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Mart 2022, 108 sayfa

Planktonlar atmosferdeki oksijenin yaklasik olarak yarisini iiretmekten sorumlu olan, su
ekosisteminde besin zincirinin en alt basamaginda yer alan, diinyadaki yasamin en dnemli
bilesenlerinden biridir. Plankton dagilimlari, kiiresel 1stnma gibi iklim degisiklikleri i¢in
onemli bir haberci olarak goriilmektedir. Bundan dolay1 dagilimlarini takip etmek, analiz-
lerini yapmak ve su kalitesi hakkinda bilgi sahibi olmak kritik bir oneme sahiptir. Plankton
goriintiileme teknolojilerinin gelismesiyle birlikte su ekosistemlerinden ¢cok sayida plankton
goriintiisii elde edilmektedir. Geleneksel manuel siniflandirma sistemleri, giderek biiyliyen
plankton veri kiimesi siniflandirma gereksinimlerini karsilayamamaktadir. Manuel siniflan-
dirma sistemleri, uzmanlik bilgisi gerektiren ve olduk¢a zaman alic1 olan yontemlerdir. Bu
nedenle, elde edilen verinin ¢ok fazla sayida olmasi ve planktonlarin dagilimlarinin bilinme-
sinin Onemli olmasi veriyi siniflandiran otomatik sistemlere ihtiyaci giinden giine arttirmak-
tadir. Tez kapsaminda, Ulusal Veri Bilimi Kasesi olarak adlandirilan Kaggle platformunda
diizenlenen, planktonlar1 otomatik olarak algilamay1 amaclayan yarigsmada yayinlanan 121
siifa ait 30.336 plankton goriintiisiinden olusan veri kiimesinin 118 sinifa ve 38 sinifa sa-
hip iki farkli stiriimii kullamilmistir. Bu calismada, plankton goriintiilerini simiflandirmak

i



icin derin evrisimsel sinir aglar1 olan Inceptionv3, InceptionResNetv2, DenseNet, ResNet-
50, VGG-16 aglari; aktarim 6grenmesi, ince ayar, tiim katmanlarin egitilmesi yontemleri ile
egitilmis ve veri arttirma ve On igleme islemlerinin egitime katkis1 gézlemlenmistir. Kaggle
veri kiimesinin kullanilan iki farkl siiriimiiyle aglarda egitilen modellerde 118 sinifa sahip
ilk stiriimiinde en yiiksek %78 basarim, 38 sinifa sahip ikinci siirlimiinde %92 basarim elde
edilmistir. Ortalama topluluk yontemi kullanilarak ilk siirlimiinde basarimin %?2, ikinci siirii-

miinde %1 artmasi saglanmisgtir.

Anahtar Kelimeler: Plankton Siniflandirilmas1, Derin Ogrenme, Evrisimsel Sinir Ag1
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ABSTRACT

PLANKTON CLASSIFICATION WITH DEEP LEARNING

Betiil SOMEK

Master of Science, Department of Electrical and Electronics Engineering
Supervisor: Doc. Dr. Seniha Esen YUKSEL ERDEM
March 2022, 108 pages

Plankton which is at the bottom of the food chain in the aquatic ecosystem and is respon-
sible for producing approximately half of the oxygen in the atmosphere, is one of the most
important components of life on earth. Plankton distributions are seen as an important precur-
sor for climate changes such as global warming. Therefore, it is very critical to follow their
distribution, to analyze and to have information about water quality. With the development of
plankton imaging technologies, a large number of plankton images are obtained from aquatic
ecosystems. Traditional manual classification systems are unable to meet the ever-growing
plankton dataset classification requirements. Manual classification systems are methods that
require specialist knowledge and are very time consuming. For this reason, the large num-
ber of data obtained and the importance of knowing the distribution of plankton increase the
need for automated systems that classify data day by day. Within the scope of the thesis, two
different versions of 118 classes and 38 classes of the dataset consisting of 30,336 plankton
images belonging to 121 classes published in the competition aiming to automatically detect

plankton and organized on the Kaggle platform, called the National Data Science Bowl, were
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used. In this study, deep convolutional neural networks namely Inceptionv3, InceptionRes-
Netv2, DenseNet, ResNet-50, VGG-16 networks were trained to classify plankton images;
transfer learning, fine tuning, training of all layers methods were used and the contribution of
data augmentation and preprocessing on classification was observed. With the two different
versions of the Kaggle dataset, in the models trained on the networks, the highest perfor-
mance of 78% was achieved in the first version with 118 classes, and 92% performance in
the second version with 38 classes. By using the average ensemble method, the performance

increased by 2% in the first version and 1% in the second version of the dataset.

Keywords: Plankton Classification, Deep Learning, Convolutional Neural Network
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1. GIRIS

Planktonlar, gelgitler ve akintilar tarafindan tasinan ve bu kuvvetlere kars1 hareket edebilecek
kadar iyi ylizemeyen organizmalar olarak tanimlanmaktadirlar [S]]. Bilim insanlar1 plankton-
lar1 boyut, tiir vb. gibi ozelliklere gore farkli sekilde siniflandirmaktadirlar. Fakat en temelde

planktonlar iki sinifa ayrilmistir. Fitoplanktonlar (bitkiler) ve zooplanktonlar (hayvanlar) [3].

Fitoplanktonlar kii¢iik fotosentetik canlilardir ve besin zincirinin en alt basamaginda yer al-
maktadirlar [6]]. Atmosferdeki oksijenin yaklasik %70’inin okyanuslarda fitoplanktonlar sa-
yesinde tiretildigi kaydedilmistir [7]. Fitoplanktonlar kendi besinlerini iiretmek icin tipki kara
bitkileri gibi giines 1s181na ve besine ihtiya¢ duyarlar ve bu yiizden suyun iist katmanlarinda
yer alirlar. Dengeli bir ekosistemde fitoplanktonlar suda yasayan ¢ok cesitli canlilara besin
saglarlar. Zooplanktonlar kiiciik hayvanlardir ve fitoplankton ile beslenirler ve ¢ogu da biiyiik

hayvanlar tarafindan yenirler.

Planktonlar diinyadaki yasamin en 6nemli bileseni olarak kabul edilmektedir. Bunun sebebi,
besin zincirinin en altinda yer almalar1 ve diinya iizerindeki oksijenin biiyiik bir kismini iiret-
meleridir. Ph seviyesi, tuzluluk orani, sicaklik ve besin konsantrasyonu vb. degisikliklere
oldukca duyarlidirlar. Ornegin suda cok fazla besin maddesi bulundugunda alg patlamalar
meydana gelir [8] ve bir¢cok zooplankton tiirii fitoplankton yedigi icin, fitoplanktonun artigin-
daki degisimler zooplankton popiilasyonlarini hizla etkileyebilir ve bu da daha sonra besin

zinciri boyunca diger tiirleri etkiler.

Plankton dagilimlar kiiresel 1sitnma gibi iklim degisiklikleri i¢in onemli bir haberci olarak
goriilmiistiir. Bundan dolay1 dagilimlarim takip etmek, analizini yapmak ve su kalitesi hak-
kinda bilgi sahibi olmak kritiktir. Ge¢mis yillarda plankton numunelerinin elde edilmesi ge-
leneksel yontemlerle yapilmistir. Sudan alinan her bir numune uzman kisiler tarafindan la-
boratuvar ortaminda incelenmis ve analiz edilmistir. Geleneksel yontemler olduk¢ca zaman
alicidir ve yiiksek diizeyde profesyonel bilgi gerektirmektedir. Son 20 yilda plankton goriin-
tillerinin otomatik olarak cekilmesini saglayan bir ¢ok teknoloji gelistirilmigtir. 1992 yilinda
Video Plankton Kaydedici tiretilmistir [9] ve iiretilen ilk yerinde otomatik tanimlama cihazi
olmustur. Uretilen bu cihaz modern yerinde plankton gériintiileme cihazlarina oncii olarak
kabul edilmistir. 2004 yilinda [10], dogrudan suya yerlestirilen ve optik mikroskoplara da-
yanan “‘sualti otomatik sayisal mikroskop goriintiileyici” gelistirilmis ve bu sayede plank-

ton goriintiilerinin otomatik olarak cekilmesi saglanmgtir. Uretilen cihaz yalnizca yiiksek



coziiniirlik kosullar icin uygundur. 10 ila 100 mm arasindaki mikrozooplankton ve fitop-
lanktonlarin uzun siireli izlenmesi i¢in Olson ve ark. Goriintiileme Akis1 Sitobot’u (Imaging
FlowCytobot) kullanmistir [[11]. Planktonlarin yerinde gézlemlenmesi i¢in etkili bir yontem
saglayan FlowCAM, FastCam, CytoSense ve CytoSub [12] dahil olmak {iizere planktonlar
hakkinda bilgi edinilmesini saglayan benzer teknolojik sistemler mevcuttur. Bu cihazlar sa-
yesinde diinyanin farkli su ekosistemlerinden giinden giine sayisi artan plankton goriintiileri
elde edilmektedir. Bu sebeple su alt1 goriintii veri kiimesi oldukg¢a hizli bir sekilde biiytimek-
tedir. Elde edilen verinin ¢ok fazla olmasi, veriyi tamimlayan, siniflandiran ve analiz eden
otomatik algilama sitemlerine ihtiyaci giinden giine arttirmaktadir. Otomatik plankton sinif-
landirma sistemleri kullanilarak, ekolojik ortamin en 6nemli degerlendirme faktorlerinden
biri olan planktonlarin yasam kosullar1 gézlemlenebilmektedir. Ciinkii planktonlarin yasam
kosullarinin gozlemlenmesi biiyiik 6l¢iide planktonlarin siniflandirmasina baghdir. Otomatik
plankton siniflandirma sistemleri ile birlikte su ekosistemi hakkinda, uzman kisilere ihtiyag
duymadan ve hizli bir sekilde su ekosistemi hakkinda bilgi elde edilebilmektedir. Ornegin,
diisiik plankton seviyesi su ekosistemi i¢in tehlike olustururken, bollugu da su ekosistemi
icin toksin etkisi yaratmakta ve yikici etkilere neden olabilmektedir. Bu nedenle, goriintii
verilerine dayal1 olarak plankton siniflandirmasi bir ekosistemdeki plankton popiilasyonla-
rin1 tahmin etmek i¢in ¢ok kullanigh bir sistemdir. Goriintii isleme teknolojilerini kullana-
rak elde edilen plankton goriintiilerinin otomatik siniflandirilmasina odaklanan ¢ok sayida
calisma vardir [13H16]. Bilgi islem giicii, bellek kapasitesi, gii¢ tiiketimi, goriintii sensorii
coziiniirligi olmak tizere cihaz yeteneklerindeki hizli gelisim ve derin 6grenme alaninda ca-
lismalarin yayginlagsmasiyla birlikte derin sinir aglar geleneksel yontemlere kiyasla plankton

siniflandirma alaninda son zamanlarda oldukca yaygin kullanilmaktadir.

1.1. Tezin Amaci

Bu tezin amaci, plankton goriintiilerini alaninda uzman kisilere ihtiya¢ duymadan siniflan-
dirabilen, derin 6grenme tabanli plankton siniflandirma sistemi elde etmektir. Bu kapsamda
Oregon Eyalet Universitesi’nde Hatfield Deniz Bilimleri Merkezi nde calisan bilim insanlari
tarafindan etiketlenen Ulusal Veri Bilimi Kasesi olarak adlandirilan Kaggle plankton veri
kiimesi kullanmilmistir [17]. Bilim insanlar1 yaklagik 50 milyon plankton goriintiisiinii 18 giin

icinde elde etmiglerdir. Elde edilen bu veri kiimesinin 30.336 resmi 2015 yilinda Kaggle veri



yarigsmast i¢in plankton veri kiimesi olarak etiketlenmistir. Veri kiimesi, 30.336 goriintii ve

121 simf plankton ¢esidi icermektedir.

Kaggle plankton veri kiimesinden uzmanlar tarafindan etiketlenemeyen goriintiilere ait olan,
bilinmeyen adli siniflar ¢ikarilmis ve geri kalan 118 sinif egitimlerde kullanilmigtir. 118 si-
nifa sahip plankton veri kiimesi tez kapsaminda Set-1 olarak adlandirilmistir. Ayrica Kaggle
plankton veri kiimesinin ikinci alt kiimesi olarak, Zheng ve ark. calismasinda [18] ve benzer
Kaggle plankton veri kiimesi ¢alismalarinda kullanilan, plankton siniflarinda minimum 100
goriintiiye sahip 38 sinif segilerek 14.374 goriintiiden olusan Kaggle plankton veri kiimesinin
bir alt kiimesi kullanilmastir [[19], [20]. 38 sinifa sahip plankton veri kiimesi tez kapsaminda
Set-2 olarak adlandirilmistir. Set-1 ve Set-2 veri kiimeleri %70 egitim, %15 dogrulama ve
%15 test kiimesi olarak iice bolinmiistiir. Tablo[I.1]de kullanilan Set-1 ve Set-2 veri kiime-

lerinin bilgileri paylasilmistir.

Tablo 1.1. Kullanilan Veri Kiimelerinin Ozellikleri

Kiime Ad1 | #Toplam Veri | #Simf #Egitim Seti | #Dogrulama Seti | #Test Seti
Set-1 29419 118 20475 4472 4472
Set-2 14374 38 11464 1455 1455

Tez kapsaminda, plankton siniflandirma basarimini arttirmak ve uygulanan yontemlerin et-
kisini gozlemlemek amaciyla kapsamli deneyler gerceklestirilmistir. Toplamda alti deney
yapilmustir ve her bir deneyin amaci ve degerlendirmesi ile ilgili bilgiler paylagilmistir. Ca-
lisma kapsaminda Deney-1 olarak isimlendirilen deneyde, Set-1 (118 Sinif) veri kiimesine
kismi ve tam veri arttirma olarak isimlendirilen iki farkli veri arttirma yontemi uygulanarak
bu veri kiimelerinin aktarim 6grenmesi, ince ayar ve tiim katmanlarin egitilmesi yontemleri
kullanilarak egitimi Inceptionv3 ag modeli kullanilarak gerceklestirilmis ve sonuglar elde
edilmistir. Deney-1 sonuglarinda en iyi basarima sahip veri arttirma yonteminin tam veri art-
tirma yontemi oldugu sonucu elde edilmistir. Calisma kapsaminda Deney-2 olarak adlandiri-
lan deneyde, plankton goriintiilerinin farkli en-boy oranlarina sahip olmasindan ve evrisimli
sinir aglarinin sabit boyutta girdi goriintiisii kabul etmesinden kaynakli ¢oziiniirliikk kaybinin
giderilmesi amaciyla bosluk ekleme ve kare kirpma 6n islemleri uygulanmistir ve elde edi-
len sonuclar degerlendirilmistir. Deney-2 kapsaminda elde edilen sonuca gore uygulanan 6n
isleme yontemleri elde edilen sonucu negatif etkilemis ve en iyi sonu¢ On isleme uygulan-
mamis orijinal veri kiimesi egitim sonucundan elde edilmistir. Calisma kapsaminda Deney-

3 olarak adlandirilan deneyde, Deney-1 ve Deney-2 kapsaminda en iyi sonucu veren tam

3



veri arttirma uygulanmis Set-1 (118 Sinif) ve Set-2 (38 Sinif) veri kiimeleri ve tiim katman-
larin egitilmesi yontemi kullanilarak Inceptionv3, InceptionResNetv2, DenseNet, ResNet,
VGG-16 aglarinda egitimler gerceklestirilmigtir. Deney-3 kapsaminda en iyi sonu¢ Dense-
Net aginda gerceklesen egitim sonucunda elde edilmistir. Calisma kapsaminda Deney-4 ola-
rak adlandirilan deneyde, Deney-3 kapsaminda egitilen modellere ortalama topluluk yontemi
uygulanmig ve her bir modelin ilgili sinif i¢in verdigi sonuglar toplanarak ortalamasi alinmis
ve bu islem her sinifa uygulanmigtir. Deney-4 sonucunda Set-1 (118 Sinif) veri kiimesi so-
nucunda %?2 basarim artistyla %80 agirlikli F1-Skoru, Set-2 veri kiimesi sonucunda %1 ba-
sarim artistyla %93 agirlikli F1-Skoru elde edilmistir. Calisma kapsaminda Deney-5 olarak
adlandirilan deneyde, capraz entropi kayb1 ve odak kaybi fonksiyonlarinin egitimde kullanil-
masiyla elde edilen sonuclar karsilastirilmis ve odak kaybi fonksiyonunun farkli hiperpara-
metreleri uygulanarak egitim gerceklestirilmistir. Deney-5 sonucunda test kiimesinden elde
edilen basarimda artis saglanmamustir, egitim ve dogrulama dogruluk degerlerinde artis ve
kayip degerlerinde azalma gozlemlenmistir. Deney-5 sonucunda odak kaybi fonksiyonunun
egitim basarimim arttirdig1 fakat test basariminda herhangi bir etki gostermedigi gézlemlen-
mistir. Calisma kapsaminda Deney-6 olarak adlandirilan deneyde, 118 sinifa ait DenseNet
ag1 lizerinde Deney-3 kapsaminda Set-1 veri kiimesi ile gerceklestirilen deney sonucu elde
edilen modelin hata matrisi hesaplanmistir. Elde edilen 118x118 boyutundaki hata matrisi,
ayni isim altinda toplanan farkli gruplar siitun bazinda toplanarak 118x33 matris elde edil-
mis, sonrasinda her bir simif icerdigi veri sayis1 miktartyla ¢carpilmistir. Satir bazinda da aym
isim altinda toplanan farkli gruplar siitun bazinda toplanarak 33x33 grup matrisi elde edil-
migtir. Elde edilen 0-40 aralifindaki hata matrisi her bir ana sinifin icerdigi toplam plankton
sayisina boliinmiis ve 33 grup icin 0-1 aralifinda olasilik degerleri elde edilmistir. Elde edilen
bu hata matrisi sonucuyla, 33 grup olarak egitimi gerceklestirilen hata matrisi karsilastirili-
mis ve 118 siniftan 33 grup sekline doniistiiriilerek elde edilen hata matrisinin benzer grup
altindaki siniflar1 daha az birbirine karistirdig1 ve daha iyi bir ¢6ziim yolu oldugu sonucuna

varilmistir.

Tez kapsaminda yapilan katkilarin 6zeti asagida paylasilmistir:

* Tez kapsaminda, dengesiz dagilimli bir veri kiimesi kullanildig: i¢in veri kiimesi iyi-

lestirilmeye caligilmistir. Veri arttirma yontemi ve 6n igleme yontemleri uygulanmisgtir.



* Onceden egitilen evrisimli sinir ag1 modelleri, aktarim dgrenmesi, ince ayar, tiim kat-
manlarin egitilmesi yontemleri olmak iizere toplamda {i¢ yontem kullanilarak ayr1 ayri

egitilmis ve veri arttirma ve 6n isleme iglemlerinin egitime katkisi1 gozlemlenmistir.

e Siniflandirma modelinin bagarimini arttirmak amaciyla ortalama topluluk 68renimi

yontemi uygulanmustir.
 Farkli kayip yontemlerinin plankton egitimine etkisi gozlemlenmistir.

* Benzer siiflarin gruplanmasi teknigi onerilmis ve gruplanarak egitilen model ile hata

matrisleri karsilagtirilarak elde edilen sonug analiz edilmistir.

1.2. Tezin Kapsam ve AKisi

Bu calisma su sekilde yapilandirilmistir:

Boliim 2’de; plankton goriintiileme sistemleri, plankton taksonomisi, plankton veri kiime-
leri ve plankton goriintii verilerinin simiflandirilmast ile ilgili literatiir caligmalarina odaklan-
mustir. Boliim [2.1]de plankton gériintiileme sistemlerinde kullanilan yontemler ve son za-
manlarda kullanilan su alt1 goriintiilleme sistemlerinden detayli olarak bahsedilmistir. Boliim
[2.2]de plankton taksonomisinden bahsedilmistir ve Kaggle plankton veri kiimesinin plank-
ton taksonomisi paylasilmistir. Boliim [2.3 Jte literatiirde yaygin olarak kullanilan veri kiime-
leri incelenmistir ve Kaggle plankton veri kiimesinden detayli olarak bahsedilmistir. Bolim
[2.4]de plankton smiflandirmasinin zorluklarindan ve literatiirde yer alan 6zellik tabanli ve

evrisimsel sinir ag1 tabanl calismalardan bahsedilmisgtir.

Boliim 3’te; evrisimli sinir aglar1 ve calisma prensipleri, egitim siireci ve bu siirecte 0grenme
ve genelleme i¢in egitim siirecinin kullanilan tekniklerle birlikte nasil calistig1 ve evrisimli
sinir aglarmin gerekliligi agiklanmistir. Bolim [3.1]de sinir aglarinin katmanlart ve yapi-
lar1 detayl olarak incelenmistir. CNN mimarisinde kullanilan evrisimsel, havuz ve tamamen
bagli katmanlar incelenmis ve aktivasyon fonksiyonlarin cesitleri ve avantajlar1 mercek altina
alimmustir. Tez kapsaminda kulanilan aglardan bu boliimde detayli olarak bahsedilmistir. Bo-
lim [3.2]de sinir aglarimin egitim asamalarindan ve egitim sirasinda kullanilan kritik dneme
sahip kayip fonksiyonu, gradyan inis, geri yayilim ve kaybolan, patlayan gradyanlar detayl

olarak incelenmistir.



Bolim 4’te; Bolim [.1]de tez kapsaminda Kaggle plankton veri kiimesine uygulanan veri
on isleme yontemleri agiklanmustir. Boliim 4.2]de bagarim olgiitii olarak kullanilan deger-
lendirme metriklerinden detayl olarak bahsedilmistir. Bolum§.4]te tez kapsaminda gercek-
lestirilen deney detaylarindan ve gerceklestirilen her bir deneyden ve sonuglarindan detayl

olarak bahsedilmistir.

Boliim 5’de elde edilen sonuglar degerlendirilmis ve gelecek caligsmalar ile ilgili analizler

paylasilmistir.



2. PLANKTON TANIMA

Bu béliimde planktonlar ile ilgili detayl bilgiler verilecektir. Ik olarak Béliim de plank-
ton goriintiileme sistemleri hakkinda bilgi paylagilacaktir. Sonrasinda Bolim [2.2]de plank-
ton taksanomisinin detaylarindan, Boliim @]’te plankton veri kiimeleri ve 6zelliklerinden,
ozellik tabanli siniflandirma sistemlerinden Bolim [2.4.1]de ve evrisimli ag tabanli siniflan-
dirma sistemlerinden Boliim 2.4.2]de detayli olarak bahsedilecektir.

2.1. Plankton Goriintilleme

Su ekosistemini analiz edebilmek icin suda goriintiileme olduk¢a 6nemlidir [[12]]. Suda go-
riintiileme, suda bulunan partikiillerin cesitlilikleri, biiytikliikleri ve sayilar1 vb. 6zelliklere
sahip incelemeleri miimkiin kilar. Planktonlarin dagiliminin analizi su ekosisteminin saglig1
hakkinda bilgi icerdigi i¢in plankton tiirlerini belirlemek 6nemlidir. Plankton goriintiileme
sistemleri, yerinde olan (in-situ) ve yerinde olmayan (ex-situ) sistemler seklinde iki gruba
ayrilir [21]]. Yerinde olmayan (ex-situ) plankton goriintiileme sistemlerinde plankton goriin-
tisii planktonun dogal olarak bulunmadig: bir ortamda elde edilmektedir. Sudan numune
alinmakta ve alinan numuneler laboratuvar ortaminda incelenmekte ve plankton goriintiisii
elde edilmektedir. Bu yontem planktonun tespiti ve analizi i¢in kullanilan en geleneksel yon-
temdir. Optik mikroskop ile goriintiileme yontemi, planktonlart morfolojik 6zelliklerine da-
yanarak plankton tiirlerini tanimaya yonelik bir yontemdir. Bilim insanlar1 manuel olarak
planktonlar1 saymakta ve tanimlamaktadir. Optik mikroskoplar ile plankton tanima siireci
planktonlarin morfolojik yapisini ayirt edebilme uzmanlik bilgisini gerektirir ve oldukga za-
man alicidir. Yerinde olan (in-situ) plankton goriintiileme sistemleri plankton algilamasi ve
goriintiilemesini saglayan sistemlerdir. Plankton numunesi toplamak amaciyla kullanilan ci-
hazlarin farkli ¢evresel kosullarda ve boyutlar1 degiskenlik gosteren partikiilleri algilamak
icin gelismis bir optik sensore ihtiyaglar1 vardir. Goriintii kalitesi biiyiik 6l¢iide aydinlatma-
daki kiiciik farkliliklardan etkilenmektedir. Ayrica goriintiileri islemek ve analiz etmek icin
hizli bir islem giiciine ve yiiksek depolama alanina sahip cihazlar olmasi gerekmektedir. Bu
sorunlara ¢oziim niteliginde plankton goriintiilerini toplamak icin yerinde ve laboratuvar da
dahil olmak iizere Video Plankton Kaydedici (VPR) [22], Sualt1 Video Profilleyici (UVP)
[23]], Golgeli Goriintii Parcaci8i, Profil Olusturma Degerlendirme Kaydedici (SIPPER) [24],
Zooplankton Gorsellestirme Sistemi (ZOOVIS) [25]], Scripps Plankton Kamerasi (SPC) [26]],



Goriintiileme Akig1 Sitobot (IFCB) [[11], Yerinde Plankton Goriintiileme Sistemi (ISIIS) [27]
, ZooScan [16] vb. gibi bircok goriintiileme cihaz1 gelistirilmistir. Kaggle plankton veri kii-
mesi Yerinde Plankton Goriintiileme Sistemi (ISIIS) [27] cihazi kullanilarak olusturulmustur.
Bu cihazlar olduk¢a fazla sayida plankton goriintiisiinii kisa siire i¢inde elde edebilmekte-
dirler. Fakat elde edilen ¢ok sayida goriintiiniin elle siniflandirilmasi olduk¢a zaman alici
olmakla birlikte cok sayida alaninda uzman olan kisinin siniflandirmaya zaman harcamasi
gerekliligini beraberinde getirmektedir. Bu nedenle elde edilen goriintiilerin siniflandirilmasi

icin otomatik plankton siniflandirma sistemleri oldukca gereklidir [28]].

2.2. Plankton Taksonomisi

Taksonomi organizmalari ortak ozelliklere dayali adlandiran, tanimlayan ve siniflandiran bir
bilimdir [29]. Takson, olusturulan gruba verilen isimdir ve taksonlar daha kiigiik taksono-
mik gruplara ayrilabilir. Tirler hiyerarsik olarak en alt grupta bulunur ve daha alt gruba
boliinemez. Su akintist sonucu serbestge siiritklenen mikroorganizmalara plankton denilir ve
planktonlar gelecekte muhtemelen genetik bilgilere dayali farkli taksonlar seklinde ifade edi-
lecektir; fakat su anda ¢ogunlukla planktonlarin ayriminda dis 6zellikleri ve ekosistemdeki
rolleri kullanilmaktadir. Plankton taksonlarinin siniflandirilmasinda kullanilan tipik 6zellik-

ler, doku, sekil, boyut, kalonilerde bulunuyor olmalar1 ve kamcili olup olmadiklar1 gibi 6zel-
liklerdir.

