
FLAGS Framework and Decentralized Federated

Learning under Device Volatility

by

Ahnaf Hannan Lodhi

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

5 September, 2023

FLAGS Framework and Decentralized Federated Learning under Device

Volatility

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Ahnaf Hannan Lodhi

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Öznur Özkasap (Advisor)

Asst. Prof. Barış Akgün (Co-Advisor)

Prof. Deniz Yuret

Prof. Berk Canberk

Prof. Sinem Çöleri

Assoc. Prof. İlker Demirkol

Date:

Dedicated to the people of Pakistan!

May their hopes overcome the odds stacked against them.

iii

ABSTRACT

FLAGS Framework and Decentralized Federated Learning under Device

Volatility

Ahnaf Hannan Lodhi

Doctor of Philosophy in Computer Science and Engineering

5 September, 2023

Federated Learning (FL) has become a key choice for distributed machine learning.

Initially focused on centralized aggregation, recent works in FL have emphasized

greater decentralization supported by standardization of serverless interaction in

the next-generation communication networks. However, the diversity of devices,

data distributions, and communication settings, compounded by dynamic operat-

ing conditions, result in multiple challenges for Decentralized FL (DFL). There

have been various approaches to DFL, from utilizing intermediate edge servers to

fully device-to-device approaches. In decentralized settings, communication cost and

learning performance are usually assessed together and certain trade-offs are made

based on scenarios. However, there is a lack of existing work on comparing DFL

approaches in an apples-to-apples manner in a multitude of scenarios and operating

conditions. To bridge this gap between methods and their comparative analysis,

we design and develop the Federated Learning Algorithms Simulation (FLAGS)

Framework. One important challenge we noticed that most DFL methods struggle

with is the extreme fluctuations in device availability, especially for purely decen-

tralized approaches. This device volatility leads to poor learning performance.

To address this issue, we investigate the effects of neighborhood selection, memory

and multi-hop information passing on DFL performance. We introduce a fully de-

centralized FL approach that can operate under realistic and highly volatile device

participation settings.

The key contributions of this thesis are as follows: (i) development of a lightweight

FL framework for benchmarking a large plethora of methods, (ii) analysis and com-

parison of multiple FL methods with this framework under multiple operating con-

iv

ditions, (iii) empirical analysis of various node selection strategies under heavy de-

vice volatility, and (iv) utilizing memory and relayed communication to enhance

device-to-device FL by developing a novel algorithm that can operate under realis-

tic operating conditions and heavy device volatility.

Federated Learning supports a wide variety of node interactions and autonomous

operations across the network edge. With the aim to encompass this multi-faceted

heterogeneity, the FLAGS framework was proposed and developed as a lightweight

FL implementation and testing platform. FLAGS framework allows for a wide range

of device behaviors and cooperation mechanisms, enabling rapid testing of multiple

FL algorithms. FLAGS’s built-in features allow it to subject existing and novel FL

algorithms to a wide range of data distributions, simulating the nodes with multiple

neural networks as well as participation conditions ranging from homogeneous to

highly volatile.

Different network tiers and communication mechanisms enable various FL algo-

rithms to be configured by employing various combinations of the aforementioned

factors. In order to consolidate this very extensive FL landscape and offer an ob-

jective analysis of the major FL algorithms, comprehensive cross-evaluations for a

wide range of operating conditions have also been conducted. Starting with the

three foundational FL algorithms, including Hierarchical FL (HFL), Decentralized

FL (DFL), and Gossip FL (GFL), this work evaluates six derived algorithms rang-

ing from fully centralized to fully decentralized. The experiments indicate that fully

decentralized FL algorithms achieve comparable accuracy under multiple operat-

ing conditions, including asynchronous aggregation and the presence of stragglers.

Furthermore, DFL can also operate in noisy environments and with a comparably

higher local update rate. However, the impact of extremely skewed data distribu-

tions on DFL is much more adverse than on centralized variants.

The analysis of the cross-evaluation indicates that DFL performance is consid-

erably impacted by node participation. This part of the thesis focuses on improving

DFL performance under realistic and volatile device behavior. Node selection in vari-

ous forms has been experimented with to improve both communication efficiency and

convergence rate. We experimented with multiple node selection mechanisms and

also proposed and evaluated a time-varying parameterized node selection method for

DFL employing validation accuracy and its per-round change. The mentioned crite-

ria are evaluated using both hard and stochastic/soft selection on sparse networks.

The results indicate that the bias associated with node selection adversely impacts

performance as training progresses, and a uniform random selection is preferable

under extremely limited participation conditions.

Continuing with volatile conditions, we investigate and propose mechanisms to

improve DFL operating on sparse graphs in the presence of stragglers and non-

participating nodes. We first propose two algorithms: Memory-Assisted DFL (MA DFL)

and Augmented-Graph Assisted DFL (AG DFL). These algorithms employ memory

and selective relaying to improve DFL performance. Both algorithms outperform

the baseline DFL and gossip interaction for volatile node participation. Then, we

propose a hybrid of these two algorithms, Memory and Augmented-Graph Assisted

DFL (MAG DFL), that employs memory and graph augmentation to improve the

performance of DFL under highly volatile devices and extreme data conditions.

The research conducted in this thesis evaluates the multi-faceted challenges to

the DFL operation in volatile conditions and proposes mechanisms to improve its

performance. Our work indicates that DFL holds the potential to assist learning

operations distributed across the edge network. It may be used to augment the FL

in the presence of costly upstream communication or limited connectivity. However,

node density has a major impact on DFL, and sparse networks, along with volatile

device behavior and non-IID distributions, tend to reduce its convergence rate. The

enhanced neighborhood interaction and intelligent use of local information has the

potential to improve DFL performance under such adverse conditions based on the

presented results. The analysis, algorithms and results presented in this thesis pave

the way for additional developments and more practical applications of DFL in the

next-generation communication networks.

ÖZETÇE

FLAGS Platformu ve Cihaz Dalgalanması Durumunda Merkeziyetsiz

Federe Öğrenme

Ahnaf Hannan Lodhi

Bilgisayar Bilimi ve Mühendisliği, Doktora

5 Eylül, 2023

Federe Öğrenme (FL), dağıtık makine öğrenimi için önemli bir seçenek haline gelmiştir.

Başlangıçta merkezi birleştirme üzerine odaklanan FL’deki son çalışmalar, yeni nesil

iletişim ağlarında sunucusuz etkileşimin standartlaştırılmasını destekleyen merkezi

olmayan yaklaşımlara vurgu yapmıştır. Ancak cihazların çeşitliliği, veri dağılımları

ve iletişim ayarları, dinamik işletme koşulları tarafından karmaşık hale getirilmiş ve

bu durumMerkeziyetsiz Federe Öğrenmenin (DFL) birden fazla zorlukla karşılaşmasına

neden olmuştur. DFL konusunda, sınır sunucularını kullanmaktan tamamen cihaz-

dan cihaza yaklaşımlara kadar farklı yöntemler bulunmaktadır. Merkezi olmayan

durumda iletişim maliyeti ve öğrenme performansı genellikle bir arada değerlendirilir

ve senaryolara dayalı belirli bir denge kurulur. Ancak, DFL yaklaşımlarını çok sayıda

senaryo ve çalışma koşulu altında eşit durumda karşılaştırmak için literatürde ek-

siklik bulunmaktadır. Bu yöntemler ile karşılaştırılabilir analiz arasındaki boşluğu

kapatmak amacıyla, Federe Öğrenme Algoritmaları Simülasyon (FLAGS) Platfor-

munu tasarlayıp geliştirdik. Birçok DFL yönteminin özellikle tamamen merkeziyet-

siz yaklaşımlar için cihaz erişilebilirliğindeki aşırı dalgalanmalar önemli bir zorluk

olarak öne çıkmaktadır. Bu cihaz dalgalanması, zayıf öğrenme başarımına yol açar.

Bu sorun kapsamında, çevre seçiminin, belleğin ve çoklu atlama bilgisi iletimin DFL

başarımı üzerindeki etkilerini araştırdık. Gerçekçi ve yüksek derecede dalgalı cihaz

katılım koşulları altında çalışabilen tamamen merkeziyetsiz bir FL yaklaşımı sunuy-

oruz.

Bu tezin temel katkıları şu şekilde özetlenebilir: (i) birçok yöntemi karşılaştırmak

için hafif bir FL simülasyon platformu geliştirilmesi, (ii) bu platformda bir dizi

işletme koşulunda birçok FL yönteminin analizi ve karşılaştırılması, (iii) yoğun ci-

vii

haz dalgalanması altında çeşitli düğüm seçimi stratejilerinin deneysel analizi ve

(iv) bellek ve iletimli iletişimi kullanarak FL başarımını geliştirmek için gerçekçi

işletme koşulları ve yoğun cihaz dalgalanması altında çalışabilen yeni bir algoritma

geliştirilmesi.

Federe Öğrenme, ağ kenarında geniş bir düğüm etkileşimi ve otonom işlemleri

destekler. Bu çok yönlü heterojenliği kapsamak amacıyla FLAGS simülatörü, hafif

bir FL uygulama ve test platformu olarak geliştirilmiştir. FLAGS platformu, geniş

kapsamlı cihaz davranışları ve işbirliği mekanizmaları için olanak tanır ve böylelikle

çeşitli FL algoritmalarının hızlı bir şekilde test edilmesine olanak verir. FLAGS

özellikleri, mevcut ve yeni FL algoritmalarının geniş bir veri dağılımında test edilme-

sine olanak tanır, düğümleri birden çok sinir ağıyla ve homojen katılımdan yüksek

derecede dalgalı katılıma kadar çeşitli cihaz katılım koşullarında simüle edebilir.

Farklı ağ katmanları ve iletişim mekanizmaları, çeşitli FL algoritmalarının yukarıda

bahsedilen faktörlerin birleşimlerini kullanarak yapılandırılmasına olanak tanır. Bu

çok kapsamlı FL yaklaşımlarını bir araya getirmek ve temel FL algoritmalarının nes-

nel bir analizini sunmak amacıyla bir dizi kapsamlı analiz gerçekleştirilmiştir. Hiy-

erarşik FL (HFL), Merkeziyetsiz FL (DFL) ve Salgın FL (GFL) gibi üç temel FL al-

goritması ile başlayarak, bu çalışma tamamen merkezi olanlardan tamamen merkezi

olmayanlara kadar uzanan altı algoritmanın analizi yapılmışır. Deneyler, özellikle

asenkron birleştirme ve geciken düğümlerin varlığı gibi bir dizi çalışma koşulu altında

tamamen merkeziyetsiz FL algoritmalarının karşılaştırılabilir doğruluk elde ettiğini

göstermektedir. Ayrıca, DFL gürültülü ortamlarda da çalışabilir ve daha yüksek

yerel güncelleme oranına sahip olabilir. Bununla birlikte, aşırı eğri veri dağılımlarının

DFL üzerindeki etkisi, merkezi yaklaşımlara kıyasla daha olumsuzdur.

Çapraz değerlendirmenin analizi, DFL başarımının düğüm katılımından oldukça

etkilendiğini göstermektedir. Tezin bu bölümü, gerçekçi ve dalgalı cihaz davranışı

altında DFL başarımını iyileştirmeye odaklanmaktadır. İletişim verimliliğini ve

yakınsama hızını iyileştirmek için çeşitli düğüm seçimi mekanizmalarıyla deneyler

yapılmıştır. Farklı düğüm seçim mekanizmaları ile deneyler gerçekleştirilerek, DFL

için doğruluğu ve bunun tur başına değişimini kullanan zamanla değişen parame-

treli bir düğüm seçim yöntemi önerilmiştir. Bu ölçütler, seyrek ağlarda hem sert

hem de stokastik/yumuşak seçim kullanılarak değerlendirilmiştir. Sonuçlar, düğüm

seçimi ile ilişkilendirilen önyargının, eğitim ilerledikçe başarımı olumsuz etkilediğini

ve aşırı sınırlı katılım koşulları altında rastgele bir seçimin tercih edilebilir olduğunu

göstermektedir.

Geciken düğümler ve katılmayan düğümlerin bulunduğu seyrek çizgeler üzerinde

çalışan DFL başarımını iyileştirmek için mekanizmalar geliştirdik. Öncelikle, Bellek

Destekli DFL (MA DFL) ve Artırılmış Çizge Destekli DFL (AG DFL) olmak üzere

iki algoritma önerdik. Bu algoritmalar belleği ve seçici iletimi kullanarak DFL

başarımını iyileştirmektedir. Her iki algoritma da dalgalı düğüm katılımı için temel

DFL ve salgın etkileşimi yaklaşımlarından daha iyi başarım göstermektedir. Ardından,

bu iki algoritmanın bir melezini önerdik: Bellek ve Artırılmış Çizge Destekli DFL

(MAG DFL), yüksek derecede dalgalı cihazlar ve aşırı veri koşulları altındaki DFL

başarımını iyileştirmek için belleği ve çizge artırımını kullanan bir algoritmadır.

Bu tezde yürütülen araştırmalar, dalgalı koşullarda DFL işleyişine yönelik çok

yönlü zorlukları değerlendirir ve başarımını iyileştirmek için mekanizmalar önerir.

Çalışmamız, DFL’nin sınır ağı boyunca dağıtılan öğrenme işlemlerine yardımcı olma

potansiyeline işaret etmektedir. Maliyetli yukarı yönlü iletişim veya sınırlı bağlantı

durumlarında FL’yi iyileştirmel için kullanılabilir. Ancak, düğüm yoğunluğu DFL

üzerinde önemli bir etkiye sahiptir ve seyrek ağlar, dalgalı cihaz davranışı ve homo-

jen olmayan veri dağılımları, yakınsama hızını azaltma eğilimindedir. Geliştirilmiş

komşuluk etkileşimi ve yerel bilginin akıllıca kullanımı, böyle olumsuz koşullar altında

DFL başarımını artırma potansiyeline sahiptir. Bu tezde sunulan analizler, algorit-

malar ve sonuçlar, DFL’nin gelecek nesil iletişim ağlarında daha fazla gelişmenin ve

pratik uygulamanın yolunu açmaktadır.

ACKNOWLEDGMENTS

Before everything else, I bow my head in gratitude to the ALMIGHTY for hav-

ing granted me this opportunity and bestowing success upon me in this endeavor.

I wish to express my profound gratitude to my advisors Prof. Öznur Özkasap

and Asst. Prof. Barış Akgün for their invaluable guidance and immense support

throughout this journey. Their patience and understanding have been essential in

taking this journey to fruition. I am also grateful to the entire committee, Prof.

Deniz Yuret, Prof. Berk Canberk, Prof. Sinem Çöleri and Assoc. Prof. İlker

Demirkol for their consideration and support in evaluating and finalizing this thesis.

I would also like to extend my thanks to the administrative team, particularly

Ms. Bahar Hısım and Ms. Emine Büyükdurmuş, at the Graduate School of Science

and Engineering (GSSE) and the KUIS AI Center for their untiring support during

my time here. I am also indebted to the support extended by Koç University, the

KUIS AI Center and TÜBITAK (2247-A Project 121C338) for their extensive sup-

port throughout this time. Also, all the individuals who have made life easier for

me and countless other students like me, yet whose names I might have missed or

never got the courage to ask, I would like to thank them for their efforts.

I would like to express my special gratitude to my parents. Theirs has been the

most profound impact on my life. They have been the inspiration that motivated

me to undertake the rigors of PhD and their words have pushed me through some

trying times during this time. The encouragement extended by my brothers, Dr.

Aemen Lodhi and Arqam Lodhi, and their constant belief in my abilities has been

x

invaluable. A special word of thanks for Vaqas, Usman, Taimoor and Waqas for

their badgering and bickering which lightened up the mood and re-energized me to

continue under dreary phases.

Finally, Maryam, Dawood and Haytham, I consider my equal partners in this

entire process. They have gone through all the stages alongside me, sweated with

me in times of stress, rejoiced with me in moments of success and waited patiently

till that magical moment of the declaration of success. They renewed my sense of

purpose at every turn and fueled my ambition to see things through. To them, I

owe a world of thanks and more for remaining steadfast with me.

TABLE OF CONTENTS

List of Tables xv

List of Figures xvi

List of Algorithms xix

Chapter 1: Introduction 1

1.1 Distributed Learning . 4

1.2 Federated Learning . 8

1.3 Decentralized Federated Learning . 11

1.4 Contributions . 13

Chapter 2: Related Work 20

2.1 Federated Learning Algorithms . 21

2.2 The non-IID Challenge . 22

2.3 Existing Frameworks . 23

2.4 Decentralized Federated Learning . 24

2.5 Topology Optimization . 26

2.6 Device Volatility . 27

2.7 Memory and Relay Mechanisms in FL 28

Chapter 3: Preliminaries 29

3.1 System Model . 29

3.2 Federated Learning Methodology . 32

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) frame-

work 35

xii

4.1 Introduction . 35

4.2 Software Architecture . 37

4.2.1 Environment . 37

4.2.2 Algorithms . 38

4.2.3 Node Operations . 39

4.2.4 Additional Modules . 40

Chapter 5: Comparative Assessment of Federated Learning Algo-

rithms 43

5.1 Introduction . 43

5.2 Federated Learning Algorithms . 44

5.2.1 Hierarchical Federated Learning 46

5.2.2 Device-to-Device Federated Learning 47

5.2.3 Gossip Federated Learning . 48

5.2.4 Hierarchical Device-to-Device Federated Learning 49

5.2.5 Hierarchical Gossip Federated Learning 49

5.2.6 Clustered Federated Learning 52

5.2.7 Clustered Device-to-Device Federated Learning (CD2DFL) . . 53

5.2.8 Inter-Cluster Device-to-Device Federated Learning 54

5.2.9 Centralized to Decentralized Spectrum 55

5.3 Experiments and Evaluation . 56

5.4 Performance Analysis . 60

5.4.1 FL with Maximal Participation and Ideal Communication . . 60

5.4.2 FL with Limited Device Participation 63

5.4.3 FL with Noisy Communication 64

5.4.4 Few Shot Learning . 65

5.4.5 Communication Cost and Volume 67

5.5 Conclusion . 68

xiii

Chapter 6: Implications of Node Selection on DFL under volatile

conditions 69

6.1 Introduction . 69

6.2 Node Selection in Federated Learning 70

6.3 Node Selection for DFL . 72

6.4 Experiments and Evaluation . 74

6.4.1 Experimental Setup . 74

6.4.2 Selection Criteria . 75

6.4.3 Results and Analysis . 75

6.5 Conclusion . 78

Chapter 7: Assisting Decentralized Federated Learning using Mem-

ory and Augmented Graphs 79

7.1 Introduction . 79

7.2 Memory-Assisted DFL (MA DFL) . 81

7.3 Augmented Graph-Assisted DFL (AG DFL) 84

7.4 Memory and Augmented-Graph Assisted DFL (MAG DFL) 87

7.5 Convergence Guarantees . 89

7.5.1 Properties of W . 89

7.6 Results and Analysis . 93

7.7 Conclusion . 98

Chapter 8: Conclusion and Future Work 100

8.1 Concluding Remarks . 100

8.2 Future Directions . 102

Bibliography 103

xiv

LIST OF TABLES

3.1 List of parameters used in the system model and the algorithmic

description. 31

4.1 Flag settings for various Algorithms in FLAGS framework. 39

5.1 Accuracy comparison of FL algorithms for two sets of pk, dk values

and different values of the Dirichlet parameter α (lower values indicate

increased non-IID distribution). Highest accuracies within ∆ = 0.001

have been marked with asterisk (*) 64

6.1 Results for various selection criteria, data distributions,

and participation probabilities (pi) for FashionMNIST dataset 75

7.1 Results for various Algorithms, different asynchronous training lev-

els and participation levels for α = 0.1 skewed data distribution for

FashionMNIST dataset. 96

7.2 Results for various Algorithms, different asynchronous training lev-

els and participation levels for S = 2 skewed data distribution for

FashionMNIST dataset. 97

7.3 Results for various Algorithms, different asynchronous training lev-

els, and participation levels for S = 3 skewed data distribution for

FashionMNIST dataset. 97

xv

LIST OF FIGURES

1.1 Levels of Network Hierarchy: a) End / User device: Devices/sensors

at the origin of data, b) Edge Nodes: Intermediate network devices

connecting end devices to the network core, c) Cloud Servers: Hub

of computation and decision-making in existing networks. The two

outer levels are jointly referred to as ”Edge Levels” and are the focus

of Edge Computing. 3

1.2 Centralized Federated Learning . 9

1.3 Network topology including Edge network levels and communication

links. 11

4.1 FLAGS Framework Software Architecture: Three main modules and

their interactions. 37

4.2 Default argument state: Each of these may be adjusted as input

arguments to the Main-Fed.py file 40

4.3 Simulation Output . 41

5.1 Main Federated Learning Algorithms. Dashed lines represent links

between various entities, whereas only solid lines in (c) depict active

established-pair links in GFL. 44

5.2 Synthetic data distributions for MNIST dataset across 40 nodes de-

rived from Dirichlet Distribution for different α values. 57

5.3 Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST

for maximal participation pk, dk = 0.9 with asynchronous communi-

cation for Non-IID distributions with Dirichlet parameter α = 10 and

α = 0.1 . 60

xvi

5.4 Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST

for limited participation pk, dk = 0.6 with asynchronous communica-

tion for Non-IID distributions with Dirichlet parameter α = 1.0 and

α = 0.1 . 61

5.5 Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST

for limited participation pk, dk = 0.6 with extremely skewed (2-class

and 3-class) Non-IID distributions. 62

5.6 Average Test Accuracy for (a)-(c) MNIST and (d)-(f) FashionMNIST

for N (0, σ2) noisy communication with pk, dk = 0.9 and Dirichlet

parameter α = 0.1. 65

5.7 Average Test Accuracy for Few-Shot Learning for MNIST and Fash-

ionMNIST with (a)-(b) pk, dk = 0.9 and (c)-(d) pk, dk = 0.6 with

r = 20 aggregation rounds and epochs in range [15, 20] with asyn-

chronous communication for Non-IID distributions with Dirichlet pa-

rameter α = 0.1 . 66

5.8 Average FL Algorithm Accuracy and per-Node Communication Vol-

ume for asynchronous aggregation for 30 rounds with the MNIST

dataset. 67

6.1 Surface Plots for Accuracy Factor and ∆ Accuracy Factor plotted

against rounds and the accuracy and its change, respectively. 74

6.2 Average test accuracy for 50 Communication rounds for non-IID dis-

tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participa-

tion threshold as pi = 0.5 & 0.3 . 76

6.3 Average test accuracy for 50 Communication rounds non-IID data

distributions of MNIST for α = 0.1, s = 3, s = 2 and pi 0.5 & 0.3 . . 77

7.1 Average test accuracy for 50 Communication rounds for non-IID dis-

tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participa-

tion threshold as pi = 0.05 . 94

xvii

7.2 Average test accuracy for 50 Communication rounds for non-IID dis-

tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participa-

tion threshold as pi = 0.1 . 95

7.3 Average test accuracy for 50 Communication rounds for non-IID dis-

tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participa-

tion threshold as pi = 0.2 . 95

7.4 Average test accuracy for 50 Communication rounds for non-IID dis-

tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participa-

tion threshold as pi = 0.3 . 95

7.5 Average test accuracy for 50 Communication rounds for non-IID dis-

tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participa-

tion threshold as pi = 0.4 . 96

xviii

LIST OF ALGORITHMS

1 Hierarchical Federated Learning . 46

2 Device-to-Device Federated Learning 47

3 Gossip Federated Learning . 48

4 Hierarchical-D2D Federated Learning 50

5 Hierarchical-Gossip Federated Learning 51

6 Clustered Federated Learning . 52

7 Clustered Device-to-Device Federated Learning 54

8 Inter-Cluster Device-to-Device Federated Learning (iCD2DFL) 56

9 Memory Assisted-Decentralized Federated Learning 83

10 Augmented Graph-Assisted Decentralized Federated Learning 86

11 Memory and Augmented Graph-Assisted Decentralized Federated Learn-

ing . 88

xix

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The last decade has witnessed a remarkable transcendence of data, intercon-

nectedness and information-centric services in all spheres of the global domain. An

unprecedented growth in data-generating devices and sensors coupled with the avail-

ability of powerful computational resources has further led to the ascendancy of

machine learning. It has been estimated that close to 29 billion devices will be

connected to the Internet by 2023 [1] with the data traffic expected to reach 131

Exabytes (EB) by the end of 2024 [2]. Furthermore, the requirements for 6G aiming

for data rates of approximately 1Tbps per user [3] have further reinforced a growing

realization that the traditional centralized/cloud systems would find it increasingly

difficult to manage the accompanying computation requirements, particularly in a

lifelong learning scenario.

