
PUBLIC-KEY CRYPTOGRAPHY ON CONSTRAINED

EMBEDDED DEVICES

Utku GÜLEN

JUNE 2022

 PUBLIC-KEY CRYPTOGRAPHY ON CONSTRAINED

EMBEDDED DEVICES

A PhD THESIS SUBMITTED TO THE

GRADUATE SCHOOL

OF

BAHÇEŞEHİR UNIVERSITY

BY

UTKU GÜLEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE PhD DEGREE OF COMPUTER ENGINEERING

IN THE DEPARTMENT OF BAHCESEHIR UNIVERSITY

JUNE 2022

T.C.

BAHÇEŞEHİR UNIVERSITY

GRADUATE SCHOOL

…/…/…

PhD THESIS APPROVAL FORM

Name Surname
UTKU GÜLEN

Student Number
1407292

Program Name
COMPUTER ENGINEERING (ENGLISH - DOCTORATE)

Title of Thesis
PUBLIC-KEY CRYPTOGRAPHY ON CONSTRAINED EMBEDDED

DEVICES

Thesis Defense

Date

It has been approved by the Graduate School that this thesis has fulfilled the necessary

conditions as a PhD thesis.

Prof. Dr. Ahmet ÖNCÜ

Director of the Graduate

School

This Thesis has been read by us, it has been deemed sufficient and accepted as a

PhD thesis in terms of quality and content.

PhD Thesis Defense Jury

Thesis Defense Jury Title - Name / Surname Signature

Thesis Advisor
ASST. PROF. DR. SELÇUK

BAKTIR

Member of Thesis

Monitoring Committee

PROF. DR. SIDDIKA BERNA

ÖRS YALÇIN

Member of Thesis

Monitoring Committee

ASST. PROF. DR. TARKAN

AYDIN

Member
ASSOC. PROF. DR. ALPTEKIN

KÜPÇÜ

Member
ASST. PROF. DR. ECE GELAL

SOYAK

iii

ETHICAL CONDUCT

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that, as

required by these rules and conduct, I have fully cited and referenced all material and

results that are not original to this work.

Name, Surname: UTKU GÜLEN

Signature:

iv

ABSTRACT

PUBLIC-KEY CRYPTOGRAPHY ON CONSTRAINED EMBEDDED

DEVICES

GÜLEN, Utku

Computer Engineering (English) PhD Program

Supervisor: Asst. Prof. Dr. Selçuk BAKTIR

JUNE 2022, 68 pages

Constrained embedded devices are widely deployed in many areas

including wireless sensor network and Internet of things. Since such

applications may contain sensitive data and may serve to critical purposes,

securing the communication between the wireless sensor nodes or Internet of

things devices is vital. Applying only symmetric key cryptography remains

with a problem when it comes to distribution of the private keys. Thus, it is

necessary to use a public-key cryptography for sharing private keys

effectively. With its relatively smaller key size, elliptic curve cryptography

is usually the first choice in literature. However, acceleration methods are

still required since the computations are heavy for the constrained devices

such as microcontrollers. For this reason, we implemented elliptic curve

cryptography on a constrained microcontroller, MSP430, utilizing the

number theoretic transform based computations, optimal extension field and

Edwards curve. We presented our applied methods and the performance

result including the comparison with the literature in the first part of the

thesis. Another public-key cryptography, Rivest Shamir Adleman (RSA), has

a larger key size which is a drawback for the resource constrained

microcontrollers. However, it allows fast digital signature verification and

can be desirable since it’s widely used in the existing communication

infrastructure. In the second part of the thesis, it is showed that, in spite of its

long key size, RSA is applicable for constrained devices when optimized

arithmetic, low-level coding and some acceleration algorithms are used. RSA

implementations that are presented in the thesis have the fastest reported

timings compared to the studies in the literature which use similar

constrained microcontrollers.

Keywords: Wireless Sensor Networks, Internet of Things, Public-Key

Cryptography, Elliptic Curve Cryptography, Rivest Shamir Adleman

v

ÖZET

KISITLI KAYNAKLI GÖMÜLÜ CİHAZLAR ÜZERİNDE AÇIK

ANAHTARLI ŞİFRELEME

GÜLEN, Utku

Bilgisayar Mühendisliği (İngilizce) Doktora Programı

Danışman: Dr. Öğretim Üyesi Selçuk BAKTIR

HAZİRAN 2022, 68 sayfa

Kısıtlı kaynaklı gömülü cihazlar, kablosuz sensör ağları ve nesnelerin

İnterneti de dahil olmak üzere bir çok uygulamada konuşlandırılmaktadır. Bu

uygulamalar hassas verilere sahip olabileceğinden ve kritik amaçlara hizmet

edebileceğinden, kablosuz sensör düğümleri veya nesnelerin İnterneti

cihazları arasındaki haberleşmenin güvenliğinin sağlanması önemlidir.

Sadece simetrik şifreleme uygulanması, gizli anahtarların dağıtılması

problemini çözümsüz bırakır. Bu nedenle, gizli anahtar dağıtımını etkin bir

şekilde yapabilmek için, açık-anahtarlı şifreleme kullanılmalıdır. Görece

daha kısa anahtarı olduğundan, eliptik eğri şifreleme genellikle literatüredeki

ilk seçimdir. Fakat, mikrodenetleyiciler gibi kısıtlı kaynaklı cihazlar için

hesaplamalar ağır olduğundan, hızlandırma yöntemleri hala gerekmektedir.

Bu nedenle, kısıtlı kaynaklı bir mikrodenetleyici olan MSP430 için, eliptik

eğri şifrelemeyi sayılar teorisi dönüşümü tabanlı işlemler, en uygun ilave

alan ve Edwards eğrileri kullanarak gerçekleştirdik. Uyguladığımız

yöntemleri ve literatürdeki diğer çalışmarla beraber olan performans

sonuçlarını tezin ilk kısmında sunmaktayız. Bir diğer açık anahtarlı şifreleme

olan Rivest Shamir Adleman (RSA) daha büyük boyutlu bir anahtara sahiptir

ki bu kısıtlı kaynaklı mikrodenetleyiciler için bir dezavantajdır. Yine de hızlı

sayısal imza doğrulama ve hali hazırdaki haberleşme yapılarında kullanıldığı

için RSA tercih edilebilir. Tezin ikinci kısmında, büyük boyutlu anahtarı

olmasına rağmen, en etkin hesaplama, düşük seviye kodlama ve bazı

hızlandırma yöntemleri kullanarak RSA kullanılabilirliği gösterilmiştir. Bu

tezde sunulan RSA gerçekleştirmeleri, literatürde benzer mikrodenetleyiciler

kullanan çalışmalara kıyasla en hızlı zamanlamalara sahiptir.

Anahtar kelimeler: Kablosuz Sensör Ağları, Nesnelerin İnterneti, Açık-

Anahtarlı Şifreleme, Eliptik Eğri Şifreleme, Kısıtlı Kaynaklı Gömülü Cihazlar

vi

DEDICATION

To my family;

to my beloved wife Ana Maria,

to my parents Güler and Süleyman,

to my brother Umur.

vii

ACKNOWLEDGMENTS

Firstly, I would like to express my deepest and sincerest gratitude for my

advisor, Prof. Selçuk Baktır, who has inspired and guided me throughout my

thesis studies. I would like to thank him, for sharing his wisdom with me and

for his endless support. It has been an honor and a pleasure to study under

his mentorship.

I am honored to have the thesis committee with very valuable professors. I

would like to thank my thesis committee monitoring members, Prof. Sıddıka

Berna Örs Yalçın and Prof. Tarkan Aydın for their valuable time and

constructive suggestions which make my thesis significantly improved and

richer. I would like to thank Prof. Alptekin Küpçü, for his insightful

suggestions and beneficial comments in my dissertation. My sincere thanks

to Prof. Ece Gelal Soyak, for her valuable comments in my dissertation and

for her great help during the thesis processes.

I would like to thank all my teachers and professors from Bahcesehir

University, Yildiz Technical University and earlier, who taught me and

inspired me to pursue a doctoral degree.

I had great times working as a researcher and teaching assistant in Bahcesehir

University. I would like to thank all my friends, my former colleagues, and

the professors.

I am very pleased to work with very knowledgeable researchers and experts

in Ericsson Research. The experience in Ericsson Research Turkey site, has

broaden my perspective in security research greatly. I would like to thank all

my colleagues in security team in Ericsson Research Turkey, my managers

Dr. Emrah Tomur and Dr. Henrik Almeida for their support and guidance.

The happiness and success are more delightful when there are people who

viii

share and celebrate with you. I would like to thank all my friends for being

with me during my PhD.

The most importantly, I would like to thank my dear family. I am very lucky

to have them.

My deepest gratitude to my first teacher and my dear mother Güler Gülen, to

my father Süleyman Gülen and to my brother Umur Gülen. They have always

believed in me.

I would especially like to thank to my precious wife Ana Maria Noriega. She

was with me, during the toughest times. We are and will be a good team,

forever.

İstanbul, 2022 Utku Gülen

ix

TABLE OF CONTENTS

ETHICAL CONDUCT ... iii

ABSTRACT .. iv

ÖZET .. v

DEDICATION .. vi

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS ... xiii

Chapter 1 Introduction .. 1

1.1 Contribution in the Thesis... 2

1.2 Organization.. 4

Chapter 2 Elliptic Curve Cryptograph For Wireless Sensor Network Nodes

Using Number Theoretic Transform .. 5

2.1 Background ... 6

2.1.1 Discrete Fourier transform based Montgomery multiplication. 7

2.1.2 Fast Fourier transform based multiplication. 8

2.1.2.1 Conversion of operands into the frequency domain. 9

2.1.2.2 Pairwise coefficient multiplication in the frequency domain. .. 11

2.1.2.3 Conversion of the product back to the time domain. 11

2.1.3 Elliptic curve cryptography using Edwards curve. 13

2.2 Our ECC Implementations.. 15

2.2.1 Field arithmetic optimizations. ... 16

2.2.1.1 Addition and subtraction. ... 16

2.2.1.1 Modular multiplication. .. 17

x

2.2.1.2 Bitwise rotations. .. 18

2.2.2 Point arithmetic optimizations. .. 20

2.3 Performance Evaluation and Comparison .. 22

2.3.1 Power consumption comparison of our works. 24

2.3.2 Performance comparison with others’ works. 26

2.4 Chapter Conclusion... 29

Chapter 3 RSA Cryptography for Wireless Sensor Nodes 31

3.1 Background .. 32

3.1.1 Sliding Window Method. ... 33

3.1.2 Chinese Remainder Theorem. .. 34

3.1.3 Montgomery Multiplication. .. 35

3.1.4 Subtractive Karatsuba-Ofman Technique. 36

3.2 Our RSA Implementation on MSP430 ... 38

3.2.1 Fixed time subtractive Karatsuba-Ofman Multiplication. 40

3.2.2 Fixed time subtractive Karatsuba-Ofman Squaring. 45

3.2.3 Fixed time operand scanning methods. .. 48

3.2.4 Side-Channel Countermeasures. .. 50

3.3 Performance Evaluation and Comparison. ... 53

3.4 Chapter Conclusion... 56

Chapter 4 Conclusions .. 57

REFERENCES ... 59

xi

LIST OF TABLES

TABLES

Table 1. Timings for ECC with DFT Based Montgomery Multiplication vs.

FFT Based Multiplication. ... 23

Table 2. Power Measurements for ECC with DFT Based Montgomery

Multiplication vs. FFT Based Multiplication. .. 26

Table 3. Timings for ECC Random Point Multiplication. 27

Table 4. Timings for ECC Fixed Point Multiplication. 28

Table 5. Our Timings for 1024-bit RSA Operations on the MSP430

Microcontroller. .. 53

Table 6. Timing Comparisons for RSA Implementation with a 1024-Bit Key

on Constrained microcontrollers .. 54

Table 7. Our Timings for 2048-bit RSA Operations on the MSP430

Microcontroller. .. 55

Table 8. Timing Comparisons for RSA Implementation with a 2048-Bit Key

on Constrained Microcontrollers. ... 55

xii

LIST OF FIGURES

FIGURES

Figure 1. 1-bit left rotation ... 19

Figure 2. Swap byte instruction .. 19

Figure 3. Karatsuba-Ofman multiplication. ... 37

Figure 4. Subtractive Karatsuba-Ofman multiplication. 38

Figure 5. Techniques used in the proposed RSA implementation according to

their performance impact. .. 40

Figure 6. Subtractive Karatsuba-Ofman squaring. ... 46

Figure 7. 64-bit operand scanning multiplication and squaring method using

16x16 hardware multiplier. .. 50

Figure 8. Fixed time branch implementation for 1024-bit Montgomery

multiplication. .. 52

xiii

LIST OF ABBREVIATIONS

CPU Central Processing Unit

CRT Chinese Remainder Theorem

DFT Discrete Fourier Transform

ECC Elliptic Curve Cryptography

FFT Fast Fourier Transform

GF Galois Field

IAR Ingenjörsfirman Anders Rundgren

IFFT Inverse Fast Fourier Transform

IOT Internet of Things

NAF Non-adjacent Form

NTT Number Theoretic Transform

NIST National Institute of Standards and Technology

OEF Optimal Extension Field

PM Pairwise Multiplication

RISC Reduced Instruction Set Computing

RSA Rivest-Shamir-Adleman

WSN Wireless Sensor Network

1

Chapter 1

Introduction

A wireless sensor network (WSN) consists of a large number of sensor nodes

which are usually controlled by a constrained microcontroller, e.g., 16-bit MSP430, 8-

bit ATmega, etc. Applications of WSNs vary widely from environmental practices to

health, and from industrial control applications to military purposes (Akyildiz et al.,

2007; Chong & Kumar, 2003; Pottie & Kaiser, 2000; Yick et al., 2008). WSNs also

find applications in areas such as multimedia networks (Akyildiz et al., 2007) and

smart grid networks (Gungor et al., 2010). WSN applications in diverse fields rely on

underlying algorithms, protocols and standards (Baronti et al., 2007). Moreover, many

WSN applications need data security and confidentiality since sensitive information is

stored, processed or transferred by sensor nodes (Chen et al., 2009; Y. Wang et al.,

2006). As the number and diversity of WSN applications grow, so do the variety of

their security and privacy issues (Li et al., 2010; Ozdemir & Xiao, 2009; Roman et al.,

2007). Therefore, it is a necessity to implement cryptographic schemes efficiently on

constrained microcontrollers used in sensor nodes (He et al., 2015; Perrig et al., 2002;

Y. Yu et al., 2012). Microcontrollers on WSN nodes are typically limited by their

memory capacity and CPU speed. Besides, energy efficiency is another important

constraint since WSN nodes are either battery powered or they environmentally

harvest their energy (Chandrakasan et al., 1999; Ye et al., 2002; Zhou et al., 2008). All

these constraints make implementing cryptography, more particularly complex public

key cryptographic operations, on WSN nodes a major challenge. Lightweight

cryptography also comes with the issues for the designers, while balancing security

and performance trade-offs (Eisenbarth et al., 2007). And thus, it is considered less

secure compared to conventional cryptography (Buchanan et al., 2017; Mouha, 2015).

