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SUMMARY  

Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a 

valuable non-invasive neuroimaging technique that holds immense 

potential for unraveling the mysteries of human brain function and 

cognition. By measuring the changes in hemodynamic responses, 

particularly the fluctuations in oxyhemoglobin and 

deoxyhemoglobin concentrations, fNIRS offers a window into the 

dynamic neural activity underlying cognitive processes. However, 

the accurate extraction of these subtle hemodynamic signals is often 

impeded by various confounding factors, among which short channel 

separation and noise contamination prominently feature. Short 

channels, or optodes placed at a minimal distance from the sources 

and detectors on the scalp, are particularly susceptible to capturing 

extracranial physiological activity, contaminating the recorded 

signals. Moreover, environmental and physiological noise sources 

further obfuscate the signal of interest. To address these challenges, 

researchers have been ardently developing and refining noise 

reduction techniques, ranging from traditional filtering methods to 

sophisticated machine learning algorithms. These techniques play a 

pivotal role in enhancing the quality of fNIRS data, ultimately 

advancing our understanding of human brain function and paving the 

way for more robust and insightful neuroimaging studies. The aim of 

this study is to find the best noise reduction technique by comparing 

10 fNIRS processing methods in the dataset collected with audio 

tasks using short channel separation. 

 

Keywords: Functional near-infrared spectroscopy, Processing, 

Noise reduction, Motion correction, Contrast to noise ratio, Bandpass 

filtering, Audio, Optical Density, Modified Beer-Lambert law, Short 

channel separation  
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ÖZET  

İşlevsel Yakın Kızılötesi Spektroskopi (İYKAS), insan beyninin 

işlevini ve bilişsel süreçlerin gizemlerini çözmede büyük potansiyele 

sahip önemli bir invaziv olmayan nörogörüntüleme tekniği olarak 

ortaya çıkmıştır. Oksihemoglobin ve deoksihemoglobin 

konsantrasyonlarındaki değişiklikleri ölçerek, özellikle dinamik 

sinirsel aktivitenin bilişsel süreçlerin temelindeki dalgalanmaları, 

İYKAS, bize bilişsel süreçlerin temelindeki dinamik sinirsel 

aktiviteye bir pencere sunar. Bununla birlikte, bu ince hemodinamik 

sinyallerin doğru bir şekilde çıkarılması, genellikle çeşitli karıştırıcı 

faktörler tarafından engellenir, bunlar arasında özellikle kısa kanal 

ayrımı ve gürültü kirliliği yer alır. Kısa kanallar, kaynak ve 

detektörlerin kafa derisine minimal bir mesafede yerleştirildiği 

optotlardır ve özellikle ekran dışı fizyolojik aktiviteyi yakalama 

eğilimindedir, bu da kaydedilen sinyalleri kirletir. Dahası, çevresel 

ve fizyolojik gürültü kaynakları ilgi çekici sinyali daha da 

belirsizleştirir. Bu zorlukların üstesinden gelmek için araştırmacılar, 

geleneksel filtreleme yöntemlerinden sofistike makine öğrenimi 

algoritmalarına kadar uzanan gürültü azaltma tekniklerini özenle 

geliştirip iyileştirmektedirler. Bu teknikler, İYKAS verilerinin 

kalitesini artırmada kilit bir rol oynamakta olup, nihayetinde insan 

beyin işlevinin anlayışımızı ilerletmekte ve daha sağlam ve içgörülü 

nörogörüntüleme çalışmalarının yolunu açmaktadır. Bu çalışmanın 

amacı, kısa kanal ayrımı kullanılarak sesli görevlerle elde edilen veri 

setinde 10 İYKAS işleme yöntemini karşılaştırarak en iyi gürültü 

azaltma tekniğini bulmaktır. 

Anahtar Kelimeler: İşlevsel yakın kızılaltı spektroskopi, İşleme, 

Gürültü azaltma, Hareket düzeltme, Kontrast-gürültü oranı, Bant 

geçiren filtreleme, Sesli, Optik Yoğunluk, Modifiye Edilmiş Beer-

Lambert yasası, Kısa kanal ayrımı 
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1. INTRODUCTION  

Modern human brain research has experienced an increasing interest in the use of 

a novel non-invasive optical imaging technique known as functional near infrared 

spectroscopy (fNIRS) for neuroscientific research in the last couple of decades. As a 

proxy for neural activity, fNIRS is a wearable optical neuroimaging technology  that 

can simply assess variations in cortical oxygenation dynamics (1). 

  

FNIRS has a significant promise as an imaging modality for clinical research, 

basic and applied research because of its low cost, simplicity of use at the bedside, and 

compatibility with other complementary electrophysiological approaches. It can also 

be used in a variety of applications, including neurodevelopmental research where it 

has significant potential to replace and/or assist neurophysiological data  

obtained from functional magnetic resonance imaging (fMRI) (2). 

 

FNIRS systems utilize near infrared (NIR) light directed at the scalp to monitor 

changes in regional cerebral oxygenation resulting from neuronal activation. However, 

before reaching the cortical tissue, the NIR light must pass through the scalp, skull, 

and cerebrospinal fluid compartments. The human brain tissue is complex, being 

anisotropic and inhomogeneous across its different layers, which adds intricacy to how 

the NIR light interacts with it (3). 

 

A continuous wave fNIRS device functions by continuously exposing the brain to 

a fixed intensity of incident light while simultaneously detecting changes in the 

intensity of the reflected light, which allows for the assessment of brain activity. This 

process involves the penetration of several layers of brain tissue, including the scalp, 

skull, cerebrospinal fluid, gray matter, and white matter, by the emitted light from the 

sensors placed on the subject's scalp. Throughout this penetration, some photons 

undergo deflection or scattering, while others manage to pass through the layers and 

are captured by a detector located on the scalp, typically positioned around 0.5 to 5.5 

cm away from the emitters.  
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The resulting changes in intensity of the detected photons are then subjected to 

the modified Beer-Lambert formula to calculate the corresponding alterations in the 

concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). This allows 

researchers to infer and monitor changes in brain oxygenation levels, serving as a 

valuable tool in studying brain function and neural activity (4).  
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2. BACKGROUND 

2.1. Brain Imaging Techniques  

Brain imaging techniques are invaluable tools used to study the intricate workings 

of the human brain. These non-invasive methods allow researchers and medical 

professionals to visualize brain structures, functions, and abnormalities, contributing 

to our understanding of cognition, behavior, and neurological disorders.  

Magnetic Resonance Imaging (MRI) is one of the most widely used brain imaging 

techniques, which employs powerful magnets and radio waves to generate detailed 

images of the brain's soft tissues, providing high-resolution anatomical information. 

Complementing MRI, functional Magnetic Resonance Imaging (fMRI) measures 

changes in blood flow, indicating brain activity during various tasks and revealing 

functional connectivity patterns.  

Positron Emission Tomography (PET) is another powerful tool that involves the 

injection of a radioactive tracer, allowing the visualization of metabolic processes and 

neurochemical activities in the brain.  

Single-Photon Emission Computed Tomography (SPECT) is similar to PET but 

uses a different type of tracer and is more widely available.  

Diffusion Tensor Imaging (DTI) focuses on the brain's white matter tracts, 

enabling researchers to study the connectivity and communication between different 

brain regions.  

Electroencephalography (EEG) and Magnetoencephalography (MEG) measure 

electrical and magnetic activity in the brain, respectively, with high temporal 

resolution, aiding the study of neural oscillations and brain rhythms.  

Lastly, Computed Tomography (CT) scans use X-rays to create cross-sectional 

images of the brain, often used in emergency situations due to its rapid results.  

Each brain imaging technique possesses unique strengths and limitations, 

collectively enhancing our knowledge of the brain's complexity and advancing 

medical diagnoses and treatments for various neurological conditions. 
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Electroencephalography (EEG)  

Electroencephalography (EEG) is a valuable neuroimaging technique that records 

and measures the electrical activity of the brain through the use of electrodes placed 

on the scalp. The history of EEG dates back to the late 19th century when the British 

physician Richard Caton first observed electrical signals in the brains of animals. 

However, it was not until 1924 when German psychiatrist Hans Berger made a 

groundbreaking discovery by successfully recording human brain waves using his 

electroencephalograph. His pioneering work opened up new avenues for 

understanding the brain's electrical activity and led to the term 

“electroencephalogram." (5). 

Over the years, EEG technology has significantly evolved, becoming more 

sophisticated and accessible. Early EEG machines were limited by their cumbersome 

nature and low signal resolution, but advancements in electronics and computing have 

dramatically improved the quality and efficiency of EEG recordings (6). Modern EEG 

systems consist of multiple electrodes placed strategically across the scalp to capture 

brain activity from different brain regions simultaneously. 

EEG is widely used in various fields, including neuroscience, clinical medicine, 

and psychology. In neuroscience research, EEG helps researchers investigate brain 

functions related to cognition, attention, memory, and sleep. Moreover, it plays a 

pivotal role in diagnosing and monitoring neurological disorders such as epilepsy, 

sleep disorders, and brain injuries. The characteristic EEG patterns associated with 

different conditions aid in accurate diagnosis and inform treatment strategies (6). 

