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ÖZET  

 

Kübra PAPUR 

HAREKETLİ HEDEFLERİ TAKİP ETMEK İÇİN YER KONUŞLU 

PLATFORMLARDA KULLANILAN İZLEME ALGORİTMALARININ 

KARŞILAŞTIRMALI ANALİZİ 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Savunma Teknolojileri Ve Sistemleri Anabilim Dalı  

2023 

 

Bu tezde, sabit süratli ve sabit ivmeli hedef tipinin kullanıldığı hareket senaryoları için 

literatürdeki yaygın hedef izleme algoritmaları karşılaştırılmıştır. Bu karşılaştırma 

yapılırken ortamda tek bir hedef olma durumu için Standart Kalman Filtresi, Genişletilmiş 

Kalman Filtresi, Kokusuz Kalman Filtresi ve Etkileşimli Çoklu Model Filtre kullanılmıştır. 

Sabit süratli ve sabit ivmeli hedeflere ait süreç gürültüsü değişmesi durumunda filtrelerin 

verdiği tepki karşılaştırılarak analiz edilmiştir. Kargaşa olmayan bir ortamda birden fazla 

hedef olma durumunda çoklu hedef izleme algoritmaları hedef izleme filtreleri ile birlikte 

kullanılmıştır. Tez kapsamında kullanılan algoritmalar en yakın komşuluk yöntemi ve ortak 

olasılıksal veri ilişkilendirme yöntemidir. Ayrıca süreç gürültü standart sapması 

değiştirildiğinde çoklu hedef izleme algoritmalarının ortamda birden fazla hedef olma 

durumunda verdiği tepki ve hedef doğrultu kestirimleri karşılaştırılarak analiz edilmiştir. 

 

ANAHTAR SÖZCÜKLER: Kalman Filtreleri, Süreç Gürültüsü, Hedef Takip 

Algoritmaları, Çoklu Hedef İzleme. 
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ABSTRACT 

 

Kübra PAPUR 

A COMPARATIVE ANALYSIS OF TRACKING ALGORITHMS USED ON THE 

GROUND BASED PLATFORM TO MONITOR MOVING TARGETS 

Başkent University Institute of Science and Engineering 

Department of Defense Technologies and Systems 

2023 

 

In this thesis, common target tracking algorithms in the literature for motion scenarios using 

constant velocity and constant acceleration target type are compared. Standard Kalman 

Filter, Extended Kalman Filter, Unscented Kalman Filter and Interactive Multiple Model 

filter have been used for a single and moving target tracking. The main aim of this thesis is 

the demonstrate the effects on the filter response the change of the process noise. Multi-

target tracking algorithms are used with target tracking filters for multiple targets in a non-

clutter environment. These algorithms are the nearest neighbor method and the joint 

probabilistic data association method. In addition, the response of multitarget tracking 

algorithms response for more than one target in a non-clutter environment and target tracking 

have been analyzed by changing the process noise standard deviation. 

 

ANAHTAR SÖZCÜKLER: Kalman Filters, Process Noise, Target Tracking Algorithms, 

Multiple Target Tracking. 
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SİMGELER VE KISALTMALAR LİSTESİ 

A  Geçiş Matrisi 

 k   zaman  

𝐺𝑘  Kalman Filtre Kazancı 

H,𝛻ℎ𝑥  Ölçüm Matrisi 

Pk   Durum Kovaryansı 

𝑆𝑘  İnovasyon Kovaryansı 

𝑄𝑘  Süreç Gürültüsü 

𝑅𝑘  Ortam Gürültüsü 

𝑣𝑘  İnovasyon 

𝑧𝑘, 𝑦𝑘  Ölçüm modeli 

𝑥𝑘  Durum Vektörü 

K  ikincil ölçeklendirme parametresi 

L  rassal değişken boyutu 

α  sigma noktalarının yayılma mesafesi 

λ  Filtre Ölçeklendirme Parametresi 

𝛻𝑓𝑥  Jacobien Matris 

KF  Kalman Filter  (Kalman Filtresi) 

SKF  Standart Kalman Filter (Normal Kalman Filtre) 

EKF  Extended Kalman Filter (Genişletilmiş Kalman Filtre) 

UKF  Unscented Kalman Filter (Kokusuz Kalman Filtre) 

IMM  Interactive Multiple Model (Etkileşimli Çoklu Filtre) 

SG  Process Noise (Süreç Gürültüsü) 

FGO  Filter Transition Probability (Filtre Geçiş Olasılığı) 

NN  Nearest Neighbor (En Yakın Komşuluk Yöntemi) 

DF  Degrees of Freedom (Serbestlik Derecesi) 

NN-SKF Standart Kalman Filtresi ile Kullanılan En Yakın Komşu Algoritması  

NN-EKF Genişletilmiş Kalman Filtresi ile Kullanılan En Yakın Komşu Algoritması 

PDA  Probability Data Association (Olasılıksal Veri İlişkilendirme) 

JPDA  Joint Probability Data Association (Ortak Olasılıksal Veri İlişkilendirme) 
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1. GİRİŞ 

 

1.1 İçerik ve Çalışma Konusu 

 

Bu tez çalışmasının amacı tekli ve çoklu hedef takibinde, yer konuşlu platformlarda 

kullanılan Kalman Filtresi çeşitlerinin hedef takip performanslarını mukayeseli analiz 

etmektir. Bu kapsamda analiz gerçekleştirmek için üç adet hedef hareket modeli 

kullanılmıştır. Bunlar; doğrusal sabit süratli, doğrusal olmayan sabit süratli ve doğrusal 

olmayan sabit ivmeli hedef hareket modelleridir. Ortamda tek hedef olması durumu için 

Standart Kalman filtresi (SKF), Genişletişmiş Kalman Filtresi (EKF), Kokusuz Kalman 

Filtresi (UKF) ve Etkileşimli Çoklu Model Kalman (IMM) filtre kullanılmıştır. Bu 

çerçevede, Standart Kalman Filtresinin doğrusal olmayan fonksiyonlara verdiği tepkiyi 

analiz etmek amacıyla sabit süratli hedef hareket modeli geçiş matrisi ve sabit ivmeli hedef 

hareket modeli geçiş matrisi ayrı ayrı MATLAB içine gömülerek Standart Kalman Filtresi 

hedef kestirim sonuçları bölüm 3 içinde karşılaştırılmıştır. 

 Literatürde sabit ivmeli hedef hareket senaryoları için UKF ve EKF filtreleri 

önerilmektedir; ancak, sabit süratli hedef hareket senaryosunda süreç gürültüsü değişiminin 

önerilen bu iki filtreden hangisinin kestirim performansında daha kararlı davranacağı ile 

ilgili çalışmalarda detaylı analize rastlanılmamıştır. Bu tez kapsamında süreç gürültüsünün 

değişiminin EKF ve UKF hedef kestirim performansının artış/azalış durumuna etkisinin 

analiz edilmesi ve karşılaştırılması için Bölüm 4 ve Bölüm 5 içinde MATLAB ortamında 

özgün kod ile yapılan çalışmalar ortaya konulmuştur.  

 Bu tez kapsamında etkileşimli çoklu model (IMM) filtre ile yapılan çalışmaların 

amacı filtre geçiş olasılığı katsayısının IMM filtre hedef kestirim performansına etkisini 

analiz tanıtlamaktır. Filtre geçiş olasılık katsayıları 0 ile 1 arasında değiştirilerek IMM filtre 

tepkisinin hedef takip performansına etkisinin analizi Bölüm 6 içinde detaylı olarak 

gerçekleştirilmiştir. Ayrıca süreç gürültüsü etkisinin IMM filtre performansına analizi de 

çalışılmıştır. Etkileşimli çoklu model için yapılan analiz, standart kalman filtresi ve 

genişletilmiş kalman filtresi entegrasyonu ile oluşturulmuştur.  
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Ortamda birden fazla hedef olma durumunda hedef kestirimi için Kalman filtresi çoklu 

hedef izleme algoritmaları ile kullanılmıştır. Bu kapsamda kullanılan çoklu hedef izleme 

algoritmaları; en yakın komşuluk yöntemi, olasılıksal veri ilişkilendirme yöntemi ve ortak 

olasılıksal veri ilişkilendirme yöntemleridir. En yakın komşuluk yöntemi sırasıyla standart 

kalman filtresi (sabit süratli iki hedef için) ve genişletilmiş kalman filtresi (sabit ivmeli iki 

hedef için) ile gözlemlerin hedeflerden geldiği varsayılarak ayrı ayrı çalışılmıştır, yani 

kargaşa ortamı olmadığı kabul edilmiştir. Bu tez kapsamında sabit süratli ve birbirine paralel 

doğrultuda hareket gerçekleştiren iki hedefin en yakın komşu algoritması kullanılan standart 

kalman filtresi ile takibi yapılarak hedef kestirim performans analizi çalışılmıştır.  Ayrıca, 

manevralı ve yakın hareket gerçekleştiren iki hedefin en yakın komşuluk algoritması gömülü 

genişletilmiş kalman filtresi ile takibi sırasında kestirim performansı incelenmek için matlab 

ortamında analiz edilmiştir. Yanı sıra süreç gürültüsünün değişiminin hedef takip 

performansına yönelik analizini gözlemlemek için Bölüm 7.1 başlığı altında çalışılmıştır. 

Ortak olasılıksal veri ilişkilendirme yöntemi için ortamda kargaşa ortamında yer almayan üç 

hedef için hedef takip performansı analiz edilmiştir. En yakın komşuluk yöntemi ve ortak 

olasılıksal veri ilişkilendirme algoritmalarının analiz sonuçlarını eşit şartlar altında 

karşılaştırmak için filtrelerde aynı hedefler kullanılmıştır. Süreç gürültü katsayıları her iki 

algoritmada kullanılan hedefler için aynı oranda arttırılarak çoklu hedef izlemede kullanılan 

bu iki algoritmanın karşılaştırması yapılmıştır. Açıklanan analizlerin yapılması için filtre, 

hedef ve algoritma matematiksel denklemleri özgün kod olarak Matlab R2022B ortamında 

yazılmıştır. 
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1.2 Literatür Çalışmaları 

 P. S. Madhukar ve L. B. Prasad tarafından 2020 yılında yapılan çalışma ile doğrusal 

olmayan sistemler için Genişletilmiş Kalman Filtresi ve Kokusuz Kalman filtresi kestirim 

sonuçları karşılaştırılmıştır, amaç lineer olmayan sistemlerde önerilen iki kalman filtresinin 

kestirim sonuçlarını analiz etmektir, sonuçlarda doğrusal olmayan sistemler için Kokusuz 

Kalman filtresi önerilmiştir [26].  

 B. Erol ve arkadaşları tarafından yapılan İnsansız Sualtı Aracı Hareketinin Kalman 

Filtre ile Kestirimi ve Makine Öğrenmesi çalışmasında doğrusal olmayan modele sahip 

sualtı aracının genişletilmiş kalman filtresi ve kokusuz kalman filtresi kestirim sonuçları 

karşılaştırılmıştır, ayrıca ölçüm gürültüsü etkisini analiz etmek amacıyla  matlab ortamında 

her iki filtre için karşılaştırmalı analizler yapılmıştır, sonuç olarak Kokusuz Kalman filtresi 

hedef kestirim performasının yüksek olduğu belirtilmiştir [23].  

C. Liu, P. Shui ve S. Li tarafından yapılan çalışmada Genişletilmiş ve Kokusuz 

Kalman filtreleri hedef takip analizi kestirim sonuçları gerçekleştirilmiştir, ayrıca unscented 

transform ile genişletilmiş kalman filtresi birleştirilerek yeni bir filtre olduğu belirtilen 

kokusuz genişletilmiş kalman filtresi açıklanmıştır. Genişletilmiş, Kokusuz ve Kokusuz 

Genişletilmiş Kalman filtreleri hedef kestirim performansları analiz edilerek Kokusuz 

Genişletilmiş Kalman filtresi önerilmiştir [25]. 

J. Hartikainen, A. Solin ve S. Särkkä tarafından çalışmada Genişletilmiş ve Kokusuz 

Kalman Filtre için doğrusal ve doğrusal olmayan sistemlerde kestirim performansı analiz 

edilmiştir, ayrıca IMM-EKF ve IMM-UKF ile yapılan simülasyon çalışmaları sonucunda 

IMM-UKF çalışmasının manevralı hedefler için kestirim performansının daha başarılı 

olduğu belirtilmiştir [27]. 

 E. K. Babacan, L. Özbek ve C. Biçer tarafından yapılan Uyarlı Kokusuz Kalman 

Filtresi çalışmasında doğrusal olmayan durum uzay modellerinde eksik sistem bilgisinden 

meydana gelebilecek problemlerin üstesinden gelmek için durum ve gözlem 

kovaryanslarının uyarlanması ile yeni bir uyarlı kokusuz kalman filtresi modeli 

geliştirilmiştir [22]. 

 A. G. Pakfiliz tarafından gerçekleştirilen Parazit Yankılı Ortamda Manevra Yapan 

Birden Çok Hedefin Takibi İçin Olasılıksal Bir Takip Algoritması Geliştirilmesi 
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çalışmasında manevralı ve manevrasız hedeflerin takibi analizinde süreç gürültüsünün 

standart sapması sabit tutularak farklı parazit yankılı ortamlar için simulasyonlar 

koşturulmuştur. Her bir durum için OVİ (olasılıksal veri ilişkilendirme), GBOVİ (Genlik 

Bilgisi İlave Edilmiş OVİ), KEÇMOVİ (karşılıklı etkileşimli çoklu model OVİ) ve BOVİ 

(birleştirilmiş OVİ) takip algoritmaları karşılaştırmalı analizi yapılmıştır [13]. 

H.W de Waard tarafından yapılan  çalışmada en sık kullanılan dört veri ilişkilendirme 

yöntemi küresel en yakın komşu, olasılıksal veri ilişkilendirme, ortak olasılıksal veri 

ilişkilendirme ve çoklu hipotez izleme yaklaşımı ele alınmış, kargaşa ortamında yer alan 

hedefler için analizler yapılarak bu yöntemlerin karşılaştırılmalı analizi ele alınmıştır [24]. 

A. Lana tarafından yapılan çalışmada tekli hedef izleme yöntemleri incelenmiş ve 

kestirim sonuçları sabit ve manevra gerçekleştiren hedefler için analiz edilmiştir, çoklu hedef 

izleme algoritmaları en yakın komşu, olasılıksal veri ilişkilendirme, ortak olasılıksal veri 

ilişkilendirme ve çoklu hipotez izleme yöntemleri incelenerek ortamda iki hedef olması 

durumunda kestirim performansları analiz edilmiştir. Ayrıca ölçüm gürültüsünün etkisinin 

çoklu hedef izleme algortimalarına analizi yapılmıştır. Sonuç olarak tekli hedef izleme 

filtrreleri içinde manevralı hareket gerçekleştiren hedefler için kokusuz kalman filtresi, 

gerçek harekat ortamında bir hedef için IMM kalman filtresi önerilmiştir [2].  
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2. HEDEF HAREKET MODELİ 

 

Kalman Filtresi ile hedef hareket tahmini,  bir sonraki zaman adımına ilişkin durum 

tahminini son kestirim değerine dayanarak yapar. Kalman Filtresi ile hedef takibi iki 

aşamaya ayrılır, bunlar Tahmin ve Güncelleme adımlarıdır. Belli bir anda hedefle ilgili 

mevcut bilgileri kullanarak geçerli zaman için durumun en iyi tahminini hesaplamak 

amacıyla uygulanan adım tahmin adımıdır. Tahminlerdeki belirsizliğin arttığı yer burasıdır 

[20]. Mevcut en iyi durum tahmininin, bir sonraki tahmini üretmek için kullanıldığı ölçümler 

veya bilgilerin olduğu adım ise güncelleme adımıdır. Tahmindeki belirsizliğin azaldığı yer 

tam da burasıdır [20].  

Bu tez çalışmasında hedef takip filtrelerinin ve çoklu hedef algoritmalarının farklı 

hareket senaryolarındaki tepkilerini ölçmek amacıyla üç farklı hareket modeli kullanılmıştır. 

Bu hareket modelleri sabit süratli doğrusal hareket senaryosu, sabit süratle X-Y ekseninde 

sabit bir baş açısıyla gerçeklenen hareket modeli, sabit ivme ile X-Y ekseninde belli bir baş 

açısıyla gerçeklenen manevralı hareket senaryosu olarak isimlendirilmiştir. 

 

2.1 Doğrusal Sabit Süratli Hareket Denklemi 

Doğrusal sabit süratli hareket senaryosunda hedefin (ilk konumu olabilir veya ilk 

konumu sıfır kabul edilebilir) aynı zaman aralıklarında aynı miktarda yer değiştirmesi 

durumu mevcuttur. Eşitlik 2.1’de yer alan t zamanı, V sabit sürati,  𝑥𝑏 başlangıç konumunu, 

x(t) zamana bağlı konum değiştirmeyi ifade etmektedir [6]. 

𝑥(𝑡) = 𝑥𝑏 + 𝑉𝑡 (2.1) 

Hedeflerin özellikle harekât ortamında sabit süratli hedef hareketi gerçekleştirme 

olasılıkları çok düşüktür. Yani sistem hızında artış ve azalış meydana gelir. Bu durum eşitlik 

2.1 hareket modeline ivme ekleyerek/çıkartarak gösterilebilir. Bu tez kapsamında eşitlik 

2.1’e eklenen ivmenin katsayısı düşük tutularak hedef ortalama hızının sabite yakın kalması 

sağlanır.  
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  𝑥𝑘 = 𝐴 𝑥𝑘|𝑘−1 + 𝑞𝑘 (2.2) 

Eşitlik 2.2 hareket modelinde yer alan k anındaki durum vektörü 𝑥𝑘, bir önceki anda 

k-1 yer alan durum vektörünün 𝑥𝑘|𝑘−1, geçiş matrisi A ile çarpımı ve buna eklenen q 

gürültüsü ile formüle edilmiştir [20].  

|

𝑥𝑘

𝑉𝑋𝑘

𝑦𝑘

𝑉𝑌𝑘

| = 𝐴 ∗ |

𝑥𝑘−1

𝑉𝑋𝑘−1

𝑦𝑘−1

𝑉𝑌𝑘−1

| 

(2.3) 

 

Bu tez kapsamında Hedef#1 olarak isimlendirilen hareketlinin Geçiş matrisinin (A) 

hesaplanması eşitlik 2.3 alanında gösterilmektedir. Hesaplanan matris formu eşitlik 2.4 

alanında gösterilmiştir. Birinci satır x eksenindeki konumu (𝑥𝑘), 2. Satır x eksenindeki sürati 

(𝑉𝑋𝑘), 3. Satır Y eksenindeki konumu (𝑦𝑘), 4. Satır Y eksenindeki sürati (𝑉𝑌𝑘) gösterir. 

