
1

OPTIMIZATION METHODS IN HIGH-LEVEL SYNTHESIS

YÜKSEK SEVİYEDE SENTEZLEMEDE ENİYİLEME
YÖNTEMLERİ

SELMA DİLEK

PROF. DR. SÜLEYMAN TOSUN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Doctor of Philosophy

in Computer Engineering

June 2022

To my beloved brother Semir Pilav, and my family.

ABSTRACT

OPTIMIZATION METHODS IN HIGH-LEVEL SYNTHESIS

Selma DİLEK

Doctor of Philosophy, Computer Engineering
Supervisor: Prof. Dr. Süleyman TOSUN

June 2022, 191 pages

Continuous decrease in the transistor technology sizes has enabled much denser packaging

of electronic components on chips, which has resulted in integrated circuits with more

functionalities and lower costs. However, it has also given rise to new issues and challenges

in the integrated circuit design process, including higher vulnerability to soft errors. Modular

hardware redundancy is a popular method for improving the reliability of a system against

errors at the cost of increasing area and energy consumption. Voltage scaling methods can

be employed to tackle high energy costs; however, these approaches also negatively affect a

circuit’s reliability and performance. Therefore, designing circuits with all these conflicting

parameters is a very challenging task. In this study, we employ two optimization approaches:

mathematical programming and metaheuristic algorithms for designing integrated circuits

with several conflicting parameters. Mathematical programming approaches guarantee

the generation of the optimal solutions; however, they are usually highly impractical for

complex real-life problems due to their high computational complexity and unrealistically

long running times. Nevertheless, the optimal solutions obtained for relatively small problem

sizes are useful for testing the performance of other (meta)heuristic methods that solve

the same problem in much faster execution times, although without any guarantees about

solution optimality.

i

In this thesis, we propose integer linear programming (ILP)-based and simulated annealing

(SA)-based high-level synthesis (HLS) methods to optimize both reliability and energy of

the final circuit designs under the area and latency constraints. Our models employ full

and partial resource duplication (modular redundancy) to improve the system reliability as

long as the area constraint permits. They also utilize voltage islands as the energy reduction

method of choice. This problem is even more interesting and complex because our resource

library is characterized under multiple supply voltages. We use different versions of the same

resources with different area, latency, reliability, and energy values. Although this affects the

execution time of the proposed methods, it also gives us more design options. We compared

and showed the effectiveness of our methods against a genetic algorithm (GA)-based method

on several HLS benchmarks. The ILP-based methods return the optimum results for smaller

problem sizes and most of the time for larger problem sizes under the given time limits. In

contrast, the SA-based methods outperform the GA-based methods and generate optimal or

acceptably near-optimal results for all benchmarks in much faster running times.

Keywords: High-level synthesis, application specific integrated circuits, soft errors,

reliability, energy, voltage islands, optimization, metaheuristic algorithms, integer linear

programming, simulated annealing.

ii

ÖZET

YÜKSEK SEVİYEDE SENTEZLEMEDE ENİYİLEME YÖNTEMLERİ

Selma DİLEK

Doktora, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Süleyman TOSUN

Haziran 2022, 191 sayfa

Transistor boyutlarındaki sürekli azalma, elektronik bileşenlerin yongalar üzerinde çok daha

yoğun bir şekilde paketlenmesini sağlarken, daha fazla fonksiyon içeren ve maliyeti daha

düşük tümleşik devrelerin geliştirilmesine yol açmaktadır. Bununla birlikte, teknolojideki

bu gelişmeler tümleşik devre tasarımı sürecinde geçici hatalara karşı daha korumasız

olunması gibi yeni sorunlar ve zorluklar da doğurmuştur. Bileşenlerin yedeklenmesi bir

sistemin hatalara karşı dayanıklılığını artırmak için popüler bir yöntem olsa da alan ve

enerji tüketimi artışına neden olmaktadır. Artan enerji tüketiminin üstesinden gelmek için

gerilim ölçeklendirme yöntemi kullanılabilir, ancak bu yöntem devrenin güvenilirliğini

ve performansını da olumsuz etkilemektedir. Bu nedenle, tüm bu çelişen değişkenlerle

devre tasarlamak çok zorlu bir iştir. Bu çalışmada devre tasarlanırken birbirleriyle çelişen

parametreleri göz önüne alan matematiksel programlama ve metasezgisel algoritmalar olmak

üzere iki optimizasyon yaklaşımı kullanılmıştır. Matematiksel programlama yaklaşımları,

optimum çözümlerin üretilmesini garanti eder. Fakat yüksek hesaplama karmaşıklıkları ve

gerçekçi olmayan uzun çalışma süreleri nedeniyle, genellikle gerçek hayattaki karmaşık

problemler için pratik değildirler. Bununla birlikte, nispeten küçük problem boyutları için

elde edilen optimum çözümler, aynı problemi çok daha hızlı yürütme sürelerinde çözen diğer

iii

metasezgisel yöntemlerin performansını ölçmek için faydalıdır. Bunun yanında metasezgisel

yöntemler çözümün en iyi çözüm olup olmadığı hakkında herhangi bir garanti vermezler.

Bu çalışmada, alan ve gecikme kısıtlamaları altında nihai devre tasarımlarının hem

güvenilirliğini hem de enerjisini optimize etmek için tam sayı doğrusal programlama (ILP)

tabanlı ve benzetimli tavlama (SA) tabanlı yüksek seviyede sentezleme (HLS) yöntemleri

sunulmuştur. Modellerimizde sistem güvenilirliğini geliştirmek için alan kısıtlaması izin

verdiği sürece tam ve kısmi kaynak çoğaltılması (modül yedekleme) kullanılmaktadır.

Ayrıca, tercih edilen enerji azaltma yöntemi olarak gerilim adaları kullanılmaktadır. Bu

sorunu daha da ilginç ve karmaşık yapan şey, çoklu besleme gerilimi altında kaynak

kütüphanesinin tanımlanmasıdır. Kütüphanede aynı donanım kaynaklarının farklı alan,

gecikme, güvenilirlik ve enerji değerlerine sahip farklı versiyonları kullanılmaktadır.

Bu, önerilen yöntemlerin uygulama süresini etkilese de, daha fazla tasarım seçeneği de

sunmaktadır. Sunulan yöntemlerin etkinliğini ölçmek için bazı HLS denektaşları kullanarak

genetik algoritmaya (GA) dayalı bir yöntemle karşılaştırılmıştır. ILP tabanlı yöntemler

küçük boyutlu problemler için optimum sonuçları verirken, çoğu zaman daha büyük çizge

boyutları için verilen zaman sınırlarının altında optimum çözümleri bulabilmiştir. SA

tabanlı yöntemler GA tabanlı yöntemlerden daha iyi performans göstermiş ve optimum veya

optimuma yakın sonuçları çok daha hızlı bir şekilde elde etmiştir.

Anahtar kelimeler: Yüksek seviyede sentezleme, uygulamaya yönelik tümleşik devreler,

geçici hatalar, güvenilirlik, enerji, gerilim adaları, eniyileme, metasezgisel algoritmalar, tam

sayı doğrusal programlama, benzetimli tavlama.

iv

ACKNOWLEDGEMENTS

In the name of God, the Most Gracious, the Most Merciful.

I would like to convey my deep appreciation to my advisor Prof. Dr. Süleyman Tosun for his invaluable

guidance, wisdom, patience, and particularly his understanding and support, without which this endeavor would

not have been possible. Words cannot express my gratitude to all my professors, the members of my thesis

committee, the chair Prof. Dr. Suat Özdemir and the member of the committee Prof. Dr. Özcan Öztürk, for

their invaluable feedback and generously provided knowledge and expertise.

Furthermore, this journey would not have been possible without the love and support of my beloved family,

my mother Amra Bjelanović, my father Husein Pilav who gave me my first computer Commodore 64 that

set me on this path, and my brothers Semir and Omer. I also thank Dr. Alma Osmanović Salman, Amra

Erdić, and Asma Aiouez for being the sisters I never had, and my source of strength, as well as my true

‘brother-from-another-mother’ friends Adnan and Tarik Kraljić. Whenever I hit a rough patch throughout

this journey, the thought of my late grandparents and uncle, who were such a great source of motivation and

people to look up to, kept me going. Mr. Ramo Krivdić has been a loving and supportive ‘grandpa’ in their

stead. Their love and boundless support have kept my spirits and motivation high during this process.

I would also like to extend my sincere thanks to my colleagues at Hacettepe Computer Engineering Department

for their support and understanding, especially during the trying times of pandemics. I am deeply indebted

to research assitants Necva Bölücü, Alperen Çakın, Burçak Asal, Burcu Yalçıner, Dr. Tuğba Gürgen

Erdoğan, Zeynep Bala, Bahar Gezici, Merve Özdeş, Feyza Nur Kılıçaslan, Nebi Yılmaz, Asst. Prof. Dr.

Alaettin Uçan, Asst. Prof. Dr. Pelin Canbay, and all other research assistants at our department for their

invaluable support throughout this journey.

Special thanks are due to my dear professors and role models Dr. Douglas Van Wieren, Prof. Dr. Ahmed

Moosajee Patel, Assoc. Prof. Dr. Željko Jurić, and Mr. Nedim Mašić who instilled in me appreciation and

love for computer science and academia, and showed me what it means to be an excellent educator, and to my

doctors Prof. Dr. Murat Tuncer, Prof. Dr. Alper Demirbaş, and Prof. Dr. Sabri Tekin.

Finally, I would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) for

supporting this research in part under project number 116E095, and Fair Isaac Corporation (FICO) for granting

us an academic license for FICO Xpress optimizer that we used to run our ILP models.

I dedicate this work to my hero, my selfless brother Semir Pilav, who risked his life to save mine without

forethought. I owe him my health and everything I have accomplished since he donated his kidney to save my

life.

v

Contents

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

TABLES . ix

FIGURES . xii

ABBREVIATIONS. xv

1. INTRODUCTION . 1

1.1. Scope of the Thesis . 2

1.2. Contributions . 3

1.3. Organization . 5

2. BACKGROUND OVERVIEW .. 6

2.1. Optimization Fundamentals . 6

2.2. Optimization Algorithms . 9

2.2.1. Linear Programming . 9

2.2.2. Metaheuristic Approaches for Discrete Optimization . 11

2.3. Reliability, Energy, and Latency Considerations for Optimization in Digital

Electronic System Design . 14

2.3.1. Soft Errors, Reliability, and Modular Redundancy . 14

2.3.2. Effects of Multi-Supply Voltages on Energy and Latency 17

2.3.3. Effects of Multi-Supply Voltages on Reliability . 18

3. RELATED WORK . 19

3.1. ILP-Based HLS Studies . 19

3.2. SA-Based HLS Studies . 23

3.3. HLS Studies With Modular Redundancy . 29

3.4. HLS Under Multi-Supply Voltages and Other Energy-Aware Approaches 30

3.5. Other HLS-Related Studies . 31

vi

4. PROBLEM DEFINITION . 33

4.1. High-Level Synthesis . 33

4.2. Behavioral Description of a Target Design . 36

4.3. Resource Library Under Multi-Supply Voltages . 38

4.4. Modular Redundancy Considerations . 39

5. PROPOSED METHODS . 42

5.1. Integer Linear Programming Formulations. 42

5.1.1. Constraints . 47

5.1.2. Objective Functions . 48

5.2. Simulated Annealing-Based HLS Method . 50

5.2.1. Task Scheduling Algorithms . 50

5.2.2. Initial and Neighbor Solution Generation with Resource Allocation. 55

5.2.3. Computing the Initial Temperature. 61

5.2.4. Annealing Schedule . 63

5.2.5. Additional Considerations for SA-Based HLS With Partial DMR 65

5.2.6. SA-Based HLS Algorithm . 67

6. EXPERIMENTAL RESULTS AND DISCUSSION . 71

6.1. Comparison of ILP and GA-Based Methods With DMR. 72

6.1.1. Reliability Optimization Results Discussion . 73

6.1.2. Energy Optimization Results Discussion . 75

6.1.3. Joint Reliability and Energy Optimization Results Discussion 77

6.2. Comparison of SA-Based Method With ILP and GA-Based HLS Methods. 79

6.2.1. Reliability Optimization Results Discussion . 80

6.2.2. Energy Optimization Results Discussion . 82

6.2.3. Joint Reliability and Energy Optimization Results Discussion 84

6.3. Comparison of SA-Based Partial DMR HLS Method With the Corresponding

ILP and GA-Based Methods . 86

6.3.1. Reliability Optimization Results Discussion . 87

6.3.2. Energy Optimization Results Discussion . 87

6.3.3. Joint Reliability and Energy Optimization Results Discussion 89

vii

6.4. Effects of Multiple Supply Voltages on Reliability and Energy Consumption . . . 92

6.5. Execution Time Analysis . 97

7. CONCLUSION . 102

8. APPENDICES . 121

APPENDIX A - Mosel and C Implementations Source Code . 121

A.1 Mosel Code For ILP Formulation of the HLS Problem . 121

A.2 Mosel Code For ILP Formulation of the HLS Problem With Partial DMR . 126

A.3 Mosel Code For ILP Formulation of the HLS Problem With Full DMR. . . . 131

A.4 C Source Code For SA-Based HLS Method . 136

APPENDIX B - Directed Acyclic Graphs for Benchmarks . 159

B.1 DAG of the Differential Equation Solver Benchmark . 159

B.2 DAG of the Finite Impulse Response Filter Benchmark . 160

B.3 DAG of the Elliptic Wave Filter Benchmark . 161

B.4 DAG of the Auto-Regressive Filter Benchmark . 162

APPENDIX C - Additional Experimental Results . 163

C.1 Additional Experimental Results for Section 6.1. 163

C.2 Additional Experimental Results for Section 6.2. 168

C.3 Additional Experimental Results for Section 6.4. 170

viii

TABLES

Page

Table 3.1 A summary of related ILP-based HLS studies. 21

Table 3.2 A summary of related SA-based HLS studies. 28

Table 4.1 Resource library used in this study. 38

Table 5.1 ILP notations. 43

Table 5.2 Notations used in SA-based HLS method equations.. 50

Table 6.1 Benchmark specifications: the number of nodes, edges and, types of

operations in their respective dataflow graphs. 71

Table 6.2 Comparison of the reliability results of ILP and GA duplication

methods for all benchmarks when α = 1.0.. 74

Table 6.3 Average percentage change in the energy results of ILP-based models

compared to GA duplication method for all benchmarks when α = 1.0. 75

Table 6.4 Comparison of the energy results of ILP and GA duplication methods

for all benchmarks when α = 0.0. 76

Table 6.5 Average change in the reliability results of ILP-based models

compared to GA duplication method for all benchmarks with α = 0.0. 77

Table 6.6 Comparison of the reliability and energy results of ILP and GA-based

partial duplication methods for all benchmarks with α = 0.5. 78

Table 6.7 Comparison of the reliability and energy results of ILP full

duplication method with GA-based partial duplication method for all

benchmarks with α = 0.5. 78

Table 6.8 Comparison of the reliability results of SA-based method with ILP

and GA-based methods for all benchmarks when α = 1.0. 81

Table 6.9 Average percentage change in the energy results of SA-based method

compared to ILP and GA-based methods for all benchmarks when

α = 1.0. 82

ix

Table 6.10 Comparison of the energy results of SA-based method with ILP and

GA-based methods for all benchmarks when α = 0.0. 83

Table 6.11 Average percentage change in the reliability results of SA-based

method compared to ILP and GA-based methods for all benchmarks

when α = 0.0. 84

Table 6.12 Comparison of the reliability and energy results of SA-based method

with ILP and GA-based methods for all benchmarks when α = 0.5. . . . 85

Table 6.13 Comparison of the reliability results of SA-based partial DMR

method with the corresponding ILP and GA-based methods for all

benchmarks when α = 1.0. 88

Table 6.14 Comparison of the energy results of SA-based partial DMR

method with the corresponding ILP and GA-based methods for all

benchmarks when α = 0.0. 90

Table 6.15 Comparison of the reliability and energy results of SA-based partial

DMR method with the corresponding ILP and GA-based methods for

all benchmarks when α = 0.5.. 91

Table 6.16 DES benchmark reliability and energy results of full DMR solutions

for a different number of supply voltages. 93

Table 6.17 FIR benchmark reliability and energy results of full DMR solutions

for a different number of supply voltages. 93

Table C.1 Comparison of the energy results of ILP and GA duplication methods

for all benchmarks when α = 1.0. 163

Table C.2 Comparison of the reliability results of ILP and GA duplication

methods for all benchmarks when α = 0.0.. 164

Table C.3 Comparison of the energy results of SA-based method with ILP and

GA-based methods for all benchmarks when α = 1.0. 168

Table C.4 Comparison of the reliability results of SA-based method with ILP

and GA-based methods for all benchmarks when α = 0.0. 169

Table C.5 EWF benchmark reliability and energy results of full DMR solutions

for a different number of supply voltages. 170

x

Table C.6 AR benchmark reliability and energy results of full DMR solutions

for a different number of supply voltages. 171

xi

FIGURES

Page

Figure 2.1 Occurrence of a soft error in an n-type CMOS transistor. 15

Figure 2.2 An n-modular redundancy illustration for a fault tolerant component. . 16

Figure 3.1 ILP-based studies for HLS: times cited and publications over time

on Web of Science. 22

Figure 3.2 ILP-based studies for HLS: literature record count percentages based

on Web of Science categories. 22

Figure 3.3 SA-based studies for HLS: times cited and publications over time on

Web of Science. 28

Figure 3.4 SA-based studies for HLS: literature record count percentages based

on Web of Science categories. 29

Figure 4.1 HLS design steps. 34

Figure 4.2 (a) A faster schedule with larger area, (b) A slower schedule with

smaller area. 35

Figure 4.3 (a) An example design specification for differential equation

solver, (b) Data-flow representation with dependencies (precedence

constraints), and (c) DAG of the design specification. 37

Figure 4.4 (a) An example task graph, (b) its fully duplicated version. 40

Figure 4.5 (a) HLS result without duplication, (b) HLS result with full DMR

under the specified constraints. 41

Figure 5.1 (a) ASAP schedule of DES, (b) ALAP schedule of DES.. 53

Figure 5.2 An alternative schedule of DES with smaller area. 54

Figure 5.3 Temperature cooling rate for αc = 0.99. 67

Figure 6.1 Changes in reliability over different α values for DES benchmark

(A = 30, L = 28) under different numbers of supply voltages.. 95

Figure 6.2 Changes in energy over different α values for DES benchmark (A =

30, L = 28) under different numbers of supply voltages. 95

xii

Figure 6.3 Changes in reliability over different α values for FIR benchmark

(A = 30, L = 50) under different numbers of supply voltages.. 96

Figure 6.4 Changes in energy over different α values for FIR benchmark (A =

30, L = 50) under different numbers of supply voltages. 96

Figure 6.5 Average execution times of ILP, GA, and SA-based HLS methods

without duplication for varying number of benchmark nodes.. 98

Figure 6.6 Average execution times of GA and SA-based HLS methods without

duplication for varying number of benchmark nodes. 99

Figure 6.7 Average execution times of ILP models for varying number of

benchmark nodes and edges. 99

Figure 6.8 Average execution times of the SA-ND and SA-PD methods for

varying number of benchmark nodes. 100

Figure B.1 DAG representation of the DES design specification. 159

Figure B.2 DAG representation of the FIR design specification. 160

Figure B.3 DAG representation of the EWF design specification. 161

Figure B.4 DAG representation of the AR design specification. 162

Figure C.1 Solutions without and with partial DMR obtained from the ILP

models for the DES benchmark when α = 1.0 under the constraints

A = 20, L = 25. 165

Figure C.2 Solutions without and with partial DMR obtained from the ILP

models for the DES benchmark when α = 0.5 under the constraints

A = 20, L = 25. 166

Figure C.3 Solutions without and with partial DMR obtained from the ILP

models for the DES benchmark when α = 0.0 under the constraints

A = 20, L = 25. 167

Figure C.1 Changes in reliability over different α values for EWF benchmark

(A = 30, L = 40) under different numbers of supply voltages.. 172

Figure C.2 Changes in energy over different α values for EWF benchmark (A =

30, L = 40) under different numbers of supply voltages. 172

xiii

Figure C.3 Changes in reliability over different α values for AR benchmark

(A = 30, L = 50) under different numbers of supply voltages.. 173

Figure C.4 Changes in energy over different α values for AR benchmark (A =

30, L = 50) under different numbers of supply voltages. 173

xiv

ABBREVIATIONS

ACO : Ant-Colony Optimization

ADRS : Average Distance to Reference Set

AR : Auto-Regressive Filter

ASAP : As Soon As Possible

ASIC : Application-Specific Integrated Circuit

CAD : Computer Aided Design

CMOS : Complementary Metal-Oxide Semiconductor

CPU : Central Processing Unit

DAG : Directed Acyclic Graph

DES : Differential Equation Solver

DMR : Dual Modular Redundancy

DSE : Design Space Exploration

DSP : Digital Signal Processing

DVS : Dynamic Voltage Scaling

EWF : Elliptic Wave Filter

FCCM : FPGA Custom Computing Machine

FIR : Finite Impulse Response Filter

FPGA : Field Programmable Gate Array

FU : Functional Unit

GA : Genetic Algorithm

HDL : Hardware Description Language

HLS : High-Level Synthesis

HW : Hardware

IC : Integrated Circuit

ILP : Integer Linear Programming

MHSP : Meta-Heuristic Specific Parameters

xv

MILP : Mixed-Integer Linear Programming

ML : Machine Learning

MOOP : Multi-Objective Optimization Problem

MTBF : Mean Time Between Failures

MUX : Multiplexer

nm : Nanometer

NOP : No Operations

NP : Nondeterministic Polynomial

RTL : Register-Transfer Level

SA : Simulated Annealing

SE : Soft Error

SER : Soft Error Rate

SRAM : Static Random Access Memory

SSA : Spurious Switching Activity

SW : Software

TMR : Triple Modular Redundancy

VI : Voltage Island

VLSI : Very Large Scale Integration

WCET : Worst-Case Execution Time

xvi

1. INTRODUCTION

Continuous decrease in the transistor technology sizes due to ever-increasing demands for

higher performance of computer applications has facilitated packing a considerably higher

number of electronic components on chips. While 7-nm and 5-nm technology sizes are the

current industry standard, the shift towards 3-nm technology has already been set into motion

[1, 2]. The resulting increase in circuit densities has caused a decrease in the integrated

circuit costs and area. However, at the same time, it has brought about new challenges

in the process of integrated circuit design, such as higher vulnerability to transient (soft)

errors due to radiation effects and lower supply and threshold voltage levels [3]. This

increase in soft error rates (SER) is particularly evident in combinational circuits, which

necessitates novel reliability-oriented design methods. There are certain error detection

techniques for combinational circuits and memory elements; however, they usually increase

the circuit area and cost (e.g., redundancy-based error detection and error correction codes).

Furthermore, energy-aware designs face yet another negative effect on their reliability caused

by energy reduction methods such as dynamic voltage scaling (DVS) or voltage islands

(VIs) because a decrease in the supply voltage also decreases a circuit’s reliability [4, 5].

Modular redundancy, i.e., replication of the system components, can improve the reliability

of a system, but at the cost of increasing the resulting area and energy consumption.

Several parameters and system requirements may need to be considered during hardware

design, such as area, performance, energy consumption and reliability. High-level synthesis

(HLS) has multiple advantages compared to traditional register-transfer level (RTL)-based

hardware design, including raising the abstraction level, accelerated verification, faster

design space exploration, portability to new platforms, and accessibility to software

engineers [6]. A major benefit of HLS is enabling the exploration of unique trade-offs for the

generation of diverse microarchitectures that stem from the same behavioral specification

but are obtained through different synthesis options, also called knobs [7, 8]. During

the high-level synthesis (HLS) step of the application-specific integrated circuit (ASIC)

design, it is possible to consider multiple system constraints (e.g., area and latency) and

1

optimization parameters (e.g., reliability and energy consumption) at a higher level of

abstraction, and unify them to alleviate the burdensome design process that must consider all

system requirements and constraints simultaneously. Automation tools that would facilitate

the design process are particularly crucial in the design of integrated circuits with a large

number of components.

In HLS design space exploration, several design parameters often opposing each other

are considered for optimization (e.g., minimizing energy consumption negatively affects

reliability). Thus, we can categorize it as a multi-objective optimization problem (MOOP) in

which the goal is to look for a set of solution designs that are Pareto-optimal, meaning that

any improvement in one of the parameters would cause a deterioration in another. Having

several Pareto-optimal designs allows designers to choose the ones that fit best to the project’s

requirements by controlling the HLS synthesis process through synthesis options settings.

The major issue with this is that the number of synthesis options superlinearly affects the

growth of the search space [8]. Therefore, optimization methods for efficiently searching the

space need to be proposed.

1.1. Scope of the Thesis

Traditional HLS methods usually consider only area and latency along with either energy

or reliability. It is evident that there is a need for new systematic design methods that will

consider all these requirements on a higher level of abstraction. This research has explored

novel HLS optimization methods that can integrate all system requirements on a higher level

of abstraction and relieve integrated circuit designers from lower-level design burdens.

Furthermore, there has been an exponential growth in the complexity of very-large-scale

integration (VLSI) systems, which poses a great productivity bottleneck for the processes

of design and verification in RTL as the prevalent method that has been used for decades to

characterize VLSI systems. The reason is that RTL tools have not improved in proportion

to the increase in VLSI system complexity. HLS contributes greatly to the hardware design

process with many benefits it provides over the traditional RTL-based approach, as discussed

2

above. Nevertheless, there is still a non-trivial productivity gap between these two design

flows, which is an important current issue in hardware design. Modern HLS tools still trail

behind the RTL design flows in terms of results’ quality, and should this productivity and

quality gap close, HLS would become the new standard approach for hardware design [9].

Hence, another goal of this research was to propose novel HLS optimization methods that

will contribute to closing that gap.

To the best of our knowledge, no prior research has proposed an optimization method that

considers both area and latency as constraints while considering energy consumption and

reliability as multi-objective optimization parameters. Moreover, the previous studies have

neglected to thoroughly investigate the effect of multiple supply voltage levels on reliability

and energy efficiency.

1.2. Contributions

In this research, we address the mentioned deficiencies and propose novel and efficient ILP

and SA-based HLS methods that also employ dual modular redundancy (DMR) for ASIC

design with the objectives of minimizing energy consumption and maximizing reliability

under the given area and latency constraints. In our study, we use different versions of the

same resources in terms of varying area, performance, energy, and reliability characteristics,

depending on the supply voltages at which they operate. Since we have two parameters in our

optimization function, we blend the energy and reliability values by assigning weights to each

of them to handle our multi-optimization problem. For the mapping and scheduling steps of

the HLS, we use the ILP and SA-based optimization methods. The main contributions of

this research can be summarized as follows:

• We propose bi-objective ILP-based HLS methods that employ dual modular

redundancy for increasing reliability in ASIC design, with the objectives of minimizing

energy consumption and maximizing reliability under the given area and latency

constraints.

3

• We formulate the mapping and scheduling steps of our duplication-based HLS

design flow with two ILP-based methods (partial and full duplication) that obtain the

optimum results in short times for smaller-scale benchmark applications due to their

computational complexity. ILP-based methods are unsuitable for problems with many

variables due to their undesirable CPU times. Nevertheless, they are important as they

provide optimal results that can be used for testing other heuristic or metaheuristic

methods designed to solve the same problems for larger-scale applications within more

acceptable running times.

• We present an extended resource library with the varying area, delay, energy, and

reliability parameters based on multiple supply voltage levels. We believe our resource

library will also benefit future studies in HLS.

• We test and discuss the effects of utilizing voltage islands (VIs) on reliability and

energy consumption in circuit design that employs modular redundancy.

• We illustrate the effectiveness of our ILP duplication models over the genetic algorithm

(GA)-based selective duplication method in terms of energy and reliability results on

several benchmarks by conducting a thorough experimental analysis.

• We also propose SA-based metaheuristic methods that tackle the same HLS problem

and obtain optimal or near-optimal solutions in acceptable polynomial time, as

opposed to the ILP-based methods whose running times increase exponentially as the

application size increases.

• By conducting a thorough experimental analysis, we demonstrate the effectiveness of

our SA-based methods compared to the ILP-based models and their superiority over

the genetic algorithm (GA)-based methods in terms of energy and reliability results on

several benchmarks.

4

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions and the scope of the thesis.

• Chapter 2 provides background information on relevant topics, including optimization,

high-level synthesis, soft errors, and the effects of modular hardware redundancy

and multi-supply voltages on integrated circuits’ reliability, latency, and energy

consumption.

• Chapter 3 presents an overview, classification, and a comparative summary of the

relevant related work.

• Chapter 4 gives a detailed problem definition.

• Chapter 5 introduces the proposed HLS optimization methodologies. First, we present

the ILP-based mathematical optimization models. Then, we explain our metaheuristic

SA-based methods.

• Chapter 6 demonstrates the effectiveness of the proposed methods by presenting and

discussing the experimental results.

• Chapter 7 concludes this study with a summary of the thesis and possible future

directions.

5

2. BACKGROUND OVERVIEW

In this section, we discuss some fundamental concepts about optimization, reliability,

latency, and energy-related topics and issues in digital electronic systems, which are relevant

to this research.

2.1. Optimization Fundamentals

The conventional engineering design process is generally an exhausting endeavor of

iterations between the conceptual, preliminary, and detailed design steps that are usually also

iterative processes within themselves, before reaching a desirable final design that meets all

initial design requirements and specifications. Optimization has emerged as an alternative

mechanism that can speed up the design cycle and generate better results while lowering

the total design cost. Optimization entails finding the best solution from a set of possible

alternative solutions for an optimization problem, which can be obtained via changing

the controllable variables that define the problem based on some criteria, while usually

subject to certain constraints [10, Chapter 1]. Optimization generally implies minimizing or

maximizing a cost function or a set of functions, also known as the objective functions, which

depends on selecting the appropriate input values for the function variables. Optimization

goals may involve anything from maximizing metrics such as efficiency, profit, reliability, or

performance, to minimizing metrics such as cost, delay, or energy consumption.

Optimization problems may be either linear or nonlinear depending on whether all

constraints and objective functions can be formulated using linear functions or not. If a linear

formulation of the constraints and objective functions is impossible, it leads to a much more

complex nonconvex decision space. For nonlinear problems whose search space usually

contains multiple locally optimal solutions, the main challenge is how to apply an approach

that will avoid getting trapped in local minima or maxima while performing the search.

Getting trapped in local minima or maxima would impede finding the globally optimum

solution [11].

6

The optimization process necessitates that designers formulate a mathematical model of the

problem at hand, which correctly describes the problem, defines the decision variables and

the optimization objective, and specifies the constraints if any. Martins and Ning (2021) and

Yang (2014) presented a general mathematical formulation that can be used as a common

definition for a majority of continuous optimization problems [10, 12]. Let x⃗ be a design

vector defined in (1), where xi elements represent d decision variables of a problem.

x⃗ = (x1, x2, ..., xd) (1)

Let fi(x⃗), hj(x⃗), and gk(x⃗) be functions of the design vector x⃗, and Rd the search space

within the scope of the decision variables. Then, an optimization problem can be defined

as formulated in (2), where fi(x⃗) represents M objective functions, while hj(x⃗) and gk(x⃗)

represent J and K equality and inequality constraint functions, respectively.

min
x⃗∈Rd

fi(x⃗), (i = 1, 2, ...,M),

by varying xi ≤ xi ≤ xi, (i = 1, ..., d),

such that hj(x⃗) = 0, (j = 1, 2, ..., J),

gk(x⃗) ≤ 0, (k = 1, 2, ..., K)

(2)

The formulation given in (2) defines a minimization problem. However, this formulation can

also be used to define a maximization problem, given that it can easily be transformed into

a minimization problem as given in (3). Furthermore, the inequality constraints can also be

defined using ≥ 0 inequality if needed.

max[f(x)] = −min[−f(x)] (3)

Nevertheless, an inequality constraint should never be expressed as a strict inequality since,

in that case, the solution would not be properly mathematically defined as it would be

7

allowed to choose among solutions arbitrarily close to the equality. This consideration is

particularly important for optimization attempts using computers as they use finite-precision

arithmetic. Additionally, Martins and Ning (2021) argue that the optimization problem

formulation should include as many independent decision variables as possible, although

it may be desirable to begin with a smaller set that can later be broadened [10, Chapter 1].

Some problems may aim to optimize a single variable; hence, they have a single objective

function. However, many problems in real life involve optimizing multiple metrics. Such

problems are called multi-objective optimization problems (MOOPs). MOOPs frequently do

not have an optimal solution that optimizes all of the objectives simultaneously, especially

since some of those objectives may oppose each other and require designers to make

trade-offs in search of an optimal solution based on the requirements. Such is the case

with the problem of reliability and energy-oriented HLS addressed in this research. More

reliable resources mostly require more power, while energy reduction techniques negatively

affect the reliability of circuits. Therefore, when searching for the best solutions to MOOPs,

designers need to make compromises that will produce Pareto-optimal results in the context

of a conflicting multi-objective nature of the problem. A Pareto-optimal design is an efficient

solution with the optimal objective function (no other feasible solution dominates it) such

that the achieved trade-off between all objectives is optimal. I.e., improving any objective

function would come at the cost of worsening at least one other objective [13].

This compromise among different and often competing objectives may be achieved by

reformulating the objective function for the given problem. One of the most commonly

applied approaches is the weighted scalarization method which allows designers to assign

a preference value to each objective function. The goal of weighted scalarization is

to formulate a single scalar-valued objective function (i.e., a utility function) F that

incorporates all of the objectives simultaneously [14]. In Equation (4), the weighted

scalarization of M objective functions fi is formulated, where weights are assigned to each

objective function through coefficients wi.

8

F
(
f1(x⃗), f2(x⃗), ..., fM(x⃗)

)
=

M∑
i=1

wi · fi(x⃗) (4)

2.2. Optimization Algorithms

There exist many optimization algorithms that can be categorized based on several

characteristics, including stochasticity (random or deterministic), time dependence (static

or dynamic), order (zeroth, first, second), type of search performed (local or global), how

the objective function is evaluated (directly or via a surrogate model), or depending on the

algorithm nature (mathematical or heuristic) [10, Chapter 1]. Mathematical algorithms (e.g.,

linear programming) generate solutions based on the mathematical model of the problem,

and they can provide optimal results. The major drawback is their inefficient complexity,

especially for complex optimization problems and problems with many decision variables.

Heuristic and metaheuristic algorithms (e.g., genetic algorithm, simulated annealing) are

preferred in such scenarios as they can generate optimal or near-optimal (approximate

but close enough) results in practical running times. However, they cannot guarantee the

optimality of the solutions as they are not based on strict mathematical formulations.

None of the existing optimization algorithms is efficient for all optimization problems; hence,

they should be chosen carefully based on the nature of the problem at hand. In this research,

we have employed both mathematical and metaheuristic algorithms to optimize the problem

at hand. The following sections briefly discuss the nature of the algorithms employed in this

study and our reasoning for choosing them.

2.2.1. Linear Programming

Linear programming is a subset of mathematical optimization and one of the most widely

used approaches for the optimization of convex optimization problems that can be formulated

using linear objective and constraint functions [10, Chapter 11]. It is a popular approach in

9

allocation problems optimization, which is one of the reasons it was our method of choice in

this research because, in HLS, hardware resource allocation is one of the major tasks.

As the main focus of this research is the optimization of digital circuit design, our

optimization problem consists of decision variables that fall under the integral domain and,

more specifically, under the modular number system. Such problems can be modeled as

integer linear programming problems, a subset of linear programming and the approach

we adopted in this study. Scheduling and resource allocation are examples of discrete

optimization problems. Optimization variables in discrete optimization can be binary,

integer, and discrete, and all of them can be represented with integer values [10, Chapter 8].

One of the first approaches considered in linear programming optimization, and one of the

most efficient ones in practice, is the simplex method, developed by George Dantzig in 1947,

which operates by first discovering a simple, feasible solution such that all the constraints

are met. Mathematically speaking, such a feasible solution is theoretically an extreme point

on the edge of the feasible region, i.e., a convex polyhedron that spans the hyperspace Rn

bounded by n constraints expressed as linear functions. The simplex method then explores

along the polyhedron edges in search of better objective function values to find the optimal

solution. Nevertheless, the major drawback of this approach is its exponential worst-case

complexity [15].

In this study, the primary approach used by the optimizer is a revised (primal) simplex

method that is more computationally efficient than the original simplex method. This

efficiency is achieved by constraining the simplex pivot operations to the inverse matrix only,

hence, avoiding the execution of unnecessary tableau updates. As it is out of the scope of this

study, we leave out the details of these methods. An interested reader can refer to [16] for

detailed explanations of the inner workings of these methods. Another method employed by

the optimizer used in this study, in addition to the simplex method, was the Newton Barrier

method. Contrary to the simplex method, the Newton Barrier method searches through the

interior region of the feasible region, looking for a close estimation of an optimal solution.

10

It usually takes a uniform number of iterations to complete, irrespective of the size of the

optimization problem.

Discrete optimization is nondeterministic polynomial-time complete [10, Chapter 8], which

means that there are no known efficient approaches that compute optimal solutions in

polynomial time. ILP problems, in particular, are known to be polynomial-time hard [15].

We employed an ILP-based approach to obtain the optimal solutions for relatively small

applications, which are then used for evaluating the performance of our heuristic methods

that tackle the same optimization problem in practical running times.

2.2.2. Metaheuristic Approaches for Discrete Optimization

A heuristic (from the Greek word ‘heuriskō’ for “I find, discover”) is an algorithm in

mathematical optimization which uses a trial and error approach to generate adequate

(optimal or close enough) solutions for a complex optimization problem in acceptable

running times, for which classical optimization methods cannot produce optimal results most

often due to the huge computational complexity of those approaches. For some problems,

the optimality and accuracy of the solution can be traded for speed if the goal is to obtain

good enough (maybe even optimal but without any guarantees) solutions in reasonable

running times. For such optimization problems, heuristic algorithms are a very efficient

and sometimes the only practical alternative [12].

Metaheuristic algorithms emerged as more advanced heuristic approaches that can explore

the search space more efficiently through higher-level considerations and trade-offs between

local search versus randomization. These trade-offs enable metaheuristic approaches to

break away from local search to a more global scale, and hence, to avoid getting stuck in

local optima [12, 17]. Randomization is important as it enables more efficient exploration of

the search space, specifically by either intensifying the search or diversifying it via random

walks, while also using some deterministic process. Random walks guarantee that the

candidate solutions generated along the way are diversified in their distribution over the

search space on the global scale [18].

11

One of the popular metaheuristic optimization approaches developed for discrete

optimization is a nature-inspired method called simulated annealing (SA). Simulated

annealing was initially proposed in the early 80’s as an optimization method analogous to the

physical process of the annealing of solids. It was first proposed by Kirkpatrick et al. (1983)

in [19], who coined the name and applied the approach to solving the traveling salesman

problem, while Černý (1985) in [20] independently had the same idea of applying statistical

thermodynamics principles to solving the same problem. These two works were pioneers

in demonstrating how the analogy with statistical thermodynamics which states that large

systems will spontaneously reach so-called state of equilibrium at a given temperature, can

be applied as a generic method to solving large combinatorial optimization problems [21].

A strong feature of simulated annealing is its aptitude to avoid getting stuck in local optima

as opposed to other deterministic approaches, as it can converge to the global optimum when

its randomness and cooling schedule are properly arranged. The fundamental concept of SA

is the use of random search as a Markov chain in such a way that better solutions are always

accepted, while some candidate solutions that have a worse cost in terms of the objective

function may still get accepted based on a transition probability [22].

The transition probability p is defined in Equation (5), in which ∆f represents the change

in the cost of the objective function f(xj) − f(xi) where xi is the current best solution

and xj the candidate solution, kB represents the Boltzmann constant, and T represents the

current temperature that manages the annealing operation. The calculation of the transition

probability can be adjusted (e.g., taking the Boltzmann constant to be 1). However, it must be

in correlation with the annealing temperature and the objective function costs of the current

and candidate solutions.

(5)p = exp

(
− ∆f

KbT

)

In SA, a worse candidate will be kept if p > r, where r is a random real number selected from

a uniform distribution in the range [0, 1]. Temperature plays a crucial role in efficient search

space exploration as the desired outcome is slowly decreasing the probability of a worse

12

solution getting accepted as the process cools down. A higher probability of accepting worse

solutions at the beginning of the annealing process is desirable as it allows for more random

exploration of the search space and guarantees that the algorithm will not get trapped in local

optima. However, as the annealing process nears its end, this probability should become

lower to enable intensified search for the optimum solution.

The most important concepts in SA-based optimization include (i) selection of good initial

temperature, (ii) an efficient annealing (cooling) schedule that gradually decreases the

temperature, (iii) a random neighboring design that ensures that all neighboring states

(solutions) are not equally probable, and (iv) obtaining an acceptance probability contingent

on a probability function that is positively correlated with the temperature. Pseudocode given

in Alg. 1 shows the basic steps of the SA process. The decisions about the implementation

details, such as selection of the starting state, initial temperature, neighbor states, and the

appropriate cooling schedule, must be made for each specific problem.

Algorithm 1 A General Simulated Annealing Pseudocode
Inputs: s0 starting state, T0 initial temperature, numIterations.
Output: s the final optimal state.

s← s0 ▷ Pick the starting state s0 as the current solution s.
T ← T0 ▷ Start with the initial temperature.
for i = 1... numIterations do

Pick a neighboring candidate state s∗ .
if f(s∗) > f(s) then

s← s∗ ▷ Accept the better candidate.
else if P

(
f(s), f(s∗), T

)
≥ rand(0, 1) then

s← s∗ ▷ Accept the worse candidate anyway.
end if
T ← coolingSchedule(T) ▷ Reduce the temperature.

end for
return s

Several different methods for computing the initial temperature have been proposed in the

literature [19, 21, 23–26], as well as several cooling (annealing) schedule approaches [19,

21, 27, 28]. Cooling rate selection should be performed carefully to match the problem

complexity as a slower cooling rate will guarantee more optimal search space exploration

[29]. Moreover, theoretical studies show that the number of iterations required to guarantee

13

that the obtained results are close enough to the optimum solutions is exponential based on

the size of the problem; hence, starting and stopping criteria should be thoughtfully selected

[27]. The starting conditions and cooling schedule adopted in this study are presented in

detail in Section 5..

