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Bu calismada, trapez kesitli genis baslikli savak iizerinden gecen akimin
ozellikleri sayisal ve deneysel olarak irdelenmistir. A¢ik kanal akiminin hiz alani
Lazer Doppler Anemometresi (LDA) ile dl¢liilmiistiir. Akimin hareketini idare eden
temel denklemler, sonlu hacimler yontemine dayali ANSYS-Fluent programi
yardimiyla sayisal olarak c¢oziilmiistiir. Sayisal hesaplamalarda Standart k-e,
Renormalization group k-g, Realizable k-¢, Modified k-, Shear Stress Transport ve
RSM tiirbiilans modelleri kullanilmis, su yiizii profilleri Akiskan Hacimleri Yontemi
(VOF) ile hesaplanmistir. Sayisal sonuglarin ag yapisindan bagimsizlastiriimas: GCI
(Grid Convergence Index) yontemi ile gergeklestirilmistir. Sayisal hiz profilleri,
deneysel Olgiimlerle karsilastirilmis ve bu c¢alismada kullanilan tiirbiilans
modellerinin, akimin hiz alanin1 ve akim profillerini belirlemede oldukg¢a basarili
olduklar1 goériilmiistiir. Bununla birlikte, savak yapisindan etkilenen akim bolgesinde
RSM modelinin diger tiirbiillans modellerine gore kismen de olsa, daha basaril
oldugu belirlenmistir.

Anahtar Kelimeler: Trapez kesitli genis baslikli savak, LDA, Tiirbiilans modelleri,
Sonlu Hacimler Yontemi, VOF
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In this study, the flow properties over a trapezoidal-broad crested weir are
investigated experimentally and numerically. The velocity field of the open channel
flow over a trapezoidal-broad crested weir is measured by Laser Doppler
Anemometry. The governing equations of the fluid motion are solved numerically by
ANSYS-Fluent program based on finite volume method. Standart k-¢,
Renormalization group k-¢, Realizable k-¢, Modified k-® Shear Stress Transport and
RSM turbulence closure models are used in the numerical modeling and the flow
profiles are computed using VOF method. The independence of the numerical
solutions from the grid structure is tested with GCI (Grid Convergence Index). The
numerical results for the velocity field are compared with the experimental results
and all of the turbulent closure models are found to be successful in determining
velocity field and flow profile. However, in the region of flow affected by the weir
structure, RSM model is found slightly more successful than the other turbulence
models used in this study.

Keywords: Trapezoidal-broad crested weir, LDA, Turbulence models, Finite volume
method, VOF
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1. GIRIS Nazire Goksu SOYDAN

1. GIRIS

Savaklar acgik kanallarda, akarsularda ve barajlarda debinin 6lg¢iilmesi, suyun
mansaba iletilmesi, su derinliginin diizenlenmesi ve taskin kontrolii gibi farkli
amaglara hizmet etmek i¢in insa edilen en eski ve kolay hidrolik yapilardir. Ayni
zamanda savaklar, tagkin durumunda, nehirdeki fazla suyu tahliye etmek veya
hidroelektrik tesislerde, suyu barajdan savusturmaya yonelik insa edilen c¢ikis
yapisinda oldugu gibi bir¢cok miihendislik uygulamalarinda, giivenlik amaciyla da

kullanilirlar.

. (@ o b (c) . d
Sekil 1.1. Savak cesitleri: (a) Keskin kenarli savak, (b) Genis baslikli dikdortgen
savak, (c) Trapez-genis baslikli savak, (d) Ogee savagi

Sekil 1.1°de goriildiigii gibi savaklarin, keskin kenarli, genis baslikli
dikdortgen, trapez-genis baslhikli savak ve ogee savagr gibi bircok tiri
bulunmaktadir. Farkli savak tiirlerinin tanimlarinin basit ve benzer olmasina karsin
uygulamalar1 ve hidrolik davranislar1 birbirlerinden farklidir. Savaklar uygulamada
genelde kanal akimimna dik dogrultuda yerlestirilirler. Acik kanallarda, kritik alti
akimdan (nehir rejiminden) kritik {istli akima (sel rejimine) gecis siireci meydana
getiren savaklarin akim ¢izgilerine olan etkisi, dolayisiyla akimi tahliye etme
kapasiteleri uygulamadaki kullanimlarin1 etkilemektedir. Savaklarm hidrolik
davraniglari, tahliye kapasitelerine gore degiskenlik gostermektedir. Savak
kapasitesini belirlemede kullanilan en belirgin parametreler, memba derinligine baglh
savak yiiksekligi, kret sekli ve kret uzunlugudur. Burada, savak kapasitesi; savak
kreti lizerinde belirli bir derinlikteki akimin debisini ifade etmektedir.

Acik kanal akimlarinda kritik derinlik esasina dayali dl¢limler sunan genis
baglikli savaklar, sulama sistemlerinde kullanildigi gibi, su kuvveti tesislerinde,

demiryolu ve karayollar1 gibi insaat miihendisligi ile ilgili degisik uygulama



1. GIRIS Nazire Goksu SOYDAN

alanlarinda da karsimiza ¢ikmaktadir. Geleneksel diisey memba 6n yliziine sahip
dikdortgen kesitli genis baslikli savaklarin yaninda {iggen, trapez gibi farkli en
kesitlere sahip genis baslikli savaklar da mevcuttur. Bununla birlikte, trapez kesitli
savaklarin diger savak tiirlerine nazaran daha diisiik yiik kayiplar1 dogurmasi,
dolayisiyla tahliye kapasitelerinin daha biiyiik olmasi, bu savaklarin uygulamada
kullanimin1 yayginlastirmistir. Trapez kesitli savaklarda oldugu gibi memba 6n
yliziinlin egimli yapilmasi, suda tasinan katt maddelerin gegisini de
kolaylastirmaktadir. Buna karsin, bu tiir savaklarin 6zellikle de betondan imal
edilmesi, yap1 maliyetlerini artirmaktadir.

Trapez genis baslikli savak yapisinda oldugu gibi, kontrol yapilart ile
etkilesim halinde olan akimlarin analizleri fiziksel model deneyleri ile
yapilabilmektedir. Bu amagla bir¢cok deneysel model kurulmus ve bunlar {izerindeki
deneysel kosullar incelenerek akim karakteristikleri belirlenmeye ¢alisilmistir. Ancak
model calismalarinda, 6lgek etkilerinden kaynaklanan bazi kaginilmaz hatalarin,
sonuglar {izerinde etkisi oldugu da bilinmektedir. Ote yandan, suyun hareketini idare
eden denklemlerin, viskozite ve tiirbiilans ifadeleri icermesi bu tiir problemlerin
teorik  ¢Oziimiinii  gliclestirmektedir.  Gliniimlizde, akim-yap1  etkilesimi
problemlerinin ¢6ziimleri i¢cin Hesaplamali Akiskanlar Dinamigi (Computational
Fluid Dynamics-CFD) yontemlerinin yaygin olarak kullanilmaya baslanmasi,
hesaplamalarda Onemli gelismelere ve acik kanal akimlarinin analizinde ise
ekonomik, hizl1 ve kolay ¢6ziimlere imkan saglamistir.

Bu calismada, trapez kesitli genis baslikli savak ile etkilesim halinde bulunan
acik kanal akimiin ozellikleri deneysel ve sayisal olarak incelenmistir. Serbest
yiizeyli acik kanal akiminin hiz alam1 bir boyutlu Lazer Doppler Anemometresi
(LDA) ile ol¢iilmiistiir. Akimi idare eden denklemeler, sonlu hacimler yontemine
dayali ANSYS-Fluent paket programi yardimiyla alti farkli tiirbiilans modeli
kullanilarak sayisal olarak ¢oziilmiistiir. Su yiizlinlin teorik olarak belirlenmesinde
Akiskan Hacimleri Yontemi (VOF) kullanilmistir. Standart k-e, Renormalization
Group k-¢, Realizable k-¢, Modified k-, Shear Stress Transport ve Reynold Stress

Model tiirbiilans modellerini kullanarak elde edilen sayisal hiz profilleri ve su yiizii
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profilleri deneysel sonuglarla karsilastirilmistir. Ayrica, kanalin farkli kesitlerindeki

tiirbiilans karakteristikleri deneysel olarak incelenmistir.
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2. ONCEKI CALISMALAR

Kontrol yapilar1 olarak kullanilan savaklarla etkilesim halindeki agik kanal
akimlarinin analizi konusunda geg¢miste birgok deneysel ve teorik calisma
yapilmustir.

Faltas ve ark. (1989), trapez engel iizerinden gecen akimin ozelliklerini teorik
olarak incelemislerdir. Farkli Froude sayisi ve degisik taban sekillerinin kullanildig:
calismada Froude sayisi, taban sekilleri ve taban yiiksekliginin trapez engel
tizerinden gegen akimin yapisi tizerindeki etkilerini ortaya koymuslardir.

Hager ve Schwalt (1994), genis baslikli savak lizerinden gecen akimin
ozelliklerini  farkli akim durumlart i¢in deneysel olarak irdelemislerdir.
Calismalarmin sonucunda, savak iizerindeki basing ve hiz dagilimlarinin tim akim
durumlar i¢in benzer 6zellikler gosterdigini belirtmislerdir.

Akoz (1996), keskin kenarli ve liggen savak lizerinden gecen akimin
ozelliklerini deneysel ve sayisal olarak incelemistir. Potansiyel akim yaklasimi ile
Laplace diferansiyel denklemini sonlu elemanlar ve sonlu farklar yontemleri
kullanarak sayisal olarak ¢Ozmiistiir. Muline ile gerceklestirilen hiz alaninin
Olctimiinden elde edilen deneysel bulgular, sayisal bulgularla karsilastirilmistir.
Yapilan karsilastirmalarin neticesinde, bu tiir iki boyutlu acik kanal akimlarin
ozelliklerinin belirlenmesinde deneysel ¢aligmalarin yaninda sayisal yontemlerin de
basaril1 bir sekilde kullanilabilecegi-gdsterilmistir.

Montes (1997), diizlemsel kapak altindan gegen akim i¢in siirtlinmesiz akim
kabulii ile sayisal bir ¢6ziim yoOntemi gelistirmis, deneysel ve sayisal daralma
katsayilar1 arasindaki farkliliklart irdelemistir. Sayisal su yiizi profili ile akim
alaninin farkli kesitlerinde hesaplanan sayisal hiz ve basing dagilimlarini deneysel
Olctimlerle karsilastirmistir. Yaptig1 karsilastirmalarin neticesinde sayisal bulgularin,
deneysel dl¢iimlerle biiyiik oranda uyumlu oldugu sonucuna varmistir.

Behr (2001), yaptig1 ¢aligmada dolusavak mansabindaki enerji kirict yapi
tizerindeki akimin 6zelliklerini incelemistir. Akiskan hareketinin temel denklemlerini
sonlu elamanlar yontemi ile ¢6zmiis, akim profili ve savak bolgesindeki hiz alanini

sayisal olarak belirlemistir. Calisma sonucunda elde ettigi bulgular neticesinde
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hesaplamali akigkanlar dinamigi tekniklerinin, bu tip yapr-akim etkilesimi

problemlerinde basarili bir bigimde kullanilabilecegini belirtmistir.

Chen ve ark. (2002), yaptiklar1 g¢aligmalarinda basamakli dolu savak
tizerinden gegen akim profilini sayisal ve deneysel olarak modellemislerdir. Sayisal
modellemede, akimi idare eden temel denklemleri Standart k-¢ tiirbiilans modelini
kullanarak ¢ozmiisler, su yiiziiniin teorik olarak belirlenmesinde VOF yontemi
kullanmislardir. Sayisal ve deneysel bulgularin karsilastirilmasi sonucunda diisiim
bolgesinde goriilen ¢ok kiiglik farkliliklarin disinda, genel olarak deneysel ve sayisal
akim profillerinin olduk¢a uyumlu oldugu goriilmiistir.

Sarker ve Rhodes (2004), dikdortgen kesitli genis baslikli bir savak ile
etkilesim halindeki a¢ik kanal akiminin ozelliklerini deneysel ve sayisal olarak
irdelemislerdir. Akimin hareketini idare eden temel denklemler, sonlu hacimler
yontemine dayali Fluent Paket programi yardimiyla sayisal olarak ¢oziilmiistiir. Su
yiizlinlin sayisal olarak belirlenmesinde Akigkan Hacimleri Yontemi (VOF)
kullamilmistir. Sayisal ve deneysel bulgularin karsilastirmalarindan, sayisal akim
profillerinin deneysel olarak olgiilen akim profilleri ile olduk¢a uyumlu oldugu
bildirilmistir.

Ashgriz ve ark. (2004), yan silindirik bir yapi ile etkilesim halinde bulunan
akimi, sonlu elemanlar yontemine dayali ¢oziim yapan ANSYS paket programini
kullanarak sayisal olarak modellemislerdir. Sayisal su yiizii profillerini VOF
metodunu kullanarak elde etmislerdir. Sayisal ¢oziimlerden elde ettikleri basing ve
hiz dagilimlarini grafiksel olarak gdstermislerdir.

Zerihun ve Fenton (2004), ¢calismalarinda kisa ve genis baslikli trapez savagin
tizerinden gecen akimin Ozelliklerini deneysel ve sayisal olarak incelemislerdir.
Gelistirdikleri tek boyutlu akim modeli ile kret iizerindeki serbest yiizeyin
egriselligini ve hidrostatik olmayan basing dagilimini teorik olarak analiz etmislerdir.
Piiriizli ve piiriizsiiz savak yiizeyleri i¢in yaptiklari ¢alismadan elde ettikleri sayisal
bulgular1 deneysel dl¢iimlerle karsilastirmislar, sayisal sonuglarin deneysel verilerle
gayet iyl uyum sagladigini rapor etmislerdir

Seker (2006), licgen bir savak arkasindaki akimi sayisal ve deneysel olarak

modellemistir. Akimin hiz alanini, pargacik goriintiilemeli PIV teknigini kullanarak
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Olgmistiir. Sonlu elemanlar yontemine dayali ANSY'S paket programindan elde ettigi
sayisal sonuglart deneysel Olgiimlerle karsilagtirmistir. Su yiiziiniin sayisal olarak
belirlenmesinde VOF yontemini kullanmistir. Yapilan karsilastirmalar sonucunda,
deneysel ve sayisal akim hizlari ile su yiizii profillerinin birbirleri ile gayet uyumlu
oldugu sonucuna varmistir.

Johnson ve Savage (2006), ogee profilli iki farkli dolu savak {lizerinden gegen
akimi sayisal ve deneysel olarak modellemislerdir. Temel denklemlerin sayisal
¢Oziimlerini sonlu hacimler yontemine dayali Flow-3D paket programi kullanarak
elde etmislerdir. Serbest su yiiziinii belirlemede VOF metodunu kullanmislardir.
Sayisal sonuglardan elde edilen savaklanan akimin debisini ve savak tizerindeki
basing dagilimmi deneysel olgiimlerle karsilagtirmislardir. Bu calisma sonucunda
sayisal modellemenin, barajlar ve ogee profile sahip dolu savaklarin analizinde
giivenli bir seklide kullanilabilecegi sonucuna varmislardir.

Ramamurthy ve ark. (2006), trapez kanaldaki acgik kanal akiminin {i¢ boyutlu
yiizliniin belirlenmesi i¢in VOF metodunu kullanmislardir. Sayisal olarak elde edilen
su yuzii profillerini, hizlar1 ve basinglari deneysel Olctimlerle karsilagtirmislar,
sonuglarin uyumlu oldugunu rapor etmislerdir.

Hargreaves ve ark. (2007), tarafindan deneysel olarak incelenen, genis
baglikli savak ile etkilesim halindeki ac¢ik kanal akimini, Standart k-, SST ve RNG
k-¢ tiirblilans modellerini kullanarak ANSYS-Fluent paket programi yardimiyla
analiz etmislerdir. Sayisal modellemede serbest su yiizii profilini belirlemek icin
VOF metodunu kullanmiglardir. Farkli tiirblilans modelleri kullanilarak yapilan
sayisal analiz sonuglari ile deneysel sonuglarin karsilastirilmasi neticesinde, ANSY'S-
Fluent paket programinin su yiiziinii belirlemede basarili oldugu, oyulma ve dolgu
barajlar gibi daha kompleks yapilarin sayisal analizlerinde de rahatlikla
kullanilabilecegini belirtmislerdir.

Oner ve ark. (2007), acik kanal igerisindeki dikddrtgen genis baslikli bir
savak lizerinden gecen iki-boyutlu agik kanal akimini teorik ve deneysel olarak
incelemislerdir. Hiz alanin1 deneysel olarak PIV teknigi ile 6lgmiislerdir. Hareket

denklemlerinin sayisal c¢oOziimlerini, ANSYS-Flotran paket programi ile elde
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etmisler, serbest su yiiziiniin hesabint VOF metodu ile gergeklestirmislerdir. Sayisal
modellemede Standart k-g, Standart k- ve SST tiirbiilans kapatma modellerini
kullanmislardir. Sayisal olarak elde edilen akim hizlarini1 ve su yiizii profillerini
deneysel Ol¢limlerle karsilastirmiglardir ve Standart k- tlirbiilans modeli
kullanilarak elde edilen bulgularin, diger modellere gore deneysel 6lgiimlerle daha
uyumlu oldugunu belirlemislerdir.

Kirkgbéz ve ark. (2008), dikdortgen ve iicgen kesite sahip savak iizerinden
gecen acik kanal akiminin 6zelliklerini deneysel ve sayisal olarak incelemislerdir.
Temel denklemlerin sayisal ¢oziimleri, sonlu elemanlar yontemine dayali ANSYS-
Flotran paket programi yardimiyla, Standart k-¢ ve k- tirbiilans modelleri
kullanilarak elde edilmistir. Su yiizii profillerinin belirlenmesinde VOF metodu
kullanilmistir. Hiz alanmi, pargacik goriintiilemeli hiz ol¢iimi (PIV) teknigi ile
Olciilmiis ve elde edilen deneysel bulgular, sayisal bulgularla karsilagtirilmistir.
Yapilan karsilagtirmalar neticesinde, k- tiirblilans modelinin k- tiirbiilans
modeline gore deneysel sonuglara daha yakin oldugu sonucuna varilmistir.

Akoz ve ark. (2009), diisey bir kapak altindan gegen iki-boyutlu acik kanal
akiminda hiz alanin1 PIV teknigi ile Olgmiislerdir. Temel denklemlerin sayisal
¢Oziimlerinde tiirblilans viskozitesini Standart k-&¢ ve Standart k- tiirbiilans
modellerini kullanarak sonu elemanlar yontemine dayali ANSYS-Flotran paket
programi yardimiyla elde etmislerdir. Su yiizii profilinin sayisal hesabinda VOF
metodunu kullanmiglardir. Sayisal hesaplamalarda kullanilan ag yogunlugunun
sayisal ¢oziimlerdeki etkisini arastirmiglardir. Deneysel hiz profillerini sayisal hiz
profilleri ile karsilastirmiglar ve Standart k-¢ tiirbiilans modelinin deneysel sonuglarla
daha uyumlu oldugunu belirlemislerdir.