For providing security to WSN nodes, symmetric key cryptography may seems

to be a feasible solution at first glance. However, symmetric key cryptography alone

would not be a remedy for providing security to WSN nodes. WSN nodes are typically

placed far apart from each other and the distribution of shared symmetric keys is a

challenge. For distributing the shared symmetric keys efficiently, public key

cryptography (PKC) is needed (Diffie et al., 1976; Elgamal, 1985; Ingemarsson et al.,

1982; MacKenzie et al., 2010). Furthermore, PKC makes it possible to electronically

2

sign digital messages (Rivest et al., 1978). In WSNs, malicious nodes can inject false

or counterfeit messages into the network. Hence, implementation of an authentication

mechanism would be necessary to prevent these messages. Digital signatures, provided

by PKC, can be used to authenticate messages exchanged between sensor nodes.

Although the computational complexity of PKC is considered a drawback for WSN

nodes with constrained microcontrollers, previous works show that PKC can be a

viable option (Düll et al., 2015; Gouvêa & López, 2009; Gülen & Baktir, 2014; Gulen

& Baktir, 2016; Z. Liu et al., 2010; Szczechowiak et al., 2008). The two most popular

PKC schemes are elliptic curve cryptography (ECC) (Koblitz, 1987) and the Rivest

Shamir Addleman (RSA) cryptosystem (Miller, 1986; Rivest et al., 1978). Many of

the previous PKC implementations for WSNs in the literature prefer ECC due to its

shorter key size (A. Liu & Ning, 2008; H. Wang et al., 2006; Wenger & Werner, 2011).

ECC requires at least a 160-bit key to be considered secure. In RSA, on the other hand,

the same level of security can be achieved with a 1024-bit key. However, despite its

larger key size, RSA is more widely used particularly by general purpose computers

in Internet applications.

1.1 Contribution in the Thesis

In our study (Gulen & Baktir, 2016), for the first time in literature, we showed

that frequency domain arithmetic can be practically applied to ECC implementations

on low-power microcontrollers without hardware multiplier support. We realized, for

the first time, elliptic curve scalar point multiplication with a fixed point, as well as

with a random point, in the frequency domain without using hardware multiplier

support. Our implementations exhibit comparable timing performance to existing ECC

implementations which use hardware multiplier support. Since our implementations

don’t use hardware multiplier support, they are expected to be more power-efficient

while having acceptable timing performance.

In our study (Gulen & Baktir, 2020), we present a novel realization of ECC

which uses Edwards curves for point arithmetic and the Number Theoretic Transform

(NTT) for the underlying finite field multiplication and squaring operations. To the

best of our knowledge, our work presents the first realization of ECC using the Fast

Fourier Transform (FFT) to speed up NTT computations. Our implementation

3

achieves similar or faster timings for ECC scalar point multiplication compared to

existing implementations in the literature and proves that NTT-based arithmetic is

feasible for ECC implementations on constrained devices such as WSN nodes.

In our study (Gülen & Baktir, 2022), we utilize the FFT over a finite field to

implement ECC on a constrained microcontroller without using hardware multiplier

support for the first time in the literature. Over GF((213−1)13) , we achieve ECC point

multiplication of random points in 1.74 s which is 13% faster than the existing work

in (Gulen & Baktir, 2016). Furthermore, we achieve ECC point multiplication of fixed

points in 0.89 s which is 10% faster than the existing work. Our proposed

implementation with the FFT achieves ECC random and fixed point multiplication

consuming 29.81 mWs and 15.27 mWs which are 15% and 12% less than the energy

consumed by the existing implementation. We show that, in terms of both timing

performance and energy consumption, FFT based multiplication would result in better

performance for ECC than frequency domain Montgomery multiplication. With our

proof-of-concept implementation, we show that on an extremely constrained platform

that does not use a hardware multiplier, ECC can be performed efficiently when the

FFT is used. Power savings gained through our proposed implementation would be

significant for battery powered WSN nodes whose lifetime is limited by their stored

energy, and more particularly for energy harvesting WSN nodes which harness energy

from the environment and may have more strict power constraints.

In our study (Gulen et al., 2019), we use the subtractive Karatsuba-Ofman,

Montgomery multiplication, Chinese remainder theorem (CRT), and operand scanning

algorithms together for the first time in the literature, and implement RSA using these.

Our 1024-bit RSA encryption and decryption implementations on the MSP430

microcontroller have the fastest timings in the literature. We show that faster RSA

timings are feasible on WSN nodes and the RSA cryptosystem may be a preferable

PKC option for WSNs.

In our recent study, we present efficient RSA implementations on the MSP430

family of constrained microcontrollers using a 2048-bit key as recommended by the

NIST (Barker, 2020). We combine the acceleration techniques sliding window

method, CRT based exponentiation, Montgomery modular multiplication, and

subtractive Karatsuba-Ofman multiplication for the first time in the literature for 2048-

bit arithmetic. Our resulting 2048-bit RSA implementation on the constrained MSP430

4

microcontroller outperforms the existing implementation on the comparable

ATmega128 microcontroller (Gura et al., 2004), and achieves RSA encryption and

decryption operations more than twice faster. Unlike the existing work in (Gura et al.,

2004), our 2048-bit RSA implementation includes the necessary countermeasures to

prevent vulnerabilities that may arise from implementation attacks such as simple

power analysis (SPA) and differential power analysis (DPA) (P. C. Kocher, 1996). We

show that strong RSA cryptography with a 2048-bit key is feasible on constrained

microcontrollers used in WSN and IoT applications.

1.2 Organization

The thesis continues with Chapter 2, ECC implementations on constrained

MSP430 microcontrollers which are used widely in WSN and IoT. Chapter 2

composed of sections which explain the background of the methods that we utilized,

namely DFT based Montgomery multiplication, FFT based multiplication and

Edwards curves. Then the optimization methods for the ECC are explained in detail,

namely field arithmetic optimizations and point arithmetic optimizations for the FFT

based multiplication. Then the chapter continues with comprehensive performance

evaluation and comparison of our ECC with related works in the literature. The last

part concludes Chapter 2 with our findings.

In Chapter 3, we present the techniques namely, sliding window method, CRT,

Montgomery modular multiplication and subtractive Karatsuba-Ofman multiplication

which we utilized in order to accelerate our 1024-bit and 2048-bit RSA operations.

After introducing the applied methods, in the second part of the Chapter 3, we explain

how we applied further low-level optimizations and how we realized our

implementation to be execute in fixed time. Then we explain our side-channel attack

countermeasures on RSA, i.e. SPA and DPA. Before concluding the Chapter 3, we

present our implementation timings and compare with the existing works in the

literature.

Chapter 4 concludes the studies in this thesis with remarks and discusses possible

future works, finally.

5

Chapter 2

Elliptic Curve Cryptograph For Wireless Sensor Network

Nodes Using Number Theoretic Transform

ECC (Koblitz, 1987; Miller, 1986) is a commonly used public-key cryptosystem

and considered a viable remedy for distributing the secret keys in WSNs (Gouvêa et

al., 2012; Gülen & Baktir, 2014; Gulen & Baktir, 2016; Z. Liu et al., 2010;

Szczechowiak et al., 2008). The efficiency of ECC depends on the speed of the

performed arithmetic. While projective coordinates are typically used to avoid

expensive inversion, multiplication still needs to be performed. A word multiplication

instruction typically takes much longer to execute than a word addition instruction on

constrained microcontrollers. On some microcontrollers, for power efficiency and cost

reasons, a multiplication circuitry does not even exist and word multiplications are

implemented with shift and add instructions. For instance, the MSP430F1232,

MSP430F2274 and MSP430G2955 versions of the MSP430 microcontroller are some

of the several available microcontrollers which do not have a hardware multiplier

(Texas Instruments, 2004). Note that, among these microcontrollers, the

MSP430G2955 microcontroller is used in WiSense sensor nodes, namely the sensor

nodes WSN1120L, WSN1120CL, WSN1101ANL and WSN1101ACL (WiSense

Technologies, 2019). Moreover, Texas Instruments’ (TI) development tool for

wireless sensor applications, named as the TI eZ430- RF2500 wireless module, is also

equipped with MSP430F2274 (Texas Instruments, 2015). Using a simple power

efficient microcontroller is particularly important for wireless sensor network nodes

which are spread around in the field and harvest their energy from the environment

(Adu-Manu et al., 2018) . For energy-harvesting wireless sensor nodes, it is a concern

whether the sensor node is able to perform a power-hungry cryptographic algorithm

within the limitations of the harnessed power obtained through solar energy,

mechanical vibration, electromagnetic radiation, etc. In (Gulen & Baktir, 2016), a

competent ECC implementation on the constrained MSP430 microcontroller is

proposed over the optimal extension field (OEF) GF ((213 − 1)13) (Bailey & Paar,

2001). The implementation uses the number theoretic transform and Edwards curve

point arithmetic. For power efficiency, no hardware multiplier is used, and arithmetic

operations are carried out in the frequency domain. In their implementation, the

6

number theoretic transform is utilized to initially carry elliptic curve point coordinates

to the frequency domain. All arithmetic operations required in ECC point

multiplication are then conducted in the frequency domain. Montgomery

multiplication is used for performing multiplication in the frequency domain (Baktir

& Sunar, 2006; Baktır et al., 2007; Montgomery, 1985).

2.1 Background

ECC is performed over a finite field. Hence, picking an efficient finite field

representation and using efficient arithmetic algorithms over the selected finite field

significantly effects the performance of ECC. We implement ECC over an OEF. The

OEF representation is an efficient finite field representation that is proposed for

implementing ECC on constrained devices (Bailey & Paar, 2001). The OEF

representation constructs the finite field GF (pm) by choosing p as a pseudo-Mersenne

prime, such that GF (p) elements fit in a single processor register, and by using an

irreducible binomial of the form xm − w where w is a small integer. The special forms

of p and w facilitate efficient coefficient arithmetic and modular reduction. By fitting

GF (p) elements in a single register word, only a single instruction cycle is spent to

execute microcontroller instructions over GF (p) elements. When the extension degree

m is selected as a prime number, ECC over GF (pm) is considered secure (Koblitz et

al., 2004). In our works, we implement ECC over GF (pm) where m = 13 is prime and

p = 213 − 1 is a Mersenne prime. Selecting p as a Mersenne prime allows for very

efficient reduction modulo p which is an operation commonly performed in GF (pm)

arithmetic. The finite field GF ((213 − 1)13) is used in (Baktır et al., 2007; Mentens et

al., 2015) for constrained hardware implementations of ECC and proved efficient.

On an elliptic curve defined over GF (pm), the coordinates of a curve point are

GF (pm) elements and represented as degree m − 1 polynomials whose coefficients are

in GF (p) (Baylis, 1988; McEliece, 1993). In ECC a large number of finite field

divisions, multiplications, subtractions and additions are carried out. The

subtraction/addition of a(x) with b(x) in GF (pm) is achieved easily through pairwise

modular word additions/subtractions of their polynomial coefficients, as given below:

7

𝑎(𝑥) ± 𝑏(𝑥) = ∑ (𝑎𝑗 ± 𝑏𝑗) 𝑥𝑗 𝑚𝑜𝑑 𝑝

𝑚−1

𝑗=0

(1)

Whereas, multiplication of GF (pm) elements is significantly more complex and

necessitates a quadratic number of coefficient multiplications modulo p and a final

modular reduction with the field polynomial, given as follows:

𝑟′(𝑥) = 𝑎(𝑥). 𝑏(𝑥) = ∑ (𝑟𝑗

′𝑥𝑗)
2𝑚−1

𝑗=0
 ,

𝑟(𝑥) = 𝑟′(𝑥) 𝑚𝑜𝑑 𝑝(𝑥)

(2)

where p(x) can be selected as xm − 2 to make modular reduction simple. In this work,

we use p(x) = xm − 2 to construct the finite field GF ((213 − 1)13). Polynomial

multiplication requires computing a quadratic number of expensive modular

coefficient multiplications. The convolution theorem states that time domain

polynomial multiplication produces the same result as frequency domain pairwise

coefficient multiplications. Hence, the number of performed coefficient multiplications

is reduced dramatically if frequency domain arithmetic is used for polynomial

multiplication. DFT, or its optimized form FFT, can be used for carrying GF (pm)

elements into frequency domain.

2.1.1 Discrete Fourier transform based Montgomery multiplication.

Algorithm 1 was proposed for achieving GF (pm) multiplication using discrete Fourier

transform based Montgomery multiplication (Baktir & Sunar, 2006; Baktır & Sunar,

2008b, 2008a). The algorithm was utilized in ECC implementations for constrained

wireless sensor nodes (Baktır et al., 2007; Gulen & Baktir, 2016). The algorithm takes

as inputs (�̅�) and (�̅�), which are the frequency domain series for �̅�(x) = a(x) xm−1, �̅�(x)

= b(x) xm−1 ∈ GF (pm) and produces their Montgomery product. Note that �̅�(x) and �̅�(x)

are the Montgomery forms of a(x) and b(x). The output of the algorithm is denoted

with �̅� and represents the Montgomery product of �̅�(x) and �̅�(x), i.e. �̅�(x) �̅�(x) x−(m−1)

mod p(x). Note that �̅� = �̅�(x) �̅�(x) x−(m−1) mod p(x) is equal to a(x) b(x) x(m−1) mod p(x)

which is the Montgomery form of the product of a(x) and b(x) in GF (pm). Using p =

2m − 1, a Mersenne prime, results in more efficient DFT computations (Rader, 1972).

8

In Algorithm 1 (Gulen & Baktir, 2016), a linear number of word products are

computed. Whereas, the number of performed bitwise rotations, subtractions and

additions are quadratic. Since multiplication is more complex compared to other

arithmetic operations on a constrained microcontroller, Algorithm 1 is desirable.

2.1.2 Fast Fourier transform based multiplication. In a recent work, ECC

is implemented using a different DFT based approach to realize GF(pm) multiplications

and squarings (Gulen & Baktir, 2020). In (Gulen & Baktir, 2020), the FFT (Baktır &

Sunar, 2008a; Cooley & Tukey, 1965; Pollard, 1971) is used to transform GF (pm)

9

elements into the frequency domain. Once the frequency domain representations for

GF (pm) elements are obtained, their polynomial multiplication is computed simply by

pairwise multiplying their frequency domain coefficients. Utilizing the inverse fast

Fourier transform (IFFT) algorithm, the resulting product is carried to the time domain.

In Algorithm 2 (Gülen & Baktir, 2022), we present this approach which is composed

of the three stages: FFT, pairwise multiplication (PM) and IFFT. With this work,

similar to (Gulen & Baktir, 2020), we use FFT based multiplication to implement ECC.

However, unlike in (Gulen & Baktir, 2020), we implement FFT based ECC without

using hardware multiplier support to show that ECC can be achieved practically on an

extremely constrained microcontroller without even a hardware multiplier.