2.3. Reliability, Energy, and Latency Considerations for Optimization

in Digital Electronic System Design

In this section, we discuss reliability, latency, and energy-related topics and issues in digital

electronic systems design, which have been taken into consideration during this research.

Since we employ VIs as an energy reduction technique in our study, we specifically focus on

the effect of multi-supply voltages on each of these metrics.

2.3.1. Soft Errors, Reliability, and Modular Redundancy

Transient or soft errors (SEs) in digital systems are non-persistent errors that do not cause

permanent or fatal damage to a system. A system or a part of it will be affected only while the

fault is present and its value is used. Thus, a digital system can resume its normal operation

once it is restarted or when the erroneous value is rewritten. SEs can be caused by several

external factors but mainly by radiation rays, either cosmic or resulting from the product

packaging, which may cause a bit flip in semiconductor fabrics. Generally, the incident of

SEs happens when the energy accumulated in a transistor surpasses its critical energy. Figure

2.1 illustrates the occurrence of a soft error in the silicon view and the transistor view for an

n-type CMOS transistor.

The reliability of an electronic circuit is essentially the probability that the circuit will operate

(perform the required function) correctly for a specified time interval. The failure rate,

also known as soft error rate (SER), is the most commonly used metric for estimating the

reliability of electronic circuits [30]. It is obtained using Equation (6), where MTBF

14

Gate

n+ source n+ drain

Particle
strike!

Depletion region

p-type substrate

Vout

time

Bit flip!

HIGH (1)

LOW (0)Particle
strike!

in out

Figure 2.1 Occurrence of a soft error in an n-type CMOS transistor.

represents the mean time between failures (MTBF) which can be defined as the mean

operating (up) time between recoverable failures in a circuit.

λ =
1

MTBF
(6)

A high SER of a system has a negative effect on the system’s reliability. The reliability of a

system can be obtained using Equation (7), where λ represents the SER of the system, while

t represents the operating time. From Equation (7), we can observe that the reliability of a

system is inversely proportional to its SER: the higher the SER, the lower the reliability.

R(t) = e−λt (7)

The resulting reliability of a circuit depends on the reliability, number, and placement of

the individual elements in the circuit. Arrangement of the circuit elements can be in series,

parallel, or a combination of both [31]. For example, when operations execute in series in

a circuit, the overall reliability will be calculated as the product of all individual reliability

values. Hence, the low reliability of one individual element will negatively affect the overall

circuit reliability.

15

One of the popular techniques to increase a system’s reliability is to use modular redundancy

(i.e., duplicate components and make their backups). When a component is duplicated in

parallel, its new boosted reliability value can be obtained through Equation (8), where Rc

represents the total reliability of the component after duplication, while Ri and Ri′ represent

the individual reliability values of the original instance of the system component and its

duplicated backup, respectively.

Rc = Ri +Ri′ −RiRi′ (8)

Dual and triple modular redundancy with checker circuits (e.g., a majority voting circuitry

in TMR) are popular hardware redundancy approaches. Nonetheless, in general, a parallel

n-modular redundancy solution for a fault-tolerant circuit can be used (see Figure 2.2) [32].

c1

c2

cn

.

.

.

.

.

.

Figure 2.2 An n-modular redundancy illustration for a fault tolerant component.

The overall improved reliability of such a design can be obtained with Equation (9) where

Rci represents the reliability of the ith replica of the component c.

Rc = 1−
∏

i=1..n

(1−Rci) (9)

Several points should be considered when deciding which components to duplicate (full

or partial duplication) and which resources to use for modular redundancy. In terms of

complying with the area and latency constraints, a system with duplicated components should

still meet the given area and latency requirements. Usually, backups are created using the

16

same circuit elements used for the original components. However, sometimes using different

implementations of those circuit elements may result in a more optimal solution because the

behavior against SEs manifests differently in varying implementations of the same circuit

element (e.g., a slow circuit element may demonstrate higher reliability than a fast one) [33].

Finally, modular redundancy will inevitably add to the system’s energy consumption, which

is a crucial design consideration in energy-aware systems.

2.3.2. Effects of Multi-Supply Voltages on Energy and Latency

While reliability and/or performance (application runtime or latency) are the first and

foremost design considerations in safety-critical systems, efficient energy consumption is

usually the main design consideration in battery-powered systems. Therefore, varying

integrated systems may require different design trade-offs to achieve the desired system

requirements. In this study, we employ one of the popular energy reduction approaches

for digital systems; namely voltage islands [34]. In digital systems that use voltage islands,

different parts of the circuit may operate under different supply voltages to lower the system’s

overall energy consumption.

Energy reduction techniques are beneficial because lowering the supply voltage does not

affect the worst-case execution time (WCET) in the same proportion it affects the overall

energy consumption of a system. A change in energy consumption is directly proportional

to the square of the change in the supply voltage. This is formulated in Equation (10), where

Evh and Evl are the energy consumption amounts of the circuit at a high and low voltage

levels vh and vl, respectively.

Evl = Evh(
vl
vh

)2 (10)

On the other hand, a reduction in the supply voltage will only result in a proportional increase

of the worst-case execution time (WCET) of a system. This is formulated in Equation (11),

17

where vl is a threshold voltage, while tvh and tvl are the WCETs of a circuit at a high and

low voltage levels, respectively.

tvl = tvh(
vl
vh

)(
vh − vt
vl − vt

)2 (11)

Therefore, having a part of a circuit whose operation at a lower voltage will not cause an

unacceptable increase in the circuit’s WCET, while coincidentally resulting in a notable

decrease in the overall energy consumption of the circuit may be a desirable design objective.

2.3.3. Effects of Multi-Supply Voltages on Reliability

As discussed in the previous subsection, energy reduction techniques in general, and VIs in

particular, may provide an efficient way to reduce energy consumption in a system without

introducing too much extra latency. Nevertheless, another crucial consideration when using

multi-supply voltages in a circuit is the effect of this approach on the circuit’s reliability.

As already mentioned, SEs will inevitably occur when the energy accumulated in a transistor

surpasses its critical energy. When a circuit operates under lower voltages, the critical energy

can be much more easily exceeded. Hence, lowering the supply voltage will also negatively

affect a system’s reliability. This relation is formulated in Equation (12), where λ refers to

the SER, d > 0 is a constant, and λ0 refers to the average error rate at frequency f [35].

λ(f) = λ010
d(1−f)

(1−fmin) (12)

18

3. RELATED WORK

In this section, we categorize the related work based on four approaches employed in this

research: (i) ILP-based HLS solutions; (ii) SA-based HLS solutions; (iii) HLS with modular

redundancy for improved reliability; and (iv) HLS solutions that employ multi-supply

voltages for energy-oriented designs.

3.1. ILP-Based HLS Studies

Several studies have employed ILP-based methods for tackling the HLS problem with

different objectives, but mainly to increase reliability. In [36], the authors proposed a 0-1

ILP formulation for reliability-oriented HLS under the given area and latency constraints.

This study did not consider energy awareness during the HLS process.

In [37], the authors focused on the aging of the functional units (FUs) to maximize the

reliability and lifetime of both data-flow intensive and control-flow intensive designs. They

proposed an ILP-based scheduling technique that employs task chaining and multicycling to

mitigate aging traits of the FUs to achieve more than a double lifetime with an acceptable

added latency overhead. This study considered control-flow intensive designs as well, as

opposed to this study; however, energy considerations were completely neglected.

Another study that also focused on optimizing reliability is [38], in which authors proposed

both an ILP formulation and a heuristic allocation and binding method for optimizing

reliability in control-flow intensive systems under the area and latency constraints. Their

methods are based on a prior vulnerability analysis of variables and tasks in the behavioral

description, which was proved to enhance system reliability significantly compared to

the vulnerability-unaware HLS. Although the proposed method achieves a significant

improvement of up to 85% in terms of reliability without adding extra area overhead, the

authors did not consider its effect on energy consumption.

19

The authors of [39] also studied scheduling in HLS, focusing on optimizing circuit datapath

reliability under the latency and area constraints. They proposed an ILP formulation that

considers tasks and their active times in scheduling for maximum reliability. However,

energy considerations were again ignored in this study.

In [40], different objectives of minimizing the latency and area of the resulting integrated

circuit are investigated. The authors did not focus on either reliability or energy consumption

optimization; however, they proposed a novel multi-objective MILP model considering

multiplexers along with FUs during the HLS design step. The experiments showed that the

circuits which result from a design process that incorporates multiplexer usage considerations

have more optimal latency and area values on average than the circuits when they are ignored.

Circuit area minimization was also studied in [41]. The authors proposed a novel ILP

formulation and an ILP-based heuristic for the resource allocation and binding steps of HLS

under the given latency constraint. They considered FUs, registers, and multiplexers for

control and datapath circuits in their proposed methods. However, reliability and energy

considerations were left out in this study. In [42], the authors presented an ILP model for

HLS of DSP algorithms with the goal of area cost minimization under latency constraints.

Energy and reliability considerations were again left out.

Another study that focused on latency minimization is [43]. The authors proposed a

MILP-based approach to solving HLS with a built-in programmable duty cycle mechanism

for designs that use dual-edge-triggered flip-flops as memory elements. Their approach was

able to improve latency for several benchmarks. The proposed method, however, did not

consider any area, reliability, or energy issues.

[44] also studied delay and performance yield optimization for scheduling and resource

binding in HLS. The authors presented an ILP formulation that considers timing variations of

different resources and employs successive tasks and resource chaining for improved latency

and performance yield, which can be defined as the probability that the design can operate

efficiently at a specific clock frequency. This method, however, also does not tackle reliability

or energy considerations.

20

In [45], the authors proposed an ILP-based HLS approach for designs that use VIs with

dual supply voltage to minimize energy consumption. Unlike this study, they do not

consider the effect of energy reduction on reliability. Another study that employed multiple

supply voltages approach for energy minimization is [46], in which the authors presented an

ILP-based HLS method for optimizing energy but also neglected its effects on reliability.

Optimization of energy consumption was also tackled in [47]. The authors presented an

ILP model for energy-aware HLS under the constraints of area and latency. Nevertheless,

they also ignored the effect of energy savings on circuit reliability. Another study that

focused on energy optimization under latency constraints is [48]. Similarly to our study,

they used pipelined resources in their designs; however, reliability considerations were again

disregarded.

In [49], the authors focused on both energy and task delay minimization under latency

constraints. They proposed an ILP model that minimizes the total energy consumption

through optimizing task scheduling. The reliability concerns were not discussed in the study.

In Table 3.1, we present a summary of the relevant related work that employed the ILP-based

approaches to optimization in HLS. We note the optimization metrics considered, as well as

design constraints, if any.

Table 3.1 A summary of related ILP-based HLS studies.

Study Optimization Metrics Constraints Target Systems

[36] Reliability Area, latency ASIC
[37] Reliability, circuit lifetime Latency Data-flow and control-flow intensive circuits
[38] Reliability, area - Data-flow and control-flow intensive circuits
[39] Reliability Area, latency ASIC
[40] Area, latency - ASIC
[41] Area Latency Data-flow and control-flow intensive circuits
[42] Area Latency DSP algorithms with blocked schedules
[43] Latency - Circuits with dual-edge-triggered flip-flops
[44] Area, Latency Performance yield ASIC
[45] Energy - Dual supply voltage circuits
[46] Energy - Multi-supply voltage ASIC
[47] Energy Area, latency ASIC
[48] Energy Latency Pipelined ASIC
[49] Energy, task delay Latency ASIC
This study Reliability, energy Area, latency Pipelined multi-supply voltage ASIC

21

Figure 3.1 presents the citation and publication statistics on ILP-based HLS studies in the

literature indexed on the Web of Science over the last three decades. Furthermore, Figure

3.2 shows the percentages of the total number of ILP-based HLS studies in the literature

classified according to the Web of Science categories.

Figure 3.1 ILP-based studies for HLS: times cited and publications over time on Web of Science.

Figure 3.2 ILP-based studies for HLS: literature record count percentages based on Web of Science
categories.

22

3.2. SA-Based HLS Studies

Simulated annealing has been a popular metaheuristic method of choice for several HLS

studies in the literature. In [50], an SA-based HLS algorithm for pipelined datapath synthesis

was proposed. The algorithm optimizes the latency and resource cost and can also take

those metrics as design constraints. In [51], the authors focused on optimizing the design

area for the HLS process in FPGAs. Their SA-based method employs rescheduling and

switching the tasks between resources to look for better solutions in terms of area. The

experimental results showed that the proposed approach outperforms the conventional HLS

flow in terms of optimizing the exploration of search space up to 37% and achieving more

than 11% reduction in the overall design area. However, these studies did not focus on

reliability or energy optimization, and no design constraints were considered in the proposed

method in [51].

In [52], the authors focused on the area optimization problem in HLS of multiple word-length

DSP algorithms on heterogeneous-resource FPGAs. They used different variations of

resources, as we did in this study, to achieve area improvements of up to 60% compared

to logic-based approaches. Their SA-based HLS method takes latency as a constraint while

minimizing the area; however, no reliability or energy considerations are taken during the

HLS process.

SALSA, a scheduling method in HLS for optimizing HW resource cost under the latency

constraint, was proposed in [53]. It employs an SA-based approach for improving the initial

schedule that satisfies the timing constraint by exploring alternative schedules to minimize

resource cost. Again, the energy and reliability considerations were left out of the HLS

process.

The authors in [54] focused on the area and latency optimization in performance

yield-guaranteed HLS. They proposed an SA-based HLS algorithm with statistical static

timing analysis. They employed a similar approach to their multi-objective problem

in this study, namely the weighted scalarization method that is also employed in our

23

study. The experimental results showed an average area reduction of 14% under the 95%

performance yield constraint. This method, however, also does not tackle reliability or energy

considerations.

In [55], the authors presented a unified method for HW/SW codesign, incorporating an

SA-based HLS approach for multi-FPGAs. Their objective was to minimize resource

utilization under the latency constraint. This study did not include reliability or energy

considerations in the proposed HLS method. Another study that employed an SA-based

approach to HW/SW codesign and HLS for low-power embedded systems is [56]. The

authors proposed an HLS method intending to minimize overall power consumption under

the given latency constraint. The experiment results showed that the proposed method

achieves more effective performance trade-offs than the task-level codesign. However, this

study did not investigate the effect of the power savings on the final design reliability.

Apart from the area and latency considerations, testability of the final RTL designs was also

considered as an objective in [57]. The authors proposed an enhanced SA-based algorithm

for HLS of digital systems, which optimizes the area, latency, and testability metrics. The

experimental results showed that the proposed enhanced SA-based algorithm achieves better

than the conventional SA-based approach. Nevertheless, this study did not focus on the

energy or reliability of the final designs.

In [58], the authors tackled the problem of HLS for digital systems targeted for high-density

FPGAs with run-time reconfigurable HW resources with pipelined execution. They proposed

an SA-based optimization algorithm that optimizes area and latency but disregards the

reliability or energy considerations.

In [59], the authors proposed a method based on three metaheuristic approaches (SA,

GA, and ACO) for improved HLS design space exploration (DSE). Their objective was

to optimize the design area subject to latency and area constraints. They compared the

performance of the proposed method to the traditional approach with a weighted-sum cost

function and showed that the proposed method results in up to ten times better Average

Distance to Reference Set (ADRS) metric than the traditional approach, although with some

24

increase in running times. This method can be applied to ASIC design; however, the

researchers did not focus on the reliability or energy aspects of the final designs.

In [60], the authors tackled the same problem of optimizing HLS design space exploration

using the same three metaheuristic approaches. However, they added a machine learning

(ML)-based phase to their method flow, which generates predictive models that result in

Meta-Heuristic Specific Parameters (MHSP) used in the following phase of metaheuristic

HLS DSE. Additionally, they proposed a combined DSE method that uses all three

metaheuristics simultaneously. The experimental results showed that their proposed method

achieved about 2x better ADRS on average than the default approach with similar execution

times. Another study that employed ML to improve SA-based HLS DSE is [61]. The

authors used an ML-based technique to obtain a decision tree using a standard SA approach,

which is then used to update the synthesis directives for improved optimization of the

objective function cost. They achieved up to 48% faster execution than the traditional

metaheuristic approach with similar performance. Although these methods can be employed

for multi-objective optimization in HLS, they do not consider any design constraints.

In [62], and then in [63], the authors proposed LOPASS, a low-power architectural synthesis

system for FPGAs that includes SA-based HLS. The proposed tool takes either latency

constraint or resource constraint and optimizes the energy consumption and interconnections

in the datapath via multiplexer optimization. The experimental results demonstrated a

significant improvement in power reduction compared to a few other existing academic or

commercial synthesis tools. The proposed system takes only one metric as a constraint and

does not consider the resulting reliability.

In low-power digital circuits that employ power reduction techniques, sub-threshold leakage

currents play a great role in total power dissipation. Efficient dual-threshold voltage

techniques can alleviate standby power dissipation in combinational circuits [64]. In [65], the

authors presented an efficient SA-based scheduling method for resources with dual-threshold

voltage techniques to minimize the leakage power under the latency and resource constraints.

Nevertheless, the reliability of the circuits was not taken into consideration.

25

Gate leakage current is not a trivial issue in CMOS technologies below 65 nm. In [66],

the authors proposed an SA-based algorithm for minimizing gate leakage current and area

overhead during HLS. The average achieved minimization of gate leakage was over 76%,

while the area overhead was increased to about 17% on average. The proposed method does

not consider reliability or latency during the HLS process.

Voltage islands, a power consumption reduction technique we employed in this study, can

also be effective in minimizing the circuit power leakage and spurious switching activity

(SSA) [67]. SSA can occur in circuits in which resources (functional units or registers) have

more than one task or variable bound to it, which results in different values being output

in different clock cycles. This can affect other parts of the circuit if not properly handled.

In [68], the authors proposed an SA-based register binding method to alleviate SSA in HLS.

The experimental results showed that the proposed method achieved a 40% reduction in SSA

on average, leading to improved energy consumption overall. This study did not consider the

reliability of the final designs nor any design constraints.

Thermal effects are another crucial issue in present-day VLSI circuits due to increasing

power densities that lead to elevated on-chip peak temperatures. In [69], the authors

presented an SA-based HLS and floorplanning method for energy and temperature-aware

IC designs. The experiments showed that the proposed method could lower peak on-chip

temperatures by 12% on average compared to traditional algorithms that only focus on

average power optimization. However, this achievement comes at the cost of an average

area overhead increase of up to 15%. No constraints were taken into consideration, nor the

effects of these improvements on the circuit reliability were discussed.

In bus-based architectures, crosstalk violations are another issue that can be tackled at the

HLS stage of the design. In [70], the authors presented an SA-based HLS method with

the objective of minimizing the crosstalk while achieving designs with minimum possible

latency and area. They managed to achieve a 75% reduction in crosstalk violations on

average compared to a traditional flow. In [71], the same problem was tackled in a similar

26

manner, achieving also an average 23% of improvement in performance. These studies do

not take reliability or energy consumption into consideration in their objective functions.

In VLSI, routing congestion is also a serious issue that affects performance. The authors of

[72] proposed a routing congestion-aware HLS algorithm that employs simulated annealing.

The proposed method produced up to 40% better results (with less congestion) than the

traditional method it was compared to. Nevertheless, the method does not take reliability or

energy into consideration during the HLS process.

In [73], the authors presented a VLSI synthesis system for HLS of image processing

architectures, which integrates SA-based algorithms for both datapath and control synthesis.

The objective of the proposed system is to minimize energy in terms of the number of used

resources (registers and MUXes). The proposed system disregards the effect of energy

minimization on the reliability of the final design. COBRA-ABS is another CAD tool

used for HLS of digital signal processing algorithms in FPGA custom computing machines

(FCCMs), which employs a simulated annealing approach for all HLS steps [74, 75].

In Table 3.2, we present a summary of the related work that employed an SA-based approach

to optimization in HLS. We note the optimization metrics considered, as well as design

constraints, if any. Figure 3.3 presents the citation and publication statistics on SA-based

HLS studies in the literature indexed on the Web of Science over the last three decades.

Figure 3.4 shows the percentages of the total number of SA-based HLS studies in the

literature classified according to the Web of Science categories.

It is evident that simulated annealing has been a popular approach to tackling HLS

optimization for a number of target systems with varying design requirements and

considerations. The great majority of the existing related studies in the literature focus on

optimizing area and/or latency, or energy consumption, while some of them even consider

the area and/or latency as constraints. None of the existing related studies tries to optimize

both reliability and energy simultaneously under the area and latency constraints. The studies

that do focus on energy optimization do not investigate its effect on the reliability of the final

27

Table 3.2 A summary of related SA-based HLS studies.

Study Optimization Metrics Constraints Target Systems

[50] Latency, resource cost Latency and/or cost may be given Pipelined datapaths
[51] Area - FPGA
[52] Area Latency Heterogeneous-resource FPGAs
[54] Area, Latency Performance yield ASIC
[55] Area Latency Multi-FPGA
[56] Energy Latency Low-power embedded systems
[57] Area, latency, testability - VLSI, ASIC
[58] Area, latency - FPGAs with reconfigurable FUs
[59] Area Area, latency ASIC, FPGA
[62, 63] Energy, interconnections (MUX) Latency or resources (but not both) FPGA
[65] Energy Area, latency Low-power digital circuits
[66] Leakage energy, area - Nanoscale CMOS datapath circuits
[68] Energy - ASIC
[69] Energy, thermal on-chip effects - VLSI
[70, 71] Crosstalk, area, latency - Bus-based architectures
[72] Routing congestion - VLSI
[73] Energy - VLSI image processing applications
This study Reliability, energy Area, latency Pipelined multi-supply voltage ASIC

Figure 3.3 SA-based studies for HLS: times cited and publications over time on Web of Science.

designs. Hence, there is a necessity for efficient HLS methods that will take all those features

into consideration.

28

Figure 3.4 SA-based studies for HLS: literature record count percentages based on Web of Science
categories.

3.3. HLS Studies With Modular Redundancy

Hardware redundancy is an effective method for boosting the reliability of designs. For

example, [76], and [77] employed triple modular redundancy (TMR) in the HLS design flow

of SRAM-based FPGA for obtaining hardened RTL designs. In [78], TMR was also used

in HLS of fault-tolerant hardware accelerator systems with Pareto-optimal configurations

of varying area, latency, and reliability characteristics. Similarly to this study, in [79],

the authors used DMR to obtain designs that are more resilient to faults. They proposed

a duplication-based HLS method for low-cost and resilient application-specific datapath

processors. Although these methods lead to a significant boost in fault tolerance, the added

area overhead must be considered.

In [80], and [81], the authors also integrated TMR in HLS for FPGAs, but with a focus on

exploring trade-offs for balanced designs with the optimized area, latency, and redundancy.

Another study that aimed to decrease the area overhead of DMR and TMR approaches is

[82]. The authors proposed an HLS method based on resource sensitivity by categorizing the

resources as sensitive, semi-sensitive, and insensitive. They suggested applying TMR only

on the sensitive resources, while the semi-sensitive resources were treated with gate sizing.

29

They showed a significant decrease in area overhead and, thus, in energy cost, compared to

the traditional TMR method.

3.4. HLS Under Multi-Supply Voltages and Other Energy-Aware

Approaches

In [83], the authors focused on multi-voltage scheduling in power-efficient HLS under

latency constraints with the objective of minimizing the overall area and proposed an ILP

formulation further reduced to a piece-wise linear programming problem. The first step of

the proposed method is to obtain predefined mobility of the tasks, which is subsequently used

in dependency-free task scheduling. This piece-wise approach proved to be very efficient in

terms of optimizing running time for all the benchmarks used in the experiments.

Clock gating is another energy reduction technique useful for dynamic power reduction

in sequential circuits. In [84], the authors employed this approach and presented an ILP

formulation for the HLS of clock control logic with the objectives of minimizing both the

area and energy cost.

Similarly to the approach in this study, the authors of [45] proposed an ILP and a heuristic

algorithm for HLS of designs that use VIs with dual supply voltage to minimize energy

consumption. Unlike this study, they do not consider the effect of energy reduction on

reliability.

In [46], the authors presented an ILP-based HLS method for designs with multi-cycling

and multiple supply voltages with the goal of optimizing energy consumption. The energy

optimization in the proposed approach is achieved through the minimization of both module

and cycle peak powers. The experimental results showed the effectiveness of the proposed

model in obtaining designs with optimal energy consumption; however, the effect on

reliability was not considered in the study.

30

3.5. Other HLS-Related Studies

There have also been several other heuristic and metaheuristic attempts for optimizing

reliability with different HLS approaches, such as starting with the most reliable solution

and then updating the allocated resources of the longest and most area-consuming tasks until

an acceptable solution is obtained [33]. In [85], the authors employed different versions of

the available resources for achieving higher fault tolerance. [86] focused on HLS approaches

for multi-cycle transient faults. HLS methodology for combinational circuit HLS was also

tackled in [87, 88]. Contrary to this study, none of the mentioned related work which focused

on maximizing the reliability incorporated the energy consumption considerations into the

HLS process.

Other related work that focused on energy consumption optimization usually apply varying

supply voltage techniques in their designs [89, 90]. For example, DVS has been the most

popular energy optimization technique since it was proposed by [91]. In [92], several

methods for low-power HLS design of CMOS circuits are presented. A few other studies

that tackled power-aware HLS include [93–95].

To the best of our knowledge, none of the previous related studies incorporated both

reliability and energy consumption considerations into the HLS steps under multiple

constraints (latency and area), except for [96], in which modular redundancy for increased

reliability was not considered in the proposed ILP formulations, and the proposed GA-based

metaheuristic method was not able to generate arbitrarily close solutions to the optimum

ones in all test cases. Moreover, partial selective duplication was only considered as a

post-processing step in the proposed GA method and thus, did not provide optimal or

acceptably near-optimal results.

A few studies focus on reliability and energy considerations for multiprocessor architectures;

however, those methods cannot be readily applied to the ASIC design due to the area

considerations. In this study, we propose both ILP formulations for designs without

duplication and two additional DMR-based HLS methods that tackle the same problem.

31

These methods achieve improved design solutions in terms of optimizing both reliability and

energy costs. Furthermore, we propose an SA-based metaheuristic method that outperforms

the GA-based method and provides optimal or near-optimal solutions for all benchmarks.

32

4. PROBLEM DEFINITION

In this section, we discuss the basic components of the problem at hand. We briefly introduce

high-level synthesis, define the problem at hand, and present an extended resource library

with multiple supply voltages used in this research.

4.1. High-Level Synthesis

High-level synthesis is a process of converting a behavioral description of a digital system

(e.g., given in the form of a directed acyclic graph) to a corresponding register transfer

level (RTL) netlist under the given design constraints, if any. The goal of raising

design considerations to a higher level of abstraction is to facilitate processes such as

verification, power management, memory organization, and synthesis while simultaneously

enabling the reuse of high-level specifications. This is especially beneficial for ASIC, and

field-programmable gate array (FPGA) designs [97]. HLS can greatly benefit the process of

design and production of digital circuits as it reduces the cost and time of both design and

production by enabling designers to conceptualize circuit designs regardless of the target

architecture or design style and by greatly improving the correctness and optimality of the

final designs [6].

Modeling of the digital circuits on a high level is performed with the help of hardware

description languages (HDLs) that differ from traditional programming languages in several

aspects. HDLs are used to characterize either behavior or structure of a digital circuit,

and they describe parallel hardware operations as opposed to programming languages that

usually represent a sequential flow of software operations. Several CAD tools use HDLs for

the simulation and synthesis of digital circuits. The lack of HDL standardization poses an

issue in high-level modeling. HLS deals with behavioral modeling and allows designers to

introduce optimization into the process of digital circuit design at a higher level of abstraction

[6, 98].

33

The design steps of the HLS process are illustrated in Figure 4.1 that has been adopted from

[97].

Specification

Compilation

Resource

library

RTL architecture

Logic synthesis

Formal model

Binding

Allocation Scheduling

Generation

...

Figure 4.1 HLS design steps.

In this study, we address the resource allocation, binding, and scheduling stages of HLS

for optimized designs in terms of reliability and energy. In allocation and binding,

hardware resources (e.g., various FUs such as adders and multipliers, as well as storage

and connectivity elements such as registers and buses) that are available from the resource

library are assigned to the tasks and variables in the model based on criteria such as their

types of operation and the design constraints, if any. A resource library is a collection of

hardware resources that may include anything from FUs to storage elements and connectivity

components, each characterized by its area, latency, and energy consumption properties [97].

Having multiple instances of a resource with the same type of functionality but varying

properties complicates the allocation problem. Still, at the same time, it allows for more

flexible trade-off decisions to be made when optimizing the final designs. For example, an

addition operation can be performed by a fast adder (e.g., carry look-ahead) that has a large

34

area if the area constraint will not be violated, or a smaller adder can be allocated instead

(e.g., ripple carry) but with a cost of somewhat slower execution [99].

Scheduling, on the other hand, is a process of determining the start times (cycles or control

steps) of each operation (task) in a design. The start time of a task dependent on at least one

other predecessor operation will be subject to both the start time and delay of its predecessor

tasks. The tasks that are not dependent on each other may be scheduled to run concurrently,

granted there are enough resources. Scheduling and resource allocation are closely coupled

processes [99]. Allocated resources impact scheduling because the latency of a task depends

on the delay of the resource allocated to it. Conversely, scheduling affects allocation since the

total number of necessary resources in a design depends on the maximum number of tasks

scheduled at any same control step. Spreading the start times of tasks over a wider range

of control steps can minimize the number of tasks scheduled in any single control step, thus

leading to a reduced number of necessary resources overall. Consequently, the latency-area

trade-offs can be made during HLS based on the design requirements. This is illustrated in

Figure 4.2, where the schedule in (a) necessitates two adders and one multiplier, whereas the

schedule in (b) uses only one adder for both additions by scheduling them in different control

steps. This results in a smaller circuit area but a longer overall delay by one control step.

ADD1 ADD2

MUL1

+ +

*

Control
Step

+

+

1

2

3 *

a b c d

(a + b) * (c + d)

(a) (b)

1

2

(a + b) * (c + d)

Control
Step

a b c d

ADD1

ADD1

MUL1

Figure 4.2 (a) A faster schedule with larger area, (b) A slower schedule with smaller area.

35

In some cases, moving the start time of a task may not introduce extra latency if the task is

not on the critical path while simultaneously reducing the area. This is discussed in more

detail in Section 5.2.1..

In this research, we focus on pipelined designs. Functional pipelining is an effective approach

that increases the circuit performance by allowing circuit elements to be partitioned into

stages such that more than one task can be executed concurrently on the same resource

(resource sharing). In pipelined execution, each task can be in a different stage as the partial

results are latched after each stage [99], and the output of a preceding stage is fed as the input

to the next stage [6]. Scheduling considerations in pipelined circuits are, therefore, slightly

different than concerns about scheduling in non-pipelined circuits. Although latching of the

partial results may increase the task delay, it increases the overall throughput of all tasks

proportionally to the number of stages, which results in increased circuit performance.

HLS is a known NP-hard problem, and it has been shown that each of its mentioned

sub-problems of resource allocation and scheduling are NP-complete [74]. Therefore, there

is a necessity for efficient heuristic or metaheuristic approaches to tackling this problem,

which will be able to generate optimal or near-optimal solutions in practically acceptable

running times, especially for larger target designs.

4.2. Behavioral Description of a Target Design

This study focuses on proposing methods for the resource allocation, binding, and scheduling

steps of the HLS design with the goal of maximizing the reliability and minimize the energy

consumption of the final design under the given latency and area constraints.

The fundamental features of a target design can be captured as abstract behavioral models

so that their behavioral representation may be independent of any specific language. Graph

representations are widely used in several different approaches to modeling digital circuit

behavior (e.g., data-flow graph) [6]. The inputs to our proposed methods include such an

abstract behavioral description of a target system given as a data-flow representation in a

form of a directed acyclic graph (DAG) whose vertices represent operations (tasks) and

36

edges represent dependencies (precedence constraints) between those tasks, and the available

resource library with clearly defined types of the resources, along with their respective area,

latency, energy, and reliability values under the available supply voltage levels. In our study,

we consider only data-flow intensive operations and do not tackle memory-related parts of

the target design since they exhibit different characteristics [100]; hence, we leave memory

considerations as future work.

An example behavioral description of a target system (differential equation solver)

represented as a DAG is given in Figure 4.3, adopted from [101]. The added source and

sink nodes are dummy nodes taken as “No Operations” (NOP), which merely facilitate

the implementation of the scheduling process. The symbols inside the nodes represent the

operation type.

x1 = x + dx;

u1 = u - (3*x*u*dx) – (3*y*dx);

y1 = y + u*dx;

c = x1 < a;

3 x u dx 3 y u dx x dx

1
*

2
*

6
*

8
*

3
*

7
*

10
+

11
+

9
+

4
+

5
+

y1 c

u1 (b) (c)

u

x1

dx y a

1
*

2
*

6
*

8
*

3
*

7
*

10
+

11
+

9
+

4
+

5
+

(a)
0

NOP

12
NOP

Figure 4.3 (a) An example design specification for differential equation solver, (b) Data-flow
representation with dependencies (precedence constraints), and (c) DAG of the design
specification.

37

In a DAG representation, node ni is said to be a predecessor of node nj if there is an edge

(or a path) from ni to nj . Analogously, nj is said to be a successor of ni, and that it depends

on ni. Hence, the edges define the dependency (precedence constraints) among the tasks.

4.3. Resource Library Under Multi-Supply Voltages

In our previous study [96], we proposed a resource library including three adders and two

multipliers under two voltage levels (high voltage level vh of 1.2 V, and low voltage level vl of

1.0 V). For the purposes of this research, particularly to be able to demonstrate the effects of

VIs on reliability and energy consumption in circuit design, we present the extended resource

library to three voltage levels in Table 4.1.

Table 4.1 Resource library used in this study.

Type Resource Name A
Lh Rh Eh

Lm Rm Em

Ll Rl El

Adder
(A1) Ripple Carry 2

5 0.999 12.00
6 0.9986 10.83
8 0.998 8.33

Adder
(A2) Brent Kung 3

3 0.969 5.00
4 0.9545 4.13
5 0.938 3.47

Adder
(A3) Kogge Stone 5

2 0.987 6.00
3 0.9783 4.96
3 0.976 4.17

Multiplier
(M1) Carry Save 8

10 0.999 80.00
12 0.9989 66.12
16 0.998 55.56

Multiplier
(M2) Carry Lookahead 12

15 0.969 160.00
19 0.9567 132.23
25 0.938 111.11

For obtaining the new latency, energy, and reliability values under the medium supply voltage

level (vm) of 1.1 V, we used 0.5-V threshold voltage level and Equations (10), (11), (12), and

38

(7), respectively. In Table 4.1, A is the area of the resource measured in unit area. Lh,

Lm, and Ll represent the latency values of the corresponding resources under high, medium,

and low voltage respectively, and they are measured in time steps (control steps). Similarly,

Rh, Rm, and Rl represent the reliability values, whereas Eh, Em, and El represent the energy

consumption under high, medium, and low voltage measured in nanojoules (nJ), respectively.

The task scheduling problem in HLS tackles the scheduling of the start times of all operations

given in a DAG to clock cycles (control steps) while considering both the given latency

constraint and the task dependencies. For instance, some tasks may execute in parallel if

there is no data dependency between them and if enough resources are available for parallel

execution. On the other hand, the resource allocation problem deals with assigning available

hardware resources from the resource library to the tasks in a DAG such that the resulting

overall area of the design does not exceed the given area constraint.

4.4. Modular Redundancy Considerations

In duplicated designs, checker circuits can be added to check the correctness of the duplicated

task’s computation, as illustrated in Figure 4.4. Addition of checker circuits will introduce

some additional delay to the design [102]. However, since the delay and area of checker

circuits are negligible compared to the overall design of a combinational circuit, in our

proposed methods, we do not consider the added delay and area of the checkers in our design

process. Moreover, checker circuitry may also be susceptible to soft errors; however, we do

not include this problem within the scope of our study and assume that the reliability of

checkers is ensured.

The sample design solutions obtained through HLS of the target system given in Figure 4.3

under two voltage levels (high and low) and the given latency (L) and area (A) constraints,

using the resource library given in Table 4.1, are illustrated in Figure 4.5. The tasks scheduled

on the high voltage island are represented with white, whereas those scheduled on the high

voltage island are represented with grey oval shapes.

39

1

2 3

4
sink

0
source

Tasks

0
source

1 1d

check

2 2d 3 3d

check check

4
sink

Duplicated

nodes

Checker

circutry

(a) (b)

Figure 4.4 (a) An example task graph, (b) its fully duplicated version.

While performing scheduling and resource allocation, the goal is to obtain the optimum

solution based on the objective function. In our work, we focus on both maximizing

reliability and minimizing energy consumption, which makes the problem very challenging

for the following reasons. Both scheduling and resource allocation problems are known

NP-hard/complete optimization problems that occur in many different areas of life. In HLS,

both problems are tackled simultaneously. Additional complexity is introduced because

the available resource library has a variety of possible resources of the same type from

which the optimum ones must be chosen, with varying area, latency, reliability, and energy

consumption values that need to be considered simultaneously. We also employ multi-supply

voltages that additionally complicate the model. Moreover, the flexible multi-objective

nature of the problem at hand necessitates different trade-offs to be considered as well.

40

Constraints (L,A) = (28,40)

No duplication HLS (R: 0.757969, E: 481.00) Full duplication HLS (R: 0.988170, E: 955.94)

M1

Vh

A2

VL

A3

VL

M1

Vh

M1

Vh

M1

VL

M1

Vh

M1

VL

A2

VL

A2

VL

A3
Vh

1
2 6

8

10

3

7

4

5

9

11

Cstep 1

Cstep 4

Cstep 11

Cstep 17

Cstep 21

Cstep 24

Cstep 27

A2

VL

A3
Vh

5

9

Cstep 1

Cstep 2

Cstep 3

Cstep 4

Cstep 13

Cstep 17

Cstep 23

Cstep 24

Cstep 27

A3
Vh

4

A3
Vh

4 d

A3
Vh

5d

A2

VL

11 d

A2

VL

9 d

M1

Vh

1

M1

Vh

1 d

M1

Vh

2

M1

Vh

M1

Vh

6

M1

VL

6 d

M1

Vh

8

M1

VL

8 d

A2

VL

10

A2

VL

10 d

M1

Vh

3d

M1

Vh

7

M1

Vh

7 d

A2

VL

11

M1

Vh

3

(a) (b)

2 d

Figure 4.5 (a) HLS result without duplication, (b) HLS result with full DMR under the specified
constraints.

41

5. PROPOSED METHODS

In this section, we present our proposed ILP and SA-based HLS methods, whose goal is to

maximize the total reliability while minimizing the total energy consumption of the given

application designs under the desired area and latency constraints.

5.1. Integer Linear Programming Formulations

In this section, we present our ILP formulations of the problem for the non-duplicated model,

as well as both partial and full duplication methods for scheduling and resource allocation

steps of HLS, whose goal is to maximize the total reliability while minimizing the total

energy consumption of the given application designs under the desired area and latency

constraints. We present all three models simultaneously, noting where they differ while

providing their respective equations. The notations used in the ILP formulations of the

problem are defined in Table 5.1.

The Boolean variable ζi,j refers to the compatibility of the task Ti with the resource Rj (e.g.,

an adder resource can only be assigned to an addition operation), and it is formulated in

Equation (13).

ζi,j =


1 if T typei = R typej

0 otherwise
(13)

The Boolean variable Ai,j,v specifies if the resource Rj is assigned to the task Ti under the

voltage level Vv (see Equation (14)). Similarly, the Boolean variable A di,j,v specifies if the

resource Rj is assigned to the duplicated instance of the task Ti under the voltage level Vv

Ai,j,v =


1 if Ti is assigned to Rj under Vv

0 otherwise
(14)

42

Table 5.1 ILP notations.

T = {Ti: i = 1, ..., N} A set of N tasks (additions, multiplications, NOPs) where Ti

is the ith task in T
T typei The type of Ti (addition, multiplication, NOP)
R = {Ri: i = 1, ...,M} A library of M available hardware resources where Ri is the

ith resource in R
V = {Vl, Vm, Vh} A set of available voltage levels (high Vh = 1.2 V, medium

Vm = 1.1 V, low Vl = 1.0 V)
Vi The voltage at the voltage level i
R typej The type of Rj

ζi,j The compatibility of the task Ti with the resource Rj

Ai,j,v Denotes if Rj is assigned to Ti under Vv

A di,j,v Denotes if Rj is assigned to a duplicated Ti under Vv

Csteps A set of control steps
Starti,s Denotes if Csteps is the start time of the task Ti

StartN The start time of the last sink task
G = (T, PREC) Precedence graph where PREC(i, j) means Ti precedes Tj

Relj,v The reliability of Rj under Vv

Aj The area occupied by Rj

Lj,v The latency of Rj under Vv

Ej,v The energy consumption of Rj under Vv

ρi The reliability of Ti

δi The delay of Ti

ϵi The energy consumed by Ti

κi,s,r,v Denotes if Ti starts at Csteps and is assigned Rr under Vv

NumRj,s,v The total number of instances of Rj used at Csteps
under Vv

Υr,v The total number of instances of Rj used within the circuit
under Vv

obj The objective function
Λ Area constraint
λ Latency constraint

In our DMR-based models, duplication of a resource is allowed for partial duplication and

a requirement for full duplication. Thus, in partial duplication, one or two resources can

be assigned to each task while taking the compatibility of the resources with the tasks into

consideration. Similarly, only one voltage island can be assigned. This is formulated in

Equation (15) and Inequality (16).

(15)While ζi,j = 1

∀i ∈ T :
∑

j∈R,v∈V

Ai,j,v = 1

43

(16)While ζi,j = 1

∀i ∈ T :
∑

j∈R,v∈V

A di,j,v ≤ 1

In our full duplication model, two resources must be assigned to each task, and a single

voltage island can be assigned to each of them while considering the resources’ compatibility

with the tasks. This is formulated in Equations (15) and (17).

(17)While ζi,j = 1

∀i ∈ T :
∑

j∈R,v∈V

A di,j,v = 1

The Boolean variable Starti,s specifies if the task Ti starts at the control step Csteps. It is

formulated in Equation (18).

Starti,s =


1 if Ti scheduled at Csteps

0 otherwise
(18)

Any task may be scheduled at only one control step, which is achieved with Equation (19).

