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ABSTRACT 
With advancements in the theory of fractional calculus and also with widespread 
engineering application of fractional-order systems, analog implementation of 
fractional-order integrators and differentiators have received considerable attention. 
This is due to the fact that this powerful mathematical tool allows us to describe and 
model a real-world phenomenon more accurately than via classical “integer” methods. 
Moreover, their additional degree of freedom allows researchers to design accurate and 
more robust systems that would be impractical or impossible to implement with 
conventional capacitors. Throughout this thesis, a wide range of problems associated 
with analog circuit design of fractional-order systems are covered: passive component 
optimization of resistive-capacitive and resistive-inductive type fractional-order 
elements, realization of active fractional-order capacitors (FOCs), analog 
implementation of fractional-order integrators, robust fractional-order proportional-
integral control design, investigation of different materials for FOC fabrication having 
ultra-wide frequency band, low phase error, possible low- and high-frequency 
realization of fractional-order oscillators in analog domain, mathematical and 
experimental study of solid-state FOCs in series-, parallel- and interconnected circuit 
networks. Consequently, the proposed approaches in this thesis are important 
considerations in beyond the future studies of fractional dynamic systems. 
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ABSTRAKT 
S pokroky v teorii počtu neceločíselného řádu a také s rozšířením inženýrských aplikací 
systémů neceločíselného řádu byla značná pozornost věnována analogové implementaci 
integrátorů a derivátorů neceločíselného řádu. Je to dáno tím, že tento mocný 
matematický nástroj nám umožňuje přesněji popsat a modelovat fenomén reálného 
světa ve srovnání s klasickými „celočíselnými“ metodami. Navíc nám jejich dodatečný 
stupeň volnosti umožňuje navrhovat přesnější a robustnější systémy, které by s 
konvenčními kondenzátory bylo nepraktické nebo nemožné realizovat. V předložené 
disertační práci je věnována pozornost širokému spektru problémů spojených s návrhem 
analogových obvodů systémů neceločíselného řádu: optimalizace rezistivně-kapacitních 
a rezistivně-induktivních typů prvků neceločíselného řádu, realizace aktivních 
kapacitorů neceločíselného řádu, analogová implementace integrátoru neceločíselného 
řádů, robustní návrh proporcionálně-integračního regulátoru neceločíselného řádu, 
výzkum různých materiálů pro výrobu kapacitorů neceločíselného řádu s ultraširokým 
kmitočtovým pásmem a malou fázovou chybou, možná realizace nízkofrekvenčních a 
vysokofrekvenčních oscilátorů neceločíselného řádu v analogové oblasti, matematická a 
experimentální studie kapacitorů s pevným dielektrikem neceločíselného řádu v 
sériových, paralelních a složených obvodech. Navrhované přístupy v této práci jsou 
důležitými faktory v rámci budoucích studií dynamických systémů neceločíselného 
řádu. 
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1. INTRODUCTION 

 

1 INTRODUCTION 

1.1 Brief History of Fractional Calculus 

Fractional calculus, the branch of mathematics regarding differentiations and 
integrations to non-integer orders, is a field that has been introduced 300 years ago [1]. 
Inspiring from the fractal models in the environment, from integer to non-integer 
models was explored. It origins from 30th of September in 1695 between Leibniz and 
L’Hopital correspondance, with L’Hôpital inquiring about Leibniz’s notation, dny/dxn 
where n is a positive integer. L’Hôpital addressed in this letter the question [2]: what 
happens if this concept is extended to a situation, when the order of differentiation is 
arbitrary (non-integer), for example, n = 1/2? Since then the concept of fractional 
calculus has drawn the attention of many famous mathematicians, including Euler, 
Laplace, Fourier, Liouville, Riemann, Abel, and Laurent. 

First organized studies on fractional calculus were performed in the beginning and 
middle of the 19th century by Liouville and Riemann. Liouville (1832) expanded 
functions in series of exponentials and defined the derivative of such a series by 
operating term-by-term under the assumption of derivative order being a positive 
integer. Riemann (1847) proposed a different definition which involved a definite 
integral and was applicable to power series with non-integer exponents [3].  

It was A. K. Grünwald and Krug who first unified the results of Liouville and 
Riemann. Grünwald (1867) adopted as his starting point the definition of a derivative as 
the limit of a difference quotient and arrived at definite integral formulas for 
differentiation to an arbitrary order. Sonin in 1869 where he used Cauchy‘s integral 
formula as a starting point to reach differentiation with arbitrary index. A. V. Letnikov 
wrote several papers on this topic from 1868 to 1872. A. V. Letnikov extended the 
Sonin’s idea in 1872. Both tried to define fractional derivatives by utilizing a closed 
contour. Krug (1890), working through Cauchy’s integral formula for ordinary 
derivatives, showed that Riemann’s definite integral had to be interpreted as having a 
finite lower limit while Liouville’s definition corresponded to a lower limit −∞ [3], [4].  

Grünwald and Letnikov provided the basis for another definition of fractional 
derivative which is also frequently used today. The Grünwald-Letnikov definition is 
mainly used for derivation of various numerical methods with finite sum to approximate 
fractional derivatives. Among the most significant modern contributions to fractional 
calculus are those made by the results of M. Caputo in 1967 [3].  

In the 20th century notable contributions were made to both the theory and 
application of the fractional calculus. Some of the work worth mentioning was done by 
Weyl (1917), Hardy and Littlewood (1925, 1928, 1932), Kober (1940), and Kuttner 
(1953) who examined some properties of both differentiation and integration to an 
arbitrary order of functions belonging to Lebesgue and Lipschitz classes. Erdélyi (1939, 
1940, 1954) and Osler (1970) gave definitions of differentiation and integration to an 
arbitrary order with respect to arbitrary functions. Post (1930) used difference quotients 
to define generalized differentiation for operators. Riesz (1949) developed a theory of 
fractional integration for functions of more than one variable. Erdelyi (1964, 1965) 
applied the fractional calculus to integral equations; Higgins (1967) used fractional 
integral operators to solve differential equations [1], [3], [4]. Later on in chronological 
sequence; S. C. Dutta Roy (1967), Oldham-Spanier (1974), K. Nishimoto (1987), 
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Mainardi (1991), L. Debnath (1992), H. M. Srivastava, Miller and Ross (1993), 
Kolwankar and Gangal (1994), Oustaloup (1994), Carl Lorenzo (1998) Tom Hartley 
(1998), R. K. Saxena (2002), Igor Podlubny (2003), R. K. Bera and S. Saha Ray (2005) 
[10], Khalil (2014) [5], Caputo-Fabrizio (2015) [6], Atangana-Balenau (2016) [7] 
contributed in many parts of fractional calculus. There exist many other definitions 
because fractional order calculus is still under development. Each different definition is 
or can be used in the function that fits different process [3].  

Considering the non-integer order n, such as 1.3, √2, 3j-4 or any other real or 
imaginary order, the differentiation dnf(t)/dtn is solved by fractional calculus. 
Understanding the solutions of fractional-order differential equations is the key to 
building better models for fractional order dynamic systems. For that purpose, only the 
significant definitions and their useful properties will be presented here. 

First one is a Riemann-Liouville definition [1] of a fractional derivative: 
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second one is a Grünwald-Letnikov approximation and expressed as: 
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and third one is Caputo derivative [3] and given as: 
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where Γ(·) is the gamma function, and n-1 < α < n. Similarly to the Grünwald-Letnikov 
and Riemann-Liouville approaches, the Caputo also provides an interpolation between 
integer-order derivatives. The main advantage of Caputo’s approach is that the initial 
conditions for fractional differential equations take on the same form as integer-order 
differential equations. Laplace transform of the Riemann-Liouville fractional derivative 
allows utilization of initial conditions which may cause problems with their 
interpretations. However, the Laplace transform of the Caputo derivative allows 
utilization of initial values of classical integer order derivatives with known physical 
interpretations. Mathematical expressions such as difference or differential equations 
may be considered as advanced mathematical or analytical models and they are 
preferred to the simpler models once the application becomes complicated. 
Mathematical models are categorized into groups such as time continuous or time 
discrete, lumped or distributed, deterministic or stochastic, linear or nonlinear. Each of 
these adjectives marks a property of the used model for the dynamic system and thus 
determines the type of the equation.  

1.2 Fractional Calculus in Electrical Engineering 

Time has proven Leibniz as the applications of fractional calculus e.g., differentiation or 
integration of non-integer order, has seen explosive growth in many fields of science 
and engineering. These mathematical phenomena allow us to better characterize many 
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real dynamic systems. The concept of fractional calculus has tremendous potential to 
model and control the nature around us.  

Although the invention of fractional calculus is as old as the classical calculus 
going back to the late 1600s, it has not been widely used as a tool for modelling 
dynamic systems. One of the first applications was the tautochrone problem where the 
integral equation solved by Abel (1823) via an integral transforms which could be 
written as a semi-derivative form. A powerful boost in the use of fractional calculus to 
solve problems was provided by Boole. Boole (1844) developed symbolic methods for 
solving linear differential equations with constant coefficients. The next important step 
in the application of fractional order calculus was made by Heaviside developing the 
operational calculus to solve certain problems of electromagnetic theory [8]. In the year 
of 1920, he introduced a fractional-order differential equation on semi-infinite lossy 
transmission line [8]. Another equivalent system is the diffusion of heat into a semi-
infinite solid. Here the temperature is described from the boundary that is equal to the 
half integral of the heat rate there. Other systems that are known to display fractional-
order dynamics are electrode-electrolyte polarization [9], [10], dielectric polarization 
[11], electromagnetic waves, an ideal capacitor model [3], [12] etc. As many of these 
systems depend upon specific material and chemical properties, it is expected that a 
wide range realization of fractional-order behaviors are also possible using different 
materials.  

There are two methods for realization of fractional-order integral and derivative 
operators. First one is digital realization based on microprocessor devices and 
appropriate control algorithm and the second one is analogue realization based on 
analog circuits. An analog circuit emulating fractional-order behavior is often modeled 
by fractional-order differential equations based on the current-voltage relationship of 
the electrical circuits. They are called as fractional-order elements (FOE), and 
fractional-order capacitor (FOC) or fractional-order inductors (FOI) defining the 
integrator and differentiator operators, respectively. These devices have characteristic of 
the constant phase which is independent of the frequency within a wide frequency band.  

Since their mathematical representations in the frequency domain are irrational, 
direct analysis methods and corresponding time domain behavior seem difficult to 
handle. Therefore, design of FOEs is done easily using any of the rational 
approximations. Then, it must be transformed to the form of a continued fraction. Only 
in some specific approximations this step might be omitted. If all the coefficients 
obtained from finite continued fraction are positive then the FOE can be made of 
classical passive elements e.g., resistor, capacitor, inductor using circuit network theory 
[13]-[16] or active elements e.g., commercial amplifiers, operational transconductance 
amplifiers etc. using a general active filter configuration [17]-[19]. If some of the 
coefficients are negative, then the FOE can be made with the help of negative 
impedance converters [20]. Thus, in order to effectively design such systems, it is 
necessary to develop approximations to the fractional operators using the standard 
integer order operators. The most prominent and applied approximation methods are 
Newton's Method [13], Matsuda's Method [21], Oustaloup's Method [22], Continued 
Fraction Expansion (CFE) [23], Charef's Method [24], Laguerre approximation [25], El-
Khazali [26]. However, no specific method for recovering a fractional process model 
was provided. These methods also have computational difficulties in higher orders thus 
their practical realization becomes more complex.  

 

18



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

1. INTRODUCTION 

 

Fractional-order systems, or systems containing fractional derivatives and integrals, 
have been studied in many engineering areas. For instance, filters [27]–[32], oscillators 
[33]–[41], controllers [42]–[51], bio-impedance modeling [62], [53], transmission line 
design [54]–[56], reluctance inductive transducer realization [57], dc–dc boost 
converters [58] are among in emerging fields. Their implementation evidently requires 
the use of a FOE, which brings to researchers several design features such as offer 
additional degrees of freedom and versatility in electrical circuits [59]–[62]. These 
systems constructed using n number of FOEs are described with an nth-order fractional 
systems of fractional differential equations. 

Sinusoidal oscillators, which are key electronic circuits, are classically known to be 
realizable using at least a second-order circuit. Most of the famous oscillators are either 
second-order or third-order oscillators. In the last years, the study of fractional-order 
oscillators started to be one of the main fundamental topics in fractional-order dynamic 
systems. This originated from the fact that extremely low and high frequencies of 
oscillation are possible through such structures [34], [63]. Particularly, the studied 
quadrature or multiphase oscillators are the classic ones such as the Hartley oscillator 
[33], and Wien-bridge oscillator [39], [64], Colpitts oscillator [40], [65]. The 
fundamental technique for designing fractional-order oscillators have been introduced in 
[33]. The study shows that the design of fractional-order oscillator is derived from 
classical active elements-based structures such as op-amps and with their equivalent 
macro models containing two or more FOEs. Considering the FOEs with an order of 
less than one, the total system order also decreased from two or three. However, the 
oscillation criterion is still sustained. It is evident that available circuit design 
techniques are dominantly based on the assumption of a target realizable integer-order 
circuit. The implementation of such oscillators brings to researchers several design 
features such as possibility of changing the frequency of oscillation (FO) and condition 
of oscillation (CO) independent then each other. Also the lack of Barkhausen criteria is 
shown [33].  

Identification on real systems has shown that fractional-order models can be more 
intrinsic and adequate than integer-order models in describing the dynamics of many 
real systems [66], [67]. Indeed, the fractional derivatives provide an excellent tool for 
the description of memory and hereditary properties of various materials and processes. 
This is the main advantage of fractional-order models (fractional derivatives) in 
comparison with classical integer-order models, in which such effects are in fact 
neglected. Moreover, defining a system as fractional is that the fractional-order gives an 
extra degree of freedom (coming from its arbitrary order) in controlling the system's 
performance. It leads researchers to believe that the future of discrete element circuit 
design and fabrication of single solid-state components will undergo a paradigm shift in 
favor of FOEs. 

1.3 Research Objectives 

Based on the state of the art and relevant discussion, the following problems may be 
formulated and constitute the motivation for the work presented in this thesis. With 
advancements in theory of fractional calculus and also with widespread engineering 
application of fractional-order dynamics, analog implementation of fractional dynamics 
has received considerable attention. One of them is the modelling and fabrication of 
FOEs which can be separated to two categories: single and multicomponent realization 
of FOEs. As the basis of multicomponent implementation in analog domain, passive 
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synthesis of fractional immittance function is one of the most important topics to study. 
However, they have two design considerations: accuracy and limited operation time. 
For instance, response of a passive circuit of FOC is approximately proportional to the 
semi-integral of the input signal meaning the circuit has a degree of accuracy. Secondly 
this circuit can approximate the behavior of a real semi-integrator only over a limited 
time interval which has a finite upper limit and a non-zero lower limit. Although these 
two issues may be improved by selecting better components and increasing the number 
of components, the cost of the design will inevitably increase [63]. Thus, to find the 
optimal emulation of an FOE e.g., FOC and FOI, a new approach for the optimization 
of phase and impedance responses of fractional-order capacitive and inductive elements 
should be benefited from the evolutionary algorithms. 

Another analog implementation for a multicomponent FOE is the active element 
design of fractional-order differentiators and integrators. These operators are used to 
compute the fractional-order time derivative and integral of the given signal. In 
industrial electronic, they named as proportional-integral-derivative (PID) controllers. 
They can be realized using commercial operational amplifiers as known from the basic 
electronic circuit theory. However, this realization is limited in the frequency range 
according to amplifier specifications and they do not offer integrated circuit design [68]. 
Therefore, there is need to use transistor based active building blocks. So-called bilinear 
transfer segment (BTS) is a two port network with a single pole and single zero. 
Cascade of BTSs creates a constant phase block, which generates desired magnitude 
and phase response by proper setting of both polynomial roots (zero and pole 
frequencies) of each BTS [17]. It is worth to mention that fractional-order transfer 
function of the controller leads to the concept of fractional poles and zeros in the 
complex s-plane. Therefore, using the electronic parameters of BTSs e.g., voltage, 
current, resistor, transconductance, the fractional-order systems can be designed and 
controlled.  

Other way of implementation for single FOE is the fabrication of passive, two 
terminal fractional-order devices (FODs) benefiting from the lossy nature of the 
dielectric materials [69]. Fabrication of FOCs allows us to make direct and easy 
implementation of fractional-order systems since it will be just replaced with its integer-
order counterpart. That will also help to increase the fractional-order application area. 
Recent researches presented liquid, solid, and semi-solid electrolyte type FODs. 
However the limitation on frequency bandwidth, order, packaging, and high fabrication 
cost push researchers to develop the better one. In open literature, only FOC is 
mentioned due to the non-existence of fabricated FOI. 

Once an optimal model and design of a FOC is established, one may proceed with 
FOC based stable, integrated circuit design. The very first step should be the test of 
FOCs in circuit network configurations. This is crucial because FOC possesses both a 
real and imaginary impedance part while its phase is frequency independent that differs 
from the series connected resistor and capacitor. However, an ideal capacitor has only 
an imaginary part. This is particularly important, if the proposed application requires a 
configuration using capacitors, where errors accumulate the metrics of the individual 
components. For instance, the series and parallel connections of FOCs play a crucial 
role in investigating the dielectric properties e.g., zinc flakes/flexible polyvinylidene 
fluoride (ZFs/PVDF) composites [70] and in practical applications such as modelling of 
supercapacitors [71] or designing of supercapacitor banks [72]. Bearing these ideas in 
mind, to the best knowledge of the author, there are only a few studies that focus on the  
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Fig. 1.1: Challenges in fractional-order dynamic systems 

series and parallel connection of FOCs, mainly on the theoretical level only due to lack 
of real FOCs [73]−[76]. 

Due to the additional control parameter of FOCs, sinusoidal oscillators are capable 
of outperforming their integer-order counterparts, since more design specifications may 
be fulfilled [27]. Thus, developing a general method for sinusoidal oscillator tuning is 
very desirable. The import of concepts from fractional calculus allows for the creation 
of a more ideal design procedure, with the potential for compact MOS based oscillators 
to be designed to meet the exact design requirements e.g., oscillation condition, 
oscillation frequency, and phase or amplitude specifications. This idea of compact MOS 
based oscillator design is a very new field, with much work that needs to be 
accomplished in order to create a more general and ideal integrated circuit design for 
oscillators.  

As stated above, of particular importance is the use of fractional-order models and 
their applications in analog circuit design. Studies show that a huge portion of FOEs 
realizations —about 90%—are of multicomponent FOEs; moreover, it was found that 
about 80% of these existing FOEs are realized on FOC part with poorly control of 
constant phase angle [77]. These facts will be further analyzed with deep literature 
survey in the following chapter. However some of the challenges generally in 
fractional-order systems are shortly described in Fig. 1.1. Since the application of FOCs 
in analog domain offer tunability, independent control of parameters between each 
other, it is expected that their integrated circuit design will result in considerable 
benefit. Therefore, the main contribution of the author of the thesis is the development 
of optimum design for passive FOEs for systems described by fractional dynamic 
models and increasing their availability in analog electronic circuit design. This 
contribution comprises three consecutive parts: 

• Optimization: Instead of approximating the rational functions of irrational 
transfer functions using the above mentioned approximations at a certain 
frequency (or bandwidth), the phase and/or impedance responses of RC/RL 
networks in the whole desired frequency range is optimized. This is achieved 
with a new approach based on the mixed integer-order genetic algorithm (GA) to 
obtain accurate phase and magnitude response with minimal branch number and 
optimum passive values [78]. Standardized, IEC 60063 compliant commercially 
available passive component values are used; hence, no correction on passive 
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elements is required which leads us to a decrease of phase angle deviation and 
overall enhancement of the performance of the FOE. This approach is also used 
in modelling of filler in double layer capacitor [79] to find the best fit of 
fabrication of FOC with hexagonal-boron nitride (hBN) over a frequency range 
of five decades.  

• Integration: The main objective of this part is to introduce a new analogue 
implementation of FOEs and their applications in oscillator design using 
compact CMOS active building blocks (ABBs) with reduced transistor count. 
The first implementation is the design of fractional-order integrator, which is a 
synonym of FOC in analog design, using cascade of first-order BTSs. The 
performance of this circuit is used in fractional-order proportional-integral 
(FOPIλ) control [80] for a speed control system of an armature controlled DC 
motor, which is often used in mechatronic and other fields of control theory. The 
second implementation is the fractional-order oscillators. The increased circuit 
complexity, the power dissipation of the active cells becomes quite high. In 
order to overcome this obstacle, novel very simple voltage–mode (VM) 
fractional-order oscillator topologies are introduced [81]-[83].  

• Experimental verification: The accuracy and stability of proposed FOEs and 
their primary versions are experimentally verified on real-life analog electronic 
circuits. The solid-state, PCB compatible polymer composite based FOCs [79], 
[84] are tested in circuit network connections considering the identical- and 
arbitrary-orders of the elements. The theory of fractional-order circuit network 
connections is formulated and experimentally verified [85], [86]. This study 
helps to show the stability of the solid-state FOCs. Moreover, the PCB-
compatible FOCs fabricated using molybdenum disulfide (MoS2)-ferroelectric 
polymer composites [87] are used in Wien oscillator [88]. 

1.4 Thesis Outline 

This thesis consists of an introductory part comprising eight chapters and of eight main 
publications referred to as [78], [80]-[83], [85], [86], [88]. Additionally, the scope of 
this work is closely related to publications [19], [29], [30], [31], [41], [49], [50], [56], 
[89], [90] and [91], which are summarized and seamlessly integrated into the body of 
the manuscript. In order to make this text accessible by a more general audience, the 
fundamental definitions and core trade-offs related to FOEs and fractional-order 
applications are given. Then thesis gradually shifts toward optimization, design and 
fabrication of FOEs and their applications. Finally, each chapter of the thesis is 
concluded with a summary section containing important remarks pertaining to 
theoretical and practical results reported in the corresponding chapter. Facilitating the 
flow of thought, the material given in the initial chapters is reused by the subsequent 
chapters. As such, the focus of the narration tends to transfer from more general to more 
detailed problem formulations and related research. 

In Chapter 1, a brief history of fractional calculus, its application in electrical 
engineering and the core motivation behind this thesis research are given. Then it is 
continued with the scope of this work by highlighting the key problems addressed in the 
thesis. The main contributions of this thesis along with the related list of publications 
are also summarized. 

In Chapter 2, a comprehensive review of passive and active implementation of 
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FOEs can be found in chronologically. The RC/RL models are elaborated as distributed 
element realization while material based ones as fractional-order devices. Their 
boundaries and barriers are discussed point by point. Then many other realizations are 
discussed together with the chapter summary. 

In Chapter 3, an optimization for the magnitude and phase response of fractional-
order capacitive and inductive elements is proposed by using genetic algorithm (GA). 
Particular attention is given to Foster-II and Valsa networks of FOEs, since these 
networks are the best in total capacitance and low phase error point of view, 
respectively. Standardized, IEC 60063 compliant commercially available passive 
component values are used. To the best knowledge of the author, this particular 
approach has not been used in prior art. A bandwidth of four decade, and operating up 
to 1 GHz with low phase error of approximately ±1°, without correction on passive 
elements are obtained with optimum and minimal branch number. As validation, 
numerical simulations using MATLAB® and experimental measurement results are 
presented for precise and/or high-frequency applications.  

In Chapter 4, an approach to design a fractional-order integral operator using an 
analogue technique is presented. The integrator with a constant phase angle is designed 
by cascade connection of first-order bilinear transfer segments and first-order low-pass 
filter. The performance of suggested realization is demonstrated in a fractional-order 
proportional-integral (FOPIλ) controller where λ is an arbitrary real order of the 
integrator. The behavior of both proposed analogue circuits is confirmed by SPICE 
simulations using TSMC 0.18 μm level-7 LO EPI SCN018 CMOS process parameters.  

