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APPLICATIONS OF MULTI AGENT SYSTEMS
IN TRANSPORTATION

SUMMARY

Traffic density is a growing drawback of the crowding of cities in contemporary
societies. As a consequence of financial and technological innovations, the living
standards of people are improving yet this increases the number of cars and traffic
density accordingly. Thus, the density of traffic is reducing the quality of life for
individuals in metropolitan areas in particular. Traffic is an important factor affecting
human life quality in crowded cities. The increasing population and increasing
individual vehicle ownership lead to an increase in traffic density. This causes an
increase in loss of time and pollution. Traffic density in big cities is an important
factor that reduces the quality of human life. Due to the growing population in
metropolitan areas and the inadequate infrastructure to accommodate this density,
traffic problems are on the rise. As a result, passengers waste more time in traffic,
and the amount of emissions, and hence air pollution, also increases. The issue
of traffic congestion is a significant concern for numerous metropolitan areas across
the globe, as it causes delays, increases commuting time, and contributes to air
pollution. Controlling the flow of traffic is problematic in terms of many complexities
and uncertainties. Despite this situation, this problem needs to be solved as it
reduces productivity and living standards. Modern traffic control methods offer a
more effective solution, unlike traditional methods. As traffic congestion continues
to increase rapidly in the world, the need to research and apply more effective
methods of traffic control than the traditional method is increasing. Solving traffic
congestion is one of the most important and complex problems, as it causes chaos in
metropolitans, especially during heavy traffic hours. Traditional methods that continue
to be used have proven to be inadequate, and as a result, the developing technology
has affected all areas as well as the solutions to the traffic control problem. With the
emergence of Intelligent Transportation Systems (ITS), utilizing artificial intelligence
and communication technologies, a more effective and efficient solution to traffic
congestion is possible.

Transportation techniques are improving day by day with the pace of growing
technology. Intelligent Transportation Systems (ITS) provide advanced services such
as high-tech traffic controllers and various transportation modes, reducing the burden
on drivers and thus enabling them to meet the need for complex decision-making
while on the road. Intelligent transportation solutions have enabled an unprecedented
level of data collection within the industry, leading to significant advancements in
transportation system management and operation. With the increasing demand and
rate of data collection, ITS has also been advancing day by day and increasing the
speed of progress of smart transportation systems.
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ITS can be described as systems consisting of technologies such as electronics,
data processing and wireless networks that provide security and efficiency in the
transportation network. ITS provides communication and information exchange
between each transport unit. These units can be centres that provide information to
pedestrians, vehicles, infrastructure, transportation and other peripherals such as traffic
lights and other communication and control units.

The application of MAS (Multi-Agent Systems) techniques, as a new development
in information technology, can help to increase interest in traffic and promote
energy-efficient transportation. ITS-based multi-agent technology is an important
approach to solving complex traffic problems. The complexity of the elements of
the traffic makes them convenient for multi-agent structures. ITS-based multi-agent
technology provides us with safer controllers and makes us feel more comfortable in
our daily lives. It increases the quality of our lives by decreasing the amount of time
spent in traffic and by lowering the amount of emission gases released by our vehicles.

The structurally dispersed nature of components in heterogeneous environments causes
application difficulties, such as interoperability between agents forming a demand for a
unified software platform as an underlying infrastructure. Therefore, it is preferable to
use centralized solutions for relatively simple problems such as the one considered in
this paper. For both transport decision-makers and drivers, ITS have a great potential
for efficient and intelligent traffic management, threat identification, driving comfort
and safety. ITS can also provide a flexible approach for the effective management of
complex networked transportation systems letting traffic management decision-makers
to control signal changes, regulate route flows, and broadcast real-time traffic
information. In addition to providing route scheduling, weather forecasting, and
emergency services for drivers, ITS (Intelligent Transportation Systems) can also help
to reduce driving loads and improve safety.

The implementation of ITS (Intelligent Transportation Systems) can generate positive
outcomes across a range of areas, spanning from environmental and national security
issues to emergency management and transportation. ITS applications can reduce
time spent on the road. Short travel times provide economic savings for both
individual and commercial vehicles and usually mean less environmental pollution.
Intelligent Intersection Management (IIM) technology has started to develop in traffic
intersections as part of Traffic Light Control (TLC) systems.

Intersections are some of the busiest parts of roads. Therefore, the control of traffic
lights plays an important role in decreasing the density. In this thesis, particular
attention is given to the control of intersections in order to find solutions to decrease
traffic density leading to an increased quality of life in big cities. Intelligent traffic
control methods, the use of which is increasing with the development of new methods,
are used especially in traffic intersections with high traffic density in order to provide
efficient solutions.

Control of a single intersection with traffic lights is considered first in the thesis.
Various methods, including Fuzzy Logic Control (FLC), Proportional Integral (PI)
control and State Space Model Control techniques, have been proposed and compared
for a better traffic light controller architecture so as to increase the traffic flow and
reduce the overall waiting time of the cars and the emissions released by them.
It is demonstrated that the proposed architectures give better results compared to
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the traditional fixed-time traffic light control method. Different types of traffic
intersections are considered in the study. Initially, a simple single-lane traffic
intersection with no left or right turn is taken into consideration. Later on, intersections
on which three-lane (or four-lane) roads meet with vehicles turning left and right are
considered. Finally, a realistic case study, in which the Altunizade Region of Istanbul,
is examined to demonstrate the efficiency of some of the proposed methods. The results
of simulations indicate that the FLC, in which the positions of the vehicles are used as
the state variables, gives superior results in comparison to the other classical methods.

In order to increase the efficiency of the FLC further, a built-in learning algorithm is
proposed to be used in addition to the FLC. A deep Q-learning method is employed for
this purpose as a part of the agent-based traffic light controller. Hence, the resulting
intelligent traffic light controller is named DQ-FLSI. In this method, a state matrix
which divides the arms of the traffic intersection into cells is used. The traffic light
durations are determined using fuzzy logic, and traffic light actions are determined
by the help of deep Q-learning. A stability analysis is also carried out for this newly
proposed method.

Another important traffic problem is route planning. This is particularly important
in large cities with complex traffic networks. In order to address this problem, an
agent-based traffic route planning method has also been proposed as part of this thesis
with the motivation of vehicles choosing the fastest route. In this method, route
planning is made by deciding at traffic intersection points. Vehicle agents make
decisions when they reach traffic intersections. In this way, dynamic route planning
becomes possible for the vehicles.

Another solution for the traffic intersection problem is multi-agent reservation-based
traffic intersection control. With this method, all vehicles (called agents) can pass
the intersection without the need for a traffic light thanks to a traffic intersection
agent. A platoon method, which can work in harmony with reservation-based traffic
intersection management, is proposed as an improvement in this part of the study. The
proposed method aims to reduce the slowdowns that occur when approaching the traffic
intersection by properly lining up the vehicles approaching the traffic intersection. It is
shown by simulations that the proposed platoon method reduces energy consumption
and gas emissions while increasing the average speed of the vehicles, especially as the
density of the traffic increases.

Work environments for all studied traffic problems are designed and simulated using
the SUMO program. Simulation of Urban MObility (SUMO) is an open-source
simulation package that works on networks imported from maps, provides various
workspaces at micro levels, also allows pedestrian simulation, and has a sufficient set
of tools that makes it more reachable.
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ULASIMDA COKLU AJAN SISTEMLERININ
UYGULAMALARI

OZET

Trafik yogunlugu, giiniimiizde sehirlerin kalabaliklasmasiyla 6nemli bir problem
haline gelmektedir. Finansal ve teknolojik yeniliklerin bir sonucu olarak insanlarin
yasam standartlar1 gelismekte ancak bu durum arac¢ sayisim1 ve buna baglh olarak
trafik yogunlugunu artirmaktadir. Dolayisiyla trafik yogunlugu 6zellikle metropollerde
bireylerin yasam kalitesini diisiirmektedir. Kalabalik sehirlerde trafik, insanin yasam
kalitesini etkileyen 6nemli bir faktordiir. Artan niifus ve artan bireysel arac¢ kullanima,
trafik yogunlugunun artmasina neden olmaktadir. Bu da yolcular icin trafikte
kaybedilen zamanin ve hava kirliliginin artmasina neden olur. Biiyiik sehirlerdeki
trafik yogunlugu insan yasam kalitesini diisiiren 6nemli bir faktordiir. Biiyiiksehirlerin
artan niifusu ve altyapilarinin bu yogunlugu kaldiramamasi ile birlikte trafik yogunlugu
da giderek artmaktadir. Sonug olarak, yolcular daha fazla trafikte zaman kaybetmekte
ve emisyon miktar1 dolayisiyla hava kirliligi de artmaktadir. Trafik sorunu, diinyadaki
bir¢ok biiyiiksehir i¢in dnemli bir endise kaynagidir. Trafik akisini kontrol etmek,
bir¢ok karmasiklik ve belirsizlik nedeniyle zordur. Bu duruma ragmen iiretkenligi ve
yasam standartlarimi diisiirdiigli icin bu sorunun ¢o6ziilmesi gerekmektedir. Modern
trafik kontrol yontemleri, geleneksel yontemlerden farkli olarak daha etkili bir ¢oziim
sunmaktadir. Diinyada trafik sikisikligi hizla artmaya devam ederken, geleneksel
yontemden daha etkili trafik kontrol yoOntemlerinin arastirilmasi ve uygulanmasi
ihtiyac1 artmaktadir. Ozellikle trafigin yogun oldugu saatlerde biiyiiksehirlerde kaosa
neden olan trafik sikisikliginin ¢6ziilmesi en onemli ve karmasik sorunlardan biridir.
Halen kullanilmaya devam eden geleneksel yontemlerin yetersiz kaldig1 ortaya ¢cikmig
ve bunun sonucunda gelisen teknoloji, trafik kontrol sorununa getirilen ¢oziimlerin
yani sira tiim alanlar etkilemistir. Yapay zeka ve iletisim teknolojilerinin gelismesiyle
birlikte Akilli Ulagim Sistemleri (AUS) ortaya ¢cikmuisgtir.

Gelisen teknolojinin hiz1 ile ulagim teknikleri her gegen giin gelismektedir. Bu nedenle,
yiiksek teknolojili trafik kontrolorleri ve farkli ulasim yoOntemleri gibi yenilik¢i
hizmetler sunarak siirlis konusunda diisiinme veya karar verme sorumlulugunu
azaltmak icin AUS ortaya ¢ikti. Ulagim sistemindeki akilli ¢oziimler sayesinde ulagim
sistemlerinde benzeri goriilmemis veri toplanmasina yol agcmistir. Artan talep ve veri
toplama hiz1 ile AUS her gecen giin gelismekte ve bu sistemlerinin ilerleme hizi da
buna paralel olarak artmaktadir.

AUS, ulasim aginda giivenligi ve verimliligi saglayan elektronik, bilgi islem ve
kablosuz aglar gibi teknolojilerden olusan sistemler olarak tanimlanabilir. AUS, her
bir tagima birimi arasinda iletisim ve bilgi aligverigini saglar. Bu birimler, yayalara,
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araclara, altyapiya, ulagima ve trafik 1siklart gibi diger cevre birimlerine ve diger
iletisim ve kontrol birimlerine bilgi saglayan merkezler olabilir. AUS uygulamasi,
cevre sorunlarindan ulusal giivenlik sorunlarmna, acil durum yonetiminden ulagima
kadar pek cok alanda olumlu sonuglar iiretebilir.

Bilgi teknolojisinde yeni bir gelisme olarak Cok Etmenli Sistem (CES) teknikleri,
trafige olan ilginin artmasi ve verimli ulasimin daha fazla enerji tasarrufu saglamasi
icin yardimcr olabilir.  AUS tabanli cok etmenli teknolojisi, karmasik trafik
problemlerinin ¢oziimiinde énemli bir yaklagimdir. Trafi§in 6gelerinin karmagikligi,
onlart ¢ok etmenli sistemler i¢in uygun hale getirirr AUS tabanli ¢ok etmenli
teknolojisi, bize daha giivenli kontrolorler saglar ve giinliik hayatimizda daha rahat
hissetmemizi saglayabilir. Trafikte gecirilen siireyi azaltarak ve araglarimizin saldigi
emisyon gazlarinin miktarini diisiirerek yasam kalitemizi yiikseltebilir.

Heterojen ortamlardaki bilesenlerin yapisal olarak daginik yapisi, altyapr olarak
birlesik bir yazilim platformu talebi olusturan aracilar arasindaki birlikte ¢aligabilirlik
gibi uygulama zorluklarina neden olur. Bu nedenle, nispeten basit problemler icin
merkezi ¢oziimlerin kullanilmasi da tercih edilebilir. Hem ulagim karar vericileri hem
de siiriiciiler icin AUS, verimli ve akilli trafik yonetimi, tehdit belirleme, siiriis konforu
ve gilivenligi i¢in bilyiik bir potansiyele sahiptir. AUS ayrica, trafik yonetimi karar
vericilerinin sinyal degisikliklerini kontrol etmesine, rota akislarini diizenlemesine ve
gercek zamanl trafik bilgilerini yaymlamasina izin vererek, karmagik ag baglantili
ulagim sistemlerinin etkili yonetimi i¢in esnek bir yaklasim saglayabilir. Siiriiciiler
i¢cin rota planlama, hava durumu tahmini, acil durum hizmetleri vb. kadar, AUS de
stiriis yiiklerini azaltmayi kolaylagtirabilir ve giivenligi artirabilir.

AUS uygulamalari, cevre sorunlarindan ulusal giivenlik sorunlarina, acil durum
yonetiminden ulasima kadar pek c¢ok alanda olumlu sonucglar verebilir.  AUS
uygulamalar1 yolda gegcirilen siireyi azaltabilir. Kisa seyahat siireleri hem bireysel hem
de ticari araclar icin ekonomik tasarruf saglamakta ve genellikle daha az cevre kirliligi
anlamina gelmektedir. Akilli Kavsak Yonetimi (IIM) teknolojisi, Trafik Isik Kontrol
(TLC) sistemleri kapsaminda trafik kavsaklarinda da yaygin olarak kullanilmaya
baglanmustir.

Karayollarinda trafik sikigikliginin en fazla oldugu kisimlardan birisi trafik kavsak-
laridir. Dolayisiyla trafik 1siklarinin kontrolii yogunlugun azaltilmasinda 6nemli rol
oynamaktadir. Bu tezde, biiyiiksehirlerde yasam kalitesini azaltan trafik yogunlugunu
azaltacak ¢oziimler bulmak i¢in kavsaklarin kontroliine 6zel 6nem verilmektedir. Yeni
yontemlerin gelistirilmesiyle kullanimi artan akilh trafik kontrol yontemleri, 6zellikle
trafik yogunlugunun yiiksek oldugu trafik kavsaklarinda etkili ¢oziimler sunmak
amaciyla kullanilmaktadir.

Tezde ilk olarak trafik 15181na sahip tek bir kavsagin kontrolii ele alinmigtir. Trafik
akigin1 artirmak ve genel bekleme siiresini ve araclar tarafindan salinan emisyon
gazlarini azaltmak i¢in daha iyi bir trafik 15181 denetleyici mimarisi olarak bulanik
mantik kontrol (FLC), Oransal Integral (PI) Kontrolii ve durum uzay model kontrolii
teknikleri dahil olmak iizere cesitli yontemler dnerilmis ve karsilagtirilmistir. Onerilen
mimarilerin geleneksel sabit zamanl trafik 15181 kontrol yontemine gore daha iyi
sonuclar verdigi gosterilmistir. Calismada farkl tipteki trafik kavsaklari ele alinmisgtir.
Baglangicta, sola veya saga doniisii olmayan basit bir tek seritli trafik kavsagi dikkate
alinir. Daha sonra ii¢ seritli (veya dort seritli) yollarin saga ve sola donen araclara izin
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veren kavsaklar ele alinmigtir. Son olarak, onerilen yontemlerin bazilarinin etkinligini
gostermek icin Istanbul’un Altunizade bolgesindeki trafik 1siklarinin incelendigi bir
calisma yapildi. Benzetim sonuclari gosterdi ki, giris degeri araglarin konum
bilgilerinin kullanildig1 FLC yontemi diger klasik yontemlere gore daha iistiin sonuglar
verdi.

FLC’nin verimliligini daha da artirmak i¢in FLC’ye ek olarak yerlesik bir 6§renme
algoritmasinin kullanilmasi1 Onerilmistir.  Bu amacla, etmen tabanli trafik 15181
kontroloriiniin bir pargasi olarak bir derin Q-6grenme yontemi kullanildi. Bu nedenle,
ortaya c¢ikan akilli trafik 15181 kontrolorii DQ-FLSI olarak adlandirilir. Bu yontemde
trafik kavsaginin kollarin1 hiicrelere ayiran bir durum matrisi kullanilmaktadir. Bulanik
Mantik ile trafik 15181 siireleri, derin Q-0grenme vasitasi ile trafik 15181 yonleri belirlenir.
Bu yeni 6nerilen yontem icin bir kararlilik analizi de yapilmistir.

Bir diger ¢alisilan 6nemli trafik problemi ise rota planlamasidir. Bu, 6zellikle karmasik
trafik aglarina sahip biiylik sehirlerde 6nemlidir. Bu sorunu ¢dzmek i¢in, araglarin
en hizli rotay1r secme motivasyonu ile bu tez kapsaminda etmen tabanli bir trafik
rota planlama yontemi de Onerilmistir. Bu yontemde trafik kavsak noktalarinda karar
verilerek rota planlamasi yapilir. Ara¢ etmenleri, trafik kavsaklarina ulastiklarinda
karar verirler. Bu sayede araclar i¢in dinamik rota planlamasi miimkiin hale
gelmektedir.

Trafik kavsagi problemine bir diger ¢Oziim Onerisi ise ¢ok etmenli rezervasyon
tabanli trafik kavsak kontrolii yontemidir. Bu yontemle tiim araglar (etmen adi
verilen) bir trafik kavsagi etmeni sayesinde trafik 1s1g¢1na ihtiyac duymadan kavsaktan
gecebilmektedir. Caligmanin bu boliimiinde bir iyilestirme olarak, rezervasyona dayali
trafik kavsak yoOnetimi ile uyumlu calisabilecek bir platoon yontemi Onerilmistir.
Onerilen yontem, trafik kavsagma yaklasan araclar1 diizgiin bir sekilde siralayarak
trafik kavsag1 yaklasirken olusan yavaslamalari azaltmay: amaclamaktadir. Onerilen
platoon yonteminin Ozellikle trafik yogunlugu arttikga araclarin ortalama hizlarim
artirirken enerji tilketimini ve gaz emisyonlarini azalttigi benzetim sonuclart ile
gosterilmisgtir.

Calisilan tiim trafik problemleri i¢in ¢alisma ortamlart SUMO programi kullanilarak
tasarlanmis ve benzetimleri de yine bu program ile gerceklestirilmistir. Simulation
of Urban MObility (SUMO), haritalardan ice aktarilan aglar tizerinde caligsan, mikro
diizeyde cesitli ¢calisma alanlar1 saglayan, yaya simiilasyonuna da izin veren ve daha
erisilebilir hale getiren yeterli ara¢ setine sahip acik kaynakli bir benzetim yazilim
paketidir.
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1. INTRODUCTION

An agent can be defined as a system that perceives and interacts with its environment
through sensors and actions. In general, an agent is a system of detecting the
environment and reacting to the purpose of the ability to make changes in the
environment [1]. The choice of action of the agents at any given moment may depend
on the entire set of perceptions observed but is not dependent on anything that is not
perceived. There is usually more than one agent in agent-based systems. Such systems

are called Multi-Agent Systems (MAS).

The concept of MAS is the designed modelling approach to represent systems
that exhibit assets, intelligence, autonomy and interactions, both with each other
and with the environment. MAS are the systems having different information or
different interests or both, with multiple autonomous entities [2]. Besides, MAS is a
collaborative intelligent system consisting of an interactive set of computing units that
can solve complex problems based on minimal or reduced data processing resources.
These systems consist of a set of homogeneous or heterogeneous smart software
or hardware agents that can exchange information, and coordinate and negotiate
activities. MAS can be used in areas like economics, technology, mathematics,
computing, networking, artificial intelligence, robotics, collaborative decision support
systems, data mining, and social sciences. MAS proposes a distributed control
definition based on cooperative and autonomous agents to perform a task. The structure
of MAS allows the processing of significant amounts of data due to the scalability
of these systems. MAS can be expanded by adding new agents or new behaviours,
thus they can be appropriate in the context of decentralized and heterogeneous
environments where major changes may occur. One of the areas where MAS are
widely used is traffic problems. Mostly known applications in intelligent transportation

systems are route planning and traffic intersection problems.

Intelligent Transportation Systems (ITS) [3] based on multi-agent technologies have

become an important approach to solving complex transportation problems. The



structurally dispersed nature of components in heterogeneous environments causes
application difficulties, such as interoperability between agents forming a demand
for a unified software platform as an underlying infrastructure. For both transport
decision-makers and drivers, Intelligent transportation systems (ITS) have a great
potential for efficient and intelligent traffic management, threat identification, driving
comfort, and safety [4]. ITS can provide a flexible approach for the effective
management of complex networked transportation systems letting traffic management
decision-makers to control signal changes, regulate route flows, and broadcast
real-time traffic information. As much as route scheduling, weather forecasting,
emergency services, etc. for drivers, ITS can also facilitate reducing driving loads

and improve safety.

With the development of technology, the development and advancement of
transportation technology is inevitable [5]. Intelligent Transportation Systems (ITS)
have been developed to reduce people’s thinking or decision-making responsibility
by providing innovative services such as high technology, traffic control and different
modes of transport [6]. Technological advances have enabled transport systems to
collect unprecedented amounts of data. With the help of such data, the development of

intelligent transportation systems is increasing rapidly.

Intelligent Transportation Systems (ITS) can be called as systems consisting of
technologies such as electronic, data processing and wireless networks that provide
a level of security and efficiency in the transportation network. ITS enable
communication and exchange of information between each unit of transportation.
These units can be centers that provide control of people, vehicles, infrastructure and
transportation. As the development process of ITS systems continues, it is thought
that the expectations and benefits of these systems may change over time or focus on

different areas.

As the use of the Internet of Things (IoT) becomes widespread, a large number of
complex systems, networks, or social infrastructures can be used in existing systems
and generate massive amounts of data by connecting multiple devices [7]. As Artificial
Intelligence (AI) and IoT systems evolve, the functionality of Al-based Intelligent
Transportation Systems is becoming worth considering. Intelligent Transportation

Systems (ITS) help to make transportation more environmentally friendly and safe



[8]. ITS applications can also provide constructive solutions in many areas from
environmental problems, national security problems, and emergency management to
transportation. In an active traffic scenario, traffic intersections are the most critical

components that will slow down or speed up traffic flow [9].

