
SERVER AND CLIENT-SIDE ALGORITHMS FOR
ENHANCING ADAPTIVE STREAMING

A Dissertation

by

Mehmet Necmettin Akçay

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in the
Department of Computer Science

Özyeğin University
August 2022

Copyright © 2022 by Mehmet Necmettin Akçay

SERVER AND CLIENT-SIDE ALGORITHMS FOR
ENHANCING ADAPTIVE STREAMING

Approved by:

Associate Professor Ali Cengiz
Beğen, Advisor
Department of Computer Science
Özyeğin University

Professor M. Reha Civanlar
Department of Computer Science
Özyeğin University

Associate Professor Müge Sayıt
International Computer Institute
Ege University

Assistant Professor İsmail Arı
Department of Computer Science
Özyeğin University

Assistant Professor Tankut Akgül
Electronics and Communication
Engineering
Istanbul Technical University

Date Approved: 11 August 2022

To my beloved family and father who have deeply and consistently

supported me always to finish my PhD training.

iii

ABSTRACT

HTTP adaptive video streaming is a technique widely used on the internet to-

day to stream live and on-demand content. Server and client-side algorithms

play an important role in improving user experience in terms of metrics such

as latency, rebufferings and rendering quality. After explaining the commonly

used metrics, we analyzed four main aspects of video streaming (i) bandwidth

prediction accuracy, (ii) utilization of playback speed, (iii) adaptive streaming

for content-aware-encoded videos, and (iv) head motion awareness for 360-degree

videos. 360-degree video streaming requires much higher bandwidth compared

to conventional video streaming. We demonstrate that most of the algorithmic

improvements achieved for video streaming can also be applied to Viewport De-

pendent Streaming (VDS) for 360-degree videos. It is also important that in

360-degree video streaming, we have a Head Mounted Display (HMD) device that

is capable of pointing the viewport orientation of the user. We also investigate and

improve the rate-adaptation algorithms for 360-degree videos by developing sev-

eral new algorithms making use of the HMD. The new algorithms proposed in this

thesis are Low-on-Latency (LoL), Low-on-Latency+ (LoL+), Bang-on-Bandwidth

(BoB), Size-aware Rate Adaptation (SARA), Content-aware Playback Speed Con-

trol (CAPSC), Head-motion-aware Viewport Margins (HMAVM). We evaluate the

proposed new algorithms using the objective metrics discussed in detail and show

significant contributions for these new algorithms including up to 91% decrease in

rebuffering duration for on-demand streaming, 61.9% decrease in rebuffering dura-

tion and 8.1% decrease in latency compared to L2A for low-latency live streaming,

81.3% bandwidth prediction accuracy for interactive streaming, lastly 20% im-

provement in viewport quality and 50% reduction in motion-to-high-quality delay

for 360-degree video streaming.

iv

ÖZETÇE

HAS (HTTP adaptive streaming) günümüzde internet üzerinde canlı ve isteğe

bağlı içerikleri yayınlamak için oldukça yaygın kullanılan bir tekniktir. Sunucu

ve istemci tarafında geliştirilen algoritmalar kullanıcı deneyimini gecikme, donma

ve seyir kalitesi metriklerine göre daha iyileştimek için önemli bir rol oynamak-

tadır. Genel olarak kullanılan metrikleri açıkladıktan sonra, video yayınını dört

ana kategori altında analiz ettik (i) bant genişliği tahmini doğruluğu, (ii) oy-

natma hızının ayarlanması, (iii) içeriğe duyarlı kodlanmış videolar için uyarlan-

abilir yayın, ve (iv) 360-derece videolar için kafa hareketi duyarlılığı. 360-derece

video yayımı, geleneksel yayınlara göre çok daha fazla bant genişliğine ihtiyaç

duymaktadır. Bu çalışmada video yayınları için geçerli olan çoğu algoritma iy-

ileştirmelerinin 360-derece VDS (Viewport Dependent Streaming) yayınlarında da

kullanılabileceğini gösteriyoruz. 360-derece video yayınında HMD (Head Mounted

Display) olarak bilinen bir aparat ile kullanıcının nereye baktığının bilgisini tespit

etmek mümkün olmaktadır. Ayrıca, HMD cihazını kullanan yeni algoritmalar

geliştirmek suretiyle 360-derece videolar için hız uyarlama algoritmalarını inceliyor

ve iyileştiriyoruz. Bu tezde geliştirdiğimiz yeni algoritmalar şu şekildedir; Low-on-

Latency (LoL), Low-on-Latency+ (LoL+), Bang-on-Bandwidth (BoB), Size-Aware

Rate Adaptation (SARA), Content-Aware Playback Speed Control (CAPSC),

Head-Motion-Aware Viewport Margins (HMAVM). Geliştirilen bu yeni algorit-

maları detaylıca açıklanan objektif metrikleri kullanarak değerlendiriyoruz ve bu

yeni algoritmaların, isteğe bağlı akış için donma süresinde %91’e varan azalma,

düşük gecikmeli canlı yayın için L2A algorıtmasına kıyasla donma süresinde %61.9

azalma ve gecikme süresinde %8.1’e varan azalma, interaktif yayında %81.3 bant

genişliği tahmin doğruluğu, son olarak 360-derece video akışında görüntü alanı

kalitesinde %20 iyileşme ve hareketten yüksek kaliteye gecikme süresinde %50

azalma dahil olmak üzere kayda değer katkılarını gösteriyoruz.

v

ACKNOWLEDGEMENTS

I would like to acknowledge all the colleagues who have supported me during my

PhD career, especially my advisor, Associate Prof. Ali C. Beğen and all of the

thesis committee members Prof. M. Reha Civanlar, Assistant Prof. İsmail Arı,

Assistant Prof. Tankut Akgül and Associate Prof. Müge Sayıt. I would like to

thank Prof. Roger Zimmermann, Dr. Abdelhak Bentalab and May Lim with

whom I have worked hard during my PhD study. I also would like to acknowledge

Saba Ahsan, Igor D.D. Curcio and Emre Aksu with their valuable contributions

and guidance throughout this study.

vi

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

1.1 HTTP Adaptive Streaming . 1

1.2 Extensions for 360-Degree Videos 4

1.3 Measuring Streaming Performance and User Experience 6

1.3.1 General Performance Metrics 6

1.3.2 360-Video-Specific Metrics 7

II ALGORITHMS FOR ON-DEMAND AND LIVE STREAMING 10

2.1 Streaming of Content-Aware-Encoded Videos 10

2.1.1 The SARA Algorithm . 11

2.1.2 Evaluation . 14

2.2 Algorithms Using Common Media Client Data/Server Data 17

2.2.1 Common Media Client Data (CMCD) 17

2.2.2 Common Media Server Data (CMSD) 21

III ALGORITHMS FOR LOW-LATENCY LIVE STREAMING . 23

3.1 Key Enablers for Low Latency . 23

3.1.1 Common Media Application Format (CMAF) 23

3.1.2 Chunked Transfer Encoding (CTE) 24

3.2 The LoL and LoL+ Algorithms . 25

3.2.1 Weight Selection . 29

3.2.2 Throughput Measurement 31

3.2.3 Playback Speed Controller 32

vii

3.2.4 Evaluation . 34

3.3 Content-Aware Playback Speed Control 36

IV ALGORITHMS FOR INTERACTIVE STREAMING 41

4.1 Bandwidth Prediction for WebRTC 41

4.2 The BoB Algorithm . 42

4.3 Evaluation . 46

V ALGORITHMS FOR 360-DEGREE VIDEO STREAMING . . 52

5.1 Viewport-Dependent Streaming with Concurrent Segment Down-
loads . 53

5.2 HTTP/1.1 vs. H2 . 54

5.3 Head-Motion-Awareness for 360-Degree Videos 55

5.3.1 Margin-Aware ABR . 56

5.3.2 Negative and Complementary Margins 63

VI CONCLUSION AND FUTURE WORK 76

REFERENCES . 79

VITA . 87

viii

LIST OF TABLES

1 Notations of the QoE model [0]. 8

2 Comparison of rate-based, dynamic, SARA-Basic, SARA-RLS and
SARA-MPC ABRs. 16

3 Previously defined and the new added CMCD parameters [0]. . . . 17

4 On-demand video streaming with 10 clients [0]. 20

5 On-demand video streaming with 20 and 30 clients [0]. 21

6 Results for VoD streaming for 10 and 20 clients using CMSD [0]. . . 22

7 Average scores used to calculate QoE for all ABRs. 37

8 List of the used notations. 38

9 List of the key symbols and notations used in BoB. 43

10 Average simulation results for different network profiles (↑: higher
is better, ↓: lower is better). 50

ix

LIST OF FIGURES

1 HTTP adaptive streaming. 1

2 HTTP adaptive streaming using dash.js. 2

3 Bandwidth measurement in source limited scenario [0]. 3

4 ERP projection [5]. 5

5 Cubemap projection [5]. 5

6 Viewport quality calculation based on tile intersection with the
viewport. 8

7 SARA architecture [0]. 12

8 SARA ABR flowchart [0]. 12

9 Bandwidth prediction implementations using RLS and MPC. 14

10 Encoded content bitrate used in tests. 15

11 Network profiles used in tests. 15

12 CMAF chunks for low-latency [7]. 24

13 Example SOM feature map setup for three bitrate alternatives. . . . 27

14 Results of LoL+, LoL, L2A, STALLION, Dynamic ABRs for 11
different network profiles [0]. 36

15 Possible CAPSC implementation workflows for low-latency scenario [0]. 38

16 Event densities for different test sequences [0]. 39

17 Results for Default ABR, LoL+ and CAPSC [0]. 40

18 Overall workflow of BoB. 43

19 Learning-based (DRL) rate controller for BoB. 46

20 The network profiles used in the simulations. 48

21 Actual and predicted bandwidth for different network profiles. . . . 51

22 Bandwidth measurement for concurrent dash threads. 54

23 H2 architecture. 55

24 Haversine (circular) distance. 59

25 Angular distance between a tile (red) and head motion vector. . . . 59

26 Automatic generated head motions used in experiments. 60

27 Average viewport quality at 40 (top) and 60 Mbps (bottom) band-
width. Lower values indicate better quality. 61

x

28 Average MTHQD results for the Trolley (top) and Harbor Biking
(bottom) sequences at 40 Mbps bandwidth and tile configurations
of 6x4 (left), 8x6 (middle) and 12x8 (right). 62

29 Average MTHQD results for the Trolley (top) and Harbor Biking
(bottom) sequences at 60 Mbps bandwidth and tile configurations
of 6x4 (left), 8x6 (middle) and 12x8 (right). 63

30 Proposed HMAVM margins. 64

31 Average viewport quality with HTTP/1.1 for Harbor. 69

32 Average viewport quality with HTTP/1.1 for Trolley. 70

33 Average MTHQD with HTTP/1.1 for Harbor. 71

34 Average MTHQD with HTTP/1.1 for Trolley. 72

35 Average MTHQD with H2 for Harbor. 73

36 Average MTHQD for 40 Mbps (top) and 60 Mbps(bottom) on artifi-
cial head motions with tile configurations of 6x4 (left), 8x6 (middle)
and 12x8 (right) for the Trolley and Harbor sequences with H2. . . 74

37 Average viewport quality (left) and MTHQD (right) results for
40 Mbps(top) and 60 Mbps(bottom) with H2. 75

xi

CHAPTER I

INTRODUCTION

1.1 HTTP Adaptive Streaming

The importance and need for video streaming services are increasing in our daily

lives everyday. The internet video traffic has been forecasted to be more than 82%

globally for 2021 [9]. As the demand increases the technologies and methods used

in video streaming continue to evolve as well. HTTP Adaptive Streaming (HAS)

is one of the most common ways of delivering video content nowadays which gives

the opportunity of transferring video in smaller pieces of data over the HTTP

protocol. HAS has become quite popular since it depends on HTTP and standard

TCP protocol, where a simple HTTP server can be easily used for HTTP based

adaptive streaming. An example illustration of how HTTP Adaptive Streaming

can be used is shown in Figure 1. As it can be seen in the figure, HAS has a

wide range of applications today including mobile terminals and 360-degree video

HMD devices.

Figure 1: HTTP adaptive streaming.

Since HAS is the architecture used to transfer video content from origin servers

1

to clients, and the popularity of video content keeps increasing, similarly the ap-

plications of HAS are also increasing. And with that increase even in the same

home network there might be resource race conditions where a TV can cause a

delay in mobile streaming or vice versa. So, the need of improvements in Adaptive

Bitrate (ABR) rules is also increasing. In this thesis, we will explain the problems

in the ABR algorithms today and will address them with several enhanced algo-

rithms. HAS can be implemented in several ways and one of the most popular

implementations for video streaming is dash.js [10] which is shown in Figure 2.

Segment

Segment

Segment

Segment

Segment

Segment

Segment

Segment

Low Quality HD Quality

Media Presentation Description
(MPD)

MPD Parser
Client
Media
PlayerSegment

Parser

Content Server

Client

Figure 2: HTTP adaptive streaming using dash.js.

The main idea in this approach is to keep multiple encoded data for the same

content with different qualities and let the client choose the appropriate represen-

tation based on Adaptive Bitrate (ABR) rules. In order to do that, the server

hosts a media presentation description (MPD) file which tells the streaming client

about the representations hosted by the server. Then the client makes a deci-

sion inside the ABR and switches to the desired quality representation based on

observed parameters like buffer, latency, stall period, etc.

Although the latest improvements enable us to stream both conventional and

360-degree video content, there are some problems that need to be addressed to

increase the user experience throughout the streaming session. Those problems

2

can be grouped into four main categories which are (i) Bandwidth Prediction

Accuracy, (ii) Utilization of Playback Speed, (iii) Adaptive streaming for content-

aware-encoded videos, and (iv) head motion awareness for 360-degree videos.

Bandwidth Prediction Accuracy plays a very important role, especially in low-

latency. For the scenario where the content in the server is not ready yet and

the content is being delivered to the client while it is being generated, in this

case, even if we might have a higher bandwidth resource we will not be able to

use that resource since the content is not ready yet and we are source limited.

And if we calculate the bandwidth resource we have in the streaming client by

simply using downloaded bytes divided by the time passed, we will end up with

a value which is very close to the encoding bitrate. The reason for that is the

counted idle times shown in Figure 3. That problem has to be addressed in order

to allow the clients that are streaming low quality video even though the network

resources are enough to allow higher quality streaming. Predicting bandwidth

1st
 c

hu
nk

S
iz

e:
 q

1

2nd
 c

hu
nk

S
iz

e:
 q

2

4th
 c

hu
nk

S
iz

e:
 q

4

Time

Idle
time

e4 b4 e2 b2=e1 b1

3rd
 c

hu
nk

S
iz

e:
 q

3

e3 b3

Chunk
download

Chunk
download

Idle
time

Chunk
download

Chunk
download

Figure 3: Bandwidth measurement in source limited scenario [0].

accurately is also an existing problem in the popular WebRTC streaming clients.

While the client predicts the bandwidth with the idle times counted, the clients

suffer from low quality or blurry video content. Considering the 360-degree video

streaming scenario, bandwidth prediction is still an issue due to multiple parallel

downloads for each tile. When the bandwidth prediction is not accurate, then

the ABR decisions for the streaming session might be affected and the overall

user experience can suffer from stalls or longer latency values. These problems

in adaptive streaming are addressed with several enhanced algorithms introduced

3

inside this study.

Modern ABRs observe the current state of the video sessions and make a

decision for the video streaming quality. Considering the client players we have

today, there exists another area to work on and utilize during the video streaming

session which is the playback speed of the video. Depending on the content and

the observed state of the player, it is possible to create an adaptive playback speed

algorithm to increase the user experience of the overall video in order to reduce the

rebufferings or catchup the latency. We have developed several playback controller

algorithms and evaluated them inside this thesis.

Another problem that needs to be addressed in video streaming is, the adap-

tation of the video playback sessions with varying segment sizes for the video

representation. VBR is an efficient way of encoding the video content since it

allows to use more bitrate for complex scenes in the video where the stale scenes

can be represented with less data. Using VBR encoding will preserve the encod-

ing quality since for easy scenarios less data is required. On the contrary, for a

complex moving scenario, more data will be required to keep the same quality.

However, for ease of adaptation, it is also common to use Constant Bitrate (CBR)

encoding for the content generation. CBR encoding will have varying qualities

throughout the playback session by fixing the encoded bitrate to a specific value

which makes it easier for the client ABR to adapt since all segments will be very

close in size. When we have a variable bitrate (VBR) encoded content, traditional

algorithms may predict the next segment inaccurately and that can lead to extra

stalls or poor user experience in these cases. In this study, we have developed an

algorithm to solve this problem to adapt better to the changing conditions.

1.2 Extensions for 360-Degree Videos

By definition HAS has no restriction on the content side as long as it can be

served as smaller segments of data. Thus the same method is applied to both

conventional and 360-degree video streaming. For 360-degree video streaming,

4

Omnidirectional Media Format (OMAF [11]) was introduced in order to represent

360-degree videos in a standard way for video streaming, and an overview of the

overall streaming experience using dash is discussed in [5]. According to OMAF,

in order to create the content for streaming, 360-degree video is projected onto 2D

coordinate space and served by the media server. There are mainly two different

kinds of approaches for the projection according to the OMAF standard which are

equirectangular projection (ERP) and cubemap projection (CMP). ERP is shown

in Figure 4, which looks very similar to the world map generation as we know

it today with only a small difference with horizontal axis coordinates. Since we

assume that the projection is done from the center of the sphere the horizontal

directions will be inverse of a standard world map as we use today.

Figure 4: ERP projection [5].

CMP projection as shown in Figure 5 similarly assumes we are in the center

of the sphere and projects all six squares for each side of a cube.

Figure 5: Cubemap projection [5].

After projecting 360-degree video content onto 2D space, it is possible to act

the same way we do in conventional streaming for both of the projection methods

5

by using the required encoding/decoding in the server and client side. Consider-

ing required bandwidth resources, conventional streaming is more straightforward

nowadays since it is possible to reach HD quality even with a simple connection

with a total bandwidth of 2 Mbps. However for 360-degree video streaming, re-

quired bandwidth is much higher compared to conventional streaming. So, in order

to overcome this issue Viewport Dependent Streaming (VDS [12]) is a commonly

used technique. The idea behind VDS is to serve the viewport tiles in high quality

where the user is looking in the 3D space and the rest in possibly lower quality in

order to save unnecessary bandwidth resource consumption. And in order to do

that whole content is divided into smaller pieces called tiles that can be requested

in different qualities by the client ABR. Considering all these improvements in

360-degree video streaming, it has been possible to use the same video streaming

architecture for both conventional and 360-degree video streaming.

