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ABSTRACT

A UPF MODULE FOR 5G NETWORKS WITH QUALITY OF SERVICE
SUPPORT: SOFTWARE IMPLEMENTATION AND REALISTIC

EVALUATION

ÇEMEN, MUSTAFA FATİH

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ece Güran Schmidt

September 2023, 61 pages

5G Network provides higher reliability, lower latency, and increased bandwidth rate

compared to 4G Network. Similar to the Software Defined Networking (SDN) Paradigm,

5G networks promote the separation of the control and data plane together with flow-

based services. 5G Network consists of the radio access network and the core network

which is essentially the second part of the access network that is not with radio tech-

nology. The modules of the 5G network are called functions.

This thesis focuses on the User Plane Function (UPF) which is the essential compo-

nent of the 5G Network Core. UPF provides packet forwarding, General Packet Radio

Service (GPRS) Tunnelling Protocol (GTP) functions, and port translation. UPF is a

data plane component that matches each incoming packet against a Packet Detection

Rule (PDR) to define its flow and then executes the corresponding per-flow actions.

This thesis implements a selection of UPF functions towards Quality of Service (QoS)

enforcement. To this end, we implement the Quality of Service Flow Identifier (QFI)

processing, the forwarding or dropping of the packet (gating) and the enforcement of

Maximum Bit Rate (MBR) per flow.
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The implementation is in software using DPDK (Data Plane Development Kit) li-

brary. We evaluate the performance using a realistic set-up and a packet generator.

Our results show that the implementation can support a large number of flows at high

bit rates.

Keywords: 5G network core, user plane function, 5G quality of service, gate status

control, bitrate enforcement
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ÖZ

5G AĞLARI İÇİN SERVİS KALİTESİ DESTEKLEYEN UPF MODÜLÜ:
YAZILIM GERÇEKLEŞTİRİMİ VE GERÇEKÇİ DEĞERLENDİRME

ÇEMEN, MUSTAFA FATİH

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ece Güran Schmidt

Eylül 2023 , 61 sayfa

5G Ağı, 4G Ağına kıyasla daha yüksek güvenilirlik, daha düşük gecikme süresi ve

daha yüksek bant genişliği oranı sağlar. Yazılım Tanımlı Ağ (SDN) Paradigmasına

benzer şekilde, 5G ağları akış tabanlı hizmetlerle birlikte kontrol ve veri düzleminin

ayrılmasını teşvik etmektedir. 5G Ağı, radyo erişim ağı ve esasen erişim ağının radyo

teknolojisine sahip olmayan ikinci kısmı olan çekirdek ağdan oluşmaktadır. 5G ağının

modülleri fonksiyon olarak adlandırılmaktadır.

Bu tez, 5G Ağ Çekirdeğinin temel bileşeni olan Kullanıcı Düzlemi İşlevine (UPF)

odaklanmaktadır. UPF paket iletimi, Genel Paket Radyo Hizmeti (GPRS) Tünel Pro-

tokolü (GTP) işlevleri ve port çevirisi sağlar. UPF, gelen her paketi, akışını tanımla-

mak için bir Paket Algılama Kuralı (PDR) ile eşleştiren ve ardından ilgili akış başına

eylemleri yürüten bir veri düzlemi bileşenidir.

Bu tez, Hizmet Kalitesi (QoS) uygulamasına yönelik bir dizi UPF işlevini hayata

geçirmektedir. Bu amaçla, Hizmet Kalitesi Akış Tanımlayıcısı (QFI) işleme, paketin

iletilmesi veya düşürülmesi ve akış başına Maksimum Bit Hızı (MBR) uygulaması
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gerçekleştirilmektedir.

Uygulama Veri Düzlemi Geliştirme Kiti (DPDK) kütüphanesi kullanılarak yazılımda

gerçekleştirilmiştir. Gerçekçi bir kurulumda bir paket üreteci kullanarak performansı

değerlendiriyoruz. Sonuçlarımız, uygulamanın yüksek bit hızlarında çok sayıda akışı

destekleyebileceğini göstermektedir.

Anahtar Kelimeler: 5G ağ çekirdeği, kullanıcı düzlemi işlevi, 5G hizmet kalitesi, kapı

durumu kontrolü, bit hızı uygulaması

viii



To my family

ix



ACKNOWLEDGMENTS

I would like to start by expressing my gratitude to my very valuable advisor Prof.

Dr. Ece Güran Schmidt, who has supported me throughout this thesis period and the

courses, projects and other academic studies I have taken since my undergraduate

education and who has answered my questions promptly and diligently.

I would like to express my sincere gratitude to the Bull Technology family, where I

am still working, for providing a friendly work environment with engineers with high

technical background. Additionally, my tennis partner Yakup Erdem Yıldız, and my
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CHAPTER 1

INTRODUCTION

The telecommunications industry is undergoing a major transformation. 5G, which is

often seen as a technology that will enable faster speeds and support the development

of Industry 4.0, is actually a fundamental shift in wireless communications. It will

place wireless communications at the center of the digital economy. This transforma-

tion is not just a small improvement over previous generations of technology, but a

major step change that the industry may not see again for a long time.

The 5G architecture consists of two parts: the new Radio Network (NG-RAN) sup-

porting the New Radio (NR), and the 5G Core Network (5GC). Both parts have

changed significantly from previous generations of technology.

The 5GC is designed to be a modular architecture, where each network function is

implemented as a separate service. This makes it easier to add new features and

services and to scale the network as needed. It uses a common set of standards for

identity, authentication, quality of service (QoS), policy, and charging. This will

make it easier for operators to manage their networks and provide consistent services

to their customers.

It is important to note that 5G has a similar design philosophy to Software Defined

Networking (SDN). To this end, the control and data planes are separate and the

services are flow-based. The communication between the control and data plane is by

Packet Forwarding Control Protocol (PFCP) which is similar to OpenFlow protocol.

The SMF, or Session Management Function, manages the sessions of end users (or

devices). This includes establishing, modifying, and releasing sessions, as well as

allocating IP addresses for each session. The SMF does not communicate directly
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with end-user devices but instead communicates with them indirectly through the

AMF, or Access and Mobility Management Function. The AMF forwards session-

related messages between the devices and the SMFs.

The main focus of this thesis is the User Plane Function (UPF) module of the 5G Core

Network (5GC). The UPF is responsible for processing and forwarding user data. It

connects to external IP networks and acts as a stable IP anchor point for devices,

hiding their mobility. This means that IP packets destined for a specific device can

always be routed from the Internet to the UPF that is serving that device, even if the

device is moving around in the network.

An incoming packet is assigned to a flow by the UPF by matching the packet headers

to a Packet Detection Rule (PDR). PDRs are installed by the SMF in a table and each

PDR defines a series of packet processing rules for the packets of the flow.

The UPF can execute various network or user policies for each flow, such as:

• Gating: This is the process of blocking or restricting traffic. For example, the

UPF could be configured to block traffic from a specific website or application.

• Redirection: This is the process of sending traffic to a different destination. For

example, the UPF could be configured to redirect traffic from a specific website

to a content filter.

• Data rate limitations: This is the process of limiting the amount of data that can

be transferred over a network. For example, the UPF could be configured to

limit the data rate for a specific user or application.

The main contribution of this thesis is the software implementation of the UPF com-

ponents that realize QoS management. The implementation includes gating and data

rate limitation to the Maximum Bit Rate (MBR) that is defined per flow. These fea-

tures can be used by mobile network operators to facilitate customized billing or ser-

vice provisioning based on customer payment arrangements. We further implement

packet counting, and usage statistics found in UPF solutions by industry leaders like

Napatech, Ericsson, and Nokia.

We adopt the OpenFlow protocol to implement PFCP protocol. The interface of UPF

2



to the Radio network requires encapsulation of GPRS Tunnelling Protocol (GTP). To

this end, we implement GTP encapsulation and decapsulation.

We employ the DPDK software library and OvS architecture which is an open virtual

SDN switch. Our tests with a packet generator framework confirm the correct oper-

ation of the UPF implementation, and its capability to support high data rates and a

large number of flows.

The remainder of this thesis is organized as follows. Chapter 2 gives background

information for general 5G network architecture and draws parallels to the Software

Defined Network and Network Slicing. Moreover, the current 5G development status

and quality of service management are also addressed. Chapter 3 elaborates on the

software architecture between the user and control plane and overall network core ar-

chitecture. Moreover, the software implementation of Quality of Service Information

elements is explained in detail. In Chapter 4, we show a realistic performance eval-

uation of the Maximum Bitrate limiting under different traffic scenarios. Chapter 5

summarizes the conclusions of this thesis and the additional QoS information element

software that we plan to implement in the future.
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CHAPTER 2

INTRODUCTION TO 5G CORE NETWORKS AND LITERATURE SURVEY

This section aims to comprehensively analyze the fundamental components and ad-

vancements in 5G networks. It encompasses a discussion on the distinctions between

5G and previous generations, emphasizing the user plane’s critical role and the Qual-

ity of Service (QoS) management. Additionally, the current status of 5G deployment

will be examined. Furthermore, the significance of the User Plane Function (UPF)

within the 5G Core (5GC)Network will be explored, along with an investigation into

its performance metrics. Finally, a comprehensive literature review will be presented

focusing on Intel DPDK (Data Plane Development Kit) and Open vSwitch (OvS).

This complete exploration aims to provide valuable insights into the evolution and

potential impact of 5G networks on the future of communication technology.

