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ÖZET 

DOĞAL DİL İŞLEMEDE DENETİMLİ MAKİNE ÖĞRENİMİ MODELLERİNİN 

PERFORMANSINI ARTTIRMAK İÇİN VERİ ZENGİNLEŞTİRME YÖNTEMLERİNİN 

GELİŞTİRİLMESİ 

Başlangıçta, “Basit veri zenginleştirme” (Easy Data Augmentation) metin sınıflandırma 

görevleri için geliştirilmiştir. Temel olarak bu yaklaşım dört yöntemi kapsar: Eşanlamlı 

Değiştirme, Rastgele Ekleme, Rastgele Silme ve Rastgele Değiştirme. Bunlar derin sinir ağı 

modellerinde doğruluğu artırmak için hizalanır. Bu çalışma, bu yöntemleri medikal alanda 

Adlandırılmış Varlık Tanıma görevleri için genişletmeyi amaçlamaktadır. Adlandırılmış 

varlıkların (cümlelerdeki bir kelime veya kelime gruplarından veya ailelerden oluşan) doğası, 

veri zenginleştirme alanında bazı zorluklar getirse de, adlandırılmış varlık tanıma başarımını  

iyileştirilmesine öne sürmektedir. 

Bu yöntemleri biyomedikal kıyaslama veri kümelerinin boyutunu artırmak ve biyomedikal adlı 

varlık tanıma modellerinin performansını geliştirmek için kullanıyoruz. BERT gibi 

dönüştürücü modelleri üzerinde yapılan çalışmaları değerlendirmek için deneyler yaptık. 

Aktarım yoluyla öğrenme ile, veri kümeleri üzerinde bir biyomedikal dil modeli olan 

BioBERT'e ince ayar yaptık. BioBERT ve BERT modelleri ile tüm veri setlerinde genel bir 

iyileştirme ve BC5CDR-hastalık veri setinde sırasıyla %5.95 ve %8.49 F1 puanı artışı sağladık.  
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ABSTRACT 

DEVELOPMENT OF DATA AUGMENTATION METHODS TO IMPROVE 

PERFORMANCE OF SUPERVISED MACHINE LEARNING MODELS IN NATURAL 

LANGUAGE PROCESSING 

Originally, Easy Data Augmentation holds its development to tasks of text classification. 

Basically, it encapsulates four methods: Synonym Replacement, Random Insertion, Random 

Deletion, and Random Swap aligned to improving accuracy on several deep neural network 

models. This study aimed at deploying these methods to new domains by augmenting Named 

Entity Recognition datasets from the medical domain. Although the nature of the named entities 

(consisting of a word or word groups or families in sentences) posed some challenges to the 

augmentation task, a case is advanced that an improvement of the named entity recognition 

performance is achievable.  

We use these methods to increase the size of biomedical benchmark datasets and improved the 

performance of biomedical named entity recognition models. We carried out experiments to 

evaluate the work on transformer model like BERT.  With transfer learning, we fine-tuned 

BioBERT, a biomedical language model on the datasets. We achieved a general improvement 

on all datasets and a 5.95% and 8,49% increment of F1-score on BC5CDR-disease dataset with 

BioBERT and BERT models respectively.  
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1. INTRODUCTION 

Machine learning and deep learning models perform adequately on various NLP tasks and 

have so far gotten high accuracy. Sentiment analysis (XLNet [1]), Text classification 

(ULMFiT [2]), Named entity recognition (LUKE [3]), Question answering (Gated-Attention 

Reader [4]), Summarizing (RNES [5]) and many more have shown important advancement in 

the field of NLP. Many of these models are supervised and thus largely depend on labeled 

data, which is scarce and costly to obtain. The use of semi-supervised learning, transfer 

learning, and data augmentation are the current remedy to this problem. In semi-supervised 

learning, researchers use a small amount of labeled data in combination with a large number 

of unlabeled input instances during the training of machine learning and deep learning models. 

This way, semi-supervised learning uses the knowledge learned from the small amount of 

labeled data to label the available vast unlabeled data. Data augmentation is, of course, a 

relatively simpler solution to solving the problem aforementioned. It also has the advantage 

of allowing researchers to use any kind of supervised algorithm to increase data instances 

without finding new samples from scratch. 

Data augmentation is especially important currently in general artificial intelligence research. 

In deep learning, it generally reduces overfitting of models. Another very crucial reason for 

studying and developing data augmentation methods is to artificially increase supervise 

learning training data. This also helps in generalization of the models. 

Data augmentation is heavily studied in the computer vision domain and resulted in fairly 

advanced methods, such as Auto-Augment [6], Learning Augmentation Policies from Data, 

Random Erasing Data Augmentation [7], and Albumentations [8]. Data augmentation studies 

in NLP are relatively new and we have much fewer methods in comparison. Google 

researchers [9] propose augmentation techniques for text classification where back translation 

and TF-IDF were used. Many, if not all, the text augmentation approaches in NLP are intended 

for text classification and there are only a few attempts for NER such as [10]. NER is different 

from sentence-level or document-level NLP tasks as it requires token-level sequence labels. It 

is not straightforward to apply data augmentation methods developed for example sentence-

level NLP tasks such as text classification. On the other hand, NER is a crucial NLP task that 

gets attention, especially in the medical domain. 
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The exponential rise in data generation in these recent days has subsequentially affected the 

research industry. The field of medicine and clinical industries is one of the domains that also 

produce data in unstructured text format. Medical text data comes in the form of discharge 

summaries, radiology reports, clinical notes, etc. These enormous amounts of data are of very 

importance to the field of deep learning and machine learning.  

One of the important tasks of Natural Language Processing (NLP) is Named Entity 

Recognition (NER). NER is a form of information extraction where named entities are 

extracted from raw text documents. Named entities here represent predefined objects, words, 

or word groups that are labeled such as a person, location, date, organization, etc. This task is 

sometimes called, Entity Identification, Entity Chunking, or Entity Extraction, and its main 

aim is to locate and designate the above-mentioned entities. Use cases of NER can be seen in 

big companies where many requests are received daily. These requests include sales, 

installations, maintenance, complaints, troubleshooting, etc. NER help in extracting 

information and understanding the specific request of the customer. The use of NER can also 

be applied to resumes, where applicants’ resumes are filtered out for finding apt candidates 

for a specific job. 

Medical data contains valuable information in the form of narratives or hospital/clinical 

discharge summaries. There is a large amount of research on how to use this vital information 

of patience in the hospital to develop artificially intelligent systems and to improve the health 

care of individuals. Since the data is both crucial and constrained for research, getting them is 

not easy and labeling them for research needs human expertise. Nevertheless, access to 

medical data does not come on a silver plate since it contains information that could be used 

to identify specific individuals. So, the data is highly protected as Protected Health 

Information (PHI). In this study, we use four basic methods of data augmentation originally 

proposed by Wie et al. [11] to create more realistic and diverse augmented medical data for 

named entity recognition. 

Biomedical text data used as benchmark datasets are what we used in this work. They include 

diseases, chemicals, genetics, proteins, and species entities in general biomedical text data. 

We developed data augmentation methods for named entity recognition on biomedical data. 

Four methods commonly used for augmentation of text for classification are what we used 

and adapt them all to NER. We developed biomedical NER models for each of the benchmark 

datasets. Testing of the augmentation is done with these developed models. We record and 
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compare the performance of each model on the original dataset and its corresponding 

augmented version. We obtained promising results that show clearly that text augmentation 

can improve the performance of deep learning models and especially biomedical named entity 

recognition models. 

