
Advancing Toward Temporal and Commonsense

Reasoning in Vision-Language Learning

by
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ABSTRACT

Advancing Toward Temporal and Commonsense Reasoning in

Vision-Language Learning

İlker Kesen

Doctor of Philosophy in Computer Science and Engineering

September 15, 2023

Humans learn to ground language to the world through experience, primarily visual

observations. Devising natural language processing (NLP) approaches that can reason

in a similar sense to humans is a long-standing objective of the artificial intelligence

community. Recently, transformer models exhibited remarkable performance on

numerous NLP tasks. This is followed by breakthroughs in vision-language (V&L)

tasks, like image captioning and visual question answering, which require connecting

language to the visual world. These successes of transformer models encouraged the

V&L community to pursue more challenging directions, most notably temporal and

commonsense reasoning.

This thesis focuses on V&L problems that require either temporal reasoning,

commonsense reasoning, or both simultaneously. Temporal reasoning is the ability to

reason over time. In the context of V&L, this means going beyond static images, i.e.,

processing videos. Commonsense reasoning requires capturing the implicit general

knowledge about the world surrounding us and making an accurate judgment using

this knowledge within a particular context. This thesis comprises four distinct

studies that connect language and vision by exploring various aspects of temporal

and commonsense reasoning.

Before advancing to these challenging directions, (i) we first focus on the local-

ization stage: We experiment with a model that enables systematic evaluation of

how language-conditioning should affect the bottom-up and the top-down visual

processing branches. We show that conditioning the bottom-up branch on language

is crucial to ground visual concepts like colors and object categories. (ii) Next, we

investigate whether the existing video-language models thrive in answering questions

about complex dynamic scenes. We choose the CRAFT benchmark as our test
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bed and show that the state-of-the-art video-language models fall behind human

performance by a large margin, failing to process dynamic scenes proficiently. (iii)

In the third study, we develop a zero-shot video-language evaluation benchmark to

evaluate the language understanding abilities of pretrained video-language models.

Our experiments reveal that the current video-language models are no better than the

vision-language models, processing static images as input in processing daily dynamic

actions. (iv) In the last study, we work on a figurative language understanding

problem called euphemism detection. Euphemisms tone down expressions about

sensitive or unpleasant issues. The ambiguous nature of euphemistic terms makes

it challenging to detect their actual meaning within a context where commonsense

knowledge and reasoning are necessities. We show that incorporating additional tex-

tual and visual knowledge in low-resource settings is beneficial to detect euphemistic

terms. Nonetheless, our findings on these four studies still demonstrate a substantial

gap between current V&L models’ abilities and human cognition.



ÖZETÇE

Görü-Dil Öğreniminde Zamansal ve

Sağduyulu Muhakemeye Doğru İlerleme

İlker Kesen

Bilgisayar Bilimleri ve Mühendisliği, Doktora

15 Eylül 2023

İnsanlar, başta gözlemler olmak üzere deneyimler yoluyla dili dünyaya dayandırmayı

öğrenirler. İnsanlara benzer şekilde akıl yürütebilen doğal dil işleme (NLP) yaklaşımları

geliştirmek, yapay zeka topluluğunun uzun süredir devam eden bir hedefidir. Son

zamanlarda, dönüştürücü modeller çok sayıda NLP görevinde kayda değer perfor-

mans ortaya koymuştur. Bunu, görüntü altyazılama ve görsel soru yanıtlama gibi,

dili görsel dünyaya bağlamayı gerektiren görü-dil (V&L) görevlerindeki atılımlar

izledi. Dönüştürücü modellerin bu başarıları, V&L topluluğunu, özellikle zamansal

ve sağduyulu akıl yürütme gibi daha zorlu yönleri takip etmeye yönlendirmiştir.

Bu tez, zamansal muhakeme, sağduyulu muhakeme ya da her ikisini aynı anda

gerektiren V&L problemlerine odaklanmaktadır. Zamansal akıl yürütme, zaman

içinde akıl yürütme yeteneğidir. V&L bağlamında bu, durağan görüntülerin ötesine

geçmek, yani videoları işlemek anlamına gelmektedir. Sağduyulu muhakeme, bizi

çevreleyen dünya hakkındaki örtük genel bilgiyi yakalamayı ve bu bilgiyi belirli bir

içerik dahilinde kullanarak doğru bir yargıya varmayı gerektirir. Bu tez, zamansal ve

sağduyulu muhakemenin çeşitli yönlerini araştırarak dil ve görüyü birbirine bağlayan

dört farklı çalışmadan oluşmaktadır.

Bu zorlu yönlere geçmeden önce, (i) ilk olarak konumlandırma aşamasına odak-

lanılmaktadır: Dil koşullandırmasının aşağıdan yukarıya ve yukarıdan aşağıya görsel

işleme dallarını nasıl etkilemesi gerektiğinin sistematik olarak değerlendirilmesini

sağlayan bir modelle çalışılmıştır. Aşağıdan yukarıya olan dalın dile koşullanmasının,

renkler ve nesne kategorileri gibi görsel kavramları temellendirmek için çok önemli

olduğunu gösterilmiştir. (ii) Sonrasında, mevcut video-dil modellerinin karmaşık

dinamik sahnelerle ilgili soruları yanıtlamada başarılı olup olmadığı araştırılmıştır.

Test ortamı olarak CRAFT veri kümesi tercih edilmiş ve son teknoloji video-dil
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modellerinin dinamik sahneleri yetkin bir şekilde işleyemeyerek büyük bir farkla

insan performansının gerisinde kaldığı gösterilmiştir. (iii) Üçüncü çalışmada, önceden

eğitilmiş video-dil modellerinin dil anlama yeteneklerini değerlendirmek için sıfır atış

video-dil değerlendirme ölçütü geliştiriyoruz. Yapılan deneyler, mevcut video-dil

modellerinin, günlük dinamik eylemlerin işlenmesinde girdi olarak statik görüntüleri

işleyen görme-dil modellerinden daha iyi olmadığını ortaya koymaktadır. (iv) Son

çalışmada, örtmece algılama adı verilen mecazi bir dil anlama problemi üzerinde

çalışılmıştır. Örtmeceler, hassas veya hoş olmayan konularla ilgili ifadeleri yumuşatır.

Örtmece terimlerin müphem doğası, sağduyu bilgisinin ve sağduyulu muhakemenin

gerekli olduğu bir durumda gerçek anlamlarının tespit edilmesini zorlaştırmaktadır.

Düşük kaynaklı ortamlarda ek metinsel ve görsel bilginin dahil edilmesinin örtmece

terimlerin tespit edilmesinde faydalı olduğunu gösterilmiştir. Bununla birlikte, bu

dört çalışma ile ilgili elde edilen bulgular, mevcut V&L modellerinin yetenekleri ile

insan muhakemesi arasında hala ciddi bir uçurum olduğunu göstermektedir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 Motivation

Human language learning involves forming a deep connection between language and

the world. As human beings, we learn to ground language to the world through com-

municating about our experiences, i.e., our observations about the world surrounding

us and our interactions with it [Bisk et al., 2020a, Chandu et al., 2021]. In order to

achieve this, humans rely on other sensory inputs for language learning, including

tactile feedback, auditory input, and visual observations, which makes human lan-

guage learning multimodal [Kiela and Clark, 2015, Thomason et al., 2016, Dessalegn

and Landau, 2013].

Devising artificial intelligent (AI) systems that can reason like humans is a

longstanding goal of the community, dating back to [Winograd, 1972]. Recent

breakthroughs of deep learning (DL) models in computer vision [Krizhevsky et al.,

2012, Girshick et al., 2014, Goodfellow et al., 2014] and natural language processing

(NLP) [Sutskever et al., 2014, Gillick et al., 2016, See et al., 2017] fields enabled

the community to advance on the multimodal tasks connecting vision and language

(V&L). In this direction, people pushed the field forward by working on V&L tasks

such as image captioning [Vinyals et al., 2015, Bernardi et al., 2016], visual question

answering [Zhu et al., 2016a, Goyal et al., 2017a], and visual dialog [Das et al.,

2017a, Das et al., 2017b]. This generation of V&L models implemented a hybrid

approach using convolutional neural networks (CNNs) [LeCun et al., 1989, Simonyan

and Zisserman, 2014, He et al., 2016a] and recurrent neural networks (RNNs)

[Rumelhart and McClelland, 1987, Hochreiter and Schmidhuber, 1997a, Chung et al.,
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2014]. Later, experts introduced the attention mechanism to DL models inspired by

human cognition [Bahdanau et al., 2014, Xu et al., 2015, Gregor et al., 2015]. The

attention mechanism benefited in many tasks by significantly improving the baselines.

This led the community to explore more about attention, and we experienced another

breakthrough in NLP due to the invention of transformer models [Vaswani et al.,

2017].

Transformers heavily rely on attention mechanisms. In addition to cross-attention

mechanism commonly used by preceding sequence-to-sequence encoder-decoder

RNNs1, transformers introduced a novel attention mechanism: self-attention. The

implemented self-attention mechanism provided two crucial benefits which are not

allowed by RNNs. First, it allowed language models (LM) to process long-term

dependencies more efficiently. Second, self-attention made LM training more con-

current, i.e. parallel, since this mechanism enables processing the entire sequence at

single time.

These benefits resulted in the emergence of different types of large-scale pretrained

transformers, including encoder-only [Devlin et al., 2019, Lan et al., 2020], decoder-

only [Radford et al., 2019, Zhang et al., 2022] and encoder-decoder [Lewis et al.,

2020, Raffel et al., 2020], where these models outperformed RNNs by a large margin

in well-known NLP problems such as machine translation, natural language inference

(NLI) and question answering [Bojar et al., 2014, Wang et al., 2018, Wang et al.,

2019a, Fan et al., 2019]. Subsequent to the successes of transformers in NLP, the

V&L community shifted its attention towards this direction as well [Tan and Bansal,

2019a, Lu et al., 2019]. These first-generation V&L transformers employed a hybrid

approach: visual features of the detected objects and textual features fused into an

additional multimodal transformer being trained from scratch. These developments

also pushed the vision community, resulting in the emergence of vision transformers

(ViT) [Dosovitskiy et al., 2021, Ranftl et al., 2021]. Thus, newer V&L transformers

1In NLP, encoder-decoder sequence-to-sequence models consist of two main components: the

encoder, processing the input/source language, and the decoder producing the output/target

language. The cross-attention allows a direct information flow from the encoder to the decoder.
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started to consist of transformers purely [Radford et al., 2021, Ramesh et al., 2021, Li

et al., 2021a, Li et al., 2022b, Li et al., 2023c], leaving region-based CNNs behind. All

of these immense advances of the transformers in these domains eventually allowed the

AI community to move towards more challenging directions, most notably problems

that require temporal reasoning and/or commonsense reasoning [Yi et al., 2020, Wu

et al., 2021, Xiao et al., 2021, Liang et al., 2022, Cheng et al., 2023].

1.2 Scope of the Thesis

In this thesis, we focus on V&L problems that require either commonsense reasoning,

temporal reasoning or both at the same time.

Temporal reasoning is the ability to reason over time dimension, which opens

up additional challenges. In the context of vision-language learning, this means going

beyond static images, i.e., videos. Video understanding requires recognizing actions

and localizing events in the temporal axis, in addition to image understanding

skills like scene detection and object localization. Recent studies [Buch et al.,

2022, Lei et al., 2023] revealed that V&L models processing images as visual input,

i.e. image-language models, could outperform video-language models in commonly

used text-to-video retrieval and video question answering benchmarks [Xu et al.,

2016, Xu et al., 2017, Hendricks et al., 2017, Yu et al., 2019]. In this thesis, we focus

on creating novel video-language evaluation benchmarks to push video-language

models to the next stage by prioritizing temporality.

Commonsense knowledge is implicit general knowledge about the world, which

is gained through experience. Capturing commonsense knowledge is necessary to

make judgments about the world surrounding us. Though, it is not enough: one

needs to take the particular context also into account to excel in commonsense

reasoning [Sap et al., 2020, Chandu et al., 2021]. For instance, an umbrella is usually

used to prevent getting wet in rainy weathers. However, people can also use umbrella

to avoid harms of the sunlight in hot weathers. In this example, this particular

context is the weather, which affects our judgment about the purpose of using or

carrying an umbrella. Commonsense reasoning can be split into different categories
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such as social commonsense reasoning, numerical commonsense reasoning, abductive

commonsense reasoning, temporal commonsense reasoning, physical commonsense

reasoning and so on [Sap et al., 2019, Lin et al., 2020a, Liang et al., 2022, Zhou et al.,

2021, Zellers et al., 2021a]. In this thesis, our main focus is the V&L problems that

require understanding the implicit knowledge about the physical world.

1.3 Thesis Contributions

This thesis comprises four distinct studies that connect language and vision by ex-

ploring various aspects of temporal and commonsense reasoning. Here, we summarize

our contributions.

Before advancing to problems requiring temporal and commonsense reasoning, we

first shift our attention to localization stage: We experiment with a model [Can, 2021]

that enables systematic evaluation of how language-conditioning should affect the

bottom-up and the top-down visual processing branches. We perform experiments

on two dense prediction tasks: referring expression segmentation and language-

guided image colorization. Our findings on both tasks highlight the importance of

conditioning the bottom-up branch on language to ground visual concepts like colors

and object categories.

The second study focuses on temporal reasoning and physical commonsense

reasoning : we investigate whether the existing video-language models thrive in

answering questions about complex dynamic scenes. We choose the CRAFT as our

test bed, which is a video question answering dataset that requires causal reasoning

about physical forces and object interactions. We show that the state-of-the-art

video-language models at that point in time fall behind human performance by a large

margin. In addition, we experiment with a text-only oracle baseline that processes

the descriptions of the causal scene graphs, i.e. the structured representation of

the events taking place in the simulations. This oracle baseline outperforms all

other models by achieving a near-human performance. This shows that the existing

video-language models are not yet proficient at detecting sequences of events taking

place in videos.



Chapter 1: Introduction 5

In the third study, we develop a zero-shot structured benchmark to evaluate the

language understanding abilities of pretrained large-scale video-language models.

This benchmark focuses on processing everyday actions in the temporal dimension.

Our foiling benchmark offers two main tests: (i) repetitive action counting and (ii)

rare action recognition. Our experiments reveal that in terms of temporal reasoning,

the current video-language models are no better than the vision-language models,

which take static images as input. We also propose proficiency tests, which are easier

than the main tests. We only consider an example correct if a model correctly excels

in both main and proficiency tests: Incorporating proficiency tests leads to significant

performance decreases, suggesting that many correct predictions by video-language

models can be accidental or spurious.

In the last project, we work on a figurative language understanding problem

called euphemism detection. Euphemisms tone down expressions about sensitive or

unpleasant issues like addiction and death. The ambiguous nature of euphemistic

terms makes it challenging to detect their actual meaning within a context, where

commonsense knowledge and reasoning are necessities. We propose a two-stage

system for this particular problem. In the first stage, we seek to mitigate this

ambiguity by incorporating literal descriptions, which yields remarkable performance

improvement. In the second stage, we integrate visual supervision into our system

using visual imageries, two sets of images generated by a text-to-image model, taking

terms and descriptions as input. We show that in this low-resource scenario, visual

supervision is also beneficial in detecting euphemisms.

1.4 Thesis Structure

In this section, we describe the thesis structure. The rest of this thesis is organized

as described below,

• Chapter 2 contains our analysis on two localization tasks.

• Chapter 3 introduces the CRAFT dataset and presents the experimental

analysis performed.
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• We describe our zero-shot video-language model evaluation benchmark in

Chapter 4.

• Chapter 5 provides the details of our proposed figurative language understanding

methodology.

• Chapter 6 concludes this thesis.

Each chapter starts with an introduction section. We describe our methodology

in the next section(s), followed by the experimental analysis. We then briefly review

the relevant literature after presenting the experimental results. We conclude each

chapter by listing our contributions and the limitations of our approach.