Fitoplanktonlar ve zooplanktonlar plankton gruplarindan ikisidir. Fitoplanktonlar giines 15181
kullanarak, karada bulunan bitkiler gibi fotosentez yapar ve oksijen ve besin iiretirler. Zoop-
lanktonlar ise fitoplanktonlor ile beslenen bircok farkli biiyiikliikte ve ¢ok sayida alt tiirler
iceren cesitli bir gruptur. Su ekosisteminde bulunan diger canlilar da zooplankton yiyerek
beslenir. Fitoplanktonlar besin zincirinin en alt seviyesinde yer aldig1 ve oksijen iiretiminde
diinyaya onemli bir katki sagladigi i¢in biiylik 6neme sahiptir. Fitoplanktonlarin tiirlerinin
belirlenmesi, tantmlanmasi ve isimlendirilmesini saglayan taksonomi bilimi de bu yiizden
onemlidir. Geligen tekonoloji ile birlikte fitoplankton cesitliliginin incelenmesi hala aktif bir
calisma alamidir. Bugiine kadar hala bir ¢ok fitoplankton tiirii taksonomik olarak siniflan-
dirilmay1 beklemektedir. Fitoplanktonlar, ekosistemde yer aldiklar1 role gore siniflandirilir.
Sekline ve boyutuna (Orn. Nanoplanktonlar (2-20 um), mikroplanktonlar (20-200 um) vb.)
gore de simiflandirilirlar. 1980’11 yillarin sonunda yaklagik 4 bin farkli deniz planktonu tiirii

onceden siniflandirilmistir [30]].



2.3. Plankton Veri Kiimeleri

Plankton popiilasyonlarini analiz etmek i¢in kullanilan geleneksel sistemler ve yontemler za-
man alicidir. Geleneksel sistemler i¢in gelistirilmis yaklagim su alti kamerasidir. Geligtirilen
su alt1 kamera sistemleriyle kisa zamanda su altindan yiiksek ¢oziiniirliiklii bircok goriintii
elde edilebilmektedir. Elde edilen goriintiiler plankton tiirleri ve dagilimlari i¢in analiz edile-
bilmektedir. Bu boliimde farkli teknolojiler kullanilarak toplanan WHOI plankton, ZooScan
ve Kaggle plankton veri kiimelerinden detayli olarak bahsedilecektir. Tez kapsaminda yapi-

lan ¢alismalarda Kaggle plankton veri kiimesi kullanilmistir.

2.3.1. WHOI-Plankton

Woods Hole Oceanographic Institution (WHOI) olarak adlandirilan enstitiide aragtirmaci-
lar tarafindan saglanan sinif etiketlerine gore diizenlenmis WHOI-Plankton veri kiimesi [31]]
milyonlarca mikroskobik deniz planktonu goriintiisii icermektedir. Goriintiiler akig goriintii-
leme sitobot’u (Imaging FlowCytobot (IFCB)) [11] sistemi tarafindan yakalanmistir. IFCB
plankton goriintiileme sistemi WHOI’de tasarlanmis ve iiretilmistir. WHOI-Plankton veri
kiimesi yaklagik 3.4 milyon plankton goriintiisiinden olugsmaktadir. 103 plankton sinifina sa-
hiptir. WHOI-Plankton veri kiimesinde planktonlar dengesiz dagilima sahiptir. Veri kiime-
sinin yaklasik %85°1 dino30, cylindrotheca, rhizosolenia ve chaetoceros dahil olmak iizere
alt1 nadir taksonda yogunlagmistir. Bu durum plankton taksonlarinin deniz ortaminda denge-
siz olarak dagildiginin bir kanit1 niteligindedir. WHOI-Plankton veri kiimesi' acik kaynakli-
dir, 2006-2014 yillar1 arasinda her bir yil icin paylasilan veri kiimesine erisilebilir. WHOI-

Plankton veri kiimesinden alinan 6rnek goriintiiler Sekil [2.1]de paylasiimistir.

'WHOI-Plankton veri kiimesi web sayfasi:
https://darchive.mblwhoilibrary.org/handle/1912/7341
https://whoigit.github.io/whoi-plankton/


https://darchive.mblwhoilibrary.org/handle/1912/7341
https://whoigit.github.io/whoi-plankton/

Sekil 2.1. WHOI Plankton Veri Kiimesinden Aliman Ornek Goriintiiler

2.3.2. ZooScan

ZooScanNet veri kiimesi?> ZooScan sistemi® tarafindan Agustos 2007 ve 8 Ekim 2008 tarih-
leri arasinda Fransa’nin Villefranche-sur-mer Korfezi’'nden toplanan 1.433.278 goriintiiden
ve 93 taksondan olugan bir veri kiimesidir [16]. Cogu kategori zooplankton ve zooplankton
yumurtalaridir; kalan kategoriler zooplankton olmayan ve gorece kotii odakli goriintiilerdir.

ZooScanNet veri kiimesinden 6rnek plankton goriintiileri Sekil 2.2]de paylasilmistir.

2ZooScanNet veri kiimesi web sayfasi: https://www.seanoe.org/data/00446/55741 /|
3ZooScanNet sistemi web sayfasi: |http ://www.zooscan.com



https://www.seanoe.org/data/00446/55741/
http://www.zooscan.com

Sekil 2.2. ZooSCan Plankton Veri Kiimesinden Alinan Ornek Goriintiiler

2.3.3. Kaggle Plankton

Oregon Eyalet Univesitesi’nin Deniz Bilimleri Merkezi’nde bilim insanlar1 18 giinliik bir
stire icinde yaklasik 50 milyon plankton fotografi elde ettiler. Bu veri kiimesi yerinde plank-
ton goriintiileme sistemi (ISIIS) teknolojisi kullanilarak elde edilen biiyiik dlcekli bir veri
kiimesidir. Elde edilen bu goriintiilerin 30.336’s1 uzmanlar tarafindan etiketlenmistir. 2015
yilinda Ulusal Veri Bilimi Kasesi (National Datascience Bowl) olarak adlandirilan
Kaggle veri bilimi yarismasinda organizatorler tarafindan 30.336 etiketli ve 130.400 etiket-
siz test gorseli kullanima sunuldu. Veri kiimesi, tek hiicreli en kii¢iik protisler, kopedodlar ve
lavra baliklar1 dahil bircok farkl: tiir iceren 121 farkl: tiirden olusmaktadir. Veri kiimesi 3 bo-
yutlu uzayda farkli yonlerden tiirlerin ¢cekilmesiyle elde edilmistir. Elde edilen goriintiiler gri
tonlamali, beyaz zemin iizerine siyah rengindedir ve ¢ok degisken boyutlara sahiptir. Kaggle

plankton veri kiimesinin 6rnek goruntiileri Sekil [2.3te paylasilmistir. Kaggle plankton veri
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kiimesinde simiflar dengesiz dagilmistir. Tablo 2.3 Jte goriilecegi gibi bazi siniflar 1000’ den
fazla goriintii icermekteyken bazi siniflar yalnizca bir goriintii icermektedir. Plankton go-
riintiilerinin boyutlarinin piksel cinsinden yiikseklik ve genislik cinsinde dagilim grafigi Se-
kil 2.4]te verilmistir. Grafikteki her nokta bir goriintiiyii temsil etmektedir. Renk, ¢evreleyen
alandaki yogunlugu gosterir. Sekilde goriildiigii gibi plankton goriintiilerinin boyutlar: ara-

sinda belirgin farklilik vardir.

P

Sekil 2.3. Kaggle Plankton Veri Kiimesinden Alinan Ornek Goriintiiler
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Sekil 2.4. Kaggle Plankton Veri Kiimesindeki Goriintiilerin Piksel Cinsinden Dagilim Grafigi

Tez kapsaminda Kaggle plankton veri kiimesinin iki farkli stirlimii kullanilmigtir. Kullanilan
ilk siirlimde, 121 smif iceren veri kiimesinin ’bilinmeyen’ isimli ti¢ sinifi, bir uzmanin makul
bir kesinlikle siniflandiramadig1 ornekler icerdiginden veri kiimesinden ¢ikarilmigtir. Kulla-
nilan ilk siiriim, Set-1 olarak isimlendirilmistir. Set-1 ile ilgili detaylar Tablo[2.1]de paylasil-
mustir. Kullanilan ikinci siiriim, Set-2 olarak isimlendirilmistir. Set-2, Kaggle plankton veri
kiimesinin [[18] yazarlar tarafindan secilen bir alt kiimesidir. En az 100 6rnek bulunduran

plankton siniflar secilmistir. Set-2 ile ilgili detaylar Tablo [2.2]de paylagilmustir.

Tablo 2.1. Set-1 Veri Kiimesinin Ozellikleri

Set-1 Kaggle Veri Kiimesi
#Toplam Veri || #Simf #Egitim Seti | #Dogrulama Seti | #Test Seti
29419 118 20475 4472 4472

Tablo 2.2. Set-2 Veri Kiimesinin Ozellikleri

Set-2 Kaggle Veri Kiimesi
#Toplam Veri || #Simf #Egitim Seti | #Dogrulama Seti | #Test Seti
14374 38 11464 1455 1455
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Tablo 2.3. Kaggle Veri Kiimesindeki Siniflar ve Her Siniftaki Veri Sayist (#)

Sinif ismi # Sinif ismi #
acantharia_protist 889 hydromedusae_haliscera_small_sideview

acantharia_protist_big_center 13 hydromedusae_liriope 19
acantharia_protist_halo 71 hydromedusae_narco_dark 23
amphipods 49 hydromedusae_narcomedusae 132
appendicularian_fritillarida 16 hydromedusae_narco_young | 336
appendicularian_slight_curve 532 hydromedusae_other 12
appendicularian_s_shape 696 hydromedusae_partial_dark | 190
appendicularian_straight 242 hydromedusae_shapeA | 412
artifacts 393 hydromedusae_shapeA_sideview_small 274
artifacts_edge 170 hydromedusae_shapeB 150
chaetognath_non_sagitta 815 hydromedusae_sideview_big 76
chaetognath_other 1934 hydromedusae_solmaris 703
chaetognath_sagitta 694 hydromedusae_solmundella | 123
chordate_typel 77 hydromedusae_typeD 43
copepod_calanoid 681 hydromedusae_typeD_bell_and_tentacles 56
copepod_calanoid_eggs 173 hydromedusae_typeE 14
copepod_calanoid_eucalanus 96 hydromedusae_typeF 61
copepod_calanoid_flatheads 178 invertebrate_larvae_other_A 14
copepod_calanoid_frillyAntennae 63 invertebrate_larvae_other B 24
copepod_calanoid_large 286 jellies_tentacles | 141
copepod_calanoid_large_side_antennatucked | 106 polychaete 131
copepod_calanoid_octomoms 49 protist_dark_center 108
copepod_calanoid_small_longantennae 87 protist_fuzzy_olive 372
copepod_cyclopoid_copilia 30 protist_noctiluca | 625
copepod_cyclopoid_oithona 899 protist_other | 1172
copepod_cyclopoid_oithona_eggs 1189 protist_star | 113
copepod_other 24 pteropod_butterfly | 108
crustacean_other 201 pteropod_theco_dev_seq 13
ctenophore_cestid 113 pteropod_triangle 65
ctenophore_cydippid_no_tentacles 42 radiolarian_chain 287
ctenophore_cydippid_tentacles 53 radiolarian_colony | 158
ctenophore_lobate 38 shrimp_caridean 49
decapods 55 shrimp-like_other 52
detritus_blob 363 shrimp_sergestidae | 153
detritus_filamentous 394 shrimp_zoea | 174
detritus_other 914 siphonophore_calycophoran_abylidae | 212
diatom_chain_string 519 | siphonophore_calycophoran_rocketship_adult | 135
diatom_chain_tube 500 | siphonophore_calycophoran_rocketship_young | 483
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echinoderm_larva_pluteus_brittlestar 36 siphonophore_calycophoran_sphaeronectes | 179
echinoderm_larva_pluteus_early 92 siphonophore_calycophoran_sphaeronectes_stem 57
echinoderm_larva_pluteus_typeC 80 | siphonophore_calycophoran_sphaeronectes_young | 247
echinoderm_larva_pluteus_urchin 88 siphonophore_other_parts 29
echinoderm_larva_seastar_bipinnaria 385 siphonophore_partial 30
echinoderm_larva_seastar_brachiolaria 536 siphonophore_physonect | 128
echinoderm_seacucumber_auricularia_larva | 96 siphonophore_physonect_young 21
echinopluteus 27 stomatopod 24
ephyra 14 tornaria_acorn_worm_larvae 38
euphausiids 136 trichodesmium_bowtie 708
euphausiids_young 38 trichodesmium_multiple 54
fecal_pellet 511 trichodesmium_puff | 1979
fish_larvae_deep_body 10 trichodesmium_tuft | 678
fish_larvae_leptocephali 31 trochophore_larvae 29
fish_larvae_medium_body 85 tunicate_doliolid 439
fish_larvae_myctophids 114 tunicate_doliolid_nurse 417
fish_larvae_thin_body 64 tunicate_partial | 352
fish_larvae_very_thin_body 16 tunicate_salp | 236
heteropod 10 tunicate_salp_chains 73
hydromedusae_aglaura 127 unknown_blobs_and_smudges 317
hydromedusae_bell_and_tentacles 75 unknown_sticks 175
hydromedusae_h15 35 unknown_unclassified | 425
hydromedusae_haliscera 229

2.4. Plankton Tanima Sistemi

Plankton goriintiilerinin elde edilme asamasi su ekosisteminin dinamik dogasi geregi ve

planktonlarin mikroskobik boyutu nedeniyle zordur. Elde edilen plankton goriintiilerinin ma-

nuel olarak sinflandirilmasi zaman alici, uzmanlik bilgisi gerektiren, pahali ve hataya agik bir

coziimdiir. Bu sebeplerden dolay1 bir¢ok arastirmaci bilgisayarlt gorii tekniklerini kullanarak

bu siireci otomotik hale getirecek yontemler aragtirmistir. Otomatik plankton siniflandirmasi

(8,118} 132} 133]] ii¢ temel nedenden dolay1 zor kabul edilmektedir:

(1) Plankton goriintiileri genellikle diisiik ¢oziiniirliiktedir, benzeyen tiirler arasinda diisiik

coziiniirliikten dolayi bilgi kayb1 olmakta ve bu da ayrimi zorlagtirmaktadir. Uzmanlar tara-

findan manuel siniflandirma da bu nedenden dolay1 hata payina sahiptir.

(i1) Taksonomiye 6zel zorluklar sunan cok ¢esitli filogenetik tiirleri icerir.
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(ii1)) Uzmanlar tarafindan manuel olarak siniflandirilan ve sonrasinda otomatik plankton si-
niflandirma sistemi i¢in egitim, dogrulama ve test kisminda kullanilacak olan plankton veri

kiimeleri oldukca dengesiz bir veri dagilimina sahiptir.
Otomotik plankton simiflandirmasinda ¢aligmalar temel olarak 2 farkli yaklagima sahiptir:

(1) Ozniteliklerin el yapimi tamimlayicilar ile ¢ikarilmasindan sonra smiflandirmanin destek

vektor makinesi, rassal orman vb. yontemlerle gerceklestirilmesi [} [18]].

(2) Evrisimli sinir aglar1 temelli derin 6grenme yaklasimlariyla siniflandirmanin gerceklesti-
rilmesi [|32H34]].

2.4.1. Oznitelik Cikarim Tabanh Plankton Tanima

Evrisimli sinir aglar1 (CNN) son zamanlarda plankton tanima sistemi de dahil bir ¢ok proble-
min ¢6ziimiinde yaygin olarak kullanilmaktadir. Plankton tanima sistemlerinin evrisimli sinir
ag tabanli uygulamalar1 Bolim 2.4.2]de detayl olarak ele alinmigtir. Evrigimli sinir aglari
yayginlasmadan 6nce otomatik plankton siniflandirma sistemleri 6zellik tabanli yontemlerle
ele alinmigtir. Ozellik tabanh yontemler belirli bir 6rnegin geometrik sekil, alan, uzunluk,
genislik, renk histogrami gibi hesaplanan bir dizi tanimlayici 6zelligi iizerinde ¢aligtiklart
i¢in "Oznitelik ¢ikarimi tabanli" olarak adlandirilmiglardir. Elde edilen 6znitelik vektorleri
daha sonra destek vektor makineleri (SVM) [335], rassal ormanlar [36], k-en yakin komsular,

cok katmanli algilayici (MLP) [36]] gibi 6zellik tabanli stmiflandiricilara girdi olarak saglanir.

Otomatik plankton tanima sistemlerinde, 0znitelik ¢ikarimi tabanl ilk géze carpan uygu-
lamalardan biri Tang ve arkadaslarinin 1998 yilinda yaptig1 calismadir [15]]. Tang ve arka-
daglar1, geleneksel degismez moment 6zellikleri ve Fourier sinir tanimlayicilart gri dlgekli
morfolojik graniilometrilerle birlestirerek plankton goriintiilerinin hem sekil hem de doku
bilgilerini elde eden 6znitelik vektorii elde etmiglerdir. Alt1 farkli plankton taksonu iceren
yaklagik 2000 goriintiide %95 oraninda siniflandirma dogrulugu elde etmislerdir. Birlikte
olusum matrisi doku tanimlayicilarindan biridir. Bu tanimlayict kullanilarak 2005 yilinda
Hu ve Davis tarafindan otomotik plankton tanima sistemi elde etmek amaciyla destek vek-
tor makinesi (SVM) egitilmistir [37]. Li ve digerleri plankton siniflandirmasinin; siif igi
cesitlilik, siniflar aras1 biiyiik benzerlik ve giiriiltiilii veriler sebebiyle zor bir problem oldu-
gundan bahsetmistir [38]]. Yapilan calismada daha diisiik boyutluluga indirgenmis tanimla-

yici kullanilmistir ve siniflandirict olarak ayrigtirma (diskriminant) analiz teknigine dayal
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ikili siniflandirmanin ayristirrlmasindan ve istenmeyen bilgiler ¢ikarildiktan sonra fiizyon
kurali kullanilarak birlestirilmesinden olusan bir ¢oziim gelistirilmistir. Ellen ve digerleri
[39], zooplankton goriintiileri tizerinde birkag¢ farkli yontem denemislerdir ve aralarinda en
1yl basarim saglayan yontemi bulmaya calismiglardir. Zooplankton veri kiimesinde en iyi
performans gosteren algoritmalar gradyan destekli rastgele orman siniflandirmasi (GBC) ve
destek vektor makinesi-radyal tabanli fonksiyon (SVM-RBF) olarak belirlemislerdir. ki al-
goritmanin birlestirilmesiyle zooplankton siniflandirma sonucunun daha da iyilestigini goz-
lemlemislerdir [39]]. Bi ve digerleri [40], bulanik sulardan elde edilen goriintiilerde her bir
goriintii icindeki plankton nesnelerini bulmak i¢in bir segmentasyon prosediirii gelistirmis ve
siniflandirma icin el yapimi 6zellikler kullanarak yari otomotik plankton tanima yaklagimi
gelistirmiglerdir. Chang ve digerleri [41], iki 0zellik ¢ikarma yontemi olan hizlandirilmig
saglam Ozellikler-temel bilesen analizi (SURF-PCA) ve yerel ikili goriintii-temel bilesen ana-
lizini (LPB-PCA) fitoplanktonu tanima amaciyla birlestirmiglerdir. Algoritmada hesaplama
karmagikligin1 azaltmak ve yiiksek siniflandirma basarimi elde etmek i¢in temel bilesen ana-
lizi (PCA) algoritmasini kullanmiglardir. Deneyleri birkag¢ sinif iceren kiiciik bir veri kiimesi
tizerinde gerceklestirmiglerdir. Thi-Thu-Hong Phan ve digerleri [42] fitoplankton siniflandir-
masi i¢in farkli 6zellik tiplerini ve siniflandiricilart incelemislerdir. Kullanilan veri kiimesi,
biyologlar tarafindan etiketlenen her bir sinifin 100 6rnek icerdigi 7 siniftan olugsmaktadir.
El yapimi 6zellikler olarak plankton uzunlugu, i¢ yapisi, klorofil pigmenti vb. 6zellikler kul-
lanilmistir. K en yakin komgular, destek vektor makineleri, rassal orman siniflandiricilart
kullanilmigtir. Yapilan tiim deney sonuglarinda rassal orman siniflandiricist %98.24°1iik bir
puanla en iyi dogruluga sahip siniflandirici olarak tespit edilmistir. Gloria Bueno ve digerleri
[43] okyanustaki en yaygin plankton tiirii olan planktonlar1 siniflandirma amaciyla farkl el
yapimi tanimlayicilart ve siniflandiricilar incelemislerdir. Ispanya’da toplanan, her sinifta
ortalama 100 6rnek bulunan ve toplam 80 smiftan olusan plankton veri kiimesi kullanmuig-
lardir. Morfolojik, istatiksel ve dokusal tanimlayicilara ek olarak yerel ikili oriintii (LBP) ve
Gabor uygulamasindan faydalanmiglardir. Torbalama karar agaglar1 ve tanimlayict kombi-
nasyonlar1 kullanarak %98.11 simmiflandirma dogrulugu elde etmislerdir. Zheng ve digerleri
[18], 6zelliklerin kombinasyonuna dayali coklu ¢ekirdek 6grenme siniflandiricisina dayanan
otomatik plankton goriintii siniflandirma sistemi 6nermistir. Goriintiiler ilk olarak kalitelerini
arttirabilmek amaciyla on iglemeye tabi tutulmustur. Geometrik, doku ve yerel ozellikler ile
oznitelikler elde edilmis sonrasinda ¢oklu ¢ekirdek siniflandirma icin en uygun 6znitelikleri

bulmak amaciyla 6znitelik se¢imi gerceklestirilmistir.

Ozellik tabanli yontemler tarafindan ¢ikarilan 6zellikler veri kiimesi bagimlidir. Bu durum
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veri kiimesi degistik¢e algoritmanin ve ¢ikarilan dzelliklerin degismesini gerektirmektedir.
Bundan dolay1 esnek bir yapiya sahip degildir. Esnek otomotik plankton tanima sistemleri
evrigimli sinir aglar1 ile yapilmaktadir. Bu husustan bir sonraki boliimde detayli olarak bah-

sedilmistir.

2.4.2. Evrisimli Sinir Ag1 Tabanh Plankton Tamima

Goriintiilerdeki planktonik parcaciklari otomatik olarak tespit eden ve kaydeden sistemler
son 20 yilda hizla gelisim gostermistir. Bu sistemlere Video Plankton Kaydedici [44], Flo-
wCytobot [11], FlowCam [45]] ve ZooProcess [13] vb. ekipmanlar 6rnek verilebilir. Gelisti-
rilen teknolojik ekipmanlar sayesinde plankton veri hacmi hizla biiytimektedir. Planktonlar
besin zincirinin en alt basamaginda yer almakta ve oncelikle su ekosistemindeki yasam i¢in
dolayli olarak da diger ekosistemdeki yasamlar icin kritik oneme sahiptir. Bundan dolay1 elde
edilen verilerin en iyi sekilde kullanilarak en yiiksek dogruluga sahip plankton siniflandiricisi
elde edebilmek arastirmacilar i¢in bir aragtirma konusu olmustur. Plankton tanima ile ilgili
bircok calisma mevcuttur. Son zamanlarda plankton tanima ¢alismalarindaki en son egilim
derin 6grenmeye dayanmaktadir [46]. Sualt1 goriintii analizi i¢in en ¢ok kullanilan yontem-
lerden biri olan derin 6grenme sualti deniz canlilarin1 algilama ve tanima [47]] [48] icin ev-
risimli sinir aglar1 (CNN) kullanmaktadir. Evrigimli sinir aglar1 (CNN) [49] optimal goriintii
ozelliklerini ve siniflandirma agirliklarini 6grenebilen, pikseller arasinda uzamsal baglam ve
agirlik paylagimini birlestiren insan gorsel algilama mekanizmasina benzeyen cok katmanl
sinir aglaridir [19]. Evrisimli sinir aglarinin Bolim [2.4.1]de bahsedilen 6znitelik ¢ikarimi
tabanl yontemlere gore biiyiik bir avantaji iistiin oznitelik ¢cikarma yetenegidir. Oznitelik
cikarimi tabanli yontemlerin veri kiimesi bagimli olan ve alaninda uzmanlik gerektiren 6zni-
telik ¢ikarma ihtiyaclarina kiyasla evrigimli sinir aglar1 (CNN) daha esnek ve kullanilabilir
bir yontem saglamaktadir. Bu acgidan evrisimli sinir ag1 tabanli derin 6§renme yaklasiminin

Oznitelik ¢ikarimi tabanli yaklagimlardan daha iistiin oldugu gosterilmistir [SO.

Derin 6grenme yontemi kullanilarak sualti goriintii analizinin yapildig1 en eski calismalar
2015 yilina kadar uzanmaktadir. 2015 yilinda Kaggle platformunda plankton goriintii tanima
stirecini otomotiklestirmek amaciyla bir veri bilimi yarigmas1 olan Ulusal Veri Bilimi Kasesi
[17] diizenlenmistir. Bu yarismanin amaci planktonun gri tonlamali goriintiilerini 121 siif-

tan birine en yiiksek dogrulugu elde ederek simiflandirmakti. Yarismada kullanilan Kaggle
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veya NDSB [17] diye adlandirilan plankton veri kiimesi, Florida Bogazi’nda ISIIS [27] kul-
lanilarak toplanan veri kiimesinin bir alt kiimesidir. Kaggle plankton veri kiimesi [51] simf
dengesizligi veri sorunu olan, farkli plankton tiirlerine karsilik gelen 121 sinif, 30.336 gri
tonlamal1 etiketli veriden olugmaktadir. Yaklagik 130.400 goriintii etiketsiz bir sekilde test

verisi olarak paylagilmisgtir.

