

EE

UU
 GG

RR
AA

DD
UU

AA
TT

EE
 SS

CC
HH

OO
OO

LL
 O
O

FF
 NN

AA
TT

UU
RR

AA
LL

 AA
NN

DD
 A
A

PP
PP

LL
II
EE

DD
 SS

CC
II
EE

NN
CC

EE

 EGE UNIVERSITY

PhD THESIS

CONSTRUCTING GRAPH THEORETICAL

STRUCTURES USING META-HEURISTIC

ALGORITHMS

Züleyha AKUSTA DAĞDEVİREN

Supervisor : Prof. Dr. M. Serdar KORUKOĞLU

 International Computer Department

Presentation Date : 01.12.2017

Bornova-İZMİR

 2017

EGE UNIVERSITY GRADUATE SCHOOL OF NATURAL AND

 APPLIED SCIENCE

(PHD THESIS)

CONSTRUCTING GRAPH THEORETICAL

STRUCTURES USING META-HEURISTIC

ALGORITHMS

Züleyha AKUSTA DAĞDEVİREN

Supervisor: Prof. Dr. M. Serdar KORUKOĞLU

International Computer Department

Presentation Date: 01.12.2017

BORNOVA-İZMİR

2017

vii

ÖZET

ÜST-SEZGİSEL ALGORİTMALAR KULLANILARAK ÇİZGE

TEORİK YAPILARIN OLUŞTURULMASI

AKUSTA DAĞDEVİREN, Züleyha

Doktora Tezi, Uluslararası Bilgisayar Anabilim Dalı

Tez Danışmanı: Prof. Dr. M. Serdar KORUKOĞLU

Aralık 2017, 94 sayfa

Çizge teorik yapıların kullanımı sayesinde çeşitli ağlar üzerinde pek çok

önemli işlem gerçekleştirilebilmektedir. Bu yapılardan biri olan hakim kümenin

telsiz duyarga ağlarında kümeleme, saldırı tespiti ve omurga oluşturma; telsiz örgü

ağlarında ağ geçitlerinin yerleştirilmesi; internet üzerinde bilgi geri getirimi için

çok sayıdaki dökümanın özetlenmesi ve sorgu seçilmesi gibi önemli uygulamaları

bulunmaktadır.

 En küçük ağırlıklı bağlı hakim kümenin (EABHK) bulunması NP-Zor bir

problemdir. Bundan dolayı yakınsama algoritmaları ve üst-sezgisel algoritmalar

polinom zamanda etkili sonuçlar verebilmektedir. Literatürde bu konu ile ilgili

çeşitli çalışmalar yapılmış olsa da üst-sezgisel algoritmalar kullanılarak yönsüz

çizgeler için EABHK bulunmasıyla ilgili bir çalışma yapılmamıştır. Bu tez

çalışmasında EABHK problemi için iki farklı üst-sezgisel algoritma önerilmiştir.

Bu algoritmalar Hibrit Genetik Algoritma (HGA) ve Popülasyon Tabanlı Tekrarlı

Açgözlü (PTTA) Algoritmadır. HGA, genetik arama ile açgözlü sezgisel yaklaşımı

birleştiren bir kararlı-durum algoritmasıdır. PTTA algoritma her bir bireye bozma

ve açgözlü bir şekilde yeniden yapılandırma süreçleri uygulayarak popülasyonu

iyileştirmektedir. Önerilen algoritmaların performansları diğer açgözlü sezgisel ve

kaba kuvvet algoritmaları ile karşılaştırılmıştır. Önerilen algoritmalar çözüm

kalitesi ve uygulama süresi açısından çok iyi performans göstermiştir.

Anahtar sözcükler: En küçük ağırlıklı bağlı hakim küme, hibrit genetik

algoritma, popülasyon tabanlı tekrarlı açgözlü algoritma, yönsüz çizgeler, üst-

sezgisel algoritmalar.

 ix

ABSTRACT

CONSTRUCTING GRAPH THEORETICAL STRUCTURES USING

META-HEURISTIC ALGORITHMS

AKUSTA DAĞDEVİREN, Züleyha

PhD in International Computer Department.

Supervisor: Prof. Dr. M. Serdar KORUKOĞLU

December 2017, 94 pages

Through the use of graph theoretical structures, many important operations

can be performed on various networks. Dominating set which is one of these

structures, has many important applications such as clustering, intrusion detection

and backbone formation in wireless sensor networks; placement of gateways in

wireless mesh networks; summarizing multiple documents and selecting queries

for information retrieval on the internet.

Finding the minimum weighted connected dominating set (MWCDS) is an

NP-Hard problem. Hence, approximation algorithms and meta-heuristic

algorithms can give effective results in polynomial time. Although there are

numerous studies related to this subject in the literature, there is no study about

finding the MWCDS for undirected graphs using meta-heuristic algorithms. In

this thesis study, two different meta-heuristic algorithms are proposed for the

MWCDS problem. These algorithms are Hybrid Genetic Algorithm (HGA) and

Population-Based Iterated Greedy (PBIG) Algorithm. HGA is a steady-state

algorithm that combines a genetic search with a greedy heuristic approach. PBIG

algorithm improves the population by applying a deconstruction process and a

reconstruction process to each individual in a greedy way. The performances of

the proposed algorithms are compared with other greedy heuristics and brute force

algorithms. The proposed algorithms performed very well in terms of solution

quality and execution time.

Keywords: Minimum weighted connected dominating set, hybrid genetic

algorithm, population-based iterated greedy algorithm, undirected graphs, meta-

heuristic algorithms.

 xi

ACKNOWLEDGEMENT

I would like to thank my advisor Prof. Dr. M. Serdar KORUKOĞLU for his

valuable knowledge, expertise and guidance. I would like to thank my master

thesis advisor Assoc. Prof. Dr. M. Gökhan CİNSDİKİCİ for his support and

motivation. I also want to thank Prof. Dr. Aybars UĞUR and Assoc. Prof. Dr.

Doğan AYDIN for their suggestions and comments in thesis monitoring comittee

meetings.

I also thank Scientific and Technical Research Council of Turkey

(TUBITAK) for the BIDEB 2211-C program for the PhD scholarship.

Lastly, I would like to thank all my family for their endless love and

encouragement. Especially to my beloved mother for the support of every aspect

of my life, to my daughter for always cheering me up and to my son who will be

born soon. I would like to express appreciation to my husband for his endless

support and patience.

 xiii

LIST OF CONTENTS

Page

ÖZET ... …vii

ABSTRACT ...ix

ACKNOWLEDGEMENT ..xi

LIST OF FIGURES .. xv

LIST OF TABLES .. xx

LIST OF SYMBOLS AND ABBREVIATIONS .. xxii

1.INTRODUCTION ... 1

1.1 Minimum Weight Connected Dominating Set ... 1

1.2 Wireless Ad Hoc and Sensor Networks.. 4

1.3 Hybrid Genetic Algorithms .. 6

1.4 Population-Based Iterated Greedy Algorithms ... 8

1.5 Contributions of the Thesis ... 9

1.6 Organization of the Thesis .. 10

2.RELATED WORK .. 12

2.1 Centralized Dominating Set Algorithms .. 12

2.2 Centralized Connected Dominating Set Algorithms 19

2.3 Distributed Algorithms ... 21

 xiv

LIST OF CONTENTS (continued)

Page

2.4 Summary of Algorithms... 23

3.PROPOSED ALGORITHMS ... 27

3.1 Preliminaries .. 27

3.2 Description of Hybrid Genetic Algorithm ... 32

3.3 Description of Population-Based Iterated Greedy Algorithm 41

3.4 Complexity Analysis of the Proposed Algorithms .. 47

3.4.1 Complexity Analysis of HGA ... 47

3.4.2 Complexity Analysis of PBIG Algorithm ... 50

4.PERFORMANCE EVALUATIONS .. 53

4.1 Evaluation of Small-Size Problem Instances ... 57

4.2 Evaluation of Moderate-Size Problem Instances ... 65

4.3 Evaluation of Large-Size Problem Instances ... 75

5.CONCLUSION ... 81

REFERENCES... 86

CURRICULUM VITAE .. 93

 xv

LIST OF FIGURES

 Figure Page

 1.1 An Example DS ... 1

 1.2a An Example CDS .. 2

 1.2b An Example Induced Subgraph ... 2

 1.3 An Example WCDS .. 3

 1.4 An Example Sensor Node ... 5

 1.5 Components of a Sensor Node .. 5

 1.6 An Example Sensor Network .. 6

 3.1 An Example UG with a Cut Vertex .. 27

 3.2 Example Operation of Cut Vertex Detection Algorithm 28

 3.3 Example Operation of GR Heuristic ... 30

 3.4 Example Operation of GD Heuristic ... 31

 3.5 Example Operation of GW Heuristic .. 32

 3.6a Initial network .. 40

 3.6b Insertion of nodes U and O ... 40

 3.6c Nodes N, R and W are inserted .. 40

 3.6d Redundant dominators M and N are removed 40

 3.7a Redundant node example .. 45

 xvi

LIST OF FIGURES (continued)

 Figure Page

 3.7b Redundant node remove (Node R is removed) 45

 3.8 An example weighted graph ... 46

 3.9a An example WCDS .. 47

 3.9b Node N is removed ... 47

 3.9c Node W is inserted .. 47

 3.9d Nodes M, U, T, S and R are removed ... 47

 4.1 Weight results of small size problem instances (Shyu’s dataset –

 Type 1) ... 58

 4.1a Weight results versus node count (m=4n) 58

 4.1b Weight results versus edge count (n=20) 58

 4.2 Time results of small size problem instances (Shyu’s dataset –

 Type 1)……. ... 58

 4.2a Time results versus node count (m=4n) .. 58

 4.2b Time results versus edge count (n=20) ... 58

 4.3 Weight results of small size problem instances (Shyu’s dataset –

 Type 2) .. 61

 4.3a Weight results versus node count (m=4n) 61

 4.3b Weight results versus edge count (n=20) 61

 xvii

LIST OF FIGURES (continued)

 Figure Page

 4.4 Time results of small size problem instances (Shyu’s dataset –

 Type 2)…………………….. .. 61

 4.4a Time results versus node count (m=4n) ... 61

 4.4b Time results versus edge count (n=20) ... 61

 4.5 Weight results of small size problem instances (Our dataset)........... 63

 4.5a Weight results versus node count (m=4n) 63

 4.5b Weight results versus edge count (n=25) .. 63

 4.6 Time results of small size problem instances (Our dataset) 65

 4.6a Time results versus node count (m=4n) ... 65

 4.6b Time results versus edge count (n=25) ... 65

 4.7 Weight results of moderate size problem instances (Shyu’s dataset –

 Type 1)………….. .. 65

 4.7a Weight results versus node count (m≈5n) 65

 4.7b Weight results versus edge count (n=250) 65

 4.8 Time results of moderate size problem instances (Shyu’s dataset –

 Type 1)… .. 67

 4.8a Time results versus node count (m≈5n) ... 67

 4.8b Time results versus edge count (n=250) ... 67

 xviii

LIST OF FIGURES (continued)

 Figure Page

 4.9 Weight results of moderate size problem instances (Shyu’s dataset –

 Type 2)…………………….. .. 69

 4.9a Weight results versus node count (m≈5n) 69

 4.9b Weight results versus edge count (n=250) 69

 4.10 Time results of moderate size problem instances (Shyu’s dataset –

 Type 2)……. ... 71

 4.10a Time results versus node count (m≈5n) .. 71

 4.10b Time results versus edge count (n=250) 71

 4.11 Weight results of moderate size problem instances (Our dataset) .. 73

 4.11a Weight results versus node count (m=4n) 73

 4.11b Weight results versus edge count (n=200) 73

 4.12 Time results of moderate size problem instances (Our dataset) 73

 4.12a Time results versus node count (m=4n) .. 73

 4.12b Time results versus edge count (n=200) 73

 4.13 Weight results of large size problem instances (Shyu’s dataset –

 Type 1)….. .. 76

 4.13a Weight results versus node count (m≈4n) 76

 4.13b Weight results versus edge count (n=1000).................................. 76

 xix

LIST OF FIGURES (continued)

 Figure Page

 4.14 Time results of large size problem instances (Shyu’s dataset –

 Type 1)………………….. .. 77

 4.14a Time results versus node count (m≈4n) ... 77

 4.14b Time results versus edge count (n=1000) 77

 4.15 Weight results of large size problem instances (Our dataset) 79

 4.15a Weight results versus node count (m=4n) 79

 4.15b Weight results versus edge count (n=1000) 79

 4.16 Time results of large size problem instances (Our dataset) 79

 4.16a Time results versus node count (m=4n) ... 79

 4.16b Time results versus edge count (n=1000) 79

 xx

LIST OF TABLES

Table Page

2.1 Summary of the studies in literature .. 24

4.1 Implementation parameters .. 54

4.2 HGA parameters ... 55

4.3 PBIG parameters ... 56

4.4 Weight results of small size problem instances (Shyu’s dataset - Type

1)……… ... 57

4.5 Time results of small size problem instances (Shyu’s dataset - Type

1)……… ... 59

4.6 Weight results of small size problem instances (Shyu’s dataset - Type

2)……… ... 60

4.7 Time results of small size problem instances (Shyu’s dataset - Type

2)……… ... 62

4.8 Weight results of small size problem instances (Our dataset) 63

4.9 Time results of small size problem instances (Our dataset) 64

4.10 Weight results of moderate size problem instances (Shyu’s dataset –

Type 1).. .. 66

4.11 Time results of moderate size problem instances (Shyu’s dataset –

Type 1) 68

4.12 Weight results of moderate size problem instances (Shyu’s dataset –

Type 2)… .. 70

 xxi

LIST OF TABLES (continued)

Table Page

4.13 Time results of moderate size problem instances (Shyu’s dataset–

Type 2)…. ... 72

4.14 Weight results of moderate size problem instances (Our dataset) 74

4.15 Time results of moderate size problem instances (Our dataset) 75

4.16 Weight results of large size problem instances (Shyu’s dataset – Type

1)…..…… .. 76

4.17 Time results of large size problem instances (Shyu’s dataset – Type

1)…………………………. ... 77

4.18 Weight results of large size problem instances (Our dataset) 78

4.19 Time results of large size problem instances (Our dataset) 80

 xxii

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols Explanation

C Chromosome

Ci i
th

 bit of chromosome

depth(u) Depth value of node u

E Edge set

G Graph

G’ Subgraph

low(u) Low value of node u

n number of vertices

m number of edges

parent(u) Parent of node u

V Vertex set

V’ Vertex induced subgraph

 () Total weight of vertices in V set

 () Open neighborhood of node v

 [] Closed neighborhood of node v

 () Open neighborhood of node v with color c

 [] Closed neighborhood of node v with color c

 xxiii

LIST OF SYMBOLS AND ABBREVIATIONS (continued)

Abbreviations

ACO Ant Colony Optimization

BF Brute force

CDS Connected Dominating Set

CPU Central Processing Unit

DFS Depth-First Search

DS Dominating Set

GCDS Geometric Connected Dominating Set

GD Greedy Degree

GR Greedy Ratio

GW GreedyWeight

HGA Hybrid Genetic Algorithm

IG Iterated Greedy

ILS Iterated Local Search

MCDS Minimum Connected Dominating Set

MDS Minimum Dominating Set

MWCDS Minimum Weight Connected Dominating Set

MWDS Minimum Weight Dominating Set

 xxiv

LIST OF SYMBOLS AND ABBREVIATIONS (continued)

Abbreviations

PBIG Population-Based Iterated Greedy

PMBGA Probabilistic Model-Building Genetic Algorithm

SLS Subsidary Local Search

T-BF Time-limited Brute Force

UDG Unit Disk Graph

UG Undirected Graph

WCDS Weighted Connected Dominating Set

WDS Weighted Dominating Set

WSAN Wireless Sensor and Ad hoc Network

1

1. INTRODUCTION

In this section, minimum weight connected dominating set problem will be

introduced, then wireless ad hoc and sensor networks with their applications will

be given. Following this, hybrid genetic algorithm and population-based iterated

greedy algorithm concepts will be explained. Finally, the organization and the

contributions of the thesis will be presented.

1.1 Minimum Weight Connected Dominating Set Problem

Finding the dominating set (DS) and its variants in graphs is a very popular

graph theoretical problem which has many application areas such as clustering,

intrusion detection and backbone formation in wireless ad hoc and sensor

networks (WASNs) (Chen and Liestman, 2002) (Subhadrabandhu et al., 2004)

(Wu and Li, 1999), placement of gateways in wireless mesh networks (Aoun et

al., 2006), wavelength division multiplexing deployment in optical networks

(Houmaidi and Bassiouni, 2003), information retrieval to summarize multiple

documents (Shen and Li, 2010) and query selection to obtain data from web (Wu

et al., 2006).

Figure 1.1. An Example DS

A DS is a set of nodes S such that every node in the network graph G is a

neighbor of at least one element of S. The Minimum Dominating Set (MDS)

problem is to find the S with minimum cardinality for a given network graph.

More formally, MDS problem is finding a subset including vertices (nodes) S ⊆ V

where each node in V \ S is a neighbor of at least one node in S for a given

2

undirected graph G(V,E) where E is the set of bidirectional edges (links) and V is

the set of vertices. The nodes in S set are called dominators and the other nodes

are called as dominatees or ordinary nodes. MDS problem is in NP-Hard

complexity class (Cormen et al., 2009). Therefore, optimum solutions cannot be

guaranteed in polynomial time. Heuristic and approximation algorithms can be

applied to obtain near optimal solutions. Hence, various studies have been

proposed to deal with this problem and many research studies are ongoing. Unless

P=NP can be proved, it is anticipated that the popularity of the problem will

continue.

An example graph including 10 nodes with one of its MDS S={5, 6, 10}

having 3 elements is given in Figure 1.1. Please notice that {2, 3, 5, 6, 8, 9, 10},

{2, 3, 4, 6, 9, 10}, {1, 3, 6, 8, 10}, {5, 7, 8, 9} are DSs with 7, 6, 5 and 4 elements,

respectively. Since the cardinalities of these sets are greater than 3 we cannot

identify these sets as MDS. Other alternative MDS sets are {5, 6, 8} and {5, 6,

10}. Clustering a WASN is a very popular application of MDS problem. The

members of MDS are cluster heads and other nodes are cluster member nodes. In

other words, dominators are cluster heads and ordinary nodes are cluster

members. By sending messages from one cluster to another rapidly and

hierarchically, the cluster heads will oversee routing within and through the

clusters. So, the aim of MDS problem in WASNs is to find the smallest set of

efficient cluster heads.

Figure 1.2. a) An Example CDS b) An Example Induced Subgraph

A connected DS is a subset of nodes where the elements of DS are

connected through each other. More formally, if S is a DS and each node pair

3

(vi,vj) ∈ S has at least one path including only nodes in S, then we can call S as a

CDS. An alternative formal definition of CDS can be made by using induced

subgraph concept. An example CDS is given in Figure 1.2.a. A vertex induced

subgraph by I ⊆ V is G’=(I, E’) in which E’ is the set of edges {(vx, vy): ((vx, vy) ∈

E) ˄ (vx ∈ I) ˄ (vy ∈ I)}. An example vertex induced subgraph G’ from G such that

I={5, 6, 8} is given in Figure 1.2.b. A CDS S can be defined as a DS whose

induced subgraph G’=(V’=S, E) is connected. Finding Minimum CDS (MCDS) is

an NP-Hard problem similar to MDS (Cormen et al., 2009).

An example graph with MCDS S={5, 6, 8} is given in Figure 1.2.a. A={2, 3,

4, 6, 8, 9} and B={2, 5, 6, 9, 10} are CDSs with 6 and 5 elements, respectively.

Since the MCDS has 3 elements, A and B are CDS but they are not MCDS. Other

alternative MCDS is {5, 6, 9}. CDSs provide many advantages in network

applications such as ease of broadcasting and constructing virtual backbones

(Subhadrabandhu et al., 2004). When CDS is used as a backbone in WASNs, the

data collected by the dominators can be relayed through CDS. For CDS

backbones with small size, the number of transmitted messages through the

backbone is smaller which results in energy-efficient operation.

Figure 1.3. An Example WCDS

Generally, WASNs compose of battery-powered nodes which we will

describe them in the following section in detail. Since the network lifetime

depends on the lifetime of nodes, the energy efficient operation is of paramount

importance. Transmission is the dominant factor of the energy consumption (Karl

and Willig, 2005). Since the nodes in S are responsible to carry network traffic,

4

they may run out of their batteries very earlier than other nodes. This situation

may result catastrophes such that the network traffic can be significantly reduced

when a dominator node connecting many other nodes fails. An important solution

to this problem is choosing the nodes having high energies as dominators. A

minimum weighted connected dominating set (MWCDS) backbone has been

applied to overcome this problem (Wang et al., 2005). Different from CDS

problem, MWCDS problem aims to minimize the total weight of the CDS. A

formal definition of MWCDS problem can be formally defined as follows. The

MWCDS problem is finding a CDS with minimum weight () ∑ () ∈

where w is a function w:V R
+
 and D is the set of dominators.