Kirkgoz ve ark. (2009), agik kanal igerisinde kati sinira yakin dairesel silindir
ile etkilesim halindeki iki-boyutlu tiirbiilansh akimin 6zelliklerini deneysel ve teorik
olarak irdelemislerdir. Silindir etrafindaki akimin hiz alani, PIV teknigi ile deneysel
olarak Olclilmiistiir. Standart k-g, Standart k-o ve SST tiirbiilans modelleri
kullanilarak {i¢ farkli ag yapist icin sayisal ¢oziimler elde edilmistir. Deneysel ve

sayisal bulgularin karsilastirilmasindan, Standart k-o ve SST tiirbiilans modelleri
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kullanilarak elde edilen sayisal bulgularin, deney bulgularina daha yakin oldugu
sonucuna varilmistir.

Sargison ve Percy (2009), trapez genis baslikli savak iizerinden gecen akimi
deneysel olarak incelemislerdir. Farklt memba ve mansap egimlerinin basing ve su
yiizli profilleri tlizerindeki etkilerini arastirmiglardir. Calisma sonucunda, savak
yiiksekligi arttirilarak elde edilen daha yiiksek memba egimlerinde, kretteki su
derinliginin ve buna bagli olarak basincin azaldigini rapor etmislerdir. Memba egimi
yiiksek savaklarin, memba egimi az olan savaklara gore debi katsayisinin daha kii¢iik
oldugu, mansap egimi degisiminin ise su yiizli profilinde ihmal edilebilir
degisiklikler meydana getirdigini belirtmislerdir.

Wang ve ark. (2010), calismalarinda memba ve mansap egimi 0.5 olan trapez
dolgu savagin iizerinden gegen akimi deneysel olarak modellemisler ve hiz alaninin
Olciimiinii PIV teknigi ile gerceklestirmislerdir. Farkli akim kosullari igin su yiizii
profillerini, hiz alanlarin1 ve debi katsayilarini analiz etmislerdir. Elde ettikleri
bulgulardan, akimin yapisinin, Froude sayis1 ve kuyruk suyu derinligi ile dogrudan
iligkili oldugunu belirtmislerdir.

Simsek (2011), egrisel genis baslikli savak {lizerinden gecen akimin
Ozelliklerini sayisal ve deneysel olarak analiz etmistir. Deneysel calismada hiz
alanm1 Laser Doppler Anemometresi (LDA) ile Olgmiistiir. Sonlu hacimler
yontemine dayali Ansys-Fluent paket programi yardimiyla Standart k-, RNG k-g,
Realizable k-g, SST ve RSM tiirbiilans modellerini kullanarak elde ettigi sayisal
bulgular1 deneysel bulgularla karsilastirmis ve RNG k-¢ tiirbiilans modeli ile elde
edilen sonuclarin deneysel dlciimlere daha yakin sonuglar verdigini gérmiistiir.

Bal (2011), genis baslikli dikdortgen savak iizerinden gegen akimi deneysel
ve sayisal olarak modellemis, akimin hiz alanini ise LDA ile 6l¢miistiir. Akimi1 idare
eden denklemler, sonlu hacimler yontemine dayali ANSY S-Fluent paket programu ile
sayisal olarak ¢oziilmiis ve bu hesaplamalarda Standart k-, RNG k-¢, Realizable k-¢,
Modified k-m, SST ve RSM tiirbiilans modellerini kullanmistir. Akim profilini VOF
yontemi ile hesaplamistir. Teorik olarak elde edilen su yiizii ve hiz profillerini

deneysel dlgiimlerle karsilagtirmis, SST tiirbiilans modelinin, hiz alani ve su yliziiniin



2. ONCEKI CALISMALAR Nazire Goksu SOYDAN

hesaplanmasinda diger tiirblilans modellerine gore daha basarili oldugunu
belirlemistir.

Haun ve ark. (2011), trapez kesitli genis baslikli savak lizerinden gecen akim
profilinin sayisal olarak hesaplanmasinda 3D FLOW ve SSIIM 2 yontemlerini
kullanmiglardir. Sayisal analiz sonuglarini, deneysel 6l¢iimlerle karsilastirmiglardir.
Sayisal ve deneysel memba su seviyeleri arasinda farkin %1.0 ve %3.5 arasinda
kaldiginm1 ve kullanilan iki farkli yontemden elde edilen sayisal sonuglarin kullanilan
ag sayisina ve ag boyutuna bagli oldugu sonucuna varmislardir.

Kirkgoz ve ark. (2012), kapak kontrollii yarim silindir savak {izerinden gegen
akimi iki farkli deney kosulu i¢in sayisal ve deneysel olarak modellemislerdir.
Sayisal modellemede, sonlu hacimler yontemine dayali ¢6ziim yapan ANSY S-Fluent
paket programini kullanmislardir. Deneysel olarak elde ettikleri su yiizii profillerini,
VOF metodu kullanilarak farkli tiirbiilans modelleri ile hesaplanan sayisal su yiizii
profilleri ile karsilastirmiglardir. Sayisal ve deneysel su yiizii profillerinin
karsilastirilmasinda, Standart k-¢ tiirbiilans modelinin su yiizlinii belirlemede diger
tiirbiilans modellerine gore daha basarili oldugu sonucuna varmislardir.

Oner ve ark. (2012), keskin kenarli kapak ile etkilesim halinde bulunan, iki
boyutlu serbest yilizeyli akimi deneysel olarak incelemislerdir. Kapak membasinda
olusan akimin hiz alanmi, PIV teknigi ile 6lgmiislerdir. Akimi idare eden temel
denklemlerin sayisal ¢oziimlerinde tiirbiilans viskozitesinin hesabi i¢in standart k-¢
tiirbiilans modelini ve su yiiziiniin belirlenmesinde VOF metodunu kullanmislardir.
Sayisal ¢oziimlerde ag yapisinin ¢oziimler iizerindeki etkisini belirlemek icin ii¢
farkli ag yapis1 olusturmuslar ve sayisal analizlerden elde ettikleri sonuglari deneysel
bulgularla karsilastirarak hiz alanini ve su yiiziinii belirlemede en uygun ag yapisini
elde etmeye calismislardir.

Azimi ve ark. (2013), diger arastirmacilar tarafindan yapilan sabit bir kret
uzunlugunda, farkli kret egimine, farkli memba ve/veya mansap egimine sahip genis
bashikli savaklarin iizerinden gecen acik kanal akimlarmmin deneysel ol¢iimlerini
kullanarak genis baslikli savaklar i¢in debi katsayisi gelistirmislerdir. Sirasiyla
memba ve mansap uzunluklarimi arttirarak, memba ve mansap egimlerinin debi

katsayilarina olan etkilerini arastirmislardir. Yaptiklar1 ¢alismadan, memba ve/veya
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mansap egimine sahip genis bashikli savaklarin, diger savak tiirlerine gore daha

biiyiik tahliye kapasitelerine sahip oldugu sonucuna varmislardir.
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3. DENEY DUZENEGIi VE YONTEM

3.1. Deney Diizenegi

Deneyler, Insaat Miihendisligi Hidrolik Laboratuvarinda uzunlugu 8 m,
genisligi ve yiiksekligi 0.3 m olan cam duvarli bir agik kanalda yapilmistir (Sekil
3.1). Laboratuvardaki su deposundan bu kanala suyun iletilmesi bir pompa
yardimiyla gerceklestirilmektedir. Kanaldaki suyun debisi, kanalin membasindaki
hazneye suyu getiren boru iizerinde yer alan vana ile ayarlanmaktadir. Suyun
hazneden kanala gecisinde, akist diizenlemek icin giris bolgesine filtre sistemi
yerlestirilmistir. Deney modeli olarak Sekil 3.1°de goriilen 1 m uzunlugundaki trapez
kesitli genis baslikli savak kullanmilmistir. Trapez savagin memba ve mansap egimi
1/5, kret uzunlugu 0.3 m ve kret yiiksekligi 0.075 m’dir. Deneyler, kanaldaki akimin
debisi Q1=0.0076 m*/s (durum 1) ve Q>=0.0142 m>*/s (durum 2) olacak sekilde iki
farkli akim kosulu i¢in yapilmistir.

Sematik gosterimi Sekil 3.2.°de verilen deney diizeneginde Durum 1 igin
memba su derinligi ho=0.131 m, kesit ortalama hiz1 V,=0.194 m/s, memba akiminda
Froude sayis1 Fr, (=Vo/(gho)"*)=0.172 ve Reynolds sayis1 Re, (=4V,Ro/v)=47600
olarak belirlenmistir (R, hidrolik yarigap ve v kinematik viskozitedir). Durum 2 i¢in
ise su derinligi hy=0.159 m, V,=0.297 m/s, Fr,=0.237 ve Re,=80680 dir.

Akim hiz1 6l¢timleri, Laser Doppler Anenometry (LDA) teknigi kullanan bir
Olciim sistemi olan DANTEC LDA ile ger¢eklestirilmistir (Sekil 3.2.).

13
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3.2. Lazer Doppler Anemometresi (LDA)

Giliniimlizde, savak iizerinden geg¢en akimda oldugu gibi, yapi-akim
etkilesiminin s6z konusu oldugu miihendislik uygulamalarinin model ¢alismalarinda,
akimin kinematik yapisim1 belirlemek i¢in deneylerde genellikle muline, kizgin-tel
(hot-wire), kizgin-film (hot-film), Particle Image Velocimetry (PIV) ve Laser
Doppler Anemometresi (LDA) gibi Ol¢lim teknikleri kullanilmaktadir. Muline,
kizgin tel ve kizgin film, akimin hizin1 akiskan icerisine bir dl¢iim ucu yerlestirilmesi
vasitasiyla 6lgmektedir. Bu sekilde yapilan dl¢glimlerde akim rahatsiz edilmekte ve bu
rahatsizlik Ol¢lim hatalarina yol acabilmektedir. Bunun yaninda PIV ydntemi,
diizlemsel bir bolgedeki anlik hizlari, akimi etkilemeden hassas bir sekilde
Olcebilmekte ve akim karakteristiklerini belirleyebilmektedir. LDA ise benzer
sekilde, yine akimi etkilemeden lazer 1sim1  yardimiyla noktasal Olglim
yapabilmektedir. Deney alaninda farkli zamanlarda tek bir noktada yapilan
Olclimlerle hiz alaninin belirlenmesi, 6zellikle ayrilmis akim bdlgeleri ve karmagik
yapiya sahip akimlarin yapisini tanimlamada yetersiz kalabilmektedir. Ancak LDA,
kat1 sinira yakin bolgedeki noktasal hizlarin belirlenmesinde, bir baska ifade ile siir
tabakas1 bolgesindeki hiz profilinin ve tiirbiilans karakteristiklerinin daha hassas bir
sekilde elde edilmesi hususunda diger Ol¢iim tekniklerine gore {istiinliik
saglamaktadir.

LDA, belirli bir ortama gonderilen lazer 1s18indaki sagilma yardimiyla tek bir
noktadaki hizi dlgebilmektedir. Istenilen noktadaki hiz bilesenlerini kisa siirede
birbirini takip eden ylizlerce 6lglim sonucunda belirler. Isin iireticisinden ¢ikan ve
mercek vasitastyla kirilan 1ginlar hizin dlgiilecegi noktaya odaklanir. Bu lazer 1511
ortama gonderildigi zaman 151n ortam igerisindeki molekiiller tarafindan saptirilir ve
sacilir. LDA, lazer isimminin doppler frekansindaki degisimini tespit ederek hiz
Olctimiinii gerceklestirir. LDA sisteminde foto detektor tarafindan toplanan dlglimsel
bilgiler, akim islemcisi tarafindan anlik olarak BSA Flow Software yazilimia
gonderilmektedir. Laser Doppler Anemometresi’nin calisma prensibine ait daha
genis bilgi Durst ve ark. (1981), Goldstein (1983) ve Ardiglioglu ve Kirkgdz (1994)

tarafindan verilmistir.
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LDA hiz 6l¢lim cihazi, Sekil 3.3.’de goriildiigii gibi, {i¢ dogrultuda hareket
kabiliyetine sahip bir ¢erceve sistemine yerlestirilmistir. Bu sistemin iizerinde yer
alan hareket kollar1 vasitasiyla, akim alanindaki istenilen bir noktada anlik hizlarin

hassas bir sekilde 6l¢iilmesi miimkiin olmaktadir.

||]|a

Olgiim
noktasi

Sekil 3.3. Deneylerde kullanilan LDA ¢er¢eve sistemi

Bu calismada, trapez-genis baslikli savak akiminda anlik akim hizlari, kanal
simetri ekseni boyunca Dantec® LDA 62N04 bir boyutlu akim 6lger kullanilarak
elde edilmistir. Lazer dalga uzunlugu 660 nm, lazer demetleri arasindaki mesafe 60
mm ve Olgiilebilen hiz sapinglart 0.7 pm/s> den 4.6 mm/s’ ye kadar
degisebilmektedir. LDA sisteminde, foto detektor ile birlikte BSA F30 (62N60) tipi
akim islemcisi kullanilmigtir. Ayrica anlik Olgiilen hizlarin prosesi, analizi ve
grafiksel olarak islenmesi Dantec LDA sistemi i¢cinde yer alan BSA-Flow yazilimi ile

gergeklestirilmistir.
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\ 4 t
Sekil 3.4. Tiirbiilansh akimda ortalama hizin tespiti

LDA ile laboratuvar ortaminda yapilan 6l¢iimlerde noktasal hiz degerleri belli
bir T am1 boyunca o noktada Olciilen tiim anlik hiz degerlerinin ortalamasinin
alinmasi ile elde edilmektedir. Olgiilen anlik hiz degerlerinin sayis1 o bolgedeki
partikiil sayilar1 ile orantilidir, dolayisiyla kati sinirdan serbest yiizeye gidildikce
partikiil sayilarinin artis gostermesi beklenmektedir. T integrasyon zamani olup bu
calismada 40 s olarak secilmistir (Sekil 3.4). Zaman ortalamali hiz biiyiikliikleri,
anlik hiz Ol¢iimlerinin prosesi sonrasinda elde edilmektedir. Ayrica anlik hiz
degerleri Olgiilebildiginden u', yani hiz sapinglari ve buna bagh tiirbiilans siddeti
degerleri de elde edilebilmektedir. Anlik akim hiz1 u, ortalama akim hiz1 U ve hiz

sapinct u’ arasindaki iliski asagidaki gibi ifade edilmektedir:

u=u+u’ (3.1.)
u—ﬁéu 2.

Olgiilen bilesen dogrultusundaki tiirbiilans siddetinin (I) dl¢iisii olarak hiz

sapincinin kareler ortalamasinin karekokii (rms) :

ur, = /%iz::(u—ﬁ)z (3.3.)
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(3.4)

seklinde elde edilir. Burada N 6l¢iilen hiz numunesi sayisidir.
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4. TEMEL DENKLEMLER Nazire Goksu SOYDAN

4. TEMEL DENKLEMLER VE TURBULANS MODELLERI
4.1. Temel Denklemler

4.1.1. Sikismayan Tiirbiilansh Akista Siireklilik Denklemi

Sikismayan, tiirbiilansli 3 boyutlu akimda u =u +u’', v=v+Vv’ ve

w=W+Ww' anlik hiz bilesenlerini gl =0 siireklilik denkleminde yerine

i

yazalim:

0 (_ 0 _ 0, ou. ou!
— U+ )J+—F+V) +—W+w)=0 — 1 i
8x(u u) ay(V V') 6Z(W w') Veyaa .+8x

i i

=0 (4.1.)

Bir At zaman araligi i¢in (4.1) denkleminin zamansal ortalamasini alalim. Ornek

olarak birinci terimin zamansal ortalamasi alinirsa:

0 . n 1[0 al,_ 0|1~ . | du
a—(u+u)—— ! [8_(u+u)}dt__{A_t I(u+u )dt}— x (4.2)

elde edilir. Benzer sekilde, diger terimlerin de zamansal ortalamalar1 alinirsa (4.1)

stireklilik denkleminin zamansal ortalamasi asagidaki gibi olur:

LN 0 veya Pizg 43)
ox oy oz ox

(4.1) denkleminden (4.3) denklemi ¢ikarilirsa:
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4. TEMEL DENKLEMLER Nazire Goksu SOYDAN

@'+ﬁ+%’—0 %—0 4.4
x oy oz veya . 4.4,

elde edilir ki (4.3) ve (4.4) denklemlerinden, ortalama hiz bilesenleri ve tiirbiilans hiz

sapinglarinin ayni siireklilik denklemini sagladigi goriilmektedir.

4.1.2. Stkismayan Akimlar I¢cin Hareket Denklemi

Kartezyen koordinatlarda bir akim alami i¢inde dx, dy, dz boyutlu bir

elemanter kontrol hacmi i¢indeki sistem i¢in Newton’un 2° kanunu;

S =Ms _ 4 1G4 = j—dmdV (4.5.)
dt dts ) at

veya elemanter bir dm sistem kiitlesi i¢in bu ifadeyi asagidaki gibi yazabiliriz;
= AV
QK = dm-_ - =adm (4.6.)

Esitligin sag tarafinda yer alan akigkan ivmesi:

. dv &V oV ov oV
a=—=u—+Vv—+ +—

wL (4.7.)
dt ox oy oz ot

ZFS = dm(ii—V =adm ifadesinin tamamlanabilmesi igin esitligin sol tarafinin
t

yani sisteme etkiyen dis kuvvetlerin belirlenmesi gerekir. Bunlar kiitlesel ve yiizeysel
kuvvetlerdir. Akima etkiyen kuvvetler, kiitlesel ve yiizeysel basing ve kayma

kuvvetleri olarak siralanir, buna gore;

Kiitlesel Kuvvetler: Birim kiitleye X, y, z dogrultularinda etkiyen kiitlesel kuvvetler

X, Y, Z ise bunlarin bileskesi

20



4. TEMEL DENKLEMLER Nazire Goksu SOYDAN

K=Xi+Yj+Zk (4.8.)

seklindedir. dm = pdxdydz Kkiitlesine etkiyen kiitlesel kuvvet bilesenleri:

Xpdxdydz (4.9.)
Y pdxdydz (4.10.)
Zpdxdydz (4.11.)

Yiizeysel Kuvvetler: Kartezyen koordinatlara gére akimin bir noktasindaki gerilme

durumu Sekil 4.1°deki skaler bilesenlerle belirlenir.

