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OZET

DOGAL DIL ISLEMEDE DENETIMLI MAKINE OGRENIMI MODELLERININ
PERFORMANSINI ARTTIRMAK ICIN VERI ZENGINLESTIRME YONTEMLERININ
GELISTIRILMESI

Baslangigta, “Basit veri zenginlestirme” (Easy Data Augmentation) metin siniflandirma
gorevleri igin gelistirilmistir. Temel olarak bu yaklasim dort yontemi kapsar: Esanlamli
Degistirme, Rastgele Ekleme, Rastgele Silme ve Rastgele Degistirme. Bunlar derin sinir agi
modellerinde dogrulugu artirmak igin hizalanir. Bu ¢alisma, bu yontemleri medikal alanda
Adlandirilmis Varlik Tanima gorevleri icin genisletmeyi amaglamaktadir. Adlandirilmis
varliklarin (climlelerdeki bir kelime veya kelime gruplarindan veya ailelerden olusan) dogasi,
veri zenginlestirme alaninda bazi zorluklar getirse de, adlandirilmis varlik tanima basarimini

iyilestirilmesine 6ne siirmektedir.

Bu yontemleri biyomedikal kiyaslama veri kiimelerinin boyutunu artirmak ve biyomedikal adl1
varlik tanima modellerinin performansini gelistirmek i¢in kullaniyoruz. BERT gibi
dontstiiriicii modelleri iizerinde yapilan c¢alismalart degerlendirmek igin deneyler yaptik.
Aktarim yoluyla 6grenme ile, veri kiimeleri iizerinde bir biyomedikal dil modeli olan
BioBERT'e ince ayar yaptik. BIoBERT ve BERT modelleri ile tiim veri setlerinde genel bir
iyilestirme ve BCSCDR-hastalik veri setinde sirasiyla %5.95 ve %8.49 F1 puan artis1 sagladik.



ABSTRACT

DEVELOPMENT OF DATA AUGMENTATION METHODS TO IMPROVE
PERFORMANCE OF SUPERVISED MACHINE LEARNING MODELS IN NATURAL
LANGUAGE PROCESSING

Originally, Easy Data Augmentation holds its development to tasks of text classification.
Basically, it encapsulates four methods: Synonym Replacement, Random Insertion, Random
Deletion, and Random Swap aligned to improving accuracy on several deep neural network
models. This study aimed at deploying these methods to new domains by augmenting Named
Entity Recognition datasets from the medical domain. Although the nature of the named entities
(consisting of a word or word groups or families in sentences) posed some challenges to the
augmentation task, a case is advanced that an improvement of the named entity recognition

performance is achievable.

We use these methods to increase the size of biomedical benchmark datasets and improved the
performance of biomedical named entity recognition models. We carried out experiments to
evaluate the work on transformer model like BERT. With transfer learning, we fine-tuned
BioBERT, a biomedical language model on the datasets. We achieved a general improvement
on all datasets and a 5.95% and 8,49% increment of F1-score on BC5CDR-disease dataset with

BioBERT and BERT models respectively.
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1.

INTRODUCTION

Machine learning and deep learning models perform adequately on various NLP tasks and
have so far gotten high accuracy. Sentiment analysis (XLNet [1]), Text classification
(ULMFIT [2]), Named entity recognition (LUKE [3]), Question answering (Gated-Attention
Reader [4]), Summarizing (RNES [5]) and many more have shown important advancement in
the field of NLP. Many of these models are supervised and thus largely depend on labeled
data, which is scarce and costly to obtain. The use of semi-supervised learning, transfer
learning, and data augmentation are the current remedy to this problem. In semi-supervised
learning, researchers use a small amount of labeled data in combination with a large number
of unlabeled input instances during the training of machine learning and deep learning models.
This way, semi-supervised learning uses the knowledge learned from the small amount of
labeled data to label the available vast unlabeled data. Data augmentation is, of course, a
relatively simpler solution to solving the problem aforementioned. It also has the advantage
of allowing researchers to use any kind of supervised algorithm to increase data instances

without finding new samples from scratch.

Data augmentation is especially important currently in general artificial intelligence research.
In deep learning, it generally reduces overfitting of models. Another very crucial reason for
studying and developing data augmentation methods is to artificially increase supervise

learning training data. This also helps in generalization of the models.

Data augmentation is heavily studied in the computer vision domain and resulted in fairly
advanced methods, such as Auto-Augment [6], Learning Augmentation Policies from Data,
Random Erasing Data Augmentation [7], and Albumentations [8]. Data augmentation studies
in NLP are relatively new and we have much fewer methods in comparison. Google
researchers [9] propose augmentation techniques for text classification where back translation
and TF-IDF were used. Many, if not all, the text augmentation approaches in NLP are intended
for text classification and there are only a few attempts for NER such as [10]. NER is different
from sentence-level or document-level NLP tasks as it requires token-level sequence labels. It
is not straightforward to apply data augmentation methods developed for example sentence-
level NLP tasks such as text classification. On the other hand, NER is a crucial NLP task that

gets attention, especially in the medical domain.



The exponential rise in data generation in these recent days has subsequentially affected the
research industry. The field of medicine and clinical industries is one of the domains that also
produce data in unstructured text format. Medical text data comes in the form of discharge
summaries, radiology reports, clinical notes, etc. These enormous amounts of data are of very

importance to the field of deep learning and machine learning.

One of the important tasks of Natural Language Processing (NLP) is Named Entity
Recognition (NER). NER is a form of information extraction where named entities are
extracted from raw text documents. Named entities here represent predefined objects, words,
or word groups that are labeled such as a person, location, date, organization, etc. This task is
sometimes called, Entity Identification, Entity Chunking, or Entity Extraction, and its main
aim is to locate and designate the above-mentioned entities. Use cases of NER can be seen in
big companies where many requests are received daily. These requests include sales,
installations, maintenance, complaints, troubleshooting, etc. NER help in extracting
information and understanding the specific request of the customer. The use of NER can also
be applied to resumes, where applicants’ resumes are filtered out for finding apt candidates

for a specific job.

Medical data contains valuable information in the form of narratives or hospital/clinical
discharge summaries. There is a large amount of research on how to use this vital information
of patience in the hospital to develop artificially intelligent systems and to improve the health
care of individuals. Since the data is both crucial and constrained for research, getting them is
not easy and labeling them for research needs human expertise. Nevertheless, access to
medical data does not come on a silver plate since it contains information that could be used
to identify specific individuals. So, the data is highly protected as Protected Health
Information (PHI). In this study, we use four basic methods of data augmentation originally
proposed by Wie et al. [11] to create more realistic and diverse augmented medical data for

named entity recognition.

Biomedical text data used as benchmark datasets are what we used in this work. They include
diseases, chemicals, genetics, proteins, and species entities in general biomedical text data.
We developed data augmentation methods for named entity recognition on biomedical data.
Four methods commonly used for augmentation of text for classification are what we used
and adapt them all to NER. We developed biomedical NER models for each of the benchmark
datasets. Testing of the augmentation is done with these developed models. We record and
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compare the performance of each model on the original dataset and its corresponding
augmented version. We obtained promising results that show clearly that text augmentation
can improve the performance of deep learning models and especially biomedical named entity

recognition models.

The organization of this work is as follows. Section 2 summarizes the background and related
work. EDA and NER, the model for data augmentation are provided in Approach section 3.
Section 4 includes detailed information about the experimental setup, the datasets used in the
work, and the results and discussion can be found in section 5. Finally, this thesis concludes

in Section 6 with future work and references in section 7 and section 8 respectively.



2. RELATED WORK

In this section, we shall talk about the various related work and methodologies that have so far
been proposed in this field of study. We looked at the concepts in a variety of sections. This
covers data augmentation and its application on models in the medical field, Named Entity
Recognition (NER), and NER in the medical domain.

