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ÖZET 

 

 

Lineer olmayan oluşum denklemlerinin birçoğu bazı dalga yapılarını temsil 

etmesinden dolayı dalga çözümleri ve analizleri; akışkanlar fiziği, uygulamalı matematik ve 

ilişkili diğer bilim dallarında araştırma konusu olmuştur. Dalga çözümleri üzerine yapılan 

araştırmalar ile elde edilen tam çözümlerin, dalganın hareketi, hızı ve fiziksel 

karakterizasyonu hakkında bilgi verdiği bilindiğinden son birkaç yılda bu denklemlerin tam 

çözümlerini elde etmek için birçok algoritmaya ve prosedüre sahip yöntemler geliştirilmiştir. 

Ayrıca bu yöntemler sayesinde çeşitli dalga çözümlerinin sınıfları hakkında çıkarım 

yapılmaktadır.  

 

Bu tez, bazı lineer olmayan oluşum denklemlerinin analitik çözümlerini, iki 

değişkenli açılım yöntemi kullanılarak öncesinde verilen yardımcı kavramlar ile 

sunmaktadır. Bu yöntemin etkili olduğunu kanıtlamak için yararlanılan denklemler (2+1) 

boyutlu B-Tipi Kadomtsev-Petviashvili (BKP) denkleminin yeni formu, (3+1) boyutlu BKP-

Boussinesq denkleminin yeni formu, (3+1) boyutlu birinci formda genişletilmiş Jimbo-

Miwa denklemi ve (3+1) boyutlu ikinci formda genişletilmiş Jimbo-Miwa denklemidir.  

 

Bu çalışmalara ek olarak, tam çözümlerin yeni bir sınıfı olan ‘‘kompleksiton 

çözümler’’ bulmada kolaylık sağlayan modifiye edilmiş çiftli alt denklem yöntemi üzerinden 

(3+1) boyutlu Korteweg-de Vries (KdV) tipi denklemin hiperbolik ve trigonometrik 

fonksiyonların birleşmesi ile oluşan kompleksiton çözümleri verilmiştir. Dahası, elde edilen 

analitik çözümlerin fiziksel karakterizasyonu, çeşitli parametrelerin seçilmiş sabit değerleri 

ile grafikler sayesinde mevcuttur.  

 

 

Anahtar Kelimeler: Hareketli Dalga Çözümleri, Analitik Çözümler, Kompleksiton 

Çözümler, Lineer Olmayan Oluşum Denklemleri. 
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SUMMARY 

 

 

Since many nonlinear evolution equations represents some wave structure, their 

wave solutions and analysis has been topic of research in fluid physics, applied mathematics 

and other related areas. Since it is known that exact solutions obtained from researches made 

on wave solutions give informations about wave motions, wave speeds and their physical 

characteristics, in the last few years, methods with many algorithms and procedures have 

been developed to obtain the exact solutions of these kinds of equations. Besides, with the 

help of these methods some inferences are made about the classes of various wave solutions. 

 

This thesis presents the analytical solutions of some nonlinear evolution equations 

by using two variable expansion method with the auxiliary concepts given before. The 

equations used to prove that this method is effective, are the new form of (2+1)-dimensional 

B-Type Kadomtsev-Petviashvili (BKP) equation, the new form of (3+1)-dimensional BKP-

Boussinesq equation, the first extended (3+1)-dimensional Jimbo-Miwa equation and second 

extended (3+1)-dimensional Jimbo-Miwa equation. 

 

In addition to these studies, complexiton solutions of the (3+1)-dimensional 

Korteweg-de Vries (KdV) type equation are given with the aid of the modified double sub-

equation method which provides conviences to find complexiton solutions which is a new 

class of exact solutions and consist of hyperbolic and trigonometric functions. Moreover, the 

physical characterization of the obtained analytical solutions is available through graphs with 

selected constant values of various parameters. 

 

 

 

Keywords: Travelling Wave Solutions, Analytical Solutions, Complexiton Solutions, 

Nonlinear Evolution Equations. 
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1. GİRİŞ VE AMAÇ 

 

 

Matematiksel olarak, içerisinde bir bağımlı değişkenin bir bağımsız değişkene göre 

türevini bulunduran denklem adi diferensiyel denklem olarak adlandırılırken, bir bağımlı 

değişkenin en az iki bağımsız değişkene göre kısmi türev veya türevlerini bulunduran 

denklem ise kısmi diferensiyel denklem olarak adlandırılır. Lineer olmayan oluşum 

denklemleri ise, yeryüzünde karşılaşılan bilimsel problemleri matematiksel olarak sunan 

kısmi diferensiyel denklemlerdir. Özellikle, modern fizik ve uygulamalı matematikte geniş 

bir çalışma alanına sahip olan dalga mekaniğinden ötürü, dalga problemlerini modelleyen 

oluşum denklemleri üzerine çalışmalar artmakta ve sürekli gelişmektedir.   

 

Analitik çözüm araştırmaları, dalga yayılımlarını veren lineer olmayan oluşum 

denklemlerini de içinde barındıran birçok modellemenin davranışlarını anlamada katkı 

sağladığından ve bu modellemelerin denklemlerinin genel çözümlerini elde etmek her 

zaman mümkün olmadığından, uygulamalı bilimlerin vazgeçilmez bir konusu haline 

gelmiştir. Son birkaç yıldır, sayısal yöntemlerin zorlayıcı matematiksel uğraş gerektirmesi 

ve dalgaların büyük bir kısmında mevcut olan ‘’lineer olmama’’ kavramının getirdiği zorluk 

karşısında, görece daha etkili ve net sonuçlar verdiğinden tam çözüm yöntemlerinin üzerine 

odaklanılmaktadır. Böylece, araştırmacılar tam çözüm bulma sürecinde daha az prosedüre 

sahip çeşitli teknikler kullanmakta ve geliştirmektedir. Bu teknikler uygulanarak elde edilen 

tam çözümler, doğada ortaya çıkan modellemeleri temsil etmekle birlikte uzay ve zaman 

açısından farklı boyutlardaki oluşum denklemlerinin zamanı baz alan değişim, gelişim, şekil 

ve hızları hakkında birçok bilgi edinilmesini sağlar. 

 

Tam çözüm bulma süreci, verilen kısmi diferensiyel denklemin dalga dönüşümü 

sayesinde adi diferensiyel denkleme dönüştürülmesi ile başlar, genellikle homojen denge 

sabiti kullanılmasıyla devam eder ve bu denge sabitine bağlı olarak belirli bir formda dalga 

çözümleri aranması ile sonuçlanır. Elde edilen dalga çözümleri trigonometrik, hiperbolik, 

rasyonel ve çeşitli fonksiyonları içerebilir. Eğer elde edilen dalga çözümü, hiperbolik ve 

trigonometrik fonksiyonları birlikte içeriyorsa bu çözüm tam çözümlerin yeni bir üyesi olan 

kompleksiton çözüme karşılık gelir. Kompleksiton dalgaları, diğer dalgalardan ayıran en 

önemli özellikleri kendilerine özgü dalga şekilleri ve hızlarıdır.  
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Bu yüksek lisans tezinin amacı, su dalgalarını modelleyen (2+1) boyutlu B-tipi 

Kadomtsev–Petviashvili (BKP) denkleminin yeni formu, (3+1) boyutlu BKP-Boussinesq 

denkleminin yeni formu ve Jimbo-Miwa denklemlerinin iki yeni genişletilmiş versiyonunun 

analitik çözümlerini güçlü ve etkili bir yöntem olan (G′/G, 1/G) açılım metodu kullanarak 

elde etmektir. Bu tam çözümlere ek olarak, (3+1) boyutlu Korteweg-de Vries tipi 

denkleminin kompleksiton çözümleri modifiye edilmiş çiftli alt denklem metodu ile 

verilecektir. Ayrıca, bahsedilen denklemlerin dalga hareketlerini analiz etmek ve 

kompleksiton dalgaların şekillerindeki farklılığı ortaya koymak için çözümdeki 

parametrelere bazı gerçek değerler verilerek açıklayıcı grafiklerle desteklenecektir. 
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2. LİTERATÜR ARAŞTIRMASI 

 

 

Türev kavramı kabaca geometrik olarak teğetin eğimine, fizikte anlık hıza, kimyada 

tepkime hızına, ekonomi biliminde marjinal maliyete, biyolojide popülasyon dinamiklerine 

karşılık gelir (Balcı, 2003). Okuyucuların matematiğe yakın ve uzak her alandan olabileceği 

düşüncesiyle, türev kavramı kısaca ‘’değişim’’ olarak ifade edilebilir ve içerisinde değişim 

olan her alanda karşımıza çıkabilmektedir. Birçok branşta karşılaşılan başlıca sorunları 

matematik diline çeviren türevli denklemler, bağımsız değişken sayısına bağlı olarak adi ve 

kısmi diferensiyel denklem olarak isimlendirilir. Esas dayanağı zaman olan kısmi 

diferensiyel denklemler, lineer olmayan oluşum denklemleri olarak bilinir. Diferensiyel 

denklem çalışmaları 17. yüzyılın sonlarında Newton ve Leibniz ile başladı ve bilimin 

gelişmesi ile yeni problemlerin ortaya çıkması neticesinde 20. yüzyılın başlarında lineer 

olmayan oluşum denklemlerinin çözümleri üzerine yoğunlaştı. 

 

Bu tezde ilk olarak bahsedilen oluşum denklemleri, (3+1) boyutlu genelleştirilmiş B-

tipi Kadomtsev-Petviashvili (BKP) denkleminin (2+1) boyuta indirgenmiş özel bir şekli 

olarak tanımlanabilen BKP denkleminin yeni formu ve yine aynı denkleme yeni bir terim 

eklenerek oluşturulan (3+1) boyutlu BKP-Boussinesq denkleminin yeni formudur. 

Kadomtsev-Petviashvili (KP) denklemi integrallenebilen bir denklem olup yarı iki boyutlu 

bir ortamda yayılan zayıf dağılımlı ve küçük genlikli dalgaları ifade eder (Wazwaz, 2011). 

B-tipi KP hiyerarşisi de KP hiyerarşisindeki gibi içerisinde integrallenebilir birçok yapı 

barındırır. Bu sebepten ötürü bu tip denklemlerin araştırılması integrallenebilirlik incelemesi 

açısından önem teşkil etmektedir.  

 

Daha sonra, standart Jimbo-Miwa denkleminin belirli terimlerinin genişletilmesi ile 

literatüre geçen birinci ve ikinci formda genişletilmiş (3+1) boyutlu Jimbo-Miwa 

denklemleri ele alınmıştır. Jimbo-Miwa denklemini ilgi çekici kılan şey, KP hiyerarşisine 

ikinci sırada dahil olmasına rağmen klasik integrallenebilirlik koşullarından hiçbirini 

sağlamamasıdır. Bu özelliği sayesinde tam çözümü üzerine araştırmaları büyük bir önem 

kazanmıştır.  

 



4 
 

Son olarak, (3+1) boyutlu Korteweg-de Vries tipi denklemin kompleksiton 

çözümleri araştırılmıştır. En eski soliton denklemi olan KdV denklemi, ilk olarak Korteweg 

ve de Vries tarafından sığ su dalgalarının modellemesinde kullanılmıştır. Günümüzde hala 

üzerine araştırmalar yapılmakta ve akışkanlar dinamiğindeki önemini korumaktadır. (3+1) 

boyutlu KdV tipi denklem ise ilk olarak Wazwaz (2012) tarafından tanıtılmış ve 

integrallenemez bir denklem olduğu belirtilmiştir. 

 

Literatüre baktığımızda lineer olmayan oluşum denklemlerinin sayısal ve yaklaşık 

çözümleri dışında tam çözümleri ile ilgili çok fazla bilimsel uğraş vardır. Bunun başlıca 

sebebi, lineer olmayan kısmi diferensiyel denklemlerin çözümlerinin bulunmasındaki 

zorluktur. Teknolojinin gelişmesiyle birlikte matematiksel hesapların kolaylaşması ve 

görsellerinin daha basit resmedilmesi zorlukları bir nebze azaltmış olup modellenen 

problemlerin çözüme ulaştırılmasını sağlamaktadır. Yüksek mertebeli lineer olmayan kısmi 

diferensiyel denklemlerin çözümlerini bulmak için çeşitli tam çözüm yöntemleri 

geliştirilmektedir. 

 

Bahsi geçen BKP denklemlerinin yeni formlarına ve genişletilmiş Jimbo-Miwa 

denklemlerinin tam çözümlerini bulmak için bu tezde kullanılacak teknik (G′/G, 1/G) açılım 

yöntemidir. Bu yöntem tek değişkenli (𝐺′/𝐺) açılım yönteminin iki değişken alınarak 

geliştirilmesiyle ortaya çıkmıştır. Literatürde, (𝐺′/𝐺) açılım yöntemi ilk olarak Wang vd. 

(2008) tarafından tanıtılmıştır. Daha sonra, Guo ve Zhou (2010) genişletilmiş (𝐺′/𝐺) açılım 

yöntemi olarak adlandırılan geliştirilmiş bir versiyonunu sunmuştur. Sonrasında Lü vd. 

(2010) genelleştirilmiş (𝐺′/𝐺) açılım yöntemini geliştirdi. İki değişkenli (G′/G, 1/G) açılım 

yöntemi ise ilk olarak Li vd. (2010) tarafından bir denklem sistemine uygulanarak yakın 

geçmişte literatüre girmiştir. İlerleyen zamanlarda, birçok bilim insanı tarafından bu yöntem 

kullanılarak bazı hareketli dalga denklemlerinin farklı fonksiyon tipinde tam çözümleri 

bulunmuştur.  

 

Tam çözüm yöntemlerinin gelişip artması ile çeşitli tam çözüm sınıfları ortaya 

çıkmıştır. Son birkaç yıldır Ma (2002) sayesinde bilim dünyasında var olan kompleksiton 

çözüm sınıfı, diğer tam çözüm sınıflarına göre daha yeni ve yapıları itibariyle daha dikkat 

çekicidir. Bu yeni tam çözüm sınıfının mevcudiyeti ile kompleksiton çözüm bulmadaki 

araştırmalar, Wazwaz ve Zhaqilao (2013) tarafından takdim edilen yöntem, genişletilmiş 
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dönüştürülmüş rasyonel fonksiyon yöntemi, genelleştirilmiş bileşik Riccati denklemleri 

rasyonel açılım yöntemi, çoklu Riccati denklemleri rasyonel açılım yöntemi, modifiye 

edilmiş çiftli alt denklem yöntemi gibi bazı yeni yöntemlere ilham kaynağı olmuştur. Bu 

çalışmada (3+1) boyutlu KdV tipi denklemin kompleksiton çözümünü ararken modifiye 

edilmiş çiftli alt denklem yönteminden yararlanılacaktır. Bu yöntem Chen vd. (2013) 

tarafından sunulan çiftli alt denklem yönteminin değiştirilmiş halidir. Modifiye edilmiş çiftli 

alt denklem yöntemi Yang ve Chen (2013) tarafından Fisher ve KP denklemlerine, Hossen 

vd. (2017) tarafından Burgers ve Gardner denklemlerine, Ünsal ve Sakartepe (2020) 

tarafından (2+1) boyutlu BKP denkleminin yeni formuna uygulanarak kompleksiton 

çözümlere ulaşılmıştır. Ayrıca bu tezde araştırılacak olan (3+1) boyutlu KdV tipi denklemin, 

Wazwaz ve Zhaqilao’nun önerdiği yöntem kullanılarak Ünsal (2018 a) tarafından elde edilen 

kompleksiton, soliton ve soliton-kompleksiton etkileşim çözümleri literatürde yer 

almaktadır. 

 

 

 

 

 

 

  



6 
 

3. TEMEL KAVRAMLAR 

 

 

Oluşum denklemleri ve tam çözümleri üzerine yapılan çalışmalar, günümüzde birçok 

bilim dalında büyük öneme sahip ve üzerine yoğunlaşılan bir konu haline gelmiştir. Bunun 

başlıca sebebi, denklemin modellediği hareketli dalga yapıları hakkında detaylı bilgilere 

sahip olma isteğidir. Hareketli dalgaların incelenmesi, dalgaların özellikleri, davranışları ve 

yapıları hakkında daha fazla bilgi sahibi olunmasını analizler yardımıyla sağlar. Dalgaların 

yapısını anlamak açısından onları ifade eden denklemler ve çözümleri hakkında kapsamlı 

bir bilgi sahibi olmak çeşitli problemlerin çözümü için ilk adımdır. Ayrıca, sınırlayıcı ve 

özel değerler alınarak bulunan dalga grafikleri, analitik çözümleri açıklamaya ve 

netleştirmeye olanak sağlar. Bu özelliğinden dolayı, dalga denklemlerinin tam çözümlerini 

bulmak ve resmetmek için çeşitli araştırmalar literatüre girmiştir. Tam çözümlerin, yaklaşık 

çözümlere kıyasla daha net ve kesin bir çözüm olduğu bilindiğinden fazla sayıda tam çözüm 

yöntemi geliştirilmiştir. 