2.1 5G Network Architecture

2.1.1 5G and Previous Generation Networks

The 3rd Generation Partnership Project (3GPP) 5G Core architecture was designed

with the fundamental principle of excluding backward compatibility with preceding

radio access networks such as GSM and LTE. With the progression of new access net-

work generations, distinct methodologies emerged concerning the division of func-

tionalities between the core network and the radio network, along with implementing

novel protocols to establish their interconnection. For instance, during the devel-

opment of LTE (4G) around 2007-2008, the introduction of the IP-based S1 inter-

face facilitated the linkage between the radio and core networks. Consequently, over

time, the complexity of network architecture increased, resulting in service providers
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deploying a combination of 2G, 3G, and 4G technologies across various frequency

bands to ensure comprehensive coverage.

The 5G Core architecture represents a significant shift in perspective as it seeks to

create an "access independent" interface that can be applied universally to various

relevant access technologies, including those not explicitly stated by the 3GPP, such

as fixed access. This forward-looking approach aims to maximize future adaptability

and longevity. As a result, the 5G Core architecture is designed to accommodate

potential developments and innovations in the telecommunications environment [4].

A comparison between the 5G Core (5GC) architecture and the current Evolved

Packet Core (EPC) architecture reveals notable similarities and differences. User

data processing components and their integration with 3GPP radio access networks

show significant similarities between the new 5GC architecture and the traditional

EPC network architecture originally designed for 4G/LTE. However, there is a dis-

tinct difference in the part of the network that is only responsible for signaling-related

functions.

An additional difference lies in the way the 5G Core architecture is visualized and

described in two different ways. The first visualization depicts the interconnection of

various network functions. In this visualization, "Service Based interfaces" are used

as an essential difference from previous 3GPP architectures. This concept requires

network functions encompassing logic and functionality to handle signal streams that

are not interconnected via traditional point-to-point interfaces. Instead, they serve

and provide other network functions. In every interaction between network functions,

one entity serves as the "Service Consumer." In contrast, the other acts as the "Service

Producer" [5]. A graphical representation of this architecture and its comparison to

4G networks is shown in Fig. 2.1.

2.1.2 Overview of 5G Networks

5G networks have two main functionalities, namely, control plane and data plane

functionalities. These functions are visualized in Fig. 2.2, and the main components

can be summarized as follows:
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Figure 2.1: Core architecture comparison between 4G and 5G

Figure 2.2: 5G Network Architecture with Control and User Plane

• Control Plane Functions can be further partitioned for easy management.

• User Equipment (UE) is a 5G mobile phone, and gNB is the mobile base station.

• For Radio Technology, 5G New Radio (NR) implements various advanced 5G

RF technologies. For instance, LTE is used for 4G Networks.

• Data Network is the Internet.
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To ensure reliable communication among these functions, 5G networks rely on the

definition of Information Elements (IEs) within the specifications and standards, as

outlined by the 3GPP. These IEs serve as structured data units, and these elements

are essential for facilitating signaling and communication between different network

elements. Adopting diverse protocols and interfaces in 5G necessitates using spe-

cific IEs, enabling the exchange of relevant information. Ultimately, integrating IEs

contributes to the effective functioning and operational efficiency of the entire 5G

network.

2.1.3 Data (User) Plane in 5G Networks

The UPF is a hardware/software module that forwards UE traffic between the access

networks, such as the 5G New Radio and the Data Networks. The main functionality

of the UPF is connecting the 5G Access Network, which is composed of 5G mobile

phones and base stations, to the Internet, and this functionality is illustrated in Fig.

2.3. The principal role of the data plane lies in the necessity for the UPF implementa-

tion to handle each packet individually while also managing per-flow information [6].

Additionally, the UPF encompasses various other significant functionalities, which

are outlined below:

• UPF is the interconnect point between the mobile infrastructure and the Data

Network (Internet) for encapsulation and decapsulation of GPRS Tunnelling

Protocol for the user plane functionalities.

• UPF is responsible for searching the IP lookup table, calculating checksum,

and port translation.

• Packet routing and forwarding tasks also belong to UPF.

• Handling Protocol Data Unit (PDU) sessions for differentiated QoS.

• Sending reporting triggers to control plane such as traffic usage report.

• Applying QoS metrics such as rate limiting.

• Packet marking such as transport level marking (DSCP).
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Figure 2.3: 5G User Plane Functionalities

2.1.4 Control Plane - User Plane Seperation (CUPS)

The User Plane architecture in 5th Generation Systems (5GS) incorporates a funda-

mental aspect known as CP-UP separation, which is considered an obligatory compo-

nent of the 5G architecture. In contrast to the Evolved Packet Core (EPC), where the

CP-UP split, commonly referred to as "CUPS" (Control and User Plane Separation of

EPC nodes), was introduced as an optional addition in Rel-14, the 5G Core includes

it from its beginning.

Several reasons drive the integration of CP-UP separation into 5GC. First, it enables

networks’ flexible deployment and operation, offering options for distributed and cen-

tralized configurations. Moreover, this separation allows independent scaling of the

control and user plane functions, facilitating efficient resource management. As mo-

bile operator networks face escalating traffic volumes, the demand for cost-effective

User Plane solutions becomes paramount. These solutions must meet end-user re-

quirements for high bitrates and low latency and be sustainable for the mobile opera-
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tors in the long term [7].

Software Defined Network (SDN) is a network architecture paradigm that aims to en-

hance traditional networks’ flexibility, manageability, and programmability through

CP-UP separation. In conventional network design, the control plane is responsi-

ble for making routing decisions; on the other hand, the data plane is responsible

for forwarding data packets. SDN achieves this separation by decoupling the net-

work’s control plane from the data plane. This separation allows network adminis-

trators and operators to centrally manage and configure network resources through

a software-based controller, enabling dynamic and automated network provisioning.

SDN introduces a more abstract and programmable view of the network, allowing for

a more straightforward implementation of innovative applications and services and

enabling efficient resource utilization. By separating the control logic from the un-

derlying hardware, SDN provides optimization of network performance and security

enhancement.

2.1.5 Network Slicing - SDN Relation

Network slicing is another essential component of 5G architecture. Network slicing

architecture is similar to the Software Defined Network (SDN) idea, a common con-

cept nowadays due to its strong relationship with cloud applications. In traditional

network design, the networking device hardware router has two essential functions.

The first one is control plane functionalities in which the router Determines how and

where packets are forwarded according to the algorithms like shortest path. The sec-

ond is data plane functions in which the router forwards packets from incoming to

outgoing links. In SDN, control plane functionalities like making decisions are re-

moved from the router, and this path decision problem is assigned to a centralized

Network Operating System (OS) that has a global view of the overall network. As

a result, the router is converted into a simple packet-forwarding device. Moreover,

OpenFlow protocol is introduced for communication between newly introduced Net-

work OS and routers. SDN relation to 5G can be summarized as network slicing is the

combination of SDN and network virtualization. The virtualized network allows to

create subnets to provide connectivity more adjusted to specific needs. The creation
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of subnetworks will give particular characteristics to a part of the network, being a

programmable network, and will allow prioritizing connections; for example, pub-

lic safety emergencies could be put in front of other users. This application can be

realized by applying different latencies or prioritizing them in the connection to the

network so that they can’t be affected by possible overloads of the mobile network.

2.1.6 OpenFlow - PFCP Relation

OpenFlow, an integral component of Software-Defined Networking (SDN), is a pro-

tocol that facilitates dynamic network management by decoupling the control plane

from the data plane, enabling centralized network control. Network administrators

can employ a programmable and flexible approach through the OpenFlow frame-

work, directing network traffic flow and configuring network devices in real-time. By

providing a standardized interface between the control and data planes, OpenFlow

enables the implementation of diverse applications, such as traffic engineering, load

balancing, and security management. This paradigm shift in networking empowers

researchers and practitioners to innovate and optimize network functionalities effec-

tively, leading to increased scalability and adaptability in modern communication in-

frastructures.

In the context of 5G networks, PFCP is the corresponding CUPS separation protocol,

similar to OpenFlow in SDN.

The following section will discuss another important part of the 5G Network Core:

Protocol Data Unit sessions and QoS management.

2.1.7 Protocol Data Unit (PDU) Sessions

A Protocol Data Unit (PDU) session between a specific UE and the UPF is established

before data transmission in 5G networks. UPF can be implemented in software, and

it can be executed inside either a virtual machine or containers (termed as a UPF

instance). Each UPF instance may handle several concurrent PDU sessions from

various users. However, operators should control the number of UPF instances to
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save resources in the provision of QoS.

Initially, UE, which is a 5G mobile phone, initiates Registration Procedures for the

network. After authentication steps are completed successfully, a UE requests a PDU

session to a specific data network, and the Session Management Function (SMF)

decides the acceptance based on the system’s actual conditions and the PDU ses-

sion’s QoS requirements. Upon acceptance, the PDU session is tunneled through the

transport network to the UPF, and the communication between the UE and the data

network can start.

