 
Figure B.3. Average Completeness and Soundness Values per Process Alternatives (waboi) for 
Environmental Permit Application Use Case. 

Figure B.4 visualizes the completeness and soundness values on runtime basis. The process 
alternatives wabo1 and wabo3 that are grouped at the upper left-hand side of the figure show relatively 
a good balance between completeness and soundness quality metrics. On the other hand, the 
distribution of wabo4 indicates an overfitting, which generates a highly-specific process model 
explaining a particular sample event log.      
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Figure B.4. Average Soundness and Completeness Values per Process Alternatives (waboi) for 
Environmental Permit Application Use Case. 
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APPENDIX E1 – Cosine Similarity Transformation Details 

 

 

 

According to the cosine similarity scores obtained for Environmental Permit Application use-case, it is 
clear that process alternative wabo4 is quite distinct from other alternatives according to the 
discrepancies at Figure E1.4. Hence this process variant can be handled as a singleton, i.e. a process 
cluster consisting of a single process variant. In the case of numbCluster=3, visually segregation of 
other process alternatives is not so practical. According to the gap between the primary trend, which is 
mostly positioned at 1.0 cosine similarity (exactly the same) level and the secondary (and following) 
trends, process alternative wabo1 may be assigned to a distinct cluster. Figures E1.1 - E1.5 depict the 
cosine similarity transformation. 

 

Figure E1.1. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo1) (X-axis:alignment runID, Y-axis:cosine similarity score). 

 
Figure E1.2. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo2) (X-axis:alignment runID, Y-axis:cosine similarity score). 
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Figure E1.3. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo3) (X-axis:alignment runID, Y-axis:cosine similarity score). 

 

Figure E1.4. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo4) (X-axis:alignment runID, Y-axis:cosine similarity score). 
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Figure E1.5. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Environmental Permit 
Application Use Case (reference:wabo5) (X-axis:alignment runID, Y-axis:cosine similarity score). 

According to the cosine similarity scores for Period End Closing use-case, the corresponding process 
alternatives are exactly segregated into two exact clusters: {wabo2, wabo4} and {wabo1, wabo3, 
wabo5}. As shown at Figures E1.7 and E1.9, the underlying cosine similarity score of 0.5 emphasizes a 
loosely matching between process alternatives client2 and client4 and the lack of some Product 

Costing and Material Ledger functionalities may result in such a posterior neighborhood. On the other 
hand, process alternatives client1, client3 and client5 have a relatively stronger likelihood with an 
average cosine similarity score of 0.649. Especially, the correlation between process alternatives 
client1 and client3 may establish an earlier convergence at the corresponding process cluster.  

 

Figure E1.6. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Period End Closing Use 
Case (reference:client1) (X-axis:alignment runID, Y-axis:cosine similarity score). 
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Figure E1.7. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Period End Closing Use 
Case (reference:client2) (X-axis:alignment runID, Y-axis:cosine similarity score). 

 
Figure E1.8. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Period End Closing Use 
Case (reference:client3) (X-axis:alignment runID, Y-axis:cosine similarity score). 
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Figure E19. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Period End Closing Use 
Case (reference:client4) (X-axis:alignment runID, Y-axis:cosine similarity score). 

 
Figure E110. Cosine Similarity Score (cosSim) per Pairwise Alignment Run for Period End Closing Use 
Case (reference:client5) (X-axis:alignment runID, Y-axis:cosine similarity score). 
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