The true potential of Artificial Intelligence (AI) is unlocked in a connected / net-

worked domain where intelligent services can be extended simultaneously to a large

scale of users. For instance, temperature assessment using thermal imaging was

deployed as the first line of detection of the novel Coronavirus–caused respiratory

disease (COVID-19) [4] at major transit points. However, deployment of isolated

or centralized processing clusters over a longer duration proved inefficient due to

resource wastage and prohibitive costs, with the major disadvantage being the dis-

tributed nature of data itself. Distributed learning on the other hand, allows devices

to not only collaborate resources but also the learned parameters across devices, en-

abling more effective information diffusion. Collaborative healthcare, smart cities

and management, energy systems, disaster coordination and response, cyber secu-

rity, and threat identification are some common applications of distributed learning.

Chapter 1: Introduction 2

Developing a framework that supports distributed operation and access to remote

data is an essential requirement for rapidly transforming applications.

The paradigm shift in the nature of networked services and the transformation of

the connected devices coupled with the distributed nature of data requires a decen-

tralized approach for extracting maximum learning benefits. To avoid overwhelming

the network and data servers, the computational load must be moved at or closer to

the network edge. Edge Computing [5] offers a potentially powerful solution to this

problem. The edge computing framework aims to leverage distributed computing

concepts to alleviate the computational load from the network core, benefiting from

processing power available close to the network edge. The computation power of

the elements closer to the edge network offers a powerful alternative to centralized

computing, albeit in a distributed manner. Successful exploitation has the potential

to shift the elements of cloud services close to the data sources, ensuring better data

security and reduced load on the network backbone.

Edge Computing

Edge Computing is the emerging domain being developed to address the limitations

of cloud computing. This paradigm aims at shifting the computation load towards

the outer edges of the network utilizing the devices at the data origin and their

geographical proximity. The motivation behind the development of this domain is

two-fold: It aims to reduce the computational and communication load from the

network core while enabling dynamic resource allocation for applications in cyber-

physical systems such as industrial IoT, smart buildings and grids, autonomous

transportation, and remote healthcare [6].

Conventional networks can be characterized by reduced computational power in

the elements at the fringes of the network. However, the addition of devices at the

outer levels has also significantly outpaced the increase of processing power at the

network core [1]. Edge Computing has emerged to support this dramatic increase in

resource requirements by leveraging the untapped potential away from the enterprise

data centers. Processing power is obtained by a collaborative operation between

Chapter 1: Introduction 3

Figure 1.1: Levels of Network Hierarchy: a) End / User device: Devices/sensors
at the origin of data, b) Edge Nodes: Intermediate network devices connecting end
devices to the network core, c) Cloud Servers: Hub of computation and decision-
making in existing networks. The two outer levels are jointly referred to as ”Edge
Levels” and are the focus of Edge Computing.

various entities at the network edge, including the user devices, mobile-based stations

and gateways and access points.

Network Hierarchy

To formalize various elements, a conventional network can be categorized into three

hierarchical levels for Edge Computing as depicted in Fig-1.1:

1. End or user devices are the elements responsible for data generation, in-

cluding mobile and smart devices, IoT sensors, smart applications, autonomous

cars and drones etc. These devices, lying at the outermost level, are generally

characterized by the lowest individual computing power.

Chapter 1: Introduction 4

2. Edge server or nodes comprise of mobile base stations, gateways, access

points (APs), micro datacenters, etc. established in proximity to the data

sources having relatively comparatively higher computational and storage ca-

pacity. Combined with the end devices, these two levels jointly form the ‘Edge

Level’.

3. Cloud or data server, the innermost level in the network hierarchy, possesses

the maximal computation and storage ability, currently supporting most of

off-device computation. However, the remoteness of the Cloud level incurs a

considerable communication overhead and potential privacy and latency issues.

1.1 Distributed Learning

With the proliferation of Edge Computing and the ubiquity of smart devices, the

focus on Distributed Learning has rapidly accelerated. Distributed learning collab-

oratively leverages the computational resources and data available at geographically

disparate locations to train intelligent agents. While distributed optimization has

been widely researched since the 1980’s, the area has once again garnered signif-

icant attention by its application in deploying Artificial Intelligence (AI) applica-

tions using the Edge Computing paradigm. Traditionally, Machine Learning and

inference-generation operations were centralized at the cloud level. They required

huge amounts of data to be orchestrated for learning a generalizable model. Addi-

tionally, a slew of supporting services are then needed to extend the benefits to the

multitude of smart devices. However, the evolving network edge, increased device

capabilities, and emerging communication networks have enabled the principles of

distributed learning to maximally offload learning and inference computations to

the ‘Edge Level’ (Fig-1.1). In general, distributed learning requires a highly multi-

disciplinary approach using knowledge and efficient practices from fields including

but not limited to AI, Computer Architecture, Embedded and Distributed Systems,

etc., to achieve desired performance levels.

Chapter 1: Introduction 5

Operational Constraints Adopting distributed computing brings forth its own

set of challenges for optimal operation, including data sharing, security, latency,

etc. Additionally, the typical learning scenarios have so far utilized centralized

frameworks unifying both data and computing resources at one single entity in

the form of servers or clusters. Distributed Learning, on the contrary, aims to

exploit the significantly untapped potential of the billions of elements at the network

edge. The current research to achieve this goal is primarily driven by the following

factors [7], [8]:

1. Cost: Any form of decentralized computation results in major costs related

to communication, energy, processing, and memory.

• Communication Costs: Remote computations require data to be ex-

changed between various distributed elements, introducing not only the

cost of data communication but the associated overhead costs in already

congested networks. The services at the end devices, whether provided

by mobile applications over cellular networks or IoT networks, are in-

creasingly resorting to providing improved user experiences as well as

information. The demand for immersive Quality of Experience (QoE)

using Augmented Reality / Virtual Reality (AR/VR) alone is expected

to result in an 8-fold increase in data traffic [9]. Furthermore, while

emerging networks offer higher speeds, legacy networks would face in-

creasingly difficult prospects for supporting such services. Incorporating

distributed learning in such an environment would thus be associated

with its communication costs.

• Energy: A considerable majority of nodes at the edge level, whether

the user devices or the edge nodes, often operate with a limited energy

budget. Unlike a cloud server where energy constraints are considered

for economical operation, mobile devices at the user end cease operation

if they exceed their energy constraints. Thus, all aspects of the learning

process, from training to inference, must respect these energy limitations.

Chapter 1: Introduction 6

• Processing and Memory: Deep Learning models require considerable pro-

cessing and memory resources to extract and learn the deep representa-

tions of the data. In addition to a dearth of processing power at the

edge level, managing sufficient resources for deep learning models to run

in the presence of numerous competing services is a major challenge. In

general, deeper networks more often outperform shallow networks, and

thus higher performance requires larger storage requirements.

2. Latency: Time-critical applications require real-time or near-real-time infer-

ences. For example, translation of conversations from one language to another,

object segmentation in photos or analysis, fusion and logical inference of data

carried out by the sensors of autonomous vehicles, especially self-driving cars,

are some applications where the delay between the input and inference can

result in seriously compromised performance. Additionally, offboarding data

for remote computation imposed additional time costs due to communication

to deeper levels of the network. The impact of proximity is investigated in [10]

using the face detection task running on Amazon Web Services as a reference.

The results indicate a 50% task completion rate between 200-600ms depending

on the server location.

3. Scalability: With the proliferation of devices at the Edge level, sharing data

for centralized and distributed computing becomes increasingly difficult due

to communication and processing bottlenecks. Decentralized computing must

be able to seamlessly cater to the billions of devices that contribute data or

computing resources without degrading the device performance and congesting

the network.

4. Privacy and Security: Malicious adversarial actions against intelligent sys-

tems can encompass both the data and the learning framework [11], [12], [13].

AI in a distributed setting exposes the learning architecture to a certain de-

gree if the learning parameters are being shared. These could then be used

Chapter 1: Introduction 7

for adversarial actions against the learners leading to degraded performance

and crippling critical automated systems. Furthermore, maintaining data in-

tegrity and prohibiting the exploitation of the associated metadata are chal-

lenges faced whenever data is shared over the network. This challenge and the

privacy risk to the data make Distributed Learning operation [14] [15] more

difficult.

5. Communication Reliability: Conventional Deep Neural Networks (DNNs)

do not cater to reliability issues. However, in a distributed setting, reliability

guarantees need to be established to obtain correct loss in addition to the fact

that the state of the network affects the performance of the edge computing

scenarios [16]. There exists an algorithmic challenge for implementing dis-

tributed learning in the presence of network (e.g. packet error and dropout,

congestion) and client (e.g., offline, busy, adversarial environment) reliabil-

ity issues both for training and inference processes. The emergence of 5G,

Ultra-Reliable-Low Latency (URLLC) networks offers promising avenues [17].

However, the learning frameworks themselves need to be adapted to utilize the

benefits of these modern communication technologies fully.

6. Inference Transparency: Critical learning applications for domains such as

health, finance, and security, among others, require interpretability [18] ”as an

important element of engendering trust in the inference system”. Interpretabil-

ity, however, is yet to have a precise definition in terms of machine learning,

though [19, 20] have presented a general framework for gauging the underly-

ing dynamics of learned decision-making. An elaborate survey of the existing

works is presented in [21] , categorizing them under Model transparency and

Model functionality for Deep Learning. A distributed setting, however, offers a

unique scenario where the model transparency not only causes additional con-

straints on the model and operating costs, it constitutes an entirely different

challenge due to the environment and nature of distributed models themselves.

The first reported case of the hazards of opaque learning systems and their

Chapter 1: Introduction 8

impact on real-life scenarios was recently reported as the wrongful arrest by

Detroit Police due to a faulty match by the facial recognition system. It is

imperative, thus, that transparency is integrated into the distributed learning

process.

7. Device Diversity in Edge: The edge levels house many nodes with distinct

storage and processing capabilities. The devices farther away from data ori-

gins are more capable both in terms of memory and computational power, with

central servers being the most resourceful devices. Furthermore, the networks

employ multiple communication links and protocols, which results in a highly

diverse environment. These device and network characteristics exacerbate the

difficulty of developing a collaborative structure for learning. Any distributed

learning system must, therefore, possess inherent tolerance for this hetero-

geneity. Furthermore, the designed frameworks should consider the nature

(e.g., memory, processing, energy, static or mobile, data availability) of the

platforms they are intended for. Platforms such as mobiles and autonomous

vehicles have relatively better processing power than IoT or Smart Home sen-

sor networks. A DNN designed for IoT will not be optimal for a mobile setting

and vice versa. It is, therefore, imperative that the learning systems consider

the characteristics of their intended platforms as a tunable parameter.

1.2 Federated Learning

Machine Learning and its applications have increased multi-fold due to the abun-

dance of both computing resources and data. The issues associated with data pri-

vacy, sharing, and orchestration have accelerated research into distributed learning

algorithms, with the key goal being to move learning as close to data origin as possi-

ble. The distinction between various distributed learning techniques lies in how de-

vices interact with each other to achieve consensus. Federated Learning (FL) [22,23]

is one such learning framework that enables disjoint devices to learn collaboratively

without sharing data. Since its inception by Google researchers, Federated Learning

Chapter 1: Introduction 9

Figure 1.2: Centralized Federated Learning

(FL), proposed as FedAvg, has been one of the foremost avenues for distributed

learning. Gboard-Google keyboard and Siri-Apple smart assistant are real-world

applications that have benefited tremendously from FL [24]. Federated Learning

(FL) has been at the forefront of enabling distributed learning for various applica-

tions while advocating stronger privacy across wider collaboration. FL allows nodes

to update/train their models on their private data and share the updated models

with a central server, which aggregates them to form a global model. The global

model is then returned to the participating nodes to continue training (Fig-1.2).

This allows FL to support participation at scale and devices to maintain data pri-

vacy by requiring them to share only their trained models. FL also benefits from

the individual computing resources available at devices present throughout the Edge

Network [25–27]. However, the collaboration in FL also brings forth challenges in

the form of device and data heterogeneity, significant communication overhead, and

server bottlenecks [24].

Chapter 1: Introduction 10

Federated Learning was initially conceived as a two-tiered learning framework

alternating between clients/nodes performing the training and the cloud servers

aggregating the local models to yield a global model. In order to increase the effi-

ciency, the envisaged FL was further spread over the Edge Network to benefit not

only from the Edge devices’ capabilities but also address the challenges inherent in

centralization. This evolution has yielded various FL algorithms suitable to a va-

riety of scenarios, including vehicular networks, dense IoT networks, and cross-silo

operations between relatively large data centers. These algorithms employ three dif-

ferent types of communication links associated with different communication costs:

(a) Device-to-Device (D2D) (b) Device-to-Edge (D2E) (c) Edge-to-Cloud (E2C) (see

Fig.1.3 for depicting these links).

D2D links are limited to the device level, whereas D2E links connect the nodes

with the edge servers. Finally, E2C links connect the edge servers to the core net-

work. While D2D links and D2E links operate independently, E2C links require

the latter for information to be transmitted from the devices to the edge server

for onward transmission to the core network. All subsequent communication anal-

yses in this work use this fact to establish the effectiveness of a particular form of

communication in FL operations.

Decentralized Federated Learning (DFL) utilizes D2D links to share the learned

models between the nodes. Each node updates its models based on the local data,

followed by sharing the same with other devices through D2D communication. The

communication may be limited to 1-hop neighborhood or across multi-hop devices.

The proposed methods under various settings show multiple advantages over Cen-

tralized FL (FedAvg). Furthermore, current and future devices come equipped with

multiple communication links. This fact negates the limitation of operating a single

FL algorithm at all times.

Chapter 1: Introduction 11

Figure 1.3: Network topology including Edge network levels and communication
links.

1.3 Decentralized Federated Learning

One thrust of the potential solutions to the challenges faced by FL has been directed

toward addressing the limitations posed by the central server. In [28], the authors

propose a multi-center FL environment to maintain performance under conditions

of non-IID (Independent Identically Distributed) data. On the contrary, to vanilla

FL, the authors suggest aggregating local models at local cluster centers representing

similar data distributions and models. Gossip-Federated Learning in [29] suggests

another P2P aggregation formulation outperforming regular FL under conditions of

IID data. Another blockchain-based solution for FL is proposed in [30] that relies on

the availability of a few honest nodes working as a ‘Consensus-Committee’ to vali-

date the shared updates. For autonomous vehicles, [31] devise a Blockchain-based

FL scenario for on-vehicle Machine Learning (oVML). The proposed mechanism

relies on a blockchain-based solution to address network connectivity and motivat-

ing devices with rewards proportional to their contributions. Finally, [32] presents a

potential solution for a more practicable implementation of FL by devising a mecha-

nism ‘q-FFL’ to improve the accuracy of the worst performing nodes in a centralized

FL setting.

Chapter 1: Introduction 12

Furthermore, emerging networks are fully primed to benefit from a more de-

centralized form of communication. Device-to-Device (D2D) communication [33] is

a departure from the conventional forms of centrally coordinated communication

frameworks. D2D setups allow nodes to communicate with their local neighbors,

resulting in the creation of a massive decentralized ad-hoc mesh network while also

allowing for the ascertainment of global network parameters [34]. Given the bene-

fits such truly distributed frameworks may offer, a more recent take on developing

FL-based solutions envisions D2D scenarios for learning. The participants in such

networks operate autonomously with local information.

Decentralized Federated Learning (DFL) attempts to allay the communication

and server-related challenges by allowing the devices to interact directly within

their neighborhoods without external/server coordination [35]. Greater emphasis

has been laid on serverless interactions in emerging and next-generation communi-

cation networks such as 5G and 6G [36]. This allows for many potential learning

applications in a fully decentralized manner. DFL, operating on arbitrary network

topologies, allows nodes to collaborate within their neighborhoods to reach a con-

sensus model using Device-to-Device (D2D) interactions [33]. Enabling direct com-

munication among devices restricts upstream communication, making learning more

communication efficient. Additionally, it removes the server-related constraints both

in terms of orchestration and a single point of failure. Furthermore, since the model

exchange is limited to the node neighborhood, DFL promises greater FL scalability

by enabling a much greater proportion of devices to undertake the learning process

independently.

In Decentralized Federated Learning (DFL), each node shares performs a local

stochastic gradient update on its model using its private data. It then shares its

updated model within its 1-hop neighborhood through D2D interaction. The shared

updates are used in weighted aggregated locally and successively propagated along

Chapter 1: Introduction 13

the network [37]. The information diffusion across the network is slower as the

shared updates are down-weighted during each communication round as the models

propagate through the network. While fully and densely connected topologies im-

prove convergence, real-world configurations follow sparse configurations e.g. due to

the presence of stragglers, implying reduced neighborhood sizes and reduced conver-

gence rates [38]. The autonomous operation of nodes also impacts the convergence

rate negatively since they may choose to skip training/communication rounds alto-

gether. A significant proportion of nodes depicting such uncertain behaviors leads

to a volatile participation environment [39], resulting in an unstable availability of

neighboring nodes for model exchange. As explained in the upcoming section, the

main focus of this thesis remains first the characterization of DFL under extreme

conditions and subsequently to propose DFL algorithms to improve its convergence.

1.4 Contributions

Fully decentralized interactions derive their significance from minimizing their re-

liance on central orchestration. DFL also benefits from these aspects and enables

learning without a global aggregation mechanism. It affords the benefits of lowering

upstream communication costs, reducing reliance on central coordination as well

as the ability to cope with the induced absence of global servers. While emerging

networks like 5G and 6G introduce features to enable serverless communication,

scenarios such as emergency situations, unplanned communication/power outages

as well as disaster situations may render edge and global servers with significantly

reduced capacity to handle communication and in certain cases, may even cause

them to be completely unreachable [40–42]. Such cases may also be extended to

unmanned aerial vehicle (UAV) setups where medium to high altitude systems may

face restrictive communication scenarios and have to rely on device-to-device form

of communication [43, 44]. Additionally, the node usage and characteristics them-

selves govern the participation preference of node in a given federation round. Such

scenarios may arise due to performance and application requirements and mobility

considerations [45]. The nodes in a vehicular network may receive little incidence

Chapter 1: Introduction 14

time with a given edge server or may travel farther away from edge servers. Similarly,

disaster affected areas may be faced with a significant decrease in the participation

by the local nodes. One of the main contributions of this work remains conducting

the analysis and proposing solutions for DFL under volatile conditions. The majority

of works on DFL assume 100% participation under decentralized scenarios thereby

allowing a significant exchange of information between the nodes. However, taking

realistic node behavior into account, it becomes important to consider probabilistic

behaviors depending upon heterogeneous environmental and device characteristics.

The main contribution of this thesis is the assessments of DFL in extremely

heterogeneous conditions and proposing mechanisms to improve its operation in

volatile environments.

Design and Development of Federated Learning Algorithms Simulation

(FLAGS) Framework

Benchmarking FL takes on greater significance as the envisioned operating envi-

ronment is highly diverse and different from centralized or silo-based distributed

learning. To achieve nuanced evaluation and ensure extensibility, this work designs

and develops the Federated Learning Algorithm Simulation FLAGS framework.

It allows each network entity, whether a node or a server, to emulate a realistic

behavior separately. By implementing a range of functionalities associated with

each entity, this framework allows diverse network interactions, enabling multiple

FL algorithms to be simulated easily. Each device has various associated functions

to enable multiple operating conditions and device behaviors. During the experi-

ments, the FL algorithms are subjected to some of the key challenges facing general

FL research. The empirical analysis of the performance of these FL algorithms is

conducted by varying the operating parameters, such as device participation, com-

munication noise, and data distribution.

FLAGS is a lightweight FL prototyping framework allowing for an accurate as-

sessment of multiple FL algorithms for highly realistic network topologies. Inherent

Chapter 1: Introduction 15

in FLAGS are different levels of device participation (controlled by parameters pk

for participation in central aggregation and dk for controlling neighborhood aggre-

gation), device selection mechanism for nodes and servers, as well as generating

multiple data distributions including IID, non-IID, and extremely-skewed non-IID

data partitions. It also supports synchronous and deadline-based asynchronous oper-

ation to replicate heterogeneous device behavior [46]. where node training progresses

at different paces. The highlight of FLAGS lies in its capability to configure and

subject multiple FL algorithms to a realistic multi-tiered environment, which allows

users to propose the best environment-FL fit. The framework’s modular architec-

ture affords ease of feature addition and expansion across all major building blocks.

The details of the FLAGS framework have been provided in Chapter-4, including

the architecture, capabilities, and run-time settings.

Comparative Assessment of Federated Learning Algorithms

Federated Learning is envisioned to operate in a heterogeneous environment with no

prior assumptions. The challenge then arises regarding the performance of various

FL algorithms and their feasibility under various conditions. Our work in [47] aims

to contrast the performance of the major FL algorithms under some of the most

prevalent challenges to distributed learning at the network edge, i.e., non-IID data,

noisy communication, volatile nodes, and asynchronous aggregation. The main goal

is to pave the way for a multi-FL system where devices may select the most suitable

FL algorithm depending on the operating characteristics. The comparative charac-

terization of FL algorithms conducted in this work is aimed at bridging this gap.

The analysis conducted here paves the way for establishing the economy of operation

for these algorithms for various operating scenarios in a particularly heterogeneous

Network Edge.

1. A detailed comparative evaluation of the fundamental Federated Learning al-

gorithms, namely (a)Hierarchical FL (HFL) (b)Device-to-Device FL (D2DFL)

(c) Gossip FL (GFL) (d) Centralized FL (FedAvg) has been conducted. To ex-

pand the scope of the evaluation, this work also considers other FL algorithms

Chapter 1: Introduction 16

employing multiple aggregation strategies jointly. These include: (a) Hierar-

chical Device-to-Device FL (HD2DFL) (b) Hierarchical Gossip FL (HGFL)

(c) Clustered Device-to-Device FL (CD2DFL) (d) Inter-Cluster FL (iCFL)

(e) Inter-Cluster Device-to-Device FL (iCD2DFL)

Their performance is tested under ideal and noisy Device-Device (D2D), Device-

Edge (D2E), and Device/Edge-Cloud (D2C/E2C) communication links as well

as non-IID data distributions and various device participation levels. The re-

sults indicate that even in the presence of non-IID data, decentralized FL

performs with a marginal loss in performance compared to centralized vari-

ants despite operating entirely in the absence of any global information. Ex-

tremely skewed data distributions, however, greatly impact decentralized FL,

drastically reducing convergence rate and accuracy.

2. We also conduct a detailed study of these algorithms under various levels of de-

vice participation (such as active, inactive, and stragglers) has been conducted.

Decentralized FL shows a marginal loss in performance when compared with

centralized FL in the presence of degraded participation. A decrease in de-

vice participation and extremely skewed data distributions have a confounding

effect on all the algorithms, more so on the decentralized ones.

3. An analysis using modified Few-Shot Learning, with considerably more local

updates before aggregation, has also been conducted for the FL algorithms

under consideration. Decentralized algorithms show a greater loss in accuracy

than centralized ones. However, clustered operation helps mitigate the absence

of a global server while restricting all communications to the device level.

The details of considered algorithms, network topology, and results have been

discussed in detail in Ch-5

Chapter 1: Introduction 17

Impact of Node Selection on Decentralized Federated Learning in Volatile

Settings

Evidence suggests that the convergence rate for DFL is more adversely impacted due

to heterogeneous conditions. One avenue to improve convergence while operating

under non-uniform conditions has been node selection. Node selection relies on

identifying and using only beneficial nodes in the aggregation process. The major

focus of client selection has remained in conventional FL settings. Therefore, in

[48], we evaluate the implications of node selection for DFL under more challenging

operating conditions. The summary of the same work presented in Ch-6 is as follows:

1. Our work evaluates performance-based node selection for DFL under sparse

conditions using hard (top-k selection) and soft (probabilistic assignment) fil-

tering. Results indicate that performance metrics may be insufficient to cap-

ture the overall model diversity in fully decentralized scenarios

2. A time-varying parameterized node selection method is proposed based on

validation accuracy and its corresponding change from preceding rounds. The

proposed criterion outperforms hard selection under extreme operating condi-

tions.

3. The results indicate that operating fully locally, random stochastic selection

has a better chance of capturing model diversity, resulting in better perfor-

mance under spare and extreme data conditions.

