EU GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

EGE UNIVERSITY

PhD THESIS

CONSTRUCTING GRAPH THEORETICAL
STRUCTURES USING META-HEURISTIC

ALGORITHMS

Ziileyha AKUSTA DAGDEVIREN

Supervisor : Prof. Dr. M. Serdar KORUKOGLU

International Computer Department

EGE UNIVERSITY GRADUATE SCHOOL OF NATURAL AND
APPLIED SCIENCE

(PHD THESIS)

CONSTRUCTING GRAPH THEORETICAL
STRUCTURES USING META-HEURISTIC
ALGORITHMS

Ziileyha AKUSTA DAGDEVIREN

Supervisor: Prof. Dr. M. Serdar KORUKOGLU

International Computer Department

Presentation Date: 01.12.2017

BORNOVA-IiZMIiR
2017

Zilleyha AKUSTA DAGDEVIREN tarafindan Doktora Tezi olarak sunulan
“Constructing Graph Theoretical Structures Using Meta-Heuristic Algorithms”
baslikli bu ¢alisma EU Lisansiistii Egitim ve Ogretim Yonetmeligi ile EU Fen
Bilimleri Enstitiisti Egitim ve Ogretim Yonergesi’nin ilgili hiikiimleri uyarinca
tarafimizdan degerlendirilerek savunmaya deger bulunmus ve 01/12/2017
tarihinde yapilan tez savunma sinavinda aday oybirligi‘eyeeldugw ile basarili
bulunmustur.

Jiiri ﬁyeleri:

Jiiri Bagkam | : Prof. Dr. M. Serdar KORUKOGLU
Raportor Uye : Prof. Dr. Aybars UGUR
Uye : Prof. Dr. Biilent TAVLI
Uye : Dog. Dr. Dogan AYDIN

Uye : Dog. Dr. Geylani KARDAS

EGE UNIVERSITESI FEN BILIMLERI ENSTITUSU
ETiK KURALLARA UYGUNLUK BEYANI

EU Lisansiistii Egitim ve Ogretim Yonetmeliginin ilgili hitkiimleri uyarinca
Doktora Tezi olarak sundugum “Constructing Graph Theoretical Structures Using
Meta-Heuristic Algorithms” bashikli bu tezin kendi calismam oldugunu,
sundugum tiim sonug¢, dokiiman, bilgi ve belgeleri bizzat ve bu tez galismasi
kapsaminda elde ettigimi, bu tez galismasiyla elde edilmeyen biitiin bilgi ve
yorumlara atif yaptigimi ve bunlar1 kaynaklar listesinde usuliine uygun olarak
verdigimi, tez ¢aligmasi ve yazimi sirasinda patent ve telif haklarini ihlal edici bir
davranmisimin olmadigini, bu tezin herhangi bir béliimiinii bu {iniversite veya diger
bir {iniversitede baska bir tez ¢alismas:1 ig¢inde sunmadifimi, bu tezin
planlanmasindan yazimina kadar biitiin sathalarda bilimsel etik kurallarina uygun
olarak davrandigimi ve aksinin ortaya ¢ikmasi durumunda her tiirlii yasal sonucu

kabul edecegimi beyan ederim.

01/12/2017

7

Ziileyha SI'A DAGDEVIREN

vii

OZET

UST-SEZGISEL ALGORITMALAR KULLANILARAK CiZGE
TEORIK YAPILARIN OLUSTURULMASI

AKUSTA DAGDEVIREN, Ziileyha

Doktora Tezi, Uluslararasi Bilgisayar Anabilim Dal1
Tez Danismant: Prof. Dr. M. Serdar KORUKOGLU
Aralik 2017, 94 sayfa

Cizge teorik yapilarin kullanimi sayesinde cesitli aglar tlizerinde pek c¢ok
onemli islem gerceklestirilebilmektedir. Bu yapilardan biri olan hakim kiimenin
telsiz duyarga aglarinda kiimeleme, saldir1 tespiti ve omurga olusturma; telsiz orgii
aglarinda ag gegitlerinin yerlestirilmesi; internet lizerinde bilgi geri getirimi i¢in
cok sayidaki dokiimanin 6zetlenmesi ve sorgu segilmesi gibi 6nemli uygulamalari

bulunmaktadir.

En kiiciik agirlikli bagl hakim kiimenin (EABHK) bulunmasi1 NP-Zor bir
problemdir. Bundan dolay1 yakinsama algoritmalar1 ve iist-sezgisel algoritmalar
polinom zamanda etkili sonucglar verebilmektedir. Literatiirde bu konu ile ilgili
cesitli caligmalar yapilmis olsa da iist-sezgisel algoritmalar kullanilarak yonsiiz
cizgeler i¢in EABHK bulunmasiyla ilgili bir ¢alisma yapilmamistir. Bu tez
calismasinda EABHK problemi icin iki farkli iist-sezgisel algoritma Onerilmistir.
Bu algoritmalar Hibrit Genetik Algoritma (HGA) ve Popiilasyon Tabanli Tekrarl
Acgozlii (PTTA) Algoritmadir. HGA, genetik arama ile a¢ggdzlii sezgisel yaklagimi
birlestiren bir kararli-durum algoritmasidir. PTTA algoritma her bir bireye bozma
ve a¢gozlii bir sekilde yeniden yapilandirma siirecleri uygulayarak popiilasyonu
iyilestirmektedir. Onerilen algoritmalarin performanslari diger acgozlii sezgisel ve
kaba kuvvet algoritmalari ile karsilastirilmistir. Onerilen algoritmalar ¢oziim

kalitesi ve uygulama siiresi agisindan ¢ok iyi performans gostermistir.

Anahtar sozciikler: En kiigiik agirlikli bagli hakim kiime, hibrit genetik
algoritma, popiilasyon tabanli tekrarli a¢gdzlii algoritma, yonsliz ¢izgeler, list-

sezgisel algoritmalar.

X

ABSTRACT

CONSTRUCTING GRAPH THEORETICAL STRUCTURES USING
META-HEURISTIC ALGORITHMS

AKUSTA DAGDEVIREN, Ziileyha

PhD in International Computer Department.
Supervisor: Prof. Dr. M. Serdar KORUKOGLU
December 2017, 94 pages

Through the use of graph theoretical structures, many important operations
can be performed on various networks. Dominating set which is one of these
structures, has many important applications such as clustering, intrusion detection
and backbone formation in wireless sensor networks; placement of gateways in
wireless mesh networks; summarizing multiple documents and selecting queries

for information retrieval on the internet.

