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ABSTRACT

ALMOST LOCAL-GLOBAL RINGS

The main purpose of this thesis is to investigate the Invariant Factor Theorem for

Prüfer domains. In accordance with this aim, we give a survey of necessary and sufficient

conditions on a Prüfer domain to satisfy the Invariant Factor Theorem. In this process, al-

most local-global rings have important role since they satisfy the USC-property. Regard-

ing to the UCS-property, BCS-rings together with their properties are also investigeted.
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ÖZET

NEREDEYSE YEREL-BÜTÜNSEL OLAN HALKALAR

Bu tezde Prüfer tamlık bölgeleri üzerinde Invariant Factor Teoremi incelenmiştir.

Bu amaç doğrultusunda, Prüfer tamlık bölgesi üzerine bu teoremi sağlayabilmesi için

gerekli ve yeterli koşullar verilmiştir. Bu süreçte, neredeyse yerel-bütünsel halkalar UCS

özelliğine sahip oldukları için büyük önem taşımaktadırlar. UCS özelliğiyle bağlantılı

olarak BCS halkaları ve özellikleri de incelenmiştir.
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CHAPTER 1

INTRODUCTION

In Chapter 2 we give the definitions of some basic tools about commutative alge-

bra and its properties which are useful for our further studies.

In Chapter 3 we define reachable systems and related property called GCU-property.

We examine under which condition GCU-property holds for domains which have 2-

generator property and Prüfer domains. In this process we mostly use the notion of the

Picard group which is a multiplicative abelian group consisting of the invertible fractional

ideals modulo the principal fractional ideals. We present Simulteneuos Basis property

and related Invariant Factor theorem, which are useful for Prüfer domains. Then we de-

fine local-global rings, and give some examples of them together with their properties.

After giving definition of "content" for different concepts such as vectors, matrices and

submodules, we define a related property called UCS-property. This property is satisfied

if, for each matrix of unit content, the column space of the matrix contains a rank one

projective summand of the containing free module. We observe that every almost local-

global ring has the UCS-property. Moreover, we show that UCS-property is equivalent to

the Simulteneous Basis property for Prüfer domains. Afterwards, we give the main the-

orem of this chapter, shown by ( (Brewer & Klingler, 1987)): Let R be a Prüfer domain

such that every proper homomorphic image of R is a local-global ring. Then R satisfies

Invariant Factor Theorem, so that R has the GCU-property if and only if the Picard group

of R is torsion-free.

Chapter 4 consists of some special tools which we mostly use in the chapter 5.

First, we remember some topological concepts, and then examine topological groups and

their some properties to understand inverse systems and their limits, in particularly in a

ring R. We show that (R,+) is a topological ring with {In | n ≥ 0} as a fundamental

system of neighorhoods at 0, where I is ideal of R and construct inverse sytem of quotient

rings:

R/I ←− R/I2 ←− R/I3 ←− ... .

We denote the completion of R, the inverse limit of this sytem, by R̃ and say R is I-adically

complete if R � R̃. We examine for which condition on I a ring R is I-adically complete.

Then we work out idempotent lifting, which is closely associated with the I-adic com-

pletion of a ring R. If I is an ideal in a ring R, we say that an idempotent x ∈ R/I can
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be lifted to R if there exists an idempotent element e ∈ R whose image under the natural

map R −→ R/I is x. For an arbitrary ideal I, we certainly do not expect every idempotent

x ∈ R/I to be liftable. We give some sufficent conditions on I ⊆ R which guarentee the

liftability of idempotents by Proposition 4.1. Afterwards, we explain the relation between

idempotent matrices and projective modules.

In chapter 5 we define BCS-rings closely associated with the UCS-property on

submodules and give a sufficent condition on ideal I of a ring R for R to be a BCS-ring,

while so is the quotient ring R/I. Then we examine some properties of Von Neumann

regular rings and reduced rings in order to help us to work out the main theorem of this

chapter.

In chapter 6 we include some results over almost local-global rings which might

improve the research on comparisons of some "weaker" forms of isomorphism of mod-

ules, done by B. Ay Saylam and L. Klingler.

In Conclusion we summarize the main results obtained in this thesis.
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CHAPTER 2

PRELIMINARIES

This chapter consists of some basic tools about commutative algebra that are used

in this thesis. All rings mentioned in this thesis are commutative with identity.

2.1. Rings and Ideals

Definition 2.1 A proper ideal P is a prime ideal if xy ∈ p, then x ∈ P or y ∈ P. A proper

ideal M is a maximal ideal if there is no ideal I such that M ⊂ I ⊂< 1 >. Equivalently:

P is prime ⇔ R/P is an integral domain.

P is maximal ⇔ R/P is a f ield.

Definition 2.2 A prime ideal is said to be a minimal prime ideal if it is a minimal prime

ideal containing the zero ideal. In an integral domain, the only minimal prime ideal is the

zero ideal.

Definition 2.3 The Krull dimension of a ring R is the maximum number n ≥ 0 such that

there is a chain of prime ideals

P0 $ P1 $ P2 $ ... $ Pn

of lenght n in R. We also say that R is n-dimensional and write dim(R) = n. If there is

no such an integer n, we say that the ring has infinite Krull dimension or has no Krull

dimension. Evidently, dim(R) = 0 for an integral domain if and only if it is a field.

Definition 2.4 The Jacobson Radical of R, denoted by Rad(R), is defined to be the inter-

section of all maximal ideals of R. It can be characterized as follows.

Proposition 2.1 ( (Atiyah & Macdonald, 1969), Proposition 1.9) x ∈ Rad(R) if and only

if 1 − xy is unit for all y ∈ R.
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Definition 2.5 A non-zero ring R with exactly one maximal ideal is called a local ring.

Proposition 2.2 ( (Atiyah & Macdonald, 1969), Proposition 1.6) Let R be a ring and M

a proper ideal of R such that every x ∈ R − M is unit in R. Then R is a local ring and M

is its maximal ideal.

Definition 2.6 A ring R with finite number of maximal ideals is called semi-local ring.

Definition 2.7 Two ideals I, J of a ring R said to be coprime if I + J = R.

Remark 2.1 For coprime ideals I and J, the following can be seen easily:

(i) I ∩ J = IJ, and there exist a ∈ I and b ∈ J such that a + b = 1.

2.2. Modules

2.2.1. Modules of Fractions and Localizations

This section includes the definitions and basic properties of the formulation of

fractions.

Let S be a submonoid of R∗ (i.e., a multiplicatively closed subset such that 0 < S

and 1 ∈ S ). The set S −1R of equivalence classes of pairs (r, s), r ∈ R, s ∈ S , under the

equivalence relation

(r, s) ∼ (r′, s′) if and only if rs′ = r′s,

becomes a ring. If the equivalence class of (r, s) is denoted by r
s , then the ring operations

are
r1

s1
+

r2

s2
=

r1s2 + r2s1

s1s2
and

r1

s1
·

r2

s2
=

r1r2

s1s2
,

where ri ∈ R, si ∈ S . S −1R is called the localization of R at S or the quotient ring of R

with respect to S .

Example 2.1 If S consists of all the non-zero elements of R, S −1R coincides with K.

Let M be an R-module. We form the pairs (m, s), where m ∈ M and s ∈ S (m, s)

and say that (m′, s′) are equivalent if there exists a t ∈ S such that

t(s′m − sm′) = 0.
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The equivalence class containing (m, s) is denoted by m
s . The R-module S −1M consisting

of the equivalence classes is called the module of quotients of M with respect to S or the

localization of M at S . It becomes an S −1R-module by setting

r
t
·

m
s

=
rm
ts

(r ∈ R, s, t ∈ S , m ∈ M).

The canonical homomorphism φ : M → S −1M which sends m to m/1 need not be

monic.

2.2.2. Free and Projective Modules

Definition 2.8 The rank of a R-module M, where R is an integral domain, is the dimen-

sion of the M ⊗ K, where K is the quotient field of R.

Definition 2.9 A free R-module is one that is isomorphic to an R-module of the form

⊕i∈I Mi, where each Mi � R (as an R-module). Therefore, a finitely generated free R-

module is isomorphic to R(n) for some positive integer n, and the rank of a finitely gener-

ated free R-module is defined as the number of elements in the basis of the free module,

which is unique for a commutative ring.

Definition 2.10 A module P is projective if there is a free module F such that P⊕Q = F,

for some Q ⊆ F.

Definition 2.11 We shall say that projective R-module P has a constant rank if the rank

of PM is the same in each localization of R where R is an integral domain and PM is

localization of P at a maximal ideal M.

Proposition 2.3 An R-module P is projective if, whenever φ : B −→ P is an R-module

epimorphism, then B decomposes into an R-module direct sum :

B = Ker(φ) ⊕ X.

Remark 2.2 A free module is a projective module, but the converse holds for local rings

and PIDs.

5



2.2.3. Exact sequences and Five lemma

Definition 2.12 A sequence of R-modules and R-homomorphisms

...→ Ri−1
fi
−→ Ri

fi+1
−−→ Ri+1 → ...

is said to be exact at Ri if Im( fi) = Ker( fi+1). The sequence is exact if it is exact at each

Ri. In particular,

• 0→ R1
f
−→ R2 is exact⇔ f is injective,

• R1
g
−→ R2 → 0 is exact⇔ g is surjective.

We give a special commutative diagram with exact rows, which will be useful

Chapter 3.

Lemma 2.1 ( (Alizade & Pancar, 1999), Five Lemma) Let A1 −→ A2 −→ A3 −→ A4 −→

A5 and B1 −→ B2 −→ B3 −→ B4 −→ B5 be exact sequences, and suppose the diagram

A1

h1
��

// A2

h2
��

// A3

h3
��

// A4

h4
��

// A5

h5
��

B1
// B2

// B3
// B4

// B5

commutes.

(i) If h1 is an epimorphism, h2 and h4 are monomorphisms, then h3 is a monomorphism.

(ii) If h5 is a monomorphism, h2 and h4 are epimorphisms, then h3 is an epimorphism.

(iii) If h1 is an epimorphism, h5 is a monomorphism and h2 and h4 are isomorphisms,

then h3 is an isomorphism.

2.3. Fractional Ideals

Definition 2.13 Let R be an integral domain with the quotient field K. A fractional ideal

of an integral domain R, is an R-submodule J of K such that rJ ≤ R for some non-zero

r ∈ R.

6



Remark 2.3 The followings can be seen easily:

(i) A R-submodule of K is a fractional ideal if and only if it is isomorphic to an ideal

of R.

(ii) The ideals of R are clearly fractional ideals.

(iii) A finitely generated submodule of K is a fractional ideal.

For R-submodules I and J of K, we have a binary operation which is called the

product:

IJ = {

n∑
i=1

aibi|ai ∈ I, bi ∈ J, n < ω}.

Definition 2.14 A fractional ideal I of an integral domain R is said to be invertible if

there exists a fractional ideal J of R such that IJ = R.