In Chapter 5, a hexagonal boron nitride (hBN) -polyevinelidenefluoride-
trifluoroethylene-chlorofluoroethylene (P(VDF-TrFE-CFE)) polymer composite is used 
to fabricate a new FOC. Different constant phase angles are measured with changing the 
volume ratio of two tuning knobs e.g. carbon nanotube (CNT) and hBN. The resulting 
FOC’s bandwidth of operation, where the variation in the phase angle is no more than 
approximately ±4° is five decades between 100 Hz - 10 MHz.  

In Chapter 6, general analytical formulas are introduced for the determination of 
equivalent impedance, magnitude, and phase, i.e. order, for n identical and arbitrary 
FOCs connected in series, parallel, and their interconnection. Three types of solid-state 
FOCs of different orders, using ferroelectric polymer and reduced Graphene Oxide 
(rGO)-percolated P(VDF-TrFE-CFE) composite structures, are characterized. Multiple 
numerical and experimental case studies are given, in particular for two and three 
connected FOCs. The fundamental issues of the measurement units of the FOCs 
connected in series and parallel are derived. A MATLAB open access source code is 
given in Appendix B for easy calculation of the equivalent FOC magnitude and phase.  

In Chapter 7, four types of fractional-order sinusoidal oscillators are studied 
namely compact voltage-mode oscillator and Colpitts and Wien oscillators. First, their 
design method is described. Then, except the Wien oscillator, each of oscillators is 
designed using ABBs and studied numerically using MATLAB program while their 
performance have been evaluated by SPICE simulations. The active FOI emulation 
circuit is designed using RC networks for fractional-order Colpitts oscillator. The 
classic well-known Wien oscillator is experimentally verified using MoS2 based solid-
state FOCs. Our results confirm that proposed solutions are successful in bridging 
across the indicated system vulnerabilities.  

Chapter 8 concludes the introductory part and outlines some interesting directions 
for future work. 
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2 A SURVEY ON FRACTIONAL-ORDER 
ELEMENTS AND DEVICES 

The term fractance or FOC, an electrical elements having properties between resistance 
and capacitance, was suggested by A. Le Mehaute in 1983 [92] for denoting electrical 
elements with non-integer order impedance. In electrical engineering in particular, the 
constant-phase behavior of capacitors is explained as the frequency dispersion of the 
capacitance by dielectric relaxation, where the electric current density follows changes 
in the electric field with a delay. In 1994, to express this phenomenon of “off the shelf” 
real capacitors mathematically, the capacitance current in the time domain was given as 
[12]: 

( ) ( )d u t
i t C

dt
=

α

α ,         (2.1) 

where ( )d u t dtα α  denotes the “fractional-order time derivative”. In same way, the 

given relationship for FOI is expressed as: 

( ) ( )1 t

i t u t dt
L −∞

=  α ,         (2.2) 

where ( )
t

u t dt
−∞
 α  denotes the “fractional-order time integral” with having the order 

0 < < 1α . Fig. 2.1 shows these fundamental components in frequency domain and 
possible FOEs in four quadrants [93]. Their impedance is described as Z(s) = Ksα, 
where ω is the angular frequency in s = jω, and the phase is given in radians 
(φ = −απ/2) or in degrees (°) (φ = −90α). Obviously the impedance of the FOE has a 
real part dependent on the non-zero frequency and its magnitude value varies by 20α dB 
per decade of frequency. In particular, the impedance of Type IV FOEs, i.e. FOCs in 
quadrant IV, is provided with an order of −1 < α < 0 and pseudocapacitance of 
Cα = 1/K, whereas FOIs in quadrant I (Type I) have an order of 0 < α < 1 and 
pseudoinductance of Lα = K. Their units are expressed in units of farad·secα−1 (F·sα−1) 
and henry·secα−1 (H·sα−1). The higher order FOCs and FOIs with the described 
impedances then matched in quadrant II and III (Type II and III), respectively. Their 
characteristics such as pseudocapacitance, pseudoinductance, constant phase zone 
(CPZ), constant phase angle (CPA – defined phase angle in CPZ), and phase angle 
deviation (PAD – maximum difference between a designed/measured phase and a target 
phase) profoundly impact the transfer function of the fractional systems [59], [62], [94]. 
Therefore, in order to practically realize fractional operators, a finite, infinite, semi-
infinite dimensional integer-order system resulting from the approximation of an 
irrational function can be used. This equivalent integer-order transfer functions then can 
be used also in design of analog integrator and differentiator circuit by selecting proper 
time constant or correct distribution of zeros and poles of the function. Apart from 
circuit combinations of resistive and capacitive networks, realizations of FOEs 
expressing the anomalous diffusion phenomenon in chemical reaction and viscoelastic 
property of some polymers expressed by fractional-order differential equation are also 
found in literature [62] As a result, realization of FOE becomes an important and  
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Fig. 2.1: Description of fractional-order elements in four quadrants [93] 

necessary step to explain this natural phenomenon. Therefore, in this section, an 
overview of FOEs and FODs is provided to understand and evaluate the early studies, 
and move forward with the missing points. The section is separated to two parts; the 
first is discrete element approximations of FOEs and the second is fabricated FODs 
made using materials up-till now. 

2.1 Discrete Element Realizations of Fractional-Order 
Elements 

The standard definitions of the fractional differintegral do not allow direct 
implementation of the operator in time-domain simulations of complicated systems with 
FOEs. Their mathematical representations in the frequency domain are irrational. Thus, 
in order to effectively analyze such systems, it is necessary to develop approximations 
to the fractional operators using the standard integer-order operators.  

This makes the task of finding integer-order approximations of fractional transfer 
functions a most important one. What is meant by this is that when simulations are to be 
performed or models are to be identified or controllers are to be implemented, fractional 
transfer functions are usually replaced by rational transfer functions which are easier to 
handle. Numerous methods for synthesis of FOEs have been proposed. They differ by 
the approximation of their functions. They are expanded using analytical methods to 
calculate the parameters of their equivalent circuits. They consist of capacitors and 
resistors, which are described by conventional (integer) models; however, the circuit 
itself may have non-integer order properties, becoming a so-called constant phase 
element, or fractional-order capacitor. The realization of fractional order inductors using 
resistive/inductive networks are limited due to their size, cost and limited operating 
frequency range. Therefore, the research on this area remained limited. 

2.1.1 Methods and Structures 

Around the year 1890 several people worked with the idea to improve the properties of 
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long-distance transmission lines by inserting coils at regular intervals in these lines. 
Among those people were Vaschy and Heaviside. The results were discouraging at that 
time, and no real progress was made, until M. I. Pupin investigated these cables in 1899 
[95]. By his thorough mathematical and experimental research, Pupin found that the 
damping in cables for telegraphy and telephony can be substantially reduced by 
judiciously inserting these coils, which has resulted in a widespread use of these so-
called “Pupin lines” throughout the world. The properties of these lines were further 
investigated by George A. Campbell. In 1903 he published some findings [96] namely 
that they have a well-defined critical frequency that marks a sudden change in the 
damping characteristics. While he was investigating these dumping effects, Campbell 
pointed out that he used this effect to eliminate harmonics in signal generators. In fact 
he used the cable as a low-pass filter, and he even mentioned the possibility of using the 
cable as a band-pass filter by replacing the coils by combinations of coils and 
capacitors. In 1915, Karl Willy Wagner [97] from Germany, and Campbell from 
America [98] independently simulated the line by a ladder construction of impedances, 
mostly constructed as combinations of inductances and capacitances. It was this 
invention that made the year 1915 to be usually regarded as the birth year of the 
electrical filter. The design theory of this type of filter bears the heritage from the 
transmission-line theory and was expressed in terms of characteristic impedances that 
should be matched if stages were cascaded, and wave-propagation constants that were 
used to describe the attenuation characteristics of the filter. Later on, in a period that 
roughly extends from 1930 to 1940, Wilhelm Cauer published a number of articles in 
which he designed passive filters with well-defined transfer functions using Chebyshev 
approximations with a defined attenuation behavior [99]. In 1939, Sidney Darlington 
followed Cauer with his “insertion-loss theory” [100]. Unfortunately, these theories, as 
they were formulated, had few connections with practice, which made them unpopular. 
Filters were realized as networks of inductors, capacitors, and resistors. Due to the large 
and expensive quality factor of inductors in many applications direct us to use of 
capacitors. Moreover, the filter transfer functions that can be realized with capacitive 
and resistive elements only have their poles on the negative real axis of the complex 
Laplace plane. Complex poles are realizable if active circuits are added. This gave rise 
to the use of active RC filters [101].  

In 1950, Sidney Darlington proposed a more compact form of the transfer functions 
that is more suitable for determining the degree of approximation (n) and its analysis 
using pairs of capacitive-resistive phase-shifting networks [102]. Each network 
terminated with its separate load along with n number of all-pass sections. Each all-pass 
function has the property of exhibiting equal ripple while the value of frequency “ω” 
moves from the ω1 to ω2, where they denote the lower and upper ends, respectively. 
Therefore, CPZ is attributed to the phase shift network and dependent on the complex 
nature of it. The theoretical study showed that phase error is inversely and frequency 
range is directly proportional to the degree of the approximation. The main lack of this 
approximation was the use of inductors and capacitors in all-pass sections which brings 
to difficulties of the practical circuit realization. 

Several networks with a parallel combination of a number of series infinite number 
RC elements to obtain a nearly constant argument (phase) over an infinite frequency 
range were showed in 1959 by Ralph Morrison [103]. These networks have the basic 
canonic forms as Foster and Cauer. The constant phase behavior and scaling factor were 
described mathematically and their relations were discussed over a two-decade 
frequency range. Moreover, their measurement results were shown. The effect of 
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terminating (correcting, single, parallel connected) elements were given. A feedback 
amplifier design using a constant argument network was explained theoretically.  

Donald C. Douglas has given a design procedure to obtain a constant phase angle 
from −90° to +90° with predefined phase error in specified frequency bandwidth in 
1961 [104]. The phase error is independent than the network complexity while the 
frequency range is. The theory was based on Morrison’s study and explained on a 
periodic rippling phase function by centering an infinite number of identical 
characteristics at equal intervals on a logarithmic frequency scale. For a phase angle of 
45°, the error was ±0.015° while the error might vary for other phase angles. Setting the 
CPA with the phase error and using simple schematic were the advantages of this 
method. However, some special tables were required to attain the specified phase angle 
and error. This study differs from Morrison’s method by the product of infinite number 
of basic transfer functions (Morrison’s development was based on a summation of an 
infinite number of basic admittance functions). 

In 1963, Robert M. Lerner has proposed the finite network in which the pole and 
zeros of the series string of parallel RL and RC pairs were set according to the order k 
whether equal to be positive or negative [105]. The successive pairs of inductance or 
capacitance were set in the ratio of p, and the resistors were in the ratio of pk. Even 
though, the similar structures as in Morrison’s study were used, Lerner took resistors 
with the power-law instead of p as Morrison thereby reduced the repetitive errors in 
magnitude. In addition, the compensation impedance was specified to correct the edge 
ripples which could be modelled as the additional poles in the transfer function. An 
experimental admittance constructed with five capacitors and five resistors 
approximated half-order impedance within the accuracy of 1% in magnitude and ±1° in 
phase over the frequency range of 50 Hz - 10 kHz. 

In 1964, G. E. Carlson and C. A. Halijak showed applications of a Newton process 
for approximating the characteristic of a balanced symmetric RC lattice (cross RC 
ladder) [14]. The networks were cascades of balanced symmetric lattices with unit 
resistors in the parallel arms and unit capacitors in the cross arms. The cascade was 
terminated in a unit resistor. This process for approximations used to deal with higher 
order of fractional capacitors whereas classical iterative methods did not even exist. The 
Newton process generated rational functions of the nth root of 1 s . Thus, a fractional 
capacitor of nth order formally suggested and investigated first time in the literature. 

Until 1967, there have been few more studies in particularly; K. Steiglitz [106] has 
suggested a rational function approximation while Lerner employed a passive building 
block, C. A. Hesselberth has investigated the lumped equivalent of Morrison’s RC 
circuits [107] (Foster-type network). However, these networks were on the theoretical 
interest only, because they were very difficult to fabricate the structure with present day 
materials technology. In 1966, Suhash C. Dutta Roy [23] pioneered the lumped element 
model of RC networks whose impedance has −45° and is suitable for fabrication in 
micro-miniature form using thin film techniques. Later on, he detailed this work [108] 
on non-uniform networks based on continued fraction expansion (CFE) and compared 
between cascaded networks and rational function approximations. Moreover, the 
approximation of (1+s±1)±λ at low and high frequencies with suitable networks were 
discussed. Elliptic functions and an equiripple approximation were used. However, this 
study suffered from the computational difficulties of the approximations and realization 
complexity. 

In 1973, Keith B. Oldham proposed a circuit having two stages; resistive-capacitive 
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line subdivided into n-equal segments and each segment is replaced by a “T” element 
composed of two resistors and a capacitor [109]. Then, the geometric ladder was 
generated by a similar two stage process, only being different from the initial 
subdivision into unequal segments. The proposed circuits were adopted for any order. 
Resistances and capacitances selected according to geometric progression that makes 
calculations much simpler and providing uniqueness to this method. 

Between 1975 and 1981, the synthesis of the transfer functions were led to eight 
recursive arrangements of RC or RL cells ensuring a non-integer order, no longer 
limited to an half, but being orders between either 0 and 1 or 0 and −1 [110]:  

• a parallel arrangement of series RC cells; 

• a series arrangement of parallel RC cells; 

• a cascade arrangement of gamma RC cells; 

• a parallel arrangement of series RL cells; 

• a series arrangement of parallel RL cells; 

• a cascade arrangement of gamma RL cells. 

J. C. Wang, in 1987, made a study [111] based on some of the results of Schrama's 
thesis [112]. He proposed a systematic way to construct RC transmission lines and 
ladder networks that had generalized Warburg impedance. The main outcome was to 
show non-constant resistance and capacitance per unit length of the line, while still 
referring the term “Warburg impedance”. Specification of the starting points of the 
transmission lines in this study made it different than Schrama. 

In 1992, A. Charef et al. proposed to approximate the fractional power pole [24], 
[113]. Using a simple graphical method, the zeros and the poles of the approximation 
for a specified error in dB were found to be in a geometric progression form, which is 
called “Charef’s method”. In same year, M. Nakagawa and K. Sorimachi proposed a 
circuit which has a fractal structure (tree fractance) [114] composed of resistances and 

capacitors. The impedance of the element described as ( )1 2 1 2( ) exp( 4)Z j R C j−ω = ω π . 

Eventually, the presented structure used in a fractional integral circuit as well as a 
fractional differential circuit and confirmed that output wave forms agree well with 
those derived from a computer simulation. K. Matsuda presented an approach in 1993 
for designing broadband compensator that applies the H∞ control theory [115]. In 1995, 
A. Oustaloup developed a new system called the CRONE suspension [116], [117] from 
the link between recursive and non-integer derivation. The non-integer derivation, by 
using n elementary spring-damper cells whose time constants were distributed 
recursively, was synthesized based on a frequency interval. However, the quality of the 
Oustaloup’s approximation may not be satisfactory in high and low frequency bands 
near the fitting frequency bounds and is restricted with odd orders. In 2006, this 
problem was solved by D. Xue et al. [118]. 

In 2002, M. Sugi et al. have investigated self-similar ladder circuits with RC 
elements (domino-type), forming a geometric progression as simulating the fractional 
impedance with various orders [119]. The claimed advantage with these self-similar 
circuits over those corresponding optimized circuits is the characterization of one single 
optimum pole interval determined by the distributed-relaxation-time models. The 
eighteen sections or less were used to realize half-order element in five decades 
bandwidth. In 2005, P. Yifei et al. in their work have analyzed a tree type network of 
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classical half-order FOE resembling neural networks and also proposed three new 
configurations [120]; half-order net-grid type, half-order two-circuit series, and half-
order H-type. In 2008, A. A. Arbuzov et al. presented the three-dimensional self-similar 
RC models [121] of the electric double layer and electrolytic medium that gives the 
fractional impedance response. The complex conductance of circuits consists of 
fractional-power expressions with real and complex-conjugated exponents were shown. 
The dependence of the order on the resistance and capacitance was reduced. Moreover, 
the fractional order related with the dynamic fractal dimension which gives a new 
geometrical meaning. 

In 2011, J. Valsa et al. [122] showed a systematic way to simulate the properties of 
a FOE in a desired frequency range with good accuracy. The method works for arbitrary 
orders of the fractional order operators. The parallel connected of series R-C elements 
was used with parallel, single resistor and capacitor as correction elements. The 
presented approach was based on recursive algorithm (RA) that allowed setting initial 
values from standardized ones. Therefore, the remaining network values were close to 
standard passive elements. Again in this year, D. Sierociuk et al. introduced a new 
structure called the nested ladder. Together with the known domino structure, both 
studied types of electrical circuits provided the first known examples of circuits, which 
were made of passive elements only and exhibited in the time/frequency domain 
behavior of variable order [123], [124]. While the frequency dependent parameter was 
obvious from Bode plot, the variable order behavior of considered circuits in time 
domain was designed with help of Mittag-Leffler function as a link between data fitting 
and fractional-order differential equations. In 2014, R. El-Khazali proposed a 
biquadratic approximation to fractional order differintegral operators [26], [125]. The 
circuit was synthesized with series RC and RL networks. The performance of the 
structures showed better results than equiripple and Oustaloup’s approximations. 
However, the obtained passive values were not so realistic. 

There are available other structures that validate the passive and active analog 
realizations of fractional-order impedances. For instance; composed of a FOC and some 
RLC components [126], active cells such as operational amplifiers, operational 
transconductance amplifiers, current conveyors, and current feedback operational 
amplifiers [19], [127], [128], weighted sum of first-order high-pass filters [129] and 
many others [130]-[132]. 

2.1.2 Boundaries and Constrains 

Various passive electrical networks are used to realize the fractional impedance. The 
irrational input impedance is represented commonly in terms of a rational transfer 
function [62]. Therefore, to implement these functions and obtain the passive network 
component values there are several conditions: 

• The transfer function must be real for real Laplace operator s. 

• The transfer function possesses distinct features in the complex plane with 
negative real poles located in the open left-side of s-plane. 

• The input impedance Z(s) pole or the input admittance Y(s) zero should be the 
closest to the origin of the coordinates. 

Validating the conditions in above, there are also several drawbacks: 

• Approximated rational functions require complex mathematical analysis. 
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• Constrained optimization to identify the network. 

• The value of the components are not well-scaled and negative values may be 
obtained, in which case one would need to use negative impedance converters. 

• Obtained values have to be approximated to closest a standardized value which 
leads to overall degradation of the performance of the FOE.  

• High numbers of elements are used for low phase error, in which clearly requires 
increased branch number thus high-order transfer functions. 

• High numbers of elements also requires large circuit layout which results in 
extra parasitic due to the transmission line effects especially at high frequencies. 

Therefore, a systematic way should be followed as: 

• Use a suitable approximation technique to obtain the impedance in the form Z(s) 
and develop it into a suitable expansion, thus obtain R and C component values. 

• Use an appropriate network to reduce phase ripple at low-, mid- and high-
frequencies. Thus, the network should be selected according to frequency range 
of application. 

• Use an evolutionary approximation technique to optimize the design 
specifications such as: phase, order, phase ripple, frequency bandwidth, and 
passive element values. 

Additionally, fractional-order calculus operations have been simulated by digitally 
approximating the problems and calculating approximate solutions. Digital 
approximations are necessarily limited in bandwidth, highly consumptive of computer 
resources, and can suffer from numerical instabilities due to finite precision arithmetic. 
We would also be faced with the problem that the amount of memory required would be 
dictated by the values of the exponents and coefficients. These limitations can make 
digital techniques impractical or incapable of solving many problems, such as 
controlling fast processes, which involve strong opposing forces [126]. Thus, another 
study should continue on this way. 

2.2 Development of Fractional-Order Devices 

An ideal dielectric in a capacitor would violate causality. Thus, it is typical to look for 
dielectrics for instance “low-loss" dielectrics for the order “α” of s as close to unity as 
possible, as the exponent is directly related to the constant phase angle. This can be 
explained in electrical engineering as the frequency dispersion of capacitance by 
dielectric relaxation, where the electric current density follows the change of an electric 
field with a delay [134]. A wide range of relaxation phenomena is associated with 
interfacial processes in metal–insulator, semiconductor–insulator, electrode–electrolyte 
and similar systems. Therefore, Andrew K. Jonscher expressed the principle of 
“universality” of dielectric response and defined the following principal dielectric 
functions [69]: 

• The complex permittivity ( )ε ω  and susceptibility ( )X ω , 

( ) ( ) ( ) ( )0X X jX∝ ′ ′′≡ − = −   ω ε ω ε ε ω ω ,      (2.3) 

30



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

2. A SURVEY ON FRACTIONAL-ORDER ELEMENTS AND DEVICES 

 

where 0ε  is the permittivity of free space, ∝ε  is a suitable high-frequency permittivity 

and the physical emphasis is on the real and imaginary components of the polarization. 

• The dielectric modulus, which is the reciprocal of ∝ε , 
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,       (2.4) 

which emphasizes series processes that may be acting in the material. 

• The complex capacitance 

( ) ( ) ( )C A d= ω ε ω ,         (2.5) 

which relates to a sample of planar geometry of area A and thickness d, or some 
other appropriate geometrical factor for other geometries. Susceptance is the quantity 
corresponding to susceptibility, 

( ) ( )X C C∝= − ω ω .         (2.6) 

Their use is recommended wherever the geometry of the sample is not well 
defined. They both emphasize parallel processes acting in the sample. 

• The admittance of the sample representing the equivalent parallel conductance 
G(ω) and capacitance C(ω), 

( ) ( ) ( ) ( )Y I V j C G j C= = ≡ + ω ω ω ω ω ω ,       (2.7) 

The frequency dependence of these elements arises from the fact that they 
represent an equivalent circuit of a system that is not necessarily a parallel combination 
of frequency independent elements. 

• The impedance of the sample which is the reciprocal of admittance, 

( ) 1Z V I Y= = ω ,        (2.8) 

which emphasize series processes. 

Then, the obtained data can be represented by commonly in two-ways: 

1. Plots of the real and imaginary components in logarithmic scale against 
frequency. The log-log form is particularly useful in representing dielectric 
functions which are often power-law functions of frequency: 

( ) ( ) 1n
X j

−∝ ω ω , where 0 < n < 1.        (2.9)
 

In the frequency region above any loss peaks, this referred to as the “universal” 
law. 

2. Polar plots of the real and imaginary components in linear scale against 
frequency. These plots are limited mainly to rudimentary diagnostics, to 
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characterization by shape as Debye, Cole-Cole etc. as means of finding series 
combinations of elements in Z plots. 

This statement clearly shows that an ideal capacitor cannot exist in nature. 
Considering also the definition of Warburg impedance, the impedance varying as the 
square-root of frequency, several FOCs are designed and fabricated. Many of the 
studies are done after 1990s since the connection between math’s and physical 
properties of materials established after this year [12]. 

2.2.1 Materials and Structures 

In the early 1960s, by R. Sh. Nigmatullin et al. proposed a FOE called as 
electrochemical converters of information (ECCI) that contains two platinum electrodes 
encased into a vacuum-sealed glass bulb filled with water solution of potassium 
ferrocyanide K4[Fe(CN)6] and potassium ferricyanide K3[Fe(CN)6] with same 
concentration [62]. Their practical use to perform fractional half-order integrator and 
differentiator were demonstrated. However, the presence of liquid electrolyte and the 
need to vacuum and seal the electrochemical diode container made it difficult to use this 
device as compact components produced via the integrated circuit technology. Later on, 
same group fabricated a temperature sensitive solid electrolyte type FOE using a 
rubidium silver ionide (RbAg4I5) as solid insulator [62]. The order was tunable between 
0.64 and 0.82 with temperature change from −20 °C to +50 °C. Another study was the 
fabrication of the half-order resistive-capacitive elements with distributed parameters 
(RC-EDP, semi-infinite RC transmission line) by means of film and semiconductor (bi-
polar transistor, MOS) structures [62], [135]. The schematic methods include variation 
of interlayer connections and variations of connection layout. Their size was 
significantly small, thermally stable and their precision of modelling the features of an 
ideal RC cable was higher. Furthermore, their parameters can be adjusted using physical 
magnetic fields on the corresponding sensitive materials of resistive and dielectric 
layers. 