The organization of this work is as follows. Section 2 summarizes the background and related 

work. EDA and NER, the model for data augmentation are provided in Approach section 3. 

Section 4 includes detailed information about the experimental setup, the datasets used in the 

work, and the results and discussion can be found in section 5. Finally, this thesis concludes 

in Section 6 with future work and references in section 7 and section 8 respectively.  
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2. RELATED WORK 

In this section, we shall talk about the various related work and methodologies that have so far 

been proposed in this field of study. We looked at the concepts in a variety of sections. This 

covers data augmentation and its application on models in the medical field, Named Entity 

Recognition (NER), and NER in the medical domain. 

2.1. General Text Augmentation 

Data augmentation (DA) in Natural Language Processing (NLP) has no clear-cut method to 

directly increase the size and diversity of labeled data, nevertheless, researchers are tirelessly 

working on techniques to improve DA methods in NLP. The techniques proposed so far have 

shown impressive results and have significantly improved the performance of many diverse 

NLP downstream tasks. Back-translation is one of the promising methods, proposed by google 

AI where they take data samples 𝑥 in a language 𝐴 translate it to another language 𝐵, and then 

translate it back to 𝐴 to obtain augmented data sample 𝑥′  [9]. In the same research, the authors 

calculate TF-IDF scores of tokens in a training set and then replaced uninformative words with 

more informative ones, to generate new instances for topic classification tasks. Zhang et al. 

[11], Wei, and Zou [12] in their work used methods where tokens are replaced by their 

synonyms from WordNet and/or a predefined language model [13]. The general objective of 

data augmentation especially in the text is to significantly increase the diversity of the available 

text data for training models, without actually collecting new labeled text data. 

Many of the methods of text augmentation are for classification tasks in NLP. To make data 

augmentation for NER tasks, Dai et al. [36] in their paper “An Analysis of Simple Data 

Augmentation for Named Entity Recognition” proposed: 

• Label-wise token replacement: This is a method wherein in each sentence, tokens that 

share the same labels are randomly replaced with tokens from the original data set. 

• Mention replacement: Replace a mentioned entity and its label tokens from the 

original data set that shares the same entity label. 

• Shuffle within segments: Here a sequence of tokens is divided into segments and then 

shuffle the tokens in each segment without changing the labels. Segmentations are done at 

every start of a mentioned entity in the sequence. An example of a sequence and the process 
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of forming augmented data is using the shuffle with segment method is shown in Figure 

2.1Error! Reference source not found.  

 

Figure 2.1: Augmentation of a sentence using shuffle within segments methods. From 1 – 

3 shows the process of augmentation. 

 

Their methods improved the performance of both the transformer model and RNN model after 

experimenting with two domain-specific data sets MaSciP [14] and i2b2-2010 [15].  

Tian Kang et al. [16] in their work, presents an extension of “Easy Data Augmentation 

Techniques for Boosting Performance on Text Classification Tasks” (EDA) [12] methods, by 

featuring Unified Medical Language System (UMLS) [17], and adapting the methods for 

named entity recognition tasks to improve performance of models in both classification and 

named entity recognition in the biomedical domain. UMLS, a knowledge-based system, is not 

easily accessible, and setting it up is both time-consuming and highly costly. This makes it not 

suitable for low-resource settings. Nevertheless, UMLS-EDA [16] enables substantial 

improvement for NER tasks and improves the performance of state-of-the-art text classification 

models. In our approach, we extend the methods used in EDA, by modifying them to a low-

cost and easy-to-use setting, for medical text augmentation. 

Data augmentation methods for text data can be grouped into those applied in feature space 

of embeddings and that of the data itself. While feature space approaches tackle the subject 

matter in the embeddings of the available text, data space methods of data augmentation deal 
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with the changing of the text itself in its original format. Figure 3 shows a summary of the 

taxonomy and categorization of various methods of data augmentation. 

 

Figure 2.2: Summary of the Taxonomy and categories of various data augmentation 

methods (adapted from [18]). 

 

2.1.1. Rule-based Techniques for Data Augmentation 

The use of manually laid down rules and algorithms to increase the input data of any deep 

learning or machine learning model is classified as a rule-based technique for data 

augmentation. These techniques are one of the first proposed methods for DA in all downstream 

NLP tasks. They are easy to implement and improve the performance of the underlining models 

but at the same time costly to implement [19]. 

In Game-theory, Monte Carlo Tree Search (MCTS) can be used to predict moves and then 

counterattack an opponent’s strategy to reach a Nash equilibrium or winnable state. Taking into 

consideration a one-player game setting, decisions are paramount to the selections of tokens 

from one state to another. Quteineh et al. [20] use this concept of MCTS to make data 

augmentation for small text datasets. Tokens are represented in a tree form. Representation is 

based on the pre-calculated probability of their appearances in the general corpus. A tree search 

is conducted. More informative search result from the tree is selected and concatenated to form 

new data. Figure 2.3 shows an example of MCTS traversing down the tree. As it moves down 
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the tree, it creates paths of which, tokens of the same path form a new sentence. This can be 

seen as the path in red in Figure 2.3.  Though this method is good for text augmentation in 

sentiment analysis, it will be difficult to apply it to NER. This is because, at every state of the 

game, entities in the sentence will be given more priority and are likely to be selected than that 

of other tokens. 

 

Figure 2.3: Monte Carlo Tree Search traversing down a tree from the root node <bos> to 

the end node <eos> (Adopted from [20]). 

 

2.1.2. Noise Injection as a method of data augmentation 

Randomly injecting noise in a text can be used as data augmentation. This comes in a close 

continuous change in the text. Insertion of characters, deletion, and modification of 

punctuations are just a few ways of injecting noise into the text. 

Injection of noise into text is considered data augmentation in neural networks since it is 

possible that the scalability of the model is increased by producing new instances. A powerful 

regularization method in neural networks, dropout is used to prevent complex co-adaptations 
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of the model on the noise injected training data [21]. Using misspelling datasets and typos in 

place of the correct words is also considered data augmentation.  

Many NLP models including neural machine translation extract stem and morphological 

information based on character and other sub-words units in the data provided. They then used 

this information to generalize and to unseen words and conjugations [22]. NMT models cannot 

comprehend simple noisy data due to this. 

In the work of Belinkov and Bisk [22], they use naturally occurring mistakes in text data and 

synthetically generated noise to train NMT which increased the robustness of the model. These 

noises include typos, misspellings, grammatical errors, manually deleting starting and ending 

characters of words [23], keyboard typos, etc. 

 

2.1.3. Deep Learning Methods for Data Augmentation 

Deep learning generally outperforms traditional machine learning models and methods in 

solving current AI problems. Interestingly deep learning techniques can apply in the generation 

of synthetic and high-quality data instances artificially, to help in their training. Using deep 

learning methods for data augmentation could be done in a variety of ways including the 

manipulation of the embedding layers, the use of the transfer learning of language models, the 

use of text generative models, and many more. Many data augmentation methods especially 

those that rely on the simple transformation of data instances are only applicable in their 

respective fields e.g., computer vision (CV), and cannot be applied in other fields e.g., natural 

language processing (NLP) and vice versa. A more interesting thing about deep learning 

methods for data augmentation is that they can be used in both CV and NLP.  