Yarigmanin kazanani [S2], sualti kamerasi ile elde edilen plankton goriintiilerinin dogru bir
sekilde siniflandirilmasini gerceklestirmek amaciyla DeepSea adli bir derin 6grenme mima-
risi gelistirmistir. DeepSea, dongiisel cesitlilige kars1 dayanikliligini arttirmak i¢in tasarlan-
mis ve mevcut a§ mimarilerine kolayca eklenebilen dort yeni katman kullanarak rotasyona
kars1 daha dayanikli bir ¢cerceve sunmustur. Bu calismada veri kiimesi, dogrulama ve egitim
kiimesi olarak sirasiyla 3,037 ve 27,299 gériintiiye boliinmiistiir. Etiketsiz olarak paylagilan
130.400 goriintii test verisi olarak kullanilmistir. DeepSea mimarisi ile bircok model egitil-
mis ve en iyi sonug yaklasik 40 farkli modelin toplulugundan elde edilmistir. Bu ¢caligma ile,
dogrulama kiimesinde yaklasik %82 oraninda dogruluk ve %98’in iizerinde ilk 5 dogruluk
elde ederek yarigmada ilk sirada yer almislardir. 2016 yilinda Py ve digerleri [S3]] plank-
ton simflandirmasi i¢in GoogleNet’ten ilham alan derin sinir ag1 modeli 6nermistir. One-
rilen modelde, derin sinir aglarinda derine inerken basarim kaybinin azaltilmasi amaciyla
tic yaklagim sunmuglardir. Bu ¢aligma ile, her bir evrisim katmani i¢in 68renme kapasitesi
c-metrigi Ol¢limiiyle hesaplanmis ve daha karmagik yapilar1 6grenebilmesi icin belirli bir
seviyede 6grenme kapasitesi garanti etmislerdir. Ikinci katki olarak, ilk evrisimli katmanin
alict alaninin girig goriintiisiinden daha biiyiik olmamas1 saglanmistir. Bu 6zellik, agin bilgi
kaybini azaltmig ve iist diizey Ozellikleri 68renmesini saglamistir. Son katki olarak cesitli
boyutlardaki plankton goriintiilerinin simiflandirma bagarimini arttirmak icin baslangic kat-
mani gelistirmisler ve bu katman ile 32x32, 48x48, 64x64, 96x96 ve 128x128 boyutlarinda
giris goriintiisiinden ¢ok Olgekli 6zellikler ¢cikarmislardir. Py ve digerleri [S3] elde ettikleri
modelin deneylerini Kaggle plankton veri kiimesinde gerceklestirmis ve softmax kayip met-
rigi kullanarak diger aglar ile sonuglarim karsilastirmislardir. Onerilen model, GoogleNet ve
VggNet’den daha diisiik softmax kaybina sahiptir. Cui ve Lui [54], otomotik plankton si-
niflandirma sistemine derin kalint1 aglarim1 Kaggle veri kiimesi kullanarak uygulamislardir.
Deneysel sonuclarda ilk 5 dogrulugu 0.958 ve ilk 1 dogrulugu 0.731 olarak belirtmislerdir
ve derin kalint1 aglarinin daha iyi bir sekilde genellestirme yaptiini ve derin sinir aglarinin
onemini vurgulamislardir. Jiangpeng Yan, Xiu Li ve Zuoying Cui [S3] plankton siniflandir-
mast i¢in farkli ag mimarilerini kesfederek daha verimli model elde etmeye odaklanmisgtir.

CaffeNet, VggNet-19 ve ResNet gibi degisen sayida katmana sahip aglar kullanmislardir.
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1000 sinif iceren ILSVRC2012 veri kiimesi ile onceden egitilmis modeller kullanarak ince
ayar yontemi uygulamiglar ve Kaggle veri kiimesi tizerinde siniflandirma sonuglarini iyiles-
tirmeyi amaglamiglardir. Paylagilan deney sonuglarina gore, daha kiiciik (yalmzca 1,5 MB),
daha hizli (32.2 fps) ve %96’lik bir ilk 5 dogruluga sahip daha verimli bir ag mimarisi elde

etmislerdir.

Lumini ve Nanni [19], 2019 yilinda yaptiklar1 ¢alismada farkli derin 6grenme yontemlerinin
birlestirilmesine dayanan otomotik bir plankton tanima sistemi hakkinda detayl1 bir ¢calisma
sunmustur. Bu calismada, derin 68renilmis bircok model kullanilarak ince ayar yontemi ve
aktarim 6grenmesi yontemleri ayr1 ayri incelenmistir. Siniflandirici toplulugu tasarlanmasi
icin, farkli egitim yontemleri ve yaklasimlarim1 degerlendirmislerdir. Calisma kapsaminda;
AlexNet, GoogLeNet, InceptionV3, VGG16, VGG19, ResNet50, ResNet101, DenseNet ve
SqueezeNet olmak iizere toplam dokuz farkli ag ve fiizyonlarimi karsilagtirmislardir. Egitim
veri sayisinin az olmasi nedeniyle asir1 uyumu (overfitting) dnlemeye yardimci olan akta-
rim Ogrenmesi yontemini kullanmiglardir. Goriintiilerde 6n isleme yontemleri olarak kare
ve bosluk ekleme yontemlerini kullanmiglardir. Ayrica aktarim 0grenmesinde en iyi 6zellik
vektorlerini ¢ikaracak katmanlar: secmek icin destek vektor makinesi kullanan "sirali kayan
ileri se¢cim" (SFFS) yontemini [S6] kullanmislardir. Deneyleri, plankton veri kiimesi olarak
en iyi bilinen Kaggle, ZooScan ve WHOI veri kiimelerinde gerceklestirmislerdir. Kaggle veri
kiimesi, 121 plankton sinifindan olugsmaktadir. Fakat bu ¢alismada, [18] ¢calismasinda kulla-
nildig1 gibi 100°den daha fazla goriintiiye sahip 38 sinif secilerek 14.374 goriintiiden olusan
Kaggle veri kiimesinin bir alt kiimesi kullanilmigtir. Segilen siniflarin her birinde min 108,
max 1979 goriintii bulunmaktadir. Bu yontemle kontrollii bir sekilde secilen sinif egitimle-
rinde bagsarim oldukca pozitif etkilenmistir. Kaggle veri kiimesi ile arastirma yapilirken bu
husus g6z Oniine alinarak sonuglar karsilastirilmalidir. Bu calismada, deneyler sonucunda en
iyi agin DenseNet olduguna karar verilmis ve topluluk yonteminin basarimi arttirdigi goz-

lemlenmisgtir. Deney sonuglarinda F1-Skor parametresi kullanilarak karsilastirma yapilmasgtir.

Lee ve digerleri [33]], 3 milyondan fazla veriye sahip ve sinif dengesizligi olan WHOI plank-
ton veri kiimesinde sinif dengesizligi probleminin iistesinden gelmek amaciyla aktarim 6g-
renmesi tabanli evrigimli sinir ag1 modeli onermistir. Sinif dengesizligi problemini ¢ozmek
amaciyla veri kiimesinde bulunan biiyiik veriye sahip siniflar i¢in veri esiklemesi ile sinif nor-
mallestirilmis veriler olusturmuslar ve normallestirilien verilerle evrisimli sinir ag1 modelini
egitmislerdir. Bu sekilde, kii¢iik boyutlu simiflarin dogruluk oranlarini arttirmiglardir. Egiti-

len modeli kullanarak orijinal tam verilerle evrisimli sinir agini tekrar egitmislerdir. Onerilen

20



model ile hem az veriye sahip olan siniflarda, hem de fazla veriye sahip olan siniflarda ba-
sarim korunmustur. Dai ve digerleri [S7]], 2017 yilinda yaptiklar1 ¢calismada evrigimli sinir
agina girdi olarak orijinal goriintiiyii ve iki On isleme islemine tabi tutulmus versiyonunu
alan hibrit 3 kanall1 CNN yontemi 6nermislerdir. WHOI-plankton veri kiimesinin 1000’den
fazla 6rnek igeren 30 sinifin1 alarak yeni bir veri alt kiimesi olugturmusglardir. Goriintiilerden
yerel ve genel ozellikler elde etmek amaciyla 6n igleme yontemlerini kullanmiglardir. Elde
ettikleri hibrit yapiy1 AlexNet ve GoogleNet iizerinde deneyerek yaklasik %1 basarim artisi
bildirmislerdir.

Plankton simiflar1 farkli sekillere sahiptir ve benzer sekillere sahip olan siniflar dokuda fark-
lilik gostermektedir. Bu nedenle Jinna Cui, Bin Wei ve digerleri [38]], plankton siniflandir-
masinda dogruluk oranimi arttirmak i¢in birden fazla 6zellik kullaniminin faydali olabilece-
gini diisiinmiistiir. Plankton simiflandirmasi i¢in goriintii 6n isleme yontemlerinden biri olan
Gauss filtreleme yontemi ile elde edilen farkl girdileri birlestirmislerdir. Elde edilen goriin-
tiileri, AlexNet evrigimli sinir aginda egitmislerdir. Onerilen model %94.32lik bir siniflan-
dirma basarimia sahiptir. On isleme uygulanmamis orijinal goriintiiler iizerinde basarimi

%93.58 olarak elde etmiglerdir. Model azinlik simiflarinda daha iyi performans gostermistir.

Farkl1 boyutlardaki goriintiilerde plankton tanima [S9] adli calisma 2021 yilinda yayimlan-
mistir. Evrigimli sinir ag1 tabanli yontemler girdi olarak sabit boyutlu goriintii kabul etmekte-
dir. Bu nedenle, plankton tanima yontemlerinin cogunlugu ilk agsama olarak goriintiiyii yeni-
den boyutlandirmaktadir. Fakat bu yontem en boy oram ¢ok ¢esitli boyutlarda olan plankton
veri kiimesinde bilginin kaybolmasina neden olmaktadir. Bu calismada plankton goriintii bo-
yutundaki en-boy oranindaki asir1 ¢esitliligi ele alan cesitli yaklagimlar incelenmistir ve dort
yontem denenmistir: uzamsal piramid havuzu, meta veri dahil etme, yama kirpma ve coklu
akis (multistream) aglari. Coklu akis aglar1 ve yama kirpma yontemlerini birlestirerek daha
yiiksek dogruluk oranina sahip sonuglar elde etmislerdir. Tablo [2.4]te yayin ad1, kullanilan
veri kiimesi, veri sayisi, sif sayisi, sonucun degerlendirildigi metrik ve sonug bilgilerini

iceren literatiir 6zet tablosu paylasilmistir.
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Tablo 2.4. Literatiir Ozet Tablosu

Yaymn Adi || Kullamlan Veri Kiimesi #Veri #Smmf Sonuc¢ Tipi Sonucg
[58] WHOI 30'900 >0 Dogruluk 796,58
3.6 milyon | 103 %94.32

[57] WHOI 30.000 30 Dogruluk %96.3
[33] WHOI 3.6 milyon 103 Dogruluk 9092.8
[54] Kaggle-plankton 30.336 121 | Top-1 Dogruluk | %73.1
Kaggle-plankton 14.374 38 %92.6

[19] ZooSCan 3771 20 F-Olgiitii %90

WHOI 6600 22 %95

[53] Kaggle-plankton 30.336 121 Softmax Kaybi 0.61
[55] Kaggle-plankton 30.336 121 | Top-1 Dogruluk | %76.4
Kaggle-plankton 14.374 38 %76.9

[18] ZooSCan 3771 20 F-Olgiitii %82.1
WHOI 6600 22 %88.3

Bu boliimde plankton goriintiilleme sistemlerinden, plankton taksonomisinden ve plankton
tanima icin kullanilan veri kiimeleri ve plankton siniflandirmasi ile ilgili yapilan caligma-
lardan bahsedilmistir. Plankton siniflandirma amaciyla izlenen adimlar 6zetle: plankton veri
kiimesinin belirlenmesi, plankton veri kiimesinin iyilestirilmesi i¢in goriintilye 6n isleme uy-
gulanmasi, siniflandirma algoritmasinin se¢imi, se¢ilen modelin belirlenen veri kiimesiyle
egitilmesi, egitim sonucunda elde edilen modelin degerlendirilmesi i¢in metrik belirlenmesi
ve belirlenen metrik ile test kiimesi kullanilarak sonuglarin degerlendirilmesi adimlarindan

olusmaktadir.
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3. EVRISIMLI SINIR AGLARI
3.1. Sinir Aglar1 Katmanlari ve Yapilari

Karmagik problemleri ¢6zmek i¢in yaygin olarak kullanilan evrisimli sinir aglar1 derin 6zel-
lik ¢ikarmada ve siniflandirmada kullanilan derin 6grenme yaklagimidir. Evrigimli sinir aglari
ilk olarak 1980 yilinda Fukushima [60] tarafindan kavramsallastirildi. Fukushima temel bir
goriintii tanima sinir ag1 olan neocognitron’u icat etti. Yann LeCun ve arkadagslar: [61]], bu
calismanin {izerine insa ederek geri yayilim 6grenme algoritmasini uyguladi ve evrisimli si-
nir aglarinin temelini atmig oldu. Evrigimli sinir aglari geleneksel yontemlerde elle tasarlanan
ozellikleri/filtreleri yeterli egitimle 6grenme yetegine sahiptir. Goriintii icerigi i¢in daha yiik-
sek temsiller ¢ikarilmasina izin veren evrigimli sinir aglari, goriintii 6zelliklerinin uzmanlar
tarafindan tanimlandig klasik yontemlerin aksine, goriintiiniin ham piksellerini alir, modeli

egitir ve daha iyi simiflandirma icin 6zellikleri otomatik cikarir.

C3:{. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
32%32 6@28x28

S2: f. maps
6@14x14

|
| Full conllectlon | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Sekil 3.1. Ornek CNN Mimarisi [1]

Evrigimli sinir ag1 gesitli sirali katmanlardan olugsmaktadir. Sekil[3.1]de 6rnek katman yapisi
gosterilmigtir. Evrisim katmanlari, havuz katmanlar1 ve tam baglantili katmanlar evrisimli
aglarda kullanilan ortak katmanlardir. Evrisimli sinir aglar insan gorme sisteminden esin-
lenmigtir. Farkli katman tiirleri gorsel kortekste bulunan cesitli hiicrelere benzetilebilir [62].
Bu boliimde CNN’ler tarafindan kullanilan katmanlar, fonksiyonlar ve ag yapilarindan de-

tayl1 olarak bahsedilecektir.
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3.1.1. Evrisimsel Katmanlar

Evrisim katmanlari, evrisimli sinir aglarinda mimariye de adin1 veren en énemli katman tii-
ridiir. Evrisimli sinir aglari, katmanlarindan en az birinde evrisimsel katman olarak adlandi-
rilan evrisim iglemi kullanilarak veri islenmesi icin tasarlanmustir. Iki boyutlu goriintiiler igin
evrisim iglemi denklem [I[de paylasilmistir. Denklem [[Jde yer alan parametrelerde s(i, j):
piksel satir1 1 ve piksel siitunu j’de bir evrigim islemi, K: evrisimsel filtre, I: giris goriintiisii,

m: filterinin satir sayis1 ve n: filtrenin siitun sayisini ifade etmektedir.

s(i,j) = (Ix K)(i,5) = Y > I(m,n)K(i—m,j—n) (1)

m=—kn=—*k

Renkli goriintiilerin kirmizi, yesil ve mavi olmak iizere ii¢ kanali bulunmaktadir. Her bir
kanal iki boyutlu bir matris ile tanimlanmaktadir. Evrisimli katmanin girisi i¢c boyutlu bir
matristir. Ciktis1 iki boyutlu 6zellik haritalar1 ve bu katman i¢in filtre sayisi n ise nx3 boyutlu
matristir. Her filtre bir 6zellik haritas1 iiretmektedir. Filtreler giris goriintiisiiniin boyutundan
daha kiiciik boyuta sahiptir, giris goriintiisii boyunca sol iistten baglayarak sag alta dogru
kayar [63]]. Sekil [3.2]de filtre girig vektoriiniin sol iist kisminda ¢izdirilmistir. 3x3 filtre kul-
lanilarak filtre sol tist kosedeki giris vektoriine yerlestirildiginde evrisim katmaninin nasil
calistigina dair ornek Sekil [3.2]de verilmistir. Yalnizca bir girig verisi kanalina sahip tek
bir 3x3 filtre i¢in 2D evrigim iglemi ornegi Sekil [3.3Jte verilmistir. Filtre pencere boyunca

hareket ettirilerek azaltilmig uzamsal genisleme ciktisi tiretilir.
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Giris Vektorii

2 2 2 0 0 0 3x3 Filtre Hedef Piksel
2 3 2 1 1 2

0 -1 0
2 2 2 1 1 1

| -1 5 -1 » 7

1 0 0 0 0 0

0 -1 0
0 0 1 1 1 1
0 1 1 1 1 1

Sekil 3.2. Filtre sol iist kosedeki giris vektoriine yerlestirildiginde evrisim katmaninin nasil
calistigina dair 6rnek [2].

2x2 Filtre

JgHE
N

ax + by + bx + cy + cx + dy +
ez + fw fz + gw gz + hw
ex + fy + fx + gy + gx + hy +
iz + jw jz + kw kz + lw

Sekil 3.3. 3 x 3 Cekirdek (Kernel) igin 2D-Evrisim-Islemi 6rnegi
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Modelin karmagikligin1 azaltmak amaciyla ¢iktiy1 optimize etmek icin evrisim katmanlari ti¢

hiperparametre kullanir.

Derinlik (depth): Derinligin kontrol edilebilmesi avantajli olmasina ragmen azaltilmasiyla
birlikte ndron sayist en aza indirgenir ve modelin Oriintii tanimadaki etkinliginin azaltilma-

sina sebebiyet verebilir.

Adim (step): Adim filtrenin girdi iizerinde ne kadar kaydirilarak hareket ettirildiginde ilgili
olan parametredir. Ne kadar yiiksek olursa cikti i¢in daha az Ortiisme miktar1 ve daha az
uzamsal boyutluluk elde edilmesini saglar. Ne kadar diisiik olursa filtre daha az kaydirilir ve

daha yiiksek uzamsal boyutluluk elde edilir.

Sifir Doldurma (Zero padding): Giris sinirin1 doldurmanin ve ¢ikti hacminin (uzaysal bo-

yutlulugun) kontroliiniin temel yontemidir [2].

Evrigim katmaninin ¢iktisinin uzamsal boyutu denklem [2]ile hesaplanmaktadir.

(V—-R)+2z

S+1 @)

Uzamsal Boyut =
Denklem [2de V degeri giris hacim boyutunu, R degeri alict alan boyutunu, z degeri sifir

dolgu miktarin1 ve S degeri adim miktarini temsil etmektedir.

3.1.2. Havuz Katmanlari

Havuzlama katmani[1] 6zellik haritalarinin boyutsalligini azaltmada kritik rol oynamakta-
dir. Bu katman sayesinde parametre miktar1 ve hesaplama siiresi azaltilir ve sonraki katman
ozellik haritalarinin daha kiiciik bir versiyonunu girdi olarak alir. Maksimum havuzlama ve
ortalama havuzlama en ¢ok kullanilan iki yontemdir. Maksimum havuzlama, filtrenin alici
alaninda bulunan maksimum degeri hesaplar ve ortalama havuzlama, alic1 alanindaki deger-

lerin ortalamasini hesaplar. Ortalama havuzlama denklem (3|ile ifade edilebilir:

=23 3)

iERj
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burada h, alt bolgedeki ?; 6zellik eslemesinden bir pikseldir ve n, alt 6rneklemenin gerekli

oldugu alt bolgedeki 6zellik sayisidir. Maksimum havuzlama denklem []ile ifade edilebilir:

Si = max h; “4)
Sekil 3.4Jte yer alan (a) goruntii piksel degerlerini, (b) her bir renkli bolgedeki ortalama
havuzlama sonucu, (c) her bir renkli bolgedeki maksimum havuzlama sonucunu ifade et-

mektedir.

11 |17 | 1 | 4

(a) (b) (c)

Sekil 3.4. Maksimum ve Ortalama Havuzlama Ornegi

3.1.3. Tamamen Bagh Katmanlar

Tamamen bagl bir katmanin gorevi evrisimli katman ve havuzlama katmanindan girdi kabul
etmek ve nihai siniflandirma kararini veya her bir sinif etiketi i¢in nihai olasiliklari tahmin et-
mektir. Tam baglantili katmandaki baglantilar egitilebilir agiliklara sahiptir ve ¢ikis diigiimii-
niin ¢ikis degeri, girislerinin ve yanlilik (bias) degerinin agirliklar1 toplamidir. Evrisimli kat-
man ve havuzlama katmani bir goriintiiden 6znitelikleri ¢ikarir ve sonrasinda tamamen bagl
katmanlar, ¢ikarilan bu Ozniteliklere dayali olarak siniflandirma gerceklestirir. Bu nedenle
bir CNN’in son katmanlarinda tamamen bagli katmanlar bulunmaktadir. Evrisimli katman-
lardan elde edilen ¢ikt1 yiiksek seviyedeki 6zellikleri temsil eder, anlamli diisiik boyutludur.

Eklenen tamamen bagl bir katman, bu 6zelliklerin dogrusal olmayan kombinasyonlarinin
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da 6grenilmesini saglar. Tam baglantili katmandaki baglantilarin gosterimi Sekil [3.5]de su-
nulmustur. Sekil 3.5]de goriildigii gibi katmandan katmana tiim olasi baglantilar mevcuttur,
giris vektoriiniin her girisi ¢ikis vektoriiniin her ¢ikisini etkilemektedir. Ancak tiim agirliklar
tim cikislar etkilemez. Sekill [3.5]deki ¢izgilere bakildiginda mavi ¢izgilerin katmanin ilk
noronunu temsil ettigi goriiliir. Bu néronun agirliklart sadece Cikis 1°1 etkilemektedir. Cikis
2,3, 4,5 ve 6’y1 etkilemez.

Sekil 3.5. Tamamen baglantili bir katmandaki baglantilarin gosterimi.
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3.1.4. Aktivasyon Fonksiyonu

Aktivasyon fonksiyonlar1 aga dogrusal olmayan problemleri ¢6zme imkan1 veren, sinir agi-
nin ana parcasidir. Aktivasyon fonksiyonunun olmadig1 veya dogrusal aktivasyon fonksiyo-
nunun oldugu durumlarda sinir ag1 sadece dogrusal problemleri ¢6zebilir. Dogrusal olmayan
aktivasyon fonksiyonu ile birlikte sinir aglar1 yeterli katman ve ndrona sahip oldugu siirece
herhangi bir dogrusal olmayan islevi 6grenebilir. Aktivasyon fonksiyonunun tiirevlenebilir
olmas1 gerekir. Tiirevlenebilir olmadig1r durumlarda, geri yayilim algoritmasi gradyan he-
saplayamadi1 i¢in ¢alismayacaktir. Aktivasyon fonksiyonunun se¢imi, sinir aginin kapa-
sitesi ve performansi iizerinde biiyiik bir etkiye sahiptir ve farkli aktivasyon fonksiyonlari
kullanilabilir. Bu boliimde farkli aktivasyon fonksiyonlarindan bahsedilecek, avantajlar1 ve

dezavantajlar1 incelenecektir.
Sigmoid Fonksiyonu

Sigmoid fonksiyonu herhangi bir degeri girdi olarak alir ve ¢ikti olarak O ile 1 arasindaki de-
gerleri verir. Girdi ne kadar biiyiikse 1’e daha yakin olur, ne kadar kiiciikse 0’a o kadar yakin
olur. Matematiksel olarak sigmoid fonksiyonunun orijinali denklem [5 ve tiirevi denklem [6]

ile ifade edilmektedir:

O ®)
f'(x) = f(x)(1 = f(x)) (6)
z € (~00,00) @
f(z) € (0,1) ®)

Sigmoid fonksiyonu, denklem [7/de verilen aralikta bir x degerini girdi olarak alir ve aldig:
bu girdi degerini denklem [§]de verilen birim araligindaki degere doniistiiriir. Sigmoid fonk-
siyonu ¢ikt1 olarak olasilik tahmini yapacak modeller i¢in yaygin olarak kullanilir. Herhangi
bir seyin olasilig1 O ile 1 de8eri arasinda oldugundan sigmoid fonksiyonu avantaja sahip bir
fonksiyondur. Sigmoid fonksiyonu tiirevlenebilir bir fonksiyondur, diizgiin bir gradyan sag-
lamakta ve sigramalari 6nlemektedir. Sekil [3.6da sigmoid fonksiyonu ve tiirevinin grafigi

verilmistir. Tiirev grafiginde gradyan degerleri sadece -3 ve 3 arasinda 6nemlidir bu aralik
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disindaki degerler ¢ok kiigiik gradyanlara sahiptir. Gradyan degeri 0’a yaklastikca ag 68ren-
meyi durdurmakta ve kaybolan gradyan (vanishing gradient) problemine sebep olmaktadir.
Sigmoid fonksiyonunun bir diger dezavantaj1 fonksiyon ¢iktisinin orijin noktasina gore si-
metrik olmamasidir. Noron ciktilart ayni isarete sahiptir ve bu durum agin egitimini daha

kararsiz ve zor hale getirmektedir.

= Sigmoid 1.0 4
Tlrevi

0.8 4

0.6 1

T T T T T
—6 —4 -2 0 2 4 6

Sekil 3.6. Sigmoid fonksiyonu (sol) ve tiirevi (sag) [3]]

Tanh (Hiperbolik Tanjant) Fonksiyonu

Tanh fonksiyonu sigmoid fonksiyonuna benzer sekilde S sekline sahiptir. Herhangi bir girdi
degeri aldiginda -1 ve 1 cikis araliginda deger vermektedir. Cikis de8eri girdi biiyiidiik¢ce 1°e
kiigiildiikgce -1’e yaklasmaktadir. Matematiksel olarak tanh fonksiyonunun orijinali denk-

lem[9] ve tiirevi denklem [10]ile ifade edilmektedir:

9)
flx) =1— f(x)? (10)

Tanh fonksiyonun orijinali ve tiirevi Sekil [3.7]de verilmistir. Tanh fonksiyonu orijin mer-
kezlidir. Cikt1 de8erleri negatif, pozitif veya notr sekilde eslenebilir. Bu durum bir sonraki
katman i¢in verileri merkezlemesi sebebiyle 68renmeyi daha kolay hale getirmektedir. Tanh

fonksiyonunun gradyan grafigi sigmoid fonksiyonunun gradyan grafigine benzemekte ve
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ayni sekilde kaybolan gradyan problemine sebep olmaktadir. Tanh fonksiyonunun sigmoid
fonksiyonuna gore en 6nemli avantaji orijin merkezli olmasidir. Gradyan grafikleri benzer

sekilde olsa da tanh fonksiyonu sigmoid’e gore daha tercih edilebilir konumdadir.

== Tanh 100
Turevi
0.75 1

0.50 1

0.25 1

—0. 4

501

—0.754

—1.004

Sekil 3.7. Tanh fonksiyonu (sol) ve tiirevi (sag) [3l]

Dogrultulmus Lineer Birim (Rectified Linear Unit - Relu) Fonksiyonu

Relu, rektifiye edilmis, dogrultulmus dogrusal birim anlamina gelmektedir. Isminden dolay1
dogrusal bir islev izlenimi vermesine ragmen Relu tiirev islevine sahiptir. Noronlar ayni1 anda
etkinlestirilmemektedir. Sadece dogrusal doniisiimiin ¢iktis1 0’dan kiigiikse devre dis1 bira-
kilmaktadir. Matematiksel olarak Relu fonksiyonunun orijinali denklem [T] ve tiirevi denk-
lem[12lile ifade edilmektedir:

frerv(z) = max(0, x) (11)
, _J 0, <0
fReLU(x) = { 1 23>0 (12)

Relu fonksiyonun orijinali ve tiirevi Sekil [3.8]de verilmistir. Fonksiyonun avantajlarindan
biri belirli sayida néronu aktive edip diger noronlar1 pasiflestirdi§inden hesaplama agisindan

cok daha verimlidir. Relu'nun diger bir avantaji, satiire olmama 0zelligi sayesinde, kayip
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fonksiyonunun global minimuma dogru gradyan inig yakinsamasin hizlandirmasidir. Fonk-
siyonun dezavantajlarindan biri grafigin negatif kisminda gradyaninin sifir olmasidir. Bu ne-
denle geri yayilim siirecinde bazi néronlarin agiliklart ve yanlhiliklar1 (bias) giincelleneme-
mektedir. Bu durum aktive olmayan 6lii noronlara neden olmaktadir. Yasanilan bu soruna

“0len Relu (dying Relu)” sorunu denilmektedir.