Disclaimer. I choose to use the personal pronoun we over I throughout this

thesis.
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Chapter 2

LOCALIZATION: CONDITIONING BOTTOM-UP AND

TOP-DOWN VISUAL PROCESSING ON LANGUAGE

2.1 Introduction

This chapter focuses on the localization stage 1. Recent studies in cognitive science

[Boutonnet and Lupyan, 2015, Lupyan and Clark, 2015] suggest that language affects

low-level visual processing, in addition to top-down attention. Motivated by these

findings, we investigate how language-conditioning in visual processing branches

affects grounding language to vision in vision-language learning. To do so, we use

the U-Net-based model proposed in [Can, 2021], since it allows us to condition

language on either the top-down visual processing branch, the bottom-up visual

branch, or both branches at the same time. We extend the proposed model [Can,

2021] by making it adaptable to the other vision-language (V&L) tasks involving

dense prediction. We perform comprehensive experiments on two V&L localization

tasks: referring expression segmentation and language-guided image colorization.

Referring Expression Segmentation (RES) is a vision-language task involving

dense prediction, where the aim is to identify and segment objects in an image,

described in natural language. The natural language descriptions of the objects

in images can include a variety of information, such as their visual attributes (e.g.

colors), spatial relationships (e.g. next to), actions (e.g. sitting), and interactions

with other objects (e.g. ”the dog that is chasing ball”).

In language-guided image colorization (LIC) task, given a grayscale image and a

1This work appeared a result of collaboration with Ozan Arkan Can. See [Can, 2021] for his

contributions. In this chapter, I focused on only my individual contributions. See [Kesen et al.,

2022a] for the complete report.
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description, the aim is to predict pixel color values. The absence of color information

in the input images makes this problem interesting to experiment with because color

words do not help in conditioning the bottom-up branch when the input image is

grayscale.

We find that conditioning both branches leads to better results, achieving com-

petitive performance on both tasks. Our experiments suggest that conditioning the

bottom-up branch on language is important to ground low-level visual information.

On RES, we find that modulating only the bottom-up branch performs significantly

better than modulating only the top-down branch especially when color-dependent

language is present in the input. Our findings on LIC show that when color infor-

mation absent in input images, the bottom-up baseline naturally fails to predict

and manipulate colors of target objects specified by input language. That said,

conditioning the bottom-up branch still improves the colorization quality by helping

our model to accurately segment and colorize the target objects as a whole.

The rest of this chapter is structured as follows: We summarize related work and

compare it to our approach in Section 2.4. We describe our model in detail in Section

2.2. We share the details of our experiments in Section 2.3. Section 2.5 summarizes

our contributions.

2.2 Model

Here, we describe the evaluated model in detail. Figure 2.1 illustrates this model,

originally proposed by [Can, 2021]. First, the model extracts a tensor of low-

level visual features using a pre-trained convolutional neural network (CNN) and

processes the given natural language expression using an LSTM [Hochreiter and

Schmidhuber, 1997a]. A multi-modal encoder takes these low-level visual features and

language representation, and then it generates feature maps through a contracting

and expanding path similar to U-Net [Ronneberger et al., 2015]. This particular

architecture modulates both of the contracting and expanding paths using language-

conditioned convolutional filters generated from the given expression. Eventually, a

task-specific output head processes the final feature map of the multi-modal encoder
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Figure 2.1: Illustration of the evaluated model on the task of referring expression

segmentation. A pre-trained image encoder extracts low-level visual features. An

LSTM network process the input language, and then the model chops up the

final hidden state r into pieces to generate language-conditional filters. Language-

conditional filters and low-level visual features are fed into the multi-modal encoder.

Each layer i of the bottom-up/contracting branch convolves the previous feature map

Fi−1 with language-conditional filters, concatenates output with previous feature

map, and then a downsampling module CNNi processes this concatenated feature

map. Each layer i of the top-down/expanding branch convolves the bottom-up

feature map obtained through the skip-connection, concatenates it with the previous

top-down feature map Hi+1, and then an upsampling module DCNNi processes this

concatenated feature map. Finally, an output head takes the final feature map J ,

and performs dense prediction.

to produce the final prediction map which has the same size with the input image.

It is important to emphasize that the other works either have a language-guided

top-down or a language-conditional bottom-up visual processing branch, and this

particular architecture has both. As will be discussed in the next section, our
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experiments show that how language-conditioning affects these visual processing

branches.

2.2.1 Low-level Image Features

Given an input image I, [Can, 2021] extracts the low-level visual features I0 by using

a pre-trained convolutional network. As different from [Can, 2021], we use a more

recent CNN backbone on the RES task, which is the backbone of DeepLab-v3+

semantic segmentation architecture [Chen et al., 2018b]. In the LIC task, we use

ResNet-101 pre-trained on ImageNet [He et al., 2016b, Deng et al., 2009a], to make a

fair comparison with previous work. On the task of referring expression segmentation,

we also employ 8-D location features, following the previous work [Liu et al., 2017, Ye

et al., 2019].

2.2.2 Language Representation

To process a language input S = [w1, w2, ..., wn], we follow the exactly same procedure

with [Can, 2021]: each word in the language input wi is mapped to a 300-dimensional

GloVe embedding [Pennington et al., 2014a]. An LSTM takes these word embeddings,

and processes them. The final hidden state of this LSTM is integrated as the language

representation. Later on, we split this language representation into pieces to generate

language-conditional filters.

2.2.3 Multi-modal Encoder

The multi-modal encoder of the evaluated model [Can, 2021, Kesen et al., 2022a]

takes the image representation I0 and the language representation, and produces a

multi-modal feature map representing both modalities. This particular multi-modal

encoder extends U-Net [Ronneberger et al., 2015] by conditioning both the top-down

and the bottom-up visual processing branches on language.

In the bottom-up branch, the evaluated model [Can, 2021] applies m convolutional

blocks to the image representation I0. Each convolutional block, CNNi, processes

these two inputs: (i) the feature map (Fi−1) generated by the previous block CNNi−1
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and (ii) another feature map, which produced by convolution of Fi−1 using language-

conditional dynamic filters KF
i . Each convolutional block concatenates these two

feature maps, and then produces an output feature map (Fi). Each CNNi block

consists of three consecutive operations, which are (i) a convolution layer, (ii) a batch

normalization layer [Ioffe and Szegedy, 2015] and (iii) a ReLU activation function

[Maas et al., 2013]. Each convolution layer has 5 × 5 filters with stride = 2 and

padding = 2, and each one reduces the spatial resolution by half. The number of

channels is fixed throughout the multi-modal encoder.

Similar to [Misra et al., 2018], [Can, 2021] also splits the textual representation r

to m equal parts (ti), and then use each ti to generate a language-conditional filter

for ith bottom-up layer (KF
i ):

KF
i = AFFINEF

i (ti) (2.1)

Each AFFINEF
i module performs an affine transformation on the input, and then

normalization and reshaping are applied to its output to use as language-conditional

convolutional filters. A convolutional layer processes the previous feature map using

these language-conditional filters and produces the multi-modal feature map for the

next layer:

GF
i = CONVOLVE(KF

i , Fi−1) (2.2)

These language-conditioned feature map (GF
i ) for ith bottom-up layer and the

previously generated feature map (Fi−1) are concatenated and then fed into the

subsequent convolutional block CNNi+1.

In the top-down branch, [Can, 2021] generates m feature maps starting from the

final output of the bottom-up visual processing branch as:

GH
i = CONVOLVE(KH

i , Fi) (2.3)

Hm = DCNNi(G
H
m) (2.4)

Hi = DCNNi(G
H
i ⊕Hi−1) (2.5)



Chapter 2: Localization: Conditioning Bottom-Up and Top-Down Visual Processing on
Language 12

Similar to the bottom-up branch, GH
i is the modulated feature map with language-

conditional filters defined as:

KH
i = AFFINEH

i (ti) (2.6)

where AFFINEH
i , again, an affine transformation on the input, and then nor-

malization and reshaping operations are applied to its output to create language-

conditional convolutional filters for the ith layer of the top-down branch. The tested

model implements a convolution operation over the feature maps from the contracting

branch (Fi) using these language-conditional filters (KH
i ). Each upsampling block

DCNNi takes the concatenation (⊕) of the language-conditioned features and the

feature map (Hi) produced by the previous block. The first block operates only on

the final output of the bottom-up branch. Each DCNNi implements a deconvolution

layer followed by a batch normalization and ReLU activation function. Final output

H1 becomes our joint feature map J representing the input image / language pair.

Each deconvolution layer uses 5× 5 filters with stride = 2 and padding = 2, where

each one doubles the spatial resolution, and they all have the same number of output

channels.

2.2.4 Output Heads

We extend the evaluated model [Can, 2021] by making it as a generic solution which

can be used to solve V&L problems involving dense prediction. In this direction, we

adapt it to two different dense prediction tasks by varying the output head: referring

expression segmentation and language-guided image colorization.

Segmentation. In the referring expression segmentation problem, the goal is to

generate segmentation mask for a given input image and language pair. We follow the

exactly same procedure with [Can, 2021] to implement this output head. Subsequent

to generating the joint feature map J , [Can, 2021] applies a series of layers (D1, D2,

..., Dm) to map J to the exact input resolution. Like the upsampling blocks of the

multi-modal encoder, each Dk implements a deconvolution layer followed by batch

normalization and ReLU activation operations. The number of channels is fixed
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Method
UNC UNC+ G-Ref ReferIt

val testA testB val testA testB val (G) val (U) test (U) test

CMSA [Ye et al., 2019] 58.32 60.61 55.09 43.76 47.60 37.89 39.98 - - 63.80

STEP [Chen et al., 2019a] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 - - 64.13

BRINet [Hu et al., 2020] 61.35 63.37 59.57 48.57 52.87 42.13 48.04 - - 63.46

CMPC [Huang et al., 2020] 61.36 64.53 59.64 49.56 53.44 43.23 49.05 - - 65.53

LSCM [Hui et al., 2020] 61.47 64.99 59.55 49.34 53.12 43.50 48.05 - - 66.57

EFN [Feng et al., 2021] 62.76 65.69 59.67 51.50 55.24 43.01 51.93 - - 66.70

BUSNet [Yang et al., 2021] 63.27 66.41 61.39 51.76 56.87 44.13 50.56 - - -

The evaluated model 64.63 67.76 61.03 51.76 56.77 43.80 50.88 52.12 52.94 66.01

MCN† [Luo et al., 2020b] 62.44 64.20 59.71 50.62 54.99 44.69 - 49.22 49.40 -

CGAN† [Luo et al., 2020a] 64.86 68.04 62.07 51.03 55.51 44.06 46.54 51.01 51.69 -

LTS† [Jing et al., 2021] 65.43 67.76 63.08 54.21 58.32 48.02 - 54.40 54.25 -

VLT† [Ding et al., 2021a] 65.65 68.29 62.73 55.50 59.20 49.36 49.76 52.99 56.65 -

The evaluated model† 67.01 69.63 63.45 55.34 60.72 47.11 53.51 55.09 55.31 57.09

Table 2.1: Comparison with the previous work by using the overall IoU metric.

† denotes the corresponding method uses the mean IoU metric. ”-” indicates that

the model has not been evaluated on that dataset.

throughout this output head except the last layer Dm, which produces the mask

prediction. Note that, we omit the batch normalization and the ReLU activation for

the final layer Dm, instead we apply a sigmoid function to turn the final features

into probabilities. Given these probabilities and ground-truth mask, we train our

network by using binary cross entropy loss.

Colorization. In the language-guided image colorization task, the goal is to predict

pixel color values for given input image with the guidance of language input. A

convolutional layer by with 3×3 filters generates class scores for each spatial location

of J . We apply bilinear upsampling to these predicted scores to match input image

size. Given predicted scores and ground-truth color classes, we train the model by

using a weighted cross entropy loss. To create compound LAB color classes and their

weights, we follow the exactly same process with [Manjunatha et al., 2018, Zhang

et al., 2016b].
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2.3 Experimental Analysis

This section contains the details of our experiments on referring expression seg-

mentation (Section 2.3.1) and language-guided image colorization (Section 2.3.2)

tasks.

2.3.1 Referring Expression Segmentation

Datasets. We evaluate the model on ReferIt (130.5k expressions, 19.9k images)

[Kazemzadeh et al., 2014], UNC (142k expressions, 20k images), UNC+ (141.5k ex-

pressions, 20k images) [Yu et al., 2016b] and Google-Ref (G-Ref) (104.5k expressions,

26.7k images) [Mao et al., 2016] datasets. Unlike UNC, location-specific expressions

are excluded in UNC+ through enforcing annotators to describe objects by their

appearance. ReferIt, UNC, UNC+ datasets are collected through a two-player game

and have short expressions (avg. 4 words). G-Ref have longer and richer expressions,

its expressions are collected from Amazon Mechanical Turk instead of a two-player

game. G-Ref does not contain a test split, and [Nagaraja et al., 2016] extends it by

having separate splits for validation and test, which are denoted as val (U) and test

(U).

Evaluation Metrics. We use intersection-over-union (IoU ) and p@X as evaluation

metrics following prior work. IoU is calculated as the intersection of the predicted

and the ground truth segmentation masks, divided by their union. There are two

different ways to calculate IoU : the overall IoU calculates the total intersection over

total union score throughout the entire dataset and the mean IoU calculates the

mean of IoU scores of each individual example. For a fair comparison, we use both

IoU metrics. The other metric, p@X, computes the percentage of examples with an

IoU score above a certain threshold, X.

Implementation Details. We try to choose the same hyper-parameters with the

original implementation [Can, 2021]. The maximum length of input expressions is

limited to 20. Image size is set to 512× 512 and 640× 640 for training and inference

phase respectively. As different from [Can, 2021], we use the first four layers of
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DeepLabv3+ with ResNet-101 backbone, pre-trained on COCO dataset by excluding

images appear on the validation and the test sets of UNC, UNC+ and G-Ref datasets

similar to previous work [Luo et al., 2020b, Ding et al., 2021a, Yu et al., 2018]. Thus,

our low-level visual feature map I has the size of 64× 64× 64× 1032 in training,

and 80× 80× 1032 in inference phase, both including 8-D location features. Each

convolutional layers uses 5x5 filters, where stride is equal to 2. We fix the number of

channels of the feature maps by setting it to 512, which also applies for the output

head of the segmentation model. The depth is 4 in the multimodal encoder part

of the network. For the bottom-up-only baseline, we used grouped convolution in

the bottom-up branch to prevent linguistic information leakage to the top-down

visual branch. We apply dropout regularization [Srivastava et al., 2014] to language

representation r with 0.2 probability. We use Adam optimizer [Kingma and Ba,

2014a] with default parameters. We freeze the DeepLab-v3+ ResNet-101 weights.

There are 32 examples in each minibatch. We train the reimplemented model for 20

epochs on a Tesla V100 GPU with mixed precision, where one epoch takes at most

two hours depending on the dataset.

Quantitative Results. Table 2.1 compares the re-implementation of the evaluated

model with previous methods. Bold faces highlight the highest achieved scores.

We evaluate the model using both IoU metrics for a fair evaluation. Table 2.2

compares the evaluated model with the state-of-the-art using p@X metric. The

performance difference between the evaluated model and the others increases as the

threshold increases. This demonstrates that the evaluated model is more proficient

in segmenting the referred objects, including smaller ones.

Qualitative Results. We visualize some of the segmentation predictions of the

evaluated model to gain better insights about it. Figure 2.2 shows some correct

predictions. Our findings are similar to [Can, 2021]. The evaluated model is able

to sufficiently process superlative adjectives (e.g., taller) and spatial relations (e.g.,

near to). The evaluated model can also learn the concepts specific to the domain,

such as the concept of a ”catcher”, which is present in the dataset. Lastly, we can

also observe that the model has the ability to identify certain non-dynamic actions
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Method p@0.5 p@0.6 p@0.7 p@0.8 p@0.9

CMSA 66.44 59.70 50.77 35.52 10.96

STEP 70.15 63.37 53.15 36.53 10.45

BRINet 71.83 65.05 55.64 39.36 11.21

LSCM 70.84 63.82 53.67 38.69 12.06

EFN 73.95 69.58 62.59 49.61 20.63

MCN 76.60 70.33 58.39 33.68 5.26

LTS 75.16 69.51 60.74 45.17 14.41

The Model 76.67 71.77 64.76 51.69 22.73

Table 2.2: Results achieved on the val set of UNC dataset using p@X metrics.
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Figure 2.2: A selection of the predictions of the evaluated model on the UNC

validation set.