One of the key advantages of EEG is its exceptional temporal resolution, allowing 

researchers to observe brain activity in real-time. This capability is particularly useful 

in studying event-related potentials (ERPs), which are specific brain responses elicited 

by external stimuli or internal mental processes. The ability to precisely time neural 

events makes EEG an essential tool for studying cognitive processes with high 

temporal precision (7). 

Despite its many strengths, EEG also has limitations. Its spatial resolution is 

relatively low compared to other brain imaging techniques like fMRI or MRI. The 

signals measured by EEG are attenuated as they pass through the skull and scalp, 
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making it challenging to precisely locate the source of activity within the brain. To 

address this limitation, researchers often combine EEG with other neuroimaging 

modalities to gain a more comprehensive understanding of brain function and 

connectivity (7).  

In recent years, EEG technology has seen further advancements with the 

development of wearable EEG devices, making it possible to conduct studies outside 

the laboratory setting. These portable EEG systems have opened up new opportunities 

for monitoring brain activity during real-world tasks and enhancing brain-computer 

interface (BCI) applications. 

Overall, EEG remains a crucial and versatile tool in neuroscience and clinical 

practice, continuously contributing to our understanding of brain function and 

providing valuable insights into the complexities of the human mind. As technology 

continues to progress, EEG is likely to play an increasingly significant role in 

diagnosing and treating neurological conditions and exploring the mysteries of the 

brain. 

Functional Magnetic Resonance Imaging (fMRI)  

Functional Magnetic Resonance Imaging (fMRI) is a powerful brain imaging 

technique that allows researchers and clinicians to non-invasively visualize and 

measure brain activity based on changes in blood flow. The roots of fMRI can be traced 

back to the development of MRI technology in the early 1970s. MRI, which stands for 

Magnetic Resonance Imaging, was initially used for anatomical imaging and provided 

detailed images of the brain's structure without the need for ionizing radiation. It was 

a revolutionary advancement in medical imaging, but it wasn't until the early 1990s 

that fMRI emerged as a groundbreaking extension of MRI. 

The key breakthrough in fMRI came with the recognition that changes in blood 

oxygenation levels are tightly linked to neural activity. This relationship, known as the 

"hemodynamic response," forms the basis of fMRI. When a specific region of the brain 

becomes more active, it requires more oxygen to support the increased metabolic 

demand. In response, blood flow to that area increases to deliver oxygen-rich blood, 

resulting in a detectable change in the MRI signal. 
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The first fMRI experiments were conducted by three research groups 

independently in 1991. Seiji Ogawa, Ken Kwong, and Kamil Uğurbil, along with their 

teams, demonstrated the feasibility of fMRI in mapping brain activity during simple 

tasks. Their seminal studies set the stage for fMRI's rapid expansion in neuroscience 

and cognitive research (8). 

Since its inception, fMRI has evolved significantly, leading to improved image 

quality, increased spatial resolution, and more sophisticated data analysis techniques. 

With the advent of high-field MRI scanners and advanced data processing methods, 

researchers can now capture detailed brain activity patterns with unprecedented 

precision. 

fMRI has become an essential tool in cognitive neuroscience, allowing researchers 

to explore the functional organization of the human brain. By presenting participants 

with various stimuli or tasks, scientists can study how different brain regions respond 

and interact during specific cognitive processes. For instance, fMRI studies have 

unveiled brain networks associated with attention, memory, language, emotion, and 

decision-making (7). 

In the clinical realm, fMRI has found applications in pre-surgical planning, 

particularly in cases involving brain tumors or epilepsy. By identifying critical 

functional regions in individual patients, surgeons can avoid damaging vital areas and 

reduce the risk of post-surgical deficits. Additionally, fMRI has been utilized to 

investigate neurological and psychiatric disorders, providing insights into their 

underlying neural mechanisms. While fMRI offers exceptional spatial resolution, it 

has limitations. The hemodynamic response has a relatively slow time course, which 

restricts the temporal resolution of fMRI compared to other brain imaging techniques 

like EEG. Furthermore, fMRI requires participants to lie still within the confined space 

of an MRI scanner, potentially limiting the examination of certain behaviors or 

conditions that may be more naturalistic (7). 

In conclusion, fMRI has revolutionized brain research and clinical neuroscience 

by enabling non-invasive investigation of brain function. Its ability to map brain 

activity and connectivity has provided unprecedented insights into the human mind 

and opened up new avenues for understanding neurological disorders. As technology 
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continues to advance, fMRI is expected to remain a cornerstone in brain research, 

leading to even more sophisticated applications and furthering our understanding of 

the complexities of the human brain. 

Magnetoencephalography (MEG)  

Magnetoencephalography (MEG) is a unique and valuable brain imaging 

technique that measures the magnetic fields generated by neuronal activity in the brain. 

The history of MEG can be traced back to the 1960s when researchers first observed 

the magnetic signals produced by the human brain. However, it was not until the 1970s 

that MEG began to gain recognition as a practical method for studying brain activity. 

The breakthrough came with the development of superconducting quantum 

interference devices (SQUIDs), which are highly sensitive to magnetic fields (9) These 

devices allowed for more accurate and precise measurement of the weak magnetic 

signals generated by the brain's neural currents. In 1968, David Cohen and his team at 

the Massachusetts Institute of Technology (MIT) built the first whole-head MEG 

system, which paved the way for the modern MEG technology we use today (10). 

MEG offers several advantages over other brain imaging techniques. One of its 

key strengths is its exceptional temporal resolution, providing precise measurements 

of neural activity on a millisecond timescale. This ability is particularly valuable for 

studying the rapid dynamics of brain processes, such as those involved in perception, 

language, and motor control. Additionally, MEG has excellent spatial resolution, 

allowing researchers to pinpoint the location of neural activity within the brain with 

high accuracy. 

MEG has become a vital tool in neuroscience and cognitive research. It has helped 

reveal fundamental brain mechanisms involved in sensory perception, memory, 

attention, and language processing. MEG studies have contributed to our 

understanding of brain networks and how different regions interact during various 

cognitive tasks. Moreover, MEG is instrumental in investigating abnormal brain 

activity and functional connectivity patterns in neurological disorders, such as epilepsy 

and autism spectrum disorders (11). 

MEG's non-invasive nature and high temporal and spatial resolution have also 

made it an important tool in brain-computer interface (BCI) research. BCI systems 
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enable direct communication between the brain and external devices, holding great 

promise for assisting individuals with motor disabilities or communication 

impairments. 

Despite its advantages, MEG does have some limitations. The main challenge lies 

in its susceptibility to magnetic interference from the environment and surrounding 

electronics. To address this, MEG labs are specially shielded to minimize external 

magnetic fields' impact on measurements. Additionally, MEG signals are weaker than 

electrical signals measured by EEG, which can limit its sensitivity to deep brain  

structures (12). 

In recent years, MEG technology has continued to advance. The development of 

novel sensor arrays, improved data analysis techniques, and the integration of MEG 

with other neuroimaging modalities, such as fMRI and EEG, have further enhanced 

its capabilities. Additionally, advancements in software and computational methods 

have facilitated the extraction of more detailed information from MEG data, expanding 

its applications in both research and clinical settings. 

In conclusion, MEG is a powerful and versatile brain imaging technique that 

provides unique insights into the dynamics of neural activity in the human brain. Its 

ability to capture millisecond-scale brain processes with high spatial accuracy has been 

instrumental in advancing our understanding of brain function and dysfunction. As 

technology continues to progress, MEG is likely to play an increasingly significant 

role in neuroscience, offering new opportunities to explore the complexities of the 

brain and improve our knowledge of the human mind. 

Positron Emission Tomography (PET) 

Positron Emission Tomography (PET) is a powerful and versatile brain imaging 

technique that provides valuable insights into brain function and metabolism. The 

history of PET dates back to the 1950s when scientists first began exploring the use of 

positron-emitting isotopes in medical imaging. However, it was not until the 1970s 

that PET technology started to be used for brain imaging. The breakthrough came with 

the development of cyclotrons, which allowed for the production of short-lived 

positron-emitting isotopes. In 1976, Michael E. Phelps and Edward Hoffman 

successfully demonstrated the application of PET to measure brain activity using the 
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radiotracer 18F-fluorodeoxyglucose (FDG), a glucose analogue that reveals regional 

brain glucose metabolism (13). 

PET is particularly valuable in brain imaging due to its ability to visualize and 

quantify metabolic processes and neurochemical activities in vivo. By using specific 

radiotracers, PET can measure various aspects of brain function, including glucose 

metabolism, regional blood flow, receptor density, and neurotransmitter binding. For 

example, FDG-PET is widely used to assess brain glucose metabolism, which is an 

essential marker of brain activity and energy utilization. PET studies with radiotracers 

targeting neurotransmitter systems, such as dopamine and serotonin, have provided 

insights into the neurochemical basis of various neuropsychiatric disorders. 

In neuroscience research, PET has played a critical role in investigating brain 

function and mapping neural networks associated with various cognitive processes. It 

has been employed to study memory, attention, language, emotion, and decision-

making. PET studies have also contributed to our understanding of brain plasticity, 

showing how the brain reorganizes and adapts in response to learning, injury, or 

disease. In clinical medicine, PET has become an indispensable tool in the diagnosis, 

staging, and treatment evaluation of neurological disorders. For instance, in the early 

diagnosis of Alzheimer's disease, PET imaging with radiotracers targeting amyloid 

plaques or tau tangles allows for the detection of characteristic pathological changes 

before significant cognitive decline occurs.  