Definition 2.15 If R is an integral domain, the Picard group of R is the (multiplicative)

abelian group consisting of the invertible fractional ideals of R modulo the principal

fractional ideals of R, denoted by Pic(R).

2.4. Valuation Rings and Prüfer Domains

Definition 2.16 A ring R said to be a valuation ring if the ideals of R totally ordered by

inclusion. Equivalently, if a, b ∈ R, then either a ∈ Rb or b ∈ Ra. A valuation ring that is

a domain is called valuation domain.

Remark 2.4 A valution ring R contains a unique max ideal, which is the Jacobson Radi-

cal of R, and it consits of all non-ivertible elements of R.

Definition 2.17 An integral domain R is a Prüfer domain if all its localizations at max-

imal ideals are valuation domains; thus, Prüfer domains are those domains which are

locally valuation domains.

Remark 2.5 Clearly, if R is a Prüfer domain and P is a non-zero prime ideal of R, then

RP is a valuation domain.

Theorem 2.1 ( (Fuchs & Salce, 2001), Theorem 1.1) For a domain R, the following con-

ditions are equivalent.

7



(i) R is a Prüfer domain.

(ii) Every finitely generated non-zero fractional ideal is invertible.

(iii) The lattice of the fractional ideals of R is distributive: for fractional ideals A, B,C

of R,

A ∩ (B + C) = (A ∩ B) + (A ∩C).

Remark 2.6 We note that if R is a Prüfer domain, then each of its finitely generated ideals

are projective since invertible ideals are projective.

8



CHAPTER 3

INVARIANT FACTOR THEOREM IN PRUFER

DOMAINS

3.1. Good Modules and Steinitz Property

Definition 3.1 Given a pair of matrices F and G of sizes n × n and n × m, respectively,

over a commutative ring R, the n-dimensional system (F,G) is said to be reachable if the

columns of the matrix [G, FG, F2G, ..., Fn−1G] span R(n).

Definition 3.2 Given an R -module E, we say that E is good if and only if there exists a

sequence

R(m) G
−→ R(n) F

−→ R(n)

of R-homomorphisms G and F such that the system (F,G) is reachable and E is isomor-

phic to the image of G.

Theorem 3.1 ( (Brewer & Klingler, 1987),Theorem 1) Let R be an integral domain with

a fractional ideal I of R.

(i) If I is a good R module, then there exists a positive integer t such that It is isomor-

phic to finitely generated free R-module. In particular, It is principal, so that I is

invertible.

(ii) Suppose that I is generated by 2 elements. If In is principal for some positive integer

n, then I is a good R module.

Proof (i) Suppose that R(m) G
−→ R(n) F

−→ R(n), where the image of G is rank one and

< Im(G), Im(FG), ..., Im(Fn−1G) >= R(n).

9



If Im(G) � I, then Im(G) = Ix1 for x1 ∈ K, where K is the quotient field of R. Let

F(xi) = xi+1 for 1 ≤ x ≤ n − 1 . Then we have;

Im(G) = Ix1

Im(FG) = F(Ix1) = Ix2

Im(F2G) = F(Ix2) = Ix3

...............

Im(FnG) = F(Ixn−1) = Ixn.

Then {x1, x2, .., xn} is linearly independent over K since (F,G) is reachable. Consequently,

< Im(G), Im(FG), Im(F2G), ..., Im(Fn−1G) >= Ix1 ⊕ Ix2 ⊕ ... ⊕ Ixn = R(n).

So, R(n) � I(n). This implies that In � Rn = R (see, (Kaplansky,1952), Lemma 1)

.Therefore, In is principal, so it is invertible. There exists a fractional ideal J such that

InJ = IIn−1J = R, which means I is invertible.

(ii) Since In is assumed to be principal, it is invertible. Thus, I is invertible. Moreover,

since I is generated by 2 elements, we can write 1 = ax+by, where a, b ∈ I and x, y ∈ I−1.

Hence, I =< a, b > and I−1 =< x, y >. Then I−t =< xt, yt > for any positive integer t (see,

(Gilmer, 1972),Theorem 6.5). Thus, we can write 1 = atxt +btyt , where at, bt ∈ It. Define

φ : I ⊕ It 7−→ R by φ(u, v) = xu + ytv . Then φ(atxt−1, bt) = 1, and so φ is surjective. By

the projectivity of R, R ⊕ Ker(φ) � I ⊕ It. Hence, we have these exact squences:

0 // 0 // I ∩ It

��

// I ⊕ It // I + It

0 // 0 // Ker(φ) // I ⊕ It φ // R

Then by Lemma 2.1 we must have, Ker(φ) � I ∩ It = IIt = It+1 since I and It are

coprime. Hence

R ⊕ It+1 � I ⊕ It. (3.1)

10



Using this and induction on t, it follows that I(t) � R(t−1)⊕ It for each positive integer t ≥ 2.

For t = 2, I(2) � R ⊕ I2 can be obtained by writing t = 1 in (3.1). Suppose it holds

for t = n,

I(n) � R(n−1) ⊕ In. (3.2)

Now consider t = n + 1.

R(n) ⊕ In+1 = R(n−1) ⊕ R ⊕ In+1

R(n) ⊕ In+1 � R(n−1) ⊕ In ⊕ I (by (3.1))

I(n) ⊕ I � R(n−1) ⊕ In ⊕ I (by (3.2))

I(n+1) � R(n−1) ⊕ R ⊕ In+1 (by (3.1))

I(n+1) = R(n) ⊕ In+1.

And since In � R, we get that I(n) � R(n).

We claim that if P is a (projective) module such that P(m) is a finitely generated

free module, then P is good. We may assume that P(m) = R(m).

Let G : R(m) −→ R(n) defined by G(r1, r2, ..., rn, rn+1, ..., rm) = (r1, 0, ..., 0), and

F : R(n) −→ R(n) is defined by F(r1, r2, ..., rn) = (rn, r1, r2, ..., rn−1). Then,

Im(G) = (r1, 0, ..., 0, 0)

Im(FG) = (0, r1, 0, ..., 0)

Im(F2G) = (0, 0, r1, ..., 0)

.........

Im(Fn−1G) = (0, 0, ..., 0, r1).

Therefore, we clearly have,

< Im(G), Im(FG), Im(F2G), ..., Im(Fn−1G) >= R(n) = P(n)and Im(G) � P.

�
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Definition 3.3 Let R be an integral domain. We shall say that R has 11
2 -generator prop-

erty if and only if, given an invertible fractional ideal A and a non-zero element a ∈ A,

there exists an element b ∈ A such that A=< a, b >. We shall say that R has 2-generator

property if each invertible fractional ideal of R can be generated by 2 elements.

Remark 3.1 It is clear that 1 1
2 -generator property implies 2-generator property. And it

should be noted that both the 1 1
2 -generator and 2-generator properties are usually defined

only for Prüfer domains.

Definition 3.4 Let R be an integral domain. We shall say that R has the Steinitz property

if, whenever A and B are invertible fractional ideals of R, it follows that

R ⊕ AB � A ⊕ B.

Proposition 3.1 ( (Brewer & Klingler, 1987), Proposition 1) Let R be an integral domain

and consider the following conditions on R.

(i) R has 11
2 -generator property.

(ii) For all invertible fractional ideals A and all integral ideals B, A/ AB � R/ B.

(iii) R has the Steinitz property.

(iv) R has 2-generator property.

(v) For each invertible fractional ideal A of R , A ⊕ A−1 � R ⊕ R.

(vi) For each invertible fractional ideal A of R and each positive integer t,

A(t) � R(t−1) ⊕ At.

Then (i)⇔ (ii)⇒ (iii)⇒ (iv)⇔ (v)⇔ (vi) and (iii); (ii).

Proof (i)⇒ (ii) Choose any non-zero x ∈ AB ⊆ A. Then there exists y ∈ A such that

A =< x, y >= AB + Ry since R has 11
2 -generator property. Define φ : R −→ A/AB

by φ(a) = ay + AB, so that φ is surjective since A = AB + Ry and ay ∈ Ry. For any b ∈ B,

φ(b) = by + AB = 0A/AB, so that B ⊆ Kerφ. If d ∈ Ker(φ), then φ(d) = dy + AB = 0A/AB =

AB, which implies dy ∈ AB , and certainly dx ∈ dAB ⊆ AB. Thus dA = dRx + dRy ⊆ AB.

Then multiplying both side by A−1, we obtain dR ⊆ RB which implies d ∈ B. Hence,

Ker(φ) = B. By the first isomorphism theorem, R/B � A/AB.

(ii)⇒ (i) Let A be invertible fractional ideal and x ∈ A arbitrary non-zero element. Then

Rx = xA−1A = BA for B = xA−1 ⊂ R an integral ideal. By assumption, A/ AB � R/ B is

cyclic. So, A/AB = (Ry + AB)/AB for some y ∈ A. Hence, A = AB + Ry = Rx + Ry, and

12



R has 11
2 -generator property.

(i)⇒ (iii) If A and B invertible fractional ideals of R, then it suffices to find a surjective

homomorphism from A ⊕ B to R. For this, it suffices to find scalars α and β such that

αA ⊕ βB = R. Choose α , 0 such that αA ⊆ R. We can do this since A is fractional ideal

of R . Then αA + βB = R if and only if αAB−1 + βBB−1 = RB−1, that is αAB−1 + βR =

B−1. Let α
′

∈ αAB−1 ⊆ B−1 with α
′

, 0. By the 1 1
2 -generator property, there exists

β ∈ B−1 such that B−1 =< α
′

, β >, that is α
′

R + βR = B−1. So, αAB−1 + βR = B−1 since

α
′

R ⊆ αAB−1 ⊆ B−1. Thus, αA + βB = R for this choice of α and β. We showed that

there is a surjective homomorphism, say φ, from A ⊕ B to R. By the projectivity of R,

A ⊕ B � R ⊕ Ker(φ). And we have these exact squences:

0 // 0 // A ∩ B

��

// A ⊕ B // A + B

0 // 0 // Ker(φ) // A ⊕ B
φ // R

Then by Lemma 2.1, we must have Ker(φ) � A ∩ B = AB since A and B are

coprime. Thus A ⊕ B � R ⊕ AB, R has the Steinitz property.

(iii)⇒ (iv) Let A be an invertible fractional ideal of R. By the Steinitz property, A⊕ A−1 �

R⊕R. This gives homomorphism from R⊕R onto A. Thus, A is generated by 2 elements.

(iv)⇒ (v) Let A be an invertible fractional ideal of R. Since R has 2-generator prop-

erty, A =< a, b > for some a, b ∈ A. Then ax + by = 1, where x, y ∈ A−1. Define

φ : A ⊕ A−1 −→ R by φ(u, v) = ux + vb. Since φ(a, y) = 1, φ is surjective. By projectivity

of R, A ⊕ A−1 � R ⊕ Ker(φ). And again by Lemma 2.1, we get Ker(φ) � AA−1 = R. Thus

A ⊕ A−1 � R ⊕ R.

(v)⇒ (iv) This is just an argument of (iii)⇒ (iv). Choosing B = A−1 in (iii), it follows.