Tyz
Gy Txz
Ox ‘ Txy

Tyx
Tyx
Txy Tyz Ox

dz T |

/?/ZX
z dy
y Tzy | 5,
X dx

Sekil 4.1. Diferansiyel bir eleman ylizeyine gelen gerilmeler

Oy Ty Ty |—>Xcksenine dik diizlemde

6, T, |—>yeksenine dik diizlemde

yX y yz
T, T, O, |>zcksenine dik diizlemde
VR A

xdog.ydog. zdog.
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bir noktadaki ortalama normal gerilme:
6,+6,+0,
3

G= (4.12.)

olduguna gore akiskanlardaki basing gerilmesi pozitif olarak alinirsa bir noktadaki

ortalama basing su sekilde olur:

_ P TPy tD,
= (4.13))

Buna gore akiskan elemaninin merkezindeki gerilmeler, gerilme tansorii ile
belirli ise, x eksenine dik eleman yiizii lizerindeki gerilmeler ile x ekseni
dogrultusundaki diger yiizeylerdeki gerilmeler Sekil 4.2°de goriilmektedir. Kayma

gerilmelerinin pozitif yonii koordinat merkezine uzak yiizde, negatif yonii ise yakin

yiizdedir.
dx B
or,, dz T+
dy T, +Tﬂ7 ox 2
iz
p . or,, dx
T Xz [~
dc. dx T +_yxd_y ox ot dx
o, - Ox X »T oy 2 T, +—L
*oax 2 dz ‘ E 7Y ox 2
< —H 9"‘ an d_X
. arxy dl * ox 2
xy ox 2 o dx R T _aryx dy
xz ~ - ;. )
00X, 2 v
7 9T, dx S % oz 2
oax 2
z
y

Sekil 4.2. x ekseni dogrultusundaki gerilmeler
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Basin¢ Kuvvetleri icin (Sekil 4.2) ele alinirsa;

x dogrultusunda;

o+ I [ 00, &Ny — s dedydz
ox 2 ox 2 ox

y dogrultusunda;

0 5] 0
{Gy 0o, dy ( _&d_yﬂdzdx _ %% ydad
oy 2 dy 2 oy

z dogrultusunda;

5, + 0.2 —(oz &, %] dxdy = 2= ddxdy
oz 2 o0z 2 0z

olur.

Kayma kuvvetleri ise; x dogrultusunda:

ot
+|:TZX +—Z"——(rzX ——Z"—ﬂdxdy ZEydydxdz +

y dogrultusunda:

o or.
= —2 dzdydx + —= dxdydz

0z 0z

23
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z dogrultusunda:

o
= T dvdady + 8; dydzdx

ox
Newton’un 2. Kanunu yazilirsa;
> F=dma
dm = pdxdydz

. dv
a=—

dt

Birim hacme gelen bileske dig kuvvet:

sl

2F_;

dm
f =Kkiitlesel kuvvet ( fk )+yiizeysel kuvvet ( f“y )
Fi =pK = p(Xi + Yj+ k)

x eksenine dik yiizeylere gelen bileske kuvvet:

T I gohr [T - Lo X qvdz = X gedydz
ox 2 ox 2 ox

24
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ot

y ekseni icin = —> dydzdx (4.26.)
oy
. aT

z ekseni igin = p ~ dzdxdy (4.27.)

z

Birim hacme gelen bileske yiizeysel kuvvet:

VT (4.28.)

BuradaT normal ve kayma kuvvetlerini tanimlamaktadir.

Yiizeyler i¢in TX, Ty, TZ gerilme vektorleri asagidaki gibi yazilabilir.

T =io, +j1, +kt, (4.29.)

T, =i, +jo, +kt,, (4.30.)

T, =it, +jt, +ko, (4.31.)
burada T, : x’ e dik diizlemde y dogrultusundaki kayma gerilmesi

Sikigmayan viskoz akimlar i¢in vektdr tansor-notasyonu ile hareketin

diferansiyel denklemi:

vV = [
P - pK + [VT (4.32))

Yukarida elde edilen hareket denklemleri gerilme bilesenlerini icermektedir.
Akigkanlarin hareketi incelenirken bu ifadelerin hiz gradyani cinsinden yazilmasi

daha kullanigh olmaktadir. Bu iligki Stokes kanunlar1 ile saglanmaktadir. Stokes
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kanunlar1 elastik ortamlardaki Hooke kanunlarinda yapilan baz1 degisikliklerle elde
edilmektedir. Bu degisikliklerin neticesinde hiz gradyanlar1 cinsinden hareketin
diferansiyel denklemi asagidaki sekilde yazilabilir:

x dogrultusu igin;

o x P, O o 2
dt =pX- = 8x[ (28X 3d1VV)] W)
T LA TRAS) WA YL RES) -
oy 8y 0x 0z 0z
y dogrultusu igin;
dv_ P 01 % 24N
Py PY o ay[u(z o S divV)] s
T TR P QNS
oz~ 0z oy ox- oy O
z dogrultusu i¢in
dw _ o @ O 0w 24 o
Pg =P7 o, ol H g, 3 AW 435,
i) Py VPR N
ox ox 0z oy 0z 0Oy

Yukarida goriilen ifadelere Newtonien olmayan akigkanlarin hareket
denklemleri denmektedir ve bu denklemler 7 bilinmeyen icermektedir. Bunlar: u, v,
w,p, P 1, T.

Hareket denklemleri lineer olmadigindan bu sekilleriyle ¢6zlimii cok zordur.
Bu yiizden denklemlerde bazi sadelestirmeler yapmak gereklidir.

Newtonien akigkanlar i¢in p=sabit alarak x dogrultusu i¢in denklemi

yazarsak;
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du o’u 2 0'u o'v  O'w
—=pX-@+2u—2-—u( 3 )
dt Ox 0x~ 3 0Ox 0x0y 0x0z (4.36)
o°’v  0’u o’w  0%u T
+ p( +—) + 1 )
oxoy oy’ | oxoz oz
d_u_ _@ E( 62u_282u_ o’v 0*w
P P ok 3 o o “oxdy oxor W)
o’v _ofu 0% . d*w o
+3 +3 > 3 3 )
oxoy Oy 0% oxéz
du o’u o*v o*'w _0'u ,0%u
P _px L kTN, OV, S 4350 (4.38)
dt ox 3 ox O0X0y 0x0z oy 0z
2 2 2 2 2 2
p & _ox P MO, OV OW G0N 30U 300y 30)
dt ox 3 0x° Ox0y O0xo0z Ox oy oz

2 2 2
pd_usz_@+Ei @+@+@ + 1 6121+6121+8121 (4.40)
ox* Oy Oz

du op no
X-P RO GV ne? 4.41.
TP T Tk YT (441)

y ve z yonil i¢in de ayn1 sekilde yazilirsa;

pi—:—pY-%+§%div\7+u§2V (4.42.)
dw op HLO . & 2o

—=pZ-—+——divV+uVv 4.43.
i P % 3 e (4.43.)

Vektorel notasyon ile yazilacak olursa;
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Py =PR-Vp+ V(V.V)+pV2V (4.44.)

Sikismayan akimlarda p = sabit ve divV =0 dir. Buna gore hareket denklemleri;

du o =»

= oox-Eiuw 4.45.
Py ~PX-5 TRV (4.45.)
p_d“ =pY - P, uv3v (4.46.)

dt oy

du o oo

= _ 7 -2 Viw 4.47.
s S - (447,

Seklinde elde edilir. Bu denklemlere sikismayan akimlar i¢in hareket denklemleri

denmektedir. Vektdrel notasyon ile yazilacak olursa;

p— =pK -Vp+uv?V (4.48.)

3 dogrultudaki bilesenleri:

du op

— =pX ——+uV?u veya
Py —PX o TRV u Ve
2 2 2
p u@-FV@—I-W@—I—@ =pX—@+p 81;+6121+8121 (4.49.a.)
ox Oy oz ot ox ox~ Oy o0z
d
p—ZpY—@+},LV2V veya
dt oy
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2 2 2
p u@+vé+w@+@ =pY—@+p 0 \2/+8 \2/+5\2/ (4.49.b.)
ox 0oy 0z ot oy ox~ oy o0z
dw op )
= 57— L viw veya
Prat ~PeT e TV Y

2 2 2
p u@+vﬁ+w@+@ :pZ—@+p o v2v+8 \72v+8 ‘;V (4.49.c.)
ox oy oz ot 0z ox oy 0z

Navier-Stokes denklemleri olarak bilinen bu denklemler, bagimsiz olarak,
Fransa’da Navier (1823), Poisson (1831) ve Saint- Venant (1843) ile Ingiltere’de
Stokes (1845) tarafindan elde edilmistir.

4.1.3. Sikismayan Tiirbiilansh, Newtonien Akiskan Akiminda Hareket
Denklemleri (Reynolds Denklemleri)

Burada, Navier-Stokes denklemlerinin zamansal ortalamalar1 alinarak,
sikigmayan, tiirbiilansli, Newtonien akiskan akimma uyarlamasi yapilacaktir. Ornek

olarak Navier-Stokes denkleminin x bilesenini ele alalim:

p[u@+v_+W@+@j:pX, —%—}—“Vzu (4.50.)

,)8(ﬁ + u')

p(t+u +p(V+v)

=pX—§(5+p’)+ V(@ +u’)

Bu denklemin zamansal ortalamasmi alalim. Ornegin, birinci terimin

zamansal ortalamasi
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aO(+u)  oOu —ou ,ou ,ou'
A T Zpu 4.52.
S T P P pu e pul (4.52)

p(ﬁ+u

seklinde yazilir. (4.52.) denkleminin ikinci ve tglincii terimlerinin zamansal
ortalamalar1 ou'/ 0x ve u’ niin zamansal ortalamasi sifir oldugundan, sifirdir. Béylece

(4.51.) denklemindeki terimlerin zamansal ortalamalar1 asagidaki gibi bulunur:

o(u+u') —pﬁau ou'

p(E+u’) PR (4.53.2.)
(7 +v) 28 _ pV;pV‘ % (4.53b.)
ol +w') 28D pW%—erW'% (4.53.c.)
%(5 +p')= a_E (4.54)
uV2(@+u')=pv2a (4.55.)

Bu degerler (4.51.) denkleminde yerine yazilirsa, sikismayan, tiirbiilansl,

Newtonien akigkan akiminda Reynolds hareket denkleminin x bileseni elde edilir:

p L L T ZpX—@+uV2ﬁ
ox oy 0z ox
(4.56.)
— u’ﬁ{. V'a_vul_|_ W’@!
Pl P ey TP
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bdylece, Reynolds denkleminin ii¢ dogrultu i¢in bilesenleri asagidaki gibi yazilir:

p(ﬁ%+v@+v—v?+%J:pZ—?wVZm%(—pw_W)
oy 0z z (4.57..)
0 -—. 0 0
+—(—pV W) +— (—pw">
ay( pv W) 62( pw?)
p(ﬁg+\7@+\7?+%jZPX—%"'HVZV"'%(_WF)
o oz : i (4.57)
+ 2 o+ 2 —ouw
ay( pu'v) 82( pu'w)
p(ﬁ@+V@+W?+%j:pY—@+uV2W+§(—p1W)
4 ; % ] (4.57.c.)
+—(—pV) +—(—pV W
ay( pvVY) az( pv W)
veya Kartezyen tensor notasyonu ile:
ou,  ou op o’u. o
PY; X P TP ox;  Ox;0X; GXJ(TU) (#38)

seklinde ifade edilirler. Bu denklemler, tiirbiilansli akim i¢in Reynolds Ortalamali
Navier Stokes denklemleri olarak anilmaktadirlar. Bu ifadeler Navier Stokes
denklemlerine ilave olarak Reynolds (veya g¢alkant1) gerilmelerini icermektedir.

Reynolds gerilmeleri tansorii asagidaki gibidir:

12 (A reo !

o, T, T, -pu -puv.  —puw

_ S _ [ 12 [
T, =1 =|T, O, T,|=[—-puv —pv —pvVw (4.59.)

I T 2

T, T, O, —pu'w’ —pv'w' —pw'

Reynolds denklemlerinde ii¢ boyutlu akista bir basing, li¢ hiz bileseni
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bulunur. Tirbiilans kayma gerilmelerinin isleme katilmasiyla birlikte iic boyutlu
akigta 6 adet bilinmeyen daha ilave edilmis olmaktadir. Toplam 10 bilinmeyen
terime karsilik 4 denklem bulundugundan denklem sisteminin ¢oziimii miimkiin
olamayacaktir. Bir bagka ifadeyle sistem kapatilamayacaktir. Reynolds
gerilmelerinin neden oldugu bu duruma kapanma problemi (Closure Problem) adi
verilmektedir. Tirbiilans modelleri, Denklem 4.59° daki tj; 'nin hesaplanmasi ve

boylelikle de denklem sisteminin kapatilmasi gorevini iistlenmektedirler.
4.2. Tiirbiilans Modelleri
Turbilansli akimda kiitlenin ve momentumun korunumunu idare eden temel

denklemler (Reynolds Ortalamali Navier-Stokes denklemleri) kartezyen tansor

notasyanunda asagidaki gibi yazilabilir:

i=0 (4.60.)

ou, _ ou, op ou, 0
p =pg - + + (Tij) (4.61.)

OX . u@x? 0x|

Denklem (4.60.) ve (4.61.)’de u; hiz bilesenlerini, p basinci, p akigskanin
dinamik viskozitesini, p akiskanin yogunlugunu, pgi yerg¢ekiminin sebep oldugu
kiitlesel kuvveti, t zamani, 1;; ise tiirbiilans kayma (Reynolds) gerilmelerini ifade
etmektedir. Reynolds gerilmeleri Boussinesq yaklagimina gore asagidaki gibi ifade
edilir:

2

1. =—pulu = %+% —=0.pk 4.62
ij = TPuu; = Ly ox, ox,) 3 iP (4.62.)

denklemdeki uj ve uj ise tiirbiilans hiz sapinglarini, ., tiirbiilans viskozitesi, 5ij ise
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Kronecker delta olarak adlandirilir. Denklemin sag tarafinda bulunan ikinci terim,

stkismayan akislar i¢in normal gerilmenin toplaminin her zaman tiirbiilans kinetik
enerjisine esit olabilmesini saglama amaciyla bulunmaktadir (Eger i=j ise 5ij=1).

Denklem 4.62’de ifade edilen p: degerlerinin belirlenmesi igin ¢esitli tiirbiilans
modelleri kullanilmaktadir. Bu ¢alismada, literatlirde en ¢ok tercih edilen modeller

ele alinmistir.
4.2.1. Standart k-¢ Tiirbiilans Modeli (SKE)

k-¢ tiirbiilans modelinde, tiirbiilans kinetik enerjisi (k) ve onun kayip orani
“disipasyonu” (¢) i¢in iki adet transport denklemi, Reynolds denklemlerine ek olarak
coziilmektedir. € ’un gercek transport denkleminin elde edilmesi Navier-Stokes
denklemlerinden miimkiindiir (Davidson, 2005). Ancak bu denklemler son derece
karmagiktir ve pek c¢ok bilinmeyeni i¢cermektedir. Arastirmacilar bu denklemler
yerine ¢ok daha sadelestirilmis bir hali olan modellenmis & denklemini tiirbiilans
modellerinde kullanilmak tizere adapte etmislerdir. Elbette her modelde oldugu gibi
bu modelde de pek ¢ok yaklasim, varsayim ve ithmal s6z konusudur. Sonug olarak,
modellenmis ¢ transport denklemi, k transport denklemine ¢ok benzer bir formda ve
basitlestirilmis bigimde kullanilmaktadir.

k-& modellerinde tiirbiilans viskozitesi,

formunu almaktadir. Cu tirbulans modeli sabitidir.

Standart k-g¢ tiirbiilans modeli, iki denklemli tiirbiilans modelleri arasinda
ekonomikligi ve pek ¢ok akis olayinda kabul edilebilir dogrulukta sonu¢ vermesi
acisindan yaygin olarak kullanilan yari ampirik bir modeldir. Tiirbiilans kinetik
enerjisi (k) ve kayip orani (¢) i¢in yazilan iki adet transport denkleminin ¢6ziimii ve

tiirbiilans viskozitesinin hesabini icerir. Kaldirma kuvvetleri etkisi ihmal edildiginde,
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bu transport denklemleri k ve € i¢in sirasi ile;

0 0 0 ok

Z (oK) +—(pku)=—IT = |+G, — 4.64.

5 (P + 5 (k) axj[ kanJ+ —pE (4.64.)

0 0 0 O £ g’

—(pe)+—(peu,)=—| I', — |+C,, -G, -C,. p—-R 4.65.

6‘[ (p ) 6Xi (p u1) axj[ € 8XJJ le k k 2£p k ( )
seklinde yazilabilir. Diflizivite terimleri:

T, z(w&j ve I, = (WhJ (4.66.)

Gs 6k

Hiz gradyanindan kaynaklanan tiirbiilans kinetik enerjisini tiretimini ifade eden terim

v auj
G, =—pu u; g (4.67.)

olup burada tiirbiilans viskozitesi, tiirbiilans kinetik enerjisi ve onun kayip orani

cinsinden
n =pC, (4.68.)
e

yazilabilir. Bu modelde R=0 olup, deneysel sabitleri c, =144, c, =192,

C, =0.09, k ve ¢ i¢in tiirbiilans Prandtl sayilar1 Gy = 10,0, =13 tiir (Launder ve

Spalding, 1972). Denklem (4.64) ve denklem (4.65) asagidaki gibi ifade edilebilir:

k veya e'un k veya e'un k veya €'un k veya €'un k veya e'un
degisim + 1 konveksiyonla ; =1 difizyonla + < liretim —1kayp
miktari tagmimu tagmimmu miktari miktari
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4.2.2. RNG k-¢ Tiirbiilans Modeli (RNG)

RNG k-¢ tiirbiilans modeli Yakhot ve Orszag (1986) tarafindan diisiintilmiis
ve gelistirilmis (Yakhot ve ark., 1992) yine iki denklemli bir model olup esas
itibariyle Navier-Stokes denklemlerinden renormalization group teorisi kullanilarak
elde edilmistir. Bu modelde k ve € i¢in transport denklemleri denklem (4.64.) ve
denklem (4.65.)’deki gibi yazilabilir. Temel farki, sabitlerin farkli olmasi ve ilave
terimlerin gelmesidir. RNG k-¢ tiirbiilans modelinde (4.64.) ve (4.65.) esitliklerinde

bulunan difiizivite terimleri asagidaki gibi olur:

Fo=ap, , Ip=ou, (4.69.)

Burada akiskanin viskozitesi ile tiirbiilans viskozitenin toplami olan efektif viskozite

TREITERTH (4.70.)

olup asagidaki adi diferansiyel denklemin ¢ézlimiinden elde edilir.