T. C. Haba et al. [136], [137] demonstrated that it is possible to create fractional 
order impedances in the range of 100 kHz − 10 GHz by fabrication of a fractal structure 
on silicon substrate. In1998, Samavati put a similar study like Haba et al. [138]. 

In 2002, G. Bohannan introduced the FOE design using fractal geometry properties 
of the electrode-electrolyte interface [139]. The device had sandwich type constituted 
by two parallel copper electrodes separated by one conducting plate both side with 
electrolyte. The conducting plate required to specify the order. Ionic gel with Lithium 
Nitride and Tetraethy-Ortosilicate was used as electrolyte. The phase angle varied from 
−30° to −60° with phase angle deviation of ±5° over five decades of frequency range. 
This FOE was able to operate over low- and infra-low frequency ranges (from Hz to 
kHz) due to the diffusion and drift of the electrolyte ions. The device was packaged and 
demonstrated in controller. On the other hand another study reported by G. Bohannan et 
al. in 2006 [133] using nanostructured materials for instance [NH2BU2]x[Pt(Ox)2]. The 
device covered wide frequency range (4 decade) but suffered from high phase ripple 
(approximately 5), small phase angle from −13° to −18°. In 2008, next study was 
reported by developing lithium ions on the rough surface of metal electrodes [140]. 
However, by this method, it is not easy to reproduce a FOE with desired specifications. 

In 2006, K. Biswas et al. developed a liquid electrochemical FOC [141] and 
showed its application in fractional order differentiator circuit. The constant phase 
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response was taken by dipping the poly-methyl-methacrylate (PMMA) coated Cu/Pt 
electrode in polarizable medium (solution). The constant phase angle was observed over 
a frequency range of about one decade (200 kHz − 1 MHz). This device is low cost, 
easy to fabricate. The major advantage of the proposed device is that, varying the 
conductivity of the polarizable medium and depth of insertion so that constant phase 
angle behavior can readily be obtained in different orders (from –15° to –60°) [142] 
however it is not compatible for circuit applications and suffers from high phase ripples 
(from 6° to 15°). 

In 2008, I. S. Jesus and J. A. Tenreiro Machado implemented the electrodes 
through one-sided cooper-based printed circuit boards with the fractal geometries cases 
with a dimension from 1 up to 2 for instance; the curve of Koch (FDim = 1.262), carpet 
of Sierpinski (FDim = 1.893), curves of Hilbert (FDim = 2.000), and Peano 
(FDim = 2.000) [142]. Therefore, fractal structures were adopted in an electrolyte 
process. They investigated the influence of several factors: FDim, different sodium 
chloride solution concentrations and the introduction of a fractal material in the 
solution. The experimental results demonstrate the possibility to get FOEs by adopting 
non-classical electrodes but suffered from high-dimension issue and reproducibility of 
specifics. 

In 2011, M. S. Krishna et al. realized a FOC by dipping a capacitive type probe 
into the PMMA-choloroform solution for particular thickness and then used spin 
coating technique [143]. The electrochemical based capacitor enables only a limited 
phase variation of –12° to –6° by controlling the depth of the electrode immersion. 
Moreover, the thickness, uniformity, and stability of the porous film, on the electrode, 
are responsible for different orders [144]. Clearly, this method does not allow 
integration with current microelectronic systems or printed circuit boards and works in 
narrow bandwidth with low phase angles. 

A realization of compact and stable electrostatic fractional capacitors is reported by 
Elshurafa et al. in 2013 [145]. It is fabricated by using percolated polymer composites 
in which the matrix is a dielectric polymer and the filler is graphene (rGO) nanosheets. 
Its tunability was shown with in total five fractional capacitors that were fabricated, in 
which the graphene weight loading tune from 2.5% up to 12%. Phase angles varied 
from –67° to –31°, corresponding to order of 0.73 to 0.33, respectively. The operating 
frequency range was 50 kHz – 2 MHz. The main advantages are its small size and PCB 
compatibility. However, the fabrication technique is complex and costly. 

Ionic polymer metal composites (IPMCs) composed of a perfluorinated ion-
exchange membrane, Nafion 117, which was surface-composited by platinum via 
chemical process proposed by R. Caponetto et al. in same year [146], [147]. Both sides 
were metallized with a noble metal to realize the electrodes. IPMC device in 
1 cm × 1 cm mechanically fixed within a Plexiglas sandwich that allows neglecting its 
electromechanical properties and FOC using on the electrical behavior. Two different 
IPMCs with different platinum absorption times (5 h and 20 h) showed the fractional-
order dynamics in the frequency range of 1 Hz – 100 Hz and 1 Hz – 10 Hz with an 
orders of 0.05 and 0.3. This solid/semisolid FOC is useful in low frequency zone 
however emulates only quite small orders.  

In 2015, A. Adhikary et al. developed an electrochemical type FOC [148]. A 
composition of 4,4’-(4,4’-isopropylidene di phenoxy) bis (phthalic anhydride) 
(BPADA) and m-phenylene diamine (mPD) (BPADA-mPD polymer) with carbon 
nanotube (CNT) in DCM solution was coated on the surface of Cu electrodes by dip 
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coating technique. By varying the percentage of CNT in polymer-CNT composite and 
the nature of polarizing solution, two different types of FOEs have been realized. Probe 
coated with BPADA-mPD + 1% CNT has constant phase zone of five decades (20 Hz –
 2 MHz) with a ripple of –2° only. However, a proper packaging scheme needs to be 
developed. Its longevity and design parameters for tunability must be studied in deep. 

The fabrication of a solid-sate, multi-walled carbon nanotube (CNT) -epoxy resin 
nanocomposite FOC which provides constant phase zones of two decades in the range 
of 100 Hz – 20 MHz is introduced by D. John in 2017 [149], [150]. The upper and 
lower plates (1.5 cm × 1.5 cm × 0.02 cm) made of copper act as the electrodes. Middle 
copper plate (1 cm × 1 cm × 0.02 cm) coated with the porous PMMA film was inserted 
to enhance the distributive nature of the electron flow from one plate to the other. It has 
been observed that as the percentage of CNTs loading increases, the CPA increases 
from –85° to –45° above the frequency range of 100 Hz. The developed device is 
compact and it can be easily integrated with the electronic circuits. 

A systematic way to design and fabricate solid state bilayer FOCs using different 
polymer and composites solutions as filler has been followed by Agamyrat et al. Au-
covered, 2 cm × 2 cm Si/SiO2 wafers were used to fabricate the FOC by drop-casting 
the composite solution. In total, three different polymer and composite solutions labeled 
polyevinelidenefluoride P(VDF) –trifluoroethylene P(VDF-TrFE) -chlorofluoroethylene 
P(VDF-TrFE-CFE) are prepared in the study of 2017 [84]. The constant phase angle 
from –83° to –65° in the frequency range of 10 kHz – 10 MHz tuned by mixing the 
polymers. Later on, the tunability of the devices has been shown based on the thickness 
and ratio of the layers [79]. A FOC where the filler made of ferroelectric P(VDF-TrFE-
CFE) terpolymer containing CNTs was developed [151] in 2018. Changing the weight 
percentage of CNTs, the constant phase angle range from –65° to –7° in the fixed 
constant phase zone of 150 kHz – 2 MHz. The latest study was done by the same group 
in same year by using the molybdenum disulfide (MoS2)-ferroelectric composites [87]. 
The resulting FOC’s bandwidth is in 100 Hz-10 MHz where the variation in the phase 
angle is no more than ±4°. The constant phase angle can be tuned from –80° to –58° by 
changing the type of the ferroelectric polymer in the composite and the volume ratio of 
MoS2. K. Biswas et al. in 2018 has been realized a FOC based on carbon black-Sylgard 
nano-composites [152]. The investigated devices were characterized by the same carbon 
black mass concentration, while differed for the curing temperature. The accurate 
impedance responses were obtained at higher temperatures that showed for the 
production procedure to realize bulky and rigid devices. The fabricated device is also 
quite large, requires larger orders, mostly higher than 0.7. Average CPZ was observed 
over three decades of frequency ranging from 10 Hz to 100 MHz. The low pass 
application of the fabricated devices was studied in [153]. 

As summary, use of polymer-based dielectrics, simple and low-cost fabrication 
processes, and PCB compatibility makes FOCs attractive for circuit designers. 
However, fabricated FOCs have small capacitance and its tunability needs to be studied 
in further. 

2.2.2 Boundaries and Constrains 

The fabrication of FOCs based on different insulating layer and conducting electrodes 
have been reported. They can be categorized as liquid, solid and semi-solid fractional 
order capacitors based on the insulating layer. Materials as insulating or semi-insulating 
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layer might include liquids, inorganic glasses, electrolytes, ionic conductors, dielectrics, 
gate insulators of electronic devices, amorphous semiconductors, polymer melts and 
solutions, amorphous polymers, epoxies, ferroelectrics, biopolymers etc. The desired 
structure on electrodes can be provided by using the intensively developed methods of 
surface treatment with concentrated energy flows (laser, plasma, and electric-discharge 
treatment) using nanotechnology processes such as chemical assembly, sol-gel 
processes, vapor-phase deposition of metals, and atomic layered epitaxy. These 
different methods of emulating the fractional impedance provide opportunities to 
produce FOEs for a wide frequency range with various orders. However, to make such 
components as widely used as the conventional passive components, it is necessary to 
satisfy the design and the technology with the following requirements: 

• Compatibility with manufacturing technology of semiconductors or thin-film 
integrated circuits. 

• Constant phase response for a wide frequency spectrum. 

• Fractional impedance dependence on the maximum range of allowed order 
“0 < α < 1”. 

• Precise adjustment of the fractional impedance parameters and characters, 
especially the control on pseudocapacitance “Cα”. 

• Capability of parameter dynamical adjustment. 

• Suitable packaging for circuit applications. 

• Size in terms of electrodes. 

• Longevity of the lifetime. 

Fractional elements based on electrochemical converters with liquid electrolyte are 
hardly compatible with modern integrated circuit technologies however obviously 
advantageous from their capability of working ultra-low frequencies. On the other hand, 
the semiconductor based FOEs also have good potential, especially due to the small size 
and capability to control parameters with electric field, motion of dipoles, dielectric 
properties, relaxation time and its distribution etc. Nevertheless, there is no precise 
method to fabricate fractional impedances with a desired and accurate value of 
fractional order. This problem is caused by the difficulties associated with recording the 
surface and volume effects in the semiconductor crystal and the interaction of the 
integrated circuit elements. 

2.3 Summary 

Since appearance of works by Mandelbrot on the fractal nature of real objects and 
development of the fractional calculus, many physical phenomena were given a clearer 
and more comprehensive explanation. By assuming self-similar structure of the medium 
and/or processes occurring in it, it becomes possible to get insight into the phenomenon 
of universal dielectric response observed by A. Jonscher in many physical systems and 
also to explain the electric properties of the interface of a metal electrode with a solid 
electrolyte. A substantial stimulus to further studies is the possibility of carrying out 
numerous theoretical studies. Recent decades were marked by the development of 
passive and active FOEs and fractional dimensionality, as well as different models of 
fractal electrodes describing the processes in electrochemical cells. As the models in 
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these studies, the equivalent self-similar (fractal) circuits are considered. Note that an 
electric dipole can be considered as a certain elementary capacitance, while the 
elementary motion of charge carriers in a resistive medium can be associated with a 
certain value of Ohmic resistance. This can be explained in detailed with Debye model 
[154], [155]. The Debye response is obtained for an assembly of non-interacting ideal 
dipoles or identical dipoles which have the same waiting time before making a 
transition, or have a loss of energy proportional to frequency, respectively. The latter is 
the original Debye model of dipoles floating freely in a viscous medium. The Debye 
response is also obtained with a series combination of a frequency-independent 
capacitance C and resistance R which give the peak frequency ωp = (R·C)−1. This 
becomes relevant with the appearance of an interfacial capacitance in series with a bulk 
region, which constitute the basis of the Maxwell–Wagner model. 

Various approaches to realize FOEs obey the above statements. However, there is 
still need the find explanation for many missing points. Therefore, the chronological 
literature survey has been made in this part. The growth of circuit network realizations 
of FOEs are almost reached the saturation line. However, with the discovery of the 
electrical properties of materials, fabricated liquid, solid/semi-solid FOEs have been a 
major field of research and application in last 20 years. As seen from the various 
accounts of the FOE realizations, a standard and optimized device still is far from being 
a reality. A standard FOE employing in various electronic circuitries would propose a 
new era of devices with precise and robust control than already existing integer-order 
ones. In addition to these, an optimal design of the FOEs might be obtained by having 
dynamic tunability features. The fractional-order, constant phase zone, 
pseudocapacitance or pseudoinducntance can be set by tuning the circuit parameters 
e.g., voltage, current, frequency. This can happen by using transistor base active 
building blocks with the conventional IC fabrication technologies. Therefore this could 
be another area to investigate. 

36



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

3. SYNTHESIS AND OPTIMIZATION OF FRACTIONAL-ORDER ELEMENTS USING A GENETIC 
ALGORITHM 

 

3 SYNTHESIS AND OPTIMIZATION OF 
FRACTIONAL-ORDER ELEMENTS 
USING A GENETIC ALGORITHM 

Up until now, evolutionary computing algorithms have been used to reduce the 
drawbacks in traditional optimization methods and to solve complex problems where 
conventional techniques fail in many areas of the fractional-order domain such as chaos 
[156], control [157], or extracting the design parameters of filters [158]. In this regard, 
flower pollination algorithm [159], particle swarm optimization [160] etc. are used. 

In this chapter, a mixed integer-order GA in MATLAB® is employed [161]. Instead 
of approximating sα using the mentioned approximations in Chapter 2 at a certain 
frequency (or bandwidth), we optimize the phase and/or impedance responses of RC/RL 
networks in the whole desired frequency range. Furthermore, the required values are 
obtained with GA, even if the passive component values are restricted to commercially 
available kit values defined by standard IEC 60063. Hence, this chapter aims to introduce 
an FOE optimization method that achieves a broad operating frequency range with CPA 
deviation of approximately ±1° using commercially available passive component values 
in RC and RL structures with five branches of Foster-I, Foster-II, Cauer-I, Cauer-II, and 
Valsa networks. Most crucially, the presented approach avoids the use of negative 
component values, GICs, or random passive element values. Thus, the best optimal 
emulation of an FOE is introduced currently available in the literature. In particular, 
Foster-II and Valsa networks are selected as our main objective, because the former offers 
a minimum total capacitance value and the latter provides a minimum CPA deviation. 
Here it is also worth noting that, to the best knowledge of the author, an FOI design using 
the listed five RL networks is studied for the first time in the open literature. 

3.1 Description of the Genetic Algorithm Approach 

The GA is a powerful computational technique, which mimics the process of natural 
selection theory. It consists of a population of representations of candidate solutions to an 
optimization problem, which evolve toward enhanced solutions. It is important to mention 
that the GA uses the objective function itself, not derivatives or other auxiliary knowledge 
based on probabilistic/deterministic characterization. These features make this 
optimization method the most suitable technique to optimize the CPA in distributed 
RC/RL networks. 

Tab. 3.1 summarize the FOC and FOI approximation methods used in this work 
with their synthesized RC and RL networks and equivalent admittances or impedances. 
The admittances of some of the RC networks can be found in [62], [162]. The 
impedance and phase optimization of all structures using the GA is obtained with 
predefined R and C values. The desired constant phase and/or pseudocapacitance, 
pseudoinductance, number of branches, and frequency range (i.e. CPZ) are defined as 
design parameters. 

To provide more detail regarding the exact steps that were performed by the GA 
approach, its pseudocode in Algorithm 1 based on [161] is presented. Tab. 3.2 presents 
the parameters employed during the training phase of the GA approach. Fitness, also 
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known as the cost function of the solution set, is determined using the following 
equation: 

sim targF = −ϕ ϕ ,        (3.1) 

where φsim and φtarg express the simulated and target phase, respectively. The flow of 
steps can be divided into five parts: 

Initialization: Once the genetic representation and the fitness function (desired 
phase angle value) are defined, the GA randomly proceeds to initialize a population of 
solutions from predefined R and C values. The random indices (gene: a single encoding 
of part of the solution space) from the available resistors and capacitors are assigned to 
create a solution (chromosome: a string of genes that represent the solution), and 
population (possible solution sets) is created around the assigned genes. 

Evaluation: The evolution starts from a population of randomly generated 
individuals and continues with evaluation of the fitness. Fitness, also known as the cost 
function of the solution set is given in the following sections. 

Selection: In each generation, not only the fitness of every individual in the 
population is evaluated, but also several individuals are stochastically selected from the 
current population and modified to form a new population. The new population is then 
used in the next iteration of the algorithm. 

Breeding: Produce new individuals by using genetic operators on the individuals 
chosen in the selection step. The GA improves it through the repetitive application of 
mutation and crossover. 

Population update: The GA terminates until: 

1. The maximum number of generations is produced. 

2. Satisfactory fitness level has been reached (F = 0). 

3. No progress in fitness value of population within defined stall generation 
number. 

Algorithm 1: Genetic algorithm pseudocode
1: for i = 1 to NumOfGenerations (or until an acceptable solution is found) do
2:  if first generation, then 
3:  Generate the initial population with primitives  
 (CPZ, CPA, pseudocapacitance,  pseudoinductance, number of branches, 
 resistor, capacitor, and inductor set) 
4:  else 
5:  With current population, generate a new one  using crossover and mutation  
6:  end if 
7:  Calculate fitness of population members 
8:  if fitness ≠ 0 then 
9:  Return to generate new population 
10:  else 
11:  Break the loop 
12:  end if 
13: end for 
Return best individual in last population
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Tab. 3.2: Genetic algorithm parameters 

Run parameter Value 
Population size 100 
Max. stall generation 125 
Max. generation 10 000 
Input variables 6 
Crossover probability 0.5 
Commercially available resistor kits YAGEO RC-0603-FR-07 E96 Kit [163] 

and Vishay 0402 [164] 
Commercially available capacitor kits muRata C0603 [165] and Kemet 0402 

[166] 
Commercially available inductor kit Coilcraft 0603 ceramic inductors [167] 

3.2 Optimization and Verification of FOC 

As an exemplary study, primarily the Foster-II [162] and Valsa [168] networks are 
optimized within this section. For the reason that; Foster-II network offers a minimum 
total capacitance value and Valsa network provides a minimum PAD. 

3.2.1 Optimization of Foster-II Structure 

For a Foster-II realization, the component values are given by the partial fraction 
expansion and its admittance is expressed in Tab. 3.1. Here, n is the number of 
branches, R0 is the initial resistor, and Ri and Ci are the resistances and capacitances of i-
th branch. Firstly, the performance of the network obtained using the GA with the 
Oustaloup and CFE methods is compared to show the advantage of the GA. The desired 
bandwidth, number of branches which is equivalent of a fifth-order admittance function 
(n = 5), and CPA are respectively set as 100 Hz – 1 MHz, 5, and –45° with a 
pseudocapacitance of Cα = 100 nF·s–0.5. As a population, the random and commercially 
available passive elements defined in Tab. 3.2 are used. The central frequency in case of 
CFE is set to 10 kHz. It can be observed from Fig. 3.1(a) that all three approximations 
provide a constant phase response with target CPA near a central frequency, specifically 
between 1 kHz and 100 kHz. However, errors in phase for the approximation models 
increase significantly when the frequency is 2 decades above and below the central 
frequency, whereas the phase response obtained using the GA is satisfied in the whole 
frequency range of interest. Furthermore, Fig. 3.1(b) shows relative phase errors and 
corresponding normalized histograms (%) of phase angle deviation from CPA as an 
inset. It can be seen that the maximum deviation in the GA is limited to only ±2°, 
whereas in both CFE and Oustaloup, ±25° errors occur. Because no direct control exists 
over the R and C values obtained from the last two approximations, a correction to use 
the commercially available RC kit values is obligatory to build the FOCs. However, this 
correction is not needed for the results obtained by the GA since it directly provides the 
standard IEC 60063 compliant RC values as the results. Indeed, it is possible to include 
in the population, i.e. available R and C values to MATLAB® and the GA performs the 
optimization using only given values. Fig. 3.1(c) shows the simulated phase response of 
corrected RC network values using the Oustaloup, CFE, and optimized network using 
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 (a) (b) 

  

 (c) (d) 

Fig. 3.1: (a) Numerical phase response plots of the Foster-II RC network using the 
Oustaloup, CFE, and GA methods with random values, (b) relative phase errors and 
corresponding normalized histograms (%) of phase angle deviation from CPA as inset, 
(c) phase angle response of the RC network using the Oustaloup and CFE methods after 
RC value correction, and the GA optimized for commercially available RC kit values, 
(d) relative phase errors and corresponding normalized histograms (%) of phase angle 
deviation from CPA as inset. Phase responses are optimized in the frequency range of 
100 Hz–1 MHz 

the GA, while the commercially available 0603 size R and C kit values defined in 
Tab. 3.2 are used. The rest of the simulation setup is identical to the simulation setup for 
Fig. 3.1(a). Fig. 3.1(d) plots the relative phase errors and corresponding normalized 
histograms (%) of phase angle deviation from CPA as an inset. As it can be observed, 
the maximum deviation in the GA is limited to ±2.8°, whereas ±30° error is obtained in 
both Oustaloup and CFE approximation results. Notably, the maximum error in the 
phase obtained from both approximation methods are further increased compared with 
the results in Fig. 3.1(b) with no RC value correction. However, no significant change is 
observed in the phase of the circuit obtained using the GA. 
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 (a) (b) 

  

 (c) (d) 

Fig. 3.2: Target (ideal), simulated, and measured (a) phase responses, (b) relative phase 
errors and corresponding normalized histograms (%) of phase angle deviation from CPA 
as an inset, (c) pseudocapacitance responses, and (d) relative pseudocapacitance errors 
and corresponding normalized histograms (%) of pseudocapacitance deviation from CPA 
as an inset, respectively, of the Foster-II network optimized using GA. Impedance and 
phase responses are optimized in the frequency range of 100 Hz–1 MHz 

Figs. 3.2(a) and (c) show the target, simulated, and measured phase angle and 
pseudocapacitance responses of the RC network optimized using the GA. The same 
passive element values are used from the commercially available RC kits as depicted in 
Fig. 3.1(c) (see “This work”) with the setup listed in Appendix A. The experimental 
verification uses the Agilent 4294A Precision Impedance Analyzer. Standard calibration 
tests (open and short circuits) of the Keysight 16048G Test Leads are performed to 
calibrate the instrument. From the results in Figs. 3.2(b) and (d), it can be seen that the 
maximum CPA deviation between target (ideal) and simulated as well as measured 
values is only ±2.8° and ±3.2°, respectively, whereas the pseudocapacitance is 
±6.6 nF·s–0.5 and ±7.3 nF·s–0.5. 
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Fig. 3.3: Monte Carlo analysis: Phase variation at 100 kHz of the Foster-II network 
optimized using GA (values used in Fig. 3.2(a)) 

  

 (a) (b) 

Fig. 3.4: Measured phase responses of the Valsa structure using the RA and GA methods 
(commercially available kits are used), and (b) relative phase errors and corresponding 
normalized histograms (%) of phase angle deviation from CPA as an inset. Impedances 
are measured in the frequency range of 100 Hz – 10 MHz 

Statistical analysis of Monte Carlo (MC) was performed in OrCAD PSpice® 
simulation software with passive element tolerances based on their datasheets [163], 
[165] and 200 runs to observe effects due to manufacturing processes. The histogram 
shown in Fig. 3.3 demonstrates the variation of the phase at 100 kHz of the Foster-II 
network optimized using GA. The mean value with standard deviation 0.555 is 
–44.8109°, which is very close to the theoretical value –45° confirming that the 
proposed network has low sensitivity characteristic on passive components. The 
analysis results of MC for all studied networks at their middle frequency are listed in 
Appendix A. 
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3.2.2 Optimization of Valsa Structure 

The Valsa network in Tab. 3.1 [168] is proposed to emulate FOC behavior and realized 
using RA. The possibility of designing this network using commercially available R and 
C values was claimed by the authors [168]. However, the RA allows us to set only 
initial values and the remaining branch values must be adjusted according to 
commercially available passive element values. With this in mind, similar to with the 
Foster-II structure, the GA is applied to the Valsa network in this subsection. The 
admittance function is given in Tab. 3.1, where compared to Foster-II network the 
additional C0 denotes an initial capacitor. In our study, to provide a fair comparison 
with [36], the phase responses of RA and the GA of an order of α = –0.67 using 
commercially available 0603 size RC kit values are experimentally evaluated. The used 
passive element values are listed in Appendix A (see “Fig. 3.4” columns). During the 
experimental verification, the same instruments listed in section 3.2.1 are used. With the 
phase error equal to ±2.1°, the approximation with the GA experimentally reaches a 
wider bandwidth of 100 Hz–5 MHz, as shown in Fig. 3.4(a). Considering the full 
frequency band up to 10 MHz, the error is still only ±3.2° (see Fig. 3.4(b)). 