Traffic control and optimization are challenging topics for researchers and engineers.
Traffic control is a compelling issue, as transportation systems have low predictability
and are often dispersed and complex [10]. According to the Texas Transport Institute’s
(TTT) urban mobility report, the delay per passenger is approximately 34 hours. As a
result, the approximate cost of traffic problems for the US alone is around $350 billion

in 2017 [11].

Nowadays, road traffic is widely used at critical points of vital operation such as
logistics and transportation. Especially increasing population in big cities causes an
increase in traffic problems, which is an important problem for daily life [12]. As
a result of this high demand, it is possible to encounter some negative consequences
such as high waiting times, wasted time and high CO, emissions [13]. Increasing
the number of vehicles causes loss of time in traffic and fuel wastage in cities that
do not have sufficient infrastructure. Environmental problems such as air pollution
and noise pollution occur, as well as health problems and traffic accidents. Traffic
control not only reduces environmental problems but also benefits human psychology
by reducing the time people spend in traffic [14]. Real-time (adaptive) Traffic Light
Control (TLC) techniques use real-time measurements to determine appropriate traffic
light times. The control update time will vary from one second to a single traffic light

cycle, depending on the TLC strategy used.

Many studies have been carried out on the management of traffic intersections. Some
of them are reservation-based [15] studies, and some are related to the control of traffic
lights [16]. Such Real-time (adaptive) Traffic Light Control (TLC) techniques use
real-time measurements to determine appropriate traffic light periods [17]. Adaptive
traffic light systems based on waiting time give advantageous results compared to
common fixed-time traffic light systems today [18]. In these systems, the control
update period could vary from one second to a single traffic light cycle, depending

on the TLC strategy used.



Considering the non-linear nature of traffic lights, the Fuzzy Logic Control (FLC)
method is a useful method for traffic light control [19]. However, in these studies, no
learning algorithms were used to determine the traffic phase. In [19], queue length and
waiting times are selected as fuzzy logic input values, and the output of the fuzzy logic
output value is given as the green light time. However, a method for determining the

phase sequence is not used.

In traffic intersection management, with the Reinforced Learning (RL) technique,
reward functions can be defined to reduce values such as waiting time or emission
from traffic problems, and the defined reward function can be optimized with possible

actions according to current situations.

The important advantage of RL is that it can learn the optimal action by trying
methods according to the information it receives from the environment [20]. In
the reinforcement learning method, the agent is expected to be able to choose the
sequence of actions that can reach the maximum reward value in various situations.
It typically has three components: environmental states, the agent’s action space, and
the reward for each action [21]. The key to agent-based traffic light control is the
proper selection of these three components in the traffic intersection system so that
they can be calculated. Inappropriate choices can cause an extra computational load or

inaccurate results for traffic light control.

The reinforcement learning method has been applied in many applications [22-25].
Many studies have been conducted with the reinforcement learning method in order to
control traffic lights dynamically. In earlier studies, the states were defined according
to the sum of vehicles with near-zero speed [26]. However, the sum of vehicles
with near-zero speed cannot accurately represent the real-world traffic situation [27].
With the proliferation of vehicle networks and cameras, it has been possible for more
information, such as vehicle speed and standby time to be collected and transmitted
over the network [28]. Using more information is crucial to solving the problem,
but the number of states increases, and with it, the complexity of the conventional
reinforcement learning system increases exponentially. Deep neural networks are used
to overcome the problem that becomes more complex due to the increasing number

of states [29]. Some recent studies proposed that deep enhancement learning to be



applied in the issue of traffic light control [30]. Previous works generally divide traffic

signals into fixed times, and this makes an important limitation.

The route planning problem is a very important issue, especially in sectors such as
logistics and transportation. Inefficient time spent on the road disrupts transportation
and the logistics supply chain. Therefore, it will cause undesirable costs in terms of

economic and environmental pollution.

Many criteria will affect the performance of the current agent for the route planning
problem. The agent must learn the balance between the shortest path and the fastest
path to reach the destination. It would be wrong to consider the factors affecting
performance in some traffic scenarios as choosing only the shortest and quickest route.
Another factor that affects the time it takes to reach the destination is the traffic lights
that will restrict the movement in the network of roads it will move. Understanding
the phase sequences of traffic lights with the status information it will receive from
the environment, will be an essential criterion for its chosen action on the way to the

target.

In the near future, the spread of unmanned vehicles in the flowing traffic and
communication with each other or with other infrastructures seems normal thanks
to scientific and technological developments. Studies into congestion control were
conducted in order to prevent future collisions and traffic obstructions by ensuring that
vehicles function in harmony with one another and with the environment [31]. Many
different methodologies have been proposed to control unmanned vehicles at crossing
points. One of them includes Cooperative Adaptive Cruise Control (CACC) which
is modified for vehicle-based scenarios [32]. In addition to such micro-organizational
approaches, reservation-based methods, auction-based methods or platooning methods
have also been presented as macro-regulatory approaches. Another proposed method
is Autonomous Intersection Management (AIM), a traffic intersection management
method based on reserving a specific section of the intersection for a specific vehicle
to avoid collisions [33]. One of the recommended intersection management methods is
the platooning method, in which a group or car team moves in close order under fully
automatic, longitudinal and lateral control. During cooperative driving, autonomous
vehicles mimic migrating birds or a group of dolphins [34]. It can be clearly observed

that the AIM method significantly increases the traffic flow compared to traditional



intersection management systems. The scheduled auction method including offering

is used to choose an optimal path and based on some AIM methods [35].

In this thesis, various problems are examined using theoretical knowledge of MAS.
The most significant of these problems is traffic problems. The simulation of these
methods is performed using Simulation of Urban MObility (SUMO), and the results
are compared. A simulation environment is designed using SUMO. The SUMO
program is an open-source, highly portable, microscopic road traffic simulation

package designed to handle large road networks [36].

1.1 Purpose of Thesis

ITS has an extensive structure that performs information, communication, and control
of traffic items. A more secure structure can be with ITS structures. Especially by
reducing the load on drivers, accidents due to fatigue and carelessness can be avoided.
In addition, with the optimum suggestions offered by ITS, traffic jams can be reduced,

and as a result, environmental pollution is reduced.

ITS which is based on MAS appears as a solution approach for complex transportation
problems. The structural disintegration of components in heterogeneous environments
leads to application difficulties, such as interoperability among other factors that
require a unified software platform as basic infrastructure. Therefore, it is preferred to
use centralized solutions for relatively simple problems such as those discussed in this
publication. For transport decision-makers and drivers, ITS, smart traffic management,
has a high potential for detecting possible threats and ensuring drivability and safety.
ITS can also provide a flexible approach to the efficient management of complex
networked transport systems, enabling traffic management decision-makers to control
signal changes, regulate route flows, and broadcast real-time traffic information. ITS
can reduce drivers’ driving difficulties and improve safety by helping drivers in
different ways such as route planning, weather forecasting and organizing emergency
services. ITS implementation can give positive results and improvements in many
areas such as from environmental issues to national security issues, as well as from
emergency management to transportation. ITS can decrease the consumption of

travelling time for drivers and pedestrians. Shorter travel times result in economic



savings for both individual and commercial vehicles and often mean less environmental

pollution.

Through the gains brought by MAS, ITS can offer solutions to numerous
traffic problems, including intelligent traffic light control, intelligent intersection
management, and intelligent route planning using reservation-based traffic intersection

control methods.

1.1.1 Unique aspect

In this thesis, control of a single intersection with traffic lights is considered first.
Various methods, including Fuzzy Logic Control (FLC), Proportional Integral (PI)
Control and State Space Model Control techniques, have been proposed and compared
in terms of the overall waiting time of the cars and the emissions released by them. It
is shown that the proposed architectures give better results compared to the traditional
fixed-time traffic light control method. The results are tested for different types of
traffic intersections including a simple single-lane intersection as well as for junctions
on which three-lane (or four-lane) roads meet, and a realistic case study with several

junctions.

As the main contribution of this thesis, a deep Q-learning algorithm is proposed to be
used in addition to the fuzzy logic controller in order to increase efficiency. This newly
introduced method, which is named DQ-FLSI, employs fuzzy logic for determining
the duration of traffic lights and deep Q-learning for determining the order of the light
phases. In this method, a state matrix which divides the arms of the traffic intersection
into cells is used. A varying cell size in the determination of the state matrix is used
in DQ-FLSI. A comparison between using constant (equal) cell sizes and varying cell
sizes is also provided to demonstrate the efficiency of this adaptation. Theoretical
stability analysis is also developed for the proposed method, the robustness of which

is demonstrated by simulations.

As other main contributions of this thesis, a couple of reservation-based methods are
examined for intersection management. In particular, a platoon algorithm is proposed
to increase the efficiency of reservation-based traffic intersection management.
Excessive simulation results demonstrated the efficiency of the proposed approach. In

addition, an agent-based route planning method for vehicles has also been developed.



A taxi agent with deep Q-learning algorithm, which helps with dynamic route
planning, is used. For the taxi agent to learn optimum route planning, a state vector
including traffic light information, density information of neighbouring roads, location
information of neighbouring intersections, and location information of the agent and

destination is proposed to be used.

1.1.2 Impact

Traffic congestion is one of the leading causes of loss of productivity and reduced
living standards in urban areas. Recent developments in artificial intelligence show
that in the near future, vehicle navigation by autonomous agents is possible. With the
development of technology and the increase in its application, it is seen that MAS can

offer solutions to many traffic problems.

With the developing technology, carbon emission, sociological stress, loss of time and
accidents can be reduced by manipulating traffic with a satisfactory modelling and
control algorithm using artificial intelligence and IoT (Internet of Things) to solve

these problems.

Recent developments in artificial intelligence show that in the near future, vehicle
navigation by autonomous agents is possible. The efficiency of transport systems is
a priority for modern society. Technological developments have made it possible for
transport systems to collect large volumes of data on an unprecedented scale. Several
researchers have extended the application of Multi-Agent Systems (MAS) to a wide

range of different areas, including shared services for various purposes.

It is demonstrated in this thesis that MAS can provide efficient solutions to many
problems caused by traffic. With the help of agent-based traffic light control methods
proposed in this thesis, energy-efficient and environmental friendly solutions are
provided. The proposed FLC-supported agent-based DQ FLSI method, in particular,
is committed to both choosing the appropriate traffic light sequence and the duration
of the light. With the DQ FLSI, which is the recommended traffic light control method
in the thesis, unnecessary waiting at traffic lights is reduced and harmful emissions are

reduced.

Reservation-based multi-agent traffic intersection management systems such as

the platoon method proposed promise a further increase in efficiency of traffic
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intersections. With agent-based route planning, target points can be made accessible
with less energy and time. It can be said that the efficiency of the route planning

method has increased, especially with the use of the dynamic route planning proposed.

1.2 Literature Review

Multi-Agent Systems (MAS) have been widely applied in recent years [37-40].
Control and coordination of MAS is an important and challenging problem besides
many application areas are available. Some of them are; mobile robotics [41], vehicle
formation [42], flocking [43], consensus [44], unmanned aerial vehicles [45] and
Traffic Simulation [46]. The most common applications of MAS are cooperative
control [47-50]. The aim of cooperative control is that multiple autonomous
agents work together efficiently to achieve collective group behaviour through local
interaction. The most discussed topics in agent systems are consensus and formation
control [51]. This study [52] discusses cluster consensus problem for generic linear
heterogeneous MAS. The main purpose of this study is to demonstrate how agents
are confronted with the effects of in-group couplings and couplings between clusters,
and to reach clustering consensus. Actuator monitoring of non-linear MAS, and
cooperative monitoring control with actuator hysteresis on diazors are discussed
[53]. Each agent is modelled with a higher-order non-linear system in the form of
a solid feedback with generalized Prandtl-Ishlinskii hysteresis input and unknown
time-varying virtual control coefficients. In another study, The consensus issue for
transition topologies and time delays and second-order MAS are discussed [54].
Switching topologies and time delays in communication are declared by Markoc
chains. The problem of tracking is also a subject of many issues in MAS, This study
investigates the cooperative monitoring problem for high order nonlinear MAS under
a directed communication topology [55]. Discrete-time double-integrated consensus
problem is addressed for MAS with directed switching proximity topologies and
input constraints [56]. Model Predictive Control (MPC) approach was applied to
the problem of entry constraints. In a similar study, [57] the Consensus problem
with single and double integral coefficients was discussed by using the Model
Predictive Control approach. The problem of Flocking in MAS has been processed

by using the model predictive control method [58]. A model predictive flocking



control scheme for second-order MAS with access restrictions is proposed. The
cooperative regulation problem of linear Simultaneous Localization and Mapping
switching between communication topologies is discussed [59]. An event-triggered
control scheme has been proposed to solve the problem of cooperative regulation only
through intermittent communication. The communication topology does not always
have to be connected under the common assumption. With the proposed trigger
mechanism, each agent transmits the information only to its neighbours at their trigger
times or at switching times. The effectiveness of the proposed control scheme is
illustrated by an example. And in this study, a gradient-based algorithm is focused
on using an event-triggered algorithm [60]. A new gradient-based optimization
consensus algorithm has been proposed to solve the optimization consensus problem
and an event-triggered control strategy based on sample data was used. In this
study [61], finite time consensus and monitoring problems for nonlinear MAS with
directed topology are discussed. The consensus problem of MAS is studied under
communication constraints [62]. Especially funnel control is proposed as a new
control method to achieve consensus. Funnel Control is a high-gain adaptive control
method that can guarantee monitoring with a predetermined degree of accuracy. The
formation-containment problem of general linear homogeneous and heterogeneous
(MAS) has been discussed [63]. In this problem, each output of the followers of
reference changes in time, that is, the leaders of the output of multiple leaders to
reach an agreement on the centroid, and thus aims to keep a time-changing offset.
The controllability problem in MAS is also studied [64]. It focuses on group
controllability problems of continuous-time MAS and provides a general definition of
group controllability, and thus, group controllability criteria are generated. Another
MAS applications are about mobile robots. As a matter of fact, the problem of
mapping and localization in the problems of mobile robot applications has been
applied with MAS [65]. To overcome this problem, Robot Agents (RA) fulfil the
task of Simultaneous Localization and Mapping (SLAM) to find the mediator in the
environment while simultaneously creating the geometric or topological map. MAS
are also widely used in transportation [46, 66—69]. Amount this, the problem of

intersection is also studied with MAS.
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Traffic lights are signal devices commonly used at traffic intersections to control traffic
flows around the world. A well-designed traffic light controller can increase traffic flow
and reduce waiting for both vehicles and pedestrians. A traffic light controller with an
inefficient controller can cause traffic congestion and therefore increase the waiting
times at traffic intersections. Therefore, many traffic light control methods have been

proposed to solve this problem.

The efficiency of urban traffic control systems is undeniably affected by intersections.
Studies have shown that intersections have a significant effect on traffic accidents
and traffic delays in urban areas because they are nodes of traffic flow, have too
many stop-and-go and conflict zones, and human behaviour cannot be predicted at
intersections [31,70]. For this reason, intelligent traffic control methods are widely
researched. One of the most researched smart traffic control methods in traffic

intersection control is traffic light control [71,72].

Because it is easy to use among the traffic light control methods, the most common
is fixed-time traffic light control. In this method, traffic light control is performed
by predetermining different green light duration for certain days and hours by using
observation and statistical data. This method may give a good result with proper data
processing, but with the result of any change in traffic, this control method can be
quite inefficient. However, it is still highly preferred due to its cost-effectiveness.
Another commonly used method is dynamic traffic light control. This method requires
detectors such as sensors or cameras at traffic intersections to detect the number of
vehicles [73]. Using the information from the detectors, the traffic light controller can
adjust the signal phase and timing. In addition, Adaptive traffic light control is an
effective solution method proposed in recent years. Adaptive control solutions try to
adapt the traffic signal timing according to the road information at one or more traffic
intersections. As expected, adaptive traffic light control is a more effective method
than fixed-time traffic light control. However, the use of adaptive traffic light control
systems is very low due to the higher investment cost. However, the adaptive traffic
light control method can easily meet the investment cost by saving energy, especially
in areas with heavy traffic. In their study [74] used a genetic algorithm to contemplate
pedestrian crossing in traffic light control. The pedestrian metric was used in the fitness

function to assess the efficacy of candidate chromosomes.
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In order to do traffic control studies, the processing power was low, and the simulation
environment was limited. So fuzzy logic [75] and linear programming [76] were first

used to solve the problem.

With the increasing interest in the use of artificial intelligence, deep learning has
been successful for many problems. Many transportation problems form an important
application area for deep learning, which is a method used in many traffic control
applications, including route planning. Supervised learning, unsupervised learning,
and reinforcement learning are all types of deep learning [77]. Given the difficulties in
modelling the variability of pedestrian and vehicle behaviour due to its unpredictable
and variable nature, researchers have recently applied machine learning to traffic light
control and demonstrated proven performance [78]. El-Tantawy et al. summarized
methods for controlling traffic light timing with reinforcement learning used from 1997
to 2010 [26]. However, the use of reinforcement learning methods was limited at that
time. Therefore to estimate the value of Q, table Q learning and a linear function is
commonly utilized. As a result of technical limitations in reinforcement learning, a
small-sized state area is used. The number of vehicles waiting [79] and traffic flow
statistics [80] can be given as examples of commonly used ones. Since the second
half of the 1990s, the use of learning algorithms for the control of traffic lights has
increased. The agent or agents optimize traffic using an RL (Reinforcement Learning)
algorithm. Reinforcement Learning, also known as Q learning, is one of the successful
approaches to learning algorithms used in traffic light control applications. Many
studies have adopted it due to the benefits of making decisions without the need for
a model, and it is suitable for online use. SARSA algorithm is used for RL-based
traffic light control, and it is one of the first effective approaches in the literature [81].In
SARSA, traffic light control was carried out at the traffic intersection with a 4x4 grid
connection by excluding the yellow light phase. In another study [82], the phase cycle
has been changed for the first time by using simple binary action. Queue length was
used as the input that corresponds to the current state of the system at a given point in
time, and the total waiting time between two actions was used as a reward. Araghi et
al. used a Q-learning approach to calculate signal timing times based on traffic data for
traffic intersections [83]. Each intersection, on the other hand, only calculates using

local data and attempts to maximize local performance.
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In [79], 24 different probabilities that emerged by comparing the row lengths at the
traffic intersection legs were used as the state. Traffic light control, based on queue
length and green light duration, is proposed [84]. The authors used the clustering
amount of cars and a linear function to calculate the Q value and used only the queue
length for the state. When a large amount of useful related information is ignored in

the constrained states, it appears incapable of acting optimally in traffic light control.

deep reinforcement learning is formed by the use of reinforcement learning, which is

used to estimate the Q value, and deep learning together.

In [22], RL-based traffic light control is simulated, giving priority to high-density
roads. For multiple intersections, the traffic light control is done using a fixed time,
taking into account all phase configurations, where a mathematical model is used to

carry out simulations.

In these studies, Deep Reinforcement Learning (DRL) has been used to control
wireless communication [85]. Nevertheless, the timing of traffic signals throughout

the duration of a cycle is not specified in any of the prior studies [86].

In this study [4], SOA (Simple Object Access) based multi agent intelligent
transportation system model is presented. The Model consists of four main sections:
infrastructure, services, element agents and coordination agents. The agents in this
model are divided into different levels and groups such as organization agent, regional
control agent, road intersection agent, road segment control agent, and vehicle to

achieve different functions and targets.

In another Traffic intersection problem [87], it offers a highly agented architecture for
the artificial transportation system. In this architecture, the Petri network is used as a
basic model for representing agents. At an intersection, agents are divided into two
groups: one is for traffic signals, and the other one is for vehicle intersections. It is
integrated to represent the intersection behaviour. In addition, these agents can be used
as modularity to scale the urban network more. To coordinate different intersection
agents, game theory is used to design the coordination strategy between agents. In
another study [86] involving the application of MAS in traffic, learning control policies
for traffic lights were investigated. For a scalable approach to control coordinated

traffic lights, it is proposed to combine the popular Deep Q- Network learning (DQN)
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algorithm with a coordination algorithm. However, the DQN algorithm can oscillate.
Further research is needed to reinforce the situations in which DQN is not stable and
to find approaches that make it more reliable. In this study, [80] using the learning
algorithm, a MAS and a new use of the Reinforcement Learning (RL) framework are
introduced to obtain an effective traffic signal control policy. It aims to minimize
the possibility of crossing the average delay, congestion and intersection. Five
intersecting traffic networks have been studied where each intersection is managed
by an autonomous intelligent agent. The new methodology proposed here uses
the Q-Learning algorithm with a forward neural network for the value function
approach. LQF (Longest-Queue-First) algorithm is used. And in this study [67],
Cooperative Vehicle Intersection Control (CVIC) system is formed. And in this study.
The CVIC algorithm is designed to control the manoeuvres of vehicles so that the
vehicles can safely cross the intersection without colliding with other vehicles. An
additional algorithm has been designed to deal with system failures at the intersection.
However, this study should consider expanding to include multiple intersections along
the corridor or network and simulations based on simulation should be made. A
reservation-based system has been proposed, especially at traffic intersections, under
the assumption that cars are controlled by agents [33]. An exact measurement has
been determined to assess the quality of traffic control at an intersection. There are
restrictions that vehicles cannot turn and vehicles cannot change their speed at the
intersection. In this study [27], a traffic micro simulator in SUMO is applied to
modern deep reinforcement learning methods to generate a real-adaptive traffic signal
control agent. A new state space with information density and separately coded traffic
state are recommended. Discrete traffic situation coding is used as an input to a deep
convolutional neural network, trained by Q-learning with experience repetition. In
this study [88], a MAS based intersection management algorithm has been developed
considering fully autonomous vehicles. The intersection is divided into three regions;

communication, deceleration and acceleration zones.

Reservation-based traffic intersection control, which will also be explained in this
study and which enables the communication between VAs and [As, and regulates the
intersection transition periods of autonomous vehicles without traffic lights, is also

one of the most frequently studied methods in intelligent traffic intersection control.
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At crowded intersections, autonomous vehicles connecting with reservation-based
intersection managers can reduce delays and make significantly better use of limited
road capacity [35]. According to Stone and Dresner, it is suggested the proposed
reservation-based method is more efficient than conventional methods [33]. In
reservation-based traffic intersection control, vehicles that will enter the intersection
inform the intersection agent the area they want to occupy while passing through
the intersection and the arrival time. In line with the transmitted information, the
reservation information generated by the intersection agent will be transmitted to the
vehicles and the vehicles will be able to pass without stopping by adjusting their speed
in the most effective way. In this way, the flow will be ensured without waiting at
intersections and queues will be avoided [89]. In order to apply the multi-agent method
at traffic intersections, studies have been carried out with realistic flow models and
Shared Autonomous Vehicle (SAV) approach to show an approach for research in the
future to use realistic flow models to obtain more accurate estimates of SAV solutions
[90]. In another study, Vasirani and Ossowski indicate that varying policies can be
evaluated empirically to regulate an intersection controlling with reservation-based

method [91].