Finding the minimum weighted connected dominating set (MWCDS) is an
NP-Hard problem. Hence, approximation algorithms and meta-heuristic
algorithms can give effective results in polynomial time. Although there are
numerous studies related to this subject in the literature, there is no study about
finding the MWCDS for undirected graphs using meta-heuristic algorithms. In
this thesis study, two different meta-heuristic algorithms are proposed for the
MWCDS problem. These algorithms are Hybrid Genetic Algorithm (HGA) and
Population-Based Iterated Greedy (PBIG) Algorithm. HGA is a steady-state
algorithm that combines a genetic search with a greedy heuristic approach. PBIG
algorithm improves the population by applying a deconstruction process and a
reconstruction process to each individual in a greedy way. The performances of
the proposed algorithms are compared with other greedy heuristics and brute force
algorithms. The proposed algorithms performed very well in terms of solution

quality and execution time.

Keywords: Minimum weighted connected dominating set, hybrid genetic
algorithm, population-based iterated greedy algorithm, undirected graphs, meta-

heuristic algorithms.

xi

ACKNOWLEDGEMENT

I would like to thank my advisor Prof. Dr. M. Serdar KORUKOGLU for his
valuable knowledge, expertise and guidance. I would like to thank my master
thesis advisor Assoc. Prof. Dr. M. Gokhan CINSDIKICI for his support and
motivation. I also want to thank Prof. Dr. Aybars UGUR and Assoc. Prof. Dr.
Dogan AYDIN for their suggestions and comments in thesis monitoring comittee

meetings.

I also thank Scientific and Technical Research Council of Turkey
(TUBITAK) for the BIDEB 2211-C program for the PhD scholarship.

Lastly, I would like to thank all my family for their endless love and
encouragement. Especially to my beloved mother for the support of every aspect
of my life, to my daughter for always cheering me up and to my son who will be
born soon. I would like to express appreciation to my husband for his endless

support and patience.

Xiii

;

LIST OF CONTENTS
OZET .ottt e Vil
ABSTRACT ..ottt ix
ACKNOWLEDGEMENT ..ottt Xi
LIST OF FIGURES ..ottt XV
LIST OF TABLESottt sttt ettt XX
LIST OF SYMBOLS AND ABBREVIATIONScccoooiiiiiiiiieneneseneeeee xxii
L.INTRODUCTIONc..ciiiiiiiiieniieieetesttesie ettt sttt sttt 1
1.1 Minimum Weight Connected Dominating Setc..ccccevieviinenniiniienennennens 1
1.2 Wireless Ad Hoc and Sensor Networks.........cccceceeieniinenieniiineenicnicnccicnee 4
1.3 Hybrid Genetic AIZOTItRMScoouiriiiiiiiiiiiiiiecceceeeeee e 6
1.4 Population-Based Iterated Greedy Algorithms.........c..cocevvieviiniiiiiniiencnnennne 8
1.5 Contributions of the TRESIS.......cc.ccevierininiiiiiiiieeceee 9
1.6 Organization of the TheSiS..........cocieiiiiiiiiiieeeeee e 10
2.RELATED WORKoootiitiiiiiieetee ettt 12
2.1 Centralized Dominating Set Algorithmscccooveeviviininiinieninceeeee, 12
2.2 Centralized Connected Dominating Set Algorithmscccceeevieviieniennn. 19

2.3 Distributed AIOTItRMSccoooiiiiiiiiiieiee e 21

X1V

LIST OF CONTENTS (continued)

2.4 Summary of AIOTItRMS.........ccoiiiiieiieeee e 23
3.PROPOSED ALGORITHMSccoioiiiiiiiiiiieeeeeeeee e 27
3.1 PTEliMINATIESccuvieiiiiiiieiieeiiete ettt ettt ettt et e sbeeeane e 27
3.2 Description of Hybrid Genetic Algorithmccccoceeviiiiniininninicniccnne 32
3.3 Description of Population-Based Iterated Greedy Algorithm........................ 41
3.4 Complexity Analysis of the Proposed Algorithmsccoeceeviiiiinnnnienn. 47
3.4.1 Complexity Analysis Of HGAcccoooiriiniiiiiiiieceecccc e 47
3.4.2 Complexity Analysis of PBIG Algorithm..........ccccoveiviniininniiiiniecne 50
4. PERFORMANCE EVALUATIONS ..ottt 53
4.1 Evaluation of Small-Size Problem Instancescccceecevvienieniniicniencnnene 57
4.2 Evaluation of Moderate-Size Problem Instances...........ccoceveeverieneencnnene 65
4.3 Evaluation of Large-Size Problem Instancescccccceevcieevieniienienieeinens 75
5.CONCLUSION ..ottt s 81
REFERENCES. ...ttt 86

CURRICULUM VITAE ..ot 93

XV

LIST OF FIGURES
Figure Page
1.1 An EXample DS 1
1.2a An EXample CDS ...t 2
1.2b An Example Induced Subgraph...........cccoocieiiiiiiiniiiiiiieee, 2
1.3 An Example WCDS ..ot 3
1.4 An Example Sensor NOdecoooeeeiieiieniiieniieiieie e 5
1.5 Components of @ Sensor NOdeccceeveeriiienireiiieniieeeeeeeese e, 5
1.6 An Example Sensor NetWorkccccoceeieneriinienenienicniecicnceeeen 6
3.1 An Example UG with @ Cut VerteXccoceeverueneenenienienenienenn 27
3.2 Example Operation of Cut Vertex Detection Algorithm 28
3.3 Example Operation of GR Heuristiccceceevvervenericncenenicnene 30
3.4 Example Operation of GD HeuristiC........cccccoveeviinieneniicnienenienene 31
3.5 Example Operation of GW Heuristicccoeceeriieriienieeniienieeienne, 32
3.6a Initial NEtWOTKc.ooiiviiiiiiiiiiiicee e 40
3.6b Insertion of nodes U and Occccoevieviininiinienenicnieeeeeee 40
3.6c Nodes N, R and W are INSErtedoovvvvvueiiieeeiiieiiiiiiiereeeeeeeenans 40
3.6d Redundant dominators M and N are removedcccceeeeveeeennenne. 40

3.7a Redundant node exampleccooeeeeiiiniiniiieniieieeeeee e 45

xvi

LIST OF FIGURES (continued)

Figure Page
3.7b Redundant node remove (Node R is removed)cccceeveernrennnee. 45
3.8 An example weighted graph..........cccooeviieeiiiiciiicce e 46
3.9a An example WCDSooiiiiiee e 47
3.9b Node N 1S TeMOVEoevieriiiiiieiieeiieeie et 47
3.9c Node W iS INSETLedceoveerueieiieiiieiieeiie ettt 47
3.9d Nodes M, U, T, S and R are removedc....coeevvveeeeeiiueeeeeeineeeen, 47