                                      𝐴 = |

1 𝑇 0 0
0 1 0 0
0 0 1 𝑇
0 0 0 1

|  

 

     (2.4) 

Bu tez kapsamında Hedef#1 için kullanılan Gürültü Vektörü matrisi (𝛤),  𝑞𝑥 (yatay 

eksen için) ve 𝑞𝑦 (düşey eksen için) gauss dağılımına sahip rassal değişkenler olmak üzere 

hesaplamalar denklem (2.5) ile ifade edilir.  

𝑞𝑥~N (0, 𝜎𝑥
2) ve 𝑞𝑦~N (0, 𝜎𝑦

2) olmak üzere; 

|

𝑥𝑘

𝑉𝑋𝑘

𝑦𝑘

𝑉𝑌𝑘

| = 𝐴 ∗ |

𝑥𝑘−1

𝑉𝑋𝑘−1

𝑦𝑘−1

𝑉𝑌𝑘−1

| + 𝛤𝑞𝑥𝑦    →     𝑞𝑥𝑦 = [
𝑞𝑥

𝑞𝑦
]     →    ||

𝑇 2
2⁄ 𝑇

𝑇 0

0 𝑇 2
2⁄

0 𝑇

|| 

 

 

(2.5) 
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2.2 Doğrusal Olmayan Sabit Süratli Hareket Denklemi 

Bu tez kapsamında kullanılan ikinci hareket modelidir. Tezin ilerleyen bölümleri için 

Hedef#2 olarak isimlendirilmiştir. Şekil 2.2.1 üzerinde hareket modeli temsili olarak 

gösterilmiştir. X eksenindeki konumu 𝑃𝑥, Y eksenindeki konumu 𝑃𝑦, gerçek kuzeyle yaptığı 

açı 𝜓0 ve ortalama sürati V ile ifade edilen hareketin süreç modeli 2.6 denkleminde matris 

formu ile açıklanmıştır [6]. Bu hedef senaryosu için hız ve baş açısı değişimi olmaması 

amacıyla açısal değişimi ifade eden 𝜓̇ ve ivmeyi ifade eden 𝑖 değerleri sıfır olarak seçilmiştir 

[6]. 

 

Şekil 2.2.1 İki Boyutlu Doğrusal Olmayan Sabit Süratli Hareket Modeli [6] 

  

 

[

𝑃𝑥

𝑃𝑦

𝜓
𝑣𝑘

]  =   [

𝑃𝑥

𝑃𝑦

𝜓
𝑣𝑘−1

]     +    𝛥𝑡[

𝑣𝑘−1 cos(𝜓𝑘−1)

𝑣𝑘−1 sin(𝜓𝑘−1)

𝜓̇
𝑖
 

]   

(2.6) 
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Bu tez kapsamında Hedef#2 için kullanılan Gürültü Vektörü matrisi eşitlik 2.7 ile verilmiştir. 

Hız ve baş açısı sabit kalması istenildiğinden Denklem 2.7 için 3. ve 4. Satırda eklenen 

gürültüler sıfır olarak belirlenmiştir. Detaylar 4.2 Hedef Hareket Modeli başlığı altında 

verilmiştir. 

|
|

𝑇 2
2⁄ 0

0 𝑇 2
2⁄

0 0
0 0

|
| 

 

(2.7) 

2.3 Sabit İvmeli Hareket Denklemi 

Eşitlik 2.8 ile verilen bu hareket senaryosunda, sabit ivmeye sahip bir hareketlinin 

ivmesinin yön ve büyüklüğü değişmektedir. Aynı zaman aralıklarında aynı oranda 

hızlanmakta veya aynı oranda yavaşlamakta olan hedef senaryoları için kullanılmıştır. 

Denklemde yer alan t zamanı, V başlangıç süratini, xb başlangıç konumunu, a sabit ivmeyi, 

x(t) zamana bağlı konum değiştirmeyi ifade etmektedir [6]. 

𝑥(𝑡) = 𝑥𝑏 + 𝑉𝑡 +
1

2
𝑎𝑡2 

(2.8) 

 

Bu tez kapsamında kullanılan üçüncü hedef hareket modelidir. Tezin ilerleyen 

bölümleri için Hedef#3 olarak isimlendirilmiştir. Şekil 2.2.1 ile gösterilen hedef modelinin 

aynısı geçerlidir, tek farkı sabit ivme ile hız değişimine sahip olmasıdır. Denklem (2.6)’da 

kullanılan hareket modeli Hedef#3 için geçerlidir. Aynı şekilde Denklem (2.7)’de kullanılan 

gürültü matrisi Hedef#3 için geçerlidir [6]. Detaylar 4.2 Hedef Hareket Modeli başlığı 

altında verilmiştir. 
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3. STANDART KALMAN FİLTRESİ (SKF) 

 

Standart Kalman filtresinde Markov zinciri temel alınmakta, bir sonraki durum 

kestirimi için önceki durum kestirimi ve yeni ölçüm değeri kullanılmaktadır.  Standart 

Kalman Filtresi, temel olarak, bazı varsayılan koşullar karşılandığında tahmin edilen hata 

kovaryansını en aza indirmesi açısından optimal tahmin özelliğine sahip olan bir 

matematiksel denklemdir [1]. Yaygın olarak kullanılma nedenleri arasında en önemli 

özelliği basit uygulanabilir filtre yapısına sahip olması ve güvenilir sonuçlar üretmesi yer 

almaktadır. Standart kalman filtresindeki her iterasyonun amacı yeni gözlemdeki bilgilere 

dayanarak sistemin durum vektörünü ve bu vektörün kovaryansını güncellemektir. Standart 

Kalman filtresi gözlemlerden alınan bilgilerin belirli ve sabit zaman aralıklarında alındığını 

ve sistemin doğrusal bir sistem olduğunu varsayar.  

Standart Kalman Filtresi; tahmin ve güncelleme olmak üzere iki aşamadan oluşan geri 

beslemeli bir filtre mekanizmasıdır. Bu “tahmin” ve “güncelleme” için literatürde sıklıkla 

karşılaşılan diğer iki terim sırasıyla “yayılım” (propagation) ve “düzeltme” (correction) 

tabirleridir. Bu tahmin ve güncelleme adımlarının matematiksel ifadeleri açıklanmıştır. 

  
Şekil 3.1 Standart Kalman Filtre Blok Şeması 
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Tahmin denklemleri iki formülden oluşur. Bunlar Tahmin Durum Vektörü ve Tahmin 

Durum Vektörü Kovaryansı olarak kullanılmaktadır. Tahmin ve güncelleme adımları 

Hareket Modeli ve Ölçüm Modeli ile doğrudan ilişkilidir. Hareket modeli, hedef durum 

vektörünün zaman için nasıl yayılım yaptığını belirler. Ölçüm modeli ise, her bir anda 

hedefin gerçek durum vektöründen nasıl ölçümler elde edileceği sorusunun yanıtını verir. 

Öncelikle Standart Kalman Filtresi için kullanılan denklem ve açıklamaları aşağıda ele 

alınmıştır. 

Durum vektörü denklem 3.1 ile tanımlanır. 

𝑥𝑘 = 𝐴𝑘−1 𝑥𝑘−1 + 𝑄𝑘−1 (3.1) 

Tahmin edilen Durum Kovaryansı denklem 3.2 ile tanımlanır. 

𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
𝑇 + 𝑄𝑘−1 (3.2) 

İnovasyon Kovaryansı denklem 3.3 ile tanımlanır. 

𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 (3.3) 

Kalman Filtresi Kazancı denklem 3.4 ile tanımlanır. 

𝐺𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇 𝑆𝑘

−1 (3.4) 

Ölçüm modeli denklem 3.5 ile tanımlanır. 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑅𝑘 (3.5) 

İnovasyon denklem 3.6 ile tanımlanır. 

𝑣𝑘 = 𝑦𝑘 − 𝐻𝑥𝑘|𝑘−1 (3.6) 

Durum güncelleme adımı denklem 3.7 ile tanımlanır. 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐺𝑘𝑣𝑘 (3.7) 

Kovaryans güncelleme adımı denklem 3.8 ile tanımlanır. 
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𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐺𝑘𝑆𝑘𝐺𝑘
−1 (3.8) 

 

Denklem 3.1, Standart Kalman Filtresi hareket fonksiyonu olup “k-1” anındaki durum 

vektörünü k anındaki durum vektörüyle ilişkilendirmektedir. “𝑥𝑘”, durum vektörünü, “A” 

geçiş matrisini (nesnenin hareket dinamiği ile ilgili bilgi veren matris), “Q” ise süreç 

gürültüsünü tanımlamaktadır. Kestirim yapmak amacıyla kullanılan durum vektörü; ivme, 

hız, vb. değişkenleri içerirken bu noktada ortamdaki ölçüm gürültüsü olarak sıfır ortalamalı 

beyaz Gauss gürültüsü (white noise) ile birlikte modellenir.  

Denklem 3.2 ile açıklanan Durum Kovaryansı değerinin yüksek olması, süreç 

gürültüsünün fazla olması veya başlangıç durum hareket modelinden yeterince emin 

olunmadığı anlamına gelir. Denklem 3.3 ile verilen İnovasyon Kovaryansı “k” anındaki 

ölçüm vektöründen, tahmin edilen ölçüm vektörünün farkını gösteren bir eşitliktir. 

Başlangıçta tahmin edilen durum vektörünün hata kovaryansı veya ölçüm alan sensörün hata 

katsayısı yüksek ise inovasyon kovaryansı fazladır.  

 Standart kalman filtre kazancını değerlendirmek için Denklem 3.2 ve Denklem 3.3 

birlikte yorumlanır. Kalman filtre kazancı, güncel durum tahmini verilerinde elde edilen 

ölçüm verilerinin verimini belirleyen katsayıdır. Sensör ölçüm verilerindeki hata 

katsayısının çok düşük olması durumunda filtresi kazancı 1 değerine yaklaşır, bu durum 

filtre kestirim sonucunun sensörün yaptığı ölçüm değerine yakın değer üretmesine neden 

olur. Sensör ölçüm hatasının yüksek olduğu durum kovaryansının küçük seçildiği durumda 

ise filtre kazancının azaldığı formülden yorumlanabilir. Bu durumda ise filtrenin hareket 

modeline göre çıktı üretmesi beklenir. Şekil 3.1.1 ve Şekil 3.1.2’de alınan sonuçlar beklenen 

bu durum ile benzer yanıt oluşturmaktadır. 

 Denklem 3.6 ise tahmin edilen durum vektörünün ölçüm uzayında (sensor & radar 

tarafından nasıl algılandığı) karşılığını elde etmeyi sağlar, aynı denklemde “H” ile belirtilen 

ifade, durum ve ölçüm arasındaki ilişkiyi gösterir. 

Kalman, yinelemeli bir filtre mekanizmasıdır, dolayısıyla standart kalman filtresinin ön 

veriler ile ilklendirilmesi gereklidir. Kalman filtresi kovaryans matrisi yardımıyla kestirimin 

doğruluğu hakkında uygun bir ölçü verir [2]. Gerçek bir ortamda çevresel şartlardan kaynaklı 
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olarak hedefin sabit süratli hareketinde değişiklikler meydana gelebilir. Bu tez çalışmasında 

hedef hareketindeki olası ivmelenmeler süreç gürültüsünün belirlenen oranlarda nümerik 

olarak değiştirilmesiyle karakterize edilmiştir. Süreç gürültüsü düşük ise filtre hedef hareket 

modeline bağlı kalır. Tam tersi şekilde süreç gürültüsü ne kadar yüksek ise hedefin izlediği 

ana doğrultudan sapması beklenir veya sabit süratli olmayan hareket gerçekleştirir. 

Dolayısıyla “k” anındaki durum vektörü, “k-1” anında yer alan durum vektörüne süreç 

gürültüsünün eklenmiş hali olarak yorumlanabilir. Hedef hareketindeki olası ivmelenmeler 

bir gürültü ile karakterize edilecektir. “q” sıfır ortalamalı “𝜎2” varyansa sahip rassal bir 

değişkendir. “𝑖𝑚” azami ivme şiddeti olmak üzere 𝜎2 ifadesi 
𝑖𝑚

2
≤ 𝜎2 ≤ 𝑖𝑚 ile belirlenir [16]. 

 

3.1 SKF ile Doğrusal Sabit Süratli Hedef İzleme 

Denklem 3.9 ile verilen Hedef#1 için geçiş matrisi ile hedef özellikleri Tablo 3.1.1 

üzerinde gösterilmiştir. 

𝐴 = |

1 𝑇 0 0
0 1 0 0
0 0 1 𝑇
0 0 0 1

| 

 

(3.9) 

 

 

Tablo 3.1.1 Hedef#1 Özellikleri 

Hedef 
X0 Ekseni  

(m) 

Y0 Ekseni 

 (m) 

Yatay Hız  

(m/sn) 

Düşey Hız  

(m/sn) 

Hedef#1 100 100 100 100 

 



  

13 

 

 

Şekil 3.1.1 Standart Kalman Filtresi Hedef İzleme Performansı 

 

 

Şekil 3.1.2 SKF Yatay Dikey Eksen Konum Hatası Grafiği 
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Standart Kalman Filtre ile doğrusal sabit süratli hareket gerçekleştiren Hedef#1 için 

hedef izleme performansı Şekil 3.1.1’de gösterilmiştir. Grafik üzerinde kestirim 

sonuçlarının, hedef doğrultusuna çok yakın hedef takibi yaptığı izlenmiştir. Detaylı analizi 

için SKF Yatay ve Düşey Eksen konum hatası grafiği Şekil 3.1.3 ile verilmiştir. Bu grafik, 

Tablo 3.1.2 ile asgari ve azami değerler ile nümerik olarak analiz edilmiştir.  

Tablo 3.1.2 Konum Hatası Analizi 

Yatay Eksen Azami Konum Hatası ~ 19 metre 

Yatay Eksen Asgari Konum Hatası ~ 7 metre 

Dikey Eksen Azami Konum Hatası ~ 21 metre 

Dikey Eksen Asgari Konum Hatası ~ 7 metre 

yaklaşık “~” 

 

3.2 SKF ile Sabit İvmeli Hedef İzleme Analizi 

 

Standart Kalman Filtresinin doğrusal olmayan fonksiyonlara verdiği tepkinin düzgün 

sonuçlar vermediği pek çok bilimsel çalışmasında belirtilmesine rağmen konuyla ilgili 

somut çalışmalara nadiren rastlanmıştır. Bu teorem, bu tez çalışmasında Standart Kalman 

Filtresine doğrusal olmayan geçiş matrisi eklenerek filtrenin hedef izleme tepkisi izlenerek 

ele alınmıştır. 

Kullanılan geçiş matrisinin doğrusal olmayan denklemi (3.10) alanında  gösterilmiştir. 

Bu noktada önerilen Genişletilmiş Kalman Filtresinin yanıtları ise bir sonraki adımda 

incelenmiştir. 

∇fx2 = |

1 0 −𝛥t𝑉sin (𝜃) 0.5𝛥t2cos (𝜃)

0 1 𝛥t𝑉 cos(𝜃) 0.5𝛥t2 sin(𝜃)
0 0 0 1
0 0 1 𝛥t

| 

(3.10) 

 

 



  

15 

 

Standart Kalman Filtresi içine Hedef#3 için kullanılan geçiş matrisi (doğrusal olmayan 

ivmeli hareket dinamik model geçiş matrisi) yerleştirilerek Standart Kalman Filtresinin 

tepkisi analiz edilmiştir. Filtre ve Hedef Hareket Modeli kapsamında, sadece Geçiş Matrisi 

değiştirilmiştir, geri kalan tüm parametreler aynı olarak korunmuştur. Standart Kalman 

Filtresi içine doğrusal olmayan bir fonksiyonun geçiş matrisi eklendiğinde alınan sonuçlar 

Şekil 3.2.1, Şekil 3.2.2 ve Şekil 3.2.3 ile gösterilmiştir. Burada, filtre kestiriminin hedeften 

gelen ölçüm sonuçları ile birebir örtüştüğü izlenmiştir. Doğrusal olmayan hedef 

kullanılmasıyla süreç gürültüsü filtre içinde artmıştır, bu durum filtre için hedef hareket 

model belirsizliği anlamına gelir, bu durum filtre kazancını neredeyse 1’e yakınsar, filtre 

kestirim sonucunu doğrudan ölçüm sonuçlarından almaya başlar. Bu çalışma ile Standart 

Kalman Filtresinin doğrusal olmayan denklemlere verdiği tepkinin kullanılabilir olmadığı 

gösterilmiştir. Denklem (3.10) ile gösterilen hedef modelinin nasıl bulunduğu Genişletilmiş 

Kalman Filtresi bölümünde detaylı olarak yer almaktadır. 

 

 

Şekil 3.2.4 SKF ile Doğrusal Olmayan Hedef İzleme Y Ekseni 
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Şekil 3.2.5 SKF ile Doğrusal Olmayan Hedef İzleme X Ekseni 

 

Şekil 3.2.6 SKF ile Doğrusal Olmayan Hedef İzleme XY Ekseni 
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Şekil 3.2.7 SKF Yatay Dikey Eksen Konum Hatası Grafiği 

 

Tablo 3.2.1 SKF Konum Hatası Analizi 

Yatay Eksen Azami Konum Hatası ~ 870 metre 

Yatay Eksen Asgari Konum Hatası ~ 20 metre 

Dikey Eksen Azami Konum Hatası ~ 950 metre 

Dikey Eksen Asgari Konum Hatası ~ 40 metre 

yaklaşık "~" 

 

Şekil 3.2.3 üzerinde “+” ivmeli hareket yapan hedefi gösterir, “x” filtrenin hedef 

kestirimini, “o” ise ölçüm sonuçlarını gösterir. Şekil 3.2.4’de Standart Kalman Filtresi ile 

hareket kestirimi yapılan Hedef#3 için Konum Hatası Grafiği gösterilmiştir. Sonuçlar Tablo 

3.2.1 SKF Konum Hatası Analizi tablosunda bir araya getirilmiştir. Bu çalışma, SKF ile 

takip edilmeye çalışılan doğrusal olmayan ve ivmeli hedeflerin takibinde 30 saniye içinde 

yaklaşık 10 km yer değiştiren bir hedef takibinde hem yatay hem dikey eksenlerde 1 km 

yakın hataya neden olacağını göstermektedir. 
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4. GENİŞLETİLMİŞ KALMAN FİLTRESİ (EKF) 

 

Standart Kalman Filtresinin dezavantajlarından biri hedef ve ölçüm dinamik 

modellerinin doğrusal olmadığı durumda düzgün hedef takibi yapamamasıdır. Bu durum 3.2 

başlığı altında detaylı olarak incelenip ivmeli ve doğrusal olmayan hareket modelinde hedef 

tahmininin düzgün olmadığı tanıtlanmıştır. Gerçek hedefler doğrusal olmayan hareket 

senaryolarına sahiplerdir. Özellikle son yıllarda artan teknoloji kabiliyetleri ile birlikte 

sistem dinamik sınırlarını zorlayan manevra yeteneği, süpersonik hızlara ulaşma ve bunun 

gibi pek çok farklı kabiliyetlere sahip teknolojiler yaygınlaşmaktadır. Bu noktada 

Genişletilmiş Kalman Filtresinin doğrusal olmayan denklemlerde hedef hareket 

doğrultusuna yakın kestirim sonucu verdiği bilinmektedir [21]. Bu çalışmada hedeflerin 

düzgün hızlanan hareket modeli ve yanı sıra manevralı hareket modeli kullanılarak 

Genişletilmiş Kalman Filtresinin (EKF) tepkisi analiz edilmiştir.  