Lastly, in this study head motion awareness is studied which is an additional

information we have especially in 360-degree video streaming. Current imple-

mentations fail to consider the head motion data coming from the head mounted

displays (HMD) in the ABR algorithms. Assuming a user is turning its head real

fast, it might end up seeing some low quality tiles before new high quality tiles

are downloaded. Because in VDS current viewport, where the user is looking is

downloaded in high quality and the rest is downloaded in lower quality. Thus a

quick head motion might end up with low quality tiles before the system reacts

to that immediate viewport change. In order to solve this problem, we have pro-

posed margin-aware ABR and negative margins concepts which will be explained

in detail in the following sections.

1.3 Measuring Streaming Performance and User Expe-
rience

1.3.1 General Performance Metrics

Evaluating video streaming experience is itself a wide area that has been visited

by many researchers recently. The evaluation of an ABR algorithm can be done

6

with subjective user tests where the content with the enhanced system is pre-

sented to users and their experience is collected at the end of the test to convey

a result. Another approach that can also support subjective tests is the objective

evaluations. Objective evaluations generally have a mathematical representation

and evaluate a total score based on the measured metrics. The most recent QoE

methods and the idea behind those evaluations are explained in [13].

In our study, we have used a modified QoE model based on the model Yi et

al. [14] proposed in their work which we think is more suitable for low latency

requirements. The model basically considers those 5 metrics bitrate selected by

the ABR, total number of bitrate switches, total rebuffering time, live latency and

client playback speed. The reasoning behind that is, we have experienced and

know that it is possible to create an ABR algorithm that can achieve the lowest

possible latency for streaming, but that comes with a cost of less client buffer and

increased rebuffering times which can lead to a worse user experience. That is

why each metric has a special factor and a weight in the total score. This can be

formulated as below which we have published in our paper in [0]. In the equation,

it can be seen that the bitrate selected by the ABR is a positive factor whereas

the others (total number of bitrate switches, total rebuffering time, live latency

and client playback speed) are negative parts of the equation which are working

as a punishment that are assumed to decrease the user experience throughout the

streaming session.

QoE =
S∑

s=1

(
αRs − βEs − γLs − σ|1− Ps|

)
−

S−1∑
s=1

µ|Rs+1 −Rs|, (1)

The explanations of the symbols used in Equation 1 are shown in Table 1.

1.3.2 360-Video-Specific Metrics

For 360-degree video, we have different metrics regarding the viewport dependent

streaming (VDS). Since the idea behind VDS is to download the tiles, that the

user is viewing, in high quality and the rest in possibly lower quality, viewport

7

Table 1: Notations of the QoE model [0].

Notation Meaning

s Segment
R Bitrate selected (Kbps)
E Rebuffering time (seconds)
L Latency (seconds)
P Playback speed (default 1×)
S Total number of segments
α Bitrate multiplier
β Rebuffering multiplier
γ Latency multiplier
σ Playback speed multiplier
µ Bitrate switch multiplier

quality is still a valid metric to evaluate the performance of tile based streaming.

Viewport quality is calculated by the weighted average of the qualities of each tile

by considering their area in the viewport tile. In Figure 6, a typical VDS scenario

is shown, the gray rectangle represents the viewport area where the user is able to

see. As it can be seen that the tiles in the corners and edges are partially visible

in the viewport.

Figure 6: Viewport quality calculation based on tile intersection with the viewport.

Considering each tile represented with rectangles in the viewport, each of those

tiles can possibly (but not necessarily) have different viewport quality assigned.

In order to measure the overall viewport quality more accurately, the viewport

total area and intersection area with the viewport for each tile are considered

while calculating an overall viewport quality. In Equation 2 the average weighted

viewport quality calculation is shown. Here the QT i is the quality of each tile in

the viewport, AreaT i is the area of the tile visible in the viewport and N is the

8

number of tiles in the viewport. With this calculation we try to be fair for the

partially visible tiles that are placed at the corners of the viewport.

Weighted Average Viewport Quality =

∑N
i=1

(
QTi
× AreaTi

)∑N
i=1

(
AreaTi

) (2)

Another important metric which helps to measure the QoE of 360 VDS stream-

ing is the metric called Motion-To-High-Quality-Delay (MTHQD) which was in-

troduced in [15]. MTHQD is the time passed when a tile stays in lower quality till

the quality for this tile is switched back to high quality. In VDS when the user is

making a head movement faster than the download speed for the next segment of

the viewport, it is most likely that the user will hit low quality tiles. When this low

quality tile is in the viewport or close to the viewport, ABR will make a decision

to switch to high quality for this tile and request the high quality representation

for it. During this switch there might be possible low quality tile segment(s) that

can be rendered in the viewport and this low quality rendered duration is defined

as MTHQD. In this thesis, we proposed several algorithms to decrease MTHQD

in the following sections.

9

CHAPTER II

ALGORITHMS FOR ON-DEMAND AND LIVE

STREAMING

2.1 Streaming of Content-Aware-Encoded Videos

A common and easy to implement practice in adaptive streaming is using constant

bitrate encoding (CBR) during the content creation phase for on-demand video,

resulting in equal or very close segment sizes for a specific bitrate. Even though

use of CBR simplifies the implementation of the rate adaptation for developers,

natural content is not suitable for CBR encoding, since it exhibits a large variation

in complexity in the temporal domain. Thus, during a playback session, even if

the network conditions do not change and all the segments are requested from

one particular representation, a naive client that streams CBR-encoded segments

inevitably experiences quality variation between the complex scenes or the ones

involving more motion (e.g., an explosion) and the simple or static scenes (e.g.,

talking faces), unless the encoding bitrate is sufficiently high for even the com-

plex scenes. There is a good amount of prior research on this topic. The first

study [16] introduced the concept of consistent-quality streaming and solved this

problem using an optimization framework. The proposed method allocated the

bits among the segments such that it yielded the best overall quality based on

a metric that captured the presentation quality of a group of segments. Later

studies (e.g., [17], [18], [19], [20]) tackled the same problem by making certain as-

sumptions and simplifications to come up with a practical solution. For example,

the problem at hand gets simplified when one produces each representation in a

(near) constant-quality fashion (using capped variable bitrate (VBR) encoding)

and take the resulting segment size information into account in rate adaptation

in addition to the available bandwidth and the amount of media there is in the

10

playback buffer. The available bandwidth varies over time and this is a signifi-

cant constraint in any real-time streaming application, and since we can reliably

predict the available bandwidth only for the next several seconds, not minutes,

rate adaptation decisions can only be made for a short horizon. In the case of live

streaming, the output of the encoder is only known for a few segments and this

limits the horizon further. For the segments that are yet to be encoded, actual

sizes will be unknown. On the client side, we use the playback buffer as a breathing

room for encoding bitrate variability. This buffer typically has a minimum and

maximum size limit: if it is drained beyond the minimum threshold, the client

should be conservative in rate adaptation as it may soon rebuffer and if more data

arrives than the maximum size limit, the excess gets discarded. Normally, the goal

is to keep a safe amount of data in the playback buffer between the minimum and

maximum size limits.

2.1.1 The SARA Algorithm

In this thesis, our target application is video-on-demand (VoD) streaming where

the source content is pre-encoded and packaged, and the size information for each

segment of every representation is known a priori. For this case, we develop a

solution, implement it for dash.js [10] and test it in a number of different scenarios.

It is worth noting that this solution is a component inside the rate adaptation

logic already built in at the client side and it is orthogonal to the specific video

codec/encoder. That is, it works with any open-source or commercial encoder

and any video codec such as AVC, HEVC, VVC or AV1. In Figure 7 the overall

architecture of the new ABR proposed in this thesis is shown.

SARA selects the most suitable media representation for the next segment to

be downloaded from the list of available representations considering how much

media is available in the playback buffer, minimum and maximum playback buffer

sizes, predicted bandwidth and sizes of the candidate segments from the available

representations. Every downloaded segment is placed in the playback buffer, which

cannot take more media than Bmax (specified in terms of seconds). If the buffer

11

Figure 7: SARA architecture [0].

level drops lower than a minimum size of Bmin, the client needs to be careful due

to increased risk for a rebuffering. At step i, the SARA ABR rule computes the

permutation table by looping through all the available representations and works

as follows:

1. Compute the next download time (denoted by NDTi+1) for each candidate

segment from the available representations by dividing its size (denoted by

NSSi+1, which is available from the segment-size list) by the predicted band-

width.

2. Compute the next buffer level (denoted by Bi+1) for each candidate segment

from the available representations by adding the segment duration to the

current buffer level (denoted by Bi) and subtracting the next download time

(NDTi+1).

Figure 8: SARA ABR flowchart [0].

12

SARA picks the segment from the representation with the highest encoding

bitrate that ensures the next buffer level (Bi+1) ≥ Bmin. If no candidate segment

ensures this condition, the representation with the lowest encoding bitrate is se-

lected. The overall flowchart of the SARA ABR rule is given in Figure 8, which is

invoked after downloading each segment to determine the representation for the

next segment. In the flowchart, the green boxes handle the size-aware rate adap-

tation logic and the orange boxes control the upshifting aggressiveness through

the upshiftThreshold parameter, which is set to five in this work.

In order to make the bandwidth prediction in a more stable way we used two

different approaches shown in Figure 9.

RLS [21] is an online linear adaptive filter that recursively finds the filter

coefficients that minimize a cost function relating to the input signals for accurate

prediction. The RLS-based bandwidth prediction works in two phases at every

segment download step i:

• Phase 1 (Filter Taps): It takes as an input a vector of the last M (M = 4

in our setup) smoothed bandwidth measurement values given by the band-

width measurement/smoothing component, and then recursively calculates

the gain vector, inverse correlation matrix of the smoothed bandwidth mea-

surement values and the estimated error (denoted by ϵ in Figure 9).

• Phase 2 (Update): These are used to update the filter taps vector (denoted

by Wi in Figure 9) of length M, and finally return the bandwidth prediction

for the next z steps.

RLS has three important benefits. First, it does not require extensive computa-

tional capabilities, allowing its deployment over practical real-time systems with

commodity mobile devices. Second, it exhibits extremely fast convergence and

does not need a prediction model. Third, it is robust against time-varying net-

work conditions through its forgetting factor.

MPC [22] is a widely deployed approach in the industry and has been proven

13

to have a good forecasting and prediction performance. It falls into the model-

based control category, which is known to be simple and practical, and it works in

various environments. The MPC approach essentially selects the future bandwidth

prediction by looking z steps ahead, considering the last M (M = 4 in our setup)

smoothed bandwidth measurement values. At each segment download step i, the

MPC approach works in two phases:

• Phase 1 (Process): It takes as an input a vector of the M most recent

smoothed bandwidth values given by the bandwidth measurement/smooth-

ing component.

• Phase 2 (Optimizer and Model): This represents the core of the MPC ap-

proach where given Ci and z, it predicts the future bandwidth using off-the-

shelf MPC optimizer function fmpc with a good accuracy (more than 90% in

our case). Here, the objective function is to find the bandwidth prediction

that minimizes the prediction error.

Figure 9: Bandwidth prediction implementations using RLS and MPC.

2.1.2 Evaluation

In order to evaluate our enhanced algorithm we have used a VBR content which

has a varying bitrate as shown in Figure 10 with 4 different qualities 360p, 540p,

720p and 1080p. The trend of the encoding is also very hard to predict regarding

the unexpected peaks in the figure. The test content created consists of a 10 minute

video mixed from a variety of videos that exhibited different scene complexities.

We used dash.js [10] environment for the testing environment and compared

our new proposed SARA algorithm with rate-based and dynamic ABR algorithms

14

Figure 10: Encoded content bitrate used in tests.

which are well known existing ABR algorithms inside dash.js player. In order to

make a fair comparison, we have simulated the network environment with changing

bandwidth conditions using tc [23]. We have selected 3 different bandwidth profiles

Cascade, Twitch and LTE as shown in Figure 11.

Figure 11: Network profiles used in tests.

We have created 3 versions of the SARA algorithm which are SARA-Basic,

SARA-RLS and SARA-MPC as discussed above and compared all those 3 dif-

ferent implementations with dash.js rate-based and dynamic ABR algorithms in

Table 2. In the table, total download (TD), total rebuffering duration (TRD),

long rebuffering count (≥ 40 ms), short rebuffering count (< 40 ms) and total

percentage of HD content rendered (≥ 720p) is shown. All three SARA ABR

15

rules (SARA-Basic, SARA-RLS and SARA-MPC) experience not only a smaller

total number of rebufferings but also a shorter total duration of rebufferings. This

vastly improves the viewer experience. This is largely due to the fact that SARA

takes segment sizes into account in its decisions such that it can avoid fetching

larger-than-expected segments if there is a risk of rebuffering and it can carry

on fetching smaller-than-expected segments if there is no risk of rebuffering. The

rate-based and dynamic ABR rules have the best HD performance for the Cascade

profile (i.e., when the network is more stable) but are never able to reach 1080p

quality, while SARA-Basic, SARA-RLS and SARA-MPC fetch 87, 115 and 120

segments, respectively, at 1080p. Regarding the Twitch profile, the rate-based

and dynamic ABR rules can fetch few 1080p segments and the SARA flavors fetch

about half of the segments at 1080p. Similarly, for the LTE profile, rate-based

and dynamic ABR rules fetch very few 1080p segments whereas the SARA flavors

fetch about one third of the segments at 1080p.

Bandwidth
Profile

ABR Rule TD (MB) TRD (s) LRC SRC HD (%)

Rate-based 184.00 4.92 6 11 88.33
Dynamic 165.88 3.17 10 8 80.67
SARA-Basic 178.56 1.26 3 5 65.33
SARA-RLS 196.10 0.40 1 1 65.00

Cascade

SARA-MPC 198.06 0.80 2 1 66.67
Rate-based 180.88 2.69 6 8 61.67
Dynamic 186.57 2.54 10 6 68.00
SARA-Basic 231.48 1.40 3 7 74.00
SARA-RLS 199.01 1.00 3 4 55.00

Twitch

SARA-MPC 203.62 1.02 4 5 51.33
Rate-based 188.78 1.90 5 12 87.00
Dynamic 130.19 1.30 6 7 53.00
SARA-Basic 140.38 1.27 5 6 40.67
SARA-RLS 146.10 1.00 3 7 43.67

LTE

SARA-MPC 161.47 0.95 4 5 62.33

Table 2: Comparison of rate-based, dynamic, SARA-Basic, SARA-RLS and
SARA-MPC ABRs.

16

2.2 Algorithms Using Common Media Client Data/Server
Data

2.2.1 Common Media Client Data (CMCD)

Recently, Consumer Technology Association (CTA) released the Common Media

Client Data (CMCD; CTA-5004) [24]. Following the CMCD release, after mak-

ing several discussions about standards and use cases, a new concept of Common

Media Server Data (CMSD) is also being discussed recently. After these stan-

dards were published, we have investigated if these standards might help ABR

algorithms to increase the QoE achieved by the streaming clients. We have used

the parameters defined in Table 3.

Parameter Key Type Unit

Encoded bitrate br integer Kbps
Buffer length bl integer ms
Buffer starvation bs boolean -
Deadline dl integer ms
Measured throughput mtp integer Kbps
Requested max. throughput rtp integer Kbps
Object type ot token -
Max buffer (new) com.example-bmx integer ms
Min buffer (new) com.example-bmn integer ms

Table 3: Previously defined and the new added CMCD parameters [0].

In order to show how CMCD might help us we have implemented CMCD aware

client and server and implemented a basic ABR which has the ability to share the

client data with the server. We shared the buffer data with the server and made

the bandwidth allocation in the server side based on the buffer data which is sent

from the client side as shown in the Listing 2.1.

f unc t i on bufferAwareBandwidthAllocat ion (req) {

var cmcd params = processQueryArgs (req) ;

var r = 0 ;

var C = getAva i l i b l eTota lCapac i ty () ;

17

i f (! (’ bl ’ in cmcd params) | | ! (’ com . example−bmn’ in

cmcd params) | | ! (’ com . example−bmx’ in cmcd params)

| | ! (’ ot ’ in cmcd params)) {

r e turn 0 ; /∗ Disab le bandwidth a l l o c a t i o n ∗/

}

i f (cmcd params [’ ot ’] != ’v ’ && cmcd params [’ ot ’] != ’

av ’) { /∗ not video ob j e c t ∗/

re turn 0 ; /∗ Disab le bandwidth a l l o c a t i o n ∗/

}

/∗ Buffer−to−r a t e mapping ∗/

var Cmin = C x (1 − α) ;

var Cmax = C x α ;

var Bmin = cmcd params [’ com . example−bmn ’] ;

var Bmax = cmcd params [’ com . example−bmx ’] ;

var Bu f f e r l eng th = cmcd params [’ bl ’] ;

/∗ Case S1 ∗/

i f (Bu f f e r l eng th < Bmin | | (’ bs ’ in cmcd params)){

r = Cmax ;

}

/∗ Case S2 ∗/

e l s e i f (Bu f f e r l eng th > Bmax) {

r = Cmin ;

}

/∗ Case S3 ∗/

e l s e {

var Brange = Bmax − Bmin ;

var Crange = Cmax − Cmin ;

r = ((1 − ((Bu f f e r l eng th − Bmin) / Brange)) ∗ Crange)

+ Cmin ;

18

}

r e turn r ;

}

Listing 2.1: Buffer-aware server-side bandwidth allocation algorithm [0].

The objective of this algorithm is to find the correct rating with a given buffer

length, so that both number of rebufferings and rebuffering durations can be re-

duced without affecting the playback quality. In order to address this problem

in the algorithm, we have defined three cases which we refer as S1, S2 and S3

scenarios defined as follows:

(S1): Buffer underflow case where bl < Bmin. The algorithm will pick the maximum

available rate. (r = Cmax).

(S2): Buffer overflow case where bl > Bmax. The algorithm will pick the minimum

available rate. (r = Cmin).

(S3): Buffer is safe and stable case where Bmin ≤ bl ≤ Bmax. The algorithm will

compute the rating based on the buffer value using the equation

Brange = Bmax −Bmin

Crange = Cmax − Cmin

r = Cmin + ((1− ((bl −Bmin)/Brange))× Crange).