An example MWCDS is given in Figure 1.3. Each node is numbered within

the circle with its node id. The numbers near to each node are its energy in joule

and its weight which is calculated as 1/energy. The set {5, 6, 8} is the only

MWCDS in this example which has 0.37 cost (weight) in total. The set {5, 6, 9} is

WCDS but not MWCDS because the total cost of this set is 0.40.

1.2 Wireless Ad Hoc and Sensor Networks

WASNs are composed of ten to thousands of tiny sensor nodes which are

low cost and low power hardware (Akyildiz et al., 2002). Since these nodes can be

equipped with wireless transceivers, networked sensors can be realized. These

nodes generally have read access memory, read only memory, digital to analog

converter, analog to digital converter, universal asynchronous receiver transmitter,

interrupt controller and counter. Short range radio frequency, infrared, optical and

other transmission techniques can be applied on them. The sensors can be

interacted with the environment to sense the heat, light, acceleration and chemical

materials. We can summarize some general properties of the networked sensor

nodes as follows:

 Generally, sensor nodes are small to be deployed easily to the

environment. An example sensor node is given in Figure 1.4. They use low

power as their hardware and software technologies permits.

 Sensor nodes can process concurrently such as they can sense from

the environment at the same time they can execute a scheduled operation.

5

 Sensor nodes are designed as simple and low cost devices. Unlike

general purpose personal computers, generally sensor nodes are special

purpose devices.

Figure 1.4. An Example Sensor Node (https://www.comsys.rwth-

aachen.de/fileadmin/_migrated/pics/mica2dot.jpg)

Components of a sensor node can be seen in Figure 1.5. There are five

components of this design which are central processing unit (CPU), sensors, low

power transceiver, memory and power supply (Karl and Willig, 2005).

Figure 1.5. Components of a Sensor Node

WASNs are composed of sensor nodes that are self-organizing. An example

WASN is given in Figure 1.6 (Karl and Willig, 2005). As seen in this figure, the

data collected by a sensor node is relayed in a multi-hop manner over some other

sensor nodes to the sink node. The sink node is a gateway node collecting data

from other nodes and forwarding data to users. The sink node can send data

through Internet or a satellite network. The user can send configuration data to the

sensor network, thus the links between users and the sink node are bidirectional.

6

WASNs can be embedded in the environment to sense various data, thus

they have lots of application types (Ning, 2005). One of the most important

applications is the habitat monitoring. In great duck island application, the

lifecycle of Storm Petre bird in great duck island is monitored by the researchers

from University of California Berkeley and Intel Research Laboratory

(Mainwaring et al., 2002). The PODS Project developed in Hawai University aims

to investigate the endangered plant species (Biagioni and Bridges, 2002). The

other popular application type of WASNs is healthcare applications. Schwiebert et

al. (Schwiebert et al., 2001) used micro sensors to construct a prosthesis for blind

people. Other types of applications are remote patient monitoring and drug use

(Akyildiz et al., 2002). Also, WASNs can be used in home and office

applications. Srivastava et al.’s kindergarden application aims to interact with

children to teach various topics (Srivastava et al., 2001).

Figure 1.6. An Example Sensor Network

1.3 Hybrid Genetic Algorithms

Genetic algorithms (GAs) are optimization techniques that are inspired by

the principle of evolution through genetic process (McCall, 2005). The concept of

GA was proposed by John Holland (McCall, 2005). GA works on a population of

chromosomes artificially created strings. These strings are usually in binary form

and represent solution of problems. Each chromosome has a fitness value which

shows how good the solution is. A GA starts with randomly produced

chromosomes, selects chromosomes according to their fitness values and

7

combines chromosomes to generate new offspring. The combination process is

iterated until a stopping criterion is reached.

As aforementioned, in a GA, initially a random population is generated and

it is evolved with time. Each chromosome is scored with its fitness value.

Chromosomes with higher fitness values are preferred over the other ones.

Besides chromosomes with the worst fitness values may be removed from the

population. To diversify the population, offspring are produced from parent

chromosomes. Elitism method provides the selection of the parents as

chromosomes with the two highest fitness values. In roulette wheel method, the

chromosomes with higher fitness values get higher probability for being selected

as a parent. Child chromosome can be produced via single point crossover

operator in which a random point p in the chromosome data [0,n] is chosen, the

first part of the child chromosome [0,p] is produced by copying the [0,p] of the

first parent chromosome and the second part of first part of the child chromosome

(p,n] is produced by copying the (p,n] of the second parent chromosome. After a

child chromosome is produced, a mutation can be applied. Algorithm continues

until termination condition is met. An example algorithm is given in Algorithm

1.1.

Algorithm 1.1: An Example GA

1. Generate an initial random population of solutions.

2. Evaluate the fitness of all individuals.

3. while termination condition not met or generations not

run out

4. Select the parents by the roulette wheel method to

produce new individuals.

5. Apply single point crossover.

6. Apply mutation.

7. Evaluate fitness of new individuals.

8. Generate a new population by inserting new

individuals or replace low-fit parents with them.

9. end while

Hybrid GAs (HGAs) are based on genetic and other search methods that can

complement each other to achieve an optimization goal (El-Mihoub et al., 2006).

A local search method can be integrated with a GA to enhance search capabilities.

8

A local search method that is able to find local optimum can be integrated with a

GA to perform local and global search efficiently. This efficiency can be declared

as in terms of solution quality and the time needed to finish entire operation. An

efficient search method increases the fitness values of chromosomes. This

enhancement leads to reduce the standard deviation of the members of the

population. In this case, the hybrid algorithm can be still efficient even the

population size is small. In pure GAs, mutation and crossover operations may

result illegal solutions. When a problem specific search algorithm is integrated to

a GA, these illegal solutions are prevented. For example, an intelligent search

method can be used with a GA to recover infeasible solutions (Konak and Smith,

1999). Sometimes the calculation of fitness values can be complex and time

consuming (Jin, 2005). In this situation, an approximation based search method

can be used to estimate the fitness values. Crossover and mutation operations can

be replaced by problem specific methods to increase the quality of search

operation. For example, in probabilistic model-building genetic algorithms

(PMBGA) the crossover and mutation operations of a pure GA is replaced with a

model that is based on the estimation of promising solutions (Pelikan et al., 1999).

Compact genetic algorithm, population-based incremental learning, univariate

marginal distribution algorithm and bivariate marginal distribution algorithms are

examples of PMBGA. An efficient technique can be incorporated within a GA to

optimize control parameters to improve the search performance.

1.4 Population-Based Iterated Greedy Algorithms

An iterated local search (ILS) has three main components (Gonzalez, 2007).

Firstly, to find local optimum c, a subsidiary local search (SLS) procedure is used.

Secondly, to escape from local optimum, a perturbation procedure is executed.

Finally, to decide whether the procedure is continued with c, an acceptance

condition is used. An example ILS algorithm is given in Algorithm 1.2. ILS

algorithm is a very promising technique for solving various hard combinatorial

problems such as traveling salesman problem (Samet, 1990).

Greedy selection is a very widely used algorithmic technique that provides

many solutions to the well-known problems. Greedy selection is also at the heart

of iterated greedy (IG) algorithms which is a variant of ILS (Gonzalez, 2007). IG

differs from ILS that perturbation and local search phases are changed with

constructive and destructive search. In a destruction phase, solutions are removed

randomly or according to a heuristic. After this phase has accomplished, a partial

9

solution is generated from a solution. In a construction phase, a new solution is

added according to a greedy heuristic. Similar to ILS, IG has an acceptance

condition to decide whether the new solution will be used in further iterations.

Population-based IG (PBIG) is a variant of IG in which the algorithm works on

population of candidate solutions. IG and its variants are very efficient techniques

and provide state-of-the-art performance for flow-shop scheduling (Linde et al.,

1980) and set covering (Xiang et al., 1994; Gray et al., 1980) problems.

Algorithm 1.2: An Example ILS.

1. Construct initial candidate solution c.

2. Execute SLS on c.

3. while termination condition is not met

4. t c.

5. Execute perturbation on c.

6. Execute SLS on c based on acceptance condition.

7. Keep c or revert c t.

8. end while

1.5 Contributions of the Thesis

 The contributions of this thesis are listed as follows:

 We proposed a hybrid genetic algorithm which incorporates a greedy

heuristic with a genetic approach to solve MWCDS problem. The

algorithm runs on a population of solutions and aim to improve the

solution quality by applying cross over, mutation, repair and minimization

operations sequentially and iteratively.

 We proposed a population-based iterated greedy algorithm which executes

iteratively by applying destruction and construction phases. This strategy

can generally improve the solution quality by preventing getting stuck in a

local minimum solution.

 Proposed algorithms are the first population-based optimization algorithms

for MWCDS problem on undirected graphs.

10

 We analyzed the time complexities of HGA and PBIG algorithms. We

provided implementations of the proposed algorithms, greedy heuristics

and brute force algorithms in Java. Greedy heuristics are Greedy Ratio

(GR), Greedy Weight (GW) and Greedy Degree (GD). Brute force

algorithms are a pure implementation named as Brute Force (BF), and a

time-limited version of BF (T-BF).

 We used two datasets of graphs such that the first dataset is a popular

dataset used by the researchers and the second dataset is generated in this

thesis. The reason why we generated the second dataset is some of the

graphs in first dataset are unconnected.

 From our performance evaluations, we obtained that GR has the best

performance in terms of MWCDS weight among the other greedy

heuristics (GD and GW). These greedy heuristics have very close

execution times. Our proposed algorithms have significantly better weight

performance than GR for nearly all problem instances. Additionally, our

proposed algorithms can find optimum results same as BF for small-size

problem instances, at the same time our algorithms run very faster than

BF. Moreover, when we compared the performances of our algorithms and

T-BF, we found that our algorithms outperform T-BF in terms of both

WCDS weight and execution time.

 Our measurement results taken from the proposed algorithms show that

PBIG performs better in terms of WCDS weight and HGA is faster.

 The materials given in thesis are published in the following publication:

Zuleyha Akusta Dagdeviren, Dogan Aydin, Muhammed Cinsdikici, Two

Population-based Optimization Algorithms for Minimum Weight

Connected Dominating Set Problem, Applied Soft Computing, 59, pp. 644-

658, Elsevier (Dagdeviren et al., 2017).

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

In Section 2, related work is given. In this section, centralized dominating

set algorithms, centralized connected dominating set algorithms and distributed

javascript:void(0)
javascript:void(0)
javascript:void(0)

11

algorithms for both dominating set and connected dominating set problems are

mentioned and compared with proposed algorithms. Some important

algorithms are explained in detail. At the end of this section, algorithms are

summarized and listed in a table.

Proposed algorithms HGA and PBIG are described in Section 3. Firstly,

background information related to the proposed algorithms are given. After

that, the steps of the algorithms are explained in detail. Examples are given to

show the operations of the proposed algorithms. Lastly, time complexities of

the algorithms are analyzed in this section.

In Section 4, extensive performance evaluations of the proposed

algorithms with their counterparts are given. This section is divided into

Evaluation of Small-Size Problem Instances, Evaluation of Moderate-Size

Problem Instances and Evaluation of Large-Size Problem Instances. The last

section is Section 5 in which conclusions are drawn by summarizing main

findings.

12

2. RELATED WORK

This section reviews the existing studies as centralized dominating set

algorithms, centralized connected dominating set algorithms and distributed

algorithms. At the end of the section, a summary of the literaure is given.

2.1 Centralized Dominating Set Algorithms

A greedy heuristic algorithm for set-covering problem is proposed by

Chavatal (1979). The algorithm continues until all points are covered. For each set

|Pj| / Cj ratio is calculated where Cj is the cost and |Pj| is the number of the points

covered. The set which has the minimum ratio is selected in each step. We apply

this heuristic in our proposed algorithms, because this heuristic can be used in

constructing a weighted dominating set. For the minimum weighted dominating

set problem, the approximation ratio of this heuristic becomes O(log WT(S))

where WT(S) is the total weight of the optimum solution set S. The algorithm is

given in Algorithm 2.1.

Algorithm 2.1: Chavatal’s Algorithm

 1. input: Sets of Points {S0, … ,Sn}, Costs of Sets {C0,

…,Cn}

 2. initially

 3. Pj : the number of points covered by set Sj.

 4. Cj : the cost of set Sj.

 5. repeat

 6. For each set Sj calculate the weight ratio of Rj as Cj/

|Pj|.

7. Choose the set Sj with the minimum Rj and cover the

points in Sj.

8. until all points are not covered

9. Return chosen sets

13

Algorithm 2.2: Potluri and Singh’s Main Algorithm

1. input: pc (probability of crossover),

2. Generate initial population and set as P

3. f ← fitness of best member of P

4. m ← Best member of P

5. iteration_count ← 0

6. while iteration_count < MAX do

7. if p < pc then

8. Select b1 and b2 by binary tournament

9. X← crossover(b1, b2)

10. X← mutate(X)

11. else

12. Generate X randomly

13. end if

14. X← Repair_Procedure(X) // see Algorithm 2.3

15. X← Minimize_Procedure(X) // see Algorithm 2.4

16. if X is unique then

17. Remove the worst member of population P

18. Add X to the population P

19. if fitness of X < f then

20. f ← Fitness of X

21. m ← X

22. end if

23. iteration_count ← iteration_count +1

24. end if

25. end while

26. Return m

Jovanovic et al. (2010) propose an ant colony optimization (ACO) algorithm

to apply for the minimum weight dominating set problem. Their algorithm is

compared with the greedy algorithm for different edge densities, weight

distributions and node counts. The obtained results present that the algorithm is

better than the greedy approach. Potluri and Singh (2013) propose hybrid

metaheuristic algorithms for minimum weight dominating set problem on

undirected graphs. The main algorithm is given in Algorithm 2.2. In this

14

algorithm, firstly an initial population of chromosomes is generated. Then, for

MAX number of iteration times the following operations are applied.

Algorithm 2.3: Potluri and Singh’s Repair Procedure

1. input: ph (probability of repair)

2. T ← V \ X

3. if p < ph then

4. while X is not a dominating set do

5. maximum ←0

6. for t ∈ T do

7. if maximum < W(t) / w(t) then // w(t) is the

 weight of node t. W(t) is the total weight of the

 dominatee neighbors of node t.

8. maximum ← W(t) / w(t)

9. v ← t

10. end if

11. end for

12. X ← X ∪ v

13. T ← T \ v

14. end while

15. else

16. while X is not a dominating set do

17. v ← Select randomly from T

18. X ← X ∪ v

19. T := T \ v

20. end while

21. end if

22. Return X

A new chromosome is generated either by applying crossover to two

chromosomes that are selected by binary tournament selection, or generating

randomly. The generated chromosome is repaired to provide a weighted

dominating set from this solution. After that, the chromosome is minimized in

order to remove the redundant nodes in minimum weighted dominating set. If the

generated chromosome does not exist in the population, the worst member of the

population is removed and the generated chromosome is added to the population.

15

At the end of the algorithm, the chromosome having the maximum fitness value is

returned as solution.

Algorithm 2.4: Potluri and Singh’s Minimize Procedure

1. input: pr (probability of deletion)

2. S is the set of dominators where the neighbors of each

element of S is covered by other dominators.

3. while S do

4. if p < pr then

5. r ← arg max t∈S w(t) / d(t) // d(t): degree of node t

6. else

7. r ← Select randomly from S

8. end if

9. X ← X \ r

10. recalculate S

11. end while

12. Return X

Potluri and Singh’s Repair Procedure is given in Algorithm 2.3. In this

algorithm, a dominating set is constructed from a partial solution. The algorithm

either repairs the partial solution by adding the node having the maximum weight

ratio to the partial solution, or by adding a random node to the partial solution.

This operation iteratively continues until the partial solution becomes a full

solution, in another word, a dominating set. Although a dominating set is

constructed after repairing the solution, redundant nodes may exist in the

dominating set.

Potluri and Singh’s Minimize Procedure is given in Algorithm 2.4.

Redundant nodes are removed in this procedure. A redundant dominator is a

dominator whose all ordinary nodes are covered by other dominators. In this case,

if this redundant dominator is removed from the dominating set, the remaining

dominators still constitute a dominating set. In Minimize Procedure given in

Algorithm 2.4, firstly redundant nodes are identified. Then, the algorithm either

removes the redundant dominator having the greater w(t)/d(t) ratio or removes a

redundant dominator randomly. After each removal, the set of redundant

16

dominators are recalculated. If there are no redundant nodes, the algorithm quits

from the operation. Otherwise, the operation continues iteratively.

Algorithm 2.5: Bouamama et al.’s Main Algorithm

1. input: population_size, probability, determinism_rate

2. Generate initial population w.r.t input population size

and set as S // see Algorithm 2.6

3. while termination condition is not true do

4. S1 ←

5. for each Ci ∈ S do

6. Ci
m
←PartiallyDestroy(Ci, probability)

7. Ci
n
←GreedyWeightedVertexCover(Ci

m
, determinism

_rate) // see Algorithm 2.7

8. S1 ← S1 ∪ { Ci
n
 }

9. end for

10. S←Accept(S,S1)

11. end while

12. Return argmin{ weight(Ci) | Ci ∈ S, i=1, . . . ,

population_size}

Nitash and Singh (2014) propose an artificial bee colony algorithm for

solving minimum weight dominating set problem for undirected weighted graphs.

The results of the algorithm show that their algorithm performs better than other

metaheuristics in literature. Bouamama et al. (2012) propose a population-based

iterated greedy (PBIG) algorithm for tackling the minimum weight vertex cover

problem on vertex-weighted undirected graphs. The aim of vertex cover problem

is to find a set of vertices C such that every edge in graph is incident to at least

one vertex in C. Vertex cover problem resembles the dominating set problem and

it has various applications such as clustering, backbone formation and link

monitoring in ad hoc networks. Bouamama et al.’s Main Algorithm is given in

Algorithm 2.5. The algorithm starts with generating an initial population. This

population generation algorithm is given in Algorithm 2.6. The algorithm

proceeds by partially destroying and reconstruction of each solution in the

population. These new solutions are added to a new population. After that, the

new population and the old population are merged. These operations are

iteratively executed until the termination condition is satisfied. At the end of the

17

algorithm, the solution having the minimum weight is returned. Bouamama et al.

assess the performance of their algorithm on all benchmark instances that have

been considered by Shyu et al. (2004).

Algorithm 2.6: Bouamama et al.’s GenerateInitial

Population Procedure

1. inputs: population_size

2. S←

3. C0 ←

4. for i=1, . . . , population_size do

5. Ci ← GreedyWeightedVertexCover(C0, determinism

_rate) // see Algorithm 2.7

6. S←S ∪ {Ci}

7. end for

8. return S={C1, C2, . . . , Cpopulation_size}

The GreedyWeightedVertexCover Procedure of Bouamama et al.’s Vertex

Cover Algorithm is given in Algorithm 2.7. In this algorithm, firstly the set of

nodes which are incident to uncovered edges are identified. While this set is not

empty, the node having the smallest weight or the node having the second

smallest weight is removed from this set and added to the vertex cover.

After vertex cover is constructed, the redundant nodes are removed from the

vertex cover. A redundant node is a node which is in vertex cover and whose all

edges are covered by other nodes. While redundant node set is not empty, the

node having the greatest weight or the node having the second greatest weight is

removed from the redundant node set. A randomized version of PBIG algorithm is

proposed by Bouamama and Blum (2015) for constructing minimum weight

dominating sets.

Zhu et al. (2012) propose the first polynomial time approximation algorithm

that achieves a (1+ε)-approximation for any ε>0 to solve the minimum weighted

dominating set problem with smooth weights on unit disk graphs. A hybrid self-

adaptive evolutionary algorithm is proposed by Lin (2016) for formulating the

minimum weight dominating set.

18

Although the mentioned approaches in this chapter can be used to construct

weighted dominating sets in WSNs, they do not provide a backbone structure

since WCDS formation is not maintained.

Algorithm 2.7: Bouamama et al.’s GreedyWeighted

VertexCover Procedure

1. Inputs: solution, determinism_rate

2. U ← Set of nodes that are not in vertex cover. Each node

in this set is incident to at least one uncovered edge.

3. while U do

4. v1←argmin{weight(v) | v ∈ U}

5. v2 ←argmin{weight(v) | v ∈ U \ {v1}}

6. probability ← generate random probability

7. if probability ≤ determinisim_rate then vb ←v1

8. else vb ←v2

9. end if

10. solution←solution ∪{vb }

11. Recalculate U

12. end while

13. R ← Set of nodes that are in vertex cover. All edges of

each node in this set should be covered by two nodes.