2 /
d 2K |17 B d(p,/w) @.71.)
Ver Yl /u) =1+C,

Bu denklem, diisiik Re sayis1 etkilerinin hesaba katilmasini saglamaktadir. RNG k-¢
modelinin standart k-¢ modeline gore en biiyiik farki, € denklemine ilave olarak gelen
R terimidir. Bu terim,

R G d-nny) £

T (4.72)

ifadesiyle hesaplanir. Bu ifade, denklem (4.65.)’de yerine konup denklemin

sagindaki 3. terim ile birlestirilmesi halinde transport denklemi,
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0 0 0 0e € ., gl
Z(pe) +—(peu.)=—| T = |+C,. 2G, —C 2 p—
8t(p«s) ox, (pgu,) = j[ . axjj e Gk Cmp (4.73.)

sekline dontisiir. Denklemdeki CZS terimi asagidaki gibi ifade edilir:

. c,n’(1-nmy)

C,.=C, + 4.74.
2¢ 2 1+ BT]3 ( )

€

Burada n, tiirbiilans kinetik enerjisinin iiretimi ve kayip oraninin bir fonksiyonu olur:

n=sk (4.75.)
€
burada S= /2SS, (4.76.)
L 477
) ox; 0X, @77)

seklinde ifade edilir. Bu ilave terim, standart k-¢ modelinde olmayan, yiiksek kayma
oranlar1 ve akim c¢izgisi egriliklerini g6z Oniine almas1 agisindan 6dnemlidir. Kayma
oraninin kuvvetli oldugu (yliksek n) durumlarda kayip artmakta, bu da tiirbiilans
viskozitesini ve k degerini azaltmakta yani akistan daha az enerji ¢ekilmesine yol
acmaktadir. Boylece sirkiilasyon olan bolgelerde biiyiikliigii deneysel verilere daha
yakin ¢ikmaktadir. Bu modelde kullanilan sabitler Ci=1.42, Cy:=1.68, C,=100,
no=4.38, p=0.012, C,=0.0845 dir.

Denklem (4.78.)’de @, V€ 0, parametreleri k ve ¢ icin efektif Prandtl

sayilarinin tersini gostermekte olup, RNG teorisinden analitik olarak tiiretilen
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0.3679

| 0—1.3929]"""| 0 +2.3929| n 4.78.)

o, —1.3929]  |a, +2.3929 i,

ifadesinden hesaplanmaktadir. Burada «,=1 dir. Yiiksek Reynolds sayilarinda

(W, ((Da, =a, =1.393 olmaktadir.

4.2.3. Realizable k-¢ Tiirbiilans Modeli (RKE)

Standart k-¢ tiirblilans modelinde bulunan C, sabitinin degeri ataletli sir
tabaka alt1 bolgede elde edilmistir. Gergekte bu sabit farkli akis bolgelerinde degisim
gostermektedir. Ustelik tiirbiilans viskozitesinin hesabinda kullanilan modelin
yiiksek sekil degistirme miktarlarinda “anlamsiz” (non-realizable) oldugu uzun

zamandir bilinen bir gergektir. Buna gore, Sk/e)3,7 oldugunda, normal gerilme

negatif olabilmekte ve hatta Reynolds gerilmelerinde Scwartz esitsizligi ihlal
edilmektedir (Shih ve ark., 1995). RKE modelinde bu problemlerin Oniine
gecebilmek ic¢in standart k-¢ ve RNG k-¢ modellerinde sabit olan C, katsayisi

dinamik bir form almaktadir. Buna gore

1
C,=—— (4.79.)
n
A +A, —kU
€

seklinde tanimlanmistir. Denklem (4.79.)’da bulunan terimler,

U =,/s;S, +Q,Q, (4.80.)

Qij = Qij _2gijk0‘)k aQij =Q;

1

— &0y (4.81.)

As = \/ECOS(p (= %arccos(\/gW) (482)
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S.S. S,
W=1 §J§ K (4.83.)
S=.8;S; (4.84.)

~

seklinde ifade edilir. Burada Qij, 0, acisal hiziyla donmekte olan bir referans

sistemine gore ortalama donme miktar1 ve Sij ise sekil degistirme hizi tansoriidiir.

RKE modelinde standart k-¢é modelinden farkli olarak yeni bir kayip miktari

denklemi de gelistirilmistir;

&

0 o0 52 ooy 2| [ e
a(PS) +$(Pﬁuj)—axj ch ]6}(

] € J

2

€
+pCS, -pC, ——=— 4.85.
‘pl pzk_l_\/g ( )

Burada,

sk

C, = maks 0.43;1(—8 (4.86.)
S—+5
€

C, =1.9 seklinde verilmektedir. Goriildiigii gibi €’un olusumu ve kaybi tamamen

farkli bir formda ele alinmis ve olusumu bir fonksiyona baglanmistir. RKE modeli
gelistirilmis bicimi ile yiiksek Reynolds sayisina sahip ve tamamen tiirbiilansh

akislar i¢in uygun oldugu bildirilmistir (Shih ve ark., 1995).

38



4. TEMEL DENKLEMLER Nazire Goksu SOYDAN

4.2.4. Modifiye k-o Tiirbiilans Modeli (MKW)

Wilcox, kendisine ait Standard k-« modelini (Wilcox, 1988) modifiye ederek
asagidaki Modified k-® modelini (Wilcox, 1998) vermistir. Yeni k- modelinde,
diisiik-Reynolds-sayis1 ~ diizeltmelerini de goz Oniline almak tizere, tiirbiilans
viskozitesine bir séniim fonksiyonu eklenmistir. ikinci transport denklemi olarak €

yerine tlirbiilans kinetik enerjisinin 6zgiil kayip orani, =g¢/k, kullanilmistir.

Bu model ile tiirbiilans viskozitesi i, k-denklemi ve w-denklemi asagidaki gibi ifade

edilmektedir.
p,=a" Bk (4.87.)
o)

Burada, o* diisiik Reynolds sayis1 diizeltmesi i¢in soniim fonksiyonudur.

k-denklemi:

0 0 o n, ) ok ou, .

2 (oK) + —2 (pku. )= -2 Lk Pl 2L B pk 4.88.
ot PR+ 5 (Pku) aij“ckjaij”uaxj B"pko (4.88.)
w-denklemi:

0 0 0 L, | 0w o Ou, 2

< +- 9% (oku)=-2 P | 99 D S 4.89.
o P axj(p ) aijMGJaXJ.J”kT”axj Ppo (489,

o +Re /R B pk
o = vk o Po 0072, Re=—, R, =6
1+Re R, R T I
1
a:O,52(lo+Ret/Rw’ o, =—, R, =2.95, c, =2, csw:2,
o 1+Re,/R, 9
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1, 1 <0

4/15+(Re,/R,)*
9 +(Re /Ry) ’ RB:8 f[;*: 1+680Xi

B* :B:fﬁ* BZ =

1 4 , >0
00 1+(Re/R,) Tl
1+7 Qs 1 ok o
BByt f= e _|22S| LD g iy )
1+80x, ™ | (Biw)’ o ox; x0T T

k-® modelinin yiiksek-Reynolds-sayisi formunda: o =1, B, =9/100.

MKW modelinin, kat1 ile sinirlandirilmig ya da serbest tiirbiilansli akimlarin
analizinde, sinir tabakalarin logaritmik hiz bdlgesinde, pozitif basing gradyaninin

oldugu ayrilma bolgelerinde, SKE modeline gore tistiinliik sagladig ifade edilmistir.
4.2.5. SST k-o Tiirbiilans Modeli (SST)

Standart k- modeli (Wilcox, 1988) sinir tabaka akislarinda yiiksek basari
sagliyor olsa da, Menter (1992)’in ters basing gradyani iceren sinir tabaka akislari
icin yaptig1 popiiler tiirbiilans modelleri karsilastirmasinda, standart k- modeliyle
gercekei hiz profillerinin yani sira, haddinden fazla kayma gerilmesi hesaplandig:
belirtilmektedir. S6z konusu calisgmada Menter bunun nedeninin modelin kayma
gerilmesinin taginiminin hesabini igermedigi belirtilmekte ve tiirbiilans viskozitesinin
hesabinda yaptig1 kiigiik bir degisiklik ile sonuglarin iyilestirilmesini saglamistir.
Calismada tiirbiilans viskozitesinin standart taniminin ters basing gradyani iceren
akiglarda hatali sonucglarin kaynagi oldugu belirtilmektedir. Bu diisiince uyarinca
Menter (1992) tiirbiilans viskozitesinin hesabinda pratik bir degisiklik yaparak
kayma gerilmesinin 0.3 (Bradshaw sabiti) k’den daha biiyiikk ¢ikmamasini
saglamistir. Ayrica tiirbiilans viskozitesinin hesabina akilli bir fonksiyon ekleyerek
bu degisikligin yalnizca sinir tabaka bolgesinde kalmasini saglamistir. Buna gore

tlirbiilans viskozitesinin hesabi,

k
W =p— (4.90.)
max(a,m; QF,)
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seklinde degistirilmistir. Burada a;, 0.3’e esit sabit sayiyr gostermektedir.  sinir
tabaka icerisinde iki boyutlu bir akis i¢in diisliniilecek olursa —— tiirevini

gostermekte, ancak genel kompleks akislar icin girdaplhilik biiyiikliigii olarak
alimabilmektedir. F» ise smnir tabaka igerisinde 1 ve disinda O olan, iki deger
arasindaki gec¢isin yumusak bigimde olmasini saglayan akilli bir fonksiyondur. Buna

gore F» fonksiyonu,

F, = tanh(arg>) (4.91.)
arg, = max vk S0 4.92
| 0.090. ~ y’o (492

seklinde tanimlanmaktadir. Burada y ile duvardan normal yondeki uzaklik ifade
edilmektedir.

Wilcox (1991), standart k-@ modelinin 6zellikle serbest kayma akislarinda
o’nin giris simirindaki degerlerini asir1 derecede bagli oldugunu ve tiirbiilans
viskozitesinin degerlerini iki kattan fazla degistirebildigini gostermistir ve ® taginim
denklemine bazi eklentilerin yapilmasi gerekebilecegini belirtmistir. Boylece Menter
(1993), smir tabaka icerisinde, bu bolgede ¢ok basarili olan orijinal k-® modelini
kullanip serbest kayma akislarinda ise modelin serbest akim degerlerine
baghligindan kurtulmayr amagclayarak ® tasinim denkleminde onemli degisiklik
yapmustir. Denklem standart k-¢ modelinde kullanilan € tasinim denkleminde
degisken doniistimii yapilarak kullanilmakta ve bdylece standart k- modelinde
kullanilan ® taginim denklemine “capraz diflizyon™ ad1 verilen terim eklenmektedir.

Ancak bu terimin siir tabakada ¢ok basarili olan orijinal formu etkilememesi
icin (-ki etkilemektedir) (Wilcox, 1998) akilli bir fonksiyon ile bu terimin yalnizca
serbest akislarda ve sinir tabakanin iist bolgelerinde kullanilmasi saglanmistir. Buna
gore SST k-o modeli, tlirbiilans viskozitesinin hesabinda daha once sozii edilen

degisiklik disinda, smir tabaka igerisinde orijinal k- modelini, serbest kayma
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akislarinda ise standart k-¢ modelini kullanmaktadir. SST modelinde kullanilan

tiirbiilans kinetik enerjisi, k ve 6zgiil kayip oran1 o i¢in transport denklemleri;

0 0 0 ok ou,
—(pk)+—(pku,)=—| I', — |+ 1, — —PB,pk 4.93.
at(p )+6Xi (p 1) axj[ k an]+TU an ka @ ( )
0 0 0 0w ou, 2
—(po)+—(pou.)=—|I', — [+ 1, — B p»
PGl o, (pou;) ax.[ ‘”ax,J i 5 PoP
! ! ! (4.94.)
+2(1=F))o, 1K 9o
® OX; OX;

seklindedir. ® denkleminde en sonda yer alan capraz difiizyon terimi F;
fonksiyonuna baglanmistir. Buna gore tiirbiilans viskozitesinin hesabindaki mantiga
benzer bicimde sinir tabaka icinde viskoz alt tabaka ve logaritmik tabakada

fonksiyon 1 degerini almakta ve disariya dogru yavasga 0’a dogru degismektedir. F;

fonksiyonu,
F, = tanh(arg}) (4.95.)
. k  500v 4pk
arg, = min| max vk S b P 5 (4.96.)
0.0%. y°o | o,,cdy
1 dk Odw
cd = max| ———;107%° 4

seklinde tanimlanmaktadir. Fonksiyon temel olarak, logaritmik tabakadan sonra
stirekli 1 degerini alabilmek i¢in tiirbiilans boy 6lgeginin ¢ok kiiclildiigii viskoz alt
tabakada ikinci terimi devreye sokmaktadir. Ayrica standart k-¢ modelinin, @’ nin
serbest akim degerlerinden etkilenerek sinir tabaka disindaki o degerinin ¢ok kiiciik
hesaplama egiliminin 6niine ge¢ebilmek icin fonksiyondaki iigiincii terim vasitasi ile

fonksiyonun miimkiin oldugunca daha kiiciik degerler alarak duvara daha yakin bir
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noktada 1 degerine ulasmasi hedeflenmistir. SST modelinin iki ayr1 model arasinda
gecisi icin katsayilar da yine F; fonksiyonuna baglanarak ¢ herhangi bir katsayiyi

temsil etmek {izere,

¢=Fo, +(1-F)o, (4.98.)
seklinde hesaplanmaktadir. Menter katsayilar {izerinde de hafifce degisiklikler

yapmistir. Buna gore model sabitleri,

B, =0.09,a,=031,k=041,6_, =0.856,5,, =1.176,5,, =2

2
C K
B@1=0.075,'Yl :B_“’l_ ol

P \Be

2
- BmZ _ Gu)ZK

Yz_E \/E

.6, =1,6,, =1.168 B., =0.0828,

seklinde verilmektedir. Menter (1994), orijinal modelin hassas noktalarin

vurgulayarak SST modeliyle karsilagtirmalara yer vermektedir.

4.2.6. RSM Tiirbiilans Modeli (RSM)

“Reynolds Gerilmesi Modeli” (RSM) admi alan bu yontem Reynolds

gerilmelerinin (pu'; u'; ) dogrudan transport denklemlerinin ¢dziimiiyle hesaplanmasi

esasina dayanir (Gibson ve Launder, 1978; Launder, 1989). Reynolds gerilmesi
tasinim denkleminin Navier-Stokes ve RANS denklemlerinden basit matematiksel
manipiilasyonlarla birka¢c adimda elde edilmeleri miimkiindiir. S6z konusu denklem
Reynolds gerilmelerinin her bileseni i¢in tiim taginim mekanizmasinin fizigini
icermektedir. Elde edilen denklemin terimleri fiziki anlamlarina uygun bigimde
basitlestirilip modellenerek, her Reynolds gerilme bileseni i¢in ayr1 bir denklem elde
edilmektedir. RSM ozellikle sekil degistirmenin karmasik bir yapi sergiledigi ve
egriselligin oldugu akislarda tiirbiilans viskozitesi modellerine gore daha avantajlidir

(Davidson, 2005). Sonug olarak, 6 adet Reynolds gerilmesi denklemi ve Reynolds
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gerilmesi taginim denkleminde yer alan kayip terimi i¢in de 1 adet disipasyon taginim
denklemi ile birlikte {i¢ boyutlu simiilasyonlarda 7 adet ekstra denklem ¢oziilmesi
gerekmektedir. Tahmin edilecegi lizere RSM, hesaplama agisindan masrafli bir

modeldir.

Kaldirma kuvvetlerinin etkisi ihmal edildiginde bu transport denklemleri

asagidaki formda yazilabilir:

0, —— 0 -
S (PU U+ = —(pu, U U) =D+ Dy + Py + g+ (4.99.)
k

Denklemin sag tarafindaki terimler sirasi ile

Tiirbiilans difilizyon terimi:

0
DT,ij = _a [pu'i u'j u'k +p(8kju'i+8iku'j )] (4100)

Molekiiler difiizyon terimi:

0 0
Dy T LH u‘iu'jJ (4.101.)
K

Tiirbiilans gerilmeleri tiretim terimi:

P.=—plu. u a—u_j+u' u' a—u_‘ (4.102.)
i p| U Uy ox, i jaxk .102.
Basing uzatma terimi:
o =p i, N 4.103
e (4.103)

Dissipasyon terimi:
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g, = 2o T (4.104.)

Bu terimlerden DTij,(Pij, €;; ve terimleri yeni ve bilinmeyen korelasyonlar

icermekte  olup  hesaplanabilmeleri i¢in  modellenmeleri  gerekmektedir.
Genellestirilmis gradyan diflizyon hipotezinin basitlestirilmis formu kullanilarak

tiirbiilans gerilmelerinden kaynaklanan iretim terimi

a “ au'.u'.
D, = e 4.105.
t,1) 8Xk (Gk an J ( )

Seklinde modellenebilir (Lien ve Leschziner, 1994). Lineer yaklasim kullanilirsa
basing-uzama terimi {i¢ bilesenin toplami seklinde yazilabilir. Bu bilesenler yavas ve
hizl1 basing-uzama bilesenleri ile cidar etkisini ifade eden ¢;w bilesenidir (Gibson ve

Launder, 1978; Launder, 1989). Buna gore basing-uzama terimi

. 1 ; (4.106.)
- C2|:[Pij - g(PPIU'iu'j ] - E(Pkk - g(PPIU'kUk'H 0w
|

seklinde yazilabilir. Burada C;=1.8, C;=0.6 alimmistir. Sikismayan akim igin

dissipasyon terimi ise

2
€= §p86ij (4.107.)

seklinde tanimlanir. Bu denklemlerde gegen tiirbiilans kinetik enerjisi k=lﬁ/2

ifadesinden bulunabilirken bunun dissipasyonu olan & fonksiyonu, denklem
(4.73.)’de R=0, Ci=1.44, C2:=1.92, 6:=1.0 ve tiirbiilans {iretimi terimi Gi=0.05P;;

alinarak elde edilir.
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4.3. Tiirbiilansh Akimda Hiz Dagilim I¢in Logaritmik Duvar Kanunu (law of
the wall)

Smir tabakasmin tiirbiilansh i¢ bolgesinde hiz dagilimi i¢in von Karman-
Prandtl tarafindan verilen ve duvar kanunu (law of the wall) olarak bilinen logaritmik
hiz dagilim ifadesi kullanilmaktadir. Bu ifade asagidaki gibi elde edilebilir. Viskoz
alt tabaka ile tiirbiilansli i¢ bolge ara kesitinde, yani Y= 0, icin akim hiz1 (4.108) ve

(4.109) denklemlerinden asagidaki gibi yazilabilir:

u :p\/‘l’f/psz*y (4.108.)

U =8 _ 1Y 4.109.

Ve Kk h ( )
uvt — V*Sv Ve uvt l 11’1 8V + umak (4.1 10.)
V. v Vi K Vi

bu iki deger esitlenirse,

V-9, =lln6—v+uﬂburadan uLak=V*—8V—lln8—v (4.111.)
% K 0 V. V. v K 0
Degeri (4.110) denkleminde yerine yazilirsa:
l:llnz_l nS_V_+_ v Veya, u :llnl-i-v*—SV (4112)
Ve K K O v V. K Y

Burada , 1_ A sayilarak sag taraftaki ikinci terim logaritma terimi ile birlestirilirse:
K

=A1nlv*—8V+B veya, Yo AanYY,B (4.113))
V. o, Vv V. v

v

u
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seklinde logaritmik kanunu olarak bilinen hiz dagilim ifadesi elde edilir.
Denklemdeki B ylizey piiriizliiligline bagl bir sabittir.

