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ABSTRACT

FLAGS Framework and Decentralized Federated Learning under Device
Volatility
Ahnaf Hannan Lodhi
Doctor of Philosophy in Computer Science and Engineering
5 September, 2023

Federated Learning (FL) has become a key choice for distributed machine learning.
Initially focused on centralized aggregation, recent works in FL have emphasized
greater decentralization supported by standardization of serverless interaction in
the next-generation communication networks. However, the diversity of devices,
data distributions, and communication settings, compounded by dynamic operat-
ing conditions, result in multiple challenges for Decentralized FL (DFL). There
have been various approaches to DFL, from utilizing intermediate edge servers to
fully device-to-device approaches. In decentralized settings, communication cost and
learning performance are usually assessed together and certain trade-offs are made
based on scenarios. However, there is a lack of existing work on comparing DFL
approaches in an apples-to-apples manner in a multitude of scenarios and operating
conditions. To bridge this gap between methods and their comparative analysis,
we design and develop the Federated Learning Algorithms Simulation (FLAGS)
Framework. One important challenge we noticed that most DFL methods struggle
with is the extreme fluctuations in device availability, especially for purely decen-
tralized approaches. This device volatility leads to poor learning performance.
To address this issue, we investigate the effects of neighborhood selection, memory
and multi-hop information passing on DFL performance. We introduce a fully de-
centralized FL approach that can operate under realistic and highly volatile device

participation settings.
The key contributions of this thesis are as follows: (i) development of a lightweight
FL framework for benchmarking a large plethora of methods, (ii) analysis and com-

parison of multiple FL. methods with this framework under multiple operating con-

v



ditions, (iii) empirical analysis of various node selection strategies under heavy de-
vice volatility, and (iv) utilizing memory and relayed communication to enhance
device-to-device FL by developing a novel algorithm that can operate under realis-

tic operating conditions and heavy device volatility.

Federated Learning supports a wide variety of node interactions and autonomous
operations across the network edge. With the aim to encompass this multi-faceted
heterogeneity, the FLAGS framework was proposed and developed as a lightweight
FL implementation and testing platform. FLAGS framework allows for a wide range
of device behaviors and cooperation mechanisms, enabling rapid testing of multiple
FL algorithms. FLAGS’s built-in features allow it to subject existing and novel FL
algorithms to a wide range of data distributions, simulating the nodes with multiple
neural networks as well as participation conditions ranging from homogeneous to

highly volatile.

Different network tiers and communication mechanisms enable various FL algo-
rithms to be configured by employing various combinations of the aforementioned
factors. In order to consolidate this very extensive FL landscape and offer an ob-
jective analysis of the major FL algorithms, comprehensive cross-evaluations for a
wide range of operating conditions have also been conducted. Starting with the
three foundational FL algorithms, including Hierarchical FL. (HFL), Decentralized
FL (DFL), and Gossip FL (GFL), this work evaluates six derived algorithms rang-
ing from fully centralized to fully decentralized. The experiments indicate that fully
decentralized FL algorithms achieve comparable accuracy under multiple operat-
ing conditions, including asynchronous aggregation and the presence of stragglers.
Furthermore, DFL can also operate in noisy environments and with a comparably
higher local update rate. However, the impact of extremely skewed data distribu-

tions on DFL is much more adverse than on centralized variants.

The analysis of the cross-evaluation indicates that DFL performance is consid-
erably impacted by node participation. This part of the thesis focuses on improving
DFL performance under realistic and volatile device behavior. Node selection in vari-
ous forms has been experimented with to improve both communication efficiency and

convergence rate. We experimented with multiple node selection mechanisms and



also proposed and evaluated a time-varying parameterized node selection method for
DFL employing validation accuracy and its per-round change. The mentioned crite-
ria are evaluated using both hard and stochastic/soft selection on sparse networks.
The results indicate that the bias associated with node selection adversely impacts
performance as training progresses, and a uniform random selection is preferable

under extremely limited participation conditions.

Continuing with volatile conditions, we investigate and propose mechanisms to
improve DFL operating on sparse graphs in the presence of stragglers and non-
participating nodes. We first propose two algorithms: Memory-Assisted DFL (MA_DFL)
and Augmented-Graph Assisted DFL (AG_DFL). These algorithms employ memory
and selective relaying to improve DFL performance. Both algorithms outperform
the baseline DFL and gossip interaction for volatile node participation. Then, we
propose a hybrid of these two algorithms, Memory and Augmented-Graph Assisted
DFL (MAG_DFL), that employs memory and graph augmentation to improve the

performance of DFL under highly volatile devices and extreme data conditions.

The research conducted in this thesis evaluates the multi-faceted challenges to
the DFL operation in volatile conditions and proposes mechanisms to improve its
performance. Our work indicates that DFL holds the potential to assist learning
operations distributed across the edge network. It may be used to augment the FL
in the presence of costly upstream communication or limited connectivity. However,
node density has a major impact on DFL, and sparse networks, along with volatile
device behavior and non-IID distributions, tend to reduce its convergence rate. The
enhanced neighborhood interaction and intelligent use of local information has the
potential to improve DFL performance under such adverse conditions based on the
presented results. The analysis, algorithms and results presented in this thesis pave
the way for additional developments and more practical applications of DFL in the

next-generation communication networks.



OZETCE

FLAGS Platformu ve Cihaz Dalgalanmasi1 Durumunda Merkeziyetsiz
Federe (")grenme
Ahnaf Hannan Lodhi
Bilgisayar Bilimi ve Miihendisligi, Doktora
5 Eylul, 2023

Federe Ogrenme (FL), dagitik makine 6grenimi igin énemli bir segenek haline gelmistir.
Baslangigta merkezi birlestirme iizerine odaklanan FL’deki son ¢aligmalar, yeni nesil
iletigim aglarinda sunucusuz etkilesimin standartlagtirilmasini destekleyen merkezi
olmayan yaklagimlara vurgu yapmigtir. Ancak cihazlarin cesitliligi, veri dagilimlar:
ve iletigim ayarlari, dinamik isletme kosullar1 tarafindan karmasik hale getirilmis ve
bu durum Merkeziyetsiz Federe Ogrenmenin (DFL) birden fazla zorlukla kargilagmasina
neden olmugtur. DFL konusunda, sinir sunucularimi kullanmaktan tamamen cihaz-
dan cihaza yaklagimlara kadar farkli yontemler bulunmaktadir. Merkezi olmayan
durumda iletisim maliyeti ve 6grenme performansi genellikle bir arada degerlendirilir
ve senaryolara dayali belirli bir denge kurulur. Ancak, DFL yaklagimlarini ¢ok sayida
senaryo ve caligma kosulu altinda esgit durumda karsilagtirmak icin literatiirde ek-
siklik bulunmaktadir. Bu yontemler ile karsilagtirilabilir analiz arasindaki boglugu
kapatmak amaciyla, Federe Ogrenme Algoritmalar1 Simiilasyon (FLAGS) Platfor-
munu tasarlayip gelistirdik. Bir¢gok DFL yonteminin 6zellikle tamamen merkeziyet-
siz yaklagimlar icin cihaz erisilebilirligindeki agir1 dalgalanmalar onemli bir zorluk
olarak one ¢ikmaktadir. Bu cihaz dalgalanmasi, zayif 6grenme basarimina yol acar.
Bu sorun kapsaminda, ¢evre se¢iminin, bellegin ve coklu atlama bilgisi iletimin DFL
bagarimi iizerindeki etkilerini arastirdik. Gergekci ve yiiksek derecede dalgali cihaz
katilim kosullar1 altinda ¢alisabilen tamamen merkeziyetsiz bir FL yaklagimi sunuy-

oruz.
Bu tezin temel katkilar: su gekilde 6zetlenebilir: (i) birgok yontemi kargilagtirmak
icin hafif bir FL simiilasyon platformu geligtirilmesi, (ii) bu platformda bir dizi

igletme kogulunda bir¢ok FL yonteminin analizi ve kargilagtirilmasi, (iii) yogun ci-
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haz dalgalanmas1 altinda gesitli diigiim secimi stratejilerinin deneysel analizi ve
(iv) bellek ve iletimli iletigimi kullanarak FL bagarmmim geligtirmek igin gergekei
isletme kogullar1 ve yogun cihaz dalgalanmasi altinda ¢aligabilen yeni bir algoritma

geligtirilmesi.

Federe Ogrenme, ag kenarmda genig bir diigiim etkilesimi ve otonom islemleri
destekler. Bu ¢ok yonlii heterojenligi kapsamak amaciyla FLAGS simiilatorii, hafif
bir FL uygulama ve test platformu olarak geligtirilmistir. FLAGS platformu, genis
kapsamli cihaz davraniglar: ve igbirligi mekanizmalari i¢in olanak tanir ve boylelikle
gesitli FL algoritmalarinin hizli bir sekilde test edilmesine olanak verir. FLAGS
ozellikleri, mevcut ve yeni FL algoritmalarinin genis bir veri dagiliminda test edilme-
sine olanak tanir, diigiimleri birden ¢ok sinir agiyla ve homojen katilimdan yiiksek

derecede dalgali katilima kadar ¢esitli cihaz katilim kogullarinda simiile edebilir.

Farkli ag katmanlar: ve iletigim mekanizmalari, gesitli FL algoritmalarinin yukarida
bahsedilen faktorlerin birlesimlerini kullanarak yapilandirilmasina olanak tanir. Bu
¢ok kapsamli FL yaklagimlarini bir araya getirmek ve temel FL algoritmalarinin nes-
nel bir analizini sunmak amaciyla bir dizi kapsamli analiz gerceklegtirilmistir. Hiy-
erarsik FL. (HFL), Merkeziyetsiz FL (DFL) ve Salgin FL (GFL) gibi {i¢ temel FL al-
goritmasi ile baglayarak, bu caligma tamamen merkezi olanlardan tamamen merkezi
olmayanlara kadar uzanan alt1 algoritmanin analizi yapilmigir. Deneyler, o6zellikle
asenkron birlegtirme ve geciken diigtimlerin varligi gibi bir dizi ¢caligma kosulu altinda
tamamen merkeziyetsiz FL algoritmalarinin kargilagtirilabilir dogruluk elde ettigini
gostermektedir. Ayrica, DFL giriiltiilii ortamlarda da calisabilir ve daha yiiksek
yerel giincelleme oranina sahip olabilir. Bununla birlikte, agir1 egri veri dagilimlarinin

DFL iizerindeki etkisi, merkezi yaklagimlara kiyasla daha olumsuzdur.

Capraz degerlendirmenin analizi, DFL bagariminin diigiim katilimindan oldukga
etkilendigini gostermektedir. Tezin bu boliimi, gercekci ve dalgali cihaz davranisi
altinda DFL basgarmmim iyilestirmeye odaklanmaktadir. Iletigim verimliligini ve
yakinsama hizinmi iyilegtirmek igin cegitli diigiim se¢imi mekanizmalariyla deneyler
yapilmigtir. Farkli diigiim se¢im mekanizmalar: ile deneyler gerceklestirilerek, DFL
icin dogrulugu ve bunun tur bagina degisimini kullanan zamanla degisen parame-

treli bir diigiim se¢im yontemi onerilmistir. Bu olgiitler, seyrek aglarda hem sert



hem de stokastik /yumusak segim kullanilarak degerlendirilmigtir. Sonuglar, digim
secimi ile iligkilendirilen onyarginin, egitim ilerledikce bagarimi olumsuz etkiledigini
ve agir1 sinirlt katilim kosullart altinda rastgele bir secimin tercih edilebilir oldugunu

gostermektedir.

Geciken diigimler ve katilmayan diigtimlerin bulundugu seyrek ¢izgeler tizerinde
calisan DFL bagarimini iyilegtirmek i¢cin mekanizmalar geligtirdik. Oncelikle, Bellek
Destekli DFL (MA_DFL) ve Artirilmig Cizge Destekli DFL (AG_DFL) olmak {izere
iki algoritma oOnerdik. Bu algoritmalar bellegi ve secici iletimi kullanarak DFL
basarimini iyilestirmektedir. Her iki algoritma da dalgali diigtim katilimi icin temel
DFL ve salgin etkilegimi yaklagimlarindan daha iyi bagarim gostermektedir. Ardindan,
bu iki algoritmanin bir melezini 6nerdik: Bellek ve Artirilmig Cizge Destekli DFL
(MAG_DFL), yiiksek derecede dalgali cihazlar ve agir1 veri kogullar1 altindaki DFL

bagarimini iyilestirmek i¢in bellegi ve cizge artirimini kullanan bir algoritmadir.

Bu tezde yiriitilen arastirmalar, dalgali kogullarda DFL isleyigine yonelik ¢ok
yonli zorluklar1 degerlendirir ve bagarimini iyilestirmek i¢in mekanizmalar onerir.
Caligmamiz, DFL’nin sinir ag1 boyunca dagitilan 6grenme iglemlerine yardimei olma
potansiyeline isaret etmektedir. Maliyetli yukar1 yonli iletisim veya sinirli baglanti
durumlarinda FL’yi iyilestirmel i¢in kullanmilabilir. Ancak, diigim yogunlugu DFL
tizerinde onemli bir etkiye sahiptir ve seyrek aglar, dalgali cihaz davranist ve homo-
jen olmayan veri dagilhimlari, yakinsama hizini azaltma egilimindedir. Geligtirilmig
komsguluk etkilegimi ve yerel bilginin akillica kullanimi, boyle olumsuz kosullar altinda
DFL bagarimini artirma potansiyeline sahiptir. Bu tezde sunulan analizler, algorit-
malar ve sonuclar, DFL’'nin gelecek nesil iletigim aglarinda daha fazla geligmenin ve

pratik uygulamanin yolunu agmaktadir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The last decade has witnessed a remarkable transcendence of data, intercon-
nectedness and information-centric services in all spheres of the global domain. An
unprecedented growth in data-generating devices and sensors coupled with the avail-
ability of powerful computational resources has further led to the ascendancy of
machine learning. It has been estimated that close to 29 billion devices will be
connected to the Internet by 2023 [1] with the data traffic expected to reach 131
Exabytes (EB) by the end of 2024 [2]. Furthermore, the requirements for 6G aiming
for data rates of approximately 1Tbps per user [3] have further reinforced a growing
realization that the traditional centralized/cloud systems would find it increasingly
difficult to manage the accompanying computation requirements, particularly in a
lifelong learning scenario.

The true potential of Artificial Intelligence (AI) is unlocked in a connected / net-
worked domain where intelligent services can be extended simultaneously to a large
scale of users. For instance, temperature assessment using thermal imaging was
deployed as the first line of detection of the novel Coronavirus—caused respiratory
disease (COVID-19) [4] at major transit points. However, deployment of isolated
or centralized processing clusters over a longer duration proved inefficient due to
resource wastage and prohibitive costs, with the major disadvantage being the dis-
tributed nature of data itself. Distributed learning on the other hand, allows devices
to not only collaborate resources but also the learned parameters across devices, en-
abling more effective information diffusion. Collaborative healthcare, smart cities
and management, energy systems, disaster coordination and response, cyber secu-

rity, and threat identification are some common applications of distributed learning.
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Developing a framework that supports distributed operation and access to remote
data is an essential requirement for rapidly transforming applications.

The paradigm shift in the nature of networked services and the transformation of
the connected devices coupled with the distributed nature of data requires a decen-
tralized approach for extracting maximum learning benefits. To avoid overwhelming
the network and data servers, the computational load must be moved at or closer to
the network edge. Edge Computing [5] offers a potentially powerful solution to this
problem. The edge computing framework aims to leverage distributed computing
concepts to alleviate the computational load from the network core, benefiting from
processing power available close to the network edge. The computation power of
the elements closer to the edge network offers a powerful alternative to centralized
computing, albeit in a distributed manner. Successful exploitation has the potential
to shift the elements of cloud services close to the data sources, ensuring better data

security and reduced load on the network backbone.

Edge Computing

Edge Computing is the emerging domain being developed to address the limitations
of cloud computing. This paradigm aims at shifting the computation load towards
the outer edges of the network utilizing the devices at the data origin and their
geographical proximity. The motivation behind the development of this domain is
two-fold: It aims to reduce the computational and communication load from the
network core while enabling dynamic resource allocation for applications in cyber-
physical systems such as industrial [oT, smart buildings and grids, autonomous
transportation, and remote healthcare [6].

Conventional networks can be characterized by reduced computational power in
the elements at the fringes of the network. However, the addition of devices at the
outer levels has also significantly outpaced the increase of processing power at the
network core [1]. Edge Computing has emerged to support this dramatic increase in
resource requirements by leveraging the untapped potential away from the enterprise

data centers. Processing power is obtained by a collaborative operation between
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Figure 1.1: Levels of Network Hierarchy: a) End / User device: Devices/sensors
at the origin of data, b) Edge Nodes: Intermediate network devices connecting end
devices to the network core, ¢) Cloud Servers: Hub of computation and decision-
making in existing networks. The two outer levels are jointly referred to as "Edge
Levels” and are the focus of Edge Computing.

various entities at the network edge, including the user devices, mobile-based stations

and gateways and access points.

Network Hierarchy

To formalize various elements, a conventional network can be categorized into three

hierarchical levels for Edge Computing as depicted in Fig-1.1:

1. End or user devices are the elements responsible for data generation, in-
cluding mobile and smart devices, [oT sensors, smart applications, autonomous
cars and drones etc. These devices, lying at the outermost level, are generally

characterized by the lowest individual computing power.
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2. Edge server or nodes comprise of mobile base stations, gateways, access
points (APs), micro datacenters, etc. established in proximity to the data
sources having relatively comparatively higher computational and storage ca-
pacity. Combined with the end devices, these two levels jointly form the ‘Edge

Level’.

3. Cloud or data server, the innermost level in the network hierarchy, possesses
the maximal computation and storage ability, currently supporting most of
off-device computation. However, the remoteness of the Cloud level incurs a

considerable communication overhead and potential privacy and latency issues.

1.1 Distributed Learning

With the proliferation of Edge Computing and the ubiquity of smart devices, the
focus on Distributed Learning has rapidly accelerated. Distributed learning collab-
oratively leverages the computational resources and data available at geographically
disparate locations to train intelligent agents. While distributed optimization has
been widely researched since the 1980’s, the area has once again garnered signif-
icant attention by its application in deploying Artificial Intelligence (Al) applica-
tions using the Edge Computing paradigm. Traditionally, Machine Learning and
inference-generation operations were centralized at the cloud level. They required
huge amounts of data to be orchestrated for learning a generalizable model. Addi-
tionally, a slew of supporting services are then needed to extend the benefits to the
multitude of smart devices. However, the evolving network edge, increased device
capabilities, and emerging communication networks have enabled the principles of
distributed learning to maximally offload learning and inference computations to
the ‘Edge Level’ (Fig-1.1). In general, distributed learning requires a highly multi-
disciplinary approach using knowledge and efficient practices from fields including
but not limited to AI, Computer Architecture, Embedded and Distributed Systems,

etc., to achieve desired performance levels.
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Operational Constraints Adopting distributed computing brings forth its own
set of challenges for optimal operation, including data sharing, security, latency,
etc. Additionally, the typical learning scenarios have so far utilized centralized
frameworks unifying both data and computing resources at one single entity in
the form of servers or clusters. Distributed Learning, on the contrary, aims to
exploit the significantly untapped potential of the billions of elements at the network
edge. The current research to achieve this goal is primarily driven by the following

factors [7], [8]:

1. Cost: Any form of decentralized computation results in major costs related

to communication, energy, processing, and memory.

e Communication Costs: Remote computations require data to be ex-
changed between various distributed elements, introducing not only the
cost of data communication but the associated overhead costs in already
congested networks. The services at the end devices, whether provided
by mobile applications over cellular networks or IoT networks, are in-
creasingly resorting to providing improved user experiences as well as
information. The demand for immersive Quality of Experience (QoE)
using Augmented Reality / Virtual Reality (AR/VR) alone is expected
to result in an 8-fold increase in data traffic [9]. Furthermore, while
emerging networks offer higher speeds, legacy networks would face in-
creasingly difficult prospects for supporting such services. Incorporating
distributed learning in such an environment would thus be associated

with its communication costs.

e Fnergy: A considerable majority of nodes at the edge level, whether
the user devices or the edge nodes, often operate with a limited energy
budget. Unlike a cloud server where energy constraints are considered
for economical operation, mobile devices at the user end cease operation
if they exceed their energy constraints. Thus, all aspects of the learning

process, from training to inference, must respect these energy limitations.
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e Processing and Memory: Deep Learning models require considerable pro-
cessing and memory resources to extract and learn the deep representa-
tions of the data. In addition to a dearth of processing power at the
edge level, managing sufficient resources for deep learning models to run
in the presence of numerous competing services is a major challenge. In
general, deeper networks more often outperform shallow networks, and

thus higher performance requires larger storage requirements.