2.1. General Text Augmentation

Data augmentation (DA) in Natural Language Processing (NLP) has no clear-cut method to
directly increase the size and diversity of labeled data, nevertheless, researchers are tirelessly
working on techniques to improve DA methods in NLP. The techniques proposed so far have
shown impressive results and have significantly improved the performance of many diverse
NLP downstream tasks. Back-translation is one of the promising methods, proposed by google
Al where they take data samples x in a language A translate it to another language B, and then
translate it back to A to obtain augmented data sample x" [9]. In the same research, the authors
calculate TF-IDF scores of tokens in a training set and then replaced uninformative words with
more informative ones, to generate new instances for topic classification tasks. Zhang et al.
[11], Wei, and Zou [12] in their work used methods where tokens are replaced by their
synonyms from WordNet and/or a predefined language model [13]. The general objective of
data augmentation especially in the text is to significantly increase the diversity of the available

text data for training models, without actually collecting new labeled text data.

Many of the methods of text augmentation are for classification tasks in NLP. To make data
augmentation for NER tasks, Dai et al. [36] in their paper “An Analysis of Simple Data

Augmentation for Named Entity Recognition” proposed:

. Label-wise token replacement: This is a method wherein in each sentence, tokens that
share the same labels are randomly replaced with tokens from the original data set.

. Mention replacement: Replace a mentioned entity and its label tokens from the

original data set that shares the same entity label.

. Shuffle within segments: Here a sequence of tokens is divided into segments and then
shuffle the tokens in each segment without changing the labels. Segmentations are done at
every start of a mentioned entity in the sequence. An example of a sequence and the process



of forming augmented data is using the shuffle with segment method is shown in Figure

2.1Error! Reference source not found.

['Abdul’ 'Majeed' 'is' 'an' 'NLP' 'Engineer' 'working' 'at' 'Google' 'headquarters']
[B-NAME , I-NAME,0,0,0,0,0, O, B-LOC, I-LOC]

1 - Original sequence

['Abdul' 'Majeed'] ['is''an' 'NLP' 'Engineer' 'working' 'at' ] ['Google' 'headquarters’]
[B-NAME, I-NAME, 0,0,0,0,0, 0, B-LOC, I-LOC]

['Majeed' 'Abdul’] ['an' 'NLP' 'is' 'Engineer’ 'working' 'at'] ['Theadquarters’ 'Google’]
[B-NAME, I-NAME ,0,0,0, 0,0, 0, B-LOC, I-LOC]

3 — Shuffling in each Segmentation

['Majeed’ 'Abdul’ "an’ 'NLP' is’ ‘Engineer’ ‘'working’ ‘at’ "headquarters’ '‘Google’]
[B-NAME , I-NAME ,0,0,0,0, 0, O, B-LOC, I-LOC]

Newly augmented sentence with same tag sequence as original

Figure 2.1: Augmentation of a sentence using shuffle within segments methods. From 1 —
3 shows the process of augmentation.

Their methods improved the performance of both the transformer model and RNN model after

experimenting with two domain-specific data sets MaSciP [14] and i2b2-2010 [15].

Tian Kang et al. [16] in their work, presents an extension of “Easy Data Augmentation
Techniques for Boosting Performance on Text Classification Tasks” (EDA) [12] methods, by
featuring Unified Medical Language System (UMLS) [17], and adapting the methods for
named entity recognition tasks to improve performance of models in both classification and
named entity recognition in the biomedical domain. UMLS, a knowledge-based system, is not
easily accessible, and setting it up is both time-consuming and highly costly. This makes it not
suitable for low-resource settings. Nevertheless, UMLS-EDA [16] enables substantial
improvement for NER tasks and improves the performance of state-of-the-art text classification
models. In our approach, we extend the methods used in EDA, by modifying them to a low-

cost and easy-to-use setting, for medical text augmentation.

Data augmentation methods for text data can be grouped into those applied in feature space
of embeddings and that of the data itself. While feature space approaches tackle the subject
matter in the embeddings of the available text, data space methods of data augmentation deal



with the changing of the text itself in its original format. Figure 3 shows a summary of the

taxonomy and categorization of various methods of data augmentation.

Data Augmentation

Methods
Feature Space Data Space
/ \
/ \
/ \ ¢
K N,
Noise ! I Interpolation ‘
e ekl Gogid Character Word Phrase Document
Level Level Level Level
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Figure 2.2: Summary of the Taxonomy and categories of various data augmentation
methods (adapted from [18]).

2.1.1. Rule-based Techniques for Data Augmentation

The use of manually laid down rules and algorithms to increase the input data of any deep
learning or machine learning model is classified as a rule-based technique for data
augmentation. These techniques are one of the first proposed methods for DA in all downstream
NLP tasks. They are easy to implement and improve the performance of the underlining models

but at the same time costly to implement [19].

In Game-theory, Monte Carlo Tree Search (MCTS) can be used to predict moves and then
counterattack an opponent’s strategy to reach a Nash equilibrium or winnable state. Taking into
consideration a one-player game setting, decisions are paramount to the selections of tokens
from one state to another. Quteineh et al. [20] use this concept of MCTS to make data
augmentation for small text datasets. Tokens are represented in a tree form. Representation is
based on the pre-calculated probability of their appearances in the general corpus. A tree search
is conducted. More informative search result from the tree is selected and concatenated to form

new data. Figure 2.3 shows an example of MCTS traversing down the tree. As it moves down
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the tree, it creates paths of which, tokens of the same path form a new sentence. This can be
seen as the path in red in Figure 2.3. Though this method is good for text augmentation in
sentiment analysis, it will be difficult to apply it to NER. This is because, at every state of the
game, entities in the sentence will be given more priority and are likely to be selected than that

of other tokens.

cat

Figure 2.3: Monte Carlo Tree Search traversing down a tree from the root node <bos> to
the end node <eos> (Adopted from [20]).

2.1.2. Noise Injection as a method of data augmentation

Randomly injecting noise in a text can be used as data augmentation. This comes in a close
continuous change in the text. Insertion of characters, deletion, and modification of

punctuations are just a few ways of injecting noise into the text.

Injection of noise into text is considered data augmentation in neural networks since it is
possible that the scalability of the model is increased by producing new instances. A powerful

regularization method in neural networks, dropout is used to prevent complex co-adaptations



of the model on the noise injected training data [21]. Using misspelling datasets and typos in

place of the correct words is also considered data augmentation.

Many NLP models including neural machine translation extract stem and morphological
information based on character and other sub-words units in the data provided. They then used
this information to generalize and to unseen words and conjugations [22]. NMT models cannot

comprehend simple noisy data due to this.

In the work of Belinkov and Bisk [22], they use naturally occurring mistakes in text data and
synthetically generated noise to train NMT which increased the robustness of the model. These
noises include typos, misspellings, grammatical errors, manually deleting starting and ending

characters of words [23], keyboard typos, etc.

2.1.3. Deep Learning Methods for Data Augmentation

Deep learning generally outperforms traditional machine learning models and methods in
solving current Al problems. Interestingly deep learning techniques can apply in the generation
of synthetic and high-quality data instances artificially, to help in their training. Using deep
learning methods for data augmentation could be done in a variety of ways including the
manipulation of the embedding layers, the use of the transfer learning of language models, the
use of text generative models, and many more. Many data augmentation methods especially
those that rely on the simple transformation of data instances are only applicable in their
respective fields e.g., computer vision (CV), and cannot be applied in other fields e.g., natural
language processing (NLP) and vice versa. A more interesting thing about deep learning

methods for data augmentation is that they can be used in both CV and NLP.