— Relu 6
Tarevi

Sekil 3.8. Relu fonksiyonu (sol) ve tiirevi (sag) [3]]

Sizint1 Relu (Leaky Relu) Fonksiyonu

Sizint1 Relu, Relu’nun sahip oldugu “6len Relu” problemini ¢cozmek amaciyla Relu’nun ge-
listirilmig bir versiyonudur. Matematiksel olarak sizint1 Relu fonksiyonunun orijinali denk-
lem [13] ve tiirevi denklem [14]ile ifade edilmektedir:

ar, <0

et (T) = ’ (13)
frrerv () {a;, >0
a, <0

'e T) = ’ (14)
frrerv () {17 z>0

S1zint1 Relu fonksiyonun orijinali ve tiirevi Sekil [3.9]da verilmistir. S1zint1 Relu negatif giris
degerleri icin geri yayilimi etkinlestirmektedir. Relu’dan farkli olarak yapilan bu degisimle

negatif degerlerin gradyanlar: sifir olmayan bir deger olarak elde edilmektedir. Dezavantaji
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tahminlerin negatif giris degerleri icin tutarli olmama ihtimaline sahip olmasidir. Negatif
degerleri icin elde edilen gradyan, model parametrelerinin 6grenilmesini zaman alic1 hale

getiren kiigiik bir degerdir.

= Sizint1 Relu 64
Turevi

Sekil 3.9. Sizint1 Relu fonksiyonu (sol) ve tiirevi (sag) [3l]

3.1.5. CNN Mimarileri

Evrisimli sinir ag1 insa etmek, olusturmak oldukca zor bir istir [64]. Bireysel veri kiimeleri
gozlemlenen Ozellikler itibariyle farklilik gosterdiginden ilerlemek i¢in altin bir kural yoktur.
Bu sebeple belirli bir ag yapisina ihtiya¢ vardir. Evrigimli sinir ag1 inga etmek i¢in mevcut
coziimlerden gelen belirli kurallar vardir, bu ¢oziimler zaman icinde ispatlanmistir. Tipik
bir evrigimli sinir ag1 yapisi evrisimli katman, havuzlama katmaniyla baglar ardindan tam
baglantili katman ile devam eder. Son olarak ¢ikti katmaniyla tamamlanir. Evrisim katman-
larinda ¢ogunlukla 3x3, 5x5, 7x7 boyutlarinda filtreler kullanir. Aktivasyon fonksiyonlar1
derin aglarda daha iyi performans gosterdigi bilinen Relu fonksiyonunun modifikasyonlari-
dir. Evrigimli sinir aglarinin en yaygin orneklerinden bazilar1 ResNet-50 [635], Inceptionv3
[4], VGG-16 [66], DenseNet [67], InceptionResNetv2 [68] detayli olarak incelenecektir.

ResNet-50

ResNet ag1 artik ag anlamina gelmektedir. He ve digerleri tarafindan 2015 yilinda ‘Goriintii

Tanima icin Derin Kalint1 Ogrenme’ [65] baslikl1 arastirma makalesinde tamitilan yenilikgi
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bir agdir. ImageNet test kiimesinde %3.57 hata oraniyla ILVRSC yarigsmasinin sonucunda
ilk sirada yer almistir. ResNet’in farkli katman sayisina sahip, ayn1 konsept iizerinde cali-
san bir¢ok ¢esidi bulunmaktadir. ResNet-50, elli sinir a1 katmanina sahip bir agdir. ResNet
aginin tasarimiyla birlikte derin sinir aglarinda daha iyi bir performans elde etmek miimkiin
hale gelmistir. Derin evrisimli sinir aglarinda katman sayis: arttik¢a farkli katmanlar cesitli
gorevler icin egitilebildiginden bu gorev farklilasmasi karmagik sorunlarin daha verimli bir
sekilde ¢coziilmesine yardimci olur. Sinir a8inin katman sayisi arttikca dogruluk seviyesi dnce
doygun hale gelir ve sonrasinda diisebilir. Derin aglar ile egitilen bir modelin performansi
egitim ve test verilerinde bozulabilmektedir. Yaganilan bu problem agir1 uyumdan (overfit-
ting) kaynakli bir sonug¢ degildir. Bu problem kaybolan veya patlayan gradyandan (vanishing
or exploding gradients) kaynaklanmaktadir. ResNet aginin ¢oziim buldugu kisim bu prob-
leme 151k tutmaktadir. ResNet ag1 modelin dogrulugunu arttirmak i¢in artik bloklardan fay-
dalanmaktadir ve artik bloklarin merkezinde kisayol baglantilar1 bulunmaktadir. Kullanilan
bu yontemler sayesinde ResNet ag1 ile birlikte parametre sayist ve hesaplama karmagikligi-
nin artmamasi saglanmis ve kaybolan gradyan sorunu azaltilmistir. Sekil[3.10]da 6rnek artik
blok gosterilmistir. Kisayol baglantis1 bir veya daha fazla katmani atlamaktadir ve ardindan
aga Sekil [3.10]da gosterildigi gibi eklenmektedir. Kisayol baglantisi ile birlikte, daha iyi

performans saglayan daha derin modeller olusturmak miimkiin hale getirilmistir.
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Inceptionv3

Inception ag1 CNN’in gelismesinde onemli bir rol oynamustir. Oncesinde yapilan ¢aligma-

larda evrisimli sinir aglar1 daha iyi performans elde edebilmek icin katmanlarini derinlestir-

mistir. Inception ag1 hiz ve basarimi ayni1 anda saglamak amaciyla farkli yontemler uygu-

lamigtir. Inceptionv3, temel olarak onceki ag mimarilerini degistirerek daha az hesaplama

giicli kullanmaya odaklanmistir. 2015 yilinda ‘Bilgisayarli Gorii i¢in Inception Mimarisini

Yeniden Diisiinmek’ baglikli makalede onerilmistir [4]. Inceptionv3 aginin mimarisinin asa-

malarindan detayli olarak asagida bahsedilmistir:

Faktorlestirilmis Evrisimler: Agda yer alan parametrelerin sayisini azaltmaktadir. Bu

nedenle agin verimliligine katki saglamaktadir.

Daha Kiiciik Evrisimler: Kullanilan filtre boyutunun degistirilmesi daha hizli egitim

elde edilmesine olanak saglar.

Asimetrik Evrisimler: Asimetrik evrigimler, goriintiiniin x ve y eksenlerini ayr1 ayri
alarak calisir. (1xn) filtresinden 6nce bir (nx1) filtre ile bir evrisim gerceklestirilmesi
ornek olarak verilebilir. 5 x 5 evrigimi, 1 x 5 evrisim ve ardindan 5 x 1 evrisim ile

degistirilebilir.

Yardimc1 Siniflandirici: Egitim sirasinda katmanlar arasina yerlestirilen kiigiik bir ev-

risimdir. Olusan kayip ana ag kaybina eklenir.

Grid Boyutunun Kiigiiltiilmesi: Ozellik haritalariin grid boyutunu azaltmak igin gele-
neksel olarak maksimum havuzlama veya ortalama havuzlama kullanilir. Inceptionv3
modelinde, grid boyutununun azaltilmas1 amaciyla ag filtrelerinin aktivasyon boyutu
genigletilir. Ornegin, k filtreli n x n grid, 2k filtreli n/2 x n/2 gridle sonuglanr. Iki

paralel evrigsim blogu ve havuzlama birlestirilerek yapilir.

Sekil 3.11]de Inceptionv3 ag mimarisi gosterilmistir. Inceptionv3 agin1 olusturan bi-

rimler renkler ile belirtilmis ve her bir blogun icerdigi birimler gorsellestirilmistir.
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Sekil 3.11. Inceptionv3 Ag Mimarisi [4]

VGG-16

VGG-16, Simonyan ve Zisserman [60] tarafindan gelistirilmistir. 16 katmandan olusan temel
bir sirali evrisimli ag modelidir. 2014 yilinda ImageNet yarismasinda (challenge) uygulan-
migstir. ImageNet [69] 1000 sinifa ait 14 milyondan fazla goriintiiye sahip bir veri kiime-
sidir. VGG-16 a1, ImageNet iizerinde %92,7 ilk 5 test dogrulugu elde etmistir. VGG-16
ag1, biiyiik cekirdek boyutlu filtreleri birinci ve ikinci katmaninda birden fazla 3x3 ¢ekirdek
boyutunda filtreyle degistirerek AlexNet ag1 iizerinde iyilestirme yapmustir. Sekil [3.12]de
VGG-16 agiin mimarisi verilmistir. VGG-16 mimarisi; evrisim (convolution), havuzlama

(pooling), tamamen-bagl (fully-connected) katmanlarindan olugsmaktadir.
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Sekil 3.12. VGG-16 Ag Mimarisi
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DenseNet

CNN’lerin derinlesmesiyle ortaya ¢ikan problemi giderebilmek amaciyla DenseNet ag1 [67]]
onerilmistir. Problemin ana nedeni giris katmanindan ¢ikis katmanina kadar olan bilgi yo-
lunun oldukca biiyiik olmasi ve bilgilerin diger tarafa ulasmadan 6nce kaybolabilmesidir.
DenseNet ag1, diger mimarilerde tanitilan katmanlar arasindaki baglanti modelini basite in-
dirgemistir. DenseNet aginda maksimum bilgi ve gradyan akig1 saglanarak sorun gideril-
mistir. Bu akig1 saglamak amaciyla her katman dogrudan birbirine baglanmistir. DenseNet
yazarlari, olusturduklart mimariyi derinlestirmek yerine 6zelliklerin yeniden kullanimi yo-
luyla agin potansiyelinden yararlanmiglardir. Sekil [3.13Jte DenseNet ag mimarisi verilmis-
tir. DenseNet mimarisinin verildigi Sekil [3.13]te verilen yogun bloklar (dense blocks), n
adet yogun katmandan olugmaktadir. Blok i¢inde yer alan her bir yogun katman, onceki kat-
manlardan 6zellik haritalarin1 almaktadir ve ¢iktilarimi tiim katmanlara iletmektedir. Yogun
katman (dense layer), 1x1 ve 3x3 olmak tiizere iki farkli evrisim isleminden olugsmaktadir.
1x1 evrisim igleminde 6zellik ¢ikarimi yapilmaktadir ve ¢ikarilan 6zelliklerin 3x3 evrisim

islemi ile derinlik/kanal sayis1 azaltilmaktadir.
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Sekil 3.13. DenseNet Ag Mimarisi

InceptionResNetv2

Inception ve artik (residual) a§ mimarileri diisiik hesaplama maliyetine ve yiiksek perfor-
mansa sahip mimarilerdir. InceptionResNetv2 ag:1 [68]], bu iki mimarinin birlestirilmesinden
olugmaktadir. Inception ve ResNet blogunda, ¢cok boyutlu evrisim filtreleri artik baglanti-
larla birlestirilmistir ve bu baglantilarin kullanilmasi derin yapilarin neden oldugu bozulma
problemini ortadan kaldirarak egitim siiresini azaltmugtir. Sekil [3.14]de inceptionResNetv2
ag mimarisi 0zetlenmistir. InceptionResNetv2 ag mimarisinde verilen A, B, C bloklar1 [68]
calismasinda sema olarak verilen inceptionResNet A, B ve C bloklarini ifade etmektedir. Mi-
maride govde (stem) katmani girdi olarak 299x299x3 boyutundaki goriintiiyli almaktadir ve
35x35x384 boyutlu bir ¢ikti tiretmektedir.
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Sekil 3.14. InceptionResNetv2 A§ Mimarisi

Tablo [3.1]de aglarin parametre sayisi, ilk-1 (top-1) dogruluk orant ve aglarin yayimlanma
yili paylasilmistir. VGG-16 ag1 2014 yilinda ortaya ¢cikmis ve o yila gore derin ag olarak ka-
bul edilmistir. VGG-16 modelinin avantajlarindan biri kiyaslama yapmak icin iyi bir mimari
olmasidir, dezavantaji ise 138 milyon parametreye sahip olmasi ve bu nedenle egitiminin
yavag olmasidir. VGG-16 aginin geleneksel ag mimarisinin aksine, ResNet-50 mimarisi ar-
tik (residual) modiiller ve kisayol baglantilar1 kullanarak derinlesen aglarda yasanilan prob-
lemlere 151k tutmustur. ResNet-50 ag1, VGG-16 agina gore daha derin bir model olmasina
ragmen Tablo [3.1]de paylasildig: gibi 26 milyon parametre sayisina sahiptir. Bunun temel
sebebi, agin son katmaninda tamamen bagl (fully-connected) katman yerine kiiresel orta-
lama havuzlama (global average pooling) katmani kullanmasidir. Inceptionv3 ag1, hiz ve ba-
sarimi1 ayna anda saglayan yaklagimlar gelistirmistir. 27 milyon parametre sayisina sahiptir
ve ImageNet verisi lizerinde %78.8 ilk-1 (Top-1) dogruluk degerine sahiptir. ResNet-50"ye
gore basarim artig1 saglamigtir. InceptionResNetv2, artik ag ve inception ag mimarilerini
birlestirerek dogruluk degeri daha yiiksek olan fakat ayni1 zamanda hesaplama yiikii daha
yiiksek olan bir mimari gelistirmistir. ResNet-50 ve Inceptionv3 modellerinin sahip oldugu
parametre sayisinin yaklagik iki kati parametreye sahiptir. InceptionResNetv2, diger aglara
kiyasla, ImageNet veri kiimesi ile yapilan testlerde %80.1 ilk dogruluk oraniyla en yiiksek
dogruluga sahip ag olmustur. DenseNet-121 ag1, ResNet mimarisinin katmanlar arasinda yo-
gun (dense) baglantilar iceren bir evrimi olarak kabul edilmektedir. ImageNet veri kiimesi
tizerinde %74.98 ilk-1 dogruluk oranina ve 8 milyon parametre sayisi ile diger modellere

kiyasla oldukca diisiik bir parametre sayisina sahiptir.
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Tablo 3.1. Aglarin Karsilagtirma Tablosu

Model Ismi Parametre Sayisi IIk-1 (Top-1) Dogruluk Yil

VGG-16 138 milyon %74.4 2014
ResNet-50 26 milyon %77.15 2015
Inceptionv3 27 milyon 9%78.8 2015
DenseNet-121 8 milyon %74.98 2016
InceptionResNetv2 | 55.8 milyon % 80.1 2016

3.2. Sinir Aglar1 Egitimi

Evrisimli sinir aglar1 egitimi ile ilgili asamalar bu boliimde 6zetlenmistir. Makine 6greni-
minde, denetimli 6grenme, denetimsiz 6grenme ve pekistirmeli 6grenme olarak {i¢ temel
ogrenme sekli vardir [[70]. Siniflandirma problemi icin en yaygin kullanilan yontem her girdi
degerine karsilik gelen istenen cikt1 ile etiketlendigi bir egitim veri kiimesi ile 6grenmenin
gerceklestigi denetimli 6grenmedir. Agin tahmininin miimkiin oldugunca bu degerlere yakin

olmasi beklenir.

Bir evrisimli sinir a1, bir kayip fonksiyonunu yinelemeli olarak minimum seviyeye indire-
rek egitir. Sinir aginin ¢ikisi ile beklenen ¢ikis arasindaki fark kayip fonksiyonu kullanilarak
belirlenir. Fark kayip fonksiyonu kullanilarak hesaplandiktan sonra farki en aza indirecek
sekilde ag parametreleri ayarlanir. Farki minimum seviyeye indirmek ic¢in kullanilan yon-
temlerden biri gradyan inis (gradient descent) yontemidir. Gradyan inis yontemi hesaplama
acisindan pahali olabilir. Geri yayilim yontemi [/1], agdaki tim agirliklar ve sapmalar icin
gradyanin kismi tiirevlerini verimli bir sekilde hesaplar. Kaybolan ve patlayan (vanishing-
/exploding) gradyanlar gradyan inis ile ilgili sinir aglarinin e8itimi sirasinda karsilagilan bir
problemdir [61]].

3.2.1. Kayip fonksiyonu
Evrigimli sinir agi, bir kayip fonksiyonunu en aza indirgeyerek egitilir. Ag tizerinden egitim

ornegi gecirilir ve cikti, beklenen ¢ikti ile karsilagtirilir. Ag ¢ikisinda bulunan deger ile bek-

lenen deger arasindaki farki tanimlamak icin kayip fonksiyonu kullanilir. Kullanilan kayip
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fonksiyonu egitimin basarimini 6nemli dl¢iide etkilemektedir. Kayip fonksiyonlar: siniflan-
dirma ve regresyon kayip fonksiyon olmak iizere iki gruba ayrilir [72]]. Sinmiflandirma kayip
fonksiyonunda sonlu kategoriler kiimesinden bir deger tahmin etmeye ¢aligilirken, regresyo-
nun amaci, bir dizi parametreye dayal siirekli bir degeri tahmin etmektir. Bu tezin kapsami
nedeniyle siniflandirma probleminde kullanilacak olan siniflandirma kayip fonksiyonlar1 de-
tayli olarak verilmistir. Kayip fonksiyonu ve maliyet fonksiyonu benzer goziikmesine rag-
men aralarinda belirgin bir fark bulunmaktadir. Kayip fonksiyonu tek bir egitim onegi i¢in
hesaplanirken, maliyet fonksiyonu tiim egitim veri kiimesi iizerinde hesaplanan ortalama ka-

yiptir [73]].
Capraz Entropi Kayb1

Capraz entropi kayb1 (cross entropy loss), goriintii siniflandirmasi, algilamasi ve segmentas-
yonu i¢in yaygin olarak kullanilan bir kayip fonksiyonudur. Denklem [16]da ¢apraz entropi
kaybinin formiilii verilmigtir. Denklem [I5]de p parametresi y= 1 etiketli siif i¢in modelin

tahmini olasitligini temsil etmektedir. Denklem [16]da ¢apraz entropi kaybinin formiilii veril-

migtir.
D; y=
- (15)
b { 1 —p, diger
CE(pr) = —log(p:) (16)
Odak Kaybi

Odak kaybi (focal loss), sinif dengesizligine sahip veri kiimelerinde iyi performans gosteren,
2017 yilinda [74] makalesinde yayinlanan kayip fonksiyonudur. Odak kaybi, ¢capraz entropi
kayip fonksiyonunun gelismis versiyonudur. Odak kaybi fonksiyonu, kolay bir sekilde sinif-
landirilan 6rneklerin agirligini azaltarak agin zor 6rneklerin egitimine odaklanmasini sagla-
maktadir. Boylece, kolay ornekler egitimi baskilayamamakta ve zor siniflandirilan 6rneklere
odaklanabilmektedir. Odak kaybi, nadir siniflara yiiksek agirlik verirken baskin siniflara daha
kiiciik agirliklar vermektedir. Pozitif drnekler, hedef sinifi veya temel gercekler gibi 6n plan
bilgilerini ifade etmekteyken, negatif 6rnekler, hedef olmayan sinif veya arka plan bilgile-

rini ifade etmektedir. o ve 7y katsayilar1 odak kaybinin hiperparametreleridir. o parametresi,
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pozitif/negatif 6rneklerin dengesini saglamaya yardimc1 olurken, -y parametresi kolay/zor or-

neklerin dengesini saglamaya yardimci olmaktadir [74].

Denklem [I7]de pt parametresi kiigiik oldugunda, modiilasyon faktorii 1’e yaklagsmaktadir ve
kayip etkilenmemektedir. pt parametresi 1’e yaklastiginda, modiilasyon faktorii 0’a gider ve

1yi stmiflandirilmis 6rnekler i¢in kayip azalmaktadir.

FL(pt) = —ay(1 — p;)"log(p:) (17)
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3.2.2. Gradyan Inis ve Geri Yayihm Yontemi

Gradyan inig, fonksiyonun yerel minimumunu tahmin etmek i¢in kullanilan sayisal bir yon-
temdir. Bu yontem kayip fonksiyonunun yerel minimumunu tahmin etmek i¢in kullanilabilir.
Rastgele secilen bir baslangic noktasinin konumu yinelemeli olarak giincellenir. Yinelemeyi
durdurmanin kosulu, maksimum yineleme sayisina erismis olmak veya iki adim arasindaki
konum degisikliginin belirlenen bir esikten az olup olmadigini kontrol etmektir. Ogrenme
orani (learning rate) ad1 verilen degisken 7 tarafindan gradyan algoritmasi kontrol edilebilir.
Bu degerin kii¢iik oldugu durumlarda adim uzunlugu azalacak ve adim sayis1 artacagindan
gradyan algoritmasi uzun siirecek, bu deger biiyiik oldugunda adim uzunlugu artacak ve adim
sayis1 azalacagindan gradyan algoritmasi kisa siirecektir. Bir pozisyonun giincellenmesi su
sekilde ifade edilebilir:

v =v—nVC (18)

Bu denklemde belirtilen v ifadesi degiskenlerin bir vektoriidiir ve VC, maliyet fonksiyonu-
nun v’ye gore ile tiirevidir. Gradyan inis yontemi biiyiik veri kiimeleri i¢in uygun degildir,
zaman alicidir. Bunun nedeni maliyet fonksiyonunun her bir 6rnekle hesaplanmasinin gerek-
liligidir. Gradyan inisin bu probleminin ¢oziilmesi amaciyla Stokastik gradyan inig (SGD)
ad1 verilen diizeltilmis bir yontem onerilmistir [73]]. Onerilen bu yontemle veri kiimesi, rast-
gele secilen orneklerle birka¢ gruba boliiniir. Egitim boliinen gruplarla grup grup islenerek
ve her bir grup i¢in maliyet fonksiyonu hesaplanarak ve gradyanlar giincellenerek gercek-
lestirilir. Egitim verisi bitene kadar bu siire¢ devam eder. Gelistirilen stokastik gradyan inis
yontemine ragmen gradyan yontemi hesaplama karmasikligina sahip ve bu nedenden dolay1

da oldukca yavag bir algoritmadir [[73]].

Geri yayilim algoritmasi, sinir aglarini egitmek i¢in yaygin olarak kullanilan bir algoritmadir.
Ogrenme hizindaki artis sayesinde evrigimli sinir aglarinin yeni yollar kullanmasina imkan
tanimigtir. Karmagik fonksiyonlarin kismi tiirevlerini hesaplamak i¢in zincir kurali yontemini
kullanan geri yayilim algoritmasi, birden fazla asamadan olugsmaktadir. Bu algoritmanin ilk
asamast, ileri gecis olarak adlandirilir ve bu asamada giris goriintiisii agin giris katmanina
uygulanir. Cikis katmanima kadar denklem [19] her katman i¢in hesaplanir. Denklem [I[9/da
verilen parametrelerin agiklamasi su sekildedir; f(x) model ¢iktisi, x model girdisi, w agirlik

parametresi, b 6n yargi (bias) degeri, o aktivasyon fonksiyonudur.
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f(z) = o(w.a’ 4+ b) (19)

Maliyet fonksiyonunun degeri 6 hesaplanir. §, son katmandan ilk katmana dogru hata denk-
lem[20]formiiliiyle geri yayilir. Bu asama geriye dogru gegis olarak adlandirilmaktadir. Denk-

lem [20| formiiliinde yer alan /, katman numarasidur.

55 = (W) 5" o(o' 27 (20)

(w7 ifadesi (1+1). katmandaki agirlik vektoriiniin transpozunu ifade etmektedir, § yayilan
hata vektoriinii, o aktivasyon fonksiyonunu, z ndronlarin agirlikli girdisini ifade etmektedir.
Islemler arasindaki o sembolii iki vektoriin eleman bazinda ¢arpimidir. Her bir katman igin

agirlik ve Bayes formulii denklem [21]de verilmistir.

w = w — n Z 5m,l(ax,l—1)T
m xr

n 2,
bl:bl—EZcS l

T

2y

n 6grenme oram (learning rate), m kiime boyutu (batch size), a®' ifadesi aktivasyon fonksi-

yonudur [[73]].

3.2.3. Kaybolan ve Patlayan Gradyan

Kaybolan gradyan problemi, agin 6grenilemez hale geldigi ag egitimi problemidir [75]. A§
egitiminde geri yayilim algoritmas: ¢ikis katmanindan giris katmanina dogru ilerledikge
gradyanlar genellikle kiiciiliir ve sifira yaklagir. Bu sebeple de ilk katmanlarin agirliklarini
giincellemeden birakmasi sonucu ortaya ¢ikar. Model agirliklari, kaybolan gradyan prob-
leminde egitim sirasinda O degeri alabilmektedir. Kaybolan gradyan probleminde gradyan
hicbir zaman optimum seviyeye ulasamaz. Gradyan probleminin bir¢ok sebebi olabilir. Relu
aktivasyon fonksiyonunun kullaniminin diger geleneksel aktivasyon fonksiyonlarinin kulla-

nimiyla karsilastirildiginda kaybolan gradyan problemine sebep olma olasiligi daha diisiiktiir
[76].
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Patlayan gradyan probleminde kaybolan gradyan probleminin aksine bazi durumlarda geri
yayilim algoritmasi ilerledik¢e gradyanlar daha da biiyiir. Bunun sonucu olarak ¢ok biiyiik
agirlik giincellemeleri olur ve gradyan inisi farklilagir. Model agirliklari, patlayan gradyan
probleminde egitim sirasinda NaN degeri alabilmektedir. Patlayan gradyan sorununa Oneri-
len ¢6ziim, ag egitimini biiyiik agirliklar atamak i¢in cezalandiran diizenlilestirme (regulari-
zation) islevidir. Bu boliimde bahsedilen gradyan problemleri ¢ok sayida katmana sahip, ¢ok

derin ag mimarilerinde karsimiza ¢cikmaktadir [[77]).

3.3. Asir1 Uyumun Onlenmesi ve Sinir Aglar1 Optimizasyonu

Asirt uyum, modelin egitim verilerine fazla uymasi durumunda ortaya ¢ikan bir problemdir.
Model gordiigii verileri cok iyi tahmin ederken, gormedigi verilere karg1 diizgiin bir sekilde
calismaz. Bu durum yeterli veriye sahip olunmadiginda, karmasik bir model kullanildi§inda
veya model cok uzun siire egitildiginde meydana gelir. Model veri kiimesi i¢indeki giiriiltiiyii
veya alakali olmayan bilgileri 68renmeye ve ezberlemeye baslar, boylece model asir1 uyum
saglamig olur ve yeni verilere genelleme yapamaz. Bir modelin gormedigi veride genelleme
yapabilmesi istenen bir durumdur. Bu durumu saglamak icin bircok yontem kullanilir. Bu
boliimde asir1 uyumu 6nleme yontemleri olan seyreltme (dropout) [78], veri arttirma (data
augmentation) [79], aktarim 6grenmesi (transfer learning) [80] yontemleri detayl olarak in-

celenecektir.

3.3.1. Seyreltme

Asirt uyumu engelleyen etkili yontemlerden biri seyreltme yontemidir [[/8]]. Bu yontem tam
baglantili katmanlarda uygulanir. Egitim sirasinda bazi1 néronlar, rastgele olarak belirli bir
olasilikla her 6rnek i¢in devredisi birakilir. Birakilan diigtimler ileri veya geri yayilimda goz
ard1 edilmektedir. Seyreltme icin yaygin olarak 0.5 degeri kullanilmaktadir. Bu yontem ag

yakinsamasini onemli 6l¢iide yavaslatir, ancak asir1 uyumu onlemede etkilidir.

