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SUMMARY

Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a
valuable non-invasive neuroimaging technique that holds immense
potential for unraveling the mysteries of human brain function and
cognition. By measuring the changes in hemodynamic responses,
particularly  the  fluctuations in  oxyhemoglobin  and
deoxyhemoglobin concentrations, fNIRS offers a window into the
dynamic neural activity underlying cognitive processes. However,
the accurate extraction of these subtle hemodynamic signals is often
impeded by various confounding factors, among which short channel
separation and noise contamination prominently feature. Short
channels, or optodes placed at a minimal distance from the sources
and detectors on the scalp, are particularly susceptible to capturing
extracranial physiological activity, contaminating the recorded
signals. Moreover, environmental and physiological noise sources
further obfuscate the signal of interest. To address these challenges,
researchers have been ardently developing and refining noise
reduction techniques, ranging from traditional filtering methods to
sophisticated machine learning algorithms. These techniques play a
pivotal role in enhancing the quality of fNIRS data, ultimately
advancing our understanding of human brain function and paving the
way for more robust and insightful neuroimaging studies. The aim of
this study is to find the best noise reduction technique by comparing
10 fNIRS processing methods in the dataset collected with audio
tasks using short channel separation.

Keywords: Functional near-infrared spectroscopy, Processing,
Noise reduction, Motion correction, Contrast to noise ratio, Bandpass
filtering, Audio, Optical Density, Modified Beer-Lambert law, Short
channel separation



OZET

Islevsel Yakm Kizildtesi Spektroskopi (IYKAS), insan beyninin
islevini ve biligsel siire¢lerin gizemlerini ¢6zmede biiylik potansiyele
sahip Onemli bir invaziv olmayan norogoriintiileme teknigi olarak
ortaya  ¢ikmistir.  Oksihemoglobin  ve  deoksihemoglobin
konsantrasyonlarindaki degisiklikleri Olcerek, Ozellikle dinamik
sinirsel aktivitenin biligsel siireclerin temelindeki dalgalanmalari,
IYKAS, bize bilissel siireclerin temelindeki dinamik sinirsel
aktiviteye bir pencere sunar. Bununla birlikte, bu ince hemodinamik
sinyallerin dogru bir sekilde ¢ikarilmasi, genellikle ¢esitli karistirict
faktorler tarafindan engellenir, bunlar arasinda 6zellikle kisa kanal
ayrimi ve gurilti kirliligi yer alir. Kisa kanallar, kaynak ve
detektorlerin kafa derisine minimal bir mesafede yerlestirildigi
optotlardir ve Ozellikle ekran dis1 fizyolojik aktiviteyi yakalama
egilimindedir, bu da kaydedilen sinyalleri kirletir. Dahasi, ¢evresel
ve fizyolojik giirtilti kaynaklart 1lgi c¢ekici sinyali daha da
belirsizlestirir. Bu zorluklarin iistesinden gelmek i¢in arastirmacilar,
geleneksel filtreleme yontemlerinden sofistike makine Ogrenimi
algoritmalarina kadar uzanan giiriiltii azaltma tekniklerini 6zenle
gelistirip iyilestirmektedirler. Bu teknikler, IYKAS verilerinin
kalitesini artirmada kilit bir rol oynamakta olup, nihayetinde insan
beyin islevinin anlayisimizi ilerletmekte ve daha saglam ve i¢goriilii
norogoriintilleme c¢alismalarinin yolunu agmaktadir. Bu ¢alismanin
amaci, kisa kanal ayrimi kullanilarak sesli gorevlerle elde edilen veri
setinde 10 IYKAS isleme yontemini karsilastirarak en iyi giiriiltii
azaltma teknigini bulmaktir.

Anahtar Kelimeler: Islevsel yakin kizilalti spektroskopi, Isleme,
Guraltu azaltma, Hareket diizeltme, Kontrast-giiriiltii orani, Bant
geciren filtreleme, Sesli, Optik Yogunluk, Modifiye Edilmis Beer-
Lambert yasasi, Kisa kanal ayrimi



1. INTRODUCTION

Modern human brain research has experienced an increasing interest in the use of
a novel non-invasive optical imaging technique known as functional near infrared
spectroscopy (fNIRS) for neuroscientific research in the last couple of decades. As a
proxy for neural activity, fNIRS is a wearable optical neuroimaging technology that

can simply assess variations in cortical oxygenation dynamics (1).

FNIRS has a significant promise as an imaging modality for clinical research,
basic and applied research because of its low cost, simplicity of use at the bedside, and
compatibility with other complementary electrophysiological approaches. It can also
be used in a variety of applications, including neurodevelopmental research where it
has significant potential to replace and/or assist neurophysiological data
obtained from functional ~magnetic resonance imaging (fMRI) (2).

FNIRS systems utilize near infrared (NIR) light directed at the scalp to monitor
changes in regional cerebral oxygenation resulting from neuronal activation. However,
before reaching the cortical tissue, the NIR light must pass through the scalp, skull,
and cerebrospinal fluid compartments. The human brain tissue is complex, being
anisotropic and inhomogeneous across its different layers, which adds intricacy to how
the NIR light interacts with it (3).

A continuous wave fNIRS device functions by continuously exposing the brain to
a fixed intensity of incident light while simultaneously detecting changes in the
intensity of the reflected light, which allows for the assessment of brain activity. This
process involves the penetration of several layers of brain tissue, including the scalp,
skull, cerebrospinal fluid, gray matter, and white matter, by the emitted light from the
sensors placed on the subject's scalp. Throughout this penetration, some photons
undergo deflection or scattering, while others manage to pass through the layers and
are captured by a detector located on the scalp, typically positioned around 0.5 to 5.5

cm away from the emitters.



The resulting changes in intensity of the detected photons are then subjected to
the modified Beer-Lambert formula to calculate the corresponding alterations in the
concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). This allows
researchers to infer and monitor changes in brain oxygenation levels, serving as a

valuable tool in studying brain function and neural activity (4).



2. BACKGROUND

2.1. Brain Imaging Techniques

Brain imaging techniques are invaluable tools used to study the intricate workings
of the human brain. These non-invasive methods allow researchers and medical
professionals to visualize brain structures, functions, and abnormalities, contributing

to our understanding of cognition, behavior, and neurological disorders.

Magnetic Resonance Imaging (MRI) is one of the most widely used brain imaging
techniques, which employs powerful magnets and radio waves to generate detailed
images of the brain's soft tissues, providing high-resolution anatomical information.
Complementing MRI, functional Magnetic Resonance Imaging (fMRI) measures
changes in blood flow, indicating brain activity during various tasks and revealing

functional connectivity patterns.

Positron Emission Tomography (PET) is another powerful tool that involves the
injection of a radioactive tracer, allowing the visualization of metabolic processes and

neurochemical activities in the brain.

Single-Photon Emission Computed Tomography (SPECT) is similar to PET but

uses a different type of tracer and is more widely available.

Diffusion Tensor Imaging (DTI) focuses on the brain's white matter tracts,
enabling researchers to study the connectivity and communication between different

brain regions.

Electroencephalography (EEG) and Magnetoencephalography (MEG) measure
electrical and magnetic activity in the brain, respectively, with high temporal

resolution, aiding the study of neural oscillations and brain rhythms.

Lastly, Computed Tomography (CT) scans use X-rays to create cross-sectional

images of the brain, often used in emergency situations due to its rapid results.

Each brain imaging technique possesses unique strengths and limitations,
collectively enhancing our knowledge of the brain's complexity and advancing

medical diagnoses and treatments for various neurological conditions.



Electroencephalography (EEG)

Electroencephalography (EEG) is a valuable neuroimaging technique that records
and measures the electrical activity of the brain through the use of electrodes placed
on the scalp. The history of EEG dates back to the late 19th century when the British
physician Richard Caton first observed electrical signals in the brains of animals.
However, it was not until 1924 when German psychiatrist Hans Berger made a
groundbreaking discovery by successfully recording human brain waves using his
electroencephalograph. His pioneering work opened up new avenues for
understanding the brain's electrical activity and led to the term

“electroencephalogram." (5).

Over the years, EEG technology has significantly evolved, becoming more
sophisticated and accessible. Early EEG machines were limited by their cumbersome
nature and low signal resolution, but advancements in electronics and computing have
dramatically improved the quality and efficiency of EEG recordings (6). Modern EEG
systems consist of multiple electrodes placed strategically across the scalp to capture

brain activity from different brain regions simultaneously.

EEG is widely used in various fields, including neuroscience, clinical medicine,
and psychology. In neuroscience research, EEG helps researchers investigate brain
functions related to cognition, attention, memory, and sleep. Moreover, it plays a
pivotal role in diagnosing and monitoring neurological disorders such as epilepsy,
sleep disorders, and brain injuries. The characteristic EEG patterns associated with

different conditions aid in accurate diagnosis and inform treatment strategies (6).

One of the key advantages of EEG is its exceptional temporal resolution, allowing
researchers to observe brain activity in real-time. This capability is particularly useful
in studying event-related potentials (ERPs), which are specific brain responses elicited
by external stimuli or internal mental processes. The ability to precisely time neural
events makes EEG an essential tool for studying cognitive processes with high

temporal precision (7).