 

2.1.3.1. Embeddings in Deep Learning for Data Augmentation 

The use of word embedding substitution as a data augmentation method surprisingly gave 

substantial results in name entity recognition (NER). Habitually used of word embeddings 

include Word2Vec [24], GloVe [25], fastText [26] and word embedding systems such as 

SENNA [27], [28]. SENNA is a standalone, self-contained system used to output word 

embeddings for Part-Of-Speech Tagging (POS) system, word relatedness modeling task, word 

analogy task, and word similarity task [27], [28]. In this approach of data augmentation, new 
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data instances are generated based on the vector similarities. The vectors could be of selected 

words, sentences, or even a document, in the embedding layer of the neural network. In  [29], 

Yang et al. use lexical and semantic embeddings of words and sentences to generate novel data. 

They trained a multi-class classifier of annoying behaviors using Twitter as a corpus. The 

nearest neighbor of a word vector is calculated using cosine similarity. This novel vector is used 

to replace the original word. The word selection, as well as replacement, are both done in a non-

deterministic manner. That is for all tokens in a vocabulary 𝑊, they search for the k-nearest-

neighbor (knn) word 𝜔 for the query terms using cosine similarity between the query 𝑄⃗  and 

target word vectors 𝑊⃗⃗⃗  using equation (1). 

 𝐾𝑛𝑛(𝑜𝑓 𝑎𝑙𝑙 𝑡𝑜𝑘𝑒𝑛𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜔𝜖𝑊

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑄⃗ , 𝑊⃗⃗⃗ ) (1) 

Pre-trained models also play many roles when it comes to the use of embeddings for data 

augmentation as we mentioned above. A pre-trained model in the nutshell is a model that is 

previously trained using large amount of text data. These pre-trained models are used to solve 

similar problems that they were developed to solve.This also known as transfer learning,where 

the weights of a pretrained model is used in the training of a different model. This is acquired 

by adjusting few settings to suit our solution that is fine-tuning to our task. In the field of text 

classification, new embeddings could be generated from the input sequences, token by token, 

and keep the original label of the sequence intact. This way, new training inputs are generated 

at the embedding layers of the model, and the training instances are increased which 

eventually increases the performance of the classifier model. 

2.1.3.2. Interpolation and Extrapolation method for data augmentation 

Generating synthetic data examples is what matters most in data augmentation. For a given 

sentence, obtaining a new embedding vector of the original vector in the embedding space 

eventually forms a new data input. This is done by first obtaining the nearest neighbors and the 

centroid of the given word in the embedding space. The novel word embedding vector 𝑤𝑗
′ is 

calculated from the centroid 𝑤𝑘 using equations 2 and 3 for interpolation and extrapolation, 

respectively. The green points (l1, l2, and l3) in Figure 2.4 and Figure 2.5Error! Reference 

source not found., represent the selected nearest neighbors. These nearest neighbors are used 

to calculate te centroid marked as the red indicator (l6). The blue point (l4) in Error! Reference s

ource not found. and Error! Reference source not found. indicates the original embedding 
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vector, and the yellow mark (l5) is the resulting novel vector. The black points in the figures 

are the other word embeddings. 

 𝑤𝑗
′ = (𝑤𝑘 − 𝑤𝑗)𝜆 + 𝑤𝑗 (2) 

 𝑤𝑗
′ = (𝑤𝑗 − 𝑤𝑘)𝜆 + 𝑤𝑗 (3) 

The original word 𝑤𝑗 is subtracted from the centroid in interpolation and for extrapolation the 

centroid 𝑤𝑘 is subtracted from the original word. The parameter 𝜆 which ranges from [0 − 1] 

and [0 −  ∞] controls the degree of interpolation and extrapolation, respectively. Figure 2.4 and 

Figure 2.5 shows more details of this method as used in the work of Papadaki [30] and the 

survey of Giridhara et al. [31] 

 

 

Figure 2.4: Creating a new embedding vector using Interpolation of centroid and word 

embedding (Taken from [31]). 

 

The technique of removing a non-linear hidden layer in a deep learning neural network to 

decrease complexity and projection is quite an interesting method for data augmentation. This 

is manifested in the work of Caroline et al. [32] where they used Word Embedding Substitution 
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(WES) for low-resource Arabic language [32]. They gain a performance increment on Arabic 

English language pair dataset with an increment of 1.51% in F1-score.  

 

Figure 2.5: Creating a new embedding vector using Extrapolation of centroid and word 

embedding (Taken from [31]). 

 

Manipulation of the embedding vectors helps in generating new instances for training, which 

in turn helps in generalization, sparsification, and data augmentation of the available data and 

model. The work of Zhang et al.[33], Zhang et al. [34] and Jindal et al. [35] show that 

manipulation of the embeddings of a model creates new instances for training. Assuming we 

have two randomly selected data points in the embedding space, (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), where 𝑥𝑖 

and 𝑥𝑗 are the input data samples and 𝑦𝑖 and 𝑦𝑗 are the embeddings of the labels. With linear 

interpolation of input data, Zhang et al. [33][34] MixUp generates new virtual training samples 

by creating a 𝑚𝑖𝑥 function using the equations (4) and (5).  

 𝑥 = 𝑚𝑖𝑥 (𝑥𝑖 , 𝑥𝑗) =  𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (4) 

 𝑦 = 𝑚𝑖𝑥 (𝑦𝑖, 𝑦𝑗) =  𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (5) 

This formulation of mixed algorithms generates synthetic data in models trained for image 

processing but has less performance in text data due to the inability of computing discrete 
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tokens. A modification of the MixUp formula by Jindal et al.[35] adapts this idea to text 

augmentation by training a model on interpolations of hidden states with reference to 

embeddings of training instances. The modified formulation is shown in equation (6) and (7). 

 

 
𝑚𝑖𝑥 (𝑦𝑖, 𝑦𝑗) =

t(𝑥𝑖 − µ𝑖) + (1 − 𝑡)(𝑥𝑗 − µ𝑖)

√𝑡2 + (1 − 𝑡)2
 

(6) 

 
𝑤ℎ𝑒𝑟𝑒 𝑡 =  

1

1 + 
𝜎𝑖

𝜎𝑗
 .
1 − 𝜆

𝜆

 
(7) 

2.1.3.3. Language models for text augmentation 

For many years now language models and generative models achieved state-of-the-art (SOTA) 

on a majority of downstream NLP tasks. Usage of language models for example BERT [36] 

and text generative models like GPT2 [37] have become almost a norm. This is due to the 

representation of words done with context taken into consideration. Given two inputs River 

[bank] and [bank] deposit, Word2Vec [24] model, for example, will map the word “bank” to 

the same representation since it has no context consideration. Other models like RNN [38] will 

tokens before the masked word when representing them. BERT [36] will naturally consider the 

context in which the token appears. Both words before and after the masked token are taken 

into consideration. That means BERT will be able to predict “bank” with a representation of 

the financial institution not a “bank” at the river when given the sentence “I made a [bank] 

deposit”.  

With that said, masking some percentage of tokens in the training set, predicting those masked 

tokens with language models like BERT will always give new tokens and for that matter new 

augmented data as can be seen in Figure 2.6. 
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Figure 2.6: Data augmentation with language models (Taken from [39]). 

