T.C.
KONYA TEKNIiK UNIVERSITESI
LISANSUSTU EGITiM ENSTITUSU

OP:l“il\./_[iZf&SYON PROBLEMLERININ
COZUMUNDE MIKRO YAPAY ALG
ALGORITMASININ GELISTIiRILMESI
Hiiseyin Samet CAN
YUKSEK LiSANS TEZi

Bilgisayar Miihendisligi Anabilim Dah

Temmuz - 2023
KONYA
Her Hakki Sakhdir



TEZ KABUL VE ONAYI

Hiseyin Samet CAN tarafindan hazirlanan “Optimizasyon Problemlerinin
Coziimiinde Mikro Yapay Alg Algoritmasinin Gelistirilmesi”’ adli tez calismasi
05/07/2023 tarihinde asagidaki jiiri tarafindan oy birligi ile Konya Teknik Universitesi
Lisansiistii Egitim Enstitiisii Bilgisayar Miihendisligi Anabilim Dali’'nda YUKSEK
LISANS TEZI olarak kabul edilmistir.

Jiiri Uyeleri Imza

Baskan
Prof. Dr. Ismail BABAOGLU i,

Danisman
Dog. Dr. Sait Ali UYMAZ

Uye
Dog¢ Dr. Mehmet Akif SAHMAN

Yukaridaki sonucu onaylarim.

Prof. Dr. Mevliit UYAN
Enstiti Mudiira

Bu tez calismasi Bilimsel Arastirma Projeleri Koordinatorliigii tarafindan
191013022 nolu proje ile desteklenmistir.



TEZ BIiLDiRiMi

Bu tezdeki biitiin bilgilerin etik davranis ve akademik kurallar ¢ercevesinde elde
edildigini ve tez yazim kurallarina uygun olarak hazirlanan bu c¢alismada bana ait

olmayan her tiirlii ifade ve bilginin kaynagina eksiksiz atif yapildigini bildiririm.

DECLARATION PAGE

| hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare that, as
required by these rules and conduct, | have fully cited and referenced all material and

results that are not original to this work.

Hiiseyin Samet CAN
Tarih: 05/07/2023



OZET

YUKSEK LiSANS TEZi

OPTIMiZASYON PROBLEMLERININ COZUMUNDE MIiKRO YAPAY ALG
ALGORITMASININ GELISTIRILMESI

Hiiseyin Samet CAN

Konya Teknik Universitesi
Lisansiistii Egitim Enstitiisii
Bilgisayar Miihendisligi Anabilim Dah

Damisman: Dog. Dr. Sait Ali UYMAZ
2023, 39 Sayfa

Jiiri
Dog. Dr. Sait Ali UYMAZ
Prof. Dr. ismail BABAOGLU
Dog. Dr. Mehmet Akif SAHMAN

Son yillarda optimizasyon problemlerinin ¢éziimiinde metasezgisel algoritmalar siklikla
kullanilmaktadir. Karmasiklig1 ve parametre sayisi yiiksek problemlerde bu ¢6ziim yontemleri zaman ve
maliyet acisindan yeterli faydayr saglayamamaktadir. Bu nedenle literatiirde mikro metasezgisel
optimizasyon yontemleri Onerilmistir. Mikro algoritmalar daha kiigiik popiilasyon boyutlart ile biiyiik
6l¢ekli problemlerin ¢oziimiinde basarili sonuglar vermektedir. Bununla birlikte, aragtirmacilar tarafindan
yapilan caligmalarda, popiilasyon boyutunda kiigiilmenin yeterli olmadigi erken yakinsama ve yiiksek
durgunluk yasayan mikro algoritmalarin oldugu goriilmistiir. Diisiikk popiilasyonla birlikte algoritmanin
yapist bozulmadan eklenen metotlarla mikro metasezgisel algoritmalar literatiire sunulmustur.

Bu tez projesinde, yapay alg algoritmasi tizerinde diisiikk popiilasyon kullanarak ve algoritma
calisma yapisint bozmadan eklenecek yardimer metotlar ile, optimizasyon problemleri ¢oziimiinde
performansi yiiksek bir mikro yapay alg algoritmasi tizerine bir ¢alisma yapilmistir. Yapilan ¢alisma Mikro
Parcacik Siirii Optimizasyonu (uPSO), Mikro Bakteri Besin Arama Optimizasyonu Algoritmasi (WBFOA)
ve standart Yapay Alg Algoritmasi (AAA) ile karsilastirilmis ve basarili sonuglar ortaya koydugu
gdzlemlenmistir. Onerilen yontemle karsilastirilan algoritmalarin kullanildigi fonksiyonlar diginda
CEC2015 fonksiyonlar1 ile denemelerde Lokal alanlara takildigi gézlemlenmis ve bu sorunu agmak igin
arastirma ve ¢alismalar yapilmigtir. Bu islemlerle birlikte esas 6nerilen yontem olan Levy ile Mikro Yapay
Alg Algoritmast (LAAAjy) sunulmustur. Bu algoritma ise 3 ve 40 popiilasyonlu AAA ile
karsilastirildiginda umut vadeden bir algoritma oldugunu gostermistir.

Anahtar Kelimeler: Mikro Metasezgisel Algoritmalar, Optimizasyon, Yapay Alg
Algoritmasi, Levy Ugusu
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DEVELOPMENT OF MICRO-ARTIFICIAL ALGAE ALGORITHM FOR
SOLUTION OF OPTIMIZATION PROBLEMS
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In recent years, metaheuristic algorithms have been frequently used to solve optimization
problems. These solution methods do not provide sufficient time and cost benefit in complex and high
parameter optimization problems. However, due to the lighter hardware requirements and the possibility of
working in embedded systems with memory saving approach, Micro-Metaheuristic Algorithm methods
have been proposed in the literature. Many Micro-Metaheuristic Algorithms have been introduced by the
researchers in the form of microstructures that enable them to produce solutions at a lower cost by
developing solutions to accelerate problem solving such as creating and re-updating small-sized
populations and protection of individuals.

In this thesis project, a study has been carried out on a micro artificial algae algorithm
with high performance in solving optimization problems by using low population on the artificial algae
algorithm and adding auxiliary methods without disturbing the algorithm's working structure. The study
was compared with Micro Particle Swarm Optimization (uWPSO), Micro Bacteria Nutrient Foraging
Optimization Algorithm (WBFOA) and standard Artificial Algae Algorithm (AAA) and it was observed that
it produced successful results. Apart from the functions using the algorithms compared with the proposed
method, it was observed that CEC2015 functions were stuck in local areas in experiments with CEC2015
functions and research and studies were carried out to overcome this problem. With these procedures, the
main proposed method, Micro Artificial Algorithm with Levy (WAAAlevy) was presented. This algorithm
has shown to be a promising algorithm compared to AAA with 3 and 40 populations.

Keywords: Artificial Algae Algorithm, Optimization, Micro Metaheuristic Algorithms, Levy
Flight
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SIMGELER VE KISALTMALAR
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F : Amag Fonksiyonu
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uPSO :  Mikro Pargacik Siirli Optimizasyonu (Mikro Particle Swarm
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TS : Tabu Arama (Tabu Search)
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MEPSO : Multi-Elitist PSO
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1. GIRIS

Optimizasyon problemleri, 6zellikle gergcek diinya problemlerinin optimum
sekilde ¢oOziilmesi i¢in matematiksel ifadelerle tanimlanmasi gerekir. Bu problemler,
ama¢ veya kisitlama fonksiyonlarmin sayisina, fonksiyonun yapisina, amag
fonksiyonunun karakteristigine, tasarim degiskenlerinin tipine, degerlerin belirsizligine
ve hesaplama zorluguna gore siniflandirilir (Yang, 2010). Ayrica objektif fonksiyonlarin
sayisina gore; tek ve c¢ok amaghh olarak, kisitlama fonksiyonlarma gore;
siirlandirilmamus, esitlik kisitl ve esitsiz kisith, karakteristik fonksiyonlara gore; tek
modlu, ¢ok modlu ve hibrit olarak ayrilir. Optimizasyon problemlerinin ¢dziimii igin
cesitli yontemler gelistirilmistir. Bu yontemler deterministik ve stokastik yontemler
olarak gruplandirilabilir. Klasik algoritmalar deterministiktir ve ayni baslangi¢c noktalar
ile hep ayni yolu izlerler. Modern optimizasyon algoritmalar1 ise sezgiseldirler yani
rastgelelige sahiptirler. Her zaman optimumu bulma garantisi vermezler ama kaliteli
cOziimler sunarlar. Bu nedenle daha yiiksek oranda kaliteli ¢oziimler bulabilmek i¢in
Metasezgisel Algoritmalar {izerine ¢caligmalar devam etmektedir.

Metasezgisel Algoritmalar ¢ogunlukla dogadan veya canli yasamindan
esinlenerek ele almirlar ve optimizasyon problemlerine uygun c¢oziimler getirmeyi
amaglamaktadirlar. Alan Turing’in ikinci diinya savasinda Bletchley Park’da Alman
Enigma sifrelerini kirmis oldugu Turing’in ¢alisma yapist Yang (2010) tarafindan
sezgisel algoritma olarak tanimlanmistir. Metasezgisel kavraminin ilk kullanimi ise 1986
yilinda Fred Glover’in Tabu Arama (TS) algoritmasini sundugu calisma olarak kabul
edilmektedir. Metasezgisel Algoritmalar genellikle biiyiik popiilasyonlara ihtiyag duyar.
Bunun 2 nedeni vardir; daha ¢ok birey arama uzayini daha iyi kesfetmeyi saglar ve erken
yakinsama ihtimalini digiiriir (erken yakinsama popiilasyondaki biitliin bireylerin
birbirine ¢ok benzedigi zaman gerceklesir) (Viveros-Jiménez ve Mezura-Montes, 2012).
Yiiksek boyutlu problemlerde, biiyiilk popiilasyonlarla arama uzaymin kesfedilmesi
onemli miktarda zaman ve hesaplama maliyetini de beraberinde getirmektedir. Bu
durumda arastirmacilar1 daha kiicilik popiilasyonlarla ¢alismaya tesvik etmistir.

Mikro Algoritma terimi (u-algoritma), popiilasyon bazli Metasezgisel
Algoritmalarin optimizasyon problemlerine ¢ok kiigiik popiilasyonlarla ¢oziim bulmaya
caligan algoritmalar1 ifade eder. p-Algoritmalar, genellikle gomiilii sistemlerde
kullanilmaktadir. Bunun sebebi daha hafif donanim gereksinimleri ve bellek tasarrufu

yaklasimiyla gomiilii sistemlerde ¢alisma olasiliklar1 nedeniyle, ¢esitli uygulamalarda



kullanilmigtir (Caraffini ve ark., 2013). Kii¢iik popiilasyon kullanmak, islev ¢agrim
sayisin1 azaltir, ancak ¢esitlilik eksikligi nedeniyle, durgunluk gibi erken yakinsama
riskini de arttirmaktadir. Erken yakinsama problemi, popiilasyonun optimal olmayan bir
¢oziimiine (lokal en iyi) yakinlastigi durumu ifade eder (Lampinen ve Zelinka, 2000). Bu
genellikle, popiilasyon bireylerinin ¢esitliligini kaybettiginde ve yerel olarak optimal
¢oziimler iiretemediginde ortaya c¢ikar. Bu durumda, algoritma normalden daha yavas
ilerler ve daha iyi sonu¢ almayi engeller. p-algoritma’nin bu olumsuz durumunu
gidermek icin aragtirmacilar, gesitli yardimei 6zellikler kullanmislardir.