In recent years, the subject of platooning, which reduces the cost in terms of time
at intersections by arranging the order of the vehicles approaching the intersection
according to the direction to turn, has been frequently researched in terms of the
advantages it offers. In this direction, studies have been carried out on the efficiency,
formation, dispersion and routing of the platoons and it is seen that ordering vehicles
according to their turning directions can be an effective method [92-95]. In addition,
studies have been conducted to further improve the reservation-based method by
ordering the VAs according to the turning directions thanks to the platooning method
at intersections managed with the reservation-based method [96]. Bashiri and Fleming
proposed a platoon-based approach to deal with cooperative intersection management
problems and they also developed a new approach which guarantees the safety of
platoons in conflict zone [97]. Jin et al, proposed a platoon-based multi-agent
intersection management system which can reduce fuel consumption and carbon
dioxide emissions by almost 23% and average travel time by up to 30% when compared

to the current traffic signal control system [98]. Thus, by using both intersection traffic
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regulation methods together, it is seen that improvements can be made for both the
platooning method and the reservation-based method, and it can be presented as a

valid alternative for the control of autonomous vehicles at intersections.

In this study [46], drivers and intersections are considered as autonomous agents in a
multiple system. In this multi agent system, intersections use a new reservation-based
approach built around a detailed communication protocol. This article also attributes to
two aspects of the mechanism. The first one allows the system to control human-driven
vehicles in addition to autonomous vehicles. And the second one gives priority to
emergency vehicles without imposing significant costs on civilian vehicles. However,
in this study, a more detailed study of the security features of the system- how it
responds to various errors and whether the effects of these errors will be mitigated
or not- is studied. Another area to be improved is the intersection manager agent.
A manager who can switch between a variety of policies and learn from booking
dates, which is the policy that best fits certain policy requirements, can significantly
improve performance. Furthermore, a traffic light model that can react not only to
traffic conditions but also to the presence of individual vehicles will be able to better
utilize the capabilities of autonomous vehicles without adversely affecting human
drivers. The driver himself may be able to take advantage of some Machine Learning
techniques, perhaps to learn to make more accurate reservations and thus to cancel less

often.

Route planning applications are also among the application areas of multi-agent
systems. In this study, MAS are used as a support system for route planning [99]. A
Decision Support System (DSS) has been proposed for co-modal passenger transport
based on MAS architecture to respond to multi-criteria user demands. The DSS has
been developed to respond to multi-path planning demands in common mode, such
as vehicle preference and conflicting criteria, such as minimizing costs, time and gas
emissions. The DSS architecture is based on a naturally distributed MAS framework,
which allows the route planning problem to be split into more than one simple
task. A genetic algorithm is used to obtain optimal user-vehicle-route combinations
according to user preferences. MAS has also been used in the problems of logistics
in transportation. For example, [100] offers an ontology-based multi-tool automotive

parts transportation system. The system is used by Dijkstra’s algorithm and the
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Ontology Concept to determine a transport route to find the shortest route. This system
collects the traffic data and the vehicle’s position for an appropriate road decision.
Thus, the user can control and monitor the automotive parts, which are transported to
the production lines, especially in traffic jams. Fleet control is one of the problems
that can be applied to MAS. In this study [101], MADARP (Multi-Agent Dial-a-Ride
Problem) agent architecture is dedicated to the implementation of passenger transport
systems. A number of main tools that perform the basic interface provide service
and support services using a heterogeneous fleet to manage different transport
demands. Agent usage integrates tools and users widely and allows you to easily
adapt architecture to different planning models. In this study [102], The dynamic
orientation of a fleet of cyber vehicles have been discussed with a view to minimizing
the combined system cost, which includes the total time spent and the total energy
consumption of all cybers. A model of the dynamics and energy consumption of a
cyber car fleet based on the definition of the dynamics of each cyber car and road
network conditions is proposed. A number of traceable and scalable multi-agent
control methods have been proposed, including the multi-agent model predictive
control and parameterized control for the dynamic direction of cyber vehicles. MAS
was also used with rail systems [103—-106]. For example, in this study [106], The
movement of a series of high-speed trains running on the railway line is modelled by
a MAS in which each train communicates with adjacent trains to adjust its speed.
This paper [104], considers the problem of passing the trains moving in the same
direction and proposes a multi-agent-based solution to take immediate decisions by
negotiation between train agents and reduce the overall delay of the system up to
an acceptable limit. A method for real-time train conflict resolution by cooperative,
multi-agent negotiation is presented in this paper [107] A dispatch agent, as the
leader, builds the negotiation set of alternative solutions and transport operator agents
negotiate using the Monotonic Concession Protocol In each dispatching area. Conflicts
considering the objectives of authority and train companies can be solved considering
the timetable modifications suggested by the negotiation. A multi-agent-based solution
has been proposed that automates train passage and minimizes system latency. The
communication and coordination between adjacent intersections are facilitated with

MAS [108]. The aim is to attain the emerging effect of minimizing the time loss due to
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traffic congestion over time for a chosen area. The proposed perimeter gating control
mechanism assesses the Simulation of Urban Mobility (SUMO) traffic simulation suite
along with Java Agent Development Environment (JADE). In [109], Autonomous

Intersection Management (AIM) problem is investigated using RL.

1.3 Hypothesis

This study proposes solutions to traffic problems through the utilization of MAS. The
thesis demonstrates that the effectiveness of traffic light controls can be increased using
the deep Q-learning method for determining the phase sequence and the fuzzy logic
method for determining the timings for green and red phases. In addition to this, the
state information based on vehicle position information can be used as input values for
both deep Q learning and fuzzy logic. In the celling method used as state information,
the efficiency of the intelligent traffic intersection controller can further be increased
by keeping the cell lengths of the regions close to the intersection small and the cell

lengths of the far areas larger.

The use of the platoon method in reservation-based traffic intersection management
systems can also increase efficiency at the traffic intersection. In optimum route
planning, the use of state vectors including information on the state of traffic lights, the
density of neighbouring roads, the location of neighbouring intersections, the location

of the agent and the destination increases efficiency.
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2. TRAFFIC LIGHT CONTROL SYSTEMS

Traffic intersections are one of the most important places that directly affect traffic
flow, as they are the intersection points of more than one road. The traffic light is an
important solution to change the pass permission for vehicles and pedestrians. It is
actually possible to have less traffic density with adaptive changes in lighting periods

depending on changing traffic density situations at the intersections.

Traffic light control is an important way to reduce traffic congestion. There are
basically two types of Traffic Light Control (TLC) methods. The first is the periodic
change of traffic lights at predetermined times. The second method is to change traffic
lights automatically according to the data from the sensors. Most traffic intersection
signal controllers are of the fixed cycle type (traditional), meaning there are constant
green/red phase times for each traffic signal cycle. This method is relatively easy
to implement, but it usually results in poor performance. With the development
of technology, intelligent controllers started to be used instead of fixed-time traffic
light control systems [110-112]. Intelligent traffic lights offer undeniable benefits,
especially in metropolitan areas. As a result, the fuzzy control technique has been
widely used in many applications of traffic light control after Lotfi A. Zadeh described
the theory of indefinite sets in 1965 [113]. Pappis and Mamdani presented a Fuzzy
Logic Control (FLC) at the traffic intersection of two one-way streets [114]. The FLC
obtains an output based on three inputs: the elapsed time of the current interval, the
number of vehicles passing through the junction at the green light, and the number
of vehicles waiting at the red light. The green phase duration is calculated using
the FLC’s fuzzy output, with five rules used for each ten-second interval. Favilla et
al. proposed an FLC with adaptive strategies [115], which adjusts the membership
functions according to traffic conditions to optimize the performance of the control
function. There are both statistical and fuzzy adaptation strategies available for traffic

light control.
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This section discusses various traffic light controllers, including PI control, FLC,
and state space model control. The studies are presented in order of increasing
complexity, from simple to complicated structures. None of the studies conducted
in this section utilized any learning algorithms. The design of the environments and
their corresponding simulations were carried out in the SUMO program. The studies

in this section include excerpts from these publications [116—120].

2.1 Fuzzy Logic and PI Control for Traffic Lights

Control of traffic lights at traffic intersections can have important consequences in
reducing traffic density and shortening waiting time in traffic. Intelligent Intersection
Management (IIM) technology has started to develop in traffic intersections as part
of TLC systems. Fuzzy logic and Proportional Integral (PI) control methods are
proposed to be used in the Intelligent Intersection method which is an alternative
method to the classical traffic lights, which are the places where the most traffic is
experienced. A traffic intersection and vehicles were made using the SUMO traffic
simulation program. When planning the routes of the vehicles, the vehicle density
from the east-west direction is thought to be higher. Simulations for the designed
controllers and conventional traffic light controllers are performed, and the results are

compared.

2.1.1 System overview

The general structure of the simulation environment of the traffic light control system
controlled by the Traffic intersection agent method is shown as in Figure 2.1. There
are two detectors placed on the road for each strip. The detectors in each lane are
used to determine the number of vehicles in the lane. The traffic light controller is
responsible for controlling the duration of the green or red status of traffic lights at the
intersection according to the traffic conditions. The optimum cycle time was calculated
by Webster’s method. As the traffic density increases in the simulation, the optimum
cycle time can exceed 120 seconds. Cycle time selected to 120 seconds to minimize

delay and driver frustration

The traffic light control system at the intersection is designed according to the

following assumptions and limitations:
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Figure 2.1 : Traffic intersection model

Traffic moves from north to south, from west to east and vice versa.

When the green light is on for the vehicles from the north and south, the red light is

on for the vehicles from the east and west, and vice versa.
Right and left turns are not allowed at the intersection.
Number of lanes on the roadway is one.

Cycle length of the signal program is 120 sec.

The minimum and the maximum durations for the green light in both directions are

6 seconds and 60 seconds, respectively.
No amber time

Table 2.1 shows order of phases.

Table 2.1 : Order of phases

North South East West

Phase 1 - - Straight Straight
Phase 2 Straight Straight - -

21



2.1.2 Traffic light design with fuzzy logic controller

Fuzzy logic technology allows the implementation of real-life rules similar to the way
humans would think. For example, humans would think in the following way to control
traffic situation at a certain junction: “If the traffic is heavier on the north or south lanes
and the traffic on the west or east lanes is less, then the traffic lights should stay green
longer for the north and south lanes”. Such rules can be easily accommodated in the
fuzzy logic controller. The beauty of fuzzy logic is that it allows fuzzy terms and
conditions such as “heavy”, “less”, and “longer” to be quantized and understood by
a computer. It is possible to show that fuzzy logic-based TLC systems can achieve
better results in comparison to conventional ones. In intersection management based
on fuzzy logic, the intersection controller changes the traffic lights depending on the
number of vehicles at the intersection. The fuzzy logic controller is designed for a

4-way traffic junction: north, south, east and west as shown in Figure 2.1.

vvf vf vm vvm
1 -

Degree of membership

0 5 10 15 20 25 30 35 40 45 50
Total Number_of Vehicles

Figure 2.2 : Membership function of the total number of vehicles from input value
for FLC.
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Figure 2.3 : Membership function of the number of vehicle differences from input
value for FLC.
Two fuzzy input variables have been selected in the traffic lights controller. The first
is the total number of vehicles (TNV) at the intersection. The other variable is the
difference between the number of vehicles (VND) coming from the east and west
and the total number of vehicles coming from the north and south. It includes 7
membership functions which are very very few (vvf), very few (vf), few (f), average
(av), much (m), very much (vm) and very very much (vvm). Based on the fuzzy rules
as given in Table 2.2, the fuzzy controller produces an output according to current
traffic conditions to determine the green light duration. The direction in which the
green phase will be active is determined according to the difference in the number
of vehicles. For example, if the difference in the number of vehicles (the difference
between total vehicles from east and west and the total vehicles from north and south)
is negative, the green phase is effective for vehicles from north and south. If the
difference is positive or zero, the green phase is active for vehicles from the east
and west. The green phase duration, which is the fuzzy logic output value, is then

calculated according to the fuzzy logic input values. The green phase is recalculated
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Figure 2.4 : Traffic light green phase time member function.

in every second, so the green phase times change dynamically. However, it is expected
that the time will be complete when the sign of the difference in the number of vehicles
changes (from positive to negative or vice versa). In this case, the green phase will
remain active for the last value before the signal change, then the green phase will be
active for the other direction. The cycle continues in this way. While there are five
members for the graph to control the traffic lights, there are nine member functions for
the output. A graphical representation of the membership functions of the output value

is given in Figure 2.4 and input values are given in Figure 2.2 and Figure 2.3.

2.1.3 Traffic light design with PI controller

When performing PI-type traffic light control, the difference in the number of vehicles
in both directions is considered as the error of the traffic intersection system. The green
phase times in the PI type Traffic Light Controller are determined by the multiplication
of the K, coefficient by error and the multiplication of the K; coefficient by the
total error. Here, the green phase times can be negative or positive. This helps

the determination of the direction of the green phase. For example, when the green

24



Table 2.2 : Rule table for fuzzy logic

VND
TNV vvf vf f av m vm vvim
vvf vvf vvf vf vf f f av
vf vvf v vf f f av m
f vf vf f f av m m
av vf f f av m m vm
m f f av m m vm vm
vm f av m m vm vm vvm
vvm av m m vm vm vvm vvm

phase time is positive, there will be a green phase for vehicles from the east and
west directions. When the green phase time is negative, the green phase will be for
vehicles from the north and south. The total error of the system does not increase much
because the error values can be positive or negative. The duration of the green phase
is recalculated every second, so the green phase times change dynamically. However,
when the sign of the green phase time changes (from positive to negative, or vice
versa), the time is expected to complete. In this case, the green phase will remain
active for the last value before the signal change, then the green phase will be active
for the other direction. The cycle continues in this way. PI parameters K, and K; values
were determined by considering the effects of proportional and integral coefficients on

the system.

2.1.4 Simulation results

A simulation environment is designed and implemented using SUMO. The CO;
emission outputs and average speed values of the vehicles were taken directly from
the SUMO program. Simultaneous vehicles are produced for 300 seconds during
simulation. In the simulation, the ratio of the number of vehicles coming from the
east-west direction to the number of vehicles coming from the north-south direction is
1,5. In the simulation, half, one, one and a half, two and two and a half vehicles are
produced per second to determine the vehicle density. Therefore, during simulation,
150, 300, 450, 600 and 750 vehicles were produced for vehicle densities of 0.5, 1, 1.5,
2 and 2.5, respectively.

Figure 2.5 shows the average speed values for different traffic light control techniques

relative to the change in vehicle density. Figure 2.6 shows the total CO; emission
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Table 2.3 : Simulation results

Vehicle Density | Fixed Time | Fuzzy Control | PI Control
0.5 32,54 25,86 25,28
1 80,23 67,52 80,68
CO, Emission 1.5 177,18 156,34 172,99
(kg/s) 2 270,45 235,14 260,63
2.5 356,88 304,60 347,79
0.5 35,73 43,38 44,09
1 29,22 32,94 29,58
Average Speed 1.5 19,92 21,89 21,15
(km/h) 2 17,05 18,77 18,38
2.5 16,15 18,51 17,44

values according to vehicle density for different control techniques. Table 2.3 shows
the results of CO, emission and the average speed of vehicles. It can be stated that the
fuzzy logic type traffic light controller and the PI type traffic light controller give much
better results than the traditional traffic light controllers shown in Figure 2.5 and Figure
2.6. In the methods we propose, efficiency is seen more clearly in average speed values.
However, as shown in Figure 2.6 The sum of CO; emission was less changed for either
FLC or PI. The reason for this is that vehicles do not emit CO, emissions when they
wait at the traffic junction, i.e. when their speed is 0. An important advantage of the PI
type controller over the fuzzy logic type controller is that the processing load is less.
Indeed, this was also observed during the simulation. In addition, it is seen that the
fuzzy Logic TLC system gives slightly better results than PI-type TLC system as the

density of vehicles increases.

Each vehicle crossed the intersection once. In the traditional method, the green light
is steadily lit for 60 seconds for each phase. Traffic lights are calculated dynamically
according to fuzzy logic input values with constraints of minimum 6 seconds and a
maximum of 100 seconds for both proposed methods. Also, there is no amber time in

the traffic junction system.

As can be seen from the simulation results, the proposed methods give better results

than the traditional methods.
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2.2 State Feedback Control for Traffic Light Systems

In this section, the State Feedback Controller and FLC with fixed controller parameters
are used to control the period of green light time with consideration of traffic light
cycle time, maximum and minimum green time and are compared with each other.
Ackermann’s Formula was used while designing the State-Feedback control [121].
Simulation of this control system is made and handled using Simulation of Urban
Mobility (SUMO). Results are compared for the proposed types of Traffic Light
Control Systems. The traffic flow scenario is simulated so that the number of vehicles
coming from the east-west direction is higher than the number of vehicles coming from

the north-south direction.

2.2.1 System overview

In this study, the traffic light control on the 4-way intersection was carried out. As
shown in Figure 2.7, 4 roads are named after 4 main directions (east, west, north and
south). The traffic light at the intersection has two different phases. Table 2.4 shows
the order of phases. The 4-way intersection has 4 different entrances and 4 different
exits. All roads have two lanes (one in each direction). Detectors were placed in the
entry and exit areas of each road to determine the number of vehicles on each road.

Figure 2.7 shows the traffic intersection simulation model.

The TLC at the intersection is designed according to the following assumptions and

limitations:

Right and left turns are not allowed at the intersection.

The minimum time for the green light in both directions is 6 seconds.

Maximum green light duration for FLC and State Feedback Traffic Light

Controllers is 100 seconds.

No amber time.
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Figure 2.7 : Traffic intersection simulation model.

Table 2.4 : Order of phases

North South East West

Phase 1 - - Straight Straight
Phase 2 Straight Straight - -

2.2.2 Traffic light design with fuzzy logic controller

FLC works similarly to what people think. With the rules used, FLC can be used close
to human thought. This method is also very useful for traffic light control. If you can

accurately express the amount of traffic flow with the rules, you can get proper results.

Table 2.5 : Rule table for fuzzy logic

VND
TNV vvf vf f av m vm vvm
vvf vvf vvf vf vf f f av
vf vvf vf vf f f av m
f vf vf f f av m m
av vf f f av m m vm
m f f av m m vm vm
vm f av m m vm vm vvm
vvim av m m vm vm vvm vvm

Inputs for FLC are chosen as the Total Number of Vehicles (TNV) at the intersection

and the NVD at the intersection. TNV input represents the actual vehicle number in the
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Figure 2.8 : Membership function of the total number of vehicles.

simulation. NVD is the difference between the sum of the number of vehicles coming

from the east and west and the number of vehicles coming from the north and south.

Two fuzzy input variables have been selected in the traffic lights controller. The first
is the total number of vehicles (TNV) at the intersection. The other variable is the
difference between the number of vehicles (VND) coming from the east and west and
the total number of vehicles coming from the north and south. The fuzzy controller has
7 membership functions which are very very few (vvf), very few (vf), few (f), average
(av), much (m), very much (vm) and very very much (vvm). Based on the fuzzy rules
as given in Table 2.5, the fuzzy controller produces an output according to current

traffic conditions to determine the green light duration.

The green phase is recalculated every second, so the green phase times change
dynamically. The green phase duration, which is the FLC output value, is calculated
according to the FLC input values. Membership functions of NVD and TNV inputs
for FLC are shown in Figure 2.8 and Figure 2.9. A graphical representation of the

membership functions of the output value is given in Figure 2.10.
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2.2.3 State feedback control for intelligent traffic light systems

2.2.3.1 State-space equations

Dynamic equations of the system are derived in discrete time. The system equations
are given using two state variables named as Q; and W;. Q is the sum of vehicle
numbers coming from the east. Q> is the sum of vehicle numbers coming from the
west. Similarly, Q3 and Q4 are the sum of vehicles from the north and the south,

respectively. T is the sampling time. The state equations are given as follows:

Qi(n+1) = Qi(n) + qi(n) — di(n)Si(n) 2.1
Win+ 1) = Wi(n) + TQi(n) + %Tqi(n) - %Tdi(n)S,-(n) 2.2)

The other state variable W represents the waiting times of the vehicles for each
direction. That is W; and W, are the sum of the waiting times of vehicles coming
from the east and the west, respectively. On the other hand, W3 and Wy are the sum
of waiting times of vehicles coming from the north and the south, respectively. In
equation 2.1 and equation 2.2, d; is the number of vehicles leaving the intersection, g;

is the number of vehicles entering the intersection.

X(n+1)=AX(n)+B(n)S(n)+C(n) 2.3

X(n) = [Q12(n) — Q34(n) Wis(n)—Ws4(n)] (2.4)

Q12(n) = Q1(n) + O2(n)

(2.5)
Q34(n) = Q3(n) + Qa(n)
lez(n) =W (n) + Wz(n)

(2.6)
W3 4(n) = W3(n) + Wa(n)
S(n) = [Si(n) Sa(n)]" @2.7)
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When the green light is on in the east and west directions, the input signal S is applied.

The S, input signal is applied for the north and south directions.

(2.8)
S=1[0 1]

The state equations of the traffic intersection model are seen in equation 2.9, equation

2.10, equation 2.11 and equation 2.12.

1 0
A= [T J (2.9)
—d| —dp —d3—d, ]

B= 2.10
{—%le _17d, —\Tdy—1iTd, (2.10)
c=[1 1] 2.11)
Cn)=[Tq12 Tq34) (2.12)

912 =491+ q92
(2.13)

q34 =¢q3+44

2.2.3.2 Ackermann’s formula

The Ackermann formula is a very useful method for controlling systems with state
space models, especially in high-grade systems. When the desired poles are known,

z2=M,z=MAs,... z= A, for an n'" order system, the characteristic equation,

0(2) = (z—M)(z—=A2)...(z— M) (2.14)

o.(z) =7"+ 17" o, 0 (2)+a=0 (2.15)

the characteristic equation of state feedback systems is;
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det]zI — A+ BK] =0

(2.16)
det[z — A+ BK]| = o.(z)
Ackermann’s formula for the gain matrix K is given by
-1
K=1[0 1] [B AB] oa(A) (2.17)

K is a row vector of n elements. In equation 2.17, a(A) is a matrix polynomial with
coefficients determined by the desired closed loop system characteristic polynomial as

follows.

0 (A) = A" 4 o A" o pA" 20y (A) +og =0 (2.18)

Considering the fact that the desired reference signal is zero (equal distribution of
vehicles and waiting times in the junction), the green light time for the east-west bound
is calculated by multiplying the gain vector obtained using equation 2.17 by system

states.