(e.g., sitting).

Figure 2.3 presents a couple of failure cases on the UNC test split. Our findings,

again, are very similar to the original work [Can, 2021]. Examples in (a) show that

the model cannot handle typos. The evaluated model segments the correct objects for
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Figure 2.3: Some incorrect predictions on the UNC validation set. Each group (a-d)

illustrates a different pattern. The first row shows the ground truth mask, and the

second mask is the model prediction.

Method Backbone IoU

Top-down Baseline ResNet-50 58.06

Bottom-up Baseline ResNet-50 60.74

The Evaluated Model ResNet-50 63.59

The Evaluated Model ResNet-101 64.63

Table 2.3: Ablation study on the UNC validation split using overall IoU metric.

these two examples when the typos are fixed (e.g., pink instead of pick). Examples

in (b) demonstrate that some expressions are ambiguous, where the expression could

refer to multiple objects. In this case, the model seems to segment the most salient

object. Some annotations possess incorrect or incomplete ground-truth segmentation

masks (c). Finally, some cases (d) are challenging to segment simply due to the lack

of light or occlusions.

Ablation Study. We test three separate models, the top-down baseline, the bottom-

up baseline, and the complete model, to reveal the impact of language conditioning in

expanding and contracting visual branches. While the bottom-up baseline modulates

language in the bottom-up branch only, the top-down baseline only modulates

language in the top-down branch. The complete model conditions language on

both branches. Table 2.3 reports the results. The bottom-up baseline surpasses the
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Figure 2.4: Comparison of different architectural setups on the UNC test samples.

top-down one with ≈2.7 IoU gain. Nonetheless, the best results are achieved by

conditioning both branches on language, where the complete model improves the

bottom-up baseline with ≈2.85 IoU score.

Figure 2.4 visualizes the predictions of the different models on the same examples.

The bottom-up baseline performs better when the description has color information

as we show in the first three examples. The top-down-only baseline also fails to
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Method +C -C +IN +IN,-C +JJ* +JJ*,-C

Top-down Baseline 52.59 59.59 54.84 55.66 57.66 61.16

Bottom-up Baseline 60.40 60.02 56.05 55.49 61.18 61.86

The Evaluated Model 62.98 63.57 59.60 59.27 64.45 65.56

Table 2.4: IoU performance of different setups depending on the input expression

category for the UNC test splits.

detect object categories in some cases, and segments additional unwanted objects

with similar category or appearance (e.g. banana vs. orange). Overall, the evaluated

model which conditions both visual branches on language gives the best results.

Language-oriented Analysis. To analyze the effect of language on model perfor-

mance, we divided UNC test splits into subsets depending on the different types of

words (e.g. colors) and phrases (e.g. noun phrases with multiple adjectives) included

in input expressions. Table 2.4 shows us the results of different models on these

subsets. The first column stands for models, and the rest stand for different input

expression categories. We exclude the categories which do not contribute to our

analysis. We use DeepLab-v3+ ResNet-50 as visual backbone in each method. The

notation of the categories are similar to Part of Speech (POS) tags [Marcus et al.,

1993], where we denote prepositions with IN, examples with adjectives with JJ*, and

colors with C. Preceding plus and minus signs stand for inclusion and exclusion. For

instance, +IN,-C column stands for the subset where each expression contains at

least one preposition without any color words. Color words (e.g. red, darker) has the

most impact on the performance in comparison to other types of words and phrases.

The evaluated model and the bottom-up baseline performs significantly better than

top-down baseline on the subset that includes colors. In the opposite case, where

input expressions with colors are excluded, the top-down baseline has performance

similar to the bottom-up baseline, and our final model outperforms both single branch

models. Since colors can be seen as low-level sensory information, low performance

in the absence of the bottom-up branch can be expected. This demonstrates the
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importance of conditioning the bottom-up visual branch on language to capture

low-level visual concepts.

2.3.2 Language-guided Image Colorization

Datasets. Following the prior work [Manjunatha et al., 2018], we use a modified

version of COCO dataset [Lin et al., 2014b] where the descriptions that do not

contain color words are excluded. In this modified version, the training split has

66165, and the validation split has 32900 image / description pairs, and all images

have a resolution of 224× 224 pixels.

Evaluation Metrics. Following the previous work, we use pixel-level top-1 (acc@1)

and top-5 accuracies (acc@5) in LAB color space, and additionally PSNR and LPIPS

[Zhang et al., 2018] in RGB for evaluation. A lower score is better for LPIPS, and a

higher score is better for the rest.

Implementation Details. Unless otherwise speficied, we follow the same design

choices applied for the referring expression segmentation task. We set the number

of language-conditional filters as 512, replace the LSTM encoder with a BiLSTM

encoder, and we use the first two layers of ResNet-101 trained on ImageNet as image

encoder to have a similar model capacity and make a fair comparison with the

previous work [Manjunatha et al., 2018]. We set input image width and height to 224

in both training and validation. Thus, the low-level visual feature map has the size of

28× 28× 512, and we don’t use location features. Additionally, in our experimental

analysis, we consider the same design choices with previous work [Manjunatha et al.,

2018, Zhang et al., 2016b]. Specifically, we use LAB color space, and the evaluated

model predicts ab color values for all the pixels of the input image. We perform

the class re-balancing procedure to obtain class weights for weighted cross entropy

objective. We use 313 ab classes present in ImageNet dataset, and encode ab color

values to classes by assigning them to their nearest neighbors. We use input images

with a size of 224× 224, and output target images with a size of 56× 56 which is

same with the previous work.

Quantitative Results. We present the quantitative performance of the evaluated
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Method acc@1 acc@5 PSNR LPIPS

FiLMed ResNet 23.70 60.50 - -

FiLMed ResNet (ours) 20.22 49.57 20.89 0.1280

Top-down Baseline 22.83 51.85 21.29 0.1226

Bottom-up Baseline 21.85 51.34 20.98 0.1448

The Evaluated Model 23.38 54.27 21.42 0.1262

The Evaluated Model w/o balancing 33.74 67.83 22.75 0.1250

Table 2.5: Colorization results on the modified COCO validation split.

model in Table 2.5, and compare it with different design choices and previous

work. FiLMed ResNet [Manjunatha et al., 2018] uses FiLM [Perez et al., 2018] to

perform language-conditional colorization. FiLMed ResNet (ours) denotes the results

reproduced by the implementation provided by the authors. To show the effect of

language modulation on different branches, we train 3 different models again: the

top-down baseline, the bottom-up baseline and the evaluated model. We also re-train

the evaluated model without class rebalancing and denote it as The Evaluated Model

w/o balancing.

Contrary to the segmentation experiments, the top-down baseline performs better

than the bottom-up baseline on the colorization task in all measures. Since, color

information is absent in input images, bottom-up branch cannot encode low-level

image features by modulating color-dependent language.

When we disable class rebalancing in the training phase, we observe a large

improvement in acc@1 and acc@5 due to the imbalanced color distribution, where

the model predicts the frequent colors exist in the backgrounds.

Qualitative Results. We visualize some of the colorization outputs of the trained

models to analyze them in more detail in Figure 2.5. FiLMed ResNet (ours) can

understand all colorization hints, and it can manipulate object colors with some

incorrectly predicted areas. The top-down baseline also performs similar to FiLMed

ResNet (ours), where both models condition only the top-down branch on language.
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In this task, since the models are blind to color, the bottom-up baseline loses its

effectiveness to some degree, and starts to predict the most probable colors. This can

be seen on the second and the last example, where the bottom-up baseline predicts

red for the stop sign and blue for the sky. Although, the bottom-up baseline performs

worse in this task, modulating the bottom-up branch with language still contributes

to the final model to localize and recognize the objects present in the scene. This

can be seen on the last two examples, where the top-down baseline mixes colors up

in some object parts (e.g. the red parts in the motorcycle). The evaluated model

w/o balancing tends to predict more grayish colors (e.g. dog, sky).

Figure 2.6 highlights some of the failure cases we observed throughout the dataset.

In the first two examples, the evaluated model is able to localize and recognize

the target objects, but it fails to colorize them successfully by colorizing not only

the targeted parts but also other parts. Models generally fail to colorize small

objects since the data is imbalanced and it contains vast backgrounds and big objects

frequently. The last two examples show that models fail to colorize reflective or

transparent objects like glasses or water, these were also difficult in the language

based segmentation task (see Figure 2.3 (d)).

2.4 Related Work

Here we briefly review prior work on referring expression comprehension, referring

expression segmentation, language-guided image colorization, dynamic filters and

compare them with the evaluated method.

2.4.1 Referring Expression Comprehension

In Referring Expression Comprehension (REC) problem, the goal is to locate a

bounding box for the object(s) described in the input language. The proposed

solutions can be divided into two categories: two-stage and one-stage methods.

Two-stage methods [Mao et al., 2016, Hu et al., 2017, Nagaraja et al., 2016, Yu et al.,

2018, Wang et al., 2019c, Cirik et al., 2018, Hu et al., 2017, Yu et al., 2018, Liu

et al., 2019a, Yang et al., 2020a] rely on a pre-trained object detector [Ren et al.,
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Figure 2.5: Color manipulation performance of different models on COCO validation

examples. Each column focuses on a different color conversion.

2017, He et al., 2017] to generate object proposals in the first stage. In the second

stage, they assign scores to the object proposals depending on how much they match
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Figure 2.6: Failure cases on the language-guided image colorization task.

with input language. One-stage methods [Luo et al., 2020b, Yang et al., 2020b, Liao

et al., 2020, Yang et al., 2019, Yang et al., 2020c, Deng et al., 2021] directly localize

the referred objects in one step. Most of these methods condition only the top-down

visual processing on language, while some fuse language with multi-level visual

representations.

2.4.2 Referring Expression Segmentation

In Referring Expression Segmentation (RES) task, the aim is to generate a segmen-

tation mask for the object(s) referred in the input language [Hu et al., 2016]. To

accomplish this, multi-modal LSTMs [Liu et al., 2017, Margffoy-Tuay et al., 2018],

ConvLSTMs [Shi et al., 2015, Liu et al., 2017, Chen et al., 2019a, Ye et al., 2020],

word-level attention [Shi et al., 2018, Hui et al., 2020, Chen et al., 2019a, Ye et al.,

2020], cross-modal attention [Ye et al., 2019, Hu et al., 2020, Huang et al., 2020, Luo

et al., 2020b, Luo et al., 2020a, Jing et al., 2021], and transformers [Vaswani et al.,

2017, Ding et al., 2021a] have been used. Each one of these methods modulates
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only the top-down branch with language. As one exception, EFN [Feng et al., 2021]

conditions the bottom-up branch on language, but does not modulate the top-down

branch with language.

2.4.3 Language-guided Image Colorization

In Language-guided Image Colorization (LIC) task, the aim is to predict colors

for all the pixels of a given input grayscale image based on input descriptive text.

Specifically, [Manjunatha et al., 2018] inserts extra Feature-wise Linear Modulation

(FiLM) layers [Perez et al., 2018] into a pre-trained ResNet to predict color values

in LAB color space. Multi-modal LSTMs [Liu et al., 2017, Zou et al., 2019] and

generative adversarial networks [Goodfellow et al., 2014, Bahng et al., 2018, Chen

et al., 2018a] are also used in this context to colorize sketches. Similar to the

evaluated model, Tag2Pix [Kim et al., 2019] extends U-Net to perform colorization

on line art data, but it modulates only the top-down visual processing with symbolic

input using concatenation.

2.4.4 Language-conditional Parameters

Here we review methods that use input-text-dependent dynamic parameters to

process visual features. To control a visual model with language, MODERN and

FiLM [De Vries et al., 2017, Perez et al., 2018] used conditional batch normalization

layers with language-conditioned coefficients rather than customized filters. Numerous

methods [Li et al., 2017, Gao et al., 2018, Gavrilyuk et al., 2018, Margffoy-Tuay

et al., 2018, Chen et al., 2019b, Misra et al., 2018] generate language-conditional

dynamic filters to convolve visual features. Some RES models [Margffoy-Tuay et al.,

2018, Chen et al., 2019b] also incorporate language-conditional filters into the their

top-down visual processing. To map instructions to actions in virtual environments,

LingUNet [Misra et al., 2018] extends U-Net by adding language-conditional filters

to the top-down visual processing only. Each one of these methods conditions either

top-down or bottom-up branch only.
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2.4.5 Comparison

To support our main research question, the evaluated model clearly separates bottom-

up and top-down visual processing. This allows us to experiment with modulating

either one branch or both branches with language and evaluate their individual

contributions. The majority of related work conditions only the top-down visual

processing on language. Other U-Net-based methods [Misra et al., 2018, Kim et al.,

2019] and most transformer models [Ding et al., 2021a, Deng et al., 2021] which

implement cross-modal attention between textual and visual representations in top-

down visual processing fall into this category. A few exceptions [De Vries et al.,

2017, Perez et al., 2018, Feng et al., 2021] do the opposite by conditioning only the

bottom-up branch. Some methods [Luo et al., 2020b, Yang et al., 2019, Huang et al.,

2020] fuse language with a multi-level visual representation, which leads to good

results, but this kind of fusion does not allow the evaluation of language conditioning

on top-down vs. bottom-up visual processing. This circumstance also applies to the

pretrained vision-language transformers, which implement a cross-modal attention

mechanism between language at the word-level and image at the object-level [Lu

et al., 2019, Tan and Bansal, 2019b]. The evaluated model allows language to control

either or both of the top-down and bottom-up branches. We show that (i) the

bottom-up conditioning is vital to ground language to low-level visual features, and

(ii) conditioning both branches on language leads to the best results.

2.5 Conclusion

In this chapter, we investigated how conditioning top-down and bottom-up visual

branches on language affects grounding language to vision. To achieve this, we

tested a generic architecture with explicit bottom-up and top-down visual branches

for V&L problems involving dense prediction. Our experiments on two different

localization tasks demonstrated that conditioning both visual branches on language

gives the best results. Our experiments on the referring expression segmentation

task revealed that conditioning the bottom-up branch on language plays a vital role
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to process color-dependent input language. The language-guided image coloriza-

tion experiments demonstrated similar conclusions, the bottom-up baseline failed

to colorize the target objects since the color information is absent in the input images.

Limitations. We share common failure cases in Figure 2.3 and Figure 2.6. The

model performance on both tasks decreases in the presence of transparent and/or

reflective objects. The model also fails to colorize small objects, mostly due to having

an imbalanced color distribution. Finally, the evaluated model is limited to integrated

V&L tasks involving dense prediction, and we did not perform experiments on other

V&L problems.
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Chapter 3

COUNTERFACTUAL AND CAUSAL REASONING

ABOUT PHYSICAL INTERACTIONS

3.1 Introduction

This chapter1 of the thesis investigates how well the existing models process physical

forces acting on objects and object interactions in dynamic scenes. Artificial learning

systems have shown astonishing progress recently in vision-language learning, leading

the community to work on more challenging problems. One such challenging research

problem is reasoning about the physical actions of objects in complex causal scenes.

To achieve this, we use the CRAFT dataset [Ates et al., 2022], and analyze how well

the existing video-language models process physical and causal relationships between

dynamic objects in a scene through answering questions about complex dynamic

scenes.

CRAFT is primarily designed to be easy to solve for humans yet difficult for video-

language models. Figure 3.1 shows an overview of the CRAFT. The CRAFT dataset

includes questions in three different categories called descriptive, counterfactual and

causal questions about the physical events taking place in synthetically generated

2-dimensional complex dynamic scenes. Previous benchmarks either has limitations

in their language component, or they lack the visual scene diversity and/or complexity.