Tezin igerigi asagidaki gibidir:

2. bolimde; Optimizasyon, Metasezgisel Algoritmalar, Mikro Metasezgisel
Algoritmalar ve Levy Ugusu hakkinda yapilan kaynak aragtirmasindan bahsedilmistir.

3. bolimde Optimizasyon Problemleri, Metasezgisel Algoritma ve Mikro
Metasezgisel Algoritma kavramlarindan bahsedilmistir.  Mikro  Metasezgisel
Yontemlerden bahsedilmistir. Sonrasinda Yapay Alg Algoritmast (AAA) ve Onerilen
algoritma olan Levy Ugusu ile Mikro Yapay Alg Algoritmast tanitilmigtir.

4. boliimde oncelikle yapilan ¢alismada kullanilan test fonksiyonlar1 tanitilmistir.
Daha sonra performans testleri, sonuglar ve analizler yapilmustir.

5. boliimde, yapilan ¢alismaya ait sonuglar degerlendirilmis ve gelecek calismalar

i¢in Oneriler sunulmustur.



2. KAYNAK ARASTIRMASI

Metasezgisel algoritmalar, optimize edilmesi gereken karmasik problemleri
¢ozmek i¢in kullanilan bir tiir optimizasyon algoritmasidir. Bu algoritmalar, dogal
seleksiyon, genetik, taklit, siirli davranis1 gibi dogadan veya diger ilham kaynaklarindan
esinlenen yontemleri kullanarak ¢6ziim adaylarini ararlar.

Metasezgisel algoritmalarin temel 6zellikleri sunlardir:

Popiilasyon Tabanh Yaklasim: Metasezgisel algoritmalar, bir popiilasyonu
kullanarak ¢o6ziim adaylarii temsil eder. Popiilasyon, olasi ¢oziimlerin bir arada
bulundugu bir grup bireyden olusur.

Sezgisel Arama Stratejileri: Metasezgisel algoritmalar, sezgisel arama
stratejilerini kullanarak ¢6ziim alaninda gezinmeyi saglar. Bu stratejiler, bir bireyin
¢Oziim alaninda hareket etmesini, yeni ¢oziim adaylari iiretmesini ve mevcut ¢oziimlerle
karsilastirmasini igerir.

Optimizasyon Hedefine Uygunluk Fonksiyonu: Metasezgisel algoritmalar,
optimize edilmek istenen hedef fonksiyonunun degerini minimize etme veya maksimize
etme amaciyla c¢alisir. Bu hedef fonksiyonu, ¢6ziim adaylarinin performansini 6lger.

Parametre Ayarlamasi: Metasezgisel algoritmalar, farkli parametre degerleriyle
deneme yaparak en iyi sonuglari elde etmek i¢in parametrelerin ayarlanmasini gerektirir.
Bu parametreler, popiilasyon boyutu, iterasyon sayisi, mutasyon orani gibi algoritmanin
davranisini etkileyen degerlerdir.

Metasezgisel algoritmalar, birgok farkli probleme uygulanabilir ve genellikle
karmasik, ¢ok boyutlu veya optimizasyon problemleri olarak adlandirilan problemlerin
cozlimiinde etkilidir. Genetik algoritmalar, parcacik siirli optimizasyonu (PSO), taklit
optimizasyonu (TO), kiime optimizasyonu (CO), simiile edilen tavlama (SA), karinca
kolonisi optimizasyonu (ACO) ve c¢iftci algoritmasi (FA) gibi metasezgisel algoritma
ornekleri vardir.

Bu algoritmalar, optimize edilen probleme ve kullanicinin gereksinimlerine gore
secilmelidir. Her bir algoritmanin kendi avantajlari, dezavantajlar1 ve uygunluklari vardir.
Basaril1 bir sekilde uygulanmasi, parametre ayarlamasiin yani sira algoritmanin dogru
sekilde yapilandirilmasini gerektirir.

Genel olarak, metasezgisel algoritmalar, karmagsik optimizasyon problemlerini

cozmek icin etkili ve esnek bir yaklasim saglar. Ancak, her problem i¢in en uygun



algoritmay1 belirlemek ve performansi optimize etmek i¢in dikkatli bir analiz ve ayarlama
stireci gereklidir.

Mikro Metasezgisel Algoritmalar, popiilasyon tabanli yaklasimi benimserler ve
bir grup ¢oziim adayimi temsil eden bir popiilasyon kullanirlar. Her bir birey, ¢6ziimiin
bir adayini temsil eder ve bir uygunluk fonksiyonu tarafindan degerlendirilir.

Bu algoritmalar, sezgisel arama stratejilerini kullanarak ¢oziim alaninda
gezinmeyi saglarlar. Bireyler, dogal seleksiyon, rekombinasyon, mutasyon gibi genetik
operatorler veya taklit, iletisim, 6grenme gibi bagka stratejiler kullanarak birbirleriyle
etkilesime gecerler. Bu etkilesimler, yeni ¢6ziim adaylarinin iiretilmesini ve daha iyi
¢ozlimlerin bulunmasini saglar.

Mikro Metasezgisel Algoritmalar, su avantajlara sahiptir:

Esneklik: Mikro Metasezgisel Algoritmalar, farkli problemlere uyarlanabilen
genel bir ¢ergeve sunar. Bu algoritmalar, ¢esitli optimizasyon problemlerinde basarili bir
sekilde uygulanabilir.

Kiiresel Arama: Mikro Metasezgisel algoritmalar, kiiresel optimuma
yakinsamay1 hedeflerler. Bu, ¢oziim alaninda genis bir arama yapabilme yetenekleri
oldugu anlamina gelir ve daha 1yi ¢oziimlerin kesfedilmesini saglar.

Paralel Isleme: Mikro Metasezgisel algoritmalar, popiilasyon tabanl
yaklasimlar1 sayesinde paralel hesaplama i¢in uygunlardir. Bu, ¢oklu islemci veya
hesaplama kaynagi kullanilarak algoritmanin hizli bir sekilde ¢alistirilabilmesini saglar.

Optimizasyon problemleri ¢6ziimiinde kullanimi1 yayginlagan p-Algoritmalar’dan
bazilari; Krishnakumar’in (1990) calisma iiriinii olan mikro genetik algoritma (LGA),
mikro 6gretme-0grenme tabanli optimizasyon (WTLBO), Parsopuolos’un 2009 yunda
sunmus oludugu Mikro Diferansiyel Evrim (uDE) ve yine Posopuolos’aun sunmus
oldugu Mikro Parcacik Siirii Optimizasyonu (uPSO) ve 2009°da Dasgupta’nin ¢alisma
iriinii olan uBFOA yontemleri 6rnek gosterilebilir.

Bu orneklerden pPSO’da popiilasyon boyutu kiigiiltiilerek yiiksek boyutta
yasanan zorluktan kurtulmasi saglanmistir. Ayrica bireylerin elde ettigi optimuma uzak
sonuglar bir kara listede tutulmus ve Coulomb yasas1 yardimi her yeni iterasyonda bu
kara listedeki sonuglardan kagiilarak performansli bir algoritma ortaya g¢ikarilmistir
(Huang ve Mohan, 2006).

uBFOA’da ise popililasyon sayisint 3’e disiirmekle birlikte popiilasyon
giincelleme ve olusturma yontemi kullanilmigtir. Bu yontemde, her iterasyon sonrasinda

en iyi birey saklanmaktadir. En iyi 2. birey 1. bireye yaklastirilmakta ve 3. birey rastgele



yeniden olusturulmaktadir. 3. Bireyin rastgele olusturulmasindaki amag ise ¢esitliligi

saglamak olarak tanimlanmigtir (Dasgupta ve ark., 2009).



3. MATERYAL VE YONTEM

3.1. Optimizasyon

Optimizasyon, matematiksel bir yapiya doniistiiriilmiis bir problemin maksimum
veya minimum olmasi agisindan optimal kosullarin elde edilmesini saglar. Birden fazla
sekilde matematiksel olarak tanimlanabilecek optimizasyonlardan biri, asagida aciklanan

temel yapidir:

Minimize veya Maksimize f;(x), (@(=1,2,...,M) (3.1)
hj(x) = 0, G=12..)) (3.2)
gr(x) <0, (k = 1,2,..,K) (3.3)
X = (%1,%3,X3, .., Xq) (3.4)

Burada f;, h; ve g, genel dogrusal olmayan fonksiyonlar, integraller veya diferansiyel
esitlikler olabilir. Dizayn vektor X, d boyutlu uzayda siirekli, ayrik veya ikisinin karigimi
olabilir. f; fonksiyonu maliyet ya da amag fonksiyonlari olarak adlandirilir. Eger M>1 ise
optimizasyon ¢ok amaghdir.

Optimizasyon problemleri, amag¢ veya kisitlama fonksiyonlarmin sayisina,
fonksiyonun yapisina, amag¢ fonksiyonunun karakteristigine, tasarim degiskenlerinin
tipine, degerlerin belirsizligine ve hesaplama zorluguna gore siiflandirilir (Yang, 2010).
Objektif fonksiyonlarin sayisina gore; tek ve ¢ok amagli olarak, kisitlama fonksiyonlarina
gore; sinirlandirilmamis, esitlik kisith ve esitsiz kisitlamali olarak, karakteristik
fonksiyonlara gore; tek modlu, ¢ok modlu, hibrit ve kompozit olarak ayrilir.

Optimizasyon problemlerinin ¢oziimii i¢in ¢esitli yontemler gelistirilmistir. Bu
yontemler deterministik ve stokastik yontemler olarak gruplandirilabilir. Klasik
algoritmalar deterministiktir ve ayni baslangi¢ noktalar1 ile hep ayn1 yolu izlerler. Modern
optimizasyon algoritmalar1 ise sezgiseldirler yani rastgelelige sahiptirler. Her zaman
optimumu bulma garantisi vermezler ama kaliteli ¢ézlimler sunarlar. Bu nedenle daha
yiiksek oranda kaliteli ¢oztimler bulabilmek i¢in sezgisel algoritmalar iizerine ¢alismalar

devam etmektedir.

