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Son yıllarda optimizasyon problemlerinin çözümünde metasezgisel algoritmalar sıklıkla 

kullanılmaktadır. Karmaşıklığı ve parametre sayısı yüksek problemlerde bu çözüm yöntemleri zaman ve 

maliyet açısından yeterli faydayı sağlayamamaktadır. Bu nedenle literatürde mikro metasezgisel 

optimizasyon yöntemleri önerilmiştir. Mikro algoritmalar daha küçük popülasyon boyutları ile büyük 

ölçekli problemlerin çözümünde başarılı sonuçlar vermektedir. Bununla birlikte, araştırmacılar tarafından 

yapılan çalışmalarda, popülasyon boyutunda küçülmenin yeterli olmadığı erken yakınsama ve yüksek 

durgunluk yaşayan mikro algoritmaların olduğu görülmüştür. Düşük popülasyonla birlikte algoritmanın 

yapısı bozulmadan eklenen metotlarla mikro metasezgisel algoritmalar literatüre sunulmuştur.  

Bu tez projesinde, yapay alg algoritması üzerinde düşük popülasyon kullanarak ve algoritma 

çalışma yapısını bozmadan eklenecek yardımcı metotlar ile, optimizasyon problemleri çözümünde 

performansı yüksek bir mikro yapay alg algoritması üzerine bir çalışma yapılmıştır. Yapılan çalışma Mikro 

Parçacık Sürü Optimizasyonu (μPSO), Mikro Bakteri Besin Arama Optimizasyonu Algoritması (μBFOA) 

ve standart Yapay Alg Algoritması (AAA) ile karşılaştırılmış ve başarılı sonuçlar ortaya koyduğu 

gözlemlenmiştir. Önerilen yöntemle karşılaştırılan algoritmaların kullanıldığı fonksiyonlar dışında 

CEC2015 fonksiyonları ile denemelerde Lokal alanlara takıldığı gözlemlenmiş ve bu sorunu aşmak için 

araştırma ve çalışmalar yapılmıştır. Bu işlemlerle birlikte esas önerilen yöntem olan Levy ile Mikro Yapay 

Alg Algoritması (µAAAlevy) sunulmuştur. Bu algoritma ise 3 ve 40 popülasyonlu AAA ile 

karşılaştırıldığında umut vadeden bir algoritma olduğunu göstermiştir.  
 

Anahtar Kelimeler: Mikro Metasezgisel Algoritmalar, Optimizasyon, Yapay Alg 

Algoritması, Levy Uçuşu 

 

 

 

 

 

 

 

 



 

 v 

 

ABSTRACT 

 

MS THESIS 

 

DEVELOPMENT OF MICRO-ARTIFICIAL ALGAE ALGORITHM FOR 

SOLUTION OF OPTIMIZATION PROBLEMS 

 

 

Hüseyin Samet CAN 

 

Konya Technical University 

Institute of Graduate Studies 

Department of Computer Engineer 

 

Advisor: Assoc. Prof. Dr. Sait Ali UYMAZ 

 

2023, 39 Pages 

 

Jury 

Assoc. Prof. Dr. Sait Ali UYMAZ  

Prof. Dr. İsmail BABAOĞLU 

Assoc. Prof. Dr. Mehmet Akif ŞAHMAN 

 

 
In recent years, metaheuristic algorithms have been frequently used to solve optimization 

problems. These solution methods do not provide sufficient time and cost benefit in complex and high 

parameter optimization problems. However, due to the lighter hardware requirements and the possibility of 

working in embedded systems with memory saving approach, Micro-Metaheuristic Algorithm methods 

have been proposed in the literature. Many Micro-Metaheuristic Algorithms have been introduced by the 

researchers in the form of microstructures that enable them to produce solutions at a lower cost by 

developing solutions to accelerate problem solving such as creating and re-updating small-sized 

populations and protection of individuals. 

 In this thesis project, a study has been carried out on a micro artificial algae algorithm 

with high performance in solving optimization problems by using low population on the artificial algae 

algorithm and adding auxiliary methods without disturbing the algorithm's working structure. The study 

was compared with Micro Particle Swarm Optimization (μPSO), Micro Bacteria Nutrient Foraging 

Optimization Algorithm (μBFOA) and standard Artificial Algae Algorithm (AAA) and it was observed that 

it produced successful results. Apart from the functions using the algorithms compared with the proposed 

method, it was observed that CEC2015 functions were stuck in local areas in experiments with CEC2015 

functions and research and studies were carried out to overcome this problem. With these procedures, the 

main proposed method, Micro Artificial Algorithm with Levy (µAAAlevy) was presented. This algorithm 

has shown to be a promising algorithm compared to AAA with 3 and 40 populations. 
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1. GİRİŞ 

 

Optimizasyon problemleri, özellikle gerçek dünya problemlerinin optimum 

şekilde çözülmesi için matematiksel ifadelerle tanımlanması gerekir. Bu problemler, 

amaç veya kısıtlama fonksiyonlarının sayısına, fonksiyonun yapısına, amaç 

fonksiyonunun karakteristiğine, tasarım değişkenlerinin tipine, değerlerin belirsizliğine 

ve hesaplama zorluğuna göre sınıflandırılır (Yang, 2010). Ayrıca objektif fonksiyonların 

sayısına göre; tek ve çok amaçlı olarak, kısıtlama fonksiyonlarına göre; 

sınırlandırılmamış, eşitlik kısıtlı ve eşitsiz kısıtlı, karakteristik fonksiyonlara göre; tek 

modlu, çok modlu ve hibrit olarak ayrılır. Optimizasyon problemlerinin çözümü için 

çeşitli yöntemler geliştirilmiştir. Bu yöntemler deterministik ve stokastik yöntemler 

olarak gruplandırılabilir. Klasik algoritmalar deterministiktir ve aynı başlangıç noktaları 

ile hep aynı yolu izlerler. Modern optimizasyon algoritmaları ise sezgiseldirler yani 

rastgeleliğe sahiptirler. Her zaman optimumu bulma garantisi vermezler ama kaliteli 

çözümler sunarlar. Bu nedenle daha yüksek oranda kaliteli çözümler bulabilmek için 

Metasezgisel Algoritmalar üzerine çalışmalar devam etmektedir. 

Metasezgisel Algoritmalar çoğunlukla doğadan veya canlı yaşamından 

esinlenerek ele alınırlar ve optimizasyon problemlerine uygun çözümler getirmeyi 

amaçlamaktadırlar. Alan Turing’in ikinci dünya savaşında Bletchley Park’da Alman 

Enigma şifrelerini kırmış olduğu Turing’in çalışma yapısı Yang (2010) tarafından 

sezgisel algoritma olarak tanımlanmıştır. Metasezgisel kavramının ilk kullanımı ise 1986 

yılında Fred Glover’in Tabu Arama (TS) algoritmasını sunduğu çalışma olarak kabul 

edilmektedir. Metasezgisel Algoritmalar genellikle büyük popülasyonlara ihtiyaç duyar. 

Bunun 2 nedeni vardır; daha çok birey arama uzayını daha iyi keşfetmeyi sağlar ve erken 

yakınsama ihtimalini düşürür (erken yakınsama popülasyondaki bütün bireylerin 

birbirine çok benzediği zaman gerçekleşir) (Viveros-Jiménez ve Mezura-Montes, 2012). 

Yüksek boyutlu problemlerde, büyük popülasyonlarla arama uzayının keşfedilmesi 

önemli miktarda zaman ve hesaplama maliyetini de beraberinde getirmektedir. Bu 

durumda araştırmacıları daha küçük popülasyonlarla çalışmaya teşvik etmiştir. 

Mikro Algoritma terimi (μ-algoritma), popülasyon bazlı Metasezgisel 

Algoritmaların optimizasyon problemlerine çok küçük popülasyonlarla çözüm bulmaya 

çalışan algoritmaları ifade eder. μ-Algoritmalar, genellikle gömülü sistemlerde 

kullanılmaktadır. Bunun sebebi daha hafif donanım gereksinimleri ve bellek tasarrufu 

yaklaşımıyla gömülü sistemlerde çalışma olasılıkları nedeniyle, çeşitli uygulamalarda 
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kullanılmıştır (Caraffini ve ark., 2013). Küçük popülasyon kullanmak, işlev çağrım 

sayısını azaltır, ancak çeşitlilik eksikliği nedeniyle, durgunluk gibi erken yakınsama 

riskini de arttırmaktadır. Erken yakınsama problemi, popülasyonun optimal olmayan bir 

çözümüne (lokal en iyi) yakınlaştığı durumu ifade eder (Lampinen ve Zelinka, 2000). Bu 

genellikle, popülasyon bireylerinin çeşitliliğini kaybettiğinde ve yerel olarak optimal 

çözümler üretemediğinde ortaya çıkar. Bu durumda, algoritma normalden daha yavaş 

ilerler ve daha iyi sonuç almayı engeller. μ-algoritma’nın bu olumsuz durumunu 

gidermek için araştırmacılar,  çeşitli yardımcı özellikler kullanmışlardır. 

Tezin içeriği aşağıdaki gibidir: 

2. bölümde; Optimizasyon, Metasezgisel Algoritmalar, Mikro Metasezgisel 

Algoritmalar ve Levy Uçuşu hakkında yapılan kaynak araştırmasından bahsedilmiştir. 

3. bölümde Optimizasyon Problemleri, Metasezgisel Algoritma ve Mikro 

Metasezgisel Algoritma kavramlarından bahsedilmiştir. Mikro Metasezgisel 

Yöntemlerden bahsedilmiştir. Sonrasında Yapay Alg Algoritması (AAA) ve önerilen 

algoritma olan Levy Uçuşu ile Mikro Yapay Alg Algoritması tanıtılmıştır. 

 4. bölümde öncelikle yapılan çalışmada kullanılan test fonksiyonları tanıtılmıştır. 

Daha sonra performans testleri, sonuçlar ve analizler yapılmıştır. 

5. bölümde, yapılan çalışmaya ait sonuçlar değerlendirilmiş ve gelecek çalışmalar 

için öneriler sunulmuştur. 
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2. KAYNAK ARAŞTIRMASI 

 

Metasezgisel algoritmalar, optimize edilmesi gereken karmaşık problemleri 

çözmek için kullanılan bir tür optimizasyon algoritmasıdır. Bu algoritmalar, doğal 

seleksiyon, genetik, taklit, sürü davranışı gibi doğadan veya diğer ilham kaynaklarından 

esinlenen yöntemleri kullanarak çözüm adaylarını ararlar. 

Metasezgisel algoritmaların temel özellikleri şunlardır: 

Popülasyon Tabanlı Yaklaşım: Metasezgisel algoritmalar, bir popülasyonu 

kullanarak çözüm adaylarını temsil eder. Popülasyon, olası çözümlerin bir arada 

bulunduğu bir grup bireyden oluşur. 