2.1.8 The GPRS Tunneling Protocol (GTP)

The GTP is a crucial component of mobile networks, employed not just in 5G but

also in 3G and 4G (LTE) networks. It enables the smooth transmission of user data

and signaling messages between different network elements. Operating at the appli-

cation layer of the OSI model, it plays a vital role in supporting mobility, session

management, and data forwarding. In 5G, GTP is used to establish and maintain tun-

nels between various network elements, enabling efficient transportation of user data

between the UE and the core network. For 5G networks, the UDP source and des-

tination port number is 2152 as specified in [8]. The QFI (QoS Flow Identifier) and

TEID (tunnel id) are the most important elements of GTP in terms of QoS flow man-

agement. The QFI value is a 6-bit field that helps the network differentiate between

different QoS flows in a PDU session. Each QoS flow may have unique properties

such as priority, loss tolerance, latency requirements, and data rate limits. The use

of QFI ensures that the network follows the appropriate policies and QoS profiles,

providing the necessary resources for each QoS flow. The TEID is a 32-bit identifier

used for the endpoints of GTP tunnels. Each endpoint in the UE or core network has

a unique TEID, which helps differentiate it from other tunnels. This ensures that the

receiving end can accurately identify the associated tunnel and deliver data packets to

the correct destination. The PDU packet, which includes GTP with QFI and TEID, is

depicted in Fig. 2.4.
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Figure 2.4: Packet Data Unit (PDU) segments with GTP explanation

2.1.9 QoS Management

In 5G networks, subscriber equipment generates highly changing dynamics of PDU

session requests. To guarantee QoS, each UPF instance should handle a limited num-

ber of concurrent PDU sessions. Therefore contention for resources is expected. Op-

erators may launch new UPF instances when there are more requests for PDU sessions

and terminate idle ones when few customers need PDU sessions. Therefore, operators

should apply some algorithms for managing UPF instances efficiently.

The 5G standards support the connectivity of UE with various types (IP, Ethernet,

unstructured) of external data networks. 3GPP designed the 5G core based on the

Service Based Architecture and the total control and user plane separation. SDN ar-

chitecture for separating these two functionalities, namely the control and data planes,

is mentioned in Section 2.1.4. The control plane of 5G Systems (5GS) includes the

Access and Mobility Management Function (AMF) and the Session Management

Function (SMF). 5G base stations and the UPF perform the tasks of the 5G data

plane; that is, they provide necessary procedures to convey data flows between end

devices and data networks. Before the communication of a specific UE and a data

network, a PDU session should be started and handled by UPF. The Session Manage-

ment Function is responsible for managing user sessions and assigns a PDU session

to an appropriate UPF instance.
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2.1.10 QoS Flows

In the context of 5G, the QoS framework relies on QoS Flows, which represent the

most detailed level of QoS differentiation. QoS parameters and characteristics are

directly linked to each QoS Flow. These flows are distinguished by a unique identi-

fier known as the QoS Flow ID (QFI), which is specific to a Packet Data Unit (PDU)

Session. The Next Generation Radio Access Network (NG-RAN) can establish a

(Data) Radio Bearer for each QoS Flow or combine multiple QoS Flows into a sin-

gle (Data) Radio Bearer based on NG-RAN’s internal logic. This means there is no

strict one-to-one mapping between Data Radio Bearers and QoS Flows. Instead, the

NG-RAN has the flexibility to handle its resources in a way that it deems most suit-

able while ensuring that the QoS requirements for each QoS Flow are met. As this

study mainly focuses on the Core Network, the Radio Access Network will not be

extensively analyzed. For a more detailed analysis of NG-RAN, [9] can be examined.

Regarding the transmission of QFI information, it is conveyed through an encapsu-

lation header called GTP-U on N3 (and N9) interfaces without modifying the end-

to-end packet header. Data packets marked with the same QFI receive identical traf-

fic forwarding treatment, including scheduling and admission threshold mechanisms.

The QoS Flows can be categorized as GBR QoS Flows, which necessitate a guaran-

teed flow bit rate, or Non-GBR QoS Flows, which do not have such strict require-

ments.

Access Network (NG-RAN) classifies and differentiates the forwarding of data pack-

ets in both the Downlink (DL) and Uplink (UL) directions. DL packets, arriving at

the UPF and heading toward the UE, are compared against Packet Detection Rules

(PDRs) established by the Session Management Function (SMF). These PDRs em-

ploy IP 5-tuple filters for classification purposes. Each PDR is associated with one

or more QoS Enforcement Rules (QERs) that contain information on how to enforce

specific parameters, such as bitrates. Additionally, the QERs include the QFI value,

which is added to the GTP-U header (N3 encapsulation header). QoS Flows to DRB

mapping is illustrated in Fig. 2.8; however, since the main focus of this thesis is on

QoS management at the network core side, detailed information on the access net-

work side is not described, interested readers can refer to [2] for the detailed analysis.
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As outlined in Section 2.1.7, the primary goal of establishing the UE’s PDU Ses-

sion is to create a Default QoS Flow connecting the UE and the Data Network (DN)

through the gNB and the 5GC. Subsequently, this established Default QoS Flow en-

ables the UE to conduct data exchange with the DN. Within the 5G context, the QoS

Flow represents the most refined level of a traffic flow, allowing telecommunication

companies to apply charging mechanisms based on specific QoS metrics.

The Default QoS Flow is classified as a non-Guaranteed Bit Rate QoS Flow, lacking

both uplink (UL) and downlink (DL) Packet Filters. It possesses the lowest priority

in terms of traffic mapping. In simpler terms, if UL or DL traffic fails to match any

Packet Filters in the other Dedicated QoS Flows within a UE’s PDU Session for the

DN, the Default QoS Flow will be utilized to forward the UE traffic. Additionally,

the Default QoS Flow can be employed by a UE to signal an Application Function

for the establishment of Guaranteed Bit Rate QoS Flows, particularly for applications

that demand high bandwidth capabilities [10].

In the final stage, DSCP (Differential Services Code Point) plays a crucial role in

establishing the end-to-end QoS Stream for uplink (UL) traffic. The SMF (Session

Management Function) is responsible for configuring the DSCP marking to the UPF

over the N4 PFCP interface using the Forwarding Action Rule (FAR) structure dur-

ing the QoS Flow setup. In the context of 5G networks, DSCP marking means the

classification and prioritization of data packets based on specific code points within

their headers. These code points are strategically assigned to different service types

in accordance with specific QoS requirements. By implementing DSCP marking,

network operators can efficiently manage and prioritize traffic flow, thus ensuring

that essential data such as real-time communication and high-priority applications

receive preferential treatment and appropriate QoS processing. This mechanism is

vital in maintaining a consistent and efficient data flow throughout the 5G network,

ultimately increasing overall network performance and improving user experience.

2.1.11 5G Current Development Status

In 2019, numerous companies made announcements regarding their 5G network de-

ployments, primarily based on the 3GPP Release 15. However, these initial 5G im-
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plementations lacked various crucial features and service specifications, including the

new 5G Core (5GC), support for network latency as low as one millisecond, and the

primary performance indicator for 5G user data transmission known as UPF perfor-

mance.

The projected adoption rate for 5G is significantly different from that of previous

generation networks (3G and 4G). This is because while previous technologies were

driven by mobile internet usage, 5G is expected to be mainly driven by new IoT

applications such as connected and self-driving cars [11].

2.2 UPF(User Plane Function) in 5G Core Networks

2.2.1 UPF Functionality and Typical Implementation

Figure 2.5: A typical UPF Implementation

From an architectural perspective, the UPF module exhibits numerous resemblances

to a router. Nevertheless, it distinguishes itself from a conventional router by func-

tioning as a multi-layer switch responsible for user plane data forwarding in both

access and data networks. The implementation of UPF has been demonstrated in two

different studies. One study utilizes the Click modular router [12] to achieve flexible

16



packet processing [13]. The other study employs an SDN switch based on OvS [14]

for UPF implementation. The following example can be examined to understand bet-

ter the UPF design proposed in these studies. As illustrated in Fig. 2.5, the UPF is

located within the Telco Central Office (CO). As a flow-based packet processor, the

UPF is responsible for the processing and forwarding data packets between the UE

and the Internet (data network). Through its Match Action capabilities, the UPF effi-

ciently manages packet routing between the DN and the Radio Network, effectively

serving as a gateway connecting the access network with the Internet. In addition to

its routing capabilities, the UPF also performs critical functions like encapsulating

and decapsulating GPRS tunneling and applying QoS metrics. This makes it an es-

sential component in maintaining reliable data transmission and connectivity in the

5G network architecture. However, the conventional forwarding scheme based on

the Linux kernel often performs poorly when executing these vital tasks. To enhance

packet processing, software-based solutions have been explored. Two notable solu-

tions are Intel DPDK and OvS, which will be further elaborated on in the following

section.

2.2.1.1 Intel DPDK (Data Plane Development Kit)

The DPDK operates on Linux operating systems and serves as a replacement for

the conventional network stack, adopting a run-to-completion model. This approach

necessitates the allocation of all resources before data plane applications run on log-

ical processing cores. DPDK employs PMD (Poll Mode Driver) for device access

to minimize overhead in high-speed scenarios, thereby reducing the impact of inter-

rupt processing. An essential component of DPDK is the Environment Abstraction

Layer (EAL), which conceals hardware and software specifics while providing a li-

brary function interface that binds the DPDK to applications. All DPDK-utilizing

applications must include the EAL’s header files, offering functionality such as Mem-

ory Management, Buffer Management, and processor core and socket management.

DPDK libraries execute entirely in userspace and are optimized for high performance,

carrying out fundamental tasks similar to those performed by the Linux network stack.
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2.2.1.2 OvS (Open vSwitch)

OvS is a well-established virtual switch that operates at multiple layers and is released

under the open-source Apache 2.0 license. It facilitates Software-Defined Network-

ing (SDN) control semantics through the OpenFlow protocol, along with its OVSDB

management interface. The software can be obtained from [15] and is accessible

through various Linux distributions. OVS serves as an OpenFlow-capable software

switch, where an OpenFlow controller provides instructions to the datapath on how to

handle different packet types, known as flows, which define actions such as forward-

ing, output, or modifying VLAN tags. The process of matching a packet with a flow

is referred to as flow matching. Specific flows are cached in the datapath to optimize

performance, while others are stored in the userspace components.