EKF, doğrusal olmayan dinamiklerin doğrusallığa yakınlaştırılması yöntemini esas 

alır, doğrusal olmayan sistemi belli bir durum ve kovaryans civarında birinci dereceden 

denkleme (doğrusal) yakınlaştırır. Sistem durumu zamanla değiştikçe bu yaklaşımın 

yapıldığı durum ve kovaryans öz yinelemeli olarak güncellenir. Bu şekilde, EKF ile doğrusal 

olmayan sisteme doğrusal yaklaşımın sürdürebilir olmasını sağlanır.  

Genişletilmiş Kalman Filtresinin pratikte bilinen iki dezavantajı vardır: Birincisi 

doğrusallaştırma sırasında kararsız filtrelerin ortaya çıkabilmesidir, bir diğeri ise Jakobien 

matrislerin uygulanması pek çok gerçek senaryo için matematiksel olarak zor bir işlemdir 

[4]. 

Genişletilmiş Kalman Filtre, doğrusal olmayan hareket modelinin hareket ve ölçüm 

modellerinin Taylor Serisi kullanılarak doğrusallaştırılması yaklaşımını kullanır. Doğrusal 

olmayan denklemlerin Taylor Serisi açılımında sonsuz sayıda üstel ifadenin 

doğrusallaştırılması mümkün değildir. Bu tez çalışmasında birinci derecen genişletilmiş 

kalman filtre açılımı kullanılmıştır.  
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4.1 Genişletilmiş Kalman Filtre Modeli 

 

EKF için kullanılan denklem ve açıklamaları şu şekildedir. Ölçümler alınmadan önce 

bir sonraki konumu tahmin etme adımı (prediction) iki denklemle (4.1) & (4.2) ifade 

edilmiştir.  

Durum vektörü denklem 4.1 ile tanımlanır. 

𝑥̂𝑘|𝑘−1 = 𝑓(𝑥̂𝑘|𝑘−1, 𝑢𝑘 , 0) (4.1) 

Durum Kovaryansı denklem 4.2 ile tanımlanır. ∇fx: Jakobien Matris 

𝑃𝑘|𝑘−1 = ∇fx ∗ 𝑃𝑘−1|𝑘−1 ∗ ∇fx𝑇 + 𝑄𝑘 (4.2) 

 

 

Şekil 4.1 Genişletilmiş Kalman Filtre Blok Şeması 
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Ölçüm vektörü denklem 4.3 ile tanımlıdır. 

𝑧𝑘 = ℎ(𝑥𝑘, 𝑟𝑘) (4.3) 

Ölçümler alındıktan sonra güncelleme adımları EKF için aşağıdaki açıklanmıştır.  

Değişiklik (inovasyon) vektörü denklem 4.4 ile tanımlanır. 

𝑣𝑘 = 𝑧𝑘 − ℎ(𝑥̂𝑘|𝑘−1, 0) (4.4) 

Değişiklik (inovasyon) Kovaryansı denklem 4.5 ile tanımlanır. 

𝑆𝑘 = ∇hx ∗ 𝑃𝑘|𝑘−1 ∗ ∇hx𝑇 + 𝑅𝑘 (4.5) 

EKF Kazancı denklem 4.6 ile tanımlanır. 

𝐺𝑘 = 𝑃𝑘|𝑘−1 ∗ ∇hx𝑇 ∗ 𝑆𝑘
−1 (4.6) 

Durum güncelleme adımı denklem 4.7 ile tanımlanır. 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐺𝑘 ∗ 𝑣𝑘 (4.7) 

Kovaryans güncelleme adımı denklem 4.8 ile tanımlanır. 

𝑃𝑘 = 𝑃𝑘−1 − 𝐺𝑘 ∗ ∇hx ∗ 𝑃𝑘−1  (4.8) 

Formüllerde alt indis olarak yer alan “a|b” ifadesi, “b” durumuna kadar olan tüm sonuçlar 

mevcut olma durumunda “a” anındaki durumu temsil etmek için kullanılır. 𝑥̂𝑘−1|𝑘−1 ,            

“k-1” anındaki bilinen durum vektörünü ifade etmek için kullanılır.  𝑥̂𝑘|𝑘−1, “k-1 “  anına 

kadar olan ölçüm ve sonuçlar mevcut iken k anındaki durum tahmin vektörünü 

simgelemektedir, tahmin olduğu için 𝑥̂ ile ifade edilmiştir.”𝑢𝑘” kontrol girdisi olarak 

tanımlanabilir, örneğin ivme ve açı birer kontrol girdi vektörü üyesidir. 𝑃𝑘−1|𝑘−1 , durum 

hata kovaryansı olarak tanımlanabilir. “𝑃𝑘|𝑘−1”, k-1 anındaki kovaryans verildiğinde k 

anındaki kovaryans tahminidir. Ölçüm alındıktan sonra gelen ölçüm sonucuna göre 

kovaryans güncelleme (𝑃𝑘) adımı gerçekleştirilir. Burada kovaryans güncelleme sonucu 

bulunan güncellenmiş Kovaryans, gerçek ölçümlerle beslendiği için önceki kovaryans 

vektörüne göre daha küçük alanı ifade eder ve kestirimi artıran sayısal değerdir. “𝑄𝑘”, model 
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içindeki süreç gürültüsü olarak tanımlanabilir, hedefin hareket modelindeki belirsizlikleri 

(rüzgâr, sürtünme kuvveti, hatta ivme değişikliklerine neden olan dış etkiler vb.) tanımlamak 

için kullanılan bir eklemedir [6].  

Eşitlik (4.3) ile  tanımlanan ölçüm vektörü tahmin edilen durum vektörünün sensör (radar, 

lidar vb.) tarafından nasıl algılandığını ifade eder.  Denklem (4.4)’te yer alan 𝑣𝑘 değişiklik  

(inovasyon) vektörü olarak tanımlanan parametredir. Değişiklik vektörü, gerçek ölçüm 

sonuçlarından tahmini ölçüm sonuçlarını çıkartarak iki vektör farkı ile bulunan bir değerdir. 

 

4.2 Hedef Hareket Modeli 

Tez çalışması kapsamında kullanılan hedefin durum vektörü eşitlik 4.9 gösterilmiştir. 

Burada 𝑃𝑥 ve 𝑃𝑦 sırasıyla hedefin x ve y eksenindeki konumudur, hedefin x ve y ekseninde 

belirli bir açıyla 𝜃 ve ivmeli hareket yaparak ilerlediği varsayılmıştır. 

𝑥̂ = [𝑃𝑥 𝑃𝑦 𝜃 𝑉]
′
      (4.9) 

 Süreç modelini eşitlik 4.10 matris form ile açıklamak mümkündür. 

[

𝑝𝑥𝑘

𝑝𝑦𝑘

𝜃𝑘

𝑣𝑘

] = [

𝑝𝑥𝑘−1

𝑝𝑦𝑘−1

𝜃𝑘−1

𝑣𝑘−1

] + 𝛥t [

𝑣𝑘−1 ∗ 𝑐𝑜𝑠𝜃𝑘

𝑣𝑘−1 ∗ 𝑠𝑖𝑛𝜃𝑘

𝜃𝑘

𝑎𝑘

] 

 

     (4.10) 

 

Genişletilmiş Kalman Filtresi , Kokusuz Kalman Filtresi ve etkileşimli çoklu model filtre  

için kullanılan içinde yer alan Hedef#2 (sabit süratli) Jacobien durum vektörü eşitlik 4.11 

matrisi ile ifade edilmiştir. 
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[
 
 
 
 
 
 
 
 
 

𝜕𝑝𝑥𝑘

𝜕𝑝𝑥𝑘−1

𝜕𝑝𝑥𝑘

𝜕𝑝𝑦𝑘−1

𝜕𝑝𝑥𝑘

𝜕𝜃𝑘−1

𝜕𝑝𝑥𝑘

𝜕𝑣𝑘−1

𝜕𝑝𝑦𝑘

𝜕𝑝𝑥𝑘−1

𝜕𝑝𝑦𝑘

𝜕𝑝𝑦𝑘−1

𝜕𝑝𝑦𝑘

𝜕𝜃𝑘−1

𝜕𝑝𝑦𝑘

𝜕𝑣𝑘−1

𝜕𝜃𝑘

𝜕𝑝𝑥𝑘−1

𝜕𝜃𝑘

𝜕𝑝𝑦𝑘−1

𝜕𝜃𝑘

𝜕𝜃𝑘−1

𝜕𝜃𝑘

𝜕𝑣𝑘−1

𝜕𝑣𝑘

𝜕𝑝𝑥𝑘−1

𝜕𝑣𝑘

𝜕𝑝𝑦𝑘−1

𝜕𝑣𝑘

𝜕𝜃𝑘−1

𝜕𝑣𝑘

𝜕𝑣𝑘−1]
 
 
 
 
 
 
 
 
 

= |

1 0 −𝛥t V 𝑠𝑖𝑛(𝜃) 𝛥t 𝑐𝑜𝑠(𝜃)

0 1 𝛥t 𝑉𝑐𝑜𝑠(𝜃) 𝛥t sin(𝜃)
0 0 1 0
0 0 0 1

| 

(4.11) 

 

Genişletilmiş Kalman Filtresi , Kokusuz Kalman Filtresi ve etkileşimli çoklu model filtre  

için kullanılan içinde yer alan Hedef#3 (sabit ivmeli) Jakobien durum vektörü eşitlik 4.12 

matrisi ile ifade edilmiştir. 

 

∇fx2 = |

1 0 −𝛥t𝑉sin (𝜃) 0.5𝛥t2cos (𝜃)

0 1 𝛥t𝑉 cos(𝜃) 0.5𝛥t2 sin(𝜃)
0 0 0 1
0 0 1 𝛥t

| 

 

     (4.12) 

Ölçüm vektörü eşitlik 4.13 ile ifade edilmiştir. 

𝑧𝑑
𝑖 = [𝑟𝑖 𝜃𝑖]

′
      (4.13) 

Ölçüm modeli (Jacobien) eşitlik 4.14 ile ifade edilmiştir. Denklemde yer alan 𝑟𝑘 ve 𝜃𝑘 beyaz 

Gauss dağılıma sahip ve sıfır ortalamalı ölçüm gürültü kovaryans matrisi elemanlarıdır. 

Varyansları sırasıyla 𝜎𝑟
2 ve 𝜎𝜃

2 ifade edilir. Burada ölçüm gürültüleri arasında korelasyon 

olmadığı kabul edilmiştir. Hareketlinin yatay eksendeki son konumu 𝐿𝑥, düşey eksendeki 

son konumu 𝐿𝑦, yatay eksendeki ilk konumu 𝑝𝑥𝑘, düşey eksendeki son konumu 𝑝𝑦𝑘 olarak 

ifade edilmiştir. 

[
𝑟𝑘
𝜃𝑘

] = [
√(𝐿𝑥 − 𝑝𝑥𝑘)2 + (𝐿𝑦 − 𝑝𝑦𝑘)

2

tan−1 (𝐿𝑦 − 𝑝𝑦𝑘) (𝐿𝑥 − 𝑝𝑥𝑘)⁄

] 

     (4.14) 
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İnovasyon kovaryansını hesaplamak için Jacobian matrisini hesaplamak gerekir. Ölçüm 

Jakobien matrisi eşitlik 4.15 ve 4.16 ile ifade edilmiştir.  

∇hx =
∂h

∂x
|
x=x̂k|k−1

= [
(𝐿𝑥 − 𝑝𝑥𝑘) 𝑑⁄ (𝐿𝑦 − 𝑝𝑦𝑘) 𝑑⁄ 0 0

−(𝐿𝑦 − 𝑝𝑦𝑘) 𝑑2⁄ (𝐿𝑥 − 𝑝𝑥𝑘) 𝑑2⁄ −1 0
] 

     (4.15) 

 

𝑑 = √(𝐿𝑥 − 𝑝𝑥𝑘)2 + (𝐿𝑦 − 𝑝𝑦𝑘)
2
 

     (4.16) 

 

Bu tez çalışmasında Genişletilmiş Kalman Filtresi (EKF) performans analizi için iki 

farklı dinamik modele sahip hedef ile ayrı ayrı çalışılmıştır. Birinci hedef iki boyutlu sabit 

sürat dinamik denklem modeline (Hedef#2) sahiptir. Diğer hedef (Hedef#3), iki boyutlu 

sabit ivme dinamik denklem modeline sahiptir. Hedef#2 modelinin genişletilmiş kalman 

filtre ile  kestirim analizi yapılırmıştır. Ayrıca; süreç gürültüsünün sabit tutulduğu durum, 

100 kat artma durumu, 1000 kat artma durumu ve 5000 kat artma durumunda filtrenin izleme 

performansına etkisi analiz edilmiştir. Hedef#3 modelinin genişletilmiş kalman filtre ile  

kestirim analizi yapılırmıştır. Ayrıca; süreç gürültüsünün sabit tutulduğu durum, 100 kat 

artma durumu, 1000 kat artma durumu ve 5000 kat artma durumunda filtrenin izleme 

performansına etkisi analiz edilmiştir. EKF ile yapılan bu analizler bölüm sonunda, aynı 

dinamik modele sahip ve Kokusuz Kalman Filtresi (UKF) ve Etkileşimli Çoklu Model 

(IMM)  ile takibi gerçeklenen hedef için yapılan analizler ile karşılaştırılmıştır.  Amaç aynı 

dinamik modele ve ortam gürültüsüne sahip hedef takibinde süreç gürültüsünün aynı oranda 

değişmesinin filtreler bazında hedef takip performans analizini karşılaştırmaktır.  
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4.3 EKF ile Sabit Süratli Hedef Takibinde Süreç Gürültüsü Etkisi 

Hedef#2 için gerekli bilgiler Tablo 4.3.1 ile verilmiştir. 

Tablo 4.3.1 EKF ile Kestirimi Yapılan Hedef#2 Bilgileri 

Hedef X0 Ekseni (m) Y0 Ekseni (m) 
Ortalama Hız 

(m/sn2) 

Baş açısı 

(derece) 

Hedef 1 100 100 100 50° 

X0: Yatay Eksen Başlangıç Noktası  Y0: Dikey Eksen Başlangıç noktası 

Şekil 4.3.1, X-Y Ekseni üzerinde ortalama 100 m/sn2 sabit süratle hareket gerçekleştiren bir 

hareketlinin iki boyutta zamanla yer değişimini gösteren EKF hedef izleme performans 

grafiğidir. Çıktılara göre süreç gürültüsünün sabit tutulduğu durumda yatay eksen azami 

konum hatası yaklaşık 50 metre, düşey eksen azami konum hatası ise 75 metredir. 

 

Şekil 4.3.1 EKF ile Sabit Süratli Hedef Kestirim Grafiği 
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Şekil 4.3.2 Yatay Eksende EKF ile Hedef Kestirimi                     Şekil 4.3.3 Düşey Eksende EKF ile Hedef Kestirimi 

 

 

Şekil 4.3.4 EKF ile Sabit Süratli Hedef Takibi (SG 100 Kat Artış) 



  

26 

 

 

Şekil 4.3.5 EKF ile Sabit Süratli Hedef Takibi (SG 1000 Kat Artış) 

 

Şekil 4.3.6 EKF ile Sabit Süratli Hedef Takibi (SG 5000 Kat Artış) 

 

Şekil 4.3.7 EKF ile Sabit Süratli Hedef Takibi (SG 100 Kat Artış) 
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Şekil 4.3.8 EKF ile Sabit Süratli Hedef Takibi (SG 1000 Kat Artış) 

 

 

 

 

Şekil 4.3.9 EKF ile Sabit Süratli Hedef Takibi (SG 5000 Kat Artış) 
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Şekil 4.3.10 Konum Hatası Zaman Grafiği (SG Sabit)             Şekil 4.3.11 Konum Hatası Zaman Grafiği (SG 100 Kat Artış) 

      

Şekil 4.3.12 Konum Hatası Zaman Grafiği (SG 1000 Kat Artış)            Şekil 4.3.13 Konum Hatası Zaman Grafiği (SG 5000 Kat Artış) 

 

Süreç gürültü değişimleri Tablo 4.3.2 EKF Süreç Gürültüsü Değişimi ve Konum Hatası 

Analizi ile özetlenmiştir. 

Tablo 4.3.2 EKF Süreç Gürültüsü Değişimi ve Konum Hatası Analizi 

 yaklaşık “~” 

Süreç Gürültüsü 

Q 

Yatay Eksen  

Azami Konum Hatası 

Dikey Eksen  

Azami Konum Hatası 

Q 

 (Sabit) 
~25 metre ~20 metre 

Q 

 (100 Kat Fazla) 
~35 metre ~25 metre 

Q 

 (1000 Kat Fazla) 
~60 metre ~180 metre 

Q 

 (5000 Kat Fazla) 
~150 metre ~190 metre 
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Süreç gürültüsü “Q”, 100 kat arttırılma durumu, “Q”, 1000 kat arttırılma durumu Q”, 

5000 kat arttırılma durumu sırasıyla Şekil 4.3.4, Şekil 4.3.5 ve Şekil 4.3.6 X Ekseni – Zaman 

grafikleri ve Şekil 4.3.7, Şekil 4.3.8 ve Şekil 4.3.9 Y Ekseni- Zaman ile gösterilmiştir. Ayrıca 

Şekil 4.3.10, Şekil 4.3.11, Şekil 4.3.12 ve Şekil 4.3.13 Konum Hatası- Zaman grafikleri ile 

süreç gürültüsünün artması ile zamanla artan konum hatası gösterilmiştir. Süreç gürültüsü 

artması ile konum hatasının artması tanıtlanmıştır. 