∀i ∈ T :
∑

s∈Csteps

Starti,s = 1 (19)

The delay (latency) of a task depends both on the latency of the resources assigned to it and

the assigned operating voltage levels. The overall latency of a task will be the maximum

latency of all resources assigned to it as formulated in Equation (20).

(20)
∀i ∈ T :

δi = max
r∈R,v∈V

 ∑
r∈R,v∈V

Lr,v · Ai,r,v ,
∑

r∈R,v∈V

Lr,v · A di,r,v


44

Some tasks are dependent on others; hence, a task that is dependent on other tasks cannot start

before all of its predecessors have finished. These precedence constraints are given in the

precedence graph G = (T, PREC), and they must be satisfied. Inequality (21) guarantees

that the start time of a dependant task will be greater than the maximum end time of all its

precedent tasks.

(21)∀(i, j) ∈ T : If PREC(i, j) = 1∑
s ∈Csteps

Startj,s · s ≥
∑

s∈Csteps

Starti,s · s+ δi

The reliability of the task i depends on the reliability of its assigned resources under the

applied voltage levels for both the original and duplicated resource, denoted as ρi and ρ di,

and formulated in Equations (22) and (23), respectively.

(22)∀i ∈ T :

ρi =
∑

r∈R,v∈V

Relr,v · Ai,r,v

(23)∀i ∈ T :

ρ di =
∑

r∈R,v∈V

Relr,v · A di,r,v

The Boolean variable κi,s,r,v specifies if the task Ti started at the control step Csteps and

if the resource Rr has been assigned to it under the voltage level Vv. It is formulated in

Equation (24). The Boolean variable κ di,s,r,v denotes the same case for duplicated tasks,

and is formulated in the same way.

κi,s,r,v =


1 if Ti scheduled at Csteps and Rr is allocated to it under Vv

0 otherwise
(24)

45

The start time of each task can only be scheduled at a single control step, only one resource

can be allocated to each task, and each task can be executed on a single voltage island. This

is formulated in Equation (25) and Inequality (26).

(25)∀i ∈ T :∑
r ∈R,s∈Csteps,v∈V

κi,s,r,v = 1

(26)∀(i ∈ T, s ∈ Csteps, r ∈ R, v ∈ V):
κi,s,r,v ≥ Ai,r,v + Starti,s − 1

The similar equations are used to constrain κ di,s,r,v in our full duplication method. For

partial duplication, on the other hand, some tasks may not be duplicated, hence κ di,s,r,v will

be zero for an unduplicated Ti. This is formulated in Equation (27) and Inequality (28).

(27)∀i ∈ T :∑
r ∈R,s∈Csteps,v∈V

κ di,s,r,v ≤ 1

(28)∀(i ∈ T, s ∈ Csteps, r ∈ R, v ∈ V):
κ di,s,r,v ≥ A di,r,v + Starti,s − 1

The amount of energy consumed during a task execution depends on how much energy

the resource allocated to that task consumes under the assigned supply voltage level. We

formulate this in Equation (29).

(29)∀i ∈ T :

ϵi =
∑

r∈R,v∈V

Er,v · Ai,r,v +
∑

r∈R,v∈V

Er,v · A di,r,v

46

To calculate the area of the final design, we first count the total number of instances of

each resource allocated overall. Since our datapath is pipelined, each control step should be

inspected for only the tasks scheduled in that particular step across every voltage island and

count the number of instances of the resources assigned to those scheduled tasks. NumRr,s,v

represents the total number of instances of the resource Rj at the control step Csteps under

the supply voltage Vv, and is formulated in Equation (30).

(30)∀(r ∈ R, s ∈ Csteps, v ∈ V):

NumRr,s,v =
∑

i∈Tasks

κi,s,r,v +
∑

i∈Tasks

κ di,s,r,v

Finally, the total number of instances of each resource assigned to each available voltage

island, which are used in the overall circuit design, is represented with the decision variable

Υr,v. Υr,v will be the maximum of all NumRr,s,v at any control step as formulated in

Equation (31).

(31)∀(r ∈ R, v ∈ V):
Υr,v = max

s∈Csteps
NumRr,s,v

5.1.1. Constraints

To satisfy the area constraint of the overall design, the sum of the areas of all assigned

resources must not exceed the given maximum allowed area constraint. We formulate this

requirement with Inequality (32).

∑
r∈R,v∈V

Υr,v · Ar ≤ Λ (32)

Similarly, to satisfy the latency constraint of the overall design, we need to ensure that the

last sink task is scheduled such that its start time, denoted as StartN and defined in Equation

(33), does not exceed the given latency constraint. We formulate this with Inequality (34).

47

StartN =
∑

s∈Csteps

StartN,s · s (33)

(34)StartN ≤ λ

5.1.2. Objective Functions

The goal of our bi-objective problem is to maximize the overall reliability of the circuit

denoted as Rtotal), while minimizing its total energy consumption denoted as Etotal.

The overall reliability of a design with tasks executed in a sequence is calculated as the

product of the reliability of each task. Moreover, considering the duplication in our models,

we also employ the approach given in Equation (8) to calculate the overall reliability of a

design as given in Equation (35).

(35)Rtotal =
∏

i∈Tasks

(ρi + ρ di − ρi · ρ di)

However, in an ILP model, non-linear functions like this cannot be used. Thus, we employ

the approach of using reliability summation instead of a product as the objective function

in our ILP model, which accomplishes the same task of maximizing the overall design

reliability. Therefore, while the final overall reliability of a design is still calculated as given

in Equation (35), the maximization of the overall reliability is formulated as the objective

function (36) in our ILP formulation.

(36)Maximize Rtotal =
∑

i∈Tasks

ρi +
∑

i∈Tasks

ρ di

The minimization of the overall energy consumption is formulated as the objective function

(37).

48

(37)Minimize Etotal =
∑

i∈Tasks

ϵi

We employ the scalarization technique to formulate our bi-objective problem as a single

objective function given in (38), as its optimal solution will be one of the Pareto optimal

solutions for the original bi-objective problem. The weighted sum of reliability and energy

values are combined, while the parameter α is used to assign the desired weight to either

objective. When α = 1.0, the focus is on optimizing reliability only, whereas, for α =

0.0, we disregard reliability and optimize energy consumption only. In this manner, we can

assign priority to either objective if necessary or keep the balanced bi-objective function

by assigning α = 0.5. The higher the α value, the more priority is given to maximizing

reliability over minimizing energy consumption and vice versa.

Minimize obj = α · (1−Rnorm) + (1− α) · (Enorm) (38)

To be able to employ the weighted scalarization method, we used normalized values of the

total reliability and the total energy consumption (Rnorm and Enorm, respectively), which

are normalized to the range [0,1]. Normalization of the values are performed according to

Equation (39).

xnorm =
x− xmin

xmax − xmin

(39)

The minimum and maximum reliability values of a given circuit used for calculating the

normalized values can be obtained by assigning the least (or most) reliable resources in

the resource library to every task, respectively. Similarly, we can obtain the minimum and

maximum energy expenditure values of a circuit.

49

5.2. Simulated Annealing-Based HLS Method

In this section, we present our SA-based HLS method. We provide details about the

scheduling algorithms used in the task scheduling phase of HLS, resource allocation, initial

solution generation, neighbor selection, initial temperature calculation, and cooling schedule.

The notations used in formulating the initial temperature and acceptance probability

calculations are given in Table 5.2.

Table 5.2 Notations used in SA-based HLS method equations.

T Current temperature
Ni Set of the neighbors of the state i
Ei Energy (cost) of the state i
maxt State after a transition t
mint State before a transition t
t A strictly positive state transition (Emaxt > Emint)
δt Energy (cost) difference between two states
πi Stationary distribution
Pt Probability to generate a transition t when the energy

states are distributed in conformity with πi

pt Probability of accepting a positive transition t
χ(T) Acceptance probability at temperature T
S Random set of strictly positive state transitions
χ̂(T) Acceptance probability based on S
χ0 Desired starting acceptance probability
Pmetropolis Metropolis acceptance probability
αc Cooling constant

5.2.1. Task Scheduling Algorithms

The general unconstrained task scheduling problem can be defined as follows. Let G(V,E)

be a sequencing graph with |V |= n vertices (tasks), and E directed edges that represent task

dependencies (precedence constraints). Also, let L = {li: i = 1..n} represent the latency

(delay) of the tasks in G, where li is the delay of task vi ∈ V . Scheduling of tasks in G is

the problem of determining the start time si of each task vi ∈ V such that the precedence

constraints are satisfied. The overall design latency can be obtained as (sn + ln)− s1.

50

The simplest scheduling problems are unconstrained scheduling problems that do not

consider any resource constraints and for which there exist efficient algorithms that generate

solutions in polynomial time. Scheduling without resource constraints is useful as it can

provide lower or upper bounds on latency that can be used to simplify finding solutions to

constrained problems [6]. In our proposed SA-based method, we use two such algorithms,

namely As Soon As Possible (ASAP) and As Late As Possible (ALAP) scheduling

algorithms [101].

ASAP is useful to obtain a task schedule such that all tasks are scheduled as early as

possible, resulting in the minimum possible latency of the overall design. This is necessary

for our proposed method because the initial solution generation and neighbor selection are

performed randomly. ASAP scheduling provides the lower bound on the design latency,

which tells us if the obtained candidate solution meets the desired latency constraint or not.

Our ASAP scheduling algorithm is presented in Algorithm 2. It starts by assigning Task 0

(NOP) at the control step 0 and proceeds to schedule other tasks in topological order to ensure

that at each step, all predecessors of the task to be scheduled have already been scheduled. It

is necessary to find the latest control step at which any of a task’s predecessors end to obtain

its ASAP start time.

On the other hand, ALAP scheduling is used to obtain a schedule such that each task’s start

time is set to the latest possible control step based on the given latency constraint. This

scheduling is useful as it enables us to compute if a specific task is on the critical path or if

it is flexible such that we can explore a range of possible start times for that particular task

without violating the latency constraint of the final design. This flexibility is referred to as

task mobility (or slack), and it is a useful feature that enables different design decisions to

be made for more optimal solutions. For instance, moving the start time of a mobile task up

could lead to a design with a smaller area while still preserving the overall latency constraint

of the final solution. This is possible because a resource that has already been utilized in

the design can be allocated to the mobile task as a shared resource in some other control

step when other tasks are not using it, and thus, eliminate the necessity for adding another

51

Algorithm 2 As Soon As Possible Scheduling Algorithm
Inputs: s current solution, tord topological ordering of the tasks, n number of the tasks.
Output: lASAP ASAP scheduling of s.

procedure GETASAPSCHEDULE(s, tord, n)
lASAP [0]← 0 ▷ Schedule the start task in control step 0.
scheduled[0]← True
for i = 1..(n-1) do

scheduled[i]← False
end for
j ← 1
while scheduled[n− 1] == False do

id← tord[j] ▷ Get the ID of the next task in topological order.
lASAP [id]← max{lASAP [k] + s[k].latency}, ∀s[k] predecessor of s[id]
scheduled[id]← True
j ← j + 1

end while
return lASAP

end procedure

resource with the same functionality that would be needed if the mobile task were to start

sooner.

The difference between ASAL and ALAP scheduling is illustrated in Figure 5.1, where we

show ASAP and ALAP schedules for differential equation solver DAG presented in Figure

4.3. Note that we assume a delay of one control step for each operation for the purpose of

simplicity.

Tasks 1 through 5 are tasks with zero mobility and are on the critical path. Consequently,

their ALAP and ASAP schedules are the same as moving the start time of any critical task up

would result in the increased overall delay of the circuit. On the contrary, tasks 6 through 11

have some mobility. For example, tasks 8 and 10 can be scheduled anywhere between control

steps 1 and 3. This flexibility is utilized in the List scheduling algorithm for obtaining more

optimal schedules with respect to the design area.

In our ALAP scheduling algorithm presented in Algorithm 3, the latency constraint is

obtained from ALAP scheduling and taken as the start time of the final dummy sink task. It

starts with scheduling the sink task (NOP) first at the control step lASAP [n− 1] and proceeds

52

1
*

2
*

6
*

8
*

3
*

7
*

10
+

11
+

9
+

4
+

5
+

0
NOP

12
NOP

Control
step

1

2

3

4

1
*

2
*

6
*

8
*

3
*

7
*

10
+

11
+

9
+

4
+

5
+

0
NOP

12
NOP

Control
step

1

2

3

4

(a) (b)

Figure 5.1 (a) ASAP schedule of DES, (b) ALAP schedule of DES.

to schedule other tasks in reverse topological order to ensure that at each step, all successors

of the task to be scheduled have already been scheduled. To obtain a task’s ALAP start time,

it is necessary to find a control step at which it can be scheduled so that its earliest successor

will start immediately after its completion.

Contrary to the unconstrained algorithms presented above, scheduling under resource

constraints is an NP-complete problem. In our HLS problem, both latency and area are

given as constraints. The ASAP scheduling can tell us if our design can satisfy the latency

constraint, but to try and meet the area constraint, we also need to perform area-aware

scheduling. The ASAP and ALAP scheduling algorithms do not give any guarantees about

the final design area. In fact, in the given example of the ASAP and ALAP schedules in

Figure 5.1, we observe that ASAP scheduling for that particular circuit results in the need

for usage of four multipliers simply because tasks 1, 2, 6, and 8 are all scheduled in the same

control step. Similarly, ALAP scheduling for the same sample circuit necessitates three

adders because tasks 5, 9, and 11 are scheduled in the same control step.

A more optimal schedule in terms of area is possible if the mobile tasks are scheduled

to minimize resource usage in any given control step. One such alternative schedule is

53

Algorithm 3 As Late As Possible Scheduling Algorithm
Inputs: s current solution, tord topological ordering of the tasks, lASAP ASAP scheduling of
s, n number of the tasks.
Output: lALAP ALAP scheduling of s.

procedure GETALAPSCHEDULE(s, tord, lASAP , n)
lALAP [n− 1]← lASAP [n− 1] ▷ Schedule the sink task at the minimum latency from

ASAP.
scheduled[n− 1]← True
for i = 0..(n-2) do

scheduled[i]← False
end for
j ← n− 2
while scheduled[0] == False do

id← tord[j] ▷ Get the ID of the previous task in topological order.
lALAP [id]← min{lALAP [k]− s[id].latency}, ∀s[k] successor of s[id]
scheduled[id]← True
j ← j − 1

end while
return lALAP

end procedure

illustrated in Figure 5.2, in which, at most two adders and two multipliers are enough to

satisfy the resource needs.

1
*

2
*

6
*

8
*

3
*

7
*

10
+

11
+

9
+

4
+

5
+

0
NOP

12
NOP

Control
step

1

2

3

4

Figure 5.2 An alternative schedule of DES with smaller area.

Mathematical optimization of the constrained scheduling problem, such are our ILP

formulations, is not practical in real life for large problems (e.g., VLSI) as the problem

54

is intractable [68]. Therefore, heuristic approaches are generally used to overcome this

obstacle. A popular heuristic approach to constrained scheduling is List scheduling, which

comes in two forms; either scheduling for minimum latency under the area constraint or

scheduling for the minimum area under the latency constraint.

Our SA-based HLS method employs List scheduling for the minimum area under the latency

constraint. Our approach is presented in Algorithm 4.

Our List scheduling algorithm performs the final scheduling and resource binding as follows.

The ALAP schedule is checked to ensure the obtained schedule produced a feasible solution.

Next, the first task to be scheduled is the start NOP task. All other tasks are tagged as

unscheduled and not ready. The scheduling is performed one control step at a time, starting

from control step 1. At each step, each task’s remaining mobility (slack) is calculated.

Furthermore, the readiness of each task to be scheduled is checked. If any predecessor task

is unscheduled or unfinished, the task is marked as not ready. At this point, we schedule

all ready tasks with the current mobility of 0 as postponing their scheduling would increase

the overall latency. After all critical tasks have been scheduled, we check if any resources

that have already been allocated in the design are free at the current control step. If any of

the resources are available, we can also schedule some of the other ready but still mobile

tasks that can be satisfied with the available resources without needing additional ones. This

procedure is performed for each control step until the last sink task is scheduled.

5.2.2. Initial and Neighbor Solution Generation with Resource Allocation

To generate the initial solution used as the starting state in the SA process of finding the

optimal solution, we randomly assign resources to each application task based on their types.

For example, a task that performs an addition operation is assigned a random adder among

all adders in the resource library. The supply voltage level for each task (the voltage island it

will be placed on) is also assigned randomly. We also make sure that the initial solution is an

acceptable state, i.e., that it meets the given area and latency constraints. Still, we disregard

55

Algorithm 4 Latency-Constrained List Scheduling Algorithm For Minimum Area
Inputs: s current solution, tord topological ordering of the tasks, lASAP ASAP scheduling of s, lALAP ALAP
scheduling of s, n number of the tasks.
Output: lLIST List scheduling of s.

procedure GETLISTSCHEDULE(s, tord, lASAP , lALAP)
if lALAP [0] < 0 then ▷ Checking if ALAP scheduling failed.

return -1
end if
lLIST [0]← 0 ▷ Schedule the start task in control step 0.
scheduled[0]← True
ready[0]← True
for i = 1..(n-1) do

scheduled[i]← False
ready[i]← False

end for
cStep← 1
while scheduled[n− 1] == False do

for i = 1..(n-1) do
mobility[i]← lALAP [i]− cStep ▷ Computing tasks’ remaining mobility.
ready[i]← True ▷ Assume it is ready to be scheduled.
if !scheduled[k] s.t. s[k] precedes s[i] in tord then

ready[i]← False ▷ Revert if an unscheduled precedent task is found.
end if
if scheduled[k] and (lLIST [k] + s[k].latency − 1) > cStep s.t. s[k] precedes s[i] in tord then

ready[i]← False ▷ Revert if an unfinished precedent task is found.
end if

end for
for i = 1..(n-1) do

if ! scheduled[i] and ready[i] and mobility[i] == 0 then
lLIST [i]← cStep ▷ Schedule tasks with 0 mobility immediately.
scheduled[i]← True

end if
end for
Rfree ← resources already used in the design but available at this cStep
for i = 1..(n-1) do

if ! scheduled[i] and ready[i] and s[i].type == r.type s.t. (r ∈ Rfree) then
lLIST [i]← cStep ▷ Schedule another ready task that
scheduled[i]← True ▷ does not need extra resources.
Rfree = Rfree r ▷ Update Rfree.

end if
end for
cStep← cStep+ 1 ▷ Move to the next control step.

end while
return lLIST

end procedure

any considerations about its optimality at this stage. The pseudocode for this procedure is

given in Algorithm 5.

After the random assignment of resources and voltage islands, we perform the scheduling to

56

Algorithm 5 Generating a Random Solution
Inputs: DAG design specification,R resource library, V number of voltage islands.
Output: s a solution.

procedure GENERATERANDOMSOLUTION(DAG,R, V,Λ, λ)
for each task ∈ DAG do

s[task].assignedResource← getRandomResource(R, task.type)
s[task].assignedV oltage← getRandomV oltageLevel(V)

end for
return s

end procedure

obtain the minimum latency and area of the generated design solution because it is necessary

to check if the solution meets the given constraints. The ASAP schedule provides us with

the minimum latency necessary for the obtained allocation, while the List scheduling step

ensures that the final design is scheduled optimally with respect to the overall area based

on the allocated resources. It is discarded if the initial random allocation fails to meet the

latency constraint. However, suppose the area constraint is violated, but the latency of the

design permits further relaxation. In that case, there may still be a way to adjust the obtained

solution to meet both constraints.

This scenario may occur when area constraints are tight, and the generated random solutions

cannot satisfy them after a predetermined number of iterations. In such a scenario, first,

a heuristic area reducing algorithm via schedule modification is applied to try and fit the

area of the generated random solution within the allowed limit if the design latency allows

it. If this attempt also fails, which can happen for the edge cases in which we are trying

to find a solution with an area close to the minimum necessary area for a specific design, a

different initial solution generation approach is employed. We name this approach area and

latency-aware random solution generation.

The pseudocode for our heuristic area reducing algorithm is given in Algorithm 6, and it

works as follows. First, each control step is examined to find the step in which the scheduled

tasks contribute to the maximum area coverage of the design. The idea is to shift the start

time of one of the tasks to reduce the number of resources necessary at that particular control

step. When such a control step is identified, the tasks scheduled in it are examined to find

57

Algorithm 6 Area Reduction Through Schedule Modification Algorithm
Inputs: s current solution, DAG design specification, tord topological ordering of the tasks,
lASAP ASAP scheduling of s, lALAP ALAP scheduling of s, lLIST List scheduling of s.
Output: s modified current solution with smaller area.

procedure REDUCEAREA(s,DAG, tord, lASAP , lALAP , lLIST)
cSteps← s[|DAG|−1].startT ime
maxArea← 0
cStepMax← −1
for i = 1...cSteps do

areaAtcStep← 0
for j ∈ 0...|DAG|−1 do

if s[j].startT ime == i then
areaAtcStep← areaAtcStep+ s[j].assignedResource→ area

end if
end for
if areaAtcStep > maxArea then

maxArea← areaAtcStep
cStepMax← i ▷ Note the cStep that affects the are the most.

end if
end for
taskToMove← −1
maxSlack ← −1
for j ∈ 0...|DAG|−1 do

if s[j].startT ime == cStepMax then
if (lALAP [j]− lASAP [j]) > maxSlack then

taskToMove← j ▷ Find the task in the cStep with maximum mobility.
maxSlack ← lALAP [j]− lASAP [j]

end if
end if

end for
s← recursivelyShiftTasks(taskToMove, s, tord, lLIST , DAG)
return s

end procedure

the task with the highest remaining mobility, hoping that shifting such a task may help us

avoid the negative effect on the overall latency. If no such task exists, one of the critical

tasks will be rescheduled; however, it does not pose an issue as this algorithm is executed

only if the latency constraint allows for such schedule relaxation. We must assure that the

latency constraint allows rescheduling, because finding a mobile task does not guarantee that

its successors will not have to be rescheduled.

58

Once the task to be rescheduled is identified, a recursive function is called to recursively

move the chosen task’s start time and its successors. We present the pseudocode for this

function in Algorithm 7. The start time of the task to reschedule is moved up by one control

step, followed by recursively rescheduling all of its successors (other tasks dependent on its

completion) if their start times are now conflicting with its new shifted end time.

Algorithm 7 Recursive Rescheduling of Dependent Tasks
Inputs: taskID ID of the task to shift, s current solution, tord topological ordering of the
tasks, lLIST List scheduling of s, DAG design specification.
Output: s current solution with modified schedule.

procedure RECURSIVELYSHIFTTASKS(taskID, s, tord, lLIST , DAG)
if Task taskID has not been rescheduled already then

s[taskID].startT ime++
lLIST [taskID] + +
Mark Task taskID as rescheduled.
for i ∈ 0...|DAG|−1 do

endT ime← s[taskID].startT ime+ s[taskID].delay
if DAG[taskID][i] == 1 and endT ime > s[i].startT ime then

s← recursivelyShiftTasks(i, s, tord, lLIST , DAG)
end if

end for
end if
return s

end procedure

The area reducing procedure is called until the desired area is achieved and as long as the

latency constraint allows it. If the area that satisfies the constraint is achieved before the

latency constraint is violated, the solution is accepted for the further annealing process.

Otherwise, the generated solution is marked as unfeasible and dismissed.

Failing to generate a viable starting solution using completely random generation in a

predetermined number of iterations will trigger the second approach of initial solution

generation. This approach also has random elements, even though it uses a heuristic that will

lead to the generation of more area and latency-aware solutions compared to the completely

random method. We present the pseudocode for the area and latency-aware random solution

generation in Algorithm 8.

59

Algorithm 8 Generating an Area and Latency-Aware Random Solution
Inputs: DAG design specification,R resource library, V number of voltage islands.
Output: s a solution.

procedure GENERATEALAWARERANDOMSOLUTION(DAG,R, V,Λ, λ)
for each task ∈ DAG do

coinF lip← randInt(0, 1)
if coinF lip == 0 then ▷ Assign the resource with the minimum area.

task.assignedResource← getMinAreaResource(R, task.type)
else ▷ Assign the resource with the minimum latency.

task.assignedResource← getMinLatencyResource(R, task.type)
end if
task.assignedV oltage← HIGH

end for
return s

end procedure

Area and latency-aware random solution generation is performed such that each task is

randomly assigned either the fastest resource of its type or the resource with the minimum

area. They are all assigned to the same HIGH voltage island to ensure the fast operation of

the initial solution. This predetermined VI allocation is not a problem for finding different

allocations during the annealing process since the generation of a neighbor solution may

change the assigned voltage island.

Generation of a neighbor state (a candidate solution) is also performed randomly. In systems

with many variables, any change in one of the design variables can be considered as a

neighboring state. Hence, we randomly pick a task to be changed and the neighbor selection

criteria, as we can change either the assigned resource or the supply voltage island. In

Algorithm 9, we present the pseudocode for this procedure.

The scheduling algorithms will again be executed to obtain the minimum latency and area of

the candidate design because it is necessary to ensure that also the candidate solution meets

the given latency and area constraints. Otherwise, it cannot be considered a viable candidate.

The same area reduction approach mentioned above is used if necessary and possible to try

and fit the candidate solution within the given constraints before it is discarded as not viable.

60

Algorithm 9 Generating a Candidate Neighbor Solution
Inputs: s current solution, DAG design specification, R resource library, V number of
voltage islands.
Output: s∗ a candidate neighbor solution.

procedure GETRANDOMNEIGHBOR(s,DAG,R, V,Λ, λ)
s∗ ← s
idx← getRandInt(1, |DAG|) ▷ Randomly pick a task to change.
whatToChange← getRandInt(1, 2) ▷ 1 for resource, 2 for voltage.
if whatToChange == 1 then

s∗[taskidx].assignedResource← getRandomResource(R, s∗[taskidx].type)
else if whatToChange == 2 then

s∗[taskidx].assignedV oltage← getRandomV oltageLevel(V)
end if
return s∗

end procedure

5.2.3. Computing the Initial Temperature

The initial temperature should be selected such that it results in a desired starting acceptance

probability. At the beginning of the simulated annealing process, it is often desirable to

choose a relatively high starting acceptance probability, which ensures that some worse

solutions will be accepted, in order to achieve more random exploration of the search space

and guarantee that the algorithm will not get stuck in local optima. In this study, we have

chosen the starting acceptance probability of 0.8.

We adopt an iterative method of calculating the corresponding initial temperature proposed

in [26]. In the following formulations, a state simply refers to a solution to an optimization

problem, whereas energy refers to the cost of its objective function. Stationary distribution

πi is formulated in Equation (40), under the assumption that the generation probability of a

state j is 1/|N(i)| if j ∈ N(i), and 0 otherwise.

πi =
|N(i)|exp(−Ei/T)∑
j|N(j)|exp(−Ej/T)

(40)

61

The cost difference between two states δt is formulated in Equation (41). The probability to

generate a transition t when the energy states are distributed in conformity with πi, namely

Pt, is formulated in Equation (42).

δt = Emaxt − Emint (41)

Pt = πmint

1

|N(mint)|
(42)

Probability of accepting a positive transition pt is formulated in Equation (43).

pt = exp(−δt/T) (43)

Then, the acceptance probability χ(T) can be estimated based on a random set S of strictly

positive transitions as χ̂(T), formulated in Equations (44) and (45). To generate a random set

of positive transitions S, it is enough to randomly generate some states (solutions) and their

neighbors (one neighbor for each state), and save the costs (energies) of their corresponding

objective functions as Emaxt and Emint .

χ̂(T) =

∑
t∈S Pt · pt∑

t∈S Pt

(44)

=

∑
t∈S exp(−Emaxt/T)∑
t∈S exp(−Emint/T)

. (45)

The goal is to find an initial temperature T0 such that the acceptance probability will match

the desired acceptance probability; i.e., χ(T0) = χ0 (χ0 ∈ [0, 1]). T0 can be computed

recursively using Formula (46), where p is a real number ≥ 1. The stopping criteria for the

recursive call is when χ̂(Tn) reaches the value of the desired acceptance probability χ0. The

obtained Tn can be taken as an adequate approximation of the desired initial temperature T0.

62

Tn+1 = Tn
ln(χ̂(Tn))

ln(χ0)

1/p

(46)

We use experimental analysis to take p = 1 in the SA-based HLS method proposed in this

study. A random set of positive transitions S is generated for each application benchmark

prior to the calculation of the initial temperature that satisfies the desired starting acceptance

probability.

We present the pseudocodes of our calculations of the initial temperature in Algorithms (10)

and (11).

Algorithm 10 Calculating the Acceptance Probability
Inputs: T temperature, S random transition set.
Output: paccept acceptance probability.

procedure GETACCEPTANCEPROBABILITY(T, S)
divident← 0.0
divisor ← 0.0
for i = 1...|S| do

divident← divident+ exp
(
−maxS[i]

T

)
divisor ← divisor + exp

(
−minS[i]

T

)
end for
paccept ← divident

divisor

return paccept
end procedure

5.2.4. Annealing Schedule

Several different annealing (cooling) schedules have been proposed in the literature [19,

21, 103–105]. The convergence of an SA-based algorithm towards the optimal solution is

significantly affected by choice of the annealing schedule. Statistical analysis is important if

we wish to adopt the optimal cooling strategy for the problem at hand [103].

The cooling schedule adopted in this study is a frequently used cooling approach known as

the geometric schedule that originates from [19]. It is formulated in Equation (47), where αc

is usually chosen to be a positive constant smaller than but close to 1 (0.8 ≥ αc ≤ 0.99).

63

Algorithm 11 Calculating the Initial Temperature
Inputs: T temperature, S random transition set, χ0 desired starting acceptance probability,
ϵrr acceptance probability error.
Output: T0 initial temperature.

procedure GETINITIALTEMPERATURE(S, χ0, ϵrr)
PcurrentEstimate ← getAcceptanceProbability(T, S)
p← 1.0 ▷ p real number ≥ 1.

Tnew ← T ×
(

ln(PcurrentEstimate)
ln(χ0)

) 1
p

if (PcurrentEstimate − χ0) < ϵrr then
T0 ← Tnew

else
T0 ← getInitialTemperature(Tnew, S, χ0, ϵrr)

end if
return T0

end procedure

(47)Tn+1 = Tn × αc (n = 0, 1, ...)

For calculating the acceptance probability to decide if a worse candidate solution will be

accepted anyway, we adopt the approach presented in [106]. The Metropolis acceptance

probability Pmetropolis is defined as formulated in Equation (48), where i is the current and j

is the candidate neighbor state (solution).

P i,j
metropolis =


exp

(
−Ej−Ei

T

)
if Ej > Ei

1 otherwise
(48)

To choose the most suitable cooling constant αc for our problem, we tried different values of

0.8, 0.95, and 0.99 to analyze the evolution of the probability of accepting a worse candidate

solution as the temperature cools and the annealing process reaches its end. Based on the

obtained results, we adopted αc = 0.95 as it showed the most desired behavior for our

problem. The value of 0.99 resulted in too slow cooling and high acceptance probability

even for very low temperatures, while the value of 0.8 resulted in a longer convergence time.

64

To ensure the temperature never reaches the exact value of 0, which would lead to a division

by 0 when calculating the Metropolis acceptance probability, we use the following cooling

schedule as presented in Algorithm 12.

Algorithm 12 Temperature Cooling
Inputs: T temperature, αc cooling constant.
Output: T new temperature.

procedure GETNEWTEMPERATURE(T, αc)
if T ≤ 0.00001 then

T ← 0.00001
else

T ← T × αc

end if
return T

end procedure

5.2.5. Additional Considerations for SA-Based HLS With Partial DMR

In our SA-based HLS method that employs partial duplication of resources for improved

reliability of the final designs, some considerations necessitated a few modifications to the

algorithms described in previous sections. For the brevity of this section, we only discuss

these modifications without presenting the same algorithms in their entirety for the second

time.

At the initial solution generation stage, it is necessary to allow each task to be assigned either

one or two resources. We use a duplication percentage constant φdup to tune the amount of

duplication introduced at this stage. If we set φdup = 0.5, approximately half of the tasks

will be duplicated. The pseudocode for this approach is given in Algorithm 13.

For tight area constraints, starting with less duplication is better to more easily find a starting

solution. The same approach is employed for the area and latency-aware random solution

generation in case random generation fails to produce a viable initial solution. It is important

to note that this approach does not limit the amount of duplication in the final design, as it

can change during the SA process of finding better solutions through an adequate neighbor

generation.

65

Algorithm 13 Generating a Random Solution With Partial DMR
Inputs: DAG design specification,R resource library, V number of voltage islands, φdup duplication
percentage constant.
Output: s a solution.

procedure GENERATERANDOMPDSOLUTION(DAG,R, V,Λ, λ, φdup)
for each task ∈ DAG do

s[task].assignedResource← getRandomResource(R, task.type)
s[task].assignedV oltage← getRandomV oltageLevel(V)
if getRandDouble(0.0, 1.0) < φdup then

s[task].assignedDuplicateResource← getRandomResource(R, task.type)
s[task].assignedDuplicateV oltage← getRandomV oltageLevel(V)

else
s[task].assignedDuplicateResource← NULL

end if
end for
return s

end procedure

In addition to selecting which task to change and if either the assigned resource or voltage

island should be changed to obtain a neighbor, we also have some additional options for a

candidate solution selection in the partial duplication method. When a task to be changed

is selected, we can choose between changing the main allocated resource or voltage island

of the task or changing the duplicated ones. Furthermore, if the duplicate is to be changed,

but the task has not been assigned a duplicate resource, we can opt to assign a duplicate

resource and obtain a neighbor in that way. Similarly, we could choose to remove the

duplicate resource. This approach ensures that the amount of duplication at any stage of

the annealing process can change if it results in getting closer to the optimal solution.

As far as the scheduling algorithms are concerned, duplicated tasks must also be considered

since any dependent task must wait for all of its predecessors, including their duplicates, to

finish before it can be scheduled. Hence, when looking for the latest end time among all

predecessor tasks, the start times and latency of the duplicated predecessors must also be

inspected. Additionally, in List scheduling, duplicated tasks should also be considered when

trying to optimize the area.

Similar considerations are taken in our area reduction through the schedule modification

algorithm. When looking for the control step, the highest area concentration caused by the

66

tasks scheduled in that control step, we also check the contribution of the duplicated tasks,

if any. Similarly, when employing recursive rescheduling of dependent tasks, we inspect the

duplicated successors when checking if the start time conflicts with the new end time of the

rescheduled task before deciding if they should be rescheduled as well or not.

The initial temperature calculations are performed using the same approach described

in Section 5.2.3.. Finally, we use the same annealing schedule with a difference of

experimentally selecting the cooling constant αc = 0.99 to achieve a slightly slower cooling

rate shown in Figure 5.3.

Figure 5.3 Temperature cooling rate for αc = 0.99.

5.2.6. SA-Based HLS Algorithm

We present the pseudocode for the proposed SA-based reliability and energy-oriented HLS

method in Algorithm 14. Before starting the simulated annealing optimization process, we

first generate a random initial solution and ensure that it meets the given area and latency

constraints. We do not make any assumptions regarding its optimality at this point. Given

different constraints, it may be easier or harder to randomly generate a viable solution;

67

Algorithm 14 SA-Based HLS Method Pseudocode
Inputs: DAG design specification, R resource library, S random transition set, χ0 desired starting acceptance probability, Λ area
constraint, λ latency constraint, V number of voltage islands, ϵrr acceptance probability error, nIter number of SA iterations, αc cooling
constant, k maximum number of allowed iterations for initial solution generation.
Output: s the final solution.
1: s← NULL ▷ To return NULL if solution is infeasible.
2: count← 0
3: while (getArea(s,R, V) > Λ or getLatency(s) > λ) and count < k do
4: s← generateRandomSolution(DAG,R, V,Λ, λ)
5: tord ← getTopologicalOrdering(DAG)
6: lASAP ← getASAPSchedule(s, tord, |DAG|) ▷ Get the shortest possible latency.
7: lALAP ← getALAPSchedule(s, tord, lASAP , |DAG|) ▷ Needed for the task mobility.
8: lLIST ← getListSchedule(s, tord, lASAP , lALAP , |DAG|) ▷ Reduce the area.
9: if getArea(s,R, V) > Λ or getLatency(s) < λ then
10: while getArea(s,R, V) > Λ and getLatency(s) < λ do
11: s← reduceArea(s,DAG, tord, lASAP , lALAP , lLIST) ▷ Reduce the area further.
12: end while
13: end if
14: end while
15: if count ≥ k then ▷ The completely random generation failed.
16: count← 0
17: while (getArea(s) > Λ or getLatency(s) > λ) and count < k do
18: s← generateALAwareRandomSolution(DAG,R, V,Λ, λ)
19: lASAP ← getASAPSchedule(s, tord, |DAG|) ▷ Get the shortest possible latency.
20: lALAP ← getALAPSchedule(s, tord, lASAP , |DAG|) ▷ Needed for the task mobility.
21: lLIST ← getListSchedule(s, tord, lASAP , lALAP , |DAG|) ▷ Reduce the area.
22: if getArea(s,R, V) > Λ or getLatency(s) < λ then
23: while getArea(s) > Λ and getLatency(s) < λ do
24: s← reduceArea(s,DAG, tord, lASAP , lALAP , lLIST) ▷ Reduce the area further.
25: end while
26: end if
27: end while
28: end if
29: if count < k then ▷ A viable initial solution was successfully generated.
30: Tstart ← 100.0 ▷ Some arbitrarily high start temperature.
31: T ← getInitialTemperature(Tstart, S, χ0, ϵrr)
32: for i = 1...nIter do
33: s∗ ← getRandomNeighbor(s,DAG,R,Λ, λ)
34: l∗ASAP ← getASAPSchedule(s∗, tord, |DAG|) ▷ Get the shortest possible latency.
35: l∗ALAP ← getALAPSchedule(s∗, tord, l

∗
ASAP , |DAG|) ▷ Needed for the task mobility.

36: l∗LIST ← getListSchedule(s∗, tord, l
∗
ASAP , l∗ALAP , |DAG|) ▷ Reduce the area.

37: if getArea(s∗,R, V) > Λ or getLatency(s∗) < λ then
38: while getArea(s∗,R, V) > Λ and getLatency(s∗) < λ do
39: s∗ ← reduceArea(s∗, DAG, tord, l

∗
ASAP , l∗ALAP , l∗LIST) ▷ Reduce the area further.

40: end while
41: end if
42: if getArea(s∗,R, V) ≤ Λ or getLatency(s∗) ≤ λ then ▷ If candidate is viable.
43: Ecurrent ← getObjectiveFunctionCost(s)
44: Enew ← getObjectiveFunctionCost(s∗)
45: if E(new) > E(current) then
46: s← s∗ ▷ Accept the better candidate solution.
47: else if getMetropolisAcceptanceProbability (Ecurrent, Enew, T) ≥ rand(0, 1) then
48: s← s∗ ▷ Accept the worse candidate solution anyway.
49: end if
50: end if
51: T ← getNewTemperature(T, αc) ▷ Apply the cooling schedule.
52: end for
53: end if
54: return s

hence, we assign an arbitrary number of allowed generation trials before calling the solution

infeasible. In our experimental setting, we allowed for 1000 iterations.

68

Once a viable starting solution is found, the SA process may start looking for better

candidates. First, the initial temperature is calculated based on the desired acceptance

probability and the set of random positive transitions. The SA process is repeated the

predetermined number of iterations. In each iteration, a candidate neighbor solution is

generated, and if it meets the given constraints, it is considered for acceptance. Better

candidates are always accepted, whereas worse candidates are accepted based on the

Metropolis probability affected by the current system temperature. As the temperature cools,

the probability of accepting a worse candidate decreases.

The overall latency of a design is easily obtained by looking at the start time of the last sink

task. On the other hand, to calculate the area of a design, we use the following approach

presented in Algorithm 15. Since we assume a pipelined datapath, we consider each control

step for the tasks scheduled in it and look for the maximum number of used resources at each

control step per each voltage island (as it has been formulated in Equation (31) in Section

5.1.). The maximum sum of the area of all resources scheduled at any control step under all

supply voltage levels gives us the overall design area.

We use the same objective function given in (38) that optimizes both reliability and energy

according to the parameter α used to assign the desired priority to either objective. The

method getObjectiveFunctionCost(<solution>) returns the weighted sum of

reliability and energy values, and is used to search for Pareto optimal solutions for the

bi-objective problem at hand.

69

Algorithm 15 Area Calculation Algorithm
Inputs: s current solution,R resource library, V number of voltage islands.
Output: maxArea area of the solution s.

procedure GETAREA(s,R, V)
cSteps← s[|s|−1].startT ime
resourceCountAtCStepPerV dd[|R|][V][cSteps]← 0
for i = 1...cSteps do

for j = 1...|R| do
if s[j].startT ime == i then

resourceCountAtCStepPerV dd[j][s[j].assignedV oltage][i] + +
end if

end for
end for
maxArea← 0
maxCountOfResourcesAtV dd[|R|][V]← 0
for i = 1...|R| do

for j = 1...V do
maxCountOfResourceiAtV dd[j]← 0
for k = 1...cSteps do

if maxCountOfResourceiAtV dd[k] < resourceCountAtCStepPerV dd[i][j][k] then
maxCountOfResourceiAtV dd[k]← resourceCountAtCStepPerV dd[i][j][k]

end if
end for
maxCountOfResourcesAtV dd[i][j]← maxCountOfResourceiAtV dd[j]

end for
end for
for i = 1...|R| do

for j = 1...V do
maxArea = maxArea+maxCountOfResourcesAtV dd[i][j]×R[i].area

end for
end for
return s

end procedure

70

6. EXPERIMENTAL RESULTS AND DISCUSSION

We tested the performance of our proposed methods through several exhaustive experiments.

We implemented our ILP models in Mosel modeling language and conducted the

experiments with FICO Xpress optimizer [107]. SA-based HLS method was implemented

in the C programming language. Mosel and C codes are given in APPENDIX A. We used

the four most commonly used benchmarks in literature: Differential Equation Solver (DES),

Finite Impulse Response Filter (FIR), Auto-Regressive (AR) filter, and Elliptic Wave Filter

(EWF). The summary of each benchmark is presented in Table 6.1. Interested readers

may find the dataflow graphs with more detailed specifications of the used benchmarks in

APPENDIX B.

Table 6.1 Benchmark specifications: the number of nodes, edges and, types of operations in their
respective dataflow graphs.