Sezgisel Arama Stratejileri: Metasezgisel algoritmalar, sezgisel arama 

stratejilerini kullanarak çözüm alanında gezinmeyi sağlar. Bu stratejiler, bir bireyin 

çözüm alanında hareket etmesini, yeni çözüm adayları üretmesini ve mevcut çözümlerle 

karşılaştırmasını içerir. 

Optimizasyon Hedefine Uygunluk Fonksiyonu: Metasezgisel algoritmalar, 

optimize edilmek istenen hedef fonksiyonunun değerini minimize etme veya maksimize 

etme amacıyla çalışır. Bu hedef fonksiyonu, çözüm adaylarının performansını ölçer. 

Parametre Ayarlaması: Metasezgisel algoritmalar, farklı parametre değerleriyle 

deneme yaparak en iyi sonuçları elde etmek için parametrelerin ayarlanmasını gerektirir. 

Bu parametreler, popülasyon boyutu, iterasyon sayısı, mutasyon oranı gibi algoritmanın 

davranışını etkileyen değerlerdir. 

Metasezgisel algoritmalar, birçok farklı probleme uygulanabilir ve genellikle 

karmaşık, çok boyutlu veya optimizasyon problemleri olarak adlandırılan problemlerin 

çözümünde etkilidir. Genetik algoritmalar, parçacık sürü optimizasyonu (PSO), taklit 

optimizasyonu (TO), küme optimizasyonu (CO), simüle edilen tavlama (SA), karınca 

kolonisi optimizasyonu (ACO) ve çiftçi algoritması (FA) gibi metasezgisel algoritma 

örnekleri vardır. 

Bu algoritmalar, optimize edilen probleme ve kullanıcının gereksinimlerine göre 

seçilmelidir. Her bir algoritmanın kendi avantajları, dezavantajları ve uygunlukları vardır. 

Başarılı bir şekilde uygulanması, parametre ayarlamasının yanı sıra algoritmanın doğru 

şekilde yapılandırılmasını gerektirir. 

Genel olarak, metasezgisel algoritmalar, karmaşık optimizasyon problemlerini 

çözmek için etkili ve esnek bir yaklaşım sağlar. Ancak, her problem için en uygun 
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algoritmayı belirlemek ve performansı optimize etmek için dikkatli bir analiz ve ayarlama 

süreci gereklidir. 

Mikro Metasezgisel Algoritmalar, popülasyon tabanlı yaklaşımı benimserler ve 

bir grup çözüm adayını temsil eden bir popülasyon kullanırlar. Her bir birey, çözümün 

bir adayını temsil eder ve bir uygunluk fonksiyonu tarafından değerlendirilir. 

Bu algoritmalar, sezgisel arama stratejilerini kullanarak çözüm alanında 

gezinmeyi sağlarlar. Bireyler, doğal seleksiyon, rekombinasyon, mutasyon gibi genetik 

operatörler veya taklit, iletişim, öğrenme gibi başka stratejiler kullanarak birbirleriyle 

etkileşime geçerler. Bu etkileşimler, yeni çözüm adaylarının üretilmesini ve daha iyi 

çözümlerin bulunmasını sağlar. 

Mikro Metasezgisel Algoritmalar, şu avantajlara sahiptir: 

Esneklik: Mikro Metasezgisel Algoritmalar, farklı problemlere uyarlanabilen 

genel bir çerçeve sunar. Bu algoritmalar, çeşitli optimizasyon problemlerinde başarılı bir 

şekilde uygulanabilir. 

Küresel Arama: Mikro Metasezgisel algoritmalar, küresel optimuma 

yakınsamayı hedeflerler. Bu, çözüm alanında geniş bir arama yapabilme yetenekleri 

olduğu anlamına gelir ve daha iyi çözümlerin keşfedilmesini sağlar. 

Paralel İşleme: Mikro Metasezgisel algoritmalar, popülasyon tabanlı 

yaklaşımları sayesinde paralel hesaplama için uygunlardır. Bu, çoklu işlemci veya 

hesaplama kaynağı kullanılarak algoritmanın hızlı bir şekilde çalıştırılabilmesini sağlar. 

Optimizasyon problemleri çözümünde kullanımı yaygınlaşan μ-Algoritmalar’dan 

bazıları; Krishnakumar’ın (1990) çalışma ürünü olan mikro genetik algoritma (μGA), 

mikro öğretme-öğrenme tabanlı optimizasyon (μTLBO), Parsopuolos’un 2009 yıında 

sunmuş oluduğu Mikro Diferansiyel Evrim (μDE) ve yine Posopuolos’aun sunmuş 

olduğu Mikro Parçacık Sürü Optimizasyonu (μPSO) ve 2009’da Dasgupta’nın çalışma 

ürünü olan μBFOA yöntemleri örnek gösterilebilir. 

Bu örneklerden μPSO’da popülasyon boyutu küçültülerek yüksek boyutta 

yaşanan zorluktan kurtulması sağlanmıştır. Ayrıca bireylerin elde ettiği optimuma uzak 

sonuçlar bir kara listede tutulmuş ve Coulomb yasası yardımı her yeni iterasyonda bu 

kara listedeki sonuçlardan kaçınılarak performanslı bir algoritma ortaya çıkarılmıştır 

(Huang ve Mohan, 2006).  

μBFOA’da ise popülasyon sayısını 3’e düşürmekle birlikte popülasyon 

güncelleme ve oluşturma yöntemi kullanılmıştır. Bu yöntemde, her iterasyon sonrasında 

en iyi birey saklanmaktadır. En iyi 2. birey 1. bireye yaklaştırılmakta ve 3. birey rastgele 
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yeniden oluşturulmaktadır. 3. Bireyin rastgele oluşturulmasındaki amaç ise çeşitliliği 

sağlamak olarak tanımlanmıştır (Dasgupta ve ark., 2009). 
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3. MATERYAL VE YÖNTEM 

 

3.1. Optimizasyon 

Optimizasyon, matematiksel bir yapıya dönüştürülmüş bir problemin maksimum 

veya minimum olması açısından optimal koşulların elde edilmesini sağlar. Birden fazla 

şekilde matematiksel olarak tanımlanabilecek optimizasyonlardan biri, aşağıda açıklanan 

temel yapıdır: 

 

Minimize veya Maksimize 𝑓𝑖(𝑥), (𝑖 = 1, 2, …, 𝑀)     (3.1) 

ℎ𝑗(𝑥) = 0,    (𝑗 =  1, 2, … , 𝐽)     (3.2) 

𝑔𝑘(𝑥) ≤ 0,    (𝑘 =  1, 2, … , 𝐾)     (3.3) 

𝑋 =  (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑)         (3.4) 

 

Burada 𝑓𝑖, ℎ𝑗  ve 𝑔𝑘 genel doğrusal olmayan fonksiyonlar, integraller veya diferansiyel 

eşitlikler olabilir. Dizayn vektör 𝑋, 𝑑 boyutlu uzayda sürekli, ayrık veya ikisinin karışımı 

olabilir. 𝑓𝑖 fonksiyonu maliyet ya da amaç fonksiyonları olarak adlandırılır. Eğer 𝑀>1 ise 

optimizasyon çok amaçlıdır. 

Optimizasyon problemleri, amaç veya kısıtlama fonksiyonlarının sayısına, 

fonksiyonun yapısına, amaç fonksiyonunun karakteristiğine, tasarım değişkenlerinin 

tipine, değerlerin belirsizliğine ve hesaplama zorluğuna göre sınıflandırılır (Yang, 2010). 

Objektif fonksiyonların sayısına göre; tek ve çok amaçlı olarak, kısıtlama fonksiyonlarına 

göre; sınırlandırılmamış, eşitlik kısıtlı ve eşitsiz kısıtlamalı olarak, karakteristik 

fonksiyonlara göre; tek modlu, çok modlu, hibrit ve kompozit olarak ayrılır. 

Optimizasyon problemlerinin çözümü için çeşitli yöntemler geliştirilmiştir. Bu 

yöntemler deterministik ve stokastik yöntemler olarak gruplandırılabilir. Klasik 

algoritmalar deterministiktir ve aynı başlangıç noktaları ile hep aynı yolu izlerler. Modern 

optimizasyon algoritmaları ise sezgiseldirler yani rastgeleliğe sahiptirler. Her zaman 

optimumu bulma garantisi vermezler ama kaliteli çözümler sunarlar. Bu nedenle daha 

yüksek oranda kaliteli çözümler bulabilmek için sezgisel algoritmalar üzerine çalışmalar 

devam etmektedir. 

 

3.2. Metasezgisel Algoritmalar 
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Sezgisel veya Metasezgisel Algoritmalar doğada gerçekleşen bir olaydan 

esinlenerek ele alınan optimizasyon problemlerine uygun çözümler getirmeyi 

amaçlamaktadır. Bu yöntemler, ele aldığı farklı özellikler göz önünde bulundurularak 

çeşitli şekillerde sınıflandırılabilir. Temel olarak metasezgisel yöntemler, doğadan 

esinlenen ve doğadan esinlenmeyen yöntemler, dinamik ve statik amaç fonksiyonuna 

sahip yöntemler, bir komşuluk yapısına ve değişken komşuluk yapısına sahip yöntemler, 

hafıza kullanan ve kullanmayan yöntemler ve tek çözüme dayalı ya da toplum tabanlı 

metasezgisel yöntemler olarak sınıflandırılabilmektedir (Blum ve Roli, 2003). Toplum 

tabanlı yöntemlerde kendi içinde evrimsel algoritmalar ve sürü zekâsı olmak üzere 

sınıflandırılmaktadır. 

Metasezgisel yöntemlerin ilk kullanıldıkları zamanı kesin olarak belirtmek zor 

olsa da, Alan Turing’in ikinci dünya savaşında Bletchley Park’da Alman Enigma 

şifrelerini kırmış olduğu Turing’in çalışma yapısı Yang (2010) tarafından sezgisel 

algoritma olarak tanımlanmıştır. Metasezgisel kavramının ilk kullanımı ise 1986 yılında 

Fred Glover’in Tabu Arama (TS) algoritmasını sunduğu çalışma olmuştur (Glover, 1986). 

1960 ve 1970’ler Evrimsel Algoritmaların (EAs) ortaya çıktığı ve geliştirildiği iki 

önemli 10 yıldır. İlk olarak John Holland ve arkadaşları tarafından Genetik Algoritma 

(GA) geliştirilmiş ve (Holland, 1975) çalışmasında özeti paylaşılmıştır. Bu çalışmada 

doğadaki evrimsel süreçten esinlenilmiştir. Bu algoritmada rastgele bir popülasyon 

oluşturulur ve uygunluk değerleri hesaplanır. Elde edilen uygunluk değerine göre 

bireylerden iyi olanların sonraki nesile aktarımını sağlamak için sırasıyla seleksiyon, 

çaprazlama ve mutasyon adımları gerçekleştirilir. Bu işlem programa değişken olarak 

verilen maksimum iterasyon sayısı tamamlanana kadar ya da en iyi sonuç elde edilene 

kadar döngü halinde işlenir. GA günümüzde farklı güncelleme ve versiyonlarıyla 

günümüzde de kullanılmaktadır. 