 Süreç gürültüsünün artması ile filtre kazancı artacaktır. Böylece kalman filtresi 

kestirim sonuçları, filtreyi besleyen ölçüm sonuçlarına yakınsar. Grafikten elde edilen 

bulgular süreç gürültüsünün artması ile filtre kestiriminin ölçüm sonuçlarına yakınsadığını 

doğrular. 

Grafikler baz alındığında süreç gürültüsü arttıkça Genişletilmiş Kalman filtresi ile 

hedef takibinin zayıfladığı tanıtlanmıştır. Ayrıca Tablo 4.3.2 ile EKF için kaydedilen 

değerler ilerleyen bölümde Kokusuz Kalman Filtresi ile karşılaştırmak için kullanılmıştır. 
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4.4 EKF ile Sabit İvmeli Hedef Takibinde Süreç Gürültüsünün Etkisi 

Hedef#3 için gerekli bilgiler Tablo 4.4.1 ile verilmiştir. 

Tablo 4.4.1 EKF ile Kestirimi Yapılan Hedef #3 Bilgileri 

Hedef X0 Ekseni (m) Y0 Ekseni (m) 
Ortalama İvme 

(m/sn2) 

Baş açısı 

(derece) 

Hedef#2 100 100 5 45° 

 

 

Şekil 4.4.1 Düşey Eksende EKF ile Sabit İvmeli Hedef Kestirimi 

 

 

Şekil 4.4.2 Düşey Eksende EKF ile Sabit İvmeli Hedef Kestirimi (SG 1000 Kat Artış) 
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Şekil 4.4.3 Düşey Eksende EKF ile Sabit İvmeli Hedef Kestirimi (SG 5000 Kat Artış) 

 

Şekil 4.4.4 Yatay Eksende EKF ile Sabit İvmeli Hedef Kestirimi 

 

 

Şekil 4.4.5 Yatay Eksende EKF ile Sabit İvmeli Hedef Kestirimi (SG 1000 Kat Artış) 
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Şekil 4.4.6 Yatay Eksende EKF ile Sabit İvmeli Hedef Kestirimi (SG 5000 Kat Artış) 

 

Şekil 4.4.7 EKF ile Sabit İvmeli Hedefin Konum Hatası Grafiği 

 

 

Şekil 4.4.8 EKF ile Sabit İvmeli Hedefin Konum Hatası Grafiği (SG 1000 Kat Artışı) 
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Şekil 4.4.9 EKF ile Sabit İvmeli Hedefin Konum Hatası Grafiği (SG 5000 Kat Artışı) 

 

Süreç gürültüsü “Q” sabit tutulduğu durum, “Q” 1000 kat arttırılma durumu, “Q” 5000 

kat arttırılma durumu sırasıyla Y Ekseni – Zaman grafikleri için Şekil 4.4.1, Şekil 4.4.2, 

Şekil 4.4.3 ve X Ekseni- Zaman grafikleri için Şekil 4.4.4, Şekil 4.4.5 ve Şekil 4.4.6 ile 

gösterilmiştir. Süreç gürültüsü arttıkça kalman filtre kazancı artacağı için kestirim sonuçları 

ölçüm sonuçlarına yakınsamaya başlar, bu durum filtre kestirimini hedefin izlediği 

doğrultudan saptırır. Süreç gürültüsünün artmasıyla orantılı olarak değişen kalman filtre 

kestirimi sırasıyla Şekil 4.4.7, Şekil 4.4.8 ve Şekil 4.4.9 Konum Hatası – Zaman grafikleri 

ile gösterilmiştir. Grafiklerden alınan sonuçların yorumlanması için Tablo 4.4.2 EKF ile 

Konum Hatası Analizi tablosu oluşturulmuştur, süreç gürültüsünün artmasıyla filtre 

kestiriminde yatay ve dikey eksenlerdeki azami konum hatası gösterilmiştir. Ayrıca  bu tablo 

ilerleyen bölümde aynı analizin yapıldığı Kokusuz Kalman Filtresi sonuçlarının analizinde 

karşılaştırma olarak kullanılmıştır. 

Tablo 4.4.2 EKF ile Sabit İvmeli Hedef için Konum Hatası Analizi 

Süreç Gürültüsü 

Q 

Yatay Eksen 

 Azami Konum Hatası 

Dikey Eksen  

Azami Konum Hatası 

Q  

(Sabit) 
~30 metre ~70 metre 

Q 

 (1000 Kat Fazla) 
~160 metre ~200 metre 

Q  

(5000 Kat Fazla) 
~420 metre ~220 metre 
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5. KOKUSUZ KALMAN FİLTRE (UKF) 

 

Kokusuz Kalman Filtresi (UKF) [2], ilk olarak Julier ve Uhhlman tarafından 1997 

yılında önerilmiştir [4]. Bu filtre, Genişletilmiş Kalman Filtresi gibi geleneksel çözümlerden 

doğrusal olmayan durum tahmininde hesaplama açısından daha hassas bir yaklaşımdır [3]. 

UKF Algoritmasının temel mantığı, rassal bir değişkeni temsil eden bir dizi noktaya (Sigma 

Noktaları) dönüşüm (unscented transform) uyarlanmasıdır. Dönüşüm uyarlanan bu 

noktaların Gauss Dağılımında ortalama ve kovaryansları bulunur; böylece doğrusal olmayan 

fonksiyonda bu noktalar ilerletilir [17]. Bu işlem yapılırken Jacobien matrisi almaya gerek 

yoktur, çünkü amacı doğrusal olmayan denklemi doğrusallaştırmak değildir. Dolayısıyla 

EKF Genişletilmiş Kalman Filtresinin  kullanım alanını sınırlayan üçüncü derece ve üzeri 

doğrusal olmayan fonksiyona sahip hedef hareket modellerinde kullanımı ile kestirim 

doğruluğunu artırır. Bu dönüşüm yöntemi doğruluğu arttırır; ancak hesaplama yöntemi 

Genişletilmiş Kalman Filtresine göre nispeten daha yavaştır [6], bu durum 

dezavantajlarından biridir. Kısaca UKF, tahmin ve güncelleme adımlarını hesaplamak için 

doğrusal olmayan sistemi kullanmaya devam eder, bir sonraki durumu tahmin etmek için bir 

dizi noktayı (Sigma Noktaları) kullanılır [5]. 

 

Şekil 5.1 Unscented Dönüşümü ~ Sigma Noktalarının Dağılımı [7] 
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Bu filtrenin kullandığı yöntem (unscented dönüşüm), bir Gauss dağılımına 

yaklaşmanın, rastgele bir doğrusal olmayan dönüşüme yaklaşmaktan daha kolay olduğu 

sezgisi üzerinde kuruludur [7], bir olasılık dağılımının doğrusal olmayan dönüşümüne Gauss 

dağılımı olarak yaklaşmanın yoludur. Gauss Dağılımının nasıl olacağını yakalamak için en 

az düzeyde sigma point üretilir ve bu noktalar doğrusal olmayan model aracılığıyla yayılır. 

Yakınsama kavramı bu dönüşüm içinde yer almadığından yüksek mertebeli veriler için en 

az düzeyde sigma noktaları almak uygundur [4]. Sigma noktaları, rassal x değişkeninin 

istatistiksel özelliklerinden ortalama ve kovaryans değerlerine paralel şekilde  seçilmelidir 

[8]. Doğrusal olmayan bir fonksiyon kullanılarak tüm durum dağılımı dönüştürmek 

hesaplama olarak zordur, dolayısıyla rassal durum değişkeninin belli noktaları alınarak 

dönüşüm yapılır, bu belli noktalar (sigma noktaları), tüm dağılımın temsilcisi olarak kabul 

edilirler.  

 

5.1 Kokusuz (Unscented) Kalman Filtre Modeli 

Rassal bir x değişkeninin (L boyuta sahip), doğrusal olmayan bir fonksiyon aracılığıyla 

(y = f(x)) yayılım yapacağını düşünelim. Rassal değişkeninin ortalaması 𝑥𝑚 ve kovaryansı 

Px olarak ifade edilsin, y fonksiyonunun hesaplamak için kullanılan X vektörleri (2L+1 adet 

sigma vektörlerinden (Xi) oluşan) eşitlik 5.2 ve eşitlik 5.3 ile hesaplanır. Başlangıç kabul 

edilen sigma noktası rassal değişkenin ortalaması ya da durum vektörünün kendisidir. Bir 

sonraki sigma noktası, bir önceki sigma noktasına, ilk kolonun karekök matrislerinin 

ağırlıklandırılması ile elde edilir. Eşitlik 5.2 ve 5.3’te kullanılan 𝑖 alt indisi ile kovaryansın 

matrisinin karekökünün 𝑖 sütunu belirtilir. Simetrik bir matrisin karekökü tipik olarak düşük 

olan üçgen Cholesky dağılımı ile hesaplanır ve “P” matrisinin karekök matrisi “A” ise 

hesaplama “𝑃 = 𝐴𝐴𝑇” formundadır [10]. 

𝑋0 = 𝑥𝑚 (5.1) 

𝑋𝑖 = 𝑥𝑚 + (√(𝐿 + 𝜆)𝑃𝑥)𝑖   𝑖 = 1,… , 𝐿 (5.2) 

𝑋𝑖 = 𝑥𝑚 + (√(𝐿 + 𝜆)𝑃𝑥)𝑖−𝐿   𝑖 = 𝐿 + 1, … , 2𝐿 (5.3) 
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Filtre ölçekleme parametresi (𝜆) formülü denklem 5.4 ile hesaplanır. Bu değer ne kadar 

büyük olursa seçili sigma point ortalamaya o oranda uzak olur, bu değer ne kadar küçük 

olursa seçili sigma point ortalamaya o kadar yakın olur [9]. Formülde yer alan 𝐿 , x rassal 

değişkeninin boyutudur, sabit 𝛼 değeri ise sigma noktalarının 𝑥𝑚 etrafında yayılımını 

belirlemek için kullanılır ve genellikle çok küçük ondalıklı pozitif bir değer seçilir. İkincil 

ölçeklendirme parametresi olan κ değeri 0 ya da  3 − 𝐿 seçildiğinde [21], sigma noktalarını 

Gauss dağılımına uydurur [4].  

𝜆 = 𝛼2 ∗ (𝐿 + κ) (5.4) 

 

Sigma noktaları formülde yer alan 𝑦 = 𝐻(𝑥𝑘, 𝑟k) doğrusal olmayan fonksiyonu ile 

ilerletilmiştir. Bunu temsil eden denklem 5.5 ile belirtilmiştir. 

𝑌𝑖 = 𝑓(𝑋𝑖)      𝑖 = 0,… ,2𝐿 (5.5) 

Sonraki sigma noktalarının ağırlıklandırılmış ortalama ve kovaryans değeri kullanılarak 𝑦  

fonksiyonunun ortalama ve kovaryans değerine yakınsanabilir. 𝑦 rassal değişkeninin 

ortalaması 𝑦𝑚 ve kovaryans matrisi Py olsun.  

𝑦𝑚 = ∑𝑊𝑖
(𝑚)

2𝐿

𝑖=0

𝑌𝑖 

(5.6) 

𝑃𝑖 = ∑𝑊𝑖
(𝑐)

2𝐿

𝑖=0

{𝑌𝑖 − 𝑦𝑚}{𝑌𝑖 − 𝑦𝑚}𝑇 

(5.7) 

Başlangıç sigma noktasının ortalaması 𝑊0
(𝑚)

, kovaryansı 𝑊0
(𝑐)

, kalan tüm sigma noktaları 

için ağırlıklandırılmaları  𝑊𝑖
(𝑚) 𝑖 = 1, . .2𝐿 ile ifade edilsin. Formülde yer alan ᵦ Gauss 

dağılımına sahip rassal bir x dağılımının önceki bilgileri birleştirmek için kullanılır, 

literatürde genellikle 2 olarak kabul edildiği gözlenmiştir [21].  
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𝑊0
(𝑚) =

𝜆

𝐿 + 𝜆
 

(5.8) 

𝑊0
(𝑐) =

𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

(5.9) 

𝑊𝑖
(𝑚) = 𝑊0

(𝑐) =
1

2(𝐿 + 𝜆)
       𝑖 = 0,… ,2𝐿 

(5.10) 

 

 

Literatür çalışmalarında ortam ve süreç gürültülerinin Kokusuz Kalman Filtresine iki 

şekilde dahil edildiği gözlenmiştir. Birincisi doğrudan süreç gürültüsü ve ortam 

gürültüsünün sırasıyla durum vektörü ve yenilik vektörünün fonksiyonel olarak içine 

gömülü olduğu durumdur. Bu tez çalışmasında ise bir diğer hesaplama yöntemi olan Süreç 

ve Ortam gürültüsünün sırasıyla durum vektörü ve yenilik vektörüne eklemeli olarak 

(additive) dahil edilen durum ele alınmıştır. Bu metodun tercih edilme amacı ise 

Genişletilmiş Kalman filtresindeki formül mimarisi ile en yakın benzerliği yakalamaktır. 

Böylece Genişletilmiş ve Kokusuz Kalman Filtreleri için yapılan karşılaştırmalarda gürültü 

parametrelerinin aynı metotla eklenmesi sağlanmıştır. Amaç, gürültü oranı karşılaştırması 

yapılırken süreç gürültüsünü her iki filtre için (genişletilmiş ve kokusuz) aynı matematik 

denklem yöntemini kullanılarak eklenen gürültüler üzerinden sonuçların oluşturulmasıdır. 

Kokusuz Kalman Filtresi, sigma noktalarını eşitlik 5.11 ve 5.12 ile verilen  yer alan 

durum ve ölçüm formüllerini kullanarak ilerletir. Elde edilen sonuçların ağırlıklı ortalama 

ve kovaryans matrislerini hesaplayarak bir sonraki durumu tahmin eder [10]. 

 

𝑥̂𝑘− = ∑𝑊𝑖
(𝑚)

2𝐿

𝑖=0

𝑋𝑖,𝑘|𝑘−1 

(5.11) 

𝑃𝑘
− = ∑𝑊𝑖

(𝑐)

2𝐿

𝑖=0

{𝑋𝑖,𝑘|𝑘−1 − 𝑥̂𝑘−}{𝑋𝑖,𝑘|𝑘−1 − 𝑥̂𝑘−}𝑇 + 𝑄  
(5.12) 
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𝑌𝑘|𝑘−1 = 𝐻[𝑋𝑘|𝑘−1] (5.13) 

𝑦̂𝑘
− = ∑𝑊𝑖

(𝑚)

2𝐿

𝑖=0

𝑌𝑖,𝑘|𝑘−1 

(5.14) 

 

Tahminler, gelen yeni ölçümlerle güncellenir. Güncelleme işleminde ilk olarak ölçüm 

kovaryans ve durum‐ölçüm çapraz korelasyon matrisleri hesaplanır daha sonra bu matrisler 

kokusuz kalman filtre kazancını belirlemede kullanılır [10]. Kokusuz Kalman Filtresi, ölçüm 

yenilik (inovasyon) vektörü, kovaryansı ve çapraz kovaryans (cross) sırasıyla eşitlik 5.15, 

5.16 ve 5.17 ile verilmiştir. 

𝑣𝑘 = 𝑦𝑘 − 𝑦̂𝑘
− (5.15) 

𝑃𝑦𝑦 = ∑𝑊𝑖
(𝑐)

2𝐿

𝑖=0

{𝑌𝑘|𝑘−1 − 𝑦̂𝑘
−}{𝑌𝑘|𝑘−1 − 𝑦̂𝑘

−}𝑇 + 𝑅 

(5.16) 

𝑃𝑥𝑦 = ∑𝑊𝑖
(𝑐)

2𝐿

𝑖=0

{𝑋𝑖,𝑘|𝑘−1 − 𝑥̂𝑘
−}{𝑌𝑘|𝑘−1 − 𝑦̂𝑘

−}𝑇 

(5.17) 

 

Kokusuz Kalman Filtresi Kazancı denklem (5.18) ile tanımlanır. 

𝐺𝑘 = 𝑃𝑥𝑦 ∗ 𝑃𝑦𝑦
−1 (5.18) 

Durum güncelleme adımı denklem (5.19) ile tanımlanır. 

x̂k = 𝑥̂𝑘
− + 𝐺𝑘 ∗ 𝑣𝑘 (5.19) 

Kovaryans güncelleme adımı denklem (5.20) ile tanımlanır. 

𝑃𝑘 = 𝑃𝑘
− − 𝐺𝑘 ∗ 𝑃𝑦𝑦 ∗ 𝐺𝑘

𝑇 (5.20) 
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Bu tez çalışmasında Kokusuz Kalman Filtresi (UKF) performans analizi için iki farklı 

dinamik modele sahip hedef ile ayrı ayrı çalışılmıştır. Birinci hedef iki boyutlu sabit sürat 

dinamik denklem modeline (Hedef#2) sahiptir. Diğer hedef (Hedef#3), iki boyutlu sabit 

ivme dinamik denklem modeline sahiptir. Hedef#2 modelinin kokusuz kalman filtre ile  

kestirim analizi yapılmıştır. Ayrıca; süreç gürültüsünün sabit tutulduğu durum, 100 kat artma 

durumu, 1000 kat artma durumu ve 5000 kat artma durumunda filtrenin izleme 

performansına etkisi analiz edilmiştir. Hedef#3 modelinin kokusuz kalman filtre ile  kestirim 

analizi yapılırmıştır. Ayrıca; süreç gürültüsünün sabit tutulduğu durum, 100 kat artma 

durumu, 1000 kat artma durumu ve 5000 kat artma durumunda filtrenin izleme 

performansına etkisi analiz edilmiştir. Bu tez çalışmasında sabit süratli ve sabit ivmeli iki 

hedef kestiriminde  UKF  ve EKF sonuçları ayrı ayrı karşılaştırılmıştır. Böylece, aynı 

hareketli hedefler için ortam gürültüsü sabit tutulduğunda süreç gürültüsünün değişiminin 

UKF ve EKF hedef kestirim performansı analiz edilmiştir.  

 

5.2 UKF ile Sabit Süratli Hedef Takibinde Süreç Gürültüsünün Etkisi Analizi 

Hedef#2 için gerekli bilgiler Tablo 5.2.1 üzerinde belirtilmiştir. 

Tablo 5.2.1 UKF ile Kestirimi Yapılan Hedef#2 Bilgileri 

Hedef 
X0 Ekseni 

(m) 

Y0 Ekseni 

 (m) 

Ortalama Hız 

(m/sn) 
Baş Açısı  

Hedef #1 100 100 100 50° 

 

Şekil 5.2.1 ve Şekil 5.2.2 üzerinde sırasıyla X ve Y Ekseni üzerinde sabit süratle 

hareket gerçekleştiren bir hareketlinin UKF hedef izleme performans grafiği yer almaktadır. 

