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2022



ÖZET

DERİN ÖĞRENME İLE PLANKTON SINIFLANDIRMASI

Betül SÖMEK

Yüksek Lisans, Elektrik Elektronik Mühendisliği
Danışman: Doç. Dr. Seniha Esen YÜKSEL ERDEM

Mart 2022, 108 sayfa

Planktonlar atmosferdeki oksijenin yaklaşık olarak yarısını üretmekten sorumlu olan, su

ekosisteminde besin zincirinin en alt basamağında yer alan, dünyadaki yaşamın en önemli

bileşenlerinden biridir. Plankton dağılımları, küresel ısınma gibi iklim değişiklikleri için

önemli bir haberci olarak görülmektedir. Bundan dolayı dağılımlarını takip etmek, analiz-

lerini yapmak ve su kalitesi hakkında bilgi sahibi olmak kritik bir öneme sahiptir. Plankton

görüntüleme teknolojilerinin gelişmesiyle birlikte su ekosistemlerinden çok sayıda plankton

görüntüsü elde edilmektedir. Geleneksel manuel sınıflandırma sistemleri, giderek büyüyen

plankton veri kümesi sınıflandırma gereksinimlerini karşılayamamaktadır. Manuel sınıflan-

dırma sistemleri, uzmanlık bilgisi gerektiren ve oldukça zaman alıcı olan yöntemlerdir. Bu

nedenle, elde edilen verinin çok fazla sayıda olması ve planktonların dağılımlarının bilinme-

sinin önemli olması veriyi sınıflandıran otomatik sistemlere ihtiyacı günden güne arttırmak-

tadır. Tez kapsamında, Ulusal Veri Bilimi Kasesi olarak adlandırılan Kaggle platformunda

düzenlenen, planktonları otomatik olarak algılamayı amaçlayan yarışmada yayınlanan 121

sınıfa ait 30.336 plankton görüntüsünden oluşan veri kümesinin 118 sınıfa ve 38 sınıfa sa-

hip iki farklı sürümü kullanılmıştır. Bu çalışmada, plankton görüntülerini sınıflandırmak
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için derin evrişimsel sinir ağları olan Inceptionv3, InceptionResNetv2, DenseNet, ResNet-

50, VGG-16 ağları; aktarım öğrenmesi, ince ayar, tüm katmanların eğitilmesi yöntemleri ile

eğitilmiş ve veri arttırma ve ön işleme işlemlerinin eğitime katkısı gözlemlenmiştir. Kaggle

veri kümesinin kullanılan iki farklı sürümüyle ağlarda eğitilen modellerde 118 sınıfa sahip

ilk sürümünde en yüksek %78 başarım, 38 sınıfa sahip ikinci sürümünde %92 başarım elde

edilmiştir. Ortalama topluluk yöntemi kullanılarak ilk sürümünde başarımın %2, ikinci sürü-

münde %1 artması sağlanmıştır.

Anahtar Kelimeler: Plankton Sınıflandırılması, Derin Öğrenme, Evrişimsel Sinir Ağı
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ABSTRACT

PLANKTON CLASSIFICATION WITH DEEP LEARNING

Betül SÖMEK

Master of Science, Department of Electrical and Electronics Engineering
Supervisor: Doç. Dr. Seniha Esen YÜKSEL ERDEM

March 2022, 108 pages

Plankton which is at the bottom of the food chain in the aquatic ecosystem and is respon-

sible for producing approximately half of the oxygen in the atmosphere, is one of the most

important components of life on earth. Plankton distributions are seen as an important precur-

sor for climate changes such as global warming. Therefore, it is very critical to follow their

distribution, to analyze and to have information about water quality. With the development of

plankton imaging technologies, a large number of plankton images are obtained from aquatic

ecosystems. Traditional manual classification systems are unable to meet the ever-growing

plankton dataset classification requirements. Manual classification systems are methods that

require specialist knowledge and are very time consuming. For this reason, the large num-

ber of data obtained and the importance of knowing the distribution of plankton increase the

need for automated systems that classify data day by day. Within the scope of the thesis, two

different versions of 118 classes and 38 classes of the dataset consisting of 30,336 plankton

images belonging to 121 classes published in the competition aiming to automatically detect

plankton and organized on the Kaggle platform, called the National Data Science Bowl, were

iii

http://ee.hacettepe.edu.tr


used. In this study, deep convolutional neural networks namely Inceptionv3, InceptionRes-

Netv2, DenseNet, ResNet-50, VGG-16 networks were trained to classify plankton images;

transfer learning, fine tuning, training of all layers methods were used and the contribution of

data augmentation and preprocessing on classification was observed. With the two different

versions of the Kaggle dataset, in the models trained on the networks, the highest perfor-

mance of 78% was achieved in the first version with 118 classes, and 92% performance in

the second version with 38 classes. By using the average ensemble method, the performance

increased by 2% in the first version and 1% in the second version of the dataset.

Keywords: Plankton Classification, Deep Learning, Convolutional Neural Network
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1. GİRİŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Tezin Amacı ......................................................................................................... 2
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3.2.2. Gradyan İniş ve Geri Yayılım Yöntemi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3. Kaybolan ve Patlayan Gradyan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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Şekil 2.3. Kaggle Plankton Veri Kümesinden Alınan Örnek Görüntüler . . . . . . . . . . . . . 12
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Şekil 3.10. ResNet50 Artık (Residual) Blok Örneği . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Veri Kümesi Eğitim Doğruluk ve Kayıp Sonucu . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xii
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Şekil 4.22. Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma / Boşluk Dol-
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Şekil 4.39. Her Bir Sınıfın Olasılık Değerinin Sınıf Sayısı ile Çarpılarak, Satır Ba-

zında Gruplandırılıp Toplanarak Elde Edilen 33x33 Hata Matrisi . . . . . . . . 90

Şekil 4.40. Her Bir Sınıf Grubunun Sahip Olduğu Toplam Veri Sayısına Bölünerek
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xv



1. GİRİŞ

Planktonlar, gelgitler ve akıntılar tarafından taşınan ve bu kuvvetlere karşı hareket edebilecek

kadar iyi yüzemeyen organizmalar olarak tanımlanmaktadırlar [5]. Bilim insanları plankton-

ları boyut, tür vb. gibi özelliklere göre farklı şekilde sınıflandırmaktadırlar. Fakat en temelde

planktonlar iki sınıfa ayrılmıştır. Fitoplanktonlar (bitkiler) ve zooplanktonlar (hayvanlar) [5].

Fitoplanktonlar küçük fotosentetik canlılardır ve besin zincirinin en alt basamağında yer al-

maktadırlar [6]. Atmosferdeki oksijenin yaklaşık %70’inin okyanuslarda fitoplanktonlar sa-

yesinde üretildiği kaydedilmiştir [7]. Fitoplanktonlar kendi besinlerini üretmek için tıpkı kara

bitkileri gibi güneş ışığına ve besine ihtiyaç duyarlar ve bu yüzden suyun üst katmanlarında

yer alırlar. Dengeli bir ekosistemde fitoplanktonlar suda yaşayan çok çeşitli canlılara besin

sağlarlar. Zooplanktonlar küçük hayvanlardır ve fitoplankton ile beslenirler ve çoğu da büyük

hayvanlar tarafından yenirler.

Planktonlar dünyadaki yaşamın en önemli bileşeni olarak kabul edilmektedir. Bunun sebebi,

besin zincirinin en altında yer almaları ve dünya üzerindeki oksijenin büyük bir kısmını üret-

meleridir. Ph seviyesi, tuzluluk oranı, sıcaklık ve besin konsantrasyonu vb. değişikliklere

oldukça duyarlıdırlar. Örneğin suda çok fazla besin maddesi bulunduğunda alg patlamaları

meydana gelir [8] ve birçok zooplankton türü fitoplankton yediği için, fitoplanktonun artışın-

daki değişimler zooplankton popülasyonlarını hızla etkileyebilir ve bu da daha sonra besin

zinciri boyunca diğer türleri etkiler.

Plankton dağılımları küresel ısınma gibi iklim değişiklikleri için önemli bir haberci olarak

görülmüştür. Bundan dolayı dağılımlarını takip etmek, analizini yapmak ve su kalitesi hak-

kında bilgi sahibi olmak kritiktir. Geçmiş yıllarda plankton numunelerinin elde edilmesi ge-

leneksel yöntemlerle yapılmıştır. Sudan alınan her bir numune uzman kişiler tarafından la-

boratuvar ortamında incelenmiş ve analiz edilmiştir. Geleneksel yöntemler oldukça zaman

alıcıdır ve yüksek düzeyde profesyonel bilgi gerektirmektedir. Son 20 yılda plankton görün-

tülerinin otomatik olarak çekilmesini sağlayan bir çok teknoloji geliştirilmiştir. 1992 yılında

Video Plankton Kaydedici üretilmiştir [9] ve üretilen ilk yerinde otomatik tanımlama cihazı

olmuştur. Üretilen bu cihaz modern yerinde plankton görüntüleme cihazlarına öncü olarak

kabul edilmiştir. 2004 yılında [10], doğrudan suya yerleştirilen ve optik mikroskoplara da-

yanan “sualtı otomatik sayısal mikroskop görüntüleyici” geliştirilmiş ve bu sayede plank-

ton görüntülerinin otomatik olarak çekilmesi sağlanmıştır. Üretilen cihaz yalnızca yüksek
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çözünürlük koşulları için uygundur. 10 ila 100 mm arasındaki mikrozooplankton ve fitop-

lanktonların uzun süreli izlenmesi için Olson ve ark. Görüntüleme Akışı Sitobot’u (Imaging

FlowCytobot) kullanmıştır [11]. Planktonların yerinde gözlemlenmesi için etkili bir yöntem

sağlayan FlowCAM, FastCam, CytoSense ve CytoSub [12] dahil olmak üzere planktonlar

hakkında bilgi edinilmesini sağlayan benzer teknolojik sistemler mevcuttur. Bu cihazlar sa-

yesinde dünyanın farklı su ekosistemlerinden günden güne sayısı artan plankton görüntüleri

elde edilmektedir. Bu sebeple su altı görüntü veri kümesi oldukça hızlı bir şekilde büyümek-

tedir. Elde edilen verinin çok fazla olması, veriyi tanımlayan, sınıflandıran ve analiz eden

otomatik algılama sitemlerine ihtiyacı günden güne arttırmaktadır. Otomatik plankton sınıf-

landırma sistemleri kullanılarak, ekolojik ortamın en önemli değerlendirme faktörlerinden

biri olan planktonların yaşam koşulları gözlemlenebilmektedir. Çünkü planktonların yaşam

koşullarının gözlemlenmesi büyük ölçüde planktonların sınıflandırmasına bağlıdır. Otomatik

plankton sınıflandırma sistemleri ile birlikte su ekosistemi hakkında, uzman kişilere ihtiyaç

duymadan ve hızlı bir şekilde su ekosistemi hakkında bilgi elde edilebilmektedir. Örneğin,

düşük plankton seviyesi su ekosistemi için tehlike oluştururken, bolluğu da su ekosistemi

için toksin etkisi yaratmakta ve yıkıcı etkilere neden olabilmektedir. Bu nedenle, görüntü

verilerine dayalı olarak plankton sınıflandırması bir ekosistemdeki plankton popülasyonla-

rını tahmin etmek için çok kullanışlı bir sistemdir. Görüntü işleme teknolojilerini kullana-

rak elde edilen plankton görüntülerinin otomatik sınıflandırılmasına odaklanan çok sayıda

çalışma vardır [13–16]. Bilgi işlem gücü, bellek kapasitesi, güç tüketimi, görüntü sensörü

çözünürlüğü olmak üzere cihaz yeteneklerindeki hızlı gelişim ve derin öğrenme alanında ça-

lışmaların yaygınlaşmasıyla birlikte derin sinir ağları geleneksel yöntemlere kıyasla plankton

sınıflandırma alanında son zamanlarda oldukça yaygın kullanılmaktadır.

1.1. Tezin Amacı

Bu tezin amacı, plankton görüntülerini alanında uzman kişilere ihtiyaç duymadan sınıflan-

dırabilen, derin öğrenme tabanlı plankton sınıflandırma sistemi elde etmektir. Bu kapsamda

Oregon Eyalet Üniversitesi’nde Hatfield Deniz Bilimleri Merkezi’nde çalışan bilim insanları

tarafından etiketlenen Ulusal Veri Bilimi Kasesi olarak adlandırılan Kaggle plankton veri

kümesi kullanılmıştır [17]. Bilim insanları yaklaşık 50 milyon plankton görüntüsünü 18 gün

içinde elde etmişlerdir. Elde edilen bu veri kümesinin 30.336 resmi 2015 yılında Kaggle veri
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yarışması için plankton veri kümesi olarak etiketlenmiştir. Veri kümesi, 30.336 görüntü ve

121 sınıf plankton çeşidi içermektedir.

Kaggle plankton veri kümesinden uzmanlar tarafından etiketlenemeyen görüntülere ait olan,

bilinmeyen adlı sınıflar çıkarılmış ve geri kalan 118 sınıf eğitimlerde kullanılmıştır. 118 sı-

nıfa sahip plankton veri kümesi tez kapsamında Set-1 olarak adlandırılmıştır. Ayrıca Kaggle

plankton veri kümesinin ikinci alt kümesi olarak, Zheng ve ark. çalışmasında [18] ve benzer

Kaggle plankton veri kümesi çalışmalarında kullanılan, plankton sınıflarında minimum 100

görüntüye sahip 38 sınıf seçilerek 14.374 görüntüden oluşan Kaggle plankton veri kümesinin

bir alt kümesi kullanılmıştır [19], [20]. 38 sınıfa sahip plankton veri kümesi tez kapsamında

Set-2 olarak adlandırılmıştır. Set-1 ve Set-2 veri kümeleri %70 eğitim, %15 doğrulama ve

%15 test kümesi olarak üçe bölünmüştür. Tablo 1.1.’de kullanılan Set-1 ve Set-2 veri küme-

lerinin bilgileri paylaşılmıştır.

Tablo 1.1. Kullanılan Veri Kümelerinin Özellikleri

Küme Adı #Toplam Veri #Sınıf #Eğitim Seti #Doğrulama Seti #Test Seti
Set-1 29419 118 20475 4472 4472

Set-2 14374 38 11464 1455 1455

Tez kapsamında, plankton sınıflandırma başarımını arttırmak ve uygulanan yöntemlerin et-

kisini gözlemlemek amacıyla kapsamlı deneyler gerçekleştirilmiştir. Toplamda altı deney

yapılmıştır ve her bir deneyin amacı ve değerlendirmesi ile ilgili bilgiler paylaşılmıştır. Ça-

lışma kapsamında Deney-1 olarak isimlendirilen deneyde, Set-1 (118 Sınıf) veri kümesine

kısmi ve tam veri arttırma olarak isimlendirilen iki farklı veri arttırma yöntemi uygulanarak

bu veri kümelerinin aktarım öğrenmesi, ince ayar ve tüm katmanların eğitilmesi yöntemleri

kullanılarak eğitimi Inceptionv3 ağ modeli kullanılarak gerçekleştirilmiş ve sonuçlar elde

edilmiştir. Deney-1 sonuçlarında en iyi başarıma sahip veri arttırma yönteminin tam veri art-

tırma yöntemi olduğu sonucu elde edilmiştir. Çalışma kapsamında Deney-2 olarak adlandırı-

lan deneyde, plankton görüntülerinin farklı en-boy oranlarına sahip olmasından ve evrişimli

sinir ağlarının sabit boyutta girdi görüntüsü kabul etmesinden kaynaklı çözünürlük kaybının

giderilmesi amacıyla boşluk ekleme ve kare kırpma ön işlemleri uygulanmıştır ve elde edi-

len sonuçlar değerlendirilmiştir. Deney-2 kapsamında elde edilen sonuca göre uygulanan ön

işleme yöntemleri elde edilen sonucu negatif etkilemiş ve en iyi sonuç ön işleme uygulan-

mamış orijinal veri kümesi eğitim sonucundan elde edilmiştir. Çalışma kapsamında Deney-

3 olarak adlandırılan deneyde, Deney-1 ve Deney-2 kapsamında en iyi sonucu veren tam
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veri arttırma uygulanmış Set-1 (118 Sınıf) ve Set-2 (38 Sınıf) veri kümeleri ve tüm katman-

ların eğitilmesi yöntemi kullanılarak Inceptionv3, InceptionResNetv2, DenseNet, ResNet,

VGG-16 ağlarında eğitimler gerçekleştirilmiştir. Deney-3 kapsamında en iyi sonuç Dense-

Net ağında gerçekleşen eğitim sonucunda elde edilmiştir. Çalışma kapsamında Deney-4 ola-

rak adlandırılan deneyde, Deney-3 kapsamında eğitilen modellere ortalama topluluk yöntemi

uygulanmış ve her bir modelin ilgili sınıf için verdiği sonuçlar toplanarak ortalaması alınmış

ve bu işlem her sınıfa uygulanmıştır. Deney-4 sonucunda Set-1 (118 Sınıf) veri kümesi so-

nucunda %2 başarım artışıyla %80 ağırlıklı F1-Skoru, Set-2 veri kümesi sonucunda %1 ba-

şarım artışıyla %93 ağırlıklı F1-Skoru elde edilmiştir. Çalışma kapsamında Deney-5 olarak

adlandırılan deneyde, çapraz entropi kaybı ve odak kaybı fonksiyonlarının eğitimde kullanıl-

masıyla elde edilen sonuçlar karşılaştırılmış ve odak kaybı fonksiyonunun farklı hiperpara-

metreleri uygulanarak eğitim gerçekleştirilmiştir. Deney-5 sonucunda test kümesinden elde

edilen başarımda artış sağlanmamıştır, eğitim ve doğrulama doğruluk değerlerinde artış ve

kayıp değerlerinde azalma gözlemlenmiştir. Deney-5 sonucunda odak kaybı fonksiyonunun

eğitim başarımını arttırdığı fakat test başarımında herhangi bir etki göstermediği gözlemlen-

miştir. Çalışma kapsamında Deney-6 olarak adlandırılan deneyde, 118 sınıfa ait DenseNet

ağı üzerinde Deney-3 kapsamında Set-1 veri kümesi ile gerçekleştirilen deney sonucu elde

edilen modelin hata matrisi hesaplanmıştır. Elde edilen 118x118 boyutundaki hata matrisi,

aynı isim altında toplanan farklı gruplar sütun bazında toplanarak 118x33 matris elde edil-

miş, sonrasında her bir sınıf içerdiği veri sayısı miktarıyla çarpılmıştır. Satır bazında da aynı

isim altında toplanan farklı gruplar sütun bazında toplanarak 33x33 grup matrisi elde edil-

miştir. Elde edilen 0-40 aralığındaki hata matrisi her bir ana sınıfın içerdiği toplam plankton

sayısına bölünmüş ve 33 grup için 0-1 aralığında olasılık değerleri elde edilmiştir. Elde edilen

bu hata matrisi sonucuyla, 33 grup olarak eğitimi gerçekleştirilen hata matrisi karşılaştırılı-

mış ve 118 sınıftan 33 grup şekline dönüştürülerek elde edilen hata matrisinin benzer grup

altındaki sınıfları daha az birbirine karıştırdığı ve daha iyi bir çözüm yolu olduğu sonucuna

varılmıştır.

Tez kapsamında yapılan katkıların özeti aşağıda paylaşılmıştır:

• Tez kapsamında, dengesiz dağılımlı bir veri kümesi kullanıldığı için veri kümesi iyi-

leştirilmeye çalışılmıştır. Veri arttırma yöntemi ve ön işleme yöntemleri uygulanmıştır.

4



• Önceden eğitilen evrişimli sinir ağı modelleri, aktarım öğrenmesi, ince ayar, tüm kat-

manların eğitilmesi yöntemleri olmak üzere toplamda üç yöntem kullanılarak ayrı ayrı

eğitilmiş ve veri arttırma ve ön işleme işlemlerinin eğitime katkısı gözlemlenmiştir.

• Sınıflandırma modelinin başarımını arttırmak amacıyla ortalama topluluk öğrenimi

yöntemi uygulanmıştır.

• Farklı kayıp yöntemlerinin plankton eğitimine etkisi gözlemlenmiştir.

• Benzer sınıfların gruplanması tekniği önerilmiş ve gruplanarak eğitilen model ile hata

matrisleri karşılaştırılarak elde edilen sonuç analiz edilmiştir.

1.2. Tezin Kapsamı ve Akışı

Bu çalışma şu şekilde yapılandırılmıştır:

Bölüm 2’de; plankton görüntüleme sistemleri, plankton taksonomisi, plankton veri küme-

leri ve plankton görüntü verilerinin sınıflandırılması ile ilgili literatür çalışmalarına odaklan-

mıştır. Bölüm 2.1.’de plankton görüntüleme sistemlerinde kullanılan yöntemler ve son za-

manlarda kullanılan su altı görüntüleme sistemlerinden detaylı olarak bahsedilmiştir. Bölüm

2.2.’de plankton taksonomisinden bahsedilmiştir ve Kaggle plankton veri kümesinin plank-

ton taksonomisi paylaşılmıştır. Bölüm 2.3.’te literatürde yaygın olarak kullanılan veri küme-

leri incelenmiştir ve Kaggle plankton veri kümesinden detaylı olarak bahsedilmiştir. Bölüm

2.4.’de plankton sınıflandırmasının zorluklarından ve literatürde yer alan özellik tabanlı ve

evrişimsel sinir ağı tabanlı çalışmalardan bahsedilmiştir.

Bölüm 3’te; evrişimli sinir ağları ve çalışma prensipleri, eğitim süreci ve bu süreçte öğrenme

ve genelleme için eğitim sürecinin kullanılan tekniklerle birlikte nasıl çalıştığı ve evrişimli

sinir ağlarının gerekliliği açıklanmıştır. Bölüm 3.1.’de sinir ağlarının katmanları ve yapı-

ları detaylı olarak incelenmiştir. CNN mimarisinde kullanılan evrişimsel, havuz ve tamamen

bağlı katmanlar incelenmiş ve aktivasyon fonksiyonların çeşitleri ve avantajları mercek altına

alınmıştır. Tez kapsamında kulanılan ağlardan bu bölümde detaylı olarak bahsedilmiştir. Bö-

lüm 3.2.’de sinir ağlarının eğitim aşamalarından ve eğitim sırasında kullanılan kritik öneme

sahip kayıp fonksiyonu, gradyan iniş, geri yayılım ve kaybolan, patlayan gradyanlar detaylı

olarak incelenmiştir.
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Bölüm 4’te; Bölüm 4.1.’de tez kapsamında Kaggle plankton veri kümesine uygulanan veri

ön işleme yöntemleri açıklanmıştır. Bölüm 4.2.’de başarım ölçütü olarak kullanılan değer-

lendirme metriklerinden detaylı olarak bahsedilmiştir. Bölüm 4.4.’te tez kapsamında gerçek-

leştirilen deney detaylarından ve gerçekleştirilen her bir deneyden ve sonuçlarından detaylı

olarak bahsedilmiştir.

Bölüm 5’de elde edilen sonuçlar değerlendirilmiş ve gelecek çalışmalar ile ilgili analizler

paylaşılmıştır.
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2. PLANKTON TANIMA

Bu bölümde planktonlar ile ilgili detaylı bilgiler verilecektir. İlk olarak Bölüm 2.1.’de plank-

ton görüntüleme sistemleri hakkında bilgi paylaşılacaktır. Sonrasında Bölüm 2.2.’de plank-

ton taksanomisinin detaylarından, Bölüm 2.3.’te plankton veri kümeleri ve özelliklerinden,

özellik tabanlı sınıflandırma sistemlerinden Bölüm 2.4.1.’de ve evrişimli ağ tabanlı sınıflan-

dırma sistemlerinden Bölüm 2.4.2.’de detaylı olarak bahsedilecektir.