(iv)⇒ (vi) This was the first part of Theorem1 part (ii).

(vi)⇒ (iv) Let A be an invertible fractional ideal of R. For t = 2, A ⊕ A � R ⊕ A2. This

gives a homomorphism from A ⊕ A onto R, and hence Ax + Ay = R for some x, y ∈ A−1.

Then writing ax + by = 1 for some a, b ∈ A, we get that A =< a, b >, so R has 2-generator

property. This completes the proof of the equivalence of (iv),(v),(vi).

We note that a domain R satisfies condition (ii), if for every ideal B ⊆ R, R/B has

the property that rank one projectives are free. Hence such a domain has the 11
2 -generator

property, and consequently, the Steinitz property. �
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3.2. Picard Group and GCU-property

In this section we define GCU-property and we will examine under which condi-

tion GCU-property holds for domains with 2-generator property and Prüfer domains.

Definition 3.5 A vector x ∈ R(n) is unimodular if and only if the ideal generated by the

coordinates of x is R.

Definition 3.6 Let R be a commutative ring. We shall say that R has GCU-property

(Good Contains Unimodular Property) if for every reachable system (F,G) over R, the

matrix G has a unimodular vector in its image. If G : R(m) −→ R(n), then this condition is

equivalent to the image of G containing a rank one free summand.

Proposition 3.2 ( (Brewer & Klingler, 1987), Proposition 2) Let R be an integral domain

with 2-generator property. If R has the GCU-property, then the Picard group of R is

torsion-free.

Proof Let I be invertible fractional ideal of R with It principal for some positive integer

t. By Theorem 3.1 (ii), I is good. So, there exist a squence

R(m) G
−→ R(n) F

−→ R(n)

of R-module homomorphisms G and F such that the system (F,G) is reachable and I is

isomorphic to image of G. Since R has GCU-property, Im(G) � I contains rank one free

summand. So, xR ⊆ I for some x ∈ R . And since I is fractional ideal of R, there exists

r ∈ R such that rI ⊆ R. We get R � rxR ⊆ rI ⊆ I. Thus, rI = R, which means I =< 1
r > is

principal. Hence, Pic(R) = I(R)/P(R) = P(R)/P(R) � 1, is torsion-free. �

Consequently, torsion-free picard group is necesssary condition for domains hav-

ing 2-generator property for the GCU-property to hold. Now we examine that under which

condition having torsion free Picard group is sufficent for the GCU-property to hold.

Definition 3.7 If R is a Prüfer domain with the quotient field K. We shall say that R

has the Simultaneous Basis property if and only if, given finitely generated projective R-

modules N ⊆ M, there exists vectors x1, x2, ..., xm in KM � K(m) and invertible fractional
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ideals J1, J2, ..., Jn and invertible integral ideals A1 ⊇ A2 ⊇ ... ⊇ Am (n ≤ m) such that

M = J1x1 ⊕ J2x2 ⊕ Jnxn ⊕ .. ⊕ Jmxm

N = A1J1x1 ⊕ A2J2x2 ⊕ .. ⊕ AnJnxn.

Definition 3.8 We say that R satisfies Invariant Factor Theorem if and only if R has

the Simultaneous Basis Property, and, for each pair of finitely generated projective R-

modules N ⊆ M, it is possible to decompose M and N simultaneously (as above) with the

added condition that J1 = J2 = ... = Jn−1 = R.

Lemma 3.1 ( (Heitmann & Levy, 1975), Lemma 4.2) The following are equivalent for

finitely generated non-zero ideals A, B of a Prüfer domain.

(i) A ⊕ B � R ⊕ AB.

(ii) ∃Á � A and B́ � B such that Á + B́ = R.

Theorem 3.2 ( (Brewer & Klingler, 1987), Theorem 2) Let R be a Prüfer domain satisfy-

ing the Invariant Factor Theorem. Then R has the GCU-property if and only if the Picard

group of R is torsion-free.

Proof We first claim that R has the Stenitz property. By the Invariant Factor Theorem,

we can take M = A ⊕ B = Rx1 ⊕ Jx2, where A, B and J are invertible fractional ideals of

R and x1, x2 in KM. Then Rx1 � R is a direct summand of A ⊕ B, and there exists onto

map from A ⊕ B to R, which means A + B = R. Then by Lemma 3.1, A ⊕ B � R ⊕ AB so

R has the Stenitz property. Thus, by Proposition 3.1, R has 2-generator property, so that,

by Proposition 3.2, the Picard group of R is torsion-free.

Conversely, suppose that the Picard group of R is torsion-free, and let E be a good

R-module. This means that there exists a squence of R-modules and homomorphisms

R(k) G
−→ R(n) F

−→ R(n)

such that the colums of [G, FG, F2G, ..., Fn−1G] span R(n) and E � Im(G) ⊆ R(n). There

are two cases to consider.

case(i) Suppose that E has rank one, so E � I for some fractional ideal I of R. Then It

is principal for some positive integer t, and I is invertible by Theorem 3.1 (i). Since the
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Picard group of R is torsion-free, I is principal. Hence I � R. Moreover, the proof of

Theorem 3.1 (i) shows that E � Ix1 for some x1 in K(n) and

R(n) = Ix1 ⊕ Ix2 ⊕ ... ⊕ Ixn.

Thus, E � Ix1 is a rank one free summand of R(n). This proves the result in case the rank

of E is rank one, and it does not require the Invariant Factor Theorem. �

case(ii) Suppose that the rank of E is m ≥ 2. By the Invariant Factor Theorem, choosing

M = R(n) and N = E we can write,

R(n) = Rx1 ⊕ Rx2 ⊕ ... ⊕ Rxm ⊕ ... ⊕ Rxn

E = A1Rx1 ⊕ ... ⊕ Am−1Rxm−1 ⊕ AmRxm,

where A1 ⊇ A2 ⊇ ... ⊇ Am are invertible integral ideals of R. If A1 , R, then Im(G) ⊆

A1R(n) and

< G, FG, F2G, ..., Fn−1G >⊆ A1R(n) , R(n)

contradicting with (F,G) is reachable. This proves that A1 = R, and so Im(G) � E

contains a rank one free summand.

3.3. Almost Local-Global Rings and UCS-property

In this section we define a special ring and new property to establish a sufficent

condition for Prüfer domains to satisfy Invariant Factor theorem.

Definition 3.9 A ring R is said to be Local-Global if every polynomial over R in finitely

many indeterminates which represents units locally, also represents units globally.

Remark 3.2 R is local-global if and only if R/Rad(R) is local-global.

Proof It follows from the fact that the elements are units in R if and only if they are

units modulo the Rad(R). To prove this observation, first let x be a unit in R. Then there

exists y ∈ R such that xy = 1. Consider (x + Rad(R))(y + Rad(R)) = xy + Rad(R) =

1 + Rad(R) = 1Rad(R), where (x + Rad(R)), (y + Rad(R)) are units of R/Rad(R). Conversely,

if we take units of R/Rad(R) such that (x + Rad(R))(y + Rad(R)) = 1 + Rad(R) then
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xy + Rad(R) = 1 + Rad(R), so 1 − xy ∈ Rad(R). By Proposition 2.1, 1 − (1 − xy) is

invertible. So, there exists an element z ∈ R, xyz = zxy = 1, which implies that x and y

are units of R.

Example 3.1 Fields are trivially local-global.

Example 3.2 Local rings are local-global since localization of a local ring is again itself,

every polynomial which represents units locally, also represents units globally.

Example 3.3 Semilocal rings are local-global. To prove this statement, let R be semilo-

cal ring with maximal ideals M1,M2, ..,Mn. Define φ : R −→ R/M1 ⊕ R/M2 ⊕ ... ⊕ R/Mn

by φ(r) = (r + M1, r + M2, ..., r + Mn). Clearly φ is onto. And

Ker(φ) = {r ∈ R| f (r) = 0R/M1⊕..R/Mn} =
n⋂

i=1
Mi = Rad(R) . By the first isomorphism theo-

rem,

R/Rad(R) � R/M1 ⊕ R/M2 ⊕ ... ⊕ R/Mn.

Note that R/Mi is field for each i = 1, 2, ..., n, so R/Rad(R) is direct sum of fields. Since

fields are local-global and finite direct sum of local-global rings again local-global,

R/Rad(R) is local global, so by Remark 3.2 R is local-global.

Example 3.4 Domains of Krull-dimension zero are local-global. It follows from the fact

that in such rings every element is either a zero-divisor or a unit.

Definition 3.10 A ring R is said to be Almost Local-Global if each of its proper factor

ring is local-global.

Example 3.5 Domains of Krull-dimension one are almost local-global. Since dim(R) =

1, 0 and the maximal ideals of R are the only prime ideals of R. Consider R/I for any

ideal I of R. Since prime ideals of R/I are of the form J/I, where J is prime ideal of R

containing I, dim(R/I) = 0. Thus R/I is local-global.

Definition 3.11 (i) For x ∈ R(n) content of x defined as the ideal of a ring R generated

by coordinates of x, denoted c(x).

(ii) If M is a submodule of R(n), then content of M means the ideal generated by all c(x)

where x ∈ M, denoted C(M).

(iii) For matrix X content of X is the ideal generated by its entries, denoted C(X).
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Lemma 3.2 ( (Brewer & Klingler, 1987), Lemma 1) Let R be a local-global ring, R(n) a

finitely generated free R-module, and x a non-zero element of R(n). If c(x)+c(y)= R for

some y ∈ R(n), then c(x + ey)=R for some e ∈ R .

Proof Let x = (a1, a2, ..., an), y = (b1, b2, ..., bn) and f = (z1, z2, ..., zn,w) be the poly-

nomial
n∑

i=1
zi(ai + wbi). Since c(x)+c(y)= R ,we have

n∑
i=1

riai +
n∑

i=1
ribi = 1. So, each prime

ideal M of R, there is some ai or b j not in M. Thus, f represents units locally, so that

by assumption on R, f represents units globally, that is for some r1, r2, ..., rn, e ∈ R,

f (r1, r2, ..., rn, e) =
n∑

i=1
ri(ai + ebi) is unit in R. But this implies c(x + ey)=R . �

Definition 3.12 We say that a commutative ring R has the UCS-Property (Unit Contains

Unimodular Property) if for each matrix G of unit content, there exists matrix V such

that GV has unit content and all 2 × 2 minors of GV are zero. This is equivalent to the

property that, for each matrix G of unit content, the column space of G contains a rank

one projective summand of the containing free module (see, (Gilmer & Heitmann, 1980).

Theorem 3.3 ( (Brewer & Klingler, 1987), Theorem 3) Let R be a ring such that every

homomorphic image of R is local-global ring. Then R has the UCS-property.