PET is also widely used in the evaluation of epilepsy, brain tumors, and movement 

disorders, providing crucial information for surgical planning and patient 

management. 

Moreover, PET is utilized in drug development and pharmacological research. 

Preclinical PET studies in animal models help researchers understand drug 

pharmacokinetics and pharmacodynamics, while clinical PET trials enable the 

evaluation of drug effects on specific brain targets, receptor occupancy, and drug 

distribution in the brain. 

While PET offers exceptional molecular and functional information, it does have 

some limitations. The use of radioactive isotopes requires specialized facilities and 

strict radiation safety protocols. Additionally, the short half-life of some radiotracers 



 

  12 

limits their availability and necessitates on-site production with cyclotrons or other 

accelerators(13). 

Recent advancements in PET technology, such as the development of hybrid 

NeuroPET/CT and PET/MRI systems, have further expanded its capabilities. The 

integration of PET with other imaging modalities allows for more comprehensive 

assessments of brain structure, function, and metabolism (13). 

In conclusion, PET is a versatile and essential tool in brain imaging, providing 

valuable information about brain function, metabolism, and neurochemistry. Its 

applications in neuroscience, clinical medicine, and drug development have 

significantly contributed to our understanding of the brain and its role in health and 

disease. As PET technology continues to evolve, it is likely to remain a critical 

component of brain research and clinical practice, offering new opportunities to 

advance our knowledge and improve patient care. 

2.2. New Technique For Brain Imaging: Functional Near-

Infrared Spectroscopy (FNIRS)  

Functional Near-Infrared Spectroscopy (fNIRS) is a novel brain imaging 

technique gaining popularity in functional neuroimaging research. It non-invasively 

examines changes in brain oxygenation levels through transillumination. Over the past 

two decades, interest in fNIRS has grown due to its real-time monitoring capabilities, 

cost-effectiveness, radiation-free nature, portability, and patient-friendly 

characteristics. It finds applications in brain-computer interface and functional 

neuroimaging research, as well as in clinical contexts like Alzheimer's disease, 

schizophrenia, dyslexia, Parkinson's disease, childhood disorders, post-neurosurgery 

dysfunction, attention, functional connectivity, and more. This versatile technique 

offers potential for diagnosis and assists in clinical approaches (14). 

The roots of fNIRS can be traced back to the early 1970s when researchers first 

explored the application of near-infrared light to study biological tissues. However, it 

was not until the 1990s that fNIRS started to gain popularity as a brain imaging tool. 

The breakthrough came with the development of better light sources, detectors, and 

data analysis methods. In the past, fNIRS was mainly used in the field of physiology 
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to assess tissue oxygenation and blood flow. But its application to brain imaging 

expanded rapidly due to its non-invasive nature, portability, and affordability. 

The development of in vivo Near-Infrared Spectroscopy (NIRS) was pioneered 

by Frans Jöbsis, who discovered its potential for non-invasive detection of hemoglobin 

oxygenation in the brain using transillumination spectroscopy in 1977. Marco Ferrari 

also made significant contributions, utilizing prototype NIRS instruments to measure 

brain oxygenation in experimental animal models and human adults in the 1980s. 

David Delpy further advanced NIRS by developing quantitative measurements of 

oxygenation and hemodynamic parameters in sick newborn infants. Over the years, 

various companies collaborated with research institutions to develop NIRS prototypes, 

leading to the creation of the first commercial NIRS system, the NIRO-1000, in 1989 

by Hamamatsu Photonics. From 1980 to 1995, nine companies joined the effort to 

develop NIRS technology (15). 

Near-Infrared Spectroscopy (NIRS) relies on the transparency of human tissues to 

light in the NIR spectral range (650–1000 nm). NIR light can be absorbed or scattered 

in tissues, but its dominant mode of transport is scattering, making it capable of 

penetrating human tissues. Hemoglobin, present in small vessels of the 

microcirculation, causes the main attenuation of NIR light in tissues, and larger blood 

vessels have minimal impact on NIRS measurements. NIRS uses safe laser diode 

and/or light-emitting diode light sources along with flexible fiber optics for delivering 

and detecting NIR light in tissues. This non-invasive technique permits monitoring of 

physiological parameters, including oxygenated and deoxygenated hemoglobin levels 

and cerebral blood volume. It offers spatial sensitivity to brain activity despite the 

complexity of light scattering in tissues (14). 

Functional Near-Infrared Spectroscopy (fNIRS) in the form of Continuous Wave 

(CW fNIRS) highlighting its relatively simple setup and practical applications. To 

conduct CW fNIRS measurements, a Near-Infrared (NIR) light source is activated, 

and the emitted light is directed into the scalp. The light that re-emerges from the tissue 

a few centimeters away is then measured to gather valuable data. The simplicity of 

CW fNIRS setups allows for specialization in wearable, miniaturized, and wireless 

applications, making it a versatile tool for various research and clinical scenarios. 
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Additionally, the cost-effectiveness of CW fNIRS instruments can partially be 

attributed to the use of off-the-shelf components (16).  

The three main components common to all CW fNIRS devices are thoroughly 

discussed: 1) NIR light emitters, 2) detectors, and 3) means of transporting light to and 

from the scalp. Typically, a few discrete wavelengths are used in NIRS, and the 

Modified Beer-Lambert Law (MBLL) equations are evaluated at these selected 

wavelengths to obtain data on oxygenated and deoxygenated hemoglobin. On the other 

hand, broadband light sources combined with optical bandpass filters are used in 

broadband NIRS to obtain continuous absorption spectra of diffuse reflectance. The 

NIR light needs to be from the NIR part of the spectrum to penetrate the tissue 

effectively without complete absorption prior to detection, a crucial factor discussed 

in selecting optimum wavelengths (16). 

 

  
 

Absorption is a process in which the energy of a photon is converted into internal 

energy in the tissue, and different substances in our body have distinct absorption 

properties at various wavelengths. Hemoglobin is the dominant absorbing 

chromophore within the Near-Infrared (NIR) optical window. When a brain area 

becomes active during a task, the increased metabolic demand leads to an oversupply 

of regional cerebral blood flow, resulting in changes in hemoglobin concentrations. 
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Oxygenated hemoglobin (𝐻𝑏𝑂2) increases, while deoxygenated hemoglobin (HbR) 

decreases, causing alterations in light attenuation, which can be measured by fNIRS. 

NIR light also undergoes scattering as it travels through biological tissue, allowing it 

to penetrate several centimeters. By placing a light detector at a certain distance from 

the NIR light source, changes in light attenuation can be measured, reflecting 

variations in 𝐻𝑏𝑂2 and HbR concentrations within the tissue (Figure 2.1) (3). 

 

The Modified Beer Lambert Law (MBLL) is a fundamental principle in Near-

Infrared Spectroscopy (NIRS) that relates the attenuation of light to the concentration 

of absorbing substances in a medium. The law is an extension of the Beer Lambert 

Law, which describes the relationship between light absorption and concentration in 

transparent solutions. In NIRS, however, the medium is not fully transparent, and light 

undergoes both absorption and scattering as it passes through biological tissues.  

The MBLL takes into account both absorption and scattering effects, allowing for 

the quantification of chromophores such as hemoglobin in biological tissues (17). The 

MBLL equation can be expressed as: 

 

𝛥𝐴 = 𝑙𝑜𝑔(𝐼0/𝐼) = 𝜀 ∗ 𝑐 ∗ 𝑑 
 

where ΔA is the change in light attenuation (absorbance), 𝐼𝑂 is the incident light 

intensity, 𝐼 is the transmitted light intensity, ε is the molar absorption coefficient of the 

chromophore, c is the concentration of the chromophore, and d is the pathlength of 

light through the medium (i.e., the distance between the light source and the detector). 

The term ΔA is also referred to as the optical density, representing the logarithm of 

the ratio of incident to transmitted light. It can be also shown as optical density:  

 

                                        𝑂𝐷 = −𝑙𝑜𝑔(𝐼/𝐼0) = 𝜀𝐶𝐿𝐵 + 𝐺 

 

The optical density (OD) in the Modified Beer Lambert Law (MBLL) is expressed as 

a logarithmic function of the incident light intensity (Io) divided by the detected light 

intensity (I). It depends on several factors: the extinction coefficient (ε) of the 

absorbing substance (chromophore), the concentration (C) of the chromophore in the 

tissue, the distance (L) between where the light enters and exits the tissue, a pathlength 
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factor (B) considering the increased photon pathlength due to tissue scattering, and a 

measurement geometry factor (G) (18).  

 

In NIRS applications, the MBLL is commonly used to estimate changes in the 

concentrations of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin 

(HbR) in brain tissue. When a brain region becomes active, the metabolic demand for 

oxygen increases, leading to changes in regional cerebral blood flow. This, in turn, 

alters the concentrations of HbO2 and HbR, resulting in changes in light attenuation, 

which can be measured by the NIRS device. Despite its simplicity, the MBLL is a 

powerful tool that allows researchers and clinicians to non-invasively monitor 

physiological changes in tissues, making it an invaluable technique in various fields, 

including neuroscience, clinical medicine, and sports science.  