2.1. Plankton Görüntüleme

Su ekosistemini analiz edebilmek için suda görüntüleme oldukça önemlidir [12]. Suda gö-

rüntüleme, suda bulunan partiküllerin çeşitlilikleri, büyüklükleri ve sayıları vb. özelliklere

sahip incelemeleri mümkün kılar. Planktonların dağılımının analizi su ekosisteminin sağlığı

hakkında bilgi içerdiği için plankton türlerini belirlemek önemlidir. Plankton görüntüleme

sistemleri, yerinde olan (in-situ) ve yerinde olmayan (ex-situ) sistemler şeklinde iki gruba

ayrılır [21]. Yerinde olmayan (ex-situ) plankton görüntüleme sistemlerinde plankton görün-

tüsü planktonun doğal olarak bulunmadığı bir ortamda elde edilmektedir. Sudan numune

alınmakta ve alınan numuneler laboratuvar ortamında incelenmekte ve plankton görüntüsü

elde edilmektedir. Bu yöntem planktonun tespiti ve analizi için kullanılan en geleneksel yön-

temdir. Optik mikroskop ile görüntüleme yöntemi, planktonları morfolojik özelliklerine da-

yanarak plankton türlerini tanımaya yönelik bir yöntemdir. Bilim insanları manuel olarak

planktonları saymakta ve tanımlamaktadır. Optik mikroskoplar ile plankton tanıma süreci

planktonların morfolojik yapısını ayırt edebilme uzmanlık bilgisini gerektirir ve oldukça za-

man alıcıdır. Yerinde olan (in-situ) plankton görüntüleme sistemleri plankton algılaması ve

görüntülemesini sağlayan sistemlerdir. Plankton numunesi toplamak amacıyla kullanılan ci-

hazların farklı çevresel koşullarda ve boyutları değişkenlik gösteren partikülleri algılamak

için gelişmiş bir optik sensöre ihtiyaçları vardır. Görüntü kalitesi büyük ölçüde aydınlatma-

daki küçük farklılıklardan etkilenmektedir. Ayrıca görüntüleri işlemek ve analiz etmek için

hızlı bir işlem gücüne ve yüksek depolama alanına sahip cihazlar olması gerekmektedir. Bu

sorunlara çözüm niteliğinde plankton görüntülerini toplamak için yerinde ve laboratuvar da

dahil olmak üzere Video Plankton Kaydedici (VPR) [22], Sualtı Video Profilleyici (UVP)

[23], Gölgeli Görüntü Parçacığı, Profil Oluşturma Değerlendirme Kaydedici (SIPPER) [24],

Zooplankton Görselleştirme Sistemi (ZOOVIS) [25], Scripps Plankton Kamerası (SPC) [26],
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Görüntüleme Akışı Sitobot (IFCB) [11], Yerinde Plankton Görüntüleme Sistemi (ISIIS) [27]

, ZooScan [16] vb. gibi birçok görüntüleme cihazı geliştirilmiştir. Kaggle plankton veri kü-

mesi Yerinde Plankton Görüntüleme Sistemi (ISIIS) [27] cihazı kullanılarak oluşturulmuştur.

Bu cihazlar oldukça fazla sayıda plankton görüntüsünü kısa süre içinde elde edebilmekte-

dirler. Fakat elde edilen çok sayıda görüntünün elle sınıflandırılması oldukça zaman alıcı

olmakla birlikte çok sayıda alanında uzman olan kişinin sınıflandırmaya zaman harcaması

gerekliliğini beraberinde getirmektedir. Bu nedenle elde edilen görüntülerin sınıflandırılması

için otomatik plankton sınıflandırma sistemleri oldukça gereklidir [28].

2.2. Plankton Taksonomisi

Taksonomi organizmaları ortak özelliklere dayalı adlandıran, tanımlayan ve sınıflandıran bir

bilimdir [29]. Takson, oluşturulan gruba verilen isimdir ve taksonlar daha küçük taksono-

mik gruplara ayrılabilir. Türler hiyerarşik olarak en alt grupta bulunur ve daha alt gruba

bölünemez. Su akıntısı sonucu serbestçe sürüklenen mikroorganizmalara plankton denilir ve

planktonlar gelecekte muhtemelen genetik bilgilere dayalı farklı taksonlar şeklinde ifade edi-

lecektir; fakat şu anda çoğunlukla planktonların ayrımında dış özellikleri ve ekosistemdeki

rolleri kullanılmaktadır. Plankton taksonlarının sınıflandırılmasında kullanılan tipik özellik-

ler, doku, şekil, boyut, kalonilerde bulunuyor olmaları ve kamçılı olup olmadıkları gibi özel-

liklerdir.

Fitoplanktonlar ve zooplanktonlar plankton gruplarından ikisidir. Fitoplanktonlar güneş ışığı

kullanarak, karada bulunan bitkiler gibi fotosentez yapar ve oksijen ve besin üretirler. Zoop-

lanktonlar ise fitoplanktonlor ile beslenen birçok farklı büyüklükte ve çok sayıda alt türler

içeren çeşitli bir gruptur. Su ekosisteminde bulunan diğer canlılar da zooplankton yiyerek

beslenir. Fitoplanktonlar besin zincirinin en alt seviyesinde yer aldığı ve oksijen üretiminde

dünyaya önemli bir katkı sağladığı için büyük öneme sahiptir. Fitoplanktonların türlerinin

belirlenmesi, tanımlanması ve isimlendirilmesini sağlayan taksonomi bilimi de bu yüzden

önemlidir. Gelişen tekonoloji ile birlikte fitoplankton çeşitliliğinin incelenmesi hala aktif bir

çalışma alanıdır. Bugüne kadar hala bir çok fitoplankton türü taksonomik olarak sınıflan-

dırılmayı beklemektedir. Fitoplanktonlar, ekosistemde yer aldıkları role göre sınıflandırılır.

Şekline ve boyutuna (Örn. Nanoplanktonlar (2-20 µm), mikroplanktonlar (20-200 µm) vb.)

göre de sınıflandırılırlar. 1980’li yılların sonunda yaklaşık 4 bin farklı deniz planktonu türü

önceden sınıflandırılmıştır [30].
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2.3. Plankton Veri Kümeleri

Plankton popülasyonlarını analiz etmek için kullanılan geleneksel sistemler ve yöntemler za-

man alıcıdır. Geleneksel sistemler için geliştirilmiş yaklaşım su altı kamerasıdır. Geliştirilen

su altı kamera sistemleriyle kısa zamanda su altından yüksek çözünürlüklü birçok görüntü

elde edilebilmektedir. Elde edilen görüntüler plankton türleri ve dağılımları için analiz edile-

bilmektedir. Bu bölümde farklı teknolojiler kullanılarak toplanan WHOI plankton, ZooScan

ve Kaggle plankton veri kümelerinden detaylı olarak bahsedilecektir. Tez kapsamında yapı-

lan çalışmalarda Kaggle plankton veri kümesi kullanılmıştır.

2.3.1. WHOI-Plankton

Woods Hole Oceanographic Institution (WHOI) olarak adlandırılan enstitüde araştırmacı-

lar tarafından sağlanan sınıf etiketlerine göre düzenlenmiş WHOI-Plankton veri kümesi [31]

milyonlarca mikroskobik deniz planktonu görüntüsü içermektedir. Görüntüler akış görüntü-

leme sitobot’u (Imaging FlowCytobot (IFCB)) [11] sistemi tarafından yakalanmıştır. IFCB

plankton görüntüleme sistemi WHOI’de tasarlanmış ve üretilmiştir. WHOI-Plankton veri

kümesi yaklaşık 3.4 milyon plankton görüntüsünden oluşmaktadır. 103 plankton sınıfına sa-

hiptir. WHOI-Plankton veri kümesinde planktonlar dengesiz dağılıma sahiptir. Veri küme-

sinin yaklaşık %85’i dino30, cylindrotheca, rhizosolenia ve chaetoceros dahil olmak üzere

altı nadir taksonda yoğunlaşmıştır. Bu durum plankton taksonlarının deniz ortamında denge-

siz olarak dağıldığının bir kanıtı niteliğindedir. WHOI-Plankton veri kümesi1 açık kaynaklı-

dır, 2006-2014 yılları arasında her bir yıl için paylaşılan veri kümesine erişilebilir. WHOI-

Plankton veri kümesinden alınan örnek görüntüler Şekil 2.1.’de paylaşılmıştır.

1WHOI-Plankton veri kümesi web sayfası:
https://darchive.mblwhoilibrary.org/handle/1912/7341
https://whoigit.github.io/whoi-plankton/
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Şekil 2.1. WHOI Plankton Veri Kümesinden Alınan Örnek Görüntüler

2.3.2. ZooScan

ZooScanNet veri kümesi2 ZooScan sistemi3 tarafından Ağustos 2007 ve 8 Ekim 2008 tarih-

leri arasında Fransa’nın Villefranche-sur-mer Körfezi’nden toplanan 1.433.278 görüntüden

ve 93 taksondan oluşan bir veri kümesidir [16]. Çoğu kategori zooplankton ve zooplankton

yumurtalarıdır; kalan kategoriler zooplankton olmayan ve görece kötü odaklı görüntülerdir.

ZooScanNet veri kümesinden örnek plankton görüntüleri Şekil 2.2.’de paylaşılmıştır.

2ZooScanNet veri kümesi web sayfası: https://www.seanoe.org/data/00446/55741/
3ZooScanNet sistemi web sayfası: http://www.zooscan.com
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Şekil 2.2. ZooSCan Plankton Veri Kümesinden Alınan Örnek Görüntüler

2.3.3. Kaggle Plankton

Oregon Eyalet Ünivesitesi’nin Deniz Bilimleri Merkezi’nde bilim insanları 18 günlük bir

süre içinde yaklaşık 50 milyon plankton fotoğrafı elde ettiler. Bu veri kümesi yerinde plank-

ton görüntüleme sistemi (ISIIS) teknolojisi kullanılarak elde edilen büyük ölçekli bir veri

kümesidir. Elde edilen bu görüntülerin 30.336’sı uzmanlar tarafından etiketlenmiştir. 2015

yılında Ulusal Veri Bilimi Kasesi (National Datascience Bowl) [17] olarak adlandırılan

Kaggle veri bilimi yarışmasında organizatörler tarafından 30.336 etiketli ve 130.400 etiket-

siz test görseli kullanıma sunuldu. Veri kümesi, tek hücreli en küçük protisler, kopedodlar ve

lavra balıkları dahil birçok farklı tür içeren 121 farklı türden oluşmaktadır. Veri kümesi 3 bo-

yutlu uzayda farklı yönlerden türlerin çekilmesiyle elde edilmiştir. Elde edilen görüntüler gri

tonlamalı, beyaz zemin üzerine siyah rengindedir ve çok değişken boyutlara sahiptir. Kaggle

plankton veri kümesinin örnek görüntüleri Şekil 2.3.’te paylaşılmıştır. Kaggle plankton veri
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kümesinde sınıflar dengesiz dağılmıştır. Tablo 2.3.’te görüleceği gibi bazı sınıflar 1000’den

fazla görüntü içermekteyken bazı sınıflar yalnızca bir görüntü içermektedir. Plankton gö-

rüntülerinin boyutlarının piksel cinsinden yükseklik ve genişlik cinsinde dağılım grafiği Şe-

kil 2.4.’te verilmiştir. Grafikteki her nokta bir görüntüyü temsil etmektedir. Renk, çevreleyen

alandaki yoğunluğu gösterir. Şekilde görüldüğü gibi plankton görüntülerinin boyutları ara-

sında belirgin farklılık vardır.

Şekil 2.3. Kaggle Plankton Veri Kümesinden Alınan Örnek Görüntüler
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Şekil 2.4. Kaggle Plankton Veri Kümesindeki Görüntülerin Piksel Cinsinden Dağılım Grafiği

Tez kapsamında Kaggle plankton veri kümesinin iki farklı sürümü kullanılmıştır. Kullanılan

ilk sürümde, 121 sınıf içeren veri kümesinin ’bilinmeyen’ isimli üç sınıfı, bir uzmanın makul

bir kesinlikle sınıflandıramadığı örnekler içerdiğinden veri kümesinden çıkarılmıştır. Kulla-

nılan ilk sürüm, Set-1 olarak isimlendirilmiştir. Set-1 ile ilgili detaylar Tablo 2.1.’de paylaşıl-

mıştır. Kullanılan ikinci sürüm, Set-2 olarak isimlendirilmiştir. Set-2, Kaggle plankton veri

kümesinin [18] yazarları tarafından seçilen bir alt kümesidir. En az 100 örnek bulunduran

plankton sınıfları seçilmiştir. Set-2 ile ilgili detaylar Tablo 2.2.’de paylaşılmıştır.

Tablo 2.1. Set-1 Veri Kümesinin Özellikleri

Set-1 Kaggle Veri Kümesi
#Toplam Veri #Sınıf #Eğitim Seti #Doğrulama Seti #Test Seti
29419 118 20475 4472 4472

Tablo 2.2. Set-2 Veri Kümesinin Özellikleri

Set-2 Kaggle Veri Kümesi
#Toplam Veri #Sınıf #Eğitim Seti #Doğrulama Seti #Test Seti
14374 38 11464 1455 1455
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Tablo 2.3. Kaggle Veri Kümesindeki Sınıflar ve Her Sınıftaki Veri Sayısı (#)

Sınıf İsmi # Sınıf İsmi #

acantharia_protist 889 hydromedusae_haliscera_small_sideview 9

acantharia_protist_big_center 13 hydromedusae_liriope 19

acantharia_protist_halo 71 hydromedusae_narco_dark 23

amphipods 49 hydromedusae_narcomedusae 132

appendicularian_fritillarida 16 hydromedusae_narco_young 336

appendicularian_slight_curve 532 hydromedusae_other 12

appendicularian_s_shape 696 hydromedusae_partial_dark 190

appendicularian_straight 242 hydromedusae_shapeA 412

artifacts 393 hydromedusae_shapeA_sideview_small 274

artifacts_edge 170 hydromedusae_shapeB 150

chaetognath_non_sagitta 815 hydromedusae_sideview_big 76

chaetognath_other 1934 hydromedusae_solmaris 703

chaetognath_sagitta 694 hydromedusae_solmundella 123

chordate_type1 77 hydromedusae_typeD 43

copepod_calanoid 681 hydromedusae_typeD_bell_and_tentacles 56

copepod_calanoid_eggs 173 hydromedusae_typeE 14

copepod_calanoid_eucalanus 96 hydromedusae_typeF 61

copepod_calanoid_flatheads 178 invertebrate_larvae_other_A 14

copepod_calanoid_frillyAntennae 63 invertebrate_larvae_other_B 24

copepod_calanoid_large 286 jellies_tentacles 141

copepod_calanoid_large_side_antennatucked 106 polychaete 131

copepod_calanoid_octomoms 49 protist_dark_center 108

copepod_calanoid_small_longantennae 87 protist_fuzzy_olive 372

copepod_cyclopoid_copilia 30 protist_noctiluca 625

copepod_cyclopoid_oithona 899 protist_other 1172

copepod_cyclopoid_oithona_eggs 1189 protist_star 113

copepod_other 24 pteropod_butterfly 108

crustacean_other 201 pteropod_theco_dev_seq 13

ctenophore_cestid 113 pteropod_triangle 65

ctenophore_cydippid_no_tentacles 42 radiolarian_chain 287

ctenophore_cydippid_tentacles 53 radiolarian_colony 158

ctenophore_lobate 38 shrimp_caridean 49

decapods 55 shrimp-like_other 52

detritus_blob 363 shrimp_sergestidae 153

detritus_filamentous 394 shrimp_zoea 174

detritus_other 914 siphonophore_calycophoran_abylidae 212

diatom_chain_string 519 siphonophore_calycophoran_rocketship_adult 135

diatom_chain_tube 500 siphonophore_calycophoran_rocketship_young 483
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echinoderm_larva_pluteus_brittlestar 36 siphonophore_calycophoran_sphaeronectes 179

echinoderm_larva_pluteus_early 92 siphonophore_calycophoran_sphaeronectes_stem 57

echinoderm_larva_pluteus_typeC 80 siphonophore_calycophoran_sphaeronectes_young 247

echinoderm_larva_pluteus_urchin 88 siphonophore_other_parts 29

echinoderm_larva_seastar_bipinnaria 385 siphonophore_partial 30

echinoderm_larva_seastar_brachiolaria 536 siphonophore_physonect 128

echinoderm_seacucumber_auricularia_larva 96 siphonophore_physonect_young 21

echinopluteus 27 stomatopod 24

ephyra 14 tornaria_acorn_worm_larvae 38

euphausiids 136 trichodesmium_bowtie 708

euphausiids_young 38 trichodesmium_multiple 54

fecal_pellet 511 trichodesmium_puff 1979

fish_larvae_deep_body 10 trichodesmium_tuft 678

fish_larvae_leptocephali 31 trochophore_larvae 29

fish_larvae_medium_body 85 tunicate_doliolid 439

fish_larvae_myctophids 114 tunicate_doliolid_nurse 417

fish_larvae_thin_body 64 tunicate_partial 352

fish_larvae_very_thin_body 16 tunicate_salp 236

heteropod 10 tunicate_salp_chains 73

hydromedusae_aglaura 127 unknown_blobs_and_smudges 317

hydromedusae_bell_and_tentacles 75 unknown_sticks 175

hydromedusae_h15 35 unknown_unclassified 425

hydromedusae_haliscera 229

2.4. Plankton Tanıma Sistemi

Plankton görüntülerinin elde edilme aşaması su ekosisteminin dinamik doğası gereği ve

planktonların mikroskobik boyutu nedeniyle zordur. Elde edilen plankton görüntülerinin ma-

nuel olarak sınflandırılması zaman alıcı, uzmanlık bilgisi gerektiren, pahalı ve hataya açık bir

çözümdür. Bu sebeplerden dolayı birçok araştırmacı bilgisayarlı görü tekniklerini kullanarak

bu süreci otomotik hale getirecek yöntemler araştırmıştır. Otomatik plankton sınıflandırması

[8, 18, 32, 33] üç temel nedenden dolayı zor kabul edilmektedir:

(i) Plankton görüntüleri genellikle düşük çözünürlüktedir, benzeyen türler arasında düşük

çözünürlükten dolayı bilgi kaybı olmakta ve bu da ayrımı zorlaştırmaktadır. Uzmanlar tara-

fından manuel sınıflandırma da bu nedenden dolayı hata payına sahiptir.

(ii) Taksonomiye özel zorluklar sunan çok çeşitli filogenetik türleri içerir.
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(iii) Uzmanlar tarafından manuel olarak sınıflandırılan ve sonrasında otomatik plankton sı-

nıflandırma sistemi için eğitim, doğrulama ve test kısmında kullanılacak olan plankton veri

kümeleri oldukça dengesiz bir veri dağılımına sahiptir.

Otomotik plankton sınıflandırmasında çalışmalar temel olarak 2 farklı yaklaşıma sahiptir:

(1) Özniteliklerin el yapımı tanımlayıcılar ile çıkarılmasından sonra sınıflandırmanın destek

vektör makinesi, rassal orman vb. yöntemlerle gerçekleştirilmesi [8, 18].

(2) Evrişimli sinir ağları temelli derin öğrenme yaklaşımlarıyla sınıflandırmanın gerçekleşti-

rilmesi [32–34].

2.4.1. Öznitelik Çıkarımı Tabanlı Plankton Tanıma

Evrişimli sinir ağları (CNN) son zamanlarda plankton tanıma sistemi de dahil bir çok proble-

min çözümünde yaygın olarak kullanılmaktadır. Plankton tanıma sistemlerinin evrişimli sinir

ağ tabanlı uygulamaları Bölüm 2.4.2.’de detaylı olarak ele alınmıştır. Evrişimli sinir ağları

yaygınlaşmadan önce otomatik plankton sınıflandırma sistemleri özellik tabanlı yöntemlerle

ele alınmıştır. Özellik tabanlı yöntemler belirli bir örneğin geometrik şekil, alan, uzunluk,

genişlik, renk histogramı gibi hesaplanan bir dizi tanımlayıcı özelliği üzerinde çalıştıkları

için "öznitelik çıkarımı tabanlı" olarak adlandırılmışlardır. Elde edilen öznitelik vektörleri

daha sonra destek vektör makineleri (SVM) [35], rassal ormanlar [36], k-en yakın komşular,

çok katmanlı algılayıcı (MLP) [36] gibi özellik tabanlı sınıflandırıcılara girdi olarak sağlanır.

Otomatik plankton tanıma sistemlerinde, öznitelik çıkarımı tabanlı ilk göze çarpan uygu-

lamalardan biri Tang ve arkadaşlarının 1998 yılında yaptığı çalışmadır [15]. Tang ve arka-

daşları, geleneksel değişmez moment özellikleri ve Fourier sınır tanımlayıcıları gri ölçekli

morfolojik granülometrilerle birleştirerek plankton görüntülerinin hem şekil hem de doku

bilgilerini elde eden öznitelik vektörü elde etmişlerdir. Altı farklı plankton taksonu içeren

yaklaşık 2000 görüntüde %95 oranında sınıflandırma doğruluğu elde etmişlerdir. Birlikte

oluşum matrisi doku tanımlayıcılarından biridir. Bu tanımlayıcı kullanılarak 2005 yılında

Hu ve Davis tarafından otomotik plankton tanıma sistemi elde etmek amacıyla destek vek-

tör makinesi (SVM) eğitilmiştir [37]. Li ve diğerleri plankton sınıflandırmasının; sınıf içi

çeşitlilik, sınıflar arası büyük benzerlik ve gürültülü veriler sebebiyle zor bir problem oldu-

ğundan bahsetmiştir [38]. Yapılan çalışmada daha düşük boyutluluğa indirgenmiş tanımla-

yıcı kullanılmıştır ve sınıflandırıcı olarak ayrıştırma (diskriminant) analiz tekniğine dayalı
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ikili sınıflandırmanın ayrıştırılmasından ve istenmeyen bilgiler çıkarıldıktan sonra füzyon

kuralı kullanılarak birleştirilmesinden oluşan bir çözüm geliştirilmiştir. Ellen ve diğerleri

[39], zooplankton görüntüleri üzerinde birkaç farklı yöntem denemişlerdir ve aralarında en

iyi başarım sağlayan yöntemi bulmaya çalışmışlardır. Zooplankton veri kümesinde en iyi

performans gösteren algoritmalar gradyan destekli rastgele orman sınıflandırması (GBC) ve

destek vektör makinesi-radyal tabanlı fonksiyon (SVM-RBF) olarak belirlemişlerdir. İki al-

goritmanın birleştirilmesiyle zooplankton sınıflandırma sonucunun daha da iyileştiğini göz-

lemlemişlerdir [39]. Bi ve diğerleri [40], bulanık sulardan elde edilen görüntülerde her bir

görüntü içindeki plankton nesnelerini bulmak için bir segmentasyon prosedürü geliştirmiş ve

sınıflandırma için el yapımı özellikler kullanarak yarı otomotik plankton tanıma yaklaşımı

geliştirmişlerdir. Chang ve diğerleri [41], iki özellik çıkarma yöntemi olan hızlandırılmış

sağlam özellikler-temel bileşen analizi (SURF-PCA) ve yerel ikili görüntü-temel bileşen ana-

lizini (LPB-PCA) fitoplanktonu tanıma amacıyla birleştirmişlerdir. Algoritmada hesaplama

karmaşıklığını azaltmak ve yüksek sınıflandırma başarımı elde etmek için temel bileşen ana-

lizi (PCA) algoritmasını kullanmışlardır. Deneyleri birkaç sınıf içeren küçük bir veri kümesi

üzerinde gerçekleştirmişlerdir. Thi-Thu-Hong Phan ve diğerleri [42] fitoplankton sınıflandır-

ması için farklı özellik tiplerini ve sınıflandırıcıları incelemişlerdir. Kullanılan veri kümesi,

biyologlar tarafından etiketlenen her bir sınıfın 100 örnek içerdiği 7 sınıftan oluşmaktadır.

El yapımı özellikler olarak plankton uzunluğu, iç yapısı, klorofil pigmenti vb. özellikler kul-

lanılmıştır. K en yakın komşular, destek vektör makineleri, rassal orman sınıflandırıcıları

kullanılmıştır. Yapılan tüm deney sonuçlarında rassal orman sınıflandırıcısı %98.24’lük bir

puanla en iyi doğruluğa sahip sınıflandırıcı olarak tespit edilmiştir. Gloria Bueno ve diğerleri

[43] okyanustaki en yaygın plankton türü olan planktonları sınıflandırma amacıyla farklı el

yapımı tanımlayıcıları ve sınıflandırıcıları incelemişlerdir. İspanya’da toplanan, her sınıfta

ortalama 100 örnek bulunan ve toplam 80 sınıftan oluşan plankton veri kümesi kullanmış-

lardır. Morfolojik, istatiksel ve dokusal tanımlayıcılara ek olarak yerel ikili örüntü (LBP) ve

Gabor uygulamasından faydalanmışlardır. Torbalama karar ağaçları ve tanımlayıcı kombi-

nasyonları kullanarak %98.11 sınıflandırma doğruluğu elde etmişlerdir. Zheng ve diğerleri

[18], özelliklerin kombinasyonuna dayalı çoklu çekirdek öğrenme sınıflandırıcısına dayanan

otomatik plankton görüntü sınıflandırma sistemi önermiştir. Görüntüler ilk olarak kalitelerini

arttırabilmek amacıyla ön işlemeye tabi tutulmuştur. Geometrik, doku ve yerel özellikler ile

öznitelikler elde edilmiş sonrasında çoklu çekirdek sınıflandırma için en uygun öznitelikleri

bulmak amacıyla öznitelik seçimi gerçekleştirilmiştir.