Proof Let G = [ai j]n×n be a matrix of unit content, that is
n∑

i, j=1
ri jai j = 1, and let B denote

the column space of G, which is a submodule of R(n). Choose x = (x1, x2, ..., xn) , 0 in

B. Then c(x) =< x1, x2, ..., xn >=
n∑

i=1
rixi is an ideal of R. By assumption, R̄ = R/c(x)

is a local-global ring. Reducing the entries of G modulo c(x), denote new matrix by

Ḡ = [ai j + c(x)]n×n and its column space by B̄ ⊆ R̄(n). Then, Ḡ still has unit con-

tent since
n∑

i=1
ri j(ai j + c(x)) =

n∑
i=1

ri jai j + c(x) = 1 + c(x) = 1R̄. Then, there is some

ȳ ∈ R̄ such that c(ȳ) = R (see, (Brewer & Katz & Ullery, 1987) Proposition 3). Thus, if

y = (y1, y2, ..., yn) ∈ B any pre-image of ȳ, then c(x) + c(y) = R. Let B0 be submodule of B

generated by 2 vectors x and y.

Let I be the ideal of R generated by the 2 × 2 minors of the n × 2 matrix [x, y], as

below:



x1 y1

x2 y2

. .

. .

xn yn


I =< (x1y2 − x2y1), (x2y3 − x3y2), ..., (x(n−1)yn − xny(n−1)) > .
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If I = 0, then;

x1y2 − x2y1 = 0 ⇒ x1y2 = x2y1 ⇒
x1

x2
=

y1

y2

x2y3 − x3y2 = 0 ⇒ x2y3 = x3y2 ⇒
x2

x3
=

y2

y3

.......................

xn−1yn − xn − yn−1 = 0 ⇒ xn−1yn = xnyn−1 ⇒
xn−1

xx
=

yn−1

yn
.

That means x and y are linearly dependent, then B0 itself is a rank one projective summand

of R(n) contained in B.

If I , 0, then, again by assumption, R/I is local-global ring. Reducing c(x)+c(y) =

R in modulo I, we get that c(x̄) + c(ȳ) = R̄, so that by Lemma 3.2, c(x̄ + ēȳ) = R̄ for some

ē ∈ R̄. Thus, if e is a pre-image of ē in R, we get c(x + ey) + I = R. Suppose c(x + ey) ⊆ M

for some maximal ideal M of R. Then c(x + ey) =< x1 + ey1, x2 + ey2, ..., xn + eyn >⊆ M,

that means xi + eyi ∈ M for each i = 1, ..., n. So, x + ey becomes zero in (R/M)(n). Then x

and y become linearly dependent in (R/M)(n). Since I is generated by 2 × 2 minors of the

matrix [x, y], I = 0 mod M. Hence I ⊆ M. Then c(x + ey) + I ⊆ M contradicting with the

fact that c(x + ey) + I = R. Thus, c(x + ey) = R, so that x + ey generates a rank one free

summand of R(n) contained in B0 ⊆ B. �

We obtain two useful instances when the hypothesis of Theorem 3.3 is satisfied.

They are satisfied for any one-dimensional integral domain. They are also satisfied if R is

a ring having the property that each nonzero element of R belongs to only finitely many

maximal ideals. In particular, such rings have the UCS-property (see, ( (Hautus & Sontag,

1986), Corollary 2)).

Theorem 3.4 ( (Brewer & Katz & Ullery, 1987), Theorem 6) Let R be a Prüfer domain.

Then R has UCS-property if and only if R has the Simultaneous Basis property.

Proof First let us suppose that R has the UCS-property, and let M be a non-zero finitely

generated submodule of R(n). Set J1 = c(M), which is an ideal of R. Since M is

finitely generated, so is J1, and it is invertible since R is a Prüfer domain. Then M =

J1(J1
−1M), (J1

−1M) is finitely generated. Then, multiplying J1 = c(M) by J−1
1 , we have

R = J−1C(M) = C(J−1M), which means J1
−1M has a unit content. So, by the UCS-

property, J−1M contains a rank one free summand P1 of R(n). Let us write R(n) = P1 ⊕ N1.

Thus, J−1M = P1 ⊕ M1, where M1 = J−1M ∩ N1 and multiplying J−1M = P1 ⊕ M1

by J1, we have M = J1P1 ⊕ J1M1. If J1M1 , 0, then set J2 = c(M1). As above J2

is invertible, and J2
−1M1 contains a rank one projective summand P2 of R(n). There-

fore, R(n) = P1 ⊕ P2 ⊕ N2. Thus J−1
2 M1 = P2 ⊕ M2, where M2 = J2

−1M1 ∩ N2, and
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M1 = J2P2 ⊕ J2M2. Then M = J1P1 ⊕ J1M1, so we have M = J1P1 ⊕ J1J2P2 ⊕ J1J2M2.

Continuing in this way, we eventually reach k ≤ n with J1J2...JkMk = 0 since M is finitely

generated. So, R(n) = P1 ⊕ P2 ⊕ ...Pk ⊕ Nk and M = J1P1 ⊕ J1J2P2 ⊕ ... ⊕ J1J2...JkPk.

Setting Ir = J1J2...Jr(1 ≤ r ≤ k), M1 = I1P1 ⊕ I2P2 ⊕ ...⊕ IkPk, and we observe that (since

R is a Prüfer domain ) Nk = 0 or direct sum of rank one projectives. We conclude that R

has the Simultaneous Basis property.

Conversely, suppose R has the Simultaneous Basis property, and let G be n × n

matrix over R with unit content. Let M ⊆ R(n) be the submodule generated by columns of

G. So, M has unit content. Thus, there exists rank one projective summands P1, P2, ..., Pk

of R(n) and I1 ⊇ I2 ⊇ ... ⊇ Ik are ideals of R such that M = I1P1 ⊕ I2P2 ⊕ ... ⊕ IkPk. Since

M has unit content, I1 ⊇ I2 ⊇ ... ⊇ Ik implies that I1 = R, and so I1P1 = P1. Therefore, M

contains rank one projective summand of R(n). �

By adjusting the proof of Theorem 3.3 and using Theorem 3.4, we obtain sufficent

condition for a Prüfer domain to satisfy the Invariant Factor Theorem.

Theorem 3.5 ( (Brewer & Klingler, 1987), Theorem 4) Let R be a Prüfer domain such

that every proper homomorphic image of R is a local-global ring. Then R satisfies the

Invariant Factor Theorem, so that R has the GCU-property if and only if the Picard group

of R is torsion-free.

Proof If R is a Prüfer domain such that every proper homomorphic image of R is a

local-global ring, then, by Theorem 3.3, R has the UCS-property. Let N ⊆ M be finitely

generated projective R modules. By Theorem 3.4, R has the Simultaneous Basis Property.

Thus, with K the quotient field of R, there exist vectors x1, x2, ..., xm in KM � K(m), and

invertible fractional ideals J1, J2, ..., Jm and invertible integral ideals A1 ⊇ A2 ⊇ ... ⊇ An

such that

M = J1x1 ⊕ J2x2 ⊕ ... ⊕ Jnxn ⊕ .. ⊕ Jmxm

N = A1J1x1 ⊕ A2J2x2 ⊕ .. ⊕ AnJnxn.

To get the Invariant Factor Theorem, we must show that the decomposition can be choosen

in such a way that J1 = J2 = ... = Jn−1 = R.

By an obvious inductive argument, we can suppose that n = m = 2. Then multi-

plying N = A1J1x1 ⊕ A2J2x2 by A1
−1, we have A1

−1N = J1x1 ⊕ A1
−1A2J2x2 ⊆ M (since

A1 ⊇ A2, R ⊇ A1
−1A2). Since A1

−1N is a submodule of M, we can replace N by A1
−1N,

and we can suppose A1 = R. This yields the decompositions,

M = J1x1 ⊕ J2x2,
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N = J1x1 ⊕ A2J2x2,

where A2 ⊆ R.

Since every proper homomorphic image of R assumed to be local-global ring,

it follows from the proof of Theorem 3.3 that every homomorphic image of R has the

property that rank one projectives are free. Thus, as noted at the end of the proof of

Proposition 3.1, R has 11
2 -generator property, and hence Steinitz property.

If A2 = R in N = J1x1 ⊕ A2J2x2, then by the Steinintz property;

M = N = J1x1 ⊕ J2x2 � R ⊕ J1J2. (3.3)

So M = N = Ry1 ⊕ J1J2y2 for some y1, y2 ∈ KM, and we are finished in this case.

Thus, we can suppose that A2 , R. In order to use the ideas of Theorem 3.3, we

view M as a direct summand of free module. By (3.3), a matrix G with column space

equal to N must be of unit content since N contains a rank one projective summand of the

containing free module. As it was in the proof of Theorem 3.3, choose x , 0 in N and,

consider the local-global ring R̄ = R/c(x). Reducing the entries of G modulo c(x), denote

the new matrix by Ḡ and its column space by N̄. Then Ḡ still has unit content. There

is some ȳ ∈ N̄ such that c(ȳ) = R̄. Thus, if y ∈ R pre-imge of ȳ, then c(x) + c(y) = R.

We let I be the ideal generated by the 2 × 2 minors of the n × 2 matrix [x, y]. If I , 0,

then the proof of Theorem 3.3 shows that N contains rank one projective summand of the

containing free module, hence of M. Say Ry1 ⊆ N ⊆ M is direct summand of M with

complimentary direct summand X in the free module. Then M = Ry1 ⊕ (X ∩ M), where

X ∩M = J2
′y2 for some y2 ∈ KM and invertible fractional ideal J2

′ of R. And similarly it

follows that N = Ry1 ⊕ (X ∩ N) where X ∩ N ⊆ X ∩ M = J2
′y2. So that X ∩ N = A2

′J2
′y2

for some invertible integral ideal A2
′ of R. Thus M = Ry1 ⊕ J2

′y2 and N = Ry1 ⊕ A2
′J2
′y2,

and so we are finished if I , 0.

It remains to show that we can choose x ∈ N so that I is not zero. Let x be

any nonzero element of A2J2x2 in (3.3). As above, we get similary y ∈ N such that

c(x)+c(y) = R since N has unit content. Let I be the ideal generated by 2×2 minors of the

n×2 matrix [x, y]. If I = 0, then x and y are linearly dependent in Kx ⊆ KN = Kx1⊕Kx2.

So, x, y ∈ Kx ∩ N = A2J2x2. But, then x, y ∈ A2M, which is an integral ideal. Thus

c(x) + c(y) ⊆ A2, contradicting with the assumption A2 , R. Hence, I , 0. �

Corollary 3.1 ( (Brewer & Klingler, 1987), Corollary 1 ) If R is a Prüfer domain with the

property that every non-zero element of R belongs to only finitely many maximal ideals,
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or if R is a Prüfer domain of dimension one, (in particular if R is a Dedekind domain),

then R satisfies Invariiant Factor Theorem. Consequently, such a Prüfer domain R has

the GCU-property if and only if Picard group of R is torsion-free.

Proof If R satisfies either hypothesis of Theorem 3.5, then R is a Prüfer domain such

that every proper homomorphic image of R is a local-global ring. The result follows from

Theorem 3.5. �
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CHAPTER 4

IDEMPOTENT LIFTING

4.1. Topologies and Completions

In this chapter we will examine some property of topological groups to understand

inverse systems and their limits, in particulary, in a ring R. First, let us remember some

topological concepts.