2. Latency: Time-critical applications require real-time or near-real-time infer-
ences. For example, translation of conversations from one language to another,
object segmentation in photos or analysis, fusion and logical inference of data
carried out by the sensors of autonomous vehicles, especially self-driving cars,
are some applications where the delay between the input and inference can
result in seriously compromised performance. Additionally, offboarding data
for remote computation imposed additional time costs due to communication
to deeper levels of the network. The impact of proximity is investigated in [10]
using the face detection task running on Amazon Web Services as a reference.
The results indicate a 50% task completion rate between 200-600ms depending

on the server location.

3. Scalability: With the proliferation of devices at the Edge level, sharing data
for centralized and distributed computing becomes increasingly difficult due
to communication and processing bottlenecks. Decentralized computing must
be able to seamlessly cater to the billions of devices that contribute data or
computing resources without degrading the device performance and congesting

the network.

4. Privacy and Security: Malicious adversarial actions against intelligent sys-
tems can encompass both the data and the learning framework [11], [12], [13].
Al in a distributed setting exposes the learning architecture to a certain de-

gree if the learning parameters are being shared. These could then be used
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for adversarial actions against the learners leading to degraded performance
and crippling critical automated systems. Furthermore, maintaining data in-
tegrity and prohibiting the exploitation of the associated metadata are chal-
lenges faced whenever data is shared over the network. This challenge and the
privacy risk to the data make Distributed Learning operation [14] [15] more

difficult.

5. Communication Reliability: Conventional Deep Neural Networks (DNNis)
do not cater to reliability issues. However, in a distributed setting, reliability
guarantees need to be established to obtain correct loss in addition to the fact
that the state of the network affects the performance of the edge computing
scenarios [16]. There exists an algorithmic challenge for implementing dis-
tributed learning in the presence of network (e.g. packet error and dropout,
congestion) and client (e.g., offline, busy, adversarial environment) reliabil-
ity issues both for training and inference processes. The emergence of 5G,
Ultra-Reliable-Low Latency (URLLC) networks offers promising avenues [17].
However, the learning frameworks themselves need to be adapted to utilize the

benefits of these modern communication technologies fully.

6. Inference Transparency: Critical learning applications for domains such as
health, finance, and security, among others, require interpretability [18] ”as an
important element of engendering trust in the inference system”. Interpretabil-
ity, however, is yet to have a precise definition in terms of machine learning,
though [19,20] have presented a general framework for gauging the underly-
ing dynamics of learned decision-making. An elaborate survey of the existing
works is presented in [21] , categorizing them under Model transparency and
Model functionality for Deep Learning. A distributed setting, however, offers a
unique scenario where the model transparency not only causes additional con-
straints on the model and operating costs, it constitutes an entirely different
challenge due to the environment and nature of distributed models themselves.

The first reported case of the hazards of opaque learning systems and their
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impact on real-life scenarios was recently reported as the wrongful arrest by
Detroit Police due to a faulty match by the facial recognition system. It is
imperative, thus, that transparency is integrated into the distributed learning

process.

7. Device Diversity in Edge: The edge levels house many nodes with distinct
storage and processing capabilities. The devices farther away from data ori-
gins are more capable both in terms of memory and computational power, with
central servers being the most resourceful devices. Furthermore, the networks
employ multiple communication links and protocols, which results in a highly
diverse environment. These device and network characteristics exacerbate the
difficulty of developing a collaborative structure for learning. Any distributed
learning system must, therefore, possess inherent tolerance for this hetero-
geneity. Furthermore, the designed frameworks should consider the nature
(e.g., memory, processing, energy, static or mobile, data availability) of the
platforms they are intended for. Platforms such as mobiles and autonomous
vehicles have relatively better processing power than IoT or Smart Home sen-
sor networks. A DNN designed for IoT will not be optimal for a mobile setting
and vice versa. It is, therefore, imperative that the learning systems consider

the characteristics of their intended platforms as a tunable parameter.

1.2 Federated Learning

Machine Learning and its applications have increased multi-fold due to the abun-
dance of both computing resources and data. The issues associated with data pri-
vacy, sharing, and orchestration have accelerated research into distributed learning
algorithms, with the key goal being to move learning as close to data origin as possi-
ble. The distinction between various distributed learning techniques lies in how de-
vices interact with each other to achieve consensus. Federated Learning (FL) [22,23]
is one such learning framework that enables disjoint devices to learn collaboratively

without sharing data. Since its inception by Google researchers, Federated Learning
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Figure 1.2: Centralized Federated Learning

(FL), proposed as FedAvg, has been one of the foremost avenues for distributed
learning. Gboard-Google keyboard and Siri-Apple smart assistant are real-world
applications that have benefited tremendously from FL [24]. Federated Learning
(FL) has been at the forefront of enabling distributed learning for various applica-
tions while advocating stronger privacy across wider collaboration. FL allows nodes
to update/train their models on their private data and share the updated models
with a central server, which aggregates them to form a global model. The global
model is then returned to the participating nodes to continue training (Fig-1.2).
This allows FL to support participation at scale and devices to maintain data pri-
vacy by requiring them to share only their trained models. FL also benefits from
the individual computing resources available at devices present throughout the Edge
Network [25-27]. However, the collaboration in FL also brings forth challenges in
the form of device and data heterogeneity, significant communication overhead, and

server bottlenecks [24].
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Federated Learning was initially conceived as a two-tiered learning framework
alternating between clients/nodes performing the training and the cloud servers
aggregating the local models to yield a global model. In order to increase the effi-
ciency, the envisaged FL was further spread over the Edge Network to benefit not
only from the Edge devices’ capabilities but also address the challenges inherent in
centralization. This evolution has yielded various FL algorithms suitable to a va-
riety of scenarios, including vehicular networks, dense IoT networks, and cross-silo
operations between relatively large data centers. These algorithms employ three dif-
ferent types of communication links associated with different communication costs:
(a) Device-to-Device (D2D) (b) Device-to-Edge (D2E) (¢) Edge-to-Cloud (E2C) (see

Fig.1.3 for depicting these links).

D2D links are limited to the device level, whereas D2E links connect the nodes
with the edge servers. Finally, E2C links connect the edge servers to the core net-
work. While D2D links and D2E links operate independently, E2C links require
the latter for information to be transmitted from the devices to the edge server
for onward transmission to the core network. All subsequent communication anal-
yses in this work use this fact to establish the effectiveness of a particular form of
communication in FL operations.

Decentralized Federated Learning (DFL) utilizes D2D links to share the learned
models between the nodes. Each node updates its models based on the local data,
followed by sharing the same with other devices through D2D communication. The
communication may be limited to 1-hop neighborhood or across multi-hop devices.
The proposed methods under various settings show multiple advantages over Cen-
tralized FL (FedAvg). Furthermore, current and future devices come equipped with
multiple communication links. This fact negates the limitation of operating a single

FL algorithm at all times.
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Figure 1.3: Network topology including Edge network levels and communication
links.

1.3 Decentralized Federated Learning

One thrust of the potential solutions to the challenges faced by FL has been directed
toward addressing the limitations posed by the central server. In [28], the authors
propose a multi-center FL environment to maintain performance under conditions
of non-IID (Independent Identically Distributed) data. On the contrary, to vanilla
FL, the authors suggest aggregating local models at local cluster centers representing
similar data distributions and models. Gossip-Federated Learning in [29] suggests
another P2P aggregation formulation outperforming regular FL under conditions of
IID data. Another blockchain-based solution for FL is proposed in [30] that relies on
the availability of a few honest nodes working as a ‘Consensus-Committee’ to vali-
date the shared updates. For autonomous vehicles, [31] devise a Blockchain-based
FL scenario for on-vehicle Machine Learning (0VML). The proposed mechanism
relies on a blockchain-based solution to address network connectivity and motivat-
ing devices with rewards proportional to their contributions. Finally, [32] presents a
potential solution for a more practicable implementation of FL by devising a mecha-
nism ‘g-FFL’ to improve the accuracy of the worst performing nodes in a centralized

FL setting.
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Furthermore, emerging networks are fully primed to benefit from a more de-
centralized form of communication. Device-to-Device (D2D) communication [33] is
a departure from the conventional forms of centrally coordinated communication
frameworks. D2D setups allow nodes to communicate with their local neighbors,
resulting in the creation of a massive decentralized ad-hoc mesh network while also
allowing for the ascertainment of global network parameters [34]. Given the bene-
fits such truly distributed frameworks may offer, a more recent take on developing
FL-based solutions envisions D2D scenarios for learning. The participants in such

networks operate autonomously with local information.

Decentralized Federated Learning (DFL) attempts to allay the communication
and server-related challenges by allowing the devices to interact directly within
their neighborhoods without external/server coordination [35]. Greater emphasis
has been laid on serverless interactions in emerging and next-generation communi-
cation networks such as 5G and 6G [36]. This allows for many potential learning
applications in a fully decentralized manner. DFL, operating on arbitrary network
topologies, allows nodes to collaborate within their neighborhoods to reach a con-
sensus model using Device-to-Device (D2D) interactions [33]. Enabling direct com-
munication among devices restricts upstream communication, making learning more
communication efficient. Additionally, it removes the server-related constraints both
in terms of orchestration and a single point of failure. Furthermore, since the model
exchange is limited to the node neighborhood, DFL promises greater FL scalability
by enabling a much greater proportion of devices to undertake the learning process

independently.

In Decentralized Federated Learning (DFL), each node shares performs a local
stochastic gradient update on its model using its private data. It then shares its
updated model within its 1-hop neighborhood through D2D interaction. The shared

updates are used in weighted aggregated locally and successively propagated along



Chapter 1: Introduction 13

the network [37]. The information diffusion across the network is slower as the
shared updates are down-weighted during each communication round as the models
propagate through the network. While fully and densely connected topologies im-
prove convergence, real-world configurations follow sparse configurations e.g. due to
the presence of stragglers, implying reduced neighborhood sizes and reduced conver-
gence rates [38]. The autonomous operation of nodes also impacts the convergence
rate negatively since they may choose to skip training/communication rounds alto-
gether. A significant proportion of nodes depicting such uncertain behaviors leads
to a volatile participation environment [39], resulting in an unstable availability of
neighboring nodes for model exchange. As explained in the upcoming section, the
main focus of this thesis remains first the characterization of DFL under extreme

conditions and subsequently to propose DFL algorithms to improve its convergence.

1.4 Contributions

Fully decentralized interactions derive their significance from minimizing their re-
liance on central orchestration. DFL also benefits from these aspects and enables
learning without a global aggregation mechanism. It affords the benefits of lowering
upstream communication costs, reducing reliance on central coordination as well
as the ability to cope with the induced absence of global servers. While emerging
networks like 5G and 6G introduce features to enable serverless communication,
scenarios such as emergency situations, unplanned communication/power outages
as well as disaster situations may render edge and global servers with significantly
reduced capacity to handle communication and in certain cases, may even cause
them to be completely unreachable [40-42]. Such cases may also be extended to
unmanned aerial vehicle (UAV) setups where medium to high altitude systems may
face restrictive communication scenarios and have to rely on device-to-device form
of communication [43,44]. Additionally, the node usage and characteristics them-
selves govern the participation preference of node in a given federation round. Such
scenarios may arise due to performance and application requirements and mobility

considerations [45]. The nodes in a vehicular network may receive little incidence
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time with a given edge server or may travel farther away from edge servers. Similarly,
disaster affected areas may be faced with a significant decrease in the participation
by the local nodes. One of the main contributions of this work remains conducting
the analysis and proposing solutions for DFL under volatile conditions. The majority
of works on DFL assume 100% participation under decentralized scenarios thereby
allowing a significant exchange of information between the nodes. However, taking
realistic node behavior into account, it becomes important to consider probabilistic
behaviors depending upon heterogeneous environmental and device characteristics.

The main contribution of this thesis is the assessments of DFL in extremely
heterogeneous conditions and proposing mechanisms to improve its operation in

volatile environments.

Design and Development of Federated Learning Algorithms Simulation

(FLAGS) Framework

Benchmarking FL takes on greater significance as the envisioned operating envi-
ronment is highly diverse and different from centralized or silo-based distributed
learning. To achieve nuanced evaluation and ensure extensibility, this work designs
and develops the Federated Learning Algorithm Simulation FLAGS framework.
It allows each network entity, whether a node or a server, to emulate a realistic
behavior separately. By implementing a range of functionalities associated with
each entity, this framework allows diverse network interactions, enabling multiple
FL algorithms to be simulated easily. Each device has various associated functions
to enable multiple operating conditions and device behaviors. During the experi-
ments, the FL algorithms are subjected to some of the key challenges facing general
FL research. The empirical analysis of the performance of these FL algorithms is
conducted by varying the operating parameters, such as device participation, com-

munication noise, and data distribution.

FLAGS is a lightweight FL prototyping framework allowing for an accurate as-

sessment of multiple FL algorithms for highly realistic network topologies. Inherent
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in FLAGS are different levels of device participation (controlled by parameters py
for participation in central aggregation and dj, for controlling neighborhood aggre-
gation), device selection mechanism for nodes and servers, as well as generating
multiple data distributions including I1D, non-IID, and extremely-skewed non-I1ID
data partitions. It also supports synchronous and deadline-based asynchronous oper-
ation to replicate heterogeneous device behavior [46]. where node training progresses
at different paces. The highlight of FLAGS lies in its capability to configure and
subject multiple FL algorithms to a realistic multi-tiered environment, which allows
users to propose the best environment-FL fit. The framework’s modular architec-
ture affords ease of feature addition and expansion across all major building blocks.
The details of the FLAGS framework have been provided in Chapter-4, including

the architecture, capabilities, and run-time settings.

Comparative Assessment of Federated Learning Algorithms

Federated Learning is envisioned to operate in a heterogeneous environment with no
prior assumptions. The challenge then arises regarding the performance of various
FL algorithms and their feasibility under various conditions. Our work in [47] aims
to contrast the performance of the major FL algorithms under some of the most
prevalent challenges to distributed learning at the network edge, i.e., non-I1D data,
noisy communication, volatile nodes, and asynchronous aggregation. The main goal
is to pave the way for a multi-FL system where devices may select the most suitable
FL algorithm depending on the operating characteristics. The comparative charac-
terization of FL algorithms conducted in this work is aimed at bridging this gap.
The analysis conducted here paves the way for establishing the economy of operation

for these algorithms for various operating scenarios in a particularly heterogeneous

Network Edge.

1. A detailed comparative evaluation of the fundamental Federated Learning al-
gorithms, namely (a) Hierarchical FL (HFL) (b) Device-to-Device FL (D2DFL)
(c) Gossip FL (GFL) (d) Centralized FL (FedAvg) has been conducted. To ex-

pand the scope of the evaluation, this work also considers other FL algorithms
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employing multiple aggregation strategies jointly. These include: (a) Hierar-
chical Device-to-Device FL (HD2DFL) (b) Hierarchical Gossip FL (HGFL)
(c) Clustered Device-to-Device FL (CD2DFL) (d) Inter-Cluster FL (iCFL)
(e) Inter-Cluster Device-to-Device FL (iCD2DFL)

Their performance is tested under ideal and noisy Device-Device (D2D), Device-
Edge (D2E), and Device/Edge-Cloud (D2C/E2C) communication links as well
as non-I11D data distributions and various device participation levels. The re-
sults indicate that even in the presence of non-IID data, decentralized FL
performs with a marginal loss in performance compared to centralized vari-
ants despite operating entirely in the absence of any global information. Ex-
tremely skewed data distributions, however, greatly impact decentralized FL,

drastically reducing convergence rate and accuracy.

2. We also conduct a detailed study of these algorithms under various levels of de-
vice participation (such as active, inactive, and stragglers) has been conducted.
Decentralized FL shows a marginal loss in performance when compared with
centralized FL in the presence of degraded participation. A decrease in de-
vice participation and extremely skewed data distributions have a confounding

effect on all the algorithms, more so on the decentralized ones.

3. An analysis using modified Few-Shot Learning, with considerably more local
updates before aggregation, has also been conducted for the FL algorithms
under consideration. Decentralized algorithms show a greater loss in accuracy
than centralized ones. However, clustered operation helps mitigate the absence

of a global server while restricting all communications to the device level.

The details of considered algorithms, network topology, and results have been

discussed in detail in Ch-5
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Impact of Node Selection on Decentralized Federated Learning in Volatile

Settings

Evidence suggests that the convergence rate for DFL is more adversely impacted due
to heterogeneous conditions. One avenue to improve convergence while operating
under non-uniform conditions has been node selection. Node selection relies on
identifying and using only beneficial nodes in the aggregation process. The major
focus of client selection has remained in conventional FL settings. Therefore, in
[48], we evaluate the implications of node selection for DFL under more challenging

operating conditions. The summary of the same work presented in Ch-6 is as follows:

1. Our work evaluates performance-based node selection for DFL under sparse
conditions using hard (top-k selection) and soft (probabilistic assignment) fil-
tering. Results indicate that performance metrics may be insufficient to cap-

ture the overall model diversity in fully decentralized scenarios

2. A time-varying parameterized node selection method is proposed based on
validation accuracy and its corresponding change from preceding rounds. The
proposed criterion outperforms hard selection under extreme operating condi-

tions.

3. The results indicate that operating fully locally, random stochastic selection
has a better chance of capturing model diversity, resulting in better perfor-

mance under spare and extreme data conditions.

Assisted Decentralized Federated Learning

One reason for slow information diffusion in DFL, particularly across sparse net-
works, is that the shared updates are gradually down-weighted during each commu-
nication round, especially in real-world sparse network configurations where neigh-
borhood sizes are smaller. Additionally, the autonomous behavior of nodes neg-
atively impacts convergence rates since some nodes may choose to skip training

or communication rounds. When a significant number of nodes demonstrate such
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uncertain behaviors, it creates a volatile participation environment, leading to an
unstable availability of neighboring nodes for model exchange. Both graph sparsity
and participation volatility significantly affect the convergence rate in DFL. Fur-
thermore, they exacerbate the impact of data heterogeneity, causing the models to
become increasingly biased towards the data distributions of the proportion of avail-

able neighboring nodes in a sparse neighborhood.

For such a scenario, we utilize local information to accelerate the emergent be-

havior and propose three algorithms and provide the details in Ch-7

1. We outline an asynchronous DFL setting for sparse network topology under
volatile participation conditions. The presented setting works with a fraction
of the nodes participating in the DFL aggregation phase while hosting highly

skewed and non-IID data distributions.