Özellik tabanlı yöntemler tarafından çıkarılan özellikler veri kümesi bağımlıdır. Bu durum
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veri kümesi değiştikçe algoritmanın ve çıkarılan özelliklerin değişmesini gerektirmektedir.

Bundan dolayı esnek bir yapıya sahip değildir. Esnek otomotik plankton tanıma sistemleri

evrişimli sinir ağları ile yapılmaktadır. Bu husustan bir sonraki bölümde detaylı olarak bah-

sedilmiştir.

2.4.2. Evrişimli Sinir Ağı Tabanlı Plankton Tanıma

Görüntülerdeki planktonik parçacıkları otomatik olarak tespit eden ve kaydeden sistemler

son 20 yılda hızla gelişim göstermiştir. Bu sistemlere Video Plankton Kaydedici [44], Flo-

wCytobot [11], FlowCam [45] ve ZooProcess [13] vb. ekipmanlar örnek verilebilir. Gelişti-

rilen teknolojik ekipmanlar sayesinde plankton veri hacmi hızla büyümektedir. Planktonlar

besin zincirinin en alt basamağında yer almakta ve öncelikle su ekosistemindeki yaşam için

dolaylı olarak da diğer ekosistemdeki yaşamlar için kritik öneme sahiptir. Bundan dolayı elde

edilen verilerin en iyi şekilde kullanılarak en yüksek doğruluğa sahip plankton sınıflandırıcısı

elde edebilmek araştırmacılar için bir araştırma konusu olmuştur. Plankton tanıma ile ilgili

birçok çalışma mevcuttur. Son zamanlarda plankton tanıma çalışmalarındaki en son eğilim

derin öğrenmeye dayanmaktadır [46]. Sualtı görüntü analizi için en çok kullanılan yöntem-

lerden biri olan derin öğrenme sualtı deniz canlılarını algılama ve tanıma [47] [48] için ev-

rişimli sinir ağları (CNN) kullanmaktadır. Evrişimli sinir ağları (CNN) [49] optimal görüntü

özelliklerini ve sınıflandırma ağırlıklarını öğrenebilen, pikseller arasında uzamsal bağlam ve

ağırlık paylaşımını birleştiren insan görsel algılama mekanizmasına benzeyen çok katmanlı

sinir ağlarıdır [19]. Evrişimli sinir ağlarının Bölüm 2.4.1.’de bahsedilen öznitelik çıkarımı

tabanlı yöntemlere göre büyük bir avantajı üstün öznitelik çıkarma yeteneğidir. Öznitelik

çıkarımı tabanlı yöntemlerin veri kümesi bağımlı olan ve alanında uzmanlık gerektiren özni-

telik çıkarma ihtiyaçlarına kıyasla evrişimli sinir ağları (CNN) daha esnek ve kullanılabilir

bir yöntem sağlamaktadır. Bu açıdan evrişimli sinir ağı tabanlı derin öğrenme yaklaşımının

öznitelik çıkarımı tabanlı yaklaşımlardan daha üstün olduğu gösterilmiştir [50].

Derin öğrenme yöntemi kullanılarak sualtı görüntü analizinin yapıldığı en eski çalışmalar

2015 yılına kadar uzanmaktadır. 2015 yılında Kaggle platformunda plankton görüntü tanıma

sürecini otomotikleştirmek amacıyla bir veri bilimi yarışması olan Ulusal Veri Bilimi Kasesi

[17] düzenlenmiştir. Bu yarışmanın amacı planktonun gri tonlamalı görüntülerini 121 sınıf-

tan birine en yüksek doğruluğu elde ederek sınıflandırmaktı. Yarışmada kullanılan Kaggle
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veya NDSB [17] diye adlandırılan plankton veri kümesi, Florida Boğazı’nda ISIIS [27] kul-

lanılarak toplanan veri kümesinin bir alt kümesidir. Kaggle plankton veri kümesi [51] sınıf

dengesizliği veri sorunu olan, farklı plankton türlerine karşılık gelen 121 sınıf, 30.336 gri

tonlamalı etiketli veriden oluşmaktadır. Yaklaşık 130.400 görüntü etiketsiz bir şekilde test

verisi olarak paylaşılmıştır.

Yarışmanın kazananı [52], sualtı kamerası ile elde edilen plankton görüntülerinin doğru bir

şekilde sınıflandırılmasını gerçekleştirmek amacıyla DeepSea adlı bir derin öğrenme mima-

risi geliştirmiştir. DeepSea, döngüsel çeşitliliğe karşı dayanıklılığını arttırmak için tasarlan-

mış ve mevcut ağ mimarilerine kolayca eklenebilen dört yeni katman kullanarak rotasyona

karşı daha dayanıklı bir çerçeve sunmuştur. Bu çalışmada veri kümesi, doğrulama ve eğitim

kümesi olarak sırasıyla 3,037 ve 27,299 görüntüye bölünmüştür. Etiketsiz olarak paylaşılan

130.400 görüntü test verisi olarak kullanılmıştır. DeepSea mimarisi ile birçok model eğitil-

miş ve en iyi sonuç yaklaşık 40 farklı modelin topluluğundan elde edilmiştir. Bu çalışma ile,

doğrulama kümesinde yaklaşık %82 oranında doğruluk ve %98’in üzerinde ilk 5 doğruluk

elde ederek yarışmada ilk sırada yer almışlardır. 2016 yılında Py ve diğerleri [53] plank-

ton sınıflandırması için GoogleNet’ten ilham alan derin sinir ağı modeli önermiştir. Öne-

rilen modelde, derin sinir ağlarında derine inerken başarım kaybının azaltılması amacıyla

üç yaklaşım sunmuşlardır. Bu çalışma ile, her bir evrişim katmanı için öğrenme kapasitesi

c-metriği ölçümüyle hesaplanmış ve daha karmaşık yapıları öğrenebilmesi için belirli bir

seviyede öğrenme kapasitesi garanti etmişlerdir. İkinci katkı olarak, ilk evrişimli katmanın

alıcı alanının giriş görüntüsünden daha büyük olmaması sağlanmıştır. Bu özellik, ağın bilgi

kaybını azaltmış ve üst düzey özellikleri öğrenmesini sağlamıştır. Son katkı olarak çeşitli

boyutlardaki plankton görüntülerinin sınıflandırma başarımını arttırmak için başlangıç kat-

manı geliştirmişler ve bu katman ile 32x32, 48x48, 64x64, 96x96 ve 128x128 boyutlarında

giriş görüntüsünden çok ölçekli özellikler çıkarmışlardır. Py ve diğerleri [53] elde ettikleri

modelin deneylerini Kaggle plankton veri kümesinde gerçekleştirmiş ve softmax kayıp met-

riği kullanarak diğer ağlar ile sonuçlarını karşılaştırmışlardır. Önerilen model, GoogleNet ve

VggNet’den daha düşük softmax kaybına sahiptir. Cui ve Lui [54], otomotik plankton sı-

nıflandırma sistemine derin kalıntı ağlarını Kaggle veri kümesi kullanarak uygulamışlardır.

Deneysel sonuçlarda ilk 5 doğruluğu 0.958 ve ilk 1 doğruluğu 0.731 olarak belirtmişlerdir

ve derin kalıntı ağlarının daha iyi bir şekilde genelleştirme yaptığını ve derin sinir ağlarının

önemini vurgulamışlardır. Jiangpeng Yan, Xiu Li ve Zuoying Cui [55] plankton sınıflandır-

ması için farklı ağ mimarilerini keşfederek daha verimli model elde etmeye odaklanmıştır.

CaffeNet, VggNet-19 ve ResNet gibi değişen sayıda katmana sahip ağlar kullanmışlardır.
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1000 sınıf içeren ILSVRC2012 veri kümesi ile önceden eğitilmiş modeller kullanarak ince

ayar yöntemi uygulamışlar ve Kaggle veri kümesi üzerinde sınıflandırma sonuçlarını iyileş-

tirmeyi amaçlamışlardır. Paylaşılan deney sonuçlarına göre, daha küçük (yalnızca 1,5 MB),

daha hızlı (32.2 fps) ve %96’lık bir ilk 5 doğruluğa sahip daha verimli bir ağ mimarisi elde

etmişlerdir.

Lumini ve Nanni [19], 2019 yılında yaptıkları çalışmada farklı derin öğrenme yöntemlerinin

birleştirilmesine dayanan otomotik bir plankton tanıma sistemi hakkında detaylı bir çalışma

sunmuştur. Bu çalışmada, derin öğrenilmiş birçok model kullanılarak ince ayar yöntemi ve

aktarım öğrenmesi yöntemleri ayrı ayrı incelenmiştir. Sınıflandırıcı topluluğu tasarlanması

için, farklı eğitim yöntemleri ve yaklaşımlarını değerlendirmişlerdir. Çalışma kapsamında;

AlexNet, GoogLeNet, InceptionV3, VGG16, VGG19, ResNet50, ResNet101, DenseNet ve

SqueezeNet olmak üzere toplam dokuz farklı ağ ve füzyonlarını karşılaştırmışlardır. Eğitim

veri sayısının az olması nedeniyle aşırı uyumu (overfitting) önlemeye yardımcı olan akta-

rım öğrenmesi yöntemini kullanmışlardır. Görüntülerde ön işleme yöntemleri olarak kare

ve boşluk ekleme yöntemlerini kullanmışlardır. Ayrıca aktarım öğrenmesinde en iyi özellik

vektörlerini çıkaracak katmanları seçmek için destek vektör makinesi kullanan "sıralı kayan

ileri seçim" (SFFS) yöntemini [56] kullanmışlardır. Deneyleri, plankton veri kümesi olarak

en iyi bilinen Kaggle, ZooScan ve WHOI veri kümelerinde gerçekleştirmişlerdir. Kaggle veri

kümesi, 121 plankton sınıfından oluşmaktadır. Fakat bu çalışmada, [18] çalışmasında kulla-

nıldığı gibi 100’den daha fazla görüntüye sahip 38 sınıf seçilerek 14.374 görüntüden oluşan

Kaggle veri kümesinin bir alt kümesi kullanılmıştır. Seçilen sınıfların her birinde min 108,

max 1979 görüntü bulunmaktadır. Bu yöntemle kontrollü bir şekilde seçilen sınıf eğitimle-

rinde başarım oldukça pozitif etkilenmiştir. Kaggle veri kümesi ile araştırma yapılırken bu

husus göz önüne alınarak sonuçlar karşılaştırılmalıdır. Bu çalışmada, deneyler sonucunda en

iyi ağın DenseNet olduğuna karar verilmiş ve topluluk yönteminin başarımı arttırdığı göz-

lemlenmiştir. Deney sonuçlarında F1-Skor parametresi kullanılarak karşılaştırma yapılmıştır.

Lee ve diğerleri [33], 3 milyondan fazla veriye sahip ve sınıf dengesizliği olan WHOI plank-

ton veri kümesinde sınıf dengesizliği probleminin üstesinden gelmek amacıyla aktarım öğ-

renmesi tabanlı evrişimli sinir ağı modeli önermiştir. Sınıf dengesizliği problemini çözmek

amacıyla veri kümesinde bulunan büyük veriye sahip sınıflar için veri eşiklemesi ile sınıf nor-

malleştirilmiş veriler oluşturmuşlar ve normalleştirilien verilerle evrişimli sinir ağı modelini

eğitmişlerdir. Bu şekilde, küçük boyutlu sınıfların doğruluk oranlarını arttırmışlardır. Eğiti-

len modeli kullanarak orijinal tam verilerle evrişimli sinir ağını tekrar eğitmişlerdir. Önerilen
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model ile hem az veriye sahip olan sınıflarda, hem de fazla veriye sahip olan sınıflarda ba-

şarım korunmuştur. Dai ve diğerleri [57], 2017 yılında yaptıkları çalışmada evrişimli sinir

ağına girdi olarak orijinal görüntüyü ve iki ön işleme işlemine tabi tutulmuş versiyonunu

alan hibrit 3 kanallı CNN yöntemi önermişlerdir. WHOI-plankton veri kümesinin 1000’den

fazla örnek içeren 30 sınıfını alarak yeni bir veri alt kümesi oluşturmuşlardır. Görüntülerden

yerel ve genel özellikler elde etmek amacıyla ön işleme yöntemlerini kullanmışlardır. Elde

ettikleri hibrit yapıyı AlexNet ve GoogleNet üzerinde deneyerek yaklaşık %1 başarım artışı

bildirmişlerdir.

Plankton sınıfları farklı şekillere sahiptir ve benzer şekillere sahip olan sınıflar dokuda fark-

lılık göstermektedir. Bu nedenle Jinna Cui, Bin Wei ve diğerleri [58], plankton sınıflandır-

masında doğruluk oranını arttırmak için birden fazla özellik kullanımının faydalı olabilece-

ğini düşünmüştür. Plankton sınıflandırması için görüntü ön işleme yöntemlerinden biri olan

Gauss filtreleme yöntemi ile elde edilen farklı girdileri birleştirmişlerdir. Elde edilen görün-

tüleri, AlexNet evrişimli sinir ağında eğitmişlerdir. Önerilen model %94.32’lik bir sınıflan-

dırma başarımına sahiptir. Ön işleme uygulanmamış orijinal görüntüler üzerinde başarımı

%93.58 olarak elde etmişlerdir. Model azınlık sınıflarında daha iyi performans göstermiştir.

Farklı boyutlardaki görüntülerde plankton tanıma [59] adlı çalışma 2021 yılında yayımlan-

mıştır. Evrişimli sinir ağı tabanlı yöntemler girdi olarak sabit boyutlu görüntü kabul etmekte-

dir. Bu nedenle, plankton tanıma yöntemlerinin çoğunluğu ilk aşama olarak görüntüyü yeni-

den boyutlandırmaktadır. Fakat bu yöntem en boy oranı çok çeşitli boyutlarda olan plankton

veri kümesinde bilginin kaybolmasına neden olmaktadır. Bu çalışmada plankton görüntü bo-

yutundaki en-boy oranındaki aşırı çeşitliliği ele alan çeşitli yaklaşımlar incelenmiştir ve dört

yöntem denenmiştir: uzamsal piramid havuzu, meta veri dahil etme, yama kırpma ve çoklu

akış (multistream) ağları. Çoklu akış ağları ve yama kırpma yöntemlerini birleştirerek daha

yüksek doğruluk oranına sahip sonuçlar elde etmişlerdir. Tablo 2.4.’te yayın adı, kullanılan

veri kümesi, veri sayısı, sınıf sayısı, sonucun değerlendirildiği metrik ve sonuç bilgilerini

içeren literatür özet tablosu paylaşılmıştır.
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Tablo 2.4. Literatür Özet Tablosu

Yayın Adı Kullanılan Veri Kümesi #Veri #Sınıf Sonuç Tipi Sonuç

[58] WHOI
30.000 30

Doğruluk
%96.58

3.6 milyon 103 %94.32

[57] WHOI 30.000 30 Doğruluk %96.3

[33] WHOI 3.6 milyon 103 Doğruluk %92.8

[54] Kaggle-plankton 30.336 121 Top-1 Doğruluk %73.1

[19]

Kaggle-plankton 14.374 38 %92.6

ZooSCan 3771 20 F-Ölçütü %90

WHOI 6600 22 %95

[53] Kaggle-plankton 30.336 121 Softmax Kaybı 0.61

[55] Kaggle-plankton 30.336 121 Top-1 Doğruluk %76.4

[18]

Kaggle-plankton 14.374 38 %76.9

ZooSCan 3771 20 F-Ölçütü %82.1

WHOI 6600 22 %88.3

Bu bölümde plankton görüntüleme sistemlerinden, plankton taksonomisinden ve plankton

tanıma için kullanılan veri kümeleri ve plankton sınıflandırması ile ilgili yapılan çalışma-

lardan bahsedilmiştir. Plankton sınıflandırma amacıyla izlenen adımlar özetle: plankton veri

kümesinin belirlenmesi, plankton veri kümesinin iyileştirilmesi için görüntüye ön işleme uy-

gulanması, sınıflandırma algoritmasının seçimi, seçilen modelin belirlenen veri kümesiyle

eğitilmesi, eğitim sonucunda elde edilen modelin değerlendirilmesi için metrik belirlenmesi

ve belirlenen metrik ile test kümesi kullanılarak sonuçların değerlendirilmesi adımlarından

oluşmaktadır.
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3. EVRİŞİMLİ SİNİR AĞLARI

3.1. Sinir Ağları Katmanları ve Yapıları

Karmaşık problemleri çözmek için yaygın olarak kullanılan evrişimli sinir ağları derin özel-

lik çıkarmada ve sınıflandırmada kullanılan derin öğrenme yaklaşımıdır. Evrişimli sinir ağları

ilk olarak 1980 yılında Fukushima [60] tarafından kavramsallaştırıldı. Fukushima temel bir

görüntü tanıma sinir ağı olan neocognitron’u icat etti. Yann LeCun ve arkadaşları [61], bu

çalışmanın üzerine inşa ederek geri yayılım öğrenme algoritmasını uyguladı ve evrişimli si-

nir ağlarının temelini atmış oldu. Evrişimli sinir ağları geleneksel yöntemlerde elle tasarlanan

özellikleri/filtreleri yeterli eğitimle öğrenme yeteğine sahiptir. Görüntü içeriği için daha yük-

sek temsiller çıkarılmasına izin veren evrişimli sinir ağları, görüntü özelliklerinin uzmanlar

tarafından tanımlandığı klasik yöntemlerin aksine, görüntünün ham piksellerini alır, modeli

eğitir ve daha iyi sınıflandırma için özellikleri otomatik çıkarır.

Şekil 3.1. Örnek CNN Mimarisi [1]

Evrişimli sinir ağı çeşitli sıralı katmanlardan oluşmaktadır. Şekil 3.1.’de örnek katman yapısı

gösterilmiştir. Evrişim katmanları, havuz katmanları ve tam bağlantılı katmanlar evrişimli

ağlarda kullanılan ortak katmanlardır. Evrişimli sinir ağları insan görme sisteminden esin-

lenmiştir. Farklı katman türleri görsel kortekste bulunan çeşitli hücrelere benzetilebilir [62].

Bu bölümde CNN’ler tarafından kullanılan katmanlar, fonksiyonlar ve ağ yapılarından de-

taylı olarak bahsedilecektir.
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3.1.1. Evrişimsel Katmanlar

Evrişim katmanları, evrişimli sinir ağlarında mimariye de adını veren en önemli katman tü-

rüdür. Evrişimli sinir ağları, katmanlarından en az birinde evrişimsel katman olarak adlandı-

rılan evrişim işlemi kullanılarak veri işlenmesi için tasarlanmıştır. İki boyutlu görüntüler için

evrişim işlemi denklem 1’de paylaşılmıştır. Denklem 1’de yer alan parametrelerde s(i, j) :

piksel satırı i ve piksel sütunu j’de bir evrişim işlemi, K: evrişimsel filtre, I: giriş görüntüsü,

m: filterinin satır sayısı ve n: filtrenin sütun sayısını ifade etmektedir.

s(i, j) = (I ∗K)(i, j) =
k∑

m=−k

k∑
n=−k

I(m,n)K(i−m, j − n) (1)

Renkli görüntülerin kırmızı, yeşil ve mavi olmak üzere üç kanalı bulunmaktadır. Her bir

kanal iki boyutlu bir matris ile tanımlanmaktadır. Evrişimli katmanın girişi üç boyutlu bir

matristir. Çıktısı iki boyutlu özellik haritaları ve bu katman için filtre sayısı n ise nx3 boyutlu

matristir. Her filtre bir özellik haritası üretmektedir. Filtreler giriş görüntüsünün boyutundan

daha küçük boyuta sahiptir, giriş görüntüsü boyunca sol üstten başlayarak sağ alta doğru

kayar [63]. Şekil 3.2.’de filtre giriş vektörünün sol üst kısmında çizdirilmiştir. 3x3 filtre kul-

lanılarak filtre sol üst köşedeki giriş vektörüne yerleştirildiğinde evrişim katmanının nasıl

çalıştığına dair örnek Şekil 3.2.’de verilmiştir. Yalnızca bir giriş verisi kanalına sahip tek

bir 3×3 filtre için 2D evrişim işlemi örneği Şekil 3.3.’te verilmiştir. Filtre pencere boyunca

hareket ettirilerek azaltılmış uzamsal genişleme çıktısı üretilir.
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Şekil 3.2. Filtre sol üst köşedeki giriş vektörüne yerleştirildiğinde evrişim katmanının nasıl
çalıştığına dair örnek [2].

Şekil 3.3. 3 × 3 Çekirdek (Kernel) için 2D-Evrişim-İşlemi örneği
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Modelin karmaşıklığını azaltmak amacıyla çıktıyı optimize etmek için evrişim katmanları üç

hiperparametre kullanır.

Derinlik (depth): Derinliğin kontrol edilebilmesi avantajlı olmasına rağmen azaltılmasıyla

birlikte nöron sayısı en aza indirgenir ve modelin örüntü tanımadaki etkinliğinin azaltılma-

sına sebebiyet verebilir.

Adım (step): Adım filtrenin girdi üzerinde ne kadar kaydırılarak hareket ettirildiğinde ilgili

olan parametredir. Ne kadar yüksek olursa çıktı için daha az örtüşme miktarı ve daha az

uzamsal boyutluluk elde edilmesini sağlar. Ne kadar düşük olursa filtre daha az kaydırılır ve

daha yüksek uzamsal boyutluluk elde edilir.

Sıfır Doldurma (Zero padding): Giriş sınırını doldurmanın ve çıktı hacminin (uzaysal bo-

yutluluğun) kontrolünün temel yöntemidir [2].

Evrişim katmanının çıktısının uzamsal boyutu denklem 2 ile hesaplanmaktadır.

UzamsalBoyut =
(V −R) + 2z

S + 1
(2)

Denklem 2’de V değeri giriş hacim boyutunu, R değeri alıcı alan boyutunu, z değeri sıfır

dolgu miktarını ve S değeri adım miktarını temsil etmektedir.

3.1.2. Havuz Katmanları

Havuzlama katmanı[1] özellik haritalarının boyutsallığını azaltmada kritik rol oynamakta-

dır. Bu katman sayesinde parametre miktarı ve hesaplama süresi azaltılır ve sonraki katman

özellik haritalarının daha küçük bir versiyonunu girdi olarak alır. Maksimum havuzlama ve

ortalama havuzlama en çok kullanılan iki yöntemdir. Maksimum havuzlama, filtrenin alıcı

alanında bulunan maksimum değeri hesaplar ve ortalama havuzlama, alıcı alanındaki değer-

lerin ortalamasını hesaplar. Ortalama havuzlama denklem 3 ile ifade edilebilir:

si =
1

n

n∑
i∈Rj

hj (3)
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burada h, alt bölgedeki Rj özellik eşlemesinden bir pikseldir ve n, alt örneklemenin gerekli

olduğu alt bölgedeki özellik sayısıdır. Maksimum havuzlama denklem 4 ile ifade edilebilir:

si = max
i∈Rj

hi (4)

Şekil 3.4.’te yer alan (a) görüntü piksel değerlerini, (b) her bir renkli bölgedeki ortalama

havuzlama sonucu, (c) her bir renkli bölgedeki maksimum havuzlama sonucunu ifade et-

mektedir.

Şekil 3.4. Maksimum ve Ortalama Havuzlama Örneği

3.1.3. Tamamen Bağlı Katmanlar

Tamamen bağlı bir katmanın görevi evrişimli katman ve havuzlama katmanından girdi kabul

etmek ve nihai sınıflandırma kararını veya her bir sınıf etiketi için nihai olasılıkları tahmin et-

mektir. Tam bağlantılı katmandaki bağlantılar eğitilebilir ağılıklara sahiptir ve çıkış düğümü-

nün çıkış değeri, girişlerinin ve yanlılık (bias) değerinin ağırlıkları toplamıdır. Evrişimli kat-

man ve havuzlama katmanı bir görüntüden öznitelikleri çıkarır ve sonrasında tamamen bağlı

katmanlar, çıkarılan bu özniteliklere dayalı olarak sınıflandırma gerçekleştirir. Bu nedenle

bir CNN’in son katmanlarında tamamen bağlı katmanlar bulunmaktadır. Evrişimli katman-

lardan elde edilen çıktı yüksek seviyedeki özellikleri temsil eder, anlamlı düşük boyutludur.

