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OZET

Lineer olmayan olusum denklemlerinin bircogu bazi dalga yapilarmi temsil
etmesinden dolay1 dalga ¢oziimleri ve analizleri; akiskanlar fizigi, uygulamali matematik ve
iligkili diger bilim dallarinda arastirma konusu olmustur. Dalga ¢ézlimleri iizerine yapilan
aragtirmalar ile e¢lde edilen tam ¢Oziimlerin, dalganin hareketi, hizi ve fiziksel
karakterizasyonu hakkinda bilgi verdigi bilindiginden son birkag yilda bu denklemlerin tam
¢oziimlerini elde etmek i¢in birgok algoritmaya ve prosediire sahip yontemler gelistirilmistir.
Ayrica bu yontemler sayesinde cesitli dalga ¢oziimlerinin siniflar1 hakkinda ¢ikarim

yapilmaktadir.

Bu tez, bazi lineer olmayan olusum denklemlerinin analitik ¢oziimlerini, iKi
degiskenli acilim yontemi kullanilarak Oncesinde verilen yardimer kavramlar ile
sunmaktadir. Bu yontemin etkili oldugunu kanitlamak i¢in yararlanilan denklemler (2+1)
boyutlu B-Tipi Kadomtsev-Petviashvili (BKP) denkleminin yeni formu, (3+1) boyutlu BKP-
Boussinesq denkleminin yeni formu, (3+1) boyutlu birinci formda genisletilmis Jimbo-

Miwa denklemi ve (3+1) boyutlu ikinci formda genisletilmis Jimbo-Miwa denklemidir.

Bu ¢alismalara ek olarak, tam ¢o6ziimlerin yeni bir smifi olan ‘‘kompleksiton
¢oziimler’” bulmada kolaylik saglayan modifiye edilmis ¢iftli alt denklem yontemi {izerinden
(3+1) boyutlu Korteweg-de Vries (KdV) tipi denklemin hiperbolik ve trigonometrik
fonksiyonlarin birlesmesi ile olusan kompleksiton ¢6ziimleri verilmistir. Dahasi, elde edilen
analitik ¢oziimlerin fiziksel karakterizasyonu, ¢esitli parametrelerin secilmis sabit degerleri

ile grafikler sayesinde mevcuttur.

Anahtar Kelimeler: Hareketli Dalga Coziimleri, Analitik Coziimler, Kompleksiton

Coziimler, Lineer Olmayan Olusum Denklemleri.
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SUMMARY

Since many nonlinear evolution equations represents some wave structure, their
wave solutions and analysis has been topic of research in fluid physics, applied mathematics
and other related areas. Since it is known that exact solutions obtained from researches made
on wave solutions give informations about wave motions, wave speeds and their physical
characteristics, in the last few years, methods with many algorithms and procedures have
been developed to obtain the exact solutions of these kinds of equations. Besides, with the

help of these methods some inferences are made about the classes of various wave solutions.

This thesis presents the analytical solutions of some nonlinear evolution equations
by using two variable expansion method with the auxiliary concepts given before. The
equations used to prove that this method is effective, are the new form of (2+1)-dimensional
B-Type Kadomtsev-Petviashvili (BKP) equation, the new form of (3+1)-dimensional BKP-
Boussinesq equation, the first extended (3+1)-dimensional Jimbo-Miwa equation and second
extended (3+1)-dimensional Jimbo-Miwa equation.

In addition to these studies, complexiton solutions of the (3+1)-dimensional
Korteweg-de Vries (KdV) type equation are given with the aid of the modified double sub-
equation method which provides conviences to find complexiton solutions which is a new
class of exact solutions and consist of hyperbolic and trigonometric functions. Moreover, the
physical characterization of the obtained analytical solutions is available through graphs with

selected constant values of various parameters.

Keywords: Travelling Wave Solutions, Analytical Solutions, Complexiton Solutions,

Nonlinear Evolution Equations.
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1. GIRIS VE AMAC

Matematiksel olarak, igerisinde bir bagimli degiskenin bir bagimsiz degiskene gore
tiirevini bulunduran denklem adi diferensiyel denklem olarak adlandirilirken, bir bagimli
degiskenin en az iki bagimsiz degiskene gore kismi tiirev veya tiirevlerini bulunduran
denklem ise kismi diferensiyel denklem olarak adlandirilir. Lineer olmayan olusum
denklemleri ise, yeryliziinde karsilasilan bilimsel problemleri matematiksel olarak sunan
kismi diferensiyel denklemlerdir. Ozellikle, modern fizik ve uygulamali matematikte genis
bir ¢alisma alanina sahip olan dalga mekaniginden 6tiirii, dalga problemlerini modelleyen

olusum denklemleri tizerine ¢alismalar artmakta ve siirekli gelismektedir.

Analitik ¢6ziim arastirmalari, dalga yayilimlarini veren lineer olmayan olusum
denklemlerini de i¢inde barindiran birgcok modellemenin davranislarini anlamada katki
sagladigindan ve bu modellemelerin denklemlerinin genel ¢oziimlerini elde etmek her
zaman miimkiin olmadigindan, uygulamali bilimlerin vazgecilmez bir konusu haline
gelmistir. Son birkag yildir, sayisal yontemlerin zorlayict matematiksel ugras gerektirmesi
ve dalgalarin biiyiik bir kismmda mevcut olan “’lineer olmama’” kavraminin getirdigi zorluk
karsisinda, gorece daha etkili ve net sonuglar verdiginden tam ¢6ziim yontemlerinin iizerine
odaklanilmaktadir. Boylece, arastirmacilar tam ¢6ziim bulma siirecinde daha az prosediire
sahip ¢esitli teknikler kullanmakta ve gelistirmektedir. Bu teknikler uygulanarak elde edilen
tam ¢Oziimler, dogada ortaya ¢ikan modellemeleri temsil etmekle birlikte uzay ve zaman
acisindan farkli boyutlardaki olusum denklemlerinin zamani baz alan degisim, gelisim, sekil

ve hizlar1 hakkinda birgok bilgi edinilmesini saglar.

Tam ¢6ziim bulma siireci, verilen kismi diferensiyel denklemin dalga doniisiimii
sayesinde adi diferensiyel denkleme doniistiiriilmesi ile baslar, genellikle homojen denge
sabiti kullanilmasiyla devam eder ve bu denge sabitine bagli olarak belirli bir formda dalga
¢ozlimleri aranmasi ile sonuglanir. Elde edilen dalga ¢oziimleri trigonometrik, hiperbolik,
rasyonel ve cesitli fonksiyonlari igerebilir. Eger elde edilen dalga ¢oziimii, hiperbolik ve
trigonometrik fonksiyonlar1 birlikte i¢eriyorsa bu ¢oziim tam ¢6ziimlerin yeni bir iiyesi olan
kompleksiton ¢oziime karsilik gelir. Kompleksiton dalgalari, diger dalgalardan ayiran en

onemli ozellikleri kendilerine 6zgii dalga sekilleri ve hizlaridir.



2

Bu yiiksek lisans tezinin amaci, su dalgalarini modelleyen (2+1) boyutlu B-tipi
Kadomtsev—Petviashvili (BKP) denkleminin yeni formu, (3+1) boyutlu BKP-Boussinesq
denkleminin yeni formu ve Jimbo-Miwa denklemlerinin iki yeni genisletilmis versiyonunun
analitik ¢oziimlerini gii¢lii ve etkili bir yontem olan (G'/G, 1/G) a¢ilim metodu kullanarak
elde etmektir. Bu tam ¢o6ziimlere ek olarak, (3+1) boyutlu Korteweg-de Vries tipi
denkleminin kompleksiton ¢oziimleri modifiye edilmis ciftli alt denklem metodu ile
verilecektir. Ayrica, bahsedilen denklemlerin dalga hareketlerini analiz etmek ve
kompleksiton dalgalarin sekillerindeki farkliligt ortaya koymak i¢in ¢ozliimdeki

parametrelere baz1 gergek degerler verilerek agiklayici grafiklerle desteklenecektir.



2. LITERATUR ARASTIRMASI

Tiirev kavrami kabaca geometrik olarak tegetin egimine, fizikte anlik hiza, kimyada
tepkime hizina, ekonomi biliminde marjinal maliyete, biyolojide popiilasyon dinamiklerine
karsilik gelir (Balct, 2003). Okuyucularin matematige yakin ve uzak her alandan olabilecegi
diisiincesiyle, tiirev kavrami kisaca ’degisim’’ olarak ifade edilebilir ve icerisinde degisim
olan her alanda karsimiza c¢ikabilmektedir. Bircok bransta karsilasilan baslica sorunlari
matematik diline ¢eviren tiirevli denklemler, bagimsiz degisken sayisina bagl olarak adi ve
kismi diferensiyel denklem olarak isimlendirilir. Esas dayanagi zaman olan kismi
diferensiyel denklemler, lineer olmayan olusum denklemleri olarak bilinir. Diferensiyel
denklem c¢alismalar1 17. yiizyilin sonlarinda Newton ve Leibniz ile basladi ve bilimin
gelismesi ile yeni problemlerin ortaya ¢ikmasi neticesinde 20. yiizyilin baslarinda lineer

olmayan olusum denklemlerinin ¢oziimleri lizerine yogunlasti.

Bu tezde ilk olarak bahsedilen olusum denklemleri, (3+1) boyutlu genellestirilmis B-
tipi Kadomtsev-Petviashvili (BKP) denkleminin (2+1) boyuta indirgenmis 6zel bir sekli
olarak tanimlanabilen BKP denkleminin yeni formu ve yine ayni1 denkleme yeni bir terim
eklenerek olusturulan (3+1) boyutlu BKP-Boussinesq denkleminin yeni formudur.
Kadomtsev-Petviashvili (KP) denklemi integrallenebilen bir denklem olup yar1 iki boyutlu
bir ortamda yayilan zayif dagilimli ve kiigiik genlikli dalgalari ifade eder (Wazwaz, 2011).
B-tipi KP hiyerarsisi de KP hiyerarsisindeki gibi igerisinde integrallenebilir bir¢ok yapi
barindirir. Bu sebepten 6tiirii bu tip denklemlerin arastirilmasi integrallenebilirlik incelemesi

agisindan 6nem teskil etmektedir.

Daha sonra, standart Jimbo-Miwa denkleminin belirli terimlerinin genisletilmesi ile
literatiire gegen birinci ve ikinci formda genisletilmis (3+1) boyutlu Jimbo-Miwa
denklemleri ele alinmistir. Jimbo-Miwa denklemini ilgi gekici kilan sey, KP hiyerarsisine
ikinci sirada dahil olmasina ragmen klasik integrallenebilirlik kosullarindan higbirini
saglamamasidir. Bu 6zelligi sayesinde tam ¢6ziimii lizerine arastirmalar1 biiyiik bir 6nem

kazanmustir.



Son olarak, (3+1) boyutlu Korteweg-de Vries tipi denklemin kompleksiton
¢ozlimleri aragtirllmistir. En eski soliton denklemi olan KdV denklemi, ilk olarak Korteweg
ve de Vries tarafindan s1g su dalgalarinin modellemesinde kullanilmistir. Giiniimiizde hala
lizerine arastirmalar yapilmakta ve akiskanlar dinamigindeki 6nemini korumaktadir. (3+1)
boyutlu KdV tipi denklem ise ilk olarak Wazwaz (2012) tarafindan tanitilmis ve

integrallenemez bir denklem oldugu belirtilmistir.