The CRAFT dataset does not have these shortcomings, and takes a step forward in

two aspects. First, the CRAFT additionally includes questions that require causal

reasoning in complex dynamic scenes: Answering such questions require (i) localizing

objects, (ii) perceiving which physical forces acting on these objects, (iii) tracking

1This work appeared a result of collaboration with Tayfun Ates and others. In this chapter, I

focused on only my individual contributions. See [Ates et al., 2022] for the complete report.
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Descriptive Questions

Counterfactual Questions

Cause

Enable

Prevent

Q:  “How many objects fall to the ground?” A: “2”
Q:  “After entering the basket, does the small yellow square collide with other objects?” A: “True”

Q:  “Will the small gray box enter the basket if any of the other objects are removed?” A: “True”
Q:  “How many objects fall to the ground if the small yellow box is removed?” A: “1”

Q:  “Does the small brown sphere cause the tiny yellow box to enter the basket?” A: “True”

Q:  “Does the small brown sphere enable the small yellow box to enter the basket?” A: “False”

Q:  “Does the small brown ball cause the big gray triangle to fall to the ground?” A: “False”

Q:  “How many objects does the small gray block enable to enter the basket?” A: “0”

Q:  “Does the small yellow square prevent the tiny brown circle from entering the basket?” A: “True”
Q:  “How many objects does the large cyan triangle prevent from entering the basket?” A: “1”

Ground Causal Questions

Figure 3.1: CRAFT dataset overview on a single sample scene. CRAFT includes

questions in three different categories, which are descriptive questions, counterfactual

questions and causal questions. To answer descriptive questions, a model needs to

be proficient in spatio-temporal reasoning. Nonetheless, the other types of questions

require more than spatio-temporal reasoning. Figure adapted from [Ateş, 2021, Ates

et al., 2022]

the states of the objects, and (iv) comprehending causal relationship between the

objects aforementioned in the question, which is also aligned with the force dynamics

theory [?, Wolff and Barbey, 2015]. Second, the CRAFT contains questions that may

require multi-step counterfactual reasoning. For example, the question ”If the large

red triangle is removed, will the small blue circle fall to the ground?” involves single

counterfactual situation by directly pointing out which object is going to be removed.

On the other hand, to answer a question like ”If any of the other objects are removed,

will the large blue triangle end up in the basket?”, it is necessary to consider multiple

different hypothetical situations, which makes the CRAFT different from the others.

We start with the question, ”Can the existing models answer questions requiring

understanding complex dynamic scenes?”, and proceed with CRAFT as our experi-

mental test-bed. We implement baselines in five distinct categories including simple

and strong baselines. We first start with simple heuristic baselines like random

prediction baselines. Text-only baselines only process the question and do not see the
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visual scene at all. In the next category, we have static image-based baselines, where

the models can only access to the first or last frame of the input video. Eventually,

we also experiment with various video-language models that can process the input

videos completely from beginning to end. In addition to these baselines, we also

evaluate oracle text-only approaches in our analysis. To achieve this, we transcribe

the causal scene graphs into the scene descriptions, which list the events taking place

in the inputs videos chronologically.

We show that the existing models are not yet capable of achieving a good

performance on CRAFT, even in descriptive type of questions. Our analysis reveals

that there is a huge gap between model and human performance. Our oracle

description baselines achieve outstanding performance, outperforming video-language

models by a large margin, even achieving a better performance than humans. This

finding shows two things: First, a model needs to detect and identify the events taking

place in videos in order to excel such a challenge introduced by CRAFT. Second, the

existing video-language models are unable to process the videos sufficiently. What’s

more, oracle text-only baselines achieve a similar performance to humans in causal

and counterfactual questions, pointing out that the CRAFT benchmark might be

including biases.

The rest of this chapter is structured as follows: Section 3.2 briefly describes

the CRAFT benchmark. We share details regarding the models evaluated on this

benchmark in Section 3.3. Section 3.4 contains the obtained results and our findings.

We review relevant previous work in Section 3.5. Finally, Section 3.6 summarizes our

findings, and lists some potential directions.

3.2 The CRAFT Dataset

This section gives an overview of the CRAFT dataset. CRAFT is a challenging

benchmark for measuring the temporal, counterfactual, and causal reasoning capa-

bilities of existing neural network models in dynamic scenes through visual question

answering. The dataset has approximately 57K question and video pairs, which

are created from 10K videos. It is split into train, validation, and test sets with a
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60:20:20 ratio per video basis, meaning that video clips in the training set are not

seen in the validation or test set. The CRAFT dataset comes with two different

settings, an easy setting and a hard setting. They differ from each other in the way

how the test split is chosen. The hard setting excludes the scene layouts that are

seen during training. The easy setting does not have this constraint. In the easy

setting, there are 35K, 12K, and 11K question and video pairs in the train, validation

and test splits, whereas in the hard setting these numbers are 35K, 11K and 12K,

respectively. We provide an example set of questions from CRAFT in Figure 3.1.

CRAFT contains 7 static objects, 3 dynamic objects and 20 distinct visual scene

layouts. Each dynamic object can appear in 2 different sizes and 8 different colors.

Please, see the full paper for more detail [Ates et al., 2022].

Simulation Representation. We also describe the simulation representation, i.e.

causal graphs, in here. A simulation instance is represented by three different data

structures, the initial state of the scene, the final state of the scene, and the causal

graph of extracted events. Figure 3.2 shows a simple causal graph example. The

initial and final state of a scene refers to the information regarding the objects’

static and dynamic attributes such as color, position, shape, and velocity at the

start or at the end of the simulation, respectively. The final state is important as

it bears causal relationships between the events of a simulation. We also use these

simulation representations to create the scene descriptions, later to be used in oracle

descriptions baseline. To achieve this, we simply concatenate the event descriptions

chronologically. Together these information sources should have sufficient information

to find the correct answers to CRAFT questions.

3.3 Baseline Models

This section shares the details of the models evaluated in this study. Overall, we try

to adapt each model adapted in CLEVRER study [Yi et al., 2020]. We divide these

models into four different categories based on the simulation input type: text-only

models, single frame models, video-language models and oracle description models.

In the following subsections, we share the details regarding these models.
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B: Red square collides with cyan circle
C: Cyan circle starts touching blue circle
D: Red square enters basket

F: Red square collides with basket
G: Red square starts touching basket
H: End

Causal Graph
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Figure 3.2: A simple causal graph. The causal graph is a graphical summary of

the events that occur in a simulation. For the sake of simplicity, here we only include

the interactions between the dynamic objects and the basket, and moreover, the

scene is uncomplicated that there is no intermediate branching in the causal graph.
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3.3.1 Heuristic Models

Heuristic models either perform random guesses or follow simple rules. Random

model uniformly samples a random answer from the full answer space, whereas

Answer Type Based Random model (AT-Random) makes random guesses based

on the answer type (e.g. color, shape, boolean). Most Frequent Answer baseline

(MFA) employs a simple heuristics and answers all the questions by using the most

frequent answer in the training split. Answer Type based Most Frequent

Answer model (AT-MFA) performs the same heuristics by taking the answer types

into account similar to AT-Random baseline.

3.3.2 Text-only Models

Text-only models discard visual inputs, and do not use any visual information

related to input simulations. LSTM model is a text-only baseline that processes

the question with an LSTM [Hochreiter and Schmidhuber, 1997b], and then predicts

an answer to a given question ignoring the visual input. In addition to the LSTM

baseline, we experimented with BERT [Devlin et al., 2019] by using the CLS token

embedding as question representation to predict answers.

3.3.3 Single-Frame Models

LSTM-CNN baseline takes both visual and textual input into account by extending

the LSTM model to additionally consider the features extracted from the a pretrained

ResNet-18 model [He et al., 2016b]. We evaluate both (non-temporal) single frame

and video versions. In the former, each video is encoded by taking into account

either the first frame or the last frame, which are referred to as LSTM-CNN-F

and LSTM-CNN-L, respectively. We concatenate the extracted visual and textual

features to obtain a combined representation of the video and the question pair,

feeding it to a multilayer perceptron network (MLP), followed by a linear layer

generating scores for the answers.

Memory, Attention, and Composition (MAC) model [Hudson and Manning,



Chapter 3: Counterfactual and Causal Reasoning about Physical Interactions 34

2018] is a compositional visual reasoning model. It decomposes the reasoning task

into a series of attention-guided processing steps by isolating memory and control

functions from each other. The attention mechanism considers visual and textual

features jointly, which leads to robust encodings of the question and the image.

Similar to the LSTM-CNN baselines, MAC-F looks at only the first frame, and

MAC-L only pays attention to the last frame.

3.3.4 Video-Language Models

Our first video-language model LSTM-CNN-V processes downsampled videos by

using R3D [Tran et al., 2018] as visual feature extractor. Similar to the single frame

variants LSTM-CNN-F and LSTM-CNN-L, LSTM-CNN-V also concatenates the

extracted visual and textual features to obtain a joint video-question representation.

Again, similar to its single frame derivatives, we use a multilayer perceptron followed

by a linear projection layer to predict the scores over the entire answer vocabulary.

MAC-V baseline extends the MAC model by considering the video frames

sampled from the given video as the visual input. Like LSTM-CNN-V model, MAC-

V also processes videos using R3D. Unlike its non-temporal variations, MAC-F and

MAC-L, where the read unit originally has spatial attention over the image, this

temporal variation has a read unit that applies spatio-temporal attention over the

features extracted from the entire video.

TVQA is a multi-stream state-of-the-art video question answering neural model

[Lei et al., 2018]. To adapt this model to make working on the CRAFT benchmark,

we only use its video stream branch and omit the answer input by generating

scores for the entire answer vocabulary. In parallel with other baselines, TVQA

model also extracts visual features by using ResNet-18. Different from the original

implementation, our TVQA implementation uses LSTM networks with 256 units,

uses a MLP network with 2 layers. Unlike the original model, we do not use GloVe

word embeddings [Pennington et al., 2014b] to make a fair comparison with the

remaining baseline models.

TVQA+ is another multi-stream video question answering model, which is built
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upon TVQA model. In contrast to TVQA, TVQA+ uses convolutional networks

as sequence encoder instead of LSTM networks, replaces GloVe word embeddings

with BERT embeddings [Devlin et al., 2019], and implements a span proposal /

prediction mechanism. We do not implement span proposal mechanism, and omit

using BERT embeddings to compare TVQA+ with others more fairly as we disable

GloVe embeddings in TVQA. Our TVQA+ implementation uses 256 hidden units in

all submodules throughout the network, and it generates answer scores by feeding

weighted average of fused multi-modal simulation-question representation into a

linear layer.

G-SWM2 is a recently proposed object-centric model [Lin et al., 2020b], which

is originally designed for simulating possible futures in a scene consisting of multiple

dynamic objects. It models each frame in a video by two different latent variables

encoding object and context features. We modify G-SWM to solve the reasoning

tasks in CRAFT. In particular, our version of G-SWM takes in video frames resized

to 64 × 64 pixels and extracts an object-centric representation of the input video

through object and context features. These latent codes are then combined and

concatenated with the LSTM-based question representation, then an MLP followed

by a linear layer processes this representation to produce answer prediction scores.

LSTM-D and BERT-D are oracle text-only baselines, which take the natural

language description of the causal graph of the simulation (see Figure 3.2) as input

in addition to the question. We generate these descriptions from simplified versions

of the causal graphs by only considering the Start, End, Collision and Enter Basket

events, and excluding those involving certain static objects (walls, platforms, ramps,

and static balls) which are not mentioned in the questions. We first sort the events

by their timestamps and concatenate a template-based description of each event

to generate the summary. LSTM-D uses two separate LSTM networks process the

question and the description, and then a linear layer predicts the answer for the

input question/description pair. BERT-D extends the BERT baseline by using the

descriptions as prefixes for the input questions.

2G-SWM is adapted by Tayfun Ates.
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Model
Easy Setting Hard Setting

C CF D All C CF D All

Heuristic

Random 5.95 5.25 5.09 5.24 5.37 4.62 5.08 4.98

AT-Random 36.67 44.34 33.95 37.47 33.67 46.06 34.16 37.52

MFA 32.68 43.28 23.53 30.72 30.09 43.94 23.20 29.98

AT-MFA 49.62 47.21 37.57 42.03 49.28 47.17 36.55 41.12

Text-only
LSTM 53.04 53.14 38.29 44.69 52.51 56.24 37.25 44.52

BERT 48.43 50.59 37.55 42.90 49.28 52.12 36.52 42.52

LSTM-CNN-F 53.11 55.23 44.86 49.07 48.07 48.12 35.54 40.64

Single LSTM-CNN-L 54.86 55.63 43.12 48.42 49.86 54.44 38.88 44.66

Frame MAC-F 53.18 52.88 44.40 48.10 51.86 53.5 42.12 46.55

MAC-L 49.97 53.08 44.54 47.83 50.21 53.8 41.46 46.05

LSTM-CNN-V 54.65 61.42 48.12 53.01 51.86 54.89 41.36 46.50

MAC-V 53.95 57.72 44.51 49.74 51.22 54.71 42.94 47.31

Video TVQA 53.67 55.57 36.89 44.71 51.00 55.12 36.31 43.46

TVQA+ 54.86 60.02 40.22 48.11 51.00 55.12 39.09 45.12

G-SWM 53.54 55.29 37.05 44.69 51.00 48.68 37.77 42.47

Oracle
LSTM-D 51.71 55.89 63.22 59.53 51.93 56.00 59.57 57.64

BERT-D 68.44 80.05 93.41 86.20 66.33 79.34 91.30 84.90

C CF D All

Human 71.27 83.07 87.45 76.60

Table 3.1: Performances of the tested models on the test set of the CRAFT dataset

on easy and hard splits. C, CF, and D columns stand for Causal, Counterfactual,

and Descriptive tasks, respectively. Evaluation metric is accuracy.

3.3.5 Implementation Details

Unless otherwise specified, all learnable baselines are trained with Adam optimizer

[Kingma and Ba, 2014b] with default hyperparameters. We LSTM and single frame

models are trained for 75 epochs with batch size of 64. All temporal baselines are

trained for 30 epochs with batch size of 32. G-SWM is trained for 100 epochs using a

batch size of 64 with Adam optimizer and a learning rate of 0.0001. Input videos are
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downsampled at 5 frame per second (fps) and their frames are resized to 112× 112

pixels. We used mixed precision strategy to train baselines more efficiently on Tesla

V100 and Tesla P4 GPUs, with the exception of TVQA+ which is trained by using

full precision. Training single frame models take 2 minutes, and training video

models take 20-30 minutes per epoch approximately. All word embeddings have

the length of 256 and are randomly initialized. Pretrained convolutional video and

image encoders are jointly trained with the rest of the networks. We use negative

log-likelihood loss function for all models where the models predict a distribution

over the set of possible answers. All models are tuned based on their performances

on the validation split. For each baseline, we report the accuracies considering the

model which achieves the best performance on the validation split. We use floating

point pixels values, between 0 and 1. We initialize ResNet-18 model pretrained on

ImageNet 2012 dataset [Deng et al., 2009b].

3.4 Experimental Results

This section contains information about our experimental results, and findings based

on these results. We first share the quantitative results and discuss these results in

Section 3.4.1. In Section 3.4.2, we show a couple of qualitative examples together

with the scene descriptions and the model predictions.

3.4.1 Quantitative Results

Table 3.1 presents the performances of the tested models for each question type,

considering both the easy and the hard settings explained in Section 3.2. The last

row of this results table stands for the human studies conducted in the original work.

The evaluation metric is accuracy. As expected, the text-only models perform the

worst as they completely ignore the visual information present in the videos.
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Easy vs. Hard Settings

As can be seen from Table 3.1, there exists a substantial gap between the model

performances in the easy and hard settings of CRAFT. Not surprisingly, this is not

the case for the text-based baselines, in which it is not important whether a scene

layout has been seen before during training or not. Overall, these results suggest

that our tested multimodal methods are not able to generalize well to previously

unseen scenes: They cannot fully detect the physical interactions and localize the

events taking place in a video.