Eklenen tamamen bağlı bir katman, bu özelliklerin doğrusal olmayan kombinasyonlarının
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da öğrenilmesini sağlar. Tam bağlantılı katmandaki bağlantıların gösterimi Şekil 3.5.’de su-

nulmuştur. Şekil 3.5.’de görüldüğü gibi katmandan katmana tüm olası bağlantılar mevcuttur,

giriş vektörünün her girişi çıkış vektörünün her çıkışını etkilemektedir. Ancak tüm ağırlıklar

tüm çıkışları etkilemez. Şekill 3.5.’deki çizgilere bakıldığında mavi çizgilerin katmanın ilk

nöronunu temsil ettiği görülür. Bu nöronun ağırlıkları sadece Çıkış 1’i etkilemektedir. Çıkış

2, 3, 4, 5 ve 6’yı etkilemez.

Şekil 3.5. Tamamen bağlantılı bir katmandaki bağlantıların gösterimi.
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3.1.4. Aktivasyon Fonksiyonu

Aktivasyon fonksiyonları ağa doğrusal olmayan problemleri çözme imkanı veren, sinir ağı-

nın ana parçasıdır. Aktivasyon fonksiyonunun olmadığı veya doğrusal aktivasyon fonksiyo-

nunun olduğu durumlarda sinir ağı sadece doğrusal problemleri çözebilir. Doğrusal olmayan

aktivasyon fonksiyonu ile birlikte sinir ağları yeterli katman ve nörona sahip olduğu sürece

herhangi bir doğrusal olmayan işlevi öğrenebilir. Aktivasyon fonksiyonunun türevlenebilir

olması gerekir. Türevlenebilir olmadığı durumlarda, geri yayılım algoritması gradyanı he-

saplayamadığı için çalışmayacaktır. Aktivasyon fonksiyonunun seçimi, sinir ağının kapa-

sitesi ve performansı üzerinde büyük bir etkiye sahiptir ve farklı aktivasyon fonksiyonları

kullanılabilir. Bu bölümde farklı aktivasyon fonksiyonlarından bahsedilecek, avantajları ve

dezavantajları incelenecektir.

Sigmoid Fonksiyonu

Sigmoid fonksiyonu herhangi bir değeri girdi olarak alır ve çıktı olarak 0 ile 1 arasındaki de-

ğerleri verir. Girdi ne kadar büyükse 1’e daha yakın olur, ne kadar küçükse 0’a o kadar yakın

olur. Matematiksel olarak sigmoid fonksiyonunun orijinali denklem 5 ve türevi denklem 6

ile ifade edilmektedir:

f(x) =
1

1 + e−x
(5)

f ′(x) = f(x)(1− f(x)) (6)

x ∈ (−∞,∞) (7)

f(x) ∈ (0, 1) (8)

Sigmoid fonksiyonu, denklem 7’de verilen aralıkta bir x değerini girdi olarak alır ve aldığı

bu girdi değerini denklem 8’de verilen birim aralığındaki değere dönüştürür. Sigmoid fonk-

siyonu çıktı olarak olasılık tahmini yapacak modeller için yaygın olarak kullanılır. Herhangi

bir şeyin olasılığı 0 ile 1 değeri arasında olduğundan sigmoid fonksiyonu avantaja sahip bir

fonksiyondur. Sigmoid fonksiyonu türevlenebilir bir fonksiyondur, düzgün bir gradyan sağ-

lamakta ve sıçramaları önlemektedir. Şekil 3.6.’da sigmoid fonksiyonu ve türevinin grafiği

verilmiştir. Türev grafiğinde gradyan değerleri sadece -3 ve 3 arasında önemlidir bu aralık
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dışındaki değerler çok küçük gradyanlara sahiptir. Gradyan değeri 0’a yaklaştıkça ağ öğren-

meyi durdurmakta ve kaybolan gradyan (vanishing gradient) problemine sebep olmaktadır.

Sigmoid fonksiyonunun bir diğer dezavantajı fonksiyon çıktısının orijin noktasına göre si-

metrik olmamasıdır. Nöron çıktıları aynı işarete sahiptir ve bu durum ağın eğitimini daha

kararsız ve zor hale getirmektedir.

Şekil 3.6. Sigmoid fonksiyonu (sol) ve türevi (sağ) [3]

Tanh (Hiperbolik Tanjant) Fonksiyonu

Tanh fonksiyonu sigmoid fonksiyonuna benzer şekilde S şekline sahiptir. Herhangi bir girdi

değeri aldığında -1 ve 1 çıkış aralığında değer vermektedir. Çıkış değeri girdi büyüdükçe 1’e

küçüldükçe -1’e yaklaşmaktadır. Matematiksel olarak tanh fonksiyonunun orijinali denk-

lem 9 ve türevi denklem 10 ile ifade edilmektedir:

f(x) =
2

1 + e−2x
− 1 (9)

f ′(x) = 1− f(x)2 (10)

Tanh fonksiyonun orijinali ve türevi Şekil 3.7.’de verilmiştir. Tanh fonksiyonu orijin mer-

kezlidir. Çıktı değerleri negatif, pozitif veya nötr şekilde eşlenebilir. Bu durum bir sonraki

katman için verileri merkezlemesi sebebiyle öğrenmeyi daha kolay hale getirmektedir. Tanh

fonksiyonunun gradyan grafiği sigmoid fonksiyonunun gradyan grafiğine benzemekte ve
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aynı şekilde kaybolan gradyan problemine sebep olmaktadır. Tanh fonksiyonunun sigmoid

fonksiyonuna göre en önemli avantajı orijin merkezli olmasıdır. Gradyan grafikleri benzer

şekilde olsa da tanh fonksiyonu sigmoid’e göre daha tercih edilebilir konumdadır.

Şekil 3.7. Tanh fonksiyonu (sol) ve türevi (sağ) [3]

Doğrultulmuş Lineer Birim (Rectified Linear Unit - Relu) Fonksiyonu

Relu, rektifiye edilmiş, doğrultulmuş doğrusal birim anlamına gelmektedir. İsminden dolayı

doğrusal bir işlev izlenimi vermesine rağmen Relu türev işlevine sahiptir. Nöronlar aynı anda

etkinleştirilmemektedir. Sadece doğrusal dönüşümün çıktısı 0’dan küçükse devre dışı bıra-

kılmaktadır. Matematiksel olarak Relu fonksiyonunun orijinali denklem 11 ve türevi denk-

lem 12 ile ifade edilmektedir:

fReLU(x) = max(0, x) (11)

f ′ReLU(x) =

{
0, x < 0

1, x ≥ 0
(12)

Relu fonksiyonun orijinali ve türevi Şekil 3.8.’de verilmiştir. Fonksiyonun avantajlarından

biri belirli sayıda nöronu aktive edip diğer nöronları pasifleştirdiğinden hesaplama açısından

çok daha verimlidir. Relu’nun diğer bir avantajı, satüre olmama özelliği sayesinde, kayıp
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fonksiyonunun global minimuma doğru gradyan iniş yakınsamasını hızlandırmasıdır. Fonk-

siyonun dezavantajlarından biri grafiğin negatif kısmında gradyanının sıfır olmasıdır. Bu ne-

denle geri yayılım sürecinde bazı nöronların ağılıkları ve yanlılıkları (bias) güncelleneme-

mektedir. Bu durum aktive olmayan ölü nöronlara neden olmaktadır. Yaşanılan bu soruna

“ölen Relu (dying Relu)” sorunu denilmektedir.

Şekil 3.8. Relu fonksiyonu (sol) ve türevi (sağ) [3]

Sızıntı Relu (Leaky Relu) Fonksiyonu

Sızıntı Relu, Relu’nun sahip olduğu “ölen Relu” problemini çözmek amacıyla Relu’nun ge-

liştirilmiş bir versiyonudur. Matematiksel olarak sızıntı Relu fonksiyonunun orijinali denk-

lem 13 ve türevi denklem 14 ile ifade edilmektedir:

fLReLU(x) =

{
αx, x < 0

x, x ≥ 0
(13)

f ′LReLU(x) =

{
α, x < 0

1, x ≥ 0
(14)

Sızıntı Relu fonksiyonun orijinali ve türevi Şekil 3.9.’da verilmiştir. Sızıntı Relu negatif giriş

değerleri için geri yayılımı etkinleştirmektedir. Relu’dan farklı olarak yapılan bu değişimle

negatif değerlerin gradyanları sıfır olmayan bir değer olarak elde edilmektedir. Dezavantajı
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tahminlerin negatif giriş değerleri için tutarlı olmama ihtimaline sahip olmasıdır. Negatif

değerleri için elde edilen gradyan, model parametrelerinin öğrenilmesini zaman alıcı hale

getiren küçük bir değerdir.

Şekil 3.9. Sızıntı Relu fonksiyonu (sol) ve türevi (sağ) [3]

3.1.5. CNN Mimarileri

Evrişimli sinir ağı inşa etmek, oluşturmak oldukça zor bir iştir [64]. Bireysel veri kümeleri

gözlemlenen özellikler itibariyle farklılık gösterdiğinden ilerlemek için altın bir kural yoktur.

Bu sebeple belirli bir ağ yapısına ihtiyaç vardır. Evrişimli sinir ağı inşa etmek için mevcut

çözümlerden gelen belirli kurallar vardır, bu çözümler zaman içinde ispatlanmıştır. Tipik

bir evrişimli sinir ağı yapısı evrişimli katman, havuzlama katmanıyla başlar ardından tam

bağlantılı katman ile devam eder. Son olarak çıktı katmanıyla tamamlanır. Evrişim katman-

larında çoğunlukla 3x3, 5x5, 7x7 boyutlarında filtreler kullanır. Aktivasyon fonksiyonları

derin ağlarda daha iyi performans gösterdiği bilinen Relu fonksiyonunun modifikasyonları-

dır. Evrişimli sinir ağlarının en yaygın örneklerinden bazıları ResNet-50 [65], Inceptionv3

[4], VGG-16 [66], DenseNet [67], InceptionResNetv2 [68] detaylı olarak incelenecektir.

ResNet-50

ResNet ağı artık ağ anlamına gelmektedir. He ve diğerleri tarafından 2015 yılında ‘Görüntü

Tanıma için Derin Kalıntı Öğrenme’ [65] başlıklı araştırma makalesinde tanıtılan yenilikçi
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bir ağdır. ImageNet test kümesinde %3.57 hata oranıyla ILVRSC yarışmasının sonucunda

ilk sırada yer almıştır. ResNet’in farklı katman sayısına sahip, aynı konsept üzerinde çalı-

şan birçok çeşidi bulunmaktadır. ResNet-50, elli sinir ağı katmanına sahip bir ağdır. ResNet

ağının tasarımıyla birlikte derin sinir ağlarında daha iyi bir performans elde etmek mümkün

hale gelmiştir. Derin evrişimli sinir ağlarında katman sayısı arttıkça farklı katmanlar çeşitli

görevler için eğitilebildiğinden bu görev farklılaşması karmaşık sorunların daha verimli bir

şekilde çözülmesine yardımcı olur. Sinir ağının katman sayısı arttıkça doğruluk seviyesi önce

doygun hale gelir ve sonrasında düşebilir. Derin ağlar ile eğitilen bir modelin performansı

eğitim ve test verilerinde bozulabilmektedir. Yaşanılan bu problem aşırı uyumdan (overfit-

ting) kaynaklı bir sonuç değildir. Bu problem kaybolan veya patlayan gradyandan (vanishing

or exploding gradients) kaynaklanmaktadır. ResNet ağının çözüm bulduğu kısım bu prob-

leme ışık tutmaktadır. ResNet ağı modelin doğruluğunu arttırmak için artık bloklardan fay-

dalanmaktadır ve artık blokların merkezinde kısayol bağlantıları bulunmaktadır. Kullanılan

bu yöntemler sayesinde ResNet ağı ile birlikte parametre sayısı ve hesaplama karmaşıklığı-

nın artmaması sağlanmış ve kaybolan gradyan sorunu azaltılmıştır. Şekil 3.10.’da örnek artık

blok gösterilmiştir. Kısayol bağlantısı bir veya daha fazla katmanı atlamaktadır ve ardından

ağa Şekil 3.10.’da gösterildiği gibi eklenmektedir. Kısayol bağlantısı ile birlikte, daha iyi

performans sağlayan daha derin modeller oluşturmak mümkün hale getirilmiştir.
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Şekil 3.10. ResNet50 Artık (Residual) Blok Örneği
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Inceptionv3

Inception ağı CNN’in gelişmesinde önemli bir rol oynamıştır. Öncesinde yapılan çalışma-

larda evrişimli sinir ağları daha iyi performans elde edebilmek için katmanlarını derinleştir-

miştir. Inception ağı hız ve başarımı aynı anda sağlamak amacıyla farklı yöntemler uygu-

lamıştır. Inceptionv3, temel olarak önceki ağ mimarilerini değiştirerek daha az hesaplama

gücü kullanmaya odaklanmıştır. 2015 yılında ‘Bilgisayarlı Görü için Inception Mimarisini

Yeniden Düşünmek’ başlıklı makalede önerilmiştir [4]. Inceptionv3 ağının mimarisinin aşa-

malarından detaylı olarak aşağıda bahsedilmiştir:

• Faktörleştirilmiş Evrişimler: Ağda yer alan parametrelerin sayısını azaltmaktadır. Bu

nedenle ağın verimliliğine katkı sağlamaktadır.

• Daha Küçük Evrişimler: Kullanılan filtre boyutunun değiştirilmesi daha hızlı eğitim

elde edilmesine olanak sağlar.

• Asimetrik Evrişimler: Asimetrik evrişimler, görüntünün x ve y eksenlerini ayrı ayrı

alarak çalışır. (1×n) filtresinden önce bir (n×1) filtre ile bir evrişim gerçekleştirilmesi

örnek olarak verilebilir. 5 × 5 evrişimi, 1 × 5 evrişim ve ardından 5 × 1 evrişim ile

değiştirilebilir.

• Yardımcı Sınıflandırıcı: Eğitim sırasında katmanlar arasına yerleştirilen küçük bir ev-

rişimdir. Oluşan kayıp ana ağ kaybına eklenir.

• Grid Boyutunun Küçültülmesi: Özellik haritalarının grid boyutunu azaltmak için gele-

neksel olarak maksimum havuzlama veya ortalama havuzlama kullanılır. Inceptionv3

modelinde, grid boyutununun azaltılması amacıyla ağ filtrelerinin aktivasyon boyutu

genişletilir. Örneğin, k filtreli n x n grid, 2k filtreli n/2 x n/2 gridle sonuçlanır. İki

paralel evrişim bloğu ve havuzlama birleştirilerek yapılır.

Şekil 3.11.’de Inceptionv3 ağ mimarisi gösterilmiştir. Inceptionv3 ağını oluşturan bi-

rimler renkler ile belirtilmiş ve her bir bloğun içerdiği birimler görselleştirilmiştir.
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Şekil 3.11. Inceptionv3 Ağ Mimarisi [4]

VGG-16

VGG-16, Simonyan ve Zisserman [66] tarafından geliştirilmiştir. 16 katmandan oluşan temel

bir sıralı evrişimli ağ modelidir. 2014 yılında ImageNet yarışmasında (challenge) uygulan-

mıştır. ImageNet [69] 1000 sınıfa ait 14 milyondan fazla görüntüye sahip bir veri küme-

sidir. VGG-16 ağı, ImageNet üzerinde %92,7 ilk 5 test doğruluğu elde etmiştir. VGG-16

ağı, büyük çekirdek boyutlu filtreleri birinci ve ikinci katmanında birden fazla 3x3 çekirdek

boyutunda filtreyle değiştirerek AlexNet ağı üzerinde iyileştirme yapmıştır. Şekil 3.12.’de

VGG-16 ağının mimarisi verilmiştir. VGG-16 mimarisi; evrişim (convolution), havuzlama

(pooling), tamamen-bağlı (fully-connected) katmanlarından oluşmaktadır.

Şekil 3.12. VGG-16 Ağ Mimarisi
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DenseNet

CNN’lerin derinleşmesiyle ortaya çıkan problemi giderebilmek amacıyla DenseNet ağı [67]

önerilmiştir. Problemin ana nedeni giriş katmanından çıkış katmanına kadar olan bilgi yo-

lunun oldukça büyük olması ve bilgilerin diğer tarafa ulaşmadan önce kaybolabilmesidir.

DenseNet ağı, diğer mimarilerde tanıtılan katmanlar arasındaki bağlantı modelini basite in-

dirgemiştir. DenseNet ağında maksimum bilgi ve gradyan akışı sağlanarak sorun gideril-

miştir. Bu akışı sağlamak amacıyla her katman doğrudan birbirine bağlanmıştır. DenseNet

yazarları, oluşturdukları mimariyi derinleştirmek yerine özelliklerin yeniden kullanımı yo-

luyla ağın potansiyelinden yararlanmışlardır. Şekil 3.13.’te DenseNet ağ mimarisi verilmiş-

tir. DenseNet mimarisinin verildiği Şekil 3.13.’te verilen yoğun bloklar (dense blocks), n

adet yoğun katmandan oluşmaktadır. Blok içinde yer alan her bir yoğun katman, önceki kat-

manlardan özellik haritalarını almaktadır ve çıktılarını tüm katmanlara iletmektedir. Yoğun

katman (dense layer), 1x1 ve 3x3 olmak üzere iki farklı evrişim işleminden oluşmaktadır.

1x1 evrişim işleminde özellik çıkarımı yapılmaktadır ve çıkarılan özelliklerin 3x3 evrişim

işlemi ile derinlik/kanal sayısı azaltılmaktadır.

Şekil 3.13. DenseNet Ağ Mimarisi

InceptionResNetv2

Inception ve artık (residual) ağ mimarileri düşük hesaplama maliyetine ve yüksek perfor-

mansa sahip mimarilerdir. InceptionResNetv2 ağı [68], bu iki mimarinin birleştirilmesinden

oluşmaktadır. Inception ve ResNet bloğunda, çok boyutlu evrişim filtreleri artık bağlantı-

larla birleştirilmiştir ve bu bağlantıların kullanılması derin yapıların neden olduğu bozulma

problemini ortadan kaldırarak eğitim süresini azaltmıştır. Şekil 3.14.’de inceptionResNetv2

ağ mimarisi özetlenmiştir. InceptionResNetv2 ağ mimarisinde verilen A, B, C blokları [68]

çalışmasında şema olarak verilen inceptionResNet A, B ve C bloklarını ifade etmektedir. Mi-

maride gövde (stem) katmanı girdi olarak 299x299x3 boyutundaki görüntüyü almaktadır ve

35x35x384 boyutlu bir çıktı üretmektedir.
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Şekil 3.14. InceptionResNetv2 Ağ Mimarisi

Tablo 3.1.’de ağların parametre sayısı, ilk-1 (top-1) doğruluk oranı ve ağların yayımlanma

yılı paylaşılmıştır. VGG-16 ağı 2014 yılında ortaya çıkmış ve o yıla göre derin ağ olarak ka-

bul edilmiştir. VGG-16 modelinin avantajlarından biri kıyaslama yapmak için iyi bir mimari

olmasıdır, dezavantajı ise 138 milyon parametreye sahip olması ve bu nedenle eğitiminin

yavaş olmasıdır. VGG-16 ağının geleneksel ağ mimarisinin aksine, ResNet-50 mimarisi ar-

tık (residual) modüller ve kısayol bağlantıları kullanarak derinleşen ağlarda yaşanılan prob-

lemlere ışık tutmuştur. ResNet-50 ağı, VGG-16 ağına göre daha derin bir model olmasına

rağmen Tablo 3.1.’de paylaşıldığı gibi 26 milyon parametre sayısına sahiptir. Bunun temel

sebebi, ağın son katmanında tamamen bağlı (fully-connected) katman yerine küresel orta-

lama havuzlama (global average pooling) katmanı kullanmasıdır. Inceptionv3 ağı, hız ve ba-

şarımı ayna anda sağlayan yaklaşımlar geliştirmiştir. 27 milyon parametre sayısına sahiptir

ve ImageNet verisi üzerinde %78.8 ilk-1 (Top-1) doğruluk değerine sahiptir. ResNet-50’ye

göre başarım artışı sağlamıştır. InceptionResNetv2, artık ağ ve inception ağ mimarilerini

birleştirerek doğruluk değeri daha yüksek olan fakat aynı zamanda hesaplama yükü daha

yüksek olan bir mimari geliştirmiştir. ResNet-50 ve Inceptionv3 modellerinin sahip olduğu

parametre sayısının yaklaşık iki katı parametreye sahiptir. InceptionResNetv2, diğer ağlara

kıyasla, ImageNet veri kümesi ile yapılan testlerde %80.1 ilk doğruluk oranıyla en yüksek

doğruluğa sahip ağ olmuştur. DenseNet-121 ağı, ResNet mimarisinin katmanlar arasında yo-

ğun (dense) bağlantılar içeren bir evrimi olarak kabul edilmektedir. ImageNet veri kümesi

üzerinde %74.98 ilk-1 doğruluk oranına ve 8 milyon parametre sayısı ile diğer modellere

kıyasla oldukça düşük bir parametre sayısına sahiptir.
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Tablo 3.1. Ağların Karşılaştırma Tablosu

Model İsmi Parametre Sayısı İlk-1 (Top-1) Doğruluk Yıl
VGG-16 138 milyon %74.4 2014

ResNet-50 26 milyon %77.15 2015

Inceptionv3 27 milyon %78.8 2015

DenseNet-121 8 milyon %74.98 2016

InceptionResNetv2 55.8 milyon %80.1 2016

3.2. Sinir Ağları Eğitimi

Evrişimli sinir ağları eğitimi ile ilgili aşamalar bu bölümde özetlenmiştir. Makine öğreni-

minde, denetimli öğrenme, denetimsiz öğrenme ve pekiştirmeli öğrenme olarak üç temel

öğrenme şekli vardır [70]. Sınıflandırma problemi için en yaygın kullanılan yöntem her girdi

değerine karşılık gelen istenen çıktı ile etiketlendiği bir eğitim veri kümesi ile öğrenmenin

gerçekleştiği denetimli öğrenmedir. Ağın tahmininin mümkün olduğunca bu değerlere yakın

olması beklenir.

Bir evrişimli sinir ağı, bir kayıp fonksiyonunu yinelemeli olarak minimum seviyeye indire-

rek eğitir. Sinir ağının çıkışı ile beklenen çıkış arasındaki fark kayıp fonksiyonu kullanılarak

belirlenir. Fark kayıp fonksiyonu kullanılarak hesaplandıktan sonra farkı en aza indirecek

şekilde ağ parametreleri ayarlanır. Farkı minimum seviyeye indirmek için kullanılan yön-

temlerden biri gradyan iniş (gradient descent) yöntemidir. Gradyan iniş yöntemi hesaplama

açısından pahalı olabilir. Geri yayılım yöntemi [71], ağdaki tüm ağırlıklar ve sapmalar için

gradyanın kısmi türevlerini verimli bir şekilde hesaplar. Kaybolan ve patlayan (vanishing-

/exploding) gradyanlar gradyan iniş ile ilgili sinir ağlarının eğitimi sırasında karşılaşılan bir

problemdir [61].

3.2.1. Kayıp fonksiyonu

Evrişimli sinir ağı, bir kayıp fonksiyonunu en aza indirgeyerek eğitilir. Ağ üzerinden eğitim

örneği geçirilir ve çıktı, beklenen çıktı ile karşılaştırılır. Ağ çıkışında bulunan değer ile bek-

lenen değer arasındaki farkı tanımlamak için kayıp fonksiyonu kullanılır. Kullanılan kayıp
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fonksiyonu eğitimin başarımını önemli ölçüde etkilemektedir. Kayıp fonksiyonları sınıflan-

dırma ve regresyon kayıp fonksiyon olmak üzere iki gruba ayrılır [72]. Sınıflandırma kayıp

fonksiyonunda sonlu kategoriler kümesinden bir değer tahmin etmeye çalışılırken, regresyo-

nun amacı, bir dizi parametreye dayalı sürekli bir değeri tahmin etmektir. Bu tezin kapsamı

nedeniyle sınıflandırma probleminde kullanılacak olan sınıflandırma kayıp fonksiyonları de-

taylı olarak verilmiştir. Kayıp fonksiyonu ve maliyet fonksiyonu benzer gözükmesine rağ-

men aralarında belirgin bir fark bulunmaktadır. Kayıp fonksiyonu tek bir eğitim öneği için

hesaplanırken, maliyet fonksiyonu tüm eğitim veri kümesi üzerinde hesaplanan ortalama ka-

yıptır [73].