Figure 2.6: The components and interfaces of OvS [1]

In Fig. 2.6, the packet forwarding process of OVS is depicted. When a packet arrives

at the NIC, it enters the OVS datapath. If a flow matching the packet is found in

the datapath, the actions specified in the flow are executed accordingly. If a flow is

not matched (flow missing), the packet is forwarded to ovs-vswitchd, where another

flow-matching process is performed. After ovs-vswitchd determines the appropriate

handling for the packet, it is returned to the datapath with the desired actions. The
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datapath is often instructed to cache the flow for efficient handling of similar packets

in the future.

2.2.1.3 ovs-vswitchd

OVS-vswitchd serves as the primary user space program that functions as a critical

daemon in the OvS infrastructure. Its primary responsibility includes the manage-

ment of flow matching and packet routing tasks. As a core component of the OVS

system, ovs-vswitchd is responsible for obtaining the desired configuration settings

for OvS via an Inter-Process Communication (IPC) channel from ovsdb-server, a key

database server component. By obtaining configuration details from ovsdb-server,

ovs-vswitchd ensures the smooth operation of the OVS data plane in compliance with

specified network policies and configurations.

2.2.1.4 Datapath

The Datapath represents the primary packet forwarding module of OvS, strategically

implemented in the kernel space to ensure high performance. Its primary function in-

volves caching OpenFlow flows and executing actions on received packets that match

specific flow(s). In cases where no flow is matched for a particular packet, the packet

is forwarded to the user space program, ovs-vswitchd. Typically, ovs-vswitchd will

generate a new flow for the datapath, which will subsequently handle packets of this

type. The exceptional performance of the Datapath stems from the fact that the major-

ity of packets successfully match flows within the datapath, thereby allowing them to

be directly processed in the kernel space. This streamlined process contributes to the

overall efficiency and effectiveness of packet handling within the OvS architecture.

2.2.1.5 5G Compliant Switch based on OvS (Open vSwitch)

The use of DPDK in the data plane of the 5G compliant switch design can enable

high-performance UPF design in the 5G network [16]. The rte-mbuf packet descrip-

tor [17] in the DPDK library is used to move packet data from the kernel level to
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the application level without duplication. In addition, the datapath flow cache used

by the OVS (Open Virtual Switch) application for cache-defined flow acceleration

architecture, which is another technology that can be used in the data plane, has been

examined, and the mechanisms for adding, deleting, and managing new cache entries

have been studied. From the papers reviewed, [18] reveals that adding and removing

rules in OVS is possible. Building upon this concept, to understand the technologies

that can be used on the Control Plane, the OpenFlow protocol, which replaces the 5G

protocol PFCP and is the protocol used in OvS for communication between the con-

trol plane and the user plane, is analyzed. Openflow [19] is similar to PFCP in many

respects and was one of the protocols that could be used as a replacement before the

PFCP protocol was developed. OpenFlow facilitates enhanced network control and

flexibility, aiming to optimize network operations effectively. By offering interfaces

for configuring traffic and monitoring the network, OpenFlow enables the assessment

of whether end-to-end QoS constraints, such as guaranteed bitrate, are being fulfilled.

Additionally, it supplies essential input for Traffic Engineering (TE) approaches to

calculate appropriate path [20]. In addition, the OvS application uses OpenFlow as

a control plane protocol [21]. The structure of OVS has been analyzed as it receives

OpenFlow messages, parses them, and stores the message details along with session

information. This examination has led to the realization that the OpenFlow messages

used by OVS can be substituted with PFCP (Packet Forwarding Control Protocol)

messages that are endorsed by 5G networks [22].

As discussed in Section 2.1.6, PFCP serves as the communication protocol between

the control and user planes within 5G networks. This protocol operates similarly to

OpenFlow in SDN. [23] provides a comprehensive explanation of all the communi-

cation details between the UPF and the control plane, particularly the SMF. The rules

of all the tasks of the UPF are communicated to the UPF via the PFCP protocol un-

der the control of the SMF. The most important of these rules, PDR and FAR, are

crucial in designing the control and data plane architecture. Apart from these two

rules, other rules such as URR, QER, BAR, and MAR are also included in the PFCP

protocol. The path that traffic data will follow upon arrival at the UPF is determined

by a set of rules. These rules and their relationship to PFCP are illustrated in Fig.

2.7. In 5 G-compliant switch implementation, the OpenFlow protocol is adapted to
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accommodate these rules. Consequently, the software architecture between the user

and control plane is constructed.

Figure 2.7: Packet processing flow in the UPF

2.2.2 UPF Performance Metrics

The detailed performance measurement specifications for all 5G components of 3GPP

can be found in [24]. The key performance indicators of 5G networks, including peak

data rate, user plane latency, and connection density, are explained in [25]. As for

the UPF performance measurements, the impact of a number of QoS flows [14] to

throughput will be investigated in this thesis.

• Latency of the User Plane: In a network, latency measures the time it takes for

some data to reach its destination across the network. It is usually measured

as a round trip delay - the time taken for information to get to its destination

and back again. The round-trip delay is an important measure for the TCP/IP

network since the TCP network waits for an acknowledgment to come back

before sending any more packets. Therefore, the round-trip delay has a key

impact on the network’s performance. Latency is usually measured in millisec-

onds (ms). As explained in [25], the user plane latency for UL and DL should

be 0.5ms. Therefore, it is expected that the latency for the 5G network would

be one millisecond.

• Connection density: The total number of devices that satisfy QoS metrics per

km2 is one million [25].
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• Peak throughput: 5G network supports up to 10Gbit/sec for the data rate expe-

rienced by user [25].

2.2.3 Literature on UPF Implementation

The conventional Linux kernel-based forwarding scheme exhibits poor performance.

Consequently, three technologies have been developed to accelerate 5G UPF packet

processing: eXpress Data Path (XDP), Intel DPDK, and P4 (Programming Protocol-

Independent Packet Processors) [26]. Each of these technologies serves distinct pur-

poses and exhibits various strengths. XDP, operating in the Linux kernel space, en-

ables high-performance packet processing at the earliest stage of network stack pro-

cessing. It is well-suited for low-latency, high-throughput packet filtering, and for-

warding, making it ideal for scenarios that demand efficient handling of large packet

volumes. On the other hand, DPDK is a collection of libraries and drivers that allow

user-space applications to directly access and manipulate network packets, bypass-

ing the kernel networking stack. It is specifically designed for high-performance data

plane applications, such as network function virtualization (NFV), software routers,

and load balancers, where low latency and high packet throughput are crucial. P4, a

domain-specific language, offers a high-level abstraction for defining packet process-

ing in network devices. Users can specify packet processing behavior independently

of the underlying hardware, making it suitable for programmable network devices

like switches and NICs, commonly used in Software-Defined Networking (SDN) en-

vironments. Each technology follows a different programming language, where XDP

programs are written in C or eBPF and run in the kernel space, DPDK applications

are written in C or C++ and operate in user space, and P4 employs a domain-specific

language for expressing packet processing rules and actions, which are then compiled

into target-specific instructions. Concerning performance, both XDP and DPDK de-

liver exceptional results. XDP achieves low latencies and high packet rates due to its

early-stage kernel processing, while DPDK applications benefit from bypassing the

kernel to maximize packet processing throughput [27, 28]. Regarding flexibility and

programmability, XDP has limited capabilities compared to DPDK, primarily focus-

ing on packet filtering and forwarding. In contrast, DPDK provides a high degree of

flexibility in user space, allowing developers to implement custom packet processing
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logic. In addition to the advantages of the flexibility supplied by DPDK, as demon-

strated in reference [26], DPDK also exhibits lower tail latencies compared to XDP at

low packet rates due to its poll mode driver. Regarding use cases, DPDK is frequently

utilized in networking applications that demand high-speed packet processing, such

as NFV, software routers, and load balancers. Meanwhile, P4 is commonly employed

for defining the behavior of programmable network devices, such as programmable

switches and NICs in SDN environments. It is important to note that P4’s perfor-

mance heavily depends on the underlying hardware platform and the optimization of

the P4 program for that specific platform. Additionally, it should be noted that the

focus of this thesis is the implementation of a software-based UPF along with the

application of QoS rules. Due to the limitation of P4 in expressing packet sched-

ulers, which results in the inability to implement QERs (QoS Enforcement Rules)

[29], DPDK emerges as a more suitable solution compared to P4 for this particular

implementation.

Companies with advanced technologies like Napatech incorporate the use of UPF so-

lutions to achieve fast data transmission by directing user traffic to an accelerator card

alongside a general-purpose processor platform. This allows for a decrease in CPU

load due to a greater number of UPF services being offloaded to the accelerator card.

In contrast to this approach, this thesis presents the development of a 5G core network

UPF using an utterly software-based solution to minimize equipment costs. To over-

come performance issues in the software-based solution, a DPDK-based user mode

driver model is adopted, and poll mode drivers are utilized to replace the interrupt

mode. This modification effectively reduces timing and switching issues caused by

interrupts and also prevents the additional overhead associated with extensive mem-

ory copies [16].

Last but not least, DPDK stands out for its excellent performance, desired level of

programmability, and ability to apply the QoS Enforcement Rule, making it a perfect

choice for high-speed user space packet processing in software-based UPF solutions.