2. We propose a Memory-Assisted Decentralized Federated Learning (MA_DFL)
algorithm and assess its performance in highly volatile scenarios. Each node
retains only the models received in the previous round and uses them as respec-
tive approximations of the non-participating nodes. The results indicate that
employing memory with asynchronous training and low participation scenarios

improves the performance and convergence of DFL.

3. We propose an Augmented Graph-assisted Decentralized Federated Learning
(AG_DFL) algorithm. Under limited participation conditions, our work is
based on augmenting the graph to add virtual edges. The proposed mechanism
allows nodes to relay additional models (virtual edge) while sharing their own.
Evaluation under highly skewed data and volatile participation scenarios shows
that the said algorithm improves DFL algorithm under extreme and non-I1ID

distributions.

4. We finally propose a hybrid algorithm employing both memory and relay op-
erations: Memory and Augmented Graph-Assisted Decentralized Federated
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Learning (MAG_DFL) algorithm. Subjecting to the same set of conditions of
limited participation conditions and asynchronous operations, our proposed
algorithm outperforms both the baseline DFL and individually proposed algo-

rithms.

In the rest of this document, we provide details of the Related Work in Ch-2
and the preliminaries in Ch-3. The details of the developed FLAGS framework and
our detailed analysis of FL algorithms are provided in chapters 4 and 5. Our work
on node selection for DFL under volatile settings is presented in Ch-6. We present
the details of the three proposed algorithms, Memory-Assisted, Augmented-Graph
Assisted, and the hybrid Memory and Augmented Graph-Assisted DFL in Ch-7. We

present a concluding summary, potential future avenues, and extensions in Ch-8.
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Chapter 2

RELATED WORK

Edge Intelligence tries to leverage the resources available mostly at the edge level
of the network. However, this domain has a heterogeneous nature both in terms of
the device and the communication protocols that link these devices. Federated
learning, proposed in [22], enables these entities (nodes) to learn collaboratively
while being coordinated by a central server without ever exchanging raw data. This
mechanism decentralizes the learning process by enabling nodes to start from a
global model and train on the locally available data. Federated Learning ensures
the users’ privacy since no data is communicated between the nodes during the
training process. Subsequently, multiple nodes are then solicited by the central
server to share their parameters, which are then aggregated by the server itself (Fig
1.2). The updated model is then broadcast to the nodes, repeating the process until
convergence. The inference process takes place on the client itself, and thus, data
is never transmitted over the network, which ensures user and client privacy. A
comprehensive survey in [24] classifies the challenges for federated learning, dividing
the issues as either “Algorithmic” or “Practical” in nature. Furthermore, the FL
process is envisioned for a highly heterogeneous environment. The search for optimal
application of FL has resulted in various FL algorithms designed to benefit from
edge network topology uniquely. The impact of some of the most prevalent among
these must first be characterized to adapt FL accordingly. To this end, some of
the representative works that have focused on the FL algorithms and simulation

frameworks have been covered in this section.
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2.1 Federated Learning Algorithms

Most of the current research in Federated Learning leans heavily toward centraliza-
tion. Communication and model optimization are the two key parameters that are
used to gauge the effectiveness of an FL algorithm. However, research indicates that
careful selection of design parameters may yield competitive results for decentralized
FL as well. The authors in [37] describe a fully decentralized FL algorithm with
IID data distributed across users interacting according to a directed graph. In [49],
the authors present a gossip-aggregation framework for FL. The research reports
more favorable results from gossip learning-based FL with uniform data distribu-
tion across the nodes. More recently, [50] suggests the application of the Decen-
tralized Stochastic Gradient Descent (DSGD) [51] for D2D belief aggregation in the
presence of wireless impairments. A Consensus-based Federated Averaging (CFA)
for dense ToT networks is proposed in [52]. Their analysis suggests that serverless
cooperation between devices may also yield results comparable to FedAvg. Extend-
ing their work, the authors in [35] evaluate Consensus-based Federated Averaging
(CFA) and CFA-Gradient Exchange (CFA-GE) for dense IoT networks with D2D
interaction. Their results support the original hypothesis indicating that although
slow to converge, CFA and CFA-GE achieve performance similar to FedAvg with
communication restricted only to device level. In [53], the authors try to tackle the
problem of data heterogeneity in a decentralized fit learning setting. The authors
propose a peer-to-peer model exchange method with model fusion using Mutual
Knowledge Transfer.

Other research has also proposed hybrid FL algorithms employing hierarchi-
cal aggregation in conjunction with D2D interaction. In [54], the authors perform
divergence-based client grouping in a Hierarchical Federated Learning (HFL) sce-
nario. The latency analysis of a hierarchical FL system operating in a heterogeneous
cellular network is provided in [55], where the local aggregation is conducted at Mo-
bile Base Stations. The impact of HFL on training time and energy consumption is

investigated in [56]. The same work also indicates that a trade-off between latency
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and computation may be achieved, resulting in better performance than central-
ized FL. A two-time scale Hybrid FL model is proposed in [57], which compliments
device-device communication with hierarchical server-based aggregations. This work
introduces a control algorithm scheduling global aggregations, local interactions, and
learning rate to achieve a convergence rate of O(1/t). The work in [58] uses gossip
interaction between the devices before allowing them to upload their models to the
hierarchical servers. The resultant FL algorithm provides near-optimal results even
in the presence of reduced communication frequency and volume. Device cluster-
ing in the same network location is suggested in [59], which uses the corresponding
mobile edge nodes for local aggregation operations. Their suggested method, in con-
junction with a cosine-similarity-based device filtering, attains higher convergence
speeds using less number of local updates. Then [60] experiment with FL using clus-
tered devices where the Cluster Heads, selected from the devices, are awarded repu-
tation scores by the members and may communicate with their one-hop neighbors.
The results indicate that the proposed configuration improves network efficiency.
The work in [61] compares the communication efficiency of split learning and FL.
This research evaluates the learning techniques for increasing the client population
as well as increasing the size of the global dataset. The results indicate that split
learning favors the former, whereas FL better serves the latter. In [62], the authors
compare FedAvg, Federated Stochastic Variance Reduced Gradient (FSVRG), and
CO-OP FL algorithms to investigate the impact of non-IID distribution of various
FL optimization techniques. However, the comparison only considers centralized
FL aggregation for the mentioned optimization schemes. The results indicate that
FedAvg fares better than the other two techniques for non-IID data distribution. A
detailed empirical analysis of federated and gossip learning conducted in [63] shows

that gossip performs competitively with federated learning.

2.2 The non-IID Challenge

The presence of non-1ID data remains the most pressing challenge for FL. One of

the foremost works on challenges faced by FL is [24,64] that also suggests that
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non-I1D data results in degraded performance for CFL schemes such as Federated
Averaging (FedAvg) [22] and Deep Gradient Compression [65]. The ubiquity of this
challenge remains the central focus of [66], which tries to assess the impact of non-
IID data on FL. The research indicates that the presence of non-IID data increases
divergence across all layers of the local DNN, exacerbating as the distribution skew
becomes extreme, i.e., the presence of samples from a limited number of classes.
The authors offer a potential solution to this problem by sharing a representative
dataset among all participant devices. Some of the ways the non-IID nature of data
manifests across devices have been covered in [67]. These include uneven feature
and sample distribution and concept shift which entails a mismatch between labels
and features at the device level. The proposed solution uses clustering client inputs
based on the similarity between local and global models. The concept of client drift
is presented in [68] and addresses the phenomenon in which nodes reach the local
optima away from the global optimum, aggravated by the presence of non-I1ID data.
The adverse impact of non-IID data on the performance of FedAvg is investigated
in [69]. This work indicates that the presence of non-IID across devices reduces
convergence rate, providing theoretical arguments for learning rate decay to reduce
client drift. The research in [70] suggests that random selection of participants in
FL scenarios leads to degraded performance, particularly when data at the nodes
follow a non-IID distribution. The authors propose a statistical utility measure to

ascertain the benefit of choosing a particular node in an aggregation round.

2.3 Existing Frameworks

Benchmarking FL is more significant as the envisioned operating environment is
highly diverse and different from centralized or silo-based distributed learning. It
is, therefore, necessary that an effective benchmark be capable of allowing hetero-
geneity in device behavior, data distribution, and connectivity. Additionally, the
benchmark should be able to support different cooperation schemes that form the
basis of different FL algorithms.

Various benchmarking frameworks have taken different approaches to satisfy the
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aforementioned objectives. These have been aimed at achieving rapid prototyping
[71], higher scalability [72, 73|, and realistic data heterogeneity [74,75]. Among
these options, FedML [76] additionally offers topology management by allowing the
configuration of multiple FL algorithms. However, it is pertinent to note that these
frameworks are designed to simulate either FedAvg or a single FL algorithm for a
given environment. This indicates that greater work is involved in simulating various
FL algorithms to capture more accurate performance details.

This work presents the performance of key FL algorithms distinguished in their
ability to utilize various network levels (Fig. 1.1). In order to achieve nuanced
evaluation and ensure extensibility, this work presents the FLAGS framework. The
framework allows each network entity, whether a node or a server, to emulate a real-
istic behavior separately. By implementing a range of functionalities associated with
each entity, this framework allows diverse network interactions, enabling multiple
FL algorithms to be simulated easily. Each device has various associated functions
to enable multiple operating conditions and device behaviors. During the experi-
ments, the FL algorithms are subjected to some of the key challenges facing general
FL research. The empirical analysis of the performance of these FL algorithms is
conducted by varying the operating parameters, such as device participation, com-
munication noise and data distribution.

Federated Learning (FL) and Decentralized Federated Learning (DFL) are en-
visioned to operate in a highly heterogeneous environment. While FL research has
seen remarkable interest, challenges such as data orchestration and privacy, com-
munication latency, and server-related issues remain major impediments. Based on
the principles of widely researched distributed optimization, DFL further democra-
tizes learning by allowing devices to learn and exchange models among themselves

without the need for a coordinating entity.

2.4 Decentralized Federated Learning

In DFL, nodes communicate with their peers in their respective neighborhoods with-

out server intervention. This allows DFL added communication efficiency and better
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privacy preservation. A DFL framework with a Bayesian parameter space is intro-
duced in [37]. The work carried out in [35] extends the application of DFL to an
industrial scenario with a large-scale Internet of Things (IOT) sensor network. They
explore both model exchange in Consensus-based Federated Averaging (CFA) and
CFA with gradient exchange (CFAGE). A gossip learning approach is evaluated
for uniform bandwidth assignment in [63]. The authors show that for the given
scenario, gossip learning performs comparably to FL and contend that the overall
sentiment towards DFL should be encouraging. An Over-The-Air (OTA) DFL setup
is explored in [50]. The authors suggest mechanisms to assist DFL in coping with
wireless impediments and depict the efficacy of DFL in random network topologies.
In [77], the authors provide an extensive survey of DFL research and some of the
major characteristics involved in its characterization. They detail the major net-
work topologies, key performance indicators, and various federation architectures.
Their work also highlights research into DFL depending upon gossip, peer-to-peer
and device-to-device communication. In [78], the authors suggest a DFL framework
with unreliable communication. Their work focuses on using User Datagram Proto-
col (UDP) for model transmission and shows that the convergence rate at par with

DFL may still be achieved.

Asynchronous DFL From a synchronization perspective, the FL landscape is
divided into synchronous and asynchronous FL. Compared to the synchronous set-
ting, the asynchronous environment allows the nodes to conduct training according
to their own capabilities and available resources. Furthermore, the nodes are permit-
ted to conduct aggregation without waiting for all the nodes in the neighborhoods.
In [79], the authors propose an asynchronous DFL algorithm that allows utilizing
the faster nodes for aggregation without waiting for stragglers. The work in [80]
presents a fault diagnostic scenario enabling photo voltaic stations to learn fault
features from their neighbors asynchronously. The work proposes a hybrid Fed-

erated learning model with both the presence of a server and decentralized node
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interactions. the nodes are allowed to communicate among themselves as well as
share their models with the global server whenever it is possible for them. The
aggregation, both at the nodes and the server, takes place once a defined proportion
threshold of received models is achieved. Finally, the work in [81] proposes an asyn-
chronous DFL algorithm communicating over wireless network Edge. The authors
suggest that the design algorithm is robust to the impediments of a heterogeneous
wireless network and can operate in a time-varying communication topology in the

presence of stragglers.

2.5 'Topology Optimization

A major avenue of DFL research has adopted topology-configuring schemes to im-
prove the convergence rate and improve communication efficiency in DFL. In [82],
the authors propose the optimization of the network topology and model compres-
sion under heterogeneous communication and conditions and non-I1ID data distribu-
tion. They propose consensus distance as a metric and propose an algorithm CoCo,
that dynamically constructs a network topology to determine compression ratios for
communication efficient operation. Then [83] provides theoretical convergence guar-
antees for gossip Heritage learning. They also designed a bandwidth-aware gossip-
matrix generation algorithm. They also propose a model specification method that
allows each node to communicate a highly specified model with one peer in a gossip
round. The work in [84] devises a way to assign mixing weights to the neighbor-
ing nodes for synchronous DFL. They deploy an encoder of model weights and an
attention module to compute the weights from the pairwise similarity between the
representations. To specify the topology, they remove the top K neighbors with the
smallest mixing weights, thereby reducing communication costs. The authors of [85]
propose a sparse training technique with each node keeping only a fixed number
of parameters active throughout the training by using a personalized mask. The
averaging is conducted using only the intersection weights from the received models.
The model sparsification process reduces the communication cost and computation

load. The experiments indicate that a fully connected topology shows higher con-
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vergence rates than sparse ones.

2.6 Device Volatility

Device participation in a realistic FL setting is subject to multiple factors, includ-
ing activity status, resource constraints, or the dynamic nature of the node itself.
The overall learning environment becomes highly volatile when such node behavior
is expected from a significant proportion of the nodes. The research in [86] ex-
plores the volatility aspects of FL training in an Intelligent Transportation Setting
(ITS) where all the nodes are inherently dynamic and constantly join and leave the
system. The proposed solution employs Road Side Units (RSUs) as intermediate
parameter servers and intelligent resource allocation to undertake FL. An example
of a reward-oriented participation behavior for FL is explored in [87]. The pro-
cess is modeled as a Minority Game (MG) in which the nodes decide whether to
participate or not based on a reward-resource trade-off. A coalition-based MG is
proposed to incentivize participation and reduce defectors. The work in [88] tackles
volatility in an FL setting by proposing a deadline-based node selection mechanism.
The node selection process is further refined by Exploration and Exploitation-based
client selection (E3CS). The best-case scenario is shown for the regret measure of
the suggested solution equaling that of an even-random selection. The same conclu-
sion was drawn empirically in our earlier work in [48], which explores node selection
under volatile DFL settings. The results indicated that in high volatility scenarios,
a random selection of nodes ultimately leads to better convergence rates even under
extreme data distributions. The work in [89] explores the impact of volatility in FL
settings. The authors propose a Cumulative Effective Participation Data (CEPD)
measure as the optimization objective. The work categorizes volatility into set, sta-
tistical, and training volatility contingent on nodes joining or leaving the system,
dynamic data characteristics, and participation. The server uses a multi-arm bandit
approach to learn the effective participation data and attempts to maximize the

cumulative measure.



Chapter 2: Related Work 28

2.7 Memory and Relay Mechanisms in FL

One of the major factors in enabling fully decentralized behavior is the ability to
act as relays for neighboring nodes. The work [90] proposes a RelaySum mecha-
nism for Decentralized Federated Learning for spanning trees. The authors consider
each node to receive and send 2 models per iteration in a spanning tree topology,
although their analysis extends to other graph topologies as well. Another work
in [91] performs a relaying operation in a centralized FL environment where the
node aggregates models from its neighborhood before forwarding them to the pa-
rameter server. The authors suggest that the impact of poor connectivity may be
mitigated by nodes in the locality having better participation and connectivity op-
tions. The authors in [92] focus on the over-the-air (OTA) implementation of FL
in wireless environments. The solution is based on a two-phase aggregation process
where the first stage involves the nodes and the clients sending their updates to the
relay and the Access Point (AP). In the next stage, both the relays and nodes send
the updates to AP, following which the aggregation error is established based on
this relay-assisted FL.

The work in [93] proposes MIFA, a memory-augmented Federated Learning
framework that avoids excessive delay by employing a deadline and memory-based
aggregation mechanism. Each node maintains the previous global model and the
updated model and sends the difference to the server to avoid memory implications
at the server. In [94], the authors suggest FedVARP, a variance reduction method
for FL tackling partial client participation. The server maintains in its memory all
received updates, and for the nodes not participating in a particular round, it ap-
proximates their models by the ones stored in its memory. The memory utilization

at the server side is catered for by clustering similar updates as a single model.
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Chapter 3

PRELIMINARIES

As with any distributed learning process, it is important to understand the un-
derlying network topology connecting the various entities. Federated Learning offers
an efficient means of distributed learning at the Edge Network. This section first
establishes a System Model for the interaction between network entities such as
nodes and servers connected by various communication links. The mathematical
framework behind the FedAvg algorithm is also presented, which is extended in

subsequent sections to describe major FL algorithms.

3.1 System Model

Network Topology The system model is defined using a set of nodes, edge
servers, and a global cloud server. A stochastic formulation is used to establish
the interaction between the nodes at the device layer as well as between the device
and hierarchical servers at the edge layer. A set of IN static nodes are randomly dis-
tributed in C' geo-proximal clusters (C) representing natural grouping. Each cluster
may be associated with its own Cluster Head randomly selected from the cluster.
Cluster Head selection and Cluster membership are active areas of research. How-
ever, the behavior in the presence of one has been replicated. One node from each
cluster C; is designated randomly as a Cluster Head. This work intends to evaluate
the performance under Clustered FL operation and thus assumes automatic mem-
bership of proximal nodes. Each node ¢ assumes full knowledge of its neighborhood
n; € N such that n; = {j € N|{i} : (i,j) € £}. The graph G is also defined with
its adjacency matrix W € {0, 1}?V*N that describes the edge information of all the
nodes in the graph. While W represents the adjacency information of a static graph,

a dynamic behavior by the nodes can be encompassed by sampling W' ~ W. In the



Chapter 3: Preliminaries 30

setting considered for this work, both W and W are row-stochastic matrices which
is shown in Ch 7. It is a realistic assumption that YW may be obtained by the local
interaction of the nodes with a fractional overhead. However, the behavior in the
presence of one has been replicated. One node from each cluster C; is designated
randomly as a Cluster Head. This work intends to evaluate the performance under

Clustered FL operation and thus assumes automatic membership of proximal nodes.

A random graph topology is assumed for the purpose of this work, with each node
1 able to communicate within its one-hop neighborhood n;. The network topology
forms an undirected graph G = (N,€&) where N = {1,2,...... N} is the set of

nodes and &£ is the set of edges. The sparsity constraint on the graph structure

N(N-1)
2

stipulates that £ << &,,4. where &, = . The sparsity condition ensures
that the graph density ( << 1. However, it is assumed that the graph remains
reachable, implying that there are no isolated nodes. The devices are assumed to
operate stochastically in pursuing local updates and participation in aggregation

rounds.