4.1 Weight results of small size problem instances (Shyu’s dataset —

TYPE 1) e e 58
4.1a Weight results versus node count (m=4m)........ccccceeveerueecreenvennncnn. 58
4.1b Weight results versus edge count (7=20)cccovervieeriieciieniennenns 58

4.2 Time results of small size problem instances (Shyu’s dataset —

TYPE 1)ttt ettt et 58
4.2a Time results versus node count (m=4n)cccceeeveeeecreeeeieeeeenennns 58
4.2b Time results versus edge count (7=20)........cccceevieriiieniirenieeniennnnns 58

4.3 Weight results of small size problem instances (Shyu’s dataset —

Xvil

LIST OF FIGURES (continued)

Figure Page

4.4 Time results of small size problem instances (Shyu’s dataset —
TYPC 2) i e e sre e e sreeseneeennnns O

4.4a Time results versus node count (mM=4m).........ccccceeeeveercreeecreeescrneenns 61
4.4b Time results versus edge count (7=20)cccceerreeriienienieeneenienns 61
4.5 Weight results of small size problem instances (Our dataset)........... 63
4.5a Weight results versus node count (m=4m)cccceeeeeeveenernneenennns 63
4.5b Weight results versus edge count (1=25)cccoeevvervenenicneenennne. 63
4.6 Time results of small size problem instances (Our dataset).............. 65
4.6a Time results versus node count (m=4m).........ccccceeeeveercvreeieeesirneenns 65
4.6b Time results versus edge count (7=25)cccevveeevienieeneenieeieeieens 65

4.7 Weight results of moderate size problem instances (Shyu’s dataset —

TYPE 1) e et ettt e 65
4.7a Weight results versus node count (m=57)cccccevvuieveerrerneennnnns 65
4.7b Weight results versus edge count (7=250)ccoevviieviinreeneennnnns 65

4.8 Time results of moderate size problem instances (Shyu’s dataset —
TYPE 1)t et 67

4.8a Time results versus node count (m=51).........cccceeevieeeceeeeireeeenneenns 67

4.8b Time results versus edge count (7=250)ccceevieriienieniieeriienieens 67

Xviii

LIST OF FIGURES (continued)

Figure Page

4.9 Weight results of moderate size problem instances (Shyu’s dataset —
LY 2) i e e e re e e sae e seraeenesaaenes 09

4.9a Weight results versus node count (m=5n)........c.cccccouvrrvrrerrvueeervennns 69

4.9b Weight results versus edge count (7=250)cccceviiiviiiniieniennenns 69

4.10 Time results of moderate size problem instances (Shyu’s dataset —

IRl . . WY AN A e 71
4.10a Time results versus node count (7=571)ccccccevvrervrrerrvureerreenns 71
4.10b Time results versus edge count (7=250)........cccceeriueerireiienvennncnn. 71

4.11 Weight results of moderate size problem instances (Our dataset).. 73

4.11a Weight results versus node count (m=4n).........c.ccccevvveevreenuenncnn. 73
4.11b Weight results versus edge count (#=200)ccceeeververerueneenne. 73
4.12 Time results of moderate size problem instances (Our dataset)..... 73
4.12a Time results versus node count (7=4mn)ccccceeereevreeeecueeeennenns 73
4.12b Time results versus edge count (7=200)........cccceervreerirerreenrennnnnns 73

4.13 Weight results of large size problem instances (Shyu’s dataset —
TYPE 1)ttt 76

4.13a Weight results versus node count (m=4n).........c.ccccervvrevreenrennnnn. 76

4.13b Weight results versus edge count (n=1000)..........cccecvrerrrenrennnn. 76

XiX

LIST OF FIGURES (continued)

Figure Page

4.14 Time results of large size problem instances (Shyu’s dataset —

0 0TI) TSP 77
4.14a Time results versus node count (7=4m)..........ccceceevrervveercrveercrneenns 77
4.14b Time results versus edge count (7=1000)cceceeerierieriiennnnns 77
4.15 Weight results of large size problem instances (Our dataset) 79
4.15a Weight results versus node count (m=4n)ccccceeveeruerieennnnns 79
4.15b Weight results versus edge count (7=1000)ccceeverevereennenee. 79
4.16 Time results of large size problem instances (Our dataset) 79
4.16a Time results versus node count (7=4m1).........cccceeeveerervrercreeencrneenns 79

4.16b Time results versus edge count (7=1000)c.ccecererirriierriennnnns 79

XX

LIST OF TABLES
Table Page
2.1 Summary of the studies in literatureccccceeeveveeeriieeenieeeeiee e, 24
4.1 Implementation PATAMELETSceeeveeerreeerrieerieeesreeeereeeereeeeeeeeenees 54
4.2 HGA PAramMELETSeeeeuiieiniiieeeiieeeiiie ettt ettt s e s 55
4.3 PBIG Parameters.......ccocuveiriiiieriieeniieeeiee ettt ettt s 56

4.4 Weight results of small size problem instances (Shyu’s dataset - Type
Deveerrn .. 0 . R S SR A 57

4.5 Time results of small size problem instances (Shyu’s dataset - Type
D viinini e P 59

4.6 Weight results of small size problem instances (Shyu’s dataset - Type
2 e ettt et et ettt na et nas 60

4.7 Time results of small size problem instances (Shyu’s dataset - Type

2 e ettt et et ettt b ettt nas 62
4.8 Weight results of small size problem instances (Our dataset)............ 63
4.9 Time results of small size problem instances (Our dataset) 64

4.10 Weight results of moderate size problem instances (Shyu’s dataset —

4.12 Weight results of moderate size problem instances (Shyu’s dataset —
PP 2) et ettt et et et e s aaeeea 70

xXXi

LIST OF TABLES (continued)

Table Page

4.13 Time results of moderate size problem instances (Shyu’s dataset—

4.15 Time results of moderate size problem instances (Our dataset).......... 75

4.16 Weight results of large size problem instances (Shyu’s dataset — Type
... AR R reerennnenees 76

4.17 Time results of large size problem instances (Shyu’s dataset — Type

4.18 Weight results of large size problem instances (Our dataset) 78

4.19 Time results of large size problem instances (Our dataset) 80

xXxii

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols Explanation

C Chromosome
C; i" bit of chromosome

depth(u) Depth value of node u

E Edge set

G Graph

G’ Subgraph

low(u) Low value of node u
n number of vertices
m number of edges

parent(u) Parent of node u

V Vertex set

Vv’ Vertex induced subgraph

Wy (V) Total weight of vertices in V' set

rw) Open neighborhood of node v
r'[v] Closed neighborhood of node v
rw), Open neighborhood of node v with color ¢