14. while R do

15. v1←argmax{weight(v) | v ∈ R}

16. v2←argmax{weight(v) | v ∈ R\{v1}}

17. probability ← generate random probability

18. if probability ≤ determinisim_rate then vb ←v1

19. else vb ←v2

 20. end if

 21. solution←solution \ {vb }

22. Recalculate R

23. end while

24. Return solution

19

2.2 Centralized Connected Dominating Set Algorithms

CDS is a very popular graph theoretic structure for WASNs since it can be

very useful in backbone formation operation. Unit disk graph (UDG) is used in

WSANs when the transmission range of a node is assumed to be an ideal circle.

A genetic algorithm for power aware minimum CDS (MCDS) problem in

WASNs is proposed by Kamali and Safarnourollah (2006). Their algorithm is

used for if there is any power aware CDS with size k on a UDG. A genetic

algorithm is proposed by More and Mangalwede (2013) for CDS problem in

WSANs modeled as UDG. Zou et al. (2009) propose two approximation

algorithms for MWDS and MWCDS problems on a unit disk graph. A (4 +ε)-

approximation algorithm for an MWDS based on a dynamic programming

algorithm for a Min-Weight Chromatic Disk Cover is presented. They also

propose a (1+ε)-approximation algorithm for the connecting part by showing a

polynomial-time approximation scheme for a Node-Weighted Steiner Tree

problem when the given terminal set is c-local and thus obtain a (5+ε)-

approximation algorithm for an MWCDS.

Khalil and Ozdemir (2015a) propose a genetic algorithm to construct MCDS

on UDGs. Another study (Khalil and Ozdemir, 2015b) is similar the previous one.

The only difference between them is the consumed energy while nodes are

sending messages to sink is not minimized; instead the data reliability between the

nodes in CDS and the dominatees is aimed. The aim of this study is minimizing

the number of nodes in CDS and the consumed energy while sending messages to

sink.

The algorithms mentioned so far in this section failed to model the real

wireless transmission that is not an ideal circle in most cases such as interference

and noise are present (Khun et al., 2003). Our proposed algorithms run on UG

model which can capture the features of real wireless transmission better than the

UDG model.

Tree Growing Algorithm is proposed for CDS problem by Guha and Kuller

(1998). Their algorithm is an efficient approximation algorithm constructing a

CDS on UGs. The nodes are given colors as BLACK, GRAY and WHITE where

BLACK is a dominator node, GRAY is an ordinary node with having at least one

BLACK neighbor and WHITE is an ordinary node without having a BLACK

20

neighbor. The algorithm uses a heuristic which considers the number of WHITE

neighbors. All nodes in graph are WHITE initially. The node having the

maximum number of WHITE neighbors is selected as dominator. Then its color

becomes BLACK and its neighbors are colored GRAY. To provide connectivity

between BLACK nodes, the following selections are made from GRAY nodes.

The selection criterion is again the maximum number of WHITE neighbors. The

selected nodes are colored BLACK and its neighbors are colored GRAY. These

steps repeat until all the nodes are dominated which means there is no WHITE

node in the graph. The algorithm is given in Algorithm 2.8.

Algorithm 2.8: Guha’s Connected Dominating Set

Algorithm

1. Definition of scan operation: Let node u be a GRAY

node. First color node u BLACK and then color WHITE

neighbors of node u GRAY.

2. Definition of the gain of a scan operation: Number of

nodes which are colored GRAY

3. Color all nodes WHITE

4. Color the node v having the greatest degree BLACK and

color node v’s neighbors GRAY

5. while there are WHITE nodes do

6. Apply the scan operation having the largest gain

7. end while

A memetic algorithm for the minimum weighted edge dominating set

problem is proposed by Abdel-Aziz et al. (2013). An edge (u, v) in G dominates

itself and any other edge adjacent to (u, v). An edge dominating set is a set of

edges which dominates all the other edges in the graph G. In this algorithm, three

fitness functions are used and a search method is developed. In our study, we aim

to construct node weighted connected dominating set instead of edge weighted

dominating set since the main goal is to select backbone nodes with high energy.

Alkhalifah and Wainwright (2004) propose a genetic algorithm that can be

applied to different graph theoretical problems such as geometric CDS (GCDS)

problem for wireless networks. Their approach is called as the nearest four

neighbors heuristic that can be applied on traveling tourist man, capacitated k-

21

center and capacitated p-median problems. Although this algorithm performs well

in constructing GCDS, the main drawback of this study is the nodes are not

weighted thus energy-efficient backbone construction is not maintained.

Another ACO algorithm with pheromone correction strategy is proposed by

Jovanovic and Tuba (2013) for constructing MCDSs. Their algorithm is simple

one-step ACO method based on greedy heuristic. This heuristic is based on

pheromone correction strategy. Yu et al. (2016) propose an algorithm for

formulating CDSs in cognitive radio networks. Liu et al. (2016) propose the first

constant factor approximation algorithm for constructing minimum-sized partial

CDSs in growth-bounded graphs. A 5-approximation algorithm to solve CDS

problem for WSANs is proposed by Al-Nabhan et al. (2016). He et al. (2011)

propose a genetic algorithm for constructing a reliable minimum CDS in

probabilistic wireless networks. A genetic algorithm for load-balanced CDS

construction in WSANs is proposed by He et al. (2012). Gendron et al. (2014)

propose benders decomposition, branch-and-cut and hybrid algorithms for MCDS

problem.

The algorithms mentioned in this chapter generally aim to minimize the size

of CDS; the nodes are unweighted so that energy-efficient backbone formation is

omitted.

2.3 Distributed Algorithms

Wang et al. (2005) propose a distributed low-cost backbone formation

algorithm for WASNs. The algorithm has two phases. In the first, a weighted

maximal independent set algorithm is constructed. This algorithm is based on

Chatterjee’s algorithm (Chatterjee et al., 2002). First phase of Wang et al.’s

algorithm is given in Algorithm 2.9. Initially, all nodes are WHITE. The nodes

having the lowest weight among their neighbors send IamDominator message to

their neighbors and become a PossibleDominator. If a node receives an

IamDominator message to one of its neighbors, it colors itself GRAY and it sends

an IamDominatee message. When a WHITE node receives an IamDominatee

message, it deletes the sender of this message from the list of WHITE nodes and

sends an IamDominator message and becomes a PossibleDominator if it has the

minimum weight among its WHITE neighbors. At the second step of the first

phase PossibleDominator nodes learn the weights of its neighbors at most 2 hops

away from them. Then, each PossibleDominator node applies a set cover based

22

method to cover itself and its one-hop neighbors. If a PossibleDominator finds

that its one-hop neighbors including itself can be covered by other nodes with less

total weight it quits becoming a PossibleDominator. Otherwise, this

PossibleDominator node becomes a Dominator. At the end of the first phase,

Dominator nodes constitute a DS but not definitely a CDS.

At the second phase, dominator nodes are connected by selecting new

dominator nodes. In this phase, dominator nodes which are at most 2 hops away

learn the costs of the paths between each other. During this operation, ordinary

nodes relay the messages of the dominators. The cost between two dominator

nodes is found by summing the weights of ordinary nodes between these

dominators. After dominator nodes learn the costs, they execute a distributed

minimum spanning tree algorithm. The second phase of Wang et al.’s algorithm is

given in Algorithm 2.10.

Algorithm 2.9: First Phase of Wang et al.’s Algorithm

1. Find a minimal maximal independent (I) set given given

by Chaterjee. Let dominators be the elements of I.

2. Each dominator node d executes a set cover algorithm on

neighborhood sets (each neighborhood set is identified by the id

of that node) of the graph G’=(V’,E’) in which V’ is the set of all

nodes at most 2 hops away from node v. E’ is the set of edges

connecting nodes in V’ excluding the edges between nodes x and

y where x and y are two hops away from d.

3. if node d is not included in the solution set

4. node d quits from dominating set

5. send a message to each node in the solution set to

inform that they are dominators.

6. end if

23

Algorithm 2.10: Second Phase of Wang et al.’s

Algorithm

1. A graph H=(X,Y) is constructed where X is the set of

dominator nodes and Y is the set of edges between dominator

nodes which are at most 2 hops away from each other and only

minimum cost paths between each other are included in Y.

2. Dominator nodes run a distributed minimum spanning

tree algorithm on H.

An intelligent algorithm based on distributed learning automata is proposed

by Torkestani and Meybodi (2010a) for constructing backbone in wireless ad hoc

networks. Torkestani and Meybodi (2010b) propose another distributed learning

automata approach for clustering WSANs. An algorithm based on learning

automata is proposed by Torkestani and Meybodi (2012) for finding MWCDS in

stochastic graphs. Ramalakshmi and Radhakrishnan (2015) study on WDS based

routing for ad hoc communications in emergency and rescue scenarios. For a

detailed survey of these studies please refer to Yu et al (2013). Since we focus on

the design and implementation of central algorithms in this thesis, we omit

distributed approaches.

2.4 Summary of Algorithms

The algorithms given in Section 2 are summarized in Table 2.1. The

algorithms are sorted with respect to the date. Type of the algorithms, target

problems, the graphs that algorithms running on and the locality types of

algorithms (centralized/distributed) are given.

24

Table 2.1. Summary of the studies in literature

Paper Type of the

Algorithm

Target

Problem

Graph Type Locality

Type

Chavatal,

1979

Approximation

Algorithm

Minimum

Weight Set Cover

Designed for

Set Data

Structure. Can

be used in

Node Weighted

Undirected

Graph.

Centralized

Guha and

Khuller,

1998

Approximation

Algorithm

Minimum

Weight

Connected

Dominating Set

Node Weighted

Undirected

Graph

Centralized

Alkhalifah

and

Wainwright

, 2004

Genetic

Algorithm

Minimum

Connected

Dominating Set

Undirected

Graph

Centralized

Shyu et al.,

2004

Ant Colony

Algorithm

Minimum

Weight Vertex

Cover

Node Weighted

Undirected

Graph

Centralized

Wang et al.,

2005

Approximation

Algorithm

Minimum

Weight

Connected

Dominating Set

Node Weighted

Unit Disk

Graph

Distributed

Kamali and

Safarnourol

lah, 2006

Genetic

Algorithm

Minimum

Connected

Dominating Set

Unit Disk

Graph

Centralized

Zou et al.,

2009

Approximation

Algorithm

Minimum

Weight

Dominating Set,

Minimum

Weight

Connected

Dominating Set

Node Weighted

Unit Disk

Graph

Centralized

Jovanovic

et al., 2010

Ant Colony

Algorithm

Minimum

Weight

Dominating Set

Node Weighted

Undirected

Graph

Centralized

Torkestani

and

Meybodi,

2010a

Learning

Automata

Minimum

Connected

Dominating Set

Undirected

Graph

Distributed

25

Paper Type of the

Algorithm

Target

Problem

Graph Type Locality

Type

Torkestani

and

Meybodi,

2010b

Learning

Automata

Minimum

Weight

Connected

Dominating Set

Weighted

Undirected

Graph

Distributed

He et al.,

2011

Genetic

Algorithm

Minimum

Connected

Dominating Set

Probabilistic

Network

Centralized

He et al.,

2012

Genetic

Algorithm

Connected

Dominating Set

Undirected

Graph

Centralized

Torkestani,

2012

Learning

Automata

Minimum

Weight

Connected

Dominating Set

Stochastic

Graph

Distributed

Bouamama

et al., 2012

Population-

based Iterated

Greedy

Algorithm

Minimum

Weight Vertex

Cover

Node Weighted

Undirected

Graph

Centralized

Zhu et al.,

2012

Approximation

Algorithm

Minimum

Weight

Dominating Set

Node Weighted

Unit Disk

Graph

Centralized

Jovanovic

and Tuba,

2013

Ant Colony

Algorithm

Minimum

Connected

Dominating Set

Undirected

Graph

Centralized

Abdel-Aziz

et al., 2013

Genetic

Algorithm

Minimum Edge

Weighted

Dominating Set

Edge Weighted

Undirected

Graph

Centralized

More and

Mangalwed

e, 2013

Genetic

Algorithm

Minimum

Connected

Dominating Set

Unit Disk

Graph

Centralized

Potluri and

Singh, 2013

Hybrid Genetic

Algorithm and

Ant Colony

Algorithm

Minimum

Weight

Dominating Set

Node Weighted

Unit Disk

Graph

Centralized

Gendron et

al., 2014

Branch and Cut

And Hybrid

Algorithm

Minimum

Connected

Dominating Set

Undirected

Graph

Centralized

Nitash and

Singh, A.,

2014

Ant Colony

Algorithm

Minimum

Weight

Dominating Set

Node Weighted

Undirected

Graph

Centralized

26

Paper Type of the

Algorithm

Target

Problem

Graph Type Locality

Type

He et al.,

2015

Multi-objective

Genetic

Algorithm

Minimum

Connected

Dominating Set

Probabilistic

Network

Centralized

Ramalaksh

mi and

Radhakrish

nan, 2015

Heuristic

Algorithm

Minimum

Weight

Connected

Dominating Set

Node Weighted

Undirected

Graph

Distributed

Khalil and

Ozdemir,

2015a

Genetic

Algorithm

Minimum

Connected

Dominating Set

Unit Disk

Graph

Centralized

Khalil and

Ozdemir,

2015b

Genetic

Algorithm

Minimum

Connected

Dominating Set

Unit Disk

Graph

Centralized

Bouamama

and Blum,

2015

Randomized

Population-

based Iterated

Greedy

Algorithm

Minimum

Weight

Dominating Set

Node Weighted

Undirected

Graph

Centralized

Al-Nabhan,

2016

Approximation

Algorithm

3-Connected

Dominating Set

Unit Disk

Graph

Centralized

Lin, 2016 Hybrid

Evolutionary

Algorithm

Minimum

Weight

Dominating Set

Node Weighted

Undirected

Graph

Centralized

Liu et al.,

2016

Approximation

Algorithm

Minimum Partial

Connected

Dominating Set

Growth-

Bounded Graph

Centralized

Yu et al.,

2016

Heuristic

Algorithm

Connected

Dominating Set

Unit Disk

Graph

Centralized

27

3. PROPOSED ALGORITHMS

In this section, the preliminaries are given firstly. Then, the proposed two

meta-heuristic algorithms are given in detail. The complexity analysis of the

proposed algorithms is explained in the last subsection.

3.1 Preliminaries

If the removal of a vertex disconnects a graph, we call that vertex as a cut

vertex. An example UG is given in Figure 3.1 where node 4 is the cut vertex.

When node 4 is removed from the graph, there will be two disconnected

components as: {1, 2, 3} and {5, 6, 7, 8}.

Figure 3.1. An Example UG with a Cut Vertex

Cut vertices can be detected by Hopcroft and Tarjan’s linear time algorithm

(Hopcroft and Tarjan, 1974) which is based on depth-first search (DFS) algorithm.

The algorithm starts from a root node. In this algorithm each node v is associated

with parent, depth and low values. The parent(v) of node v is the node that is

visited just before node v. The depth(v) of node v is found as

depth(v)=depth(parent(v))+1 where the depth value of the root is 1. The depth

value of node v indicates the distance of node v to the root in the DFS tree. The

low(v) of node v is found as minimum{depth(v), the low values of children of

node v, the depth values of node v’s neighbors excluding node v’s children and

parent(v)}. The low value of node v indicates the minimum depth value of the

28

node that is reachable from subtree of node v. The main steps of the Hopcroft and

Tarjan’s cut vertex detection algorithm is given in Algorithm 3.1.

Algorithm 3.1: Tarjan’s Cut Vertex Detection Algorithm

1. DFS is executed.

2. The root node is a cut vertex if it has more than one child in

the DFS tree.

3. The node v (which is not a root node) is a cut vertex if at least

one of its children u has the low(u) ≥ depth(v) property.

Figure 3.2. Example Operation of Cut Vertex Detection Algorithm

This algorithm can be implemented with modifications to the standard DFS

algorithm and it has O(V+E) time complexity. An example operation of the cut

vertex detection algorithm is given in Figure 3.2. Node 1 is the root node which is

shown with double circles. Parent-child relationships are depicted with directed

edges. Other edges (dashed edges) are not included in DFS tree but they belong to

the graph. The visiting order of nodes in DFS tree is 1, 2, 4, 3, 5, 6, 7 and 8. Since

node 8 is directly connected to node 4 and these nodes do not have a parent-child

relationship, the low value of node 8 is 3. Because node 7’s, node 6’s and node

5’s subtrees include node 8, their low values are 3. Since the depth value of node

1 is 1, the low value of node 3 is 1. Because node 2’s and node 4’s subtrees

include node 3, the low values of node 2 and node 4 are 1. Since the depth value

of node 1 is 1, its low value is equal to 1. Node 4 is a cut vertex in this graph

because node 5’s low value is 3 which is equal to the node 4’s depth value.

29

Moreover, node 4 is the only cut vertex in this graph, because this condition

cannot be satisfied by another node.

In this thesis, colors are used to define the states of the nodes. The color of

node u is defined with color(u). A dominator node u is BLACK. A dominatee

node without having a BLACK neighbor is WHITE. Other dominatee nodes

(dominatee nodes having at least one BLACK neighbor) is GRAY. As

aforementioned, a CDS is constructed when there is no WHITE node and the

induced subgraph of BLACK nodes are connected. () is defined as ()

 ∈ () () and is used to indicate the node u’s open neighborhood

with color k. Node u’s closed neighborhood with color k is defined as []

 ∈ () ∪ } () }

Greedy ratio (GR), greedy weight (GW) and greedy degree (GD) heuristics

are implemented for MWCDS formation in this thesis. In these algorithms, a

WHITE node is chosen at the first step and GRAY nodes are chosen at the

following steps. In this manner, the algorithm resembles the Tree Growing

Algorithm. The algorithms terminate when there are no WHITE nodes left. The

selection policies of algorithms are different from each other. In GR, the node

which has the smallest weight ratio according to the Chavatal’s heuristic is

selected. In Equation 1, the heuristic function of GR (fGR:V R) for node u is

given.

 ()
 ()

 ([])
 (1)

In Equation 1, the heuristic function of GR (fGR:V R) for node u is given.

The chosen node () by GR is given in Equation 2.

 ∈ () (2)

In GD, the node u which has the maximum number of WHITE neighbors is

selected. In Equation 3, the heuristic function of GD (fGD:V R) for node u is

given. Equation 4 gives the chosen node () by GD.

30

 () | () | (3)

 ∈ () (4)

In GW, the node u which has the minimum weight among neighbors is

selected. The heuristic function of GW (fGD:V R) for node u is given in Equation

5. In Equation 6, the chosen node by GW is given.

 () () (5)

 ∈ () (6)

Figure 3.3, Figure 3.4 and Figure 3.5 show example operations of GR, GD

and GW respectively. Among these figures, GR has the best performance and it

produces a WCDS having total weight equals to 23. GW has the worst

performance and its WCDS has 42 total weight.

Figure 3.3. Example Operation of GR Heuristic

In Figure 3.3, GR selects node 4 having 11/73=0.151 weight ratio firstly.

Node 4 is colored BLACK and its neighbors node 1, node 3, node 5 and node 7

are colored GRAY. Secondly, node 3 is selected by GR since its weight ratio is

12/(18+9)=0.144 that is smaller than the weight ratio of other GRAY nodes. The

31

WHITE neighbors of node 3 is node 2 and node 6, so they are colored GRAY.

After this step, no more WHITE nodes left, so the GR algorithm finishes.

Figure 3.4. Example Operation of GD Heuristic

In GD algorithm, node 5 is chosen at the first step. The reason of this

selection is that node 5 has 5 WHITE neighbors which is the maximum WHITE

neighbor count, among other nodes. Node 5 is colored BLACK and its WHITE

neighbors 2, 3, 4, 6 and 7 are colored GRAY. At the second step, node 4 is chosen

among GRAY nodes. The WHITE degree of node 4 is 1, on the other side other

GRAY nodes do not have any WHITE neighbor, so their WHITE degree is 0.

Node 4 is colored BLACK and node 1 is colored GRAY. After this operation, the

WHITE nodes are consumed, so the algorithm terminates.

Node 6 is selected in GW algorithm at the first step in Figure 3.5. The

weight of node 6 which is the minimum among other nodes’ weights is 9. Node 6

is colored BLACK and its WHITE neighbors 3, 5 and 7 are colored GRAY. At

the second step, node 7 is chosen which has the minimum weight among GRAY

nodes. Node 7 is colored BLACK and node 4 is colored GRAY. At the third step,

GW selects node 4 whose weight equals to 11. Node 4 is colored BLACK and

node 1 that is the WHITE neighbor of node 4 is colored GRAY. At the last step,

node 3 is selected by GW. Node 3 is colored BLACK and its WHITE neighbor

node 2 is colored GRAY. The algorithm finishes after this selection.