2.1.3.1. Embeddings in Deep Learning for Data Augmentation

The use of word embedding substitution as a data augmentation method surprisingly gave
substantial results in name entity recognition (NER). Habitually used of word embeddings
include Word2Vec [24], GloVe [25], fastText [26] and word embedding systems such as
SENNA [27], [28]. SENNA is a standalone, self-contained system used to output word
embeddings for Part-Of-Speech Tagging (POS) system, word relatedness modeling task, word

analogy task, and word similarity task [27], [28]. In this approach of data augmentation, new

8



data instances are generated based on the vector similarities. The vectors could be of selected
words, sentences, or even a document, in the embedding layer of the neural network. In [29],
Yang et al. use lexical and semantic embeddings of words and sentences to generate novel data.
They trained a multi-class classifier of annoying behaviors using Twitter as a corpus. The
nearest neighbor of a word vector is calculated using cosine similarity. This novel vector is used
to replace the original word. The word selection, as well as replacement, are both done in a non-

deterministic manner. That is for all tokens in a vocabulary W, they search for the k-nearest-
neighbor (knn) word w for the query terms using cosine similarity between the query Q and

target word vectors w using equation (1).

Knn(of all tokens) = arg max cosine (6, W) 1)
wEe

Pre-trained models also play many roles when it comes to the use of embeddings for data
augmentation as we mentioned above. A pre-trained model in the nutshell is a model that is
previously trained using large amount of text data. These pre-trained models are used to solve
similar problems that they were developed to solve.This also known as transfer learning,where
the weights of a pretrained model is used in the training of a different model. This is acquired
by adjusting few settings to suit our solution that is fine-tuning to our task. In the field of text
classification, new embeddings could be generated from the input sequences, token by token,
and keep the original label of the sequence intact. This way, new training inputs are generated
at the embedding layers of the model, and the training instances are increased which

eventually increases the performance of the classifier model.
2.1.3.2. Interpolation and Extrapolation method for data augmentation

Generating synthetic data examples is what matters most in data augmentation. For a given
sentence, obtaining a new embedding vector of the original vector in the embedding space
eventually forms a new data input. This is done by first obtaining the nearest neighbors and the

centroid of the given word in the embedding space. The novel word embedding vector wj’ IS

calculated from the centroid w, using equations 2 and 3 for interpolation and extrapolation,
respectively. The green points (11, 12, and I3) in Figure 2.4 and Figure 2.5Error! Reference
source not found., represent the selected nearest neighbors. These nearest neighbors are used
to calculate te centroid marked as the red indicator (16). The blue point (I4) in Error! Reference s

ource not found. and Error! Reference source not found. indicates the original embedding



vector, and the yellow mark (I5) is the resulting novel vector. The black points in the figures

are the other word embeddings.

wj = (wx — wj)A+ w; )
wj = (Wj — wk)/l + w; 3)

The original word w; is subtracted from the centroid in interpolation and for extrapolation the
centroid wy, is subtracted from the original word. The parameter A which ranges from [0 — 1]
and [0 — oo] controls the degree of interpolation and extrapolation, respectively. Figure 2.4 and
Figure 2.5 shows more details of this method as used in the work of Papadaki [30] and the
survey of Giridhara et al. [31]

1.00
0.75 4 ) sovereignity
independence
(1) ()
0.50 - . (6) J
(I7) —
0.25 - / ‘\\Earliamem
- (13)
0.00 - constitution ¥ e, |nterpolated
value
—0.25 4 (14}
—0.50 - .“9}
=0.75 1
.[IE-}
=1.00

=1.00 =075 =050 =025 0.00 0.25 0.50 0.75 1.00

Figure 2.4: Creating a new embedding vector using Interpolation of centroid and word
embedding (Taken from [31]).

The technique of removing a non-linear hidden layer in a deep learning neural network to
decrease complexity and projection is quite an interesting method for data augmentation. This

is manifested in the work of Caroline et al. [32] where they used Word Embedding Substitution
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(WES) for low-resource Arabic language [32]. They gain a performance increment on Arabic

English language pair dataset with an increment of 1.51% in F1-score.

1.00
0.75 9 independence sovereignity
{11) (1Z)
0.50 1 > “E':'J
(17 ' i
parliament
0.25 - ‘\\
o (13)
| constitution
0.00 (4)
=025 4 I
—0.50 1 (5) Extrapolated .[IQ}
- value
| ® s
-1.00

-1.00 -0 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 2.5: Creating a new embedding vector using Extrapolation of centroid and word
embedding (Taken from [31]).

Manipulation of the embedding vectors helps in generating new instances for training, which
in turn helps in generalization, sparsification, and data augmentation of the available data and
model. The work of Zhang et al.[33], Zhang et al. [34] and Jindal et al. [35] show that
manipulation of the embeddings of a model creates new instances for training. Assuming we

have two randomly selected data points in the embedding space, (x;,y;) and (x;, y;), where x;
and x; are the input data samples and y; and y; are the embeddings of the labels. With linear

interpolation of input data, Zhang et al. [33][34] MixUp generates new virtual training samples

by creating a mix function using the equations (4) and (5).
x =mix (x;, %) = Ax; + (1 — A)x; (4)

y =mix (y;,y;) = dy; + (1 — Dy; ()

This formulation of mixed algorithms generates synthetic data in models trained for image
processing but has less performance in text data due to the inability of computing discrete
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tokens. A modification of the MixUp formula by Jindal et al.[35] adapts this idea to text
augmentation by training a model on interpolations of hidden states with reference to
embeddings of training instances. The modified formulation is shown in equation (6) and (7).

t; — p) + (A=) (x — (6)
mix (v0.y,) = (i — ) + (1= (x5 — )
Jt2 4+ (1 —1t)?
1
wheret = ——— (7)
1+ % 1-2
g A
2.1.3.3. Language models for text augmentation

For many years now language models and generative models achieved state-of-the-art (SOTA)
on a majority of downstream NLP tasks. Usage of language models for example BERT [36]
and text generative models like GPT2 [37] have become almost a norm. This is due to the
representation of words done with context taken into consideration. Given two inputs River
[bank] and [bank] deposit, Word2Vec [24] model, for example, will map the word “bank” to
the same representation since it has no context consideration. Other models like RNN [38] will
tokens before the masked word when representing them. BERT [36] will naturally consider the
context in which the token appears. Both words before and after the masked token are taken
into consideration. That means BERT will be able to predict “bank” with a representation of
the financial institution not a “bank” at the river when given the sentence “I made a [bank]

deposit .

With that said, masking some percentage of tokens in the training set, predicting those masked
tokens with language models like BERT will always give new tokens and for that matter new
augmented data as can be seen in Figure 2.6.

12



the performances are fantastic
the films are fantastic

the movies are fantastic ositive

the stories are fantastic

N / movies
l:!/ stories
| |
the actors

Figure 2.6: Data augmentation with language models (Taken from [39]).

2.1.4. Back-Translation for Data Augmentation

One of the tasks of NLP is neural machine translation. This implies the translation of a language
into another language. Machine translation is built with encoder-decoder architecture where a
word sequence is sent as inputs to the encoder. The encoder formulates a real-value vector
mapping of these sequences and then sends it to the decoder. The parameters of both encoder
and decoder are learned together to increase the target sentence's likelihood, given the
corresponding source sentences. To train a machine translator, a parallel corpus is needed. This
IS a corpus that contains both the original sentences and their corresponding translation in a

different language.

In machine translation, since the decoder is a neural language model conditioned on the
encoder, outputs different sequences which could be of different lengths than the input sentence,
translating these sequences again back to the original language will generate a new but

remarkably similar sequence in the original language.

Back-translation [9], [40], [41] used for data augmentation means translating input data x in
language A to a different language B to obtain y and then translating y back to A obtaining new
input data x'. In the work of Xie et al. [9], they presented unsupervised data augmentation, and
one of their methods is back translation. Two models are trained separately on unsupervised

data and augmented unsupervised data. The consistency loss of these two models is calculated.
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TF-1DF word replacement and back translation are the two methods used for text augmentation
in this work which generated quality data used for training classification models. An example
of back translation is manifested in Figure 2.7, where sample text is back-translated from other

languages, forming new sentences.

Abdul Majeed is the top student based on the
good grades, publications and references he
has.

Abdul Majeed is the best student based on
the good grades, publications, and
references he has.