Despite its many strengths, EEG also has limitations. Its spatial resolution is
relatively low compared to other brain imaging techniques like fMRI or MRI. The
signals measured by EEG are attenuated as they pass through the skull and scalp,



making it challenging to precisely locate the source of activity within the brain. To
address this limitation, researchers often combine EEG with other neuroimaging
modalities to gain a more comprehensive understanding of brain function and

connectivity (7).

In recent years, EEG technology has seen further advancements with the
development of wearable EEG devices, making it possible to conduct studies outside
the laboratory setting. These portable EEG systems have opened up new opportunities
for monitoring brain activity during real-world tasks and enhancing brain-computer

interface (BCI) applications.

Overall, EEG remains a crucial and versatile tool in neuroscience and clinical
practice, continuously contributing to our understanding of brain function and
providing valuable insights into the complexities of the human mind. As technology
continues to progress, EEG is likely to play an increasingly significant role in
diagnosing and treating neurological conditions and exploring the mysteries of the

brain.

Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) is a powerful brain imaging
technique that allows researchers and clinicians to non-invasively visualize and
measure brain activity based on changes in blood flow. The roots of fMRI can be traced
back to the development of MRI technology in the early 1970s. MRI, which stands for
Magnetic Resonance Imaging, was initially used for anatomical imaging and provided
detailed images of the brain's structure without the need for ionizing radiation. It was
a revolutionary advancement in medical imaging, but it wasn't until the early 1990s

that fMRI emerged as a groundbreaking extension of MRI.

The key breakthrough in fMRI came with the recognition that changes in blood
oxygenation levels are tightly linked to neural activity. This relationship, known as the
"hemodynamic response,” forms the basis of fMRI. When a specific region of the brain
becomes more active, it requires more oxygen to support the increased metabolic
demand. In response, blood flow to that area increases to deliver oxygen-rich blood,

resulting in a detectable change in the MRI signal.



The first fMRI experiments were conducted by three research groups
independently in 1991. Seiji Ogawa, Ken Kwong, and Kamil Ugurbil, along with their
teams, demonstrated the feasibility of fMRI in mapping brain activity during simple
tasks. Their seminal studies set the stage for fMRI's rapid expansion in neuroscience

and cognitive research (8).

Since its inception, fTMRI has evolved significantly, leading to improved image
quality, increased spatial resolution, and more sophisticated data analysis techniques.
With the advent of high-field MRI scanners and advanced data processing methods,
researchers can now capture detailed brain activity patterns with unprecedented

precision.

fMRI has become an essential tool in cognitive neuroscience, allowing researchers
to explore the functional organization of the human brain. By presenting participants
with various stimuli or tasks, scientists can study how different brain regions respond
and interact during specific cognitive processes. For instance, fMRI studies have
unveiled brain networks associated with attention, memory, language, emotion, and

decision-making (7).

In the clinical realm, fMRI has found applications in pre-surgical planning,
particularly in cases involving brain tumors or epilepsy. By identifying critical
functional regions in individual patients, surgeons can avoid damaging vital areas and
reduce the risk of post-surgical deficits. Additionally, fMRI has been utilized to
investigate neurological and psychiatric disorders, providing insights into their
underlying neural mechanisms. While fMRI offers exceptional spatial resolution, it
has limitations. The hemodynamic response has a relatively slow time course, which
restricts the temporal resolution of fMRI compared to other brain imaging techniques
like EEG. Furthermore, fMRI requires participants to lie still within the confined space
of an MRI scanner, potentially limiting the examination of certain behaviors or

conditions that may be more naturalistic (7).

In conclusion, fMRI has revolutionized brain research and clinical neuroscience
by enabling non-invasive investigation of brain function. Its ability to map brain
activity and connectivity has provided unprecedented insights into the human mind

and opened up new avenues for understanding neurological disorders. As technology



continues to advance, fMRI is expected to remain a cornerstone in brain research,
leading to even more sophisticated applications and furthering our understanding of

the complexities of the human brain.

Magnetoencephalography (MEG)

Magnetoencephalography (MEG) is a unique and valuable brain imaging
technique that measures the magnetic fields generated by neuronal activity in the brain.
The history of MEG can be traced back to the 1960s when researchers first observed
the magnetic signals produced by the human brain. However, it was not until the 1970s
that MEG began to gain recognition as a practical method for studying brain activity.
The breakthrough came with the development of superconducting quantum
interference devices (SQUIDs), which are highly sensitive to magnetic fields (9) These
devices allowed for more accurate and precise measurement of the weak magnetic
signals generated by the brain's neural currents. In 1968, David Cohen and his team at
the Massachusetts Institute of Technology (MIT) built the first whole-head MEG
system, which paved the way for the modern MEG technology we use today (10).

MEG offers several advantages over other brain imaging techniques. One of its
key strengths is its exceptional temporal resolution, providing precise measurements
of neural activity on a millisecond timescale. This ability is particularly valuable for
studying the rapid dynamics of brain processes, such as those involved in perception,
language, and motor control. Additionally, MEG has excellent spatial resolution,
allowing researchers to pinpoint the location of neural activity within the brain with

high accuracy.

MEG has become a vital tool in neuroscience and cognitive research. It has helped
reveal fundamental brain mechanisms involved in sensory perception, memory,
attention, and language processing. MEG studies have contributed to our
understanding of brain networks and how different regions interact during various
cognitive tasks. Moreover, MEG is instrumental in investigating abnormal brain
activity and functional connectivity patterns in neurological disorders, such as epilepsy

and autism spectrum disorders (11).

MEG's non-invasive nature and high temporal and spatial resolution have also

made it an important tool in brain-computer interface (BCI) research. BCI systems



enable direct communication between the brain and external devices, holding great
promise for assisting individuals with motor disabilities or communication

impairments.

Despite its advantages, MEG does have some limitations. The main challenge lies
in its susceptibility to magnetic interference from the environment and surrounding
electronics. To address this, MEG labs are specially shielded to minimize external
magnetic fields' impact on measurements. Additionally, MEG signals are weaker than
electrical signals measured by EEG, which can limit its sensitivity to deep brain

structures (12).

In recent years, MEG technology has continued to advance. The development of
novel sensor arrays, improved data analysis techniques, and the integration of MEG
with other neuroimaging modalities, such as fMRI and EEG, have further enhanced
its capabilities. Additionally, advancements in software and computational methods
have facilitated the extraction of more detailed information from MEG data, expanding

its applications in both research and clinical settings.

In conclusion, MEG is a powerful and versatile brain imaging technique that
provides unique insights into the dynamics of neural activity in the human brain. Its
ability to capture millisecond-scale brain processes with high spatial accuracy has been
instrumental in advancing our understanding of brain function and dysfunction. As
technology continues to progress, MEG is likely to play an increasingly significant
role in neuroscience, offering new opportunities to explore the complexities of the

brain and improve our knowledge of the human mind.

Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a powerful and versatile brain imaging
technique that provides valuable insights into brain function and metabolism. The
history of PET dates back to the 1950s when scientists first began exploring the use of
positron-emitting isotopes in medical imaging. However, it was not until the 1970s
that PET technology started to be used for brain imaging. The breakthrough came with
the development of cyclotrons, which allowed for the production of short-lived
positron-emitting isotopes. In 1976, Michael E. Phelps and Edward Hoffman

successfully demonstrated the application of PET to measure brain activity using the
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radiotracer 18F-fluorodeoxyglucose (FDG), a glucose analogue that reveals regional

brain glucose metabolism (13).

PET is particularly valuable in brain imaging due to its ability to visualize and
quantify metabolic processes and neurochemical activities in vivo. By using specific
radiotracers, PET can measure various aspects of brain function, including glucose
metabolism, regional blood flow, receptor density, and neurotransmitter binding. For
example, FDG-PET is widely used to assess brain glucose metabolism, which is an
essential marker of brain activity and energy utilization. PET studies with radiotracers
targeting neurotransmitter systems, such as dopamine and serotonin, have provided

insights into the neurochemical basis of various neuropsychiatric disorders.

In neuroscience research, PET has played a critical role in investigating brain
function and mapping neural networks associated with various cognitive processes. It
has been employed to study memory, attention, language, emotion, and decision-
making. PET studies have also contributed to our understanding of brain plasticity,
showing how the brain reorganizes and adapts in response to learning, injury, or
disease. In clinical medicine, PET has become an indispensable tool in the diagnosis,
staging, and treatment evaluation of neurological disorders. For instance, in the early
diagnosis of Alzheimer's disease, PET imaging with radiotracers targeting amyloid
plaques or tau tangles allows for the detection of characteristic pathological changes
before significant cognitive decline occurs.

PET is also widely used in the evaluation of epilepsy, brain tumors, and movement
disorders, providing crucial information for surgical planning and patient

management.

Moreover, PET is utilized in drug development and pharmacological research.
Preclinical PET studies in animal models help researchers understand drug
pharmacokinetics and pharmacodynamics, while clinical PET trials enable the
evaluation of drug effects on specific brain targets, receptor occupancy, and drug
distribution in the brain.