In this equation Cmax = α × C, Cmin = (1 − α) × C and C is the total available

maximum bandwidth capacity. Here, we have used a safety factor in the algorithm

denoted as α = 0.9 which is the default value in dash.js [10] reference player

implementation.

The results for 10 clients running on-demand video sessions are shown in Ta-

ble 4. We used Spike and Cascade network profiles for those scenarios which can

be accessed from [25]. In Table 4, the effect of enabling CMCD can be seen clearly.

The Average Rebuffering Duration (RD), Max Rebuffering Duration and Average

19

CMCD NO CMCD CMCD NO CMCD

CascadeX10 SpikeX10

Avg. BR 3.13 3.33 2.61 3.20
Min. BR 2.90 3.12 2.30 2.68
Avg. RD 5.36 20.84 12.43 71.90
Max. RD 10.72 38.84 18.49 83.54
Avg. RC 4.72 11.04 8.68 25.48
Avg. SC 35.80 36.70 49.14 53.90

Table 4: On-demand video streaming with 10 clients [0].

Rebuffering Counts for both Spike and Cascade profiles are noticeable reduced.

For Cascade profile the reductions for Average RD, Max RD, Average RC are 74%,

72% and 57% respectively. Similarly for Spike network profile those improvements

were 83%, 78% and 66% for Average RD, Max RD, Average RC, respectively.

We also evaluated CMCD vs NO CMCD scenarios with 20 and 30 clients to see

how CMCD scales when the concurrent streaming clients increases. The results

with Spike and Cascade profiles with the increasing number of clients, are shown

in Table 5. 20 client scenarios are shown in the table with CascadeX20, SpikeX20

and similarly 30 client scenarios are shown with CascadeX30, SpikeX30 results.

For Cascade profile, 41% and 15% reduction in Average RD, 38% and 17% in

Max RD, 16% and 6% in Average RC was observed for 20 and 30 client scenarios

respectively. Similarly for Spike network profile, 48% and 1% reduction in Average

RD, 35% and 0% in Max RD, 36% and 1% in Average RC was observed for 20

and 30 client scenarios respectively. Another result that we can tell based on

those results is the need for a better algorithm, since the improvements achieved

using CMCD decreases as the number of clients are increasing. Here we have

used a basic bandwidth allocation to focus on the effects of CMCD. With a more

advanced server-side algorithm we believe the improvements will be more than the

results we have achieved.

20

CMCD NO CMCD CMCD NO CMCD CMCD NO CMCD CMCD NO CMCD

CascadeX20 SpikeX20 CascadeX30 SpikeX30

Avg. BR 3.20 3.39 2.78 3.16 3.32 3.34 3.07 3.11
Min. BR 2.88 3.03 2.22 2.55 2.93 2.97 2.33 2.41
Avg. RD 14.42 24.58 32.14 61.87 31.57 37.00 47.99 48.39
Max. RD 27.57 44.43 51.13 78.13 59.86 71.70 70.66 70.21
Avg. RC 9.24 11.05 14.41 22.36 14.17 15.13 19.03 19.26
Avg. SC 38.10 34.84 42.78 50.36 35.86 35.54 46.73 46.81

Table 5: On-demand video streaming with 20 and 30 clients [0].

2.2.2 Common Media Server Data (CMSD)

After the CTS shared initial ideas about CMSD specs we have further investigated

quick benefits of having CMSD in our setup that we used in CMCD. And we have

extended our server implementation to return a new parameter com-example-dl

which is the delay for the request in the server side. With the delay amount the

client can ignore those extra waiting times and calculate the download duration

and throughput more accurately.

As stated earlier in Listing 2.1 our CMCD solution will deliver the bandwidth

resource to the clients based on the buffer levels in the clients which creates bet-

ter results for the entire system as shown previously. However while doing that

resource allocation in the server side, the clients that have higher buffer levels

will probably get a lower bandwidth with this algorithm and this server behaviour

might misguide the client to measure the available bandwidth and cause unneces-

sary downshifts. With our new data sent from server using CMSD, which is the

delay caused in the server, will help the client to measure the available bandwidth

accurately by considering the delay duration in the server side. We have used NG-

INX, node.js and puppeteer to run our experiments using dash.js. For the dataset

we have used five different representations which are 80p, 360p, 430p, 570p, 720p

representations of the famous Big Buck Bunny video.

We have evaluated our setup with CMSD enabled and the results can be seen

in Table 6. We have observed 33% and 56% reduction in Avg. Rebuffering Du-

ration (RD), 30% and 27% reduction on Avg. Rebuffering Count (RC) for 10

21

CascadeX10 CascadeX20
Metric CMSD NO CMSD CMSD NO CMSD

Avg. BR 3.46 3.55 3.20 3.26
Min. BR 3.15 3.27 2.45 2.59
Avg. RD 3.52 5.26 0.51 1.16
Max. RD 15.0 14.5 4.15 8.21
Avg. RC 1.52 2.18 0.40 0.55

Table 6: Results for VoD streaming for 10 and 20 clients using CMSD [0].

(CascadeX10) and 20 (CascadeX20) client scenarios, respectively. We have ob-

served a small negligible difference for Average Bitrate (BR) which is 2% during

our tests. Average Bitrate doesn’t change a lot even though we have introduced a

new delay on the server side which is also sent to the client side for the measured

throughput calculations. This is an initial design which shows us that CMSD can

be used to fine tune the client side ABR decisions with the extra implementation

or information details supplied by the server side.

22

CHAPTER III

ALGORITHMS FOR LOW-LATENCY LIVE

STREAMING

3.1 Key Enablers for Low Latency

3.1.1 Common Media Application Format (CMAF)

As the delivery of video content over HTTP is becoming popular nowadays, the

need for lower latency values with online content is also increasing. As discussed

earlier in order to stream video, it is divided into smaller segments to send to

the client over HTTP and those playable segments are streamed by the client.

Considering the need of low latency for online content, the configuration of the

segment size on the server side is playing an important role to achieve low latency.

For example, if we have a segment size of 2s, then the expected latency will be equal

or higher than 2s. So in order to solve this problem chunks are introduced for low-

latency live streaming. There have been multiple improvements in that area like

Apple’s HLS, DASH-LL using Common Media Application Format (CMAF). One

of the most common standards was introduced by MPEG to create a standard way

of communication between server and client which is defined as Common Media

Application Format (CMAF [26]). CMAF takes the fragmented mp4 content and

delivers media content with the chunks shown in Figure 12.

In Figure 12, a CMAF fragment example is shown with a single movie fragment

box (moof). Moof box is defined as a combination of movie fragment header

(mfhd) and track fragment (traf) where the details of those boxes can be found

in ISO/IEC 23000-19:2020 [26]. In the bottom part of the Figure 12, it is shown

how CMAF data format might be very useful for low latency scenarios especially

when the video content is not ready and generated live. In the figure, the same

data which is shown at the top is separated into 5 CMAF fragments, thus the

23

Figure 12: CMAF chunks for low-latency [7].

client might have those packages earlier and with that architecture for the clients,

it will be possible to achieve lower latency results. The important achievement

here is that a CMAF chunk is actually smaller than the segment size defined in

the server size which allows us to initiate the playback of the content before the

creation of the segment finishes.

3.1.2 Chunked Transfer Encoding (CTE)

After generating CMAF chunks in the transport layer there is also a standard pro-

tocol supported by HTTP/1.1 which is called Chunked Transfer Encoding (CTE).

CTE is a more general term and it is not only designed for low latency, but also

it can be used to transfer a big image file from a web server to the clients. In

HTTP/1.1 this is accomplished with HTTP header Transfer-Encoding: chunked.

Possible other values for this header are compress, deflate and gzip which are de-

fined in the HTTP RFC [27]. CTE is designed to transfer content from server to

client in small chunks. In CTE the data that needs to be transmitted is divided

into smaller chunks of data and each of them is transferred with this new header

included in the header.

When CTE is enabled the Content-Length header will not be used and instead

each chunk will have its own size at the beginning of the data. The last chunk

24

created will be a zero length chunk to indicate the end of the transfer. With

CTE the video streaming client and the media server will maintain a persistent

connection to stream the data in smaller bits of data. One of the most common

approaches in low-latency live streaming is to use CMAF with CTE enabled. We

have also used them together to implement our proposed algorithm using dash.js

in the next section.

3.2 The LoL and LoL+ Algorithms

As stated earlier CMAF chunks help us accomplish low-latency streaming since it

enables us to package smaller media content and deliver that content to the client

to start playback earlier which helps us to decrease the latency between the server

content creation and client playback. Even though the measured latency value in

the client improves using CMAF, there is another challenging part here which is

not a negligible problem for the client side. Most of the ABRs measure the values

like buffer, bandwidth, latency, etc.. and try to make a decision based on these

observed metrics. However, predicting the bandwidth accurately or calculation

on the client side may not be possible due to the idle times between the arriving

CMAF fragments.

Traditional ABRs count the bytes received and divide that value by the du-

ration which eventually results in the encoding rate of the server especially when

the content is being produced live. When the encoder is waiting to produce new

chunk data and the client request is blocked till the content becomes ready, while

calculating the available bandwidth, this waiting time has to be discarded from

the calculations. Otherwise, it is very likely to end up with the encoding rate

instead of measuring bandwidth accurately.

Recently, there have been many researches in that area to predict the band-

width and adapt better using improved ABR algorithms. In [28] and [29] Lie et

al. proposed a bitrate estimation algorithm and dealt with network related prob-

lems with extra smoothing functions by using their SFT and ESFT methods. In

25

their work, they also considered parallel segment fetching scenarios. Rainer et al.

[14] also proposed a bandwidth prediction based on previous experiences. In their

work, they have tried to predict the next segment based on the previously mea-

sured values. In [30] Z. Li et al. propose a new bandwidth prediction algorithm

called Probe AND Adapt (PANDA) in order to avoid ABR switch oscillations

where multiple clients are competing for the same resource on the shared network

scenario. A physical layer bandwidth prediction module was mentioned in [31],

similarly [32] has also created a bandwidth estimation module that uses future

base layer data by using a heuristic bandwidth shaping algorithm they have pro-

posed. FESTIVE [33] and Squad [34], are ABR algorithms that were introduced

to track and make decisions based on the buffer level of the client player. If the

client’s buffer level gets lower, lower bitrate quality representations are selected

in order to avoid possible future stalls during the video playback session. Also,

authors have proposed heuristic ABR algorithms in BBA [35], BOLA [36], and

Quetra [37] in order to adapt to the changing environment conditions at segment

boundaries before starting to download. In their work authors in [38] proposed

a practical bandwidth prediction algorithm in order to avoid oscillations due to

frequently changing network conditions.

There have been several other studies recently to address this problem and

increase the quality of experience (QoE) for low latency streaming recently by

predicting bandwidth in low latency streaming considering the content being cre-

ated synchronously with the player requests. For bandwidth prediction, Ben-

taleb et al. [39, 40] proposed an ABR called ACTE for Chunk Transfer Encoding

(CTE) using CMAF. ACTE predicts bandwidth and considers video playback

buffer to make ABR decisions. Gutterman et al. [41] designed an algorithm called

STALLION consisting of a sliding window. STALLION calculates the mean and

standard deviation and makes ABR decisions based on those values to increase

stability. In [42], Peng et al. implemented another new algorithm with a heuristic

playback rate controller for low-latency streaming. The authors proposed a low

26

latency ABR in [43] that considers different paths based on frame sizes.

In this thesis, we have developed a new algorithm to overcome this problem.

Considering ABRs trying to choose one of the representations in each segment

boundary, this problem can be thought of as a classification problem between the

alternative representations on each segment boundary. For classification problems,

a well known approach using unsupervised learning techniques is the Self Organiz-

ing Maps (SOM) proposed by Kohonen [44]. The same approach has been applied

to even some NP-hard problems like the traveling salesman problem [45]. For each

segment boundary, we want to find the closest representation to an imaginary ideal

point. The feature map is shown in Figure 13. Each state is represented by mea-

sured throughput, live latency, buffer level and calculated QoE. In our setup we

used the QoE model based on [46] with some extra customization mentioned in

Section 1.3.1.

Weight Matrix

Feature Map

Bitrate Levels

State

Measured Throughput
Live Latency

Buffer Occupancy
QoE

Figure 13: Example SOM feature map setup for three bitrate alternatives.

In each segment boundary, the distance from the ideal point with latency = 0,

rebuffering = 0 and total number of switches = 0 which is an impossible state

27

to reach in reality, is calculated. For each quality representation, we evaluate the

current values for the state and update the corresponding neuron. Then we search

for the closest neuron to the ideal point that we created in the feature space.

That closest neuron closest to the imaginary ideal point we created is called as

Best Matching Unit which will be referenced as BMU for the rest of this thesis.

In order to find the BMU we have used the euclidean distance formula shown in

Equation 3.

d(a, b) =

√√√√ 4∑
i=1

wn
si
× (ai − bi)2. (3)

In Algorithm 1 the decision of the next bitrate selection by the ABR is shown

which has two major neuron updates. Considering each bitrate representation

in the MPD file is corresponding to a neuron in this system, the first update is

to move the current selected neuron to the measured point {Xsi , Lsi , Esi , Hsi}.

Then the algorithm finds the BMU by checking the distance for all neurons. After

finding the BMU, the algorithm makes the second update which is to move the

found BMU towards the impossible to reach ideal point that we created. In our

setup we have created that ideal point with latency=0, rebuffering duration=0

and total bitrate switch numbers=0. Checking those two updates again we can

say that the first update is an update that keeps the system with the realistic

observed values whereas the second is completely opposite and moves the neuron

to the ideal point. These two updates may seem to be contradicting each other,

but the truth is the system creates a balance between those two updates. After

finding the BMU in the second update, it is also important to emphasize that all

the neighbor neurons are also updated with a Gaussian neighborhood function.

The parameter λ in the algorithm which is also called as the learning rate for SOM

model is chosen as 0.01. This is the default value introduced in the original SOM

paper [44].

28

Algorithm 1 Bitrate selection using SOM model [0].

1: function GetNextBitRate()
2: D⋆

si
← 0, BMU ← ∅, R⋆

si+1
← 0, λ← 0.01

3: for Each segment downloading step si ∈ S, i > 0 do
4: Xsi ← CalculateThroughput(si)
5: Bsi ← GetBufferLevel(si)
6: Lsi ← GetLatency(si)
7: Esi ← GetRebuffering(si)
8: Hsi ← GetSwitches(si)
9: wsi ← WeightVectorSelection(si)
10: Normalize({Xsi , Lsi , Esi , Hsi}, [0, 1])
11: Update(mĵ

si
, {Xsi , Lsi , Esi , Hsi})

12: for all neurons ∀ mĵ
si
∈ Msi , 1 ≤ ĵ ≤ j do

13: Rsi ← R⋆
si

14: Dsi ← GetDistance(wsi× {Xsi , Lsi , Esi , Hideal})
15: if (Dsi < D⋆

si
) then

16: if (Lsi ≤ Ltarget) && (Bsi ≥ Blow) then
17: D⋆

si
← Dsi

18: BMU ← mĵ
si

19: R⋆
si+1
← BMU.bitrate

20: Rsi+1
← R⋆

si+1

21: else
22: BMU ← SelectNeuron(Xsi)
23: R⋆

si+1
← BMU.bitrate

24: Rsi+1
← R⋆

si+1

25: end if
26: end if
27: end for
28: Update(mĵ

si
, {Xsi , Lideal, Eideal, Hsi})

29: Return(Rsi+1
)

30: NextMaxRate()
31: end for
32: end function

3.2.1 Weight Selection

As also stated with the previous studies in [47, 48], the performance of Self Or-

ganizing Maps (SOM) is directly affected by the selection of the initial weights

used in the SOM updates. Based on those values the system might converge quite

differently on each run. In order to solve this problem, we have restated that prob-

lem as an assignment problem for the weights with a provided utility function to

maximize. And we proposed a method to assign the initial values of the SOM

weights with the solution of this new assignment problem.

29

We restate choosing SOM initial weights problem as an assignment problem [49]

with additional linear inequality constraints. If we check the objective function

in 4, we will see that the equation satisfies the condition of being concave and

having non-negativity constraints.

We will use the notation Msi for the SOM state consisting of neurons for the

segment number i. For each neuron in Msi , our goal is to find the best weight

vector which satisfies the constraints defined in Equation 4 and the utility function

that we want to maximize, which is the QoE defined in Equation 1 in this case.

To simplify the weight selection problem we have used normalized values from the

set of V = {0.2, 0.4, 0.6, 0.8, 1}.

The constraints that are needed to be satisfied for any weight assignment

combination is shown in Equation 4.

s.t.


A1 : Lsi+1

≤ Ltarget + |Lsi − Lsi−1
|

A2 : Bsi+1
≥ Blow

A3 : V min ≤ wv̂
si+1

(.) ≤ V max, ∀wv̂
si+1
∈ Wsi+1

(4)

where w⋆
si+1

is the weight vector that maximizes our utility function which is QoE

and the weight that should be used in the next segment (si+1). The details of

these constraints are:

• A1 is the constraint to check the latency value will still be in an acceptable

range.

• A2 is the constraint that the playback buffer will not suffer from being too

low which may lead to stalls in the playback session. So this condition will

check that the buffer is above a safe threshold.

• A3 ensures that the weight selection is inside the allowed set which is be-

tween 0 and 1 for our case.