Parçacık Sürü Optimizasyonu (PSO), sürü halinde hareket eden kuş ve balıkların 

sosyal davranışlarından esinlenerek Kennedy ve Eberhart  (1995) tarafından geliştirilmiş 

bir optimizasyon yöntemidir (Kennedy ve Eberhart, 1995). Temel olarak sürü zekâsına 

dayanan bir algoritmadır. Sürü halinde hareket eden hayvanların yiyecek ve güvenlik gibi 

durumlarda, çoğu zaman rasgele sergiledikleri hareketlerin, amaçlarına daha kolay 

ulaşmalarını sağladığı görülmüştür. PSO bireyler arasındaki sosyal bilgi paylaşımını esas 

alır. Her bireye parçacık denir ve parçacıklardan oluşan popülasyona da sürü (swarm) 

denir. Her bir parçacık kendi pozisyonunu, bir önceki tecrübesinden yararlanarak 
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sürüdeki en iyi pozisyona doğru ayarlar. PSO çalışmasında kullanılan formüller Denklem 

3.5 ve 3.6’da gösterilmiştir. 

 

𝑉𝑖(𝑘 + 1) ← 𝑉𝑖(𝑘) + 𝐶1∅1(𝑃𝑖(𝑘) − 𝑋𝑖(𝑘)) + 𝐶2∅2(𝐺(𝑘) − 𝑋𝑖(𝑘))   (3.5) 

𝑋𝑖(𝑘 + 1) ← 𝑋𝑖(𝑘) + 𝑉𝑖(𝑘)        (3.6) 

 

Denklem 3.5’te k iterasyon sayısını, 𝑉𝑖 bulunduğu iterasyondaki i. parçacığın 

hızını göstermektedir. 𝐶1 𝑣𝑒 𝐶2 öğrenme faktörleridir ve parçacıkları yerel ve global en 

iyi parçacıklara yönlendirir. Denklem 3.6’da ise 𝑋𝑖 i. parçacığın konumu belirtir. PSO 

günümüzde Multi-Objektif Parçacık Sürü Optimizasyonu (MOPSO) (Mostaghim ve 

Teich, 2003), Multi-Elitist PSO (MEPSO) (Das ve ark., 2008a) ve Garantili Yakınsak 

PSO (GCPSO) (Peer ve ark., 2003) gibi çeşitli güncelleştirmelerle geliştirilerek 

kullanılmaya devam edilmektedir. 

Metasezgisel Algoritmalar genellikle büyük popülasyonlara ihtiyaç duyar. Bunun 

2 nedeni vardır; daha çok birey arama uzayını daha çok keşfetmeyi sağlar ve erken 

yakınsama ihtimalini düşürür (erken yakınsama bütün popülasyon bireyleri birbirine çok 

benzediği zaman gerçekleşir) (Viveros-Jiménez ve Mezura-Montes, 2012). Bu büyük 

popülasyonlarla arama uzayının keşfedilmesi önemli miktarda zaman ve hesaplama 

maliyetini de beraberinde getirmektedir. Bu durumda araştırmacıları daha küçük 

popülasyonlarla çalışmaya teşvik etmiştir. 

 

3.3. Mikro Metasezgisel Algoritmalar 

Mikro Algoritma (µ-algoritma) terimi, popülasyon bazlı Metasezgisel 

Algoritmaların optimizasyon problemlerine çok küçük popülasyonlarla çözüm bulmaya 

çalışan algoritmaları ifade eder. µ-algoritmalar, istisnai olarak daha hafif donanım 

gereksinimleri ve bellek tasarrufu yaklaşımıyla gömülü sistemlerde çalışma olasılıkları 

nedeniyle, çeşitli uygulamalarda kullanılmıştır (Caraffini ve ark., 2013). Küçük 

popülasyon kullanmak, işlev çağrım sayısını azaltır, ancak çeşitlilik eksikliği nedeniyle, 

durgunluk gibi erken yakınlaşma riskini de arttırmaktadır.  

Erken yakınsama problemi, popülasyonun çok modlu bir objektif fonksiyonun 

optimal olmayan bir çözümüne yakınlaştığı durumu ifade eder (Lampinen ve Zelinka, 

2000). Bu durum çoğunlukla nüfus çeşitliliğini yitirdiğinde ve yerel tercihlerden 
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çıkamadığında ortaya çıkar. Bu durumda, algoritma normalden daha yavaş ilerler ve 

gelişmiş aday çözümlerinin daha da geliştirilmesini durdurabilir. 

µ-algoritmalar üzerine yapılan çalışmaları mikro’nun etkisini arttırmasına 

yardımcı olan şu yöntemlere göre yapılabiliriz; 

 Popülasyon oluşturma ve yeniden oluşturma 

 Bireyleri Koruma 

 Uyarlanabilir popülasyon büyüklüğü 

 Uyarlanabilir lokal arama 

 İşbirlikçi alt-popülasyon / alt-sürü 

 Hibritleştirme 

 Parametre Uyarlaması 

 

3.3.1. Popülasyon Oluşturma ve Güncelleme 

Mikro Algoritmalar için popülasyon yeniden başlatma fikri mikro Genetik 

Algoritma (µGA) ile bu alanda yapılan çalışmalardan biri olmuştur (Goldberg, 1989). Bu 

yaklaşımda, önceden tanımlanmış sayıda jenerasyondan sonra her bir yakınsak 

popülasyonun en iyi bireylisi, bir sonraki yinelemenin popülasyonunda rastgele seçilmiş 

bir bireyle değiştirilir. 

Mikro algoritmalar da çok amaçlı optimizasyonda (MOO) kullanılmıştır. Belirli 

bir populasyon başlatma stratejisi ile Domine Edilmemiş Sınıflamalı Genetik 

Algoritmasının (NSGA-II) geliştirilmiş versiyonu, MOO sorunlarını çözmek için standart 

µGA içine yerleştirilmiştir  (Tan ve ark., 2013). Dört popülasyon büyüklüğüne ve yeniden 

başlatma stratejisine sahip bir µGA pareto cephesinin büyük bir kısmını çok düşük bir 

hesaplama maliyetiyle üretilebildiği (Coello ve Pulido, 2001) yapılan çalışmada 

sunulmuştur. İlk popülasyonu oluşturmak için üç elitizm biçimi ve bir bellek kullanılır  

(Coello ve Pulido, 2001). 

PSO, küçük nüfuslu versiyonlarının son zamanlarda geliştirildiği bilinen sürüzeka 

algoritmalarından biridir (Huang ve Mohan, 2006; Parsopoulos, 2012). (Cabrera ve 

Coello, 2007)’de kısıtlı optimizasyon problemleriyle baş etmek için beş parçacıklı bir 

Mikro-PSO (µPSO) kullanılır. Bu yöntem, başlatma işlemini kullanarak popülasyon 

çeşitliliğini korur ve algoritmanın keşif kabiliyetini geliştirmek için bir mutasyon 

operatörü içerir. Raporlanan sonuçlar Basit Çok Üyeli Evrim Stratejisi (SMES) ve 
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Stokastik Sıralama (SR) yöntemine karşı rekabetçi bir performans sergilemektedir 

(Cabrera ve Coello, 2007) 

Mikro Muhalefet Tabanlı Diferansiyel Evrim (µODE), animasyon eşiklemesi 

vaka çalışması için önerilmiş ve değerlendirilmiştir (Rahnamayan ve Tizhoosh, 2008). 

Performansı Kittler algoritması ve Mikro Diferansiyel Evrim (µDE) ile karşılaştırılır. 

µODE yöntemi bu algoritmaları 16 zorlu test görüntüsünde uygulamıştır ve daha hızlı 

yakınsama hızı göstermesinin nedeni karşıt tabanlı popülasyon başlatma şemasını 

gömmektir (Rahnamayan ve Tizhoosh, 2008). 

Dasgupta ve arkadaşları 2009’da Mikro Bakteri Besin Arama Optimizasyonu 

Algoritması (µBFOA) adı verilen Bakteriyel Besin Arama Optimizasyon Algoritmalarını 

(BFOAs) "mikro" bir sürümü önerilmiştir. Bu yöntem en iyi bakteriyi değiştirmeden 

tutmaktadır. Diğer popülasyon üyeleri ise yeniden başlatılmıştır (Dasgupta ve ark., 2009). 

Bu yaklaşım, standart BFOA'yı daha büyük bir popülasyon büyüklüğüyle 

gerçekleştirmiştir. 

Herrera-Lozada ve arkadaşları 2011’de'de beş kişiden (antikorlar) oluşan ve 

sadece 15 klon elde edilen bir Mikro Yapay Bağışıklık Sistemi (Mikro-AIS) önerilmiştir. 

Bu yaklaşımda, yeniden başlatma işleminde birlikte çalışan, iki basit fakat hızlı mutasyon 

operatörü nominal bir yakınsama tarzında düşünülerek çeşitlilik korunur (Herrera-Lozada 

ve ark., 2011). 

Centroid tabanlı DE (Rahnamayan ve ark., 2014a; Rahnamayan ve ark., 2014b) 

'da önerilmiştir. Bu yaklaşım, gelecek nesil nüfusun hesaplanmasında nüfus merkezini 

kullanır. Tek tip rastgele popülasyon üretime karşı üstün performans gösteren popülasyon 

başlatma için geliştirilmiştir. 

 

3.3.2. Bireyleri Koruma 

Popülasyona dayalı algoritmaların performansını ve özellikle de mikro 

sürümlerinin performansını artırmak için kullanılan genel bir teknik, gelecek nesil için 

mevcut nesilden bir veya daha fazla kişiyi korumaktır.  

Daha önce yapılan araştırmalardan biri bu yöndeki çalışmalar, beş kromozomlu 

bir GA Krishnakumar (1990) tarafından önerilmiştir. Strateji, mevcut popülasyondan 

gelecek kuşağa en iyi bulunan kromozomu kopyalamaktır. Klasik GA ile 

karşılaştırıldığında daha hızlı bir yakınsama hızı ile sonuçlanan düşük boyutlu problemler 

üzerinde test edilmiştir. 
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Kısıtlı MOO için geliştirilmiş bir µGA sürümü (Tiwari ve ark., 2011)'de, Arşiv 

Tabanlı Mikro GA (AMGA2) olarak önerilmiştir. Bu algoritma, en iyi ve yönlendirme 

adayı çözümlerinin dış arşivini koruyan sabit durumlu bir GA'ya dayanmaktadır. Bu 

küçük nüfus temelli yaklaşım, çalışan nüfusun ayrılmasını, dış arşivi ve optimizasyon 

işleminin sonucu olarak gereken çözüm sayısını kolaylaştırır. 