 

Tez çalışmasının daha iyi anlaşılması açısından bilinmesi gereken temel bilgiler bu 

bölümde verilmiştir. Literatürde geçen birçok kavramın tanımı ve nerelerde kullanıldıkları 

kısaca bahsedilmiştir. İlk olarak, lineer olmayan oluşum denklemlerini barındıran kısmi 

diferensiyel denklemler ve bazı örnekleri sunulmuştur. Sonrasında, çeşitli dalga tipleri 

tanıtılmıştır. Son olarakta, tam çözümler ve tam çözüm bulma yöntemlerinin genel 

özellikleri verilmiştir. 

 

3.1 Kısmi Diferensiyel Denklemler 

 

Kısmi diferensiyel denklemler, en az iki bağımsız değişken içeren bir bağımlı 

değişkenin herhangi bir mertebeye kadar bağımsız değişkenlerine göre türevlerini barındıran 

denklemlerdir. Genel olarak, (𝑥, 𝑦)  bağımsız değişken ve 𝑢(𝑥, 𝑦) bağımlı değişken olmak 

üzere bir kısmi diferensiyel denklem, 

 

                              𝐹(𝑥, 𝑦, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦 , … ) = 0                                                                      (3.1) 

 

formuna sahiptir.  
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Denklemin mertebesi, diferensiyel bir denklem içinde bulunan en yüksek mertebeli türevi 

belirtir. Diferensiyel bir denklemin polinom formunda yazılışındaki en yüksek mertebeden türevli 

teriminin kuvveti ise denklemin derecesi olarak adlandırılır. 

 

Örnek 3.1.1 Kısmi diferensiyel denklemlere en basitinden, 𝑥 ve 𝑡 gibi yalnızca iki bağımsız 

değişkeni olan birinci mertebeden yani bağımlı değişken olan 𝑢’nun iki ve daha fazla 

türevlerinin bulunmadığı adveksiyon denklemi olarakta bilinen  

 

                                                                         𝑢𝑡 + 𝑐𝑢𝑥 = 0                                                              (3.2) 

 

şeklindeki 𝑐’nin sabit sayıyı ifade ettiği kısmi diferensiyel denklemi örnek olarak verilebilir. 

 

Örnek 3.1.2 İkinci mertebeden bir kısmi diferensiyel denkleme ise,  

 

                                                                         𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0                                                              (3.3) 

 

şeklinde olan Laplace denklemi örnek olarak gösterilebilir. 

 

Örnek 3.1.3 Korteweg-de Vries denklemi, 

 

                                                                    𝑢𝑡 + 𝑐𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0                                                     (3.4) 

 

şeklinde ifade edilebilen, dalga yayılımı için bir model olarak kullanılan ve soliton adı verilen analitik 

çözümlere sahip üçüncü mertebeden lineer olmayan bir kısmi diferensiyel denklemdir. 

 

Örnek 3.1.4 Biharmonik denklem ise 

 

                                                                𝑢𝑥𝑥𝑥𝑥 + 2𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦 = 0                                               (3.5) 

 

şeklinde yazılan dördüncü mertebeden lineer bir kısmi diferensiyel denklemdir.  
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3.1.1 Kısmi Diferensiyel Denklemlerin Lineerlik Sınıflandırılması 

 

Lineerlik kavramı, (Koca, 2013) tarafından ‘’bir kısmi türevli denklemdeki bağımlı 

değişken ve kısmi türevlerinin derecelerinin bire eşit olması ile birlikte bağımlı değişken ve 

türevlerinin parantezine aldığında katsayılar sadece bağımsız değişkenlerin birer fonksiyonu 

şeklinde yazılabiliyor olması’’ olarak tanımlanmıştır. Kısmi diferensiyel denklemler 

lineerlik durumlarına göre incelendiğinde lineer, yarı lineer, hemen hemen lineer ve lineer 

olmayan olmak üzere sınıflandırılır. 

 

3.1.1.1 Lineer kısmi diferensiyel denklem 

 

Yukarıda tanımı verilen bir lineer birinci mertebeden kısmi diferensiyel denklem genel 

olarak 𝑢 bağımlı, 𝑥 ve 𝑦 bağımsız değişken olmak üzere, 

 

                               𝑎(𝑥, 𝑦)𝑢𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑦 + 𝑐(𝑥, 𝑦)𝑢 = 𝑑(𝑥, 𝑦)                                           (3.6)  

 

formuna sahiptir.  

 

Örnek 3.1.5 Transport denklemi, 

 

                                                                 𝑢𝑥 + 𝑢𝑦 = 0                                                             (3.7) 

 

biçiminde yazılan birinci mertebeden lineer kısmi diferensiyel denklemdir.  

 

3.1.1.2 Yarı lineer kısmi diferensiyel denklem 

 

Yarı lineer kısmi diferensiyel denklem, kısmi türevli bir denklemdeki en yüksek mertebeden 

türevlerinin lineerliği sağlıyor olması durumudur. Yarı lineerlikte, kısmi türevli 

denklemdeki en yüksek mertebeden daha düşük mertebeye sahip türevler ve bağımlı 

değişkenin bulunuş şekli herhangi bir önem teşkil etmez. Bu açıdan bakıldığında, lineer her 

denklem yarı lineerdir denebilir fakat tersi her zaman doğru olmayabilir. Birinci mertebeden 

yarı lineer kısmi diferensiyel bir denklemin genel formu,
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                                      𝑎(𝑥, 𝑦, 𝑢)𝑢𝑥 + 𝑏(𝑥, 𝑦, 𝑢)𝑢𝑦 = 𝑐(𝑥, 𝑦, 𝑢)                                   (3.8) 

 

şeklindedir. 

 

Örnek 3.1.6 Yarı lineer kısmi türevli denkleme, 

 

                                                      𝑢𝑥𝑢𝑥𝑥 + 𝑥𝑢𝑢𝑦 = sin 𝑦                                                 (3.9) 

 

biçimindeki bir denklem örnek olarak gösterilebilir. 

 

3.1.1.3 Hemen hemen lineer kısmi diferensiyel denklem 

 

Bir kısmi diferensiyel denklem hem yarı lineer olup hem de denklemde ortaya çıkan en 

yüksek mertebeli türevlerin katsayıları yalnızca bağımsız değişkenlerin birer 

fonksiyonundan oluşuyor ise hemen hemen lineer kısmi diferensiyel denklem olarak 

adlandırılır. İkinci mertebeden hemen hemen lineer kısmi diferensiyel denklem en genel 

haliyle,  

 

                 𝑎(𝑥, 𝑦)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑥𝑦 + 𝑐(𝑥, 𝑦)𝑢𝑦𝑦 + 𝑑(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦) = 0                     (3.10) 

 

şeklinde ifade edilir. 

 

Örnek 3.1.7 Hemen hemen lineer kısmi diferensiyel denkleme, aşağıdaki gibi verilen 

denklem örnek olabilir. 

 

                                                   𝑥𝑢𝑥𝑥 + 𝑒𝑥+𝑦𝑢𝑦𝑦 + 𝑢𝑢𝑥 = 0                                         (3.11) 

 

3.1.1.4 Lineer olmayan kısmi diferensiyel denklem 

 

Lineer olma koşulunu sağlamayan kısmi türevli denklemler, lineer olmayan kısmi 

diferensiyel denklem olarak isimlendirilir. Bu tez dahilinde, lineer olmayan kısmi 

diferensiyel denklemler üzerinde durulacaktır.  



10 
 
3.2 Lineer Olmayan Oluşum Denklemleri 

 

Zamana bağlı olarak yazılabilen yani bağımsız değişkenlerinden biri zaman (𝑡) olan 

kısmi diferensiyel denklemler aynı zamanda lineer olmayan oluşum denklemleridir. Gerçek 

hayattaki problemlerin modellemeleri olan oluşum denklemlerinin çözümleri sadece 

matematik açısından değil birçok branş için önemli ve gereklidir. 

 

Örnek 3.2.1 En genel haliyle, 

 

                                                                  𝑢𝑡 − 𝜅𝑢𝑥𝑥 = 0                                                (3.12) 

 

olarak verilen ısı denklemi, 𝜅 termal iletkenliği temsil eden pozitif bir sabit iken t anında 

𝑢(𝑥, 𝑡), 𝑥 noktasındaki bir telin sıcaklığını temsil eden bir oluşum denklemidir. 

 

Örnek 3.2.2 Duffing denklemi, 

 

                                                              𝑢𝑡𝑡 + 𝑏𝑢 + 𝑐𝑢3 = 0                                           (3.13) 

 

şeklindedir. Bu denklem b ve c gerçek sabitler olmak üzere klasik bir parçacığın çift kuyu 

potansiyelindeki hareketini tanımlayan lineer olmayan bir oluşum denklemidir.  

 

Örnek 3.2.3 Sine-Gordon denklemi, 

 

                                                            𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 −
1

6
𝑢3 = 0                                    (3.14) 

 

iki süper iletken arasındaki Josephson bağlantılarında akıların yayılması, gerilmiş bir tele 

bağlı katı sarkacın hareketi, katı hal fiziği ve metallerdeki dislokasyonlar gibi birçok bilimsel 

alanda karşımıza çıkan lineer olmayan bir oluşum denklemidir. 

 

Fiziksel problemleri daha iyi anlamak için, bu tip denklemlerin çözümlerini bulmak 

açısından çeşitli algoritmalar geliştirilmiştir. Bu algoritmalar sayesinde lineer olmayan 

oluşum denklemlerinin farklı türde çözümleri bulunmuştur. Bu çözümlerden en bilinenleri 

tam çözüm ve yaklaşık çözümlerdir. Bu tezde tam çözümler üzerine odaklanılmıştır.  
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3.3 Tam Çözüm 

 

Lineer olmayan oluşum denklemlerinin tam çözümleri için çok sayıda metod vardır. 

Bu metodların çoğunda süreç, dalga dönüşümü yardımıyla verilen kısmi diferensiyel 

denklemin adi diferensiyel denkleme indirgenmesi ile başlayıp homojen denge sabitinin 

kullanılması sayesinde çözüm formunun oluşması ile devam eder. Bu metodlar ile ilgili daha 

detaylı bilgiye ulaşmak için tez sonunda verilen referanslara bakılabilir. 

 

3.3.1 Homojen Denge Prensibi 

 

Homojen denge prensibi, tam çözüm metodlarında yaygın olarak kullanıldığından bilinmesi 

elzemdir. Verilen kısmi diferensiyel denklem, adi diferensiyel denkleme indirgendikten 

sonra indirgenmiş denklemdeki en yüksek mertebeden türevli lineer terim ile en yüksek 

dereceli lineer olmayan terim arasındaki dengelenme sonucu oluşan sabite homojen denge 

sabiti denir. Homojen denge sabiti, aranan çözümün yapısını belirler. Bu sabit ne kadar 

büyük olursa çözüm o derece uzun ve karmaşık olur. 

 

Örnek 3.3.1.1  

                                               𝑢𝑡𝑡 − 𝑢𝑥𝑥 − (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0                                        (3.15) 

                                                                                                                                           

Boussinesq denklemi 𝜉 = (𝑥 − 𝑣𝑡) dönüşümü kullanılarak indirgenip, iki kez integral 

alınırsa 

 

                                                    (𝑣2 − 1)𝑢 − 𝑢2 + 𝑢′′ = 0                                                        (3.16) 

 

elde edilir ve bu denklemdeki en yüksek dereceli lineer olmayan 𝑢2 terimi ile en yüksek 

mertebeli lineer 𝑢′′ teriminin dengelenmesi,  

 

                                                                  𝑀 + 2 = 2𝑀                                                    (3.17) 

 

şeklindedir. Burada homojen denge sabiti 𝑀 = 2 olarak bulunur. 
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3.4 Dalga Tipleri 

 

Dalga, en basit haliyle bir şeklin zamana bağlı değişiminin uzayda yayılması olarak 

özetlenebilir. Dalga denilince akla ilk olarak ses ya da su dalgası gelmesine rağmen sismik, 

yay, radyo, mikrodalga, kızıl ötesi, görünür ışık, x-ışınları, gama ışınları ve mor ötesi ışınları 

gibi çeşitleri de vardır. Sismik, su, ses ve yay dalgaları, taşıdıkları enerjiye göre mekanik 

dalga olarak adlandırılırlar. Radyo, mikrodalga, kızıl ötesi, görünür ışık, x-ışınları, gama 

ışınları ve mor ötesi ışınları ise yine taşıdıkları enerjiye göre elektromanyetik dalgalar olarak 

sınıflandırılırlar. Dalgaların çeşitli olmasından dolayı çalışma alanı oldukça geniştir.  

 

Bir fonksiyona konum ve zamana bağlı olarak 𝜉 = 𝑥 − 𝑣𝑡 olacak şekilde dalga 

dönüşümü yapılırsa 𝑓(𝜉) = 𝑓(𝑥 − 𝑣𝑡) fonksiyonu elde edilir. Bu fonksiyonda 𝑥 konum, 𝑡 

zaman, 𝑣 ise bir dalganın hızını temsil eder. 𝑣 > 0 ise dalga negatif yönde, 𝑣 < 0 ise dalga 

pozitif yönde ilerler. 

 

3.4.1 Soliter Dalga ve Solitonlar 

 

Tek dalga anlamına gelen soliter dalgalar, dalga sınıflandırılması yapılırken genel bir 

ifade olması sebebiyle çok kullanılmazlar. Soliton dalgalar ise başka bir dalga ile etkileşime 

girdiğinde yapısını koruyan dalgalardır. Hali hazırda bulunan dalga çeşitlerinden en çok 

karşılaşılanı soliton dalgalardır ve genel olarak üstel fonksiyonlar cinsinden ifade edilirler. 

 

3.4.2 Kompleksiton Dalgalar  

 

Üstel ve trigonometrik fonksiyonları birlikte içeren dalga tipine kompleksiton dalga 

denir. Kompleksiton dalgalar içerdikleri iki farklı fonksiyon türü sebebiyle diğer dalgalardan 

şekil ve hızları açısından kolayca ayrışırlar. Kompleksiton dalgalar karmaşık yapıları gereği 

elde edilmesi zor bir dalga tipidir. Her oluşum denklemi kompleksiton dalga çözümüne sahip 

olmak zorunda değildir. 
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3.4.3 Periyodik Dalgalar   

 

Periyodik fonksiyonları ihtiva eden dalgalara periyodik dalgalar denir. Periyodik 

dalgalar, isminden de anlaşılacağı gibi içerdikleri fonksiyonlar gereği periyodik bir forma 

sahiptirler ve görünüşlerinden kolayca ayırt edilebilirler. Sahip oldukları karakter gereği 

birbirini tekrar eden dalgalardan oluşur.  
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4. MATERYAL VE YÖNTEM 

 

 

Dalgaların incelenmesi, eski çağlarda yaşayan filozofların müzik aletlerindeki 

seslerin frekanslarını bulma çalışmalarının yapılması ile başlayıp su kemerlerindeki 

hareketlilik araştırmalarının akışkanlar teorisinin ortaya çıkmasına zemin hazırlaması ile 

günümüze kadar önemini koruyan bir konu olmuştur. Buna benzer birçok alanda kendisine 

yer bulan dalgaların literatürde sahip olduğu önemden ötürü, bu dalgaları modelleyen lineer 

olmayan oluşum denklemlerinin analitik çözüm çalışmaları daima gelişmekte ve 

yenilenmektedir. Analitik çözümlerle ilişkili olduğu bilinen tam çözümlerin üzerine yapılan 

çalışmalar birçok yeni yöntemin geliştirilmesine olanak sağlamıştır. Genişletilmiş 

dönüştürülmüş rasyonel fonksiyon yöntemi (Ünsal, 2018 b), sine-cosine yöntemi (Taşcan ve 

Bekir, 2009), ters saçılma yöntemi (Mikhailov, 1981), homojen denge yöntemi (Wang, 

1996), ilk integral yöntemi (Bekir ve Ünsal, 2013), (G′/G) açılım yöntemi (Ünsal vd., 2017), 

(G′/G, 1/G) açılım yöntemi (Li vd., 2010; Demiray vd., 2014), Hirota yöntemi (Zhou ve Ma, 

2017), çiftli alt denklem yöntemi (Liu vd., 2014), modifiye edilmiş çiftli alt denklem yöntemi 

(Yang ve Chen, 2013; Hossen vd., 2017; Ünsal ve Sakartepe, 2020) ve daha fazlası tam 

çözüm bulma yaklaşımlarına örnek olarak verilebilir.  

 

Yüksek lisans tezinin bu bölümünde bazı dalga denklemlerine (G′/G, 1/G) açılım 

yöntemi ve modifiye edilmiş çiftli alt denklem yöntemi uygulanarak daha önce yapılan 

çalışmalardan farklı olan yeni analitik çözümler bulunacak ve dalga hareketleri 

incelenecektir. Bulunan bu çözümlerin belli zaman kesitlerinde dalga modellemeleri üç 

boyutlu grafiklerle verilerek dalgaların davranış ve karakteristik yapıları detaylandırılmıştır. 