32

Figure 3.5. Example Operation of GW Heuristic

As aforementioned, GR has the best performance among other heuristics in

Figure 3.3, Figure 3.4 and Figure 3.5. Although these figures are useful to show

the operation of algorithms and to obtain a general overview about their

performances, we cannot derive a general result. We present extensive simulations

in the following section to show the performances of these algorithms in detail.

From our measurements given in Section 4, we found that GR achieves the best

results in terms of weight ratio. Moreover, the runtime of these heuristics are very

similar. Because of these reasons, GR is used as the greedy heuristic in our

proposed algorithms.

3.2 Description of Hybrid Genetic Algorithm

We have proposed a steady-state Hybrid Genetic Algorithm (HGA) that

uses a genetic algorithm with a greedy heuristic to solve minimum weight

connected dominating set problem. HGA is a genetic algorithm to improve the

solution quality which is produced by greedy heuristic.

The chromosome used for graph problems is simply a set of vertices, in the

mathematical sense of a set. In our HGA, the chromosomes are represented with a

bit vector C of the length n where n is the number of vertices in the graph. This

representation provides:

33

 Every chromosome is same length,

 There is no need ordering among the vertices,

 There are no duplicated vertices.

Ci represents the i
th

 bit of the chromosome. Initially all bit values of the

chromosome are 0. Ci is 1 if and only if node i is dominator. When Ci is set to 1,

the color of node i is set to BLACK and the colors of WHITE neighbors of node i

are set to GRAY. When Ci is set to 0, the color of node i is set to BLACK if node

i does not have any BLACK neighbor, otherwise its color is set to GRAY. Then,

the colors of GRAY neighbors of node i are set to WHITE if and only if their only

BLACK neighbor is node i. If any GRAY neighbor of node i has another BLACK

neighbor other than node i, the color of this neighbor does not change.

Algorithm 3.2: HGA_MWCDS(max_iteration, pop_size, pc, pu,

pr, pm)

4. P ← GenerateInitialPopulation(pop_size, pr, pm)

5. CV ← FindCutVertices()

6. while max_iteration > 0

7. p ← RandNum()

8. if p < pc

9. p1 ← BinaryTournamentSelection()

10. p2 ← BinaryTournamentSelection()

11. C ← FitnessBasedCrossover(p1, p2)

12. C ← Mutation(C, pu)

13. else

14. C ← GenerateRandomChromosome()

15. end if

16. C ← Repair(C, pr)

17. C ← Minimize(C, CV, pm)

18. if

19. P ← P ∪ C

20. Remove(Ppop_size-1) // remove the worst member

21. end if
22. max_iteration ← max_iteration-1

23. end while

24. Return w(P0) // the weight of the best chromosome

Our proposed algorithm HGA_MWCDS is given in Algorithm 3.2 and starts

with generating the initial population. The first member of the population is

generated by GR heuristic. Then, the algorithm detects the cut vertices of the

graph by calling the FindCutVertices function that uses Depth First Search (DFS)

algorithm. These cut vertices are used in the minimization process. CDS should

contain cut vertices as dominator. If cut vertices do not take place in DS, this DS

can never provide connectivity so it cannot be a CDS. The following operations

34

repeat for max_iteration times. A probability value p is generated by RandNum

function that generates a random value in [0, 1] interval.

The algorithm continues with generating new chromosomes. Producing new

chromosomes is done in two ways regarding to pc probability. In one of these

ways, two parents are chosen by binary tournament selection method and

crossover of these parents is done. In step 6 and 7, the chromosomes with a better

fitness value are selected for crossover. In step 8, FitnessBasedCrossover function

is called to generate new chromosome. This function uses a fitness based

crossover technique which is given in (Beasley and Chu, 1996). In this technique,

the crossover operation is executed as follows. Let f1 and f2 are the fitness values

of parents P1 and P2 respectively. Let C is child generated by the crossover and all

P1, P2 and C are bit string with length n where n is the number of nodes in the

graph. For all i=1 to n

(i) If P1[i] = P2[i] then C[i] ← P1[i]

(ii) Else if P1[i] ≠ P2[i] then p= f1/ (f1+f2)

C[i] ← P1[i] with probability p

C[i] ← P2[i] with probability 1-p

Then, the generated chromosome is mutated by Mutation function. This

function mutates each node i in the graph by applying Ci ← (Ci+1) mod 2

operation regarding to pu mutation probability.

In the other way, to ensure randomness in the population, a new

chromosome is produced by generating randomly with a 1-pc probability. Then,

the new chromosome is sent to Repair procedure to check it if it is a CDS or not

and if it does not provide a CDS, it is repaired by this procedure. After that, it

becomes a CDS and sent to Minimize procedure to remove redundant dominators.

Before inserting new member to the population, it is checked to prevent

duplication. Then, the worst member is removed from the population. When all

iterations are completed, the weight of the best member is returned as the final

solution.

35

Algorithm 3.3: GenerateInitialPopulation(pop_size pr,

pm)

1. M←

2. P ←

3. CV ← FindCutVertices()

4. for i←1 to pop_ size

5. M ← GenerateRandomChromosome()

6. if CheckCDS(M) is false

7. M ← Repair(M, pr)

8. end if
9. M ← Minimize(M, CV, pm)

10. if

11. P ← P ∪ M

12. M←

13. end if

14. end for

15. Return P

GenerateInitialPopulation algorithm which is explained in Algorithm 3.3

produces members by generating chromosome data randomly. Then the produced

member is checked whether it is a CDS or not. If it does not provide a solution or

it is not a CDS in other words, it is repaired by applying Repair procedure.

Thereafter, Minimize procedure is applied to remove redundant nodes from the

solution. After these operations, if a unique solution is obtained it is added to the

initial population. If a unique solution is not obtained, these steps repeat for a

maximum number of trials. After a maximum number of trials, if a unique

solution cannot be obtained, the size of the initial population is updated as the

current size. This situation only occurs while generating the initial population for

small size problem instances due to the small number of nodes.

Algorithm 3.4: Greedy_MWCDS()

1. v ← VertexWithNthLowestRatio(1, WHITE)

2. M ← M ∪ v

3. color (v) ← BLACK

4. color (()) ← GRAY

5. while i ∈ : color(i) = WHITE

6. v ← VertexWithNthLowestRatio(1, GRAY)

7. M ← M ∪ v

8. color (v) ← BLACK

9. color (()) ← GRAY

10. end while

11. Return M

36

As mentioned before, the first member of the initial population is obtained

by Greedy_MWCDS algorithm that uses GR heuristic. The detailed steps of the

algorithm are given in Algorithm 3.4. This algorithm selects the nodes regarding

to their weight ratio. The weight ratio of node v is calculated as
 ()

 ([])
.

Firstly, the algorithm selects the node with the minimum weight ratio by

VertexWithNthLowestRatio algorithm which takes order n and color as

parameters. It sorts all nodes having that color in ascending order regarding to

their weight ratios and returns the node id in desired order that means n
th

 node id.

The color of the selected node is set to BLACK and its WHITE neighbors are

colored as GRAY. Then, the second and the following nodes are selected from

GRAY nodes to provide connectivity between dominators. These operations

continue until all nodes are GRAY or BLACK in other words there is no WHITE

node.

Repair procedure that is given in Algorithm 3.5 is a heuristic to repair the

chromosome with a probability pr. A chromosome is repaired by RepairWithRatio

that uses GR heuristic or by RepairRandomly that adds nodes randomly until it is

a CDS.

Algorithm 3.5: Repair(C, pr)

1. p ← RandNum()

2. if p < pr

3. Return RepairWithRatio(C)

4. else

5. Return RepairRandomly(C)

6. end if

Algorithm 3.6 gives the detailed steps of RepairWithRatio procedure that

takes a chromosome as a parameter. In the first step, the algorithm detects the

BLACK nodes. If there are no WHITE nodes left in the graph, it means that all

nodes are dominated. Then, the connectivity of the dominators is checked by

CheckCDS algorithm. If the dominators are connected also, the chromosome is

already a solution, so there is no need to repair it. If there is any WHITE node, the

one having the minimum weight ratio among WHITE nodes is selected by

VertexWithNthLowestRatio algorithm. VertexWithNthLowestRatio is designed as a

generic procedure, so to get the lowest weight ratio “1” is given as a parameter.

Then, the color of the selected node is set to BLACK and its WHITE neighbors

are colored as GRAY. While the BLACK nodes do not construct a CDS,

following nodes are selected from GRAY nodes to provide connectivity. The

37

selected node’s color is set to BLACK and its WHITE neighbors’ color are set to

GRAY. These steps continue until BLACK nodes provide a CDS.

Algorithm 3.6: RepairWithRatio(C)

1. B ← {v: ∈ ˄ color(v) = BLACK}

2. if ∈ : color(v) = WHITE

3. if CheckCDS(B) is true

4. Return C

5. end if

6. else if ∈ : color(v) = WHITE

7. vbest← VertexWithNthLowestRatio(1, WHITE)

8.
 ← 1

9. color (vbest) ← BLACK

10. color (()) ← GRAY

11. B ← B ∪ vbest

12. end if
13. while CheckCDS(B) is false

14. vbest← VertexWithNthLowestRatio(1, GRAY)

15.
 ← 1

16. color (vbest) ← BLACK

17. color (()) ← GRAY

18. B ← B ∪ vbest

19. end while

20. Return C

Algorithm 3.7: RepairRandomly(C)

1. B ← {v: ∈ ˄ color(v) = BLACK}

2. if ∈ : color(v) = WHITE

3. if CheckCDS(B) is true

4. Return M

5. end if

6. else if ∈ : color(v) = WHITE

7. p ← ⌊ () ()⌋
8.

 ← 1

9. color (vp) ← BLACK

10. color (()) ← GRAY

11. B ← B ∪ vp

12. end if
13. while CheckCDS(B) is false

14. nodeList ← GetNodeListByColor(GRAY)

15. p ← GetRandomNode(nodeList)

16.
 ← 1

17. color (vp) ← BLACK

18. color (()) ← GRAY

19. B ← B ∪ vp

20. end while

21. Return C

38

RepairRandomly algorithm is given in Algorithm 3.7. As similar to

RepairWithRatio, if there is no WHITE node in the graph, the BLACK nodes are

checked whether they construct a CDS or not. If they do not provide a solution

and there exists any WHITE node, a random value p between [0, n-1] is generated

where n is the graph size. The bit of chromosome at the index same with p value

is set to 1. It means that, this node is selected as dominator. So, the color of the

selected node is set to BLACK and its WHITE neighbors’ colors are set to

GRAY. While the BLACK nodes do not provide a CDS, the list of GRAY nodes

is detected by GetNodeListByColor function. Then, a random node is selected

from that list by GetRandomNode function. This random node’s color is set to

BLACK and the colors of its WHITE neighbors are set to GRAY.

Algorithm 3.8: Minimize(C, CV, pm)

1. R ← FindRedundantInChromosome (C, CV)

2. while R is not empty

3. p ← RandNum()

4. if p < pm

5. id ← GetNodeWithMaxWeight(R)

6. else

7. id ← GetRandomNode(R)

8. end if

9. color (vid) ← GRAY

10. R ← FindRedundantInChromosome(C,

CV)

11. end while

12. Return C

Minimize algorithm is given in Algorithm 3.8. It takes chromosome, cut

vertices and minimization probability pm as parameters. Cut vertices must be

protected not to break the connectivity. At the first step of the algorithm,

redundant nodes are detected by FindRedundantInChromosome function that is

given in Algorithm 3.9. While there is any redundant node in chromosome, the

following operations repeat. Among redundant nodes, a random node determined

by GetRandomNode or node with the maximum weight ratio determined by

GetNodeWithMaxWeight is selected regarding to pm value. Then, the selected

node is colored as GRAY. The colors of its neighbor do not change. Because it is

a redundant node such that this node has no neighbor which is dominated by only

that node. The list of the redundant nodes is updated after removing that node

from CDS.

FindRedundantInChromosome algorithm determines redundant nodes

among the BLACK nodes in chromosome. At the first step of the algorithm, the

39

cut vertices in CDS are determined as BLACK cut vertices (BCV) by

FindCutVerticesInCDS function. For all BLACK nodes, the algorithm checks

three conditions to determine if it is a redundant dominator or not.

 Algorithm 3.9: FindRedundantInChromosome(C)

1. BCV ← FindCutVerticesInCDS()

2. R←

3. for ∈ : color(v) = BLACK

4. if v CV and v BCV and ∈ (v) ˄

color(i)=WHITE ˄ () = {v}

5. R ← R ∪ v

6. end if

7. end for

8. Return R

A dominator is redundant if:

 It is not in cut vertex set (v CV),

 It is not in black cut vertex set (v BCV)

 It does not have any neighbor that is dominated by only that node (∈

 (v) ˄ color(i)=WHITE ˄ () = {v})

If any BLACK node satisfies these three conditions, it is a redundant

dominator and the algorithm adds that node to the redundant dominator list R. An

example operation to explain the detailed steps of Repair and Minimize

procedures is given in Figure 3.6. In Figure 3.6.a, a randomly generated

chromosome is shown as a graph. Nodes M, T and V are the initial dominators and

N, O, R, S, U, V, W, Y and Z are the dominatees.

Since the colors of nodes P and X are not dominated by any dominator, this

chromosome is sent to Repair procedure which starts by selecting a node which

has any WHITE neighbor to complete covering all the nodes in the graph. Node U

is selected between nodes O, U and Y whose weight ratios are 7/10, 2/15 and 8/15,

respectively. Then, node O which is the only node having WHITE neighbor is

selected. The colors of O and U are set to BLACK and their WHITE neighbors P

and X are colored as GRAY. The updated graph is given in Figure 3.6.b. This

graph shows a WDS but it is not a WCDS. Node N having the lowest weight from

GRAY nodes is selected. Then, nodes R and W are selected. After these

operations, a CDS including some redundant dominators is constructed as shown

in Figure 3.6.c. Minimize function firstly removes node M, then node N as they are

redundant dominators. Figure 3.6.d shows the final network with CDS.

40

(a)

(b)

(c)

(d)

Figure 3.6. a) Initial network b) Insertion of nodes U and O c) Nodes N, R and W are inserted

d) Redundant dominators M and N are removed.

41

3.3 Description of Population-based Iterated Greedy Algorithm

We proposed a Population-based Iterated Greedy (PBIG) algorithm for

minimum weight connected dominating set problem. The strategy of IG

algorithms is that they have a deconstruction process and a reconstruction process.

They destroy the current solution and then apply a greedy heuristic to repair that

solution. The steps of the proposed PBIG algorithm are given in Algorithm 3.10.

Algorithm 3.10: PBIG_MWCDS(max_iteration, pop_size, p, α)

1. P ← GenerateInitialPopulation_PBIG(pop_size, α)

2. CV ← FindCutVertices()

3. while max_iteration > 0

4. Pnew ←

5. for ∈
6. Mdest ← RemoveRedundantAndDestroyPartially(M, p, CV)

7. Mnew ← Greedy_MWCDS_PBIG(Mdest , α)

8. if

9. Pnew ← Pnew ∪ Mnew

10. end if

11. end for

12. P ← Accept(P,Pnew)

13. max_iteration ← max_iteration-1

14. end while

15. Return w(P0) // weight of first member (best member’s weight)

The algorithm generates initial population P by GenerateInitial

Population_PBIG algorithm which is given in Algorithm 3.11. Initial population

consists of the candidate solutions that are generated by Greedy_MWCDS_PBIG

algorithm that is given in Algorithm 3.12. Then, the cut vertices of the graph are

determined by FindCutVertices function which is used in the proposed HGA also.

These cut vertices are necessary for redundant nodes elimination and destruction

phases of the RemoveRedundantAndDestroyPartially algorithm that is given in

Algorithm 3.13. Until the maximum iteration counter comes to end, the following

steps repeat. For each member of the population, RemoveRedundant

AndDestroyPartially algorithm is executed. After removing redundant dominators

of the member and destroying it partially, it may not be a CDS. So, this new

individual is sent to Greedy_MWCDS_PBIG algorithm again to be repaired. If it

is not generated before, it is added to the new population Pnew. Thus, the new

individuals obtained from the initial population in that way construct Pnew. Then,

the new and the initial populations are sent to Accept method that adds the

members in the new population to the initial population and sorts the combined

42

population in ascending order according to their weights. The new population is

generated by taking the first individuals up to the initial population size at the last

step of the while loop. After all iterations of the algorithm are completed, the

weight of the best member is returned.

Algorithm 3.11: GenerateInitialPopulation_PBIG(pop_size, α)

1. M←

2. P ←

3. for i←1 to pop_ size

4. M ←Greedy_MWCDS_PBIG(M, α)

5. P ← P ∪ M

6. M←

7. end for

8. Return P

Algorithm 3.12: Greedy_MWCDS_PBIG(M, α)

1. if ∈ : color(v) = WHITE

2. Return M

3. else if ∈ : color(v) = WHITE

4. vbest1← VertexWithNthLowestRatio(1, WHITE)

5. vbest2← VertexWithNthLowestRatio(2, WHITE)

6. α0 ← RandNum()

7. if α0 ≤ α then v ← vbest1

8. else v ← vbest2

9. end if

10. M ← M ∪ v

11. color (v) ← BLACK

12. color (()) ← GRAY

13. end if

14. while i ∈ : color(i) = WHITE

15. vbest1← VertexWithNthLowestRatio(1, GRAY)

16. vbest2← VertexWithNthLowestRatio(2, GRAY)

17. α0 ← RandNum()

18. if α0 ≤ α then v ← vbest1

19. else v ← vbest2

20. end if

21. M ← M ∪ v

22. color (v) ← BLACK

23. color (()) ← GRAY

24. end while

25. Return M

GenerateInitialPopulation_PBIG algorithm that is given in Algorithm 3.11

constructs the initial population with generating each member by

Greedy_MWCDS_PBIG algorithm. The algorithm takes population size and

determinism rate α that is used in Greedy_MWCDS_PBIG as parameters.

43

Algorithm 3.13: RemoveRedundantAndDestroyPartially(M, p, CV)

1. BCV ← FindCutVerticesInCDS()

2. Mnew←

3. for ∈ : color(v) = BLACK

4. p’ ← RandNum()

 // Remove redundant nodes

5. if v CV and v BCV and ∈ (v) ˄ color(i)=WHITE

˄ () = {v}

6. color(v) ← GRAY

7. BCV ← FindCutVerticesInCDS()

 // Destroy partially

8. else if p’≤ p and v CV and v BCV

9. for ∈ ()
10. if color(j) = GRAY and | () |=1

11. color(j) ← WHITE

12. end if

13. end for

14. color(v) ← GRAY

15. BCV ← FindCutVerticesInCDS()

16. else Mnew ← Mnew ∪ v

17. end if

 18. end for

 19. Return Mnew

The detailed steps of the Greedy_MWCDS_PBIG algorithm are given in

Algorithm 3.12. This algorithm generates each individual for the initial population

and repairs partial solutions. It takes two parameters member M and determinism

rate α. M is an empty set while generating the member of the initial population or

is a partial solution while repairing.

At the first step of the algorithm, WHITE node presence is checked.

Because if there is no WHITE node in the graph, it means all nodes are covered

and the input member is already a CDS. Thereafter, the first two nodes having the

first and second lowest costs are determined by VertexWithNthLowestRatio. The

cost of a node is calculated as the weight ratio that is given in the description of

HGA algorithm. The selection from these two nodes is determined regarding to α

determinism rate. This procedure provides to prevent selecting the same

individual at each time. In other words, it prevents getting stuck in a local

minimum solution that is the individual with the lowest weight ratio for that case.

After selecting the node, it is added to the solution set M which is being generated

at that time. The color of the selected node is set to BLACK and its WHITE

neighbors are colored GRAY.

44

While there exits WHITE neighbor in the graph that means all nodes are not

covered, the second and the following nodes must be selected from GRAY nodes

to construct a “connected” dominating set. The first two nodes having the first and

second lowest weight ratios are selected as before, but unlike the previous one

they are selected from GRAY nodes. One of them is chosen according to the

determinism rate and it is colored BLACK. The colors of its WHITE neighbors

are set to GRAY. At the end of the while loop, the individual generated by this

way is returned as a CDS solution.

The members generated by Greedy_MWCDS_PBIG algorithm may include

redundant dominators. The determination of these redundant nodes is provided by

RemoveRedundantAndDestroyPartially algorithm that is given in Algorithm 3.13.

As the name implies, this algorithm removes redundant nodes from the input

member M and destroys M partially regarding to destruction degree p. The

redundant nodes are determined by the same rules given in the description of the

HGA.