30

Algorithm 2 Initial Weight Assignment Algorithm [0]

1: function WeightVectorSelection(si)
2: w⋆

si+1
← {}, Wsi ← {}, u⋆

si
← 0 , V ← {0, 0.2, 0.4, 0.6, 0.8, 1}

3: Wsi ← WeightVectorGenerator(V)
4: for Each segment downloading step si ∈ S, i > 0 do
5: Msi ← GetNeurons(SOM)
6: if Initial Stage (s1) then
7: w⋆

s1
← k-means++({wX

s1
, wL

s1
, wE

s1
, wP

s1
, wH

s1
})

8: else
9: for Each SOM Neuron mĵ

si
∈Msi , 1 ≤ ĵ ≤ j do

10: for Each weight vector wv̂
si
∈ Wsi , 1 ≤ v̂ ≤ v do

11: u
(mĵ

si
,wv̂

si
)

si ← ComputeQoE(Rsi ,Esi ,Lsi ,Psi)

12: M(M,W)
si = Push(u

(mĵ
si
,wv̂

si
)

si)
13: if A1, A2, A3 in (4) are satisfied then

14: if u
(mĵ

si
,zv̂si)

si > u⋆
si
then

15: u⋆
si
← u

(mĵ
si
,wv̂

si
)

si

16: w⋆
si+1
← wv̂

si

17: else
18: GoTo(10)
19: end if
20: else
21: if v̂ = v then
22: w⋆

si+1
← w⋆

si

23: end if
24: end if
25: end for
26: end for
27: end if
28: Return(w⋆

si+1
)

29: end for
30: end function

3.2.2 Throughput Measurement

As discussed previously, traditional ways of calculating the throughput for a source

limited low latency system, ends up with the encoding bitrates due to the idle

times counted in the data transmissions. And that creates an issue for the ABR,

even though there may be enough bandwidth resources to download high quality

segments, ABR will not measure the available bandwidth and that causes the ABR

to stay in lower quality encoded values. So in order to be able to switch to the

higher quality encoded video representations, measuring the throughput correctly

31

Algorithm 3 Generate Possible Weight Permutations [0]

1: function WeightVectorGenerator(V)
2: Wsi ← {}, wsi ← {}, wv̂

si
← {}

3: for Each possible weight vector wv̂
si
permutation from V do

4: wv̂
si
← Generate({wXv̂

si
, wLv̂

si
, wEv̂

si
, wPv̂

si
, wHv̂

si
}, V)

5: if wv̂
si
̸= wsi then

6: Wsi = Push(wv̂
si
)

7: wsi ← wv̂
si

8: end if
9: end for
10: Return(Wsi)
11: end function

is important for the ABR.

When calculating the estimated time to download a segment, it is important

to point to the idle times and remove those values from the time calculation

which we will denote by Tsi (time to download the segment i). To address this

issue an algorithm called ACTE [39] was proposed previously. ACTE works well

overall, however, it still suffers from overestimation in some cases where there are

increasing idle times during the chunk transmissions.

In order to solve the problems in ACTE we have designed a new throughput

measurement method Algorithm 4 which addresses the issues. Basically, the al-

gorithm parses moof box data to identify the start and ends of the chunks and

calculates the time between chunks by eliminating idle times during the transmis-

sion. The algorithm ignores the first and last data since those chunks may mislead

the calculations, the algorithm detects the esci and bsci values accurately as shown

in Algorithm 4.

3.2.3 Playback Speed Controller

After implementing our first algorithm which we call as LoL and received second

place in the Twitch grand challenge [50], we have evaluated the feedbacks and fur-

ther improved our implementation with dynamic weight assignment as described

above and also playback controller to avoid video stalls. Initial LoL was paying

attention to the latency and as long as latency wouldn’t increase it allowed small

32

Algorithm 4 Throughput Measurement [0]

1: function CalculateThroughput(si)
2: |z̃si | ← 0, Sum ← 0, Xsi ← 0
3: for Each segment downloading step si ∈ S, i > 0 do
4: for Each chunk downloading step c > 0, ∀c ∈ si do
5: Flag1 ← ParsePayload(‘moof’, c)
6: if (Flag1 == 1) then ▷ ‘moof’ is present in chunk c
7: bsci ← performance.now()

8: Flag2 ← ParsePayloadCompleted(‘mdat’, c, end)
9: if (Flag2 == 1) then ▷ ‘mdat’ end of chunk c

10: esci ← performance.now()

11: qsci ← ChunkSize(c)
12: end if
13: if (c = 1 || c = zsi) then
14: ChunkFilter(‘noise’)
15: xsci

← 0
16: else
17: xsci

← ChunkThroughput(qsci , esci , bsci)
18: end if
19: Sum ← Sum + xc

si

20: |z̃si | ← |z̃si |+ 1
21: end if
22: end for
23: Xsi ← SegThroughput(|z̃si |, Sum, SWMA)
24: Return(Xsi)
25: end for
26: end function

rebufferings. Thus we have improved LoL and called the algorithm as LoL+. Play-

back speed controller is one of the improvements we have accomplished shown in

Algorithm 5. We have designed a hybrid playback controller module that pays

attention to the current and target latency and the current playback buffer level

at the same time. The algorithm keeps an eye on the buffer level if it is below

a safe threshold value which is denoted as Blow in the algorithm. This improved

algorithm works more robustly and adapts to the changing environment condi-

tions faster than the default algorithm used in dash.js [10] reference player for low

latency scenarios.

Case 1: Current playback buffer is too low (< Blow). LoL+ will slow down the

playback speed.

33

Case 2: Current playback buffer is in safe range (≥ Blow):

2a: The current latency is approximately very close (ϵ = ±2%) to the config-

ured target latency. In this case, LoL+ will keep the playback speed at

normal (1x) speed.

2b: Current latency is lower than the configured target latency. In this case,

LoL+ will slow down the playback speed.

2c: Current measured latency is higher than the configured target latency. In

this case, LoL+ will speed up the playback speed to catch the target latency

value.

In our setup, we have used the default dash.js playback speed control range

which is between 0.7× and 1.3×. The playback speed values are assigned by

the CalculateSpeed functions shown in Algorithm 5. This function will return a

bigger value if the buffer and latency difference between the target and actual

values are bigger and it respects the maximum and minimum values as shown in

the algorithm.

3.2.4 Evaluation

We have evaluated our new proposed algorithm using 11 different network profiles

which can be found in [51]. Five network profiles named CASCADE, SPIKE,

INTRA-CASCADE, SLOW-JITTERS and AST-JITTERS were extracted from

Twitch [50]. We also manually captured real network traces named TW-LOW,

TW-MED from Twitch by measuring the bandwidth on every five seconds interval.

We also extracted TRAIN, BICYCLE, TRAIN-MODIFIED and TRAM network

traces from the dataset [52]. We compared the results of LoL+ with the L2A and

STALLION algorithms which were the first and the third algorithms of the Twitch

grand challenge [50] in addition to the default algorithm in dash.js [10] which is

dynamic ABR.

In Figure 14 the detailed results are shown. As it can be seen from the results

in Figure 14b LoL+ gives the best result in all of the 11 network profiles, after

34

Algorithm 5 Playback Speed Control (Pseudocode) [0]

1: function PlaybackSpeedSelection(Lsi , Ltarget, Bsi , B
low)

2: if (Bsi < Blow) then
3: Bdelta ← |Blow −Bsi |
4: Psi ← CalculateSpeed(Bdelta, Slower, Limit=0.7)
5: end if
6: if (Bsi ≥ Blow) then
7: if (Lsi ≈ Ltarget) then
8: Psi ← CalculateSpeed(Normal, Speed=1)
9: end if
10: if (Lsi < Ltarget) then
11: Ldelta ← |Ltarget − Lsi |
12: Psi ← CalculateSpeed(Ldelta, Slower, Limit=0.7)
13: end if
14: if (Lsi > Ltarget) then
15: Ldelta ← |Ltarget − Lsi |
16: Psi ← CalculateSpeed(Ldelta, Faster, Limit=1.3)
17: end if
18: end if
19: Return(Psi)
20: end function

making the improvements on LoL and creating LoL+ based on the feedbacks from

the Twitch grand challenge. Compared to LoL, on average the improvement in

rebuffering durations is 62.6%. Also, we can see the latency results for all 11

network profiles in Figure 14c. Average latency improvement for all profiles is

8.5% considering all network profiles in the results. The major feedback received

by LoL was, it was achieving a better latency and bitrates with a rebuffering

tradeoff. Compared to LoL, in Figure 14a the reduction in the bitrate for LoL+

is visible to create a better rebuffering experience.

Compared to L2A, LoL+ achieves 61.9% reduction in average rebuffering du-

ration and 8.1% reduction in average latency considering all profiles.

Similarly compared to STALLION, improvements of 42.7%, 5.2% and 12.5%

were observed in LoL+ for average rebuffering duration, latency and average bi-

trate respectively.

The results of LoL+ compared to dynamic are not very different in terms of

average bitrate and latency. However, in terms of rebuffering, LoL+ performs much

35

better compared to dynamic ABR. The average rebuffering duration reduction

observed for LoL+ compared to dash.js default dynamic algorithm is 12.3%.
A

ve
ra

g
e

B
itr

at
e

(M
bp

s)

0.00

0.25

0.50

0.75

1.00

1.25

CASCADE INTRA-CASCADE SPIKE SLOW-JITTERS FAST-JITTERS

LoL+ LoL L2A STALLION Dynamic Profile Average

A
ve

ra
g

e
B

itr
at

e
(M

bp
s)

0.00

0.25

0.50

0.75

1.00

TW-LOW TW-MED BICYCLE TRAIN TRAIN-MOD TRAM

LoL+ LoL L2A STALLION Dynamic

(a) Average bitrate (Mbps).

R
eb

uf
f.

 D
ur

at
io

n
(s

)

0

5

10

15

CASCADE INTRA-CASCADE SPIKE SLOW-JITTERS FAST-JITTERS

LoL+ LoL L2A STALLION Dynamic 5% of Profile Duration

R
eb

uf
f.

 D
ur

at
io

n
(s

)

0

10

20

30

40

TW-LOW TW-MED BICYCLE TRAIN TRAIN-MOD TRAM

LoL+ LoL L2A STALLION Dynamic 5% of Profile Duration

(b) Average rebuffering duration (s).

A
ve

ra
ge

 L
at

e
nc

y
(s

)

0

1

2

3

CASCADE INTRA-CASCADE SPIKE SLOW-JITTERS FAST-JITTERS

LoL+ LoL L2A STALLION Dynamic Target Latency

A
ve

ra
ge

 L
at

e
nc

y
(s

)

0

2

4

6

8

TW-LOW TW-MED BICYCLE TRAIN TRAIN-MOD TRAM

LoL+ LoL L2A STALLION Dynamic Target Latency

(c) Average latency (s).

Figure 14: Results of LoL+, LoL, L2A, STALLION, Dynamic ABRs for 11 different
network profiles [0].

The overall average summary for each ABR algorithm is shown in Table 7.

According to the table results, LoL has the highest score in average bitrate with

a cost of having lowest score in latency and rebufferings which complies with the

initial feedback we received to build LoL+. STALLION has the highest score

in the average number of switches and has the lowest score in average bitrates

selected by the ABR. Dynamic ABR has the highest score in latency. L2A is

more in the middle in all of the metrics since it has no highest or lowest score

in any of these metrics shown in Table 7. Finally, LoL+ has the highest score

in average rebuffering with an expense of average bitrate switches. As a result,

we have extended LoL with LoL+ to cause less rebufferings based on the higher

bitrate selections while keeping the same latency.

3.3 Content-Aware Playback Speed Control

After evaluating LoL+ with the playback controller we have developed, we have

observed that LoL+ can still suffer from rebufferings due to misjudged playback

36

ABR Avg. Bitrate Avg. Rebuffering Avg. Latency Avg. Switches
Score Score Score Score

LoL+ 2.53 4.76 3.77 1.09
LoL 4.69 1.97 2.40 4.13
L2A 2.92 2.36 3.08 3.76
STA 2.26 3.19 2.84 4.45
DYN 2.76 4.34 4.52 2.53

Table 7: Average scores used to calculate QoE for all ABRs.

speed controller increases or decreases. So we have investigated the playback rate

controller to keep the latency and rebufferings low at the same time. The idea

of being content-aware during the streaming session has been previously studied

by several researchers. The authors of [53] have worked with on-demand video

players around the idea of “scenic car driving,” such that the playback speed is

updated based on the scene’s being interesting or not by using predefined rules for

the user. In their studies, both [54] and [55] also worked on creating a summary for

the video by changing the playback speed. Another important recent work done

for the low-latency streaming applications is the work done in [56], where the

authors created a model to depict how playback speed control interacts with rate

adaptation. While this study provides useful insights for controlling the playback

speed of the streaming session, it still does not focus on being content-aware to

change the playback speed for low-latency live streaming.

In order to be content-aware, the metadata needs to be generated for the video

content that will be streamed. That can be achieved either during the content

creation as shown in Figure 15a or the metadata can be extracted during the

playback as an alternative to the first scenario which is shown in Figure 15b.

In our implementation, we calculated the event density value which is ranging

between 0 and 1 (0: unimportant scene, 1: important scene). By using the event

density value we have calculated the playback speed according to Algorithm 6. If

the buffer is lower than the Blow then a playback speed which is higher than 1 will

be selected otherwise the playback speed will be smaller than 1.

We have evaluated our solution with Blow = 1, Dmax = 0.3 and target latency

= 3s. In Figure 16 the event densities for the test sequences are shown. White

37

Media/manifest Metadata

Encoding/Packaging Origination Client

Metadata

Manifest

Media O
rig

in
 S

er
ve

r dash.js

ABR

CAPSC

(a)

Media/manifest Metadata

Encoding/Packaging Origination Client

O
rig

in
 S

er
ve

r dash.js

ABR

CAPSC

Third-Party Provider

Metadata

Manifest

Media

(b)

Figure 15: Possible CAPSC implementation workflows for low-latency scenario [0].

Table 8: List of the used notations.

Notation Definitions

P Playback speed
si Segment i
Lsi Latency for segment si

Ltarget Target latency
Bsi Playback buffer level for segment si
Blow Lower bound for playback buffer
Dmax Upper bound for deviation from normal playback speed
γc
si

Event density at si for chunk c

refers to 0 as density and black refers to the maximum value which is 1.

In Figure 17, we evaluated and compared default (17a), LoL+ (17b) and

CAPSC (17c) algorithms. Note that when the buffer is empty, the playback speed

needs to decrease too since the playback already stalls, which is also observed by

the experiment. Figure 17a shows that the Default algorithm increases the play-

back when the measured latency increases. However, the drop in the buffer leads

to stalls. The LoL+ algorithm (Figure 17b) addresses this issue by decreasing the

38

Algorithm 6 Content-aware Playback Speed Control (CAPSC) [0]

1: function PlaybackSpeedSelection(Lsi , Ltarget, Bsi , Blow, Dmax, γ
c
si
)

2: ∆← 0
3: if (Bsi < Blow) then
4: ∆← Bsi −Blow

5: else
6: if |Lsi − Ltarget| ≤ 0.02× Ltarget then
7: ∆← 0
8: else
9: ∆← Lsi − Ltarget

10: end if
11: end if

12: P =
2×Dmax

1 + e−∆ × (1−γc
si

0.8)
+ (1−Dmax)

13: Return(P)
14: end function

0 50 100 150 200 250 300

Session Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
v
e

n
t

D
e

n
s
it
y

(a) Test-1.

0 50 100 150 200 250 300

Session Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
v
e

n
t

D
e

n
s
it
y

(b) Test-2.

Figure 16: Event densities for different test sequences [0].

playback as needed, although some of the rebufferings still remain unavoidable

because of the insufficient bandwidth resources.

39

150 160 170 180 190 200 210 220 230

Session Time (s)

0

2

4

6

8

10

12

14

L
a
te

n
c
y
 a

n
d
 B

u
ff
e
r

O
c
c
u
p
a
n
c
y
 (

s
)

0

0.5

1

1.5

P
la

y
b
a
c
k
 S

p
e
e
d

Latency

Buffer occupancy

Playback speed

275 280 285 290 295 300

Session Time (s)

0

2

4

6

8

10

12

14

L
a

te
n

c
y
 a

n
d

 B
u

ff
e

r
O

c
c
u

p
a

n
c
y
 (

s
)

0

0.5

1

1.5

P
la

y
b

a
c
k
 S

p
e

e
d

Latency

Buffer occupancy

Playback speed

(a) Default ABR results for the Test-1 (left) and Test-2 (right) sequences.

150 160 170 180 190 200 210 220 230

Session Time (s)

0

2

4

6

8

10

12

14

L
a
te

n
c
y
 a

n
d
 B

u
ff
e
r

O
c
c
u
p
a
n
c
y
 (

s
)

0

0.5

1

1.5

P
la

y
b
a
c
k
 S

p
e
e
d

Latency

Buffer occupancy

Playback speed

275 280 285 290 295 300
Session Time (s)

0

2

4

6

8

10

12

14

La
te

nc
y

an
d

Bu
ffe

r O
cc

up
an

cy
 (s

)

0

0.5

1

1.5

Pl
ay

ba
ck

 S
pe

ed

Latency
Buffer occupancy
Playback speed

(b) LoL+ results for the Test-1 (left) and Test-2 (right) sequences.

150 160 170 180 190 200 210 220 230

Session Time (s)

0

2

4

6

8

10

12

14

L
a
te

n
c
y
 a

n
d
 B

u
ff
e
r

O
c
c
u
p
a
n
c
y
 (

s
)

0

0.5

1

1.5

P
la

y
b
a
c
k
 S

p
e
e
d

Latency

Buffer occupancy

Playback speed

275 280 285 290 295 300

Session Time (s)

0

2

4

6

8

10

12

14

L
a

te
n

c
y
 a

n
d

 B
u

ff
e

r
O

c
c
u

p
a

n
c
y
 (

s
)

0

0.5

1

1.5

P
la

y
b

a
c
k
 S

p
e

e
d

Latency

Buffer occupancy

Playback speed

(c) CAPSC results for the Test-1 (left) and Test-2 (right) sequences.

Figure 17: Results for Default ABR, LoL+ and CAPSC [0].

40

CHAPTER IV

ALGORITHMS FOR INTERACTIVE STREAMING

4.1 Bandwidth Prediction for WebRTC

RTC video streaming services have gained quite an importance recently. And

several researchers have worked on improving QoE on RTC systems. In order to

improve the performance of RTC streaming, heuristics and learning based algo-

rithms have been developed so far.

In the network layer, there have been several improvements about congestion

control solutions using RTC. Reno [57] and NewReno [58] proposed heuristic based

algorithm which is named additive-increase-multiplicative-decrease (AIMD) which

makes decisions based on packet loss. Cubic [59], Vegas [60] and BBR [61] also

proposed congestion algorithms based on delay instead of packet loss. In addition,

in BBRv2 [62] authors proposed new solutions for the initial version of their work

to address fairness and network issues.

As the popularity of learning algorithms increases, more researchers are work-

ing on contributing to RTC systems with learning algorithms. Winstein et al. [63]

proposed an algorithm named Remy, a distributed congestion control algorithm.

Remy approached the congestion control problem as an optimization problem and

tries to solve the congestion control problem with dynamic programming. PPC-

Vivace [64] is another online learning algorithm to select the best sending rates.