Assisted Decentralized Federated Learning

One reason for slow information diffusion in DFL, particularly across sparse net-

works, is that the shared updates are gradually down-weighted during each commu-

nication round, especially in real-world sparse network configurations where neigh-

borhood sizes are smaller. Additionally, the autonomous behavior of nodes neg-

atively impacts convergence rates since some nodes may choose to skip training

or communication rounds. When a significant number of nodes demonstrate such

Chapter 1: Introduction 18

uncertain behaviors, it creates a volatile participation environment, leading to an

unstable availability of neighboring nodes for model exchange. Both graph sparsity

and participation volatility significantly affect the convergence rate in DFL. Fur-

thermore, they exacerbate the impact of data heterogeneity, causing the models to

become increasingly biased towards the data distributions of the proportion of avail-

able neighboring nodes in a sparse neighborhood.

For such a scenario, we utilize local information to accelerate the emergent be-

havior and propose three algorithms and provide the details in Ch-7

1. We outline an asynchronous DFL setting for sparse network topology under

volatile participation conditions. The presented setting works with a fraction

of the nodes participating in the DFL aggregation phase while hosting highly

skewed and non-IID data distributions.

2. We propose a Memory-Assisted Decentralized Federated Learning (MA DFL)

algorithm and assess its performance in highly volatile scenarios. Each node

retains only the models received in the previous round and uses them as respec-

tive approximations of the non-participating nodes. The results indicate that

employing memory with asynchronous training and low participation scenarios

improves the performance and convergence of DFL.

3. We propose an Augmented Graph-assisted Decentralized Federated Learning

(AG DFL) algorithm. Under limited participation conditions, our work is

based on augmenting the graph to add virtual edges. The proposed mechanism

allows nodes to relay additional models (virtual edge) while sharing their own.

Evaluation under highly skewed data and volatile participation scenarios shows

that the said algorithm improves DFL algorithm under extreme and non-IID

distributions.

4. We finally propose a hybrid algorithm employing both memory and relay op-

erations: Memory and Augmented Graph-Assisted Decentralized Federated

Chapter 1: Introduction 19

Learning (MAG DFL) algorithm. Subjecting to the same set of conditions of

limited participation conditions and asynchronous operations, our proposed

algorithm outperforms both the baseline DFL and individually proposed algo-

rithms.

In the rest of this document, we provide details of the Related Work in Ch-2

and the preliminaries in Ch-3. The details of the developed FLAGS framework and

our detailed analysis of FL algorithms are provided in chapters 4 and 5. Our work

on node selection for DFL under volatile settings is presented in Ch-6. We present

the details of the three proposed algorithms, Memory-Assisted, Augmented-Graph

Assisted, and the hybrid Memory and Augmented Graph-Assisted DFL in Ch-7. We

present a concluding summary, potential future avenues, and extensions in Ch-8.

Chapter 2: Related Work 20

Chapter 2

RELATED WORK

Edge Intelligence tries to leverage the resources available mostly at the edge level

of the network. However, this domain has a heterogeneous nature both in terms of

the device and the communication protocols that link these devices. Federated

learning, proposed in [22], enables these entities (nodes) to learn collaboratively

while being coordinated by a central server without ever exchanging raw data. This

mechanism decentralizes the learning process by enabling nodes to start from a

global model and train on the locally available data. Federated Learning ensures

the users’ privacy since no data is communicated between the nodes during the

training process. Subsequently, multiple nodes are then solicited by the central

server to share their parameters, which are then aggregated by the server itself (Fig

1.2). The updated model is then broadcast to the nodes, repeating the process until

convergence. The inference process takes place on the client itself, and thus, data

is never transmitted over the network, which ensures user and client privacy. A

comprehensive survey in [24] classifies the challenges for federated learning, dividing

the issues as either “Algorithmic” or “Practical” in nature. Furthermore, the FL

process is envisioned for a highly heterogeneous environment. The search for optimal

application of FL has resulted in various FL algorithms designed to benefit from

edge network topology uniquely. The impact of some of the most prevalent among

these must first be characterized to adapt FL accordingly. To this end, some of

the representative works that have focused on the FL algorithms and simulation

frameworks have been covered in this section.

Chapter 2: Related Work 21

2.1 Federated Learning Algorithms

Most of the current research in Federated Learning leans heavily toward centraliza-

tion. Communication and model optimization are the two key parameters that are

used to gauge the effectiveness of an FL algorithm. However, research indicates that

careful selection of design parameters may yield competitive results for decentralized

FL as well. The authors in [37] describe a fully decentralized FL algorithm with

IID data distributed across users interacting according to a directed graph. In [49],

the authors present a gossip-aggregation framework for FL. The research reports

more favorable results from gossip learning-based FL with uniform data distribu-

tion across the nodes. More recently, [50] suggests the application of the Decen-

tralized Stochastic Gradient Descent (DSGD) [51] for D2D belief aggregation in the

presence of wireless impairments. A Consensus-based Federated Averaging (CFA)

for dense IoT networks is proposed in [52]. Their analysis suggests that serverless

cooperation between devices may also yield results comparable to FedAvg. Extend-

ing their work, the authors in [35] evaluate Consensus-based Federated Averaging

(CFA) and CFA-Gradient Exchange (CFA-GE) for dense IoT networks with D2D

interaction. Their results support the original hypothesis indicating that although

slow to converge, CFA and CFA-GE achieve performance similar to FedAvg with

communication restricted only to device level. In [53], the authors try to tackle the

problem of data heterogeneity in a decentralized fit learning setting. The authors

propose a peer-to-peer model exchange method with model fusion using Mutual

Knowledge Transfer.

Other research has also proposed hybrid FL algorithms employing hierarchi-

cal aggregation in conjunction with D2D interaction. In [54], the authors perform

divergence-based client grouping in a Hierarchical Federated Learning (HFL) sce-

nario. The latency analysis of a hierarchical FL system operating in a heterogeneous

cellular network is provided in [55], where the local aggregation is conducted at Mo-

bile Base Stations. The impact of HFL on training time and energy consumption is

investigated in [56]. The same work also indicates that a trade-off between latency

Chapter 2: Related Work 22

and computation may be achieved, resulting in better performance than central-

ized FL. A two-time scale Hybrid FL model is proposed in [57], which compliments

device-device communication with hierarchical server-based aggregations. This work

introduces a control algorithm scheduling global aggregations, local interactions, and

learning rate to achieve a convergence rate of O(1/t). The work in [58] uses gossip

interaction between the devices before allowing them to upload their models to the

hierarchical servers. The resultant FL algorithm provides near-optimal results even

in the presence of reduced communication frequency and volume. Device cluster-

ing in the same network location is suggested in [59], which uses the corresponding

mobile edge nodes for local aggregation operations. Their suggested method, in con-

junction with a cosine-similarity-based device filtering, attains higher convergence

speeds using less number of local updates. Then [60] experiment with FL using clus-

tered devices where the Cluster Heads, selected from the devices, are awarded repu-

tation scores by the members and may communicate with their one-hop neighbors.

The results indicate that the proposed configuration improves network efficiency.

The work in [61] compares the communication efficiency of split learning and FL.

This research evaluates the learning techniques for increasing the client population

as well as increasing the size of the global dataset. The results indicate that split

learning favors the former, whereas FL better serves the latter. In [62], the authors

compare FedAvg, Federated Stochastic Variance Reduced Gradient (FSVRG), and

CO-OP FL algorithms to investigate the impact of non-IID distribution of various

FL optimization techniques. However, the comparison only considers centralized

FL aggregation for the mentioned optimization schemes. The results indicate that

FedAvg fares better than the other two techniques for non-IID data distribution. A

detailed empirical analysis of federated and gossip learning conducted in [63] shows

that gossip performs competitively with federated learning.

2.2 The non-IID Challenge

The presence of non-IID data remains the most pressing challenge for FL. One of

the foremost works on challenges faced by FL is [24, 64] that also suggests that

Chapter 2: Related Work 23

non-IID data results in degraded performance for CFL schemes such as Federated

Averaging (FedAvg) [22] and Deep Gradient Compression [65]. The ubiquity of this

challenge remains the central focus of [66], which tries to assess the impact of non-

IID data on FL. The research indicates that the presence of non-IID data increases

divergence across all layers of the local DNN, exacerbating as the distribution skew

becomes extreme, i.e., the presence of samples from a limited number of classes.

The authors offer a potential solution to this problem by sharing a representative

dataset among all participant devices. Some of the ways the non-IID nature of data

manifests across devices have been covered in [67]. These include uneven feature

and sample distribution and concept shift which entails a mismatch between labels

and features at the device level. The proposed solution uses clustering client inputs

based on the similarity between local and global models. The concept of client drift

is presented in [68] and addresses the phenomenon in which nodes reach the local

optima away from the global optimum, aggravated by the presence of non-IID data.

The adverse impact of non-IID data on the performance of FedAvg is investigated

in [69]. This work indicates that the presence of non-IID across devices reduces

convergence rate, providing theoretical arguments for learning rate decay to reduce

client drift. The research in [70] suggests that random selection of participants in

FL scenarios leads to degraded performance, particularly when data at the nodes

follow a non-IID distribution. The authors propose a statistical utility measure to

ascertain the benefit of choosing a particular node in an aggregation round.

2.3 Existing Frameworks

Benchmarking FL is more significant as the envisioned operating environment is

highly diverse and different from centralized or silo-based distributed learning. It

is, therefore, necessary that an effective benchmark be capable of allowing hetero-

geneity in device behavior, data distribution, and connectivity. Additionally, the

benchmark should be able to support different cooperation schemes that form the

basis of different FL algorithms.

Various benchmarking frameworks have taken different approaches to satisfy the

Chapter 2: Related Work 24

aforementioned objectives. These have been aimed at achieving rapid prototyping

[71], higher scalability [72, 73], and realistic data heterogeneity [74, 75]. Among

these options, FedML [76] additionally offers topology management by allowing the

configuration of multiple FL algorithms. However, it is pertinent to note that these

frameworks are designed to simulate either FedAvg or a single FL algorithm for a

given environment. This indicates that greater work is involved in simulating various

FL algorithms to capture more accurate performance details.

This work presents the performance of key FL algorithms distinguished in their

ability to utilize various network levels (Fig. 1.1). In order to achieve nuanced

evaluation and ensure extensibility, this work presents the FLAGS framework. The

framework allows each network entity, whether a node or a server, to emulate a real-

istic behavior separately. By implementing a range of functionalities associated with

each entity, this framework allows diverse network interactions, enabling multiple

FL algorithms to be simulated easily. Each device has various associated functions

to enable multiple operating conditions and device behaviors. During the experi-

ments, the FL algorithms are subjected to some of the key challenges facing general

FL research. The empirical analysis of the performance of these FL algorithms is

conducted by varying the operating parameters, such as device participation, com-

munication noise and data distribution.

Federated Learning (FL) and Decentralized Federated Learning (DFL) are en-

visioned to operate in a highly heterogeneous environment. While FL research has

seen remarkable interest, challenges such as data orchestration and privacy, com-

munication latency, and server-related issues remain major impediments. Based on

the principles of widely researched distributed optimization, DFL further democra-

tizes learning by allowing devices to learn and exchange models among themselves

without the need for a coordinating entity.

2.4 Decentralized Federated Learning

In DFL, nodes communicate with their peers in their respective neighborhoods with-

out server intervention. This allows DFL added communication efficiency and better

Chapter 2: Related Work 25

privacy preservation. A DFL framework with a Bayesian parameter space is intro-

duced in [37]. The work carried out in [35] extends the application of DFL to an

industrial scenario with a large-scale Internet of Things (IOT) sensor network. They

explore both model exchange in Consensus-based Federated Averaging (CFA) and

CFA with gradient exchange (CFAGE). A gossip learning approach is evaluated

for uniform bandwidth assignment in [63]. The authors show that for the given

scenario, gossip learning performs comparably to FL and contend that the overall

sentiment towards DFL should be encouraging. An Over-The-Air (OTA) DFL setup

is explored in [50]. The authors suggest mechanisms to assist DFL in coping with

wireless impediments and depict the efficacy of DFL in random network topologies.

In [77], the authors provide an extensive survey of DFL research and some of the

major characteristics involved in its characterization. They detail the major net-

work topologies, key performance indicators, and various federation architectures.

Their work also highlights research into DFL depending upon gossip, peer-to-peer

and device-to-device communication. In [78], the authors suggest a DFL framework

with unreliable communication. Their work focuses on using User Datagram Proto-

col (UDP) for model transmission and shows that the convergence rate at par with

DFL may still be achieved.

Asynchronous DFL From a synchronization perspective, the FL landscape is

divided into synchronous and asynchronous FL. Compared to the synchronous set-

ting, the asynchronous environment allows the nodes to conduct training according

to their own capabilities and available resources. Furthermore, the nodes are permit-

ted to conduct aggregation without waiting for all the nodes in the neighborhoods.

In [79], the authors propose an asynchronous DFL algorithm that allows utilizing

the faster nodes for aggregation without waiting for stragglers. The work in [80]

presents a fault diagnostic scenario enabling photo voltaic stations to learn fault

features from their neighbors asynchronously. The work proposes a hybrid Fed-

erated learning model with both the presence of a server and decentralized node

Chapter 2: Related Work 26

interactions. the nodes are allowed to communicate among themselves as well as

share their models with the global server whenever it is possible for them. The

aggregation, both at the nodes and the server, takes place once a defined proportion

threshold of received models is achieved. Finally, the work in [81] proposes an asyn-

chronous DFL algorithm communicating over wireless network Edge. The authors

suggest that the design algorithm is robust to the impediments of a heterogeneous

wireless network and can operate in a time-varying communication topology in the

presence of stragglers.

2.5 Topology Optimization

A major avenue of DFL research has adopted topology-configuring schemes to im-

prove the convergence rate and improve communication efficiency in DFL. In [82],

the authors propose the optimization of the network topology and model compres-

sion under heterogeneous communication and conditions and non-IID data distribu-

tion. They propose consensus distance as a metric and propose an algorithm CoCo,

that dynamically constructs a network topology to determine compression ratios for

communication efficient operation. Then [83] provides theoretical convergence guar-

antees for gossip Heritage learning. They also designed a bandwidth-aware gossip-

matrix generation algorithm. They also propose a model specification method that

allows each node to communicate a highly specified model with one peer in a gossip

round. The work in [84] devises a way to assign mixing weights to the neighbor-

ing nodes for synchronous DFL. They deploy an encoder of model weights and an

attention module to compute the weights from the pairwise similarity between the

representations. To specify the topology, they remove the top K neighbors with the

smallest mixing weights, thereby reducing communication costs. The authors of [85]

propose a sparse training technique with each node keeping only a fixed number

of parameters active throughout the training by using a personalized mask. The

averaging is conducted using only the intersection weights from the received models.

The model sparsification process reduces the communication cost and computation

load. The experiments indicate that a fully connected topology shows higher con-

Chapter 2: Related Work 27

vergence rates than sparse ones.

2.6 Device Volatility

Device participation in a realistic FL setting is subject to multiple factors, includ-

ing activity status, resource constraints, or the dynamic nature of the node itself.

The overall learning environment becomes highly volatile when such node behavior

is expected from a significant proportion of the nodes. The research in [86] ex-

plores the volatility aspects of FL training in an Intelligent Transportation Setting

(ITS) where all the nodes are inherently dynamic and constantly join and leave the

system. The proposed solution employs Road Side Units (RSUs) as intermediate

parameter servers and intelligent resource allocation to undertake FL. An example

of a reward-oriented participation behavior for FL is explored in [87]. The pro-

cess is modeled as a Minority Game (MG) in which the nodes decide whether to

participate or not based on a reward-resource trade-off. A coalition-based MG is

proposed to incentivize participation and reduce defectors. The work in [88] tackles

volatility in an FL setting by proposing a deadline-based node selection mechanism.

The node selection process is further refined by Exploration and Exploitation-based

client selection (E3CS). The best-case scenario is shown for the regret measure of

the suggested solution equaling that of an even-random selection. The same conclu-

sion was drawn empirically in our earlier work in [48], which explores node selection

under volatile DFL settings. The results indicated that in high volatility scenarios,

a random selection of nodes ultimately leads to better convergence rates even under

extreme data distributions. The work in [89] explores the impact of volatility in FL

settings. The authors propose a Cumulative Effective Participation Data (CEPD)

measure as the optimization objective. The work categorizes volatility into set, sta-

tistical, and training volatility contingent on nodes joining or leaving the system,

dynamic data characteristics, and participation. The server uses a multi-arm bandit

approach to learn the effective participation data and attempts to maximize the

cumulative measure.

Chapter 2: Related Work 28

2.7 Memory and Relay Mechanisms in FL

One of the major factors in enabling fully decentralized behavior is the ability to

act as relays for neighboring nodes. The work [90] proposes a RelaySum mecha-

nism for Decentralized Federated Learning for spanning trees. The authors consider

each node to receive and send 2 models per iteration in a spanning tree topology,

although their analysis extends to other graph topologies as well. Another work

in [91] performs a relaying operation in a centralized FL environment where the

node aggregates models from its neighborhood before forwarding them to the pa-

rameter server. The authors suggest that the impact of poor connectivity may be

mitigated by nodes in the locality having better participation and connectivity op-

tions. The authors in [92] focus on the over-the-air (OTA) implementation of FL

in wireless environments. The solution is based on a two-phase aggregation process

where the first stage involves the nodes and the clients sending their updates to the

relay and the Access Point (AP). In the next stage, both the relays and nodes send

the updates to AP, following which the aggregation error is established based on

this relay-assisted FL.

The work in [93] proposes MIFA, a memory-augmented Federated Learning

framework that avoids excessive delay by employing a deadline and memory-based

aggregation mechanism. Each node maintains the previous global model and the

updated model and sends the difference to the server to avoid memory implications

at the server. In [94], the authors suggest FedVARP, a variance reduction method

for FL tackling partial client participation. The server maintains in its memory all

received updates, and for the nodes not participating in a particular round, it ap-

proximates their models by the ones stored in its memory. The memory utilization

at the server side is catered for by clustering similar updates as a single model.

Chapter 3: Preliminaries 29

Chapter 3

PRELIMINARIES

As with any distributed learning process, it is important to understand the un-

derlying network topology connecting the various entities. Federated Learning offers

an efficient means of distributed learning at the Edge Network. This section first

establishes a System Model for the interaction between network entities such as

nodes and servers connected by various communication links. The mathematical

framework behind the FedAvg algorithm is also presented, which is extended in

subsequent sections to describe major FL algorithms.

3.1 System Model

Network Topology The system model is defined using a set of nodes, edge

servers, and a global cloud server. A stochastic formulation is used to establish

the interaction between the nodes at the device layer as well as between the device

and hierarchical servers at the edge layer. A set of N static nodes are randomly dis-

tributed in C geo-proximal clusters (C) representing natural grouping. Each cluster

may be associated with its own Cluster Head randomly selected from the cluster.

Cluster Head selection and Cluster membership are active areas of research. How-

ever, the behavior in the presence of one has been replicated. One node from each

cluster Ci is designated randomly as a Cluster Head. This work intends to evaluate

the performance under Clustered FL operation and thus assumes automatic mem-

bership of proximal nodes. Each node i assumes full knowledge of its neighborhood

ni ∈ N such that ni = {j ∈ N |{i} : (i, j) ∈ E}. The graph G is also defined with

its adjacency matrix W ∈ {0, 1}N×N that describes the edge information of all the

nodes in the graph. WhileW represents the adjacency information of a static graph,

a dynamic behavior by the nodes can be encompassed by samplingW t ∼W . In the

Chapter 3: Preliminaries 30

setting considered for this work, both W and W are row-stochastic matrices which

is shown in Ch 7. It is a realistic assumption that W may be obtained by the local

interaction of the nodes with a fractional overhead. However, the behavior in the

presence of one has been replicated. One node from each cluster Ci is designated

randomly as a Cluster Head. This work intends to evaluate the performance under

Clustered FL operation and thus assumes automatic membership of proximal nodes.

A random graph topology is assumed for the purpose of this work, with each node

i able to communicate within its one-hop neighborhood ni. The network topology

forms an undirected graph G = (N , E) where N = {1, 2, N} is the set of

nodes and E is the set of edges. The sparsity constraint on the graph structure

stipulates that E << Emax where Emax = N(N−1)
2

. The sparsity condition ensures

that the graph density ζ << 1. However, it is assumed that the graph remains

reachable, implying that there are no isolated nodes. The devices are assumed to

operate stochastically in pursuing local updates and participation in aggregation

rounds.

Each node i is assumed to have a degree ni and possesses knowledge about its

neighborhood. However, it is pertinent to note that a device’s neighborhood is not

restricted to its cluster, and devices can be connected with those in other clusters.

The link density at the device level is controlled by a set of two parameters (γ, υ).

The probability of a link between geographically proximal devices lying within a

cluster Ci is:

P (ξmn)
m,n∈Ci

= {γ | 0 < γ < 1}

Similarly, the probability of a device-level link between two nodes belonging to

distinct clusters Ci and Cj is:

P (ξpq)
p∈Ci,q∈Cj

= {υ | 0 < υ ≤ γ}

The parameters υ and γ are used to alter the network topology from a random place-

Chapter 3: Preliminaries 31

Param Description

θt Global model parameters at time t
θt
k Model parameters of node k at time t

θ∗ Optimal parameters of the global model
L Global loss function
∇L Gradient of the loss
x,y Input feature vector, reference output
αk Learning rate at node k
ηk Aggregation weight associated with node k
D Global dataset partitioned among the nodes
Dk Dataset associated with node k
N Number of nodes in the network
lk Local loss function associated with node k
ξl,m Edge link between nodes l and m
Ci Cluster Head (CH) of the cluster i
C Number of geo-proximal clusters in the network
dk Neighbor cooperation probability of node k
pk Edge server cooperation probability of node k

Table 3.1: List of parameters used in the system model and the algorithmic descrip-
tion.

ment to a highly clustered setting depending upon the target environment. For these

parameters, a setting of (γ → 1, υ << γ) indicates that the proximal groups are

densely connected, with almost every device sharing a link with the other within the

group. On the other hand, only a few edges exist between devices between differ-

ent groups, indicating a reduced probability of the device’s ability to communicate

directly with devices that are farther off. In contrast, (γ → 1, υ → 1) indicates a

densely connected device layer where each device is connected to a large number of

other devices. Finally, (γ → 1, υ = 0) indicates that devices only maintain connec-

tions within a proximal group without any inter-group connectivity.

The framework can simulate both ideal and noisy links with zero-mean Gaussian

noise (N (0, σ)). Each device has a probability dk of participating in a neighborhood

aggregation and pk for an edge or cloud server-based aggregation. These probabilities

reflect the device status (active/inactive) as well as stragglers that may choose not

Chapter 3: Preliminaries 32

to participate in certain aggregation rounds. Furthermore, the nodes are assumed

to be fully capable of undertaking local learning operations, including adjusting

hyperparameters.

Node Volatility and Asynchronous Participation The current environment

setting realizes volatile participation from the nodes through the use of the parameter

ptij that controls the ability of the node i to communicate with its neighbor j ∈ sti ⊂

ni during the round t. We assume that node i exchanges its model with j ∈ sti

nodes in a round t if ptij = 1, with no prior assumption on the distribution of pij.

The overall setting maintains considerable volatility in a given round t, assuming

that 0 < |si| << |ni|. This implies fractional participation from the neighborhood

of node i in a given aggregation round. The entire process is considered under

asynchronous FL settings, during which devices can control local update rounds ei

and participate in aggregation. The communication rounds are indexed by t.

3.2 Federated Learning Methodology

The global objective in a Federated Learning setting is a weighted sum of the local

loss functions:

L(θt) =
N∑
k=1

ηkLk(θ
t
k) (3.1)

where L(θt) represents the global loss function and Lk(θk) and ηk are the local

loss function and weight associated with node k at time t. The FL objective is to

minimize the weighted sum of the individual losses of N devices

min
θ∈RM

L(θt) = min
θ

N∑
k=1

ηkLk(θ
t
k) (3.2)

Each Lk(θ
t
k) at time t is associated with anM -dimensional model parameterized

by θt
k ∈ RM and the weight ηk for node k. The initial parameters of the model, θt,

are shared with the devices through a server. The local loss at a device is calculated

Chapter 3: Preliminaries 33

through the training as follows

Lk(θ
t
k) =

1

|Bk|
∑

(xi,yi)∈Bk

l(xi,yi;θ
t
k) (3.3)

where l(xi,yi;θ
t
k) represents the loss of the machine learning task (e.g cross-entropy,

mean squared error) calculated for the local model for the current model parameters.

