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ABSTRACT

ACCIDENT SEVERITY PREDICTION OF ZONGULDAK DISTRICT
UNDERGROUND COAL MINES BY MACHINE LEARNING
TECHNIQUES

Ozdemir Aydin, Merve
Master of Science, Mining Engineering
Supervisor : Prof. Dr. Celal Karpuz

August 2022, 116 pages

Underground coal mining is considered among the most dangerous sectors in the
world due to the accidents. Thus, this study aims to build an accident severity
prediction model for underground coal mines by using decision tree, support vector
machine, and neural network algorithms. Defining the severity of accidents will
provide an effective way of preventing risks that will cause serious accidents. This
study also aims to fill the gap in the literature related to designing accident severity

prediction models for underground coal mining for safety management.

In the study, 8406 underground accident data covering two years period of time, and
eleven variables (dimensions), which are shift, day of the accident, job, education,
type of accident, reason of the accident, location of the accident, severity of the
accident, age, seniority, affected body part, collected by the Turkish Hard Coal
Enterprise of Amasra, Armutguk, Karadon, Kozlu, and Uziilmez district were used
to build an accident severity prediction model. Before applying the machine learning
algorithms, principal component analysis was applied to reduce the dimensions and
express the data with fewer variables that are meaningful and easier to explain.

Principal component analysis provided that 81.82% (cumulative variance percent)



of the data could be interpreted with the seven components. By using these seven
variables, accident severity prediction models were built applying decision tree,
support vector machine, and neural network algorithms. The decision tree model has
the accuracy 78.5%, support vector machine model has the accuracy 79.2%, and
neural network model has the accuracy 78.5%. As a result, it was decided that the
accident severity estimation model that gives the most accurate prediction results is
the support vector machines for this data set. Based on trained prediction model

results, the dominant correct classification accident severity type is slightly injured.

Keywords: Underground Coal Mine, Principal Component Analysis, Decision Tree,

Support Vector Machine, Neural Network
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ZONGULDAK BOLGESI YERALTI KOMUR MADENLERININ MAKINE
OGRENMESI TEKNIKLERI iLE KAZA SIDDETI TAHMINI

Ozdemir Aydin, Merve
Yiiksek Lisans, Maden Miihendisligi
Tez Yoneticisi: Prof. Dr. Celal Karpuz

Agustos 2022, 116 sayfa

Yer altt komiir madenciligi, kazalar nedeniyle diinyanin en tehlikeli sektorleri
arasinda yer almaktadir. Bu nedenle, bu ¢aligma karar agaci, destek vektdr makinesi
ve sinir ag1 algoritmalarini kullanarak yeraltt komiir madenleri i¢in bir kaza siddeti
tahmin modeli olusturmay1 amaglamaktadir. Kazalarin ciddiyetinin tanimlanmasi,
ciddi kazalara neden olacak risklerin dnlenmesinde etkili bir yol saglayacaktir. Bu
caligma ayni zamanda ig giivenligi yonetimi i¢in yeralti komiir madenleri i¢in kaza
siddeti tahmin modellerinin tasarlanmasi ile ilgili literatiirdeki boslugu doldurmay1

amaglamaktadir.

Bu ¢alismada, kaza siddeti tahmin modeli olusturmak amaciyla Turkiye Tas Komiirii
Isletmesi’nin Amasra, Armutguk, Karadon, Kozlu, Uziilmez bélgelerine ait vardiya,
kaza giinli, meslek, egitim, kazanin tiirii, kazanin nedeni, kazanin yeri, kazanin
siddeti, yas, kidem, etkilenen viicut boliimii gibi bilgilerden olusan 11 degisken ve
iki yillik zaman dilimini kapsayan 8406 adet yeralti kaza verisi kullanilmistir.
Makine 6grenimi algoritmalarini uygulamadan 6nce, boyutlar1 azaltmak ve verileri
anlamli ve agiklanmas1 daha kolay olan daha az degiskenle ifade etmek i¢in temel

bilesenler analizi uygulanmistir. Temel bilesenler analizi verilerin %81,82'inin

Vil



(kiimiilatif varyans ylizdesi) yedi bilesenle yorumlanabilecegi sonucunu saglamstir.
Bu yedi degisken kullanilarak, karar agaci, destek vektdr makinesi ve sinir agi
algoritmalart uygulanarak tahmin modelleri olusturulmustur. Karar agaci modeli
%78,5, destek vektdr makine modeli %79,2 ve sinir ag1 modeli %78,5 dogruluga
sahiptir. Sonug¢ olarak, en dogru tahmin sonuglarini veren kaza siddeti tahmin
modelinin bu veri seti i¢in destek vektdr makineleri olduguna karar verilmistir.
Egitilmis tahmin modeli sonuglarina goére, baskin olan dogru siniflandirilmis kaza

siddeti hafif yaralanmadir.

Anahtar Kelimeler: Yeralt1 Komiirii Madeni, Temel Bilesenler Analizi, Karar

Agaci, Destek Vektor Makinesi, Sinir Ag1
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CHAPTER 1

INTRODUCTION

1.1 General Remarks

Energy, as one of the most important inputs to economic growth and
industrialization, is a necessary component of modern life. Therefore, the demand
for energy in the global markets is constantly increasing. Coal, one of the fossil
energy sources, is an essential source of energy due to its widespread presence in the
world, its production and the presence of visible coal reserves in terms of price

stability compared to other fossil fuels.

According to the information provided by Republic of Turkey Ministry of Energy
and Natural Resources (2022), a total of 116.7 million tonnes of coal were consumed
in Turkiye in 2021, including 37.3 million tonnes of hard coal, 73.6 million tonnes
of lignite and asphaltite, and 5.8 million tonnes of hard coal coke. Moreover,
Turkiye's average coal (hard coal, hard coal coke, lignite, and asphaltite)
consumption between 2016 and 2021 was approximately 110 million tonnes. Figure

1.1 represents Turkiye's coal consumption by years.
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Figure 1.1 Turkiye's Coal Consumption Amounts by Years (“Coal”, 2022)

The largest share in the consumption of hard coal, lignite-asphaltite belonged to
thermal power plants with 52,9% and 81,7%, respectively. As of March 2022, in
Turkiye, there are a total of 67 coal-fired power plants, including 1 asphaltite, 47

lignite, 4 hard coal and 15 imported coal-fired power plants (“Coal”, 2022).

In parallel with the rise of the world's population and living standards, these
consumption rates are also increasing. Moreover, the number of employees is
increasing with increased consumption and increased production to reduce foreign
dependency, and this makes occupational health and safety more important.

1.2 Problem Statement

Coal mining has many risks, whether surface or underground, making it exceptional
in the area of occupational health and safety. The main activity in which occupational
health and safety problems arise is the production process. The production process
covers the main activities such as excavation, support, transportation and other
activities such as establishment of electricity, compressed air networks, installation,
operation, communication and signaling systems, and maintenance and repair of

various machinery and equipment. During these processes, health and safety



problems arise from both the nature of the work and the specific conditions of the
mining activities. Thus, it is essential to precisely predict the severity of work-related
accidents for safety management and control.

1.3 Scope and Objectives of the Study

The scope of this study is 8406 underground accident data belonging to Turkish Hard
Coal Enterprise Amasra, Armutcuk, Karadon, Kozlu, Uziilmez district and covers
the period of March 2008 and December 2010. The main objective is to build an
accident severity prediction model for underground coal mines. There were eleven
variables (dimensions) in the accident data set. Thus, the first aim was dimension
reduction while preserving as much information as possible. During the literature
survey, it was seen that there were not many comparative studies on which type of
analysis would be better to analyze coal mine accident data and predict the severity
of the accident. Thus, comparing the decision tree, support vector machine, and
neural network algorithms, it was aimed to find the optimum model for accident

severity prediction model for underground coal mines.

1.4 Research Methodology

The research methodology consists of the steps summarized as:

e Literature research,

e Preparation of data set for the algorithms,

e Analyzing each variable by using Microsoft Excel,

e Applying principal component analysis for dimension reduction by using R
Studio,

e Building a prediction model by using decision tree algorithm by using
MATLAB,

e Building a prediction model by using support vector machine algorithm by
using MATLAB,



e Building a prediction model by using neural network algorithm by using
MATLAB,

e Comparing the prediction models.

15 Outline of the Thesis

This thesis study includes five chapters and three appendices. Chapter 1 provides
general information about the thesis covering general remarks, problem statement,

scope and objectives of the study, research methodology, and outline of the study.

The literature survey of the study is presented in Chapter 2. In this section, an
introduction, a general overview of applied methods, and previous accident

forecasting studies in underground coal mines are explained.

Chapter 3 outlines the study area and the data set. In this chapter, a brief information
is given about the study area and the variables in the data set are explained.

Chapter 4 covers analyzing data and building the models. The models created using
the principal component analysis results, decision tree, support vector machine, and
neutral network algorithms are described in detail in this section. Models with the

highest accuracy are obtained by changing parameters for each algorithm.

The results of the principal component analysis and the trained prediction models
and discussions are stated in Chapter 5.

Finally, the thesis ends with main outcomes of this study and some recommendations
for future researches are presented in Chapter 6.

Appendix A presents the codes for principal component analyses. The scatter plots
with respect to predictors are presented in Appendix B. Appendix C and Appendix
D provides the summaries and the validation confusion matrix of the trained models,

respectively.



CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Occupational accidents that are encountered all over the world are a major problem
that affects the entire community both financially and spiritually. According to the
most recent global estimates from 2017, 2.78 million employees die each year as a
result of work-related accidents and diseases, while hundreds of millions more suffer
from non-fatal work-related injuries and diseases that are both temporary and
permanent (ILO, 2022). These work-related deaths and diseases vary from sector to
sector. For a long time, the mining industry has been regarded as one of the most
dangerous industries in the world, with enormous health and safety risks (L66w and
Nygren, 2019). The data of the Social Security Institution in Turkiye supports this
view. According to the Social Security Institution data in Turkiye, between 2010 and
2019, 2,360,472 insured occupational accidents resulted in 13,852 fatalities. In the
same period, 115,950 insured workers had a work-related accident in the mining
industry. A total of 1,042 miners have lost their lives as a result of these work-related
accidents. According to these statistics, the mining industry accounts for 4.91 percent
of all insured business accidents and 7.52 percent of all fatal accidents. Given that
the average unregistered employment rate in Turkiye for the mining and quarrying
activity code is 6.62 percent from 2010 to 2019, these percentages are lower than the
actual value (SSlI, 2020).

The rates of death due to work-related accidents in the activities of the mining sector
are dominated by coal extraction activities. Between 2010 and 2020, according to
SSl data, 55 percent of the deaths due to work-related accidents in the mining sector

occurred in coal mines.



There is also a huge difference between hard coal mines and lignite mines when
looking at the distribution of death rates due to work-related accidents in coal mines.
In Figure 2.1, the number of deaths per million tonnes of hard coal and lignite in
Turkiye are presented. It is seen that there are also more deaths in hard coal mines

than in lignite mines per million tonnes of production.
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Figure 2.1 The number of deaths per million tonnes of hard coal and lignite in
Turkiye (Arslanhan & Cunedioglu, 2010)

Turkiye ranks higher in the world rankings with these death rates in coal mines.
Accidents in the United States and China, two of the world's largest coal producers,
show that mortality rates are lower than in Turkiye (Arslanhan & Cunedioglu, 2010).
Given the death number per million tonnes of coal production for 2008 in Table 2.1,
Turkiye's death number is 5.7 times that of China, which is the world’s top producer,
and 361 times that of the United States. According to the study by Arslanhan and
Cunedioglu (2010), significant drops in death numbers have been achieved with the
renewal of technology in coal mines in the United States, especially in the 1970s,
and the reconstruction of mines in China, especially in 2004. However, the worst-
case scenario for Turkiye continues. Because, according to the statistics of Social

Security Institution in 2020, 36442 workers in 448 workplaces in Turkiye work in



the coal and lignite industries, and 23 of the 100 workers working in the coal and

lignite industries had a work-related accident in 2020.

Table 2.1 The number of deaths per hard coal million tonnes (Arslanhan &
Cunedioglu, 2010)

Year Turkiye China Uu.S
2000 7.10 4.08 0.03
2001 7.22 4.11 0.02
2002 6.04 3.98 0.04
2003 9.23 4.06 0.04
2004 5.14 3.03 0.03
2005 5.51 2.72 0.01
2006 2.59 2.00 0.06
2007 8.02 1.50 0.04
2008 7.22 1.27 0.02

Turkiye needs more policies about occupational health and safety to change this
worst-case scenario. To develop policies about occupational health and safety,
timely, relevant, and accurate data and statistics are essential. Moreover,
comprehensive and high-quality statistics and data analysis are necessary to support
decision-making and inform the development of policies for improving occupational
safety and health and to evaluate their effectiveness in reducing and preventing

occupational accidents.

2.2  General Overview of Applied Methods

In this study, principal component analysis (PCA), decision tree (DT), support vector
machine (SVM), and neural network (NN) methods were used to estimate the
severity of mining accidents and their performances were compared. The following
sections provide a literature review on properties of these machine learning

algorithms.



2.2.1 Principal Component Analysis

In data science studies, it may be necessary to work with a large number of variables.
This situation, excessive training time, brings along various problems such as
overfitting and multicollinearity. The prepared models will need to work in optimum
time and with optimum performance. To overcome these problems, dimensionality
reduction methods can be used. In dimensionality reduction, the number of variables
is reduced by creating new variables that are a combination of existing variables.
Thus, all the features in the dataset are somehow still present, but the number of

variables is reduced.