Different Question Types

The model performances vary between different question types in CRAFT. Out of

the three question types, the models consistently perform poorly on the descriptive

questions in that the accuracies are around 23.5%-48.12% in the easy setting and

23.2%-42.9% in the hard setting. The reason behind this could be attributed to the

variety of the answers in this task as it includes questions covering both count, shape,

and color of the object(s). On the other hand, the accuracies of the models on the

remaining questions types are between 32.7% and 61.4% in the easy setting, and

30.1% and 56.2% in the hard setting.

Video-Language Model Performances

LSTM-CNN-V baseline does reasonably well on the easy setting, but its generalization

capability on the hard setting is not that good. TVQA performs worse than the

LSTM-CNN-V baseline, which shows that it is more tailor-fit to video question

answering about TV clips, and its performance degrades when it does not have access

to subtitles or the related concept detectors. Notably, MAC variants perform the

best in the hard setting. MAC model, together with G-SWM, is a more expressive

model specifically designed for compositional visual reasoning. G-SWM, however,

performs poorly in our experiments, which might be because the scenes in CRAFT

usually consist of many objects, thus making it harder to learn decomposing a video
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into objects and background. This may be resolved by switching to a two-stage

framework, in which G-SWM is pretrained first to improve its decomposition ability.

For now, we left this as future work. Overall, the accuracies are not very high,

indicating the shortcomings of the existing models in physical reasoning.

Oracle Description Baselines

Our oracle models, LSTM-D and BERT-D, perform better than all the tested video-

language models. Interestingly, the performance of BERT-D is very close to human

performance, even outperforming humans for the descriptive questions. Clearly, to

excel in this task, a model must capture the interactions between the dynamic objects

with each other and with the environment.

3.4.2 Qualitative Examples

Figure 3.3 provides some qualitative examples with the oracle descriptions and

the model predictions. On the left side of the figure, we share some examples

belonging to the descriptive question category; on the right side, we share examples

from causal and counterfactual reasoning categories. The causal and counterfactual

qualitative examples in the figure show the reason behind BERT-D’s devastating

performance. We expect that BERT-D should be unable to answer these questions

accurately. However, BERT-D predicts the correct answer in the first two examples.

The counterfactual situation specified in the question often does not change the

answer. Additionally, one can observe that the predicted outcomes in the third

and fourth examples, yellow circle not entering basket and purple circle not hitting

the ground, take place in the original scenes and descriptions. These observations

suggest that the CRAFT dataset contains many video-question pairs unaffected by

counterfactual manipulation, indicating a high bias in this sense (75% vs. 25%). Our

qualitative analysis also reveals an interesting finding: The existing video-language

models could3 predict colors, which are not present in the scene. This could be seen

3Since there are no many examples presented in here, this finding needs more investigation.
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in the second descriptive question example, where LSTM-CNN-V, MAC-V, TVQA

and TVQA+ models predicted the colors that are completely absent in the scene.

Description: Start. Large green circle collides 
with small green circle. Large blue circle 
collides with small green circle. Large green 
circle enters basket. Large green circle collides 
with basket. End.

Question: Are there any collisions between 
objects before the big green circle goes into the 
basket?
Answer: Yes

Predictions:
LSTM: Yes / BERT: No
Single Frame Models: No
Video Models: Yes / TVQA+: No
LSTM-D: No / BERT-D: Yes

Description: Start. Large gray circle collides 
with large gray triangle. Large cyan circle 
collides with large gray circle. Large gray circle 
enters basket. Large gray circle collides with 
basket. End.

Question: What color is the object the large 
gray triangle last collides with?
Answer: Gray

Predictions:
LSTM: Green / BERT: Yellow
Single Frame Models: Gray
LSTM-CNN-V: Green / MAC-V: Yellow
TVQA: Yellow / TVQA+: Blue / G-SWM: Brown
Oracle Models: Gray

Description: Start. Small blue circle collides 
with small cyan circle. End.

Question: How many objects are in motion at 
the end of the video?
Answer: 1

Predictions:
LSTM: 2 / BERT: 1
LSTM-CNN-F: 2 / LSTM-CNN-L: 3
MAC-F: 1 / MAC-L: 0 / MAC-V: 1
LSTM-CNN-V: 0 / TVQA: 0 / TVQA+: 2 
G-SWM: 1 / LSTM-D: 0 / BERT-D: 2

Description: Start. Small red circle collides 
with large cyan triangle. Small red cube 
collides with large brown circle. Small red 
circle collides with ground. Large brown circle 
collides with basket. Large brown circle enters 
basket. Large brown circle collides with 
basket. End.

Question: How many objects hit the floor if 
the large brown circle is removed?
Answer: 1

Predictions:
LSTM: 0 / BERT: 1
Single Frame Models: 0
LSTM-CNN-V: 1 / MAC-V: 1 / TVQAs: 2
G-SWM: 1 / LSTM-D: 0 / BERT-D: 1

Description: Start. Small red circle collides 
with large yellow triangle. Small brown circle 
enters basket. Small brown circle collides 
with basket. End.

Question: There is a small brown circle, 
does it block the tiny red circle from getting 
into the bucket?
Answer: No

Predictions:
Text-only Models: Yes
LSTM-CNN-F: Yes / LSTM-CNN-L: Yes
MAC-F: No / MAC-L: No
Video Models: No / TVQA+: Yes
Oracle Models: No

Description: Start. Small yellow circle 
collides with large yellow circle. Small purple 
triangle collides with ground. End.

Question: There is a big yellow circle, does 
it hinder the tiny yellow circle from entering 
the container?
Answer: No

Predictions:
Text-only Models: Yes
LSTM-CNN-F: No / LSTM-CNN-L: Yes 
MAC-F: No / MAC-L: Yes / MAC-V: No
LSTM-CNN-V: No / TVQAs: Yes
G-SWM: No / LSTM-D: No / BERT-D: Yes

Description: Start. Large cyan triangle collides 
with small blue cube. Small blue cube collides 
with ground. Small yellow cube enters basket. 
Small red cube collides with ground. Small 
yellow cube collides with basket. Small red cube 
collides with ground. Small yellow cube collides 
with basket. End.

Question: Are there any collisions between 
objects after the small blue block hits the floor?
Answer: No

Predictions:
Text-only Models: No
Single Frame Models: Yes
LSTM-CNN-V: No / MAC-V: No / TVQAs: Yes
G-SWM: Yes / Oracle Models: No

Description: Start. Large purple circle collides 
with small brown circle. Small cyan circle collides 
with large purple circle. Small cyan circle collides 
with ground. End.

Question: Will the large purple circle fall to the 
floor if any of the other objects are removed?
Answer: Yes

Predictions:
LSTM: No / BERT: Yes
LSTM-CNN-F: No / LSTM-CNN-L: Yes
MAC-F: No / MAC-L: No / MAC-V: Yes
LSTM-CNN-V: Yes /  TVQAs: Yes
G-SWM: No / Oracle Models: No

Figure 3.3: Selected baseline model predictions. The examples on the left belong

to the descriptive category and the right column contains examples from the other

categories.
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3.5 Related Work

3.5.1 Visual Question Answering

Previously existing visual question answering (VQA) datasets can be categorized

along two dimensions. The first dimension is the type of visual data, which includes

either real world images [Malinowski and Fritz, 2014, Ren et al., 2015, Antol et al.,

2015, Zhu et al., 2016b, Goyal et al., 2017b] or videos [Tapaswi et al., 2016, Lei et al.,

2018], or synthetically created content [Johnson et al., 2017, Zhang et al., 2016a, Yi

et al., 2020]. The second is at how the questions and answers are collected, which

are usually done via crowdsourcing [Malinowski and Fritz, 2014, Antol et al., 2015]

or by automatic means [Ren et al., 2015, Lin et al., 2014a, Johnson et al., 2017]. A

key challenge for creating a good VQA dataset lies in minimizing the dataset bias.

A model may exploit such biases and cheat the task by learning some shortcuts.

In CRAFT, [Ates et al., 2022] generates questions about simulated scenes using a

pre-defined set of templates by considering some heuristics to eliminate strong biases.

Compared to the existing VQA datasets, CRAFT is specifically designed to test

models’ understanding of dynamic state changes of the objects in a scene. Although

some prior work focuses on temporal reasoning [Lei et al., 2018, Yu et al., 2019, Lei

et al., 2020b, Girdhar and Ramanan, 2020], they do not require the models to have

a deep understanding of physics and/or imagine the consequence of certain actions

to answer the questions, the only exceptions being TIWIQ [Wagner et al., 2018],

CLEVRER [Yi et al., 2020], CLEVR HYP [Sampat et al., 2021] and TVR [Hong

et al., 2021] datasets. In these datasets, there exist hypothetical questions that require

mental simulations about the consequences of performing certain actions or the lack

of specific actions or objects. These datasets have received interest in developing

neuro-symbolic reasoning models with physical understanding capabilities [Ding

et al., 2020, Chen et al., 2021, Ding et al., 2021b]. CRAFT shares a similar design

goal with the aforementioned datasets – but the scenes in the CRAFT benchmark

are temporally more complex.
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3.5.2 Understanding Physics in Artificial Intelligence

Lately, there has been a growing interest within the community in developing datasets

and models to evaluate the ability of understanding and reasoning about the physical

world. A notable amount of these efforts focuses on physical scene understanding.

For instance, some researchers have explored the problem of predicting whether a set

of objects are in stable configuration or not [Mottaghi et al., 2016] or if not where

they fall [Lerer et al., 2016]. Others have tried to estimate a motion trajectory of a

query object under different forces [Mottaghi et al., 2016] or developed methods to

build a stack configuration of the objects from scratch through a planning algorithm

[Janner et al., 2019]. [Li et al., 2019] suggested to represent rigid bodies, fluids, and

deformable objects as a collection of particles and used this representation to learn

how to manipulate them. Recently, [Bakhtin et al., 2019] and [Allen et al., 2020]

created the PHYRE and the Tools benchmarks, respectively, which both include

different types of 2D environments. An agent must reason about the scene and

predict the outcomes of possible actions in order to solve the task associated with the

environment. CoPhy [Baradel et al., 2020] is another recent work, which deals with

physical reasoning prediction about counterfactual interventions. Although these

works involve complicated physical reasoning tasks, the language component is largely

missing. As mentioned, [Wagner et al., 2018], [Yi et al., 2020] and [Sampat et al.,

2021] created VQA datasets for intuitive physics, but they lack visual variations

unlike PHYRE and Tools. Though less studied, there are also some efforts in the NLP

community to evaluate physical reasoning abilities of language models. [Bisk et al.,

2020b] proposed the PIQA dataset that involves a binary choice task about daily

activities regarding physical commonsense. Similarly, [Aroca-Ouellette et al., 2020]

presented the PROST benchmark which includes questions that are designed to probe

language models in a zero-shot setting and focuses on concepts like gravitational

forces, physical attributes and object affordances.

The CRAFT dataset aims to combine the best of both worlds. In addition to the

two types of questions investigated in CLEVRER [Yi et al., 2020], namely descriptive

and counterfactual, CRAFT also includes questions that need reasoning about causal
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interactions through the concepts like cause, enable, and prevent. To succeed in these

tasks, models need to learn the semantics of each verb category that specifies different

kinds of object interactions and their outcomes, i.e. to gain an understanding of a

kind of commonsense knowledge.

3.6 Conclusion

In this chapter, we investigated how well the existing vision-language models can

answer the questions about complex dynamic scenes. To do so, we chose the recent

CRAFT benchmark as our test suite, and benchmark a variety of models. We

showed that the existing models struggle to reason about physical forces and object

interactions, and fall behind humans by a large margin. This points out a substantial

room to improve these models. We also found that the existing models could be

hallucinating by predicting colors which are absent in the scenes. As a limitation,

we did not report the results of recent neuro-symbolic models, e.g. NS-DR [Yi et al.,

2020]. Such approaches are very compelling and worth pursuing, but they currently

require extra object-level annotations.

Most importantly, our oracle description baselines evaluated on the CRAFT re-

semble chain-of-thought (CoT) prompting approaches [Wei et al., 2022], a knowledge-

augmentation methodology for complex problems where intermediate reasoning is

mandatory. Our results suggest that the implemented video-language models cannot

capture events taking place in videos, whereas an oracle baseline accessing this knowl-

edge as a CoT prompt shows remarkable performance, reaching near-human accuracy.

This finding implies that to bridge the gap between vision and language modalities

in such a problem, the community should devise more proficient methodologies. In

this direction, object-centric methods like G-SWM could be a viable solution.
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Chapter 4

PROBING ACTION COUNTING AND RECOGNITION

CAPABILITIES OF VIDEO-LANGUAGE MODELS

4.1 Introduction

In this chapter, we1 propose a zero-shot evaluation benchmark for pretrained Video-

Language Models (VidLMs) to better probe their language understanding abilities.

VidLMs have received increasing attention from the research community [Lei et al.,

2021, Luo et al., 2022, Xu et al., 2021a, Zellers et al., 2021b, Luo et al., 2020c, Fu et al.,

2021, Ma et al., 2022, Bain et al., 2021, Ge et al., 2022, Lei et al., 2022, Zhu et al.,

2022b, Cheng et al., 2023]. VidLMs can address questions previously unanswerable

with image-language models (ILMs), since VidLMs can directly capture dynamically

evolving phenomena such as events, natural/physical processes and actions, providing

them with increased potential to perform commonsense reasoning [Zellers et al.,

2021b]. This additional temporal dimension available to VidLMs introduces new

challenges, since now models must not only keep track of objects and agents during

points in time, but also account for changes caused by (or to) objects and agents.

VidLMs are commonly evaluated across different tasks such as video captioning

[Yu et al., 2016a], text-to-video retrieval [Wang et al., 2021], and video question

answering [Yu et al., 2019]. Such evaluations shed light on task performance and

support comparative analysis. However, they are limited in their ability to reveal

the specific visuo-linguistic capabilities models exhibit across tasks.

To bridge this gap, we propose a task-independent benchmark that focuses on

two visio-linguistic phenomenons, namely repetitive action counting and rare action

1Disclaimer: This is a collaborative project with others. I only included the parts where I am

the main contributor. This work is still in process, and could lack in some parts.
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Prof: someone lifts weights / a bar using her right arm Prof: there is at least one table / carrot

Main: someone lifts weights exactly two / six times Main: shaking / eating at a table

Prof: two people perform pull-ups / lifts weights Prof: there is at least one phone / laptop

Main: two people perform exactly one pull-up / five pull-ups Main: hammering a phone / some nails

Figure 4.1: Some selected examples from the dataset, presented with their proficiency

and main tests. Action counting examples are presented on the left, and rare

action examples on the right. The former rare action example demonstrates action

replacement, and the latter demonstrates object replacement.

recognition. We build upon the idea of VALSE [Parcalabescu et al., 2022] which

is a similar benchmark for ILMs, with a focus on specific linguistic phenomena

that are reflected in vision. As different from VALSE, our benchmark targets

VidLMs, where temporal reasoning and commonsense reasoning are our primary

focus. Similar to VALSE, we adopt a common structure for each test2: (i) We

harvest high-quality examples from existing video-language datasets; (ii) we create

counterfactual examples, i.e. foils, [Shekhar et al., 2017b], where only a small change

is made to an existing example, so we can measure how well a model performs on

the test, (iii) we apply automatic and manual validation of the examples and their

foils to control for biases and to ensure a high-quality evaluation benchmark3; (iv)

finally, we test whether existing VidLMs can distinguish correct from foils for given

input videos.

2We choose test term over piece term used in VALSE to denote the benchmark tasks.

3This part is work in progress: We have been waiting for the human validation study to finish.
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In addition to these, we also introduce proficiency tests in our evaluations. They

test criteria that can be considered as preconditions for solving the main tests, by

assessing the VidLMs’ capability to successfully navigate and solve simpler objectives

before attempting the more intricate and demanding main tests. We show that

proficiency tests leads to significant performance decreases, suggesting that many

apparently correct predictions by VidLMs can be accidental or spurious.

The rest of this chapter is structured as follows. Section 4.2 and Section 4.3

introduce the proposed tasks for this benchmark in detail, which are repetitive action

counting and rare action recognition. In Section 4.4, we describe our experimental

setup in detail and share the results of the conducted experiments. We briefly

review the relevant literature in Section 4.5. Section 4.6 lists our contributions and

limitations of this work.