Furthermore, we obtain the energy consumption profile of our ECC implementation

and show that it is more energy efficient than the existing implementation in (Gulen &

Baktir, 2016) which also does not use hardware multiplier support.

2.1.2.1 Conversion of operands into the frequency domain. The finite field

elements a(x), b(x) ∈ GF ((213 − 1)13) are carried to the frequency domain with the

DFT as

𝐴𝑖 = ∑ 𝑎𝑗𝑒𝑗𝑖 𝑚𝑜𝑑 𝑝

25

𝑗=0
, 0 ≤ 𝑖 ≤ 25

(3)

and

10

𝐵𝑖 = ∑ 𝑏𝑗𝑒𝑗𝑖 𝑚𝑜𝑑 𝑝

25

𝑗=0
, 0 ≤ 𝑖 ≤ 25

(4)

where e is a 26th primitive root of unity. Algorithm 3 (Gulen & Baktir, 2020; Gülen &

Baktir, 2022) performs the above DFT computations over GF ((213 − 1)13) efficiently

by using the FFT. It is designed such that the seven general purpose registers on

MSP430 are used heavily to store intermediary results so that the least number of time-

consuming memory read/write instructions are executed. The algorithm uses the

binomial x13 − 2 as field generating polynomial and e = −2 as the 26th primitive root of

unity. For the selected finite field GF ((213 − 1)13), e is chosen as −2. This allows us to

perform multiplications of GF (p) elements with positive powers of e, as it heavily

takes place in the FFT computation (in lines 7 and 19 of Algorithm 3), with a simple

bitwise left rotation, in addition to a simple negation if the power of e is odd.

11

Note that for p = 213 − 1, e = −2 , a ∈ GF (p) and k a positive integer, the computation

a × ek = a × (−1)k × 2k modulo p is equivalent to the simple bitwise left rotation of a

by (k mod 13) bits followed by a simple negation if k is odd.

2.1.2.2 Pairwise coefficient multiplication in the frequency domain. The

frequency domain multiplication of GF ((213 −1)13) elements is carried out through

pairwise coefficient multiplications. For (A) and (B), the 26-coefficient frequency

domain sequences for a(x) and b(x) in GF ((213 − 1)13), 𝑟′(x) = a(x) b(x) mod 213 − 1

is computed in the frequency domain as

 𝑅𝑗
′ = 𝐴𝑗𝐵𝑗 𝑚𝑜𝑑(213 − 1) , 0 ≤ 𝑗 ≤ 25 (5)

 The above 26 coefficient multiplications are the only GF (213−1)

multiplications performed for computing (𝑅′) which is dramatically faster than

performing 169 coefficient multiplications as needed in schoolbook multiplication.

However, (𝑅′) needs to be carried back to time domain to complete the GF ((213 − 1)13)

multiplication and find r(x) = 𝑟′(x) mod p(x). Modular reduction with p(x) becomes

very simple when p(x) is selected as x13 − 2. However, one still needs convert (𝑅′) to

the time domain polynomial 𝑟′(x).

2.1.2.3 Conversion of the product back to the time domain. In order to finalize

the finite field multiplication operation in GF ((213 −1)13), the 26-element sequence

(𝑅′) for 𝑟′(x) = a(x)b(x) needs to be carried into time domain to realize modular

reduction, i.e. r(x) = 𝑟′(x) mod x13−2, efficiently. The conversion can be done using

the inverse DFT as follows:

𝑟𝑖
′ =

1

26
 ∑ 𝑅𝑗

′

25

𝑗=0

𝑒−𝑗𝑖𝑚𝑜𝑑 𝑝 , 0 ≤ 𝑖 ≤ 25

(6)

Algorithm 4 (Gulen & Baktir, 2020; Gülen & Baktir, 2022) performs the above inverse

DFT computation efficiently to convert (𝑅′) in the frequency domain to r (x) =

a(x).b(x) mod x13 −2 in the time domain. The algorithm optimizes equation (6) by

12

utilizing the inverse FFT and by interleaving it with the reduction operation modulo

the field generating polynomial x13 − 2. For the selected finite field GF ((213 − 1)13),

the 26th primitive root of unity e for the inverse FFT computation is chosen as −2. This

allows us to perform multiplications of GF (p) elements with negative powers of e, as

it heavily takes place in the inverse FFT computation (in lines 7, 17, 27 and 38 of

Algorithm 4), with a simple bitwise right rotation, in addition to a simple negation if

the power of e is odd.

13

Note it for p = 213−1, e = −2, a ∈ GF (p) and a positive integer k, the computation a

× e−k = a × (−1)k × 2−k modulo p is equivalent to the simple bitwise right rotation of

a by (k mod 13) bits followed by a simple negation if k is odd.

2.1.3 Elliptic curve cryptography using Edwards curve. The main

operation in ECC is scalar point multiplication, i.e., computing s · P for an integer s

and a point P on the elliptic curve. ECC scalar point multiplication involves

performing several ECC point addition and doubling operations. To achieve ECC point

multiplication, the binary method (Menezes et al., 1996) can be used, where the bits

of the scalar s are scanned one bit at a time starting with the most significant bit, and

for each scanned bit, a point doubling operation is performed, in addition to a point

addition operation if the scanned bit is 1. However, the binary method is both

inefficient and vulnerable against simple power analysis (P. C. Kocher, 1996). As an

alternative to the binary method, and in order to help mitigate its drawbacks, the NAF4

and Comb methods can be used for ECC scalar point multiplication of random and

fixed points, respectively. NAF4 and Comb require computing a significantly reduced

number point additions and doublings compared to the binary method (Koblitz et al.,

2004).

Edwards curves, proposed in (Edwards, 2007), are a new form for elliptic curves

and defined by the following equation:

 𝑥2 + 𝑦2 = 𝑐2(1 + 𝑑𝑥2𝑦2) (7)

The ECC point addition of the two distinct points P1 and P2 on an Edwards curve

is computed as

 𝑃3(𝑥3, 𝑦3) = 𝑃1(𝑥1, 𝑦1) + 𝑃2(𝑥2, 𝑦2) ,

𝑤ℎ𝑒𝑟𝑒 𝑥3 =
𝑥1𝑦2 + 𝑦1𝑥2

𝑐(1 + 𝑑𝑥1𝑥2𝑦1𝑦2)
 𝑎𝑛𝑑 𝑦3 =

𝑦1𝑦2 − 𝑥1𝑥2

𝑐(1 − 𝑑𝑥1𝑥2𝑦1𝑦2)

(8)

The ECC point doubling operation on the point P1(x1, y1) on an Edwards curve

is computed as

14

 𝑃2(𝑥2, 𝑦2) = 2. 𝑃1(𝑥1, 𝑦1) ,

𝑤ℎ𝑒𝑟𝑒 𝑥2 =
2𝑥1𝑦1𝑐

𝑥1
2 + 𝑦1

2 𝑎𝑛𝑑 𝑦2 =
(𝑦1

2 − 𝑥1
2)𝑐

2𝑐2 − (𝑥1
2 + 𝑦1

2)

(9)

The above ECC point operations can be achieved in projective coordinates

(Blake et al., 1999; Enge, 1999; Koblitz et al., 2004) to avoid costly inversions. For

𝑥2 + 𝑦2 = 𝑐2(1 + 𝑑𝑥2𝑦2), with c = 1, d random and d · c4 ≠ 1, the formulae for

ECC point doubling and addition in projective coordinates over prime fields are given

in Algorithms 5 and 6, respectively, (Bernstein & Lange, 2007).

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark5
file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark6

15

2.2 Our ECC Implementations

We implemented ECC and the required arithmetic algorithms on MSP430, low-

power 16-bit microcontrollers typically used in WSN applications. As our

development environment we used Ingenjörsfirman Anders Rundgren (IAR)

Embedded Workbench. We coded our implementation using mostly the assembly

language, rather than the C language. Because even when we configured the

optimization settings of the C compiler for high speed, the resulting code was still

slow. For instance, when we coded in C, one word multiplication took around 130 clock

cycles (without hardware multiplier support). Whereas, we realized the same operation

with an assembly subroutine, and it executed in only 93 clock cycles. Furthermore, when

the C language is used, the C compiler optimizes a word multiplication operation by taking

into account the values of the operands, resulting in varying execution times for different

operand values. This would make a C code vulnerable against side-channel attacks. By

using the assembly language, we were able to write a word multiplication subroutine that

is both faster and constant-time. Furthermore, many of the word operations required in

16

Algorithm 1 can be achieved more efficiently by using the assembly language. For

instance, a bitwise rotation operation in GF (213 − 1), as required in Algorithm 1, can be

implemented faster by using assembly instructions such as the swap byte instruction,

which are not directly accessible using the C language.

2.2.1 Field arithmetic optimizations. The read and write instructions, for

accessing memory, have a significant impact on the efficiency of arithmetic operations.

MSP430 has a reduced instruction set computing architecture with only 27 instructions

and 7 addressing modes. The addressing mode of an instruction determines its execution

time. An instruction takes less clock cycles to execute if the register addressing mode is

used; however, there are only 12 general purpose registers available on MSP430. We used

these 12 registers for storing our operands as much as possible. By storing frequently used

constants in these registers, we were able to eliminate the extra clock cycles.

2.2.1.1 Addition and subtraction. In our ECC implementation GF (213 − 1)

addition is the most frequently used operation. Note that subtraction in GF (213 − 1) is

similar to addition, with the exception of an additional XOR instruction applied to flip the

bits of the subtracted operand. Hence, the cost of subtraction is only 1 clock cycle more

than addition. We allocated two registers to store constant values for masking and

checking the most significant bit of the operands during these operations. We realized

GF(213 − 1) addition and subtraction in four and five clock cycles, respectively, as

described with Assembly Code 1 and Assembly Code 2 (Gulen & Baktir, 2016).

17

2.2.1.1 Modular multiplication. Efficiency of the modular multiplication over

GF (213 − 1) directly influences the efficiency of multiplications in GF (213− 1)13. In

many embedded applications, there are limitations on power consumption and hence,

energy efficiency, in addition to timing performance, is an important criterion. For

power efficiency, we performed multiplication in GF (213 − 1) without using hardware

multiplier support. We computed intermediary 26-bit product in GF (213 − 1)

multiplication in a bit-serial fashion by performing a series of additions, as described

with Assembly Code 3, partially. The Assembly Code 3 shows scanning only 2 bits of

the operand; however, it is executed repeatedly for all 13 bits, in the original code

(Gulen & Baktir, 2016). Here, all the bits of one operand are scanned through, and if

the scanned bit is 1, the other operand is added to the partial product, and then, the

partial product is shifted to the left. We perform the modular reduction operation after

the 26-bit integer product is computed. Our implementation of GF (213 − 1)

multiplication is a constant time implementation and avoids side-channel attacks by

executing additions with 0 to equate clock cycles while scanning bits and branching

accordingly. Our GF (213 − 1) multiplication code takes 105 clock cycles to execute,

where 93 cycles are spent for integer multiplication and 12 cycles for modular

reduction.

18

2.2.1.2 Bitwise rotations. Since large number of bitwise rotations are performed

over GF (213 − 1) elements in Algorithm 1, we optimized this operation. We frequently

made use of the arithmetic shift and shift with carry instructions which both execute

in a single clock cycle. We also used the set bit, test bit, and swap byte instructions to

realize rotations by spending the minimal number of clock cycles. We pursued various

strategies to reduce the number of required clock cycles for rotations by different

numbers of bits. We carried out 1-bit left-rotation by checking the most significant bit

of the operand and then shifting it to the left through carry. Here, we performed a mask

operation to move the carry bit into the least significant bit position. The 1-bit left-

rotation operation, shown in Figure 1 and given with Assembly Code 4 is

accomplished in three clock cycles (Gulen & Baktir, 2016). We performed 2,3 and 4-

bit left-rotations by repeated 1-bit left rotations. For rotations by more than 4 bits, we

utilized the swap byte instruction and exchanged the low and high bytes of the 13-bit

operand, as shown in Figure 2. We optimized 5,6,7,8,9, and 10-bit left-rotations

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/SCN%20DFT%20Paper%202016.docx%23_bookmark8

19

through the use of the swap byte instruction and mask/store operations. For rotations

by different numbers of bits, we reordered and/or modified our code to achieve the

best cycle time in each case. Exemplarily, we give Assembly Code 5 for our

implementation of 6-bit left-rotation, which takes nine clock cycles. We achieved 1-

bit right-rotation by shifting the least significant bit of the operand to the carry flag and

then setting the 13th bit of the operand if the carry flag is set. We achieved 12-bit left-

rotation through 1-bit right rotation, as implemented with Assembly Code 6. Finally,

we achieved 11-bit left-rotation by performing two 12-bit left-rotations.

Figure 1. 1-bit left rotation (Gulen & Baktir, 2016).

Figure 2. Swap byte instruction (Gulen & Baktir, 2016).

20

2.2.2 Point arithmetic optimizations. We improve Algorithms 5 and 6 by

taking advantage of FFT based multiplication and squaring operations. Our improved

algorithms are given in Algorithms 7 and 8 (Gulen & Baktir, 2020; Gülen & Baktir,

2022).

Algorithm 7 is a reordered and optimized version of Algorithm 5. It takes advantage

of FFT based finite field multiplication and squaring computations. In line1 of the

algorithm, the FFTs of X1 and Y1 are computed, and then added in the frequency

domain to find the FFT of R1 = X1 + Y1. The computed FFTs of X1, Y1 and R1 are stored.

The stored frequency domain representations of X1, Y1 and R1 are used in lines 2 − 4

(marked bold) for the three finite field squarings. Please note that for these three finite

field squarings, a total number of only two forward FFT computations are performed,

i.e., FFT(X1) and FFT(Y1) in line 1, instead of three as required in Algorithm 2.

Furthermore, in line 10, the computed FFT of Z1 is stored and reused in line 11 (marked

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark5
file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark6
file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark18
file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark1

21

bold). Similarly, in line 11, the computed FFT of R2 is stored and reused in line 12

(marked bold). Please note that each time the stored result of an FFT computation is

reused, a forward FFT computation is saved in Algorithm 2.

Algorithm 8 is a reordered and optimized version of Algorithm 6. It takes

advantage of FFT based finite field multiplication and squaring computations. In lines

2 − 3 of the algorithm, the FFTs of X1, X2, Y1 and Y2 are computed and stored. Only

two addition operations are performed in the frequency domain on the stored FFTs to

readily obtain the FFTs of R1 = X1 + Y1 and R2 = X2 + Y2. The FFTs of R1 and R2 are

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark1

22

also stored. The stored FFTs of R1, R2, X1, X2, Y1 and Y2 are readily used in lines 4 − 6

(denoted with bold color) for the three finite field multiplication computations. Thus,

for three finite field multiplications, a total number of only four forward FFT

computations are performed, instead of six as required in Algorithm 2. Furthermore,

in lines 11 − 13 of the algorithm, the stored FFTs of Y1, X1 and Z1 are reused (marked

bold). Similarly, in line 16, the FFT of Z1 is computed and stored. The stored FFT of

Z1 is reused in line 17 (marked bold). Likewise, in line 17, the FFT of X1 is computed

and stored, and reused in line 18 (marked bold).