While PET offers exceptional molecular and functional information, it does have
some limitations. The use of radioactive isotopes requires specialized facilities and

strict radiation safety protocols. Additionally, the short half-life of some radiotracers

11



limits their availability and necessitates on-site production with cyclotrons or other

accelerators(13).

Recent advancements in PET technology, such as the development of hybrid
NeuroPET/CT and PET/MRI systems, have further expanded its capabilities. The
integration of PET with other imaging modalities allows for more comprehensive

assessments of brain structure, function, and metabolism (13).

In conclusion, PET is a versatile and essential tool in brain imaging, providing
valuable information about brain function, metabolism, and neurochemistry. Its
applications in neuroscience, clinical medicine, and drug development have
significantly contributed to our understanding of the brain and its role in health and
disease. As PET technology continues to evolve, it is likely to remain a critical
component of brain research and clinical practice, offering new opportunities to

advance our knowledge and improve patient care.

2.2. New Technique For Brain Imaging: Functional Near-
Infrared Spectroscopy (FNIRS)

Functional Near-Infrared Spectroscopy (fNIRS) is a novel brain imaging
technique gaining popularity in functional neuroimaging research. It non-invasively
examines changes in brain oxygenation levels through transillumination. Over the past
two decades, interest in fNIRS has grown due to its real-time monitoring capabilities,
cost-effectiveness, radiation-free  nature, portability, and patient-friendly
characteristics. It finds applications in brain-computer interface and functional
neuroimaging research, as well as in clinical contexts like Alzheimer's disease,
schizophrenia, dyslexia, Parkinson's disease, childhood disorders, post-neurosurgery
dysfunction, attention, functional connectivity, and more. This versatile technique

offers potential for diagnosis and assists in clinical approaches (14).

The roots of fNIRS can be traced back to the early 1970s when researchers first
explored the application of near-infrared light to study biological tissues. However, it
was not until the 1990s that fNIRS started to gain popularity as a brain imaging tool.
The breakthrough came with the development of better light sources, detectors, and

data analysis methods. In the past, fNIRS was mainly used in the field of physiology

12



to assess tissue oxygenation and blood flow. But its application to brain imaging

expanded rapidly due to its non-invasive nature, portability, and affordability.

The development of in vivo Near-Infrared Spectroscopy (NIRS) was pioneered
by Frans Jobsis, who discovered its potential for non-invasive detection of hemoglobin
oxygenation in the brain using transillumination spectroscopy in 1977. Marco Ferrari
also made significant contributions, utilizing prototype NIRS instruments to measure
brain oxygenation in experimental animal models and human adults in the 1980s.
David Delpy further advanced NIRS by developing quantitative measurements of
oxygenation and hemodynamic parameters in sick newborn infants. Over the years,
various companies collaborated with research institutions to develop NIRS prototypes,
leading to the creation of the first commercial NIRS system, the NIRO-1000, in 1989
by Hamamatsu Photonics. From 1980 to 1995, nine companies joined the effort to
develop NIRS technology (15).

Near-Infrared Spectroscopy (NIRS) relies on the transparency of human tissues to
light in the NIR spectral range (650-1000 nm). NIR light can be absorbed or scattered
in tissues, but its dominant mode of transport is scattering, making it capable of
penetrating human tissues. Hemoglobin, present in small vessels of the
microcirculation, causes the main attenuation of NIR light in tissues, and larger blood
vessels have minimal impact on NIRS measurements. NIRS uses safe laser diode
and/or light-emitting diode light sources along with flexible fiber optics for delivering
and detecting NIR light in tissues. This non-invasive technique permits monitoring of
physiological parameters, including oxygenated and deoxygenated hemoglobin levels
and cerebral blood volume. It offers spatial sensitivity to brain activity despite the
complexity of light scattering in tissues (14).

Functional Near-Infrared Spectroscopy (fNIRS) in the form of Continuous Wave
(CW fNIRS) highlighting its relatively simple setup and practical applications. To
conduct CW fNIRS measurements, a Near-Infrared (NIR) light source is activated,
and the emitted light is directed into the scalp. The light that re-emerges from the tissue
a few centimeters away is then measured to gather valuable data. The simplicity of
CW fNIRS setups allows for specialization in wearable, miniaturized, and wireless

applications, making it a versatile tool for various research and clinical scenarios.
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Additionally, the cost-effectiveness of CW fNIRS instruments can partially be
attributed to the use of off-the-shelf components (16).

The three main components common to all CW fNIRS devices are thoroughly
discussed: 1) NIR light emitters, 2) detectors, and 3) means of transporting light to and
from the scalp. Typically, a few discrete wavelengths are used in NIRS, and the
Modified Beer-Lambert Law (MBLL) equations are evaluated at these selected
wavelengths to obtain data on oxygenated and deoxygenated hemoglobin. On the other
hand, broadband light sources combined with optical bandpass filters are used in
broadband NIRS to obtain continuous absorption spectra of diffuse reflectance. The
NIR light needs to be from the NIR part of the spectrum to penetrate the tissue
effectively without complete absorption prior to detection, a crucial factor discussed
in selecting optimum wavelengths (16).

Detector 2 Source

Scalp

Skull

CSF
Gray matter

White matter

Figure 2.1. The path of Near-Infrared (NIR) photons from the light source to the
detector through the head's layers.

Reference: Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020,

March). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience.

Annals of the New York Academy of Sciences, 1464(1), 5-29. https://doi.org/10.1111/nyas.13948

Absorption is a process in which the energy of a photon is converted into internal

energy in the tissue, and different substances in our body have distinct absorption
properties at various wavelengths. Hemoglobin is the dominant absorbing
chromophore within the Near-Infrared (NIR) optical window. When a brain area
becomes active during a task, the increased metabolic demand leads to an oversupply

of regional cerebral blood flow, resulting in changes in hemoglobin concentrations.
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Oxygenated hemoglobin (HbO,) increases, while deoxygenated hemoglobin (HbR)
decreases, causing alterations in light attenuation, which can be measured by fNIRS.
NIR light also undergoes scattering as it travels through biological tissue, allowing it
to penetrate several centimeters. By placing a light detector at a certain distance from
the NIR light source, changes in light attenuation can be measured, reflecting

variations in HbO, and HbR concentrations within the tissue (Figure 2.1) (3).

The Modified Beer Lambert Law (MBLL) is a fundamental principle in Near-
Infrared Spectroscopy (NIRS) that relates the attenuation of light to the concentration
of absorbing substances in a medium. The law is an extension of the Beer Lambert
Law, which describes the relationship between light absorption and concentration in
transparent solutions. In NIRS, however, the medium is not fully transparent, and light
undergoes both absorption and scattering as it passes through biological tissues.

The MBLL takes into account both absorption and scattering effects, allowing for
the quantification of chromophores such as hemoglobin in biological tissues (17). The

MBLL equation can be expressed as:

AA =log(ly/l) = e*c*d

where AA is the change in light attenuation (absorbance), I, is the incident light
intensity, I is the transmitted light intensity, € is the molar absorption coefficient of the
chromophore, c is the concentration of the chromophore, and d is the pathlength of
light through the medium (i.e., the distance between the light source and the detector).
The term AA is also referred to as the optical density, representing the logarithm of

the ratio of incident to transmitted light. It can be also shown as optical density:

0D = —log(l/ly) = CLB + G

The optical density (OD) in the Modified Beer Lambert Law (MBLL) is expressed as
a logarithmic function of the incident light intensity (lo) divided by the detected light
intensity (I). It depends on several factors: the extinction coefficient (g) of the
absorbing substance (chromophore), the concentration (C) of the chromophore in the
tissue, the distance (L) between where the light enters and exits the tissue, a pathlength
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factor (B) considering the increased photon pathlength due to tissue scattering, and a

measurement geometry factor (G) (18).

In NIRS applications, the MBLL is commonly used to estimate changes in the
concentrations of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin
(HbR) in brain tissue. When a brain region becomes active, the metabolic demand for
oxygen increases, leading to changes in regional cerebral blood flow. This, in turn,
alters the concentrations of HbO2 and HbR, resulting in changes in light attenuation,
which can be measured by the NIRS device. Despite its simplicity, the MBLL is a
powerful tool that allows researchers and clinicians to non-invasively monitor
physiological changes in tissues, making it an invaluable technique in various fields,
including neuroscience, clinical medicine, and sports science.

Moreover, the MBLL's adaptability to different chromophores and tissues makes
it a versatile method for studying and understanding biological processes in living

organisms.

Engineers strive to maximize the radiated optical power to enhance signal-to-
noise ratio (SNR) and enable the use of longer source-detector distances, which
increases sensitivity to deeper tissues. However, tissue heating caused by irradiation
or conductive heat transport from the source must be carefully managed to avoid
compromising measurements or causing discomfort to subjects. Safety measures are
paramount, particularly concerning eye safety for both experimenters and subjects.
The emitted light intensity fluctuations can directly affect detector noise, emphasizing
the importance of light sources that radiate light as consistently as possible. Proper

power circuitry design and stabilization of power supply can mitigate emitter noise.