This is calculated for each point (xi,yi) in the minibatch Bk sampled from the

local dataset Dk. Using the principles of Distributed Stochastic Gradient Descent

(DSGD), each device with the learning rate αkr for a round r, updates its model as:

θt+τ
k = θt

k − αt
k∇Lt

k(xi, yi;θ
t
k) (3.4)

where ∇Lt
k(xi, yi;θ

t
k) are the gradients calculated by node k during the local update

round t and αt
k is the learning rate associated with kth node at time t. The updated

model parameters from Eq. 3.4 or the gradients calculated above are then shared

with the server.

This process is conducted for ei update rounds before the aggregation phase.

For aggregation, each node, with a probability pij ∈ {0, 1}, shares its locally learned

parameters θt+τ
i with si ∈ ni set of nodes. The number of nodes in s changes with

ptij ∀ j ∈ si such that si = {ϕ | pij = 0 ∀ i ∈ N & j ∈ ni} and si = {ni | pij =

1 ∀ i ∈ N & j ∈ ni}. Upon receiving models from πi : {πi|πi ∈ ni} set of nodes

from its neighborhood, each node i performs local aggregation using the received

models θt+τ
r ∈ πit along with its own model θt+τ

i with their corresponding weights

to generate θt+1
i :

θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθr
t+τ
i (3.5)

where ηi and ηr denote the corresponding weights assigned to the contribution

of the node i’s own and r received models, respectively, towards the aggregation at

Chapter 3: Preliminaries 34

node i and

ηi +
∑
r∈πi

ηr = 1

where ηi and ηr denote the corresponding weights assigned to the contribution of

the node i’s own and r received models, respectively, towards the aggregation at

node i and

ηi +
∑
r∈πi

ηr = 1

The complete process is repeated over multiple communication rounds until conver-

gence is achieved.

As evident from Eq. 3.2-3.5, the entire Federated Learning process bypasses the

need for the devices to share data at any stage, offering a strong privacy advantage

over centralized forms of ML. It instead relies on communicating model parameters

to the local server. The server is also required to share the aggregated model with

the connected nodes for the subsequent rounds, adding to the overall communica-

tion volume needed to execute FL successfully. Such servers are typically located at

the network cloud level, offering multiple services. Thus, frequent communication

to and from these servers becomes an extremely expensive operation in addition to

straining the latency requirements of various edge services in addition to subjecting

the shared models to additional adversarial risks.Table 3.1 presents the list of pa-

rameters used in this work.

Furthermore, the entire process is considered under asynchronous FL settings,

during which devices can control local update rounds ei and participate in aggrega-

tion. The value of ei depends on multiple factors, including device activity status,

computation capacity and size of the local dataset. While an asynchronous setting

introduces additional parameters that may be significant in ascertaining the over-

all performance not in the purview of current work, it remains closer to a realistic

operation. It offers greater autonomy to the participating devices.

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 35

Chapter 4

FEDERATED LEARNING ALGORITHMS SIMULATION

(FLAGS) FRAMEWORK

Federated Learning (FL) provides an effective mechanism for distributed learn-

ing. However, it is expected to operate in a highly diverse setting with distinct

behaviors from the participating nodes as well as dynamic network conditions. The

FL performance, therefore, is subject to change due to the highly transitory nature

of the overall system. An efficient simulation framework must be flexible to allow a

range of participant behaviors, interactions, and environmental characteristics. In

this chapter, we present the Federated Learning Algorithms Simulation (FLAGS)

framework that we propose as a lightweight FL implementation and testing plat-

form. FLAGS framework allows for a wide range of device behaviors and cooperative

mechanisms, enabling rapid testing of multiple FL algorithms.

4.1 Introduction

Federated Learning (FL) [22] has become a widely researched domain for distributed

learning. It enables the individual nodes to learn from their local data and share

the models with other participating entities. The shared models are fused together

to generate a consensus model, which forms the starting point for the next learning

round until convergence is reached. FL is envisioned to operate in a highly hetero-

geneous setting [24], allowing the participating nodes to cooperate toward building

a consensus model. The major sources of heterogeneity are the environment, de-

vice behavior, and data distributions. A reliable and accurate evaluation of FL

algorithms that caters to multiple operating characteristics should, therefore, be an

important consideration.

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 36

With the widespread application of distributed learning, benchmarking FL has

assumed even greater significance. The FL algorithms are envisioned for a highly

heterogeneous setting with limited prior information. Accurate assessment of their

performance requires that the simulation framework provide repeatable and uniform

conditions, support easily configurable FL algorithms, possess the flexibility to im-

plement new ones and cater to multiple types of communication links. An effective

benchmarking platform should be versatile and capable of incorporating diverse de-

vice behaviors, environments, network topologies, and data distributions, as well

as supporting various cooperative mechanisms. To enable rapid prototyping, accu-

rate assessment, and experiment with multiple cooperative topologies, we present

FLAGS1.: the Federated Learning Algorithms Simulation framework. FLAGS is a

lightweight FL prototyping framework allowing for an accurate assessment of mul-

tiple FL algorithms for highly realistic network topologies [95]. Inherent in FLAGS

are different levels of device participation (controlled by parameters pk for participa-

tion in central aggregation and dk for controlling neighborhood aggregation), device

selection mechanism for nodes and servers as well as generating multiple data dis-

tributions including IID, non-IID and extremely-skewed non-IID data partitions. It

also supports synchronous and deadline-based asynchronous operation to replicate

heterogeneous device behavior where device training progresses at different paces.

The highlight of FLAGS lies in its capability to configure and subject multiple FL

algorithms to a realistic multi-tiered environment, which allows users to propose the

best environment-FL fit.

The distinguishing features of the FLAGS framework include configuring entities

across the Edge Network environment, simulating multiple FL algorithms through a

single framework, heterogeneous client participation including stochastic and volatile

behaviors, enabling asynchronous node operation and formulating sparse, dense, and

clustered network topologies.

1https://github.com/ahnaflodhi/FLAGS-v2

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 37

Figure 4.1: FLAGS Framework Software Architecture: Three main modules and
their interactions.

4.2 Software Architecture

Existing FL benchmarking frameworks have adopted different mechanisms for imple-

menting and testing node behavior in FL algorithms. However, most of such frame-

works have been designed with a single FL algorithm in perspective [47]. FLAGS

framework has been developed with the capability to configure and test multiple FL

algorithms easily [96]. It allows incorporating various conditions during testing to

assess the response under a diverse set of operating circumstances. The overall archi-

tecture is highly modular and enables users to easily augment existing functionality

by adding new features. The FLAGS framework consists of three main modules,

namely environment, algorithms, and node operations, implemented as independent

classes as shown in Fig.4.1 and described next.

4.2.1 Environment

The Environment module allows the users to configure the target system model for

FL operations. The generated environment mimics the edge network [5], generating

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 38

the device, hierarchical and cloud layers. The network topology is controlled by

specifying the number of nodes N , the number of clusters C, the number of hierar-

chical servers S and a global cloud server Sg. The underlying connectivity may be

controlled to be dense or sparse by using the parameters γ and ν where 0 ≤ γ, ν,≤ 1

control each node’s connectivity within and outside of its assigned cluster, respec-

tively. Higher values of γ and ν result in dense graphs with a value of 1 resulting in

a complete graph. At the initialization, each cluster is assigned a ClusterHead (CH)

Ci; however, the role may be re-assigned subsequently [97]. The hierarchical/edge

servers each are assigned multiple clusters C > 1. The edge servers are, in turn,

connected to a global server, a role assigned to the last indexed server in the server

array. The graph generated by this module precludes the presence of any isolated

node, and networkx library can access its information.

The current topology simulates random graph. However, more topologies may be

incorporated in the environment module using the options from the corresponding

libraries. However, these changes remain insulated from other modules and do not

affect their operations which enables multiple options with FLAGS framework.

4.2.2 Algorithms

The Algorithm module generates and maintains a record of the FL algorithms. It

also dictates the sequence of operations, including local updates, validation, aggrega-

tion, and algorithm testing. Each algorithm is configured by setting a set of six flags.

These flags dictate the interaction between various entities and the exact nature of

the interaction as well. This interaction determines the level of communication be-

tween different network entities spread across various layers of the edge network.

The flags set assigns two flags to each layer of the edge network, controlling the na-

ture and specifics of the interaction. The following are part of the flags set: a) Device

Op b) Device-Mode c) Cluster-Op d) Cluster-Mode e) Edge-Op f) Edge-Mode The

‘Op’ flags specify whether model exchange across entities belonging to a particular

hierarchy is permissible. ‘Device-Op’ specifies Device-to-Device (D2D) interaction

for device layer whereas ‘Cluster-Op’ indicates interactions between ClusterHeads.

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 39

Algorithm / Interaction D2D Op D2D Mode Cluster Op Cluster Mode Edge Op Edge Mode
FedAvg False False False False False False
HFL False False False False True Default
DFL True Default False False False False

Gossip True Random False False False False
HDFL True Default False False True Default
HGFL True Random False False True Default
CFL False False True Default False False
iCFL False False True Random False False
iCDFL True Default True Default False False
DFL Sel True Model False False False False
MA DFL True Memory False False False False
AG DFL True Relay False False False False

MAG DFL True Mem AG False False False False

Table 4.1: Flag settings for various Algorithms in FLAGS framework.

Finally, ‘Edge-Op’ controls whether the devices can communicate with Edge servers

for intermediate aggregation or not. The ‘Mode’ flags indicate which particular

mode of interaction is conducted. The ‘Device-Mode’ set to ‘model-selective’ will

perform the node selection process at the device level based on ‘cosine similarity’ or

‘L2 Norm’. The same flag set to ‘stale-global’ allows using a stale global model as a

reference to compute the similarity for target models. A number of algorithms may

be configured using different configurations of the flags. Additionally, any number

of new features may be added and used across different FL algorithms by specifying

appropriate flag settings. A number of configured algorithms using the FLAGS are

presented in Table-4.1.

4.2.3 Node Operations

In order to allow autonomy of operation to the participating devices, the Node

Simulator module imparts the relevant functionality to all the devices configured

for a particular FL algorithm. The topological information accessible to each node

includes its local neighborhood, the assigned cluster, and the hierarchical server.

Each node’s primary functions include training, testing, and exchanging models

with the designated devices while maintaining the record of the relevant performance

metrics. Each node concurrently maintains three models, which include the updated

model, the post-aggregation model, and the model from the previous round. Each

node is assigned unique training and test datasets based on the overarching data

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 40

Figure 4.2: Default argument state: Each of these may be adjusted as input argu-
ments to the Main-Fed.py file

distribution, i.e., IID, non-IID, skewed data distribution (by default, the test data

is always IID distributed). Each node may alter its learning rate independently of

others and can exhibit synchronous or asynchronous behavior. The nodes support

several aggregation functions that may be invoked according to the algorithm. A

separate Servers class governs the behavior of the global and hierarchical servers.

Although implemented as a separate class, the servers, when invoked, only perform

intermediate or global aggregation and pass the models back to the nodes.

4.2.4 Additional Modules

The three main modules are assisted by many other modules implemented either

as separate classes or individual functions. The framework currently supports three

different datasets, namely MNIST, FashionMNIST and CIFAR-10. The Net class

implements the neural network layers and the associated operations. Testing and

aggregation operations have been implemented individually so that they may be

generally accessible. The supported models include shallow (2 Convolutional layers,

2 fully connected layers) and deep models (VGG-11), which may be used when

initializing the execution. The framework supports various data distributions using

the Dirichlet parameter (α > 0). Higher values of α result in IID data distributions

across the nodes, whereas fractional values make the data distribution increasingly

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 41

Figure 4.3: Simulation Output

non-IID. A parameter ‘s’ enables extremely skewed distributions, with each node

getting samples from only ‘s’ classes from the dataset, where the samples themselves

are randomly distributed. It is pertinent to note here that employment of α and s is

mutually exclusive, and s > 0 overrides any value of α. Several utilities are provided

that assist in intermediate and final data logging and generating the performance

plots.

Framework Extensibility It is pertinent to mention here that the framework

implementation is built around possible extensibility. There a number of learning

frameworks with various levels of capability, functionality and strengths. In order

to ensure that FLAGS framework remains extensible, the modules have been devel-

oped in such a way as to permit users to extend FLAGS using a learning framework

their choice without affecting the overall functionality. The modules Environment

and Algorithms module have been developed using public domain Python libraries.

On the other hand, the learning framework and dataset inclusion depends upon the

choice of the learning framework which in this case happens to be Pytorch. How-

ever, users could easilt incorporate the same functionality using any other learning

framework without having to adjust the core functions provided by the Algorithms

and Node operations. This allows FLAGS framework to potentially be modified and

Chapter 4: Federated Learning Algorithms Simulation (FLAGS) framework 42

extended using different learning frameworks likes TensorFlow, Keras etc.

Additionally, the datasets employed by the FLAGS framework also correspond

to the learning framework being used. Therefore, new datasets may be introduced

or modified according to the learning framework being employed without requiring

additional changes to the FLAGS framework.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 43

Chapter 5

COMPARATIVE ASSESSMENT OF FEDERATED

LEARNING ALGORITHMS

5.1 Introduction

Existing research in Federated Learning (FL) shows a strong proclivity towards

centralized orchestration. Access to updates from a large number of devices, a

global model, and considerable computational and storage resources have tradi-

tionally made a strong case for Centralized FL (FedAvg). However, there exist a

number of challenges [24] to such an operation, including adversarial attacks, ma-

licious participation, privacy preservation, heterogeneous devices and participation,

non-Independently and Identically Distributed (non-IID) data, and communication

issues. Simultaneously, next-generation networks [36] envision considerable server-

less interaction between the devices. Advances, such as application-specific data

rates, Network Function Virtualization (NFV), and network slicing, have enabled

researchers to propose various FL algorithms based on the permissible device inter-

actions (see Fig.1.3 for the depiction of these links). The proposed methods show

multiple advantages over Centralized FL (FedAvg) under various settings. Further-

more, current and future devices come equipped with multiple communication links.

This fact negates the limitation of operating a single FL algorithm at all times. The

challenge then arises regarding the selection of an FL algorithm to employ under

various conditions. The comparative characterization of FL algorithms conducted in

this work is aimed at bridging this gap. The analysis conducted here paves the way

for establishing the economy of operation for these algorithms for various operating

scenarios in a particularly heterogeneous Network Edge.

The remainder of this chapter is organized as follows: An overview of the system

Chapter 5: Comparative Assessment of Federated Learning Algorithms 44

(a) HFL

(b) D2DFL (c) GFL

Figure 5.1: Main Federated Learning Algorithms. Dashed lines represent links be-
tween various entities, whereas only solid lines in (c) depict active established-pair
links in GFL.

model and FL is presented in Section-3.1. Details of the FL algorithms have been

provided in Section-5.2. This is followed by a description of the experiments and

performance analysis in Section-5.3 and 5.4. The report concludes with a summary

of the important findings in Section-5.5.

5.2 Federated Learning Algorithms

Federated Learning was initially conceived as a two-tiered learning framework alter-

nating between clients/nodes performing the training and the cloud servers aggregat-

ing the local models to yield a global model. In order to increase the efficiency, the

Chapter 5: Comparative Assessment of Federated Learning Algorithms 45

envisaged FL was further spread over the Edge Network to benefit not only from the

Edge devices’ capabilities but also address the challenges inherent in centralization.

This evolution has yielded various FL algorithms suitable to a variety of scenarios,

including vehicular networks, dense IoT networks, and cross-silo operations between

relatively large data centers. These algorithms employ three different types of com-

munication links as shown in Fig. 1.3 associated with different communication costs:

(a) Device-to-Device (D2D) (b) Device-to-Edge (D2E) (c) Edge-to-Cloud (E2C)

D2D links are limited to the device level, whereas D2E links connect the nodes

with the edge servers. Finally, E2C links connect the edge servers to the core net-

work. While D2D links and D2E links operate independently, E2C links require

the latter for information to be transmitted from the devices to the edge server

for onward transmission to the core network. All subsequent communication anal-

yses in this work use this fact to establish the effectiveness of a particular form of

communication in FL operations.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 46

Algorithm 1: Hierarchical Federated Learning

Input: Initial Model parameters θ0, S hierarchical servers with device
association

Output: Global model parameters θt→∞
Initialization by global server: θ0 received by each hierarchical server Si

and broadcast among the connected nodes
for Nodes k = 1 . . . N (in parallel) do

Perform Local update for e epochs

θt+τ
k = θt

k − αt
k∇Lk(xm, ym;θ

t
k)

TX: With a probability pk, send the θt+τ
k to the hierarchical server

for aggregation

end
for Servers Si ∀ i = 1K (in parallel) do

AGG: Aggregate the models received from the ni nodes

θt+T
Si

= θt
Si
+
∑
j∈ni

wjθ
t+τ
j

end
if round % f == 0 then

for Servers Si ∀ i = 1K (in parallel) do
Upload models to the global server

end
Global Aggregation

θt+1 = θt +
∑
j∈K

ηjθ
t+T
j

Send model back to Edge Servers Si

Edge Servers Si broadcast model parameters θt+1 to all nodes
connected respectively

end

A key aspect in major FL literature is the absence of cross-configuration com-

parison and evaluation of FL algorithms. Such an analysis promises to identify the

optimal employment of these FL algorithms based on the operating environment and

the nature of the problem being addressed. This section first provides a description

of these algorithms, followed by details of the experiments in the subsequent sections.

5.2.1 Hierarchical Federated Learning

Hierarchical Federated Learning (HFL) introduces intermediate model aggregation

closer to the data origin using an edge server [56]. This FL algorithm introduces

F aggregation layers between the nodes and the global cloud server, F increasing

toward the cloud layer. Cellular base stations or Mobile Edge Computing (MEC)

Chapter 5: Comparative Assessment of Federated Learning Algorithms 47

Servers are envisioned to realize this role [8] for their respective connected devices.

Each network level, as depicted in Fig. 5.1(a), aggregates the models received from

the previous layer and passes them to the next layer in the hierarchy. This scheme

offers a reduction in the overall upstream communication as well as progressively

offloading the computational load at the edge network.

Each hierarchical layer F houses KF edge servers. Each server at layer F = 1

aggregates models from the devices linked to it respectively. The pseudocode for

HFL has been laid out in Alg. 1. The initial model parameters, i.e., θ0 are initialized

by the global server Sg and shared with the nodes. The nodes, in turn update the

model over a mini-batch of sizeM to yield θt+1
k . After completing e local updates,

each node shares its updated parameters with the hierarchical server Si with a

probability pk. The servers aggregate the received models, which are then shared

with the servers in the next layer/global server after f aggregation rounds. At this

stage, the global server aggregates the input models from the K hierarchical servers

and generates the global model θt+τ , which are then shared through the local servers

with the associated nodes.

Algorithm 2: Device-to-Device Federated Learning

Input: Model parameters θk for each node, degree nk

Output: D2D Aggregated Models
for Nodes k = 1 . . . N in parallel do

Update local model for e epochs

θt+τ
k = θt

k − αt
k∇Lk(xm, ym;θ

t
k)

Send model to 1-hop neighbors nk with probability dk
Receive models from nk 1-hop neighbors
Perform weighted aggregation for the received models
θt+1
k = θt+τ

k +
∑
j∈nk

ηjθ
t+τ
j

end

5.2.2 Device-to-Device Federated Learning

With Device-to-Device (D2D) communication [33], FL can be operated without the

requirement of a central aggregator [35]. In a purely serverless FL framework, the

nodes communicate with their immediate neighbors and resort to local aggregation

Fig. 5.1(b). At a given time t, the nodes share their locally learned parameters

Chapter 5: Comparative Assessment of Federated Learning Algorithms 48

θt
k with their neighborhood nk. The recipients, in turn, perform aggregation of the

received models combining the incoming parameters θt
k with corresponding weights

{ηj∀j ∈ nk} to generate θt+1
k : The entire operation of D2DFL is depicted in Alg. 2.

Algorithm 3: Gossip Federated Learning

Input: Model parameters θk, optimization parameters
Output: Gossip-aggregated model
for Nodes k = 1 . . . N in parallel do

θt+τ
k ←− Model-Update(θ

(
kt))

θt+1
k ←− Gossip Exchange (θt+τ

k)
end
Function Model-Update(θt

l):
for batch b of sizeM∈ Dl do

ξb = (xb, yb) is the data sample pairs in b

θt+τ
l = θt

l − αt∇Ll(ξb;θ
t
l)

end
return θt+τ

l

Function Gossip Aggregate(θt
l):

Perform aggregation handshake with a random node
Exchange models for aggregation between the pair
Aggregate received model

θt+T
l = θt+τ

l + ηjθ
t+τ
j

return θt+T
i

5.2.3 Gossip Federated Learning

Gossip communication is another form of decentralized communication wherein the

nodes communicate with randomly selected peer nodes. Gossip Federated Learning

(GFL) was among the early fully decentralized FL frameworks to have been proposed

[98]. For a network with N nodes, the nodes form random pairs with other nodes

from the network forming a gossip pair (i, j ∀ i, j ∈ N) as shown in Fig. 5.1(c).

Once the connection has been established, the pair exchange their locally updated

models θt
i , θ

t
j and in turn aggregate with the received model parameters to generate

θt+1
i and θt+1

j . The process results in considerably curtailed communication costs.

The details of the operation have been provided in Alg. 3.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 49

5.2.4 Hierarchical Device-to-Device Federated Learning

Hierarchical D2DFL employs aggregation at the device levels, edge servers, and cloud

servers. Thus the D2D, D2E and E2C links all are employed to enable such operation

[57]. The proposed mechanism allows for devices to perform local updates on their

model parameters θt
k and share them with their nk neighbors, leading to device level

aggregation. Simultaneously, the devices also share the model parameters with the

connected servers Si. The servers in turn aggregate the received models and share

along the hierarchy F eventually leading up to the global server Sg as indicated in

Fig. 5.1(d). The global model θt+τ gets disseminated back to the nodes through

the respective servers and the process is continued till convergence. The details

of the entire process has been outlined in Alg. 4. While greater cooperation is

envisioned with this algorithm, the learning requires communication at both device

and upstream levels.

5.2.5 Hierarchical Gossip Federated Learning

Hierarchical FL, as described in Alg.1, allows the device layer to interact with Edge

Servers to aggregate local models, resulting in sub-global models. These models

are then passed onto the global server for generating the global model θt. HD2DFL

builds on this configuration by allowing device layer entities to interact among them-

selves before sharing the local aggregated models with the higher edge layers. The

performance as shall be seen in Sec-5.4 indicates better performance albeit at the

communication volume, which is almost the joint sum of HFL and D2DFL. This

observation led the researchers in [58] to introduce gossip steps at the device level

instead of the full neighborhood aggregation as indicated in Alg 5.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 50

Algorithm 4: Hierarchical-D2D Federated Learning

Input: Initial Model parameters θ0, Neighborhood information
Gk = {N , ξk}, Hierarchical servers K with device
association

Output: Global model parameters θt→∞
Initialization by global server: θ0 received by each hierarchical
server Si and broadcast among the connected nodes ni

for Node k = 1 . . . N in parallel do
θt+τ
k ←−Model Update(θt

k)

θt+δ
k ←− D2D Aggregate(θt+τ

k , nk) ;
end
if aggregation round % f == 0 then

for Servers Si ∀ i = 1 H (in parallel do
Sample q from the associated nodes and request parameters
Aggregate received parameters: θt+τ

Si
= θt

Si
+
∑
j∈q

wjθ
t
j

end
for Servers Si ∀ i = 1 H in parallel do

Upload model θt
Si

to the global server
end
Global Aggregation : θt+1 = θt +

∑
j∈Si

ηjθ
t
j

Send model back to nodes through respective Edge Servers Si

end
Function Model-Update(θt

l):
for batch b of sizeM∈ Dl do

ξb = (xb, yb) is the data sample pairs in b

θt+τ
l = θt

l − αt
l∇Ll(ξb;θ

t
l)

end
return θt+τ

l

Function D2D-Aggregate(θt
k, nl):

Exchange model with 1-hop neighbors nl with probability dl
Perform weighted aggregation for the received models

θt+δ
l = θt+τ

l +
∑
j∈nl

ηjθ
t+τ
j

return θt+δ
l

The nodes communicate at the device level using random pairings, resulting in

gossip communication. These random node pairs exchange local models during this

stage to perform local aggregation yielding θt+τ
k for k = 1 . . . N network nodes.