 

2.1.4. Back-Translation for Data Augmentation 

One of the tasks of NLP is neural machine translation. This implies the translation of a language 

into another language. Machine translation is built with encoder-decoder architecture where a 

word sequence is sent as inputs to the encoder. The encoder formulates a real-value vector 

mapping of these sequences and then sends it to the decoder. The parameters of both encoder 

and decoder are learned together to increase the target sentence's likelihood, given the 

corresponding source sentences. To train a machine translator, a parallel corpus is needed. This 

is a corpus that contains both the original sentences and their corresponding translation in a 

different language. 

In machine translation, since the decoder is a neural language model conditioned on the 

encoder, outputs different sequences which could be of different lengths than the input sentence, 

translating these sequences again back to the original language will generate a new but 

remarkably similar sequence in the original language. 

Back-translation [9], [40], [41] used for data augmentation means translating input data 𝑥 in 

language 𝐴 to a different language 𝐵 to obtain 𝑦 and then translating 𝑦 back to 𝐴 obtaining new 

input data 𝑥′. In the work of  Xie et al. [9], they presented unsupervised data augmentation, and 

one of their methods is back translation. Two models are trained separately on unsupervised 

data and augmented unsupervised data. The consistency loss of these two models is calculated. 

 

are the fantastic actors 

positive 

performances 
films 

movies 
stories 

… 

the  performances  are fantastic 
the  films  are fantastic 

the  movies  are fantastic 
the  stories  are fantastic 

… 

positive 

the   actors   are fantastic positive 

https://openreview.net/profile?email=qizhex%40cs.cmu.edu


14 

 

TF-IDF word replacement and back translation are the two methods used for text augmentation 

in this work which generated quality data used for training classification models. An example 

of back translation is manifested in Figure 2.7, where sample text is back-translated from other 

languages, forming new sentences. 

 

 

Figure 2.7: Sample data augmentation using back translation. 

 

2.2. Named Entity Recognition (NER) 

As we mentioned above, NER identifies and groups key information in text documents into 

predefined types/entities. Even though NER is a vital tool for information extraction and 

retrieval [42], it has also been used for other NLP downstream tasks like question answering 

[2] and text summarization [5]. Much of the research is now moving towards solving domain-

specific NER tasks. BioBERT [43] is a NER model for biomedical text data (ranked number 

one for NER on NCBI-disease [44]), and SciBERT [45] is a  NER model for scientific text data 

(ranked number one for Relation Extraction on SciERC [46]). Though there are other domain-

specific NER tasks, most of the advancements are seen in the medical sector of research. Figure 

2.8 shows how a NER algorithm can highlight and extract entities from a given text document. 

 

Figure 2.8: NER algorithm tagging out entities from a given text. 
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The techniques and approaches used for NER so far could be classified into two major 

categories. 

• The traditional approach to solving NER tasks and  

• Deep Learning (DL) methods of solving NER tasks 

2.2.1. Traditional approaches in NER 

The traditional approaches are the earlier ways of solving NER tasks. They include: 

• Rule Based: In this approach, NER models rely totally on scrawl rules e.g., domain-

specific gazetteers [47], syntactic-lexical patterns [48], and dictionary-based [9], [49], [50]. 

• Unsupervised and Semi-supervised Learning Approaches: As the name suggests, fully 

unlabeled (unsupervised) or partially labeled (semi-supervised) data are clustered into groups, 

and extraction of named entities is done based on contextual similarities. [48], [51]–[53]. Ando 

and Zhang [54].  in their work showed the use of semi-supervised learning with linear models. 

They trained the model on annotated data, and then added non-annotated inputs, later on, 

resulting in an F1 score of 89.31% 

The traditional approaches have high precision vs. low recall in their model test and evaluation 

results. They are also both time-consuming to build and domain knowledge is needed.  

2.2.2. Deep learning approaches in NER 

Deep learning (DL) is a subfield of general machine learning that uses algorithms inspired by 

the structure and functions of the human brain, popularly known as artificial neural networks. 

DL-based approaches for NER are currently the most preferred and have so far remained the 

State-of-the-Art (SOTA) for most of the benchmark datasets. This could be because unlike rule-

based approaches, DL has a large number of processing layers in the architectural design, which 

may learn and discover features automatically.  

The neural network (NN) architecture in DL computes a weighted sum of the input data from a 

layer before it, then passes the results to a non-linear activation function. The non-linear mapping 

of inputs to outputs in DL makes it suitable for NER to be able to learn complex features from 

the given data. General training of the DL model for NER can be done in the following 3 steps 

as seen in Error! Reference source not found.. 
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1. Distributed representation of inputs (Word Embedding): This is the stage where all text 

is converted to vectors as a representation of the text for deep learning neural network 

architectures. Words of the same meaning are given the same representation. Words with 

similar meanings turn to be closer to each other in their vector space. 

2. Context Encoder: This is the actual neural network model. Here the model is created. It 

takes in the word representation from step one and based on the context of the words, 

learns features. Instead of looking at words one by one, here every token is taken into 

consideration based on their context of appearance in the sentence. Language models, 

sequential models, and transformer models are examples. 

3. Tag decoder: This is the final stage where the labels/tags are grouped with entities. CRF 

is a good example, which maps the input sentences with their predicted entity tags. 

A general taxonomy of DL-based NER is manifested in Error! Reference source not found. m

any DL architectures are proposed for NER tasks. These architectures include LSTM, CNN, 

LSTM-CRF, GRU, and some combination of other architectures. Fine-tuning the pre-trained 

language model for the NER task is a preferred approach currently followed in DL-based NER 

approaches. 
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Figure 2.9: Overview of DL-based NER from the input to the output (Taken from [23]). 

 

The bidirectional LSTM (biLSTM) + CRF architecture was popular obtaining best results 

before thee introduction of transformers models in solving NER tasks. The biLSTM model 

consists of two LSTMs, each of which processes a given sequence in a different and opposite 

direction. The ability to work with sequential input and the capacity to recognize long-term 

dependencies because of a memory cell is the fundamental features of LSTM.  

The hidden states vectors  H = (h1, h2, . ..  , hn)  are the output of the LSTM, which receives 

a series of vectors X =  (x1, x2, . . .  , xn) as input. Where xt, ht, and ct are input, hidden state, 

and cell state, at time t respectively. A general representation of the biLSTM architecture is 

shown in Figure 2.10. 

A conditional random field (CRF) model makes a prediction as a graphical model to account 

for the influence of nearby data. A linear chain CRF can make predictions utilizing this 

improved context after receiving the biLSTM’s output. The combination of these two 

architectures gives biLSTM+CRF [55]. 
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Figure 2.10: A General Architecture for biLSTM algorithm (Adapted from [56]). 

 

2.2.3. Attention Mechanism 

In the traditional sequence to sequence (Seq2Seq) models, where encoder-decoder architecture 

is used, all the intermediate states of the encoder are discarded using only its final states (vector) 

to initialize the decoder. This encoder-decoder architecture performs well in short sentences 

and poorly when the length of the sentence increases. This is because intermediate states are 

discarded.  

The attention mechanisms are the building blocks to solving the task of neural machine 

translation (NMT). The encoder-decoder architecture takes a sequence of words as inputs. The 

encoder encodes the sequence into a fixed-sized single vector, which forms the representations 

of the sequences technically known as embeddings.  

To decode a vector in the encoder layer, the model pay attention to the previous state and its 

intermediate state. Hence the name attention. The decoder here has a selective way of looking 

back and paying attention to the more relevant words in embeddings. This is mostly done by 

Backpropagation. 