One of the most frequently used multivariate data analysis and dimensionality
reduction techniques is principal component analysis, which is also called “Hotteling
transform” or “Karhunen-leove (KL) Method” (Chandra Paul et al., 2013).

The main purpose of this analysis is that it is based on the identification of new
variables with fewer independent linear components that allow them to decompose

without loss of information.

Principal component analysis (PCA) has become a basic tool in modern data analysis
since it is a simple, non-parametric method for extracting meaningful information
from complicated data sets and provides a simple method for reducing a complex
data set to a lower dimension and revealing the sometimes hidden, simplified
structure that lies beneath it (Shlens, 2014).

Moreover, PCA is also a size reduction method that calculates the least number of
non-correlated variables from highly correlated data. It is an orthogonal projection
of data onto lower-dimension linear space that maximizes variance of projected data
(purple line, Figure 2.2), minimizes mean squared distance between data points and
their projections (the blue segments, Figure 2.2) (R. Greiner & B. Poczos, 2009).
PCA finds the best “subspace” that captures as much data variance as possible.

Figure 2.2 shows that two-dimensional data x = [x1, x2]" projected onto a one-



dimensional linear manifold (affine subspace) with direction ui (principal

component). Red points are the original data and green points are the projected data.
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Figure 2.2 Orthogonal projection of data onto lower-dimension (Bishop, 2006)

As Greiner and Poczos point out, vectors are originated from the center of mass. First

principal component points in the direction of the largest variance. Each subsequent

principal component is orthogonal to the previous ones, and points in the directions

of the largest variance of the residual subspace (2009). That is, PCA centers the data

at the origin and rotates the axes (Alpaydin, 2010).

\

Figure 2.3 Rotation the axes (Alpaydin, 2010)



The steps to follow for principal component analysis are normalizing the data,
calculating the correlation matrix, eigenvalues and eigenvectors, choosing

components and forming a feature vector, forming principal components.
Normalizing the data

It makes direct comparison unusable if different columns of numeric data have very
different ranges. Normalization is a method of bringing all data into a comparable
range to make comparisons more meaningful. After normalization, all data in the

matrix are within the same range where the mean is zero and the variance is one.

Normalization (standardization) is done by subtracting the respective means from
the numbers in the respective column, and then dividing them by standard deviation.
The equation of normalization is presented in Equation 3.1, where p is the columns,
n is the rows, ¥ is the average of j™ element (Equation 3.2), and 8; is the standard
deviation, xij is the measured data, i is the index for the variable i =1,2 ..., n, and j

is the index for the sample number and j =1,2, ..., p.

(xll - x_l)/81 (xlp - @)/Sp
X, = ; ; (3.1)
(xnl - x_l)/81 (xnp - @)/Sp
where
1 n
_)?] :;Z 1xl-j,Vj (32)
=

2 n
5 = J—Z (xij —X)?,Vj (33)
i=1

10



Calculating the correlation matrix

The covariance provides information about how a variable change with other
variables and is always measured between two dimensions (Konak, 2006). If the
dataset has 2-dimensions, this will result in a 2x2 covariance matrix (Equation 3.4).
In Equation 3.4, var and cov correspond to variance and covariance, respectively.

Var[X;] Cov[Xy, X,

Cov[X, X,] Var[X,] (3.4)

Matrix(Covariance)

If the value of one of the variables increases while the value of the other increases,
or if one decreases and the other decreases, the covariance value between the two
variables is positive. If the value of one of the variables increases and the value of
the other decreases or the value of one decreases and the value of the other increases,
the covariance value becomes negative. If there is no relation between variables, the

covariance value is zero (Alpar, 2003).

When the data has different scales job, education, and others, the correlation matrix
should be used since the variables are standardized by their standard deviation so the
total variance is equal to one. In other words, the use of the correlation matrix is
equivalent to standardizing each of the variables. Correlation matrices are calculated
by using the Equations 3.5 and 3.6 (Atalay, 2019).

1 ST
R=—"LxTx,=| : =~ (3.5)
n-1
rpl “ee 1
_ Gk Y (xij —X)) (Xik —Xk) Vi j (3.6)

T ’
8jk \/Z?:l(xij —ﬁ)z\/i?:l(xik —Xk)?

where r;; is the correlation coefficient between x; and x;.
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Calculating the eigenvalues and eigenvectors

The directions of the axis with the largest variance, which we call principal
components, are the eigenvectors of the covariance matrix. And eigenvalues are
simply the coefficients attached to eigenvectors, which give the amount of variance
carried in each principal component. By ranking the eigenvectors in order of their
eigenvalues, highest to lowest, the principal components in order of significance has

been obtained.

The eigenvalues and eigenvectors are calculated from the covariance matrix. Z is an

eigenvalue for a matrix A if it is a solution of the characteristic equation:

det (Xl - A)=0 (3.7)
Where, I is the identity matrix of the same dimension as A which is a required
condition for the matrix subtraction as well in this case and ‘det’ is the determinant
of the matrix. For each eigenvalue %, a corresponding eigenvector Vv, can be found by

solving the equation 3.8.

(AI-A)v=0 (3.8)

Choosing components and forming a feature vector

The eigenvalues are ordered from largest to smallest so that it gives us the
components in order of significance. The eigenvector corresponding to the highest
eigenvalue is the first principal component of the dataset. The second highest
eigenvalue is the second principal component, and so forth. Once the eigenvalues are

sorted, the number of eigenvalues to proceed the analysis is determined.

A graphical representation known as a scree plot, Kaiser Rule and proportion of
variance explained are the three most common methods for selecting the number of

components.
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A scree plot is a plot of the number of principal components versus the eigenvalues.
The value at the point where the elbow shape starts in the scree plot shows the
optimal number of components (Cattell, 1966). In Figure 2.4, the elbow shape starts
at the third component number, so; three principal components are enough to

describe the data.

Scree Plot

3.5
|

2.5

Eigenvalue
1.5

L |
/O

0

elbow

0.5

1 2 3 4 5 6 7 8 9 10 11 12

Component Number

Figure 2.4 Sample Scree Plot

The Kaiser rule is the second option for selecting the number of components.
According to this rule, the principal components whose eigenvalues are above 1.0

describe the data. (Kaiser, 1960).

The percentage of variance attributable to each of the specified components is the
explained variance ratio (Lindgren, 2020). The proportion of variance explained is
based on the rule of holding enough factors to take into account 90% of the variation
(sometimes 80%) (Alpaydin, 2010). On the other hand, the number of components

can be chosen by adding the explained variance ratio of each component until
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reaching a total of around 0.8 or 80% to avoid overfitting. (Lindgren, 2020). There
is no rule of thumb for this option.

After selecting the number of components, a feature vector, which is a matrix of

eigenvectors, is formed.

Forming Principal Components

The final step in PCA is forming principal components. The aim is to reorient the
data from the original axis to the ones represented by the principal components using
the feature vector created by the eigenvectors of the covariance matrix. To form the
principal components, the transpose of the feature vector is taken and left-multiplied
with the transpose of the scaled version of the original dataset. In equation 3.10, New
Data is the matrix of the principal components, Feature Vector is the matrix of the
eigenvectors, and Scaled Data is the scaled version of the original dataset. The
superscript 'T' represents a transpose of a matrix, which is formed by changing rows

for columns. In particular, a 2x3 matrix has a transpose of size 3x2.

New Data = Feature Vektor! x Scaled Data” (3.9)

2.2.2 Decision Tree

Decision trees are a type of predictive learning algorithm that is simple and effective.

Decision trees can be used for classification and predictive purposes.

Decision tree classification is a classification method that creates a model in the form
of a tree structure, consisting of decision nodes and leaf nodes by property and goal
(Russell & Norvig, 2003).

The decision tree algorithm is developed by dividing the dataset into smaller and
even smaller parts. A decision node can contain one or more branches. The leaf node
represents a classification or decision. The first node is called the root node. This top

decision node in a tree corresponds to the best determinant. It follows the decisions
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in the tree from the root node down to a leaf node to predict a response. A decision
tree can consist of both categorical and numerical data. Classification trees give

nominal responses, although regression trees give numeric responses.

The training data is used to construct the tree. In Figure 2.5 the top node is the root
node. Yes and No are the branches that are connecting nodes, showing the flow from
decisions to outcomes. Each observation is classified by means of nodes. As the
number of nodes increases, the complexity of the model also increases. The bottom

nodes are the leaf nodes and the possible answers.

I Root Node
Yes No
1 A
 — Nodes 1 — Nodes —
Yes No Yes No
| 1 1 L
Leaf Nodes Leaf Nodes Leaf Nodes Leaf Nodes

Figure 2.5 Decision Tree

Nodes are the building blocks of a tree. The root node to be selected should describe
the dataset as much as possible and nodes are chosen in order to obtain the best
possible feature split. A decision tree splits nodes into sub-nodes to make decisions.
For that purpose, the splitting criteria are used to measure the quality of a split.
Entropy (Quinlan, 1986) and gini-index (Breiman et al., 1998) are used for an

optimum split of the features.

The basic idea of entropy is to measure the disorder of the features according to the

target variable. The feature with less entropy chose the optimum split.

The entropy is calculated using the 3.10 Equation, where p; is the probability of

class j in a node, and log, (p;) is the logarithm to the base 2 of the p;.

Entropy = — X;pjlog,(p)) (3.10)
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If the probability of the two classes is the same, entropy gets its maximum value as

1. When the entropy is equal to 0, a node is pure.

Entropy typically changes when we use a node in a decision tree to divide training
samples into smaller subgroups. Information gain is a measure of this change in
entropy. The decrease in entropy after a dataset is split on an attribute is the

information gain.

Another criterion for an optimum split of the features, the Gini index (index) or Gini
coefficient, is a statistical criterion developed by Italian statistician Corrado Gini in
1912 (Ceriani and Verme, 2012). When a dataset is randomly labeled, the Gini

impurity estimates the frequency that any element will be mislabeled.

The Gini impurity is calculated using Equation 3.11, where p; is the probability of

class j in a node.
Gini Index = 1— X p? (3.11)

When all elements in the node have a single unique class, Gini Index gets its
minimum value of 0. This means that there will be no further splitting of this node.
Thus, the features chose a lower Gini Index for the optimum split.

There is no big difference between Gini and entropy. While entropy tends to build a

more balanced tree, the Gini is prone to splitting the nodes whose frequency is high.
Overfitting Problems in Decision Tree

Overfitting is an important issue for decision tree models and many other predictive
models. Errors and noise in training examples and coincidental regularities can cause

overfitting.

Pruning is the approach to avoiding overfitting in building decision trees. Pruning is
to remove predictive variables in branches that do not contribute well to the correct
classification rate of the decision tree. Pre-pruning and post-pruning are the type of

pruning.
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Pre-pruning is to stop the tree from growing early. In this process, the tree is pruned
before perfectly classifying the training set. It is a step-by-step process of branching

by taking predictive variables one at a time without any classification.

Post-pruning is a process to remove the branches, which do not contribute to the

model, from a completed decision tree.

If the model is overfit, decreasing the max_depth hyperparameter can prevent

overfitting.

2.2.3 Support Vector Machine

Support vector machine is a supervised machine learning algorithm that can be used

for linear and nonlinear classification and regression problems.

The basic idea behind the support vector machine is to divide and conquer. Firstly,
the problem is transferred into a set of binary classification tasks. The first class is
called “yes” and the second class is called “no”. If the decision-making variable is
“yes” in the problem, then that decision is made. If the decision-making variable is
"no" in the problem, then it is decided which two classes to be and again that class
is divided into two classes, which are called "yes" and "no". If the problem is divided
into two classes again, it will solve the problem, which is at which point it will be
divided.

The support vector machine is a boundary that best separates the classes. The
important terms to define this boundary are the support vectors, hyperplane and
margin. Support vectors are the data points that are closest to the decision plane and
the most difficult to classify (Berwick, 2003). Support vectors are coordinates of
observation only and have an impact on the final decision boundary. The hyperplane
is the decision plane that divides the data having different classes. In one dimensional
space, the hyperplane is a point. In two-dimensional space, the hyperplane is a line

and the hyperplane is a surface in three-dimensional space. The last important term
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in support vector machine, the margin (Figure 2.6), is the distance between the data

points of both classes.

Support vectors

margin

Figure 2.6 Support vectors and margin (Berwick, 2003)

Moreover, in an N (the number of characteristics) dimensional space, the support
vector machine algorithm finds a hyperplane that clearly classifies the data points.
These data can be linearly or non-linearly separable. Hence, SVM method performs

the classification using a linear or nonlinear function.

Figure 2.7 shows that the data are separated by a line. In this case, the data are
linearly separable. On the other hand, Figure 2.8 is an example of non-linearly

separable data, which means that we cannot find a line to separate the data.
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Figure 2.7 Linearly separable data
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Figure 2.8 Non-linearly separable data

There are many possible hyperplanes that could be chosen to divide the linearly
separable data points into two classes. The objective is to find a hyperplane with the
largest margin (Figure 2.9). In that, future data points can be classified with more

certainty as the margin increases.

Suppose there are only 2 classes and it is desired to learn where the arbitrary selected
x data will remain in the plane. The straight line drawn from the origin to the data x
is called the x vector, and x is the length of the x vector to the hyperplane. A vector
(w) which is perpendicular to the hyperplane (H) is shown in Figure 2.9, and w

represents the perpendicular distance from origin to the hyperplane.