2.3 Performance Evaluation and Comparison

We give in Table 1 the timings for our FFT based multiplication and squaring

operations in GF ((213 − 1)13) as well as the timings in (Gulen & Baktir, 2016) for DFT

Montgomery multiplication. While DFT based Montgomery multiplication in GF ((213

− 1)13) takes 1.18 ms, our FFT based multiplication implementation takes 1.3 ms which

is 10.2% slower. However, our FFT based squaring implementation takes only 1.06

ms while the squaring operation using DFT based Montgomery multiplication takes

the same time as multiplication, i.e. 1.18 ms. Hence, FFT based squaring is shown to

be 11.3% faster than squaring using DFT Montgomery multiplication (GULEN &

BAKTIR, 2022).

We implement ECC scalar point multiplication, the main operation for

encryption/decryption in ECC, using the NAF4 method for multiplication of random

points and the Comb method for multiplication of fixed points. We achieve ECC scalar

point multiplication in 1.74 s for random points and 0.88 s for fixed points. In (Gulen

& Baktir, 2016), the same operation, in the same setting but by using DFT

Montgomery multiplication, was achieved in 1.97 s and 0.98 s for random and fixed

points. As given with Table 1, this work achieves 11% and 10% better timings for

random and fixed point multiplication operations, respectively.

A summary of our timing results for ECC point multiplication and the underlying

elliptic curve point operations and arithmetic operations, as well as the timing results

of (Gulen & Baktir, 2016), are given in Table 1. Our ECC implementation utilizes FFT

based multiplication (Algorithms 2, 3 and 4) for squaring and multiplication, whereas

(Gulen & Baktir, 2016) uses DFT based Montgomery multiplication (Algorithm 1).

23

Table 1.

Timings for ECC with DFT Based Montgomery Multiplication vs. FFT Based

Multiplication.

Note that while DFT based Montgomery multiplication is faster than FFT based

multiplication, FFT based squaring is even faster. In our ECC random point

multiplication implementation over GF ((213 − 1)13) with NAF4 , significantly more

point doublings than point additions are performed. On average around 37 point

additions and 170 point doublings are performed (Koblitz et al., 2004). Hence, the

performance of ECC point doubling is the determining factor in the performance of

ECC random point multiplication. In our ECC point doubling implementation

(Algorithm 7), four squarings and three multiplications in GF ((213 − 1)13) are

performed. Since squaring with FFT based multiplication (Algorithms 2, 3 and 4) is

faster than squaring with DFT based Montgomery multiplication (Algorithm 1), ECC

random point multiplication is faster when FFT based multiplication is used.

Similarly, in our ECC fixed point multiplication implementation over

GF((213−1)13), around 42 point doublings and 39 point additions are performed

(Koblitz et al., 2004). Hence, the performance of ECC point doubling is the

determining factor in the performance of ECC random point multiplication. Since

more squarings than multiplications are performed in ECC point doubling (Algorithm

5) and squaring with FFT based multiplication (Algorithms 2, 3 and 4) is faster than

24

squaring with DFT based Montgomery multiplication (Algorithm 1), our ECC fixed

point multiplication implementation with FFT based multiplication is faster than the

previous work which uses DFT Montgomery multiplication.

2.3.1 Power consumption comparison of our works. We investigate the

energy efficiency of our implementation and compare it with the previous

implementations. In order to obtain energy measurements, we run our codes on the

experimenter board MSP-EXP430FG4618 which has an MSP430FG4618

microcontroller onboard (Texas Instruments, 2018). Since our ECC implementation is

for the basic 1-series MSP430F1611, we can run our implementation on the

experimenter board without changing our code. Using the flash emulation tool (MSP-

FET) (Texas Instruments, 2020)and the Power Log feature of the IAR Embedded

Workbench development tool, we are able to obtain energy measurements (IAR

Systems, 2020).

The average power consumption for our ECC random point multiplication

implementation in this work is 17.3 mW without using the hardware multiplier. The

work in (Gulen & Baktir, 2020) uses the hardware multiplier and achieves the same

operation with a power consumption figure of 17.66 mW. The average power

consumption for our ECC fixed point multiplication implementation in this work is

17.5 mW without using the hardware multiplier. The work in (Gulen & Baktir, 2020)

uses the hardware multiplier and achieves the same operation with a power

consumption figure of 17.88 mW. For ECC random and fixed point multiplication

operations, we achieve around 2% improved power efficiency. The previous work in

(Gulen & Baktir, 2020), which utilizes the hardware multiplier unit of the MSP430

microcontroller, has faster timings on the experimental board, i.e. 1.35 s and 0.64 s for

random and fixed point multiplication, respectively. Since these execution times are

less than the execution times in the proposed implementation, the total energy

consumptions are also lower. The total energy consumptions for the implementations

in (Gulen & Baktir, 2020) are 23.84 mWs and 11.44 mWs for random and fixed point

multiplication, respectively. While these total energy consumption figures are better

than those of the proposed implementation, the average power consumption figures for

the proposed implementation are better. Note that we run our ECC implementations

on the MSP430FG4618 microcontroller without using its hardware multiplier and

25

obtain our energy/power measurements on it. While this helps us gain power/energy

efficiency in terms of dynamic power usage, the microcontroller still uses static power

due to its onboard hardware multiplier. We could only use this microcontroller for

power/energy measurements because it is the microcontroller contained in the

experimental board with the FET emulator which we use to obtain timing and

power/energy measurements. We believe that better energy/power efficiency could be

achieved on another version of MSP430, such as MSP430F2274 or MSP430G2955,

which does not have a hardware multiplier. We would like to note that low-cost, low-

power MPS430 microcontroller versions do not have a hardware multiplier unit. For

instance, from the low-power 1-series MSP430 versions, only the microcontrollers

with the device names MSP430x14x and MSP430x16x have a hardware multiplier

unit. Whereas, other low-power 1-series MSP430 versions, such as MSP430F1122,

MSP430F1232, MSP430F135 and MSP430F155, do not have an onboard hardware

multiplier (Texas Instruments, 2004). Among other series of MSP430

microcontrollers, there are also models without a hardware multiplier unit. One such

example is MSP430F2274 which is equipped in the Texas Instrument ez430-RF2500

wireless module that is designed to be deployed in wireless sensor network

applications (Texas Instruments, 2015). Unlike the ECC implementation in (Gulen &

Baktir, 2020), our ECC implementation, which does not require a hardware multiplier,

has the additional advantage of being able to run efficiently also on these extremely

constrained microcontrollers without a hardware multiplier. The main motivation for

using a processor without a hardware multiplier would be to increase the battery

lifetime or for applications where sensor nodes harvest their own energy and need to

operate under extremely low power constraints.

We also compare our work against the previous work in (Gulen & Baktir, 2016)

in terms of power efficiency. Note that both works implement ECC without using the

hardware multiplier. This work uses the FFT (Algorithm 2), whereas the work in

(Gulen & Baktir, 2016) uses DFT Montgomery multiplication (Algorithm 1) for finite

field multiplication. Our work achieves ECC scalar point multiplication with a power

consumption figure of 17.3 mW for random points and 17.5 mW for fixed points. In

(Gulen & Baktir, 2016), the same operation, in the same setting but by using DFT

Montgomery multiplication, was achieved with a power consumption figure of 18.2

mW for both random and fixed points. Hence, this work achieves 5% and 4% better

26

power efficiency for random and fixed point multiplication, respectively. Furthermore,

our work achieves ECC scalar point multiplication with an energy consumption of

29.81 mWs for random points and 15.27 mWs for fixed points. In (Gulen & Baktir,

2016), the same operation, in the same setting but by using DFT Montgomery

multiplication, was achieved with the energy consumption of 34.97 mWs and 17.36

mWs for random and fixed points. Hence, this work achieves 15% and 12% better

energy efficiency for random and fixed point multiplication, respectively. A summary

of all the energy/power measurements for our implementations of ECC point

multiplication and the underlying elliptic curve point operations and arithmetic

operations, as well as the energy/power measurements for the ECC implementation in

(Gulen & Baktir, 2016), are given in Table 2.

Table 2.

Power Measurements for ECC with DFT Based Montgomery Multiplication vs. FFT

Based Multiplication.

2.3.2 Performance comparison with others’ works. In Table 3, we present

our timings for ECC random point multiplication on the MSP430F1611 as well as the

timings of the related work in the literature on the same microcontroller. Liu et al.’s

work, which uses a 159-bit Montgomery curve, presents the fastest timing for random

point multiplication on the MSP430 microcontroller (Z. Liu et al., 2010). They use the

Montgomery ladder method and achieve random point multiplication in 3,460,000

clock cycles which is equivalent to 0.48 s at 8 MHz clock frequency. Gouvêa et al.’s

work, which uses the 160-bit curve secp160r1 that has a slightly smaller elliptic curve

27

group order than ours, achieves ECC random point multiplication in 0.58 s (Gouvêa et

al., 2012). Our previous ECC implementation over GF ((213-1)13) on the MSP430F149,

a similar microcontroller to the MSP430F1611, achieves random point multiplication

in 1.55 s (Gülen & Baktir, 2014). Please note that our ECC random point multiplication

implementation in this work, which exploits the NTT-based finite field

multiplication/squaring and the FFT, is more than 18% faster than our previous

implementation on the same elliptic curve. Wang et al.’s implementation of elliptic

curve random point multiplication over a 160-bit elliptic curve has a timing value of

3.51 s which is significantly worse than our timing result (H. Wang et al., 2006). In a

later work, the same authors improve their timing to 1.60 s; however, their new

implementation is still 22% slower than our work (H. Wang & Li, 2006).

Table 3.

Timings for ECC Random Point Multiplication.

28

Please note that the timing figure for our ECC implementation is for a 169-bit elliptic

curve with a higher security level, whereas the others’ works use the smaller ordered

159-bit and 160-bit elliptic curves.

 In Table 4, we present our timings for ECC fixed point multiplication on the

MSP430F1611 as well as the timings of the related work in the literature on the same

microcontroller. Liu et al.’s work, which uses a 159-bit twisted Edwards curve,

presents the fastest timing for fixed point multiplication on the MSP430

microcontroller (Z. Liu et al., 2010).

Table 4.

Timings for ECC Fixed Point Multiplication.

file:///C:/Users/EGULUTK/Desktop/PhD%20Forms/My%20Publications/word%20pubs/Sensors%20FFT%20Paper%202020.docx%23_bookmark22

29

They use the Comb method and twisted Edwards curves to achieve fixed point

multiplication in 1,920,000 clock cycles which is equivalent to 0.24 s at 8 MHz clock

frequency. Gouvêa et al.’s work, which uses the 160-bit elliptic curve secp160r1 and

the 4NAF method, achieves ECC fixed point multiplication in 0.52 s (Gouvêa et al.,

2012). Liu et al.’s timing for 160-bit ECDSA signature generation (considered to have

around the same timing value as elliptic curve fixed point multiplication) is 1.58 s,

which is twice slower than our implementation that uses a larger 169-bit elliptic curve.

Wang et al.’s work on the same microcontroller achieves elliptic curve fixed point

multiplication in 1.44 s over a 160-bit elliptic curve. Wenger’s implementation of

elliptic curve fixed point multiplication on a 160-bit elliptic curve takes 8,779,931

clock cycles which is equivalent to 1.09 s at 8 MHz clock frequency (Wenger &

Werner, 2011). Szczechowiak et al.’s work achieves elliptic curve fixed point

multiplication in 0.72 s using a 160-bit elliptic curve over a prime field (Szczechowiak

et al., 2008) and in 1.04 s using a 163-bit elliptic curve over a binary field

(Szczechowiak et al., 2008). Our timing for elliptic curve fixed point multiplication

over a larger ordered 169-bit elliptic curve is slightly better than their results. Please

note that the timing figure for our ECC implementation is for a 169-bit elliptic curve

with a higher security level, whereas the others’ works use the smaller ordered 159-

bit, 160-bit and 163-bit elliptic curves.

2.4 Chapter Conclusion

We implemented ECC on the MSP430 microcontrollers with and without using

hardware multiplier support and using number theoretic transform based finite field

arithmetic. We showed that ECC can be run efficiently on extremely constrained

devices when FFT based squaring and multiplication operations are used. Since FFT

based squaring and multiplication require dramatically fewer word multiplications, we

discarded the hardware multiplier supported by MSP430 microcontrollers. Instead of

utilizing the hardware multiplier, we realized a fixed-time word multiplication

subroutine with addition and shift operations. Thus, our ECC implementations are also

suitable for power-critical applications. We realized ECC point multiplication in 0.89

s and 1.74 s for fixed and random points, which are 10% and 13% faster, respectively,

in comparison with the previous work in (Gulen & Baktir, 2016). Moreover, the total

30

energy consumption of our ECC implementation for fixed and random point

multiplication is 12% and 15% less than the previous implementation. In our proof-of-

concept implementation, we realized ECC without using the hardware multiplier on

the MSP430FG4618 microcontroller and obtained energy/power measurements on it.

We achieved power/energy savings by not using the available onboard hardware

multiplier and thus by eliminating dynamic power consumption due to the use of the

hardware multiplier. We used this microcontroller because it is the microcontroller

contained in the FET emulator which we use to obtain our timing and energy/power

measurements. By using the MSP430 versions MSP430F2274, MSP430G2955,

MSP430F1122, MSP430F1232, MSP430F135 or MSP430F155, which do not contain

an onboard hardware multiplier, static power/energy consumption due to the hardware

multiplier can also be eliminated, and thus better power/energy efficiency could be

achieved by using our proposed algorithms and implementations.

31

Chapter 3

RSA Cryptography for Wireless Sensor Nodes

RSA cryptosystem, which is the first general-purpose PKC algorithm, is by far

also the most widely deployed one (Dimitrov et al., 2022; Fotohi et al., 2020; Fu et al.,

2021; Ganbaatar et al., 2021; Jiao et al., 2020; Karim et al., 2021; Lin et al., 2018;

Medha Nag et al., 2020; Ochoa-Jimenez et al., 2020; Pavani & Sriramya, 2021; Vollala

et al., 2017; Wahab et al., 2021; H. Yu & Kim, 2020). Nevertheless, memory and CPU

speed limitations for low-end microcontrollers make it challenging to implement RSA

on constrained microcontrollers used in WSNs and IoT systems (Z. Liu et al., 2010).

For the 80-bit security level, RSA should use a 1024-bit key. However, as the 80-bit

security level is considered out-of-date for most applications, the 112-bit security

level, and hence the use of at least a 2048-bit key, is suggested for RSA (Barker, 2020).

While the same security level is reached with ECC utilizing a shorter key and hence

smaller computational load (Gulen & Baktir, 2020; Wenger & Werner, 2011), RSA is

still the most widespread public-key cryptographic algorithm. RSA has some

advantages over ECC. One advantage is signature verification with RSA is faster.