Mikro-PSO, MOO için kullanılır. PSO yaklaşımı ile karşılaştırıldığında, 

Pareto'nun orta boyutlu problemlerin ön yüzünde makul derecede iyi yaklaşımlar 

üretiyor, az sayıdaki objektif fonksiyon değerlendirmeleri ile (çalışma başına sadece 3000 

çağrı). Arşivlerden biri arama sırasında bulunan çözümü saklar. Diğer arşiv, elde edilen 

nihai çözümleri saklar (Cabrera ve Coello, 2010). 

 

3.3.3. Uyarlanabilir Popülasyon Büyüklüğü 

Popülasyon sayısını azaltarak DE tabanlı algoritmaların hesaplama maliyetini 

düşürmeye yönelik bazı yaklaşımlar önerilmiştir (Brest ve Maucec, 2008; Brest ve ark., 

2008; Brest ve ark., 2009; Sotelo-Figueroa ve ark., 2013). Brest ve Maucec (2008)’de 

kademeli olarak azalan nüfus büyüklüğü yöntemi önerilmiştir. Bu yöntem, sonuçların 

temel DE'ye göre daha yüksek sağlamlık ve verimlilik gösterdiği 13 kıyaslama 

fonksiyonunda incelenmiştir. 

Kendi kendine adapte olan popülasyon büyüklüğü fikri DE için mutlak ve göreceli 

kodlama yöntemlerini test etmek için kullanılır (Teng ve ark., 2009). 20 kıyaslama 

problemi üzerinde rapor edilen simülasyon sonuçları, ortalama performans ve stabilite 

açısından, göreceli kodlama kullanan kendinden uyarlamalı popülasyon büyüklüğünün 

mutlak kodlama yöntemini ve standart DE algoritmasını daha iyi oluşturduğunu 

göstermektedir. (Fajfar ve ark., 2012)’de kullanılan en küçük nüfus büyüklüğü NP = 

10'dur. Bu yöntem, deneme vektörünü değiştirmek için adayları seçmek için üç farklı 

kural kullanarak popülasyon boyutunu azaltmaya çalışır. 

 

3.3.4. Uyarlanabilir Lokal Arama 

Mikro-GA, tekrarlayan yapay sinir ağlarının (ANNs) eğitimi için uyarlanabilir bir 

yerel arama yoğunluğu şeklinde yerel ince ayar için kullanılır (Ang ve ark., 2007). Bu 

yaklaşımın sistem tanımlama görevleri için yararlı olduğu bildirilmektedir. 

Yerel bir arama prosedürü, yüksek boyutlu problemlerin üstesinden gelmek için 

(Olguin-Carbajal ve ark., 2013)'da µDE algoritması ile hibritlenmiştir. Bununla birlikte, 

rapor edilen performans sonuçları diğer bazı yöntemlerle karşılaştırılabilir. µDE 
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algoritmasının keşif yeteneğini arttırmak ve durgunluğu önlemek için, (Caraffini ve ark., 

2013)’te µDE algoritmasına fazladan bir arama hareketi dahil edilerek eksenler boyunca 

ilerletilir. 

 

3.3.5. İşbirlikçi Alt-popülasyon/Alt-sürü 

Karmaşık yüksek boyutlu problemlerle başa çıkmak için düşük boyutlu ve düşük 

taramalı alt kümelerden oluşan bir şirket kullanan (Parsopoulos, 2009)'da İşbirlikçi PSO 

yaklaşımı önerilmiştir. Bu yöntemler kullanılarak umut verici sonuçlar bildirilmiştir. 

(Parsopoulos, 2012)'de İşbirlikçi µPSO'nun paralel bir usta-çırak modeli tanıtıldı. Orijinal 

arama alanı daha küçük boyutlara sahip alt alanlara ayrıştırılır. Ardından, alt-alt kısmi 

çözelti bileşenlerini tanımlamak için her alt-alanda beş kişi göz önünde bulundurulur. 

Performansı, standart PSO algoritmasına kıyasla, çözüm kalitesinde önemli gelişmelerle 

birlikte yaygın olarak kullanılan beş test problemi üzerinde değerlendirilir (Parsopoulos, 

2012). 

Bir µDE yaklaşımında (Parsopoulos, 2009), asıl sorunun alt bileşenlerini eş 

zamanlı olarak bulmak için küçük boyutlu kooperatif alt popülasyonları kullanılır. Alt 

popülasyonların işbirliğinde sorunun tam çözümünü oluşturmak için alt bileşenler 

birleştirilir. Bu yöntemin performans değerlendirmesi, (Parsopoulos, K. E., 2009) 'de 

bildirilen sonuçları cesaretlendiren beş örnek test probleminin yüksek boyutlu örnekleri 

üzerinde yapılmıştır. 

Nesmachnow ve ark., (2012)'de, Paralel Mikro-Çapraz Jenerasyon Elitist Seçimi 

(pµ-CHC), heterojen rekombinasyon ve atakismik mutasyona dayanan, Heterojen 

Hesaplama (HC) ve Grid Zamanlama için etkili bir programlayıcı önerilmiştir. Bu 

yöntem, paralel alt popülasyon modelini, bir mikro popülasyon ve rastgeleliğe dayalı bir 

yerel arama yöntemini arayan odaklanmış bir evrimsel model ile birleştirmektedir. 

Paralel Mikro Genetik Algoritma (PMGA) olarak adlandırılan mikro-GA’nın 

paralel sürümü Tippayachai ve ark., (2002)'de rapor edilmiştir. Bu yöntem, monoton 

olmayan ve monoton olarak artan maliyet fonksiyonlarına sahip birimler üretmek için 

rampa oranı kısıtlı ekonomik sevkiyatı (ED) sorunlarını çözer. PMGA, 32 işlemcili bir 

Beowulf kümesinde uygulanır. Raporlanan sonuçlar, bu yaklaşımın çevrimiçi 

uygulamalar için uygulanabilirliğini göstermektedir. 
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3.3.6. Hibritleştirme 

Bir µPSO ile birlikte Yapay Bağışıklık Sistemi (AIS) ailesine ait olan bir Klonal 

Seçim Algoritması (CSA) (CS2P2SO) hibrit bir şema olarak (Mitra ve ark., 2008)'de 

sunulmuştur. Bu hibritlemede, standart PSO algoritmasının gücü arttırılır; burada µPSO, 

daha az bellek gereksinimi olan optimum çözümü bulmaya yardımcı olur ve CSA, yerel 

bir minimum noktaya yakınlaşma şansını azaltırken keşif kabiliyetini artırır. 

Simülasyonlar, rekabetçi performansın rapor edildiği dört temel fonksiyon üzerinde 

gerçekleştirilmektedir. 

µPSO, hareket tahmini (Bakwad ve ark., 2011), güç sistemi stabilizatör tasarımı 

(Venayagamoorthy ve Das, 2006; Das ve ark., 2008b), statik değişken kompansatör 

(SVC) sönümleme kontrol cihazlarının optimal tasarımı (Das ve ark., 2006), reaktif güç 

optimizasyonu (Han ve Sun, 2012), Kısa vadeli hidrotermal programlaması (Zhang ve 

ark., 2012), gemi güç sisteminin yeniden yapılandırılması (Wang ve ark., 2013) ve geçici 

stabilite kısıtlı optimal güç akışı (Wu ve ark., 2014) gibi birçok uygulama geliştirilmiştir. 

(Hinojosa ve Araya, 2013)’de bir karma tam sayılı ikili küçük popülasyon PSO 

optimal güç akışı problemini çözmek için önerilmiştir. Bu algoritmada kullanılan 

kısıtlama tekniği, dört karar değişkenini uygulanabilir mesafeden buluşsal operatörlerde 

üretmek ve tutmak için bir stratejiye dayanmaktadır. Bu şekilde, algoritma daha iyi bir 

objektif değeri elde etmek için araştırma prosedürünü uygulanabilir çözüm alanına 

odaklar. Bu teknik, son çözümün niteliklerini yakınsama hızı kadar iyileştirir (Hinojosa 

ve Araya, 2013). 

Büyük ölçekli optimizasyon için bir Kooperatif Mikro-Yapay Arı Kolonisi 

(CMABC) yaklaşımı (Rajasekhar ve Das, 2013)'de sunulmuştur. Bu yaklaşım, kooperatif 

algoritmaların bölme ve fethetme özelliğini ve Mikro-Yapay Arı Kolonisinin (MABC) 

düşük hesaplama maliyeti yöntemini birleştirmiştir. 

µDE'nin bir uygulaması olarak, bir global çözüm bulmak için popülasyon 

büyüklüğü beş olan bir Hibrit Diferansiyel Evrim (HDE) kullanılmıştır (Tsai ve Wang, 

2005). µDE, çöp kutusu probleminin kabul edilebilir bir performansla dolaylı bir temsilini 

geliştirmek için de kullanılır (Sotelo-Figueroa ve ark., 2013). 

Modüler Sinir Ağları (MNNs) optimizasyonu için µGA yaklaşımına dayanan 

Hiyerarşik GA (MOHGA) için bir MOO modeli (Sanchez ve ark., 2013)'te önerilmiştir. 

Bu yaklaşım iris tanıma uygulaması için kullanılır. MOHGA, giriş verilerini granüllere 

ve alt modüllere böler ve daha sonra verileri işleme ve test aşamalarını bölmeye karar 
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verir. Bu tekniğin daha az veri kullanmaya dayalı iyi sonuçlar elde edebileceği 

bildirilmektedir (Sanchez ve ark., 2013) 

Lahoz ve ark., (2013)'de, eğitim aşamasının Ortalama Kare Hatasını (MSE) en aza 

indiren problemin çözümü için makinede uygun sayıda gizli düğüm sağlayan çok amaçlı 

bir mikro genetik aşırı öğrenme makinesi önerilmiştir. µGA, dielektrik merceklerle (Itoh 

ve ark., 2012) dalga kılavuzu yuvası anteni tasarımı, kusurlu kompozitlerin tespiti (Xu ve 

Liu, 2002) ve daha iyi performansların karşılaştırıldığı gerçek dünya boru hattı ağının 

(Ribas ve ark., 2013) programlanması gibi birçok uygulama için başarıyla uygulandığı 

standart GA ile karşılaştırılarak rapor edilmiştir. 