Back translation Abdul Majeed is the top student based on his
good grades, papers and references.

Abdul Majeed is the best student based on
his grades, books and references.

Figure 2.7: Sample data augmentation using back translation.

2.2. Named Entity Recognition (NER)

As we mentioned above, NER identifies and groups key information in text documents into
predefined types/entities. Even though NER is a vital tool for information extraction and
retrieval [42], it has also been used for other NLP downstream tasks like question answering
[2] and text summarization [5]. Much of the research is now moving towards solving domain-
specific NER tasks. BioBERT [43] is a NER model for biomedical text data (ranked number
one for NER on NCBI-disease [44]), and SCIBERT [45] isa NER model for scientific text data
(ranked number one for Relation Extraction on SCIERC [46]). Though there are other domain-
specific NER tasks, most of the advancements are seen in the medical sector of research. Figure

2.8 shows how a NER algorithm can highlight and extract entities from a given text document.

Abdul Majeed PERsoN  is the co-founderand the ' CTO ore of TurkishTrendy ORG  where he manage the online sales of
the company. He was born on ~ May 14th pate and will turn 29 this weekends DATE . He s also a researcher and a Master
student at = Marmara University orG in the field of ~ Artificaial Inteligence woRrk oF ART . He particularly devalop models and
does reasearch in | Natural Language Processing 0R6 . He is particularly interested in projects that touch health and safety of

people and data augmentation for deep learning models. He is from | Ghana GPE but currently resides in = Turkey GPE

Figure 2.8: NER algorithm tagging out entities from a given text.
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The techniques and approaches used for NER so far could be classified into two major

categories.
. The traditional approach to solving NER tasks and

. Deep Learning (DL) methods of solving NER tasks
2.2.1. Traditional approaches in NER

The traditional approaches are the earlier ways of solving NER tasks. They include:

. Rule Based: In this approach, NER models rely totally on scrawl rules e.g., domain-

specific gazetteers [47], syntactic-lexical patterns [48], and dictionary-based [9], [49], [50].

. Unsupervised and Semi-supervised Learning Approaches: As the name suggests, fully
unlabeled (unsupervised) or partially labeled (semi-supervised) data are clustered into groups,
and extraction of named entities is done based on contextual similarities. [48], [51]-[53]. Ando
and Zhang [54]. in their work showed the use of semi-supervised learning with linear models.
They trained the model on annotated data, and then added non-annotated inputs, later on,
resulting in an F1 score of 89.31%

The traditional approaches have high precision vs. low recall in their model test and evaluation

results. They are also both time-consuming to build and domain knowledge is needed.
2.2.2. Deep learning approaches in NER

Deep learning (DL) is a subfield of general machine learning that uses algorithms inspired by
the structure and functions of the human brain, popularly known as artificial neural networks.
DL-based approaches for NER are currently the most preferred and have so far remained the
State-of-the-Art (SOTA) for most of the benchmark datasets. This could be because unlike rule-
based approaches, DL has a large number of processing layers in the architectural design, which

may learn and discover features automatically.

The neural network (NN) architecture in DL computes a weighted sum of the input data from a
layer before it, then passes the results to a non-linear activation function. The non-linear mapping
of inputs to outputs in DL makes it suitable for NER to be able to learn complex features from
the given data. General training of the DL model for NER can be done in the following 3 steps

as seen in Error! Reference source not found..
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1. Distributed representation of inputs (Word Embedding): This is the stage where all text
is converted to vectors as a representation of the text for deep learning neural network
architectures. Words of the same meaning are given the same representation. Words with
similar meanings turn to be closer to each other in their vector space.

2. Context Encoder: This is the actual neural network model. Here the model is created. It
takes in the word representation from step one and based on the context of the words,
learns features. Instead of looking at words one by one, here every token is taken into
consideration based on their context of appearance in the sentence. Language models,
sequential models, and transformer models are examples.

3. Tag decoder: This is the final stage where the labels/tags are grouped with entities. CRF
is a good example, which maps the input sentences with their predicted entity tags.

A general taxonomy of DL-based NER is manifested in Error! Reference source not found. m
any DL architectures are proposed for NER tasks. These architectures include LSTM, CNN,
LSTM-CRF, GRU, and some combination of other architectures. Fine-tuning the pre-trained
language model for the NER task is a preferred approach currently followed in DL-based NER

approaches.
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Michael Jeffrey Jordan was born in Brooklyn, New York.

Deep Learning Based NER

Figure 2.9: Overview of DL-based NER from the input to the output (Taken from [23]).

The bidirectional LSTM (biLSTM) + CRF architecture was popular obtaining best results
before thee introduction of transformers models in solving NER tasks. The biLSTM model
consists of two LSTMs, each of which processes a given sequence in a different and opposite
direction. The ability to work with sequential input and the capacity to recognize long-term

dependencies because of a memory cell is the fundamental features of LSTM.

The hidden states vectors H = (h;, h,, ..., h,) are the output of the LSTM, which receives
a series of vectors X = (X4,X,, ... ,Xy) as input. Where x;, h¢, and c; are input, hidden state,

and cell state, at time t respectively. A general representation of the biLSTM architecture is
shown in Figure 2.10.

A conditional random field (CRF) model makes a prediction as a graphical model to account
for the influence of nearby data. A linear chain CRF can make predictions utilizing this
improved context after receiving the biLSTM’s output. The combination of these two
architectures gives biLSTM+CRF [55].
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Figure 2.10: A General Architecture for biLSTM algorithm (Adapted from [56]).

2.2.3. Attention Mechanism

In the traditional sequence to sequence (Seq2Seq) models, where encoder-decoder architecture
is used, all the intermediate states of the encoder are discarded using only its final states (vector)
to initialize the decoder. This encoder-decoder architecture performs well in short sentences
and poorly when the length of the sentence increases. This is because intermediate states are

discarded.

The attention mechanisms are the building blocks to solving the task of neural machine
translation (NMT). The encoder-decoder architecture takes a sequence of words as inputs. The
encoder encodes the sequence into a fixed-sized single vector, which forms the representations

of the sequences technically known as embeddings.

To decode a vector in the encoder layer, the model pay attention to the previous state and its
intermediate state. Hence the name attention. The decoder here has a selective way of looking
back and paying attention to the more relevant words in embeddings. This is mostly done by

Backpropagation.

Many language models use the transformer architecture. The Transformer architecture is an
improvement of the encoder-decoder with attention mechanisms. Transformer model has
18



encoder-decoder. Its encoding and decoding components has 6 or more encoders and decoders

stack on top each other respectively as seen in Figure 2.11.
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Figure 2.11: Architecture of a Transformer (Taken from).

2.2.4. Transformer and Generative Language models for data augmentation

BERT [36], unlike other models that do not take into consideration the context of words, is a
contextualized word representation language model. It is based on a masked language model

and pre-trained using a bidirectional transformer. Bidirectional Encoder Representations from

19



Transformers for Biomedical Text Mining (BioBERT) is a great medical model that is based
on BERT, pre-trained on large biomedical corpora. Mostly general language models perform
less on medical data due to the fact that there are terms, disease names and domain-specific
used words that are only understood by experts in the medical domain. To make language
models like BERT perform well on biomedical data, Lee et al. [43] pre-trained their model on
PubMed (4.5 billion words), PMC Full-text articles (13.5 billion words), PMC Full-text articles
(2.5 billion words), and BooksCorpus (2.5 billion number of words) and named it as BioBERT

as can be seen in Figure 2.12.

Pre-training of Bidirectional Transformers
Pre-training corpora Bi-Transformer Pre-training corpora Bi-Transformer

Publﬁ]ed PubMed

(4.58 words)

T N

* w« 3 . .

w2 Wikipedia
< (2.5B words)

4 4 i

o PMC : ' :
Wi PM Nofees—"1
WIKIPEDIA (13.58 words) X"

a4 ___—"}
%) (% g i —
PE o X
BooksCorpus @ - & BERT REd
(0.88B words) g ,? ? 7o Transferred from

BERT : pre-trained with . =1 BERT (Devlin et al.) BioBERT : pre-trained with
general domain corpora V—»ﬁ biomedical domain corpora

BERT (Devlin et al., 2018) BioBERT (Lee et al., 2019)

Figure 2.12: BioBERT a contextualized language representation model, based on BERT
(Adapted from[43]).