A topological space is an ordered pair (X, τ), where X is a set and τ is a collection

of subsets of X satisfying :

(i) The empty set and X belong to τ.

(ii) τ is closed under finite intersections and arbitrary unions.

Definition 4.1 The sets in τ are called open sets and complements of open sets are closed.

Definition 4.2 A topological space is said to be Hausdorff space if and only if given two

point x , y ∈ X there exist open subsets such that U ∩ V is empty and x ∈ U and y ∈ V.

Definition 4.3 A continuous function between topological spaces which has a continuous

inverse function is called homeomorphism.

Let G be a topological abelian group (written additively), not necessarily Haus-

dorff; thus G is both a topological space and an abelian group. These structures on G are

compatible in the sense that the mappings f1 : G×G −→ G defined by f1(x, y) = x+y and

f2 : G −→ G defined by f2(x) = −x, which are both continuous. If 0 is closed in G, then

G is Hausdorff. If a is fixed element of G, the translation Ta defined by Ta(x) = x + a is a

homeomorphism of G onto G since Ta is continuous and its inverse is T−a. Hence, if U is

any neighborhood of 0 in G, then U +a is a neighborhood of a in G, and conversely, every

neighborhood of a appears in this form. Thus, the topology on G is uniquely determined

by the neighborhood of 0 in G.

Lemma 4.1 ( (Atiyah & Macdonald, 1969), Lemma 10.1) Let H be the intersection of all

neighborhoods of 0 in G. Then ;
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(i) H is subgroup.

(ii) H is clousure of 0.

(iii) G/H is Hausdorff.

(iv) G is Hausdorff if and only if H = 0.

Proof (i) Let Ui denote all neighborhoods of 0 in G, and H be the intersection of all

these neighborhoods. Since Ui is neighborhood of 0 in G, f1 and f2 are continuous on Ui,

and so on H. And if Ui is a neighborhod of 0, then −Ui = {−x | x ∈ Ui}. This shows that

if x ∈ H then −x ∈ H. We also need to show that H is closed under addition. Let x, y ∈ H.

Since f1 is continuous on each Ui, f1
−1(Ui) is open in G×G. Consider

⋃
(X×Y), where X

and Y are open subsets of G. There exists X0i×Y0i ⊆ X×Y such that (0, 0) ∈ X0i×Y0i. Let

V = X0i∩Y0i, so 0 ∈ V . If (x, y) ∈ V×V , then (x, y) ∈ X0i×Y0i. Moreover, (x, y) ∈ f1
−1(Ui)

for each i . If we apply f1 both sides, we get that x + y ∈ Ui for all i, and hence x + y ∈ H.

(ii) If x ∈ H, then x ∈ Ui for all i. So, 0 ∈ x−Ui for all neighborhoods of 0. Thus, x ∈ ¯{0}.

(iii) We showed in (ii) that H = ¯{0}, so H is closed. Since H is zero of G/H, G/H is

Hausdorff.

(iv) If H is 0, then by (iii) G/H � G is Hausdorff. Conversely, suppose G is Hausdorff

and H , 0. Then there exists a non-zero element y ∈ H, so y ∈ Ui for each i. But then for

any open sets Ui,U j , Ui ∩ U j = y , 0 contradicting with G is Hausdorff. �

Remark 4.1 Let us assume that 0 ∈ G has a countable fundamental system of neighbor-

hoods. Then the completion G̃ of G may be defined by Cauchy sequences.

Definition 4.4 A Cauchy sequence in G defined to be sequence (xv) of elements of G such

that for any neighborhood of 0, there exist an integer s(U) with the property that xµ− xv ∈

U for all µ, v ≥ s(U). Two Cauchy sequences (xv), (yv) are equivalent if (xv) − (yv) −→ 0

in G.

The set of all equivalence classes of Cauchy sequences is denoted by G̃. We note

that G̃ is an abelian group under addition. For x ∈ G, the class of constant sequence (x)

is an element φ(x) of G̃ and φ : G −→ G̃ is homomorphism of abelian groups. Note that

φ is not generally injective. In fact, we have Ker(φ) =
⋂

U, where U runs through all

neighborhoods of 0 in G. So, φ is injective if and only if Ker(φ) =
⋂

U = 0, that is G is

Hausdorff.
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Remark 4.2 Let us assume that 0 ∈ G has a fundamental system of neighborhoods con-

sisting of subgroups. Thus, we have a sequence of subgroups ;

G = G0 ⊇ G1 ⊇ G2 ⊇ ... ⊇ Gn ⊇ ...

and U ⊂ G is a neighborhood of 0 if and only if it contains some Gn.

For topologies given by sequences of subgroups there is an alternative purely alge-

braic definition of the completion. Suppose (xv) is Cauchy sequence in G. Then, the image

of (xv) in G/Gn, say (x̄v), is ultimately constant, for instance (x̄v) = (x̄1 x̄2, .., x̄n, ..., an, ..., an).

If we pass from n + 1 to n, it is clear that an+1 −→ an under the projection

φn+1 : G/Gn+1 −→ G/Gn.

Thus a Cauchy sequence xv ∈ G defines a coherent sequence (an) in the sense that

φn+1(an+1) = an for all n. Thus, G̃ can equally well be defined as a set of coherent se-

quences with the obvious group structure.

Definition 4.5 Let us consider any sequnce of groups {Gn} and homomorphisms φn+1 :

Gn+1 −→ Gn. We call this inverse system and the group of all coherent sequences (an)

(i.e. ; an ∈ Gn and φn+1(an+1) = an) is called the inverse limit of the system. With

this definition, we have the notation G̃ =
limG/Gn
←−−−−−−. If G � G̃, then we shall say that G is

complete.

We are interested in the topological group G = R and Gn = In, where I is an ideal

of a ring R. (R,+) is a topological ring with {In | n ≥ 0} as a fundamental system of

neighorhoods at 0.

4.1.1. I-adic Completion of a Ring

Let I be an ideal in a ring R. We have an inverse system of quotient rings :

R/I ←− R/I2 ←− R/I3 ←− ...
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We write R̃ for the inverse limit of this system and R̃ completion of R with respect to I (or

the I-adic completion). We say that R is I-adically complete if the natural map φ : R −→ R̃

is an isomorphism. This implies the following conditions:

(i) For the injectivity of φ, we must have Ker(φ) =
⋂∞

i=1 In = 0.

(ii) For the surjectivity of φ, for any sequence (a1, a2, ..., an, ...) such that an+1 ≡ an

mod In for every n, there exists an element a ∈ R such that a ≡ an mod In for all n.

The sequence (a1, a2, ..., an, ...) in (ii) above is then Cauchy sequence, in that am −

an is very small for large m, n. Thus, condition (ii) guarentees the Cauchy sequence

(a1, a2, ..., an, ...) has limit a in R. And condition (i) guarentees the uniqueness of this limit

and the Hausdorff condition.

Definition 4.6 An ideal I of a ring R is called nilpotent ideal if In = 0 for some positive

integer n. And I is called nil ideal if every element in I is nilpotent.

Remark 4.3 ( (Lam, 1991), Remark 21.30) If I is a nilpotent ideal of a ring R, then R is

I-adically complete.

Proof Let I be a nilpotent ideal of R. To show that R is I-adically complete, we need to

show that φ : R −→ R̃ is an isomorphism. Since I is nilpotent, In = 0 for some positive

integer n, and so Ker(φ) = ∩∞i=1In = 0. Therefore, φ is one-to-one. Now consider any

sequence (a1, a2, ..., an, ...) such that an+1 ≡ an mod In ;

a2 ≡ a1 (mod I)

a3 ≡ a2 (mod I2)

...............

an ≡ an−1 (mod In).

Since In = 0, an = an−1, and we have ai = an for all i ≥ n − 1, which means the Cauchy

sequence (a1, a2, ..., an, ...) has a limit. Therefore φ is surjective. This proves that R is

I-adicaly complete. �

4.2. Idempotent Lifting

If I is an ideal in a ring R, we say that an idempotent x ∈ R/I can be lifted to R if

there exists an idempotent element e ∈ R whose image under the natural map R −→ R/I is
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x. An arbitrary ideal I, we certainly do not expect every idempotent x ∈ R/I to be liftable.

For instance, for R = Z, if we take I = 6Z , then 3̄ is an idempotent in R/I, which can not

be lifted to R. We shall give a sufficent condition on I ⊆ R which guarentee the liftability

of idempotents.

Proposition 4.1 ( (Bass, 1968), Proposition 2.10) Let I be a two-sided ideal in a ring R.

Suppose either that I is nil or that R is I-adically complete. Then finite sets of orthogonal

idempotents can be lifted modulo I, i.e, given a1, a2, ..., am ∈ R such that aia j = δi jai mod

I (1 ≤ i, j ≤ m), then there exist e1, e2, ..., em ∈ R such that ei ≡ ai mod I and eie j = δi jei

(1 ≤ i, j ≤ m).

Proof Let a ∈ R. For any n > 0,

1 = (a + (1 − a))2n =

2n∑
j=0

(
2n
j

)
a2n− j(1 − a) j

Set

fn(a) =

2n∑
j=0

(
2n
j

)
a2n− j(1 − a) j = 1 −

2n∑
j=n

(
2n
j

)
a2n− j(1 − a) j.

Then fn is a polynomial with integer coefficients, i.e, it lies in the ideal generated by a,

and we have

fn(a) ≡ 0 in mod anR,

fn(a) ≡ 1 in mod (1 − a)nR.

These implies fn(a)2 ≡ fn(a) mod (a(1 − a))nR. Since anR + (1 − a)nR = R, it

follows that (a(1 − a))nR = anR ∩ (1 − a)nR. Hence, we also conclude that fn(a) = fn−1(a)

mod (a(1 − a))n−1R. So, we have f1(a) =
(

2
0

)
a2 +

(
2
1

)
a(1 − a) = a2 + 2a(1 − a) = 2a − a2 =

a + a(1 − a) ≡ a mod a(1 − a)R. Thus, fn(a) ≡ a mod a(1 − a)R.

Now suppose a2 − a = a(1 − a) is nilpotent. Then the congruences above show

that, for large n, we have fn(a) ≡ a mod (a2 − a)R and fn(a2) = fn(a). This shows we can

lift an idempotent modulo a nil ideal J (for we are then given a with a2 − a ∈ I ). If, R is

I-adically complete, then we can inductively construct en ∈ R such that e1 = a, en
2 ≡ en

mod In, and en+1 ≡ en mod In. This is because I/In is nilpotent. Now {en} converges to

an e ∈ R, such that e ≡ a mod I, and e2 = e. This proves the proposition for a single

idempotent.