Furthermore, RSA is more mature and more widely adopted, especially in Internet

applications. Any WSN or IoT application that uses RSA would have a better chance

of being compatible with existing infrastructures. Finally, while the prospect of

building a general-purpose quantum computer would undermine the security of both

RSA and ECC, ECC has also been the suspect of a more recent threat which is the

potential back doors due to its parameter-based nature as revealed by Edward Snowden

(Koblitz & Menezes, 2016). Hence, RSA clearly has some strong points against ECC.

The National Institute of Standards Technology (NIST) recommends the use of

at least a 2048-bit long RSA key to achieve 112-bit security (Barker, 2020).

Nevertheless, to the best of our knowledge, there is no existing study that efficiently

implements RSA with a 2048-bit or longer key on a constrained microcontroller such

as MSP430 and ATmega. Texas Instrument’s low-cost and low-power family of

MP430 microcontrollers are some of the most common microcontrollers which are

used in wireless sensor nodes. For instance, the well-known sensor nodes Telos, Tmote

and BEAN use the MSP430F149 microcontroller; moreover, the TelosB, Tmote Sky,

KMote and SHIMMER sensor nodes use the MSP430F1611 microcontroller (Karray

32

et al., 2018). Similarly, the sensor nodes WSN1120L, WSN1120CL, WSN1101ANL

and WSN1101ACL of WiSense use the MSP430G2955 microcontroller (WiSense

Technologies, 2019).

3.1 Background

The RSA public key cryptosystem (Rivest et al., 1978), introduced by Rivest,

Shamir and Adleman in 1978, is the first ever and still most widely used general

purpose public key cryptographic algorithm. In RSA, encryption and decryption are

described by the below equations where x is the plaintext, y is the ciphertext, e is the

public encryption key, N is part of the public key and d is the private (decryption) key.

 𝑅𝑆𝐴 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ∶ 𝑦 = 𝑥𝑒 𝑚𝑜𝑑 𝑁 (10)

 𝑅𝑆𝐴 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ∶ 𝑥 = 𝑦𝑑 𝑚𝑜𝑑 𝑁 (11)

The modulus N, which is used for performing modular arithmetic, is the product

of two large primes, denoted with p and q (Rivest et al., 1978). Furthermore, there is

the following relationship between e and d:

 𝑒 = 𝑑−1 𝑚𝑜𝑑 𝜑(𝑁) (12)

where 𝜑(𝑁), the Euler’s Phi function, has the following value:

 𝜑(𝑁) = (𝑝 − 1) × (𝑞 − 1) (13)

If the public key N can be factorized into p and q, it would be possible to compute

𝜑(𝑁) = (𝑝 − 1) × (𝑛 − 1) and obtain the secret decryption key d by computing

𝑒−1 𝑚𝑜𝑑 𝜑(𝑁). Hence, the security of RSA relies on the difficulty of factorizing the

33

modulus N. If N is large enough, it cannot be factorized to obtain d and thus RSA

cannot be broken.

3.1.1 Sliding Window Method. The exponentiation operation for RSA

decryption can be achieved by using the basic binary scan method (Menezes et al.,

1996). This method scans the bits of the exponent one bit at a time starting with the

most significant non-zero bit. For the most significant non-zero bit, the intermediary

result is initially set to the value of the base. Then, for each new bit scanned, the

intermediary result is updated with its square. If the newly scanned bit is 1, then the

intermediary result is further updated by multiplying it with the base value. All

arithmetic operations, i.e., multiply and square, are performed in modulo the RSA

modulus N.

34

In this method, the number of square operations conducted is equal to one less than the

number of bits in the exponent. The number of multiply operations is equal to one less

than the Hamming weight of the exponent, which, on average, is half the bit-length of

the exponent minus 1. Hence, for a t-bit RSA decryption operation, basic binary scan

method performs 𝑡 − 1 modular squarings and on average (𝑡 − 1)/2 modular

multiplications.

The sliding window method for exponentiation improves upon the binary scan

method by reducing the number of required modular multiplications. In Algorithm 9

(Gulen et al., 2019), the sliding window method is given for a 4-bit window. The base

and the exponent are represented with b and e, respectively.

3.1.2 Chinese Remainder Theorem. Applying the CRT is a common

method used to speed up RSA decryption (Menezes et al., 1996). Using the CRT, for

any integer value y, y mod N can be uniquely represented as (yp, yq) where yp and yq

are the residues of y modulo the relatively prime numbers p and q, respectively. Note

that the CRT representation can be used in RSA decryption due to the fact that the

RSA modulus N is the product of two prime numbers. The normal integer

representation of y mod N can be recovered from its CRT representation using the

formula

 𝑦 = (𝑞 × 𝑐𝑝) × 𝑦𝑝 + (𝑝 × 𝑐𝑞) × 𝑦𝑞𝑚𝑜𝑑 𝑁 , (14)

where

𝑐𝑝 = 𝑞−1 𝑚𝑜𝑑 𝑝 , 𝑐𝑞 = 𝑝−1 𝑚𝑜𝑑 𝑞 . (15)

Modular multiplication, as it takes place in RSA decryption, can be done in the

CRT representation using the moduli p and q, instead of the usual RSA modulus N.

Furthermore, repeated multiplications modulo N, as it takes place in RSA decryption,

can be performed in the CRT representation and the final result can be converted back

to the normal integer representation. Hence, the RSA decryption operation, i.e., the

35

computation of 𝑥 = 𝑦𝑑 𝑚𝑜𝑑 𝑁 can be achieved using the CRT as

 𝑥𝑝 = 𝑦𝑝

𝑑𝑝𝑚𝑜𝑑 𝑝 , (16)

 𝑥𝑞 = 𝑦𝑞

𝑑𝑞𝑚𝑜𝑑 𝑞 , (17)

 𝑥 = (𝑞 × 𝑐𝑝) × 𝑥𝑝 + (𝑝 × 𝑐𝑞) × 𝑥𝑞 𝑚𝑜𝑑 𝑁 (18)

where 𝑑𝑝 = 𝑑 𝑚𝑜𝑑 (𝑝 − 1) and 𝑑𝑞 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1). Note that the computations of

𝑥𝑝 = 𝑦𝑝
𝑑 and 𝑥𝑞 = 𝑦𝑞

𝑑 are simplified as 𝑦𝑝

𝑑𝑝
 and 𝑦𝑞

𝑑𝑞
, respectively, by taking

advantage of the Euler’s theorem which states that 𝑦𝑝
𝑑 = 𝑦𝑝

𝑑 𝑚𝑜𝑑 𝜑(𝑝)
 (𝑚𝑜𝑑 𝑝) and

𝑦𝑞
𝑑 = 𝑦𝑞

𝑑 𝑚𝑜𝑑 𝜑(𝑝)
 (𝑚𝑜𝑑 𝑞).

In the above RSA decryption operation using the CRT, the values 𝑑𝑝, 𝑑𝑞,

𝑞 × 𝑐𝑝, 𝑝 × 𝑐𝑞, 𝑐𝑝 and 𝑐𝑞 can be precomputed. Furthermore, in (16) and (17), note

that the bit-lengths of the operands that are exponentiated, as well as the exponents,

are half their sizes in the normal RSA decryption without the CRT. Therefore, using

the CRT reduces the overall timing of RSA decryption dramatically by a factor of up

to four.

3.1.3 Montgomery Multiplication. Since arithmetic is performed in

modulo N for RSA encryption and decryption, the result of every multiplication

operation needs to be reduced modulo N. The Montgomery multiplication algorithm

(Montgomery, 1985), given in Algorithm 10 (Gulen et al., 2019), can be used to

achieve multiplication modulo N efficiently. For multiplying the two integers A and B

with the algorithm, they should be converted into their Montgomery forms as �̅� and

�̅�, where �̅� = 𝐴 × 𝑟 𝑚𝑜𝑑 𝑁 and �̅� = 𝐵 × 𝑟 𝑚𝑜𝑑 𝑁. Here the constant r can be picked

to be any integer that is greater than and relatively prime with N. For purposes of

efficiency, r can be chosen to be the smallest power of 2 that is greater than N.

Montgomery multiplication of �̅� and �̅� produces �̅� × �̅� × 𝑟−1 𝑚𝑜𝑑 𝑁 which is the

36

Montgomery form �̅� of the product 𝑍 = 𝐴 × 𝐵 𝑚𝑜𝑑 𝑁. Thus, Montgomery

multiplication preserves the Montgomery form and repeated multiplications, such as

the multiplications that make up an exponentiation, can be performed using

Montgomery multiplication.

The arithmetic operations performed for achieving Montgomery multiplication

are integer multiplication, addition and subtraction. Subtraction is computed only

when the intermediary result 𝑇1 is larger than or equal to N. The cost of the division

operation by 2𝑛, on line 3 of Algorithm 10, can be ignored since the first n bits of 𝑇1

are zeroes and the higher bits readily give the result.

3.1.4 Subtractive Karatsuba-Ofman Technique. Multiprecision integer

multiplication, which is performed three times in Montgomery multiplication, is the

core arithmetic operation in RSA. Therefore, achieving fast multiprecision integer

multiplication is crucial for an efficient RSA implementation. Using the classical grade

school method, multiplication of large integers is typically achieved in terms of a large

number of word additions and multiplications. The Karatsuba-Ofman technique is a

divide-and-conquer method that trades computationally expensive multiplications

with simple additions (Karatsuba, 1963). An illustration of Karatsuba-Ofman for

multiplying the n-bit integers A and B is given in Figure 3. As given with Figure 3, in

Karatsuba-Ofman, A and B are bisected to their higher and lower ordered parts,

37

denoted with 𝐴𝐻, 𝐴𝐿 and 𝐵𝐻, 𝐵𝐿, respectively, and arithmetic is performed over these

operand halves. Thus, an n-bit multiplication is achieved with roughly three
𝑛

2
 -bit

multiplications and a number of additions/subtractions. Since multiplication is more

complex and takes more time compared to addition/subtraction, Karatsuba-Ofman

ensures faster overall multiplication. Note that while the classical grade school method

requires performing four
𝑛

2
 -bit multiplications to achieve an n-bit multiplication,

Karatsuba-Ofman requires only three. When applied recursively, Karatsuba-Ofman

significantly reduces the complexity of multiprecision multiplication from O(𝑚2) to

O(𝑚log2 3) for the multiplication of two m word integers.

Figure 3. Karatsuba-Ofman multiplication.

 In the Karatsuba-Ofman technique, since additions may generate carry bits, the

multiplication operation (𝐴𝐻 + 𝐴𝐿) ∙ (𝐵𝐻 + 𝐵𝐿) is not always fixed in size. When the

conditional branch operation is avoided in this multiplication computation to prevent

timing attacks, the operands (𝐴𝐻 + 𝐴𝐿) and (𝐵𝐻 + 𝐵𝐿) are considered with their extra

carry bit even when a carry bit is not generated after the addition. This causes overhead

in the multiplication computation. This overhead can be eliminated by using the

38

subtractive Karatsuba-Ofman technique, a slightly optimized form of the original

Karatsuba-Ofman (Hinterwälder et al., 2015; Hutter & Schwabe, 2015). With this

approach, the two halves of the integers to be multiplied are subtracted from each

other, instead of being added. Figure 4 shows the operations that take place in

subtractive Karatsuba-Ofman.

Figure 4. Subtractive Karatsuba-Ofman multiplication.

3.2 Our RSA Implementation on MSP430

We implement 2048-bit RSA on three target MSP430 microcontrollers, namely

MSP430F1611, MS430F2618 and MSP430F5529 (Texas Instruments, 2004). Since

these three generations of MSP430 support the same instruction set, we are able to use

the same code for the microcontrollers with little modifications. However, there are

some differences between our target MSP430 microcontrollers. For instance,

MSP430F5529 has a 32 × 32 multiplier whereas MSP430F2618 and MSP430F1611

have a 16 × 16 multiplier, and hence word multiplications need to be handled

differently. Other than the size of the hardware multiplier, the memory write

instruction takes different numbers of clock cycles on different versions of MSP430.

39

The memory write instruction on MSP430F1611 takes 4 clock cycles while the same

instruction takes 3 clock cycles on MSP430F2618 and MDP430F5529. Another

difference between the microcontrollers is in their memory capacities and their

maximum CPU clock frequencies. MSP430F5529, MSP430F2618 and MSP430F1611

have the memory sizes of 128 kB, 116 kB and 48 kB, and the maximum CPU clock

frequencies of 25 MHz, 16 MHz and 8 Mhz, respectively. We use the IAR Embedded

Workbench development environment and test our code using its debugger and clock-

counter features.

All the acceleration techniques described in Chapter 3.1 are applied in our

implementations, namely CRT-based exponentiation, and 4-bit sliding window to

accelerate RSA decryption, the small exponent 216 + 1 to accelerate RSA encryption,

and subtractive Karatsuba-Ofman and Montgomery multiplication to accelerate both.

For core arithmetic operations such as integer addition/subtraction and subtractive

Karatsuba-Ofman, we write our codes in assembly to guarantee fast execution.

In our assembly codes, we eliminate conditional branch and jump instructions to

mitigate timing attacks. For MSP430F1611 and MS430F2618, we implement 2048-

bit integer multiplication by recursively utilizing subtractive Karatsuba-Ofman until

the method does not accelerate the base integer multiplication any further. Here, the

base integer multiplications, which are 64-bit multiplications, are implemented using

the onboard 16×16 multiplier. For MSP430F5529 with a 32×32 multiplier, we

recursively implement subtractive Karatsuba-Ofman until the 128-bit multiplications

are reached at the base case of recursion. We observe that subtractive Karatsuba-

Ofman does not speed up 128-bit integer multiplication when the 32×32 multiplier is

used for word multiplications. While we implement subtractive Karatsuba-Ofman

recursively, our code is fully unrolled and thus there is no timing overhead due to

recursive function calls.

We optimize our integer arithmetic as much as we can, e.g., by storing frequently

used operands in registers, to reduce memory read/write overheads and optimize our

subtractive Karatsuba-Ofman code for the squaring operation. We explain our

acceleration optimizations for 128-bit subtractive Karatsuba-Ofman by giving

assembly code examples with MSP430 instructions in Chapter 3.2.1 and 3.2.2.

The techniques which we use in our RSA decryption/encryption implementation

are summarized in Figure 5. At the bottom of our implementation, fast integer

40

multiplication/squaring is achieved with the subtractive Karatsuba-Ofman and

operand scanning methods which are used within Montgomery multiplication.

Montgomery multiplication is used in CRT based modular exponentiation and in

modular exponentiation with small public exponent. CRT-based modular

exponentiation is used in RSA decryption and modular exponentiation with small

public exponent is used in RSA encryption. Furthermore, in RSA decryption, message

and key blinding techniques, which we describe in Chapter 3.2.4, are used to mitigate

side-channel attacks and protect the private decryption key. Finally, the sliding

window method is used for RSA decryption.

Figure 5. Techniques used in the proposed RSA implementation according to

their performance impact.

3.2.1 Fixed time subtractive Karatsuba-Ofman Multiplication. At the

bottom of our 2048-bit recursive subtractive Karatsuba-Ofman implementation on

MSP430F1611 and MSP430F2618, we perform 128-bit subtractive Karatsuba-Ofman.

