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ABSTRACT 

 

PUBLIC-KEY CRYPTOGRAPHY ON CONSTRAINED EMBEDDED 

DEVICES 

 

 

GÜLEN, Utku 

Computer Engineering (English) PhD Program 

Supervisor: Asst. Prof. Dr. Selçuk BAKTIR 

 

 

JUNE 2022, 68 pages 
 
 

 
 

Constrained embedded devices are widely deployed in many areas 

including wireless sensor network and Internet of things. Since such 

applications may contain sensitive data and may serve to critical purposes, 

securing the communication between the wireless sensor nodes or Internet of 

things devices is vital. Applying only symmetric key cryptography remains 

with a problem when it comes to distribution of the private keys. Thus, it is 

necessary to use a public-key cryptography for sharing private keys 

effectively. With its relatively smaller key size, elliptic curve cryptography 

is usually the first choice in literature. However, acceleration methods are 

still required since the computations are heavy for the constrained devices 

such as microcontrollers. For this reason, we implemented elliptic curve 

cryptography on a constrained microcontroller, MSP430, utilizing the 

number theoretic transform based computations, optimal extension field and 

Edwards curve. We presented our applied methods and the performance 

result including the comparison with the literature in the first part of the 

thesis. Another public-key cryptography, Rivest Shamir Adleman (RSA), has 

a larger key size which is a drawback for the resource constrained 

microcontrollers. However, it allows fast digital signature verification and 

can be desirable since it’s widely used in the existing communication 

infrastructure. In the second part of the thesis, it is showed that, in spite of its 

long key size, RSA is applicable for constrained devices when optimized 

arithmetic, low-level coding and some acceleration algorithms are used. RSA 

implementations that are presented in the thesis have the fastest reported 

timings compared to the studies in the literature which use similar 

constrained microcontrollers.                  

  

 

Keywords: Wireless Sensor Networks, Internet of Things, Public-Key 

Cryptography, Elliptic Curve Cryptography, Rivest Shamir Adleman  
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ÖZET 

 

KISITLI KAYNAKLI GÖMÜLÜ CİHAZLAR ÜZERİNDE AÇIK 

ANAHTARLI ŞİFRELEME 
 
 

GÜLEN, Utku 

Bilgisayar Mühendisliği (İngilizce) Doktora Programı 

Danışman: Dr. Öğretim Üyesi Selçuk BAKTIR 

 

 

HAZİRAN 2022, 68 sayfa 
 

 
 
 

Kısıtlı kaynaklı gömülü cihazlar, kablosuz sensör ağları ve nesnelerin 

İnterneti de dahil olmak üzere bir çok uygulamada konuşlandırılmaktadır. Bu 

uygulamalar hassas verilere sahip olabileceğinden ve kritik amaçlara hizmet 

edebileceğinden, kablosuz sensör düğümleri veya nesnelerin İnterneti 

cihazları arasındaki haberleşmenin güvenliğinin sağlanması önemlidir. 

Sadece simetrik şifreleme uygulanması, gizli anahtarların dağıtılması 

problemini çözümsüz bırakır. Bu nedenle, gizli anahtar dağıtımını etkin bir 

şekilde yapabilmek için, açık-anahtarlı şifreleme kullanılmalıdır. Görece 

daha kısa anahtarı olduğundan, eliptik eğri şifreleme genellikle literatüredeki 

ilk seçimdir. Fakat, mikrodenetleyiciler gibi kısıtlı kaynaklı cihazlar için 

hesaplamalar ağır olduğundan, hızlandırma yöntemleri hala gerekmektedir. 

Bu nedenle, kısıtlı kaynaklı bir mikrodenetleyici olan MSP430 için, eliptik 

eğri şifrelemeyi sayılar teorisi dönüşümü tabanlı işlemler, en uygun ilave 

alan ve Edwards eğrileri kullanarak gerçekleştirdik. Uyguladığımız 

yöntemleri ve literatürdeki diğer çalışmarla beraber olan performans 

sonuçlarını tezin ilk kısmında sunmaktayız. Bir diğer açık anahtarlı şifreleme 

olan Rivest Shamir Adleman (RSA) daha büyük boyutlu bir anahtara sahiptir 

ki bu kısıtlı kaynaklı mikrodenetleyiciler için bir dezavantajdır. Yine de hızlı 

sayısal imza doğrulama ve hali hazırdaki haberleşme yapılarında kullanıldığı 

için RSA tercih edilebilir. Tezin ikinci kısmında, büyük boyutlu anahtarı 

olmasına rağmen, en etkin hesaplama, düşük seviye kodlama ve bazı 

hızlandırma yöntemleri kullanarak RSA kullanılabilirliği gösterilmiştir. Bu 

tezde sunulan RSA gerçekleştirmeleri, literatürde benzer mikrodenetleyiciler 

kullanan çalışmalara kıyasla en hızlı zamanlamalara sahiptir.                 

 
 

 

Anahtar kelimeler: Kablosuz Sensör Ağları, Nesnelerin İnterneti, Açık-

Anahtarlı Şifreleme, Eliptik Eğri Şifreleme, Kısıtlı Kaynaklı Gömülü Cihazlar  
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Chapter 1  

Introduction 

 

A wireless sensor network (WSN) consists of a large number of sensor nodes 

which are usually controlled by a constrained microcontroller, e.g., 16-bit MSP430, 8-

bit ATmega, etc. Applications of WSNs vary widely from environmental practices to 

health, and from industrial control applications to military purposes (Akyildiz et al., 

2007; Chong & Kumar, 2003; Pottie & Kaiser, 2000; Yick et al., 2008). WSNs also 

find applications in areas such as multimedia networks (Akyildiz et al., 2007) and 

smart grid networks (Gungor et al., 2010). WSN applications in diverse fields rely on 

underlying algorithms, protocols and standards (Baronti et al., 2007). Moreover, many 

WSN applications need data security and confidentiality since sensitive information is 

stored, processed or transferred by sensor nodes (Chen et al., 2009; Y. Wang et al., 

2006). As the number and diversity of WSN applications grow, so do the variety of 

their security and privacy issues (Li et al., 2010; Ozdemir & Xiao, 2009; Roman et al., 

2007). Therefore, it is a necessity to implement cryptographic schemes efficiently on 

constrained microcontrollers used in sensor nodes (He et al., 2015; Perrig et al., 2002; 

Y. Yu et al., 2012). Microcontrollers on WSN nodes are typically limited by their 

memory capacity and CPU speed. Besides, energy efficiency is another important 

constraint since WSN nodes are either battery powered or they environmentally 

harvest their energy (Chandrakasan et al., 1999; Ye et al., 2002; Zhou et al., 2008). All 

these constraints make implementing cryptography, more particularly complex public 

key cryptographic operations, on WSN nodes a major challenge. Lightweight 

cryptography also comes with the issues for the designers, while balancing security 

and performance trade-offs (Eisenbarth et al., 2007). And thus, it is considered less 

secure compared to conventional cryptography (Buchanan et al., 2017; Mouha, 2015). 

For providing security to WSN nodes, symmetric key cryptography may seems 

to be a feasible solution at first glance. However, symmetric key cryptography alone 

would not be a remedy for providing security to WSN nodes. WSN nodes are typically 

placed far apart from each other and the distribution of shared symmetric keys is a 

challenge. For distributing the shared symmetric keys efficiently, public key 

cryptography (PKC) is needed (Diffie et al., 1976; Elgamal, 1985; Ingemarsson et al., 

1982; MacKenzie et al., 2010). Furthermore, PKC makes it possible to electronically 
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sign digital messages (Rivest et al., 1978). In WSNs, malicious nodes can inject false 

or counterfeit messages into the network. Hence, implementation of an authentication 

mechanism would be necessary to prevent these messages. Digital signatures, provided 

by PKC, can be used to authenticate messages exchanged between sensor nodes. 

Although the computational complexity of PKC is considered a drawback for WSN 

nodes with constrained microcontrollers, previous works show that PKC can be a 

viable option (Düll et al., 2015; Gouvêa & López, 2009; Gülen & Baktir, 2014; Gulen 

& Baktir, 2016; Z. Liu et al., 2010; Szczechowiak et al., 2008). The two most popular 

PKC schemes are elliptic curve cryptography (ECC) (Koblitz, 1987) and the Rivest 

Shamir Addleman (RSA) cryptosystem (Miller, 1986; Rivest et al., 1978). Many of 

the previous PKC implementations for WSNs in the literature prefer ECC due to its 

shorter key size (A. Liu & Ning, 2008; H. Wang et al., 2006; Wenger & Werner, 2011). 

ECC requires at least a 160-bit key to be considered secure. In RSA, on the other hand, 

the same level of security can be achieved with a 1024-bit key. However, despite its 

larger key size, RSA is more widely used particularly by general purpose computers 

in Internet applications. 

 

1.1 Contribution in the Thesis 

 

In our study (Gulen & Baktir, 2016), for the first time in literature, we showed 

that frequency domain arithmetic can be practically applied to ECC implementations 

on low-power microcontrollers without hardware multiplier support. We realized, for 

the first time, elliptic curve scalar point multiplication with a fixed point, as well as 

with a random point, in the frequency domain without using hardware multiplier 

support. Our implementations exhibit comparable timing performance to existing ECC 

implementations which use hardware multiplier support. Since our implementations 

don’t use hardware multiplier support, they are expected to be more power-efficient 

while having acceptable timing performance.   

In our study (Gulen & Baktir, 2020), we present a novel realization of ECC 

which uses Edwards curves for point arithmetic and the Number Theoretic Transform 

(NTT) for the underlying finite field multiplication and squaring operations. To the 

best of our knowledge, our work presents the first realization of ECC using the Fast 

Fourier Transform (FFT) to speed up NTT computations. Our implementation 
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achieves similar or faster timings for ECC scalar point multiplication compared to 

existing implementations in the literature and proves that NTT-based arithmetic is 

feasible for ECC implementations on constrained devices such as WSN nodes. 

In our study (Gülen & Baktir, 2022), we utilize the FFT over a finite field to 

implement ECC on a constrained microcontroller without using hardware multiplier 

support for the first time in the literature. Over GF((213−1)13) , we achieve ECC point 

multiplication of random points in 1.74 s which is 13% faster than the existing work 

in (Gulen & Baktir, 2016). Furthermore, we achieve ECC point multiplication of fixed 

points in 0.89 s which is 10% faster than the existing work. Our proposed 

implementation with the FFT achieves ECC random and fixed point multiplication 

consuming 29.81 mWs and 15.27 mWs which are 15% and 12% less than the energy 

consumed by the existing implementation. We show that, in terms of both timing 

performance and energy consumption, FFT based multiplication would result in better 

performance for ECC than frequency domain Montgomery multiplication. With our 

proof-of-concept implementation, we show that on an extremely constrained platform 

that does not use a hardware multiplier, ECC can be performed efficiently when the 

FFT is used. Power savings gained through our proposed implementation would be 

significant for battery powered WSN nodes whose lifetime is limited by their stored 

energy, and more particularly for energy harvesting WSN nodes which harness energy 

from the environment and may have more strict power constraints. 

In our study (Gulen et al., 2019), we use the subtractive Karatsuba-Ofman, 

Montgomery multiplication, Chinese remainder theorem (CRT), and operand scanning 

algorithms together for the first time in the literature, and implement RSA using these. 

Our 1024-bit RSA encryption and decryption implementations on the MSP430 

microcontroller have the fastest timings in the literature. We show that faster RSA 

timings are feasible on WSN nodes and the RSA cryptosystem may be a preferable 

PKC option for WSNs. 