I'[v]. Closed neighborhood of node v with color ¢

xxiii

LIST OF SYMBOLS AND ABBREVIATIONS (continued)

Abbreviations

ACO Ant Colony Optimization

BF Brute force

CDS Connected Dominating Set

CPU Central Processing Unit

DFS Depth-First Search

DS Dominating Set

GCDS Geometric Connected Dominating Set
GD Greedy Degree

GR Greedy Ratio

GW GreedyWeight

HGA Hybrid Genetic Algorithm

IG Iterated Greedy

ILS Iterated Local Search

MCDS Minimum Connected Dominating Set
MDS Minimum Dominating Set

MWCDS Minimum Weight Connected Dominating Set
MWDS Minimum Weight Dominating Set

XXiv

LIST OF SYMBOLS AND ABBREVIATIONS (continued)

Abbreviations

PBIG Population-Based Iterated Greedy

PMBGA Probabilistic Model-Building Genetic Algorithm

SLS Subsidary Local Search

T-BF Time-limited Brute Force

UDG Unit Disk Graph

UG Undirected Graph

WCDS Weighted Connected Dominating Set

WDS Weighted Dominating Set

WSAN Wireless Sensor and Ad hoc Network

1.INTRODUCTION

In this section, minimum weight connected dominating set problem will be
introduced, then wireless ad hoc and sensor networks with their applications will
be given. Following this, hybrid genetic algorithm and population-based iterated
greedy algorithm concepts will be explained. Finally, the organization and the

contributions of the thesis will be presented.
1.1 Minimum Weight Connected Dominating Set Problem

Finding the dominating set (DS) and its variants in graphs is a very popular
graph theoretical problem which has many application areas such as clustering,
intrusion detection and backbone formation in wireless ad hoc and sensor
networks (WASNs) (Chen and Liestman, 2002) (Subhadrabandhu et al., 2004)
(Wu and Li, 1999), placement of gateways in wireless mesh networks (Aoun et
al., 2006), wavelength division multiplexing deployment in optical networks
(Houmaidi and Bassiouni, 2003), information retrieval to summarize multiple
documents (Shen and Li, 2010) and query selection to obtain data from web (Wu
et al., 2000).

Figure 1.1. An Example DS

A DS is a set of nodes S such that every node in the network graph G is a
neighbor of at least one element of S. The Minimum Dominating Set (MDS)
problem is to find the § with minimum cardinality for a given network graph.
More formally, MDS problem is finding a subset including vertices (nodes) S € V'

where each node in V' \ § is a neighbor of at least one node in S for a given

undirected graph G(V,E) where E is the set of bidirectional edges (links) and V" is
the set of vertices. The nodes in S set are called dominators and the other nodes
are called as dominatees or ordinary nodes. MDS problem is in NP-Hard
complexity class (Cormen et al., 2009). Therefore, optimum solutions cannot be
guaranteed in polynomial time. Heuristic and approximation algorithms can be
applied to obtain near optimal solutions. Hence, various studies have been
proposed to deal with this problem and many research studies are ongoing. Unless
P=NP can be proved, it is anticipated that the popularity of the problem will

continue.

An example graph including 10 nodes with one of its MDS S={5, 6, 10}
having 3 elements is given in Figure 1.1. Please notice that {2, 3, 5, 6, 8, 9, 10},
{2,3,4,6,9,10}, {1, 3,6, 8,10}, {5, 7, 8,9} are DSs with 7, 6, 5 and 4 elements,
respectively. Since the cardinalities of these sets are greater than 3 we cannot
identify these sets as MDS. Other alternative MDS sets are {5, 6, 8} and {5, 6,
10}. Clustering a WASN is a very popular application of MDS problem. The
members of MDS are cluster heads and other nodes are cluster member nodes. In
other words, dominators are cluster heads and ordinary nodes are cluster
members. By sending messages from one cluster to another rapidly and
hierarchically, the cluster heads will oversee routing within and through the
clusters. So, the aim of MDS problem in WASNSs is to find the smallest set of

efficient cluster heads.

b)

Figure 1.2. a) An Example CDS b) An Example Induced Subgraph

A connected DS is a subset of nodes where the elements of DS are

connected through each other. More formally, if S is a DS and each node pair

(vi,vj) € S has at least one path including only nodes in S, then we can call S as a
CDS. An alternative formal definition of CDS can be made by using induced
subgraph concept. An example CDS is given in Figure 1.2.a. A vertex induced
subgraph by I € V'is G’=(1, E’) in which E” is the set of edges {(vy, 1}): ((vx, V) €
E) A (v €1) A (v, €)}. An example vertex induced subgraph G’ from G such that
I={5, 6, 8} is given in Figure 1.2.b. A CDS S can be defined as a DS whose
induced subgraph G'=(V’=S, E) is connected. Finding Minimum CDS (MCDS) is
an NP-Hard problem similar to MDS (Cormen et al., 2009).

An example graph with MCDS S={5, 6, 8} is given in Figure 1.2.a. A={2, 3,
4,6,8,9} and B={2,5, 6,9, 10} are CDSs with 6 and 5 elements, respectively.
Since the MCDS has 3 elements, A and B are CDS but they are not MCDS. Other
alternative MCDS 1is {5, 6, 9}. CDSs provide many advantages in network
applications such as ease of broadcasting and constructing virtual backbones
(Subhadrabandhu et al., 2004). When CDS is used as a backbone in WASNS, the
data collected by the dominators can be relayed through CDS. For CDS
backbones with small size, the number of transmitted messages through the

backbone is smaller which results in energy-efficient operation.

Figure 1.3. An Example WCDS

Generally, WASNs compose of battery-powered nodes which we will
describe them in the following section in detail. Since the network lifetime
depends on the lifetime of nodes, the energy efficient operation is of paramount
importance. Transmission is the dominant factor of the energy consumption (Karl

and Willig, 2005). Since the nodes in S are responsible to carry network traffic,

they may run out of their batteries very earlier than other nodes. This situation
may result catastrophes such that the network traffic can be significantly reduced
when a dominator node connecting many other nodes fails. An important solution
to this problem is choosing the nodes having high energies as dominators. A
minimum weighted connected dominating set (MWCDS) backbone has been
applied to overcome this problem (Wang et al., 2005). Different from CDS
problem, MWCDS problem aims to minimize the total weight of the CDS. A
formal definition of MWCDS problem can be formally defined as follows. The
MWCDS problem is finding a CDS with minimum weight Wr(V) = Xp,ep w(v;)

where w is a function w:¥V—R" and D is the set of dominators.