Literatiire baktigimizda lineer olmayan olusum denklemlerinin sayisal ve yaklasik
¢oziimleri disinda tam ¢dzlimleri ile ilgili ¢ok fazla bilimsel ugras vardir. Bunun baglica
sebebi, lineer olmayan kismi diferensiyel denklemlerin ¢6ziimlerinin bulunmasindaki
zorluktur. Teknolojinin gelismesiyle birlikte matematiksel hesaplarin kolaylagsmasi ve
gorsellerinin daha basit resmedilmesi zorluklar1 bir nebze azaltmis olup modellenen
problemlerin ¢6ziime ulastirilmasini saglamaktadir. Yiiksek mertebeli lineer olmayan kismi
diferensiyel denklemlerin ¢oziimlerini bulmak igin g¢esitli tam ¢6ziim yontemleri

gelistirilmektedir.

Bahsi gecen BKP denklemlerinin yeni formlarna ve genisletilmis Jimbo-Miwa
denklemlerinin tam ¢6ziimlerini bulmak igin bu tezde kullanilacak teknik (G'/G, 1/G) agilhim
yontemidir. Bu yontem tek degiskenli (G'/G) agilim yonteminin iki degisken alinarak
gelistirilmesiyle ortaya ¢ikmustir. Literatiirde, (G'/G) agilim yontemi ilk olarak Wang vd.
(2008) tarafindan tanitilmigtir. Daha sonra, Guo ve Zhou (2010) genisletilmis (G'/G) agihm
yontemi olarak adlandirilan gelistirilmis bir versiyonunu sunmustur. Sonrasinda Li vd.
(2010) genellestirilmis (G'/G) agilim ydntemini gelistirdi. Iki degiskenli (G'/G, 1/G) agilim
yontemi ise ilk olarak Li vd. (2010) tarafindan bir denklem sistemine uygulanarak yakin
gecmiste literatiire girmistir. ilerleyen zamanlarda, bir¢ok bilim insani1 tarafindan bu ydntem
kullanilarak bazi hareketli dalga denklemlerinin farkli fonksiyon tipinde tam ¢oziimleri

bulunmustur.

Tam ¢Oziim yOntemlerinin gelisip artmasi ile ¢esitli tam ¢oziim siniflar1 ortaya
¢ikmistir. Son birkag yildir Ma (2002) sayesinde bilim diinyasinda var olan kompleksiton
¢ozlim sinifi, diger tam ¢6ziim smiflarina gore daha yeni ve yapilari itibariyle daha dikkat
cekicidir. Bu yeni tam ¢6ziim siifinin mevcudiyeti ile kompleksiton ¢oziim bulmadaki

arastirmalar, Wazwaz ve Zhagilao (2013) tarafindan takdim edilen yontem, genisletilmis



doniistiiriilmiis rasyonel fonksiyon yontemi, genellestirilmis bilesik Riccati denklemleri
rasyonel agilim yontemi, ¢oklu Riccati denklemleri rasyonel agilim yontemi, modifiye
edilmis ciftli alt denklem yontemi gibi bazi yeni yontemlere ilham kaynagi olmustur. Bu
calismada (3+1) boyutlu KdV tipi denklemin kompleksiton ¢oziimiinii ararken modifiye
edilmis ¢iftli alt denklem yonteminden yararlanilacaktir. Bu yontem Chen vd. (2013)
tarafindan sunulan ¢iftli alt denklem yonteminin degistirilmis halidir. Modifiye edilmis ¢iftli
alt denklem yontemi Yang ve Chen (2013) tarafindan Fisher ve KP denklemlerine, Hossen
vd. (2017) tarafindan Burgers ve Gardner denklemlerine, Unsal ve Sakartepe (2020)
tarafindan (2+1) boyutlu BKP denkleminin yeni formuna uygulanarak kompleksiton
¢oziimlere ulasilmigtir. Ayrica bu tezde arastirilacak olan (3+1) boyutlu KdV tipi denklemin,
Wazwaz ve Zhagilao’nun énerdigi yontem kullanilarak Unsal (2018 a) tarafindan elde edilen
kompleksiton, soliton ve soliton-kompleksiton etkilesim ¢oziimleri literatiirde yer

almaktadir.



3. TEMEL KAVRAMLAR

Olusum denklemleri ve tam ¢oziimleri lizerine yapilan ¢alismalar, giinlimiizde bir¢ok
bilim dalinda biiyiik 6neme sahip ve iizerine yogunlasilan bir konu haline gelmistir. Bunun
baslica sebebi, denklemin modelledigi hareketli dalga yapilar1 hakkinda detayl bilgilere
sahip olma istegidir. Hareketli dalgalarin incelenmesi, dalgalarin 6zellikleri, davranislari ve
yapilar1 hakkinda daha fazla bilgi sahibi olunmasini analizler yardimiyla saglar. Dalgalarin
yapisini anlamak agisindan onlar ifade eden denklemler ve ¢oziimleri hakkinda kapsamli
bir bilgi sahibi olmak ¢esitli problemlerin ¢6ziimii i¢in ilk adimdir. Ayrica, siirlayict ve
0zel degerler alinarak bulunan dalga grafikleri, analitik c¢oziimleri agiklamaya ve
netlestirmeye olanak saglar. Bu 6zelliginden dolay1, dalga denklemlerinin tam ¢6ziimlerini
bulmak ve resmetmek icin ¢esitli arastirmalar literatiire girmistir. Tam ¢éztimlerin, yaklasik
¢oziimlere kiyasla daha net ve kesin bir ¢6ziim oldugu bilindiginden fazla sayida tam ¢6ziim

yontemi gelistirilmistir.

Tez calismasinin daha iyi anlagilmasi agisindan bilinmesi gereken temel bilgiler bu
boliimde verilmistir. Literatiirde gecen birgok kavramin tanimi ve nerelerde kullanildiklari
kisaca bahsedilmistir. Ilk olarak, lineer olmayan olusum denklemlerini barindiran kismi
diferensiyel denklemler ve bazi 6rnekleri sunulmustur. Sonrasinda, gesitli dalga tipleri
tanmitilmistir. Son olarakta, tam ¢oziimler ve tam ¢6ziim bulma ydntemlerinin genel

ozellikleri verilmistir.
3.1 Kismi Diferensiyel Denklemler

Kismi diferensiyel denklemler, en az iki bagimsiz degisken iceren bir bagimli
degiskenin herhangi bir mertebeye kadar bagimsiz degiskenlerine gore tiirevlerini barindiran

denklemlerdir. Genel olarak, (x,y) bagimsiz degisken ve u(x,y) bagimlh degisken olmak

tizere bir kismi diferensiyel denklem,
F(x,y,uy, Uy, Uy Uyy, Uyy, w)=0 (3.1)

formuna sahiptir.



Denklemin mertebesi, diferensiyel bir denklem i¢inde bulunan en yiiksek mertebeli tiirevi
belirtir. Diferensiyel bir denklemin polinom formunda yazilisindaki en yiiksek mertebeden tiirevli
teriminin kuvveti ise denklemin derecesi olarak adlandirilir.

Ornek 3.1.1 Kismi diferensiyel denklemlere en basitinden, x ve t gibi yalmzca iki bagimsiz
degiskeni olan birinci mertebeden yani bagimli degisken olan u’nun iki ve daha fazla
tiirevlerinin bulunmadig1 adveksiyon denklemi olarakta bilinen

U +cu, =0 (3.2)
seklindeki ¢’nin sabit sayiy1 ifade ettigi kismi diferensiyel denklemi Grnek olarak verilebilir.
Ornek 3.1.2 ikinci mertebeden bir kismi diferensiyel denkleme ise,

Uyy T Uyy =0 (3.3
seklinde olan Laplace denklemi 6rnek olarak gosterilebilir.
Ornek 3.1.3 Korteweg-de Vries denklemi,

Up + CUUy + Uyyy =0 (3.4)

seklinde ifade edilebilen, dalga yayilim1 i¢in bir model olarak kullanilan ve soliton ad: verilen analitik

¢Oziimlere sahip ligiincii mertebeden lineer olmayan bir kismi diferensiyel denklemdir.

Ornek 3.1.4 Biharmonik denklem ise

Uyyxx T Zuxxyy + Uyyyy = 0 (3.5

seklinde yazilan dordiincii mertebeden lineer bir kismi diferensiyel denklemdir.



3.1.1 Kismi Diferensiyel Denklemlerin Lineerlik Simiflandirilmasi

Lineerlik kavrami, (Koca, 2013) tarafindan “’bir kismi tiirevli denklemdeki bagimli
degisken ve kismi tiirevlerinin derecelerinin bire esit olmasi ile birlikte bagimli degisken ve
tiirevlerinin parantezine aldiginda katsayilar sadece bagimsiz degiskenlerin birer fonksiyonu
seklinde yazilabiliyor olmasi’” olarak tanimlanmistir. Kismi diferensiyel denklemler
lineerlik durumlarina gore incelendiginde lineer, yar1 lineer, hemen hemen lineer ve lineer

olmayan olmak tizere siniflandirilir.

3.1.1.1 Lineer kismi diferensiyel denklem

Yukarida tanimi verilen bir lineer birinci mertebeden kismi diferensiyel denklem genel

olarak u bagimli, x ve y bagimsiz degisken olmak iizere,

a(x, y)u, + b(x,y)u, + c(x,y)u = d(x,y) (3.6)

formuna sahiptir.

Ornek 3.1.5 Transport denklemi,

uy+u,=0 (3.7)

bi¢iminde yazilan birinci mertebeden lineer kismi diferensiyel denklemdir.

3.1.1.2 Yarn lineer kismi diferensivel denklem

Yart lineer kismi diferensiyel denklem, kismi tiirevli bir denklemdeki en yiiksek mertebeden
tirevlerinin lineerligi sagliyor olmasi durumudur. Yart lineerlikte, kismi tiirevli
denklemdeki en yiiksek mertebeden daha diisilk mertebeye sahip tiirevler ve bagimli
degiskenin bulunus sekli herhangi bir 6nem tegkil etmez. Bu ac¢idan bakildiginda, lineer her
denklem yar1 lineerdir denebilir fakat tersi her zaman dogru olmayabilir. Birinci mertebeden

yart lineer kismi diferensiyel bir denklemin genel formu,



a(x,y,wu, + b(x,y, Wu, = c(x,y,u) (3.8)

seklindedir.

Ornek 3.1.6 Yari lineer kismi tiirevli denkleme,

UylUyy + XUU, = Siny (3.9

bicimindeki bir denklem 6rnek olarak gosterilebilir.

3.1.1.3 Hemen hemen lineer kismi diferensiyel denklem

Bir kismi diferensiyel denklem hem yar1 lineer olup hem de denklemde ortaya ¢ikan en
yiiksek mertebeli tiirevlerin katsayilar1 yalnizca bagimsiz degiskenlerin  birer
fonksiyonundan olusuyor ise hemen hemen lineer kismi diferensiyel denklem olarak
adlandirlir. Tkinci mertebeden hemen hemen lineer kismi diferensiyel denklem en genel

haliyle,
a(x, YUy + b(x, YUy, + c(x, y)uyy + d(x, Y, U, Uy, uy) =0 (3.10)
seklinde ifade edilir.

Ornek 3.1.7 Hemen hemen lineer kismi diferensiyel denkleme, asagidaki gibi verilen

denklem Ornek olabilir.
XUy + €YUy, +uu, =0 (3.11)

3.1.1.4 Lineer olmavan kismi diferensiyel denklem

Lineer olma kosulunu saglamayan kismi tiirevli denklemler, lineer olmayan kismi
diferensiyel denklem olarak isimlendirilir. Bu tez dahilinde, lineer olmayan kismi

diferensiyel denklemler {izerinde durulacaktir.
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3.2 Lineer Olmayan Olusum Denklemleri

Zamana bagli olarak yazilabilen yani bagimsiz degiskenlerinden biri zaman (t) olan
kismi diferensiyel denklemler ayn1 zamanda lineer olmayan olusum denklemleridir. Gergek
hayattaki problemlerin modellemeleri olan olusum denklemlerinin ¢oziimleri sadece

matematik acgisindan degil birgok brans icin 6nemli ve gereklidir.
Ornek 3.2.1 En genel haliyle,
Uy — KUy = 0 (3.12)

olarak verilen 1s1 denklemi, x termal iletkenligi temsil eden pozitif bir sabit iken t aninda

u(x, t), x noktasindaki bir telin sicakligini temsil eden bir olusum denklemidir.
Ornek 3.2.2 Duffing denklemi,
U + bu+ cu® =0 (3.13)

seklindedir. Bu denklem b ve ¢ gergek sabitler olmak iizere klasik bir parcacigin ¢ift kuyu

potansiyelindeki hareketini tanimlayan lineer olmayan bir olusum denklemidir.