Nikuradse (1933)’nin cilali1 boru deneylerinde A =2.5, von-Karman sabiti
Kk =0.4,B=5.5 degerleri elde edilmistir, buna gore logaritmik hiz dagilimu:

u

=25InYY 155 (4.114)
Vi A%

Seklindedir. Daha sonra g¢esitli arastirmacilar tarafindan yapilan deneylerde, bu
sabitler icin A =243-25 ve B=4.7-7araliklarinda degisen degerler
bulunmustur.

Kirkgoz (1989) tarafindan piiriizsiiz tabanl agik kanal akimlarinda yapilan
laboratuvar deneylerinde k=0.41 bulunmus ve (Reynolds sayisina bagli olarak)
50—80<v.,y/v<200—600 ve 0.14—0.05< y/8 <0.6—0.5 kosullar1 i¢in logaritmik
hiz dagilimi1 asagidaki gibi verilmistir:

u V.Y

=2.44In—2 +55 (4.115.)
Vi A%
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5. SAYISAL COZUM
5.1. Sonlu Hacimler Yontemi

Tiirbiilanslt bir akim, karmasik bir yapiya sahip oldugundan dolayr Reynolds
ortalamalt Navier-Stokes denklemlerinin veya genel skaler transport denkleminin
sayisal olarak mevcut siir kosullar ile analitik olarak ¢oziilmesi miimkiin degildir.
Bu nedenle bu denklemlerin ¢6ziilmesi icin cebrik denklemlere doniistiiriilebilmesi
gerekmektedir. Bir denklemin ayriklastirilmasi, sonlu farklar, sonlu elemanlar veya
sonlu hacim yontemleri ile hesaplama bolgesinin ayrik nokta, eleman ya da hacimler
ile ifade edilmesi ile gerceklestirilebilir. (Hoffmann ve Chiang, 2000; Ferziger ve
Peric, 2002). Bu yontemlerin iicii de akiskanlar mekanigi i¢in uygulanabilir
yontemlerdir. Ancak yapilan arastirmalar, sonlu hacimler yontemi ile daha kolay ve
hassas ¢oziimlerin elde edilebilecegini gostermistir. Sonlu hacimler yonteminin
yayginlagmasindaki en 6nemli etkenlerden bir tanesi ise, bu yontemin kompleks ve
egrisel geometrilerde uygulanabilir olmasidir.

Bu calismada, son yillarda yaygin olarak kullanilan ve pek ¢ok yazilimda
uygulanmis olan sonlu hacim ayriklagtirmast kullanilacaktir. Sonlu hacimler
yonteminde denklemler c¢oziilmeden oOnce akis hacminin ve sinir kosullarinin
belirlenmis olmas1 gerekmektedir. Akis hacminin net olarak bilinmesi énemli olup,
denklemlerin hangi hacim i¢in ¢oziilecegi net olarak bilinmelidir. Sonlu hacimler
yonteminde akis hacmi kiiciik sonlu hacimlere boliinmekte (discritization) ve ilgili
denklemler her bir sonlu hacim i¢in ayr1 ayr1 ¢oziilmektedir.

Sonlu hacim ayriklagtirmasi, bu denklemlerin sonlu bir hacim boyunca
entegre edilmesi esasina dayanmaktadir. Akisin ¢ gibi bir taginim 6zeliginin (6rnegin

sicaklik) konveksiyon ve diflizyon taginim denklemi kartezyen tansor notasyonunda,

ot X. ox.| 0x.

J ]

dp  Oue) (.0
p_(P+p_( J(p)_[r—‘P]+s (5.1)
]
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seklinde ifade edilebilir (Johnson, 1998). Burada; u ii¢ ayr1 yondeki hiz bilesenlerini,

¢ akisin herhangi bir tasinim 6zelligini, I' difiizyon katsayisini ve S kaynak terimini

gostermektedir. Sade ve olabildigince basit bir denklem formu elde etmek amaciyla,

denklem daimi ve bir boyutlu formda yazilacak olursa,

pM :i(l“d—(p]+s

dt dx | dx
A\ P E
/) w ~ e Ja
N\ N\ N
< AX >

Sekil 5.1. Hesaplamali kontrol hacmi

(5.2.)

Bu denklem, Sekil 5.1.’de goriilen kontrol hacmi boyunca integre edilirse,

giris ve ¢ikis ylizeylerinin birim degerde oldugu kabul edilelerek (Ae=Aw=1);

e

fp%(Uchchﬂ%(r jx—@) + S}dx

w

yazilabilir. S6z konusu denklemin sol tarafinin integralden ¢ikarilmasi ile,

[&]

d
| P (UeUe=(ppUo. —(ppUe,

w

(5.3.)

(5.4.)

ve sag tarafinin integralden cikarilip kaynak terimi bagimli degiskenin fonksiyonu

olarak lineerlestirilirse,
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H%(rjx—‘p}s}dx :[ij_ﬂ —(rjx—‘pj +Sy +S,0, (5.5)

w

elde edilir. Burada Sy daha sonra cebrik denklemin saginda kalacak olan kaynak
terimden gelen sabit sayiy1 ve bagimli degiskenin Sp sabit sayidan gelen katsayisini
gostermektedir. Difiizyon terimleri genel olarak merkezi farklar ile interpole
edilmektedirler (Versteeg ve Malalasekera, 1995). Merkezi farklar kullanilacak

olursa denklem (5.2.)’ nin ilk bileseni,

(rd_q’j :r(uj (5.6.)
dx /. X,

seklini alir. Konvektif terimler i¢in, birinci derece ileriye dogru (upwind), merkezi
farklar, QUICK (Quadratic Upwind Interpolation for Convective Kinematics)
(Versteeg ve Malalasekera, 1995), MUSCLE (Monoton Ustream-Centered Schemes
for Conservation Laws) (Blazek, 2001) ve degisik semalar1 karigtirarak kullanan
melez yapida olanlar gibi pek c¢ok farkli 6zelliklerde ayriklastirma semas1 mevcuttur
(Hoffman ve Chiang, 2002; Ferziger ve Peric, 1999). Ornek olarak, hesaplamali
analizlerde sik¢a kullanilmakta olan “ikinci derece ileriye dogru” interpolasyon

semas: ele alinacak olursa (Davidson, 2005), 5 x_, = 8 x, = & x kabulii yapilarak,

90 =30y~ 3 9w +O((A0)?) (57
Py = 2 Py — ~ Py + O((AX)?) (5.8.)

seklinde yiizeylerdeki ¢ degerleri belirlenebilir. Bu noktada, ¢ degerlerinin
katsayilarinin ag Orgiisii araliklar1 dx ’in esit olmadigi durumda farkli degerler
alacaktir. Yiizeylerdeki ¢ degerleri denklem (5.5.) ve denklem (5.6.)’de yerlerine

yazilacak olursa,
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3 1 3 1 r
U).| =@, —— —(PEU) | =0y —— =— -2
(p )e(z Pp > (PW) (p )w(2 Pw ) (waj 5x (¢g Op +0y) (5.9.)
+Sy +S;0,
bulunur. Boylece;
apQp = APy +APr —AyyPyy +Sy = Zakmq)km +Sy (5.10.)
km

seklinde lineer bir denklem sistemi elde edilmis olur. Buradaki km indisi P hacmine
komsu hacimleri gostermektedir.

Bir akisin incelenmesinde, kati yiizeylerinde olusan sinir tabakasina onem
verilmelidir. Siur tabakanin g6z ardi edilmesi, hiz dagilimmin dogru elde
edilmemesine dolayisiyla kati yiizeyindeki hiz degisimine gore hesaplanan
gerilmelerin, siirtinme katsayilarinin yanlis bulunmasina neden olmaktadir. Hiz
degisiminin yiiksek oldugu kati yiizeylerine yakin bdlgelerde daha yogun ve sinir
tabakanin akigina uygun bolmeler yapilmalidir (Kaykayoglu, 1994; Blazek, 2001).

5.2. Akiskan Hacimleri Yontemi (VOF)

Birbiri ile karigmayan iki veya daha fazla akiskan arasindaki fazlar arasi ara
yiizeyin sekli ve olusumu incelenmek istendiginde genellikle sabit bir Eulerian
¢Oziim agina uygulanabilen VOF modeli kullanilmaktadir (Hirt ve Nichols, 1981).
Bu yaklasimda, tiim akiskanlar i¢in sadece bir denklem seti ¢oziiliirken, fazlar arasi
ara yiizey i¢in ayr1 bir denklem ¢oziiliir ve tiim sayisal ¢6ziim ag1 igerisinden fazlarin
hacimsel oranlar1 ayri-ayri izlenir. VOF metodunda tanimladigimiz her faz i¢in fazin
hacimsel orani kontrol hacmi igerisinde bir degisken olarak belirir ve her bir kontrol
hacmi igerisinde fazlarin hacimsel oranlar1 toplami birdir. Hiicrenin yiizeyindeki
akimlar h, Ax ve Ay sabit boyutlarindaki kare ag icerisinde tanimlanir.

VOF yo6ntemi ile hiicrelerin bos, tam veya kismen suyla dolu oldugu durum

belirlenir. Bu yontemde, hesaplama alani iizerinde bir akiskan hacmi (F) tanimlanir.
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Akiskan ara yiizliniin gegtigi bir hiicre sayet tamamen akiskan ile dolu ise 1 degeri,
tamamen bos ise sifir degeri ve kismen dolu ise hiicrede kapladig: yiizde degerini
alir. Sekil 5.2 calisma alaninda belirli bir bolgedeki su-hava arakesitinin doluluk
oranina oOrnek teskil etmektedir. Sekil tizerindeki sayisal degerler, ¢alismada gergek

bir kesitteki F doluluk oranlarinin sayisal degerlerini géstermektedir.

0.30 -

—DENEY
g 0.15 A ]
0.00 T / T
1.0 1.5 2.0 2.5 3.0
x (m)
] F=0
0 0 0 0 0 0<F<1
o] F=1
0 0 0 0 0

0.64 0.51 0.39 0.32 0.27

Sekil 5.2. Deneysel su yliziindeki kare bir agin gergek akiskan hacim dagilimi

Serbest yiizey, bir egime sahip ise bir hiicredeki yiizeyin yerini ve egimini
belirlemek i¢in kendisini ¢evreleyen hiicreleri dikkate alan bir algoritma
kullanilmaktadir. VOF yontemi ile serbest ylizeyin izlenmesi ii¢ kistmdan olusur.
Oncelikle serbest yiizeyin yeri bulunur. Daha sonra bu yiizey, su ve hava arasinda
keskin bir arakesit olarak belirlenir. Son olarak bu arakesite sinir sartlar1 uygulanir.
Arakesit iizerinde sifir kayma gerilmesi ve sabit basing smir kosullari
uygulanmaktadir. Akiskan hacmi fonksiyonu F’nin degisimi, asagidaki diferansiyel

denklem ile verilmektedir. Bu denklem F’nin taginim denklemidir.
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OF OF OF OF
+ + =

& ox oy oz (11

5.3. Ag Yakinsama Indeksi (Grid Convergence Index-GCI)

Sayisal hesaplamalarda secilen sonlu eleman aginin etkisini incelemek ve
¢Oziimii agdan bagimsiz hale getirmek icin ASME (American Society of Mechanical
Engineering) tarafindan onerilen (Celik ve ark., 2008) GCI metodu kullanilacaktir.
GCI, model ¢oziimlerinin sayisal ayriklasmalara (numerical discretizations)
duyarliligini ortaya koymak i¢in ilk olarak Roache (1994) tarafindan dnerilmistir Bu
metot temelde, farklt ¢ozlimlerin karsilastirilmasini  igeren, genellestirilmis
Richardson Ekstrapolasyon yaklasimina dayanir. Coziim agi1 yakinsamasi ve
belirsizliginin tahmini i¢in en az ii¢ sonlu eleman ag yapis1 gereklidir (Roache,

1998).

Buna gore:
d; <d, <d, (5.12))
€, =U,—U,, €,=U,—U r—d1 r _4 (5.13)
12 1 20 23 2 3> 12 dz H 23 d3 . .
po_
— 1n((r23 1)612] (5.14)
In(r,;) (rh, —Dey,
u,-u
E,,=——% (5.15)
Us

1.25E
GCIine =5|—23| (5.16.)

r; —1
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belirlenir. (5.13.)’de bulunan, u>: d araligtyla tanimlanan orta hassasiyetli ag ile elde
edilen hiz degeri, us: d; araligiyla tanimlanan hassas ag ile elde edilen hiz degeri, p:
dogruluk mertebesidir. Roache (1994)’e gére r23, 112 > 1.10 olmalidir. Ug veya daha
fazla ag yapisi i¢in giivenlik faktorii, 1.25 olarak dnerilmektedir (Roache, 1997).
Cozlimlerde hassas ag yapisindan elde edilen sonuglarin daha iyi olacagi

bekleneceginden, sadece GClsine hesaplanmasi yeterli olacaktir.
5.4. Cidar Bolgesinin Modellenmesi

Standart k-¢ ve RSM yontemlerinde, kati smirdaki kaymama kosulu ile
birlikte hareket ve siireklilik denklemlerinin duvara kadar integrasyonu, tatminkar
olmayan sonuglar vermektedir. Bu durumu asabilmek i¢in, Chen ve Patel (1988)
tarafindan verilen iki tabakali bolge modeli yaklasimi kullanilmaktadir. Tiim ¢6ziim
bolgesini kapsayan iki tabaka, tirbiilansli dis bolge ve viskozitenin etkisindeki
duvar-yakini bolgesidir. Bu modelde, viskoziteden etkilenen duvar-yakini bolgesi,
ve ¢ 0zel bicimde formiile edilmek suretiyle, yiiksek ¢oziiniirliikkteki ag yapistyla kat1
sinira kadar modellenmektedir. Duvar-yakin bélgesinde, bir baska ifade ile duvar
mesafesi y’ye kadar tiirbiilans Reynolds sayisi Rey(: py\/E/u)s Re;(z 200) i¢cin

tiirbiilans viskozitesi asagidaki gibi ifade edilmistir:

“t,2layer = pcp.fp,\/E (517)

(5.17.) denklemindeki uzunluk 6lgegi asagidaki gibidir:
0, =yCi(1—e M) (5.18.)
Burada A,=70 ve C, = KCf/4 )

Iki-tabakali modeldeki tiirbiilans viskozitesinin formiilasyonunda, yiiksek
tirbiilansh (yliksek Re sayisi) dig bolgedeki i tanimindan, viskoziteden etkilenen
duvar-yakini bolgesinde (diisiik Re sayis1) gegerli L enn tanimina yumusak bir gecisin

saglanmasi i¢in Jongen, (1992) tarafindan asagidaki bagint1 onerilmistir:
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Ht,enh = }\‘aut + (1 - 7\'8 )Ht,Zlayer (519)

Burada A. gecis fonksiyonu olup tiirbiilanslt bolge icin 1, viskoz alt tabaka i¢in 0
degerine esit olmaktadir. Ara bolgede ise asagidaki gibi hesap edilmektedir:

1 Rey—Re;
e = 5| 1+ tanh| == (5.20)

Burada A = ‘A Rey‘ / arctan(0.98) ifadesi ile verilmistir. ARey, Re; degerinin % 5 ila

% 20 si arasinda degisen degerler almaktadir. Viskoziteden etkilenen bolgede € alani
asagidaki gibi hesaplanmaktadir:

k3/2
v

€

e (5.21.)

(5.21.) denklemindeki ¢_ uzunluk 6l¢egi asagidaki sekilde ifade edilmektedir:
0, =yCi(1-e™™) (5.22.)

burada A, =2C, seklindedir.
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6. SAVAK AKIMININ HAD iLE MODELLENMESI

Genel olarak Hesaplamali Akigskanlar Dinamigi (HAD), her tiirli akiskanin
degisik kosullar altinda analizini yapmaya yarayan bir yontemdir. Bu yontemde
temel olarak iic ana denklem (siireklilik, momentum ve enerji denklemleri) esas
alinir ve bu denklemler sayisal olarak ¢oziilerek akis igindeki basing, hiz ve sicaklik
dagilimlar1 ve bu parametrelere bagli olarak bir¢ok degiskene ulasilir.

Gilinlimiizde, hesaplamali akiskanlar dinamigi arastirma—gelistirme ve yeni
tiriinlerin tasariminda yaygin olarak kullanilmaktadir. Son yillardaki hesaplamali
akigkanlar dinamigi teorisi ve bilgisayar yazilimlarindaki geligsmeler, yiliksek
tiirbiilansh akislarin ve dinamik sistemlerin sayisal olarak incelenmesine ve sanal
ortamda ¢dziilebilmesine olanak saglamistir. Buna bagli olarak da Insaat
Miihendisligi ¢alisma alaninda yer alan bir¢ok su yapisinin tasariminda, Hesaplamali
Akiskanlar Dinamigi (HAD) yontemlerine dayali ticari yazilimlarin c¢ogalmasi
onemli kolayliklar saglamistir. Ornegin Flotran, Fluent, Cobalt, Flow 3D, STAR
CFD gibi bircok ticari paket programi gelistirilmistir.