 

3.3.7. Parametre Uyarlaması 

Mikro popülasyona dayalı algoritmaların uyarlanması, bu tür algoritmaların 

performansının arttırılması için umut vaat eden yaklaşımlardan biridir. Literatürde DE 

algoritmasının sağlamlığını ve güvenilirliğini arttırmak için uyarlamalı veya kendinden 

uyarlamalı yaklaşımlarla birçok yöntem önerilmiştir (Neri ve Tirronen, 2010; Neri ve 

Mininno, 2010; Mininno ve ark., 2011). Bu özellikle hiper-parametrelerin ayarlanması 

için önemlidir. Mutasyon faktörü, genellikle sabit bir değere ayarlanan parametrelerden 

biridir (Segura ve ark., 2015). Bununla birlikte, mutasyon faktörünün randomize 

edilmesinin, potansiyel olarak yeni bir arama hareketi sunabileceği ve standart bir DE 

algoritmasının aşırı belirleyici arama yapısını telafi edebileceği gösterilmiştir (Das ve 

Konar, 2005; Salehinejad ve ark., 2014). Çalışmalar, rastgele mutasyon faktörü 

oluşturmak için Gaussian, Log-normal ve Cauchy gibi çeşitli dağılımlar kullanmıştır. 

Bununla birlikte, hiçbiri diğerlerine göre üstün değildir (Segura ve ark., 2015). 

Das ve Konar (2005) ve Das ve ark. (2005) çalışmalarında önerilen yöntemler 

popülasyonun çeşitliliğini arttırmak için her nesilde rastgele mutasyon faktörü kullanır, 

bunun hem gürültü hem de durağan sorunlar için etkili olduğu bildirilir (Price ve ark., 

2006). Bu yöntemler standart popülasyon boyutunu kullanırken, F mutasyon faktörü 

kullanılır. (0,5, 1) aralığından rastgele seçilen, ortalama değeri 0,75'te kalacak şekilde 

kontrol edilir. Weber ve ark. (2011)'de dört farklı mutasyon ölçeği faktör şeması 

önerilmiştir. Popülasyon büyüklüğü NP = 200 olarak ayarlanmıştır. Çalışma, 

performansın kullanılan dağılım tipine bağlı olduğundan, hiçbir yöntemin tüm problemler 

için ümit verici sonuçlar gösteremediğini göstermektedir (Weber ve ark., 2011). Brest ve 

ark. (2008)'de, mutasyon faktörü ve çapraz hız oranı parametreleri için kendinden 

uyarlanmış bir DE algoritması sunulmaktadır. Deneylerde kullanılan en küçük 
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popülasyon büyüklüğü NP=25'tir. (Brest ve ark., 2009)'da mutasyon faktörü (F)'yi ve 

kuşaklar arası geçiş hızını (Cr) değiştirmek için kendinden uyarlamalı bir kontrol 

mekanizması kullanılır. Bu yöntemde, yaşlanma mekanizmasına sahip çok popülasyonlu 

bir yöntem için sadece “rand/1/bin” mutasyon vektörü kullanılır. DE yöntemi, standart 

popülasyon büyüklüğündeki her bir birey için belirli bir oranla F üretildiği için umut vaat 

eden yöntemlerden biridir (Brest ve ark., 2006). (Salehinejad ve ark., 2014)'de en düşük 

düzeyde rastgele F üretme fikri (her popülasyon birey için ve sorunun boyutu için). Bu 

teknik standart MDE algoritmalarının arama performansını arttırmak için kullanılır. Bu 

yöntem, sonuçların üstün keşif performansı gösterdiği CEC-2013 yarışması için bir dizi 

karşılaştırmalı işlev üzerinde değerlendirilir. Vektörize Edilmiş Rastgele Mutasyon 

Faktörü ile Mikro Diferansiyel Evrim (MDEVM) olarak adlandırılan bu algoritma, 

mJADE algoritmasında önerilen “by-rand-to-best” adı verilen yeni bir mutasyon 

faktörünün performansını karşılaştırmak için bir ölçüt olarak kullanılmaktadır (Brown ve 

ark., 2015). Bu yaklaşım kısıtlanmamış optimizasyon problemleri için bir DE 

algoritmasıdır, dikkate alınan en küçük popülasyon büyüklüğü NP = 8'dir (Brown ve ark., 

2015). Mutasyon faktörü (F) ve geçme hızı (Cr), her neslin başlangıcında rastgele 

oluşturulur, buradaki dağılım ortalaması her nesilde güncellenir. (Brown ve ark., 2015)'de 

akla gelebilecek en iyiye kadar önerilen önerilen mutasyon faktörü, 13 klasik kıyaslama 

fonksiyonunun bir takımında hem büyük hem de küçük popülasyon boyutları için test 

edilmiştir. (Salehinejad ve ark., 2014)'deki karşılaştırmalı sonuçlar MDEVM ve Mikro 

Adaptif Diferansiyel Evrim (µJADE) algoritmaları arasında rekabetçi bir performans 

göstermektedir. Kompakt Diferansiyel Evrim (cDE) metotları, problemi çözme boyutuna 

bakılmaksızın, dört kişiden oluşan popülasyonlara benzer bellek gereksinimine sahip 

nüfusun istatistiksel bir sunumunu kullanır (Mininno ve ark., 2011; Brown ve ark., 2015). 

Bu çalışmada, sanal olmayan küçük toplulukları tartışmaya odaklandığımız için, bu DE 

algoritmaları sınıfı diğer çalışmalarda daha fazla araştırma yapmak için ayrılmıştır. 

Çevresel ekonomik sevk vaka çalışması için (Pandit ve ark., 2011)'de zamana göre 

değişen kemotaktik adım boyutuna sahip bir Kaotik Mikro Bakteriyel Besin Arama 

Algoritması (CMBFOA) önerilmiştir. Bu yöntemin yakınsama karakteristiği, hızı ve 

çözüm kalitesinin, 3 üniteli bir sistem ve standart Elektrik ve Elektronik Mühendisleri 

Enstitüsü (IEEE) 30 veri yolu test sistemi için klasik BFOA'dan daha iyi olduğu 

bildirilmektedir.  

Seçkin Elitist Evrim (EEv) adı verilen diğer bir EA türü, Hessian veya kovaryans 

matrisi gibi karmaşık mekanizmalar kullanmadan çalışan (Viveros-Jimenez ve ark., 
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2009)'da yüksek boyutlu problemleri optimize etmek için önerilmiştir. Bu yaklaşım, tek 

bir uyarlamalı parametrenin evrimsel operatörleri makul yerel ve global arama 

yetenekleri sağlamak için kontrol ettiği adaptif ve seçkin davranışlardan yararlanır 

(Viveros-Jimenez ve ark., 2009). 

Coulomb yasası, µPSO yönteminde yüksek boyutlu problemler için kullanılmaktadır 

(Huang ve Mohan, 2006). Bu yaklaşımın ilk başarısı, kara listeye alınmış çözeltileri içine 

almak için gereken uygun alan büyüklüğünü belirlemek için gereken yükü ve parçacıkları 

püskürtmek için gereken itme miktarını ortadan kaldırmaktır, çünkü bu parametrelerin 

yüksek boyutlu problemleri tespit etmek oldukça zordur. Diğer bir başarı, parçacıklar 

üzerinde itilmeyi, belirli bir pozisyonda parçacıklar tarafından yaşanan itme miktarını 

kontrol eden bir parametre kullanarak kontrol etme esnekliğidir. Beş yüksek boyutlu 

kıyaslama fonksiyonundaki simülasyon sonuçları, geniş popülasyon büyüklüğüne sahip 

standart PSO'ya karşı µ-PSO'nun üstün performansını göstermektedir. 

 

3.4. Yapay Alg Algoritması (AAA) 

AAA, yapay alglerin davranışlarından esinlenilerek 2015 yılında ortaya konmuş 

doğa esinli bir optimizasyon algoritmasıdır. Yapay alg, gerçek yaşamdaki bir alg gibi, 

fotosentez yapabilmek için ışık kaynağına doğru hareket eder ve hareketi helisel yüzme 

şeklindedir. Ortama uyum sağlayıp, baskın türü değiştirebilir ve mitoz bölünme ile 

çoğalabilir. Problem uzayındaki her bir çözüme bir yapay alg kolonisi karşılık 

gelmektedir. Her bir alg kolonisindeki alg hücresi sayısı, problem boyutuna eşittir. Bir 

alg kolonisi ideal çözüme ulaştığında optimum elde edilmiş olur. Yapay alg algoritması 

3 temel adımdan oluşur. Bunlar; helisel hareket, adaptasyon ve evrimsel süreçtir. (Uymaz 

ve ark., 2015). AAA’ya ait akış diyagramı Şekil 3.1.’de verilmiştir (Uymaz, 2015).  

 

3.4.1. Helisel Hareket 

Yapay alg hücreleri, ışığa doğru helisel olarak hareket etmektedir. Her bir helisel 

hareket sonucunda koloninin uzayda yer değiştirip değiştirmeyeceğini enerjileri belirler. 

Her döngünün başlangıcında, enerji koloni büyüklüğüne doğru orantılı olarak hesaplanır 

ve bu enerji çözümün kalitesini göstermektedir. Alglerin bu hareketinin birinci boyuttaki 

hareketi Denklem 3.7’de diğer 2 boyuttaki hareketleri ise Denklem 3.8 ve Denklem 3.9’te 

gösterilmiştir (Zhang ve ark., 2016). 

 

𝑥𝑖𝑚
𝑡+1 = 𝑥𝑖𝑚

𝑡 + (𝑥𝑗𝑚
𝑡 −  𝑥𝑖𝑚

𝑡 )(𝑠𝑓 − 𝜔𝑖)𝑝                                                                      (3.7) 
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𝑥𝑖𝑘
𝑡+1 = 𝑥𝑖𝑘

𝑡 + (𝑥𝑗𝑘
𝑡 − 𝑥𝑖𝑘

𝑡 )(𝑠𝑓 −  𝜔𝑖) cos 𝛼                                                                  (3.8) 

𝑥𝑖𝑙
𝑡+1 = 𝑥𝑖𝑙

𝑡 + (𝑥𝑗𝑙
𝑡 − 𝑥𝑖𝑙

𝑡 )(𝑠𝑓 − 𝜔𝑖) sin 𝛽                                                                    (3.9) 

 

Burada, 𝑚, 𝑘 𝑣𝑒 𝑙  [1,𝑑] arasından seçilen rastgele sayılardır. 𝑥𝑖𝑚, 𝑥𝑖𝑘 ve  𝑥𝑖𝑙, 𝑖. alg 

kolonisinin sırasıyla x, y ve z koordinatlarını temsil eder. 𝑗, turnuva seçimi ile elde edilen 

komşu bir alg kolonisinin indeksidir. 𝑝, [-1,1] aralığında seçilen reel bir sayıdır. 𝛼 ve 𝛽, 

[0 ,2π] aralığında rastgele seçilen derecelerdir. 𝑠𝑓, viskoz hareketten kaynaklanan kesme 

kuvvetidir. 𝜔𝑖, alg kolonisinin büyüklüğü ile orantılı olan alg kolonisinin sürtünme yüzey 

alanıdır. Sürtünme yüzeyi, alg kolonisinin küresel şeklinden dolayı alg kolonisini saran 

yarımkürenin yüzey alanı olarak hesaplanır. Denklem 3.11’de ise sürtünme yüzeyi 

verilmiştir. 