3.3.2. Veri Arttirma

Asirt uyumu Onleyecek bir bagka yontem de veri arttirma yontemidir. Orijinal orneklere do-

niisiim uygulayarak egitim veri kiimesini genisletmeyi saglamaktadir. Egitim veri kiimesinin
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yeterli miktarda olmasini saglamak, girdi ve ¢ikti degiskenleri arasindaki baskin iligkinin ay-
ristirilmasina firsat saglayarak modelin dogrulugunu arttirabilir. Arttirrm uygulanacak veri
kiimesinin temiz ve ilgili verilerden olugsmast 6nemlidir. Aksi takdirde temiz olmayan ve-
rilere uygulanacak arttirim ile birlikte daha fazla karmasiklik elde ederek agir1 6grenmenin
desteklenmesi s6z konusu olabilir. Uygulanacak doniistimlere kaydirma, kirpma, dondiirme,

giiriiltii ekleme, renk tonu ve doygunlugun ayarlanmasi vb. yontemler o6rnek verilebilir.

3.3.3. Aktarim Ogrenmesi

Aktarim 68renmesi, daha onceden egitilmis bir modelin yeni problem {izerinde yeniden kul-
lan1lmast olarak ifade edilebilir. Onceden egitilen model genellikle ImageNet gibi biiyiik bir
veri kiimesi iizerinde egitilir. Onceden egitilen modelin alt katmanlari (mevcut verilerin te-
mel yapisini 6grenmesi beklenen) yeniden kullanilabilir ve daha uygun olan yiiksek seviyeli
ozellikleri 6grenmek icin iist katman degistirilebilir [81]. Bu yontem kullanilarak halihazirda
egitilmis bir modelin bilgisi aktarim 6grenimi boyunca farkli bir probleme aktarilir. Aktarim
O0grenmesi yontemiyle evrigimli sinir aginin evrisim katmanlari, goriintii verilerinden 6zellik
cikarimi i¢in kullanilarak siniflandirma yontemleri icin kullanilabilir [80]. Modeller icin ge-
reken egitim siiresini azaltmak amaciyla aktarim 6grenmesi faydali olabilir [82]. Bir evrisimli
sinir ag1 modelinin Onceden egitilmis evrisim filtreleri ile egitilmesi, agin evrisim filtrelerini
o0grenmesi gerekmediginden, ag yakinsamasini 6nemli 6lciide hizlandirabilir. Bir agin ince
ayarmin yapilmasi, dnceden egitilmis evrisim filtreleri ile bir ain egitilmesi iglemine denir.
Bir agda ince ayar yapmak, evrisimli sinir aglarina aktarim 6greniminin nasil uygulandigi

olarak aciklanmaktadir.
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4. DENEYLER ve SONUCLAR

4.1. Veri Onisleme

Tez kapsaminda veri kiimesinin iki farkli versiyonu kullanilmigtir. Kullanilan ilk versiyonda
121 sinif igeren veri kiimesinin ’bilinmeyen’ isimli ii¢ sinifi, bir uzmanin makul bir kesin-
likle siniflandiramadi81 ornekler igcerdiginden veri kiimesinden cikarilmigtir. Kullanilan ilk
versiyon, Set-1 olarak isimlendirilmistir. 118 sinifta toplamda 29419 plankton goriintiisii bu-
lunmaktadir. Veri kiimesi %75 oraninda egitim kiimesi, %15 dogrulama kiimesi ve %15 test
kiimesi olarak boliinmiistiir. Kullanilan ikinci versiyon, Set-2 olarak isimlendirilmistir. Set-
2, Kaggle plankton veri kiimesinin [18]] yazarlar tarafindan se¢ilen bir alt kiimesidir. En az
100 6rnek bulunduran plankton siniflar1 secilmistir. Toplamda 38 sinif i¢in 14374 goriintii
bulunmaktadir. Ik versiyonda oldugu gibi veri kiimesi %75 oraninda egitim kiimesi, %15
dogrulama kiimesi ve %15 test kiimesi olarak boliinmiistiir. Kaggle plankton veri kiimesi ile

ilgili detaylar ve Set-1, Set-2 veri kiimeleri ile ilgili agiklamalarin yer aldig1 tablolar Boliim
[2.3.3]te paylasilmustir.

Kaggle veri kiimesi sinif dengesizligi olan bir veri kiimesidir. Egitim 6rnekleri bazi siniflar
icin stnirhidir ve 118 farkli olas1 taksonomik sinif etiketi bulunmaktadir. Bu sebeplerden do-
lay1 asir1 uyum (overfitting) bu veri kiimesi i¢in 6nemli bir problemdir. Bu problemlere 151k

tutmak amaciyla denenen yontemler bu boliimde detayli anlatilmigtir.

Sinirli veri problemine sunulan ¢oziimlerden biri veri arttirma (data augmentation) yonte-
midir. Tez kapsaminda iki farkli yontemle veri arttirma uygulanmistir. Kismi veri arttirma

yontemi ve tam veri arttrima yontemi.

Kismi veri arttirma olarak isimlendirilen yontemde, 118 sinifin her biri i¢in siifin 60 ola-
rak belirlenen sinirin iistiinde veya altinda oldugu kontrol edilmistir. Sinifin icerdigi goriintii
sayis1 60’dan diisiikse veri arttirma uygulanmistir. Degilse o sinif i¢in veri arttirma uygu-
lanmamisgtir. Veri arttirma uygulanan ve veri sayis1 60’dan az olan her bir sinifin veri sayisi
kismi veri arttirma yontemiyle yaklasik 6 katina ¢ikmistir. Kismi veri arttirim sonucu elde
edilen veri kiimesi %70 egitim, %15 dogrulama, %15 test kiimesi olarak boliinmiistiir. Kismi

veri arttirmiyla ilgili detaylar Tablo {.1]de paylagilmistr.

Tam veri arttirma yonteminde, siniflarin ne kadar veriye sahip oldugundan bagimsiz her

siif i¢in veri arttirma uygulanmistir. Her bir sinifin veri sayisi tam veri arttirma yontemi
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uygulandiginda yaklasik 6 katina ¢ikmigtir. Tam veri arttirnm sonucu elde edilen veri kiimesi
%70 egitim, %15 dogrulama, %15 test kiimesi olarak boliinmiistiir. Tam veri arttirimiyla il-
gili detaylar Tablo[d.2]de paylagilmustir.

Veri Arttirma Yontemleri

Goriintiiler yatay ve dikey olarak tersine ¢evirme islemine tabi tutularak yatay ve dikey veri
arttirma yontemi uygulanmstir. Yatay ve dikey olarak cevirme igsleminin uygulandigi plank-
ton goriintiileri Sekil B.1Jde verilmistir.

Gortintiilere rotasyon veri arttirrmi uygulanmistir. Her bir goriintii 90, 180, 270 derece don-
diiriilerek farkli acilardan da goriintiiniin elde edilmesi saglanmigtir. Rotasyon igleminin uy-

gulandig1 plankton goriintiileri Sekil @.2]de verilmistir.

Odaklanma 0.75, 1.25 ve 1.5 katsayilarinda uygulanarak verilerin farkli 6lgeklerde de elde
edilmesi saglanmigtir. Odaklanma isleminin uygulandig: plankton goriintiileri Sekil {.3 te
verilmigtir. Odaklanma yontemi her goriintiiye uygulanmamigtir. Bunun sebebi bazi plank-
tonlarin odaklanma sebebiyle kendisinden farkli bir tiire benzemesinin onlenmesinin isten-
mesidir. Sadece odaklanma sonrasi en ve yliksekligi orijinal goriintiiyle ayn1 olan planktonlar

icin odaklanma veri arttirrmi kullanilmagtir.

Tablo 4.1. Set-1 Veri Kiimesine Kismi Veri Arttirirm Uygulanmasinin Sonuglari

Set-1 Veri Kiimesi ve Kismi Veri Arttirma Yontemi
#Toplam Veri || #Simf #Egitim Seti | #Dogrulama Seti | #Test Seti
36456 118 27512 4472 4472

Tablo 4.2. Set-1 Veri Kiimesine Tam Veri Arttirim Uygulanmasinin Sonuglari

Set-1 Veri Kiimesi ve Tam Veri Arttirma Yontemi
#Toplam Veri || #Simf #Egitim Seti | #Dogrulama Seti | #Test Seti
133103 118 124159 4472 4472
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Geleneksel bir evrigimli sinir a8, girig goriintiilerinin dnceden tanimlanmaig bir boyuta sahip
olmasini1 gerektirmektedir. Tez kapsaminda kullanilan modellerde evrisimli sinir aginin gi-
rig boyutu 224x224 boyutundadir. Plankton goriintiilerinin ¢ok farkli boyutlara sahip oldugu
diisiiniildiigiinde tiim goriintiilerin ayn1 boyuta boyutlandirilmasi bilgi kaybina neden olmak-
tadir. Bu kaybin yasanmamas: i¢in iki farkli yontem uygulanmigtir. Bogluk ekleme yontemi

ve kare kirpma iglemi.

Bosluk ekleme isleminde plankton goriintiisii evrisimli sinir aginin istedigi boyutlara getiril-
mesi i¢in etrafina beyaz pikseller yerlestirilerek elde edilir. Plankton goriintiisiiniin 224x224
boyutundan daha biiyiik oldugu durumlarda en-boy orani (aspect ratio) goz 6niinde bulundu-

rularak yeniden boyutlandirilir.

Kare kirpma isleminde en-boy orani (aspect ratio) gozetilerek 224x224 boyutunda yeniden
boyutlandirilan goriintii merkeze alinarak bikiibik interpolasyonu kullanilarak yeniden bo-
yutlandirilir. Boyutlandirma islemi sirasinda var olan plankton goriintiisii beklenen degerden
biiyiikse en-boy oranmi gozetilerek yeniden boyutlandirilir. Bosluk ekleme ve kirpma iglemle-

rinin uygulandig1 plankton goriintiileri Sekil 4.4 te verilmistir.

N g 7

Sekil 4.1. Kaggle Plankton Veri Kiimesine Uygulanan Cevirme Veri Arttirma Yontemi. Sirayla
Orijinal, Yatay Cevirme, Dikey Cevirme
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Sekil 4.2. Kaggle Plankton Veri Kiimesine Uygulanan Rotasyon Veri Arttirma Yontemi. Sirayla
Orijinal, 90 Derece Rotasyon, 180 Derece Rotasyon, 270 Derece Rotasyon

-
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Sekil 4.3. Kaggle Plankton Veri Kiimesine Uygulanan Yakinlagtirma Veri Arttirma Yontemi.
Sirayla Orijinal, 0.75, 1.25, 1.75 Yakinlagtirma
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Sekil 4.4. Bosluk Ekleme Yontemi (Sol Siitun) ve Kare Kirpma Yontemi (Sag Siitun)

4.2. Degerlendirme Metrikleri

Plankton siiflandirma sistemlerinin basarimini degerlendirmek igin cesitli metrikler kul-
lanilmaktadir. Kesinlik, geri ¢cagirma, F1-Skor, ilk-1 (top-1) ve ilk-5 (top-5) metrikleri bu
metriklerden bazilaridir. Metrikler O ile 1 arasinda degerler iiretmektedir. Uretilen degerin
I’e yakinlig1 modelin ne kadar iyi oldugunu, 0’a yakinligr modelin ne kadar kétii oldugunu

gostermektedir.

Bahsedilen yaklagimlarin ¢ok sinifli siniflandirmaya gore farkli ortalama alma yaklagimlari
bulunmaktadir. Kullanilan veri kiimesinin 6zellikleri degerlendirilerek, ortalama alma yakla-
stmlarinin hangisinin plankton siniflandirma algoritmalarini degerlendirmek i¢in daha uygun
olacagina karar verilmelidir. Bu boliimde agirliklt F1-Skor metrigi ve hesaplanan diger met-
rikler detayl bir sekilde aciklanacaktir. Modelin dogrulugunu kontrol etmek i¢in kullanilan

dort temel yaklasim Sekil 4.5 de gosterilmistir.
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Tahmin Edilen

Pozitif Negatif

Dodru Pozitif (DP) Yanhs Pozitif (YP)

Gergeklesen
Negaiif | Pozitif

Yanlis Negatif (YN) | Dogru Negatif (DN)

Sekil 4.5. Gerceklesen ve Tahmin Edilen Hata Matrisi

* Dogru Negatif (DN): Gergekte negatif olan ve model tarafindan negatif olarak sinif-

landirilanlardir.

* Dogru Pozitif (DP): Gercekte pozitif olan ve model tarafindan pozitif olarak siniflan-

dirilanlardir.

* Yanlis Negatif (YN): Gercekte pozitif olan ve model tarafindan negatif olarak siniflan-

dirilanlardir.

* Yanlis Pozitif (YP): Gercekte negatif olan ve model tarafindan pozitif olarak siniflan-

dirilanlardir.

Kesinlik (Precision): Siniflandirict tarafindan gergekten kag tane pozitif 6rnegin pozitif

olarak tahmin edildiginin dl¢iisiidiir. Pozitif tahminelerin dogruluk oranidir.

DP

K=—"__ 22
DP+YP (22)

Geri Cagirma (Recall): Siniflandirici tarafindan elde edilen tiim pozitif tahminlerden dogru

pozitif tahminlerin sayisim 6lgen bir dl¢iimdiir. Dogru tanimlanmus pozitiflerin oranidir.

DP

C=Dppivn (23)

F1-Skor: Geri cagirma ve kesinlikten elde edilen sonuglarin harmonik ortalamasi hesapla-

narak elde edilir.
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(24)

Makro Ortalama

Makro ortalama, sayisiz ortalama alma islemleri arasinda en temel olanidir. Makro ortala-
mas1 aliacak degerlendirme metriginin aritmetik ortalamasi (agirliksiz ortalama) alinarak
hesaplanir. Makro ortalama ile tiim siniflar nihai elde edilen sonu¢ metrigine esit katkida
bulunmaktadir. Tez kapsaminda kesinlik, geri cagirma ve F1-Skor metriklerinin makro orta-

lamasi1 hesaplanmistir.
Agirhikh Ortalama

Agirlikli ortalama [83] yontemi ile her siniftaki 6rnek sayis1 6nem kazanmaktadir. Bu ne-
denle siniflar, o siniflardaki 6rnek sayisina gore agirliklandirilir ve her bir metrigin ortalamast
alinir. Tez kapsaminda kesinlik, geri cagirma ve F1-Skor metriklerinin agirlikli ortalamasi

hesaplanmustir.
IIk-1 (Top-1) Dogruluk

IIk-1 dogruluk; en yiiksek olasilik degerine sahip olan tahminin, hedef etiket (target label)

ile eglestigi orneklerin oranim dl¢mektedir.
IIk-5 (Top-5) Dogruluk

I1k-5 dogruluk; en yiiksek 5 olasilik degerine sahip olan tahminin, hedef etiket (target label)

ile eslestigi orneklerin oranini dlgmektedir.

Tez calismasinda gerceklestirilen deneylerde kesinlik, geri ¢cagirma, F1-Skor metriklerinin
agirlikli ortalamasi ve makro ortalamasi hesaplanmigtir. Ayrica her bir deneyde egitilen mo-

dellerin ilk-1 (top-1) ve ilk-5 (top-5) dogruluk yiizdeleri hesaplanmuistir.

4.3. Ortalama Topluluk Yontemi

Ortalama topluluk yontemi, toplulukta bulunan her bir modelin nihai tahmine esit miktarda

katkida bulundugu bir topluluk 6grenme yaklagimidir. Toplulukta bulunan her bir modelin
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ilgili sinif icin yaptig1 tahminler birlestirilerek ortalamasi alinir. Bu yontem kullanilarak be-
lirli tek bir modele gore daha yiiksek siniflandirma dogrulugu elde edilir. Sekil [A.6]da tez

kapsaminda kullanilan ortalama topluluk yontemi verilmistir.

VERi KUMESI

| |
h 4 h ¥ 4

Inceptionv3 InceptionResNetv2 DenseNet ResNet50 VGG16

gy et

Ortalama

l

Ortalama
Topluluk
Sonucu

Sekil 4.6. Ortalama Topluluk Ornegi

4.4. Deneyler

Tez kapsaminda yapilan deneyler ve elde edilen sonuclar bu boliimde detayli olarak ele ali-

nacaktir.

* Deney-1’de Bolim [.I1]de detayli olarak bahsedilen ve olusturulan 3 veri kiimesi
farkli egitim yontemleriyle Inceptionv3 ag1 kullanilarak elde egitilmistir. Deney-1’in

sonucunda en 1yi sonucu veren veri kiimesi diger deneylerde kullanilmugtir.

* Deney-2’de Deney-1 sonucunda karar verilen veri kiimesine Bolim [4.1de bahsedilen
bosluk ekleme ve kare kirpma iglemleri uygulanmis ve farkli egitim yontemleriyle
egitilerek sonuglar elde edilmistir. Deney-2 sonucunda en iyi sonucu veren yontem

diger deneylerde kullanilmustir.
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* Deney-3’de, Set-1 (118 Sinif) ve Set-2 (38 Sinif) veri kiimeleri, tam veri arttirma ve
tiim katmanlarin egitilmesi yontemleri kullanilarak Incepitonv3, InceptionResNetv2,

DenseNet, ResNet-50, VGG-16 aglarinda egitilmistir. Alinan sonuglar paylagilmistir.

* Deney 4’de Set-1 (118 Sinif) ve Set-2 (38 Sinif) veri kiimelerinin Deney-3 kapsaminda
ilgili yontemlerle egitilmesi sonucu elde edilen modeller ortalama topluluk yontemiyle

birlestirilmisgtir.

* Deney-5’de, ¢apraz entropi kayb1 ve odak kaybi fonksiyonlariin egitimde kullanilma-
styla elde edilen sonuclar karsilastirilmis ve odak kaybi fonksiyonunun farkli hiperpa-

rametreleri uygulanarak egitim gerceklestirilmistir.

* Deney-6’da, 118 sinifa ait DenseNet ag1 iizerinde Deney-3 kapsaminda Set-1 veri kii-
mesi ile gerceklestirilen deney sonucu elde edilen modelin hata matrisi hesaplanmistir.
Elde edilen 118x118 hata matrisi gruplanarak 33x33 hata matrisine doniistiiriilmiistir.
33 grup olarak egitilen modelin hata matrisi sonucuyla elde edilen sonug¢ karsilagtiril-

mistir.

4.4.1. Deney Detaylari

Deneyler kapsaminda yapilan tiim egitimler esnasinda egitim veri kiimesi ve dogrulama veri
kiimesi kullanilmistir. Egitimde dogrulama dogrulugu her bir iterasyonda hesaplanarak 30
iterasyonda en yiiksek dogrulama dogruluguna sahip agirlik kaydedilmis ve testlerde kul-
lanilmigtir. Egitim toplamda 30 iterasyonda gerceklestirilmigtir. Girdi goriintii biiytikligi
224x224’tiir. Ogrenme orani (learning rate) 0.00001, kiime boyutu (batch size) 32 ve sey-
reltme (dropout) 0.5 olarak kullanilmigtir. Kayip fonksiyonu olarak kategori capraz entropi
ve optimizasyon olarak Adam optimizasyon yontemi kullanilmistir. Egitimde her bir iteras-

yonda 859 ayr iterasyon kullanilmistir (adim/iterasyon).

4.4.2. Deney-1

Deney 1’de, Bolim [{.1]de detayli olarak bahsedilen 118 siniftan olusan Set-1 veri kiimesi
Orijinal, Kismi Veri Arttirma ve Tam Veri Arttirma olmak iizere ii¢ farkli versiyonuyla Incep-
tionv3 aginda egitilmistir. Her bir veri kiimesi kullanilarak ii¢ farkl1 yontem ile Inceptionv3

aginda egitim gerceklestirilmistir. Kullanilan ii¢ farkli yontem detayl aciklanmistir:
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Aktarim 6@renmesi yontemi agin sadece son katmaninin degistirilerek egitilmesi, ince ayar
yontemi agin katman sayisinin %30 oraninda aktif edilerek egitilmesi ve tiim katmanlarin
egitilmesi yontemi agin tiim katmanlarinin aktif edilerek egitilmesi olarak ifade edilmistir.
Kademeli olarak katmanlar aktif edilerek katmanlarin egitime dahil edilmesinin basarima

etkisi gézlemlenmistir. Deney 1, Sekil 4.7]de gorsellestirilmistir.

Aktarim Ogrenmesi

/ Ydntemi
Set-1 (118 Sinif)

Orijinal [ > Ince Ayar Yéntemi

\ Tim Katmanlarin

Eagitilmesi Yontemi

Aktarim Ogrenmesi

/ Yontemi
Set-1 (118 Sinif)

Aiceptiond " KkismiVeriAtrma > Ince Ayar Yontemi

Tum Katmanlarin
Eagitilmesi Yontemi

Aktarim Ogrenmesi

/ Yontemi

Set-1 (118 Sinif) ———— Ince Ayar Yéntemi

Tam Veri Arttirma
\ Tiim Katmanlarin

Egitiimesi Yontemi

Sekil 4.7. Deney-1 Ozet. Aktarim Ogrenmesi Yontemi, ince Ayar Yontemi, Tiim Katmanlarin
Egitilmesi Yontemi

Egitim, keras kiitiiphanesi kullanilarak Inceptionv3 aginda aktarim 6grenmesi, ince ayar ve
tiim katmanlarin egitilmesi olmak iizere ii¢ farkli yontem ve ii¢ farkli veri kiimesi ile 9 farkl

kez gerceklestirilmistir.
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4.4.3. Deney-1 Sonuc

Aktarim 6grenmesi, ince ayar ve tiim katmanlarin egitilmesi yontemleri ve her bir yontem
i¢cin orijinal, kismi veri arttirma, tam veri arttirma veri kiimeleriyle gerceklestirilen dokuz
farkli deneyin deney sonuglart Tablo 4.3]te paylasilmistir. Tabloda her bir deney icin ke-
sinlik, geri ¢agirma, F1-Skoru metrikleri makro ortalama ve agirlikli ortalama yontemleri
kullanilarak ayr1 ayr1 hesaplanmistir. Tablo[4.4de egitim ve dogrulama dogruluk, kayip de-
gerleri paylasilmistir. Ayrica egitilen modelin, test veri kiimesi kullanilarak test edilmesi so-
nucu elde edilen ilk-1 (Top-1) ve ilk-5 (Top-5) sonuglar1 her bir deney icin paylagilmistir.
Dogrulama dogrulugu, egitim esnasinda dogrulama veri kiimesi tizerinde her bir iterasyonda
hesaplanan dogruluk degeridir. Egitim sirasinda her bir iterasyonda dogrulama dogrulugu
hesaplanir ve gerceklestirilen 30 iterasyonda en yiiksek dogruluk degerine sahip dogrulugun
oldugu iterasyonun dogruluk ve kayip degerleri ve egitilen agirlik kaydedilir. Modelin testi

kaydedilen agirlik ile gerceklestirilmistir..

Set-1 (118 Sinif) veri kiimesinde, Inceptionv3 ag1 kullanilarak gerceklestirilen Deney-1 kap-
saminda en iyi sonu¢ tam veri arttirma uygulanmis Set-1 veri kiimesinin tiim katmanlarin
egitilmesi yontemi kullanilmasi ile elde edilmistir. Tabloda, her bir siitunda alinan en iyi
sonug koyu renk ile gosterilmistir. Tablo[4.3]ve Tablo.4Jte yer alan sonuglar degerlendiril-
diginde yontemler arasinda en iyi sonucun, tiim katmanlarin egitilmesi yontemi ve tam veri
arttirma ile elde edilmis veri kiimesinden elde edildigi goriilmektedir. Kismi veri arttirma ile
elde edilmis veri kiimesinde kesinlik olarak yaklasik %1 iyi sonug elde edilmesine ragmen
diger degerlendirme metriklerinde tam veri artttirma ile elde edilmis veri kiimesi ile en iyi
sonuglar elde edilmistir. Dogrulama dogrulugu, Tablo.4teki en diisiik dogrulama degerine
gore yaklasik 0.06 oraninda artmustir. Agirlikli F1-Skoru Tablo .3 teki en diisiik agirlikl
F1-Skoruna gore yaklasik %7 artis saglamistir. T1k-1 (Top-1) ve ilk-5 (Top-5) dogruluk de-
gerleri %77.4 ve %97.0 ile tiim katmanlarin egitilmesi yontemi ve tam veri arttirma ile elde

edilen veri kiimesinden elde edilmistir.
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Tablo 4.3. Set-1 Veri Kiimesinde Elde Edilen Deney-1 Sonuglari

Makro Ortalama Agirlikli Ortalama
Kesinlik | Geri Cagirma | F1-Skoru | Kesinlik | Geri Cagirma | F1-Skoru

. Orijinal 55% 50% 51% 70% 71% 70%
Aktarim Ogrenmesi . .

Yéntemi Kismi Veri Arttirma 61% 57% 57% 71% 71% 70%

Tam Veri Arttirma 61% 51% 53% 71% 71% 70%

Orijinal 60% 55% 56% 72% 73% 72%

Ince Ayar Yontemi | Kismi Veri Arttirma 59% 61% 59% 73% 73% 72%

Tam Veri Arttirma 58% 56% 56% 74% 75% 74%

Tim K | Orijinal 62% 57% 57% 74% 74% 73%

u t!
Egitilmesi Yontemi | Kismi Veri Arturma | 64% 62% 62% 75% 75% 75%
Tam Veri Arttirma 63% 62% 62% 77 % 77 % 77 %

Tablo 4.4. Inceptionv3 Agiyla Egitilen Aglarin Deney-1 Egitim Dogruluk ve Kayip Sonuclart

Egitim Dogrulama Dogruluk
Dogruluk | Kayip | Dogruluk | Kayip | {lk-1 (Top-1) | ilk-5 (Top-5)
. Orijinal 0.95 0.17 0.73 1.13 71.4% 93.8%
Aktarim Ogrenmesi .
Yéntemi Kismi Veri Arttirma 0.92 0.27 0.72 1.07 71.0% 93.7%
Tam Veri Arttirma 0.73 0.91 0.72 0.96 70.9% 93.9%
Orijinal 0.98 0.05 0.74 1.53 72.8% 93.9%
Ince Ayar Yontemi | Kismi Veri Arttirma 0.97 0.08 0.74 1.40 72.9% 94.7%
Tam Veri Arttirma 0.81 0.63 0.76 0.91 74.6% 95.6%
Tim K . Orijinal 0.98 0.05 0.76 1.64 74.3% 94.3%
i t
Egitilmesi Yontemi | Kismi Veri Arturma | 0.85 | 046 | 077 | 092 | 754% 95.8%
Tam Veri Arttirma 0.86 0.44 0.79 0.83 77.4% 97.0%

Deney-1 kapsaminda gerceklestirilen her bir egitim sonucunda elde edilen egitim ve dog-
rulama dogrulugu ve kaybi grafikleri paylasilmistir. Gerceklestirilen egitimlerde, dogrulama
dogrulugu her bir iterasyonda hesaplanarak 30 iterasyonda en yiiksek dogrulama dogrulu-
guna sahip agirlik kaydedilmistir. Egitim toplamda 30 iterasyonda gerceklestirilmigtir. EZi-

timde her bir iterasyonda 859 ayr1 iterasyon kullanilmigtir (adim/iterasyon).