S1(n) =KX(n) (2.19)

2.2.4 Simulation results

A simulation environment is designed and implemented using SUMO. The CO;
emission values, the average speed values of the vehicles and the total waiting time are
taken directly from the SUMO. Simultaneous vehicles are produced for 1 hour during
the simulation. In the simulation, the ratio of the number of vehicles coming from the
east-west direction to the number of vehicles coming from the north-south direction
is 1.5. Moreover, each vehicle crosses the intersection once. In the simulation, 0.1,
0.2, 0.3,0.4, 0.5 and 0.6 vehicles are produced per second to determine the vehicle
density. Therefore, during simulation, 360, 720,1080, 1440, 1800 and 2160 vehicles
are produced for vehicle densities of 0.1, 0.2, 0.3,0.4, 0.5 and 0.6, respectively.

In fixed-time traffic light control, the first 50 seconds green light is on for vehicles
coming from an east-west direction and then 50 seconds of green light is on for vehicles

from the north-south direction. Then, for vehicles coming from the east-west direction,
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Figure 2.11 : Simulation results based on cumulative CO; emission.

the green light is on for 50 seconds, and the cycle continues. For FLC, two fuzzy input
variables and one output have been selected in the traffic lights controller. Membership
functions of these variables are shown in Figure 2.8, Figure 2.9 and Figure 2.10. The
characteristic polynomial selected for State Feedback TLC can be seen in equation
2.20. Poles for the selected characteristic polynomial are z = 0.9480 and z = 0.9737.
The performance criteria of the selected characteristic polynomial are overshoot = 0.1

and settling time = 100 seconds. And sampling time T=1

o (z) =22 — 1.921752+0.92311 (2.20)

Figure 2.11 shows the total CO, emission values according to traffic flow (vehicles per
second) for different control techniques. Figure 2.12 shows the average speed values
for different traffic light control techniques relative to the change in traffic flow. In
addition to this, in Figure 2.13, the total waiting times of all vehicles waiting at the

traffic intersection are shown in minutes according to the change in the traffic flow. It
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can be seen from the simulation results that the state feedback traffic light controller
performs better than both the fuzzy logic traffic light controller and the fixed-time
traffic light controller. In Figure 2.12 and Figure 2.13, where the average speed and
total waiting times are shown, it is clear that the proposed method gives better results.
Itis seen that the traffic light controller with FLC gives better results than the fixed-time
traffic light controller. However, as shown in Figure 2.11, the sum of CO, emission
values is closer to each other in all methods. The reason for this is that the vehicles are
assumed not to emit CO, when they wait at the traffic junction, i.e. when their speed is
0. An important advantage of the State Feedback Traffic Light Controller over the FLC
is that the processing load is less. This situation was observed during the simulation

process.
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Figure 2.12 : Simulation results based on average speed.

In addition, as the traffic flow at the traffic junction increases, it is seen that the average
speed values approach each other for FLC and State feedback TLC. However, this

event was not observed in the total waiting time.
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Figure 2.13 : Simulation results based on total waiting time.

As can be seen from the simulation results, the proposed method gives better results
than both FLC and fixed-time traffic light controllers. This result is seen more clearly
in total waiting time values, which are among the most important performance criteria
for traffic light control. It is observed that the proposed method gives better results also

in other performance criteria, average speed and total CO, emission output values.
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2.3 Traffic Light Control System Simulation for Different Strategies with Fuzzy

Logic Controller

In this study, the FLC simulation is performed for two different traffic light strategies to
control the timing (green/red) of traffic light phases. Simulation of these two strategies
is performed by using the Simulation of Urban MObility (SUMO) program, and the
results are compared. Traffic light control simulation is performed using a FLC on a
four-leg intersection. The simulation environment is made via using the Simulation
of Urban MObility (SUMO) program. Developed controllers are simulated for two
different strategies. When the routes of the vehicles are planned, the vehicle densities
are planned to be equal. Besides, the conventional Traffic Light Controllers are also

simulated, and the results are compared with each other.

2.3.1 System overview

TLC includes a 4-way traffic intersection to simulate the control of traffic lights in
this study. The simulation includes the intersection which contains four different
entrances and four different exits in four-leg intersection ways. Besides, all roads
in the simulation consist of three lanes. Two detectors are placed in the path for each
strip. The detectors in each lane are used to determine the number of vehicles in the
lane. For each leg, traffic lights are added. Figure 2.14 shows the traffic intersection

environment.

The TLC is responsible for checking the light (green or red lights) status of the
traffic lights at the junction according to traffic density controlled by the FLC method.
Figure 2.15 presents the traffic intersection model in the SUMO program environment.
The TLC at the intersection is designed according to the following assumptions and

limitations:

e Right and left turns are allowed at the intersection.

e The minimum time for the green light in both directions is 6 seconds.

e The yellow light is on for 3 seconds during the transition from red light to green

light.
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Figure 2.15 : Traffic intersection simulation model.
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Figure 2.16 : Strategy 1 pass permission topology

In this study, simulation and control strategy of traffic intersection model is performed
for two different strategies which are called as Strategy 1 and Strategy 2. Start time
of green lights for both strategies are found by the FLC. In the case of Strategy 1,
pass permission is allowed for one direction only and not for the other three directions.
However, drivers can turn right for vehicles from the opposite direction. For example,
when the permission is given for vehicles coming from the east, vehicles coming from
the east have the permission to turn or pass west, north or south. In addition, there
is a permit for vehicles coming from the west to the south. The strategy consists of
four different light phases. Pass permission for directions represented for each lighting

phases at Table 2.6 and in Figure 2.16.

Table 2.6 : Strategy 1 pass permission topology

North South East West
Phase 1 Iéfrgi’giitght Right Right i
Phase2 |  Right Isfriti’gR}itght i Right
Phase 3 ] Right gterfati’gR}iltght Right
Phase 4 Right i Right gterfati’:}iltght
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Figure 2.17 : Strategy 2 pass permission topology.

In the case of Strategy 2, left and right turn permissions are given in different phases.
This strategy also consists of four different light phases. Pass permission for directions

represented for each lighting phases Table 2.7 and in Figure 2.17.

Table 2.7 : Strategy 2 pass permission topology

North South East West
Phase 1 - - Straight Straight
Phase 2 Straight Straight - -
Phase 3 Right Right Left, Right Left, Right
Phase 4 Left,Right Left,Right Right Right

2.3.2 Traffic light design with fuzzy logic controller

Fuzzy logic technology allows real-life rules to be implemented as human thinks. For
example, people think of the traffic situation at a particular intersection as follows:
“If the traffic density in the north and south lanes is higher than the traffic density in
the west and east lanes, the traffic lights should remain green longer for the north and
south”. Such rules can be easily placed in the FLC. The advantage of FLC is that
it allows a computer to measure and understand fuzzy terms and conditions such as

2 ¢

“few”, “much” and “longer”. It is possible to show that fuzzy logic-based TLCs can
achieve better results than traditional ones. The FLC is designed for a 4-way traffic

intersection: north, south, east and west, as shown in Figure 2.14.

41



vvf vf vm vvm

0.6 [

0.4

Degree of membership

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Total_Number_of Vehicles

Figure 2.18 : Membership function of the total number of vehicles from input values
for Strategy 1 and Strategy 2.
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Figure 2.19 : Membership function of the number of vehicles on the busiest road
from input values for Strategy 1.
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Figure 2.20 : Membership function of the number of vehicles difference from input
values for strategy 2.
Similar FLCs are used for two different traffic light strategies for Strategy 1. Two
inputs are used for the fuzzy controller of Strategy 1. Input variables for Strategy 1 are
selected as The Total Number of Vehicles (TNV) at the intersection and the Number of
Vehicles (NV) on the busiest road. The Total Number of Vehicles (TNV) is input for
Strategy 2. Figure 2.18 shows the Total Number of Vehicles (TNV) input membership
function graph for Strategy 1 and Strategy 2 because the same input membership
function is used for both strategies. It includes 7 membership functions which are
very very few (vvf), very few (vf), few (f), average (av), much (m), very much (vm)
and very very much (vvm). Input variables for Strategy 2 are selected as The Total
Number of Vehicles (TNV) at the intersection and the Number of Vehicles Difference
(NVD) at the intersection. TNV input is the same as Strategy 1. NVD is the difference
between the sum of the number of vehicles coming from the east and west and the

number of vehicles coming from the north and south.

In the Mamdani-type fuzzy inference system, 49 rules are described and the weighted
average defuzzification method is used. Based on the 49 fuzzy rules given in Table

2.8 and Table 2.9, an output is generated according to the current traffic conditions to
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determine the green light duration. The output of the FLC has also the same naming

convention with the inputs of both strategies.

Table 2.8 : Rule table for fuzzy logic

TNV NV vvf vf f av m vm vvm
vvf vvf vvf vf vf f f av
vf vvf vf vf f f av m
f vf vf f f av m m
av vf f f av m m vm
m f f av m m vm vm
vm f av m m vm vm vvm
vvm av m m vm vm vvm vvm

The green phase is recalculated every second, so the green phase times change
dynamically. For Strategy 1, when the busiest intersection changes and for Strategy
2, when the sign of the difference in the number of vehicles changes (from positive
to negative or vice versa), the period is expected to be completed. In this case, the
green phase will remain active for the last value before the signal change, then the
green phase will be active for the other direction. The cycle continues in this way. A
graphical representation of the membership functions of the output value is given in

Figure 2.21.

Table 2.9 : Rule table for fuzzy logic

VND
TNV vvf v f av m vm vvm
vvf vvf vvf vf vf f f av
vf vvf vf vf f f av m
f vf vf f f av m m
av vf f f av m m vm
m f f av m m vm vm
vm f av m m vm vm vvim
vvm av m m vm vm vvm vvm

2.3.3 Simulation results

Simulation results are obtained using the SUMO program. CO, emission output and
average velocity values are directly taken from the SUMO program. The amount
of CO; emission is obtained from the CO; emission map which is given by SUMO

program. This map depends on the vehicle velocity and vehicle acceleration. When
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Figure 2.21 : Traffic light green time member function.

defining the problem for the intersection, the number of vehicles that turn right at
the traffic intersection has less difficulty in traffic and their number is kept small.
Simultaneous vehicles are produced during the simulation for 180 seconds. The
numbers of vehicles coming from all directions are assumed to be equal to each other
in the simulations. Besides, the number of vehicles directly crossing the junction and
turning to the left are assumed to be equal to each other, while the number of vehicles
turning to the right is about half. In the simulation, in order to determine vehicle
density, half, one, one and a half and two vehicles per second are produced, and the
results of the methods are compared according to the change in the vehicle density.
Therefore, for 0.5, 1, 1.5 and 2 vehicle densities respectively, 90, 180, 270 and 360
vehicles are created during the simulation. Each vehicle crossed the intersection once.
In the conventional method, the green light is steadily lit for 40 seconds for each phase.
In fuzzy logic methods, traffic lights are calculated dynamically according to fuzzy
logic input values with constraints of minimum of 6 seconds and a maximum of 60
seconds. Besides, the yellow light phase for 3 seconds after the green light phase is

applied for both conventional (fixed time) and fuzzy Logic methods.
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Table 2.10 : Simulation results

Strategy 1 Strategy 2
Vehicle Density | Fixed Time Fuzzy Control | Fixed Time Fuzzy Control
0.5 24.580 16.377 27.339 15.879
CO; Emission 1 55.036 40.378 58.076 40.942
(kg/s) 1.5 91.348 82.993 92.800 73.190
2 136.567 133.786 134.797 125.136
0.5 7.931 11.301 7.211 11.483
Average Speed 1 6.750 9.405 6.752 8.590
(m/s) 1.5 6.108 7.306 6.524 7.539
2 6.108 6.232 6.003 6.052
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Figure 2.22 : Simulation results based on average speed.

Figure 2.22 shows the change in the average speed values of the vehicles in the

simulation according to the number of vehicles produced per second. Figure 2.23

represents the change of total CO, emissions according to the number of vehicles

produced per second up to the end of the simulation for a given condition. Table

2.10 shows the results of CO, emission and the average speed of vehicles. As it

can be observed from the results, Strategy 2 gives better results in comparison to
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Figure 2.23 : Simulation results based on cumulative CO, emission.

Strategy 1. In Strategy 1, although the right turn passes are allowed for oncoming
vehicles in a single phase, only the vehicles coming from one direction are allowed.
In Strategy 2, however, mutual paths are permitted in a single phase. This enables
Strategy 2 to give better results. The fuzzy logic method provides less CO, emission
for each vehicle density and strategy against traditional control methods. The average
speed is considerably high on fuzzy logic control methods, especially for lower vehicle
densities. When the vehicle density increase, the average speed decrease but the fuzzy

control method still provides better results.

As can be seen from the simulation results, the proposed method gives better results
than the traditional methods. As can be seen in Figure 2.22 and Figure 2.23, Strategy 1
is better when the vehicle density is low, and Strategy 2 gives preferable results when
vehicle density increases. Nevertheless, TLCs controlled by FLC give better results

for both strategies in comparison to traditional light control.
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2.4 Fuzzy Logic Control Strategies for Traffic Signal Timing Control with State
Inputs

In this section, the Fuzzy Logic State Input (FLSI) controller and Fuzzy Logic Queue
Length (FLQL) are used to determine the traffic light duration. The simulation was
carried out using the Simulation of Urban Mobility (SUMO) software, an open-source,
highly portable, microscopic road traffic simulation kit. Depending on waiting time
and queue length, the results for the proposed types of Traffic Light Control Systems
are compared. A traffic light system at a four-legged junction is controlled by a FLC
with different input values which are queue length and state input. The recommended
method is FLC with state input based on vehicle location. Results are compared for the
proposed types of Traffic Light Control Systems depending on waiting time and queue
length. The density of the vehicles coming from the east-west direction and the density
of the vehicles coming from the north-south direction are assumed to be equal to each
other. In addition, according to the traffic scenario considered, the number of vehicles
going straight is higher than the number of vehicles turning left and right. Simulation
has been carried out for the scenario in which the number of vehicles turning left, and

right is almost equal to each other.

2.4.1 System overview

The simulation environment includes a 4-way intersection controlled by TLCs. For
each leg, traffic lights are used. There are 4 different entrances and 4 different exits into
the 4-way intersection considered. Moreover, all of the roads have 4 lanes. For each
road, lanes closest to the turning direction were created for right and left turns as shown
in Figure 2.24. Position information of the vehicles is obtained using SUMO. Lane and
road which vehicles are on can be obtained via using this position information. Figure
2.24 shows the traffic intersection environment representation scheme. There are three

main assumptions and limitations in TLCs simulation.

e The green light period should be bigger than 6 seconds for both directions.

e The yellow light period is only 4 seconds during transitions from red light to green

light and from green light to red light.
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e Turn is only possible for road with using lanes closest to the turning direction. Also,

the vehicle travelling from west to east only uses the middle two lanes.

Figure 2.24 : TLC simulation environment representation scheme.

Table 2.11 : Pass permission table

North South East West
Phase 1 Straight, Right Straight,Right - -
Phase 2 Left Left - -
Phase 3 - - Straight,Right Straight,Right
Phase 4 - - Left Left

2.4.2 Traffic light controller design

FLQL and FLSI methods are used to determine traffic light cycle time. The aim of
the FLQL and FLSI is to decrease the waiting time and queue length. The basis of the
FLQL and FLSI is the FLC. FLC makes it possible to implement rules similar to the
way people think in real life. The FLC is capable of applying these laws efficiently.
The advantage of FLC is that a machine can comprehend and use fuzzy concepts such
as "small," "average" or "big". FLC is very useful for traffic light control when traffic
data is used appropriately. For example, the effect of determining the traffic lights of 3
vehicles in the same phase and lined up in 3 lanes is the same as for a single vehicle. As
a matter of fact, the time for 3 vehicles and a single vehicle to pass through the traffic

junction is equal to each other. Considering this, the number of vehicles at the traffic
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intersection is not selected as the fuzzy logic input value. The number of vehicles
may be appropriate as the fuzzy logic input value for a single-lane road but not for a
multi-lane road. Instead, the traffic queue length and traffic junction status values were

selected as FLC input values.

2.4.2.1 Fuzzy logic controller with queue length input

The input values of the FLQL traffic light controller consist of the queue length values
of the vehicles at the traffic intersection. In this method, vehicle queue length values
are taken as FLC input. FLC has two antecedents and one consequent. Antecedents
for FLC of FLQL are chosen as the queue length in green phase and the queue length
in red phase at the intersection. The queue length input in the green phase represents
the length of the queue in lanes that can cross the traffic junction in the simulation.
For instance, when the green phase is for vehicles coming from the north and south
directions, the queue length input in the green phase value is the sum of the longest
queue lengths in the north and south directions (excluding the leftmost lane). The
queue length input at the red phase input is the sum of the longest queue lengths in the

red phase at the traffic junction in the simulation.
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Figure 2.25 : Membership function of queue length in GP input for FLQL .
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The green phase duration, which is the FLC output value, is calculated according to
the FLC input values. Membership functions of the number of vehicles in green phase
(GP) and number of vehicles in red phase (RP) inputs for FLQL are shown in Figure
2.25 and Figure 2.26. A graphical representation of the membership functions of the

output value is given in Figure 2.27.
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Figure 2.26 : Membership function of queue length in RP input for FLQL.

There are seven membership functions in the fuzzy controller. They are very very
few (vvf), very few (vf), few (f), average (av), much (m), very much (vm) and very
very much (vvm). The fuzzy controller generates an output based on current traffic
conditions to decide the green light length, using the fuzzy rules mentioned in Table
2.12. In the Mamdani-type fuzzy inference scheme, 49 rules are specified, and the
weighted average method of defuzzification is used. To determine the duration of the
green light, an output is produced based on the current traffic conditions using the 49

fuzzy rules mentioned in Table 2.12.

2.4.2.2 Fuzzy Logic traffic signal timing with states input

The input values of the FLSI traffic light controller consist of status values based on

the position of the vehicles. The state of the traffic intersection defines a representation
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Figure 2.27 : Traffic light green time member function for FLC.
Table 2.12 : Rule table for FLQL and FLSI
RP
GP vvf vf f av m vim vvim
vvf av f f vf vf vvf vvf
vf m av f f vf vf vvf
f m m av f f vf vf
av vim m m av f f vf
m vm vm m m av f f
vim vvim vm vim m m av f
vvim vvim vvim vm vm m m av

of the state of the environment in a given time period t and is denoted by st. In order
to optimize traffic, the state must provide sufficient information on the distribution of
vehicles on each road. The purpose of this presentation is to enable the controller to

know the position of the vehicles in the environment in a timely manner.

Each arm of the intersection, the incoming lanes, was parsed into cells with specific
dimensions that could describe the presence or absence of a vehicle in them. The three
lanes dedicated to going straight and turning right have the same traffic phase. Thus,
there is no need to separate them. However, there is a separate group of cells in the

lane devoted to the left turn. As seen in Figure 2.28, there are 10 cells along each
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Figure 2.28 : Separation of a leg of a traffic junction into cells.

lane. Since 3 lanes using the same phase are not separated, only the leftmost lane is
separated, so there are a total of 20 cells in one arm. There are 80 cells in total at our

4-leg traffic junction.
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Figure 2.29 : Membership function of state input in GP input for FLSI.

The mathematical model of state space, LSD (Lane Space Discretization), is calculated

according to equation 2.21.

LSDZJC =Clk (2.21)
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cix is the k™ Cell of the I'" lane. Vector LSD, "LSDy; = 1 if there is more than one
vehicle in ck, otherwise LSDy ; = 0." It depends on the rule. then the states in each

lane are summed up separately and used as the FLC input value.

10

Y =cu (2.22)

k=1
There are two fuzzy logic input values. first, the sum of the state values of the roads
that are allowed to pass is GP (Gren Phase). The second is RP (Red Phase), the sum
of the state values of the roads that are not allowed to pass. Membership functions of
GP and RP inputs for FLSI are shown in Figure 2.29 and Figure 2.30. A graphical
representation of the membership functions of the output value is given in Figure 2.27.
Based on the fuzzy rules as given in Table 2.12, the fuzzy controller produces an output

according to current traffic conditions to determine the green light duration.
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Figure 2.30 : Membership function of state input in RP input for FLSI.

2.4.3 Simulation results

A simulation environment is made using the SUMO program, and the simulation is run
through this program. Vehicles are produced simultaneously for 5400 seconds during

the simulation. Different scenarios are simulated according to the number of 2000 and
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3000 vehicles produced. Moreover, Each vehicle passes through the traffic intersection
once. In addition, according to the scenario designed, the number of vehicles coming
from the east-west direction is almost equal to the number of vehicles coming from the
north-south direction. Also, in the simulation scenario, the number of vehicles driving

straight is higher than the number of vehicles turning left or right.
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Figure 2.31 : Simulation results based on total queue length (2000 vehicles).

Each vehicle produced during the simulation is five meters, and its entry speed into the
simulation is 36 km/h. Acceleration and deceleration rates of all vehicles are 1rm/s?

and 4.5m/s?, respectively. And the vehicle’s maximum speed value is 90 km/h.

Figure 2.31 and Figure 2.33 show the total queue length variation values for different
control techniques. Figure 2.32 and Figure 2.34 show the total waiting time variation
values for different control techniques. It can be said that the proposed FLSI traffic

light controller gives better results than conventional traffic light controllers.
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Figure 2.32 : Simulation results based on waiting time (2000 vehicles).
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Figure 2.33 : Simulation results based on total queue length (3000 vehicles).
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The effectiveness of the proposed method is seen in both the queue length and the total
waiting times change. It is seen that the proposed method gives much better results,
especially in the time periods (1000-2000 seconds intervals) when the vehicle density
increases at the traffic intersection. In Figure 2.31 to Figure 2.34, the x-axis represents
the average value of each 100 samples or steps. There are 5400 steps because of that
x-axes are split into 54 points.
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Figure 2.34 : Simulation results based on waiting time (3000 vehicles).

The proposed approach FLSI gives the best results as shown in the simulation results.
It was also observed that the fuzzy logic controller, which has the input value according
to the queue length at the traffic intersection, which is the other proposed method, gives
better results than the fixed-time traffic light control. It is predicted that much better
results can be obtained when these methods are used together with various learning
algorithms. As a matter of fact, no control or learning algorithm was used and the
phase sequence changes in a fixed cycle. A method can be developed to determine the

phase direction, and better results can be obtained.
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2.5 Traffic Light Control for Multi Intersection Model in Istanbul/Altunizade

The growing population and limited road capacities of the metropolises, Istanbul,
New York and Hong Kong, lead to increased traffic congestion leading to traffic
queues and accidents, a serious urban management problem. In this section, using
the Simulation of Urban MObility (SUMO) program, a multi-traffic intersection
simulation environment is designed by gathering data from a crucial real-life region
in Istanbul. While obtaining data on real-world regions, OpenStreetMap is used.
The 4-leg traffic intersection model and vehicles are built using the SUMO traffic
simulation program. it is suggested to use the traffic control method in two different
control methods apart from the traditional method for multiple intersections in a
real-world region. Using FLC and actuated control methods, traffic light controllers are
designed for multiple intersections. The results are compared using the data obtained
from the designed traffic light control methods and traditional traffic light control
methods. In this study, control of multiple traffic lights in an area is considered.
Although a fuzzy control for each phase is proposed by considering the number of
vehicles waiting at the red light and the number of vehicles passing through at the

green light, the control of the sequences of the phases is not considered.