Figure 2.9 Vector w, margin and hyperplane



The points above and below the hyperplane correspond to the following inequalities

3.12 and 3.13, respectively.

Xxw+b>0, y;,> +1 (3.12)
Ew+b<0, y, <+1 (3.13)
Above inequalities are combined in equation 3.14;

yiGew+b)—-120 (3.14)

The model learns by determining w and b values. New samples are classified by
determining the value of y satisfying the inequality after computing w and b using

the training set.

Margin is calculated by using Equation 3.15. The margin gets a higher value for the

smaller value of |jw]|.

m= 2 (3.15)

W]l

If there are some noise and outliers in the dataset, the given equation, which is called
hard margin SVM, cannot tolerate them and fail to find the optimization. By adding
a slack variable zeta to the constraints of the optimization problem, it is possible to

satisfy the constraint even if some outliers do not meet the original constraint.

When data is characteristically non-linearly separable, the method, which is called
kernel trick or method, is used to deal with this kind of problem. If the data is
transformed from one space to another, a hyperplane can be found to separate the
data.

The kernel trick works by adding nonlinear functions of the original variables until
there are enough dimensions to separate the classes. The linear, radial (gaussian) and

polynomial kernel are the most popular kernels.
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224 Neural Network

In the discipline of machine learning, neural networks simulate the function of the
human brain, allowing computer systems to identify patterns and solve common
problems (“Acrtificial Intelligence”, 2020). Neural networks were inspired by human
understanding of the biology of our brains and all those interconnections between

neurons.

There is a very complex neural network in the body. The neuron is an electrically
stimulating cell that transmits and processes information in the nervous system.
These neurons transmit the electric signal from dendrites to the ends through the
axons. Signals from neurons are transmitted to the brain along the nervous system
(Von Bartheld et al., 2016).

An artificial neural network works using this process. A copy of the biological neural
network is made into an artificial model, and each neuron layer is linked to the

neurons on the next layer (Thakur et al., 2021).

Acrtificial neural networks consist of node layers that contain an input layer, one or
more hidden layers, and an output layer. A typical example of a neural network with
an input layer, 2 hidden layers, and an output layer is presented in Figure 2.10. Each

circle is called as a “node” corresponding to a neuron.

Input Layer Hidden Layers
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Figure 2.10 Neural Network Architecture
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Information is transmitted to the network from the input layer.

If the network consists of a single layer, it is called a single layer artificial neural
network. The perceptron, which has a single neuron, is the oldest and simplest form
of a neural network. If the network consists of many neurons and hidden layers, it is
called a multilayer artificial neural network. The non-linearity of the output can be

increased by adding layers.

The layer between the input layer and the output layer is called the hidden layer.
Information from the input layer is processed in hidden layers and sent to the output
layer. They do not interact directly with input or output data. It is the layer where all
the computation is done. Figure 2.11 shows the weights, net input function and
activation function. The grey circle is the activation node. Each node connects to
each node from the next layer, and each connection line has a specific weight (w).
Weights are assigned after an input layer is specified. These weights play an
important role in determining the importance of any given variable. All inputs (X,
X2...) are multiplied by their respective weights (w1, Wz...). Then, all multiplication
results for a neuron and a bias (threshold) are summed for that neuron. The activation
function is shifted to the left or right using bias. This calculation, which is in Equation

3.16, is the net input function.

O\Weights Bias
X1

W1

x O\ W2 Output
- Activation 2
. . Function y
Wn
x'n @

Figure 2.11 Weights, net input function and activation function

Inputs

Net Input Function
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Net Input Function = z; = )|~ w;x; + bias (3.16)

If the total value for a neuron exceeds a given threshold value, the neuron fires and

data pass to the next neuron in the network.

Activation function is used to introduce non-linearity in the model. There are many
activation functions such as sigmoid, tanh, ReL U, leaky Relu, etc. (Figure 2.12). The
multilayer artificial neural network uses sigmoid function as an activation function
that often makes the error minimum (Oztemel, 2003). The Sigmoid transfer function
receives values from its net input function and generates outputs value between 0
and 1, while tanh function generates outputs value between -1 and 1 (Akbari et al.,
2014).

Sigmoid Tanh RelU Leaky RelLU
1 _&—e* . g(z) = max(ez, z)
g9(2) = 14+e* 9(z) = e’ +e* 9(2) = max(0,2) with e < 1

Figure 2.12 Most common used activation function graphs (Nalborczyk, 2021)

The output value obtained by applying the activation function and each neural net

has a single output. The output produced may be the input of another neuron.

In particular, the transformation task between input and output is important to adapt
a system. Because input and output layers can only transmit data, the number of
hidden layers and the number of neurons in each hidden layer determine the
calculation capability of an artificial neural network. An error method can be used
for determining these numbers (Gomes et al., 2004).
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The objective function is the mean square error function in an artificial neural
network optimization. Thus, the value of the parameters (weights) that minimize the

error when mapping inputs to outputs is found using an optimization algorithm.

Optimization algorithms can be divided into two categories as one-dimensional

optimization and multi-dimensional optimization algorithms.

Some of the functions that are used for one-dimensional optimization are Convex
Unimodal Functions, Non-Convex Unimodal Functions, Multimodal Functions,
Discontinuous Functions (Non-Smooth), and Noisy Functions. One-dimensional
functions that receive a single input value give a single evaluation of the input. Inputs
to the function on the x-axis and outputs of the function on the y-axis are given, and

so both inputs and outputs are visualized on a single plot.

Gradient descent, backpropagation algorithm, Newton method, conjugate gradient,
quasi-Newton method, and Levenberg-Marquardt algorithm are the most commonly

used functions for multi-dimensional optimization algorithms.

The gradient descent algorithm is one of the most popular and simplest optimization
algorithms. Gradient descent aims to reach the global minimum value, starting with

randomly imported variables.

The backpropagation algorithm is an extension of the gradient-based delta learning
rule, and a local optimization technique based on the steepest gradient method. The
error is calculated and checked whether the error is minimized. If the error is large,
then the parameters (weights) are updated. The error is then checked again. The
process is repeated until the error reaches the minimum. When the error reaches a
minimum, it can feed some inputs to the model and get the output. The optimization
algorithm stops, as seen in Figure 2.13, when the output is true. This process is called
Backpropagation.
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Figure 2.13 Training process of backpropagation

In the backpropagation algorithm, each iteration consists of three phases, feed-

forward, backpropagation and the adjustment of the weights (update).

Another multi-dimensional optimization function, Newton's method, uses the
Hessian matrix. Thus, it is a second-order algorithm. The objective of this algorithm

iIs to use the second derivatives of the loss function to find better training routes.

The quasi-Newton method is a type of Newton's method, but this algorithm does not
use the second derivatives of the loss function. The quasi-Newton method, on the
other hand, uses just gradient information to approximate the inverse Hessian at each

iteration of the algorithm.

The conjugate gradient algorithm is a line search method that is performed with
conjugate directions. This is why it usually converges faster than the steepest descent
method. This method can be considered an intermediate method between gradient
descent and Newton method. The difference between this and Newton method is that

this algorithm does not require the Hessian matrix.

The Levenberg-Marquardt (LM) algorithm is the most frequently used
backpropagation algorithm, as it combines the speed of the Gauss-Newton

optimization method and the stability of the steepest descent method in minimizing
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the sum-squared errors of the output results. (Suratgar et al., 2005). To perform this
method, the loss index must be in the form of a sum of squares. It requires both the
gradient and the Jacobian matrix of the loss index. For small data sets, the

Levenberg-Marquardt algorithm can be used due to its high speed and precision.

2.3 Accident Forecasting Studies in Underground Coal Mines

A literature survey was conducted for the studies, which were conducted by using
principal component analysis, decision trees, support vector machines, and neural
network algorithms to prevent work-related accidents in underground coal mines.
During the literature survey it is seen that the principal component analysis is
commonly used by researchers for dimension reduction. The decision tree, support
vector machine, and neural network are mainly used for classification purposes to
determine the causes of accidents. However, there weren't many comparative studies
on which type of analysis would be better to analyze coal mine accident data and

predict the severity of the accident.

The work face gas emission prediction model was developed by Ning et al. (2009)
using a support vector machine (SVM) model based on data statistics of a mine work
face gas emission to prevent work-related accidents. The outcomes were accurate,

demonstrating that the model's face gas prediction is viable and useful.

Ruilin and Lowndes (2010) used Chinese coal mines’ statistics for prediction of coal
and gas outbursts. According to this study, the combined fault tree analysis and
artificial neural network model may offer a credible alternative way to predict the
possible risk of coal and gas outbursts. The model was used by Hong et al. (2010)
for a gas warning system. They concluded that it offers very good features in gas
extraction, analysis, and judgement. However, they state that it is needed to do

extensive research because early warning systems are a deep and major problem.

Carnero and Pedregal (2010) have developed an accident prediction model by

analyzing data of light injury, serious injury, and deadly work accidents in Spain and

26



identifying work accidents with these severity levels. Multivariate Unobserved
Components models were used to deal with the irregular sampling interval of the
data and forecast occupational accidents for different levels of severity.

Sanchez et al. (2011) used the support vector machine method to predict work-
related accidents. Before applying the method, semi-parametric principal component
analysis was used for dimensional reduction. Because of unsatisfactory results,
another dimensional reduction method, which was multivariate adaptive regression
splines, was applied and obtained good results. The results of this methods were
selected as input for support vector machine model. This SVM technique made
classification according to worker’s working conditions. As a result, they observed
that a support vector machine model does not overfit the experimental data and

performs better than back-propagation neural network models.

Nenonen (2013) analyzed the statistical database for slipping, stumbling, and fall
work-related accidents in Finland between 2006-2007 using data mining methods,
and it has been concluded on the consequences of accidents, whether accidents are
actually caused by these factors. In the study, the data was analyzed using decision
tree and association rules. As a result of this study, data mining methods were shown

to be effective.

Alaeddinoglu et al. (2015) trained the artificial neural network model with the results
of the risk assessment in the past and offered this method to help the expert person

decide the consequences that may arise from the potential risks.

Sanmiquel et al. (2015) applied a clustering algorithm to the dataset containing the
description of the mining accident reasons. The Quinlan algorithm, which is used in
data mining as a decision tree, was applied to the dataset and the causes of accidents
were classified based on the feature value. Results were obtained that could help

develop appropriate prevention policies to reduce injuries and deaths.

In the study by Chen et al. (2015), the stability of mine tailings dam was analyzed
based on principal component analysis and neural network. They agreed that, before
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the neural network analysis, preprocessing the original sample with the principal
component analysis can significantly improve training speed and precision, and the
model is feasible in the analysis of the stability of mine tailings dam.

Xiangzhong Meng, Peng Lu and Baolei Wang developed Coal Mine Safety Warning
System Based on Principal Component Method and Neural Network to prevent the
accidents (2017). They stated that using PCA to extract data can effectively reduce
data, eliminate interference and improve the efficiency and accuracy of neural

network recognition.

Ye Zhang et al. (2022) propesed a back propagation neural network prediction
method based on primary component analysis and deep confidence network
optimization for water inrush in order to provide an effective risk assessment of
water inrush for coal mine safety production. As a result of this study, the principal
component analysis-deep belief network model is able to eliminate the defects in
standard feature selection algorithms and successfully filter out missing and noisy

data to provide a more trustworthy water inrush accident evaluation model.

Wau et al. (2022) stated that principal component analysis is a dimension reduction
methodology that can be useful for identifying significant variables or components
and can be utilized effectively in hazard, risk, and emergency assessment. Moreover,
because it was sensitive to outliers, the PCA approach could be used to construct
prediction and forecasting systems.
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CHAPTER 3

STUDY AREA AND DATA

3.1  Study Area

In the late 18" century, the imports of hard coal that had not been in the country to
meet the needs of industrial branches began. On November 8, 1829, the discovery of
hard coal outcrop along Viran Creek in Eregli by Uzun Mehmet, who was a
bluejacket, constitutes the basis for today's coal business. The production of coal in
Zonguldak coal basin began in 1848 (Turkish Hard Coal Enterprise, 2022).

In accordance with the general industry and energy policy of the state, Turkish Hard
Coal Enterprise (THCE) was established in 1983 to contribute to the domestic
economy by optimizing the reserves of hard coal and meeting the country's
requirements for hard coal. However, the year of the establishment is considered
1848 because it inherits the coal mining process, which was considered to have
started in 1848 at the Zonguldak basin. The production of hard coal, which was about
2 to 2.5 million tonnes/year in recent years, has been in the five establishments. Four
of the establishments (Armutcuk, Kozlu, Karadon, and Uzulmez) are located within
the Zonguldak province, and one (Amasra) is within the province of Bartin.
Moreover, the concession area (Figure 3.1), including these establishments, is 6,885
km?2 by the Council of Ministers’ decision dated 14/04/2000 and numbered 2000/525
(THCE, 2022).