Çapraz Entropi Kaybı

Çapraz entropi kaybı (cross entropy loss), görüntü sınıflandırması, algılaması ve segmentas-

yonu için yaygın olarak kullanılan bir kayıp fonksiyonudur. Denklem 16’da çapraz entropi

kaybının formülü verilmiştir. Denklem 15’de p parametresi y= 1 etiketli sınıf için modelin

tahmini olasılığını temsil etmektedir. Denklem 16’da çapraz entropi kaybının formülü veril-

miştir.

pt =

{
p, y = 1

1− p, diger
(15)

CE(pt) = −log(pt) (16)

Odak Kaybı

Odak kaybı (focal loss), sınıf dengesizliğine sahip veri kümelerinde iyi performans gösteren,

2017 yılında [74] makalesinde yayınlanan kayıp fonksiyonudur. Odak kaybı, çapraz entropi

kayıp fonksiyonunun gelişmiş versiyonudur. Odak kaybı fonksiyonu, kolay bir şekilde sınıf-

landırılan örneklerin ağırlığını azaltarak ağın zor örneklerin eğitimine odaklanmasını sağla-

maktadır. Böylece, kolay örnekler eğitimi baskılayamamakta ve zor sınıflandırılan örneklere

odaklanabilmektedir. Odak kaybı, nadir sınıflara yüksek ağırlık verirken baskın sınıflara daha

küçük ağırlıklar vermektedir. Pozitif örnekler, hedef sınıfı veya temel gerçekler gibi ön plan

bilgilerini ifade etmekteyken, negatif örnekler, hedef olmayan sınıf veya arka plan bilgile-

rini ifade etmektedir. α ve γ katsayıları odak kaybının hiperparametreleridir. α parametresi,
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pozitif/negatif örneklerin dengesini sağlamaya yardımcı olurken, γ parametresi kolay/zor ör-

neklerin dengesini sağlamaya yardımcı olmaktadır [74].

Denklem 17’de pt parametresi küçük olduğunda, modülasyon faktörü 1’e yaklaşmaktadır ve

kayıp etkilenmemektedir. pt parametresi 1’e yaklaştığında, modülasyon faktörü 0’a gider ve

iyi sınıflandırılmış örnekler için kayıp azalmaktadır.

FL(pt) = −αt(1− pt)γlog(pt) (17)
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3.2.2. Gradyan İniş ve Geri Yayılım Yöntemi

Gradyan iniş, fonksiyonun yerel minimumunu tahmin etmek için kullanılan sayısal bir yön-

temdir. Bu yöntem kayıp fonksiyonunun yerel minimumunu tahmin etmek için kullanılabilir.

Rastgele seçilen bir başlangıç noktasının konumu yinelemeli olarak güncellenir. Yinelemeyi

durdurmanın koşulu, maksimum yineleme sayısına erişmiş olmak veya iki adım arasındaki

konum değişikliğinin belirlenen bir eşikten az olup olmadığını kontrol etmektir. Öğrenme

oranı (learning rate) adı verilen değişken η tarafından gradyan algoritması kontrol edilebilir.

Bu değerin küçük olduğu durumlarda adım uzunluğu azalacak ve adım sayısı artacağından

gradyan algoritması uzun sürecek, bu değer büyük olduğunda adım uzunluğu artacak ve adım

sayısı azalacağından gradyan algoritması kısa sürecektir. Bir pozisyonun güncellenmesi şu

şekilde ifade edilebilir:

v′ = v − η∇C (18)

Bu denklemde belirtilen v ifadesi değişkenlerin bir vektörüdür ve ∇C, maliyet fonksiyonu-

nun v’ye göre ile türevidir. Gradyan iniş yöntemi büyük veri kümeleri için uygun değildir,

zaman alıcıdır. Bunun nedeni maliyet fonksiyonunun her bir örnekle hesaplanmasının gerek-

liliğidir. Gradyan inişin bu probleminin çözülmesi amacıyla Stokastik gradyan iniş (SGD)

adı verilen düzeltilmiş bir yöntem önerilmiştir [73]. Önerilen bu yöntemle veri kümesi, rast-

gele seçilen örneklerle birkaç gruba bölünür. Eğitim bölünen gruplarla grup grup işlenerek

ve her bir grup için maliyet fonksiyonu hesaplanarak ve gradyanlar güncellenerek gerçek-

leştirilir. Eğitim verisi bitene kadar bu süreç devam eder. Geliştirilen stokastik gradyan iniş

yöntemine rağmen gradyan yöntemi hesaplama karmaşıklığına sahip ve bu nedenden dolayı

da oldukça yavaş bir algoritmadır [73].

Geri yayılım algoritması, sinir ağlarını eğitmek için yaygın olarak kullanılan bir algoritmadır.

Öğrenme hızındaki artış sayesinde evrişimli sinir ağlarının yeni yollar kullanmasına imkan

tanımıştır. Karmaşık fonksiyonların kısmi türevlerini hesaplamak için zincir kuralı yöntemini

kullanan geri yayılım algoritması, birden fazla aşamadan oluşmaktadır. Bu algoritmanın ilk

aşaması, ileri geçiş olarak adlandırılır ve bu aşamada giriş görüntüsü ağın giriş katmanına

uygulanır. Çıkış katmanına kadar denklem 19 her katman için hesaplanır. Denklem 19’da

verilen parametrelerin açıklaması şu şekildedir; f(x) model çıktısı, x model girdisi, w ağırlık

parametresi, b ön yargı (bias) değeri, σ aktivasyon fonksiyonudur.
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f(x) = σ(w.xT + b) (19)

Maliyet fonksiyonunun değeri δ hesaplanır. δ, son katmandan ilk katmana doğru hata denk-

lem 20 formülüyle geri yayılır. Bu aşama geriye doğru geçiş olarak adlandırılmaktadır. Denk-

lem 20 formülünde yer alan l, katman numarasıdır.

δx,l = ((wl+1)T δx,l+1)o(σ′zx,l) (20)

(wl+1)T ifadesi (l+1). katmandaki ağırlık vektörünün transpozunu ifade etmektedir, δ yayılan

hata vektörünü, σ aktivasyon fonksiyonunu, z nöronların ağırlıklı girdisini ifade etmektedir.

İşlemler arasındaki o sembolü iki vektörün eleman bazında çarpımıdır. Her bir katman için

ağırlık ve Bayes formulü denklem 21’de verilmiştir.

wl = wl − n

m

∑
x

δx,l(ax,l−1)T

bl = bl − n

m

∑
x

δx,l
(21)

η öğrenme oranı (learning rate), m küme boyutu (batch size), ax,l ifadesi aktivasyon fonksi-

yonudur [73].

3.2.3. Kaybolan ve Patlayan Gradyan

Kaybolan gradyan problemi, ağın öğrenilemez hale geldiği ağ eğitimi problemidir [75]. Ağ

eğitiminde geri yayılım algoritması çıkış katmanından giriş katmanına doğru ilerledikçe

gradyanlar genellikle küçülür ve sıfıra yaklaşır. Bu sebeple de ilk katmanların ağırlıklarını

güncellemeden bırakması sonucu ortaya çıkar. Model ağırlıkları, kaybolan gradyan prob-

leminde eğitim sırasında 0 değeri alabilmektedir. Kaybolan gradyan probleminde gradyan

hiçbir zaman optimum seviyeye ulaşamaz. Gradyan probleminin birçok sebebi olabilir. Relu

aktivasyon fonksiyonunun kullanımının diğer geleneksel aktivasyon fonksiyonlarının kulla-

nımıyla karşılaştırıldığında kaybolan gradyan problemine sebep olma olasılığı daha düşüktür

[76].
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Patlayan gradyan probleminde kaybolan gradyan probleminin aksine bazı durumlarda geri

yayılım algoritması ilerledikçe gradyanlar daha da büyür. Bunun sonucu olarak çok büyük

ağırlık güncellemeleri olur ve gradyan inişi farklılaşır. Model ağırlıkları, patlayan gradyan

probleminde eğitim sırasında NaN değeri alabilmektedir. Patlayan gradyan sorununa öneri-

len çözüm, ağ eğitimini büyük ağırlıklar atamak için cezalandıran düzenlileştirme (regulari-

zation) işlevidir. Bu bölümde bahsedilen gradyan problemleri çok sayıda katmana sahip, çok

derin ağ mimarilerinde karşımıza çıkmaktadır [77].

3.3. Aşırı Uyumun Önlenmesi ve Sinir Ağları Optimizasyonu

Aşırı uyum, modelin eğitim verilerine fazla uyması durumunda ortaya çıkan bir problemdir.

Model gördüğü verileri çok iyi tahmin ederken, görmediği verilere karşı düzgün bir şekilde

çalışmaz. Bu durum yeterli veriye sahip olunmadığında, karmaşık bir model kullanıldığında

veya model çok uzun süre eğitildiğinde meydana gelir. Model veri kümesi içindeki gürültüyü

veya alakalı olmayan bilgileri öğrenmeye ve ezberlemeye başlar, böylece model aşırı uyum

sağlamış olur ve yeni verilere genelleme yapamaz. Bir modelin görmediği veride genelleme

yapabilmesi istenen bir durumdur. Bu durumu sağlamak için birçok yöntem kullanılır. Bu

bölümde aşırı uyumu önleme yöntemleri olan seyreltme (dropout) [78], veri arttırma (data

augmentation) [79], aktarım öğrenmesi (transfer learning) [80] yöntemleri detaylı olarak in-

celenecektir.

3.3.1. Seyreltme

Aşırı uyumu engelleyen etkili yöntemlerden biri seyreltme yöntemidir [78]. Bu yöntem tam

bağlantılı katmanlarda uygulanır. Eğitim sırasında bazı nöronlar, rastgele olarak belirli bir

olasılıkla her örnek için devredışı bırakılır. Bırakılan düğümler ileri veya geri yayılımda göz

ardı edilmektedir. Seyreltme için yaygın olarak 0.5 değeri kullanılmaktadır. Bu yöntem ağ

yakınsamasını önemli ölçüde yavaşlatır, ancak aşırı uyumu önlemede etkilidir.

3.3.2. Veri Arttırma

Aşırı uyumu önleyecek bir başka yöntem de veri arttırma yöntemidir. Orijinal örneklere dö-

nüşüm uygulayarak eğitim veri kümesini genişletmeyi sağlamaktadır. Eğitim veri kümesinin
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yeterli miktarda olmasını sağlamak, girdi ve çıktı değişkenleri arasındaki baskın ilişkinin ay-

rıştırılmasına fırsat sağlayarak modelin doğruluğunu arttırabilir. Arttırım uygulanacak veri

kümesinin temiz ve ilgili verilerden oluşması önemlidir. Aksi takdirde temiz olmayan ve-

rilere uygulanacak arttırım ile birlikte daha fazla karmaşıklık elde ederek aşırı öğrenmenin

desteklenmesi söz konusu olabilir. Uygulanacak dönüşümlere kaydırma, kırpma, döndürme,

gürültü ekleme, renk tonu ve doygunluğun ayarlanması vb. yöntemler örnek verilebilir.

3.3.3. Aktarım Öğrenmesi

Aktarım öğrenmesi, daha önceden eğitilmiş bir modelin yeni problem üzerinde yeniden kul-

lanılması olarak ifade edilebilir. Önceden eğitilen model genellikle ImageNet gibi büyük bir

veri kümesi üzerinde eğitilir. Önceden eğitilen modelin alt katmanları (mevcut verilerin te-

mel yapısını öğrenmesi beklenen) yeniden kullanılabilir ve daha uygun olan yüksek seviyeli

özellikleri öğrenmek için üst katman değiştirilebilir [81]. Bu yöntem kullanılarak halihazırda

eğitilmiş bir modelin bilgisi aktarım öğrenimi boyunca farklı bir probleme aktarılır. Aktarım

öğrenmesi yöntemiyle evrişimli sinir ağının evrişim katmanları, görüntü verilerinden özellik

çıkarımı için kullanılarak sınıflandırma yöntemleri için kullanılabilir [80]. Modeller için ge-

reken eğitim süresini azaltmak amacıyla aktarım öğrenmesi faydalı olabilir [82]. Bir evrişimli

sinir ağı modelinin önceden eğitilmiş evrişim filtreleri ile eğitilmesi, ağın evrişim filtrelerini

öğrenmesi gerekmediğinden, ağ yakınsamasını önemli ölçüde hızlandırabilir. Bir ağın ince

ayarının yapılması, önceden eğitilmiş evrişim filtreleri ile bir ağın eğitilmesi işlemine denir.

Bir ağda ince ayar yapmak, evrişimli sinir ağlarına aktarım öğreniminin nasıl uygulandığı

olarak açıklanmaktadır.

46



4. DENEYLER ve SONUÇLAR

4.1. Veri Önişleme

Tez kapsamında veri kümesinin iki farklı versiyonu kullanılmıştır. Kullanılan ilk versiyonda

121 sınıf içeren veri kümesinin ’bilinmeyen’ isimli üç sınıfı, bir uzmanın makul bir kesin-

likle sınıflandıramadığı örnekler içerdiğinden veri kümesinden çıkarılmıştır. Kullanılan ilk

versiyon, Set-1 olarak isimlendirilmiştir. 118 sınıfta toplamda 29419 plankton görüntüsü bu-

lunmaktadır. Veri kümesi %75 oranında eğitim kümesi, %15 doğrulama kümesi ve %15 test

kümesi olarak bölünmüştür. Kullanılan ikinci versiyon, Set-2 olarak isimlendirilmiştir. Set-

2, Kaggle plankton veri kümesinin [18] yazarları tarafından seçilen bir alt kümesidir. En az

100 örnek bulunduran plankton sınıfları seçilmiştir. Toplamda 38 sınıf için 14374 görüntü

bulunmaktadır. İlk versiyonda olduğu gibi veri kümesi %75 oranında eğitim kümesi, %15

doğrulama kümesi ve %15 test kümesi olarak bölünmüştür. Kaggle plankton veri kümesi ile

ilgili detaylar ve Set-1, Set-2 veri kümeleri ile ilgili açıklamaların yer aldığı tablolar Bölüm

2.3.3.’te paylaşılmıştır.

Kaggle veri kümesi sınıf dengesizliği olan bir veri kümesidir. Eğitim örnekleri bazı sınıflar

için sınırlıdır ve 118 farklı olası taksonomik sınıf etiketi bulunmaktadır. Bu sebeplerden do-

layı aşırı uyum (overfitting) bu veri kümesi için önemli bir problemdir. Bu problemlere ışık

tutmak amacıyla denenen yöntemler bu bölümde detaylı anlatılmıştır.

Sınırlı veri problemine sunulan çözümlerden biri veri arttırma (data augmentation) yönte-

midir. Tez kapsamında iki farklı yöntemle veri arttırma uygulanmıştır. Kısmi veri arttırma

yöntemi ve tam veri arttrıma yöntemi.

Kısmi veri arttırma olarak isimlendirilen yöntemde, 118 sınıfın her biri için sınıfın 60 ola-

rak belirlenen sınırın üstünde veya altında olduğu kontrol edilmiştir. Sınıfın içerdiği görüntü

sayısı 60’dan düşükse veri arttırma uygulanmıştır. Değilse o sınıf için veri arttırma uygu-

lanmamıştır. Veri arttırma uygulanan ve veri sayısı 60’dan az olan her bir sınıfın veri sayısı

kısmi veri arttırma yöntemiyle yaklaşık 6 katına çıkmıştır. Kısmi veri arttırım sonucu elde

edilen veri kümesi %70 eğitim, %15 doğrulama, %15 test kümesi olarak bölünmüştür. Kısmi

veri arttırımıyla ilgili detaylar Tablo 4.1.’de paylaşılmıştır.

Tam veri arttırma yönteminde, sınıfların ne kadar veriye sahip olduğundan bağımsız her

sınıf için veri arttırma uygulanmıştır. Her bir sınıfın veri sayısı tam veri arttırma yöntemi
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uygulandığında yaklaşık 6 katına çıkmıştır. Tam veri arttırım sonucu elde edilen veri kümesi

%70 eğitim, %15 doğrulama, %15 test kümesi olarak bölünmüştür. Tam veri arttırımıyla il-

gili detaylar Tablo 4.2.’de paylaşılmıştır.

Veri Arttırma Yöntemleri
Görüntüler yatay ve dikey olarak tersine çevirme işlemine tabi tutularak yatay ve dikey veri

arttırma yöntemi uygulanmıştır. Yatay ve dikey olarak çevirme işleminin uygulandığı plank-

ton görüntüleri Şekil 4.1.’de verilmiştir.

Görüntülere rotasyon veri arttırımı uygulanmıştır. Her bir görüntü 90, 180, 270 derece dön-

dürülerek farklı açılardan da görüntünün elde edilmesi sağlanmıştır. Rotasyon işleminin uy-

gulandığı plankton görüntüleri Şekil 4.2.’de verilmiştir.

Odaklanma 0.75, 1.25 ve 1.5 katsayılarında uygulanarak verilerin farklı ölçeklerde de elde

edilmesi sağlanmıştır. Odaklanma işleminin uygulandığı plankton görüntüleri Şekil 4.3.’te

verilmiştir. Odaklanma yöntemi her görüntüye uygulanmamıştır. Bunun sebebi bazı plank-

tonların odaklanma sebebiyle kendisinden farklı bir türe benzemesinin önlenmesinin isten-

mesidir. Sadece odaklanma sonrası en ve yüksekliği orijinal görüntüyle aynı olan planktonlar

için odaklanma veri arttırımı kullanılmıştır.

Tablo 4.1. Set-1 Veri Kümesine Kısmi Veri Arttırım Uygulanmasının Sonuçları

Set-1 Veri Kümesi ve Kısmi Veri Arttırma Yöntemi
#Toplam Veri #Sınıf #Eğitim Seti #Doğrulama Seti #Test Seti
36456 118 27512 4472 4472

Tablo 4.2. Set-1 Veri Kümesine Tam Veri Arttırım Uygulanmasının Sonuçları

Set-1 Veri Kümesi ve Tam Veri Arttırma Yöntemi
#Toplam Veri #Sınıf #Eğitim Seti #Doğrulama Seti #Test Seti
133103 118 124159 4472 4472
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Geleneksel bir evrişimli sinir ağı, giriş görüntülerinin önceden tanımlanmış bir boyuta sahip

olmasını gerektirmektedir. Tez kapsamında kullanılan modellerde evrişimli sinir ağının gi-

riş boyutu 224x224 boyutundadır. Plankton görüntülerinin çok farklı boyutlara sahip olduğu

düşünüldüğünde tüm görüntülerin aynı boyuta boyutlandırılması bilgi kaybına neden olmak-

tadır. Bu kaybın yaşanmaması için iki farklı yöntem uygulanmıştır. Boşluk ekleme yöntemi

ve kare kırpma işlemi.

Boşluk ekleme işleminde plankton görüntüsü evrişimli sinir ağının istediği boyutlara getiril-

mesi için etrafına beyaz pikseller yerleştirilerek elde edilir. Plankton görüntüsünün 224x224

boyutundan daha büyük olduğu durumlarda en-boy oranı (aspect ratio) göz önünde bulundu-

rularak yeniden boyutlandırılır.

Kare kırpma işleminde en-boy oranı (aspect ratio) gözetilerek 224x224 boyutunda yeniden

boyutlandırılan görüntü merkeze alınarak bikübik interpolasyonu kullanılarak yeniden bo-

yutlandırılır. Boyutlandırma işlemi sırasında var olan plankton görüntüsü beklenen değerden

büyükse en-boy oranı gözetilerek yeniden boyutlandırılır. Boşluk ekleme ve kırpma işlemle-

rinin uygulandığı plankton görüntüleri Şekil 4.4.’te verilmiştir.

Şekil 4.1. Kaggle Plankton Veri Kümesine Uygulanan Çevirme Veri Arttırma Yöntemi. Sırayla
Orijinal, Yatay Çevirme, Dikey Çevirme
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Şekil 4.2. Kaggle Plankton Veri Kümesine Uygulanan Rotasyon Veri Arttırma Yöntemi. Sırayla
Orijinal, 90 Derece Rotasyon, 180 Derece Rotasyon, 270 Derece Rotasyon

Şekil 4.3. Kaggle Plankton Veri Kümesine Uygulanan Yakınlaştırma Veri Arttırma Yöntemi.
Sırayla Orijinal, 0.75, 1.25, 1.75 Yakınlaştırma
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Şekil 4.4. Boşluk Ekleme Yöntemi (Sol Sütun) ve Kare Kırpma Yöntemi (Sağ Sütun)

4.2. Değerlendirme Metrikleri

Plankton sınıflandırma sistemlerinin başarımını değerlendirmek için çeşitli metrikler kul-

lanılmaktadır. Kesinlik, geri çağırma, F1-Skor, ilk-1 (top-1) ve ilk-5 (top-5) metrikleri bu

metriklerden bazılarıdır. Metrikler 0 ile 1 arasında değerler üretmektedir. Üretilen değerin

1’e yakınlığı modelin ne kadar iyi olduğunu, 0’a yakınlığı modelin ne kadar kötü olduğunu

göstermektedir.

Bahsedilen yaklaşımların çok sınıflı sınıflandırmaya göre farklı ortalama alma yaklaşımları

bulunmaktadır. Kullanılan veri kümesinin özellikleri değerlendirilerek, ortalama alma yakla-

şımlarının hangisinin plankton sınıflandırma algoritmalarını değerlendirmek için daha uygun

olacağına karar verilmelidir. Bu bölümde ağırlıklı F1-Skor metriği ve hesaplanan diğer met-

rikler detaylı bir şekilde açıklanacaktır. Modelin doğruluğunu kontrol etmek için kullanılan

dört temel yaklaşım Şekil 4.5.’de gösterilmiştir.
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Şekil 4.5. Gerçekleşen ve Tahmin Edilen Hata Matrisi

• Doğru Negatif (DN): Gerçekte negatif olan ve model tarafından negatif olarak sınıf-

landırılanlardır.

• Doğru Pozitif (DP): Gerçekte pozitif olan ve model tarafından pozitif olarak sınıflan-

dırılanlardır.

• Yanlış Negatif (YN): Gerçekte pozitif olan ve model tarafından negatif olarak sınıflan-

dırılanlardır.

• Yanlış Pozitif (YP): Gerçekte negatif olan ve model tarafından pozitif olarak sınıflan-

dırılanlardır.

Kesinlik (Precision): Sınıflandırıcı tarafından gerçekten kaç tane pozitif örneğin pozitif

olarak tahmin edildiğinin ölçüsüdür. Pozitif tahminelerin doğruluk oranıdır.

K =
DP

DP + Y P
(22)

Geri Çağırma (Recall): Sınıflandırıcı tarafından elde edilen tüm pozitif tahminlerden doğru

pozitif tahminlerin sayısını ölçen bir ölçümdür. Doğru tanımlanmış pozitiflerin oranıdır.

G =
DP

DP + Y N
(23)

F1-Skor: Geri çağırma ve kesinlikten elde edilen sonuçların harmonik ortalaması hesapla-

narak elde edilir.
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F1 = 2 ∗ K ∗G
K +G

(24)

Makro Ortalama

Makro ortalama, sayısız ortalama alma işlemleri arasında en temel olanıdır. Makro ortala-

ması alınacak değerlendirme metriğinin aritmetik ortalaması (ağırlıksız ortalama) alınarak

hesaplanır. Makro ortalama ile tüm sınıflar nihai elde edilen sonuç metriğine eşit katkıda

bulunmaktadır. Tez kapsamında kesinlik, geri çağırma ve F1-Skor metriklerinın makro orta-

laması hesaplanmıştır.

Ağırlıklı Ortalama

Ağırlıklı ortalama [83] yöntemi ile her sınıftaki örnek sayısı önem kazanmaktadır. Bu ne-

denle sınıflar, o sınıflardaki örnek sayısına göre ağırlıklandırılır ve her bir metriğin ortalaması

alınır. Tez kapsamında kesinlik, geri çağırma ve F1-Skor metriklerinın ağırlıklı ortalaması

hesaplanmıştır.

İlk-1 (Top-1) Doğruluk

İlk-1 doğruluk; en yüksek olasılık değerine sahip olan tahminin, hedef etiket (target label)

ile eşleştiği örneklerin oranını ölçmektedir.

İlk-5 (Top-5) Doğruluk

İlk-5 doğruluk; en yüksek 5 olasılık değerine sahip olan tahminin, hedef etiket (target label)

ile eşleştiği örneklerin oranını ölçmektedir.

Tez çalışmasında gerçekleştirilen deneylerde kesinlik, geri çağırma, F1-Skor metriklerinin

ağırlıklı ortalaması ve makro ortalaması hesaplanmıştır. Ayrıca her bir deneyde eğitilen mo-

dellerin ilk-1 (top-1) ve ilk-5 (top-5) doğruluk yüzdeleri hesaplanmıştır.