Su-yap1 etkilesiminin s6z konusu oldugu akimlarin laboratuvar ortaminda
fiziksel modeller araciliyla test edilmesinin, Ongériilen performans Olgiitlerinin
saglanip saglanmadigi hakkinda 6nemli bilgilerin edinilmesine yardimci oldugu
asikardir. Bunun yaninda, gelisen teknoloji ile sayisal modelleme teknikleri, akimin
kisa siirede ve ekonomik olarak ¢oziilmesini, tasarim islemlerinin farkli kosullar i¢in
hizli  bigimde tekrarlanmasint  mimkiin hale getirmistir. Ancak HAD
modellemelerinden elde edilen verilerin ne kadar gercekg¢i oldugu ve kullanilabilirligi
konusunun yaninda akim tiirline en uygun tiirbiilans modelinin se¢imi de giincel
tartisma ve arastirma konularindan biridir. Bu bakimdan, sayisal bulgularin
deneylerle  dogrulanmasina  yonelik  calismalarin  ¢ogaltilmasina  ihtiyag
duyulmaktadir. Bu ¢alismada, temel denklemlerin sayisal ¢oziimii icin ANSYS 12.1
paket programi igerisinde bulunan Fluent modiilii kullanilmistir. Sayisal ¢oziimlerde
en yaygin kullanilan tlirbiilans modellerinden iki denklemli SKE, RNG, RKE,
MKW, SST modelleri ve bes denklemli RSM tiirbiilans modeli kullanilmstir.
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6.1. Coziim Bolgesi ve Sinir Sartlar

Sekil 6.1, trapez genis baglikli savak iizerinden gegen acgik kanal akimin
sayisal modeli i¢in kullanilan ¢6ziim bolgesini, smir sartlarim ve alt bolgeleri
gostermektedir. Kullanilan koordinat sisteminin orijini, ¢éziim bdlgesinin sol alt
kosesi olarak alinmistir. Sekil 6.1°de verilen ¢oziim bolgesinin iist sinirt ve ¢ikis
bolgesi smir sart1 sifir basing (p=0), kanal tabaninda ve savak alt tabaninda sifir hiz
sinir sart1, yani u=0, v=0 olarak tamimlanmstir. Iki farkli akim durumunda sayisal
modelde giris smir sarti olarak yatay hiz bileseni i¢in deneysel hiz profilleri

kullanilmistir. Diisey hiz bileseni ise v=0 olarak tanimlanmustir.

y
f_ Bzo Ciziim Bélgesi

d
I
5.4 m \,
X

. | 1m Cikis Simur —I
Giris Sinir1 Alt Sinir p=0
u=u(y) u=0, v=0
v=0 m/s
F=1

Sekil 6.1. Sayisal hesaplama bodlgesi ve sinir sartlar

Zamana bagli ¢6ziim siirecinde, baslangi¢ sart1 olarak, ¢6ziim bdlgesinin giris
siirinda doluluk oran1 F=1, diger bolgeler ve ¢6ziim bolgesinin ¢ikis sinirinda ise

F=0 alinmustur.
6.2. Sonlu Hacimler Hesap Ag1

Su-yap1 etkilesiminin s6z konusu oldugu akim problemlerinin sayisal
hesaplamalarinda, hesaplama ag1 yapisinin sonuglar {izerinde etkili oldugu

bilinmektedir. Bu ¢alismadaki probleme uygun hesaplama aginin olusturulmasinda,

edinilen deneyimlere bagli olarak, kati sinirlara dogru ve ylizey profilinde hizli
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degisimin s6z konusu oldugu bolgelerde hesap ag1 siklastirilmistir. Akimin karakteri
g6z Oniine alinarak, Sekil 6.1°de verilen sayisal ¢oziim bolgesi, Sekil 6.2°de
goriildiigli gibi, 15 alt bolgeye ayrilmis, her bir alt bolgede eleman sayis1 yaklasik
olarak %50 ve %100 artirilmak suretiyle, lineer dortgen elemanlardan olusan 3 farkl
yogunluga sahip ag yapisi elde edilmistir. Cizelge 6.1°de olusturulan ii¢c farkli ag
yapist i¢in bu alt bolgelerde bulunan eleman sayilar1 ve en siki ag yani Ag 3 i¢in en

kii¢iik ag elemanin yiiksekligi ve maksimum y* degerleri verilmistir.

Sekil 6.2. Sayisal modelin hesaplama aginda kullanilan alt bolgeleri

Cizelge 6.1. Ug farkli yogunluktaki aglar icin bolgelerdeki eleman sayilari

Min h Max
Bolge | Ag1 Ag2 Ag3 Bolge | Ag1 Ag2 Ag3
(m) y+
| 50x60 | 75x90 100x120 | 0.000208 | 2.14 IX 35x5 55x8 70x10
11 30x60 | 45x90 | 60x120 | 0.000089 | 2.70 X 200x5 300x8 | 400x10

I 25x60 | 40x90 | 50x120 | 0.000088 | 3.97 XI 50x20 | 75x30 | 100x40
v 35x60 | 55x90 | 70x120 | 0.000089 | 7.29 | XII 30x20 | 45x30 | 60x40

\% 200x60 | 300x90 | 400x120 | 0.000209 | 8.98 | XIII | 25x20 | 40x30 | 50x40
VI 50x5 75x8 100x10 XIV | 35x20 | 55x30 | 70x40
vl 30x5 45x8 60x10 XV | 200x20 | 300x30 | 400x40

VI | 25x5 40x8 50x10

6.3. Ag Yakinsama indeksi (GCI) Uygulamasi ve Cidar Bélgesinin

Modellenmesi
(Coziim bolgesinde yapilan sayisal hesaplamalari ag yapisindan tamamen

bagimsizlastirmak icin ii¢ farkli boyuttaki ag yapilari kullanilmistir. Cizelge 6.1

sayisal hesaplamalarda kullanilan ¢ farkli ag yapisinin eleman sayilarim
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gostermektedir. Burada ag yapisi sirasiyla gevsek (Ag 1), orta siki (Ag 2) ve sik1 (Ag

3) olacak sekilde ayarlanmis ve her bir ¢6ziim bolgesindeki eleman sayilari belirli bir

oran g¢ercevesinde arttirllmistir. Sayisal ¢oziim alanindaki ag yapisinin yeterli siklikta

olup olmadigi, bir baska ifadeyle ag yapisindan bagimsizlastirilmis sayisal ¢oziimler

elde etmek amaciyla ele alinan {iglii ag sistemi itibariyle yapilan siklagtirmanin

uygunlugu, 5. boliimde anlatilan Ag Yakinsama Indeksi (Grid convergence index —

GCI) yontemiyle test edilmistir. Cizelge 6.2, 6.3, 6.4, 6.5 ve 6.6’da kanal boyunca,

memba bolgesinde (x=100 cm), savak memba yiizii (x=177.5 cm), savak kreti (x=

210 cm), savak mansap yiizli (x=242.5 cm) ve mansap bolgesinde (x=400 cm) olmak

tizere bes farkli kesitte yapilan GCI analizlerinden elde edilen sonuglar verilmistir.

Cizelge 6.2. x=100 cm i¢

in GCI uygulamasi
5

h(mm) 1 2 10 20 40 80 140
di (m) 0.4551 | 0.4989 | 0.6276 | 0.8654 | 1.3081 2.2691 4.1208 | 5.9999
dz2 (m) 0.3637 | 0.3944 | 0.4762 0.6069 | 0.8850 1.3991 2.4636 | 3.7499
d3 (m) 0.2284 | 0.2502 | 0.3724 | 0.4321 | 0.6658 1.1237 2.0305 | 2.9999
ul (m/s) 0.0875 | 0.1889 | 0.2301 0.2534 | 0.2737 0.2897 0.3027 | 0.3143
u2 (m/s) 0.0886 | 0.1901 | 0.2307 | 0.2539 | 0.2739 0.2898 0.3026 | 0.3147
u3 (m/s) 0.0925 | 0.1887 | 0.2287 | 0.2517 | 0.2717 0.2883 0.3020 | 0.3158
ez 0.0030 | 0.0012 | 0.00055 | 0.0005 | 0.0002 | 0.00003 | 0.0001 | 0.0004
€23 0.0003 | 0.0014 | 0.0020 0.0022 | 0.0022 0.0015 0.0005 | 0.0011
riz 1.2513 | 1.2651 1.3180 1.4260 | 1.4782 1.6218 1.6727 | 1.6000
3 1.5921 | 1.5759 1.2789 1.4046 | 1.3292 1.2451 1.2133 | 1.2500
P 10.5408 | 1.6410 | -5.4883 | -4.496 | -8.600 -18.377 -8.452 | -5.276
GClFriney, 0.0020 | 0.8286 | -1.4839 | -1.397 | -1.112 -0.6577 -0.264 | -0.613
Cizelge 6.3. x=177.5 cm i¢in GCI uygulamasi
h(mm) 0.5 2.5 12.5 325 52.5 72.5 92.5 112.5
di (m) 0.3038 | 0.4001 | 0.8579 1.7384 2.6276 3.6232 4.3534 | 6.0000
dz (m) 0.2500 | 0.3101 | 0.5763 1.1003 1.6484 2.1580 2.6771 | 3.7500
ds (m) 0.1585 | 0.2035 | 0.4314 | 0.8936 1.3460 1.8094 2.2205 | 3.0000
ul (m/s) 0.1754 | 0.3126 | 0.3583 | 0.3829 0.3943 0.4008 0.4040 | 0.4068
uz (m/s) 0.1824 | 0.3141 | 0.3590 | 0.3833 0.3946 0.4013 0.4050 | 0.4066
us (m/s) 0.1856 | 0.3135 | 0.3579 | 0.3822 0.3938 0.4009 0.4054 | 0.4071
en2 0.0070 | 0.0015 | 0.0006 | 0.0003 0.0002 0.0004 0.0011 | 0.0002
€23 0.0033 | 0.0006 | 0.0011 0.0011 0.0007 0.0003 0.0003 | 0.0005
riz 1.2153 | 1.2903 | 1.4885 1.5799 1.5941 1.6789 1.6262 | 1.6000
3 1.5776 | 1.5235 | 1.3360 1.2313 1.2246 1.1927 1.2056 | 1.2499
p 5.5804 | 4.4745 | -2.3215 | -6.8751 | -6.8265 | -2.3064 | 0.8914 | -5.276
GClFriney, 0.1870 | 0.0431 | -0.7774 | -0.4759 | -0.3182 | -0.2772 | 0.5066 | -0.234

60




6. SAVAK AKIMININ HAD ILE MODELLENMESI

Nazire Goksu SOYDAN

Cizelge 6.4. x=210 cm i¢in GCI uygulamasi

h(mm) 0.5 5 10 15 25 35 45 55
di (m) 0.1926 0.4013 | 0.6351 0.8758 1.3237 1.7434 | 2.1932 | 2.6352
d2 (m) 0.1581 0.2783 | 0.4170 0.5460 0.8178 1.0999 1.3646 1.6040
d3 (m) 0.0988 0.2002 | 0.3156 0.4243 0.6537 1.0074 | 1.1034 1.3236
u1 (m/s) 0.5124 0.7739 | 0.8010 0.8076 0.8133 | 0.8167 | 0.8210 | 0.8192
uz (m/s) 0.5232 0.7802 | 0.8052 0.8109 0.8164 | 0.8201 | 0.8237 | 0.8280
us (m/s) 0.5343 0.7819 | 0.8055 0.8110 0.8165 | 0.8204 | 0.8240 | 0.8291
(SP) 0.0108 0.0063 | 0.0041 0.0033 0.0031 0.0033 | 0.0026 | 0.0088
e 0.0111 0.0017 | 0.0003 | 0.00005 | 0.0001 0.0003 | 0.0003 | 0.0011
rz 1.2179 1.4417 | 1.5230 1.6041 1.6186 1.5850 | 1.6073 1.6429
| PX] 1.5988 1.3903 1.3212 1.2868 1.2510 1.2517 1.2367 1.2118
p 2.6810 3.5056 | 6.0043 8.5889 6.1638 | 4.2572 | 3.4315 | 3.1439
GClrinev, 1.0298 0.1221 0.0105 0.0010 0.0065 0.0319 | 0.0467 | 0.1932

Cizelge 6.5. x=242.5 cm i¢in GCI uygulamasi

h(mm) 0.5 2.5 4.5 12.5 17.5 22.5 27.5 32,5
di (m) 0.3126 0.4019 | 0.4829 | 0.8377 1.0796 1.3581 1.5586 1.7460
d2 (m) 0.2509 0.3161 0.3659 | 0.5874 | 0.7287 | 0.8566 1.0069 1.1044
d3 (m) 0.1588 0.2040 | 0.2503 | 0.4323 | 0.5428 | 0.6512 | 0.7637 | 0.8956
u1 (m/s) 0.9054 1.1977 1.2688 1.3329 1.3340 1.3330 1.3362 1.3375
uz (m/s) 0.9450 1.2018 1.2724 1.3335 1.3339 1.3328 1.3316 1.3412
uz (m/s) 0.9284 1.2057 1.2743 1.3328 1.3332 1.3322 | 1.3309 1.3384
e 0.0396 0.0041 0.0036 | 0.0005 | 0.0001 0.0002 | 0.0046 | 0.0036
(X} 0.0167 0.0039 | 0.0019 | 0.0007 | 0.0007 0.0006 | 0.0007 | 0.0028
Iz 1.2459 1.2715 1.3198 1.4260 | 1.4815 1.5854 | 1.5479 1.5810
| 9} 1.5797 1.5495 1.4614 1.3588 1.3425 1.3154 1.3184 1.2332
p 5.2353 1.9672 | 2.9290 | -1.1447 | -6.4076 | -4.9991 | 3.6360 -1.609
GClrinev, 0.2252 0.2966 | 0.0924 | -0.2155 | -0.0740 | -0.0780 | 0.0407 -0.913

Cizelge 6.6. x=400 cm i¢cin GCI uygulamasi

h(mm) 2 3 7 10 15 20 25 30
d1 (m) 0.4989 0.5468 | 0.7202 | 0.8654 1.0887 1.3081 1.5717 1.8037
d2 (m) 0.3943 0.4162 | 0.5304 | 0.6068 | 0.7528 | 0.8849 1.0125 1.1586
d3 (m) 0.2502 0.2740 | 0.3684 | 0.4320 | 0.5424 | 0.6658 | 0.7807 | 0.8949
u1 (m/s) 1.0996 1.1658 1.3269 1.4032 1.4991 1.5725 1.6276 1.6524
uz (m/s) 1.0963 1.1634 | 1.3230 1.3991 1.4952 1.5688 1.6251 1.6550
u3 (m/s) 1.0925 1.1578 1.3143 1.3898 1.4849 1.5586 1.6161 1.6522
e 0.0033 0.0024 | 0.0040 | 0.0041 0.0039 | 0.0038 | 0.0025 | 0.0026
€3 0.0038 0.0056 | 0.0087 | 0.0093 | 0.0103 | 0.0102 | 0.0090 | 0.0028
I 1.2651 1.3140 | 1.3580 1.4260 1.4461 1.4781 1.5522 1.5568
23 1.5759 1.5185 1.4396 1.4046 1.3878 1.3292 1.2969 1.2946
p 1.4958 -1.2289 | -1.7982 | -2.4775 | -3.1267 | -4.0198 | -5.687 -1.766
GClFines, 0.4508 -1.5058 | -1.7135 | -1.4699 | -1.3537 | -1.1981 | -0.906 -0.577

GCI analizleri sonucunda hesaplanan akim hizlarindaki hatalarin kabul

edilebilir yakinsama degeri olan %2’den kii¢iik oldugu goriilmiis ve bdylece,
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hesaplama hassasiyetinin ag yogunlugundan bagimsizlastigr kanaatine varilmistir.
Ag 3 modeli kullanilarak sayisal analizler gerceklestirilmistir. Hesap aginin siki
olmast dogrudan sayisal modellemede kullanilan zaman adimini etkileyen bir
faktordiir. Ag yapisinin siki olmasi nedeniyle zaman adimi1 SKE, RNG, RKE, SST,
SKW ve RSM tiirbiilans modellerinde At=0.001 olarak se¢ilmistir. Zaman adimi ve
ag yapisina bagli olarak Quad Core 2.6 GHZ islemcili 4GB RAM o6zelliklerine sahip
bir bilgisayar ile 30 s ¢6ziim elde etmek i¢in gecen siire, yaklasik 5 giin olmaktadir.
Ozellikle RSM tiirbiilans modelinde bu siire 10 giine kadar ¢ikabilmektedir.
Ansys-Fluent programi, cidar bolgesini modellemek i¢in duvar fonksiyonu ve
iki tabakali bdlge modeli seceneklerini sunmaktadir. Bu ¢alismada, cidara yakin
bolge, yiiksek ¢oziiniirliikteki ag yapisinin kullanildig iki tabakali bolge yaklasimi
kullanilarak modellenmistir. Kirkgdoz ve Ardighoglu (1997), y'(=u+y/v) degerinin
10°dan kiiclik olmas1 halinde hiz dagiliminin, viskoz alt tabakadaki lineer dagilima
uydugunu rapor etmislerdir (u+: kayma hizi; y: yiikseklik; v:suyun kinematik
viskozitesi ). Bu kriter géz 6niinde bulundurularak, duvara yakin elemanlarin, y'<10
olacak sekilde boyutsuz cidar mesafesi degerlerine sahip olmalarina dikkat
edilmistir. Sekil 6.3 ’de RKE tiirbiilans modeline ait sayisal sonuglardan elde edilen
y" degerleri verilmigtir. Memba, savak ve mansap bolgeleri igin ayri ayri verilen
sekillere bakildiginda tiim bolgelerde y* degerlerinin 10’un altinda kaldigi
goriilmektedir. Memba bolgesinde y* degerleri 2’nin altinda seyretmektedir (Sekil
6.3.a). Savak bolgesinde y* degerlerinin, kret bolgesinin baglangicinda (x=195 cm)
ve bitiminde (x=225 cm) ani yiikselisler gosterdigi ve bu noktalardan sonra da
artarak devam ettigi goriilmektedir. (Sekil 6.3.b). Savak yapisinin mansabinda ise y*

degeri giderek azalmaktadir. (Sekil 6.3.c).
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Sekil 6.3. RKE tiirbillans modeli ile elde edilen y" degerinin kanal boyunca
degisimi:(a) Memba bdlgesi, (b) Savak bdlgesi, (c) Mansap bolgesi
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7. SAYISAL VE DENEYSEL BULGULAR
7.1. Deneysel ve Hesaplanan Hiz Profilleri

Bu caligsmada, trapez kesitli genis baslikli savak {izerinden gecen akim sayisal
ve deneysel olarak modellenmistir. Akimi idare eden temel denklemler, farkli
tiirbiilans modelleri kullanilarak sayisal olarak ¢oziilmiistiir. Her bir tiirbiilans
modelinden elde edilen sayisal bulgular, laboratuvar kosullarinda Slgiilen deneysel
bulgularla karsilastirilmis ve sayisal modellemede tiirbiilans modellerinin basarisi
irdelenmistir. Bu karsilastirmada niceliksel bir 6lgiit olan Ortalama Karesel Hata
(OKH) degeri kullanilmis ve elde edilen sonuglarin basarist sayisal verilere

dayandirilmistir.

.
OKH:EZ(ud_uh)z

n=I

(7.1.)

Burada, Ugve U, sirasiyla deneysel ve hesaplanan ortalama hiz degerleri, N kesit

derinligindeki noktasal 6l¢iim sayisidir. Cizelge 7.1 ve Cizelge 7.2°de iki durum i¢in
kanal boyunca farkl kesitlerde, denklem 7.1 kullanilarak elde edilen OKH degerleri
verilmistir. Elde edilen en kiiciik OKH degerleri ¢izelgelerde koyu renkle yazilmistir.
Bu OKH degerleri kesitteki en basarili olan tiirbiilans modelini gostermektedir. OKH
degerleri iizerindeki rakamlar ise o kesitteki bagar1 siralamasini gostermektedir.

Bu calismada, ¢oziim bolgesi, kritik-alti akimin olustu§u memba bdlgesi,
kritik-altindan kritik-iistiine gecisin goriildiigli ve akim c¢izgilerinin geometrisinin
egrisel oldugu savak bdlgesi, kritik {istii akimin olustugu mansap bolgesi olmak
lizere lige ayrilmistir.