27



In general, we suppose, by induction, that e1, e2, ..., em−1 have been constructed as

in the proposition. Then e = e1 +e2 +...+em−1 is idempotent and e ≡ a1 +a2 +...+am−1 mod

I. Therefore, e and am are orthogonal idempotents mod I. Set f = 1 − e and b = fm(a).

Then b ≡ am mod I and eb = be = 0. Form the sequence fn(b) as above, so that the { fn(b)}

converges to an idempotent em such that em ≡ b mod I. Since each fn(b) is a polynomial in

b with zero constant term and integer coefficients, we have e fn(b) = fn(b)e = 0. Therefore,

e and em are orthogonal. For 1 ≤ i ≤ m, we have eie = ei = eei, so em is orthogonal to

these e′i s. �

4.3. Relation Between Idempotent Matrices and Projective Modules

If P is a finitely generated projective R-module, we may assume (replacing P by

an isomorphic module) that P ⊕ Q = R(n) for some n, and we can consider the R-module

homomorphism p from R(n) to itself which is the identity on P and 0 on Q. Clearly, p is

idempotent, i.e. p2 = p. Since any R-module homomorphism R(n) −→ R(n) is determined

by the n coordinates of the images of each of the standart basis vectors, it corresponds

the multiplication by a n × n matrix. In other words, P is given by an idempotent n × n

matrix p which determines P up to isomorphism. On the other hand, different idempotent

matrices can give rise to the same isomorphism class of projective modules.

Lemma 4.2 ( (Rosenberg, 1994), Lemma 1.2.1) If p and q are idempotent matrices of

possibly different size over a ring R, the corresponding finitely generated projective R-

modules are isomorphic if and only if it is possible to enlarge the size of p and q (by

adding zeros in the lower-right-hand corner), so that they have the same size N × N and

are conjugate under the group of invertible N × N matrices over R, GL(N,R).

Proof First, let us suppose that u ∈ GL(N,R) and upu−1 = q. Then, right multiplication

by u, induces a isomorphism from R(n) p to R(n)q since up = qu. So, we are done in this

condition.

Now suppose p and q are idempotent matrices with sizes n × n and m × m, and

respectively let R(n) p � R(m)q. We can extend isomorphism α from R(n) p to R(m)q to an R-

module homomorphism R(n) to R(m) by taking α = 0 on the complementary module R(n)(1−

p) and the identity on R(n) p. Similarly, we can extend α−1 to an R-module homomorphism

from R(m) to R(n) which is 0 on R(m)(1 − q) and the identity on R(m)q. So, α is given

by right multiplication by a n × m matrix a, and α−1 is given by right multiplication by

a m × n matrix b. We also have the relations from composition of homomorphisms ;
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ab = p, ba = q, a = pa = aq, b = qb = bp. Now take N = n + m, and observe that

 1 − p a

b 1 − q


2

=

 (1 − p)2 + ab a − pa + a − aq

b − bp + b − qb ba − (1 − q)2

 =

 1 0

0 1


(with usual block matrix notation) and that

 1 − p a

b 1 − q

 .
 p 0

0 0

 .
 1 − p a

b 1 − q

 =

 0 0

0 q

 .

Thus

 1 − p a

b 1 − q

 is invertible, and conjugates p ⊕ 0 to 0 ⊕ q. The letter is of course

conjugate q ⊕ 0 by permutation matrix. �
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CHAPTER 5

BCS-RINGS

A matrix with unit content corresponds to rank one projective summands as fol-

lows. Let E = Rx1 + Rx2 + ... + Rxn be a finitely generated submodule of R(n). Then E

is a rank one projective summand of R(n) if and only if the matrix [x1, x2, ..., xn] has unit

content.

Definition 5.1 Let B be the submodule of R(n). Then B is said to be basic if and only if

the ideal generated by the contents of all vectors in B equals R. That is, the submodule B

of R(n) is basic if and only if c(B) = R. In particular, if B is basic, there exist finitely many

vectors x1, x2, ..., xn in B such that c(x1) + c(x2) + ... + c(xn) = R.

Definition 5.2 A ring R is said to be BCS-ring if and only if each basic submodule B of

R(n) contains a rank one projective summand of R(n).

Proposition 5.1 ( (Brewer & Klingler, 1988), Proposition 1) Let R be a ring with an ideal

I of R contained in the Rad(R). If I is nil, or R is complete in I-adic topology, then R is

BCS-ring if and only if R/I is BCS-ring.

Proof Let B̄ ⊆ (R/I)n = R̄(n) be basic, that is c(B̄) =
n∑

i=1
rib̄i = 1R̄ = 1+ I, then

n∑
i=1

ribi = 1.

So, B is a basic submodule of R(n). Since R is assumed to be a BCS-ring , B contains a

rank one summand P of R(n). Then P/IP is also a rank one summand of R̄(n). Hence, R̄ is

a BCS-ring.

Conversely, if B ⊆ R(n) is basic, that is
n∑

i=1
ribi = 1, then B̄ ⊆ R̄(n) is also basic

since
n∑

i=1
rib̄i = 1R̄. Since R̄ is assumed to be a BCS-ring, B̄ contains a rank one projective

summand P̄ of R̄(n) and P̄ is the image of idempotent matrix Ē over R̄. Now consider the

ring homomorphism

φ : Mn×n(R) −→ Mn×n(R/I)

defined by φ((ri j)) = (ri j + I), which is clearly onto. And

Ker(φ) = {(ri j) ∈ Mn×n(R) | φ((ri j)) = 0Mn×n(R/I)} = Mn×n(I).
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So, by the first isomomorphism theorem,

Mn×n(R)/Mn×n(I) � Mn×n(R/I).

If I is nil, then Mn×n(I) is also nil. While R is complete in I-adic topology, Mn×n(R)

is also complete in Mn×n(I)-adic topology. Thus, by Proposition 4.1, it is possible to lift

the idempotent matrix Ē in Mn×n(R̄) to an idempotent matrix E in Mn×n(R). Since E is

idempotent, its image is a projective summand of R(n). We claim that the image of E has

rank one and that E can be chosen so that image of E is contained in B.

The first claim is easy to show. The image of E reduced modulo I is just the image

of Ē, so that the image of E has rank one modulo I. Since I is contained in each maximal

ideal of R, the image of E has a constant rank. So, the image of E has rank one over R.

For the second claim, as in the proof of Proposition 4.1, we can lift Ē to a matrix

A in Mn×n(R), in this case choosing the columns of A from the submodule B of R(n), which

we can do because the columns of Ē are assumed to belong to the submodule B̄ of R̄(n).

For a positive integer m, consider the polynomial

qm(A) =

(
2m

j

)
A2m− j(1 − A) j.

If I is nil, then A(1 − A) is nilpotent. As shown in the proof of Proposition 4.1, for

large m, qm(A) = qm(A)2. Thus, we can take E = qm(A). Since A divides qm(A), we can

write E = AF for some matrix F in Mn×n(R), which means that image of E is contained

in the image of A.

On the other hand, if R is complete in I-adic topology, then as shown in the Propo-

sition 4.1, the sequence {qm(A)} is a Cauchy. Moreover, if E is its limit, then E is the idem-

potent lifting of Ē. But A is a factor of each qm(A), so that we can write qm(A) = Arm(A)

for each positive integer m. Since {rm(A)} is subsequnce of a Cauchy sequence {qm(A)},

it is also a Cauchy sequence. So, if the matrix F in Mn×n(R) is its limit, then E = AF.

Thus, in either case, the image of E is contained in the image of A, which is assumed to

be contained in B. Hence, R is a BCS-ring. �

Definition 5.3 A ring R is called a reduced ring if it has no non-zero nilpotent elements.

Equivalently, for x ∈ R, x2 = 0 implies that x = 0.
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Moreover, if R is reduced, then the intersection of all prime ideals which forms an

ideal of R, denoted by Nil(R), is zero. Clearly, for any ring R, R/Nil(R) is reduced. And

if R is reduced, then the union of the all minimal prime ideals equals the set of all zero

divisors in R. Note that any integral domain is a reduced ring since nilpotent elements are

zero divisors. But, the converse is not true.

Definition 5.4 (i) The radical of an ideal I in a ring R, denoted by
√

I, is defined as

√
I = {r ∈ R | rn ∈ I f or some positive integer n}.

(ii) If I is coincides with its own radical, then I is called radical ideal. Namely, for any

r ∈ R and any positive integer n if rn ∈ I, then r ∈ I.

Proposition 5.2 ( (Lam, 1991), Theorem 10.7) For any ring R and any ideal I of R ,
√

I

equals the intersection of all the prime ideals containing I.

Proposition 5.3 An ideal I in a ring R is a radical ideal if and only if R/I is reduced.

Proof First, let us suppose that I is radical ideal of R. To show that R/I is reduced, we

need to show that if (r + I)n = 0R/I then r + I = 0R/I , which means r ∈ I. Let (r + I)n = 0R/I .

Then rn ∈ I. Since I is radical ideal, r ∈ I.

Conversely, suppose R/I is reduced and rn ∈ I for some r ∈ R and a positive

integer n. Then 0R/I = rn + I = (r + I)n. Since R/I is reduced, r + I = 0, and so r ∈ I. This

shows that I is a radical ideal. �

A nonempyt subset S of a ring R is called a m-system if, for any a, b ∈ S , there

exists r ∈ R such that arb ∈ S . For instance, any multiplicatively closed set S is m-system.

But, the converse is not true.

Proposition 5.4 ( (Lam, 1991), Proposition 10.5) Let S ⊆ R be an m-system and P an

ideal maximal with respect to being disjoint from S . Then P is a prime ideal.

Definition 5.5 Annihilator of an ideal I in a ring R, denoted by Ann(I), defined as

Ann(I) = {r ∈ R | ri = 0, ∀i ∈ I}

.
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Lemma 5.1 ( (Brewer & Klingler, 1988), Lemma 1) Let R be a reduced ring.

(i) If I is finitely generated ideal of R having zero annihilator, then I is contained in no

minimal prime ideal of R.

(ii) If J is an annihilator ideal of R, then J is a radical ideal.

(iii) If I is an ideal of R with an annihilator J, then (I + J)/J has a zero annihilator in

R/J.

Proof (i) Let x ∈ R. We shall first prove that if P is a minimal prime ideal of R then

P ⊇< x > or P ⊇ Ann(x), but not both. Since < x > Ann(x) =< 0 >⊆ P, where P is

a minimal prime ideal, at least one of < x > or Ann(x) is contained in P. Suppose that

both were contained in P, and consider the multiplicative subset T of R generated by x

and R − P. Since R is a reduced ring, no power of x vanishes. If xmyn = 0 for positive

integers m and n and some element y not in P (so y ∈ T ), then (xy)t = 0 for some positive

integer t. But, then xy = 0 since R is reduced and y ∈ Ann(x), which it does not. Because

we assume that Ann(x) ⊆ P and y < P, so y < Ann(x). It follows that < 0 > ∩T = ∅.

Let Q be an ideal of R, maximal without T , then by Proposition 5.4, Q is prime. If

y < P, then y < Q since y ∈ T by definition of T and Q ∩ T = ∅. Therefore, Q is properly

contained in P, contradicting the minimality of P. This proves the claim.