Each node 7 is assumed to have a degree n; and possesses knowledge about its
neighborhood. However, it is pertinent to note that a device’s neighborhood is not
restricted to its cluster, and devices can be connected with those in other clusters.
The link density at the device level is controlled by a set of two parameters (7, v).
The probability of a link between geographically proximal devices lying within a

cluster C; is:

Pmn) ={7|0<y <1}

m,neC;
Similarly, the probability of a device-level link between two nodes belonging to

distinct clusters C; and C; is:

P(qu) ={v]|0<v<n}

pECi,qECj

The parameters v and  are used to alter the network topology from a random place-



Chapter 3: Preliminaries 31

Param Description
ot Global model parameters at time ¢
o Model parameters of node k at time ¢

o Optimal parameters of the global model

L Global loss function

VL Gradient of the loss
x,y Input feature vector, reference output

ay Learning rate at node k

Mk Aggregation weight associated with node k
D Global dataset partitioned among the nodes

Dy, Dataset associated with node k
N Number of nodes in the network
I Local loss function associated with node &

&m Edge link between nodes [ and m
Ci Cluster Head (CH) of the cluster i

C Number of geo-proximal clusters in the network
dy. Neighbor cooperation probability of node &
Dk Edge server cooperation probability of node k

Table 3.1: List of parameters used in the system model and the algorithmic descrip-
tion.

ment to a highly clustered setting depending upon the target environment. For these
parameters, a setting of (y — 1, v << +) indicates that the proximal groups are
densely connected, with almost every device sharing a link with the other within the
group. On the other hand, only a few edges exist between devices between differ-
ent groups, indicating a reduced probability of the device’s ability to communicate
directly with devices that are farther off. In contrast, (y — 1,v — 1) indicates a
densely connected device layer where each device is connected to a large number of
other devices. Finally, (y — 1,v = 0) indicates that devices only maintain connec-

tions within a proximal group without any inter-group connectivity.

The framework can simulate both ideal and noisy links with zero-mean Gaussian
noise (N(0,0)). Each device has a probability dj, of participating in a neighborhood
aggregation and py, for an edge or cloud server-based aggregation. These probabilities

reflect the device status (active/inactive) as well as stragglers that may choose not
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to participate in certain aggregation rounds. Furthermore, the nodes are assumed
to be fully capable of undertaking local learning operations, including adjusting

hyperparameters.

Node Volatility and Asynchronous Participation The current environment
setting realizes volatile participation from the nodes through the use of the parameter
pﬁj that controls the ability of the node i to communicate with its neighbor j € st C
n; during the round ¢. We assume that node i exchanges its model with j € s’
nodes in a round t if pﬁj = 1, with no prior assumption on the distribution of p;;.
The overall setting maintains considerable volatility in a given round ¢, assuming
that 0 < |s;] << |n;|. This implies fractional participation from the neighborhood
of node 7 in a given aggregation round. The entire process is considered under
asynchronous FL settings, during which devices can control local update rounds e;

and participate in aggregation. The communication rounds are indexed by t.

3.2 Federated Learning Methodology

The global objective in a Federated Learning setting is a weighted sum of the local

loss functions:
N
L(0%) = mLli(6}) (3.1)
k=1

where L£(0") represents the global loss function and L;(0y) and 7 are the local
loss function and weight associated with node k at time ¢. The FL objective is to

minimize the weighted sum of the individual losses of N devices

N
: A t
Join, L(0) = min ; mLr(0F) (3.2)

Each £(0}) at time ¢ is associated with an M-dimensional model parameterized
by 6% € R™ and the weight 7, for node k. The initial parameters of the model, 87,

are shared with the devices through a server. The local loss at a device is calculated
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through the training as follows

1
Ly(6) = 1Byl Z l(z:,9i; 0}, (3.3)
M1 (@i eBy
where [(x;,y;; 0%) represents the loss of the machine learning task (e.g cross-entropy;,
mean squared error) calculated for the local model for the current model parameters.
This is calculated for each point (x;,y;) in the minibatch Bj sampled from the

local dataset Dj. Using the principles of Distributed Stochastic Gradient Descent

(DSGD), each device with the learning rate ag, for a round r, updates its model as:

0, = 0, — ;. VL (i, yi; 67) (3.4)

where VL, (x;,y;; 0%) are the gradients calculated by node k during the local update
round ¢ and o, is the learning rate associated with kth node at time ¢. The updated
model parameters from Eq. 3.4 or the gradients calculated above are then shared

with the server.

This process is conducted for e; update rounds before the aggregation phase.
For aggregation, each node, with a probability p;; € {0, 1}, shares its locally learned
parameters Hf” with s; € n; set of nodes. The number of nodes in s changes with
Pij ¥V j € sisuch that s; = {¢ [ p; =0Vie N &jen}and s; ={n;|py; =
1Vie N & j€n;}. Upon receiving models from m; : {m;|m; € n;} set of nodes
from its neighborhood, each node i performs local aggregation using the received
o

models 6577 € ' along with its own model with their corresponding weights

to generate /1

Ot = 0T + Z n0,%7 (3.5)

rem;

where n; and 7, denote the corresponding weights assigned to the contribution

of the node i’s own and r received models, respectively, towards the aggregation at
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node 7 and

TET,;
where 7; and 7, denote the corresponding weights assigned to the contribution of
the node ¢’s own and r received models, respectively, towards the aggregation at

node 7 and

rem;
The complete process is repeated over multiple communication rounds until conver-

gence is achieved.

As evident from Eq. 3.2-3.5, the entire Federated Learning process bypasses the
need for the devices to share data at any stage, offering a strong privacy advantage
over centralized forms of ML. It instead relies on communicating model parameters
to the local server. The server is also required to share the aggregated model with
the connected nodes for the subsequent rounds, adding to the overall communica-
tion volume needed to execute FL successfully. Such servers are typically located at
the network cloud level, offering multiple services. Thus, frequent communication
to and from these servers becomes an extremely expensive operation in addition to
straining the latency requirements of various edge services in addition to subjecting
the shared models to additional adversarial risks.Table 3.1 presents the list of pa-

rameters used in this work.

Furthermore, the entire process is considered under asynchronous FL settings,
during which devices can control local update rounds e; and participate in aggrega-
tion. The value of e; depends on multiple factors, including device activity status,
computation capacity and size of the local dataset. While an asynchronous setting
introduces additional parameters that may be significant in ascertaining the over-
all performance not in the purview of current work, it remains closer to a realistic

operation. It offers greater autonomy to the participating devices.
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Chapter 4

FEDERATED LEARNING ALGORITHMS SIMULATION
(FLAGS) FRAMEWORK

Federated Learning (FL) provides an effective mechanism for distributed learn-
ing. However, it is expected to operate in a highly diverse setting with distinct
behaviors from the participating nodes as well as dynamic network conditions. The
FL performance, therefore, is subject to change due to the highly transitory nature
of the overall system. An efficient simulation framework must be flexible to allow a
range of participant behaviors, interactions, and environmental characteristics. In
this chapter, we present the Federated Learning Algorithms Simulation (FLAGS)
framework that we propose as a lightweight FL implementation and testing plat-
form. FLAGS framework allows for a wide range of device behaviors and cooperative

mechanisms, enabling rapid testing of multiple FL. algorithms.

4.1 Introduction

Federated Learning (FL) [22] has become a widely researched domain for distributed
learning. It enables the individual nodes to learn from their local data and share
the models with other participating entities. The shared models are fused together
to generate a consensus model, which forms the starting point for the next learning
round until convergence is reached. FL is envisioned to operate in a highly hetero-
geneous setting [24], allowing the participating nodes to cooperate toward building
a consensus model. The major sources of heterogeneity are the environment, de-
vice behavior, and data distributions. A reliable and accurate evaluation of FL
algorithms that caters to multiple operating characteristics should, therefore, be an

important consideration.
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With the widespread application of distributed learning, benchmarking FL has
assumed even greater significance. The FL algorithms are envisioned for a highly
heterogeneous setting with limited prior information. Accurate assessment of their
performance requires that the simulation framework provide repeatable and uniform
conditions, support easily configurable FL algorithms, possess the flexibility to im-
plement new ones and cater to multiple types of communication links. An effective
benchmarking platform should be versatile and capable of incorporating diverse de-
vice behaviors, environments, network topologies, and data distributions, as well
as supporting various cooperative mechanisms. To enable rapid prototyping, accu-
rate assessment, and experiment with multiple cooperative topologies, we present
FLAGS!.: the Federated Learning Algorithms Simulation framework. FLAGS is a
lightweight FL prototyping framework allowing for an accurate assessment of mul-
tiple FL algorithms for highly realistic network topologies [95]. Inherent in FLAGS
are different levels of device participation (controlled by parameters py for participa-
tion in central aggregation and dj for controlling neighborhood aggregation), device
selection mechanism for nodes and servers as well as generating multiple data dis-
tributions including IID, non-IID and extremely-skewed non-1ID data partitions. It
also supports synchronous and deadline-based asynchronous operation to replicate
heterogeneous device behavior where device training progresses at different paces.
The highlight of FLAGS lies in its capability to configure and subject multiple FL
algorithms to a realistic multi-tiered environment, which allows users to propose the
best environment-FL fit.

The distinguishing features of the FLAGS framework include configuring entities
across the Edge Network environment, simulating multiple FL algorithms through a
single framework, heterogeneous client participation including stochastic and volatile
behaviors, enabling asynchronous node operation and formulating sparse, dense, and

clustered network topologies.

Thttps://github.com/ahnaflodhi/FLAGS-v2
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Figure 4.1: FLAGS Framework Software Architecture: Three main modules and
their interactions.

4.2 Software Architecture

Existing FL. benchmarking frameworks have adopted different mechanisms for imple-
menting and testing node behavior in FL algorithms. However, most of such frame-
works have been designed with a single FL algorithm in perspective [47]. FLAGS
framework has been developed with the capability to configure and test multiple FL
algorithms easily [96]. It allows incorporating various conditions during testing to
assess the response under a diverse set of operating circumstances. The overall archi-
tecture is highly modular and enables users to easily augment existing functionality
by adding new features. The FLAGS framework consists of three main modules,
namely environment, algorithms, and node operations, implemented as independent

classes as shown in Fig.4.1 and described next.

4.2.1  Environment

The Environment module allows the users to configure the target system model for

FL operations. The generated environment mimics the edge network [5], generating
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the device, hierarchical and cloud layers. The network topology is controlled by
specifying the number of nodes A/, the number of clusters C, the number of hierar-
chical servers S and a global cloud server §,. The underlying connectivity may be
controlled to be dense or sparse by using the parameters v and v where 0 < v, v, < 1
control each node’s connectivity within and outside of its assigned cluster, respec-
tively. Higher values of v and v result in dense graphs with a value of 1 resulting in
a complete graph. At the initialization, each cluster is assigned a ClusterHead (CH)
C;; however, the role may be re-assigned subsequently [97]. The hierarchical/edge
servers each are assigned multiple clusters C > 1. The edge servers are, in turn,
connected to a global server, a role assigned to the last indexed server in the server
array. The graph generated by this module precludes the presence of any isolated
node, and networkx library can access its information.

The current topology simulates random graph. However, more topologies may be
incorporated in the environment module using the options from the corresponding
libraries. However, these changes remain insulated from other modules and do not

affect their operations which enables multiple options with FLAGS framework.

4.2.2  Algorithms

The Algorithm module generates and maintains a record of the FL algorithms. It
also dictates the sequence of operations, including local updates, validation, aggrega-
tion, and algorithm testing. Each algorithm is configured by setting a set of six flags.
These flags dictate the interaction between various entities and the exact nature of
the interaction as well. This interaction determines the level of communication be-
tween different network entities spread across various layers of the edge network.
The flags set assigns two flags to each layer of the edge network, controlling the na-
ture and specifics of the interaction. The following are part of the flags set: a) Device
Op b) Device-Mode ¢) Cluster-Op d) Cluster-Mode e) Edge-Op f) Edge-Mode The
‘Op’ flags specify whether model exchange across entities belonging to a particular
hierarchy is permissible. ‘Device-Op’ specifies Device-to-Device (D2D) interaction

for device layer whereas ‘Cluster-Op’ indicates interactions between ClusterHeads.
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Algorithm / Interaction D2D Op D2D Mode Cluster Op Cluster Mode Edge Op Edge Mode

FedAvg False False False False False False
HFL False False False False True Default
DFL True Default False False False False

Gossip True Random False False False False
HDFL True Default False False True Default
HGFL True Random False False True Default
CFL False False True Default False False
iCFL False False True Random False False
iCDFL True Default True Default False False

DFL_Sel True Model False False False False

MA _DFL True Memory False False False False
AG_DFL True Relay False False False False
MAG_DFL True Mem_AG False False False False

Table 4.1: Flag settings for various Algorithms in FLAGS framework.

Finally, ‘Edge-Op’ controls whether the devices can communicate with Edge servers
for intermediate aggregation or not. The ‘Mode’ flags indicate which particular
mode of interaction is conducted. The ‘Device-Mode’ set to ‘model-selective’ will
perform the node selection process at the device level based on ‘cosine similarity’ or
‘L2 Norm’. The same flag set to ‘stale-global’ allows using a stale global model as a
reference to compute the similarity for target models. A number of algorithms may
be configured using different configurations of the flags. Additionally, any number
of new features may be added and used across different FL algorithms by specifying
appropriate flag settings. A number of configured algorithms using the FLAGS are
presented in Table-4.1.

4.2.8  Node Operations

In order to allow autonomy of operation to the participating devices, the Node
Stmulator module imparts the relevant functionality to all the devices configured
for a particular FL algorithm. The topological information accessible to each node
includes its local neighborhood, the assigned cluster, and the hierarchical server.
Each node’s primary functions include training, testing, and exchanging models
with the designated devices while maintaining the record of the relevant performance
metrics. Each node concurrently maintains three models, which include the updated
model, the post-aggregation model, and the model from the previous round. Each

node is assigned unique training and test datasets based on the overarching data
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oo
1 Update Round - Mode d2d
2 Node Update Status: 100+ Y ¢ 0/ 0
3 Validation Round - Mode d2d
4 Node validation status: 100 |EEEEEE—__— ., <0/ 40
5 Avg Val Acc-0.338 Variance 0.014 max 0.600 min 0.103
6 Starting Local Aggregation in roundl for mode d2d
7 Avg Test Acc-0.616 Variance 0.012 max 0.813 min 0.299
8 Update Round 0- Mode gossip

o

Node Update Status: 106" | |HEEE—_E_— S 040

10 Validation Round 0- Mode gossip

11 Node validation status: 100 | |HEEEEG—_—— N 0/ 40
12 Avg Val Acc-0.287 Variance 0.014 max 0.534 min 0.097
13 Starting Local Aggregation in round® for mode gossip

14 Avg Test Acc-0.287 Variance 0.014 max 0.546 min 0.097

Figure 4.2: Default argument state: Each of these may be adjusted as input argu-
ments to the Main-Fed.py file

distribution, i.e., IID, non-I1ID, skewed data distribution (by default, the test data
is always IID distributed). Each node may alter its learning rate independently of
others and can exhibit synchronous or asynchronous behavior. The nodes support
several aggregation functions that may be invoked according to the algorithm. A
separate Servers class governs the behavior of the global and hierarchical servers.
Although implemented as a separate class, the servers, when invoked, only perform

intermediate or global aggregation and pass the models back to the nodes.

4.2.4  Additional Modules

The three main modules are assisted by many other modules implemented either
as separate classes or individual functions. The framework currently supports three
different datasets, namely MNIST, FashionMNIST and CIFAR-10. The Net class
implements the neural network layers and the associated operations. Testing and
aggregation operations have been implemented individually so that they may be
generally accessible. The supported models include shallow (2 Convolutional layers,
2 fully connected layers) and deep models (VGG-11), which may be used when
initializing the execution. The framework supports various data distributions using
the Dirichlet parameter (a > 0). Higher values of « result in IID data distributions

across the nodes, whereas fractional values make the data distribution increasingly
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E argparse. ArgumentParser
r.add_argument type
r.add_argument
r.add_argument
r.add_argument
r.add_argument
r.add_argument(’ -5¢
r.add_argument |’ -em
r.add_argument (' -emax
arser.add_argument(’-s
r.add_argument
r.add_argument
r.add_argument
r.add_argument

ser.add_argument('-a', type = float, default help Alpha parameter (+ve only) for Dirichlet based non

ser.add_argument F type float, default 8.9, help Proportior f node hosen for server aggregatio

er.add_argument /| s Type float Jetault helf Aggregati Proportior Proportion
irser.add_argument i type str, default k help E 1 type te run the experiments
er.add argument int type=float, default 1 help="Pr bility of Edges within a uste

arser.add_argument ext type=float, default 2 elp="F ability of Edge it wdes external to Cluster

Figure 4.3: Simulation Output

non-IID. A parameter ‘s’ enables extremely skewed distributions, with each node
getting samples from only ‘s’ classes from the dataset, where the samples themselves
are randomly distributed. It is pertinent to note here that employment of o and s is
mutually exclusive, and s > 0 overrides any value of a.. Several utilities are provided
that assist in intermediate and final data logging and generating the performance

plots.

Framework Extensibility It is pertinent to mention here that the framework
implementation is built around possible extensibility. There a number of learning
frameworks with various levels of capability, functionality and strengths. In order
to ensure that FLAGS framework remains extensible, the modules have been devel-
oped in such a way as to permit users to extend FLAGS using a learning framework
their choice without affecting the overall functionality. The modules Environment
and Algorithms module have been developed using public domain Python libraries.
On the other hand, the learning framework and dataset inclusion depends upon the
choice of the learning framework which in this case happens to be Pytorch. How-
ever, users could easilt incorporate the same functionality using any other learning
framework without having to adjust the core functions provided by the Algorithms

and Node operations. This allows FLAGS framework to potentially be modified and
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extended using different learning frameworks likes TensorFlow, Keras etc.
Additionally, the datasets employed by the FLAGS framework also correspond

to the learning framework being used. Therefore, new datasets may be introduced

or modified according to the learning framework being employed without requiring

additional changes to the FLAGS framework.
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Chapter 5

COMPARATIVE ASSESSMENT OF FEDERATED
LEARNING ALGORITHMS

5.1 Introduction

Existing research in Federated Learning (FL) shows a strong proclivity towards
centralized orchestration. Access to updates from a large number of devices, a
global model, and considerable computational and storage resources have tradi-
tionally made a strong case for Centralized FL (FedAvg). However, there exist a
number of challenges [24] to such an operation, including adversarial attacks, ma-
licious participation, privacy preservation, heterogeneous devices and participation,
non-Independently and Identically Distributed (non-IID) data, and communication
issues. Simultaneously, next-generation networks [36] envision considerable server-
less interaction between the devices. Advances, such as application-specific data
rates, Network Function Virtualization (NFV), and network slicing, have enabled
researchers to propose various FL algorithms based on the permissible device inter-
actions (see Fig.1.3 for the depiction of these links). The proposed methods show
multiple advantages over Centralized FL (FedAvg) under various settings. Further-
more, current and future devices come equipped with multiple communication links.
This fact negates the limitation of operating a single FL algorithm at all times. The
challenge then arises regarding the selection of an FL algorithm to employ under
various conditions. The comparative characterization of FL algorithms conducted in
this work is aimed at bridging this gap. The analysis conducted here paves the way
for establishing the economy of operation for these algorithms for various operating
scenarios in a particularly heterogeneous Network Edge.

The remainder of this chapter is organized as follows: An overview of the system
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oy
m 4CIoud Server

(b) D2DFL (¢) GFL

Figure 5.1: Main Federated Learning Algorithms. Dashed lines represent links be-
tween various entities, whereas only solid lines in (c) depict active established-pair
links in GFL.

model and FL is presented in Section-3.1. Details of the FL algorithms have been
provided in Section-5.2. This is followed by a description of the experiments and
performance analysis in Section-5.3 and 5.4. The report concludes with a summary

of the important findings in Section-5.5.