Benchmark Nodes Edges Addition Operations Multiplication Operations

DES 11 8 5 6
FIR 23 22 15 8
EWF 26 40 26 0
AR 28 30 12 16

The resource library used in the experiments is given in Table 4.1, where each resource’s

area, latency, reliability, and energy consumption values are listed under low, medium, and

high voltage levels. The latency is measured in control time steps (e.g., clock cycles), the

area is measured in units, and the energy consumption is measured in nanojoules (nJ).

To set the basis for our experiments, we first obtained the minimum area and latency values

that can be given as the constraints to ensure that at least one feasible solution exists for the

given constraints. To obtain the minimum area constraints for each benchmark, we assigned

the resources with the smallest area to each task. Later, these constraints were gradually

relaxed to allow the design solutions with faster and more reliable resources with a bigger

area. On the other hand, we used As Soon As Possible (ASAP) scheduling algorithm to

obtain the minimum performance constraints. This scheduling algorithm assigns the earliest

possible start time for each task based on the task dependencies; thus, it provides the upper

71

bound for the latency of an application [6]. Latency constraints are also gradually increased

throughout the experiments to allow for the allocation of different and slower but more

reliable resources, as it can improve the overall design reliability. Furthermore, it will enable

slower execution of the same resources when operating under lower supply voltages, which

can result in more energy-efficient designs.

The experimental setup includes comprehensive tests for the varying area and performance

constraints, varying numbers of supply voltages, and different α values through which we can

assign weighted priority to either of the objective functions if desired. Our formulation of

the bi-objective function as the weighted sum of the normalized reliability and energy values

given in Equation (38) allows us to assign different weights (priorities) to either optimization

goal as desired by changing the parameter α.

In our exhaustive experiments performed over all the benchmarks with the varying latency

and area constraints, we conduct tests with the α values of 1.0 to prioritize reliability

optimization above everything else, 0.5 to look for the Pareto-optimal solutions where both

objectives are equally considered, and 0.0 to optimize energy consumption only, without any

reliability considerations. More fine-grained weight changes were also performed on a single

benchmark to show how fine-tuning the objective function affects the reliability and energy

of the final designs, especially in the presence of multi-supply voltages (see Subsection 6.4.).

The experiments were performed on a desktop computer with the following configuration:

Intel Core(TM)2 Duo CPU E8500, at 3.16 GHz, with two cores, two logical processors, and

a total physical memory of 6.00 GB.

6.1. Comparison of ILP and GA-Based Methods With DMR

In our first set of experiments, we compare our partial and full DMR ILP models to the

GA-based selective DMR method proposed in [96]. We use the following abbreviations to

denote the methods that are being compared:

• ILP-PD: Partial DMR ILP model,

72

• ILP-PD-C: Adaptive partial DMR ILP model with either the energy constraint for α =

1 or reliability constraint for α = 0 from GA-based partial duplication method results

for the same experiment configuration (same area and latency constraints),

• ILP-FD: Full DMR ILP model,

• GA-SD: GA-based selective duplication from [96].

For the purpose of a fair comparison, the set of experiments in this subsection was carried

out over two voltage supply levels: high and low because we compare the results with the

results of the GA-SD method that were obtained under only two voltage levels.

In the first column of the result tables given in the following subsections, the value of the

parameter α used for that specific set of experiments is given. The second column defines

the values of the latency (L) and area (A) constraints used in those particular test cases. The

subsequent columns denoted by the method abbreviations present the resulting reliability or

energy consumption values for each test case, respectively. Finally, the columns denoted by

delta (∆) indicate the percentage change of the ILP results relative to the GA results. We are

interested in percentage change increase for the reliability values since higher fault tolerance

indicates a more reliable solution. Similarly, a decrease in percentage change for the energy

consumption values is desirable, as lower energy expenditure indicates a better solution. For

some experiment configurations, fully duplicated designs are not feasible and are marked

with ‘-’.

6.1.1. Reliability Optimization Results Discussion

In the first set of experiments, we assign the parameter α = 1.0 to focus only on reliability

optimization, disregarding energy costs completely. Comparison of the reliability results of

ILP and GA duplication methods for all benchmarks are given in Table 6.2.

From the given table that presents reliability results for α = 1.0 where the objective is

to maximize the reliability without any consideration about the energy consumption, it is

73

Table 6.2 Comparison of the reliability results of ILP and GA duplication methods for all
benchmarks when α = 1.0.

(L, A) ILP-PD ILP-PD-C ILP-FD GA-SD ILP-PD/GA-SD ILP-PD-C/GA-SD ILP-FD/GA-SD
DES Reliability Results ∆ (%)

(28,20) 0.993795 0.993795 0.999871 0.982875 1.11 1.11 1.73
(28,30) 0.999821 0.993840 0.999821 0.982875 1.72 1.12 1.72
(28,40) 0.999821 0.995805 0.999821 0.982875 1.72 1.32 1.72
(25,20) 0.993640 0.993640 - 0.971069 2.32 2.32 -
(25,30) 0.999653 0.994655 0.999653 0.971069 2.94 2.43 2.94
(25,40) 0.999653 0.994667 0.999653 0.971069 2.94 2.43 2.94

Average ∆ (%): 1.60 1.34 1.58
EWF Reliability Results ∆ (%)

(30,10) 0.995615 0.885586 0.995615 0.826462 20.47 7.15 20.47
(30,20) 0.997625 0.989771 0.997625 0.826462 20.71 19.76 20.71
(30,30) 0.997625 0.989771 0.997625 0.826462 20.71 19.76 20.71
(40,10) 0.995615 0.995615 0.995615 0.973232 2.30 2.30 2.30
(40,20) 0.998966 0.995330 0.998966 0.952262 4.90 4.52 4.90
(40,30) 0.998966 0.995758 0.998966 0.973232 2.64 2.31 2.64
(50,10) 0.997067 0.996963 0.997097 0.988461 0.87 0.86 0.87
(50,20) 0.999638 0.996963 0.999638 0.988461 1.13 0.86 1.13

Average ∆ (%): 8.19 6.39 8.19

FIR Reliability Results ∆ (%)

(30,20) 0.990752 0.990752 - 0.841248 17.77 17.77 -
(35,20) 0.990907 0.990907 - 0.930428 6.50 6.50 -
(40,20) 0.991061 0.991061 - 0.947032 4.65 4.65 -
(50,20) 0.995987 0.991370 - 0.977758 1.86 1.39 -
(35,30) 0.998969 0.994278 0.998802 0.937610 6.54 6.04 6.53
(40,30) 0.999305 0.990316 0.998802 0.972032 2.81 1.88 2.75
(45,30) 0.999641 0.986848 0.998802 0.985077 1.48 0.18 1.39
(50,30) 0.999809 0.994143 0.998802 0.977758 2.26 1.68 2.15

Average ∆ (%): 5.48 5.01 3.21

AR Reliability Results ∆ (%)

(65,20) 0.999972 0.984852 0.999972 0.984852 1.54 0.00 1.54
(50,30) 0.998797 0.981463 0.998797 0.964155 3.59 1.80 3.59
(55,30) 0.999300 0.994155 0.999300 0.994155 0.52 0.00 0.52
(60,30) 0.999804 0.989493 0.999804 0.989493 1.04 0.00 1.04
(50,40) 0.998797 0.990321 0.998797 0.976516 2.28 1.41 2.28
(55,40) 0.999300 0.989124 0.999300 0.989124 1.03 0.00 1.03

Average ∆ (%): 1.67 0.53 1.67

evident that all of the proposed ILP methods perform better than the GA-based method,

offering an average increase in reliability up to 8.19%. This improvement goes up to more

than 20% for some individual designs with the full duplication-based and partial duplication

without constraints ILP models, while it can reach up to over 17% with ILP-PD-C.

At the same time, if we consider Table 6.3 that presents only the average change in energy

74

consumption results for the same experiment setups, we observe that even though full DMR

can increase the energy consumption up to 70%, the adaptive partial DMR can even achieve

an average decrease in energy expenditure of up to more than 5%. For the sake of clarity in

this section, the full comparison of the energy results for this set of experiments is presented

in Table C.1 in APPENDIX C.

Table 6.3 Average percentage change in the energy results of ILP-based models compared to GA
duplication method for all benchmarks when α = 1.0.

Average ∆ (%) in Energy Consumption
Benchmark ILP-PD/GA-SD ILP-PD-C/GA-SD ILP-FD/GA-SD

DES 42.97 -4.46 69.67
EWF 59.40 -1.61 59.66
FIR 34.19 -5.52 59.63
AR 71.50 -0.27 71.50

In summary, when compared to GA-SD, our adaptive ILP-PD-C model that can also take the

energy and reliability constraints generates solutions with an average increase in reliability of

up to 6.39% while also decreasing the energy consumption up to more than 5% on average,

even when the only objective is to maximize reliability, while energy considerations are

entirely ignored.

6.1.2. Energy Optimization Results Discussion

In this set of experiments, we assign the parameter α = 0.0 to focus only on energy

optimization, disregarding reliability completely. Comparison of the energy results of ILP

and GA duplication methods for all benchmarks are given in Table 6.4.

From the given tables that present energy consumption results for α = 0.0, where the

objective is to minimize the energy cost without any consideration about the reliability, it

is evident that our ILP-PD and ILP-PD-C models perform better than GA-SD for every

benchmark, offering an average decrease of energy consumption of up to 69%.

At the same time, if we consider Table 6.5 that presents only the average change in reliability

results for the same experiment setups, we can observe that our ILP-PD-C model generates

75

Table 6.4 Comparison of the energy results of ILP and GA duplication methods for all benchmarks
when α = 0.0.

(L, A) ILP-PD ILP-PD-C ILP-FD GA-SD ILP-PD/GA-SD ILP-PD-C/GA-SD ILP-FD/GA-SD
DES Energy Results ∆ (%)

(28,20) 505.69 505.69 - 917.67 -44.89 -44.89 -
(28,30) 457.94 461.41 985.56 1004.73 -54.42 -54.08 -1.91
(28,40) 457.94 461.41 955.94 1004.73 -54.42 -54.08 -4.86
(25,20) 509.35 512.82 - 993.00 -48.71 -48.36 -
(25,30) 484.91 507.97 1012.41 993.00 -51.17 -48.84 1.95
(25,40) 483.08 492.55 980.38 993.00 -51.35 -50.40 -1.27

Average ∆ (%): -50.83 -50.11 -1.52
EWF Energy Results ∆ (%)

(30,10) 125.40 125.40 312.00 231.00 -45.71 -45.71 35.06
(30,20) 117.78 121.95 238.80 230.00 -48.79 -46.98 3.83
(30,30) 116.65 129.86 221.68 241.00 -51.60 -46.12 -8.02
(40,10) 106.96 115.30 216.84 175.72 -39.13 -34.38 23.40
(40,20) 105.56 112.50 197.24 168.08 -37.20 -33.07 17.35
(40,30) 105.56 113.20 197.24 160.44 -34.21 -29.44 22.94
(50,10) 100.66 127.78 216.84 191.00 -47.30 -33.10 13.53
(50,20) 99.96 116.61 184.64 167.38 -40.28 -30.33 10.31

Average ∆ (%): -43.03 -37.39 14.80

FIR Energy Results ∆ (%)

(30,20) 716.70 734.05 - 1843.00 -61.11 -60.17 -
(35,20) 523.71 541.06 - 1219.14 -57.04 -55.62 -
(40,20) 514.86 539.47 - 1187.14 -56.63 -54.56 -
(50,20) 506.27 527.09 - 1278.50 -60.40 -58.77 -
(35,30) 520.75 538.80 1051.25 1193.14 -56.35 -54.84 -11.89
(40,30) 510.60 529.65 1046.19 1292.47 -60.49 -59.02 -19.05
(45,30) 507.67 527.82 1006.44 1173.81 -56.75 -55.03 -14.26
(50,30) 505.57 526.39 1001.98 1277.80 -60.43 -58.80 -21.59

Average ∆ (%): -58.65 -57.10 -16.70

AR Energy Results ∆ (%)

(65,20) 955.98 960.31 2848.00 2804.72 -65.92 -65.76 1.54
(50,30) 1151.93 1156.10 2691.35 3344.00 -65.55 -65.43 -19.52
(55,30) 1076.78 1077.48 2508.92 3961.00 -72.82 -72.80 -36.66
(60,30) 961.90 967.90 2435.60 3945.00 -75.62 -75.47 -38.26
(50,40) 1145.74 1164.52 2522.80 3179.00 -63.96 -63.37 -20.64
(55,40) 1051.64 1056.51 2279.00 3494.00 -69.90 -69.76 -34.77

Average ∆ (%): -68.96 -68.76 -24.72

solutions with higher reliability for every benchmark. The improvement in reliability can

reach up to 24.58% percent on average, even though reliability optimization is not an

objective in this set of experiments. For the sake of clarity in this section, the full comparison

of the reliability results for this set of experiments is presented in Table C.2 in APPENDIX

C.

76

Table 6.5 Average change in the reliability results of ILP-based models compared to GA duplication
method for all benchmarks with α = 0.0.

Average ∆ (%) in reliability
Benchmark ILP-PD/GA-SD ILP-PD-C/GA-SD ILP-FD/GA-SD

DES -4.56 1.32 7.09
EWF 9.22 7.19 9.22
FIR -7.88 24.58 64.78
AR -4.71 0.57 21.33

ILP-FD also performs well, obtaining design solutions with better reliability values for

all benchmarks than GA-SD, even though the only consideration is minimizing energy

consumption in this set of experiments. This increase in the overall reliability varies from

7.09% to 64.78% on average for different benchmarks, while at the same time, the induced

extra energy cost does not exceed 14.80% on average. For all benchmarks except EWF,

the obtained design solutions even showed less energy consumption than their GA-SD

counterparts, with energy savings of up to 24.72% percent.

In summary, compared to GA-SD, our adaptive ILP-PD-C model, which can be customized

by adding the reliability constraint, generates solutions with an average decrease in energy

consumption of up to 69%. At the same time, their reliability is also boosted up to an

average of 24% even when the only objective is to minimize the energy cost, while reliability

considerations are completely ignored.

6.1.3. Joint Reliability and Energy Optimization Results Discussion

In this set of experiments, we assign the parameter α = 0.5 to optimize both reliability

and energy costs simultaneously. Comparison of the reliability and energy results of the

bi-objective partial DMR-based ILP and GA duplication methods for all benchmarks are

given in Table 6.6.

The results demonstrate that our ILP-PD method generates better solutions than the GA-SD

method for all benchmarks. The solution designs’ reliability is improved from 1.63% for

the DES benchmark to 27.43% for the EWF benchmark on average. At the same time, the

77

Table 6.6 Comparison of the reliability and energy results of ILP and GA-based partial duplication
methods for all benchmarks with α = 0.5.

Reliability Results Energy Results Reliability Results Energy Results

DES AR

(L, A) ILP-PD GA-SD ∆ (%) ILP-PD GA-SD ∆ (%) (L, A) ILP-PD GA-SD ∆ (%) ILP-PD GA-SD ∆ (%)

(28,20) 0.993175 0.992875 0.03 540.00 1,029.00 -47.52 (65,20) 0.999972 0.998018 0.20 2,848.00 4,026.00 -29.26
(28,30) 0.995197 0.963088 3.33 985.56 999.90 -1.43 (50,30) 0.998797 0.881482 13.31 2,764.00 3,678.00 -24.85
(28,40) 0.998576 0.963088 3.68 963.80 999.90 -3.61 (55,30) 0.999300 0.987646 1.18 2,800.00 4,020.00 -30.35
(25,20) 0.993175 0.991069 0.21 540.00 1,023.00 -47.21 (60,30) 0.999804 0.989493 1.04 2,836.00 2,444.00 16.04
(25,30) 0.998151 0.986044 1.23 940.00 1,001.00 -6.09 (50,40) 0.998280 0.884995 12.80 2,542.24 3,513.00 -27.63
(25,40) 0.998720 0.986044 1.29 990.07 1,001.00 -1.09 (55,40) 0.998277 0.948816 5.21 2,468.92 3,205.00 -22.97

Average ∆ (%): 1.63 -17.83 Average ∆ (%): 5.62 -19.84

EWF FIR

(L, A) ILP-PD GA-SD ∆ (%) ILP-PD GA-SD ∆ (%) (L, A) ILP-PD GA-SD ∆ (%) ILP-PD GA-SD ∆ (%)

(30,10) 0.945483 0.754100 25.38 288.00 246.00 17.07 (35,15) 0.977824 0.928654 5.29 790.00 1,753.00 -54.93
(30,20) 0.987541 0.754100 30.96 238.80 246.00 -2.93 (40,15) 0.977824 0.862414 13.38 790.00 1,898.00 -58.38
(30,30) 0.986335 0.754100 30.80 227.82 246.00 -7.39 (35,20) 0.981620 0.790357 24.20 624.48 1,319.25 -52.66
(40,10) 0.985131 0.754100 30.64 216.84 246.00 -11.85 (40,20) 0.981620 0.792690 23.83 624.48 1,314.41 -52.49
(40,20) 0.940980 0.754100 24.78 197.24 246.00 -19.82 (50,20) 0.975643 0.872780 11.79 569.58 1,219.12 -53.28
(40,30) 0.940980 0.754100 24.78 197.24 246.00 -19.82 (35,30) 0.997436 0.949710 5.03 1,068.96 1,902.00 -43.80
(50,10) 0.985131 0.754100 30.64 216.84 246.00 -11.85 (45,30) 0.991363 0.935407 5.98 1,014.06 1,275.14 -20.47
(50,20) 0.915808 0.754100 21.44 185.34 246.00 -24.66 (50,30) 0.991363 0.961537 3.10 1,014.06 1,281.14 -20.85

Average ∆ (%): 27.43 -10.16 Average ∆ (%): 12.32 -40.59

energy cost is significantly reduced for all benchmarks. The energy savings can reach up to

40% on average.

Comparison of the reliability and energy results of the bi-objective full DMR-based ILP and

partial GA duplication methods for all benchmarks are given in Table 6.7.

Table 6.7 Comparison of the reliability and energy results of ILP full duplication method with
GA-based partial duplication method for all benchmarks with α = 0.5.

Reliability Results Energy Results Reliability Results Energy Results

DES AR

(L, A) ILP-FD GA-SD ∆ (%) ILP-FD GA-SD ∆ (%) (L, A) ILP-FD GA-SD ∆ (%) ILP-FD GA-SD ∆ (%)

(31,30) 0.999985 0.985354 1.48 1044.55 1,091.64 -4.31 (65,20) 0.999972 0.998018 0.20 2,848.00 4,026.00 -29.26
(28,30) 0.999644 0.963088 3.80 1033.98 999.90 3.41 (50,30) 0.998797 0.881482 13.31 2,764.00 3,678.00 -24.85
(28,40) 0.999642 0.963088 3.80 985.10 999.90 -1.48 (55,30) 0.999300 0.987646 1.18 2,800.00 4,020.00 -30.35
(25,30) 0.999644 0.986044 1.38 1033.98 1,001.00 3.29 (50,40) 0.998280 0.884995 12.80 2,542.24 3,513.00 -27.63
(25,40) 0.999650 0.986044 1.38 1024.22 1,001.00 2.32 (55,40) 0.998277 0.948816 5.21 2,468.92 3,205.00 -22.97

Average ∆ (%): 2.37 0.65 Average ∆ (%): 6.54 -27.01

EWF FIR

Reliability Results Energy Results Reliability Results Energy Results
(L, A) ILP-FD GA-SD ∆ (%) ILP-FD GA-SD ∆ (%) (L, A) ILP-FD GA-SD ∆ (%) ILP-FD GA-SD ∆ (%)

(30,30) 0.986335 0.754100 30.80 227.82 246.00 -7.39 (35,30) 0.998259 0.949710 5.11 1092.26 1,902.00 -42.57
(40,30) 0.985131 0.754100 30.64 216.84 246.00 -11.85 (40,30) 0.998754 0.771518 29.45 1106.24 1,319.25 -16.15
(50,10) 0.985131 0.754100 30.64 216.84 246.00 -11.85 (45,30) 0.998918 0.935407 6.79 1110.90 1,275.14 -12.88
(50,20) 0.985131 0.754100 30.64 216.84 246.00 -11.85 (50,30) 0.998918 0.961537 3.89 1110.90 1,281.14 -13.29

Average ∆ (%): 30.68 -10.74 Average ∆ (%): 11.31 -21.22

78

The results presented in Table 6.7 demonstrate how using full instead of partial modular

redundancy when the constraints can be met will yield even more reliable final designs. The

reliability of the solution designs is improved as expected since a full DMR-based method is

being compared to a partial DMR-based method. The reliability improvement ranges from

2.37% for the DES benchmark to 30.68% for the EWF benchmark on average. Furthermore,

the results demonstrate that our ILP-FD method also generates more energy-aware solutions

overall when compared to the GA-SD method. The energy cost is not significantly affected

for the smallest DES benchmark; however, the energy cost is notably reduced for all other

benchmarks. The energy savings can even reach up to 27% on average.

In summary, we observe that both partial duplication-based and full DMR-based models

have their advantages in some cases. If the most significant design concern is to obtain

designs with maximum reliability without any energy concerns, our ILP-FD model will be a

good choice as it will generate the designs with the highest possible reliability for the given

area and latency constraints. On the other hand, if the goal is to obtain more energy-aware

designs, the ILP-PD-C model generates the most desirable solutions overall, especially

when the objective is to optimize one of the parameters disregarding the other. Finally,

when optimizing both reliability and energy consumption simultaneously, the ILP-PD model

generates far superior solutions to other proposed methods. Sample solutions without and

with partial DMR obtained from the ILP models for the DES benchmark for varying α values

are presented in Figures C.1, C.2, and C.3 in APPENDIX C.

6.2. Comparison of SA-Based Method With ILP and GA-Based HLS

Methods

In this set of experiments, we compare our SA-based HLS method with the ILP model and

GA-based HLS method proposed in [96]. We use the following abbreviations to denote the

methods that are being compared:

• ILP-ND: ILP model without duplication,

79

• GA-ND: GA-based HLS method without duplication from [96],

• SA-ND: The proposed SA-based HLS method.

For the purpose of a fair comparison, the set of experiments in this subsection was also

carried out over DES, FIR, EWF, and AR benchmarks under two voltage supply levels: high

and low, because we compare the results of the proposed SA-ND method with the results of

the ILP-ND and GA-ND methods that were obtained under only two voltage levels for those

specific benchmarks.

6.2.1. Reliability Optimization Results Discussion

In this set of experiments, we assign the parameter α = 1.0 to focus only on reliability

optimization, disregarding energy costs completely. Comparison of the reliability results of

SA-ND with the results obtained from ILP-ND and GA-ND methods for all four considered

benchmarks are given in Table 6.8.

From the given table that presents reliability results for α = 1.0 where the objective is to

maximize the reliability without any consideration about the energy consumption, it can be

observed that the proposed SA-ND method generates the optimal solutions for almost all test

cases. Only for the AR benchmark slightly worse solutions were generated in a couple of test

cases compared to the results of the ILP-ND method. Nevertheless, the average percentage

change is negligible.

On the other hand, the proposed SA-ND method outperformed the other metaheuristic

GA-ND method in all test cases, except for one for which it produced the same result, for

which the GA-based HLS method produced worse results compared to the ILP-ND. The

average improvement of SA-ND over GA-ND in final design reliability reached up to 2.31%

for the FIR benchmark.

At the same time, if we consider Table 6.9 that presents only the average change in energy

consumption results for the same experiment setups in which energy considerations have

80

Table 6.8 Comparison of the reliability results of SA-based method with ILP and GA-based methods
for all benchmarks when α = 1.0.

(L, A) SA-ND ILP-ND GA-ND SA-ND/ILP-ND SA-ND/GA-ND

DES Reliability Results ∆ (%)

(31,20) 0.989055 0.989055 0.989055 0.00 0.00
(31,30) 0.989055 0.989055 0.989055 0.00 0.00
(28,20) 0.977174 0.977174 0.977174 0.00 0.00
(28,30) 0.977174 0.977174 0.977174 0.00 0.00
(28,40) 0.977174 0.977174 0.977174 0.00 0.00
(25,20) 0.965436 0.965436 0.965436 0.00 0.00
(25,30) 0.965436 0.965436 0.965436 0.00 0.00
(25,40) 0.965436 0.965436 0.965436 0.00 0.00

Average ∆ (%) 0.00 0.00

EWF Reliability Results ∆ (%)

(30,10) 0.822671 0.822671 0.793380 0.00 3.69
(30,20) 0.822671 0.822671 0.793380 0.00 3.69
(30,30) 0.822671 0.822671 0.793380 0.00 3.69
(40,10) 0.906176 0.906176 0.906176 0.00 0.00
(40,20) 0.906176 0.906176 0.895291 0.00 1.22
(40,30) 0.906176 0.906176 0.906176 0.00 0.00
(50,10) 0.951056 0.951056 0.951056 0.00 0.00
(50,20) 0.951056 0.951056 0.951056 0.00 0.00
(50,30) 0.951056 0.951056 0.951056 0.00 0.00

Average ∆ (%) 0.00 1.37

FIR Reliability Results ∆ (%)

(30,20) 0.897983 0.897983 0.790310 0.00 13.62
(35,20) 0.908900 0.908900 0.908900 0.00 0.00
(35,30) 0.919951 0.919951 0.897983 0.00 2.45
(40,20) 0.931136 0.931136 0.931136 0.00 0.00
(40,30) 0.931136 0.931136 0.931136 0.00 0.00
(45,30) 0.953915 0.953915 0.953915 0.00 0.00
(50,20) 0.977251 0.977251 0.965512 0.00 1.22
(50,30) 0.977251 0.977251 0.965512 0.00 1.22

Average ∆ (%) 0.00 2.31

AR Reliability Results ∆ (%)

(55,20) 0.926489 0.926489 0.926489 0.00 0.00
(55,30) 0.949155 0.949155 0.937753 0.00 1.22
(55,40) 0.972375 0.972375 0.960695 0.00 1.22
(60,20) 0.949155 0.972375 0.949155 -2.39 0.00
(60,30) 0.972375 0.972375 0.972375 0.00 0.00
(65,15) 0.972375 0.972375 0.949155 0.00 2.45
(65,20) 0.971401 0.972375 0.949155 -0.10 2.45

Average ∆ (%) -0.36 1.03

81

Table 6.9 Average percentage change in the energy results of SA-based method compared to ILP
and GA-based methods for all benchmarks when α = 1.0.

Average ∆ (%) in Energy Consumption
Benchmark SA-ND/ILP-ND SA-ND/GA-ND

DES 0.00 0.00
EWF 0.00 3.10
FIR 0.00 1.04
AR -0.24 0.24

completely been disregarded in the optimization, we observe that our proposed SA-ND

method does not introduce any extra energy consumption overhead compared to the ILP-ND

method while obtaining the optimal or near-optimal solutions. The average percentage

change compared to the GA-ND method shows a negligible increase; however, considering

that energy minimization is not an objective in this set of experiments, this outcome is

expected and irrelevant since the proposed method obtains better results in terms of reliability

for those test cases. For the sake of brevity in this section, the full comparison of the energy

results for this set of experiments is presented in Table C.3 in APPENDIX C.

6.2.2. Energy Optimization Results Discussion

In this set of experiments, we assign the parameter α = 0.0 to focus only on energy

optimization, disregarding reliability completely. Comparison of the energy results of

SA-ND with the results obtained from ILP-ND and GA-ND methods for all four considered

benchmarks are given in Table 6.10.

From the given table that presents energy results for α = 0.0 where the objective is to

minimize the energy consumption without any consideration about the circuit reliability, it

can be observed that the proposed SA-ND method generated the optimal or near-optimal

solutions for most of the test cases, except for AR benchmark for which the obtained

solutions exhibit about 7.69% more energy consumption compared to the results generated

with ILP-ND method. Nevertheless, the proposed SA-ND method outperformed the other

metaheuristic GA-ND method in almost all test cases, except for a couple of cases for which

82

Table 6.10 Comparison of the energy results of SA-based method with ILP and GA-based methods
for all benchmarks when α = 0.0.

(L, A) SA-ND ILP-ND GA-ND SA-ND/ILP-ND SA-ND/GA-ND

DES Energy Results ∆ (%)

(31,20) 448.47 448.47 475.44 0.00 -5.67
(31,30) 427.26 404.65 436.62 5.59 -2.14
(28,20) 480.56 480.56 481.56 0.00 -0.21
(28,30) 451.00 451.00 452.10 0.00 -0.24
(28,40) 451.00 451.00 452.10 0.00 -0.24
(25,20) 502.41 502.41 508.00 0.00 -1.10
(25,30) 477.97 477.97 508.00 0.00 -5.91
(25,40) 476.14 476.14 508.00 0.00 -6.27

Average ∆ (%) 0.70 -2.72

EWF Energy Results ∆ (%)

(30,10) 119.40 119.40 137.00 0.00 -12.85
(30,20) 116.16 109.71 135.00 5.88 -13.96
(30,30) 116.16 109.71 136.00 5.88 -14.59
(40,10) 99.88 98.62 100.02 1.28 -0.14
(40,20) 99.05 98.62 99.32 0.44 -0.27
(40,30) 99.05 98.62 101.42 0.44 -2.34
(50,10) 93.02 92.32 93.72 0.76 -0.75
(50,20) 93.02 92.32 94.42 0.76 -1.48
(50,30) 92.32 92.32 92.32 0.00 0.00

Average ∆ (%) 1.71 -5.15

FIR Energy Results ∆ (%)

(30,20) 709.76 709.76 723.00 0.00 -1.83
(35,20) 515.77 515.77 542.48 0.00 -4.92
(35,30) 513.81 513.81 526.48 0.00 -2.41
(40,15) 534.48 534.48 748.00 0.00 -28.55
(40,20) 508.86 508.86 520.48 0.00 -2.23
(40,30) 505.92 502.83 514.70 0.61 -1.71
(45,30) 501.86 500.73 507.15 0.23 -1.04
(50,15) 523.07 502.65 532.32 4.06 -1.74
(50,20) 499.46 499.33 500.73 0.03 -0.25
(50,30) 498.63 498.63 500.03 0.00 -0.28

Average ∆ (%) 0.49 -4.50

AR Energy Results ∆ (%)

(55,20) 1144.48 1144.48 1343.00 0.00 -14.78
(55,30) 1151.50 1058.72 1346.00 8.76 -14.45
(55,40) 1095.05 1048.17 1370.00 4.47 -20.07
(60,20) 1336.35 1071.16 1340.68 24.76 -0.32
(60,30) 1095.15 955.90 1351.00 14.57 -18.94
(65,15) 960.96 960.96 1375.00 0.00 -30.11
(65,20) 961.96 949.98 961.96 1.26 0.00

Average ∆ (%) 7.69 -14.10

83

Table 6.11 Average percentage change in the reliability results of SA-based method compared to
ILP and GA-based methods for all benchmarks when α = 0.0.

Average ∆ (%) in Reliability
Benchmark SA-ND/ILP-ND SA-ND/GA-ND

DES -0.13 -8.19
EWF -1.82 -22.10
FIR -1.46 -15.44
AR -0.41 0.58

it produced the same results. The bigger the circuit, the higher average energy savings are

obtained, reaching up to over 14% more energy-efficient solutions on average compared to

the GA-ND method.

At the same time, if we consider Table 6.11 that presents only the average change in

reliability results for the same experiment setups in which reliability considerations have

completely been disregarded in the optimization, we observe that our proposed SA-ND

method does not produce solutions with significantly deteriorated reliability compared to

the optimal results obtained from ILP-ND method. For the sake of brevity in this section, the

full comparison of the reliability results for this set of experiments is presented in Table C.4

in APPENDIX C.

Overall, SA-ND generates solutions much closer to the optimal ones when optimizing the

energy consumption is the only objective, which can be observed from the relatively higher

average percentage changes for both the energy and reliability results. Hence, the proposed

SA-ND method is much more efficient than GA-ND when optimizing energy only.

6.2.3. Joint Reliability and Energy Optimization Results Discussion

In this set of experiments, we assign the parameter α = 0.5 to optimize both reliability

and energy costs simultaneously. Comparison of the reliability and energy results of the

bi-objective SA-ND with the results obtained from the corresponding ILP-ND and GA-ND

methods for all four considered benchmarks are given in Table 6.12.

84

Table 6.12 Comparison of the reliability and energy results of SA-based method with ILP and
GA-based methods for all benchmarks when α = 0.5.

Reliability Results ∆ (%) Energy Results ∆ (%)

(L, A) SA-ND ILP-ND GA-ND SA-ND/ILP-ND SA-ND/GA-ND SA-ND ILP-ND GA-ND SA-ND/ILP-ND SA-ND/GA-ND

DES

(31,20) 0.984115 0.984115 0.988065 0.00 -0.40 480.11 480.11 515.56 0.00 -6.88
(31,30) 0.958692 0.958692 0.941322 0.00 1.85 419.23 419.23 492.06 0.00 -14.80
(28,20) 0.972293 0.974243 0.977174 -0.20 -0.50 474.11 522.99 534.00 -9.35 -11.22
(28,30) 0.972293 0.972293 0.933635 0.00 4.14 474.11 474.11 447.68 0.00 5.90
(28,40) 0.972293 0.972293 0.933635 0.00 4.14 474.11 474.11 447.68 0.00 5.90
(25,20) 0.962540 0.962540 0.965436 0.00 -0.30 496.22 516.99 528.00 -4.02 -6.02
(25,30) 0.961577 0.961577 0.942382 0.00 2.04 492.55 492.55 516.00 0.00 -4.54
(25,40) 0.961577 0.961577 0.942382 0.00 2.04 492.55 492.55 516.00 0.00 -4.54

Average ∆ (%) -0.03 1.63 Average ∆ (%) -1.67 -4.52

EWF

(30,10) 0.562383 0.568721 0.711616 -1.11 -20.97 117.57 119.40 156.00 -1.53 -24.63
(30,20) 0.556115 0.549917 0.711616 1.13 -21.85 115.74 113.91 156.00 1.61 -25.81
(30,30) 0.556115 0.549917 0.711616 1.13 -21.85 115.74 113.91 156.00 1.61 -25.81
(40,10) 0.537728 0.531735 0.711616 1.13 -24.44 110.25 108.42 156.00 1.69 -29.33
(40,20) 0.531735 0.531735 0.711616 0.00 -25.28 108.42 108.42 156.00 0.00 -30.50
(40,30) 0.531735 0.531735 0.711616 0.00 -25.28 108.42 108.42 156.00 0.00 -30.50
(50,10) 0.537728 0.531735 0.711616 1.13 -24.44 110.25 108.42 156.00 1.69 -29.33
(50,20) 0.531735 0.531735 0.711616 0.00 -25.28 108.42 108.42 156.00 0.00 -30.50
(50,30) 0.531735 0.531735 0.711616 0.00 -25.28 108.42 108.42 156.00 0.00 -30.50

Average ∆ (%) 0.38 -23.85 Average ∆ (%) 0.56 -28.54

FIR

(35,15) 0.886367 0.854808 0.876539 3.69 1.12 605.67 546.13 766.00 10.90 -20.93
(35,20) 0.886367 0.875720 0.760460 1.22 16.56 564.13 558.13 536.48 1.08 5.15
(35,30) 0.886367 0.886367 0.887196 0.00 -0.09 564.13 564.13 772.00 0.00 -26.93
(40,15) 0.884593 0.883708 0.813872 0.10 8.69 577.56 553.12 778.00 4.42 -25.76
(40,20) 0.883708 0.883708 0.782338 0.00 12.96 553.12 553.12 536.64 0.00 3.07
(40,30) 0.883708 0.883708 0.741703 0.00 19.15 553.12 553.12 541.48 0.00 2.15
(45,30) 0.893557 0.893557 0.901647 0.00 -0.90 555.45 555.45 588.48 0.00 -5.61
(50,15) 0.904421 0.893557 0.901647 1.22 0.31 582.22 555.45 588.48 4.82 -1.06
(50,20) 0.903515 0.904421 0.843225 -0.10 7.15 557.78 561.45 552.46 -0.65 0.96
(50,30) 0.903515 0.903515 0.912609 0.00 -1.00 557.78 557.78 594.48 0.00 -6.17

Average ∆ (%) 0.61 6.39 Average ∆ (%) 2.06 -7.51

AR

(55,20) 0.924635 0.924635 0.920652 0.00 0.43 1392.66 1392.66 1405.00 0.00 -0.88
(55,30) 0.874848 0.831064 0.926489 5.27 -5.57 1176.81 1058.72 1400.00 11.15 -15.94
(55,40) 0.873097 0.849691 0.920652 2.75 -5.17 1107.16 1063.38 1405.00 4.12 -21.20
(60,20) 0.969458 0.968487 0.931845 0.10 4.04 1412.99 1409.32 1411.00 0.26 0.14
(60,30) 0.854603 0.846294 0.972375 0.98 -12.11 1095.15 965.62 1424.00 13.41 -23.09
(65,15) 0.882769 0.858301 0.949155 2.85 -6.99 1376.00 978.96 1412.00 40.56 -2.55

Average ∆ (%) 1.99 -4.23 Average ∆ (%) 11.58 -10.59

From the given table that presents both reliability and energy results for α = 0.5 where

the objective is to both maximize the reliability and minimize the energy consumption with

equal weight given to both objectives, it can be observed that the proposed SA-ND method

generates Pareto-optimal solutions for some cases and acceptably near-Pareto-optimal

solutions in other while showing more consistency than GA-ND in generating closer

Pareto-optimal solutions overall to those obtained from ILP-ND. The worst performance for

the proposed SA-ND method is apparent for the AR benchmark, for which it generates about

85

11% less energy-oriented solutions than ILP-ND on average. However, that additional energy

overhead is compensated for with an overall reliability increase of up to 2% on average.

All results considered, although the proposed SA-ND method may still need some tuning,

especially for some edge cases with the tight area and latency constraints, if it is to generate

closer Pareto-optimal solutions to those obtained with ILP-ND in bi-objective optimization

tests, it can generate optimal solutions for many cases unlike GA-ND and is more consistent

than GA-ND in generating close enough solutions in other cases.

Furthermore, the proposed SA-ND method outperforms GA-ND for all benchmarks when

optimizing one objective at a time. The deviation of the reliability values for the design

solutions obtained by SA-ND from the optimal values is under 2% for all experimental

setups, including the cases in which only energy optimization is being considered with

complete disregard for a possible impact on reliability. Similarly, the deviation of the energy

results from the optimal ones is also around 2% for all benchmarks except AR, for which the

average percentage change in energy values reaches up to more than 7% when optimizing

energy only, and 11% for bi-objective optimization due to some edge cases. A possible

explanation for this could be the test execution setup that was designed to be as close as

possible to the experimental setup used for obtaining GA-ND results in order to have a

fair comparison. The GA-ND results were obtained through a GA-based process of 1000

iterations for all benchmarks regardless of their size. We used the same number of iterations

for the simulated annealing process for the purpose of fair comparison.

6.3. Comparison of SA-Based Partial DMR HLS Method With the

Corresponding ILP and GA-Based Methods

In this set of experiments, we compare our SA-based Partial DMR HLS method with the

corresponding ILP model (ILP-PD) and GA-based HLS method with selective duplication

(GA-SD) proposed in [96]. We use the following abbreviations to denote the methods that

are being compared:

86

• ILP-PD: Partial DMR ILP model,

• GA-SD: GA-based selective duplication method from [96],

• SA-PD: The proposed SA-based HLS method with partial duplication.

For the purpose of a fair comparison, the set of experiments in this subsection was also

carried out over DES, FIR, EWF, and AR benchmarks under two voltage supply levels: high

and low, because we compare the results of the proposed SA-PD method with the results of

the ILP-PD and GA-SD methods that were obtained under only two voltage levels for those

specific benchmarks.

6.3.1. Reliability Optimization Results Discussion

In this set of experiments, we assign the parameter α = 1.0 to focus only on reliability

optimization, disregarding energy costs completely. Comparison of the reliability results of

SA-PD with the results obtained from ILP-PD and GA-SD methods for all four considered

benchmarks are given in Table 6.13.

From the given table that presents reliability results for α = 1.0 where the objective is to

maximize the reliability without any consideration about the energy consumption, it can be

observed that the proposed SA-ND method generated the optimal or near-optimal solutions

for most of the test cases. The average percentage change for the reliability results when our

SA-based partial duplication method is compared to the ILP-PD results is less than 2% for all

benchmarks. Moreover, the proposed SA-PD method outperformed the other metaheuristic

GA-SD method in almost all test cases, with the average improvement in the final design

reliability for all benchmarks and up to 5% for the EWF benchmark.

6.3.2. Energy Optimization Results Discussion

In this set of experiments, we assign the parameter α = 0.0 to focus only on energy

optimization, disregarding reliability completely. Comparison of the energy results of

87

Table 6.13 Comparison of the reliability results of SA-based partial DMR method with the
corresponding ILP and GA-based methods for all benchmarks when α = 1.0.

(L, A) SA-PD ILP-PD GA-SD SA-PD/ILP-PD SA-PD/GA-SD

DES Reliability Results ∆ (%)

(31,20) 0.995004 0.999989 0.994825 -0.50 0.02
(31,30) 0.995004 0.999989 0.994825 -0.50 0.02
(28,20) 0.993843 0.993795 0.982875 0.00 1.12
(28,30) 0.994837 0.999821 0.982875 -0.50 1.22
(28,40) 0.995832 0.999821 0.982875 -0.40 1.32
(25,20) 0.980924 0.993640 0.971069 -1.28 1.01
(25,30) 0.981905 0.999653 0.971069 -1.78 1.12
(25,40) 0.981905 0.999653 0.971069 -1.78 1.12

Average ∆ (%) -0.84 0.87

EWF Reliability Results ∆ (%)

(30,20) 0.996200 0.997625 0.826462 -0.14 20.54
(30,30) 0.997625 0.997625 0.826462 0.00 20.71
(40,10) 0.906176 0.995615 0.973232 -8.98 -6.89
(40,20) 0.998148 0.998966 0.952262 -0.08 4.82
(40,30) 0.998966 0.998966 0.973232 0.00 2.64
(50,10) 0.951056 0.997067 0.988461 -4.61 -3.78
(50,20) 0.998536 0.999638 0.988461 -0.11 1.02
(50,30) 0.999638 0.999638 0.988461 0.00 1.13

Average ∆ (%) -1.74 5.02

FIR Reliability Results ∆ (%)

(35,20) 0.961080 0.990907 0.930428 -3.01 3.29
(35,30) 0.980394 0.998969 0.937610 -1.86 4.56
(40,20) 0.961080 0.991061 0.947032 -3.03 1.48
(40,30) 0.997066 0.999305 0.972032 -0.22 2.58
(45,30) 0.997597 0.999641 0.985077 -0.20 1.27
(50,20) 0.977758 0.995987 0.977758 -1.83 0.00
(50,30) 0.997764 0.999809 0.977758 -0.20 2.05

Average ∆ (%) -1.48 2.18

AR Reliability Results ∆ (%)

(50,30) 0.998797 0.998797 0.964155 0.00 3.59
(50,40) 0.998629 0.998797 0.976516 -0.02 2.26
(55,30) 0.999132 0.999300 0.994155 -0.02 0.50
(55,40) 0.999132 0.999300 0.989124 -0.02 1.01
(60,20) 0.997975 0.997975 0.997389 0.00 0.06
(60,30) 0.999132 0.999804 0.989493 -0.07 0.97

Average ∆ (%) -0.02 1.40

88

SA-PD with the results obtained from ILP-PD and GA-SD methods for all four considered

benchmarks are given in Table 6.14.