In fNIRS measurements at several discrete wavelengths, it is desirable to choose
light sources with sharply peaked radiation spectra or employ weighted averaging
approaches when the emission spectrum is known. Laser diodes (LDs) and light-
emitting diodes (LEDs) are the primary light sources utilized in CW fNIRS
instruments. LDs offer coherent light emission with narrower bandwidth due to
stimulated emission, making them suitable for fiber coupling. However, LDs can be
larger and potentially hazardous due to the risks associated with laser radiation for the

eyes. On the other hand, LEDs are smaller, come in various emitting wavelengths, and

16



are considered valid alternatives to LDs, providing flexibility in wavelength selection
(16).

The choice between LDs and LEDs depends on specific instrument requirements,
including size, weight, power consumption, and fiber coupling efficiency. Each type
of light source has its advantages and trade-offs, and their selection is essential in
optimizing the performance and capabilities of fNIRS instruments. Overall, CW
fNIRS offers engineers a promising and versatile technique for various applications in
neuroimaging and other fields, promising insights into brain function and

physiological responses (16).

2.3. Noise Problem in fNIRS Signals

Physiological noises originating from various sources, including heartbeat,
respiration, Mayer waves, and systemic physiological activity from the outer layers of
the brain, as well as motion artifacts, often interfere with event-related functional
Near-Infrared Spectroscopy (fNIRS) observations. Consequently, the collected data

on cortical activity may be compromised and inaccurate (4).

fNIRS measures the hemoglobin response to brain activation, but it also captures
interfering signals from head movement and other physiological changes. These
interfering signals can manifest as sudden spikes, baseline shifts, periodic variations,
and low-frequency drift in the data. If these confounding factors are not properly
addressed, the estimation of the hemoglobin response related to neuronal activity may
be biased and inaccurate (19).

A strong cardiac component, which indicates a good optode-scalp coupling,
serves as a reliable indicator of high-quality fNIRS signals. This is because the near-
infrared light used in fNIRS passes through both the cerebral and superficial layers of
the brain. During this journey, various factors, both intrinsic and extrinsic, influence
the absorption and scattering of the transmitted light. The intrinsic elements include
cerebral and extra-cerebral hemodynamics resulting from systemic artifacts and brain
functioning. One such artifact present in both compartments is the heartbeat.

Therefore, the presence of the heartbeat in fNIRS data indicates that sufficient light
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has reached the brain, and most of the absorption and scattering arise from intrinsic
factors. However, if external factors significantly limit the amount of light reaching
the brain, leading to poor optode-scalp coupling, the quality of the fNIRS signal may
be compromised (20). Extrinsic factors encompass several aspects such as the optode
placement tightness, the thickness of the scalp and skull, the properties of the skin, and
the density and color of any existing hair. These external elements can influence the
quality and reliability of the fNIRS measurements (20). As fNIRS data is collected
through the intact skull, extracerebral noises originating from the skin, skull, and blood
vessels on the brain's surface are present in every fNIRS channel. Consequently,
systemic physiological fluctuations in local hemodynamics are more prone to impact
the quality of the fNIRS signal (21).

3. STATE OF THE ART APPROACHES FOR
DENOISING AND PREPROCESSING OF FNIRS
SIGNALS

In fNIRS data analysis, several methods are employed in a stepwise manner to
mitigate noise and artifacts. Various signal processing techniques, including channel
exclusion and motion correction, have been devised to address potential confounding
factors and eliminate physiological noise from the fNIRS signals. However, selecting
the most suitable algorithm or approach can be difficult due to the abundance of
different processing methodologies, each offering its own advantages and limitations
(22).

3.1. Channel Quality Assessment and Channel Pruning

Various factors can negatively impact the quality of fNIRS signals, including
instrument and environmental noise, suboptimal coupling of the optodes to the
subject's head, artifacts arising from subject motion, and optical interference caused
by the presence of coarse or strongly colored hair. These sources of noise and artifacts
can lead to a reduction in the signal-to-noise ratio (SNR) and introduce sudden baseline
intensity shifts or sharp spikes in the time series data, thereby jeopardizing the
accuracy of the recorded information and subsequent interpretations. To ensure the
adequacy of the signal quality, it is imperative to establish a standardized approach for
identifying and rejecting subpar channels that could distort the data. One commonly

employed criterion involves visually inspecting the optical density signal within the
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wavelength range of 830 to 850 nm to ascertain the presence of the heart pulse, either
in the time or frequency domain. The rationale behind this approach is grounded in the
understanding that fluctuations in optical density are closely associated with
physiological hemodynamic changes when a robust and consistent cardiac oscillation
is detected. By carefully scrutinizing the fNIRS data in this manner, researchers can
effectively discern genuine signals related to brain activity from unwanted noise and
artifacts. Rejecting channels with poor signal quality helps enhance the overall
robustness and accuracy of the fNIRS measurements, providing a more reliable
foundation for subsequent data analysis and scientific interpretations. Moreover,
adopting standardized practices for noise reduction and artifact removal is crucial for
ensuring the validity and replicability of fNIRS studies across different research

settings and experimental conditions (22).

In assessing the quality of fNIRS signals and identifying noise, researchers have
two viable options: conducting a simple signal-to-noise ratio (SNR) check or
performing spectral analysis to evaluate cardiac power at each channel. The presence
and strength of the heartbeat serve as reliable indicators of the optode-scalp coupling
and, consequently, serve as effective quality control parameters for fNIRS signals,

particularly when the sampling rate is sufficiently high, such as 10 Hz (17).

The visual inspection method for signal quality check has limitations, being
subjective, time-consuming, and not ensuring sufficient quality at the 700 nm
wavelength (weighted to deoxyhemoglobin, making cardiac pulsation less robust).
Automated approaches for channel exclusion are advantageous, especially if they
outperform visual assessment. Various automated techniques, including the coefficient
of variation (CV) approach, have been suggested to evaluate and determine exclusion

pathways (22).

3.2. Motion Artifact Detection

Motion artifacts in fNIRS data are typically identified by detecting rapid signal
changes that exceed the amplitude of hemodynamic changes. This detection process
involves setting thresholds using user-defined input parameters in motion detection
algorithms. By applying these thresholds to different components of the signal, such

as moving standard deviation time series, absolute signal amplitude changes, or
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standard deviation variations, one can identify temporal epochs likely affected by
motion artifacts. However, the use of human input in this process makes it subjective,
and optimal parameters may vary across different datasets. An ideal motion artifact
detection algorithm should objectively define a threshold based on deviations caused
by actual physiological fluctuations, derived directly from the signal itself. By
eliminating the reliance on subjective user input and considering actual physiological
variations, such an algorithm can enhance the accuracy and reliability of motion
artifact identification in fNIRS data (23).

The HOMER2 NIRS processing package includes a motion artifact identification
technique called hmrMotionArtifact, which reliably detects motion artifacts based on
variations in signal amplitude and/or standard deviation. Motion is identified if the
standard deviation increases by a factor greater than SDThresh or if the peak-to-peak
amplitude increases by a factor greater than AMPThresh within a window of length
tMotion. This technique operates under the assumption that motion artifacts affect
multiple channels; hence, signal changes identified as artifacts in one channel are
labeled as motion in all channels (24).

3.3. Motion Artifact Correction

3.3.1. Spline Interpolation

Spline interpolation is a commonly used technique in functional near-infrared
spectroscopy (fNIRS) data analysis to handle missing or noisy data points. In fNIRS
experiments, signal interruptions due to subject motion or other artifacts can lead to
gaps in the data, affecting the accuracy of the results. Spline interpolation works by
fitting a smooth curve through the existing data points, and then estimating the values
for the missing or corrupted data points based on this curve. This method helps to fill
in the gaps and produce a continuous, more complete dataset for further analysis. By
effectively reconstructing the missing information, spline interpolation enhances the
robustness of fNIRS data and facilitates more accurate interpretations of brain activity

and hemodynamic responses.

The channel-by-channel method of spline interpolation used suggested by
Scholkmann et al. (25). The Homer2 NIRS Processing package utilizes the

hmrMotionArtifactByChannel function to automatically identify motion artifact
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fragments on a per-channel basis. A cubic spline interpolation is then employed to
estimate the motion artifact period. By subtracting the resulting spline interpolation
from the original signal, the motion artifact is removed. However, the corrected signal
may have different signal levels than the original, necessitating the reconstruction of
the time series. While the spline interpolation approach offers the advantage of
baseline shift removal, its effectiveness depends on the reliable identification of
motion artifacts prior to implementation. If motion artifacts are challenging to detect,
the spline method may not yield significant signal improvement (26).

3.3.2. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used data analysis technique in
functional near-infrared spectroscopy (fNIRS) research. PCA aims to reduce the
complexity of fNIRS data by transforming it into a new set of uncorrelated variables
called principal components. These components capture the most significant variations
in the data and allow researchers to identify patterns and trends more efficiently. By
retaining the most informative components and discarding the less relevant ones, PCA
helps to reduce noise and highlight the key features of the fNIRS signal related to brain
activity. This dimensionality reduction technique enhances data visualization,
denoising, and the extraction of meaningful information from large and complex

fNIRS datasets, making it a valuable tool in neuroimaging studies.