In our recent study,  we present efficient RSA implementations on the MSP430 

family of constrained microcontrollers using a 2048-bit key as recommended by the 

NIST (Barker, 2020). We combine the acceleration techniques sliding window 

method, CRT based exponentiation, Montgomery modular multiplication, and 

subtractive Karatsuba-Ofman multiplication for the first time in the literature for 2048-

bit arithmetic. Our resulting 2048-bit RSA implementation on the constrained MSP430 
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microcontroller outperforms the existing implementation on the comparable 

ATmega128 microcontroller (Gura et al., 2004), and achieves RSA encryption and 

decryption operations more than twice faster. Unlike the existing work in (Gura et al., 

2004), our 2048-bit RSA implementation includes the necessary countermeasures to 

prevent vulnerabilities that may arise from implementation attacks such as simple 

power analysis (SPA) and differential power analysis (DPA) (P. C. Kocher, 1996). We 

show that strong RSA cryptography with a 2048-bit key is feasible on constrained 

microcontrollers used in WSN and IoT applications. 

 

1.2 Organization 

 

The thesis continues with Chapter 2, ECC implementations on constrained 

MSP430 microcontrollers which are used widely in WSN and IoT. Chapter 2 

composed of sections which explain the background of the methods that we utilized, 

namely DFT based Montgomery multiplication, FFT based multiplication and 

Edwards curves. Then the optimization methods for the ECC are explained in detail, 

namely field arithmetic optimizations and point arithmetic optimizations for the FFT 

based multiplication. Then the chapter continues with comprehensive performance 

evaluation and comparison of our ECC with related works in the literature. The last 

part concludes Chapter 2 with our findings. 

In Chapter 3, we present the techniques namely, sliding window method, CRT, 

Montgomery modular multiplication and subtractive Karatsuba-Ofman multiplication 

which we utilized in order to accelerate our 1024-bit and 2048-bit RSA operations. 

After introducing the applied methods, in the second part of the Chapter 3, we explain 

how we applied further low-level optimizations and how we realized our 

implementation to be execute in fixed time. Then we explain our side-channel attack 

countermeasures on RSA, i.e. SPA and DPA. Before concluding the Chapter 3, we 

present our implementation timings and compare with the existing works in the 

literature.  

Chapter 4 concludes the studies in this thesis with remarks and discusses possible 

future works, finally.    
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Chapter 2                                                                 

Elliptic Curve Cryptograph For Wireless Sensor Network 

Nodes Using Number Theoretic Transform 

 

ECC (Koblitz, 1987; Miller, 1986) is a commonly used public-key cryptosystem 

and considered a viable remedy for distributing the secret keys in WSNs (Gouvêa et 

al., 2012; Gülen & Baktir, 2014; Gulen & Baktir, 2016; Z. Liu et al., 2010; 

Szczechowiak et al., 2008). The efficiency of ECC depends on the speed of the 

performed arithmetic. While projective coordinates are typically used to avoid 

expensive inversion, multiplication still needs to be performed. A word multiplication 

instruction typically takes much longer to execute than a word addition instruction on 

constrained microcontrollers. On some microcontrollers, for power efficiency and cost 

reasons, a multiplication circuitry does not even exist and word multiplications are 

implemented with shift and add instructions. For instance, the MSP430F1232, 

MSP430F2274 and MSP430G2955 versions of the MSP430 microcontroller are some 

of the several available microcontrollers which do not have a hardware multiplier 

(Texas Instruments, 2004). Note that, among these microcontrollers, the 

MSP430G2955 microcontroller is used in WiSense sensor nodes, namely the sensor 

nodes WSN1120L, WSN1120CL, WSN1101ANL and WSN1101ACL (WiSense 

Technologies, 2019). Moreover, Texas Instruments’ (TI) development tool for 

wireless sensor applications, named as the TI eZ430- RF2500 wireless module, is also 

equipped with MSP430F2274 (Texas Instruments, 2015). Using a simple power 

efficient microcontroller is particularly important for wireless sensor network nodes 

which are spread around in the field and harvest their energy from the environment 

(Adu-Manu et al., 2018) . For energy-harvesting wireless sensor nodes, it is a concern 

whether the sensor node is able to perform a power-hungry cryptographic algorithm 

within the limitations of the harnessed power obtained through solar energy, 

mechanical vibration, electromagnetic radiation, etc. In (Gulen & Baktir, 2016), a 

competent ECC implementation on the constrained MSP430 microcontroller is 

proposed over the optimal extension field (OEF) GF ((213 − 1)13) (Bailey & Paar, 

2001). The implementation uses the number theoretic transform and Edwards curve 

point arithmetic. For power efficiency, no hardware multiplier is used, and arithmetic 

operations are carried out in the frequency domain. In their implementation, the 
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number theoretic transform is utilized to initially carry elliptic curve point coordinates 

to the frequency domain. All arithmetic operations required in ECC point 

multiplication are then conducted in the frequency domain. Montgomery 

multiplication is used for performing multiplication in the frequency domain (Baktir 

& Sunar, 2006; Baktır et al., 2007; Montgomery, 1985). 

 

2.1 Background 

 

ECC is performed over a finite field. Hence, picking an efficient finite field 

representation and using efficient arithmetic algorithms over the selected finite field 

significantly effects the performance of ECC. We implement ECC over an OEF. The 

OEF representation is an efficient finite field representation that is proposed for 

implementing ECC on constrained devices (Bailey & Paar, 2001). The OEF 

representation constructs the finite field GF (pm) by choosing p as a pseudo-Mersenne 

prime, such that GF (p) elements fit in a single processor register, and by using an 

irreducible binomial of the form xm − w where w is a small integer. The special forms 

of p and w facilitate efficient coefficient arithmetic and modular reduction. By fitting 

GF (p) elements in a single register word, only a single instruction cycle is spent to 

execute microcontroller instructions over GF (p) elements. When the extension degree 

m is selected as a prime number, ECC over GF (pm) is considered secure (Koblitz et 

al., 2004). In our works, we implement ECC over GF (pm) where m = 13 is prime and 

p = 213 − 1 is a Mersenne prime. Selecting p as a Mersenne prime allows for very 

efficient reduction modulo p which is an operation commonly performed in GF (pm) 

arithmetic. The finite field GF ((213 − 1)13) is used in (Baktır et al., 2007; Mentens et 

al., 2015) for constrained hardware implementations of ECC and proved efficient. 

On an elliptic curve defined over GF (pm), the coordinates of a curve point are 

GF (pm) elements and represented as degree m − 1 polynomials whose coefficients are 

in GF (p) (Baylis, 1988; McEliece, 1993). In ECC a large number of finite field 

divisions, multiplications, subtractions and additions are carried out. The 

subtraction/addition of a(x) with b(x) in GF (pm) is achieved easily through pairwise 

modular word additions/subtractions of their polynomial coefficients, as given below: 
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𝑎(𝑥)  ± 𝑏(𝑥)  = ∑ (𝑎𝑗 ±  𝑏𝑗 ) 𝑥𝑗  𝑚𝑜𝑑 𝑝

𝑚−1

𝑗=0
 

(1) 

 

 

Whereas, multiplication of GF (pm) elements is significantly more complex and 

necessitates a quadratic number of coefficient multiplications modulo p and a final 

modular reduction with the field polynomial, given as follows: 

 

 
𝑟′(𝑥) = 𝑎(𝑥). 𝑏(𝑥) = ∑ (𝑟𝑗

′𝑥𝑗)
2𝑚−1

𝑗=0
 , 

𝑟(𝑥) = 𝑟′(𝑥) 𝑚𝑜𝑑 𝑝(𝑥) 

(2) 

 

 

where p(x) can be selected as xm − 2 to make modular reduction simple. In this  work, 

we use p(x) = xm − 2 to construct the finite field  GF ((213 − 1)13). Polynomial 

multiplication requires computing a quadratic number of expensive modular 

coefficient multiplications. The convolution theorem states that time domain 

polynomial multiplication produces the same result as frequency domain pairwise 

coefficient multiplications. Hence, the number of performed coefficient multiplications 

is reduced dramatically if frequency domain arithmetic is used for polynomial 

multiplication. DFT, or its optimized form FFT, can be used for carrying GF (pm) 

elements into frequency domain. 

 

2.1.1 Discrete Fourier transform based Montgomery multiplication. 

Algorithm 1 was proposed for achieving GF (pm) multiplication using discrete Fourier 

transform based Montgomery multiplication (Baktir & Sunar, 2006; Baktır & Sunar, 

2008b, 2008a). The algorithm was utilized in ECC implementations for constrained 

wireless sensor nodes (Baktır et al., 2007; Gulen & Baktir, 2016). The algorithm takes 

as inputs (�̅�) and (�̅�), which are the frequency domain series for �̅�(x) = a(x) xm−1, �̅�(x) 

= b(x) xm−1 ∈ GF (pm) and produces their Montgomery product. Note that �̅�(x) and �̅�(x) 

are the Montgomery forms of a(x) and b(x). The output of the algorithm is denoted 

with �̅� and represents the Montgomery product of  �̅�(x) and �̅�(x), i.e.  �̅�(x) �̅�(x) x−(m−1) 

mod p(x). Note that �̅� = �̅�(x) �̅�(x) x−(m−1) mod p(x) is equal to a(x) b(x) x(m−1) mod p(x) 

which is the Montgomery form of the product of a(x) and b(x) in GF (pm). Using p = 

2m − 1, a Mersenne prime, results in more efficient DFT computations (Rader, 1972). 
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In Algorithm 1 (Gulen & Baktir, 2016), a linear number of word products are 

computed. Whereas, the number of performed bitwise rotations, subtractions and 

additions are quadratic. Since multiplication is more complex compared to other 

arithmetic operations on a constrained microcontroller, Algorithm 1 is desirable.   

 

 

 

2.1.2 Fast Fourier transform based multiplication. In a recent work, ECC 

is implemented using a different DFT based approach to realize GF(pm) multiplications 

and squarings (Gulen & Baktir, 2020). In (Gulen & Baktir, 2020), the FFT (Baktır & 

Sunar, 2008a; Cooley & Tukey, 1965; Pollard, 1971) is used to transform GF (pm) 
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elements into the frequency domain. Once the frequency domain representations for 

GF (pm) elements are obtained, their polynomial multiplication is computed simply by 

pairwise multiplying their frequency domain coefficients. Utilizing the inverse fast 

Fourier transform (IFFT) algorithm, the resulting product is carried to the time domain. 

In Algorithm 2 (Gülen & Baktir, 2022), we present this approach which is composed 

of the three stages:  FFT, pairwise multiplication (PM) and IFFT. With this work, 

similar to (Gulen & Baktir, 2020), we use FFT based multiplication to implement ECC. 

However, unlike in (Gulen & Baktir, 2020), we implement FFT based ECC without 

using hardware multiplier support to show that ECC can be achieved practically on an 

extremely constrained microcontroller without even a hardware multiplier. 

Furthermore, we obtain the energy consumption profile of our ECC implementation 

and show that it is more energy efficient than the existing implementation in (Gulen & 

Baktir, 2016) which also does not use hardware multiplier support. 

 

 

 

2.1.2.1 Conversion of operands into the frequency domain. The finite field 

elements a(x), b(x) ∈ GF ((213 − 1)13) are carried to the frequency domain with the 

DFT as  

 

 
𝐴𝑖  = ∑ 𝑎𝑗𝑒𝑗𝑖  𝑚𝑜𝑑 𝑝

25

𝑗=0
, 0 ≤ 𝑖 ≤ 25 

(3) 

 

and 
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𝐵𝑖  = ∑ 𝑏𝑗𝑒𝑗𝑖  𝑚𝑜𝑑 𝑝

25

𝑗=0
, 0 ≤ 𝑖 ≤ 25 

(4) 

 

 

where e is a 26th primitive root of unity. Algorithm 3 (Gulen & Baktir, 2020; Gülen & 

Baktir, 2022) performs the above DFT computations over GF ((213 − 1)13) efficiently 

by using the FFT. It is designed such that the seven general purpose registers on 

MSP430 are used heavily to store intermediary results so that the least number of time-

consuming memory read/write instructions are executed. The algorithm uses the 

binomial x13 − 2 as field generating polynomial and e = −2 as the 26th primitive root of 

unity. For the selected finite field GF ((213 − 1)13), e is chosen as −2. This allows us to 

perform multiplications of GF (p) elements with positive powers of e, as it heavily 

takes place in the FFT computation (in lines 7 and 19 of Algorithm 3), with a simple 

bitwise left rotation, in addition to a simple negation if the power of e is odd. 
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Note that for p = 213 − 1, e = −2 , a ∈ GF (p) and k a positive integer, the computation 

a × ek = a × (−1)k × 2k modulo p is equivalent to the simple bitwise left rotation of a 

by (k mod 13) bits followed by a simple negation if k is odd. 