3.2. Metasezgisel Algoritmalar



Sezgisel veya Metasezgisel Algoritmalar dogada gerceklesen bir olaydan
esinlenerek ele alinan optimizasyon problemlerine uygun c¢oziimler getirmeyi
amaclamaktadir. Bu yontemler, ele aldig1 farkli 6zellikler géz oniinde bulundurularak
cesitli sekillerde siiflandirilabilir. Temel olarak metasezgisel yontemler, dogadan
esinlenen ve dogadan esinlenmeyen yontemler, dinamik ve statik amag¢ fonksiyonuna
sahip yontemler, bir komsuluk yapisina ve degisken komsuluk yapisina sahip yontemler,
hafiza kullanan ve kullanmayan yontemler ve tek ¢oziime dayali ya da toplum tabanl
metasezgisel yontemler olarak siniflandirilabilmektedir (Blum ve Roli, 2003). Toplum
tabanli yontemlerde kendi ig¢inde evrimsel algoritmalar ve siirii zekasi olmak {izere
siiflandirilmaktadir.

Metasezgisel yontemlerin ilk kullanildiklar1 zamani kesin olarak belirtmek zor
olsa da, Alan Turing’in ikinci diinya savasinda Bletchley Park’da Alman Enigma
sifrelerini kirmis oldugu Turing’in ¢alisma yapist Yang (2010) tarafindan sezgisel
algoritma olarak tanimlanmistir. Metasezgisel kavraminin ilk kullanimi ise 1986 yilinda
Fred Glover’in Tabu Arama (TS) algoritmasini sundugu ¢aligma olmustur (Glover, 1986).

1960 ve 1970’ler Evrimsel Algoritmalarin (EAs) ortaya ¢iktig1 ve gelistirildigi iki
onemli 10 yildir. i1k olarak John Holland ve arkadaslari tarafindan Genetik Algoritma
(GA) gelistirilmis ve (Holland, 1975) ¢alismasinda 6zeti paylasilmistir. Bu ¢aligmada
dogadaki evrimsel siiregten esinlenilmistir. Bu algoritmada rastgele bir popiilasyon
olusturulur ve uygunluk degerleri hesaplanir. Elde edilen uygunluk degerine gore
bireylerden iyi olanlarin sonraki nesile aktarimini saglamak igin sirasiyla seleksiyon,
caprazlama ve mutasyon adimlar1 gergeklestirilir. Bu islem programa degisken olarak
verilen maksimum iterasyon sayis1 tamamlanana kadar ya da en iyi sonug elde edilene
kadar dongii halinde islenir. GA giiniimiizde farkli giincelleme ve versiyonlariyla
giiniimiizde de kullanilmaktadir.

Pargacik Siirii Optimizasyonu (PSO), siirii halinde hareket eden kus ve baliklarin
sosyal davraniglarindan esinlenerek Kennedy ve Eberhart (1995) tarafindan gelistirilmis
bir optimizasyon yontemidir (Kennedy ve Eberhart, 1995). Temel olarak siirii zekasina
dayanan bir algoritmadir. Siirii halinde hareket eden hayvanlarin yiyecek ve giivenlik gibi
durumlarda, ¢ogu zaman rasgele sergiledikleri hareketlerin, amaglarina daha kolay
ulagmalarini sagladig1 goriilmiistiir. PSO bireyler arasindaki sosyal bilgi paylagimini esas
alir. Her bireye pargacik denir ve parcaciklardan olusan popiilasyona da siirii (swarm)

denir. Her bir parcacik kendi pozisyonunu, bir onceki tecriibesinden yararlanarak



stirtideki en iyi pozisyona dogru ayarlar. PSO ¢alismasinda kullanilan formiiller Denklem

3.5 ve 3.6°da gosterilmistir.

Vi(k + 1) « Vi(k) + €0, (P;(k) — X;(K)) + C,0,(G(k) — X;(k)) (3.5)

Denklem 3.5’te kiterasyon sayisini, V; bulundugu iterasyondaki i. pargacigin
hizin1 gostermektedir. C; ve C, 6grenme faktorleridir ve pargaciklart yerel ve global en
iyi pargaciklara yonlendirir. Denklem 3.6’da ise X; i. par¢acigin konumu belirtir. PSO
giinlimiizde Multi-Objektif Parcacik Siiri Optimizasyonu (MOPSO) (Mostaghim ve
Teich, 2003), Multi-Elitist PSO (MEPSO) (Das ve ark., 2008a) ve Garantili Yakinsak
PSO (GCPSQO) (Peer ve ark., 2003) gibi cesitli giincellestirmelerle gelistirilerek
kullanilmaya devam edilmektedir.

Metasezgisel Algoritmalar genellikle biiyiik popiilasyonlara ihtiya¢ duyar. Bunun
2 nedeni vardir; daha ¢ok birey arama uzaymi daha ¢ok kesfetmeyi saglar ve erken
yakinsama ihtimalini diisiiriir (erken yakinsama biitiin popiilasyon bireyleri birbirine cok
benzedigi zaman gergeklesir) (Viveros-Jiménez ve Mezura-Montes, 2012). Bu biiyiik
poplilasyonlarla arama uzaymin kesfedilmesi onemli miktarda zaman ve hesaplama
maliyetini de beraberinde getirmektedir. Bu durumda arastirmacilar1 daha kiiclik

popiilasyonlarla ¢calismaya tesvik etmistir.

3.3. Mikro Metasezgisel Algoritmalar

Mikro Algoritma (u-algoritma) terimi, popiilasyon bazli Metasezgisel
Algoritmalarin optimizasyon problemlerine ¢ok kiiciik popiilasyonlarla ¢6ziim bulmaya
calisan algoritmalar1 ifade eder. p-algoritmalar, istisnai olarak daha hafif donanim
gereksinimleri ve bellek tasarrufu yaklagimiyla gomiilii sistemlerde ¢aligma olasiliklar
nedeniyle, c¢esitli uygulamalarda kullanilmistir (Caraffini ve ark., 2013). Kiiciik
popiilasyon kullanmak, islev cagrim sayisini azaltir, ancak cesitlilik eksikligi nedeniyle,
durgunluk gibi erken yakinlasma riskini de arttirmaktadir.

Erken yakinsama problemi, popiilasyonun ¢ok modlu bir objektif fonksiyonun
optimal olmayan bir ¢6zlimiine yakinlastigi durumu ifade eder (Lampinen ve Zelinka,

2000). Bu durum c¢ogunlukla niifus cesitliligini yitirdiginde ve yerel tercihlerden



¢ikamadiginda ortaya g¢ikar. Bu durumda, algoritma normalden daha yavas ilerler ve
gelismis aday ¢ozlimlerinin daha da gelistirilmesini durdurabilir.
p-algoritmalar tiizerine yapilan calismalart mikro’nun etkisini arttirmasina

yardimci1 olan su yontemlere gore yapilabiliriz;

e Popiilasyon olusturma ve yeniden olusturma

e Bireyleri Koruma

e Uyarlanabilir popiilasyon biiyikligi

e Uyarlanabilir lokal arama

e Isbirlik¢i alt-popiilasyon / alt-siirii

e Hibritlestirme

e Parametre Uyarlamasi

3.3.1. Popiilasyon Olusturma ve Giincelleme

Mikro Algoritmalar i¢in popiilasyon yeniden baslatma fikri mikro Genetik
Algoritma (uWGA) ile bu alanda yapilan ¢alismalardan biri olmustur (Goldberg, 1989). Bu
yaklagimda, Onceden tanimlanmis sayida jenerasyondan sonra her bir yakinsak
popiilasyonun en iyi bireylisi, bir sonraki yinelemenin popiilasyonunda rastgele secilmis
bir bireyle degistirilir.

Mikro algoritmalar da ¢ok amagli optimizasyonda (MOO) kullanilmistir. Belirli
bir populasyon baglatma stratejisi ile Domine Edilmemis Siniflamali Genetik
Algoritmasinin (NSGA-II) gelistirilmis versiyonu, MOO sorunlarini ¢6zmek i¢in standart
LGA igine yerlestirilmistir (Tan ve ark., 2013). Dort popiilasyon bityiikliigiine ve yeniden
baslatma stratejisine sahip bir L GA pareto cephesinin biiyilik bir kismini ¢ok diistik bir
hesaplama maliyetiyle iretilebildigi (Coello ve Pulido, 2001) yapilan caligmada
sunulmustur. Ik popiilasyonu olusturmak igin {i¢ elitizm bigimi ve bir bellek kullanilir
(Coello ve Pulido, 2001).

PSO, kii¢iik niifuslu versiyonlarinin son zamanlarda gelistirildigi bilinen siirlizeka
algoritmalarindan biridir (Huang ve Mohan, 2006; Parsopoulos, 2012). (Cabrera ve
Coello, 2007)’de kisitli optimizasyon problemleriyle bas etmek i¢in bes parcacikli bir
Mikro-PSO (uPSO) kullanilir. Bu yontem, baslatma islemini kullanarak popiilasyon
cesitliligini korur ve algoritmanin kesif kabiliyetini gelistirmek i¢in bir mutasyon

operatdrii icerir. Raporlanan sonuclar Basit Cok Uyeli Evrim Stratejisi (SMES) ve
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Stokastik Siralama (SR) yontemine karsi rekabet¢i bir performans sergilemektedir
(Cabrera ve Coello, 2007)

Mikro Muhalefet Tabanli Diferansiyel Evrim (WODE), animasyon esiklemesi
vaka ¢aligsmasi i¢in Onerilmis ve degerlendirilmistir (Rahnamayan ve Tizhoosh, 2008).
Performansi Kittler algoritmasi ve Mikro Diferansiyel Evrim (uDE) ile karsilastirilir.
LODE yontemi bu algoritmalart 16 zorlu test goriintlisiinde uygulamistir ve daha hizl
yakinsama hiz1 gostermesinin nedeni karsit tabanli popiilasyon baglatma semasini
gommektir (Rahnamayan ve Tizhoosh, 2008).

Dasgupta ve arkadaslart 2009’da Mikro Bakteri Besin Arama Optimizasyonu
Algoritmast (uLBFOA) ad1 verilen Bakteriyel Besin Arama Optimizasyon Algoritmalarin
(BFOASs) "mikro" bir sliriimii 6nerilmistir. Bu yontem en iyi bakteriyi degistirmeden
tutmaktadir. Diger popiilasyon tiyeleri ise yeniden baslatilmistir (Dasgupta ve ark., 2009).
Bu yaklagim, standart BFOA'y1 daha biiyilk bir popiilasyon biytkliigiiyle
gerceklestirmistir.

Herrera-Lozada ve arkadaslar1 2011°de'de bes kisiden (antikorlar) olusan ve
sadece 15 klon elde edilen bir Mikro Yapay Bagisiklik Sistemi (Mikro-AIS) onerilmistir.
Bu yaklagimda, yeniden baslatma isleminde birlikte ¢alisan, iki basit fakat hizli mutasyon
operatdrii nominal bir yakinsama tarzinda diistiniilerek ¢esitlilik korunur (Herrera-Lozada
ve ark., 2011).

Centroid tabanli DE (Rahnamayan ve ark., 2014a; Rahnamayan ve ark., 2014b)
'da Onerilmistir. Bu yaklasim, gelecek nesil niifusun hesaplanmasinda niifus merkezini
kullanir. Tek tip rastgele popiilasyon iiretime karst tistiin performans gosteren popiilasyon

baslatma i¢in gelistirilmistir.