Ornek 3.2.3 Sine-Gordon denklemi,
utt—uxx+u—%u3 =0 (3.14)

iki stiper iletken arasindaki Josephson baglantilarinda akilarin yayilmasi, gerilmis bir tele
bagli kat1 sarkacin hareketi, kat1 hal fizigi ve metallerdeki dislokasyonlar gibi bir¢ok bilimsel

alanda karsimiza ¢ikan lineer olmayan bir olusum denklemidir.

Fiziksel problemleri daha iyi anlamak i¢in, bu tip denklemlerin ¢éziimlerini bulmak
acisindan ¢esitli algoritmalar gelistirilmistir. Bu algoritmalar sayesinde lineer olmayan
olusum denklemlerinin farkl tiirde ¢6ztimleri bulunmustur. Bu ¢6ziimlerden en bilinenleri

tam ¢Oziim Ve yaklasik ¢oziimlerdir. Bu tezde tam ¢oziimler tizerine odaklanilmistir.
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3.3 Tam Co6ziim

Lineer olmayan olusum denklemlerinin tam ¢6ziimleri i¢in ¢ok sayida metod vardir.
Bu metodlarin ¢ogunda siire¢, dalga donilisimii yardimiyla verilen kismi diferensiyel
denklemin adi diferensiyel denkleme indirgenmesi ile baslayip homojen denge sabitinin
kullanilmasi sayesinde ¢6ziim formunun olusmasi ile devam eder. Bu metodlar ile ilgili daha

detayli bilgiye ulasmak i¢in tez sonunda verilen referanslara bakilabilir.

3.3.1 Homojen Denge Prensibi

Homojen denge prensibi, tam ¢6ziim metodlarinda yaygin olarak kullanildigindan bilinmesi
elzemdir. Verilen kismi diferensiyel denklem, adi diferensiyel denkleme indirgendikten
sonra indirgenmis denklemdeki en yiiksek mertebeden tiirevli lineer terim ile en yiiksek
dereceli lineer olmayan terim arasindaki dengelenme sonucu olusan sabite homojen denge
sabiti denir. Homojen denge sabiti, aranan ¢oziimiin yapisin1 belirler. Bu sabit ne kadar

biiylik olursa ¢6ziim o derece uzun ve karmasik olur.

Ornek 3.3.1.1
Ut — Upx — (uz)xx + Upxxx =0 (3-15)

Boussinesq denklemi & = (x — vt) doniisimi kullanilarak indirgenip, iki kez integral

alinirsa

W2 -Du—-u?+u" =0 (3.16)

elde edilir ve bu denklemdeki en yiiksek dereceli lineer olmayan u? terimi ile en yiiksek

mertebeli lineer u'’ teriminin dengelenmesi,

M+2=2M (3.17)

seklindedir. Burada homojen denge sabiti M = 2 olarak bulunur.
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3.4 Dalga Tipleri

Dalga, en basit haliyle bir seklin zamana bagli degisiminin uzayda yayilmasi olarak
Ozetlenebilir. Dalga denilince akla ilk olarak ses ya da su dalgasi gelmesine ragmen sismik,
yay, radyo, mikrodalga, kizil 6tesi, goriiniir 151k, X-1s1nlar1, gama 1s1nlar1 ve mor 6tesi 1g1nlari
gibi ¢esitleri de vardir. Sismik, su, ses ve yay dalgalari, tasidiklar: enerjiye gore mekanik
dalga olarak adlandirilirlar. Radyo, mikrodalga, kizil 6tesi, goriiniir 151k, x-1s1nlari, gama
1sinlar1 ve mor 6tesi 1sinlari ise yine tasidiklari enerjiye gore elektromanyetik dalgalar olarak

siiflandirilirlar. Dalgalarin ¢esitli olmasindan dolay1 ¢aligsma alani oldukga genistir.

Bir fonksiyona konum ve zamana bagh olarak ¢ = x — vt olacak sekilde dalga
dontistimi yapilirsa f (&) = f(x — vt) fonksiyonu elde edilir. Bu fonksiyonda x konum, t
zaman, v ise bir dalganin hizin1 temsil eder. v > 0 ise dalga negatif yonde, v < 0 ise dalga

pozitif yonde ilerler.

3.4.1 Soliter Dalga ve Solitonlar

Tek dalga anlamina gelen soliter dalgalar, dalga siniflandirilmasi yapilirken genel bir
ifade olmasi sebebiyle ¢cok kullanilmazlar. Soliton dalgalar ise baska bir dalga ile etkilesime
girdiginde yapisin1 koruyan dalgalardir. Hali hazirda bulunan dalga cesitlerinden en ¢ok

karsilasilani soliton dalgalardir ve genel olarak iistel fonksiyonlar cinsinden ifade edilirler.

3.4.2 Kompleksiton Dalgalar

Ustel ve trigonometrik fonksiyonlari birlikte iceren dalga tipine kompleksiton dalga
denir. Kompleksiton dalgalar i¢erdikleri iki farkli fonksiyon tiirii sebebiyle diger dalgalardan
sekil ve hizlar agisindan kolayca ayrisirlar. Kompleksiton dalgalar karmasik yapilar: geregi
elde edilmesi zor bir dalga tipidir. Her olusum denklemi kompleksiton dalga ¢6ziimiine sahip

olmak zorunda degildir.
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3.4.3 Periyodik Dalgalar

Periyodik fonksiyonlar:1 ihtiva eden dalgalara periyodik dalgalar denir. Periyodik
dalgalar, isminden de anlasilacagi gibi igerdikleri fonksiyonlar geregi periyodik bir forma
sahiptirler ve goriiniislerinden kolayca ayirt edilebilirler. Sahip olduklar1 karakter geregi

birbirini tekrar eden dalgalardan olusur.
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4. MATERYAL VE YONTEM

Dalgalarin incelenmesi, eski c¢aglarda yasayan filozoflarin miizik aletlerindeki
seslerin frekanslarin1 bulma calismalarinin yapilmasi ile baglayip su kemerlerindeki
hareketlilik arastirmalarinin akigkanlar teorisinin ortaya ¢ikmasina zemin hazirlamasi ile
glinlimiize kadar 6nemini koruyan bir konu olmustur. Buna benzer bir¢ok alanda kendisine
yer bulan dalgalarin literatiirde sahip oldugu énemden 6tiirii, bu dalgalar1 modelleyen lineer
olmayan olusum denklemlerinin analitik ¢6ziim c¢alismalar1 daima gelismekte ve
yenilenmektedir. Analitik ¢oztimlerle iliskili oldugu bilinen tam ¢dziimlerin iizerine yapilan
calismalar bircok yeni yOntemin gelistirilmesine olanak saglamistir. Genisletilmis
doniistiiriilmiis rasyonel fonksiyon yontemi (Unsal, 2018 b), sine-cosine yéntemi (Tascan ve
Bekir, 2009), ters sacilma yontemi (Mikhailov, 1981), homojen denge yontemi (Wang,
1996), ilk integral yontemi (Bekir ve Unsal, 2013), (G’/G) agilim yéntemi (Unsal vd., 2017),
(G'/G, 1/G) agilim yontemi (Li vd., 2010; Demiray vd., 2014), Hirota yontemi (Zhou ve Ma,
2017), ciftli alt denklem yontemi (Liu vd., 2014), modifiye edilmis ¢iftli alt denklem yontemi
(Yang ve Chen, 2013; Hossen vd., 2017; Unsal ve Sakartepe, 2020) ve daha fazlasi tam

¢Oziim bulma yaklagimlarina 6rnek olarak verilebilir.

Yiiksek lisans tezinin bu boliimiinde bazi dalga denklemlerine (G'/G,1/G) agilim
yontemi ve modifiye edilmis ¢iftli alt denklem yontemi uygulanarak daha 6nce yapilan
calismalardan farkli olan yeni analitik ¢6ziimler bulunacak ve dalga hareketleri
incelenecektir. Bulunan bu ¢6ziimlerin belli zaman kesitlerinde dalga modellemeleri ii¢
boyutlu grafiklerle verilerek dalgalarin davranis ve karakteristik yapilar1 detaylandirilmistir.
(G'/G, 1/G) agilim yontemi uygulanarak elde edilen dalga ¢oziimleri yontemin gerektirdigi
sekilde hiperbolik, trigonometrik ve rasyonel olarak ii¢ farkli formda verilecektir. Modifiye
edilmis ciftli alt denklem yontemi uygulanarak ulasilacak olan kompleksiton ¢dzliimler ise
kompleksiton dalgalarin yapilarindan kaynaklanan ayirt edici 6zellik olan distel ve
trigonometrik fonksiyonlarin birlikte ¢6ziime dahil olmas: ile istenilen formda verilecektir.
Bu calismalar neticesinde yiiksek mertebeden lineer olmayan olusum denklemlerinin
analitik ¢oziimlerini bulmada bahsi gegen tekniklerin kullanisliligr ve etkililigini kanitlamak

acisindan literatiire katkida bulunulacag diisiiniilmektedir.
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4.1 ki Degiskenli (G'/G,1/G) A¢ihm Yéntemi

(G'/G,1/G) agihm yontemi, (G'/G) agilim yonteminde tek degisken yerine iki
degisken kullanilarak Li vd. (2010) tarafindan gelistirilmesi ile literatiire kazandirilmig bir
tekniktir. Bu yonteme gore, verilen kismi diferensiyel denklem dalga doniigiimii yardimiyla
adi diferensiyel denkleme indirgenir ve lineer olan yardimci bir alt denklem yardimiyla
(G'/G) ve (1/G) terimlerinin polinomu seklinde yazilir. Boylece elde edilen polinom, tam

¢Oziimleri ti¢ farkli tipte bulmayi saglar. (G'/G, 1/G) agihim yonteminin uygulama asamalar1

daha detayl bir sekilde Li vd. (2010) tarafindan asagidaki gibi takdim edilmistir.

Oncelikle, (G'/G, 1/G) yonteminde yararlanilacak olan yardimer alt denklem,

G" (&) +4G(E) = p (4.1)

bigiminde tanimlanan A ve y’niin sabit sayilar1 temsil ettigi ikinci mertebeden bir lineer adi

diferensiyel denklemdir. Matematiksel hesaplamalarda kolaylik saglamas1 agisindan,

G' 1
b=—=, p=- (4.2)
seklinde alinirsa ¢ ve Y degiskenlerinin tiirevleri asagidaki gibi yazilabilir.

¢ =—¢*+up -1, P =—¢y (4.3)

(4.1) de verilen lineer adi diferensiyel denklemin genel ¢éziimleri A sabitinin isaretine bagl

olarak ti¢ farkli durumda incelenir.

Durum 1: 21 <0 iken A; ve A, keyfi sabitler olmak iizere (2.1) deki adi diferensiyel

denklemin genel ¢oziimii, hiperbolik tipte

G(&) = A, sinh (V=2 &) + A, cosh(V—2 ) + %

(4.4)
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-2

=m(¢2—2m/)+ﬂ)

l/)2

olarak bulunur. Burada o, A; ve A, sabitlerinin kareleri farkini temsil etmektedir. ¢ = A% —
A3 seklinde ifade edilebilir.