    

 (a) (b) 

 

(c) 

Fig. 3.5: Measurement results of an α = −0.5 order FOC implemented using the Valsa 
network optimized using GA for two decades in different frequency ranges: (a) 1 MHz –
 100 MHz, (b) 5 MHz – 500 MHz, and (c) 50 MHz – 1 GHz 
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Fig. 3.6: Monte Carlo analysis: Phase variation at 30 MHz of the Valsa network 
optimized using GA (values used in Fig. 3.5(a)) 

Furthermore, the measurement results of α = −0.5 order FOCs using an ENA Series 
Network Analyzer E5071C (300 kHz–20 GHz) in three different frequency ranges 
[case study (a) in 1 MHz–100 MHz, (b) 5 MHz–500 MHz, and (c) 50 MHz–1 GHz] are 
shown in Fig. 3.5. Two variants of the FOE device with dimensions of 20 mm × 20 mm 
were designed (for 0402 and 0603 size passive components) employing a subminiature 
version A (SMA) coaxial RF connector. The fabricated printed circuit board for 0402 
size kit values is shown in Fig. 3.5(c) as an inset. Considering an input impedance 50 Ω 
of the connector, the phase is measured by defining the equation of impedance as 
Z = 50·[(1 + S11)/(1 – S11)]. As passive elements, RF-type resistors from Vishay [164] 
and capacitors from Kemet [166] are used. Because of the producers fabrication 
boundaries, used passive components having CPA in limited frequency range, operate 
up to a maximum of 5 GHz. In addition, this frequency range is inversely proportional 
to the resistance values. For instance, a 100 Ω resistor works until 8 GHz, whereas a 
1 kΩ resistor has a constant zero-degree phase response up to 800 MHz and so forth. At 
high frequencies, the transmission line effect becomes dominant; therefore, we maintain 
the distance between passive elements the least. Despite the above mentioned 
limitations, we obtained the results until 1 GHz with low phase angle deviations as 
shown in Figs. 3.5(a)−(c). 

MC analysis was performed in OrCAD PSpice® simulation software with 0402 kit 
resistors [164] and capacitors [166] with tolerance according to their datasheets, and 200 
runs. The histogram shown in Fig. 3.6 demonstrates the variation of the phase at 30 MHz 
with values used in Fig. 3.5(a). The mean value with standard deviation 0.793 is –
44.8853°, which is again very close to the theoretical value –45°. 

One of the advantage of the proposed GA to design FOC is its suitability for any RC 
ladder topology, such as Cauer-I, Cauer-II, or Foster-I. In general, by replacing the 
admittance function of the desired topology, it is possible to determine the required 
resistance and capacitance values to build an FOC with desirable electrical properties. 
Notably, the list of admittances of listed networks can be found in Tab. 3.1. Fig. 3.7  
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 (a) (b) 

  

 (c) (d) 

Fig. 3.7: (a) Simulated phase and (b) pseudocapacitance responses, (c) relative phase 
errors and corresponding normalized histograms (%) of phase angle deviation from CPA 
as an inset, (d) relative pseudocapacitance errors and corresponding normalized 
histograms (%) of pseudocapacitance deviation from CPA as an inset, respectively, of 
four RC networks optimized using GA. Responses are optimized in the frequency range 
of 100 Hz – 1 MHz 

shows the phase and pseudocapacitance responses with corresponding relative errors and 
normalized histograms (%) of deviations of four RC topologies while the target phase, 
pseudocapacitance, and frequency bandwidth are set to −45°, 10 nF·s–0.5, and 4 decades in 
the frequency range of 100 Hz – 1 MHz, respectively. The largest deviation between the 
desired and simulated phase values in all topologies is up to ±2.5° with low 
pseudocapacitance deviation. 

3.3 Optimization and Verification of FOI 

The most popular technique to mimic an inductor is using a GIC employing Op-Amps, 
resistors, and capacitors [19], [20], [26], [49], [57], [58], [94], [169]-[172]. However, the  
 

46



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

3. SYNTHESIS AND OPTIMIZATION OF FRACTIONAL-ORDER ELEMENTS USING A GENETIC 
ALGORITHM 

 

  

 (a) (b) 

Fig. 3.8: Numerical simulation results of five-branches Valsa RL network using 0603 kit 
R and L values for FOI design: (a) phase, pseudoinductance, and magnitude responses, 
(b) relative phase errors and corresponding normalized histograms (%) of three different 
orders in the frequency range of 10 kHz – 10 MHz 

performances of these GIC-based active inductance simulators often suffer from the non-
idealities of Op-Amps. Therefore, this section deals with the optimal emulation of an 
FOI for the first time in the literature. The FOI design using the GA is studied numerically 
and experimentally verified. 

The Valsa RC network in Tab. 3.1 is modified to an RL-type structure by replacing 
all capacitors with inductors as shown in corresponding figure. Its equivalent impedance 
function is given in Tab. 3.1, where n is the number of branches, R0 is the initial resistor, 
L0 is the initial inductor, Ri and Li are the resistances and inductances of the i-th branch, 
respectively, while the fitness function is described as (3.1). The frequency response of 
five-branch FOIs with three different angles using 0603 kit R [163] and L [167] values is 
studied numerically and shown in Fig. 3.8. The pseudoinductances of orders α = {0.25, 
0.5, 0.75} are 8.52 mH·s–0.75, 834.62 μH·s–0.5, and 89.62 μH·s–0.25, which are constant 
with small deviations in the whole frequency range. Furthermore, the slope of magnitude 
in the inset of Fig. 3.8(a) shows that the inductive reactance (impedance) of the FOI 
increases as the supply frequency across it increases. To estimate the equivalent order α, 
the simulated magnitude responses are fitted to the function 
log10|Z| = αlog10f + log10(2π)αLα using the linear least squares method. The equivalent 
equations from fitting the magnitude are provided inside Fig. 3.8(a). The maximum PAD 
and relative phase errors of the related orders are {±1.84°, ±1.66°, ±1.55°} and {±8.16%, 
±3.68%, ±2.29%}, respectively, as depicted in Fig. 3.8(b). The operating frequency range 
is chosen between 10 kHz and 10 MHz because of the working frequency range of the 
0603 kit ceramic chip inductors [167]. Considering that the maximum PAD is around ±2°, 
order of 0.25 is limited from 12 kHz. The used passive element values are listed in 
Appendix A. 

Moreover, the behavior of an α = 0.5 order FOI, numerically simulated in Fig. 3.8, 
was verified using the Agilent 4294A precision Impedance Analyzer. Standard calibration 
tests (open and short circuits) of the 16047E Test Fixture were performed to calibrate the 
instrument. During the experimental validation in the frequency range 400 kHz − 40 MHz 
(801 logarithmically spaced points in two decades), a sinusoidal input signal with a 
default AC voltage of 500 mV and a frequency of 1 MHz was applied, while one of  
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Fig. 3.9: Measurement results of an α = 0.5 order FOI from Fig. 3.8 and the fabricated 
device with dimensions of 15 mm × 17 mm as in inset (blue line - impedance response; 
red line - phase response) 

 

Fig. 3.10: Monte Carlo analysis: Phase variation at 3 MHz of the Valsa RL network 
optimized using GA (α = 0.5 order FOI with values used in Figs. 3.8 and 3.9) 

terminals was grounded. The measurement results and a photograph of the fabricated 
device with dimensions of 15 mm × 17 mm are depicted in Fig. 3.9. The measured PAD 
in two decades of the frequency range of our interest is ±5.82°. 

In addition to an α = 0.5 order FOI, a MC statistical analysis was also performed in 
the OrCAD PSpice® simulation software. The passive element tolerances according to 
0603 kit datasheets [163], [167] and 200 runs were set to observe affects due to  
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 (a) (b) 

  

 (c) (d) 

Fig. 3.11: (a) Simulated phase responses, (b) relative phase errors and corresponding 
normalized histograms (%) of phase angle deviation from CPA as an inset, (c) 
pseudoinductances responses, and (d) relative pseudoinductances errors and 
corresponding normalized histograms (%) of pseudoinductances deviation from CPA as 
an inset, respectively, of different RL networks optimized using GA for FOI design. 
Impedance and phase responses are optimized in the frequency range of 10 kHz–10 MHz 

manufacturing processes. The histogram shown in Fig. 3.10 demonstrates the variation of 
the phase at 3 MHz. The mean value with standard deviation 0.49 is 45.1964°, which is 
very close to the theoretical value 45° confirming that the proposed network has low 
sensitivity characteristic on passive components. 

In addition, for the first time in the literature, the Foster-I, Foster-II, Cauer-I, and 
Cauer-II type of RL networks are also studied. The impedance function of all networks 
optimized using GA are given in Tab. 3.1. Fig. 3.11 shows the phase and 
pseudoinductance responses with corresponding relative errors and normalized 
histograms (%) of deviations of four RL topologies. The target phase and frequency 
bandwidth are set to 45° and 3 decades in the frequency range of 10 kHz – 10 MHz, 
respectively, with no pseudoinductance specification to obtain the best result. In 
summary, the minimal error is obtained with Foster-I structure while the least spread of 
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passive element values are observed with the Foster-II. The detailed analysis including 
MC results for all studied networks is presented in Appendix A. 

3.4 Discussions 

Tab. 3.3 compares the performance of RC networks built using Oustaloup, CFE, RA, and 
the GA. For instance, for the Foster-II network composed of the same number of 
branches, the performance of the GA is compared with that of Oustaloup and CFE. The 
results obtained with the GA have the lowest PAD in a wider frequency range than 
Oustaloup and CFE. To provide the overall performance evaluation, a numeric Figure of 
Merit (FoM) value is calculated as: 

 
BW

FoM .
No. of Branches No. of Cap. No. of Res. |CPA Dev.|

=
× × ×

      (3.2) 

Notably, the FoM in our study for Foster-II network using the GA was 30.3×10−3, 
which is the largest value. An improvement of approximately 396% over the Oustaloup 
and 354% over the CFE was achieved using the same number of elements and least CPA 
deviation in a wider bandwidth. In the same manner, the Valsa structure is compared 
between the RA and GA. Evidently, the GA provides a wider bandwidth than RA with 
lower CPA error. Moreover, the FoM shows significant improvements to the Valsa 
network with the GA (294% in case of Fig. 3.4 results). To comprehensively evaluate the 
performance of the Valsa structure using the RA and GA in Tab. 3.3, a radar chart is 
depicted in Fig. 3.12, which shows that a smaller area of pentagon provides superior  
 

 

Fig. 3.12: Radar chart showing an evaluation 
of Valsa RC structure results from Tab. 3.3 

 

Fig. 3.13: Numerical study of five-
branches RC networks using random R 
and C values and plot of average phase 
angle deviation of an order of α = –0.5 
by increasing the operation bandwidth 
from 100 Hz up to 100 MHz 
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 (a) (b) 

Fig. 3.14: (a) Order and (b) frequency effect on R and C values on each rung of the 
Foster-II and Valsa structures for FOC design 

  

 (a) (b) 

Fig. 3.15: (a) Order and (b) frequency effect on R and L values on each rung of the 
Valsa structures for FOI design 

performance (for instance, the GA in Fig. 3.5(a)). On the other hand, the error increases 
by increasing the bandwidth while maintaining the five branches as default (see numerical 
study in depicted in Fig. 3.13). It is clear that the phase angle deviation is less than ±2.3° 
even with 6 decades of operation (from 100 Hz up to 100 MHz). 

The performance of RC network optimizations is primarily compared through the 
utilization of the results in Appendices A. Here, total and spread of resistances and 
capacitances, phase angle deviation, relative phase error, and MC analysis for all 
networks are given. According to these, the GA generally provides the minimum total 
capacitance value and can be limited in any range of the designer’s choice. Furthermore, 
as the order increases, the total capacitance increases and the resistance decrease, as 
shown in Fig. 3.14(a). Maintaining the order constant and increasing the capacitance 
value provides the same results as in the previous case. The frequency effect on the values 
is shown in Fig. 3.14(b). At high frequencies, small R and C values are used (as also seen 
in Appendix A), whereas larger passive values are used at low frequencies. This fact can 
be explained by the dissipation factor (DF) expressed as DF = ESR / XC, where ESR and 
XC denote the equivalent series resistance and capacitors reactance, respectively, or as a 
tangent of the loss angle [173]. 
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Fig. 3.15 shows the distribution of R and L values depending on an order and the 
frequency range for FOI design. Different to the FOC evaluation, resistance and 
inductance vary linearly with an order. It is also clear from Appendix A that an increasing 
FOI order has the effect of increasing passive values. This result can be explained by the 
quality factor (Q) definition Q = XL/R, where XL is the inductive reactance and R is the 
DC resistance [174]. Maintaining the Q constant, increasing an order (effecting XL) has 
the effect of increasing the R. At low frequencies and within limits, both passive values 
become much greater than their equivalents at high frequencies. 

3.5 Summary 

In this chapter, a new approach for the design of an FOE, mainly from the Foster-II and 
Valsa structures, with desired properties was introduced. The mixed integer-order GA 
was used to determine the optimal phase response with minimum phase angle deviation in 
a defined frequency range. The values of the passive elements have been optimized in 
accordance with the commercially available IEC 60063 compliant kits. Therefore, the 
introduced approach offers enormous freedom to design RC/RL networks without making 
any value adjustments, which could lead to degeneration of FOE performance during 
measurements. Furthermore, designers can obtain the optimal phase and impedance 
response at low-, mid-, and high frequencies with wide bandwidths and low phase errors 
with minimum total passive element.  

The results demonstrated excellent performance as well as adaptability for 
application to various types of structure, such as Cauer-I, Cauer-II, and Foster-I either for 
FOC or FOI design, which was carried out for the first time in the literature. All these 
features make this approach strong and beneficial analogue designer. It is also important 
to note that the proposed approach outperformed other approximations or algorithms such 
as the RA [175], Oustaloup’s approximations [22], graphical method [58], meta-heuristic 
algorithms [129], and the design using bilinear sections [49]. In other words, a fifth-order 
approximation of FOE using GA shows better performance than for example fourteenth- 
[175] or ninth-order [58] approximations. In addition, during our research, we found that 
there is a connection between the FOE and the equivalent circuit model of the inductors 
and electrolytic capacitors. Thus, more accurate models of the FODs can be developed in 
the future. 
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4 ANALOG IMPLEMENTATION OF 
FRACTIONAL-ORDER PIλ 
CONTROLLERS 

In general, the case of controller realization is not equivalent to the cases of simulation 
or numerical evaluation of the fractional-order integral and differential operators. It is 
also important to have discrete equivalents or approximations with poles and zeros, that 
is, in a rational form. Then, it brings us to the following question: how to implement 
proposed realizations? Basically, there are two methods for realization of the FOC. One 
is a digital realization based on microprocessor devices and appropriate control 
algorithm and the second one is an analogue realization based on analogue circuits so-
called FOCs, FOIs.  

In this chapter, particularly, fractional-order integral operator s−λ (integrator Iλ, 
where 0 < λ < 1) is implemented employing two-stage Op-Amps. Cascade of first-order 
bilinear transfer segments (BTSs) is used, which is a two-port network with a single 
pole and a single zero. The behavior of both proposed analogue circuits employing two-
stage Op-Amps is confirmed by SPICE simulations using TSMC 0.18 μm level-7 LO 
EPI SCN018 CMOS process parameters with ±0.9 V supply voltages. The cascade of 
BTSs creates so-called constant phase block, which generates desired magnitude and 
phase response by proper setting of both polynomial roots (zero and pole frequencies) 
of each BTS [17]. As Fig. 4.1 illustrates, the traditional PIDs are a particular case of 
fractional-order PIλDµ (FOPIλDµ) controllers. Hence, this approach ensures direct 
emulation of the behavior of an Iλ, which is very beneficial for fractional-order PIλ 
(FOPIλ) design. FOPIλ controller, which is used as an application of Iλ in this chapter, 
are widely used in industrial applications because of their simplicity and applicability to 
wide range of industrial control problems. In recent years, the survey [176] indicates 
fractional-order controllers become an emerging research topic. While design, these 
controllers have an additional degree of freedom and thus offer potential reduction of 
the control effort, which also results in reduction of wasted energy. Furthermore, their 
analog implementation allows us to integrate full design in chip and tune the control 
parameters easily. 

 

Fig. 4.1: Generalization of FOPIλDµ controller from points to plane 
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4.1 Theory 

A general block diagram of a single loop feedback control system is depicted in 
Fig. 4.2(a), which transfer function can be expressed as [48]: 

    
( ) ( ) ( )

( ) 1 ( ) ( )

Y s C s G s

R s C s G s
=

+
,         (4.1) 

where G(s) is a plant, C(s) is a controller, R(s) is a reference input signal, Y(s) is an 
output signal, Td(s) is an external disturbance, U(s) is a control signal, and E(s) is an 
error signal, which is given by E(s) = R(s) − Y(s).  

An implementation of a control system used to control the speed and position of an 
armature controlled DC motor is show in Fig. 4.2(b). The system is composed of a new 
analogue implementation of a fractional-order PIλ controller (C(s)) and G(s) is the 
mathematical model of a DC motor - the plant [44]. In brief, assuming the external 
disturbance, i.e. load torque Td(s) is zero, the transfer function (TF) of the motor speed 
control in Laplace domain can be expressed as [51]: 

( )( )
m

a a b mPI

( )
( )

( )

Ks
G s

V s L s R Js b K K
= =

+ + +λ

ω
,      (4.2) 

where VPI
λ(s) is the applied armature voltage, ω(s) is the angular velocity (controlled 

variable), La is an inductance of armature winding, Ra is an armature resistance, Kb is 
back-emf constant, Km is a torque constant, and J is an equivalent moment of inertia and 
b is friction coefficient of motor and load referred to motor shaft. As the armature time 
constant for most of DC motors is negligible, the TF of resulted simplified model has 
the form G(s) = KDC/(τs + 1), where τ = RaJ/(Rab + KbKm) is the time constant and 
KDC = Km/(Rab + KbKm) is the gain with Kb = Km. Similarly, the TF for armature voltage 
and position θ(s) (controlled variable) will be Gθ(s) = KDC/[s(τs + 1)]. 

4.2 Fractional- Order PIλ Controller Design 

In control theory, the gain crossover frequency (ωcg) implies that the modulus of the 
open-loop transfer function follows |C(jωcg)G(jωcg)| = 1 and phase margin (Φm) sets a 
condition upon the phase of the open-loop system at the ωcg, which can be expressed as 
Φm = arg[C(jωcg)G(jωcg)] + π. Considering the setup [51], the TF of the DC motor 
voltage-speed with 25% break is: 

    
PI

( ) 0.25
( )

( ) 1.45 1

s
G s

V s s
= =

+λ

ω
,        (4.3) 

while the performance specification is ωcg = 1.5 rad/s and Φm = 60°. 

The speed (4.3) of a DC motor can be controlled using FOPIλ, which TF in general 
has a form: 

55



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

4. ANALOG IMPLEMENTATION OF FRACTIONAL-ORDER PI� CONTROLLERS 

 

( )s
λ
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1

Js b+

bK

1
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Fig. 4.2: (a) Block diagram of a control system, (b) an implementation of an analogue 
fractional-order PIλ controller and the mathematical model of a DC motor 

    PI
P I

S

( )( )
( )

( ) ( )

V sU s
C s K K s

E s V s
−= = = +λ λ ,       (4.4) 

which corresponds in discrete domain to a TF as follows: 

   ( )
1

1 1
P I1

( )
( )

( )

U z
C z K K z

E z

− −− −
−

 = = +  
λ

ω .       (4.5) 

Equations (4.4) and (4.5) indicate the following three parameters, which can be 
independently set: 

(i)  KP is the proportional constant,  

(ii)  KI is the integration constant, 

(iii)  λ (0 < λ < 1) is the fractional order of an integrator in  
   Laplace domain, while in discrete domain it is an  
   arbitrary real number. 

Following [51], the graphical method yields the solution for design parameters, 
which are KP = 1.37, KI = 2.28, and λ = 0.89. Thus, the FOPIλ controller was obtained 
as: 

   0.89PI

S

( )( )
( ) 1.37 2.28

( ) ( )

V sU s
C s s

E s V s
−= = = +λ

.       (4.6) 

The FOPIλ controller shown in Fig. 4.2(b) requires presence of a precise Iλ design. 
Block diagram of a proposed integrator by cascade connection of first-order BTSs and 
first-order low-pass filter (LPF) is depicted in Fig. 4.3 and can be expressed as: 

   
( )

( )
1 1I

I
S

11 ,

( )
( )

( )

i j

m m
i

i i
i i
n n

j
jj

jj z p

s z a sV s
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= =

== ∈ℜ

−∏ 
= = =
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λ ,       (4.7) 

56



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

4. ANALOG IMPLEMENTATION OF FRACTIONAL-ORDER PI� CONTROLLERS 

 

z1

p1

s

s

ω
ω

+
+

z

p

m

m

s

s

ω
ω

+
+ p 1

1

ms ω ++
z2

p2

s

s

ω
ω

+
+

 

Fig. 4.3: Block diagram of a fractional-order integrator using BTSs and LPF 

where m denotes total number of BTS needed for the design of constant phase block and 
n = m + 1 will be mathematical order of the final circuit due to use of an additional LPF. 
The usefulness of LPF is described below. 

Proposed realization of BTS using two ideal Op-Amps (assuming open loop gain 
A → ∞) and a set of passive components is shown in Fig. 4.4(a), while the non-inverting 
LPF is depicted in Fig. 4.4(b). Transfer function of each segments are: 

  
( )
( )

BTS_OUT b zz
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BTS_IN p b p

( ) 2 ||
( )

( ) 2 ||
m m mm

m
m m m m
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ω
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,    (4.8a) 
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LPF_IN p 1 p 1 p 1

( ) 1 1
( )

( ) 1m m m

V s
K s

V s s sC R+ + +

= = =
+ +ω

,     (4.8b) 

hence, pole and zero frequencies are ωpm = (Rb || Rpm)/(2Cm), ωzm = (Rb || Rzm)/(2Cm), 
ωpm+1 = 1/Cpm+1Rpm+1, and transfer zero and poles are adjustable by resistors Rzm, Rpm, 
and Rpm+1.  