Moreover, the MBLL's adaptability to different chromophores and tissues makes 

it a versatile method for studying and understanding biological processes in living 

organisms. 

 

Engineers strive to maximize the radiated optical power to enhance signal-to-

noise ratio (SNR) and enable the use of longer source-detector distances, which 

increases sensitivity to deeper tissues. However, tissue heating caused by irradiation 

or conductive heat transport from the source must be carefully managed to avoid 

compromising measurements or causing discomfort to subjects. Safety measures are 

paramount, particularly concerning eye safety for both experimenters and subjects. 

The emitted light intensity fluctuations can directly affect detector noise, emphasizing 

the importance of light sources that radiate light as consistently as possible. Proper 

power circuitry design and stabilization of power supply can mitigate emitter noise. 

In fNIRS measurements at several discrete wavelengths, it is desirable to choose 

light sources with sharply peaked radiation spectra or employ weighted averaging 

approaches when the emission spectrum is known. Laser diodes (LDs) and light-

emitting diodes (LEDs) are the primary light sources utilized in CW fNIRS 

instruments. LDs offer coherent light emission with narrower bandwidth due to 

stimulated emission, making them suitable for fiber coupling. However, LDs can be 

larger and potentially hazardous due to the risks associated with laser radiation for the 

eyes. On the other hand, LEDs are smaller, come in various emitting wavelengths, and 
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are considered valid alternatives to LDs, providing flexibility in wavelength selection 

(16). 

The choice between LDs and LEDs depends on specific instrument requirements, 

including size, weight, power consumption, and fiber coupling efficiency. Each type 

of light source has its advantages and trade-offs, and their selection is essential in 

optimizing the performance and capabilities of fNIRS instruments. Overall, CW 

fNIRS offers engineers a promising and versatile technique for various applications in 

neuroimaging and other fields, promising insights into brain function and 

physiological responses (16). 

 

2.3. Noise Problem in fNIRS Signals 

Physiological noises originating from various sources, including heartbeat, 

respiration, Mayer waves, and systemic physiological activity from the outer layers of 

the brain, as well as motion artifacts, often interfere with event-related functional 

Near-Infrared Spectroscopy (fNIRS) observations. Consequently, the collected data 

on cortical activity may be compromised and inaccurate (4). 

fNIRS measures the hemoglobin response to brain activation, but it also captures 

interfering signals from head movement and other physiological changes. These 

interfering signals can manifest as sudden spikes, baseline shifts, periodic variations, 

and low-frequency drift in the data. If these confounding factors are not properly 

addressed, the estimation of the hemoglobin response related to neuronal activity may 

be biased and inaccurate (19). 

A strong cardiac component, which indicates a good optode-scalp coupling, 

serves as a reliable indicator of high-quality fNIRS signals. This is because the near-

infrared light used in fNIRS passes through both the cerebral and superficial layers of 

the brain. During this journey, various factors, both intrinsic and extrinsic, influence 

the absorption and scattering of the transmitted light. The intrinsic elements include 

cerebral and extra-cerebral hemodynamics resulting from systemic artifacts and brain 

functioning. One such artifact present in both compartments is the heartbeat. 

Therefore, the presence of the heartbeat in fNIRS data indicates that sufficient light 
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has reached the brain, and most of the absorption and scattering arise from intrinsic 

factors. However, if external factors significantly limit the amount of light reaching 

the brain, leading to poor optode-scalp coupling, the quality of the fNIRS signal may 

be compromised (20). Extrinsic factors encompass several aspects such as the optode 

placement tightness, the thickness of the scalp and skull, the properties of the skin, and 

the density and color of any existing hair. These external elements can influence the 

quality and reliability of the fNIRS measurements (20). As fNIRS data is collected 

through the intact skull, extracerebral noises originating from the skin, skull, and blood 

vessels on the brain's surface are present in every fNIRS channel. Consequently, 

systemic physiological fluctuations in local hemodynamics are more prone to impact 

the quality of the fNIRS signal (21).  

3. STATE OF THE ART APPROACHES FOR 

DENOISING AND PREPROCESSING OF FNIRS 

SIGNALS 

In fNIRS data analysis, several methods are employed in a stepwise manner to 

mitigate noise and artifacts. Various signal processing techniques, including channel 

exclusion and motion correction, have been devised to address potential confounding 

factors and eliminate physiological noise from the fNIRS signals. However, selecting 

the most suitable algorithm or approach can be difficult due to the abundance of 

different processing methodologies, each offering its own advantages and limitations 

(22). 

3.1. Channel Quality Assessment and Channel Pruning 

Various factors can negatively impact the quality of fNIRS signals, including 

instrument and environmental noise, suboptimal coupling of the optodes to the 

subject's head, artifacts arising from subject motion, and optical interference caused 

by the presence of coarse or strongly colored hair. These sources of noise and artifacts 

can lead to a reduction in the signal-to-noise ratio (SNR) and introduce sudden baseline 

intensity shifts or sharp spikes in the time series data, thereby jeopardizing the 

accuracy of the recorded information and subsequent interpretations. To ensure the 

adequacy of the signal quality, it is imperative to establish a standardized approach for 

identifying and rejecting subpar channels that could distort the data. One commonly 

employed criterion involves visually inspecting the optical density signal within the 
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wavelength range of 830 to 850 nm to ascertain the presence of the heart pulse, either 

in the time or frequency domain. The rationale behind this approach is grounded in the 

understanding that fluctuations in optical density are closely associated with 

physiological hemodynamic changes when a robust and consistent cardiac oscillation 

is detected. By carefully scrutinizing the fNIRS data in this manner, researchers can 

effectively discern genuine signals related to brain activity from unwanted noise and 

artifacts. Rejecting channels with poor signal quality helps enhance the overall 

robustness and accuracy of the fNIRS measurements, providing a more reliable 

foundation for subsequent data analysis and scientific interpretations. Moreover, 

adopting standardized practices for noise reduction and artifact removal is crucial for 

ensuring the validity and replicability of fNIRS studies across different research 

settings and experimental conditions (22). 

In assessing the quality of fNIRS signals and identifying noise, researchers have 

two viable options: conducting a simple signal-to-noise ratio (SNR) check or 

performing spectral analysis to evaluate cardiac power at each channel. The presence 

and strength of the heartbeat serve as reliable indicators of the optode-scalp coupling 

and, consequently, serve as effective quality control parameters for fNIRS signals, 

particularly when the sampling rate is sufficiently high, such as 10 Hz (17).  

The visual inspection method for signal quality check has limitations, being 

subjective, time-consuming, and not ensuring sufficient quality at the 700 nm 

wavelength (weighted to deoxyhemoglobin, making cardiac pulsation less robust). 

Automated approaches for channel exclusion are advantageous, especially if they 

outperform visual assessment. Various automated techniques, including the coefficient 

of variation (CV) approach, have been suggested to evaluate and determine exclusion 

pathways (22).  

3.2. Motion Artifact Detection 

Motion artifacts in fNIRS data are typically identified by detecting rapid signal 

changes that exceed the amplitude of hemodynamic changes. This detection process 

involves setting thresholds using user-defined input parameters in motion detection 

algorithms. By applying these thresholds to different components of the signal, such 

as moving standard deviation time series, absolute signal amplitude changes, or 
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standard deviation variations, one can identify temporal epochs likely affected by 

motion artifacts. However, the use of human input in this process makes it subjective, 

and optimal parameters may vary across different datasets. An ideal motion artifact 

detection algorithm should objectively define a threshold based on deviations caused 

by actual physiological fluctuations, derived directly from the signal itself. By 

eliminating the reliance on subjective user input and considering actual physiological 

variations, such an algorithm can enhance the accuracy and reliability of motion 

artifact identification in fNIRS data (23).  

The HOMER2 NIRS processing package includes a motion artifact identification 

technique called hmrMotionArtifact, which reliably detects motion artifacts based on 

variations in signal amplitude and/or standard deviation. Motion is identified if the 

standard deviation increases by a factor greater than SDThresh or if the peak-to-peak 

amplitude increases by a factor greater than AMPThresh within a window of length 

tMotion. This technique operates under the assumption that motion artifacts affect 

multiple channels; hence, signal changes identified as artifacts in one channel are 

labeled as motion in all channels (24). 

3.3. Motion Artifact Correction 

3.3.1. Spline Interpolation 

Spline interpolation is a commonly used technique in functional near-infrared 

spectroscopy (fNIRS) data analysis to handle missing or noisy data points. In fNIRS 

experiments, signal interruptions due to subject motion or other artifacts can lead to 

gaps in the data, affecting the accuracy of the results. Spline interpolation works by 

fitting a smooth curve through the existing data points, and then estimating the values 

for the missing or corrupted data points based on this curve. This method helps to fill 

in the gaps and produce a continuous, more complete dataset for further analysis. By 

effectively reconstructing the missing information, spline interpolation enhances the 

robustness of fNIRS data and facilitates more accurate interpretations of brain activity 

and hemodynamic responses. 