 

2.1.2.2 Pairwise coefficient multiplication in the frequency domain. The 

frequency domain multiplication of GF ((213 −1)13) elements is carried out through 

pairwise coefficient multiplications. For (A) and (B), the 26-coefficient frequency 

domain sequences for a(x) and b(x) in GF ((213 − 1)13), 𝑟′(x) = a(x) b(x) mod 213 − 1 

is computed in the frequency domain as 

 

 𝑅𝑗
′ =  𝐴𝑗𝐵𝑗  𝑚𝑜𝑑(213 − 1) , 0 ≤ 𝑗 ≤ 25 (5) 

 

 The above 26 coefficient multiplications are the only GF (213−1) 

multiplications performed for computing (𝑅′) which is dramatically faster than 

performing 169 coefficient multiplications as needed in schoolbook multiplication. 

However, (𝑅′) needs to be carried back to time domain to complete the GF ((213 − 1)13) 

multiplication and find r(x) = 𝑟′(x) mod p(x). Modular reduction with p(x) becomes 

very simple when p(x) is selected as x13 − 2. However, one still needs convert (𝑅′) to 

the time domain polynomial 𝑟′(x). 

 

2.1.2.3 Conversion of the product back to the time domain. In order to finalize 

the finite field multiplication operation in GF ((213 −1)13), the 26-element sequence 

(𝑅′) for 𝑟′(x) = a(x)b(x) needs to be carried into time domain to realize modular 

reduction, i.e. r(x) = 𝑟′(x) mod x13−2, efficiently. The conversion can be done using 

the inverse DFT as follows:  

 

 

𝑟𝑖
′ =  

1

26
 ∑ 𝑅𝑗

′

25

𝑗=0

𝑒−𝑗𝑖𝑚𝑜𝑑 𝑝 , 0 ≤ 𝑖 ≤ 25 

(6) 

 

Algorithm 4 (Gulen & Baktir, 2020; Gülen & Baktir, 2022) performs the above inverse 

DFT computation efficiently to convert (𝑅′) in the frequency domain to r (x) = 

a(x).b(x) mod x13 −2 in the time domain. The algorithm optimizes equation (6) by 
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utilizing the inverse FFT and by interleaving it with the reduction operation modulo 

the field generating polynomial x13 − 2. For the selected finite field GF ((213 − 1)13), 

the 26th primitive root of unity e for the inverse FFT computation is chosen as −2. This 

allows us to perform multiplications of GF (p) elements with negative powers of e, as 

it heavily takes place in the inverse FFT computation (in lines 7, 17, 27 and 38 of 

Algorithm 4), with a simple bitwise right rotation, in addition to a simple negation if 

the power of e is odd.  
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Note it for  p = 213−1, e = −2, a ∈ GF (p) and a positive integer k, the computation a 

× e−k = a × (−1)k × 2−k modulo p is equivalent to the simple bitwise right rotation of 

a by (k mod 13) bits followed by a simple negation if k is odd. 

 

2.1.3 Elliptic curve cryptography using Edwards curve. The main 

operation in ECC is scalar point multiplication, i.e., computing s · P for an integer s 

and a point P on the elliptic curve. ECC scalar point multiplication involves 

performing several ECC point addition and doubling operations. To achieve ECC point 

multiplication, the binary method (Menezes et al., 1996) can be used, where the bits 

of the scalar s are scanned one bit at a time starting with the most significant bit, and 

for each scanned bit, a point doubling operation is performed, in addition to a point 

addition operation if the scanned bit is 1. However, the binary method is both 

inefficient and vulnerable against simple power analysis (P. C. Kocher, 1996). As an 

alternative to the binary method, and in order to help mitigate its drawbacks, the NAF4 

and Comb methods can be used for ECC scalar point multiplication of random and 

fixed points, respectively. NAF4 and Comb require computing a significantly reduced 

number point additions and doublings compared to the binary method (Koblitz et al., 

2004). 

Edwards curves, proposed in (Edwards, 2007), are a new form for elliptic curves 

and defined by the following equation: 

 

 𝑥2 + 𝑦2 =  𝑐2(1 + 𝑑𝑥2𝑦2) (7) 

 

 

The ECC point addition of the two distinct points P1 and P2 on an Edwards curve 

is computed as 

 

 𝑃3(𝑥3, 𝑦3) =  𝑃1(𝑥1, 𝑦1) +  𝑃2(𝑥2, 𝑦2) ,   

𝑤ℎ𝑒𝑟𝑒  𝑥3 =  
𝑥1𝑦2 + 𝑦1𝑥2

𝑐(1 + 𝑑𝑥1𝑥2𝑦1𝑦2)
  𝑎𝑛𝑑 𝑦3 =  

𝑦1𝑦2 − 𝑥1𝑥2

𝑐(1 − 𝑑𝑥1𝑥2𝑦1𝑦2)
  

(8) 

 

 

The ECC point doubling operation on the point P1(x1, y1) on an Edwards curve 

is computed as 
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 𝑃2(𝑥2, 𝑦2) =  2. 𝑃1(𝑥1, 𝑦1) ,  

𝑤ℎ𝑒𝑟𝑒  𝑥2 =  
2𝑥1𝑦1𝑐

𝑥1
2 + 𝑦1

2   𝑎𝑛𝑑 𝑦2 =  
(𝑦1

2 − 𝑥1
2)𝑐

2𝑐2 − (𝑥1
2 + 𝑦1

2)
  

(9) 

 

 

The above ECC point operations can be achieved in projective coordinates 

(Blake et al., 1999; Enge, 1999; Koblitz et al., 2004) to avoid costly inversions. For 

𝑥2 + 𝑦2 =  𝑐2(1 + 𝑑𝑥2𝑦2), with c = 1, d random and d · c4 ≠ 1, the formulae for 

ECC point doubling and addition in projective coordinates over prime fields are given 

in Algorithms 5 and 6, respectively, (Bernstein & Lange, 2007). 
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2.2 Our ECC Implementations  
 

We implemented ECC and the required arithmetic algorithms on MSP430,  low-

power 16-bit microcontrollers typically used in WSN applications. As our 

development environment we used Ingenjörsfirman Anders Rundgren (IAR) 

Embedded Workbench. We coded our implementation using mostly the assembly 

language, rather than the C language. Because even when we configured the 

optimization settings of the C compiler for high speed, the resulting code was still 

slow. For instance, when we coded in C, one word multiplication took around 130 clock 

cycles (without hardware multiplier support). Whereas, we realized the same operation 

with an assembly subroutine, and it executed in only 93 clock cycles. Furthermore, when 

the C language is used, the C compiler optimizes a word multiplication operation by taking 

into account the values of the operands, resulting in varying execution times for different 

operand values. This would make a C code vulnerable against side-channel attacks. By 

using the assembly language, we were able to write a word multiplication subroutine that 

is both faster and constant-time. Furthermore, many of the word operations required in 
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Algorithm 1 can be achieved more efficiently by using the assembly language. For 

instance, a bitwise rotation operation in GF (213 − 1), as required in Algorithm 1, can be 

implemented faster by using assembly instructions such as the swap byte instruction, 

which are not directly accessible using the C language. 

 

2.2.1 Field arithmetic optimizations. The read and write instructions, for 

accessing memory, have a significant impact on the efficiency of arithmetic operations. 

MSP430 has a reduced instruction set computing architecture with only 27 instructions 

and 7 addressing modes. The addressing mode of an instruction determines its execution 

time. An instruction takes less clock cycles to execute if the register addressing mode is 

used; however, there are only 12 general purpose registers available on MSP430. We used 

these 12 registers for storing our operands as much as possible. By storing frequently used 

constants in these registers, we were able to eliminate the extra clock cycles.  

 

2.2.1.1 Addition and subtraction. In our ECC implementation GF (213 − 1) 

addition is the most frequently used operation. Note that subtraction in GF (213 − 1) is 

similar to addition, with the exception of an additional XOR instruction applied to flip the 

bits of the subtracted operand. Hence, the cost of subtraction is only 1 clock cycle more 

than addition. We allocated two registers to store constant values for masking and 

checking the most significant bit of the operands during these operations. We realized 

GF(213 − 1) addition and subtraction in four and five clock cycles, respectively, as 

described with Assembly Code 1 and Assembly Code 2 (Gulen & Baktir, 2016). 
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2.2.1.1 Modular multiplication. Efficiency of the modular multiplication over 

GF (213 − 1) directly influences the efficiency of multiplications in GF (213− 1)13. In 

many embedded applications, there are limitations on power consumption and hence, 

energy efficiency, in addition to timing performance, is an important criterion. For 

power efficiency, we performed multiplication in GF (213 − 1) without using hardware 

multiplier support. We computed intermediary 26-bit product in GF (213 − 1) 

multiplication in a bit-serial fashion by performing a series of additions, as described 

with Assembly Code 3, partially. The Assembly Code 3 shows scanning only 2 bits of 

the operand; however, it is executed repeatedly for all 13 bits, in the original code 

(Gulen & Baktir, 2016). Here, all the bits of one operand are scanned through, and if 

the scanned bit is 1, the other operand is added to the partial product, and then, the 

partial product is shifted to the left. We perform the modular reduction operation after 

the 26-bit integer product is computed. Our implementation of GF (213 − 1) 

multiplication is a constant time implementation and avoids side-channel attacks by 

executing additions with 0 to equate clock cycles while scanning bits and branching 

accordingly. Our GF (213 − 1) multiplication code takes 105 clock cycles to execute, 

where 93 cycles are spent for integer multiplication and 12 cycles for modular 

reduction.  
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2.2.1.2 Bitwise rotations. Since large number of bitwise rotations are performed 

over GF (213 − 1) elements in Algorithm 1, we optimized this operation. We frequently 

made use of the arithmetic shift and shift with carry instructions which both execute 

in a single clock cycle. We also used the set bit, test bit, and swap byte instructions to 

realize rotations by spending the minimal number of clock cycles. We pursued various 

strategies to reduce the number of required clock cycles for rotations by different 

numbers of bits. We carried out 1-bit left-rotation by checking the most significant bit 

of the operand and then shifting it to the left through carry. Here, we performed a mask 

operation to move the carry bit into the least significant bit position. The 1-bit left-

rotation operation, shown in Figure 1 and given with Assembly Code 4 is 

accomplished in three clock cycles (Gulen & Baktir, 2016). We performed 2,3 and 4-

bit left-rotations by repeated 1-bit left rotations. For rotations by more than 4 bits, we 

utilized the swap byte instruction and exchanged the low and high bytes of the 13-bit 

operand, as shown in Figure 2. We optimized 5,6,7,8,9, and 10-bit left-rotations 

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/SCN%20DFT%20Paper%202016.docx%23_bookmark8
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through the use of the swap byte instruction and mask/store operations. For rotations 

by different numbers of bits, we reordered and/or modified our code to achieve the 

best cycle time in each case. Exemplarily, we give Assembly Code 5 for our 

implementation of 6-bit left-rotation, which takes nine clock cycles. We achieved 1-

bit right-rotation by shifting the least significant bit of the operand to the carry flag and 

then setting the 13th bit of the operand if the carry flag is set. We achieved 12-bit left-

rotation through 1-bit right rotation, as implemented with Assembly Code 6. Finally, 

we achieved 11-bit left-rotation by performing two 12-bit left-rotations. 