Now, TF of cascade of m BTS and LPF in our particular case as depicted in 
Fig. 4.3 can be expressed as: 

  ( )
( )

I
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S

b z

1 p 1 p 1b p
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λ

λ

λ
λτ



     (4.9) 

Generalized TF (4.9) of a fractional-order Iλ has feature to set m pairs of zeros and 
poles independently and an additional pole as our design requires. The main advantage 
of this approach is an easy and low-cost realization of Iλ using discrete passive 
components and on the shelf available Op-Amps. 

Ones the Iλ is designed, its integration constant KI must be also realized. For this 
purpose the inverting Op-Amp configuration was selected, which closed loop voltage 
gain using an ideal Op-Amp can be calculated by ratio of two resistors in the path as 
KI = −RI2/RI1. The minus sign (–) comes from the inverting Op-Amp configuration and 
indicates a 180° phase shift. Now, the output voltage of the proposed fractional-order 
integrator with integration constant (KIIλ) in time domain can be given as: 

57



_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
 

 

4. ANALOG IMPLEMENTATION OF FRACTIONAL-ORDER PI� CONTROLLERS 

 

 

 (a) (b) 

Fig. 4.4: (a) Realization of a bilinear transfer segment and (b) low-pass filter using  
Op-Amps 

    I2
I2 S

0I1

( ) ( )
tR

V t V t dt
R

−

= − 
λ

λλτ
,      (4.10) 

while in Laplace domain its TF is −RI2(τλs−λ)/RI1. Similarly, the inverting Op-Amp 
configuration was used also for proportional constant KP realization and its output 
voltage is: 

  P2
P S

P1

( ) ( )
R

V t V t
R

= − .      (4.11) 

Equations (4.4)−(4.6) indicate that a summing block is also required for FOPIλ 
design. In analogue electronics the Op-Amp-based summing amplifier is a suitable 
circuit for this purpose enabling inverting weighted sum of input signals. Hence, the 
minus sign in (4.10) and (4.11) will be eliminated. Moreover, assuming the input 
resistors R and RP3 in Fig. 4.2(b) are equal, a unity gain adder will be made with no 
disturbance of KP and KI constants. Finally, summing (4.10) and (4.11) as indicated in 
Fig. 4.2(b), the output voltage of the proposed FOPIλ in time domain will be: 

   

P I2
PI

P3 I3

I2P2
S S

0P1 P3 I1 I3
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λλτ

    (4.12) 

and its equivalent transfer function in Laplace domain can be given as: 
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    (4.13) 

Comparing (4.4) and (4.13), the following design equations are derived: 
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λ

λτ
,   (14a,b) 

which will be useful in next section for FOPIλ design according to parameters as defined 
by (4.6). 

4.3 Simulation Results 

To verify the theoretical analysis, the behavior of the proposed Iλ and FOPIλ controller 
employing Op-Amps have been simulated using SPICE program. DC power supply 
voltages of designed CMOS implementation of two-stage Miller compensated Op-Amp 
shown in Fig. 4.5(a) were set +VDD = –VSS = 0.9 V. In [177], discrete components are 
assumed for both Miller resistor and load capacitor. The Op-Amp structure shown in 
Fig. 4.5 is more favorable for full CMOS integration, because both components are 
realized via MOS-only technique, while the Miller capacitor can be realized as double 
poly (poly1-poly2) or metal-insulator-metal (MIM) capacitor. In the design, transistors 
were modeled by the TSMC 0.18 μm level-7 LO EPI SCN018 CMOS process 
parameters (VTHN = 0.3725 V, μN = 259.5304 cm2/(V⋅s), VTHP = −0.3948 V, 
μP = 109.9762 cm2/(V⋅s), TOX = 4.1 nm). Following the design procedure described in 
[177], the computed aspect ratios of CMOS transistors and Op-Amp main parameters 
obtained with DC, AC, and transient analyses are listed in Fig. 4.5(b) and Tab 4.1, 
respectively. During all simulations the bias current in the structure was set as 
IB = 130 μA. 

Firstly, the Iλ of order 0.89 (i.e. the time constant τλ−λ) was designed. The five-
branch Valsa structure [122] was used, which provides a minimum PAD. Required R 
and C values were calculated via approach [122] implemented in Matlab with the 
following inputs: pseudo-capacitance Cλ = 20 μF·sec–0.11, bandwidth (CPZ) from 
30 mHz up to 100 Hz (> 3 decades), CPA −80.1° (i.e. λ = 0.89), and PAD = ±1°. 
Preliminary calculations showed that five BTSs (m = 5) and a LPF are required in the 
constant phase block shown in Fig. 4.3 in order to achieve the design specification. Note 
that the LPF is used for correction purposes of additional pole in Valsa structure. As the  

 

Transistors W/L (μm) 

M1, M2 25.8 / 0.3 

M3, M4 10.6 / 0.3 

M5 15.4 / 0.3 

M6 16.4 / 0.3 

M7 58 / 0.3 

M8 95.9 / 0.3 

MR 4 / 0.3 

MC 288 / 3.6 
 

 (a) (b) 

Fig. 4.5: (a) CMOS structure, (b) transistor dimensions of two-stage Op-Amp 
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Tab. 4.1: Behavior of CMOS Two-Stage Op-Amp in Fig. 4.5(a) 

Parameter Value Unit 
Power supply ±0.9 (V) 

Unity gain bandwidth 230.2 (MHz) 
DC gain 60 (dB) 

Phase margin 60 (degree) 
Slew rate +/− 163 / 121 (V/μs) 

PSRR +/− 72.4 / 68.5 (dB) 
CMRR 62.4 (dB) 

Compensation resistor (NMOS MR) ≅ 615 (Ω) 
Compensation capacitor Cc 0.8 (pF) 
Load capacitor (NMOS MC) ≅ 3 (pF) 

Power dissipation 1.39 (mW) 
Total area 1 115.6 (μm2)# 

#Sum of products of widths and lengths of each transistors in the CMOS implementation

 

Tab. 4.2: Computed component values used in BTSs and LPF for fractional-order Iλ 
design 

Capacitors (F) 
C1 C2 C3 C4 C5 C6 

27 μ 10 μ 12 m 68 μ 1.8 m 150 n 
Resistors (Ω) 

Rb Rz1 Rz2 Rz3 Rz4 Rz5 
24 k 49 1.37 k 50.5 k 1.01 k 156 
Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 
14 k 1 k 1.8 k 942 50.5 k 13 k 

 

next step, zero and pole frequencies were recalculated and corresponding passive 
component values of Rzm, Rpm, Rpm+1, Cm, and Cpm+1 obtained via Matlab algorithm and 
optimized using modified least squares quadratic method. Component values used in 
BTSs and LPF for Iλ design are listed in Tab 4.2.  

Ideal and simulated gain and phase responses in frequency domain are given in 
Fig. 4.6. Selected zooms and equivalent equations for fitting the gain and phase in CPZ 
45 mHz − 115 Hz via natural logarithm and linear regressions, respectively, are 
provided inside Figures. Simulated value of the unity-gain frequency of the Iλ was 
34.6 Hz. As it can be seen in Fig. 4.7, in CPZ the maximum relative phase error is 
1.38% and corresponding absolute PAD about 1°. Monte Carlo (statistical) analysis was 
performed with capacitors 5% tolerance, resistors 1% tolerance, and 200 runs to observe 
affects due to manufacturing processes. The histogram shown in Fig. 4.8 demonstrates 
the variation of the phase of Iλ at 3 Hz. The mean value is −80.2389°, which is very 
close to theoretical value −80.1° confirming that the proposed Iλ has low sensitivity 
characteristic on passive components. Equation (4.6) indicates the following design 
parameters of the FOPIλ controller depicted in Fig. 4.2(b): KP = 1.37, KI = 2.28, and 
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 (a) (b) 

Fig. 4.6: Ideal, simulated, and fitted (a) gain and (b) phase responses of 0.89-order 
integrator 

 

Fig. 4.7: Relative phase error and the corresponding normalized histogram for phase 
angle deviation evaluated in full frequency range 

λ = 0.89. As the Iλ is designed, the remaining design parameters can be recalculated 
using (4.14), which are the following: R = RP1 = RP3 = 10 kΩ, RP2 = 13.7 kΩ, 
RPI1 = 27.4 kΩ, RPI2 = 1.3 kΩ, and RPI3 = 24.9 kΩ. An ideal and simulated gain and 
phase responses of the FOPIλ are given in Fig. 4.9 confirming the accurate operation of 
the controller.  

Moreover, in order to illustrate the time-domain performance of Iλ and FOPIλ 
controller, transient analyses were performed and results are depicted in Fig. 4.10. A 
square wave input signal with amplitude 150 mV and frequency 100 mHz (TD = 0, 
TR = 1 ms, TF = 1 ms, TPW = 10 s, TPER = 20 s, i.e. 12τλ−λ) was applied to both circuits. 
Hence, following the theory, in Fig. 10(a) the simulated output signal of the Iλ has 
triangular waveform, while Fig. 10(b) indicates increasing gain in the proposed FOPIλ 
controller as the effect of the KP.  
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Fig. 4.8: Monte Carlo analysis: Variation of the phase of Iλ at 3 Hz 

 

Fig. 4.9: Ideal and simulated gain and phase responses for the proposed FOPIλ 
controller 

  

 (a) (b) 

Fig. 4.10: Time-domain responses of proposed (a) Iλ and (b) FOPIλ controller with 
applied square wave input voltage signal with frequency 100 mHz 
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4.4 Summary 

In this chapter, an analogue realization of a fractional-order Iλ and FOPIλ controller is 
proposed based on design specification corresponding to a speed control system of an 
armature controlled DC motor. The integrator with a constant phase angle −80.1° (i.e. 
order λ = −0.89), bandwidth greater than 3 decades, and maximum relative phase error 
1.38% is designed by cascade connection of first-order bilinear transfer segments and 
first-order low-pass filter. The performance of suggested realization is demonstrated in 
a fractional-order proportional-integral (FOPIλ) controller described with proportional 
constant 1.37 and integration constant 2.28. The design specification corresponds to a 
speed control system of an armature controlled DC motor, which is often used in 
mechatronic and other fields of control theory. The behavior of both proposed analogue 
circuits employing two-stage Op-Amps is confirmed by SPICE simulations using 
TSMC 0.18 μm level-7 LO EPI SCN018 CMOS process parameters with ±0.9 V supply 
voltages. 

The main advantage of this approach is an easy and low-cost realization using 
discrete components. For the Iλ, SPICE simulations using two-stage CMOS Op-Amps 
showed an absolute PDA about 1° in CPZ from 45 mHz to 115 Hz. Statistical analysis 
proved its low sensitivity characteristic on passive components. Simulated gain and 
phase responses of the FOPIλ confirmed accurate operation of the controller. 
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5 FABRICATION OF A FRACTIONAL-
ORDER CAPACITOR 

In Chapter 2, the literature survey on the development of FOEs was presented and 
summarized with giving the limitations and boundaries. As a device, only FOCs have 
been fabricated so far. This is due to modelling difficulties and understanding the 
material characteristics of FOIs. As per discussion on development of FOCs, the 
working principle behind the FOCs can be explained with the following scenario: 
Electrical conduction through the fractional-order material (semi-conductive filler 
instead of dielectric) causes electrical current to flow down various paths. For example, 
conduction can be along polymer composite and across gaps between it. Each path 
through fractional-order material may be considered to have individual impedance that 
is favorable to conducting electrical signals of various frequencies. Also, polymer 
composites may have a distribution of sizes and spacing, and the paths may have a 
distribution of electrical characteristics, with an associated distribution of favored signal 
frequencies. Furthermore, the impedance of each path is also changed by electrical 
coupling to other paths. Therefore, the combination of various electrical paths through 
fractional-order material may cause its impedance to have a magnitude that is 
substantially linear and a phase that is substantially constant over a bandwidth of input 
signal frequencies. Related formulas with their explanations were given in section 2.2 
and 2.3. This approach opens up a new avenue in fabricating FOCs involving a variety 
of heterostructures combining the different fillers and different matrixes.  

Thus, in this chapter, fabrication of a FOC using the hexagonal boron nitride (hBN) 
-ferroelectric polymer blends is investigated. The tunability of the constant phase is 
obtained using only two tuning knobs e.g., different volume ratio of hBN and multi-
walled carbon nanotube (CNT). This fabrication process is therefore quite simple rather 
than previously fabricated ones [87], [151]. Fig. 5.1 schematically shows an exemplary 
FOC that has fractional order impedance. The proposed FOC integrates layers of two 
conductive films, and between them polymer composite with significantly improved 
CPA, CPZ, and phase angle variation performance. The device is mounted PCB with 
having one common and nine pins while each showing a FOC characteristic. 

It can be categorized between solid-state and passive FOCs. The presented FOCs 
show better performance in terms of fabrication cost and dynamic range of constant 
phase angle compared to FOCs from already existing devices. It is important make clear  
 

 
Fig. 5.1: Illustration showing FOC fabrication from bilayer polymer. Photograph 
showing the final device [84] 
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here that this schematic is previously proposed by our collaborators [79], [84] however 
the study based on hBN-ferroelectric polymer was not investigated. 

5.1 Method 

An FOC requires an insulator with high dielectric constant, dissipation factor, and 
dielectric loss. One potential candidate with such electrical properties is P(VDF-TrFE-
CFE) terpolymer. Thus, it is a good reason to explore the possibility of using terpolymer 
in FOC fabrication. They are easily available in the market and good candidates after a 
closer look at the behavior of the phase angle. This behavior can be tracked by studying 
the relaxation phenomenon due to polarization, e.g. dipolar (orientation), ionic and 
interfacial polarization, in polymer dielectrics. For instance, when a time-dependent 
electrical field is applied, the permanent (or induced) dipoles tend to align along the 
direction of the applied electric field. The frequency of the applied field determines how 
the dipoles behave: if the frequency is small, the dipoles are easily polarized, and the 
material behaves as close to the ideal capacitor (φ = −90°). However, at higher 
frequencies, the dipoles do not have enough time to respond therefore remain the 
electrical field and therefore remain relaxed (φ = −90°). At intermediate frequencies, 
friction accompanies the polarization, resulting in a conductive electrical current and a 
complex permittivity (with an imaginary part). Consequently, the phase angle satisfies 
−90° < φ < 0°, which allows us to design FOC. This phenomenon is called dipolar (or 
orientation) relaxation [69], [134]. 

Thus, using the phenomenon above and using the formulas from section 2.2, the 
hBN is selected as a good candidate to fabricate hBN-ferroelectric polymer based FOC. 
The fabrication procedure is given as the following:  

• 200 mg P(VDF-TrFE-CFE) is dissolved in a 2 ml solvent, N, N-
Dimethylformamide (DMF), under constant stirring at room temperature for two 
days to obtain 0.1 g/ml polymer solution.  

• The hBN powders are dispersed in DMF at a concentration of {50, 100, 150, 
200, 250} mg/ml and stirred one hour using ultrasonication.  

• {5, 10, 15} mg of CNTs are suspended in 1 ml DMF, and dispersed via 
ultrasonication for 1 hour.  

• The dispersed CNT solutions are poured onto the dissolved hBN:P(VDF-TrFE-
CFE) polymer solution and mixed under continuous stirring for another 
24 hours. This step is valid only for hBN:P(VDF-TrFE-CFE):CNT composites. 

• 10 nm Ti followed by 190 nm Au is deposited on Si/SiO2 wafers via DC sputter 
to define the bottoms of the electrodes.  

• Then, the composite solutions are drop-casted onto the Au-deposited 
2 cm x 2 cm wafers and dried for 12 hours 90°C under a vacuum.  

• The circular Au electrode with 3 mm diameter and 200 nm thickness is 
deposited by similar method using a shadow mask to permit the fabrication of 
nine individual FOCs on a 2 cm x 2 cm sample area. The FOC fabrication 
process is depicted in Fig. 5.1. 

Two types of FOCs are fabricated using two different knobs. First is the 
hBN:P(VDF-TrFE-CFE) polymer blend while second is its composition with CNT. 
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Their material and electrical characterization with different volume ratios of hBN and 
CNT are given in following chapters.  

5.2 Characterization of the Device 

The transmission electron microscopy (TEM) image in Fig. 5.2 shows an exfoliated 
hBN nanosheet with a 0.5 μm and 200 nm lateral size. Furthermore, the TEM image of 
the P(VDF-TrFE-CFE) composite with fillers of hBN and CNT is shown in Fig. 5.3. 
The CNTs are clearly distinguished from the polymer in the TEM image of the 
composite provided in Fig. 5.3. 

The change in CPA and impedance with composition might imply that the 
electrical properties of the devices e.g., P(VDF-TrFE-CFE), hBN:P(VDF-TrFE-CFE) 
and hBN:P(VDF-TrFE-CFE) containing CNTs are modified in the blend. To further 
investigate this, the five different blends using X-ray powder diffraction (XRD) 
techniques are studied. Results are shown in Fig. 5.4 in full spectrum. Note that the 
XRD spectra are normalized with respect to the gold peak at 38°. 

   

Fig. 5.2: Material characterization of the developed hBN:P(VDF-TrFE-CFE) based 
FOC. TEM image of the stacked BN particle, defoliated layers 

 

Fig. 5.3: TEM image of the hBN polymer composites with CNT 
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Fig. 5.4: XRD spectra for P(VDF-TrFE-CFE), hBN:P(VDF-TrFE-CFE) with two 
different concentration and hBN:P(VDF-TrFE-CFE) containing CNT in full spectrum 

 

Fig. 5.5: XRD spectra for P(VDF-TrFE-CFE), hBN:P(VDF-TrFE-CFE) with two 
different concentration and hBN:P(VDF-TrFE-CFE) containing CNT in narrow 
spectrum. Note that there is an intense peak at 18.6° which belongs to P(VDF-TrFE-
CFE) signature 

In Fig. 5.5, the XRD spectrum of the P(VDF-TrFE-CFE) film shows an intense 
peak at 18.6°, which is close to the theory at 18.2° corresponding to a (111) plane. The 
higher d-spacing in P(VDF-TrFE-CFE) is due to the TrFE-CFE molecules merging into 
the PVDF chains. An additional peak is observed around 27.3° in the spectrum of the 
composite due to interlayered spacing between adjacent hBN layers of CNTs as shown 
in Fig. 5.6. This is consistent with the results that have been reported in the literature. 
The XRD spectrum of the composite also confirms that no additional complex 
molecular structures are formed at the interface. 
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Fig. 5.6: XRD spectra for P(VDF-TrFE-CFE), hBN:P(VDF-TrFE-CFE) with two 
different concentration and hBN:P(VDF-TrFE-CFE) containing CNT in narrow 
spectrum. Note that there is an intense peak around 27.3° which shows the hBN 
signature 

5.3 Results and Discussions 

An Agilent 4294A Precision Impedance Analyzer was used for the electrical 
measurements. Individual FOCs were characterized for the impedance, and phase angle 
in the frequency range of 100 Hz - 10 MHz (logarithmically spaced 200 points) at 
0.5 V. Standard calibration tests (short, and open circuits) as provided in the manual 
were performed to calibrate the instrument.  

First, the best phase response of hBN:P(VDF-TrFE-CFE) composite is 
investigated. Fig. 5.7(a) plots the phase versus frequency for different volume ratio of 
the hBN and only P(VDF-TrFE-CFE). Figure clearly shows that the most stable phase 
response is obtained from the 250 mg hBN-polymer blend. This is because the constant 
phase zone overlaps with the frequency range where dipolar relaxation occurs in the 
ferroelectric polymer. Additionally, the magnitude responses of FOCs are shown in 
Fig. 5.7(b). Their magnitude of the impedance decrease by increasing the frequency as 
proved the impedance formula. The fractional order can be calculated either from the 
phase angle or the fitting equation given in Fig. 5.7(b) (left-bottom).  

Using linear least square algorithm, the fitted equations for magnitudes of FOCs 
are given inside the same figure and shows the estimated orders fit from the measured 
phase responses. The best CPA is observed with 250 mg hBN composite. The average 
CPA and PAD are evaluated in Tab. 5.1 in the frequency range of each decade. The 
minimum PAD is ±0.1° between 1 kHz - 10 kHz while in full range only ±2.2°. 
Secondly, the tuning of FOCs is obtained by using CNT in different ratios. The phase 
response of the four FOCs based on hBN:CNT polymer composite (100 mg hBN and 
{5, 8, 9, 11} mg CNTs), and one FOC based on hBN:P(VDF-TrFE-CFE) composite and 
one FOC based on P(VDF-TrFE-CFE) composites are shown in Fig. 5.8. Figures 5.7(a) 
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 (a) (b) 

Fig. 5.7: (a) Phase and (b) magnitude response of various hBN+P(VDF-TrFE-CFE) 
composite 

Tab. 5.1: Evaluation of 250 mg hBN-polymer composite in each decade 

Frequency range Average CPA PAD 
102 - 103 −82.5° ±1.0°
103 - 104 −84.2° ±0.1°
104 - 105 −81.8° ±1.2°
105 - 106 −77.8° ±0.2°
106 - 107 −79.4° ±0.9°
102 - 107 −81.2° ±2.2°

 

and 5.8 clearly show that the phase angle level in the 100 Hz - 10 MHz range is 
increased by introducing the conductive fillers CNT into the P(VDF-TrFE-CFE) films. 
This could be explained with the overlap of two phenomena [87]: 1) Maxwell-Wagner-
Sillars relaxation that occurs at the interface of the filler and polymer matrix. 2) Dipolar 
relaxation that takes place at intermediate frequencies. Adding more filler results in 
shifting of Maxwell-Wagner-Sillars relaxation towards higher frequencies. Therefore, 
the overlap between the two phenomena increases the phase angle level of the 
composite at the frequency zone where the dipolar relaxation occurs.  The electrical 
properties of the materials help us to select the best material to reach in desired 
frequency range and order. However, the design limitations and some additional effects 
during fabrication processes push us to use trial method. Therefore, the several 
experiments have been done to find the best FOC. Finally, the obtained CPAs from the 
fabricated best FOCs are evaluated in Fig. 5.9 and Tab 5.2. The {200, 250 mg hBN-
polymer composites and 100 mg hBN with {6, 8} mg CNT polymer composites are 
among them. The minimum CPA is obtained from 250 mg hBN polymer composite 
with ±2.2° phase ripple while the maximum is from 8 mg CNT filler in 100 mg hBN-
polymer composite with ±4° phase ripple. The detailed analysis is given in Tab. 5.2. 
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Fig. 5.8: Constant phase angle with tuning CNT in hBN polymer composite 

 

Fig. 5.9: Constant phase angle responses of best hBN polymer composite 
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5.4 Summary 

A solid-state FOC design based on hBN: P(VDF-TrFE-CFE) polymer composite is 
presented. Results are optimized within a frequency range of 100 Hz – 10 MHz. The 
best, optimum devices are found using {200, 250} mg hBN, 100 mg hBN mix with 
8 mg CNT, and 150 mg hBN mix with 6 mg CNT –polymer composites with ±2.9°, 
±2.2°, ±4°, ±3.2° phase error, respectively. To the best of the author’ knowledge, these 
are best results in given bandwidth until now in open literature. Moreover, the 
advantages of this new method can be summarized as:  

• Fabrication cost of this new FOC is expected to be lower than that of the 
previously developed FOCs [145] 

• Fabrication process employs simple solution-mixing and drop-casting approach 

• Relatively small error in larger dynamic range 

• Variability of the phase reached with controlling two tuning parameter: 
concentration of hBN or CNT 

This work demonstrates that FOCs fabricated using CNT-ferroelectric polymers 
composites have the potential to become essential components for reliable/robust 
electrical and electronic systems. 
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6 ANALYSIS AND VERIFICATION OF 
IDENTICAL- AND ARBITRARY-ORDER 
SOLID-STATE FRACTIONAL-ORDER 
CAPACITOR NETWORKS 

6.1 Mathematical Description of n FOCs Connection 

The lossy nature of the dielectric material in capacitors and their electrical conductivity 
does not allow us to treat them as ideal capacitors since their impedances show a 
complex frequency-dependent behavior. Due to this fact a FOC, also called as constant 
phase element, possess both a real and imaginary impedance part 

( ) 1 cos sin
2 2

Z j C j
  π π    ω = ω +          

α
α

α α
while its phase is frequency independent. 