4.2 Repetitive Action Counting

In this section, we share the details of the benchmark creation procedure of the

counting task. In Table 4.1, we show a pair of examples. The counting task aims

to probe the ability of models to accurately count the occurrences of actions within

a given input video. Distinct from its image-based counterpart in the prior work

VALSE [Parcalabescu et al., 2022] which examines the occurrences of objects, this

task requires spatio-temporal reasoning, presenting a novel and interesting challenge.

Section 4.2.1 contains the details of our data sources. In Section 4.2.2, we document

our foil creation strategy, together with subsets presented for this task.

4.2.1 Data Sources

We use the QUVA dataset [Runia et al., 2018], comprising 100 videos. Within

each video, every occurrence of the target action is annotated with a corresponding

frame number, specifying the end of each action. The QUVA dataset lacks any

textual annotations. Consequently, we curate multiple textual templates per video,

incorporating a placeholder for the numerical value (¡number¿). Emulating the

approach in VALSE, our templates incorporate the term exactly to indicate precise
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Figure 4.2: WebVid2M dataset [Bain et al., 2021] number distribution. The indefinite

articles (a/an) are opted out. Numbers 6, 7, 8, 9 and 10 are merged into single

category 6-10.

counting (e.g., someone performs exactly ¡number¿ push-ups). We take care to avoid

overly specific terms, opting for more general descriptors (e.g., lifting weights instead

of skull-crushers arm exercise). A native English speaker checked the manually

collected templates and fixed potential syntax errors in them. We set the videos’

frame per second rate to 30, since VideoCLIP [Xu et al., 2021a] only works with

30-FPS videos. We choose to use the spelled-out numbers (e.g. one, two etc.) rather

than numerical numbers (e.g. 1, 2 etc.).

4.2.2 Foiling Method

To create captions and foils, we replace the number placeholder with the correct

numerical value and an incorrect one. We discard all instances with counts exceeding

a predetermined threshold Tc, set at 10. For the counting task, we created two

subtasks: the easy and the difficult. In the easy subtask, we deliberately opt for

small numbers C ∈ {1, 2, 3} in the captions. The choice of these small numbers aligns

with the notion that models frequently encounter such quantities during pretraining
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(see Figure 4.2), making them more recognizable and interpretable. By contrast in the

difficult sub-tests, we favor small numbers in the foils. This presents a challenging

task for VidLMs as it tests the models’ ability to overcome any bias towards numbers

frequently encountered during pretraining. In this way, we aim to assess the models’

true abilities to handle counting in diverse contexts.

4.2.3 Proficiency Tests

The counting task’s proficiency tests assess how well the models recognize the actions

repeated in the videos. To create the proficiency captions, we remove number-specific

phrases. For instance, we change ”a man performs exactly ¡number¿ push-ups.” to

”a man performs push-ups.”. To create proficiency foils, we implement a procedure

that has 4 main stages which are,

1. We use spaCy’s4 dependency parser to localize the verb phrases. We mask

these phrases and generate text for the masked spans using T5 (t5-large)

[Raffel et al., 2020]. To obtain the initial foil candidates, we filter out gen-

erations that include personal pronouns (e.g. I, they etc.) and conjunc-

tions (e.g. and, but). We then perform GRUEN and NLI filtering [Zhu

and Bhat, 2020]. Similar to the other tasks’ proficiency task, we discard

candidates that have a GRUEN score lower than a certain threshold which

is equal to 0.80. We employ NLI filtering and filter out the examples that

entails the proficiency caption. As NLI model, we use a fine-tuned Albert

(ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli) in Hug-

gingface’s transformers package [Lan et al., 2020, Wolf et al., 2019]. As a last

step, we perform manual intervention and discard implausible foil candidates.

2. We mask the subject and noun phrases in the captions and then we repeat the

first step using RoBERTa [Liu et al., 2019b] for the examples that do not have

a single foil. We repeat the first stage’s GRUEN/NLI and manual filtering

steps again.

4spacy.io/
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3. For the videos without any valid foils, we randomly sample captions from the

other videos. We restrict this sampling process categorically: For the exercise

videos, we only sample captions from other exercise videos. We exclude the

captions that comprise ”the same exercise” phrase. We then replace the subject

phrases with the ground-truth caption’s subject phrase to make it similar to

the true caption. We perform an NLI filtering as a final step to finalize the foil

candidates.

4. To obtain the foil, we randomly sample from the candidate set.

The reason why we employ this 4-stage procedure is the captions’ degree of

specificity for some examples. For instance, if we mask the verb or noun phrases

of the sentence ”a man performs push-ups.”, LMs naturally fail to come up with

different phrases. We can observe the same phenomena for sentences ”a kid jumps

on a trampoline.” and ”somebody pushes a button”.

4.3 Rare Action Recognition

In the rare actions tests, we investigate the ability of VidLMs to identify novel

compositions and recognize unusual events, such as a computer keyboard is being

cut using a chainsaw by someone described. Figure 4.1 shares a pair of examples.

These events are described by a verb-noun pair, e.g. ”cutting a keyboard”. We

choose foils from more likely events taking place in videos. Section 4.3.1 contains the

details of our data sources. In Section 4.3.2, we document our foil creation strategy,

together with subsets presented for this task. Section 4.2.3 describes how we create

the proficiency tests for the rare actions tests.

4.3.1 Data Sources

We leverage the RareAct dataset [Miech et al., 2020], which consists of videos

accompanied by action-object pairs describing events within the videos. These

action-object pairs are extracted by analyzing co-occurrence statistics from the
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widely used HowTo100M [Miech et al., 2019] dataset for VidLM pretraining. The

RareAct dataset does not have a natural language component: It only tests action

recognition models. To enrich this dataset, we generate simple captions based on the

action-object pairs. For instance, given the action-object pair cut-keyboard, we create

the descriptive caption cutting a keyboard. We avoid subject phrases in captions

since some videos do not comprise a human being as an actor.

4.3.2 Foiling Method

This task offers two sub-tests: the action replacement and the object replace-

ment sub-test. In the action replacement sub-test, we substitute the original

action with a more plausible alternative that can be applied to the given object,

e.g. type on for the previous keyboard example. To generate foils in this sub-test,

we employ T5 [Raffel et al., 2020], as it enables us to produce foil candidates with

compound verbs, e.g., talk on, place at, etc. We discard foil candidates with some

general actions (e.g. use, have etc.) or actions that imply some form of touching (e.g.

hold, reach etc.). We then perform an NLI and GRUEN score filtering. In this stage,

we perform a manual intervention and abandon the low quality candidates. As for the

object replacement sub-test, we focus on replacing the object in the action-object

pair. For instance, revisiting the previous example, we replace the object keyboard

with bread. Here, we prefer to use a set of token-based MLMs [Devlin et al., 2019, Lan

et al., 2020, Liu et al., 2019b]. To further enhance the quality of the foils, we opt

for an ensembling approach in the object replacement sub-test. Particularly, we use

three MLMs which are BERT, RoBERTa and ALBERT [Devlin et al., 2019, Liu

et al., 2019b, Lan et al., 2020]. We also run an object detector called End-to-End

Object Detection model (DETR) [Carion et al., 2020] and discard the foil candidates

that contain the detected objects. We use facebook/detr-resnet-101 DETR in

Huggingface’s transformers package [Wolf et al., 2019]. We uniformly sample K = 8

frames and run the object detector on these sampled frames. We classify an object

detected if its confidence threshold exceeds 0.80.
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4.3.3 Proficiency Tests

The proficiency test of the rare actions tests the existence of objects in the given

input videos, similar to the VALSE existence instrument. This time we do not use

negated foils: We replace the correct object with another. To create captions, we

create a statement about the existence of the ground truth object, e.g. ”there is at

least one keyboard.”. To create foils, we randomly sample from the objects appear in

ground-truth captions, e.g. ”there are some flowers”. Similar to the main test, we

implement the same object detection filtering process.

4.4 Experiments

This section describes our experimental setup, results and analyses. §4.4.1 provides an

overview of the models tested on our benchmark. §4.4.5 contains the implementation

details of these models. §4.4.6 describes the evaluation metrics used to measure

model performances. §4.4.7 presents the obtained results and our key observations.

4.4.1 Pretrained Models

Here we describe the models used in this benchmark. Next to the pretrained video-

language models (§4.4.4), we also experimented with pretrained unimodal models

(i.e. text-only LMs) and image-language models (§4.4.2 and §4.4.3).

4.4.2 Unimodal Models

We test a couple of decoder-only or encoder-decoder LMs on the benchmark. These

models are GPT-2 [Radford et al., 2019], OPT [Zhang et al., 2022], T5 [Raffel et al.,

2020] and BART [Lewis et al., 2020]. Similar to VALSE, we calculate the perplexity

values for both caption and foil, and select the text input with smaller perplexity

score. During our experiments for GPT-2 and OPT, gpt25 with 124M parameters

and opt-6.7b6 are used.

5https://huggingface.co/gpt2

6https://huggingface.co/facebook/opt-6.7b

https://huggingface.co/gpt2
https://huggingface.co/facebook/opt-6.7b


Chapter 4: Probing Action Counting and Recognition Capabilities of Video-Language
Models 52

4.4.3 Image-Language Models

We also conducted experiments involving two prominent Image-Language models

CLIP [Radford et al., 2021] and BLIP-2 [Li et al., 2023c]. CLIP employs a dual-

encoder architecture, utilizing a contrastive loss objective to facilitate the training of

image-caption pairs. On the other hand, BLIP-2 represents a subsequent advancement

of BLIP [Li et al., 2022b], harnessing the potential of frozen pretrained image encoders

and large language models to bolster the vision-language learning process. For CLIP

and BLIP-2 experiments, the largest version of CLIP7 and BLIP-28 with OPT-6.7B

version are used.

4.4.4 Video-Language Models

In this section, we share the details of the pretrained video-language models used for

the experiments. §4.4.5 shares the implementation details of these models.

VideoCLIP [Xu et al., 2021a] uses BERT as text encoder and S3D [Xie et al., 2018]

as video encoder. VideoCLIP is pretrained on HowTo100M. Like ClipBERT, it uses

mean pooling to fuse modalities.

FiT [Bain et al., 2021] encodes text using BERT like many others. As video encoder,

TimeSFormer [Bertasius et al., 2021] is preferred. FiT is pretrained on both images

(CC3M) and videos (W2). It creates a shared video-text space via contrastive learning.

The authors also collected the W2 dataset.

X-CLIP [Ma et al., 2022] is a video-text retrieval model that offers a new approach

to address the challenge of similarity aggregation. By employing a multi-grained

contrastive mechanism, the model encodes sentences and videos into coarse-grained

and fine-grained representations, facilitating contrasts across different levels of granu-

larity. Moreover, the model introduces the Attention Over Similarity Matrix (AOSM)

module, enabling it to focus on essential frames and words while reducing the impact

of irrelevant ones during retrieval.

7https://huggingface.co/openai/clip-vit-large-patch14

8https://huggingface.co/Salesforce/blip2-opt-6.7b

https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/Salesforce/blip2-opt-6.7b
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MCQ [Ge et al., 2022] introduced a pretext task as Multiple Choice Questions

(MCQ) for video-text pre-training based on a dual-encoder mechanism. They used a

parametric module called BridgeFormer, which connects local features from Vide-

oFormer [Dosovitskiy et al., 2020] and TextFormer [Sanh et al., 2019] to answer

multiple-choice questions via contrastive learning objective. It enhances semantic

associations between video-text representations and improves fine-grained semantic

associations between two modalities. Additionally, it maintains high efficiency for

retrieval and the BridgeFormer can be removed for downstream tasks.

Singularity [Lei et al., 2022] showed the effectiveness of single-frame training in the

context of video-language tasks, such as video question answering and text-to-video

retrieval, by incorporating a vision encoder [Dosovitskiy et al., 2020], a language

encoder [Devlin et al., 2019], and a multi-modal encoder with cross-attention fusion

mechanism. On the other hand, they have implemented a new benchmark to overcome

focusing on models temporal learning abilities. This contribution brings to light a

significant static appearance bias prevalent in current video-and-language datasets.

VindLU [Cheng et al., 2023] followed a comprehensive approach for enhancing VidLM

pretraining to fine the most effective VidLM framework design. The methodology

begins by employing image [Bao et al., 2021] and text [Devlin et al., 2019] encoders,

trained on video and caption pairs through a visual-text contrastive objective.

Subsequently, the framework progressively incorporates additional components while

analyzing the significance of each one. The final recipe encompasses six steps,

which involve the inclusion of temporal attention, integration of a multi-modal fusion

encoder, adoption of masked modeling pretraining objectives, joint training on images

and videos, utilization of additional frames both in fine-tuning and inference stages,

model-parameter and data scaling. These steps collectively contribute to an effective

VidLM pre-training process, facilitating improved performance and understanding in

multi-modal video question answering tasks.
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4.4.5 Implementation Details

We try to use each model as-is based on the provided official implementations in a

zero-shot setting. We directly use Huggingface implementations [Wolf et al., 2019]

of GPT-2, OPT, CLIP, BLIP2 and X-CLIP. The majority of VidLMs sample a

model-specific number of frames K to construct video input. Specifically, X-CLIP

use K = 8 whereas the remaining tested models use K = 4. VideoCLIP processes the

entire video using a S3D video encoder [Xie et al., 2018]. To calculate video-caption

match scores for ILMs, we perform mean pooling over the image-caption match scores

obtained using multiple frames, setting K = 8 following the X-CLIP implementation.

We run experiments on single Tesla T4 or V100 GPUs using half precision.

4.4.6 Evaluation Metrics

Following [Parcalabescu et al., 2022], we use the pairwise ranking accuracy accr

metric to compare models, since only this metric allows us to evaluate VidLMs

pretrained with the VTC, VTM and NLG objectives at the same time. We report

scores for the main tests (T) and their respective proficiency tasks (P). We also

report a combined score (C), whereby a model which succeeds on the main test is

only considered correct if it also succeeds on the relevant proficiency test.

4.4.7 Results and Discussion

Counting Results

Table 4.1 presents the model performances achieved on the counting tests. All of

the adapted models perform close to a random baseline in the overall main tests.

In the proficiency tests, ILMs and VidLMs achieve a decent performance. However,

we observe a significant decrease in performance when evaluating the models under

combined settings, ranging from 12.50% to 50% proportional to their main test

performances.

We also conducted a categorical evaluation, where each category contains examples

that have specified count in their ground truth captions. Figure 4.3 shows these
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Figure 4.3: Categorical evaluation on the counting main task.

class-based analysis. To simplify this analysis, we compute average performances for

each model category, unimodal LMs, ILMs and VidLMs. The standard deviation

values are illustrated with the color filled areas. We observe that LMs and ILMs are

heavily biased towards smaller numbers. This is as expected for the unimodal LMs,

since they don’t process visual input. Most importantly, the implemented VidLMs

perform close to a random baseline, indicating that these models are unable to count

actions.

Rare Actions Results

Table 4.2 presents the model performances achieved on the rare actions tests. Uni-

modal baselines GPT2 and OPT [Radford et al., 2019, Zhang et al., 2022] perform

very poorly on the main tests as expected since the captions describe less likely events.

We observe that the models consistently perform better in object replacement tests in

comparison to action replacement. This is inline with previous work where the models

are more biased towards nouns and they fail to process verbs sufficiently [Momeni

et al., 2023, Park et al., 2022, Lei et al., 2022]. Additionally, CLIP outperforms all
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Model
Easy Difficult All

P T C P T C P T C

Random 50.00 50.00 25.00 50.00 50.00 25.00 50.00 50.00 25.00

GPT2 48.85 71.27 34.53 49.25 33.55 18.06 49.04 53.08 26.59

OPT 56.86 93.89 53.05 57.42 10.75 6.77 57.13 53.55 30.74

CLIP 89.89 65.67 45.95 90.11 38.60 46.13 90.00 52.62 46.04

BLIP2 81.38 93.99 75.88 83.12 9.03 7.85 82.22 53.03 43.08

VideoCLIP 78.58 31.33 25.23 80.65 60.75 48.28 79.58 45.51 36.34

FiT 83.98 52.95 44.74 82.90 49.57 41.94 83.46 51.32 43.39

MCQ 82.32 29.03 26.33 82.04 71.94 56.77 82.19 49.72 41.01

X-CLIP 85.99 65.87 55.26 84.52 41.72 36.02 85.28 54.23 45.98

Singularity 80.78 56.16 45.35 80.43 46.45 38.06 80.61 51.48 41.84

Singularity-T 79.78 60.26 47.35 79.14 41.72 34.73 79.47 51.32 41.27

VindLU 85.19 66.57 58.16 83.33 35.27 28.17 84.29 51.48 43.70

Table 4.1: Performance of the adapted models on the counting task using pairwise

ranking accuracy (accr) metric on the Proficiency, main Task and Combined tests.