The next step after deciding on the technology to be used in the UPF implementa-

tion is to proceed with selecting testbed elements. As 5G networks consist of various

components, including UE, gNB (RAN), and the control plane, designing the test
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environment to encompass 5G networks comprehensively is essential. As per the

choices made, outlined in [28], we employed UERANSIM [30] - an open-source

simulator for UE and RAN - to simulate UE and gNB. UERANSIM is utilized to

conduct end-to-end 5G communication experience. Furthermore, when taking into

account other components of the 5G network, such as control plane elements, the

literature highlights open-source applications such as free5GC and open5GS to sim-

ulate end-to-end 5G communication. Open5GS is more advantageous than free5GC

in terms of control plane implementations. These advantages can be summarized as

follows [31]:

• Reduced processing delays.

• Enhanced Stability: open5GS demonstrates greater stability, particularly when

dealing with burst UE scenarios.

• Improved Memory Pool Allocation: open5GS addresses and mitigates memory

pool allocation errors, particularly in the context of the AMF, Unified Data

Management (UDM), and Unified Data Repository (UDR) components, when

handling burst UEs.

• Reduced SBI Connection Timeout: open5GS minimizes the occurrence of Service-

Based Interface (SBI) connection timeouts, leading to more reliable and effi-

cient communication between network elements.

Hence, we select open5GS for control plane function implementation in this work.

After the testbed construction is determined, the last step is to establish the test archi-

tecture, select the appropriate software or simulation tools for measuring, and define

performance metrics. In [32], the DPDK-based UPF was evaluated by utilizing a

high-speed packet generation tool on a separate computer. Two cores were assigned

for UPF testing. To assess the performance of the DPDK-based UPF, they employed

Pktgen, a testing tool running on another PC. Pktgen generates testing packets and

transmits them to UPF through NIC. Upon receiving the packets, the DPDK-based

UPF performs various operations like IP lookup, IP/port translation, and adding/re-

moving GTP tunnel headers depending on the type of packet received (with or without
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tunneling). Ultimately, performance is evaluated in terms of maximum throughput

and stability. However, unlike [32] the TRex Traffic generator proposed in [28], and

we employ TRex [33] in the test machine. Furthermore, measurement methods are

studied and inspired by observing the impact of the number of QoS Flows on UE

throughput in [27]. This study aims to investigate the effect of the number of UE and

the number of QoS flows on rate-limited throughput.
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CHAPTER 3

THE UPF DESIGN

The main contribution of this thesis is the software implementation of the UPF com-

ponents that realize QoS management. To this end, we implement Gate Status and

Maximum Bit Rate (MBR) enforcement functionalities which are represented by the

respective IE. The Gate Status IE serves to determine whether packets should be for-

warded (when the gate is open) or discarded (when the gate is closed) in both the

uplink (UL) and downlink (DL) directions. The MBR IE is included when there’s a

need to apply MBR enforcement action to packets that match a specific PDR. When

this IE is present, it specifies the maximum bit rate for both uplink and downlink di-

rections for the packets of the specified flow for the IE. We extend the token-Bucket

algorithm according to the network core software architecture to implement MBR IE.

In addition to implementing QoS management in the data plane, we also adapt the

OpenFlow protocol to implement the PFCP protocol. Furthermore, we implement

GTP encapsulation and decapsulation as we explain in Section 2.1.8. We employ the

DPDK software library and OvS architecture that we explain in Section 2.2.1.2. The

following sections provide more information on these implementation details.

3.1 5G Architecture Implementation

In Fig. 3.1, a general representation of all 5G components is provided. Network

interfaces connected to the UPF can be listed as Control Plane (N4), Access Network

(N3), and Data Network (N6). The detailed implementations of the UPF and its

associated interfaces are explained in the following subsections.
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Figure 3.1: Overall 5G architecture implementation visualization with MAC and IP

address

3.1.1 UPF Implementation

We develop the UPF software implementation using OvS software switch. OvS is

an open-source virtual switch that operates at the data link layer. Its implementa-

tion uses Intel’s DPDK solution. To this end, our software implementation operates

on a network device running Linux with DPDK-enabled ports. Logically, the UPF

software implementation functions as a virtual switch and is designated as the bridge

(br0) within the OvS implementation. The MAC and IP addresses assigned to the br0

on the network device can be exemplified as follows:

• UPF Source MAC Address for N3, N4 and N6 Interface: "0c:c4:7a:fd:f3:00"

• UPF Source IP Address for N3, N4 and N6 Interface: "172.0.0.3"

3.1.2 Access and Control Plane Interface

In the established setup, both the access and control plane functions run on another

Linux PC under the Open5GS application which was discussed in Section 2.2.3.
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Since both the access and control plane functions run on the Open5GS application,

destination access and destination control MAC address corresponding to the MAC

and IP addresses assigned to the Ethernet interface on the Linux PC. These addresses

can be exemplified as follows:

• UPF Destination MAC Address for N3 and N4 Interface: "00:be:43:04:25:f8"

• UPF Destination IP Address for N3 and N4 Interface: "172.0.0.7"

3.1.3 Data Network (Internet) Interface:

Here, the MAC address of the modem, which serves as the gateway to the external

world (data network or internet), can be entered.

• UPF Destination MAC Address for N6 Interface (Modem): "90:ec:77:25:96:17"

• UPF Destination IP Address for N6 Interface: The IP Address of any website

3.2 GTP Implementation

GTP is the data transport protocol to be used between UPF and gNodeB (Base Sta-

tion) as we introduce in Section 2.1.8. If the TS 29.281 standard, which describes

the GTP protocol in detail, is examined in detail, it is seen that an information header

containing tunnel information is added on the TCP/IP protocol stacks. Thanks to

this added GTP stack, data can be transported between two endpoints with a single

(Tunnel Endpoint Identifier) identifier. With the help of this approach, routing can be

accelerated by matching a single identifier regardless of the content of the data being

transported.

In GTP Implementation, first, we construct the GTP headers, and these headers are

shown in Fig. 3.2. In addition, as illustrated in Fig. 2.4, the PDU Session container

with QFI information constitutes the extension part of the GTP header. Hence, the

GTP extension header will allow the data to be routed according to different QoS

according to the QFI indicator.

29



Figure 3.2: GTP Headers

3.3 Software Architecture for User Plane

Here, we would like to define the term flow as we use in this thesis as it is used in two

different contexts.

A flow is a group of packets that matches a PDR. The packets that belong to the same

flow are processed by the UPF by executing the same actions. Furthermore, flow is a

64-bit aligned data structure in the OvS library that stores all header fields of a packet.

We propose and implement a UPF architecture that maximizes the packet processing

rate and minimizes the packet latency in the user (data) plane. To prevent the pro-

cessing speed loss that may occur due to the large number of fields that need to be

matched in the packet, we design a "miniflow" structure that encompasses 5G proto-

col details. Miniflow is a compact representation of packet header fields and actions.

DPDK has a detailed flow data structure, and the flow structure is explained in [34].

Here we note that the packet fields that need to be matched are often significantly

fewer than the "Don’t care" fields.

Figure 3.3: Miniflow Struct
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The miniflow struct is shown in Fig. 3.3, in this struct one bit is held for each uint64

value. For each bit that is one, the value that should be the corresponding one is added

to the end of the miniflow in sequence. The rule match tables are cached in the UP

data path as described in Section 2.2.1.2. The miniflow structure saves memory usage,

and the number of cache lines accessed is significantly reduced. A miniflow is created

for each PDR added to the tables, and each packet arriving at the UPF is matched

against the miniflows in the cache. Miniflow map construction is further elaborated in

Fig. 3.4, in the context of the miniflow data structure, the map member plays a crucial

role by holding one bit for each uint64 element within the detailed flow struct [34].

These bits serve as indicators, where a 0-bit signifies that the corresponding uint64

element in the flow struct holds a value of zero, while a 1-bit indicates that it may

contain a non-zero value. Once the map is constructed, a subsequent step involves

examining each corresponding non-zero bit in the map. For every non-zero bit, the

original uint64 value from the 64-bit aligned flow struct is appended to the miniflow

struct. As an example, the network protocol value that corresponds to the 9th index

of the bit map array ([8]) in Fig. 3.4 is appended. The collection of these appended

values constitutes the values array, which plays a crucial role in representing and

managing non-zero data elements within the miniflow structure.

We present the UPF architecture that is implemented in software with DPDK, Poll

Mode Driver (PMD) in Fig. 3.5. In our design, incoming data traffic is processed

by PMD threads assigned to the processors and is taken out of the system by taking

actions. One PMD thread is assigned to the uplink direction, similarly, one PMD

thread is assigned to the downlink direction traffic. According to 3GPP standards,

each packet arriving at the UPF can have three different exit paths. These paths are

"Access (base station direction)," "CP-Function (SMF direction)," and "Core (data

networks direction)." After each PMD receives the incoming traffic, it creates the

miniflow structure from its header fields, searches for a match in the flow tables using

this structure, and takes the necessary actions (URR, BAR, QER, etc.) as a result of

the match found and forwards it to the specified output port in the FAR. Since OvS

processes a batch of input packets, the packet can be deleted without being forwarded

at all as per the rules, it can be stored to be sent later, or even an existing header can be

deleted and replaced with a new one [35]. All the activities that are the responsibilities

31



Figure 3.4: Miniflow Map Example for Packets from UE to DN

of the user plane are illustrated in Fig. 3.5.

Figure 3.5: 5G User Plane Architecture
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The most significant factor affecting the speed of packet data processing in the data

plane is the rapid miniflow construction and matching when packets enter the system.