Durum I1: A > 0 iken (4.1) deki diferensiyel denklemin genel ¢6ziimii, trigonometrik tipte

G(E) = A, sin(VAE) + A, cos(VAE) + %

(4.5)

P2 = L(<I52 —2up + 1)
Ao — u?

olarak bulunur. Buradaki o ise sabitlerin kareleri toplammi temsil eder. o = A% + A3

seklinde yazilabilir.

Durum I11: 2 = 0 iken (4.1) deki yardimci alt denklemin genel ¢6ziimii, rasyonel tipte

6(§) =582 + Mg + 4,

(4.6)
Y= m@z —2uy)
olarak elde edilir.
Bu yonteme gore v bagimli, x ve t bagimsiz degisken olmak iizere,
P(v, g, Uy, Vgt Uty Ugxer o) = 0 4.7

seklinde yazilan bir lineer olmayan olusum denkleminin tam ¢6ziimlerine ulagsmak igin

belirli adimlar izlenir. Bu adimlar su sekilde 6zetlenebilir:
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1. Adim: v(x, t) = v(&) ve & = x — ct dalga dontisiimii kullanilarak (4.7) kismi diferensiyel

denklemi,
P(v,—cv’,v', c®v"”,—cv",v",..) =0 (4.8)

biciminde ifade edilebilen bir adi diferensiyel denkleme déniistiiriliir. Burada v™, v(§)’in

&’ye gore n. mertebeden tiirevini temsil eder.

2. Adim: G (&) = G esitligi (4.1) lineer adi diferensiyel denklemini saglamak tizere,
v(§) = 9/1:0 aj¢j + 29'4=1 bj¢j_11/) (4.9)

biciminde ¢ ve 1’in bir polinomu seklinde yazilabilen bir ¢éziim aranir. Bu ¢6ziim
formunda a;, b;(j = 1, ..., M), A, Ve c, ¢6ziim siirecinin sonunda belirlenecek sabitler olup
M tamsayisi ise (4.8) adi diferensiyel denkleminde ortaya ¢ikan en yiiksek mertebeli lineer

terim ile en yiiksek dereceli lineer olmayan terim arasindaki dengeye tekabiil eder.

3. Adim: (4.2), (4.3) ve (4.4) ile birlikte arastirilan duruma gore (4.5), (4.6) yada (4.7)’1 goz
ontinde bulundurarak (4.9)’un (4.8) denkleminde yerine yazilmasi, 1’in derecesinin birden
biiyiik olmadigi ¢ ve Y’ye bagl bir polinom elde edilmesini saglar. Bu polinomun

katsayilar1 cebirsel bir denklem sistemi verir.

4. Adim: Siirecin son asamasi, 3. adimda olusturulan cebirsel denklem sisteminin yardimci
matematiksel programlar kullanarak ¢oziilmesi ile elde edilen A;, A,, a;, bj, A, cveyu
sabitlerinin (4.9) da yerine yazilip ti¢ farkli fonksiyon tipinde tam ¢éziimlerin bulunmasi ile

sonuglanir.
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4.1.1 (2+1) Boyutlu BKP Denkleminin Yeni Formunun (G'/G,1/G) A¢ihm Yo6ntemi

Sayesinde Farklh Tipte Tam Coéziimlerine Ulasiimasi
(2+1) boyutlu BKP denkleminin yeni formu, genellestirilmis BKP denkleminde z=y

kabul edilerek (3+1) boyuttan (2+1) boyuta indirgemenin bir sonucu olarak olusur (Kaur ve
Wazwaz, 2019). Bu denklem,

Upxxy T A(UxlUy)x + Uy + Uy) e — 2Uyy —Uyy =0 (4.10)

biciminde verilen sig su dalgalarini modelleyen lineer olmayan bir olusum denklemidir.
(4.10) denkleminin dalga ¢o6ziimlerini bulmak ve bahsi gecen yontemin uygunlugunu
gostermek amact ile u(x,y,t) = u(é), & = kx + sy — vt seklinde bir dalga donistimi

kullanilirsa

k3su® + 2ak?su'u” — (2k? + s2 4 2vk + vs)u” = 0 (4.11)

bi¢iminde bir adi diferensiyel denkleme doniisiir. (4.11) adi diferensiyel denkleminin &’ye

gore bir kez integrali alinarak r integral sabiti olmak iizere

k3su” + ak?s(u)? — 2k +s2 + 2vk +vs)u'+r =0 (4.12)

denklemi elde edilir. Daha sonra (4.12) denkleminde bulunan u” en yiiksek mertebeli lineer

terimi ile (u)? en yiiksek dereceli lineer olmayan terimi

M+3=2M+1)

olacak sekilde dengelenmesi ile

M=1 (4.13)

pozitif tam sayisi bulunur. Boylece, (4.9) da M tam sayis1 yerine yazilirsa
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u(®) =ag+ a0 + by (4.14)

olacak sekilde belirli bir ¢6ziim formuna ulasilir. (4.14) aranan ¢dziim formunda bulunan a,,
a, ve by, (G'/G,1/G) agilim yonteminde belirtildigi gibi daha sonra belirlenecek olan sabit

sayilardir.

Durum I: Hiperbolik fonksiyon ¢oziimii (A < 0)

(4.14) ¢oziim formunu, (4.3) ve (4.4) deki denklemlerden yararlanarak denklem
(4.12) de yerine yerlestirilmesi ¢ ve 1’ye bagh bir polinomu verir. Bu polinomdaki ¢/

(i=0,1,2,..,j =0,1,2,..) katsayilari sifirlanirsa asagidaki gibi bir denklem sistemi olusur.

o* : ad?ak?A%0s + a?ak?u*s — 6a,k31%0s — 6a,k3u®s — ab?k?2s
Y@3: 2a,ab,k?A?0s + 2a,ab k?u?s — 6b,k3A%as — 6b k3u’s

3 29 _ 3
@’ : 2a,abik“Aus — 6b k°Aus

Ye?: —2a°ak?2*uos — 2a?ak?u3s + 12a,k312uos + 12a,k3uss +
2ab?k?Aus

@?: 2a2ak?A30s — 8a,k3230s — 5a,k3sAu? — ab?k?A%s + a u?s? +
aZak?Au®s + 2va,kA?c + va,A%0s + 2a,k*2%0 + a,A%0s? + 2va ku? + va u®s

+2a,k?u?

Yo : 2a,ab;k?230s — 2a,ab k?Au?s — 5b,k3A30s + 7b k3 Au®s + by u?s?
+2vb kA%c + vb;A?0s + 2b,k?A%0 + byA%0s? + 2vb ku? + vbyu?s + 2b k?*u?

@ :2a,ab;k?A%us — 6bk32%us (4.15)

Pl : alak?A*so — 2a,k3A*os + a,k3A%u?s + 2va, k230 + va,A30s + 2a,k* 230
+a,A30s% + 2va kAu? + va Au®s + 2a,k?Au? + a,Au?s? + A2or + ur
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P : —2a?ak?23uocs + 5a, k33 uos — a k3Au3s — 2va kA?*uoc — va; A*uos

—2a,k?*A?uoc — a;A*uos? — 2vaku® —va uds — 2a,k?u® — a u3s?

Olusan (4.15) cebirsel sistemi ¢oziiliirse

r=20
3k
a1 = —
(4.16)
’ 9120 + 9u?
_Tk
b, =
1 a
k32s + 2k? + s?
v=—

2k + s

esitlikleri elde edilir ve bu esitlikler kullanilarak (4.2) ile (4.14) sayesinde istenilen
hiperbolik tipte

2042 _42 2
@) = a, + 3kvV=A(A1 cosh(V=2&)+A, sinh(V=21§)) n SN/ —MR (4.17)
u = o a(Aq SiINh(V=AE)+A, cosh(NV=AE)+u/A) =~ a(Aq sinh(N=2&)+A4A, cosh(V=A&)+u/A) ’

925 +9u?
A

seklindeki tam dalga ¢dziimiine ulasilir. Bu ¢oziimde, < 0veo = A? — A% dir.

Daha 6zel bir ¢oziim igin (4.17) de ap =0, A, =0, A; > 0 ve u = 0 esitlikleri
kabul edilirse

u(§) = ZV=(coth(V=1§) + csch(V=1¢)) (4.18)

seklinde bir ¢oziime ulasilir.
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Durum I1: Trigonometrik fonksiyon ¢oziimleri (1 > 0)

A’nin isaretinin pozitif oldugu durum igin iki ayr1 tam ¢éziim bulunmustur.

Trigonometrik fonksiyon ¢6ziimii, (4.14) ¢6ziim formunu, bu sefer (4.3) ve (4.5) deki
esitlikler ile (4.12) deki denklemde yerine yazilmasi ile arastirilir Ve yine ¢ ve y’ye bagh
bir polinomun katsayilari sifirlanarak cebirsel denklem sistemi elde edilir. Durum I ‘¢ benzer

olarak bu sistemin ¢6ziimii,

i)
r=20
3k
a1 - —
(4.19)
J —91%0 + 9u?
_fk
b, =
1 a
k32As + 2k? + s?
v=—

2k + s

esitliklerini verir. Bu esitliklerle birlikte (4.2) goz oniinde bulundurularak (4.14) ¢6ziim

formu

_—A2(a3+4%)+u?

= Ay a(Aq SIN(VAE)+Ay cos(VAE)+u/A)  a(Aq Sin(VAE)+A, cos(VAE)+1/)

(4.20)

—92%20+9u?

haline gelir ve < 0,0 = A? + A% seklinde belirtilir.

Ozellikle, (4.20) de ay = 0, A; = 0, A, > 0 ve u = 0 olarak secilirse

u(§) = - ZVA(tan(VAE) — sec(VE) (4.21)
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veayricaag = 0, A, =0, A; > 0, u = 0 olarak segilirse

u(§) = ZVA(cot(§VA) + csc(EVAD) (4.22)

seklinde periyodik ¢6ziimler elde edilir.

Eger cebirsel denklem sisteminin asagidaki ¢oziimii alinirsa,

i)

(4.23)

esitliklerini verir boylece bu esitlikler (4.2) dogrultusunda (4.14) de yerine konulur ve (4.12)
adi diferansiyel denkleminin ¢6ziimiinii,

Ao si 3 [3(A2(A7+4%)-u?)
u(f) = ap+ 3\/§(1'41COS(\/If) Ay sin(VAE)) J 1742 (4.24)
a(Aq SIN(VAE)+Ay cos(VAE)+p/A) — Aa(Aq sin(VAE)+A, cos(VAE)+u /)

seklinde verir. Burada 34%20 — 3u? ifadesi sifirdan biiyiik ve o ifadesi A2 + A% ifadesine
esittir.
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Durum I11: Rasyonel fonksiyon ¢oziimii (4 = 0)
(4.14) ¢oziim formunu (4.3) ve (4.6) sayesinde denklem (4.12)’e yerlestirip ¢ ve Y

gibi iki degiskene sahip polinomun katsayilarini sifira esitleyerek asagidaki degerler

bulunur.

(4.25)

2k? + s?

V= 2k + s

Bu degerlere ek olarak (4.2)’i, (4.14) de kullanmak asagida verildigi gibi bir rasyonel

fonksiyon ¢oziimiine ulagilmasini saglar.

3k(pus+Aq) + Sk\JA%_Z'uAZ (4 26)

2 2
(X(%+A1{+A2) a(%+Alf+A2)

u(§) =ao +

Burada bulunan ¢oziimlerin belirli zaman kesitlerinde olusturdugu dalga modellemeleri

asagidaki grafikler ile verilmistir. Grafikler A’nin isaretine bagli olarak bulunan iki farkli
tipte tam ¢oziimler igin verilmistir. Sekil 4.1 ve Sekil 4.2, iistel dalga ¢6ziimii olan (4.17)
denklemini, Sekil 4.3 periyodik dalga ¢6ziimii olan (4.20) denklemini ve Sekil 4.4 bagka

bir periyodik dalga ¢6zlimii olan (4.24) denklemini temsil etmektedir.