29



Figure 3.1 The license area of Turkish Hard Coal Enterprise (THCE, 2022)

The total geological reserve, determined at a depth of 1200 m in the reserve search
conducted in the basin so far, is 1.511 billion tonnes and approximately 48% of this
is considered proven reserve (2021 Hard Coal Sector Report, 2022). Table 3.1 shows
the total hard coal reserve amounts of TTK and the hard coal reserve amounts of
Armutcuk, Kozlu, Uziilmez, Karadon, and Amasra in 2022.
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Table 3.1 Turkiye's hard coal reserves in 2022 (tonnes) (“2021 Hard Coal Sector
Report”, 2022)

Amasra

RESERVE Armutcuk Kozlu Uziilmez Karadon TTK

Ready 1.907.524 2.421.222 328.414 3.154.507 330.000 8.141.667

Proven 6.719.800 62.715.504  132.559.492 127.643.082  4.897.000  395.954.757  730.489.635

Possible 14.407.491  40.539.000 94.342,00 159.162,00 7.690,00 151.161.950  467.302.441

Probable 7.883.164 47.975.000 74.020.000 117.034.000 56.619.859 2.192.919 305.724.942

TOTAL 30.917.979  153.650.726  301.249.906 406.993.589 69.536.859 549.309.626  1.511.658.685

The maximum run of mine coal production in the history of the basin was 8.5 million
tonnes in 1974, and the saleable production was 5 million tonnes in 1967 and 1974.
Today in Turkiye, the production of hard coal is carried out in Zonguldak hard coal
basin by Turkish Hard Coal Enterprise, by private sector companies that work with
a royalty method at Turkish Hard Coal Enterprise 's concession site, and also by the
companies that Turkish Hard Coal Enterprise Institution transfers licenses to. Table
3.2 illustrates the amount of hard coal produced by Turkish Hard Coal Enterprise
Institution and the private sector for years (“2021 Hard Coal Sector Report”, 2022).
According to the table, the minimum production was in 2020. The lowest production
is expected in 2020 due to the COVID-19 pandemic.
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Table 3.2 The amount of hard coal production (tonnes) (“2021 Hard Coal Sector
Report”, 2022)

Years Turkish Hard Private Sector Total

Coal Enterprise

2010 1.708.844 883.074 2.591.918
2011 1.592.515 1.026.732 2.619.247
2012 1.457.098 835.157 2.292.255
2013 1.366.509 549.332 1.915.841
2014 1.300.154 488.187 1.788.341
2015 948.573 486.309 1.434.882
2016 911.002 404.968 1.315.970
2017 823.042 411.212 1.234.254
2018 686.142 415.442 1.101.584
2019 734.316 472.432 1.206.748
2022 712.689 352.862 1.065.551
2021 870.018 365.043 1.235.061

Moreover, the complex geological structure of the Zonguldak coal mining basin
makes production difficult with fully mechanized systems, and the production of
hard coal is mainly carried out in a labor-intensive way that depends on human
power. However, in recent years, production with mechanized and semi-mechanized
systems that meets the requirements of the basin has been successful (“2021 Hard
Coal Sector Report”, 2022).

3.2 Data

For this study, 8406 underground accident data belonging to Turkish Hard Coal
Enterprise were analyzed. The obtained data covers the districts of Amasra,
Armutcuk, Karadon, Kozlu, Uziilmez, and the dates between March 2008 and
December 2010.
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As a first step, variables are determined for accident data set. The data set had eleven

variables (dimensions) that are shift, day, job, education, type of accident, reason of

the accident, location of the accident, severity of the accident, age, seniority, affected

body part. Each dimension had several categories that are numeric and categorical.

Variables and their categories are shown in table 3.3, and the variables specified for

the creation of the accident data table are described.

Table 3.3 Variables of the data set

C  Shift C Day C Job C  Education C Type of Accident
o 0 o o o
d d d d d
e e e e e
1 First 1 Monday 1 Blaster 1 Primary School 1 Bump, Break
2 Second 2 Tuesday 2 Chainman 2 Secondary 2 Electrical
School
3 Third 3 Wednesday 3 Driller 3 High School 3 Falling rocks
4 Thursday 4 Duties Man 4 University 4 Gas poisoning or suffocating
5 Friday 5 Electrical Electronics Worker 5  Unknown 5 Gas/dust explosion
6 Saturday 6 Environmental Worker 6 Ground support
7  Sunday 7 Ground Support Worker 7 Hand tools
8 Haulage Worker 8 Inrush
9 Machinist 9 Manual Handling
10 Maintenance and Repair Worker 1 Material Handling and
0 Usage
1 Mechanization and Press Worker 1 Mechanical
1
12 Miner 1 Miscellaneous injury
2
13 Mining Engineer 1 Slipping, Falling, Tripping,
3 Ankle Sprain
14 Mining Technician
15 Development Worker
16 Production Worker
17 Pump Worker
18 Service Man
19 Washery worker
20 Welding
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Table 3.3 (continued)

C  Reason of the C Location of the C  Accident Severity Age Seniority C Affected Body Part
o  Accident 0 Accident 0 o
d d d d
e e e e
1 Coal transfer 1 Inclined Shaft 1 Death 21-55 0-31 1 Arm
2 Personal Mistake 2 Footwall 2 Seriously Wounded 2 Brest
3 Equipment error 3 Gallery 3 Injured 3 Calf
4 Geological 4 Roadways 4 Slightly injured 4 Dorsi
conditions (development)
5 Locomotives 5 Miscellaneous 5 Face
6  Transportation 6 Ground support 6 Foot Finger
vehicles
7  Other 7 Production areas 7 Hand Finger
8 Transportation 8 Head
9 Pump 9 Knee
10 Shaft 10 Leg
11 Tippling 11 Neck
12 Shoulder
13 Waist
14 Arm
15 Brest

e Descriptive statistics of the dataset

The variable “shift” was divided into subtitles as first, second, third. The first,
second, and third shifts cover the working time from 08:00 to 16:00, from 16:00 to
24:00, and from 24:00 to 08:00, respectively. While there were 4523 accidents on
the first shift, 2061 and 1822 accidents occurred on the second and the third shift,

respectively.

Another variable is the days of the week. It was seen that there were almost the same
number of accidents every day, except on Sunday. The total number of accidents on
Sundays is 10. Monday is in first place with 1542 accidents (18.34%).
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Moreover, in the data set, the variable which is called "job" shows the professions of
those affected by the accidents. The variable job was divided into twenty subtitles.
When the number of accidents according to jobs is analyzed, production workers
have the highest share of the accidents. The production workers were affected from
80.24% of the total accidents. Figure 3.2 shows the distribution of the jobs with

respect to the total accidents.

Pump Worker_ Welding Blaster Chainman Driller Duties Man
Washery worker 0,12% s8%  006% 050%  011%

0,01% Service Man -\|

012%

Electrical Electronics Worker _pnironmental Worker

Maintenance and Repair Worker
1,00%

Mechanization and Press Worker

/ 1,82%
4 Miner
0,56%
Mining Engineer

0,48%

Mining Technician
0,13%

Development Worker
5,60%

Production Won‘ker/

80,24%

Figure 3.2 The distribution of the jobs with respect to the total accidents

The education level of those affected by the accidents is another variable. The
education level was divided into five categories, which are primary, secondary, high
school, university, and unknown. 4561 (54.26%) of the observations have primary

school education, and this category has the highest percentage of accidents.

The type of accident consists of thirteen sub-categories as bump-break, electrical,

falling rocks, gas poisoning or suffocating, gas/dust explosion, ground support, hand
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tools, inrush, manual handling, material handling and usage, mechanical,
miscellaneous injury, slipping-falling-tripping-ankle sprain. The most common type
of accident is falling rock, with 88.52%.

Accidents’ reasons were geological conditions, personal mistake, equipment error,
coal transfer, locomatives, vehicles and others. According to this variable, personal
mistake has the highest rate. There were 3870 accidents (46.04% of the total) due to

personal mistakes.

Inclined shaft, footwall, gallery, roadways (development), ground support,
transportation, production areas, pump, shaft, tippling and miscellaneous areas are
common accident sites. When considering the number of accidents, the production
area appears to be the most dangerous area, with 4420 accident data (52.58%) out of
8406.

Another variable is the severity of each accident. The prediction models were built

to predict this variable.

The age of the workers who had accidents is also another variable in the data set. The

age range of workers who subjected to accidents is in between 21 and 55.

One further variable that needs to be evaluated in terms of work-related accidents is
seniority. Seniority represents the employee's year of experience at the time of the
accident. According to the data set, workers with 0—7 years of seniority are more

likely to be in accidents; they account for 72.22% of accidents.

The last variable is the affected body part. This variable shows where the body was
injured in the accident. The hand finger is the most injured body part (29.26%) as a
result of accidents. Figure 3.3 shows the number of accidents with respect to affected
body parts.
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Figure 3.3 The number of accidents with respect to affected body parts
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CHAPTER 4

ANALYSING DATA AND BUILDING THE MODELS

4.1  Applying Principal Component Analysis

This section describes the study carried out to omit meaningless variables from the
raw data set of 8406 accidents and 11 variables. In other words, principal component
analysis (PCA) was applied for dimension reduction of the data set.

Principal component analysis (PCA) was performed using R Studio, which is free
and open-source software for data science. The data set had both numerical and
categorical data. Thus, before the analysis, all categorical data was converted into
numerical data. To import the data into program the spreadsheet file was used and
the input data was a vector. To convert these data vectors into numeric values,
the factor method was used to convert the input, which was a vector, into the factor,
which is a data structure that is used to classify data. Then the numeric method was
used to convert the factor into numeric. Moreover, the factor numbers such as age
and seniority were converted first into a character vector and then into a numeric

value.

The second step is to prepare the data set for analysis is standardization. As it was
mentioned in the Section 2.2.1, normalization or standartization is a method of
bringing all data into a comparable range to make comparisons more meaningful.
After normalization, all data in the matrix are within the same range where the mean
is zero and the variance is one. Thus, standardization was applied by using scale

function, and after this process, the data was ready to be analyzed.

The output of the correlation matrix resulting from the PCA applied to accident data
using the R software is given in Table 4.1. The correlation matrix given in Table 4.1

shows the eigenvalues, the variance percent and the cumulative variance percent. As
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it is mentioned in Chapter 2, eigenvalues are simply the coefficients attached to
eigenvectors, which give the amount of variance carried in each principal
component. Thus, in Table 4.1, eigenvalues show the variances. Because of having
the data set with eleven variables, there are eleven eigenvalues and eigenvectors. The
components, in other words, dimensions, are listed in order of importance by the
eigenvalues, which are ordered from largest to smallest in Table 4.1. The first
principal component (first dimension) explains 21.76% of the variation in the data,
while the second principal component (second dimension) explains 14.59% of the
variation. The summation of these two corresponds to 36.35% of the variation. The
number of components can be chosen by adding the explained variance percent of
each component until reaching a total of around 80% to avoid overfitting. (Lindgren,
2020). Therefore, 81.82% of the data can be interpreted with the seven components

given in Table 4.1.

Table 4.1 The output of the correlation matrix

Explained Variance Cumulative Variance

Eigenvalue
Percent Percent
1% Principal
2.3935705  21.759732 21.75973
Component
2" Principal
1.6053013  14.593648 36.35338
Component
3 Principal
1.0980707  9.982561 46.33584
Component
4" Principal
1.0055105  9.141004 55.47685
Component
5™ Principal
0.9917678 9.016071 64.49292
Component
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Table 4.1 (continued)

Explained Variance Cumulative Variance

Eigenvalue
Percent Percent

6" Principal

0.9723008  8.839099 73.33201
Component
7™ Principal

0.9338560  8.489600 81.82161
Component
8" Principal

0.8608942  7.826311 89.64793
Component
9™ Principal

0.5377797  4.888906 94.53683
Component
10™ Principal

0.4606229  4.187481 98.72431
Component
11" Principal

0.14032256 1.275687 100.00000

Component

Looking at a Scree Plot, which is the plot of explained variance percent ordered from
largest to smallest, is another method to determine the number of principal
components. The optimal number of components is selected as the value at the point
where the elbow form begins in the scree plot. Figure 4.1, scree plot, shows the
percentage of explained variance by each principal component, and Figure 4.2 shows
the cumulative sum. From the scree plot, it is seen that the elbow shape starts at the
third component. However, the sum of the percentages of explained variance of the
first three components explains 46.34% of the total data. This is not enough for
reaching high prediction accuracy. Therefore, seven components identified by the

previous method were chosen instead of three components.
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Figure 4.2 Cumulative proportion of explained variance with respect to principal
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After determining the number of components, the PCA results are visualized. All
plots are shown on the plane of the first two components because the first principal
component shows the most variation, and the second principal component shows the
second most. Firstly, the score plots of the first two principal components are plotted.
On the x and y axes, these scores are referred to as the first and second principal
components, respectively. Figure 4.3 is the score plot that is individuals factor map
of severity of accidents, and Figure 4.4 is the score plot that is individuals factor map
of job. In the maps, the points are the projections of each data point along the
directions with the largest variance, which are the first and second principal
components. These PCA plots shows clusters of samples based on their similarity. It
can be seen that PCA performed not too well in Figure 4.3. Because clusters are

clearly not separate from each other. But it performed better in Figure 4.4.
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Figure 4.4 Individuals factor map of job

Another way of visualizing PCA results is the correlation circle. The correlation
circle shows the relationships between all variables. The quality of representation of
the variables on factor map is called cos?. A high cos? indicates a good representation
of the variable on the principal components. In this case the variable positioned close
to the circumference of the correlation circle. A low cos? indicates that the variable
is not perfectly represented by the principal components. In this case the variable is
close to the center of the circle. Figure 4.5 shows the correlation circle of the PCA
results. The radius of the circle is 1. First principal component is represented on the
horizontal axis, and second principal component is represented on the vertical axis.
Inside the circle, each arrow, which has different lengths, indicates a variable. The
angle between arrows (variables) shows how well the variables are correlated on the
factorial plane. The angle is small if the representation of the two variables on the
factorial plane is positively correlated. For example, according to the circle age and
seniority are positively correlated on this factorial plane, and their arrows are longer
than others. This means that these variables well explain the variance of the data on

the factorial plane. The job variable, according to the circle, is negatively correlated
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with age and seniority variables since they are positioned on opposite sides of the

plot origin.
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Figure 4.5 Correlation circle of PCA results

Moreover, cos? bar plot is shown in Figure 4.6. From the bar plot, the variable day
has the lowest cos? value. This variable is not perfectly represented by the PCs.
Seniority, age, reason of the accident, type of accident and job have high cos?

values.
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4.2  Building Decision Tree Algorithm

Among the different data mining techniques, the decision tree approach was chosen
since it performs classification without requiring much computation, it is able to
handle both continuous and categorical variables, and is easy to interpret. After
obtaining PCA results, the decision tree model was built with respect to eight
components. This is eight because one of these variables, "severity of the accident”
was selected for the prediction output. MATLAB, which is a programming and
numeric computing platform that isused as a tool to analyze data, develop

algorithms, and create models, was used to build the decision tree model.
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As mentioned before, shift, job, type of accident, reason of accident, location of the
accident, age, seniority and severity of the accidents were the variables in the data
set. By using these variables, the model was built and the severity of the accidents

were predicted.