PCA implementation in fNIRS involves converting an N-measurement dataset
into N linearly uncorrelated components, sorted based on their contribution to the data
variance. In many cases, motion artifacts are more prominent than the actual NIRS
background signal, and they may affect multiple NIRS channels. To address this, PCA
is applied with the assumption that the first R principal components primarily represent
motion artifacts, capturing the majority of the variance. By removing these R
components from the data, researchers can filter out the motion artifacts and proceed
with further analysis of the NIRS data, focusing on the relevant brain-related signal.
This approach helps enhance the accuracy and reliability of fNIRS data interpretation
by mitigating the influence of motion artifacts (24). The number of measurements
available (N) and the number of components removed (R) have a direct impact on PCA
performance (26).
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If PCA is applied to data points presumed to contain motion artifacts, it is less
probable that the physiological fluctuations in the motion-free part of the signal will
be effectively removed. Therefore, accurate identification of motion artifacts is crucial
when using PCA to address such issues in the data (23).

3.3.3. Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a powerful data analysis method
frequently employed in functional near-infrared spectroscopy (fNIRS) research.
Unlike PCA, which transforms data into uncorrelated components, ICA aims to extract
statistically independent components from the fNIRS signal. These components
represent different physiological or neural processes contributing to the data. By
separating the underlying sources of signal variation, ICA allows researchers to
identify distinct brain-related activities, such as hemodynamic responses to specific
stimuli or cognitive tasks, even in the presence of artifacts or overlapping signals. ICA
has proven valuable for denoising fNIRS data, enhancing brain signal localization, and
uncovering relevant brain networks. Its ability to separate mixed signals into
meaningful sources makes ICA a valuable tool for advancing our understanding of

brain function and connectivity in fNIRS neuroimaging studies.

Numerous research groups have explored the utility of independent component
analysis (ICA) in differentiating functional optical responses (FORs) from noise in
raw NIRS time series. The findings suggest that ICA holds promise as an effective
method for detecting fast neuronal signals. By using ICA, researchers can successfully
eliminate non-relevant noises, allowing them to focus on identifying the specific FORs
present in the NIRS data.

Subsequently, event-related averaging is utilized to pinpoint and analyze the Fast
Optical Responses (FORs) across the NIRS time series. Overall, ICA offers a valuable
approach for improving the accuracy and sensitivity of detecting important brain
activity patterns in fNIRS studies (27).

3.3.4. Wavelet Analysis

A Wavelet analysis is a valuable signal processing technique widely employed in

functional near-infrared spectroscopy (fNIRS) research. This method allows
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researchers to investigate the time-frequency characteristics of the NIRS signal,
providing insights into the dynamic changes in brain activity. By applying wavelet
transforms to the fNIRS time series, researchers can identify localized changes in brain
hemodynamics at different time scales. This capability is especially useful for studying
transient brain responses, such as task-related activations or event-related
hemodynamic fluctuations. Wavelet analysis enhances the temporal resolution of
fNIRS data, enabling the detection of fast and brief neural responses. Its versatility and
ability to capture both frequency and temporal information make wavelet analysis a
valuable tool for investigating complex brain processes in fNIRS neuroimaging

studies.

In wavelet analysis, each channel's data series undergoes discrete wavelet
transform with multiple levels of decomposition, determined by the time series
duration. This process yields detail and approximation coefficients for each level. The
hemodynamic response, being smoother and slower than motion artifacts, creates a
linear combination with the artifacts in the measured signal. The detail wavelet
coefficients exhibit a Gaussian probability distribution. By assuming that coefficients
related to evoked responses will center around zero with minimal variation, it becomes
possible to identify outliers as coefficients representing motion artifacts. These outliers
can be set to zero to eliminate motion distortions in the temporal time-series before
reconstructing the signal using inverse discrete wavelet transform. This approach aids
in separating the physiological signal of interest from unwanted artifacts in fNIRS data
(26).

3.4. Bandpass Filtering

Bandpass filtering is frequently used to eliminate very low (0.01 Hz) and very
high (0.2 Hz; heartbeat, respiration rate, instrument noise) frequency information from
the stream. For noise reduction, a variety of filters have been used in fNIRS research,
with the Butterworth filter being the most often used. Other filters utilized include
zero-phase Fast Fourier Transform (FFT) filters, elliptic filters, moving average filters
and Chebyshev filters (22).

The Butterworth filter is a commonly used type of bandpass filter in fNIRS data
processing. It is characterized by a flat frequency response in the passband and a steep
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roll-off in the stopband. This filter is effective in removing noise and artifacts from the
fNIRS signal while preserving the frequency content of interest. The order of the
Butterworth filter can be adjusted to control the sharpness of the roll-off, allowing
researchers to tailor the filter to their specific data requirements (28).

The Chebyshev filter is another type of bandpass filter that is often used in fNIRS
data analysis. It provides a steeper roll-off in the stopband compared to the Butterworth
filter but may introduce ripples in the passband. This filter is useful when a more
aggressive noise reduction is needed, but it may come at the cost of slight distortion in
the frequency response. Like the Butterworth filter, the Chebyshev filter's order can

be adjusted to achieve the desired level of noise attenuation (22).

The moving average filter is a simple and intuitive type of bandpass filter used in
fNIRS signal processing. It works by averaging adjacent data points within a specified
window, effectively smoothing the signal and removing high-frequency noise. This
filter is particularly useful for reducing motion artifacts and other high-frequency noise
sources. However, it may also blur the fine temporal details of the signal, and the
window size needs to be carefully chosen to strike a balance between noise reduction

and signal preservation (28).

The zero-phase Fast Fourier Transform (FFT) is a powerful technique used for
frequency-domain signal processing. It is commonly employed to investigate the
frequency content of fNIRS signals and identify specific frequency components
related to neuronal activity or physiological changes. The zero-phase FFT ensures that
the phase information of the signal is preserved during the transformation, allowing
for accurate time-domain reconstruction after frequency analysis. By examining the
power spectral density obtained through the FFT, researchers can identify dominant
frequency peaks that correspond to hemodynamic responses or other relevant
physiological phenomena. This technique enables a deeper understanding of the
underlying neurovascular dynamics and provides valuable insights into brain
activation patterns and responses to different stimuli. Additionally, the zero-phase
nature of the FFT minimizes potential phase distortions that could arise from typical
FFT implementations, making it a reliable and widely used tool in fNIRS research
(22).
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3.5. Correlation-based Signal Improvement (CBSI)

Correlation-based signal improvement in fNIRS is a data preprocessing technique
aimed at enhancing the quality of the recorded signals by reducing noise and extracting
meaningful hemodynamic responses. This method relies on the assumption that
genuine functional responses to brain activity are correlated across different channels,
while noise and artifacts tend to be uncorrelated or less correlated. The process
involves computing the cross-correlation matrix among all the channels in the dataset
and identifying the dominant correlated components. The correlated components are
then combined linearly to generate a weighted sum, effectively enhancing the signal-
to-noise ratio and highlighting the genuine physiological responses (23).

One of the advantages of correlation-based signal improvement is its ability to
address common noise sources affecting multiple channels simultaneously. This
includes systemic physiological noises, motion artifacts, and environmental
interference. By leveraging the collective information from all channels, the technique

is robust in handling noise that affects the entire data set.

Moreover, it is non-parametric and does not assume any specific noise

distribution, making it flexible and applicable in various experimental scenarios (27).

However, the correlation-based signal improvement method also has its
limitations. For instance, it requires a sufficient number of channels and assumes that
the genuine signals are correlated across them, which may not always hold true in
certain experimental setups. Additionally, the technique may not be effective in cases
where the noise is highly correlated across channels, leading to limited improvements

in the signal quality (27).

Overall, correlation-based signal improvement is a valuable tool in fNIRS data
preprocessing, offering an effective means to enhance signal quality, identify relevant
brain activation patterns, and improve the accuracy of functional neuroimaging
studies. Researchers often combine this technique with other preprocessing methods

to optimize data quality and ensure reliable interpretations of fNIRS results.
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3.6. Short Separation Regression

Short separation detectors, a recent breakthrough in the field, have emerged as a
revolutionary technique in fNIRS. These detectors are strategically positioned in the
activation region with a source-detector distance of less than one centimeter, making
them highly sensitive to the superficial layers of the brain. In this method, the signal
from long separation detectors captures both brain and surface layer activities, while
the signal from short separation detectors predominantly represents superficial brain
layers. By applying regression to subtract the short separation signal from the long
separation signal, the unwanted superficial component is effectively filtered out,
leaving behind a more accurate representation of brain activity. This innovative
approach enhances the precision of fNIRS measurements and opens new possibilities

for deeper insights into brain function and activation patterns (29).

3.7. General Linear Model (GLM) Analysis

General Linear Model (GLM) refers to a statistical method used to model and
analyze the hemodynamic response of the brain to specific experimental conditions or
tasks. In fNIRS studies, researchers often design experiments to investigate brain
activity associated with certain cognitive tasks, stimuli, or conditions. The GLM
analysis allows us to examine how changes in the concentration of oxyhemoglobin
(HbO2) and deoxyhemoglobin (HbR) are related to these experimental factors. The
GLM analysis involves creating a mathematical model that describes the relationship
between the measured fNIRS data and the experimental design. It includes regressors
or predictors representing the different experimental conditions or events, and the goal
is to estimate the contribution of each predictor to the observed changes in hemoglobin
concentrations. GLM is a popular choice for analyzing group-level differences or
conditions due to its straightforward application with multi-level analysis and its
ability to average away between-subject variance, revealing substantial group
variations. However, at the individual subject level, the accuracy of modeling brain
activation using general linear regression is limited by the significant variability in the

shape and timing of each person’'s hemodynamic response (22).