However, an ideal capacitor has only an imaginary part [12]. This is particularly 
important, if the proposed application requires a configuration using capacitors, where 
errors accumulate the metrics of the individual components. Therefore, the main 
contributions of the study in this chapter are: 

• The general formulas for impedance, magnitude, and phase response of the 
series and parallel arbitrary-order n FOCs according to the main definition of the 
FOC are given as a complete study. Furthermore, the units of these physical 
dimensions are discussed. 

• Three types of solid-state ferroelectric polymer or reduced Graphene Oxide 
(rGO)-percolated P(VDF-TrFE-CFE) composite structure-based FOC devices of 
three different orders are described, together with their precise characterization 
including their pseudo-capacitances and bandwidth of operation. Note that this is 
the first experimental verification of series- and parallel-connected FOCs by 
fabricated solid-state passive FOCs, in contrast to using RC ladder structures 
[73] or active IC emulators [74].  

• Theoretical assumptions calculated via a newly developed MATLAB open 
access source code given in Appendix B are proved by experimental verification 
using fabricated passive FOCs. Here it is important to underline that although 
the integer-order case (identical orders α = 1) is well-known as the core of the 
physical calculation, the fractional-order (arbitrary-orders) as a novel case also 
matches well with the assumptions and proves our novel core idea. 

The rest of the chapter is organized as follows: First, the general formulas for 
impedance, magnitude, and phase responses of series- and parallel-connected n FOCs 
are derived. Secondly, fabrication process and experimental characterization of three 
types (orders 0.69 (TP2), 0.92 (P2), 0.62 (G2)) of solid-state compact and stable-in-
phase (in the measured frequency range 0.2 MHz − 20 MHz) electric passive FOCs are 
explained. The experimental results for two and three series-, parallel-, and inter-
connected FOCs are presented in following sub-section. Lastly, a brief discussion of 
obtained results and final conclusions are given, respectively. 
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6.1.1 Series Connection 

In particular, having multiple FOCs in a circuit, the main aim is to replace them with a 
single equivalent capacitor and/or reach a desired phase angle with a combination of 
arbitrary-order capacitors. Therefore, considering the connection of n FOCs in series as 

shown in Fig. 6.1, the impedance of each FOC can be described as: ( )
1 1

1

1
Z s

s C
=α α

α

, 

( )
2 2

2

1
Z s

s C
=α α

α

, ( )
3 3

3

1
Z s

s C
=α α

α

, …, ( ) 1
n n

n

Z s
s C

=α α
α

. Assuming the voltage across 

it is vα1 + vα2 + vα3 + … + vαn = veq,s and the current flowing through is 
iα1 = iα2 = iα3 = … = iαn = ieq,s, the equivalent total impedance Zeq,s, and its unit is 
derived as: 

( )
1 2 3eq,s

1

1
...

n i
i

n

i

Z s Z Z Z Z
s C=

= + + + + =
α

α α α α α . (Ω)     (6.1) 

By using Euler’s identity s = jω, while j = ejπ/2, and substituting in (6.1), the 
general formulas for equivalent magnitude and phase responses of n FOCs connected in 
series are expressed as (6.2) and (6.3), respectively, where the indexes from i to k are 
the numbers of FOCs, each counted from 1 to n. The function of the sum is valid under 
the condition that i < j < … < l and k ≠ i, j, … , l. Note that the derived orders of FOCs 
affect the power of angular frequency and also the degree of the cosine in magnitude 
function (6.2). Furthermore, the phase of the equivalent FOC is dependent on the 
angular frequency ω. From (6.3) it is evident that the angle with the positive x-axis is 
decreasing while the sum of orders is increasing. The phase of FOC must be between 
0 < Arg[Zeq,s(s)] < −π/2. 

Now, let us consider Case I, when FOCs have different pseudo-capacitances, i.e. 
Cα1 ≠ Cα2 ≠ Cα3 ≠ … ≠ Cαn, while assuming their orders are identical 
α1 = α2 = α3 = … = αn = α (α ϵ (0,1]). Then the impedance, magnitude, and phase 
formulas in (6.1)−(6.3) turn out to be as given in Tab. 6.1, where in (6.4) and (6.5) 

1 eq,s

1 1

i

n

i C C=
=

α

. The given case study is straightforward since each capacitor will be 

experiencing the same current and the voltage across each FOC will increase with 
respect to this current. Thus, the total voltage across all capacitors will increase at a 
greater rate than the voltage across individual capacitors. 

 

Fig. 6.1: Series-connection of n FOCs 
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Tab. 6.1: Case studies of series-connected FOCs in (6.1)−(6.3) 

( )eq,sZ s  

(Ω) 
( )eq, sZ s  

(Ω) 

( )eq, sArg Z s    

(Degree) 
Case I: Cα1 ≠ Cα2 ≠ Cα3 ≠ … ≠ Cαn with identical order α 

1

1 1

i

n

is C=

 
 
 
 


α
α  (6.4) 

1

1 1

i

n

i C=

 
 
 
 


α
αω

 (6.5) 
2

π−α  (6.6) 

Case II: Cα1 = Cα2 = Cα3 = … = Cαn = Cα with identical order α 
n

s Cα
α            (6.7) 

n

Cα
αω

            (6.8) 
2

π−α  (6.9) 

 
On the other hand, in Case II, when considering the same pseudo-capacitances of 

FOCs, i.e. assuming Cα1 = Cα2 = Cα3 = … = Cαn = Cα with identical orders, the 
impedance, magnitude, and phase in (6.1)−(6.3) respectively become (6.7)−(6.9) of 
Tab. 6.1. From (6.9) it is clear that the phase is independent of angular frequency and 
number of capacitances, while the magnitude is dependent on both these values. 
However, the order of capacitors affects all responses. In other words, FOCs follow the 
same rule as integer-order capacitors when combined in series only if they have both 
identical pseudo-capacitances and equal orders. From (6.6) and (6.9), the order of an 
equivalent FOC can be easily calculated from ( )eq, s2Arg Z s = − π α . 
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6.1.2 Parallel Connection 

When n FOCs with arbitrary order are connected in parallel as shown in Fig. 6.2, the 
goal is again to replace them with a single equivalent FOC. 

According to Kirchhoff’s Voltage Law, the voltage across each capacitor must be 
the same and let us label it as veq,p. In addition, applying Kirchhoff’s Current Law, the 
sum of currents in nodes will be iα1 + iα2 + iα3 + … + iαn = ieq,p. Hence, by substituting 
the current flowing through each capacitor in the time-domain and transforming it to the 
Laplace domain, the equivalent total impedance Zeq,p of n arbitrary-order FOCs 
connected in parallel can be expressed as: 

( )
1 2 3eq,p

1 1 1 1 1
...

n
Z s Z Z Z Z

= + + + +
α α α α

,     (6.10) 

( )
31 2

1 2 3
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i
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i
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s C s C s C s C
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=

= =
+ + + + 

α αα α
αα α α α

α

 (Ω)   (6.11) 

Thus, by substituting in (6.11) s = jω, while j = ejπ/2, the expressions for magnitude 
and phase are as follows: 
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Fig. 6.2: Parallel-connection of n FOCs 
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Tab. 6.2: Case studies of parallel-connected FOCs in (6.11)−(6.13) 

( )eq,pZ s  

 (Ω) 
( )eq, pZ s  

 (Ω) 

( )eq, pArg Z s    

 (Degree) 
Case III: Cα1 ≠ Cα2 ≠ Cα3 ≠ … ≠ Cαn with identical order α 

1

1

i

n

i

s C
=

 
 
 
α

α

 (6.14) 

1

1

i

n

i

C
=

 
 
 
α

αω
 (6.15) 

2

π−α  (6.16) 

Case IV: Cα1 = Cα2 = Cα3 = … = Cαn = Cα with identical order α 

( )
1

s nCα
α

    (6.17) ( )
1

nCα
αω

     (6.18) 
2

π−α  (6.19) 

 

Again, when considering Case III, where FOCs have identical orders 
α1 = α2 = α3 = … = αn = α (α ϵ (0, 1]) but different pseudo-capacitances, i.e. 
Cα1 ≠ Cα2 ≠ Cα3 ≠ … ≠ Cαn, then the impedance, magnitude, and phase responses are 

derived as (6.14)−(6.16) of Tab. 6.2, where in (6.14) and (6.15) 
eq,p

1
i

n

i

C C
=

= α . On the 

other hand (Case IV), if α1 = α2 = α3 = … = αn = α (α ϵ (0,1]) and Cα1 = Cα2 = Cα3 = … 
= Cαn = Cα, then (6.14)−(6.16) turn out to be (6.17)−(6.19). 

Similar to Cases I and II of the arbitrary FOCs connected in series, the equivalent 
order of the resulting network is frequency-dependent and given by (6.13), but if the 
orders are identical, then it is frequency-independent as shown in (6.16) and (6.19) of 
Tab. 6.2. However, when n identical-order FOCs are connected in parallel, the total 
equivalent impedance, magnitude, and phase responses are as simple as (6.17)−(6.19). It 
is worth noting that these relations are similar to integer-order capacitors connected in 
parallel. Hence, by increasing the number of capacitors, the equivalent magnitude may 
decrease and equivalent pseudo-capacitance may increase. In addition, the frequency 
and number of capacitors influence only the magnitude, while the order affects both the 
magnitude and phase responses. Units of impedance, magnitude, and phase responses of 
FOCs remain in both the series and parallel cases the same as in the integer-order case, 
i.e. the impedance and magnitude are in units of ohms and the phase in units of degrees, 
respectively. 

6.2 Experimental Verification 

In this section, three types of FOCs of different phase angles are used for experimental 
verification. In summary, their fabrication procedure is as follows. First, the PVDF and 
P(VDF-TrFE-CFE) powders are dissolved in a solvent, N, N-Dimethylformamide 
(DMF) separately in different vials (one vial for PVDF and three vials for P(VDF-TrFE-
CFE)), under constant stirring at room temperature for two days to obtain 0.1 mg/ml 
polymer solutions. An rGO is weighed with the desired weight percentage, suspended in 
1 ml DMF, and dispersed via ultrasonication for 1 hour. Later, dispersed rGO solutions 
are poured onto the dissolved P(VDF-TrFE-CFE) (two vials) polymer solution and 
mixed under continuous stirring for another 24 hours. In total, three different polymer 
and composite solutions labeled TP2, P2, and G2 are prepared. Au-covered, 
2 cm × 2 cm Si/SiO2 wafers are used to fabricate the FOC by drop-casting the 
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composite solution. A 10 nm Ti layer followed by 190 nm Au layer is deposited on 
Si/SiO2 wafers via DC sputter to define the bottom electrode. The composite solutions 
are drop-cast and dried for 12 hours at 85 ºC under a vacuum. The other Au circular 
form electrodes of 3 mm diameter and 200 nm thickness are deposited in a similar way, 
using a shadow mask. Finally, nine samples of FOCs of the same order are flip-bonded 
on a printed circuit board and each capacitor gives a separate connection for the 
electrical measurements [79], [84]. The photo of an example of the fabricated G2 
device, including a cross-sectional SEM image of rGO nanosheets/P(VDF-TrFE-CFE) 
nanocomposite, is shown in Fig. 6.3. 

The behavior of three types (TP2, P2, G2) of fabricated FOCs of different orders 
(respectively α = {0.69, 0.92, 0.62}) was verified using the Agilent 4294A precision 
Impedance Analyzer. A photograph of the experimental workstation with fabricated 
solid-state G2 device is given in Fig. 6.4. During the experimental validation in the 
frequency range of our interest, 0.2 MHz − 20 MHz (801 logarithmically spaced points), 
a sinusoidal input signal with a default AC voltage of 500 mV and a frequency of 
1 MHz was applied, while the common node was grounded (Vg = 0 V). Standard 
calibration tests (open and short circuits) of the 16047E Test Fixture were performed to 
calibrate the instrument. The measurement results are summarized in Tab. 6.3. Here, the 
magnitude, phase angle, i.e. FOC order, pseudo-capacitance, and equivalent integer-
order capacitance at center frequency fc = 2 MHz of the corresponding pins of all the 
devices are provided. From the results, a slight difference in the pseudo-capacitance 
values within the same device can be observed, which, however, gives us the flexibility 
to use different values within the same chip. On the other hand, the relative phase error 
at fc is significantly low. In addition, the measured phase angle deviation in two decades 
of the frequency range of our interest is only ±4 degrees ([max − min]/2). 

To validate the introduced theory, the series- and parallel-connected identical- and 
arbitrary-order FOC structures depicted in Figs. 6.1 and 6.2 and their selected 
interconnections were verified via experimental measurements using fabricated solid-
state passive FOCs introduced above. The experimental setup described in this section 

 

 (a) (b) 

Fig. 6.3: (a) 2 cm × 2 cm fabricated G2 device area with nine FOCs, (b) cross-sectional 
SEM image of rGO nanosheets/P(VDF-TrFE-CFE) nanocomposite, when the rGO 
nanosheets are distributed uniformly inside the polymer 
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Fig. 6.4: Experimental workstation and the fabricated solid-state G2 device (yellow line 
- impedance response; cyan-blue line - phase response) 

was used. The magnitude and phase responses of equivalent FOCs obtained using the 
Agilent 4294A precision Impedance Analyzer were proved by theoretical calculations 
(values given in parentheses in Tabs. 6.4 − 6.7) via the MATLAB open access source 
code given in Appendix B. In order to compare the FOCs, the fundamental orders (the 
Warburg pseudo- and integer-order ideal capacitance are set as 790 nF·s−0.5 and 158 pF, 
respectively) are plotted in all Figures by means of magnitude and phase. 

6.2.1 Identical-Order FOC Connections 

6.2.1.1 Series Connection of Identical-Order FOCs 

Considering three series-connected FOCs (Cα2, Cα4), and assuming each with identical 
orders, the equivalent impedance, magnitude, and phase responses can be calculated 
from the equations in Tab. 6.1. The phase, magnitude, and pseudo-capacitance responses 
of the equivalent impedances ZCeq,s(s) are shown in Fig. 6.5. For reference, both pseudo-
capacitance and phase for an individual FOC have been plotted inside same figures. 
Compared to a single device, we note that the phase response of three identical order 
FOCs connected in series remains same. However, its magnitude of the equivalent 
impedance is tripled while pseudo-capacitance is one-third as shown in the inset of 
Fig. 6.5(a), and Fig. 6.5(b). 

The comparison of measured values @ fc = 2 MHz and expected results, i.e, 
calculated via MATLAB are evaluated in Tab. 6.4. For cases #1 → #2 given in Tab. 6.4, 
equivalent magnitudes vary in ranges (31.79 → 1.36) kΩ and (95.20 → 1.19) kΩ, 
respectively. The table also includes calculated relative phase error and corresponding 
pseudo-capacitance of each connection. The magnitude and pseudo-capacitance 
responses are plotted in the logarithmic scale meanwhile the phase is in linear scale 
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 (a) (b) 

Fig. 6.5: Experimental verification of three identical-order FOCs connected in series:  
(a) phase, magnitude, (b) pseudo-capacitance responses 

Tab.6.4: Comparison of identical-order series-connected FOCs: Measured and 
calculated results 

No. #1 #2 
Connection of Orders 0.69 + 0.69 + 0.69 0.92 + 0.92 + 0.92

Equivalent Impedance @ fc (kΩ) 6.58 (6.65) 10.54 (22.09)
Phase (°) −60.26 (−62.13) −83.99 (−81.64) 

Relative Phase Error (%) −3.00 2.88 
Equivalent Order α (−) 0.67 (0.69) 0.93 (0.91) 

Pseudo-Capacitance (F·sα−1) 2.68 (1.89) n 22.48 (16.46) p 
 

Moreover, to estimate the equivalent order α (or phase), the measured magnitude 
data are fitted to the function log|Z| = αlogf + log (2π)αCα using the linear least squares 
(LLS) method. The obtained equivalent equations from fitting the magnitude is equal to 
measurement samples that are provided inside Fig. 6.5(a). As a result, the orders of 
single devices TP, P2, i.e. 0.69, 0.92 with corresponding phases −61.86°, −82.59° are 
evidently respond to their equivalent orders from series connections that are found to be 
0.67, 0.93 (corresponding to Tab. 6.4 cases #11 → #2 with phases −60.26, −83.99). 

6.2.1.2 Parallel Connection of Identical-Order FOCs 

In case of parallel connection of three identical-order FOCs as in Fig. 6.2, the 
equivalent impedance, magnitude and phase responses can be expressed as in Tab. 6.2. 
In order to demonstrate the behavior of an equivalent FOC with impedance ZCeq,p, the 
phase, magnitude and pseud-capacitance responses was experimentally verified. The 
obtained measurement results are shown in Fig. 6.6 while the comparison of measured 
values @ fc = 2 MHz and calculated results via MATLAB are listed in Tab. 6.5, 
respectively. Inspecting the obtained results, it is evident that the phase remains identical 
to initial single FOCs phase and the only change is in the magnitude response, which 
reflects the pseudo-capacitance Cα. Obviously, the magnitude is the one-third of 
individual FOC.  
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 (a) (b) 

Fig. 6.6: Experimental verification of three identical-order FOCs connected in parallel: 
(a) phase, magnitude, (b) pseudo-capacitance responses 

Tab. 6.5: Comparison of identical-order parallel connected FOCs: Measured and 
calculated results 

No. #3 #4 
Connection of Orders 0.69 || 0.69 || 0.69 0.92 || 0.92 || 0.92 

Equivalent Impedance @ fc (kΩ) 0.700 (0.737) 2.30 (2.34) 
Phase (°) −61.12 (−62.13) −82.14 (−82.20) 

Relative Phase Error (%) −1.63 −0.08 
Equivalent Order α (−) 0.68 (0.69) 0.91 (0.91) 

Pseudo-Capacitance (F·sα−1) 21.55 (17.04) n 144.45 (140.23) p 

 
The equivalent orders, which are obtained using the LLS fitting and given in 

Fig. 6.6(a) as an inset, are found to be 0.69 and 0.92 as equal to related FOC order. The 
calculated relative phase errors for these cases are −1.63% and −0.08%. It is worth to 
note that the accuracy of above theoretical analyzes are verified and showed a flexibility 
and degree of freedom to work with any order of FOCs with a random connection. 

6.2.2 Arbitrary-Order FOC Connections 

6.2.2.1 Series Connection of Arbitrary-Order FOCs 

Firstly, the magnitude and phase responses of two and three arbitrary-order series-
connected FOCs are studied. The results obtained, including each individual FOC, are 
shown in Figs. 6.7(a) (magnitude) and (b) (phase), while the comparison of measured 
values at fc = 2 MHz and calculated results is evaluated in Tab. 6.6. To estimate the 
equivalent order α (or phase), the magnitude data measured are fitted to the function 
log|Z| = αlogf + log(2π)αCα using the LLS method. Note that the magnitude responses 
are given in the logarithmic scale, while the phase responses in linear scale. The 
equivalent equations from fitting the magnitude or phase as obtained from measurement  
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 (a) (b) 

Fig. 6.7: Two and three arbitrary-order FOCs connected in series:  
(a) magnitude, (b) phase responses 

samples are provided inside Fig. 6.7. From the results the orders are evident of FOCs as 
single devices TP2, P2, G2, i.e. 0.69, 0.92, and 0.62, with corresponding phases −61.91°, 
−82.59°, and −55.68°, while their equivalent orders from series connections are found to 
be 0.85, 0.65, 0.85, 0.81 (corresponding to Tab. 6.6 cases #1 → #4 with phases −76.11, 
−58.19, −76.81, −72.49). 

The equivalent magnitudes vary in ranges of (67.2 → 1.26, 17.87 → 0.829, 
61.69 → 1.16, and 72.38 → 1.69) kΩ for cases #1 → #4, respectively. Via experiments 
we also demonstrated that the phase can be tuned by connecting different orders as 
depicted in Fig. 6.7(b). Furthermore, Tab. 6.6 gives the corresponding pseudo-
capacitances and relative phase errors of measured phases relative to the calculated 
values, which are at fc in the range of −2.58% to −0.98%. 

6.2.2.2 Parallel Connection of Arbitrary-Order FOCs 

Secondly, the behavior of two and three arbitrary-order FOCs connected in parallel was 
experimentally verified. The magnitude and phase responses of the equivalent 
impedances are shown in Figs. 6.8(a) and (b), respectively, while a comparison of the 
values measured at fc and the results calculated via the MATLAB open access source 
code are listed in Tab. 6.7. The equivalent new orders, which are achieved using the 
LLS fitting and given in Fig. 6.8(a) next to the legend, are found to be 0.74, 0.64, 0.68, 
and 0.66. As can be observed, the orders match well to those obtained from the 
measured phase responses, which are depicted in Fig. 6.8(b). Overall, the equivalent 
impedances have capacitive behavior and vary in ranges of (9.24 → 0.27) kΩ, 
(4.11 → 0.19) kΩ, (5.84 → 0.24) kΩ, and (3.78 → 0.16) kΩ for cases #5 → #8, 
respectively. It is also worth noting that the relative phase errors at fc are again small 
and vary in the range of −2.65% to 0.10%. 
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6. ANALYSIS AND VERIFICATION OF IDENTICAL- AND ARBITRARY-ORDER SOLID-STATE 
FRACTIONAL-ORDER CAPACITOR NETWORKS 

 

 

 (a) (b) 

Fig. 6.8: Two and three arbitrary-order FOCs connected in parallel:  
(a) magnitude, (b) phase responses 

 

Fig. 6.9: First series-parallel interconnection of arbitrary-order FOCs (#9) 

6.2.2.3 Series-Parallel Interconnection of Arbitrary-Order FOCs 

Finally, two selected series-parallel interconnections of FOCs were evaluated. The 
equivalent impedance of the first topology from Fig. 6.9 can be expressed as: 

( )
1 4

1 4

1 5 4 5
1 5 4 5

eq,#9

3 2

2

s C s C
Z s

s C C s C C+ +

+
=

+

α α
α α

α α α α
α α α α

, (Ω)    (6.20) 

where α1 ≅ α2 ≠ α4 ≠ α5 and Cα1 ≅ Cα2 ≠ Cα4 ≠ Cα5.  

Similarly, the equivalent impedance of the structure given in Fig. 6.10 can be found 
as: 

( )
31

1 3

eq,#10

2

2 3
Z s

s C s C
=

+ αα
α α

, (Ω)    (6.21) 

while α1 ≅ α2 ≠ α3 ≅ α4 and Cα1 ≅ Cα2 ≠ Cα3 ≅ Cα4.  