In pre-training, they first initialize with BERT and for tokenization, they go for WordPiece
tokenization [57]. WordPiece algorithm helps prevent the “out of vocabulary” and infinite
vocabulary problem. Instead of the frequency of words, WordPiece uses the combination of
pairs of sub words regarding the probability of the language model at hand. The WordPiece

algorithm is shown in Figure 2.13.
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Input: strings S, vocabulary size k

procedure Wordpiece(S, k)
V < unique charactersin S
while |V| < k do (Merge tokens)
ai,az < pair that causes largest increase in likelihood
anew < a1 a2 (new token)
V <V U {anew}

Replace ai,az with anew

end while
return V
end procedure

Figure 2.13: Algorithm for WordPiece.

With minimal architectural modification, BioBERT is fine-tuned on downstream NLP tasks
including, Question-Answering, Embeddings and NER tasks. In our work, we also used this
pre-trained model on biomedical benchmark datasets.

2.3. Information Extraction in medical and clinical data

The importance of information extraction is manifested in the research currently going on,
especially in the medical domain. Gathering structured data from medical records, analysis of
it, and information extraction enables the automation of tasks, as in the smart content
classification of diseases, integrated research on future infections, management, and delivery.
Data-driven activities like mining patterns and trends in patient medical history are just but a
few to mention. Many Natural Language Processing systems, approaches, models, and research
techniques have been developed to extract vital information from medical records. These
include the use of ontology-based resources, concept mapping, grammar structure matching
[58], semantic parsing [59] approaches, and rule-based [60] and machine learning systems [49].
The rule-based approaches used to extract information in medical text data are less robust since

for every new corpus, the rules must be revamped to preserve the best performance of the
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model; this requirement increases the maintenance cost accordingly [50]. A smoking status
detection system for patients was developed by Savova et al. [50] and later embedded into the

clinical Text Analysis and Knowledge Extraction System (cTAKES).

Due to the lucrative nature and vitality of NLP in medicine, we see many medical institutions
establishing research centers for deep learning and data science to improve the work of NLP in
the biomedical field. The i2b2, tranSMART Foundation, etc. are such institutions that organizes
“The Shared Tasks for Challenges in NLP for Clinical Data” regularly.
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3. APPROACH

In this study, we followed a straightforward approach in developing data augmentation methods
by modifying some of the available methods and adapting them to name entity recognition
tasks. We also developed models fine-tuned from pretrained biomedical language model
BioBERT. This model is used in our experiment to justify the correctness of our augmented
data. We train the model with the benchmark biomedical datasets each, records the results and
then save the model. Secondly, we perform text augmentation on the training datasets. These

augmented training data is used in training the previous model architectures.

Most NER models use the BIO / IOB tag format (B: Beginning of entity mentioned, I: Inside
and part of the entity mentioned except the first, O: Other words with no entity mentioned) which
makes data augmentation in NER more tedious. We adapted EDA methods to NER by
transforming word sequence and the corresponding BIO tag sequences properly so that the
consistency of both sequences is maintained before and after augmentation. Each of the
following augmentation methods is applied to each given sentence in the training data N times.

Stop words are not included.

« Random Deletion: Randomly remove each word in the sentence with a probability p if
and only if it is not the beginning of the entity (B) tag. If the word is inside an entity (1),
delete it and its corresponding | tag, else delete an O tag. The pseudocode for this

algorithm is shown in Figure 3.1

Algorithm 1 random deletion
Input: (W, L,p)
Output: (W' L")
if number of words == 1 then Do not delete only one word sentence
return W, L
end if
W'« empty list
L'+ empty list
for each index, word in W do
r +—random.uniform(0, 1)
if word's label start with B — tag then don’t delete the words
append word to W’
append label to L'
continue
end if
if r greater than p then
append word to W'
append label to L'
end if
end for
if all words are deleted then
return random word and label
end if

return W', L’

Figure 3.1: Pseudocode for Random Swap technique of text augmentation.
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« Random Insertion: select a random word, find its random synonym, and insert that
synonym in the sentence. If the insertion position is at the beginning of an entity (B), skip
it, else if it is at the position inside an entity | replace it, with a corresponding | tag.
Otherwise, replace the synonym with a corresponding O tag. The pseudocode of the

algorithm is shown in Figure 3.2

Algorithm 2 random insertion
Input: (W, L,n)
Output: (W', L")
W' « copy of W
L’ + copy of L
for each i in range n do
synonyms < empty list
counter « 0
while len(synonyms) < 1 do
random_word < W'[random)

synonyms + get_synonmys(random_word)
counter < counter + 1
if counter greater than 10 then
return W’
end if
end while
random_synonym < synonym|0]
random_idx < random int
insert random _synonym to W’
if random_idzr equals len(L’) — 1 then
insert 'O’ to L'
else if L'[random;dz + 1| equals 'O’ then
insert 'O’ to L'
else
insert L'[random_idz — 1] to L’
end if
end for
return W', L'

Figure 3.2: Pseudocode for Random Insertion technique of text augmentation.

+ Random Swap: Randomly select two tokens and swap their positions. the indices of the
two selected words must always be different. Tag sequence and word count are maintained

as it is. The pseudocode of the algorithm is shown in Figure 3.3

Algorithm 3 random swap
Input: (W, L,n)
Output: (W', L")

W'+ copy of W

L' + copy of L

for each i in range n do

Select random_indexl and random _index2
while random_indexrl = random_indexr2 do
swap element at random_index1 and element af random_index2
end while
end for
return W', L'

Figure 3.3: Pseudocode for Random Swap technique of text augmentation.
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*  Synonym Replacement: randomly select n number of words and replace them with their
corresponding synonym from WordNet. Tag sequence and word count are maintained as
it is. The number of words to be augmented, n is a product of the hyper parameter « and
the total length of the sentence at hand [ as seen in equation (8). The pseudocode of the

algorithm is shown in Figure 3.4

n=ax*l ®)

Algorithm 4 Synonym replacement
Input: (W, L.,n)
Output: (W', L)
W'+ copy of W
L'+ copy of L
num_replaced + 0
for each w in W do
synonyms < SYNONY M(w) : get the synonyms of w from WordNet
if synonyms > 1 then
synonym +— SYNONY M: randomly select one from synonyms list
if len(synonym) = 1 or synonym € w or w € synonym then
continue
end if
Append synonym to new word list
W' + synonym
num._replaced < num_replaced + 1
if num_replaced = n then
break Only replace up to n words
end if
end if
Return none if new words and old words are same
return W' L'

Figure 3.4: Pseudocode for Random Swap technique of text augmentation.

To illustrate more of the methods used, Error! Reference source not found. shows an example o
f how a given sentence and its tag sequences are affected. SR, RI, RS and RD in the figure
represents the methods of augmentation, where SR represents Synonym Replacement, RI:

Random Insertion, RS: Random Swapping, and RD: Random Deletion.
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Figure 3.5: Overview of the effects of augmentation methods on sample data. The words
marked in red indicate the changes from data augmentation.

We try various combinations of the number of augmented data and the number of epochs of
training. Our experiments show that small datasets when augmented yields better results than

relatively large datasets.
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Figure 3.1: General approach used: pre-trained model with data augmentation and fine-
tuning for NER (Adapted from [43]).
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4, EXPERIMENTS
4.1 Datasets

To evaluate our work, we used the standard benchmark datasets usually used to evaluate NER

tasks in the medical domain. These includes:

I.NCBI-disease corpus [44]
ii.BC5CDR (BioCreative V CDR corpus) [61]
iii.BioCreative 11 Gene Mention Recognition (BC2GM) [62]
iv.JNLPBA, Linnaeus [63]
v.BCACHEMD [64]
vi.Species-800 [65] datasets.
i. NCBI-disease

NCBI-disease is a disease corpus in which the annotation is disease mention and/or
concepts. This was introduced for disease name recognition and normalization. NCBI
disease corpus contains 793 fully annotated PubMed citations constituting more than six
thousand (6K) sentences. More than half of the sentences available contain disease names
and about 2136 unique disease mentions, mapping to 790 unique database identifiers.