Another solution was using the imitation learning used in Indigo [65]. Also Deep

Reinforcement Learning (DRL) techniques are being used widely in RTC systems

nowadays. Similarly, Aurora [66], Orca [67] used DRL techniques and proposed

new congestion control algorithms. NADA [68] and SCREAM [69] are also avail-

able congestion algorithms that can be used with RTC systems. The details of

these congestion control algorithms and how they operate on packet loss and delay

41

can be found in the [70].

Fang et al. [71] proposed a learning algorithm to select the sending rate for

RTC systems. Tianrun et al. [72] proposed a new learning model called Gemini, to

estimate the bandwidth for RTC systems. Gemini uses Google Congestion Control

(GCC) [73] with a learning model to select the bandwidth using a hybrid approach.

However, based on our experiments, Gemini suffers to estimate the bandwidth

accurately in challenging network conditions ending up with overestimation or

underestimation in most of the cases. And in order to address these issues, we

have developed a hybrid algorithm named BoB.

4.2 The BoB Algorithm

Bandwidth prediction in WebRTC plays an important role in user experience.

Based on the predicted bandwidth value, WebRTC scales the sender resolution

which affects the user experience throughout the video session. However the accu-

racy of the prediction is also playing a very important role; when the bandwidth

prediction is underestimated, then the video resolution will be low quality and

network resources will not be utilized no matter what the real network conditions

are. If the bandwidth prediction is overestimated, then the playback will suffer

from stalls, since the video will be up-scaled and will possibly require more than

the available bandwidth. In order to solve this bandwidth measurement related

adaptation problem, we have proposed a new hybrid based algorithm which we

call BoB. This algorithm uses GCC [73] based heuristic and a DRL based learning

modules which is explained below in detail. The overall architecture for training

and testing is shown in Figure 18.

For model training we used AlphaRTC GYM simulator [74] using network

traces collected from Belgium 4G/LTE [75], Norway 3G/HSDPA [76] and NYU

LTE [77]. The simulator feedback receiving rate, packet loss and packet delay

which is measured from the transport layer. We have implemented a bandwidth

predictor using our model with these data supplied by the simulator environment.

42

Video
Encoder

Packet
Pacer

Padder/FEC

Loss-based
Controller

Receive
Buffer

BoB
Controller

BoB - Bandwidth
Predictor

RTC GYM
(ns-3)

RTP
Packets

RTCP Feedback

Network
Traces

Input Bandwidth
Prediction

BoB Testing BoB Training

Decoding
Display

Figure 18: Overall workflow of BoB.

In the training phase of the model, we have used the Adam optimizer with the

following equation:

▽Rt =
1

Θ

Θ∑
θ=1

Tθ∑
t=1

Aπθ
t (st, at)▽ log πθ(at, st),

where Aπθ(st, at) is the function that defines the variance in the reward after

choosing the action at and the expected value.

On the receiver side of WebRTC, we have implemented a hybrid bandwidth

estimator to increase the video streaming experience. The symbols and notations

used in the algorithm are listed in Table 9.

Notation Definitions

ct Receiving rate
lt Loss ratio
n Last bandwidth prediction

−→
Xr

t = {xr
t−1, x

r
t−2, . . . , x

r
t−n} Bandwidth Samples

T Total number of time windows
Wt t-th time window

Table 9: List of the key symbols and notations used in BoB.

At each interval Wt, the delay-based rate controller predicts the bandwidth

xr
t as shown in detail in Algorithm 7. The Kalman filter coefficients are picked

as β = 1.08 and α = 0.85. The algorithm first uses the packet arrival filter that

divides and groups the received packets into 200-ms slices and then computes

the slope factor (mt) based on a delay gradient between the groups of received

packets and decides the trend of the delay change. After that, mt is fed to the

adaptive threshold, which sets the threshold used by the overuse detector. Then,

the overuse detector produces a signal that drives the network state (denoted by

43

τ): underuse, overuse or normal based on mt and threshold. The network state

is then mapped to a controller state increase, decrease or hold. If the controller

state is decrease, then the controller sets the rate control region to state NearMax.

Once the controller state is changed to increase and the rate control region is in

state NearMax, the controller sets x̄t = ct. Otherwise, if the controller state is

increase and the rate control region is in the state of MaxUnknown, the controller

sets x̄t = β×ct. Therefore, the controller additively increases xr
t based on the rate

control region.

With BoB, we have implemented a reinforcement learning technique that in-

teracts with the environment and the sender-receiver communication mechanism

in the RTC system. For the training part for BoB, the packet-level statistics are

periodically gathered over a predetermined time frame of Wt = 200 ms and ag-

gregated as the environment state. The agent then makes a prediction about the

bandwidth for an action value. Formally, the learning agent communicates with

the environment that creates the state space represented by the symbol S. The

RL agent receives a state st ∈ S from the environment at each time window Wt

(at time epoch t) and then performs an action at ∈ A (bandwidth prediction for

the next time window Wt+1) while earning a reward rt ∈ R.

The agent’s main goal is to identify the best possible policy π⋆ : S → A that

maps states to actions and optimizes total reward (i.e., determining the bandwidth

that maximizes reception rate while reducing packet loss and delay). Following the

execution of the bandwidth prediction action at, the bob environment monitors

the new receiving rate, packet loss, latency, and the expected bandwidth before

moving on to the next mathematical state st+1 ∈ S and updating the reward

rt+1 ∈ R. The DRL controller designed with BoB is shown in Figure 19.

We have implemented an adaptive selector algorithm shown in Algorithm 8 to

implement the hybrid approach to decide when to switch between the heuristic

and learning-based rate controllers. We allow a hybrid bandwidth prediction using

this functionality, which also improves the DRL controller’s long-term accuracy.

44

Algorithm 7 Delay-based Rate Controller

1: function HeuristicController(ct, dt, lt, X
r
t)

2: α← 0.85, β ← 1.08, region ← MaxUnkown
3: for Each time window Wt, Wt > 0 do ▷ every 200 ms
4: σ ← GetControllerState() ▷ overuse detector
5: ĉt ← std(Ct) ▷ standard deviation of Ct

6: c̄t ← Average(Ct) ▷ Ct = {ct, ct−1, . . . , ct−n−1}
7: if (σ == ‘Increase’) then
8: if (ct > c̄t + 3× ĉt) then
9: τ ← ‘Underuse’ ▷ τ : network state
10: region ← MaxUnkown
11: end if
12: if (τ == ‘Underuse’) then
13: if region == MaxUnkown then
14: x̄t ← β × ct
15: xr

t ← xr
t−1 + x̄t

16: end if
17: if region == NearMax then
18: x̄t ← ct
19: xr

t ← xr
t−1 + x̄t

20: end if
21: end if
22: end if
23: if (σ == ‘Decrease’) then
24: xr

t ← α× ct
25: xr

t ← Min(xr
t ,α× xr

t−1)
26: region ← NearMax
27: end if
28: if (σ == ‘Hold’) then
29: xr

t ← xr
t−1

30: end if
31: τ ← ‘Underuse’
32: Return(xr

t)
33: end for
34: end function

At the beginning of a session, when the values given from the DRL controller are

mostly related to the training dataset, bandwidth prediction is likely to be wrong

due to bandwidth underprediction caused by a lack of data.

To overcome this possible inaccuracy, we compare the prediction results ob-

tained from the DRL controller with those from the heuristic controller and val-

idate their accuracy. To do so, we use the symmetric mean absolute percentage

error (sMAPE) function. First, we compute the absolute difference (Dift) between

45

ct

..

Receiving Rate

Packet Delay

Packet Loss Ratio

Past Bandwidth
Values

State st

PPO
Softmax
Policy
πθ(st, at)

Actor-Critic Network
Actor Network

Critic Network

Receiver
Action a*t

Reward rt

Observed State

Update Agent

RTCP
Feedback

Senderdt

lt

1D
C

on
v

1D
C

on
v

xr
t-1

xr
t-n

..

..

:

:

:

:

:

:

V(st,w)

:

:

:

:

:

:

Figure 19: Learning-based (DRL) rate controller for BoB.

the predicted bandwidth values given by the heuristic controller (Heuristicbwt)

and the DRL controller (DRLbwt). Then, we compute the average predicted

bandwidth value (Avgt) of the both controller values. If the output from the per-

centage (Dift
Avgt

) ≥ 30%, the algorithm decides not to use the DRL controller and

feeds the output of the heuristic controller to the DRL controller for later use.

Over time, the DRL controller begins to forecast outcomes more accurately as the

difference between the two controllers’ output percentages decreases. Algorithm 8

highlights the crucial steps of the adaptive selector. We should point out that

this algorithm additionally keeps track of the variance between DRL and heuristic

controllers in the event of departures (corner cases) from the anticipated conver-

gence of predictions from both controllers. It returns to the heuristic controller if

there is a deviation. Under some network conditions, we did not frequently notice

this circumstance. In the long run, the DRL controller maintains operating well

once it gets going. We point out that the choice to set the percentage at 30%

when choosing which controller to use is based on our tests with different network

conditions.

4.3 Evaluation

The network profiles we used in the evaluation, re-purposed for this work from [0],

are shown in Figure 20. The profiles are extracted randomly from 20% of network

traces assigned for testing, namely: LTE, Twitch, Cascade, FCC Amazon and

46

Algorithm 8 Adaptive Selector

1: function AdaptiveSelector
2: for Each time window Wt, Wt > 0 do
3: Heuristicbwt ← HeuristicController(ct, dt, lt, X

r
t)

4: DRLbwt ← DRLController(ct, dt, lt, X
r
t)

5: Dift = |DRLbwt −Heuristicbwt|
6: Avgt =

DRLbwt +Heuristicbwt

2
7:

8: if Dift
Avgt
≥ 0.3 then

9: xr
t ← Heuristicbwt

10: else
11: xr

t ← DRLbwt

12: end if
13: end for
14: Return(xr

t)
15: end function

Synthetic. For FCC Amazon and Synthetic, we fixed the delay to 50 ms and loss

to 0.08%.

Figure 21 shows the time series plots for several solutions for each network pro-

file. First two columns of Table 10 show the overall average bandwidth prediction

accuracy and prediction error in terms of sMAPE. In Figure 21, the actual band-

width for the network profiles is shown as red solid lines. A better solution needs

to choose a bandwidth that is close to these solid lines. Overall, we notice that

BoB achieves the best bandwidth prediction accuracy compared to its competitors.

Especially, BoB improves the overall average bandwidth prediction accuracy by

67.63% (Cascade: 61.72%, LTE: 41.71%, Twitch: 81.64%, FCC Amazon: 73.27%,

Synthetic: 79.80%), and reduces the overall average bandwidth prediction error by

49.11% (Cascade: 38.95%, LTE: 46.45%, Twitch: 62.14%, FCC Amazon: 71.07%,

Synthetic: 26.94%) compared to the other solutions across all the network pro-

files. However, only in the Cascade profile, HRCC is slightly better than BoB in

terms of the average bandwidth prediction accuracy with a marginal improvement

of 0.19%. Therefore, HRCC was able to achieve a better receiving rate, network,

video and total scores compared to BoB in the Cascade profile.

Looking at the results further, BoB is able to achieve a higher average receiving

47

0

400

800

1200

1600

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Cascade LTE Twitch FCC Amazon Synthetic

Figure 20: The network profiles used in the simulations.

rate score of 73.64%, compared to Gemini (45.28%), HRCC (54.77%) and Heuristic

(31.78%) across all the network profiles. This comes at a price of a smaller delay

score and a comparable loss score for BoB in each network profile. In fact, BoB’s

formulation strives to ensure a good trade-off between these conflicting metrics

(i.e., receiving rate, delay and packet loss). Such a trade-off by BoB is confirmed

through achieving higher network, video and total scores with an improvement of

35.85% (Cascade: 29.21%, LTE: 31.53%, Twitch: 58.00%, FCC Amazon: 45.77%,

Synthetic: 14.74%), 5.90% (Cascade: 6.41%, LTE: 4.59%, Twitch: 6.73%, FCC

Amazon: 7.40%, Synthetic: 4.37%), and 23.03% (Cascade: 18.38%, LTE: 18.95%,

Twitch: 36.19%, FCC Amazon: 31.49%, Synthetic: 10.12%), respectively, com-

pared to its competitors across all five network profiles.

Compared to BoB, we also observe that other solutions generally suffer from

either bandwidth overprediction or underprediction due to their designs. As shown

in Figure 21, Gemini tends to underutilize the bandwidth, which expectedly pro-

duces a low receiving rate score but also a higher packet delay and loss score

than BoB and HRCC. This happens because Gemini fails to timely switch be-

tween the learning and heuristic-based prediction. For example, for the FCC

Amazon profile (see Figure 21d), the learning-based prediction for Gemini fails

to track the increase in the actual bandwidth. Similarly, HRCC generally fails

48

to learn suitable parameters for the heuristic-based algorithm, which leads to a

bandwidth underprediction issue for various network profiles, which is most visi-

ble in Figs 21b, 21c and 21d. As a result, HRCC suffers from poor video quality.

This also confirms that HRCC is more suitable for more stable, low-bandwidth

scenarios.

Also, one if the important findings we have observed is that the Heuristic

method is unable to compensate for bandwidth underestimations during the en-

tire RTC session, which lowers the quality of the video (see the score results in

Table 10). This result demonstrates how crucial it is to have a hybrid solution

that involves both learning and heuristic-based methods, as well as how difficult

and important bandwidth prediction is in the RTC [78]. BoB, on the other hand,

successfully combines both techniques and attempts to forecast the bandwidth

within a tiny margin of its actual value during the RTC session. BoB also per-

forms admirably over a variety of network characteristics.

BoB has been integrated into AlphaRTC and the results show the superiority

of BoB for bandwidth prediction in RTC. BoB achieves up to 15.62% and 27.87%

better bandwidth prediction accuracy than Gemini and HRCC (the winning and

runner-up solutions, respectively, in the ACM MMSys’21 grand challenge)

49

Table 10: Average simulation results for different network profiles (↑: higher is
better, ↓: lower is better).

Avg. Prediction
Accuracy (%)

Avg. Prediction
Error (sMAPE)

Avg. Receiving
Rate Score (%)

Avg. Delay
Score (%)

Avg. Loss
Score (%)

Avg. Network
Score (%)

Avg. Video
Score (%)

Avg. Total
Score (%)

Cascade

BoB 84.89 0.30 ↓ 63.26 15.71 95.45 42.75 91.38 70.16
Gemini 74.85 0.50 46.56 35.78 97.64 36.62 87.73 62.94
HRCC 85.06 ↑ 0.30 ↓ 63.91 ↑ 21.27 91.69 43.25 ↑ 92.23 ↑ 70.92 ↑
Heuristic 31.22 1.38 22.36 37.22 ↑ 99.38 ↑ 24.84 78.79 48.48

LTE

BoB 78.94 ↑ 0.42 ↓ 56.98 ↑ 32.05 88.57 40.55 ↑ 92.59 ↑ 68.33 ↑
Gemini 68.07 0.64 33.35 71.31 99.01 33.71 88.85 60.36
HRCC 63.65 0.73 35.77 38.00 97.51 31.44 91.82 58.98
Heuristic 42.63 1.15 20.39 77.56 ↑ 99.66 ↑ 27.92 85.17 53.47

Twitch

BoB 88.84 ↑ 0.22 ↓ 94.87 ↑ 52.11 92.29 61.88 ↑ 92.80 ↑ 89.72 ↑
Gemini 82.85 0.34 60.39 45.24 98.49 ↑ 44.57 91.12 71.91
HRCC 65.92 0.68 74.74 54.57 ↑ 97.06 52.53 91.50 79.98
Heuristic 29.33 1.41 31.77 29.81 95.98 28.46 79.36 52.27

FCC Amazon

BoB 86.60 ↑ 0.27 ↓ 100 ↑ 60.02 97.17 65.72 ↑ 95.19 ↑ 94.28 ↑
Gemini 63.91 0.72 55.09 82.56 99.71 45.77 88.14 72.21
HRCC 50.42 0.99 60.36 79.52 99.84 48.11 91.46 75.55
Heuristic 40.74 1.19 44.91 93.72 ↑ 100 ↑ 41.83 86.45 67.76

Synthetic

BoB 65.88 ↑ 0.68 ↓ 53.08 ↑ 28.58 96.82 39.08 ↑ 92.59 ↑ 66.85 ↑
Gemini 62.15 0.76 30.99 65.77 97.94 31.87 84.08 57.09
HRCC 60.43 0.79 39.06 42.28 97.56 33.52 92.11 61.15
Heuristic 20.31 1.59 39.49 75.32 ↑ 99.42 ↑ 37.22 90.35 64.32

Avg. ALL

BoB 81.03 ↑ 0.38 ↓ 73.64 ↑ 37.69 94.06 50.00 ↑ 92.91 ↑ 77.87 ↑
Gemini 70.37 0.59 45.28 60.13 98.56 38.51 87.98 64.90
HRCC 63.36 0.73 54.77 47.13 96.73 41.77 91.82 69.32
Heuristic 32.84 1.34 31.78 62.73 ↑ 98.89 ↑ 32.05 84.02 57.26

50

0

200

400

600

800

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(a) Profile: Cascade.

0

400

800

1200

1600

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(b) Profile: LTE.

0

250

500

750

1000

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(c) Profile: Twitch.

0

400

800

1200

1600

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(d) Profile: FCC Amazon.

0

500

1000

1500

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(e) Profile: Synthetic.

Figure 21: Actual and predicted bandwidth for different network profiles.

51

CHAPTER V

ALGORITHMS FOR 360-DEGREE VIDEO

STREAMING

As the popularity of immersive media increases nowadays, for 360-degree video

streaming there has been many researches to improve the QoE of streaming ses-

sions by using viewport dependent streaming (VDS). Viewport-dependent stream-

ing (VDS) enables the delivery of the viewport in high quality while serving the

surrounding (background) content in lower quality compared to the viewport. It

is mentioned in recent researches [79, 80, 12, 81, 82, 83, 84, 85] that VDS can re-

duce bandwidth consumption by 30-70%. However, when there is a head motion

that changes the viewport tiles, the user may view low-quality content until all

the new viewport tiles are downloaded and rendered in high quality. Viewport

prediction techniques can be used to predict future incoming tiles and proactively

download these tiles correlated with the head motion and reduce the latency of

the viewport updates [86, 87]. Viewport predictions can also be used to reduce

the bandwidth consumption which is used in [88]. Authors created Multi-View

Coding (MVC) compliant server and used viewport prediction to reduce the band-

width consumption, where a communication between client and server introduced

in their work which requires an intelligent server encoding. Viewport changes due

to head motion also mean that some of the downloaded high-quality tiles do not

get viewed by the user resulting in bandwidth waste. One study observed that

up to 25% of streaming data waste could be prevented with accurate head trajec-

tory predictions [89]. Several studies using learning-based approaches for viewport

prediction and tile bitrate selection were presented in [90, 91, 92]. Similarly, the

authors of [93] assigned a weighted portion of the available bandwidth to each

52

tile based on its distance from the viewport to address the problem of multiplic-

ity in bandwidth allocation for tiled video (quality must be assigned for each tile

instead of the whole video). An adaptive 360-degree solution for mobile devices

with viewport prediction was proposed in [94]. The algorithm fetches a subset of

the tiles, incurring stalls of up to 0.96 seconds per playback minute when a tile in

the visible region is missing. A comprehensive study on tile selection methods for

VDS is provided in [95].