4.3. Ortalama Topluluk Yöntemi

Ortalama topluluk yöntemi, toplulukta bulunan her bir modelin nihai tahmine eşit miktarda

katkıda bulunduğu bir topluluk öğrenme yaklaşımıdır. Toplulukta bulunan her bir modelin
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ilgili sınıf için yaptığı tahminler birleştirilerek ortalaması alınır. Bu yöntem kullanılarak be-

lirli tek bir modele göre daha yüksek sınıflandırma doğruluğu elde edilir. Şekil 4.6.’da tez

kapsamında kullanılan ortalama topluluk yöntemi verilmiştir.

Şekil 4.6. Ortalama Topluluk Örneği

4.4. Deneyler

Tez kapsamında yapılan deneyler ve elde edilen sonuçlar bu bölümde detaylı olarak ele alı-

nacaktır.

• Deney-1’de Bölüm 4.1.’de detaylı olarak bahsedilen ve oluşturulan 3 veri kümesi

farklı eğitim yöntemleriyle Inceptionv3 ağı kullanılarak elde eğitilmiştir. Deney-1’in

sonucunda en iyi sonucu veren veri kümesi diğer deneylerde kullanılmıştır.

• Deney-2’de Deney-1 sonucunda karar verilen veri kümesine Bölüm 4.1.’de bahsedilen

boşluk ekleme ve kare kırpma işlemleri uygulanmış ve farklı eğitim yöntemleriyle

eğitilerek sonuçlar elde edilmiştir. Deney-2 sonucunda en iyi sonucu veren yöntem

diğer deneylerde kullanılmıştır.
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• Deney-3’de, Set-1 (118 Sınıf) ve Set-2 (38 Sınıf) veri kümeleri, tam veri arttırma ve

tüm katmanların eğitilmesi yöntemleri kullanılarak Incepitonv3, InceptionResNetv2,

DenseNet, ResNet-50, VGG-16 ağlarında eğitilmiştir. Alınan sonuçlar paylaşılmıştır.

• Deney 4’de Set-1 (118 Sınıf) ve Set-2 (38 Sınıf) veri kümelerinin Deney-3 kapsamında

ilgili yöntemlerle eğitilmesi sonucu elde edilen modeller ortalama topluluk yöntemiyle

birleştirilmiştir.

• Deney-5’de, çapraz entropi kaybı ve odak kaybı fonksiyonlarının eğitimde kullanılma-

sıyla elde edilen sonuçlar karşılaştırılmış ve odak kaybı fonksiyonunun farklı hiperpa-

rametreleri uygulanarak eğitim gerçekleştirilmiştir.

• Deney-6’da, 118 sınıfa ait DenseNet ağı üzerinde Deney-3 kapsamında Set-1 veri kü-

mesi ile gerçekleştirilen deney sonucu elde edilen modelin hata matrisi hesaplanmıştır.

Elde edilen 118x118 hata matrisi gruplanarak 33x33 hata matrisine dönüştürülmüştür.

33 grup olarak eğitilen modelin hata matrisi sonucuyla elde edilen sonuç karşılaştırıl-

mıştır.

4.4.1. Deney Detayları

Deneyler kapsamında yapılan tüm eğitimler esnasında eğitim veri kümesi ve doğrulama veri

kümesi kullanılmıştır. Eğitimde doğrulama doğruluğu her bir iterasyonda hesaplanarak 30

iterasyonda en yüksek doğrulama doğruluğuna sahip ağırlık kaydedilmiş ve testlerde kul-

lanılmıştır. Eğitim toplamda 30 iterasyonda gerçekleştirilmiştir. Girdi görüntü büyüklüğü

224x224’tür. Öğrenme oranı (learning rate) 0.00001, küme boyutu (batch size) 32 ve sey-

reltme (dropout) 0.5 olarak kullanılmıştır. Kayıp fonksiyonu olarak kategori çapraz entropi

ve optimizasyon olarak Adam optimizasyon yöntemi kullanılmıştır. Eğitimde her bir iteras-

yonda 859 ayrı iterasyon kullanılmıştır (adım/iterasyon).

4.4.2. Deney-1

Deney 1’de, Bölüm 4.1.’de detaylı olarak bahsedilen 118 sınıftan oluşan Set-1 veri kümesi

Orijinal, Kısmi Veri Arttırma ve Tam Veri Arttırma olmak üzere üç farklı versiyonuyla Incep-

tionv3 ağında eğitilmiştir. Her bir veri kümesi kullanılarak üç farklı yöntem ile Inceptionv3

ağında eğitim gerçekleştirilmiştir. Kullanılan üç farklı yöntem detaylı açıklanmıştır:
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Aktarım öğrenmesi yöntemi ağın sadece son katmanının değiştirilerek eğitilmesi, ince ayar
yöntemi ağın katman sayısının %30 oranında aktif edilerek eğitilmesi ve tüm katmanların
eğitilmesi yöntemi ağın tüm katmanlarının aktif edilerek eğitilmesi olarak ifade edilmiştir.

Kademeli olarak katmanlar aktif edilerek katmanların eğitime dahil edilmesinin başarıma

etkisi gözlemlenmiştir. Deney 1, Şekil 4.7.’de görselleştirilmiştir.

Şekil 4.7. Deney-1 Özet. Aktarım Öğrenmesi Yöntemi, İnce Ayar Yöntemi, Tüm Katmanların
Eğitilmesi Yöntemi

Eğitim, keras kütüphanesi kullanılarak Inceptionv3 ağında aktarım öğrenmesi, ince ayar ve

tüm katmanların eğitilmesi olmak üzere üç farklı yöntem ve üç farklı veri kümesi ile 9 farklı

kez gerçekleştirilmiştir.
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4.4.3. Deney-1 Sonuç

Aktarım öğrenmesi, ince ayar ve tüm katmanların eğitilmesi yöntemleri ve her bir yöntem

için orijinal, kısmi veri arttırma, tam veri arttırma veri kümeleriyle gerçekleştirilen dokuz

farklı deneyin deney sonuçları Tablo 4.3.’te paylaşılmıştır. Tabloda her bir deney için ke-

sinlik, geri çağırma, F1-Skoru metrikleri makro ortalama ve ağırlıklı ortalama yöntemleri

kullanılarak ayrı ayrı hesaplanmıştır. Tablo 4.4.’de eğitim ve doğrulama doğruluk, kayıp de-

ğerleri paylaşılmıştır. Ayrıca eğitilen modelin, test veri kümesi kullanılarak test edilmesi so-

nucu elde edilen ilk-1 (Top-1) ve ilk-5 (Top-5) sonuçları her bir deney için paylaşılmıştır.

Doğrulama doğruluğu, eğitim esnasında doğrulama veri kümesi üzerinde her bir iterasyonda

hesaplanan doğruluk değeridir. Eğitim sırasında her bir iterasyonda doğrulama doğruluğu

hesaplanır ve gerçekleştirilen 30 iterasyonda en yüksek doğruluk değerine sahip doğruluğun

olduğu iterasyonun doğruluk ve kayıp değerleri ve eğitilen ağırlık kaydedilir. Modelin testi

kaydedilen ağırlık ile gerçekleştirilmiştir..

Set-1 (118 Sınıf) veri kümesinde, Inceptionv3 ağı kullanılarak gerçekleştirilen Deney-1 kap-

samında en iyi sonuç tam veri arttırma uygulanmış Set-1 veri kümesinin tüm katmanların

eğitilmesi yöntemi kullanılması ile elde edilmiştir. Tabloda, her bir sütunda alınan en iyi

sonuç koyu renk ile gösterilmiştir. Tablo 4.3. ve Tablo 4.4.’te yer alan sonuçlar değerlendiril-

diğinde yöntemler arasında en iyi sonucun, tüm katmanların eğitilmesi yöntemi ve tam veri

arttırma ile elde edilmiş veri kümesinden elde edildiği görülmektedir. Kısmi veri arttırma ile

elde edilmiş veri kümesinde kesinlik olarak yaklaşık %1 iyi sonuç elde edilmesine rağmen

diğer değerlendirme metriklerinde tam veri artttırma ile elde edilmiş veri kümesi ile en iyi

sonuçlar elde edilmiştir. Doğrulama doğruluğu, Tablo 4.4.’teki en düşük doğrulama değerine

göre yaklaşık 0.06 oranında artmıştır. Ağırlıklı F1-Skoru Tablo 4.3.’teki en düşük ağırlıklı

F1-Skoruna göre yaklaşık %7 artış sağlamıştır. İlk-1 (Top-1) ve İlk-5 (Top-5) doğruluk de-

ğerleri %77.4 ve %97.0 ile tüm katmanların eğitilmesi yöntemi ve tam veri arttırma ile elde

edilen veri kümesinden elde edilmiştir.
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Tablo 4.3. Set-1 Veri Kümesinde Elde Edilen Deney-1 Sonuçları
Makro Ortalama Ağırlıklı Ortalama

Kesinlik Geri Çağırma F1-Skoru Kesinlik Geri Çağırma F1-Skoru

Aktarım Öğrenmesi
Yöntemi

Orijinal 55% 50% 51% 70% 71% 70%

Kısmi Veri Arttırma 61% 57% 57% 71% 71% 70%

Tam Veri Arttırma 61% 51% 53% 71% 71% 70%

İnce Ayar Yöntemi

Orijinal 60% 55% 56% 72% 73% 72%

Kısmi Veri Arttırma 59% 61% 59% 73% 73% 72%

Tam Veri Arttırma 58% 56% 56% 74% 75% 74%

Tüm Katmanların
Eğitilmesi Yöntemi

Orijinal 62% 57% 57% 74% 74% 73%

Kısmi Veri Arttırma 64% 62% 62% 75% 75% 75%

Tam Veri Arttırma 63% 62% 62% 77% 77% 77%

Tablo 4.4. Inceptionv3 Ağıyla Eğitilen Ağların Deney-1 Eğitim Doğruluk ve Kayıp Sonuçları
Eğitim Doğrulama Doğruluk

Doğruluk Kayıp Doğruluk Kayıp İlk-1 (Top-1) İlk-5 (Top-5)

Aktarım Öğrenmesi
Yöntemi

Orijinal 0.95 0.17 0.73 1.13 71.4% 93.8%

Kısmi Veri Arttırma 0.92 0.27 0.72 1.07 71.0% 93.7%

Tam Veri Arttırma 0.73 0.91 0.72 0.96 70.9% 93.9%

İnce Ayar Yöntemi

Orijinal 0.98 0.05 0.74 1.53 72.8% 93.9%

Kısmi Veri Arttırma 0.97 0.08 0.74 1.40 72.9% 94.7%

Tam Veri Arttırma 0.81 0.63 0.76 0.91 74.6% 95.6%

Tüm Katmanların
Eğitilmesi Yöntemi

Orijinal 0.98 0.05 0.76 1.64 74.3% 94.3%

Kısmi Veri Arttırma 0.85 0.46 0.77 0.92 75.4% 95.8%

Tam Veri Arttırma 0.86 0.44 0.79 0.83 77.4% 97.0%

Deney-1 kapsamında gerçekleştirilen her bir eğitim sonucunda elde edilen eğitim ve doğ-

rulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Gerçekleştirilen eğitimlerde, doğrulama

doğruluğu her bir iterasyonda hesaplanarak 30 iterasyonda en yüksek doğrulama doğrulu-

ğuna sahip ağırlık kaydedilmiştir. Eğitim toplamda 30 iterasyonda gerçekleştirilmiştir. Eği-

timde her bir iterasyonda 859 ayrı iterasyon kullanılmıştır (adım/iterasyon).

Şekil 4.8.’de aktarım öğrenmesi yöntemi kullanılarak orijinal Set-1 (118 Sınıf) veri kü-

mesinin Inceptionv3 ağında eğitilerek elde edilen eğitim ve doğrulama doğruluğu ve kaybı

grafikleri paylaşılmıştır. Orijinal Set-1 veri kümesi 118 sınıftan oluşmaktadır ve dengesiz

dağılıma sahip bir veri kümesidir. Bir sınıf 3 örnek içerirken diğer bir sınıf 1000 örnek içe-

rebilmektedir. Bu durum modelin istenilen yüksek doğrulama doğruluğuna ulaşmasını zor
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hale getirmektedir. Şekil 4.8.’de eğitim ve doğrulama doğruluğu arasındaki fark yaklaşık 6.

epoch’tan sonra artmıştır. Bu durum modelin yeteri kadar öğrenemediği anlamına gelmekte-

dir. Doğrulama doğruluğu 0.7 civarında sabitlenmiş ve eğitim boyunca artmamıştır. Benzer

şekilde, doğrulama ve eğitim kaybının birbirine paralel olması gerekirken 6.epoch’tan sonra

doğrulama kaybı artmıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.8. Aktarım Öğrenmesi Yöntemi, Orijinal Veri Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Veri sayısı 60’dan az olan sınıflara veri arttırımı uygulanarak elde edilen kısmi veri kümesi

aktarım öğrenme yöntemi kullanılarak Inceptionv3 ağında eğitilmiştir. Şekil 4.9.’da lde edi-

len eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Eğitim ve doğrulama

doğrulukları arasındaki fark, Şekil 4.8.’e göre azalmıştır. Kayıplar arasındaki fark da yine

aynı şekilde azalmış ve birbirine daha çok yaklaşmıştır. Kısmi veri arttırma yöntemi ile eği-

tilen model, orijinal veri kümesi ile eğitilen modele göre daha iyi sonuç elde etmiştir.
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(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.9. Aktarım Öğrenmesi Yöntemi, Kısmi Veri Arttırma Veri Kümesi Eğitim Doğruluk ve
Kayıp Sonucu

Veri sayısına bakılmaksızın, sınıflara veri arttırımı uygulanarak elde edilen tam veri arttırma

ile elde edilen veri kümesi aktarım öğrenme yöntemi kullanılarak Inceptionv3 ağında eği-

tilmiştir. Şekil 4.10.’da lde edilen eğitim ve doğrulama doğruluğu ve kaybı grafikleri payla-

şılmıştır. Eğitim ve doğrulama doğrulukları arasındaki fark, Şekil 4.8. ve Şekil 4.9.’a göre

azalmıştır. Kayıplar arasındaki fark da yine aynı şekilde azalmış ve birbirine daha çok yak-

laşmıştır. Tam veri arttırma yöntemi uygulanarak elde edilen veri kümesi ile eğitilen model,

orijinal ve kısmi veri arttırma uygulanan veri kümeleri ile eğitilen modellere göre daha iyi

sonuç elde etmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.10. Aktarım Öğrenmesi Yöntemi, Tam Veri Arttırma Veri Kümesi Eğitim Doğruluk ve
Kayıp Sonucu
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Şekil 4.11.’de ince ayar yöntemi kullanılarak orijinal Set-1 (118 Sınıf) veri kümesinin Incep-

tionv3 ağında eğitilerek elde edilen eğitim ve doğrulama doğruluğu ve kaybı grafikleri payla-

şılmıştır. Aktarım öğrenmesinde orijinal veri kümesi ile eğitilen modelin sonuçlarına benzer

şekilde eğitim ve doğrulama doğruluğu arasındaki fark yaklaşık 4. iterasyondan sonra gide-

rek artmıştır. Doğrulama kaybı eğitim kaybına göre oldukça yüksektir ve bu durum modelin

iyi öğrenemediği anlamına gelmektedir. İyi öğrenen bir modelde beklenen davranış, eğitim

ve doğrulama doğruluk ve kayıp değerlerinin birbirine paralel şekilde artması ve azalmasıdır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.11. İnce Ayar Yöntemi, Orijinal Veri Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.12.’de ince ayar yöntemi kullanılarak kısmi veri arttırımı uygulanmış Set-1 (118

Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen eğitim ve doğrulama doğ-

ruluğu ve kaybı grafikleri paylaşılmıştır. Eğitim ve doğrulama doğrulukları arasındaki fark

Şekil 4.11.’e göre azalmıştır. Benzer şekilde eğitim ve doğrulama kaybı arasındaki fark da

azalmıştır. Bu durum kısmi veri arttırma yöntemi uygulanarak elde edilen kısmi veri kümesi

kullanılarak eğitilmiş modelin daha iyi sonuç verdiğini göstermektedir.
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(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.12. İnce Ayar Yöntemi, Kısmi Veri Arttırma Veri Kümesi Eğitim Doğruluk ve Kayıp
Sonucu

Şekil 4.13.’te ince ayar yöntemi kullanılarak tam veri arttırımı uygulanmış Set-1 (118 Sınıf)

veri kümesinin Inceptionv3 ağında eğitilerek elde edilen eğitim ve doğrulama doğruluğu

ve kaybı grafikleri paylaşılmıştır. Eğitim ve doğrulama doğruluğu arasındaki fark oldukça

azalmış ve doğrulama doğruluğu 0.7’nin üzerine çıkmıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.13. İnce Ayar Yöntemi, Tam Veri Arttırma Veri Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.14.’te tüm katmanların eğitilmesi yöntemi kullanılarak orijinal Set-1 (118 Sınıf) veri

kümesinin Inceptionv3 ağında eğitilerek elde edilen eğitim ve doğrulama doğruluğu ve kaybı

grafikleri paylaşılmıştır. Eğitim ve doğrulama doğruluğu ve kaybı arasındaki fark azalmamış

ve sabit olarak kalmıştır.
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(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.14. Tüm Katmanların Eğitilmesi Yöntemi, Orijinal Veri Kümesi Eğitim Doğruluk ve Kayıp
Sonucu

Şekil 4.15.’de tüm katmanların eğitilmesi yöntemi kullanılarak kısmi veri arttırma uygula-

narak elde edilmiş Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen

eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Eğitim ve doğrulama doğ-

ruluğu arasındaki fark orijinal veri kümesi ile eğitilen modelin sonucuna göre azalmıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.15. Tüm Katmanların Eğitilmesi Yöntemi, Kısmi Veri Arttırma Veri KÜmesi Eğitim
Doğruluk ve Kayıp Sonucu

Şekil 4.16.’da tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulana-

rak elde edilmiş Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen

eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Tam veri arttırma yöntemi
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modelin daha iyi öğrenmesini sağlamışır. Doğrulama ve eğitim doğruluğu birbirini takip et-

miştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.16. Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri Kümesi Eğitim
Doğruluk ve Kayıp Sonucu

64



4.4.4. Deney-2

Deney-1 sonucuna göre en iyi sonucu veren veri kümesi ve yöntem seçilmiştir. Tüm kat-

manların eğitilmesi yöntemi ve tam veri arttırma ile elde edilmiş veri kümesi en iyi sonucu

veren yöntem ve veri kümesi olmuştur. Plankton görüntüleri çok farklı en-boy oranına sa-

hiptir. Evrişimli sinir ağlarının girdisi sabit boyutta, tez kapsamında 224x224, görüntü kabul

ettiği için görüntüler yeniden boyutlandırılarak ağlara sokulmaktadır. Bu da plankton görün-

tülerinde bilgi kaybına neden olmaktadır. Bu bilgi kaybının önlenebilirliğinin araştırılması

için boşluk ekleme ve kare kırpma yöntemleri plankton görüntülerine uygulanmıştır. Bu de-

neyde Inceptionv3 ağında Set-1 (118 Sınıf) tam veri arttırma ile elde edilmiş veri kümesine

kare kırpma ve boşluk ekleme ön işlemleri uygulanmıştır. Kare kırpma ve boşluk ekleme ön

işleme yöntemleri ile elde edilen veri kümeleri, aktarım öğrenmesi, ince ayar ve tüm kat-

manların eğitilmesi yöntemleri kullanılarak eğitilmiş ve elde edilen sonuçlar paylaşılmıştır.

Bölüm 4.1.’de ön işleme ayrıntılarından bahsedilmiştir. Deney 2, Şekil 4.17.’de görselleşti-

rilmiştir.

Şekil 4.17. Deney-2’nin Özeti. Aktarım Öğrenmesi Yöntemi, İnce Ayar Yöntemi, Tüm
Katmanların Eğitilmesi Yöntemi
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4.4.5. Deney-2 Sonuç

Aktarım öğrenmesi, ince ayar ve tüm katmanların eğitilmesi yöntemleri ve her bir yöntem

için Set-1 (118 Sınıf) tam veri arttırma ile elde edilmiş veri kümesinin orijinal, boşluk ek-

leme, kare kırpma veri kümeleriyle gerçekleştirilen dokuz farklı deneyin deney sonuçları

Tablo 4.5.’de paylaşılmıştır. Tabloda her bir deney için kesinlik, geri çağırma, F1-Skoru met-

rikleri makro ortalama ve ağırlıklı ortalama yöntemleri kullanılarak ayrı ayrı hesaplanmıştır.

Tablo 4.6.’da eğitim ve doğrulama doğruluk ve kayıp değerleri her bir deney için paylaşıl-

mıştır. Ayrıca eğitilen modelin, test veri kümesi kullanılarak test edilmesi sonucu elde edilen

ilk-1 (Top-1) ve ilk-5 (Top-5) sonuçları her bir deney için paylaşılmıştır.

Set-1 (118 Sınıf) tam veri arttırma ile elde edilmiş veri kümesinde Inceptionv3 ağı kullanı-

larak gerçekleştirilen Deney-2 kapsamında en iyi sonuç, ön işleme uygulanmamış orijinal

Set-1 tam veri arttırma veri kümesinin tüm katmanlarının aktif edilerek Yöntem-3 ile eği-

tilmesi sonucu elde edilmiştir. Tabloda her bir metik için elde edilmiş en iyi sonuçlar koyu

renk ile gösterilmiştir. Deney-2 kapsamında paylaşılan tablolarda yer alan sonuçlara bakıldı-

ğında ön işleme işlemlerinin ağırlıklı ortalamada kesinlik, geri çağırma, F1-Skoru metrikle-

rini negatif yönde etkilediği görülmektedir. Makro ortalamada ise kesinlik metriği dışındaki

geri çağırma ve F1-Skoru metriklerini negatif yönde etkilediği gözlemlenmektedir. Eğitim

ve doğrulama doğruluk değerlerinde en yüksek değere sahip sonucu orijinal veri kümesi ve

tüm katmanların eğitilmesi yöntemi vermiştir. İlk-1 ve ilk-5 doğruluğa bakıldığında ise en

iyi sonuç yaklaşık %2 farkla kare kırpma yönteminde elde edilmiştir.