The followings steps are executed for each BLACK node. If a dominator is

not cut vertex for both the whole graph and the subgraph constituted by BLACK

nodes and there does not exist any WHITE neighbor dominated by only that

dominator, it is redundant. The color of the dominator is changed as GRAY.

Because the BLACK nodes have changed, the BLACK cut vertices have changed

also. So, the array BCV holding the cut vertices in BLACK nodes must be

updated. In step 7, FindCutVerticesInCDS algorithm that detects the nodes which

connect BLACK nodes is called and the returned array is assigned to BCV. There

is no need to change the colors of the redundant node v’s neighbors, because there

does not exist any neighbor that is dominated by only node v.

If any node v is not redundant and is not cut vertex for both graph and

dominators subgraph, it can be destroyed which means it can be removed from the

solution set regarding to destruction degree p. To remove it, the neighbors of node

v dominated by only node v must be colored WHITE. These nodes’ color was

GRAY because they were dominated by node v. So, to determine these neighbors,

their color and BLACK neighbor count are checked in line 10. After neighbors are

updated, node v is colored GRAY in line 14. The BLACK cut vertices array is

updated by FindCutVerticesInCDS algorithm.

45

(a)

(b)

Figure 3.7. a) Redundant node example b) Redundant node remove (Node R is removed)

Remove redundant dominator example is given in Figure 3.7. In this figure,

C indicates that this node is in CV set since it is a cut vertex. BLACK nodes are

the dominators generated by GR heuristic and nodes N, P, R, S, T and U are cut

vertices in Figure 3.7.a. In this example node R is a redundant dominator because

it is not a cut vertex and is not a BLACK cut vertex (not in BCV set) that if it is

removed other dominators are still connected. Also, it does not have any neighbor

which is dominated by only that node. After removing node R, the final version of

the graph is given in Figure 3.7.b.

46

Figure 3.8. An example weighted graph

An example initial graph with weight ratio of each node is given in Figure

3.8 to clearify the node selections while producing WCDS by

Greedy_MWCDS_PBIG. Firstly, node N is selected because it has the minimum

weight ratio. After that, among its neighbors (M, O and W) the best two neighbors

are taken (M and W has the same weigth ratio 10/10 and 50/50, respectively) and

node M is selected regarding to determinism rate α. Then nodes U, T, S and R are

selected respectively. This state of the graph which provides a WCDS is shown in

Figure 3.9.a.

An example partially destroy operation is given in Figure 3.9. In this figure,

BC indicates BLACK cut vertices that are in BCV set. Node N is selected for

removing depending on destruction degree p. After removing node N, the graph is

updated as Figure 3.9.b. Since the WCDS is destroyed, it is sent to

Greedy_MWCDS_PBIG procedure to be repaired. Nodes N or W must be inserted

to repair the solution. Node W with 50/70 weight ratio is inserted regarding to

determinism rate. The constructed WCDS is given in Figure 3.9.c. After node W

is inserted, all the other dominators M, R, S, T and U become redundant. So, these

nodes quit from BCV set. They are removed from the WCDS as shown in Figure

3.9.d. After these operations, the total cost of WCDS reduces 60 to 50 and the

MWCDS is constructed.

47

(a)

(b)

(c) (d)

Figure 3.9. a) An example WCDS b) Node N is removed c) Node W is inserted d) Nodes M,

U, T, S and R are removed.

3.4 Complexity Analysis of the Proposed Algorithms

In this section, the time complexity analyses of the proposed algorithms are

given. Each proposed algorithm is analysed line by line.

3.4.1 Complexity Analysis of HGA

Lemma 1. The running time complexity of Greedy_MWCDS algorithm

(Algorithm 3.4) is same with Guha and Khuller’s algorithm and it is equal to

O(m) where m is the number of edges.

Proof. Similar to Guha and Khuller’s algorithm, our algorithm selects the

vertex with minimum weight ratio in each step. To construct a CDS, it selects the

second and the following nodes with the minimum ratio among the GRAY nodes.

48

The total time complexity of Greedy_MWCDS algorithm is same with Guha and

Khuller’s algorithm that is O(m). □

Lemma 2. The running time complexity of RepairWithRatio algorithm

(Algorithm 3.6) is O(n
2
+nm) where n is the number of vertices and m is the

number of edges.

Proof. Line 1 is executed in O(n) time. Line 2 checks if there does not exist

WHITE nodes in O(n) time. Line 3 performs in O(n+m) time where CheckCDS is

called. Line 4 performs in constant time. Line 6 controls whether all nodes are

WHITE or not in O(n). Line 7 is performed in O(n) time. Line 8 and line 9 are

executed in O(1) time separately. Line 10 performs in O(n). Line 11 is executed in

constant time. The while loop between line 13 and 19 repeats for O(n+m). In the

while loop, line 14 and 17 execute in O(n); line 15, 16 and 18 execute in O(1)

time separately. Hence, the while loop is completed in O(n
2
+nm) time. Line 20

perform in constant time. Consequently, the total time complexity of

RepairWithRatio algorithm is O(n
2
+nm). □

Lemma 3. The running time complexity of RepairRandomly algorithm

(Algorithm 3.7) is O(n
2
+nm) where n is the number of vertices and m is the

number of edges.

Proof. Line 1 and line 2 are performed in O(n) time separately. Line 3

controls BLACK nodes whether they construct a CDS or not by calling

CheckCDS that is executed in O(n+m) time. Line 4 is executed in O(1) time. Line

6 is performed in O(n). Line 7, 8 and 9 are performed in O(1) time separately.

Line 10 is executed in O(n) time. Line 11 is performed in constant time. The while

loop between line 13 and 20 repeats for O(n+m) times. Line 14 is executed in

O(n) time. Line 15, 16 and 17 execute in O(1) time separately. Line 18 performs

in O(n) time. Line 19 is executed in constant time. Line 21 is executed in O(1)

time. Consequently, the total time complexity of RepairRandomly algorithm is

O(n
2
+nm). □

Lemma 4. The running time complexity of Repair algorithm (Algorithm 3.5)

is O(n
2
+nm) where n is the number of vertices and m is the number of edges.

Proof. Line 1 is executed in constant time. If control in line 2 performs in

O(1) time. Line 3 is executed in O(n
2
+nm) from Lemma 2. Else, line 5 is executed

49

that is in O(n
2
+nm) time from Lemma 3. Hence, the total time complexity of

Repair algorithm is O(n
2
+nm). □

Lemma 5. The running time complexity of FindRedundantInChromosome

algorithm (Algorithm 3.9) is O(n
3
) where n is the number of vertices.

Proof. Line 1 is executed in O(n+m) where FindCutVertexInCDS algorithm

is called that finds the cut vertices in CDS by DFS algorithm. Line 2 performs in

O(1) time. The for loop in lines 3 and 7 repeats for n times at the worst case. The

if statement between line 4 and 6 checks v CV and v BCV statements which

can be executed in O(1) time if the CV and BCV values are stored for each vertex.

The BLACK neighbor control in the same statement can be performed in O(n)

time for each vertex that leads to O(n
2
) time at the worst case. Hence, the total

time complexity of the line 4 is O(n
2
). Line 5 is performed in constant time. Line

8 executes in O(1). Thus, the total time complexity of FindRedundant

InChromosome algorithm is O(n
3
). □

Lemma 6. The running time complexity of Minimize algorithm (Algorithm

3.8) is O(n
4
) where n is the number of vertices.

Proof. Line 1 is executed in O(n
3
) time from Lemma 5. The while loop

between line 2 and 11 repeats for R times where R can be n at the worst case. Line

3 and 4 perform in O(1) time separately. Line 5 selects the node with maximum

weight from R set and it is executed in O(n) time. Line 7 performs in O(1) time.

Line 9 is executed in constant time. Line 10 performs in O(n
3
) time from Lemma

5. Line 12 executes in constant time. Consequently, the total time complexity of

Minimize algorithm is O(n
4
) time. □

Lemma 7. The running time complexity of GenerateInitialPopulation

algorithm (Algorithm 3.3) is O(n
4
s) where n is the number of vertices and s is the

population size.

Proof. Line 1 and 2 are performed in O(1). Line 3 executes in O(n+m)

where FindCutVertices algorithm detects the cut vertices by DFS algorithm that

performs in O(n+m) time. The for loop between line 4 and 14 executes for s

times. GenerateRandomChromosome algorithm generates each bit of the

chromosome randomly so line 5 performs in O(n). Line 6 calls CheckCDS which

controls the connectivity between BLACK nodes in O(n+m) time. Line 7

50

performs in O(n
2
+nm) from Lemma 4. Line 9 executes in O(n

4
) time from Lemma

6. Line 10 checks the uniqueness of the generated member in O(ns) time. Line 11

and 12 perform in O(1) time separately. Line 15 executes in constant time. Hence,

the total time complexity of GenerateInitialPopulation algorithm is O(n
4
s). □

Theorem 1. The running time complexity of HGA_MWCDS algorithm

(Algorithm 3.2) is O(n
4
(s+ Imax)+ sn Imax) where Imax is the number of maximum

iteration, s is the population size and n is the number of vertices.

Proof. Line 1 generates the initial population in O(n
4
s) time complexity

from Lemma 7. Line 2 performs in O(n+m) where FindCutVertices finds the cut

vertices in the graph. The while loop between lines 3 and 20 repeats O(Imax) times.

Line 4 performs in O(1) time. The if control in line 5 performs in O(1) time. In

line 6 and 7, the parents are selected by BinaryTournamentSelection algorithm

that performs in O(1). In line 8, fitness based crossover operation is performed in

constant time. Line 9 performs in O(n) where Mutation algorithm changing each

bit of the chromosome regarding to mutation probability pu is called. Lines 10-11

are executed in O(n) time because GenerateRandomChromosome algorithm

generates each bit of the chromosome randomly. Line 13 is performed in

O(n
2
+nm) from Lemma 4. Line 14 is executed in O(n

4
) time from Lemma 6. Line

15 checks whether the generated individual exists or not in the population and it is

performed in O(ns) time complexity. Line 16 performs in O(1) time. Line 17

removes the worst member in constant time. Line 19 decreases the iteration

counter in O(1) time. Line 21 performs in constant time. Consequently, the total

time complexity of HGA_MWCDS algorithm yields O(n
4
(s+ Imax)+ sn Imax). □

3.4.2 Complexity Analysis of PBIG Algorithm

Lemma 8. The running time complexity of Greedy_MWCDS_PBIG

algorithm (Algorithm 3.12) is same with Guha and Khuller’s algorithm and it is

equal to O(m) where m is the number of edges.

Proof. Guha and Khuller’s algorithm selects the vertex with the minimum

weight ratio in each step. Similarly, our algorithm generates a random probability

and selects a vertex among the vertices having the best two weight ratios

according to this probability in each step. Since, the complexities of generating a

random number and calculating the weight ratio are in O(1), the total complexity

51

of Greedy_MWCDS_PBIG algorithm is same with Guha and Khuller’s algorithm

that is O(m). □

Lemma 9. The running time complexity of GenerateInitialPopulation_PBIG

algorithm (Algorithm 3.11) is O(ms) where m is the number of edges and s is the

population size.

Proof. Line 1 and line 2 are executed in O(1). In line 4

Greedy_MWCDS_PBIG algorithm is called so it is performed in O(m) time from

Lemma 8. Line 5 and line 6 are executed in constant time. The for loop between

the lines 3 and 7 is executed for s times. Hence, the total complexity of

GenerateInitialPopulation_PBIG algorithm is O(ms). □

Lemma 10. The running time complexity of RemoveRedundantAnd

DestroyPartially algorithm (Algorithm 3.13) is O(n
3
) where n is the number of

vertices.

Proof. Line 1 is performed in O(n+m), because FindCutVertexInCDS finds

the cut vertices in CDS by DFS algorithm which executes in O(n+m) time. Line 2

is executed in O(1) time. Line 4 generates random number between (0, 1) and is

performed in O(1). In line 5, v CV and v BCV controls can be executed in O(1)

time if the CV and BCV values are stored for each vertex. In the same line, the

BLACK neighbor control can be executed in O(n) time for each vertex which

leads to O(n
2
) time at the worst case. Hence, the total time complexity of the line

5 is O(n
2
). Line 6 colors v vertices in constant time. Line 7 performs in O(n+m)

like line 1 for the same reason. Line 8 is performed in O(1) time. The if control in

lines 10-11 is executed in O(1). The for loop in lines 9-13 runs O(n) times. Line

14 and 16 are performed in constant time. Line 15 is executed in O(n+m). Lines 3

to 18 repeat for each BLACK vertices and there can be O(n) BLACK vertices.

Hence, these lines repeat for O(n) times at worst case. The total time complexity

yields O(n)(O(n
2
)+O(n+m)) and m is in O(n

2
). Consequently the run time

complexity of RemoveRedundantAndDestroyPartially algorithm is in O(n
3
).□

Theorem 2. The running time complexity of PBIG_MWCDS algorithm

(Algorithm 3.10) is O(Imax(n
3
+ns)+ms) where Imax is the number of maximum

iteration, s is the population size, n is the number of vertices and m is the number

of edges.

52

Proof. Line 1 generates the initial population in O(ms) time complexity

from Lemma 9. Line 2 executes in O(n+m) where FindCutVertices algorithm

detects the cut vertices by DFS algorithm that performs in O(n+m) time. The

while loop between lines 3 and 14 repeats O(Imax) times. Line 4 performs in O(1)

time. The lines 5 to 11 are executed for each member in population so these lines

repeat for s times. Line 6 is performed in O(n
3
) from Lemma 10. Line 7 is

executed in O(m) time from Lemma 8. In line 8, the uniqueness control of each

generated individual is performed that is in O(ns) time complexity. Line 9 adds

new member to the population in constant time. Line 12 merges the sorted

populations and takes the first s members in O(s) time. The total time complexity

of PBIG_MWCDS is O(Imax(n
3
+ns)+ms).□

53

4. PERFORMANCE EVALUATIONS

We implemented the proposed algorithms with their counterparts in Java

language. The PC used in our implementations has 8 Gigabytes of memory and

Intel Core i7 4500U 1.80 GHz processor. As the counterparts of our algorithms, a

brute force algorithm and three greedy algorithms are implemented. The

implemented Brute force (BF) algorithm always finds the optimal solution by

running all possible subset of solutions. Thus, 2
n
 possible subsets of nodes are

considered.

Although BF produces solutions for small scale datasets within hours, its

execution times become unacceptable long for moderate and large scale datasets.

To solve the time problem in moderate and large scale datasets, a time-limited

version of BF which is named as T-BF is implemented. In T-BF algorithm, the

CPU execution time of the algorithm is bounded by the two times of the CPU

execution time of PBIG algorithm for each (node, edge) combination. We choose

PBIG instead of HGA to limit the CPU execution time of the T-BF algorithm

since generally PBIG takes longer time than HGA especially for large and

moderate datasets. Since T-BF is not permitted to finish its execution, it cannot

always find optimum solutions. We apply t-test between PBIG and BF to compare

the WCDS solution qualities of the proposed algorithms. We do not apply t-test

for other algorithms because we obtain optimal solutions from HGA for small-

size instances and we obtain better solutions from HGA and PBIG than T-BF for

all medium and large scale datasets.

In our measurements two types of datasets are used to benchmark the

proposed algorithms with their counterparts. The first dataset is proposed by

(Shyu et al., 2004) and the second dataset is proposed by us by randomly

generating graphs. The first dataset consists of node weighted and undirected

graphs. The first dataset is divided into Type 1 and Type 2 graphs according to

their distributions of node weights. For Type 1 instances, the weights of vertices

are uniformly and randomly given between 20 and 120 and for Type 2 instances,

the weights of the vertices are uniformly distributed between 1 and d(v)
2
 where

d(v) is the degree of vertex v. The first dataset is also divided into three subgroups

according to node counts in the graphs. This categorization is made by diving into

small, moderate and large problem instances. In small instances, the node counts

are {10, 15, 20, 25}. In moderate instances, the node counts are {50, 100, 150,

200, 250, 300}. In large instances, the node counts are {500, 800, 1000}. Besides,

54

to measure the effect of network density, edge counts are varied. 10 different

instances are generated for each node and edge count combination.

Table 4.1. Implementation parameters

Implementation Parameters

PC Configuration
8 GB memory, Intel Core i7 4500U 1.80 GHz

processor

Language Java

Implemented Algorithms HGA, PBIG, BF, T-BF, GR, GD, GW

Datasets Shyu’s dataset (Type 1 and Type 2), Our dataset

Properties of Type 1

Instances

Node Counts Small: {10, 15, 20, 25}

Moderate: {50, 100, 150, 200,

250, 300}

Large: {500, 800, 1000}

Node

Weights

Randomly between [20, 120]

Properties of Type 2

Instances

Node Counts Small: {10, 15, 20, 25}

Moderate: {50, 100, 150, 200,

250, 300}

Large: {500, 800, 1000}

Node

Weights

Randomly between [1,

degree(v)
2
]

Properties of Our Dataset

Node Counts Small: {10, 15, 20, 25}

Moderate: {50, 100, 150, 200,

250, 300}

Large: {250, 500, 750, 1000}

Node

Weights

Randomly between [20, 120]

Population Size 100

Maximum Iterations 200

Solution Evaluations 20,000

55

Even though the first dataset is a popular dataset used by researchers

(Jovanovic et al., 2010; Bouamama et al., 2012; Potluri and Singh, 2013), some of

the graphs generated in this dataset are unconnected. This situation brings an

important problem to our experiment setups, because it is obvious that a MWCDS

cannot be found on an unconnected graph. To overcome this issue, we generated a

new dataset in which all graphs are connected. Our dataset is divided into small,

moderate and large scale instances according to their sizes. In small size instances,

there are {10, 15, 20, 25} nodes. In medium size instances, there are {50, 100,

200, 250} nodes. In large problem instances, there are {250, 500, 750, 1000}

nodes. 2n, 4n, 6n, 8n and 10n edges are randomly generated for each node count

n. For each node and edge count combination, 10 instances are generated and the

weights of the nodes are given between 20 and 120.

An initial population having 100 members is used in our algorithms. These

members are executed for 200 iterations (max_iteration). Because of this, the

proposed algorithms are executed on 20,000 generations. In other words,

maximum 20,000 solutions are evaluated for each algorithm. In some cases, the

initial population cannot have 100 members, because the number of all solutions

are smaller than 100. In these cases, the max_iteration is set to 20,000 /

(population size). By applying this operation, equal number of solutions is

generated for reach run. The determinism rate α (used for greedy selection) is set

to 0.5 and the partially destroy probability p is set to 0.5 for PBIG. The probability

pc (used for crossover) is set to 0.9, the probability pu (used for mutation) is set to

0.005, the probability pr (used for repair) is set to 0.7 and the probability pm (used

for minimization) is set to 0.6 for HGA. We choose these values after making

experiments with various values. These parameters are summarized in Tables 4.1,

4.2 and 4.3.

Table 4.2. HGA parameters

Parameter Value

pc Crossover probability 0.9

pu Mutation probability 0.005

pr Repair probability 0.7

pm Minimization probability 0.6

56

Table 4.3. PBIG parameters

Parameter Value

p Partially destroy probability 0.5

α Determinism rate 0.5

The results of small-size problem instances are given in Tables 4.4-4.9 and

Figures 4.1-4.6. The results of moderate size problem instances are given in

Tables 4.10-4.15 and Figures 4.7-4.12. The results of large size problem size

instances are given in Tables 4.16-4.19 and Figures 4.13-4.16. In these tables, n is

the node count, m is the edge count, # of con. is the connected graph count, weight

is the total weight of the MWCDS and time is the execution time of the algorithm.

When we investigate the figures given in Figures 4.1-4.16 we see that

generally the weight and time results of the algorithms increase when we increase

the node count and fix the edge count as a constant factor of the node count. The

reason of this situation is the run times of the algorithms depend on the node

count and the algorithms produce more dominators when node count is increased.

When we fix the node count and increase the edge count, the weight results of the

algorithms generally decrease since nodes can be covered by less number of

dominators in dense networks. The time results of the algorithms except BF are

similar when we increase the edge count and fix the node count, the time results

of BF increase in this case. The time results of T-BF is omitted in Figures 4.7b,

4.8b, 4.9b, 4.10b, 4.11b, 4.12b, 4.13b, 4.14b, 4.15b and 4.16b since they are

always equal to two times of PBIG’s run times for moderate and large size

problem instances.

The obtained results show us that GR has the best weight performance

among greedy heuristics. Because of this, we use GR as the greedy heuristic in

our proposed algorithms. As expected, GR executes faster than our proposed

algorithms since GR quits after finding the first solution whereas our algorithms

iteratively execute to search for better candidates. On the other side, we obtain

significantly better weight performances from our proposed algorithms. In the

following sections we will investigate the performances of the algorithms in

detail.