(G′/G, 1/G) açılım yöntemi uygulanarak elde edilen dalga çözümleri yöntemin gerektirdiği 

şekilde hiperbolik, trigonometrik ve rasyonel olarak üç farklı formda verilecektir. Modifiye 

edilmiş çiftli alt denklem yöntemi uygulanarak ulaşılacak olan kompleksiton çözümler ise 

kompleksiton dalgaların yapılarından kaynaklanan ayırt edici özellik olan üstel ve 

trigonometrik fonksiyonların birlikte çözüme dahil olması ile istenilen formda verilecektir. 

Bu çalışmalar neticesinde yüksek mertebeden lineer olmayan oluşum denklemlerinin 

analitik çözümlerini bulmada bahsi geçen tekniklerin kullanışlılığı ve etkililiğini kanıtlamak 

açısından literatüre katkıda bulunulacağı düşünülmektedir. 
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4.1 İki Değişkenli (𝐆′/𝐆, 𝟏/𝐆) Açılım Yöntemi 

 

(G′/G, 1/G) açılım yöntemi, (G′/G) açılım yönteminde tek değişken yerine iki 

değişken kullanılarak Li vd. (2010) tarafından geliştirilmesi ile literatüre kazandırılmış bir 

tekniktir. Bu yönteme göre, verilen kısmi diferensiyel denklem dalga dönüşümü yardımıyla 

adi diferensiyel denkleme indirgenir ve lineer olan yardımcı bir alt denklem yardımıyla 

(G′/G) ve (1/G)  terimlerinin polinomu şeklinde yazılır. Böylece elde edilen polinom, tam 

çözümleri üç farklı tipte bulmayı sağlar. (G′/G, 1/G) açılım yönteminin uygulama aşamaları 

daha detaylı bir şekilde Li vd. (2010) tarafından aşağıdaki gibi takdim edilmiştir.   

 

Öncelikle, (G′/G, 1/G) yönteminde yararlanılacak olan yardımcı alt denklem, 

 

                                 𝐺′′(𝜉) + 𝜆𝐺(𝜉) = 𝜇                                                                     (4.1) 

 

biçiminde tanımlanan 𝜆 ve 𝜇’nün sabit sayıları temsil ettiği ikinci mertebeden bir lineer adi 

diferensiyel denklemdir. Matematiksel hesaplamalarda kolaylık sağlaması açısından, 

 

                                                 𝜙 =
𝐺′

𝐺
,    𝜓 =

1

𝐺
                                                               (4.2) 

 

şeklinde alınırsa 𝜙 ve 𝜓 değişkenlerinin türevleri aşağıdaki gibi yazılabilir. 

 

                                           𝜙′ = −𝜙2 + 𝜇𝜓 − 𝜆,   𝜓′ = −𝜙𝜓                                       (4.3) 

 

(4.1) de verilen lineer adi diferensiyel denklemin genel çözümleri 𝜆 sabitinin işaretine bağlı 

olarak üç farklı durumda incelenir. 

 

 

Durum I: 𝜆 < 0 iken 𝐴1 ve 𝐴2 keyfi sabitler olmak üzere (2.1) deki adi diferensiyel 

denklemin genel çözümü, hiperbolik tipte 

 

𝐺(𝜉) = 𝐴1 sinh(√−𝜆 𝜉) + 𝐴2 cosh(√−𝜆 𝜉) +
𝜇

𝜆
 

                                                                                                                                          (4.4) 
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𝜓2 =
−𝜆

𝜆2𝜎 + 𝜇2
(𝜙2 − 2𝜇𝜓 + 𝜆) 

 

olarak bulunur. Burada 𝜎, 𝐴1 ve 𝐴2 sabitlerinin kareleri farkını temsil etmektedir. 𝜎 = 𝐴1
2 −

𝐴2
2 şeklinde ifade edilebilir. 

 

Durum II: 𝜆 > 0 iken (4.1) deki diferensiyel denklemin genel çözümü, trigonometrik tipte 

 

𝐺(𝜉) = 𝐴1 sin(√𝜆 𝜉) + 𝐴2 cos(√𝜆 𝜉) +
𝜇

𝜆
 

(4.5) 

𝜓2 =
𝜆

𝜆2𝜎 − 𝜇2
(𝜙2 − 2𝜇𝜓 + 𝜆) 

 

olarak bulunur. Buradaki 𝜎 ise sabitlerin kareleri toplamını temsil eder. 𝜎 = 𝐴1
2 + 𝐴2

2 

şeklinde yazılabilir. 

 

Durum III: 𝜆 = 0 iken (4.1) deki yardımcı alt denklemin genel çözümü, rasyonel tipte 

 

𝐺(𝜉) =
𝜇

2
𝜉2 + 𝐴1𝜉 + 𝐴2 

(4.6) 

𝜓2 =
1

𝐴1
2 − 2𝜇𝐴2

(𝜙2 − 2𝜇𝜓) 

 

olarak elde edilir.  

 

Bu yönteme göre 𝜐 bağımlı, x ve t bağımsız değişken olmak üzere, 

 

               Ρ(𝜐, 𝜐𝑡, 𝜐𝑥, 𝜐𝑡𝑡, 𝜐𝑥𝑡, 𝜐𝑥𝑥, … ) = 0                                         (4.7) 

 

şeklinde yazılan bir lineer olmayan oluşum denkleminin tam çözümlerine ulaşmak için 

belirli adımlar izlenir. Bu adımlar şu şekilde özetlenebilir: 



17 
 
1. Adım: 𝜐(𝑥, 𝑡) = 𝜐(𝜉) ve 𝜉 = 𝑥 − 𝑐𝑡 dalga dönüşümü kullanılarak (4.7) kısmi diferensiyel 

denklemi, 

 

Ρ(𝜐, −𝑐𝜐′, 𝜐′, 𝑐2𝜐′′, −𝑐𝜐′′, 𝜐′′, … ) = 0                                   (4.8) 

 

biçiminde ifade edilebilen bir adi diferensiyel denkleme dönüştürülür. Burada 𝜐(𝑛), 𝜐(𝜉)’in 

𝜉’ye göre n. mertebeden türevini temsil eder. 

 

2. Adım: 𝐺(𝜉) = 𝐺 eşitliği (4.1) lineer adi diferensiyel denklemini sağlamak üzere, 

 

𝜐(𝜉) = ∑ 𝑎𝑗𝜙𝑗 + ∑ 𝑏𝑗𝜙𝑗−1𝜓𝑀
𝑗=1

𝑀
𝑗=0                                       (4.9) 

 

biçiminde 𝜙 ve 𝜓’in bir polinomu şeklinde yazılabilen bir çözüm aranır. Bu çözüm 

formunda 𝑎𝑗, 𝑏𝑗(𝑗 = 1, … , 𝑀), 𝜆, 𝜇 ve 𝑐, çözüm sürecinin sonunda belirlenecek sabitler olup 

𝑀 tamsayısı ise (4.8) adi diferensiyel denkleminde ortaya çıkan en yüksek mertebeli lineer 

terim ile en yüksek dereceli lineer olmayan terim arasındaki dengeye tekabül eder. 

 

3. Adım: (4.2), (4.3) ve (4.4) ile birlikte araştırılan duruma göre (4.5), (4.6) ya da (4.7)’i göz 

önünde bulundurarak (4.9)’un (4.8) denkleminde yerine yazılması, 𝜓’in derecesinin birden 

büyük olmadığı 𝜙 ve 𝜓’ye bağlı bir polinom elde edilmesini sağlar. Bu polinomun 

katsayıları cebirsel bir denklem sistemi verir. 

 

4. Adım: Sürecin son aşaması, 3. adımda oluşturulan cebirsel denklem sisteminin yardımcı 

matematiksel programlar kullanarak çözülmesi ile elde edilen 𝐴1, 𝐴2, 𝑎𝑗, 𝑏𝑗, 𝜆, 𝑐 ve 𝜇 

sabitlerinin (4.9) da yerine yazılıp üç farklı fonksiyon tipinde tam çözümlerin bulunması ile 

sonuçlanır. 
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4.1.1 (2+1) Boyutlu BKP Denkleminin Yeni Formunun (𝐆′/𝐆, 𝟏/𝐆) Açılım Yöntemi 

Sayesinde Farklı Tipte Tam Çözümlerine Ulaşılması 

 

(2+1) boyutlu BKP denkleminin yeni formu, genelleştirilmiş BKP denkleminde z=y 

kabul edilerek (3+1) boyuttan (2+1) boyuta indirgemenin bir sonucu olarak oluşur (Kaur ve 

Wazwaz, 2019). Bu denklem, 

 

                       𝑢𝑥𝑥𝑥𝑦 + 𝛼(𝑢𝑥𝑢𝑦)𝑥 + (2𝑢𝑥 + 𝑢𝑦)𝑡 − 2𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0                             (4.10) 

 

biçiminde verilen sığ su dalgalarını modelleyen lineer olmayan bir oluşum denklemidir. 

(4.10) denkleminin dalga çözümlerini bulmak ve bahsi geçen yöntemin uygunluğunu 

göstermek amacı ile 𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉),   𝜉 = 𝑘𝑥 + 𝑠𝑦 − 𝑣𝑡 şeklinde bir dalga dönüşümü 

kullanılırsa 

 

                      𝑘3𝑠𝑢(4) + 2𝛼𝑘2𝑠𝑢′𝑢″ − (2𝑘2 + 𝑠2 + 2𝑣𝑘 + 𝑣𝑠)𝑢″ = 0                          (4.11) 

 

biçiminde bir adi diferensiyel denkleme dönüşür. (4.11) adi diferensiyel denkleminin 𝜉’ye 

göre bir kez integrali alınarak 𝑟 integral sabiti olmak üzere 

 

                     𝑘3𝑠𝑢′′′ + 𝛼𝑘2𝑠(𝑢′)2 − (2𝑘2 + 𝑠2 + 2𝑣𝑘 + 𝑣𝑠)𝑢′ + 𝑟 = 0                         (4.12) 

 

denklemi elde edilir. Daha sonra (4.12) denkleminde bulunan 𝑢′′′ en yüksek mertebeli lineer 

terimi ile (𝑢′)2 en yüksek dereceli lineer olmayan terimi 

 

𝑀 + 3 = 2(𝑀 + 1)  

 

olacak şekilde dengelenmesi ile 

 

                                                                𝑀 = 1                                                             (4.13) 

 

pozitif tam sayısı bulunur. Böylece, (4.9) da 𝑀 tam sayısı yerine yazılırsa  
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                                         𝑢(𝜉) = 𝑎0 + 𝑎1𝜑 + 𝑏1𝜓                                                          (4.14) 

 

olacak şekilde belirli bir çözüm formuna ulaşılır. (4.14) aranan çözüm formunda bulunan 𝑎0, 

𝑎1 ve 𝑏1, (G′/G, 1/G) açılım yönteminde belirtildiği gibi daha sonra belirlenecek olan sabit 

sayılardır.  

 

Durum I: Hiperbolik fonksiyon çözümü (𝜆 < 0) 

 

(4.14) çözüm formunu, (4.3) ve (4.4) deki denklemlerden yararlanarak denklem 

(4.12) de yerine yerleştirilmesi 𝜑 ve 𝜓’ye bağlı bir polinomu verir. Bu polinomdaki 𝜑𝑖𝜓𝑗  

(𝑖 = 0,1,2, … , 𝑗 = 0,1,2, …) katsayıları sıfırlanırsa aşağıdaki gibi bir denklem sistemi oluşur. 

 

𝝋𝟒   ∶  𝑎1
2𝛼𝑘2𝜆2𝜎𝑠 + 𝑎1

2𝛼𝑘2𝜇2𝑠 − 6𝑎1𝑘3𝜆2𝜎𝑠 − 6𝑎1𝑘3𝜇2𝑠 − 𝛼𝑏1
2𝑘2𝜆𝑠  

 

𝝍𝝋𝟑: 2𝑎1𝛼𝑏1𝑘2𝜆2𝜎𝑠 + 2𝑎1𝛼𝑏1𝑘2𝜇2𝑠 − 6𝑏1𝑘3𝜆2𝜎𝑠 − 6𝑏1𝑘3𝜇2𝑠  

 

𝝋𝟑   ∶  2𝑎1𝛼𝑏1𝑘2𝜆𝜇𝑠 − 6𝑏1𝑘3𝜆𝜇𝑠  

 

𝝍𝝋𝟐 : − 2𝑎1
2𝛼𝑘2𝜆2𝜇𝜎𝑠 − 2𝑎1

2𝛼𝑘2𝜇3𝑠 + 12𝑎1𝑘3𝜆2𝜇𝜎𝑠 + 12𝑎1𝑘3𝜇3𝑠 +

2𝛼𝑏1
2𝑘2𝜆𝜇𝑠  

 

𝝋𝟐 ∶  2𝑎1
2𝛼𝑘2𝜆3𝜎𝑠 − 8𝑎1𝑘3𝜆3𝜎𝑠 − 5𝑎1𝑘3𝑠𝜆𝜇2 − 𝛼𝑏1

2𝑘2𝜆2𝑠 + 𝑎1𝜇2𝑠2 + 

𝑎1
2𝛼𝑘2𝜆𝜇2𝑠 + 2𝑣𝑎1𝑘𝜆2𝜎 + 𝑣𝑎1𝜆2𝜎𝑠 + 2𝑎1𝑘2𝜆2𝜎 + 𝑎1𝜆2𝜎𝑠2 + 2𝑣𝑎1𝑘𝜇2 + 𝑣𝑎1𝜇2𝑠 

+2𝑎1𝑘2𝜇2 

 

𝝍𝝋 ∶ 2𝑎1𝛼𝑏1𝑘2𝜆3𝜎𝑠 − 2𝑎1𝛼𝑏1𝑘2𝜆𝜇2𝑠 − 5𝑏1𝑘3𝜆3𝜎𝑠 + 7𝑏1𝑘3𝜆𝜇2𝑠 + 𝑏1𝜇2𝑠2 

+2𝑣𝑏1𝑘𝜆2𝜎 + 𝑣𝑏1𝜆2𝜎𝑠 + 2𝑏1𝑘2𝜆2𝜎 + 𝑏1𝜆2𝜎𝑠2 + 2𝑣𝑏1𝑘𝜇2 + 𝑣𝑏1𝜇2𝑠 + 2𝑏1𝑘2𝜇2 

 

 𝝋 ∶ 2𝑎1𝛼𝑏1𝑘2𝜆2𝜇𝑠 − 6𝑏1𝑘3𝜆2𝜇𝑠                                                                        (4.15) 

 

      𝝍𝟎𝝋𝟎 ∶ 𝑎1
2𝛼𝑘2𝜆4𝑠𝜎 − 2𝑎1𝑘3𝜆4𝜎𝑠 + 𝑎1𝑘3𝜆2𝜇2𝑠 + 2𝑣𝑎1𝑘𝜆3𝜎 + 𝑣𝑎1𝜆3𝜎𝑠 + 2𝑎1𝑘2𝜆3𝜎 

+𝑎1𝜆3𝜎𝑠2 + 2𝑣𝑎1𝑘𝜆𝜇2 + 𝑣𝑎1𝜆𝜇2𝑠 + 2𝑎1𝑘2𝜆𝜇2 + 𝑎1𝜆𝜇2𝑠2 + 𝜆2𝜎𝑟 + 𝜇2𝑟 
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   𝝍 ∶ −2𝑎1
2𝛼𝑘2𝜆3𝜇𝜎𝑠 + 5𝑎1𝑘3𝜆3𝜇𝜎𝑠 − 𝑎1𝑘3𝜆𝜇3𝑠 − 2𝑣𝑎1𝑘𝜆2𝜇𝜎 − 𝑣𝑎1𝜆2𝜇𝜎𝑠 

−2𝑎1𝑘2𝜆2𝜇𝜎 − 𝑎1𝜆2𝜇𝜎𝑠2 − 2𝑣𝑎1𝑘𝜇3 − 𝑣𝑎1𝜇3𝑠 − 2𝑎1𝑘2𝜇3 − 𝑎1𝜇3𝑠2 

 

Oluşan (4.15) cebirsel sistemi çözülürse 

 

𝑟 = 0 

 

𝑎1 =
3𝑘

𝛼
 

                                                                                                                                        (4.16) 

𝑏1 =
√−

9𝜆2𝜎 + 9𝜇2

𝜆
𝑘

𝛼
 

 

𝑣 = −
𝑘3𝜆𝑠 + 2𝑘2 + 𝑠2

2𝑘 + 𝑠
 

 

eşitlikleri elde edilir ve bu eşitlikler kullanılarak (4.2) ile (4.14) sayesinde istenilen 

hiperbolik tipte  

 

𝑢(𝜉) = 𝑎0 +
3𝑘√−𝜆(𝐴1 𝑐𝑜𝑠ℎ(√−𝜆𝜉)+𝐴2 𝑠𝑖𝑛ℎ(√−𝜆𝜉))

𝛼(𝐴1 𝑠𝑖𝑛ℎ(√−𝜆𝜉)+𝐴2 𝑐𝑜𝑠ℎ(√−𝜆𝜉)+𝜇/𝜆)
+

3√−
𝜆2(𝐴1

2−𝐴2
2)+𝜇2

𝜆
𝑘

𝛼(𝐴1 𝑠𝑖𝑛ℎ(√−𝜆𝜉)+𝐴2 𝑐𝑜𝑠ℎ(√−𝜆𝜉)+𝜇/𝜆)
    (4.17) 

 

şeklindeki tam dalga çözümüne ulaşılır. Bu çözümde, 
9𝜆2𝜎+9𝜇2

𝜆
< 0 ve 𝜎 = 𝐴1

2 − 𝐴2
2’dir. 