Each row represents a different model. Easy, Difficult and All stands for the results

achieved on the corresponding splits.

VidLMs except VindLU, which demonstrates its ability to handle novel compositions

is superior to most VidLMs. Similar to the counting tests, we observe a significant

decrease when we include proficiency tests in evaluation. In the combined results,

most evaluated models fail in 20% of the examples in this task.
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Model
Action Repl. Object Repl. All

P T C P T C P T C

GPT2 55.20 17.50 8.50 54.80 34.50 25.60 55.00 26.00 17.00

OPT 58.00 20.30 11.30 59.90 27.40 20.30 58.95 23.85 15.80

CLIP 92.30 93.60 86.50 92.90 93.60 89.50 92.60 93.60 88.00

BLIP2 90.40 64.20 58.80 92.90 83.90 80.00 91.65 74.05 69.00

VideoCLIP 81.50 75.50 61.30 84.00 81.10 72.00 82.75 78.30 66.65

FiT 87.80 86.60 75.40 87.80 91.20 82.90 87.80 88.90 79.15

MCQ 89.60 86.30 76.70 89.50 90.00 83.60 89.55 88.15 80.15

X-CLIP 83.10 86.00 70.70 85.20 85.00 75.30 84.15 85.50 73.00

Singularity 92.20 86.20 79.20 93.00 90.70 86.10 92.60 88.45 82.65

Singularity-T 90.30 85.90 76.80 92.40 92.00 87.10 91.35 88.95 81.95

VindLU 93.70 92.30 86.20 94.40 93.70 89.90 94.05 93.00 88.05

Table 4.2: Performance of the adapted models on the rare actions task using pairwise

ranking accuracy (accr) metric on the Proficiency, main Task and Combined tests.

Each row represents a different model.

4.5 Related Work

This section summarizes related work by categorizing pretrained video-language

models (VidLMs) (§4.5.1), reviewing recent efforts that investigate the capabilities

of pretrained image-language models (ILMs) (§4.5.2) and positioning our work in

relation to existing similar video-language benchmarks (§4.5.3).
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4.5.1 Pretrained VidLMs

We categorize VidLMs along distinct aspects: pretraining of the visual modality,

the pretraining datasets, pretraining objectives, temporal modeling and multi-modal

fusion strategies. See §4.4 for detailed descriptions of models used in our experiments.

Modalities. Pretraining of the visual modality can be performed on images [Lei

et al., 2021], videos [Li et al., 2020, Zhu and Yang, 2020, Xu et al., 2021a, Zellers

et al., 2021b, Seo et al., 2022, Wang et al., 2022a, Li et al., 2022a, Luo et al., 2022]

or both [Bain et al., 2021, Fu et al., 2021, Wang et al., 2022b, Li et al., 2022c, Lei

et al., 2022]. A handful of models [Akbari et al., 2021, Lin et al., 2022, Zellers et al.,

2022] also incorporate the auditory modality, i.e. sound.

Datasets. The chosen pretraining datasets often depend on the type of pretraining

done in the visual modality. Early VidLMs (e.g. [Zhu and Yang, 2020, Li et al.,

2020, Xu et al., 2021a]) use HowTo100M [Miech et al., 2019], which provides the

linguistic modality in the form of Automatic Speech Recognition (ASR) output or

manually written subtitles. Recent models are pretrained on the WebVid-2M (W2)

dataset [Bain et al., 2021], which follows a similar approach to CC3M [Sharma et al.,

2018] in filtering items based on the quality of the textual modality. In addition to

video-text datasets, recent VidLMs leverage also large-scale image-text datasets such

as SBU captions [Ordonez et al., 2011], Conceptual Captions (CC) 3M and CC12M

[Changpinyo et al., 2021].

Objectives. Some pretraining objectives for VidLMs have been derived from the

pretraining objectives employed by ILMs. The most prominent among these are

video-text contrastive loss (VTC), video-text matching (VTM), masked language

modeling (MLM) and masked frame modeling (MFM). A few exceptions employ

natural language generation (NLG) [Seo et al., 2022, Wang et al., 2022b], masked

visual-token modeling (MVM) [Li et al., 2022c] or temporal reordering [Zellers et al.,

2021b].

Temporal Modeling. Only a few methods use joint space-time attention [Bertasius

et al., 2021, Bain et al., 2021, Wang et al., 2022b] to process video. Some approaches

[Zellers et al., 2021b, Luo et al., 2022, Yang et al., 2022] rely on language at this
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stage, and implement a multi-modal attention mechanism between patches and word

embeddings. [Fu et al., 2021, Li et al., 2022c] extract spatio-temporal features using

the Video Swin Transformer [Liu et al., 2022] with shifted window attention [Liu

et al., 2021b].

Multi-modal Fusion. Models relying exclusively on the VTC objective disregard

multi-modal fusion [Xu et al., 2021a, Bain et al., 2021, Luo et al., 2022, Lin et al.,

2022]. Others either implement an additional multi-modal transformer [Luo et al.,

2020c, Lei et al., 2022, Seo et al., 2022] or create a visual prefix to be fused into a

text-only LM [Zellers et al., 2021b, Fu et al., 2021].

4.5.2 Benchmarks for Pretrained ILMs

Image-Language Models (ILMs) are commonly tested on tasks such as image ques-

tion answering [Goyal et al., 2017b], visual reasoning [Suhr et al., 2019] or image

retrieval [Lin et al., 2014a, Plummer et al., 2015]. Some benchmarks measure task-

overarching capabilities of ILMs, such as their understanding of actions [Hendricks

and Nematzadeh, 2021] or compositionality [Thrush et al., 2022]. A specific way

of testing ILMs is foiling [Shekhar et al., 2017b, Gokhale et al., 2020, Bitton et al.,

2021, Parcalabescu et al., 2021, Rosenberg et al., 2021], where a caption is turned into

a counterfactual (i.e., foil) by minimal edits, such that it does not correctly describe

the image anymore [Shekhar et al., 2017b, Shekhar et al., 2017a]. As an alternative,

the image can be exchanged, such that it does not match the caption anymore

[Rosenberg et al., 2021, Wang et al., 2023b]. The key consideration in creating

counterfactuals is to target the linguistic elements in focus, which are assumed to

reflect specific model capabilities (e.g. by altering a preposition, a model’s ability to

distinguish caption from foil should reflect its understanding of spatial relations). An

alternative strategy is to test a large pretrained model on multiple choice questions

designed to probe specific capabilities, as recently used in SEED-Bench [Li et al.,

2023a].

Most related to our work is the VALSE foiling benchmark [Parcalabescu et al.,

2022], which tests the linguistic grounding capabilities of ILMs. It targets specific



Chapter 4: Probing Action Counting and Recognition Capabilities of Video-Language
Models 60

linguistic phenomena: existence, plurality, counting, spatial relations, actions, and

entity coreference. The models are tested in zero-shot mode on the image-text

alignment task, which is one of the objectives in ILM pretraining. [Bugliarello et al.,

2023] tested current encoder-only ILMs on the benchmarks mentioned above, namely

SVO probes [Hendricks and Nematzadeh, 2021], VALSE [Parcalabescu et al., 2022],

and Winoground [Thrush et al., 2022].

4.5.3 Benchmarks for Pretrained VidLMs

Like ILMs, VidLMs are evaluated on numerous downstream tasks, primarily action

recognition [Kuehne et al., 2011, Soomro et al., 2012], video-text retrieval [Xu

et al., 2016, Hendricks et al., 2017], and video question answering (VidQA) [Xu et al.,

2017, Lei et al., 2018]. [Lei et al., 2022] shows that a non-temporal model can perform

better than temporal models in these benchmarks. Newer VidQA benchmarks [Lei

et al., 2020a, Xiao et al., 2021] offer stronger tests for VidLMs to probe their

temporal reasoning and commonsense reasoning capabilities. In our benchmark, we

also prioritize these aspects, but we cast the tasks in a zero-shot setting using a

counterfactual setup, to elicit the pretrained models’ inherent capabilities.

Foiling benchmarks have also been proposed to evaluate VidLMs. [Park et al.,

2022] devise two tests. In the first one, the foils are created by swapping the character

entities in the caption. In the second, an LM replaces the verb phrase of the caption.

On the other hand, [Bagad et al., 2023] create a benchmark consisting of synthetic

video-caption-foil triplets (e.g. a red circle appears after/before a yellow circle) to

test how well VidLMs localize the events happening in the video. [Bagad et al.,

2023] also propose a consistency test to probe whether the models localise the events

correctly or just predict the correct answers. In St.Viola, we have a test similar

to [Park et al., 2022], but we built it upon the semantic role labelling (SRL) task.

Similar to the consistency task of [Bagad et al., 2023], we propose a proficiency task

for each task. In contrast to these earlier foiling benchmarks, our benchmark St.Viola

is more comprehensive as it is designed to examine models’ grounding capabilities

for different linguistic phenomena, by extending VALSE to the temporal axis.
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Another notable benchmark is VALUE [Li et al., 2021b], which is developed in a

fashion similar to the GLUE/SuperGLUE evaluation suites [Wang et al., 2019a, Wang

et al., 2019b] proposed for natural language understanding. VALUE comprises

11 separate datasets covering 3 different downstream tasks. Unlike VALUE, our

benchmark is a zero-shot foiling benchmark with particular focus on linguistic

phenomena that emphasize temporal reasoning.

4.6 Conclusion

In this chapter, we have introduced a novel video-language foiling benchmark which

offers two tasks: Repetitive Action Counting and Rare Action Recognition. This

benchmark is designed to probe the capabilities of pretrained VidLMs, where we

prioritized commonsense and temporal reasoning. We have conducted a comprehen-

sive evaluation and comparison of numerous VidLMs as well as ILMs and text-only

LMs on our benchmark. Our experiments show that, as far as visually grounded

temporal reasoning abilities are concerned, VidLMs do not differ substantially from

ILMs in action counting task. Our findings on the rare actions task demonstrated

that VidLMs fall behind ILMs within atypical contexts. To further refine our bench-

mark, we have introduced proficiency tests, which not only enhance granularity but

also provide deeper insights into the models’ aptitude. Strikingly, our proficiency

task results reveal that a considerable portion of correct predictions appears to be

accidental rather than indicative of robust understanding. This highlights a critical

point: current VidLMs might be struggling with the intricacies of temporal reasoning

challenges offered by our benchmark. This further emphasizes the critical importance

of benchmarks like ours, which serve to identify current weaknesses that need to be

addressed in the drive towards more proficient VidLMs.
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Chapter 5

EUPHEMISM DETECTION

5.1 Introduction

In this chapter, we1 focus on a figurative language understanding task called eu-

phemism detection. Euphemisms attempt to smooth harsh, impolite, or blunt

expressions about taboo or sensitive topics like death and unemployment [Holder,

2008]. For instance, when we speak of older people we often refer to senior citizens

instead of a direct expression that can be seen as offensive.

Identifying euphemisms is challenging due to their natural ambiguity, i.e., the

meaning of the term shifts depending on the context: ‘Over the hill ’ could either mean

someone or something is physically over some hill (literal), or someone or something

is old, past one’s prime (figurative) [Lee et al., 2022]. One cannot distinguish these

two different senses without sufficient context. Thus, these terms are referred as

potentially euphemistic terms (PETs) [Gavidia et al., 2022]. Here, we propose a

two-stage method to detect euphemistic terms.

In the first stage, we manually collect literal descriptions for each PET. We then

incorporate these descriptions into input text prompts to help the model distinguish

figurative from literal usage. We practice this approach because PETs rarely appear

together with their literal descriptions. We demonstrate that this kind of extraneous

linguistic supervision improves a strong baseline by a large margin.

In the second stage, we supply extra visual supervision in addition to the extra

linguistic supervision. We pursue this direction because extra modality could benefit

language understanding in low-resource settings [Li et al., 2022d, Lu et al., 2022].

1I am the only main contributor in this study. This chapter is adapted from [Kesen et al.,

2022b]



Chapter 5: Euphemism Detection 63

He sent some of his scouts to go look <over the hill>

Language Model

Label

Figure 5.1: Visualization of our vanilla baseline approach.

We use a text-to-image model which takes terms and descriptions as input, and we

generate two sets of images, which we denote as visual imageries. Our experiments

show that using visual imagery provides the best results. A paired t-test points

out that the improvement is statistically significant. Our qualitative analysis also

suggests visual imageries are beneficial for analyzing PETs.

The rest of this chapter is organized as follows. Section 5.2 describes our proposed

solution. In Section 5.3, we share the details of our evaluation setup and design

choices. Section 5.4 reports our experimental results. In Section 5.5, we briefly

review the relevant literature. Section 5.6 outlines our conclusions and discusses the

limitations of our approach.

5.2 Approach

In this section, we first formulate the euphemism detection task by describing a

simple baseline model, and then explain how we extend it with the literal term

descriptions and visual imagery.
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5.2.1 Vanilla Baseline

Given a textual context C with a potentially euphemistic term (PET) T , the aim

of euphemism detection is to decide whether the candidate term T is euphemistic

(y = 1) or not (y = 0). Here, we only pick a sentence S = [w1, w2, ..., wn] which

contains a candidate term T , and ignore the rest of the context C at first. Figure5.1

illustrates our vanilla baseline. We use a pretrained language model LM as our initial

baseline as described below.

ei = EMBED(wi)

p̂ = LM(e1, e2, ..., en)

ŷ =

1 p̂ ≥ 0.5,

0 otherwise.

ei denotes the word embedding of the ith token wi, p̂ is the probability that the

candidate term T is euphemistic, and ŷ is the predicted label. EMBED is the

embedding layer and LM denotes the language model that produces the probability

p̂.

5.2.2 Literal Descriptions

We extend the baseline model by supplying extra supervision with literal descriptions

D for each candidate term T (which we collect manually). Figure 5.2 illustrates how

we incorporate these literal descriptions. To make use of the literal descriptions,

we create a textual prompt X = [x1, x2, ..., xn] for each sentence S, term T and

description D as below.

X = [Term: T, Description: D, Sentence: S].

Then, we change the formulation,

ei = EMBED(xi)

p̂ = LM(e1, e2, ..., en),
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He sent some of his scouts to go look<over the hill>

Language Model

T: over the hill D: old, elderly S:

Label

Figure 5.2: Illustration of our literal descriptions baseline. The literal descriptions

baseline augments the language input with the literal descriptions of PETs.

where ei is the embedding for the ith token of the input prompt X.

5.2.3 Visual Imagery

We subsequently move beyond the text-only baselines by integrating visual modality

into the Literal Descriptions baseline in the form of visual imagery. To accomplish this,

we generate two sets of images IT = [I
(1)
T , I

(2)
T , ..., I

(k)
T ] and ID = [I

(1)
D , I

(2)
D , ..., I

(k)
D ],

for each term and description pair, respectively. We denote these set of images as

visual imageries. To obtain the visual imageries, we feed a text-to-image model T2I

with terms and descriptions as input language,

I
(k)
T ∼ T2I(T ), I

(k)
D ∼ T2I(D).

Next, we use a pretrained visual encoder (VE) to embed visual imageries.

vT =
1

K

K∑
k=1

VE(I
(k)
T ), vD =

1

K

K∑
k=1

VE(I
(k)
D )
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over the hill

Text-to-Image Model

Visual Encoder

old, elderly

Text-to-Image Model

Visual Encoder

vT vD

Terms Descriptions

IT ID

Figure 5.3: Illustration of our literal descriptions baseline. The literal descriptions

baseline augments the language input with the literal descriptions of PETs.