Annotations of diseases mentioned are in four major categories:

1. Specific Disease: clear cell renal cell carcinoma

2. Disease Class: cystic kidney diseases

3. Composite mentions: prostatic, pancreas, skin, and lung cancer
4

Modifier: hereditary breast cancer families.

The most common disease mentions and disease concepts in the NCBI disease corpus, with the
corresponding number of abstracts they appear in [44] are presented in Error! Reference s
ource not found.. An example of text and the annotation is shown in Error! Reference source

not found., a screenshot of the annotation tool presented by Islamaj et al. [44].
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WELCOME: ANNOTATOR
* Link to PUBMED - 10519880
lLasT savep |

[CLEAR ALL, START from the beginning ]

Specific Disease Disease Class ComposieNienion Modifier Clear

PMID: 10519880 :PMID

TITLE: Mutation of the sterol 27-hydroxylase gene (CYP27) results in truncation of mRNA
expressed in leucocytes in a Japanese family with cerebrotendinous xanthomatosis. :TITLE
ABSTRACT: OBJECTIVES A Japanese family with cerebrotendinous xanthomatosis ( C1X )
was investigated for a sequence alteration in the sterol 27-hydroxylase gene ( CYP27 ) . The
expression of CYP27 has been mostly explored using cultured fibroblasts , prompting the
examination of the transcripts from blood leucocytes as a simple and rapid technique .
METHODS An alteration in CYP27 of the proband was searched for by polymerase chain
reaction-single strand conformation polymorphism ( PCR-SSCP ) analysis and subsequent
sequencing . Samples of RNA were subjected to reverse transcription PCR ( RT-PCR ) and the
product of the proband was amplified with nested primers and sequenced . RESULTS A

homozygous G to A transition at the 5 end of intron 7 was detected in the patient . In RT-PCR
[suem |

Figure 4.1: Sample text and annotation process of NCBI-disease corpus (Taken from

[44]).

Table 4.1: The NCBI disease corpus’ common disease mentions, their concepts, and the
number of abstracts in which they appear (Taken from [44]).

Disease mentions Ndiyiber of Disease concepts Number of
Abstracts P Abstracts
Cancer 44 D030342 — Genetic Diseases, Inborn 113
Tumor 43 D009369 — Neoplasms 112
Breast cancer 41 D061_325 — Hereditary Breast and 59
Ovarian Cancer Syndrome
Diabetes mellitus 39 D001943 — Breast Neoplasms 46
Myotonic dystrophy 35 D009223 — Myotonic Dystrophy 42
G6PD deficiency 33 D005955 - _Glucosephosphate 36
Dehydrogenase Deficiency
Duchenne Muscular D020388 — Muscular Dystrophy,
33 33
Dystrophy Duchenne
Ataxia-telangiectasia 30 D011125 — Adenomatous Polyposis Coli 33
APC 29 D001260 — Ataxia Telangiectasia 31
Duchene muscular 27 D010051 — Ovarian Neoplasms 27
dystrophy
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ii. Species-800

Species-800 is a species entities corpus comprising eight hundred PubMed abstracts manually
annotated. One hundred abstracts each are collected from Bacteriology, Botany, Entomology,
Medicine, Mycology, Protistology, Virology, and Zoology to form the corpus. SPECIES and
ORGANISMS being standalone command-line software applications can identify and map the
taxonomic mentions in plain text. These are the two taggers used in tagging the s800 corpus. In
their work, Evangelos et al. [65] provide a supplementary table for the journal selections for the
s800 categories as shown in Table 4.2 For each category, they selected between one and four
journals, from which they randomly picked one hundred Medline abstracts in total from the
years 2011 and 2012.

Table 4.2: Journal selection for the S800 categories that formed the S800 dataset (Taken
from [65]).

Category Journal Abstracts
Bacteriology Journal of Bacteriology 100
Botany New Phytologist 50
Plant Cell & Environment 50
Entomology Insect Molecular Biology 59
Journal Insect Science 24
Environmental Entomology 17
Medicine The Lancet 41
The Lancet Infectious Diseases 15
The Lancet Neurology 22
The Lancet Oncology 22
Mycology Fungal Genetics and Biology 100
Protistology European Journal of Protistology 30
International Journal of Systematic and Evolutionary Microbiology 30
Protist 40
Virology Journal of Virology 63
Journal of Virological Methods 37
Zoology Journal of Animal Ecology 100
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iii. BC2GM
BC2GM is a gene/protein corpus in which the annotation is Gene. This dataset was originally

provided for gene mention recognition. It has more than 20,703+ named entities and about

20,000 sentences in the total number of documents.
iv. BC5CDR

BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818
diseases, and 3116 chemical-disease interactions. Medical Subject Headings (MeSH) concept
identifiers are used as controlled vocabulary to annotate chemical and disease entities in all the
selected articles of PubMed. The annotation is done manually with the assistance of tools like
PubTor, DNorm, and tmChem. An example of PubTor format annotation (PMID 354896) is

shown in Error! Reference source not found..

354896 |t |Lidocaine-induced cardiac asystole.

354896 |a|Intravenous adminisctration of a single 50-mg bolus of lidocaine in a 67-year-old
man resulted in profound depression of the activity of the sinoatrial and atrioventricular
nodal pacemakers. The patient had no apparent associated conditions which might have
predisposed him to the development of bradyarrhythmias; and, thus, this probably
represented a true idiosyncrasy to lidocaine.

354896 0O 9 Lidocaine Chemical D008012
354896 128 34 cardiac asystole Disease D006323
354896 90 99 1lidocaine Chemical D008012
354896 142 152 depression Disease DO03866

354896 331 347 bradyarrhythmias Disease D001919%9
354896 409 418 lidocaine Chemical D008012
354896 CID D008012 D006323

Figure 4.2: PubTator format annotation (Adapted from [61]).

V. JNLPBA

JNLPBA consists of both RNA and DNA, Gene/Protein, Cell line, and Cell Type. Gene/Protein
is annotated as Protein and the rest are as their named-entity recognition. The corpus is created
with a controlled search of 2,000 abstracts on MEDLINE.
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Vi. Linnaeus

Linnaeus is software for general-purpose dictionary matching, whose output forms one of the
species corpora with species annotation. The original project was created for entity mention
recognition. This dataset consists of documents from MEDLINE, PMC, BMC, OTMI, etc.

vii. BC4CHEM

BC4CHEM is a chemical corpus in which the annotation is Chemical. Originally provided for
chemical mention recognition task. It consists of 10,000 PubMed abstracts with 84,355

annotations, though we used part of the original dataset which contains 79,842 chemical

P

annotations.

ms800 m NCBI-disease = BC5CDR-disease ®mBC2GM = JNLPBA

Figure 4.3: Instance distributions in some of the benchmark datasets.

Fully annotated biomedical data sets at the mention and concept level are used. All data sets are
used in their pre-processed version from Lee et al. [43]. We fine-tune BioBERT on these
datasets with and without their augmented data. Error! Reference source not found. shows t
he statistics of the biomedical benchmark datasets used in our work. The number of sentences
in each of the datasets that we used is also shown in Error! Reference source not found.. We u
se these datasets for both data augmentation and fine-tuning BioBERT in our work.
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Table 4.3: Overview of the biomedical benchmark datasets used in our work. “# Annotations”

shows the number of Named Entities.