5.2 Federated Learning Algorithms

Federated Learning was initially conceived as a two-tiered learning framework alter-
nating between clients/nodes performing the training and the cloud servers aggregat-

ing the local models to yield a global model. In order to increase the efficiency, the
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envisaged FL was further spread over the Edge Network to benefit not only from the
Edge devices’ capabilities but also address the challenges inherent in centralization.
This evolution has yielded various FL algorithms suitable to a variety of scenarios,
including vehicular networks, dense IoT networks, and cross-silo operations between
relatively large data centers. These algorithms employ three different types of com-
munication links as shown in Fig. 1.3 associated with different communication costs:
(a) Device-to-Device (D2D) (b) Device-to-Edge (D2E) (c¢) Edge-to-Cloud (E2C)
D2D links are limited to the device level, whereas D2E links connect the nodes
with the edge servers. Finally, E2C links connect the edge servers to the core net-
work. While D2D links and D2E links operate independently, E2C links require
the latter for information to be transmitted from the devices to the edge server
for onward transmission to the core network. All subsequent communication anal-
yses in this work use this fact to establish the effectiveness of a particular form of

communication in FL operations.
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Algorithm 1: Hierarchical Federated Learning
Input: Initial Model parameters 6y, S hierarchical servers with device
association
Output: Global model parameters 0;_,
Initialization by global server: 6 received by each hierarchical server S;
and broadcast among the connected nodes
for Nodesk = 1 ... N (in parallel) do
Perform Local update for e epochs
012+T = Bltc - Oélltcv'ck(xm: Yms 012;)
TX: With a probability py, send the ;" to the hierarchical server
for aggregation
end
for Servers S; Vi= 1 ...... K (in parallel) do
AGG: Aggregate the models received from the n; nodes
05" =05 + > w0t

JEN;
end
if round % f == 0 then
for Servers S; Vi=1...... K (in parallel) do
‘ Upload models to the global server
end

Global Aggregation
t+1 _ pt T

0 0" + ]%:c 1;0;

Send model back to Edge Servers S;

Edge Servers S; broadcast model parameters 8! to all nodes
connected respectively

end

A key aspect in major FL literature is the absence of cross-configuration com-
parison and evaluation of FL algorithms. Such an analysis promises to identify the
optimal employment of these FL algorithms based on the operating environment and
the nature of the problem being addressed. This section first provides a description

of these algorithms, followed by details of the experiments in the subsequent sections.

5.2.1 Hierarchical Federated Learning

Hierarchical Federated Learning (HFL) introduces intermediate model aggregation
closer to the data origin using an edge server [56]. This FL algorithm introduces
F aggregation layers between the nodes and the global cloud server, F increasing

toward the cloud layer. Cellular base stations or Mobile Edge Computing (MEC)
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Servers are envisioned to realize this role [8] for their respective connected devices.
Each network level, as depicted in Fig. 5.1(a), aggregates the models received from
the previous layer and passes them to the next layer in the hierarchy. This scheme
offers a reduction in the overall upstream communication as well as progressively
offloading the computational load at the edge network.

Each hierarchical layer F houses Kz edge servers. Each server at layer F = 1
aggregates models from the devices linked to it respectively. The pseudocode for
HFL has been laid out in Alg. 1. The initial model parameters, i.e., Oy are initialized
by the global server S, and shared with the nodes. The nodes, in turn update the
model over a mini-batch of size M to yield 0?1. After completing e local updates,
each node shares its updated parameters with the hierarchical server S; with a
probability pi. The servers aggregate the received models, which are then shared
with the servers in the next layer/global server after f aggregation rounds. At this
stage, the global server aggregates the input models from the IC hierarchical servers
and generates the global model 877, which are then shared through the local servers

with the associated nodes.

Algorithm 2: Device-to-Device Federated Learning
Input: Model parameters 6 for each node, degree ny
Output: D2D Aggregated Models
for Nodes k = 1 ... N wn parallel do

Update local model for e epochs

0,7 = 6}, — ALV Li(Tm, Ym: 6})

Send model to 1-hop neighbors n; with probability dj

Receive models from nj 1-hop neighbors

Perform weighted aggregation for the received models

eltc+1 —_ elz‘j‘r + Z 77j9§+7

JENK

end

5.2.2  Device-to-Device Federated Learning

With Device-to-Device (D2D) communication [33], FL can be operated without the
requirement of a central aggregator [35]. In a purely serverless FL framework, the
nodes communicate with their immediate neighbors and resort to local aggregation

Fig. 5.1(b). At a given time ¢, the nodes share their locally learned parameters
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0. with their neighborhood ny. The recipients, in turn, perform aggregation of the
received models combining the incoming parameters 8}, with corresponding weights

{n;¥j € ny} to generate 0,2“: The entire operation of D2DFL is depicted in Alg. 2.

Algorithm 3: Gossip Federated Learning
Input: Model parameters 6, optimization parameters
Output: Gossip-aggregated model
for Nodes k = 1 ... N in parallel do
67" +— Model-Update(6't))
07! «+— Gossip Exchange (0;'7)
end
Function Model-Update(6}):
for batch b of size M € D, do
& = (xp, yp) is the data sample pairs in b
0,7 = 6] — a'VLi(&;6])
end
return 6,77
Function Gossip Aggregate(6}):
Perform aggregation handshake with a random node
Exchange models for aggregation between the pair
Aggregate received model
0;+T — 0;—1—7— + 7]j0§+T

return 7

5.2.8  Gossip Federated Learning

Gossip communication is another form of decentralized communication wherein the
nodes communicate with randomly selected peer nodes. Gossip Federated Learning
(GFL) was among the early fully decentralized FL frameworks to have been proposed
[98]. For a network with IN nodes, the nodes form random pairs with other nodes
from the network forming a gossip pair (i, 7V 4, j € N) as shown in Fig. 5.1(c).
Once the connection has been established, the pair exchange their locally updated
models 6%, 0; and in turn aggregate with the received model parameters to generate
0!t and 0;“. The process results in considerably curtailed communication costs.

The details of the operation have been provided in Alg. 3.
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5.2.4  Hierarchical Device-to-Device Federated Learning

Hierarchical D2DFL employs aggregation at the device levels, edge servers, and cloud
servers. Thus the D2D, D2E and E2C links all are employed to enable such operation
[57]. The proposed mechanism allows for devices to perform local updates on their
model parameters 0}, and share them with their ny neighbors, leading to device level
aggregation. Simultaneously, the devices also share the model parameters with the
connected servers S;. The servers in turn aggregate the received models and share
along the hierarchy F eventually leading up to the global server S, as indicated in
Fig. 5.1(d). The global model 8" gets disseminated back to the nodes through
the respective servers and the process is continued till convergence. The details
of the entire process has been outlined in Alg. 4. While greater cooperation is
envisioned with this algorithm, the learning requires communication at both device

and upstream levels.

5.2.5 Hierarchical Gossip Federated Learning

Hierarchical FL, as described in Alg.1, allows the device layer to interact with Edge
Servers to aggregate local models, resulting in sub-global models. These models
are then passed onto the global server for generating the global model 8*. HD2DFL
builds on this configuration by allowing device layer entities to interact among them-
selves before sharing the local aggregated models with the higher edge layers. The
performance as shall be seen in Sec-5.4 indicates better performance albeit at the
communication volume, which is almost the joint sum of HFL and D2DFL. This
observation led the researchers in [58] to introduce gossip steps at the device level

instead of the full neighborhood aggregation as indicated in Alg 5.
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Algorithm 4: Hierarchical-D2D Federated Learning

Input: Initial Model parameters 6y, Neighborhood information
Gr = {IN, &}, Hierarchical servers K with device
association

Output: Global model parameters 0;_,

Initialization by global server: 6, received by each hierarchical

server 5; and broadcast among the connected nodes n;
for Node k = 1 ... N in parallel do

0, «— Model Update(0})
0?6 «— D2D Aggregate(65,ny) ;
end
if aggregation round % f == 0 then
for Servers S; Vi=1...... H (in parallel do
Sample g from the associated nodes and request parameters
Aggregate received parameters: 0;” =05+ wJH;-
JE€q
end
for Servers S; Vi=1...... H in parallel do
| Upload model 6%, to the global server
end
Global Aggregation : 6, =0, + ) 1,6}
JES;
Send model back to nodes through respective Edge Servers S;
end

Function Model-Update(6}):
for batch b of size M € D; do
& = (xp, yp) is the data sample pairs in b
0,77 = 0] — VL& 6})
end
return 0,7
Function D2D-Aggregate (0}, n;):
Exchange model with 1-hop neighbors n; with probability d,
Perform weighted aggregation for the received models
0;—1—5 — 925—%—7 + Z 77]'0;'+T

Jjen

return 925+5

The nodes communicate at the device level using random pairings, resulting in
gossip communication. These random node pairs exchange local models during this
stage to perform local aggregation yielding 6" for k = 1... N network nodes.
Subsequently, these gossip-aggregated models are shared with the edge servers for

hierarchical aggregation and subsequently cloud aggregation, respectively.
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Algorithm 5: Hierarchical-Gossip Federated Learning

Input: Initial Model parameters 6y, Neighborhood information
Gr = {IN, &}, Hierarchical servers K with device
association

Output: Global model parameters 0;_,

Initialization by global server: 6, received by each hierarchical

server 5; and broadcast among the connected nodes n;

for Node k = 1 ... N in parallel do

0,7 «— Model Update (0%)

0 «— Gossip Exchange (657)

end
if aggregation round % f == 0 then
for Servers S; Vi=1...... H (in parallel do
Sample g from the associated nodes
for j € Sampled Nodes do
Share model parameters 9;*5 with the server
end

Aggregate the received parameters
T 5 5
05" =057 + > w;0."

JE€q
end
for Servers S; Vi=1...... H (in parallel do
| Upload model 85 to the global server
end
Global Aggregation : 6., = 0, + > 7,6/""
JES;
Send model back to the nodes through respective Edge Servers
S;
end

Function Model-Update (6}):
for batch b of size M € D; do
& = (xp, yp) is the data sample pairs in b
0,7 = 0] — a[ VLI 0])
end
return
Function Gossip Aggregate(0)):
Perform aggregation handshake with a random node
Exchange models for aggregation between the pair
Aggregate received model : 07 = 947 4 ;0T
0,

t+7
el

return
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5.2.6  Clustered Federated Learning

Clustered FL (CFL) builds on fully decentralized Federated Learning while aiming
to reduce communication volume by clustering operations. The nodes in proximal
locations are grouped into Clusters formed around a Cluster Head (CH). The de-
vices become a Cluster-Member (CM) by associating with a Cluster Head C;, itself
a device. During the training phase, the device performs local updates of their own
models i.e 0%. At the aggregation stage, each CM i shares its local model with the
CH i.e C;, with a probability dy. Subsequently, all the received models are aggre-
gated to generate the sub-global model 8¢ . The aggregated model is shared with the
respective CMs of i cluster. The process continues until an acceptable threshold

is reached. The details of the entire operation are presented in Alg. 6.

Algorithm 6: Clustered Federated Learning
Input: Model parameters 6, for each node, degree ny
Output: D2D Aggregated Models
Devices i = 1......C' chosen as Cluster Head (CH) of cluster C;
for free nodes k =1......N — C do
‘ Join C; V i € C as a Cluster-Member (CM)
end
for Cluster Head C;¥ i = 1...C in parallel do
Send model to CM {p : p €C;}
for Nodes k = 1 ... N in parallel do
| 6,7 <— Model-Update (6})
end
Receive models from CM {p : p € C;} with probability d,
Perform weighted aggregation of received models
0Lt = 0L 3 0l
JE€C;

end

Function Model-Update(6}):

for batch b of size M € D; do
& = (xp, yp) is the data sample pairs in b
0,77 = 0] — ajVLI(; 0))

end

return 0,7
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5.2.7 Clustered Device-to-Device Federated Learning (CD2DFL)

Clustered D2DFL (CD2DFL) builds on fully decentralized Federated Learning while
aiming to reduce communication volume by clustering operations. The devices join
a cluster by associating with a Cluster Head (C'H);, itself a device. The Cluster-
Members (CMs) in this case, continue local updates and D2D aggregating models
over their respective neighborhoods. After a number of local aggregation rounds,
each CH orchestrates a cluster-level aggregation wherein the CMs share their re-
spective models with the CH. Once aggregated, the CMs receive the aggregated
model 081 from the CH and continue with the D2DFL. Alg. 7 outlines the overall
procedure for CD2DFL.
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Algorithm 7: Clustered Device-to-Device Federated Learning
Input: Model parameters 6, for each node, degree ny
Output: D2D Aggregated Models
Devices i = 1......C chosen as Cluster Head (CH) of cluster C;
for free nodes k =1......N — C do

‘ Join C; Vi € C as a Cluster-Member (CM)
end
for Cluster Head C;¥ i =1...C in parallel do
Send model to CM {p : p € C;}
for Nodes k = 1 ... N wn parallel do
0/ «— Model-Update (6?)
0" «— D2D-Aggregate (6177, ny,)

end

Receive models from CM {p : p € C;} with probability d,

Perform weighted aggregation

ot = 057 + 3 07

JeC;

end
Function Model-Update(6}):
for batch b of size M € D; do
& = (xp, yp) is the data sample pairs in b
0,77 = 6] — [V Li(&; 6])
end
return 6,77
Function D2D-Aggregate (0}, n;):
Exchange models with 1-hop neighbors n; with probability d;
Perform weighted aggregation : 8/ = 0™ + Y ;07

JEN

return 0;*5

5.2.8 Inter-Cluster Device-to-Device Federated Learning

Clustered FL in the presence of D2D interactions significantly improves local coop-
eration. In this regard, the device’s ability to interact within their neighborhood
and subsequent consolidation at Cluster Head (CH) results in greater participation
in the overall aggregation scheme. In order to further expand this functionality, this
algorithm allows the Cluster Heads to communicate with the other CH’s using a
gossip mechanism. While the rest of the learning and aggregation process remains
similar to CD2DFL, the aggregation at the cluster head level is followed by the CH

exchanging the locally aggregated cluster model ¢ with other CH {C;|i # j} using
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randomized gossip. Each CH C; is allowed a limited number of gossip steps before
sharing the gossip-aggregated model OZFT with its respective CMs. As shown in Alg.
8, this allows both of communication to remain restricted to proximal locations while

still enabling models learned in farther clusters to be acquired.

5.2.9 Centralized to Decentralized Spectrum

The FedAvg is on the centralized end of the FL algorithms spectrum, whereas GFL,
D2DFL and CD2DFL are on the decentralized end. HFL, HD2DFL and HGFL avail
a mix of centralized and decentralized operations. iCFL and iCD2DFL, despite being
fully decentralized, mimic hierarchical behavior at the device level. The boundaries
between centralized and decentralized operations FL algorithms thus remain fluid,

allowing present and future algorithms to benefit from both types of interactions.
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Algorithm 8: Inter-Cluster Device-to-Device Federated Learning
(iCD2DFL)
Input: Model parameters 6, for each node, degree ny
Output: D2D Aggregated Models
Devices i = 1......C chosen as Cluster Head (CH) of cluster C;
for free nodes k =1......N — C do
| Join C; Vi € C as a Cluster-Member (CM)
end
for Cluster Head C;¥ i =1...C in parallel do
Send model to CM {p : p € C;}
for Nodes k = 1 ... N in parallel do
0/ «— Model-Update (6?)
0" «— D2D-Aggregate (6577, ny,)
Share model with CH C; with probability dj,
end
Aggregate models received from CM {p : p € C;}
07 = 85T+ Y 06
JeC;
021 «— Gossip Exchange (031)
end
Function Model-Update(6'):
for batch b of size M € D, do
& = (v, yp) is the data sample pairs in b
0.7 =0, — . VL,(&; 0;)
end
return 6,7
Function D2D Aggregate (0}, n;):
Exchange models with 1-hop neighbors n; with probability d;
Perform weighted aggregation : 8/ = 0™ + Y ;07

JEN

return ;"

Function Gossip Aggregate(6%):

forg=1...... ¢ gossip rounds do
Perform aggregation handshake with a randomly selected C;
Exchange and aggregate models between the pair
0;&1 — 0§+T + 77]'0;‘+T

end

return 6/

5.3 Experiments and Evaluation

A uniform evaluation strategy was devised to conduct an objective assessment of the

various FL algorithms. The experiments performed in this work use the MNIST [99]
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Figure 5.2: Synthetic data distributions for MNIST dataset across 40 nodes derived
from Dirichlet Distribution for different a values.

and FashionMNIST datasets [100]. A non-IID data distribution remains of primary
interest in this work. The experimentation included subjecting the FL algorithms
to ideal and noisy communication, probabilities of participation, data distribution
and aggregation frequency. Additionally, these algorithms were also subjected to

Few-Shot Learning details of which have been shared subsequently.

Non-IID Distribution The non-IID data partitions are generated using the
Dirichlet Distribution [101] parametrized by its concentration parameter o. The
value of a controls the degree of non-IID sampling spread across the clients with
lower values, resulting in higher imbalance. Lower values of a result in more skewed
datasets as shown in Fig. 5.2. A value of a between 1 and 10 results in a typically
non-IID data distribution, whereas lower values of a < 1 result in extreme non-IID
distributions. On the other end, values of o > 100 result in increasingly IID distri-
butions. The evaluation in this work uses & = 0.1 and « = 1.0 for generating highly

non-11D distributions.
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Extremely Skewed non-1ID Distribution This work also employs an extremely
skewed 2-class and 3-class non-IID cases where each node is trained using data sam-
ples from two and three classes only, respectively. Each node is randomly assigned
the determined number of classes and the individual class data is grouped into shards
of 50 images each. The nodes are then assigned a randomly chosen number of shards

sampled from their respective classes.

Neural Network and Development Environment The DNNs used for eval-
uations based on MNIST and Fashion MNIST datasets are comprised of two 2D
Convolutional blocks followed by a Dropout and two linear layers. The modes are
instantiated with the same weights while training is conducted using the SGD op-
timizer with a learning rate n = 0.01. The entire framework has been developed
in Python, whereas the learning algorithms were implemented using PyTorch. The
neural network trained for MNIST and Fashion MNIST contains approximately 2
million parameters Both neural networks use Rectified Linear Unit (ReLU) activa-
tions with all layers except the final layer, which uses Log-Softmax activation to

generate the class probabilities.

Training Regime The training environment assumes a network of 40 nodes, all
initiated with similar weights. Our framework allows for each node to control the
number of local updates as well as the learning rate and other hyperparameters.
However, for this work, only variation in number of training epochs has been con-

ducted across the devices.

Operating Characteristics The network topology generated for the experiments
consists of N = 40 nodes that are divided into C = 7 clusters. In order to ensure
reachability, v = 0.95 and v = 0.1 have been used. The former ensures that each
device has a direct link to 95% of the devices from the same cluster. Addition-
ally, 10% of each devices’ neighbors lie outside the cluster. This ensures that the
groups have sufficiently dense intra-device connections as well as having links with

nodes outside the current group. This resulting network graph remains reachable.



Chapter 5: Comparative Assessment of Federated Learning Algorithms 59

The experiments conducted during the course of this work encompass two differ-
ent participation scenarios: (a) Upstream participation with probability py and
(b) Neighborhood participation with probability dj The participation probabilities
of pr, = {0.9,0.6} and dj, = {0.9,0.6} have been used during the course of this work.
The two conditions have also been tested jointly to mimic scenarios of frequent strag-
glers and communication limitations.The channel conditions for both D2D and D2E
communication have been subjected to zero-mean Gaussian noise N (u = 0,0%)!

with o2 = 0.01,0.0025, 0.0001.

Few-Shot Federated Learning One-Shot FL [102] suggests training local mod-
els to completion before sharing with the global server. The resulting mechanism
enables significant reduction in communication frequency. Extending the idea, this
work subjects the FL algorithms to Few-Shot FL. The nodes perform significantly
more local updates before sharing their models. The scheme works with signif-
icantly reduced aggregation rounds and communication at both device and edge

level. However, it also results in higher client drift.