Understanding which rule corresponds to each incoming packet in a large flow table

(Match-Action Table) can be time-consuming. Even in cases where the flow table

is not excessively large but still reasonably small, the multitude of fields that need

to be matched within each packet significantly influences the data processing speed.

We chose not to design flow tables as a single large rule table to overcome the initial

challenge. Instead, they are hierarchically structured to process packet data, and exact

match cache (EMC) is the smallest table in Fig. 3.6.

Therefore, the worst-case complexity is O(N) with “N” entries. subtables, the worst-

case complexity is O(N) and much of the overhead is in hash computation.

EMC is implemented as a hash table requiring an exact match on the entire miniflow

structure. The hash value can be computed in software. After miniflow extraction and

hash computation, the arriving packet is first checked in EMC for a match with the

help of DPDK emc_processing function [36]. If a match is found, an exact match

check is performed against the packet’s miniflow. Note that as the name implies, no

wildcard match is carried out at this stage. If there’s no match, subsequent entries are

checked. Therefore, the worst-case complexity is O(N) with “N” entries The packets

that cannot be matched in the EMC are forwarded to a larger table that we call the

Datapath Classifier. If a matching rule is found in the Datapath Classifier, the corre-

sponding actions are executed, and the packet is sent along the appropriate path. The

Datapath Classifier performs wildcard matches, and hash tables are used to imple-

ment wildcard matching. When a packet that belongs to wildcard matching entries is

received, both EMC and Datapath Classifier experience a miss. However, a matching

flow is found in the main flow table, and a learning mechanism caches this flow into

the Datapath Classifier in a miniflow format by using miniflow_extract func-

tion of DPDK. Additionally, the cache and datapath classifier flow tables are built to

speed up packet processing and reduce latency in an effective way. These tables use a

compact version of a packet’s header fields, previously mentioned miniflow structure,

to index and lookup operations. By extracting the important fields of the packet, the

amount of memory used is reduced, which allows for faster access times and more

efficient use of resources. The miniflow key helps identify packet attributes quickly
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and accurately, which leads to quick decision-making and execution during the packet

forwarding process. Overall, the cache and datapath classifier flow tables play a sig-

nificant role in maximizing packet processing performance and minimizing delays in

the network environment. A miniflow struct is constructed for each incoming packet

with new map and values fields. This created miniflow is compared with the entries

of the cache table by using netdev_flow_key_equal_mf function of DPDK

[37]. Since both entries and miniflow are generated by using miniflow_extract

function, the comparison is realized bitwise. Thanks to the miniflow approach, the

cache lookup is completed in a single operation, which is beneficial since a "struct

flow" is fairly large. After finding the matching entry, all the required actions for the

current match are executed as illustrated in Fig. 3.7.

However, if no match is found in both the cache and datapath classifier tables, the

matching process will be carried out in the main flow table, where all rules are stored.

This table performs wild card matches, and it uses precedence value in PDR to pri-

oritize traffic. If a match is found in the main flow table, the appropriate actions are

executed, and the packet data is directed out of the system, meanwhile this flow in-

formation is also added to the datapath classifier table. The different sizes of the three

tables cause varying packet matching speeds, which necessitates the management of

the rules they apply. Ultimately, the controller adds flows to the main flow table when

packets are not matched to any of the three tables.

The packet traffic over the same flow must be processed with consistent actions. To

achieve this, we dynamically add or remove rules from the EMC and Datapath Clas-

sifier tables. Our design adds entries to the datapath classifier table for packets that

bypassed it, based on statistical information, periodically replicating the same rule in

the cache table. The process of statistical addition and deletion involves keeping a

count of accesses to each rule. When this counter reaches zero, the rule is removed

from the flow tables, or after a specific period (timeout), these added rules will be re-

moved from the tables. This process ensures efficient packet handling and forwarding

based on the information stored in the cached, classified, and main flow tables.

These tables are composed of Match-Action entries, where match entries correspond

to specific 5G protocol details to be matched, such as GTP TEID and GTP port num-
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Figure 3.6: Flow Table Construction

ber. Action entries, on the other hand, correspond to 5G rule implementations, such

as URR and outer header removal. An example of a match-action table entry for a

packet from UE to DN is shown in Fig. 3.7. We extended table entries to meet QoS

metrics. We insert QFI to match field, and QER to action field in these tables. Hence,

an UL packet with applied QoS metrics is directed to the core network port.

Figure 3.7: A Match-Action Table Entry

As a result, in our user plane solution, QER is extracted from the PFCP session es-

tablishment request message, and the required matching fields such as QFI are added

to a main flow table, subsequently, the relevant actions are performed when matching

packets enter the system.

Using Ethernet cards that support the DPDK library, incoming traffic is taken into the

application by bypassing the Linux kernel so that it can be distributed to the PMD’s

in the user plane design using different queues based on RSS (Receive Side Scaling).

Each PMD starts to process the distributed traffic. The first operation is to create a

miniflow from the header fields. Using this miniflow, matching is performed first in
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the cache table, and if not found then in the datapath classifier table. Then, the actions

for the matched rule are executed on the packet.

Another critical issue to consider in the user plane architecture is the order of prioriti-

zation of the actions since the order of the actions to be performed is essential for the

possible final state of the packet. The order of these actions is specified in the PFCP

protocol and may vary depending on the traffic to be processed. For example, the

"Measurement Before QoS Enforcement" flag in URR aims to perform URR mea-

surements before QER rules or IP translation should be performed before applying

FAR [23].

3.4 Ingress - Egress Policing and OpenFlow Meter

OvS utilizes Ingress-Egress Policing as a traffic management mechanism to control

the rate of incoming and outgoing per-flow traffic on virtual switch ports [38]. Ingress

policing regulates the rate of per-flow incoming traffic on a port to prevent excessive

traffic from entering the switch, which can help manage network congestion and en-

sure fair allocation of resources. If the incoming traffic rate exceeds a predefined

threshold, excess packets can be dropped, marked, or shaped according to defined

policies. Egress policing controls the rate of per-flow outgoing traffic from a port to

ensure that the switch does not forward traffic at a rate higher than what the egress

interface or network can handle. If the traffic rate exceeds the configured limit, the

switch can apply policies to manage the excess traffic, such as dropping or remarking

packets.

OpenFlow Meter is a concept within the OpenFlow protocol that measures traffic rates

and statistics associated with network flows. OpenFlow Meters monitor and enforce

traffic shaping and policing policies and provide the ability to measure traffic rates

and statistics to apply traffic policing policies accurately. By configuring OpenFlow

Meters, network administrators can define traffic rate limits, burst sizes, and action

policies for managing both ingress and egress traffic on OvS ports. This integration

allows for dynamic and granular traffic management in virtualized and SDN environ-

ments, helping to ensure efficient network utilization and prevent congestion. Hence,
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OpenFlow Meter forms the foundation of our QoS management approach.

3.5 QER Action Implementation

As discussed in Section 3.3 OvS batches the packets for each match-action entry in

the cache table, and the maximum number of the packets in a batch is defined as 32

[39]. When packet or packet groups hit a QER action, the corresponding function is

called with QER id. From this QER id, we can access corresponding IEs from the

PFCP QER struct as illustrated in Fig. 3.8.

Figure 3.8: PPCP QER Struct

The QFI information in the PFCP QER struct is one of the match entries. The MBR

IE in the PFCP QER struct specifies the rate-limiting value to be applied as a result of

the matching. The QFI provided by SMF, during the PDU session establishment, and

the QFI in the PFCP QER struct have identical values. This QFI mapping allows for

rate limiting based on the UL MBR value for packets arriving from the N3 interface

and the DL MBR value for packets arriving from the N6 interface. Moreover, units

of MBR and GBR fields are specified as kilobits per second in [23].
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3.6 Quality of Service Actions

We realize the QoS actions according to the QoS metrics stated by identifying differ-

ent possible QER messages. According to the QER messages, three different actions

must be taken. These are traffic opening/closing (gate control), MBR, and GBR. Traf-

fic opening/closing and maximum bit rate actions are implemented in this thesis. The

traffic opening/closing action is more straightforward than the other actions. In this

action, the incoming packets are dropped, as in the case where the gate is closed. On

the contrary, the traffic is redirected to the corresponding address port if the gate is

open. The packet metering principle can be summarized as: following PDR matching,

all packets are processed through a single packet processing pipeline without dupli-

cation of the packets. Furthermore, a single match-action entry covers all required

actions as illustrated in Fig. 3.7. Specific to QER packets can be deleted or mod-

ified through outer header creation/removal. Importantly, the entire packet pipeline

remains a unified and continuous entity from start to finish. The token-bucket method

is chosen and implemented for the maximum data rate action. Token-bucket algo-

rithm is one of the most commonly used methods in rate-limiting design. Another

common algorithm in the literature for rate limiters is the Leaky Bucket Algorithm.

The main advantage of a token bucket over a leaky bucket is that token bucket can

send large burst-size packets more quickly, whereas leaky bucket always sends pack-

ets at a constant rate. The implementation of the Token-bucket algorithm in user plane

architecture is summarized in the following section.

3.7 Token-Bucket Algorithm for Maximum Bitrate Limiting

The Token Bucket Algorithm (TBA) is illustrated in Fig. 3.9, and it works as follows:

• The bucket is initially full.

• Tokens are generated and added to the bucket at a constant rate of ρ tokens per

unit of time.

• When a request comes in, the bucket is checked. If there is enough capacity,

the request is allowed to proceed. Otherwise, the request is rejected.
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• When a request is allowed, tokens that are proportional to the packet size are

removed from the bucket.