Many language models use the transformer architecture. The Transformer architecture is an 

improvement of the encoder-decoder with attention mechanisms. Transformer model has 
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encoder-decoder. Its encoding and decoding components has 6 or more encoders and decoders 

stack on top each other respectively as seen in Figure 2.11. 

 

  

Figure 2.11: Architecture of a Transformer (Taken from ). 

 

2.2.4. Transformer and Generative Language models for data augmentation 

BERT [36], unlike other models that do not take into consideration the context of words, is a 

contextualized word representation language model. It is based on a masked language model 

and pre-trained using a bidirectional transformer. Bidirectional Encoder Representations from 
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Transformers for Biomedical Text Mining (BioBERT) is a great medical model that is based 

on BERT, pre-trained on large biomedical corpora. Mostly general language models perform 

less on medical data due to the fact that there are terms, disease names and domain-specific 

used words that are only understood by experts in the medical domain. To make language 

models like BERT perform well on biomedical data, Lee et al. [43] pre-trained their model on 

PubMed (4.5 billion words), PMC Full-text articles (13.5 billion words), PMC Full-text articles 

(2.5 billion words), and BooksCorpus (2.5 billion number of words) and named it as BioBERT 

as can be seen in Figure 2.12. 

 

 

Figure 2.12: BioBERT a contextualized language representation model, based on BERT 

(Adapted from[43]). 

 

In pre-training, they first initialize with BERT and for tokenization, they go for WordPiece 

tokenization [57]. WordPiece algorithm helps prevent the “out of vocabulary” and infinite 

vocabulary problem. Instead of the frequency of words, WordPiece uses the combination of 

pairs of sub words regarding the probability of the language model at hand. The WordPiece 

algorithm is shown in Figure 2.13. 
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Figure 2.13: Algorithm for WordPiece. 

 

With minimal architectural modification, BioBERT is fine-tuned on downstream NLP tasks 

including, Question-Answering, Embeddings and NER tasks. In our work, we also used this 

pre-trained model on biomedical benchmark datasets. 

2.3. Information Extraction in medical and clinical data 

The importance of information extraction is manifested in the research currently going on, 

especially in the medical domain. Gathering structured data from medical records, analysis of 

it, and information extraction enables the automation of tasks, as in the smart content 

classification of diseases, integrated research on future infections, management, and delivery. 

Data-driven activities like mining patterns and trends in patient medical history are just but a 

few to mention. Many Natural Language Processing systems, approaches, models, and research 

techniques have been developed to extract vital information from medical records. These 

include the use of ontology-based resources, concept mapping, grammar structure matching 

[58], semantic parsing [59] approaches, and rule-based [60] and machine learning systems [49]. 

The rule-based approaches used to extract information in medical text data are less robust since 

for every new corpus, the rules must be revamped to preserve the best performance of the 
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model; this requirement increases the maintenance cost accordingly [50]. A smoking status 

detection system for patients was developed by Savova et al. [50] and later embedded into the 

clinical Text Analysis and Knowledge Extraction System (cTAKES). 

Due to the lucrative nature and vitality of NLP in medicine, we see many medical institutions 

establishing research centers for deep learning and data science to improve the work of NLP in 

the biomedical field. The i2b2, tranSMART Foundation, etc. are such institutions that organizes 

“The Shared Tasks for Challenges in NLP for Clinical Data” regularly. 
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3. APPROACH 

In this study, we followed a straightforward approach in developing data augmentation methods 

by modifying some of the available methods and adapting them to name entity recognition 

tasks. We also developed models fine-tuned from pretrained biomedical language model 

BioBERT. This model is used in our experiment to justify the correctness of our augmented 

data. We train the model with the benchmark biomedical datasets each, records the results and 

then save the model. Secondly, we perform text augmentation on the training datasets. These 

augmented training data is used in training the previous model architectures. 

Most NER models use the BIO / IOB tag format (B: Beginning of entity mentioned, I: Inside 

and part of the entity mentioned except the first, O: Other words with no entity mentioned) which 

makes data augmentation in NER more tedious. We adapted EDA methods to NER by 

transforming word sequence and the corresponding BIO tag sequences properly so that the 

consistency of both sequences is maintained before and after augmentation. Each of the 

following augmentation methods is applied to each given sentence in the training data 𝑁 times. 

Stop words are not included. 

• Random Deletion: Randomly remove each word in the sentence with a probability 𝑝 if 

and only if it is not the beginning of the entity (B) tag. If the word is inside an entity (I), 

delete it and its corresponding I  tag, else delete an O tag. The pseudocode for this 

algorithm is shown in Figure 3.1 

 

Figure 3.1: Pseudocode for Random Swap technique of text augmentation. 
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• Random Insertion: select a random word, find its random synonym, and insert that 

synonym in the sentence. If the insertion position is at the beginning of an entity (B), skip 

it, else if it is at the position inside an entity I replace it, with a corresponding I tag. 

Otherwise, replace the synonym with a corresponding O tag. The pseudocode of the 

algorithm is shown in Figure 3.2 

 

Figure 3.2: Pseudocode for Random Insertion technique of text augmentation. 

 

• Random Swap: Randomly select two tokens and swap their positions. the indices of the 

two selected words must always be different. Tag sequence and word count are maintained 

as it is. The pseudocode of the algorithm is shown in Figure 3.3 

 

Figure 3.3: Pseudocode for Random Swap technique of text augmentation. 
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• Synonym Replacement: randomly select 𝑛 number of words and replace them with their 

corresponding synonym from WordNet. Tag sequence and word count are maintained as 

it is. The number of words to be augmented,  𝑛 is a product of the hyper parameter 𝛼 and 

the total length of the sentence at hand 𝑙 as seen in equation (8). The pseudocode of the 

algorithm is shown in Figure 3.4 

 

 

𝑛 = 𝛼 ∗ 𝑙  
(8) 

 

 

Figure 3.4: Pseudocode for Random Swap technique of text augmentation. 

 

To illustrate more of the methods used, Error! Reference source not found. shows an example o

f how a given sentence and its tag sequences are affected. SR, RI, RS and RD in the figure 

represents the methods of augmentation, where SR represents Synonym Replacement, RI: 

Random Insertion, RS: Random Swapping, and RD: Random Deletion. 
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Figure 3.5: Overview of the effects of augmentation methods on sample data. The words 

marked in red indicate the changes from data augmentation. 

 

We try various combinations of the number of augmented data and the number of epochs of 

training. Our experiments show that small datasets when augmented yields better results than 

relatively large datasets.  

 

 

Figure 3.1: General approach used: pre-trained model with data augmentation and fine-

tuning for NER (Adapted from [43]). 
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4. EXPERIMENTS 

4.1 Datasets 

To evaluate our work, we used the standard benchmark datasets usually used to evaluate NER 

tasks in the medical domain. These includes: 

i.NCBI-disease corpus [44] 

ii.BC5CDR (BioCreative V CDR corpus) [61] 

iii.BioCreative II Gene Mention Recognition (BC2GM) [62] 

iv.JNLPBA, Linnaeus [63] 

v.BC4CHEMD [64] 

vi.Species-800 [65] datasets. 

i. NCBI-disease 

NCBI-disease is a disease corpus in which the annotation is disease mention and/or 

concepts. This was introduced for disease name recognition and normalization. NCBI 

disease corpus contains 793 fully annotated PubMed citations constituting more than six 

thousand (6K) sentences. More than half of the sentences available contain disease names 

and about 2136 unique disease mentions, mapping to 790 unique database identifiers. 