 

𝜔𝑖 =  2π𝑟𝑖
2                                                                                                                 (3.10) 

r𝑖 = √
3𝑆𝑖

4π

3
                                                                                                                    (3.11) 

 

Burada ise, r𝑖, i. alg kolonisine ait yarımkürenin yarıçapı ve 𝑆𝑖’de büyüklüğüdür. 

 

3.4.2. Adaptasyon 

Adaptasyon, yeterince büyüyemeyen bir alg kolonisi tarafından çevrede bulunan 

en büyük alg kolonisine benzemeye çalıştığı süreçtir. Helisel hareket sonucunda 

belirlenen açlık seviyesi kullanılır. Daha iyi çözüme giden kolonide açlık seviyesi 

değişmezken, kötüleşen koloninin açlık seviyesi artar. Her bir helisel hareketten sonra, 

en yüksek açlık değerine sahip olan koloni adaptasyona uğrar (Denklem 3.12-13). 

Adaptasyonun olup olmayacağı Adaptasyon parametresi (𝐴𝑝) ile belirlenir. 𝐴𝑝 [0,1] 

aralığında sabit bir değerdir ve bu aralıkta rastgele bir sayı ile kıyaslanır eğer sayı 𝐴𝑝 

parametresinden küçük ise adaptasyon süreci işletilir (Zhang ve ark., 2016). 

 

𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 = arg max  {𝑠𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑥𝑖)},                     𝑖 = 1,2, … 𝑁                       (3.12) 

𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡+1 = 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 + (𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 −  𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡) × rand                             (3.13) 

 

Burada, 𝑠𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) i. alg kolonisinin açlık seviyelerini, 𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔𝑡 𝑡 anındaki açlık 

değeri en yüksek alg kolonisini, 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 t anındaki en büyük alg kolonisini ve rand [0,1] 

aralığında rastgele üretilen reel bir sayıyı ifade eder. 
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3.4.3. Evrimsel Süreç 

Yapay alg hücresi yeterli ışık aldığında büyür, gelişir ve bölünme ile iki yapay alg 

hücresi oluşur. Yeterli ışık alamayan alg hücresi ise bir süre sonra ölür. Evrimsel süreç; 

arama sürecinde en küçük alg kolonisinin (bulduğu çözümlerin uygunluk fonksiyon 

değerleri diğer kolonilerden daha kötü olan) ölen her bir hücresi yerine en büyük alg 

kolonisinin (bulduğu çözümlerin uygunluk fonksiyon değerleri diğer kolonilerden daha 

iyi olan) bir alg hücresinin kopyalandığı aşamadır. Bu süreç Denklem 3.14 - 3.16’daki 

gibi işletilir.  

 

𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑡 = arg max  𝑠𝑖𝑧𝑒(𝑥𝑖
𝑡),                      𝑖 = 1,2, … 𝑁    (3.14) 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑡 = arg max  𝑠𝑖𝑧𝑒(𝑥𝑖
𝑡) ,                   𝑖 = 1,2, … 𝑁    (3.15) 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑚
𝑡+1 = 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑚

𝑡+1  ,                        𝑚 = 1,2, … 𝐷    (3.16) 

 

Burada, 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 en küçük alg kolonisi, 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 en büyük alg kolonisi ve 𝐷 

problem boyutunu ifade eder. 

 



 

 

19 

     

 
 

Şekil 3.1. AAA Akış Diyagramı (Uymaz ve ark., 2015) 
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3.5. Levy Uçuşu  

Levy Uçuş algoritması, optimize edilmesi gereken problemleri çözmek için 

kullanılan bir metasezgisel algoritmadır. Bu algoritma, Benoît Mandelbrot’ın ortaya 

sunduğu doğada gözlemlenen bir fenomen olan "Levy Uçuşu"ndan esinlenir 

(Mandelbrot, 1982). Levy Uçuşu, rastgele hareket eden bir organizmanın bazen uzun 

mesafeler kat etmesini, bazen ise kısa mesafelerde kalmasını tanımlar. Şekil 3.2’de 2 

Boyutlu düzlemde 1000 adıma sahip Levy Uçuş örneği verilmiştir. 

 

 

Şekil 3.2 Boyutlu düzlemde 1000 adıma sahip Levy Uçuş Örneği 

 

Levy Uçuş algoritması, çözüm adaylarının çözüm alanında rastgele hareket ettiği 

bir arama stratejisini kullanır. Bu hareketler, Levy dağılımına göre belirlenir. Levy 

dağılımı, uzun mesafelerdeki hareketlerin daha olası olduğu bir olasılık dağılımıdır. 

Algoritmanın genel işleyişi şu adımlardan oluşur: 
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Başlangıç Popülasyonu Oluşturma: Algoritma, çözüm adaylarını temsil eden bir 

başlangıç popülasyonu oluşturur. Bu popülasyon, çözüm alanında rastgele noktalarda 

yerleştirilen bireylerden oluşur. 

Yeni Çözüm Adayları Üretme: Her bir birey, Levy dağılımına göre belirlenen bir 

adım boyutuyla çözüm alanında rastgele bir yöne hareket eder. Bu hareket sonucunda 

yeni bir çözüm adayı üretilir. 

Uygunluk Değerlerinin Hesaplanması: Üretilen yeni çözüm adaylarının uygunluk 

değerleri, optimize edilmek istenen hedef fonksiyonuna göre hesaplanır. 

En İyi Çözümün Güncellenmesi: Elde edilen yeni çözüm adayları arasından en iyi 

uygunluğa sahip olan çözüm adayı, en iyi çözüm olarak seçilir ve kaydedilir. 

Durdurma Kriterine Ulaşılıncaya Kadar Yineleme: Belirlenen bir durdurma kriteri 

sağlanana kadar adımlar 2-4 tekrarlanır. Durdurma kriteri genellikle belirli bir iterasyon 

sayısı veya belirli bir uygunluk değeri elde edildiğinde sağlanır. Çizelge 3.1’de 

algoritmaya ait pseudo kodu paylaşılmıştır. 

 

Çizelge 3.1. Levy Uçuşu Psuedo Kodu 

 

Levy Uçuşu Pseudo Kodu  

Input function 𝑀𝑖𝑛 𝑓(𝑋)𝑎𝑛𝑑 𝛽 

Select 𝑥𝑖in swarm that will modify the position 

Initialize 𝜏 = 1 and 𝜎ℎ = 1 

𝑾𝒉𝒊𝒍𝒆 (𝜏 < 𝜖) 

          Compute step_size  

          Generate new solution 𝑋𝑖 

          Calculate 𝑓(𝑋𝑖) 

          If 𝑓(𝑋𝑖
′) < 𝑓(𝑋𝑖) then 

                 𝑋𝑖 = 𝑋𝑖
′ 

          End If 

          𝜏 = 𝜏 + 1 

End 

 

 

Levy Uçuş algoritması, özellikle karmaşık ve çok boyutlu problemlerin 

çözümünde etkilidir. Levy dağılımının uzun mesafelerdeki hareketleri teşvik etmesi, 
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algoritmanın çözüm alanında daha geniş bir keşif yapmasını sağlar. Buna karşın, 

algoritma lokal optimumlarda sıkışma riski taşır. 

Levy Uçuş algoritması, farklı parametre ayarları ve problem tipleri için 

değişebilirlik gösterebilir. Bu nedenle, algoritmanın performansını optimize etmek için 

parametrelerin dikkatli bir şekilde ayarlanması önemlidir. 

Levy Uçuş algoritması, optimizasyon problemlerinin çözümünde kullanılan güçlü 

bir araç olmasına rağmen, her problem için en uygun algoritmayı belirlemek için 

problemi ve gereksinimleri iyi anlamak önemlidir. 

 

3.6. Mikro Algoritma Üzerine İlk Çalışma: Mikro Yapay Alg Algoritması (µAAA) 

Mikro Algoritma geliştirme sürecine başlarken yapılan literatür çalışmaları göz 

önüne alındığında öncelikle popülasyon sayısını en aza indirmek temel hedef olmuştur. 

Mikro Algoritma geliştirirken ilk adım olarak popülasyon sayısı, literatürde yoğun olarak 

kullanılan, 3 birey olarak düşünülmüştür. Bununla birlikte popülasyondaki birey sayısı 

aza indirildiğinde olabildiğince tüm uzayı gezebilecek bir yapı geliştirmek 

hedeflenmiştir.  

Yapısal olarak uzayı gezdiğini belirten Dasgupta ve arkadaşlarının (2009) 

çalışmalarında sunmuş oldukları µBFOA örnek alınmış olup öncelikle Yapay Alg 

Algoritmasına ait olan helisel hareket, evrimsel süreç ve adaptasyon adımları işletilerek 

elde edilen popülasyonda gerekli mikro adımları bir sonraki adımda işlenmiş ve Yapay 

Alg Algoritmasına ait olan parametreler Çizelge 3.1’de verilmiştir.  

Geliştirilen algoritmada ilk olarak elde edilen popülasyondan en iyi 1. birey 

korunarak devam ettirilmiştir. Popülasyonda sonraki birey olan 2. Birey içinse bir Epsilon 

(ε) değeri ile 1. Bireye yaklaştırılmaya çalışılmıştır (Dasgupta ve ark, 2009). Burada ε bir 

uzaklık parametresi olarak tanımlanır ve Denklem 3.17’de aralık (range) çıkarım 

denklemi verilmiş olup, Denklem 3.18’de ise ε’a ait hesaplama gösterilmiştir. Son birey 

olan 3. Birey ise uzaydan rastgele değerlerle oluşturularak çeşitlilik oluşması sağlanması 

amaçlanmıştır.  

Önerilen µAAA’ya ait akış diyagramı Şekil 3.3’de verilmiştir. 

 

𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛                                                                                                   (3.17) 

ε = 0.06 𝑥 𝑟𝑎𝑛𝑔𝑒                                                                                                        (3.18) 
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Çizelge 3.1. AAA ve µAAA’ya ait parametreler 

 
Parametreler Değerler (µAAA) 

Boyut 500 

Kesme Kuvveti 2 

Enerji Kaybı 0.3 

Ap 0.5 

 

 

 

Şekil 3.3. µAAA Akış Diyagramı 

 

3.7. Önerilen Yöntem: Levy ile Mikro Yapay Alg Algoritması (µAAAlevy) 

 Bu çalışmada öncelikle popülasyon sayısı, herhangi bir mikro algoritmalardaki 

gibi birey sayısı az tutulacak şekilde ve bir önceki çalışma olan µAAA’da olduğu gibi 3 

birey olarak kullanılmıştır. µAAA’nın helisel hareket, evrimsel süreç ve adaptasyon 

adımları tamamlandıktan sonra oluşan popülasyonun en iyi sonuca sahip bireyi bir 

sonraki adımın ilk aday bireyi olmak üzere saklanmaktadır. Seçilen bu en iyi bireyden 

Levy Uçuşu yardımı ile yeni bireyler üretilerek Lokal Arama işlemi yapılmaktadır 

(Denklem 3.19). Lokal arama sürecinde yeni en iyi birey problemin boyut sayısı kadar 

Levy Uçuşu ile genişleyip daraltılmaktadır. Birey daha iyi çözüme ulaştığında konumu 

güncellenmektedir ve yeni Levy Uçuşu bu konumdan gerçekleşmektedir. 