From the given table that presents energy results for α = 0.0 where the objective is to

minimize the energy consumption without any consideration about the circuit reliability,

it can be observed that the proposed SA-PD method generates optimal or near-optimal

results only for some test cases. The average percentage change in the final circuit energy

consumption results ranges from 3.65% for the DES benchmark to 31.77% for the FIR

benchmark. These results show that the proposed SA-PD method is not as efficient in

obtaining energy-aware results as it is in optimizing reliability.

Nevertheless, the proposed SA-PD method significantly outperforms the other metaheuristic

GA-SD method in all test cases and for all benchmarks, generating 35% to 65% more

energy-saving solutions on average.

6.3.3. Joint Reliability and Energy Optimization Results Discussion

In this set of experiments, we assign the parameter α = 0.5 to optimize both reliability

and energy costs simultaneously. Comparison of the reliability and energy results of the

bi-objective SA-PD with the results obtained from the corresponding ILP-PD and GA-SD

methods for all four considered benchmarks are given in Table 6.15.

From the given table that presents both reliability and energy results for α = 0.5 where the

objective is to both maximize the reliability and minimize the energy consumption with equal

weight given to both objectives, the following conclusions can be made. When we look at the

SA-PD/ILP-PD columns for both reliability and energy, we observe that the proposed SA-PD

method does not generate Pareto-optimal or near-Pareto-optimal solutions as consistently as

the SA-based method for HLS without resource duplication.

For the DES benchmark, SA-PD generates about 24% more energy-saving solutions on

average at the expense of an average decrease in reliability of about 1%. However, for all

other benchmarks, SA-PD generates solutions that have slightly worse both reliability and

89

Table 6.14 Comparison of the energy results of SA-based partial DMR method with the
corresponding ILP and GA-based methods for all benchmarks when α = 0.0.

(L, A) SA-PD ILP-PD GA-SD SA-PD/ILP-PD SA-PD/GA-SD

DES Energy Results ∆ (%)

(31,20) 411.29 504.11 906.55 -18.41 -54.63
(31,30) 411.29 411.59 978.84 -0.07 -57.98
(28,20) 510.03 505.69 917.67 0.86 -44.42
(28,30) 457.94 457.94 1004.73 0.00 -54.42
(28,40) 457.94 457.94 1004.73 0.00 -54.42
(25,20) 598.07 509.35 993.00 17.42 -39.77
(25,30) 598.07 484.91 993.00 23.34 -39.77
(25,40) 512.52 483.08 993.00 6.09 -48.39

Average ∆ (%) 3.65 -49.23

EWF Energy Results ∆ (%)

(30,20) 143.00 117.78 230.00 21.41 -37.83
(30,30) 143.00 116.65 241.00 22.59 -40.66
(40,10) 143.00 106.96 175.72 33.69 -18.62
(40,20) 105.70 105.56 168.08 0.13 -37.11
(40,30) 105.70 105.56 160.44 0.13 -34.12
(50,10) 143.00 100.66 191.00 42.06 -25.13
(50,20) 99.96 99.96 167.38 0.00 -40.28
(50,30) 99.96 99.96 181.96 0.00 -45.06

Average ∆ (%) 15.00 -34.85

FIR Energy Results ∆ (%)

(35,20) 742.00 523.71 1219.14 41.68 -39.14
(35,30) 648.50 520.75 1193.14 24.53 -45.65
(40,20) 726.00 514.86 1187.14 41.01 -38.84
(40,30) 648.50 510.60 1292.47 27.01 -49.82
(45,30) 645.42 507.67 1173.81 27.13 -45.01
(50,20) 726.00 506.27 1278.50 43.40 -43.21
(50,30) 594.55 505.57 1277.80 17.60 -53.47

Average ∆ (%) 31.77 -45.02

AR Energy Results ∆ (%)

(50,30) 1361.00 1151.93 3344.00 18.15 -59.30
(50,40) 1364.00 1145.74 3179.00 19.05 -57.09
(55,30) 1361.00 1076.78 3961.00 26.40 -65.64
(55,40) 1242.35 1051.64 3494.00 18.13 -64.44
(60,20) 1326.54 1151.16 3943.24 15.24 -66.36
(60,30) 1095.15 961.90 3945.00 13.85 -72.24

Average ∆ (%) 18.47 -64.18

90

Table 6.15 Comparison of the reliability and energy results of SA-based partial DMR method with
the corresponding ILP and GA-based methods for all benchmarks when α = 0.5.

Reliability Results ∆ (%) Energy Results ∆ (%)

(L, A) SA-PD ILP-PD GA-SD SA-PD/ILP-PD SA-PD/GA-SD SA-PD ILP-PD GA-SD SA-PD/ILP-PD SA-PD/GA-SD

DES

(31,20) 0.993702 0.999989 0.994732 -0.63 -0.10 743.93 1080.00 961.67 -31.12 -22.64
(31,30) 0.989172 0.995196 0.985354 -0.61 0.39 472.82 961.12 1091.64 -50.81 -56.69
(28,20) 0.981768 0.993175 0.992875 -1.15 -1.12 661.60 540.00 1029.00 22.52 -35.70
(28,30) 0.981768 0.995197 0.963088 -1.35 1.94 661.60 985.56 999.90 -32.87 -33.83
(28,40) 0.981768 0.998576 0.963088 -1.68 1.94 661.60 963.80 999.90 -31.36 -33.83
(25,20) 0.980790 0.993175 0.991069 -1.25 -1.04 630.48 540.00 1023.00 16.76 -38.37
(25,30) 0.980790 0.999149 0.986044 -1.84 -0.53 630.48 1020.00 1001.00 -38.19 -37.01
(25,40) 0.988150 0.998720 0.986044 -1.06 0.21 529.83 990.07 1001.00 -46.49 -47.07

Average ∆ (%) -1.19 0.21 Average ∆ (%) -23.94 -38.14

EWF

(30,20) 0.985183 0.987541 0.754100 -0.24 30.64 258.23 238.80 246.00 8.14 4.97
(30,30) 0.945293 0.986335 0.754100 -4.16 25.35 227.74 227.82 246.00 -0.04 -7.42
(40,10) 0.793380 0.985131 0.754100 -19.46 5.21 210.00 216.84 246.00 -3.15 -14.63
(40,20) 0.954473 0.940980 0.754100 1.43 26.57 215.09 197.24 246.00 9.05 -12.57
(40,30) 0.945118 0.940980 0.754100 0.44 25.33 200.30 197.24 246.00 1.55 -18.58
(50,10) 0.823493 0.985131 0.754100 -16.41 9.20 240.00 216.84 246.00 10.68 -2.44
(50,20) 0.937518 0.915808 0.754100 2.37 24.32 197.19 185.34 246.00 6.39 -19.84
(50,30) 0.927536 0.915808 0.754100 1.28 23.00 189.54 185.34 246.00 2.27 -22.95

Average ∆ (%) -4.34 21.20 Average ∆ (%) 4.36 -11.68

FIR

(35,20) 0.912687 0.981620 0.790357 -7.02 15.48 784.000 624.4800 1,319.2500 25.54 -40.57
(35,30) 0.982287 0.997436 0.949710 -1.52 3.43 1134.57 1068.96 1902.00 6.14 -40.35
(40,20) 0.947958 0.981620 0.792690 -3.43 19.59 802.00 624.48 1314.41 28.43 -38.98
(40,30) 0.993873 0.997436 0.771518 -0.36 28.82 1303.98 1068.96 1319.25 21.99 -1.16
(45,30) 0.982220 0.991363 0.935407 -0.92 5.00 1181.96 1014.06 1275.14 16.56 -7.31
(50,30) 0.996160 0.991363 0.961537 0.48 3.60 1197.78 1014.06 1281.14 18.12 -6.51

Average ∆ (%) -2.13 12.65 Average ∆ (%) 19.46 -22.48

AR

(50,30) 0.998461 0.997958 0.881482 0.05 13.27 2740.00 2704.00 3678.00 1.33 -25.50
(50,40) 0.996467 0.996954 0.884995 -0.05 12.60 2580.00 2568.99 3513.00 0.43 -26.56
(55,30) 0.996308 0.996246 0.987646 0.01 0.88 2696.00 2682.04 4020.00 0.52 -32.94
(55,40) 0.971797 0.976736 0.948816 -0.51 2.42 2002.00 2015.16 3205.00 -0.65 -37.54
(60,30) 0.994319 0.993964 0.989493 0.04 0.49 2536.00 2090.72 2444.00 21.30 3.76

Average ∆ (%) -0.09 5.93 Average ∆ (%) 4.59 -23.75

energy values on average. These results demonstrate that more tuning is necessary for the

SA-based HLS method with partial DMR.

Nonetheless, when compared to the other metaheuristic GA-based method (as shown in the

SA-PD/GA-SD columns for both reliability and energy values), we observe that SA-PD

again outperforms GA-SD for all benchmarks by generating solutions that are, on average,

closer to optimal in both reliability and energy values of the final designs. For EWF, SA-PD

generates up to 21% more reliable solutions on average while simultaneously achieving an

average reduction in energy consumption of about 11%. The highest energy reduction is

observed for the DES benchmark of about 38% on average while preserving the final designs’

91

reliability.

All results considered, although the proposed SA-PD still requires additional tuning to

generate closer Pareto-optimal solutions to those obtained with ILP-PD in bi-objective

optimization tests, it outperforms the GA-based selective duplication method for all

benchmarks. For the purpose of fair comparison with GA-SD, our SA-PD was tested using

the same experimental setup of 1000 iterations for all benchmarks regardless of its size.

Tuning the cooling schedule and number of iterations to the problem size may result in even

more optimal solutions when compared to the ILP-PD model.

6.4. Effects of Multiple Supply Voltages on Reliability and Energy

Consumption

In this set of experiments, we investigate the effects of using multiple supply voltage levels

in integrated circuits on their overall reliability and energy consumption. We employ VIs

technique in our designs with three voltage levels (high voltage level vh of 1.2 V, medium

voltage level vm of 1.1 V, and low voltage level vl of 1.0 V). The experiments for different

latency and area constraints are set for each benchmark, and the tests are carried out under

different α values using our ILP-FD model.

The reliability and energy results for the DES and FIR benchmarks of full DMR-based

solutions for a different number of supply voltages are given in Table 6.16 and Table 6.17,

respectively. For the sake of clarity of this section, the tables that show the results for

the EWF and AR benchmarks are given in APPENDIX C as Table C.5 and Table C.6,

respectively.

From the reliability results, we can observe that the multi-supply voltages do not seem to

affect the final design reliability much. For the cases where the only objective is to maximize

reliability (α = 1.0), it is evident that using multi-supply voltages does not result in any

notable increase or decrease in reliability values. For some benchmarks, an increase is

92

Table 6.16 DES benchmark reliability and energy results of full DMR solutions for a different
number of supply voltages.

DES Full DMR Reliability Results DES Full DMR Energy Results
Supply Voltage Levels Used ∆ (%) Supply Voltage Levels Used ∆ (%)

Alpha (L, A) 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI

1.0

(31,20) 0.999989 0.999989 0.999989 0.00 0.00 1080.00 1080.00 1080.00 0.00 0.00
(31,30) 0.999989 0.999989 0.999989 0.00 0.00 1080.00 1080.00 1080.00 0.00 0.00
(28,30) 0.999821 0.999821 0.999821 0.00 0.00 1068.00 1068.00 1068.00 0.00 0.00
(28,40) 0.999821 0.999821 0.999821 0.00 0.00 1068.00 1068.00 1068.00 0.00 0.00
(25,30) 0.999653 0.999653 0.999653 0.00 0.00 1056.00 1056.00 1056.00 0.00 0.00
(25,40) 0.999653 0.999653 0.999653 0.00 0.00 1056.00 1056.00 1056.00 0.00 0.00

Average ∆ (%) 0.00 0.00 Average ∆ (%) 0.00 0.00

0.5

(31,20) 0.999989 0.999989 0.999989 0.00 0.00 1080.00 1080.00 1080.00 0.00 0.00
(31,30) 0.999989 0.999985 0.999643 0.00 -0.03 1080.00 1044.55 867.42 -3.28 -19.68
(28,30) 0.999821 0.999644 0.999644 -0.02 -0.02 1068.00 1033.98 1033.98 -3.19 -3.19
(28,40) 0.999821 0.999642 0.999644 -0.02 -0.02 1068.00 985.10 964.58 -7.76 -9.68
(25,30) 0.999653 0.999644 0.999644 0.00 0.00 1056.00 1033.98 1033.98 -2.09 -2.09
(25,40) 0.999653 0.999650 0.999647 0.00 0.00 1056.00 1024.22 1019.54 -3.01 -3.45

Average ∆ (%) -0.01 -0.01 Average ∆ (%) -3.22 -6.35

0.0

(31,20) 0.999989 0.999989 0.999989 0.00 0.00 1080.00 1080.00 1080.00 0.00 0.00
(31,30) 0.995198 0.995196 0.987035 0.00 -0.82 1010.00 961.12 832.60 -4.84 -17.56
(28,30) 0.995198 0.995197 0.995198 0.00 0.00 1010.00 985.56 954.48 -2.42 -5.50
(28,40) 0.995198 0.988170 0.996279 -0.71 0.11 1010.00 955.94 894.81 -5.35 -11.40
(25,30) 0.998448 0.997241 0.997241 -0.12 -0.12 1017.00 1012.41 1012.41 -0.45 -0.45
(25,40) 0.996777 0.988171 0.988171 -0.86 -0.86 1014.00 980.38 980.38 -3.32 -3.32

Average ∆ (%) -0.28 -0.28 Average ∆ (%) -2.73 -6.37

Table 6.17 FIR benchmark reliability and energy results of full DMR solutions for a different
number of supply voltages.

FIR Full DMR Reliability Results FIR Full DMR Energy Results
Supply Voltage Levels Used ∆ (%) Supply Voltage Levels Used ∆ (%)

Alpha (L, A) 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI

1.0

(35,30) 0.998802 0.998969 0.998969 0.02 0.02 1556.00 1568.00 1568.00 0.77 0.77
(40,30) 0.998802 0.999305 0.999305 0.05 0.05 1556.00 1592.00 1592.00 2.31 2.31
(45,30) 0.998802 0.999641 0.999641 0.08 0.08 1556.00 1616.00 1616.00 3.86 3.86
(50,30) 0.998802 0.999809 0.999809 0.10 0.10 1556.00 1628.00 1628.00 4.63 4.63

Average ∆ (%) 0.06 0.06 Average ∆ (%) 2.89 2.89

0.5

(35,30) 0.998969 0.998259 0.998259 -0.07 -0.07 1568.00 1092.26 1092.26 -30.34 -30.34
(40,30) 0.999305 0.998754 0.998754 -0.06 -0.06 1592.00 1106.24 1106.24 -30.51 -30.51
(45,30) 0.999641 0.998918 0.998918 -0.07 -0.07 1616.00 1110.90 1110.90 -31.26 -31.26
(50,30) 0.999809 0.998918 0.998918 -0.09 -0.09 1628.00 1110.90 1110.90 -31.76 -31.76

Average ∆ (%) -0.07 -0.07 Average ∆ (%) -30.97 -30.97

0.0

(35,30) 0.985674 0.992996 0.992996 0.74 0.74 1430.00 1051.25 1051.25 -26.49 -26.49
(40,30) 0.985674 0.991731 0.991731 0.61 0.61 1430.00 1046.19 1046.19 -26.84 -26.84
(45,30) 0.985674 0.961597 0.961597 -2.44 -2.44 1430.00 1006.44 1006.44 -29.62 -29.62
(50,30) 0.985674 0.955639 0.955639 -3.05 -3.05 1430.00 1001.98 1001.98 -29.93 -29.93

Average ∆ (%) -1.03 -1.03 Average ∆ (%) -28.22 -28.22

present but negligible (e.g., 0.06% for FIR), but that increase in reliability also induces a

slight overhead in energy cost (about 2-3%).

Nonetheless, the situation changes when our objective also starts considering energy

93

optimization. For α = 0.5, where the objective is to simultaneously optimize both reliability

and energy, as well as for α = 0.0 when we are only concerned with minimizing energy

consumption in the resulting designs, we can observe that having multiple supply voltages

(i.e., voltage islands in our case) significantly improves the energy efficiency of the designs

with a negligible effect on their reliability. The energy savings can even reach up to 30% on

average for the FIR benchmark, while the maximum average decrease in reliability does not

exceed 1%. For the benchmarks with a large number of nodes and edges, even some small

increase in reliability can be observed (e.g., 0.31% for AR), although the objective was only

to minimize energy consumption.

In the final set of experiments on the effect of multi-supply voltages on reliability and energy

costs, we changed the values of the parameter α in steps of 0.1, through which we assigned

varying weights to the optimization of either reliability or energy costs, and carried out the

tests under a varying number of supply voltages: (i) only one supply voltage level (high), (ii)

two supply voltage levels (high and low), and (iii) three supply voltage levels (high, medium

and low).

In Figures 6.1 and 6.2, the resulting reliability and energy changes are shown for the DES

benchmark, respectively.

In Figures 6.3 and 6.4, the resulting reliability and energy changes are shown for the FIR

benchmark, respectively.

For the sake of clarity of this section, the figures that show the results for the EWF and AR

benchmarks are given in APPENDIX C. Figures C.1 and C.2 show the resulting reliability

and energy changes for the EWF benchmark, respectively. Similarly, Figures C.3 and C.4

show the resulting reliability and energy changes for the AR benchmark, respectively.

As the values of the parameter α increase, maximizing reliability is given higher and higher

priority. It can be observed from the (a) charts in the given figures that the number of the

supply voltage levels does not appear to inhibit the fast convergence towards the optimum

solution with the maximized reliability. On the other hand, from the (b) charts, it is evident

94

Figure 6.1 Changes in reliability over different α values for DES benchmark (A = 30, L = 28)
under different numbers of supply voltages.

Figure 6.2 Changes in energy over different α values for DES benchmark (A = 30, L = 28) under
different numbers of supply voltages.

that the more the supply voltage levels are used in a circuit design, the more notable energy

savings are possible. Especially for the case when α = 0.5 when the equal weight is given to

95

Figure 6.3 Changes in reliability over different α values for FIR benchmark (A = 30, L = 50) under
different numbers of supply voltages.

Figure 6.4 Changes in energy over different α values for FIR benchmark (A = 30, L = 50) under
different numbers of supply voltages.

the optimization of both reliability and energy, we observe that the loss in terms of reliability

is negligible, while the gain in energy savings is meaningful.

These results demonstrate the effectiveness of multi-supply voltage techniques for reliability

96

and energy-oriented designs. Even using only two different supply voltage levels is enough

to achieve a significant reduction in energy costs with a negligible negative effect on the

system reliability.

6.5. Execution Time Analysis

ILP-based optimization methods have a high computational complexity resulting in long

execution times for problems with a large solution space, such as task scheduling and

resource allocation, especially if those problems must be solved under specific constraints.

Such problems are known as NP-hard problems. For complex applications whose DAGs

consist of a large number of tasks, ILP models with constraints usually take too long to

produce the optimum solution, and they are computationally impractical, as their running

times increase exponentially with the increase in the number of variables. In our proposed

models, we introduce further complexity by employing multiple supply voltages, which

additionally expands the solution space. Nonetheless, ILP-based problem formulations

provide optimal results that can be used for testing other heuristic or metaheuristic methods

designed to solve the same problems but within more acceptable running times.

If we take n to represent the number of nodes in a given dataflow graph, r the number of

resources in the resource library, and v the number of supply voltage levels, to search through

the entire solution space, it is necessary to explore (rv)n possible allocations for designs that

do not involve any duplication alone, because any resource can be used as many times as

necessary, and because all of them have different latency, energy consumption and latency

properties under varying supply voltages (i.e., practically, there are r × v resources in total).

The solution space increases even further when DMR is employed because, in full DMR, all

tasks must also be duplicated, which effectively increases the number of active tasks to be

scheduled and assigned a resource to 2n.

Figure 6.5 presents the comparison between the average execution times of ILP, GA, and

SA-based HLS methods without duplication for a varying number of benchmark nodes under

two voltage levels. It can be observed that the execution time of the ILP-ND method starts

97

growing exponentially for the benchmarks with over 20 nodes, while the average execution

times of the GA and SA-based methods increase only linearly with respect to the benchmark

size. This demonstrates how metaheuristic methods are much more practical approaches for

designing complex circuits with a large number of nodes.

Figure 6.5 Average execution times of ILP, GA, and SA-based HLS methods without duplication for
varying number of benchmark nodes.

Figure 6.6 presents the comparison between the average execution times of only GA and

SA-based HLS methods without duplication for a varying number of benchmark nodes under

two voltage levels to show more clearly how the SA-based method outperforms the GA-based

HLS method when no duplication is used.

The increase in solution search space complexity when DMR is employed can be observed

from Figure 6.7 in which we compare the average running times of our ILP models against

the performance of the no-duplication ILP model (denoted as ILP-ND) and each other, for

different benchmarks with the increasing varying number of nodes and edges.

It is important to note that some of our tests for the benchmarks with a large number of

nodes and edges (AR and EWF) were running too long without providing the 100% optimal

solutions with the ILP-PD-C model where additional constraints of either reliability or

98

Figure 6.6 Average execution times of GA and SA-based HLS methods without duplication for
varying number of benchmark nodes.

Figure 6.7 Average execution times of ILP models for varying number of benchmark nodes and
edges.

energy were added. Such test cases were terminated after eight hours of execution, and

the current best solution was taken as the final result. Even so, the running times of partial

99

duplication-based models surpass the running time of the full duplication-based model. The

reason for this is that partial DMR expands the solution space by far compared to the full

DMR approach because, in partial DMR, any resource may or may not be duplicated. This

situation exponentially complicates the solution space since, for the applications with n

tasks in their DAG, there are 2n − 1 possible configurations of a partially-duplicated solution

design.

Figure 6.8 presents the comparison between the average execution times of SA-ND and

SA-PD HLS methods for a varying number of benchmark nodes under two voltage levels.

The aim is to show how the execution time of the SA-based partial duplication method does

not start growing exponentially compared to no duplication approach as is the case with

ILP-based models.

Figure 6.8 Average execution times of the SA-ND and SA-PD methods for varying number of
benchmark nodes.

The impractical running times of the ILP-based HLS models demonstrate the necessity

for other heuristic and/or metaheuristic methods that will provide optimal or near-optimal

solutions in practical running times. Nevertheless, these models are necessary as they provide

the optimum solutions we can use to test the performance of other methods that tackle the

100

same problems. Therefore, in this study, we proposed a metaheuristic HLS method that

produces optimal or near-optimal solutions in much shorter and more practical running times.

101

7. CONCLUSION

Continuously decreasing transistor technology sizes have enabled much denser packaging of

electronic components on chips. This increase in circuit densities has positively affected the

costs and area of integrated circuits. However, it has consequently given rise to new issues

and challenges in the integrated circuit design process, including higher vulnerability to soft

errors due to unavoidable radiation effects, lower supply and threshold voltage levels, etc.

Thus, novel reliability-oriented design solutions have become a necessity. Modular hardware

redundancy is a popular method for boosting the reliability of a system, but it comes at the

cost of increasing the overall area and energy expenditure. Energy reduction methods such

as DVS and VIs may be employed to tackle high energy costs; nevertheless, reduction in

energy costs, in turn, will also negatively affect a circuit’s reliability and latency.

This study considers both energy and reliability optimization metrics during the HLS design

process for integrated systems with additional modular redundancy while satisfying both

area and latency requirements. We employ integer linear programming as our mathematical

optimization approach of choice to propose an ILP-based model without modular redundancy

and two ILP-based model formulations for systems with both partially and fully duplicated

components to achieve improved reliability with a minimum increase in the resulting energy

consumption, execution time, and area. VIs are employed as the energy reduction method of

choice, and their effect on the system performance, reliability, and energy costs is discussed

in detail.

ILP-based optimization methods have a high computational complexity resulting in long

execution times since they perform the search over the entire solution space. These methods

usually take too long to produce the optimal solution for complex applications with a large

number of operations. Nevertheless, they give optimal results which can be used for testing

the performance of other heuristic or metaheuristic methods designed to solve the same

problems. Therefore, we also propose two metaheuristic methods based on a simulated

102

annealing technique that produces optimal or near-optimal solutions in much shorter and

more reasonable running times.

The proposed ILP models generate optimal results and outperform other metaheuristic

methods for the relatively smaller-sized benchmarks for which they could finish execution

in practical running times. When the main objective is to maximize reliability, the proposed

full DMR-based ILP model is a good choice as it generates the designs with the highest

possible reliability for the given area and latency constraints. When the goal is to obtain

more energy-aware designs, the proposed partial DMR-based ILP model with constraints

generates the most desirable solutions overall, especially when the objective is to optimize

one of the parameters disregarding the other. Finally, when optimizing both reliability and

energy consumption at the same time, the proposed partial DMR-based ILP model generates

far superior solutions to other proposed methods.

The results obtained from the ILP models were used to test the performance of the proposed

metaheuristic SA-based methods that tackle the same problem of optimized HLS. All results

considered, the proposed SA-based HLS methods could generate better solutions for all

benchmarks compared to the other GA-based HLS methods. The proposed SA-based HLS

method without duplication was able to generate optimal or near-optimal solutions in almost

all cases, except for some edge cases with the tight area and latency constraints for which

it needed additional tuning. Moreover, the proposed SA-based HLS method that employs

partial DMR for improved reliability also outperforms the GA-based selective duplication

method for all benchmarks. Nevertheless, in bi-objective optimization tests, it could not find

closely Pareto-optimal solutions for all test cases, which may be caused by the experimental

setup chosen for the purpose of fair comparison with the GA-based method.

Furthermore, the experiments performed on the effects of multiple supply voltages on the

reliability and energy consumption of digital circuits demonstrated the effectiveness of the

approach. Using multiple supply voltages facilitated a significant reduction in energy costs

with a negligible negative effect on the circuit reliability.

103

Overall, the results show the necessity for more research on this problem to propose even

more efficient metaheuristic HLS methods that employ modular redundancy for designs that

operate under multiple supply voltages. Furthermore, in this study, we only focused on

data-flow intensive operations while disregarding memory considerations. Incorporating

memory-related design considerations into multi-objective HLS methods under multiple

constraints for designs operated under multiple supply voltages is yet another area for future

research. The ILP formulations presented in this study can be used for different optimization

problems that consider area, latency, energy consumption, and reliability. For example,

optimizing the area for a fully duplicated circuit under latency constraints can be easily

incorporated into our ILP model.

This research aimed to propose efficient HLS methods for reliability and energy-oriented

designs, which will hopefully contribute to closing the productivity and quality gap

between HLS and RTL design flows. Moreover, considering the importance of reliability

considerations for mission-critical and safety-critical systems, we hope the outcomes of this

study will also contribute to the domain of reliable and energy-efficient hardware design.

104

REFERENCES

[1] M.H. Na, D. Jang, R. Baert, S. Sarkar, S. Patli, O. Zografos, B. Chehab,

A. Spessot, G. Sisto, P. Schuddinck, H. Mertens, Y. Oniki, G. Hellings,

E. Dentoni Litta, J. Ryckaert, and N. Horiguchi. Disruptive technology

elements, and rapid and accurate block-level performance evaluation for 3nm

and beyond. In 2021 5th IEEE Electron Devices Technology Manufacturing

Conference (EDTM), pages 1–3. 2021. doi:10.1109/EDTM50988.2021.

9420975.

[2] Meng Wang, Yabin Sun, Xiaojin Li, Yanling Shi, Shaojian Hu, Enming

Shang, and Shoumian Chen. Design technology co-optimization for 3 nm

gate-all-around nanosheet fets. In 2020 IEEE 15th International Conference on

Solid-State Integrated Circuit Technology (ICSICT), pages 1–3. 2020. doi:10.

1109/ICSICT49897.2020.9278197.

[3] A. Dixit and A. Wood. The impact of new technology on soft error rates. In

2011 International Reliability Physics Symposium, pages 5B.4.1–5B.4.7. 2011.

ISSN 1541-7026. doi:10.1109/IRPS.2011.5784522.

[4] Vikas Chandra and Robert Aitken. Impact of voltage scaling on nanoscale

sram reliability. In Proceedings of the Conference on Design, Automation and

Test in Europe, DATE ’09, page 387–392. European Design and Automation

Association, Leuven, BEL, 2009. ISBN 9783981080155. doi:10.5555/1874620.

1874713.

[5] F. Dabiri, N. Amini, M. Rofouei, and M. Sarrafzadeh. Reliability-aware

optimization for dvs-enabled real-time embedded systems. In 9th International

Symposium on Quality Electronic Design (isqed 2008), pages 780–783. 2008.

ISSN 1948-3295. doi:10.1109/ISQED.2008.4479837.

105

[6] Giovanni De Micheli. High-level synthesis of digital circuits. volume 37 of

Advances in Computers, pages 207–283. Elsevier, 1993. doi:https://doi.org/10.

1016/S0065-2458(08)60406-4.

[7] Zhiru Zhang, Deming Chen, Steve Dai, and Keith Campbell. High-level

synthesis for low-power design. IPSJ Transactions on System LSI Design

Methodology, 8:12–25, 2015.

[8] Benjamin Carrion Schafer and Zi Wang. High-level synthesis design space

exploration: Past, present, and future. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 39(10):2628–2639, 2020. doi:10.

1109/TCAD.2019.2943570.

[9] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D. Hämäläinen. Are we

there yet? a study on the state of high-level synthesis. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 38(5):898–911,

2019. doi:10.1109/TCAD.2018.2834439.

[10] Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization.

Cambridge University Press, 2021. doi:10.1017/9781108980647.

[11] Zaineb Chelly Dagdia and Miroslav Mirchev. Chapter 15 - when evolutionary

computing meets astro- and geoinformatics. In Petr Škoda and Fathalrahman

Adam, editors, Knowledge Discovery in Big Data from Astronomy and Earth

Observation, pages 283–306. Elsevier, 2020. ISBN 978-0-12-819154-5.

doi:https://doi.org/10.1016/B978-0-12-819154-5.00026-6.

[12] Xin-She Yang. Chapter 1 - introduction to algorithms. In Xin-She Yang, editor,

Nature-Inspired Optimization Algorithms, pages 1–21. Elsevier, Oxford, 2014.

ISBN 978-0-12-416743-8. doi:https://doi.org/10.1016/B978-0-12-416743-8.

00001-4.

[13] S. Brisset and F. Gillon. 4 - approaches for multi-objective optimization in

the ecodesign of electric systems. In Jean-Luc Bessède, editor, Eco-Friendly

106

Innovation in Electricity Transmission and Distribution Networks, pages 83–97.

Woodhead Publishing, Oxford, 2015. ISBN 978-1-78242-010-1. doi:https://doi.

org/10.1016/B978-1-78242-010-1.00004-5.

[14] Xin-She Yang. Chapter 14 - multi-objective optimization. In Xin-She Yang,

editor, Nature-Inspired Optimization Algorithms, pages 197–211. Elsevier,

Oxford, 2014. ISBN 978-0-12-416743-8. doi:https://doi.org/10.1016/

B978-0-12-416743-8.00014-2.

[15] Chung-Yang (Ric) Huang, Chao-Yue Lai, and Kwang-Ting (Tim) Cheng.

Chapter 4 - fundamentals of algorithms. In Laung-Terng Wang, Yao-Wen

Chang, and Kwang-Ting (Tim) Cheng, editors, Electronic Design Automation,

pages 173–234. Morgan Kaufmann, Boston, 2009. ISBN 978-0-12-374364-0.

doi:https://doi.org/10.1016/B978-0-12-374364-0.50011-4.

[16] Katta G. Murty. Linear Programming. Wiley, 1983.

[17] Christian Blum and Andrea Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison. ACM Computing Surveys,

35(3):268–308, 2003. ISSN 0360-0300. doi:10.1145/937503.937505.

[18] Xin-She Yang. Chapter 3 - random walks and optimization. In Xin-She

Yang, editor, Nature-Inspired Optimization Algorithms, pages 45–65. Elsevier,

Oxford, 2014. ISBN 978-0-12-416743-8. doi:https://doi.org/10.1016/

B978-0-12-416743-8.00003-8.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983. doi:10.1126/science.220.4598.

671.

[20] V. Černý. Thermodynamical approach to the traveling salesman problem:

An efficient simulation algorithm. Journal of Optimization Theory and

Applications, 45(1):41–51, 1985. ISSN 1573-2878. doi:10.1007/BF00940812.

107

[21] Emile Aarts, Jan Korst, and Wil Michiels. Simulated Annealing, pages 187–210.

Springer US, Boston, MA, 2005. ISBN 978-0-387-28356-2. doi:10.1007/

0-387-28356-0 7.

[22] Xin-She Yang. Chapter 4 - simulated annealing. In Xin-She Yang, editor,

Nature-Inspired Optimization Algorithms, pages 67–75. Elsevier, Oxford, 2014.

ISBN 978-0-12-416743-8. doi:https://doi.org/10.1016/B978-0-12-416743-8.

00004-X.

[23] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine

Schevon. Optimization by simulated annealing: An experimental evaluation;

part i, graph partitioning. Operations Research, 37(6):865–892, 1989. doi:10.

1287/opre.37.6.865.

[24] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine

Schevon. Optimization by simulated annealing: An experimental evaluation;

part ii, graph coloring and number partitioning. Operations Research,

39(3):378–406, 1991. ISSN 0030364X, 15265463.

[25] Steve R. White. Concepts of scale in simulated annealing. AIP Conference

Proceedings, 122(1):261–270, 1984. doi:10.1063/1.34823.

[26] Walid Ben-Ameur. Computing the initial temperature of simulated annealing.

Computational Optimization and Applications, 29(3):369–385, 2004. ISSN

1573-2894. doi:10.1023/B:COAP.0000044187.23143.bd.

[27] Kathryn A. Dowsland and Jonathan M. Thompson. Simulated Annealing, pages

1623–1655. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN

978-3-540-92910-9. doi:10.1007/978-3-540-92910-9 49.

[28] M. Locatelli. Simulated annealing algorithms for continuous global

optimization: Convergence conditions. Journal of Optimization Theory and

Applications, 104(1):121–133, 2000. ISSN 1573-2878. doi:10.1023/A:

1004680806815.

108

[29] Peter Salamon, Paolo Sibani, and Richard Frost. Selecting the Schedule,

chapter 13, pages 89–97. Society for Industrial and Applied Mathematics,

Philadelphia, Pa., 2002. ISBN 978-0-89871-508-8. doi:10.1137/1.

9780898718300.ch13.

[30] Matheus Ferreira Pontes, Clayton Farias, Rafael Schvittz, Paulo Butzen, and

Leomar da Rosa Jr. Survey on reliability estimation in digital circuits. Journal

of Integrated Circuits and Systems, 16(3):1–11, 2021. doi:10.29292/jics.v16i3.

568.

[31] Jaroslav Menčı́k. Reliability of systems. In Jaroslav Mencik, editor, Concise

Reliability for Engineers, chapter 5. IntechOpen, Rijeka, 2016. doi:10.5772/

62358.

[32] Zhen Li, Junfeng Tian, and Pengyuan Zhao. Software reliability estimate

with duplicated components based on connection structure. Cybernetics and

Information Technologies, 14(3):3–13, 2014. doi:10.2478/cait-2014-0028.

[33] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Yuan Xie.

Reliability-centric high-level synthesis. In Proceedings of the Conference on

Design, Automation and Test in Europe - Volume 2, DATE ’05, page 1258–1263.

IEEE Computer Society, USA, 2005. ISBN 0769522882. doi:10.1109/DATE.

2005.258.

[34] D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout, S.W. Gould, and J.M.

Cohn. Managing power and performance for system-on-chip designs using

voltage islands. In IEEE/ACM International Conference on Computer Aided

Design, 2002. ICCAD 2002., pages 195–202. 2002. doi:10.1109/ICCAD.2002.

1167534.

[35] Farshad Firouzi, Mostafa E Salehi, Fan Wang, and Sied Mehdi Fakhraie. An

accurate model for soft error rate estimation considering dynamic voltage and

109

frequency scaling effects. Microelectronics Reliability, 51(2):460–467, 2011.

ISSN 0026-2714. doi:10.1016/j.microrel.2010.08.016.

[36] S. Tosun, O. Ozturk, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and W.-L.

Hung. An ilp formulation for reliability-oriented high-level synthesis. In

Sixth international symposium on quality electronic design (isqed’05), pages

364–369. 2005. doi:10.1109/ISQED.2005.15.

[37] Siavash Es’haghi and Mohammad Eshghi. Lifetime-aware scheduling in high

level synthesis. Microelectronics Reliability, 91:86–97, 2018. ISSN 0026-2714.

doi:10.1016/j.microrel.2018.06.016.

[38] Liang Chen, Mojtaba Ebrahimi, and Mehdi B. Tahoori. Reliability-aware

resource allocation and binding in high-level synthesis. ACM Trans. Des. Autom.

Electron. Syst., 21(2), 2016. ISSN 1084-4309. doi:10.1145/2839300.

[39] Yuko Hara-Azumi and Hiroyuki Tomiyama. Cost-efficient scheduling in

high-level synthesis for soft-error vulnerability mitigation. In International

Symposium on Quality Electronic Design (ISQED), pages 502–507. IEEE, 2013.

doi:10.1109/ISQED.2013.6523658.

[40] Necati Aras and Arda Yurdakul. A new multi-objective mathematical model for

the high-level synthesis of integrated circuits. Applied Mathematical Modelling,

40(3):2274–2290, 2016. ISSN 0307-904X. doi:10.1016/j.apm.2015.09.061.

[41] Yuko Hara-Azumit and Hiroyuki Tomiyama. Clock-constrained simultaneous

allocation and binding for multiplexer optimization in high-level synthesis. In

17th Asia and South Pacific Design Automation Conference, pages 251–256.

2012. doi:10.1109/ASPDAC.2012.6164954.

[42] K. Ito, L.E. Lucke, and K.K. Parhi. Ilp-based cost-optimal dsp synthesis with

module selection and data format conversion. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 6(4):582–594, 1998. doi:10.1109/92.736132.

110

[43] Keisuke INOUE and Mineo KANEKO. Dual-edge-triggered flip-flop-based

high-level synthesis with programmable duty cycle. IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences,

E96.A(12):2689–2697, 2013. doi:10.1587/transfun.E96.A.2689.

[44] Kartikey Mittal, Arpit Joshi, and Madhu Mutyam. Timing variation-aware

scheduling and resource binding in high-level synthesis. ACM Trans. Des.

Autom. Electron. Syst., 16(4), 2011. ISSN 1084-4309. doi:10.1145/2003695.

2003700.

[45] Insup Shin, Seungwhun Paik, Dongwan Shin, and Youngsoo Shin. Hls-dv: A

high-level synthesis framework for dual-vdd architectures. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 20(4):593–604, 2012. doi:10.

1109/TVLSI.2011.2122310.

[46] Zhen Zhao, Jinian Bian, Zhipeng Liu, Yunfeng Wang, and Kang Zhao. High

level synthesis with multiple supply voltages for energy and combined peak

power minimization. In APCCAS 2006 - 2006 IEEE Asia Pacific Conference

on Circuits and Systems, pages 864–867. 2006. doi:10.1109/APCCAS.2006.

342178.

[47] Shih-Hsu Huang and Chun-Hua Cheng. An ilp approach to the simultaneous

application of operation scheduling and power management. IEICE

Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, E91.A(1):375–382, 2008. doi:10.1093/ietfec/e91-a.1.375.

[48] Wen-Tsong Shiue. High level synthesis for peak power minimization using ilp.

In Proceedings IEEE International Conference on Application-Specific Systems,

Architectures, and Processors, pages 103–112. 2000. doi:10.1109/ASAP.2000.

862382.

[49] Zong-Han Xie, Shih-Hsu Huang, and Chun-Hua Cheng. Utilizing power

management and timing slack for low power in high-level synthesis. In 2018

111

IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),

pages 1–2. 2018. doi:10.1109/ICCE-China.2018.8448584.

[50] S. Devadas and A.R. Newton. Algorithms for hardware allocation in data path

synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 8(7):768–781, 1989. doi:10.1109/43.31534.

[51] Maria Abi Saad and Iyad Ouaiss. Priority-driven area optimization in high-level

synthesis. Journal of Circuits, Systems and Computers, 20(06):1131–1163,

2011. doi:10.1142/S0218126611007803.

[52] Gabriel Caffarena, Juan A. Lopez, Carlos Carreras, and Octavio

Nieto-Taladriz. High-level synthesis of multiple word-length dsp algorithms

using heterogeneous-resource fpgas. In 2006 International Conference

on Field Programmable Logic and Applications, pages 1–4. 2006.

doi:10.1109/FPL.2006.311288.

[53] J.A. Nestor and G. Krishnamoorthy. Salsa: a new approach to scheduling with

timing constraints. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 12(8):1107–1122, 1993. doi:10.1109/43.238604.

[54] W.-L. Hung, Xiaoxia Wu, and Yuan Xie. Guaranteeing performance

yield in high-level synthesis. In Proceedings of the 2006 IEEE/ACM

International Conference on Computer-Aided Design, ICCAD ’06, page

303–309. Association for Computing Machinery, New York, NY, USA, 2006.

ISBN 1595933891. doi:10.1145/1233501.1233561.