Annotations of diseases mentioned are in four major categories:  

1. Specific Disease: clear cell renal cell carcinoma 

2. Disease Class: cystic kidney diseases 

3. Composite mentions: prostatic, pancreas, skin, and lung cancer 

4. Modifier: hereditary breast cancer families. 

The most common disease mentions and disease concepts in the NCBI disease corpus, with the 

corresponding number of abstracts they appear in [44] are presented in Error! Reference s

ource not found.. An example of text and the annotation is shown in Error! Reference source 

not found., a screenshot of the annotation tool presented by Islamaj et al. [44]. 
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Figure 4.1: Sample text and annotation process of NCBI-disease corpus (Taken from 

[44]). 

 

Table 4.1: The NCBI disease corpus’ common disease mentions, their concepts, and the 

number of abstracts in which they appear (Taken from [44]). 

Disease mentions 
Number of 

Abstracts 
Disease concepts 

Number of 

Abstracts 

Cancer 44 D030342 – Genetic Diseases, Inborn 113 

Tumor 43 D009369 – Neoplasms 112 

Breast cancer 41 
D061325 – Hereditary Breast and 

Ovarian Cancer Syndrome 
52 

Diabetes mellitus 39 D001943 – Breast Neoplasms 46 

Myotonic dystrophy 35 D009223 – Myotonic Dystrophy 42 

G6PD deficiency 33 
D005955 – Glucosephosphate 

Dehydrogenase Deficiency 
36 

Duchenne Muscular 

Dystrophy 
33 

D020388 – Muscular Dystrophy, 

Duchenne 
33 

Ataxia-telangiectasia 30 D011125 – Adenomatous Polyposis Coli 33 

APC 29 D001260 – Ataxia Telangiectasia 31 

Duchene muscular 

dystrophy 
27 D010051 – Ovarian Neoplasms 27 
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ii. Species-800  

Species-800 is a species entities corpus comprising eight hundred PubMed abstracts manually 

annotated. One hundred abstracts each are collected from Bacteriology, Botany, Entomology, 

Medicine, Mycology, Protistology, Virology, and Zoology to form the corpus. SPECIES and 

ORGANISMS being standalone command-line software applications can identify and map the 

taxonomic mentions in plain text. These are the two taggers used in tagging the s800 corpus. In 

their work, Evangelos et al. [65] provide a supplementary table for the journal selections for the 

s800 categories as shown in Table 4.2 For each category, they selected between one and four 

journals, from which they randomly picked one hundred Medline abstracts in total from the 

years 2011 and 2012. 

 

Table 4.2: Journal selection for the S800 categories that formed the S800 dataset (Taken 

from [65]). 

Category Journal Abstracts 

Bacteriology Journal of Bacteriology 100 

Botany New Phytologist 50 

 Plant Cell & Environment 50 

Entomology Insect Molecular Biology 59 

 Journal Insect Science 24 

 Environmental Entomology 17 

Medicine The Lancet 41 

 The Lancet Infectious Diseases 15 

 The Lancet Neurology 22 

 The Lancet Oncology 22 

Mycology Fungal Genetics and Biology 100 

Protistology European Journal of Protistology 30 

 International Journal of Systematic and Evolutionary Microbiology 30 

 Protist 40 

Virology Journal of Virology 63 

 Journal of Virological Methods 37 

Zoology Journal of Animal Ecology 100 
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iii. BC2GM  

BC2GM is a gene/protein corpus in which the annotation is Gene. This dataset was originally 

provided for gene mention recognition. It has more than 20,703+ named entities and about 

20,000 sentences in the total number of documents. 

iv. BC5CDR  

BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 

diseases, and 3116 chemical-disease interactions. Medical Subject Headings (MeSH) concept 

identifiers are used as controlled vocabulary to annotate chemical and disease entities in all the 

selected articles of PubMed. The annotation is done manually with the assistance of tools like 

PubTor, DNorm, and tmChem. An example of PubTor format annotation (PMID 354896) is 

shown in Error! Reference source not found.. 

 

 

Figure 4.2: PubTator format annotation (Adapted from [61]). 

 

v. JNLPBA  

JNLPBA consists of both RNA and DNA, Gene/Protein, Cell line, and Cell Type. Gene/Protein 

is annotated as Protein and the rest are as their named-entity recognition. The corpus is created 

with a controlled search of 2,000 abstracts on MEDLINE.  
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vi. Linnaeus  

Linnaeus is software for general-purpose dictionary matching, whose output forms one of the 

species corpora with species annotation. The original project was created for entity mention 

recognition. This dataset consists of documents from MEDLINE, PMC, BMC, OTMI, etc. 

vii. BC4CHEM  

BC4CHEM is a chemical corpus in which the annotation is Chemical. Originally provided for 

chemical mention recognition task. It consists of 10,000 PubMed abstracts with 84,355 

annotations, though we used part of the original dataset which contains 79,842 chemical 

annotations. 

 

Figure 4.3: Instance distributions in some of the benchmark datasets. 

 

Fully annotated biomedical data sets at the mention and concept level are used. All data sets are 

used in their pre-processed version from Lee et al. [43]. We fine-tune BioBERT on these 

datasets with and without their augmented data. Error! Reference source not found. shows t

he statistics of the biomedical benchmark datasets used in our work. The number of sentences 

in each of the datasets that we used is also shown in Error! Reference source not found.. We u

se these datasets for both data augmentation and fine-tuning BioBERT in our work. 

s800
8193

NCBI-disease
7287

BC5CDR-disease
13938

BC2GM
20131

JNLPBA
22402

s800 NCBI-disease BC5CDR-disease BC2GM JNLPBA
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Table 4.3: Overview of the biomedical benchmark datasets used in our work. “# Annotations” 

shows the number of Named Entities. 

Corpus Named-Entities 
Number of Annotations/ 

Named entities 

Number of 

Documents 

NCBI 

Disease 
Disease 6,881 

793 PubMed 

abstracts 

Species-800 Species 3,708 
800 PubMed 

abstracts 

BC2GM Gene/Protein 20,703 20,000 sentences 

BC5CDR-

disease 
Disease 12,694 

1,500 articles 
BC5CDR-

chem 
Drug/Chem. 15,411 

JNLPBA 

Gene/Protein, 

DNA, Cell-type, Cell-

line, RNA 

35,460 
2,000 Medline 

abstracts 

linnaeus Species 4,077 MEDLINE, PMC 

BC4CHEM Chemical 79,842 10,000 abstracts 

 

4.2 Experimental Setup 

Our work presents simple data augmentation methods for named-entity recognition tasks in 

medical data mining. We adapt the four straightforward, but robust methods of text augmentation 

methods used to generate diverse and high-quality data to train and enhance the performance of 

medical domain models for name entity recognition tasks. UMLS-EDA adapted EDA to suit 

NER tasks by adding UMLS, with the notion that its satisfactory performance in text 

classification can also be realized in NER. We provide a low-cost and straightforward way of 

utilizing a small amount of domain-specific data to enhance models’ performance with 

augmentation and transfer learning. 
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Transfer learning so far has proven to be one of the best ways to improve the performance of 

deep learning and neural network models at a minimal amount of cost. The idea of using pre-

trained models eradicates the cost involved in training a language model from scratch and saves 

time and energy in looking for data to feed huge neural network models. With transfer learning 

one needs to only modify the last layers of of a pretrained model to suit specific task without 

training the whole models again. This prompted the idea of fine-tuning the pre-trained model 

Bidirectional Encoder Representations (BERT) [36] in the medical domain. Bidirectional 

Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) being the 

first domain-specific BERT-based model is an example of transfer learning in the medical 

domain. This model improves and gain the state-of-the-art model with 0.62% F1 score 

improvement in biomedical named-entity recognition [43]. With this notion mind, and the fact 

that data augmentation improves the performance of NLP models, we combined the two in our 

approach to boost the performance of biomedical models. 