Asynchronous Operation FL envisions autonomy of operation at the device
level. By extension, this implies that not all of the devices perform same number of
update operations during the training phase. This may be caused by device being
active (or inactive) or a straggler. This work assumes that the devices are required
to work with a deadline after which they are required to share their respective
models for aggregation. This deadline-based asynchronous aggregation behavior is
replicated for the FL algorithms by allowing each device to undergo a range-limited

random number of training epochs.

IN(0,0?) noise instead of more detailed fading models and frequency-selective channel impair-
ments has been considered since the primary aim remains to gauge the impact of noisy updates
being used for aggregation.
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Figure 5.3: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST
for maximal participation pg,dr = 0.9 with asynchronous communication for Non-
IID distributions with Dirichlet parameter @ = 10 and a = 0.1

5.4 Performance Analysis

The following section encapsulates the findings for each of the mentioned simulation
conditions. The final test accuracies of each algorithm, averaged over three runs and
over all the nodes have been reported in Figures 5.3-5.7. Since one of the aims of
decentralized FL is to reduce the communication cost, we also present the number

of messages for each link type for each algorithm in Fig. 5.8.

5.4.1 FL with Maximal Participation and Ideal Communication

The ideal scenario assumes noise-free communication and a 90% device participa-

tion probability i.e. pg,dr > 0.9. As expected, greater non-IID distribution across
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Figure 5.4: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST
for limited participation py, dr, = 0.6 with asynchronous communication for Non-IID
distributions with Dirichlet parameter &« = 1.0 and a = 0.1

devices adversely affects the convergence rate and performance. The impact is re-
flected across all algorithms. However, results for FashionMNIST depict more loss in
performance. This indicates a strong correlation between the performance degrada-
tion jointly due to a DNN’s ability to learn and greater non-IID levels. The results
in Fig. 5.3 indicate that decentralized FL performs on par with their more central-
ized counterparts. The results also show that as distributions become more non-IID,
GFL, D2DFL and CD2DFL lag in learning performance when compared to the other
algorithms. However, GFL also incurs the least communication volume among all
the considered FL schemes since it only uses the least costly communication link as
shown in Fig. 5.8.

The decentralized algorithms also indicate a slightly slower convergence rate ex-
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acerbated as the training progresses. However, clustered operations, particularly
iCD2DFL and iCFL indicate better convergence and consistently perform better
than D2DFL and GFL. This indicates that inter-cluster cooperation orchestrated
by these algorithms helps in the learning performance and may help in arresting
overtraining even in the absence of global information. This is particularly evident

from iCFL where D2D interaction at the device level is absent.

5.4.2 FL with Limited Device Participation

The results in Fig. 5.4 present the results with reduced device participation. Less
number of devices joining an aggregation round may be caused due to stragglers or
busy devices. All the algorithms suffer from convergence issues as the device par-
ticipation is decreased. This implies that data distribution and device participation
have confounding effects on the learning performance of these algorithms. The dif-
ference in performance of the D2DFL, GFL and CD2DFL becomes more pronounced
than the rest as the training proceeds. The performance suffers clearly from over-
training compounded by lower number of devices as well highly non-1ID data. The
convergence rate of these three algorithms slows more evidently than the others as
the training proceeds. On the other hand, inter-cluster operations allow iCFL and
iCD2DF to perform better than the others even with 60% device participation.
The results from Fig. 5.4 are reinforced by testing the FL algorithms under
limited device participation and extremely skewed data distribution as shown in
Fig. 5.5. When subjected to 2-class and 3-class non-IID data distributions, the
localized operation in D2DFL, GFL and CD2DFL suffers more than the others.
Lesser number of classes result in almost 20% performance difference between these
algorithms and the rest as indicated in Fig. 5.5(a) and (c). The performance of iCFL
and iCD2DFL, however, remains remarkably robust even in the presence of these
extremely adverse conditions. Both algorithms, supported by inter-CH operation,
perform within 5% of the centralized and hierarchical algorithms. The convergence
rate of these algorithms retains its trajectory, while other decentralized algorithms

show greater divergence as the training proceeds. It may, therefore, be inferred
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that gossip operations by the CHs partially offset the degradation caused by the
lesser device participation and extremely non-IID data and acts akin to DropOut
operations in a DNN. Table. 5.1 provides an accuracy-based performance overview

of all the algorithms both with maximal and limited participation conditions.

pr="0.6,d, =06 pp=009,dp =09
Algorithm

a=10 a=01 a=10 «o=0.1

FedAvg 09794 08736 0.978  0.8810
D2DFL 0.9758 0.8454 0.9752  0.8849
HFL 0.9805* 0.9022* 0.9808  0.9257*
HD2DFL  0.9798* 0.8980  0.9831* 0.9189
GFL 0.8744 0.3824 0.9753  0.8398
HGFL 0.9801* 0.9015* 0.9800 0.9241
iCFL 09762 0.8972  0.9791  0.9142
CD2DFL  0.9694 0.8651 0.9730  0.8855
iCD2DFL  0.9803* 0.8983  0.9800 0.9162

Table 5.1: Accuracy comparison of FL algorithms for two sets of pg, d; values and
different values of the Dirichlet parameter « (lower values indicate increased non-11D
distribution). Highest accuracies within A = 0.001 have been marked with asterisk

()

5.4.83 FL with Noisy Communication

The largest application of Federated Learning is envisioned in wireless spectrum.
However, wireless media is subject, among other challenges, to a significant pres-
ence of noise. With FL requiring to exchange hundreds of thousands of parameters,
presence of noise may cause the convergence to slow down considerably. The FL
algorithms during the current research were subjected to the presence of Gaussian
Noise A (0,0?) both at the device communication level and during D2E and E2C
communication. From Fig. 5.6 it can be observed that the addition of noise at

the aggregation stage mildly slows down convergence. HGFL progressively shows
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Figure 5.6: Average Test Accuracy for (a)-(c) MNIST and (d)-(f) FashionMNIST for
N(0,0?) noisy communication with py, dj, = 0.9 and Dirichlet parameter o = 0.1.

a reduction in performance as o2 is increased. However, clustering operations in
iCFL and iCD2DFL allow them to closely follow the performance by HD2DFL and
HFL. In contrast, GFL shows reduced convergence as compared to D2DFL. How-
ever, as training progresses, D2DFL and CD2DFL both also indicate a plateauing

convergence rate.

5.4.4 Few Shot Learning

Few-Shot FL offers one way of reducing communication cost when applied prop-
erly. The devices undergo multiple local updates before sharing their models for
aggregation. Fig. 5.7 shows the result of Few-Shot learning applied under maximal
and limited device participation scenario with pg,d, = 0.9 in Fig. 5.7(a)-(b) and
Pk, dr = 0.6 in Fig. 5.7 (c¢)-(d). The additional difference in performance can be
attributed to greater non-IIDness in figures (c¢) and (d). The impact of client drift
on all algorithms causing the learning to plateau earlier than the regular learning

regime is evident when its results are compared with the ones shown in Fig. 5.3-5.4.
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Figure 5.7: Average Test Accuracy for Few-Shot Learning for MNIST and Fashion-
MNIST with (a)-(b) px,dr = 0.9 and (c)-(d) pg,dr = 0.6 with r = 20 aggregation
rounds and epochs in range [15,20] with asynchronous communication for Non-IID
distributions with Dirichlet parameter e = 0.1

Overall, the decentralized variants are impacted worse than the centralized and hi-
erarchical algorithms. Additionally, the performance of D2DFL, GFL and CD2DFL
lags further than the rest as training progresses. The performance of iCFL and
CD2DFL while showing a relatively bigger drop than when subjected to a normal
training scheme, still achieves an accuracy within 5% of the centralized algorithms.
The overall performance suggests scenarios where Few-Shot learning may be consid-

ered practicable when communication costs become prohibitive, especially or shared

updates are infrequent.
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Figure 5.8: Average FL Algorithm Accuracy and per-Node Communication Volume
for asynchronous aggregation for 30 rounds with the MNIST dataset.

5.4.5  Communication Cost and Volume

When dealing with different FL algorithms, it is essential that the difference between
links employed during the operation is kept in purview. The work in [103] suggest
that D2D links like LTE-Direct, WiFi Direct or DSRC are more energy efficient than
Device-Edge cellular links like LTE. Furthermore, the same research also indicates
that the mentioned D2D links offer reduced latency when compared with cellular
communication. E2C links must be be preceded by D2E links for any communication
meant for the cloud. It may therefore be inferred that the energy cost and latency of
uploading to the cloud may well be more than both D2D and D2E communications.
It is with this understanding that Fig.5.8 considers D2D links as least costly and
E2C links as most expensive both in terms of energy and latency.

Fig-5.8 shows the communication volume required by different FL algorithms.
This is calculated by identifying the number of aggregation rounds required by each
of the FL algorithms and are categorized according to the target level (device, edge or
cloud). The centralized variants employ more expensive cellular communication for
D2E communication. The additional load on network backbone in form of E2C links

is bound to significantly increase the cost for FL albeit its improved performance.
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Fig.5.8 shows the communication volume in terms of communication rounds for
various FL algorithms with the accuracy achieved by the respective algorithms under
non-I1D data settings. The highest performing algorithms use the most expensive
forms of communication. On the contrary, decentralized FL variants indicate slower
convergence but also incur less communication cost.

Comparably, decentralized scheme with inter-cluster aggregations show appre-

ciable performance, falling slightly short of the accuracy of HGFL and HD2DFL.

5.5 Conclusion

This work presents a comprehensive comparison of various FL algorithms that have
so far been viewed only from the perspective of Centralized FL. The FLAGS frame-
work developed for this purpose enables configuring multiple FL architectures expe-
ditiously. The contrasting highlight of this work is a detailed comparison of major FL
algorithms under some of the most dominant challenges in this domain. frameworks.
The analysis conducted here indicates that decentralized FL performs comparatively
well despite no or minimal upstream communication. Even though noisy communi-
cation and irregular participation negatively impact decentralized FL performance,
such modes are still capable of achieving acceptable performance thresholds. How-
ever, extremely skewed data distributions degrade fully decentralized FL consider-
ably more than centralized ones. The results indicate that FL. modes may be used
interchangeably depending on the network conditions and the communication costs.
As part of future work, we also intend to investigate the performance of the FL algo-
rithms for feature-skewed non-IID distributions. Furthermore, based on the results
presented here, the next milestone would be to formulate an adaptive mechanism
based on the operating and environment characteristics where the nodes may be

suggested to follow a particular FL algorithm for efficient operation.
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Chapter 6

IMPLICATIONS OF NODE SELECTION ON DFL
UNDER VOLATILE CONDITIONS

6.1 Introduction

Decentralized Federated Learning (DFL) offers a fully distributed alternative to
Federated Learning (FL). It enables devices to interact directly with their neigh-
bors without needing external coordination. While DFL may suffer from slower
convergence rates, it remains a feasible alternative and benefits from increased local

interactions, particularly in clustered settings, as shown in [47].

Recent advances in DFL are based on Device-to-Device (D2D) or Gossip in-
teractions that manage the learning process while restricting the communication
between devices. A DFL setting for massive IOT setting is presented in [104]. Their
results indicate convergence for DFL both in model and gradient exchange scenar-
ios. The authors of [105] propose a DFL setting with compressed communication for
enhanced communication efficiency. They provide a formal convergence analysis for
compressed DFL for strongly convex objectives. The work in [106] proposes a DFL
setting with unreliable communication using User Datagram Protocol (UDP). The
suggested approach indicates that DFL remains robust and can match performance

with vanilla DFL.

Research indicates that participation and data heterogeneity in FL lowers the
convergence rates. One avenue to improve convergence while operating under non-
uniform conditions has been node selection. Node selection relies on identifying and

using only beneficial nodes in the aggregation process. The major focus of client
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selection has remained in conventional FL settings. The node selection for FL for-
mulated as the secretary selection problem is presented in [107]. Their proposed
strategy for client identification employs test accuracy as the performance metric.
The work in [108] uses a multi-agent Reinforcement Learning strategy for client
selection. The associated state vector includes the probing loss, communication la-
tency, and cost of communication to indicate the utility of a model as well as node
accuracy and computation latency to cater to device diversity. Similarly, the authors
in [109] propose a deadline-based client selection for a Federated learning setting.
The suggested scheme maximizes the number of clients involved in a single aggre-
gation round. To ensure quality updates, the solution aggregates all clients that
have completed their tasks within the allocated computation and communication
constraints. In [110], the authors model the client loss using a Gaussian Process
(GP). Their client selection strategy is based on minimizing the posterior expec-
tation of the GP. Each selection updates the posterior based on the change in loss
brought by the previous selection. The research conducted in [111] proposes a Power
of Choice client selection strategy based on their observation that biasing the client
selection process towards higher local losses increases the convergence rate. The
existing global model is sent to a set of sampled clients, and the clients returning

the highest local loss are selected for participation in the next training round.

Due to its distributed nature, the convergence rate for DFL is more adversely im-
pacted. Therefore, the research conducted here intends to evaluate the implications

of node selection for DFL under more challenging operating conditions [48].

6.2 Node Selection in Federated Learning

The FL paradigm assumes significant heterogeneity among nodes. Device partici-
pation remains one of the major heterogeneity aspects since: 1. it must encompass
realistic device characteristics 2. it ascertains the overall volume of communication
3. it determines the access to various distributions during the aggregation phase It

has, therefore, been a major theme in FL research to ascertain node selection based
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on their utility and its impact on convergence. Node selection in centrally orches-
trated FL benefits from the presence of a global model and greater visibility into
the node characteristics and performance over time. In DFL, on the other hand,
the process rests on local information and interaction. While the aim is to restrict
upstream communication to make DFL more communication-friendly, local inter-
action also means slower information diffusion across nodes. Furthermore, client
drift due to multiple local steps in an asynchronous setting becomes a major fac-
tor. It, therefore, becomes more important to evaluate whether node selection based

on local information may offer a feasible solution to accelerate DFL convergence rate.

Node Selection Frameworks: Node selection in FL can be attributed to one of
the four main categories: 1. Similarity 2. Reputation 3. Deadline 4. Performance.
Similarity-based selection depends upon a similarity measure between the client’s
neural network with a global reference model and uses nodes with higher similarity.
The similarity may be calculated based on L2-Norm-based model divergence, cosine
similarity, and a fraction of same-signed parameters. Reputation-based node selec-
tion assigns a trustworthiness factor to the participating nodes. This trust factor
may be assigned based on maximal participation, training completion within the
designated time, or contributing quality updates. Deadline-based selection entails
using only those nodes that can share their updated models within a predetermined
time frame. Performance-based selection relies instead on the results of the learning

operation.

Feasibility of Node Selection in DFL: In a DFL setting, similarity-based sys-
tems are challenged by the absence of a meaningful reference. Similarly, reputation-
based systems require some trusted intermediary to assign reputation scores and
become impracticable in their absence. Reputation-based scoring also assumes an
external entity associating trustworthiness scores with each node. Deadline and
performance-based selection require no external intervention and may be utilized for

DFL. However, the access to participating nodes in a DFL scenario is considerably
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lower than in a centralized setting, which may adversely impact the performance.
For the mentioned reasons, we focus on the performance-based selection for the de-

fault DFL setting in this work.

Hard vs. Soft Selection: Regardless of the specific criterion used for calculating
the selection scores, two methods exist for filtering the most beneficial nodes: hard
and soft. Hard selection involves selecting the top-k nodes based on their scores for
participation in the aggregation round. The threshold to choose ‘k’ is determined
by the overall fraction of neighborhood nodes allowed for aggregation. On the other
hand, soft selection aims to promote greater client diversity by using a probabilistic
selection process, with high-scoring nodes getting higher probabilities assigned. By
guaranteeing a non-zero minimum probability, soft selection ensures that all nodes

can be selected for aggregation.

6.3 Node Selection for DFL

The contribution of nodes participating in an FL process becomes skewed as data
distribution, participation, and local updates become more heterogeneous. This
work intends to identify whether local performance is a good indicator of node

performance under DFL settings.

Selection Criteria For assessing the efficacy of node selection in DFL, we look
at the following performance-based selection criteria: 1. Training Loss Score 2. Val-
idation accuracy score 3. Joint parametric score

Training Loss Score: One of the commonly used metrics for node selection is the

training loss [112] where the score is assigned as:

st = \/ﬁ > Li(k)? (6.1)

where D; is the local data, m is the minibatch and [; is the local learning loss
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function.
Validation Accuracy: Another metric used to rank the nodes according to their
contributions is the validation accuracy [107] averaged over the number of local

updates as:

. NAccuracy
S = —
1

. (6.2)
where % accuracy is calculated over a common validation dataset. It is worth
mentioning that test accuracy has also been used to establish such a utility. However,
this work considers using a common validation dataset as the realistic approach.

Parametric Score: The training loss and validation accuracy are indicators of var-
ious aspects of training. However, training loss may indicate biased results under
heterogeneous and skewed data distributions. Accuracy calculated over a common
dataset may offer a more insightful relative picture of the overall performance of a
node. Furthermore, the node performance changes as training progresses, achieving
a higher accuracy delta during the earlier training phase and the improvement in
later rounds coming at a considerably slower pace. The parametric score proposed
in this work uses this observation and suggests a time-varying scoring method based
on both validation accuracy and its corresponding change. The score is designed to
associate more weight with a change in accuracy during the earlier training phases.

The parametric score for each node is assigned as:

AA; -
(J?m)) | (O_He((lw)mgﬂ))>
AN T NS g

The expression has two components, the ‘Accuracy Factor (AF)” and the Change
in Accuracy Factor (AAF) where AA! is the change in accuracy from the previous
round, A! is the validation accuracy for the current round, ¢ represents the current
communication round. The value of v controls the shape of the weighing curve.

We restrict the value of v such that 0 < v < 1. The factors a and [ are the
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Figure 6.1: Surface Plots for Accuracy Factor and A Accuracy Factor plotted against
rounds and the accuracy and its change, respectively.

scaling factors for cA! and AA!

177

respectively. The € in AF is an offset factor to
avoid division by 0 and is chosen to be 0 < € << 1. Both terms constituting the

expression for s! are normalized against their maximum possible values.