 

 

Figure 1. 1-bit left rotation (Gulen & Baktir, 2016). 

 

 

 

 

Figure 2. Swap byte instruction (Gulen & Baktir, 2016). 
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2.2.2 Point arithmetic optimizations. We improve Algorithms 5 and 6 by 

taking advantage of FFT based multiplication and squaring operations. Our improved 

algorithms are given in Algorithms 7 and 8 (Gulen & Baktir, 2020; Gülen & Baktir, 

2022).  

Algorithm 7 is a reordered and optimized version of Algorithm 5. It takes advantage 

of FFT based finite field multiplication and squaring computations. In line1 of the 

algorithm, the FFTs of X1 and Y1 are computed, and then added in the frequency 

domain to find the FFT of R1 = X1 + Y1. The computed FFTs of X1, Y1 and R1 are stored. 

The stored frequency domain representations of X1, Y1 and R1 are used in lines 2 − 4 

(marked bold) for the three finite field squarings. Please note that for these three finite 

field squarings, a total number of only two forward FFT computations are performed, 

i.e., FFT(X1) and FFT(Y1) in line 1, instead of three as required in Algorithm 2. 

Furthermore, in line 10, the computed FFT of Z1 is stored and reused in line 11 (marked 

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark5
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bold). Similarly, in line 11, the computed FFT of R2 is stored and reused in line 12 

(marked bold). Please note that each time the stored result of an FFT computation is 

reused, a forward FFT computation is saved in Algorithm 2. 

 

 

 

 

 

Algorithm 8 is a reordered and optimized version of Algorithm 6. It takes 

advantage of FFT based finite field multiplication and squaring computations. In lines 

2 − 3 of the algorithm, the FFTs of  X1, X2, Y1 and Y2 are computed and stored. Only 

two addition operations are performed in the frequency domain on the stored FFTs to 

readily obtain the FFTs of R1 = X1 + Y1 and R2 = X2 + Y2. The FFTs of R1 and R2 are 

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark1
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also stored. The stored FFTs of R1, R2, X1, X2, Y1 and Y2 are readily used in lines 4 − 6 

(denoted with bold color) for the three finite field multiplication computations. Thus, 

for three finite field multiplications, a total number of only four forward FFT 

computations are performed, instead of six as required in Algorithm 2. Furthermore, 

in lines 11 − 13 of the algorithm, the stored FFTs of Y1, X1 and Z1 are reused (marked 

bold). Similarly, in line 16, the FFT of Z1 is computed and stored. The stored FFT of 

Z1 is reused in line 17 (marked bold). Likewise, in line 17, the FFT of X1 is computed 

and stored, and reused in line 18 (marked bold).  

 

2.3 Performance Evaluation and Comparison  

 

We give in Table 1 the timings for our FFT based multiplication and squaring 

operations in GF ((213 − 1)13) as well as the timings in (Gulen & Baktir, 2016) for DFT 

Montgomery multiplication. While DFT based Montgomery multiplication in GF ((213 

− 1)13) takes 1.18 ms, our FFT based multiplication implementation takes 1.3 ms which 

is 10.2% slower. However, our FFT based squaring implementation takes only 1.06 

ms while the squaring operation using DFT based Montgomery multiplication takes 

the same time as multiplication, i.e. 1.18 ms. Hence, FFT based squaring is shown to 

be 11.3% faster than squaring using DFT Montgomery multiplication (GULEN & 

BAKTIR, 2022). 

We implement ECC scalar point multiplication, the main operation for 

encryption/decryption in ECC, using the NAF4 method for multiplication of random 

points and the Comb method for multiplication of fixed points. We achieve ECC scalar 

point multiplication in 1.74 s for random points and 0.88 s for fixed points.  In (Gulen 

& Baktir, 2016), the same operation, in the same setting but by using DFT 

Montgomery multiplication, was achieved in 1.97 s and 0.98 s for random and fixed 

points. As given with Table 1, this work achieves 11% and 10% better timings for 

random and fixed point multiplication operations, respectively. 

A summary of our timing results for ECC point multiplication and the underlying 

elliptic curve point operations and arithmetic operations, as well as the timing results 

of (Gulen & Baktir, 2016), are given in Table 1. Our ECC implementation utilizes FFT 

based multiplication (Algorithms 2, 3 and 4) for squaring and multiplication, whereas  

(Gulen & Baktir, 2016) uses DFT based Montgomery multiplication (Algorithm 1). 
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Table 1.  

Timings for ECC with DFT Based Montgomery Multiplication vs. FFT Based 

Multiplication. 

 

 

Note that while DFT based Montgomery multiplication is faster than FFT based 

multiplication, FFT based squaring is even faster. In our ECC random point 

multiplication implementation over GF ((213 − 1)13) with NAF4 , significantly more 

point doublings than point additions are performed. On average around 37 point 

additions and 170 point doublings are performed (Koblitz et al., 2004). Hence, the 

performance of ECC point doubling is the determining factor in the performance of 

ECC random point multiplication. In our ECC point doubling implementation 

(Algorithm 7), four squarings and three multiplications in GF ((213 − 1)13) are 

performed. Since squaring with FFT based multiplication (Algorithms 2, 3 and 4) is 

faster than squaring with DFT based Montgomery multiplication (Algorithm 1), ECC 

random point multiplication is faster when FFT based multiplication is used. 

Similarly, in our ECC fixed point multiplication implementation over 

GF((213−1)13), around 42 point doublings and 39 point additions are performed 

(Koblitz et al., 2004).  Hence, the performance of ECC point doubling is the 

determining factor in the performance of ECC random point multiplication. Since 

more squarings than multiplications are performed in ECC point doubling (Algorithm 

5) and squaring with FFT based multiplication (Algorithms 2, 3 and 4) is faster than 
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squaring with DFT based Montgomery multiplication (Algorithm 1), our ECC fixed 

point multiplication implementation with FFT based multiplication is faster than the 

previous work which uses DFT Montgomery multiplication. 

 

2.3.1 Power consumption comparison of our works. We investigate the 

energy efficiency of our implementation and compare it with the previous 

implementations. In order to obtain energy measurements, we run our codes on the 

experimenter board MSP-EXP430FG4618 which has an MSP430FG4618 

microcontroller onboard (Texas Instruments, 2018). Since our ECC implementation is 

for the basic 1-series MSP430F1611, we can run our implementation on the 

experimenter board without changing our code. Using the flash emulation tool (MSP-

FET) (Texas Instruments, 2020)and the Power Log feature of the IAR Embedded 

Workbench development tool, we are able to obtain energy measurements (IAR 

Systems, 2020). 

The average power consumption for our ECC random point multiplication 

implementation in this work is 17.3 mW without using the hardware multiplier. The 

work in (Gulen & Baktir, 2020) uses the hardware multiplier and achieves the same 

operation with a power consumption figure of 17.66 mW. The average power 

consumption for our ECC fixed point multiplication implementation in this work is 

17.5 mW without using the hardware multiplier. The work in (Gulen & Baktir, 2020) 

uses the hardware multiplier and achieves the same operation with a power 

consumption figure of 17.88 mW. For ECC random and fixed point multiplication 

operations, we achieve around 2% improved power efficiency. The previous work in 

(Gulen & Baktir, 2020), which utilizes the hardware multiplier unit of the MSP430 

microcontroller, has faster timings on the experimental board, i.e. 1.35 s and 0.64 s for 

random and fixed point multiplication, respectively. Since these execution times are 

less than the execution times in the proposed implementation, the total energy 

consumptions are also lower. The total energy consumptions for the implementations 

in (Gulen & Baktir, 2020) are 23.84 mWs and 11.44 mWs for random and fixed point 

multiplication, respectively. While these total energy consumption figures are better 

than those of the proposed implementation, the average power consumption figures for 

the proposed implementation are better. Note that we run our ECC implementations 

on the MSP430FG4618 microcontroller without using its hardware multiplier and 
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obtain our energy/power measurements on it. While this helps us gain power/energy 

efficiency in terms of dynamic power usage, the microcontroller still uses static power 

due to its onboard hardware multiplier. We could only use this microcontroller for 

power/energy measurements because it is the microcontroller contained in the 

experimental board with the FET emulator which we use to obtain timing and 

power/energy measurements. We believe that better energy/power efficiency could be 

achieved on another version of MSP430, such as MSP430F2274 or MSP430G2955, 

which does not have a hardware multiplier. We would like to note that low-cost, low-

power MPS430 microcontroller versions do not have a hardware multiplier unit. For 

instance, from the low-power 1-series MSP430 versions, only the microcontrollers 

with the device names MSP430x14x and MSP430x16x have a hardware multiplier 

unit. Whereas, other low-power 1-series MSP430 versions, such as MSP430F1122, 

MSP430F1232, MSP430F135 and MSP430F155, do not have an onboard hardware 

multiplier (Texas Instruments, 2004). Among other series of MSP430 

microcontrollers, there are also models without a hardware multiplier unit. One such 

example is MSP430F2274 which is equipped in the Texas Instrument ez430-RF2500 

wireless module that is designed to be deployed in wireless sensor network 

applications (Texas Instruments, 2015). Unlike the ECC implementation in (Gulen & 

Baktir, 2020), our ECC implementation, which does not require a hardware multiplier, 

has the additional advantage of being able to run efficiently also on these extremely 

constrained microcontrollers without a hardware multiplier. The main motivation for 

using a processor without a hardware multiplier would be to increase the battery 

lifetime or for applications where sensor nodes harvest their own energy and need to 

operate under extremely low power constraints. 

We also compare our work against the previous work in (Gulen & Baktir, 2016) 

in terms of power efficiency. Note that both works implement ECC without using the 

hardware multiplier. This work uses the FFT (Algorithm 2), whereas the work in 

(Gulen & Baktir, 2016) uses DFT Montgomery multiplication (Algorithm 1) for finite 

field multiplication. Our work achieves ECC scalar point multiplication with a power 

consumption figure of 17.3 mW for random points and 17.5 mW for fixed points. In 

(Gulen & Baktir, 2016), the same operation, in the same setting but by using DFT 

Montgomery multiplication, was achieved with a power consumption figure of 18.2 

mW for both random and fixed points. Hence, this work achieves 5% and 4% better 
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power efficiency for random and fixed point multiplication, respectively. Furthermore, 

our work achieves ECC scalar point multiplication with an energy consumption of 

29.81 mWs for random points and 15.27 mWs for fixed points. In (Gulen & Baktir, 

2016), the same operation, in the same setting but by using DFT Montgomery 

multiplication, was achieved with the energy consumption of 34.97 mWs and 17.36 

mWs for random and fixed points. Hence, this work achieves 15% and 12% better 

energy efficiency for random and fixed point multiplication, respectively. A summary 

of all the energy/power measurements for our implementations of ECC point 

multiplication and the underlying elliptic curve point operations and arithmetic 

operations, as well as the energy/power measurements for the ECC implementation in 

(Gulen & Baktir, 2016), are given in Table 2. 

 

 

Table 2.  

Power Measurements for ECC with DFT Based Montgomery Multiplication vs. FFT 

Based Multiplication. 

 

 

2.3.2 Performance comparison with others’ works. In Table 3, we present 

our timings for ECC random point multiplication on the MSP430F1611 as well as the 

timings of the related work in the literature on the same microcontroller. Liu et al.’s 

work, which uses a 159-bit Montgomery curve, presents the fastest timing for random 

point multiplication on the MSP430 microcontroller (Z. Liu et al., 2010). They use the 

Montgomery ladder method and achieve random point multiplication in 3,460,000 

clock cycles which is equivalent to 0.48 s at 8 MHz clock frequency. Gouvêa et al.’s 

work, which uses the 160-bit curve secp160r1 that has a slightly smaller elliptic curve 
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group order than ours, achieves ECC random point multiplication in 0.58 s (Gouvêa et 

al., 2012). Our previous ECC implementation over GF ((213-1)13) on the MSP430F149, 

a similar microcontroller to the MSP430F1611, achieves random point multiplication 

in 1.55 s (Gülen & Baktir, 2014). Please note that our ECC random point multiplication 

implementation in this work, which exploits the NTT-based finite field 

multiplication/squaring and the FFT, is more than 18% faster than our previous 

implementation on the same elliptic curve. Wang et al.’s implementation of elliptic 

curve random point multiplication over a 160-bit elliptic curve has a timing value of 

3.51 s which is significantly worse than our timing result (H. Wang et al., 2006). In a 

later work, the same authors improve their timing to 1.60 s; however, their new 

implementation is still 22% slower than our work (H. Wang & Li, 2006).  