Subsequently, these gossip-aggregated models are shared with the edge servers for

hierarchical aggregation and subsequently cloud aggregation, respectively.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 51

Algorithm 5: Hierarchical-Gossip Federated Learning

Input: Initial Model parameters θ0, Neighborhood information
Gk = {N , ξk}, Hierarchical servers K with device
association

Output: Global model parameters θt→∞
Initialization by global server: θ0 received by each hierarchical
server Si and broadcast among the connected nodes ni

for Node k = 1 . . . N in parallel do
θt+τ
k ←−Model Update (θt

k)

θt+δ
k ←− Gossip Exchange (θt+τ

k)

end
if aggregation round % f == 0 then

for Servers Si ∀ i = 1 H (in parallel do
Sample q from the associated nodes
for j ∈ Sampled Nodes do

Share model parameters θt+δ
j with the server

end
Aggregate the received parameters

θt+T
Si

= θt+δ
Si

+
∑
j∈q

wjθ
t+δ
j

end
for Servers Si ∀ i = 1 H (in parallel do

Upload model θt+T
Si

to the global server

end

Global Aggregation : θt+1 = θt +
∑
j∈Si

ηjθ
t+T
j

Send model back to the nodes through respective Edge Servers
Si

end
Function Model-Update(θt

l):
for batch b of sizeM∈ Dl do

ξb = (xb, yb) is the data sample pairs in b

θl+τ
l = θt

l − αt
l∇Ll(ξb;θ

t
l)

end
return θt+τ

l

Function Gossip Aggregate(θt
l):

Perform aggregation handshake with a random node
Exchange models for aggregation between the pair

Aggregate received model : θt+ζ
l = θt+τ

l + ηjθ
t+τ
j

return θt+ζ
l

Chapter 5: Comparative Assessment of Federated Learning Algorithms 52

5.2.6 Clustered Federated Learning

Clustered FL (CFL) builds on fully decentralized Federated Learning while aiming

to reduce communication volume by clustering operations. The nodes in proximal

locations are grouped into Clusters formed around a Cluster Head (CH). The de-

vices become a Cluster-Member (CM) by associating with a Cluster Head Ci, itself

a device. During the training phase, the device performs local updates of their own

models i.e θt
k. At the aggregation stage, each CM i shares its local model with the

CH i.e Ci, with a probability dk. Subsequently, all the received models are aggre-

gated to generate the sub-global model θt
Ci . The aggregated model is shared with the

respective CMs of ith cluster. The process continues until an acceptable threshold

is reached. The details of the entire operation are presented in Alg. 6.

Algorithm 6: Clustered Federated Learning

Input: Model parameters θk for each node, degree nk

Output: D2D Aggregated Models
Devices i = 1......C chosen as Cluster Head (CH) of cluster Ci
for free nodes k = 1......N −C do

Join Ci ∀ i ∈ C as a Cluster-Member (CM)
end
for Cluster Head Ci∀ i = 1 . . . C in parallel do

Send model to CM {p : p ∈ Ci}
for Nodes k = 1 . . . N in parallel do

θt+τ
k ←− Model-Update (θt

k)
end
Receive models from CM {p : p ∈ Ci} with probability dp
Perform weighted aggregation of received models
θt+1
Ci = θt+τ

Ci +
∑
j∈Ci

ηjθ
t+τ
j

end
Function Model-Update(θt

l):
for batch b of sizeM∈ Dl do

ξb = (xb, yb) is the data sample pairs in b

θt+τ
l = θt

l − αt
l∇Ll(ξb;θ

t
l)

end
return θt+τ

l

Chapter 5: Comparative Assessment of Federated Learning Algorithms 53

5.2.7 Clustered Device-to-Device Federated Learning (CD2DFL)

Clustered D2DFL (CD2DFL) builds on fully decentralized Federated Learning while

aiming to reduce communication volume by clustering operations. The devices join

a cluster by associating with a Cluster Head (CH)i, itself a device. The Cluster-

Members (CMs) in this case, continue local updates and D2D aggregating models

over their respective neighborhoods. After a number of local aggregation rounds,

each CH orchestrates a cluster-level aggregation wherein the CMs share their re-

spective models with the CH. Once aggregated, the CMs receive the aggregated

model θt+1
Ci from the CH and continue with the D2DFL. Alg. 7 outlines the overall

procedure for CD2DFL.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 54

Algorithm 7: Clustered Device-to-Device Federated Learning

Input: Model parameters θk for each node, degree nk

Output: D2D Aggregated Models
Devices i = 1......C chosen as Cluster Head (CH) of cluster Ci
for free nodes k = 1......N −C do

Join Ci ∀ i ∈ C as a Cluster-Member (CM)
end
for Cluster Head Ci∀ i = 1 . . . C in parallel do

Send model to CM {p : p ∈ Ci}
for Nodes k = 1 . . . N in parallel do

θt+τ
k ←− Model-Update (θt

k)

θt+T
k ←− D2D-Aggregate (θt+τ

k , nk)
end
Receive models from CM {p : p ∈ Ci} with probability dp
Perform weighted aggregation

θt+1
Ci = θt+T

Ci +
∑
j∈Ci

ηjθ
t+T
j

end
Function Model-Update(θt

l):
for batch b of sizeM∈ Dl do

ξb = (xb, yb) is the data sample pairs in b

θt+τ
l = θt

l − αt
l∇Ll(ξb;θ

t
l)

end
return θt+τ

l

Function D2D-Aggregate(θt
l , nl):

Exchange models with 1-hop neighbors nl with probability dl
Perform weighted aggregation : θt+δ

l = θt+τ
l +

∑
j∈nl

ηjθ
t+τ
j

return θt+δ
l

5.2.8 Inter-Cluster Device-to-Device Federated Learning

Clustered FL in the presence of D2D interactions significantly improves local coop-

eration. In this regard, the device’s ability to interact within their neighborhood

and subsequent consolidation at Cluster Head (CH) results in greater participation

in the overall aggregation scheme. In order to further expand this functionality, this

algorithm allows the Cluster Heads to communicate with the other CH’s using a

gossip mechanism. While the rest of the learning and aggregation process remains

similar to CD2DFL, the aggregation at the cluster head level is followed by the CH

exchanging the locally aggregated cluster model θt
Ci with other CH {Cj|i ̸= j} using

Chapter 5: Comparative Assessment of Federated Learning Algorithms 55

randomized gossip. Each CH Ci is allowed a limited number of gossip steps before

sharing the gossip-aggregated model θt+τ
Ci with its respective CMs. As shown in Alg.

8, this allows both of communication to remain restricted to proximal locations while

still enabling models learned in farther clusters to be acquired.

5.2.9 Centralized to Decentralized Spectrum

The FedAvg is on the centralized end of the FL algorithms spectrum, whereas GFL,

D2DFL and CD2DFL are on the decentralized end. HFL, HD2DFL and HGFL avail

a mix of centralized and decentralized operations. iCFL and iCD2DFL, despite being

fully decentralized, mimic hierarchical behavior at the device level. The boundaries

between centralized and decentralized operations FL algorithms thus remain fluid,

allowing present and future algorithms to benefit from both types of interactions.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 56

Algorithm 8: Inter-Cluster Device-to-Device Federated Learning
(iCD2DFL)

Input: Model parameters θk for each node, degree nk

Output: D2D Aggregated Models
Devices i = 1......C chosen as Cluster Head (CH) of cluster Ci
for free nodes k = 1......N −C do

Join Ci ∀ i ∈ C as a Cluster-Member (CM)
end
for Cluster Head Ci∀ i = 1 . . . C in parallel do

Send model to CM {p : p ∈ Ci}
for Nodes k = 1 . . . N in parallel do

θt+τ
k ←− Model-Update (θt

k)

θt+T
k ←− D2D-Aggregate (θt+τ

k , nk)
Share model with CH Ci with probability dk

end
Aggregate models received from CM {p : p ∈ Ci}
θt+β
Ci = θt+T

Ci +
∑
j∈Ci

ηjθ
t+T
j

θt+1
Ci ←− Gossip Exchange (θt+1

Ci)

end
Function Model-Update(θt

s):
for batch b of sizeM∈ Ds do

ξb = (xb, yb) is the data sample pairs in b
θt+τ
s = θt

s − αt
s∇Ls(ξb;θ

t
s)

end
return θt+τ

k

Function D2D Aggregate(θt
l , nl):

Exchange models with 1-hop neighbors nl with probability dl
Perform weighted aggregation : θt+δ

l = θt+τ
l +

∑
j∈nl

ηjθ
t+τ
j

return θt+δ
l

Function Gossip Aggregate(θt
C):

for g = 1 ζ gossip rounds do
Perform aggregation handshake with a randomly selected Cj
Exchange and aggregate models between the pair
θt+1
i = θt+τ

i + ηjθ
t+τ
j

end
return θt+1

i

5.3 Experiments and Evaluation

A uniform evaluation strategy was devised to conduct an objective assessment of the

various FL algorithms. The experiments performed in this work use the MNIST [99]

Chapter 5: Comparative Assessment of Federated Learning Algorithms 57

Figure 5.2: Synthetic data distributions for MNIST dataset across 40 nodes derived
from Dirichlet Distribution for different α values.

and FashionMNIST datasets [100]. A non-IID data distribution remains of primary

interest in this work. The experimentation included subjecting the FL algorithms

to ideal and noisy communication, probabilities of participation, data distribution

and aggregation frequency. Additionally, these algorithms were also subjected to

Few-Shot Learning details of which have been shared subsequently.

Non-IID Distribution The non-IID data partitions are generated using the

Dirichlet Distribution [101] parametrized by its concentration parameter α. The

value of α controls the degree of non-IID sampling spread across the clients with

lower values, resulting in higher imbalance. Lower values of α result in more skewed

datasets as shown in Fig. 5.2. A value of α between 1 and 10 results in a typically

non-IID data distribution, whereas lower values of α < 1 result in extreme non-IID

distributions. On the other end, values of α > 100 result in increasingly IID distri-

butions. The evaluation in this work uses α = 0.1 and α = 1.0 for generating highly

non-IID distributions.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 58

Extremely Skewed non-IID Distribution This work also employs an extremely

skewed 2-class and 3-class non-IID cases where each node is trained using data sam-

ples from two and three classes only, respectively. Each node is randomly assigned

the determined number of classes and the individual class data is grouped into shards

of 50 images each. The nodes are then assigned a randomly chosen number of shards

sampled from their respective classes.

Neural Network and Development Environment The DNNs used for eval-

uations based on MNIST and Fashion MNIST datasets are comprised of two 2D

Convolutional blocks followed by a Dropout and two linear layers. The modes are

instantiated with the same weights while training is conducted using the SGD op-

timizer with a learning rate η = 0.01. The entire framework has been developed

in Python, whereas the learning algorithms were implemented using PyTorch. The

neural network trained for MNIST and Fashion MNIST contains approximately 2

million parameters Both neural networks use Rectified Linear Unit (ReLU) activa-

tions with all layers except the final layer, which uses Log-Softmax activation to

generate the class probabilities.

Training Regime The training environment assumes a network of 40 nodes, all

initiated with similar weights. Our framework allows for each node to control the

number of local updates as well as the learning rate and other hyperparameters.

However, for this work, only variation in number of training epochs has been con-

ducted across the devices.

Operating Characteristics The network topology generated for the experiments

consists of N = 40 nodes that are divided into C = 7 clusters. In order to ensure

reachability, γ = 0.95 and υ = 0.1 have been used. The former ensures that each

device has a direct link to 95% of the devices from the same cluster. Addition-

ally, 10% of each devices’ neighbors lie outside the cluster. This ensures that the

groups have sufficiently dense intra-device connections as well as having links with

nodes outside the current group. This resulting network graph remains reachable.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 59

The experiments conducted during the course of this work encompass two differ-

ent participation scenarios: (a) Upstream participation with probability pk and

(b) Neighborhood participation with probability dk The participation probabilities

of pk = {0.9, 0.6} and dk = {0.9, 0.6} have been used during the course of this work.

The two conditions have also been tested jointly to mimic scenarios of frequent strag-

glers and communication limitations.The channel conditions for both D2D and D2E

communication have been subjected to zero-mean Gaussian noise N (µ = 0, σ2)1

with σ2 = 0.01, 0.0025, 0.0001.

Few-Shot Federated Learning One-Shot FL [102] suggests training local mod-

els to completion before sharing with the global server. The resulting mechanism

enables significant reduction in communication frequency. Extending the idea, this

work subjects the FL algorithms to Few-Shot FL. The nodes perform significantly

more local updates before sharing their models. The scheme works with signif-

icantly reduced aggregation rounds and communication at both device and edge

level. However, it also results in higher client drift.

Asynchronous Operation FL envisions autonomy of operation at the device

level. By extension, this implies that not all of the devices perform same number of

update operations during the training phase. This may be caused by device being

active (or inactive) or a straggler. This work assumes that the devices are required

to work with a deadline after which they are required to share their respective

models for aggregation. This deadline-based asynchronous aggregation behavior is

replicated for the FL algorithms by allowing each device to undergo a range-limited

random number of training epochs.

1N(0, σ2) noise instead of more detailed fading models and frequency-selective channel impair-
ments has been considered since the primary aim remains to gauge the impact of noisy updates
being used for aggregation.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 60

(a) α = 1.0 (b) α = 0.1

(c) α = 1.0 (d) α = 0.1

Figure 5.3: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST
for maximal participation pk, dk = 0.9 with asynchronous communication for Non-
IID distributions with Dirichlet parameter α = 10 and α = 0.1

5.4 Performance Analysis

The following section encapsulates the findings for each of the mentioned simulation

conditions. The final test accuracies of each algorithm, averaged over three runs and

over all the nodes have been reported in Figures 5.3-5.7. Since one of the aims of

decentralized FL is to reduce the communication cost, we also present the number

of messages for each link type for each algorithm in Fig. 5.8.

5.4.1 FL with Maximal Participation and Ideal Communication

The ideal scenario assumes noise-free communication and a 90% device participa-

tion probability i.e. pk, dk > 0.9. As expected, greater non-IID distribution across

Chapter 5: Comparative Assessment of Federated Learning Algorithms 61

(a) α = 1.0 (b) α = 0.1

(c) α = 1.0 (d) α = 0.1

Figure 5.4: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST
for limited participation pk, dk = 0.6 with asynchronous communication for Non-IID
distributions with Dirichlet parameter α = 1.0 and α = 0.1

devices adversely affects the convergence rate and performance. The impact is re-

flected across all algorithms. However, results for FashionMNIST depict more loss in

performance. This indicates a strong correlation between the performance degrada-

tion jointly due to a DNN’s ability to learn and greater non-IID levels. The results

in Fig. 5.3 indicate that decentralized FL performs on par with their more central-

ized counterparts. The results also show that as distributions become more non-IID,

GFL, D2DFL and CD2DFL lag in learning performance when compared to the other

algorithms. However, GFL also incurs the least communication volume among all

the considered FL schemes since it only uses the least costly communication link as

shown in Fig. 5.8.

The decentralized algorithms also indicate a slightly slower convergence rate ex-

Chapter 5: Comparative Assessment of Federated Learning Algorithms 62

(a) 2-class non-IID (b) 3-class non-IID

(c) 2-class non-IID (d) 3-class non-IID

Figure 5.5: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST
for limited participation pk, dk = 0.6 with extremely skewed (2-class and 3-class)
Non-IID distributions.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 63

acerbated as the training progresses. However, clustered operations, particularly

iCD2DFL and iCFL indicate better convergence and consistently perform better

than D2DFL and GFL. This indicates that inter-cluster cooperation orchestrated

by these algorithms helps in the learning performance and may help in arresting

overtraining even in the absence of global information. This is particularly evident

from iCFL where D2D interaction at the device level is absent.

5.4.2 FL with Limited Device Participation

The results in Fig. 5.4 present the results with reduced device participation. Less

number of devices joining an aggregation round may be caused due to stragglers or

busy devices. All the algorithms suffer from convergence issues as the device par-

ticipation is decreased. This implies that data distribution and device participation

have confounding effects on the learning performance of these algorithms. The dif-

ference in performance of the D2DFL, GFL and CD2DFL becomes more pronounced

than the rest as the training proceeds. The performance suffers clearly from over-

training compounded by lower number of devices as well highly non-IID data. The

convergence rate of these three algorithms slows more evidently than the others as

the training proceeds. On the other hand, inter-cluster operations allow iCFL and

iCD2DF to perform better than the others even with 60% device participation.

The results from Fig. 5.4 are reinforced by testing the FL algorithms under

limited device participation and extremely skewed data distribution as shown in

Fig. 5.5. When subjected to 2-class and 3-class non-IID data distributions, the

localized operation in D2DFL, GFL and CD2DFL suffers more than the others.

Lesser number of classes result in almost 20% performance difference between these

algorithms and the rest as indicated in Fig. 5.5(a) and (c). The performance of iCFL

and iCD2DFL, however, remains remarkably robust even in the presence of these

extremely adverse conditions. Both algorithms, supported by inter-CH operation,

perform within 5% of the centralized and hierarchical algorithms. The convergence

rate of these algorithms retains its trajectory, while other decentralized algorithms

show greater divergence as the training proceeds. It may, therefore, be inferred

Chapter 5: Comparative Assessment of Federated Learning Algorithms 64

that gossip operations by the CHs partially offset the degradation caused by the

lesser device participation and extremely non-IID data and acts akin to DropOut

operations in a DNN. Table. 5.1 provides an accuracy-based performance overview

of all the algorithms both with maximal and limited participation conditions.

Algorithm
pk = 0.6, dk = 0.6 pk = 0.9, dk = 0.9

α = 1.0 α = 0.1 α = 1.0 α = 0.1

FedAvg 0.9794 0.8736 0.9786 0.8810

D2DFL 0.9758 0.8454 0.9752 0.8849

HFL 0.9805* 0.9022* 0.9808 0.9257*

HD2DFL 0.9798* 0.8980 0.9831* 0.9189

GFL 0.8744 0.3824 0.9753 0.8398

HGFL 0.9801* 0.9015* 0.9800 0.9241

iCFL 0.9762 0.8972 0.9791 0.9142

CD2DFL 0.9694 0.8651 0.9730 0.8855

iCD2DFL 0.9803* 0.8983 0.9800 0.9162

Table 5.1: Accuracy comparison of FL algorithms for two sets of pk, dk values and
different values of the Dirichlet parameter α (lower values indicate increased non-IID
distribution). Highest accuracies within ∆ = 0.001 have been marked with asterisk
(*)

5.4.3 FL with Noisy Communication

The largest application of Federated Learning is envisioned in wireless spectrum.

However, wireless media is subject, among other challenges, to a significant pres-

ence of noise. With FL requiring to exchange hundreds of thousands of parameters,

presence of noise may cause the convergence to slow down considerably. The FL

algorithms during the current research were subjected to the presence of Gaussian

Noise N (0, σ2) both at the device communication level and during D2E and E2C

communication. From Fig. 5.6 it can be observed that the addition of noise at

the aggregation stage mildly slows down convergence. HGFL progressively shows

Chapter 5: Comparative Assessment of Federated Learning Algorithms 65

(a) σ2 = 0.0001 (b) σ2 = 0.0025 (c) σ2 = 0.01

(d) σ2 = 0.0001 (e) σ2 = 0.0025 (f) σ2 = 0.01

Figure 5.6: Average Test Accuracy for (a)-(c) MNIST and (d)-(f) FashionMNIST for
N (0, σ2) noisy communication with pk, dk = 0.9 and Dirichlet parameter α = 0.1.

a reduction in performance as σ2 is increased. However, clustering operations in

iCFL and iCD2DFL allow them to closely follow the performance by HD2DFL and

HFL. In contrast, GFL shows reduced convergence as compared to D2DFL. How-

ever, as training progresses, D2DFL and CD2DFL both also indicate a plateauing

convergence rate.

5.4.4 Few Shot Learning

Few-Shot FL offers one way of reducing communication cost when applied prop-

erly. The devices undergo multiple local updates before sharing their models for

aggregation. Fig. 5.7 shows the result of Few-Shot learning applied under maximal

and limited device participation scenario with pk, dk = 0.9 in Fig. 5.7(a)-(b) and

pk, dk = 0.6 in Fig. 5.7 (c)-(d). The additional difference in performance can be

attributed to greater non-IIDness in figures (c) and (d). The impact of client drift

on all algorithms causing the learning to plateau earlier than the regular learning

regime is evident when its results are compared with the ones shown in Fig. 5.3-5.4.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 66

(a) α = 0.1 MNIST (b) α = 0.1 FashionMNIST

(c) α = 0.1 MNSIT (d) α = 0.1 FashionMNIST

Figure 5.7: Average Test Accuracy for Few-Shot Learning for MNIST and Fashion-
MNIST with (a)-(b) pk, dk = 0.9 and (c)-(d) pk, dk = 0.6 with r = 20 aggregation
rounds and epochs in range [15, 20] with asynchronous communication for Non-IID
distributions with Dirichlet parameter α = 0.1

Overall, the decentralized variants are impacted worse than the centralized and hi-

erarchical algorithms. Additionally, the performance of D2DFL, GFL and CD2DFL

lags further than the rest as training progresses. The performance of iCFL and

CD2DFL while showing a relatively bigger drop than when subjected to a normal

training scheme, still achieves an accuracy within 5% of the centralized algorithms.

The overall performance suggests scenarios where Few-Shot learning may be consid-

ered practicable when communication costs become prohibitive, especially or shared

updates are infrequent.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 67

Figure 5.8: Average FL Algorithm Accuracy and per-Node Communication Volume
for asynchronous aggregation for 30 rounds with the MNIST dataset.

5.4.5 Communication Cost and Volume

When dealing with different FL algorithms, it is essential that the difference between

links employed during the operation is kept in purview. The work in [103] suggest

that D2D links like LTE-Direct, WiFi Direct or DSRC are more energy efficient than

Device-Edge cellular links like LTE. Furthermore, the same research also indicates

that the mentioned D2D links offer reduced latency when compared with cellular

communication. E2C links must be be preceded by D2E links for any communication

meant for the cloud. It may therefore be inferred that the energy cost and latency of

uploading to the cloud may well be more than both D2D and D2E communications.

It is with this understanding that Fig.5.8 considers D2D links as least costly and

E2C links as most expensive both in terms of energy and latency.

Fig-5.8 shows the communication volume required by different FL algorithms.

This is calculated by identifying the number of aggregation rounds required by each

of the FL algorithms and are categorized according to the target level (device, edge or

cloud). The centralized variants employ more expensive cellular communication for

D2E communication. The additional load on network backbone in form of E2C links

is bound to significantly increase the cost for FL albeit its improved performance.

Chapter 5: Comparative Assessment of Federated Learning Algorithms 68

Fig.5.8 shows the communication volume in terms of communication rounds for

various FL algorithms with the accuracy achieved by the respective algorithms under

non-IID data settings. The highest performing algorithms use the most expensive

forms of communication. On the contrary, decentralized FL variants indicate slower

convergence but also incur less communication cost.

Comparably, decentralized scheme with inter-cluster aggregations show appre-

ciable performance, falling slightly short of the accuracy of HGFL and HD2DFL.

5.5 Conclusion

This work presents a comprehensive comparison of various FL algorithms that have

so far been viewed only from the perspective of Centralized FL. The FLAGS frame-

work developed for this purpose enables configuring multiple FL architectures expe-

ditiously. The contrasting highlight of this work is a detailed comparison of major FL

algorithms under some of the most dominant challenges in this domain. frameworks.

The analysis conducted here indicates that decentralized FL performs comparatively

well despite no or minimal upstream communication. Even though noisy communi-

cation and irregular participation negatively impact decentralized FL performance,

such modes are still capable of achieving acceptable performance thresholds. How-

ever, extremely skewed data distributions degrade fully decentralized FL consider-

ably more than centralized ones. The results indicate that FL modes may be used

interchangeably depending on the network conditions and the communication costs.

As part of future work, we also intend to investigate the performance of the FL algo-

rithms for feature-skewed non-IID distributions. Furthermore, based on the results

presented here, the next milestone would be to formulate an adaptive mechanism

based on the operating and environment characteristics where the nodes may be

suggested to follow a particular FL algorithm for efficient operation.