Now, let I =< x1, x2, ..., xn > and P a minimal prime ideal of R with P ⊇ I. Then

P ⊇ 0 = Ann(I) =
⋂n

i=1 Ann(xi). Hence, P ⊇ Ann(x j) for some j, contradicting the claim

of the first part of the proof.

(ii) Let J = Ann(I) for an ideal I of R and xn ∈ J for x ∈ R and positive integer n. To

show that J is radical, we need to show that x ∈ J. Since xn ∈ J, there exists y ∈ I such

that 0 = xny = (xy)n. Since R is reduced, xy = 0, and so x ∈ J.

(iii) Suppose that (r + J) annihalates (I + J)/J. Then (r + J)(y + j + J) = ry + r j =

0(I+J)/J = J implies that ry ∈ J for all y ∈ I. It follows that ryy = ry2 = (ry)2 = 0. Since R

is reduced, ry = 0 and r ∈ J. �

Definition 5.6 A ring R is said to be a Von Neumann Regular ring if for every a ∈ R,

there exists x ∈ R such that a = a2x.

Moreover, the Krull-dimension of Von Neumann regular ring is zero, so that every

prime ideal is also maximal, and hence Rad(R) = Nil(R). It is easy to see that (commu-

tative) Von Neumann Regular rings are reduced. That gives very important property that

Rad(R) = 0. And which is most important to us, every finitely generated ideal I of R is

generated by an idempotent element.

33



Proposition 5.5 ( (Goodearl, 1979), Theorem 1.16) For a ring R the following conditions

are equivalent.

(i) R is Von Neumann Regular.

(ii) R has no non-zero nilpotent elements, and all prime ideals are maximal.

(iii) RM is a field for all maximal ideals M of R.

Remark 5.1 If R is zero dimensional and reduced, then R is Von Neumann Regular.

Proof Since R is zero dimensional, every prime is also maximal and Rad(R) = Nil(R),

and since R is reduced Rad(R) = Nil(R) = 0. To show that R is Von Neumann Regular, we

must prove that RM is a field for any maximal ideal M of R. Since R is zero dimensional

and reduced, so is RM, and MRM is the only prime ideal of RM, but then RM = 0 since it is

nil. Hence, RM is a field as desired. �

Lemma 5.2 ( (Brewer & Klingler, 1988), Lemma 2) Let R be a von Neumann regular

ring. Given µ1, µ2, ..., µm ∈ R(n), there exist elements r1, r2, ..., rm−1 ∈ R such that

c(r1µ1 + r2µ2 + ... + rm−1µm−1 + µm) = c(µ1) + c(µ2) + ... + c(µm).

Proof Since c(µi) is an ideal of R for each 1 ≤ i ≤ m, c(µ1)+c(µ2)+...+c(µm) is a finitely

generated ideal of R. So, c(µ1) + c(µ2) + ... + c(µm) = eR for some idempotent e ∈ R since

any finitely generated ideal of von Neumann regular ring is generated by an idempotent

element. Now consider c(µ1) + c(µ2) + ... + c(µm) = eR. This means,
n∑

j=1
(

m∑
i=1

ri jµi j) = eR,

where ri j ∈ R and µi j’s are component of each µi ∈ R(n) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

multiplying this equation by e, we get that,

n∑
j=1

(
m∑

i=1

eri jµi j) = e2R = eR =

n∑
j=1

(
m∑

i=1

ri jµi j).

So, every element of the form eri jµi j ∈ eR can be written as ri jµi j ∈ R. Thus, we can

replace eR by R and assume that c(µ1) + c(µ2) + ... + c(µm) = R.

The proof is then induction on m. If m = 1, then c(r1µ1) = c(µ1). Now assume

that m > 1. By induction on m, there exist elements r1, r2, ..., rm−2 ∈ R such that for

µ = r1µ1 + r2µ2 + ... + rm−2µm−2 + µm−1, c(µ) = c(r1µ1 + r2µ2 + ... + rm−2µm−2 + µm−1) =

c(µ1) + c(µ2) + ... + c(µm−1). Let c(µm) = eR and c(µ) = f R for idempotent elements e
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and f of R. Since e and f are both in ((1 − e) f + e)R and c(µ) + c(µm) = eR + f R = R

((1 − e) f + e)R = R. Now consider the equations below.

e((1 − e)µ + µm) = e(µ − eµ + µm) = eµm = µm

since we are able to replace eR by R. And

(1 − e)((1 − e)µ + µm) = (1 − e)µ + (1 − e)µm.

Then, subsituting µm = e((1 − e)µ + µm) in the second equation, we get

(1 − e)((1 − e)µ + µm) = (1 − e)µ + (1 − e)e((1 − e)µ + µm) = (1 − e)µ.

Note that c((1 − e)µ) + c(µm) = R since c((1 − e)µ) = (1 − e) f R and c(µm) = eR. And it is

clear that c((1 − e)µ) + c(µm) ⊆ c((1 − e)µ + µm), so this implies c((1 − e)µ + µm) = R. �

Theorem 5.1 ( (Brewer & Klingler, 1988), Theorem) If R is a ring of Krull dimension

one, then R is BCS-ring.

Proof Let N be the nilradical of R. To show that R is a BCS-ring, it suffices to show

R/N is BCS-ring by Proposition 5.1. We note that R/N is reduced. We claim that the

reduced ring R/N is a BCS-ring. So, we can assume that R itself is both one dimensional

and reduced.

Let B ⊆ R(n) be a basic submodule with B = Rµ1+Rµ2+...+Rµm, i.e., c(B) = R. We

claim that B contains a rank one projective summand of R(n), and we do this by induction.

Suppose that all 2 × 2 minors of the matrix [µ1, µ2, ..., µk] = 0. That is,



µ11 µ21 . . µk1

µ12 µ22 . . µk2

. . . . .

. . . . .

µ1n µ2n . . µkn


< (µ11µ22 − µ21µ12), (µ21µ32 − µ31µ22), ..., (µ(k−1)(n−1)µkn − µk(n−1)µ(k−1)n) >= 0.
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This gives us that {µ1, µ2, ..., µk} is linearly dependent. This is obviously the case when

k = 1 since all vectors are linearly dependent, that gives only one vector. If k = m, then B

is itself a rank one projective summand of R(n) since c(B) = R.

Otherwise, we make induction essentially on the difference m − k. Consider the

vectors µ1, µ2, ..., µk, µk+1, and let I be the ideal of R generated by the 2 × 2 minors of the

matrix [µ1, µ2, ..., µk, µk+1]. That is,



µ11 µ21 . . µ(k+1)1

µ12 µ22 . . µ(k+1)2

. . . . .

. . . . .

µ1n µ2n . . µ(k+1)n


I =< (µ11µ22 − µ21µ12), (µ21µ32 − µ31µ22), ..., (µ(k+1)nµk(n−1) − µknµ(k+1)n) > .

If I =< 0 >, then {µ1, µ2, ..., µk, µk+1} is linearly dependent, and we can continue the

induction.

Suppose I ,< 0 > and Ann(I) =< 0 >. By Lemma 5.1, I is not contained in

any minimal prime ideal of R. Therefore,
√

I is the intersection of all maximal ideals

containing I. Now consider the quotient ring R̄ = R/
√

I. The prime ideals of R̄ are of the

form M/
√

I, where M ⊇
√

I. So, R̄ has Krull diemension zero. We note that it is also

reduced by Proposition 5.3. Thus, R̄ is Von Neumann Regular by Remark 5.1. Consider

the vectors µ̄1, µ̄2, ..., ¯µk+1 ∈ R̄(n). By Lemma 5.2, there exist elements r1, r2, ..., rk ∈ R

such that c(r̄1µ̄1 + r̄2µ̄2 + ... + r̄kµ̄k + ¯µk+1) = c(µ̄1) + c(µ̄2) + ... + c(µ̄k) + c( ¯µk+1). Set

µ = r1µ1 + r2µ2 + ... + rkµk + µk+1. Then

c(µ) +
√

I = c(µ1) + c(µ2) + ... + c(µk+1) +
√

I. (∗)

Let M be a maximal ideal of R with c(µ) ⊆ M, and let us consider the field R′ = R/M.

Since µk+1 = µ − (r1µ1 + r2µ2 + ... + rkµk) and µ = 0 mod M with respect to c(µ) ⊆ M,

µk+1 = −(r1µ1+r2µ2+...+rkµk) mod M. By the induction assumption, all 2×2 minors of the

matrix [µ1, µ2, ..., µk] = 0, that is {µ1, µ2, ..., µk} is linearly dependent. Thus, for 1 ≤ i ≤ k,

the vectors µi and µk+1 are linearly dependent mod M. So, I = 0 mod M, it follows that

I ⊆ M. Since
√

I is intersection of all maximal ideals containing I,
√

I ⊆ M. But, then

c(µ)+
√

I ⊆ M and by (*), c(µ1)+c(µ2)+ ...+c(µk+1) ⊆ M. So, c(µ1)+c(µ2)+ ...+c(µk+1) is
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contained in any maximal ideal of contains c(µ). This allows us to replace µ1, µ2, ..., µk+1

with µ and to continue the induction on the submodule of B generated by µ, µk+2, , ..., µm.

There is final case to treat, the case when I , 0 and Ann(I) = J , 0. Set R̄ = R/J,

and note that by Lemma 5.1(ii), J is a radical ideal so that R/J is reduced. Consider

µ̄1, µ̄2, ..., ¯µk+1 ∈ R̄(n). Then Ī = (I + J)/J is the ideal of R̄ generated by the 2× 2 minors of

the matrix [µ̄1, µ̄2, ..., ¯µk+1] since Im(I) = (I + J)/J in R̄ under the natural homomorphism.

By Lemma 5.1(iii), Ann(Ī) = 0(R+J)/J. So, again by Lemma 5.1(i), Ī is not contained in

any minimal prime ideal of R̄. Therefore,
√

Ī is the intersection of all maximal ideals

containing Ī. Set ¯̄R = R̄/
√

Ī, and note that ¯̄R is zero dimensional and reduced. So, ¯̄R is

Von Neumann regular. Then again by Lemma 5.2, there exist r̄1, r̄2, ..., r̄k ∈ R̄ such that

c( ¯̄r1 ¯̄µ1 + ¯̄r2 ¯̄µ2 + .... + ¯̄rk ¯̄µk + ¯̄µk+1) = c( ¯̄µ1) + c( ¯̄µ2) + ... + c( ¯̄µk+1). Set µ̄ = r̄1µ̄1 + r̄2µ̄2 + ... +

r̄kµ̄k + ¯µk+1. Then

c(µ̄) +
√

Ī = c(µ̄1) + c(µ̄2) + ... + c( ¯µk+1) +
√

Ī. (∗∗)

Let M be a maximal ideal of R containing J with c(µ̄) ⊂ M/J, set M̄ = M/J, and

consider the field R′′ = R̄/M̄. Then ¯µk+1 = −(r̄1µ̄1 + r̄2µ̄2 + ... + r̄kµ̄k) mod M̄. And

by the induction assumption, {µ1, µ2, ..., µk} is linearly dependent in R, so in R̄. Thus, for

1 ≤ i ≤ k the vectors µ̄i and ¯µk+1 are linearly dependent mod M̄. It follows that Ī ⊆ M̄,

and hence,
√

Ī ⊆ M̄. But, then by (**), c(µ̄1) + c(µ̄2) + ... + c( ¯µk+1) ⊆ M̄, and hence,

c(µ1) + c(µ2) + ... + c(µk+1) ⊆ M. On the other hand, suppose that, c(µ̄) ⊆ M̄ for some

maximal ideal M of R not containing J. It is clear that c(µ) ⊆ M and c(µ) = c(Rµ). Since

J ⊆ R, we also have c(Jµ) ⊆ M, and

c(Jµ) = c(J(r1µ1 + r2µ2 + ... + rkµk + µk+1))

= c(r1Jµ1 + r2Jµ2 + ... + rkJµk + Jµk+1)

⊇ c(Jµ1 + Jµ2 + ... + Jµk + Jµk+1)

⊇ c(Jµ1) + c(Jµ2) + ... + c(Jµk) + c(Jµk+1).