Cizelge 7.1’de goriildiigii gibi, Durum 1 i¢in, kritik alt1 akimin olustugu
memba bolgesindeki OKH degerleri incelendiginde, ele alinan tiim kesitlerde, alti
tiirblilans modeli de basarili sonuclar vermektedir. Bununla birlikte, MKW tiirbiilans

modelinin diger tiirblilans modellerine goére, az da olsa, daha basarili oldugunu
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sOylemek miimkiindiir. Su-yap1 etkilesiminin oldugu, egri yoriingeli akimin etkisinde
olan ve kritik alti akimdan kritik Usti akima gecisin meydana geldigi savak
bolgesindeki OKH degerleri incelendiginde, kullanilan tiim tiirbiilans modellerinin
de genelde basarili oldugu goriilmektedir. x=1.70, 1.80, 1.90, 1.95, 2.00, 2.10, 2.20,
2.25, 2.30 ve 2.50 m kesitlerinde RSM tiirbiilans modelinin; x=2.40 ve 2.60 m
kesitlerinde ise MKW tiirbiilans modelinin az da olsa daha iyi sonu¢ verdigi
goriilmiistiir. Kritik distii akimin olustugu mansap bolgesindeki OKH degerlerine
gore, MKW hari¢ diger tiirbiilans modellerinden elde edilen sonuglarinin birbirine
yakin oldugu; x=2.80, 3.25, 3.50, 3.75 ve 4.00 m kesitlerinde RKE tiirbiilans
modelinin, x= 4.50, 5.00, 5.50, 6.00, 6.50, 7.00 ve 7.50 m kesitlerinde SST tiirbiilans
modelinin ve x= 3.00 m kesitinde RNG tiirbiilans modelinin daha basarili oldugu
belirlenmistir. MKW tiirbiilans modelinin, kritik stii akim rejiminin goriildiigii
mansap bolgesinde en basarisiz tiirbiilans modeli oldugunu sdylemek miimkiindiir.

Cizelge 7.1°de sunulan memba, savak ve mansap bolgelerinin ortalama OKH
degerleri ele alindiginda ise memba bolgesinde MKW tiirbiilans modelinin, savak
bolgesinde RSM tiirblilans modelinin, mansap bdlgesinde ise SST tiirbiilans
modelinin diger modellere gore daha basarili oldugu belirlenmistir.

Cizelge 7.2°de goriildiigli gibi, Durum 2 i¢in memba bdlgesinde elde edilen
OKH degerleri incelendiginde, Durum 1’dekine benzer sekilde, bu calismada
kullanilan tiirbiilans modellerinin hepsi basarili sonuglar vermistir. Bununla birlikte,
MKW tiirbiilans modelinin diger modellere gore, az da olsa, daha basarili oldugunu
sOylemek miimkiin goriilmektedir. Savak bolgesinde ise Durum 1’e paralel olarak,
x=1.70, 1.80, 1.90, 1.95, 2.00, 2.10, 2.20 2.25, 2.30, 2.40 ve 2.60 m kesitlerinde
RSM, x=2.50 m kesitinde MKW tiirbiillans modeli, az da olsa, daha iyi sonug
vermektedir. Mansap bolgesinde, yine Durum 1’e benzer olarak, MKW tiirbiilans
modelinin en basarisiz tiirbiilans modeli oldugu belirlenmistir. Ancak, Durum 1’den
farkli olarak Durum 2’de x=2.80, 3.00, 3.25, 5.50, 6.00, 6.50 ve 7.00 m kesitlerinde
RKE tiirbiilans modelinin ve x=3.50, 3.75, 4.00, 4.50 ve 5.00 m kesitlerinde RSM
tiirbiilans modelinin ve x=7.50 m kesitinde SST tiirbiilans modelinin basaril1 oldugu

gorilmiistiir.
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Cizelge 7.2°de verilen ortalama OKH degerleri ele alindiginda ise Durum
1’de oldugu gibi, memba bdlgesinde MKW tiirbiilans modeli, savak bolgesinde ise
RSM tiirbiilans modeli az da olsa daha basarilidir. Mansap bolgesinde ise, Durum
1’den farkli olarak, RKE tiirbiilans modelinin, ¢ok az farkla da olsa, daha basarili
oldugu gdzlenmistir.

Sekil 7.1 ve Sekil 7.2°de, kanalin farkli kesitlerinde Olciilen yatay hiz
profilleri ile birlikte, her iki durum i¢in de, OKH degeri bakimindan bolge bazinda en
basarili olan tiirbiilans modelinden elde edilen hiz profilleri boyutsuz bir sekilde
verilmigtir. Her bir hiz degeri (u), aym kesitte Ol¢iillen maksimum hiza (Umax),
yiikseklik degeri (y) de, kesitteki maksimum yiikseklik degerine (ymax) boliinerek
boyutsuzlastirilmistir. Sekillerden, sayisal bulgularin deneysel Olgiimlerle gayet
uyumlu oldugu goriilmektedir. Bununla birlikte, Durum 1 icin, savak yapisinin
memba yliziine giris kesitinde (x=1.70m) ve mansap yiizeyinden ¢ikis kesitinde
(x=2.60m), sinir tabakas1 bolgesinin dl¢timleri ile sayisal bulgular arasinda farklilik
s0z konusudur. Her iki kesitte de sayisal hizlar deneylerin altinda kalmistir. Akim
hizinin nispeten daha diisiik oldugu Durum 1 i¢in bu farkliligin, kanal tabanindan
yaptya (ya da yapidan kanala) gec¢is noktasinda, sinir tabakasi gelisiminin, sayisal
model tarafindan dogru bir sekilde tahmin edilememesinden kaynaklanabilecegi
muhtemeldir. Sekil 7.1 ve 7.2 incelendiginde, savak kreti baslangi¢ noktasi olan
x=1.95 m ve savak kreti bitis noktasi olan x=2.25 m’de verilen hiz profillerinden,
burada egri yoriingeli bir akimin mevcut oldugu goriilmektedir. Egri yoriingeli
akimlarda belirli bir basariya sahip oldugu bilinen RSM tiirbiilans modelinin bu

bolgedeki basarisi, verilen hiz profillerinden de agikca goriilebilmektedir.
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Cizelge 7.1 Durum 1 i¢in farkli tiirbiilans modellerine ait OKH degerleri (m?/s?)

Bilge K(elﬂ;" SKE | RNG | RKE | MKW | SST | RSM
0.30 0.000048* | 0.000060° | 0.000051° | 0.000028! | 0.000047° | 0.000029>

0.50 0.000036° | 0.000039¢ | 0.0000302 | 0.000028! | 0.0000333 | 0.000035%

g 0.80 0.000061° | 0.000066° | 0.0000512 | 0.000050" | 0.000060* | 0.000056°
g 1.10 0.000066* | 0.000073¢ | 0.0000572 | 0.000056! | 0.000068° | 0.0000583
= 140 | 0.000066* | 0.000073% | 0.000058* | 0.000056' | 0.000071° | 0.000057>
1.55 0.000053% | 0.000061° | 0.0000442 | 0.000040" | 0.000055° | 0.0000453

OKH,, 0.000067* | 0.000074% | 0.0000623 | 0.000058! | 0.000068% | 0.0000612

1.70 0.000092% | 0.000106° | 0.0000832 | 0.0000893 | 0.000099° | 0.000065"

1.80 0.000055% | 0.000058° | 0.0000492 | 0.000062° | 0.000054° | 0.000045!

1.90 0.000118% | 0.000110* | 0.0001033 | 0.000187° | 0.0001022% | 0.000091"

1.95 0.000069° | 0.000046* | 0.000043> | 0.000224° | 0.0000372 | 0.000031"

2.00 0.000150° | 0.000128% | 0.000130* | 0.000431° | 0.000119% | 0.000112"

e 2.10 0.000431° | 0.0003123 | 0.000326% | 0.000794° | 0.000278% | 0.000115"
§ 2.20 0.000322% | 0.000326° | 0.000334° | 0.0002472 | 0.000299° | 0.000101*
(;3 2.25 0.000363% | 0.000397° | 0.000386% | 0.0003753 | 0.000502° | 0.000292!
2.30 0.000686% | 0.000722° | 0.000716* | 0.0006832 | 0.000914° | 0.000638!

2.40 0.001688% | 0.001789* | 0.001813° | 0.001358! | 0.002456° | 0.0017623

2.50 0.002654% | 0.002999° | 0.002932* | 0.0020942 | 0.003524° | 0.001937!

2.60 0.009909°% | 0.011069¢ | 0.010670° | 0.007240! | 0.010074* | 0.0093632

OKH,,: | 0.001378% | 0.0015055 | 0.001465% | 0.001149% | 0.001538° | 0.001141"

2.80 0.000895% | 0.001043%| 0.000791' | 0.001591° | 0.000820? | 0.0010723

3.00 0.000976' | 0.0014243 | 0.0013952 | 0.001843°¢ | 0.001628* | 0.001777°

3.25 0.001742% | 0.001755% | 0.001670" | 0.003754° | 0.001837* | 0.002795°

3.50 0.001251% | 0.000865% | 0.000796' | 0.002820° | 0.002530° | 0.0010693

3.75 0.001338*| 0.0008032 | 0.000738" | 0.003174° | 0.001004° | 0.001887°

o 4.00 0.002226° | 0.001718% | 0.001571" | 0.001964* | 0.002449° | 0.0016952
§ 450 |0.001210*| 0.000545° | 0.0004862 | 0.0032826 | 0.000263" | 0.002476°
s 5.00 0.002114%| 0.0010733 | 0.0009222 | 0.005109° | 0.000187" | 0.004554°
E 5.50 0.003206% | 0.0017513 | 0.0015552 | 0.006695° | 0.000551' | 0.006498°
6.00 0.003942% | 0.002356% | 0.0020042 | 0.007445° | 0.000745' | 0.007773°

6.50 0.003264% | 0.001709% | 0.0012872 | 0.005907° | 0.000433! | 0.006302°

7.00 0.004046* | 0.0021593 | 0.0015362 | 0.006340° | 0.000460 | 0.007120°

7.50 0.011520% | 0.0089722 | 0.0097633 | 0.011987° | 0.005467' | 0.013071°

OKH,,« 0.002902% | 0.0020133 | 0.0018862 | 0.004762° | 0.001413" | 0.004468°

Tiim Kanal | OKH, | 0.001711¢ | 0.0013993 | 0.001329 | 0.002378¢ | 0.001166' | 0.002256°
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Cizelge 7.2 Durum 2 igin farkl tiirbiilans modellerine ait OKH degerleri

Bilge Kf;g X SKE | RNG | RKE | MKW | SST | RSM
0.30 0.000143%]0.000147° | 0.000134° | 0.000127" | 0.0001332 | 0.000168°
0.50 0.000124*| 0.000125°| 0.000103% | 0.000086" | 0.0001223 | 0.000149°
g 0.80 0.000136*| 0.000144° | 0.000103% | 0.000095" | 0.0001353 | 0.000149°
g 1.10 0.000172°|0.000190° | 0.0001292 | 0.000117" | 0.000170%| 0.000171*
E 1.40 0.000141%] 0.000169° | 0.0001012 | 0.000087" | 0.000145°| 0.0001123
1.55 0.000075%| 0.000093¢ | 0.0000552 | 0.000045" | 0.000079° | 0.0000623
OKHort | 0.000135%|0.000146° | 0.0001112 | 0.000101" | 0.000134% | 0.0001383
1.70 0.000274%| 0.000309¢ | 0.000250° | 0.0002462 | 0.0002825 | 0.000226"
1.80 0.000267° | 0.000293¢ | 0.0002462 | 0.000266% | 0.000265% | 0.000201"
1.90 0.000133%|0.000134° | 0.0001082 [ 0.000197° | 0.0001133| 0.000071"
1.95 0.000266° | 0.000244* | 0.000210° | 0.000427° | 0.0002062 | 0.000140"
2.00 0.000191° | 0.000154* | 0.0001323 | 0.000374° | 0.0001082 | 0.000047"
v 2.10 0.000260° | 0.000220* | 0.0002062 | 0.000479° | 0.000215> | 0.0000911
E 2.20 0.0002613 | 0.000352°% | 0.0003274 | 0.0002292 | 0.000418° | 0.000222!
2] 2.25 0.000290% | 0.000330% | 0.0002842 | 0.000574° | 0.000343° | 0.000279"
2.30 0.000502%| 0.000531%| 0.000485% | 0.000762° | 0.000586° | 0.000384"
2.40 0.000759% | 0.000934° | 0.000846* | 0.0005302 | 0.000974° | 0.0004721
2.50 0.001568%| 0.001858°| 0.001673° | 0.000980" | 0.001536° | 0.0013992
2.60 0.0027622|0.003691° | 0.0033574 | 0.002859° | 0.004940° | 0.002691"
OKHort | 0.000628% | 0.000754% | 0.000677* | 0.0006603 | 0.000832¢ | 0.000519!
2.80 0.0002042 | 0.000348° | 0.000197" | 0.001561° | 0.0002243 | 0.000265*
3.00 0.0005382 | 0.000634* | 0.000462" | 0.002359° | 0.000806° | 0.000616°
3.25 0.0003492 | 0.0005774 | 0.000336" | 0.002494° | 0.000974° | 0.000423>
3.50 0.0003762 | 0.000624* | 0.0004453 | 0.002909° | 0.001180° | 0.000298"
3.75 0.0008062 | 0.0011074 | 0.0009083 | 0.003240° | 0.001867 | 0.000361"
o 4.00 0.000585%| 0.000659* | 0.0005452 | 0.003848° | 0.001248° | 0.000289!
2 4.50 0.000287%| 0.0006273 | 0.000652* | 0.002395° | 0.001610° | 0.0001421
s 5.00 0.0003712|0.001024* | 0.000896° | 0.001628° | 0.002133°| 0.000115"
2 5.50 0.0003873 | 0.0002522 | 0.000238" | 0.004565° | 0.000576* | 0.001626°
6.00 0.000225%|0.000178%| 0.000173! | 0.003664° | 0.000728*| 0.0012715
6.50 0.0004523|0.000181% | 0.000166" | 0.004498° | 0.000592*| 0.0019003
7.00 0.000593*| 0.000155% | 0.000149' | 0.005147° | 0.0001773 | 0.0025133
7.50 0.0014874| 0.000609% | 0.0008933 | 0.007309° | 0.000429" | 0.0042325
OKHort | 0.0005122 | 0.000536° | 0.000466" | 0.003509° | 0.000965% | 0.001081°
Tiim Kanal | OKHort | 0.0004732% | 0.0005333 | 0.000468" | 0.001695° | 0.0007335 | 0.000664*
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7. SAYISAL VE DENEYSEL BULGULAR

Nazire Goksu SOYDAN
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Sekil 7.1. Memba bolgesinde farkli kesitlerde olciilen ve hesaplanan hiz profilleri
(Durum 1).
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN
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Sekil 7.2. Savak bolgesinde farkli kesitlerde Olciilen ve hesaplanan hiz profilleri
(Durum 1).
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN

1.0 S 1.0 < 1.0 ¢
x=240m x=250m | x=2.60m
1 |
Ll [
e q'. o  DENEY
| \ 1
3 ; ----RSM
. ¢ . : . b
] 1 [ o [ 1l
= 0.5 @ 0.5 o £0.5 - o
B © E ¢ E o
© o ©
© o 10
L] 10
o 4 Io
(] [s] '
[2] '
7 i
) ‘o, '0.650
0.0 & 'T_o- T 0.0 ‘,_-'-;?'—V— 0.0 & 0 T T
00 05 10 15 00 05 10 15 00 05 10 15

/Ui u/Upak u/Upak

Sekil 7.2. (Devam)
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Nazire Goksu SOYDAN

7. SAYISAL VE DENEYSEL BULGULAR
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Sekil 7.3. Mansap bolgesinde farkli kesitlerde dlgiilen ve hesaplanan hiz profilleri

(Durum 1).
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Nazire Goksu SOYDAN

7. SAYISAL VE DENEYSEL BULGULAR
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7. SAYISAL VE DENEYSEL BULGULAR

Nazire Goksu SOYDAN
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Sekil 7.4. Memba bolgesinde farkli kesitlerde olciilen ve hesaplanan hiz profilleri
(Durum 2).
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7. SAYISAL VE DENEYSEL BULGULAR

Nazire Goksu SOYDAN
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Sekil 7.5. Savak bolgesinde farkli kesitlerde Olciilen ve hesaplanan hiz profilleri

(Durum 2).
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN
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Sekil 7.5. (Devam)
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN

1.0 o 1.0 ¢ 1.0 ¢
x=2.80 m ; x=3.00m ; X=325m
: ! !
. 9 ©  DENEY,
i ! RKE
[ N 1
¢ : ¢
x Q ™ 6 - ?
0.5 S 0.5 £0.5 °
2 d P 6 2 o
> 5 > ¢ > o
§ )
S
& 0
9 &
0.0 d J 0.0 .___._L 0.0 ‘,__J;L
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
u;‘umak |I-”‘Mmak u'lumak
1.0 © 1.0 © 1.0 ©
x=3.50m x=3.75m x=400m '
1 9 o
$ ! !
! o ¢
! ! !
Q I
% ® 3 2 3 3
E'EO'S ¢ 505 b £0.5 5
S ® > b E) )
P b &
; g
0.0 & Bj 0.0 <—--QL 0.0 6—o
00 05 1.0 15 00 05 10 15 00 05 10 15
U/Upak U/ Umak U/Upak
1.0 o 1.0 o 1.0 o
x=450m ! x=5.00m X=550m o
I I !
? ° o
] I |
P P o
! ! ]
= o x _b = 6
£05 g £05 g 05 o
'-S.‘ "s‘ - @
P o ¢
[2] o]
I i ?
0.0 « 0.0 :,——-L 0.0 d
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 15
u"‘umak u"'umak u"'umak
Sekil 7.6. Mansap bolgesinde farkli kesitlerde dlgiilen ve hesaplanan hiz profilleri
(Durum 2).
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN

7.2. Deneysel ve Hesaplanan Su Yiizii Profilleri

Bu calismadaki sayisal hesaplamalarda su yiizii profilinin bulunmasinda
Akiskan Hacimleri (VOF) yéntemi kullanilmistir. Sekil 7.7. ve 7.8’de Durum 1 ve
Durum 2 i¢in, bu ¢alismada kullanilan tiirblilans modelleri ile hesaplanan sayisal su
yiizii profilleri, deneysel su yiizii profilleri ile birlikte verilmistir. Sekillerden
goriilecegi gibi, her iki durum i¢in de hesaplanan su yiizii profilleri 6l¢iilen su ylizii

profilleri ile olduk¢a uyumludur.
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN
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Sekil 7.7. Deneysel ve hesaplanan su yiizii profilleri (Durum 1)
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Sekil 7.8. Deneysel ve hesaplanan su yiizii profilleri (Durum 2)
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN

7.3. Deneysel Tiirbiilans Siddeti

Sekil 7.9. ve Sekil 7.10.’da, deneysel olarak elde edilen kanal boyunca farkli
kesitlerdeki tiirbiilans siddetlerinin derinlik boyunca degisimleri sunulmustur. Durum
1 ve Durum 2 i¢in kanal orta eksenindeki tiirbiilans siddeti (I), Denklem 7.2

kullanilarak hesaplanmaistir:

=4 (7.2)
u

Burada u' 6l¢iim yapilan noktadaki hiz sapincini, u ise ayni noktadaki ortalama hizi
vermektedir. Tirbiilans siddeti I, akim hizinin artmasiyla birlikte artis
gostermektedir. Biiylik debi (Durum 2) i¢in Olgiilen tiirbiilans siddetleri, tiim
bolgelerde (memba, savak ve mansap bolgeleri) kiiciik debi (Durum 1) i¢in elde
edilen tiirbiilans siddetlerinden daha biiyiik oldugu Sekil 7.9 ve Sekil 7.10°da
goriilmektedir. Benzer sekilde I'nin pik degerleri de akim hizinin artmasiyla birlikte
artmaktadir. Yine ayni sekillerden, her iki durum i¢in de tiirbiilans siddetinin, memba
bolgesinden savak yapisina dogru ilerledikce az da olsa, giderek azaldigi; mansap
bolgesinde ise savak yapisindan uzaklastikca, az da olsa, arttig1 goriilmektedir. Bolge
bazinda degerlendirme yapilacak olursa, Durum 1 ve Durum 2 igin, memba
bolgesindeki tiirbiilans siddeti I, mansap bolgesindeki tiirbiilans siddeti I’ dan daha
bliytiktiir. Savak bolgesinde ise kanal tabanina paralel yondeki tiirbiilans siddeti akim
hizi ile birlikte artis gostermektedir. Ayrica mansap bolgesinde, savaktan
uzaklagildik¢a su yiizine yakin bolgelerdeki tiirbiilans siddetlerinin arttig1 da

gbzlemlenmistir.
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Sekil 7.9. Deneysel tiirbiilans siddeti (I) grafikleri (Durum 1).
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Nazire Goksu SOYDAN
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Sekil 7.10. Deneysel tiirbiilans siddeti (I) grafikleri (Durum 2).