Chapter 6: Implications of Node Selection on DFL under volatile conditions 69

Chapter 6

IMPLICATIONS OF NODE SELECTION ON DFL

UNDER VOLATILE CONDITIONS

6.1 Introduction

Decentralized Federated Learning (DFL) offers a fully distributed alternative to

Federated Learning (FL). It enables devices to interact directly with their neigh-

bors without needing external coordination. While DFL may suffer from slower

convergence rates, it remains a feasible alternative and benefits from increased local

interactions, particularly in clustered settings, as shown in [47].

Recent advances in DFL are based on Device-to-Device (D2D) or Gossip in-

teractions that manage the learning process while restricting the communication

between devices. A DFL setting for massive IOT setting is presented in [104]. Their

results indicate convergence for DFL both in model and gradient exchange scenar-

ios. The authors of [105] propose a DFL setting with compressed communication for

enhanced communication efficiency. They provide a formal convergence analysis for

compressed DFL for strongly convex objectives. The work in [106] proposes a DFL

setting with unreliable communication using User Datagram Protocol (UDP). The

suggested approach indicates that DFL remains robust and can match performance

with vanilla DFL.

Research indicates that participation and data heterogeneity in FL lowers the

convergence rates. One avenue to improve convergence while operating under non-

uniform conditions has been node selection. Node selection relies on identifying and

using only beneficial nodes in the aggregation process. The major focus of client

Chapter 6: Implications of Node Selection on DFL under volatile conditions 70

selection has remained in conventional FL settings. The node selection for FL for-

mulated as the secretary selection problem is presented in [107]. Their proposed

strategy for client identification employs test accuracy as the performance metric.

The work in [108] uses a multi-agent Reinforcement Learning strategy for client

selection. The associated state vector includes the probing loss, communication la-

tency, and cost of communication to indicate the utility of a model as well as node

accuracy and computation latency to cater to device diversity. Similarly, the authors

in [109] propose a deadline-based client selection for a Federated learning setting.

The suggested scheme maximizes the number of clients involved in a single aggre-

gation round. To ensure quality updates, the solution aggregates all clients that

have completed their tasks within the allocated computation and communication

constraints. In [110], the authors model the client loss using a Gaussian Process

(GP). Their client selection strategy is based on minimizing the posterior expec-

tation of the GP. Each selection updates the posterior based on the change in loss

brought by the previous selection. The research conducted in [111] proposes a Power

of Choice client selection strategy based on their observation that biasing the client

selection process towards higher local losses increases the convergence rate. The

existing global model is sent to a set of sampled clients, and the clients returning

the highest local loss are selected for participation in the next training round.

Due to its distributed nature, the convergence rate for DFL is more adversely im-

pacted. Therefore, the research conducted here intends to evaluate the implications

of node selection for DFL under more challenging operating conditions [48].

6.2 Node Selection in Federated Learning

The FL paradigm assumes significant heterogeneity among nodes. Device partici-

pation remains one of the major heterogeneity aspects since: 1. it must encompass

realistic device characteristics 2. it ascertains the overall volume of communication

3. it determines the access to various distributions during the aggregation phase It

has, therefore, been a major theme in FL research to ascertain node selection based

Chapter 6: Implications of Node Selection on DFL under volatile conditions 71

on their utility and its impact on convergence. Node selection in centrally orches-

trated FL benefits from the presence of a global model and greater visibility into

the node characteristics and performance over time. In DFL, on the other hand,

the process rests on local information and interaction. While the aim is to restrict

upstream communication to make DFL more communication-friendly, local inter-

action also means slower information diffusion across nodes. Furthermore, client

drift due to multiple local steps in an asynchronous setting becomes a major fac-

tor. It, therefore, becomes more important to evaluate whether node selection based

on local information may offer a feasible solution to accelerate DFL convergence rate.

Node Selection Frameworks: Node selection in FL can be attributed to one of

the four main categories: 1. Similarity 2. Reputation 3. Deadline 4. Performance.

Similarity-based selection depends upon a similarity measure between the client’s

neural network with a global reference model and uses nodes with higher similarity.

The similarity may be calculated based on L2-Norm-based model divergence, cosine

similarity, and a fraction of same-signed parameters. Reputation-based node selec-

tion assigns a trustworthiness factor to the participating nodes. This trust factor

may be assigned based on maximal participation, training completion within the

designated time, or contributing quality updates. Deadline-based selection entails

using only those nodes that can share their updated models within a predetermined

time frame. Performance-based selection relies instead on the results of the learning

operation.

Feasibility of Node Selection in DFL: In a DFL setting, similarity-based sys-

tems are challenged by the absence of a meaningful reference. Similarly, reputation-

based systems require some trusted intermediary to assign reputation scores and

become impracticable in their absence. Reputation-based scoring also assumes an

external entity associating trustworthiness scores with each node. Deadline and

performance-based selection require no external intervention and may be utilized for

DFL. However, the access to participating nodes in a DFL scenario is considerably

Chapter 6: Implications of Node Selection on DFL under volatile conditions 72

lower than in a centralized setting, which may adversely impact the performance.

For the mentioned reasons, we focus on the performance-based selection for the de-

fault DFL setting in this work.

Hard vs. Soft Selection: Regardless of the specific criterion used for calculating

the selection scores, two methods exist for filtering the most beneficial nodes: hard

and soft. Hard selection involves selecting the top-k nodes based on their scores for

participation in the aggregation round. The threshold to choose ‘k’ is determined

by the overall fraction of neighborhood nodes allowed for aggregation. On the other

hand, soft selection aims to promote greater client diversity by using a probabilistic

selection process, with high-scoring nodes getting higher probabilities assigned. By

guaranteeing a non-zero minimum probability, soft selection ensures that all nodes

can be selected for aggregation.

6.3 Node Selection for DFL

The contribution of nodes participating in an FL process becomes skewed as data

distribution, participation, and local updates become more heterogeneous. This

work intends to identify whether local performance is a good indicator of node

performance under DFL settings.

Selection Criteria For assessing the efficacy of node selection in DFL, we look

at the following performance-based selection criteria: 1. Training Loss Score 2. Val-

idation accuracy score 3. Joint parametric score

Training Loss Score: One of the commonly used metrics for node selection is the

training loss [112] where the score is assigned as:

sti =

√
1

|Di|
∑
m∈Di

li(k)2 (6.1)

where Di is the local data, m is the minibatch and li is the local learning loss

Chapter 6: Implications of Node Selection on DFL under volatile conditions 73

function.

Validation Accuracy: Another metric used to rank the nodes according to their

contributions is the validation accuracy [107] averaged over the number of local

updates as:

sti =
%Accuracy

ei
(6.2)

where % accuracy is calculated over a common validation dataset. It is worth

mentioning that test accuracy has also been used to establish such a utility. However,

this work considers using a common validation dataset as the realistic approach.

Parametric Score: The training loss and validation accuracy are indicators of var-

ious aspects of training. However, training loss may indicate biased results under

heterogeneous and skewed data distributions. Accuracy calculated over a common

dataset may offer a more insightful relative picture of the overall performance of a

node. Furthermore, the node performance changes as training progresses, achieving

a higher accuracy delta during the earlier training phase and the improvement in

later rounds coming at a considerably slower pace. The parametric score proposed

in this work uses this observation and suggests a time-varying scoring method based

on both validation accuracy and its corresponding change. The score is designed to

associate more weight with a change in accuracy during the earlier training phases.

The parametric score for each node is assigned as:

sti =

(
e

(α∆At
i

1 + γt

))
︸ ︷︷ ︸

∆ AF

·

(
0.7 + e

(−β
(1 + γt)(At

i + ϵ)

))
︸ ︷︷ ︸

AF

The expression has two components, the ‘Accuracy Factor (AF)’ and the Change

in Accuracy Factor (∆AF) where ∆At
i is the change in accuracy from the previous

round, At
i is the validation accuracy for the current round, t represents the current

communication round. The value of γ controls the shape of the weighing curve.

We restrict the value of γ such that 0 ≤ γ ≤ 1. The factors α and β are the

Chapter 6: Implications of Node Selection on DFL under volatile conditions 74

(a) Accuracy Factor (AF) (b) ∆ Accuracy Factor (∆AF)

Figure 6.1: Surface Plots for Accuracy Factor and ∆ Accuracy Factor plotted against
rounds and the accuracy and its change, respectively.

scaling factors for cAt
i and ∆At

i., respectively. The ϵ in AF is an offset factor to

avoid division by 0 and is chosen to be 0 < ϵ << 1. Both terms constituting the

expression for sti are normalized against their maximum possible values.

6.4 Experiments and Evaluation

6.4.1 Experimental Setup

The experiments performed in this work use FashionMNIST dataset with non-IID

data partitions generated using the Dirichlet Distribution parameterized by its con-

centration parameter α. Lower values of α result in more imbalanced distribu-

tions across the node. This work also employs an extremely skewed 2-class and

3-class non-IID case where each node is trained using data samples from two and

three classes, respectively. The neural networks used for evaluations comprise two

2D–Convolutional blocks followed by a Dropout and two linear layers instantiated

using the same weights. The training uses the SGD optimizer with a learning rate

η = 0.01. The evaluation uses N = 60 nodes operating asynchronously, each with

several local updates ranging from emin = 1 to emax = 4 during each aggregation

round. Each node has an associated participation probability ranging from 0.2 to

0.7 for replicating stragglers, incomplete training, and device activity. The diversity

Chapter 6: Implications of Node Selection on DFL under volatile conditions 75

created through both these aspects ensures an asynchronous FL setting, allowing

the necessary autonomy to the nodes.

Criterion / Distribution
α = 0.1 s = 2 s = 3

pi = 0.2 pi = 0.3 pi = 0.7 pi = 0.2 pi = 0.3 pi = 0.7 pi = 0.2 pi = 0.3 pi = 0.7
PS-Exp 0.6 0.686 0.827 0.383 0.481 0.596 0.567 0.657 0.919
PS-Norm 0.549 0.699 0.823 0.305 0.427 0.599 0.538 0.611 0.918
PS-Skew 0.612 0.707 0.831 0.378 0.48 0.601 0.591 0.656 0.916
PS-Lin 0.597 0.696 0.834 0.341 0.465 0.603 0.555 0.659 0.922
HS-Acc 0.555 0.674 0.82 0.332 0.416 0.589 0.517 0.652 0.918
HS-Loss 0.493 0.676 0.825 0.333 0.4 0.596 0.491 0.638 0.918
Random 0.752 0.776 0.831 0.564 0.577 0.627 0.691 0.779 0.963

Table 6.1: Results for various selection criteria, data distributions,
and participation probabilities (pi) for FashionMNIST dataset

6.4.2 Selection Criteria

The node selection criteria employ both hard and soft selection for this work. Hard

filtering uses the training loss (HS-Loss) and validation accuracy (HS-Acc) score.

Node selection using the parametric score (PS) adopts a soft filtering approach. The

probabilities in this work are assigned to the nodes as per the following distributions:

1. Exponential Distribution (PS-Exp) 2. Normal distribution (PS-Norm) 3. Skewed

distribution (PS-Skew) 4. Linear distribution (PS-Lin) Furthermore, Random Se-

lection (Random) extends stochastic participation by the nodes in all rounds. The

participation threshold is 0.2 ≤ pi ≤ 0.7. This work assumes that for each round

at t, a maximum of pi proportion from the ni one-hop neighbors and share their

models within their respective neighborhoods.

6.4.3 Results and Analysis

The results of node selection criteria in Section-6.3 are depicted in Fig-6.2 and

6.3 and Table-6.1. The results represent various participation levels from pi =

{0.7, 0.3, 0.2}. The participation levels are associated with three non-IID distri-

butions, α = 0.1 and s = 2 & 3 for two and 3-class skewed data distributions.

It may be observed from the results that ‘Random’ selection tends to benefit the

convergence process more than others, particularly under cases with lower partici-

Chapter 6: Implications of Node Selection on DFL under volatile conditions 76

(a) α = 0.1 and pi = 0.5 (b) α = 0.1 and pi = 0.3

(c) s = 3 and pi = 0.5 (d) s = 3 and pi = 0.3

(e) s = 2 and pi = 0.5 (f) s = 2 and pi = 0.3

Figure 6.2: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participation threshold
as pi = 0.5 & 0.3

Chapter 6: Implications of Node Selection on DFL under volatile conditions 77

(a) α = 0.1 and pi = 0.5 (b) α = 0.1 and pi = 0.3

(c) s = 3 and pi = 0.5 (d) s = 3 and pi = 0.3

(e) s = 2 and pi = 0.5 (f) s = 2 and pi = 0.3

Figure 6.3: Average test accuracy for 50 Communication rounds non-IID data dis-
tributions of MNIST for α = 0.1, s = 3, s = 2 and pi 0.5 & 0.3

Chapter 6: Implications of Node Selection on DFL under volatile conditions 78

pation levels. As the participation levels improve, the convergence rate offered by

other selection criteria approaches that of random participation. Furthermore, hard

selection methods show higher variance levels than soft selection. This variance

shows signs of increasing as participation levels drop. The results indicate that al-

lowing maximal participation under conditions of low participation may indeed be

more beneficial than filtering nodes. The performance of random selection points at

achieving greater data diversity from among the nodes, especially under cases with

increasingly heterogeneous data distribution. This diversity ensures better gener-

alization among all other selection criteria considered in this work. Furthermore,

results indicate that parametric scoring with exponential and skewed distribution

(PS-Exp and PS-Skew) outperforms the other methods as the distribution and par-

ticipation levels become more extreme.

6.5 Conclusion

Selection in FL settings has improved convergence and communication efficiency.

This work evaluates the implications of using node selection in DFL settings, particu-

larly regarding convergence. Assessments have been made with hard and soft/stochastic

selection methods based on performance metrics such as training loss, validation ac-

curacy, and a parameterized variant. Results indicate that the impact of selection

bias is more pronounced in volatile environments with limited client participation.

Hard selection methods are shown to be more prone to extreme data distributions

and node participation. Random selection may be more suited to ensuring various

distributions under extreme conditions.Further studies into information diffusion

under extreme data distributions and volatile node participation may also help in

understanding the progression trends of DFL.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 79

Chapter 7

ASSISTING DECENTRALIZED FEDERATED

LEARNING USING MEMORY AND AUGMENTED

GRAPHS

7.1 Introduction

As a serverless alternative, the performance of Decentralized Federated Learning

(DFL) is strongly impacted by the local connectivity among the nodes. In addition to

the graph structure itself, node characteristics are also a major factor in determining

the overall performance. Nodes’ participation in the learning process, their ability

to complete the learning tasks and share their models within its neighborhood are

characteristics that tend to alter the underlying connectivity dynamically. The effect

of these factors becomes even more significant when considering extreme behavior.

In contrast to maximal participation, nodes may also depict extremely uncertain

behaviors vis-a-vis participation in the learning process on account of various factors,

including local resources, activity status, mobility, lack of incentives, etc. This leads

to device volatility in which a significant fraction of devices are unable to participate

in various stages of learning. The work presented in Ch-6 evaluates the impact of

device volatility in DFL and its impact on the convergence rate. The results indicate

that as the volatility increases, local information tends to become insufficient for

ascertaining device performance, and thus, random neighbor selection remains the

most viable option for node selection under volatile conditions. In this chapter, we

investigate alternatives to boost DFL performance for volatile conditions that go

beyond 1-hop neighbor node selection.

In Decentralized Federated Learning (DFL), each node shares performs a local

stochastic gradient update on its model using its private data. It then shares its

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 80

updated model within its 1-hop neighborhood through D2D interaction. The shared

updates are used in weighted aggregated locally and successively propagated along

the network [37]. The information diffusion across the network is slower as the

shared updates are down-weighted during each communication round as the mod-

els propagate through the network. While fully and densely connected topologies

improve convergence, real-world configurations follow sparse configurations, imply-

ing reduced neighborhood sizes and lower convergence rates [38]. The autonomous

operation of nodes also impacts the convergence rate negatively since they may

choose to skip training/communication rounds altogether. A significant proportion

of nodes depicting such uncertain behaviors leads to a volatile participation environ-

ment [39], resulting in an unstable availability of neighboring nodes for model ex-

change. Jointly, both graph sparsity and participation volatility significantly impact

the convergence rate in DFL. Furthermore, they aggravate the impact of data het-

erogeneity as the models become increasingly skewed toward the data distributions

of the proportion of available neighboring nodes in an already sparse neighborhood.

The impact of sparse topology in DFL has been researched in [105, 113, 114]. How-

ever, the focus of volatility recent works has remained in centralized FL [39,86,87].

The works on DFL have so far assumed a consistent node behavior. Whereas FL can

use global information to muster a larger proportion of available nodes, such is not

feasible in DFL scenarios, resulting in time-varying sparse topologies. By extension,

the solutions to these challenges must also be local in nature.

Our own work and existing literature have shown that volatile operating con-

ditions and heterogeneous data distribution adversely impact learning performance

and convergence of DFL. Relying only on local neighborhood information and in-

teractions exacerbates these issues. We have also seen that curating local neigh-

bors does not offer a significant advantage. This work focuses on DFL operation

in a sparse topology under extremely volatile conditions coupled with highly het-

erogeneous data. As such, we investigate alternative methods to accelerate DFL

convergence under harsh conditions by introducing ideas to assist learning, namely

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 81

a) limited memory and b) relay operations. With this framing, we first propose an

algorithm by re-using models from the previous round as approximations for the

absent nodes. We then design a second algorithm around graph augmentation by

allowing nodes to relay models. Utilizing the similarities between these algorithms,

we propose a joint scheme that allows nodes to utilize stored models both locally

and for relay operations. We call this as Assisted DFL where the aforementioned

mechanisms assist DFL in volatile conditions. The algorithms are referred to as

Memory-Assisted DFL and Augmented Graph-Assisted DFL, whereas the hybrid is

titled as Memory and Augmented Graph-Assisted DFL. The proposed algorithms

outperform the baseline DFL as extreme scenarios challenge the overall learning op-

eration. Furthermore, the proposed hybrid outperforms the individual algorithms

and the baseline while operating locally.

7.2 Memory-Assisted DFL (MA DFL)

The realistic behavior of nodes in an FL environment depicts heterogeneous partic-

ipation and training [115]. This stems from several factors, including node activity

and mobility, resource and communication heterogeneity, privacy concerns, and lo-

cal data distributions. Participation volatility in such scenarios arises from a high

probability of nodes dropping out from the update or communication phase. The

overarching operating conditions subject the nodes to a highly volatile setting, as-

suming that only a fraction of nodes join a given aggregation round. This implies

that participation across neighborhoods remains highly uncertain. In such a sce-

nario, our solutions rely on the nodes’ ability to retain the models from the previous

round. Each node manages an array of models it had received in the previous round

and uses them in conjunction with the models from the current round.

The impact of the absence of models from a significant proportion of neighbor-

hoods may be offset by considering approximations of these models. The models

shared by the respective nodes in the previous rounds may be considered as a po-

tential representative of the current ones. However, under asynchronous operating

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 82

conditions where the nodes conduct varying levels of training, more recent model

updates may be considered as the closest approximations to the current models. It

is on the basis of this assumption that we introduce a memory array for the Memory

Assisted DFL. Each node stores models from the current aggregation round in its

own memory array. Due to limited neighborhood sizes and volatile participation, it

can be seen that the array size remains limited. In the subsequent round, each node

identifies the absent nodes and checks whether their models were shared during the

previous round and, therefore, are part of the memory array. Wherever possible,

each node utilizes these models as approximations and includes these in the aggre-

gation process.

The sequence of operations in Memory Assisted - Decentralized Federated Learn-

ing (MA DFL) has been provided in Alg-9. Each node i receives models from πt
i

set of nodes for a given round t, where |πt
i | << |ni| ∀ t . The membership of πt

i

for each node j ∈ ni is controlled by its respective probability pji of sharing with

a target node i in a Device-to-Device (D2D) operation. Each node in MA DFL

maintains an array Mt−1
i of models from r ∈ πt−1

i nodes it received in the pre-

vious t − 1 aggregation round. At the beginning of the aggregation round t, the

device i communicates its updated model θt+τ
i to sti nodes within its neighborhood

such that |sti| << |ni|. Assuming D2D links, i communicates stochastically with

each node in jti ∈ sti, determined by the parameter ptij allowing devices to cooper-

ate independently of others. This allows them the necessary autonomy over their

operations as envisioned for a volatile FL setting. Similarly, every node i receives

models θt+τ
r from πi = {ri | ri ∈ ni} set of nodes each with a probability pri such

that |πi| << |ni|. Once the communication stage is completed, each node i performs

weighted aggregation of its own model θt+τ
i with the received models θt+τ

r and the

models νt = {θtk | k ∈ (πt−1
i \ πt

i)} implying using models storedMt−1
i given they

have not been received as part of the πt
i . Finally, the node i updates its memory

arrayMt
i with models θr

t received from node set πt
i .

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 83

Algorithm 9: Memory Assisted-Decentralized Federated Learning

Input: Nodes N with model parameters θti , participation probability
pi for i = 1 N , aggregation rounds t = 1 T , memory
array for round tMt

i

Output: Local consensus model θ∗

for round t = 1, 2 do
for Nodes i = 1 . . . N in parallel do

for minibatch ξm(xm, ym) in local data Di do

Gradient update: θt+τ
i = θt

i − αt
i∇Li(xm, ym;θ

t
i)

end
Send θti to j ∈ sti ⊂ ni neighboring nodes with probability ptij
Receive models θt+τ

r ∀ r ∈ πt
i set of nodes with probabilities ptri

if Mt−1
i ̸= ϕ then

νti = {θt−1
k | k ∈ (πt−1

i \ πt
i)}

θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθ
t+τ
r +

∑
k∈νti

ηkθ
t−1
k

else
θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηjθ
t+τ
r

end

end
UpdateMt

i :Mt
i = {θtr|r ∈ πt

i}
end

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 84

Full Memory-Assisted DFL (FMA DFL) The size of the Memory array in

MA DFL has been restricted to retain models only from previous training rounds.

The key aspect remains that of asynchronous training, where devices perform various

levels of training and the participation remains uncertain. The most comparable

work remains in [93] that employs the entire memory array as a difference of models

at the node level while supporting asynchronous training. However, the difference is

calculated using a global model aggregated at the parameter server, which allows the

nodes to benefit from the global distribution. In DFL, the lack of global information

and asynchronous operation may lead the nodes to diverse local minima resulting in

a slowdown of the convergence rates. However, to justify this hypothesis, we present

empirical results for Full Memory-Assisted DFL (FMA DFL). The main difference

between MA DFL and FMA DFL is the latter’s ability to retain models from all

training rounds. The models are updated once they are received; however, they are

retained in the memory array until the node participates again.

7.3 Augmented Graph-Assisted DFL (AG DFL)

Under the conditions of volatility where device participation remains uncertain and

low, one of the key aspects remains to increase the participation of the nodes in the

learning process, as evident from the results in [48, 88]. Incentivizing mechanisms

and relaying operations are two major avenues through which node participation has

been attempted to be increased. However, incentive solutions require third parties as

purveyors of the rewards, which are currently assumed to be absent from a fully de-

centralized setting. Relaying models remain an important alternative in this regard.

However, the key concern with relaying operations is the associated increase in the

overall communication volume and communication resource heterogeneity among

the participants. Anticipating these challenges, we propose an Augmented-Graph

DFL (AG DFL) scheme with selective relaying options.

The basic premise of decentralized operations assumes a knowledge of the local

neighborhood. This allows the nodes to conduct 1-hop communication during DFL

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 85

when sharing their models. Extending this further, we can further use the standard

assumption of prior knowledge of the Adjacency Matrix [83]. The same may be

assumed in two stages:

1. Nodes establish local neighborhood information

2. Nodes exchange respective neighborhood information with their 1-hop neigh-

bors

These two steps allow nodes to establish unified information on the adjacency

matrix and employ it for relay operations. Using the adjacency information, each

node i establishes a set of nodes Oij : Oij = {m|m ∈ (ni \ nj) ∀ i ∈ N , j ∈ ni} i.e.,

Oij is a set of neighboring nodes of i not part of node j ∈ ni. Each node establishes

sets Oij for each corresponding node j in its neighborhood. The setting follows

volatile conditions where each node i gets access to πi set of nodes from its neigh-

borhood where πi << ni. With fractional participation, a relaying option allows

participating nodes to relay one additional model during the current aggregation

phase selectively. However, the sequence followed during the communication stage

must remain intact as the nodes transmit the models first. Therefore, the models

to be relayed must already be available at the transmitting nodes. To facilitate this

operation, each node i maintains an arrayMt−1
i of the models θt−1

r ∀ r ∈ πt−1
i it re-

ceived in the round t−1. At the beginning of the round t, each node i first performs

a local update on its model parameters to obtain θt+τ
i . Next, when sending its model

to node j, node i identifies the set of nodes Cij = {p | p ∈ (Oij ∩ πt−1
i) i.e Cij is the

set nodes from whom node i received models in the round t− 1 while concurrently

not being part of the neighborhood of node j i.e., nj. When transmitting, the node i

randomly selects a model θt−1
q : q ∈ Cij & θt−1

q ∈Mt−1
i . It the transmits the models

θt+τ
i and θt−1

q to the node j. Once the relaying process is completed, all the nodes

perform the local averaging process based on the models θt+τ
r received from r ∈ πt

i

nodes to obtain θt+1
i . Subsequently, each node updates the stored array Mt with

the models received in the current round from nodes in πt.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 86

The key factor behind choosing q randomly from Cij is that the nodes in Oij do

not contribute to θj directly in any round. Sending models from q to j when for

the underlying graph G, Ejq /∈ EG is akin to adding a virtual edge between nodes j

and q at time t, thereby augmenting the graph. Under conditions of participation

volatility and sparse connectivity, such temporary edges allow greater participation

and enable access to a wider distribution. The details of the operation of AG DFL

have been provided in Alg-10.