Firstly, by using the "import data" section, the data set was introduced into the
program. 30% of the data set was set aside as a test data set, while 70% of the data
set was used to train the model. Splitting the data set as test and training data sets
was done by using the splitting option in MATLAB to avoid controlling the data set.
Then, classification learner section from the app tab was used to build the model.
This time, the variables shift, job, type of the accident, reason of the accident,
location of the accident, age, and seniority were used as predictors, and the variable
seniority of the accident was used as a response (Figure 4.7). The next step is to
decide the validation type. Cross-validation was selected to train the decision tree
classifier. Because, the dataset must be divided to maximize learning and test result
validity. But this is a difficult phenomenon. Cross-validation provides a bunch of
techniques that divide the data in different ways. Moreover, it both protects the
model against overfitting and provides a way to see the quality of the model. When
the cross-validation fold number is selected as 5, the data is divided into 5 different
subsets. Four subsets are used to train the data, and the final subset is left as test data.
This process is repeated five times, such that each subset is used exactly once for
validation. Although there isn't a rule, the most common choices for the cross-
validation fold number are 5 or 10. The size gap between the training set and the
resampling subsets decreases as fold number increases. The bias of the technique
becomes smaller as this gap decreases (Kuhn & Johnson, 2013). Moreover, the size
of the data determines the number of folds. The size is not very large because there
are 8406 data in the dataset. Thus, for the model this value was selected as 5 (Figure
4.7).
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Figure 4.7 Session information for the classification learner

Then, in order to find predictors that effectively separate classes, different pairs of

predictors are plotted on the scatter plot of the original data. For example, on the

scatter plot in Figure 4.8, x axes correspond to location of the accidents and y axes

correspond to the type of the accidents. The points on the scatter plot show the

severity of the accidents by classes. As it is seen from Figure 4.8, the classes were

not well separated. Thus, it is difficult to decide which predictors are not useful for

separating out classes. When the scatter plot, which was drawn with respect to other

predictors, was plotted, there was no class to be removed. Therefore, training was

continued with all classes. The scatter plots with respect to other predictors is

presented in Appendix B.
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Figure 4.8 Scatter plot of original data (location of accident versus type of
accident)

After determining to train the model with all classes, the model was built by using
the fine tree method, whose maximum number of splits is 100. The larger number of
splits means that the model has more flexibility. Thus, the maximum number of splits
was selected to start training the model. Gini’s diversity index was used as a split
criterion. The data set had no missing values, so surrogate splits were not used.
Summary of the trained model is presented in Figure 4.9. According to the training
results, the accuracy of the trained model, which is the percentage of observations
that are correctly classified, is 78.3%. The total cost of validation, which is the total
misclassification, is 1278 out of 5885 observations. In other words, the trained model
made the classification of 1278 out of 5885 observations according to the severity of
the accident incorrectly.
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Model 1: Tree
Status: Trained

Training Results

Accuracy (Validation) 78 3%

Total cost (Validation) 1278

Prediction speed ~250000 obs/sec
Training time 1.0295 sec

* Model Hyperparameters

Preset: Fine Tree

IMaximum number of splits: 100
Split criterion: Gini's diversity index
Surrogate decision splits: Off

L

Feature Selection: 7/7 individual features selected

PCA: Disabled

.

.

Misclassification Costs: Default

L

Optimizer: Not applicable

Figure 4.9 Summary of the DT model 1

Figure 4.10 shows the validation confusion matrix, which presents the performance
of the currently chosen classifier in each class. In reddish cells, the true class and the
predicted class do not match, whereas in bluish cells, the true class and the predicted
class match well. For example, Figure 4.10 shows that 4448 samples in the dark blue
cell were classified as truly. However, 945 data points are misclassified. These data

points were classified as slightly injured rather than injured.
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Figure 4.10 The validation confusion matrix of DT Model 1 (number of splits:100)

The model depth is controlled by changing the maximum number of splits. As the
depth of the tree changes, the accuracy changes, too. For that reason, the second
model was built by changing the number of splits to 75. The accuracy of the model
did not change (78.3%). Figure C1 in Appendix C shows the results, and Figure D1
in Appendix D shows the validation confusion matrix of DT model 2. The diagonal

sum of bluish cells is 4607. Namely, this model correctly classified 4607 data points.

Moreover, the models were trained by changing the number of splits to 50, 25, and
20 (DT model 3, DT model 4, and DT model 5, respectively). Figure C2, Figure C3
and Figure C4 in Appendix C show the summary results of these models. DT model
3 has the accuracy 78.2%, DT model 4 has the accuracy 78.5%, DT model 5 has the
accuracy 78.4%. Trained models with a lower number of splits were not built

because of decreasing accuracy.
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The validation confusion matrix of DT models 3, 4, and 5 indicates that the numbers
of correctly classified data points are 4604, 4618, and 4613, respectively (Figures
D2, 5.3, D3). As a result, DT model 4 is the best trained model among other trained

decision tree models due to its high accuracy and correct classification rate.

A visualization of the decision tree model is presented in Figure 4.11. The codes of
each variable of the trained model, which were in Figure 4.11, were already given in
Table 3.3 (variables of the data set) of Chapter 3. Each blue triangle in the decision
tree model (Figure 4.11) corresponds to a node and a rule. The leaves, which are
illustrated as blue dots, show the predicted severity of the accidents. According to
this trained tree model, the first rule (top triangle) is to check whether its seniority is
smaller than 3.5 or not. For example, if the seniority of the person affected by the
accident is less than 3.5, and the location of the accident is a gallery, the type of
accident is falling rocks, and reason of accident is personal mistakes, the severity of
the accident will be predicted as "slightly injured™ based on this trained decision tree

model.
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Figure 4.11 Decision tree model for accident severity prediction

4.3 Building Support Vector Machine Algorithm

In recent years, one of the most successful machine learning algorithms developed

for solving classification problems is support vector machines. Because support

vector machines are optimized-based, classification performance is more successful

than other techniques in terms of compute complexity and usability (Nitze et al.,

2012). Thus, after building a trained prediction model based on the decision tree

algorithm, another prediction model was built by using the support vector machine
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algorithm. For the SVM trained model, again the MATLAB program, 5-fold cross
validation, and the same training data used for the decision tree algorithm, were used

to make a comparison.

Firstly, for the prediction model, the hyperparameters, which are kernel function,
box constraint level, kernel scale mode, multiclass method, and standardize data,
were decided. The types of the first hyperparameter, the kernel function, are linear,
gaussian (coarse, medium, fine), quadratic, and cubic. The Kernel function provides
a means of transforming the input dataset to a higher dimensional space. Individual
models were designed for each function. The second parameter, box constraint level,
is a parameter that regulates the maximum penalty applied to observations that
violate the margin and works to prevent overfitting (MATLAB Help Center, 2022).
The number of support vectors can be decreased by increasing the box constraint
level. Moreover, by changing the other parameter, the kernel scale, model flexibility
can be decreased. The learning method can be selected by using the multiclass
method option. So, with this option, it's decided whether the model learns to
distinguish one class from the other or whether it learns to distinguish one class from
all others. If variables have different scales, the standardize data option should be
selected to improve the fit.

As mentioned before, using the default parameters of MATLAB for the support
vector machine algorithm, six models, which are linear, quadratic, cubic, fine
gaussian, medium gaussian, and coarse gaussian, were built. Training results and
hyperparameters of linear model are shown in Figures 4.12, and training results and
hyperparameters of other support vector machine trained models are appended to
Figures C5, C6, C7, C8, and C9 in Appendix C. According to the results, the fine
gaussian support vector machine trained model has the highest accuracy, with a value
of 78.9%.
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Training Results

Accuracy (Validation) 78.5%

Total cost (Validation) 1265

Prediction speed ~49000 obs/sec
Training time 46811 sec

¥ Model Hyperparameters

Preset: Linear SWVIM

Kernel function: Linear

Kernel scale: Automatic

Box constraint level: 1
Multiclass method: One-vs-COne
Standardize data: true

» Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure 4.12 Summary of the linear SVM model

When the validation confusion matrix constructed in terms of predicted class versus
true class of accident severity for the linear SVM model, which is presented in Figure
4.13, it is seen that the numbers of correctly classified data points are 4620. The
validation confusion matrixes of the other SVM trained models are illustrated in
Figures D4, D5, D6, and D7 in Appendix D and Figure 5.4 in Chapter 5. Quadratic,
cubic, fine gaussian, medium gaussian, and coarse gaussian SVM trained models
gave 4584, 4514, 4642, 4626, and 4607 true outputs, respectively. As a result, the
fine gaussian support vector machine model is the best trained model among other
support vector machine models due to its high accuracy (78.9%) and correct

classification rate.
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Figure 4.13 Validation confusion matrix of linear SVM model

After determining the best trained SVM model which provides the maximum
accuracy for the given dataset, different kernel scales, box constraint levels, and
multiclass methods were applied. The purpose of doing this is to get a better accuracy
result by changing the hyperparameters of the fine gaussian model decided for the
dataset. Hence, the first kernel scales were changed. When the accuracy was found
at its maximum value, which was 79.1%, box constraint levels were changed. When
the accuracy of the trained model began to remain unchanged, the multiclass
methods were modified. The accuracies of these new trained fine gaussian SVM
models and fine gaussian trained model (default parameters) are shown in Table 5.3
in Chapter 5 (Results and Discussion). Finally, the highest accuracy rate, 79.2%, was
found with the hyperparameters, which were 1.5 kernel scale, 1 box constraint level,

and one-vs-all multiclass methods.

According to the validation confusion matrix of fine gaussian model 7, 4659 samples

were classified truly.
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4.4  Building Neutral Networks

The last built prediction model is the artificial neural networks. This algorithm was
chosen because it is non-linear and can be designed with input and output mappings
(Haykin, 1999). For the trained model, again the MATLAB program, 5-fold cross
validation (same as the decision tree algorithm and support vector machine
algorithm), and the same training data that was used for the decision tree algorithm

and support vector machine algorithm were used to make a comparison.

The classifier types in MATLAB Classification Learner tab are narrow neural
network, medium neural network, wide neural network, bilayered neural network,
and trilayered neural network. Hence, five trained models were designed by using
all these classifier types, which are feedforward, fully connected neural networks for
classification. The neural network classifiers have a layer structure like in Figure
4.14. A connection to the network input is made by the neural network's first fully
connected layer, and there is a connection from the previous layer to each subsequent
layer. The input is multiplied by a weight matrix in each fully connected layer, and
a bias vector is then added. Each fully connected layer is followed by an activation
function. The output of the network is produced by the final fully connected layer
and the subsequent softmax activation function (Help Center, 2022).

Iilput

First fully
connected layer

Activation
Function

Final fully
connected layer

Softmax
function

Output

Figure 4.14 Structure of the neural network classifiers
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While designing the neural network models, internal parameters play an important
role in the performance of the model. These hyperparameters in MATLAB for the
neural network models are the number of fully connected layers, layer sizes (first,
second, and third), activation types, iteration limit, regularization strength (lambda),
and standardize data. As number of fully connected layers in the neural network
increases, model flexibility increases. The maximum number of fully connected
layers is three in the program. The size of each fully connected layer, which is the
number of outputs in the layer, can be changed by using the layer size option. If the
model is created by a neural network with multiple fully connected layers, the layer
sizes should be specified with decreasing sizes. Activation function is used for fully
connected layer. ReLU, Tanh, None, and Sigmoid are the activation functions to be
selected in the program. Softmax function, which is one of the activation functions,
is always used for the final fully connected (output) layer. The softmax activation
function generates a vector of probability scores using a vector of the neural
network's raw outputs as input. Another hyperparameter, iteration limit, which is the
maximum number of training iterations, can be specified by using the iteration limit
option. Moreover, in order to prevent overfitting, regularization imposes a penalty
on increasing the magnitude of parameter values. Thus, regularization strength
(lambda) should be specified in determining the best fit to the data. If the value of
lambda is so high, there can be underfitting. As it is mentioned at the beginning of
Chapter 4.2, overfitting and underfitting can be prevented by cross validation. Hence,
at the beginning of the session, the cross-validation fold was selected as 5, and so the
regularization strength option was selected as O for the models. The last
hyperparameter, standardize data, was selected for the models.