The channel-by-channel method of spline interpolation used suggested by 

Scholkmann et al. (25). The Homer2 NIRS Processing package utilizes the 

hmrMotionArtifactByChannel function to automatically identify motion artifact 
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fragments on a per-channel basis. A cubic spline interpolation is then employed to 

estimate the motion artifact period. By subtracting the resulting spline interpolation 

from the original signal, the motion artifact is removed. However, the corrected signal 

may have different signal levels than the original, necessitating the reconstruction of 

the time series. While the spline interpolation approach offers the advantage of 

baseline shift removal, its effectiveness depends on the reliable identification of 

motion artifacts prior to implementation. If motion artifacts are challenging to detect, 

the spline method may not yield significant signal improvement (26). 

3.3.2. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a widely used data analysis technique in 

functional near-infrared spectroscopy (fNIRS) research. PCA aims to reduce the 

complexity of fNIRS data by transforming it into a new set of uncorrelated variables 

called principal components. These components capture the most significant variations 

in the data and allow researchers to identify patterns and trends more efficiently. By 

retaining the most informative components and discarding the less relevant ones, PCA 

helps to reduce noise and highlight the key features of the fNIRS signal related to brain 

activity. This dimensionality reduction technique enhances data visualization, 

denoising, and the extraction of meaningful information from large and complex 

fNIRS datasets, making it a valuable tool in neuroimaging studies.  

PCA implementation in fNIRS involves converting an N-measurement dataset 

into N linearly uncorrelated components, sorted based on their contribution to the data 

variance. In many cases, motion artifacts are more prominent than the actual NIRS 

background signal, and they may affect multiple NIRS channels. To address this, PCA 

is applied with the assumption that the first R principal components primarily represent 

motion artifacts, capturing the majority of the variance. By removing these R 

components from the data, researchers can filter out the motion artifacts and proceed 

with further analysis of the NIRS data, focusing on the relevant brain-related signal. 

This approach helps enhance the accuracy and reliability of fNIRS data interpretation 

by mitigating the influence of motion artifacts (24). The number of measurements 

available (N) and the number of components removed (R) have a direct impact on PCA 

performance (26).  
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If PCA is applied to data points presumed to contain motion artifacts, it is less 

probable that the physiological fluctuations in the motion-free part of the signal will 

be effectively removed. Therefore, accurate identification of motion artifacts is crucial 

when using PCA to address such issues in the data (23). 

3.3.3. Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) is a powerful data analysis method 

frequently employed in functional near-infrared spectroscopy (fNIRS) research. 

Unlike PCA, which transforms data into uncorrelated components, ICA aims to extract 

statistically independent components from the fNIRS signal. These components 

represent different physiological or neural processes contributing to the data. By 

separating the underlying sources of signal variation, ICA allows researchers to 

identify distinct brain-related activities, such as hemodynamic responses to specific 

stimuli or cognitive tasks, even in the presence of artifacts or overlapping signals. ICA 

has proven valuable for denoising fNIRS data, enhancing brain signal localization, and 

uncovering relevant brain networks. Its ability to separate mixed signals into 

meaningful sources makes ICA a valuable tool for advancing our understanding of 

brain function and connectivity in fNIRS neuroimaging studies. 

Numerous research groups have explored the utility of independent component 

analysis (ICA) in differentiating functional optical responses (FORs) from noise in 

raw NIRS time series. The findings suggest that ICA holds promise as an effective 

method for detecting fast neuronal signals. By using ICA, researchers can successfully 

eliminate non-relevant noises, allowing them to focus on identifying the specific FORs 

present in the NIRS data.  

Subsequently, event-related averaging is utilized to pinpoint and analyze the Fast 

Optical Responses (FORs) across the NIRS time series. Overall, ICA offers a valuable 

approach for improving the accuracy and sensitivity of detecting important brain 

activity patterns in fNIRS studies (27).  

3.3.4. Wavelet Analysis 

A Wavelet analysis is a valuable signal processing technique widely employed in 

functional near-infrared spectroscopy (fNIRS) research. This method allows 
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researchers to investigate the time-frequency characteristics of the NIRS signal, 

providing insights into the dynamic changes in brain activity. By applying wavelet 

transforms to the fNIRS time series, researchers can identify localized changes in brain 

hemodynamics at different time scales. This capability is especially useful for studying 

transient brain responses, such as task-related activations or event-related 

hemodynamic fluctuations. Wavelet analysis enhances the temporal resolution of 

fNIRS data, enabling the detection of fast and brief neural responses. Its versatility and 

ability to capture both frequency and temporal information make wavelet analysis a 

valuable tool for investigating complex brain processes in fNIRS neuroimaging 

studies. 

In wavelet analysis, each channel's data series undergoes discrete wavelet 

transform with multiple levels of decomposition, determined by the time series 

duration. This process yields detail and approximation coefficients for each level. The 

hemodynamic response, being smoother and slower than motion artifacts, creates a 

linear combination with the artifacts in the measured signal. The detail wavelet 

coefficients exhibit a Gaussian probability distribution. By assuming that coefficients 

related to evoked responses will center around zero with minimal variation, it becomes 

possible to identify outliers as coefficients representing motion artifacts. These outliers 

can be set to zero to eliminate motion distortions in the temporal time-series before 

reconstructing the signal using inverse discrete wavelet transform. This approach aids 

in separating the physiological signal of interest from unwanted artifacts in fNIRS data 

(26).  

3.4. Bandpass Filtering 

Bandpass filtering is frequently used to eliminate very low (0.01 Hz) and very 

high (0.2 Hz; heartbeat, respiration rate, instrument noise) frequency information from 

the stream. For noise reduction, a variety of filters have been used in fNIRS research, 

with the Butterworth filter being the most often used. Other filters utilized include 

zero-phase Fast Fourier Transform (FFT) filters, elliptic filters, moving average filters 

and Chebyshev filters (22). 

The Butterworth filter is a commonly used type of bandpass filter in fNIRS data 

processing. It is characterized by a flat frequency response in the passband and a steep 
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roll-off in the stopband. This filter is effective in removing noise and artifacts from the 

fNIRS signal while preserving the frequency content of interest. The order of the 

Butterworth filter can be adjusted to control the sharpness of the roll-off, allowing 

researchers to tailor the filter to their specific data requirements (28).  

The Chebyshev filter is another type of bandpass filter that is often used in fNIRS 

data analysis. It provides a steeper roll-off in the stopband compared to the Butterworth 

filter but may introduce ripples in the passband. This filter is useful when a more 

aggressive noise reduction is needed, but it may come at the cost of slight distortion in 

the frequency response. Like the Butterworth filter, the Chebyshev filter's order can 

be adjusted to achieve the desired level of noise attenuation (22). 

The moving average filter is a simple and intuitive type of bandpass filter used in 

fNIRS signal processing. It works by averaging adjacent data points within a specified 

window, effectively smoothing the signal and removing high-frequency noise. This 

filter is particularly useful for reducing motion artifacts and other high-frequency noise 

sources. However, it may also blur the fine temporal details of the signal, and the 

window size needs to be carefully chosen to strike a balance between noise reduction 

and signal preservation (28). 

The zero-phase Fast Fourier Transform (FFT) is a powerful technique used for 

frequency-domain signal processing. It is commonly employed to investigate the 

frequency content of fNIRS signals and identify specific frequency components 

related to neuronal activity or physiological changes. The zero-phase FFT ensures that 

the phase information of the signal is preserved during the transformation, allowing 

for accurate time-domain reconstruction after frequency analysis. By examining the 

power spectral density obtained through the FFT, researchers can identify dominant 

frequency peaks that correspond to hemodynamic responses or other relevant 

physiological phenomena. This technique enables a deeper understanding of the 

underlying neurovascular dynamics and provides valuable insights into brain 

activation patterns and responses to different stimuli. Additionally, the zero-phase 

nature of the FFT minimizes potential phase distortions that could arise from typical 

FFT implementations, making it a reliable and widely used tool in fNIRS research 

(22). 
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3.5. Correlation-based Signal Improvement (CBSI) 

Correlation-based signal improvement in fNIRS is a data preprocessing technique 

aimed at enhancing the quality of the recorded signals by reducing noise and extracting 

meaningful hemodynamic responses. This method relies on the assumption that 

genuine functional responses to brain activity are correlated across different channels, 

while noise and artifacts tend to be uncorrelated or less correlated. The process 

involves computing the cross-correlation matrix among all the channels in the dataset 

and identifying the dominant correlated components. The correlated components are 

then combined linearly to generate a weighted sum, effectively enhancing the signal-

to-noise ratio and highlighting the genuine physiological responses (23).  

One of the advantages of correlation-based signal improvement is its ability to 

address common noise sources affecting multiple channels simultaneously. This 

includes systemic physiological noises, motion artifacts, and environmental 

interference. By leveraging the collective information from all channels, the technique 

is robust in handling noise that affects the entire data set.  

Moreover, it is non-parametric and does not assume any specific noise 

distribution, making it flexible and applicable in various experimental scenarios (27). 

However, the correlation-based signal improvement method also has its 

limitations. For instance, it requires a sufficient number of channels and assumes that 

the genuine signals are correlated across them, which may not always hold true in 

certain experimental setups. Additionally, the technique may not be effective in cases 

where the noise is highly correlated across channels, leading to limited improvements 

in the signal quality (27). 