Algorithm 10: Augmented Graph-Assisted Decentralized Feder-
ated Learning

Input: Clients N with model parameters θti and participation
probability pk for k = 1 N , aggregation rounds T ,
Model ArrayMt, Adjacency Matrix WG

Output: Local consensus model θ∗
i

for nodes i = 1 . . . N in parallel do
for node j = 1 ni in neighborhood do

Establish Oij : Oij = {m | m ∈ ni ∧ m /∈ nj}
end

end
for round t = 1, 2 do

for Nodes i = 1 . . . N in parallel do
Perform local gradient update:
θt+τ
i = θt

i − αt
i∇Li(xm, ym;θ

t
i) ;

if Mt−1
i ̸= ϕ then

Identify Cij = {p|p ∈ (Oij ∩ πt−1
i) };

if Cij ̸= ϕ then
Randomly choose a node q from Cij ;
Send θt+τ

i and θt−1
q to j ∈ ni with probability ptij

else
Send θti to j ∈ ni neighboring nodes with probability ptij

end
Receive models θt+τ

r ∀ r ∈ πt
i ⊂ ni and relayed models

ρti = {θt−1
k | k ∈ Cri} ;

if ρti ̸= ϕ then
θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθ
t+τ
r +

∑
k∈ρti

ηkθ
t−1
k

else
θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθ
t+τ
r

end

end
UpdateMt

i :Mt
i = {θtr |r ∈ πt

i}
end

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 87

7.4 Memory and Augmented-Graph Assisted DFL (MAG DFL)

The nodes in both MA DFL and AG DFL rely on storing models received in the

previous round in a memory array Mt−1. It is, therefore, a logical extension that

both algorithms be merged into one that allows nodes to employ stored models

jointly for local aggregation and relaying simultaneously. The two algorithms add

fractional costs to both storage and computing. The memory array Mt contains

models only from the previous round. Assuming each model has a size of d bytes,

even if the array were to extend storing for all the rounds, the maximum size of the

array, h(Mt), would be hmax : h(Mt
max) = d × ni bytes where |ni| << N . Under

volatile conditions, when the nodes participating in the aggregation are πi << ni,

this indicates h(Mt
πi) << hmax. For the communication part in FL, each node

transmits b = d × |ni| bytes. However, when sending to |si| << |ni| nodes, the

total communication volume for each node in a D2D setting is b× |si|. In addition

to the given relay mechanism that adds one additional model per each node in si,

the total communication volume comes at 2b × |si|. However, since |si| << |ni|,

the communication volume, including relaying additional model, remains less than

the overall volume for |si| < |ni|
2
. More so, until the neighborhood participation

exceeds 50%, the communication volume for relay operation does not exceed the full

participation scenario. Further reduction may be achieved if the relay operation is

made stochastic.

Given the overall communication and storage cost, Alg-11 presents the Memory

and Augmented Graph-Assisted DFL (MAG DFL) algorithm, a hybrid based on

MA DFL and AG DFL. MAG DFL algorithm merges the unique steps of both Alg-

9 and Alg-10. The key aspect is maintaining a local memory array Mt
i at each

node i and computing the set Oij for each node j ∈ ni. Once the model update

has been completed, each node i randomly selects the model θt−1
q for q ∈ Cij where

Cij is formed by the intersection of πt−1
i and Oij. The models θt+τ

i and θt−1
q are

communicated to the sti set of nodes. Once the models from nodes πi from the

1-hop neighborhood and ρi relayed nodes have been received, the node performs

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 88

aggregation. The aggregation step sees the nodes’ model and the ones received

during the current round and two sets of models from the previous round, the ones

stored in local memory and those relayed by its neighboring nodes.

Algorithm 11: Memory and Augmented Graph-Assisted Decen-
tralized Federated Learning

Input: Clients N with model parameters θti and participation
probability pk for k = 1 N , aggregation rounds R,
Adjacency Matrix W , Model ArrayMt

i

Output: The consensus model θ∗

for nodes i = 1 . . . N in parallel do
for node j = 1 ni in neighborhood do

Establish Oij : Oij = {m | m ∈ ni ∧ m /∈ nj}
end

end
for round t = 1 do

for Nodes i = 1 . . . N in parallel do
Perform stochastic gradient update

θt+τ
i = θt

i − αt
i∇Li(xm, ym;θ

t
i)

if Mt−1
i ̸= ϕ then

Identify Cij = {p|p ∈ (Oij ∩ πt−1
i) }

if Cij ̸= ϕ then
Randomly choose a node q from Cij

Send θt+τ
i and θt−1

q to j ∈ ni with probability ptij
else

Send θti to j ∈ ni neighboring nodes with probability
ptij

end
Receive models θt+τ

r ∀ r ∈ πt
i ⊂ ni and relayed models

ρti = {θt−1
k | k ∈ Cri}

Ascertain νti : ν
t
i = {θtk | k ∈ (πt−1

i \ πt
i)}

if ρti ̸= ϕ and νti ̸= ϕ then
θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθ
t+τ
r +

∑
k∈ρti

ηkθ
t−1
k +

∑
m∈νti

ηmθ
t−1
m

else
Given ρti = ϕ→ θt+1

i = ηiθ
t+τ
i +

∑
r∈πi

ηrθ
t+τ
r +

∑
m∈νti

ηmθt−1
m

Given νti = ϕ→ θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθ
t+τ
r +

∑
k∈ρti

ηkθ
t−1
k

end
else

θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηjθ
t+τ
r

end
end
UpdateMt

i :Mt
i = {θtr |r ∈ πt

i}
end

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 89

7.5 Convergence Guarantees

The local objective for each node is Li, and li is the loss function that depends

on the nature of the problem e.g. cross entropy etc. Furthermore, the global data

distribution is represented as D and the local distribution is ξi. We adopt the

following assumptions for proving convergence in our case, which are fairly standard

in works on decentralized learning [90,93,116]:

Assumption 1 (L-Smoothness) For each i ∈ [n], Li(θi, ξi) : R
d is differentiable for

ξi ∈ supp(D) such that there exists a constant L ≥ 0 such that for each θi, θj ∈ Rd:

||∇Li(θi, ξi)−∇Li(θj, ξi)|| ≤ L||θi − θj||

Assumption-2: Bounded Variance: There exists a constant σ, such that for all

θ ∈ Rd, i ∈ [n],

Eξ||∇Li(θi, ξi)−∇li(θi)||2 ≤ σ2

Assumption -3 : l1, l2 lN are all strongly convex for an θi and θj and a

constant µ ≥ 0 such that:

li(θi) ≥ li(θj) + ⟨∇li(θj), θi − θj⟩+
µ

2
||θj − θi||22 (7.1)

7.5.1 Properties of W

In this part, we show that our formulation of the network topology and the under-

lying assumptions render the associated adjacency matrix W to possess the same

properties as those described for the adjacency matrix in [90]. We use the Gersh-

gorin Circle and Brouwer Fixed Point Theorem to determine the properties of W ,

its dominant Eigenvalue and the associated left and right Eigen Vectors.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 90

Definition A (Spectral Radius) Let λ1, λn be the eigenvalues of a matrix

A ∈ Cn×n . Then, its spectral radius can be defined as:

ζ(A) = max{|λ1|, |λn|}

Definition B (Adjacency Matrix W) Let the adjacency matrix for the network

for N nodes be W ∈ RN×N . Then, sampling W t ∼ W ∈ RN×N may be used to

indicate the presence of stragglers and volatile nodes. Assuming P is the set of

active nodes at time t in the neighborhood of node i i.e. |ni| with |P| = k ≤ |ni|

nodes active in the learning process, then the i-th row ofW t i.eW t
i will have exactly

k non-zero entries. ThenW t
i can then be defined asW t

i =
1
k
1P = 1

k
[p1, p2, pN]

where 1P = [p1, p2, pN] is an indicator vector such that pi = 1 ∀ i ∈ P and 0

otherwise. With this definition of the indicator vector 1P and a uniform weighting

mechanism, the entries ωij in row W t
i can be described as:

∑
W t

i =
N∑
j=1

ωij =
N∑
j=1

1

k
1
T
P
= 1

This shows that the sampled W t is a row-stochastic matrix.

Lemma 1 The sampled adjacency matrix W t satisfies the following:

1. 1 is the largest eigenvalue of W t (both regular and absolute). In other words,

the spectral radius of W t is ζ(W t) = 1

2. The right Eigen Vector of W t associated with the Eigen-value 1 is 1 ∈ RN .

3. The left Eigen Vector ofW t associated with the Eigen-value 1, represented by

ψ, is non-negative.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 91

Proof From the Definition B, given that W t is row-stochastic, then using 1 as

vector of 1’s with the dimension N ,

W t
1 = λ(W t)1 = 1 (7.2)

This shows that

1. 1 is a right Eigen Vector of W t

2. 1 is an Eigenvalue of W t

With the row-stochasticity property ofW t and using the Gershgorin Circle The-

orem, the largest Eigenvalue, λmax(W t) of W t satisfies the following:

λ(W t) ≤ 1 (7.3)

The Eq. 7.2 and Eq. 7.3 imply that 1 is the largest Eigen-value of W t, i.e., the

spectral radius of W t is 1, depicted as ζ(W t) = λmax(W t) = 1. Therefore, 1 is a

right Eigen Vector of W t corresponding to the largest Eigen-value of 1.

Given λmax(W t) = 1, let the associated left Eigen Vector can be denoted as:

ψ =


ψ1

ψ2

...

ψN

 (7.4)

then

W tTψ = ψ

From the Brouwer Fixed Point Theorem, for any stochastic matrix, there is a left

Eigen vector which is a stationary probability vector. Hence, the left Eigen Vector

ψ corresponding to the largest eigen-value is real and non-negative.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 92

Let θti be the model parameters associated with node i at time t. Given N nodes,

let 1 be a vector of 1’s with dimensions 1 × N . Let θt = [θt1, θ
t
2 θ

t
N] ∈ Rd×N .

Then the average of all models at the time t is:

θ
t
=

1

N

N∑
i=1

θti

= θt 1

N
1
T

Given the distributed learning problem, the distance between the consensus

model and the local model at time t can be defined as:

dt = E||θt − θti ||2 (7.5)

The final aggregation form for the hybrid Memory and Augmented Graph As-

sisted Algorithm is given as:

θt+1
i = ηiθ

t+τ
i +

∑
r∈πi

ηrθ
t+τ
r +

∑
k∈ρti

ηkθ
t−1
k +

∑
m∈νti

ηmθ
t−1
m (7.6)

The first two terms represent node i’s own model as well as the received ones.

The last two terms indicate the models employed from memory as well as those

relayed by the participants. The adjacency matrix, W t, can be guaranteed to be

always row-stochastic by the choice of the aggregation weights ηi, ηr, ηk and ηm.

We rely on the analysis of [90] for our convergence guarantees after this point.

In Eq. 7.6, the first two expressions represent the standard DFL process [104, 116].

The last two terms represent models from the previous time steps and have been

shown to converge in [90,93]. As the overall expression is a linear combination of the

respective terms, it can be inferred that the main aggregation expression converges.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 93

7.6 Results and Analysis

This work performs a combined analysis of the proposed algorithms using DFL as

the baseline. All the algorithms are subjected to the same level of volatility, asyn-

chronicity, and data distribution.

The results for the various scenarios of environment volatility with asynchronous

participation have been depicted in Fig 7.1 - 7.5 and Tables 7.1 - 7.3. Results in-

dicate both Memory assistance and Augmented-Graph assisted DFL to outperform

DFL in scenarios of low participation and non-IID data. Additionally, the proposed

hybrid algorithm Memory and Augmented-Graph assisted DFL outperforms all the

rest in the given scenarios.

Participation proportion becomes a key factor, particularly in cases of heteroge-

neous data distribution. The figures Fig 7.1 - 7.5 indicate this recurring trend where

the gap between the baseline and MAG DFL increases for a given distribution as

participation becomes more extreme. The said figures also indicate higher variance

in the overall results as participation probability goes from pi = 0.4 to pi = 0.05.

Furthermore, although MA DFL and AG DFL both employ models shared in the

previous training round, the added diversity afforded by AG DFL by sharing inacces-

sible models with the respective nodes gives it a better performance over MA DFL.

However, since the relayed models depend on whether the sending nodes themselves

have received models or not and are not guaranteed to relay in every round, the

comparable advantage indicates inconsistencies due to the stochasticity of operation.

The results in Tables 7.1 - 7.3 also indicate the results for FMA DFL. The re-

sults are compiled for various data distributions. Each table presents the results for

different asynchronous training levels for different participation levels, with entries

indicating test accuracies averaged over 5 rounds. It is evident from the results that

greater asynchronicity levels (Epochs 1-10) result in greater performance differences

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 94

between the said algorithms. With greater differences in training, the improvement

obtained by MAG DFL is over 10% with the lowest participation thresholds. As

participation increases, this gap reduces as nodes access a greater variety of distri-

bution. The results in Table 7.2 show the maximum performance gain between the

baseline and MAG DFL at 11%. With lesser data heterogeneity and asynchronous

training, as shown in Table 7.1, MAG DFL improvement falls to around 3− 4% for

30% or less participation.

From Fig 7.1-7.5, it is evident that the gap reduces as the environment volatility

reduces. Under cases of extremely low participation where only 5% of the neighbor-

hood of any node participates, we see the proposed hybrid outperforms the baseline

by 10% performance gain with the 2-class skewed distribution as evident in Fig

7.1-c. Within a given participation threshold, it may be observed that the per-

formance for hybrid manages to outperform the individual algorithms as the data

distribution becomes more extreme. This fact may be attributed to employing ap-

proximate models from the memory array from the previous round i.e. Mt−1
i , and

an increase in available distribution diversity in the form of relayed models from the

neighborhood.

(a) α = 0.1 and pi = 0.05 (b) s = 3 and pi = 0.05 (c) s = 2 and pi = 0.05

Figure 7.1: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participation threshold
as pi = 0.05

While the results indicate a performance improvement, the relay operation im-

poses additional communication costs. However, the communication overhead may

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 95

(a) α = 0.1 and pi = 0.1 (b) s = 3 and pi = 0.1 (c) s = 2 and pi = 0.1

Figure 7.2: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participation threshold
as pi = 0.1

(a) α = 0.1 and pi = 0.2 (b) s = 3 and pi = 0.2 (c) s = 2 and pi = 0.2

Figure 7.3: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participation threshold
as pi = 0.2

(a) α = 0.1 and pi = 0.3 (b) s = 3 and pi = 0.3 (c) s = 2 and pi = 0.3

Figure 7.4: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participation threshold
as pi = 0.3

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 96

(a) α = 0.1 and pi = 0.4 (b) s = 3 and pi = 0.4 (c) s = 2 and pi = 0.4

Figure 7.5: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with α = 0.1, s = 3 & s = 2 and participation threshold
as pi = 0.4

Local updates Epochs 1-6 Epochs 1-3

Algorithm / Participation 50% 30% 10% 50% 30% 10%

DFL 0.827 0.794 0.734 0.783 0.777 0.704

MA DFL 0.827 0.798 0.74 0.776 0.775 0.71

AG DFL 0.806 0.784 0.748 0.755 0.765 0.717

MAG DFL 0.821 0.804 0.77 0.762 0.777 0.738

FMA DFL 0.815 0.765 0.691 0.77 0.757 0.655

Table 7.1: Results for various Algorithms, different asynchronous training levels and
participation levels for α = 0.1 skewed data distribution for FashionMNIST dataset.

be justified because the proposed algorithms are designed to operate in low partic-

ipation scenarios where the nodes are infrequent in their aggregation rounds. Fur-

thermore, the real operation may be subjected to the overall participation conditions

to help control the communication costs.

Communication Volume With the Augmented Graph Assisted DFL (AG DFL)

and the inclusion of the same mechanism in the hybrid MAG DFL algorithm, each

node relays additional models within a given federation round. Given that, each

node i sends models to its neighborhood ni under default conditions, the total com-

munication volume for each node becomesO(ni). WithN total nodes in the network,

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 97

Local updates Epochs 1-10 Epochs 1-6 Epochs 1-3

Algorithm / Participation 50% 30% 10% 50% 30% 10% 50% 30% 10%

DFL 0.686 0.702 0.519 0.703 0.651 0.571 0.669 0.639 0.524

MA DFL 0.709 .719 0.61 0.719 0.668 0.599 0.664 0.655 0.581

AG DFL 0.691 0.712 0.628 0.687 0.668 0.645 0.64 0.646 0.592

MAG DFL 0.707 0.734 0.634 0.691 0.7 0.647 0.66 0.657 0.596

FMA DFL 0.71 0.688 0.506 0.702 0.652 0.491 0.657 0.62 0.498

Table 7.2: Results for various Algorithms, different asynchronous training levels and
participation levels for S = 2 skewed data distribution for FashionMNIST dataset.

Local updates Epochs 1-10 Epochs 1-6 Epochs 1-3

Algorithm / Participation 50% 30% 10% 50% 30% 10% 50% 30% 10%

DFL 0.819 0.764 0.688 0.785 0.784 0.669 0.773 0.733 0.662

MA DFL 0.829 0.778 0.72 0.79 0.797 0.693 0.77 0.753 0.691

AG DFL 0.809 0.77 0.747 0.78 0.787 0.704 0.756 0.74 0.712

MAG DFL 0.825 0.781 0.77 0.793 0.803 0.719 0.771 0.759 0.717

FMA DFL 0.822 0.755 0.685 .792 0.778 0.635 0.763 0.734 0.621

Table 7.3: Results for various Algorithms, different asynchronous training levels, and
participation levels for S = 3 skewed data distribution for FashionMNIST dataset.

the average degree of the nodes in the network becomes

n̄ =
1

N

N∑
i=1

ni

where ni is the degree i.e. the number of neighbors, of each node i. Thus, the

total communication volume of the entire network for the average degree n̄ becomes

∼ O(n̄N). For a complete network, n̄ ≈ N , with each node connected to every other

node of the network, the total communication volume for a complete graph becomes

∼ O(N2).

However, with the conditions of sparsity and volatility chosen as part of our

system model, for any given federation round,

1 ≤ n̄≪ N

This implies that the default communication volume for a sparse graph with the

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 98

above-defined condition becomes

O(n̄N) ≈ O(N)

The proposed graph augmentation requires each node to communicate two mod-

els whenever possible. Therefore, the total communication volume becomes:

O(2n̄N) ≈ O(N)

This communication volume persists for sparse and volatile conditions chosen as

part of our research for both AG DFL and MAG DFL.

7.7 Conclusion

Decentralized Federated Learning offers a powerful alternative to distributed learn-

ing by removing the bottlenecks caused by central orchestration. However, a lack

of global information and access to a much lesser fraction of devices leads to slower

information diffusion and convergence rates. Node volatility, in addition to data het-

erogeneity, offers a critical challenge to the DFL performance. The algorithms pro-

posed in this work, including Memory-Assisted DFL (MA DFL), Augmented Graph-

Assisted DFL (AG DFL), and hybrid Memory and Augmented Graph-Assisted DFL

(MAG DFL), show promising results when subjected to highly volatile conditions

and heterogeneous data distributions. The proposed algorithms keep the restrictions

associated with node participation in perspective and require minimal computation

overhead. With MA DFL, the nodes utilize models stored in their respective memory

arrays as approximations of the absent models. This allows higher data diversity and

improves convergence in the presence of node volatility. In the Augmented Graph

Assisted DFL, our proposed solution employs selective relaying in order to allow

access to a greater fraction of models. With higher volatility, our solution relies on

enabling the active nodes to relay models across neighborhoods. To avoid causing

additional bias, the nodes only relay models from non-overlapping neighborhoods.

Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 99

With the hybrid MAG DFL algorithm, we propose a mechanism that jointly em-

ploys the solutions offered in MA DFL and AG DFL without additional overhead.

The results indicate that the MAG DFL outperforms not only the baseline but also

its respective constituent algorithms under highly volatile conditions with extreme

non-IID data distribution. The performance improvement becomes significant as the

nodes are subjected to increasing volatile behaviors and skewed data distributions.

The communication cost for relaying operations in Graph Augmented DFL doubles

because of the relaying feature; however, the suggested mechanism is designed for

operation in extremely low participation scenarios, which ensures that the overall

communication remains at par when the entire set of devices is participating. These

features make these algorithms extremely attractive for DFL operation in volatile

conditions. An extension of this work would be quantifying the information dif-

fusion rate under volatile participation conditions and measuring diversity under

conditions of local interactions.

Chapter 8: Conclusion and Future Work 100

Chapter 8

CONCLUSION AND FUTURE WORK

In this research, we conduct an extensive analysis of the practical challenges

faced in the application of Decentralized Federated Learning (DFL). Decentralized

methods offer powerful alternatives to centralized learning schemes and are assum-

ing greater significance in the next-generation communication networks. Despite

the challenges of non-IID data, device and communication heterogeneity, we show

that the DFL performance trade-off is well worth the decrease in communication

cost. However, device behavior, particularly under volatile settings, impacts learn-

ing much more than centralized variants, and therefore, this research focuses on the

performance of DFL under volatile participation settings.

8.1 Concluding Remarks

The development of the Federated Learning Algorithm Simulation (FLAGS) frame-

work allowed us a platform to prototype and evaluate multiple FL algorithms rapidly.

Being lightweight and extremely modular, it offers a powerful solution to undertake

research into novel FL algorithms under different environmental conditions.

Building on the application of the FLAGS framework, our next step conducts

a comprehensive comparison of various FL algorithms, expanding their evaluation

beyond the Centralized FL context. The developed FLAGS framework allows the

swift configuration of diverse FL architectures. Notably, the study highlights the

performance of major FL algorithms in the face of significant challenges. Results

show that decentralized FL performs well even with limited upstream communi-

cation. While noise and irregular participation affect decentralized FL, they still

Chapter 8: Conclusion and Future Work 101

achieve acceptable performance. However, highly skewed data distributions notably

degrade fully decentralized FL more than centralized approaches. Findings suggest

interchangeable use of FL modes based on network conditions and communication

costs.

The utilization of selection strategies within Federated Learning (FL) has en-

hanced convergence and communication efficiency. Our work extends this research

in the DFL domain and evaluates the impact of integrating node selection in volatile

conditions. Through evaluations employing rigid and adaptable stochastic node se-

lection techniques, utilizing metrics like training loss, validation accuracy, and a pa-

rameterized variant, findings indicate that selection bias exerts a more pronounced

effect in dynamically unstable environments with limited client engagement. No-

tably, hard selection methods demonstrate heightened susceptibility to extreme data

distributions and node involvement. Conversely, random selection demonstrates the

potential for ensuring distribution diversity in extreme conditions.

Delving further into improving the performance of DFL under volatile device par-

ticipation, we propose three different algorithms utilizing entirely local information.

The Memory-Assisted DFL allows nodes to retain models from the previous rounds

and use them as alternates to missing nodes. The next part of the research proposes

graph augmentation to relay additional models between nodes. Nodes making use

of neighborhood information send models from non-overlapping neighbors to other

nodes. Finally, a hybrid algorithm fusing features of both these algorithms is pro-

posed as Memory and Augmented Graph Assisted DFL. The hybrid outperforms

not only the baseline but the individual algorithms as well without exceeding the

costs of the respective individual algorithms. The proposed algorithms allow us to

improve the performance of DFL under volatile conditions with extremely low par-

ticipation thresholds.