3.3.2. Bireyleri Koruma

Popiilasyona dayali algoritmalarin performansint ve oOzellikle de mikro
stiriimlerinin performansini artirmak i¢in kullanilan genel bir teknik, gelecek nesil i¢in
mevcut nesilden bir veya daha fazla kisiyi korumaktir.

Daha 6nce yapilan aragtirmalardan biri bu yondeki ¢alismalar, bes kromozomlu
bir GA Krishnakumar (1990) tarafindan Onerilmistir. Strateji, mevcut popiilasyondan
gelecek kusaga en 1yl bulunan kromozomu kopyalamaktir. Klasik GA ile
karsilastirildiginda daha hizli bir yakinsama hiz1 ile sonuglanan diisiik boyutlu problemler

tizerinde test edilmistir.
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Kisith MOO igin gelistirilmis bir pGA siirtimii (Tiwari ve ark., 2011)'de, Arsiv
Tabanlit Mikro GA (AMGAZ2) olarak onerilmistir. Bu algoritma, en iyi ve yonlendirme
aday1 ¢Ozlimlerinin dis arsivini koruyan sabit durumlu bir GA'ya dayanmaktadir. Bu
kiiciik niifus temelli yaklagim, ¢alisan niifusun ayrilmasini, dis arsivi ve optimizasyon
isleminin sonucu olarak gereken ¢6zliim sayisini kolaylagtirir.

Mikro-PSO, MOO igin kullanilir. PSO yaklasimi ile karsilastirildiginda,
Pareto'nun orta boyutlu problemlerin 6n yiliziinde makul derecede iyi yaklagimlar
iretiyor, az sayidaki objektif fonksiyon degerlendirmeleri ile (¢alisma basina sadece 3000
cagri). Arsivlerden biri arama sirasinda bulunan ¢oziimii saklar. Diger arsiv, elde edilen

nihai ¢6zlimleri saklar (Cabrera ve Coello, 2010).

3.3.3. Uyarlanabilir Popiilasyon Bityiikliigii

Popiilasyon sayisini azaltarak DE tabanli algoritmalarin hesaplama maliyetini
diistirmeye yonelik bazi1 yaklasimlar onerilmistir (Brest ve Maucec, 2008; Brest ve ark.,
2008; Brest ve ark., 2009; Sotelo-Figueroa ve ark., 2013). Brest ve Maucec (2008)’de
kademeli olarak azalan niifus biiyiikliigii yontemi Onerilmistir. Bu yontem, sonuglarin
temel DE'ye gore daha yiiksek saglamlik ve verimlilik gosterdigi 13 kiyaslama
fonksiyonunda incelenmistir.

Kendi kendine adapte olan popiilasyon biiyiikliigii fikri DE i¢in mutlak ve goreceli
kodlama yontemlerini test etmek i¢in kullanilir (Teng ve ark., 2009). 20 kiyaslama
problemi iizerinde rapor edilen simiilasyon sonuglari, ortalama performans ve stabilite
acisindan, goreceli kodlama kullanan kendinden uyarlamali popiilasyon biiytikliigiiniin
mutlak kodlama yontemini ve standart DE algoritmasim1 daha iyi olusturdugunu
gostermektedir. (Fajfar ve ark., 2012)’de kullanilan en kiigiik niifus biyiikliigii NP =
10'dur. Bu yontem, deneme vektoriinli degistirmek i¢in adaylar1 segcmek igin ii¢ farkli

kural kullanarak popiilasyon boyutunu azaltmaya calisir.

3.3.4. Uyarlanabilir Lokal Arama

Mikro-GA, tekrarlayan yapay sinir aglarinin (ANNs) egitimi i¢in uyarlanabilir bir
yerel arama yogunlugu seklinde yerel ince ayar i¢in kullanilir (Ang ve ark., 2007). Bu
yaklagimin sistem tanimlama gorevleri i¢in yararli oldugu bildirilmektedir.

Yerel bir arama prosediirii, yliksek boyutlu problemlerin iistesinden gelmek i¢in
(Olguin-Carbajal ve ark., 2013)'da uDE algoritmasi ile hibritlenmistir. Bununla birlikte,

rapor edilen performans sonuglar1 diger bazi1 yontemlerle karsilastirilabilir. uDE



12

algoritmasinin kesif yetenegini arttirmak ve durgunlugu 6nlemek i¢in, (Caraffini ve ark.,
2013)’te uDE algoritmasina fazladan bir arama hareketi dahil edilerek eksenler boyunca

ilerletilir.

3.3.5. Isbirlikci Alt-popiilasyon/Alt-siirii

Karmagik yiiksek boyutlu problemlerle basa ¢ikmak i¢in diisiik boyutlu ve diisiik
taramal1 alt kiimelerden olusan bir sirket kullanan (Parsopoulos, 2009)'da isbirlik¢i PSO
yaklasimi Onerilmistir. Bu yontemler kullanilarak umut verici sonuglar bildirilmistir.
(Parsopoulos, 2012)'de isbirlik¢i pPSO'nun paralel bir usta-¢irak modeli tanitildi. Orijinal
arama alan1 daha kiigiik boyutlara sahip alt alanlara ayristirilir. Ardindan, alt-alt kismi
¢ozelti bilesenlerini tanimlamak i¢in her alt-alanda bes kisi géz 6niinde bulundurulur.
Performansi, standart PSO algoritmasina kiyasla, ¢6zlim kalitesinde 6nemli gelismelerle
birlikte yaygin olarak kullanilan bes test problemi tizerinde degerlendirilir (Parsopoulos,
2012).

Bir uDE yaklagiminda (Parsopoulos, 2009), asil sorunun alt bilesenlerini es
zamanli olarak bulmak i¢in kiiciik boyutlu kooperatif alt popiilasyonlar1 kullanilir. Alt
popiilasyonlarin isbirliginde sorunun tam c¢oziimiinii olusturmak i¢in alt bilesenler
birlestirilir. Bu yontemin performans degerlendirmesi, (Parsopoulos, K. E., 2009) 'de
bildirilen sonuglar1 cesaretlendiren bes 6rnek test probleminin yiiksek boyutlu 6rnekleri
tizerinde yapilmistir.

Nesmachnow ve ark., (2012)'de, Paralel Mikro-Capraz Jenerasyon Elitist Se¢imi
(pu-CHC), heterojen rekombinasyon ve atakismik mutasyona dayanan, Heterojen
Hesaplama (HC) ve Grid Zamanlama igin etkili bir programlayici onerilmistir. Bu
yontem, paralel alt popiilasyon modelini, bir mikro popiilasyon ve rastgelelige dayali bir
yerel arama yontemini arayan odaklanmis bir evrimsel model ile birlestirmektedir.

Paralel Mikro Genetik Algoritma (PMGA) olarak adlandirilan mikro-GA’nin
paralel siirimii Tippayachai ve ark., (2002)'de rapor edilmistir. Bu yontem, monoton
olmayan ve monoton olarak artan maliyet fonksiyonlarina sahip birimler liretmek i¢in
rampa orani kisitli ekonomik sevkiyati (ED) sorunlarini ¢ozer. PMGA, 32 islemcili bir
Beowulf kiimesinde uygulanir. Raporlanan sonuglar, bu yaklasimin ¢evrimigi

uygulamalar i¢in uygulanabilirligini gostermektedir.
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3.3.6. Hibritlestirme

Bir uPSO ile birlikte Yapay Bagisiklik Sistemi (AIS) ailesine ait olan bir Klonal
Secim Algoritmasi (CSA) (CS?P2SO) hibrit bir sema olarak (Mitra ve ark., 2008)'de
sunulmustur. Bu hibritlemede, standart PSO algoritmasinin giicii arttirilir; burada uPSO,
daha az bellek gereksinimi olan optimum ¢6ziimii bulmaya yardimci olur ve CSA, yerel
bir minimum noktaya yakinlasma sansini azaltirken kesif kabiliyetini artirir.
Simiilasyonlar, rekabet¢i performansin rapor edildigi dort temel fonksiyon iizerinde
gergeklestirilmektedir.

uPSO, hareket tahmini (Bakwad ve ark., 2011), gii¢ sistemi stabilizator tasarimi
(Venayagamoorthy ve Das, 2006; Das ve ark., 2008b), statik degisken kompansator
(SVC) soniimleme kontrol cihazlarinin optimal tasarimi (Das ve ark., 2006), reaktif gii¢
optimizasyonu (Han ve Sun, 2012), Kisa vadeli hidrotermal programlamasi (Zhang ve
ark., 2012), gemi gii¢ sisteminin yeniden yapilandirilmas1 (Wang ve ark., 2013) ve gegici
stabilite kisith optimal gii¢ akis1 (Wu ve ark., 2014) gibi bir¢ok uygulama gelistirilmistir.

(Hinojosa ve Araya, 2013)’de bir karma tam sayili ikili kiigiik popiilasyon PSO
optimal gili¢ akisi problemini ¢6zmek i¢in Onerilmistir. Bu algoritmada kullanilan
kisitlama teknigi, dort karar degiskenini uygulanabilir mesafeden bulussal operatorlerde
iretmek ve tutmak i¢in bir stratejiye dayanmaktadir. Bu sekilde, algoritma daha 1yi bir
objektif degeri elde etmek i¢in arastirma prosediiriinii uygulanabilir ¢6ziim alanina
odaklar. Bu teknik, son ¢dziimiin niteliklerini yakinsama hizi kadar iyilestirir (Hinojosa
ve Araya, 2013).

Biiytik 6l¢ekli optimizasyon i¢in bir Kooperatif Mikro-Yapay Art Kolonisi
(CMABC) yaklagimi (Rajasekhar ve Das, 2013)'de sunulmustur. Bu yaklagim, kooperatif
algoritmalarin bolme ve fethetme 6zelligini ve Mikro-Yapay Ar1 Kolonisinin (MABC)
diisiik hesaplama maliyeti yontemini birlestirmistir.

pDE™min bir uygulamasi olarak, bir global ¢6ziim bulmak igin popiilasyon
biiytikligii bes olan bir Hibrit Diferansiyel Evrim (HDE) kullanilmigtir (Tsai ve Wang,
2005). uDE, ¢op kutusu probleminin kabul edilebilir bir performansla dolayli bir temsilini
gelistirmek i¢in de kullanilir (Sotelo-Figueroa ve ark., 2013).