Here, we explain the details of our 128-bit subtractive Karatsuba-Ofman

implementation and the optimizations we use. We would like to note that we apply the

same techniques at the higher levels of recursion in our 2048-bit recursive subtractive

Karatsuba-Ofman implementation. As described in Figure 4, for performing 128-bit

subtractive Karatsuba-Ofman, three 64-bit multiplications are performed, namely 𝐴𝐻 ∙

𝐵𝐻, (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿) and (𝐴𝐿 ∙ 𝐵𝐿). The advantage of subtractive Karatsuba-

41

Ofman over normal Karatsuba-Ofman is that the multiplication operation (𝐴𝐻 − 𝐴𝐿) ∙

(𝐵𝐻 − 𝐵𝐿) is fixed in size since there is no possibility of a carry occurrence in the

computations of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿), unlike in the additions (𝐴𝐻 + 𝐴𝐿) and

(𝐵𝐻 + 𝐵𝐿) that take place in the original Karatsuba-Ofman method. The multiplication

operation (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿) in subtractive Karatsuba- Ofman is performed over

shorter operands and hence it is more efficient compared to the multiplication

operation (𝐴𝐻 + 𝐴𝐿) ∙ (𝐵𝐻 + 𝐵𝐿) that takes place in the original Karatsuba-Ofman

algorithm.

We use the two’s complement representation to store the results of the

subtractions (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿). We use an additional sign word that is set to

0×FFFF or 0×0000 depending on whether the result of the subtraction is negative or

positive. We denote the sign words for the results of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿) with

SWA and SWB, respectively. In order to avoid timing attacks, we realize the

subtractions (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿), as well as the multiplication (𝐴𝐻 − 𝐴𝐿) ∙

(𝐵𝐻 − 𝐵𝐿), in fixed execution time and without using branches, regardless of whether

the result is positive or negative. We obtain and process the magnitudes of the results

of the subtraction operations. In order to do this, we need to compute the two’s

complement of the result if subtraction results in a negative number. We do this

computation in fixed time, regardless of whether a subtraction results in a positive or

a negative number, by XORing the sign word with all the remaining words of the result

and then by adding the sign bit, as shown in Subroutines 1 and 2. Note that the sign

words SWA and SWB will be either 0×FFFF or 0×0000, depending on whether the

results of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿) are negative or positive, respectively. Hence,

XORing (𝐴𝐻 − 𝐴𝐿) or (𝐵𝐻 − 𝐵𝐿) with its sign word and then adding the sign bit to the

result would give us its two’s complement, and thus its magnitude, only if its sign word

is 0×FFFF (it is initially negative). If (𝐴𝐻 − 𝐴𝐿) or (𝐵𝐻 − 𝐵𝐿) is positive, and hence

its sign word is 0×0000, this operation will not change its value which is already the

positive magnitude. Note that, in Subroutines 1 and 2, the magnitudes of (𝐴𝐻 − 𝐴𝐿)

and (𝐵𝐻 − 𝐵𝐿) are computed and stored in the arrays A[4 : 7] and B[4 : 7], and their

sign words are stored in SWA and SWB, respectively.

42

43

We use the sign words of (𝐴𝐻 − 𝐴𝐿) and (𝐵𝐻 − 𝐵𝐿), stored in SWA and SWB,

in the computation of the intermediary product −𝑇1 = (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿) which

can be positive or negative. By utilizing the sign words SWA and SWB, we compute

−𝑇1 and add it to 𝑇2 = 𝐴𝐻 ∙ 𝐵𝐻 and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿, as depicted in Figure 2. With

Subroutine 3, we give our assembly code implementation for the computation of T0 +

T2−T1 in 128-bit subtractive Karatsuba-Ofman. Here, firstly the computation of −T1 is

achieved, and then it is added with 𝑇2 = 𝐴𝐻 ∙ 𝐵𝐻 and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿. Note that, in the

beginning of Subroutine 3, the magnitudes of T2, T1 and T0 are stored in the memory

arrays T2[0 : 7], T1[0 : 7] and T0[0 : 7], respectively. Remember that the sign words of

𝐴𝐻 − 𝐴𝐿 and 𝐵𝐻 − 𝐵𝐿 are stored in SWA and SWB at this point. After the subroutine

is executed, the result T2 + T0 − T1 is stored in the memory array T1[0:7] and the carry-

out bit is stored in SWA.

As seen in Figure 4, the lower half of 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿 gives us the least significant

64-bits of the result. To finalize 128-bit subtractive Karatsuba-Ofman multiplication,

we add the upper half of T0 to the lower half of T2 + T0 − T1 which gives us the

following 64-bits of the result. Finally, we add the generated carry bit and 𝑇2 = 𝐴𝐻 ∙

𝐵𝐻 to the upper half of T2 + T0 − T1 to generate the most significant 128-bits of the

result. Subroutine 4 shows the assembly code for this summation operation where 𝑇2 =

𝐴𝐻 ∙ 𝐵𝐻 and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿 are stored in the memory arrays T2[0 : 7] and T0[0 : 7],

respectively. Note that, we give with Subroutines 1 − 4 the assembly codes for 128-bit

subtractive Karatsuba-Ofman. For 256-bit, 512-bit, 1024-bit and 2048-bit subtractive

Karatsuba, we expand our codes by applying the same techniques recursively and in

an unrolled fashion.

44

45

3.2.2 Fixed time subtractive Karatsuba-Ofman Squaring. We perform

the modular exponentiation operations required for RSA decryption by using the 4-bit

sliding window technique given with Algorithm 1. With this technique, four modular

squarings are performed for every modular multiplication. Since the number of

performed modular squarings is four times higher than modular multiplications, it is

particularly important to improve the performance of modular squaring for fast RSA

decryption. Similarly, in RSA encryption where the short public key e = 216+1 is used

for speed, encryption is achieved by performing 16 modular squarings and only one

modular multiplication, and hence speeding up the modular squaring operation would

pay off. Remember that we perform modular multiplication, as well as modular

squaring, by using Montgomery multiplication given with Algorithm 10. In

Montgomery multiplication, three integer multiplications are performed, as shown in

lines 1, 2 and 3 of Algorithm 10. The only difference between modular multiplication

and modular squaring with Montgomery multiplication is that in modular squaring the

integer multiplication in line 1 of Algorithm 10 is a squaring. We speed up this integer

squaring by optimizing our subtractive Karatsuba-Ofman multiplication

implementation for the squaring computation.

46

Figure 6. Subtractive Karatsuba-Ofman squaring.

The operations that take place in our subtractive Karatsuba-Ofman squaring

implementation are depicted in Figure 6. Subtractive Karatsuba-Ofman squaring is

faster than subtractive Karatsuba-Ofman multiplication since integer squaring is

performed over a single operand and therefore the number of required memory

read/write operations is less since the same values are multiplied. Moreover, in the

computation of 𝑇1 = (𝐴𝐻 − 𝐴𝐿)2, the result is always positive which allows us to

eliminate the XOR and two’s complement operations that would otherwise be needed

to handle the sign word. For 128-bit subtractive Karatsuba-Ofman squaring, as seen in

Figure 4, the lower half of 𝑇0 = 𝐴𝐿
2 gives us the least significant 64-bits of the result.

After squaring 𝐴𝐻 − 𝐴𝐿 to obtain 𝑇1 = (𝐴𝐻 − 𝐴𝐿)2, we subtract 𝑇0 = 𝐴𝐿
2 and 𝑇2 =

𝐴𝐻
2 from it. We give the assembly code for this operation in Subroutine 5 where T0,

T1 and T2 are stored in the memory arrays T0[0 : 7], T1[0 : 7] and T2[0 : 7], respectively.

Note that after this computation, the resulting value of T1 − T0 − T2 = (𝐴𝐻 − 𝐴𝐿)2 −

𝐴𝐿
2 − 𝐴𝐻

2 resides in the memory array T1[0 : 7] and the sign word CW. We represent

this result as T1[0 : 7] || CW, the concatenation of T1[0 : 7] and CW. We then subtract

T1 − T0 − T2, stored in T1[0 : 7] || CW, from T0[4 : 7] || T2[0 : 4] in order to compute

the middle 128-bits of the result. We add the generated carry word to T2[5 : 7] to

47

compute the most significant 64 bits of the result and finalize the subtractive

Karatsuba-Ofman squaring operation. When 128-bit subtractive Karatsuba-Ofman

squaring completes execution, the lower 128 bits of the 256-bit result are stored in the

memory array T0[0 : 7] and the higher 128 bits are stored in the memory array T2[0 :

7]. We give our assembly code for this operation with Subroutine 6.

48

3.2.3 Fixed time operand scanning methods. In our 2048-bit integer

multiplication and squaring implementations on MSP430F1611 and MSP430F2618,

after five levels of recursive subtractive Karatsuba-Ofman multiplication/squaring

operations, at the base case of recursion we realize 64-bit multiplication/squaring

operations using the operand scanning method and the onboard 16×16-bit hardware

multiplier.

For our implementation on MSP430F5529, which has a 32×32-bit onboard

hardware multiplier, we implement 2048-bit subtractive Karatsuba-Ofman with four

levels of recursion. At the base case of recursion, we realize 128-bit

multiplication/squaring operations using the operand scanning method and the

onboard 32×32-bit hardware multiplier.

We do not carry out subtractive Karatsuba-Ofman fully recursively until we

reach the microcontroller’s word size, because the operand scanning method performs

better than subtractive Karatsuba-Ofman for 64-bit operands. In the operand scanning

method with 64-bit operands, we are able to store the partial products of word

multiplications using only the 12 general purpose registers. We read and write the

intermediary results by using these registers instead doing costly memory read/write

operations. Subtractive Karatsuba-Ofman generates partial products, i.e., 𝑇2 = 𝐴𝐻 ∙

49

𝐵𝐻, 𝑇1 = (𝐴𝐻 − 𝐴𝐿) ∙ (𝐵𝐻 − 𝐵𝐿), and 𝑇0 = 𝐴𝐿 ∙ 𝐵𝐿, and the method requires irregular

operand access patterns for computations with these partial products. Therefore, even

in 64-bit subtractive Karatsuba-Ofman multiplication, memory read/write operations

are inevitable in addition to register operations, and hence more clock cycles are spent

compared to the operand scanning method. That is why we use the operand scanning

method for multiplications at the base case for our recursive subtractive Karatsuba-

Ofman implementation. Note that, for MSP430F5520 with a 32×32-bit hardware

multiplier, we similarly use the operand scanning method for the 128-bit multiplication

operations at the base case of our 4-level recursive subtractive Karatsuba-Ofman

implementation. We optimize our operand scanning multiplication implementation on

MSP430F5520 to handle 128-bit operands efficiently by emptying and reusing

registers to avoid memory read/write operations while processing partial results.

We optimize our 64-bit and 128-bit operand scanning multiplication

implementations for the squaring computation on our target microcontrollers with the

16×16-bit and 32×32-bit hardware multipliers, respectively. In operand scanning

squaring, we are able to reduce the number of required word multiplications, compared

with operand scanning multiplication, by eliminating repeating word multiplications

in partial product computations. For instance, to compute (A1・A2 + A2・A1), we

eliminate the second word multiplication and find the result with the computation (A1

・A2 ≪ 1) where we simply do a bitwise left shift operation on the result of the first

word multiplication. With this optimization, we are able to reduce the number of word

multiplications from 16 down to 10. We depict the computations performed in operand

scanning multiplication and the optimizations performed in operand scanning squaring

in Figure 7. Optimizing operand scanning multiplication for squaring accelerates the

squaring computation considerably.

On MSP430F1611 and MSP430F2618, which have an onboard 16×16-bit

hardware multiplier, 64-bit operand scanning multiplication takes 210 and 189 clock

cycles, respectively. On the same microcontrollers, 64-bit operand scanning squaring

takes 170 and 155 clock cycles, respectively. Hence, with 64-bit operand scanning

squaring, we achieve 23% and 22% speedups over 64-bit operand scanning

multiplication on MSP430F1611 and MSP430F2618, respectively. On the other target

microcontroller, MSP430F5529, which has an onboard 32×32-bit hardware

multiplier, 128-bit operand scanning multiplication takes 466 clock cycles. Whereas,

50

on the same microcontroller, 128-bit operand scanning squaring takes 458 clock

cycles. Hence, with 128-bit operand scanning squaring, we achieve around 2%

speedup over 128-bit operand scanning multiplication on MSP430F5529.

Figure 7. 64-bit operand scanning multiplication and squaring method using

16x16 hardware multiplier.

3.2.4 Side-Channel Countermeasures. Side-channel attacks on

cryptographic implementations vary in a wide range and several low-cost

countermeasures have been proposed to mitigate them (Duan et al., 2016; Gao et al.,

2019; Jurecek et al., 2019; Kannwischer et al., 2018; Petrvalsky et al., 2016; Xu et al.,

2018). The first attack that comes to mind is the SPA attack (P. C. Kocher, 1996). In

RSA decryption, exponentiation using the binary method would reveal the secret

exponent bits since a multiplication is performed, in addition to a squaring, only when

the scanned secret key bit is 1. Since the difference between the square and the multiply

operations can be distinguished with the naked eye by looking at the power

consumption trace of RSA decryption under an oscilloscope, the secret key would be

51

revealed easily. An effective solution we use in our implementation is the sliding

window method which ensures similar power profiles for different secret exponent

values.

Another vulnerability against SPA could be due to conditional branches, e.g. the

conditional subtraction if (T1 ≥ N) then {T1 = T1 − N} in lines 4 − 6 of Montgomery

multiplication in Algorithm 10. Here, the conditional branch operation would leak

information on secret data. In order to prevent this vulnerability, we eliminate the if

statement and conduct the subtraction operation regardless of the if condition. We

allocate a sign word, namely SW, for storing the sign of the result of the subtraction

operation. Before executing the subtraction, we clear SW. Then we compute the

subtraction T1−N and write the result at an offset of D bytes away from the original

location of T1 in the memory where D ≥ 128 for 1024-bit Montgomery multiplication

as it takes place in 2048-bit RSA decryption using the CRT. Thus, if T1 is stored at the

address Addr1 in the memory, T1−N will be stored at the address Addr1 + D. After

performing T1 − N, we subtract the resulting borrow bit from the sign word SW. Hence,

SW is set to either 0×0000 or 0×FFFF, depending on whether the result of T1 − N is

positive or negative, respectively. Thus, we have T1 and T1 − N, the result of

Montgomery multiplication associated with both courses of action for the if statement,

stored in the memory. All we need is to access the correct result in the memory and

move it into the memory address for the output of Montgomery multiplication. We

compute the memory address for the location of the output of Montgomery

multiplication by first computing the bitwise AND of D and SW which will result in

the value D or 0 depending on whether SW is 0×FFFF or 0×0000, respectively. We

then XOR this value with D and add the result as an offset to Addr1, the memory

address of T1. We read the result of the Montgomery multiplication computation from

this memory address. Hence, the result Z of Montgomery multiplication is read either

as T1 from the address Addr1 or as T1 − N from the address Addr1 + D, and it is written

to the memory address Addr2, as depicted in Figure 8.