5.1 Viewport-Dependent Streaming with Concurrent Seg-
ment Downloads

As discussed previously, briefly VDS is a technique used in downloading the tiles

in separate qualities for viewport and background tiles. And in order to do that

we need to create multiple segment files for each tile. For example for an 8x6 tile

configuration, we need to generate 48 separate files for each segment giving the

ability to ABR to download each of the tiles in different encoding quality. And yet

again measuring the bandwidth plays a very important role here to increase/de-

crease viewport quality or utilize downloaded tiles. For low-latency in traditional

ABRs we had a similar challenge which we overcame by parsing moof boxes. For

360-degree VDS, we have a similar challenge but here we have another problem

with concurrency. We designed and tested our systems using HTTP/1.1 and H2

(with multiplexing) which creates concurrent requests and responses at the same

time. In order to solve this problem, we have designed a circular buffer to measure

the bandwidth created by concurrent threads shown in Figure 22. Each thread

saves the time request sent and passes bytes received to the circular buffer when

a response to the request arrives from the server. The circular buffer first tries to

find an appropriate buffer to append that new chunk information to calculate the

overlapping transfers together to calculate the bandwidth accurately. It checks

the existence of a buffer that has an end time later than the request time and

start time before the response receive time as shown in Figure 22. If that buffer

is found then that chunk data information is merged to this buffer by extending

53

start time or end time and adding the byte information to the buffer. Otherwise,

if the buffer is not found the next buffer from the circular buffers is used.

Figure 22: Bandwidth measurement for concurrent dash threads.

After saving all these circular buffers the bandwidth is calculated for all of the

buffers and the value having the maximum value is used. Having that maximum

value is the one which has the smallest idle periods, that is why this value is picked

as the bandwidth representation.

5.2 HTTP/1.1 vs. H2

Regarding the need of concurrent segment downloads for each tile representation

in VDS, it is also important to implement and evaluate our solution for both

HTTP/1.1 and H2. Since human head motions can be varying a lot during the

streaming session with the HMD device, it is very likely to make a change in the

middle of downloading a future viewport or margin tile. However, HTTP/1.1 does

not have the capability of cancelling a request previously sent to the server which

will cause unnecessary network in case of those sudden head movements.

As a solution to this problem, we have implemented H2 and implemented the

abortion of the unnecessary requests that would probably create an unnecessary

bandwidth consumption. Another improvement with H2 is the ability to use the

same connection for multiple requests which is called multiplexing. Multiplexing

54

enables us not to hit the client player resource boundaries like maximum connec-

tion and thread configurations on the physical machine, especially for 12x8 tile

configuration. In HTTP/1.1 the client should be capable of handling 96 connec-

tions with the server simultaneously. However, with H2 it is possible to create

a single connection and request different data using the same connection. The

architecture we used in H2 implementation is shown in Figure 23.

Figure 23: H2 architecture.

Even though just a single connection was enough to use multiplexing, we have

created two connections for a robust solution in case of possible connection issues.

Having an http manager in this architecture, has another advantage for the down-

load requests trying to get the network resource. Assuming low quality tiles are

smaller in size compared to high quality tiles, it is very likely that the download of

low quality tiles for a particular segment i will finish earlier than the high quality

viewport tile for the same segment. In this case, it would be a bad resource allo-

cation if we start the download of low quality tile for segment number i+1 before

whole segment downloads for i are completed. In our implementation, the http

manager thread in the middle also respects the order of the requests and solves

this problem by managing the multiplexing connection handlers.

5.3 Head-Motion-Awareness for 360-Degree Videos

Head motion data coming from the HMD devices in 360-degree video can help

improve the user experience and lower the MTHQD metric discussed earlier. By

using head motion data we might predict the tiles that will be part of the viewport

55

in the future and start downloading these tiles ahead of time. We call these tiles

that we start downloading a priory as margin tiles.

5.3.1 Margin-Aware ABR

It is important to use the head motion data to predict the possible margin tiles that

will very likely be inside the viewport which we call a margin hit. In Algorithm 9,

the calculation of possible margins is shown. The head motion is read from an

HMD device with≈ 33ms intervals. Since human head motions are not robotic the

data could have back and forth data. That is why those data are saved in a sliding

window with a size of 20 and the average head motion is fed to the getPrediction

method in the algorithm in each sampling interval coming from HMD. Based

on the motion vectors, a very basic x and y prediction is calculated with the

getPrediction method. getPrediction basically multiplies the motion vector with

2 × maximum tile width or height. Then for each tile in the background it is

adding them to marginsAdded array if they are in the motion direction and less

than the predicted distance or if the user is stationary (motionx = 0) it will add

one tile distance from both sides of the coordinate system. For the tiles in the

vertical direction the algorithm combines all viewport tiles with the horizontal tiles

and then adds the vertical tiles which are closer than the predy value or tileHeight

if the user is stationary (motiony = 0).

While all possible margin tiles are being computed in Algorithm 9, addMarginT ile

function is called where the prioritization of the margin tiles is managed inside

that function defined in Algorithm 10.

While using the head motion data and trying to calculate the margin tile prior-

ities in Algorithm 10 for the same direction with the head motion, it is important

to remember again that we are traveling over a sphere and 2D motion approxi-

mation might mislead us especially for the corner tiles. In 2D space the tiles on

the corners might look far away from the center where it might be closer than

the tiles that are closer to the viewport center in the 2D coordinate system. In

Figure 24 circular distance calculation is shown for two points which is also known

56

Algorithm 9 Find Possible Margin Tiles

1: function FindPossibleMargins
2: X,marginsAdded← ∅
3: motionx ← ∆HMDx

4: motiony ← ∆HMDy

5: {predx, predy} ← getPrediction(motionx,motiony)
6: for each background tilei do
7: d← closestHorizontalDistance(viewport, tilei)
8: if (motionx = 0 and |d| < tileWidth) or (sign(motionx) = sign(d)

and |d| < predx) then
9: addMarginTile(tilei,marginsAdded)
10: marginsAdded← marginsAdded ∪ tilei
11: end if
12: end for
13: for each tile tilei in viewport tiles ∪ marginsAdded do
14: X ← X ∪ tilei,x
15: end for
16: for each background tilei do
17: if tilei,xinX then
18: d← closestVerticalDistance(viewport, tilei)
19: if (motiony = 0 and |d| < tileHeight) or (sign(motiony) =

sign(d) and |d| < predy) then
20: addMarginTile(tilei,marginsAdded)
21: end if
22: end if
23: end for
24: return marginsAdded
25: end function

as haversine [96] distance. This haversine distance on the sphere is calculated and

used in Algorithm 10.

Circular (haversine) distance calculation of two given points on the sphere with

longitude and latitude values are shown in Equation 5. The longitude and latitude

values in the equation are the azimuth and elevation, respectively.

α = sin2(
lat1 − lat2

2
) + cos(lat1)× cos(lat2)× sin2(

lon1 − lon2

2
)

c = 2× arctan2(
√
α,
√
1− α)

(5)

In Algorithm 10 the circular distance from the viewport center to the margin

tile that is being added (tilei) is calculated. The angle is the angle between the

motion vector and the vector starting from the viewport center and ending in the

57

Algorithm 10 Add Possible Margin Tile

1: function AddMarginTile(tilei, possibleMargins)
2: distance← getCircularDistanceFromV iewport(tilei)
3: angle← |getAngularDistanceFromMotion(tilei)|
4: area← getV iewportIntersection(tilei)
5: possibleMarginsSize← getPossibleMarginsSize()
6: j ← 0
7: if angle > π

4
then

8: for j to possibleMarginsSize step 1 do
9: tile← possibleMarginsj
10: tileAngle← getT ileAngle(tile)
11: if tileAngle >= angle then
12: break;
13: end if
14: end for
15: end if
16: for j to possibleMarginsSize step 1 do
17: tile← possibleMarginsj
18: tileAngle← getT ileAngle(tile)
19: tileDistance← getT ileDistance(tile)
20: if tileAngle<area or tileDistance>distance then
21: break;
22: end if
23: end for
24: possibleMarginsj ← tilei
25: end function

center of tilei. Angular distance for a tile (red color) is shown in Figure 25. The

angle between the head motion vector and the margin tile is calculated and used

as input to prioritization in Algorithm 10. Similarly, the area of the margin tile

that is being added to the margins array is calculated in the algorithm.

In Algorithm 10 firstly the angular distance in radians (angle) is checked if

it is bigger π
4
, then in the possibleMargins array that new tilei is placed in the

correct spot in ascending order based on the angle in the array. If the angle is

less than π
4
, considering it might be in both directions, an area of π

2
is used as a

threshold to accept the tilei in the same direction with the motion. Tiles with

an angle less than π
4
are considered as the same and high priority in terms of

angular distance. After angle prioritization is checked the algorithm then checks

the circular distance. getCircularDistanceFromV iewport function calculates the

58

(lon1, lat1)

(lon2, lat2)

Figure 24: Haversine (circular) distance.

Figure 25: Angular distance between a tile (red) and head motion vector.

circular distance defined in Equation 5. In this second loop the circular distance

and angular distance are checked together. If a shorter distance or closer angular

distance location is found then the algorithm puts the given tilei in that found

spot. Angular distance and circular distance are used together to put the closest

motion aware margin tiles at the top of the returning possibleMargins array.

After calculating and prioritizing margins based on the head motion and po-

sition of the margin tile, these calculated margin tiles are consumed by the ABR

with the Algorithm 11. This algorithm is basically calculating the 30% of the cur-

rent viewport and adding from these calculated possibleMargins to the viewport

margins and rendering them in high quality.

In our experiments, we used both human head motions and auto generated

head motions to show the speed effect to our system. Because when the head speed

59

Algorithm 11 Get Viewport Margin Tiles

1: function GetViewportMargins
2: marginsPercentage← 30%
3: totalPercentage← 0
4: viewportMargins← ∅
5: possibleMargins← findPossibleMargins()
6: possibleMarginsSize← getPossibleMarginsSize()
7: for i := 0 to possibleMarginsSize step 1 do
8: if totalPercentage < marginsPercentage then
9: margin← possibleMarginsi
10: viewportMargins← viewportMargins ∪margin
11: p← area(margin)/area(viewport)
12: totalPercentage← totalPercentage+ p
13: else
14: break;
15: end if
16: end for
17: return viewportMargins
18: end function

is increasing then the possibility of hitting a background tile is increasing, so it

makes sense to investigate varying head speeds starting from 25 degree per second

(dps) to 120 dps with an auto generated 60 seconds long head motion which is

shown in Figure 26. In this head motion, we have selected diagonal movements by

purpose to challenge our proposed algorithm. When moving in diagonal direction

VDS will hit more tiles partially which will challenge our algorithm to make a

good prioritization based on circular and angular distances.

Yaw: 180°
Pitch: 0°

Yaw: -180°
Pitch: -90°

Yaw: 0°
Pitch: 180°

Yaw: 180°
Pitch: -90°

Yaw: -180°
Pitch: 0°

Yaw: 0°
Pitch: -90°

Time
0 10 20 30 40 50

Figure 26: Automatic generated head motions used in experiments.

The viewport quality measurement as discussed in the Section 1.3.2 calculated

by considering the tile viewport intersection area. The viewport quality is ranging

between 1 and 4 where 1 is the highest quality and 4 is the lowest (background)

quality. We have tested our solution with two bandwidth conditions 40 Mbps and

60 Mbps. We have chosen 40 Mbps by purpose since the bandwidth here will not

60

be enough to download all tiles in the viewport and margin in highest quality.

Because margins will create an extra download overhead and we wanted to see

the impact of that in the viewport. As it can be seen from Figure 27a the average

viewport quality is decreased with margins since the download overhead created

an issue our ABR decreased the viewport quality to one level down not to create

a stalling or stop during the playback. Since in 60 Mbps we don’t have a resource

issue it is clearly seen from Figure 27b that viewport quality is improved with the

margins.

(a) 40 Mbps

(b) 60 Mbps

Figure 27: Average viewport quality at 40 (top) and 60 Mbps (bottom) bandwidth.
Lower values indicate better quality.

61

In Figure 28 the MTHQD is shown for Trolley(top row) and Harbor(bottom

row) sequences for 40 Mbps. For the trolley video, as it can be seen, margins help

decrease the MTHQD, especially for 6x4 tile configuration. The reason for the

improvement being bigger for smaller tile configuration is that the tile sizes are

bigger and the total number of the tiles being smaller makes the effect of margins

more eminent. When the tile configuration increases to 8x6 and 12x8, the tile

switching and quality change numbers increase which affects the overall system

as shown in the results. The bottom results are for the Harbor sequence which

is a more dynamic test sequence and has faster movements. Since the content is

more dynamic here we still have improvements however the improvement is less

compared to the trolley sequence due to the fast changing environment conditions.

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Head Motion (dps)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Head Motion (dps)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Head Motion (dps)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Figure 28: Average MTHQD results for the Trolley (top) and Harbor Biking
(bottom) sequences at 40 Mbps bandwidth and tile configurations of 6x4 (left),
8x6 (middle) and 12x8 (right).

The best visible improvement happens in 6x4 tile configurations in Figure 28.

Another important point in the results is the tile configuration impact on the

content selection. According to our observations, 8x6 tile configuration is not

affected too much by the content selection and it is more stable based on the

other tile configuration. On the other hand, 12x8 tile configuration is the most

fragile in terms of content selection based on our observations.

In Figure 29, 60 Mbps MTHQD results are shared for each tile configuration.

62

Since the bandwidth is more than enough in this case, the selected test sequence

Trolley or Harbor doesn’t play an important role. The benefit of using margins

can be seen from the MTHQD decreases in all of the graphs for different tile

configurations. Another important point that we can see in Figure 29 is that the

improvement in MTHQD is more eminent in slow head motions. When the head

speed is more than 90 dps the improvement in the MTHQD also diminishes. This

pattern is more visible in 12x8 tile configuration.

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Head Motion (dps)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Head Motion (dps)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Head Motion (dps)

A
ve

ra
ge

 M
TH

Q
D

 (m
s)

Figure 29: Average MTHQD results for the Trolley (top) and Harbor Biking
(bottom) sequences at 60 Mbps bandwidth and tile configurations of 6x4 (left),
8x6 (middle) and 12x8 (right).

In conclusion, we have implemented an ABR which is motion and margin

aware and improved MTHQD up to 64% with a cost of viewport quality decrease

as shown in Figure 27a. So that led us to a new direction. With the help of motion

aware margins we have improved MTHQD but for lower bandwidth conditions that

causes the ABR to decrease the whole viewport quality. Throughout the playback

session, most of the time, instead of the highest viewport quality (1), the second

highest quality (2) was selected by the ABR. In order to solve this problem, we

have published new algorithms explained in Section 5.3.2.

5.3.2 Negative and Complementary Margins

Previously, it has been shown that head-motion-aware margins which will be ref-

erenced as positive margins (PM) in this section, improve the MTHQD with a

63

cost of bandwidth resource. This cost is coming from the extra downloaded mar-

gin tiles in higher quality than the background tiles in order to decrease MTHQD.

However, this extra created network traffic can be a real problem in low bandwidth

conditions as shown in Figure 27a where in this scenario the ABR sensed the drop

in playback buffer and decreased the whole quality of the playback session. So

In order to increase the MTHQD, the average viewport quality was downshifted

in this case. In order to avoid this problem, we have investigated the problem in

detail and proposed a new bandwidth neutral algorithm by enhancing the exist-

ing margins. In Figure 30 the new margin concepts are shown with an example

scenario. In this figure, the viewport and background tiles are used with the same

meaning as we discussed previously. The margins calculated by Algorithm 11 are

now enhanced not to be used by measuring the bandwidth value continuously, and

these margins are called Positive Margins (PM). Now the new enhanced PM will

not select margin tiles when there is not enough bandwidth resource, instead, it

will use Negative Margins (NM) and Complementary Margins (CM).

Figure 30: Proposed HMAVM margins.

The enhanced PM Algorithm is shown in Algorithm 12 where it monitors

the bandwidth and selects a new margin tile only if there is enough bandwidth

for the new margin tile. In Algorithm 12 if the playback buffer is less than 3

64

segment duration or the current bitrate selected by the ABR is less than the

previous selected bitrate, in other words, if the ABR is downshifting then the

algorithm will stop calculating further positive margins and return what it has

already found. If those conditions are met then it will add a maximum of 30%

positive margins as long as there is enough bandwidth. If the bandwidth is not

enough to add another PM tile it will return the tiles calculated that satisfy the

bandwidth and total percentage conditions. In the algorithm, we also calculate

the remaining bandwidth by using Bq
FS values which were explained in detail in

FRISBE paper [97]. Bq
FS represents the minimum bitrate required to download

viewport and background tiles in quality q which is calculated with an estimation

algorithm explained in detail in the paper.