Chapter 8: Conclusion and Future Work 102

8.2 Future Directions

Decentralized Federated Learning holds immense promise for practical applications

in 5G and 6G networks. Simultaneously, however, the participating entities will be-

come increasingly independent, and thus, volatile participation shall be encountered

more frequently. In this regard, allowing devices to adopt a Multi-FL scheme in

which they may adaptively select the FL algorithm to employ is an important av-

enue. With the devices getting equipped with multiple communication mechanisms,

configuring a multi-FL scheme where devices are able to switch between different

FL algorithms not only holds the potential for maximizing participation but also

of more efficient communication of the allocated communication resources. Further

extending this application, performing FL simultaneously over different links and

across different edge network hierarchies may be considered as a potential future

direction. Such a scenario would allow devices such as smartphones to simultane-

ously employ mobile networks, WiFi networks, and their serverless counterparts,

short-range communication links such as Bluetooth etc. The important challenges

arising from this case would be those of energy and communication budgeting as

well as managing the asynchronicity arising by employing links supporting multiple

data rates.

Future research avenues also include phase-wise selection strategies leveraging

training phase trends and deeper exploration of information diffusion in contexts of

extreme data distributions and node participation variability. Device participation

characteristics can have a significant impact on decentralized learning performance.

The information diffusion across the network may well slow down in highly volatile

decentralized learning scenarios.

Bibliography 103

BIBLIOGRAPHY

[1] “Cisco annual internet report 2018–2023 white paper”.”

[2] “Ericsson Mobility Report June 2019,” p. 36, 2019.

[3] “Key drivers and research challenges for 6G ubiquitous wireless intelligence.”

[4] D. S. W. Ting, L. Carin, V. Dzau, and T. Y. Wong, “Digital technology and

covid-19,” Nature medicine, vol. 26, no. 4, pp. 459–461, 2020.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[6] Y. Chen, Y. Zhang, S. Maharjan, M. Alam, and T. Wu, “Deep learning for se-

cure mobile edge computing in cyber-physical transportation systems,” IEEE

Network, vol. 33, p. 36–41, Jul 2019.

[7] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Pro-

ceedings of the IEEE, vol. 107, p. 1655–1674, Aug 2019.

[8] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, “Conver-

gence of edge computing and deep learning: A comprehensive survey,” IEEE

Communications Surveys Tutorials, vol. 22, no. 2, p. 869–904, 2020.

[9] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On

multi-access edge computing: A survey of the emerging 5g network edge cloud

architecture and orchestration,” IEEE Communications Surveys Tutorials,

vol. 19, no. 3, p. 1657–1681, 2017.

[10] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,

no. 1, pp. 30–39, 2017.

Bibliography 104

[11] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in

computer vision: A survey,” IEEE Access, vol. 6, p. 14410–14430, 2018.

[12] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,

“The limitations of deep learning in adversarial settings,” in 2016 IEEE Eu-

ropean Symposium on Security and Privacy (EuroS P), p. 372–387, Mar 2016.

[13] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and de-

fenses for deep learning,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 30, p. 2805–2824, Sep 2019.

[14] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing

security: State of the art and challenges,” Proceedings of the IEEE, vol. 107,

p. 1608–1631, Aug 2019.

[15] Y. Chen, Y. Zhang, S. Maharjan, M. Alam, and T. Wu, “Deep learning for se-

cure mobile edge computing in cyber-physical transportation systems,” IEEE

Network, vol. 33, p. 36–41, Jul 2019.

[16] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge

intelligence: The confluence of edge computing and artificial intelligence,”

IEEE Internet of Things Journal, p. 1–1, 2020.

[17] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network in-

telligence at the edge,” Proceedings of the IEEE, vol. 107, p. 2204–2239, Nov

2019.

[18] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16, no. 3,

pp. 31–57, 2018.

[19] C. Molnar, Interpretable Machine Learning. 2019. https://christophm.

github.io/interpretable-ml-book/.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Bibliography 105

[20] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable ma-

chine learning,” arXiv preprint arXiv:1702.08608, 2017.

[21] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot,

F. Cerutti, M. Srivastava, A. Preece, S. Julier, R. M. Rao, and et al.,

“Interpretability of deep learning models: A survey of results,” in 2017

IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced nad

Trusted Computing, Scalable Computing and Communications, Cloud and

Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), p. 1–6, IEEE, Aug 2017.

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,”

in Artificial intelligence and statistics, pp. 1273–1282, PMLR, 2017.

[23] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-

task learning,” Advances in neural information processing systems, vol. 30,

2017.

[24] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., “Advances and

open problems in federated learning,” Foundations and Trends® in Machine

Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[25] T. Wang, Y. Liu, X. Zheng, H.-N. Dai, W. Jia, and M. Xie, “Edge-based

communication optimization for distributed federated learning,” IEEE Trans-

actions on Network Science and Engineering, vol. 9, p. 2015–2024, Jul 2022.

[26] A. H. Lodhi, B. Akgün, and Ö. Özkasap, “State-of-the-art techniques in deep

edge intelligence,” arXiv:2008.00824, 2020.

[27] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:

Bibliography 106

Paving the last mile of artificial intelligence with edge computing,” Proceedings

of the IEEE, vol. 107, p. 1738–1762, Aug 2019.

[28] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center

federated learning,” arXiv:2005.01026 [cs, stat], May 2020. arXiv: 2005.01026.

[29] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentralized

alternative to federated learning,” in IFIP International Conference on Dis-

tributed Applications and Interoperable Systems, pp. 74–90, Springer, 2019.

[30] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A blockchain-based

decentralized federated learning framework with committee consensus,” IEEE

Network, 2020.

[31] S. R. Pokhrel and J. Choi, “Federated learning with blockchain for autonomous

vehicles: Analysis and design challenges,” IEEE Transactions on Communi-

cations, vol. 68, no. 8, pp. 4734–4746, 2020.

[32] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in

federated learning,” arXiv:1905.10497 [cs, stat], Feb 2020. arXiv: 1905.10497.

[33] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device commu-

nication in 5g cellular networks: challenges, solutions, and future directions,”

IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, 2014.

[34] G. Soatti, M. Nicoli, S. Savazzi, and U. Spagnolini, “Consensus-based algo-

rithms for distributed network-state estimation and localization,” IEEE Trans-

actions on Signal and Information Processing over Networks, vol. 3, no. 2,

pp. 430–444, 2016.

[35] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating

devices: A consensus approach for massive iot networks,” IEEE Internet of

Things Journal, vol. 7, p. 4641–4654, May 2020.

Bibliography 107

[36] R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani, S. Mumtaz, J. Ro-

driguez, and J. J. Rodrigues, “5g d2d networks: Techniques, challenges, and

future prospects,” IEEE Systems Journal, vol. 12, no. 4, pp. 3970–3984, 2017.

[37] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized

federated learning,” in Third workshop on Bayesian Deep Learning (NeurIPS),

2018.

[38] Y. Lu, Z. Yu, and N. Suri, “Privacy-preserving decentralized federated learning

over time-varying communication graph,” ACM Trans. Priv. Secur., vol. 26,

jun 2023.

[39] Y. Li, F. Li, L. Chen, L. Zhu, P. Zhou, and Y. Wang, “Power of redundancy:

Surplus client scheduling for federated learning against user uncertainties,”

IEEE Transactions on Mobile Computing, p. 1–1, 2022.

[40] B. Ma, J. Wu, W. Liu, L. Chiaraviglio, and X. Ming, “Combating hard or

soft disasters with privacy-preserving federated mobile buses-and-drones based

networks,” in 2020 IEEE 21st international conference on information reuse

and integration for data science (IRI), pp. 31–36, IEEE, 2020.

[41] Z. Yuan, D. Lu, G. Zhang, and H. Liu, “Federated learning based path

planning method for crowd evacuation,” in 2022 IEEE 25th International

Conference on Computer Supported Cooperative Work in Design (CSCWD),

pp. 1161–1166, IEEE, 2022.

[42] V. Mittal, M. Jahanian, and K. Ramakrishnan, “Flare: Federated active learn-

ing assisted by naming for responding to emergencies,” in Proceedings of the

8th ACM Conference on Information-Centric Networking, pp. 71–82, 2021.

[43] Y. Qu, H. Dai, Y. Zhuang, J. Chen, C. Dong, F. Wu, and S. Guo, “Decen-

tralized federated learning for uav networks: Architecture, challenges, and

opportunities,” IEEE Network, vol. 35, no. 6, pp. 156–162, 2021.

Bibliography 108

[44] Y. Wang, Z. Su, N. Zhang, and A. Benslimane, “Learning in the air: Se-

cure federated learning for uav-assisted crowdsensing,” IEEE Transactions on

network science and engineering, vol. 8, no. 2, pp. 1055–1069, 2020.

[45] H. Zhang and L. Hanzo, “Federated learning assisted multi-uav networks,”

IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14104–14109,

2020.

[46] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online feder-

ated learning for edge devices with non-iid data,” in 2020 IEEE International

Conference on Big Data (Big Data), pp. 15–24, IEEE, 2020.

[47] A. H. Lodhi, B. Akgün, and Ö. Özkasap, “Flags framework for compara-

tive analysis of federated learning algorithms,” Internet of Things, vol. 20,

p. 100638, 2022.

[48] A. H. Lodhi, B. Akgün, and Özkasap, “Implications of node selection in

decentralized federated learning,” in 2023 31st Signal Processing and Com-

munications Applications Conference (SIU), pp. 1–4, 2023.

[49] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentralized al-

ternative to federated learning,” in Distributed Applications and Interoperable

Systems: 19th IFIP WG 6.1 International Conference, DAIS 2019, Held as

Part of the 14th International Federated Conference on Distributed Computing

Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17–21, 2019,

Proceedings 19, pp. 74–90, Springer, 2019.

[50] H. Xing, O. Simeone, and S. Bi, “Federated learning over wireless device-to-

device networks: Algorithms and convergence analysis,” arXiv:2101.12704 [cs,

eess, math], Jan 2021. arXiv: 2101.12704.

[51] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic subgradient

Bibliography 109

projection algorithms for convex optimization,” Journal of optimization theory

and applications, vol. 147, no. 3, pp. 516–545, 2010.

[52] S. Savazzi, M. Nicoli, V. Rampa, and S. Kianoush, “Federated learning with

mutually cooperating devices: A consensus approach towards server-less model

optimization,” in ICASSP 2020 - 2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), p. 3937–3941, May 2020.

[53] C. Li, G. Li, and P. K. Varshney, “Decentralized federated learning via mutual

knowledge transfer,” IEEE Internet of Things Journal, vol. 9, p. 1136–1147,

Jan 2022.

[54] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Local averaging helps: Hierarchical

federated learning and convergence analysis,” arXiv:2010.12998, Mar 2021.

[55] M. S. H. Abad, E. Ozfatura, D. GUndUz, and O. Ercetin, “Hierarchical feder-

ated learning across heterogeneous cellular networks,” in ICASSP 2020 - 2020

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), p. 8866–8870, May 2020.

[56] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchi-

cal federated learning,” in ICC 2020-2020 IEEE International Conference on

Communications (ICC), pp. 1–6, IEEE, 2020.

[57] F. P.-C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and N. Michelusi,

“Semi-decentralized federated learning with cooperative d2d local model ag-

gregations,” IEEE Journal on Selected Areas in Communications, p. 1–1, 2021.

[58] A. Hashemi, A. Acharya, R. Das, H. Vikalo, S. Sanghavi, and I. Dhillon, “On

the benefits of multiple gossip steps in communication-constrained decentral-

ized federated learning,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 33, no. 11, pp. 2727–2739, 2021.

Bibliography 110

[59] T. Wang, Y. Liu, X. Zheng, H.-N. Dai, W. Jia, and M. Xie, “Edge-based

communication optimization for distributed federated learning,” IEEE Trans-

actions on Network Science and Engineering, 2021.

[60] J. S. Ng, W. Y. B. Lim, Z. Xiong, X. Cao, J. Jin, D. Niyato, C. Leung, and

C. Miao, “Reputation-aware hedonic coalition formation for efficient server-

less hierarchical federated learning,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 33, no. 11, pp. 2675–2686, 2021.

[61] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed comparison

of communication efficiency of split learning and federated learning,” arXiv

preprint arXiv:1909.09145, 2019.

[62] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A per-

formance evaluation of federated learning algorithms,” in Proceedings of the

second workshop on distributed infrastructures for deep learning, pp. 1–8, 2018.

[63] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works: An

empirical comparison of gossip learning and federated learning,” Journal of

Parallel and Distributed Computing, vol. 148, pp. 109–124, 2021.

[64] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid data quag-

mire of decentralized machine learning,” in International Conference on Ma-

chine Learning, pp. 4387–4398, PMLR, 2020.

[65] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient compres-

sion: Reducing the communication bandwidth for distributed training,” arXiv

preprint arXiv:1712.01887, 2017.

[66] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A

survey,” arXiv preprint arXiv:2106.06843, 2021.

Bibliography 111

[67] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical cluster-

ing of local updates to improve training on non-iid data,” in 2020 International

Joint Conference on Neural Networks (IJCNN), pp. 1–9, IEEE, 2020.

[68] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,

“Scaffold: Stochastic controlled averaging for federated learning,” in Interna-

tional Conference on Machine Learning, pp. 5132–5143, PMLR, 2020.

[69] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of

fedavg on non-iid data,” arXiv:1907.02189, Jun 2020.

[70] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient feder-

ated learning via guided participant selection,” in 15th {USENIX} Symposium

on Operating Systems Design and Implementation ({OSDI} 21), pp. 19–35,

2021.

[71] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P. de Gusmão,

and N. D. Lane, “Flower: A friendly federated learning research framework,”

arXiv:2007.14390, 2020.

[72] “TensorFlow Federated — tensorflow.org.” https://www.tensorflow.org/

federated.

[73] F. Lai, Y. Dai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Fedscale:

Benchmarking model and system performance of federated learning,” in Pro-

ceedings of the First Workshop on Systems Challenges in Reliable and Secure

Federated Learning, pp. 1–3, 2021.

[74] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,

V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”

arXiv:1812.01097, 2018.

[75] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos:

An experimental study,” arXiv preprint arXiv:2102.02079, 2021.

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

Bibliography 112

[76] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma,

A. Singh, H. Qiu, et al., “Fedml: A research library and benchmark for feder-

ated machine learning,” arXiv:2007.13518, 2020.

[77] E. T. M. Beltrán, M. Q. Pérez, P. M. S. Sánchez, S. L. Bernal, G. Bovet, M. G.

Pérez, G. M. Pérez, and A. H. Celdrán, “Decentralized federated learning:

Fundamentals, state-of-the-art, frameworks, trends, and challenges,” arXiv

preprint arXiv:2211.08413, 2022.

[78] H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning with unreli-

able communications,” IEEE Journal of Selected Topics in Signal Processing,

vol. 16, p. 487–500, Apr 2022.

[79] P. Pinyoanuntapong, W. H. Huff, M. Lee, C. Chen, and P. Wang, “Toward

scalable and robust aiot via decentralized federated learning,” IEEE Internet

of Things Magazine, vol. 5, no. 1, pp. 30–35, 2022.

[80] Q. Liu, B. Yang, Z. Wang, D. Zhu, X. Wang, K. Ma, and X. Guan, “Asyn-

chronous decentralized federated learning for collaborative fault diagnosis of

pv stations,” IEEE Transactions on Network Science and Engineering, vol. 9,

no. 3, pp. 1680–1696, 2022.

[81] E. Jeong, M. Zecchin, and M. Kountouris, “Asynchronous decentralized learn-

ing over unreliable wireless networks,” in ICC 2022-IEEE International Con-

ference on Communications, pp. 607–612, IEEE, 2022.

[82] L. Wang, Y. Xu, H. Xu, M. Chen, and L. Huang, “Accelerating decentralized

federated learning in heterogeneous edge computing,” IEEE Transactions on

Mobile Computing, 2022.

[83] Z. Tang, S. Shi, B. Li, and X. Chu, “Gossipfl: A decentralized federated learn-

ing framework with sparsified and adaptive communication,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 34, no. 3, pp. 909–922, 2022.

Bibliography 113

[84] S. Li, T. Zhou, X. Tian, and D. Tao, “Learning to collaborate in decentralized

learning of personalized models,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 9766–9775, 2022.

[85] R. Dai, L. Shen, F. He, X. Tian, and D. Tao, “Dispfl: Towards communication-

efficient personalized federated learning via decentralized sparse training,” in

International Conference on Machine Learning, pp. 4587–4604, PMLR, 2022.

[86] D. M. Manias and A. Shami, “Making a case for federated learning in the

internet of vehicles and intelligent transportation systems,” IEEE Network,

vol. 35, p. 88–94, May 2021.

[87] M. Hu, D. Wu, Y. Zhou, X. Chen, and M. Chen, “Incentive-aware autonomous

client participation in federated learning,” IEEE Transactions on Parallel and

Distributed Systems, vol. 33, p. 2612–2627, Oct 2022.

[88] T. Huang, W. Lin, L. Shen, K. Li, and A. Y. Zomaya, “Stochastic client

selection for federated learning with volatile clients,” IEEE Internet of Things

Journal, vol. 9, p. 20055–20070, Oct 2022.

[89] F. Shi, C. Hu, W. Lin, L. Fan, T. Huang, and W. Wu, “Vfedcs: Optimiz-

ing client selection for volatile federated learning,” IEEE Internet of Things

Journal, vol. 9, p. 24995–25010, Dec 2022.

[90] T. Vogels, L. He, A. Koloskova, S. P. Karimireddy, T. Lin, S. U. Stich, and

M. Jaggi, “Relaysum for decentralized deep learning on heterogeneous data,”

Advances in Neural Information Processing Systems, vol. 34, pp. 28004–28015,

2021.

[91] M. Yemini, R. Saha, E. Ozfatura, D. Gündüz, and A. J. Goldsmith, “Semi-

decentralized federated learning with collaborative relaying,” in 2022 IEEE In-

ternational Symposium on Information Theory (ISIT), pp. 1471–1476, IEEE,

2022.

Bibliography 114

[92] Z. Lin, H. Liu, and Y.-J. A. Zhang, “Relay-assisted cooperative federated

learning,” IEEE Transactions on Wireless Communications, vol. 21, no. 9,

pp. 7148–7164, 2022.

[93] X. Gu, K. Huang, J. Zhang, and L. Huang, “Fast federated learning in the

presence of arbitrary device unavailability,” arXiv, Jun 2021. arXiv:2106.04159

[cs, math].

[94] D. Jhunjhunwala, P. Sharma, A. Nagarkatti, and G. Joshi, “Fedvarp: Tack-

ling the variance due to partial client participation in federated learning,” in

Uncertainty in Artificial Intelligence, pp. 906–916, PMLR, 2022.

[95] A. H. Lodhi, B. Akgün, and Ö. Özkasap, “Flags simulation framework for fed-

erated learning algorithms,” in 2023 14th International Conference on Network

of the Future, IEEE, 2023.

[96] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.

Poor, “Federated learning for internet of things: A comprehensive survey,”

IEEE Communications Surveys & Tutorials, vol. 23, no. 3, 2021.

[97] Y. Gou, R. Wang, Z. Li, M. A. Imran, and L. Zhang, “Clustered hierarchical

distributed federated learning,” in ICC 2022 - IEEE International Conference

on Communications, p. 177–182, May 2022.

[98] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya, “Gossipgrad: Scal-

able deep learning using gossip communication based asynchronous gradient

descent,” arXiv preprint arXiv:1803.05880, 2018.

[99] L. Deng, “The mnist database of handwritten digit images for machine learn-

ing research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142,

2012.

[100] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms,” arXiv:1708.07747, 2017.

Bibliography 115

[101] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pp. 10713–10722, 2021.

[102] N. Guha, A. Talwalkar, and V. Smith, “One-shot federated learning,”

arXiv:1902.11175, 2019.

[103] M. Condoluci, L. Militano, A. Orsino, J. Alonso-Zarate, and G. Araniti, “Lte-

direct vs. wifi-direct for machine-type communications over lte-a systems,” in

2015 IEEE 26th Annual International Symposium on Personal, Indoor, and

Mobile Radio Communications (PIMRC), pp. 2298–2302, 2015.

[104] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating

devices: A consensus approach for massive iot networks,” IEEE Internet of

Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[105] W. Liu, L. Chen, and W. Zhang, “Decentralized federated learning: Balanc-

ing communication and computing costs,” IEEE Transactions on Signal and

Information Processing over Networks, vol. 8, 2022.

[106] H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning with unreli-

able communications,” IEEE Journal of Selected Topics in Signal Processing,

vol. 16, no. 3, pp. 487–500, 2022.

[107] I. Mohammed, S. Tabatabai, A. Al-Fuqaha, F. E. Bouanani, J. Qadir, B. Qolo-

many, and M. Guizani, “Budgeted online selection of candidate iot clients to

participate in federated learning,” IEEE Internet of Things Journal, vol. 8,

p. 5938–5952, Apr 2021.

[108] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning on

non-iid data with reinforcement learning,” in IEEE INFOCOM 2020 - IEEE

Conference on Computer Communications, Jul 2020.

Chapter 8: Conclusion and Future Work 116

[109] T. Nishio and R. Yonetani, “Client selection for federated learning with het-

erogeneous resources in mobile edge,” in 2019 IEEE International Conference

on Communications (ICC), p. 1–7, May 2019.

[110] M. Tang, X. Ning, Y. Wang, J. Sun, Y. Wang, H. Li, and Y. Chen, “Fedcor:

Correlation-based active client selection strategy for heterogeneous federated

learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 10102–10111, 2022.

[111] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:

Convergence analysis and power-of-choice selection strategies,” arXiv preprint

arXiv:2010.01243, 2020.

[112] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient fed-

erated learning via guided participant selection.,” in OSDI, pp. 19–35, 2021.

[113] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-decentralized fed-

erated edge learning with data and device heterogeneity,” IEEE Transactions

on Network and Service Management, 2023.

[114] B. Le Bars, A. Bellet, M. Tommasi, E. Lavoie, and A.-M. Kermarrec, “Refined

convergence and topology learning for decentralized sgd with heterogeneous

data,” in International Conference on Artificial Intelligence and Statistics,

pp. 1672–1702, PMLR, 2023.

[115] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Chal-

lenges, methods, and future directions,” IEEE signal processing magazine,

vol. 37, no. 3, pp. 50–60, 2020.

[116] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic optimiza-

tion and gossip algorithms with compressed communication,” arXiv preprint

arXiv:1902.00340, 2019.

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Distributed Learning
	Federated Learning
	Decentralized Federated Learning
	Contributions

	Related Work
	Federated Learning Algorithms
	The non-IID Challenge
	Existing Frameworks
	Decentralized Federated Learning
	Topology Optimization
	Device Volatility
	Memory and Relay Mechanisms in FL

	Preliminaries
	System Model
	Federated Learning Methodology

	Federated Learning Algorithms Simulation (FLAGS) framework
	Introduction
	Software Architecture
	Environment
	Algorithms
	Node Operations
	Additional Modules

	Comparative Assessment of Federated Learning Algorithms
	Introduction
	Federated Learning Algorithms
	Hierarchical Federated Learning
	Device-to-Device Federated Learning
	Gossip Federated Learning
	Hierarchical Device-to-Device Federated Learning
	Hierarchical Gossip Federated Learning
	Clustered Federated Learning
	Clustered Device-to-Device Federated Learning (CD2DFL)
	Inter-Cluster Device-to-Device Federated Learning
	Centralized to Decentralized Spectrum

	Experiments and Evaluation
	Performance Analysis
	FL with Maximal Participation and Ideal Communication
	FL with Limited Device Participation
	FL with Noisy Communication
	Few Shot Learning
	Communication Cost and Volume

	Conclusion

	Implications of Node Selection on DFL under volatile conditions
	Introduction
	Node Selection in Federated Learning
	Node Selection for DFL
	Experiments and Evaluation
	Experimental Setup
	Selection Criteria
	Results and Analysis

	Conclusion

	Assisting Decentralized Federated Learning using Memory and Augmented Graphs
	Introduction
	Memory-Assisted DFL (MA_DFL)
	Augmented Graph-Assisted DFL (AG_DFL)
	Memory and Augmented-Graph Assisted DFL (MAG_DFL)
	Convergence Guarantees
	Properties of W

	Results and Analysis
	Conclusion

	Conclusion and Future Work
	Concluding Remarks
	Future Directions

	Bibliography