26



The GLM analysis is widely used in fNIRS research because it provides a flexible
and powerful framework for hypothesis testing and inference. It allows researchers to
determine whether there are significant differences in brain activity across different
experimental conditions and provides insights into the underlying neural processes

associated with cognitive tasks or stimuli.

4. MATERIALS AND METHODS

An Ethics Committee approval has been obtained with reference number
52020640814625 at Macquarie University, and fNIRS data collected during an
auditory task will be used for analysis. The data is publicly available and presented at
the following link:

“https://openfnirs.org /community/ fresh/welcome-to-the-fnirs-fresh-project/".

4.1. Experimental Protocol

4.1.1. Participants

A total of seventeen individuals willingly participated in this research project.
Each participant confirmed that they had no prior history of hearing issues. The age
range of the participants spanned from 22 to 40 years, indicating a diverse age group
within the study cohort (30).

During the experiment, participants were seated in a sound-attenuating booth,
providing a controlled and quiet environment. To ensure their comfort throughout the
study, they were provided with comfortable chairs. The entire experiment lasted
approximately 25 minutes, during which the participants were asked not to focus on
the sounds being presented. To make the experimental setting more pleasant,
participants were given the option to watch a subtitled film without sound. Out of the
seventeen participants, seven individuals chose to accept this option, while the rest

opted to solely participate in the auditory task without any visual distraction (30).
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4.1.2 Materials

The NIRS data were collected using a NIRx NIRScoutX device equipped with
APD (Avalanche Photodiode) detectors. The recorded data were stored on a disk at a
sampling rate of 5.2 Hz. For the fNIRS optode-cap configuration, a total of 12 source
channels and 12 detector channels were utilized. Additionally, eight short detectors
were strategically placed across the participant's head to enhance the coverage and
sensitivity of the measurements. This setup allowed for comprehensive monitoring and

analysis of the hemodynamic responses during the experiment (30).

4.1.3 Experimental Design

During the experiment, participants experienced 3 different stimulus conditions.

These are

1)Speech
2)Noise
3)Silence

The speech stimulus was created by concatenating three sentences from the
AusTIN speech corpus, with a combined duration of 5.25 seconds. For the noise
stimulus, a range of frequencies between 300 and 700 Hz was uniformly distributed,
resulting in a 5-second duration noise clip. The control condition involved 5 seconds
of complete silence. To ensure variability and prevent predictability, the stimuli were
presented in a random order for each participant. Additionally, the inter-stimulus
interval, which denotes the time between the end of one stimulus and the beginning of
the next, was randomly chosen for each trial from a uniform distribution spanning 10
to 20 seconds. In total, there were 20 trials for each stimulus condition, resulting in a
comprehensive set of 60 trials per participant. This design allowed researchers to
obtain robust and diverse data across the different stimulus conditions, ensuring a

thorough investigation of the brain's response to speech, noise, and silence (30).
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4.2. FNIRS Data Analysis

4.2.1. Processing Pipeline Steps

In this study, 4 main fNIRS processing pipelines were implemented. A
comparison has been made about which of these pipelines is better. These pipelines
can include motion correction with Spline SG, short channel regression, bandpass filter
and correlation based signal improvement. They are employing various functions from

the Homer library.

4.2.1.1 Processing Pipeline 1

The first processing pipeline starts by loading the subject data from the specified
directory. The data consists of near-infrared spectroscopy (NIRS) recordings collected
during a cognitive task.

The pipeline first separates the two wavelengths (760nm and 850nm) of the NIRS
signal and converts the raw intensity data to optical density (dod) data. Motion artifacts
are detected using the “hmrR MotionArtifactByChannel” function of Homer3 and
pruned using the “hmrR_PruneChannels” function of Homer3. It then proceeds to
convert the dod data into hemoglobin concentration changes (HbO and HbR) using the

“hmrR_OD2Conc’’function of Homer3. No motion correction is applied at this stage.

The pipeline then applies a bandpass filter by using “hmrR BandpassFilt”
function of Homer3 to the HbO and HDbR signals to remove unwanted frequency
components, such as physiological noise and motion artifacts. Following this, short-
channel regression is employed, which involves finding the short-channel with the
maximum correlation to each channel and regressing out its influence on the respective
channel's HbO and HbR signals.

Next, the pipeline takes block averages of the bandpass filtered HbO and HbR
signals for each condition in the cognitive task to improve the signal-to-noise ratio.
Subsequently, the pipeline performs correlation-based signal improvement to refine
the motion-corrected HbO and HbR signals. It calculates the correlation between each
long channel's signal and the short channels' signals and then regresses out the
contribution of the short channel with the highest correlation. The resulting HbO and

HDbR signals are now less affected by motion artifacts.
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Throughout the pipeline, quality control measures are applied, such as
determining signal-to-noise ratios and masking out channels with low SNR. Moreover,
the pipeline utilizes event-related regressors to align the data with the timing of the
cognitive task events, allowing for precise data selection for each condition.

After processing all the subjects' data through the pipeline, the results are saved
as block-averaged data for further analysis. The processed data is now ready for
statistical comparisons, hypothesis testing, or any other analyses related to the

cognitive task or experimental design.

4.2.1.2 Processing Pipeline 2

The processing pipeline 2 involves a series of steps to analyze audio fNIRS data.
First, the raw data is loaded for each subject and session, and the short channel data is

extracted from the two wavelengths (760 nm and 850 nm) of each channel.

Motion artifacts are detected using the “hmrR_MotionArtifactByChannel”
function of Homer3 and pruned using the “hmrR PruneChannels” function of
Homer3. The motion correction step is performed using the Spline SG method with
“hmrR_MotionCorrectSplineSG” function of Homer3 , which helps to correct for
motion-induced artifacts in the optical density data. The corrected optical density data
is converted to hemoglobin concentration data (HbO and HbR) through conversion
algorithms.  Bandpass filtering is applied to these data by using
“hmrR_BandpassFilt”function of Homer3 to further clean the signals in the frequency

range of interest.

Next, short channel regression is performed to eliminate the impact of short
channels on the target channel's hemoglobin signal. This step helps to mitigate the

influence of superficial layers in the brain.

A block averaging technique is employed to enhance signal-to-noise ratio by
averaging the hemoglobin signals within each block of trials. Correlation-based signal
improvement (CBSI) is then implemented to refine the hemoglobin signals. The
method calculates an optimal weighting factor that balances the contribution of HbO

and HbR signals to improve the overall signal quality.
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Another block averaging step is performed after CBSI to enhance the data quality
further. Finally, the processed data is saved for further analysis. The pipeline is
executed for multiple subjects and sessions, and the results are stored in separate data
files.

The difference between these two pipelines is that the first pipeline did not contain
motion correction, while the second pipeline contained motion correction with spline
SG. So that we can compare the difference of including motion correction and not

including motion correction.

4.2.1.3 Processing Pipeline 3

The third processing pipeline the begins by loading the raw fNIRS data for each
subject and session. After loading, the script proceeds with necessary preprocessing
steps, including the extraction of the raw intensity data for both wavelengths (760 nm
and 850 nm) from each channel. Additionally, the pipeline identifies and removes
motion artifacts by calculating the motion artifact index for each channel using the
“hmrR_MotionArtifactByChannel” function from Homer3 and pruned using the

“hmrR_PruneChannels” function of Homer3.

To distinguish short channels from long channels, a predefined set of short
channels is determined based on their anatomical location. The pipeline identifies the
short channel indices and separates them from the rest of the channels (long channels)

for further analysis.

The raw intensity data is converted to optical density (OD) data using the
“hmrR_Intensity2OD” function from Homer3. OD data is preferred for fNIRS analysis
as it minimizes the effects of variations in light source intensities and provides a more

stable baseline.

After obtaining OD data, the pipeline proceeds to calculate the changes in
hemoglobin concentrations (HbO and HbR) using the “hmrR_OD2Conc” function
from Homer3. The conversion is performed based on the modified Beer-Lambert law,
considering the differential pathlength factor (DPF) and molar extinction coefficients
for HbO and HbR at 760 nm and 850 nm wavelengths. Next, the pipeline applies

bandpass filtering to the hemoglobin concentration data using the
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“hmrR_BandpassFilt" function from Homer3. This step removes unwanted
frequencies and noise outside the frequency range of interest (typically 0.01 Hz to 0.5
Hz for fNIRS).

To further enhance the signal quality, the pipeline utilizes correlation-based signal
improvement (CBSI) with the “hmrR MotionCorrectCbsi" function from Homer3.
CBSI corrects for motion artifacts by estimating motion artifacts using the data from

nearby short channels and then removes them from the target channel.

The pipeline performs Short Separation Regression (SSR) to minimize the
influence of short channels on long channels. This step uses the hemoglobin
concentration data from short channels to predict and remove the unwanted signals

from long channels, effectively reducing contamination from superficial layers.