 

Table 3.  

Timings for ECC Random Point Multiplication. 
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Please note that the timing figure for our ECC implementation is for a 169-bit elliptic 

curve with a higher security level, whereas the others’ works use the smaller ordered 

159-bit and 160-bit elliptic curves. 

 In Table 4, we present our timings for ECC fixed point multiplication on the 

MSP430F1611 as well as the timings of the related work in the literature on the same 

microcontroller. Liu et al.’s work, which uses a 159-bit twisted Edwards curve, 

presents the fastest timing for fixed point multiplication on the MSP430 

microcontroller (Z. Liu et al., 2010).  

 

Table 4.  

Timings for ECC Fixed Point Multiplication. 
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They use the Comb method and twisted Edwards curves to achieve fixed point 

multiplication in 1,920,000 clock cycles which is equivalent to 0.24 s at 8 MHz clock 

frequency. Gouvêa et al.’s work, which uses the 160-bit elliptic curve secp160r1 and 

the 4NAF method, achieves ECC fixed point multiplication in 0.52 s (Gouvêa et al., 

2012). Liu et al.’s timing for 160-bit ECDSA signature generation (considered to have 

around the same timing value as elliptic curve fixed point multiplication) is 1.58 s, 

which is twice slower than our implementation that uses a larger 169-bit elliptic curve. 

Wang et al.’s work on the same microcontroller achieves elliptic curve fixed point 

multiplication in 1.44 s over a 160-bit elliptic curve. Wenger’s implementation of 

elliptic curve fixed point multiplication on a 160-bit elliptic curve takes 8,779,931 

clock cycles which is equivalent to 1.09 s at 8 MHz clock frequency (Wenger & 

Werner, 2011). Szczechowiak et al.’s work achieves elliptic curve fixed point 

multiplication in 0.72 s using a 160-bit elliptic curve over a prime field (Szczechowiak 

et al., 2008) and in 1.04 s using a 163-bit elliptic curve over a binary field 

(Szczechowiak et al., 2008). Our timing for elliptic curve fixed point multiplication 

over a larger ordered 169-bit elliptic curve is slightly better than their results. Please 

note that the timing figure for our ECC implementation is for a 169-bit elliptic curve 

with a higher security level, whereas the others’ works use the smaller ordered 159-

bit, 160-bit and 163-bit elliptic curves. 

 

2.4 Chapter Conclusion 

 

We implemented ECC on the MSP430 microcontrollers with and without using 

hardware multiplier support and using number theoretic transform based finite field 

arithmetic. We showed that ECC can be run efficiently on extremely constrained 

devices when FFT based squaring and multiplication operations are used. Since FFT 

based squaring and multiplication require dramatically fewer word multiplications, we 

discarded the hardware multiplier supported by MSP430 microcontrollers. Instead of 

utilizing the hardware multiplier, we realized a fixed-time word multiplication 

subroutine with addition and shift operations. Thus, our ECC implementations are also 

suitable for power-critical applications. We realized ECC point multiplication in 0.89 

s and 1.74 s for fixed and random points, which are 10% and 13% faster, respectively, 

in comparison with the previous work in (Gulen & Baktir, 2016). Moreover, the total 



30  

energy consumption of our ECC implementation for fixed and random point 

multiplication is 12% and 15% less than the previous implementation. In our proof-of-

concept implementation, we realized ECC without using the hardware multiplier on 

the MSP430FG4618 microcontroller and obtained energy/power measurements on it. 

We achieved power/energy savings by not using the available onboard hardware 

multiplier and thus by eliminating dynamic power consumption due to the use of the 

hardware multiplier. We used this microcontroller because it is the microcontroller 

contained in the FET emulator which we use to obtain our timing and energy/power 

measurements. By using the MSP430 versions MSP430F2274, MSP430G2955, 

MSP430F1122, MSP430F1232, MSP430F135 or MSP430F155, which do not contain 

an onboard hardware multiplier, static power/energy consumption due to the hardware 

multiplier can also be eliminated, and thus better power/energy efficiency could be 

achieved by using our proposed algorithms and implementations.  
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Chapter 3                             

RSA Cryptography for Wireless Sensor Nodes 

 

 

RSA cryptosystem, which is the first general-purpose PKC algorithm, is by far 

also the most widely deployed one (Dimitrov et al., 2022; Fotohi et al., 2020; Fu et al., 

2021; Ganbaatar et al., 2021; Jiao et al., 2020; Karim et al., 2021; Lin et al., 2018; 

Medha Nag et al., 2020; Ochoa-Jimenez et al., 2020; Pavani & Sriramya, 2021; Vollala 

et al., 2017; Wahab et al., 2021; H. Yu & Kim, 2020). Nevertheless, memory and CPU 

speed limitations for low-end microcontrollers make it challenging to implement RSA 

on constrained microcontrollers used in WSNs and IoT systems (Z. Liu et al., 2010). 

For the 80-bit security level, RSA should use a 1024-bit key. However, as the 80-bit 

security level is considered out-of-date for most applications, the 112-bit security 

level, and hence the use of at least a 2048-bit key, is suggested for RSA (Barker, 2020). 

While the same security level is reached with ECC utilizing a shorter key and hence 

smaller computational load (Gulen & Baktir, 2020; Wenger & Werner, 2011), RSA is 

still the most widespread public-key cryptographic algorithm. RSA has some 

advantages over ECC. One advantage is signature verification with RSA is faster. 

Furthermore, RSA is more mature and more widely adopted, especially in Internet 

applications. Any WSN or IoT application that uses RSA would have a better chance 

of being compatible with existing infrastructures. Finally, while the prospect of 

building a general-purpose quantum computer would undermine the security of both 

RSA and ECC, ECC has also been the suspect of a more recent threat which is the 

potential back doors due to its parameter-based nature as revealed by Edward Snowden 

(Koblitz & Menezes, 2016). Hence, RSA clearly has some strong points against ECC. 

The National Institute of Standards Technology (NIST) recommends the use of 

at least a 2048-bit long RSA key to achieve 112-bit security (Barker, 2020). 

Nevertheless, to the best of our knowledge, there is no existing study that efficiently 

implements RSA with a 2048-bit or longer key on a constrained microcontroller such 

as MSP430 and ATmega. Texas Instrument’s low-cost and low-power family of 

MP430 microcontrollers are some of the most common microcontrollers which are 

used in wireless sensor nodes. For instance, the well-known sensor nodes Telos, Tmote 

and BEAN use the MSP430F149 microcontroller; moreover, the TelosB, Tmote Sky, 

KMote and SHIMMER sensor nodes use the MSP430F1611 microcontroller (Karray 



32  

et al., 2018). Similarly, the sensor nodes WSN1120L, WSN1120CL, WSN1101ANL 

and WSN1101ACL of WiSense use the MSP430G2955 microcontroller (WiSense 

Technologies, 2019). 

 

3.1 Background  

 

The RSA public key cryptosystem (Rivest et al., 1978), introduced by Rivest, 

Shamir and Adleman in 1978, is the first ever and still most widely used general 

purpose public key cryptographic algorithm. In RSA, encryption and decryption are 

described by the below equations where x is the plaintext, y is the ciphertext, e is the 

public encryption key, N is part of the public key and d is the private (decryption) key. 

 

 𝑅𝑆𝐴 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ∶ 𝑦 =  𝑥𝑒 𝑚𝑜𝑑 𝑁 (10) 

 

 

 𝑅𝑆𝐴 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ∶ 𝑥 =  𝑦𝑑 𝑚𝑜𝑑 𝑁 (11) 

 

 

The modulus N, which is used for performing modular arithmetic, is the product 

of two large primes, denoted with p and q (Rivest et al., 1978). Furthermore, there is 

the following relationship between e and d: 

 

 𝑒 =  𝑑−1 𝑚𝑜𝑑 𝜑(𝑁) (12) 

 

 

where 𝜑(𝑁), the Euler’s Phi function, has the following value:  

 

 𝜑(𝑁) = (𝑝 − 1) × (𝑞 − 1) (13) 

 

 

If the public key N can be factorized into p and q, it would be possible to compute 

𝜑(𝑁) = (𝑝 − 1) × (𝑛 − 1) and obtain the secret decryption key d by computing 

𝑒−1 𝑚𝑜𝑑 𝜑(𝑁). Hence, the security of RSA relies on the difficulty of factorizing the 
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modulus N. If N is large enough, it cannot be factorized to obtain d and thus RSA 

cannot be broken. 

 

3.1.1 Sliding Window Method. The exponentiation operation for RSA 

decryption can be achieved by using the basic binary scan method (Menezes et al., 

1996). This method scans the bits of the exponent one bit at a time starting with the 

most significant non-zero bit. For the most significant non-zero bit, the intermediary 

result is initially set to the value of the base. Then, for each new bit scanned, the 

intermediary result is updated with its square. If the newly scanned bit is 1, then the 

intermediary result is further updated by multiplying it with the base value. All 

arithmetic operations, i.e., multiply and square, are performed in modulo the RSA 

modulus N.  
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In this method, the number of square operations conducted is equal to one less than the 

number of bits in the exponent. The number of multiply operations is equal to one less 

than the Hamming weight of the exponent, which, on average, is half the bit-length of 

the exponent minus 1. Hence, for a t-bit RSA decryption operation, basic binary scan 

method performs  𝑡 − 1 modular squarings and on average (𝑡 − 1)/2 modular 

multiplications. 

The sliding window method for exponentiation improves upon the binary scan 

method by reducing the number of required modular multiplications. In Algorithm 9 

(Gulen et al., 2019), the sliding window method is given for a 4-bit window. The base 

and the exponent are represented with b and e, respectively. 

 

3.1.2 Chinese Remainder Theorem. Applying the CRT is a common 

method used to speed up RSA decryption (Menezes et al., 1996). Using the CRT, for 

any integer value y, y mod N can be uniquely represented as (yp, yq) where yp and yq 

are the residues of y modulo the relatively prime numbers p and q, respectively. Note 

that the CRT representation can be used in RSA decryption due to the fact that the 

RSA modulus N is the product of two prime numbers. The normal integer 

representation of y mod N can be recovered from its CRT representation using the 

formula 

 

 𝑦 = (𝑞 × 𝑐𝑝) × 𝑦𝑝 + (𝑝 × 𝑐𝑞) × 𝑦𝑞𝑚𝑜𝑑 𝑁 , (14) 

 

 

where 

 

 

 

𝑐𝑝 =  𝑞−1 𝑚𝑜𝑑 𝑝 , 𝑐𝑞 =  𝑝−1 𝑚𝑜𝑑 𝑞 .   (15) 

 

 

Modular multiplication, as it takes place in RSA decryption, can be done in the 

CRT representation using the moduli p and q, instead of the usual RSA modulus N. 