Sekil M.8]de aktarim 6grenmesi yontemi kullanilarak orijinal Set-1 (118 Sinif) veri kii-
mesinin Inceptionv3 aginda egitilerek elde edilen egitim ve dogrulama dogrulugu ve kaybi
grafikleri paylagilmistir. Orijinal Set-1 veri kiimesi 118 siniftan olugsmaktadir ve dengesiz
dagilima sahip bir veri kiimesidir. Bir sinif 3 6rnek icerirken diger bir simif 1000 6rnek ice-

rebilmektedir. Bu durum modelin istenilen yiiksek dogrulama dogruluguna ulasmasini zor
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hale getirmektedir. Sekil 4.8]de egitim ve dogrulama dogrulugu arasindaki fark yaklagik 6.
epoch’tan sonra artmistir. Bu durum modelin yeteri kadar 6grenemedigi anlamina gelmekte-
dir. Dogrulama dogrulugu 0.7 civarinda sabitlenmis ve e8itim boyunca artmamistir. Benzer
sekilde, dogrulama ve egitim kaybinin birbirine paralel olmas1 gerekirken 6.epoch’tan sonra

dogrulama kayb1 artmugtr.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
—Dogrulama Degrulugu —Dofrulama Kaybi
0.9 ——Egitim Dogrulugu 3.09 —— Egitim Kaybi
081 2.5 4
§ 0.7 o 2.0 4
E g
g 0.6 1.5 4
a
0.5 1.0
0.4 0.5 4
031 . . . ! ] . 001 , . . . . .
0 5 10 15 20 25 30 o 5 10 15 20 25 30
Iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.8. Aktarim Ogrenmesi Yontemi, Orijinal Veri Kiimesi Egitim Dogruluk ve Kayip Sonucu

Veri sayis1 60°dan az olan siniflara veri arttirnmi uygulanarak elde edilen kismi veri kiimesi
aktarim 6grenme yontemi kullanilarak Inceptionv3 aginda egitilmistir. Sekil 4.9]da lde edi-
len egitim ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. Egitim ve dogrulama
dogruluklart arasindaki fark, Sekil #.8]e gore azalmistir. Kayiplar arasindaki fark da yine
ayn1 sekilde azalmig ve birbirine daha cok yaklagmistir. Kismi veri arttirma yontemi ile egi-

tilen model, orijinal veri kiimesi ile egitilen modele gore daha iyi sonug elde etmistir.
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Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi

——Dogrulama Dogrulugu

—— Dogrulama Kaybi

1 —=sgitim Dogrulugu 3.5 —— Egitim Kaybi

Dogruluk
o o
(] (=}

0 5 10 15 20 25 30 0 5 1o B 20 2 0
Iterasyon Sayisi Iterasyon Sayisi

(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.9. Aktarim Ogrenmesi Yontemi, Kismi Veri Arttirma Veri Kiimesi Egitim Dogruluk ve
Kayip Sonucu

Veri sayisina bakilmaksizin, siniflara veri arttirrmi uygulanarak elde edilen tam veri arttirma
ile elde edilen veri kiimesi aktarim 6grenme yontemi kullanilarak Inceptionv3 aginda egi-
tilmistir. Sekil #.10Jda 1de edilen egitim ve dogrulama dogrulugu ve kayb1 grafikleri payla-
stlmistir. Egitim ve dogrulama dogruluklar arasindaki fark, Sekil ve Sekil 4.9 a gore
azalmistir. Kayiplar arasindaki fark da yine ayni sekilde azalmis ve birbirine daha ¢ok yak-
lagmistir. Tam veri arttirma yontemi uygulanarak elde edilen veri kiimesi ile egitilen model,
orijinal ve kismi veri arttirma uygulanan veri kiimeleri ile egitilen modellere gore daha iyi

sonug elde etmistir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
—— Dogrulama kaybi
0.7 — Egitim Kaybi
3.0 1
0.6
73 2.5
= [<}
El >
2 0.5 Z
8 2.0
0.4 15
—— Dofrulama Dogrulugu
0.3 —— Egitim Dogrulugu 101
0 5 1o 15 20 25 30 0 5 10 5 20 2 »
iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.10. Aktarim Ogrenmesi Yontemi, Tam Veri Arttirma Veri Kiimesi Egitim Dogruluk ve
Kayip Sonucu
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Sekil @.TT]de ince ayar yontemi kullanilarak orijinal Set-1 (118 Sinif) veri kiimesinin Incep-
tionv3 aginda egitilerek elde edilen egitim ve dogrulama dogrulugu ve kaybi grafikleri payla-
stlmistir. Aktarim 6grenmesinde orijinal veri kiimesi ile egitilen modelin sonuglarina benzer
sekilde egitim ve dogrulama dogrulugu arasindaki fark yaklagsik 4. iterasyondan sonra gide-
rek artmistir. Dogrulama kaybi egitim kaybina gore oldukca yiiksektir ve bu durum modelin
iyi 6grenemedigi anlamina gelmektedir. Iyi 6grenen bir modelde beklenen davranis, egitim

ve dogrulama dogruluk ve kayip degerlerinin birbirine paralel sekilde artmasi ve azalmasidir.

Egitim ve Dogrulama Dogrulugu Editim ve Dogrulama Kaybi
1.01 ——Dofjrulama Kaybi
30 ——Egitim Kaybi
0.9 1
2.5
0.8 {
2.0
307 s
Z 2 1s]
‘206
fa
1.0
0.5
0.4 051
—Dogrulama Dogrulugu
031 : : e - : : ‘ : :
0 5 10 15 20 25 30 0 5 10, 15 20 25 30
iterasyon Sayisi iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.11. Ince Ayar Yontemi, Orijinal Veri Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil {.12]de ince ayar yontemi kullanilarak kismi veri arttirimi uygulanmig Set-1 (118
Siif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen egitim ve dogrulama dog-
rulugu ve kaybi grafikleri paylasilmigtir. Egitim ve dogrulama dogruluklari arasindaki fark
Sekil f.11]e gore azalmistir. Benzer sekilde egitim ve dogrulama kaybr arasindaki fark da
azalmistir. Bu durum kismi veri arttirma yontemi uygulanarak elde edilen kismi veri kiimesi

kullanilarak egitilmis modelin daha iyi sonug verdigini gostermektedir.
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Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi

1.0 { — bogrulama Dogrulugu —_ Dogrulama Kaybi

— Egitim Degrulugu 35 — Egitim Kaybi

Kayip
&

0 5 190 15 20 25 30 0 5 1o 55 ) 2 %
Iterasyon Sayisi Iterasyon Sayisi

(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.12. Ince Ayar Yontemi, Kismi Veri Arttirma Veri Kiimesi Egitim Dogruluk ve Kayip
Sonucu

Sekil {.13]te ince ayar yontemi kullanilarak tam veri arttirrmi uygulanmug Set-1 (118 Sinif)
veri kiimesinin Inceptionv3 aginda egitilerek elde edilen egitim ve dogrulama dogrulugu
ve kaybi grafikleri paylasilmigtir. Egitim ve dogrulama dogrulugu arasindaki fark oldukca

azalmis ve dogrulama dogrulugu 0.7 nin {izerine ¢cikmustir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
35
——Dogrulama Dogrulugu —— Dogrulama Kaybi
0.8 { —Egitim Dogrulugu ——Egitim Kaybi
L 3.0 4
0.7 25
506 g
_E : 5 2.0
g
805 154
0.4 10
0.3 0.5
0 5 10 15 20 25 30 0 5 10 1 2 2 »
Iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.13. ince Ayar Yontemi, Tam Veri Arttirma Veri Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil {.14Jte tim katmanlarin egitilmesi yontemi kullanilarak orijinal Set-1 (118 Sinif) veri
kiimesinin Inceptionv3 aginda egitilerek elde edilen egitim ve dogrulama dogrulugu ve kaybi
grafikleri paylasilmistir. Egitim ve dogrulama dogrulugu ve kaybi arasindaki fark azalmamig

ve sabit olarak kalmistir.
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Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi

1.0 { — bogrulema Dogrulugu 35 —— Dogjrulama Kaybi
— Egitim Dogrulugu — Egitim Kaybi
0.94 3.0
0.8 25
E
- o
> 0.7 3, 2.0
fre) ©
S 0.6 2
a 1.5
0.5
1.0 4
0.4
0.5 4
0.3
0.0 4
0 5 10 15 20 25 30 0 5 10 15 20 25 0
Iterasyon Sayisl Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.14. Tiim Katmanlarin Egitilmesi Yontemi, Orijinal Veri Kiimesi Egitim Dogruluk ve Kayip
Sonucu

Sekil {.15]de tiim katmanlarin egitilmesi yontemi kullanilarak kismi veri arttirma uygula-
narak elde edilmis Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen
egitim ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. Egitim ve dogrulama dog-

rulugu arasindaki fark orijinal veri kiimesi ile egitilen modelin sonucuna gore azalmstir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
1.0 { — bogrulzma Dogrulugu 404 — Dogrulama Kaybs
—— Egitim Dogrulugu — gt Kaybn
35
0.8
3.0
E o 251
2 0.6 g
o) » 2.0
=]
s}
1.5 4
0.4
1.0
0.5 4
0.2
0.0 {
0 5 10 15 20 25 30 0 5 1 B 20 2 0
Iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.15. Tiim Katmanlarin Egitilmesi Yontemi, Kismi Veri Arttirma Veri KUmesi Egitim
Dogruluk ve Kayip Sonucu

Sekil @.16]da tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulana-
rak elde edilmis Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen

egitim ve dogrulama dogrulugu ve kaybi grafikleri paylagilmistir. Tam veri arttirma yontemi
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modelin daha iyi 6grenmesini saglamisir. Dogrulama ve egitim dogrulugu birbirini takip et-

migtir.
Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
= Dogrulama Degrulugu —— Dogrulama Kaybi
0.8 | — Edum oogiug 35 1 — Egitim Kaybi
0.7 3.0
254
o 0.6
2 =
=1 > 2.0
5 0.5 F
2 4
= 0.4 1.5 4
03 1.0 q
0.2 0.5 4
0 5 10 15 20 25 30 0 5 10 e 20 2 Py
iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.16. Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri Kiimesi Egitim
Dogruluk ve Kayip Sonucu
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4.44. Deney-2

Deney-1 sonucuna gore en iyi sonucu veren veri kiimesi ve yontem se¢ilmistir. Tiim kat-
manlarin egitilmesi yontemi ve tam veri arttirma ile elde edilmis veri kiimesi en 1yi sonucu
veren yontem ve veri kiimesi olmustur. Plankton goriintiileri ¢ok farkli en-boy oranina sa-
hiptir. Evrigsimli sinir alarinin girdisi sabit boyutta, tez kapsaminda 224x224, géoriintii kabul
ettigi icin goriintiiler yeniden boyutlandirilarak aglara sokulmaktadir. Bu da plankton goriin-
tillerinde bilgi kaybina neden olmaktadir. Bu bilgi kaybinin 6nlenebilirliginin arastirilmasi
icin bosluk ekleme ve kare kirpma yontemleri plankton goriintiilerine uygulanmistir. Bu de-
neyde Inceptionv3 aginda Set-1 (118 Sinif) tam veri arttirma ile elde edilmis veri kiimesine
kare kirpma ve bosluk ekleme 6n islemleri uygulanmistir. Kare kirpma ve bosluk ekleme 6n
isleme yOntemleri ile elde edilen veri kiimeleri, aktarim 6grenmesi, ince ayar ve tiim kat-
manlarin egitilmesi yontemleri kullanilarak egitilmis ve elde edilen sonuglar paylagilmisgtir.
Bolim @.1]de 6n isleme ayrintilarindan bahsedilmistir. Deney 2, Sekil 4.17]de gorsellesti-

rilmigtir.

Aktarim Ogrenmesi
Yontemi

Set-1 (118 Sinif)

Tam Veri Arttirma Ince Ayar Yéntemi

Tum Katmanlann
Egitilmesi Yontemi

Aktanim Ogrenmesi

Yontemi
Set-1 (118 Sinif)
Inceptionv3 ——————  Tam Veri Artirma Ince Ayar Yéntemi
Bosluk Ekleme

Tum Katmanlarnn
Egitilmesi Yontemi

Aktarim Ogrenmesi
Yontemi

Set-1 (118 Sinif)
— Tam Veri Arttirma
Kare Kirpma

Ince Ayar Yéntemi

/N N /N

Tum Katmanlann
Egitilmesi Yontemi

Sekil 4.17. Deney-2'nin Ozeti. Aktarrm Ogrenmesi Yontemi, ince Ayar Yontemi, Tiim
Katmanlarin Egitilmesi Yontemi
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4.4.5. Deney-2 Sonug

Aktarim 6grenmesi, ince ayar ve tiim katmanlarin egitilmesi yontemleri ve her bir yontem
icin Set-1 (118 Simif) tam veri arttirma ile elde edilmis veri kiimesinin orijinal, bosluk ek-
leme, kare kirpma veri kiimeleriyle gerceklestirilen dokuz farkli deneyin deney sonuglari
Tablo[4.5]de paylasilmistir. Tabloda her bir deney i¢in kesinlik, geri ¢agirma, F1-Skoru met-
rikleri makro ortalama ve agirlikli ortalama yontemleri kullanilarak ayr1 ayr1 hesaplanmagtir.
Tablo 4.6]da egitim ve dogrulama dogruluk ve kayip degerleri her bir deney icin paylasil-
mustir. Ayrica egitilen modelin, test veri kiimesi kullanilarak test edilmesi sonucu elde edilen

ilk-1 (Top-1) ve ilk-5 (Top-5) sonuclar1 her bir deney i¢in paylagilmisgtir.

Set-1 (118 Sinif) tam veri arttirma ile elde edilmis veri kiimesinde Inceptionv3 ag1 kullani-
larak gerceklestirilen Deney-2 kapsaminda en iyi sonug, 6n igsleme uygulanmamis orijinal
Set-1 tam veri arttirma veri kiimesinin tiim katmanlarinin aktif edilerek Yontem-3 ile egi-
tilmesi sonucu elde edilmistir. Tabloda her bir metik icin elde edilmis en iyi sonuglar koyu
renk ile gosterilmistir. Deney-2 kapsaminda paylasilan tablolarda yer alan sonuclara bakildi-
ginda 6n isleme islemlerinin agirlikli ortalamada kesinlik, geri cagirma, F1-Skoru metrikle-
rini negatif yonde etkiledigi goriilmektedir. Makro ortalamada ise kesinlik metrigi disindaki
geri cagirma ve F1-Skoru metriklerini negatif yonde etkiledigi gézlemlenmektedir. Egitim
ve dogrulama dogruluk degerlerinde en yiiksek degere sahip sonucu orijinal veri kiimesi ve
tiim katmanlarin egitilmesi yontemi vermistir. I1k-1 ve ilk-5 dogruluga bakildiginda ise en

1yi sonug yaklasik %?2 farkla kare kirpma yonteminde elde edilmistir.

Tablo 4.5. Set-1 Veri Kiimesinde Elde Edilen Deney-2 Sonuglar1

Makro Ortalama Agirlikli Ortalama

Kesinlik | Geri Cagirma | F1-Skoru | Kesinlik | Geri Cagirma | F1-Skoru
- _ | Orijinal 55% 50% 51% 70% 1% 70%
Aktar%ﬁff;fme“ Bosluk Ekleme |  53% 50% 50% 68% 69% 68%
Kare Kirpma 57% 49% 50% 69% 70% 69%
Orijinal 58% 56% 56% 74% 75% 74%
Ince Ayar Yontemi | Bosluk Ekleme | 56% 52% 53% 70% 1% 70%
Kare Kirpma 59% 57% 57% 73% 73% 73%
) Orijinal 63% 62% 62% 77 % 77 % 77 %
Eg‘gfnﬁff‘l;gﬁgﬁl Bosluk Ekleme | 65% 61% 61% 76% 76% 76%
Kare Kirpma 61% 60% 59% 76% 77 % 76%
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Tablo 4.6. Inceptionv3 Agiyla Egitilen Aglarin Deney-2 Egitim Dogruluk ve Kayip Sonuglari

Egitim Dogrulama Dogruluk

Dogruluk | Kayip | Dogruluk | Kayip | Tlk-1 (Top-1) | 1lk-5 (Top-5)
L _ | Orijinal 0.73 0.91 0.72 0.96 71.4% 93.8%
Aktar%ﬁegrffme“ Bosluk Ekleme | 0.66 | 1.18 | 071 | 1.01 68.9% 93.5%
Kare Kirpma 0.72 0.95 0.71 1.01 70.3% 93.9%
Orijinal 0.81 0.63 0.76 0.91 72.8% 93.9%
Ince Ayar Yontemi | Bogluk Ekleme 0.73 0.92 0.73 0.99 71.2% 94.4%
Kare Kirpma 0.85 0.52 0.75 0.98 73.4% 95.6%
) Orijinal 0.86 0.44 0.79 0.83 74.3% 94.3%
Eg?gfn‘;fﬂ?g}ﬁglnﬂ, Bosluk EKleme | 081 | 061 | 078 | 084 | 76.1% 96.4%
Kare Kirpma 0.84 0.52 0.77 0.91 76.8% 96.8 %

Sekil {.18]de aktarim 6grenmesi yontemi kullanilarak tam veri arttirma ve bogluk doldurma
on islemi uygulanmis Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek elde
edilen egitim ve dogrulama dogrulugu ve kaybi grafikleri paylagilmistir. Egitim sonuclari
on isleme uygulanmamis Sekil d.16]ya gore kotilesmistir. Egitim, dogrulama dogrulugu ve
egitim, dogrulama kayb1 arasindaki fark artmistir. Dogrulama dogrulugu azalmis ve dogru-

lama kayb1 artmistir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
0.7 | 351 —— Dogrulama Kaybi
— Egitim Kaybi
3.0 1
0.6 1
E o 7]
% 0.5 >
a 2 o]
0.4
1.5
0.3/ — Dogrulama Dogrulugi
—— Egitim Dogrulugu 1.0
6 5 1‘0 15 2b 2‘5 3b 6 5‘: 1‘0 1‘5 2‘0 2‘5 35
Iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.18. Aktarim Ogrenmesi Yontemi, Tam Veri Arttirma / Bosluk Doldurma Veri Kiimesi
Egitim Dogruluk ve Kayip Sonucu

Sekil #.19]da aktarim 6grenmesi yontemi kullanilarak tam veri arttirma ve kare kirpma 6n

isleme uygulanmis Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen
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egitim ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. Sekil d.18]e gore egitim

dogrulugu artmis ve kayb1 azalmistir. Dogrulama dogrulugu ve kaybi sabit kalmagtir.

Egitim ve Dogrulama Dogrulugu

—— Dogrulama Degrulugu
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I
o

Dogruluk
o
w

0.44
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(a) Egitim ve Dogrulama Dogruluk Grafigi

Egitim ve Dogrulama Kaybi

—— Dogrulama Kaybi

—— Egitim Kaybi

3.0 1

0 5 10 15 20 25 30
Iterasyon Sayisi

(b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.19. Aktarim Ogrenmesi Yontemi, Tam Veri Arttirma / Kare Kirpma Veri Kiimesi Egitim
Dogruluk ve Kayip Sonucu

Sekil #.20]de ince ayar yontemi kullanilarak tam veri arttirma ve bosluk doldurma 6n islemi

uygulanmig Set-1 (118 Siif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen egitim

ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. Ayni veri kiimesi fakat aktarim

ogrenmesi yontemi kullanan model ile elde edilen sonuclara gore daha iyi sonuclar elde

edilmistir. Ince ayar yontemi aktarim 6grenmesi yontemine gore iyi sonug verse de, bosluk

ekleme On iglemi on isleme yapilmamis veri kiimesi ile egitilen modele gore %3 dogrulama

kayb1 yasamistir.

Egitim ve Dogrulama Dogrulugu
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— Dogrulama Kaybi
— Egitim Kaybi
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Iterasyon Sayisi

(b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.20. Ince Ayar Yontemi, Tam Veri Arttirma / Bosluk Doldurma Veri Kiimesi Egitim
Dogruluk ve Kayip Sonucu



Sekil {.21]de ince ayar yontemi kullanilarak tam veri arttirma ve kare kirpma 6n isleme
uygulanmig Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen egitim
ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. Sekil #.20]de elde edilen egitim

sonuclarina gore dogrulama dogrulugu %?2, egitim dogrulugu %12 artmistir.
¢ g g grulug g g g $

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
—— Dogrulama Dogrulugu —— Dogrulama Kayb!
| — Egitim Dogrulug —— Egitim Kaybi
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(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.21. Ince Ayar Yontemi, Tam Veri Arttirma / Kare Kirpma Veri Kiimesi Egitim Dogruluk ve
Kayip Sonucu

Sekil [@.22]de tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma ve bosluk
doldurma 6n islemi uygulanmis Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egi-
tilerek elde edilen egitim ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. %78
dogrulama dogrulugu ve %86 egitim dogrulugu elde edilmistir. Diger 6n isleme uygulanan
egitim sonuglarina gore iyi olmasina ragmen, orijinal tam veri arttirimi uygulanarak egitilmis

modelin dogrulama dogrulugunun altinda kalmustir.
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Egitim ve Dodrulama Dogrulugu Egitim ve Dogrulama Kaybi

0.8 ——Dogrulama Dogrulugu —— Dogrulama Kaybi
—Egitim Dogrulugu 35 —Egitim Kayb!
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(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.22. Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma / Bosluk Doldurma Veri
Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil @.23]te tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma ve kare
kirpma 0n isleme uygulanmig Set-1 (118 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek
elde edilen egitim ve dogrulama dogrulugu ve kayb1 grafikleri paylasilmistir. Sekil [4.22]de

elde edilen dogrulama dogrulugu sonuglarindan %1 daha az dogruluk oranina sahiptir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
—— Dofrulama Dogrulugu 35 —— Dojrulama Kaybi
08l — Egitim Dogruludu —— Editim Kaybi
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0.7
v 2.54
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2 % 20]
go5 “
1.5
0.4
1.0 4
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iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.23. Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma / Kare Kirpma Veri Kiimesi
Egitim Dogruluk ve Kayip Sonucu
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4.4.6. Deney-3

Deney-3 kapsaminda, Deney-1 (Egitim yontemlerinin etkisinin incelendigi deney) ve Deney-
2’de (On isleme yontemlerinin etkisinin incelendigi deney) en iyi sonucu veren tiim kat-
manlarin egitilmesi yontemi ve tam veri attirma ile elde edilmis veri kiimesi kullanilmagtir.
Deney-1 ve 2°den elde edilen en iyi veri kiime sec¢imi olarak karar verilen tam veri arttirma
ile elde edilmis veri kiimesi se¢imi, Set-2 veri kiimesine uygulanmaistir. Set-2 veri kiimesinin
tam veri arttirma uygulanarak elde edilen toplam veri sayisi, sinif sayisi, egitim, dogrulama

ve test kiimesinde bulunan veri sayist miktar1 Tablo 4.7 ]de paylasilmstir.

Tam veri arttirma uygulanmig Set-1 (118 Sinif) ve Set-2 (38 Sinif) veri kiimeleri kullanilarak
InceptionResNetv2, DenseNet, ResNet-50, VGG-16 aglarinda egitimler yapilmis ve egitilen
agin tiim katmanlar aktif edilerek, tiim katmanlarin egitilmesi yontemi ile egitim gercekles-
tirilmistir. Inceptionv3 aginda Set-1 tam veri arttirma kiimesi ile yapilan egitim Deney-1’de
Tablo d.5]te paylasilmigtir. Inceptionv3 aginda Set-2 tam veri arttirma ile elde edilmis veri
kiimesi kullanilarak tiim katmanlarin egitilmesi yontemi ile egitim gerceklestirilmistir. Bu
deneyde Deney-1 ve 2 sonucunda ¢ikarim yapilan en iyi yontem ve veri kiimesi olan tiim
katmanlarin egitilmesi yontemi ve tam veri arttirimu ile elde edilmis veri kiimesi kullanilarak

sonuglarin diger aglarda elde edilmesi ve gozlemlenmesi hedeflenmistir.

Tablo 4.7. Set-2 Veri Kiimesine Tam Veri Arttirim Uygulanmasinin Sonuglari

Set-2 Veri Kiimesi ve Tam Veri Arttirma Yontemi
#Toplam Veri || #Simf #Egitim Seti | #Dogrulama Seti | #Test Seti
72501 38 69591 1455 1455

4.4.7. Deney-3 Sonuc

Tablo 4.8 ]de 118 sinifa sahip Set-1 tam veri arttirma uygulanmis veri kiimesinin egitim so-
nucunda elde edilen sonuglar paylagilmistir. Tabloda her bir ag icin kesinlik, geri cagirma,
F1-Skoru metrikleri makro ortalama ve agirlikli ortalama yontemleri kullanilarak ayri ayri
hesaplanmustir. Inceptionv3 aginda %77, InceptionResNetv2, DenseNet ve ResNet-50 agla-
rinda %78 agirlikli F1-Skoru elde edilmistir. VGG-16 aginda diger aglara gore %35’lik azalma
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oraniyla %73’liik agirlikli F1-Skoru ve %3’liik bir azalma ile 0.76 dogrulama dogrulugu elde

edilmistir.

Tablo[4.9da 38 sinifa sahip Set-2 tam veri arttirma uygulanmus veri kiimesinin egitim sonu-
cunda elde edilen sonuglar paylasilmistir. Tabloda her bir ag icin kesinlik, geri ¢cagirma, F1-
Skoru metrikleri makro ortalama ve agirlikli ortalama yontemleri kullanilarak ayr1 ayr he-
saplanmustir. Set-2 veri kiimesinden elde edilen sonuclar Set-1 veri kiimesine gore daha yiik-
sek yiizdelere sahiptir. Bunun sebebi Set-2 veri kiimesinin dengeli dagilima sahip minimum
100 ornekten olusan Set-1 veri kiimesinin alt kiimesine sahip olmasindan kaynaklanmakta-
dir. InceptionResNetv2, DenseNet ve ResNet-50 aglarinda sirasiyla %91, %92, %92, %91
agirlikli F1-Skorlar1 elde edilmistir. VGG-16 aginda diger aglara gore daha diisiik oranda
agirlikli F1-Skoru elde edilmistir. Set-1 veri kiimesinde VGG-16 ve diger aglar arasinda elde
edilen ylizdesel fark Set-2’de elde edilen farktan yaklasik %4 daha fazladir.

Tablo d.10Jda egitim ve dogrulama dogruluk ve kayip degerleri Set-1 ve Set-2 veri kiimesi
ve her bir ag icin paylasilmistir. Set-1 veri kiimesinde VGG-16 aginda 0.76, diger aglarda
0.79 dogrulama dogrulugu elde edilmistir. Set-2 veri kiimesinde VGG-16 aginda %92, diger
aglarda %93 dogrulama dogrulugu elde edilmistir. Tablo 4.10]da egitilen ag modellerinin
test veri kiimesi lizerinde elde edilen ilk-1 ve ilk-5 dogruluk degerleri paylagilmistir. Set-1
(118 Sinif) veri kiimesinden elde edilen en yiiksek ilk-1 (top-1) dogruluk %78.6 ile DenseNet
agindan, ilk-5 (top-5) dogruluk %97.1 ile inceptionResNetv2 aginda elde edilmistir. Set-2
(38 Sinif) veri kiimesinden elde edilen en yiiksek ilk-1 dogruluk (top-1) %92.1 dogruluk
degeri ile DenseNet agindan ve ilk-5 (top-5) dogruluk ise %99.1 ile ResNet-50 agindan elde

edilmistir.