An example MWCDS is given in Figure 1.3. Each node is numbered within
the circle with its node id. The numbers near to each node are its energy in joule
and its weight which is calculated as 1/energy. The set {5, 6, 8} is the only
MWCDS in this example which has 0.37 cost (weight) in total. The set {5, 6, 9} is
WCDS but not MWCDS because the total cost of this set is 0.40.

1.2 Wireless Ad Hoc and Sensor Networks

WASNSs are composed of ten to thousands of tiny sensor nodes which are
low cost and low power hardware (Akyildiz et al., 2002). Since these nodes can be
equipped with wireless transceivers, networked sensors can be realized. These
nodes generally have read access memory, read only memory, digital to analog
converter, analog to digital converter, universal asynchronous receiver transmitter,
interrupt controller and counter. Short range radio frequency, infrared, optical and
other transmission techniques can be applied on them. The sensors can be
interacted with the environment to sense the heat, light, acceleration and chemical
materials. We can summarize some general properties of the networked sensor

nodes as follows:

e Generally, sensor nodes are small to be deployed easily to the
environment. An example sensor node is given in Figure 1.4. They use low

power as their hardware and software technologies permits.

e Sensor nodes can process concurrently such as they can sense from

the environment at the same time they can execute a scheduled operation.

e Sensor nodes are designed as simple and low cost devices. Unlike
general purpose personal computers, generally sensor nodes are special

purpose devices.

Figure 1.4. An Example Sensor Node (https://www.comsys.rwth-
aachen.de/fileadmin/_migrated/pics/mica2dot.jpg)

Components of a sensor node can be seen in Figure 1.5. There are five
components of this design which are central processing unit (CPU), sensors, low

power transceiver, memory and power supply (Karl and Willig, 2005).

[Power Supply]

Sensors CPU Transceiver

Memory

Figure 1.5. Components of a Sensor Node

WASNS are composed of sensor nodes that are self-organizing. An example
WANSN is given in Figure 1.6 (Karl and Willig, 2005). As seen in this figure, the
data collected by a sensor node is relayed in a multi-hop manner over some other
sensor nodes to the sink node. The sink node is a gateway node collecting data
from other nodes and forwarding data to users. The sink node can send data
through Internet or a satellite network. The user can send configuration data to the

sensor network, thus the links between users and the sink node are bidirectional.

WASNSs can be embedded in the environment to sense various data, thus
they have lots of application types (Ning, 2005). One of the most important
applications is the habitat monitoring. In great duck island application, the
lifecycle of Storm Petre bird in great duck island is monitored by the researchers
from University of California Berkeley and Intel Research Laboratory
(Mainwaring et al., 2002). The PODS Project developed in Hawai University aims
to investigate the endangered plant species (Biagioni and Bridges, 2002). The
other popular application type of WASNSs is healthcare applications. Schwiebert et
al. (Schwiebert et al., 2001) used micro sensors to construct a prosthesis for blind
people. Other types of applications are remote patient monitoring and drug use
(Akyildiz et al., 2002). Also, WASNs can be used in home and office
applications. Srivastava et al.’s kindergarden application aims to interact with

children to teach various topics (Srivastava et al., 2001).

Sink Remote Users

Sensor Nodes

Figure 1.6. An Example Sensor Network
1.3 Hybrid Genetic Algorithms

Genetic algorithms (GAs) are optimization techniques that are inspired by
the principle of evolution through genetic process (McCall, 2005). The concept of
GA was proposed by John Holland (McCall, 2005). GA works on a population of
chromosomes artificially created strings. These strings are usually in binary form
and represent solution of problems. Each chromosome has a fitness value which
shows how good the solution is. A GA starts with randomly produced

chromosomes, selects chromosomes according to their fitness values and

combines chromosomes to generate new offspring. The combination process is

iterated until a stopping criterion is reached.

As aforementioned, in a GA, initially a random population is generated and
it is evolved with time. Each chromosome is scored with its fitness value.
Chromosomes with higher fitness values are preferred over the other ones.
Besides chromosomes with the worst fitness values may be removed from the
population. To diversify the population, offspring are produced from parent
chromosomes. Elitism method provides the selection of the parents as
chromosomes with the two highest fitness values. In roulette wheel method, the
chromosomes with higher fitness values get higher probability for being selected
as a parent. Child chromosome can be produced via single point crossover
operator in which a random point p in the chromosome data [0,n] is chosen, the
first part of the child chromosome [0,p] is produced by copying the [0,p] of the
first parent chromosome and the second part of first part of the child chromosome
(p,n] is produced by copying the (p,n] of the second parent chromosome. After a
child chromosome is produced, a mutation can be applied. Algorithm continues
until termination condition is met. An example algorithm is given in Algorithm
1.1.

Algorithm 1.1: An Example GA

1. Generate an initial random population of solutions.

2. Evaluate the fitness of all individuals.

3. while termination condition not met or generations not
run out

4. Select the parents by the roulette wheel method to
produce new individuals.

5. Apply single point crossover.

6. Apply mutation.

7. Evaluate fitness of new individuals.

8. Generate a new population by inserting new
individuals or replace low-fit parents with them.

9. end while

Hybrid GAs (HGAs) are based on genetic and other search methods that can
complement each other to achieve an optimization goal (El-Mihoub et al., 2006).

A local search method can be integrated with a GA to enhance search capabilities.

A local search method that is able to find local optimum can be integrated with a
GA to perform local and global search efficiently. This efficiency can be declared
as in terms of solution quality and the time needed to finish entire operation. An
efficient search method increases the fitness values of chromosomes. This
enhancement leads to reduce the standard deviation of the members of the
population. In this case, the hybrid algorithm can be still efficient even the
population size is small. In pure GAs, mutation and crossover operations may
result illegal solutions. When a problem specific search algorithm is integrated to
a GA, these illegal solutions are prevented. For example, an intelligent search
method can be used with a GA to recover infeasible solutions (Konak and Smith,
1999). Sometimes the calculation of fitness values can be complex and time
consuming (Jin, 2005). In this situation, an approximation based search method
can be used to estimate the fitness values. Crossover and mutation operations can
be replaced by problem specific methods to increase the quality of search
operation. For example, in probabilistic model-building genetic algorithms
(PMBGA) the crossover and mutation operations of a pure GA is replaced with a
model that is based on the estimation of promising solutions (Pelikan et al., 1999).
Compact genetic algorithm, population-based incremental learning, univariate
marginal distribution algorithm and bivariate marginal distribution algorithms are
examples of PMBGA. An efficient technique can be incorporated within a GA to

optimize control parameters to improve the search performance.