Augmentation operations in computer vision inspired the methods used now in NLP. EDA [12] 

proposed universal data augmentation methods for NLP. They used four methods to perform 

augmentation on a randomly selected token in a sentence. Their approach was for text 

classification, therefore needs amendment to suit named-entity recognition tasks for token-level 

prediction. 

In general, the standard evaluation metrics used in supervised machine learning models are 

Precision, Recall, F1-score, and Accuracy. In our work, we opt to use only Precision, Recall 

and F1-score evaluation metrics to evaluate the performance of our models at a token level.  

Precision shows the percentage of true labels among all the labels. That is how precise or 

accurate the model is. This metric shows how many of the predicted entities are correctly 

labeled. As can be seen in equation 8, it is the ratio of true positives to all other identified 

positives. A named entity is correct only if it is an exact match of the corresponding entity in 

the test set. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  +  #𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

   (8) 

Recall measures the percentage of true labels in the dataset being recalled. As seen in equation 

9, it is the ratio of true positives to the sum of true positives and false negatives. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =   

#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  +  #𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

   (9) 

F1-Score is the harmonic mean of precision and recall. For the evaluation metrics in our work, 

we use entity-level precision, recall, and F1 score. As seen in equation 10, it is the ratio of the 

product of precision and recalls to their summation all multiplied by two. 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 (10) 

 

Table 4.4: Hyperparameters for BioBERT fine-tuning. 

Hyper-parameter Value 

mini-batch size 32 

epochs 30 & 100 

max. sequence length 192 

weight decay rate 0.0 - 0.01 

optimizer Adam 

 

The language models that we use in our experiments are  

1. BioBERT version 1.1 (BioBERT-Base v1.1 (+ PubMed 1M)). This version of BioBERT 

is pre-trained on BERT-base-Cased with a custom vocabulary size of 30k.  

2. BERT (bert-based-uncased). A general language model pre-trained on Wikipedia and 

Book Corpus. This version of BERT has 12 encoders stuck on each other and 12 

bidirectional self-attentions. We used the “uncased” version of BERT since it is case 

insensitive. 

In the fine-tuning, we use only 1 NVIDIA GeForce RTX 2080 Ti. The hyper-parameters we 

use are shown in Error! Reference source not found.. 

 

  



35 

 

5. RESULTS AND DISCUSSION 

In this section we present the general output from all our experiments. We shall interpret the 

findings and discuss the results in detail. 

We show how data augmentation can be useful in the uplifting and enhancement of medical data 

and models. We present the results in groups according to the entities mentioned in the datasets. 

These are Diseases datasets, Chemicals datasets, Species datasets and Protein/gene datasets 

The training of the models is done in 30 number of epochs as well as 100 number of epochs. 

Results for both BERT and BioBERT models trained for 30 epochs are presented in Table 5.1,  

Table 5.2, and Table 5.3. As for training for 100 number of epochs, it done for only BioBERT 

models and does not include BERT.  

 

Table 5.1: Results of BioBERT and BERT on disease datasets. Number of epochs = 30. 

   BioBERT BERT 

Dataset 

 

Number of 

Entities 

M
etric 

Original 

Data 
n = 2 n = 10 n = 16 

Original 

Data 
n = 2 n = 10 n = 16 

NCBI 

disease 
6,881 

P 86.36 86.35 86.35 86.35 83.96 83.65 83.65 83.65 

R 89.06 88.96 88.96 88.95 86.67 86.88 86.88 86.88 

F 87.69 87.63 87.63 87.63 85.29 85.23 85.23 85.23 

BC5CDR-

disease 
12,694 

P 84.49 93.05 93.05 84.56 82.81 92.20 92.20 82.38 

R 87.57 93.52 93.52 87.77 83.72 92.22 92.22 84.02 

F 86.00 93.26 93.26 86.13 83.26 92.21 92.21 83.19 

 

The result in the various tables shows best score within a model as bold font, the overall best 

score of the two models is bold and underlined. For example, in Table 5.1, the F1-score of 
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BioBERT model trained on 2-fold and 10-folds of BC5CDR-disease augmented data 

outperforms the rest. Therefore, its written in bold and underlined. Likewise, an F1-score of 

92.0% of same datasets is the best score in BERT model, so recorded in bold but not underlined. 

All the results are recorded in percentage of 2 decimal point. 

 

Table 5.2: Results of BioBERT and BERT on chemical datasets. Number of epochs = 30. 

   BioBERT 
BERT 

Dataset 

 

Number of 

Entities 

M
etric 

Origina

l Data 
n = 2 n = 10 n = 16 

Original 

Data 
n = 2 n = 10 n = 16 

BC5CDR-

chem 
15,411 

P 92.79 92.83 92.83 92.83 92.20 92.20 92.20 92.20 

R 94.21 93.35 93.35 93.35 92.23 92.23 92.23 92.23 

F 93.49 93.09 93.09 93.09 92.21 92.21 92.21 92.21 

BC4CHEM

D 
79,842 

P 91.68 91.68 91.68 91.68 91.07 91.07 91.07 91.07 

R 90.53 90.53 90.53 90.53 88.33 88.33 88.33 88.33 

F 91.10 91.10 91.10 91.10 89.68 89.68 89.68 89.68 

 

Table 5.3: Results of BioBERT and BERT on Species datasets. Number of epochs = 30. 

   BioBERT BERT 

Dataset 

 

Number of 

Entities 

M
etric 

Origin

al Data 
n = 2 n = 10 n = 16 

Original 

Data 
n = 2 n = 10 n = 16 

Species-800 
 

3,708 

P 70.29 70.29 70.29 70.29 69.21 69.21 69.21 69.21 

R 75.88 75.88 75.88 75.88 74.45 74.45 74.45 74.45 

F 72.98 72.98 72.98 72.98 72.73 72.73 72.73 72.73 

linnaeus 4,077 

P 89.53 89.53 89.53 89.53  87.47 87.47 87.47 87.47 

R 83.53 83.53 83.53 83.53 85.28 85.28 85.28 85.28 

F 86.43 86.43 86.43 86.43 86.36 86.36 86.36 86.36 
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Table 5.4: Results of BioBERT and BERT on protein/gene datasets. Number of epochs = 

30. 

   BioBERT BERT 

Dataset 

 

Number of 

Entities 

M
etric 

Origin

al Data 
n = 2 n = 10 n = 16 

Original 

Data 
n = 2 n = 10 n = 16 

BC2GM 20,703 

P 82.91 82.91 82.91 82.95 80.65 80.65 80.65 80.65 

R 83.56 83.56 83.56 83.83 82.06 82.06 82.06 82.06 

F 83.23 83.23 83.23 83.38 81.35 81.35 81.35 81.35 

JNLPBA 35,460 

P 71.19 71.19 71.19 71.19 70.27 70.27 70.27 70.27 

R 82.54 82.54 82.54 82.54 82.40 82.40 82.40 82.40 

F 76.45 76.45 76.45 76.45 75.85 75.85 75.85 75.85 

 

Table 5.5: Results of BioBERT on disease datasets. Number of epochs = 100. 