Here it is important to note that this is the very first attempt in the literature to 
calculate and measure the equivalent magnitude and phase of the arbitrary-order 
interconnected FOCs. A detailed comparison of the results at fc is given in Tab. 6.8 and 
depicted in Fig. 6.11. The equivalent orders of interconnections #9 and #10 obtained  
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Fig. 6.10: Second series-parallel interconnection of arbitrary-order FOCs (#10) 

 

 (a) (b) 

Fig. 6.11: Interconnected FOCs given in Figs. 6.9 and 6.10, (a) magnitude, (b) phase 
responses 

Tab. 6.8: Results of interconnected (series-parallel) arbitrary-order FOCs: Measurement 
(Calculated via MATLAB code) 

No. #9 #10 
Connection of FOCs [(Cα1 + Cα2) || Cα4] + Cα5 Cα1 || Cα4 || (Cα2 + Cα3) 
Connection of Orders [(0.69 + 0.69) || 0.92] + 0.6 0.69 || 0.92 || (0.69 + 0.92)
Equivalent Impedance @ fc (kΩ) 4.33 (4.26) 1.91 (1.39) 
Phase (°) −64.09 (−65.58) −68.68 (−69.27) 
Relative Phase Error (%) −2.27 −0.85 
Equivalent Order α (−) 0.71 (0.73) 0.76 (0.77) 
Pseudo-Capacitance (F·sα−1) 2.04 (1.58) n 2.01 (2.47) n 
 

using the LLS fitting are 0.71 and 0.76, which correspond to the phases −64.09° and 
−68.68°, respectively. The calculated relative phase errors are respectively −2.27% and 
−0.85% for the first and second topology, which are very favorable results. Overall, 
from the results obtained it is clear that the measurement results are in very good 
agreement with theoretically predicted ones. 
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6.3 Brief Discussion of Results 

Figures 6.12(a) and (b) give a comparison of the calculated, measured, and fitted line 
values of the magnitude and phase responses of three arbitrary-order series- and 
parallel-connected FOCs (cases #4 and #8 of Tabs. 6.6 and 6.7, respectively). It is 
evident that the results calculated using the MATLAB open access source code match 
well with the fitted values and the measured values. Furthermore, the equivalent 
pseudo-capacitance versus frequency is plotted for both circuits in Fig. 6.12(c). As can 
be observed, the pseudo-capacitance of both FOCs is constant in the same region as the 
phase is. The normalized histograms show low absolute error between the measured and 
the calculated equivalent integer-order capacitance values, which is less than 1 pF and 
4 pF, respectively, for the series- and parallel-connected FOCs. 

Evaluating in brief the obtained results it can be concluded that the equivalent 
impedances of fabricated arbitrary-order FOCs connected in series and parallel exhibit 
the same capacitive behavior as integer-order capacitors. Despite the claim in [74], here 
it is important to underline that the phase responses of series- and parallel-connected 
FOCs of arbitrary orders are constant. The experimental results are in good agreement 
with theory and calculated results. Note that the accuracy of the above theoretical 
analyses is proved and the proposed approach offers flexibility and a degree of freedom 
to work with any order of FOCs with random connection. 

 
 (a) (b) 

 
(c) 

Fig. 6.12: Comparison of (a) magnitude, (b) phase, and (c) pseudo-capacitance versus 
frequency of three arbitrary-order FOCs connected in series (#4 - blue color) and 
parallel (#8 - orange color) 
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6.4 Summary 

In this chapter, a novel analytical approach of series- and parallel-connected n arbitrary-
order FOCs is presented. Particularly, as practical case studies, two and three arbitrary-
order FOCs were used in series- and parallel-connected circuits and the magnitude and 
phase responses, i.e. the order, of the equivalent impedances were evaluated in detail. In 
addition, the units of these physical dimensions were discussed. Moreover, the very first 
effort in the literature to derive and validate the equivalent magnitude and phase of 
arbitrary-order connected FOCs was successfully accomplished.  

The behavior of the equivalent FOCs was evaluated experimentally. During the 
measurements, three fabricated ferroelectric polymer and rGO-percolated P(VDF-TrFE-
CFE) composite structure-based FOCs were used. In this regard, FOCs were found to be 
in orders of 0.69 for the first (TP2), 0.92 for the second (P2), and 0.62 for the third 
device (G2) over two decades, i.e. in the frequency range 0.2 MHz − 20 MHz. The 
obtained phase angle deviation of single devices at 2 MHz is ±4 degrees, while the 
calculated relative phase errors of all studied FOC connections at this frequency varied 
in a range of −2.65% to 0.10%. Furthermore, the enclosed MATLAB open access 
source code can be used as a powerful tool for precise calculation of any kind of series 
or parallel FOC connections based on their order and pseudo-capacitances. 
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7 DESIGN AND IMPLEMENTATION OF 
FRACTIONAL-ORDER OSCILLATORS 

In the last years, the study of fractional-order oscillators started to be one of the main 
fundamental topics in fractional-order dynamic systems. This originated from the fact 
that extremely low and high frequencies of oscillation are possible through such 
structures [34], [63].  

In this chapter, design of voltage-mode fractional-order oscillators, fractional-order 
Colpitts and Wien oscillators are studied. Main focus of this chapter is to study the 
effect of FOEs in system equations which results in several design features such as 
possibility of changing the frequency of oscillation (FO) and condition of oscillation 
(CO), amplitude and phase etc. Their design in integrated circuit design is another study 
point. Many classical fractional-order oscillators were presented using conventional op-
amps or its equivalent macromodels. Although the aforementioned solutions could be 
implemented using commercially available discrete-component ICs, from the 
integration point of view they suffer from the increased transistor count that they are 
required for implementing the active cells as will be shown in section 7.2. Moreover, 
part of attention will be on validity check of Barkhausen conditions. Because, an 
accurate oscillator models are designed with differential equations to be certainly 
nonlinear due to the lack of unstable periodic oscillations in the pure integer-order or 
fractional-order linear systems, and also insufficient oscillation condition according to 
the Barkhausen criteria. Therefore, general fractional-order Barkhausen conditions of 
oscillation using stability analysis of fractional-order systems are studied in section 7.1. 

In addition, to overcome the increased circuit complexity, the power dissipation of 
the oscillators, novel very simple voltage–mode (VM) fractional-order oscillator 
topologies are introduced in section 7.2. As for demonstration of the solid-state devices 
[87], the classic Wien oscillator is experimentally verified. 

7.1 Theory 

The theory was first presented in [33] and states that a linear fractional-order system 
with two FOEs can be modelled as follows: 

o111 12o1

o221 22o2

( )( )
( )

( )( )

V ta aD V t
AV t

V ta aD V t

    
= =    
    

α

β .       (7.1) 

Transforming (7.1) into the s-domain, the characteristic equation (CE) of the 
system is obtained as: 

11 22CE : A 0s a s a s+ − − + =α β β α
,       (7.2) 

where ( )11 22 12 21A a a a a= −  is the determinant of the system coefficient matrix. Using 

Euler’s expansion ( ) ( )2 2, ,j js sα π π= ω = ω βα β and writing separately the real and 
imaginary part: 

11 22cos(0.5( ) ) cos(0.5 ) cos(0.5 ) 0a a A+ω + π − ω π − ω π + =α β β αα β β α ,   (7.3a) 
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11 22sin(0.5( ) ) sin(0.5 ) sin(0.5 ) 0a a+ω + π − ω π − ω π =α β β αα β β α .    (7.3b) 

This system can admit sinusoidal oscillations if and only if a value of ω exists there 
which satisfies simultaneously the two equations. 

Phase difference φ between two outputs Vo1(t) and Vo2(t) can be calculated as: 

12 21(1 sgn( )) (1 sgn( ))

2 2

a aπ − π −= − = −α βϕ ϕ ϕ ,      (7.4) 

while 1 1

11 22

sin(0.5 ) sin(0.5 )
tan , tan

cos(0.5 ) cos(0.5 )a a
− −ω π ω π= =

ω π − ω π −

α β

α βα β
α βϕ ϕ

α β
 and sgn(·) = ±1. 

7.2 Compact MOS-RC Voltage-Mode Oscillators 

The proposed topologies are demonstrated in Figs. 7.1 and 7.2. Replacing the ideal 
capacitors Ci for i = {1, 2} with a FOC (C1  Cα, C2  Cβ) with impedance of 
Zα (s) = 1/(sαCα), Zβ (s) = 1/(sβCβ), the linear fractional-order system can be described 
as: 

   

1 1

2 2

1m mC

C

CC m m

g gd V
VC C RCdt
Vd V g g

C Cdt

α

   
− +         =     

  −       

α

α

ββ

α

α α α
β

β
β β

,     (7.5) 

and, 

m1
o1

o1

o2o2 m1 m2

1 1

1 1

gd V
RC C RC Vdt

Vd V g g
dt RC C RC C

α

    − +         =         − + −        

α

α α α

β

β
α α α β

      (7.6) 

for Figs. 7.1 and 7.2, respectively. Hence, the CE from (7.2) becomes in general form 
as: 

1 2 2CE : 0m m mg g g
s s s

C C C C R
+ − + + =α β β α

α β α β

.       (7.7) 

By solving (7.7) the CO and FO of fractional-order oscillator can be obtained as: 

m1 m2 m2

m1 m2

( )
CO : cos cos cos 0,

2 2 2

( )
FO : sin sin sin 0.

2 2 2

g g g

C C RC C

g g

C C

+ α

+

+ π π απω − ω + ω + =

+ π π πω − ω + ω =

α β β

α β α β

α β β α

α β

α β β

α β β α
     (7.8) 

Then, depending on the selection which capacitor is fractional-order, three possible 
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Fig. 7.1: The proposed compact voltage-mode oscillator using OTAs and IVBs 

 

Fig. 7.2: Proposed voltage-mode oscillator using unity-gain voltage buffers and OTAs 

cases can be considered: 

Case 1: Firstly, the capacitor C1 is considered to be fractional-order with 

impedance ( )1 11 ,CZ s C= α
α  while the other capacitor C2 remains an integer-order 

capacitor with impedance ( )
2 21CZ sC= .  

Case 2: Secondly, the capacitor C2 is considered as fractional-order capacitor with 

an impedance ( )2 21 ,CZ s C= β
β  while ( )

1 11CZ sC= .  

Case 3: Lastly, both capacitors are considered as fractional-order capacitors with 

impedances ( )1 11 ,CZ s C= α
α  and ( )2 21 ,CZ s C= β

β  respectively. 

The characteristic equations in all discussed cases can be written as follows: 

1 m2 m1 m2
1

2 1 1 2

CE : 0
g g g

s s s
C C RC C

+ + − + =α α

α α

.       (7.9) 
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1 m2 m1 m2
2

2 1 1 2

CE : 0
g g g

s s s
C C RC C

+ + − + =β β

β β

.     (7.10) 

m2 m1 m2
3

2 1 1 2

CE : 0
g g g

s s s
C C RC C

+ + − + =α β α β

β α α β

.    (7.11) 

Setting s = jω in (7.9) − (7.11), the derived FOs and COs that correspond to the 
aforementioned cases are summarized in Tab. 7.1.  

In fractional-order case the relation between the outputs of the oscillator is: 

o1 m1

o2 1

1

1

V g R

V s RC

+= −
+α

α

,      (7.12) 

while the phase difference “φ” between two outputs Vo1 and Vo2 can be calculated as: 

  1 1

m1 m2

1 2

sin(0.5 ) sin(0.5 )
tan tan .

cos(0.5 ) cos(0.5 )
g g

C C

− −ω π ω π= − π = −
ω π − ω π +

α β

α β

α β

α βϕ
α β

   (7.13) 

Note that setting α = β = 1 in the expressions in Tab. 7.1 as well as in 

(7.12) − (7.13), then expressions m1 m2

1 2

,
g g

C C
= m2

0
1 2

,
g

RC C
ω = o1 m1

o2 1

1
,

1

V g R

V sRC

+= −
+

 

1 11 2

m1 m2

tan tan ,
C C

g g
− −   ω ω= − π = −   
   

ϕ  are derived for CO, FO, amplitude, and phase, 

respectively. 

7.2.1 Numerical Analysis 

One of the advantages of fractional-order oscillators is to generate higher FOs than their 
integer-order counterparts. Considering the fractional-order oscillator of Case 3 and 
assuming typical active parameters of OTA and passive component values as follows: 
gm1 = gm2 = 100 µA/V, R = 10 kΩ, C1α = 10 µFs(α−1), then from Tab. 7.1 the following 
frequency of oscillation and oscillation start-up condition values f0 = {1.18; 4.26; 
1.25 k}Hz and C2β = {63.8 µ; 37.3 µ; 155 n}Fs(β−1) for α = {0.65; 0.5; 0.25} and 
β = {0.4; 0.5; 0.9}, are derived. Figure 7.3 shows MATLAB plots of frequency of 
oscillation versus fractional-orders α and β (see in Tab. 7.1 FO of Case 3). As it can be 
observed the FO increases while the order of α decreases and β increases. In other 
words, FO decreases while the order of α increases and β decreases. Note that, the CO 
in integer-order case requires equality of both capacitances and transconductances. 
Therefore, considering an integer-order capacitor (α = 1) with the same ideal 
capacitance C1 = 10 µF, the FO and oscillation start-up condition are respectively 
1.5915 Hz and 10 µF, as shown in Figures 7.3 and 7.4. Furthermore, it can be observed 
that the start-up condition C2β decreases while the frequency of oscillation increases 
with increasing the order β or decreasing α. Fig. 7.5 shows the phase difference between 
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Fig. 7.3: Frequency of oscillation versus alpha (α) and beta (β) 

 

Fig. 7.4: Condition of oscillation versus alpha (α) and beta (β) 

 

Fig. 7.5: Phase difference between the outputs versus alpha (α) and beta (β) 

with increasing the order β or decreasing α. Fig. 7.5 shows the phase difference between 
two outputs based on (7.13). Considering again the orders α = {0.65; 0.5; 0.25} and 
β = {0.4; 0.5; 0.9}, the phase differences were calculated as ϕ = {−199.4°; −208.7°; 
−231.6°}, respectively. Hence, by increasing the order α or decreasing β the phase 
difference is increasing. 
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7.2.2 Simulation Results 

7.2.2.1 Fractional–Order Oscillator Employing OTAs and IVBs 

The proposed topology is demonstrated in Fig. 7.1. It is constructed from two CMOS 
OTAs (M1 − M4 and M9 − M12), two NMOS based IVBs (M5 − M8), one resistor, and 
two capacitors. 

In order to validate the numerical results of the proposed oscillator, the simulation 
results were performed using SPICE program. In the design, transistors were modeled 
by the TSMC 0.18 µm Level-7 CMOS process parameters (Vth_N = 0.35 V, 
μN = 327 cm2/(V⋅s), Vth_P = −0.41 V, μP = 129 cm2/(V⋅s), TOX = 4.1 nm). The DC power 
supply voltages were set equal to +VDD = –VSS = 1 V. Aspect ratios of CMOS transistors 
are W/L = 40 µm/1.2 µm for all PMOS and W/L = 0.8 µm/1.2 µm for NMOS in OTAs. 
In inverting voltage buffers both NMOS were set W/L = 60 µm/1 µm. The bias currents 
in OTAs were set IB1 = IB2 = 100 µA, which results in transconductance equal to 
100 µA/V.  

  

 (a) (b) 

  

 (c) (d) 

Fig. 7.6: Transient responses of the output voltages: (a) α = 1 and β = 1,  
(b) α = 1 and β = 0.2, (c) α = 0.2 and β = 1, (d) α = 0.2 and β = 0.8 
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Tab. 7.2 Component values used in Fig. 7.1 for simulation of fractional-order oscillator 

Components 

Component Values 
Case 1 Case 2 Case 3 

α = 0.2 

Cα = 10 µFs−0.8 

@15.9 kHz 

β = 0.2 

Cβ = 91.21 µFs−0.8 

@0.25 Hz 

α = 0.2 

Cα = 10 µFs−0.8 

@9.64 kHz 

β = 0.8 

Cβ = 89.9 nFs−0.2 

@9.64 kHz 

Ra (Ω) 5.45 k 5.45 k 6.03 k 79.1 

Rb (Ω) 4.3 k 4.26 k 4.7 k 659.6 

Cb (F) 836 p 52.8 µ 1.25 n 19.3 n 

Rc (Ω) 8.6 k 8.61 k 9.52 k 34.1 k 

Cc (F) 5.97 n 376.9 µ 8.91 n 376.9 µ 

 

First of all, the integer-order case (α = β = 1) with passive component values 
C1 = 10 µF and R = 10 kΩ was studied. By solving the system of (7.7) and (7.8), the 
oscillation start-up condition and frequency of oscillation are found as C2 = 10 µF and 
f0_theor_int = 1.59 Hz, which is close to simulated value f0_sim_int = 1.5 Hz. The simulated 
phase difference between the outputs was −203.7°, close to −233.7o, which is 
theoretically predicted by (7.13). The transient responses of the outputs are shown in 
Fig. 7.6(a) and simulated peak-to-peak values of oscillation amplitudes are 
Vo1_PP = 798.4 mV; Vo2_PP = 570.1 mV. The theoretical ratio of amplitudes according to 
(7.12) is 1, however, by simulations reached one is 1.4. 

Secondly, the fractional-order cases are studied for selected orders α = {1; 0.2; 0.2} 
and β = {0.2; 1; 0.8}, respectively. The fractional-order capacitors were realized using 
the Foster I network depicted in Fig. 7.7. The values of passive elements have been 
calculated by employing the second-order CFE method, and they are given in Tab. 7.2. 
The calculated oscillation start-up conditions are C2β = {91.21 µ; 6.31 n; 89.9 n}Fs(β−1) 

and the FOs are f0_theor_fract = {0.25; 15.9 k; 9.64 k}Hz, while the simulated FOs are 
0.25 Hz, 15 kHz, and 10 kHz, respectively. Transient responses of the outputs for 
fractional-order cases are shown in Figs. 7.6(b)−(d). The following peak-to-peak values 
of oscillation amplitudes were simulated for outputs {Vo1; Vo2}: Case 1 {516.6; 
253.1}mV, Case 2 {608.9; 602.8}mV, and Case 3 {575.1; 542.1}mV, respectively. 
Here the theoretical ratios of amplitudes according to (7.12) are 1.72; 1; 1.05.  
 

 

Fig. 7.7: RC tree realization of FOC 
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Fig. 7.8: Lissajous patterns of all discussed cases showing phase shifts of Vo2 against Vo1 

On the other hand, the simulated ratios are 2.04; 1.01; 1.06. The simulated phase 
shifts were {−190.05°; −180.03°; −180.1°}, while the calculated values were {−233.7°; 
−187.5°; −187.9°} while. Lissajous patterns of all discussed cases showing phase shifts 
between outputs are depicted in Fig. 7.8. 

7.2.2.2 Fractional–Order Oscillator Employing Class-AB Flipped 
Voltage Followers and OTAs. 

The CMOS implementation of unity-gain voltage buffer (VB) based on class-AB 
flipped voltage follower, i.e. Vout = Vin, is shown in Fig. 7.2 [178]. As it is evident, it 
uses two complementary differential flipped voltage followers (DFVFs) M4P − M6P 
(M8P − M10P) and M4N − M6N (M8N − M10N) with quiescent currents IB1 and IB2, 
respectively. When the input voltage signal Vin (e.g. from the node between M4P − M4N) 
increases with respect to the output voltage Vout (e.g. from the node between 
M6P − M6N), then VSG(M6P) increases while VGS(M6N) decreases. Similarly, current through 
M6P increases and M6N decreases. This generates a positive output current that charges 
the load capacitance and increases the output voltage Vout until it reaches a value Vin. 
This buffer operates in class AB, resulting in transient currents of the output transistors 
much larger than their corresponding quiescent currents IB1 and IB2. Theoretically, the 
input and output impedance of this buffer are infinite and zero, respectively. 

The CMOS implementation of single-input differential-output transconductor is 
also shown in Fig. 7.2. Assuming square-law behavior for the current–voltage 
relationship of the MOS transistors M1P and M1N and ignoring channel-length 
modulation effect, their drain currents will be given as in [179], [180], and, thus, the 
current–voltage relationship of the transconductor can be approximated by the linear 
expression: Iout− = −gmVin, where gm = kNVDD. This linear behavior is achieved under the 
assumptions: kP ≅ kN and VSS ≅ VDD + Vth_N − |Vth_P|, where Vth_N and Vth_P are the 
threshold voltages of the NMOS and PMOS transistors. In order to keep the transistors 
in saturation region, the constraints VD1 + Vth_N ≥ Vin ≥ VD1 − |Vth_P| should be satisfied, 
where VD1 is the (common) drain voltage of transistors M1P and M1N, respectively. 
Interconnecting the transconductor with unity-gain current follower (see M2P − M3P, 
M7P and M2N − M3N, M7N in Fig. 7.2 [181]) the current–voltage relationship of the 
transconductor can be characterized with the equation Iout+ = gmVin. 
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Fig. 7.9: RC tree realization of FOC 

Tab. 7.3: Component values used in SPICE simulations for Cα = 55 nF·sα−1, 
Cβ = 100 nF·sβ−1 

Variables 

 Orders 
α = 0.5 β = 0.5 α = 0.9 β = 0.6 

Ra (kΩ) 10.6 5.9 98.6 8.04 

Rb (Ω) 508 279.4 39.5 161.3 

Cb (nF) 24.3 44.2 48 54.1 
Rc (kΩ) 3.5 1.9 85.6 1.9 

Cc (nF) 6.4 115.8 14.4 97.3 
 

The behavior of voltage buffer, transconductor, and proposed voltage-mode 
integer- and fractional-order oscillators have been verified by SPICE simulations. In the 
design, transistors are modeled by the TSMC 0.35 µm level-3 CMOS process 
parameters (Vth_N = 0.545 V, Vth_P = −0.714 V, μN = 436.26 cm2/(V⋅s), 
μP = 212.23 cm2/(V⋅s), tOX = 7.9 nm). In simulations, the DC power supply voltages of 
given structures were set equal to +VDD = –VSS = 1.65 V and the aspect ratios of MOS 
transistors were 15 μm/0.5 μm and 5 μm/0.5 μm for all PMOS and NMOS, respectively. 
The bias currents in voltage buffers were set IB1 = IB2 = 250 μA, which results in DC 
voltage gain 0.957 with f–3dB frequency of 1.644 GHz. Similarly, the transconductance 
gains gm1 (Iout+/Vin) and gm2 (Iout−/Vin) are computed as 1.639 mA/V and 1.778 mA/V, 
respectively, and their f–3dB frequency is found to be 3.83 GHz and 47.63 GHz. Hence, 
the maximum operating frequency of transconductors are fmax = min{fgm1, 
fgm2} ≈ 3.83 GHz.  

As a first step, the performance of the proposed integer-order oscillator (α = β = 1) 
was evaluated. In this case, both capacitances have been chosen as: C1 = 55 nF, 
C2 = 100 nF, while the resistor was: R = 1 kΩ; according to (7.8), the theoretical value 
of the oscillation frequency was f0 = 2.86 kHz. Figure 7.10(a) shows the simulated 
output waveforms with frequency of oscillation 1.63 kHz.  

As a second step, the fractional-order oscillator with an order of s1.5 has been 
implemented. For this purpose, the capacitors of the integer-order oscillator in Fig. 7.2 
were replaced with their fractional-order equivalents which were realized using the 
second-order RC tree shown in Fig. 7.9. Note that the values of gm1,2 have been kept the 
same with the previous case. Considering that α = 0.9 and β = 0.6, their equivalent  
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 (a) (b) 

 

(c) 

Fig. 7.10: Simulated output waveforms of the proposed voltage-mode oscillator:  
(a) α = β = 1, (b) α = 0.9, β = 0.6, (c) α = β = 0.5 

pseudo-capacitance values will be as follows: Cα ≈ 136.3 nF⋅s−0.1 (C1 = 55 nF @ fo) and 
Cβ ≈ 3.78 μF⋅s−0.4 (C2 = 100 nF @ fo). Also, the resistor R will equal to 1.64 kΩ. 
Computed component values are given in Tab. 7.3. During simulations, in order to start 
up the oscillations, the resistor was set 3.4 kΩ and the obtained FO was f0 = 0.741 kHz. 
The simulated output waveforms are shown in Fig. 7.10(b). 

As a last step, a fractional-order oscillator with α + β = 1 has been investigated. 
Here, considering again the same values of gm1,2, the computed pseudo-capacitances for 
α = β =0.5 were Cα ≈ 5.1 μF⋅s−0.5 (C1 = 55 nF @ fo) and Cβ ≈ 9.2 μF⋅s−0.5 
(C2 = 100 nF @ fo), which after substituting in (6a) the resulting condition of oscillation 
was R = 4.48 kΩ. Computed component values used in SPICE simulations are also 
given in Tab 7.3. Fig. 10(c) shows the output responses and simulated FO is equal to 
f0 = 0.861 kHz. In addition, the simulated frequency spectrum of outputs for each case is 
given in Fig. 7.11. The total power dissipation of the oscillator in all three cases is found 
to be 11.5 mW. 