57

4.1 Evaluation of Small-Size Problem Instances

Measurements of greedy heuristics taken in small-size problem instances are

given in Tables 4.4-4.9 and their related figures are given in Figures 4.1-4.6. GR

has the best weight performance and GD obtains the worst weight performance

when we compare the total weight of the WCDS solutions.

Table 4.4. Weight results of small size problem instances (Shyu’s dataset -Type 1)

n m #of

con.

GR GD GW BF HGA PBIG Rel.

Error

Stat.

Sign.

10 10 2 341.0 341.0 534.0 341.0 341.0 341.0 0

 20 10 180.0 188.8 241.7 157.2 157.2 157.2 0

 30 10 100.1 118.0 167.8 85.9 85.9 85.9 0

 40 10 63.6 75.3 73.1 45.0 45.0 45.8 1.778

15 20 3 461.7 491.3 864.3 409.7 409.7 409.7 0

 40 10 191.7 207.4 207.4 163.0 163.0 163.0 0

 60 10 122.8 140.2 195.5 104.3 104.3 104.3 0

 80 10 74.1 119.0 91.1 67.6 67.6 67.6 0

 100 10 34.9 58.0 37.1 25.7 25.7 25.7 0

20 20 0 - - - - - - - -

 40 9 347.8 407.8 735.0 300.4 300.4 300.4 0

 60 10 245.7 279.3 487.8 213.7 213.7 213.7 0

 80 10 155.7 204.3 235.5 135.8 135.8 135.8 0

 100 10 127.3 179.6 159.8 111.4 111.4 112.9 1.346

 120 10 109.8 126.6 151.0 92.1 92.1 92.1 0

25 40 4 577.8 597.8 1191.5 508.3 508.3 508.3 0

 80 10 255.5 353.6 474.9 228.0 228.0 228.0 0

 100 10 235.8 300.0 443.5 193.4 193.4 193.4 0

 150 10 130.2 227.7 229.6 120.0 120.0 120.0 0

 200 10 93.7 133.4 145.6 80.3 80.3 80.3 0

58

(a)

(b)

Figure 4.1 Weight results of small size problem instances (Shyu’s dataset – Type 1)

a) Weight results versus node count (m=4n) b) Weight results versus edge count (n=20)

We found 71.27% as the biggest weight performance difference between

GR and GD and this value is obtained from (n=20, m=120) in Table 4.4. The

performance difference of GR and GW reaches up to 52.3%. GR finds optimal

solutions for 50 out of 52 problem samples.

(a)

(b)

Figure 4.2 Time results of small size problem instances (Shyu’s dataset – Type 1) a) Time

results versus node count (m=4n) b) Time results versus edge count (n=20)

59

Table 4.5. Time results of small size problem instances (Shyu’s dataset -Type 1)

n m #of

con.

GR* GD* GW* BF HGA PBIG

10 10 2 0.000 0.000 0.000 0.005 0.133 0.047

 20 10 0.000 0.000 0.000 0.002 0.103 0.029

 30 10 0.000 0.000 0.000 0.003 0.097 0.008

 40 10 0.000 0.000 0.000 0.002 0.091 0.003

15 20 3 0.000 0.000 0.000 0.069 0.192 0.048

 40 10 0.000 0.000 0.000 0.107 0.161 0.192

 60 10 0.000 0.000 0.000 0.144 0.164 0.058

 80 10 0.000 0.000 0.000 0.126 0.171 0.015

 100 10 0.000 0.000 0.000 0.126 0.154 0.005

20 20 0 - - - - - -

 40 9 0.000 0.000 0.000 3.549 0.290 0.360

 60 10 0.000 0.000 0.000 4.584 0.253 0.344

 80 10 0.000 0.000 0.000 5.081 0.259 0.228

 100 10 0.000 0.000 0.000 5.498 0.251 0.206

 120 10 0.000 0.000 0.000 5.661 0.262 0.145

25 40 4 0.000 0.000 0.000 111.652 0.457 0.420

 80 10 0.000 0.000 0.000 183.172 0.367 0.522

 100 10 0.000 0.000 0.000 210.263 0.357 0.531

 150 10 0.000 0.000 0.000 235.622 0.368 0.437

 200 10 0.000 0.000 0.000 243.002 0.397 0.096

* These values are less than 10
-4

The problem instances in which GR cannot find optimum solutions are

(n=10, m=10 of Shyu’s Type 2 dataset) in Table 4.6 and (n=10, m=40 of Our

Dataset) in Table 4.8. In the first instance, GR and GD produce 28 and 26.7 total

weight, respectively. We obtain the 4.87% relative error between them. In the

second instance, GR and GD produce 62.7 and 62.2 weight results where the

relative error between them is 0.8%.

60

Table 4.6. Weight results of small size problem instances (Shyu’s dataset -Type 2)

n m #of

con.

GR GD GW BF HGA PBIG Relative

 Error

Stat.

Sign.

10 10 2 28.0 26.7 32.0 26.7 26.7 26.7 0

 20 10 23.2 39.6 38.2 21.3 21.3 21.4 0.469

 30 10 29.0 54.5 34.2 25.5 25.5 25.6 0.392

 40 10 21.8 45.4 24.4 21.1 21.1 21.2 0.474

15 20 3 40.2 41.0 45.5 33.8 33.8 33.8 0

 40 10 60.6 79.9 101.1 48.3 48.3 49.2 1.863

 60 10 57.3 115.6 80.4 45.1 45.1 45.1 0

 80 10 39.9 128.3 44.0 37.9 37.9 37.9 0

 100 10 17.7 76.7 17.7 17.0 17.0 17.0 0

20 20 0 - - - - - - - -

 40 9 77.1 95.6 120.9 63.6 63.6 64.3 1.101

 60 10 78.8 126.9 118.3 54.1 54.1 54.1 0

 80 10 69.6 189.7 129.1 60.2 60.2 60.2 0

 100 10 80.0 228.3 112.5 64.8 64.8 64.8 0

 120 10 63.7 221.7 67.5 50.1 50.1 50.1 0

25 40 4 93.8 115.8 150.8 82.5 82.5 82.5 0

 80 10 103.2 198.0 164.5 80.0 80.0 80.0 0

 100 10 105.4 236.2 220.6 78.8 78.8 78.8 0

 150 10 97.6 287.9 204.6 84.2 84.2 84.2 0

 200 10 125.4 305.4 176.5 105.0 105.0 105.0 0

The t-test results given in Tables 4.4, 4.6 and 4.8 show that we cannot find

any significant difference between the performance results of GR and GD. The

CPU time of these heuristics given in Tables 4.5, 4.7 and 4.9 are close to each

other and they are generally less than 0.0005 s.

61

(a)

(b)

Figure 4.3 Weight results of small size problem instances (Shyu’s dataset – Type 2) a)

Weight results versus node count (m=4n) b) Weight results versus edge count (n=20)

Our proposed algorithms produce better WCDS solutions than GR except

for only (n=10, m=10) problem instance in Table 4.4. In this combination, GR

finds the optimum result. PBIG produces optimum results for nearly 80% of

instances. HGA can find optimum results for all combinations. For 98.15% of the

combinations, our algorithms perform better solutions than other greedy

heuristics. The maximum difference equals to 31.3% and it is obtained in Table

4.6 for (n=20, m=60) problem instance.

(a)

(b)

Figure 4.4 Time results of small size problem instances (Shyu’s dataset – Type 2) a) Time

results versus node count (m=4n) b) Time results versus edge count (n=20)

62

Table 4.7. Time results of small size problem instances (Shyu’s dataset -Type 2)

n m #of

con.

GR* GD* GW* BF HGA PBIG

10 10 2 0.000 0.000 0.000 0.002 0.179 0.004

 20 10 0.000 0.000 0.000 0.002 0.096 0.028

 30 10 0.000 0.000 0.000 0.003 0.095 0.013

 40 10 0.000 0.000 0.000 0.003 0.092 0.004

15 20 3 0.000 0.000 0.000 0.071 0.191 0.131

 40 10 0.000 0.000 0.000 0.109 0.162 0.265

 60 10 0.000 0.000 0.000 0.126 0.175 0.112

 80 10 0.000 0.000 0.000 0.126 0.160 0.014

 100 10 0.000 0.000 0.000 0.125 0.155 0.005

20 20 0 - - - - - -

 40 9 0.000 0.000 0.000 3.400 0.305 0.320

 60 10 0.000 0.000 0.000 4.454 0.260 0.374

 80 10 0.000 0.000 0.000 5.182 0.240 0.391

 100 10 0.000 0.000 0.000 5.523 0.246 0.303

 120 10 0.000 0.000 0.000 5.645 0.244 0.095

25 40 4 0.000 0.000 0.000 112.309 0.483 0.400

 80 10 0.000 0.000 0.000 184.949 0.380 0.552

 100 10 0.000 0.000 0.000 209.702 0.349 0.561

 150 10 0.000 0.000 0.000 235.587 0.359 0.495

 200 10 0.000 0.000 0.000 243.215 0.396 0.162

* These values are less than 10
-4

For 41 out of 52 small-size problem combinations, PBIG achieves optimum

results. For the other 11 out of 52 combinations, PBIG achieves nearly optimum

WCDS solutions. As an example, PBIG produces WCDS with 21.4 total weight in

(n=10, m=20) problem instance where 21.3 is the optimum weight. For 11

different results, the average relative error equals to 1.73%.

63

Table 4.8. Weight results of small size problem instances (Our dataset)

n m GR GD GW BF HGA PBIG Relative

 Error

Stat.

Sign.

10 20 144.4 162.1 204.9 122.7 122.7 122.7 0

 40 62.7 62.2 85.4 53.5 53.5 54.6 2.056

15 30 273.0 322.2 416.1 250.1 250.1 250.1 0

 60 97.8 158.5 131.4 91.1 91.1 91.1 0

 90 70.5 92.6 78.3 62.5 62.5 66.6 6.56

20 40 378.1 410.9 657.0 329.8 329.8 329.8 0

 80 182.6 274.5 319.2 164.0 164.0 164.7 0.427

 120 89.9 156.5 100.3 79.5 79.5 79.5 0

 160 62.0 106.2 67.0 55.5 55.5 56.9 2.523

25 50 559.1 609.2 1005.2 489.4 489.4 489.4 0

 100 211.5 330.7 358.1 182.9 182.9 182.9 0

 150 137.4 218.4 189.1 117.7 117.7 117.7 0

 200 80.3 137.0 120.0 75.2 75.2 75.2 0

 250 64.8 126.3 70.9 60.8 60.8 60.8 0

We obtain no significant difference when we apply t-test to the weight

results of PBIG and the optimum weight results. Additionally, HGA produces

optimum results for all small-size problem instances. These results show us that

the performances of our algorithms are outstanding.

(a)

(b)

Figure 4.5 Weight results of small size problem instances (Our dataset) a) Weight results

versus node count (m=4n) b) Weight results versus edge count (n=25)

64

Table 4.9. Time results of small size problem instances (Our dataset)

n m GR* GD* GW* BF HGA PBIG

10 20 0.000 0.000 0.000 0.003 0.035 0.021

 40 0.000 0.000 0.000 0.002 0.025 0.003

15 30 0.000 0.000 0.000 0.091 0.052 0.210

 60 0.000 0.000 0.000 0.124 0.048 0.060

 90 0.000 0.000 0.000 0.124 0.046 0.007

20 40 0.000 0.000 0.000 3.539 0.098 0.368

 80 0.000 0.000 0.000 5.067 0.096 0.362

 120 0.000 0.000 0.000 5.504 0.078 0.071

 160 0.000 0.000 0.000 5.588 0.073 0.014

25 50 0.000 0.000 0.000 135.025 0.149 0.543

 100 0.000 0.000 0.000 203.123 0.110 0.509

 150 0.000 0.000 0.000 226.934 0.117 0.438

 200 0.000 0.000 0.000 236.863 0.118 0.127

 250 0.000 0.000 0.000 239.601 0.110 0.030

* These values are less than 10
-4

The run time results of the algorithms show that our proposed algorithms are

significantly faster than BF. Even though BF generally executes faster for n=10

and n=15, the execution times of BF exponentially increase. This situation causes

that the time performance difference between PBIG and BF reaches up to 7986.7

for (n=25, m=250) combination in Table 4.8 where PBIG performs optimum at

the same time. For the same problem instance, the performance difference

between HGA and BF is 2187.2. From these results, we can claim that our

proposed algorithms are far more fast than scalable than BF.

65

(a)

(b)

Figure 4.6 Time results of small size problem instances (Our dataset) a) Time results versus

node count (m=4n) b) Time results versus edge count (n=25)

For 41 out of 52 combinations, HGA and PBIG provide the optimum

results. For most of these 41 problem instances, PBIG runs faster than HGA. For

other 11 out of 52 combinations, the performance of HGA is better than PBIG.

For all small-size problem instances, HGA finds optimal solutions which can be

seen in Tables 4.4, 4.6 and 4.8. The average execution times of HGA and PBIG

are similar and they equal to 0.198 s and 0.206 s, respectively.

4.2. Evaluation of Moderate-Size Problem Instances

Measurements of greedy heuristics taken in 69 moderate-size problem

instances are given in Tables 4.10-4.15 and Figures 4.7-4.12.

(a)

(b)

Figure 4.7 Weight results of moderate size problem instances (Shyu’s dataset – Type 1) a)

Weight results versus node count (m≈5n) b) Weight results versus edge count (n=250)

66

Table 4.10. Weight results of moderate size problem instances (Shyu’s dataset – Type 1)

n m # of

con.

GR GD GW T-BF HGA PBIG

50 50 0 - - - - - -

 100 4 1007.5 1119.5 2728.5 NF 900.0 900.0

 250 10 337.2 464.2 816.5 493.8* 291.3 290.6

 500 10 160.6 290.9 301.3 237.9 141.6 141.2

 750 10 105.4 182.3 167.2 110.9 87.7 87.6

 1000 10 59.9 138.3 80.7 73.5 51.4 51.4

100 100 0 - - - - - -

 250 2 1649.0 1877.0 5018.0 NF 1408.0 1362.5

 500 10 768.2 1046.2 2259.1 NF 687.4 641.9

 750 10 483.8 725.2 1015.7 NF 439.8 410.4

 1000 10 373.2 591.9 710.8 661.0
+
 336.9 308.6

 2000 10 158.9 314.3 253.9 272.9 144.4 141.9

150 150 0 - - - - - -

 250 0 - - - - - -

 500 6 1962.7 2387.8 7728.0 NF 1752.0 1661.3

 750 10 1179.6 1607.5 3243.4 NF 1070.2 1013.4

 1000 10 855.0 1290.7 2141.4 NF 761.4 701.6

 2000 10 416.3 708.4 806.1 NF 392.3 345.0

 3000 10 271.5 530.4 539.0 565.8 256.2 234.1

200 250 0 - - - - - -

 500 4 3411.0 3865.8 12264.8 NF 3056.75 2966.3

 750 10 2173.2 2757.8 7384.5 NF 1917.5 1811.0

 1000 9 1647.6 2168.9 5661.2 NF 1451.4 1345.6

 2000 10 745.8 1287.5 1732.7 NF 698.0 627.1

 3000 10 497.1 891.3 1051.9 NF 478.0 417.7

250 250 0 - - - - - -

 500 0 - - - - - -

 750 7 3405.3 3921.6 11631.9 NF 3068.1 2850.3

 1000 9 2534.3 3190.4 9780.0 NF 2227.8 2056.8

67

n m # of

con.

GR GD GW T-BF HGA PBIG

250 2000 10 1151.8 1841.3 3189.1 NF 1091.9 976.3

 3000 10 780.9 1327.2 2053.3 NF 752.2 656.9

 5000 10 447.8 886.8 899.2 NF 439.7 394.9

300 300 0 - - - - - -

 500 0 - - - - - -

 750 2 5003.0 5819.5 17622.0 NF 4449.5 4293.5

 1000 9 3671.3 4364.4 15645.1 NF 3315.4 3111.0

 2000 10 1780.4 2464.7 6035.1 NF 1639.4 1472.6

 3000 10 1111.5 1800.0 2846.1 NF 1083.7 945.3

 5000 10 662.3 1195.8 1411.5 NF 646.0 564.2

*n=50, m=250 Brute Force found only 4 of 10 graphs, + n=100, m=1000 Brute Force found only 4

of 10 graphs

Again GR has the best performance among the implemented greedy

heuristics for all moderate-size problem instances. The performance difference

between GR and GD reaches up to 87.26%. We obtain this result from (n=50,

m=750) combination in Shyu’s Type 2 dataset which is given in Table 4.12. GW

performs up to 76.8% worse than GR where this difference is obtained from

(n=300, m=1000) combination. The run time results are close to each other and

the maximum performance difference between them is 0.002 s.

(a)

(b)

Figure 4.8 Time results of moderate size problem instances (Shyu’s dataset – Type 1) a)

Time results versus node count (m≈5n) b) Time results versus edge count (n=250)

68

Table 4.11. Time results of moderate size problem instances (Shyu’s dataset – Type 1)

n m # of

con.

GR* GD* GW* T-BF** HGA PBIG

50 50 0 - - - - - -

 100 4 0.001 0.001 0.000 3.462 0.160 1.731

 250 10 0.000 0.000 0.000 3.983 0.076 1.991

 500 10 0.000 0.000 0.000 4.408 0.094 2.204

 750 10 0.000 0.000 0.000 3.545 0.113 1.772

 1000 10 0.000 0.000 0.000 0.356 0.134 0.178

100 100 0 - - - - - -

 250 2 0.000 0.000 0.000 16151.0 0.713 8.076

 500 10 0.000 0.000 0.000 18.697 0.483 9.348

 750 10 0.000 0.000 0.000 18.437 0.412 9.218

 1000 10 0.000 0.000 0.000 19.528 0.463 9.764

 2000 10 0.000 0.000 0.000 21.664 0.942 10.832

150 150 0 - - - - - -

 250 0 - - - - - -

 500 6 0.000 0.001 0.000 50.864 2.202 25.432

 750 10 0.000 0.001 0.000 48.985 1.537 24.492

 1000 10 0.000 0.000 0.000 42.338 1.296 21.169

 2000 10 0.000 0.000 0.000 47.171 1.535 23.585

 3000 10 0.000 0.000 0.000 45.568 2.518 22.784

200 250 0 - - - - - -

 500 4 0.001 0.001 0.000 97.776 5.854 48.888

 750 10 0.001 0.001 0.000 101.605 4.881 50.802

 1000 9 0.001 0.001 0.000 94.333 3.693 47.166

 2000 10 0.001 0.001 0.000 83.854 2.765 41.927

 3000 10 0.001 0.001 0.000 81.510 3.614 40.755

250 250 0 - - - - - -

 500 0 - - - - - -

69

n m # of

con.

GR* GD* GW* T-BF** HGA PBIG

250 750 7 0.002 0.002 0.000 190.136 10.401 95.068

 1000 9 0.002 0.001 0.000 164.699 8.489 82.349

 2000 10 0.002 0.001 0.000 150.110 5.072 75.055

 3000 10 0.002 0.001 0.000 143.539 5.284 71.769

 5000 10 0.002 0.001 0.000 142.146 8.735 71.073

300 300 0 - - - - - -

 500 0 - - - - - -

 750 2 0.003 0.003 0.001 313.279 18.848 156.640

 1000 9 0.003 0.003 0.000 312.629 16.753 156.314

 2000 10 0.002 0.002 0.000 250.434 10.330 125.217

 3000 10 0.003 0.002 0.000 222.202 8.265 111.101

 5000 10 0.003 0.002 0.000 218.030 11.360 109.015

* The 0.000 values in the related columns are less than 10
-4

** Time limit that is two times of PBIG’s run time

Our algorithms produce significantly better weight results than GR for all 69

combinations. The performance difference between PBIG and GR reaches up to

28.2% and this result is obtained in Table 4.12 from (n=200, m=500) problem

instance of Shyu’s Type 2 dataset.

(a)

(b)

Figure 4.9 Weight results of moderate size problem instances (Shyu’s dataset – Type 2)

a) Weight results versus node count (m≈5n) b) Weight results versus edge count (n=250)

70

Table 4.12. Weight results of moderate size problem instances (Shyu’s dataset – Type 2)

n m # of

con.