Modiiler Sinir Aglart (MNNSs) optimizasyonu i¢in nGA yaklagimina dayanan
Hiyerarsik GA (MOHGA) i¢in bir MOO modeli (Sanchez ve ark., 2013)'te onerilmistir.
Bu yaklasim iris tanima uygulamasi i¢in kullanilir. MOHGA, giris verilerini graniillere

ve alt modiillere boler ve daha sonra verileri isleme ve test asamalarini bolmeye karar
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verir. Bu teknigin daha az veri kullanmaya dayali iyi sonuglar elde edebilecegi
bildirilmektedir (Sanchez ve ark., 2013)

Lahoz ve ark., (2013)'de, egitim asamasinin Ortalama Kare Hatasin1 (MSE) en aza
indiren problemin ¢6ziimii icin makinede uygun sayida gizli diiglim saglayan ¢ok amaclh
bir mikro genetik asir1 6grenme makinesi dnerilmistir. pGA, dielektrik merceklerle (Itoh
ve ark., 2012) dalga kilavuzu yuvasi anteni tasarimi, kusurlu kompozitlerin tespiti (Xu ve
Liu, 2002) ve daha iyi performanslarin karsilastirildigi ger¢ek diinya boru hatti aginin
(Ribas ve ark., 2013) programlanmasi gibi bir¢ok uygulama i¢in basariyla uygulandigi
standart GA ile karsilagtirilarak rapor edilmistir.

3.3.7. Parametre Uyarlamasi

Mikro popiilasyona dayali algoritmalarin uyarlanmasi, bu tiir algoritmalarin
performansinin arttirilmasi i¢in umut vaat eden yaklasimlardan biridir. Literatiirde DE
algoritmasinin saglamligin1 ve giivenilirligini arttirmak i¢in uyarlamali veya kendinden
uyarlamali yaklasimlarla bir¢ok yontem Onerilmistir (Neri ve Tirronen, 2010; Neri ve
Mininno, 2010; Mininno ve ark., 2011). Bu ozellikle hiper-parametrelerin ayarlanmasi
icin 6nemlidir. Mutasyon faktorii, genellikle sabit bir degere ayarlanan parametrelerden
biridir (Segura ve ark., 2015). Bununla birlikte, mutasyon faktoriiniin randomize
edilmesinin, potansiyel olarak yeni bir arama hareketi sunabilecegi ve standart bir DE
algoritmasimnin asir1 belirleyici arama yapisini telafi edebilecegi gosterilmistir (Das ve
Konar, 2005; Salehinejad ve ark., 2014). Calismalar, rastgele mutasyon faktorii
olusturmak ic¢in Gaussian, Log-normal ve Cauchy gibi ¢esitli dagilimlar kullanmistir.
Bununla birlikte, hi¢biri digerlerine gore iistiin degildir (Segura ve ark., 2015).

Das ve Konar (2005) ve Das ve ark. (2005) ¢alismalarinda onerilen yontemler
popiilasyonun ¢esitliligini arttirmak i¢in her nesilde rastgele mutasyon faktorii kullanir,
bunun hem giiriiltii hem de duragan sorunlar i¢in etkili oldugu bildirilir (Price ve ark.,
2006). Bu yontemler standart popiilasyon boyutunu kullanirken, F mutasyon faktorii
kullanilir. (0,5, 1) araligindan rastgele se¢ilen, ortalama degeri 0,75'te kalacak sekilde
kontrol edilir. Weber ve ark. (2011)'de dort farkli mutasyon Olgegi faktor semasi
onerilmigtir. Popiilasyon biyiikligii Np = 200 olarak ayarlanmistir. Caligma,
performansin kullanilan dagilim tipine bagli oldugundan, hi¢bir yontemin tiim problemler
icin iimit verici sonuglar gosteremedigini gostermektedir (Weber ve ark., 2011). Brest ve
ark. (2008)'de, mutasyon faktorii ve ¢apraz hiz orani parametreleri i¢in kendinden

uyarlanmis bir DE algoritmasi sunulmaktadir. Deneylerde kullanilan en kiiclik
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popiilasyon biiyiikliigii Np=25'tir. (Brest ve ark., 2009)'da mutasyon faktorii (F)'yi ve
kusaklar arasit gecis hizim1 (Cr) degistirmek i¢in kendinden uyarlamali bir kontrol
mekanizmasi kullanilir. Bu yontemde, yaslanma mekanizmasina sahip ¢ok popiilasyonlu
bir yontem i¢in sadece “rand/1/bin” mutasyon vektorii kullanilir. DE yontemi, standart
popiilasyon biiyiikliiglindeki her bir birey i¢in belirli bir oranla F iiretildigi icin umut vaat
eden yontemlerden biridir (Brest ve ark., 2006). (Salehinejad ve ark., 2014)'de en diisiikk
diizeyde rastgele F iiretme fikri (her popiilasyon birey i¢in ve sorunun boyutu i¢in). Bu
teknik standart MDE algoritmalarinin arama performansini arttirmak i¢in kullanilir. Bu
yontem, sonuglarin iistiin kesif performansi gosterdigi CEC-2013 yarigmasi igin bir dizi
karsilagtirmali islev tizerinde degerlendirilir. Vektorize Edilmis Rastgele Mutasyon
Faktorli ile Mikro Diferansiyel Evrim (MDEVM) olarak adlandirilan bu algoritma,
mJADE algoritmasinda Onerilen “by-rand-to-best” adi verilen yeni bir mutasyon
faktoriinlin performansini karsilastirmak igin bir 6lgiit olarak kullanilmaktadir (Brown ve
ark., 2015). Bu yaklasim kisitlanmamis optimizasyon problemleri igin bir DE
algoritmasidir, dikkate alinan en kiigiik popiilasyon biiyiikliigii Np = 8'dir (Brown ve ark.,
2015). Mutasyon faktorii (F) ve gegme hizi (Cr), her neslin baglangicinda rastgele
olusturulur, buradaki dagilim ortalamasi her nesilde giincellenir. (Brown ve ark., 2015)'de
akla gelebilecek en iyiye kadar dnerilen 6nerilen mutasyon faktorii, 13 klasik kiyaslama
fonksiyonunun bir takiminda hem biiyiik hem de kii¢lik popiilasyon boyutlar1 i¢in test
edilmistir. (Salehinejad ve ark., 2014)'deki karsilastirmali sonu¢lar MDEVM ve Mikro
Adaptif Diferansiyel Evrim (uWJADE) algoritmalar1 arasinda rekabet¢i bir performans
gostermektedir. Kompakt Diferansiyel Evrim (cDE) metotlari, problemi ¢6zme boyutuna
bakilmaksizin, dort kisiden olusan popiilasyonlara benzer bellek gereksinimine sahip
niifusun istatistiksel bir sunumunu kullanir (Mininno ve ark., 2011; Brown ve ark., 2015).
Bu calismada, sanal olmayan kiiciik topluluklari tartismaya odaklandigimiz i¢in, bu DE
algoritmalar1 sinifi diger ¢alismalarda daha fazla aragtirma yapmak i¢in ayrilmistir.

Cevresel ekonomik sevk vaka ¢alismasi i¢in (Pandit ve ark., 2011)'de zamana gére
degisen kemotaktik adim boyutuna sahip bir Kaotik Mikro Bakteriyel Besin Arama
Algoritmast (CMBFOA) Onerilmistir. Bu yontemin yakinsama karakteristigi, hiz1 ve
¢Oziim kalitesinin, 3 tiiniteli bir sistem ve standart Elektrik ve Elektronik Miihendisleri
Enstitiisii (IEEE) 30 veri yolu test sistemi i¢in klasik BFOA'dan daha iyi oldugu
bildirilmektedir.

Seckin Elitist Evrim (EEv) adi verilen diger bir EA tiirii, Hessian veya kovaryans

matrisi gibi karmasik mekanizmalar kullanmadan galisan (Viveros-Jimenez ve ark.,
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2009)'da yiiksek boyutlu problemleri optimize etmek i¢in Onerilmistir. Bu yaklasim, tek
bir uyarlamali parametrenin evrimsel operatdrleri makul yerel ve global arama
yetenekleri saglamak i¢in kontrol ettigi adaptif ve segkin davramiglardan yararlanir
(Viveros-Jimenez ve ark., 2009).

Coulomb yasasi, pPSO yonteminde yiiksek boyutlu problemler i¢in kullanilmaktadir
(Huang ve Mohan, 2006). Bu yaklasimin ilk basarisi, kara listeye alinmis ¢ozeltileri i¢ine
almak i¢in gereken uygun alan biiyiikliiglinii belirlemek i¢in gereken yiikii ve pargaciklari
puskiirtmek icin gereken itme miktarini ortadan kaldirmaktir, ¢iinkii bu parametrelerin
yiiksek boyutlu problemleri tespit etmek oldukc¢a zordur. Diger bir basari, parcaciklar
tizerinde itilmeyi, belirli bir pozisyonda pargaciklar tarafindan yasanan itme miktarini
kontrol eden bir parametre kullanarak kontrol etme esnekligidir. Bes yiiksek boyutlu
kiyaslama fonksiyonundaki simiilasyon sonuglari, genis popiilasyon biiyiikliigline sahip

standart PSO'ya karst u-PSO'nun iistiin performansini gostermektedir.

3.4. Yapay Alg Algoritmasi (AAA)

AAA, yapay alglerin davranislarindan esinlenilerek 2015 yilinda ortaya konmus
doga esinli bir optimizasyon algoritmasidir. Yapay alg, ger¢ek yasamdaki bir alg gibi,
fotosentez yapabilmek icin 151k kaynagina dogru hareket eder ve hareketi helisel yiizme
seklindedir. Ortama uyum saglayip, baskin tiirii degistirebilir ve mitoz bolinme ile
cogalabilir. Problem uzayindaki her bir ¢oziime bir yapay alg kolonisi karsilik
gelmektedir. Her bir alg kolonisindeki alg hiicresi sayisi, problem boyutuna esittir. Bir
alg kolonisi ideal ¢oziime ulastifinda optimum elde edilmis olur. Yapay alg algoritmasi
3 temel adimdan olusur. Bunlar; helisel hareket, adaptasyon ve evrimsel siiregtir. (Uymaz

ve ark., 2015). AAA’ya ait akis diyagrami Sekil 3.1.’de verilmistir (Uymaz, 2015).

3.4.1. Helisel Hareket

Yapay alg hiicreleri, 1518a dogru helisel olarak hareket etmektedir. Her bir helisel
hareket sonucunda koloninin uzayda yer degistirip degistirmeyecegini enerjileri belirler.
Her dongiiniin baglangicinda, enerji koloni biiyiikliigiine dogru orantili olarak hesaplanir
ve bu enerji ¢ozliimiin kalitesini gostermektedir. Alglerin bu hareketinin birinci boyuttaki
hareketi Denklem 3.7°de diger 2 boyuttaki hareketleri ise Denklem 3.8 ve Denklem 3.9°te
gosterilmistir (Zhang ve ark., 2016).

Xim' = Xim + (i — Xin) (5 — @))p 3.7)
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Xt = xh + (xjtk — x3)(sf — w;) cosa (3.8)
X =xh + (xjtz — x)(sf — wy) sinB (3.9)

Burada, m,k vel [1,d] arasindan segilen rastgele sayilardir. x;,,, x;; Ve x;, i. alg
kolonisinin sirastyla x, y ve z koordinatlarini temsil eder. j, turnuva secimi ile elde edilen
komsu bir alg kolonisinin indeksidir. p, [-1,1] araliginda se¢ilen reel bir sayidir. a ve f3,
[0 ,27] araliginda rastgele secilen derecelerdir. sf, viskoz hareketten kaynaklanan kesme
kuvvetidir. w;, alg kolonisinin biiyiikliigii ile orantili olan alg kolonisinin siirtiinme yiizey
alanidir. Siirtiinme yiizeyi, alg kolonisinin kiiresel seklinden dolay1 alg kolonisini saran
yarimkiirenin yiizey alani olarak hesaplanir. Denklem 3.11°de ise siirtiinme yiizeyi
verilmigtir.

w; = 2mr? (3.10)

l
3S;
- \/; (3.11)

Burada ise, r;, i. alg kolonisine ait yarimkiirenin yarigapi ve S;’de biiytkligtdiir.