Tablo 4.5. Set-1 Veri Kümesinde Elde Edilen Deney-2 Sonuçları
Makro Ortalama Ağırlıklı Ortalama

Kesinlik Geri Çağırma F1-Skoru Kesinlik Geri Çağırma F1-Skoru

Aktarım Öğrenmesi
Yöntemi

Orijinal 55% 50% 51% 70% 71% 70%

Boşluk Ekleme 53% 50% 50% 68% 69% 68%

Kare Kırpma 57% 49% 50% 69% 70% 69%

İnce Ayar Yöntemi

Orijinal 58% 56% 56% 74% 75% 74%

Boşluk Ekleme 56% 52% 53% 70% 71% 70%

Kare Kırpma 59% 57% 57% 73% 73% 73%

Tüm Katmanların
Eğitilmesi Yöntemi

Orijinal 63% 62% 62% 77% 77% 77%
Boşluk Ekleme 65% 61% 61% 76% 76% 76%

Kare Kırpma 61% 60% 59% 76% 77% 76%
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Tablo 4.6. Inceptionv3 Ağıyla Eğitilen Ağların Deney-2 Eğitim Doğruluk ve Kayıp Sonuçları
Eğitim Doğrulama Doğruluk

Doğruluk Kayıp Doğruluk Kayıp İlk-1 (Top-1) İlk-5 (Top-5)

Aktarım Öğrenmesi
Yöntemi

Orijinal 0.73 0.91 0.72 0.96 71.4% 93.8%

Boşluk Ekleme 0.66 1.18 0.71 1.01 68.9% 93.5%

Kare Kırpma 0.72 0.95 0.71 1.01 70.3% 93.9%

İnce Ayar Yöntemi

Orijinal 0.81 0.63 0.76 0.91 72.8% 93.9%

Boşluk Ekleme 0.73 0.92 0.73 0.99 71.2% 94.4%

Kare Kırpma 0.85 0.52 0.75 0.98 73.4% 95.6%

Tüm Katmanların
Eğitilmesi Yöntemi

Orijinal 0.86 0.44 0.79 0.83 74.3% 94.3%

Boşluk Ekleme 0.81 0.61 0.78 0.84 76.1% 96.4%

Kare Kırpma 0.84 0.52 0.77 0.91 76.8% 96.8%

Şekil 4.18.’de aktarım öğrenmesi yöntemi kullanılarak tam veri arttırma ve boşluk doldurma

ön işlemi uygulanmış Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde

edilen eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Eğitim sonuçları

ön işleme uygulanmamış Şekil 4.16.’ya göre kötüleşmiştir. Eğitim, doğrulama doğruluğu ve

eğitim, doğrulama kaybı arasındaki fark artmıştır. Doğrulama doğruluğu azalmış ve doğru-

lama kaybı artmıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.18. Aktarım Öğrenmesi Yöntemi, Tam Veri Arttırma / Boşluk Doldurma Veri Kümesi
Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.19.’da aktarım öğrenmesi yöntemi kullanılarak tam veri arttırma ve kare kırpma ön

işleme uygulanmış Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen
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eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Şekil 4.18.’e göre eğitim

doğruluğu artmış ve kaybı azalmıştır. Doğrulama doğruluğu ve kaybı sabit kalmıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.19. Aktarım Öğrenmesi Yöntemi, Tam Veri Arttırma / Kare Kırpma Veri Kümesi Eğitim
Doğruluk ve Kayıp Sonucu

Şekil 4.20.’de ince ayar yöntemi kullanılarak tam veri arttırma ve boşluk doldurma ön işlemi

uygulanmış Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen eğitim

ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Aynı veri kümesi fakat aktarım

öğrenmesi yöntemi kullanan model ile elde edilen sonuçlara göre daha iyi sonuçlar elde

edilmiştir. İnce ayar yöntemi aktarım öğrenmesi yöntemine göre iyi sonuç verse de, boşluk

ekleme ön işlemi on işleme yapılmamış veri kümesi ile eğitilen modele göre %3 doğrulama

kaybı yaşamıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.20. İnce Ayar Yöntemi, Tam Veri Arttırma / Boşluk Doldurma Veri Kümesi Eğitim
Doğruluk ve Kayıp Sonucu
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Şekil 4.21.’de ince ayar yöntemi kullanılarak tam veri arttırma ve kare kırpma ön işleme

uygulanmış Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen eğitim

ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Şekil 4.20.’de elde edilen eğitim

sonuçlarına göre doğrulama doğruluğu %2, eğitim doğruluğu %12 artmıştır.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.21. İnce Ayar Yöntemi, Tam Veri Arttırma / Kare Kırpma Veri Kümesi Eğitim Doğruluk ve
Kayıp Sonucu

Şekil 4.22.’de tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma ve boşluk

doldurma ön işlemi uygulanmış Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eği-

tilerek elde edilen eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. %78

doğrulama doğruluğu ve %86 eğitim doğruluğu elde edilmiştir. Diğer ön işleme uygulanan

eğitim sonuçlarına göre iyi olmasına rağmen, orijinal tam veri arttırımı uygulanarak eğitilmiş

modelin doğrulama doğruluğunun altında kalmıştır.
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(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.22. Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma / Boşluk Doldurma Veri
Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.23.’te tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma ve kare

kırpma ön işleme uygulanmış Set-1 (118 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek

elde edilen eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Şekil 4.22.’de

elde edilen doğrulama doğruluğu sonuçlarından %1 daha az doğruluk oranına sahiptir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.23. Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma / Kare Kırpma Veri Kümesi
Eğitim Doğruluk ve Kayıp Sonucu
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4.4.6. Deney-3

Deney-3 kapsamında, Deney-1 (Eğitim yöntemlerinin etkisinin incelendiği deney) ve Deney-

2’de (Ön işleme yöntemlerinin etkisinin incelendiği deney) en iyi sonucu veren tüm kat-

manların eğitilmesi yöntemi ve tam veri attırma ile elde edilmiş veri kümesi kullanılmıştır.

Deney-1 ve 2’den elde edilen en iyi veri küme seçimi olarak karar verilen tam veri arttırma

ile elde edilmiş veri kümesi seçimi, Set-2 veri kümesine uygulanmıştır. Set-2 veri kümesinin

tam veri arttırma uygulanarak elde edilen toplam veri sayısı, sınıf sayısı, eğitim, doğrulama

ve test kümesinde bulunan veri sayısı miktarı Tablo 4.7.’de paylaşılmıştır.

Tam veri arttırma uygulanmış Set-1 (118 Sınıf) ve Set-2 (38 Sınıf) veri kümeleri kullanılarak

InceptionResNetv2, DenseNet, ResNet-50, VGG-16 ağlarında eğitimler yapılmış ve eğitilen

ağın tüm katmanları aktif edilerek, tüm katmanların eğitilmesi yöntemi ile eğitim gerçekleş-

tirilmiştir. Inceptionv3 ağında Set-1 tam veri arttırma kümesi ile yapılan eğitim Deney-1’de

Tablo 4.5.’te paylaşılmıştır. Inceptionv3 ağında Set-2 tam veri arttırma ile elde edilmiş veri

kümesi kullanılarak tüm katmanların eğitilmesi yöntemi ile eğitim gerçekleştirilmiştir. Bu

deneyde Deney-1 ve 2 sonucunda çıkarım yapılan en iyi yöntem ve veri kümesi olan tüm

katmanların eğitilmesi yöntemi ve tam veri arttırımı ile elde edilmiş veri kümesi kullanılarak

sonuçların diğer ağlarda elde edilmesi ve gözlemlenmesi hedeflenmiştir.

Tablo 4.7. Set-2 Veri Kümesine Tam Veri Arttırım Uygulanmasının Sonuçları

Set-2 Veri Kümesi ve Tam Veri Arttırma Yöntemi
#Toplam Veri #Sınıf #Eğitim Seti #Doğrulama Seti #Test Seti
72501 38 69591 1455 1455

4.4.7. Deney-3 Sonuç

Tablo 4.8.’de 118 sınıfa sahip Set-1 tam veri arttırma uygulanmış veri kümesinin eğitim so-

nucunda elde edilen sonuçlar paylaşılmıştır. Tabloda her bir ağ için kesinlik, geri çağırma,

F1-Skoru metrikleri makro ortalama ve ağırlıklı ortalama yöntemleri kullanılarak ayrı ayrı

hesaplanmıştır. Inceptionv3 ağında %77, InceptionResNetv2, DenseNet ve ResNet-50 ağla-

rında %78 ağırlıklı F1-Skoru elde edilmiştir. VGG-16 ağında diğer ağlara göre %5’lik azalma
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oranıyla %73’lük ağırlıklı F1-Skoru ve %3’lük bir azalma ile 0.76 doğrulama doğruluğu elde

edilmiştir.

Tablo 4.9.’da 38 sınıfa sahip Set-2 tam veri arttırma uygulanmış veri kümesinin eğitim sonu-

cunda elde edilen sonuçlar paylaşılmıştır. Tabloda her bir ağ için kesinlik, geri çağırma, F1-

Skoru metrikleri makro ortalama ve ağırlıklı ortalama yöntemleri kullanılarak ayrı ayrı he-

saplanmıştır. Set-2 veri kümesinden elde edilen sonuçlar Set-1 veri kümesine göre daha yük-

sek yüzdelere sahiptir. Bunun sebebi Set-2 veri kümesinin dengeli dağılıma sahip minimum

100 örnekten oluşan Set-1 veri kümesinin alt kümesine sahip olmasından kaynaklanmakta-

dır. InceptionResNetv2, DenseNet ve ResNet-50 ağlarında sırasıyla %91, %92, %92, %91

ağırlıklı F1-Skorları elde edilmiştir. VGG-16 ağında diğer ağlara göre daha düşük oranda

ağırlıklı F1-Skoru elde edilmiştir. Set-1 veri kümesinde VGG-16 ve diğer ağlar arasında elde

edilen yüzdesel fark Set-2’de elde edilen farktan yaklaşık %4 daha fazladır.

Tablo 4.10.’da eğitim ve doğrulama doğruluk ve kayıp değerleri Set-1 ve Set-2 veri kümesi

ve her bir ağ için paylaşılmıştır. Set-1 veri kümesinde VGG-16 ağında 0.76, diğer ağlarda

0.79 doğrulama doğruluğu elde edilmiştir. Set-2 veri kümesinde VGG-16 ağında %92, diğer

ağlarda %93 doğrulama doğruluğu elde edilmiştir. Tablo 4.10.’da eğitilen ağ modellerinin

test veri kümesi üzerinde elde edilen ilk-1 ve ilk-5 doğruluk değerleri paylaşılmıştır. Set-1

(118 Sınıf) veri kümesinden elde edilen en yüksek ilk-1 (top-1) doğruluk %78.6 ile DenseNet

ağından, ilk-5 (top-5) doğruluk %97.1 ile inceptionResNetv2 ağında elde edilmiştir. Set-2

(38 Sınıf) veri kümesinden elde edilen en yüksek ilk-1 doğruluk (top-1) %92.1 doğruluk

değeri ile DenseNet ağından ve ilk-5 (top-5) doğruluk ise %99.1 ile ResNet-50 ağından elde

edilmiştir.

Ağırlıklı ortalama ile elde edilen sonuçlar, dengesiz bir veri dağılımına sahip olan Set-1 (118

Sınıf) veri kümesinin değerlendirmesinde daha kritik bir role sahiptir. Bunun nedeni, ağır-

lıklı ortalama yöntemi ile sınıfların sahip olduğu örnek sayısına göre ağırlıklandırılmasıdır.

Ağırlıklı ortalama yöntemi kullanılarak elde edilen kesinlik, geri çağırma ve F1-Skoru so-

nuçlarına bakıldığnda en iyi sonucu veren ağ DenseNet ağıdır. Set-2 veri kümesinin ağırlıklı

ortalama yöntemi ile elde edilen sonuçlarında da en iyi sonuçlar DenseNet ağına sahiptir. Bu

deney sonrasında yapılacak olan deneylerde bu nedenle DenseNet ağı kullanılmıştır.
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Tablo 4.8. Set-1 Veri Kümesinde Elde Edilen Ağ Sonuçları

Makro Ortalama Ağırlıklı Ortalama

Kesinlik Geri Çağırma F1-Skoru Kesinlik Geri Çağırma F1-Skoru

Inceptionv3 %63 %62 %62 %77 %77 %77

InceptionResNetv2 %67 %66 %66 %78 %78 %78
DenseNet %66 %61 %61 %78 %79 %78
ResNet50 %64 %63 %63 %77 %78 %78
VGG16 %57 %53 %53 %73 %74 %73

Tablo 4.9. Set-2 Veri Kümesinde Elde Edilen Ağ Sonuçları

Makro Ortalama Ağırlıklı Ortalama

Kesinlik Geri Çağırma F1-Skoru Kesinlik Geri Çağırma F1-Skoru

Inceptionv3 %90 %88 %89 %92 %91 %91

InceptionResNetv2 %90 %89 %89 %92 %92 %91

DenseNet %90 %90 %90 %92 %92 %92
ResNet50 %89 %89 %89 %92 %92 %92
VGG16 %90 %87 %88 %91 %91 %91

Tablo 4.10. Set-1 ve Set-2 Veri Kümelerinin Eğitim ve Doğrulama Doğruluk/Kayıp Sonuçları

Eğitim Doğrulama Doğruluk

Doğruluk Kayıp Doğruluk Kayıp İlk-1 (Top-1) İlk-5 (Top-5)

Set-1
(118 Sınıf)

Inceptionv3 0.86 0.44 0.79 0.83 77.4% 97.0%

InceptionResNetv2 0.90 0.32 0.79 0.94 78.4% 97.1%
DenseNet 0.79 0.68 0.79 0.74 78.6% 97.0%

ResNet-50 0.87 0.41 0.79 0.86 78.4% 97.0%

VGG-16 0.78 0.73 0.76 0.84 74.3% 95.6%

Set-2
(38 Sınıf)

Inceptionv3 0.99 0.04 0.93 0.46 91.4% 98.9%

InceptionResNetv2 0.99 0.03 0.93 0.45 91.6% 98.6%

DenseNet 0.95 0.15 0.93 0.31 92.1% 98.8%

ResNet-50 0.99 0.03 0.93 0.42 92.0% 99.1%
VGG-16 0.94 0.20 0.92 0.32 91.0% 99.0%
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Set-1 (118 Sınıf) veri kümesinin ağlarda gerçekleşen eğitimleri toplamda 30 iterasyon ger-

çekleştirilmiştir. Tüm eğitim boyunca en yüksek doğrulama doğruluğuna sahip model kay-

dedilmiştir. Şekil 4.24.’te tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma

uygulanmış Set-1 (118 Sınıf) veri kümesinin InceptionResNetv2 ağında eğitilerek elde edi-

len eğitim ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. %79 doğrulama ve %90

eğitim doğruluğu elde edilmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.24. Set-1, InceptionResNetv2, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma
Veri Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.25.’de tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-1 (118 Sınıf) veri kümesinin DenseNet ağında eğitilerek elde edilen eğitim ve doğrulama

doğruluğu ve kaybı grafikleri paylaşılmıştır. %79 doğrulama ve %79 eğitim doğruluğu elde

edilmiştir. Eğitim ve doğrulama doğruluğu ve kaybı arasındaki uzaklık iterasyon sayısı iler-

ledikçe azalmıştır.
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(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.25. Set-1 DenseNet Yöntem-3 Tam Veri Arttırma Veri Kümesi Eğitim Doğruluk ve Kayıp
Sonucu

Şekil 4.26.’da tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-1 (118 Sınıf) veri kümesinin ResNet50 ağında eğitilerek elde edilen eğitim ve doğrulama

doğruluğu ve kaybı grafikleri paylaşılmıştır. %79 doğrulama ve %87 eğitim doğruluğu elde

edilmiştir. Eğitim ve doğrulama doğruluğu ve kaybı arasındaki uzaklık yaklaşık 15. iteras-

yona kadar azalmış sonrasında artarak devam etmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.26. Set-1, ResNet-50, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri
Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.27.’de tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-1 (118 Sınıf) veri kümesinin VGG-16 ağında eğitilerek elde edilen eğitim ve doğrulama
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doğruluğu ve kaybı grafikleri paylaşılmıştır. %76 doğrulama ve %78 eğitim doğruluğu elde

edilmiştir. Eğitim, doğrulama doğruluğu ve kaybı birbirine yakın bir şekilde artmış ve azal-

mıştır. Aşırı uyum (overfitting) problemi görülmemiştir. Fakat diğer ağlara göre doğrulama

doğruluğu %3 oranında daha düşük seviyede elde edilmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.27. Set-1, VGG-16, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri Kümesi
Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.28.’de tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-2 (38 Sınıf) veri kümesinin Inceptionv3 ağında eğitilerek elde edilen eğitim ve doğrulama

doğruluğu ve kaybı grafikleri paylaşılmıştır. Toplamda 30 iterasyon ile gerçekleşen eğitimde

%93 doğruluma doğruluğu ve %99 eğitim doğruluğu elde edilmiştir. Eğitim ve doğrulama

doğruluğu yaklaşık olarak 10. iterasyonda birbirine yaklaşmış sonrasında aralarındaki fark

artarak devam etmiştir.
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(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.28. Set-2, Inceptionv3, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri
Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.29.’da tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulan-

mış Set-2 (38 Sınıf) veri kümesinin InceptionResNetv2 ağında eğitilerek elde edilen eğitim

ve doğrulama doğruluğu ve kaybı grafikleri paylaşılmıştır. Toplamda 30 iterasyon ile gerçek-

leşen eğitimde Şekil 4.28. ile benzer sonuçlar elde edilmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.29. Set-2, InceptionResNetv2, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma
Veri Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.30.’da tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-2 (38 Sınıf) veri kümesinin DenseNet ağında eğitilerek elde edilen eğitim ve doğrulama

doğruluğu ve kaybı grafikleri paylaşılmıştır. Toplamda 30 iterasyon ile gerçekleşen eğitimde
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5. iterasyondan sonra doğrulama doğruluğu sabit kalmıştır. Doğrulama doğruluğu ve eğitim

doğruluğu sırasıyla %93 ve %95 olarak elde edilmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.30. Set-2, DenseNet, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri
Kümesi Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.31.’de tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-2 (38 Sınıf) veri kümesinin ResNet-50 ağında eğitilerek elde edilen eğitim ve doğrulama

doğruluğu ve kaybı grafikleri paylaşılmıştır. Toplamda 30 iterasyon ile gerçekleşen eğitimde

7. iterasyondan sonra doğrulama doğruluğu sabit kalmıştır. Doğrulama doğruluğu ve eğitim

doğruluğu sırasıyla %93 ve %99 olarak elde edilmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.31. Set-2, ResNet, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri Kümesi
Eğitim Doğruluk ve Kayıp Sonucu
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Şekil 4.32.’de tüm katmanların eğitilmesi yöntemi kullanılarak tam veri arttırma uygulanmış

Set-2 (38 Sınıf) veri kümesinin VGG-16 ağında eğitilerek elde edilen eğitim ve doğrulama

doğruluğu ve kaybı grafikleri paylaşılmıştır. Doğrulama doğruluğu ve eğitim doğruluğu sı-

rasıyla %92 ve %94 olarak elde edilmiştir.

(a) Eğitim ve Doğrulama Doğruluk Grafiği (b) Eğitim ve Doğrulama Kayıp Grafiği

Şekil 4.32. Set-2, VGG-16, Tüm Katmanların Eğitilmesi Yöntemi, Tam Veri Arttırma Veri Kümesi
Eğitim Doğruluk ve Kayıp Sonucu

Şekil 4.33.’te yanlış sınıflandırılan örneklerin sonuçları paylaşılmıştır. Şekile bakıldığında

en çok karıştırılan örneklerin aynı sınıfın alt sınıfına sahip olduğu ve birbirine benzedikleri

görülmektedir. Şekilde a ve c sütunları tahmin edilmesi beklenen gerçek sınıflara verilen

örnekler iken, b ve d sütunları model tarafından tahmin edilen sınıf görüntüleridir. Şekil

4.34.’te test kümesinden doğru sınıflandırılan örnek görüntüler paylaşılmıştır.

79



Şekil 4.33. Yanlış Sınıflandırılan Görüntü Örnekleri. (a) Gerçek Sınıf, (b) Tahmin Edilen Sınıf, (c)
Gerçek Sınıf, (d) Tahmin Edilen Sınıf
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Şekil 4.34. Doğru Sınıflandırılan Görüntü Örnekleri

Şekil 4.35.’de en çok karıştırılan plankton sınıflarından biri olan copedod sınıflarının, Deney-

3 kapsamında eğitilen DenseNet modelinin test veri kümesi ile testi sonucunda elde edilen

hata matrisi paylaşılmıştır. Hata matrisinde değerler, 0 ile 1 aralığında aldığı değere göre

açık maviden koyu maviye doğru renklendirilmiştir. Hata matrisinin sol tarafında her bir

sınıftan, analiz edebilmek amacıyla örnek görüntü paylaşılmıştır. Her bir sınıfın görüntüsü

incelendiğinde birbirine oldukça benzeyen sınıflar olduğu ve bu sınıfların model tarafından
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karıştırıldığı hata matrisinde gözlemlenmiştir. Hata matrisinde en çok karıştırılan sınıf olan

copedod calanoid frillyAntennae ve model tarafından karıştırılan diğer sınıfların görüntüleri

Şekil 4.36.’da paylaşılmıştır. Şekil 4.36.’da görüldüğü üzere sınıflar küçük detaylar haricinde

birbirine çok benzemektedir. Bu durum, hata matrisinde copedod calanoid frillyAntennae sı-

nıfının tahmin değerinin düşük bir değer olan 0.20 olmasına sebebiyet vermiştir. Hata mat-

risinde yüksek doğruluk oranına sahip lacivert rengine sahip sınıflara odaklanıldığında bu

sınıfların diğer sınıflardan ayırt edici bir şekilde farklı olduğu gözlemlenmiştir.

Şekil 4.35. Copedod Sınıfı Hata Matrisi
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Şekil 4.36. Copedod Sınıfında Bulunan Karıştırılan Örnek Alt Gruplar

4.4.8. Deney-4

Deney-4 kapsamında ortalama topluluk yöntemi kullanılarak eğitilen modeller birleştirilmiş-

tir. 118 sınıfa sahip Set-1 tam veri arttırma ile elde edilmiş veri kümesi Inceptionv3, Incep-

tionResNetv2, DenseNet, ResNet-50 ve VGG-16 ağlarında eğitilmiş ve elde edilen modeller

ortalama topluluk yöntemiyle birleştirmiştir.

38 sınıfa sahip Set-2 tam veri arttırma veri kümesi Inceptionv3, InceptionResNetv2, Dense-

Net, ResNet-50 ve VGG-16 ağlarında eğitilmiş ve elde edilen modeller ortalama topluluk

yöntemiyle birleştirilmiştir.

4.4.9. Deney-4 Sonuçları

Deney-4 sonucunda elde edilen sonuçlar Tablo 4.11.’de paylaşılmıştır. Tabloda her bir top-

luluk modeli için kesinlik, geri çağırma, F1-Skoru metrikleri makro ortalama ve ağırlıklı

ortalama yöntemleri kullanılarak ayrı ayrı hesaplanmıştır. Deney sonucunda Set-1 için %80

ağırlıklı F1-skoru, Set-2 için %93 ağırlıklı F1-skoru elde edilmiştir. Topluluk yöntemiyle

elde edilen ağırlıklı F1-Skorunda, Set-1 topluluk modeliyle %2, Set-2 topluluk modeliyle

%1’lik iyileşme gözlemlenmiştir. Tablo 4.12.’de ortalama topluluk yöntemiyle birleştirilen

beş ağın model sonucu, test veri kümesi kullanılarak test edilmiş ve ilk-1 (top-1) ve ilk-5

(top-5) doğruluk değerleri elde edilmiştir. Set-1 veri kümesi için ilk-1 (top-1) doğeuluk de-

ğeri %80.7 elde edilirken, ilk-5 (Top-5) topluluk değeri %98 olarak elde edilmiştir. Set-2

veri kümesinde ise %93.3 ve %99.2 ilk-1 (top-1 ) ve ilk-5 (top-5) doğruluk değerleri elde

edilmiştir.
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Tablo 4.11. Set-1 ve Set-2 Veri Kümelerinin Ortalama Modellerin Topluluğu Deney-4 Sonucu

Makro Ortalama Ağırlıklı Ortalama

Kesinlik Geri Çağırma F1-Skoru Kesinlik Geri Çağırma F1-Skoru

Set-1 Topluluk Modeli %66 %65 %65 %80 %81 %80

Set-2 Topluluk Modeli %92 %90 %91 %93 %93 %93

Tablo 4.12. Set-1 ve Set-2 Veri Kümelerinin Ortalama Modellerin Topluluğu Deney-4 Sonucu

Doğruluk

İlk-1 (Top-1) İlk-5 (Top-5)

Set-1 Topluluk Modeli %80.7 %98.0

Set-2 Topluluk Modeli %93.3 %99.2

4.4.10. Deney-5

Deney-5 kapsamında, eğitim esnasında çapraz entropi kaybı yerine odak kaybı fonksiyonu

kullanılmıştır. Tam veri arttırma ile elde edilen Set-1 (118 Sınıf) veri kümesi, tüm katman-

ların eğitilmesi yöntemi kullanılarak DenseNet ağında eğitilmiştir. Odak kaybı fonksiyonu

dengesiz dağılıma sahip veri kümelerinde zor sınıflara odaklanarak, zor sınıflardaki başa-

rımı arttırmaktadır. Bu deney kapsamında dengesiz dağılıma sahip Set-1 (118 Sınıf) veri

kümesi üzerinde, odak kaybının farklı hiperparametre değerlerinde eğitim gerçekleştirilmiş-

tir ve odak kaybı fonksiyonunun başarıma etkisi gözlemlenmiştir. α= 0, 0.1, 0.25, 0.5, 0.75,

0.90, 1 değerlerinde ve γ= 0, 2 değerlerinde deneyler gerçekleştirilmiştir.

4.4.11. Deney-5 Sonuçları

α parametresinin 1, γ parametresinin 0 olduğu durumda odak kaybı ile çapraz entropi kaybı

matematiksel olarak eşit olmaktadır. Denklem 17’de odak kaybının matematiksel ifadesi ve-

rilmiştir. α parametresinin 1, γ parametresinin 0 olduğu deneye bakıldığında Tablo 4.10.’da

çapraz entropi ile elde edilen sonuçların birebir aynısı elde edilmemiştir. Odak kaybıyla ile

yapılan eğitim sonucunda, eğitim ve doğrulama doğruluğu %1 artış göstermiş ve eğitim kay-

bında %4 doğrulama kaybında %2 azalma gözlemlenmiştir. Makro ve ağırlıklı ortalama ile

bulunan değerler, çapraz entropi ile makro ağırlıklı kesinlik değerindeki %2’lik düşüş hari-

cinde birebir aynı olarak elde edilmiştir. Matematiksel olarak iki kayıp fonksiyonunun eşit
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kabul edildiği α parametresinin 1, γ parametresinin 0 olduğu durumda eğitimde iyileşme

gerçekleşmiştir. Test verisi ile elde edilen sonuçlarda kesinlik metriği haricinde bir değişik-

lik gözlemlenmemiştir. Deney sonuçları Tablo 4.13. ve Tablo 4.14.’te paylaşılmıştır. α’nın

farklı değerleriyle gerçekleşen deney sonuçlarında α’nın 0.1 ve 0.90 arasındaki değerleri için

kayıp ile doğru orantılı olduğu gözlemlenmiştir.