GR GD GW T-BF HGA PBIG

50 50 0 - - - - - -

 100 4 213.5 280.0 384.0 NF 166.0 166.0

 250 10 238.7 642.7 516.5 418.4 182.8 182.8

 500 10 230.0 1083.7 466.4 465.2 204.4 204.4

 750 10 239.4 1879.4 369.8 612.8 215.3 215.3

100 50 0 - - - - - -

 100 0 - - - - - -

 250 7 401.7 647.7 1065.4 NF 306.1 307.4

 500 10 485.8 1286.1 1117.7 NF 364.4 348.9

 750 10 542.0 1747.1 1283.2 NF 464.5 432.2

150 50 0 - - - - - -

 100 0 - - - - - -

 250 0 - - - - - -

 500 9 629.2 1317.2 2059.8 NF 490.0 479.1

 750 10 789.4 2109.2 2599.0 NF 622.5 596.9

200 50 0 - - - - - -

 100 0 - - - - - -

 250 0 - - - - - -

 500 3 924.3 1380.7 2580.7 NF 678.7 664.0

 750 10 969.4 2131.0 3909.7 NF 733.2 709.0

250 250 0 - - - - - -

 500 0 - - - - - -

 750 6 1188.0 1987.0 3747.8 NF 924.7 896.5

 1000 9 1303.3 2797.0 4649.8 NF 1014.6 967.8

 2000 10 1492.2 5717.6 5360.7 NF 1272.9 1167.8

 5000 10 1780.4 13116.9 3860.7 NF 1666.7 1471.9

300 250 0 - - - - - -

 500 0 - - - - - -

 750 1 1251.0 1821.0 4191.0 NF 999.0 981.0

71

n m # of

con.

GR GD GW T-BF HGA PBIG

300 1000 9 1395.1 2691.9 6010.6 NF 1092.6 1058.7

 2000 10 1727.2 5768.0 6329.0 NF 1395.6 1294.7

 5000 10 2010.2 14004.9 4796.8 NF 1934.2 1622.4

Even though T-BF is given two times more time than PBIG, T-BF cannot

find any solution for 53 out of 69 moderate-size combinations. On the other side,

our algorithms produce WCDS for all these problem instances.

In Tables 4.10, 4.12, 4.16 and 4.18, NF stands for “Not Found”. The results

taken are found by averaging the results of ten instances for each combination.

The weight results are the average of 6 (n, m) instances instead of 10 instances

because T-BF can only find solutions for 6 problem instances.

(a)

(b)

Figure 4.10 Time results of moderate size problem instances (Shyu’s dataset – Type 2)

a) Time results versus node count (m≈5n) b) Time results versus edge count (n=250)

PBIG produces up to 2.29 times better weight results than T-BF for (n=100,

m=800) combination in Table 4.14. HGA finds up to 2.11 times better weight

results than T-BF for (n=100, m=1000) combination in the same table. Our

proposed algorithms perform up to 2.85 times (for (n=50, m=750) problem

instance in Table 4.12) better than T-BF for the other 10 combinations. T-BF

cannot produce any solution for large-size problem combinations.

72

Table 4.13. Time results of moderate size problem instances (Shyu’s dataset – Type 2)

n m # of

con.

GR* GD* GW* T-BF** HGA PBIG

50 50 0 - - - - - -

 100 4 0.000 0.000 0.000 3.441 0.181 1.720

 250 10 0.000 0.000 0.000 4.201 0.082 2.100

 500 10 0.000 0.000 0.000 5.050 0.091 2.525

 750 10 0.000 0.000 0.000 2.834 0.114 1.417

100 50 0 - - - - - -

 100 0 - - - - - -

 250 7 0.000 0.000 0.000 20.533 0.801 10.266

 500 10 0.000 0.000 0.000 20.002 0.513 10.001

 750 10 0.000 0.000 0.000 22.102 0.419 1.1051

150 50 0 - - - - - -

 100 0 - - - - - -

 250 0 - - - - - -

 500 9 0.001 0.001 0.000 52.513 2.363 26.256

 750 10 0.000 0.000 0.000 55.639 1.838 27.819

200 50 0 - - - - - -

 100 0 - - - - - -

 250 0 - - - - - -

 500 3 0.002 0.001 0.001 107.096 6.675 53.548

 750 10 0.001 0.001 0.000 109.209 5.453 54.605

250 250 0 - - - - - -

 500 0 - - - - - -

 750 6 0.002 0.002 0.000 215.133 12.071 107.566

 1000 9 0.002 0.002 0.000 211.656 10.657 105.828

 2000 10 0.002 0.001 0.000 186.403 5.354 93.202

 5000 10 0.002 0.001 0.000 171.986 8.574 85.993

300 250 0 - - - - - -

 500 0 - - - - - -

 750 1 0.004 0.003 0.000 366.842 22.292 183.421

73

n m # of

con.

GR* GD* GW* T-BF** HGA PBIG

300 1000 9 0.003 0.002 0.000 350.722 20.359 175.361

 2000 10 0.004 0.002 0.000 316.873 11.242 158.436

 5000 10 0.003 0.002 0.000 263.854 11.472 131.927

* The 0.000 values in the related columns are less than 10
-4

** Time limit that is two times of PBIG’s run time

(a)

(b)

Figure 4.11 Weight results of moderate size problem instances (Our dataset) a) Weight results

versus node count (m=4n) b) Weight results versus edge count (n=200)

For 5 problem instances, we obtain same results from proposed algorithms.

The average weight value of HGA is 306.1 and the average weight value of PBIG

is 307.4 for (n=100, m=250) problem instance in Table 4.10.

(a)

(b)

Figure 4.12 Time results of moderate size problem instances (Our dataset) a) Time results versus

node count (m=4n) b) Time results versus edge count (n=200)

74

PBIG is better than HGA in terms of WCDS weight for the other 63

problem instances. PBIG performs up to 16% better than HGA in terms WCDS

weight for (n=300, m=5000) problem instance in Table 4.12. On the other hand,

PBIG is slower than HGA for all problem instances. HGA is 28 times faster than

PBIG for (n=50, m=500) problem instance in Table 4.12.

Table 4.14. Weight results of moderate size problem instances (Our dataset)

n m GR GD GW T-BF HGA PBIG

50 100 1068.4 1161.3 2121.3 NF 908.1 905.0

 200 459.2 594.9 904.9 658.0
α
 412.8 407.5

 300 307.6 440.5 638.2 402.3
β

263.5 257.1

 400 219.0 340.7 356.2 289.4 186.0 183.0

 500 164.0 297.1 260.3 227.7 148.5 147.4

100 200 2149.7 2310.8 5494.5 NF 1856.5 1804.7

 400 1023.4 1305.9 2913.3 NF 873.2 845.9

 600 671.6 895.4 1846.1 NF 599.2 559.8

 800 502.2 750.3 1173.6 945.8
φ

450.0 412.7

 1000 353.3 615.2 742.5 714.7
ψ
 338.9 314.8

150 300 3274.8 3718.6 7311.5 NF 2927.6 2817.0

 600 1499.7 1901.9 4466.5 NF 1300.7 1237.0

 900 993.3 1398.6 2435.8 NF 878.8 826.2

 1200 742.7 1048.7 1997.1 NF 694.3 623.1

 1500 543.1 902.4 1414.2 NF 508.5 460.4

200 400 4452.9 4927.9 10547.9 NF 3884.6 3683.5

 800 2021.7 2612.5 6796.9 NF 1797.2 1674.8

 1200 1323.6 1890.5 3219.5 NF 1193.5 1115.5

 1600 951.7 1413.0 2227.0 NF 891.1 784.7

 2000 723.5 1196.5 1803.6 NF 694.7 614.6

α n=50, m=200 Brute Force found only 3 of 10 graphs, β n=50, m=300 Brute Force found only 9

of 10 graphs, φ n=100, m=800 Brute Force found only 1 of 10 graphs, ψ n=100, m=1000 Brute

Force found only 2 of 10 graphs

75

Table 4.15. Time results of moderate size problem instances (Our dataset)

n m GR* GD* GW* T-BF** HGA PBIG

50 100 0.000 0.000 0.000 3.745 0.114 1.873

 200 0.000 0.000 0.000 3.766 0.075 1.883

 300 0.000 0.000 0.000 4.040 0.073 2.020

 400 0.000 0.000 0.000 4.288 0.079 2.144

 500 0.000 0.000 0.000 4.327 0.095 2.163

100 200 0.000 0.000 0.000 17.785 0.682 8.892

 400 0.000 0.000 0.000 17.567 0.518 8.783

 600 0.000 0.000 0.000 17.166 0.428 8.583

 800 0.000 0.000 0.000 17.181 0.401 8.590

 1000 0.000 0.000 0.000 17.728 0.439 8.864

150 300 0.001 0.000 0.000 51.873 2.166 25.937

 600 0.001 0.000 0.000 42.917 1.567 21.458

 900 0.001 0.000 0.000 43.095 1.289 21.547

 1200 0.000 0.000 0.000 43.462 1.182 21.731

 1500 0.001 0.000 0.000 42.925 1.209 21.462

200 400 0.001 0.001 0.000 109.691 4.976 54.845

 800 0.001 0.001 0.000 89.036 3.900 44.518

 1200 0.001 0.001 0.000 84.292 2.835 42.146

 1600 0.001 0.001 0.000 83.360 2.592 41.680

 2000 0.001 0.001 0.000 77.772 2.622 38.886

* The 0.000 values in the related columns are less than 10
-4

** Time limit that is two times of PBIG’s run time

4.3. Evaluation of Large-Size Problem Instances

We present the measurements of greedy heuristics taken in 29 large-size

problem instances in Tables 4.16-4.19 and Figures 4.13-4.16. The best weight

performance is achieved by GR for all 29 instances. Its performance is up to

80.8% better than GW and this result can be seen in (n=500, m=2000)

combination in Table 4.16.

76

Table 4.16. Weight results of large size problem instances (Shyu’s dataset – Type 1)

n m GR GD GW T-BF HGA PBIG

500 500 - - - - - -

 1000 - - - - - -

 2000 5297 6546 27581 NF 4579 4239

 5000 1803 2714 5911 NF 1803 1576

 10000 922 1925 2752 NF 922 868

800 500 - - - - - -

 1000 - - - - - -

 2000 - - - - - -

 5000 5223 6976 24521 NF 4740 4334

 10000 2527 4244 6972 NF 2459 2081

1000 1000 - - - - - -

 5000 7900 10599 32379 NF 7319 6762

 10000 3623 5946 13500 NF 3596 3013

 15000 2530 4752 7276 NF 2483 2178

 20000 1895 3432 5126 NF 1895 1658

(a)

(b)

Figure 4.13 Weight results of large size problem instances (Shyu’s dataset – Type 1) a) Weight

results versus node count (m≈4n) b) Weight results versus edge count (n=1000)

77

Table 4.17. Time results of large size problem instances (Shyu’s dataset – Type 1)

n m GR GD GW* T-BF** HGA PBIG

500 500 - - - - - -

 1000 - - - - - -

 2000 0.013 0.011 0.002 583.485 74.495 1166.970

 5000 0.010 0.007 0.001 904.560 33.905 452.280

 10000 0.007 0.006 0.000 796.998 45.099 398.499

800 500 - - - - - -

 1000 - - - - - -

 2000 - - - - - -

 5000 0.037 0.031 0.003 3845.316 246.808 1922.658

 10000 0.030 0.021 0.001 2931.058 131.813 1465.529

1000 1000 - - - - - -

 5000 0.080 0.063 0.002 9070.406 540.864 4535.203

 10000 0.061 0.046 0.001 6243.744 296.014 3121.872

 15000 0.053 0.043 0.001 5312.758 295.591 2656.379

 20000 0.049 0.034 0.001 4789.570 308.906 2394.785

* The 0.000 value in the related column is less than 10
-3

**Time limit that is two times of PBIG’s run time

(a)

(b)

Figure 4.14 Time results of large size problem instances (Shyu’s dataset – Type 1) a) Time results

versus node count (m≈4n) b) Time results versus edge count (n=1000)

78

As aforementioned GR achieves better than GD and the performance

difference between these two algorithms reaches up to 52.1%. This result can be

seen in (n=500, m=1000) problem sample of Shyu’s Type 1 dataset given in Table

4.16. In terms of execution times, GW has the best performance and GR has the

worst performance on the average.

Table 4.18. Weight results of large size problem instances (Our dataset)

n m GR GD GW T-BF HGA PBIG

250 500 5123.4 5554.2 10720.2 NF 4716.1 4585.0

 1000 2604.9 3411.2 7871.8 NF 2481.8 2228.0

 1500 1704.4 2368.3 5374.0 NF 1548.1 1384.0

 2000 1240.7 2073.8 4827.7 NF 1104.9 1062.4

 2500 1010.8 1437.4 2535.5 NF 960.3 822.2

500 1000 10229.1 11257.2 27955.9 NF 9444.3 8859.4

 2000 5164.3 7030.6 16516.7 NF 4693.7 4393.7

 3000 3446.5 5759.9 13742.6 NF 3256.9 2915.8

 4000 2552.6 3819.0 3819.1 NF 2517.9 2164.3

 5000 1977.0 3051.0 6763.3 NF 1766.5 1552.7

750 1500 16786.8 18807.5 52193.1 NF 15491.2 14298.5

 3000 7153.5 9694.3 30528.0 NF 6979.4 6250.9

 4500 4878.3 7518.4 18476.1 NF 4878.3 4383.5

 6000 3728.7 5730.6 12627.7 NF 3602.2 3226.9

 7500 2823.6 4751.1 8258.3 NF 2823.6 2435.0

1000 2000 21477.5 23785.9 53644.9 NF 19786.5 18235.3

 4000 10127.6 12624.5 31832.3 NF 9532.0 8475.9

 6000 6401.5 9340.0 28727.0 NF 5938.7 5341.9

 8000 4701.8 7498.9 21034.6 NF 4557.0 3983.5

 10000 3801.5 6024.2 8608.8 NF 3755.9 3188.9

79

(a)

(b)

Figure 4.15 Weight results of large size problem instances (Our dataset) a) Weight results

versus node count (m=4n) b) Weight results versus edge count (n=1000)

(a)

(b)

Figure 4.16 Time results of large size problem instances (Our dataset) a) Time results

versus node count (m=4n) b) Time results versus edge count (n=1000)

We take the maximum run time difference between GW and other heuristics

from (n=1000, m=2000) problem sample in Table 4.19. In this sample GR and GD

find the solution in 0.096 s, GW finds the solution in 0.1 s.

We obtain better solutions from proposed solutions in terms of WCDS

weight for all 29 large-size combinations. For (n=500, m=5000) problem instance

in Table 4.18, the weight performance of PBIG and GR reaches up to 21.46 %.

80

Table 4.19. Time results of large size problem instances (Our dataset)

n m GR GD GW* T-BF** HGA PBIG

250 500 0.018 0.004 0.002 221.436 9.891 110.718

 1000 0.002 0.001 0.000 180.712 9.072 90.356

 1500 0.002 0.002 0.000 144.138 5.988 72.069

 2000 0.002 0.001 0.001 159.186 4.935 79.593

 2500 0.001 0.001 0.001 124.650 4.891 62.325

500 1000 0.013 0.013 0.001 1590.280 85.877 795.140

 2000 0.012 0.010 0.000 1242.566 68.812 621.283

 3000 0.011 0.009 0.001 1025.832 49.512 512.916

 4000 0.011 0.008 0.000 935.362 37.736 467.681

 5000 0.010 0.006 0.001 726.876 34.345 363.438

750 1500 0.043 0.043 0.002 4787.364 305.155 2393.682

 3000 0.032 0.030 0.002 3436.760 263.961 1718.380

 4500 0.030 0.025 0.001 3077.078 199.290 1538.539

 6000 0.029 0.022 0.001 3049.036 143.775 1524.518

 7500 0.027 0.020 0.001 2903.990 118.980 1451.995

1000 2000 0.096 0.100 0.002 12105.298 706.465 6052.649

 4000 0.087 0.068 0.002 9302.974 609.619 4651.487

 6000 0.073 0.058 0.003 7597.726 429.499 3798.863

 8000 0.070 0.056 0.002 6943.852 345.449 3471.926

 10000 0.063 0.044 0.002 6226.756 280.598 3113.378

* The 0.000 values in the related column are less than 10
-3

** Time limit that is two times of PBIG’s run time

PBIG performs better than HGA for all problem instances where the

performance difference reaches up to 16% for (n=1000, m=10000) combination in

Table 4.16. On the other side, HGA is faster than PBIG for all problem instances.

For (n=250, m=1000) in Table 4.19 problem instance, HGA is 16 times faster than

PBIG.

81

5. CONCLUSION

We provided two population-based MWCDS optimization algorithms for

undirected graphs in this thesis. Firstly, we defined MWCDS problem and its

variants in detail. We showed that MWCDS has been applied to overcome

backbone formation problem for WASNs where nodes with higher energies are

aimed to include in backbone sets. We described WASNs and mentioned one of

the most important problems in WASNs as energy conservation. We listed their

various applications such as habitat monitoring, healthcare monitoring and office

applications. We realized that energy-efficient backbone construction is vital to

prolong the application lifetime and MWCDS is a very suitable structure to meet

the energy requirements. After reviewing the literature, we found that although

there are various algorithms for DS and CDS constructions, we could not find a

population-based MWCDS approach which can iteratively refine the MWCDS

solution quality. The motivation of this thesis arose from this fact.

The first contribution of this thesis is HGA which is a hybrid genetic

algorithm and uses a greedy heuristic to solve MWCDS problem. Hybrid genetic

algorithms are based on genetic and other search methods that can complement

each other to achieve an optimization objective. This algorithm improves the

solution quality produced by greedy heuristic. The chromosomes used in this

problem are sets of vertices where each chromosome Ci is represented with a bit

vector. If node i is a dominator, Ci is set to 1 otherwise Ci equals to 0 showing that

node i is a dominatee. The first member of the HGA is generated by the GR

heuristic. HGA runs a DFS based algorithm to detect cut vertices which are used

in minimization process.

After above operations are achieved, HGA executes the following

operations repeatedly. The algorithm generates a new chromosome in two ways.

In the first way, two parents are chosen by binary tournament selection and these

parents produce a new offspring by applying a crossover operation. In this

crossover operation, two parents P1 and P2 having f1 and f2 fitness values are used

to generate a new chromosome. For each gene, Ci is set to P1[i] with a probability

of f1/(f1+f2) and Ci is set to P2[i] otherwise. After a new chromosome is generated,

82

a mutation operation is applied on this chromosome. This operation is achieved by

applying Ci ← (Ci+1) mod 2 operation according to a predefined priority. The

generated chromosome is repaired to provide that it is definitely a CDS. The

redundant dominators are removed from the chromosome and it is added to the

population if it is not included in the population. After all iterations are finished,

best member is returned as the final solution.

The second contribution of this thesis is PBIG which is based on iterated

greedy strategy. This strategy aims to improve the solution quality by iteratively

applying deconstruction process and a reconstruction process based on a greedy

heuristic. At the first step, the algorithm generates an initial population of

solutions by applying a construction process on each member. This construction

process can produce a new member and can repair a partial solution. It starts with

checking of WHITE node presence. If there is no WHITE node in the graph, all

nodes are covered and the input is already a CDS. Thereafter, the algorithm

determines first two nodes having the lowest cost and selects one of them with a

predefined probability. This procedure provides to prevent getting stuck in a local

minimum solution. The selected node is set to BLACK and its WHITE neighbors

are colored GRAY. These operations are executed similarly while there is WHITE

node in the graph. At the end of this operation, the solution is returned.

After construction process is applied, cut vertices are determined for

redundant node elimination and destruction phases. This operation is followed by

the below operations which are iteratively executed. The redundant dominators of

each member are removed and each member is partially destroyed. The solution is

repaired by applying the construction process and it is added to new population. In

this manner, the newly generated members are added to the new population. Then,

the new and initial populations are merged by sorting the combined population in

ascending order according to the weights of solutions and taking the first

individuals up to the initial population size. Lastly, when all iterations of the

PBIG algorithm are completed, the best member is returned.

We analyzed the running time complexities of HGA and PBIG algorithms.

We found that the running time complexity of HGA_MWCDS algorithm

83

(Algorithm 3.2) is O(n
4
(s+ Imax)+ sn Imax) where Imax is the number of maximum

iteration, s is the population size and n is the number of vertices. We also found

that the running time complexity of PBIG_MWCDS algorithm (Algorithm 3.10)

is O(Imax(n
3
+ns)+ms) where m is the number of edges. To further analyze

algorithms, we provide implementations of our proposed algorithms with their

counterparts; greedy heuristics and brute force algorithms. GR, GW and GD are

the greedy heuristics that are implemented. The implemented brute force

algorithm BF always finds the best solution by running all possible subset of

solutions. Since BF algorithm can execute for small scale datasets within hours,

BF runs unacceptably long for moderate and large scale datasets. To overcome

this problem, a time-limited version of BF named as T-BF is implemented.