1.4 Population-Based Iterated Greedy Algorithms

An iterated local search (ILS) has three main components (Gonzalez, 2007).
Firstly, to find local optimum c, a subsidiary local search (SLS) procedure is used.
Secondly, to escape from local optimum, a perturbation procedure is executed.
Finally, to decide whether the procedure is continued with ¢, an acceptance
condition is used. An example ILS algorithm is given in Algorithm 1.2. ILS
algorithm is a very promising technique for solving various hard combinatorial

problems such as traveling salesman problem (Samet, 1990).

Greedy selection is a very widely used algorithmic technique that provides
many solutions to the well-known problems. Greedy selection is also at the heart
of iterated greedy (IG) algorithms which is a variant of ILS (Gonzalez, 2007). IG
differs from ILS that perturbation and local search phases are changed with
constructive and destructive search. In a destruction phase, solutions are removed

randomly or according to a heuristic. After this phase has accomplished, a partial

solution is generated from a solution. In a construction phase, a new solution is
added according to a greedy heuristic. Similar to ILS, IG has an acceptance
condition to decide whether the new solution will be used in further iterations.
Population-based IG (PBIG) is a variant of IG in which the algorithm works on
population of candidate solutions. IG and its variants are very efficient techniques
and provide state-of-the-art performance for flow-shop scheduling (Linde et al.,
1980) and set covering (Xiang et al., 1994; Gray et al., 1980) problems.

Algorithm 1.2: An Example ILS.

1. Construct initial candidate solution c.

2. Execute SLS on c.

3. while termination condition is not met

4. t < c.

5. Execute perturbation on c.

6. Execute SLS on ¢ based on acceptance condition.
7. Keep correvert ¢ € t.

8. end while

1.5 Contributions of the Thesis

The contributions of this thesis are listed as follows:

e We proposed a hybrid genetic algorithm which incorporates a greedy
heuristic with a genetic approach to solve MWCDS problem. The
algorithm runs on a population of solutions and aim to improve the
solution quality by applying cross over, mutation, repair and minimization

operations sequentially and iteratively.

e We proposed a population-based iterated greedy algorithm which executes
iteratively by applying destruction and construction phases. This strategy
can generally improve the solution quality by preventing getting stuck in a

local minimum solution.

e Proposed algorithms are the first population-based optimization algorithms
for MWCDS problem on undirected graphs.

10

e We analyzed the time complexities of HGA and PBIG algorithms. We
provided implementations of the proposed algorithms, greedy heuristics
and brute force algorithms in Java. Greedy heuristics are Greedy Ratio
(GR), Greedy Weight (GW) and Greedy Degree (GD). Brute force
algorithms are a pure implementation named as Brute Force (BF), and a
time-limited version of BF (T-BF).

e We used two datasets of graphs such that the first dataset is a popular
dataset used by the researchers and the second dataset is generated in this
thesis. The reason why we generated the second dataset is some of the

graphs in first dataset are unconnected.

e From our performance evaluations, we obtained that GR has the best
performance in terms of MWCDS weight among the other greedy
heuristics (GD and GW). These greedy heuristics have very close
execution times. Our proposed algorithms have significantly better weight
performance than GR for nearly all problem instances. Additionally, our
proposed algorithms can find optimum results same as BF for small-size
problem instances, at the same time our algorithms run very faster than
BF. Moreover, when we compared the performances of our algorithms and
T-BF, we found that our algorithms outperform T-BF in terms of both
WCDS weight and execution time.

e Our measurement results taken from the proposed algorithms show that
PBIG performs better in terms of WCDS weight and HGA is faster.

e The materials given in thesis are published in the following publication:
Zuleyha Akusta Dagdeviren, Dogan Aydin, Muhammed Cinsdikici, Two
Population-based Optimization Algorithms for Minimum Weight
Connected Dominating Set Problem, Applied Soft Computing, 59, pp. 644-
658, Elsevier (Dagdeviren et al., 2017).

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

In Section 2, related work is given. In this section, centralized dominating

set algorithms, centralized connected dominating set algorithms and distributed

javascript:void(0)
javascript:void(0)
javascript:void(0)

11

algorithms for both dominating set and connected dominating set problems are
mentioned and compared with proposed algorithms. Some important
algorithms are explained in detail. At the end of this section, algorithms are

summarized and listed in a table.

Proposed algorithms HGA and PBIG are described in Section 3. Firstly,
background information related to the proposed algorithms are given. After
that, the steps of the algorithms are explained in detail. Examples are given to
show the operations of the proposed algorithms. Lastly, time complexities of

the algorithms are analyzed in this section.

In Section 4, extensive performance evaluations of the proposed
algorithms with their counterparts are given. This section is divided into
Evaluation of Small-Size Problem Instances, Evaluation of Moderate-Size
Problem Instances and Evaluation of Large-Size Problem Instances. The last
section is Section 5 in which conclusions are drawn by summarizing main

findings.

12

2.RELATED WORK

This section reviews the existing studies as centralized dominating set
algorithms, centralized connected dominating set algorithms and distributed

algorithms. At the end of the section, a summary of the literaure is given.
2.1 Centralized Dominating Set Algorithms

A greedy heuristic algorithm for set-covering problem is proposed by
Chavatal (1979). The algorithm continues until all points are covered. For each set
|Pj| / C; ratio is calculated where C;is the cost and |P;| is the number of the points
covered. The set which has the minimum ratio is selected in each step. We apply
this heuristic in our proposed algorithms, because this heuristic can be used in
constructing a weighted dominating set. For the minimum weighted dominating
set problem, the approximation ratio of this heuristic becomes O(log Wr(S))
where Wr(S) is the total weight of the optimum solution set S. The algorithm is
given in Algorithm 2.1.

Algorithm 2.1: Chavatal’s Algorithm

1. input: Sets of Points {Sy, ... ,S,}, Costs of Sets {Cy,
oesCn}

2. initially

3. P;: the number of points covered by set ;.

4. C;: the cost of set ;.

5. repeat

6. For each set §; calculate the weight ratio of R; as C/

P.