3.4.2. Adaptasyon

Adaptasyon, yeterince biiyliyemeyen bir alg kolonisi tarafindan ¢evrede bulunan
en biiyiikk alg kolonisine benzemeye c¢alistig1 siirectir. Helisel hareket sonucunda
belirlenen aglik seviyesi kullanilir. Daha iyi ¢oziime giden kolonide aglik seviyesi
degismezken, kotiilesen koloninin aglik seviyesi artar. Her bir helisel hareketten sonra,
en yiiksek aglik degerine sahip olan koloni adaptasyona ugrar (Denklem 3.12-13).
Adaptasyonun olup olmayacagi Adaptasyon parametresi (Ap) ile belirlenir. Ap [0,1]
araliginda sabit bir degerdir ve bu aralikta rastgele bir say1 ile kiyaslanir eger say1 Ap

parametresinden kiigiik ise adaptasyon siireci isletilir (Zhang ve ark., 2016).

starving® = argmax {starvation(x;)}, i=12,..N (3.12)

starving'*! = starving® + (biggest' — starving®) X rand (3.13)

Burada, starvation(x;) i. alg kolonisinin aglik seviyelerini, starving® t anindaki aghk
degeri en yiiksek alg kolonisini, biggest® t amindaki en biiyiik alg kolonisini ve rand [0,1]

araliginda rastgele tiretilen reel bir say1y1 ifade eder.
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3.4.3. Evrimsel Siirec

Yapay alg hiicresi yeterli 151k aldiginda biiyiir, gelisir ve boliinme ile iki yapay alg
hiicresi olusur. Yeterli 151k alamayan alg hiicresi ise bir siire sonra oliir. Evrimsel siireg;
arama siirecinde en kiiciik alg kolonisinin (buldugu ¢oziimlerin uygunluk fonksiyon
degerleri diger kolonilerden daha kotii olan) dlen her bir hiicresi yerine en biiylik alg
kolonisinin (buldugu ¢oztimlerin uygunluk fonksiyon degerleri diger kolonilerden daha

iyi olan) bir alg hiicresinin kopyalandigi asamadir. Bu siire¢ Denklem 3.14 - 3.16’daki

gibi isletilir.

biggestt = argmax size(x}), i=12,..N (3.14)
smallest® = argmax size(x}), i=12,..N (3.15)
smallesttf! = biggestiit | m=12,..D (3.16)

Burada, smallest en kiigiik alg kolonisi, biggest en biiyiik alg kolonisi ve D

problem boyutunu ifade eder.
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"
N

Parametrelerin Belirlenmesi

Kesme kuovveti, enerji kaybi ve adaptasyon

parametreleri

l

AAA'nin Baslanlmas:

Alg kolonilerinin baslatilmasi, wygunluklannin

ve bityiikliklerinin hesaplanmasi

L

L

Helisel Hareket Asamas

( Optimum ‘?5“"“1) Her bir alg kolonisinin enerjisi bitene kadar:

Bir 131k kaynagi belirle

Ug alg hiicresi belirle

Alg kolonisinin hareketini Denklemler
3.12-3.14 ile hesapla

Alg kolonisinin aglik deferini giincelle

Durdurma

v

kriter:?

Evrimsel Siirec
Enbiijyiik ve Enkdigiik alg kolonisini seg
Enbiiyiik koloninin bir hiicresini Enkiiigiik
koloninin bir hileresine kopvala

En iyi alg kolonisini sakla | -

Adaptasyon Siireci
En ag alg kolonisini seg
Segilen alg kolonisini adaptasyona ngrat

Sekil 3.1. AAA Akig Diyagrami (Uymaz ve ark., 2015)
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3.5. Levy Ucusu

Levy Ucus algoritmasi, optimize edilmesi gereken problemleri ¢dzmek igin
kullanilan bir metasezgisel algoritmadir. Bu algoritma, Benoit Mandelbrot’in ortaya
sundugu dogada gozlemlenen bir fenomen olan "Levy Ucusu'"'ndan esinlenir
(Mandelbrot, 1982). Levy Ugusu, rastgele hareket eden bir organizmanin bazen uzun
mesafeler kat etmesini, bazen ise kisa mesafelerde kalmasini tanimlar. Sekil 3.2°de 2

Boyutlu diizlemde 1000 adima sahip Levy Ugus 6rnegi verilmistir.

1ocl ' v ' ' i .

.5
-1oci-
-2oc5-
'395:06 = -:[oé - (I)- — -1Ioc- — -2Ioc- — -3Ioc- — -4:0C

Sekil 3.2 Boyutlu diizlemde 1000 adima sahip Levy Ugus Ornegi

Levy Ucgus algoritmasi, ¢6ziim adaylarinin ¢6ziim alaninda rastgele hareket ettigi
bir arama stratejisini kullanir. Bu hareketler, Levy dagilimima gore belirlenir. Levy
dagilimi, uzun mesafelerdeki hareketlerin daha olasi oldugu bir olasilik dagilimidir.

Algoritmanin genel isleyisi su adimlardan olusur:
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Baslangi¢ Popiilasyonu Olusturma: Algoritma, ¢6ziim adaylarini temsil eden bir
baslangi¢c popiilasyonu olusturur. Bu popiilasyon, ¢dziim alaninda rastgele noktalarda
yerlestirilen bireylerden olusur.

Yeni Coziim Adaylar1 Uretme: Her bir birey, Levy dagilimima gore belirlenen bir
adim boyutuyla ¢éziim alaninda rastgele bir yone hareket eder. Bu hareket sonucunda
yeni bir ¢oziim adayi iiretilir.

Uygunluk Degerlerinin Hesaplanmasi: Uretilen yeni ¢dziim adaylarinin uygunluk
degerleri, optimize edilmek istenen hedef fonksiyonuna gore hesaplanir.

En Iyi Céziimiin Giincellenmesi: Elde edilen yeni ¢6ziim adaylari arasindan en iyi
uygunluga sahip olan ¢dziim adayi, en iyi ¢oziim olarak secilir ve kaydedilir.

Durdurma Kriterine Ulasilincaya Kadar Yineleme: Belirlenen bir durdurma kriteri
saglanana kadar adimlar 2-4 tekrarlanir. Durdurma kriteri genellikle belirli bir iterasyon
sayist veya belirli bir uygunluk degeri elde edildiginde saglanir. Cizelge 3.1°de

algoritmaya ait pseudo kodu paylasilmstir.

Cizelge 3.1. Levy Ugusu Psuedo Kodu

Levy Ucusu Pseudo Kodu
Input function Min f(X)and B

Select x;in swarm that will modify the position
Initializer =1and o, = 1
While (t < €)
Compute step_size
Generate new solution X;
Calculate f(X;)
If f(X{) < f(X;) then
X =X!
End If
T=1+1
End

Levy Ucgus algoritmasi, Ozellikle karmasik ve ¢ok boyutlu problemlerin

¢oziimiinde etkilidir. Levy dagilimmin uzun mesafelerdeki hareketleri tesvik etmesi,
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algoritmanin ¢éziim alaninda daha genis bir kesif yapmasmi saglar. Buna karsin,
algoritma lokal optimumlarda sikigma riski tasir.

Levy Ugus algoritmasi, farkli parametre ayarlar1 ve problem tipleri igin
degisebilirlik gosterebilir. Bu nedenle, algoritmanin performansini optimize etmek icin
parametrelerin dikkatli bir sekilde ayarlanmasi 6nemlidir.

Levy Ugus algoritmasi, optimizasyon problemlerinin ¢ézliimiinde kullanilan gii¢lii
bir ara¢ olmasina ragmen, her problem i¢in en uygun algoritmay1 belirlemek ig¢in

problemi ve gereksinimleri iyi anlamak 6nemlidir.

3.6. Mikro Algoritma Uzerine Ilk Calisma: Mikro Yapay Alg Algoritmasi (LAAA)

Mikro Algoritma gelistirme siirecine baslarken yapilan literatiir calismalar1 géz
Oniine alindiginda dncelikle popiilasyon sayisini en aza indirmek temel hedef olmustur.
Mikro Algoritma gelistirirken ilk adim olarak popiilasyon sayisi, literatiirde yogun olarak
kullanilan, 3 birey olarak diisiiniilmiistiir. Bununla birlikte popiilasyondaki birey sayisi
aza indirildiginde olabildigince tiim uzayr gezebilecek bir yap1 gelistirmek
hedeflenmistir.

Yapisal olarak uzayr gezdigini belirten Dasgupta ve arkadaslarinin (2009)
calismalarinda sunmus olduklart pBFOA o6rnek alinmis olup oncelikle Yapay Alg
Algoritmasina ait olan helisel hareket, evrimsel siire¢ ve adaptasyon adimlari isletilerek
elde edilen popiilasyonda gerekli mikro adimlar1 bir sonraki adimda islenmis ve Yapay
Alg Algoritmasina ait olan parametreler Cizelge 3.1°de verilmistir.

Gelistirilen algoritmada ilk olarak elde edilen popiilasyondan en iyi 1. birey
korunarak devam ettirilmistir. Popiilasyonda sonraki birey olan 2. Birey i¢inse bir Epsilon
(€) degeri ile 1. Bireye yaklastirilmaya ¢alisilmistir (Dasgupta ve ark, 2009). Burada ¢ bir
uzaklik parametresi olarak tanimlanir ve Denklem 3.17°de aralik (range) ¢ikarim
denklemi verilmis olup, Denklem 3.18’de ise €’a ait hesaplama gosterilmistir. Son birey
olan 3. Birey ise uzaydan rastgele degerlerle olusturularak c¢esitlilik olugsmasi saglanmasi
amaclanmustir.