2.5.1 System overview

Altunizade is one of the most important transportation points of the Anatolian side,
between the roads leading to Kadikoy and Uskiidar. Altunizade region, which is
shown in Figure 2.35, is a central, multi-junction and traffic control area that is affected
during rush hours. As can be seen in Figure 2.35, this region is exposed to intense and
unresolved traffic problems, especially during rush hour. Figure 2.35 shows the traffic

density of the region at 6:35 PM on a typical Friday, using Google Maps data.

In this study, the Altunizade region is simulated. Since a case study from the real world
is used, many problems need to be overcome. First of all, getting roads and traffic light
data correctly is a problem. This problem is overcome by scanning multiple sources
with applications such as Google Maps, Yandex Maps and OpenStreetMap(OSM).

Applying a real-world control method in simulation takes it one step further in terms

58



of applicability. For this reason, the applicability of the Altunizade region, which
has a multi-dimensional structure and has a critical position for Istanbul traffic flow,
is essential. Especially with the online shopping brought about by the pandemic
period, the increase in motor and vehicle courier services and the increase in the use
of individual vehicles caused by avoiding public transportation negatively affected
Istanbul traffic. Therefore, this study is also relevant to today’s global problem,
the pandemic. Simulations are done with the assumption that the vehicle’s location

information is received correctly via GPS.

Figure 2.35 : Traffic density map and display of traffic lights.

The region implemented is taken as a file from OpenStreetMap(OSM) application.
While the data about vulnerable users (pedestrians, bicycles, etc.) are transferred with
the OSM file, the side roads such as pedestrians and bicycles are removed and the
vehicle simulation is focused. The simulations are performed for 7200 seconds (2
hours) by generating 6000 vehicles. A total of 5 traffic lights, which are named as T'L;
for each intersection as shown in Figure 2.36, are considered in the area used in the

simulation. In Table 1, five traffic lights and phase numbers from TL; to T Ls and their
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views for each traffic light are shown. For example, there are 3 phases for 7L; and
these are expressed as TLy; for the first phase, TL; >for the second phase and TL; 3
for the third phase. One phase duration is 18 seconds. Yellow light duration for a phase
is 3 seconds. The total cycle time according to this connector is also shown in Table
I. Accordingly, total cycle times are shown in Table 2.12. These values are used to

simulate the fixed-time method.

e

Figure 2.36 : Detailed presentation of traffic lights, intersections and phases.

2.5.2 Traffic light control system

For both traffic control methods, the minimum green light duration for each traffic

light from 7Ly to TLs was determined as 6 seconds and the maximum green light
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Table 2.13 : Phase, cycle, minimum and maximum green light times

Traffic Lights Phases Cycle Min Green Light Max Green Light
TL; 1 = 18sec 63 sec 6 sec 30 sec
TL, TLi, = 18sec 63 sec 6 sec 30 sec
TL; 3 = 18sec 63 sec 6 sec 30 sec
TL, 1 = 18sec 42 sec 6 sec 30 sec
TL, TLy, = 18sec 42 sec 6 sec 30 sec
TL,3 = 18sec 42 sec 6 sec 30 sec
TL3; = 18sec 42 sec 6 sec 30 sec
TL3 TL3, = 18sec 42 sec 6 sec 30 sec
TL33 = 18sec 42 sec 6 sec 30 sec
TL4 1 = 18sec 42 sec 6 sec 30 sec
TL4 TL4, = 18sec 42 sec 6 sec 30 sec
TL43 = 18sec 42 sec 6 sec 30 sec
TLs; = 18sec 42 sec 6 sec 30 sec
TL5 TLs, = 18sec 42 sec 6 sec 30 sec
TLs3 = 18sec 42 sec 6 sec 30 sec

duration as 30 seconds, and this is shown in Table 2.12. For the implementation of
the two traffic control methods, the input values are the number of vehicles waiting on
different roads at intersections. Data is taken from SUMO’s TRACI library to find the
number of vehicles on the roads. TRACI allows the values of simulated objects to be
retrieved and their behaviour changed instantly. For TL;, TL, and T L3 intersections,
vehicles from 70 meters away from all roads connected to the intersections began to
be listed. Since the actual path lengths for 714 and TLs do not allow detection from
such a long distance; The number of vehicles is found by detecting the vehicles from

a distance of 30 meters to the 7L, intersection and from 7' Ls to 58 meters.

2.5.2.1 Actuated traffic light control

The actuated method is a primitive method like a fixed-phase traffic light and does
not contain any control method or learning algorithm. However, there are some
improvements over fixed-phase traffic light signalization. A traffic light managed with
the actuated method receives vehicle information data from the roads approaching to
the intersection at a certain distance from the intersection and may decide to extend
the green time for the stage related to certain periods. The actuated method algorithm
works as follows. If the minimum green phase time is over and there is no information

about an approaching vehicle, the green phase is finished. If the minimum green light
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time is about to finish and there is information about a vehicle approaching to the
intersection and the arrival time is less than the end of the green phase, add additional
time to the green light duration. This algorithm ensures that vehicles travelling along
the road do not reduce their speed when they are not needed. Although the Actuated
method is a better method than fixed-time traffic light signalling, it is not a sufficient
method for complex traffic system dynamics. In the actuated traffic control system,
some disadvantages in real applications can be seen because of the structure of the
system and increased delays of vehicles. Since this method makes phase regulation
with instantaneous triggers, drivers cannot be given green light duration information
in advance. Another problem may occur due to hardware malfunctions. Since the
actuated traffic control method is not a robust control method, minor problems such as
communication delays and measurement errors may cause big problems for signalling

regulation.

Algorithm 1 Actuated Traffic Light Control
Initialization: min green light, max green light,
additional green light, traffic light = phasel
Variables: count, add, step, traffic light,is there vehicle
Set: count=0, add=0, step=1 second,
while (count < Green Light + add) do
traffic light = green
count = count + step time
if there is vehicle approaching
intersection is there vehicle = True then

if count < max green light then
if (count - min green light) % add = 0
and is there vehicle then
L add = add + additional green light

end

traffic light = phase2
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2.5.2.2 Fuzzy logic traffic light control

Two values are used as fuzzy Logic input parameters in the traffic control process with
FLC. Both of these consist of the number of vehicles within a certain distance from the
intersection. The first parameter is the number of vehicles close to the intersection in
the phase that is lit green at the current step; The second is the number of vehicles that
are lit in the red phase at the current step at the same intersection. Vehicle numbers are

taken as inputs, with the input values being 0 minimum and 20 vehicles maximum.
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Figure 2.37 : Membership function of the total number of vehicles in red phase.
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Figure 2.38 : Membership function of total number of vehicles in green phase.

Input values from O to 20 are divided into 100 parts with linear space, with fuzzy
logic these parts are transferred to 9 membership functions according to the number
of vehicles, these are: Cvvvf’, *vvi’, v, ’f’, ’av’, 'm’, 'vm’, "vvm’, 'vvvm’). While
the "vvvt" function shows that the number of vehicles is the least for that phase; the
highest function is 'vvvm’. These membership functions are shown in Figure 2.37
- Figure 2.39 as inputs and output. FLC rules are shown in Table 2.14. Moreover,
the duration of the green light should be determined according to these input values,
and the green light should be applied dynamically to each road of each intersection,
respectively. The output value (green light duration) is transferred to the 9 membership
function as a linear space for a minimum of 6 seconds and a maximum of 30 seconds.
For the 9 membership function, 9 fuzzy rules are determined, as seen in Table 2.14,
the membership function of the number of vehicles in the green phase (GP) and the
membership function of the number of vehicles in the red phase (RP) with the rules
determine an output value membership function. The membership function of the

output value is converted into a value between 6-30 given in linear space. Thus,

according to the number of vehicles passing in the green phase and the vehicles waiting
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in red, it is determined how much green light time will be given to the current phase.

Figure 2.40 shows the detailed representation of the fuzzy logic TLC method diagram.
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Figure 2.39 : Membership function of green time duration.

For all five intersections, green light durations are applied to the intersections by taking
the fuzzy output dynamically. Furthermore, When the number of lanes at intersections
is different, for example, if there is a single lane on one road and double lanes in
the other, calculations were made by reducing or increasing the number of lanes to two
lanes on all roads. A single fuzzy set is used in the study, and vehicle input information
at all 5 intersections is processed from the same fuzzy set. However, since the roads
at the intersections have different lane numbers, lane-based manipulations are to be
made when determining the fuzzy inputs. When vehicles come within 70 meters of
the intersection, they start to be included in the fuzzy input list, so there could be a
maximum of 10 vehicle input values for a single lane. The number of input vehicles is
set as min 0 and max 20 in the fuzzy set, so if there are 10 vehicles each in two lanes,
the input value reaches the maximum. However, the number of vehicles on a 4-lane
road may reach up to 40, and it becomes meaningless in the fuzzy set; Moreover,
the number of vehicles on a single-lane road would be a maximum of 10, since the

intersections on one road at the intersection could not reach a maximum of 20 inputs.
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Figure 2.40 : Detailed representation of fuzzy logic traffic light control method
diagram.
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In order to prevent long queues on such roads, the number of vehicles on the roads is
converted/normalized to 2-lane and then used as input to the fuzzy set. (For example:
If there are 32 vehicles on a 4-lane road, 16 vehicles are used as the input; if there are

3 vehicles on a single-lane road, 6 vehicles are used as the input).

Table 2.14 : Rule table for fuzzy logic

RP
GP vvvf  vvf vf f av m vm vvm vvvm
vvvf vvvf  vvvf vyl vvvE vvvlE vvvf vvvf vvvf vy
vvf vvf vvf vvvf  vvvf vyl vvvf  vvvf vvvf vvvf
vf vf vvf vvf vvf  vvf v  vvf  vvvf  vvvf
f av f f vf vf vf vf vf vvf
av m m av av av f f f vf
m vm vm vm m m m av av f
vm vvm  vvm vm vm m m m av av
vvm vvvm vvvm vVvim vVvm vm vim vm  vm m
vvvm | vvvim VVvim Vvvvil Vvin  vVvim  vvim  vm = vm vm

2.5.3 Simulation results

Simulation results are obtained using SUMO. CO, emission outputs and average
velocity values are taken using SUMO. In the simulation, 6000 vehicles are produced
during 7200 seconds. While the average speed for the fixed time control method is
41.46km/h, the average speed for the actuated control method is 42.07km/h and for
the FLC method, it is 43.81km/h. The CO, emission values are 2.57x10° mg/s for the
fixed control method, 2.55x10%mg /s for the actuated control method and 2.5x10%mg /s
for the FLC method.

Figure 2.42 and Figure 2.43 show the average velocity graph of all vehicles measured
per second. As seen in Figure 2.42 and Figure 2.43 the method with the highest average
speed is FLC, the method with the second highest average speed is seen as the actuated
control method, and the method with the lowest average speed is the fixed time control
method. In Figure 2.41, CO, emissions are calculated every second for all vehicles. It
is assumed that CO, emission is zero when the vehicle is halting. In a real scenario,
there will be much greater differences in CO, emissions between the stationary phase
method and the fuzzy control method. CO, emission values are also different for each

method depending on the average speed.
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Figure 2.41 : Simulation results based on CO; emission for each methods.
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Figure 2.42 : Simulation results based on average speed for each method.
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Greater average speed also means less CO, emission as shown in Figure 2.41. The
method with the least CO, emission value is the FLC method. With these parameters,
it is clear that the most efficient method is fuzzy logic TLC. The graphs show that
traffic density and carbon footprint are reduced. In addition, a fuzzy method with
7 membership functions is also used in simulations for comparison. However, as
expected the fuzzy method with nine membership functions outperforms the one with

seven membership functions.
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Figure 2.43 : Simulation results based on average speed for each methods with
median values.

Actuated and FLC methods are compared to classical traffic light control, as shown
in Figure 2.41, Figure 2.42 and Figure 2.43. It is shown that both methods are better
than the traditional method, but the fuzzy logic method gives the most efficient results.
Since it sends predetermined signals for dynamically changing traffic density, the fixed
time control method is the most unfavourable compared to the others. Although the
actuated method is better than the traditional method, it is considered not as robust as

fuzzy control as the feedback information is not used fully.
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3. FUZZY LOGIC AND DEEP Q LEARNING BASED CONTROL FOR
TRAFFIC LIGHTS

In this section, we propose a new agent-based fuzzy logic assisted traffic light signal
timing for traffic intersections. Deep Q-learning algorithms and Fuzzy Logic Control
(FLC) are used together in the proposed method. The proposed method and many
traffic light control methods in the literature were simulated. In order to demonstrate
the effectiveness of the proposed method, some of the important metrics of evaluation
such as traffic congestion, air pollution, and waiting time were used in the assessment
of the simulation results. In the method proposed in this section, the phase sequence
is determined by using the deep Q-learning algorithm, and the green light duration is
determined according to the traffic intersection state. In addition, with the proposed

method, it has been shown that the stability and robustness of the system are increased.

Several recent studies have suggested the application of deep reinforcement in the
traffic light control problem [122, 123]. However, in these studies, the traffic light
durations are divided into fixed time intervals and are increased only by multiples of
these fixed time intervals. This is not an efficient method. In addition to this, the
application of such a method without further precautions is not safe for drivers as the
green light period can change at any time. The main motivation of this study is to
determine the phase sequence and duration of the green light in an optimal way while
enabling the system to deliver accurate information to the drivers. Major contributions

of this study can be listed as follows:

e To the best knowledge of the author, either the duration of the green light is constant,
or the phase sequence of lights is predetermined in the current literature. In this
section, deep Q learning and FLC are used in combination for the first time such that
the phase sequence is controlled by the deep Q learning algorithm and the duration
of the green light is determined by the fuzzy logic controller. It is shown by the
help of simulation that this combination results in a better option for determining

the green light duration in comparison to the methods available in the literature.
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e The idea of using a varying cell size in the determination of the state matrix used
in the deep Q learning algorithm, which was used in [124], is also adopted to the
proposed method. A comparison between using constant (equal) cell sizes and
varying cell sizes is also provided to demonstrate the efficiency of this adaptation.
It is shown that using varying cell sizes in the determination of the state matrix such
that shorter cells are used as the distance to the intersection gets smaller provides a

better solution.

e A theoretical stability analysis is developed and made. Test simulations are

observed to confirm this analysis.

e It has also been observed with the help of simulations that the proposed method is

more robust in comparison to some other methods available in the literature.

3.1 Reinforcement Learning

Reinforcement Learning (RL) [74] is a machine learning approach that is widely used
in applications where online learning is required. It helps the agents to take the best
action in order to maximize cumulative utility over time. As a result, the learning
process reinforces the agent to learn to take the best possible action in the environment
of interest. The reinforcement learning method is used in many areas. Mobile robot
applications, traffic control and decision-making methods can be given as examples.
In the reinforcement learning method, the agent in an environment performs an action
depending on the activity of the other agents and the current state of the environment,

Then, the environment responds with a numerical reward.

Q-Learning [125] is a form of model-free reinforcement learning and is very popular
in the Markov decision process (MDP) as no information is required for transition
possibilities [20]. Q-Learning is one of the most commonly used RL methods for TLC
[126]. It entails providing a numerical value, known as the Q-value, which involves
an action done in response to a certain state of the environment. For the control of an

agent, the Q-learning rule is expressed as follows [125]:

Qi+1(s,a1) = Q(s1,ar) + a(ri41) + y.maxa Q(s;1,a) — Q(s1, ) 3.1
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The value of Q(s;,a,) in equation 3.1 is updated decreasingly depending on the learning
rate @ and the action’s value in state s; is Q(s;,a;). The r;4| in equation 3.1 is the
reward value obtained after performing an action in the s; state. Q(s;+1,a,) represents
the next value of Q and s;, | is the state that occurs after the action while in the s; state.
The term maxs denotes that the highest valued action among the potential actions in
the s, state is chosen. 7y is a discount factor, and it’s used to make the future reward
less important than the immediate effectiveness and its value ranges from 0 to 1. A
significantly modified version of equation 3.1 is used in this study, and it is presented

in the form of equation [127].

O(sr,ar) = (r141) +y.maxAQ’(s;+1,at+1) 3.2)

The term Q’(s;+1,a,+1) denotes the Q-value associated with performing action a, 1 in

state s;41, 1.e. represents the state after the action.

In equation 3.2, there is a rule that updates the Q-value of the current action taken in
state st with the immediate reward as well as the discounted Q-value of future actions.
As aresult, the term Q’(s;41,a,.1), which represents the value of future actions, holds
the maximum discounted reward of the state after s, ; implicitly. Q" (s;42,a,+2) and
0" (s113,a;+3) similarly hold the maximum reward for the next state, and the next Q
values are calculated accordingly. This is how the agent will select an action based not
only on the immediate reward but also on the anticipated future discounted rewards.

The rule can be unpacked as follows for the sake of simplicity,
O(si,a0) = rest + V2 P13+ Vst o+ P iy (3.3)

In equation 3.3, y is a random value indicating only the last time step before the end
of the episode; since no more actions are possible, the value of 7,y is 0. Dynamic
programming may be used to solve this equation, but it must be finite in order for the

computational complexity to be manageable.

A traffic light controller with Q learning tool placed at the traffic intersection can
perform the Q calculation. Agent-based traffic light control for transportation systems

is highly efficient as it can adapt to different scenarios.
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3.2 System Architecture

In this article, in the simulation, a 4-legged traffic intersection with four entrances and
four exits is controlled. As seen in Figure 3.1, Each road at the traffic intersection has
four lanes. Vehicles that will turn right use the rightmost lane at the traffic intersection,
and vehicles that will turn left use the leftmost lane. The left turn lane is solely used
for turning left, whereas the right turn lane is used for both turning right and moving
straight forward. To put it another way, if a vehicle is going to turn left, it must be in

the far-left lane, and if it is going to turn right, it must be in the far-right lane.

Figure 3.1 : TLC simulation environment

Passage permits for opposite directions are also given. Left turns, on the other hand, are
permitted in a separate phase. The yellow light is lit for four seconds when changing
from red to green and vice versa. Traffic light pass directions for each action are shown
in Figure 3.2. In addition, the traffic light passing directions shown in Figure 3.2 are

deep Q learning output actions.

3.2.1 State

In the proposed Q learning algorithm, the state variables are made up of vehicle

position information. The traffic intersection’s state is described by st, and at a given
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d) NSLG

Figure 3.2 : Actions for traffic light agent

time step t it represents a description of the state of the environment. The state must
supply adequate knowledge of the distribution of cars on intersections to enable the
learning algorithm to learn how to optimize traffic effectively. The purpose of this
state information is to provide instant information to the agency about the location of

the vehicles in the environment.

However, unlike studies in general [128], cell sizes are not equal. This specific
state design, in particular, just includes positional details about the vehicles housed
in the medium, and the cell sizes used to separate the continuous medium are not
equal [124]. Cell sizes are small in areas close to the traffic intersection, and they
increase as they move away from the traffic intersection. This method has been
applied to ensure that the effect of vehicles near the traffic intersection in the state
vector is greater. As a matter of fact, simulations are made for both cases where the

cell sizes are taken equal to and not equal to each other. The results are discussed
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in the simulation results section. The chosen state representation design is based on
realism: Information-rich states have been proposed in recent research on traffic signal
controllers, but they are difficult to implement in practice because the information

needed for such representations is difficult to obtain.

At the 4-legged traffic intersection, each incoming road was discretized into cells. The
values of these cells are 1 when there are one or more vehicles in the cell, and 0 when
there is no vehicle in the cell. There are 10 cells along the lane. At the traffic junction,
there are 20 cells on each incoming road. Therefore, there are 20 cells in each incoming
road and 80 cells in total. The three lanes on the right are part of the same cell since

they share a traffic signal, but the track on the left has independent cell lines.

The Lane Space Discretization method has been developed to detect the presence and
absence of cars in each branch of the traffic intersection. A Lane Space Discretization
(L;) vector is a mathematical representation of the state space, in which every L; ; unit
shall be calculated according to equation 3.4. A state example of the multidirectional

traffic intersection generated by the L; equation is shown in Figure 3.3 (c).

Li(n) = sgn(C;x(n) + gix(n) — d; x(n)sgn(gix—1)) (3.4)

in equation 3.4 i = 1,2...m is the index of the traffic streams; n =0,1,2...,n— 1 is
the index of the discretized time intervals. The value k represents the number of cells
in the paths. As seen in Figure 3.6, there are 10 cells for each L;, and a total of 20 cells
in each length. The value of each cell is found as seen in equation 3.4. Where, C is the
number of vehicles in the cell. g and d are the numbers of vehicles entering the cell
and the number of vehicles leaving the cell, respectively. The corresponding element

of the L; vector is 1 if there are one or more cars in L; ;; otherwise, it is 0.

In equation 3.4, sgn(q; x)) = sgn(qio)) fork=1. g; o represents the state of vehicle entry
to the intersection area from lane i. Therefore, as seen in the equation 3.5, sgn(gio))
becomes equal to the traffic light phase. if Z; is O stop, if 1 then go. Z; is the actions of

the deep Q-learning algorithm according to the phases in section 4.1.3.

sgn(qio)) = Zi (3.5)
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Figure 3 shows (a) a snapshot of traffic at the traffic intersection, (b) a snapshot of
traffic at the western leg of the traffic intersection divided into cells, and (c) the
corresponding position matrix in this traffic intersection. The labels given on the left of
the matrix in Figure 3 (c) indicate the corresponding paths for each row. For instance,
WES (West to East or South) represents vehicles coming from the west direction and
heading toward the east or south direction. These vehicles are assumed to be in the
rightmost three lanes of the western leg of the intersection. WN (West to North)
represents vehicles coming from the west direction and heading towards the north
direction. Therefore, the corresponding row in the state matrix is found by looking
at the locations of the vehicles in the leftmost lane of the western leg. Similarly, NSW
(North to South or West), SNE (South to North or East), and EWN (East to West
or North) represent vehicles in the three lanes to the right for vehicles approaching
from the north, south, and east directions, respectively. Additionally, NE (North to
East), SW (South to West), and ES ( East to South) represent vehicles in the left lane
approaching from the north, south, and east directions, respectively. The distances of

the cell spacings in Figure 3 (c) are shown in Figure 3.5.