The DPA attack is another possible side-channel attack on RSA which performs

complex statistical analysis on decryption power traces to reveal the RSA decryption

key (P. Kocher et al., 2011; P. C. Kocher, 1996). For affordable DPA attack mitigation,

we use the blinding method (P. C. Kocher, 1996; Z. Liu et al., 2010). We blind both

the ciphertext and the secret key.

52

Figure 8. Fixed time branch implementation for 1024-bit Montgomery

multiplication.

For blinding the ciphertext, we multiply it with the random integer 𝑉𝑖 before RSA

decryption. After decryption, we recover the original plaintext by multiplying the

result of RSA decryption with the second random integer 𝑉𝑓 . For the method to work,

we select the random pair (𝑉𝑖, 𝑉𝑓) to satisfy the relationship

 𝑉𝑖 = (𝑉𝑓
−1)𝑑𝑚𝑜𝑑 𝑁 (19)

where d is the decryption key and N is the RSA modulus. We precompute the random

pair (𝑉𝑖, 𝑉𝑓) and store it on the microcontroller. Therefore, no timing overhead is

incurred due to its generation during RSA decryption. However, using the same (𝑉𝑖,

𝑉𝑓) values repeatedly in different RSA decryptions may cause vulnerabilities. In order

to efficiently overcome this issue, we alter 𝑉𝑖 and 𝑉𝑓 by updating them with their

squares before each RSA decryption operation, as suggested in (P. C. Kocher, 1996).

Note that for 2048-bit RSA, 𝑉𝑖 and 𝑉𝑓 are 2048-bit random integers. Hence, in our

2048-bit RSA implementation, message blinding is achieved with negligible timing

overhead by doing only two 2048-bit modular squarings (for updating the random

integers) and two 2048-bit modular multiplications (for blinding the ciphertext).

For further protection against DPA attacks, we also blind the secret exponent d,

as suggested in previous works (P. C. Kocher, 1996; Z. Liu et al., 2010). Exponent

blinding is basically the randomization of the private decryption key d described as

53

 𝑑′ = 𝑑 + 𝑟 ∙ 𝜑(𝑁) (20)

where r is a random integer and 𝜑(𝑁) = (𝑝 − 1) ∙ (𝑞 − 1). We apply exponent

blinding to our RSA decryption implementation and thus our CRT exponents become

𝑑𝑝
′ = 𝑑𝑝 + 𝑟 ∙ 𝜑(𝑝) and 𝑑𝑞

′ = 𝑑𝑞 + 𝑟 ∙ 𝜑(𝑞) where 𝜑(𝑝) = (𝑝 − 1), 𝜑(𝑞) = (𝑞 − 1)

and r is a random 32-bit integer as suggested in (Z. Liu et al., 2010). Exponent blinding

increases the length of the exponent by 32 bits which results in a timing overhead of

around 3% in decryption.

3.3 Performance Evaluation and Comparison. We implement 1024-bit

and 2048-bit RSA on three target MSP430 microcontrollers, namely MSP430F5529,

MSP430F2618, and MSP430F1611. We develop our RSA implementations in C

language. In addition, we write assembly subroutines for implementing core arithmetic

operations. Our timings for 1024-bit RSA encryption and decryption are given in Table

5 (Gulen et al., 2019). We compare our timings with the existing 1024-bit RSA

implementations in the literature on the same or similar microcontrollers. Our

implementation for 1024-bit RSA encryption has the best timings among all, as seen

in Table 6.

Table 5.

Our Timings for 1024-bit RSA Operations on the MSP430 Microcontroller.

54

Table 6.

Timing Comparisons for RSA Implementation with a 1024-Bit Key on Constrained

microcontrollers

Our 2048-bit RSA encryption timings are all less than a second, i.e. 0.14 s, 0.31

s and 0.67 s, on MSP430F5529, MSP430F2618 and MSP430F1611, respectively. Our

2048-bit RSA decryption timings are 7.56 s, 16.08 s and 34.90 s on MSP430F5529,

MSP430F2618 and MSP430F1611, respectively. We use the same codes for the three

MSP430 microcontrollers with slight adaptations to exploit distinct features of the

specific microcontrollers. For instance, while MSP430F5529 uses a 32×32 multiplier,

MSP430F2618 and MSP430F1611 use a 16×16 multiplier. Additionally,

MSP430F2611 and MSP430F5529 have a more advanced instruction set architecture,

named MSP430X, which allows the memory write instruction to execute 1 clock cycle

faster. Table 7 and present the timings of our 2048-RSA implementation on the three

target MSP430 microcontrollers.

55

Table 7.

Our Timings for 2048-bit RSA Operations on the MSP430 Microcontroller.

There are several existing implementations of RSA with a 1024-bit key on

MSP430 or similar constrained microcontrollers (Gulen et al., 2019; Gura et al., 2004;

Z. Liu et al., 2010; Qiu et al., 2017; H. Wang & Li, 2006). However, to the best of our

knowledge, there is only one other reported 2048-bit RSA implementation in the

literature on a comparable constrained microcontroller, namely Gura et al.’s work on

ATmega128 (Gura et al., 2004). To make a fair evaluation, we compare with the work

in (Gura et al., 2004) our 2048-bit RSA implementation on the MSP430F1611

microcontroller which has the same clock frequency and similar memory capacity. Our

work on the low-end MSP430 microcontroller MSP430F1611 presents significantly

better performance than in (Gura et al., 2004) as shown in Table 8.

Table 8.

Timing Comparisons for RSA Implementation with a 2048-Bit Key on Constrained

Microcontrollers.

56

Our 2048-bit RSA implementation utilizes the same techniques as those used in (Gura

et al., 2004), namely small public exponent e = 216 − 1, Montgomery modular

multiplication and Chinese remainder theorem. However, we utilize additionally the

subtractive Karatsuba-Ofman method for multiprecision integer multiplication. We

implement subtractive Karatsuba-Ofman recursively for improved timing

performance. Moreover, we unroll our recursive implementation to avoid loop

overheads. Furthermore, unlike the existing implementation, our RSA implementation

is equipped with the message and key blinding countermeasures to mitigate side-

channel attacks. Our implementation has the drawback of using more memory

compared to Gura et al.’s work due to the additional acceleration and side-channel

protection methods used, however it is significantly faster. While our implementation

uses ×2.37 and ×1.77 more memory, it is ×2.90 and ×2.39 faster for encryption and

decryption operations, respectively. We believe the resulting memory drawback is an

acceptable trade-off for the achieved timing performance gain.

3.4 Chapter Conclusion

RSA is the oldest and the most adopted public-key cryptographic algorithm that

is utilized by the existing Internet infrastructure and related applications. We presented

a practical, side-channel resistant implementation of 1024-bit and 2048-bit RSA on the

constrained microcontrollers that are widely used in WSN nodes and IoT devices. Our

fastest RSA implementation achieved 2048-bit encryption and decryption in 0.14 s and

7.56 s. Furthermore, our implementation on the low-end MSP430 microcontroller

achieved 2048-bit RSA significantly faster (×2.9 and ×2.4 for encryption and

decryption) with respect to the existing implementation on the comparable

ATmega128 microcontroller. We accomplished these performance figures by utilizing

numerous acceleration methods, e.g. Montgomery multiplication, subtractive

Karatsuba-Ofman, and CRT-based modular exponentiation. Furthermore, unlike the

existing work, we implemented the necessary countermeasures to mitigate side-

channel attacks, e.g. SPA and DPA, by utilizing the sliding window, ciphertext

blinding and secret key blinding methods.

57

Chapter 4

Conclusions

In this thesis, we present and use novel techniques for implementing public-key

cryptography for embedded constrained devices. The constrained devices, i.e.

microcontrollers, are used in WSN and IoT applications widely and they have limited

resources i.e. CPU speed and memory capacity. Additionally, such microcontrollers

commonly powered by small batteries with low capacity, or they harvest the energy

from the ambient sources in the environment e.g., solar, thermal, vibration.

Considering the limitations of such devices, applying computational expensive and

complex PKC operations is challenging. In our studies we applied various

accelerations methods while implementing the two most popular PKC, namely ECC

and RSA, for MSP430 microcontrollers. With our combined optimization methods,

we achieved better timing results on MSP430 microcontrollers, compared to existing

other works in the literature which use same or similar microcontrollers.

 We realized our ECC implementations using NTT and we utilized an OEF

GF(pm), using Edwards curve on projective coordinates. NTT benefits from

convolution theorem and reduces the number of the required base field GF(p)

multiplications which is the core optimization method for our ECC implementations.

In our studies, we use DFT based Montgomery multiplication and FFT based

multiplication for faster multiplications to accelerate ECC scalar point multiplications.

Our studies presented in the thesis are the first software implementations using NTT

for ECC, in the literature.

Compared to ECC, RSA requires a larger key size, at least 1024-bit. It is usually

considered as a drawback of the RSA to implement on the constrained

microcontrollers. However, RSA can have other advantages, e.g., allowing fast digital

signature verification. The common acceleration methods such as Chinese remainder

theorem, sliding window method and small public exponent improve RSA

performance significantly. Moreover, we utilized subtractive Karatsuba-Ofman

multiplication technique with optimized operand scanning method to achieve even

faster RSA encryption/decryption timings. Thus, our RSA timings for the MSP430

microcontrollers are the fastest in the literature compared to similar microcontrollers,

for 1024-bit key size and 2048-bit key size. Additionally, we applied existing side-

58

channel attack countermeasures in our RSA implementations to mitigate SPA and

DPA.

One of the possible future research topics, after the thesis is, implementing ECC

for larger key size on the constrained microcontrollers. We believe, use of optimized

NTT based computations can be more impactful, with the larger ECC key size, in terms

of performance, especially for the constrained devices. Power efficiency is another

important criterion for the constrained embedded devices besides the timing

performance. Thus, comparative investigations of the power/energy efficiencies of

different arithmetic algorithms and cryptographic implementations on the constrained

embedded devices are promising research directions.

59

REFERENCES

Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018).

Energy-harvesting wireless sensor networks (EH-WSNs): A review. In ACM

Transactions on Sensor Networks (Vol. 14, Issue 2).

https://doi.org/10.1145/3183338

Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless

multimedia sensor networks. Computer Networks, 51(4).

https://doi.org/10.1016/j.comnet.2006.10.002

Bailey, D. v., & Paar, C. (2001). Efficient arithmetic in finite field extensions with

application in elliptic curve cryptography. Journal of Cryptology, 14(3).

https://doi.org/10.1007/s001450010012

Baktir, S., & Sunar, B. (2006). Finite field polynomial multiplication in the frequency

domain with application to elliptic curve cryptography. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 4263 LNCS.

https://doi.org/10.1007/11902140_103

Baktır, S., Kumar, S., Paar, C., & Sunar, B. (2007). A state-of-the-art elliptic curve

cryptographic processor operating in the frequency domain. Mobile Networks and

Applications, 12(4). https://doi.org/10.1007/s11036-007-0022-4

Baktır, S., & Sunar, B. (2008a). Frequency domain finite field arithmetic for elliptic

curve cryptography [PhD]. Worcester Polytechnic Institute.

Baktır, S., & Sunar, B. (2008b). Optimal extension field inversion in the frequency

domain. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 5130 LNCS.

https://doi.org/10.1007/978-3-540-69499-1_5

Barker, E. (2020). Recommendation for key management. NIST Special Publication

800-57.

Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., & Hu, Y. F. (2007).

Wireless sensor networks: A survey on the state of the art and the 802.15.4 and

ZigBee standards. In Computer Communications (Vol. 30, Issue 7).

https://doi.org/10.1016/j.comcom.2006.12.020

Baylis, J. (1988). Introduction to finite fields and their applications, by R. Lidl and H.

60

Niederreiter. Pp 407. £19·50. 1986. ISBN 0-521-30706-6 (Cambridge University

Press). The Mathematical Gazette, 72(462). https://doi.org/10.2307/3619969

Bernstein, D. J., & Lange, T. (2007). Faster addition and doubling on elliptic curves.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 4833 LNCS.

https://doi.org/10.1007/978-3-540-76900-2_3

Blake, I., Seroussi, G., & Smart, N. (1999). Elliptic Curves in Cryptography. In Elliptic

Curves in Cryptography. https://doi.org/10.1017/cbo9781107360211

Buchanan, W. J., Li, S., & Asif, R. (2017). Lightweight cryptography methods.

Journal of Cyber Security Technology, 1(3–4).

https://doi.org/10.1080/23742917.2017.1384917

Chandrakasan, A., Amirtharajah, R., Cho, S. H., Goodman, J., Konduri, G., Kulik, J.,

Rabiner, W., & Wang, A. (1999). Design considerations for distributed

microsensor systems. Proceedings of the Custom Integrated Circuits Conference.

https://doi.org/10.1109/cicc.1999.777291

Chen, X., Makki, K., Yen, K., & Pissinou, N. (2009). Sensor network security: A

survey. IEEE Communications Surveys and Tutorials, 11(2).

https://doi.org/10.1109/SURV.2009.090205

Chong, C. Y., & Kumar, S. P. (2003). Sensor networks: Evolution, opportunities, and

challenges. Proceedings of the IEEE, 91(8).

https://doi.org/10.1109/JPROC.2003.814918

Cooley, J. W., & Tukey, J. W. (1965). An Algorithm for the Machine Calculation of

Complex Fourier Series. Mathematics of Computation, 19(90).

https://doi.org/10.2307/2003354

Diffie, W., Diffie, W., & Hellman, M. E. (1976). New Directions in Cryptography.