86

0.00 025 050



7. SAYISAL VE DENEYSEL BULGULAR

Nazire Goksu SOYDAN
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Sekil 7.10. (Devam)
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7. SAYISAL VE DENEYSEL BULGULAR Nazire Goksu SOYDAN

7.4. Hesaplanan Akim Cizgileri

Sekil 7.11 ve Sekil 7.12°de sirasiyla Durum 1 ve Durum 2 ig¢in, trapez kesitli
genis baslikli savak iizerinden gecen akimin sayisal analizlerinden elde edilen akim
cizgileri goriilmektedir. Kanal i¢ine yerlestiren savak yapisinin akim cizgilerinin
topolojisinde yaptig1 degisim acgik¢a goriilmektedir. Sekillerden, her iki durum igin
de tiirbiilans modellerinden elde edilen akim ¢izgileri yapilarinin birbirlerine ¢ok
benzer oldugu goriilmektedir. Hizin arttig1 yani su derinliginin az oldugu bolgelerde
akim ¢izgileri arasindaki mesafe azalmis, hizin yavas oldugu memba bolgesinde
akim ¢izgileri birbirinden uzaklagmistir. Bu ¢alismada kullanilan tiirbiilans modelleri
ile hesaplanan akim cizgileri topolojilerinde, savak yapisinin memba ve mansabinda
herhangi bir sinir tabakasi ayrilmasinin olmadig1 gozlenmistir. Dikdortgen, ticgen ve
egrisel genis baslikli savaklar ile yapilan onceki ¢alismalardan (Kirkgdz ve ark.,
2008; Bal ve ark., 2011; Simsek ve ark., 2011), savak yapisinin membasinda sinir
tabakas1 ayrilmasinin meydana geldigi bilinmektedir. Yapinin memba ve mansabinda
meydana gelen sinir tabakasi ayrilmalari ve bunun neticesinde olusan g¢evrintiler,
ozellikle de hareketli tabanlar iizerinde insa edilen yapilarin giivenligini olumsuz
yonde etkileyen faktorlerdendir. Diger taraftan, ayrilma bolgesinde ¢alkantilarin ve
cevri hareketlerinin ¢ogalmasi nedeni ile akimda enerji kayiplarinin arttig1 bilinen bir
gercektir. Dolayisiyla, trapez kesitli genis baslikli savaklarin savak verimi ve
giivenligi acisindan, diger savak tiirlerine gore kullaniminin daha uygun oldugu

sOylenebilir.
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Sekil 7.11. Farkl tiirbiilans modelleri ile hesaplanan akim ¢izgileri (Durum 1)
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Sekil 7.12. Farkl tiirbiilans modelleri ile hesaplanan akim ¢izgileri (Durum 2)
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7.5. Deneysel Hiz Profilleri ve Hizlarin Zamansal Degisimi

Sekil 7.13 ve Sekil 7.14°de, iki farkli debi i¢in, Lazer Doppler Anemometresi
ile kanal boyunca 20 farkli kesitte Olgiilen yatay hiz bilesenleri ile farkh
derinliklerdeki anlik hiz degerlerinin zamana bagli degisimleri sunulmustur. LDA ile
Olciilen anlik hiz degerlerinin Sl¢iim siiresi 40 s olarak secilmistir. Her bir grafikte,
Olctim yapilan kesite ait deneysel hiz profili ile kesit boyunca oklarla gosterilen
noktalardaki anlik hiz degerlerinin degisimi verilmistir.

Anlik hiz degerlerinin genliklerinin yiiksek olmasi yani hiz sapinglarinin
biiyiik olmasi tiirbiilans siddetinin biiyiik oldugunu; genliklerin diigiik olmasi yani hiz
sapinglarinin kiiclik olmast ise tiirbiilans siddetinin kii¢iik oldugunu gostermektedir.

Sekil 7.13. ve Sekil 7.14 incelendiginde, her iki debi durumu i¢in de gegerli
olmak {izere, memba ve mansap bolgesindeki kesitlerde, kat1 sinirdan su yiiziine
dogru anlik hiz sapinglarinin genliklerinin kiigiildiigii yani tiirbiilans siddetinin
azaldig1 goriilmektedir. Sekillerden, tiirbiilans siddetinin kat1 sinira yakin bir bolgede
maksimum degere ulastigi da goriilmektedir. Savak bolgesinde ise, savaktan
etkilenen akimin, kati yiizeylere yakin bolgelerde ortalamadan daha fazla saptig
gbzlenmistir.

Savak yapisinin memba ve mansabindaki anlik hiz degisimlerinin zamana
bagl degisimlerindeki genliklerin karsilastirilmasindan, akim hizinin daha ytiksek
oldugu kritik iistii bolgede tiirbiilans siddetinin daha yiiksek ve viskoz alt tabakanin
daha ince oldugu; savak yapisinin membasinda ise bunun tam tersi durumun s6z
konusu oldugu goriilebilmektedir.

Anlik hiz degisimlerinin zamana bagli degisimlerindeki genliklerin
karsilastirilmasindan, Durum 2’deki tiirbiilans siddetlerinin Durum 1’e gore daha
bliyiik oldugu goriilebilir. Bu durum, kritik-alt1 rejimden kritik-iistii rejime gecisin
s0z konusu oldugu savak bolgesini de i¢ine alana akim bdolgesinin tamami igi
gecerlidir.

Sekil 7.13. ve Sekil 7.14’te sunulan grafiklerden, viskoz alt tabaka ile
tiirbiilanshi bolge arasinda kalan gecis bolgesinde, kararsiz bir durumun yani hem

tiirbiilans hem de molekiiler viskozitenin etkili oldugu goriilebilir. Su yiiziine dogru
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ilerledikge, tiirbiilansh ve kararli bir bolgeye dogru ilerlenmis olmaktadir. Ortalama
cizgisi tizerindeki salinimsiz yani hiz sapin¢larinin goriilmedigi bolgeler, molekiiler

viskozitenin hakim oldugu, yani akimin laminer karakterde oldugu bolgelerdir.
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Sekil. 7.13. Kanalin farkli kesitlerindeki deneysel hiz profilleri ile anlik hiz

degerlerinin zamansal degisimi (Durum 1)
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Sekil. 7.14. Kanalin farkli kesitlerindeki deneysel hiz profilleri ile anlik hiz
degerlerinin zamansal degisimleri (Durum 2)
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7.6. Enerji Spektrum Egrisi

Spektral analiz, tiirbiilanstan kaynaklanan kinetik enerjinin frekans
bolgesinde nasil dagildigimin goriilmesi agisindan 6nemli bir aragtir. Tiirbiilans
kinetik enerjisi, toplam kinetik enerjinin hiz sapinglarindan kaynaklanan kismini

ifade etmektedir. Birim akigkan hacmi basina diisen tiirbiilans kinetik enerjisi (TKE)

=p (7.3.)

seklinde tanimlanir. Burada p akigskanin yogunlugunu, u’, v’ ve w' degerleri sirasiyla
X, y ve z yonlerindeki hiz sapinglarini gostermektedir. Diizensiz tiirbiilans
calkantilarinin farkli frekans bilesenlerinin siiperpozisyonu seklinde goriilebilmesine
tiirbiilans spektrumu olanak saglamaktadir. Ornek verilecek olursa u’' hiz
sapin¢larindan olusan zaman serisi ¢ok sayida frekans bileseninin bir siiperpoziyonu
seklinde goriilebilir (Czernuszenko ve Holley, 2007; Kose, 2011). Spektral yogunluk

fonksiyonu denklem 7.4 ile verilmistir:
J, B0k =u? (7.4)

Denklem 7.4’deki esitlik, spektral yogunluk grafiginin altinda kalan bdlgenin
toplam alaninin, hiz zaman serisinin varyansina esit oldugunu gostermektedir. Bu
calismada verilen spektral yogunluk fonksiyonlari, x dogrultusunda Olgiilen hiz
zaman serilerine Fourier donilisiimii uygulanarak elde edilmistir. Sekil 7.15 ve
7.16°da kanal derinligi boyunca farkli kesitlerde Sl¢iim alinan belirli noktalardaki
filtrelenmis ve filtrelenmemis spektral yogunluk fonksiyon grafikleri verilmistir.

Bu noktalarda veriler, 100 Hz 6rnekleme frekansiyla alinmistir. Sekillerden
de goriildiigli gibi u' hiz sapinci bileseninin, Kolmogorov’un -5/3 spektral kuralini

yansittig1 goriilmektedir. Kinetik enerjinin spektrum egrisinin -5/3 egrisine sahip
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eylemsizlik araliginin bulunmasi, bu noktada Reynolds sayisinin yiiksek oldugunu,
yani akimin tamamen tiirbiilansli oldugunu gosterir.

Sekiller incelendiginde, frekans arttik¢a enerjinin azaldigi, frekans azaldikca
ise enerjilerin arttigi goriilmektedir. Bir baska ifade ile, kii¢iik olgekli ¢evrintiler
(eddy), rolatif olarak daha kiiciik enerjiye sahip iken biiylik dlcekli cevrintiler ise
daha biyiik enerjiye sahiptirler. Biiyiikk Olcekli ¢evrintilerden kiigiik oOlgekli
cevrintilere dogru bir enerji akist so6z konusu olmakta ve sonunda molekiiler
viskozitenin etkisi ile enerji harcanimi1 meydana gelmektedir. Ayrica her iki durum
icin de memba bolgesinden mansap bolgesine dogru giderken biiylik calkantilarin
sahip oldugu enerjinin arttig1, sekillerden de goriilmektedir. Buna ilave olarak,

debinin artmasi ile kinetik enerji de artmaktadir.
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Anlik hiz sapinglarindan elde edilen enerji spektrum egrileri, x=110 cm
(Durum 1)
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Sekil. 7.16. Anlik hiz sapinglarindan elde edilen enerji spektrum egrileri, x=210 cm
(Durum 1)
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Sekil. 7.17. Anlik hiz sapinglarindan elde edilen enerji spektrum egrileri, x=500 cm
(Durum 1)
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Sekil. 7.18. Anlik hiz sapinglarindan elde edilen enerji spektrum egrileri, x=110 cm
(Durum 2)
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Sekil. 7.19. Anlik hiz sapinglarindan elde edilen enerji spektrum egrileri, x=210 cm
(Durum 2)
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7.7. Logaritmik Hiz Dagilim

Trapez kesitli-genis baslikli savak iizerinden gegcen akimin memba
bolgesinde, x=0.20, 0.30, 0.50, 0.80, 1.10, 1.40, 1.55 m kesitlerinde Olgiilen akim
hizlarmin logaritmik olarak dagilimi Sekil 7.21 ve Sekil 7.22°de sirasiyla Durum 1
ve Durum 2 i¢in verilmistir. Gelismekte olan akim boélgesi icin Sl¢iilmiis deneysel
datalarin, her iki durum ig¢in de, smir tabakasinin tiirbiilansh i¢ bolgesinde, von
Karman-Prandtl tarafindan verilen ve duvar kanunu (law of the wall) olarak bilinen
logaritmik hiz dagilimi ile uyumlu oldugu goriilmektedir. LDA yardimiyla lineer hiz
dagilimmmn séz konusu oldugu viskoz alt tabakada (u'y/v < 10) da olgiimler
gerceklestirilebilmis ve bu sekilde elde edilen deneysel bulgular grafik iizerinde

sunulmustur.

25

20

y=2.44In(x)+5.5

u/u*

©20

030
A50
x 80

x110
0140
+155

100 1000 10000
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Sekil 7.21. Logaritmik duvar kanunu dagilimi (Durum 1)
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Sekil 7.22. Logaritmik duvar kanunu dagilimi1 (Durum 2)
Cizelge 7.3. Hesaplanan u* kayma hizlar1 (mm/s)

Kesit 20 30 50 80 110 140 155
Re=47600 | 11.70 | 11.30 | 11.00 | 10.75 | 10.50 | 10.40 | 10.35
Re=80680 | 15.20 | 15.10 | 15.00 | 14.90 | 14.80 | 14.75 | 14.70

Cizelge 7.3’de, memba bolgesinde hesaplanan kayma hiz1 degerleri

verilmistir. Kayma hizinin, akimin gelismesi ile birlikte azaldigi; Reynolds sayisinin

artmastyla birlikte de artis gosterdigi ¢izelgeden de goriilebilmektedir.
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8. SONUCLAR VE ONERILER

Bu calismada, trapez kesitli genis baslikli savak iizerinden gegen akimin
hareketini idare eden denklemler, sonlu hacimler yontemine dayali ANSYS-Fluent
paket programi yardimiyla alt1 farkli tiirbiilans modeli kullanilarak sayisal olarak
¢Oziilmiigtiir. Su yliziiniin teorik olarak belirlenmesinde Akiskan Hacimleri Yontemi
(VOF) kullanilmstir. Serbest yiizeyli agik kanal akiminin hiz alani, bir boyutlu Lazer
Doppler Anemometresi (LDA) ile ol¢lilmiistiir. SKE, RNG, RKE, MKW, SST ve
RSM tiirbiilans modellerini kullanarak elde edilen sayisal hiz profilleri ve su yiizii
profilleri deneysel dl¢timlerle karsilagtirilmigtir.

OKH degerleri goz oniine alindiginda Durum 1 i¢in memba, savak ve mansap
bolgelerinde sirastyla MKW, RSM ve SST tiirbiilans modellerinin diger modellere
gore daha iyi sonug¢ verdigi belirlenmistir. Durum 2 ig¢in ise, memba bolgesinde
MKW, savak bolgesinde RSM, mansap bolgesinde ise RKE tiirbiilans modellerinin
daha basarili oldugu gozlenmistir.

Su yiizii profilinin sayisal hesabinda Akiskan Hacimleri Yontemi (VOF)
kullanilmigtir. Durum 1 ve Durum 2 i¢in, bu ¢alismada kullanilan tiirbiilans
modellerinin, su yiizi profilini belirlemede oldukc¢a basarili olduklar1 goriilmiistiir.

Ag yapisindan bagimsiz ¢oziimler elde etmek i¢in, GCI (Grid Convergence
Index-Ag yakinsama indeksi) yontemi kullanilmis, ag yapisi ve ag yogunlugunun
sayisal ¢coziimler lizerinde etkisi test edilmistir. Kat1 sinir siirtiinmelerinden etkilenen
bolgelerde, ag yapisinda uygulanan siklastirmanin, sayisal ¢éziimler tizerinde olumlu
yonde etkidigi belirlenmistir.

Deneysel ol¢iimler sonucu elde edilen tiirbiilans siddeti, akim debisinin
artmasiyla birlikte artmaktadir. Her iki durum i¢in de tiirbiilans siddeti, memba
bolgesinden savak yapisina dogru ilerledik¢e azalmakta, mansap bolgesinde ise
savak yapisindan uzaklastikga artmaktadir. Ayrica mansap bdlgesinde, savaktan
uzaklasildikca su yliziine yakin bolgelerdeki tiirbiilans siddeti artmaktadir. Anlik hiz
degerlerinden elde edilen bulgulara gore tiirbiilans siddeti kesit boyunca maksimum
degere kat1 sinira yakin olan bolgede ulasmakta, su yiizline dogru ise siddeti gittikge

azalmaktadir. Bununla birlikte kati1 sinira yakin bolgelerde, hem tiirbiilans hem de
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viskozite etkilerinin gorildiigii gegis bolgesi soz konusu iken, kati smirdan
uzaklastik¢a kararl ve tlirbiilansli bir akim yapis1 yer almaktadir.

Bu calismada kullanilan tiirbiilans modelleri ile hesaplanan akim g¢izgileri
topolojilerinin birbirlerine ¢ok benzer oldugu goriilmiistiir. Savak yapisinin memba
ve mansabinda her hangi bir sinir tabakasi ayrilmasina rastlanmamastir.

Tiirbiilanstan kaynaklanan kinetik enerjinin, frekans uzaymndaki dagilimim
gosteren spektral yogunluk fonksiyonlar1 grafiklerinin, Kolmogorov’un -5/3 spektral
kuralini yansittig1 gozlenmistir. Ayrica bu grafiklerden, kiigiik frekansa sahip biiyiik
Olgekli cevrilerin daha biiylik kinetik enerjiye, biiyiik frekansh kiiciik olgekli
cevrilerin ise rolatif olarak daha kiiciik enerjiye sahip olduklari goriilmiistiir.

Memba bolgesinde gelismekte olan akim kosullarinda o6lgiilen deneysel
verilerin, sinir tabakasinin tiirbiilansh i¢ bolgesinde duvar kanunu olarak bilinen (law

of the wall) logaritmik hiz dagilimi ile uyumlu oldugu goriilmdistiir.
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