By using the default parameters of MATLAB for the narrow neural network,
medium neural network, wide neural network, bilayered neural network, and
trilayered neural network algorithms, five trained models were built. Training results
and hyperparameters of the narrow neural network model are shown in Figure 4.15,

and the summaries of other four trained models are appended to Figures C10, C11,
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C12, and C13 in Appendix C. According to the results, the narrow neural network

method has the highest accuracy, with a value of 78.5%.

Model 1 Neural Network
Status: Trained

Training Results

Accuracy (Validation) 78.5%

Total cost (Validation) Not applicable
Prediction speed ~59000 obs/sec
Training time 30.009 sec

* Model Hyperparameters
Preset: Narrow Neural Network
Number of fully connected layers: 1
First layer size: 10
Activation: RelLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: Yes

b Feature Selection: 7/7 individual features selected

» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure 4.15 Summary of narrow neural network model

According to the validation confusion matrixes of the trained models, which are
shown in Figures 4.16, D8, D9, D10, and D11, it is seen that the numbers of correctly
classified data points are 4621, 4512, 4386, 4569, and 4521, respectively. As a result,
the narrow neural network trained model is the best trained model among other

neural network models due to its high accuracy and correct classification rate.
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Figure 4.16 Validation Confusion Matrix of narrow neural network model

After determining the best neural network trained model (the narrow neural network)
for the dataset, different numbers of fully connected layers, layer sizes, and
activation functions were applied to further increase the current accuracy rate.
Firstly, the first layer sizes were changed. But both increasing and decreasing the
sizes caused the decrease in accuracy. Then, number of fully connected layers were
changed. When the number of fully connected layer sizes was selected as 2 and 3,
the first, second, and third layer sizes were given value as decreasing. But again, the
accuracy of the model decreased. Finally, different activation functions and no
activation function were used. The accuracy results were lower than for a narrow
neural network trained model with MATLAB's default hyperparameters. The
accuracies of these new trained narrow neural network models with changed
parameters and the narrow network trained model (default hyperparameters) are
shown in Chapter 5 (Results and Discussion). Finally, the highest accuracy rate,
78.5%, was found with the default hyperparameters, which were 1 fully connected
layer, 10 outputs in the layer (layer size), and ReLU activation function.
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CHAPTER 5

RESULTS AND DISCUSSION

In this study, 8406 underground accident data belonging to Turkish Hard Coal

Enterprise Amasra, Armutcuk, Karadon, Kozlu, Uziilmez district were used to build

an accident severity prediction model for underground coal mines by using decision

tree, support vector machine, and neural network algorithms. The data covers the
period between March 2008 and December 2010.

The main results drawn from this study can be listed as:

The data set had eleven variables (dimensions) that are shift, day of the
accident, job, education, type of the accident, reason of the accident, location
of the accident, severity of the accident, age, seniority, affected body part.
When the basic statistics of the data set were examined, primary school
graduates (54.26% of the 8406 accidents) and production workers (80.25%),
with experience ranging from 0 to 7 years (72.22%) and ages ranging from
27 to 30 years (35.82%), had the highest rate of encountering an accident in
the production area (52.58%) in the first shift (08:00-16:00, 53.81%) on
Mondays (18.34%) due to falling rock (88.52%) and personal mistakes
(46.04%), and the most injured body parts were the hand fingers (29.26%) as
a result of these accidents.

After analyzing and preparing the data, principal component analysis was
applied first. Since this analysis provides reduction of the dimensions, it helps
to express the data in fewer variables that are meaningful and easier to
explain. As a result of the analysis, 81.82% (cumulative variance percent) of
the data can be interpreted with the seven components. Thus, the accident
data set has been converted into a meaningful and reduced data set of 8406
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accident events and seven variables, which are seniority, age, job, type of
accident, reason of the accident, location of the accident, and shift.

After the PCA results, the decision tree models were built with respect to
eight components. This is eight because one of these variables, "severity,"
was selected for the prediction output. For this algorithm, the MATLAB
program, 5-fold cross validation method was used. 30% (2521 data) of the
total data was used to test the model, and 70% (5885 data) of the total data
was used to train the model. By changing the number of splits, five decision
tree models were designed. Table 5.1 shows the results of models build by
decision tree algorithm. As a result, 25-splits decision tree model 4 is the best
model among them due to its high accuracy (78.5%) and correct classification
rate (Figure 5.1). After selecting the DT Model 4 as the best trained
prediction model for the decision tree algorithm, the test data was imported
into the program for the evaluation. When the trained prediction model was
run with test data, which is the accuracy of a model on examples it hasn't
seen, the accuracy of the test was 78.1% (Figure 5.2), and the number of
correct classifications was 1969 out of 2521 observations.

Table 5.1 Results of decision tree models

Model Name Number of Accuracy of the The numbers of
splits Model (%) correctly
classified data

point out of

5885
observations
DT Model 1 100 78.3 4607
DT Model 2 75 78.3 4607
DT Model 3 50 78.2 4604
DT Model 4 25 78.5 4618
DT Model 5 20 78.4 4613
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Figure 5.1 Validation confusion matrix of the trained DT model 4 (25-splits)

Model 4: Tree
Status: Trained

Training Results

Accuracy (Validation) 78.5%

Total cost (Validation) 1267

Prediction speed ~260000 obsfsec
Training time 1.0993 sec

Test Results
Accuracy (Test) 78.1%
Total cost (Test) 552

~ Model Hyperparameters

Preset: Fine Tree

MMaximum number of splits: 25

Split criterion: Gini's diversity index

Surrogate decision splits: Off
) Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure 5.2 Summary of the trained DT model 4 with test data
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Figure 5.3 Test confusion matrix of the trained DT Model 4

From the decision tree model, the prediction model first checks the seniority.
If the seniority is less than 3.5 years, the next decision rule is to look at where
the accident occurred. However, if the seniority is greater than or equal to 3.5
years, the second control point is the type of the accident. The tree divided
the age check point into two. If the age of the person is less than 32.5, the
severity of the accident will be slightly injured. If the person is older than or
equal to 32.5 years old, the severity of the accident is estimated as injured.

Another prediction model was built next by using the support vector machine
algorithm. For this algorithm, the MATLAB program, 5-fold cross validation
(same as the decision tree algorithm), and the same training data that was
used for the decision tree algorithm were used to make a comparison. By
using the default parameters of MATLAB for the support vector machine
algorithm, six models, which are linear, quadratic, cubic, fine gaussian,

medium gaussian, and coarse gaussian, were built. The box constraint level
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was 1, the multiclass method was one-vs-one, and data standardization was

true for all method types. According to the results (Table 5.2), the fine

gaussian model has the highest accuracy with a value of 78.9% and correct

classification rate (Figure 5.4).

Table 5.2 Results of support vector machine models

Model Type of Kernel Kernel Accuracy The

Name Support Function Scale of the numbers of
Vector Model correctly
Machine (%) classified
Model data point

out of 5885
observations

Linear Linear Linear Automatic  78.5 4620

Model

Quadratic Quadratic  Quadratic ~ Automatic  77.9 4584

Model

Cubic Cubic Cubic Automatic  76.7 4514

Model

Fine Fine Gaussian 0.66 78.9 4642

Gaussian  Gaussian

Model

Medium Medium Gaussian 2.6 78.6 4626

Gaussian  Gaussian

Model

Coarse Coarse Gaussian 11 78.3 4607

Gaussian  Gaussian

Model
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Figure 5.4 Validation confusion matrix of fine gaussian SVM model

After determining the best support vector machine model type for the dataset
as fine gaussian, to increase the accuracy, different kernel scales, box
constraint levels, and multiclass methods were applied. The highest accuracy
rate (Table 5.3), 79.2%, was found with the hyperparameters, which were 1.5
kernel scale, 1 box constraint level, and one-vs-all multiclass methods. As a
result, Fine Gaussian Model 7 is the best trained prediction model among

others due to its high accuracy and correct classification rate (Figure 5.5).
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Table 5.3 Results of the fine gaussian SVM models with different

Model 9

hyperparameters

Model Kernel Box Multiclass Accuracy of

Name Scales Constraint Methods the Model
Levels (%)

Fine Gaussian (.66 1 One-vs-One  78.9

Model

Fine Gaussian 1 1 One-vs-One  79.0

Model 1

Fine Gaussian 15 1 One-vs-One  79.1

Model 2

Fine Gaussian 2 1 One-vs-One 78.8

Model 3

Fine Gaussian 15 2 One-vs-One  78.8

Model 4

Fine Gaussian 1.5 3 One-vs-One  78.9

Model 5

Fine Gaussian 15 4 One-vs-One  78.9

Model 6

Fine Gaussian 1.5 1 One-vs-All 79.2

Model 7

Fine Gaussian 1.5 2 One-vs-All 78.8

Model 8

Fine Gaussian 15 3 One-vs-All 78.7
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Figure 5.5 Validation confusion matrix of fine gaussian model 7

After selecting fine gaussian model 7 as the best trained prediction model for
the support vector machine algorithm, the test data was imported into the
program for the evaluation. When the trained prediction model was run with

test data, the accuracy of the test was 78.3% (Figure 5.6), and the number of

correct classifications was 1975 out of 2521 observations (Figure 5.7).

Training Results

Accuracy (Malidation} 79.2%

Total cost (Validation) 1228

Prediction speed ~26000 obs/sec
Training time 10.819 sec

Test Results
Accuracy (Test) 78.3%
Total cost (Test) 546

~ Mecdel Hyperparameters

Preset: Fine Gaussian SV
Kernel function: Gaussian
Kemel scale: 1.5

Box constraint level: 1
Multiclass method: One-vs-All
Standardize data: true

» Feature Selection: 7/7 individual features selected

» PCA: Disabled
F Misclassification Costs: Default

P Optimizer: Not applicable

Figure 5.6 Summary of fine gaussian model 7 with test data
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Figure 5.7 Test confusion matrix of fine gaussian model 7

The last prediction model was built using artificial neural networks. For this
algorithm, the MATLAB program, 5-fold cross validation (same as the
decision tree algorithm and support vector machine algorithm), and the same
training data that was used for the decision tree algorithm and support vector
machine algorithm were used to make a comparison. By using the default
parameters of MATLAB for the neural network algorithms, five models,
which are narrow neural network, medium neural network, wide neural
network, bilayered neural network, and trilayered neural network, were built.
According to the results (Table 5.4), the narrow neural network method has

the highest accuracy with a value of 78.5% and correct classification numbers

(Figure 4.16).
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Table 5.4 Results of neural network models

Model Type of Number of First Second Third Accuracy

Name Neural Fully Layer Layer Layer of the
Network  Connected Size Size Size Model
Model Layers (%)

Narrow Narrow 1 10 - - 78.5

NN Model NN

Medium  Medium 1 25 - - 76.7

NN Model NN

Wide NN WideNN 1 100 - - 74.5

Model

Bilayered Bilayered 2 10 10 - 77.6

NN Model NN

Trilayere  Trilayered 3 10 10 10 76.8

d NN NN

Model

After determining the best neural network model type (Narrow NN Model)

for the dataset, to increase the accuracy, different number of fully connected

layers, layer sizes, and activation functions were applied (Table 5.5). As a

result, the highest accuracy rate with a value of 78.5%, was found with the

default hyperparameters of Narrow NN Model, which were 1 fully connected

layer, 10 outputs in the layer (layer size), and ReLU activation function.

Finally, the test data was imported into the program for the evaluation of this

neural network trained prediction model. When the trained prediction model

was run with test data, the accuracy of the test was 76.4% (Figure 5.9), and

the number of correct classifications was 1921 out of 2521 observations.
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Table 5.5 Results of the Narrow NN models with different hyperparameters

Number of . Accuracy
First Second  Third o

Fully Activation of the
Models Layer Layer Layer ]

Connected . . Function  Model

Size Size Size

Layers (%)
NNN Model
(Default 1 10 - - ReLU 78.5
parameters)
NNN Model
L 1 5 - - RelLU 78.0
NNN Model
) 1 20 - - ReLU 77.2
NNN Model
. 2 10 5 - ReLU 77.0
NNN Model

2 6 3 - ReLU 78.1
4
NNN Model
! 3 7 5 3 ReLU 78.2
NNN Model

1 10 - - Tanh 7.7
6
NNN Model L
; 1 10 - - Sigmoid 77.1
NNN Model
8 1 10 - - None 78.2
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Model 1 Neural Network
Status: Trained

Training Results
Accuracy (Validation) 78.5%
Total cost (Validation) Not applicable
Prediction speed ~150000 obs/sec
Training time 28.344 sec
Test Results
Accuracy (Test) 76.4%
Total cost (Test) Not applicable
~ Model Hyperparameters
Preset: Narrow Neural Network
Number of fully connected layers: 1
First layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: Yes

» Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure 5.8 Summary of the narrow neural network model with test data

As it was mentioned, when this trained prediction model was run with test
data, the accuracy of the test was 78.3%, and the number of correct
classifications was 1975 out of 2521 observations (Figure 5.7).