Overall, correlation-based signal improvement is a valuable tool in fNIRS data 

preprocessing, offering an effective means to enhance signal quality, identify relevant 

brain activation patterns, and improve the accuracy of functional neuroimaging 

studies. Researchers often combine this technique with other preprocessing methods 

to optimize data quality and ensure reliable interpretations of fNIRS results. 
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3.6. Short Separation Regression  

Short separation detectors, a recent breakthrough in the field, have emerged as a 

revolutionary technique in fNIRS. These detectors are strategically positioned in the 

activation region with a source-detector distance of less than one centimeter, making 

them highly sensitive to the superficial layers of the brain. In this method, the signal 

from long separation detectors captures both brain and surface layer activities, while 

the signal from short separation detectors predominantly represents superficial brain 

layers. By applying regression to subtract the short separation signal from the long 

separation signal, the unwanted superficial component is effectively filtered out, 

leaving behind a more accurate representation of brain activity. This innovative 

approach enhances the precision of fNIRS measurements and opens new possibilities 

for deeper insights into brain function and activation patterns (29). 

3.7. General Linear Model (GLM) Analysis 

General Linear Model (GLM) refers to a statistical method used to model and 

analyze the hemodynamic response of the brain to specific experimental conditions or 

tasks. In fNIRS studies, researchers often design experiments to investigate brain 

activity associated with certain cognitive tasks, stimuli, or conditions. The GLM 

analysis allows us to examine how changes in the concentration of oxyhemoglobin 

(HbO2) and deoxyhemoglobin (HbR) are related to these experimental factors. The 

GLM analysis involves creating a mathematical model that describes the relationship 

between the measured fNIRS data and the experimental design. It includes regressors 

or predictors representing the different experimental conditions or events, and the goal 

is to estimate the contribution of each predictor to the observed changes in hemoglobin 

concentrations. GLM is a popular choice for analyzing group-level differences or 

conditions due to its straightforward application with multi-level analysis and its 

ability to average away between-subject variance, revealing substantial group 

variations. However, at the individual subject level, the accuracy of modeling brain 

activation using general linear regression is limited by the significant variability in the 

shape and timing of each person's hemodynamic response (22).  
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The GLM analysis is widely used in fNIRS research because it provides a flexible 

and powerful framework for hypothesis testing and inference. It allows researchers to 

determine whether there are significant differences in brain activity across different 

experimental conditions and provides insights into the underlying neural processes 

associated with cognitive tasks or stimuli.  

4. MATERIALS AND METHODS 

An Ethics Committee approval has been obtained with reference number 

52020640814625 at Macquarie University, and fNIRS data collected during an 

auditory task will be used for analysis. The data is publicly available and presented at 

the following link:  

“https://openfnirs.org /community/ fresh/welcome-to-the-fnirs-fresh-project/". 

4.1. Experimental Protocol 

4.1.1. Participants 

A total of seventeen individuals willingly participated in this research project. 

Each participant confirmed that they had no prior history of hearing issues. The age 

range of the participants spanned from 22 to 40 years, indicating a diverse age group 

within the study cohort (30). 

During the experiment, participants were seated in a sound-attenuating booth, 

providing a controlled and quiet environment. To ensure their comfort throughout the 

study, they were provided with comfortable chairs. The entire experiment lasted 

approximately 25 minutes, during which the participants were asked not to focus on 

the sounds being presented. To make the experimental setting more pleasant, 

participants were given the option to watch a subtitled film without sound. Out of the 

seventeen participants, seven individuals chose to accept this option, while the rest 

opted to solely participate in the auditory task without any visual distraction (30).  

 

 

 

https://openfnirs.org/community/fresh/welcome-to-the-fnirs-fresh-project/
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4.1.2 Materials 

The NIRS data were collected using a NIRx NIRScoutX device equipped with 

APD (Avalanche Photodiode) detectors. The recorded data were stored on a disk at a 

sampling rate of 5.2 Hz. For the fNIRS optode-cap configuration, a total of 12 source 

channels and 12 detector channels were utilized. Additionally, eight short detectors 

were strategically placed across the participant's head to enhance the coverage and 

sensitivity of the measurements. This setup allowed for comprehensive monitoring and 

analysis of the hemodynamic responses during the experiment (30). 

4.1.3 Experimental Design 

During the experiment, participants experienced 3 different stimulus conditions.  

These are 

1)Speech  

2)Noise  

3)Silence  

 

The speech stimulus was created by concatenating three sentences from the 

AusTIN speech corpus, with a combined duration of 5.25 seconds. For the noise 

stimulus, a range of frequencies between 300 and 700 Hz was uniformly distributed, 

resulting in a 5-second duration noise clip. The control condition involved 5 seconds 

of complete silence. To ensure variability and prevent predictability, the stimuli were 

presented in a random order for each participant. Additionally, the inter-stimulus 

interval, which denotes the time between the end of one stimulus and the beginning of 

the next, was randomly chosen for each trial from a uniform distribution spanning 10 

to 20 seconds. In total, there were 20 trials for each stimulus condition, resulting in a 

comprehensive set of 60 trials per participant. This design allowed researchers to 

obtain robust and diverse data across the different stimulus conditions, ensuring a 

thorough investigation of the brain's response to speech, noise, and silence (30). 
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Figure 4.1. Experimental Procedure 
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4.2. FNIRS Data Analysis 

4.2.1. Processing Pipeline Steps 

In this study, 4 main fNIRS processing pipelines were implemented. A 

comparison has been made about which of these pipelines is better. These pipelines 

can include motion correction with Spline SG, short channel regression, bandpass filter 

and correlation based signal improvement. They are employing various functions from 

the Homer library. 

4.2.1.1 Processing Pipeline 1 

The first processing pipeline starts by loading the subject data from the specified 

directory. The data consists of near-infrared spectroscopy (NIRS) recordings collected 

during a cognitive task. 

The pipeline first separates the two wavelengths (760nm and 850nm) of the NIRS 

signal and converts the raw intensity data to optical density (dod) data. Motion artifacts 

are detected using the “hmrR_MotionArtifactByChannel” function of Homer3 and 

pruned using the “hmrR_PruneChannels” function of Homer3. It then proceeds to 

convert the dod data into hemoglobin concentration changes (HbO and HbR) using the 

“hmrR_OD2Conc”function of Homer3. No motion correction is applied at this stage.  

The pipeline then applies a bandpass filter by using “hmrR_BandpassFilt” 

function of Homer3 to the HbO and HbR signals to remove unwanted frequency 

components, such as physiological noise and motion artifacts. Following this, short-

channel regression is employed, which involves finding the short-channel with the 

maximum correlation to each channel and regressing out its influence on the respective 

channel's HbO and HbR signals. 

Next, the pipeline takes block averages of the bandpass filtered HbO and HbR 

signals for each condition in the cognitive task to improve the signal-to-noise ratio. 

Subsequently, the pipeline performs correlation-based signal improvement to refine 

the motion-corrected HbO and HbR signals. It calculates the correlation between each 

long channel's signal and the short channels' signals and then regresses out the 

contribution of the short channel with the highest correlation. The resulting HbO and 

HbR signals are now less affected by motion artifacts. 
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Throughout the pipeline, quality control measures are applied, such as 

determining signal-to-noise ratios and masking out channels with low SNR. Moreover, 

the pipeline utilizes event-related regressors to align the data with the timing of the 

cognitive task events, allowing for precise data selection for each condition. 

After processing all the subjects' data through the pipeline, the results are saved 

as block-averaged data for further analysis. The processed data is now ready for 

statistical comparisons, hypothesis testing, or any other analyses related to the 

cognitive task or experimental design. 

4.2.1.2 Processing Pipeline 2 

The processing pipeline 2 involves a series of steps to analyze audio fNIRS data. 

First, the raw data is loaded for each subject and session, and the short channel data is 

extracted from the two wavelengths (760 nm and 850 nm) of each channel.  

Motion artifacts are detected using the “hmrR_MotionArtifactByChannel” 

function of Homer3 and pruned using the “hmrR_PruneChannels” function of 

Homer3. The motion correction step is performed using the Spline SG method with 

“hmrR_MotionCorrectSplineSG” function of Homer3 , which helps to correct for 

motion-induced artifacts in the optical density data. The corrected optical density data 

is converted to hemoglobin concentration data (HbO and HbR) through conversion 

algorithms. Bandpass filtering is applied to these data by using 

“hmrR_BandpassFilt”function of Homer3 to further clean the signals in the frequency 

range of interest.  

Next, short channel regression is performed to eliminate the impact of short 

channels on the target channel's hemoglobin signal. This step helps to mitigate the 

influence of superficial layers in the brain.  

A block averaging technique is employed to enhance signal-to-noise ratio by 

averaging the hemoglobin signals within each block of trials. Correlation-based signal 

improvement (CBSI) is then implemented to refine the hemoglobin signals. The 

method calculates an optimal weighting factor that balances the contribution of HbO 

and HbR signals to improve the overall signal quality.  
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Another block averaging step is performed after CBSI to enhance the data quality 

further. Finally, the processed data is saved for further analysis. The pipeline is 

executed for multiple subjects and sessions, and the results are stored in separate data 

files. 

The difference between these two pipelines is that the first pipeline did not contain 

motion correction, while the second pipeline contained motion correction with spline 

SG. So that we can compare the difference of including motion correction and not 

including motion correction.  