- Number of Annotations/ Number of
Corpus Named-Entities o
Named entities Documents
NCBI ) 793 PubMed
_ Disease 6,881
Disease abstracts
) ) 800 PubMed
Species-800 Species 3,708
abstracts
BC2GM Gene/Protein 20,703 20,000 sentences
BC5CDR-
_ Disease 12,694
disease
1,500 articles
BC5CDR-
Drug/Chem. 15,411
chem
Gene/Protein,
2,000 Medline
IJNLPBA DNA, Cell-type, Cell- 35,460
abstracts
line, RNA
linnaeus Species 4,077 MEDLINE, PMC
BC4CHEM Chemical 79,842 10,000 abstracts

4.2 Experimental Setup

Our work presents simple data augmentation methods for named-entity recognition tasks in
medical data mining. We adapt the four straightforward, but robust methods of text augmentation
methods used to generate diverse and high-quality data to train and enhance the performance of
medical domain models for name entity recognition tasks. UMLS-EDA adapted EDA to suit
NER tasks by adding UMLS, with the notion that its satisfactory performance in text
classification can also be realized in NER. We provide a low-cost and straightforward way of
utilizing a small amount of domain-specific data to enhance models’ performance with

augmentation and transfer learning.
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Transfer learning so far has proven to be one of the best ways to improve the performance of
deep learning and neural network models at a minimal amount of cost. The idea of using pre-
trained models eradicates the cost involved in training a language model from scratch and saves
time and energy in looking for data to feed huge neural network models. With transfer learning
one needs to only modify the last layers of of a pretrained model to suit specific task without
training the whole models again. This prompted the idea of fine-tuning the pre-trained model
Bidirectional Encoder Representations (BERT) [36] in the medical domain. Bidirectional
Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) being the
first domain-specific BERT-based model is an example of transfer learning in the medical
domain. This model improves and gain the state-of-the-art model with 0.62% F1 score
improvement in biomedical named-entity recognition [43]. With this notion mind, and the fact
that data augmentation improves the performance of NLP models, we combined the two in our
approach to boost the performance of biomedical models.

Augmentation operations in computer vision inspired the methods used now in NLP. EDA [12]
proposed universal data augmentation methods for NLP. They used four methods to perform
augmentation on a randomly selected token in a sentence. Their approach was for text
classification, therefore needs amendment to suit named-entity recognition tasks for token-level

prediction.

In general, the standard evaluation metrics used in supervised machine learning models are
Precision, Recall, F1-score, and Accuracy. In our work, we opt to use only Precision, Recall

and F1-score evaluation metrics to evaluate the performance of our models at a token level.

Precision shows the percentage of true labels among all the labels. That is how precise or
accurate the model is. This metric shows how many of the predicted entities are correctly
labeled. As can be seen in equation 8, it is the ratio of true positives to all other identified
positives. A named entity is correct only if it is an exact match of the corresponding entity in
the test set.

#TruePositive (8)
#TruePositive + #FalsePositive

Precision =

Recall measures the percentage of true labels in the dataset being recalled. As seen in equation

9, it is the ratio of true positives to the sum of true positives and false negatives.

33



#TruePositive (9)
#TruePositive + #FalseNegatives

Recall =

F1-Score is the harmonic mean of precision and recall. For the evaluation metrics in our work,
we use entity-level precision, recall, and F1 score. As seen in equation 10, it is the ratio of the

product of precision and recalls to their summation all multiplied by two.

Precision * Recall
F1 Score = 2 i (10)

*
Precision + Recall

Table 4.4: Hyperparameters for BioBERT fine-tuning.

Hyper-parameter Value
mini-batch size 32
epochs 30 & 100
max. sequence length 192
weight decay rate 0.0-0.01
optimizer Adam

The language models that we use in our experiments are

1. BIioBERT version 1.1 (BioBERT-Base v1.1 (+ PubMed 1M)). This version of BioBERT
is pre-trained on BERT-base-Cased with a custom vocabulary size of 30k.

2. BERT (bert-based-uncased). A general language model pre-trained on Wikipedia and
Book Corpus. This version of BERT has 12 encoders stuck on each other and 12
bidirectional self-attentions. We used the “uncased” version of BERT since it is case

insensitive.

In the fine-tuning, we use only 1 NVIDIA GeForce RTX 2080 Ti. The hyper-parameters we

use are shown in Error! Reference source not found..
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5. RESULTS AND DISCUSSION

In this section we present the general output from all our experiments. We shall interpret the

findings and discuss the results in detail.

We show how data augmentation can be useful in the uplifting and enhancement of medical data

and models. We present the results in groups according to the entities mentioned in the datasets.

These are Diseases datasets, Chemicals datasets, Species datasets and Protein/gene datasets

The training of the models is done in 30 number of epochs as well as 100 number of epochs.
Results for both BERT and BioBERT models trained for 30 epochs are presented in Table 5.1,

Table 5.2, and Table 5.3. As for training for 100 number of epochs, it done for only BioBERT

models and does not include BERT.

Table 5.1: Results of BioBERT and BERT on disease datasets. Number of epochs = 30.

BioBERT BERT
Z Original Original
Dataset Number of @ n=2 n=10 n=16 n=2 n=10 n=16
o = Data Data
Entities
86.36 86.35 | 86.35 | 86.35 83.96 83.65 83.65 83.65
NCBI
] 6,881 89.06 88.96 | 88.96 88.95 86.67 86.88 86.88 86.88
disease
87.69 87.63 | 87.63 | 87.63 85.29 85.23 85.23 85.23
84.49 93.05 | 93.05 84.56 82.81 92.20 92.20 82.38
BC5CDR-
. 12,694 87.57 93.52 | 93.52 87.77 83.72 92.22 92.22 84.02
disease
86.00 93.26 | 93.26 | 86.13 83.26 92.21 92.21 83.19

The result in the various tables shows best score within a model as bold font, the overall best

score of the two models is bold and underlined. For example, in Table 5.1, the F1-score of
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BioBERT model trained on 2-fold and 10-folds of BC5CDR-disease augmented data
outperforms the rest. Therefore, its written in bold and underlined. Likewise, an F1-score of
92.0% of same datasets is the best score in BERT model, so recorded in bold but not underlined.

All the results are recorded in percentage of 2 decimal point.

Table 5.2: Results of BioBERT and BERT on chemical datasets. Number of epochs = 30.

BioBERT BERT
Z Origina Original
Dataset Number of @ n=2 n=10 n=16 n=2 n=10 n=16
= | Data Data
Entities
P 92.79 | 9283 | 92.83 | 92.83 92.20 92.20 92.20 92.20
BC5CDR-
15,411 R 94.21 | 9335 | 9335 | 93.35 92.23 92.23 92.23 92.23
chem
F 9349 | 93.09 | 93.09 | 93.09 92.21 92.21 92.21 92.21
P 91.68 | 9168 | 91.68 | 91.68 91.07 91.07 91.07 91.07
BC4CHEM
b 79,842 R 90.53 | 90.53 | 90.53 | 90.53 88.33 88.33 88.33 88.33

F 91.10 |91.10 | 9110 | 9110 | 89.68 89.68 89.68 89.68

Table 5.3: Results of BioBERT and BERT on Species datasets. Number of epochs = 30.

BioBERT BERT
Z Origin Original
Dataset Number of o n=2 n=10 n=16 n=2 n=10 n=16
- = al Data Data
Entities
P 70.29 | 70.29 | 70.29 | 70.29 69.21 69.21 69.21 69.21
Species-800 3708 R 75.88 75.88 75.88 75.88 74.45 74.45 74.45 74.45
F 7298 | 72.98 | 72.98 | 72.98 72.73 72.73 72.73 72.73
P 89.53 | 89.53 | 89.53 | 89.53 87.47 87.47 87.47 87.47
linnaeus 4,077 R 83.53 | 83.53 | 83.53 | 83.53 85.28 85.28 85.28 85.28
F 86.43 | 86.43 | 86.43 | 86.43 86.36 86.36 86.36 86.36
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Table 5.4: Results of BioBERT and BERT on protein/gene datasets. Number of epochs =
30.