 

Daha özel bir çözüm için (4.17) de 𝑎0 = 0, 𝐴2 = 0,  𝐴1 > 0 ve 𝜇 = 0 eşitlikleri 

kabul edilirse  

 

                                   𝑢(𝜉) =
3𝑘

𝛼
√−𝜆(𝑐𝑜𝑡ℎ( √−𝜆𝜉) + 𝑐𝑠𝑐ℎ( √−𝜆𝜉))                                 (4.18) 

 

şeklinde bir çözüme ulaşılır. 
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Durum II: Trigonometrik fonksiyon çözümleri (𝜆 > 0) 

 

𝜆’nın işaretinin pozitif olduğu durum için iki ayrı tam çözüm bulunmuştur.  

 

Trigonometrik fonksiyon çözümü, (4.14) çözüm formunu, bu sefer (4.3) ve (4.5) deki 

eşitlikler ile (4.12) deki denklemde yerine yazılması ile araştırılır ve yine 𝜑 ve 𝜓’ye bağlı 

bir polinomun katsayıları sıfırlanarak cebirsel denklem sistemi elde edilir. Durum I ‘e benzer 

olarak bu sistemin çözümü, 

i) 

𝑟 = 0 

 

𝑎1 =
3𝑘

𝛼
 

                                                                                                                                        (4.19) 

𝑏1 =
√−

−9𝜆2𝜎 + 9𝜇2

𝜆
𝑘

𝛼
 

 

𝑣 = −
𝑘3𝜆𝑠 + 2𝑘2 + 𝑠2

2𝑘 + 𝑠
 

 

eşitliklerini verir. Bu eşitliklerle birlikte (4.2) göz önünde bulundurularak (4.14) çözüm 

formu 

 

          𝑢(𝜉) = 𝑎0 +
3𝑘√𝜆(𝐴1 𝑐𝑜𝑠(√𝜆𝜉)−𝐴2 𝑠𝑖𝑛(√𝜆𝜉))

𝛼(𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆)
 +

3√−
−𝜆2(𝐴1

2+𝐴2
2)+𝜇2

𝜆
𝑘

𝛼(𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆)
             (4.20) 

 

haline gelir ve 
−9𝜆2𝜎+9𝜇2

𝜆
< 0, 𝜎 = 𝐴1

2 + 𝐴2
2 şeklinde belirtilir. 

 

Özellikle, (4.20) de 𝑎0 = 0,  𝐴1 = 0,  𝐴2 > 0 ve 𝜇 = 0 olarak seçilirse 

 

                                        𝑢(𝜉) = −
3𝑘

𝛼
√𝜆(𝑡𝑎𝑛( √𝜆𝜉) − 𝑠𝑒𝑐( √𝜆𝜉))                                       (4.21) 
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ve ayrıca 𝑎0 = 0, 𝐴2 = 0,  𝐴1 > 0,  𝜇 = 0 olarak seçilirse 

 

                                        𝑢(𝜉) =
3𝑘

𝛼
√𝜆(𝑐𝑜𝑡( 𝜉√𝜆) + 𝑐𝑠𝑐( 𝜉√𝜆))                                             (4.22) 

 

şeklinde periyodik çözümler elde edilir. 

 

Eğer cebirsel denklem sisteminin aşağıdaki çözümü alınırsa, 

ii)  

 

𝑟 = 0 

 

𝑎1 =
3√3√1

𝜆

𝛼
 

                                                                                                                                        (4.23) 

𝑏1 =
3√3𝜆2𝜎 − 3𝜇2

𝜆𝛼
 

 

𝑘 = 3√3√
1

𝜆
 

 

𝑠 = −2√3√
1

𝜆
 

 

eşitliklerini verir böylece bu eşitlikler (4.2) doğrultusunda (4.14) de yerine konulur ve (4.12) 

adi diferansiyel denkleminin çözümünü, 

 

       𝑢(𝜉) = 𝑎0 +
3√3(𝐴1 𝑐𝑜𝑠(√𝜆𝜉)−𝐴2 𝑠𝑖𝑛(√𝜆𝜉))

𝛼(𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆)
 +

3√3(𝜆2(𝐴1
2+𝐴2

2)−𝜇2)

𝜆𝛼(𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆)
               (4.24) 

 

şeklinde verir. Burada 3𝜆2𝜎 − 3𝜇2 ifadesi sıfırdan büyük ve 𝜎 ifadesi 𝐴1
2 + 𝐴2

2 ifadesine 

eşittir. 
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Durum III: Rasyonel fonksiyon çözümü (𝜆 = 0) 

 

(4.14) çözüm formunu (4.3) ve (4.6) sayesinde denklem (4.12)’e yerleştirip 𝜑 ve 𝜓 

gibi iki değişkene sahip polinomun katsayılarını sıfıra eşitleyerek aşağıdaki değerler 

bulunur. 

 

𝑟 = 0 

 

𝑎1 =
3𝑘

𝛼
 

                                                                                                                            (4.25) 

𝑏1 =
3√𝐴1

2 − 2𝜇𝐴2𝑘

𝛼
 

 

𝑣 = −
2𝑘2 + 𝑠2

2𝑘 + 𝑠
 

 

Bu değerlere ek olarak (4.2)’i, (4.14) de kullanmak aşağıda verildiği gibi bir rasyonel 

fonksiyon çözümüne ulaşılmasını sağlar. 

 

                                    𝑢(𝜉) = 𝑎0 +
3𝑘(𝜇𝜉+𝐴1)

𝛼(
𝜇𝜉2

2
+𝐴1𝜉+𝐴2)

+
3𝑘√𝐴1

2−2𝜇𝐴2

𝛼(
𝜇𝜉2

2
+𝐴1𝜉+𝐴2)

                               (4.26) 

 

Burada bulunan çözümlerin belirli zaman kesitlerinde oluşturduğu dalga modellemeleri 

aşağıdaki grafikler ile verilmiştir. Grafikler 𝜆’nın işaretine bağlı olarak bulunan iki farklı 

tipte tam çözümler için verilmiştir. Şekil 4.1 ve Şekil 4.2, üstel dalga çözümü olan (4.17) 

denklemini, Şekil 4.3 periyodik dalga çözümü olan (4.20) denklemini ve Şekil 4.4 başka 

bir periyodik dalga çözümü olan (4.24) denklemini temsil etmektedir. 
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Şekil 4.1 Hiperbolik fonksiyon çözümü               Şekil 4.2 Hiperbolik fonksiyon çözümü 

    

 𝑡 = 1, 𝜆 = −3, 𝑘 = −1, 𝑠 = 0.5,
 𝜇 = 1.2, 𝑎0 = −1, 𝛼 = 0.3,

 𝐴1 = 1.5,  𝐴2 = 0.1.
                  

𝑡 = −2, 𝜆 = −0.1, 𝑘 = −1, 𝑠 = 0.6,
 𝜇 = −0.2, 𝑎0 = 0.6, 𝛼 = −0.5,

 𝐴1 = 1.4, 𝐴2 = 1.1.
 

 

 

 

    
Şekil 4.3 Trigonometrik fonksiyon çözümü           Şekil 4.4 Trigonometrik fonksiyon çözümü 

      

𝑡 = 0.3, 𝜆 = 1, 𝑘 = 0.1, 𝑠 = 0.4,
 𝜇 = 0.4,   𝑎0 = 0.8, 𝛼 = 0.2,

 𝐴1 = 0.9,  𝐴2 = 0.8.
                                

 
 𝑡 = 3, 𝜆 = 3, 𝑣 = −1,

𝜇 = 1, 𝑎0 = 3, 𝛼 = 0.8,
 𝐴1 = 1, 𝐴2 = 0.
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4.1.2 (3+1) Boyutlu BKP-Boussinesq Denkleminin Yeni Formunun (𝐆′/𝐆, 𝟏/𝐆) 

Açılım Yöntemi Sayesinde Farklı Tipte Tam Çözümlerine Ulaşılması 

 

(3+1) boyutlu BKP-Boussinesq denkleminin yeni formu, Kaur ve Wazwaz (2019) 

tarafından genelleştirilmiş B-tipi KP denklemine 𝑢𝑡𝑡 teriminin eklenmesi ile 𝑢(𝑥, 𝑦, 𝑧, 𝑡) =

𝑢 olacak şekilde, 

 

                       𝑢𝑡𝑦 − 𝑢𝑥𝑥𝑥𝑦 − 3(𝑢𝑥𝑢𝑦)𝑥 + 𝑢𝑡𝑡 + 3𝑢𝑥𝑧 = 0                               (4.27) 

 

biçiminde türetilmiştir. (4.27) denkleminin tam çözümünü bulmak ve aşağıdaki gibi lineer 

olmayan adi bir diferensiyel denkleme indirgemek için (4.27) denklemine öncelikle, 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉),   𝜉 = 𝑘𝑥 + 𝑠𝑦 + 𝑑𝑧 − 𝑣𝑡 biçiminde bir dalga dönüşümü uygulanır. 

 

                           𝑘3𝑠𝑢(4) + 6𝑘2𝑠𝑢′𝑢″ − (𝑣2 − 𝑠𝑣 + 3𝑘𝑑)𝑢″ = 0                                  (4.28) 

 

Daha sonra, (4.28) adi diferensiyel denkleminin bir kez integrali alınarak 𝑟 integral sabiti 

olmak üzere, 

 

                          𝑘3𝑠𝑢′′′ + 3𝑘2𝑠(𝑢′)2 − (𝑣2 − 𝑠𝑣 + 3𝑘𝑑)𝑢′ + 𝑟 = 0                             (4.29) 

 

şeklinde bir adi diferensiyel denklem elde edilir. (4.29) denklemindeki 𝑢′′′ terimi ve (𝑢′)2 

teriminin dengelenmesi,  

 

                                                             𝑀 = 1                                                                        (4.30) 

 

tam sayısını verir. (4.30)’u (4.9) da yerine yerleştirirsek 𝑎0, 𝑎1 ve 𝑏1 sabit sayıları temsil 

etmek üzere, 

 

                                                  𝑢(𝜉) = 𝑎0 + 𝑎1𝜑 + 𝑏1𝜓                                              (4.31) 

 

biçiminde bir çözüm formuna ulaşılır. 
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Durum I: 𝜆 < 0 kabul edildiğinde hiperbolik fonksiyon çözümüne ulaşılır. Bunun için ilk 

olarak ulaştığımız çözüm formunu, (4.29) denklemine (4.3) ve (4.4) eşitlikleri yardımı ile 

yerleştirilir. Bunun sonucunda elde edilen 𝜑 ve 𝜓’e bağlı oluşan polinomun katsayıları sıfıra 

eşitlenerek elde edilen denklem sistemi çözülürse aşağıdaki eşitlikler elde edilir. 

 

𝑟 = 0 

 

𝑎1 = 𝑘 

(4.32) 

𝑏1 = √−
𝜆2𝜎 + 𝜇2

𝜆
𝑘 

 

𝑣 =
1

2
𝑠 +

1

2
√−4𝑘3𝜆𝑠 − 12𝑑𝑘 + 𝑠2 

 

Bu değerleri (4.31) deki çözüm formunda (4.2)’i göz önünde bulundurarak yerleştirmek 

(4.29) denkleminin tam çözümünü  

 

     𝑢(𝜉) = 𝑎0 +
𝑘√−𝜆(𝐴1 𝑐𝑜𝑠ℎ(√−𝜆𝜉)+𝐴2 𝑠𝑖𝑛ℎ(√−𝜆𝜉))

𝐴1 𝑠𝑖𝑛ℎ(√−𝜆𝜉)+𝐴2 𝑐𝑜𝑠ℎ(√−𝜆𝜉)+𝜇/𝜆
 +

√−
𝜆2(𝐴1

2−𝐴2
2)+𝜇2

𝜆
𝑘

𝐴1 𝑠𝑖𝑛ℎ(√−𝜆𝜉)+𝐴2 𝑐𝑜𝑠ℎ(√−𝜆𝜉)+𝜇/𝜆
        (4.33) 

 

şeklinde verir. Özellikle, (4.33) çözümünde 𝑎0 = 0, 𝐴2 = 0, 𝐴1 > 0 ve 𝜇 = 0 kabul edilirse 

 

                                    𝑢(𝜉) = 𝑘√−𝜆(𝑐𝑜𝑡ℎ( √−𝜆𝜉) + 𝑐𝑠𝑐ℎ( √−𝜆𝜉))                          (4.34) 

 

çözümü elde edilir. 

 

Durum II: 𝜆 > 0 kabul edildiğinde iki farklı trigonometrik fonksiyon çözümlerine 

ulaşılmıştır. 

 

i) Birinci trigonometrik çözüm için (4.3) ve (4.5) yardımı ile (4.31) deki çözüm formunu 

(4.29) denkleminde kullanarak elde edilen polinomun katsayılarını sıfıra eşitlemek 
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𝑟 = 0 

 

𝑎1 = 𝑘 

                                                                                                                                        (4.35) 

𝑏1 = √−
−𝜆2𝜎 + 𝜇2

𝜆
𝑘 

 

𝑣 =
1

2
𝑠 +

1

2
√−4𝑘3𝜆𝑠 − 12𝑑𝑘 + 𝑠2 

 

değerlerini elde etmeyi sağlar. Bu değerler (4.29)’un tam çözümünü  

 

           𝑢(𝜉) = 𝑎0 +
𝑘√𝜆(𝐴1 𝑐𝑜𝑠(√𝜆𝜉)−𝐴2 𝑠𝑖𝑛(√𝜆𝜉))

𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆
+

√−
−𝜆2(𝐴1

2+𝐴2
2)+𝜇2

𝜆
𝑘

𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆
                     (4.36) 

 

şeklinde verir. 

 

Ayrıca, 𝑎0 = 0, 𝐴1 = 0, 𝐴2 > 0 ve 𝜇 = 0 alındığında aşağıdaki gibi periyodik bir 

çözüm elde edilir. 

 

                                         𝑢(𝜉) = −𝑘√𝜆(𝑡𝑎𝑛( 𝜉√𝜆) − 𝑠𝑒𝑐( 𝜉√𝜆))                                   (4.37) 

 

Yukarıdaki çözüme ek olarak, 𝑎0 = 0, 𝐴2 = 0, 𝐴1 > 0 ve 𝜇 = 0 alındığında,  

 

                                        𝑢(𝜉) = 𝑘√𝜆(𝑐𝑜𝑡( 𝜉√𝜆) + 𝑐𝑠𝑐( 𝜉√𝜆))                                   (4.38) 

 

şeklinde özel bir çözüm elde edilir. 

 

ii) Başka bir trigonometrik çözüm için aynı çözüm sürecini kullanarak aşağıdaki eşitlikler 

elde edilir.   

 

𝑟 = 0 
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𝑎1 = √
𝜆

𝜆2𝜎 − 𝜇2
𝑏1 

                                                                                                                                        (4.39) 

𝑘 = √
𝜆

𝜆2𝜎 − 𝜇2
𝑏1 

 

𝑣 =
1

2

1

𝜆2𝜎 − 𝜇2
(𝑠𝜆2𝜎 − 𝑠𝜇2 + (−4√

𝜆

𝜆2𝜎 − 𝜇2
𝑏1

3𝜆4𝜎𝑠 + 4√
𝜆

𝜆2𝜎 − 𝜇2
𝑏1

3𝜆2𝜇2𝑠 

−12√
𝜆

𝜆2𝜎 − 𝜇2
𝑏1𝑑𝜆4𝜎2 + 24√

𝜆

𝜆2𝜎 − 𝜇2
𝑏1𝑑𝜆2𝜇2𝜎 + 𝜆4𝜎2𝑠2 − 12√

𝜆

𝜆2𝜎 − 𝜇2
𝑏1𝑑𝜇4 

−2𝜆2𝜇2𝜎𝑠2 + 𝜇4𝑠2)
1

2) 

 

Bu eşitlikler (4.29) denkleminin tam çözümünü, 
𝜆

𝜆2(𝐴1
2+𝐴2

2)−𝜇2 > 0 ve 𝜎 = 𝐴1
2 + 𝐴2

2 

sağlayacak şekilde, 

 

  𝑢(𝜉) = 𝑎0 +

√
𝜆

𝜆2(𝐴1
2+𝐴2

2)−𝜇2𝑏1√𝜆(𝐴1 𝑐𝑜𝑠(√𝜆𝜉)−𝐴2 𝑠𝑖𝑛(√𝜆𝜉))

𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆
 +

𝑏1

𝐴1 𝑠𝑖𝑛(√𝜆𝜉)+𝐴2 𝑐𝑜𝑠(√𝜆𝜉)+𝜇/𝜆
    (4.40) 

 

olarak verir. 