Based on this test result, the dominant correct classification severity type is
slightly injured (Table 5.10). The trained prediction model correctly
classified this class of test data by 78.4%. Moreover, the test results show
that the trained prediction model makes the most accurate classification of
accident severity with an accuracy rate of 89.82% at the location of the
gallery. Moreover, as can be seen from the test results, the model remains
weak in predicting deaths. This is because there are few examples of fatal
accidents in the dataset, so the data is insufficient when training the model.
Because the number of other accident outcomes is higher, the model is better
at predicting other accident outcomes such as injured, slightly injured, and

seriously wounded.
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Table 5.6 Part of the Test Data Prediction Results

i Location of Severity L
Accident ) Type of The  Reason of The o Prediction
Shift Job i . The Age  Seniority of  The
Number Accident Accident i . Result
Accident Accident
i Production . Production Slightly Slightly
1 Third Falling rocks Coal transfer 29 1 . .
Worker area injured injured
Haulage Transportation Slightl Slightl
2 First 9 Mechanical . P Gallery 39 13 . 'g y . ‘g v
Worker vehicles injured injured
. Production . Personal Production Slightly Slightly
78 First Falling rocks 23 1
Worker mistake area injured injured
i Production i Geological i Slightly
79 Third Falling rocks » Gallery 29 1 Injured .
Worker conditions injured
Preparatol Geological Seriousl Slightl
566 Second g v Falling rocks g Gallery 37 10 v ”g Y
Worker conditions Wounded injured
Maintenance Material
567 Second and  Repair Handling and Other Gallery 32 10 Injured Injured
Worker Usage
Slipping
i Production Falling Personal Production . .
1524 First 4 ) 26 4 Injured Injured
Worker Tripping mistake area
Ankle Sprain
. Material . i
i Production i Personal Slightly Slightly
2521 First Handling and . Gallery 31 1 . .
Worker mistake injured injured
Usage

The minimum classification error plots for the best trained prediction models
selected for DT, SVM, and NN algorithms are shown in Figures 5.9, 5.10,

and 5.11, respectively. In the plots, light blue dots show the estimated

minimum classification errors, and observed minimum classification errors

are represented as dark blue dots. Yellow point shows the minimum error
rate. Although the trained DT (25 splits) and NN (narrow) models have the

same accuracy rate, their observed minimum classification errors are

different. Because the classification error plot shows the error rates of the

training by iteration numbers sensitively. The trained NN model has a smaller
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observed minimum classification error (0.21490) than the trained DT model
(0.21495). The trained DT model has the lowest classification error rate in
the ninth iteration, while the trained NN model finds the lowest error rate in
the third iteration. Among the three machine learning algorithms, the trained
SVM (fine gaussian model 7) model has the lowest minimum classification
error of 0.20798.
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Figure 5.9 The minimum classification error plot of trained DT model
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Figure 5.10 The minimum classification error plot of trained SVM model
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Figure 5.11 The minimum classification error plot of trained NN model
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Three machine learning analyses were conducted using raw data to see the
impact of pre-analysis implementation of principal component analysis. 8406
accident data and eleven dimensions were used, and the hyperparameters that
gave the best results in the decision tree (25-splits), support vector machine
(fine gaussian model 7), and neural network (narrow neural network) analysis
were selected. Figure 5.12, 5.13, and 5.14 show the training results of DT,
SVM and NN prediction models without PCA. The accuracies of the DT,
SVM, and NN trained prediction models are 77.8%, 78.9%, and 75.1%,
respectively. These validation rates were 78.5%, 79.2%, and 78.5% for DT,
SVM, and NN trained models with PCA, respectively. The accuracy rates of
all three trained models are lower than the accuracy rates of the trained
models designed after PCA is applied. This shows that principal component
analysis is effective in increasing the prediction success of the trained model.

Training Results

Accuracy (Validation) 77.8%

Total cost (Validation) 1306

Prediction speed ~220000 abs/sec
Training time 1.0032 sec

* Model Hyperparameters

Preset: Fine Tree

Maximum number of splits: 25

Split criterion: Gini's diversity index

Surrogate decision splits: Off
» Feature Selection: 10/10 individual features selected
» PCA: Disabled
b Misclassification Costs: Default

+ Optimizer: Not applicable

Figure 5.12 Training results of DT without PCA
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Training Results

Accuracy (Validation) 78.9%

Total cost (Validation) 1243

Prediction speed ~21000 obsfsec
Training time 12.776 sec

¥ Model Hyperparameters

Preset: Fine Gaussian SV
Kermel function: Gaussian
Kemel scale: 1.5

Box constraint level: 1
Multiclass method: One-vs-All
Standardize data: true

b Feature Selection: 10/10 individual features selected
b PCA: Disabled

r Misclassification Costs: Default

» Optimizer: Not applicable

Figure 5.13 Training results of SVM without PCA

Training Results

Accuracy (Validation) 75.1%

Total cost (Validation) Mot applicable
Prediction speed ~150000 obs/sec
Training time 37.136 sec

¥ Mecdel Hyperparameters

Preset: Marrow Neural Network
MNumber of fully connected layers: 1
First layer size: 10

Activation: RelLU

lteration limit: 1000

Regularization strength (Lambda): 0
Standardize data: Yes

b Feature Selection: 10/10 individual features selected
b PCA: Disabled
F Misclassification Costs: Default

b Optimizer: Not applicable

Figure 5.14 Training results of NN without PCA

e As it is mentioned in Chapter 4.2, although there isn't a rule, the most

common choices for cross validation fold number are 5 or 10. Hence the size
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of the data set was not large this value was chosen as 5. The models were
trained by selecting fold number as 10 to see how the accuracy rates of the
trained models changed. Figures 5.15, 5.16, and 5.17 show the training
results of 25 splits decision tree trained model, fine gaussian support vector
machine trained model, and neural network trained model, respectively.
Accuracy rates of these new trained models are 78.2%, 78.6%, and 77.2%. It
was seen that the accuracy rates of all new training models whose fold

numbers were 10 decreased.

Training Results

Accuracy (Validation) 78.2%

Total cost (Validation) 1284

Prediction speed ~90000 abs/sec
Training time 19422 sec

* Model Hyperparameters

Preset: Fine Tree

Maximum number of splits: 25

Split criterion: Ginl's diversity index

Surrogate decision splits: Off
} Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure 5.15 Training results of DT trained model (25 splits) with 10-fold
number
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Training Results

Accuracy (Validation) 78.6%

Total cost (Validation) 1257

Prediction speed ~12000 obs/sec
Training time 3581 sec

v Model Hyperparameters

Preset: Fine Gaussian SV
Kernel function: Gaussian
Kemnel scale: 1.5

Box constraint level: 1
Multiclass method: Cne-vs-All
Standardize data: true

} Feature Selection: 7/7 individual features selected

» PCA: Disabled
» Misclassification Costs: Default

b Optimizer: Not applicable

Figure 5.16 Training results of fine gaussian SVM trained model with 10-
fold number

Training Results

Accuracy (Validation) 77.2%

Total cost (Validation) Mot applicable
Prediction speed ~B3000 obs/sec
Training time 96 197 sec

~ Meodel Hyperparameters

Preset: Narrow Neural Network

MNumber of fully connected layers: 1

First layer size: 10

Activation: RelLU

[teration limit: 1000

Regularization strength (Lambda): 0

Standardize data: Yes
b Feature Selection: 7/7 individual features selected
b PCA: Disabled
» Misclassification Costs: Default

b Optimizer: Not applicable

Figure 5.17 Training results of NN trained model with 10-fold number
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CHAPTER 6

CONCLUSIONS AND RECOMMENDADITONS

Within the scope of this study, accident prediction models were created with decision

trees, support vector machines, and neural networks, which are machine learning

algorithms, by using the accident data of Turkish Hard Coal Enterprise Amasra,

Armutcuk, Karadon, Kozlu, Uziilmez district.

The main conclusions drawn from this study can be listed as:

The used data covered the years 2008-2010 with variables such as shift, day,
job, education, type of accident, reason of the accident, location of the
accident, severity of the accident, age, seniority, affected body part. When
the basic statistics of the data set were examined, primary school graduates
(54.26% of the 8406 accidents) and production workers (80.25%), with
experience ranging from 0 to 7 years (72.22%) and ages ranging from 27 to
30 years (35.82%), had the highest rate of encountering an accident in the
production area (52.58%) in the first shift (08:00-16:00, 53.81%) on
Mondays (18.34%) due to falling rock (88.52%) and personal mistakes
(46.04%), and the most injured body parts were the hand fingers (29.26%) as
a result of these accidents.

The principal component analysis concluded that seven variables, which are
seniority, age, job, type of accident, reason of the accident, location of the
accident, and shift, were sufficient to be used in subsequent analyses.
According to the result of the principal component analysis, the seniority,
age, and job variables better explain the variance of the data on the factorial
plane than other variables. This means that seniority, age, and job are

important factors in work-related accident data.
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Vi.

Vil.

viii.

The accuracy of the trained DT, SVM, and NN models was increased by
changing the hyperparameters of the algorithms.

It was concluded that the trained prediction model that gave the highest
accuracy rate (78.5%) in the decision tree algorithm was the 25-splits
decision tree model 4.

In the algorithm of support vector machines, it was found that the trained
prediction model that gave the highest accuracy rate (79.2%) was the fine
gaussian model 7 with the hyperparameters, which were 1.5 kernel scale, 1
box constraint level, and one-vs-all multiclass methods.

It was seen that the highest accuracy rate (78.5%) in the neural network
algorithm was found with the default hyperparameters of narrow NN model,
which were 1 fully connected layer, 10 outputs in the layer (layer size), and
ReLU activation function.

The accuracy results of three best-trained prediction machine learning
algorithm models are 78.5% (DT), 79.2% (SVM), and 78.5% (NN). The best
trained prediction model is determined as fine gaussian model 7, which is a
support vector machine method with hyperparameters of 1.5 kernel scale, 1
box constraint level, one-vs-all multiclass, and it has the highest accuracy
score with a value of 79.2%.

According to the results obtained in the study, decision trees and neural
networks, also showed close success with the algorithm for support vector
machines.

The dominant truly classified severity type for the three best trained
prediction models is the slightly injured. The number of data correctly
classified as slightly injured from 4611 slightly injured observations was
4544, 4521, and 4394 for decision tree, support vector machine, and neural
network trained prediction models, respectively (Figure 5.1, 5.5, 4.16).

The test data, which comprised 30% of the total data set, were used as input
to validate the trained prediction model. The accuracy of the test was 78.3%,

and the number of correct classifications was 1975 out of 2521 observations.

82



Xi.

Xii.

Xiil.

The dominant correct classification severity type was slightly injured as a
result of this test result. In addition, the test results revealed that the gallery
was the location with the most accurate classification of accident severity,
with an accuracy rate of 89.82 percent.

The trained SVM (fine gaussian model 7) model was found to have the lowest
observed minimum classification error (0.20798) as well as the highest
accuracy rate among other trained models. However, the trained NN model
has a smaller observed minimum classification error (0.21490) than the
trained DT model (0.21495), although their accuracy rates were equal.

It was seen that when the prediction models were built after applying PCA
and reducing the number of variables, the accuracy rate increased and so the
error rate decreased.

It was stated that when the cross-validation fold number was selected as 10,
the accuracy of the trained models decreased. As an expected result, the error
rates increased. The error rates of new trained DT, SVM, and NN models are
21.8%, 21.4%, and 22.8%, respectively. These error rates were 21.5%,
20.8%, and 21.5% for trained DT, SVM, and NN models with 5-fold number.

It was found that the maximum error rate increased in the NN trained model.

Some recommendations for future studies can be listed as:

It is obvious that it is very important to accurately and consistently record

work-related accidents in order to get better results.

Since each employee will have different working characteristics such as age,
job, shift, working location, special occupational health training programs
can be organized and occupational health and safety measures can be taken

by using the results obtained from the prediction model.

With the prediction model proposed as a result of this study, the possible
severity of the accidents in the workplaces can be determined by determining
the dangerous situations determined as a result of the audits to be carried out

in the working places in coal mining. Depending on these results, the risk
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levels of these possible accidents can be determined for risk analysis. For
example, the Fine Kinney risk analysis method is an easy-to-use and widely
used method. The severity of the damage or damage that the hazard will cause
to people, the environment, and the workplace is one of the Fine Kinney risk
analysis calculation parameters (Kinney and Wiruth, 1976). It was concluded
that this prediction model, which was created by using the data of the
workplace, is a method that can be used to determine this parameter. Thus,
subjective judgment, which is generally included in the perception of risk,
will be replaced by objective criteria. This is important in terms of preventing

risks that will cause serious accidents.

Model results should be controlled and compared after data from 2010
onwards has been obtained. For this reason, in the studies to be carried out
with data sets belonging to later years, the comparison of the prediction
results with the support vector machine prediction results and also by
applying other advanced data mining methods will be research that will
contribute to the future period.