Şekil 5.2.3, Şekil 5.2.4 ve Şekil 5.2.5  yatay ekseninde zaman içinde sabit süratli hareket 

gerçekleştiren hedefin süreç gürültüsünün (hedef hareketindeki belirsizliğin) sırasıyla 100 

Kat, 1000 Kat ve 5000 Kat arttırılma durumunu gösteren grafiklerdir. Şekil 5.2.6, Şekil 5.2.7 

ve Şekil 5.2.8 düşey eksende zaman içinde sabit süratli hareket gerçekleştiren hedefin süreç 

gürültüsünün (hedef hareketindeki belirsizliğin) sırasıyla 100 Kat, 1000 Kat ve 5000 Kat 

arttırılma durumunu gösteren grafiklerdir. 
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Şekil 5.2.1 Yatay Eksende UKF ile Sabit Süratli Hedef Kestirim Grafiği 

 

 

Şekil 5.2 2 Düşey Eksende UKF ile Sabit Süratli Hedef Kestirimi 

  



  

41 

 

 

Şekil 5.2.3 Yatay Eksende UKF ile Sabit Süratli Hedef Kestirimi (SG 100 Kat Artış) 

 

 

Şekil 5.2.4 Yatay Eksende UKF ile Sabit Süratli Hedef Kestirimi (SG 1000 Kat Artış) 

 

 

Şekil 5.2.5 Yatay Eksende UKF ile Sabit Süratli Hedef Kestirimi (SG 5000 Kat Artış) 
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Şekil 5.2.6 Düşey Eksende UKF ile Sabit Süratli Hedef Kestirimi (SG 100 Kat Artış) 

 

 

Şekil 5.2.7 Düşey Eksende UKF ile Sabit Süratli Hedef Kestirimi (SG 1000 Kat Artış) 

 

 

Şekil 5.2.8 Düşey Eksende UKF ile Sabit Süratli Hedef Kestirimi (SG 5000 Kat Artış) 
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Şekil 5.2.9  UKF Konum Hatası Zaman Grafiği                                 Şekil 5.2.10  UKF Konum Hatası Zaman Grafiği (SG 100 Kat Artış) 

 

 

Şekil 5.2.11  Konum Hatası Zaman Grafiği (SG 1000 Kat Artış)  Şekil 5.2.12 UKF Konum Hatası Zaman Grafiği (SG 5000 Kat Artış) 

        

Şekil 5.2.9, Şekil 5.2.10, Şekil 5.2.11 ve Şekil 5.2.12 grafikleri, süreç gürültüsünün 

sırasıyla sabit tutulduğu durum, 100 kat, 1000 kat ve 5000 kat arttırılmasıyla sabit süratli 

hedefin konum hatasının zamanla değişimini göstermektedir. Sabit süratli hedefin konum 

hatası değişim grafikleri incelendiğinde, Kokusuz Kalman Filtresi sabit süratli hedefi izleme 

performansının azaldığı izlenmiştir. Özetle, Süreç gürültüsü arttıkça Kokusuz Kalman 

Filtresi Hedef izleme performansı azalmıştır.      
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Tablo 5.2.2 Süreç Gürültüsünün Konum Hatası Etkisi Analizi (UKF) 

Süreç Gürültüsü 

Q 

Yatay Eksen  

Azami Konum Hatası 

Dikey Eksen 

 Azami Konum Hatası 

Sabit ~20 metre ~35 metre 

100 Kat Fazla ~45 metre ~40 metre 

1000 Kat Fazla ~50 metre ~80 metre 

5000 Kat Fazla ~80 metre ~110 metre 

 yaklaşık "~" 

Tablo 4.3.2 ve Tablo 5.2.2 değerleri karşılaştırıldığında çıkarılan sonuç şu şekilde 

özetlenebilirdir. Süreç gürültüsündeki artışın, sabit süratli hedeflerde genişletilmiş kalman 

filtre kestirimine etkisi Tablo 4.3.2 ve kokusuz kalman filtre kestirimine etkisi Tablo 5.2.2 

ile analiz edilmiştir. Analiz sonucunda süreç gürültüsündeki artış ile hem genişletilmiş hem 

de kokusuz kalman filtreleri hedef kestirimlerindeki konum hatasının arttığı izlenmiştir. 

Süreç gürültüsünün 5000 kat artışı ile UKF filtre kestirim konum hatasının ortalama 100 

metre, EKF filtre kestirim konum hatasının ortalama 170 metre olduğu izlenmiştir. Yani, 

doğrusal olmayan sabit süratli hedeflerin hareket modelindeki belirsizliğe karşı Kokusuz 

Kalman Filtresinin daha kararlı yapıda hedef takibi yaptığı gözlenmiştir.  Kısaca, süreç 

gürültüsü fazla olan sabit süratli hedefler için hedef kestirim kararlılığı özelliği ile Kokusuz 

Kalman filtresinin tercih edilmesi analiz sonucunda ortaya çıkmıştır. 

 

5.3 UKF ile Sabit İvmeli Hedef Takibinde Süreç Gürültüsünün Etkisi Analizi 

Hedef#3 için bilgiler Tablo 5.3.1’de yer almaktadır. 

Tablo 5.3.1 Sabit İvmeli Hedef#3 Özellikleri 

Hedef 
X Ekseni  

(metre) 

Y Ekseni 

 (metre) 

Ortalama İvme 

(m/sn2) 

Baş açısı 

(derece) 

Hedef #1 100 100 5 45° 

 

Şekil 5.3.1 ve Şekil 5.3.2 üzerinde X ve Y Ekseni üzerinde sabit ivmeli bir hareketlinin 

UKF hedef izleme performans grafiği yer almaktadır. Grafik üzerinde “+” ile gösterilen 

semboller hedefin o anki konumu temsil etmektedir ve kokusuz kalman filtre hedef kestirimi 

“x” ile ifade edilmiştir. Şekil 5.3.3, Şekil 5.3.4 ve Şekil 5.3.5 düşey eksende zaman içinde 
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sabit ivmeyle hareket gerçekleştiren hedefin süreç gürültüsünün sırasıyla sabit tutulduğu 

durum, 1000 ve 5000 kat arttırılması ile değişen kestirim doğrultusunu göstermektedir.  

 

 

Şekil 5.3.1 Yatay Eksende UKF ile Sabit İvmeli Hedef Kestirim Grafiği 

 

 

Şekil 5.3.2 Düşey Eksende UKF ile Sabit İvmeli Hedef Kestirim Grafiği 
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Şekil 5.3.3 Düşey Eksende UKF ile Sabit İvmeli Hedef Kestirimi (SG 100 Kat Artış) 

 

 

Şekil 5.3.4 Düşey Eksende UKF ile Sabit İvmeli Hedef Kestirimi (SG 1000 Kat Artış) 

 

 

Şekil 5.3.5 Düşey Eksende UKF ile Sabit İvmeli Hedef Kestirimi (SG 5000 Kat Artış) 
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Şekil 5.3.6 Yatay Eksende UKF ile Sabit İvmeli Hedef Kestirimi (SG 100 Kat Artış) 

 

 

Şekil 5.3.7 Yatay Eksende UKF ile Sabit İvmeli Hedef Kestirimi (SG 1000 Kat Artış) 

 

 

Şekil 5.3.8 Yatay Eksende UKF ile Sabit İvmeli Hedef Kestirimi (SG 5000 Kat Artış) 
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Şekil 5.3.9 UKF ile Sabit İvmeli Hedef Kestirimi Hatası  

 

 

Şekil 5.3.10 UKF ile Sabit İvmeli Hedef Kestirim Hatası (SG 1000 Kat Artış) 

 

 

Şekil 5.3.11 UKF ile Sabit İvmeli Hedef Kestirim Hatası (SG 5000 Kat Artış) 
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Tablo 5.3.2 Süreç Gürültüsünün Konum Hatası Etkisi Analizi (UKF) 

Süreç Gürültüsü 
Yatay Eksen 

 Azami Konum Hatası 

Dikey Eksen 

 Azami Konum Hatası 

Q 

 (Sabit) 
~20 metre ~20 metre 

Q  

      (1000 Kat Fazla) 
~50 metre ~80 metre 

Q 

 (5000 Kat Fazla) 
~130 metre ~150 metre 

 yaklaşık "~" 

Şekil 5.3.9, Şekil 5.3.10 ve Şekil 5.3.11 grafikleri üzerinde süreç gürültüsünün 

arttırılmasıyla sabit ivmeli hedefin konum hatası değişim grafikleri incelendiğinde, Kokusuz 

Kalman Filtresi sabit ivmeli hedefi izleme performansının azaldığı izlenmiştir.      

Sabit ivmeli hedef kestirimi için genişletilmiş ve kokusuz kalman filtrelerinin kestirim 

performansları analiz karşılaştırması yapılmıştır. Süreç gürültüsündeki artışın, sabit ivmeli 

hedeflerde genişletilmiş kalman filtre kestirimine etkisi Tablo 4.4.2 ve kokusuz kalman filtre 

kestirimine etkisi Tablo 5.3.2 ile analiz edilmiştir. Analiz sonucunda süreç gürültüsündeki 

artış ile hem genişletilmiş hem de kokusuz kalman filtreleri hedef kestirimlerindeki konum 

hatasının arttığı izlenmiştir. Süreç gürültüsündeki 5000 kat artışının, UKF ile hedef izleme 

doğrultusunda ortalama 140 metre ve EKF hedef izleme doğrultusunda ortalama 320 metre 

sapmasına yol açtığı izlenmiştir. Özetle, Kokusuz Kalman Filtresi, doğrusal olmayan sabit 

ivmeli hedeflerin hareket modelindeki belirsizliğe karşı daha kararlı yapıda hedef takibi 

gerçekleştirmiştir. Sonuç olarak sabit ivmeli hedefler için, hedef izleme doğrultusunu kararlı 

takip etme özelliği ile Kokusuz Kalman filtresinin tercih edilmesi daha az konum hatasına 

sahip hedef izleme performansına sahiptir. 
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6.  ETKİLEŞİMLİ ÇOKLU MODEL FİLTRE (IMM) 

 

En genel tanım olarak birden fazla Kalman filtresinden oluşan ve hedef durum tahmini 

gerçekleştiren bütünleşik bir algoritmadır. Birden fazla filtre modelinin kullanımıyla 

değişken dinamiklere sahip hedefin durum tahmininin  doğru şekilde yapılmasını sağlar. 

Etkileşimli Çoklu Model filtrede (IMM) yer alan her bir filtre modeli, farklı hedef 

dinamiklerini karşılayan yapıya sahiptir. Amaç, gerçek hedef durumuna en yakın tahmini 

sağlamaktır. IMM içindeki filtrelerin birbiri ile etkileşim olasılığını da hesaba katar. Bununla 

birlikte hedefin davranışına paralel dinamik filtre belirlenir. Bu hesaplama yöntemi IMM 

algoritmasına manevra yapan hedefleri takip etmek için  avantaj sağlar. Filtre her zaman 

adımında ölçülen verilere en uygun modelin hangisi olduğunu belirlemek için Markov 

Zinciri kullanır. Markov Zinciri kısaca, bir modelden diğerine geçiş olasılığını belirleyen bir 

dizi olasılık tanımlar, bu olasılıklar sistemle ilgili ön bilgilere dayalı olarak tahmin edilir. 

IMM içinde gömülü olan kalman filtrelerinden ayrı ayrı gelen tahminlere bakılarak sistem 

durumunun ağırlıklı tahmini yapılır, bu ağırlıklar her bir modele atanan olasılıklar ile 

Markov Zinciri tarafından belirlenir ve gelen tahmine güven derecesini yansıtır. 

IMM filtrenin çalışması 4 başlık altında gruplandırılabilir: filtreler arası etkileşim, her 

bir filtre için kestirim güncelleme, filtrelerin olasılık hesaplamalarının yapılması, filtrelerin 

kestirim ortaklaştırılması. 
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6.1 Filtreler Arası Etkileşim 

Filtreler arası etkileşimi sağlamak için verilen formüller sırasıyla eşitlik 6.1, 6.2 ve 6.3 

adımlarında yer almaktadır. Bu formüllerde yer alan sembol açıklamaları aşağıdaki 

şekildedir: 

“k-1”                : Bir önceki zaman adımı (ilklendirme),  

 “i”, ”j” ve “l”  : Farklı kalman filtreleri 

  “r“                 : Dinamik Model 

 “𝑢𝑖”           : Her bir filtre için model olasılığı  

 “𝑈𝑖𝑗̇”              : i. filtreden j. filtreye geçişin koşullu olasılığı 

 “𝑝𝑖𝑗”             : Her zaman adımı için hedefin i. modelden j. modele geçme  olasılığı

  

“𝑋𝑖
+”               :  Her bir hedef durumu 

“𝑃𝑖
+”               :  Her bir hedef başlangıç kovaryansı 

 “𝑋𝑗(𝑘−1)
0 ”      : Bir önceki zaman adımı ortak durum tahmini 

“𝑃𝑗(𝑘−1)
0 ”        : Bir önceki zaman adımı ortak kovaryans 

 

𝑈𝑖𝑗̇(𝑘−1) =
𝑝𝑖𝑗̇𝑢𝑖(𝑘−1)

∑ 𝑝𝑙𝑗̇𝑢𝑙(𝑘−1)
𝑟
𝑙=1

 
     (6.1) 

 

𝑋𝑗(𝑘−1)
0 = ∑𝑋𝑖(𝑘−1)

+ 𝑈𝑖𝑗̇(𝑘−1)

𝑟

𝑙=1

 
  (6.2) 

𝑃𝑗(𝑘−1)
0 = ∑𝑈𝑖𝑗(𝑘−1)̇

𝑟

𝑙=1

{𝑃𝑖(𝑘−1)
+ + [𝑋𝑖(𝑘−1)

+ − 𝑋𝑗(𝑘−1)
0 ][𝑋𝑖(𝑘−1)

+ − 𝑋𝑗(𝑘−1)
0 ]𝑇 

  (6.3) 
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6.2 Her Filtre İçin Kestirim Güncelleme 

 

Bu tezde IMM Kalman filtresi analizi için Standart Kalman filtre ve Genişletilmiş 

Kalman Filtre kullanılmıştır. Bundan dolayı Filtre adımı için kestirim güncelleme 

formüllerinde Standart Kalman filtresi adımları yer almaktadır. Eşitlik (6.4)-(6.10) ile 

verilen denklemlerin açıklamaları şu şekildedir: 

 

“𝑋𝑗(𝑘−1)
0 ” : Bir önceki zaman adımı ortak durum tahmini 

“𝑃𝑗(𝑘−1)
0 ” : Bir önceki zaman adımı ortak kovaryans 

“𝑋𝑗(𝑘)
− ”  : k anındaki durum tahmini 

“𝑃𝑗(𝑘)
− ”  : Başlangıç Kovaryans tahmini 

“𝐴j”  : Geçiş Matrisi (Dinamik Model) 

“𝑄j”  : Süreç Gürültüsü 

“𝑦̃𝑗”  : Yenilenme hesabı 

“𝑆𝑗”  : İnovasyon Kovaryansı 

“𝐺𝑗(𝑘)”  : IMM Kalman Filtre Kazancı  

“𝐻j”  : Gözlem Matrisi 

“𝑅j”  : Ölçüm gürültüsü 

“𝑋𝑗(𝑘)
+ ”  : Güncellenmiş tahmin edilen durum 

“𝑃𝑗(𝑘)
+ ”  : Güncellenmiş tahmin edilen kovaryans 

“𝐼”  : Birim Matris  
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𝑋𝑗(𝑘)
− = 𝐴j 𝑋𝑗(𝑘−1)

0  (6.4) 

𝑃𝑗(𝑘)
− = 𝐴j 𝑃𝑗(𝑘−1)

0  Aj
T + 𝑄j (6.5) 

𝑆𝑗(𝑘) = 𝐻j 𝑃𝑗(𝑘)
−  Hj

T + 𝑅j (6.6) 

𝐺𝑗(𝑘) = 𝑃𝑗(𝑘)
−  Hj

T 𝑆𝑗(𝑘)
−1  (6.7) 

𝑦̃𝑗(𝑘) = 𝑍𝑘 − 𝐻j 𝑋𝑗(𝑘)
−  (6.8) 

𝑋𝑗(𝑘)
+ = 𝑋𝑗(𝑘)

− + 𝐺𝑗(𝑘) 𝑦𝑗(𝑘) (6.9) 

𝑃𝑗(𝑘)
+ = (𝐼 − 𝐺𝑗𝐻j) 𝑃𝑗(𝑘)

−  (6.10) 

 

6.3 Filtrelerin Olasılık Hesaplamalarının Yapılması Aşaması 

Bu adımda hesaplamaya dahil edilen olasılık fonksiyonu ve ağırlıklandırma katsayıları 

formülleri gösterilmektedir. Bu adım, IMM filtre içindeki model olasılıklarını hesaplamak 

ve ardından durum tahmini ve model olasılıklarını güncellemek için kullanılan formül içine 

dahil edilir. Kısaca, her bir model tahmini ile gözlenen ölçümlerin ne kadar eşleştiğinin 

ölçütüdür. Bu ölçüt algoritmanın bir sonraki iterasyonunda durum ve kovaryans tahmini 

güncellemek için kullanılır. Eşitlik 6.11 ve eşitlik 6.12 ile gösterilen formüllerin açıklamaları 

şu şekildedir: 

“ ʌ𝑗(𝑘)”          : j. filtre yenilenme ve kovaryansına bağlı olasılık fonksiyonu 

“𝑢𝑗(𝑘−1)”       : j. filtre için ilklendirilmiş model olasılığı 

“𝑢𝑗(𝑘)”           : k anındaki son model olasılığı (ağırlıklandırma faktörü) 

“||”                 : determinant 

“exp”             : üstel (e^) 
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    ʌ𝑗(𝑘) =
exp[𝑦̃𝑗

𝑇 𝑆𝑗(𝑘)
−1  𝑦̃𝑗(𝑘) ]

√2𝜋|𝑆𝑗|
                              (6.11) 

𝑢𝑗(𝑘) =
𝑢𝑗(𝑘−1) ʌ𝑗(𝑘)

∑ 𝑢𝑗(𝑘−1) ʌ𝑖(𝑘)

𝑟

𝑖=1

 
(6.12) 

  

6.4 Filtrelerin Kestirim Ortaklaştırılması Aşaması 

IMM Kalman filtresi içinde yer alan ve hedefleri takip etmek için kullanılan tüm 

filtrelerin durum ve kovaryans kestirimlerinin ortaklaştırılması (combination)  aşamasından 

oluşmaktadır. Filtre olasılık hesaplaması yapılma aşması sonrasında bu olasılıklar baz 

alınarak ortak durum ve kovaryans kestirim değerleri hesaplanır. Denklem 6.13 ve 6.14 ile 

gösterilen formüllerin açıklamaları bulunmaktadır: 

“𝑋(𝑘)”         : Ortak (combine) durum kestirimi 

 “𝑃(𝑘)”        :  Ortak (combine) kovaryans  

 

𝑋(𝑘) = ∑𝑋𝑗(𝑘)
+ 𝑢𝑗(𝑘)

𝑟

𝑗=1

                                          (6.13) 

 

𝑃(𝑘) = ∑𝑢𝑗(𝑘)

𝑟

𝑙=1

{𝑃𝑗(𝑘)
+ + [𝑋𝑗(𝑘)

+ − 𝑋(𝑘)][𝑋𝑗(𝑘)
+ − 𝑋(𝑘)]

𝑇            (6.14)                              
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Bu tez çalışmasında IMM filtre ile ilgili yapılan çalışma şu şekildedir. Sabit ivmeli ve 

sabit süratli hareket senaryosuna sahip iki dinamik model kullanılmıştır. Sabit ivmeli hedef 

için Genişletilmiş Kalman filtresi ve sabit süratli hedef için Standart Kalman filtresi 

kullanımı tercih edilmiştir. Birinci durumda filtrelerin ağırlıklandırma katsayıları değiştirilip 

IMM filtresinin hedef izleme performansındaki değişim analiz edilmiştir. Filtre Geçiş 

Olasılığı (FGO) sabit ivmeli model için sırasıyla IMM_Durum_1 için 0.01, IMM_Durum_2 

için 0.5 ve IMM_Durum_3 için 0.99 seçilerek yapılan analizler ayrı şekilde bölüm 6.5, 6.6 

ve 6.7 başlıkları altında incelenmiştir. Sonraki adım olarak süreç gürültüsü değiştirilerek 

IMM filtre hedef takip performansı bölüm 6.8 başlığı altında incelenmiştir.  