 

(4.40) çözümünde 𝑎0 = 0, 𝐴1 = 0, 𝐴2 > 0 ve 𝜇 = 0 olarak alınırsa 

 

                                          𝑢(𝜉) = −
𝑏1

𝐴2
(𝑡𝑎𝑛( 𝜉√𝜆) − 𝑠𝑒𝑐( 𝜉√𝜆))                                (4.41) 

 

çözümü, 𝑎0 = 0, 𝐴2 = 0, 𝐴1 > 0 ve 𝜇 = 0 olarak alınırsa 

 

                                          𝑢(𝜉) =
𝑏1

𝐴1
(𝑐𝑜𝑡( 𝜉√𝜆) + 𝑐𝑠𝑐( 𝜉√𝜆))                                    (4.42) 

 

çözümü bulunur.       
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Durum III: 𝜆’nın sıfıra eşit olduğu durum için rasyonel fonksiyon çözümü aranırken, 

 

𝑟 = 0 

 

𝑎1 = 𝑘 

                                                                                                                                        (4.43) 

𝑏1 = √𝐴1
2 − 2𝐴2

2𝜇𝑘 

 

𝑣 =
1

2
𝑠 +

1

2
√−12𝑑𝑘 + 𝑠2 

 

değerlerine ulaşılır. Bu değerler kullanılarak (4.29) denkleminin rasyonel fonksiyon 

çözümü, 

 

                                             𝑢(𝜉) = 𝑎0 +
𝑘(𝜇𝜉+𝐴1)

𝜇𝜉2

2
+𝐴1𝜉+𝐴2

+
√𝐴1

2−2𝐴2
2𝜇𝑘

𝜇𝜉2

2
+𝐴1𝜉+𝐴2

                               (4.44) 

 

şeklinde yazılabilir. 

 

Yukarıda üç farklı durumda bulunan dalga çözümleri için z yerine sabit değerler 

alınarak oluşturulmuş grafikler aşağıda verilmiştir. 

                                        Şekil 4.5 Hiperbolik fonksiyon çözümü                       

 𝑡 = 1.5, 𝜆 = −1, 𝑘 = −1, 𝑠 = 1,
𝑑 = 2, 𝑧 = 1, 𝜇 = 1, 𝑎0 = 2,

 𝐴1 = −2,  𝐴2 = 1.
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Şekil 4.6 Hiperbolik fonksiyon çözümü                 Şekil 4.7 Hiperbolik fonksiyon çözümü 

    

 𝑡 = 1, 𝜆 = −1, 𝑘 = −1, 𝑠 = −2,
𝑑 = 2, 𝑧 = 1, 𝜇 = 1, 𝑎0 = 2,

 𝐴1 = −2,  𝐴2 = −1.
         

𝑡 = 0.5, 𝜆 = −1.1, 𝑘 = −1.8, 𝑠 = 1.4,
𝑑 = 2.1, 𝜇 = 1.6, 𝑎0 = 2.3,

 𝐴1 = −2.2, 𝐴2 = 0.1.
       

         
                                                                  

Şekil 4.8 Trigonometrik fonksiyon çözümü               Şekil 4.9 Trigonometrik fonksiyon çözümü 

    

 𝑡 = −1.4, 𝜆 = 1, 𝑘 = −1.1, 𝑠 = 1.2,
𝑑 = 1.3, 𝑧 = 1.4, 𝜇 = 1.6, 𝑎0 = 2.2,

 𝐴1 = −1.7,  𝐴2 = 1.8.
                   

𝑡 = −1, 𝜆 = 1, 𝑠 = 2,
𝑑 = 1, 𝑧 = 1, 𝜇 = 1, 𝑎0 = 2,

 𝐴1 = −2, 𝐴2 = 1.
        

 

Şekil 4.5, Şekil 4.6 ve Şekil 4.7 üstel dalga çözümüne, Şekil 4.8 ve Şekil 4.9 periyodik dalga 

çözümlerine karşılık gelmektedir. 
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4.1.3 Birinci Formda Genişletilmiş (3+1) Boyutlu Jimbo-Miwa Denkleminin 

(𝐆′/𝐆, 𝟏/𝐆) Açılım Yöntemi Sayesinde Farklı Tipte Tam Çözümlerine Ulaşılması 

 

Wazwaz (2017), standart Jimbo-Miwa denklemini 𝑢𝑦𝑧 ve 𝑢𝑧𝑧 terimlerini ekleyerek 

genişleterek yeniden üretilen, 

 

                         𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2𝑢𝑦𝑡 − 3(𝑢𝑥𝑧 + 𝑢𝑦𝑧 + 𝑢𝑧𝑧) = 0              (4.45) 

 

şeklinde lineer olmayan (3+1) boyutlu birinci formda genişletilmiş Jimbo-Miwa denklemini 

literatüre kazandırdı. Öncelikle, (4.45) denklemi 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉) ve 𝜉 = 𝑘𝑥 + 𝑠𝑦 +

𝑑𝑧 − 𝑣𝑡 dalga dönüşümü kullanılarak,  

 

                         𝑘3𝑠𝑢(4) + 6𝑘2𝑠𝑢′𝑢″ − (2𝑠𝑣 + 3𝑘𝑑 + 3𝑠𝑑 + 3𝑑2)𝑢″ = 0                 (4.46) 

 

olacak şekilde bir adi diferensiyel denkleme dönüştürülür. Daha sonra, bu adi diferensiyel 

denklemin 𝜉’e göre bir kez integrali alınarak 𝑟 integral sabiti olmak üzere 

 

                        𝑘3𝑠𝑢′′′ + 3𝑘2𝑠(𝑢′)2 − (2𝑠𝑣 + 3𝑘𝑑 + 3𝑠𝑑 + 3𝑑2)𝑢′ + 𝑟 = 0                   (4.47) 

 

biçiminde bir denklem elde edilir. Bu denklemdeki 𝑢′′′ ve (𝑢′)2 terimleri homojen denge 

prensibi kullanılarak dengelenirse, 

 

                                                                  𝑀 = 1                                                                              (4.48) 

 

bulunur ve böylece çözüm formu aşağıdaki gibi olur. 

 

                                                      𝑢(𝜉) = 𝑎0 + 𝑎1𝜑 + 𝑏1𝜓                                            (4.49) 

 

(4.49) çözüm formundaki 𝑎0, 𝑎1 ve 𝑏1 sabit katsayılardır. Daha önce belirtildiği gibi 

çözümler, 𝜆’ın işaretine bağlı olarak üç durumda araştırılır. 
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Durum I: 𝜆’ın negatif olması hiperbolik fonksiyon çözümlerini verir. Sürecin devamında, 

(4.49) çözüm formunun (4.47) denkleminde kullanılması sonucu oluşan 𝜑 ve 𝜓 cinsinden 

bir polinom verir. Bu polinomun katsayıları, 𝑎0, 𝑎1, 𝑏1, 𝑣, 𝑘, 𝑠, 𝑑, 𝑟, 𝜎, 𝜇 ve 𝜆’dan oluşan 

aşağıdaki cebirsel denklem sistemini verir. 

 

𝝋𝟒: 3𝑎1
2𝑘2𝜆2𝜎𝑠 − 6𝑎1𝑘3𝜆2𝜎𝑠 + 3𝑎1

2𝑘2𝜇2𝑠 − 6𝑎1𝑘3𝜇2𝑠 − 3𝑏1
2𝑘2𝜆𝑠 

 

                𝝍𝝋𝟑: 6𝑎1𝑏1𝑘2𝜆2𝜎𝑠 − 6𝑏1𝑘3𝜆2𝜎𝑠 + 6𝑎1𝑏1𝑘2𝜇2𝑠 − 6𝑏1𝑘3𝜇2𝑠 

 

                      𝝋𝟑: 6𝑎1𝑏1𝑘2𝜆𝜇𝑠 − 6𝑏1𝑘3𝜆𝜇𝑠 

 

              𝝍𝝋𝟐: −6𝑎1
2𝑘2𝜆2𝜇𝜎𝑠 + 12𝑎1𝑘3𝜆2𝜇𝜎𝑠 − 6𝑎1

2𝑘2𝜇3𝑠 + 12𝑎1𝑘3𝜇3𝑠 + 6𝑏1
2𝑘2𝜆𝜇𝑠 

 

             𝝋𝟐: 6𝑎1
2𝑘2𝜆3𝜎𝑠 − 8𝑎1𝑘3𝜆3𝜎𝑠 + 3𝑎1

2𝑘2𝜆𝜇2𝑠 − 5𝑎1𝑘3𝜆𝜇2𝑠 − 3𝑏1
2𝑘2𝜆2𝑠 + 

2𝑣𝑎1𝜆2𝜎𝑠 + 3𝑎1𝑑2𝜆2𝜎 + 3𝑎1𝑑2𝜆2𝜎 + 3𝑎1𝑑𝑘𝜆2𝜎 + 3𝑎1𝑑𝜆2𝜎𝑠 + 2𝑣𝑎1𝜇2𝑠 + 3𝑎1𝑑2𝜇2 

+3𝑎1𝑑𝑘𝜇2 + 3𝑎1𝑑𝜇2𝑠 

                                                                                                                                         

                   𝝍𝝋: 6𝑎1𝑏1𝑘2𝜆3𝜎𝑠 − 5𝑏1𝑘3𝜆3𝜎𝑠 − 6𝑎1𝑏1𝑘2𝜆𝜇2𝑠 + 7𝑏1𝑘3𝜆𝜇2𝑠 + 2𝑣𝑏1𝜆2𝜎𝑠 

+3𝑏1𝑑2𝜆2𝜎 + 3𝑏1𝑑𝑘𝜆2𝜎 + 3𝑏1𝑑𝜆2𝜎𝑠 + 2𝑣𝑏1𝜇2𝑠 + 3𝑏1𝑑2𝜇2 + 3𝑏1𝑑𝑘𝜇2 + 3𝑏1𝑑𝜇2𝑠 

 

                      𝝋: 6𝑎1𝑏1𝑘2𝜆2𝜇𝑠 − 6𝑏1𝑘3𝜆2𝜇𝑠                                                                          (4.50) 

 

      𝝍𝟎𝝋𝟎: 3𝑎1
2𝑘2𝜆4𝜎𝑠 − 2𝑎1𝑘3𝜆4𝜎𝑠 + 𝑎1𝑘3𝜆2𝜇2𝑠 + 2𝑣𝑎1𝜆3𝜎𝑠 + 3𝑎1𝑑2𝜆3𝜎 

+3𝑎1𝑑𝜆3𝜎𝑠 + 2𝑣𝑎1𝜆𝜇2𝑠 + 3𝑎1𝑑2𝜆𝜇2 + 3𝑎1𝑑𝑘𝜆𝜇2 + 3𝑎1𝑑𝜆𝜇2𝑠 + 𝜆2𝜎𝑟 + 𝜇2𝑟 

         +3𝑎1𝑑𝑘𝜆3𝜎 

  

                      𝝍: −6𝑎1
2𝑘2𝜆3𝜇𝜎𝑠 + 5𝑎1𝑘3𝜆3𝜇𝜎𝑠 − 𝑎1𝑘3𝜆𝜇3𝑠 − 2𝑣𝑎1𝜆2𝜇𝜎𝑠 − 3𝑎1𝑑2𝜆2𝜇𝜎 

−3𝑎1𝑑𝑘𝜆2𝜇𝜎 − 3𝑎1𝑑𝜆2𝜇𝜎𝑠 − 2𝑣𝑎1𝜇3𝑠 − 3𝑎1𝑑2𝜇3 − 3𝑎1𝑑𝑘𝜇3 − 3𝑎1𝑑𝜇3𝑠 

 

Oluşan cebirsel sistem çözülerek, 

 

𝑟 = 0 
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𝑎1 = 𝑘 

                                                                                                                                        (4.51) 

𝑏1 = √−
𝜆2𝜎 + 𝜇2

𝜆
𝑘 

 

𝑣 = −
𝑘3𝑠𝜆 + 3𝑘𝑑 + 3𝑠𝑑 + 3𝑑2

2𝑠
 

 

 
𝜆2𝜎+𝜇2

𝜆
< 0 ve 𝜎 = 𝐴1

2 − 𝐴2
2 sağlayacak şekilde değerler elde edilir. Bu değerler ile birlikle 

(4.2) ve (4.4) kullanılarak (4.49) daki çözüm formuna yerleştirilirse tam dalga çözümü,  

 

 𝑢(𝜉) = 𝑎0 +
𝑘(𝐴1 𝑐𝑜𝑠ℎ(𝜉√−𝜆)√−𝜆+𝐴2 𝑠𝑖𝑛ℎ(𝜉√−𝜆)√−𝜆)

𝐴1 𝑠𝑖𝑛ℎ(𝜉√−𝜆)+𝐴2 𝑐𝑜𝑠ℎ(𝜉√−𝜆)+
𝜇

𝜆

 +
√−

𝜆2(𝐴1
2−𝐴2

2)+𝜇2

𝜆
𝑘

𝐴1 𝑠𝑖𝑛ℎ(𝜉√−𝜆)+𝐴2 𝑐𝑜𝑠ℎ(𝜉√−𝜆)+
𝜇

𝜆

          (4.52) 

 

şeklinde bulunur. 

 

Ek olarak, (4.52) denkleminde 𝑎0 = 0, 𝐴2 = 0, 𝐴1 > 0 ve 𝜇 = 0 olarak 

yerleştirilirse, 

 

                                 𝑢(𝜉) = 𝑘√−𝜆(𝑐𝑜𝑡ℎ( 𝜉√−𝜆) + 𝑐𝑠𝑐ℎ( 𝜉√−𝜆))                               (4.53) 

 

şeklinde daha özel bir çözüm haline gelir. 

 

Durum II: 𝜆’ın pozitif olması trigonometrik fonksiyon çözümlerini verir. Birinci duruma 

benzer şekilde, (4.49)’u (4.47)’e yerleştirildiğinde bir polinom elde edilir. Daha sonra, 

oluşan cebirsel yapıda her bir katsayı sıfıra eşitlenerek aşağıdaki eşitliklere ulaşılır. 

 

                                                                     𝑟 = 0    

 

𝑎1 = 𝑘 
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                                                          𝑏1 = √−
−𝜆2(𝐴1

2+𝐴2
2)+𝜇2

𝜆
𝑘                                          (4.54) 

 

  𝑑 = −
1

2
(𝑘 + 𝑠) +

1

6
√−12𝑘3𝜆𝑠 − 24𝑣𝑠 + 9𝑘2 + 18𝑘𝑠 + 9𝑠2 

 

(4.2) ve (4.5) ile (4.54) eşitliklerini (4.49) da kullanmak 
−𝜆2(𝐴1

2+𝐴2
2)+𝜇2

𝜆
< 0 ve 𝜎 = 𝐴1

2 + 𝐴2
2 

değerlerini sağlayan aşağıdaki gibi yeni bir tam dalga çözümünü verir. 

 

             𝑢(𝜉) = 𝑎0 +
𝑘(𝐴1 𝑐𝑜𝑠(𝜉√𝜆)√𝜆−𝐴2 𝑠𝑖𝑛(𝜉√𝜆)√𝜆)

𝐴1 𝑠𝑖𝑛(𝜉√𝜆)+𝐴2 𝑐𝑜𝑠(𝜉√𝜆)+𝜇/𝜆
 +

√−
−𝜆2(𝐴1

2+𝐴2
2)+𝜇2

𝜆
𝑘

𝐴1 𝑠𝑖𝑛(𝜉√𝜆)+𝐴2 𝑐𝑜𝑠(𝜉√𝜆)+𝜇/𝜆
            (4.55) 

 

İlaveten, (4.55) dalga çözümünde 𝑎0 = 0, 𝐴1 = 0, 𝐴2 > 0 ve 𝜇 = 0 olarak farz 

edilirse, (4.55) çözümü 

 

                                                𝑢(𝜉) = −𝑘√𝜆(𝑡𝑎𝑛( 𝜉√𝜆) − 𝑠𝑒𝑐( 𝜉√𝜆))                          (4.56) 

 

halini alır. Benzer şekilde, 𝑎0 = 0, 𝐴2 = 0, 𝐴1 > 0 ve 𝜇 = 0 olursa, 

 

                                                 𝑢(𝜉) = 𝑘√𝜆(𝑐𝑜𝑡( 𝜉√𝜆) + 𝑐𝑠𝑐( 𝜉√𝜆))                                   (4.57) 

 

şeklinde bir çözüme dönüşür. 

 

Durum III: 𝜆, sıfıra eşit olduğunda rasyonel fonksiyon çözümü oluşur. Sırasıyla, (4.3) ve 

(4.6) dan yararlanarak (4.49)’u (4.47) de kullanarak, 𝜑 ve 𝜓 polinomundaki tüm katsayılar 

sıfıra eşitlenerek, 

 

𝑟 = 0 

 

𝑎1 = −
3𝑠𝑑 + 2𝑠𝑣 + 3𝑑2

3𝑑
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                                                𝑏1 = −
√𝐴1

2−2𝐴2𝜇(3𝑠𝑑+2𝑠𝑣+3𝑑2)

3𝑑
                                              (4.58) 

 

𝑘 = −
3𝑠𝑑 + 2𝑠𝑣 + 3𝑑2

3𝑑
 

 

değerleri kolayca elde edilir. Sonrasında, bu değerleri (4.2) ve (4.6) ile (4.49)’a uyarlamak 

rasyonel dalga çözümünü, 

 

                       𝑢(𝜉) = 𝑎0 −
(3𝑠𝑑+2𝑠𝑣+3𝑑2)(𝜇𝜉+𝐴1)

3𝑑(
𝜇𝜉2

2
+𝐴1𝜉+𝐴2)

+
√𝐴1

2−2𝜇𝐴2(3𝑠𝑑+2𝑠𝑣+3𝑑2)

3𝑑(
𝜇𝜉2

2
+𝐴1𝜉+𝐴2)

                         (4.59) 

 

biçiminde verir.  