When a vector L; is shown by the agent in time, the environment in that time is
represented by a vector L; This is the main environmental information the agent
receives, and so it is structured to be as accurate as possible but not too specific so
as not to increase the computational complexity of the neural network’s training. The
length of the agent’s exploration of the state space in reinforcement learning is critical
to the agent’s own performance: unless it explores a large part of the state space, it will
not be able to estimate the best action in each case correctly. After the preparation,
also in an unseen state, the agent should be able to pick the best action as it looks like
a similar condition within its expertise, in which it knows the resulting performance of
any action. This means that the proposed state-space architecture should be appropriate

for the agent’s anticipated learning time.

There are 80 boolean cells in the proposed state space. The agent must explore only
the most important subset of the state space in order to learn the best actions, so the
choice of boolean cells for the environment representation is also essential. The critical
situation for the environment is that at least one vehicle stops at the traffic intersection

and waits for the green phase. Therefore, cells closest to the stop line are more critical
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than the cells that are farther away. This suggests that the combinations of states with
active cells closer to the stop line contribute more to the agent’s successful results,

where the training time is within expectations.
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(c) The corresponding position matrix in this traffic intersection

Figure 3.3 : The process of obtaining the state matrix

78



This study assumes that monitoring cameras (or suitable sensors) are installed at

intersections to identify vehicles and pedestrians.

3.2.2 Action

Steps in accordance with the current traffic light rules are designed for the Q-learning
algorithm. Just one operation can be performed in any time slot. This operation is
measured and chosen from the Q learning agent action sets that can optimize the
benefits. The possible different actions of the agent are defined as a set of actions.
The agent is the traffic light system, which means that certain traffic lights are turned
to green for a certain number of routes and kept in that state for a specified period of
time. The time for the green light is 10 seconds, while the time for the yellow light is
4 seconds. The duty of the traffic intersection agent is to start the green light selection

process. The action set is shown in equation 3.6.

A={EWG,EWLG,NSG,NSLG} (3.6)

Note that the meanings of EWG, EWLG, NSG, and NSLG in equation 3.6 are
illustrated in Figure 3.2. For the state where successive actions are equal to each
other (the selected traffic phase has not changed), the yellow phase is not used, and
the current green phase continues. For the state where the green light and yellow light
durations are constant 10 seconds and 4 seconds, respectively, the other operation will
not start for at least 14 seconds until a different action is performed. Therefore, a total

of fourteen simulation steps pass.

3.2.3 Reward

The reward is that after the agent chooses the action in advanced learning, the result
of the action is taken from the environment. The choice of the parameter is very
important, as the agent interprets the reward value to evaluate the outcome of the action
taken and improve the pattern of future action decisions. The reward is, therefore, an
essential element in the process of learning. Two potential values are typically present:
positive or negative. The purpose of this application is to optimize traffic flow over
time through the intersection. Different control or optimization goals can be achieved

using various Q-learning rewards. For instance, it can be a negative value, such as
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the number of cars and vehicle queue length. The goal used in this study is to reduce
the total waiting time, which is an important parameter that represents the traffic flow

situation.

In order for the traffic intersection agent to make the right choices, the reward value
must be obtained from the traffic performance criteria. The most effective intersection
is one that does not require cars to wait in the traffic lights. As a result, the principle of
waiting time is critical for selecting the incentive measure. The overall waiting period
is considered as the most reliable of the suggested measures. The entire waiting period
has been selected for the calculation of the value of the reward. The total waiting time
is the cumulative value of the waiting times of the vehicles waiting at the intersection
at time t [128]. The waiting times are determined from vehicles moving at a speed of

less than 0.1 m/s. The total waiting time is shown in equation 3.7.

n

Twiy =Y wi(; 3.7
i=1

In equation 3.7, w(;.) is the time in seconds at which a vehicle has a velocity less than
0.1 m/s in time step t. Twt; is the total waiting time in ¢ time step. At ¢ time step, the

total number of vehicles is n. The reward function can be seen in equation 3.8.

re=Twt,_; — Twi; 3.8)

3.3 Deep Q Learning with Fuzzy Logic

Deep reinforcement learning, which combines deep learning and reinforcement
learning, is an extensively used technique in TLC [129]. Through experience replay,
the agent stores the experience again in memory and trains itself again with randomly
selected experiences from memory. The agent obtains a copy of the main network, uses
its weights to compute the target Q-value and computes the minimized loss function
using gradient descent increase. The target network weights are fixed to improve
training stability [130]. The main network allows the agent to choose action after

observing its state from the environment and updating the Q value in the main network.
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3.3.1 Deep neural network

A deep neural network is designed to map states in the system to Q values, which
represent values associated with a behaviour. The vector L;; is the input of the network

at time 7. The Q values of the potential actions from state st are the network’s outputs.
The input of the neural network is defined as seen in the equation 3.9.

ny =Li; (3.9)

The input dimension of the neural network is |nin| which is equal to |L| = 80. The

neural network output is shown in equation 3.10.

n‘jj‘f = Q(s;,a4) (3.10)

In the equation 3.10, is the j —th output of the neural network at timestep 7 and j,z. The

Q-value of the j —th action taken from state st at timestep ¢ is Q(s;,a;). Algorithm 1

shows the process of the deep Q-learning traffic light control method.

The L vector represents the input to the network. Then the hidden layers and finally
the output layer with 4 different potential outputs. Hidden layers are used to make
distinguishable intermediate representations between the inputs and outputs. Hidden
layers also provide space and tools for the transformations that are needed in order to

have more meaningful output representations.

Using the waiting times at time t and time t-1, the agent calculates online the reward
value for the selected action at # — 1. Then the agent saves this information as a packet
to the memory along with the environment state. It then chooses a new action based
on the available information and applies it to the traffic intersection. In this study, as
explained earlier, the actions chosen by the agent are traffic lights. It will perform
agent learning with 500 different episodes where it can encounter many traffic states.

Vehicles are produced for 90 minutes in each section.

In the form of a set of random samples called Batch, the information needed
for learning is gradually presented to the network that is expected to create more
recognizable representations of the data. The Batch receives the information from the
memory that stores each set of samples throughout the training. A memory instance

(M) consists of 4 elements.
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Algorithm 2 Deep Q learning Traffic Light Control
Input: memory size M, batch size , learning rate, discount factor , number of state,
number of action, discount factor 7.
Output: Traffic Light Phase
Notations:
m: the replay memory.
i: step number.
while there exists a state s do
L Choose an action based on the € greedy.
Carry out action a and observe state s and reward r.

if the memory size m > M then
L Remove the oldest experience in the memory.
end
Initialization: s, green light duration, traffic light = phasel
Variables: count, add, step, traffic light
for obtain environment state do
calculate reward
save sample to memory
train
choose new action
set: count=0, step=1 second
while count < Green Light Duration do
traffic light = green
count = count + step time
end

end

M= {staatarl+17at+l} (3.11)

The ry+1 in equation 3.11 is the reward value obtained after performing a, in the s;
state. In the experience replay technique used, the memory size, which determines
how many samples the memory can store, is set to 50000. A batch is the number of
data retrieved from memory in a training sample at each epoch. However, when the
memory is full after a certain training, the oldest data in the memory is deleted. In this
way memory crash that would be inevitable by the constant accumulation of data is

prevented.

An agent tries to find the right action during the training phase. However, in the first
chosen actions, the agent knows little or no which action might be right. To overcome

this problem, the agent must be able to make more discoveries in the initial steps.
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Once the agent has a significant amount of information, exploring and taking different

actions may not yield good results.

Therefore, the agent needs to do less exploration after getting to know the environment.
Thus, the exploration value is high at the beginning of the training process and should

decrease towards the end [27]. The exploration rate is seen in equation 3.12.

n
Ey=1- (3.12)

where n is the current episode in the equation 3.12 and N is the total number of

episodes.

3.3.2 Deep Q learning with FLSI

In classical logical thinking, the results are precisely given, such as true and false, and

there are no grey areas.

In contrast, indefinite values such as nearly true or nearly false can be used in fuzzy
logic [131]. An important application of fuzzy logic is in the control of nonlinear
systems such as traffic control systems. Actually, it has been shown that it is very
efficient in the control of traffic lights [72,75]. FLC consists of 4 main parts. These
are rules, fuzzification, defuzzification, and intelligence. Usually, rules and definitions

are changed to achieve better results.

A block diagram for the Deep Q-Learning Fuzzy Logic with State Inputs (DQ FLSI)
is shown in Figure 3.4. As can be seen from this Figure, the duration of green light
is controlled by the FLC, which is continuously interacting with the environment and
the deep Q-Learning module, which decides on the phases of traffic lights. In this
method, the deep Q-learning algorithm and the FLC work together. While green phase
actions are determined with deep Q-learning, the duration of green light is determined
by the FLC. the input values of the traffic light controller denoted the vehicle position
information. The state of the traffic intersection is denoted by s;, representing the

vehicle positions information at the intersection at time t.

In this method, the traffic intersection officer accesses the location information of the
vehicles on each road and tries to decrease the total of waiting time for vehicles at

the traffic intersection. The aim of this method is to allow the controller to quickly
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Figure 3.4 : Block diagram of DQ FLSI

40 m 20 m 12m 7m 7m 7m 7m

Figure 3.5 : Division of an arm at a traffic intersection into cells

determine the locations of the vehicles in the area. While green phase actions are taken
with the help of deep Q learning mechanism the duration of green light is determined
by FLC. This method is related to the positions of the vehicles. The same cell can be
used for vehicles moving for the same phase in different lanes, so we can consider their
strips to be the same cell. However, there is a different phase for a left turn, there is a
different group of cells. Each lane has ten cells, as shown in Figure 3.5. The leftmost
lane is the only one that is separated because three lanes using the same step are not
separated, resulting in a total of 16 cells in one arm. For the four-leg traffic intersection
considered in this study, there are a total of 64 cells. Algorithm 3 describes the learning

process of deep Q learning with the FLSI traffic light control method.
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Algorithm 3 Deep Q learning with FLSI Traffic Light Control

Input: memory size M, batch size , learning rate, discount factor , number of state,
number of action, discount factor 7., fuzzy logic 2 input (Green Phase and Red
Phase)

Output: Traffic Light Phase, Green Duration

Notations:

m: the replay memory.
1: step number.
while there exists a state s do
L Choose an action based on the € greedy.
Carry out action a and observe state s and reward r.

if the memory size m > M then
L Remove the oldest experiences in the memory.
end
Initialization: s, min green light duration, max green light duration, traffic light =
phasel
Variables: count, add, step, traffic light
for obtain environment state do
calculate reward
save sample to memory
train
choose new action
calculate: Green Light Duration in linear relation to fuzzy parameter.
set: count=0, step=1 second
while count < Green Light Duration do
traffic light = green
count = count + step time

end
85
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FL,'(n—{- l) :Li,l(")+Li,l(n)+---+Li,k(n> 3.13)

Fuzzy logic input values are found using equation 3.13 and equation 3.14. In equation
3.13i=1,2...mis the index of the traffic streams; n = 0,1,2...,n— 1 is the index
of the discretized time intervals. The value k represents the number of cells in the
paths. As seen in Figure 3.6, there are 8 cells for each L;, and a total of 16 cells in each
length. The value of each cell is found as seen in equation 3.13, where C is the number
of vehicles in the cell. g and d are the numbers of vehicles entering the cell and the

number of vehicles leaving the cell, respectively.

FL;i(n) = sgn(Cix(n) + qix(n) —dix(n)sgn(qix—1)) (3.14)

There are two input values for FLC. To begin, GP is the sum of the FL; values of the
roads in the green phase, that is, the sum of the F'L; values of the roads allowed to pass.
The second one is RP , which represents the number of the sum of FL; values of the
no-passing paths. In other words, the sum of the F'L; values of the roads waiting for

the red light.

Table 3.1 shows the fuzzy logic rule table, and Table 5.2 contains the explanations of
the abbreviations in the rule table. Input values of the designed FLC correspond to the
triangular membership function. The interval for GP is [0 16] while it is [0 48] for RP.
The green light duration, which is the output value of the fuzzy controller, is [0 35].

Figure 3.7 demonstrates the learning process of deep Q learning with FLSI.

Table 3.1 : Rule table for FLSI

GP RP vvf vf f av m vm vvm
vvf av f f vt vf v wvf
vf m av f f v vt v
f m m av f f vt vf
av vm m m av f f vf
m vm vm m m av f f
vm vvm vm vm m m av f
vvm VVm VVvm vm vVmm m m  av
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Figure 3.7 : Traffic light control process with deep Q learning with FLSI method.

3.4 Simulation results

SUMO software is used to make a simulation environment, and the simulation is run
through it. During one episode, vehicles are generated at the same time for 5400
seconds. 3000 vehicles are produced for each episode, and the total number of episodes
is 500. Furthermore, vehicles produced during the scenario pass the intersection only

once, and the number of vehicles coming from all directions is almost equal. In
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Table 3.2 : Abbreviations of rule table

vvf | very very few
vf very few
f few
av average
m much
vm very much
vvm | very very much

addition, in all the simulation cases, it is assumed that approximately 75% of the

vehicles are going straight and 25% are diverging to left or right.
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Figure 3.8 : Simulation results based on reward values according to fixed green light
time values.

Table 5.3 shows all the methods used in the simulation environment. In the methods in
which deep Q learning methods are used, learning takes place in the first 450 episodes.
The values shown in Table 5.3 are the average values of the 50 episodes after the
learning takes place. In Table 5.3, simulation results are based on total queue length,
CO, emission output and cumulative delay values. DQ Fix3sec in Table 5.3 are the
results obtained with the deep Q learning method for a fixed 3 seconds green light
duration. Likewise, DQ Fix6sec, DQ Fix10sec, and DQ Fix15sec are the simulation
results of the deep Q learning method for 6, 10, and 15 seconds, respectively. DQ
Fix10sec eqst is a deep Q learning method based on states calculated according to
equal cell lengths for 10 seconds of fix light duration. Likewise, DQ Fix6sec eqst is

the simulation result of the deep Q learning method for 6 seconds according to equal
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cell lengths. The Queue length indicates the number of vehicles waiting for the green

light at a given time.

Table 3.3 : Simulation results

Method Queue CO,(kg) Delay(h)
DQ Fix3sec 48.7250 1020.25 73.08
DQ Fix6sec 59.0745 1174.75 88.61
DQ Fix10sec 33.7422 802.28 50.61
DQ Fix15sec 59.5796 1183.24 89.37
DQ Fix10sec eqst | 54.2325 1104.16 81.34
DQ FLSI eqst 15.9657 341.49 23.94
DQ FLSI 8.8838 228.70 13.32
DQ Fix6sec eqst | 86.5387 1586.19 129.80
Fix10sec 348.367 5127.55 522.55
Fix12DR-8Lsec 191.254 3034.33 286.88
Fix12DR-6Lsec 151.77 2481.21 227.65
FL Q Length 29.02 556.17 43.52
FLSI eqgst 17.359 375.70 26.03
FLSI 17.781 368.84 26.67

’DQ FLST seen in the simulation results is the Intelligent Traffic Light controller
proposed in this study. In this method, deep Q learning and fuzzy logic are used
together. In addition, a state matrix is designed to be sensitive to the distance to the
traffic intersection, as explained in Section 4.2. The difference of the DQ FLSI eqst
method from the DQ FLSI method is that equal cell lengths are used in the former.
It should be remarked that Fix10sec, Fix12DR-8Lsec, Fix12DR-8Lsec, FL. Q Length,
FLSI eqst, and FLSI methods do not implement learning algorithms. Since there is
no learning process in these methods, only values for one episode are shown in the
Table. In these methods, the traffic light action phases are sequential. Fix10sec fixed
10-second green light times are predetermined, and there is no feedback control. For
Fix12DR- 8Lsec method, the fixed 12 seconds for the straight and right-turn phases
and 8 seconds for the left-turn phase is predetermined, and there is no feedback control.
Likewise, in the Fix12DR-6Lsec method, a fixed green light duration of 12 seconds for
straight and right turns and 6 seconds for left turns is predetermined. The fuzzy logic
traffic light control method is used in FL. Q Length, FLSI eqst, and FLSI traffic light
control methods, and the output is the green light duration in all of them. The input
values in the FL. Q Length method are the queue length, and their ranges are 0-60 and

0-180. The difference between the FLLSI and FLSI eqst methods is in the determination
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of cell sizes used in the fuzzy logic inputs. While the cell sizes are equal in the FLSI

eqst method, they are changing with respect to proximity to the traffic intersection.

300 . :
DQ Fix3sec
250 | .
- ——DQ Fix6sec
*ga 200 ——DQ Fix10sec| -
Q@ ——DQ Fix15sec
150 l
(b}
-]
8 100}
a
50 |
0 1 1 1 1
0 10 20 30 40 50

Episode x10

Figure 3.9 : Simulation results based on total queue length values according to fixed
green light time values.

All vehicles generated during the simulation are identical and have a first speed of 36
km/h and a length of five meters. The top speed of the vehicles is 90 km/h. Vehicles

accelerate and decelerate at 1 and 4.5 m/s?, respectively.

15 x10° | | . |
DQ Fix3sec
——DQ Fix6sec
10 + ——DQ Fix10sec| 4
oy ——DQ Fix15sec
a
51 M
0 . . . .
0 10 20 30 40 50

Episode x10

Figure 3.10 : Simulation results based on cumulative delay values according to fixed
green light time values.

The simulation results are shown in Figure 3.8 to Figure 3.19. The x-axes in Figure
3.8 to Figure 3.19 represent the average value of each 10 samples or measures. Since

there are 500 phases, the x-axes are divided into 50 points.
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Figure 3.11 : Simulation results based on CO, emission output values according to
fixed green light time values.
According to the fixed green light duration values, the simulation results are shown in
Figure 3.8 to Figure 3.11. The values of the reward for various fixed time values are
shown in Figure 3.8. The variation of queue lengths, delay values and CO, emission
output values are shown in Figure 3.9, Figure 3.10 and Figure 3.11, respectively. As
shown in Figure 3.8 to Figure 3.11, the results of DQ Fix 10sec are better compared to

other fixed time green time values.

0 x10°
-1 F
-7
[
2 ——DQ Fix10sec
o, ——DQ Fix10sec eqst| .
i DQ FLSI eqgst
h ——DQFLSI
-6 ' ' - -
0 10 20 30 40 50
Episode x10

Figure 3.12 : Simulation results based on reward values according to different states.

According to different state values, the simulation results are shown in Figure 3.12 to
Figure 3.15. The values of the reward for various fixed time values are shown in Figure

3.12. The variation of queue lengths, delay values and CO, emission output values are
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shown in Figure 3.13, Figure 3.14 and Figure 3.15, respectively. It is seen in Figure
3.12 to Figure 3.15 the method that is divided into changing length cells, depending
on the proximity of the traffic intersection, is better than the method that is divided

equally.

The simulation results obtained showed that, the simulation results of DQ FLSI and
DQ FLSI egst are better than all other methods. As seen in Table 5.3, although there is
no learning algorithm, FL.SI and FLSI eqst methods have better simulation results than

fixed time direct deep Q learning methods.

250 : : :
——DQ Fix10sec
< 200 T ——DQ Fix10sec eqst | |
2 DQ FLSI eqgst
o 150
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Figure 3.13 : Simulation results based on total queue length values according to
different states.
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Figure 3.14 : Simulation results based on cumulative delay values according to
different states.
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Figure 3.15 : Simulation results based on CO, emission output values according to
different states.
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Figure 3.16 : Simulation results based on reward values for DQ FLSI and DQ FLSI
eqst.
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Figure 3.16 to Figure 3.19 show comparative simulation results for the DQ FLSI and
DQ FLSI eqgst methods. Also, using a flexible cell length instead of a fixed cell length

gives better results.

30 T T T T
——DQ FLSI eqst
c® ——DQFLSI |
o
S 20
-
g
P 15
-}
C 10
5 1 1 1 1
0 10 20 30 40 50
Episode x10
Figure 3.17 : Simulation results based on total queue length values for DQ FLSI and
DQ FLSI egst.
1 X10° | |
——DQ FLSI egst
1.4t .
—DQFLSI

Delay

0.6 1

0.4
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Episode x10

Figure 3.18 : Simulation results based on cumulative delay values for DQ FLSI and
DQ FLSI eqgst.

The stability analysis of the proposed traffic control systems will be handled in this

section.

Let X(t) be the number of vehicles in the direction of arrival at the traffic light at time

t.
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Pu(n) = lim P{X(t) =n} (3.15)

f—oo

In equation 3.15, P, is the steady-state probability of exactly n vehicles in the
intersection. The balance of the rates of vehicles entering and exiting the intersection

for each state is shown in equation 3.16 (balance equation) [132].

APy = uPy
(3.16)
A —I—‘U,Pn = )VPn—l.uPn—l—l

In equation 3.16, A and u are the steady-state arrival rate and service rate of the traffic

light, respectively.It is defined as seen in equation 3.17 and equation 3.18.

A= lim (1), 3.17)
t—+oo
p= lim (), (3.18)
A
P ==P, 3.19)
u
When we express P, in terms of F;
g g x10° | | |
@ st —DQ FLSI eqst | |
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- — 3 -
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Figure 3.19 : Simulation results based on CO; emission output values for DQ FLSI
and DQ FLSI egst.
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A A A A
Po1=—P,+(P,—=P,_1)=—=P,=(=)"p (3.20)
= ( " 1) I (#) 0

When we use the requirement that the sum of P, be 1 when determining the expression

Fo,
= = A P
1=YP=Y ) R=—" (3.:21)
n=0 n=0 H 1 - n
or If we define it another way
N H N (3.22)
Pp=(=)"(1-=), nx1l
H H

For the equation 3.22, A /u must be less than 1. The number of vehicles in the arrival
direction of the traffic intersection at time t is calculated as in equation 3.23. Here ¢

is the number of vehicles at the beginning.

ci+Ar—ut=(A—u)t (3.23)

The p in equation 3.24 is the Utilization factor and as shown, in the equation it is equal

to A/u [133].

== 3.24
P=1 (3.24)

If p is greater than 1, the number of vehicles at the traffic intersection will constantly
increase, and the number will go to infinity. So the stability of the system can be tested
according to the value of p. The stability test simulation is performed for the method
proposed for various arrival rate values. Simulation results are shown in Figure 3.20 to
Figure 3.24.Figure 3.20, Figure 3.21, Figure 3.22, Figure 3.23, and Figure 3.24 show
the simulation results for lambda values 937, 1887, 2831, and 4713, respectively. As
seen in the simulation results for stability analysis, the proposed method, DQ FLSI,
works much more efficiently. In Figure 3.24, despite the heavy traffic conditions, the
traffic flow did not change to instability, although its performance decreased compared
to other conditions. The simulation result for the behaviour of the proposed method

for the case with very heavy traffic is shown in Figure 3.25. The system does not go
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into instability, even in the case of a relatively large arrival rate, thanks to the proposed

control method.