Onerilen tAAAya ait akis diyagram Sekil 3.3’de verilmistir.

range = max — min (3.17)

e = 0.06 x range (3.18)
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Cizelge 3.1. AAA ve ntAAA’ya ait parametreler

Parametreler Degerler (LAAA)

Boyut 500

Kesme Kuvveti 2

Enerji Kaybi 0.3

Ap 0.5

Y
;:"E.Zlurﬂurma Kr'rter.i":; _>| Optimal Céziim
| Basla | | Adaptasyon Fazl |

h i
| Parametre Tammiarn | ; ElLm L
| Codalma Fazi | kopyala
[ Eniyi2. bireyi1. |
bireve £ parametresi
w | kadar yaklagtir |
‘ AAATIN olusturulmas H Helisel Hareket |<— 3. birey uzaydan

rastoele dederlerle
olugturuldu

Sekil 3.3. uAAA Akis Diyagrami

3.7. Onerilen Yontem: Levy ile Mikro Yapay Alg Algoritmasi (1AAA evy)

Bu ¢alismada oncelikle popiilasyon sayisi, herhangi bir mikro algoritmalardaki
gibi birey sayisi az tutulacak sekilde ve bir 6nceki ¢alisma olan nAAA’da oldugu gibi 3
birey olarak kullanilmistir. pAAA’nin helisel hareket, evrimsel siire¢ ve adaptasyon
adimlar1 tamamlandiktan sonra olusan popiilasyonun en iyi sonuca sahip bireyi bir
sonraki adimin ilk aday bireyi olmak iizere saklanmaktadir. Segilen bu en iyi bireyden
Levy Ucusu yardimi ile yeni bireyler iiretilerek Lokal Arama islemi yapilmaktadir
(Denklem 3.19). Lokal arama siirecinde yeni en iyi birey problemin boyut sayist kadar
Levy Ucusu ile genisleyip daraltilmaktadir. Birey daha iyi ¢6ziime ulastiginda konumu

giincellenmektedir ve yeni Levy Ugusu bu konumdan ger¢eklesmektedir.

xtt =xL + Levy(B) (3.19)
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Bir sonraki popiilasyonun 2. bireyi i¢in ise 1. birey yine Levy Ugusu yardimi ile yeniden
olusturulur (Denklem 3.20). Yeni popiilasyonun ilk iki bireyi lokal aramay1 gelistirmek

amaci ile bir 6nceki popiilasyondaki en iy1 bireyden faydalanilarak olusturulmaktadir.

xtt = xb, + Levy(B) (3.20)

Algoritmanin global arama yetenegini gelistirmek ve hizli yakinsamanin 6niine
gegmek amaci ile 3. birey, Levy Ugusu metodu ile rastgele olarak uzay sinirlarina
oranlanarak iiretilir. Algoritma her ¢cevrimde helisel hareket, evrimsel siire¢, adaptasyon
stireci ve Levy Ucusu ile popiilasyon gilincelleme adimlarini durdurma kriterini saglayana
kadar tekrarlar. Onerilen yeni Levy Ucgusu ile Yapay Alg Algoritmasina ait akis
diyagrami Sekil 3.4’de verilmistir.

Durdurma Kriteri —){ Optimal Cozum

‘ Basla ‘ Adaptasyon Faz

L]

‘ Parametre Tanimlarn

En lyi Bireyi Levy ile
‘ Cogalma Faz Lokal arama yap

A

1. Bireyi Levy kadar
kaydir

‘ AAANIN olugtumlmaS| —){ Helisel Hareket -« 3. Bireyi Yeniden Bir
—{ Levy Nokiasindan |l¢—
Olugtur

Sekil 3.4. uAAAwew Akis Diyagrami
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4. ARASTIRMA BULGULARI VE TARTISMA

Tez kapsaminda Onerilen yontemin performansini dogrulamak ve kiyaslamak i¢in
yapilan calismalar iki asamada gerceklestirilmistir. Ik olarak dnerilen pAAA ydntemi 6
test fonksiyonu (Rastrigin, Griewank, Ackley, Rosenbrock, Schwefel ve Schwefel v2)
tizerinde caligtirildi ve literatiirde Onerilmis mikro algoritmalar olan pPSO, uBFOA
yontemleri ile AAA ve AAA’nin popiilasyonu indirgenmis (3 birey) hali ile kiyaslandi.

Ikinci asamada, onerilen pAAAjevyy yontemi CEC2015 fonksiyon seti iizerinde
calistirildi. Sonuglar tim parametreleri yontemin Onerildigi Uymaz ve ark. (2016)
calismasindaki degerler ile ayni birakilarak AAA (40 koloni) ve AAA’nin popiilasyonu

indirgenmis (3 koloni) hali ile kiyaslandi.

4.1. Temel Test Fonksiyonlar:

Yapilan Calismalarin test edilecegi literatiirde yaygin olarak kullanilan
fonksiyonlar Cizelge 4.1.’de verilmistir. Bu test fonksiyonlarindan F1, F2, F3, F4 ve F6
ise Huang ve Mohan’in (2006) yilinda yine yiiksek boyutlu problemler igin gelistirdigi
uPSO arastirmasinda kullanilmigtir. F1, F2, F3, F4 ve F5 fonksiyonlar ise Dasgupta ve
arkadaglariin 2009 yilinda yine yiiksek boyutlu problemler i¢in ortaya koydugu uBFOA
arastirmasinda kullamilmistir. Cizelge 4.1. de test fonksiyonlarna ait isimleri,
matematiksel denklemleri, ¢6ziim uzaylarinin alt ve iist sinirlar1 ve global optimum
degerleri verilmistir. Schwefel ve Schwefel v2 test fonksiyonlar1 diger fonksiyonlara gore

daha genis aralikta bir ¢6zlim uzayina sahiptir.



Cizelge 4.1. Karsilagtirma i¢in kullanilan fonksiyonlar
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Fonksiyon . o Arama Teorik
No. Ads Matematiksel GOsterim Uray Minimum
N
F1  Rastrigin Z;\-i — 10cos(2mx,) + 10] [-2.2] 0
n=1
I &, & X
F2  Griewank + 2000 g ]:[ ( \/’_J [-10,10] 0
F3  Ackley  204e¢-20exp (o.z N [-2,2] 0
N-1
F4  Rosenbrock Z 100 (X0 — ,\'i)“ (x, — 1)7] [-2,2] 0
N
F5 Schwefel — E X, sin (\/ X, ) [-500,500] -416.99x500
n=1
N
F6  Schwefelv2  418.9829, + Z,r,, sin <\/ X, ) [-500,500] 0

n=1

4.2. CEC2015 Fonksiyonlari

Tez kapsaminda yapilan deneysel ¢aligmalarin ikinci agamasinda bir diger test seti

ise CEC 2015 konferansinda optimizasyon yontemlerinin kiyaslanmasi igin sunulan ve

fonksiyonlarin dondiiriilmiis ve kaydirilmis versiyonlarini barindiran fonksiyon setidir.

Bu test seti tekli ve coklu global optimum degere sahip ve global optimum degerleri

sifirdan farkli fonksiyonlardan olusmaktadir. Test seti, Chen ve arkadaslar1 (2014)

tarafindan yapilan calismadan alinmistir. Test setine ait fonksiyonlar ve o6zellikleri

Cizelge 4.2°de verilmistir.
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Cizelge 4.2. CEC2015 Fonksiyonlar1

. . flgili Temel Teorik
Kategori No Fonksiyonlar Fonksiyonlar Minimum
Tek Tepell 1 Rotated Bent Cigar Bent Cigar 100
Fonksiyonlar
(Unimodal
Functions) 2 Rotated Discus Discus 200
3 Shifted and Rotated Weierstrass Weierstrass 300
4 Shifted and Rotated Schwefel’s Schwefel’s 400
5 Shifted and Rotated Katsuura Katsuura 500
Basit Cok
Te_peli 6 Shifted and Rotated HappyCat HappyCat 600
Fonksiyonlar
(Simple
Multimodal
Functions) 7 Shifted and Rotated HGBat HGBat 700
8 Shifted and Rotated Expanded Griewank’s 800
Griewank’s plus Rosenbrock’s Rosenbrock’s
9 Shifted and Rotate:d Expanded Expanded Scaffer’s
Scaffer’s 900
£6 F6

4.3. Karsilastirmalar

4.3.1. Temel Test Fonksiyonu Karsilastirmalar:

Onerilen pAAA ilk olarak popiilasyondaki koloni sayis1 3 ve 40 olarak alinan
temel AAA algoritmasi ile Cizelge 4.1°de verilen test fonksiyonlar: iizerinde test
edilmistir. Kiyaslama sonuglari 10 bagimsiz ¢alistirma iizerinden hesaplanmistir. Her
bagimsiz calistirma 5000 fonksiyon hesaplama ve 500 boyutta gergeklestirilmistir
(Cizelge 4.3.).



Cizelge 4.3. pAAA, AAA (pop:40) ve AAA (pop:3) test fonksiyonlar: kargilagtirmasi
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Fonksiyonlar HAAA AAA (Pop:40) AAA (Pop:3)
En iyi 0,0000e+00 3,6080e+03 3,7219e+03

F1 Ortalama 1,1771e+03 3,7535e+03 4,6558e+03
Std. Sapma 8,2884e+02 7,5214e+01 4,8873e+02

En iyi 0,0000e+00 2,3505e+00 2,9789e+00

F2 Ortalama 0,0000e+00 2,5794e+00 3,2286e+00
Std. Sapma 0,0000e+00 1,1466e-01 2,2556e-01

En iyi 7,9936e-15 4,1126e+00 4,6372e+00

F3 Ortalama 8,7041e-15 4,3729e+00 4,8335e+00
Std. Sapma 2,2469e-15 1,7517e-01 1,5033e-01
En iyi 4,9865e+02 4,8545e+04 7,22450e+04

F4 Ortalama 4,9888e+02 5,8222e+04 1,01348e+05
Std. Sapma 1,2989¢e-01 7,2285e+03 1,94408e+04
Eniyi -1,0866e+05 -4,2899¢+04 -3,8757e+04

F5 Ortalama -9,6893e+04 -4,0837e+04 -1,6940e+04
Std. Sapma 2,8195e+04 1,7316e+03 9,3647e+03

En iyi 1,17167e+05 2,00768e+05 2,04351e+05

F6 Ortalama 1,20650e+05 2,01441e+05 2,06593e+05
Std. Sapma 2,26638e+03 4,04179e+02 1,35221e+03

Cizelge 4.3.’te verilen sonuglar karsilastirildiginda tiim test fonksiyonlari igin en

1yi ve ortalama degerlerde pAAA’nin basarili sonuglar verdigi goriilmektedir. F1, F5 ve

F6 test fonksiyonlariin standart sapmalarinin yiiksek oldugu gézlenmektedir.

Cizelge 4.4. nAAA ve uBFOA test fonksiyonlar1 karsilagtirmasi

Fonksiyonlar LAAA uBFOA
Eniyi 0,00000e+00 2,15120e+03
F1 Ortalama 1,17712e+03 2,2850e+03
Std. Sapma 8,28849¢e+02 3,65299¢e+01
Eniyi 0,00000e+00 2,5401e+00
F2 Ortalama 0,00000e+00 2,7074e+00
Std. Sapma 0,00000e+00 0,0394e+00
En iyi 7,99360e-15 3,5924e+00
F3 Ortalama 8,70414e-15 3,8175e+00
Std. Sapma 2,24693e-15 0,1128e+00
En iyi 4,98658e+02 4,57482e+04
F4 Ortalama 4,98883e+02 4,90355e+04
Std. Sapma 1,29899¢e-01 1,7455e+03
Eniyi -1,08662e+05 -9,65585e+04
F5 Ortalama -9,68937e+04 -9,30796e+04
Std. Sapma 2,81954e+04 2,0679e+03

Cizelge 4.4’te verilen pAAA ve uBFOA karsilagtirma tablosuna bakildiginda F1

ve F5 test fonksiyonlarina ait standart sapma degerleri disinda kalan degerlerde basarili

oldugu gozlenmektedir.
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LAAA’nin temel test fonksiyonlari iizerinde elde ettigi sonuglar uPSO (Huang ve
Mohan, 2006) yontemi ile karsilastirilmasi Cizelge 4.5’de yapilmistir. uPSO ‘ya ait
sonuglar Huang ve Mohan (2006) ¢alismalarindan alinmistir ve bu ¢alismada testler 3000
fonksiyon hesaplama tizerinden gergeklestirilmistir (Huang ve Mohan, 2006).
Kiyaslamalarin adil olmasi i¢cin pAAA’da diger parametreler degistirilmeden 3000

fonksiyon hesaplama ile galistirilarak sonuglar elde edilmistir.