 

Burada, elde edilen dalga çözümlerinin yayılımını ve özelliklerini daha iyi anlamak 

için özel değerler alınarak oluşturulmuş grafikleri aşağıdaki gibi veriyoruz. 

 

        

 

Şekil 4.10 Hiperbolik fonksiyon çözümü               Şekil 4.11 Hiperbolik fonksiyon çözümü 

    

 𝑡 = 0.25, 𝜆 = −0.7, 𝑘 = 0.6, 𝑠 = 2,
𝑑 = 1.8, 𝑧 = 0.9, 𝜇 = 0.8, 𝑎0 = 0.4,

 𝐴1 = 1.4,  𝐴2 = 0.7.
              

𝑡 = 0.4, 𝜆 = −0.1, 𝑘 = 0.1, 𝑠 = 0.2,
𝑑 = 0.3, 𝑧 = 1, 𝜇 = 0.7, 𝑎0 = 0.5,

 𝐴1 = 0.6, 𝐴2 = 0.9.
        

 



36 
 

    

Şekil 4.12 Hiperbolik fonksiyon çözümü               Şekil 4.13 Trigonometrik fonksiyon çözümü   
 𝑡 = 1.2, 𝜆 = −1.4, 𝑘 = 0.5, 𝑠 = 1.1,
𝑑 = 0.2, 𝑧 = 1.8, 𝜇 = 0.7, 𝑎0 = 0.5,

 𝐴1 = 1.3,  𝐴2 = 0.9.
                   

𝑡 = 2.5, 𝜆 = 1.4, 𝑘 = −1.2, 𝑠 = −2.1,
𝑣 = 0.5, 𝑧 = 1.4, 𝜇 = 2, 𝑎0 = 1,

 𝐴1 = 1.5, 𝐴2 = 0.1.
        

 

 

    

Şekil 4.14 Trigonometrik fonksiyon çözümü           Şekil 4.15 Trigonometrik fonksiyon çözümü      
 𝑡 = 0.3, 𝜆 = 1.5, 𝑘 = 0.1, 𝑠 = 0.2,
𝑣 = −1.2, 𝑧 = 0.4, 𝜇 = 0.8, 𝑎0 = 2,

 𝐴1 = 1.6,  𝐴2 = 1.1.
                   

𝑡 = 1.4, 𝜆 = 1.8, 𝑘 = 0.6, 𝑠 = 0.9,
𝑣 = −1.5, 𝑧 = 0.8, 𝜇 = 0.6, 𝑎0 = 1.6,

 𝐴1 = 1.2, 𝐴2 = 0.4.
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4.1.4 İkinci Formda Genişletilmiş (3+1) Boyutlu Jimbo-Miwa Denkleminin  

(𝐆′/𝐆, 𝟏/𝐆) Açılım Yöntemi Sayesinde Farklı Tipte Tam Çözümlerine Ulaşılması 

 

İkinci formda genişletilmiş (3+1) boyutlu Jimbo-Miwa denklemi, Wazwaz (2017) 

tarafından birinci formda genişletilmiş Jimbo-Miwa denklemi gibi standart Jimbo-Miwa 

denklemindeki 𝑢𝑦𝑡 terimini 𝑢𝑥𝑡 + 𝑢𝑦𝑡 + 𝑢𝑧𝑡 olarak genişleterek boyutunu koruyacak şekilde 

 

                  𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2(𝑢𝑦𝑡 + 𝑢𝑥𝑡 + 𝑢𝑧𝑡) − 3𝑢𝑥𝑧 = 0                    (4.60) 

 

biçiminde elde edilmiştir. İkinci formda genişletilmiş (3+1) boyutlu Jimbo-Miwa denklemi 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉) ve 𝜉 = 𝑘𝑥 + 𝑠𝑦 + 𝑑𝑧 − 𝑣𝑡 olan dalga dönüşümü kullanılarak, 

 

                        𝑘3𝑠𝑢(4) + 6𝑘2𝑠𝑢′𝑢″ − (2𝑣𝑠 + 2𝑣𝑘 + 2𝑣𝑑 + 3𝑘𝑑)𝑢″ = 0                    (4.61) 

 

denklemine dönüştürülür ve bu denklemin integrali alınarak 𝑟 integral sabitini temsil edecek 

şekilde, 

 

                        𝑘3𝑠𝑢′′′ + 3𝑘2𝑠(𝑢′)2 − (2𝑣𝑠 + 2𝑣𝑘 + 2𝑣𝑑 + 3𝑘𝑑)𝑢′ + 𝑟 = 0                  (4.62) 

 

denklemi elde edilir. Dengeleme kullanılırsa 𝑀 = 1 gelir ve (G′/G, 1/G) açılım yöntemine 

göre aranan çözüm, 

 

                                                      𝑢(𝜉) = 𝑎0 + 𝑎1𝜑 + 𝑏1𝜓                                                     (4.63) 

 

formundadır. 

 

Durum I: Hiperbolik fonksiyon çözümünü bulmak için izlenecek birinci adım, (4.63) 

denklemini (4.3), (4.4) deki değerlerin kullanımı ile (4.62) denklemine yerleştirerek (G′/G) 

ve (1/G) terimlerine ek olarak bu terimlerin kuvvetlerinden oluşan cebirsel bir denklem 

sistemine ulaşmaktır. İkinci adım ise bu denklem sistemini çözdürmektir. Bu denklem 

sisteminin çözümlerinden biri, 

 

𝑟 = 0 
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𝑎1 = √−
𝜆

𝜆2𝜎 + 𝜇2
𝑏1 

                                                                                                                                        (4.64) 

𝑘 = √−
𝜆

𝜆2𝜎 + 𝜇2
𝑏1 

 

𝑣 =
(𝑠𝑏1

2𝜆2 − 3𝑑𝜆2𝜎 − 3𝑑𝜇2)√−
𝜆

𝜆2𝜎 + 𝜇2 𝑏1

2(𝜆2𝜎 + 𝜇2)(√−
𝜆

𝜆2𝜎 + 𝜇2 𝑏1 + 𝑑 + 𝑠)

 

 

değerlerini verir. Bu değerleri (4.63) de (4.2) ve (4.4)’ü dikkate alarak kullanmak (4.62)’in 

çözümünü, 

 

 𝑢(𝜉) = 𝑎0 +

√−
𝜆

𝜆2(𝐴1
2−𝐴2

2)+𝜇2𝑏1(𝐴1 𝑐𝑜𝑠ℎ(𝜉√−𝜆)√−𝜆+𝐴2 𝑠𝑖𝑛ℎ(𝜉√−𝜆)√−𝜆)

𝐴1 𝑠𝑖𝑛ℎ(𝜉√−𝜆)+𝐴2 𝑐𝑜𝑠ℎ(𝜉√−𝜆)+
𝜇

𝜆

 

             +
𝑏1

𝐴1 𝑠𝑖𝑛ℎ(𝜉√−𝜆)+𝐴2 𝑐𝑜𝑠ℎ(𝜉√−𝜆)+
𝜇

𝜆

                                                                                             (4.65) 

 

biçiminde verir. 

 

(4.65) denklemindeki değerler, 𝐴2 = 0, 𝐴1 > 0, 𝑎0 = 0 ve 𝜇 = 0 olarak alınırsa, 

 

                                                𝑢(𝜉) =
𝑏1

𝐴1
(𝑐𝑜𝑡ℎ( 𝜉√−𝜆) + 𝑐𝑠𝑐ℎ( 𝜉√−𝜆))                    (4.66) 

 

periyodik çözümü bulunur. 

 

Durum II: Trigonometrik fonksiyon çözümünü bulmanın birinci durumdan farkı, (4.63) 

denklemini (4.62) denklemine yerleştirirken (4.3) ve (4.5)’i kullanarak bir polinom elde 

etmektir. Çözüm bulma sürecinin devamı yine birinci durumla aynı olarak bu polinomun 

katsayılarını sıfıra eşitleyerek cebirsel denklem sistemini oluşturup sistemi çözdürmektir. Bu 
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sefer çözümlerden biri, 

 

𝑟 = 0 

 

𝑎1 = √
𝜆

𝜆2𝜎 − 𝜇2
𝑏1 

                                                                                                                                        (4.67) 

𝑘 = √
𝜆

𝜆2𝜎 − 𝜇2
𝑏1 

 

𝑣 = −
1

2

(𝑏1
2𝜆2𝑠 + 3𝑑𝜆2𝜎 − 3𝑑𝜇2)√

𝜆
𝜆2𝜎 − 𝜇2 𝑏1

√
𝜆

𝜆2𝜎 − 𝜇2 𝑏1𝜆2𝜎 − √
𝜆

𝜆2𝜎 − 𝜇2 𝑏1𝜇2 + 𝑑𝜆2𝜎 + 𝜆2𝜎𝑠 − 𝑑𝜇2 − 𝜇2𝑠

 

 

eşitliklerini sağlar. Bu bağlantılı parametreler sayesinde tam çözüm, 

 

𝑢(𝜉) = 𝑎0 +

√
𝜆

𝜆2(𝐴1
2+𝐴2

2)−𝜇2𝑏1(𝐴1 𝑐𝑜𝑠(𝜉√𝜆)√𝜆−𝐴2 𝑠𝑖𝑛(𝜉√𝜆)√𝜆)

𝐴1 𝑠𝑖𝑛(𝜉√𝜆)+𝐴2 𝑐𝑜𝑠(𝜉√𝜆)+
𝜇

𝜆

 +
𝑏1

𝐴1 𝑠𝑖𝑛(𝜉√𝜆)+𝐴2 𝑐𝑜𝑠(𝜉√𝜆)+
𝜇

𝜆

       (4.68) 

 

şeklinde bulunur.  

 

(4.68) denkleminde 𝑎0 = 0, 𝐴1 = 0, 𝐴2 > 0 ve 𝜇 = 0 olarak seçilirse 

 

                                      𝑢(𝜉) =
𝑏1

𝐴2
√𝜆(𝑡𝑎𝑛( 𝜉√𝜆) − 𝑠𝑒𝑐( 𝜉√𝜆))                                  (4.69) 

 

özel çözümü, 𝑎0 = 0, 𝐴2 = 0, 𝐴1 > 0 ve 𝜇 = 0 olarak seçilirse 

 

                                           𝑢(𝜉) =
𝑏1

𝐴1
√𝜆(𝑐𝑜𝑡( 𝜉√𝜆) + 𝑐𝑠𝑐( 𝜉√𝜆))                              (4.70) 

 

özel çözümü elde edilir. 
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Durum III: Rasyonel fonksiyon çözümü için yukarıda verilen uygulamalardaki aynı işlem 

prosedürü kullanılırsa, 

 

𝑟 = 0 

 

𝑎1 = 𝑘 

                                                                                                                                        (4.71) 

𝑏1 = √𝐴1
2 − 2𝐴2

2𝜇𝑘 

 

𝑣 = −
3𝑘𝑑

2(𝑘 + 𝑠 + 𝑑)
 

 

değerleri elde edilir. Böylece, dalga çözümü 

 

                         𝑢(𝜉) = 𝑎0 −
2𝑣(𝑠+𝑑)(𝜇𝜉+𝐴1)

(3𝑑+2𝑣)(
𝜇𝜉2

2
+𝐴1𝜉+𝐴2)

+
2√𝐴1

2−2𝐴2
2𝜇(𝑠+𝑑)𝑣

(3𝑑+2𝑣)(
𝜇𝜉2

2
+𝐴1𝜉+𝐴2)

                      (4.72) 

 

olacak biçimde bulunur. 

 

Bulunan bu dalga çözümlerinin grafik gösterimleri ilerleyen kısımda verilmiştir.
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Şekil 4.16 Hiperbolik fonksiyon çözümü               Şekil 4.17 Hiperbolik fonksiyon çözümü   
 𝑡 = 0.2, 𝜆 = −1.1, 𝑘 = 0.3, 𝑠 = −0.2,

𝑑 = −0.5, 𝑧 = 2, 𝜇 = 0.6, 𝑎0 = 1.1,
𝑏1 = −0.2, 𝐴1 = 0.9,  𝐴2 = 0.1.

                 

𝑡 = 0.1, 𝜆 = −1.2, 𝑘 = 1.2, 𝑠 = −1.4,
𝑑 = 0.4, 𝑧 = 0.5, 𝜇 = 1.1, 𝑎0 = 0.5,

𝑏1 = 1.1, 𝐴1 = 1.3, 𝐴2 = 0.4.
 

 

 

 

    

Şekil 4.18 Hiperbolik fonksiyon çözümü               Şekil 4.19 Trigonometrik fonksiyon çözümü   
 𝑡 = 2.4, 𝜆 = −1.4, 𝑘 = 1.4, 𝑠 = −0.4,

𝑑 = 0.4, 𝑧 = 1.4, 𝜇 = 0.4, 𝑎0 = 0.4,
𝑏1 = 0.4, 𝐴1 = 1.4,  𝐴2 = 0.4.

                

𝑡 = 2.4, 𝜆 = 1.4, 𝑘 = 0.7, 𝑠 = −1.3 
𝑑 = 0.3, 𝑧 = 1.1, 𝜇 = 0.9, 𝑎0 = 0.2,

𝑏1 = −0.5, 𝐴1 = 0.1, 𝐴2 = 0.7.
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Şekil 4.20 Trigonometrik fonksiyon çözümü           Şekil 4.21 Trigonometrik fonksiyon çözümü      
 𝑡 = −0.25, 𝜆 = 2.4, 𝑘 = 0.9, 𝑠 = 0.6,
𝑑 = 1.6, 𝑧 = 1.5, 𝜇 = 0.4, 𝑎0 = 1.2,

𝑏1 = 0.3, 𝐴1 = 1.8,  𝐴2 = 0.2.
                   

𝑡 = −0.25, 𝜆 = 2.4, 𝑘 = 0.9, 𝑠 = 0.6,
𝑑 = −2.6, 𝑧 = 0.1, 𝜇 = 0.4, 𝑎0 = 0.4,

𝑏1 = 1.3, 𝐴1 = 1.8, 𝐴2 = 0.2.
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4.2 Modifiye Edilmiş Çiftli Alt Denklem Yöntemi 

 

Modifiye edilmiş çiftli alt denklem yönteminde çözüm, Riccati denklemlerini 

sağlayan, iki dalga dönüşümü içeren, sabitlerden ve iki fonksiyondan oluşan belirli bir 

biçimde aranır. Bu yöntem kullanılarak elde edilen çözümler trigonometrik ve hiperbolik 

fonksiyon çözümlerini verir. Bu fonksiyonların bir arada bulunması ile elde edilen çözüm, 

kompleksiton çözüm olarak adlandırılır. Ayrıca, bu yöntem aynı anda iki tip fonksiyon 

türetilmesi üzerine kurulmuş olsa da, parametrelere bağlı olarak sadece bir fonksiyon tipi 

içeren çözümlerde üretir. Sonuç olarak, modifiye edilmiş çiftli alt denklem yöntemi 

kompleksiton dalga çözümü bulmada oldukça etkilidir. 

 

Son zamanlarda oldukça önemli bir araştırma alanı haline gelen kompleksiton dalga 

çalışmaları, modifiye edilmiş çiftli alt denklem yöntemi gibi birçok yöntemin literatüre 

girmesini sağlamıştır. Hossen vd. (2017) tarafından bu yöntemin uygulama adımları 

aşağıdaki gibi kısaca özetlenmiştir.  

 

1. Adım: Bu yöntem, uzay ve zaman boyutlarında 

 

                                                Ρ(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑡𝑥 , 𝑢𝑥𝑥, . . . ) = 0                                      (4.73) 

 

biçiminde verilen kısmi diferensiyel denklemlerin soliton-trigonometrik (kompleksiton) 

çözümlerinin bulunmasına dayanır. (4.73) biçiminde verilen lineer olmayan oluşum 

denklemlerinde 𝑡 ve 𝑥 sırasıyla zamanı ve uzayı temsil eden değişkenlerdir. 𝑢(𝑥, 𝑡) ise belirli 

bir formda aranacak ve çözüm prosedürü sonunda bulunacak fonksiyondur. İşlemlerin bir 

çoğunun homojen denge sabiti gerektirdiği, tam çözümlere aşina olan araştırmacılar 

tarafından bilinir. Aranan çözüm bu denge sabitine göre şekillenir. Denge sayısı ne kadar 

büyükse, 𝑢(𝑥, 𝑡) çözümü o kadar uzun ve karmaşıktır. 