 

6.5 İvmeli Hedef Takibi Analizi (Filtre Geçiş Olasılığı Sıfır) 

Bu tez kapsamında oluşturulan Etkileşimli Çoklu Model filtre, bir adet genişletilmiş 

kalman filtre (birinci dinamik model) ve bir adet standart kalman filtre (ikinci dinamik 

model) ile tasarlanmıştır. Tablo 6.5.1’de “ 𝑝11” ve “𝑢1” değerleri olasıksal olarak çok düşük 

bir değer seçilmiştir. Bu şekilde seçildiğinde IMM filtre tarafından manevralı ve ivmeli 

hareket eden hedefi (Hedef#3) izleme performansı analiz edilmiştir. 

 

Tablo 6.5.1 Filtreler Arası (IMM içinde) Geçiş Olasılığı ve Model Olasılığı Tablosu 

Filtre Geçiş Olasılığı Model Olasılığı 

𝑝11 𝑝22 𝑢1 𝑢2 

0.01 0.99 0.001 0.999 
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IMM_Durum_1_Sonuç: 

 

Şekil 6.5.1 Yatay Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO = 0.01) 

 

 

 

Şekil 6.5.2 Düşey Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO = 0.01) 

Sabit ivmeli hareket gerçekleştiren Hedef#3 hareketlisinin kestirimi yapılırken IMM 

filtre içindeki genişletilmiş kalman filtresi geçiş olasılığı düşük tutulmuştur. Beklenen sonuç 
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IMM filtrenin ivmeli hedef kestirim performansının yetersiz kalmasıdır. Bu durum Şekil 

6.5.1 ile X Ekseni-Zaman grafiği ve Şekil 6.5.2 ile Y Ekseni- Zaman grafiği üzerinde 

tanıtlanmıştır. IMM Filtrenin 15. Saniyeden itibaren hedef yörüngesine dahi 

yakınsayamadığı izlenmiştir. Bu da hedef dinamik model ve geçiş olasılıklarının IMM 

filtreye doğru veri ile sağlanmadığı durumda, IMM filtrenin hedef kestiriminde yetersiz 

kaldığını gösterir. 

 

 

Şekil 6.5.3 IMM ile Sabit İvmeli Hedef Kestirim Hatası (FGO = 0.01) 

 

Birinci durum için Şekil 6.5.3 ile Konum Hatası – Zaman grafiği sabit ivmeli hareket 

gerçekleştiren Hedef#3 için gösterilmiştir. Konum hatasının hem yatay hem düşey eksende 

zamanla artan hataya sahip bir hareket gerçekleştirdiği gözlenmiştir. 

 

 

6.6 İvmeli Hedef Takibi Analizi (Filtre Geçiş Olasılığı 0.5) 

Bu tez kapsamında oluşturulan Etkileşimli Çoklu Model filtre içinde birinci dinamik 

model, genişletilmiş kalman filtre ve ikinci dinamik model standart kalman filtre ile 
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tasarlanmıştır. Tablo 6.6.1 ile “ 𝑝11 ”, “ 𝑝12 ” , “𝑢1” ve “𝑢2” değerleri olasılıksal olarak eşit 

seçilmiştir. Bu şekilde seçildiğinde IMM filtre tarafından ivmeli hareket eden hedef izleme 

performansı analiz edilmiştir. 

Tablo 6.6.1 Filtreler Arası (IMM içinde) Geçiş Olasılığı ve Model Olasılığı Tablosu 

Filtre Geçiş Olasılığı Model Olasılığı 

𝑝11 𝑝22 𝑢1 𝑢2 

0.5 0.5 0.5 0.5 

 

 

Şekil 6.6.1 Yatay Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO = 0.5) 

 

 

Şekil 6.6.2 Düşey Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO = 0.5) 
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IMM_Durum_2_Sonuç: 

İvmeli hareket gerçekleştiren Hedef#3 dinamik modeli ve IMM filtre ile kestirim 

durumu için Şekil 6.6.1 ile X Ekseni-Zaman grafiği ve Şekil 6.6.2 ile Y Ekseni- Zaman 

grafiği gösterilmiştir. IMM filtre içinde Hedef#3 modele ait geçiş olasılıkları ve model 

olasılıkları Tablo 6.6.1’de yer alan değerler filtreye gömülerek ilklendirme işlemi 

yapılmıştır. Birinci Duruma göre Hedef#3 için model olasılığı arttırılmıştır. Bu durumda 

IMM filtrenin hedef takibinde birinci durum senaryosuna göre daha kararlı sonuç verdiği 

izlenmiştir. IMM Filtrenin 15. Saniyeden itibaren hedef yörüngesine yakınsadığı ancak bu 

yakınsamanın yüksek konum hatası ile olduğu izlenmektedir. Bu da hedef dinamik model 

ve geçiş olasılıklarının IMM filtreye doğru veri ile ilklendirilmediği durumda, IMM filtrenin 

hedef izlemede yetersiz kaldığını göstermektedir. 

 

Şekil 6.6.3 IMM ile Sabit İvmeli Hedef Kestirim Hatası (FGO = 0.5) 

 

Konum Hatasının hem yatay hem düşey eksende zamanla artarak artan bir hareket 

gerçekleştirdiği gözlenmiştir. IMM_Durum_1_Sonuç bölümü ile kıyaslandığında (filtre 

model geçiş olasılığı arttırıldığında) ise hem yatay hem düşey eksende konum hatalarının 

yaklaşık %50 oranında azaldığı gözlenmiştir. 
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6.7 İvmeli Hedef Takibi Analizi (Filtre Geçiş Olasılığı Bir) 

Bu tez kapsamında oluşturulan Etkileşimli Çoklu Model filtre içinde birinci dinamik 

model, genişletilmiş kalman filtre ile ikinci dinamik model standart kalman filtre ile 

tasarlanmıştır. Tablo 6.7.1 ile “ 𝑝11 ” ve “𝑢1” değerleri olasıksal olarak 1’e yakın seçildiği 

gösterilmiştir. Bu şekilde seçildiğinde IMM filtre tarafından ivmeli hareket eden Hedef#3 

izleme performansı analiz edilmiştir. 

Tablo 6.7.1 Filtreler Arası (IMM içinde) Geçiş Olasılığı ve Model Olasılığı Tablosu 

Filtre Geçiş Olasılığı Model Olasılığı 

𝑝11 𝑝22 𝑢1 𝑢2 

0.99 0.01 0.999 0.001 

 

 

Şekil 6.7.1 Yatay Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO = 0.99) 
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Şekil 6.7.2 Düşey Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO = 0.99) 

 

IMM_ Durum_3_Sonuç: 

IMM filtre içinde sabit ivmeli modele ait geçiş olasılıkları ve model olasılıkları artma 

durumunda IMM filtresinin ivmeli hareket eden hedefi aynı doğrultuda izlediği 

tanıtlanmıştır. Bu da hedef dinamik model ve geçiş olasılıklarının IMM filtreye doğru veri 

ile sağlandığı durumda, IMM filtrenin hedef izlemedeki performansının başarılı olduğunu 

göstermektedir.  

 

Şekil 6.7.3 Eksende IMM ile Sabit İvmeli Hedef Kestirimi (FGO  0.99) 
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Şekil 6.7.4 IMM ile Sabit İvmeli Hedef Kestirim Hatası (FGO = 0.99) 

 

IMM Kalman filtresi model olasılık ve model geçiş olasılıklarının ortamdaki 

hedeflerin dinamik modeli ile orantılı seçildiği durumda Şekil 6.7.4 ile ivmeli hedef 

izlemede konum hatasının yatay eksende azami 2 metreye yakınsadığı, düşey eksende azami 

11 metre kadar azaldığı gözlenmiştir. 

 

 

6.8 IMM ile Sabit İvmeli Hedef Takibinde Süreç Gürültüsü Etkisi Analizi 

Bu tez kapsamında IMM filtre ile takip edilen sabit ivmeli hedef (Hedef#3) için süreç 

gürültüsü 500 kat arttırılarak IMM hedef izleme performans analizi yapılmıştır. Üçüncü 

durum için kabul edilen ve Tablo 6.7.1’de yer alan Filtre Geçiş Olasılığı ve Model Olasılığı 

sabitleri bu analiz için de sabit tutulmuştur.  
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Şekil 6.8.1 IMM ile Sabit İvmeli Hedef Kestirimi (SG 500 Kat Artışı) 

 

 

Şekil 6.8.2 IMM ile Sabit İvmeli Hedef Kestirim Hatası (SG 500 Kat Artışı) 

 

Süreç gürültüsü (Q) 500 kat arttırılmıştır. Bu durumda Şekil 6.8.2 üzerinde ivmeli 

hedef izlemede konum hatasının yatay eksende azami 2 metreye, düşey eksende azami 13 

metre kadar yükselmiştir. Süreç gürültüsünde yapılan 500 katlık bir artış için IMM filtrenin 

konum hatası-zaman grafiğinin kararlı yapı gösterdiği tanıtlanmıştır. (Şekil 6.7.4 ve Şekil 

6.8.2 karşılaştırılması sonucu ile alınan bulgular baz alınmıştır.) 
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7. ÇOKLU HEDEF TAKİP ANALİZİ 

 

7.1 En Yakın Komşu (NN) Yöntemi  

Kargaşa ortamı içinde hedef izlemede en yaygın olarak kullanılan yöntemlerden biridir 

[12]. En yakın komşuluk (NN) algoritması, varsayılan hedef noktasına olan en yakın 

ölçümün kabulüdür. Bu algoritmada, geçerlilik bölgesi (validation region) içinde birden 

fazla gözlem olma durumunda, ilgili gözlemlerin hedeften gelme kabulünün yapılması için 

en yakın mesafe baz alınır. Filtrede hedef durumu bu gözlem ile güncellenir [2]. Kısaca, 

ölçüm kestirimine göre bir kabul bölgesi oluşturulur, bu kabul bölgesi kapı olarak 

isimlendirilir.  Ölçüm değerleri eşik değeri ile belirlenen alan içinde yer alır. Bu bölgenin 

dışında kalan bir ölçümün ilgili hedef dışında başka bir hedeften geldiği varsayılır ve 

algoritma tarafından ihmal edilir. Kapı içine düşen ölçümlerden tahmin edilen ölçüme olan 

en yakın uzaklık  bulunması için kullanılan eşitlik 7.2 ile gösterilmektedir. Burada yer alan 

eşik seviyesi “𝛾” Ki-kare (chi-square) tablosu ile belirlenir. Ki-kare tablosu bir ölçümün 

tahmini ölçüm değeri ile ne kadar kokusuz olduğunu değerlendirmek için kullanılan 

istatistiksel bir araçtır. Bu uyuma bakılırken Ki-kare tablosunda referans alınan değer “kritik 

değer” olarak isimlendirilir. Bu değer ölçümün tahmini ölçüm ile arasındaki farkın, 

belirlenen seviyenin (kritik değer) altında kalması durumunda kabul edilebilir bir değeri 

işaret eder. Yani, denklemde elde edilen değer, tablodan belirlenen kritik değerden küçük 

ise ölçüm takip edilen bir hedef ile ilişkilendirilir ve filtre güncellenir. Ki-kare tablosunda 

yer alan kritik değer belirlemek için ki-kare tablosunda ilk sütun (DF) olan serbestlik 

derecesi, ölçüm boyutu ile belirlenir. 
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“𝑣𝑘”          : İnovasyon (yenilenme) vektörü  

“𝑧𝑘”          : Ölçüm vektörü 

“𝑧̂𝑘|𝑘−1”   : Ölçüm kestirimi  

“𝑆𝑘”          : İnovasyon kovaryansı  

“𝑘 − 1”    : Bir önceki zaman adımı 

“𝑘”            : Güncel zaman adımı 

“𝐷”           : Geçerlilik Bölgesi (Kapı) 

“𝛾”            : Eşik seviyesi (threshold)  

 

𝑣𝑘 = 𝑧𝑘 − 𝑧̂𝑘|𝑘−1  (7.1) 

𝐷 = 𝑣𝑘
𝜏 𝑆𝑘𝑣𝑘 ≤  𝛾 (7.2) 

  

Bu tez çalışması kapsamında NN algoritması iki ana kısımda değerlendirilmiştir. 

Birinci kısımda NN algoritması, Standart Kalman filtresi ile birlikte kullanılarak birbirine 

yakın, paralel ve sabit süratli eş zamanlı hareket eden iki doğrusal hedef için davranışı 

izlenilmiştir. Bir sonraki adımda süreç gürültüsü arttırılarak NN-SKF davranışının çoklu 

hedef izleme performansına analizi yapılmıştır. Aynı analiz aynı hedeflerin birbirlerine göre 

çapraz doğrultuda hareketleri için de gerçekleştirilmiştir. İkinci kısımda NN algoritması, 

Genişletilmiş Kalman filtresi ile birlikte birbirine yakın ve sabit ivme ile hareket eden iki 

manevralı hedef için davranışı izlenilmiştir. Bir sonraki adımda süreç gürültüsü arttırılarak 

NN-EKF davranışının çoklu hedef izleme performansının analizi yapılmıştır. 
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7.1.1 En yakın komşu yöntemi ve SKF ile çoklu hedef izleme analizi 

Burada yapılan analiz üç ayrı adımda gerçekleştirilmiştir. 

ADIM-1 :Birbirine paralel ve aynı ortam gürültüsüne sahip iki sabit süratli hedef için 

NN-SKF ile hedef izleme takibi analizi yapılmıştır. Amaç, yakın ve paralel hedeflerin 

izlenmesi için NN algoritmasının performansını analiz etmektir. Kullanılan hedefler ile ilgili 

bilgiler Tablo 7.1.1.1 üzerinde yer almaktadır.   

Tablo 7.1.1.1 NN ile Takip Edilen Sabit Süratli İki Hedef için Bilgi Tablosu 

Hedef 

X0 

Ekseni 

(m) 

Y0 

Ekseni 

(m) 

Yatay Hız 

(m/sn) 

Düşey Hız 

(m/sn) 

sigma

_x1 

sigma

_y1 

sigma

_x2 

sigma_

y2 

Hedef 

1 
10 10 100 100 0.12 0.12 - - 

Hedef 

2 
50 200 100 100 - - 0.12 0.12 

sigma: süreç gürültüsünün standart sapması 

 

Şekil 7.1.1.1 NN-SKF ile Sabit Süratli ve Paralel Çoklu Hedef İzleme Grafiği 
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Şekil 7.1.1.2 Konum Hatası Grafiği (Hedef1) 

 

Şekil 7.1.1.3 Konum Hatası Grafiği (Hedef2) 

 

Yapılan analiz sonucunda NN-SKF ile izlenilen sabit süratli ve birbirine yakın seyreden 

hedeflerin eş zamanlı kestirimlerinde herhangi bir izleme kaybı yaşanmadığı ve her bir 

kestirimin ilişkili hedef üzerinde olduğu izlenmiştir. 
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ADIM-2 : Eş zamanlı olarak birbirlerine göre çapraz hareket eden ve aynı ortam 

gürültüsüne sahip iki hedef için NN-SKF ile hedef izleme takibi analizi yapılmıştır. 

Kullanılan hedefler ile ilgili bilgiler Tablo 7.1.1.2 ile gösterilmiştir.  

Tablo 7.1.1.2 NN ile Takip Edilen Sabit Süratli İki Hedef Bilgisi 

Hedef 
X0 Ekseni 

(m) 

Y0 Ekseni 

(m) 

Yatay 

Hız 

(m/sn) 

Düşey 

Hız 

(m/sn) 

sigma

_x1 

sigma

_y1 

sigma

_x2 

sigma

_y2 

Hedef 

1 
10 10 100 100 0.12 0.12 - - 

Hedef 

2 
10 1000 100 -100 - - 0.12 0.12 

 

 

Şekil 7.1.1.4 NN-SKF ile Eş Zamanlı Hareket Eden Sabit Süratli İki Hedef Kestirimi 

 

Şekil 7.1.1.4 grafiği baz alınarak NN-SKF ile izlenilen sabit süratli ve birbirlerine göre 

çapraz hedef kestirimi sonuçlarında herhangi bir izleme kaybı yaşanmadığı gözlenmiştir. 

Hedeflerin kestirimi sırasında herhangi bir yanılma olmadığı, her bir kestirimin ilişkili hedef 

üzerinde olduğu görülerek doğrulanmıştır. 
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ADIM-3 : Eş zamanlı olarak birbirine göre çapraz hareket eden ve farklı süreç 

gürültüsüne sahip iki hedef için NN-SKF ile hedef izleme takibi analizi yapılmıştır. 

Kullanılan hedefler ve değişen süreç gürültü standart sapması ile ilgili bilgiler Tablo 7.1.1.3 

ile gösterilmiştir.  