Sekil 4.1 Hiperbolik fonksiyon ¢oziimii

t=1 A=-3, k=-1, s=0.5,
u=12, ap=-1,a=0.3,
Al = 1.5, Az = 0.1.

g8 888

=
=
@
-
=
-
-
=
w

Sekil 4.3 Trigonometrik fonksiyon ¢oziimii
t=03 1=1, k=01, s=04,
u=04 a,=08 a=0.2
A, =09, 4, = 0.8.
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Sekil 4.2 Hiperbolik fonksiyon ¢oziimii

t=-2, 1=-01, k=-1, s=0.6,
u=-0.2, a,=0.6, a =-0.5,
A =14 A, =1.1.

Sekil 4.4 Trigonometrik fonksiyon ¢oziimii
t=3,1=3, v=-1,
u=1 ay=3, a=0.38,
A1 = 1, AZ = 0.
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4.1.2 (3+1) Boyutlu BKP-Boussinesq Denkleminin Yeni Formunun (G'/G,1/G)

Acilim Yontemi Sayesinde Farkh Tipte Tam Coziimlerine Ulasilmasi

(3+1) boyutlu BKP-Boussinesq denkleminin yeni formu, Kaur ve Wazwaz (2019)
tarafindan genellestirilmis B-tipi KP denklemine u,; teriminin eklenmesi ile u(x,y, z,t) =

u olacak sekilde,

Ury — Upxxy — 3(Uxlly )y + U + 33Uy, = 0 (4.27)
biciminde tiiretilmistir. (4.27) denkleminin tam ¢éziimiinii bulmak ve asagidaki gibi lineer
olmayan adi bir diferensiyel denkleme indirgemek icin (4.27) denklemine oncelikle,
u(x,y, z,t) =u(§), & =kx+ sy+ dz— vt bi¢giminde bir dalga doniisiimii uygulanir.

k3su™® + 6k?suu” — (v? —sv + 3kd)u" =0 (4.28)

Daha sonra, (4.28) adi diferensiyel denkleminin bir kez integrali alinarak r integral sabiti

olmak iizere,

k3su” 4+ 3k?s(u)? — (v? —sv+ 3kd)u +r =0 (4.29)

seklinde bir adi diferensiyel denklem elde edilir. (4.29) denklemindeki u" terimi ve (u)?

teriminin dengelenmesi,

M=1 (4.30)

tam sayisini verir. (4.30)’u (4.9) da yerine yerlestirirsek a,, a; ve b; sabit sayilari temsil

etmek tlizere,

u(é) =ay+ a0 + by (4.31)

bigiminde bir ¢6ziim formuna ulasilir.
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Durum I: 1 < 0 kabul edildiginde hiperbolik fonksiyon ¢oziimiine ulasilir. Bunun igin ilk
olarak ulastigimiz ¢6ziim formunu, (4.29) denklemine (4.3) ve (4.4) esitlikleri yardimi ile
yerlestirilir. Bunun sonucunda elde edilen ¢ ve 1’e bagl olusan polinomun katsayilari sifira

esitlenerek elde edilen denklem sistemi ¢oziiliirse asagidaki esitlikler elde edilir.

(4.32)
Ao + p?
b= |——k
1 / j)

1 1
v=75s +E\/—4k3/1$ — 12dk + s?

Bu degerleri (4.31) deki ¢6ziim formunda (4.2)’1 goz oniinde bulundurarak yerlestirmek

(4.29) denkleminin tam ¢oziimiinii

2c42_ 22 2
u(f) - kvV—=2A(A1 cosh(V—2A&)+A; sinh(V-A¢)) n \/@k (4 33)
- Aq SiInh(V=28)+A4; cosh(V=28)+u /A A sinh(V=2&)+A, cosh(V=2A&)+u/A '

seklinde verir. Ozellikle, (4.33) ¢oziimiinde a, = 0, 4, = 0, A; > 0 ve u = 0 kabul edilirse

u(§) = kv—=A(coth(V—2§) + csch(V—A§)) (4.34)

¢Oziimii elde edilir.

Durum 1I: A2 >0 kabul edildiginde iki farkli trigonometrik fonksiyon c¢oziimlerine

ulasilmistir.

1) Birinci trigonometrik ¢oziim i¢in (4.3) ve (4.5) yardimu ile (4.31) deki ¢6ziim formunu

(4.29) denkleminde kullanarak elde edilen polinomun katsayilarini sifira esitlemek
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(4.35)

1 1
v=7os +§\/—4k3ls — 12dk + s?

degerlerini elde etmeyi saglar. Bu degerler (4.29)’un tam ¢6ziimiinii

_—22(af+4%)+p?

u(é”) — . kVA(A1 cos(VAE)—A, sin(VAE)) )
T 0T AL Sin(VAE)+A cos(VAE)+u/A | Aq sin(NAE)+Ay cos(VAE)+1/A

(4.36)

seklinde verir.

Ayrica, ay = 0, A; =0, A, > 0 ve u = 0 alindiginda asagidaki gibi periyodik bir

¢Ozlim elde edilir.

u() = —kvVA(tan(EV2) — sec(&V2)) (4.37)

Yukaridaki ¢oziime ek olarak, ay = 0, 4, = 0, A; > 0 ve u = 0 alindiginda,

u(&) = kvVA(cot(EVA) + csc(EVD)) (4.38)

seklinde 6zel bir ¢oziim elde edilir.

ii) Baska bir trigonometrik ¢6ziim i¢in ayni1 ¢oziim siirecini kullanarak asagidaki esitlikler

elde edilir.
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(4.39)

A
a; = AZO'_,LLZbl
_ ’ A

1 1 A
— /12 _ 4 b3 4 4 b3/12 2
% ZA—ZU (sA?c — su? + (— ’ iA%os + ’ o — 20t u:s
12 |2 bidAo? + 24 | biditute + MoPs? 12 | bt
— AZO'— 1 o° + 1 U o+ 120'—/,[2 1au

1
—2A%u?0s? + p*s?)z)

A

i — A2 4 A2
» B AD) >0 ve g=A7+ A3

Bu esitlikler (4.29) denkleminin tam ¢dziminii

saglayacak sekilde,
/IZ(A—2+A2 5b1VA(A1 cos(VAE)~ Az sin(VAS)) b,
u(§) =ao + Ay SIn(VAE)+A, cos(VAE) +u/A + Ay SiIn(VAE)+A; cos(VAE) +u/A (4.40)
olarak verir.

(4.40) ¢oziimiinde ay = 0, A; = 0, A, > 0 ve u = 0 olarak alinirsa
u(©) = — 32 (tan(§V2) — sec(§VA) (4.41)
¢oziimii, ag = 0, A, = 0, A; > 0 ve u = 0 olarak alinirsa
u(®) = j— (cot(EVA) + csc(EVA)) (4.42)

¢Ozimii bulunur.
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Durum I11: A’nin sifira esit oldugu durum i¢in rasyonel fonksiyon ¢dziimii aranirken,

(4.43)

by = /Ai-—ZAguk

_1 +1 12dk + s?
U—ZS ) S

degerlerine ulasilir. Bu degerler kullanilarak (4.29) denkleminin rasyonel fonksiyon

¢Ozumi,
K(LE+A }A{—ZA%uk
u(§) = ag + a4 Ao (4.44)
T+A1€+A2 T+A1€+A2
seklinde yazilabilir.

Yukarida {i¢ farkli durumda bulunan dalga ¢6ziimleri i¢in z yerine sabit degerler

alinarak olusturulmus grafikler asagida verilmistir.

-
W
o
i
i
i

i
i
i

e —

)

Sekil 4.5 Hiperbolik fonksiyon ¢oziimii
t=1.5, A=-1, k=-1, s=1,
d=2, z =1, u=1, ap, =2,
A1 = _2, AZ = 1.
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Sekil 4.6 Hiperbolik fonksiyon ¢oziimii Sekil 4.7 Hiperbolik fonksiyon ¢oziimii
t=1,1=-1, k=-1, s=-2, t=05 1=-11, k=-18, s =14,
d=2,z=1 u=1, ay, =2, d=21 u=16, a; = 2.3,
A =-2,A4,=-1 Ay =-22, A, =0.1.

8 & 8 o 3 5 @

Sekil 4.8 Trigonometrik fonksiyon ¢oziimii Sekil 4.9 Trigonometrik fonksiyon ¢éziimii
t=-14,1=1, k=-11, s=1.2, t=-1,1=1, s=2,
d=13,z=14, u=1.6, ay = 2.2, d=12z=1 u=1, ay, =2,

A, =—17, A, = 18 A =—2, Ay = 1.

Sekil 4.5, Sekil 4.6 ve Sekil 4.7 iistel dalga ¢coziimiine, Sekil 4.8 ve Sekil 4.9 periyodik dalga

¢ozlimlerine karsilik gelmektedir.
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4.1.3 Birinci Formda Genisletilmis (3+1) Boyutlu Jimbo-Miwa Denkleminin
(G'/G,1/G) A¢ihm Yontemi Sayesinde Farkh Tipte Tam Coziimlerine Ulasilmasi

Wazwaz (2017), standart Jimbo-Miwa denklemini u,,, ve u,, terimlerini ekleyerek

genisleterek yeniden iiretilen,

Uyxxy T 3UyUsy + 3Uylyy + 20Uy — 3(Uyz + Uy, +HUz) =0 (4.45)
seklinde lineer olmayan (3+1) boyutlu birinci formda genisletilmis Jimbo-Miwa denklemini
literatiire kazandirdi. Oncelikle, (4.45) denklemi u(x,y,z,t) = u(é) ve & = kx + sy +
dz — vt dalga doniistimii kullanilarak,

k3su™ + 6k?suu” — (2sv + 3kd + 3sd + 3d*)u”" =0 (4.46)

olacak sekilde bir adi diferensiyel denkleme doniistiiriiliir. Daha sonra, bu adi diferensiyel

denklemin &’e gore bir kez integrali alinarak r integral sabiti olmak tizere

k3su” + 3k2?s(u)? — (2sv + 3kd + 3sd + 3d®)u +r =0 (4.47)

bigiminde bir denklem elde edilir. Bu denklemdeki u" ve (u)? terimleri homojen denge

prensibi kullanilarak dengelenirse,

M=1 (4.48)

bulunur ve boylece ¢oziim formu asagidaki gibi olur.

u(é) =ag+a,p + by (4.49)

(4.49) ¢oziim formundaki aq, a, ve b; sabit katsayilardir. Daha 6nce belirtildigi gibi

¢Oziimler, A’1n isaretine bagl olarak {i¢ durumda arastirilir.
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Durum I: 2’ negatif olmasi hiperbolik fonksiyon ¢oziimlerini verir. Siirecin devaminda,
(4.49) ¢oziim formunun (4.47) denkleminde kullanilmasi sonucu olusan ¢ ve ¥ cinsinden
bir polinom verir. Bu polinomun katsayilari, aq, a4, b, v,k,s,d,7,0,u ve A’dan olusan

asagidaki cebirsel denklem sistemini verir.
@*:3a%k?20s — 6a,k3A%0s + 3a2k?u?s — 6a,k3u*s — 3b?k?As
Y@3:6a,b,k?A%0s — 6b,k3A%0s + 6a,b k?us — 6b k3u%s
@3:6a,b,k*Aus — 6b k3 Aus
Y@?: —6a2k?A*uos + 12a,k31?uos — 6a2k?us + 12a,k3u3s + 6b?k?Aus

@?:6a%k?*230s — 8a,k3A30s + 3a2k?Au®s — 5a,k3Au’s — 3b?k?2%s +
2va,A%os + 3a,d*A%0 + 3a,d?A%0 + 3a,dkA?c + 3a,dA?0s + 2va,u?s + 3a,d?*u?