7. Choose the set §j with the minimum R;j and cover the
points in Sj.

8. until all points are not covered

9. Return chosen sets

13

Algorithm 2.2: Potluri and Singh’s Main Algorithm

1. input: p. (probability of crossover),

2. Generate initial population and set as P

3. f« fitness of best member of P

4. m < Best member of P

5. iteration_count < 0

6. while iteration count < MAX do

7. if p <p.then

8. Select b; and b, by binary tournament

9. X« crossover(b;, by)

10. X« mutate(X)

11. else

12. Generate X randomly

13. end if

14. X« Repair Procedure(X) //see Algorithm 2.3
15. X« Minimize Procedure(X) //see Algorithm 2.4
16. if X is unique then

17. Remove the worst member of population P
18. Add X'to the population P

19. if fitness of X < fthen

20. f < Fitness of X

21. m—X

22. end if

23. iteration_count < iteration_count +1

24. end if

25. end while

26. Return m

Jovanovic et al. (2010) propose an ant colony optimization (ACO) algorithm
to apply for the minimum weight dominating set problem. Their algorithm is
compared with the greedy algorithm for different edge densities, weight
distributions and node counts. The obtained results present that the algorithm is
better than the greedy approach. Potluri and Singh (2013) propose hybrid
metaheuristic algorithms for minimum weight dominating set problem on

undirected graphs. The main algorithm is given in Algorithm 2.2. In this

14

algorithm, firstly an initial population of chromosomes is generated. Then, for

MAX number of iteration times the following operations are applied.

Algorithm 2.3: Potluri and Singh’s Repair Procedure

1. input: p; (probability of repair)

2.T—V\X

3.if p <p; then

4. while X is not a dominating set do

5. maximum <0

6. forr € T'do

7 if maximum < W(¢) / w(¢) then // w(¥) is the
weight of node 7. W(¥) is the total weight of the

dominatee neighbors of node .

8. maximum «— W(t) / w(t)
9. V<t

10. end if

11. end for

12. X—XUv

13. T—T\v

14. end while

15. else

16. while X is not a dominating set do
17. v « Select randomly from T
18. X—XUvy

19. T=T\v

20. end while

21. end if

22. Return X

A new chromosome is generated either by applying crossover to two
chromosomes that are selected by binary tournament selection, or generating
randomly. The generated chromosome is repaired to provide a weighted
dominating set from this solution. After that, the chromosome is minimized in
order to remove the redundant nodes in minimum weighted dominating set. If the
generated chromosome does not exist in the population, the worst member of the

population is removed and the generated chromosome is added to the population.

15

At the end of the algorithm, the chromosome having the maximum fitness value is

returned as solution.

Algorithm 2.4: Potluri and Singh’s Minimize Procedure

1. input: p, (probability of deletion)
2. S is the set of dominators where the neighbors of each
element of S is covered by other dominators.
3. while S # @ do
4. if p<p, then
r«— arg max es w(f) / d(t) // d(¢): degree of node ¢
else
r «— Select randomly from S
end if
X—X\r
10. recalculate S
11. end while
12. Return X

e ® AW

Potluri and Singh’s Repair Procedure is given in Algorithm 2.3. In this
algorithm, a dominating set is constructed from a partial solution. The algorithm
either repairs the partial solution by adding the node having the maximum weight
ratio to the partial solution, or by adding a random node to the partial solution.
This operation iteratively continues until the partial solution becomes a full
solution, in another word, a dominating set. Although a dominating set is
constructed after repairing the solution, redundant nodes may exist in the

dominating set.

Potluri and Singh’s Minimize Procedure is given in Algorithm 2.4.
Redundant nodes are removed in this procedure. A redundant dominator is a
dominator whose all ordinary nodes are covered by other dominators. In this case,
if this redundant dominator is removed from the dominating set, the remaining
dominators still constitute a dominating set. In Minimize Procedure given in
Algorithm 2.4, firstly redundant nodes are identified. Then, the algorithm either
removes the redundant dominator having the greater w(#)/d(¢) ratio or removes a

redundant dominator randomly. After each removal, the set of redundant

16

dominators are recalculated. If there are no redundant nodes, the algorithm quits

from the operation. Otherwise, the operation continues iteratively.

Algorithm 2.5: Bouamama et al.’s Main Algorithm

1. input: population_size, probability, determinism_rate

2. Generate initial population w.r.t input population size
and set as S // see Algorithm 2.6

3. while termination condition is not true do

4. S; <0

5 for each C; € Sdo

6. C/"—PartiallyDestroy(C;, probability)

7 C/"—GreedyWeightedVertexCover(C,", determinism
_rate) // see Algorithm 2.7

8. S, <—Su{C"}

9. end for

10. S<—Accept(S,S))

11. end while

12. Return argmin{ weight(Ci) | Ci € S, =1, . . .,

population_size}

Nitash and Singh (2014) propose an artificial bee colony algorithm for
solving minimum weight dominating set problem for undirected weighted graphs.
The results of the algorithm show that their algorithm performs better than other
metaheuristics in literature. Bouamama et al. (2012) propose a population-based
iterated greedy (PBIG) algorithm for tackling the minimum weight vertex cover
problem on vertex-weighted undirected graphs. The aim of vertex cover problem
is to find a set of vertices C such that every edge in graph is incident to at least
one vertex in C. Vertex cover problem resembles the dominating set problem and
it has various applications such as clustering, backbone formation and link
monitoring in ad hoc networks. Bouamama et al.’s Main Algorithm is given in
Algorithm 2.5. The algorithm starts with generating an initial population. This
population generation algorithm is given in Algorithm 2.6. The algorithm
proceeds by partially destroying and reconstruction of each solution in the
population. These new solutions are added to a new population. After that, the
new population and the old population are merged. These operations are
iteratively executed until the termination condition is satisfied. At the end of the

17

algorithm, the solution having the minimum weight is returned. Bouamama et al.
assess the performance of their algorithm on all benchmark instances that have
been considered by Shyu et al. (2004).

Algorithm 2.6: Bouamama et al.’s Generatelnitial

Population Procedure

1. inputs: population_size

2.50

3.Co 0

4.for i=1, . .., population size do

5. C; « GreedyWeightedVertexCover(Cy, determinism
_rate) // see Algorithm 2.7

6. S—SuU{C}

7. end for

8. return S={C;, C», . . ., Cpoputation size}

The GreedyWeightedVertexCover Procedure of Bouamama et al.’s Vertex
Cover Algorithm is given in Algorithm 2.7. In this algorithm, firstly the set of
nodes which are incident to uncovered edges are identified. While this set is not
empty, the node having the smallest weight or the node having the second

smallest weight is removed from this set and added to the vertex cover.

After vertex cover is constructed, the redundant nodes are removed from the
vertex cover. A redundant node is a node which is in vertex cover and whose all
edges are covered by other nodes. While redundant node set is not empty, the
node having the greatest weight or the node having the second greatest weight is
removed from the redundant node set. A randomized version of PBIG algorithm is
proposed by Bouamama and Blum (2015) for constructing minimum weight

dominating sets.