Tablo 7.1.1.3 NN ile Takip Edilen İki Sabit Süratli Hedefin Bilgileri 

Hedef 
X0 Ekseni 

(m) 

Y0 Ekseni 

(m) 

Yatay 

Hız 

(m/sn) 

Düşey 

Hız 

(m/sn) 

sigma 

x1 

sigma 

y1 

sigma

x2 

sigma

y2 

Hedef 

1 
10 10 100 100 0.12 0.12 - - 

Hedef 

2 
10 1000 100 -100 - - 100 12 

 

 

Şekil 7.1.1.5 NN-SKF ile Eş Zamanlı Hareket Eden Sabit Süratli İki Hedef Kestirimi 

  

Birbirine yakın, paralel ve sabit süratli hareket senaryosunda süreç gürültü standart sapması 

değiştirilerek NN-SKF ile yapılan hedeflerin eş zamanlı kestirimleri Şekil 7.1.1.5 ile 

gösterilmiştir. 
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Hedef#2 için süreç gürültüsü arttırılma durumunda NN-SKF algoritmasının çoklu 

hedef izlemede yetersiz kaldığı Şekil 7.1.1.4 ve Şekil 7.1.1.5 karşılaştırılarak izlenebilirdir.       

Şekil 7.1.1.4  ile yapılan kestirimde herhangi bir atlama, kopma gözlenmemiştir. Ancak  

Şekil 7.1.1.51 grafiği incelendiğinde, tam kesişim alanında yeşil ile gösterilen “x” 

sembollerin Hedef#2 doğrultusu yönünde değil, Hedef#1 doğrultusu üzerinde kestirim 

yapmaya çalıştığı izlenmiştir.  

Şekil 7.1.1.5 üzerinde hedef kestiriminde atlama yaşandığı, hedef doğrultusunda 

kestirim yapılmadığı ve kaymaların yaşandığı izlenmiştir. Burada kullanılan aynı hedefler 

ve aynı katsayılı süreç gürültüsü için 7.3.1 bölümünde JPDA (ortak olasılıksal veri 

ilişkilendirme yöntemi) ile analiz edilerek NN ve JPDA için çoklu hedef izleme 

performanslarının karşılaştırılması ayrıca sağlanmıştır. NN-SKF Konum hatası grafikleri 

Hedef#1 ve Hedef#2 için sırasıyla Şekil 7.1.1.6 ve Şekil 7.1.1.7 ile verilmiştir. 

 

Şekil 7.1.1.6 NN-SKF ile Hedef Yörünge Kestirimi Konum Hatası Grafiği (Hedef#1) 

 

Şekil 7.1.1.7 NN-SKF ile Hedef Yörünge Kestirimi Konum Hatası Grafiği (Hedef#2) 
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7.1.2 En yakın komşu yöntemi ve EKF ile çoklu hedef izleme analizi 

Eş zamanda sabit ivmeli hareket gerçekleştiren iki hedefin NN-EKF ile takip analizi 

yapılmıştır. Hedef #3 ve Hedef #4 olarak isimlendirilen hedefler sabit ivme dinamik modele 

sahiptirler. Bu bölümde analiz iki adımdan oluşmaktadır. 

ADIM-1: Eş zamanlı hareket eden sabit ivmeli iki hedefin EKF kestirim analizini 

içermektedir.  

Tablo 7.1.2.1 NN-EKF ile Takip Edilen Sabit İvmeli Hedef Bilgileri 

Hedef 

X0 

Ekseni 

(m) 

Y0 

Ekseni 

(m) 

İvme 

(m/sn2) 
sigma_x1 sigma_y1 sigma_x2 sigma_y2 

Hedef #3 0 100 10 0.12 0.12 - - 

Hedef #4 500 500 10 - - 0.12 0.12 

 

 

 

Şekil 7.1.2.1 NN-EKF ile Sabit İvmeli Çoklu Hedef İzleme Grafiği 
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Şekil 7.1.2.2 NN-EKF ile Hedef Yörünge Kestirimi Konum Hatası Grafiği (Hedef1) 

 

 

Şekil 7.1.2.3 NN-EKF ile Hedef Yörünge Kestirimi Konum Hatası Grafiği (Hedef2) 
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ADIM-2: Hedef #4 için süreç gürültüsü standart sapması arttırılarak eş zamanlı 

hareket eden sabit ivmeli iki hedefin EKF kestirim analizini içermektedir.  

Tablo 7.1.2.2 NN-EKF ile Takip Edilen Hedef Bilgileri 

Hedef 

X0 

Ekseni 

(m) 

Y0 

Ekseni 

(m) 

İvme 

(m/sn2) 
sigma_x1 sigma_y1 sigma_x2 sigma_y2 

Hedef 

#3 
0 100 10 0.12 0.12 - - 

Hedef 

#4 
500 500 10 - - 100 12 

 

 

 

Şekil 7.1.2.4 NN-EKF Hedef Kestirimi Grafiği 
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Şekil 7.1.2.5 Konum Hatası Grafiği (Hedef #4)      Şekil 7.1.2.6 Konum Hatası Grafiği (Hedef #3) 

      

Süreç gürültü standart sapması sabit tutulan iki hedef için elde edilen eş zamanlı 

kestirim performansı grafiği Şekil 7.1.2.1 ile verilmiştir. Hedef #4 için süreç gürültü standart 

sapması arttırıldıktan sonra iki hedef için elde edilen eş zamanlı kestirim performansı grafiği 

Şekil 7.1.2.4 ile verilmiştir. Bu iki grafiğin karşılaştırılması ile elde edilen sonuçlar aşağıdaki 

şekilde ifade edilmiştir. 

1.  Süreç gürültü standart sapması sabit tutulan, sabit ivmeli ve yakın hedef 

kestirimleri için NN-EKF kestirim performansının düşük olduğu gözlenmiştir. Şekil 

7.1.2.1’de sabit süreç gürültüsüne sahip iki hedefin aynı anda NN-EKF ile izlenebilirliği 

manevranın başladığı 20. saniyeden itibaren azalmaya başlamaktadır. Hedef kestiriminin her 

iki hedef için de netliğini kaybettiği gözlenmiştir. 

2. NN-EKF ile süreç gürültüsü sabit tutulan hedeflerin kestirimleri, 4000 

metreye kadar izlenebiliyorken, hedef hareket modelin belirsizliğinin arttırılmasıyla birlikte 

(süreç gürültü standart sapmasının arttırılması) hedef izlenebilirliğinin 3000 metreye 

düştüğü grafikler üzerinden izlenmiştir. 

3. Hedef #4 için süreç gürültüsü standart sapmasının artmasıyla birlikte 25. 

saniyeden itibaren Hedef #4’e ait iz kayıplarının olduğu ve hedef kestirim doğrultusunun 

kaydığı Şekil 7.1.2.4 üzerinde gözlenmektedir.  
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7.2 Olasılık Veri İlişkilendirme (PDA) Yöntemi 

Günümüzde teknolojik gelişimlerin giderek artması ile hedef tespiti zorlaşmaya 

başlamıştır. Tekli hedef izleme yöntemlerinde dahi süreç gürültüsünün artmasıyla hedef 

tespitinin zorlu olması bölüm 3, bölüm 4 ve bölüm 5 içinde ayrıca incelenmiştir. Yanı sıra 

alınan ölçümlerin, sadece ilgili hedeften gelme durumu olasılığı özellikle çoklu hedeflerin 

yer aldığı bir ortamda çevresel etmenler, sensör hatası kaynaklı yanlış ölçümler, birbirine 

yakın seyreden veya manevra gerçekleştiren çoklu hedefler için karışmış ölçümler vb. 

sebeplerle zordur. Temelde hedefin düzgün olarak takip edilebilmesi, hedefin bulunduğu 

konum ile hedeften alınan ölçümlerin düzgün ilişkilendirilebilmesiyle mümkündür. 

Olasılıksal veri ilişkilendirme (PDA) yönteminde ana fikir, hedef durumu ve alınan ölçümler 

arasında olasılıksal bir bağlantı kurulmasıdır. PDA algoritmasının çalışması iki adımda 

açıklanabilir. İlk adımda Standart Kalman filtresi gibi, bir sistem model durumu kestirimcisi 

ile sistemin bir sonraki adımdaki durumu (hız, konum vb.) sistemin başlangıç durumları baz 

alınarak belirlenir. İkinci aşama da ise tahmini durum ile gerçek ölçüm arasındaki farka 

bakılır. Tek bir hedef için birden fazla ölçüm sonucu gelmesi durumunda yeni hedef durumu 

güncellemesi için ölçüm sonuçlarını hedef ile olasılıksal olarak ilişkilendirir. Algoritmada 

bu mantığın uygulanması için geçerlilik bölgesi oluşturulur. Geçerlilik bölgesi içindeki 

hedeften veya hedef dışından gelen ölçümler hedef durumu ile olasılıksal olarak 

ilişkilendirilir, geçerlilik bölgesi dışında kalan ölçümler hedef durumu ile ilişkilendirilmez 

[19].   

Algoritmada kullanılan fonksiyonlarda yer alan ifadeler aşağıda açıklanmaktadır: 

“i”  : Geçerlilik bölgesi içindeki hedef  

“M”  : Geçerlilik bölgesi içindeki hedef sayısı 

“j”  : Geçerlilik bölgesinde hedef ile ilişkilendirilen gözlem (ölçüm) 

“N”  : Geçerlilik bölgesi içindeki ölçüm (gözlem) sayısı 

“𝑃𝐻𝑇”  : Hedef Tespit Olasılığı 

“𝑑𝑖𝑗̇
2 ”  : geçerlilik bölgesi içindeki j. gözlemin i. hedefe olan normalize uzaklığı  

“𝑃𝐺”  : Hedeften gelen gerçek ölçümün geçerlilik bölgesi içinde olma olasılığı  
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“𝛽”  : Hedef kaynaklı olmayan ölçümlerin olasılık yoğunluk fonksiyonu 

“𝛽_𝑓ℎ” : Farklı hedeften gelen ölçümün olasılık yoğunluk fonksiyonu 

“𝛽_ℎ𝑢” : Hedef tespiti için alınan hatalı uyarılar için olasılık yoğunluk fonksiyonu 

“𝑋𝑖(𝑘)”  : k anındaki durum tahmini 

“𝐻”  : Gözlem (ölçüm) matrisi 

“𝑧𝑘”  : Ölçüm vektörü 

“𝑚”  : Gerçek hedef ile ilişkilendirilmiş ölçüm kümesi 

“𝑣𝑖”  : Bileşke İnovasyon (yenilenme) vektörü  

“𝑝𝑖𝑗 ”  : Hedef-gözlem ilişki olasılıkları  

“𝐺”  : Filtre Kazancı 

“𝑣𝑖𝑗”  : i. Hedef ile j. Ölçümün (gözlemin) ilişkilendirilme inovasyonu 

𝑧𝑚(𝑘)    𝑚 = 1,2,3, . . 𝑚𝑑 (7.3) 

 

𝑣𝑖𝑗̇𝑘
= 𝑧𝑗𝑘

− 𝐻𝑋𝑖(𝑘)     (7.4) 

  

𝑣𝑖𝑘 = ∑𝑝𝑖𝑗 𝑣𝑖𝑗̇𝑘

𝑚𝑑

𝑗=1

 

    (7.5) 

  

 

Hedef – gözlem arasında ilişkilendirme yapıldıktan sonra kestirim güncelleme 

adımları gerçeklenir. Geçerlilik bölgesi içinde birden fazla ölçüm bulunması durumunda 

kovaryans eşitlik (7.7) ile bulunmaktadır. Geçerlilik bölgesi içinde bir hedef için bir gözlem 

varsa eşitlik (7.9)  ile kovaryans hesaplanır. 
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Xk|k = Xk|k−1 + 𝐺𝑣𝑖 (7.6) 

𝛻𝑃 = 𝐺[∑(𝑝𝑖𝑗 𝑣𝑖𝑗̇𝑘

𝑚𝑑

𝑗=1

𝑣𝑖𝑗̇𝑘
𝑇 − 𝑣𝑖𝑘𝑣𝑖𝑘

𝑇)]𝐺𝑇 

(7.7) 

Pk|k = [𝐼 − 𝐺𝐻]Pk|k−1 + 𝛻𝑃 (7.8) 

Pk|k = 𝑝𝑖0 Pk|k−1 + (1 − 𝑝𝑖0 )[𝐼 − 𝐺𝐻]Pk|k−1 (7.9) 

 

Hedef ölçüm olasılık değeri  𝑝𝑖𝑗 
′ nasıl bulunduğu eşitlik 7.11 ile açıklanmıştır. 𝑝𝑖𝑗 

′ hedef 

bölgesi içinde bir veya birden fazla ölçüm bulunması durumunda hedef-ölçüm 

ilişkilendirilme olasılığını gösteren denklemdir. Geçerlilik bölgesi içinde birden fazla ölçüm 

olmama durumunda hedef ölçüm olasılık değeri 𝑝𝑖0  
′ olarak isimlendirilmiştir. Bu olasılık 

değerlerinin normalize etmek için eşitlik 7.11 ve 7.12  kullanılır. 

𝑝𝑖0 
′ = 𝛽𝑁(1 − 𝑃𝐻𝑇)    (7.10) 

 

𝑝𝑖𝑗 
′ =

𝛽𝑁−1(𝑃𝐻𝑇)ⅇ
−𝑑ⅈ𝑗̇

2

2

(2𝜋)𝑀 2⁄  √|𝑆𝑖|
 

       (7.11) 

 

𝑝𝑖𝑗 =
𝑝𝑖𝑗 

′

∑ 𝑝𝑖𝑗 
′𝑁

𝑗=0

 
    (7.12) 

 

 

Normalizasyon sürecinde “ 𝛽𝑁−1” faktörü yok edilir ve “ 𝑝𝑖𝑗 
′ ” olasılık ifadesinin 

hesaplanmasında kullanılmaz [13]. Bu basitleştirme işlemi sonrasında denklemler eşitlik 

7.13, 7.14 ve 7.15 ile ifade edilir. 
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𝑝𝑖0 =
𝑏

𝑏 + ∑ 𝛼𝑖𝑗 
𝑁
𝑗=1

          𝑗 = 0 
(7.13) 

 

 

𝑝𝑖𝑗 =
𝛼𝑖𝑗 

𝑏 + ∑ 𝛼𝑖𝑗 
𝑁
𝑗=1

          1 ≤ 𝑗 ≤ 𝑁 
(7.14) 

  

𝛼𝑖𝑗 = (𝑃𝐻𝑇)ⅇ
−𝑑ⅈ𝑗̇

2

2  
(7.15) 

 

Hedef-gözlem ilişkilendirme olasılık hesaplamasında kullanılan denklemler içinde yer 

alan "𝑏" hesaplamasına bağlı olarak PDA filtresi parametrik veya parametrik olmayan olarak 

iki şekilde değerlendirilir. Parametrik veri ilişkilendirme hedef kaynaklı olmayan ölçümlerin 

uzaysal yoğunluğunun bilinmesini gerektirir, pratikte bu değerin bilinmesi mümkün değildir 

[14]. Dolasıyla “b” değişkeni bulunurken parametrik olmayan yöntem tercih nedenidir. 

 

𝑏 = (1 − 𝑃𝐻𝑇𝑃𝐺)𝛽(2𝜋)𝑀 2⁄ √|𝑆𝑖| (7.16) 

 

 

 

 

 

 

 

 



  

79 

 

7.3 Ortak Olasılıksal Veri İlişkilendirme Yöntemi (JPDA) 

Olasılıksal veri ilişkilendirme yöntemi, kargaşa ortamında yer alan bir hedefin düzgün 

olarak takip edilebilmesini amaçlayan bir algoritmadır. Ortak olasılıksal veri ilişkilendirme 

(JPDA) yöntemi ise ortam birden fazla hedef olması durumunda hedefler ve ölçümler 

arasında olasılıksal veri ilişkilendirmesini sağlayan algoritmadır. Bu algoritma, birden fazla 

hedefle geçerlilik bölgesi içindeki ölçümlerin ilişkilendirmesini sağlayarak PDA’ dan sadece 

bu yönüyle ayrılmaktadır, algoritmanın kalan diğer fonksiyonları ortak olasılıksal veri 

ilişkilendirme yöntemiyle ortaktır [15]. 

Bu algoritmanın açıklanması öncesinde bilinmesi gereken varsayımlar şunlardır [11]: 

- Hedef sayısı biliniyor olmalıdır. 

- İlgili hedeften alınan ölçümün, diğer hedefin geçerlilik bölgesi içinde olma ihtimali 

vardır, bu durumun sürekli olması mümkündür ve sürekli girişim olarak 

düşünülebilir. 

- Her bir hedefin durum tahmini ve kovaryansı bilinmelidir. 

- Her bir hedef kendi dinamik modeline sahiptir ve farklı hedefler için aynı ölçüm 

modeline sahip olma koşulu yoktur. 

- İlişkilendirme olasılıkları hesaplanırken sadece son ölçüm sonuçları baz alınır ve 

durum tahmini ile ilişkilendirilir. 

Yukarıdaki varsayımlar ışığında, hedeflerin durum tahmini için hedef hareketine uygun bir 

kalman filtresi ve veri ilişkilendirme durumu için JPDA algoritması kullanılarak oluşturulan 

tümleşik bir yapı ile kargaşa ortamında yer alan farklı sayıdaki hedefler izlenebilir. JPDA 

algoritması ile nesnelerin ilişkilendirildiği her gözlemin ortak olasılığını hesaplar, amaç 

hedef ve ölçümler arasındaki en olası ilişkiyi kurmaktır, seçilen kalman filtresi de bu ilişkili 

gözlemlere dayalı olarak her bir hedefin durum tahmini için kullanır. Dolayısıyla JPDA ve 

seçilen kalman filtre kombinasyonu, kargaşanın olduğu ve birden fazla hedefin olduğu 

ortamlarda hedef takibinde kullanılır. 
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Şekil 7.3.1 ile gösterilen ortamda bulunan üç hedefin geçerlilik bölgeleri içinde farklı 

hedeflerden gelen ölçümlerin yer aldığı şematize edilerek kargaşa ortamı açıklanmıştır.  