+3a,dku? + 3a,du’s

Y@:6a,bk*A30s — 5b k31305 — 6a,b k*Au®s + 7b k3 Au®s + 2vb A%0s
+3b,d%?2%0 + 3b,dkA%0 + 3b;dA?cs + 2vb u?s + 3b;d?u? + 3bydku? + 3b,du®s

@:6a,b k?A%us — 6b k31%us (4.50)
P2¢°:3a2k?A*os — 2a,k3A*0s + a k3 A%u?s + 2va,A30s + 3a,d?*A30
+3a,dA30s + 2va,Au®s + 3a,d?Au? + 3a,;dkAu? + 3a,dAu®s + Aor + p’r

+3a,dkA3c

P: —6a2k?A3uocs + 5a,k323uos — a k3Au3s — 2va,A%uos — 3a,d*A%uc
—3a,dkA?uo — 3a,dA?uos — 2va,u3s — 3a,d?*u® — 3a,dku® — 3a,duss

Olusan cebirsel sistem ¢oziilerek,
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(4.51)

k3sA + 3kd + 3sd + 3d?
2s

v =

2 2
“’% < 0ve o = A% — A2 saglayacak sekilde degerler elde edilir. Bu degerler ile birlikle

(4.2) ve (4.4) kullanilarak (4.49) daki ¢6ziim formuna yerlestirilirse tam dalga ¢oziimii,

2042_ 22 2
u(f) = an + k(A1 cosh(EV—=2A)V—A+A; sinh(EV-A)V-2) J@k (4 52)
= aq Aq sinh(§V—-1)+A4, cosh(fv—/l)+% Ay sinh(EV=2A)+A, cosh(& /—_/1)_'_% .

seklinde bulunur.

Ek olarak, (4.52) denkleminde a, =0, A, =0, A; >0 ve u=0 olarak

yerlestirilirse,

u(&) = kvV'=2A(coth(EV=2) + csch(&EV=1)) (4.53)
seklinde daha 6zel bir ¢6ziim haline gelir.
Durum I1: A’mn pozitif olmas1 trigonometrik fonksiyon ¢oziimlerini verir. Birinci duruma

benzer sekilde, (4.49)’u (4.47)’e yerlestirildiginde bir polinom elde edilir. Daha sonra,

olusan cebirsel yapida her bir katsayi sifira esitlenerek asagidaki esitliklere ulasilir.
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b, = J_—‘”(“?;A@*“zk (4.54)

1 1
d=—>(k+s)+ g\/—12k3/15 — 24vs + 9k? + 18ks + 9s2

A (a3 AD) i

(4.2) ve (4.5) ile (4.54) esitliklerini (4.49) da kullanmak P

<O0veo =A%+ A3

degerlerini saglayan asagidaki gibi yeni bir tam dalga ¢6zlimiinii verir.

k(A1 cos(EVVA-A, sin(EVVA) n ) (4.55)

u(§) =ao+ Aq Sin(EVA)+Az cos(EVD)+u/A Ay sin(EVA)+4, cos(EVA+u/A

Ilaveten, (4.55) dalga ¢oziimiinde a, = 0, A; =0, 4, >0 ve u = 0 olarak farz

edilirse, (4.55) ¢oziimii

u(é) = —kvVA(tan(&V2) — sec(éV2)) (4.56)

halini alir. Benzer sekilde, ap = 0, A, = 0, A; > 0 ve u = 0 olursa,

u(&) = kva(cot (V) + csc(EVA)) (4.57)
seklinde bir ¢oziime dondistir.
Durum I11: A, sifira esit oldugunda rasyonel fonksiyon ¢oziimii olusur. Sirasiyla, (4.3) ve
(4.6) dan yararlanarak (4.49)’u (4.47) de kullanarak, ¢ ve Y polinomundaki tiim katsayilar
sifira esitlenerek,

r=20

3sd + 2sv + 3d?
3d

a1=
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/A%—ZAzu(3sd+25v+3d2)
b, = — (4.58)

3d

3sd + 2sv + 3d?
3d

degerleri kolayca elde edilir. Sonrasinda, bu degerleri (4.2) ve (4.6) ile (4.49)’a uyarlamak

rasyonel dalga ¢ozliimiinii,

(35d+25v+3d2)(UE+41) N /A%—Z#A2(3sd+25v+3dz)
- 2 2
3d(E+4,£+42) 3d(E-+4,6+47)

u(é) =a, (4.59)

bi¢iminde verir.

Burada, elde edilen dalga ¢oziimlerinin yayilimini ve dzelliklerini daha iyi anlamak

icin 6zel degerler alinarak olusturulmus grafikleri agagidaki gibi veriyoruz.

Sekil 4.10 Hiperbolik fonksiyon ¢oziimii Sekil 4.11 Hiperbolik fonksiyon ¢oziimii
t=0.25 A=-0.7 k=0.6, s =2, t=04 1=-01, k=0.1, s =0.2,
d=18,2z=09, u=0.8, a, =04, d=03,z=1 u=0.7 ay=0.5

A, =14, 4, =0.7. A, =06, 4, =0.9.
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Sekil 4.12 Hiperbolik fonksiyon ¢oziimii Sekil 4.13 Trigonometrik fonksiyon ¢oziimii

t=12, A=-14 k=05, s =11, t=25 A=14, k=-12, s =-21,

d=02 2z=18 pu=0.7, a,=0.5, v=2052z=14 u=2 ay=1,
A, =13, 4, =009, A, =15 4, =01,

- = = N W oA o

Sekil 4.14 Trigonometrik fonksiyon ¢oziimii Sekil 4.15 Trigonometrik fonksiyon ¢oziimii
t=03 4=15, k=01, s=0.2, t=14, A=18, k=06, s=0.9,
v=-122=04 p=08, ay=2 v=-15 2=08 u=06 a,=16,
A =16, A, = 1.1. A, =12, A, = 0.4.
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4.1.4 Tkinci Formda Genisletilmis (3+1) Boyutlu Jimbo-Miwa Denkleminin
(G'/G,1/G) Agihm Yontemi Sayesinde Farkh Tipte Tam Coziimlerine Ulasilmasi

Ikinci formda genisletilmis (3+1) boyutlu Jimbo-Miwa denklemi, Wazwaz (2017)

tarafindan birinci formda genisletilmis Jimbo-Miwa denklemi gibi standart Jimbo-Miwa

denklemindeki u,, terimini w,, + u,; + u, olarak genisleterek boyutunu koruyacak sekilde

Uprxy T 3UylUsx + 3Uylyy + 2(Uye + Uy +Uz) — 3Uy, =0 (4.60)

bigiminde elde edilmistir. Ikinci formda genisletilmis (3+1) boyutlu Jimbo-Miwa denklemi

u(x,y,z,t) = u(é) ve £ = kx + sy + dz — vt olan dalga doniisimi kullanilarak,

k3su™® + 6k?suu” — (2vs + 2vk + 2vd + 3kd)u" = 0 (4.61)

denklemine doniistiiriiliir ve bu denklemin integrali alinarak r integral sabitini temsil edecek
sekilde,

k3su” + 3k?s(u)? — (2vs + 2vk + 2vd + 3kd)u' +r =0 (4.62)

denklemi elde edilir. Dengeleme kullanilirsa M = 1 gelir ve (G'/G, 1/G) agihim yontemine

gOre aranan ¢ozim,

u(§) = ag +a1p + by (4.63)

formundadir.

Durum I: Hiperbolik fonksiyon ¢oziimiinii bulmak igin izlenecek birinci adim, (4.63)
denklemini (4.3), (4.4) deki degerlerin kullanimi ile (4.62) denklemine yerlestirerek (G'/G)
ve (1/G) terimlerine ek olarak bu terimlerin kuvvetlerinden olusan cebirsel bir denklem
sistemine ulasmaktir. Ikinci adim ise bu denklem sistemini ¢dzdiirmektir. Bu denklem

sisteminin ¢ozlimlerinden biri,
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A
Al N PP

k= A b
| A2e 42t

f A
(Sb%ﬂz —3dA%0 — 3d‘u2) —mbl
/ A
2 2 —_—

degerlerini verir. Bu degerleri (4.63) de (4.2) ve (4.4)1 dikkate alarak kullanmak (4.62)’in

(4.64)

v =

¢Ozimiint,

%bl(m cosh(EV=2)V=2+4; sinh(EV=-2)V-2)

Aq sinh(§V=21)+A4, cosh(§V=21) +%

u(§) =ap+

by
+ Ay sinh(EV=21)+4, cosh(E\/—_)L)+%

(4.65)

bi¢giminde verir.

(4.65) denklemindeki degerler, A, = 0, A; > 0,a, = 0 ve u = 0 olarak alinirsa,
u(é) = Z—l(coth( EV—A) + csch(éV—21)) (4.66)

periyodik ¢oziimii bulunur.

Durum Il: Trigonometrik fonksiyon ¢oziimiinii bulmanin birinci durumdan farki, (4.63)
denklemini (4.62) denklemine yerlestirirken (4.3) ve (4.5)’1 kullanarak bir polinom elde
etmektir. Coziim bulma siirecinin devami yine birinci durumla ayni olarak bu polinomun

katsayilarini sifira esitleyerek cebirsel denklem sistemini olusturup sistemi ¢ozdiirmektir. Bu
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sefer ¢oziimlerden biri,

r=20
A

a’l = /120_ _ ,le bl

(4.67)

A

k = —AZO' — luz bl

(b22%s + 3dA%0 — 3du?) |=—2—b,
1 20 — 'uz

vV=—=

2 A A
/m biA%0 — /m bip? + dA%0 + A20s — du? — u®s

esitliklerini saglar. Bu baglantili parametreler sayesinde tam ¢6ziim,

A )_ﬂzb1(A1 cos(ENDVA-A, sin(ENVI)

2 2
A2(A%+45

u(@) =ao+ Ay Sin(EVA)+ Az cosEVA) +E + Alsin(fﬁ)+lj412 cos(EVA) +E (4.68)
seklinde bulunur.
(4.68) denkleminde a, = 0, A; = 0, A, > 0 ve u = 0 olarak segilirse
w(©) = -VAtan(EV) — sec(§VA)) (4.69)
ozel ¢oziimi, ay = 0, A, = 0, A; > 0 ve u = 0 olarak secilirse
w(©) = 2VA(cot(§VA) + esc (V) (4.70)

0zel ¢oziimii elde edilir.



40

Durum I11l: Rasyonel fonksiyon ¢ézliimii i¢in yukarida verilen uygulamalardaki ayn1 islem

prosediirii kullanilirsa,

r=20
a, = k
(4.71)
b, = /Af — 2A3uk
_ 3kd
VT T 2k +s+d)
degerleri elde edilir. Boylece, dalga ¢oziimii
2 |A2-2A%u(s+d)v
u(é) =ay— 2v(s+d)(pé+ay) JAIT242 (4.72)

(3d+2v)(“752+A1€+A2) (3d+2v)(”T$2+A1§+A2)
olacak bi¢imde bulunur.

Bulunan bu dalga ¢oztimlerinin grafik gosterimleri ilerleyen kisimda verilmistir.
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AR EY

Sekil 4.16 Hiperbolik fonksiyon ¢oziimii Sekil 4.17 Hiperbolik fonksiyon ¢oziimii
t=02 A1=-11, k=03, s=-0.2, t=01 1=-12, k=12, s=-14,
d=-052z=2, u=0.6, ay =1.1, d=04 z=05 u=11, a;,=0.5,

b, = —02, A, = 0.9, A, = 0.1. by=11, A, = 1.3, A, = 0.4.