Agirlikli ortalama ile elde edilen sonuclar, dengesiz bir veri dagilimina sahip olan Set-1 (118
Sinif) veri kiimesinin degerlendirmesinde daha kritik bir role sahiptir. Bunun nedeni, agir-
likl1 ortalama yOntemi ile siniflarin sahip oldugu 6rnek sayisina gore agirliklandirilmasidir.
Agirliklh ortalama yontemi kullanilarak elde edilen kesinlik, geri cagirma ve F1-Skoru so-
nu¢larina bakildignda en iyi sonucu veren ag DenseNet agidir. Set-2 veri kiimesinin agirlikli
ortalama yontemi ile elde edilen sonuglarinda da en iyi sonug¢lar DenseNet agina sahiptir. Bu

deney sonrasinda yapilacak olan deneylerde bu nedenle DenseNet ag1 kullanilmistir.
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Tablo 4.8. Set-1 Veri Kiimesinde Elde Edilen Ag Sonuglari

Makro Ortalama Agirlikli Ortalama
Kesinlik | Geri Cagirma | F1-Skoru | Kesinlik | Geri Cagirma | F1-Skoru
Inceptionv3 %63 %62 %62 P77 P77 %77
InceptionResNetv2 % 67 % 66 % 66 %78 %78 %78
DenseNet %66 %61 %61 %78 %79 %78
ResNet50 %64 %63 %63 %77 %78 %78
VGG16 %57 %53 %53 %73 %74 %73
Tablo 4.9. Set-2 Veri Kiimesinde Elde Edilen Ag Sonuglari
Makro Ortalama Agirlikli Ortalama
Kesinlik | Geri Cagirma | F1-Skoru | Kesinlik | Geri Cagirma | F1-Skoru
Inceptionv3 %90 %88 %89 %92 %91 %91
InceptionResNetv2 %90 %89 %89 %92 %92 %91
DenseNet %90 %90 %90 %92 %92 %92
ResNet50 %89 %89 %89 %92 %92 %92
VGG16 %90 %87 %88 %91 %91 %91
Tablo 4.10. Set-1 ve Set-2 Veri Kiimelerinin Egitim ve Dogrulama Dogruluk/Kayip Sonuglari
Egitim Dogrulama Dogruluk
Dogruluk | Kayip | Dogruluk | Kayip | Ilk-1 (Top-1) | 1lk-5 (Top-5)
Inceptionv3 0.86 0.44 0.79 0.83 77.4% 97.0%
InceptionResNetv2 0.90 0.32 0.79 0.94 78.4% 97.1%
(1 ISSets-llmf) DenseNet 0.79 0.68 0.79 0.74 78.6% 97.0%
ResNet-50 0.87 0.41 0.79 0.86 78.4% 97.0%
VGG-16 0.78 0.73 0.76 0.84 74.3% 95.6%
Inceptionv3 0.99 0.04 0.93 0.46 91.4% 98.9%
InceptionResNetv2 0.99 0.03 0.93 0.45 91.6% 98.6%
(38 Gumfy | DenseNet 095 | 015 | 093 | 031 | 921% 98.8%
ResNet-50 0.99 0.03 0.93 0.42 92.0% 99.1%
VGG-16 0.94 0.20 0.92 0.32 91.0% 99.0%
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Set-1 (118 Sinif) veri kiimesinin aglarda gerceklesen egitimleri toplamda 30 iterasyon ger-
ceklestirilmistir. Tiim egitim boyunca en yiiksek dogrulama dogruluguna sahip model kay-
dedilmistir. Sekil @.24]te tim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma
uygulanmug Set-1 (118 Siif) veri kiimesinin InceptionResNetv2 aginda egitilerek elde edi-
len egitim ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. %79 dogrulama ve %90

egitim dogrulugu elde edilmistir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
0.9 | — DegruamaDogruugu 351 —— Dogrulama Kayb!
——Egitim Dogrulugu ——Egitim Kaybi
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g
o 0.5 15
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Iterasyon Sayisi Iterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.24. Set-1, InceptionResNetv2, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma
Veri Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil @.25]de tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmis
Set-1 (118 Sinif) veri kiimesinin DenseNet aginda egitilerek elde edilen egitim ve dogrulama
dogrulugu ve kayb grafikleri paylagilmistir. %79 dogrulama ve %79 egitim dogrulugu elde
edilmigtir. Egitim ve dogrulama dogrulugu ve kaybi arasindaki uzaklik iterasyon sayisi iler-

ledikg¢e azalmustir.
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Sekil 4.25. Set-1 DenseNet Yontem-3 Tam Veri Arttirma Veri Kiimesi Egitim Dogruluk ve Kayip

Sonucu

Sekil .26 Jda tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmis
Set-1 (118 Sinif) veri kiimesinin ResNet50 aginda egitilerek elde edilen egitim ve dogrulama
dogrulugu ve kaybi grafikleri paylasilmistir. %79 dogrulama ve %87 egitim dogrulugu elde

edilmigtir. Egitim ve dogrulama dogrulugu ve kayb1 arasindaki uzaklik yaklagik 15. iteras-
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yona kadar azalmig sonrasinda artarak devam etmistir.
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(b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.26. Set-1, ResNet-50, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri
Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil de tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmais
Set-1 (118 Sinif) veri kiimesinin VGG-16 aginda egitilerek elde edilen egitim ve dogrulama
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dogrulugu ve kaybi grafikleri paylasilmistir. %76 dogrulama ve %78 egitim dogrulugu elde
edilmistir. Egitim, dogrulama dogrulugu ve kaybi birbirine yakin bir sekilde artmis ve azal-
mistir. Asirt uyum (overfitting) problemi goriilmemistir. Fakat diger aglara gore dogrulama

dogrulugu %3 oraninda daha diisiik seviyede elde edilmistir.
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Sekil 4.27. Set-1, VGG-16, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri Kiimesi
Egitim Dogruluk ve Kayip Sonucu

Sekil .28 ]de tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmis
Set-2 (38 Sinif) veri kiimesinin Inceptionv3 aginda egitilerek elde edilen egitim ve dogrulama
dogrulugu ve kaybr grafikleri paylasilmistir. Toplamda 30 iterasyon ile gerceklesen egitimde
%93 dogruluma dogrulugu ve %99 egitim dogrulugu elde edilmistir. Egitim ve dogrulama
dogrulugu yaklasik olarak 10. iterasyonda birbirine yaklagsmis sonrasinda aralarindaki fark

artarak devam etmistir.
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Sekil 4.28. Set-2, Inceptionv3, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri
Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil [A.29]da tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulan-
migs Set-2 (38 Sinif) veri kiimesinin InceptionResNetv2 aginda egitilerek elde edilen egitim
ve dogrulama dogrulugu ve kaybi grafikleri paylasilmistir. Toplamda 30 iterasyon ile gercek-
lesen egitimde Sekil ile benzer sonuglar elde edilmistir.
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Sekil 4.29. Set-2, InceptionResNetv2, Tiim Katmanlari Egitilmesi Yontemi, Tam Veri Arttirma
Veri Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil #.30]da tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmis
Set-2 (38 Smif) veri kiimesinin DenseNet aginda egitilerek elde edilen egitim ve dogrulama

dogrulugu ve kaybi grafikleri paylasilmistir. Toplamda 30 iterasyon ile gerceklesen egitimde

77



5. iterasyondan sonra dogrulama dogrulugu sabit kalmistir. Dogrulama dogrulugu ve egitim

dogrulugu sirasiyla %93 ve %95 olarak elde edilmistir.
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Sekil 4.30. Set-2, DenseNet, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri
Kiimesi Egitim Dogruluk ve Kayip Sonucu

Sekil @.3T]de tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmis
Set-2 (38 Sinif) veri kiimesinin ResNet-50 aginda egitilerek elde edilen egitim ve dogrulama
dogrulugu ve kaybi grafikleri paylasilmistir. Toplamda 30 iterasyon ile gerceklesen egitimde
7. iterasyondan sonra dogrulama dogrulugu sabit kalmistir. Dogrulama dogrulugu ve egitim

dogrulugu sirasiyla %93 ve %99 olarak elde edilmistir.

Egitim ve Dogrulama Dogrulugu Egitim ve Dogrulama Kaybi
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(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.31. Set-2, ResNet, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri Kiimesi
Egitim Dogruluk ve Kayip Sonucu
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Sekil [A.32]de tiim katmanlarin egitilmesi yontemi kullanilarak tam veri arttirma uygulanmis
Set-2 (38 Sinif) veri kiimesinin VGG-16 aginda egitilerek elde edilen egitim ve dogrulama
dogrulugu ve kaybi grafikleri paylasilmistir. Dogrulama dogrulugu ve egitim dogrulugu si-

rastyla %92 ve %94 olarak elde edilmistir.

Egitim ve Dogrulama Dogrulugdu Egitim ve Dogrulama Kaybi
1.0
—— Dogrulama Kaybi
— Egitim Kaybi
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0.8 {
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—— Dogrulama Dogrulugu
0.3 ——Egitim Dogrulugu 00
0 5 10 15 20 25 30 0 5 1 B 20 2 »
Iterasyon Sayisi lterasyon Sayisi
(a) Egitim ve Dogrulama Dogruluk Grafigi (b) Egitim ve Dogrulama Kayip Grafigi

Sekil 4.32. Set-2, VGG-16, Tiim Katmanlarin Egitilmesi Yontemi, Tam Veri Arttirma Veri Kiimesi
Egitim Dogruluk ve Kayip Sonucu

Sekil @#.33Jte yanlis simflandirilan orneklerin sonuglart paylasilmistir. Sekile bakildiginda
en cok karistirillan orneklerin ayni sinifin alt sinifina sahip oldugu ve birbirine benzedikleri
goriilmektedir. Sekilde a ve c siitunlar1 tahmin edilmesi beklenen gercek siniflara verilen
ornekler iken, b ve d siitunlar1 model tarafindan tahmin edilen simif goriintiileridir. Sekil

te test kilmesinden dogru siniflandirilan 6rnek goriintiiler paylagilmistir.
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Sekil 4.34. Dogru Smiflandirilan Gériintii Ornekleri

Sekil4.35]de en ¢ok karistirilan plankton siniflarindan biri olan copedod siniflarinin, Deney-
3 kapsaminda egitilen DenseNet modelinin test veri kiimesi ile testi sonucunda elde edilen
hata matrisi paylasilmigtir. Hata matrisinde degerler, O ile 1 aralifinda aldig1 degere gore
acik maviden koyu maviye dogru renklendirilmistir. Hata matrisinin sol tarafinda her bir
siiftan, analiz edebilmek amaciyla 6rnek goriintii paylagilmistir. Her bir sinifin goriintiisti

incelendiginde birbirine olduk¢a benzeyen smiflar oldugu ve bu simiflarin model tarafindan
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karistirildi1 hata matrisinde gézlemlenmistir. Hata matrisinde en ¢ok karistirilan sinif olan
copedod calanoid frillyAntennae ve model tarafindan karistirilan diger siniflarin goriintiileri
Sekil[d.36]da paylasilmistir. Sekil[4.36da goriildiigii iizere sinuflar kiiciik detaylar haricinde
birbirine cok benzemektedir. Bu durum, hata matrisinde copedod calanoid frilly Antennae si-
nifinin tahmin degerinin diisiik bir deger olan 0.20 olmasina sebebiyet vermistir. Hata mat-
risinde yiiksek dogruluk oranina sahip lacivert rengine sahip siniflara odaklanildiginda bu

siiflarin diger siniflardan ayirt edici bir sekilde farkli oldugu gozlemlenmistir.
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Sekil 4.35. Copedod Sinifi Hata Matrisi
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Sekil 4.36. Copedod Siifinda Bulunan Karistirilan Ornek Alt Gruplar

4.4.8. Deney-4

Deney-4 kapsaminda ortalama topluluk yontemi kullanilarak egitilen modeller birlestirilmis-
tir. 118 sinifa sahip Set-1 tam veri arttirma ile elde edilmis veri kiimesi Inceptionv3, Incep-
tionResNetv2, DenseNet, ResNet-50 ve VGG-16 aglarinda egitilmis ve elde edilen modeller

ortalama topluluk yontemiyle birlestirmistir.

38 sinifa sahip Set-2 tam veri arttirma veri kiimesi Inceptionv3, InceptionResNetv2, Dense-
Net, ResNet-50 ve VGG-16 aglarinda egitilmis ve elde edilen modeller ortalama topluluk

yontemiyle birlestirilmistir.

4.4.9. Deney-4 Sonuclar:

Deney-4 sonucunda elde edilen sonuglar Tablo d.11]de paylagilmistir. Tabloda her bir top-
luluk modeli i¢in kesinlik, geri ¢agirma, F1-Skoru metrikleri makro ortalama ve agirliklh
ortalama yontemleri kullanilarak ayri1 ayr1 hesaplanmistir. Deney sonucunda Set-1 i¢in %80
agirlikli F1-skoru, Set-2 i¢in %93 agirlikli Fl-skoru elde edilmistir. Topluluk yontemiyle
elde edilen agirlikli F1-Skorunda, Set-1 topluluk modeliyle %2, Set-2 topluluk modeliyle
%1’lik iyilesme gozlemlenmistir. Tablo {.12]de ortalama topluluk yontemiyle birlestirilen
bes agin model sonucu, test veri kiimesi kullanilarak test edilmis ve ilk-1 (top-1) ve ilk-5
(top-5) dogruluk degerleri elde edilmistir. Set-1 veri kiimesi icin ilk-1 (top-1) dogeuluk de-
geri %80.7 elde edilirken, ilk-5 (Top-5) topluluk degeri %98 olarak elde edilmistir. Set-2
veri kiimesinde ise %93.3 ve %99.2 ilk-1 (top-1 ) ve ilk-5 (top-5) dogruluk degerleri elde

edilmistir.
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Tablo 4.11. Set-1 ve Set-2 Veri Kiimelerinin Ortalama Modellerin Toplulugu Deney-4 Sonucu

Makro Ortalama Agirlikli Ortalama
Kesinlik | Geri Cagirma | F1-Skoru | Kesinlik | Geri Cagirma | F1-Skoru
Set-1 Topluluk Modeli %66 %65 %65 %80 %81 %80
Set-2 Topluluk Modeli | %92 %90 %91 %93 %93 %93

Tablo 4.12. Set-1 ve Set-2 Veri Kiimelerinin Ortalama Modellerin Toplulugu Deney-4 Sonucu

Dogruluk
1k-1 (Top-1) | 1lk-5 (Top-5)
Set-1 Topluluk Modeli %80.7 9%98.0
Set-2 Topluluk Modeli %93.3 %99.2

4.4.10. Deney-5

Deney-5 kapsaminda, egitim esnasinda ¢apraz entropi kaybi yerine odak kaybi fonksiyonu
kullanilmigtir. Tam veri arttirma ile elde edilen Set-1 (118 Sinif) veri kiimesi, tiim katman-
larin egitilmesi yontemi kullanilarak DenseNet aginda egitilmistir. Odak kayb1 fonksiyonu
dengesiz dagilima sahip veri kiimelerinde zor siniflara odaklanarak, zor siniflardaki baga-
rim1 arttirmaktadir. Bu deney kapsaminda dengesiz dagilima sahip Set-1 (118 Sinif) veri
kiimesi iizerinde, odak kaybinin farkli hiperparametre degerlerinde egitim gerceklestirilmis-
tir ve odak kaybi fonksiyonunun basarima etkisi gdzlemlenmistir. = 0, 0.1, 0.25, 0.5, 0.75,
0.90, 1 degerlerinde ve y= 0, 2 degerlerinde deneyler gerceklestirilmistir.

4.4.11. Deney-5 Sonuclar:

« parametresinin 1, v parametresinin 0 oldugu durumda odak kaybi ile capraz entropi kaybi
matematiksel olarak esit olmaktadir. Denklem [I7]de odak kaybinin matematiksel ifadesi ve-
rilmigtir. o parametresinin 1,  parametresinin 0 oldugu deneye bakildiginda Tablo 4.10]da
capraz entropi ile elde edilen sonuclarin birebir aynisi elde edilmemistir. Odak kaybiyla ile
yapilan egitim sonucunda, egitim ve dogrulama dogrulugu %1 artis gostermis ve egitim kay-
binda %4 dogrulama kaybinda %2 azalma gozlemlenmistir. Makro ve agirlikli ortalama ile
bulunan degerler, capraz entropi ile makro agirlikli kesinlik degerindeki %2’lik diisiis hari-

cinde birebir ayni1 olarak elde edilmistir. Matematiksel olarak iki kayip fonksiyonunun esit
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kabul edildigi o parametresinin 1, v parametresinin O oldugu durumda egitimde iyilesme
gerceklesmistir. Test verisi ile elde edilen sonuglarda kesinlik metrigi haricinde bir degisik-
lik gozlemlenmemistir. Deney sonuclart Tablo ve Tablo [.14]te paylagilmistir. o’nin
farkli degerleriyle gerceklesen deney sonuclarinda o’nin 0.1 ve 0.90 arasindaki degerleri i¢in

kay1p ile dogru orantili oldugu gozlemlenmistir.

Tablo 4.13. Set-1 Veri Kiimesinin DenseNet ag1 ve Farkli Odak Kaybi1 Parametreleri ile Egitilen
Modellerinin Sonuglari

Makro Ortalama Agirlikli Ortalama
o ~v | Kesinlik | Geri Cagirma | F1-Skoru | Kesinlik | Geri Cagirma | F1-Skoru
a=0 |[~=2 %63 %60 %60 %76 %717 %76
a=0.1 [ y=2 %55 %50 %50 %73 %75 %73
a=0.25| y=2 %59 %56 %55 %75 %76 %75
a=05 | v=2 | %64 %59 %59 %77 %77 %76
a=075 | v=2 | %64 % 61 %062 %77 %78 %77
a=0.90 | v=2 %63 %61 %61 %77 %78 %77
a=1 [ v=0| %64 % 61 %61 %78 %79 %78

Tablo 4.14. Set-1 Veri Kiimesinin DenseNet ag1 ve Farkli Odak Kaybi Parametreleri ile Egitilen
Modellerinin Sonuglari

Egitim Dogrulama Dogruluk
o v | Dogruluk | Kayip | Dogruluk | Kayip | ilk-1 (Top-1) | Ilk-5 (Top-5)
a=0 | y=2 0.75 0.64 0.79 0.59 %77 %96
a=0.1 | =2 0.69 0.12 0.77 0.10 %75 %95
a=0.25 | y=2 0.74 0.21 0.78 0.18 %76 %96
a=0.5 | y=2 0.75 0.33 0.79 0.28 %77 %97
a=0.75 | v=2 0.76 0.41 0.79 0.39 %78 %97
a=0.90 | v=2 0.76 0.45 0.79 0.43 %78 %97
a=1 | 4= 0.80 0.64 0.80 0.72 %79 %97
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4.4.12. Deney-6

Bu deney kapsaminda, tam veri arttirma uygulanmis Set-1 (118 Sinif) veri kiimesi ve tiim
katmanlarin egitilmesi yontemiyle egitilen DenseNet modelinin test veri kiimesi iizerinde
elde edilen hata matrisleri analiz edilmis ve gruplama ile ilgili bir yaklasim Onerilmistir.
Ayrica veri kiimesi, 33 plankton grubu seklinde gruplandirilarak egitilmis ve elde edilen

model test veri kiimesinde test edilerek hata matrisi elde edilmistir.

118 sinif ile egitilen modelin hata marisinden, grup yapisi hata matrisi elde etmek amaciyla

uygulanan adimlar su sekildedir.

* 118 simifa sahip Set-1 veri kiimesinin DenseNet modeli, test veri kiimesinde test edil-

mistir ve elde edilen hata matrisi 118x118 boyutunda elde edilmistir.

* Elde edilen 118x118 hata matrisinin siitun kisminda yer alan simiflar1 grup bazinda

toplanmis bu islem sonucunda 118x33 matris elde edilmistir.

* Elde edilen 118x33 boyutundaki hata matrisinin her bir satir1 ilgili sinifin veri sayisi ile
carpilmig ve sonrasinda satirlar grup bazinda toplanmistir. Bu iglem sonucunda 33x33

hata matrisi elde edilmistir.

* 33x33 hata matrisindeki her bir satir ilgili grubun icerdigi toplam veri sayisina boliine-

rek o grup ile ilgili tahmin elde edilmistir.

118x118 hata matrisinden yukaridaki islemler uygulanarak elde edilen 33x33 hata matrisi
ile, grup bazinda 33 sinif grubu ile egitilen modelin hata matrisi karsilastirnlmis ve deney ile

ilgili tiim sonuglar Bolim [4.4.13]de paylasiimistur.

4.4.13. Deney-6 Sonuclari

Sekil @.37]de ve Sekil @.38]de 118x118 hata matrisindeki siitunlarda yer alan siniflarin
grup bazinda toplanarak gruplandig1 ve sonucunda 118x33 boyutunda hata matrisinin elde
edildigi hata matrisi gorseli iki kisim olarak paylagilmustir. Tlk kisim, 118x33 boyutundaki
matrisin ilk 60 sinifini, ikinci kisim ise son 58 sinifim1 gdstermektedir. 118x33 boyutuna sahip
matrisin her bir satirinin sinif sayisi ile carpildig1 ve ayni siitun siniflarinin toplanarak grup-

landirildig: gibi satirlarinin da toplanarak gruplandirildigi 33x33 hata matrisi Sekil [4.39]da
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paylasilmistir. Elde edilen 33x33 matrisin her bir degerinin olasilik degerini bulmak ama-
cryla Sekil #.39]da yer alan her bir deger grupta yer alan toplam veri sayisina bolinmiistiir
ve bu islem sonucunda Sekil @.40Jda yer alan hata matrisi elde edilmistir.

Sekil ve Sekil hata matrisleri karsilastirildiginda, Sekil 4.40./da yer alan ve 118
sinifin gruplanmasi ile elde edilen hata matrisinin Sekil [4.41]deki hata matrisine gére dog-

ruluk oranlarinin daha yiiksek oldugu ve siniflar arasi karistirma oraninin daha diisiik oldugu
gozlemlenmistir. Ornegin tornaria plankton smifi Sekil de 0.50 tahmin dogruluguna
sahipken, Sekil {.40Jda 0.67 dogruluk tahminine sahiptir. Tahmin dogrulugu ortalama sevi-
yede olan ve grup ici karismaya meyil gosteren siniflar i¢in Onerilen yontem basarili olmus-
tur. Onerilen yontemin dezavantajlarindan bir tanesi tahmin dogrulugu iyi seviyede olmayan,
az veriye sahip ve karistirilan siniflar1 tamamen yok saymasidir (Tahmin degeri 0 olmakta-
dir). Ornegin stomatopod sinifi, Sekil de yer alan hata matrisinde 0.25 tahmin oranina
sahipken bu oran Sekil @#.40]da sifirlanmistr.
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(0, 'acantharia') EEX30.000.00/0.00/0.00/0.00,0.00/0.000.00/0.00/1.38/0.000.98 1.00/0.00/0.00(0.000.00/0.00|2.04/0.00/0.00{0.00]4.54|0.00/0.00/0.00/0.00{0.00/0.00/0.00/0.000.00
(1, 'amphipods') [0.000.96/0.00,0.00,0.00/0.00,0.00,0.00/0.00/0.60/0.00/0.00,0.00/0.00,0.00{0.00/0.00{0.00/0.00/0.00/0.000.000.00/0.00/0.00,0.00/0.00,0.00]0.00/0.00{0.00/0.00/0.00,

0.00,0.000.00/0.00{0.00,2.30{0.00|

S
o
S
S
=
=]

0.00/0.00/4.62{5.14/0.00/0.00/0.00/0.00{0.00|

=]
=
=]

(2, 'appendicularian') [0.000.0¢] 0.00/0.00/0.00{0.00]0.00/0.00/0.00/0.00/0.00

(3, 'artifacts') {0.00,0.000. 0.00,0.00;0.00/0.00{0.00,3.96/0.78/0.00{0.00/0.00/0.00{0.00{0.000.00/0.00{0.00|0.00{0.00|0.00|0.00/0.00/0.00{0.00;0.00/0.00/0.00{0.00{0.00

(4, 'chaetognath') (0.000.004. 0.00/0.000.93/2.04/0.00/1.20{3.78/0.00{0.00/0.00/2.07{3.08{0.99,0.00/0.00/0.99/0.00{0.00/0.00/1.00/0.00/0.00{0.00}0.00/0.00/2.04/0.00(1.26

(5, 'chordate') {0.00:0.00,0.00,0.00,0.0011.040.00,0.00/0.00,0.000.00,0.00/0.00/0.000.00/0.000.00{1.04/0.00{0.00/0.000.00{0.00/0.00/0.00/0.00/0.00/0.000.00/0.00/0.00/0.000.00

(6, 'copepod') [0.000.96/0.80,0.00/0.00,0.00] 0.0013.340.00,2.94/0.00/0.00/1.05/0.77{0.00/0.00/1.94/0.99/0.00{0.00/0.00/1.02/0.00/3.15/0.96{0.00/1.02/0.00/0.00/0.00

(7, 'crustacean') [0.00:2.00/0.00,0.00/0.00/0.00;3. 0.00/1.10}0.00/0.00/0.00/0.00/0.00/0.00{2.04/0.00/0.00/0.00/0.00{0.00|0.00{0.00|0.00{2.00|0.00]0.00/0.00|1.02/0.00/0.00

(8, 'ctenophore') |0.000.00/1.11/0.00/0.00/0.00,0.00:0.00 0.00/0.00/0.00/0.00/0.00/0.00/0.00]0.00/1.00{0.87/0.00{0.00}0.00/0.00/0.00/0.00/0.00/0.96{0.00/0.00/0.00/0.00/0.00

(9, 'decapods') {0.000.000.00/0.00/0.00/0.00/0.00,0.00 0.000.00/0.00/0.000.00/0.00/0.00{2.10/0.00/0.00/0.00/0.00/0.00/0.00/0.000.00/0.00/0.00/1.08/0.00{0.000.000.00/0.00/0.00

(10, 'detritus') (0.00:0.96,8.95/1.04/4.14/0.00{4.10/3.10/0.00/0.00 0.00/0.006.16{0.00/0.00/0.00/0.00/0.00{0.00/2.78/0.00/0.0012.85/0.00{0.00/0.00/4.13/0.00/3.66

(11, 'diatom') (0.000.00/0.00/1.18/2.91/0.00/0.000.00/0.00/0.00/2. 0.00/0.0016.170.00/0.00/0.00/0.00{0.00{0.00/0.00/0.00{2.20/0.00/0.00}0.00{0.00/0.00/0.00/0.00!