As it is evident from the obtained SPICE simulation results, there is a slight 
deviation in simulated FOs compared to theory. For an instance, considering a non-zero 
parasitic resistance Rβ at output terminal of the first voltage buffer, which appears in 
series with capacitor C2 (integer-order case), i.e. Z2(s) = Rβ + 1/sC2, the non-ideal FO in 

in integer-order case becomes ( ){ } 0.5

0 m2 1 2 m2 1g C C R g R = + βω . Similarly, FOs of 

both fractional-order cases are also affected by Rβ, which is shown in Fig. 7.12. 
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Fig. 7.11: Simulated frequency spectrum of outputs 

 

Fig. 7.12: Effect of parasitic resistance Rβ on frequency of oscillation 

7.3 CMOS-RC Colpitts Oscillator Design Using Floating 
Fractional-Order Inductance Simulator 

The Colpitts oscillator is an LC oscillator, which contains a tuned tank circuit consisting 
of one inductor and two capacitors; the two capacitors therein are making a capacitive 
voltage divider.  

Here, Colpitts oscillator implemented using two CMOS-based transconductors is 
shown in Fig. 7.13, wherein the three terminal LC networks are connected in such a 
manner that between two nodes of the three terminal LC circuits, a transconductor of 
gain –gm is connected, whereas the common node of the two capacitors is connected to 
ground [182]. Replacing the ideal capacitors Ci for i = {α, β} with FOCs (i.e. Cα and 

Cβ) having impedance ( ) ( ) ( ) ( )1 , 1 ,Z s s C Z s s C= =α β
α α β β  and FOI (Lγ) with 

impedance of ( ) ( )1 ,Z s s C= γ
γ γ routine circuit analysis provides the following 

description of this fractional-order system [33]: 
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Fig. 7.13: Voltage-mode Colpitts oscillator 
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Hence, the CE from (7.14) has the following general form: 

mCE : 1 0.s RC C L s C L s RC s RC Rg+ + ++ + + + + =α β γ α γ α β
α β γ α γ α β    (7.15) 

An ideal third-order Colpitts oscillator corresponds to setting α = β = γ = 1, which 
results in the well-known CO: gmR = C1/C2 and FO: ω = √1/(LCeff), where 
Ceff = C1C2/(C1+C2) and it can be proved from (7.14) and (7.15). 

Considering C1 and C2 as integer-order capacitors (i.e. Cα  C1 and Cβ  C2) and 
inductor Lγ remains as a fractional-order inductor, the general CE in (7.15) turns to: 

( )2 1
1 2 1 1 2 mCE : 1 0,s RC C L s C L sR C C Rg+ ++ + + + + =γ γ

γ γ γ      (7.16) 

and substituting s = jω therein, the derived COγ and FOγ are respectively given by: 

( )
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    (7.17) 
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Fig. 7.14: Proposed CMOS fractional-order inductance simulator including RC network 
emulating fractional-order capacitor 
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As it is evident, the proposed oscillator offers independent tuning of the frequency 
and condition of oscillation. 

7.3.1 Proposed CMOS Fractional-Order Inductance Simulator 
Design 

In analog electronics, due to the large silicon area, cost, and lack of electronically 
tunability, CMOS-based inductance simulators are used [183]. The CMOS 
implementation of the proposed FOI simulator is shown in Fig. 7.14. It consists from 
two inverting voltage buffers (IVBs), two unity-gain current followers (CFs), and one 
simple transconductor. In brief, for example IVB1 assuming that both NMOS work in 
saturation region, VTHN1 = VTHN2, +VDD = −VSS, and process transconductance 
parameters kN1 = kN2, voltage transfer can be described simply as Vout = –Vin. Thus, it 
behaves as a linear IVB without DC offset. In order to keep the M1 in saturation region 
the condition Vin < Vout + VTHN1 should be satisfied. Note that the M2 always operates in 
saturation region since its drain and gate terminals are connected. Considering CF± 
structures used in Fig. 7.14, it can be observed that both were designed by superposition 
of top PMOS sourcing mirrors and bottom NMOS sinking mirrors. However, from 
another viewpoint this configuration may be seen as a cascade of two CMOS inverters 
with the first one having shorted input and output. In general, CF± can be described as 
Vin = RCF_inkIin and Iout± = ±Iin for k = {1, 2}. Here, RCF_ink denotes intrinsic input 
resistance, which can be set via supply voltages. Finally, the current-voltage 
relationship of used transconductor is Iout = −gmVin. Detailed description of used active 
building blocks (ABBs) can be find in [180], while transistors main parameters obtained 
after re-design are listed in Tab. 7.4.  

Considering described ABBs, one capacitor, and assuming matching condition 
gm = 1/RCF_in1, while RCF_ink ≈ Rk', routine circuit analysis yields the following short  
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Tab. 7.4: Behavior of CMOS Transconductor, IVB, and CF± 

Transconductor (gm) 
Parameter Value 

Transconductance gain gm Iout/Vin (μA/V) 835 
Tracking error εgm @ go = 833 μA/V (−) −0.002 

f−3 dB @ gm (GHz) 7.195 
DC linearity for Vin (V) ±0.535 

Rgm_in (Ω) ≅ ∞ 
Rgm_out (kΩ) || Cgm_out (fF) 64.44 || 6.42 

Inverting Voltage Buffer (IVB) 
Parameter Value 

Voltage gain Vout/Vin gain (βo) 0.972 
Tracking error εβo (−) 0.028 
f−3 dB @ Vout/Vin (GHz) 17.152 

DC linearity Vout/Vin (V) −1 → +0.445 
RIVB_in (Ω) ≅ ∞ 
RIVB_out (Ω) 80.6 
Current Follower (CF±) 
Parameter Value 

Current gains Iout+/Iin; Iout−/Iin (αoj) 0.982; 0.947 
Tracking errors εαoj (−) 0.018; 0.053 

f−3 dB @ Iout+/Iin; Iout−/Iin (GHz) 1.138; 0.871 
DC linearity Iout+/Iin; Iout−/Iin (μA) ±944; ±333 

RCF_in (Rk') (kΩ) 1.122 
RCF_out+ (kΩ) || CCF_out+ (fF) 61.71 || 14.75
RCF_out− (kΩ) || CCF_out− (fF) 61.71 || 20.94

 

circuit admittance matrix 
1 11

[ ]
1 1LY

s L

+ − 
=  − + γ

γ
γ , from which Lγ = R1'R2'Cγ. As it can be 

seen the equivalent inductance value is adjustable by order of the FOC (or phase). The 
Foster II structure has been used to realize the FOC with a fractional-order of γ = 0.75. 
Component values obtained via modified least squares quadratic (MLSQ) method. 
Parameters of both C0.75 and subsequently L0.75 emulators are summarized in Tab. 7.5. 

7.3.2 Simulation Results 

The behavior of the ABBs used in CMOS implementation of the FOI simulator and 
subsequently in Colpitts oscillator in Figs. 7.13 and 7.14 have been verified by SPICE 
simulations with DC power supply voltages +VDD = –VSS = 1 V. In the design, 
transistors are modeled by the TSMC 0.18 μm level-7 LO EPI SCN018 CMOS process 
parameters (VTHN = 0.3725 V, μN = 259.5304 cm2/(V⋅s), VTHP = −0.3948 V, 
μP = 109.9762 cm2/(V⋅s), TOX = 4.1 nm) [184]. The aspect ratios of transistors in 
structures and their main parameters obtained with AC and DC analyses are listed in 
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Tab. 7.5: Parameters of C0.75 and L0.75 emulators in Fig. 7.14. (Note: # in 30 kHz -
 30 MHz; ‡ in 130 kHz - 2.5 MHz ranges) 

Component values (kΩ) / (pF) 
R0 R1 R2 R3 R4 R5 C1 C2 C3 C4 C5 

51.1 3.48 0.261 0.909 13.3 0.01 130 51 82 240 91 
Total resistance (kΩ) / capacitance (pF) 

69.06 594 
Spread of resistance / capacitance  

5 110 4.71 
Cγ: Order (–) / phase (degree) / pseudo-capacitance (nF·secγ–1) 

0.75 / –67.5 / 12 
Cγ: Phase angle deviation# (degree) / relative error# (%) 

±0.9 / –1.35 → 0.6 
Lγ: Order (–) / phase (degree) / pseudo-inductance (mH·secγ-1) 

0.75 / 67.5 / 17.3 
Lγ: Phase angle deviation‡ (degree) / relative error‡ (%) 

±5 / 3.7 → 8.7  
 

  
 (a) (b) 

Fig. 7.15: Ideal and simulated (a) phase and (b) pseudo-capacitance responses of 0.75-
order fractional-order capacitor 

Tab. 7.4. The equivalent intrinsic input resistance and the transconductance gain value 
are set gm ≅ (1/Rk' + 1/RIVB_out) ≅ 835 μA/V in order to fulfill the required parameter 
matching. 

In order to verify the workability of the proposed Colpitts oscillator employing FOI 
simulator shown in Fig. 7.14, first of all the phase and pseudo-capacitance response of 
the FOC with an order γ = 0.75 and value Cγ = 12 nF⋅s−0.25 (300 pF @ 407.5 kHz), 
emulated via 5th-order Foster II RC network, which has an admittance in following 

form: 
5

0
1

1 1 [ 1]C C k k k
k

Y Z R sC sR C
=

= = + +γ γ
 and values optimized using MLSQ 

method, has to be evaluated. Figure 7.15(a) shows that the constant phase zone of the 
FOC is from 30 kHz to 30 MHz with –67.5°, which is proven by the fitting equations as  
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Fig. 7.16: Effect of Cγ vs. γ on FOI magnitude 

 

Fig. 7.17: Phase (left) and (pseudo)-inductance (right) responses of proposed 0.75 and 
integer-order CMOS inductance simulator 

an inset of the figure. To estimate the equivalent order γ (or phase), the magnitude data 
simulated are fitted to the function logZ = γlogf + log(2πj)γCγ. Similarly, the pseudo-
capacitance with stable Cγ is shown in Fig. 7.15(b). Note that the phase angle deviation 
in given range is only ±0.9 degree, while the corresponding relative pseudo-capacitance 
error in same range varies from –1.35% to +0.6%. The performance of the proposed 
FOI simulator shown in Fig. 7.14 was also evaluated. Fig. 7.16 shows the effect of Cγ 
vs. γ on FOI magnitude. The simulated phase (pseudo)-inductance responses of 0.75 and 
integer-order inductance simulator are shown in Fig. 7.17. In this case the circuit was 
simulated with C and Cγ given above, which in fractional-order case theoretically 
resulted in Lγ_theor = 17.3 mH⋅s−0.25 and the simulated one has a value 
Lγ_sim = 18.4 mH⋅s−0.25. Considering ±5 degree deviation in phase, the useful frequency 
range for L0.75 is about 138 kHz up to 2.45 MHz.  

Both 2.75th and 3rd order Colpitts oscillator were designed with CMOS 
transconductance given in Tab. 7.4 and capacitor values were selected as 
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Fig. 7.18: Simulated output voltage waveforms of the proposed 2.75th and 3rd-order 
Colpitts oscillator 

C1 = C2 = 61 pF. The calculated oscillation start-up condition is R = 28.13 kΩ and the 
FO is f0_theor_fract = 1.3 MHz, while the simulated CO is R = 30 kΩ and FO is 1.58 MHz. 
On the other hand, the CO is 1.8 kΩ and FO is 1.26 MHz in integer-order case. The 
steady-state output voltage waveforms of both cases are depicted in Fig. 7.18. For the 
output the generated peak-to-peak value is 1.34 V and 1.06 V for 2.75th and 3rd-order, 
respectively, while the total harmonic distortion (THD) at the outputs are about 4.1% 
and 5.3% for the fractional and integer cases, respectively. 

7.4 Fractional- Order Wien Oscillator 

A PCB-compatible FOCs using molybdenum disulfide (MoS2)-ferroelectric polymer 
composites are first presented in [87]. In this chapter, their application in fractional-order 
Wien oscillator is shown. The impedance of two fabricated FOCs is analyzed using the 
Agilent 4994A Precision Impedance Analyzer with the 16048G model test fixture. 
Figure 7.19(a) plots the phase of the impedance versus frequency and shows that it 
remains constant at -58.5° and -59.4° with only ±4° phase deviation between 100 Hz 
and 10 MHz (five decades) for both of the FOCs. The pseudocapacitances of these 
FOCs, which are extracted from impedance magnitude measurements, are shown in 
Fig. 7.19(b). Their values at 25 kHz are Cα1 = 37.2 nF⋅s−0.35 and Cα2 = 55.2 nF⋅s−0.34. 

  

 (a) (b) 
Fig. 7.19: (a) Phase and magnitude of the impedance and (b) pseudo-capacitance of the 
fabricated FOCs 
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Fig. 7.20: Schematic of fractional-order Wien oscillator 

  

 (a) (b) 

Fig. 7.21: Measured steady-state output voltage waveform of (a) the fractional-order 
Wien oscillator and (b) the conventional one as an inset 

It should be noted here the constant phase angle can be tuned by using different types of 
polymers in the composite. 

The performance of the fabricated FOCs is demonstrated in a fractional-order Wien 
oscillator (Fig. 7.20). In the circuit of Fig. 7.20, the passive element values are 
R1 = R2 = 10 kΩ, R2 = 47 kΩ, Cα1 = 37.2 nF⋅s−0.35, and Cα2 = 55.2 nF⋅s−0.34. The 
measured frequency of oscillation (FO) is 24.87 kHz as seen in Fig. 7.21(a) while the 
one calculated using the above values is 23.52 kHz [33]. The measurement is repeated 
after the FOCs are replaced with two conventional capacitors with a capacitance value 
of 30 nF and 50 nF. For this case the FO is measured to be 0.414 kHz as seen in 
Fig. 7.21(b). This demonstrates that the fractional-order Wien oscillator has a 
significantly higher FO that its conventional counterpart. It should also be noted here 
that the peak-to-peak amplitudes of the output voltage of both oscillators are same and 
equal to 1.88 V. 
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7.5 Summary 

The integrated analog design of fractional-order oscillator design and experimental 
verification of FOCs in well-known Wien oscillator are studied in this chapter. 
Moreover, active FOI emulator using ABBs was proposed. The proposed compact 
CMOS fractional-order oscillators and active FOI emulator behavior and performance 
was verified using SPICE simulations. Some numerical studies were done using 
MATLAB environment. The main motivation of this study by designing fractional-
order oscillator was to prove that these types of oscillators offer:  

(i) Independent tuning of the frequency and condition of oscillation,  

(ii) Higher frequency of oscillation than its integer-order counterpart,  

(iii) Requirement for capacitances with reasonable values,  

(iv) Possibility for achieving different frequency of oscillation/start-up condition by 
only changing the order/capacitance values.  

The novelties of this chapter are the analog integrated circuit design of compact 
voltage-mode fractional-order oscillator and real-time application of the solid-state FOC 
in Wien oscillator. Moreover, compared with the corresponding already introduced 
fractional-order oscillators, the proposed structures offer the benefit of low transistor 
count and, therefore, simplicity of its structure. To the best knowledge of the author, the 
proposed fractional-order Colpitts oscillator is studied for the first time in open 
literature. 
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8 CONCLUSIONS  
In this chapter the conclusions of the work presented in this thesis are addressed. The 
main contributions and future work are emphasized. The conclusions are drawn from 
two perspectives: analog realization of FOEs and their application in analog integrated 
circuits. 

8.1 Thesis Summary 

Throughout this thesis, a wide range of problems associated with analog circuit design 
of fractional-order dynamic systems are covered: passive component optimization of 
resistive-capacitive and resistive-inductive type FOEs, active realization of FOCs, 
analog integrated circuit design of fractional-order integrator, robust fractional-order 
proportional-integral control design, investigation of different materials for ultra-wide 
band, low phase error FOC, possible low- and high-frequency realization of fractional-
order oscillators in analog circuit design, stability study of solid-state FOCs in series-, 
parallel- and interconnected networks. The major target of this thesis is to develop novel 
stable and accurate solutions in the form of FOE realization, analog circuit design of 
fractional-order dynamic systems and their performance evaluation frameworks to 
significantly improve requirements of analog circuit designs. 

When discussing distributed element realization of FOEs and fabrication of FODs 
in Chapter 2, the need for joint study of precise modelling and characterizing electrical 
properties of dielectric materials is realized. Several structures have been proposed for 
FOEs design and studied within fractional-order systems. Highlighting important 
practical trade-off in Chapter 2, the results from Chapter 3, 4 and 5 indicated significant 
promise for future research in the area of analog circuit design of fractional-order 
systems. In particular, in Chapter 2, an optimization of passive component values in 
RC/RL networks improves the constant phase angle and makes them easily use in 
experimental verification of fractional-order systems. Extending this idea on precise 
modelling and then the fabrication of FODs, a new solid-state FOC based on hBN-
P(VDF-TrFE-CFE) polymer composites is presented in Chapter 5 and analyzed within a 
frequency range of 100 Hz - 10 MHz and minimum ±2.2°, maximum ±4° phase error. 

Whereas there is a natural connection between Chapters 3 and 5, the fractional-
order integral design using cascade of BTSs is presented in Chapter 4. The structure 
benefits from the rational approximation of irrational impedance functions and their 
zero-pole distributions. An example for the analog integrated circuit design using ABBs 
of BTSs is shown and studied FOPIλ controller. There is still need to investigate proper 
approximation and structure to build a low cost hardware for industrialization. 
However, the preliminary results prove the possibility of the idea and are currently 
sufficient to move on this direction.  

While improving the performance and increasing the variability of FOEs and 
FODs, their stability and accuracy becomes important. This can be simply tested in 
circuit network connections. Therefore, the series-, parallel- and interconnected 
identical- and arbitrary-order FOCs are studied mathematically in Chapter 6.  

Derived formulas are experimentally verified. I believe that this study might be one 
of the fundamental topics of electronic circuit lectures in fractional domain in the future. 
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In Chapter 7, the effect of FOEs on system design equations of fractional-order 
oscillators is investigated. For that, new design structures for compact voltage-mode 
fractional-order oscillators are presented. Beside it, the classic oscillators e.g. Colpitts 
and Wien are studied. Some of early fabricated FOCs are used in application of Wien 
oscillator. Our analysis confirms that it is possible to reach extremely low- and high- 
frequency FO by only changing the order without necessity to use high value capacitors 
or inductors. 

The complex research summarized in this thesis results in both theoretical 
innovations and practical applications. It is expected that the proposed solutions and 
their future extensions will become of significant importance toward further 
development of analog implementation of fractional-order systems. Author’s previously 
published papers [185]-[209] will significantly help on this direction. These solutions 
are primarily intended for, but not limited to, fractional-order integrators, fractional-
order differentiators, analog integrated circuit design, nanofabrication, and electronic 
component producers. 

8.2 Future Work 

Even though optimum FOE design and accurate solid-state FOC with their applications 
presented in this thesis constitute an integrated research, there exist many opportunities 
to extend and every particular component. For instance, optimization of FOEs designed 
with optimum branch number, minimal passive component do not take into account the 
order with complex number e.g. “a+jb”. As such, they may be extended to a complex-
order FOE realization. 

Due to the increasing progress in modelling and fabrication of FOEs, the direct 
implementation of fractional-order dynamics has become a noteworthy research topic. 
However, the investigations are more on about phase ripple minimization and 
bandwidth extension. Yet, there is no study on controlling pseudocapacitance. This is 
particularly important in energy storage elements e.g. memory cells, batteries etc. 

With the fractional-order integrator design in Chapter 4, we barely show their 
applications in fractional-order control. This study may continue on realization of the 
plant and FOPIλDμ controller design.  

As the effect of FOEs on system equations of fractional-order oscillators is studied, 
the further research might be their full integration and implementation together with 
their experimental verification. Consequently, the proposed approaches in this thesis are 
important considerations in beyond the future studies of fractional dynamic systems. 
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B Matlab Code for Calculation of n FOCs 
Connections [85] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MATLAB code for calculating the equivalent impedance of n FoCs and plotting 
the magnitude and phase responses 
% Copyright (c) 2018, A. Kartci, A. Agambayev, N. Herencsar, and K. N. Salama 
% Brno University of Technology & King Abdullah University of Science and 
Technology 
% All rights reserved. 
% Feel free to use/modify these codes as you see fit. Any publications codes, 
papers, technical reports, etc.) in which our codes (in their original or a modified 
format) have been used should cite the original paper. 
% Related Publications: 
% [1] A. Kartci, A. Agambayev, N. Herencsar, and K. N. Salama, "Series-, 
Parallel-, and Inter-Connection of Solid-State Arbitrary Fractional-Order 
Capacitors: Theoretical Study and Experimental Verification," IEEE Access, vol. 
6, pp. 10933-10943, 2018. 
% [2] A. Kartci, A. Agambayev, N. Herencsar, and K. N. Salama, "Analysis and 
Verification of Identical-Order Mixed-Matrix Fractional-Order Capacitor 
Networks," In Proc. of the 2018 14th Conference on Ph.D. Research in 
Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2018, pp. 
277-280 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%. 

syms s f z z1 
  
% Set the order and fractional-order capacitance value 
order = [0.69 0.92 0.62];  
FOC = [5.52e-9 47.52e-12 24.74e-9]; 
  
% Calculating the equivalent impedance 
for n=1:length(order) 
 Z(n) = 1/((s^order(n))*FOC(n)); 
 pretty(Z(n)); 
 
% Equivalent impedance of series-connection 
 Zstot = sum(Z(1:n)); 
 Y(n) = ((s^order(n))*FOC(n)); 
 pretty(Y(n)); 
 
% Equivalent impedance of parallel-connection 
 Zptot = sum(Y(1:n)) 
 Zptot = 1/Zptot; 
end 
  
% Plotting the results for series-connected FOCs 
NUM=eval(Zstot); 
z=[z; (solve(NUM))]; 
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zz = z/(2*pi); 
f =logspace(log10(1e5),log10(1e8),100); 
l = size(f); 
for n=1:1:l(2) 
module(n)=(abs(subs(NUM,s,j*2*pi*f(n)))); 
end 
for n=1:1:l(2) 
phase(n)=(angle(subs(NUM,s,j*2*pi*f(n))))*180/pi; 
end 
figure (1); 
subplot(2,1,1) 
loglog(f,module,'-b','LineWidth',2) 
hold on; 
xlabel('f (Hz)','FontSize',10) 
ylabel('Zc (ohm)','FontSize',10) 
subplot(2,1,2) 
semilogx(f,phase,'-b','LineWidth',2) 
hold on; 
xlabel('f (Hz)','FontSize',10) 
ylabel('arg (deg)','FontSize',10) 
  
% Plotting the results for parallel-connected FOCs 
NUM1=eval(Zptot); 
z1=[z1; (solve(NUM1))]; 
zz1 = z1/(2*pi); 
f =logspace(log10(1e5),log10(1e8),100); 
l = size(f); 
for n=1:1:l(2) 
module1(n)=(abs(subs(NUM1,s,j*2*pi*f(n)))); 
end 
for n=1:1:l(2) 
phase1(n)=(angle(subs(NUM1,s,j*2*pi*f(n))))*180/pi; 
end 
figure (1); 
subplot(2,1,1) 
loglog(f,module1,'-.r','LineWidth',2) 
hold on; 
xlabel('f (Hz)','FontSize',10) 
ylabel('Zc (ohm)','FontSize',10) 
subplot(2,1,2) 
semilogx(f,phase1, '-.r','LineWidth',2) 
hold off; 
xlabel('f (Hz)','FontSize',10) 
ylabel('arg (deg)','FontSize',10) 
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