IEEE Transactions on Information Theory, 22(6).

https://doi.org/10.1109/TIT.1976.1055638

Dimitrov, V., Vigneri, L., & Attias, V. (2022). Fast Generation of RSA Keys Using

Smooth Integers. IEEE Transactions on Computers, 71(7).

https://doi.org/10.1109/TC.2021.3095669

Duan, X., Cui, Q., Wang, S., Fang, H., & She, G. (2016). Differential power analysis

attack and efficient countermeasures on PRESENT. Proceedings of 2016 8th

IEEE International Conference on Communication Software and Networks,

61

ICCSN 2016. https://doi.org/10.1109/ICCSN.2016.7586627

Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A. H., &

Schwabe, P. (2015). High-speed Curve25519 on 8-bit, 16-bit, and 32-bit

microcontrollers. Designs, Codes, and Cryptography, 77(2–3).

https://doi.org/10.1007/s10623-015-0087-1

Edwards, H. M. (2007). A normal form for elliptic curves. Bulletin of the American

Mathematical Society, 44(3). https://doi.org/10.1090/S0273-0979-07-01153-6

Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., & Uhsadel, L. (2007). A survey

of lightweight-cryptography implementations. In IEEE Design and Test of

Computers (Vol. 24, Issue 6). https://doi.org/10.1109/MDT.2007.178

Elgamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms. IEEE Transactions on Information Theory, 31(4).

https://doi.org/10.1109/TIT.1985.1057074

Enge, A. (1999). Elliptic Curves and Their Applications to Cryptography. In Elliptic

Curves and Their Applications to Cryptography. https://doi.org/10.1007/978-1-

4615-5207-9

Fotohi, R., Firoozi Bari, S., & Yusefi, M. (2020). Securing Wireless Sensor Networks

Against Denial-of-Sleep Attacks Using RSA Cryptography Algorithm and

Interlock Protocol. International Journal of Communication Systems, 33(4).

https://doi.org/10.1002/dac.4234

Fu, Y., Wang, W., Meng, L., Wang, Q., Zhao, Y., & Lin, J. (2021). VIRSA: Vectorized

In-Register RSA Computation with Memory Disclosure Resistance. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 12918 LNCS.

https://doi.org/10.1007/978-3-030-86890-1_17

Ganbaatar, G., Nyamdorj, D., Cichon, G., & Ishdorj, T. O. (2021). Implementation of

RSA cryptographic algorithm using SN P systems based on HP/LP neurons. In

Journal of Membrane Computing (Vol. 3, Issue 1).

https://doi.org/10.1007/s41965-021-00073-3

Gao, S. P., Guo, Y., Aung, Z. T., & Guo, Y. X. (2019). Analysis of Information

Leakage from MCU using Neural Network. EMC COMPO 2019 - 2019 12th

International Workshop on the Electromagnetic Compatibility of Integrated

Circuits. https://doi.org/10.1109/EMCCompo.2019.8919889

62

Gouvêa, C. P. L., & López, J. (2009). Software implementation of pairing-based

cryptography on sensor networks using the MSP430 microcontroller. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 5922 LNCS.

https://doi.org/10.1007/978-3-642-10628-6_17

Gouvêa, C. P. L., Oliveira, L. B., & López, J. (2012). Efficient software

implementation of public-key cryptography on sensor networks using the

MSP430X microcontroller. Journal of Cryptographic Engineering, 2(1).

https://doi.org/10.1007/s13389-012-0029-z

Gulen, U., Alkhodary, A., & Baktir, S. (2019). Implementing rsa for wireless sensor

nodes. Sensors (Switzerland), 19(13). https://doi.org/10.3390/s19132864

Gülen, U., & Baktir, S. (2014). Elliptic curve cryptography on constrained

microcontrollers using frequency domain arithmetic. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 8584 LNCS(PART 6). https://doi.org/10.1007/978-3-

319-09153-2_37

Gulen, U., & Baktir, S. (2016). Elliptic-curve cryptography for wireless sensor

network nodes without hardware multiplier support. Security and Communication

Networks, 9(18), 4992–5002. https://doi.org/10.1002/sec.1670

Gulen, U., & Baktir, S. (2020). Elliptic curve cryptography for wireless sensor

networks using the number theoretic transform. Sensors (Switzerland), 20(5).

https://doi.org/10.3390/s20051507

Gülen, U., & Baktir, S. (2022). FFT enabled ECC for WSN nodes without hardware

multiplier support. Turkish Journal of Electrical Engineering and Computer

Sciences, 30(1), 94–108. https://doi.org/10.3906/elk-2009-95

Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of

wireless sensor networks in smart grid. IEEE Transactions on Industrial

Electronics, 57(10). https://doi.org/10.1109/TIE.2009.2039455

Gura, N., Patel, A., Wander, A., Eberle, H., & Shantz, S. C. (2004). Comparing elliptic

curve cryptography and RSA on 8-Bit CPUs. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 3156. https://doi.org/10.1007/978-3-540-28632-5_9

He, D., Kumar, N., & Chilamkurti, N. (2015). A secure temporal-credential-based

63

mutual authentication and key agreement scheme with pseudo identity for

wireless sensor networks. Information Sciences, 321.

https://doi.org/10.1016/j.ins.2015.02.010

Hinterwälder, G., Moradi, A., Hutter, M., Schwabe, P., & Paar, C. (2015). Full-size

high-security ECC implementation on MSP430 microcontrollers. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 8895. https://doi.org/10.1007/978-3-319-

16295-9_2

Hutter, M., & Schwabe, P. (2015). Multiprecision multiplication on AVR revisited.

Journal of Cryptographic Engineering, 5(3). https://doi.org/10.1007/s13389-

015-0093-2

IAR Systems. (2020). IDE Project Management and Building Guide.

Ingemarsson, I., Tang, D. T., & Wong, C. K. (1982). A Conference Key Distribution

System. IEEE Transactions on Information Theory, 28(5).

https://doi.org/10.1109/TIT.1982.1056542

Jiao, K., Ye, G., Dong, Y., Huang, X., & He, J. (2020). Image Encryption Scheme

Based on a Generalized Arnold Map and RSA Algorithm. Security and

Communication Networks, 2020. https://doi.org/10.1155/2020/9721675

Jurecek, M., Bucek, J., & Lorencz, R. (2019). Side-Channel Attack on the A5/1 Stream

Cipher. Proceedings - Euromicro Conference on Digital System Design, DSD

2019. https://doi.org/10.1109/DSD.2019.00099

Kannwischer, M. J., Genêt, A., Butin, D., Krämer, J., & Buchmann, J. (2018).

Differential power analysis of XMSS and SPHINCS. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 10815 LNCS. https://doi.org/10.1007/978-3-319-

89641-0_10

Karatsuba, A. (1963). Multiplication of multidigit numbers on automata. Soviet

Physics Doklady, 595–596.

Karim, R., Rumi, L. S., Ashiqul Islam, M., Kobita, A. A., Tabassum, T., & Sagar

Hossen, M. (2021). Digital signature authentication for a bank using asymmetric

key cryptography algorithm and token based encryption. In Lecture Notes on

Data Engineering and Communications Technologies (Vol. 53).

https://doi.org/10.1007/978-981-15-5258-8_79

64

Karray, F., Jmal, M. W., Garcia-Ortiz, A., Abid, M., & Obeid, A. M. (2018). A

comprehensive survey on wireless sensor node hardware platforms. In Computer

Networks (Vol. 144). https://doi.org/10.1016/j.comnet.2018.05.010

Koblitz, N. (1987). Eliptic curve cryptosystems. Mathematics of Computation, 48

(177).

Koblitz, N., & Menezes, A. (2016). A riddle wrapped in an Enigma. IEEE Security

and Privacy, 14(6). https://doi.org/10.1109/MSP.2016.120

Koblitz, N., Menezes, A., & Vanstone, S. (2004). Guide to Elliptic Curve

Cryptography. In Guide to Elliptic Curve Cryptography.

https://doi.org/10.1007/b97644

Kocher, P. C. (1996). Timing attacks on implementations of diffie-hellman, RSA,

DSS, and other systems. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

1109. https://doi.org/10.1007/3-540-68697-5_9

Kocher, P., Jaffe, J., Jun, B., & Rohatgi, P. (2011). Introduction to differential power

analysis. Journal of Cryptographic Engineering, 1(1).

https://doi.org/10.1007/s13389-011-0006-y

Li, M., Lou, W., & Ren, K. (2010). Data security and privacy in wireless body area

networks. IEEE Wireless Communications, 17(1).

https://doi.org/10.1109/MWC.2010.5416350

Lin, X. J., Sun, L., & Qu, H. (2018). An efficient RSA-based certificateless public key

encryption scheme. Discrete Applied Mathematics, 241.

https://doi.org/10.1016/j.dam.2017.02.019

Liu, A., & Ning, P. (2008). TinyECC: A configurable library for elliptic curve

cryptography in wireless sensor networks. Proceedings - 2008 International

Conference on Information Processing in Sensor Networks, IPSN 2008.

https://doi.org/10.1109/IPSN.2008.47

Liu, Z., Großschädl, J., & Kizhvatov, I. (2010). Efficient and Side-Channel Resistant

RSA Implementation for 8-bit AVR Microcontrollers. Workshop on the Security

of the Internet of Things - (SecIoT’10).

MacKenzie, P., Patel, S., & Swaminathan, R. (2010). Password-authenticated key

exchange based on RSA. International Journal of Information Security, 9(6).

https://doi.org/10.1007/s10207-010-0120-3

65

McEliece, R. J. (1993). Finite Fields for Computer Scientists and Engineers. In IEEE

Transactions on Information Theory (Vol. 39, Issue 1).

https://doi.org/10.1109/TIT.1993.1603956

Medha Nag, K. G., Sharvari, Vaishnavi, D. v., Rajashree, S., & Honnavalli, P. B.

(2020). RSA Implementation on Sensor Data in Cold Storage Warehouse. 2nd

IEEE Eurasia Conference on IOT, Communication and Engineering 2020,

ECICE 2020. https://doi.org/10.1109/ECICE50847.2020.9301979

Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied

cryptography. In Handbook of Applied Cryptography.

https://doi.org/10.2307/2589608

Mentens, N., Batina, L., & Baktır, S. (2015). An elliptic curve cryptographic processor

using edwards curves and the number theoretic transform. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 9024. https://doi.org/10.1007/978-3-319-

21356-9_7

Miller, V. (1986). Advances in Cryptology — CRYPTO ’85 Proceedings. In Advances

in Cryptology — CRYPTO ’85 Proceedings (Vol. 218).

Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics

of Computation, 44(170). https://doi.org/10.1090/s0025-5718-1985-0777282-x

Mouha, N. (2015). The Design Space of Lightweight Cryptography. NIST Lightweight

Cryptography Workshop 2015.

Ochoa-Jimenez, E., Rivera-Zamarripa, L., Cruz-Cortes, N., & Rodriguez-Henriquez,

F. (2020). Implementation of RSA Signatures on GPU and CPU Architectures.

IEEE Access, 8. https://doi.org/10.1109/ACCESS.2019.2963826

Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks:

A comprehensive overview. Computer Networks, 53(12).

https://doi.org/10.1016/j.comnet.2009.02.023

Pavani, K., & Sriramya, P. (2021). Enhancing public key cryptography using RSA,

RSA-CRT and N-Prime RSA with multiple keys. Proceedings of the 3rd

International Conference on Intelligent Communication Technologies and

Virtual Mobile Networks, ICICV 2021.

https://doi.org/10.1109/ICICV50876.2021.9388621

Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., & Culler, D. E. (2002). SPINS:

66

Security protocols for sensor networks. Wireless Networks, 8(5).

https://doi.org/10.1023/A:1016598314198

Petrvalsky, M., Richmond, T., Drutarovsky, M., Cayrel, P. L., & Fischer, V. (2016).

Differential power analysis attack on the secure bit permutation in the McEliece

cryptosystem. 2016 26th International Conference Radioelektronika,

RADIOELEKTRONIKA 2016.

https://doi.org/10.1109/RADIOELEK.2016.7477382

Pollard, J. M. (1971). The fast Fourier transform in a finite field. Mathematics of

Computation, 25(114). https://doi.org/10.1090/s0025-5718-1971-0301966-0

Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors.

Communications of the ACM, 43(5). https://doi.org/10.1145/332833.332838

Qiu, L., Liu, Z., Geovandro, G. C., & Seo, H. (2017). Implementing RSA for sensor

nodes in smart cities. Personal and Ubiquitous Computing, 21(5).

https://doi.org/10.1007/s00779-017-1044-y

Rader, C. M. (1972). Discrete Convolutions via Mersenne Transforms. IEEE

Transactions on Computers, C–21(12). https://doi.org/10.1109/T-C.1972.223497

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2).

https://doi.org/10.1145/359340.359342

Roman, R., Alcaraz, C., & Lopez, J. (2007). A survey of cryptographic primitives and

implementations for hardware-constrained sensor network nodes. Mobile

Networks and Applications, 12(4). https://doi.org/10.1007/s11036-007-0024-2

Szczechowiak, P., Oliveira, L. B., Scott, M., Collier, M., & Dahab, R. (2008).

NanoECC: Testing the limits of elliptic curve cryptography in sensor networks.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 4913 LNCS.

https://doi.org/10.1007/978-3-540-77690-1_19

Texas Instruments. (2004). MSP430x11x2, MSP430F22x2, MSP430G2x55 Mixed

Signal Microcontroller Datasheet.

Texas Instruments. (2015). eZ430-RF2500 Development Tool User’s Guide.

Texas Instruments. (2018). MSP430FG4618/F2013 Experimenter Board User’s

Guide.

Texas Instruments. (2020). MSP Debuggers User’s Guide.

67

Vollala, S., Varadhan, V. v., Geetha, K., & Ramasubramanian, N. (2017). Design of

RSA processor for concurrent cryptographic transformations. Microelectronics

Journal, 63. https://doi.org/10.1016/j.mejo.2017.03.009

Wahab, O. F. A., Khalaf, A. A. M., Hussein, A. I., & Hamed, H. F. A. (2021). Hiding

data using efficient combination of RSA cryptography, and compression

steganography techniques. IEEE Access, 9.

https://doi.org/10.1109/ACCESS.2021.3060317

Wang, H., & Li, Q. (2006). Efficient implementation of public key cryptosystems on

mote sensors. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4307 LNCS.

https://doi.org/10.1007/11935308_37

Wang, H., Sheng, B., & Li, Q. (2006). Elliptic curve cryptography-based access

control in sensor networks. International Journal of Security and Networks, 1(3–

4). https://doi.org/10.1504/ijsn.2006.011772

Wang, Y., Attebury, G., & Ramamurthy, B. (2006). A survey of security issues in

wireless sensor networks. In IEEE Communications Surveys and Tutorials (Vol.

8, Issue 2). https://doi.org/10.1109/COMST.2006.315852

Wenger, E., & Werner, M. (2011). Evaluating 16-bit processors for elliptic curve

cryptography. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7079 LNCS.

https://doi.org/10.1007/978-3-642-27257-8_11

WiSense Technologies. (2019). WSN1120L, WSN1120CL, WSN1101ANL,

WSN1101ACL Datasheet.

Xu, J., Fan, A., Lu, M., & Shan, W. (2018). Differential Power Analysis of 8-Bit

Datapath AES for IoT Applications. Proceedings - 17th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications

and 12th IEEE International Conference on Big Data Science and Engineering,

Trustcom/BigDataSE 2018.

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00205

Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for

wireless sensor networks. Proceedings - IEEE INFOCOM, 3.

https://doi.org/10.1109/INFCOM.2002.1019408

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey.

68

Computer Networks, 52(12). https://doi.org/10.1016/j.comnet.2008.04.002

Yu, H., & Kim, Y. (2020). New RSA encryption mechanism using one-time

encryption keys and unpredictable bio-signal for wireless communication

devices. Electronics (Switzerland), 9(2).

https://doi.org/10.3390/electronics9020246

Yu, Y., Li, K., Zhou, W., & Li, P. (2012). Trust mechanisms in wireless sensor

networks: Attack analysis and countermeasures. Journal of Network and

Computer Applications, 35(3). https://doi.org/10.1016/j.jnca.2011.03.005

Zhou, Y., Fang, Y., & Zhang, Y. (2008). Securing wireless sensor networks: A survey.

IEEE Communications Surveys and Tutorials, 10(3).

https://doi.org/10.1109/COMST.2008.4625802