(12, 'echinoderm') (0.00:0.00,0.00/0.00/0.00/0.00{0.00/0.00/0.00/0.00/8.! 0.00/0.00/0.77}0.00/0.00{0.00/0.00/0.00{0.00|1.02/0.00/0.00/0.92/0.96/0.00/0.00/0.00/0.00/0.00

(13, 'echinopluteus') (0.00,0.00/0.000.00/0.00,0.00;0.00,0.00,0.00,0.00/0.00;0.00/0.00/4.00/0.00/0.00/0.00{0.00/0.000.00/0.00/0.00/0.00/0.00/0.00/0.00/0.00/0.00{0.00/0.00|0.00/0.00|0.00;

(14, 'ephyra') |0.00:0.00,0.00/0.00/0.00/0.000.00/0.00/0.000.00/0.00;0.00/0.00/0.00/2.01/0.000.00{0.00/0.00{0.00|0.00/0.00/0.00/0.00/0.00/0.00{0.00/0.000.00/0.00/0.00/0.00/0.00

(15, 'euphausiids') {0.000.96/0.00/0.00/1.05/0.00,0.000.93/0.00,1.98/0.00/0.00/0.00/0.00/0.001"/.+:0.00]1.08/0.00/0.990.00/0.00/0.00/0.00/2.00/0.00|1.08/0.00{2.00/0.001.02/0.00/0.00

(16, 'fecal') {0.000.00/1.85/1.18/5.82{0.00,0.00,0.00,0.00/0.998.30;3.75/0.98/0.00/0.00/0.00, 0.00/0.00/1.02/0.00/0.00/0.00,0.00{0.00/0.00{1.92/0.00{0.00/0.00/2.04/0.00/0.00;

(17, 'fish') |0.00:0.000.00/0.00/0.00/0.00}0.00,0.93/0.00/0.99/0.00/0.00,0.00/0.00/0.00/0.00/0.00 0.00/0.00/0.00/0.00{0.00/0.00/1.02|0.00/0.00/0.00]0.00/0.00/0.00/0.00(1.26

(18, 'heteropod') [0-00,0.00/0.00,0.00/0.00/0.00/0.00/0.00,0.00,0.00/0.00,0.00,0.000.00/0.00/0.00/0.00{0.000.00{0.00/0.000.00/0.00/0.00/0.00/0.00/0.00/0.00}0.00/0.00/0.00/0.00/0.00

4.4010.00/7.04{1.02/0.96/0.00/9.30{0.00/1.02/0.00{1.00{3.70

(19, 'hydromedusae') [7.69/0.000.00/0.00/0.00/0.96/0.00,0.93/5.97|0.00/0.00,0.000.98/0.00/0.00/0.00(0.000.00

(20, 'invertebrate') |0.00:0.00,0.00,0.00/0.000.00;0.00/0.000.00/0.00/0.00,0.000.00/0.00/0.00/0.00/0.00}0.00/0.00/0.00/0.00/0.00{0.000.00/0.00/0.00/0.00/0.00{0.00/0.00{0.00|0.000.00;

(21, 'jellies') {0.00:0.000.00/0.00/0.00/0.00/0.00,0.00/0.000.00/1.20/0.000.00/0.00/0.00/0.00/0.00{0.00/0.00/1.93/0.001":"+" 0.00/0.00/0.0010.0010.00/0.00}0.00/0.000.00/0.00/0.00

(22, 'polychaete') [0.000.960.000.00/0.000.00/0.00/0.000.00/1.98/0.00/0.000.00/0.00,0.00(0.00/0.00]1.04/0.00/0.00/0.00 0.00%4111110.00/0.00/0.00/0.00/0.00{2.00{0.00/0.00/0.00/0.00

(23, 'protist') [0.99,0.000.00/0.00/0.00/0.00/0.00/0.00,0.00/0.00 3.58/0.000.000.00/0.99/0.00/0.00{0.00/0.00/9.19/1.00/0.00{0.0C EERY 0.00|8.20/0.00/1.14{0.00/0.00{2.97/0.00/0.00;

(24, 'pteropod') [0-000.000.000.00/0.00/0.00,0.000.00/1.02/0.99/0.00/0.00,0.000.00/0.00/0.00/0.001.040.00/0.95/0.99/0.00/0.00/0.00%1%111,0.00 2.04|0.00/0.00 0.00/0.00/0.00/0.00

(25, 'radiolarian') |0.00/0.00,0.00,0.00/0.00/0.00,0.00,0.000.96/0.00;2.58{0.75/0.00/0.00/0.00/0.00/0.00{0.00{0.00/0.92(2.000.00/0.00,3.52/0.00 0.00/0.00{0.00/0.000.00/0.00/0.00;

(26, 'shrimp') [0.00,0.00/0.00.0.00/0.000.00;1.04/0.00/0.00/1.98/1.20}0.00/0.00/0.00/0.00/3.12/0.00{0.00/0.000.00/0.00/0.00/0.00/0.00/0.00/0.003 0.00{0.00/0.00/0.00/0.00/1.08

(27, 'siphonophore') (0.00,0.000.80,0.00/1.230.00/0.00/0.00/6.01/0.00,0.00/0.00,7.05/0.00/0.00/0.00/0.00/0.00/1.00|5.90/1.00/0.00/0.00/4.46/1.02/0.96/0.00 0.00/0.00/0.00/0.00{2.07

(28, 'stomatopod') [0.00,0.00/0.00,0.00/0.00/0.00,0.00/0.00/0.00/0.00/0.00}0.00/0.00/0.00{0.00{0.00/0.00{0.00/0.00,0.00/0.00/0.00{0.00/0.00/0.00/0.00/0.00/0.00{0.00/0.00/0.00{0.00|0.00;

(29, 'tornaria') (0.00/0.00/0.00,0.00/0.000.00;0.00,0.00/0.00/0.00,0.00}0.00/0.00/0.00/0.00/0.00/0.00{0.00/0.00/0.00/0.000.00/0.00/0.00/0.00/0.00/0.00/0.00{0.00|4.02|0.00{0.00|0.00;

0.00

(30, 'trichodesmium') [0.00,0.00,0.000.002.91/0.00{0.00/0.00/0.00/0.001" ©110.001.16/0.00/0.00/1.05/0.77{0.00/0.00{1.02/0.00/0.00/0.00/2.78|0.00/0.00|0.00|0.00|0.00|0.

(31, 'trochophore') {0.00,0.00,0.000.00/0.00/0.00/0.00/0.00/0.00/0.000.000.00/0.00/0.00/0.00/0.00/0.00{0.00|0.00/0.00|0.00/0.00{0.00/0.00/0.00/0.00{0.00/0.000.00/0.00/0.00|4.00/0.00

(32, 'tunicate') |0.000.96/0.00/0.00/0.00/0.00/1.00{0.00/1.98/0.00,2.76/0.00,0.00/0.00/0.000.00(0.00{0.00/0.00|7.87/0.00/0.00{0.003.52(2.02|1.76/0.0015.910.00/0.00/0.00 0_0[\
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2, 'appendicularian’)
, 'decapods')

10, 'detritus')

11, 'diatom’)

3, 'artifacts')

4, 'chaetognath’)

0, 'acantharia')
1, 'amphipods")
5, 'chordate')

6, 'copepod')

7. 'crustacean’)
8, 'ctenophore')
12, 'echinoderm')

)

19, 'hydromedusae

, 'invertebrate')

21, 'jellies')

22, 'polychaete')
23, 'protist')

24, 'pteropod’)

25, 'radiolarian')
26, 'shrimp')

27, 'siphonophore')

28, 'stomatopod')

30, 'trichodesmium’)

29, 'tornaria')

31, 'trochophore')
32, 'tunicate')

(0, 'acantharia') [U8k0.00/0.000.00/0.00/0.00/0.000.00;0.00/0.000.01

0.000.01/0.01/0.00/0.00{0.00/0.00/0.000.

0.00]

0.00

0.00

(1, 'amphipods') 0.12/0.00/0.000.00/0.00/0.00/0.00;0.00/0.00,0.0

0.00/0.00/0.00(0.00/0.00/0.00/0.00/0.

0.00]

0.00

0.00/0.

0.00

(2, 'appendicularian') |0.00/0.000 0.01{0.00/0.00/0.00{0.00{0.00{0.02/0.02/0.00

0.00

0.00

0.00)

0.00

0.00

0.00)

0.000.00|

0.00)

0.00

0.00/0.00]

0.00

0.00

0.00

0.00|

0.00)

0.00,0.00/0. 0.05{0.01/0.00/0.00{0.00}0.00{0.00/0.00/0.00

(3, ‘artifacts')

0.00

0.00

0.00)

0.00(0.00)|

0.00

0.00

0.00/0.00

0.00|

0.00]

0.01 0.00/0.00)

0.00

0.00|

0.00|

0.00{0.00:0. 0.0 0.00{0.00{0.00/0.00/0.01

(4, 'chaetognath’)

0.00

0.00

0.00)

0.00(0.00)|

0.00,

0.00

0.00/0.00]

0.00|

0.00]

0.0

0.00

0.00|

0.00]

0.00;0.0 0.0 0.00/0.00/0.00/0.00{0.00/0.09/0.00|

(5. 'chordate')

0.00

0.00

0.00)

0.00(0.00)|

0.00]

0.00

0.00/0.00]

0.00|

0.00

0.02{0.0

0.00

0.00|

0.00]

0.00:0.0 0.01/0.00{0.000.00{0.00/0.00/0.00|

(6, 'copepod')

0.00

0.00

0.00,

0.00{0.01]

0.00]

0.00

0.00/0.00;

0.00|

0.00

0.0

0.00,0.0: 0.0 0.00,0.00/0.00(0.00/0.00/0.07/0.00,

(7, ‘crustacean’)

0.00

0.00|

0.00]

0.00

0.00

0.00]

0.000.06)|

0.00,

0.00

0.00{0.0

0.00

0.00

0.02

0.000.00 0.00{0.000.00/0.00{0.00/0.00/0.00/0.00/0.0.

(8, 'ctenophore')

0.00

0.00]

0.00

0.00

0.00]

0.00/0.00)|

0.0

0.00

0.00/0.00;

0.00

0.00

0.00

0.00

0.00]

(9, 'decapods') [0.00/0.000.00,0.00,0.00,0.00/0.000.00;0.00/0.00/0.00;0.00/0.00/0.00{0.00/0.23/0.00/0.00/0.00

0.00

0.00

0.00]

0.000.12

0.00]

0.00

0.00/0.00;

0.00

0.00

0.0210.0 0.00

(10, 'detritus') [0.00/0.000.04/0.0: 0.02/0.01/0.000.

0.00

0.00

0.00]

0.00

0.01

0.00)

0.000.01|

0.00)

0.00

0.00/0.02]
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5. SONUCLAR

Bu calismanin ana amaci, derin evrigimli sinir ag1 tabanli plankton siniflandirmasinin per-
formansini raporlamak icin farkli yontemlerin ve evrigimli sinir ag1 modellerinin genis bir
deneysel degerlendirmesini yapmaktir. Bu amacgla gergeklestirilen katkilar su sekilde 6zet-
lenebilir: Dengesiz dagilimli bir veri kiimesi olan Kaggle-plankton veri kiimesi kullanildig1
icin veri kiimesi veri arttirma yontemi ve 6n isleme yontemleri uygulanarak iyilestirilmeye
caligtlmigtir. Onceden ImageNet veri kiimesi [69] ile egitilen evrisimli sinir a§1 modellerini;
aktarim 68renmesi, ince ayar, tiim katmanlarin egitilmesi yontemleri olmak iizere toplamda
tic yontem kullanilarak veri kiimeleri ile ayr1 ayr egitilmis ve veri arttirma ve 6n isleme
islemlerinin egitime katkis1 gozlemlenmistir. Siniflandirma modelinin bagarimini arttirmak
amaciyla ortalama topluluk 6grenimi yontemi uygulanmistir. Farkli kayip yontemleri olan
capraz entropi ve odak kayb1 kayip yontemlerinin plankton egitimine etkisi gdzlemlenmis-
tir. Benzer siniflarin gruplanmasi teknigi onerilerek ve gruplanarak egitilen model ile hata

matrisleri karsilastirilarak elde edilen sonuclar analiz edilmistir.

Plankton siniflandirmasinda Kaggle plankton veri kiimesinin iki farkli siirtimii kullanilmustir.
Kullanilan ilk siirtiimde 121 sinifa sahip Kaggle plankton veri kiimesinden, bilim insanlari ta-
rafindan etiketlenemeyen ve bilinmeyen olarak adlandirilan ii¢ simif ¢ikarilmis ve 118 sinifa
sahip, tez kapsaminda Set-1 olarak isimlendirilen veri kiimesi olusturulmustur. Bilinmeyen
olarak adlandirilan ii¢ sinifin veri kiimesinden cikarilmasinin sebebi hangi sinifa ait olacagi
bilinemedigi ve bu sebeple dogru etiketlenemedigi icin egitim basarisini negatif yonde et-
kileyebileceginin diisiiniilmesidir. Ikinci siiriim olarak [[18] calismasinda ve benzer Kaggle
plankton veri kiimesi calismalarinda kullanildig1 gibi plankton smiflarinda minimum 100
goriintiiye sahip 38 sinif secilerek 14.374 goriintiiden olusan Kaggle plankton veri kiimesi-
nin bir alt kiimesi kullanilmistir. Secilen siniflarin her birinde min 108 ve maksimum 1979
goriintii bulunmaktadir. Set-2 olarak isimlendirilen veri kiimesi diger calismalarla yontemin
kargilastirilmast ve veri kiimesinin farkli versiyonlarin1 degerlendirebilmek amaciyla kulla-
nilmistir. Tez kapsaminda plankton siniflandirmasi bagarimini arttirmak amaciyla uygulanan
yontemler Set-1 veri kiimesi iizerinde gerceklestirilmistir. Uygulanan yontemlerden basarili
olduguna karar verilen egitim yontemi ve veri arttirma yontemi Set-2 veri kiimesine ayrica

uygulanmustir.

Deney-1 kapsaminda Set-1 veri kiimesi ii¢ farkli egitim yontemi ve her bir yontem igin {i¢

farkli veri kiimesi secenegiyle egitilmistir. Set-1 veri kiimesi sinif dengesizligine sahip bir
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veri kiimesi olmasi sebebiyle bazi siniflar fazla veriye sahipken bazi siniflar yetersiz sayida
veri icermektedir. Bu durum orijinal veri kiimesi ile egitildiginde yeterli sayida veriye sahip
siniflarda fazla basarim elde edilmesini saglarken, yetersiz veriye sahip simiflarda diisiik ba-
sarim elde edilmesine neden olmaktadir. Ayrica yetersiz sayidaki veri egitimde asirt uyum
durumuyla kargilagilmasina sebep olmaktadir. Bu durumlar1 6nlemek amaciyla Set-1 veri
kiimesine veri arttirim yontemleri uygulanmigtir. Uygulanan iki farkli veri arttirma yonte-
minden biri olan kismi veri arttirma yonteminde, siniflarda belirlenen degerin (60) altinda
veriye sahip olan siniflara veri arttirma yontemi uygulanmistir. Belirli de8erin iizerinde ve-
riye sahip smiflara veri arttirrmi uygulanmamigtir. Uygulanan ikinci veri arttirma yontemi
olan tam veri arttirma yonteminde, siniflarin sahip oldugu veri sayisindan bagimsiz olarak
tiim simiflara veri arttirtmi uygulanmustir. Yatay, dikey olarak tersine ¢evirme, farkli agilarda
uygulanan rotasyon, farkli katsayilarda uygulanan odaklanma Deney-1 kapsaminda uygula-
nan veri arttirma yontemleridir. Set-1 (118 Sinif) veri kiimesinde plankton siniflandirmasi
yapmak amaciyla gerceklestirilen ilk egitimlerde aktarim 6grenmesi yontemi kullanilarak
egitim gerceklestirilmistir. Bu yontem ile elde edilen basarim, %70 civarindan daha yiik-
sege cikamamustir. Aktarim 6grenmesinde, aglarin biiyiik veri kiimelerinde 6nceden egitilmis
agirliklart kullanilmig, sadece son katman degistirilmis ve plankton siniflandirmasinda kul-
lanilan veri kiimesinin sinif sayisina uygun olacak hale getirilmistir. Uygulanan ikinci egitim
yontemi olan ince ayar yonteminde, onceden egitilen agin katman sayisinin %30’ u hesapla-
narak ilgili katmanlarin egitilebilir hale getirilmesi saglanmistir. Evrisimsel sinir aglarinda
ilk katmanlar veriye dair daha genel 6zellikleri 68renirken, son katmanlar veriyle ilgili daha
spesifik ozellikleri 6grenmektedir. Bundan dolay1 son katmanlardan geriye giderek her bir ag
i¢in katmanlarin %70’inden itibaren egitilebilir hale getirilmesinin sonucu nasil etkileyecegi
gozlemlenmek istenmistir. Deney-1 kapsaminda gerceklestirilen ince ayar yontemi sonucu,
aktarim 6grenmesi sonucuna gore orijinal ve kismi veri arttirma uygulanmig veri kiimele-
rinde yaklagik olarak %?2, tam veri arttirma uygulanmis veri kilmesinde %4 daha iyi bagarim
gostermistir. Katmanlarin egitilebilir hale gelmesinin basarima olan etkisini gozlemlemek
amaciyla tiim katmanlarin egitilmesi yontemi kullanilmg, tiim katmanlar egitilebilir hale ge-
tirilmis ve ince ayar yontemi ile kargilastirildiginda orijinal veri kiimesinde %1, kismi veri
arttirma ve tam veri arttirma uygulanmis veri kiimelerinde %3 basarim artig1 gerceklesmistir.
Deney-1 kapsaminda elde edilen veri kiimeleri ve yontemler kullanilarak elde edilen egitim
sonuclar karsilastuldiginda, en iyi sonu¢ aktarim 6grenmesi yontemi ve tam veri arttirma
uygulanarak elde edilen veri kiimesi egitimi sonucunda elde edilmistir. Aktarim dgrenmesi

yonteminin diger yontemlere gore basarisiz olmasindaki en biiyiik sebebin aglarin dnceden

94



egitilen veri kiimesi (ImageNet) ile plankton veri kiimesinin benzerlik oraninin ¢ok diisiik

olmasi sebebiyle oldugu diisiiniilmektedir.

Deney-2 kapsaminda Deney-1 sonucunda en iyi sonucu veren Set-1 (118 Sinif) tam veri art-
tirma uygulanarak elde edilmis veri kiimesi kullanilmistir. Plankton goriintiilerinin ¢ok farkl
boyutlarda olmasi sebebiyle ve evrigsimli sinir aglariin sabit boyut kabul etmesi nedeniyle
goriintiilerde yasanan bilgi kaybin1 6énlemek i¢in kare kirpma ve bosluk ekleme 6n isleme
yontemleri kullanilmistir. Bosluk ekleme yonteminde, ilgili plankton goriintiisiiniin evrisimli
sinir aginin kabul ettigi goriintii boyutuna getirilmesi i¢in etrafina gereken boyut kadar beyaz
pikseller eklenmistir. Kare kirpma yonteminde, evrisimli sinir agina goriintiiler verilmeden
Once goriintiilere ortalanarak kesme islemi gerceklestirilmis ve elde edilen kare plankton go-
rlintiisii, bikiibik interpolasyonu kullanilarak 224x224 boyutu olan evrigsimli sinir aginin girdi
boyutuna gore yeniden boyutlandirilmistir. Yontemlerin ilgili 6n isleme yontemlerine olan
katkisin1 gormek amaciyla ayr1 ayr1 uygulanmistir. Elde edilen sonuglarda, uygulanan 6n
isleme yontemlerinin plankton siniflandirmasinin bagarimina negatif etki ettigi gézlemlen-
mistir. On isleme uygulamalariyla farkli yontemler ile elde edilen sonuclarda %?2-3 arasinda
kayiplar yasanmigtir. Deney-2 sonucunda Onisleme yontemlerinin sonuglari negatif etkiledi-
gine karar verilerek en iyi yontem olarak Yontem-3 ve 0n isleme uygulanmamis (orijinal)
tam veri arttirma ile elde edilmis veri kiimesi secilerek sonraki deneyler bu yontem ve veri

kiimesi ile gerceklestirilmistir.

Deney-3 kapsaminda tiim katmanlarin egitilmesi yontemi ve tam veri arttirma yontemleri,
Set-1 (118 Sinif) ve Set-2 (38 Sinif) veri kiimesi ile bes farkli agda egitilmistir. Inceptionv3,
InceptionResNetv2, DenseNet, ResNet-50 ve VGG-16 aglarinda egitim gerceklestirilmistir.
Set-2 veri kiimesi daha dengeli siniflara sahip oldugundan, Set-1 veri kiimesine gore daha
yiiksek basarim elde edilmistir. En 1yi sonucu veren model, DenseNet modeli olarak goz-
lemlenmigtir. Set-1 veri kiimesinde %78, Set-2 veri kiimesinde %92 agirlikli F1-Skoru elde
edilmistir. Ayrica Set-1 veri kilmesinde %97, Set-2 veri kiimesinde %99.1 ilk-5 (Top-5) skoru
elde edilmigtir. Deney-4 kapsaminda tiim aglardan elde edilen basarimlar ortalama topluluk
yontemiyle birlestirilmis ve sonu¢ Setl veri kiimesinde %80 ve Set-2 veri kiimesinde %93
agirlikli F1-Skoru elde edilmistir. Bu yontem ile aglarin basarimu birlestirilerek Set-1 toplu-
luk modeliyle %2, Set-2 topluluk modeliyle %1 daha yiiksek basarim elde edilmistir. Ayrica
ilk-5 dogruluk orani, Set-1 veri kiimesinde %98, Set-2 veri kiimesinde %99.2 olarak elde
edilmistir. Deney-5 kapsaminda odak kaybi kayip fonksiyonunun farkli hiperparametreleri

ile egitimler gerceklestirilerek sonuglar elde edilmistir. Deney-5 sonucunda test kiimesinden
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elde edilen basarimda artis saglanmamustir, egitim ve dogrulama dogruluk degerlerinde artig
ve kayip degerlerinde azalma gozlemlenmistir. Deney-6 kapsaminda, 118 sinifa ait DenseNet
ag1 tizerinde Deney-3 kapsaminda Set-1 veri kiimesi ile gerceklestirilen deney sonucu elde
edilen modelin hata matrisi hesaplanmigstir. Elde edilen 118x118 boyutundaki hata matrisi,
ayn1 isim altinda toplanan farkli gruplar siitun bazinda toplanarak 118x33 matris elde edil-
misg, sonrasinda her bir sinif icerdigi veri sayis1 miktariyla carpilmistir. Satir bazinda da ayni1
isim altinda toplanan farkli gruplar siitun bazinda toplanarak 33x33 grup matrisi elde edil-
migtir. Elde edilen 0-40 araligindaki hata matrisi her bir ana sinifin icerdigi toplam plankton
sayisina boliinmiis ve 33 grup i¢in 0-1 araliginda olasilik degerleri elde edilmistir. Elde edilen
bu hata matrisi sonucuyla, 33 grup olarak egitimi gerceklestirilen hata matrisi karsilastirili-
mis ve 118 smiftan 33 grup sekline doniistiiriilerek elde edilen hata matrisinin benzer grup
altindaki siniflar1 daha az birbirine karistirdig1 ve daha iyi bir ¢6ziim yolu oldugu sonucuna

varimigtir.

Tez kapsaminda yapilan katkilar su sekilde 6zetlenebilir: Dengesiz dagilimli bir veri kiimesi
kullanildig1 i¢in veri kiimesi iyilestirilmeye calisilmistir. Veri arttirma yontemi ve 6n igsleme
yontemleri uygulanmistir. Onceden egitilen evrisimli sinir ag1 modelleri, aktarim 6grenmesi,
ince ayar, tiim katmanlarin egitilmesi yontemleri olmak iizere toplamda ii¢ yontem kullani-
larak ayr1 ayr egitilmis ve veri arttirma ve On igleme islemlerinin egitime katkis1 gézlemlen-
migtir. Stniflandirma modelinin bagsarimini arttirmak amaciyla ortalama topluluk 6grenimi
yontemi uygulanmustir. Farkli kayip yontemlerinin plankton egitimine etkisi gozlemlenmis-
tir. Benzer siiflarin gruplanmasi teknigi onerilmis ve gruplanarak egitilen model ile hata

matrisleri karsilastirilarak elde edilen sonug analiz edilmistir.

5.1. Gelecek Calismalar

Plankton goriintiilerinin farkli boyutlarda olmasi sebebiyle ve evrigimli sinir aglarinin sa-
bit boyutlarda girdi goriintiisii kabul etmesinden dolay1 plankton goriintiileri yeniden boyut-
landirilirken goriintiide bilgi kaybr olmaktadir. Bu bilgi kaybinin giderilmesi i¢in plankton
goriintiilerine uygulanacak 6n isleme yontemi olarak kaybi onleyen farkli yontemler uygu-
lanarak siniflandirma bagarimina olan etkisi gozlemlenebilir. Bu yontemlerden biri oldugu
diisiiniilen siiper ¢Oziiniirliik (super resolution) yontemlerinin kullanimi daha yiiksek sinif-
landirma bagarimina katki saglayacaktir. Ikinci olarak evrigimli sinir aginmn girdi goriintii-

stinti farkl1 boyutlarda almasini saglayan uzamsal piramid katmani (spatial pyramid pooling)
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mimariye dahil edilerek evrigimli sinir aginin goriintiiyii farkli boyutlarda girdi olarak almasi
saglanabilir. Bu yontemle goriintiilerde daha diisiik bilgi kayb1 oldugundan siniflandirmanin

basariminin artacag diisiiniilmektedir.
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EK1: SOZLUK DIZINi

Aktarim Ogrenmesi
Asirt Uyum

Atk

Az Vuruslu Ogrenme
Bilgisayarl Gorii
Bosluk Ekleme

Cok Katmanli Algilayici
Coklu Akis

Derin Ogrenme

Destek Vektor Makinesi
Dogrulama

Dogru Negatif

Dogru Pozitif
Dondurulmug Katman
El Yapimi Tanimlayicilar
Esik Degeri

Evrigim

Evrisimsel Sinir Ag1
Geri Cagirma

Gradyan Inisi

EKLER

Yerinde Plankton Goriintiileme Sistemi

Yerinde Olmayan Plankton Goriintiileme Sistemi

Ince Ayar
Kaybolan Gradyan
Kay1p Fonksiyonu
Kesinlilik

K-En Yakin Komsu
Kiime Boyutu
Makine Ogrenmesi

Maksimum Ortalama

Ortalama Topluluk Ogrenimi
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: Transfer Learning

: Overfitting

: Residual

: Few-shot Learning

: Computer Vision

: Padding

: MultiLayer Perceptron

: Multistream

: Deep Learning

: Support Vector Machine

: Validation

: True Negatif

: True Positive

: Freezing Layer

: Handcrafted Descriptors

: Threshold

: Convolution

: Convolutional Neural Network
: Recall

: Gradient Descent

: In-situ plankton imaging system
: Ex-situ plankton imaging system
: Fine Tuning

: Vanisihing Gradient

: Loss Function

: Precision

: K-Nearest Neighborhood

: Batch Size

: Machine Learning

: Maximum Pooling

: Average Ensemble Learning



Ogrenme Orani
On isleme
Ozellik

Ozellik Miihendisligi Tabanli

Pekistirme
Rassal Orman
Seyreltme
S1zint1

Sinir Aglari

Ulusal Veri Bilimi Kasesi

Uzamsal Piramid Ag1
Veri Arttirma

Veri Kiimesi

Tam Baglantili Katman
Topluluk

Torbalama Karar Agaci
Yanlhilik

Yanlis Negatif

Yanlis Pozitif

Yerel Ikili Oriintii

Yogun Katman
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: Learning Rate

: Pre-Processing

: Feature

: Feature-based Engineering
: Reinforcement

: Random Forest

: Dropout

: Leaky

: Neural Networks

: National Datascience Bowl
: Spatial Pyramid Network

: Data Augmentation

: Dataset

: Fully Connceted Layer

: Ensemble

: Bagged Decision Tree

: Bias

: False Negative

: False Positive

: Local Binary Pattern

: Dense Layer
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