• The bucket can hold up to σ tokens. Hence it allows bursts in the shaped traffic.

• If the bucket is empty at the time of the event, the event might be delayed until

a token becomes available.

Figure 3.9: Token Bucket Algorithm [3]

We have introduced modifications to the legacy token bucket model. Our primary

modification involves moving from a constant token generation rate (ρ) to a time-

dependent token generation rate. This adaptation is necessary due to the dedicated

core allocated by DPDK for processing incoming packets. As these packets are often

batching, we use time difference calculations. Also, to comply with 5G standards, we

include QER_MBR in the token generation rate.

The second change concerns the determination of the maximum bucket size (σ). In

this calculation, we make use of the OvS parameter burst_duration (msec) [40]

together with the MBR parameter of the QER action corresponding to the flow that

we denote with QER_MBR (kbps).

We further define the following parameters, and it is important to note that all param-

eters that we define and use are per-flow:

• burst_size(bits) = burst_duration(msec) ·QER_MBR(kbps)
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• bucket_size(t)(bits): The maximum amount of bits of the respective flow that

can be allowed to get service at time t.

• volume: The number of bits that arrive which are in the flow.

• volume_served: The number of bits that are accepted and served by the token

bucket.

• exceeded_packet is an array that stores index values to indicate the packets that

exceed the rate limit.

• tnow: The time instant that we calculate the eligible packets for service. The

calculation takes place when volume bits of flow packets arrive.

• tMBRused
: The previous time instant the calculation was carried out.

• tmax: Maximum time difference value to make sure that ∆t is not too large. It

is set 1 second experimentally.

The token bucket update mechanism and marking the exceeding packet are presented

in Algorithm 1.
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To make the subject more understandable, the token-bucket algorithm can be ex-

plained with the following example. In this example, the packet size is kilobits, and

exceeded_packet array is constructed to store index value to indicate the pack-

ets that exceed the rate limit. If there are enough tokens in the bucket to handle one

incoming packet, it is necessary to inspect the packets one by one by decreasing the

bucket_size(tnow) by volume_served. However, if there are not enough tokens even

for the first incoming packet, we use the exceeded_packet array to mark the sub-

sequent packets arriving in this batch. The maximum number of packets in a burst is

defined as 32. The array has a size of 32 to accommodate arriving packet groups of a

given flow with a size of 32 packets. Initially:

exceeded_packet[0] · · ·exceeded_packet[31] = FF .

 0 1 2 3 4 .. 31

FF FF FF FF FF FF FF

 (3.1)

Initially, exceeded_packet array is constructed with negative value as shown in

Eq. (3.1). Since the unit of the bucket and volume is bits, meter measurement is

realized for bits. As an example, the above condition (if bucket_size > volume) is

not satisfied for bucket_size = 3500 and volume = 5000 such that the bucket can not

have enough space for 5000 incoming bits. First, we mark the first exceeding packet

as calculated in Eq. from (3.2). In Eq. (3.2), exceeded_packet is an index value

rather than a packet size information.

exceeded_packet = bucket_size/1000 (3.2)

Additionally, the unit of the rate (MBR and GBR) is kilobits per second, and the unit

of the bucket_size and volume is bits. Hence, bucket_size is divided by 1000, and

exceeded_packet is calculated as 3, and the remaining tokens stay in the bucket

such that:

bucket_size% = 1000 (3.3)

41



1. Initialization

bucket_size← burst_size

N ← 32: Maximum number of the packets in a batch

for i ∈ 0 . . . (N − 1) do

exceeded_packet[i]← FF

2. Packet Reception

volume bits arrive for the flow at tnow.

∆t← tnow − tMBRused
(msec)

Limit ∆t, and update tMBRused
:

∆t← max(∆t, tmax)

tMBRused
← tnow

Update the bucket_size using Eq. 3.4.

bucket_size(tnow) = bucket_size(tMBRused
)+∆t(msec)·QER_MBR(kbps)

(3.4)

Limit the bucket_size:

if bucket_size(tnow) > burst_size then

bucket_size(tnow)← burst_size

3. Packet Accept or Drop

if bucket_size(tnow) > volume then

volume_served← volume

else

for i ∈ 0 . . . (N − 1) do

if volume_served > bucket_size then

exceeded_packet[i]← 0

for i ∈ 0 . . . (N − 1) do

if exceeded_packet[i] = 0 then
Drop the remaining packets with a total number of bits

volume− volume_served

Accept the volume_served bits of packets

Update the bucket_size

bucket_size(tnow)← bucket_size(tnow)− volume_served
Algorithm 1: Modified Token Bucket Algorithm Pseudocode
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And bucket_size is calculated as 500 from (3.3).

Calculated exceeded_packet = 3.

This value is used for the aforementioned exceeded_packet[32] array such that

starting from index =3, all negative values are replaced by 0, and it is illustrated in

(3.5).

 0 1 2 3 4 .. 31

FF FF FF 0 0 0 0

 (3.5)

It means that exceeded_packet = 3 value is used as an index for this array. These

packets are accepted for the index from 0 to 2, index = 3 is marked, and from index =

3 to 31 packets are dropped. In (3.6), accepted packets are illustrated as green; on the

other hand, dropped packets are shown as red.

 0 1 2 3 4 .. 31

FF FF FF 0 0 0 0

 (3.6)

The index value approach is found to be consistent with the initial scenario. It should

be noted that the incoming packet size is equal to 5000 bits, and the bucket_size

is 3500 bits. In this approach, 3000 bits are decreased from the bucket, while the

remaining 500 bits stay in the bucket. In the index value approach, the first three array

elements (ranging from index 0 to 2) are visually represented as green, signifying their

acceptance. On the other hand, starting from the 4th array element (from index 3 to

31), subsequent elements are designated for deletion.

In summary, a rate limiter is a counter used to keep track of how many requests

are sent from the same user or IP address or to set a maximum speed based on the

application. The request is not allowed if the counter exceeds the limit. There are

different implementations of how these counters are stored. In-memory caches are

preferred due to their fast access; REDIS is an example of a cache implementation

[41].
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CHAPTER 4

EVALUATION

This section describes the evaluation of UPF rate limiting performance by using the

TRex traffic generator. Forwarded packets consist of ICMP Echo Request messages

sent from a User Equipment (UE) towards a Data Network (DN). Dropped and pro-

cessed packet counting is performed through OvS Bridge Statistics. The configuration

of UE’s in this configuration includes different International Mobile Subscriber Iden-

tity (IMSI) numbers, thus facilitating simultaneous performance evaluation across

multiple users [14]. This approach consequently allows the evaluation of multiple

UE’s with different Quality of Service (QoS) configurations. The experiment demon-

strates precise rate-limiting capabilities and enables real-time observation of through-

put under the conditions of rate-limiting. Real-time statistics are obtained from the

TRex tui window that is continuously updated [42].

4.1 UPF Test Environment

Linux network device 2 is equipped with four cores, with two cores allocated to the

operating system and the remaining two cores reserved for UPF processing—one for

UPF-DL and the other for UPF-UL. The model of each CPU is Intel(R) Atom(TM)

CPU C3558, and it contains 8 GB RAM. The working principle of the test scenario

is visualized in Fig. 4.1. Overall architecture can be summarized as follows: In this

configuration, full-duplex 1Gbps port 0 of NIC 1 and NIC 2 is connected through 10

Gbps ethernet cable. Packets are generated from TRex’s port 0 at speeds up to 1Gbps.

These generated packets are ICMP Echo Request messages sent from a UE to the DN.

ICMP ping messages facilitate the diagnosis of network connectivity issues involving
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Figure 4.1: Test configuration of UPF

host or network reachability and responsiveness assessments. This process requires

transmitting ICMP Echo Request messages to the targeted host and then waiting for

an Echo Reply in response. In addition, ICMP ping messages have utility in the area

of Packet Loss Detection and Round Trip Time (RTT) measurements. ICMP header

has a fixed size of 8 bytes.

Our tests include ICMP Ping request-reply messages. For example, if a 4-byte pay-

load is used in ICMP, the resulting IP packet consists of 76-byte packets. The compo-

nents of this packet are shown in Fig. 4.2. Due to the 24-byte overhead in the Ether-

net frame (7-byte preamble, 1-byte SFD, 4-byte CRC, and 12-byte IPG), generating

ICMP packets with only a 4-byte payload results in packet generation rates close to 1

Gbps not being observable in a TRex environment. As a result, tests were performed

using ICMP packets with a payload of 910 bytes to achieve a 1 Gbps traffic gener-

ation in Silicom Customer Premises Equipment (CPE) hardware [43]. Silicom is a

company specialized in providing advanced network and data infrastructure solutions

for a wide range of industries. Silicom’s solutions integrate DPDK to deliver efficient

management of resources and high-performance results. Silicom device is equipped
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with eight cores, and the model of each CPU is Intel(R) Atom(TM) CPU C3758, and

it contains 16 GB RAM. Since, DPDK enabled ports, in this device, support up to 1

Gbps, rate limiting measurement is conducted by 1 Gbps packet generation rate.

Figure 4.2: ICMP Echo Request Message from UE to DN

The UPF processes these ICMP Echo Request messages in the UL direction. The

packet and byte counts of the processed packets in the UL direction can be observed

using OvS Bridge Statistics commands. After the outer header removal action is

applied, the ICMP packet should be forwarded to the DN. Instead of sending the

packets to the modem (DN), we reserved a DPDK port on the Silicom device to

respond to ICMP pings. Hence, ICMP ping requests arrive at the Silicom port, and

their responses are also forwarded from this port to the UPF. The UPF processes these

ICMP Reply responses in the DL direction. Finally, after the UPF processes the ICMP

Reply responses, Rx byte measurements are taken from TRex port 0. Therefore,

measurements are performed for the DL direction.