To improve the signal-to-noise ratio and obtain a more robust response estimate,
the pipeline applies block averaging to the processed hemoglobin concentration data.
The epochs corresponding to different auditory stimuli are averaged to obtain more

reliable and smoother hemodynamic responses.

The pipeline is applied to multiple subjects and sessions, and the processed data
is stored separately for each subject. The functions utilized from Homer3 include
“hmrR_MotionArtifactByChannel”,“hmrR_PruneChannels”, “hmrR_Intensity2OD”,
“hmrR_OD2Conc”, “hmrR_BandpassFilt”, and “hmrR_MotionCorrectCbsi”.

The most crucial difference from first two pipeline is the third pipeline
implements firstly CBSI and then Short Separation Regression (SSR). In this way, we
can compare the effects of applying SSR and CBSI in different order.

4.2.1.4 Processing Pipeline 4

The pipeline starts with data loading and preprocessing for each subject and
session. The fNIRS data is loaded from SNIRF files, and the raw intensity data for
both wavelengths (760 nm and 850 nm) is extracted for each channel. Motion artifacts
are detected and marked using the "hmrR_MotionArtifactByChannel™ function from
Homer3 and pruned using the “hmrR PruneChannels” function of Homer3.
Additionally, short channels are identified based on their anatomical location, and the

long channels are separated from them.
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The raw intensity data is converted to optical density (OD) data using the
"hmrR_Intensity20D" function from Homer3. OD data minimizes the impact of light

intensity variations and provides a stable baseline for further analysis.

Motion-corrected optical density data is obtained using the Spline SG method for
motion correction, implemented in the "hmrR_MotionCorrectSplineSG™ function
from Homer3. This method efficiently removes motion artifacts while preserving the

underlying neurovascular signals.

The motion-corrected optical density data is converted to changes in hemoglobin
concentrations (HbO and HbR) using the "hmrR_OD2Conc" function from Homer.3
This step involves applying the modified Beer-Lambert law with appropriate
parameters, including the differential pathlength factor (DPF) and molar extinction
coefficients.

Next, the pipeline applies bandpass filtering to the hemoglobin concentration data
using the "hmrR_BandpassFilt" function from Homer. Bandpass filtering removes
unwanted frequencies outside the range of interest (typically 0.01 Hz to 0.5 Hz) to
enhance the signal-to-noise ratio.

The pipeline applies correlation-based signal improvement (CBSI) to further
enhance the signal quality and reduce residual motion artifacts. The

"hmrR_MotionCorrectChsi" function from Homer3 is utilized for this purpose.

To minimize the influence of short channels on long channels, the pipeline
performs Short Separation Regression (SSR). For each long channel, the short channel
with the highest correlation is identified, and the impact of this short channel on the

long channel's hemoglobin concentration data is linearly regressed out.

The processed hemoglobin concentration data is then block-averaged to improve
the signal reliability. The data is divided into epochs corresponding to different
auditory stimuli, and each epoch is averaged to obtain more robust and smoother

hemodynamic responses.
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The pipeline is applied to multiple subjects and sessions, and the processed data
is stored separately for each subject. Throughout the pipeline, several functions from
Homer 3  are utilized, including “hmrR MotionArtifactByChannel",
“hmrR_PruneChannels", “hmrR _Intensity20D", “hmrR MotionCorrectSplineSG",
“hmrR_OD2Conc", “hmrR_BandpassFilt", and “hmrR_MotionCorrectCbsi”.

This processing pipeline 4 including motion correction with spline SG, different
to the processing pipeline 3. So that we can see the effect of applying motion correction

with spline SG.

After this step, we separated these 4 main pipelines into 10 methods to see effects

of each steps. We started to analyze each method separately.
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Figure 4.2. Methods 1, 2, 3, 4, and 5 are derived from 4 main pipelines for

comparative analysis.

Figure 4.2. shows the first 5 methods which are derived from 4 main pipelines that

we created. These 5 methods mainly focuses on Motion Correction with Spline

SG and other filtering

Signal  Improvement

techniques

(Bandpass filter, Correlation

(CBSI), and Short Separation Regression

Based
(SSR)).
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Figure 4.3. Methods 6, 7, 8, 9, and 10 are derived from 4 main pipelines for

comparative analysis.

Figure 4.3. shows the other 5 methods which are derived from 4 main pipelines

that we created. These 5 methods do not include Motion Correction with Spline SG.

However, they mainly include other filtering techniques (Bandpass filter, Correlation

Based Signal Improvement (CBSI), and Short Separation Regression (SSR)).
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Then we calculated Time to Peak (TTP) values for all methods, factoring in 17
subjects, 25 channels, and 3 stimuli. This involves extracting relevant data,
determining peak indices within a specified time window, and subsequently computing
TTP by combining peak indices with the window's starting point. The resulting TTP
values are summarized, offering insights into method-specific performance. For each
method, mean and standard deviation of TTP values are computed across stimuli and
subsequently normalized with the sampling rate. The final outcome consists of
matrices (P1 to P10), encapsulating summarized TTP values for each method and

stimulus.

TTP refers to the moment at which a hemodynamic signal, typically representing
changes in oxygenated and deoxygenated blood concentrations, reaches its peak
amplitude in response to a neural stimulus or cognitive task. This temporal landmark
is of paramount importance as it provides insights into the underlying neurovascular
coupling processes that link neural activity with changes in blood flow and
oxygenation levels. TTP reflects the intricate interplay between neural activation,
metabolic demand, and subsequent hemodynamic adjustments in the brain. It offers a
window into the temporal aspects of neural processing, shedding light on how different

brain regions and channels respond to stimuli over time.

Then we implemented Contrast to Noise Ratio (CNR). This section employs
nested loops and calculates the CNR for each combination of methods, subjects,
channels, and stimuli. The CNR is calculated based on the mean of an active data
window divided by the square root of the sum of the standard deviations of the active

and baseline data windows.

Contrast-to-Noise Ratio (CNR) is a quantitative measure used in functional Near-
Infrared Spectroscopy (fNIRS) studies to assess the quality of the recorded
hemodynamic signals, specifically the contrast between the signal of interest and the
noise present in the data. A higher CNR value indicates a stronger and more detectable
hemodynamic response relative to the background noise, which is crucial for accurate

and meaningful interpretation of the data.
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We can use CNR as a tool to determine the effectiveness of experimental designs,
assess the sensitivity of the fNIRS system, and optimize data acquisition parameters

such as the number of trials, stimulus intensity, and duration.

Following the CNR computation, we proceed to conduct one-sample t-tests on the
CNR data, aiming to assess the statistical significance of differences between methods
and stimuli. Through the t-test we calculated key statistical measures including the test
statistic, p-value, and confidence interval. These outcomes serve as crucial indicators
of whether the observed differences in CNR values are statistically significant. Then
we compile the results of the t-tests into a multidimensional matrix termed 'Thr_Tsats'".
Each element of this matrix reflects the t-test outcome, wherein the presence or
absence of statistical significance is denoted by a binary variable 'h'. The t-statistic is
further incorporated into this matrix, potentially offering insights into the direction and
magnitude of differences between groups. The 'Thr_Tsats' matrix enables
comprehensive visualization of the t-test results, as it generates a set of subplots with
heatmaps. These heatmaps provide an intuitive representation of the t-test outcomes
for different methods and channels per stimulus, facilitating the identification of

patterns and relationships within the data.

A one-sample t-test is a statistical hypothesis test that is used to determine whether
the mean of a single sample of data significantly differs from a specified population
mean or a hypothesized value. It assesses whether the sample's mean is statistically
different from the expected value, and it provides a measure of how likely any
observed differences are due to random chance. In the context of functional Near-
Infrared Spectroscopy (fNIRS), a one-sample t-test can be applied to investigate
whether the mean of a certain hemodynamic response, such as changes in oxygenated
or deoxygenated hemoglobin concentration, significantly differs from a reference

value.
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S. RESULTS AND DISCUSSION

M1 (MCSG+BP)

M2 (MCSG+BP+CBSl)

M3 (MCSG+BP+CBSI+SS)

M4 (MCSG+BP+SS)

M5 (MCSG+BP+SS+CBSI)

M6 (BP ONLY)

M7 (BP+CBSI)

M8 (BP+CBSI+SS)

M9 (BP+SS)

M10 (BP+SS+CBSI)

8.78 + 2.53

9.32 + 2.68

10.32 + 3.08

10.08 + 3.30

10.09 + 3.06

9.09 +2.24

9.60 + 2.33

10.63 + 2.68

10.18 +2.99

10.30 + 2.69

Time to Peak

9.47 +2.62

9.97 + 2.57

10.01 + 2.82

9.65 + 2.87

9.86 + 2.69

9.53 +2.40

10.06 + 2.31

10.09 £ 2.39

9.61 +2.51

10.10 + 2.37

9.52 + 3.04

9.93 + 3.01

10.40 = 3.00

10.08 + 3.10

10.32 + 3.04

9.83 +2.91

9.91 £ 2.82

10.35 £ 2.78

10.04 = 2.77

10.16 £ 2.77

Table 5.1. Time to Peak (TTP) values for 10 methods and 3 stimulus type (speech,

noise, silence)

Table 5.1. demonstrates the results of Time to Peak values for 10 methods and 3

stimuli. We calculate them to determine the ideal activation interval for these methods.