He sent some of his scouts to go look <over the hill>

Language Model

Label

T: over the hill D: old, elderly S:

vT vD

proj

Figure 5.4: Illustration of our literal descriptions baseline. The literal descriptions

baseline augments the language input with the literal descriptions of PETs.
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where vT denotes the visual imagery embedding of the candidate term T and vD

denotes the visual imagery embedding of the corresponding literal description D.

K is the number of images per term T and description D. Figure 5.3 shows an

overview of the visual imagery creation process. To make use of these imageries, we

reformulate the literal descriptions baseline as follows,

ei = EMBED(xi)

p̂ = LM(fp(vT ), fp(vD), e1, e2, ..., en)

We make sure visual imagery embeddings are compatible with the word embeddings

and language model LM by applying a linear projection layer fp. We train each

baseline using the negative log-likelihood objective.

5.3 Data and Implementation

This section shares the details of the data and the implementation of our system.

5.3.1 Data

The euphemism detection dataset [Gavidia et al., 2022] consists of two separate splits

for training and testing purposes with 1573 and 394 examples, respectively. The test

split is unlabeled. The whole data includes 131 different PETs. Since there is no data

supplied for validation, we reserve 20% of the training data for this purpose. We only

select the sentences with PETs and remove repetitive patterns of punctuation ”@

@ @ ...” to decrease computational requirements by shortening the input language.

We manually collect literal descriptions within 6 hours, and try to avoid impolite

expressions like insults or slang phrases.

5.3.2 Implementation

We use DeBERTa-v3 base and large as our language model [He et al., 2021a, He

et al., 2021b]. We generate the visual imageries IT and ID by using an open-source

DALL-E implementation [Ramesh et al., 2021, Dayma et al., 2021].2 The number

2github.com/kuprel/min-dalle

https://github.com/kuprel/min-dalle
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Model LM validation test

Vanilla Baseline Base 79.84 ±2.23 -

+ Desc. Base 86.39 ±1.05 83.58

+ Desc. Large 88.89 ±1.35 85.74

+ Desc. + Imag. Large 90.11 ±1.59 87.16

Table 5.1: Quantitative results on the labeled data using F1 as evaluation metric.

The last two columns respectively show the average score over different validation

splits, and the ensemble performance achieved on the test split.

of images per visual imagery K is set to 9. We extract visual imagery embeddings

vT and vD using CLIP’s ViT-L/14 as our visual encoder [Radford et al., 2021].

fp is a single linear layer, and we randomly initialize its weights. We use Adam

optimizer with weight decay [Kingma and Ba, 2015, Loshchilov and Hutter, 2018].

The learning rate is set to 5e−6 and 3e−6 for the experiments with DeBERTa-v3-base

and DeBERTa-v3-large, respectively. We train our models for a maximum of 50

epochs using Tesla V100s and mixed precision. A typical experiment takes less than

one hour with a batch size of 16. Due to the small dataset size, we perform multiple

experiments and reserve a different portion of the labeled data for validation in each

experiment. We report mean and standard deviation over all experiments, and use

ensembling to evaluate our system on the test set.

5.4 Experimental Analysis

In this section, we report the quantitative results of our experiments and the prelimi-

nary outputs of our qualitative analysis.

5.4.1 Quantitative Results

Table 5.1 presents the quantitative results of our experiments as ablation studies.

We perform several experiments in a curriculum, where each following experiment
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activates a different feature (e.g. literal descriptions). We first implement a vanilla

baseline using DeBERTa-v3-base, which lacks descriptions and imagery.

Using Literal Descriptions. In our first ablative analysis, we incorporate the literal

term descriptions into the vanilla baseline described in Section 5.2.2. Integrating this

supervision results in substantial performance improvement, i.e. ≈6.5 points using

F1 as evaluation metric.

Larger Language Model. We implement the literal descriptions model using a

larger language model which is the large architecture of the DeBERTa-v3 model.

Using a bigger LM gives 2 points performance improvement.

Visual Imagery. We now report on the visual imagery model explained in Section

5.2.3. This model additionally uses two different visual embedding vectors, denoted

as visual imageries, which are generated by a text-to-image model using terms and

descriptions. By using this extra visual supervision, we obtain 1.22 and 1.42 F1 score

increments in validation and testing phases. A paired t-test is applied to determine

the significance of the results: We obtained a p-value of 0.032, which points out that

this improvement is statistically significant (p<0.05).

5.4.2 Qualitative Analysis

Figure 5.5 wraps up our qualitative analysis, where we share the collected descriptions

and the generated visual imageries for some euphemistic terms. The first two examples

show that if a term has a dominant literal meaning, the text-to-image V2I model

produces images conveying the literal meaning instead of the figurative one. V2I can

also produce visuals based upon individual word meanings as a consequence of being

completely unconscious to the figurative meaning. This can be seen on the third

example, where the model generates lunch images instead of vomiting for phrase ‘lose

one’s lunch’. Moreover, V2I can generate unrelated images for some terms as one

can see on the pro-life and able-body examples. On the other hand, the text-to-image

model V2I is well aware of some euphemism candidates as in the case with the last

two examples. This phenomenon arises when the term has just one single meaning

which is euphemistic.
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In summary, a text-to-image model can be a complementary tool for analyzing

figurative language: one can observe how models process these expressions. By

looking at the produced images, we can recognize the terms with dominant literal

meanings (e.g. late) or single euphemistic meaning (e.g. lavatory).

5.5 Related Work

5.5.1 Euphemisms.

Recently, euphemisms have attracted the attention of the natural language processing

community. [Zhu et al., 2021] and [Zhu and Bhat, 2021] extract euphemistic phrases

by using masked language modeling. A few work practices sentiment-oriented

methods to recognize candidate euphemism phrases [Felt and Riloff, 2020, Gavidia

et al., 2022, Lee et al., 2022]. Most notably, [Gavidia et al., 2022] replace PETs

with their literal meanings and observe how the sentiment scores change. They

demonstrate that using literal meanings produces higher scores for offensive speech

and negative sentiment. Similarly, we also put literal meanings to use, but differently,

by creating a textual input prompt. In this work, we also use the euphemism dataset

they created.

5.5.2 Knowledge-augmented Language Understanding.

External knowledge3 can be either unstructured (i.e. text) or structured (i.e. graph).

To benefit from unstructured knowledge, a text retriever collects related entries from

an external corpus [Karpukhin et al., 2020, Guu et al., 2020]. Conversely, structured

knowledge integration may happen in two ways: explicit methods prefer to use

knowledge in their input [Liu et al., 2020, Zhang et al., 2019], and implicit methods

try to learn knowledge in their objective [Xiong et al., 2019, Shen et al., 2020]. Some

exceptions [Yu et al., 2022a, Lv et al., 2020] combines both: they learn to predict

graph embeddings and use these embeddings as input in their model concurrently.

Similar to us, [Yu et al., 2022b, Xu et al., 2021b, Chakrabarty et al., 2021] also insert

3Please check [Zhu et al., 2022a] for a comprehensive review of the related literature.
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descriptions into their textual inputs.

5.5.3 Visually-aided Language Understanding.

Several methods have been proposed to aid language learning with external visual

knowledge. Most of these methods experiment on machine translation (MT). [Calixto

et al., 2019] propose a latent variable model for multi-modal MT, to learn an

association between an image and its target language description. [Long et al.,

2021, Li et al., 2022d] first synthesize an image conditioned on the source sentence,

then use both the source sentence and the synthesized image to produce translation.

[Caglayan et al., 2020] obtain a lower latency in simultaneous MT by supplying

visual context. Differently, Vokenization [Tan and Bansal, 2020] extends BERT

[Devlin et al., 2019] by implementing visual token prediction objective to learn a

mapping between tokens and associated images. Most relevantly, [Lu et al., 2022]

improve text-only language understanding performance in low-resource settings by

using generated imagination as visual supervision.

5.6 Conclusion

In this chapter, we described our two-stage method for the euphemism detection task.

We first collected literal descriptions for PETs, inserted these descriptions into the

model input, and showed that such linguistic supervision greatly boosts performance.

We then supplied extra visual supervision using a text-to-image model, where we

denote this kind of supervision as visual imageries. We achieved a statistically

significant performance increase by using visual imageries in addition to the term

descriptions. Our qualitative analysis on visual imageries also suggests that a text-

to-image model can be a functional tool to break down how models process figures

of speech.

Limitations. Due to working with a small dataset, we were able to collect de-

scriptions for the PETs manually. Collecting these descriptions using an automatic

retrieval system would be more sophisticated. We also did not perform detailed

analyses of the results, which could help shed light on the contribution of each
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model component. A critical limitation of this study is that we did not perform

an experiment where we integrated extra visual supervision only without any extra

linguistic supervision into the input prompt. Observing how much extra visual

supervision could aid the model could be beneficial. That being said, extra visual

supervision still aids the model, even when the answer becomes evident for the model

with the literal description.
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Term Description IT ID

late old person, elderly

pass on death, dying

lose one’s lunch vomit, vomiting, throwing up

pro-life a person opposes abortion

able-body not disabled

lavatory restroom, toilet

senior citizen old person, elderly

Figure 5.5: Examples of collected literal descriptions for euphemistic terms and their

visual imageries.
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Chapter 6

CONCLUSION

In this thesis, we investigated the recent challenges introduced in V&L learning:

temporal reasoning and commonsense reasoning in problems bridging vision and

language. To this end, we worked on four distinct problems bearing these challenges.

We first practiced the localization stage in Chapter 2 before tackling temporal

and commonsense reasoning. Our experiments on two separate tasks revealed that

conditioning language on the bottom-up/contracting visual processing branch results

in more robust low-level concept grounding.

In Chapter 3 and Chapter 4, we proposed two different types of benchmarks

to measure the temporal reasoning and commonsense reasoning capabilities of the

pretrained video-language models. Our experimental analyses on these benchmarks

made it apparent that the current video-language models are inadequate in terms of

temporal and commonsense reasoning, falling far behind humans.

In Chapter 3, we showed that the existing video-language models then cannot

capture the physical interactions/events happening in videos, while an oracle baseline

accessing these events as a chain-of-thought prompt demonstrates superior perfor-

mance – on par with human beings. This finding suggests that devising a model that

proficiently transcribes frame sequences into event sequences in written form could

be a good starting point to excel in this task.

In Chapter 4, we developed two sorts of foiling tasks for pretrained video-language

models by prioritizing temporal and commonsense reasoning. In the first task,

we presented an extreme temporal reasoning challenge for video-language models:

counting the repeated actions in given videos. We showed that the current models

act like chance-based random baselines in this task. In the second task, we came

up with a task that assesses the compositionality capacities of the models, which
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involves recognizing events less likely to occur in the physical world. Our experiments

revealed that the current models fail to identify actions for 20% of examples in the

rare action recognition tests, indicating that their physical commonsense reasoning

skills fail within atypical contexts.

We focused on a figurative language understanding task in Chapter 5, called

euphemism detection. Our experiments revealed that incorporating both textual and

visual knowledge into the reasoning benefits low-resource commonsense reasoning

scenarios.

Overall, these four studies emphasize two outcomes: First, the current state-of-

the-art video-language models fail to perform adequately on the current benchmarks

that require temporal reasoning. This finding should motivate the community to

advance by devising better video-language modeling methodologies to thrive in

spatio-temporal language grounding benchmarks. Second, extra knowledge could

benefit commonsense reasoning tasks. We show that extra textual information about

a given context aids reasoning in Chapter 3 and Chapter 5. Furthermore, in Chapter

5, we also observed a significant increase when we enhanced input with extra visual

knowledge illustrating figurative terms and their literal meanings. This finding

encourages us to fuse visual and other modalities in text-only commonsense reasoning

problems to supply more knowledge about the world.

6.1 Future Directions

In this part of the thesis, we briefly summarize some potential directions for the

future work based on our findings.

6.1.1 Creating Proficient Video-Language Models

Our findings in Chapter 3 and Chapter 4 motivate us to discover more about video-

language model development. The insufficiency of the existing video-language models

could be due to the following two reasons.

The first reason could be the overall low quality of pretraining datasets. For

instance, the HowTo100M dataset [Miech et al., 2019] does not contain captions:
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the captions for this particular dataset are created by employing an Automatic

Speech Recognition (ASR) system. Apart from the errors that an ASR system could

introduce, the actual problem is that the speech might not be a suitable signal

to relate spatio-temporal events directly. The recent WebVid2M and WebVid10M

datasets [Bain et al., 2021] did not have this drawback as they include ground

truth captions. However, their data collection process is similar to CC3M [Sharma

et al., 2018], which results in noisy captions. [Li et al., 2022b] shows that longer

pretraining with this kind of noisy web data does not boost performance. Recent

studies [Gunasekar et al., 2023, Li et al., 2023d] show that pretraining language

models with clean data is vital to performing well on various problems, including

code generation and common sense reasoning.

Regarding these findings, the community should pursue directions employing

pretraining with clean data. In this manner, VATEX [Wang et al., 2019d] could be a

prominent resource. Afterwards, people can implement pretraining strategies similar

to BLIP [Li et al., 2022b, Li et al., 2023c] and proceed to multi-task instruction

tuning in video-language model training similar to InstructBLIP [Dai et al., 2023]

and T0 [Sanh et al., 2021].

The second reason could be insufficient spatio-temporal modeling. Due to the

computational constraints, most video-language models implement a downsampling

mechanism to represent input videos: Even the most recent models (see Chapter 4)

process just 4 frames as video input. Moreover, these models use an image encoder

solely pretrained on static images [Bao et al., 2021] or an outdated video encoder [Xie

et al., 2018] as their video processing backbone. So, the first step should be replacing

these unsuitable components with recent video representation learning pipelines such

as [Wang et al., 2023a, Sun et al., 2023]. If this process leads to better temporal

grounding capabilities, the second step could involve devising better self-supervised

video representation learning methodologies. That being said, these strategies might

not be enough to thrive in benchmarks like CRAFT, due to the complex dynamic

scenes. One might therefore need to experiment with object-centric solutions like

[Singh et al., 2022].



Chapter 6: Conclusion 77

6.1.2 Domain Expert Models

In this thesis, we tackled problems requiring commonsense knowledge, i.e., the implicit

general knowledge about the world we are living in. This sort of tasks requires no

additional knowledge from a regular person. A more challenging direction could be

to develop domain expert models, which have specialized knowledge in a particular

domain such as mathematics [Lu et al., 2023, Petersen et al., 2023], medicine [Labrak

et al., 2023, Xia et al., 2022, Elfrink et al., 2023], and law [Chalkidis et al., 2023, Zhang

et al., 2023]. In particular, developing multimodal language models for the medical

domain remains a promising direction to follow upon this thesis, since medical data

can often comprise visual modality such as radiology images [Dalla Serra et al.,

2022, Hou et al., 2023]. This area also caught the attention of the community, which

resulted in the emergence of many different medical vision-language models recently

[Wang et al., 2022c, Wu et al., 2023, Singhal et al., 2023, Moor et al., 2023, Li et al.,

2023b].

6.1.3 Multilingual and Cross-Lingual Learning

In this thesis, we did not investigate one aspect of vision-language learning: multi-

lingual and/or cross-lingual learning. This is a missing piece in unimodal language

learning as well: The community showed immense interest in English, leaving the

other languages less researched than English. We are aware of the recent efforts

toward this direction both in unimodal [Xue et al., 2021, Lin et al., 2021, Emelin and

Sennrich, 2021, Safaya et al., 2022, Pikuliak et al., 2022] and multimodal domains [Liu

et al., 2021a, Nooralahzadeh and Sennrich, 2023, Bugliarello et al., 2022, Verma et al.,

2023, Gan et al., 2023, Chen et al., 2023]. Our future work involves devising solutions

that transfer knowledge from high-resource languages to low-resource languages in a

data-efficient manner, by making use of small-scale datasets such as [Elliott et al.,

2016, Unal et al., 2016].
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