 

Şekil 7.3.1 Üç Hedefli Kargaşa Ortamı 

  

Üç hedefin geçerlilik bölgeleri ve bu bölgelerin içinde ve dışında belli zaman anında 

alınan ölçümler Şekil 7.3.1 ile gösterilmiştir. M1, M2 ve M3 sırasıyla üç ayrı hedef için 

oluşturulan geçerlilik bölgelerinin merkezlerini temsil etmektedir. G1, G2 ve G3 sırasıyla 

birinci, ikinci ve üçüncü hedeften alınan ölçümleri temsil etmektedir. G1, G2 ve G3 

ölçümleri belli bir anda Hedef #1 geçerlilik bölgesi içinde, aynı anda, G1 ve G3 ölçümleri 

Hedef#3 geçerlilik bölgesi içinde yer alarak kargaşa ortamını temsil eder. Hedef #1 için veri 

ilişkilendirmesi yapılırken her üç hedeften gelen ölçüm sonuçları ile olasılıksal 

ilişkilendirme yapılır ancak ikinci hedeften gelen ölçüm G2 ve üçüncü hedeften gelen ölçüm 

G3 olasılıkları zayıflatılarak hesaplamaya dahil edilir. Ayrıca Hedef #1’e ait ölçümlerinden 

biri geçerlilik bölgesi dışında kalmıştır, veri ilişkilendirmesi yapılırken bu ölçüm olasılıksal 

olarak ilişkilendirmeye dahil edilemez. Hedef #2 geçerlilik bölgesi içinde sadece ikinci 

hedeften alınan ölçüm G2 olarak bulunmaktadır. Kargaşa ortamındaki hedef ve gözlem veri 

ilişkilendirmesi Tablo 7.3.1 ile gösterilmiştir. Tabloda yer alan sıfır “0” o anda hiçbir 

hedeften ölçüm gelmediği durumu temsil eder. Tabloyu açıklamak için tablo üzerinde 
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belirtilen 6. durum şu şekilde ifade edilebilir: Hedef #1 geçerlilik bölgesi içinde üçüncü 

hedeften gelen ölçüm (G3), Hedef #2 geçerlilik bölgesi içinde ikinci hedeften gelen ölçüm 

(G2), Hedef #3 geçerlilik bölgesi içinde birinci hedeften gelen ölçüm (G1) bulunmaktadır.  

Tablo 7.3.1  Hedefler Bazında Veri İlişkilendirme Olasılığı Hesaplama Tablosu 

Durum Hedef#1 Hedef#2 Hedef#3 Veri İlişkilendirme Olasılığı 

1 0 0 0 (1 − 𝑃𝐻𝑇)3𝛽3  (Bkz. Eşitlik 7.5) 

2 1 2 3 𝑝11
′ 𝑃𝑝22 

′ 𝑝33 
′ (𝑃𝐻𝑇)3        

3 1 2 1 𝑝11
′ 𝑝22 

′ 𝑝31 
′ (𝑃𝐻𝑇)3        

4 2 2 1 𝑝12
′ 𝑝22 

′ 𝑝31 
′ (𝑃𝐻𝑇)3        

5 2 2 3 𝑝12
′ 𝑝22 

′ 𝑝33 
′ (𝑃𝐻𝑇)3        

6 3 2 1 𝑝13
′ 𝑝22 

′ 𝑝31 
′ (𝑃𝐻𝑇)3        

7 3 2 3 𝑝13
′ 𝑝22 

′ 𝑝33 
′ (𝑃𝐻𝑇)3        

 

i. hedef ile j. gözlemin ilişkilendirilmesinde Gauss Benzerlik fonksiyonu kullanılır ve eşitlik 

7.17 ile ifade edilmiştir. 

𝑝𝑖𝑗 
′ =

ⅇ
−𝑑ⅈ𝑗̇

2

2

(2𝜋)𝑀 2⁄  √|𝑆𝑖𝑗̇|
 

(7.17) 

 

Tablo 7.3.1’de yer alan olasılıkları normalize etmek için eşitlik 7.18 kullanılır. 

𝑝′𝑖𝑗 =
𝑝𝑖𝑗 

′

∑ 𝑝𝑖𝑗 
′𝑁

𝑗=0

 
(7.18) 

 

Son olarak j. ölçümün i. hedeften gelme olasılığı, tüm normalize edilmiş olasılık durumları 

toplanarak bulunur. Örneğin, birinci ölçümün birinci hedeften gelme olasılığı, 2. durum ve 

3. durumda hesaplanan olasılık değerlerinin normalize edilmiş son durumu ile 

toplanmasıdır. Bir başka örnek olarak birinci ölçümün üçüncü hedeften gelme olasılığı 

Durum3, Durum4 ve Durum6 da hesaplanan olasılık değerlerinin normalize edilmiş son 

durumunun toplanması ile bulunur.  
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Şekil 7.3.1 ile gösterilen kargaşa ortamı JPDA’ı net olarak açıklamak için örnek olarak 

verilmiştir. Bu tez çalışmasında kargaşa ortamının olmadığı varsayılmıştır. JPDA ve standart 

kalman filtresi kullanılarak doğrusal ve sabit süratle hareket eden üç hedefin takibi üç 

adımda incelenmiştir.  

Birinci Adım: Süreç gürültüsü sabit tutulan ve birbirine paralel olan üç hedefin takip 

edilmesi 

İkinci Adım: Süreç gürültüsü sabit tutulan ve birbirine paralel iki hedef ve aynı 

özelliklere sahip üçüncü hedef bu iki hedefe çapraz hareket gerçekleştirme durumu 

Üçüncü Adım: İkinci adımda anlatıldığı şekilde hareket eden üçüncü hedefin süreç 

gürültü sabiti arttırılmıştır. Amaç NN algoritmasında çapraz olarak ilerleyen aynı hedefin 

süreç gürültü oranı aynı oranda arttırılarak JPDA ve NN analizi yapılmasıdır. 

 

 

 

 

 

 

 

 

 

 

 

 



  

83 

 

7.3.1 JPDA ve standart kalman filtresi hedef izleme analizi 

ADIM#1: Birbirine paralel ve aynı süreç gürültüsüne sahip üç hedef için JPDA-SKF 

ile hedef izleme takibi analizi yapılmıştır. Amaç, yakın ve paralel hedeflerin izlenmesi için 

JPDA algoritmasının performansını analiz etmektir. Kullanılan hedefler ile ilgili bilgiler 

Tablo 7.3.1.1 ile verilmiştir.  

Tablo 7.3.1.1 JPDA ile Takip Edilen Sabit Süratli Hedef Bilgileri 

Hedef 
X0 

Eksen 

Y0 

Eksen 

Yatay 

Hız  

Düşey 

Hız  

sigma

x1 

sigma

y1 

sigma

x2 

sigma

y2 

sigma

x3 

sigma 

y3 

Hedef 

A 
500 1000 100 100 0.12 0.12 - - - - 

Hedef 

B 
500 1500 100 100 - - 0.12 0.12 - - 

Hedef 

C 
500 2000 100 100 - - - - 0.12 0.12 

sigma: süreç gürültüsü standart sapması  

 

 

Şekil 7.3.1.1 JPDA-SKF ile Sabit Süratli ve Paralel Çoklu Hedef İzleme  

  

Sabit süratli hedeflerin JPDA-SKF ile eş zamanlı kestiriminde herhangi bir atlama, kopma 

veya iz kaybına rastlanmadığı Şekil 7.3.1.1 ile izlenmiştir. 
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ADIM#2 : Birbirine paralel ve aynı süreç gürültüsüne sahip iki hedef ve bu iki hedefe 

çapraz hareket gerçekleştiren aynı hareket modeline ve süreç gürültüsüne sahip üçüncü 

hedefi içeren çoklu hedef izleme durumudur. Bu durum için JPDA-SKF ile hedef izleme 

takibi analizi yapılmıştır. Kullanılan hedefler ile ilgili bilgiler Tablo 7.3.1.2 üzerinde yer 

almaktadır.  

Tablo 7.3.1.2 JPDA ile Takip Edilen Hedef Bilgileri 

 

 

 

Şekil 7.3.1.2 JPDA-SKF ile Sabit Süratli ve Paralel Çoklu Hedef İzleme 

Hedef 

Eksen 

X0 

 m 

Eksen

Y0 

m 

Yatay 

Hız 

m/sn 

Düşey 

Hız 

m/sn 

sigma

_x1 

sigma

_y1 

sigma

_x2 

sigma

_y2 

sigma

_x3 

sigma

_x3 

Hedef 

1 
500 1000 100 100 0.12 0.12 - - - - 

Hedef 

2 
500 2500 100 -100 - - 0.12 0.12 - - 

Hedef 

3 
500 2000 100 100 - - - - 0.12 0.12 
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Eş zamanlı olarak aynı süreç gürültüsüne sahip birbirine paralel hareket eden iki sabit süratli 

hedef ve bu iki hedefe çapraz hareket gerçekleştiren diğer iki hedef ile aynı özelliklere sahip 

üçüncü hedefi ve bu hedefleri takibini gösteren grafik Şekil 7.3.1.2’de yer almaktadır. 

Herhangi bir hedef kestirimi kaybı yaşanmadan üç hedefin de düzgün izlenildiği 

çıkarılabilirdir. 

Hedef #2 için 30 saniye boyunca Konum Hatası-Zaman grafiği Şekil 7.3.1.3 ile 

gösterilmektedir. Sadece Hedef #2 için Konum Hatası-Zaman grafiği alınmıştır. Bunun 

nedeni bir sonraki bölüm olan ADIM#3 bölümünde sadece Hedef  #2 için süreç gürültüsünün 

değiştirilmesidir.  

 

Şekil 7.3.1.3 JPDA Kestirimi Konum Hatası-Zaman Grafiği (Hedef #2) 
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ADIM#3 : Eş zamanlı olarak aynı süreç gürültüsüne sahip iki paralel hedef (Hedef 1 

ve Hedef 3) ve bu hedeflere çapraz hareket eden, farklı süreç gürültü standart sapmasına  

sahip hedef (Hedef 2) için hedef izleme analizi yapılmıştır. Kullanılan hedefler ve artan süreç 

gürültü standart sapması ile ilgili bilgiler Tablo 7.3.1.3 ile verilmiştir.  

Tablo 7.3.1.3 JPDA ile Takip Edilen Hedef Bilgileri 

Hedef 
X0 

Eksen 

Y0 

Eksen 

Yatay 

Hız 

Düşey 

Hız 

sigma

_x1 

sigma

_y1 

sigma

_x2 

sigma

_y2 

sigma

_x3 

sigma

_y3 

Hedef 

1 
500 1000 100 100 0.12 0.12 - - - - 

Hedef 

2 
500 3000 100 -100 - - 100 12 - - 

Hedef 

3 
500 2000 100 100 - - - - 0.12 0.12 

 

 

Şekil 7.3.1.4 Artan Süreç Gürültüsü ile JPDA-SKF Çoklu Hedef Kestirim Grafiği 
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Şekil 7.3.1.5 Artan Süreç Gürültüsü ile JPDA Konum Hatası Grafiği 

  

 

Aynı süreç gürültüsüne sahip, birbirine paralel hareket eden iki hedef ve bu iki hedefe 

çapraz hareket gerçekleştiren ve farklı süreç gürültü standart sapmasına sahip üçüncü hedefi 

ve bu hedeflerin eş zamanlı olarak kestirim grafiği Şekil 7.3.1.4 ile gösterilmiştir. Buna göre 

herhangi bir hedef kestirim kaybı yaşanmadan üç hedefin de düzgün izlenildiği saptanmıştır. 

Bu tez kapsamında “sigma_x2” ve “sigma_y2  süreç gürültü standart sapma değerleri 

Hedef #2 için Tablo 7.3.1.3’te belirtildiği şekilde arttırılmıştır. Amaç süreç gürültüsü ile 

JPDA-SKF tümleşik filtrenin hedef izleme performansını analiz etmektir. Bu sabitlerin 

arttırıldığı hedefin hareketindeki belirsizliklerin artması beklenir, çünkü süreç gürültüsünün 

artmasıyla tahmin adımındaki kovaryans parametresi artar. Bu sabitlerin artma durumunda 

hedef hareketinde belirsizlik artmasına rağmen herhangi bir hedef kestirimi kaybı 

yaşanmadan üç hedefin de düzgün izlenildiği saptanmıştır. Aynı durum NN-SKF ile analiz 

edilmiş ve kestirim performansında kayıplar olduğu izlenilmiştir. Bu durum sabit hareket 

gerçekleştiren birden fazla hedefin eş zamanlı takibinde süreç modelinde değişim olma 

durumunda JPDA algoritmasının NN algoritmasına göre kullanılmasının daha doğru 

kestirim sonuçları vereceğini ve iz kayıplarının yaşanmayacağını ortaya koymaktadır. Hedef 

#2 için 30 saniye boyunca Konum Hatası-Zaman grafiği Şekil 7.3.1.5 ile gösterilmektedir. 

Şekil 7.3.1.3 ve Şekil 7.3.1.5 grafikleri karşılaştırılmıştır. Buna göre konum hatasında 

meydana gelen artışın asgari düzeyde olduğu görülmektedir.  
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8. SONUÇ 

 

Standart Kalman Filtresinin modeli gereği düzgün doğrusal hareket senaryoları için 

kestirimi yüksek sonuçlar verdiği bilinmektedir. Bu tez çalışması kapsamında düzgün 

doğrusal hareket modele sahip filtre ile sabit ivmeli ve manevra yapan hedefi kestirme 

kabiliyeti çalışılmıştır. Sabit süratli ve sabit ivmeli hedefler için ayrı ayrı MATLAB 

ortamında hedef kestirim performans çıktıları alınmıştır. Bu kapsamda alınan sonuçlar 

aşağıdaki şekilde değerlendirilebilir: 

• Standart Kalman Filtresinin, doğrusal hedefler için hedef kestirim performansının 

yüksek olduğu doğrulanmıştır. 

• Standart Kalman Filtresinin doğrusal olmayan hareket modeline verdiği tepkinin 

kullanılabilir olmadığı deneysel olarak analiz edilmiştir.  

Aynı dinamik model ve ortam gürültüsüne sahip hedeflerin kestiriminde süreç 

gürültüsünün aynı oranda değişmesi durumunun genişletilmiş ve kokusuz kalman 

filtrelerinin tepkisine etkisi analiz edilmiştir. Bu tez kapsamda süreç gürültüsünün 

değişiminin EKF ve UKF hedef kestirim performansının artış/azalış durumuna etkisinin 

analiz edilmesi ve karşılaştırılması için Bölüm 4 ve Bölüm 5 içinde sabit süratli ve sabit 

ivmeli hedefler için ayrı ayrı MATLAB ortamında özgün kod ile yapılan çalışmalar ortaya 

konulmuştur. Bu kapsamda alınan sonuçlar aşağıdaki şekilde değerlendirilebilir: 

• Analiz sonucunda süreç gürültüsünün artmasıyla her iki filtrenin de hedef kestirim 

performansının zayıfladığı izlenmiştir.  

• Kokusuz kalman filtresinin sabit süratli ve manevralı sabit ivmeli hedef 

hareketindeki belirsizliğe karşı (süreç gürültüsünün artması ile oluşan) daha kararlı 

kestirim gerçekleştirdiği konum hatası zaman grafikleri ile gözlenmiştir.  

• Hedef hareket belirsizliği olan çevrede yapılan hedef takip sistemleri  için kokusuz 

kalman filtresi, genişletilmiş kalman filtresine nazaran kararlı yapısı ile tercih 

edilebilirdir.  
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Yine bu  tez çalışması kapsamında etkileşimli çoklu model filtresi iki yöntem 

kullanılarak analiz edilmiştir. Birinci analiz IMM içinde kullanılan filtre ağırlıklandırma 

katsayılarının değiştirilerek IMM filtrenin sabit ivmeli ve sabit süratli hedefleri izleme 

performansı çalışılmıştır. Bu kapsamda alınan sonuçlar aşağıdaki şekilde değerlendirilebilir: 

• Bu çalışma ile hedef dinamik model ve geçiş olasılıklarının kestirim yapan filtre için 

düşük ağırlıklandırma oranı ile ilklendirildiği durumda IMM filtrenin hedefin 

izlediği doğrultuya dahi yakınsayamadığını ortaya koymuştur. Kısaca, literatürde 

IMM filtrenin hedef izleme performansının çok yüksek olduğu belirtilse dahi, filtre 

ağırlıklandırma olasılık katsayısı seçiminin IMM filtrenin hedef kestirim başarımına 

etkisi tanıtlanmıştır.  

• IMM için yapılan ikinci analiz süreç gürültüsünün kademeli olarak arttırılmasıdır. 

Doğru geçiş olasılıkları ile ilklendirilmiş bir IMM filtrenin süreç gürültüsünün 

yüksek oranda artması ile dahi kararlı izleme yapısını bozmadığı doğrulanmıştır.  

Çoklu hedef izleme için tez çalışması kapsamında NN ve SKF bütünleşik filtre yapısı 

kullanılarak paralel ve çapraz olarak ayrı ayrı gerçekleştirilen hedef kestirimi sonuçları şu 

şekildedir: 

• Herhangi bir izleme kaybı yaşanmadığı, hedeften sapma olmadığı, her bir kestirimin 

her bir hedef üzerinde olduğu doğrulanmıştır. 

• Süreç gürültüsünün artması ile hedeflerin kestirimi sırasında atlama yaşandığı, 

hedefin izlediği doğrultuda kestirim yapılmadığı ve kaymaların yaşandığı 

izlenmiştir. 
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Burada kullanılan aynı hedefler ve aynı katsayılı süreç gürültüsü JPDA ile analiz 

edilerek NN ve JPDA için çoklu hedef izleme performanslarının karşılaştırılmıştır. Sonuçlar 

aşağıdaki şekildedir: 

• NN-SKF bütünleşik filtre yapısının hedef izlemede yetersiz kaldığı senaryoda 

JPDA-SKF bütünleşik filtre yapısının başarılı olduğu izlenmiştir. JPDA-SKF 

bütünleşik filtre yapısı kullanılarak yapılan hedef takibinde herhangi bir atlama, 

hedef kayması vb. hata durumlarına rastlanmamıştır.  

• JPDA algoritmasının sabit süratli ve kargaşa olmayan ortamda yer alan çoklu hedef 

izleme durumunda NN algoritmasına nazaran daha güvenilir sonuçlar verdiği 

gözlenmiştir. 

• Sabit ivmeli ve yakın hedef kestirimleri için NN-EKF kullanımının kestirim 

performansının düşük olduğu gözlenmiştir, süreç gürültüsü sabit tutulan iki sabit 

ivmeli hedefin aynı anda NN-EKF ile izlenebilirliği manevranın başlamasıyla 

bulanıklaştığı izlenmiştir. 

• Süreç gürültüsünün artmasıyla NN-EKF yapısının hedef izleme performansının 

hedef izlemede yetersiz kaldığı tanıtlanmıştır.  

• Sabit süratli ve yakın hedeflerde NN-SKF algoritması kullanmanın literatürde yer 

alandan farklı olarak [12] düzgün hedef izleme sağlayacağını ortaya koymuştur. 

Ancak, manevralı ve sabit ivmeli hedefler için literatürde NN-EKF algoritması 

kullanılsa da [28] hedef izleme performansının zayıf olduğu izlenmiştir. 
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