Table 3.4 : Stability analysis

Method Arrival Rate (A) per hour Ultilization Factor (p)

937 0.975
1887 0.986
DQ Fix10sec 2831 1.342
3762 1.775
4713 2.043
937 0,972
1887 0.975
DQ FLSI eqst 2831 0.981
3762 0.989
4713 1.229
937 0.969
1887 0,971
DQ FLSI 2831 0.975
3762 0.976
4713 0.979
——DQ FLSI egst
so | |——DQ Fix10sec
——DQ FLSI

Queue Length

0 20 40 &0 80 100 120 140 160 180
Step x30

Figure 3.20 : For arrival rate of 937 per hour, total queue length values for DQ, DQ
FLSI and DQ FLSI eqst

As seen in the Figure, the proposed method outperforms DQ FLSI results for all queue
lengths. In addition, the changes in the p values of the methods against the A values of
equal amounts are seen in Table 5.4. For lambda range values used, the system is not
unstable with the DQ FLSI method, but the system becomes unstable after A = 2831
and A = 4713 with the methods DQ Fix10sec and DQ FLSI eqgst, respectively. In
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Figure 3.21 : For arrival rate of 1887 per hour, total queue length values for DQ, DQ
FLSI and DQ FLSI eqst
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Figure 3.22 : For arrival rate of 2831 per hour, total queue length values for DQ, DQ
FLSI and DQ FLSI eqst
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addition, the Total queue length change according to different arrival rates is shown for
the DQ FLSI method in Figure 3.25. As seen in the Figure 3.25 DQ FLSI method, the

traffic light controller becomes unstable for A = 6608.

Control methods trained for the two best methods are shown in Figure 3.26. Figure
3.26 demonstrates the distribution of the number of vehicles for the scenario. In the
test scenario, vehicles are generated within a 17-hour period. Figure 3.27 showed the
queue length result according to the DQ FLSI and DQ FLSI eqst methods for the test
scenario. It is seen that the proposed method for a possible daily traffic scenario gives

similar results in some traffic conditions, but mostly gives better results.

The simulation results show that the proposed DQ FLSI method has considerably
better results compared to other methods existing in the literature. As a result of the
effectiveness of the proposed method, there have been significant improvements in
queue length, CO; emission output, and cumulative delay values. In addition, the
advantages of the state matrix formed to be sensitive to the distance to the traffic
intersection are also seen in the simulation results. The proposed method clearly
demonstrates the advantage of using deep Q-learning in addition to fuzzy logic in the
control of complex systems. In particular, it is shown that using the deep Q-learning

method in the decision-making process for the selection of the traffic light phases and

400
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| —DQFLSI |

Queue Length
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o
=

10071

50

R ey

0 20 40 B0 80 100 120 140 180 180
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Figure 3.23 : For arrival rate 3762 per hour, total queue length values for DQ, DQ
FLSI and DQ FLSI eqst
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Figure 3.24 : For arrival rate 4713 per hour, total queue length values for DQ, DQ
FLSI and DQ FLSI eqst
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Figure 3.25 : Total queue length change according to different arrival rates for the
DQ FLSI method.

using FLC in the determination of the duration of each phase is very effective. The

findings of the study are supported by a theoretical stability analysis as well.
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Figure 3.26 : Vehicle generation distribution for testing scenario.
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Figure 3.27 : Simulation results based on total queue length values for DQ FLSI and
DQ FLSI eqst for test scenario.
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4. AGENT-BASED ROUTE PLANNING WITH DEEP Q LEARNING

This section proposes a deep Q learning method to ensure optimum route planning
of a fully autonomous taxi agent in an active traffic scenario. This section aims to
reduce time in traffic by using an agent-based route planning method with deep Q
learning. An agent which acts as a taxi in the generated traffic flow is also used to
demonstrate the efficiency of the proposed method in taxi service. It is aimed to be
able to comprehend the actions to be implemented in order to complete the given task
in an effective way with deep Q learning, considering criteria such as travel time and
waiting time for passengers as performance criteria in different scenarios. The study

in this section includes excerpts from this publication [134].

4.1 Introduction

Since traffic control is a problem of sequential decision-making, it is one of the best
suited to the reinforcement learning framework, in which agents learn through trial
and error as they interact with their environment [135]. At this point, considering
the complexity of traffic control, it would be appropriate to use the deep Q learning
method, which solves more complex problems than reinforcement learning. It is
known that agent-based studies have been applied to traffic lights before [136, 137].
Unlike other studies, route planning with deep Q learning is presented as a solution
in this study. In particular, a taxi agent makes decisions to leave passengers most
effectively with the feedback it receives from the environment. It is aimed to be
able to comprehend the actions to be implemented to complete the given task most
cost-effectively, with deep Q learning, considering criteria such as travel time and
waiting time for passengers as performance criteria in different scenarios. For this
purpose, a scenario is carried out in the region with active traffic flow, consisting of 12

roads.

In this study, the agent is considered as a taxi in the traffic scenario, and its performance

is tried to be observed with different parameters. The taxi must reach the passengers
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Figure 4.1 : Traffic flow scenario.

waiting to get on the vehicle from a certain location in the road network and take them
to the point they want to get off. In the process of learning the optimum route, a

performance change is observed when different state information is trained.

4.2 System Overview

In the SUMO simulation environment, 12 interconnected roads are created. All roads
in the system have 4 lanes, and there are traffic lights at 5 intersections. The length
of each road is 450 meters. The traffic scenario is generated with a separate file and
produces a different traffic scenario for each section where learning will take place.
This is a challenge the requested algorithm to overcome while it learns. When creating
uncontrolled vehicles, it is aimed not to create the same density on every road on the

map.

Because with less traffic on some roads, it is aimed for the agent to learn that they can

go to their destination faster on these roads.

The vehicles are produced during the maximum simulation period given in the

algorithm. A vehicle is randomly generated in one of the routes in Figure 4.1 with
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different start times in producing these vehicles. Continually producing vehicles on
these routes ensures that the roads where the arrows pass more often have more density
than the ones that pass less. For example, the roads leading to the intersection in the
middle are more crowded than the side roads. The agent who learns to prefer the side
roads reaches its destination faster. Thus, some streets remain relatively open, and the

learning agent prefers these.

4.2.1 Deep Q learning model

Considering the complexity of the system, a 4-layer artificial neural network with 400
neurons in each layer is used. This neural network model is created using python
language with Keras and TensorFlow libraries. In the input layer of the artificial neural
network model, there are as many neurons as the state data in the proposed state vector.
In the output layer, there are 3 neurons since the agent has the right to perform 3
actions. The output of these neurons corresponds to the predicted Q value for the
relevant action. In cases where the agent does not have the right to explore, it takes the

action corresponding to the largest Q value.

The ReLLU function is chosen as the activation function of neurons. Computing costs
are considered in this selection. Each batch contains 100 states. A batch learning
technique is used to accelerate the learning process. In the learning process, the reward
data collected from the environment during the simulation will act as feedback and
train the parameters of the deep learning network according to the action required to

be taught.

4.2.1.1 States

In the route planning problem, the necessary information for the taxi agent to make
sense of the environment and choose an action is expressed with state vectors. The
environment information sent to the learning model at any time t should be information
that can help the agent achieve its goal. For this reason, the information that will be
obtained from the environment is very critical and should be carefully selected. In
the route planning problem, the taxi agent is planned to reach the destination in the
shortest time possible. Therefore, the status information to be used should include
information such as the traffic density on the roads, the location of the target point, and

the location of the agent. In this study, the effects of different situational information
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on the learning process are tried to be observed experimentally. In this context, 13
status data are used, including six different status information containing the position
information of the neighbouring roads, three status information expressing the vehicle
congestion on the neighbouring roads, two coordinate status information indicating the
location information of the agent, and two coordinate data for the position information
of the target point. A state vector is created. It is observed that the traffic light also
influences learning. Therefore, the light sequence of the road network is tried to be

taught to the agent, and its effects on learning are observed.

Position data

Each position information will be taken as state information in 2D coordinate system.
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Figure 4.2 : Sample traffic scenario.

An example scenario is presented in Figure 4.2, which serves as an illustration of the
system being analyzed. The associated state vector, which captures the state of the

system at a given time, is provided in Table 4.1.

Traffic density of neighboring roads data

Traffic density information on neighbouring roads plays an important role in the
agent’s alternative route selections. In Figure 4.3, traffic density information from
a sample scenario is shown. The length and shortness of the route are not the only
factors affecting the time to reach the destination. It is affected by also how fast it
is possible to travel on the route. In order to make sense of the relationship between

the time to reach the destination and the traffic congestion on the neighbouring roads,
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Table 4.1 : Sample state vector

State Vector

. neighbor x value

. neighbor y value

. neighbor x value

. neighbor y value

. neighbor x value

. neighbor y value
Agent x value
Agent y value

Target destination x value

Target destination y value

W W NN ==

-450
0
0

-450

450
0
0

50

450

-450

vehicle congestion information on the neighbouring roads should be added to the status

vector.
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Figure 4.3 : Acquisition of traffic density information on neighbouring roads.

Traffic lights of neighboring intersections data

As can be seen from the example scenario in Figure 4.4, two pieces of data related to

the traffic light come from each neighbouring intersection. These represent what the

current traffic light is, and the time left to change. The taxi agent generates alternative

routes by making sense of the traffic light sequences while going to the target point.
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Figure 4.4 : Acquisition of traffic light information at neighbouring intersections.

4.2.1.2 Actions

There are three basic actions that the taxi agent must decide on at each intersection.

These are respectively "turn right", “go straight” and “turn left”. These are the elements

that make up the action set and these actions are predefined.

However, in the system shown in Figure 4.1, not all intersections are four-way.
Therefore, the agent is not free to select all the elements of the action space when

it comes to such intersections.

The Q value corresponding to this action from the deep learning network is effective
for the agent choosing the action. However, since the environment that the agent is
simulating is wide and open to exploration, it is aimed at the agent to discover ways
that it has not tried before. Therefore, an adaptive exploration-exploitation method
was used. A probabilistic variable € is assigned, and its value is decreased in each
simulation iteration. This means that the agent has the right to constantly discover new

actions in the environment, up to the last simulation, high in the earlier simulations,
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Figure 4.5 : Actions for a 4-way intersection.
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Figure 4.6 : Actions for a 3-way intersection.

— - > Decision Zone

Action 1

Action 3

and low in the later simulations. Thanks to the decreasing probability allocated for
this exploration, it will continue to stay true to the parameters it learned in the last
simulation iteration, and the final artificial neural network parameters will be found.
Figure 4.5 and Figure 4.6 show the actions that the agent can choose for different

intersection points.
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4.2.1.3 Reward

The agent expects to take the waiting passenger to the desired location in the fastest
way possible, and therefore, the elapsed time will be against the performance. Another
performance expectation is to get as many passengers as possible to the desired
location. Considering these performance criteria, a reward-punishment relation was

proposed as in equation 4.1.

Lsim

r(tsimatroadvaa’)/) =—1— ’Y( p) 4.1)

Tmax

troaqa: Travel time of the agent on the current road

tgim-Simulation time

p: Number of passengers waiting for a taxi

¥: Waiting passenger weight coefficient

Tax: Maximum simulation time

The reward relation given in equation 4.1 allows the vehicle to perceive the time it will
spend on the road as a punishment in the learning process and enables the trained model
to complete its task in the shortest time. Also, the reflection of waiting passengers on
the reward correlation as a punishment provides feedback for the agent to reach the

passenger as soon as possible.

The cumulative reward, on the other hand, proceeds by adding the reward value after
each decision region and represents the reward-punishment value accumulated as a
result of a certain sequence of actions. The cumulative reward value is updated after
each decision-making step and stored in memory along with other state information to

train the neural network model.

4.2.2 Simulation results

Figure 4.7 shows the starting position of the taxi and the passenger’s getting on and off

points.
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Figure 4.7 : The scenario of route planning.

Within the scenario, there are six passengers, and the taxi agent will learn to complete
the routine of picking up all the passengers and dropping them off in the most optimal

way.

As seen in Figure 4.9, with both techniques, the agent successfully completed the
learning process and reached the maximum reward and minimum penalty level. As
can be seen from the results in Figure 4.8 and Figure 4.9, learning is faster when traffic
light information is included. With traffic light information, location and neighbour

data become more meaningful.

Two different state vectors are used for the learning process of the agent. The optimum
route is tried to be taught with the S state vector given in equation 4.2 without using
the traffic light information, and then the optimum route is taught using the traffic light

information and the S, state vector given in equation 4.3.
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Figure 4.8 : Passenger average waiting times.
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In the graph seen in Figure 4.8, the waiting time of the customers is minimized with

both state vectors. However, as in the reward graph, learning is less oscillating with

the state vectors containing traffic light information in the waiting time criterion.
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Figure 4.9 : Reward value of the agent for the number of episodes.
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One of the criteria considered as a performance criterion is the reward correlation,
which is predefined. A balance between the waiting passenger and the elapsed time
is also tried to be established. The taxi agent, which received feedback from the
environment through this reward correlation, is put into a repetitive learning process
in the simulation environment, and these simulations are repeated 100 times. Since

another factor affecting the learning process is the situation information obtained
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from the environment, the learning performance of the agent was tested with different
situation data. In this context, in addition to the common location and neighbouring
road status information, the traffic light effect on the road network is tried to be taught
to the agent. However, to look more closely, when traffic light information is added
as state data in addition to location and neighbouring road information, it reaches
the maximum reward value with a better graph and less oscillating characteristics.
Another success criterion of the taxi agent is to plan the route in a way that minimizes
the average waiting time of the customers. While repeating each route, the penalty
value increases in the reward correlation of the waiting people with the elapsed time.
The taxi agent that learns this situation ensures that the waiting people complete
their route as quickly as possible. Considering all performance criteria; for the taxi
agent’s optimum route planning learning, it is recommended to use state vectors
containing traffic light information as well as density information of neighbouring
roads, location information of neighbouring intersections, location information of the

agent and destination location information.
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S. A PLATOON ORDERING ALGORITHM ON RESERVATION-BASED
INTERSECTION MANAGEMENT SYSTEMS

Nowadays, the crowding of cities and the increase in traffic density affect human life
negatively. To increase the quality of human life, it has become necessary to develop
traffic control algorithms and perform traffic simulation studies. The efficiency of
traffic control systems is highly dependent on traffic intersections as they are highly
effective in the number of traffic accidents and traffic delays. Vehicles at the traffic
intersection making right and left turns slow down while approaching the intersection
and pass the intersection within the speed limits determined for the turn. Accordingly,
the time spent by the vehicles at the intersection increases, and these vehicles cause
the vehicles behind them to slow down as well. This study focuses on increasing the
efficiency of the reservation-based intersection control of the platoons consisting of
vehicles that will come to the intersection and turn in different directions. For this
purpose, a reservation-based traffic intersection control algorithm was designed for a
four-legged two-lane traffic intersection and a platoon ordering algorithm has been
created to order the vehicles on the platoon approaching the traffic intersection as

straight, right-turning and left-turning, respectively.

The reservation-based Multi-Agent Intersection Management (MSIM) and advantages
of the platooning method with MSIM were investigated by considering parameters
such as the time to cross the intersection and average speed. The main actors of the
MSIM solution algorithm presented for intersection control are Vehicle Agents (VAs)
and Intersection Agents (IAs). At each intersection, the [A oversees reservations in
a period space premise to guarantee that two VAs do not be at the same intersection
location spot simultaneously. This information, provided by IA, enables each VA to
make the most efficient decision to accelerate, decelerate, cross the intersection or
make a turn before they even reach the intersection area, and seamlessly implement
it when it arrives at the intersection. Thus, unnecessary stop-start movements are
avoided. In addition, it was desired to increase the effect of reservation-based

intersection control by using the MSIM method and the platooning method together.
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Vehicles coming to the traffic intersection making right and left turns slow down
while approaching the intersection and pass the intersection within the speed limits
determined for the turn. Accordingly, the time spent by the vehicles at the intersection
increases and these vehicles cause the vehicles behind them to slow down as well.
The grouping of vehicles that arrive at the traffic intersection in a platoon successively
and mixed according to the direction of the turn, while coming to a reservation-based
controlled traffic junction, in order according to the direction of the turn, affects the
total time spent at the junction and the average speed of the vehicles. The vehicles
entering the traffic intersection by arranging them as those going straight, turning right
and turning left will reduce the total time spent by the vehicles at the traffic intersection

and increase their average speed.

The simulation study was carried out in the SUMO environment, and the effect of the
ordering algorithm according to different scenarios on the average speed of the vehicles
in the platoon and the total time spent at the intersection was examined. By repeating
the simulations without using the ordering algorithm, it has been observed that the
ordering algorithm reduces the time spent by the vehicles at the traffic intersection and

increases the average speed.

5.1 Reservation-Based Intersection Management

Reservation-based traffic intersection is designed with two lanes for each direction
in order to allow the platoons to be sorted according to their turning directions
before approaching the intersection. Reservation-based traffic intersection control is
multi-agent, and the control system consists of an intersection agent (IA) and vehicle
agents (VA). To implement reservation-based intersection control, the assumptions

listed below are made:

e Vehicle agents are assumed to be SAE 4-5 level autonomous vehicles.
e Each of the vehicles has GPS to determine the location.

e Vehicles have the necessary network systems to communicate with the intersection

agent.
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In order to carry out reservation-based traffic intersection control, 800 meters of
the roads that are connected to the intersection are included in the intersection area
(Figure 5.1). The first 200 meters of the 800-meter parts of these roads are called
the Communication Zone (CZ). Vehicles can communicate with the intersection agent
within this region. The second 200 meters of the 800 meters parts of these roads are
called Ordering Zone (OZ). In this section, the vehicles are ordering themselves among
each other. The area 400 meters from the intersection is called the Action Zone (AZ).
In this region, vehicles take appropriate actions to pass through the traffic intersection
according to their reservations. In case of the possibility of the vehicles coming from
different directions being in the same place at the same time, regions where vehicles

are likely to have an accident occur at the traffic intersection.

. Communication zone

. Ordering zone
. Action zone

- Intersection zone

Figure 5.1 : Intersection zones.

The traffic intersection is divided into 4 regions for ease of calculation (Figure 5.2).

Since the vehicles used in the study are autonomous and follow a certain route, there
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are 12 possible routes. For these routes, the regions that the vehicles will occupy while
passing through the intersection have been determined and examined in a chart (Table
5.1). In this way, the regions where the vehicles entering the traffic intersection are at

risk of collision with other vehicles can be observed clearly.

O,

e,
@

Figure 5.2 : Intersection regions.

Vehicle agents transmit information about vehicle ID, route information, vehicle cost,
intersection regions to be occupied and the entry and exit time to the intersection
regions to the intersection agent. Entry and exit times to the intersection regions
are calculated by considering the length of the vehicle and the dimensions of the
intersection regions. Using the intersection entry and exit points, the vehicle agent
can calculate the times it will reach the intersection and occupy the intersection
regions. The intersection agent, on the other hand, places the time that the vehicles
will occupy in the reservation matrix, based on the entry and exit times, according to
the information collected from the vehicle agents. After the reservation information
is transferred to the vehicle agents, the vehicle agents pass through the intersection
by adjusting their speed according to the reservation information. While making the
reservation, the safe speed and acceleration limits determined for the vehicles are taken
into consideration. In this way, it is aimed that the vehicles will pass through the

intersection without stopping and without accidents.
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Table 5.1 : Vehicle routes and the regions they occupy.

Routes | Region1 Region2 Region3 Region4
Route 1 X X
Route 2 X

Route 3 X X X

Route 4 X X

Route 5 X

Route 6 X X X
Route 7 X X
Route 8 X
Route 9 X X
Route 10 X X
Route 11 X
Route 12 X X

5.1.1 Intersection agent

The reservation process is performed by writing the occupancy times of vehicles
into the reservation matrix. The reservation matrix consists of a total of four rows
representing the four intersection regions. In order to carry out the reservation process,
information must be collected from the vehicle agents. At this stage, the distance
between the vehicles is checked and whether the vehicles can pass in convoy and the
cost of this situation is checked. In cases where it is possible to form a convoy, the
vehicles are evaluated as a single vehicle by the reservation agent. After this stage,
if there is no conflict between the vehicle agents, the reservation process is made by
recording the entry and exit times to the intersection regions and the vehicle ID in the
reservation matrix. According to the information from the vehicle agents, if there is
a conflict in any of the intersection regions, a prioritization process should be carried
out by the intersection agent, since conflicts will cause possible accidents. For this
process, the costs of the vehicles are used. Priority is given to the high-cost vehicle.
If the costs are equal, the sorting process is carried out according to the IDs of the
vehicles. In case of a conflict, the reservation agent transmits the updated reservation
information to the vehicle agents. The reservation matrix is constantly updated and
it is aimed to renew the reservation process in case of any problems. An example of
how the reservation matrix is filled is given in Table 5.2. According to the reservation

matrix, Vehicle 1 (vehl) follows Route 12 and occupies Intersection Regions 1 and 2.
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At time t1, the vehicle enters region 1. At time t2, the vehicle exits region 1 and enters
region 2. At time t4, the vehicle exits Intersection Region 2 and leaves the intersection.
The residence time of the vehicles in the intersection areas is calculated by the distance

of the vehicles to the intersection area and their instantaneous speed.

Table 5.2 : Vehicle routes and the regions they occupy.

tl t2 t3 t4 t5 t6 t7 t8 t9
Regionl | Vehl Vehl Veh2  Veh2
Region2 Vehl Vehl Veh2  Veh2
Region3 Veh2  Veh2
Region4 | Veh3 Veh3 Veh3

5.1.2 Vehicle agent

Vehicle Agent, communicates and works together with Intersection Agent. The
first duty of VA is to sense the environment, this action returns the vehicles’ ID’s,
intersection zones, costs, possible arrival and departure times. If there is an intersection
on the route of the vehicle, this information is shared with that IA. The shared
information includes reservation points to be occupied, present road conditions and

leader VA’s data. Figure 5.3 show the communication architecture of the Multi-Agent

System.

Vehicle Agent
/ \ , [il
Environment Info - vehiD
- Route Info 7 N\
Action * VehicleCost Vehicle Agent [i] Info
- Arrival Time .
: . Intersection
Reservation Matrix
\ J/ Agent

- IntersectionType
* ReservationMatrix

Environment

7 . “\Vehicle Agent [i+n] Inf
Vehicle Agent

Reservation Matrix
Environment Info

Action
. Arrival Time

—

N

Figure 5.3 : Communication architecture of multi-agent system.

The vehicles that are outside of the Action Zone are controlled by the ACC method

that SUMO provides. The method is the Krauss Model. After travelling into the AZ,
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the vehicles switch to ICACC method. Figure 5.4 shows the flowchart of the vehicle

Control the vehicle with
ICACC
Yes

agent’s operation.

Sense the
Environment

Control the vehicle with
ACC

Control the vehicle with
ACC

Vehicle Agent reservation

Check the vehicle location
request

Check the reservation
matrix

Control the vehicle with

Figure 5.4 : Vehicle agent control algorithm.