 

 𝑥𝑚
𝑡+1 = 𝑥𝑚

𝑡 ±  𝐿𝑒𝑣𝑦(𝛽)                                                                                          (3.19) 
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Bir sonraki popülasyonun 2. bireyi için ise 1. birey yine Levy Uçuşu yardımı ile yeniden 

oluşturulur (Denklem 3.20). Yeni popülasyonun ilk iki bireyi lokal aramayı geliştirmek 

amacı ile bir önceki popülasyondaki en iyi bireyden faydalanılarak oluşturulmaktadır. 

 

𝑥𝑚
𝑡+1 = 𝑥𝑚

𝑡 +  𝐿𝑒𝑣𝑦(𝛽)                                                                                          (3.20) 

 

 Algoritmanın global arama yeteneğini geliştirmek ve hızlı yakınsamanın önüne 

geçmek amacı ile 3. birey, Levy Uçuşu metodu ile rastgele olarak uzay sınırlarına 

oranlanarak üretilir. Algoritma her çevrimde helisel hareket, evrimsel süreç, adaptasyon 

süreci ve Levy Uçuşu ile popülasyon güncelleme adımlarını durdurma kriterini sağlayana 

kadar tekrarlar. Önerilen yeni Levy Uçuşu ile Yapay Alg Algoritmasına ait akış 

diyagramı Şekil 3.4’de verilmiştir. 

 

 

Şekil 3.4. µAAAlevy Akış Diyagramı 
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4. ARAŞTIRMA BULGULARI VE TARTIŞMA 

 

Tez kapsamında önerilen yöntemin performansını doğrulamak ve kıyaslamak için 

yapılan çalışmalar iki aşamada gerçekleştirilmiştir. İlk olarak önerilen µAAA yöntemi 6 

test fonksiyonu (Rastrigin, Griewank, Ackley, Rosenbrock, Schwefel ve Schwefel v2) 

üzerinde çalıştırıldı ve literatürde önerilmiş mikro algoritmalar olan µPSO, µBFOA 

yöntemleri ile AAA ve AAA’nın popülasyonu indirgenmiş (3 birey) hali ile kıyaslandı.  

İkinci aşamada, önerilen µAAAlevy yöntemi CEC2015 fonksiyon seti üzerinde 

çalıştırıldı. Sonuçlar tüm parametreleri yöntemin önerildiği Uymaz ve ark. (2016) 

çalışmasındaki değerler ile aynı bırakılarak AAA (40 koloni) ve AAA’nın popülasyonu 

indirgenmiş (3 koloni) hali ile kıyaslandı. 

 

4.1. Temel Test Fonksiyonları 

Yapılan Çalışmaların test edileceği literatürde yaygın olarak kullanılan 

fonksiyonlar Çizelge 4.1.’de verilmiştir. Bu test fonksiyonlarından F1, F2, F3, F4 ve F6 

ise Huang ve Mohan’ın (2006) yılında yine yüksek boyutlu problemler için geliştirdiği 

µPSO araştırmasında kullanılmıştır. F1, F2, F3, F4 ve F5 fonksiyonları ise Dasgupta ve 

arkadaşlarının 2009 yılında yine yüksek boyutlu problemler için ortaya koyduğu µBFOA 

araştırmasında kullanılmıştır. Çizelge 4.1. de test fonksiyonlarına ait isimleri, 

matematiksel denklemleri, çözüm uzaylarının alt ve üst sınırları ve global optimum 

değerleri verilmiştir. Schwefel ve Schwefel v2 test fonksiyonları diğer fonksiyonlara göre 

daha geniş aralıkta bir çözüm uzayına sahiptir.  
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Çizelge 4.1. Karşılaştırma için kullanılan fonksiyonlar 

 

No. 
Fonksiyon 

Adı 
Matematiksel Gösterim 

Arama 

Uzayı 

Teorik 

Minimum 

F1 Rastrigin 

 

[-2,2] 0 

F2 Griewank 

 

[-10,10] 0 

F3 Ackley 

 

[-2,2] 0 

F4 Rosenbrock 

 

[-2,2] 0 

F5 Schwefel 

 

[-500,500] -416.99x500 

F6 Schwefel v2 

 

[-500,500] 0 

 

 

4.2. CEC2015 Fonksiyonları 

Tez kapsamında yapılan deneysel çalışmaların ikinci aşamasında bir diğer test seti 

ise CEC 2015 konferansında optimizasyon yöntemlerinin kıyaslanması için sunulan ve 

fonksiyonların döndürülmüş ve kaydırılmış versiyonlarını barındıran fonksiyon setidir. 

Bu test seti tekli ve çoklu global optimum değere sahip ve global optimum değerleri 

sıfırdan farklı fonksiyonlardan oluşmaktadır. Test seti, Chen ve arkadaşları (2014) 

tarafından yapılan çalışmadan alınmıştır. Test setine ait fonksiyonlar ve özellikleri 

Çizelge 4.2’de verilmiştir. 
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Çizelge 4.2. CEC2015 Fonksiyonları 

 

Kategori No Fonksiyonlar 
İlgili Temel 

Fonksiyonlar 

Teorik 

Minimum 

Tek Tepeli 

Fonksiyonlar 

(Unimodal 

Functions)  

 

1 Rotated Bent Cigar  Bent Cigar  100 

2 Rotated Discus Discus 200 

Basit Çok 

Tepeli 

Fonksiyonlar  

(Simple 

Multimodal 

Functions)  

3 Shifted and Rotated Weierstrass Weierstrass 300 

4 Shifted and Rotated Schwefel’s Schwefel’s 400 

5 Shifted and Rotated Katsuura Katsuura 500 

6 Shifted and Rotated HappyCat HappyCat 600 

7 Shifted and Rotated HGBat HGBat 700 

8 
Shifted and Rotated Expanded  

Griewank’s plus Rosenbrock’s 
Griewank’s 

Rosenbrock’s 
800 

9 

 

 

Shifted and Rotated Expanded 

Scaffer’s  

F6  
 

Expanded Scaffer’s 

F6  
900 

 

4.3. Karşılaştırmalar 

 

4.3.1. Temel Test Fonksiyonu Karşılaştırmaları 

Önerilen µAAA ilk olarak popülasyondaki koloni sayısı 3 ve 40 olarak alınan 

temel AAA algoritması ile Çizelge 4.1’de verilen test fonksiyonları üzerinde test 

edilmiştir. Kıyaslama sonuçları 10 bağımsız çalıştırma üzerinden hesaplanmıştır. Her 

bağımsız çalıştırma 5000 fonksiyon hesaplama ve 500 boyutta gerçekleştirilmiştir 

(Çizelge 4.3.).  

 

  



 

 

28 

Çizelge 4.3. µAAA, AAA (pop:40) ve AAA (pop:3) test fonksiyonları karşılaştırması 

 

Fonksiyonlar µAAA AAA (Pop:40) AAA (Pop:3)  

F1 

En iyi 0,0000e+00 3,6080e+03 3,7219e+03 

Ortalama 1,1771e+03 3,7535e+03 4,6558e+03 

Std. Sapma 8,2884e+02 7,5214e+01 4,8873e+02 

F2 

En iyi 0,0000e+00 2,3505e+00 2,9789e+00 

Ortalama 0,0000e+00 2,5794e+00 3,2286e+00 

Std. Sapma 0,0000e+00 1,1466e-01 2,2556e-01 

F3 

En iyi 7,9936e-15 4,1126e+00 4,6372e+00 

Ortalama 8,7041e-15 4,3729e+00 4,8335e+00 

Std. Sapma 2,2469e-15 1,7517e-01 1,5033e-01 

F4 

En iyi 4,9865e+02 4,8545e+04 7,22450e+04 

Ortalama 4,9888e+02 5,8222e+04 1,01348e+05 

Std. Sapma 1,2989e-01 7,2285e+03 1,94408e+04 

F5 

En iyi -1,0866e+05 -4,2899e+04 -3,8757e+04 

Ortalama -9,6893e+04 -4,0837e+04 -1,6940e+04 

Std. Sapma 2,8195e+04 1,7316e+03 9,3647e+03 

F6 

En iyi 1,17167e+05 2,00768e+05 2,04351e+05 

Ortalama 1,20650e+05 2,01441e+05 2,06593e+05 

Std. Sapma 2,26638e+03 4,04179e+02 1,35221e+03 

 

Çizelge 4.3.’te verilen sonuçlar karşılaştırıldığında tüm test fonksiyonları için en 

iyi ve ortalama değerlerde µAAA’nın başarılı sonuçlar verdiği görülmektedir. F1, F5 ve 

F6 test fonksiyonlarının standart sapmalarının yüksek olduğu gözlenmektedir. 

 

Çizelge 4.4. µAAA ve µBFOA test fonksiyonları karşılaştırması 

 

Fonksiyonlar µAAA µBFOA 

F1 

En iyi 0,00000e+00 2,15120e+03 

Ortalama 1,17712e+03 2,2850e+03 

Std. Sapma 8,28849e+02 3,65299e+01 

F2 

En iyi 0,00000e+00 2,5401e+00 

Ortalama 0,00000e+00 2,7074e+00 

Std. Sapma 0,00000e+00 0,0394e+00 

F3 

En iyi 7,99360e-15 3,5924e+00 

Ortalama 8,70414e-15 3,8175e+00 

Std. Sapma 2,24693e-15 0,1128e+00 

F4 

En iyi 4,98658e+02 4,57482e+04 

Ortalama 4,98883e+02 4,90355e+04 

Std. Sapma 1,29899e-01 1,7455e+03 

F5 

En iyi -1,08662e+05 -9,65585e+04 

Ortalama -9,68937e+04 -9,30796e+04 

Std. Sapma 2,81954e+04 2,0679e+03 

 

 

Çizelge 4.4’te verilen µAAA ve µBFOA karşılaştırma tablosuna bakıldığında F1 

ve F5 test fonksiyonlarına ait standart sapma değerleri dışında kalan değerlerde başarılı 

olduğu gözlenmektedir. 