We took the mean of the TTP values over all methods, channels and stimuli types and

computed the grand average value as 10.45 + 3.03 seconds as a result. We used 3

seconds as a prestimulus baseline and determined the activation interval between 4

and 10 seconds after onset of stimulus for each truncated block signal.
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Channel Numbers

Channel Channel Channel Channel
Number Before Number After Number Before Number After

Short Channel Short Channel Short Channel Short Channel

Removal Removal Removal Removal
1 1 19 14
3 2 20 15
4 3 21 16
6 4 22 17
7 5 23 18
8 6 24 19
9 7 26 20

11 8 27 21
12 9 28 22
13 10 29 23
14 11 31 24
16 12 32 25
17 13

Table 5.2. Channel Numbers before and after short channel removal

Table 5.2. demonstrates the numbers assigned to each long channel before and
after short channel removal. In the beginning, there were 33 channel recordings in each
experimental session which consisted of 25 long and 8 short channels. However, we
removed the 8 short channels and utilized 25 channel data for further analysis. Those
short channels were 2, 5, 10, 15, 18, 25, 30, and 33.
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Figure 5.1. Heat map of one sample T-Test for 3 stimulus, 10 methods, 25 channels

Figure 5.1. shows the heat map of one sample t-test results for 3 stimuli types (speech,
noise, silence), 10 methods, 25 channels. The x-axis represents the channels, and the
y-axis represents the methods. By looking at the intersection of a channel and method,
we can gauge the significance level of the t-test for that specific combination. In this
figure, black colored pixels correspond to non-significant results (i.e. channels with t
values that could not surpass the p<0.05 threshold) and light colored pixels correspond
to channel data that resulted in statistically significant activation where lighter colors
denote higher significant activation. Shades of gray between black and white represent
varying levels of statistical significance. Darker areas suggest that the null hypothesis
IS not rejected, indicating no significant difference in CNR values for that method-
channel pair. Lighter areas indicate significant differences in CNR values, implying
that the null hypothesis is rejected, and there's a likely genuine difference. By
comparing the heat maps for different stimuli, we can observe if the significance

patterns remain consistent or differ across the 3 auditory stimuli.
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This might reveal whether the effects being measured are stimulus-specific or

consistent across different conditions.

By examining the heat map in detail, we determined which channels had
significant activation for both speech and noise stimuli. Channel 6 and channel 25 had
significant activation for both stimuli. They were the most active channels. Therefore,
these 2 channels were selected to analyze. Channel 6 represents left Heschl’s Gyrus
and channel 25 represents right Heschl's Gyrus in the brain. Our regions of interest
(ROI) are left Heschl’s Gyrus and right Heschl's Gyrus.
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Figure 5.2. Block Average result of Method 1 (MCSG + BP) for Channel 6
and Channel 25
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Figure 5.3. Block Average result of Method 2 (MCSG + BP + CBSI) for
Channel 6 and Channel 25
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Figure 5.4. Block Average result of Method 3 (MCSG + BP + CBSI + SS) for
Channel 6 and Channel 25
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Figure 5.6. Block Average result of Method 5 (MCSG + BP + SS + CBSI) for
Channel 6 and Channel 25
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Figure 5.7. Block Average result of Method 6 (BP Only) for Channel 6 and
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Figure 5.11. Block Average result of Method 10 (BP + SS + CBSI) for
Channel 6 and Channel 25

All figures between Figure 5.2. to Figure 5.11. demonstrate the impact of each method
on channels 6 and 25. The observation of substantial differences in waveforms
resulting from distinct preprocessing pipelines deserves considerable attention. This
phenomenon underscores the noteworthy impact that various preprocessing
approaches can have on the shape and characteristics of recorded waveforms in
experimental data. The variations in waveforms across different preprocessing
strategies illuminate the intricate interplay between data processing steps and the

subsequent patterns of neural activity revealed by the analyses.
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Method Stim1,Ch 6 Stim 1, Ch 25

M1 (MCSG+BP) 2,74 0
M2 (MCSG+BP+CBSlI) 3,38 3,28
M3 (MCSG+BP+CBSI+SS) 0 2,26
M4 (MCSG+BP+SS) 0 0
M5 (MCSG+BP+SS+CBSI) 0 0
M6 (BP ONLY) 2,40 2,87
M7 (BP+CBSI) 3,69 3,52
M8 (BP+CBSI+SS) 2,52 2,81
M9 (BP+SS) 0 0
M10 (BP+SS+CBSI) 2,68 3,08

Table 5.3. T-values of all methods for Stimulus 1 (Speech)

Method Stim 2, Ch 6 Stim 2, Ch 25
M1 (MCSG+BP) 0 3,45
M2 (MCSG+BP+CBSI) 3,10 4,09
M3 (MCSG+BP+CBSI+SS) 2,87 4,31
M4 (MCSG+BP+SS) 2,12 3,79
M5 (MCSG+BP+SS+CBSI) 2,40 4,19
M6 (BP ONLY) 2,42 3,35
M7 (BP+CBSI) 2,87 4,36
M8 (BP+CBSI+SS) 2,53 4,64
M9 (BP+SS) 2,27 3,26
M10 (BP+SS+CBSlI) 0 4,36

Table 5.4. T-values of all methods for Stimulus 2 (Noise)



Table 5.3. shows the t-values for Channel 6 and Channel 25 for stimuli 1 (Speech).
Also, Table 5.4. shows the t-values for Channel 6 and Channel 25 for stimuli 2 (Noise).
Table 5.5. demonstrates average performance of these 4 groups for all of the 10
methods.

A high t-value indicates that the mean of CNR values obtained for that channel
data over all participants is statistically significantly different than zero. This suggests
that the observed difference from 0 is likely not due to random chance alone and we
can claim with over 95 % confidence that the mean CNR values are significantly
different than 0. A high t-value is often associated with a low p-value, indicating that
there is strong evidence against the null hypothesis which is in our case ‘Mean of CNR
values obtained across all participants CNR values is zero for that channel when fNIRS
signals are preprocessed with that method specific pipeline’. The null hypothesis is
rejected in favor of the alternative hypothesis in channel data when the probability of

accepting the null hypothesis is below the calculated p value.

Method Average Performance

M1 (MCSG+BP) 1,54
M2 (MCSG+BP+CBSI) 3,46
M3 (MCSG+BP+CBSI+SS) 2,36
M4 (MCSG+BP+SS) 1,47
M5 (MCSG+BP+SS+CBSlI) 1,65
M6 (BP ONLY) 2,76
M7 (BP+CBSI) 3,61
M8 (BP+CBSI+SS) 3,12
M9 (BP+SS) 1,38
M10 (BP+SS+CBSI) 2,53

Table 5.5. Average performance of t-values for each method (CH6 and CH25)
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Table 5.5. provides useful information to specify the best method. When we
compare the average performances of t-values for each method for our regions of
interest (ROI), the method which has the highest t score is determined as Method 7
(Bandpass Filter + Correlation Based Signal Improvement). The second best method
is Method 2 (Motion Correction Spline SG + Bandpass Filter + Correlation Based
Signal Improvement). Methods with the worst performance are Method 9 (Bandpass
Filter + Short Separation Regression) and Method 4 (Motion Correction Spline SG +
Bandpass Filter + Short Separation Regression).

Therefore, the best method is Method 7 and the worst method is Method 9.
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6. CONCLUSION

The ultimate aim of this study was to compare the performance of various
preprocessing pipelines for proposing the best solution to the noise problem and
reducing the motion artifacts in long channel fNIRS signals by use of short channel

information.

Over the course of the past ten years, a multitude of diverse techniques aimed at
denoising and correcting motion artifacts in FNIRS data have been explored with the
objective of enhancing the quality of recorded signals. Despite these efforts, a
universally accepted and definitive method has not yet emerged as the standard choice
for the majority of research groups. Various digital filtering approaches proved
insufficient in effectively eliminating noise elements, while conversely, other methods
exhibited the potential to inadvertently diminish the strength of the activation signal.
This lack of consensus underscores the ongoing challenges in establishing a robust
approach to denoising and motion correction in the realm of FNIRS studies. In this
study, we examined at how different noise removal strategies affect the signal quality
of audio fNIRS data. We aimed to find the best combination of preprocessing steps for
fNIRS measurements when the channels are placed close together. We compared the
efficacy of these filters in recovering hemodynamic activation in expected regions of
interest that covered mainly the bilateral Heschl’s Gyri. Our goal was to figure out the
method that would increase hemodynamic response quality in terms of the CNR
metric. For this purpose, we implemented 10 different preprocessing methodologies.
These methods included motion correction spline SG, short channel regression,
bandpass filter and correlation-based signal improvement. We used Homer3 functions

while implementing these methods.

In future research endeavors, further exploration and refinement of noise
reduction techniques, motion artifact correction methods, and data analysis approaches
will be crucial in advancing the reliability and accuracy of fNIRS studies conducted
with short channel separation. Additionally, the integration of advanced machine
learning algorithms and real-time processing capabilities holds the potential to
revolutionize the field, enabling real-time artifact identification and adaptive

correction strategies.
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