[55] M Akil. High-level synthesis based upon dependence graph for

multi-fpga. INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS

ELECTRONIC COMPONENTS AND MATERIALS, 33(4):267–275, 2003. ISSN

0352-9045.

[56] A. Doboli. Integrated hardware-software co-synthesis and high-level synthesis

for design of embedded systems under power and latency constraints. In

112

Proceedings Design, Automation and Test in Europe. Conference and Exhibition

2001, pages 612–619. 2001. doi:10.1109/DATE.2001.915087.

[57] C.P. Ravikumar, S. Gupta, and A. Jajoo. Synthesis of testable rtl designs.

In Proceedings Eleventh International Conference on VLSI Design, pages

187–192. 1998. doi:10.1109/ICVD.1998.646600.

[58] J.C. Alves and J.S. Matos. A simulated annealing approach for high-level

synthesis with reconfigurable functional units. In 38th Midwest Symposium

on Circuits and Systems. Proceedings, volume 1, pages 314–317 vol.1. 1995.

doi:10.1109/MWSCAS.1995.504440.

[59] Yiheng Gao and Benjamin Carrion Schafer. Effective high-level synthesis

design space exploration through a novel cost function formulation. In 2021

IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.

2021. doi:10.1109/ISCAS51556.2021.9401684.

[60] Zi Wang and Benjamin Carrion Schafer. Machine leaming to set meta-heuristic

specific parameters for high-level synthesis design space exploration. In

2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6. 2020.

doi:10.1109/DAC18072.2020.9218674.

[61] Anushree Mahapatra and Benjamin Carrion Schafer. Machine-learning based

simulated annealer method for high level synthesis design space exploration.

In Proceedings of the 2014 Electronic System Level Synthesis Conference

(ESLsyn), pages 1–6. 2014. doi:10.1109/ESLsyn.2014.6850383.

[62] Deming Chen, J. Cong, and Yiping Fan. Low-power high-level synthesis for

fpga architectures. In Proceedings of the 2003 International Symposium on

Low Power Electronics and Design, 2003. ISLPED ’03., pages 134–139. 2003.

doi:10.1109/LPE.2003.1231849.

[63] Deming Chen, Jason Cong, Yiping Fan, and Lu Wan. Lopass: A low-power

architectural synthesis system for fpgas with interconnect estimation and

113

optimization. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 18(4):564–577, 2010. doi:10.1109/TVLSI.2009.2013353.

[64] J.T. Kao and A.P. Chandrakasan. Dual-threshold voltage techniques

for low-power digital circuits. IEEE Journal of Solid-State Circuits,

35(7):1009–1018, 2000. doi:10.1109/4.848210.

[65] Nan WANG, Song CHEN, Wei ZHONG, Nan LIU, and Takeshi YOSHIMURA.

Mobility overlap-removal-based leakage power and register-aware scheduling

in high-level synthesis. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E97.A(8):1709–1719, 2014. doi:10.

1587/transfun.E97.A.1709.

[66] S.P. Mohanty, Ramakrishna Velagapudi, and E. Kougianos. Physical-aware

simulated annealing optimization of gate leakage in nanoscale datapath circuits.

In Proceedings of the Design Automation & Test in Europe Conference,

volume 1, pages 6 pp.–. 2006. doi:10.1109/DATE.2006.244046.

[67] D. Dal, D. Kutagulla, A. Nunez, and N. Mansouri. Power islands: a high-level

synthesis technique for reducing spurious switching activity and leakage. In 48th

Midwest Symposium on Circuits and Systems, 2005., pages 1875–1879 Vol. 2.

2005. doi:10.1109/MWSCAS.2005.1594490.

[68] Elie Elaaraj and Iyad Ouaiss. A novel register-binding approach to reduce

spurious switching activity in high-level synthesis. Journal of Circuits, Systems

and Computers, 20(05):943–973, 2011. doi:10.1142/S0218126611007700.

[69] Vyas Krishnan and Srinivas Katkoori. Tabs: Temperature-aware layout-driven

behavioral synthesis. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 18(12):1649–1659, 2010. doi:10.1109/TVLSI.2009.2026047.

[70] Hariharan Sankaran and Srinivas Katkoori. Floorplan driven high level synthesis

for crosstalk noise minimization in macro-cell based designs. In 2009 IEEE

114

Computer Society Annual Symposium on VLSI, pages 274–279. 2009. doi:10.

1109/ISVLSI.2009.59.

[71] Hariharan Sankaran and Srinivas Katkoori. Simultaneous scheduling,

allocation, binding, re-ordering, and encoding for crosstalk pattern minimization

during high–level synthesis. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 19(2):217–226, 2011. doi:10.1109/TVLSI.2009.2031864.

[72] Junhua Wu, Chunmei Ma, and Baogui Huang. Congestion aware high level

synthesis combined with floorplanning. In 2008 IEEE Pacific-Asia Workshop

on Computational Intelligence and Industrial Application, volume 2, pages

935–938. 2008. doi:10.1109/PACIIA.2008.205.

[73] François S. Verdier and Bertrand Zavidovique. A high level synthesis system

for vlsi image processing applications. VLSI Design, 7:095421, 1998. ISSN

1065-514X. doi:10.1155/1998/95421.

[74] A.A. Duncan, D.C. Hendry, and P. Gray. An overview of the cobra-abs high

level synthesis system for multi-fpga systems. In Proceedings. IEEE Symposium

on FPGAs for Custom Computing Machines (Cat. No.98TB100251), pages

106–115. 1998. doi:10.1109/FPGA.1998.707888.

[75] A.A. Duncan, D.C. Hendry, and P. Gray. The cobra-abs high-level synthesis

system for multi-fpga custom computing machines. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 9(1):218–223, 2001. doi:10.1109/92.

920837.

[76] André Flores dos Santos, Lucas Antunes Tambara, and Fernanda Lima

Kastensmidt. Evaluating the efficiency of using tmr in the high-level synthesis

design flow of sram-based fpga. In 2017 IEEE 8th Latin American Symposium

on Circuits Systems (LASCAS), pages 1–4. 2017. doi:10.1109/LASCAS.2017.

7948064.

115

[77] André Flores dos Santos, Lucas Antunes Tambara, Fabio Benevenuti, Jorge

Tonfat, and Fernanda Lima Kastensmidt. Applying tmr in hardware accelerators

generated by high-level synthesis design flow for mitigating multiple bit upsets

in sram-based fpgas. In Stephan Wong, Antonio Carlos Beck, Koen Bertels,

and Luigi Carro, editors, Applied Reconfigurable Computing, pages 202–213.

Springer International Publishing, Cham, 2017. ISBN 978-3-319-56258-2.

doi:10.1007/978-3-319-56258-2 18.

[78] Zhiqi Zhu, Farah Naz Taher, and Benjamin Carrion Schafer. Exploring design

trade-offs in fault-tolerant behavioral hardware accelerators. In Proceedings of

the 2019 on Great Lakes Symposium on VLSI, GLSVLSI ’19, page 291–294.

Association for Computing Machinery, New York, NY, USA, 2019. ISBN

9781450362528. doi:10.1145/3299874.3318020.

[79] Deepak Kachave and Anirban Sengupta. Integrating physical level design and

high level synthesis for simultaneous multi-cycle transient and multiple transient

fault resiliency of application specific datapath processors. Microelectronics

Reliability, 60(C):141–152, 2016. doi:10.1016/j.microrel.2016.03.006.

[80] David Wilson, Aniruddha Shastri, and Greg Stitt. A high-level synthesis

scheduling and binding heuristic for fpga fault tolerance. International Journal

of Reconfigurable Computing, 2017:5419767, 2017. ISSN 1687-7195. doi:10.

1155/2017/5419767.

[81] Aniruddha Shastri, Greg Stitt, and Eduardo Riccio. A scheduling and

binding heuristic for high-level synthesis of fault-tolerant fpga applications.

In 2015 IEEE 26th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), pages 202–209. 2015. doi:10.1109/

ASAP.2015.7245735.

[82] Xiang Chen, Wenhui Yang, Ming Zhao, and Jing Wang. Hls-based

sensitivity-inductive soft error mitigation for satellite communication systems.

In 2016 IEEE 22nd International Symposium on On-Line Testing and Robust

116

System Design (IOLTS), pages 143–148. 2016. doi:10.1109/IOLTS.2016.

7604688.

[83] Cong Hao, Song Chen, and Takeshi Yoshimura. Network simplex method based

multiple voltage scheduling in power-efficient high-level synthesis. In 2013

18th Asia and South Pacific Design Automation Conference (ASP-DAC), pages

237–242. 2013. doi:10.1109/ASPDAC.2013.6509602.

[84] Shih-Hsu Huang, Wen-Pin Tu, and Bing-Hung Li. High-level synthesis for

minimum-area low-power clock gating. Journal of Information Science and

Engineering, 28(5):971–988, 2012. ISSN 1016-2364.

[85] Michael Glaß, Martin Lukasiewycz, Thilo Streichert, Christian Haubelt, and

Jürgen Teich. Reliability-aware system synthesis. 2008 Design, Automation

and Test in Europe, 0:141–148, 2007. doi:10.1109/DATE.2007.364626.

[86] Tomoo Inoue, Hayato Henmi, Yuki Yoshikawa, and Hideyuki Ichihara.

High-level synthesis for multi-cycle transient fault tolerant datapaths. In 2011

IEEE 17th International On-Line Testing Symposium, pages 13–18. 2011.

doi:10.1109/IOLTS.2011.5993804.

[87] Aiman H. El-Maleh and Khaled A. K. Daud. Simulation-based method for

synthesizing soft error tolerant combinational circuits. IEEE Transactions on

Reliability, 64(3):935–948, 2015. doi:10.1109/TR.2015.2440234.

[88] Suleyman Tosun and Tohid Taghizad Gogjeh Yaran. Genetic algorithm-based

reliability optimization for high-level synthesis. Journal of Circuits, Systems

and Computers, 28(03):1950039, 2019. doi:10.1142/S0218126619500397.

[89] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically

variable voltage processors. In Proceedings. 1998 International Symposium on

Low Power Electronics and Design (IEEE Cat. No.98TH8379), pages 197–202.

1998. doi:10.1145/280756.280894.

117

[90] Ruibin Xu, Daniel Mossé, and Rami Melhem. Minimizing expected energy

consumption in real-time systems through dynamic voltage scaling. ACM

Transactions on Computer Systems (TOCS), 25(4):9, 2007. ISSN 0734-2071.

doi:10.1145/1314299.1314300.

[91] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling

for reduced cpu energy. In Proceedings of the 1st USENIX Conference on

Operating Systems Design and Implementation, OSDI ’94, page 2–es. USENIX

Association, USA, 1994. doi:10.5555/1267638.1267640.

[92] Priyardarsan Patra, Nagarajan Kougianos, Elias Ranganathan, and Saraju P

Mohanty. Low-power high-level synthesis for nanoscale CMOS circuits.

Springer, Boston, MA, 2008. doi:10.1007/978-0-387-76474-0.

[93] Sumit Ahuja. High level power estimation and reduction techniques for power

aware hardware design. Ph.D. thesis, Virginia Tech, 2010.

[94] John Hansen and Montek Singh. An energy and power-aware approach to

high-level synthesis of asynchronous systems. In 2010 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pages 269–276. 2010. doi:10.

1109/ICCAD.2010.5654169.

[95] A.K. Murugavel and N. Ranganathan. A game theoretic approach for power

optimization during behavioral synthesis. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 11(6):1031–1043, 2003. doi:10.1109/TVLSI.

2003.819566.

[96] Selma Dilek, Rawan Smri, Suleyman Tosun, and Deniz Dal. A high-level

synthesis methodology for energy and reliability-oriented designs. IEEE

Transactions on Computers, 71(1):161–174, 2022. doi:10.1109/TC.2020.

3043885.

118

[97] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach.

An introduction to high-level synthesis. IEEE Design & Test of Computers,

26(4):8–17, 2009. doi:10.1109/MDT.2009.69.

[98] Sarah L. Harris and David Harris. 4 - hardware description languages.

In Sarah L. Harris and David Harris, editors, Digital Design and

Computer Architecture, pages 170–235. Morgan Kaufmann, 2022. ISBN

978-0-12-820064-3. doi:https://doi.org/10.1016/B978-0-12-820064-3.

00004-0.

[99] Daniel D. Gajski, Nikil D. Dutt, Allen C-H Wu, and Steve Y-L Lin. High —

Level Synthesis: Introduction to Chip and System Design. Springer New York,

US, 1 edition, 1992. ISBN 978-1-4613-6617-1,978-1-4615-3636-9. doi:https:

//doi.org/10.1007/978-1-4615-3636-9.

[100] Liang Chen, Mojtaba Ebrahimi, and Mehdi B. Tahoori. Reliability-aware

operation chaining in high level synthesis. In 2015 20th IEEE European Test

Symposium (ETS), pages 1–6. 2015. doi:10.1109/ETS.2015.7138739.

[101] Giovanni De Micheli. Synthesis and optimization of digital circuits.

McGraw-Hill Higher Education, 1st edition, 1994. ISBN 0070163332.

doi:https://dl.acm.org/doi/10.5555/541643.

[102] Suleyman Tosun, Nazanin Mansouri, Mahmut Kandemir, and Ozcan Ozturk. An

ilp formulation for task scheduling on heterogeneous chip multiprocessors. In

Proceedings of the 21st International Conference on Computer and Information

Sciences, ISCIS’06, page 267–276. Springer-Verlag, Berlin, Heidelberg, 2006.

ISBN 3540472428. doi:10.1007/11902140 30.

[103] Gill Velleda Gonzales, Elizaldo Domingues dos Santos, Leonardo

Ramos Emmendorfer, Liércio André Isoldi, Luiz Alberto Oliveira Rocha,

and Emanuel da Silva Diaz Estrada. A comparative study of simulated

annealing with different cooling schedules for geometric optimization of a heat

119

transfer problem according to constructal design. Scientia Plena, 11(8), 2015.

doi:10.14808/sci.plena.2015.081321.

[104] Clayton V. Deutsch and Perry W. Cockerham. Practical considerations in

the application of simulated annealing to stochastic simulation. Mathematical

Geology, 26(1):67–82, 1994. ISSN 1573-8868. doi:10.1007/BF02065876.

[105] Sergio Ledesma, Gabriel Avi na, and Raul Sanchez. Practical considerations

for simulated annealing implementation. In Cher Ming Tan, editor, Simulated

Annealing, chapter 20. IntechOpen, Rijeka, 2008. doi:10.5772/5560.

[106] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,

Augusta H. Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The Journal of Chemical Physics, 21(6):1087–1092,

1953. doi:10.1063/1.1699114.

[107] FICO. FICO xpress optimization. https://www.fico.com/en/

products/fico-xpress-optimization, 2001-2022.

120

https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization

8. APPENDICES

APPENDIX A - Mosel and C Implementations Source Code

A.1 Mosel Code For ILP Formulation of the HLS Problem

1 !@encoding CP1252

2 model hls

3 uses "mmxprs"; !gain access to the Xpress-Optimizer solver

4 uses "mmsystem";

5 forward procedure print_solution

6

7 ! ---------- declarations ----------

8

9 declarations

10 N = 13 ! diffeq (1 is the source, N is the last sink task)

11 !N = 30 ! AR

12 !N = 28 ! EWF

13 !N = 25 ! FIR

14 R = 6 ! Number of resources (the last one is dummy)

15 TASKS = 1..N

16 Resources = 1..R

17 Voltages = 1..2

18

19 alpha = 1.0

20

21 AreaConstraint = 40

22 LatencyConstraint = 29

23 Csteps = 1..LatencyConstraint

24

25 TaskType: array(TASKS) of integer ! Types of tasks 0-nop, 1-add, 2-mult

26 ! Types of resources 0-(for dummy end task), 1-add, 2-mult

27 ResourceType: array(Resources) of integer

28 StartTime: array(TASKS, Csteps) of mpvar ! Start times of tasks (Xis)

29 StartTimeN: mpvar ! Start time of sink

30

31 ! If task_i is assigned to resource_j under voltage_v

32 Assigned: array(TASKS, Resources, Voltages) of mpvar

33

34 PREC: array(range,range) of integer ! Matrix of the adjacency graph PREC(i,j)

35

36 Area: array(Resources) of real ! Area of resources

37

38 ! Reliability of resource_j under Voltage_v

39 Reliability: array(Resources, Voltages) of real

40 ! Energy consumption of resource_j under Voltage_v

41 Energy: array(Resources, Voltages) of real

42 ! Latency of resource_j under Voltage_v

43 Latency: array(Resources, Voltages) of integer

44

121

45 MinR: real

46 MaxR: real

47 MinE: real

48 MaxE: real

49

50 Delay: array(TASKS) of mpvar ! Delay of a node (dj)

51

52 ! 1 if vi is scheduled at Cstep s and bound to resource r under v

53 k: array(TASKS, Csteps, Resources, Voltages) of mpvar

54

55 ! Number of instances of resource_j used per voltage level

56 y: array(Resources, Voltages) of mpvar

57

58 TaskReliability: array(TASKS) of mpvar ! Reliability of task_i

59

60 TaskEnergy: array(TASKS) of mpvar ! Energy consumed by a task

61

62 Reliability_value: real

63

64 NormalizedR: mpvar

65 NormalizedE: mpvar

66

67 TotalArea: real

68

69 sol: real ! Solution

70 end-declarations

71

72 ! ---------- Initializations ----------

73

74 initializations from 'diffeq.dat'

75 !initializations from 'fir.dat'

76 !initializations from 'ar.dat'

77 !initializations from 'ew.dat'

78 PREC TaskType ResourceType Area Reliability Latency Energy MinR MaxR MinE MaxE

79 end-initializations

80

81 writeln("Begin running model")

82

83 starttime:= gettime ! Get the start time

84

85 ! ---------- Formulations ----------

86

87 forall(i in TASKS, s in Csteps) StartTime(i, s) is_binary

88 forall(i in TASKS, j in Resources, v in Voltages) Assigned(i, j, v) is_binary

89 forall(i in TASKS, s in Csteps, j in Resources, v in Voltages) k(i, s, j, v) is_binary

90

91 forall(r in Resources, v in Voltages) y(r, v) is_integer

92

93 forall(i in TASKS) sum(s in Csteps) StartTime(i, s) = 1

94

95 ! If Tasktype doesn't match resource type, it cannot be assigned

96 forall(i in TASKS,j in Resources, v in Voltages) do

97 if ResourceType(j) <> TaskType(i) then

98 Assigned(i, j, v) = 0

99 end-if

100 end-do

122

101

102 ! Only one resource can be assigned to any task under only one voltage level:

103 forall(i in TASKS) sum(j in Resources, v in Voltages | ResourceType(j) = TaskType(i))

Assigned(i, j, v) = 1↪→

104

105 ! Delay of task_i

106 forall(i in TASKS) Delay(i) = sum(r in Resources, v in Voltages) Latency(r, v)*Assigned(i,

r, v)↪→

107

108 ! Precedence conditions

109 forall(i,j in TASKS | PREC(i,j) = 1) sum(s in Csteps)StartTime(j, s)*s >= sum(s in

Csteps)StartTime(i, s)*s + Delay(i)↪→

110

111 forall(i in TASKS) sum(j in Resources, s in Csteps, v in Voltages) k(i,s,j,v) = 1

112 forall(i in TASKS, s in Csteps, j in Resources, v in Voltages) k(i, s, j, v) >= Assigned(i,

j, v) + StartTime(i, s) - 1↪→

113

114 ! Task reliability calculation

115 forall (i in TASKS) TaskReliability(i) = sum(j in Resources, v in Voltages) Reliability(j,

v)*Assigned(i,j,v)↪→

116

117 ! Task energy consumption calculation

118 forall (i in TASKS) TaskEnergy(i) = sum(j in Resources, v in Voltages) Energy(j,

v)*Assigned(i,j,v)↪→

119

120 ! Calculating how many instances of each resource are used in total

121 forall(r in Resources, s in Csteps, v in Voltages) y(r,v) >= sum(i in TASKS) k(i, s, r, v)

122

123 StartTimeN = sum(s in Csteps)StartTime(N, s)*s

124

125 ! ----------- Objective function -----------

126

127 TotalReliability:= sum(i in TASKS) TaskReliability(i)

128

129 TA:= sum(j in Resources, v in Voltages) y(j,v) * Area(j)

130 TotalArea:=getsol(TA)

131

132 TotalEnergy:= sum(i in TASKS) TaskEnergy(i)

133

134 NormalizedR = (TotalReliability-MinR)/(MaxR-MinR)

135

136 NormalizedE = (TotalEnergy-MinE)/(MaxE-MinE)

137

138 objectiveF := alpha*(1-NormalizedR) + (1-alpha)*(NormalizedE)

139

140 ! ----------- Constraints -----------

141

142 StartTimeN <= LatencyConstraint ! Check this!

143 TA <= AreaConstraint

144

145 ! Solve the problem: maximize the total reliability, minimize energy consumption

146 minimize(objectiveF)

147

148 sol:=getobjval

149

150 writeln("Time: ",gettime-starttime, " s") !prints the program execution time

123

151

152 ! Solution printing

153 print_solution

154

155 writeln("End running model")

156

157 ! ----------- Helper functions -----------

158

159 procedure print_solution

160 !writeln("latency(1,1) = ", Latency(1,1))

161 !writeln("Energy(5,2) = ", Energy(5,2))

162 !writeln

163 writeln("Total duration: ", StartTimeN.sol, " cycles")

164 writeln("Total area: ", getsol(TA), " units")

165

166 Reliability_value:=1

167 forall (i in 1..N) do

168 Reliability_value:=Reliability_value*TaskReliability(i).sol

169 end-do

170

171 writeln("Total reliability (mult): ",Reliability_value)

172

173 writeln("Total reliability (sum): ", getsol(TotalReliability))

174 writeln

175

176 writeln("Total Energy: ", getsol(TotalEnergy))

177 writeln

178 writeln("NormalizedR: ", getsol(NormalizedR))

179 writeln

180 writeln("NormalizedE: ", getsol(NormalizedE))

181 writeln

182

183 writeln

184 forall(r in Resources, v in Voltages) do

185 writeln("y(",r,",",v,") = ", y(r,v).sol)

186 end-do

187 writeln

188 forall(i in TASKS, j in Resources, v in Voltages) do

189 if (Assigned(i, j, v).sol = 1) then

190 writeln("Assigned(",i,",",j,",",v,") = ", Assigned(i, j, v).sol)

191 end-if

192 end-do

193 writeln

194

195 forall(i in TASKS, s in Csteps) do

196 if (StartTime(i, s).sol = 1) then

197 writeln("StartTime(",i,",",s,") = ", StartTime(i, s).sol)

198 end-if

199 end-do

200 writeln

201

202 forall(i in TASKS) do

203 writeln("Delay(",i,") = ", Delay(i).sol)

204 end-do

205 !writeln

206

124

207 end-procedure

208

209 end-model

125

A.2 Mosel Code For ILP Formulation of the HLS Problem With Partial DMR

1 !@encoding CP1252

2 model hls

3 uses "mmxprs"; !gain access to the Xpress-Optimizer solver

4 uses "mmsystem";

5 forward procedure print_solution

6

7 ! ---------- declarations ----------

8

9 declarations

10 N = 13 ! diffeq (1 is the source, N is the last sink task)

11 !N = 30 ! AR

12 !N = 28 ! EWF

13 !N = 25 ! FIR

14 R = 6 ! Number of resources (the last one is dummy)

15 TASKS = 1..N

16 Resources = 1..R

17 Voltages = 1..2

18

19 alpha = 1.0

20

21 AreaConstraint = 40

22 LatencyConstraint = 29

23 Csteps = 1..LatencyConstraint

24

25 TaskType: array(TASKS) of integer ! Types of tasks 0-nop, 1-add, 2-mult

26 ! Types of resources 0-(for dummy end task), 1-add, 2-mult

27 ResourceType: array(Resources) of integer

28 StartTime: array(TASKS, Csteps) of mpvar ! Start times of tasks (Xis)

29 StartTimeN: mpvar ! Start time of sink

30

31 ! If task_i is assigned to resource_j under voltage_v

32 Assigned: array(TASKS, Resources, Voltages) of mpvar

33

34 PREC: array(range,range) of integer ! Matrix of the adjacency graph PREC(i,j)

35

36 Area: array(Resources) of real ! Area of resources

37

38 ! Reliability of resource_j under Voltage_v

39 Reliability: array(Resources, Voltages) of real

40 ! Energy consumption of resource_j under Voltage_v

41 Energy: array(Resources, Voltages) of real

42 ! Latency of resource_j under Voltage_v

43 Latency: array(Resources, Voltages) of integer

44

45 MinR: real

46 MaxR: real

47 MinE: real

48 MaxE: real

49

50 Delay: array(TASKS) of mpvar ! Delay of a node (dj)

51

52 ! 1 if vi is scheduled at Cstep s and bound to resource r under v

126

53 k: array(TASKS, Csteps, Resources, Voltages) of mpvar

54

55 ! Number of instances of resource_j used per voltage level

56 y: array(Resources, Voltages) of mpvar

57

58 TaskReliability: array(TASKS) of mpvar ! Reliability of task_i

59

60 TaskEnergy: array(TASKS) of mpvar ! Energy consumed by a task

61

62 Reliability_value: real

63

64 NormalizedR: mpvar

65 NormalizedE: mpvar

66

67 TotalArea: real

68

69 sol: real ! Solution

70 end-declarations

71

72 ! ---------- Initializations ----------

73

74 initializations from 'diffeq.dat'

75 !initializations from 'fir.dat'

76 !initializations from 'ar.dat'

77 !initializations from 'ew.dat'

78 PREC TaskType ResourceType Area Reliability Latency Energy MinR MaxR MinE MaxE

79 end-initializations

80

81 writeln("Begin running model")

82

83 starttime:= gettime ! Get the start time

84

85 ! ---------- Formulations ----------

86

87 forall(i in TASKS, s in Csteps) StartTime(i, s) is_binary

88 forall(i in TASKS, j in Resources, v in Voltages) Assigned(i, j, v) is_binary

89 forall(i in TASKS, s in Csteps, j in Resources, v in Voltages) k(i, s, j, v) is_binary

90 forall(i in TASKS_d, s in Csteps) StartTime_d(i, s) is_binary

91 forall(i in TASKS_d, j in Resources, v in Voltages) Assigned_d(i, j, v) is_binary

92 forall(i in TASKS_d, s in Csteps, j in Resources, v in Voltages) k_d(i, s, j, v) is_binary

93 forall(i in TASKS) Duplicated(i) is_binary

94

95 forall(r in Resources, v in Voltages) y(r, v) is_integer

96

97 forall(i in TASKS) sum(s in Csteps) StartTime(i, s) = 1

98

99 ! Any task can only begin in one Cstep or not at all (if not duplicated)

100 forall(i in TASKS_d) sum(s in Csteps) StartTime_d(i, s) <= 1

101

102 ! If Tasktype doesn't match resource type, it cannot be assigned

103 forall(i in TASKS,j in Resources, v in Voltages) do

104 if ResourceType(j) <> TaskType(i) then

105 Assigned(i, j, v) = 0

106 end-if

107 end-do

108

127

109 forall(i in TASKS_d,j in Resources, v in Voltages) do

110 if ResourceType(j) <> TaskType(i) then

111 Assigned_d(i, j, v) = 0

112 end-if

113 end-do

114

115 ! Only one resource can be assigned to any task under only one voltage level:

116 forall(i in TASKS) sum(j in Resources, v in Voltages | ResourceType(j) = TaskType(i))

Assigned(i, j, v) = 1↪→

117

118 ! For PD - a task can be assigned a resource or not

119 forall(i in TASKS_d) sum(j in Resources, v in Voltages | ResourceType(j) = TaskType(i))

Assigned_d(i, j, v) <= 1↪→

120 forall(i in TASKS) Duplicated(i) = sum(j in Resources, v in Voltages) Assigned_d(i, j, v)

121

122 ! Delay of task_i

123 forall(i in TASKS) Delay(i) = sum(r in Resources, v in Voltages) Latency(r, v)*Assigned(i,

r, v)↪→

124 forall(i in TASKS_d) Delay_d(i) = sum(r in Resources, v in Voltages) Latency(r,

v)*Assigned_d(i, r, v)↪→

125

126 ! Precedence conditions

127 forall(i,j in TASKS | PREC(i,j) = 1) sum(s in Csteps)StartTime(j, s)*s >= sum(s in

Csteps)StartTime(i, s)*s + Delay(i)↪→

128

129 ! In case Delay_d(i) is greater than Delay(i), start time of a dependent task should

consider that as well:↪→

130 forall(i,j in TASKS | PREC(i,j) = 1) sum(s in Csteps)StartTime(j, s)*s >= sum(s in

Csteps)StartTime(i, s)*s + Delay_d(i)↪→

131

132 forall(i in TASKS) sum(s in Csteps)StartTime(i, s)*s = sum(s in Csteps)StartTime_d(i, s)*s

133

134 forall(i in TASKS) sum(j in Resources, s in Csteps, v in Voltages) k(i,s,j,v)=1

135 forall(i in TASKS, s in Csteps, j in Resources, v in Voltages) k(i, s, j, v) >= Assigned(i,

j, v) + StartTime(i, s) - 1↪→

136

137 ! In PD some task may not be duplicated so k_d can be 0

138 forall(i in TASKS_d) sum(j in Resources, s in Csteps, v in Voltages) k_d(i,s,j,v) <= 1

139 forall(i in TASKS_d, s in Csteps, j in Resources, v in Voltages) k_d(i, s, j, v) >=

Assigned_d(i, j, v) + StartTime_d(i, s) - 1↪→

140

141 ! Task reliability calculation

142 forall (i in TASKS) TaskReliability(i) = sum(j in Resources, v in Voltages) Reliability(j,

v)*Assigned(i,j,v)↪→

143 forall (i in TASKS_d) TaskReliability_d(i) = sum(j in Resources, v in Voltages)

Reliability(j, v)*Assigned_d(i,j,v)↪→

144

145

146 ! Task energy consumption calculation

147 forall (i in TASKS) TaskEnergy(i) = sum(j in Resources, v in Voltages) Energy(j,

v)*Assigned(i,j,v)↪→

148 forall (i in TASKS_d) TaskEnergy_d(i) = sum(j in Resources, v in Voltages) Energy(j,

v)*Assigned_d(i,j,v)↪→

149

150 ! Calculating how many instances of each resource are used in total

128

151 forall(r in Resources, s in Csteps, v in Voltages) y(r,v) >= (sum(i in TASKS) k(i, s, r, v)

+ sum(j in TASKS_d) k_d(j, s, r, v))↪→

152

153 StartTimeN = sum(s in Csteps)StartTime(N, s)*s

154 StartTimeN_d = sum(s in Csteps)StartTime_d(N, s)*s

155

156

157 ! ----------- Objective function -----------

158

159 TotalReliability:= sum(i in 2..N-1) TaskReliability(i) + sum(j in 2..N-1)

TaskReliability_d(j)↪→

160 dMinR := sum(i in 2..N-1) Duplicated(i)*0.938+(N-2)*0.938

161 dMaxR := sum(i in 2..N-1) Duplicated(i)*0.999+(N-2)*0.999

162 TA:= sum(j in Resources, v in Voltages) y(j,v) * Area(j)

163 TotalArea:=getsol(TA)

164

165 TotalEnergy:= sum(i in TASKS) TaskEnergy(i) + sum(j in TASKS_d) TaskEnergy_d(j)

166

167 NormalizedR = (TotalReliability-MinR)/(MaxR-MinR)

168

169 NormalizedE = (TotalEnergy-MinE)/(MaxE-MinE)

170

171 objectiveF := alpha*(1-NormalizedR) + (1-alpha)*(NormalizedE)

172

173 ! ----------- Constraints -----------

174

175 StartTimeN <= LatencyConstraint ! Check this!

176 TA <= AreaConstraint

177

178 ! Solve the problem: maximize the total reliability, minimize energy consumption

179 minimize(objectiveF)

180

181 sol:=getobjval

182

183 writeln("Time: ",gettime-starttime, " s") !prints the program execution time

184

185 ! Solution printing

186 print_solution

187

188 writeln("End running model")

189

190 ! ----------- Helper functions -----------

191

192 procedure print_solution

193 !writeln("latency(1,1) = ", Latency(1,1))

194 !writeln("Energy(5,2) = ", Energy(5,2))

195 !writeln

196 writeln("Total duration: ", StartTimeN.sol, " cycles")

197 writeln("Total area: ", getsol(TA), " units")

198

199 Reliability_value:=1

200 forall (i in 1..N) do

201 Reliability_value:=Reliability_value*TaskReliability(i).sol

202 end-do

203

204 writeln("Total reliability (mult): ",Reliability_value)

129

205

206 writeln("Total reliability (sum): ", getsol(TotalReliability))

207 writeln

208

209 writeln("Total Energy: ", getsol(TotalEnergy))

210 writeln

211 writeln("NormalizedR: ", getsol(NormalizedR))

212 writeln

213 writeln("NormalizedE: ", getsol(NormalizedE))

214 writeln

215

216 writeln

217 forall(r in Resources, v in Voltages) do

218 writeln("y(",r,",",v,") = ", y(r,v).sol)

219 end-do

220 writeln

221 forall(i in TASKS, j in Resources, v in Voltages) do

222 if (Assigned(i, j, v).sol = 1) then

223 writeln("Assigned(",i,",",j,",",v,") = ", Assigned(i, j, v).sol)

224 end-if

225 end-do

226 writeln

227

228 forall(i in TASKS, s in Csteps) do

229 if (StartTime(i, s).sol = 1) then

230 writeln("StartTime(",i,",",s,") = ", StartTime(i, s).sol)

231 end-if

232 end-do

233 writeln

234

235 forall(i in TASKS) do

236 writeln("Delay(",i,") = ", Delay(i).sol)

237 end-do

238 !writeln

239

240 end-procedure

241

242 end-model

130

A.3 Mosel Code For ILP Formulation of the HLS Problem With Full DMR

1 !@encoding CP1252

2 model hls

3 uses "mmxprs"; !gain access to the Xpress-Optimizer solver

4 uses "mmsystem";

5 forward procedure print_solution

6

7 ! ---------- declarations ----------

8

9 declarations

10 N = 13 ! diffeq (1 is the source, N is the last sink task)

11 !N = 30 ! AR

12 !N = 28 ! EWF

13 !N = 25 ! FIR

14 R = 6 ! Number of resources (the last one is dummy)

15 TASKS = 1..N

16 Resources = 1..R

17 Voltages = 1..2

18

19 alpha = 1.0

20

21 AreaConstraint = 40

22 LatencyConstraint = 29

23 Csteps = 1..LatencyConstraint

24

25 TaskType: array(TASKS) of integer ! Types of tasks 0-nop, 1-add, 2-mult

26 ! Types of resources 0-(for dummy end task), 1-add, 2-mult

27 ResourceType: array(Resources) of integer

28 StartTime: array(TASKS, Csteps) of mpvar ! Start times of tasks (Xis)

29 StartTimeN: mpvar ! Start time of sink

30

31 ! If task_i is assigned to resource_j under voltage_v

32 Assigned: array(TASKS, Resources, Voltages) of mpvar

33

34 PREC: array(range,range) of integer ! Matrix of the adjacency graph PREC(i,j)

35

36 Area: array(Resources) of real ! Area of resources

37

38 ! Reliability of resource_j under Voltage_v

39 Reliability: array(Resources, Voltages) of real

40 ! Energy consumption of resource_j under Voltage_v

41 Energy: array(Resources, Voltages) of real

42 ! Latency of resource_j under Voltage_v

43 Latency: array(Resources, Voltages) of integer

44

45 MinR: real

46 MaxR: real

47 MinE: real

48 MaxE: real

49

50 Delay: array(TASKS) of mpvar ! Delay of a node (dj)

51

52 ! 1 if vi is scheduled at Cstep s and bound to resource r under v

131

53 k: array(TASKS, Csteps, Resources, Voltages) of mpvar

54

55 ! Number of instances of resource_j used per voltage level

56 y: array(Resources, Voltages) of mpvar

57

58 TaskReliability: array(TASKS) of mpvar ! Reliability of task_i

59

60 TaskEnergy: array(TASKS) of mpvar ! Energy consumed by a task

61

62 Reliability_value: real

63

64 NormalizedR: mpvar

65 NormalizedE: mpvar

66

67 TotalArea: real

68

69 sol: real ! Solution

70 end-declarations

71

72 ! ---------- Initializations ----------

73

74 initializations from 'diffeq.dat'

75 !initializations from 'fir.dat'

76 !initializations from 'ar.dat'

77 !initializations from 'ew.dat'

78 PREC TaskType ResourceType Area Reliability Latency Energy MinR MaxR MinE MaxE

79 end-initializations

80

81 writeln("Begin running model")

82

83 starttime:= gettime ! Get the start time

84

85 ! ---------- Formulations ----------

86

87 forall(i in TASKS, s in Csteps) StartTime(i, s) is_binary

88 forall(i in TASKS, j in Resources, v in Voltages) Assigned(i, j, v) is_binary

89 forall(i in TASKS, s in Csteps, j in Resources, v in Voltages) k(i, s, j, v) is_binary

90 forall(i in TASKS_d, s in Csteps) StartTime_d(i, s) is_binary

91 forall(i in TASKS_d, j in Resources, v in Voltages) Assigned_d(i, j, v) is_binary

92 forall(i in TASKS_d, s in Csteps, j in Resources, v in Voltages) k_d(i, s, j, v) is_binary

93

94 forall(r in Resources, v in Voltages) y(r, v) is_integer

95

96 forall(i in TASKS) sum(s in Csteps) StartTime(i, s) = 1

97 forall(i in TASKS_d) sum(s in Csteps) StartTime_d(i, s) = 1

98

99 ! If Tasktype doesn't match resource type, it cannot be assigned

100 forall(i in TASKS,j in Resources, v in Voltages) do

101 if ResourceType(j) <> TaskType(i) then

102 Assigned(i, j, v) = 0

103 end-if

104 end-do

105

106 forall(i in TASKS_d,j in Resources, v in Voltages) do

107 if ResourceType(j) <> TaskType(i) then

108 Assigned_d(i, j, v) = 0

132

109 end-if

110 end-do

111

112 ! Only one resource can be assigned to any task under only one voltage level:

113 forall(i in TASKS) sum(j in Resources, v in Voltages | ResourceType(j) = TaskType(i))

Assigned(i, j, v) = 1↪→

114 forall(i in TASKS_d) sum(j in Resources, v in Voltages | ResourceType(j) = TaskType(i))

Assigned_d(i, j, v) = 1↪→

115

116 forall (i in TASKS) do

117 Delay(i) >= sum(r in Resources, v in Voltages) Latency(r, v)*Assigned(i, r, v)

118 Delay(i) >= sum(r in Resources, v in Voltages) Latency(r, v)*Assigned_d(i, r, v)

119 Delay_d(i) >= sum(r in Resources, v in Voltages) Latency(r, v)*Assigned(i, r, v)

120 Delay_d(i) >= sum(r in Resources, v in Voltages) Latency(r, v)*Assigned_d(i, r, v)

121 end-do

122

123 ! Precedence conditions

124 forall(i,j in TASKS | PREC(i,j) = 1) sum(s in Csteps)StartTime(j, s)*s >= sum(s in

Csteps)StartTime(i, s)*s + Delay(i)↪→

125 forall(i,j in TASKS_d | PREC(i,j) = 1) sum(s in Csteps)StartTime_d(j, s)*s >= sum(s in

Csteps)StartTime_d(i, s)*s + Delay_d(i)↪→

126

127 forall(i in TASKS) sum(s in Csteps)StartTime(i, s)*s = sum(s in Csteps) StartTime_d(i, s)*s

128

129 forall(i in TASKS) sum(j in Resources, s in Csteps, v in Voltages) k(i,s,j,v) = 1

130 forall(i in TASKS, s in Csteps, j in Resources, v in Voltages) k(i, s, j, v) >= Assigned(i,

j, v) + StartTime(i, s) - 1↪→

131 forall(i in TASKS_d) sum(j in Resources, s in Csteps, v in Voltages) k_d(i,s,j,v) = 1

132 forall(i in TASKS_d, s in Csteps, j in Resources, v in Voltages) k_d(i, s, j, v) >=

Assigned_d(i, j, v) + StartTime_d(i, s) - 1↪→

133

134 ! Task reliability calculation

135 forall (i in TASKS) TaskReliability(i) = sum(j in Resources, v in Voltages) Reliability(j,

v)*Assigned(i,j,v)↪→

136 forall (i in TASKS_d) TaskReliability_d(i) = sum(j in Resources, v in Voltages)

Reliability(j, v)*Assigned_d(i,j,v)↪→

137

138 ! Task energy consumption calculation

139 forall (i in TASKS) TaskEnergy(i) = sum(j in Resources, v in Voltages) Energy(j,

v)*Assigned(i,j,v)↪→

140 forall (i in TASKS_d) TaskEnergy_d(i) = sum(j in Resources, v in Voltages) Energy(j,

v)*Assigned_d(i,j,v)↪→

141

142 ! Calculating how many instances of each resource are used in total

143 forall(r in Resources, s in Csteps, v in Voltages) y(r,v) >= (sum(i in TASKS) k(i, s, r, v)

+ sum(j in TASKS_d) k_d(j, s, r, v))↪→

144

145 StartTimeN = sum(s in Csteps)StartTime(N, s)*s

146 StartTimeN_d = sum(s in Csteps)StartTime_d(N, s)*s

147

148 ! ----------- Objective function -----------

149 TotalReliability:= sum(i in TASKS) TaskReliability(i)

150 + sum(j in TASKS_d) TaskReliability_d(j)

151

152 TA:= sum(j in Resources, v in Voltages) y(j,v) * Area(j)

153 TotalArea:=getsol(TA)

133

154

155 TotalEnergy:= sum(i in TASKS) TaskEnergy(i) + sum(j in TASKS_d) TaskEnergy_d(j)

156

157 NormalizedR = (TotalReliability-MinR)/(MaxR-MinR)

158

159 NormalizedE = (TotalEnergy-MinE)/(MaxE-MinE)

160

161 objectiveF := alpha*(1-NormalizedR) + (1-alpha)*(NormalizedE)

162

163 ! ----------- Constraints -----------

164

165 StartTimeN <= LatencyConstraint ! Check this!

166 TA <= AreaConstraint

167

168 ! Solve the problem: maximize the total reliability, minimize energy consumption