 

2. Adım: Eğer denge sabiti 1’e eşit olursa, 𝑢(𝑥, 𝑡) fonksiyonu, 𝜆0, 𝜆1 keyfi sabitler ve 𝑎0 =

𝑎0(𝑥, 𝑡), 𝑎1 = 𝑎1(𝑥, 𝑡), 𝑎2 = 𝑎2(𝑥, 𝑡), 𝜉 = 𝜉(𝑥, 𝑡), 𝜂 = 𝜂(𝑥, 𝑡) ifadeleri zaman ile uzaya 

bağlı fonksiyonlar olmak üzere 
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                                                      𝑢(𝑥, 𝑡) = 𝑎0 +
𝑎1𝜙(𝜉)+𝑎2𝜓(𝜂)

𝜆0+𝜆1𝜙(𝜉)𝜓(𝜂)
                                        (4.74) 

 

şeklindeki formda aranır. 𝜙(𝜉) ve 𝜓(𝜂) fonksiyonları ise 𝜉 = 𝑘1𝑥 + 𝑤1𝑡 ile 𝜂 = 𝑘2𝑥 +

𝑤2𝑡 dalga dönüşümleri kullanıldığında sırasıyla, 

 

                                                           𝜙′(𝜉) = 𝑞1 + 𝑝1𝜙2(𝜉)                                          (4.75) 

 

ve 

 

                                                           𝜓′(𝜂) = 𝑞2 + 𝑝2𝜓2(𝜂)                                          (4.76) 

 

eşitliklerini sağlar.  

 

3. Adım: 𝜙 ve 𝜓’nin türevlerinden oluşan (4.75) ve (4.76) Riccati denklemlerinin çözümleri, 

𝑞1 ve 𝑝1’nin farklı değerlerine göre aşağıda verildiği gibi değişik tipte fonksiyon formunda 

olabilir. Örneğin, 𝜙′(𝜉) = 𝑞1 + 𝑝1𝜙2(𝜉) Riccati denkleminin 𝑞1 ve 𝑝1’in farklı değerleri 

için çözüm durumları aşağıda verilmiştir. 

 

(i) 𝑞1 = 1 ve 𝑝1 = −1 şeklinde kabul edilirse 

 

                                              𝜙(𝜉) = 𝑡𝑎𝑛ℎ( 𝜉), 𝜙(𝜉) = 𝑐𝑜𝑡ℎ( 𝜉),                                    (4.77) 

 

(ii) 𝑞1 = 𝑝1 = ∓
1

2
 şeklinde kabul edilirse 

 

                                              𝜙(𝜉) = 𝑠𝑒𝑐( 𝜉) ± 𝑡𝑎𝑛( 𝜉),                                                      (4.78) 

 

(iii) 𝑞1 = 𝑝1 = 1 şeklinde kabul edilirse 

 

                                              𝜙(𝜉) = 𝑡𝑎𝑛( 𝜉),                                                                (4.79) 

 

(iv) 𝑞1 = 𝑝1 = −1 şeklinde kabul edilirse 
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                                           𝜙(𝜉) = 𝑐𝑜𝑡( 𝜉),                                                                    (4.80) 

 

(v) 𝑞1 =
1

2
 ve 𝑝1 = −

1

2
 şeklinde kabul edilirse 

 

                     𝜙(𝜉) = 𝑡𝑎𝑛ℎ( 𝜉) ± 𝑖 𝑠𝑒𝑐ℎ( 𝜉) , 𝜙(𝜉) = 𝑐𝑜𝑡ℎ( 𝜉) ± 𝑐𝑠𝑐ℎ( 𝜉),                    (4.81) 

 

(vi) 𝑞1 = 0 ve 𝑝1 = 1 şeklinde kabul edilirse 

 

                                                 𝜙(𝜉) = −
1

𝜉+𝑤
                                                                   (4.82) 

 

çözümlerine ulaşılır. 

 

4. Adım: (4.75) ve (4.76) Riccati denklemleri hesaba katılarak, (4.74) deki çözüm formu 

(4.73) kısmi diferensiyel denkleminde yerine yazılırsa 𝜙 ve 𝜓’nin kuvvetlerinden oluşan bir 

polinom elde edilir. Bu polinomun katsayıları sıfırlanır ve bunun sonucu oluşan cebirsel 

sistem yardımcı matematiksel programlar tarafından çözdürülürse verilen kısmi diferensiyel 

denklemin çözümleri bulunur. 
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4.2.1 Modifiye Edilmiş Çiftli Alt Denklem Yöntemini Kullanarak (3+1) Boyutlu 

Korteweg-de Vries Tipi Denklemin Kompleksiton Çözümlerini Bulma 

 

(3+1) boyutlu KdV tipi denklem Wazwaz (2012) tarafından, 

 

            𝑢𝑡 + 6𝑢𝑥𝑢𝑦 + 𝑢𝑥𝑥𝑦 + 𝑢𝑥𝑥𝑥𝑥𝑧 + 60𝑢𝑥
2𝑢𝑧 + 10𝑢𝑥𝑥𝑥𝑢𝑧 + 20𝑢𝑥𝑢𝑥𝑥𝑧 = 0              (4.83) 

 

şeklinde tanıtılmış ve sığ su dalgalarını temsili olarak literatüre girmiştir. Bu denkleme 

modifiye edilmiş çiftli alt denklem yöntemini uygulamak için dengeleme yapılırsa aranan 

çözüm formu 

 

                                       𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏0 +
𝑏1𝜙(𝜉)+𝑏2𝜓(𝜂)

𝑏3+𝑏4𝜙(𝜉)𝜓(𝜂)
                                                 (4.84) 

 

şeklinde olur. Burada, 𝜉 = 𝑘1𝑥 + 𝑠1𝑦 + 𝑛1𝑧 + 𝑤1𝑡 ve 𝜂 = 𝑘2𝑥 + 𝑠2𝑦 + 𝑛2𝑧 + 𝑤2𝑡 olarak 

alınmıştır. (4.75) ve (4.76) Riccati denklemlerinin kullanımı ile (4.84) çözüm formunu (3+1) 

boyutlu KdV tipi denkleminde yerine yazmak 𝜙 ile 𝜓 ve onların kuvvetlerinden oluşan 

polinomu verir. Böylece, bu polinomdaki 𝜙, 𝜓 ve kuvvetlerinin katsayılarını sıfıra 

eşitleyerek bir denklem sistemi elde edilir. Bu denklem sisteminin çözümü de aşağıdaki gibi 

kompleksiton dalga çözümü bulmada yararlanılan iki farklı çözüm kümesini verir. 

 

1. Çözüm:  

𝑏1 = 0,             𝑏2 = −
𝑘1(𝑏3

2𝑝1𝑝2−𝑏4
2𝑞1𝑞2)

𝑏4𝑞2
,               𝑘2 =

𝑏3𝑘1𝑝1

𝑏4𝑞2
 , 

 

𝑠2 = −
𝑝1(12𝑏3

3𝑘1
2𝑛1𝑝1

2𝑝2 + 8𝑏3
2𝑏4𝑘1

2𝑛2𝑝1𝑝2𝑞2 − 8𝑏3𝑏4
2𝑘1

2𝑛1𝑝1𝑞1𝑞2)

𝑏4
3𝑞2

2  

         −
𝑝1(−12𝑏4

3𝑘1
2𝑛2𝑞1𝑞2

2 − 𝑏3𝑏4
2𝑞2𝑠1)

𝑏4
3𝑞2

2   

                                                                                                                                        (4.85) 

𝑤1 = −4𝑘1
2𝑝1𝑞1(4𝑘1

2𝑛1𝑝1𝑞1 − 𝑠1)  
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𝑤2 = −
4𝑘1

2𝑝1
3𝑏3

2𝑝2(12𝑏3
3𝑘1

2𝑛1𝑝1
2𝑝2 + 12𝑏3

2𝑏4𝑘1
2𝑛2𝑝1𝑝2𝑞2)

𝑏4
5𝑞2

3  

           −
4𝑘1

2𝑝1
3𝑏3

2𝑝2(−8𝑏3𝑏4
2𝑘1

2𝑛1𝑝1𝑞1𝑞2 − 12𝑏4
3𝑘1

2𝑛2𝑞1𝑞2
2 − 𝑏3𝑏4

2𝑞2𝑠1)

𝑏4
5𝑞2

3  

 

2. Çözüm:  

𝑏2 = 0,             𝑏1 = −
𝑘1(𝑏3

2𝑝1𝑝2−𝑏4
2𝑞1𝑞2)

𝑏3𝑝2
,               𝑘2 =

𝑏4𝑘1𝑞1

𝑏3𝑝2
 , 

 

𝑠2 =
𝑞1(12𝑏3

3𝑘1
2𝑛2𝑝1𝑝2

2 + 8𝑏3
2𝑏4𝑘1

2𝑛1𝑝1𝑝2𝑞1)

𝑏3
3𝑝2

2  

        +
𝑞1(−8𝑏3𝑏4

2𝑘1
2𝑛2𝑝2𝑞1𝑞2−12𝑏4

3𝑘1
2𝑛1𝑞1

2𝑞2+𝑏3
2𝑏4𝑝2𝑠1)

𝑏3
3𝑝2

2  

                                                                                                                                        (4.86) 

𝑤1 = −4𝑘1
2𝑝1𝑞1(4𝑘1

2𝑛1𝑝1𝑞1 − 𝑠1) 

 

 

𝑤2 =
4𝑘1

2𝑞1
3𝑏4

2𝑞2(12𝑏3
3𝑘1

2𝑛2𝑝1𝑝2
2 + 8𝑏3

2𝑏4𝑘1
2𝑛1𝑝1𝑝2𝑞1 − 12𝑏3𝑏4

2𝑘1
2𝑛2𝑝2𝑞1𝑞2)

𝑏3
5𝑝2

3  

           +
4𝑘1

2𝑞1
3𝑏4

2𝑞2(−12𝑏4
3𝑘1

2𝑛1𝑞1
2𝑞2 + 𝑏3

2𝑏4𝑝2𝑠1)

𝑏3
5𝑝2

3  

 

 

Son olarak, (4.85) ve (4.86) daki çözüm kümeleri, modifiye edilmiş çiftli alt denklem 

yöntemindeki durumlar ile birlikte kullanılarak (4.83) denkleminin dalga çözümleri bulunur. 

Bulunan çözümlerin bazıları aşağıdaki gibi grafiklerle verilmiştir. 

 

(4.85) deki çözüm eşitlikleri ile (4.77) ve (4.79) daki 𝑞1 = 1, 𝑝1 = −1, 𝑞2 = 1 ve 

𝑝2 = 1 değerlerini kullanarak 𝜙(𝜉) = 𝑡𝑎𝑛ℎ( 𝜉) ve 𝜓(𝜂) = 𝑡𝑎𝑛( 𝜂) fonksiyonları seçilirse, 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏0 − 𝑘1(−𝑏3
2 − 𝑏4

2) tan(−
𝑏3𝑘1𝑥

𝑏4
+ 𝑛2𝑧 +

(12𝑏3
3𝑘1

2𝑛1−8𝑏3
2𝑏4𝑘1

2𝑛2+8𝑏3𝑏4
2𝑘1

2𝑛1−12𝑏4
3𝑘1

2𝑛2−𝑏3𝑏4
2𝑠1)𝑦

𝑏4
3 +

4𝑘1
2𝑏3

2(12𝑏3
3𝑘1

2𝑛1−12𝑏3
2𝑏4𝑘1

2𝑛2+8𝑏3𝑏4
2𝑘1

2𝑛1−12𝑏4
3𝑘1

2𝑛2−𝑏3𝑏4
2𝑠1)𝑡

𝑏4
5 )/(𝑏4 (𝑏3 − 𝑏4 tanh(−𝑘1𝑥 − 𝑛1𝑧 −
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𝑠1𝑦 − 4𝑘1
2(−4𝑘1

2𝑛1 − 𝑠1)𝑡) tan( −
𝑏3𝑘1𝑥

𝑏4
+ 𝑛2𝑧 +

(12𝑏3
3𝑘1

2𝑛1−8𝑏3
2𝑏4𝑘1

2𝑛2+8𝑏3𝑏4
2𝑘1

2𝑛1−12𝑏4
3𝑘1

2𝑛2−𝑏3𝑏4
2𝑠1)𝑦

𝑏4
3 +

4𝑏3
2𝑘1

2(12𝑏3
3𝑘1

2𝑛1−12𝑏3
2𝑏4𝑘1

2𝑛2+8𝑏3𝑏4
2𝑘1

2𝑛1−12𝑏4
3𝑘1

2𝑛2−𝑏3𝑏4
2𝑠1)𝑡

𝑏4
5 )))                                               (4.87)  

 

şeklinde bir çözüm bulunur. Bu çözümde özel parametreler seçilerek dalga yayılımlarını 

göstermek amacıyla aşağıdaki grafikler sunulmuştur. 

         

 

Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟐  𝑘1 = 0.4,  𝑠1 = 0.4,  𝑛1 = 1.2,
 𝑛2 = −0.9, 𝑤1 = 1.4, 𝑏0 = 1.1,

 𝑏3 = 1.3,  𝑏4 = −0.6, 𝑧 = 0.4, 𝑡 = 1.4.
            

 Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟑 𝑘1 = 2, 𝑠1 = 2.2, 𝑛1 = 2.4,
𝑛2 = −2.1, 𝑤1 = 2.5,  𝑏0 = 2,

𝑏3 = 2.1, 𝑏4 = −2.3, 𝑧 = 2.1, 𝑡 = 2.2.
 

 

(4.85) deki değerler ile (4.77) ve (4.78) deki 𝑞1 = 1, 𝑝1 = −1, 𝑞2 = −
1

2
 ve 𝑝2 = −

1

2
 

değerlerini kullanarak 𝜙(𝜉) = 𝑡𝑎𝑛ℎ( 𝜉) ve 𝜓(𝜂) = 𝑠𝑒𝑐( 𝜂) − 𝑡𝑎𝑛( 𝜂) seçilirse,  

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑏0 + 2𝑘1(
𝑏3

2

2
+

𝑏4
2

2
)(sec(−

2𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧

−
4 (−6𝑏3

3𝑘1
2𝑛1 − 2𝑏3

2𝑏4𝑘1
2𝑛2 − 4𝑏3𝑏4

2𝑘1
2𝑛1 − 3𝑏4

3𝑘1
2𝑛2 +

𝑏3𝑏4
2𝑠1

2
) 𝑦

𝑏4
3

−
16𝑘1

2𝑏3
2 (−6𝑏3

3𝑘1
2𝑛1 − 3𝑏3

2𝑏4𝑘1
2𝑛2 − 4𝑏3𝑏4

2𝑘1
2𝑛1 − 3𝑏4

3𝑘1
2𝑛2 +

𝑏3𝑏4
2𝑠1

2
) 𝑡

𝑏4
5 )



49 
 

+ tan(−
2𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧 −

4(−6𝑏3
3𝑘1

2𝑛1−2𝑏3
2𝑏4𝑘1

2𝑛2−4𝑏3𝑏4
2𝑘1

2𝑛1−3𝑏4
3𝑘1

2𝑛2+
𝑏3𝑏4

2𝑠1
2

)𝑦

𝑏4
3 −

16𝑘1
2𝑏3

2(−6𝑏3
3𝑘1

2𝑛1−3𝑏3
2𝑏4𝑘1

2𝑛2−4𝑏3𝑏4
2𝑘1

2𝑛1−3𝑏4
3𝑘1

2𝑛2+
𝑏3𝑏4

2𝑠1
2

)𝑡

𝑏4
5 )) /(𝑏4(𝑏3 − 𝑏4 tanh(−𝑘1𝑥 − 𝑛1𝑧 −

𝑠1𝑦 − 4𝑘1
2(−4𝑘1

2𝑛1 − 𝑠1)𝑡)(sec(−
2𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧 −

4(−6𝑏3
3𝑘1

2𝑛1−2𝑏3
2𝑏4𝑘1

2𝑛2−4𝑏3𝑏4
2𝑘1

2𝑛1−3𝑏4
3𝑘1

2𝑛2+
𝑏3𝑏4

2𝑠1
2

)𝑦

𝑏4
3 −

16𝑘1
2𝑏3

2(−6𝑏3
3𝑘1

2𝑛1−3𝑏3
2𝑏4𝑘1

2𝑛2−4𝑏3𝑏4
2𝑘1

2𝑛1−3𝑏4
3𝑘1

2𝑛2+
𝑏3𝑏4

2𝑠1
2

)𝑡

𝑏4
5 ) + tan(−

2𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧 −

4(−6𝑏3
3𝑘1

2𝑛1−2𝑏3
2𝑏4𝑘1

2𝑛2−4𝑏3𝑏4
2𝑘1

2𝑛1−3𝑏4
3𝑘1

2𝑛2+
𝑏3𝑏4

2𝑠1
2

)𝑦

𝑏4
3 −

16𝑘1
2𝑏3

2(−6𝑏3
3𝑘1

2𝑛1−3𝑏3
2𝑏4𝑘1

2𝑛2−4𝑏3𝑏4
2𝑘1

2𝑛1−3𝑏4
3𝑘1

2𝑛2+
𝑏3𝑏4

2𝑠1
2

)𝑡

𝑏4
5 ))))                                             (4.88) 

 

şeklinde bir kompleksiton çözüm bulunur. Bu çözümün seçilmiş değerler alınarak çizilmiş 

grafiği aşağıda Şekil 4.24 de verilmiştir. 