BioBERT BERT

Origin Original

Dataset Number of
al Data Data

Entities

BN
>
I
N
=}
I
-
o
>
I
-
(o2}
>
I
N
5
I
-
o
5
I
-
(o2}

P 82.91 | 8291 | 8291 | 8295 |38065 | 8065 |80.65 |80.65

BC2GM 20,703 | R 83.56 | 8356 | 83.56 |83.83 | 8206 |8206 | 8206 |82.06

F 83.23 | 8323 | 8323 | 8338 |8135 813 |8l35 |8l35

P 7119 | 7119 | 7119 | 7119 | 70.27 70.27 70.27 70.27

JNLPBA 35460 | R 8254 | 8254 | 8254 | 8254 | 8240 82.40 82.40 82.40

F 76.45 | 76.45 | 7645 | 76.45 75.85 75.85 75.85 75.85

Table 5.5: Results of BioBERT on disease datasets. Number of epochs = 100.

Number of EPOCH = 100

Dataset Original

Number Metric n=2 n=10 n=16
N Data
of Entities

Precision (P) | 85.21 86.48 | 86.48 86. 48

NCBI disease 6,881 Recall (R) 88.23 88.64 | 88.65 88.65

F1-Score (F1) | 86.69 87.55 | 87.55 87.55

Precision (P) | 85.26 92.74 | 92.74 84.89

BC5CDR-disease 12,694 Recall (R) 86.44 93.76 | 93.76 85.83

F1-Score (F1) | 85.85 93.25 |93.25 85.35
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Table 5.6: Results of BioBERT model on chemical datasets. Number of epochs = 100.

Number of EPOCH = 100

Dataset _ Original
Number of Metric n=2 1| n=10 | n=16
Data
Entities

Precision (P) | 84.86 93.05 |93.05 84.57

BC5CDR-chem 15,411 Recall (R) 87.04 93.12 | 93.12 86.75
F1-Score (F1) | 85.94 93.09 |93.09 85.65

Precision (P) | 91.72 91.72 |91.72 91.72

BCACHEMD 79,842 | Recall (R) 90.17 90.17 |90.17 90.17
F1-Score (F1) | 90.94 90.94 | 90.94 90.94

Table 5.7: Results of BioBERT model on species datasets. Number of epochs = 100.

Dataset

Number of EPOCH = 100

) Original
Number of Metric n=2 n=10 | n=16
Data
Entities
Precision (P) | 70.76 70.76 | 70.76 70.76
Species-800 Recall (R) 76.66 76.66 | 76.66 76.66
3,708

F1-Score (F1) | 73.59 73.59 | 73.59 73.59

Precision (P) | 89.64 89.64 | 89.64 89.64

linnaeus 4,077 Recall (R) 81.51 8151 |81.51 81.51
F1-Score (F1) | 85.38 85.38 | 85.38 85.38
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Table 5.8: Results of BioBERT with Augmentation EPOCH = 100.

Number of EPOCH = 100

Dataset _ Original
Number of Metric n=2 n=10 | n=16
Data
Entities

Precision (P) | 83.61 83.61 |83.61 83.61

BC2GM 20,703 | Recall (R) 83.29 8329 [8329 |83.29

F1-Score (F1) | 83.45 83.45 | 83.45 83.45

Precision (P) | 71.26 71.26 | 71.26 71.26

IJNLPBA 35,460 Recall (R) 83.44 83.44 |83.44 83.44

F1-Score (F1) | 76.87 76.87 | 76.87 76.87

We observe that the number of epochs affects the performance of the BioBERT model trained
on augmented data. This is clear when the number of epochs is 30, BioBERT and BERT models
trained on the NCBI disease dataset have their best performances in the original training data as
seen in Table 5.1. The same dataset trained with 100 epochs produces an F1 score of 86.69% on
the original data and an increased F1 score of 87.55% as seen in Table 5.5. When the number of
augmentations is n = 2, that is 2 folds of the original data, the F1 score yields results as good as
the original model. Increasing the number of n improves the performance of the model as can be
seeninTable 5.5, Table 5.6, and Table 5.7. It yields an F1 score of 87.55% better than the original
86.69% before augmentation. Similarly, even after augmentation, the models still get the same
precision, recall, and F1 score values as the original using the species-800 dataset. This tells us
that with lesser amounts of data instances, augmentation increases the performance of the model

vividly and with relatively large data, there is still a minor improvement.

There is observance that BioBERT models generally outperform BERT models on both
augmented and original datasets. This could be because BioBERT is finetuned on biomedical

datasets and since we are experimenting in the same domain, its performance is higher.
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We got 5.95% and 8.49% increment of Fl-score of BioBERT and BERT models respectively
trained on BC5CDR-disease dataset. Increassing n = 16 reduces the performance of the models

as can be seen in Table 5.1, Table 5.5, and Table 5.6.
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6. CONCLUSION

In this study, we employ EDA, which is originally proposed for augmenting text classification
datasets, and adapt it for augmenting NER datasets. NER, as a token-level sequence-based NLP
task, is vastly different from sentence-level or document-level NLP tasks and therefore it is much
more difficult to augment using traditional augmentation methods due to the risk of distorting
sentences syntactically and semantically. Changing sentences for data augmentation using for
instance back-translation may change the location of labeled tokens or may completely remove
them. There is also an additional complexity due to the complex terminology and structure of
sentences in the medical domain. Our approach when applied to medical NER datasets shows
promising results. Our experiments show that the performance is sensitive to the augmentation
factor n, which shows how much each labeled instance is augmented, and the epoch of the deep
learning algorithms used in NER. A high number of epochs increase the performance of NER
models. Increasing the n improves the performance of the model as can be seen in Table | and
Table Il. NCBI-disease dataset with seven thousand annotations shows clear improvement in the
model when augmented with n=16. It yields an F1 score of 87.55% which is higher than the
86.69% F1 acquired without augmentation. Similarly, even after augmentation, the models still
get the same precision, recall, and F1 score values as the original using the species-800 dataset.
This tells us that with lesser amounts of data instances, augmentation increases the performance
of the model vividly and with relatively large data, there is still a minor improvement. Overall,
our results show that EDA can successfully be adapted for NER in the medical domain.

The contributions are:

We show that without using complicated and computationally expensive approaches, a simple

data augmentation method can boost the performance of biomedical text mining models.

We show that with little adjustments, the methods of augmentation used in text classification

can be used in biomedical named-entity recognition.

We show that data augmentation in addition to transfer learning is a suitable combination for

high-performance biomedical named-entity recognition models.

We present the results in groups according to the entity mentioned in the datasets. That is, we

group our results according to disease datasets, chemical datasets, speciese, genetics and protein.
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7. FUTURE WORK

Some of the datasets we used could not get any improvement even after data augmentation.
This could be due to the increment of noise, which leads to the poorness of datasets and
eventually does not make any improvement to the model. In the future, we plan to make data
augmentation of the original text by increasing both data and the cleanliness of the augmented
data.

The use of synonym replacement as an augmentation method in our work solely depends on
the words from WordNet. In the medical field names of diseases, organs, and some other
domain-specific terminologies may not necessarily have synonyms in WordNet. Creating a
mapping of medical terminologies and their respective similar words is what we plan to do.
This way using nearest neighbor search in the embedding layer can replace similar medical

terms in the original data to generate a more diverse and accurate dataset.

Embedding space of words displays vivid relationships and comprehensiveness of NLP in
general. The use of cosine similarities, nearest neighbors etc to find similarities of words in
the embedding layers are used for text augmentation. Using domain specific pretrained word
embeddings hypothetically can generate more synthetic and meaningful data for text
augmentation. We plan to use biomedical word embeddings like BioWordVec [66] and
clinical concept pretrained word embeddings such as cui2vec [67]. This we hope can generate

more reliably new data instances than embeddings of general text data.
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