169 minimize(objectiveF)

170

171 sol:=getobjval

172

173 writeln("Time: ",gettime-starttime, " s") !prints the program execution time

174

175 ! Solution printing

176 print_solution

177

178 writeln("End running model")

179

180 ! ----------- Helper functions -----------

181

182 procedure print_solution

183 !writeln("latency(1,1) = ", Latency(1,1))

184 !writeln("Energy(5,2) = ", Energy(5,2))

185 !writeln

186 writeln("Total duration: ", StartTimeN.sol, " cycles")

187 writeln("Total area: ", getsol(TA), " units")

188

189 Reliability_value:=1

190 forall (i in 1..N) do

191 Reliability_value:=Reliability_value*TaskReliability(i).sol

192 end-do

193

194 writeln("Total reliability (mult): ",Reliability_value)

195

196 writeln("Total reliability (sum): ", getsol(TotalReliability))

197 writeln

198

199 writeln("Total Energy: ", getsol(TotalEnergy))

200 writeln

201 writeln("NormalizedR: ", getsol(NormalizedR))

202 writeln

203 writeln("NormalizedE: ", getsol(NormalizedE))

204 writeln

205

206 writeln

207 forall(r in Resources, v in Voltages) do

208 writeln("y(",r,",",v,") = ", y(r,v).sol)

209 end-do

134

210 writeln

211 forall(i in TASKS, j in Resources, v in Voltages) do

212 if (Assigned(i, j, v).sol = 1) then

213 writeln("Assigned(",i,",",j,",",v,") = ", Assigned(i, j, v).sol)

214 end-if

215 end-do

216 writeln

217

218 forall(i in TASKS, s in Csteps) do

219 if (StartTime(i, s).sol = 1) then

220 writeln("StartTime(",i,",",s,") = ", StartTime(i, s).sol)

221 end-if

222 end-do

223 writeln

224

225 forall(i in TASKS) do

226 writeln("Delay(",i,") = ", Delay(i).sol)

227 end-do

228 !writeln

229

230 end-procedure

231

232 end-model

135

A.4 C Source Code For SA-Based HLS Method

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4 #include <math.h>

5 #include <string.h>

6 #include <sys/time.h>

7 #include <setjmp.h>

8 #include "helper_functions.h"

9 #define V_LEVELS 2 // Change for the number of available voltage levels

10 #define NUM_TASKS 30 // Change for the number of tasks in the TG of the benchmark

11 #define NUM_RESOURCES 6 // Change for the number of resources

12 #define ALPHA 0.5 // 1 for max R, 0 for min E

13 #define LATENCY_CONSTRAINT 55 // Change for the desired latency constraint

14 #define AREA_CONSTRAINT 30 // Change for the desired area constraint

15 #define DESIRED_ACCEPTANCE_PROBABILITY 0.8 // Desired starting acceptance probability for SA

16 #define NUM_TRANSITIONS 10000// number of transitions in the transition set for calculation

of the initial temp in SA↪→

17 #define TRY do{ jmp_buf ex_buf__; if(!setjmp(ex_buf__)){

18 #define CATCH } else {

19 #define ENDTRY } }while(0)

20 #define MAX_NODE_SIZE 100

21 #define MAXINT 2147483647

22 #define COOLING_SCHEDULE 0.95

23 #define ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE 10000

24 #define DATFILE = "data/des.dat"; // Specify the benchmark dat file

25 #define LIBRARYFILE = "data/resource_library.dat"; // Specify the resource library dat file

26 #define TRANSITIONFILE = "data/des_transitions.dat"; // Specify the file containing sample

transitions for the given benchmark to calculate the initial temp↪→

27

28 //---------------- ENUMS -----------------

29 enum task_type {NOP = 0, ADD = 1, MUL = 2};

30 enum voltage_level {HIGH = 1, LOW = 2};

31

32 //---------------- STRUCTS -----------------

33 typedef struct resource{

34 int id;

35 int type;

36 double reliability[V_LEVELS];

37 double energy[V_LEVELS];

38 int latency[V_LEVELS];

39 int area;

40 }resource;

41 typedef struct task{

42 int id;

43 int type;

44 resource* assigned_resource;

45 int assigned_voltage;

46 int start_time;

47 resource* assigned_duplicate_resource;

48 int assigned_duplicate_voltage;

49 }task;

50

136

51

52 //---------------- FUNCTION DEACLARATIONS -----------------

53 double get_objective(task* solution, double MaxR, double MinR, double MaxE, double MinE);

54 int get_area(task* solution, resource* resource_library);

55 void reduce_area_by_rescheduling(task* solution, resource* resource_library, int*
topological_ordering, int* ASAP_scheduling, int* ALAP_scheduling, int* list_scheduling,

int number_of_tasks, int (*graph)[number_of_tasks]);

↪→

↪→

56 void recursively_shift_dependent_tasks(int task_to_move, int* moved, task* solution,

resource* resource_library, int* topological_ordering, int* ASAP_scheduling, int*
ALAP_scheduling, int* list_scheduling, int number_of_tasks, int

(*graph)[number_of_tasks]);

↪→

↪→

↪→

57 int read_library(resource* resource_library, int* no_of_mult_resources, const char*
filename);↪→

58 void print_resources(resource* resource_library, int num_res);

59 void print_solution(task* solution);

60 void random_solution_generator(task* solution, int no_of_mult_tasks, int* mult_nodes_list,

resource* resource_library, resource* multipliers, resource* adders, int

no_of_mult_resources);

↪→

↪→

61 void optAL_solution_generator(task* solution, int no_of_mult_tasks, int* mult_nodes_list,

resource* resource_library, resource* multipliers, resource* adders, int

no_of_mult_resources);

↪→

↪→

62 int get_ASAP_scheduling(task* solution, int number_of_tasks, int (*graph)[number_of_tasks],

int* ASAP_scheduling, int* topological_ordering);↪→

63 int get_ALAP_scheduling(task* solution, int number_of_tasks, int (*graph)[number_of_tasks],

int* ALAP_scheduling, int* topological_ordering, int limit_latency);↪→

64 int list_scheduling_min_resource_usage(task* solution, resource* resource_library, int

number_of_tasks, int (*graph)[number_of_tasks], int* ALAP_scheduling, int*
list_scheduling, int* topological_ordering, int limit_latency);

↪→

↪→

65 void get_preceding_tasks(int number_of_tasks, int (*graph)[number_of_tasks], int**
predecessor_tasks_id_list, int* number_of_predecessors);↪→

66 void get_topological_ordering(int number_of_tasks, int (*graph)[number_of_tasks], int*
topological_ordering);↪→

67 double get_temp(double prev_temp, double p, double acceptable_error, double

(*set_of_transitions)[2]);↪→

68 void random_candidate_generator(task* solution, task* candidate_solution, int

no_of_mult_tasks, int* mult_nodes_list, resource* resource_library, resource*
multipliers, resource* adders, int no_of_mult_resources);

↪→

↪→

69 double print_objective(task* solution, double MaxR, double MinR, double MaxE, double MinE);

70

71 //---------------- MAIN -----------------

72 int main(int argc, char** argv){

73

74 task current_solution[NUM_TASKS];

75 task candidate_solution[NUM_TASKS];

76 int precedence_graph[NUM_TASKS][NUM_TASKS];

77 int** predecessor_tasks_id_list = (int**)malloc(NUM_TASKS * sizeof(int*));// Keeping the

IDs of predecessor tasks for each task↪→

78 double set_of_transitions[NUM_TRANSITIONS][2]; // MIN, MAX - min should be higher than max

as we are minimizing (before cost, after cost) - strictly positive transitions!↪→

79 int number_of_predecessors[NUM_TASKS]; // Size of the list of predecessor tasks for each

task↪→

80 int ASAP_scheduling[NUM_TASKS], ASAP_scheduling_candidate[NUM_TASKS]; // ASAP scheduling

of the tasks↪→

81 int ALAP_scheduling[NUM_TASKS], ALAP_scheduling_candidate[NUM_TASKS]; // ALAP scheduling

of the tasks↪→

137

82 int list_scheduling[NUM_TASKS], list_scheduling_candidate[NUM_TASKS]; // List scheduling

of the tasks↪→

83 int mobility[NUM_TASKS]; // Mobility of the tasks

84 int no_of_mult_tasks, no_of_mult_resources, lat;

85 int mult_nodes_list[MAX_NODE_SIZE];

86 int topological_ordering[NUM_TASKS];

87 resource resource_library[NUM_RESOURCES];

88 resource *adders, *multipliers;

89 double MaxR, MinR, MaxE, MinE;

90

91 // Read input files

92 TRY

93 {

94 printf("Reading benchmark graph...\n");

95 if(!read_benchmark(NUM_TASKS, NUM_TASKS, &MaxR, &MinR, &MaxE, &MinE,

&no_of_mult_tasks, mult_nodes_list, precedence_graph, DATFILE)) // Read the input

graph of the benchmark

↪→

↪→

96 printf("Could not open input dat file!\n");

97 else printf("Input dat file reading success!\n\n");

98

99 printf("Reading resource library...\n");

100 if(!read_library(resource_library, &no_of_mult_resources, LIBRARYFILE)) // Reading

resource library input file↪→

101 printf("Could not open resource library dat file!\n");

102 else {

103 printf("Resource library dat file reading success!\n\n");

104 //Putting adders and multipliers in separate lists

105 multipliers = (resource*)malloc(sizeof(resource)*(no_of_mult_resources));

106 adders = (resource*)malloc(sizeof(resource)*(NUM_RESOURCES - no_of_mult_resources -

1));↪→

107 int mul_i = 0, add_i = 0;

108 for(int idx = 0; idx<NUM_RESOURCES; idx++){

109 if(resource_library[idx].type == MUL){

110 //add multipliers;

111 multipliers[mul_i++] = resource_library[idx];

112 }

113 else if (resource_library[idx].type == ADD){

114 // Add adders;

115 adders[add_i++] = resource_library[idx];

116 }

117 }

118 }

119 printf("Reading transition set...\n");

120 if(!read_double_matrix(NUM_TRANSITIONS, 2, set_of_transitions, TRANSITIONFILE)) //

Reading resource library input file↪→

121 printf("Could not open transition set dat file!\n");

122 else {

123 printf("Resource library dat file reading success!\n\n");

124 }

125

126 }

127 CATCH

128 {

129 printf("Error reading input files!\n");

130 }

131 ENDTRY;

138

132

133 int looping_time = 0;

134

135 clock_t begin = clock();

136 int area_from_ls;

137

138 // Populate the initial solution randomly so it meets the area criteria.

139 do{

140 random_solution_generator(current_solution, no_of_mult_tasks, mult_nodes_list,

resource_library, multipliers, adders, no_of_mult_resources);↪→

141 get_preceding_tasks(NUM_TASKS, precedence_graph, predecessor_tasks_id_list,

number_of_predecessors);↪→

142 get_topological_ordering(NUM_TASKS, precedence_graph, topological_ordering); // Get the

topological ordering of the input tasks↪→

143 lat = get_ASAP_scheduling(current_solution, NUM_TASKS, precedence_graph,

ASAP_scheduling, topological_ordering);↪→

144 get_ALAP_scheduling(current_solution, NUM_TASKS, precedence_graph, ALAP_scheduling,

topological_ordering, lat+1);↪→

145 area_from_ls = list_scheduling_min_resource_usage(current_solution, resource_library,

NUM_TASKS, precedence_graph, ALAP_scheduling, list_scheduling, topological_ordering,

LATENCY_CONSTRAINT+1);

↪→

↪→

146 looping_time += 1;

147 if (get_area(current_solution, resource_library)>AREA_CONSTRAINT &&

current_solution[NUM_TASKS-1].start_time<LATENCY_CONSTRAINT+1) {↪→

148 do{

149 reduce_area_by_rescheduling(current_solution, resource_library,

topological_ordering, ASAP_scheduling, ALAP_scheduling, list_scheduling,

NUM_TASKS, precedence_graph);

↪→

↪→

150 }while (get_area(current_solution, resource_library)>AREA_CONSTRAINT &&

current_solution[NUM_TASKS-1].start_time<LATENCY_CONSTRAINT+1);↪→

151 }

152 }while ((get_area(current_solution, resource_library)>AREA_CONSTRAINT ||

current_solution[NUM_TASKS-1].start_time>LATENCY_CONSTRAINT+1) &&

looping_time<ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE);

↪→

↪→

153

154 if(looping_time>=ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE){

155 looping_time = 0;

156 do{

157 optAL_solution_generator(current_solution, no_of_mult_tasks, mult_nodes_list,

resource_library, multipliers, adders, no_of_mult_resources);↪→

158 get_preceding_tasks(NUM_TASKS, precedence_graph, predecessor_tasks_id_list,

number_of_predecessors);↪→

159 get_topological_ordering(NUM_TASKS, precedence_graph, topological_ordering); // Get

the topological ordering of the input tasks↪→

160 lat = get_ASAP_scheduling(current_solution, NUM_TASKS, precedence_graph,

ASAP_scheduling, topological_ordering);↪→

161 get_ALAP_scheduling(current_solution, NUM_TASKS, precedence_graph, ALAP_scheduling,

topological_ordering, lat+1);↪→

162 area_from_ls = list_scheduling_min_resource_usage(current_solution, resource_library,

NUM_TASKS, precedence_graph, ALAP_scheduling, list_scheduling,

topological_ordering, LATENCY_CONSTRAINT+1);

↪→

↪→

163 looping_time += 1;

164 if (get_area(current_solution, resource_library)>AREA_CONSTRAINT &&

current_solution[NUM_TASKS-1].start_time<LATENCY_CONSTRAINT+1) {↪→

165 do{

139

166 reduce_area_by_rescheduling(current_solution, resource_library,

topological_ordering, ASAP_scheduling, ALAP_scheduling, list_scheduling,

NUM_TASKS, precedence_graph);

↪→

↪→

167 }while (get_area(current_solution, resource_library)>AREA_CONSTRAINT &&

current_solution[NUM_TASKS-1].start_time<LATENCY_CONSTRAINT+1);↪→

168 }

169 }while ((get_area(current_solution, resource_library)>AREA_CONSTRAINT ||

current_solution[NUM_TASKS-1].start_time>LATENCY_CONSTRAINT+1) &&

looping_time<ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE);

↪→

↪→

170 }

171

172 if(looping_time>=ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE){

173 print_solution(current_solution);

174 printf("Solution is infeasible\n");

175 return 1;

176 }

177

178 printf("Area of the initial solution is %d\n", get_area(current_solution,

resource_library));↪→

179 printf("Latency of the Initial solution is %d\n",

current_solution[NUM_TASKS-1].start_time-1);↪→

180 print_objective(current_solution, MaxR, MinR, MaxE, MinE);

181

182 double p = 1.0, acceptable_error = 0.000001, prev_temp = 100.0;

183 double temperature = get_temp(prev_temp, p, acceptable_error, set_of_transitions);

184

185 int n_iterations = 1000;

186

187 // SIMULATED ANNEALING BELOW

188 for(int i = 0; i < n_iterations; i++){

189 int n_lat;

190 int legitimate_candidate = 0;

191 // Get a legitimate candidate solution

192 looping_time = 0;

193 do{

194 random_candidate_generator(current_solution, candidate_solution, no_of_mult_tasks,

mult_nodes_list, resource_library, multipliers, adders, no_of_mult_resources);↪→

195 n_lat = get_ASAP_scheduling(candidate_solution, NUM_TASKS, precedence_graph,

ASAP_scheduling_candidate, topological_ordering);↪→

196 get_ALAP_scheduling(candidate_solution, NUM_TASKS, precedence_graph,

ALAP_scheduling_candidate, topological_ordering, n_lat+1);↪→

197 int area_from_ls_candidate = list_scheduling_min_resource_usage(candidate_solution,

resource_library, NUM_TASKS, precedence_graph, ALAP_scheduling_candidate,

list_scheduling_candidate, topological_ordering, n_lat+1);

↪→

↪→

198

199 if (get_area(candidate_solution, resource_library)>AREA_CONSTRAINT &&

candidate_solution[NUM_TASKS-1].start_time<LATENCY_CONSTRAINT+1) {↪→

200 do{

201 reduce_area_by_rescheduling(candidate_solution, resource_library,

topological_ordering, ASAP_scheduling_candidate, ALAP_scheduling_candidate,

list_scheduling_candidate, NUM_TASKS, precedence_graph);

↪→

↪→

202 }while (get_area(candidate_solution, resource_library)>AREA_CONSTRAINT &&

candidate_solution[NUM_TASKS-1].start_time<LATENCY_CONSTRAINT+1);↪→

203 }

204

140

205 if(n_lat<=LATENCY_CONSTRAINT && get_area(candidate_solution,

resource_library)<=AREA_CONSTRAINT){↪→

206 legitimate_candidate = 1;

207 }

208 looping_time += 1;

209 }while(!legitimate_candidate &&

looping_time<ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE);↪→

210

211 if(looping_time>=ALLOWED_LOOPING_TIME_BEFORE_CALLING_INFEASIBLE){

212 break;

213 }

214

215 if(get_objective(candidate_solution, MaxR, MinR, MaxE, MinE) <

get_objective(current_solution, MaxR, MinR, MaxE, MinE) && legitimate_candidate==1){↪→

216 memcpy(¤t_solution, &candidate_solution, sizeof(candidate_solution)); // accept

candidate if better↪→

217 }

218 else{

219 double metropolis_acceptance_probability = get_metropolis_acceptance(temperature,

get_objective(current_solution, MaxR, MinR, MaxE, MinE),

get_objective(candidate_solution, MaxR, MinR, MaxE, MinE));

↪→

↪→

220 double random_prob = get_rand_float_in_range(0.0, 1.0);

221 if(metropolis_acceptance_probability >= random_prob && legitimate_candidate == 1){

222 memcpy(¤t_solution, &candidate_solution, sizeof(candidate_solution)); //

accept a worse candidate anyway↪→

223 }

224 }

225

226 if (temperature < 0.00001){

227 temperature = 0.00001;

228 }

229 else{

230 temperature = get_reduced_temperature_GEO(temperature, COOLING_SCHEDULE);

231 }

232 }

233

234

235 clock_t end = clock();

236 double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

237

238 print_solution(current_solution);

239

240 if(get_area(current_solution, resource_library)>AREA_CONSTRAINT){

241 printf("\nThis solution is larger than accepted!\n");

242 }

243 if(current_solution[NUM_TASKS-1].start_time-1>LATENCY_CONSTRAINT){

244 printf("\nThis solution is slower than accepted!\n");

245 }

246 printf("Area of the solution is %d\n", get_area(current_solution, resource_library));

247 printf("Latency of the solution is %d\n", current_solution[NUM_TASKS-1].start_time-1);

248 print_objective(current_solution, MaxR, MinR, MaxE, MinE);

249 printf("Total running time: %lf\n", time_spent);

250

251 // Free malloced stuff

252 free(adders);

253 free(multipliers);

141

254 free(predecessor_tasks_id_list);

255

256 return 0;

257 }

258

259 //---------------- FUNCTIONS -----------------

260

261 // Recursive function for finding the initial temp from Ben Ameur

262 double get_temp(double prev_temp, double p, double acceptable_error, double

(*set_of_transitions)[2]){↪→

263 double new_temp;

264 double current_estimate_acceptance = get_acceptance_probability(prev_temp,

NUM_TRANSITIONS, set_of_transitions);↪→

265 double power = 1.0 / p;

266 new_temp = prev_temp * (pow((log(current_estimate_acceptance) /

log(DESIRED_ACCEPTANCE_PROBABILITY)), power));↪→

267 if((current_estimate_acceptance - DESIRED_ACCEPTANCE_PROBABILITY) < acceptable_error)

268 return new_temp;

269 else

270 return get_temp(new_temp, p, acceptable_error, set_of_transitions);

271 }

272

273 // Generates a random solution

274 void random_solution_generator(task* solution, int no_of_mult_tasks, int* mult_nodes_list,

resource* resource_library, resource* multipliers, resource* adders, int

no_of_mult_resources){

↪→

↪→

275 for(int i=0; i<NUM_TASKS; i++){

276 solution[i].id = i; // Assigning ID

277 // Assigning type according to the benchmark inputs and Randomly assign a fitting

resource↪→

278 if((i==0) || (i==(NUM_TASKS-1))){ // Assigning start and sink nodes NOP

279 solution[i].type = NOP;

280 solution[i].assigned_resource = &resource_library[NUM_RESOURCES-1];

281 }

282 else{

283 int multype = 0;

284 for (int j=0; j< no_of_mult_tasks; j++){

285 if(i==mult_nodes_list[j]){

286 solution[i].type = MUL;

287 // Get a random multiplier

288 solution[i].assigned_resource = &multipliers[get_rand_int_in_range(1,

no_of_mult_resources) - 1];↪→

289 multype = 1; // Flag that the task is MUL

290 }

291 }

292 if(!multype){

293 solution[i].type = ADD;

294 // Get a random adder

295 solution[i].assigned_resource = &adders[get_rand_int_in_range(1, NUM_RESOURCES -

no_of_mult_resources - 1) - 1];↪→

296 }

297 }

298

299 //Randomly assign a voltage:

300 solution[i].assigned_voltage = get_rand_int_in_range(1, V_LEVELS);

301 // Assigning start time

142

302 solution[i].start_time = 0;

303

304 // Changed for duplication:

305 solution[i].assigned_duplicate_resource = NULL;

306 solution[i].assigned_duplicate_voltage = -1;

307

308 }

309 }

310

311 // Generates area and latency-aware random solution

312 void optAL_solution_generator(task* solution, int no_of_mult_tasks, int* mult_nodes_list,

resource* resource_library, resource* multipliers, resource* adders, int

no_of_mult_resources){

↪→

↪→

313 for(int i=0; i<NUM_TASKS; i++){

314 solution[i].id = i; // Assigning ID

315 // Assigning type according to the benchmark inputs and Randomly assign a fitting

resource↪→

316 if((i==0) || (i==(NUM_TASKS-1))){ // Assigning start and sink nodes NOP

317 solution[i].type = NOP;

318 solution[i].assigned_resource = &resource_library[NUM_RESOURCES-1];

319 }

320 else{

321 int multype = 0;

322 for (int j=0; j< no_of_mult_tasks; j++){

323 if(i==mult_nodes_list[j]){

324 solution[i].type = MUL;

325 // Get THE min_d multiplier

326 double min_d = MAXINT;

327 int min_d_id;

328 // Find the minA multiplier

329 double min_area = MAXINT;

330 int min_a_id;

331 for (int k = 0; k < no_of_mult_resources; k++) {

332 if (min_area > multipliers[k].area) {

333 min_area = multipliers[k].area;

334 min_a_id = k;

335 }

336 if (min_d > multipliers[k].latency[HIGH-1]) {

337 min_d = multipliers[k].latency[HIGH-1];

338 min_d_id = k;

339 }

340 }

341 // pick randomly to add either of those 2

342 int coin_flip = get_rand_int_in_range(1, 2);

343 if(coin_flip==1){

344 solution[i].assigned_resource = &multipliers[min_a_id];

345 }

346 else{

347 solution[i].assigned_resource = &multipliers[min_d_id];

348 }

349 multype = 1; // Flag that the task is MUL

350 }

351 }

352 if(!multype){

353 solution[i].type = ADD;

354

143

355 // Get a minD adder

356 double min_d = MAXINT;

357 int min_d_id;

358 // Get a minA adder

359 double min_area = MAXINT;

360 int min_a_id;

361 for (int k = 0; k < (NUM_RESOURCES - no_of_mult_resources - 1); k++) {

362 if (min_area > adders[k].area) {

363 min_area = adders[k].area;

364 min_a_id = k;

365 }

366 if (min_d > adders[k].latency[HIGH-1]) {

367 min_d = adders[k].latency[HIGH-1];

368 min_d_id = k;

369 }

370 }

371 //TODO: pick randomly to add either of those 2

372 int coin_flip = get_rand_int_in_range(1, 2);

373 if(coin_flip==1){

374 solution[i].assigned_resource = &adders[min_a_id];

375 }

376 else{

377 solution[i].assigned_resource = &adders[min_d_id];

378 }

379 }

380 }

381

382 solution[i].assigned_voltage = HIGH;

383 solution[i].start_time = 0;

384

385 // Changed for duplication:

386 solution[i].assigned_duplicate_resource = NULL;

387 solution[i].assigned_duplicate_voltage = -1;

388

389 }

390 }

391

392 // Returns the objective function value of a solution

393 double get_objective(task* solution, double MaxR, double MinR, double MaxE, double MinE){

394 double reliability = 0.0, energy = 0.0, mult_reliability = 1.0;

395 for (int i = 0; i<NUM_TASKS; i++){

396 reliability = reliability +

solution[i].assigned_resource->reliability[solution[i].assigned_voltage-1];↪→

397 mult_reliability = mult_reliability *
solution[i].assigned_resource->reliability[solution[i].assigned_voltage-1];↪→

398 energy = energy + solution[i].assigned_resource->

energy[solution[i].assigned_voltage-1];↪→

399 }

400 reliability = (reliability-MinR) / (MaxR - MinR);

401 energy = (energy-MinE) / (MaxE - MinE);

402 return ALPHA*(1-reliability)+(1-ALPHA)*energy;

403 }

404

405 // Prints the objective function value of a solution

406 double print_objective(task* solution, double MaxR, double MinR, double MaxE, double MinE){

407 double reliability = 0.0, energy = 0.0, mult_reliability = 1.0;

144

408 for (int i = 0; i<NUM_TASKS; i++){

409 reliability = reliability +

solution[i].assigned_resource->reliability[solution[i].assigned_voltage-1];↪→

410 mult_reliability = mult_reliability *
solution[i].assigned_resource->reliability[solution[i].assigned_voltage-1];↪→

411 energy = energy + solution[i].assigned_resource->energy[solution[i].assigned_voltage-1];

412 }

413 printf("Reliability MULT: %lf, Energy FULL: %lf\n", mult_reliability, energy);

414 reliability = (reliability-MinR) / (MaxR - MinR);

415 energy = (energy-MinE) / (MaxE - MinE);

416 printf("normR = %lf, normE = %lf\n", reliability, energy);

417 printf("Objective of the candidate solution: %lf\n",

ALPHA*(1-reliability)+(1-ALPHA)*energy);↪→

418 return ALPHA*(1-reliability)+(1-ALPHA)*energy;

419 }

420

421 // Returns the area of the solution based on the pipelined approach

422 int get_area(task* solution, resource* resource_library){

423 int area = 0;

424 int c_steps = solution[NUM_TASKS-1].start_time;

425 int count_of_resources_at_cStep[NUM_RESOURCES][V_LEVELS][c_steps+1];

426 for (int i = 0; i < NUM_RESOURCES; i++) {

427 for (int j = 0; j < V_LEVELS; j++) {

428 for (int k = 0; k < c_steps+1; k++) {

429 count_of_resources_at_cStep[i][j][k] = 0;

430 }

431 }

432 }

433

434 //Counting how many of each resource are used in every Cstep (different voltage levels

require different resource even if it's the same one)↪→

435 for (int i = 0; i<c_steps+1; i++){

436 for (int j = 0; j < NUM_TASKS; j++) {

437 if(solution[j].start_time == i){

438 count_of_resources_at_cStep[(solution[j].assigned_resource->id)-1]

[(solution[j].assigned_voltage)-1][i]++; //Have to add -1 because ids and

voltage levels start from 1

↪→

↪→

439 if (solution[j].assigned_duplicate_resource != NULL) { //CHECKING FOR DUPLICATIED

RESOURCES↪→

440 count_of_resources_at_cStep[(solution[j].assigned_duplicate_resource->id)-1]

[(solution[j].assigned_duplicate_voltage)-1][i]++;↪→

441 }

442 }

443 }

444 }

445

446 // Check each control step and find the one which induces the max area: because pipelined

approach is considered.↪→

447 int max_area = 0;

448 int max_count_of_any_R_at_v[NUM_RESOURCES][V_LEVELS];

449 for (int i = 0; i < NUM_RESOURCES; i++) {

450 for (int j = 0; j < V_LEVELS; j++) {

451 max_count_of_any_R_at_v[i][j] = 0;

452 }

453 }

454

145

455 for (int i = 0; i < NUM_RESOURCES; i++) {

456 int max_count_for_resource_HIGH = 0;

457 int max_count_for_resource_LOW = 0;

458 for (int cs = 0; cs < c_steps; cs++) {

459 if (count_of_resources_at_cStep[i][HIGH-1][cs] > max_count_for_resource_HIGH) {

460 max_count_for_resource_HIGH = count_of_resources_at_cStep[i][HIGH-1][cs];

461 }

462 if (count_of_resources_at_cStep[i][LOW-1][cs] > max_count_for_resource_LOW) {

463 max_count_for_resource_LOW = count_of_resources_at_cStep[i][LOW-1][cs];

464 }

465 }

466 max_count_of_any_R_at_v[i][HIGH-1] = max_count_for_resource_HIGH;

467 max_count_of_any_R_at_v[i][LOW-1] = max_count_for_resource_LOW;

468 }

469

470 for (int i = 0; i < NUM_RESOURCES; i++) {

471 for (int j = 0; j < V_LEVELS; j++) {

472 max_area = max_area + max_count_of_any_R_at_v[i][j]*resource_library[i].area;

473 }

474 }

475

476 return max_area;

477 }

478

479 // Reduces area of the design by rescheduling from crowded control step

480 void reduce_area_by_rescheduling(task* solution, resource* resource_library, int*
topological_ordering, int* ASAP_scheduling, int* ALAP_scheduling, int* list_scheduling,

int number_of_tasks, int (*graph)[number_of_tasks]){

↪→

↪→

481

482 int c_steps = solution[NUM_TASKS-1].start_time;

483 int scheduled_tasks_count_at_cStep[c_steps];

484

485 for (int k = 0; k < c_steps+1; k++) {

486 scheduled_tasks_count_at_cStep[k] = 0;

487 }

488 // Count the number of shceduled tasks at each cStep

489 for (int k = 0; k < c_steps+1; k++) {

490 for (int j = 0; j < NUM_TASKS; j++) {

491 if (solution[j].start_time == k) {

492 scheduled_tasks_count_at_cStep[k]++;

493 }

494 }

495 }

496

497 // Find the most max_crowded_cStep NOT USED!!!

498 int max_crowded_cStep = -1;

499 int crowd = -1;

500 for (int k = 0; k < c_steps+1; k++) {

501 if (crowd<scheduled_tasks_count_at_cStep[k]) {

502 max_crowded_cStep = k;

503 crowd = scheduled_tasks_count_at_cStep[k];

504 }

505 }

506

507 // Find the most max_area_cStep

508 int max_area_cStep = -1;

146

509 int max_area = 0;

510 for (int k = 0; k < c_steps+1; k++) {

511 int area = 0;

512 for (size_t j = 0; j < NUM_TASKS; j++) {

513 if (solution[j].start_time == k) {

514 area = area + resource_library[solution[j].assigned_resource->id].area;

515 // Check for duplication

516 if (solution[j].assigned_duplicate_resource!=NULL) {

517 area = area + resource_library[solution[j].assigned_duplicate_resource->id].area;

518 }

519 }

520 }

521 if(area>max_area){

522 max_area = area;

523 max_area_cStep = k;

524 }

525 }

526

527 int moved[NUM_TASKS];

528 int task_to_move = -1;

529 int slack = -1;

530 for (int j = 0; j < NUM_TASKS; j++) {

531 moved[j] = 0;

532 if (solution[j].start_time == max_area_cStep) {

533 if ((ALAP_scheduling[j]-ASAP_scheduling[j])>slack) {

534 task_to_move = j;

535 slack = ALAP_scheduling[j]-ASAP_scheduling[j];

536 }

537 }

538 }

539

540 // move task_to_move and all dependent tasks recursively!

541 recursively_shift_dependent_tasks(task_to_move, moved, solution, resource_library,

topological_ordering, ASAP_scheduling, ALAP_scheduling, list_scheduling,

number_of_tasks, graph);

↪→

↪→

542 }

543

544 // Recursively shifts rescheduled task and the affected successors

545 void recursively_shift_dependent_tasks(int task_to_move, int* moved, task* solution,

resource* resource_library, int* topological_ordering, int* ASAP_scheduling, int*
ALAP_scheduling, int* list_scheduling, int number_of_tasks, int

(*graph)[number_of_tasks]){

↪→

↪→

↪→

546 if (moved[task_to_move]==0) {

547 solution[task_to_move].start_time++;

548 list_scheduling[task_to_move]++;

549 moved[task_to_move] = 1;

550 for (int i = 0; i < NUM_TASKS; i++) {

551 if (graph[task_to_move][i]==1) {

552 recursively_shift_dependent_tasks(i, moved, solution, resource_library,

topological_ordering, ASAP_scheduling, ALAP_scheduling, list_scheduling,

number_of_tasks, graph);

↪→

↪→

553 }

554 }

555 }

556 }

557

147

558 // Reading resource library input file

559 int read_library(resource* resource_library, int* no_of_mult_resources, const char*
filename){↪→

560 FILE *pf;

561 pf = fopen (filename, "r");

562 if (pf == NULL){

563 return 0;

564 }

565

566 char buf[100];

567 fscanf(pf,"%s",buf);

568 *no_of_mult_resources = 0;

569 for(int i=0; i<NUM_RESOURCES; i++){

570 resource_library[i].id = i+1;

571 fscanf(pf, "%d", &resource_library[i].type);

572 if(resource_library[i].type == MUL){

573 *no_of_mult_resources = *no_of_mult_resources + 1;

574 }

575 }

576 fscanf(pf,"%s",buf);

577 for(int i=0; i<NUM_RESOURCES; i++){

578 fscanf(pf, "%d", &resource_library[i].area);

579 }

580 fscanf(pf,"%s",buf);

581 //printf("%s\n", buf);

582 for(int i=0; i<NUM_RESOURCES; i++){

583 for(int j=0; j<V_LEVELS; j++){

584 fscanf(pf, "%lf", &resource_library[i].reliability[j]);

585 }

586 }

587 fscanf(pf,"%s",buf);

588 for(int i=0; i<NUM_RESOURCES; i++){

589 for(int j=0; j<V_LEVELS; j++){

590 fscanf(pf, "%lf", &resource_library[i].energy[j]);

591 }

592 }

593 fscanf(pf,"%s",buf);

594 for(int i=0; i<NUM_RESOURCES; i++){

595 for(int j=0; j<V_LEVELS; j++){

596 fscanf(pf, "%d", &resource_library[i].latency[j]);

597 }

598 }

599 fclose (pf);

600 return 1;

601 }

602

603 //prints solution

604 void print_solution(task* solution){

605 for(int i=0; i<NUM_TASKS; i++){

606 printf("Task id: %d, Type: %d, assigned_resource: %d, assigned_voltage: %d, delay %d,

start_time: %d\n", solution[i].id, solution[i].type,

solution[i].assigned_resource->id, solution[i].assigned_voltage,

solution[i].assigned_resource->latency[solution[i].assigned_voltage-1],

solution[i].start_time);

↪→

↪→

↪→

↪→

148

607 if(solution[i].assigned_duplicate_resource!=NULL) printf("assigned_duplicate_resource:

%d, assigned_duplicate_voltage: %d, delay: %d\n",

solution[i].assigned_duplicate_resource->id, solution[i].assigned_duplicate_voltage,

solution[i].assigned_duplicate_resource->

latency[solution[i].assigned_duplicate_voltage-1]);

↪→

↪→

↪→

↪→

608 }

609 }

610

611 // Prints the resources

612 void print_resources(resource* resource_library, int num_res){

613 for(int i=0; i< num_res; i++){

614 printf("ID: %d, Type: %d, area: %d\n", resource_library[i].id, resource_library[i].type,

resource_library[i].area);↪→

615 for (int j=0; j<V_LEVELS; j++){

616 printf("voltage_level (1=HIGH, 2=LOW): %d, R: %lf, E: %lf, L: %d\n", j+1,

resource_library[i].reliability[j], resource_library[i].energy[j],

resource_library[i].latency[j]);

↪→

↪→

617 }

618 printf("\n");

619 }

620 }

621

622 // Get precedent tasks

623 void get_preceding_tasks(int number_of_tasks, int (*graph)[number_of_tasks], int**
predecessor_tasks_id_list, int* number_of_predecessors){↪→

624 for(int j = 0; j < number_of_tasks; j++){

625 number_of_predecessors[j] = 0;

626 for (int i = 0; i < number_of_tasks; i++) {

627 if (graph[i][j]) {

628 number_of_predecessors[j]++;

629 if (number_of_predecessors[j]==1) {

630 predecessor_tasks_id_list[j] = (int*)malloc(sizeof(int));

631 predecessor_tasks_id_list[j][number_of_predecessors[j]-1] = i;

632 }

633 else{

634 predecessor_tasks_id_list[j] = (int*)realloc(predecessor_tasks_id_list[j],

number_of_predecessors[j] * sizeof(int));↪→

635 predecessor_tasks_id_list[j][number_of_predecessors[j]-1] = i;

636 }

637 }

638 }

639 }

640 }

641

642 // Get ASAP Scheduling of a solution and return the latency

643 int get_ASAP_scheduling(task* solution, int number_of_tasks, int (*graph)[number_of_tasks],

int* ASAP_scheduling, int* topological_ordering){↪→

644 int last_scheduled_idx = 0, idx_to_be_scheduled = 1;

645 int scheduled[NUM_TASKS];

646 scheduled[0] = 1; // Set start note as scheduled because it's start time is already 0

647 ASAP_scheduling[0] = 0;

648 for(int i=1; i<NUM_TASKS; i++){

649 scheduled[i] = 0;

650 }

651

652 while (scheduled[NUM_TASKS-1] == 0) {

149

653 // Scheduling

654 int idx_task_to_be_scheduled = topological_ordering[idx_to_be_scheduled];

655 int max_Cstep_so_far = 0;

656

657 for(int i = 0; i < NUM_TASKS; i++){

658 if (graph[i][idx_task_to_be_scheduled]){

659 int predecessor_delay =

solution[i].assigned_resource->latency[solution[i].assigned_voltage-1];↪→

660 if(solution[i].assigned_duplicate_resource != NULL){

661 int duplicate_predecessor_delay = solution[i].assigned_duplicate_resource->

latency[solution[i].assigned_duplicate_voltage-1];↪→

662 if (duplicate_predecessor_delay > predecessor_delay) {

663 predecessor_delay = duplicate_predecessor_delay;

664 }

665 }

666 predecessor_delay = predecessor_delay + solution[i].start_time;

667 if(predecessor_delay > max_Cstep_so_far){

668 max_Cstep_so_far = predecessor_delay;

669 }

670 }

671 }

672

673 if (max_Cstep_so_far == 0) {

674 solution[idx_task_to_be_scheduled].start_time = max_Cstep_so_far + 1;

675 ASAP_scheduling[idx_task_to_be_scheduled] = max_Cstep_so_far + 1;

676 }

677 else{

678 solution[idx_task_to_be_scheduled].start_time = max_Cstep_so_far;

679 ASAP_scheduling[idx_task_to_be_scheduled] = max_Cstep_so_far;

680 }

681

682 scheduled[idx_task_to_be_scheduled] = 1;

683 idx_to_be_scheduled++;

684 }

685 return solution[topological_ordering[NUM_TASKS-1]].start_time - 1; // Return the resulting

latency↪→

686 }

687

688 // Get ALAP Scheduling of a solution

689 int get_ALAP_scheduling(task* solution, int number_of_tasks, int (*graph)[number_of_tasks],

int* ALAP_scheduling, int* topological_ordering, int limit_latency){↪→

690 int last_scheduled_idx = NUM_TASKS-1, idx_to_be_scheduled = last_scheduled_idx - 1;

691 int scheduled[NUM_TASKS];

692 scheduled[NUM_TASKS-1] = 1; // Set sink note as scheduled because it's start time is the

given limit latency calculated from ASAP↪→

693 ALAP_scheduling[NUM_TASKS-1] = limit_latency;

694 for(int i=0; i<NUM_TASKS-1; i++){

695 scheduled[i] = 0;

696 }

697

698 while (scheduled[0] == 0) {

699 // Scheduling

700 int idx_task_to_be_scheduled = topological_ordering[idx_to_be_scheduled]; // Going in

reverse topological ordering↪→

701 int min_start_time = limit_latency;

702

150

703 for(int i = 0; i < NUM_TASKS; i++){

704 if (graph[idx_task_to_be_scheduled][i]) {

705 if (solution[i].start_time < min_start_time){

706 min_start_time = solution[i].start_time;

707 }

708 }

709 }

710

711 int delay_to_subtract = solution[idx_task_to_be_scheduled].assigned_resource->

latency[solution[idx_task_to_be_scheduled].assigned_voltage-1];↪→

712 if(solution[idx_task_to_be_scheduled].assigned_duplicate_resource != NULL){

713 int duplicate_delay_to_subtract =

solution[idx_task_to_be_scheduled].assigned_duplicate_resource->

latency[solution[idx_task_to_be_scheduled].assigned_duplicate_voltage-1];

↪→

↪→

714 if (duplicate_delay_to_subtract > delay_to_subtract) {

715 delay_to_subtract = duplicate_delay_to_subtract;

716 }

717 }

718

719 if ((min_start_time - delay_to_subtract) == limit_latency) {

720 solution[idx_task_to_be_scheduled].start_time = min_start_time - delay_to_subtract -

1;↪→

721 ALAP_scheduling[idx_task_to_be_scheduled] = min_start_time - delay_to_subtract - 1;

722 }

723 else{

724 solution[idx_task_to_be_scheduled].start_time = min_start_time - delay_to_subtract;

725 ALAP_scheduling[idx_task_to_be_scheduled] = min_start_time - delay_to_subtract;

726 }

727 if (idx_task_to_be_scheduled == 0) {

728 ALAP_scheduling[idx_task_to_be_scheduled]--;

729 }

730

731 scheduled[idx_task_to_be_scheduled] = 1;

732 idx_to_be_scheduled--;

733 }

734 return -1;

735 }

736

737 // Get list Scheduling for minimum resource usage of a solution given the latency

constraint, returns -1 if solution is not feasable↪→

738 int list_scheduling_min_resource_usage(task* solution, resource* resource_library, int

number_of_tasks, int (*graph)[number_of_tasks], int* ALAP_scheduling, int*
list_scheduling, int* topological_ordering, int limit_latency){

↪→

↪→

739 // Check that ALAP provided feasable solution:

740 if (ALAP_scheduling[0] < 0) {

741 return -1;

742 }

743 int area = 0, num_scheduled_tasks = 1;

744 int scheduled[NUM_TASKS], ready[NUM_TASKS];

745 scheduled[0] = 1; // Set sink note as scheduled

746 ready[0] = 1;

747 list_scheduling[0] = 0;

748 solution[0].start_time = 0;

749 int c_step = 1; // Start at cStep 1 (disregarding starter node already considered)

750 for(int i=1; i<NUM_TASKS-1; i++){

751 scheduled[i] = 0;

151

752 ready[i] = 0;

753 }

754

755 // Setting up for area calculation

756 int used_resources_count_per_voltage_level[NUM_RESOURCES][V_LEVELS];

757 for (int i = 0; i < NUM_RESOURCES; i++) {

758 for (int j = 0; j < V_LEVELS; j++) {

759 used_resources_count_per_voltage_level[i][j] = 0;

760 }

761 }

762

763 // list_scheduling algorithm

764 while(num_scheduled_tasks != NUM_TASKS-1){

765 for (int i = 1; i < NUM_TASKS; i++) {

766 int unscheduled_predecessor_found = 0;

767 for (int j = 0; j < NUM_TASKS; j++) {

768 if ((graph[j][i]) && (scheduled[j]==0)){

769 unscheduled_predecessor_found = 1;

770 }

771 int pred_end_time = solution[j].start_time +

solution[j].assigned_resource->latency[solution[j].assigned_voltage-1] - 1;↪→

772 if (solution[j].assigned_duplicate_resource != NULL) {

773 int pred_end_time_d = solution[j].start_time +

solution[j].assigned_duplicate_resource->

latency[solution[j].assigned_duplicate_voltage-1] - 1;

↪→

↪→

774 if(pred_end_time_d > pred_end_time){

775 pred_end_time = pred_end_time_d;

776 }

777 }

778 if ((graph[j][i]) && (scheduled[j]==1 && pred_end_time>c_step)){

779 unscheduled_predecessor_found = 1;

780 }

781 }

782 if (!unscheduled_predecessor_found) {

783 ready[i] = 1;

784 }

785 }

786

787 // Need to be reset in every cStep:

788 int usedResCount_perVdd_perCStep[NUM_RESOURCES][V_LEVELS];

789 int count_of_available_resources[NUM_RESOURCES][V_LEVELS];

790 for (int i = 0; i < NUM_RESOURCES; i++) {

791 for (int j = 0; j < V_LEVELS; j++) {

792 usedResCount_perVdd_perCStep[i][j] = 0; // No scheduled task yet in this cStep

793 count_of_available_resources[i][j] = used_resources_count_per_voltage_level[i][j];

// Set all of them available at the beginning of the new Cstep↪→

794 }

795 }

796

797 for (int i = 1; i < NUM_TASKS; i++){

798 if (ready[i] && (scheduled[i] == 0) && ((solution[i].start_time - c_step) == 0)) {

799 solution[i].start_time = c_step;

800 list_scheduling[i] = c_step;

801 scheduled[i] = 1;

802 num_scheduled_tasks++;

152

803 usedResCount_perVdd_perCStep[(solution[i].assigned_resource->id)-1]

[(solution[i].assigned_voltage)-1]++;↪→

804 if(usedResCount_perVdd_perCStep[(solution[i].assigned_resource->id)-1]

[(solution[i].assigned_voltage)-1] >

count_of_available_resources[(solution[i].assigned_resource->id)-1]

[(solution[i].assigned_voltage)-1]) {

↪→

↪→

↪→

805 used_resources_count_per_voltage_level[(solution[i].assigned_resource->id)-1]

[(solution[i].assigned_voltage)-1]++; //Update the count of used resources↪→

806 }

807 else{

808 count_of_available_resources[(solution[i].assigned_resource->id)-1]

[(solution[i].assigned_voltage)-1]--;↪→

809 }

810

811 if(solution[i].assigned_duplicate_resource != NULL){

812 usedResCount_perVdd_perCStep[(solution[i].assigned_duplicate_resource->id)-1]

[(solution[i].assigned_duplicate_voltage)-1]++;↪→

813 if(usedResCount_perVdd_perCStep[(solution[i].assigned_duplicate_resource->id)-1]

[(solution[i].assigned_duplicate_voltage)-1] >

count_of_available_resources[(solution[i].assigned_duplicate_resource->id)-1]

[(solution[i].assigned_duplicate_voltage)-1]) {

↪→

↪→

↪→

814

815 used_resources_count_per_voltage_level

[(solution[i].assigned_duplicate_resource->id)-1]

[(solution[i].assigned_duplicate_voltage)-1]++; //Update the count of

used resources

↪→

↪→

↪→

816 }

817 else{

818 count_of_available_resources[(solution[i].assigned_duplicate_resource->id)-1]

[(solution[i].assigned_duplicate_voltage)-1]--;↪→

819 }

820 }

821 }

822 }

823

824 //Schedule the candidate tasks that don't need additional resources.