6.4 Experiments and Evaluation

6.4.1 FExperimental Setup

The experiments performed in this work use FashionMNIST dataset with non-I1ID
data partitions generated using the Dirichlet Distribution parameterized by its con-
centration parameter «. Lower values of a result in more imbalanced distribu-
tions across the node. This work also employs an extremely skewed 2-class and
3-class non-IID case where each node is trained using data samples from two and
three classes, respectively. The neural networks used for evaluations comprise two
2D—Convolutional blocks followed by a Dropout and two linear layers instantiated
using the same weights. The training uses the SGD optimizer with a learning rate
17 = 0.01. The evaluation uses N = 60 nodes operating asynchronously, each with
several local updates ranging from e,,;, = 1 to €., = 4 during each aggregation
round. Each node has an associated participation probability ranging from 0.2 to

0.7 for replicating stragglers, incomplete training, and device activity. The diversity
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created through both these aspects ensures an asynchronous FL setting, allowing

the necessary autonomy to the nodes.

o s . a=0.1 s =2 s=3
Criterion / Distribution =02 pi=03 p=07 =02 pi=03 pi=07 p =02 p=03 p=07
PS-Exp 0.6 0.686 0.827 | 0.383 0.481 0.596 0.567 0.657 0.919
PS-Norm 0.549 0.699 0.823 | 0.305 0.427 0.599 0.538 0.611 0.918
PS-Skew 0.612 0.707 0.831 | 0.378 0.48 0.601 0.591 0.656 0.916
PS-Lin 0.597 0.696 0.834 | 0.341 0.465 0.603 0.555 0.659 0.922
HS-Acc 0.555 0.674 0.82 0.332 0.416 0.589 0.517 0.652 0.918
HS-Loss 0.493 0.676 0.825 | 0.333 0.4 0.596 0.491 0.638 0.918
Random 0.752 0.776 0.831 | 0.564 0.577 0.627 0.691 0.779 0.963

Table 6.1: RESULTS FOR VARIOUS SELECTION CRITERIA, DATA DISTRIBUTIONS,
AND PARTICIPATION PROBABILITIES (p;) FOR FASHIONMNIST DATASET

6.4.2 Selection Criteria

The node selection criteria employ both hard and soft selection for this work. Hard
filtering uses the training loss (HS-Loss) and validation accuracy (HS-Acc) score.
Node selection using the parametric score (PS) adopts a soft filtering approach. The
probabilities in this work are assigned to the nodes as per the following distributions:
1. Exponential Distribution (PS-Exp) 2. Normal distribution (PS-Norm) 3. Skewed
distribution (PS-Skew) 4. Linear distribution (PS-Lin) Furthermore, Random Se-
lection (Random) extends stochastic participation by the nodes in all rounds. The
participation threshold is 0.2 < p; < 0.7. This work assumes that for each round
at t, a maximum of p; proportion from the n; one-hop neighbors and share their

models within their respective neighborhoods.

6.4.3 Results and Analysis

The results of node selection criteria in Section-6.3 are depicted in Fig-6.2 and
6.3 and Table-6.1. The results represent various participation levels from p;, =
{0.7,0.3,0.2}. The participation levels are associated with three non-IID distri-
butions, « = 0.1 and s = 2 & 3 for two and 3-class skewed data distributions.
It may be observed from the results that ‘Random’ selection tends to benefit the

convergence process more than others, particularly under cases with lower partici-
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Figure 6.2: Average test accuracy for 50 Communication rounds for non-I1ID dis-
tributed FashionMNIST with a = 0.1, s = 3 & s = 2 and participation threshold
asp; = 0.5 & 0.3
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Figure 6.3: Average test accuracy for 50 Communication rounds non-I1ID data dis-
tributions of MNIST for o = 0.1, s =3, s =2 and p; 0.5 & 0.3
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pation levels. As the participation levels improve, the convergence rate offered by
other selection criteria approaches that of random participation. Furthermore, hard
selection methods show higher variance levels than soft selection. This variance
shows signs of increasing as participation levels drop. The results indicate that al-
lowing maximal participation under conditions of low participation may indeed be
more beneficial than filtering nodes. The performance of random selection points at
achieving greater data diversity from among the nodes, especially under cases with
increasingly heterogeneous data distribution. This diversity ensures better gener-
alization among all other selection criteria considered in this work. Furthermore,
results indicate that parametric scoring with exponential and skewed distribution
(PS-Exp and PS-Skew) outperforms the other methods as the distribution and par-

ticipation levels become more extreme.

6.5 Conclusion

Selection in FL settings has improved convergence and communication efficiency.
This work evaluates the implications of using node selection in DFL settings, particu-
larly regarding convergence. Assessments have been made with hard and soft /stochastic
selection methods based on performance metrics such as training loss, validation ac-
curacy, and a parameterized variant. Results indicate that the impact of selection
bias is more pronounced in volatile environments with limited client participation.
Hard selection methods are shown to be more prone to extreme data distributions
and node participation. Random selection may be more suited to ensuring various
distributions under extreme conditions.Further studies into information diffusion
under extreme data distributions and volatile node participation may also help in

understanding the progression trends of DFL.
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Chapter 7

ASSISTING DECENTRALIZED FEDERATED
LEARNING USING MEMORY AND AUGMENTED
GRAPHS

7.1 Introduction

As a serverless alternative, the performance of Decentralized Federated Learning
(DFL) is strongly impacted by the local connectivity among the nodes. In addition to
the graph structure itself, node characteristics are also a major factor in determining
the overall performance. Nodes’ participation in the learning process, their ability
to complete the learning tasks and share their models within its neighborhood are
characteristics that tend to alter the underlying connectivity dynamically. The effect
of these factors becomes even more significant when considering extreme behavior.
In contrast to maximal participation, nodes may also depict extremely uncertain
behaviors vis-a-vis participation in the learning process on account of various factors,
including local resources, activity status, mobility, lack of incentives, etc. This leads
to device volatility in which a significant fraction of devices are unable to participate
in various stages of learning. The work presented in Ch-6 evaluates the impact of
device volatility in DFL and its impact on the convergence rate. The results indicate
that as the volatility increases, local information tends to become insufficient for
ascertaining device performance, and thus, random neighbor selection remains the
most viable option for node selection under volatile conditions. In this chapter, we
investigate alternatives to boost DFL performance for volatile conditions that go
beyond 1-hop neighbor node selection.

In Decentralized Federated Learning (DFL), each node shares performs a local

stochastic gradient update on its model using its private data. It then shares its
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updated model within its 1-hop neighborhood through D2D interaction. The shared
updates are used in weighted aggregated locally and successively propagated along
the network [37]. The information diffusion across the network is slower as the
shared updates are down-weighted during each communication round as the mod-
els propagate through the network. While fully and densely connected topologies
improve convergence, real-world configurations follow sparse configurations, imply-
ing reduced neighborhood sizes and lower convergence rates [38]. The autonomous
operation of nodes also impacts the convergence rate negatively since they may
choose to skip training/communication rounds altogether. A significant proportion
of nodes depicting such uncertain behaviors leads to a volatile participation environ-
ment [39], resulting in an unstable availability of neighboring nodes for model ex-
change. Jointly, both graph sparsity and participation volatility significantly impact
the convergence rate in DFL. Furthermore, they aggravate the impact of data het-
erogeneity as the models become increasingly skewed toward the data distributions
of the proportion of available neighboring nodes in an already sparse neighborhood.
The impact of sparse topology in DFL has been researched in [105,113,114]. How-
ever, the focus of volatility recent works has remained in centralized FL [39,86,87].
The works on DFL have so far assumed a consistent node behavior. Whereas FL can
use global information to muster a larger proportion of available nodes, such is not
feasible in DFL scenarios, resulting in time-varying sparse topologies. By extension,

the solutions to these challenges must also be local in nature.

Our own work and existing literature have shown that volatile operating con-
ditions and heterogeneous data distribution adversely impact learning performance
and convergence of DFL. Relying only on local neighborhood information and in-
teractions exacerbates these issues. We have also seen that curating local neigh-
bors does not offer a significant advantage. This work focuses on DFL operation
in a sparse topology under extremely volatile conditions coupled with highly het-
erogeneous data. As such, we investigate alternative methods to accelerate DFL

convergence under harsh conditions by introducing ideas to assist learning, namely
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a) limited memory and b) relay operations. With this framing, we first propose an
algorithm by re-using models from the previous round as approximations for the
absent nodes. We then design a second algorithm around graph augmentation by
allowing nodes to relay models. Utilizing the similarities between these algorithms,
we propose a joint scheme that allows nodes to utilize stored models both locally
and for relay operations. We call this as Assisted DFL where the aforementioned
mechanisms assist DFL in volatile conditions. The algorithms are referred to as
Memory-Assisted DFL and Augmented Graph-Assisted DFL, whereas the hybrid is
titled as Memory and Augmented Graph-Assisted DFL. The proposed algorithms
outperform the baseline DFL as extreme scenarios challenge the overall learning op-
eration. Furthermore, the proposed hybrid outperforms the individual algorithms

and the baseline while operating locally.

7.2 Memory-Assisted DFL (MA_DFL)

The realistic behavior of nodes in an FL environment depicts heterogeneous partic-
ipation and training [115]. This stems from several factors, including node activity
and mobility, resource and communication heterogeneity, privacy concerns, and lo-
cal data distributions. Participation volatility in such scenarios arises from a high
probability of nodes dropping out from the update or communication phase. The
overarching operating conditions subject the nodes to a highly volatile setting, as-
suming that only a fraction of nodes join a given aggregation round. This implies
that participation across neighborhoods remains highly uncertain. In such a sce-
nario, our solutions rely on the nodes’ ability to retain the models from the previous
round. Each node manages an array of models it had received in the previous round

and uses them in conjunction with the models from the current round.

The impact of the absence of models from a significant proportion of neighbor-
hoods may be offset by considering approximations of these models. The models
shared by the respective nodes in the previous rounds may be considered as a po-

tential representative of the current ones. However, under asynchronous operating
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conditions where the nodes conduct varying levels of training, more recent model
updates may be considered as the closest approximations to the current models. It
is on the basis of this assumption that we introduce a memory array for the Memory
Assisted DFL. Each node stores models from the current aggregation round in its
own memory array. Due to limited neighborhood sizes and volatile participation, it
can be seen that the array size remains limited. In the subsequent round, each node
identifies the absent nodes and checks whether their models were shared during the
previous round and, therefore, are part of the memory array. Wherever possible,
each node utilizes these models as approximations and includes these in the aggre-

gation process.

The sequence of operations in Memory Assisted - Decentralized Federated Learn-

ing (MA_DFL) has been provided in Alg-9. Each node ¢ receives models from 7!

set of nodes for a given round ¢, where |7}| << |n;| V ¢t . The membership of 7!
for each node j € n; is controlled by its respective probability pj; of sharing with
a target node 7 in a Device-to-Device (D2D) operation. Each node in MA_DFL

! nodes it received in the pre-

maintains an array M!"! of models from r € 7~
vious t — 1 aggregation round. At the beginning of the aggregation round ¢, the
device i communicates its updated model 6:" to s! nodes within its neighborhood
such that |sf| << |n;|. Assuming D2D links, ¢ communicates stochastically with
each node in j; € sj, determined by the parameter pj; allowing devices to cooper-
ate independently of others. This allows them the necessary autonomy over their
operations as envisioned for a volatile FL setting. Similarly, every node ¢ receives
models 6577 from 7; = {r; | r; € n;} set of nodes each with a probability p,; such
that |m;| << |n;|. Once the communication stage is completed, each node i performs
weighted aggregation of its own model 8/t with the received models 6.7 and the
models v* = {0t | k € (717! \ 7!)} implying using models stored M.~ given they

have not been received as part of the 7!. Finally, the node 7 updates its memory

array M! with models 6, received from node set 7.



Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 83

Algorithm 9: Memory Assisted-Decentralized Federated Learning

Input: Nodes N with model parameters 6%, participation probability
pi fori=1...... N, aggregation rounds t =1...... T, memory
array for round t M

Output: Local consensus model 6*

for roundt=1,2...... do

for Nodesi = 1 ... N in parallel do

for minibatch &, (Tm, ym) in local data D; do

| Gradient update: 0177 = 0! — alVLi(2m, Ym; 6F)

end

Send 0; to j € s} C n; neighboring nodes with probability pf;

Receive models 0577 V r € 7l set of nodes with probabilities pt,

if M!™' # ¢ then

vi={0" | ke (m ' \nl)}
O =0T+ 3 0T+ > 6!
TET; kev!
else
0" =00+ 3 0,0
TET;
end
end

Update M : Mt = {6]r € 7!}
end
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Full Memory-Assisted DFL (FMA _DFL) The size of the Memory array in
MA_DFL has been restricted to retain models only from previous training rounds.
The key aspect remains that of asynchronous training, where devices perform various
levels of training and the participation remains uncertain. The most comparable
work remains in [93] that employs the entire memory array as a difference of models
at the node level while supporting asynchronous training. However, the difference is
calculated using a global model aggregated at the parameter server, which allows the
nodes to benefit from the global distribution. In DFL, the lack of global information
and asynchronous operation may lead the nodes to diverse local minima resulting in
a slowdown of the convergence rates. However, to justify this hypothesis, we present
empirical results for Full Memory-Assisted DFL (FMA_DFL). The main difference
between MA _DFL and FMA _DFL is the latter’s ability to retain models from all
training rounds. The models are updated once they are received; however, they are

retained in the memory array until the node participates again.

7.3 Augmented Graph-Assisted DFL (AG_DFL)

Under the conditions of volatility where device participation remains uncertain and
low, one of the key aspects remains to increase the participation of the nodes in the
learning process, as evident from the results in [48,88]. Incentivizing mechanisms
and relaying operations are two major avenues through which node participation has
been attempted to be increased. However, incentive solutions require third parties as
purveyors of the rewards, which are currently assumed to be absent from a fully de-
centralized setting. Relaying models remain an important alternative in this regard.
However, the key concern with relaying operations is the associated increase in the
overall communication volume and communication resource heterogeneity among
the participants. Anticipating these challenges, we propose an Augmented-Graph

DFL (AG_DFL) scheme with selective relaying options.

The basic premise of decentralized operations assumes a knowledge of the local

neighborhood. This allows the nodes to conduct 1-hop communication during DFL
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when sharing their models. Extending this further, we can further use the standard
assumption of prior knowledge of the Adjacency Matrix [83]. The same may be

assumed in two stages:

1. Nodes establish local neighborhood information

2. Nodes exchange respective neighborhood information with their 1-hop neigh-

bors

These two steps allow nodes to establish unified information on the adjacency
matrix and employ it for relay operations. Using the adjacency information, each
node 7 establishes a set of nodes O;; : O;; = {m|m € (n; \n;) Vi€ N,j € n;} ie,
O;; is a set of neighboring nodes of ¢ not part of node j € n;. Each node establishes
sets O;; for each corresponding node j in its neighborhood. The setting follows
volatile conditions where each node i gets access to 7; set of nodes from its neigh-
borhood where m; << n;. With fractional participation, a relaying option allows
participating nodes to relay one additional model during the current aggregation
phase selectively. However, the sequence followed during the communication stage
must remain intact as the nodes transmit the models first. Therefore, the models
to be relayed must already be available at the transmitting nodes. To facilitate this
operation, each node i maintains an array M!™! of the models 65! V r € 7/ ! it re-
ceived in the round £ — 1. At the beginning of the round ¢, each node 7 first performs
a local update on its model parameters to obtain 6;"". Next, when sending its model
to node j, node i identifies the set of nodes Cy; = {p | p € (O;; N7™!) i.e Cyj is the
set nodes from whom node 7 received models in the round ¢ — 1 while concurrently
not being part of the neighborhood of node j i.e., n;. When transmitting, the node ¢
randomly selects a model 017 : g € Cj; & 6571 € M~ It the transmits the models
0t and 02*1 to the node j. Once the relaying process is completed, all the nodes
perform the local averaging process based on the models 6.7 received from r € 7!

t+1
ei

nodes to obtain . Subsequently, each node updates the stored array M?! with

the models received in the current round from nodes in 7.
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The key factor behind choosing ¢ randomly from Cj; is that the nodes in O;; do
not contribute to ; directly in any round. Sending models from ¢ to j when for
the underlying graph G, &;, ¢ &g is akin to adding a virtual edge between nodes j
and ¢ at time ¢, thereby augmenting the graph. Under conditions of participation
volatility and sparse connectivity, such temporary edges allow greater participation
and enable access to a wider distribution. The details of the operation of AG_DFL

have been provided in Alg-10.

Algorithm 10: Augmented Graph-Assisted Decentralized Feder-
ated Learning

Input: Clients N with model parameters 6% and participation
probability py for k=1...... N, aggregation rounds 7',
Model Array M!, Adjacency Matrix Wg

Output: Local consensus model 6}

for nodesi=1...N in parallel do

for node j=1...... n; in neighborhood do
| Establish O;; : O;; ={m |men; A m¢n;}
end
end
for roundt=1,2...... do

for Nodesi = 1 ... N in parallel do
Perform local gradient update:

0; "7 =0 — alVLi(wn, Yn: 6}) ;
if M!™' £ ¢ then
Identify Ci; = {plp € (O N7 ™) };
if C;; # ¢ then
Randomly choose a node ¢ from Cj; ;
Send 67 and 07" to j € n; with probability p;
else
| Send 6; to j € n; neighboring nodes with probability pj;
end
Receive models 0577 V r € 7l C n; and relayed models
pi=10" 1 k€ Cu}
if pt # ¢ then
0" =00+ 3 0T+ 3 m8y

TET; k:EpE
else
‘ 07 =00 + 3 0T
rem;
end
end

Update M : M! = {6 |r € ©l}

end
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7.4 Memory and Augmented-Graph Assisted DFL (MAG_DFL)

The nodes in both MA_DFL and AG_DFL rely on storing models received in the
previous round in a memory array M!1. It is, therefore, a logical extension that
both algorithms be merged into one that allows nodes to employ stored models
jointly for local aggregation and relaying simultaneously. The two algorithms add
fractional costs to both storage and computing. The memory array M! contains
models only from the previous round. Assuming each model has a size of d bytes,

even if the array were to extend storing for all the rounds, the maximum size of the

array, h(M"), would be hyq, : h(M!

max

) = d x n; bytes where |n;] << N. Under
volatile conditions, when the nodes participating in the aggregation are m; << nj,
this indicates h(ML,) << hyq,. For the communication part in FL, each node
transmits b = d x |n;| bytes. However, when sending to |s;| << |n;| nodes, the
total communication volume for each node in a D2D setting is b X |s;|. In addition
to the given relay mechanism that adds one additional model per each node in s;,
the total communication volume comes at 2b x |s;|. However, since |[s;| << |n,

the communication volume, including relaying additional model, remains less than

ni]
5

the overall volume for |s;| < More so, until the neighborhood participation
exceeds 50%, the communication volume for relay operation does not exceed the full
participation scenario. Further reduction may be achieved if the relay operation is
made stochastic.

Given the overall communication and storage cost, Alg-11 presents the Memory
and Augmented Graph-Assisted DFL (MAG_DFL) algorithm, a hybrid based on
MA _DFL and AG_.DFL. MAG_DFL algorithm merges the unique steps of both Alg-
9 and Alg-10. The key aspect is maintaining a local memory array M’ at each
node ¢ and computing the set O;; for each node j € n;. Once the model update
has been completed, each node ¢ randomly selects the model 92_1 for q € C;j where
C;; is formed by the intersection of 7/~' and O;;. The models 6! and f.~" are

communicated to the s! set of nodes. Once the models from nodes 7; from the

1-hop neighborhood and p; relayed nodes have been received, the node performs
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aggregation. The aggregation step sees the nodes’ model and the ones received
during the current round and two sets of models from the previous round, the ones

stored in local memory and those relayed by its neighboring nodes.