Furthermore, repeated multiplications modulo N, as it takes place in RSA decryption, 

can be performed in the CRT representation and the final result can be converted back 

to the normal integer representation. Hence, the RSA decryption operation, i.e., the 
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computation of 𝑥 =  𝑦𝑑 𝑚𝑜𝑑 𝑁 can be achieved using the CRT as 

 

 𝑥𝑝 = 𝑦𝑝

𝑑𝑝𝑚𝑜𝑑 𝑝 , (16) 

 

 

 𝑥𝑞 = 𝑦𝑞

𝑑𝑞𝑚𝑜𝑑 𝑞 , (17) 

 

 

 𝑥 = (𝑞 × 𝑐𝑝) × 𝑥𝑝 + (𝑝 ×  𝑐𝑞) × 𝑥𝑞 𝑚𝑜𝑑 𝑁  (18) 

 

 

where 𝑑𝑝 = 𝑑 𝑚𝑜𝑑 (𝑝 − 1) and 𝑑𝑞 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1). Note that the computations of  

𝑥𝑝 =  𝑦𝑝
𝑑 and 𝑥𝑞 =  𝑦𝑞

𝑑 are simplified as 𝑦𝑝

𝑑𝑝
 and 𝑦𝑞

𝑑𝑞
, respectively, by taking 

advantage of the Euler’s theorem which states that 𝑦𝑝
𝑑 = 𝑦𝑝

𝑑 𝑚𝑜𝑑 𝜑(𝑝)
 (𝑚𝑜𝑑 𝑝) and 

𝑦𝑞
𝑑 = 𝑦𝑞

𝑑 𝑚𝑜𝑑 𝜑(𝑝)
 (𝑚𝑜𝑑 𝑞). 

In the above RSA decryption operation using the CRT, the values 𝑑𝑝,  𝑑𝑞,  

𝑞 × 𝑐𝑝,  𝑝 × 𝑐𝑞,  𝑐𝑝 and 𝑐𝑞 can be precomputed. Furthermore, in (16) and (17), note 

that the bit-lengths of the operands that are exponentiated, as well as the exponents, 

are half their sizes in the normal RSA decryption without the CRT. Therefore, using 

the CRT reduces the overall timing of RSA decryption dramatically by a factor of up 

to four. 

 

3.1.3  Montgomery Multiplication. Since arithmetic is performed in 

modulo N for RSA encryption and decryption, the result of every multiplication 

operation needs to be reduced modulo N. The Montgomery multiplication algorithm 

(Montgomery, 1985), given in Algorithm 10 (Gulen et al., 2019), can be used to 

achieve multiplication modulo N efficiently. For multiplying the two integers A and B 

with the algorithm, they should be converted into their Montgomery forms as �̅� and 

�̅�, where �̅� = 𝐴 × 𝑟 𝑚𝑜𝑑 𝑁 and �̅� = 𝐵 × 𝑟 𝑚𝑜𝑑 𝑁. Here the constant r can be picked 

to be any integer that is greater than and relatively prime with N. For purposes of 

efficiency, r can be chosen to be the smallest power of 2 that is greater than N. 

Montgomery multiplication of �̅�  and �̅�  produces �̅� × �̅� × 𝑟−1 𝑚𝑜𝑑 𝑁 which is the 
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Montgomery form �̅� of the product 𝑍 =  𝐴 × 𝐵 𝑚𝑜𝑑 𝑁. Thus, Montgomery 

multiplication preserves the Montgomery form and repeated multiplications, such as 

the multiplications that make up an exponentiation, can be performed using 

Montgomery multiplication. 

The arithmetic operations performed for achieving Montgomery multiplication 

are integer multiplication, addition and subtraction. Subtraction is computed only 

when the intermediary result 𝑇1 is larger than or equal to N. The cost of the division 

operation by 2𝑛, on line 3 of Algorithm 10, can be ignored since the first n bits of 𝑇1 

are zeroes and the higher bits readily give the result. 

 

 

 

3.1.4  Subtractive Karatsuba-Ofman Technique. Multiprecision integer 

multiplication, which is performed three times in Montgomery multiplication, is the 

core arithmetic operation in RSA. Therefore, achieving fast multiprecision integer 

multiplication is crucial for an efficient RSA implementation. Using the classical grade 

school method, multiplication of large integers is typically achieved in terms of a large 

number of word additions and multiplications. The Karatsuba-Ofman technique is a 

divide-and-conquer method that trades computationally expensive multiplications 

with simple additions (Karatsuba, 1963). An illustration of Karatsuba-Ofman for 

multiplying the n-bit integers A and B is given in Figure 3. As given with Figure 3, in 

Karatsuba-Ofman, A and B are bisected to their higher and lower ordered parts, 
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denoted with 𝐴𝐻, 𝐴𝐿 and 𝐵𝐻, 𝐵𝐿, respectively, and arithmetic is performed over these 

operand halves. Thus, an n-bit multiplication is achieved with roughly three 
𝑛

2
 -bit 

multiplications and a number of additions/subtractions. Since multiplication is more 

complex and takes more time compared to addition/subtraction, Karatsuba-Ofman 

ensures faster overall multiplication. Note that while the classical grade school method 

requires performing four 
𝑛

2
 -bit multiplications to achieve an n-bit multiplication, 

Karatsuba-Ofman requires only three. When applied recursively, Karatsuba-Ofman 

significantly reduces the complexity of multiprecision multiplication from O(𝑚2) to 

O(𝑚log2 3) for the multiplication of two m word integers. 

 

 

Figure 3. Karatsuba-Ofman multiplication. 

 

 In the Karatsuba-Ofman technique, since additions may generate carry bits, the 

multiplication operation (𝐴𝐻 + 𝐴𝐿) ∙ (𝐵𝐻 + 𝐵𝐿) is not always fixed in size. When the 

conditional branch operation is avoided in this multiplication computation to prevent 

timing attacks, the operands (𝐴𝐻 + 𝐴𝐿) and (𝐵𝐻 + 𝐵𝐿) are considered with their extra 

carry bit even when a carry bit is not generated after the addition. This causes overhead 

in the multiplication computation. This overhead can be eliminated by using the 
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subtractive Karatsuba-Ofman technique, a slightly optimized form of the original 

Karatsuba-Ofman (Hinterwälder et al., 2015; Hutter & Schwabe, 2015). With this 

approach, the two halves of the integers to be multiplied are subtracted from each 

other, instead of being added. Figure 4 shows the operations that take place in 

subtractive Karatsuba-Ofman. 

 

 

Figure 4. Subtractive Karatsuba-Ofman multiplication. 

 

3.2 Our RSA Implementation on MSP430  

 

We implement 2048-bit RSA on three target MSP430 microcontrollers, namely 

MSP430F1611, MS430F2618 and MSP430F5529 (Texas Instruments, 2004). Since 

these three generations of MSP430 support the same instruction set, we are able to use 

the same code for the microcontrollers with little modifications. However, there are 

some differences between our target MSP430 microcontrollers. For instance, 

MSP430F5529 has a 32 × 32 multiplier whereas MSP430F2618 and MSP430F1611 

have a 16 × 16 multiplier, and hence word multiplications need to be handled 

differently. Other than the size of the hardware multiplier, the memory write 

instruction takes different numbers of clock cycles on different versions of MSP430. 
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The memory write instruction on MSP430F1611 takes 4 clock cycles while the same 

instruction takes 3 clock cycles on MSP430F2618 and MDP430F5529. Another 

difference between the microcontrollers is in their memory capacities and their 

maximum CPU clock frequencies. MSP430F5529, MSP430F2618 and MSP430F1611 

have the memory sizes of 128 kB, 116 kB and 48 kB, and the maximum CPU clock 

frequencies of 25 MHz, 16 MHz and 8 Mhz, respectively. We use the IAR Embedded 

Workbench development environment and test our code using its debugger and clock-

counter features. 

All the acceleration techniques described in Chapter 3.1 are applied in our 

implementations, namely CRT-based exponentiation, and 4-bit sliding window to 

accelerate RSA decryption, the small exponent 216 + 1 to accelerate RSA encryption, 

and subtractive Karatsuba-Ofman and Montgomery multiplication to accelerate both. 

For core arithmetic operations such as integer addition/subtraction and subtractive 

Karatsuba-Ofman, we write our codes in assembly to guarantee fast execution. 

In our assembly codes, we eliminate conditional branch and jump instructions to 

mitigate timing attacks. For MSP430F1611 and MS430F2618, we implement 2048-

bit integer multiplication by recursively utilizing subtractive Karatsuba-Ofman until 

the method does not accelerate the base integer multiplication any further. Here, the 

base integer multiplications, which are 64-bit multiplications, are implemented using 

the onboard 16×16 multiplier. For MSP430F5529 with a 32×32 multiplier, we 

recursively implement subtractive Karatsuba-Ofman until the 128-bit multiplications 

are reached at the base case of recursion. We observe that subtractive Karatsuba-

Ofman does not speed up 128-bit integer multiplication when the 32×32 multiplier is 

used for word multiplications. While we implement subtractive Karatsuba-Ofman 

recursively, our code is fully unrolled and thus there is no timing overhead due to 

recursive function calls. 

We optimize our integer arithmetic as much as we can, e.g., by storing frequently 

used operands in registers, to reduce memory read/write overheads and optimize our 

subtractive Karatsuba-Ofman code for the squaring operation. We explain our 

acceleration optimizations for 128-bit subtractive Karatsuba-Ofman by giving 

assembly code examples with MSP430 instructions in Chapter 3.2.1 and 3.2.2. 

The techniques which we use in our RSA decryption/encryption implementation 

are summarized in Figure 5. At the bottom of our implementation, fast integer 
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multiplication/squaring is achieved with the subtractive Karatsuba-Ofman and 

operand scanning methods which are used within Montgomery multiplication. 

Montgomery multiplication is used in CRT based modular exponentiation and in 

modular exponentiation with small public exponent. CRT-based modular 

exponentiation is used in RSA decryption and modular exponentiation with small 

public exponent is used in RSA encryption. Furthermore, in RSA decryption, message 

and key blinding techniques, which we describe in Chapter 3.2.4, are used to mitigate 

side-channel attacks and protect the private decryption key. Finally, the sliding 

window method is used for RSA decryption. 

 

 

Figure 5. Techniques used in the proposed RSA implementation according to 

their performance impact. 

 

3.2.1 Fixed time subtractive Karatsuba-Ofman Multiplication. At the 

bottom of our 2048-bit recursive subtractive Karatsuba-Ofman implementation on 

MSP430F1611 and MSP430F2618, we perform 128-bit subtractive Karatsuba-Ofman. 

Here, we explain the details of our 128-bit subtractive Karatsuba-Ofman 

implementation and the optimizations we use. We would like to note that we apply the 

same techniques at the higher levels of recursion in our 2048-bit recursive subtractive 

Karatsuba-Ofman implementation. As described in Figure 4, for performing 128-bit 

subtractive Karatsuba-Ofman, three 64-bit multiplications are performed, namely 𝐴𝐻 ∙

𝐵𝐻, (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿) and (𝐴𝐿 ∙ 𝐵𝐿). The advantage of subtractive Karatsuba-
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Ofman over normal Karatsuba-Ofman is that the multiplication operation (𝐴𝐻 − 𝐴𝐿) ∙

(𝐵𝐻 − 𝐵𝐿) is fixed in size since there is no possibility of a carry occurrence in the 

computations of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿), unlike in the additions (𝐴𝐻 + 𝐴𝐿) and 

(𝐵𝐻 + 𝐵𝐿) that take place in the original Karatsuba-Ofman method. The multiplication 

operation (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿) in subtractive Karatsuba- Ofman is performed over 

shorter operands and hence it is more efficient compared to the multiplication 

operation (𝐴𝐻 + 𝐴𝐿) ∙ (𝐵𝐻 + 𝐵𝐿) that takes place in the original Karatsuba-Ofman 

algorithm.  