The trained prediction model predicts the severity of accidents that only have
known inputs. However, there might be new inputs that there is no
information about in the current data set. Thus, continuous training is very
important for the prediction models to make adaptable, scalable, and accurate

predictions.
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APPENDICES

A. Used Codes for Principal Component Analysis

library(readxl)
accidents<-read_excel("C:/Users/umpg0473/Desktop/accidents.xlsx")
str(accidents)

a<- factor(accidents$Shift)

shift <- as.numeric(a)

b<- factor(accidents$Day)

day<- as.numeric(b)

c<- factor(accidents$Job)

job<- as.numeric(c)

d<- factor(accidents$Education)

education<- as.numeric(d)

e<- factor(accidents$ Type of Accident’)
typeofaccident<- as.numeric(e)

f<- factor(accidents$ Reason of The Accident’)
reasonofaccident<- as.numeric(f)

g<- factor(accidents$ Location of The Accident’)
location<- as.numeric(Q)

h<- factor(accidents$ Severity of The Accident’)

severityofaccident<- as.numeric(h)
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i<- factor(accidents$Age)

age<- as.numeric(as.character(i))

j<- factor(accidents$ Seniorty (year)")
seniorty<- as.numeric(as.character(j))
k<- factor(accidents$ Body Part’)
bodypart<- as.numeric(k)

mydata<-
cbind(shift,day,job,education,typeofaccident,reasonofaccident,locationofaccident,s

everityofaccident,age,seniorty,bodypart)
data_omit <- na.omit(mydata)

prin_comp <- prcomp(data_omit, scale = TRUE)
names(prin_comp)

CentData <-prin_comp$center

prin_comp$scale

prin_comp$rotation

dim(prin_comp$x)

std_dev <- prin_comp$sdev

std_dev

pr_var <- std_dev/2

pr_var

plot(prin_comp)

fviz_eig(prin_comp, addlabels = TRUE, ylim = ¢(0, 50))

fviz_pca_var(prin_comp, col.var = "black")
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fviz_pca_var(prin_comp, col.var="cos2", gradient.cols = c("#00AFBB",
"#E7B800", "#FCA4EQT7"), repel = TRUE # Avoid text overlapping)

library(ggfortify)

autoplot(prin_comp, data = accidents, colour = 'severityofaccident’, loadings =
TRUE)

autoplot(prin_comp, data = accidents, colour = 'severityofaccident',loadings =
TRUE, loadings.colour = 'blue’,loadings.label = TRUE, loadings.label.size = 3)
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B. Scatter Plots with Respect to Predictors

Original data set: accidentsafterpca
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Original data set: accidentsafterpca
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Qriginal data set: accidentsafterpca
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Original data set: accidentsafterpca
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Job [categorical] ) How to investigate features
Data set: accidentsafterpca  Observations: 5885  Size: 191 kB Predictors: 7 Response: SeverityOfTheAccident  Response Classes: 4 Validation: 5-fold Cross-Validation

Figure B 10 Scatter Plot (age versus job)
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Original data set: accidentsafterpca
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Job [(ﬂzgorical] : How to investigate features
Data set: accidentsafterpca  Observations: 5885  Size: 191kB  Predictors: 7 Response: SeverityOfTheAccident  Response Classes: 4 Validation: 5-fold Cross-Validation

Figure B 11 Scatter Plot (seniority versus job)

Original data set: accidentsafterpca
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TypeOfTheAccident [categorical]

Predictors

X: | TypeCfTheAccident v
Y: | ReasonOfTheAccident ¥

Classes

How to investigate features

Data set: accidentsafterpca  Observations: 5885  Size: 181 kB Predictors: 7 Response: SeverityOfTheAccident

Response Classes: 4

Validation: 5-fold Cross-Validation

Figure B 12 Scatter Plot (reason of accidents versus type of accidents)
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LocationOfTheAccident [categorical]

Original data set: accidentsafterpca
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TypeOfTheAccident [categorical]

Predictors
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Y. | LocationOfTheAccident ¥

Classes

How to investigate features

Data set: accidentsafterpca

Observations: 5885

Size: 191 kB

Predictors: 7

Response: SeverityOfTheAccident

Response Classes: 4

Validation: 5-fold Cross-Validation

Figure B 13 Scatter Plot (location of accidents versus type of accidents)
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" . . How to investigate features
TypeOfTheAccident [categorical] .
Data set: accidentsafterpca  Cbservations: 5885 Size: 191 kB Predictors: 7 Response: SeverityOfTheAccident  Response Classes: 4 Validation: 5-fold Cross-Validation

Figure B 14 Scatter Plot (age versus type of accidents)
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Original data set: accidentsafterpca
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How to investigate features

Data set: accidentsafterpca  Observations: 5885  Size: 191 kB Predictors: 7 Response: SeverityOfTheAccident  Response Classes: 4

Validation: 5-fold Gross-Validation

Figure B 16 Scatter Plot (location of accidents versus reason of accidents)
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Criginal data set: accidentsafterpca
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ReasonOfTheAccident [categorical] 8
Data set: accidentsafterpca  Observations: 5885 ~ Size: 181 kB Predictors: 7 Response: SeverityOfTheAccident  Response Classes: 4 Validation: 5-fold Cross-Validation

Figure B 18 Scatter Plot (seniority versus reason of accidents)
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Original data set: accidentsafterpca
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q . How to investigate features
LocationOfTheAccident [categorical] c
Data set: accidentsafterpca  Observations: 5885 Size: 191 kB Predictors: 7 Response: SeverityCfTheAccident  Response Classes: 4 Validation: 5-fold Cross-Validation

Figure B 19 Scatter Plot (age versus location of accidents)
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How to investigate features

Data set: accidentsafterpca  Observations: 5885 Size: 191 kB Predictors: 7

Response: SeverityOfTheAccident

Response Classes: 4

Figure B 20 Scatter Plot (seniority versus location of accidents)
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Original data set: accidentsafterpca
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How to investigate features

Data set: accidentsafterpca  Observations: 5885 Size: 191 kB Predictors: 7 Response: SeverityOfTheAccident  Response Classes: 4

Figure B 21 Scatter Plot (seniorty versus age)

102

Validation: 5-fold Cross-Validation



C. Summary of the Trained Models

Model 2 Tree
Status: Trained

Training Results

Accuracy (Malidation) 78.3%

Total cost (Validation) 1278

Prediction speed ~250000 obs/sec
Training time 1.1785 sec

* Model Hyperparameters

Preset: Fine Tree

Maximum number of splits: 75
Split criterion: Gini's diversity index
Surrogate decision splits: Off

v

Feature Selection: 7/7 individual features selected
» PCA: Disabled

Misclassification Costs: Default

v

v

Optimizer: Not applicable

Figure C 1 Summary of the DT Model 2

Model 3: Tree
Status: Trained

Training Results

Accuracy (Validation) 78.2%

Total cost (Validation) 1281

Prediction spesd ~240000 obs/sec
Training time 1.0407 sec

1

Model Hyperparameters

Preset: Fine Tree

Maximum number of splits: 50
Split criterion: Gini's diversity index
Surrogate decision splits: Off

w

Feature Selection: 7/7 individual features selected
» PCA: Disabled

w

Misclassification Costs: Default

w

Optimizer: Not applicable

Figure C 2 Summary of the DT Model 3
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Model 4. Tree
Status: Trained

Training Results

Accuracy (Validation) 78.5%

Total cost (Validation) 1267

Prediction spead ~260000 obs/sec
Training time 1.0993 sec

|

Model Hyperparameters

Preset. Fine Tree

Maximum number of splits: 25
Split criterion: Gini's diversity index
Surrogate decision splits: Off

-

Feature Selection: 7/7 individual features selected

PCA: Disabled

k.

-

Misclassification Costs: Default

-

Optimizer: Not applicable

Figure C 3 Summary of the DT Model 4

Model 5: Tree
Status: Trained

Training Results

Accuracy (Validation) 78 4%

Total cost (Validation) 1272

Prediction speed ~270000 obs/sec
Training time 1.1299 sec

¥ Model Hyperparameters

Preset: Fine Tree

Maximum number of splits: 20

Split criterion: Gini's diversity index

Surrogate decision splits: Off
» Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure C 4 Summary of the DT Model 5
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Training Results

Accuracy (Validation) 77.9%

Total cost (Validation) 1301

Prediction speed ~35000 obs/sec
Training time 62.474 sec

* Meodel Hyperparameters

Preset: Quadratic SV

Kernel function: Quadratic
Kernel scale: Automatic

Box constraint level: 1
Multiclass method: Cne-vs-One
Standardize data: frue

» Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

» Optimizer: Not applicable

Figure C 5 Summary of the quadratic model

Training Results

Accuracy (Validation) 76 7%

Total cost (Validation) 1371

Prediction speed ~38000 obs/sec
Training time 192.01 sec

* Model Hyperparameters

Preset: Cubic SVM

Kernel function: Cubic

Kernel scale: Automatic

Box constraint level: 1
Multiclass method: One-vs-One
Standardize data: true

» Feature Selection: 7/7 individual features selected
PCA: Disabled

¥ Misclassification Costs: Default

v

» Optimizer: Not applicable

Figure C 6 Summary of the cubic model
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Training Results

Accuracy (Validation) 78 9%

Total cost (Validation) 1243

Prediction speed ~21000 obs/sec
Training time 11.438 =sec

v Model Hyperparameters

Preset: Fine Gaussian SV
Kemel function: Gaussian
Kemel scale: 0.66

Box constraint level: 1
Multiclazs method: One-vs-One
Standardize data: true

-

Feature Selection: 7/7 individual features selected

PCA: Disabled

-

-

Misclassification Costs: Default

b Optimizer: Not applicable

Figure C 7 Summary of the fine gaussian model

Training Results

Accuracy (Malidation) 78.6%

Total cost (Validation) 1259

Prediction speed ~32000 obs/sec
Training time 8 3867 sec

* Mcdel Hyperparameters

Preset: Medium Gaussian SV
Kernel function: Gaussian
Kemel scale: 2.6

Box constraint level: 1
Multiclass method: Cne-vs-One
Standardize data: true

-

Feature Selection: 7/7 individual features selected

PCA: Disabled

-

-

Misclassification Costs: Default

-

Optimizer: Not applicable

Figure C 8 Summary of the medium gaussian model
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Training Results

Accuracy (Validation) ¥8.3%

Total cost (Validation) 1278

Prediction speed ~32000 obs/sec
Training time 7.066 sec

* Model Hyperparameters

Preset: Coarse Gaussian SVIM
Kernel function: Gaussian
Kernel scale: 11

Box constraint level: 1
Multiclass method: One-vs-One
Standardize data: true

¢ Feature Selection: 7/7 individual features selected
» PCA: Disabled

* Misclassification Costs: Default

» Optimizer: Not applicable

Figure C 9 Summary of the coarse gaussian model

Training Results

Accuracy (Validation) 76.7%

Total cost (Validation) Mot applicable
Prediction speed ~150000 obs/sec
Training time 40.929 sec

* Model Hyperparameters

FPreset: Medium Neural Network

Number of fully connected layers: 1

First layer size: 25

Activation: RelLU

lteration limit: 1000

Regularization strength (Lambda): 0

Standardize data: Yes
» Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs: Default

¥ Optimizer: Not applicable

Figure C 10 Summary of medium neural network model
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Training Results

Accuracy (Validation) 74.5%

Total cost (Validation) Mot applicable
Prediction speed ~130000 obs/sec
Training time 114 .8 sec

* Model Hyperparameters

Preset: Wide Neural Network
Mumber of fully connected layers: 1
First layer size: 100

Activation: RelLU

[teration limit: 1000

Regularization strength (Lambda). 0
Standardize data: Yes

» Feature Selection: 7/7 individual features selected
» PCA: Disabled

¥ Misclassification Costs: Default

» Optimizer: Not applicable

Figure C 11 Summary of wide neural network model

Training Results

Accuracy (Validation) 77 6%

Total cost (Validation) Mot applicable
Prediction speed ~140000 obs/sec
Training time 34 682 sec

* Model Hyperparameters

Preset: Bilayered Neural Netwaork
Mumber of fully connected layers: 2
First layer size: 10

Second layer size: 10

Activation: RelL.U

lteration limit: 1000

Regularization strength (Lambda): 0
Standardize data: Yes

¢ Feature Selection: 7/7 individual features selected
» PCA: Disabled
¥ Misclassification Costs: Default

¥ Optimizer: Not applicable

Figure C 12 Summary of bilayered neural network model
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Training Results

Accuracy (Validation) 76.8%

Total cost (Validation) Mot applicable
Prediction speed ~150000 obs/sec
Training time 39.058 sec

* Model Hyperparameters

Preset: Trilayered Neural Network
Number of fully connected layers: 3
First layer size: 10

Second layer size: 10

Third layer size: 10

Activation: RelLU

lteration limit: 1000

Regularization strength (Lambda): 0
Standardize data: Yes

» Feature Selection: 7/7 individual features selected
» PCA: Disabled
» Misclassification Costs; Default

» Optimizer: Not applicable

Figure C 13 Summary of trilayered neural network model
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D. The Validation Confusion Matrix of the Trained Models
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Figure D 1 The validation confusion matrix of DT model 2 (number of splits:75)
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Figure D 2 The validation confusion matrix of DT model 3 (number of splits:50)
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Figure D 3 The validation confusion matrix of DT model 5 (number of splits:20)
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Figure D 4 Validation confusion matrix of the quadratic model SVM
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True class of accident severity

True class of accident severity
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Figure D 5 Validation confusion matrix of cubic model SVM
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Figure D 6 Validation confusion matrix of medium gaussian model SVM
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Figure D 7 Validation confusion matrix of coarse gaussian model SVM
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Figure D 8 Validation confusion matrix of medium neural network model
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Figure D 9 Validation confusion matrix of wide neural network model

Death 1 11
=y
o
B

_ff Injured 260 14 828
g
=]
s
[¥)
[~
T
=}
W
W
A

o Seriously Wounded 23 12 125
=

Slightly injured 1 284 29
[ S S S
2 e =) A
o N \Noﬁ‘é . A
N O
‘\o\)‘b‘! 5\\%

Predicted class of accident severity

Figure D 10 Validation confusion matrix of bilayered neural network model
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Figure D 11 Validation confusion matrix of trilayered neural network model
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