With these definitions the duties of the VA can be divided into two. The first one is
sending a reservation request to the IA and the second one is to manage and decide the

control methods mentioned above.

5.1.2.1 Vehicle agent cost

SUMO has lots of vehicle types to choose from. These vehicles can be internal
combustion vehicles or electric vehicles. In this paper the vehicles are chosen as
electric powered vehicles. Because of this choice, the cost function is constructed with
kinetic energy and waiting time minimization in mind. As seen below the cost function
takes kinetic energy and waiting time as parameters. In equation 5.1 the calculation of

the vehicle cost can be seen.

1
Cost = (E (Vrzlrml)) (tdly - tnrml) (5.1)

5.1.2.2 Vehicle agent reservation request

When the vehicles enter the CZ, the IA shares the vehicles’ zones and reservation

information with VAs. According to this info, the VA determines possible reservation

121



points by taking possible arrival and departure times, vehicles’ distances to the arrival
and departure points, speeds and vehicles’ lengths into account. If these points are
not available, VAs make reservations to the nearest point that allows vehicles’ speed

control. The speed control is done by aiming for efficient braking and accelerating.

After determining the occupied reservation points, the VA creates a reservation request
for these points. This request includes an arrival and a departure time info; this time
information is calculated by taking duration, location, current speed and the location
of the intersection data into account. In equation 5.2 and equation 5.3, the calculation

of these arrival and departure time information can be seen.

Xafi] — 4[]

il = =y (52)
Xapi) —dp 1

Lafi(j) = VWL_] : (5.3)

5.1.2.3 Vehicle agent action

VA determines the actions to be taken by checking if the vehicle is in CZ or not. This
knowledge is provided by IA. VAs, neither can make reservations nor receive info
about the other reservations until travelling into the CZ. Vehicle speed is controlled by
ACC between the AZ and the IZ. If there is no other vehicle in front of the vehicle,
the speed of this vehicle is set to the maximum speed limit of the road. If there is any
other vehicle in front, the ACC controls the speed of this vehicle. If the VA enters
the AZ with a successful reservation, it determines the further actions with using the

reservation information that the IA provides.

5.1.2.4 Intelligent connected adaptive cruise control

When the VA receives the reservation information from the IA, ICACC is initiated.
This controller sets acceleration limits for the vehicles and the speed of the vehicle
is changed according to these limits. Acceleration limits makes the speed change
smoother, thus achieving maximum passenger comfort and minimum energy loss.
After the vehicle is slowed down, it keeps its speed constant until it reaches the

intersection.
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5.2 Platoon Ordering Algorithm

Vehicles at the traffic intersection making right and left turns slow down while
approaching the intersection and pass the intersection within the speed limits
determined for the turn. Accordingly, the time spent by the vehicles at the intersection
increases and these vehicles cause the vehicles behind them to slow down as well.
Ordering the vehicles approaching the traffic intersection in a platoon form according
to the direction of the turn, has an effect on the total time spent at the intersection
and the average speed of the vehicles. As a result of the observations that were
made, in order to facilitate the reservation of vehicles arriving at a reservation-based
intersection, the optimal order of the vehicles was determined as straight, right turn
and left turn. The working principle of the algorithm is briefly shown in Figure 6.
The following assumptions are made in order to sort the vehicles approaching the

intersection:

e Vehicles on the platoon enter the ordering zone from the right lane while

approaching the intersection.

e To facilitate the reservation process, it is aimed that vehicles that turn left come to
the intersection from the left lane, while vehicles that go straight and turn right stay

in the right lane.

e After the vehicles are ordered according to their turning directions, they regroup,
and the vehicles that turn in the same direction decrease their following distances

again.

Under these assumptions, the following steps were followed to sort the vehicles:

1. When the vehicles in the platoon enter the ordering zone, their vehicle IDs are
recorded through detectors.

2. By taking the route information of the vehicles, their turning directions are
determined.

3. Vehicles that turn right and left switch to the left lane.

4. After the completion of the first lane change, the position information of the first
of the vehicles that turn right and of all the vehicles that go straight is obtained and

compared.
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5. If the first vehicle that turns right is ahead of the last vehicle that goes straight, the
vehicles that will turn right and those that will turn left slow down and the vehicles
that go straight will move forward.

6. When the vehicles that go straight pass a certain distance ahead of all the vehicles
that will go to the right, they pass back to the right lane and get behind the vehicles
that go straight.

7. After ensuring that the vehicles that turn left are behind the vehicles that turn right,
the vehicles that turn right and those that turn left accelerate again.

8. After the ordering process is completed, all vehicles catch the front vehicle that
turns in the same direction, reduces the following distance and become platoon again.
9. In this way, vehicles that turn left are grouped in the left lane, vehicles that turn
right and vehicles that go straight are grouped in the right lane sequentially.

10. The algorithm is applied to vehicles coming from all directions.

Algorithm 4 Platoon Ordering

if platoon is already ordered then
break

L end

for i in range (platoon size) do
route = take vehicle’s route (vehicle(i))
if route==left || route==right then
ChangeLane (vehicle(i))
end
if first of right is behind last of straight then
| ChangeLane (right)

else
| SlowDown (right,left)

end

if platoon is ordered then
CatchTheLeadingVehicle (all vehicles)
end

end

5.3 Simulation results

For establishing a simulation environment, a four-legged two-lane intersection is
created using SUMO. Python is used to manipulate the traffic flow and to control

the vehicle actions. The simulation’s time step is set to 100 milliseconds. At every

124



ey O e O

(a) Vehicles approach the traffic intersection and are mixed according to
their turning directions.

(b) Vehicles that make right or left turn pass to the left lane.
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o

(c) Vehicles going straight pass ahead of other vehicles.

& @ o

(d) Vehicles making a right turn pass back to the right lane.
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(e) Vehicles are ordered according to their routes.

Figure 5.5 : Ordering of the vehicles in a platoon

timestep, VAs that are inside the CZ, send reservation requests, then IA takes these
requests and fills the reservation matrix. The vehicle type used in this simulation is an
electric car. All the roads that merge into the intersection have a speed limit of 20 m/s.
To observe the effects of the platoon ordering algorithm on the reservation process and
the vehicles, the simulations are run for two different cases with multiple scenarios.
From these simulation results, the time that vehicles spent in the intersection zone

and the average speeds of vehicles are taken. Intersection time data is acquired by
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measuring the time passed between the entry of the first vehicle in the platoon to CZ

and the exit of the last vehicle in the platoon from the intersection regions.

5.3.1 Casel

For Case 1, two platoons approaching the intersection from both east and west are
created. These platoons consist of six vehicles each, and they include two-vehicle
groups that have three different routes to take. Six different scenarios are created
depending on where these two-vehicle groups are in the platoon. The simulations are
run for all the scenarios with using the platoon ordering algorithm and without using
the ordering algorithm. The following data are acquired from these simulations. In
Table 5.3, the routes of the vehicles belonging to the platoons before being ordered
by the ordering algorithm are given. The simulation results are listed in Table 5.4,
in Figure 5.6 and Figure 5.7, there are column graphs regarding the time spent at the

intersection and the average speed of the vehicles.

Table 5.3 : Routes of the vehicles in different scenarios

Scenario Platoon Order

1 Straight(2) - Right(2) - Left(2)
Straight(2) - Left(2) - Right(2)
Right(2) - Straight(2) - Left(2)
Right(2) - Left(2) - Straight(2)
Left(2) - Straight(2) - Right(2)
Left(2) - Right(2) - Straight(2)

AN WD

From the simulation results, it can be seen that the platoon ordering algorithm lowered
the time passed in the intersection. Without using the ordering algorithm, the vehicles
in front of the platoon that are going to take a left or right turn at the intersection slow
down all the vehicles behind, especially the ones that have the straight route. This

results in high intersection times.

It is obvious that the slow processing of the vehicles without the ordering algorithm
also results in lower average speeds of the vehicles. It is shown in the average speed
graph that using the ordering algorithm, it is possible to speed up the reservation-based

intersection system.
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Table 5.4 : Intersection time and average speed data in simulations with ordering and
without ordering for case 1.

With Ordering Without Ordering
Scenario | Intersection Time (s) Average Speed (km/h) | Intersection Time (s)  Average Speed (km/h)
1 77.8 65.92 67.7 65.88
2 83.7 65.90 79.9 66.15
3 80.5 66.55 90.3 60.20
4 79.3 66.04 98.7 55.2
5 79.1 65.62 98.7 55.19
6 79.5 65.65 175.8 54.11
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Figure 5.6 :

5.3.2 Case 2

Scenario

Intersection times with ordering and without ordering for case 1.

For the simulation of the second case, two six-vehicle platoons are created with random

routes. These platoons are approaching from the east and west of the intersections

like in the first case and random traffic is added from the north and the south of the

intersection. With this configuration, six scenarios are picked for generating the results

and graphs. In Table 5.5, the routes of the vehicles belonging to the platoons before

being ordered by the ordering algorithm are given. The simulation results are listed

in Table 5.6, in Figure 5.8 and Figure 5.9, there are column graphs regarding the time

spent at the intersection and the average speed of the vehicles.
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Figure 5.7 : Average speeds with ordering and without ordering for case 1.

Table 5.5 : Routes of the vehicles in different scenarios

Scenario Platoon 1 Platoon 2
1 Left(2) - Straight(2) - Right(2) Left(2) - Straight(2) - Right(2)
2 Straight(2) - Right(2) - Left(2) Straight(2) - Right(2) - Left(2)
3 Straight-Left-Straight-Right-Left-Right | Right-Straight-Right-Straight-Left-Left
4 Left-Straight-Right-Right-Straight-Left | Left-Straight-Right-Straight-Right-Left
5 Straight-Left-Straight-Right-Left-Right | Right-Straight-Right-Straight-Left-Left
6 Right-Left-Straight-Right-Left-Straight | Straight-Right-Left-Straight-Right-Right

This case reveals the importance of using the ordering algorithm when there is

traffic presence outside of platoons. In the 1% and 2"? scenarios, two platoons with

symmetrical routes were created on two opposite roads. Apart from these platoons, 8

vehicles come from other roads. The routes and departure times of these vehicles are

random. In the remaining scenarios, the routes of the platoons are mixed. The effect

of using the ordering algorithm in these scenarios is clearly visible.

It has been observed that when ordering is not used, vehicles that go straight are

slowed down due to vehicles that turn right and left, while random vehicles from other

directions increase this deceleration even more. When the ordering algorithm is used,

this slowdown is prevented, and the effect of random vehicles is minimized by the

priority given to vehicle groups that will go in the same direction. Figure 5.3 shows
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Figure 5.8 : Intersection times with ordering and without ordering for case 2.

Table 5.6 : Intersection time and average speed data in simulations with ordering and
without ordering for case 2.

59.30
57.75
59.80
59.14
58.56
58.32

With Ordering Without Ordering

Scenario | Intersection Time (s) Average Speed (km/h) | Intersection Time (s) Average Speed (km/h)
1 89.8 63.62 115.10
2 92.30 62.12 100.8
3 89.5 62.55 88.70
4 92.5 62.23 95.50
5 101.30 62.17 171.8
6 81.0 60.43 88.8

that the sorting algorithm reduces the time spent at the intersection. As seen in Figure

5.4, the sorting algorithm steadily increased the average speed of the vehicles.

The advantages of the proposed system are demonstrated by comparing the scenarios
where the sorting algorithm is used and the scenarios where the sorting algorithm is not
used. According to the results, in reservation-based intersection management, sorting
the vehicles in the platoon according to their routes by using the proposed sorting
algorithm is superior to the situation in which no sorting is applied in terms of the
total time spent at the intersection and the average speed in the intersection area. The
effect of the sorting algorithm is consistent with the objectives of increasing efficiency
and safety and shortening travel time, which are the basis of the platoon application.

Arriving at the intersection by sorting the vehicles usually results in being reserved as
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Figure 5.9 : Average speeds with ordering and without ordering for case 2.

a convoy, depending on the cost function. In this way, other vehicles that are not in the
platoon are prevented from interfering, and vehicles turning in the same direction catch
each other and continue on the road as a platoon easier. When the simulation results
obtained using the sorting algorithm are examined, it is seen that the vehicles behave
more stable in case of variable situations. Since the deceleration of the vehicle in front
at the entrance to the intersection also affects the vehicles behind it, it is ensured that
the vehicles that will turn stay behind the vehicles that will go straight so that the
vehicles that go straight are not affected by this slowdown. With this study, it has been
clearly seen that sorting the vehicles on the platoon is effective in reservation-based
traffic intersection control. It is planned to develop various learning algorithms so that
the sorting algorithm can adapt to every situation and increase its efficiency. In this
way, it will be possible to ensure that the algorithm works more effectively in much

more complex scenarios.
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6. CONCLUSIONS AND RECOMMENDATIONS

Traffic congestion has been an important factor affecting the quality of human life
continuously in the developing world. Increasing demand for individual vehicles
decreases the quality of human life with increasing CO; emission, congestion and
waiting time in traffic. The use of personal vehicles is increasing day by day.
Especially these days, as a result of the Covid-19 pandemic, the rate of increase
in the use of individual vehicles is increasing significantly. More lockdowns are
normal in crowded urban communities as large numbers of vehicles can cause major
transportation delays on existing transportation bases. There are many reasons for
the occurrence of traffic, but the traffic happens most frequently at the complex road
structures where vehicles intersect regularly because of the decision-making problem
for drivers and traffic management systems. Intelligent Transportation Systems (ITSs)
were developed to control the factors that cause traffic congestion and to improve the
quality of life of people. Nowadays, increasing traffic monitoring units make a great
contribution to developing ITS that can decrease traffic density. ITS has an extensive
structure that performs information, communication, and control of traffic items.
ITS systems may be used to build more secure systems in the traffic environment.
Especially by reducing the load on drivers, accidents due to fatigue and carelessness
can be avoided. In addition, with the optimum suggestions offered by ITS, traffic jams
can be reduced, and accordingly, environmental pollution is reduced. This has been an
important inspiration to many researchers, and various studies have been carried out

recently.

In this thesis, the control of many traffic problems is considered. ITS-based multi-agent
methods are proposed as a solution to traffic problems. Extensive simulations
are carried out for both agent-based and multi-agent-based environments so as to

demonstrate the validity and efficiency of the proposed methods.

First, a traffic light controller that does not deploy any learning algorithm is proposed

on a single intersection, and its simulation is weighted. This proposed traffic light
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controller aims to increase the traffic flow and to reduce the overall waiting time of
the cars and the emissions released by them. Various control methods have been
proposed for a better traffic light controller architecture. Among these methods are
the fuzzy logic controller, PI controller, and state space model controller. Firstly, a
traffic light controller is developed, and simulations are performed for a single-lane
traffic intersection with only two phases, no right and left turns and no yellow light
duration. FLC, PI Control and state space control methods are proposed as traffic
light controllers for this simple structured traffic intersection. Various simulations
have been made to test the effectiveness of the proposed methods. From the simulation
results, it has been seen that all proposed methods give better results than the traditional
constant-time traffic light control method. With the proposed methods, an increase in
average speed and a decrease in CO;, emission values have been observed. Later,
various control methods have been proposed for more complex traffic intersections
with right and left turns and yellow light duration. The recommended control method
for a 3-lane and 4-lane traffic intersection is basically the FLC method. However,
for each proposed FLC, different input values have been proposed depending on the
strategies. The recommended input values for FLC mainly include the change in
the number of vehicles. However, in the next step, FLC input data depending on
the vehicle position is proposed. In other words, state information based on vehicle
position information is used as input values for fuzzy logic. Using this so-called
"celling method", where more weight is given to the vehicles near the junction in
comparison to further away vehicles by using smaller cell sizes near the traffic junction,
it is demonstrated that more efficient traffic intersection controllers are obtained. The
generality of the proposed methods is demonstrated by considering a case study as the
control of traffic lights in the Istanbul Altunizade region. As a result, the effectiveness
of the proposed methods is observed in a realistic region. The simulation results
showed us that, particularly FLC and actuated TLC systems give noteworthy results,

by increasing the traffic flow rate and reducing the amount of CO; emissions.

The effect of using a learning algorithm is examined in the second part of this thesis.
An agent-based traffic light control that can learn and adapt to the environment has
been proposed. A traffic light controller with a deep Q learning algorithm, which

works more efficiently and increases the stability of the system, has been developed
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and the results are discussed. A deep Q-learning method used with FLSI (named DQ
FLSI) is proposed as an intelligent traffic light controller. In this proposed method,
a state matrix that divides the arms of the traffic intersection into cells is used. A
varying cell size in the determination of the state matrix is used in the deep Q learning
algorithm and FLC input. A comparison between using constant (equal) cell sizes and
varying cell sizes is also provided to demonstrate the efficiency of this adaptation. The
Reinforcement Learning tool is used for determining the actions of the traffic light
phases, and the states are defined depending on the vehicle positions. The waiting
times in the traffic intersection are used as reward values. The Q-learning paradigm is
combined with a deep-learning model for training the agent. While the deep Q-learning
model is used to determine the action set (the order of traffic lights), the green light
duration is proposed to be handled by the FLC. In other words, the traffic light
durations are determined using fuzzy logic, and traffic light actions are determined with
the help of deep Q-learning. In addition, a stability analysis is done for the proposed
method. An increase in robustness is shown when using the newly developed DQ
FLSI method using the proposed stability analysis. The results demonstrate that the
proposed method can adapt to many traffic conditions and outperform conventional
methods in low and medium-density situations. Furthermore, it is observed that the
learned method outperforms many traffic performance parameters in test scenarios. It
is also demonstrated by extensive simulations that the developed system is more robust

in terms of stability.

Another problem studied in this thesis is the route planning of vehicles in traffic. A
deep Q-learning algorithm is used again in this proposed method, where an agent-based
route planning method for vehicles has been developed. A taxi agent with a deep
Q-learning algorithm, which makes dynamic route planning, is considered. For the
taxi agency to learn the optimum route planning, a state vector including information
on traffic lights, the density of neighbouring roads, the location of neighbouring
intersections, the location of the agent and the destination is proposed. The simulation
results demonstrate that the proposed method can be used for dynamic problems such

as route planning.

Another work proposed in this thesis is based on reservation-based intelligent

traffic intersection control. In this method, without the need for any traffic lights,
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vehicle agents communicate directly with the intersection agents and pass through
the intersection by following the proposed actions of the intersection agents. The
intersection agent provides passage permission to the vehicles by making a reservation
for them. In addition, a platoon method is suggested to be combined with the
reservation-based traffic intersection control method. Here, vehicles are requested to
change their lanes with respect to their upcoming actions before they arrive at the
traffic intersection and therefore unnecessary decelerations are prevented. It is seen by

observing the simulation results that the proposed method performs better.

As a result, it is possible to claim that the ideas proposed in this study increase
efficiency of traffic controllers. Especially for nonlinear multivariate structures such
as traffic conditions, control methods that can adapt to the environment and even learn
have the potential to overcome many problems. As the number of autonomous vehicles
increases depending on the development of technology, vehicles with smart agent
systems will form MAS. With this, it is expected that many problems in traffic can
be solved with multi-agent system solutions. However, with the existing technological
infrastructures, many innovative control methods can still be used. Route planning and
smart traffic intersection management systems can be given as examples. Nevertheless,
the studies proposed in this thesis are not final, and many improvements are possible

without a doubt.

One of the possible future studies is to control more than one traffic intersection
with the MAS theory. Especially, traffic control of a large realistic area needs to be

considered to better prove the applicability of the proposed methods.

Another possible extension is to consider the fleet control problem with MAS theory.
A multi-agent System for the control of an ambulance fleet, which involves extra

complexity and contains many parameters, is currently being studied in this direction.

The reservation-based traffic intersection management problem is an important area of
research in transportation engineering and has the potential to significantly improve
traffic flow and reduce congestion. Combining the platoon algorithm with deep
learning methods could indeed increase its effectiveness and enhance its capabilities.
Other deep learning methods can be used to analyze traffic patterns and predict the

behavior of individual vehicles, allowing for more accurate coordination of platoons
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and more efficient management of the intersection. Additionally, reinforcement
learning algorithms can be used to continually adjust the timing and coordination of
platoons based on real-time traffic conditions. Overall, the combination of the Platoon
algorithm with deep learning methods has the potential to significantly improve traffic
flow and reduce congestion in urban areas. There are many possible ways to approach
this problem, and further research in this area could lead to important advancements in

transportation engineering.

Agent-based and multi-Agent-based studies are a branch of computer science that
focus on modeling complex systems as a collection of interacting agents, each
with their own set of goals and behaviors. These agents can be anything from
robots, autonomous vehicles, and humans to software agents that operate in virtual
environments. One promising area of research within agent-based modeling is the use
of reinforcement learning. Reinforcement learning is a type of machine learning that
involves an agent interacting with an environment to learn through trial and error. The
agent receives feedback in the form of rewards or punishments based on its actions,
and it learns to make decisions that maximize its expected reward over time. In the
context of agent-based modeling, reinforcement learning can be used to allow agents

to learn from their experiences and make better decisions in real-time.

In the context of traffic management, agent-based and multi-agent-based studies can
be used to model and simulate the behavior of drivers, vehicles, and other entities
in a transportation network. By using reinforcement learning, these systems can
learn to make optimal decisions in real time, such as determining the best route to
take or adjusting traffic signals to reduce congestion. For instance, agents could be
used to monitor traffic flow and adjust traffic lights or redirect traffic in real-time
based on their learning. This would lead to more efficient and safer traffic flow,
and could even help to reduce congestion and emissions. Similarly, in case of a
catastrophic event, agents could be used to coordinate emergency response efforts and
allocate resources more efficiently, potentially saving lives and minimizing the impact
of the disaster. Moreover, in situations where composure is needed, such as during
disasters or emergencies, agent-based and multi-agent-based systems can provide

valuable decision-making assistance. These systems can help emergency responders
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to coordinate their efforts and optimize their resources to respond effectively to the

situation.

With the increasing use of autonomous vehicles, the need for agent-based and
multi-agent-based systems in traffic management is expected to increase significantly.
These systems can help autonomous vehicles to coordinate their actions and
communicate with other agents in the transportation network to avoid accidents and
reduce traffic congestion. However, it’s important to note that the use of autonomous
decision-making agents also raises ethical considerations. As these agents make
decisions based on their learning and programming, it’s important to ensure that they

prioritize human safety and well-being.

In conclusion, agent-based and multi-agent-based studies, coupled with reinforcement
learning, have the potential to provide effective solutions for decision-making in
various domains, including traffic management, disaster management, and many
more. These systems can help to improve the safety, efficiency, and effectiveness
of complex systems by enabling agents to learn and make optimal decisions in real
time. Overall, while agent-based and multi-agent-based studies have great potential as

decision-making tools in a variety of domains.
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