Algorithm 12 Get Positive Margins

1: function GetPositiveMargins(possibleMargins)
2: minBuffer ← 3× segmentDuration
3: maxPercent← 30%
4: totalPercent← 0
5: positiveMargins← ∅
6: q ← currentBitrateIndex
7: q′ ← previousBitrateIndex
8: r = getDashThroughputInBps()−Bq

FS

9: if (currentBuffer < minBuffer) or (q < q′) then
10: return positiveMargins
11: end if
12: for each margin in possibleMargins do
13: if (totalPercent < maxPercent) and (r > 0) then
14: positiveMargins← positiveMargins ∪margin
15: p← area(margin)/area(viewport)
16: totalPercent← totalPercent+ p
17: r ← r − bitrate(margin)
18: else
19: break;
20: end if
21: end for
22: return positiveMargins
23: end function

After calculating PM tiles that can fit in the remaining bandwidth, further

improvements will be done with our new bandwidth neutral algorithm to find

Negative and Complementary margins stated in Algorithm 13. The idea behind

65

the negative margin is to mark the viewport tile which is in the opposite direc-

tion of the head motion and start downloading this possibly unnoticeable tile in

background quality. Instead of this unnoticeable tile, a margin tile is downloaded

which we call as Complementary Margin (CM). In the algorithm, we calculate a

speedFactor which is used to download more margin tiles when the head speed

is higher. A maximum negative margin percentage of 30% is assigned linearly

depending on the head speed. Also when the user is moving its head real fast,

these viewport tiles marked in the viewport which are in the opposite direction

will not be noticeable. The algorithm terminates when the totalArea added is less

than the calculated p percentage value. For each possible complementary margin,

the algorithm finds the farthest tile to that complementary margin in the opposite

direction of the head motion and adds that farthest tile as a negative margin. Ev-

ery negative margin must have a complementary margin which is the maximum

distance by using the haversine circular distance.

For a complementary margin which is denoted as margin in Algorithm 13,

the farthest tile is marked as negative margin in Algorithm 14. This algorithm

iterates on all viewport tiles which are not already part of the Negative Margins

(NM), then it calculates circular distance d and angularDistance a between the

head motion vector and the vector starting from the viewport center to the tile

center. The algorithm finds the tile with maximum circular and angular distances.

Negative margins should also be in the opposite direction with the head motion

vector, a > π
2
condition is to find the tile in the opposite direction with the head

motion vector.

In order to evaluate our proposed solution, we have used the OMAF Player

in Windows 10 environment. OMAF player is publicly available on 1. We have

evaluated our system using HTTP/1.1, detailed viewport quality results are shown

in Figures 31 and 32. In this graph, the details for 40 Mbps and 60 Mbps with

different head motion speed 25 dps, 45 dps, 60 dps, 90 dps, 120 dps and the

1https://github.com/nokiatech/omaf

66

Algorithm 13 Get Negative Margins

1: function GetNM(unusedPMTiles, VPTiles)
2: maxNM ← 30%
3: maxHeadSpeed← 120
4: speed← getHeadMotionSpeedInDps()
5: speedFactor ← 1
6: NM ← ∅
7: complementary ← ∅
8: totalPercent← 0
9: if (speed < maxHeadSpeed) then
10: speedFactor ← speed

maxHeadSpeed

11: end if
12: p← speedFactor ×maxNM
13: for each unusedPMTile in unusedPMTiles do
14: if (totalPercent >= p) then
15: break
16: end if
17: margin← unusedPMTile
18: f ← findFarthestVPTile(margin, V PTiles, NM)
19: area← getV PIntersection(f)
20: if totalPercent+ area < p then
21: totalPercent← totalPercent+ area
22: NM ← NM ∪ f
23: complementary ← complementary ∪margin
24: end if
25: end for
26: return {NM, complementary}
27: end function

average of subjective human head motion (Harbor) is shown in detail for each

scenario. We used BOLA algorithm for streaming decisions, BOLA NO refers

to no margin case, BOLA 30 refers to BOLA with a PM of maximum 30% and

BOLA 30 NEGATIVE refers to the whole HMAVM solution which includes all

PM, NM and CM. Looking in Figure 31 it can be seen that viewport quality is

best in HMAVM cases for both 40 Mbps and 60 Mbps. As the speed increases our

Algorithm 13 will pick more NM and CM tiles and that behavior can be seen in

40 Mbps where we have a bandwidth bottleneck and the improvement increases

as the head motion speed increases. For Trolley in Figure 32, the improvement is

more visible since that video sequence has a static content for most of the playback

session and other than that the results look very similar to the Harbor sequence.

67

Algorithm 14 Find Farthest Viewport Tile

1: function findFarthestVPTile(marginTile, VPTiles, NM)
2: result← ∅
3: maxDistance← 0
4: maxAngularDistance← 0
5: for each V PTile in V PTiles do
6: if V PTile ∈ NM then
7: continue
8: end if
9: d← getCircularDistanceFromV P (marginT ile)
10: a← getAngularDistanceFromMotion(V PTile)
11: if d > maxDistance and a > maxAngularDistance and a > π

2
then

12: maxDistance← d
13: maxAngularDistance← a
14: result← V PTile
15: end if
16: end for
17: return result
18: end function

Even though it seems that NM and CM won’t affect the average viewport quality

assuming we render one of the tiles in the viewport in low quality and a CM

tile is downloaded instead of this unnoticeable viewport tile, the way they work

makes a non-negligible improvement as observed in the results. The reason for

that improvement is the working harmony of CM and NM together. When ABR

decides to mark a viewport tile as NM tile and instead of that tile pick a CM

tile, then the ABR will use already downloaded high quality content which was

already downloaded for that viewport tile and it starts low quality download for

the segments it didn’t download till that moment, opposed to the CM tile where

for CM tiles low quality downloaded data will be thrown away and high quality

data will be re-downloaded. And together NM and CM utilize the resources in a

very good way so that future background tile (NM) and future viewport tile (CM)

is downloaded with correct qualities before the head motion finishes. And based

on this prediction’s accuracy, viewport quality also improves as it can be seen

in Figures 31 and 32. Another important result looking in the viewport quality

results from the graphs is that HMAVM results have the best viewport quality not

only in artificial speed tests, but also for subjective human tests that are visible

68

in all configurations. The improvement in viewport quality is best visible in the

12x8 tile configuration which was expected since there are more tiles to utilize the

bandwidth resource with smaller tile sizes, especially for 40 Mbps scenario.

25dps 45dps 60dps 90dps 120dps Harbor

H
arbor 12x8

H
arbor 6x4

H
arbor 8x6

40 60 40 60 40 60 40 60 40 60 40 60

1

2

3

4

1

2

3

4

1

2

3

4

Bandwidth(Mbps)

A
ve

ra
ge

 V
ie

w
po

rt
 Q

ua
lit

y
R

at
in

g

BOLA_30 BOLA_30_NEGATIVE BOLA_NO

Figure 31: Average viewport quality with HTTP/1.1 for Harbor.

Similarly, in Figures 33 and 34 MTHQD for Harbor and Trolley test sequences

for varying head motion speeds and bandwidth conditions are shown. Looking

into those results we can say that MTHQD is not improved much on HMAVM for

the 40 Mbps scenario and a very slight improvement for the 60 Mbps case. Even

though the viewport quality is increased using HTTP/1.1, the MTHQD is not

improved a lot since there is no request cancellation in HTTP/1.1. As an example,

in HTTP/1.1 for 8x6 tile configuration there are 48 connections initiated for a

segment to be able to be decoded and played back. This creates race conditions

in the communication layer which affects the MTHQD directly. If you look at

the 12x8 tile configuration and 90 dps head motion speed, in Figure 34 the error

bar is showing that problem. Since the number of tiles is bigger for 12x8 tile

69

25dps 45dps 60dps 90dps 120dps Trolley

Trolley 12x8
Trolley 6x4

Trolley 8x6

40 60 40 60 40 60 40 60 40 60 40 60

1

2

3

4

1

2

3

4

1

2

3

4

Bandwidth(Mbps)

A
ve

ra
ge

 V
ie

w
po

rt
 Q

ua
lit

y
R

at
in

g

BOLA_30 BOLA_30_NEGATIVE BOLA_NO

Figure 32: Average viewport quality with HTTP/1.1 for Trolley.

configuration, this HTTP/1.1 communication problem effect also increases as tile

configuration increases.

In order to solve this problem, we have changed the architecture of our system

to use H2 and multiplexing which solves the HTTP request cancellation problem

which is shown in Figure 23. We have created a new thread which is responsible for

managing the new added, removed and completed curl handles in the multiplexing

connection. We have used two multiplexing connections with libuv 1.42.0 and

libcurl 7.80.0 [98]. With H2 now we are able to schedule, cancel or abort an

existing request. Also with H2 multiplexing, it has been possible to reuse the

same HTTP connection to request different tiles, whereas in HTTP/1.1 that was

a limitation and was causing HTTP connection thread race condition issues at

the operating system level even with unlimited bandwidth conditions. H2 solves

that concurrent communication problem, in the architecture it can be seen that

for each tile representation, the client will request from the HTTP connection

70

25dps 45dps 60dps 90dps 120dps Harbor

H
arbor 12x8

H
arbor 6x4

H
arbor 8x6

40 60 40 60 40 60 40 60 40 60 40 60

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

Bandwidth(Mbps)

M
ot

io
n

To
 H

ig
h

Q
ua

lit
y

D
el

ay
 (

se
c)

BOLA_30 BOLA_30_NEGATIVE BOLA_NO

Figure 33: Average MTHQD with HTTP/1.1 for Harbor.

manager which is a separate thread. Then, the connection manager thread will

schedule the requested downloads from multiplexed connections and deliver the

binary data back to the requester when the download finishes. This enhanced

H2 architecture results in MTHQD improvements that can be seen in Figure 35

especially for the 12x8 tile configuration since it has 96 concurrent downloads for

each tile.

With H2, we have made ten runs for each tile configuration, bandwidth condi-

tion and head motion data for Trolley and Harbor sequences shown in Figure 36.

With H2, the HTTP communication problem is solved and the results further im-

proved with our new communication architecture shown in Figure 23. For 40 Mbps

as it can be seen, the improvement is not too much as expected since HMAVM

cannot use PM tiles with this limited bandwidth. For the 40 Mbps case, the im-

provement is only coming from NM and CM tiles which is a bandwidth neutral

71

25dps 45dps 60dps 90dps 120dps Trolley

Trolley 12x8
Trolley 6x4

Trolley 8x6

40 60 40 60 40 60 40 60 40 60 40 60

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

Bandwidth(Mbps)

M
ot

io
n

To
 H

ig
h

Q
ua

lit
y

D
el

ay
 (

se
c)

BOLA_30 BOLA_30_NEGATIVE BOLA_NO

Figure 34: Average MTHQD with HTTP/1.1 for Trolley.

solution. And considering our Algorithm 13 is sensitive to head motion speed,

the improvement in 40 Mbps is maximum in fast head motions and higher tile

configurations which can be seen in Figure 36e. In this figure, the MTHQD delay

with HMAVM improvement is visible in 60 dps, 90 dps and 120 dps. As a result,

we have observed an average viewport quality increase up to 20% and an average

MTHQD reduction up to 50%. In Figure 36 the results on the right-hand side

are for 60 Mbps bandwidth condition which is enough to download viewport and

margin tiles. As opposed to the 40 Mbps bandwidth condition, with 60 Mbps

bandwidth resource our HMAVM solution will use PM, CM and NM all together

since the bandwidth is enough to use PM too. And the additional improvement

that is gained by the addition of PM tiles is more evident in the results. For

60 Mbps HMAVM produces an improvement for all of the tile configuration and

72

25dps 45dps 60dps 90dps 120dps Harbor

H
arbor 12x8

H
arbor 6x4

H
arbor 8x6

40 60 40 60 40 60 40 60 40 60 40 60

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Bandwidth(Mbps)

M
ot

io
n

To
 H

ig
h

Q
ua

lit
y

D
el

ay
 (

se
c)

BOLA_30_HTTP2 BOLA_30_NEGATIVE_HTTP2 BOLA_NO_HTTP2

Figure 35: Average MTHQD with H2 for Harbor.

head motion speeds. The maximum MTHQD improvement is 50 ms(26% improve-

ment compared to with-out margin scenario) for 8x6 tile configuration and 60 dps.

After implementing H2 we have re-evaluated our proposed solution with ad-

ditional datasets which are RollerCoaster and Timelapse sequences from the

dataset [99] which can be seen in Figure 37. With H2, our proposed HMAVM

solution works much better and we could make a significant improvement both

in viewport quality and MTHQD. With this dataset, we have increased our sub-

jective testing since it contained 63 user head motion data. With these tests, we

have observed a viewport quality increase up to 20% and a reduction in MTHQD

up to 50%.

73

(a) 40 Mbps, 6x4 (b) 60 Mbps, 6x4

(c) 40 Mbps, 8x6 (d) 60 Mbps, 8x6

(e) 40 Mbps, 12x8 (f) 60 Mbps, 12x8

Figure 36: Average MTHQD for 40 Mbps (top) and 60 Mbps(bottom) on artificial
head motions with tile configurations of 6x4 (left), 8x6 (middle) and 12x8 (right)
for the Trolley and Harbor sequences with H2.

74

(a) 40 Mbps Viewport Quality (b) 40 Mbps MTHQD

(c) 60 Mbps Viewport Quality (d) 60 Mbps MTHQD

Figure 37: Average viewport quality (left) and MTHQD (right) results for
40 Mbps(top) and 60 Mbps(bottom) with H2.

75

CHAPTER VI

CONCLUSION AND FUTURE WORK

Server and client-side algorithms play a very important role in achieving a better

user experience in video streaming. Using objective evaluation metrics discussed

in Sections 1.3.1 and 1.3.2, we analyzed four main aspects of video streaming (i)

bandwidth prediction accuracy, (ii) utilization of playback speed, (iii) adaptive

streaming for content-aware-encoded videos and (iv) head-motion-awareness for

360-degree videos.

In our Size-Aware Rate Adaptation (SARA) algorithm, we have designed an

ABR algorithm which adapts to encoding bitrate variation with the transfer of

future segment size information and using stable bitrate predictions described

in detail. We compared SARA algorithm with dash.js rate-based and dynamic

algorithms and observed reductions in rebuffering durations up to 91% compared

to the rate adaptive algorithm and up to 87% for the dynamic algorithm. In the

SARA algorithm, we simply shared size information from the server side to the

client side. In this algorithm we have used a simple approach by using just the

size information, a future direction would be also to use the quality value assigned

for each segment in addition to the sizes. That quality value might be PSNR,

VMAF, or any other metric that can be used to identify the segment quality.

With recent improvements, information shared between server and client sys-

tems are standardized with CMCD and CDSD. We showed how these standards

can be used to increase the user experience in video streaming. With CMCD we

could reduce the average rebuffering duration up to 48% and similarly we could

achieve a 33% improvement in rebuffering duration using CMSD.

After making improvements for on-demand streaming, we have also analyzed

76

the low-latency adaptation problem. Traditional ABR bandwidth prediction meth-

ods fail to calculate or predict the bandwidth accurately for live-latency, especially

when the content generation is the bottleneck and the streaming session is source

limited. Existing approaches are simply measuring the encoding bitrate and most

of the well known ABRs are failing to adapt to the changing conditions. So

we have designed a new algorithm Low-on-Latency (LoL) and improved it later

to be used by industry standard dash.js player. Our improved algorithm Low-

on-Latency+ (LoL+) is now part of the dash.js player. We have compared our

algorithm with several existing methods, including the winner algorithm of the

Twitch Grand Challenge [50] which is named L2A. We observed LoL+ achieving

an average reduction of 61.9% for rebuffering durations and 8.1% improvement

in latency compared to the L2A algorithm. After evaluating LoL+ with differ-

ent contents we observed that it can still suffer from rebufferings caused by the

miscalculated playback speed during the playback sessions. In order to further

analyze this issue, we made a proof of concept study by developing CAPSC algo-

rithm, which pays attention to the event density of the content. With CAPSC,

we have assigned the playback speed using the event density for a sample scenario

and showed the impact of content event density on the playback session could be

helpful. We showed that a generic event density aware playback controller with

wider subjective testing would make a difference in HTTP adaptive streaming.

As the popularity of interactive streaming increases, we have investigated the

bandwidth prediction problem in WebRTC systems. Since the content is being

encoded live, the bandwidth prediction was measuring the encoding bitrate in

WebRTC systems which is basically the same problem we have solved with LoL+.

After investigating the same problem for WebRTC we have designed a hybrid algo-

rithm that we call BoB. BoB has a heuristic and learning based controller to solve

the bandwidth prediction problem in WebRTC clients to adapt better which allows

the client to pick higher encoding rates. We have compared our algorithm with

the winner and the runner up algorithm of the bandwidth prediction challenge [78]

77

sponsored by Microsoft. We have compared BoB with Gemini, HRCC, and pure

Heuristic algorithms. The bandwidth accuracy for each is 81.03%, 70.37%, 63.36%,

and 32.84% respectively.

Lastly, we have analyzed the 360-degree video viewport dependent streaming

(VDS) which is not too much different than conventional video streaming. For 360-

degree video, we have the head motion data coming from Head Mounted Display

(HMD) devices that help us to point the viewport where the user is looking. Using

head motion data, we have created head-motion-aware margins and later we have

extended these margins with HMAVM which includes Positive Margins, Negative

Margins, and Complementary Margins. We have evaluated our new proposed

algorithm with multiple datasets and as a result, in average we have observed a

viewport quality improvement of up to 20% and a reduction in MTHQD up to

50%. As a future direction, it may also be possible to use Deep Reinforcement

Learning techniques to utilize viewport quality decisions and margin selections

in the ABR. Another possible improvement to improve MTHQD in 360-degree

streaming with multiple content qualities is the delay introduced by the quality

switching delays after the ABR makes the quality switch decision. In our tests,

we have used small segment durations to workaround this problem, but it might

be possible to switch to a new representation without waiting for the segment

boundary which can improve the MTHQD delay.

78

Bibliography

[1] M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann, “When
They Go High, We Go Low: Low-Latency Live Streaming in dash.js with
LoL,” in ACM MMSys, 2020 (DOI: 10.1145/3339825.3397043).

[2] A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann, “Com-
mon media client data (CMCD): Initial findings,” in ACM NOSSDAV, 2021
(DOI: 10.1145/3458306.3461444).

[3] M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann, “The
benefits of server hinting when DASHing or HLSing,” in ACM MHV, 2022
(DOI: 10.1145/3510450.3517317).

[4] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann,
“Catching the Moment With LoL+ in Twitch-Like Low-Latency Live Stream-
ing Platforms,” IEEE Transactions on Multimedia, vol. 24, pp. 2300–2314,
2022.

[5] M. M. Hannuksela, Y.-K. Wang, and A. Hourunranta, “An overview of the
OMAF standard for 360° video,” in DCC, 2019.

[6] A. C. Begen, M. N. Akcay, A. Bentaleb, and A. Giladi, “Adaptive streaming
of content-aware-encoded videos in dash.js,” SMPTE Motion Imaging Jour.,
vol. 131, no. 4, pp. 30–38, 2022 (DOI: 10.5594/JMI.2022.3160560).