So we get that c(Jµi) = Jc(µi) ⊆ M for each i = 1, ..., k + 1. Since J * M, c(µi) ⊆ M, and

hence, c(µ1) + c(µ2) + ... + c(µk) + c(µk+1) ⊆ M. We showed that if c(µ̄) ⊆ M̄ for some

maximal ideal M of R, containing J or not, then c(µ1) + c(µ2) + ... + c(µk) + c(µk+1) ⊆ M.

Now consider the submodule Rµ+ Jµ1 + Jµ2 + ...+ Jµk+1 + Rµk+2 + ...+ Rµm of B
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and examine its content:

c(Rµ + ... + Rµm) = c(R(r1µ1 + ... + rkµk + µk+1) + Jµ1 + ... + Jµk+1 + ... + Rµm)

⊇ c(Rµ1 + ... + Rµk+1 + Jµ1 + ... + Jµk+1 + Rµk+2 + ... + Rµm)

= c(Rµ1 + ... + Rµk+1 + Rµk+2 + ... + Rµm + Jµ1 + ... + Jµk+1)

⊇ c(Rµ1 + ... + Rµk+1 + Rµk+2 + ... + Rµm) + c(Jµ1 + ... + Jµk+1).

Since B = Rµ1 + ... + Rµk+1 + Rµk+2 + ... + Rµm is basic, c(Rµ1 + ... + Rµk+1 + Rµk+2 +

... + Rµm) = R, and hence, c(Rµ + Jµ1 + ... + Jµk+1 + Rµk+2 + ... + Rµm) = R which gives

Rµ+ Jµ1 + ...+ Jµk+1 + Rµk+2 + ...+ Rµm is also basic. Thus, for some elements v1, v2, ..., vt

∈ Rµ + Jµ1 + ... + Jµk+1, the module Rv1 + Rv1 + ... + Rvt + Rµk+2 + ... + Rµm is basic.

We claim that all 2 × 2 minors of the matrix [v1, v2, ..., vt] are zero. For this, it

suffices to show that for any vectors σ, τ ∈ Rµ + Jµ1 + ... + Jµk+1, all 2 × 2 minors of the

matrix [σ, τ] are zero. Write

σ = rµ + i1µ1 + i2µ2 + ... + ik+1µk+1

τ = sµ + j1µ1 + j2µ2 + ... + jk+1µk+1.

All 2 × 2 minors of the matrix [µp, µq] are zero for 1 ≤ p, q ≤ k by the induction as-

sumption. All 2 × 2 minors of the [ipµp, jk+1µk+1] and [ik+1µk+1, jqµq] are zero since ik+1

and jk+1 annihilate I. Clearly, all 2× 2 minors of [ik+1µk+1, jk+1µk+1] vanish. Finally, since

µ = r1µ1 + ... + rkµk + µk+1, all 2 × 2 minors involving µ are zero. Thus, all 2 × 2 minors

of [σ, τ] are zero. This allows us to replace µ1, µ2, ..., µk+1 with v1, v2, ..., vt and continue

the induction on the submodule of B generated by v1, v2, ..., vt, µk+1, ..., µm. This completes

both the induction and the proof. �

Corollary 5.1 ( (Brewer & Klingler, 1988), Corollary 2) If R is a ring of Krull dimension

less than or equals one, then R is a BCS-ring.

Proof When the dimension of R is zero, each basic submodule of R(n) contains a rank

one free summand of R(n)(see, (Vasconcelos & Weibel ), Proposition 1.4). When the

dimension of R is one, this is the Theorem 5.1. �

Remark 5.2 Let R be a commutative ring of dimension one. By an argument similar to

the proof of the theorem, we can show that if B is a basic submodule of a free R-module
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E, and if B is generated by two elements, then B contains rank one projective submodule

of E that requires at most three elements to generate.

Proof Let B = Rµ1 + Rµ2, where µ1, µ2 ∈ E and I be the ideal of R generated by the

2×2 minors of the matrix [µ1, µ2]. If I = 0, then µ1 and µ2 are linearly dependent. Hence,

Rµ1 = Rµ2 is rank one submodule of E with one generator.

Now suppose I , 0. If Ann(I) = 0, then R̄ = R/
√

I is zero dimensional and

reduced, and so Von Neumann Regular. Thus, there exists r1 ∈ R, such that c(r̄1µ̄1 + µ̄2) =

c(µ1) + c(µ̄2). Set µ = r1µ1 + µ2. Then, we observe that every maximal ideal M of R

containing c(µ), contains c(µ1) + c(µ2). This allows us to replace µ1, µ2 with µ, and this

gives that Rµ is a rank one submodule of E with one generator.

On the other hand, if J = Ann(I) , 0, then set R̄ = R/J, and consider the elements

µ̄1, µ̄2 ∈ R̄(n). Then Ī = (I + J)/J is the ideal generated by the 2 × 2 minors of the matrix.

So, AnnR̄(Ī) = 0. By the case above, there exists r1 ∈ R, such that for µ = r1µ1 + µ2, if

c(µ̄) ⊆ M̄ for a maximal ideal of R, containing J or not, then c(µ1) + c(µ2) ⊆ M.

Now consider the submodule Rµ + Jµ1 + Jµ2. Since B = Rµ1 + Rµ2 is basic,

Rµ+ Rµ1 + Rµ2 is also basic. It is clear that Rµ+ Jµ1 + Jµ2 ⊆ Rµ+ Rµ1 + Rµ2, where µ =

r1µ1 +µ2. Then choosing Rµ = Rv1, Jµ1 = Rv2 and Jµ2 = Rv3, we get that Rv1 +Rv2 +Rv3

is a rank one projective submodule of E with 3 generators since v1, v2, v3 are linearly

dependent by the theorem. �
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CHAPTER 6

FUTURE RESEARCH

This chapter includes some results from a research paper, which has been prepared

by B. Ay Saylam and L. Klingler, that might lead to comparisons of some "weaker" forms

of isomorphism. For convinience, we list their definitions.

Definition 6.1 (i) The R-modules G and H are said to be locally isomorphic if GM �

HM for all maximal ideals M of R.

(ii) The R-modules G and H are said to be stably isomorphic if G ⊕ R � H ⊕ R.

(iii) Two torsionless R-modules G and H are said to be nearly isomorphic if G and H

are of the same rank and, for each non-zero ideal I of R, there exists an embedding

f : G −→ H such that the ideal AnnR(Coker( f )) is comaximal with I.

The authors have been able to use the following facts for comparing these weaker

forms of isomorphism over domains of finite character. An integral domain R is of finite

character if every non-zero element of R is contained in finitely many maximal ideals of R.

The future plan is to use the facts, which are listed below, and to see whether the methods,

which are developed in (Ay Saylam & Klingler) over domains of finite character, could

be adapted to almost local-global domains.

Proposition 6.1 ( (Ay Saylam & Klingler)) Let R be an almost local-global integral do-

main and P a finitely generated projective R-module of finite rank. Then P is isomorphic

to a finite rank free module direct sum with an invertible ideal.

Lemma 6.1 ( (Ay Saylam & Klingler)) Let R be an almost local-global ring and G a

torsionles R-module. If the rank(G) ≥ 2, then G is isomorphic to a direct sum of a free

R-module and an invertible ideal of R.
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CHAPTER 7

CONCLUSION

Let R be a commutative ring. We say that R has the GCU-property if for every

reachable system (F,G) over R, the matrix G has a unimodular vector in its image. If

G : R(m) −→ R(n), then this condition is equivalent to the image of G containing a rank one

free summand. We gave necessary condition for domains having 2-generator property

to GCU-property holds, shown by ( (Brewer & Klingler, 1987)): Let R be an integral

domain with 2-generator property. If R has the GCU-property, then the Picard group of R

is torsion-free.

An integral domain R has the Simultaneous Basis property if and only if, given

finitely generated projective R-modules N ⊆ M, there exists vectors x1, x2, ..., xm in KM �

K(m) and invertible fractional ideals J1, J2, ..., Jn and invertible integral ideals A1 ⊇ A2 ⊇

... ⊇ Am (m ≤ n) such that

M = J1x1 ⊕ J2x2 ⊕ Jnxn ⊕ .. ⊕ Jmxm

N = A1J1x1 ⊕ A2J2x2 ⊕ .. ⊕ AnJnxm,

and we say that R satisfies the Invariant Factor Theorem if and only if R has the Simultane-

ous Basis Property, and, for each pair of finitely generated projective R-modules N ⊆ M,

it is possible to decompose M and N simultaneously (as above) with the added condition

that J1 = J2 = ... = Jn−1 = R. We showed that if R is a Prüfer domain satisfying the

Invariant Factor Theorem, then R has the GCU-property if and only if the Picard group of

R is torsion-free ( (Brewer & Klingler, 1987)).

We say that a commutative ring R has the UCS-Property if for each matrix G

of unit content, the column space of G contains a rank one projective summand of the

containing free module. We showed that almost local-global rings have the UCS-property.

Moreover, we observed that in Prüfer domains, the UCS-property is equivalent to the

Simultaneous Basis property. Using all these observations, we gave a sufficient condition

for Prüfer domains and Dedekind domains to satisfy Invariant Factor Theorem, shown by

(Brewer & Klingler, 1987): Let R be a Prüfer domain such that every proper homomorphic

image of R is a local-global ring. Then R satisfies the Invariant Factor Theorem, so that R
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has the GCU-property if and only if the Picard group of R is torsion-free.

If I is an ideal in a ring R ,we say that an idempotent x ∈ R/I can be lifted to R if

there exists an idempotent element e ∈ R whose image under the natural map R −→ R/I

is x. We showed that being I is nil or R is I-adically complete guarentees the liftability of

idempotents. This condition is also a sufficent condition for R to be a BCS-ring, while so

the quotient ring R/I is. We showed that one dimensional rings are BCS-rings, and that

almost local-global rings are also BCS-ring since they satisfy UCS-property.
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