4.2.1.3 Processing Pipeline 3 

The third processing pipeline the begins by loading the raw fNIRS data for each 

subject and session. After loading, the script proceeds with necessary preprocessing 

steps, including the extraction of the raw intensity data for both wavelengths (760 nm 

and 850 nm) from each channel. Additionally, the pipeline identifies and removes 

motion    artifacts by calculating the motion artifact index for each channel using the 

“hmrR_MotionArtifactByChannel” function from Homer3 and pruned using the 

“hmrR_PruneChannels” function of Homer3.  

To distinguish short channels from long channels, a predefined set of short 

channels is determined based on their anatomical location. The pipeline identifies the 

short channel indices and separates them from the rest of the channels (long channels) 

for further analysis.  

The raw intensity data is converted to optical density (OD) data using the 

“hmrR_Intensity2OD” function from Homer3. OD data is preferred for fNIRS analysis 

as it minimizes the effects of variations in light source intensities and provides a more 

stable baseline.  

After obtaining OD data, the pipeline proceeds to calculate the changes in 

hemoglobin concentrations (HbO and HbR) using the “hmrR_OD2Conc” function 

from Homer3. The conversion is performed based on the modified Beer-Lambert law, 

considering the differential pathlength factor (DPF) and molar extinction coefficients 

for HbO and HbR at 760 nm and 850 nm wavelengths. Next, the pipeline applies 

bandpass filtering to the hemoglobin concentration data using the 
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“hmrR_BandpassFilt" function from Homer3. This step removes unwanted 

frequencies and noise outside the frequency range of interest (typically 0.01 Hz to 0.5 

Hz for fNIRS). 

To further enhance the signal quality, the pipeline utilizes correlation-based signal 

improvement (CBSI) with the “hmrR_MotionCorrectCbsi" function from Homer3. 

CBSI corrects for motion artifacts by estimating motion artifacts using the data from 

nearby short channels and then removes them from the target channel.  

The pipeline performs Short Separation Regression (SSR) to minimize the 

influence of short channels on long channels. This step uses the hemoglobin 

concentration data from short channels to predict and remove the unwanted signals 

from long channels, effectively reducing contamination from superficial layers.  

To improve the signal-to-noise ratio and obtain a more robust response estimate, 

the pipeline applies block averaging to the processed hemoglobin concentration data. 

The epochs corresponding to different auditory stimuli are averaged to obtain more 

reliable and smoother hemodynamic responses. 

The pipeline is applied to multiple subjects and sessions, and the processed data 

is stored separately for each subject. The functions utilized from Homer3 include 

“hmrR_MotionArtifactByChannel”,“hmrR_PruneChannels”, “hmrR_Intensity2OD”, 

“hmrR_OD2Conc”, “hmrR_BandpassFilt”, and “hmrR_MotionCorrectCbsi”.  

The most crucial difference from first two pipeline is the third pipeline 

implements firstly CBSI and then Short Separation Regression (SSR). In this way, we 

can compare the effects of applying SSR and CBSI in different order.  

4.2.1.4 Processing Pipeline 4 

The pipeline starts with data loading and preprocessing for each subject and 

session. The fNIRS data is loaded from SNIRF files, and the raw intensity data for 

both wavelengths (760 nm and 850 nm) is extracted for each channel. Motion artifacts 

are detected and marked using the "hmrR_MotionArtifactByChannel" function from 

Homer3 and pruned using the “hmrR_PruneChannels” function of Homer3. 

Additionally, short channels are identified based on their anatomical location, and the 

long channels are separated from them.  
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The raw intensity data is converted to optical density (OD) data using the 

"hmrR_Intensity2OD" function from Homer3. OD data minimizes the impact of light 

intensity variations and provides a stable baseline for further analysis.  

Motion-corrected optical density data is obtained using the Spline SG method for 

motion correction, implemented in the "hmrR_MotionCorrectSplineSG" function 

from Homer3. This method efficiently removes motion artifacts while preserving the 

underlying neurovascular signals.  

The motion-corrected optical density data is converted to changes in hemoglobin 

concentrations (HbO and HbR) using the "hmrR_OD2Conc" function from Homer.3 

This step involves applying the modified Beer-Lambert law with appropriate 

parameters, including the differential pathlength factor (DPF) and molar extinction 

coefficients.  

Next, the pipeline applies bandpass filtering to the hemoglobin concentration data 

using the "hmrR_BandpassFilt" function from Homer. Bandpass filtering removes 

unwanted frequencies outside the range of interest (typically 0.01 Hz to 0.5 Hz) to 

enhance the signal-to-noise ratio.  

The pipeline applies correlation-based signal improvement (CBSI) to further 

enhance the signal quality and reduce residual motion artifacts. The 

"hmrR_MotionCorrectCbsi" function from Homer3 is utilized for this purpose.  

To minimize the influence of short channels on long channels, the pipeline 

performs Short Separation Regression (SSR). For each long channel, the short channel 

with the highest correlation is identified, and the impact of this short channel on the 

long channel's hemoglobin concentration data is linearly regressed out.  

The processed hemoglobin concentration data is then block-averaged to improve 

the signal reliability. The data is divided into epochs corresponding to different 

auditory stimuli, and each epoch is averaged to obtain more robust and smoother 

hemodynamic responses. 
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The pipeline is applied to multiple subjects and sessions, and the processed data 

is stored separately for each subject. Throughout the pipeline, several functions from 

Homer 3 are utilized, including “hmrR_MotionArtifactByChannel", 

“hmrR_PruneChannels", “hmrR_Intensity2OD", “hmrR_MotionCorrectSplineSG", 

“hmrR_OD2Conc", “hmrR_BandpassFilt", and “hmrR_MotionCorrectCbsi”. 

This processing pipeline 4 including motion correction with spline SG, different 

to the processing pipeline 3. So that we can see the effect of applying motion correction 

with spline SG. 

After this step, we separated these 4 main pipelines into 10 methods to see effects 

of each steps. We started to analyze each method separately.  
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Figure 4.2. shows the first 5 methods which are derived from 4 main pipelines that 

we created. These 5 methods mainly focuses on Motion Correction with Spline           

SG and other filtering techniques (Bandpass filter, Correlation Based                         

Signal Improvement (CBSI), and Short Separation Regression (SSR)).                            

 

 

 

 

 

 

 

Figure 4.2. Methods 1, 2, 3, 4, and 5 are derived from 4 main pipelines for 

comparative analysis. 
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Figure 4.3. shows the other 5 methods which are derived from 4 main pipelines 

that we created. These 5 methods do not include Motion Correction with Spline SG.  

However, they mainly include other filtering techniques (Bandpass filter, Correlation 

Based Signal Improvement (CBSI), and Short Separation Regression (SSR)). 

 

 

 

 

Figure 4.3. Methods 6, 7, 8, 9, and 10 are derived from 4 main pipelines for 

comparative analysis. 



 

  38 

Then we calculated Time to Peak (TTP) values for all methods, factoring in 17 

subjects, 25 channels, and 3 stimuli. This involves extracting relevant data, 

determining peak indices within a specified time window, and subsequently computing 

TTP by combining peak indices with the window's starting point. The resulting TTP 

values are summarized, offering insights into method-specific performance. For each 

method, mean and standard deviation of TTP values are computed across stimuli and 

subsequently normalized with the sampling rate. The final outcome consists of 

matrices (P1 to P10), encapsulating summarized TTP values for each method and 

stimulus. 

TTP refers to the moment at which a hemodynamic signal, typically representing 

changes in oxygenated and deoxygenated blood concentrations, reaches its peak 

amplitude in response to a neural stimulus or cognitive task. This temporal landmark 

is of paramount importance as it provides insights into the underlying neurovascular 

coupling processes that link neural activity with changes in blood flow and 

oxygenation levels. TTP reflects the intricate interplay between neural activation, 

metabolic demand, and subsequent hemodynamic adjustments in the brain. It offers a 

window into the temporal aspects of neural processing, shedding light on how different 

brain regions and channels respond to stimuli over time. 

Then we implemented Contrast to Noise Ratio (CNR). This section employs 

nested loops and calculates the CNR for each combination of methods, subjects, 

channels, and stimuli. The CNR is calculated based on the mean of an active data 

window divided by the square root of the sum of the standard deviations of the active 

and baseline data windows.  

Contrast-to-Noise Ratio (CNR) is a quantitative measure used in functional Near-

Infrared Spectroscopy (fNIRS) studies to assess the quality of the recorded 

hemodynamic signals, specifically the contrast between the signal of interest and the 

noise present in the data. A higher CNR value indicates a stronger and more detectable 

hemodynamic response relative to the background noise, which is crucial for accurate 

and meaningful interpretation of the data.  
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We can use CNR as a tool to determine the effectiveness of experimental designs, 

assess the sensitivity of the fNIRS system, and optimize data acquisition parameters 

such as the number of trials, stimulus intensity, and duration. 

Following the CNR computation, we proceed to conduct one-sample t-tests on the 

CNR data, aiming to assess the statistical significance of differences between methods 

and stimuli. Through the t-test we calculated key statistical measures including the test 

statistic, p-value, and confidence interval. These outcomes serve as crucial indicators 

of whether the observed differences in CNR values are statistically significant. Then 

we compile the results of the t-tests into a multidimensional matrix termed 'Thr_Tsats'. 