Sekil 4.18 Hiperbolik fonksiyon ¢oziimii Sekil 4.19 Trigonometrik fonksiyon ¢oziimii
t=24 A1=-14 k=14, s=-04, t=24 1=14, k=07, s=-1.3
d=04, z=14, u =04, a, = 0.4, d=03, z=11, p =09, a, = 0.2,

bl = 04‘, Al = 14‘, AZ = 0.4. bl = _05, Al = 01, AZ =0.7.
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Sekil 4.20 Trigonometrik fonksiyon ¢oziimii Sekil 4.21 Trigonometrik fonksiyon ¢oziimii
t=-0.25 1=24, k=09, s=0.6, t=-0.25 1=24, k=109, s=0.6,
d=16,z=15, u=04, ap, =1.2, d=-26,z=01 u=04, a, =04,

b, =03, A, =18, A, = 0.2. by=13, A, =18, A, =0.2.
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4.2 Modifiye Edilmis Ciftli Alt Denklem Yo6ntemi

Modifiye edilmis ¢iftli alt denklem yoOnteminde ¢6ziim, Riccati denklemlerini
saglayan, iki dalga doniisiimii iceren, sabitlerden ve iki fonksiyondan olusan belirli bir
bigimde aranir. Bu yontem kullanilarak elde edilen ¢oziimler trigonometrik ve hiperbolik
fonksiyon ¢oziimlerini verir. Bu fonksiyonlarin bir arada bulunmasi ile elde edilen ¢6ziim,
kompleksiton ¢oziim olarak adlandirilir. Ayrica, bu yontem ayni anda iki tip fonksiyon
tiiretilmesi tizerine kurulmus olsa da, parametrelere bagl olarak sadece bir fonksiyon tipi
iceren ¢Oziimlerde iiretir. Sonu¢ olarak, modifiye edilmis ¢iftli alt denklem yoOntemi

kompleksiton dalga ¢6ziimii bulmada olduk¢a etkilidir.

Son zamanlarda olduk¢a dnemli bir arastirma alani haline gelen kompleksiton dalga
caligmalari, modifiye edilmis ¢iftli alt denklem yontemi gibi birgok yontemin literatiire
girmesini saglamistir. Hossen vd. (2017) tarafindan bu yontemin uygulama adimlar

asagidaki gibi kisaca 0zetlenmistir.

1. Adim: Bu yontem, uzay ve zaman boyutlarinda

P(u, Ug, Uy, Upe) Upyy Unsy - - ) = 0 (4.73)

biciminde verilen kismi diferensiyel denklemlerin soliton-trigonometrik (kompleksiton)
¢oziimlerinin bulunmasia dayanir. (4.73) bigciminde verilen lineer olmayan olusum
denklemlerinde t ve x sirasiyla zamani ve uzayi temsil eden degiskenlerdir. u(x, t) ise belirli
bir formda aranacak ve ¢dziim prosediirii sonunda bulunacak fonksiyondur. Islemlerin bir
¢ogunun homojen denge sabiti gerektirdigi, tam ¢6ziimlere asina olan arastirmacilar
tarafindan bilinir. Aranan ¢6ziim bu denge sabitine gore sekillenir. Denge sayisi ne kadar

biiyiikse, u(x, t) ¢oziimii o kadar uzun ve karmasiktir.

2. Adim: Eger denge sabiti 1’e esit olursa, u(x, t) fonksiyonu, 4,, 4, keyfi sabitler ve a, =
ag(x,t), a; = a1(x,t), a; = a(x,t), £ = &(x,t), n =n(x,t) ifadeleri zaman ile uzaya

bagli fonksiyonlar olmak iizere
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a1¢(f)+a21/)(71) (4 74)

t) =
u(x ) = ao +3 5 ovm

seklindeki formda aranir. ¢ (&) ve Y (n) fonksiyonlari ise & = kyx + wytilen = k,x +

w,t dalga doniistimleri kullanildiginda sirasiyla,

¢'(§) = a1 +p:19*(E) (4.75)

ve

Y () = qz + P> () (4.76)
esitliklerini saglar.

3. Adim: ¢ ve Y ’nin tiirevlerinden olusan (4.75) ve (4.76) Riccati denklemlerinin ¢6ziimleri,
q1 Ve p; 'nin farkl degerlerine gore asagida verildigi gibi degisik tipte fonksiyon formunda
olabilir. Ornegin, ¢ '(£) = q; + p1¢2(§) Riccati denkleminin g; ve p;’in farkli degerleri

icin ¢oziim durumlari agsagida verilmistir.
(i) g; = 1 ve p; = —1 seklinde kabul edilirse

¢ () = tanh($), ¢($) = coth($), (4.77)

(ii) ¢ = p1 = F seklinde kabul edilirse
() = sec($) £ tan($), (4.78)
(iii) g; = p; = 1 seklinde kabul edilirse

¢ (&) = tan($), (4.79)

(iv) ¢, = p1 = —1 seklinde kabul edilirse
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(&) = cot($), (4.80)
(V) g1 = 5 Ve p; = —= seklinde kabul edilirse
d(§) = tanh(§) L isech(§), ¢(§) = coth($§) + csch($), (4.81)

(vi) g; = 0 ve p; = 1 seklinde kabul edilirse

¢ = - (4.82)

E+w
¢Oziimlerine ulasilir.

4., Adim: (4.75) ve (4.76) Riccati denklemleri hesaba katilarak, (4.74) deki ¢oziim formu
(4.73) kismi diferensiyel denkleminde yerine yazilirsa ¢ ve y’nin kuvvetlerinden olusan bir
polinom elde edilir. Bu polinomun katsayilar1 sifirlanir ve bunun sonucu olusan cebirsel
sistem yardimc1 matematiksel programlar tarafindan ¢ozdiiriiliirse verilen kismi diferensiyel

denklemin ¢dziimleri bulunur.
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4.2.1 Modifiye Edilmis Ciftli Alt Denklem Yontemini Kullanarak (3+1) Boyutlu

Korteweg-de Vries Tipi Denklemin Kompleksiton Coziimlerini Bulma
(3+1) boyutlu KdV tipi denklem Wazwaz (2012) tarafindan,
Up + 6ULUy, + Uy + Usrrz + 60UFU, + 10U U, + 20Uy llyy, = 0 (4.83)

seklinde tanitilmis ve s1g su dalgalarii temsili olarak literatiire girmistir. Bu denkleme
modifiye edilmis ciftli alt denklem yontemini uygulamak i¢in dengeleme yapilirsa aranan

¢Oziim formu

b1¢(§)+bap(n)
b3+bad ()Y () (4.84)

u(x,y,z,t) = by +
seklinde olur. Burada, & = kyx + s,y + nyz + wyt ve n = kyx + s,y + nyz + wyt olarak
alimmustir. (4.75) ve (4.76) Riccati denklemlerinin kullanimui ile (4.84) ¢6ziim formunu (3+1)
boyutlu KdV tipi denkleminde yerine yazmak ¢ ile ¥ ve onlarin kuvvetlerinden olusan
polinomu verir. Bdylece, bu polinomdaki ¢, 1 ve kuvvetlerinin katsayilarini sifira
esitleyerek bir denklem sistemi elde edilir. Bu denklem sisteminin ¢6zliimii de asagidaki gibi

kompleksiton dalga ¢6ziimii bulmada yararlanilan iki farkli ¢6ziim kiimesini verir.

1. Coziim:

b, =0 b, = — k1(b3p1p2—b3q14>)
11— Y% 2 —

bsk1Dp
k 3M1K1
b4Q2

bsqz ’

)

_ P1(12b§kfn1pfpz + 8b§b4kfn2p1p2q2 - 8b3b2kfn1p1q1q2)
b3a;
_ P1(—12b2k%n2¢h€l§ - b3beI2S1)
b3a;

(4.85)
Wy = —4kfp1q1(4kfn1p1q1 —51)
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_ 4kip3b3p,(12b3kin pZp, + 12b3b,kin,pip.qz)

Wy, =

b3q5
_ 4kfpfb§p2(—8b3bfkfn1p1q1q2 - 12b;:’kfn2q1q§ - b3b2q251)
b33
2. Coziim:
k1(b3p102—b34142) baik1qq
b, =0, b, = -2 = , k, = —=,
2 1 bsp, 2 bs3p,
_ q1(12b3kin,p,p5 + 8b3bkin pip,q.)
S2 = 3.2
b3p;
+Q1(—8b3b2k%n2PZQ1QZ—121’2’(%”1‘1%‘12"‘173%17417251)
b3p?

(4.86)
wy = —4ka1Q1(4k12n1P1CI1 —S1)

_ 4qufbfq2(12b§kfn2p1p§ + 8b§b4k12n1p1p2q1 ~ 12b3bfkfn2p2q1q2)
b3p3
4k$q3bzq,(—12b3kin,qiq, + b3bypys;)
+ bS 3
3P2

w

Son olarak, (4.85) ve (4.86) daki ¢oziim kiimeleri, modifiye edilmis ¢iftli alt denklem
yontemindeki durumlar ile birlikte kullanilarak (4.83) denkleminin dalga ¢dziimleri bulunur.

Bulunan ¢éziimlerin bazilar1 agagidaki gibi grafiklerle verilmistir.

(4.85) deki ¢oztiim esitlikleri ile (4.77) ve (4.79) daki g; =1, p; =—1,q, =1 ve
p2 = 1 degerlerini kullanarak ¢ (&) = tanh( &) ve Y(n) = tan(n) fonksiyonlar segilirse,

u(x,y,z,t) = by — ki (—b% — b3) tan(—b?’bﬂ +n,z+
4

(12b3k2n,—8b3b,k2n,+8bsbikin, —12b3kin, —bsb3s1)y
b3

+

4k2b2(12b3k3n,—12b2byk?n,+8b3bik?n,—12b3k2n,—bsbZs, )t
b3

)/(b4 (b3 - b4 tanh(—klx —nyz—
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s1y — 4k?(—4k?n, — s;)t) tan( —

bzk1x
371 +n22+
by

(12b3k2n,—8b3b,k?n,+8bsbikin, —12b3k?n, —bsb2s1)y
A

+

(4.87)

4b§k%(12b§k§n1—12b§b4kfn2+8b3b2k%n1—12b2k%n2—b3bfsl)t)))
bi

seklinde bir ¢oziim bulunur. Bu ¢6ziimde 6zel parametreler segilerek dalga yayilimlarini

gostermek amaciyla asagidaki grafikler sunulmustur.

Sekil4.22 k, = 0.4, 5, = 0.4, n, = 1.2,  Sekil4.23k, =2, s, = 2.2, n, = 2.4,
n, = _09, wq = 14‘, bo = 11, n, = _21, wq = 25, bo = 2,
by =13, by = —0.6, z= 0.4, t = 1.4. by =21, b, =23, z=2.1, t = 2.2.