 

 

29 

µAAA’nın temel test fonksiyonları üzerinde elde ettiği sonuçlar µPSO (Huang ve 

Mohan, 2006) yöntemi ile karşılaştırılması Çizelge 4.5’de yapılmıştır. µPSO ‘ya ait 

sonuçlar Huang ve Mohan (2006) çalışmalarından alınmıştır ve bu çalışmada testler 3000 

fonksiyon hesaplama üzerinden gerçekleştirilmiştir (Huang ve Mohan, 2006). 

Kıyaslamaların adil olması için µAAA’da diğer parametreler değiştirilmeden 3000 

fonksiyon hesaplama ile çalıştırılarak sonuçlar elde edilmiştir. 

 

Çizelge 4.5. µAAA ve µPSO test fonksiyonları karşılaştırması 

 

Fonksiyonlar µAAA µPSO 

F1 
Ortalama 1,35328e+03 1,60981e+03 

Std. Sapma 1,19304e+03 3,0144e+02 

F2 
Ortalama 0,00000e+00 1,40e+00 

Std. Sapma 0,00000e+00 0,11e+00 

F3 
Ortalama 7,99360e-15 4,13e+00 

Std. Sapma 0,00000e+00 0,14e+00 

F4 
Ortalama 4,98917e+02 1,41658e+04 

Std. Sapma 9,87111e-02 4,56785e+03 

F6 
Ortalama 1,20650e+05 1,23536e+05 

Std. Sapma 2,26638e+03 5,52960e+03 

 

Çizelge 4.5’te verilen µAAA ve µPSO yöntemlerine ait sonuçlar incelendiğinde, 

(Huang ve Mohan, 2006) yapılan araştırmada en iyi değerler paylaşılmadığından 

kıyaslamalar ortalama değerler ve standart sapmalar üzerinden gerçekleştirilmiştir. 

µAAA ortalama değerlere göre µPSO yöntemine tüm fonksiyonlarda daha iyi sonuçlar 

vermektedir. Standart sapma değerleri incelendiğinde F1 test fonksiyonu hariç tüm 

fonksiyonlarda µAAA yönteminin daha başarılı olduğu gözlenmektedir. 

 

4.3.2. CEC2015 Test Fonksiyonu Karşılaştırmaları 

CEC2015 test fonksiyon setinde bulunan 9 fonksiyon üzerine yapılan deneysel 

çalışmaların sonuçları Çizelge 4.6’da gösterilmiştir. Kıyaslamalarda kullanılan her 

yöntem (µAAAlevy, AAA (pop=40) ve AAA (pop=3)) için 10 bağımsız çalıştırmanın En 

İyi, En Kötü, Ortalama, Orta Değer, Standart Sapma ve Ortalama Zaman değerleri elde 

edilmiş ve Çizelge 4.6’da sonuçlar verilmiştir. 
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Çizelge 4.6. µAAAlevy , AAA ve AAA (pop:3) CEC2015 test fonksiyonları karşılaştırması 

Fonksiyonlar µAAAlevy AAA (pop:40) 
 

AAA (pop:3) 

F1 

En İyi 1,9425226038e+08 5,8267577491e+08 6,5789381457e+09 

En Kötü 3,3372508167e+08 2,1033018689e+09 1,6687843978e+10 

Ortalama 3,3372508167e+08 1,2432223775e+09 1,1679441204e+10 

Orta Değer 3,3267564791e+08 1,2395130309e+09 1,1900617893e+10 

Std. Sapma 1,1168664786e+08 4,9126355557e+08 3,2268423404e+09 

Ort. Zaman 1,30200e+00 4,01134e+00 7,99331e+00 

F2 

En İyi 3,6835847293e+07 1,3149560611e+10 2,9313985342e+11 

En Kötü 6,1593644446e+08 4,3548422196e+10 7,2630938390e+11 

Ortalama 2,3507559486e+08 2,7923885630e+10 4,6510465159e+11 

Orta Değer 1,6498897268e+08 2,7687596485e+10 4,1977576351e+11 

Std. Sapma 1,8550993695e+08 9,0321549768e+09 1,4229097603e+11 

Ort. Zaman 1,05677e+00 3,67262e+00 7,77429e+00 

F3 

En İyi 3,2000019905e+02 3,2041668684e+02 3,2134497751e+02 

En Kötü 3,2000565977e+02 3,2110077931e+02 3,2144131191e+02 

Ortalama 3,2000019905e+02 3,2060034287e+02 3,2138159860e+02 

Orta Değer 3,2000029584e+02 3,2054968826e+02 3,2137890074e+02 

Std. Sapma 1,6895540700e-03 1,9714973442e-01 2,5819929623e-02 

Ort. Zaman 1,10746e+00 3,83912e+00 8,22581e+00 

F4 

En İyi 2,0516458441e+03 1,4769188053e+03 2,1757147890e+03 

En Kötü 2,4416240491e+03 1,7216961218e+03 2,8970109759e+03 

Ortalama 2,2473581739e+03 1,6330860019e+03 2,4322075980e+03 

Orta Değer 2,2356798638e+03 1,6238646315e+03 2,3567670186e+03 

Std. Sapma 1,4091458703e+02 7,0953038850e+01 2,4783052323e+02 

Ort. Zaman 1,09886e+00 3,79544e+00 7,91486e+00 

F5 

En İyi 1,5834659491e+04 1,6732461241e+04 3,1560870148e+04 

En Kötü 1,9848420030e+04 2,8247391267e+04 3,3030553597e+04 

Ortalama 1,7575042919e+04 2,0090900878e+04 3,2338916608e+04 

Orta Değer 1,7201680077e+04 1,9300131387e+04 4,8852445925e+02 

Std. Sapma 1,2571221845e+03 3,0965877473e+03 3,2279855076e+04 

Ort. Zaman 1,63554e+00 4,42920e+00 8,72116e+00 

F6 

En İyi 1,1032623807e+08 7,1052589834e+07 4,9844400258e+08 

En Kötü 2,7275120065e+08 1,8938530596e+08 1,5936623608e+09 

Ortalama 1,7323914617e+08 1,2608119882e+08 1,0241725640e+09 

Orta Değer 1,7064932643e+08 1,2228694400e+08 9,5547998373e+08 

Std. Sapma 5,1323148524e+07 3,6564347144e+07 3,5209512176e+08 

Ort. Zaman 1,37062e+00 4,05019e+00 8,20835e+00 

F7 

En İyi 9,0786607631e+02 8,7150751675e+02 3,5629101084e+03 

En Kötü 1,0164564053e+03 9,0814721053e+02 1,0178398085e+04 

Ortalama 9,5346128829e+02 8,8931330211e+02 7,5419406482e+03 

Orta Değer 9,4675938028e+02 8,8821615697e+02 7,5872017369e+03 

Std. Sapma 3,4441825007e+01 1,0301160286e+01 2,3606562316e+03 

Ort. Zaman 6,88511e+00 9,28443e+00 1,45159e+01 

F8 

En İyi 3,3346506033e+07 2,6866097914e+07 3,7142177462e+08 

En Kötü 1,6622029726e+08 7,4088322793e+07 9,8612118856e+08 

Ortalama 9,2603536733e+07 4,6600243775e+07 6,9427471544e+08 

Orta Değer 8,4610910273e+07 1,7627031668e+07 7,1942733020e+08 

Std. Sapma 4,6468422274e+07 4,6701155440e+07 2,3057803297e+08 

Ort. Zaman 1,29348e+00 3,96265e+00 8,04874e+00 

F9 

En İyi 1,0132233739e+03 1,0530141563e+03 2,1640540336e+03 

En Kötü 4,0304491899e+03 1,1284959320e+03 3,9204635092e+03 

Ortalama 2,8226692490e+03 1,0823969197e+03 2,9013317089e+03 

Orta Değer 3,2480760440e+03 1,0761775037e+03 2,8741827870e+03 

Std. Sapma 1,1335564239e+03 2,4249781758e+01 4,9093133675e+02 

Ort. Zaman 3,32496e+00 5,93410e+00 1,09636e+0 
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Çizelge 4.6’da ortalama değerler incelendiğinde µAAAlevy’nin 4 test fonksiyonda, 

En İyi değerlere göre ise 5 test fonksiyonunda diğer yöntemlere göre üstünlük sağladığı 

görülmektedir. Çalışma zamanları incelendiğinde µAAAlevy’nin diğer yöntemlere göre 

daha hızlı şekilde işlemini tamamladığı gözlemlenmektedir. Tek tepeli fonksiyonlardaki 

başarısı ve hızlı sonuç üretmesi açısından µAAAlevy umut vadeden bir Mikro Algoritma 

yaklaşımı olduğu görülmektedir. 
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5. SONUÇLAR VE ÖNERİLER 

 

5.1 Sonuçlar 

Optimizasyon problemleri doğaları gereği boyutları büyüdükçe karmaşıklıkları 

artar ve çözümleri için daha fazla hesaplama kaynağına ihtiyaç duyulur. Mikro 

algoritmalar küçük popülasyonlar sayesinde hesaplama maliyetlerini düşürerek düşük 

hesaplama gücüne sahip donanımlar üzerinde optimizasyon problemlerine çözüm 

sağlamayı amaçlamaktadır. Bu tez çalışmasında optimizasyon problemlerine kaliteli 

çözümler sunan Yapay Alg Algoritması üzerinde geliştirmeler yapılarak Mikro Yapay 

Alg Algoritması önerilmiştir. Önerilen algoritmanın performansını artırmak için Levy 

Uçuşu yaklaşımından faydalanılmıştır. Levy Uçuşu bireylerin konum güncellenmesinde 

ve lokal arama aşamasında kullanılarak çözüm uzayının daha iyi keşfedilmesini ve lokal 

çözümlerin çeşitliliğini sağlamıştır. 

 Önerilen algoritmanın performansı öncelikle temel Yapay Alg Algoritmasının 

birey sayısı 40 ve 3 olarak alınarak kıyaslanmıştır. Sonuçlar, yapılan geliştirmeler 

sonucunda önerilen mikro AAA yönteminin daha başarılı sonuçlara ulaştığını 

göstermektedir. Önerilen mikro yöntemin başarısını doğrulamak için literatürde önerilmiş 

ve başarısı ortaya koyulmuş mikro (µBFOA ve µPSO) algoritmalar ile kıyaslanmıştır. 

Deneysel sonuçlar Levy Uçuşu ile µAAA algoritmasının kıyaslanan yöntemlere göre 

daha başarılı sonuçlar verdiğini göstermiştir.  

 

5.2 Öneriler 

Yapılan çalışmaların ışığında, gelecek çalışmalarda; literatür araştırması göz 

önüne alınarak daha karmaşık optimizasyon problemlerinde başarılı performans 

gerçekleştirmesini sağlamak üzere geliştirilecek mikro çalışmalar yapılması planlanmış 

ve devam edilmektedir. Düşük hesaplama kapasitesi olan cihazlar üzerinde optimizasyon 

problemlerinin çözümünde Levy Uçuşu ile µAAA yöntemi bir alternatif olarak 

kullanılabilir.  
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