We use the two’s complement representation to store the results of the 

subtractions (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿). We use an additional sign word that is set to 

0×FFFF or 0×0000 depending on whether the result of the subtraction is negative or 

positive. We denote the sign words for the results of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿) with 

SWA and SWB, respectively. In order to avoid timing attacks, we realize the 

subtractions (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿), as well as the multiplication (𝐴𝐻 − 𝐴𝐿) ∙

(𝐵𝐻 − 𝐵𝐿), in fixed execution time and without using branches, regardless of whether 

the result is positive or negative. We obtain and process the magnitudes of the results 

of the subtraction operations. In order to do this, we need to compute the two’s 

complement of the result if subtraction results in a negative number. We do this 

computation in fixed time, regardless of whether a subtraction results in a positive or 

a negative number, by XORing the sign word with all the remaining words of the result 

and then by adding the sign bit, as shown in Subroutines 1 and 2. Note that the sign 

words SWA and SWB will be either 0×FFFF or 0×0000, depending on whether the 

results of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿) are negative or positive, respectively. Hence, 

XORing (𝐴𝐻 − 𝐴𝐿) or (𝐵𝐻 − 𝐵𝐿) with its sign word and then adding the sign bit to the 

result would give us its two’s complement, and thus its magnitude, only if its sign word 

is 0×FFFF (it is initially negative). If (𝐴𝐻 − 𝐴𝐿) or (𝐵𝐻 − 𝐵𝐿)  is positive, and hence 

its sign word is 0×0000, this operation will not change its value which is already the 

positive magnitude. Note that, in Subroutines 1 and 2, the magnitudes of (𝐴𝐻 − 𝐴𝐿) 

and (𝐵𝐻 − 𝐵𝐿) are computed and stored in the arrays A[4 : 7] and B[4 : 7], and their 

sign words are stored in SWA and SWB, respectively. 
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We use the sign words of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿), stored in SWA and SWB, 

in the computation of the intermediary product −𝑇1 =  (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿) which 

can be positive or negative. By utilizing the sign words SWA and SWB, we compute 

−𝑇1 and add it to 𝑇2 =  𝐴𝐻 ∙  𝐵𝐻 and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿, as depicted in Figure 2. With 

Subroutine 3, we give our assembly code implementation for the computation of T0 + 

T2−T1 in 128-bit subtractive Karatsuba-Ofman. Here, firstly the computation of −T1 is 

achieved, and then it is added with 𝑇2 = 𝐴𝐻 ∙ 𝐵𝐻 and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿. Note that, in the 

beginning of Subroutine 3, the magnitudes of T2, T1 and T0 are stored in the memory 

arrays T2[0 : 7], T1[0 : 7] and T0[0 : 7], respectively. Remember that the sign words of 

𝐴𝐻 − 𝐴𝐿 and 𝐵𝐻 − 𝐵𝐿 are stored in SWA and SWB at this point. After the subroutine 

is executed, the result T2 + T0 − T1 is stored in the memory array T1[0:7] and the carry-

out bit is stored in SWA. 

As seen in Figure 4, the lower half of 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿 gives us the least significant 

64-bits of the result. To finalize 128-bit subtractive Karatsuba-Ofman multiplication, 

we add the upper half of T0 to the lower half of T2 + T0 − T1 which gives us the 

following 64-bits of the result. Finally, we add the generated carry bit and 𝑇2 = 𝐴𝐻 ∙

𝐵𝐻 to the upper half of T2 + T0 − T1 to generate the most significant 128-bits of the 

result. Subroutine 4 shows the assembly code for this summation operation where 𝑇2 =

𝐴𝐻 ∙ 𝐵𝐻 and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿 are stored in the memory arrays T2[0 : 7] and T0[0 : 7], 

respectively. Note that, we give with Subroutines 1 − 4 the assembly codes for 128-bit 

subtractive Karatsuba-Ofman. For 256-bit, 512-bit, 1024-bit and 2048-bit subtractive 

Karatsuba, we expand our codes by applying the same techniques recursively and in 

an unrolled fashion. 
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3.2.2 Fixed time subtractive Karatsuba-Ofman Squaring. We perform 

the modular exponentiation operations required for RSA decryption by using the 4-bit 

sliding window technique given with Algorithm 1. With this technique, four modular 

squarings are performed for every modular multiplication. Since the number of 

performed modular squarings is four times higher than modular multiplications, it is 

particularly important to improve the performance of modular squaring for fast RSA 

decryption. Similarly, in RSA encryption where the short public key e = 216+1 is used 

for speed, encryption is achieved by performing 16 modular squarings and only one 

modular multiplication, and hence speeding up the modular squaring operation would 

pay off. Remember that we perform modular multiplication, as well as modular 

squaring, by using Montgomery multiplication given with Algorithm 10. In 

Montgomery multiplication, three integer multiplications are performed, as shown in 

lines 1, 2 and 3 of Algorithm 10. The only difference between modular multiplication 

and modular squaring with Montgomery multiplication is that in modular squaring the 

integer multiplication in line 1 of Algorithm 10 is a squaring. We speed up this integer 

squaring by optimizing our subtractive Karatsuba-Ofman multiplication 

implementation for the squaring computation.  
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Figure 6. Subtractive Karatsuba-Ofman squaring. 

 

The operations that take place in our subtractive Karatsuba-Ofman squaring 

implementation are depicted in Figure 6. Subtractive Karatsuba-Ofman squaring is 

faster than subtractive Karatsuba-Ofman multiplication since integer squaring is 

performed over a single operand and therefore the number of required memory 

read/write operations is less since the same values are multiplied. Moreover, in the 

computation of 𝑇1 = (𝐴𝐻 − 𝐴𝐿)2, the result is always positive which allows us to 

eliminate the XOR and two’s complement operations that would otherwise be needed 

to handle the sign word. For 128-bit subtractive Karatsuba-Ofman squaring, as seen in 

Figure 4, the lower half of 𝑇0 = 𝐴𝐿
2  gives us the least significant 64-bits of the result. 

After squaring 𝐴𝐻 − 𝐴𝐿 to obtain 𝑇1 = (𝐴𝐻 − 𝐴𝐿)2, we subtract 𝑇0 = 𝐴𝐿
2 and 𝑇2 =

𝐴𝐻
2 from it. We give the assembly code for this operation in Subroutine 5 where T0, 

T1 and T2 are stored in the memory arrays T0[0 : 7], T1[0 : 7] and T2[0 : 7], respectively. 

Note that after this computation, the resulting value of T1 − T0 − T2  =  (𝐴𝐻 − 𝐴𝐿)2 −

𝐴𝐿
2 − 𝐴𝐻

2 resides in the memory array T1[0 : 7] and the sign word CW. We represent 

this result as T1[0 : 7] || CW, the concatenation of T1[0 : 7] and CW. We then subtract 

T1 − T0 − T2, stored in T1[0 : 7] || CW, from T0[4 : 7] || T2[0 : 4] in order to compute 

the middle 128-bits of the result. We add the generated carry word to T2[5 : 7] to 
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compute the most significant 64 bits of the result and finalize the subtractive 

Karatsuba-Ofman squaring operation. When 128-bit subtractive Karatsuba-Ofman 

squaring completes execution, the lower 128 bits of the 256-bit result are stored in the 

memory array T0[0 : 7] and the higher 128 bits are stored in the memory array T2[0 : 

7]. We give our assembly code for this operation with Subroutine 6. 
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3.2.3 Fixed time operand scanning methods. In our 2048-bit integer 

multiplication and squaring implementations on MSP430F1611 and MSP430F2618, 

after five levels of recursive subtractive Karatsuba-Ofman multiplication/squaring 

operations, at the base case of recursion we realize 64-bit multiplication/squaring 

operations using the operand scanning method and the onboard 16×16-bit hardware 

multiplier. 

For our implementation on MSP430F5529, which has a 32×32-bit onboard 

hardware multiplier, we implement 2048-bit subtractive Karatsuba-Ofman with four 

levels of recursion. At the base case of recursion, we realize 128-bit 

multiplication/squaring operations using the operand scanning method and the 

onboard 32×32-bit hardware multiplier. 

We do not carry out subtractive Karatsuba-Ofman fully recursively until we 

reach the microcontroller’s word size, because the operand scanning method performs 

better than subtractive Karatsuba-Ofman for 64-bit operands. In the operand scanning 

method with 64-bit operands, we are able to store the partial products of word 

multiplications using only the 12 general purpose registers. We read and write the 

intermediary results by using these registers instead doing costly memory read/write 

operations. Subtractive Karatsuba-Ofman generates partial products, i.e., 𝑇2 = 𝐴𝐻 ∙
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𝐵𝐻,  𝑇1 =  (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿), and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿, and the method requires irregular 

operand access patterns for computations with these partial products. Therefore, even 

in 64-bit subtractive Karatsuba-Ofman multiplication, memory read/write operations 

are inevitable in addition to register operations, and hence more clock cycles are spent 

compared to the operand scanning method. That is why we use the operand scanning 

method for multiplications at the base case for our recursive subtractive Karatsuba-

Ofman implementation. Note that, for MSP430F5520 with a 32×32-bit hardware 

multiplier, we similarly use the operand scanning method for the 128-bit multiplication 

operations at the base case of our 4-level recursive subtractive Karatsuba-Ofman 

implementation. We optimize our operand scanning multiplication implementation on 

MSP430F5520 to handle 128-bit operands efficiently by emptying and reusing 

registers to avoid memory read/write operations while processing partial results. 

We optimize our 64-bit and 128-bit operand scanning multiplication 

implementations for the squaring computation on our target microcontrollers with the 

16×16-bit and 32×32-bit hardware multipliers, respectively. In operand scanning 

squaring, we are able to reduce the number of required word multiplications, compared 

with operand scanning multiplication, by eliminating repeating word multiplications 

in partial product computations. For instance, to compute (A1・A2 + A2・A1), we 

eliminate the second word multiplication and find the result with the computation (A1 

・A2 ≪ 1) where we simply do a bitwise left shift operation on the result of the first 

word multiplication. With this optimization, we are able to reduce the number of word 

multiplications from 16 down to 10. We depict the computations performed in operand 

scanning multiplication and the optimizations performed in operand scanning squaring 

in Figure 7. Optimizing operand scanning multiplication for squaring accelerates the 

squaring computation considerably. 

On MSP430F1611 and MSP430F2618, which have an onboard 16×16-bit 

hardware multiplier, 64-bit operand scanning multiplication takes 210 and 189 clock 

cycles, respectively. On the same microcontrollers, 64-bit operand scanning squaring 

takes 170 and 155 clock cycles, respectively. Hence, with 64-bit operand scanning 

squaring, we achieve 23% and 22% speedups over 64-bit operand scanning 

multiplication on MSP430F1611 and MSP430F2618, respectively. On the other target 

microcontroller, MSP430F5529, which has an onboard 32×32-bit hardware 

multiplier, 128-bit operand scanning multiplication takes 466 clock cycles. Whereas, 



50  

on the same microcontroller, 128-bit operand scanning squaring takes 458 clock 

cycles. Hence, with 128-bit operand scanning squaring, we achieve around 2% 

speedup over 128-bit operand scanning multiplication on MSP430F5529. 

 

 

 

Figure 7. 64-bit operand scanning multiplication and squaring method using 

16x16 hardware multiplier. 

 

3.2.4  Side-Channel Countermeasures. Side-channel attacks on 

cryptographic implementations vary in a wide range and several low-cost 

countermeasures have been proposed to mitigate them (Duan et al., 2016; Gao et al., 

2019; Jurecek et al., 2019; Kannwischer et al., 2018; Petrvalsky et al., 2016; Xu et al., 

2018). The first attack that comes to mind is the SPA attack (P. C. Kocher, 1996). In 

RSA decryption, exponentiation using the binary method would reveal the secret 

exponent bits since a multiplication is performed, in addition to a squaring, only when 

the scanned secret key bit is 1. Since the difference between the square and the multiply 

operations can be distinguished with the naked eye by looking at the power 

consumption trace of RSA decryption under an oscilloscope, the secret key would be 
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revealed easily. An effective solution we use in our implementation is the sliding 

window method which ensures similar power profiles for different secret exponent 

values.  