(4.85) deki degerler ile (4.77) ve (4.78) deki q; = 1,p; = —1,4, = — > vep, = —>

)

degerlerini kullanarak ¢ (&) = tanh(§) ve Y(n) = sec(n) — tan(n) secilirse,

u(x,y, zt)
2

b2 b2 2bsk,x
= by + 2k1(73 + %)(sec(— M

b,

— N,z

2
4 <_6b§k%n1 — 2b3bskin, — 4bsbikin, — 3bjkin, + b3b2451> Y
b3

2
16k?b2 (—6b§kfn1 — 3b3b,k?n, — 4bsbZkin, — 3b3kin, + b3b2451) t

— bi )




b3b?2
( 6b3k?n; ~2b3bskin, —4bsbFkin, —3b3kin, +-2202
2b3 1X

+ tan(— —NyZ —

b;

b3b
16k%b3< 6b3k?n, —3b2byk2n,—4bsb2kin, —3b3kin, +-32 451>t

b3
2bskqx
s1y — 4k2(—4k?n, — s))t)(sec(— =" —n,z —
4<—eb§k§n1—2b§b4k§n2—4b3b2kfn1—3b4k1n +b3b—451>y

A

bzb
16k%b3< 6b3k2n,—3b2byk3n,—4bsb2k3n, —3b3k3n,+ 32451>t bk x
31

) + tan(—

b3

4<—eb§k%n1—2b§b4k§n2—4b3b2k§n1—3b4k1n2+b3b—451>y

A

16k%b3< 6b3k2n,-3b2byk?n,—4bsb2kin, —3b3k2n, +b3b2451>t

: ")
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)) /(b4(b3 — by tanh(—kyx —nyz —

(4.88)

seklinde bir kompleksiton ¢éziim bulunur. Bu ¢6ziimiin se¢ilmis degerler alinarak ¢izilmis

grafigi asagida Sekil 4.24 de verilmistir.

(4.85) ile (4.78) ve (4.81) deki q; =, py =7, g, =5 Ve p, = — degerlerini

kullanarak ¢ (&) = sec(&) + tan(é) ve Y(n) = coth(n) + csch(n) fonksiyonlari

segilirse,

X

2 2
u(x,y, z,t) = by — 2k, (—%3—%4) —coth(—%—nzz—i—
4

3b3k2
2<—ﬂ—b§b4k§n2—b3b£k%n1—

3b3kIn, b3bﬁs1>
2

2 2

b;

3b3k3ny 3b3k3ban 3b3k%ny b2bgs
2b§k%< L1 S5 2 pabZkin,—— 1243y

: : : : > ) — csch(—

b:

3b3k3n 3b3k%n, b3b2s
2<_%1 b3b4k1n2 bsbZk?n,— _274%172 737451

2 2

bi

X
_n2Z+
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3b3kiny bibzsy

2).2
bsbikin,——; 2

3,2 2,2
2b2k2 3bzkinq 3b3kibany
31 2 2

> ) | /(by(bs + by(sec(—kix —nqyz —

b

b3k1x

s1V + k2(k?n, — s;))t) —tan(—kyx — nyz — s;y + k#(k?n; — s;)t))(— coth(— >

3,2 3,2 2
3b3kin 3bgkiny bzbgs
2(—7321 1—b§b4k%n2—b3b2k%n1—721 2_737471 > 1)

n»z —
22 + =

3,2 2,2 3,2 2
2b2k2 3b3k11’l1 3b3k1b41’l2 b b2k2n _3b4k1n2_b4b351
3K 2 2 3Ug 17 2 2

>t
) — csch(— bslax _ n,z +
4

b3 b

3b3k3
2<—ﬂ—b§b4k§n2—b3b2k§n1

3b3kIn, b3bﬁsl>
2

2 2

b3

4 2 2

> t
= ) ) (4:89)

3,2 2,2 3,2 2
3b3kinqy 3b5kibagn 3bgkiny bgbszs
2b§k§< 1L 3142 pibiking—— 12430

seklinde bir ¢6ziim elde edilir. Bu dalga ¢oziimiiniin grafigi Sekil 4.25 de verilmistir.

Sekil4.24 k, = 1.6,5, = 1.8,n, = —2.1, Sekil4.25 k, = 1.7,5, = 0.8,n, = —2.1,
nz = _23, W1 == 17, bO = 19 nz = _13, Wl = 04, bO = 15,
b; =22,b,=19,z=18,t = —-2.3. b; =1.2,b, =09,z =2.1,t = 1.5.
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Burada ise (4.86) daki ¢oziim esitlikleri ile (4.78) ve (4.81) deki g, = 2, p; = 2, q; =

~ Ve p, = — degerlerinin olusturdugu ¢(§) = sec(§) + tan(§) ve () = tanh(n) +

i sech(n) fonksiyonlar segilirse,

2 2
u(x,v,z,t) = by + 2k, (— %3 — %“)(sec(—klx -z — 81y + k?(kin; — s;)t) —tan( —

kix —nyz — s;y + kf(king — s1)t))/(bs(bs + by(sec(—kyx —nyz — 51y + ki (kin, —

spt) —tan(—kx —nyz — s;y + k¥ (k?n, — sl)t))(tanh(—b“bﬂ +n,z +
3

—bZbyk?n,+bsbikin,—

5 3b3k3n,
2 2

3bzk§n1 b%b4$1>
2

b3

3,2 2,2 2,2 2
3b3zkin 3bzbgkiny 3bgking b3bas
2k%b2<—321 2—b§b4k%n1' 3747172 47171 737471

f
4 2 2 2 bakqix

b3

)e
) + sech +ny,z +

b3

3b3kin 3b3k3ny b3bys
2(—321 2—b3bskiny+bsbkin,——12-—"11

b3

2k2 b2 3b§k%n2_b2b k2n  3b3biking 3b3kiny b3bssi ¢
1bg > 3bsking+ 5 > >

o D)) (4.90)

seklindeki ¢oziime ulasilir. Bu ¢6zlimiin iki farkli dalga grafigi asagida verilmistir.

Sekil 4.26 k, = 0.4, s, = 0.9, Sekil 4.27 k, = —0.3, s, = 0.8,
n1 = 07, nz = _01, bo == 29, nl == 07, nz = _09, bo == 21,
b; =1.6,b, =11, z=23, t=1. b; =0.7, by, =2.1,z=0.6,t = 1.1.
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(4.86) daki ¢oziim esitlikleri ile (4.90) dan farkli bir kompleksiton ¢6ziim bulmak

igin (4.79) ve (4.81) deki q; = 1, py =1, ¢; =3 Ve p, = — degerlerinin olusturdugu
¢ (&) = tan(€&) ve Y (n) = tanh(n) — i sech(n) fonksiyonlart segilirse,

b3 b3 2 2
u(x,y,z,t) = by — 2k, (— -~ 7) tan(—kyx — nyz — s1y + 4ki (dkin, — s;)t)/
bs(bs — b k 4K2 (4k2 h| —22efax
(b3(b3 — bytan(—k,x — nyz — s1y + 4ki (4kin, — s;)t)(tanh| — by +nyz +
3,2 25 1,2 2,2 3,2 b3bysy
4 3b3k1n2—4b3b4k1n1+2b3b4k1n2—6b4k1n1—T y
b3 N
b%b
16k%bf<3b§’k%nz—4b§b4k%n1+3b3b2k%n2—6bZk%n1—3T4sl>t A
- —sech| ———=+n,z +
b3 bs
3,2 25 1,2 2,2 3,2 b3bssy
4 3b3k1n2—4b3b4k1n1+2b3b4k1n2—6b4k1n1—T y
b3 N
b%b
16k%bf<3b§’k%nz—4b§b4k%n1+3b3b2k%n2—6bZk%n1—3T4sl>t
5 i))) (4.91)

¢ozlimiine ulasilir. Bu ¢éziimdeki parametrelere sabit degerler verilerek olusturulan grafik

asagidaki gibidir.

X -1 Y

Sekil 4.28 k, = 2.6,s, = 0.7,
ny = 1.3,n2 = 08, bo = 19,
by =11,b, = 1.1 z =04t = 0.3,
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Ek olarak, (4.86) daki esitlikler ile (4.77) ve (4.80) dekiq; = -1, p; = —-1,q, =1
ve p, = —1 degerlerinin olusturdugu ¢ (&) = cot (&) ve Y(n) = tanh(n) fonksiyonlarin
kullanarak,

u(x,v,z,t) = by — ki (b3 + b3) cot(—k,x —n,z — s,y + 4k?(4k?n; — s;)t) /(b3 (b3 —

bakqix
=+ nyz —
b3

by cot(—kix — iz — s;y + 4k?(4k?n, — s;)t) tanh(

(—12b3k2n,—8b2byk2n,—8b3bikin,—12b3kin,—b3bssy)y
b3

+

4b2k2(—12b3k3n,—8b3byk?n,—12b3bikin, —12b3k3n,—b3bys )t

- ») (492)

¢Oziimiinii elde ederiz. (4.92) ¢oziimiiniin kompleksiton dalga yayilimin1 gosteren grafik

asagida sunulmustur.

Sekil 4.29 k, =075, = —1.8,
n1 == 1.9,77,2 = 17, bo = 2,
b; =-1.1,b, =09 z=-13,t = 2.5.
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5. BULGULAR VE TARTISMA

Bu tez kapsaminda, bazi lineer olmayan olusum denklemlerine iki farkli yontem
uygulanarak cesitli fonksiyon tiplerinde tam ¢oziimleri bulunmustur. Cogu tam ¢6ziim
yonteminde oldugu gibi, ¢oziimler denge sabiti olarak adlandirilan bir tam sayi ile kesilen
toplamlar bigiminde bulunur. Bu nedenle, denge sabiti ¢6ziim formunu daha karmagik ve
uzun hale getirebilir. Bu tezde uygulanan (G'/G, 1/G) agilim y6ntemi ve modifiye edilmis
ciftli alt denklem yontemi sayesinde lineer olmayan olusum denklemlerinin tam ¢6ziim
smiflarina dahil olan trigonometrik, hiperbolik ve kompleksiton ¢éziimlerine ulasilmis
ayrica ulasilan ¢oziimlere uygun degerler verilerek resmedilmistir. Boylece yalnizca lineer
olmayan denklemlerin analitik ¢oziimlerini bulmakla kalinmamis, ayn1 zamanda
okuyucularin elde edilen coziimlerdeki dalgalarin yayilimin1 ve hareketini anlamasina
yardime1 olan grafikler verilmistir. Modifiye edilmis ¢iftli alt denklem yontemi kullanilarak
elde edilen kompleksiton ¢oziimlerin grafikleri, iki degiskenli acilim yontemi kullanilarak
elde edilen analitik ¢oziimlerin grafikleri ile kiyaslandiginda bariz farkliliklar oldugu
goriilebilir. Bu farkliliklar, kompleksiton dalgalarin hizlar1 ve ¢éziimlerinin ¢esitli fonksiyon

tiplerini birlikte igermesinden kaynaklanir.

Ayrica, bu yiiksek lisans tezi kapsaminda yapilan ¢alismalardan iiretilen iki adet

makale ¢esitli uluslararasi bilimsel dergilerde incelenerek yayimlanmak iizere kabul almistir.
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6. SONUC VE ONERILER

Tez dahilinde, iki degiskenli agilim yontemi, biri (2+1) boyutlu diger gt (3+1)
boyutlu olan dort farkli olusum denklemine uygulanip hiperbolik ve trigonometrik ¢dztiimler
elde edilmistir. Dahasi, modifiye edilmis ¢iftli alt denklem yontemi, (3+1) boyutlu KdV tipi
denkleme uygulanip hiperbolik ve trigonometrik ¢oziimleri ayn1 anda ¢6ziime dahil eden
kompleksiton ¢oziimler bulunmustur. Uygulanan iki yontem sadece bu tezde kullanilan
olusum denklemleriyle sinirlanmayip, bu konuda ¢aligmalar yapmak isteyen arastirmacilar
tarafindan daha yiliksek denge sabitine sahip lineer olmayan olusum denklemlerine
uygulanabilir ve ¢esitli tam ¢O6ziim smiflarina ulasilabilir. Bdylece tam ¢oziim
siiflandirilmasi yapilabilir ve dalgalarin davraniglar1 hakkinda detayli bilgiler elde
edilebilir. Ek olarak, kompleksiton ¢oziimlerin son yillarda ortaya ¢ikmasi sebebiyle yeni
bir¢ok uygulama ve genellestirmeler yapilabilecegi daha sonraki ¢alismalar i¢in bir oneri

mahiyetindedir.
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