Algorithm 11: Memory and Augmented Graph-Assisted Decen-
tralized Federated Learning

Input: Clients N with model parameters 6! and participation
probability pp for k=1...... N, aggregation rounds R,
Adjacency Matrix W, Model Array M

Output: The consensus model 6*

for nodesi=1... N in parallel do

for node j=1...... n; in neighborhood do
| Establish O;; : Oy ={m | men; AN m¢&n;}
end
end
for round t=1...... do

for Nodesi = 1 ... N in parallel do
Perform stochastic gradient update
0,77 = 0] — AV Li(xm, Ym; 0))
if M!™' # ¢ then
Identify Cy; = {plp € (O;; N7 ~") }
Randomly choose a node ¢ from Cj;
Send 0" and 0!~ to j € n; with probability p!;
else
Send 6! to j € n; neighboring nodes with probability
pgj
end
Receive models 6177 V r € !t C n; and relayed models
o= {0 | ke O
Ascertain v} : v = {0% | k€ (i1 \ 7))}
if pl# ¢ and v} # ¢ then

0 =00+ 3 06T+ 3 b+ Y bl
TEM; kept mev}
else
Given pt = ¢ — 0 =077 + 3 0,07 + 3 5,00!
TET; mev}
Given v} = ¢ — 0;&1 = 7],035'” + > O+ Y nk%_l
rem; kEp’;
end
else
gfﬂ _ mBE” + 3 nj0£+7
rTET;
end
end

Update M?:: M! = {6% |r € 7t}
end
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7.5 Convergence Guarantees

The local objective for each node is £;, and [; is the loss function that depends
on the nature of the problem e.g. cross entropy etc. Furthermore, the global data
distribution is represented as D and the local distribution is &. We adopt the
following assumptions for proving convergence in our case, which are fairly standard

in works on decentralized learning [90,93, 116]:

Assumption 1 (L-Smoothness) For each i € [n], £;(6;,&;) : R? is differentiable for
& € supp(D) such that there exists a constant L > 0 such that for each 6;, 6; € R®:

IV Li(0s, &) — VL(0;,8)|] < LI|0; — 0]

Assumption-2: Bounded Variance: There exists a constant &, such that for all

0 € RY, i€ [n),
Ee||VLi(0;, &) — V8E(0)])* < &

Assumption -3 : [, ly...... Iy are all strongly convex for an 6; and ¢; and a
constant p > 0 such that:

1
1i(0:) > 1;(0;) + (Vii(05), 0; — 0;) + §\|9j — 613 (7.1)

7.5.1 Properties of VW

In this part, we show that our formulation of the network topology and the under-
lying assumptions render the associated adjacency matrix VW to possess the same
properties as those described for the adjacency matrix in [90]. We use the Gersh-
gorin Circle and Brouwer Fixed Point Theorem to determine the properties of W,

its dominant Eigenvalue and the associated left and right Eigen Vectors.
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Definition A (Spectral Radius) Let Aq,...... An be the eigenvalues of a matrix

A € C™" . Then, its spectral radius can be defined as:
C(A) = maz{|\1],...... |Anl}

Definition B (Adjacency Matrix W) Let the adjacency matrix for the network
for N nodes be W € R¥*¥. Then, sampling W! ~ W € RY¥*¥ may be used to
indicate the presence of stragglers and volatile nodes. Assuming P is the set of
active nodes at time ¢ in the neighborhood of node i i.e. |n;| with |P| = k < |n;]
nodes active in the learning process, then the i-th row of W* i.e W! will have exactly
k non-zero entries. Then W} can then be defined as W! = 1p = 1[p1,p2, .- ... jod
where 1p = [p1,pa, ... .. pn] is an indicator vector such that p; =1V ¢ € P and 0
otherwise. With this definition of the indicator vector 1p and a uniform weighting

mechanism, the entries w;; in row W} can be described as:

N N
j=1 j=1

This shows that the sampled W is a row-stochastic matrix.

Lemma 1 The sampled adjacency matrix W satisfies the following:

1. 1 is the largest eigenvalue of W' (both regular and absolute). In other words,

the spectral radius of W' is ((W') =1
2. The right Eigen Vector of W associated with the Eigen-value 1is 1 € RV.

3. The left Eigen Vector of W' associated with the Eigen-value 1, represented by

1), is non-negative.
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Proof From the Definition B, given that W' is row-stochastic, then using 1 as

vector of 1’s with the dimension NV,
Wi = xWH1 =1 (7.2)
This shows that
1. 1 is a right Eigen Vector of W*

2. 1is an Eigenvalue of W!

With the row-stochasticity property of W' and using the Gershgorin Circle The-
orem, the largest Eigenvalue, \,,q.(W') of W' satisfies the following:

AW < 1 (7.3)

The Eq. 7.2 and Eq. 7.3 imply that 1 is the largest Eigen-value of W, i.e., the
spectral radius of W' is 1, depicted as ((W') = Ao (W) = 1. Therefore, 1 is a
right Eigen Vector of W' corresponding to the largest Eigen-value of 1.

Given \a. (W) = 1, let the associated left Eigen Vector can be denoted as:

_ " -
= P2 (7.4)
_’le_
then
W = ¢

From the Brouwer Fixed Point Theorem, for any stochastic matrix, there is a left
Eigen vector which is a stationary probability vector. Hence, the left Eigen Vector

1 corresponding to the largest eigen-value is real and non-negative.
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Let 0! be the model parameters associated with node 7 at time ¢. Given N nodes,
let 1 be a vector of 1’s with dimensions 1 x N. Let 8" = [#},65...... %] € RN,

Then the average of all models at the time ¢ is:

— Ot_I]_T
N

Given the distributed learning problem, the distance between the consensus

model and the local model at time ¢ can be defined as:
d' = E[[§" - 0| (7.5)

The final aggregation form for the hybrid Memory and Augmented Graph As-

sisted Algorithm is given as:

0 =00+ 00T+ b+ > 0l (7.6)

TEm; kept mev}

The first two terms represent node i’s own model as well as the received ones.
The last two terms indicate the models employed from memory as well as those
relayed by the participants. The adjacency matrix, W', can be guaranteed to be
always row-stochastic by the choice of the aggregation weights n;, 1., 1, and n,,.

We rely on the analysis of [90] for our convergence guarantees after this point.
In Eq. 7.6, the first two expressions represent the standard DFL process [104,116].
The last two terms represent models from the previous time steps and have been
shown to converge in [90,93]. As the overall expression is a linear combination of the

respective terms, it can be inferred that the main aggregation expression converges.
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7.6 Results and Analysis

This work performs a combined analysis of the proposed algorithms using DFL as
the baseline. All the algorithms are subjected to the same level of volatility, asyn-

chronicity, and data distribution.

The results for the various scenarios of environment volatility with asynchronous
participation have been depicted in Fig 7.1 - 7.5 and Tables 7.1 - 7.3. Results in-
dicate both Memory assistance and Augmented-Graph assisted DFL to outperform
DFL in scenarios of low participation and non-1ID data. Additionally, the proposed
hybrid algorithm Memory and Augmented-Graph assisted DFL outperforms all the

rest in the given scenarios.

Participation proportion becomes a key factor, particularly in cases of heteroge-
neous data distribution. The figures Fig 7.1 - 7.5 indicate this recurring trend where
the gap between the baseline and MAG_DFL increases for a given distribution as
participation becomes more extreme. The said figures also indicate higher variance
in the overall results as participation probability goes from p; = 0.4 to p; = 0.05.
Furthermore, although MA_DFL and AG_DFL both employ models shared in the
previous training round, the added diversity afforded by AG_DFL by sharing inacces-
sible models with the respective nodes gives it a better performance over MA_DFL.
However, since the relayed models depend on whether the sending nodes themselves
have received models or not and are not guaranteed to relay in every round, the

comparable advantage indicates inconsistencies due to the stochasticity of operation.

The results in Tables 7.1 - 7.3 also indicate the results for FMA_DFL. The re-
sults are compiled for various data distributions. Each table presents the results for
different asynchronous training levels for different participation levels, with entries
indicating test accuracies averaged over 5 rounds. It is evident from the results that

greater asynchronicity levels (Epochs 1-10) result in greater performance differences
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between the said algorithms. With greater differences in training, the improvement
obtained by MAG_DFL is over 10% with the lowest participation thresholds. As
participation increases, this gap reduces as nodes access a greater variety of distri-
bution. The results in Table 7.2 show the maximum performance gain between the
baseline and MAG_DFL at 11%. With lesser data heterogeneity and asynchronous
training, as shown in Table 7.1, MAG_DFL improvement falls to around 3 — 4% for

30% or less participation.

From Fig 7.1-7.5, it is evident that the gap reduces as the environment volatility
reduces. Under cases of extremely low participation where only 5% of the neighbor-
hood of any node participates, we see the proposed hybrid outperforms the baseline
by 10% performance gain with the 2-class skewed distribution as evident in Fig
7.1-c. Within a given participation threshold, it may be observed that the per-
formance for hybrid manages to outperform the individual algorithms as the data
distribution becomes more extreme. This fact may be attributed to employing ap-
proximate models from the memory array from the previous round i.e. M! ! and
an increase in available distribution diversity in the form of relayed models from the

neighborhood.
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Figure 7.1: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with o = 0.1, s = 3 & s = 2 and participation threshold
as p; = 0.05

While the results indicate a performance improvement, the relay operation im-

poses additional communication costs. However, the communication overhead may
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tributed FashionMNIST with a = 0.1, s = 3 & s = 2 and participation threshold

as p; = 0.1

°
S

°

I

°
Avg Test Acc
Avg Test Acc
o
2

Avg Test Acc
°
=

50 0 10

[ 20 30
Aggregation Rounds

20 30 20 30
Aggregation Rounds Aggregation Rounds

(a) =0.1 and p; = 0.2 (b) s=3 and p; =0.2 (¢c) s=2and p; =02

Figure 7.3: Average test accuracy for 50 Communication rounds for non-I1ID dis-
tributed FashionMNIST with o = 0.1, s = 3 & s = 2 and participation threshold

as p; = 0.2

Avg Test Acc
°

Avg Test Acc
°
2

o 20 30
Aggregation Rounds

20 30 20 30
Aggregation Rounds Aggregation Rounds

(a) =0.1 and p; = 0.3 (b) s=3and p; =0.3 (¢c) s=2and p; =0.3

Figure 7.4: Average test accuracy for 50 Communication rounds for non-IID dis-
tributed FashionMNIST with o = 0.1, s = 3 & s = 2 and participation threshold

as p; = 0.3



Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented
Graphs 96

Avg Test Acc
o o
Avg Test Acc
o ° °
Avg Test Acc
° ° °

20 30 40 10 20 30 40 10 20 30
Aggregation Rounds Aggregation Rounds Aggregation Rounds

(a) a=0.1 and p; = 0.4 (b) s=3and p; =04 (¢) s=2and p; =04

Figure 7.5: Average test accuracy for 50 Communication rounds for non-I1ID dis-
tributed FashionMNIST with a = 0.1, s = 3 & s = 2 and participation threshold
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Local updates Epochs 1-6 Epochs 1-3
Algorithm / Participation 50% 30% 10% 50% 30% 10%
DFL 0.827 0.794 0.734 0.783 0.777 0.704
MA DFL 0.827 0.798 0.74 0.776 0.775 0.71
AG_DFL 0.806 0.784 0.748 0.755 0.765 0.717
MAG _DFL 0.821 0.804 0.77 0.762 0.777 0.738
FMA DFL 0.815 0.765 0.691 0.77  0.757 0.655

Table 7.1: Results for various Algorithms, different asynchronous training levels and
participation levels for a = 0.1 skewed data distribution for FashionMNIST dataset.

be justified because the proposed algorithms are designed to operate in low partic-
ipation scenarios where the nodes are infrequent in their aggregation rounds. Fur-
thermore, the real operation may be subjected to the overall participation conditions

to help control the communication costs.

Communication Volume With the Augmented Graph Assisted DFL (AG_DFL)
and the inclusion of the same mechanism in the hybrid MAG_DFL algorithm, each
node relays additional models within a given federation round. Given that, each
node 7 sends models to its neighborhood n; under default conditions, the total com-

munication volume for each node becomes O(n;). With N total nodes in the network,



Chapter 7: Assisting Decentralized Federated Learning using Memory and Augmented

Graphs 97
Local updates Epochs 1-10 Epochs 1-6 Epochs 1-3
Algorithm / Participation 50% 30% 10% 50% 30% 10% 50% 30% 10%
DFL 0.686 0.702 0.519 0.703 0.651 0.571 0.669 0.639 0.524
MA _DFL 0.709 .719 0.61 0.719 0.668 0.599 0.664 0.655 0.581
AG_DFL 0.691 0.712 0.628 0.687 0.668 0.645 0.64 0.646  0.592
MAG_DFL 0.707 0.734 0.634 0.691 0.7 0.647 0.66 0.657 0.596
FMA _DFL 0.71 0.688 0.506 0.702 0.652 0.491 0.657 0.62 0.498

Table 7.2: Results for various Algorithms, different asynchronous training levels and
participation levels for S = 2 skewed data distribution for FashionMNIST dataset.

Local updates Epochs 1-10 Epochs 1-6 Epochs 1-3
Algorithm / Participation 50% 30% 10% 50% 30% 10% 50% 30% 10%
DFL 0.819 0.764 0.688 0.785 0.784 0.669 0.773 0.733 0.662
MA _DFL 0.829 0.778 0.72 0.79 0.797 0.693 0.77  0.753 0.691
AG_DFL 0.809 0.77 0.747 0.78 0.787 0.704 0.756 0.74 0.712
MAG_DFL 0.825 0.781 0.77 0.793 0.803 0.719 0.771 0.759 0.717
FMA _DFL 0.822 0.755 0.685 .792 0.778 0.635 0.763 0.734 0.621

Table 7.3: Results for various Algorithms, different asynchronous training levels, and
participation levels for S = 3 skewed data distribution for FashionMNIST dataset.

the average degree of the nodes in the network becomes

where n; is the degree i.e. the number of neighbors, of each node ¢. Thus, the
total communication volume of the entire network for the average degree n becomes
~ O(nN). For a complete network, n &~ N, with each node connected to every other
node of the network, the total communication volume for a complete graph becomes
~ O(N?).

However, with the conditions of sparsity and volatility chosen as part of our

system model, for any given federation round,

1<n<« N

This implies that the default communication volume for a sparse graph with the
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above-defined condition becomes

O(nN) ~ O(N)

The proposed graph augmentation requires each node to communicate two mod-

els whenever possible. Therefore, the total communication volume becomes:

O(2iN) ~ O(N)

This communication volume persists for sparse and volatile conditions chosen as

part of our research for both AG_DFL and MAG_DFL.

7.7 Conclusion

Decentralized Federated Learning offers a powerful alternative to distributed learn-
ing by removing the bottlenecks caused by central orchestration. However, a lack
of global information and access to a much lesser fraction of devices leads to slower
information diffusion and convergence rates. Node volatility, in addition to data het-
erogeneity, offers a critical challenge to the DFL performance. The algorithms pro-
posed in this work, including Memory-Assisted DFL (MA_DFL), Augmented Graph-
Assisted DFL (AG_DFL), and hybrid Memory and Augmented Graph-Assisted DFL
(MAG_DFL), show promising results when subjected to highly volatile conditions
and heterogeneous data distributions. The proposed algorithms keep the restrictions
associated with node participation in perspective and require minimal computation
overhead. With MA_DFL, the nodes utilize models stored in their respective memory
arrays as approximations of the absent models. This allows higher data diversity and
improves convergence in the presence of node volatility. In the Augmented Graph
Assisted DFL, our proposed solution employs selective relaying in order to allow
access to a greater fraction of models. With higher volatility, our solution relies on
enabling the active nodes to relay models across neighborhoods. To avoid causing

additional bias, the nodes only relay models from non-overlapping neighborhoods.
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With the hybrid MAG_DFL algorithm, we propose a mechanism that jointly em-
ploys the solutions offered in MA_DFL and AG_DFL without additional overhead.
The results indicate that the MAG_DFL outperforms not only the baseline but also
its respective constituent algorithms under highly volatile conditions with extreme
non-IID data distribution. The performance improvement becomes significant as the
nodes are subjected to increasing volatile behaviors and skewed data distributions.
The communication cost for relaying operations in Graph Augmented DFL doubles
because of the relaying feature; however, the suggested mechanism is designed for
operation in extremely low participation scenarios, which ensures that the overall
communication remains at par when the entire set of devices is participating. These
features make these algorithms extremely attractive for DFL operation in volatile
conditions. An extension of this work would be quantifying the information dif-
fusion rate under volatile participation conditions and measuring diversity under

conditions of local interactions.
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Chapter 8

CONCLUSION AND FUTURE WORK

In this research, we conduct an extensive analysis of the practical challenges
faced in the application of Decentralized Federated Learning (DFL). Decentralized
methods offer powerful alternatives to centralized learning schemes and are assum-
ing greater significance in the next-generation communication networks. Despite
the challenges of non-1ID data, device and communication heterogeneity, we show
that the DFL performance trade-off is well worth the decrease in communication
cost. However, device behavior, particularly under volatile settings, impacts learn-
ing much more than centralized variants, and therefore, this research focuses on the

performance of DFL under volatile participation settings.

8.1 Concluding Remarks

The development of the Federated Learning Algorithm Simulation (FLAGS) frame-
work allowed us a platform to prototype and evaluate multiple FL algorithms rapidly.
Being lightweight and extremely modular, it offers a powerful solution to undertake

research into novel FL algorithms under different environmental conditions.

Building on the application of the FLAGS framework, our next step conducts
a comprehensive comparison of various FL algorithms, expanding their evaluation
beyond the Centralized FL context. The developed FLAGS framework allows the
swift configuration of diverse FL architectures. Notably, the study highlights the
performance of major FL algorithms in the face of significant challenges. Results
show that decentralized FL performs well even with limited upstream communi-

cation. While noise and irregular participation affect decentralized FL, they still
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achieve acceptable performance. However, highly skewed data distributions notably
degrade fully decentralized FL more than centralized approaches. Findings suggest
interchangeable use of FL. modes based on network conditions and communication

costs.

The utilization of selection strategies within Federated Learning (FL) has en-
hanced convergence and communication efficiency. Our work extends this research
in the DFL domain and evaluates the impact of integrating node selection in volatile
conditions. Through evaluations employing rigid and adaptable stochastic node se-
lection techniques, utilizing metrics like training loss, validation accuracy, and a pa-
rameterized variant, findings indicate that selection bias exerts a more pronounced
effect in dynamically unstable environments with limited client engagement. No-
tably, hard selection methods demonstrate heightened susceptibility to extreme data
distributions and node involvement. Conversely, random selection demonstrates the

potential for ensuring distribution diversity in extreme conditions.

Delving further into improving the performance of DFL under volatile device par-
ticipation, we propose three different algorithms utilizing entirely local information.
The Memory-Assisted DFL allows nodes to retain models from the previous rounds
and use them as alternates to missing nodes. The next part of the research proposes
graph augmentation to relay additional models between nodes. Nodes making use
of neighborhood information send models from non-overlapping neighbors to other
nodes. Finally, a hybrid algorithm fusing features of both these algorithms is pro-
posed as Memory and Augmented Graph Assisted DFL. The hybrid outperforms
not only the baseline but the individual algorithms as well without exceeding the
costs of the respective individual algorithms. The proposed algorithms allow us to
improve the performance of DFL under volatile conditions with extremely low par-

ticipation thresholds.
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8.2 Future Directions

Decentralized Federated Learning holds immense promise for practical applications
in 5G and 6G networks. Simultaneously, however, the participating entities will be-
come increasingly independent, and thus, volatile participation shall be encountered
more frequently. In this regard, allowing devices to adopt a Multi-FL. scheme in
which they may adaptively select the FL algorithm to employ is an important av-
enue. With the devices getting equipped with multiple communication mechanisms,
configuring a multi-FL. scheme where devices are able to switch between different
FL algorithms not only holds the potential for maximizing participation but also
of more efficient communication of the allocated communication resources. Further
extending this application, performing FL simultaneously over different links and
across different edge network hierarchies may be considered as a potential future
direction. Such a scenario would allow devices such as smartphones to simultane-
ously employ mobile networks, WiFi networks, and their serverless counterparts,
short-range communication links such as Bluetooth etc. The important challenges
arising from this case would be those of energy and communication budgeting as
well as managing the asynchronicity arising by employing links supporting multiple

data rates.

Future research avenues also include phase-wise selection strategies leveraging
training phase trends and deeper exploration of information diffusion in contexts of
extreme data distributions and node participation variability. Device participation
characteristics can have a significant impact on decentralized learning performance.
The information diffusion across the network may well slow down in highly volatile

decentralized learning scenarios.
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