We applied t-tests between our proposed algorithms to compare the solution

qualities. We used two types of datasets to benchmark the algorithms. Although

the first dataset is a popular dataset, some of the graphs in this dataset are

unconnected. This situation causes a significant problem that MWCDS cannot be

found on an unconnected graph. Because of that reason, the second dataset is

proposed in this thesis by randomly generating undirected connected graphs. Our

generated dataset is divided into small, moderate and large scale instances with

respect to their node counts. In small, medium and large problem instances have

{10, 15, 20, 25} nodes, {50, 100, 200, 250} nodes and {250, 500, 750, 1000}

nodes, respectively. For each node count, 2n, 4n, 6n, 8n and 10n edges are

randomly generated. We generated 10 instances by randomly assigning the

weights of the nodes between 20 and 120 for each node and edge count

combination.

In our performance evaluation study, we investigate the measurements taken

from greedy heuristics. We found that GR has the best performance in terms of

WCDS weight and GD has the worst performance in small-size and moderate-size

problem instances. The performance difference between GR and GD reaches

71.27% and 87.26% in small-size and medium-size problem instances,

respectively. The CPU times of the greedy heuristics in small-size and moderate-

size problem instances are generally close to each other. In large-size problem

instances, again GR has the best performance; GW has the worst performance

84

where GR performs up to 80.8% better than GW. On the other hand, GW runs

faster than other greedy heuristics while GR performs slower than other heuristics

in large-size problem instances.

We evaluated the performance results of our algorithms and GR. As

expected, the running times of GR are lower than our algorithms, since GR exits

after finding the first solution whereas our proposed algorithms iteratively

searches for better candidates. On the other hand, our algorithms perform

significantly better than GR in terms of WCDS weight. In small-size problem

instances, our algorithms produce better solutions for 98.15% of the

combinations. In moderate-size problem instances, the performance difference

between our algorithms and GR reaches up to 28.2%. In large-size problem

instances, we found better solutions for all combinations where the weight

performance difference reaches up to 21.46%.

We compared the performances of our proposed algorithms with BF. Since

BF executes unacceptable long, we obtained the performances of BF only in

small-size problem instances. HGA produces same results with BF for all small-

size problem instances. From our t-tests, we obtained no significant difference

between PBIG and BF. Moreover, our algorithms outperform BF that the time

performance difference between PBIG and BF reaches up to 7986.7.

We evaluated the performance values of our proposed algorithms and T-BF.

T-BF cannot produce any solution for most of moderate-size problem instances

whereas our algorithms produce solutions for these instances. T-BF cannot

produce any solution for large-size problem instances. However, our algorithms

provide solutions for all instances.

When we compared the performances of our proposed algorithms HGA and

PBIG, both of them provide optimum results for 41 out of 52 small-size problem

instances. For other small-size problem instances, HGA performs better than

PBIG. The execution times of these algorithms are similar for small-size problem

instances. In moderate-size and large-size problem instances, PBIG performs

better than HGA in terms of WCDS weight for most of the problem instances

85

where the performance difference reaches up to 16%. On the other hand, PBIG is

slower than HGA for all moderate-size and large-size problem instances. These

results show that PBIG performs better in terms of MWCDS weight and HGA is

faster.

In future, we are planning to study on node and edge weighted versions of

MWCDS problem. Edge weights can represent wireless link qualities such as

received signal strength indicator or link quality indicator. Another interesting

future problem is designing Steiner Tree based approaches which can provide

connection between unconnected dominators to construct WCDSs having low

total cost.

86

REFERENCES

Abdel-Aziz, S. N., Hedar, A., Sewisy, A. A., 2013, Memetic Algorithm with

Filtering Scheme for the Minimum Weighted Edge Dominating Set

Problem, International Journal of Advanced Research in Artificial

Intelligence, Vol. 2, No. 8.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E., 2002, A

Survey on Sensor Networks. IEEE Communications Magazine, 40(8):102-

114 pp.

Alkhalifah, Y. and Wainwright, R. L., 2004, A genetic algorithm applied to

graph problems involving subsets of vertices, in: Proceedings of the IEEE

Congress on Evolutionary Computation (CEC), pp. 303-308.

Al-Nabhan, N., Zhang, B., Cheng, X., Al-Rodhaan, M. and Al-Dhelaan, A.,

2016, Three connected dominating set algorithms for wireless sensor

networks. International Journal of Sensor Networks, 21 (1) (January 2016),

53-66.

Aoun, B., Boutaba, R., Iraqi, Y. and Kenward, G., 2006, Gateway placement

optimization in wireless mesh networks with QOS constraints, IEEE

Journal on Selected Areas in Communications, pp.2127–2136.

Biagioni E. and Bridges, K., 2002, The Application of Remote Sensor

Technology to Assist the Recovery of Rare and Endangered Species, In

Special issue on Distributed Sensor Networks for the International Journal

of High Performance Computing Applications, 16:3.

Beasley, J. E. and Chu, P.C., 1996, A genetic algorithm for the set covering

problem, European Journal of Operational Research, 94 (October (2))

(1996), 392-404.

Benedettini, S., Blum, C. and Roli, A. 2010 A Randomized Iterated Greedy

Algorithm for the Founder Sequence Reconstruction Problem. LION 2010:

37-51.

Bouamama, S., Blum, C. and Boukerram, A., 2012, A Population-based

Iterated Greedy Algorithm for the Minimum Weight Vertex Cover

Problem, Applied Soft Computing, (12) 1632-1639.

87

REFERENCES (continued)

Bouamama, S. and Blum, C., 2015, A Randomized Population-based Iterated

Greedy Algorithm for the Minimum Weight Dominating Set Problem, 6
th

International Conference on Information and Communication Systems

(ICICS).

Chatterjee M., Das, S. K., Turgut, D., 2002, WCA: A Weighted Clustering

Algorithm for Mobile Ad Hoc Networks, Cluster Computing, v.5 n.2,

pp.193-204.

Chen, Y. P. and Liestman, A. L., 2002, Approximating minimum size weakly-

connected dominating sets for clustering mobile ad hoc networks,

in: Proceedings of the 3rd ACM international symposium on Mobile ad hoc

networking & computing (MobiHoc '02), ACM, New York, NY, USA,

2002, pp. 165-172.

Chvatal, V., 1979, A Greedy Heuristic for the Set-Covering Problem,

Mathematics of Operations Research, 4(3):233–235.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., 2009,

Introduction to Algorithms, Third Edition (3rd ed.), The MIT Press.

Dagdeviren, Z.A., Aydin, D. and Cinsdikici, M., 2017, Two population-based

optimization algorithms for minimum weight connected dominating set,

Applied Soft Computing, 59:644-658.

El-Mihoub, T. A., Hopgood, A. A., Nolle, L. and Battersby, A., 2006, Hybrid

Genetic Algorithms: A Review. Engineering Letters 13 (2), 124-137.

Fanjul-Peyro L. and Ruiz, R. 2010, Iterated greedy local search methods for

unrelated parallel machine scheduling. European Journal of Operational

Research 207(1): 55-69.

Gendron, B., Lucena, A., Salles da Cunha, A. and Simonetti, L., 2014,

Benders Decomposition, Branch-and-Cut, and Hybrid Algorithms for the

Minimum Connected Dominating Set Problem, INFORMS Journal on

Computing 26(4) (2014), 645-657.

Gonzalez, T. F., 2007, Handbook of Approximation Algorithms and

Metaheuristics (Chapman & Hall/Crc Computer & Information Science

Series), Chapman & Hall/CRC.

https://dl.acm.org/citation.cfm?id=593002&CFID=1001229441&CFTOKEN=86504648
https://dl.acm.org/citation.cfm?id=593002&CFID=1001229441&CFTOKEN=86504648
https://dl.acm.org/citation.cfm?id=593002&CFID=1001229441&CFTOKEN=86504648
https://scholar.google.com/citations?view_op=view_citation&hl=da&user=exP5rSEAAAAJ&sortby=pubdate&citation_for_view=exP5rSEAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=da&user=exP5rSEAAAAJ&sortby=pubdate&citation_for_view=exP5rSEAAAAJ:u5HHmVD_uO8C

88

REFERENCES (continued)

Gray, R. M., Kieffer, J. C., and Linde, Y., 1980, Locally optimal block

quantizer design, Information and Control, 45, 178.

Guha, S. and Khuller, S., 1998, Approximation Algorithms for Connected

Dominating Sets, Algorithmica, (20) 374-387.

Hand, D. J., Smyth, P., and Mannila, H., 2001, Principles of Data Mining.

MIT Press, Cambridge, MA, USA.

He, J., Cai, Z., Ji, S., Beyah, R. and Pan, Y., 2011, A genetic algorithm for

constructing a reliable MCDS in probabilistic wireless networks, in:

Proceedings of the 6th International Conference on Wireless Algorithms,

Systems, and Applications (WASA 2011), LNCS 6843, pp. 96–107.

He, J., Ji, S., Yan, M., Pan, Y. and Li, Y., 2012, Load-balanced CDS

construction in wireless sensor networks via genetic algorithm,

International Journal of Sensor Networks, 11 (3) (April 2012), 166-178.

He, J. S., Ji, S., Beyah, R., Xie, Y. and Li, Y., 2015, Constructing load-balanced

virtual backbones in probabilistic wireless sensor networks via multi-

objective genetic algorithm, Transactions on Emerging

Telecommunications Technologies, 26 (2) (February 2015), 147-163.

Hoos H. H. and Stützle, T., 2005, Stochastic Local Search: Foundations and

Applications, Morgan Kaufmann Publishers.

Hopcroft, J. and Tarjan, R., 1974, Efficient planarity testing, Journal of the

ACM (JACM), 21(4), 549-568.

Houmaidi, M. E. and Bassiouni, M. A., 2003, K-weighted minimum

dominating sets for sparse wavelength converters placement under non-

uniform traffic, in: Proceedings of the International Symposium on

Modeling, Analysis and Simulation of Computer Telecommunications

Systems (MASCOTS’03), pp. 56–61.

Jin, Y., 2005, A comprehensive survey of fitness approximation in evolutionary

computation, Soft Computing, vol. 9, pp. 3-12.

89

REFERENCES (continued)

Jovanovic, R., Tuba, M. and Simian, D., 2010, Ant Colony Optimization

Applied to Minimum Weight Dominating Set Problem, in: Proceedings of

the 12th International conference on Automatic control, modelling and

simulation. pp. 322–326. ACMOS’10, World Scientific and Engineering

Academy and Society, Stevens Point, Wisconsin, USA.

Jovanovic, R. and Tuba, M., 2013, Ant Colony Optimization Algorithm with

Pheromone Correction Strategy for the Minimum Connected Dominating

Set Problem, Computer Science and Information Systems (ComSIS), 10

(1).

Kamali, S. and Safarnourollah, V., 2006, A Genetic Algorithm for Power

Aware Minimum Connected Dominating Set Problem in Wireless Ad-Hoc

Networks, Concordia University.

Karl, H. and Willig, A., 2005, Protocols and Architectures for Wireless Sensor

Networks, Wiley 2005, ISBN 978-0-470-09510-2, pp. I-XXV, 1-497.

Khalil, E. and Ozdemir, S., 2015a, Prolonging stability period of CDS based

wireless sensor networks, in: Proceedings of the 11th International

Wireless Communications and Mobile Computing Conference (IWCMC),

Dubrovnik, Croatia.

Khalil, E. and Ozdemir, S., 2015b, CDS based reliable topology control in

wireless sensor networks, in: Proceedings of the International Symposium

on Networks, Computers and Communications (ISNCC), Hammamet,

Tunisia.

Khun, F., Wattenhofer, R., and Zollinger, A., 2003, Ad-hoc networks beyond

unit disk graphs, in: Proceedings of the 2003 joint workshop on

Foundations of mobile computing(DIALM-POMC’03), ACM, New York,

USA, pp.69-78.

Klein, P., and Ravi, P., 1995, A nearly best-possible approximation algorithm

for node-weighted Steiner trees, Journal of Algorithms, 19(1):104-115pp.

Konak A. and Smith, A. E., 1999 "A hybrid genetic algorithm approach for

backbone design of communication networks," in the 1999 Congress on

Evolutionary Computation. Washington D.C, USA: IEEE, pp. 1817-1823.

http://dblp.uni-trier.de/pers/hd/w/Willig:Andreas

90

REFERENCES (continued)

Linde, Y., Buzo, A., and Gray, R. M., 1980, An algorithm for vector quantizer

design, IEEE Transactions on Communications., 28(1), 84.

Lin, G., 2016, A hybrid self-adaptive evolutionary algorithm for the minimum

weight dominating set problem, International Journal of Wireless and

Mobile Computing, 11 (1), (January 2016), 54-61.

Liu, X., Wang, W., Kim, D., Yang, Z., Tokuta, A. O. and Jiang, Y., 2016, The

first constant factor approximation for minimum partial connected

dominating set problem in growth-bounded graphs, Wireless Networks, 22

(2), 553-562.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D. and Anderson, J.,

2002, Wireless Sensor Networks for Habitat Monitoring. In Proceedings of

ACM International Workshop on Wireless Sensor Networks and

Applications (WSNA'02), Atlanta, GA.

McCall, J., 2005, Genetic algorithms for modelling and optimisation, Journal of

Computational and Applied Mathematics, Volume 184, Issue 1, Pages 205-

222, ISSN 0377 0427, http://dx.doi.org/10.1016/j.cam.2004.07.034.

More, V. and Mangalwede, S.R., 2013, A Genetic Algorithm for Solving

Connected Dominating Set Problem in Wireless Ad-Hoc Network,

International Journal of Computer and Communication Engineering

Research (IJCCER), 1 (2).

Ning X., 2005, A Survey of Sensor Network Applications, IEEE

Communications Magazine, 5(5): 774-788pp.

Nitash, C. G and Singh, A., 2014, An artificial bee colony algorithm for

minimum weight dominating set, in: Proceedings of the IEEE Symposium

on Swarm Intelligence (SIS), pp. 1-7.

Pelikan, M., Goldberg, D. E. and Lobo, F., 1999, A survey of optimization by

building and using probabilistic models, IlliGAL.

Potluri A. and Singh, A., 2013, Hybrid metaheuristic algorithms for minimum

weight dominating set, Applied Soft Computing, 13 (1) 76-88.

http://dx.doi.org/10.1016/j.cam.2004.07.034

91

REFERENCES (continued)

Ramalakshmi, R. and Radhakrishnan, S., 2015, Weighted dominating set

based routing for ad hoc communications in emergency and rescue

scenarios, Wireless Networks, 21 (2), 499-512.

Ruiz, R. and Stützle T., 2007, A simple and effective iterated greedy algorithm

for the permutation flowshop scheduling problem. European Journal of

Operational Research 177(3): 2033-2049.

Samet, H., 1990, Applications of Spatial Data Structures, Addison-Wesley,

Reading, MA.

Schwiebert, L., Gupta, S. K. S. and Weinmann, J., 2001, Research Challenges

in Wireless Networks of Biomedical Sensors. In Proceedings of Mobile

Computing and Networking, 151-165pp.

Shen, C. and Li, T., 2010, Multi-document summarization via the minimum

dominating set, in: Proceedings of the 23rd International Conference on

Computational Linguistics (Coling 2010), August 2010, pp. 984–992.

Shyu, S. J., Yin, P., Lin and B. M. T., 2004, An ant colony optimization

algorithm for the minimum weight vertex cover problem, Annals of

Operation Research, (131), 283-304.

Singh, A. and Gupta, A. K., 2006, A hybrid heuristic for the minimum weight

vertex cover problem, Asia-Pacific Journal of Operational Research, 23

(June (2)), 73-285.

Srivastava, M. B., Muntz, R. R. and Potkonjak, M., 2001, Smart

Kindergarten: Sensorbased Wireless Networks for Smart Developmental

Problem-solving Enviroments, In Proceedings of Mobile Computing and

Networking, 132-138pp.

Subhadrabandhu, D., Sarkar, S. and Anjum, F., 2004, Efficacy of misuse

detection in adhoc networks, in: Proceedings of the First Annual IEEE

Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, 2004, pp. 97–107.

Torkestani, J. A. and Meybodi, M. R., 2010a, An intelligent backbone

formation algorithm for wireless ad hoc networks based on distributed

learning automata, Computer Networks, 54 (5), 826-843.

92

REFERENCES (continued)

Torkestani, J. A. and Meybodi, M. R., 2010b, Clustering the wireless ad hoc

networks: A distributed learning automata approach, Journal of Parallel and

Distributed Computing, 70 (4), 394-405.

Torkestani, J. A. and Meybodi, M. R., 2012, Finding minimum weight

connected dominating set in stochastic graph based on learning automata,

Information Sciences, 200, 57-77.

Wang, Y., Wang, W. Z. and Li, X. -Y., 2005, Distributed low-cost backbone

formation for wireless ad hoc networks, in: Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and computing

(MobiHoc '05), ACM, New York, NY, USA, pp. 2-13.

Wu, J. and Li, H., 1999, On calculating connected dominating set for efficient

routing in ad hoc wireless networks, in: Proceedings of the 3rd

international workshop on discrete algorithms and methods for mobile

computing and comm. (DIALM '99), ACM, New York, USA, pp. 7-14.

Wu, P., Wen, J. -R., Liu, H. and Ma, W. -Y., 2006, Query selection techniques

for efficient crawling of structured web sources, in: Proceedings of the

22nd International Conference on Data Engineering (ICDE’06), pp. 47.

Xiang, Z. and Joy, G., 1994, Color image quantization by agglomerative

clustering, IEEE Computer Graphics and Applications, 14(3), 44.

Yu, J., Wang, N., Wang, G. and Yu, D., 2013, Connected dominating sets in

wireless ad hoc and sensor networks - A comprehensive survey, Computer

Communications, 36 (2), 121-134.

Yu, J., Li, W., Cheng, X., Atiquzzaman, M., Wang, H. and Feng, L., 2016,

Connected dominating set construction in cognitive radio networks,

Personal and Ubiquitous Computing, 20 (5), 757-769.

Zhu, X., Wang, W., Shan, S., Wang, Z. and Wu, W., 2012, A PTAS for the

minimum weighted dominating set problem with smooth weights on unit

disk graphs, Journal of Combinatorial Opt., 23 (4) (May 2012), 443-450.

Zou, F., Wang, Y., Xu, X., Li, X., Du, H., Wan, P. and Wu, W., 2011, New

approximations for minimum-weighted dominating sets and minimum-

weighted connected dominating sets on unit disk graphs, Theoretical

Computer Science 412(3), 198-208.

93

CURRICULUM VITAE

Züleyha AKUSTA DAĞDEVİREN

Address: International Computer Institute, Izmir/TURKEY.

Telefon: 05436914983

E-mail: zuleyhaakusta@gmail.com

Personal Information

Nationality: Turkish

Birth Date: 20.02.1987

Birth Place: Izmir

Education

September 2012- present, Ph.D. in Information Technologies,

 International Computer Institute, Ege University

September 2010 – June 2012, M.Sc. in Information Technologies,

 International Computer Institute, Ege University

September 2005 – June 2010, B.Sc. in Computer Engineering,

 Computer Engineering Department, Izmir Institute of Technology

Foreign Languages

Turkish: First Language

English: Advanced

Programming Languages

C/C++, Java, C#, Matlab, MIPS, Assembly.

Publications

Dagdeviren, Z.A., Aydin, D. and Cinsdikici, M., 2017, Two population-based

optimization algorithms for minimum weight connected dominating set,

Applied Soft Computing, 59:644-658.

Dagdeviren, Z.A., Oguz, K. and Cinsdikici, M., 2015, Automatic Registration

of Structural Brain MR Images to MNI Image Space, In proceedings of the

mailto:zuleyhaakusta@gmail.com

94

23
th

 Signal Processing and Communications Applications Conference (SIU),

Malatya, Turkey, pp. 359–362.

Dagdeviren, Z.A., Oguz, K. and Cinsdikici, M.G., 2014, Three Techniques for

Automatic Extraction of Corpus Callosum in Structural Midsagittal Brain

MR Images: Valley Matching, Evolutionary Corpus Callosum Detection

and Hybrid Method, Engineering Applications of Artificial Intelligence,

31:101–115.

Akusta, Z. and Kardas, G., 2011, A Case Study on the Development of

Electronic Barter Systems using Software Agents, In proceedings of the 5
th

Turkish National Software Engineering Symposium (UYMS 2011),

September 26-28, Ankara, Turkey, pp. 123-126.

Thesis

Dagdeviren, Z. A., Registration of the Structural MR Images of the Patients to

MNI Image Space, M.Sc. Thesis, Ege University, Izmir, Turkey, 2012 (in

Turkish).

Akusta, Z., Development of a B2B E-Commerce Software by Using Database

Technology, B.Sc. Thesis, Izmir Institute of Technology, Izmir, Turkey,

2010 (in English).

Other Academic Activities

TUBITAK 2211-C Schoolarship

Reviewers of Journals: Applied Soft Computing

 IET Image Processing

http://www.uyms.org.tr/2011/uyms2011.pdf
http://www.uyms.org.tr/2011/uyms2011.pdf