 

(4.85) ile (4.78) ve (4.81) deki 𝑞1 =
1

2
, 𝑝1 =

1

2
, 𝑞2 =

1

2
 ve 𝑝2 = −

1

2
 değerlerini 

kullanarak 𝜙(𝜉) = 𝑠𝑒𝑐( 𝜉) + 𝑡𝑎𝑛( 𝜉) ve 𝜓(𝜂) = 𝑐𝑜𝑡ℎ( 𝜂) + 𝑐𝑠𝑐ℎ( 𝜂) fonksiyonları 

seçilirse, 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏0 − 2𝑘1 (−
𝑏3

2

4
−

𝑏4
2

4
) (− coth( −

𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧 +

2(−
3𝑏3

3𝑘1
2𝑛1

2
−𝑏3

2𝑏4𝑘1
2𝑛2−𝑏3𝑏4

2𝑘1
2𝑛1−

3𝑏4
3𝑘1

2𝑛2
2

−
𝑏3𝑏4

2𝑠1
2

)𝑦

𝑏4
3 −

2𝑏3
2𝑘1

2(−
3𝑏3

3𝑘1
2𝑛1

2
−

3𝑏3
2𝑘1

2𝑏4𝑛2
2

−𝑏3𝑏4
2𝑘1

2𝑛1−
3𝑏4

3𝑘1
2𝑛2

2
−

𝑏4
2𝑏3𝑠1

2
)𝑡

𝑏4
5 ) − csch(−

𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧 +

2(−
3𝑏3

3𝑘1
2𝑛1

2
−𝑏3

2𝑏4𝑘1
2𝑛2−𝑏3𝑏4

2𝑘1
2𝑛1−

3𝑏4
3𝑘1

2𝑛2
2

−
𝑏3𝑏4

2𝑠1
2

)𝑦

𝑏4
3 −
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2𝑏3
2𝑘1

2(−
3𝑏3

3𝑘1
2𝑛1

2
−

3𝑏3
2𝑘1

2𝑏4𝑛2
2

−𝑏3𝑏4
2𝑘1

2𝑛1−
3𝑏4

3𝑘1
2𝑛2

2
−

𝑏4
2𝑏3𝑠1

2
)𝑡

𝑏4
5 )) /(𝑏4(𝑏3 + 𝑏4(sec(−𝑘1𝑥 − 𝑛1𝑧 −

𝑠1𝑦 + 𝑘1
2(𝑘1

2𝑛1 − 𝑠1)𝑡) − tan(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 𝑘1
2(𝑘1

2𝑛1 − 𝑠1)𝑡))(− coth(−
𝑏3𝑘1𝑥

𝑏4
−

𝑛2𝑧 +
2(−

3𝑏3
3𝑘1

2𝑛1
2

−𝑏3
2𝑏4𝑘1

2𝑛2−𝑏3𝑏4
2𝑘1

2𝑛1−
3𝑏4

3𝑘1
2𝑛2

2
−

𝑏3𝑏4
2𝑠1

2
)𝑦

𝑏4
3 −

2𝑏3
2𝑘1

2(−
3𝑏3

3𝑘1
2𝑛1

2
−

3𝑏3
2𝑘1

2𝑏4𝑛2
2

−𝑏3𝑏4
2𝑘1

2𝑛1−
3𝑏4

3𝑘1
2𝑛2

2
−

𝑏4
2𝑏3𝑠1

2
)𝑡

𝑏4
5 ) − csch(−

𝑏3𝑘1𝑥

𝑏4
− 𝑛2𝑧 +

2(−
3𝑏3

3𝑘1
2𝑛1

2
−𝑏3

2𝑏4𝑘1
2𝑛2−𝑏3𝑏4

2𝑘1
2𝑛1−

3𝑏4
3𝑘1

2𝑛2
2

−
𝑏3𝑏4

2𝑠1
2

)𝑦

𝑏4
3 −

2𝑏3
2𝑘1

2(−
3𝑏3

3𝑘1
2𝑛1

2
−

3𝑏3
2𝑘1

2𝑏4𝑛2
2

−𝑏3𝑏4
2𝑘1

2𝑛1−
3𝑏4

3𝑘1
2𝑛2

2
−

𝑏4
2𝑏3𝑠1

2
)𝑡

𝑏4
5 ))))                                                   (4.89) 

 

şeklinde bir çözüm elde edilir. Bu dalga çözümünün grafiği Şekil 4.25 de verilmiştir. 

 

    
Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟒  𝑘1 = 1.6, 𝑠1 = 1.8, 𝑛1 = −2.1,

𝑛2 = −2.3, 𝑤1 = 1.7, 𝑏0 = 1.9 
 𝑏3 = 2.2, 𝑏4 = 1.9, 𝑧 = 1.8, 𝑡 = −2.3.

      

 Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟓  𝑘1 = 1.7, 𝑠1 = 0.8, 𝑛1 = −2.1,
𝑛2 = −1.3, 𝑤1 = 0.4, 𝑏0 = 1.5,

𝑏3 = 1.2, 𝑏4 = 0.9, 𝑧 = 2.1, 𝑡 = 1.5.
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Burada ise (4.86) daki çözüm eşitlikleri ile (4.78) ve (4.81) deki 𝑞1 =
1

2
, 𝑝1 =

1

2
, 𝑞2 =

1

2
 ve 𝑝2 = −

1

2
 değerlerinin oluşturduğu 𝜙(𝜉) = 𝑠𝑒𝑐( 𝜉) + 𝑡𝑎𝑛( 𝜉) ve 𝜓(𝜂) = 𝑡𝑎𝑛ℎ( 𝜂) +

𝑖 𝑠𝑒𝑐ℎ( 𝜂) fonksiyonları seçilirse, 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏0 + 2𝑘1(−
𝑏3

2

4
−

𝑏4
2

4
)(sec(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 𝑘1

2(𝑘1
2𝑛1 − 𝑠1)𝑡) − tan( −

𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 𝑘1
2(𝑘1

2𝑛1 − 𝑠1)𝑡))/(𝑏3(𝑏3 + 𝑏4(sec(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 𝑘1
2(𝑘1

2𝑛1 −

𝑠1)𝑡) − tan(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 𝑘1
2(𝑘1

2𝑛1 − 𝑠1)𝑡))(tanh(−
𝑏4𝑘1𝑥

𝑏3
+ 𝑛2𝑧 +

2(
3𝑏3

3𝑘1
2𝑛2

2
−𝑏3

2𝑏4𝑘1
2𝑛1+𝑏3𝑏4

2𝑘1
2𝑛2−

3𝑏4
3𝑘1

2𝑛1
2

−
𝑏3

2𝑏4𝑠1
2

)𝑦

𝑏3
3 −

2𝑘1
2𝑏4

2(
3𝑏3

3𝑘1
2𝑛2

2
−𝑏3

2𝑏4𝑘1
2𝑛1+

3𝑏3𝑏4
2𝑘1

2𝑛2
2

−
3𝑏4

2𝑘1
2𝑛1

2
−

𝑏3
2𝑏4𝑠1

2
)𝑡

𝑏3
5 ) + sech (−

𝑏4𝑘1𝑥

𝑏3
+ 𝑛2𝑧 +

2(
3𝑏3

3𝑘1
2𝑛2

2
−𝑏3

2𝑏4𝑘1
2𝑛1+𝑏3𝑏4

2𝑘1
2𝑛2−

3𝑏4
3𝑘1

2𝑛1
2

−
𝑏3

2𝑏4𝑠1
2

)𝑦

𝑏3
3 −

2𝑘1
2𝑏4

2(
3𝑏3

3𝑘1
2𝑛2

2
−𝑏3

2𝑏4𝑘1
2𝑛1+

3𝑏3𝑏4
2𝑘1

2𝑛2
2

−
3𝑏4

3𝑘1
2𝑛1

2
−

𝑏3
2𝑏4𝑠1

2
)𝑡

𝑏3
5 ) 𝑖)))                                                       (4.90) 

 

şeklindeki çözüme ulaşılır. Bu çözümün iki farklı dalga grafiği aşağıda verilmiştir.  

    
Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟔  𝑘1 = 0.4, 𝑠1 = 0.9,   
𝑛1 = 0.7, 𝑛2 = −0.1, 𝑏0 = 2.9,

𝑏3 = 1.6, 𝑏4 = 1.1, 𝑧 = 2.3, 𝑡 = 1.
                       

 Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟕  𝑘1 = −0.3,  𝑠1 = 0.8,   
𝑛1 = 0.7, 𝑛2 = −0.9, 𝑏0 = 2.1,   

𝑏3 = 0.7, 𝑏4 = 2.1, 𝑧 = 0.6, 𝑡 = 1.1.
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(4.86) daki çözüm eşitlikleri ile (4.90) dan farklı bir kompleksiton çözüm bulmak 

için (4.79) ve (4.81) deki 𝑞1 = 1, 𝑝1 = 1, 𝑞2 =
1

2
 ve 𝑝2 = −

1

2
  değerlerinin oluşturduğu 

𝜙(𝜉) = 𝑡𝑎𝑛( 𝜉) ve 𝜓(𝜂) = 𝑡𝑎𝑛ℎ( 𝜂) − 𝑖 𝑠𝑒𝑐ℎ( 𝜂) fonksiyonları seçilirse, 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏0 − 2𝑘1(−
𝑏3

2

2
−

𝑏4
2

2
) tan(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 4𝑘1

2 (4𝑘1
2𝑛1 − 𝑠1)𝑡)/

(𝑏3(𝑏3 − 𝑏4 tan(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 4𝑘1
2 (4𝑘1

2𝑛1 − 𝑠1)𝑡)(tanh (−
2𝑏4𝑘1𝑥

𝑏3
+ 𝑛2𝑧 +

4(3𝑏3
3𝑘1

2𝑛2−4𝑏3
2𝑏4𝑘1

2𝑛1+2𝑏3𝑏4
2𝑘1

2𝑛2−6𝑏4
3𝑘1

2𝑛1−
𝑏3

2𝑏4𝑠1
2

)𝑦

𝑏3
3 −

16𝑘1
2𝑏4

2(3𝑏3
3𝑘1

2𝑛2−4𝑏3
2𝑏4𝑘1

2𝑛1+3𝑏3𝑏4
2𝑘1

2𝑛2−6𝑏4
3𝑘1

2𝑛1−
𝑏3

2𝑏4𝑠1
2

)𝑡

𝑏3
5 ) − sech (−

2𝑏4𝑘1𝑥

𝑏3
+ 𝑛2𝑧 +

4(3𝑏3
3𝑘1

2𝑛2−4𝑏3
2𝑏4𝑘1

2𝑛1+2𝑏3𝑏4
2𝑘1

2𝑛2−6𝑏4
3𝑘1

2𝑛1−
𝑏3

2𝑏4𝑠1
2

)𝑦

𝑏3
3 −

16𝑘1
2𝑏4

2(3𝑏3
3𝑘1

2𝑛2−4𝑏3
2𝑏4𝑘1

2𝑛1+3𝑏3𝑏4
2𝑘1

2𝑛2−6𝑏4
3𝑘1

2𝑛1−
𝑏3

2𝑏4𝑠1
2

)𝑡

𝑏3
5 ) 𝑖)))                                                 (4.91) 

 

çözümüne ulaşılır. Bu çözümdeki parametrelere sabit değerler verilerek oluşturulan grafik 

aşağıdaki gibidir. 

 

 

 

 

 

 

 

      

Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟖    𝑘1 = 2.6, 𝑠1 = 0.7,   
𝑛1 = 1.3, 𝑛2 = 0.8, 𝑏0 = 1.9,

𝑏3 = 1.1, 𝑏4 = 1.1  𝑧 = 0.4, 𝑡 = 0.3.
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Ek olarak, (4.86) daki eşitlikler ile (4.77) ve (4.80) deki 𝑞1 = −1, 𝑝1 = −1, 𝑞2 = 1 

ve 𝑝2 = −1  değerlerinin oluşturduğu 𝜙(𝜉) = 𝑐𝑜𝑡( 𝜉) ve 𝜓(𝜂) = 𝑡𝑎𝑛ℎ( 𝜂) fonksiyonlarını 

kullanarak, 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑏0 − 𝑘1(𝑏3
2 + 𝑏4

2) cot(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 4𝑘1
2( 4𝑘1

2𝑛1 − 𝑠1)𝑡)/(𝑏3(𝑏3 −

𝑏4 cot(−𝑘1𝑥 − 𝑛1𝑧 − 𝑠1𝑦 + 4𝑘1
2( 4𝑘1

2𝑛1 − 𝑠1)𝑡) tanh(
𝑏4𝑘1𝑥

𝑏3
+ 𝑛2𝑧 −

(−12𝑏3
3𝑘1

2𝑛2−8𝑏3
2𝑏4𝑘1

2𝑛1−8𝑏3𝑏4
2𝑘1

2𝑛2−12𝑏4
3𝑘1

2𝑛1−𝑏3
2𝑏4𝑠1)𝑦

𝑏3
3 +

4𝑏4
2𝑘1

2(−12𝑏3
3𝑘1

2𝑛2−8𝑏3
2𝑏4𝑘1

2𝑛1−12𝑏3𝑏4
2𝑘1

2𝑛2−12𝑏4
3𝑘1

2𝑛1−𝑏3
2𝑏4𝑠1)𝑡

𝑏3
5 )))                                                    (4.92) 

 

çözümünü elde ederiz. (4.92) çözümünün kompleksiton dalga yayılımını gösteren grafik 

aşağıda sunulmuştur. 

 

 

 

 

 

                                                                              

 

 

 

 

Ş𝒆𝒌𝒊𝒍 𝟒. 𝟐𝟗    𝑘1 = 0.7, 𝑠1 = −1.8,   
𝑛1 = 1.9, 𝑛2 = 1.7, 𝑏0 = 2,

𝑏3 = −1.1, 𝑏4 = 0.9  𝑧 = −1.3, 𝑡 = 2.5.
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5. BULGULAR VE TARTIŞMA 

 

 

Bu tez kapsamında, bazı lineer olmayan oluşum denklemlerine iki farklı yöntem 

uygulanarak çeşitli fonksiyon tiplerinde tam çözümleri bulunmuştur. Çoğu tam çözüm 

yönteminde olduğu gibi, çözümler denge sabiti olarak adlandırılan bir tam sayı ile kesilen 

toplamlar biçiminde bulunur. Bu nedenle, denge sabiti çözüm formunu daha karmaşık ve 

uzun hale getirebilir. Bu tezde uygulanan (G′/G, 1/G) açılım yöntemi ve modifiye edilmiş 

çiftli alt denklem yöntemi sayesinde lineer olmayan oluşum denklemlerinin tam çözüm 

sınıflarına dahil olan trigonometrik, hiperbolik ve kompleksiton çözümlerine ulaşılmış 

ayrıca ulaşılan çözümlere uygun değerler verilerek resmedilmiştir. Böylece yalnızca lineer 

olmayan denklemlerin analitik çözümlerini bulmakla kalınmamış, aynı zamanda 

okuyucuların elde edilen çözümlerdeki dalgaların yayılımını ve hareketini anlamasına 

yardımcı olan grafikler verilmiştir. Modifiye edilmiş çiftli alt denklem yöntemi kullanılarak 

elde edilen kompleksiton çözümlerin grafikleri, iki değişkenli açılım yöntemi kullanılarak 

elde edilen analitik çözümlerin grafikleri ile kıyaslandığında bariz farklılıklar olduğu 

görülebilir. Bu farklılıklar, kompleksiton dalgaların hızları ve çözümlerinin çeşitli fonksiyon 

tiplerini birlikte içermesinden kaynaklanır.  

 

Ayrıca, bu yüksek lisans tezi kapsamında yapılan çalışmalardan üretilen iki adet 

makale çeşitli uluslararası bilimsel dergilerde incelenerek yayımlanmak üzere kabul almıştır. 
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6. SONUÇ VE ÖNERİLER 

 

 

Tez dahilinde, iki değişkenli açılım yöntemi, biri (2+1) boyutlu diğer üçü (3+1) 

boyutlu olan dört farklı oluşum denklemine uygulanıp hiperbolik ve trigonometrik çözümler 

elde edilmiştir. Dahası, modifiye edilmiş çiftli alt denklem yöntemi, (3+1) boyutlu KdV tipi 

denkleme uygulanıp hiperbolik ve trigonometrik çözümleri aynı anda çözüme dahil eden 

kompleksiton çözümler bulunmuştur. Uygulanan iki yöntem sadece bu tezde kullanılan 

oluşum denklemleriyle sınırlanmayıp, bu konuda çalışmalar yapmak isteyen araştırmacılar 

tarafından daha yüksek denge sabitine sahip lineer olmayan oluşum denklemlerine 

uygulanabilir ve çeşitli tam çözüm sınıflarına ulaşılabilir. Böylece tam çözüm 

sınıflandırılması yapılabilir ve dalgaların davranışları hakkında detaylı bilgiler elde 

edilebilir. Ek olarak, kompleksiton çözümlerin son yıllarda ortaya çıkması sebebiyle yeni 

birçok uygulama ve genelleştirmeler yapılabileceği daha sonraki çalışmalar için bir öneri 

mahiyetindedir. 
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