Tablo 4.13. Set-1 Veri Kümesinin DenseNet ağı ve Farklı Odak Kaybı Parametreleri ile Eğitilen
Modellerinin Sonuçları

Makro Ortalama Ağırlıklı Ortalama

α γ Kesinlik Geri Çağırma F1-Skoru Kesinlik Geri Çağırma F1-Skoru

α= 0 γ=2 %63 %60 %60 %76 %77 %76

α= 0.1 γ=2 %55 %50 %50 %73 %75 %73

α= 0.25 γ=2 %59 %56 %55 %75 %76 %75

α= 0.5 γ=2 %64 %59 %59 %77 %77 %76

α= 0.75 γ=2 %64 %61 %62 %77 %78 %77

α= 0.90 γ=2 %63 %61 %61 %77 %78 %77

α= 1 γ=0 %64 %61 %61 %78 %79 %78

Tablo 4.14. Set-1 Veri Kümesinin DenseNet ağı ve Farklı Odak Kaybı Parametreleri ile Eğitilen
Modellerinin Sonuçları

Eğitim Doğrulama Doğruluk

α γ Doğruluk Kayıp Doğruluk Kayıp İlk-1 (Top-1) İlk-5 (Top-5)

α= 0 γ=2 0.75 0.64 0.79 0.59 %77 %96

α= 0.1 γ=2 0.69 0.12 0.77 0.10 %75 %95

α= 0.25 γ=2 0.74 0.21 0.78 0.18 %76 %96

α= 0.5 γ=2 0.75 0.33 0.79 0.28 %77 %97
α= 0.75 γ=2 0.76 0.41 0.79 0.39 %78 %97
α= 0.90 γ=2 0.76 0.45 0.79 0.43 %78 %97
α= 1 γ=0 0.80 0.64 0.80 0.72 %79 %97
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4.4.12. Deney-6

Bu deney kapsamında, tam veri arttırma uygulanmış Set-1 (118 Sınıf) veri kümesi ve tüm

katmanların eğitilmesi yöntemiyle eğitilen DenseNet modelinin test veri kümesi üzerinde

elde edilen hata matrisleri analiz edilmiş ve gruplama ile ilgili bir yaklaşım önerilmiştir.

Ayrıca veri kümesi, 33 plankton grubu şeklinde gruplandırılarak eğitilmiş ve elde edilen

model test veri kümesinde test edilerek hata matrisi elde edilmiştir.

118 sınıf ile eğitilen modelin hata marisinden, grup yapısı hata matrisi elde etmek amacıyla

uygulanan adımlar şu şekildedir.

• 118 sınıfa sahip Set-1 veri kümesinin DenseNet modeli, test veri kümesinde test edil-

miştir ve elde edilen hata matrisi 118x118 boyutunda elde edilmiştir.

• Elde edilen 118x118 hata matrisinin sütun kısmında yer alan sınıfları grup bazında

toplanmış bu işlem sonucunda 118x33 matris elde edilmiştir.

• Elde edilen 118x33 boyutundaki hata matrisinin her bir satırı ilgili sınıfın veri sayısı ile

çarpılmış ve sonrasında satırlar grup bazında toplanmıştır. Bu işlem sonucunda 33x33

hata matrisi elde edilmiştir.

• 33x33 hata matrisindeki her bir satır ilgili grubun içerdiği toplam veri sayısına bölüne-

rek o grup ile ilgili tahmin elde edilmiştir.

118x118 hata matrisinden yukarıdaki işlemler uygulanarak elde edilen 33x33 hata matrisi

ile, grup bazında 33 sınıf grubu ile eğitilen modelin hata matrisi karşılaştırılmış ve deney ile

ilgili tüm sonuçlar Bölüm 4.4.13.’de paylaşılmıştır.

4.4.13. Deney-6 Sonuçları

Şekil 4.37.’de ve Şekil 4.38.’de 118x118 hata matrisindeki sütunlarda yer alan sınıfların

grup bazında toplanarak gruplandığı ve sonucunda 118x33 boyutunda hata matrisinin elde

edildiği hata matrisi görseli iki kısım olarak paylaşılmıştır. İlk kısım, 118x33 boyutundaki

matrisin ilk 60 sınıfını, ikinci kısım ise son 58 sınıfını göstermektedir. 118x33 boyutuna sahip

matrisin her bir satırının sınıf sayısı ile çarpıldığı ve aynı sütun sınıflarının toplanarak grup-

landırıldığı gibi satırlarının da toplanarak gruplandırıldığı 33x33 hata matrisi Şekil 4.39.’da
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paylaşılmıştır. Elde edilen 33x33 matrisin her bir değerinin olasılık değerini bulmak ama-

cıyla Şekil 4.39.’da yer alan her bir değer grupta yer alan toplam veri sayısına bölünmüştür

ve bu işlem sonucunda Şekil 4.40.’da yer alan hata matrisi elde edilmiştir.

Şekil 4.40. ve Şekil 4.41. hata matrisleri karşılaştırıldığında, Şekil 4.40.’da yer alan ve 118

sınıfın gruplanması ile elde edilen hata matrisinin Şekil 4.41.’deki hata matrisine göre doğ-

ruluk oranlarının daha yüksek olduğu ve sınıflar arası karıştırma oranının daha düşük olduğu

gözlemlenmiştir. Örneğin tornaria plankton sınıfı Şekil 4.41.’de 0.50 tahmin doğruluğuna

sahipken, Şekil 4.40.’da 0.67 doğruluk tahminine sahiptir. Tahmin doğruluğu ortalama sevi-

yede olan ve grup içi karışmaya meyil gösteren sınıflar için önerilen yöntem başarılı olmuş-

tur. Önerilen yöntemin dezavantajlarından bir tanesi tahmin doğruluğu iyi seviyede olmayan,

az veriye sahip ve karıştırılan sınıfları tamamen yok saymasıdır (Tahmin değeri 0 olmakta-

dır). Örneğin stomatopod sınıfı, Şekil 4.41.’de yer alan hata matrisinde 0.25 tahmin oranına

sahipken bu oran Şekil 4.40.’da sıfırlanmıştır.
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Şekil 4.39. Her Bir Sınıfın Olasılık Değerinin Sınıf Sayısı ile Çarpılarak, Satır Bazında
Gruplandırılıp Toplanarak Elde Edilen 33x33 Hata Matrisi
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Şekil 4.40. Her Bir Sınıf Grubunun Sahip Olduğu Toplam Veri Sayısına Bölünerek Elde Edilen
33x33 Hata Matrisi
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Şekil 4.41. 33 Plankton Grubu ile Eğitilen Model Sonucunda Elde Edilen Hata Matrisi
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5. SONUÇLAR

Bu çalışmanın ana amacı, derin evrişimli sinir ağı tabanlı plankton sınıflandırmasının per-

formansını raporlamak için farklı yöntemlerin ve evrişimli sinir ağı modellerinin geniş bir

deneysel değerlendirmesini yapmaktır. Bu amaçla gerçekleştirilen katkılar şu şekilde özet-

lenebilir: Dengesiz dağılımlı bir veri kümesi olan Kaggle-plankton veri kümesi kullanıldığı

için veri kümesi veri arttırma yöntemi ve ön işleme yöntemleri uygulanarak iyileştirilmeye

çalışılmıştır. Önceden ImageNet veri kümesi [69] ile eğitilen evrişimli sinir ağı modellerini;

aktarım öğrenmesi, ince ayar, tüm katmanların eğitilmesi yöntemleri olmak üzere toplamda

üç yöntem kullanılarak veri kümeleri ile ayrı ayrı eğitilmiş ve veri arttırma ve ön işleme

işlemlerinin eğitime katkısı gözlemlenmiştir. Sınıflandırma modelinin başarımını arttırmak

amacıyla ortalama topluluk öğrenimi yöntemi uygulanmıştır. Farklı kayıp yöntemleri olan

çapraz entropi ve odak kaybı kayıp yöntemlerinin plankton eğitimine etkisi gözlemlenmiş-

tir. Benzer sınıfların gruplanması tekniği önerilerek ve gruplanarak eğitilen model ile hata

matrisleri karşılaştırılarak elde edilen sonuçlar analiz edilmiştir.

Plankton sınıflandırmasında Kaggle plankton veri kümesinin iki farklı sürümü kullanılmıştır.

Kullanılan ilk sürümde 121 sınıfa sahip Kaggle plankton veri kümesinden, bilim insanları ta-

rafından etiketlenemeyen ve bilinmeyen olarak adlandırılan üç sınıf çıkarılmış ve 118 sınıfa

sahip, tez kapsamında Set-1 olarak isimlendirilen veri kümesi oluşturulmuştur. Bilinmeyen

olarak adlandırılan üç sınıfın veri kümesinden çıkarılmasının sebebi hangi sınıfa ait olacağı

bilinemediği ve bu sebeple doğru etiketlenemediği için eğitim başarısını negatif yönde et-

kileyebileceğinin düşünülmesidir. İkinci sürüm olarak [18] çalışmasında ve benzer Kaggle

plankton veri kümesi çalışmalarında kullanıldığı gibi plankton sınıflarında minimum 100

görüntüye sahip 38 sınıf seçilerek 14.374 görüntüden oluşan Kaggle plankton veri kümesi-

nin bir alt kümesi kullanılmıştır. Seçilen sınıfların her birinde min 108 ve maksimum 1979

görüntü bulunmaktadır. Set-2 olarak isimlendirilen veri kümesi diğer çalışmalarla yöntemin

karşılaştırılması ve veri kümesinin farklı versiyonlarını değerlendirebilmek amacıyla kulla-

nılmıştır. Tez kapsamında plankton sınıflandırması başarımını arttırmak amacıyla uygulanan

yöntemler Set-1 veri kümesi üzerinde gerçekleştirilmiştir. Uygulanan yöntemlerden başarılı

olduğuna karar verilen eğitim yöntemi ve veri arttırma yöntemi Set-2 veri kümesine ayrıca

uygulanmıştır.

Deney-1 kapsamında Set-1 veri kümesi üç farklı eğitim yöntemi ve her bir yöntem için üç

farklı veri kümesi seçeneğiyle eğitilmiştir. Set-1 veri kümesi sınıf dengesizliğine sahip bir
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veri kümesi olması sebebiyle bazı sınıflar fazla veriye sahipken bazı sınıflar yetersiz sayıda

veri içermektedir. Bu durum orijinal veri kümesi ile eğitildiğinde yeterli sayıda veriye sahip

sınıflarda fazla başarım elde edilmesini sağlarken, yetersiz veriye sahip sınıflarda düşük ba-

şarım elde edilmesine neden olmaktadır. Ayrıca yetersiz sayıdaki veri eğitimde aşırı uyum

durumuyla karşılaşılmasına sebep olmaktadır. Bu durumları önlemek amacıyla Set-1 veri

kümesine veri arttırım yöntemleri uygulanmıştır. Uygulanan iki farklı veri arttırma yönte-

minden biri olan kısmi veri arttırma yönteminde, sınıflarda belirlenen değerin (60) altında

veriye sahip olan sınıflara veri arttırma yöntemi uygulanmıştır. Belirli değerin üzerinde ve-

riye sahip sınıflara veri arttırımı uygulanmamıştır. Uygulanan ikinci veri arttırma yöntemi

olan tam veri arttırma yönteminde, sınıfların sahip olduğu veri sayısından bağımsız olarak

tüm sınıflara veri arttırımı uygulanmıştır. Yatay, dikey olarak tersine çevirme, farklı açılarda

uygulanan rotasyon, farklı katsayılarda uygulanan odaklanma Deney-1 kapsamında uygula-

nan veri arttırma yöntemleridir. Set-1 (118 Sınıf) veri kümesinde plankton sınıflandırması

yapmak amacıyla gerçekleştirilen ilk eğitimlerde aktarım öğrenmesi yöntemi kullanılarak

eğitim gerçekleştirilmiştir. Bu yöntem ile elde edilen başarım, %70 civarından daha yük-

seğe çıkamamıştır. Aktarım öğrenmesinde, ağların büyük veri kümelerinde önceden eğitilmiş

ağırlıkları kullanılmış, sadece son katman değiştirilmiş ve plankton sınıflandırmasında kul-

lanılan veri kümesinin sınıf sayısına uygun olacak hale getirilmiştir. Uygulanan ikinci eğitim

yöntemi olan ince ayar yönteminde, önceden eğitilen ağın katman sayısının %30’u hesapla-

narak ilgili katmanların eğitilebilir hale getirilmesi sağlanmıştır. Evrişimsel sinir ağlarında

ilk katmanlar veriye dair daha genel özellikleri öğrenirken, son katmanlar veriyle ilgili daha

spesifik özellikleri öğrenmektedir. Bundan dolayı son katmanlardan geriye giderek her bir ağ

için katmanların %70’inden itibaren eğitilebilir hale getirilmesinin sonucu nasıl etkileyeceği

gözlemlenmek istenmiştir. Deney-1 kapsamında gerçekleştirilen ince ayar yöntemi sonucu,

aktarım öğrenmesi sonucuna göre orijinal ve kısmi veri arttırma uygulanmış veri kümele-

rinde yaklaşık olarak %2, tam veri arttırma uygulanmış veri kümesinde %4 daha iyi başarım

göstermiştir. Katmanların eğitilebilir hale gelmesinin başarıma olan etkisini gözlemlemek

amacıyla tüm katmanların eğitilmesi yöntemi kullanılmış, tüm katmanlar eğitilebilir hale ge-

tirilmiş ve ince ayar yöntemi ile karşılaştırıldığında orijinal veri kümesinde %1, kısmi veri

arttırma ve tam veri arttırma uygulanmış veri kümelerinde %3 başarım artışı gerçekleşmiştir.

Deney-1 kapsamında elde edilen veri kümeleri ve yöntemler kullanılarak elde edilen eğitim

sonuçları karşılaştııldığında, en iyi sonuç aktarım öğrenmesi yöntemi ve tam veri arttırma

uygulanarak elde edilen veri kümesi eğitimi sonucunda elde edilmiştir. Aktarım öğrenmesi

yönteminin diğer yöntemlere göre başarısız olmasındaki en büyük sebebin ağların önceden
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eğitilen veri kümesi (ImageNet) ile plankton veri kümesinin benzerlik oranının çok düşük

olması sebebiyle olduğu düşünülmektedir.

Deney-2 kapsamında Deney-1 sonucunda en iyi sonucu veren Set-1 (118 Sınıf) tam veri art-

tırma uygulanarak elde edilmiş veri kümesi kullanılmıştır. Plankton görüntülerinin çok farklı

boyutlarda olması sebebiyle ve evrişimli sinir ağlarının sabit boyut kabul etmesi nedeniyle

görüntülerde yaşanan bilgi kaybını önlemek için kare kırpma ve boşluk ekleme ön işleme

yöntemleri kullanılmıştır. Boşluk ekleme yönteminde, ilgili plankton görüntüsünün evrişimli

sinir ağının kabul ettiği görüntü boyutuna getirilmesi için etrafına gereken boyut kadar beyaz

pikseller eklenmiştir. Kare kırpma yönteminde, evrişimli sinir ağına görüntüler verilmeden

önce görüntülere ortalanarak kesme işlemi gerçekleştirilmiş ve elde edilen kare plankton gö-

rüntüsü, bikübik interpolasyonu kullanılarak 224x224 boyutu olan evrişimli sinir ağının girdi

boyutuna göre yeniden boyutlandırılmıştır. Yöntemlerin ilgili ön işleme yöntemlerine olan

katkısını görmek amacıyla ayrı ayrı uygulanmıştır. Elde edilen sonuçlarda, uygulanan ön

işleme yöntemlerinin plankton sınıflandırmasının başarımına negatif etki ettiği gözlemlen-

miştir. Ön işleme uygulamalarıyla farklı yöntemler ile elde edilen sonuçlarda %2-3 arasında

kayıplar yaşanmıştır. Deney-2 sonucunda önişleme yöntemlerinin sonuçları negatif etkiledi-

ğine karar verilerek en iyi yöntem olarak Yöntem-3 ve ön işleme uygulanmamış (orijinal)

tam veri arttırma ile elde edilmiş veri kümesi seçilerek sonraki deneyler bu yöntem ve veri

kümesi ile gerçekleştirilmiştir.

Deney-3 kapsamında tüm katmanların eğitilmesi yöntemi ve tam veri arttırma yöntemleri,

Set-1 (118 Sınıf) ve Set-2 (38 Sınıf) veri kümesi ile beş farklı ağda eğitilmiştir. Inceptionv3,

InceptionResNetv2, DenseNet, ResNet-50 ve VGG-16 ağlarında eğitim gerçekleştirilmiştir.

Set-2 veri kümesi daha dengeli sınıflara sahip olduğundan, Set-1 veri kümesine göre daha

yüksek başarım elde edilmiştir. En iyi sonucu veren model, DenseNet modeli olarak göz-

lemlenmiştir. Set-1 veri kümesinde %78, Set-2 veri kümesinde %92 ağırlıklı F1-Skoru elde

edilmiştir. Ayrıca Set-1 veri kümesinde %97, Set-2 veri kümesinde %99.1 ilk-5 (Top-5) skoru

elde edilmiştir. Deney-4 kapsamında tüm ağlardan elde edilen başarımlar ortalama topluluk

yöntemiyle birleştirilmiş ve sonuç Set1 veri kümesinde %80 ve Set-2 veri kümesinde %93

ağırlıklı F1-Skoru elde edilmiştir. Bu yöntem ile ağların başarımı birleştirilerek Set-1 toplu-

luk modeliyle %2, Set-2 topluluk modeliyle %1 daha yüksek başarım elde edilmiştir. Ayrıca

ilk-5 doğruluk oranı, Set-1 veri kümesinde %98, Set-2 veri kümesinde %99.2 olarak elde

edilmiştir. Deney-5 kapsamında odak kaybı kayıp fonksiyonunun farklı hiperparametreleri

ile eğitimler gerçekleştirilerek sonuçlar elde edilmiştir. Deney-5 sonucunda test kümesinden
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elde edilen başarımda artış sağlanmamıştır, eğitim ve doğrulama doğruluk değerlerinde artış

ve kayıp değerlerinde azalma gözlemlenmiştir. Deney-6 kapsamında, 118 sınıfa ait DenseNet

ağı üzerinde Deney-3 kapsamında Set-1 veri kümesi ile gerçekleştirilen deney sonucu elde

edilen modelin hata matrisi hesaplanmıştır. Elde edilen 118x118 boyutundaki hata matrisi,

aynı isim altında toplanan farklı gruplar sütun bazında toplanarak 118x33 matris elde edil-

miş, sonrasında her bir sınıf içerdiği veri sayısı miktarıyla çarpılmıştır. Satır bazında da aynı

isim altında toplanan farklı gruplar sütun bazında toplanarak 33x33 grup matrisi elde edil-

miştir. Elde edilen 0-40 aralığındaki hata matrisi her bir ana sınıfın içerdiği toplam plankton

sayısına bölünmüş ve 33 grup için 0-1 aralığında olasılık değerleri elde edilmiştir. Elde edilen

bu hata matrisi sonucuyla, 33 grup olarak eğitimi gerçekleştirilen hata matrisi karşılaştırılı-

mış ve 118 sınıftan 33 grup şekline dönüştürülerek elde edilen hata matrisinin benzer grup

altındaki sınıfları daha az birbirine karıştırdığı ve daha iyi bir çözüm yolu olduğu sonucuna

varılmıştır.

Tez kapsamında yapılan katkılar şu şekilde özetlenebilir: Dengesiz dağılımlı bir veri kümesi

kullanıldığı için veri kümesi iyileştirilmeye çalışılmıştır. Veri arttırma yöntemi ve ön işleme

yöntemleri uygulanmıştır. Önceden eğitilen evrişimli sinir ağı modelleri, aktarım öğrenmesi,

ince ayar, tüm katmanların eğitilmesi yöntemleri olmak üzere toplamda üç yöntem kullanı-

larak ayrı ayrı eğitilmiş ve veri arttırma ve ön işleme işlemlerinin eğitime katkısı gözlemlen-

miştir. Sınıflandırma modelinin başarımını arttırmak amacıyla ortalama topluluk öğrenimi

yöntemi uygulanmıştır. Farklı kayıp yöntemlerinin plankton eğitimine etkisi gözlemlenmiş-

tir. Benzer sınıfların gruplanması tekniği önerilmiş ve gruplanarak eğitilen model ile hata

matrisleri karşılaştırılarak elde edilen sonuç analiz edilmiştir.

5.1. Gelecek Çalışmalar

Plankton görüntülerinin farklı boyutlarda olması sebebiyle ve evrişimli sinir ağlarının sa-

bit boyutlarda girdi görüntüsü kabul etmesinden dolayı plankton görüntüleri yeniden boyut-

landırılırken görüntüde bilgi kaybı olmaktadır. Bu bilgi kaybının giderilmesi için plankton

görüntülerine uygulanacak ön işleme yöntemi olarak kaybı önleyen farklı yöntemler uygu-

lanarak sınıflandırma başarımına olan etkisi gözlemlenebilir. Bu yöntemlerden biri olduğu

düşünülen süper çözünürlük (super resolution) yöntemlerinin kullanımı daha yüksek sınıf-

landırma başarımına katkı sağlayacaktır. İkinci olarak evrişimli sinir ağının girdi görüntü-

sünü farklı boyutlarda almasını sağlayan uzamsal piramid katmanı (spatial pyramid pooling)
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mimariye dahil edilerek evrişimli sinir ağının görüntüyü farklı boyutlarda girdi olarak alması

sağlanabilir. Bu yöntemle görüntülerde daha düşük bilgi kaybı olduğundan sınıflandırmanın

başarımının artacağı düşünülmektedir.
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EKLER

EK1: SÖZLÜK DİZİNİ
Aktarım Öğrenmesi : Transfer Learning

Aşırı Uyum : Overfitting

Atık : Residual

Az Vuruşlu Öğrenme : Few-shot Learning

Bilgisayarlı Görü : Computer Vision

Boşluk Ekleme : Padding

Çok Katmanlı Algılayıcı : MultiLayer Perceptron

Çoklu Akış : Multistream

Derin Öğrenme : Deep Learning

Destek Vektör Makinesi : Support Vector Machine

Doğrulama : Validation

Doğru Negatif : True Negatif

Doğru Pozitif : True Positive

Dondurulmuş Katman : Freezing Layer

El Yapımı Tanımlayıcılar : Handcrafted Descriptors

Eşik Değeri : Threshold

Evrişim : Convolution

Evrişimsel Sinir Ağı : Convolutional Neural Network

Geri Çağırma : Recall

Gradyan İnişi : Gradient Descent

Yerinde Plankton Görüntüleme Sistemi : In-situ plankton imaging system

Yerinde Olmayan Plankton Görüntüleme Sistemi : Ex-situ plankton imaging system

İnce Ayar : Fine Tuning

Kaybolan Gradyan : Vanisihing Gradient

Kayıp Fonksiyonu : Loss Function

Kesinlilik : Precision

K-En Yakın Komşu : K-Nearest Neighborhood

Küme Boyutu : Batch Size

Makine Öğrenmesi : Machine Learning

Maksimum Ortalama : Maximum Pooling

Ortalama Topluluk Öğrenimi : Average Ensemble Learning
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Öğrenme Oranı : Learning Rate

Ön İşleme : Pre-Processing

Özellik : Feature

Özellik Mühendisliği Tabanlı : Feature-based Engineering

Pekiştirme : Reinforcement

Rassal Orman : Random Forest

Seyreltme : Dropout

Sızıntı : Leaky

Sinir Ağları : Neural Networks

Ulusal Veri Bilimi Kasesi : National Datascience Bowl

Uzamsal Piramid Ağı : Spatial Pyramid Network

Veri Arttırma : Data Augmentation

Veri Kümesi : Dataset

Tam Bağlantılı Katman : Fully Connceted Layer

Topluluk : Ensemble

Torbalama Karar Ağacı : Bagged Decision Tree

Yanlılık : Bias

Yanlış Negatif : False Negative

Yanlış Pozitif : False Positive

Yerel İkili Örüntü : Local Binary Pattern

Yoğun Katman : Dense Layer
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