The first observation is focused on evaluating the impact of core allocation on packet

processing efficiency. For this purpose, a 1 Gbps traffic generation scenario was ini-

tially evaluated using a single core for UPF only, and the resulting impact of core

allocation on OvS packet processing efficiency is detailed in Table Tab. 4.1. Since

a one-core configuration can only handle 63% of the incoming traffic, a two-core

configuration is studied, where one core is designated for UPF-DL and the other for

UPF-UL processing. Given that the two-core configuration for UPF is capable of

processing 99% of the incoming traffic, no further investigation of core allocation

was necessary. DPDK isolates CPU cores and optimizes network performance by

mitigating the interrupts, as a result, it can handle all incoming traffic. However, the
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underlying hardware and operating system still play a role. As an example, some

NICs and hardware features may delay or batch interrupts. This can affect the timing

and predictability of packet processing. As a result, the end-to-end 5G network ex-

perience was conducted using this two-core setup for UPF, covering the evaluation of

the following three different scenarios:

Table 4.1: Core Allocation

Number of Cores Total Generated Packet Number Processed Packet Number

1 1.200.000 761.721 (63%)

2 1.200.000 1.199.716 (99%)

The initial test was conducted employing TRex to generate 1 Gbps traffic using 3

UE’s with 3 distinct flows. A total of 1.200.000 packets were generated per UE,

implying a packet generation rate of 300 Mbps per UE. For the 3 UE’s, the MBR

(Maximum Bit Rate) values were set at 100, 100, and 50 Mbps, respectively, and

packets were processed through 3 distinct flows associated with different QER (QoS

Enforcement Rule) IDs. Table 4.2 presents the resultant dropped packet counts. For

QER IDs 1 and 2, where the rate-limiting was set to 100 Mbps and the generation

rate was 300 Mbps, approximately 67% of the packets were dropped, while 33%

were processed. Consequently, an effective throughput of 99 Mbps was achieved for

QER IDs 1 and 2. Similarly, for QER ID 3, with a rate-limiting of 50 Mbps and a

generation rate of 300 Mbps, approximately 83% of the packets were dropped, while

17% were processed. This led to an effective throughput of 51 Mbps for QER ID 3.

A comparison between the measured throughput and the configured MBR values is

depicted in Fig. 4.3. These measurements affirm the accurate functionality of the rate-

limiting algorithm. In addition to these measurements, a real-time evaluation of the

aggregated rate-limited throughput was performed for overall flows by monitoring

the instantaneous bit rate on the receiver (Rx) side within TRex’s real-time update

window. Fig. 4.4 illustrates that the rate-limited throughput varies between 240 and

260 Mbps. Given the total rate-limited speed of 250 Mbps, the proper operation of

real-time rate limiting is thereby demonstrated.
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Secondly, the initial test condition is extended with multiple flows for per UE. For

each UE, the destination IP address ranges between 192.168.2.1 - 192.168.6.255.

Hence 1275 different IP flows are generated per UE. As a result, a total number of

3.825 (3*1275) flow is tested. Multiple flows per UE configuration are illustrated in

Fig. 4.5. Additionally, the resultant dropped packet counts are presented in Table 4.3,

and we obtained similar results to Table 4.2.

The final test was conducted using 32 UE’s with 40.800 (32*1275) distinct flows. A

total of 105.000 packets were generated per UE, implying a packet generation rate of

26 Mbps per UE. For the 32 UE’s, the MBR (Maximum Bit Rate) values were set

at 10 Mbps for QER IDs 1 - 16, and 20 Mbps for QER IDs 17 - 32. The resultant

dropped packet counts are presented in Table 4.4. For QER IDs 1 and 8, where the

rate-limiting was set to 10 Mbps and the generation rate was 26 Mbps, approximately

62% of the packets were dropped, while 38% were processed. Consequently, an ef-

fective throughput of 9.8 Mbps was achieved for QER IDs 1 and 8. For QER IDs 17

and 32, where the rate-limiting was set to 20 Mbps and the generation rate was 26

Mbps, approximately 24% of the packets were dropped, while 76% were processed

This led to an effective throughput of 19.7 Mbps for QER IDs 17 and 32. A compar-

ison between the measured throughput and the configured MBR values is depicted in

Fig. 4.6. These measurements confirm the correct functionality of the rate-limiting

algorithm for multiple flows. Additionally, for aggregated rate-limited throughput

Fig. 4.7 illustrates that the rate-limited throughput varies between 460 and 500 Mbps.

Since the aggregated rate-limited speed for 32 UE is 480 Mbps, real-time rate limiting

is properly performed.

The averaging window is specified as 2 seconds in 3GPP specifications [44]. There-

fore, we performed TRex measurements every 2 seconds. During these measure-

ments, we observed that the aggregated MBR value was occasionally exceeded. We

infer that the reason for these exceedances is that the token generation rate is not con-

stant and is calculated proportionally to the MBR and packet arrival times. Similarly,

some data points are below the MBR because packets arrive frequently and one at a

time in some cases. As a result of frequent packet arrivals, the packet arrival time is

small and measurements are below the MBR value. To overcome these deviations, a

fixed token generation rate could be used, as in the legacy token bucket. This fixed
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rate can be defined by taking into account the averaging window time.

Last but not least, our two-core UPF solution is expected to have a maximum capacity

of over 1 Gbps. This expectation is based on measurements made when the Silicom

device responded to ping requests with a maximum throughput of 1 Gbps. If the tests

are repeated using a product capable of responding at 10 Gbps, the two-core UPF

solution is expected to handle even higher speeds. Furthermore, the packet process-

ing efficiency can be improved by approximately 40% by increasing the number of

cores, as shown in Tab. 4.1. This suggests that an 8-core UPF solution can handle a

throughput of 10 Gbps.

Table 4.2: 3 UE, Total 3 flows

QER ID MBR(Mbps) Total Generated Packet Number Dropped Packet Number

1 100 Mbps 1.200.000 803.146 (67%)

2 100 Mbps 1.200.000 803.244 (67%)

3 50 Mbps 1.200.000 1.001.583 (83%)

Table 4.3: 3 UE, Total 3*1275 flows

QER ID MBR(Mbps) Total Generated Packet Number Dropped Packet Number

1 100 Mbps 1.200.000 803.387 (67%)

2 100 Mbps 1.200.000 803.249 (67%)

3 50 Mbps 1.200.000 1.001.611 (83%)

Table 4.4: 32 UE, Total 32*1275 flows

QER ID MBR(Mbps) Total Generated Packet Number Dropped Packet Number

1 10 Mbps 105.000 65.339 (62%)

8 10 Mbps 105.000 65.338 (62%)

17 20 Mbps 105.000 25.678 (24%)

32 20 Mbps 105.000 25.677 (24%)
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Figure 4.3: 3 UE, Total 3 flows

Figure 4.4: 3 UE, Total 3 flows with TRex Real-Time Update
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Figure 4.5: 3 UE, Total 3*1275 flows with destination IP Range

Figure 4.6: 32 UE, Total 32*1275 flows
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Figure 4.7: 32 UE, Total 32*1275 flows with TRex Real Time Update
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CHAPTER 5

CONCLUSION

This thesis proposes implementing and evaluating the User Plane Function module

that supports quality of service metrics in 5G networks. The UPF module connects

5G mobile devices and base stations to the Internet and also supports packet count-

ing, usage statistics, and QoS. We have included the QFI field in the GTP tunnels

established between gNB and UPF to uniquely identify the appropriate QoS Flow for

a specific UE. We also extended the PDR functionality to ensure that UL traffic orig-

inating from the UE is correctly mapped to the corresponding QoS Flow by pointing

it to the appropriate QER rule.

Our study integrates gate status control and maximum bitrate enforcement features

in the QER into UPF’s software implementation. For example, we configured the

DL Maximum Bit Rate for UEs to be limited to 100 Mbps. As a result, any data

traffic coming from the DN that exceeds this threshold is automatically dropped by

UPF. This application empowers mobile network operators with the necessary tools to

facilitate billing and service delivery based on specific customer payment agreements.

The software implementation of UPF uses OvS, an open-source virtual switch at the

data link layer, powered by Intel’s DPDK solution. In this integration, we extended

flow table entries to accommodate QoS metrics, including adding QFI to the match

field and configuring QER to the action field. The token-bucket method is adopted

and applied to comply with 3GPP specifications for rate-limiting design. TRex tui

window updates the statistics in real-time. Hence, precise rate-limiting capabilities

and real-time throughput monitoring under rate-limiting conditions are evaluated us-

ing both OvS Bridge Statistics and the TRex traffic generator. Our results demonstrate

that the UPF software solution can effectively process 40,800 distinct flows with QoS
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support, maintaining a throughput of 1 Gbps. Furthermore, the UPF solution is ex-

pected to support a throughput of 10 Gbps with an 8-core device.

Our future work focuses on fulfilling all QoS metrics in 5G networks. In this work,

we utilized the ingress policing feature supported by OvS for traffic policing. To re-

alize the software implementation of the GBR information element, it is essential to

use the principles of egress policing for traffic shaping. Ensuring a minimum guar-

anteed bandwidth requires that packets are kept in queuing structures and processed

according to the configured rate. Similarly, the correct functionality of the GBR im-

plementation can be demonstrated using OvS Bridge Statistics and the TRex traffic

generator.
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