Cizelge 4.5. pAAA ve uPSO test fonksiyonlari karsilagtirmasi

Fonksiyonlar LAAA uPSO

Fl Ortalama 1,35328e+03 1,60981e+03
Std. Sapma 1,19304e+03 3,0144e+02

2 Ortalama 0,00000e+00 1,40e+00
Std. Sapma 0,00000e+00 0,11e+00

3 Ortalama 7,99360e-15 4,13e+00
Std. Sapma 0,00000e+00 0,14e+00

F4 Ortalama 4,98917e+02 1,41658e+04
Std. Sapma 9,87111e-02 4,56785e+03

6 Ortalama 1,20650e+05 1,23536e+05
Std. Sapma 2,26638e+03 5,52960e+03

Cizelge 4.5te verilen pAAA ve uPSO yontemlerine ait sonuglar incelendiginde,
(Huang ve Mohan, 2006) yapilan arastirmada en iyi degerler paylasilmadigindan
kiyaslamalar ortalama degerler ve standart sapmalar iizerinden gergeklestirilmistir.
LAAA ortalama degerlere gore pPSO yontemine tiim fonksiyonlarda daha 1yi sonuglar
vermektedir. Standart sapma degerleri incelendiginde F1 test fonksiyonu hari¢ tim

fonksiyonlarda pAAA yonteminin daha basarili oldugu gézlenmektedir.

4.3.2. CEC2015 Test Fonksiyonu Karsilastirmalar:

CEC2015 test fonksiyon setinde bulunan 9 fonksiyon iizerine yapilan deneysel
calismalarin sonuclar1 Cizelge 4.6’da gosterilmistir. Kiyaslamalarda kullanilan her
yontem (LAAAevy, AAA (pop=40) ve AAA (pop=3)) i¢in 10 bagimsiz ¢alistirmanin En
Iyi, En Kotii, Ortalama, Orta Deger, Standart Sapma ve Ortalama Zaman degerleri elde

edilmis ve Cizelge 4.6’da sonuglar verilmistir.



Cizelge 4.6. pAAAewy , AAA ve AAA (pop:3) CEC2015 test fonksiyonlari kargilastirmasi
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Fonksiyonlar RAAAlevy AAA (pop:40) AAA (pop:3)
En Iyi 1,9425226038e+08 5,8267577491e+08 6,5789381457e+09
En Koti 3,3372508167e+08 2,1033018689e+09 1,6687843978e+10
F1 Ortalama 3,3372508167e+08 1,2432223775e+09 1,1679441204e+10
Orta Deger 3,3267564791e+08 1,2395130309e+09 1,1900617893e+10
Std. Sapma 1,1168664786e+08 4,9126355557e+08 3,2268423404e+09
Ort. Zaman 1,30200e+00 4,01134e+00 7,99331e+00
En Iyi 3,6835847293e+07 1,3149560611e+10 2,9313985342e+11
En Koti 6,1593644446e+08 4,3548422196e+10 7,2630938390e+11
£ Ortalama 2,3507559486e+08 2,7923885630e+10 4,6510465159¢e+11
Orta Deger 1,6498897268e+08 2,7687596485e+10 4,1977576351e+11
Std. Sapma 1,8550993695e+08 9,0321549768e+09 1,4229097603e+11
Ort. Zaman 1,05677e+00 3,67262e+00 7,77429e+00
En Iyi 3,2000019905e+02 3,2041668684e+02 3,2134497751e+02
En Kotii 3,2000565977e+02 3,2110077931e+02 3,2144131191e+02
F3 Ortalama 3,2000019905e+02 3,2060034287e+02 3,2138159860e+02
Orta Deger 3,2000029584e+02 3,2054968826e+02 3,2137890074e+02
Std. Sapma 1,6895540700e-03 1,9714973442e-01 2,5819929623e-02
Ort. Zaman 1,10746e+00 3,83912e+00 8,22581e+00
En Iyi 2,0516458441e+03 1,4769188053e+03 2,1757147890e+03
En Koti 2,4416240491e+03 1,7216961218e+03 2,8970109759e+03
F4 Ortalama 2,2473581739e+03 1,6330860019e+03 2,4322075980e+03
Orta Deger 2,2356798638e+03 1,6238646315e+03 2,3567670186e+03
Std. Sapma 1,4091458703e+02 7,0953038850e+01 2,4783052323e+02
Ort. Zaman 1,09886e+00 3,79544e+00 7,91486e+00
En Iyi 1,5834659491e+04 1,6732461241e+04 3,1560870148e+04
En Koti 1,9848420030e+04 2,8247391267e+04 3,3030553597e+04
5 Ortalama 1,7575042919¢e+04 2,0090900878e+04 3,2338916608e+04
Orta Deger 1,7201680077e+04 1,9300131387e+04 4,8852445925e+02
Std. Sapma 1,2571221845e+03 3,0965877473e+03 3,2279855076e+04
Ort. Zaman 1,63554e+00 4,42920e+00 8,72116e+00
En Iyi 1,1032623807e+08 7,1052589834e+07 4,9844400258e+08
En Koti 2,7275120065e+08 1,8938530596e+08 1,5936623608e+09
6 Ortalama 1,7323914617e+08 1,2608119882e+08 1,0241725640e+09
Orta Deger 1,7064932643e+08 1,2228694400e+08 9,5547998373e+08
Std. Sapma 5,1323148524e+07 3,6564347144e+07 3,5209512176e+08
Ort. Zaman 1,37062e+00 4,05019e+00 8,20835e+00
En Iyi 9,0786607631e+02 8,7150751675e+02 3,5629101084e+03
En Koti 1,0164564053e+03 9,0814721053e+02 1,0178398085e+04
F7 Ortalama 9,5346128829e+02 8,8931330211e+02 7,5419406482e+03
Orta Deger 9,4675938028e+02 8,8821615697e+02 7,5872017369e+03
Std. Sapma 3,4441825007e+01 1,0301160286e+01 2,3606562316e+03
Ort. Zaman 6,88511e+00 9,28443e+00 1,45159e+01
En Iyi 3,3346506033e+07 2,6866097914e+07 3,7142177462e+08
En Koti 1,6622029726e+08 7,4088322793e+07 9,8612118856e+08
8 Ortalama 9,2603536733e+07 4,6600243775e+07 6,9427471544e+08
Orta Deger 8,4610910273e+07 1,7627031668e+07 7,1942733020e+08
Std. Sapma 4,6468422274e+07 4,6701155440e+07 2,3057803297e+08
Ort. Zaman 1,29348e+00 3,96265e+00 8,04874e+00
En Iyi 1,0132233739e+03 1,0530141563e+03 2,1640540336e+03
En Koti 4,0304491899¢+03 1,1284959320e+03 3,9204635092e+03
F9 Ortalama 2,8226692490e+03 1,0823969197e+03 2,9013317089e+03
Orta Deger 3,2480760440e+03 1,0761775037e+03 2,8741827870e+03
Std. Sapma 1,1335564239%e+03 2,4249781758e+01 4,9093133675e+02
Ort. Zaman 3,32496e+00 5,93410e+00 1,09636e+0
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Cizelge 4.6°da ortalama degerler incelendiginde pAAAjevy nin 4 test fonksiyonda,
En lyi degerlere gore ise 5 test fonksiyonunda diger yontemlere gore iistiinliik sagladig
goriilmektedir. Caligma zamanlar1 incelendiginde pAAAjevy’'nin diger yontemlere gore
daha hizli sekilde islemini tamamladigi gozlemlenmektedir. Tek tepeli fonksiyonlardaki
basarisi ve hizli sonug {iretmesi agisindan pAAAjevwy umut vadeden bir Mikro Algoritma

yaklagimi oldugu goriilmektedir.
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5. SONUCLAR VE ONERILER

5.1 Sonuclar

Optimizasyon problemleri dogalar1 geregi boyutlar1 biiyiidiikge karmasikliklari
artar ve ¢Oziimleri icin daha fazla hesaplama kaynagina ihtiya¢ duyulur. Mikro
algoritmalar kiiciik popiilasyonlar sayesinde hesaplama maliyetlerini diisiirerek diisiik
hesaplama giliciine sahip donanimlar iizerinde optimizasyon problemlerine ¢oziim
saglamay1 amacglamaktadir. Bu tez calismasinda optimizasyon problemlerine kaliteli
¢ozlimler sunan Yapay Alg Algoritmasi ilizerinde gelistirmeler yapilarak Mikro Yapay
Alg Algoritmasi &nerilmistir. Onerilen algoritmanin performansimi artirmak icin Levy
Ugusu yaklasimindan faydalanilmistir. Levy Ucusu bireylerin konum giincellenmesinde
ve lokal arama asamasinda kullanilarak ¢6ziim uzayimin daha iyi kesfedilmesini ve lokal
¢Oziimlerin ¢esitliligini saglamistir.

Onerilen algoritmanin performans: dncelikle temel Yapay Alg Algoritmasinin
birey sayist 40 ve 3 olarak alinarak kiyaslanmistir. Sonuglar, yapilan gelistirmeler
sonucunda Onerilen mikro AAA yoOnteminin daha basarili sonuglara ulastigini
gostermektedir. Onerilen mikro yontemin basarisini dogrulamak igin literatiirde dnerilmis
ve basarisi ortaya koyulmus mikro (uBFOA ve uPSO) algoritmalar ile kiyaslanmustir.
Deneysel sonuglar Levy Ucusu ile pAAA algoritmasimin kiyaslanan yontemlere gore

daha basarili sonuglar verdigini gostermistir.

5.2 Oneriler

Yapilan calismalarin 1s181inda, gelecek g¢aligmalarda; literatiir arastirmasi goz
Online alinarak daha karmasik optimizasyon problemlerinde basarili performans
gerceklestirmesini saglamak {izere gelistirilecek mikro ¢aligsmalar yapilmasi planlanmis
ve devam edilmektedir. Diisiik hesaplama kapasitesi olan cihazlar {izerinde optimizasyon
problemlerinin ¢6ziimiinde Levy Ucusu ile pAAA yontemi bir alternatif olarak

kullanilabilir.
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