Dataset 

Number of EPOCH = 100  

 

Number 

of Entities 

Metric 
Original 

Data 
n = 2 n = 10 n = 16 

NCBI disease 6,881 

Precision (P) 85.21 86.48 86.48 86. 48 

Recall (R) 88.23 88.64 88.65 88.65 

F1-Score (F1) 86.69 87.55 87.55 87.55 

BC5CDR-disease 12,694 

Precision (P) 85.26 92.74 92.74 84.89 

Recall (R) 86.44 93.76 93.76 85.83 

F1-Score (F1) 85.85 93.25 93.25 85.35 
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Table 5.6: Results of BioBERT model on chemical datasets. Number of epochs = 100. 

Dataset 

Number of EPOCH = 100  

 

Number of 

Entities 

Metric 
Original 

Data 
n = 2 n = 10 n = 16 

BC5CDR-chem 15,411 

Precision (P) 84.86 93.05 93.05 84.57 

Recall (R) 87.04 93.12 93.12 86.75 

F1-Score (F1) 85.94 93.09 93.09 85.65 

BC4CHEMD 79,842 

Precision (P) 91.72 91.72 91.72 91.72 

Recall (R) 90.17 90.17 90.17 90.17 

F1-Score (F1) 90.94 90.94 90.94 90.94 

 

Table 5.7: Results of BioBERT model on species datasets. Number of epochs = 100. 

Dataset 

Number of EPOCH = 100  

 

Number of 

Entities 

Metric 
Original 

Data 
n = 2 n = 10 n = 16 

Species-800 
 

3,708 

Precision (P) 70.76 70.76 70.76 70.76 

Recall (R) 76.66 76.66 76.66 76.66 

F1-Score (F1) 73.59 73.59 73.59 73.59 

linnaeus 4,077 

Precision (P) 89.64 89.64 89.64 89.64 

Recall (R) 81.51 81.51 81.51 81.51 

F1-Score (F1) 85.38 85.38 85.38 85.38 
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Table 5.8: Results of BioBERT with Augmentation EPOCH = 100. 

Dataset 

Number of EPOCH = 100  

 

Number of 

Entities 

Metric 
Original 

Data 
n = 2 n = 10 n = 16 

BC2GM 20,703 

Precision (P) 83.61 83.61 83.61 83.61 

Recall (R) 83.29 83.29 83.29 83.29 

F1-Score (F1) 83.45 83.45 83.45 83.45 

JNLPBA 35,460 

Precision (P) 71.26 71.26 71.26 71.26 

Recall (R) 83.44 83.44 83.44 83.44 

F1-Score (F1) 76.87 76.87 76.87 76.87 

 

We observe that the number of epochs affects the performance of the BioBERT model trained 

on augmented data. This is clear when the number of epochs is 30, BioBERT and BERT models 

trained on the NCBI disease dataset have their best performances in the original training data as 

seen in Table 5.1. The same dataset trained with 100 epochs produces an F1 score of 86.69% on 

the original data and an increased F1 score of 87.55% as seen in Table 5.5. When the number of 

augmentations is n = 2, that is 2 folds of the original data, the F1 score yields results as good as 

the original model. Increasing the number of n improves the performance of the model as can be 

seen in Table 5.5, Table 5.6, and Table 5.7. It yields an F1 score of 87.55% better than the original 

86.69% before augmentation. Similarly, even after augmentation, the models still get the same 

precision, recall, and F1 score values as the original using the species-800 dataset. This tells us 

that with lesser amounts of data instances, augmentation increases the performance of the model 

vividly and with relatively large data, there is still a minor improvement.  

There is observance that BioBERT models generally outperform BERT models on both 

augmented and original datasets. This could be because BioBERT is finetuned on biomedical 

datasets and since we are experimenting in the same domain, its performance is higher.  
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We got 5.95% and 8.49% increment of F1-score of BioBERT and BERT models respectively 

trained on BC5CDR-disease dataset. Increassing n = 16 reduces the performance of the models 

as can be seen in Table 5.1, Table 5.5, and Table 5.6.  
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6. CONCLUSION  

In this study, we employ EDA, which is originally proposed for augmenting text classification 

datasets, and adapt it for augmenting NER datasets. NER, as a token-level sequence-based NLP 

task, is vastly different from sentence-level or document-level NLP tasks and therefore it is much 

more difficult to augment using traditional augmentation methods due to the risk of distorting 

sentences syntactically and semantically. Changing sentences for data augmentation using for 

instance back-translation may change the location of labeled tokens or may completely remove 

them. There is also an additional complexity due to the complex terminology and structure of 

sentences in the medical domain. Our approach when applied to medical NER datasets shows 

promising results. Our experiments show that the performance is sensitive to the augmentation 

factor n, which shows how much each labeled instance is augmented, and the epoch of the deep 

learning algorithms used in NER. A high number of epochs increase the performance of NER 

models. Increasing the n improves the performance of the model as can be seen in Table I and 

Table II. NCBI-disease dataset with seven thousand annotations shows clear improvement in the 

model when augmented with n=16. It yields an F1 score of 87.55% which is higher than the 

86.69% F1 acquired without augmentation. Similarly, even after augmentation, the models still 

get the same precision, recall, and F1 score values as the original using the species-800 dataset. 

This tells us that with lesser amounts of data instances, augmentation increases the performance 

of the model vividly and with relatively large data, there is still a minor improvement. Overall, 

our results show that EDA can successfully be adapted for NER in the medical domain.  

The contributions are: 

We show that without using complicated and computationally expensive approaches, a simple 

data augmentation method can boost the performance of biomedical text mining models. 

We show that with little adjustments, the methods of augmentation used in text classification 

can be used in biomedical named-entity recognition. 

We show that data augmentation in addition to transfer learning is a suitable combination for 

high-performance biomedical named-entity recognition models. 

We present the results in groups according to the entity mentioned in the datasets. That is, we 

group our results according to disease datasets, chemical datasets, speciese, genetics and protein.  
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7. FUTURE WORK 

Some of the datasets we used could not get any improvement even after data augmentation. 

This could be due to the increment of noise, which leads to the poorness of datasets and 

eventually does not make any improvement to the model. In the future, we plan to make data 

augmentation of the original text by increasing both data and the cleanliness of the augmented 

data.  

The use of synonym replacement as an augmentation method in our work solely depends on 

the words from WordNet. In the medical field names of diseases, organs, and some other 

domain-specific terminologies may not necessarily have synonyms in WordNet. Creating a 

mapping of medical terminologies and their respective similar words is what we plan to do. 

This way using nearest neighbor search in the embedding layer can replace similar medical 

terms in the original data to generate a more diverse and accurate dataset.  

Embedding space of words displays vivid relationships and comprehensiveness of NLP in 

general. The use of cosine similarities, nearest neighbors etc to find similarities of words in 

the embedding layers are used for text augmentation. Using domain specific pretrained word 

embeddings hypothetically can generate more synthetic and meaningful data for text 

augmentation. We plan to use biomedical word embeddings like BioWordVec [66] and 

clinical concept pretrained word embeddings such as cui2vec [67]. This we hope can generate 

more reliably new data instances than embeddings of general text data. 
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