Each element of this matrix reflects the t-test outcome, wherein the presence or 

absence of statistical significance is denoted by a binary variable 'h'. The t-statistic is 

further incorporated into this matrix, potentially offering insights into the direction and 

magnitude of differences between groups. The 'Thr_Tsats' matrix enables 

comprehensive visualization of the t-test results, as it generates a set of subplots with 

heatmaps. These heatmaps provide an intuitive representation of the t-test outcomes 

for different methods and channels per stimulus, facilitating the identification of 

patterns and relationships within the data. 

A one-sample t-test is a statistical hypothesis test that is used to determine whether 

the mean of a single sample of data significantly differs from a specified population 

mean or a hypothesized value. It assesses whether the sample's mean is statistically 

different from the expected value, and it provides a measure of how likely any 

observed differences are due to random chance. In the context of functional Near-

Infrared Spectroscopy (fNIRS), a one-sample t-test can be applied to investigate 

whether the mean of a certain hemodynamic response, such as changes in oxygenated 

or deoxygenated hemoglobin concentration, significantly differs from a reference 

value. 
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5. RESULTS AND DISCUSSION

 

Table 5.1. Time to Peak (TTP) values for 10 methods and 3 stimulus type (speech, 

noise, silence) 

 

Table 5.1. demonstrates the results of Time to Peak values for 10 methods and 3 

stimuli. We calculate them to determine the ideal activation interval for these methods. 

We took the mean of the TTP values over all methods, channels and stimuli types and 

computed the grand average value as 10.45 ± 3.03 seconds as a result. We used 3 

seconds as a prestimulus  baseline and  determined the activation interval between 4 

and 10 seconds after onset of stimulus for each truncated block signal.  
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           Table 5.2. Channel Numbers before and after short channel removal 

 

Table 5.2. demonstrates the numbers assigned to each long channel before and 

after short channel removal. In the beginning, there were 33 channel recordings in each 

experimental session which consisted of 25 long and 8 short channels. However, we 

removed the 8 short channels and utilized 25 channel data for further analysis. Those 

short channels were 2, 5, 10, 15, 18, 25, 30, and 33.  
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Figure 5.1. shows the heat map of one sample t-test results for 3 stimuli types (speech, 

noise, silence), 10 methods, 25 channels. The x-axis represents the channels, and the 

y-axis represents the methods. By looking at the intersection of a channel and method, 

we can gauge the significance level of the t-test for that specific combination. In this 

figure, black colored pixels correspond to non-significant results (i.e. channels with t 

values that could not surpass the p<0.05 threshold) and light colored pixels correspond 

to channel data that resulted in statistically significant activation where lighter colors 

denote higher significant activation. Shades of gray between black and white represent 

varying levels of statistical significance. Darker areas suggest that the null hypothesis 

is not rejected, indicating no significant difference in CNR values for that method-

channel pair. Lighter areas indicate significant differences in CNR values, implying 

that the null hypothesis is rejected, and there's a likely genuine difference. By 

comparing the heat maps for different stimuli, we can observe if the significance 

patterns remain consistent or differ across the 3 auditory stimuli.  

 

Figure 5.1. Heat map of one sample T-Test for 3 stimulus, 10 methods, 25 channels 
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This might reveal whether the effects being measured are stimulus-specific or 

consistent across different conditions.  

By examining the heat map in detail, we determined which channels had 

significant activation for both speech and noise stimuli. Channel 6 and channel 25 had 

significant activation for both stimuli. They were the most active channels. Therefore, 

these 2 channels were selected to analyze. Channel 6 represents left Heschl’s Gyrus 

and channel 25 represents right Heschl's Gyrus in the brain. Our regions of interest 

(ROI) are left Heschl’s Gyrus and right Heschl's Gyrus.  

 

 

 

 

Figure 5.2. Block Average result of Method 1 (MCSG + BP) for Channel 6              

and Channel 25  
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Figure 5.4. Block Average result of Method 3 (MCSG + BP + CBSI + SS) for 

Channel 6 and Channel 25  

 

Figure 5.3. Block Average result of Method 2 (MCSG + BP + CBSI) for     

Channel 6 and Channel 25  
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Figure 5.5. Block Average result of Method 4 (MCSG + BP + SS) for Channel 

6 and Channel 25  

 

Figure 5.6. Block Average result of Method 5 (MCSG + BP + SS + CBSI) for 

Channel 6 and Channel 25  
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Figure 5.8. Block Average result of Method 7 (BP + CBSI) for Channel 6 and 

Channel 25  

 

Figure 5.7. Block Average result of Method 6 (BP Only) for Channel 6 and 

Channel 25  
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Figure 5.10. Block Average result of Method 9 (BP + SS) for Channel 6 and 

Channel 25  
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All figures between Figure 5.2. to Figure 5.11. demonstrate the impact of each method 

on channels 6 and 25. The observation of substantial differences in waveforms 

resulting from distinct preprocessing pipelines deserves considerable attention. This 

phenomenon underscores the noteworthy impact that various preprocessing 

approaches can have on the shape and characteristics of recorded waveforms in 

experimental data. The variations in waveforms across different preprocessing 

strategies illuminate the intricate interplay between data processing steps and the 

subsequent patterns of neural activity revealed by the analyses.  

 

 

 

 

Figure 5.11. Block Average result of Method 10 (BP + SS + CBSI) for 

Channel 6 and Channel 25  



 

  49 

      Table 5.3. T-values of all methods for Stimulus 1 (Speech) 

 

 

 

 

     Table 5.4. T-values of all methods for Stimulus 2 (Noise) 
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Table 5.3. shows the t-values for Channel 6 and Channel 25 for stimuli 1 (Speech). 

Also, Table 5.4. shows the t-values for Channel 6 and Channel 25 for stimuli 2 (Noise). 

Table 5.5. demonstrates average performance of these 4 groups for all of the 10 

methods. 

A high t-value indicates that  the mean of CNR values obtained for that channel 

data over all participants is statistically significantly different than zero. This suggests 

that the observed difference from 0 is likely not due to random chance alone and we 

can claim with over 95 % confidence that the mean CNR values are significantly 

different than 0. A high t-value is often associated with a low p-value, indicating that 

there is strong evidence against the null hypothesis which is in our case ‘Mean of CNR 

values obtained across all participants CNR values is zero for that channel when fNIRS 

signals are preprocessed with that method specific pipeline’. The null hypothesis is 

rejected in favor of the alternative hypothesis in channel data when the probability of 

accepting the null hypothesis is below the calculated p value. 

 

 

    Table 5.5. Average performance of t-values for each method (CH6 and CH25) 
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Table 5.5. provides useful information to specify the best method. When we 

compare the average performances of t-values for each method for our regions of 

interest (ROI), the method which has the highest t score is determined as Method 7 

(Bandpass Filter + Correlation Based Signal Improvement). The second best method 

is Method 2 (Motion Correction Spline SG + Bandpass Filter + Correlation Based 

Signal Improvement). Methods with the worst performance are Method 9 (Bandpass 

Filter + Short Separation Regression) and Method 4 (Motion Correction Spline SG + 

Bandpass Filter + Short Separation Regression).  

 

Therefore, the best method is Method 7 and the worst method is Method 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  52 

6. CONCLUSION 

The ultimate aim of this study was to compare the performance of various 

preprocessing pipelines for proposing the best solution to the noise problem and 

reducing the motion artifacts in long channel fNIRS signals by use of short channel 

information. 

 

Over the course of the past ten years, a multitude of diverse techniques aimed at 

denoising and correcting motion artifacts in FNIRS data have been explored with the 

objective of enhancing the quality of recorded signals. Despite these efforts, a 

universally accepted and definitive method has not yet emerged as the standard choice 

for the majority of research groups. Various digital filtering approaches proved 

insufficient in effectively eliminating noise elements, while conversely, other methods 

exhibited the potential to inadvertently diminish the strength of the activation signal. 

This lack of consensus underscores the ongoing challenges in establishing a robust 

approach to denoising and motion correction in the realm of FNIRS studies. In this 

study, we examined at how different noise removal strategies affect the signal quality 

of audio fNIRS data. We aimed to find the best combination of preprocessing steps for 

fNIRS measurements when the channels are placed close together. We compared the 

efficacy of these filters in recovering hemodynamic activation in expected regions of 

interest that covered mainly the bilateral Heschl’s Gyri. Our goal was to figure out the 

method that would increase hemodynamic response quality in terms of the CNR 

metric. For this purpose, we implemented 10 different preprocessing methodologies. 

These methods included motion correction spline SG, short channel regression, 

bandpass filter and correlation-based signal improvement. We used Homer3 functions 

while implementing these methods.  

 

In future research endeavors, further exploration and refinement of noise 

reduction techniques, motion artifact correction methods, and data analysis approaches 

will be crucial in advancing the reliability and accuracy of fNIRS studies conducted 

with short channel separation. Additionally, the integration of advanced machine 

learning algorithms and real-time processing capabilities holds the potential to 

revolutionize the field, enabling real-time artifact identification and adaptive 

correction strategies.  
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