Another vulnerability against SPA could be due to conditional branches, e.g. the 

conditional subtraction if (T1 ≥ N ) then {T1 = T1 − N} in lines 4 − 6 of Montgomery 

multiplication in Algorithm 10. Here, the conditional branch operation would leak 

information on secret data. In order to prevent this vulnerability, we eliminate the if 

statement and conduct the subtraction operation regardless of the if condition. We 

allocate a sign word, namely SW, for storing the sign of the result of the subtraction 

operation. Before executing the subtraction, we clear SW. Then we compute the 

subtraction T1−N and write the result at an offset of D bytes away from the original 

location of T1 in the memory where D ≥ 128 for 1024-bit Montgomery multiplication 

as it takes place in 2048-bit RSA decryption using the CRT. Thus, if T1 is stored at the 

address Addr1 in the memory, T1−N will be stored at the address Addr1 + D. After 

performing T1 − N, we subtract the resulting borrow bit from the sign word SW. Hence, 

SW is set to either 0×0000 or 0×FFFF, depending on whether the result of T1 − N is 

positive or negative, respectively. Thus, we have T1 and T1 − N, the result of 

Montgomery multiplication associated with both courses of action for the if statement, 

stored in the memory. All we need is to access the correct result in the memory and 

move it into the memory address for the output of Montgomery multiplication. We 

compute the memory address for the location of the output of Montgomery 

multiplication by first computing the bitwise AND of D and SW which will result in 

the value D or 0 depending on whether SW is 0×FFFF or 0×0000, respectively. We 

then XOR this value with D and add the result as an offset to Addr1, the memory 

address of T1. We read the result of the Montgomery multiplication computation from 

this memory address. Hence, the result Z of Montgomery multiplication is read either 

as T1 from the address Addr1 or as T1 − N from the address Addr1 + D, and it is written 

to the memory address Addr2, as depicted in Figure 8. 

The DPA attack is another possible side-channel attack on RSA which performs 

complex statistical analysis on decryption power traces to reveal the RSA decryption 

key (P. Kocher et al., 2011; P. C. Kocher, 1996). For affordable DPA attack mitigation, 

we use the blinding method (P. C. Kocher, 1996; Z. Liu et al., 2010). We blind both 

the ciphertext and the secret key. 
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Figure 8. Fixed time branch implementation for 1024-bit Montgomery 

multiplication. 

 

For blinding the ciphertext, we multiply it with the random integer 𝑉𝑖 before RSA 

decryption. After decryption, we recover the original plaintext by multiplying the 

result of RSA decryption with the second random integer 𝑉𝑓 . For the method to work, 

we select the random pair (𝑉𝑖, 𝑉𝑓) to satisfy the relationship 

 

 𝑉𝑖 = (𝑉𝑓
−1)𝑑𝑚𝑜𝑑 𝑁  (19) 

 

 

where d is the decryption key and N is the RSA modulus. We precompute the random 

pair (𝑉𝑖, 𝑉𝑓) and store it on the microcontroller. Therefore, no timing overhead is 

incurred due to its generation during RSA decryption. However, using the same (𝑉𝑖, 

𝑉𝑓) values repeatedly in different RSA decryptions may cause vulnerabilities. In order 

to efficiently overcome this issue, we alter 𝑉𝑖 and  𝑉𝑓 by updating them with their 

squares before each RSA decryption operation, as suggested in (P. C. Kocher, 1996). 

Note that for 2048-bit RSA, 𝑉𝑖 and 𝑉𝑓 are 2048-bit random integers. Hence, in our 

2048-bit RSA implementation, message blinding is achieved with negligible timing 

overhead by doing only two 2048-bit modular squarings (for updating the random 

integers) and two 2048-bit modular multiplications (for blinding the ciphertext). 

For further protection against DPA attacks, we also blind the secret exponent d, 

as suggested in previous works (P. C. Kocher, 1996; Z. Liu et al., 2010). Exponent 

blinding is basically the randomization of the private decryption key d described as 
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 𝑑′ = 𝑑 + 𝑟 ∙ 𝜑(𝑁)  (20) 

 

where r is a random integer and 𝜑(𝑁) = (𝑝 − 1) ∙ (𝑞 − 1). We apply exponent 

blinding to our RSA decryption implementation and thus our CRT exponents become 

𝑑𝑝
′ = 𝑑𝑝 + 𝑟 ∙ 𝜑(𝑝) and 𝑑𝑞

′ = 𝑑𝑞 + 𝑟 ∙ 𝜑(𝑞) where 𝜑(𝑝) = (𝑝 − 1), 𝜑(𝑞) = (𝑞 − 1) 

and r is a random 32-bit integer as suggested in (Z. Liu et al., 2010). Exponent blinding 

increases the length of the exponent by 32 bits which results in a timing overhead of 

around 3% in decryption. 

 

3.3  Performance Evaluation and Comparison. We implement 1024-bit 

and 2048-bit RSA on three target MSP430 microcontrollers, namely MSP430F5529, 

MSP430F2618, and MSP430F1611. We develop our RSA implementations in C 

language. In addition, we write assembly subroutines for implementing core arithmetic 

operations. Our timings for 1024-bit RSA encryption and decryption are given in Table 

5 (Gulen et al., 2019). We compare our timings with the existing 1024-bit RSA 

implementations in the literature on the same or similar microcontrollers. Our 

implementation for 1024-bit RSA encryption has the best timings among all, as seen 

in Table 6.  

 

Table 5.  

Our Timings for 1024-bit RSA Operations on the MSP430 Microcontroller.  
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Table 6.  

Timing Comparisons for RSA Implementation with a 1024-Bit Key on Constrained 

microcontrollers  

 

 

Our 2048-bit RSA encryption timings are all less than a second, i.e. 0.14 s, 0.31 

s and 0.67 s, on MSP430F5529, MSP430F2618 and MSP430F1611, respectively. Our 

2048-bit RSA decryption timings are 7.56 s, 16.08 s and 34.90 s on MSP430F5529, 

MSP430F2618 and MSP430F1611, respectively. We use the same codes for the three 

MSP430 microcontrollers with slight adaptations to exploit distinct features of the 

specific microcontrollers. For instance, while MSP430F5529 uses a 32×32 multiplier, 

MSP430F2618 and MSP430F1611 use a 16×16 multiplier. Additionally, 

MSP430F2611 and MSP430F5529 have a more advanced instruction set architecture, 

named MSP430X, which allows the memory write instruction to execute 1 clock cycle 

faster. Table 7 and present the timings of our 2048-RSA implementation on the three 

target MSP430 microcontrollers. 
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Table 7.  

Our Timings for 2048-bit RSA Operations on the MSP430 Microcontroller. 

 

 

There are several existing implementations of RSA with a 1024-bit key on 

MSP430 or similar constrained microcontrollers (Gulen et al., 2019; Gura et al., 2004; 

Z. Liu et al., 2010; Qiu et al., 2017; H. Wang & Li, 2006). However, to the best of our 

knowledge, there is only one other reported 2048-bit RSA implementation in the 

literature on a comparable constrained microcontroller, namely Gura et al.’s work on 

ATmega128 (Gura et al., 2004). To make a fair evaluation, we compare with the work 

in (Gura et al., 2004) our 2048-bit RSA implementation on the MSP430F1611 

microcontroller which has the same clock frequency and similar memory capacity. Our 

work on the low-end MSP430 microcontroller MSP430F1611 presents significantly 

better performance than in (Gura et al., 2004) as shown in Table 8.  

 

Table 8.  

Timing Comparisons for RSA Implementation with a 2048-Bit Key on Constrained 

Microcontrollers. 
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Our 2048-bit RSA implementation utilizes the same techniques as those used in (Gura 

et al., 2004), namely small public exponent e = 216 − 1, Montgomery modular 

multiplication and Chinese remainder theorem. However, we utilize additionally the 

subtractive Karatsuba-Ofman method for multiprecision integer multiplication. We 

implement subtractive Karatsuba-Ofman recursively for improved timing 

performance. Moreover, we unroll our recursive implementation to avoid loop 

overheads. Furthermore, unlike the existing implementation, our RSA implementation 

is equipped with the message and key blinding countermeasures to mitigate side-

channel attacks. Our implementation has the drawback of using more memory 

compared to Gura et al.’s work due to the additional acceleration and side-channel 

protection methods used, however it is significantly faster. While our implementation 

uses ×2.37 and ×1.77 more memory, it is ×2.90 and ×2.39 faster for encryption and 

decryption operations, respectively. We believe the resulting memory drawback is an 

acceptable trade-off for the achieved timing performance gain. 

 

3.4 Chapter Conclusion 

 

RSA is the oldest and the most adopted public-key cryptographic algorithm that 

is utilized by the existing Internet infrastructure and related applications. We presented 

a practical, side-channel resistant implementation of 1024-bit and 2048-bit RSA on the 

constrained microcontrollers that are widely used in WSN nodes and IoT devices. Our 

fastest RSA implementation achieved 2048-bit encryption and decryption in 0.14 s and 

7.56 s. Furthermore, our implementation on the low-end MSP430 microcontroller 

achieved 2048-bit RSA significantly faster (×2.9 and ×2.4 for encryption and 

decryption) with respect to the existing implementation on the comparable 

ATmega128 microcontroller. We accomplished these performance figures by utilizing 

numerous acceleration methods, e.g. Montgomery multiplication, subtractive 

Karatsuba-Ofman, and CRT-based modular exponentiation. Furthermore, unlike the 

existing work, we implemented the necessary countermeasures to mitigate side-

channel attacks, e.g. SPA and DPA, by utilizing the sliding window, ciphertext 

blinding and secret key blinding methods. 
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Chapter 4  

Conclusions 

 

In this thesis, we present and use novel techniques for implementing public-key 

cryptography for embedded constrained devices. The constrained devices, i.e. 

microcontrollers, are used in WSN and IoT applications widely and they have limited 

resources i.e. CPU speed and memory capacity. Additionally, such microcontrollers 

commonly powered by small batteries with low capacity, or they harvest the energy 

from the ambient sources in the environment e.g., solar, thermal, vibration. 

Considering the limitations of such devices, applying computational expensive and 

complex PKC operations is challenging. In our studies we applied various 

accelerations methods while implementing the two most popular PKC, namely ECC 

and RSA, for MSP430 microcontrollers. With our combined optimization methods, 

we achieved better timing results on MSP430 microcontrollers, compared to existing 

other works in the literature which use same or similar microcontrollers. 

 We realized our ECC implementations using NTT and we utilized an OEF 

GF(pm), using Edwards curve on projective coordinates. NTT benefits from 

convolution theorem and reduces the number of the required base field GF(p) 

multiplications which is the core optimization method for our ECC implementations. 

In our studies, we use DFT based Montgomery multiplication and FFT based 

multiplication for faster multiplications to accelerate ECC scalar point multiplications. 

Our studies presented in the thesis are the first software implementations using NTT 

for ECC, in the literature.  

Compared to ECC, RSA requires a larger key size, at least 1024-bit. It is usually 

considered as a drawback of the RSA to implement on the constrained 

microcontrollers. However, RSA can have other advantages, e.g., allowing fast digital 

signature verification. The common acceleration methods such as Chinese remainder 

theorem, sliding window method and small public exponent improve RSA 

performance significantly. Moreover, we utilized subtractive Karatsuba-Ofman 

multiplication technique with optimized operand scanning method to achieve even 

faster RSA encryption/decryption timings. Thus, our RSA timings for the MSP430 

microcontrollers are the fastest in the literature compared to similar microcontrollers, 

for 1024-bit key size and 2048-bit key size. Additionally, we applied existing side-
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channel attack countermeasures in our RSA implementations to mitigate SPA and 

DPA. 

One of the possible future research topics, after the thesis is, implementing ECC 

for larger key size on the constrained microcontrollers. We believe, use of optimized 

NTT based computations can be more impactful, with the larger ECC key size, in terms 

of performance, especially for the constrained devices. Power efficiency is another 

important criterion for the constrained embedded devices besides the timing 

performance. Thus, comparative investigations of the power/energy efficiencies of 

different arithmetic algorithms and cryptographic implementations on the constrained 

embedded devices are promising research directions. 
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