825 for (int i = 0; i < NUM_RESOURCES; i++) {

826 for (int j = 0; j < V_LEVELS; j++) {

827 if (count_of_available_resources[i][j] > 0) {

828 int min_slack_so_far = limit_latency;

829 int min_slack_task_to_schedule = -1;

830 int type_of_task_to_schedule;

831

832 for (int k = 1; k < NUM_TASKS; k++){

833 if (ready[k] && (scheduled[k] == 0) && ((solution[k].assigned_voltage-1) == j))

{↪→

834 // CHECKING IF ALL PREDECESSORS HAVE FINISHED EXECUTION

835 int all_predecessors_finished = 1;

836 for (int l = 0; l < NUM_TASKS; l++) {

837 if ((graph[l][k])){

838 if((solution[l].start_time +

solution[l].assigned_resource->latency[solution[l].assigned_voltage -

1] - 1) >= c_step){

↪→

↪→

839 all_predecessors_finished = 0; // An unfinished predecessor found so we

cannot schedule k at this c_step↪→

840 }

153

841 if(solution[l].assigned_duplicate_resource != NULL){ // Checking for the

duplicate too↪→

842 if((solution[l].start_time + solution[l].assigned_duplicate_resource->

latency[solution[l].assigned_duplicate_voltage-1]-1) >= c_step){↪→

843 all_predecessors_finished = 0; // An unfinished predecessor found so

we cannot schedule k at this c_step↪→

844 }

845 }

846 }

847 }

848 if (all_predecessors_finished && (solution[k].start_time-c_step <

min_slack_so_far)) { // find the ready and unscheduled task with min

slack

↪→

↪→

849 min_slack_so_far = solution[k].start_time-c_step;

850 min_slack_task_to_schedule = k;

851 type_of_task_to_schedule = solution[k].type;

852 }

853 }

854 }

855

856 if ((min_slack_task_to_schedule != -1) && (type_of_task_to_schedule ==

resource_library[i].type)) {↪→

857 solution[min_slack_task_to_schedule].start_time = c_step;

858 list_scheduling[min_slack_task_to_schedule] = c_step;

859 scheduled[min_slack_task_to_schedule] = 1;

860 num_scheduled_tasks++;

861 count_of_available_resources[i][j]--;

862 }

863 }

864 }

865 }

866

867 c_step++;

868

869 }// end while

870

871 list_scheduling[NUM_TASKS-1] = limit_latency;

872 for (int i = 0; i < NUM_RESOURCES; i++) {

873 for (int j = 0; j < V_LEVELS; j++) {

874 if(area < used_resources_count_per_voltage_level[i][j]*resource_library[i].area)

875 area = used_resources_count_per_voltage_level[i][j]*resource_library[i].area;

876 }

877 }

878 return area;

879 }

880

881 // Get topological ordering of the tasks in the benchmark

882 void get_topological_ordering(int number_of_tasks, int (*graph)[number_of_tasks], int*
topological_ordering){↪→

883 int graph_copy[NUM_TASKS][NUM_TASKS];

884 int indeg[number_of_tasks], flag[number_of_tasks];

885 int count = 0, idx = 0;

886 for(int i = 0; i < number_of_tasks; i++){

887 indeg[i] = 0;

888 flag[i] = 0;

889 for(int j = 0; j < number_of_tasks; j++){

154

890 graph_copy[i][j] = graph[i][j];

891 }

892 }

893

894 for(int i = 0; i < number_of_tasks; i++){

895 for(int j = 0; j < number_of_tasks; j++){

896 indeg[i] = indeg[i] + graph_copy[j][i];

897 }

898 }

899

900 while(count < number_of_tasks){

901 for(int k = 0; k < number_of_tasks; k++){

902 if((indeg[k] == 0) && (flag[k] == 0)){

903 topological_ordering[idx++] = k;

904 flag[k] = 1;

905

906 for(int i = 0; i < number_of_tasks; i++){

907 if(graph_copy[k][i] == 1){

908 graph_copy[k][i]=0;

909 indeg[i]--;

910 }

911 }

912 }

913 }

914 count++;

915 }

916 }

917

918 // Generates a random candidate by changing only one task parameters (either assigned

resource or voltage)↪→

919 void random_candidate_generator(task* solution, task* candidate_solution, int

no_of_mult_tasks, int* mult_nodes_list, resource* resource_library, resource*
multipliers, resource* adders, int no_of_mult_resources){

↪→

↪→

920 int task_to_change = get_rand_int_in_range(1, NUM_TASKS-2); // NOPs not important

921

922 int coin_flip = get_rand_int_in_range(1, 2);

923

924 for(int i=0; i<NUM_TASKS; i++){

925 candidate_solution[i].id = i;

926 if((i==0) || (i==(NUM_TASKS-1))){ // Assigning start and sink nodes NOP

927 candidate_solution[i].type = NOP;

928 candidate_solution[i].assigned_resource = &resource_library[NUM_RESOURCES-1];

929 candidate_solution[i].assigned_voltage = solution[i].assigned_voltage;

930 }

931 else{

932 if(i == task_to_change){

933 int thing_to_change = get_rand_int_in_range(1, 2); // 1 - resource, 2 - voltage

934 // Assigning resource

935 if(solution[i].type == MUL){

936 candidate_solution[i].type = MUL;

937 if(thing_to_change == 1){ // Should it be changed?

938 candidate_solution[i].assigned_resource = &multipliers[get_rand_int_in_range(1,

no_of_mult_resources) - 1];↪→

939 }

940 else{

941 candidate_solution[i].assigned_resource = solution[i].assigned_resource;

155

942 }

943 }

944 else if(solution[i].type == ADD){

945 // change add resource

946 candidate_solution[i].type = ADD;

947 if(thing_to_change == 1){

948 candidate_solution[i].assigned_resource = &adders[get_rand_int_in_range(1,

NUM_RESOURCES - no_of_mult_resources - 1) - 1];↪→

949 }

950 else{

951 candidate_solution[i].assigned_resource = solution[i].assigned_resource;

952 }

953 }

954 // Assigning voltage

955 if(thing_to_change == 2){ // Should it be changed?

956 candidate_solution[i].assigned_voltage = get_rand_int_in_range(1, V_LEVELS);

957 }

958 else{

959 candidate_solution[i].assigned_voltage = solution[i].assigned_voltage;

960 }

961 // Assigning start time

962 candidate_solution[i].start_time = 0;

963 }

964 else{

965 candidate_solution[i].type = solution[i].type;

966 candidate_solution[i].assigned_resource = solution[i].assigned_resource;

967 candidate_solution[i].assigned_voltage = solution[i].assigned_voltage;

968

969 // Change for duplication:

970 candidate_solution[i].assigned_duplicate_resource = NULL;

971 candidate_solution[i].assigned_duplicate_voltage = -1;

972 }

973 }

974 // Change for duplication:

975 candidate_solution[i].assigned_duplicate_resource = NULL;

976 candidate_solution[i].assigned_duplicate_voltage = -1;

977 }

978 }

979

980 // -------------- helper_functions.h below ---------------

981

982 #include <sys/time.h>

983 #include <math.h>

984

985 int read_matrix(size_t rows, size_t cols, int (*a)[cols], const char* filename)

986 {

987 FILE *pf;

988 pf = fopen (filename, "r");

989 if (pf == NULL)

990 return 0;

991

992 for(size_t i = 0; i < rows; ++i)

993 {

994 for(size_t j = 0; j < cols; ++j)

995 fscanf(pf, "%d", a[i] + j);

996 }

156

997

998 fclose (pf);

999 return 1;

1000 }

1001

1002 int read_double_matrix(size_t rows, size_t cols, double (*a)[cols], const char* filename)

1003 {

1004 FILE *pf;

1005 pf = fopen (filename, "r");

1006 if (pf == NULL)

1007 return 0;

1008

1009 for(size_t i = 0; i < rows; ++i)

1010 {

1011 for(size_t j = 0; j < cols; ++j){

1012 fscanf(pf, "%lf", a[i] + j);

1013 //printf("%lf\n", *(a[i]+j));

1014 }

1015 }

1016 fclose (pf);

1017 return 1;

1018 }

1019

1020 int get_rand_int_in_range(int min, int max){

1021 struct timeval t1;

1022 gettimeofday(&t1, NULL);

1023 srand(t1.tv_usec * t1.tv_sec);

1024 return (rand() % (max - min + 1)) + min;

1025 }

1026

1027 float get_rand_float_in_range(float min, float max){

1028 float scale = rand() / (float) RAND_MAX;

1029 return min + scale * (max - min);

1030 }

1031

1032 int read_benchmark(size_t rows, size_t cols, double *MaxR, double *MinR, double *MaxE,

double *MinE, int* no_of_mult_tasks, int* mult_nodes_list, int (*a)[cols], const char*
filename)

↪→

↪→

1033 {

1034 FILE *pf;

1035 pf = fopen (filename, "r");

1036 if (pf == NULL)

1037 return 0;

1038

1039 fscanf(pf, "%lf", MaxR);

1040 fscanf(pf, "%lf", MinR);

1041 fscanf(pf, "%lf", MaxE);

1042 fscanf(pf, "%lf", MinE);

1043 for(size_t i = 0; i < rows; ++i)

1044 {

1045 for(size_t j = 0; j < cols; ++j)

1046 fscanf(pf, "%d", a[i] + j);

1047 }

1048 *no_of_mult_tasks = 0;

1049 while (!feof (pf))

1050 {

157

1051 fscanf (pf, "%d", &mult_nodes_list[*no_of_mult_tasks]);

1052 *no_of_mult_tasks = *no_of_mult_tasks + 1;

1053 }

1054 *no_of_mult_tasks = *no_of_mult_tasks - 1;

1055

1056 fclose (pf);

1057 return 1;

1058 }

1059

1060 void get_mobility(int* ASAP_scheduling, int* ALAP_scheduling, int* mobility, int n){

1061 for(int i=0; i<n; i++){

1062 mobility[i] = ALAP_scheduling[i] - ASAP_scheduling[i];

1063 }

1064 }

1065

1066 double get_acceptance_probability(double temp, int num_of_transitions, double

(*set_of_transitions)[2]){↪→

1067 double divident = 0.0, divisor = 0.0;

1068 int max = 1, min = 0;

1069 for (int i = 0; i < num_of_transitions; i++) {

1070 divident += exp(0.0 - (set_of_transitions[i][max]/temp));

1071 divisor += exp(0.0 - (set_of_transitions[i][min]/temp));

1072 }

1073 return divident/divisor;

1074 }

1075

1076 double get_Boltzmann_factor_probability(double temp, double E1, double E2){

1077 double power = pow(10, -23);

1078 double kB = 1.38065 * power;

1079 double P = exp(-(E2-E1)/(kB*temp));

1080 return P;

1081 }

1082

1083 double get_metropolis_acceptance(double temp, double E1, double E2){

1084 double P = exp(-(E2-E1)/(temp));

1085 return P;

1086 }

1087

1088 double get_t1(int num_of_transitions, double (*set_of_transitions)[2], double

DESIRED_ACCEPTANCE_PROBABILITY){↪→

1089 double t_1;

1090 int max = 1, min = 0;

1091 double sum = 0.0;

1092 for (int i = 0; i < num_of_transitions; i++) {

1093 sum = set_of_transitions[i][max] - set_of_transitions[i][min];

1094 }

1095 return t_1 = 0.0 - (sum/(num_of_transitions*log(DESIRED_ACCEPTANCE_PROBABILITY)));

1096 }

1097

1098 double get_reduced_temperature_GEO(double temp, double alpha){

1099 return temp * alpha;

1100 }

158

APPENDIX B - Directed Acyclic Graphs for Benchmarks

B.1 DAG of the Differential Equation Solver Benchmark

1
*

2
*

6
*

8
*

3
*

7
*

10
+

11
+

9
+

4
+

5
+

0
NOP

12
NOP

Figure B.1 DAG representation of the DES design specification.

159

B.2 DAG of the Finite Impulse Response Filter Benchmark

0
NOP

1
+

2
+

6
+

8
+

3
+

7
+

10
*

11
*

9
*

4
+

5
+

13
*

14
*

12
*

15
*

16
*

17
+

21
+

23
+

18
+

22
+

19
+

20
+

24
NOP

Figure B.2 DAG representation of the FIR design specification.

160

B.3 DAG of the Elliptic Wave Filter Benchmark

1
+

2
+

3
+

4
+

6
+

8
+

7
+

5
+

10
+

11
+

9
+

12
+

13
+

14
+

20
+

21
+

19
+

22
+

25
+

26
+

15
+

18
+

16
+

17
+

23
+

24
+

27
NOP

0
NOP

Figure B.3 DAG representation of the EWF design specification.

161

B.4 DAG of the Auto-Regressive Filter Benchmark

1
*

2
*

3
*

4
*

6
+

8
+

7
+

5
+

10
*

11
*

9
*

12
*

13
+

14
+

20
*

21
*

19
*

22
*

25
+

26
+

27
+

28
+

15
*

18
*

16
*

17
*

23
+

24
+

29
NOP

0
NOP

Figure B.4 DAG representation of the AR design specification.

162

APPENDIX C - Additional Experimental Results

C.1 Additional Experimental Results for Section 6.1.

Table C.1 Comparison of the energy results of ILP and GA duplication methods for all benchmarks
when α = 1.0.

(L, A) ILP-PD ILP-PD-C ILP-FD GA-SD ILP-PD/GA-SD ILP-PD-C/GA-SD ILP-FD/GA-SD

DES Energy Results ∆ (%)

(28,20) 564.00 564.00 1067.80 629.00 -10.33 -10.33 69.76
(28,30) 1068.00 619.12 1068.00 629.00 69.79 -1.57 69.79
(28,40) 1068.00 622.22 1068.00 629.00 69.79 -1.08 69.79
(25,20) 558.00 558.00 - 623.00 -10.43 -10.43 -
(25,30) 1056.00 618.22 1056.00 623.00 69.50 -0.77 69.50
(25,40) 1056.00 607.12 1056.00 623.00 69.50 -2.55 69.50

Average ∆ (%): 42.97 -4.46 69.67

EWF Energy Results ∆ (%)

(30,10) 312.00 229.23 312.00 256.00 21.88 -10.46 21.88
(30,20) 456.00 255.27 456.00 256.00 78.13 -0.29 78.13
(30,30) 456.00 255.27 456.00 256.00 78.13 -0.29 78.13
(40,10) 312.00 312.00 312.00 316.00 -1.27 -1.27 -1.27
(40,20) 552.00 308.84 552.00 310.00 78.06 -0.37 78.06
(40,30) 552.00 315.33 552.00 316.00 74.68 -0.21 74.68
(50,10) 575.00 339.96 582.00 340.00 69.12 -0.01 71.18
(50,20) 600.00 339.96 600.00 340.00 76.47 -0.01 76.47

Average ∆ (%): 59.40 -1.61 59.66

FIR Energy Results ∆ (%)

(30,20) 868.00 868.00 - 1088.00 -20.22 -20.22 -
(35,20) 874.00 874.00 - 929.00 -5.92 -5.92 -
(40,20) 880.00 880.00 - 908.00 -3.08 -3.08 -
(50,20) 1456.00 892.00 - 998.00 45.89 -10.62 -
(35,30) 1568.00 981.14 1556.00 989.00 58.54 -0.79 57.33
(40,30) 1592.00 897.28 1556.00 908.00 75.33 -1.18 71.37
(45,30) 1616.00 1010.56 1556.00 1011.00 59.84 -0.04 53.91
(50,30) 1628.00 996.60 1556.00 998.00 63.13 -0.14 55.91

Average ∆ (%): 34.19 -5.25 59.63

AR Energy Results ∆ (%)

(65,20) 2848.00 1611.00 2848.00 1611.00 76.78 0.00 76.78
(50,30) 2764.00 1516.92 2764.00 1534.00 80.18 -1.11 80.18
(55,30) 2800.00 1776.00 2800.00 1776.00 57.66 0.00 57.66
(60,30) 2836.00 1544.00 2836.00 1544.00 83.68 0.00 83.68
(50,40) 2764.00 1721.40 2764.00 1730.00 59.77 -0.50 59.77
(55,40) 2800.00 1638.00 2800.00 1638.00 70.94 0.00 70.94

Average ∆ (%): 71.50 -0.27 71.50

163

Table C.2 Comparison of the reliability results of ILP and GA duplication methods for all
benchmarks when α = 0.0.

(L, A) ILP-PD ILP-PD-C ILP-FD GA-SD ILP-PD/GA-SD ILP-PD-C/GA-SD ILP-FD/GA-SD

DES Reliability Results ∆ (%)

(28,20) 0.881353 0.881353 - 0.878488 0.33 0.33 -
(28,30) 0.854871 0.907873 0.995197 0.902782 -5.31 0.56 10.24
(28,40) 0.854871 0.907873 0.988170 0.902782 -5.31 0.56 9.46
(25,20) 0.901332 0.957215 - 0.951513 -5.27 0.60 -
(25,30) 0.900430 0.990286 0.997241 0.951513 -5.37 4.07 4.81
(25,40) 0.890395 0.968549 0.988171 0.951513 -6.42 1.79 3.85

Average ∆ (%): -4.56 1.32 7.09

EWF Reliability Results ∆ (%)

(30,10) 0.995615 0.885586 0.995615 0.826462 20.47 7.15 20.47
(30,20) 0.997625 0.989771 0.997625 0.826462 20.71 19.76 20.71
(30,30) 0.997625 0.989771 0.997625 0.826462 20.71 19.76 20.71
(40,10) 0.995615 0.995615 0.995615 0.973232 2.30 2.30 2.30
(40,20) 0.998966 0.995330 0.998966 0.952262 4.90 4.52 4.90
(40,30) 0.998966 0.995758 0.998966 0.973232 2.64 2.31 2.64
(50,10) 0.997067 0.996963 0.997097 0.988461 0.87 0.86 0.87
(50,20) 0.999638 0.996963 0.999638 0.988461 1.13 0.86 1.13

Average ∆ (%): 9.22 7.19 9.22

FIR Reliability Results ∆ (%)

(30,20) 0.611809 0.826491 - 0.781564 -21.72 5.75 -
(35,20) 0.638632 0.862726 - 0.798425 -20.01 8.05 -
(40,20) 0.708066 0.827502 - 0.672103 5.35 23.12 -
(50,20) 0.498108 0.714613 - 0.524482 -5.03 36.25 -
(35,30) 0.649775 0.846371 0.992996 0.759082 -14.40 11.50 30.82
(40,30) 0.603160 0.800247 0.991731 0.585273 3.06 36.73 69.45
(45,30) 0.539284 0.791328 0.961597 0.579129 -6.88 36.64 66.04
(50,30) 0.478715 0.686790 0.955639 0.495619 -3.41 38.57 92.82

Average ∆ (%): -7.88 24.58 64.78

AR Reliability Results ∆ (%)

(65,20) 0.792693 0.801310 0.999972 0.793572 -0.11 0.98 26.01
(50,30) 0.784443 0.835048 0.994783 0.831569 -5.67 0.42 19.63
(55,30) 0.773373 0.804704 0.988506 0.802083 -3.58 0.33 23.24
(60,30) 0.796366 0.806719 0.988503 0.802888 -0.81 0.48 23.12
(50,40) 0.756717 0.868565 0.990628 0.859713 -11.98 1.03 15.23
(55,40) 0.770776 0.822441 0.991069 0.820738 -6.09 0.21 20.75

Average ∆ (%): -4.71 0.57 21.33

164

M1
Vh

A1
Vh

A3
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

A1
Vh

A1
Vh

A3
Vh

1

2

6

8

10

3

7

4

5

9

11

Cstep 1
Cstep 2
Cstep 3
Cstep 4

Cstep 6

Cstep 12

Cstep 14

Cstep 18

Cstep 22

Cstep 24

M1
Vh

A3
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

A1
Vl

A3
Vh

1

2

6

8

3

7

4

5

11 d

Cstep 1
Cstep 2
Cstep 3
Cstep 4

Cstep 12

Cstep 14

Cstep 18

Cstep 22

Cstep 24

A3
Vh

4 d

A3
Vh

10

A3
Vh

10 d

A3
Vh

11

A3
Vh

5 d

A1
Vl

9

A3
Vh

9 d

Constraints (L,A) = (25,20), alpha = 1.0
No duplication HLS (R: 0.965436, E: 528.00) Partial duplication HLS (R: 0.993640, E: 558.00)

Figure C.1 Solutions without and with partial DMR obtained from the ILP models for the DES
benchmark when α = 1.0 under the constraints A = 20, L = 25.

165

A1
VL

M1
Vh

A1
VL

A3
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

A3
Vh

1

2

6

8

10

3

7

4

5

Cstep 1
Cstep 2
Cstep 3

Cstep 5

Cstep 9

Cstep 12
Cstep 13

Cstep 16

Cstep 18

Cstep 22

Cstep 24

M1
Vh

A3
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

A3
Vh

1

2

6

8

A3
Vh

10

3

7

4

5

Cstep 1
Cstep 2
Cstep 3
Cstep 4
Cstep 5

Cstep 12

Cstep 14

Cstep 18

Cstep 22

Cstep 24

11

A1
VL

9

A3
Vh

10d

A3
Vh

9

A3
Vh

9d

A3
Vh

11

A3
Vh

11d

A3
Vh

4d

A3
Vh

5d

Constraints (L,A) = (25,20), alpha = 0.5
No duplication HLS (R: 0.962540, E: 516.99) Partial duplication HLS (R: 0.993175, E: 540.00)

Figure C.2 Solutions without and with partial DMR obtained from the ILP models for the DES
benchmark when α = 0.5 under the constraints A = 20, L = 25.

166

M1
Vh

A2
VL

A3
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

A2
VL

A2
VL

A3
Vh

1

2

6

8

10

3

7

4

5

9

11

Cstep 1
Cstep 2
Cstep 3
Cstep 4

Cstep 8

Cstep 12
Cstep 13
Cstep 14

Cstep 18

Cstep 22

Cstep 24

M1
Vh

A2
VL

A3
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

M1
Vh

A2
VL

A2
VL

A3
Vh

1

2

6

8

10

3

7

4

5

9

11

Cstep 1
Cstep 2
Cstep 3
Cstep 4

Cstep 8

Cstep 12
Cstep 13
Cstep 14

Cstep 18

Cstep 22

Cstep 24

A2
VL

9 d

A2
VL

11 d

Constraints (L,A) = (25,20), alpha = 0.0
No duplication HLS (R: 0.799164, E: 502.41) Partial duplication HLS (R: 0.901332, E: 509.35)

Figure C.3 Solutions without and with partial DMR obtained from the ILP models for the DES
benchmark when α = 0.0 under the constraints A = 20, L = 25.

167

C.2 Additional Experimental Results for Section 6.2.

Table C.3 Comparison of the energy results of SA-based method with ILP and GA-based methods
for all benchmarks when α = 1.0.

(L, A) SA-ND ILP-ND GA-ND SA-ND/ILP-ND SA-ND/GA-ND

DES Energy Results ∆ (%)

(31,20) 540.00 540.00 540.00 0.00 0.00
(31,30) 540.00 540.00 540.00 0.00 0.00
(28,20) 534.00 534.00 534.00 0.00 0.00
(28,30) 534.00 534.00 534.00 0.00 0.00
(28,40) 534.00 534.00 534.00 0.00 0.00
(25,20) 528.00 528.00 528.00 0.00 0.00
(25,30) 528.00 528.00 528.00 0.00 0.00
(25,40) 528.00 528.00 528.00 0.00 0.00

Average ∆ (%) 0.00 0.00

EWF Energy Results ∆ (%)

(30,10) 228.00 228.00 210.00 0.00 8.57
(30,20) 228.00 228.00 210.00 0.00 8.57
(30,30) 228.00 228.00 210.00 0.00 8.57
(40,10) 276.00 276.00 276.00 0.00 0.00
(40,20) 276.00 276.00 270.00 0.00 2.22
(40,30) 276.00 276.00 276.00 0.00 0.00
(50,10) 300.00 300.00 300.00 0.00 0.00
(50,20) 300.00 300.00 300.00 0.00 0.00
(50,30) 300.00 300.00 300.00 0.00 0.00

Average ∆ (%) 0.00 3.10

FIR Energy Results ∆ (%)

(30,20) 778.00 778.00 739.00 0.00 5.28
(35,20) 784.00 784.00 784.00 0.00 0.00
(35,30) 790.00 790.00 778.00 0.00 1.54
(40,20) 796.00 796.00 796.00 0.00 0.00
(40,30) 796.00 796.00 796.00 0.00 0.00
(45,30) 808.00 808.00 808.00 0.00 0.00
(50,20) 820.00 820.00 814.00 0.00 0.74
(50,30) 820.00 820.00 814.00 0.00 0.74

Average ∆ (%) 0.00 1.04

AR Energy Results ∆ (%)

(55,20) 1412.00 1400.00 1400.00 0.86 0.86
(55,30) 1412.00 1412.00 1406.00 0.00 0.43
(55,40) 1424.00 1424.00 1418.00 0.00 0.42
(60,20) 1412.00 1424.00 1412.00 -0.84 0.00
(60,30) 1424.00 1424.00 1424.00 0.00 0.00
(65,15) 1424.00 1424.00 1412.00 0.00 0.85
(65,20) 1399.56 1424.00 1412.00 -1.72 -0.88

Average ∆ (%) -0.24 0.24

168

Table C.4 Comparison of the reliability results of SA-based method with ILP and GA-based
methods for all benchmarks when α = 0.0.

(L, A) SA-ND ILP-ND GA-ND SA-ND/ILP-ND SA-ND/GA-ND

DES Reliability Results ∆ (%)

(31,20) 0.720339 0.720339 0.758729 0.00 -5.06
(31,30) 0.787886 0.795969 0.833106 -1.02 -5.43
(28,20) 0.848354 0.848354 0.864112 0.00 -1.82
(28,30) 0.757969 0.757969 0.838299 0.00 -9.58
(28,40) 0.757969 0.757969 0.838299 0.00 -9.58
(25,20) 0.799164 0.799164 0.897412 0.00 -10.95
(25,30) 0.798364 0.798364 0.897412 0.00 -11.04
(25,40) 0.789466 0.789466 0.897412 0.00 -12.03

Average ∆ (%) -0.13 -8.19

EWF Reliability Results ∆ (%)

(30,10) 0.568721 0.568721 0.550670 0.00 3.28
(30,20) 0.424540 0.433327 0.520567 -2.03 -18.45
(30,30) 0.424540 0.433327 0.535491 -2.03 -20.72
(40,10) 0.282804 0.304956 0.377268 -7.26 -25.04
(40,20) 0.284847 0.304956 0.378641 -6.59 -24.77
(40,30) 0.284847 0.304956 0.392794 -6.59 -27.48
(50,10) 0.221953 0.213312 0.393347 4.05 -43.57
(50,20) 0.221953 0.213312 0.307238 4.05 -27.76
(50,30) 0.213312 0.213312 0.249176 0.00 -14.39

Average ∆ (%) -1.82 -22.10

FIR Reliability Results ∆ (%)

(30,20) 0.542459 0.542459 0.716684 0.00 -24.31
(35,20) 0.555915 0.555915 0.769706 0.00 -27.78
(35,30) 0.576121 0.576121 0.697999 0.00 -17.46
(40,15) 0.808726 0.808726 0.845330 0.00 -4.33
(40,20) 0.691288 0.691288 0.625021 0.00 10.60
(40,30) 0.505155 0.538654 0.577630 -6.22 -12.55
(45,30) 0.464718 0.478155 0.533088 -2.81 -12.83
(50,15) 0.424877 0.429112 0.790506 -0.99 -46.25
(50,20) 0.421407 0.441647 0.478155 -4.58 -11.87
(50,30) 0.424451 0.424451 0.459538 0.00 -7.64

Average ∆ (%) -1.46 -15.44

AR Reliability Results ∆ (%)

(55,20) 0.669042 0.669042 0.712711 0.00 -6.13
(55,30) 0.789620 0.831064 0.753171 -4.99 4.84
(55,40) 0.700950 0.725778 0.790472 -3.42 -11.33
(60,20) 0.617024 0.667035 0.635332 -7.50 -2.88
(60,30) 0.854603 0.747594 0.748425 14.31 14.19
(65,15) 0.827741 0.827741 0.785492 0.00 5.38
(65,20) 0.764145 0.773910 0.764145 -1.26 0.00

Average ∆ (%) -0.41 0.58

169

C.3 Additional Experimental Results for Section 6.4.

Table C.5 EWF benchmark reliability and energy results of full DMR solutions for a different
number of supply voltages.

EWF Full DMR Reliability Results EWF Full DMR Energy Results
Supply Voltage Levels Used ∆ (%) Supply Voltage Levels Used ∆ (%)

Alpha (L, A) 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI

1.0

(30,10) 0.995615 0.995615 0.995615 0.00 0.00 312.00 312.00 312.00 0.00 0.00
(30,20) 0.997625 0.997625 0.997625 0.00 0.00 456.00 456.00 456.00 0.00 0.00
(30,30) 0.997625 0.997625 0.997625 0.00 0.00 456.00 456.00 456.00 0.00 0.00
(40,10) 0.995615 0.995615 0.995615 0.00 0.00 312.00 312.00 312.00 0.00 0.00
(40,20) 0.998966 0.998966 0.998966 0.00 0.00 552.00 552.00 552.00 0.00 0.00
(40,30) 0.998966 0.998966 0.998966 0.00 0.00 552.00 552.00 552.00 0.00 0.00
(50,10) 0.996140 0.997097 0.997097 0.10 0.10 568.00 582.00 582.00 2.46 2.46
(50,20) 0.999638 0.999638 0.999638 0.00 0.00 600.00 600.00 600.00 0.00 0.00
(50,30) 0.999638 0.999638 0.999638 0.00 0.00 600.00 600.00 600.00 0.00 0.00

Average ∆ (%): 0.01 0.01 Average ∆ (%): 0.27 0.27

0.5

(30,10) 0.995615 0.995615 0.995615 0.00 0.00 312.00 312.00 312.00 0.00 0.00
(30,20) 0.995615 0.987541 0.987780 -0.81 -0.79 312.00 238.80 238.80 -23.46 -23.46
(30,30) 0.995615 0.986335 0.986335 -0.93 -0.93 312.00 227.82 227.82 -26.98 -26.98
(40,10) 0.995615 0.985131 0.985131 -1.05 -1.05 312.00 216.84 216.84 -30.50 -30.50
(40,20) 0.995615 0.985131 0.985131 -1.05 -1.05 312.00 216.84 216.84 -30.50 -30.50
(40,30) 0.995615 0.985131 0.985131 -1.05 -1.05 312.00 216.84 216.84 -30.50 -30.50
(50,10) 0.995615 0.985131 0.985131 -1.05 -1.05 312.00 216.84 216.84 -30.50 -30.50
(50,20) 0.995615 0.985131 0.985131 -1.05 -1.05 312.00 216.84 216.84 -30.50 -30.50
(50,30) 0.995615 0.985131 0.985131 -1.05 -1.05 312.00 216.84 216.84 -30.50 -30.50

Average ∆ (%): -0.90 -0.89 Average ∆ (%): -25.94 -25.94

0.0

(30,10) 0.995615 0.995615 0.995615 0.00 0.00 312.00 312.00 312.00 0.00 0.00
(30,20) 0.979502 0.987541 0.987660 0.82 0.83 270.00 238.80 238.80 -11.56 -11.56
(30,30) 0.977633 0.964372 0.963874 -1.36 -1.41 266.00 221.68 221.64 -16.66 -16.68
(40,10) 0.975312 0.985131 0.985131 1.01 1.01 260.00 216.84 216.84 -16.60 -16.60
(40,20) 0.975312 0.940980 0.940008 -3.52 -3.62 260.00 197.24 197.16 -24.14 -24.17
(40,30) 0.975312 0.940980 0.938168 -3.52 -3.81 260.00 197.24 197.08 -24.14 -24.20
(50,10) 0.975312 0.985131 0.934091 1.01 -4.23 260.00 216.84 202.22 -16.60 -22.22
(50,20) 0.975312 0.913647 0.934091 -6.32 -4.23 260.00 184.64 202.22 -28.98 -22.22
(50,30) 0.975312 0.913647 0.912281 -6.32 -6.46 260.00 184.64 184.56 -28.98 -29.02

Average ∆ (%): -2.02 -2.43 Average ∆ (%): -18.63 -18.52

170

Table C.6 AR benchmark reliability and energy results of full DMR solutions for a different number
of supply voltages.

AR Full DMR Reliability Results AR Full DMR Energy Results
Supply Voltage Levels Used ∆ (%) Supply Voltage Levels Used ∆ (%)

Alpha (L, A) 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI 1 VI (h) 2 VIs (h,l) 3 VIs (h,m,l) 2VIs/1VI 3VIs/1VI

1.0

(65,20) 0.999972 0.999972 0.999972 0.00 0.00 2848.00 2848.00 2848.00 0.00 0.00
(50,30) 0.998797 0.998797 0.998797 0.00 0.00 2764.00 2764.00 2764.00 0.00 0.00
(55,30) 0.999300 0.999300 0.999300 0.00 0.00 2800.00 2800.00 2800.00 0.00 0.00
(60,30) 0.999804 0.999804 0.999804 0.00 0.00 2836.00 2836.00 2836.00 0.00 0.00
(50,40) 0.998797 0.998797 0.998797 0.00 0.00 2764.00 2764.00 2764.00 0.00 0.00
(55,40) 0.999300 0.999300 0.999300 0.00 0.00 2800.00 2800.00 2800.00 0.00 0.00

Average ∆ (%): 0.00 0.00 Average ∆ (%): 0.00 0.00

0.5

(65,20) 0.999972 0.999972 0.999972 0.00 0.00 2848.00 2848.00 2848.00 0.00 0.00
(50,30) 0.998797 0.998797 0.998797 0.00 0.00 2764.00 2764.00 2764.00 0.00 0.00
(55,30) 0.999300 0.999300 0.998625 0.00 -0.07 2800.00 2800.00 2307.84 0.00 -17.58
(60,30) 0.999804 0.999804 0.998961 0.00 -0.08 2836.00 2836.00 2331.84 0.00 -17.78
(50,40) 0.998797 0.998280 0.998458 -0.05 -0.03 2764.00 2542.24 2552.22 -8.02 -7.66
(55,40) 0.999300 0.998277 0.998277 -0.10 -0.10 2800.00 2468.92 2187.18 -11.82 -21.89

Average ∆ (%): -0.03 -0.05 Average ∆ (%): -3.31 -10.82

0.0

(65,20) 0.999972 0.999972 0.999972 0.00 0.00 2848.00 2848.00 2848.00 0.00 0.00
(50,30) 0.995392 0.994783 0.994783 -0.06 -0.06 2693.00 2691.35 2691.35 -0.06 -0.06
(55,30) 0.988513 0.988506 0.995848 0.00 0.74 2680.00 2508.92 2250.49 -6.38 -16.03
(60,30) 0.988513 0.988503 0.988502 0.00 0.00 2680.00 2435.60 2151.36 -9.12 -19.73
(50,40) 0.988513 0.990628 0.996219 0.21 0.78 2680.00 2522.80 2626.34 -5.87 -2.00
(55,40) 0.988513 0.991069 0.992660 0.26 0.42 2680.00 2279.00 2166.56 -14.96 -19.16

Average ∆ (%): 0.07 0.31 Average ∆ (%): -6.07 -9.50

171

Figure C.1 Changes in reliability over different α values for EWF benchmark (A = 30, L = 40)
under different numbers of supply voltages.

Figure C.2 Changes in energy over different α values for EWF benchmark (A = 30, L = 40) under
different numbers of supply voltages.

172

Figure C.3 Changes in reliability over different α values for AR benchmark (A = 30, L = 50) under
different numbers of supply voltages.

Figure C.4 Changes in energy over different α values for AR benchmark (A = 30, L = 50) under
different numbers of supply voltages.

173

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope of the Thesis
	1.2. Contributions
	1.3. Organization

	2. BACKGROUND OVERVIEW
	2.1. Optimization Fundamentals
	2.2. Optimization Algorithms
	2.3. Reliability, Energy, and Latency Considerations for Optimization in Digital Electronic System Design

	3. RELATED WORK
	3.1. ILP-Based HLS Studies
	3.2. SA-Based HLS Studies
	3.3. HLS Studies With Modular Redundancy
	3.4. HLS Under Multi-Supply Voltages and Other Energy-Aware Approaches
	3.5. Other HLS-Related Studies

	4. PROBLEM DEFINITION
	4.1. High-Level Synthesis
	4.2. Behavioral Description of a Target Design
	4.3. Resource Library Under Multi-Supply Voltages
	4.4. Modular Redundancy Considerations

	5. PROPOSED METHODS
	5.1. Integer Linear Programming Formulations
	5.2. Simulated Annealing-Based HLS Method

	6. EXPERIMENTAL RESULTS AND DISCUSSION
	6.1. Comparison of ILP and GA-Based Methods With DMR
	6.2. Comparison of SA-Based Method With ILP and GA-Based HLS Methods
	6.3. Comparison of SA-Based Partial DMR HLS Method With the Corresponding ILP and GA-Based Methods
	6.4. Effects of Multiple Supply Voltages on Reliability and Energy Consumption
	6.5. Execution Time Analysis

	7. CONCLUSION
	8. APPENDICES
	APPENDIX A - Mosel and C Implementations Source Code
	APPENDIX A - Mosel and C Implementations Source Code
	APPENDIX B - Directed Acyclic Graphs for Benchmarks
	APPENDIX B - Directed Acyclic Graphs for Benchmarks
	APPENDIX C - Additional Experimental Results
	APPENDIX C - Additional Experimental Results