[7] N. Weil and R. Bouqueau, “Ultra-Low-Latency with CMAF.” Akamai White
paper. Online; accessed 10 July 2022.

[8] O. F. Aladag, D. Ugur, M. N. Akcay, and A. C. Begen, “Content-aware
playback speed control for low-latency live streaming of sports,” in ACM
MMSys, 2021 (DOI: 10.1145/3458305.3478437).

[9] Cisco, “VNI Complete Forecast Highlights,” Technical Report, Cisco, March
2021.

[10] DASH-IF, “DASH Reference Client.” [Online] Available: https://

reference.dashif.org/dash.js/. Accessed on June 1, 2021.

[11] “Coded Representation of Immersive Media—Part 2: Omnidirectional Media
Format, ISO/IEC 23090-2:2019,” standard, Information Technology, 2019.

[12] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl, “Tile based HEVC video
for head mounted displays,” in IEEE ISM, 2016.

[13] W. Zhou, X. Min, H. Li, and Q. Jiang, “A brief survey on adaptive video
streaming quality assessment,” Journal of Visual Communication and Image
Representation, vol. 86, p. 103526, 2022.

[14] G. Yi, D. Yang, A. Bentaleb, W. Li, Y. Li, K. Zheng, J. Liu, W. T. Ooi, and
Y. Cui, “The ACMMultimedia 2019 Live Video Streaming Grand Challenge,”
in ACM Multimedia, 2019.

79

[15] I. D. Curcio, H. Toukomaa, and D. Naik, “360-degree video streaming and
its subjective quality,” in SMPTE Annual Tech. Conf. and Exh., 2017.

[16] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming
video over http with consistent quality,” in Proceedings of the 5th ACM Mul-
timedia Systems Conference, MMSys ’14, (New York, NY, USA), p. 248–258,
Association for Computing Machinery, 2014.

[17] A. C. Begen, “Quality-aware HTTP adaptive streaming,” in IBC, 2015.

[18] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue,
“Quality-aware strategies for optimizing abr video streaming qoe and reducing
data usage,” in ACM MMSys, 2019.

[19] W. Cooper, S. Farrell, and K. Subramanian, “Qbr metadata to improve
streaming efficiency and quality,” in SMPTE 2017 Annual Technical Con-
ference and Exhibition, pp. 1–9, 2017.

[20] P. Juluri, V. Tamarapalli, and D. Medhi, “Sara: Segment aware rate adap-
tation algorithm for dynamic adaptive streaming over http,” in IEEE Inter-
national Conference on Communication Workshop (ICCW), pp. 1765–1770,
2015.

[21] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algo-
rithm,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2275–
2285, 2004.

[22] P. S. Agachi, M. V. Cristea, A. A. Csavdari, and B. Szilagyi, 2. Model pre-
dictive control, pp. 32–74. De Gruyter, 2016.

[23] “iproute2.” [Online] Available: https://wiki.linuxfoundation.org/

networking/iproute2. Accessed on Jan. 21, 2022.

[24] “CTA-5004: Web Application Video Ecosystem–Common Media Client
Data.” [Online] Available: https://cdn.cta.tech/cta/media/media/

resources/standards/pdfs/cta-5004-final.pdf. Accessed on Feb. 20,
2021.

[25] NUS-OzU, “CMCD-aware System.” [Online] Available: https://github.

com/NUStreaming/CMCD-DASH. Accessed on Feb. 20, 2021.

[26] “ISO/IEC 23000-19:2020 Information technology – Multimedia application
format (MPEG-A) – Part 19: Common media application format (CMAF)
for segmented media.” [Online] Available: https://www.iso.org/standard/
79106.html. Accessed on June 1, 2021.

[27] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys, P. J. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1.” RFC 2616,
June 1999.

80

[28] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive http
streaming,” in Proceedings of the Second Annual ACM Conference on Multi-
media Systems, MMSys ’11, (New York, NY, USA), p. 169–174, Association
for Computing Machinery, 2011.

[29] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate adapta-
tion for dynamic adaptive streaming over HTTP in content distribution net-
work,” Signal Processing: Image Communication, vol. 27, no. 4, pp. 288–311,
2012. Modern Media Transport – Dynamic Adaptive Streaming over HTTP
(DASH).

[30] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe
and adapt: Rate adaptation for http video streaming at scale,” IEEE JSAC,
vol. 32, no. 4, pp. 719–733, 2014.

[31] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “pistream: Physical layer in-
formed adaptive video streaming over lte,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, 2015.

[32] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala, “Quality
selection for dynamic adaptive streaming over http with scalable video cod-
ing,” in Proceedings of the 3rd Multimedia Systems Conference, MMSys ’12,
(New York, NY, USA), p. 149–154, Association for Computing Machinery,
2012.

[33] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and sta-
bility in http-based adaptive video streaming with festive,” in Proceedings
of the 8th international conference on Emerging networking experiments and
technologies, pp. 97–108, 2012.

[34] C. Wang, A. Rizk, and M. Zink, “SQUAD: A Spectrum-based Quality Adap-
tation for Dynamic Adaptive Streaming over HTTP,” in ACM MMSys, 2016.

[35] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in ACM SIGCOMM, 2014.

[36] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bi-
trate adaptation for online videos,” IEEE/ACM Transactions on Networking,
vol. 28, no. 4, pp. 1698–1711, 2020.

[37] P. K. Yadav, A. Shafiei, and W. T. Ooi, “Quetra: A queuing theory approach
to dash rate adaptation,” in ACM Multimedia, 2017.

[38] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang, “CFA:
A Practical Prediction System for Video QoE Optimization,” in USENIX
NSDI, 2016.

[39] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann, “Bandwidth
Prediction in Low-Latency Chunked Streaming,” in ACM NOSSDAV, 2019.

81

[40] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann, “Performance
analysis of ACTE: a bandwidth prediction method for low-latency chunked
streaming,” ACM TOMM, vol. 16, no. 2s, pp. 1–24, 2020.

[41] C. Gutterman, B. Fridman, T. Gilliland, Y. Hu, and G. Zussman, “STAL-
LION: Video Adaptation Algorithm for Low-Latency Video Streaming,” in
ACM MMSys, 2020.

[42] H. Peng, Y. Zhang, Y. Yang, and J. Yan, “A Hybrid Control Scheme For
Adaptive Live Streaming,” in ACM Multimedia, 2019.

[43] P. Houze, E. Mory, G. Texier, and G. Simon, “Applicative-Layer Multipath
For Low-Latency Adaptive Live Streaming,” in IEEE ICC, 2016.

[44] T. Kohonen, Self-Organizing Maps, vol. 30. Springer Science & Business
Media, 2012.

[45] H. Jin, K. Leung, and M. L. Wong, “An Integrated Self-organizing Map for
the Traveling Salesman Problem,” Advances in Neural Networks and Appl.,
2001.

[46] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control Theoretic Approach
For Dynamic Adaptive Video Streaming Over HTTP,” in ACM SIGCOMM,
2015.

[47] Y. Dogan, D. Birant, and A. Kut, “SOM++: Integration of Self Organizing
Map and K-means++ Algorithms,” in Springer MLDM, 2013.

[48] S. Park, S. Seo, C. Jeong, and J. Kim, “The Weights Initialization Method-
ology of Unsupervised Neural Networks to Improve clustering Stability,” The
Journal of Supercomputing, pp. 1–17, 2019.

[49] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems: revised
reprint. SIAM, 2012.

[50] Twitch, “Grand Challenge on Adaptation Algorithms for Near-Second La-
tency,” in ACM MMSys, 2020.

[51] “Low-on-Latency-plus (LoL+).” [Online] https://github.com/

NUStreaming/LoL-plus. Online; accessed on Sept. 5, 2020.

[52] J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-based Adaptive Streaming of HEVC
Video Over 4G/LTE Networks,” IEEE Communications Letters, vol. 20,
no. 11, pp. 2177–2180, 2016.

[53] K.-Y. Cheng, S.-J. Luo, B.-Y. Chen, and H.-H. Chu, “SmartPlayer: user-
centric video fast-forwarding,” in Conf. Human Factors in Computing Sys-
tems, 2009.

[54] C.-T. Kao, Y.-T. Liu, and A. Hsu, “Speeda: Adaptive speed-up for lecture
videos,” in ACM Symp. User Interface Software and Technology, 2014.

82

[55] I. Abibouraguimane, K. Hagihara, K. Higuchi, Y. Itoh, Y. Sato, T. Hayashida,
and M. Sugimoto, “CoSummary: adaptive fast-forwarding for surgical videos
by detecting collaborative scenes using hand regions and gaze positions,” in
Int. Conf. Intelligent User Interfaces, 2019.

[56] L. Sun, T. Zong, S. Wang, Y. Liu, and Y. Wang, “Tightrope walking in low-
latency live streaming: optimal joint adaptation of video rate and playback
speed,” in ACM MMSys, 2021.

[57] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM CCR,
vol. 18, no. 4, pp. 314–329, 1988.

[58] S. Floyd, T. Henderson, and A. Gurtov, “The newreno modification to TCP’s
fast recovery algorithm.” [Online] Available: https://datatracker.ietf.

org/doc/html/rfc3782, 2004. Accessed on Jan. 21, 2022.

[59] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp. 64–74,
2008.

[60] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas: New tech-
niques for congestion detection and avoidance,” in Proceedings of the Confer-
ence on Communications Architectures, Protocols and Applications, pp. 24–
35, 1994.

[61] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “Bbr:
congestion-based congestion control,” Communications of the ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[62] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha, Y. Se-
ung, M. Mathis, and V. Jacobson, “BBR v2 a Model-based Congestion Con-
trol.” [Online] Available: https://datatracker.ietf.org/meeting/104/

materials/slides-104-iccrg-an-update-on-bbr-00, 2019. Accessed on
Jan. 21, 2022.

[63] K. Winstein and H. Balakrishnan, “TCP ex machina: Computer-generated
congestion control,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 123–134, 2013.

[64] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC vivace: Online-learning congestion control,” in USENIX
NSDI, 2018.

[65] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-control
research,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), 2018.

[66] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep rein-
forcement learning perspective on internet congestion control,” in Int. Conf.
Machine Learning, PMLR, 2019.

[67] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A pragmatic
learning-based congestion control for the internet,” in ACM SIGCOMM, 2020.

83

[68] X. Zhu, P. Pan, M. Ramalho, and S. Mena, “Network-assisted dynamic adap-
tation (NADA): A unified congestion control scheme for real-time media.”
[Online] Available: https://datatracker.ietf.org/doc/html/rfc8698,
2020. Accessed on Jan. 21, 2022.

[69] I. Johansson and Z. Sarker, “Self-clocked rate adaptation for multimedia.”
[Online] Available: https://datatracker.ietf.org/doc/html/rfc8298,
2020. Accessed on Jan. 21, 2022.

[70] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” IEEE Commu-
nications Surveys & Tutorials, vol. 21, no. 4, pp. 3584–3608, 2019.

[71] J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi, M. Revow, A. Sadovnikov,
Z. Liu, P. Cheng, S. Ashok, et al., “Reinforcement learning for bandwidth es-
timation and congestion control in real-time communications,” arXiv preprint
arXiv:1912.02222, 2019.

[72] Y. Tianrun, W. Hongyu, H. Runyu, Y. Shushu, L. Dingwei, and Z. Jiaqi,
“Gemini: An ensemble framework for bandwidth estimation in web real-time
communications,” in ACM MMSys, 2021.

[73] “A Google Congestion Control Algorithm for Real-Time Communica-
tion.” [Online] Available: https://datatracker.ietf.org/doc/html/

draft-ietf-rmcat-gcc-02. Accessed on Jan. 21, 2022.

[74] “OpenNetLab AlphaRTC.” [Online] Available: https://github.com/

OpenNetLab/AlphaRTC. Accessed on Jan. 21, 2022.

[75] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-Based Adaptive Streaming of HEVC
Video Over 4G/LTE Networks,” IEEE Communications Letters, vol. 20,
pp. 2177–2180, Nov. 2016.

[76] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute Path
Bandwidth Traces from 3G Networks: Analysis and Applications,” in ACM
MMSys, 2013.

[77] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li, “Realtime Mobile
Bandwidth Prediction Using LSTM Neural Network,” in Int. Conf. Passive
and Active Network Measurement, Springer, 2019.

[78] “Grand Challenge on Bandwidth Estimation for Real-Time Communica-
tions.” [Online] Available: https://2021.acmmmsys.org/rtc_challenge.

php. Accessed on Jan. 21, 2022.

[79] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, “HEVC-compliant
tile-based streaming of panoramic video for virtual reality applications,” in
ACM Multimedia, 2016.

[80] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-adaptive
navigable 360-degree video delivery,” in IEEE ICC, 2017.

84

[81] M. Hosseini and V. Swaminathan, “Adaptive 360 VR video streaming: Divide
and conquer,” in IEEE ISM, 2016.

[82] I. D. Curcio, H. Toukomaa, and D. Naik, “Bandwidth reduction of omnidi-
rectional viewport-dependent video streaming via subjective quality assess-
ment,” in AltMM, 2017.

[83] D. Naik, I. D. D. Curcio, and H. Toukomaa, “Optimized viewport dependent
streaming of stereoscopic omnidirectional video,” in Packet Video Workshop,
2018.

[84] J. Son, D. Jang, and E.-S. Ryu, “Implementing motion-constrained tile and
viewport extraction for VR streaming,” in ACM NOSSDAV, 2018.

[85] J. Son, D. Jang, and E.-S. Ryu, “Implementing 360 video tiled streaming
system,” in ACM MMSys, 2018.

[86] L. Xie, X. Zhang, and Z. Guo, “CLS: A cross-user learning based system for
improving qoe in 360-degree video adaptive streaming,” in ACM Multimedia,
2018.

[87] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360ProbDASH: Improving
QoE of 360 video streaming using tile-based HTTP adaptive streaming,” in
ACM Multimedia, 2017.

[88] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp, “Client-driven selective
streaming of multiview video for interactive 3dtv,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1558–1565,
2007.

[89] D. Monakhov, I. D. Curcio, and S. Mate, “On data wastage in viewport-
dependent streaming,” in IEEE MMSP, 2019.

[90] J. Fu, X. Chen, Z. Zhang, S. Wu, and Z. Chen, “360SRL: A sequential re-
inforcement learning approach for ABR tile-based 360 video streaming,” in
IEEE ICME, 2019.

[91] X. Jiang, Y.-H. Chiang, Y. Zhao, and Y. Ji, “Plato: Learning-based adaptive
streaming of 360-degree videos,” in IEEE LCN, 2018.

[92] A. T. Nasrabadi, A. Samiei, and R. Prakash, “Viewport prediction for 360°
videos: A clustering approach,” in ACM NOSSDAV, 2020.

[93] C. Ozcinar, A. De Abreu, and A. Smolic, “Viewport-aware adaptive 360°
video streaming using tiles for virtual reality,” in IEEE ICIP, 2017.

[94] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical viewport-
adaptive 360-degree video streaming for mobile devices,” in ACM MobiCom,
2018.

[95] D. V. Nguyen, H. T. T. Tran, and T. C. Thang, “An evaluation of tile selection
methods for viewport-adaptive streaming of 360-degree video,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 16, mar 2020.

85

[96] G. Van Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton University Press, 2013.

[97] S. Ahsan, A. Hourunranta, I. D. D. Curcio, and E. Aksu, “FriSBE: Adaptive
bit rate streaming of immersive tiled video,” in Packet Video Workshop, 2020.

[98] M. Hostetter, D. A. Kranz, C. Seed, C. Terman, and S. Ward, “Curl: a
gentle slope language for the web.,” World Wide Web Journal, vol. 2, no. 2,
pp. 121–134, 1997.

[99] X. Corbillon, F. De Simone, and G. Simon, “360-degree video head movement
dataset,” in ACM MMSys, 2017.

86

VITA

Mehmet N. Akcay received his B.Sc., in the field of Computer Engineering, from

Istanbul Technical University in 2005. He completed his M.Sc. in the same field

in Bogazici University in 2008 and he has been working in the industry for more

than 15 years. His research interests are HTTP adaptive streaming, low-latency

live streaming and 360-degree video streaming.

Publications

• M. N. Akcay, B. Kara, S. Ahsan, A. C. Begen, I. Curcio, and E. Aksu, “Rate-Adaptive Streaming

of 360-Degree Videos with Head-Motion-Aware Viewport Margins,” in IEEE MIPR, 2022 (DOI:

10.1109/MIPR54900.2022.00056).

• M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann, “The benefits of server

hinting when DASHing or HLSing,” in ACM MHV, 2022 (DOI: 10.1145/3510450.3517317).

• A. C. Begen, M. N. Akcay, A. Bentaleb, and A. Giladi, “Adaptive streaming of content-aware-

encoded videos in dash.js,” SMPTE Motion Imaging Jour., vol. 131, no. 4, pp. 30–38, 2022 (DOI:

10.5594/JMI.2022.3160560).

• M. N. Akcay, B. Kara, S. Ahsan, A. C. Begen, I. Curcio, and E. Aksu, “Head-motion-aware

viewport margins for improving user experience in immersive video,” in ACM Multimedia Asia,

2021 (DOI: 10.1145/3469877.3490573).

• A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann, “Catching the Mo-

ment With LoL+ in Twitch-Like Low-Latency Live Streaming Platforms,” IEEE Transactions

on Multimedia, vol. 24, pp. 2300–2314, 2022.

• A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann, “Common media client

data (CMCD): Initial findings,” in ACM NOSSDAV, 2021 (DOI: 10.1145/3458306.3461444).

• O. F. Aladag, D. Ugur, M. N. Akcay, and A. C. Begen, “Content-aware playback speed control for

low-latency live streaming of sports,” in ACM MMSys, 2021 (DOI: 10.1145/3458305.3478437).

• M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann, “When They Go High,

We Go Low: Low-Latency Live Streaming in dash.js with LoL,” in ACM MMSys, 2020 (DOI:

10.1145/3339825.3397043).

• K. Durak, M. N. Akcay, Y. K. Erinc, B. Pekel, and A. C. Begen, “Evaluating the performance

of Apple’s low-latency HLS,” in IEEE MMSP, 2020 (DOI: 10.1109/MMSP48831.2020.9287117).

87