Zhu et al. (2012) propose the first polynomial time approximation algorithm
that achieves a (1+¢)-approximation for any £€>0 to solve the minimum weighted
dominating set problem with smooth weights on unit disk graphs. A hybrid self-
adaptive evolutionary algorithm is proposed by Lin (2016) for formulating the

minimum weight dominating set.

18

Although the mentioned approaches in this chapter can be used to construct

weighted dominating sets in WSNs, they do not provide a backbone structure

since WCDS formation is not maintained.

Algorithm 2.7: Bouamama et al.’s GreedyWeighted

VertexCover Procedure

1. Inputs: solution, determinism_rate

2. U « Set of nodes that are not in vertex cover. Each node

in this set is incident to at least one uncovered edge.
3. while U #0 do

vi<—argmin{weight(v) | v € U}

vy «—argmin{weight(v) |v € U\ {v;}}
probability < generate random probability

if probability < determinisim_rate then v, «—v;
else v, <,

end if

solution«—solution U{vy }

. Recalculate U

12. end while
13. R < Set of nodes that are in vertex cover. All edges of

each node in this set should be covered by two nodes.
14. while R #0 do

15.
16.
17.
18.
19.
20.
21.
22.

vi<—argmax {weight(v) | v € R}

vy«—argmax {weight(v) | v € R\{v,}}
probability < generate random probability

if probability < determinisim_rate then v «—v;
else v, «<—v;

end if

solution«—solution \ {vp, }

Recalculate R

23. end while

24. Return solution

19

2.2 Centralized Connected Dominating Set Algorithms

CDS is a very popular graph theoretic structure for WASNSs since it can be
very useful in backbone formation operation. Unit disk graph (UDGQG) is used in

WSANSs when the transmission range of a node is assumed to be an ideal circle.

A genetic algorithm for power aware minimum CDS (MCDS) problem in
WASNSs is proposed by Kamali and Safarnourollah (2006). Their algorithm is
used for if there is any power aware CDS with size £ on a UDG. A genetic
algorithm is proposed by More and Mangalwede (2013) for CDS problem in
WSANs modeled as UDG. Zou et al. (2009) propose two approximation
algorithms for MWDS and MWCDS problems on a unit disk graph. A (4 +¢)-
approximation algorithm for an MWDS based on a dynamic programming
algorithm for a Min-Weight Chromatic Disk Cover is presented. They also
propose a (l+e)-approximation algorithm for the connecting part by showing a
polynomial-time approximation scheme for a Node-Weighted Steiner Tree
problem when the given terminal set is c-local and thus obtain a (5+¢)-

approximation algorithm for an MWCDS.

Khalil and Ozdemir (2015a) propose a genetic algorithm to construct MCDS
on UDGs. Another study (Khalil and Ozdemir, 2015b) is similar the previous one.
The only difference between them is the consumed energy while nodes are
sending messages to sink is not minimized; instead the data reliability between the
nodes in CDS and the dominatees is aimed. The aim of this study is minimizing
the number of nodes in CDS and the consumed energy while sending messages to
sink.

The algorithms mentioned so far in this section failed to model the real
wireless transmission that is not an ideal circle in most cases such as interference
and noise are present (Khun et al., 2003). Our proposed algorithms run on UG
model which can capture the features of real wireless transmission better than the
UDG model.

Tree Growing Algorithm is proposed for CDS problem by Guha and Kuller
(1998). Their algorithm is an efficient approximation algorithm constructing a
CDS on UGs. The nodes are given colors as BLACK, GRAY and WHITE where
BLACK is a dominator node, GRAY is an ordinary node with having at least one
BLACK neighbor and WHITE is an ordinary node without having a BLACK

20

neighbor. The algorithm uses a heuristic which considers the number of WHITE
neighbors. All nodes in graph are WHITE initially. The node having the
maximum number of WHITE neighbors is selected as dominator. Then its color
becomes BLACK and its neighbors are colored GRAY. To provide connectivity
between BLACK nodes, the following selections are made from GRAY nodes.
The selection criterion is again the maximum number of WHITE neighbors. The
selected nodes are colored BLACK and its neighbors are colored GRAY. These
steps repeat until all the nodes are dominated which means there is no WHITE

node in the graph. The algorithm is given in Algorithm 2.8.

Algorithm 2.8: Guha’s Connected Dominating Set
Algorithm

1. Definition of scan operation: Let node u be a GRAY
node. First color node © BLACK and then color WHITE
neighbors of node u GRAY.

2. Definition of the gain of a scan operation: Number of
nodes which are colored GRAY

3. Color all nodes WHITE

4. Color the node v having the greatest degree BLACK and
color node v’s neighbors GRAY

5. while there are WHITE nodes do

6. Apply the scan operation having the largest gain

7. end while

A memetic algorithm for the minimum weighted edge dominating set
problem is proposed by Abdel-Aziz et al. (2013). An edge (1, v) in G dominates
itself and any other edge adjacent to (u, v). An edge dominating set is a set of
edges which dominates all the other edges in the graph G. In this algorithm, three
fitness functions are used and a search method is developed. In our study, we aim
to construct node weighted connected dominating set instead of edge weighted

dominating set since the main goal is to select backbone nodes with high energy.

Alkhalifah and Wainwright (2004) propose a genetic algorithm that can be
applied to different graph theoretical problems such as geometric CDS (GCDS)
problem for wireless networks. Their approach is called as the nearest four

neighbors heuristic that can be applied on traveling tourist man, capacitated k-

21

center and capacitated p-median problems. Although this algorithm performs well
in constructing GCDS, the main drawback of this study is the nodes are not

weighted thus energy-efficient backbone construction is not maintained.

Another ACO algorithm with pheromone correction strategy is proposed by
Jovanovic and Tuba (2013) for constructing MCDSs. Their algorithm is simple
one-step ACO method based on greedy heuristic. This heuristic is based on
pheromone correction strategy. Yu et al. (2016) propose an algorithm for
formulating CDSs in cognitive radio networks. Liu et al. (2016) propose the first
constant factor approximation algorithm for constructing minimum-sized partial
CDSs in growth-bounded graphs. A 5-approximation algorithm to solve CDS
problem for WSANSs is proposed by Al-Nabhan et al. (2016). He et al. (2011)
propose a genetic algorithm for constructing a reliable minimum CDS in
probabilistic wireless networks. A genetic algorithm for load-balanced CDS
construction in WSANSs is proposed by He et al. (2012). Gendron et al. (2014)
propose benders decomposition, branch-and-cut and hybrid algorithms for MCDS

problem.

The algorithms mentioned in this chapter generally aim to minimize the size
of CDS; the nodes are unweighted so that energy-efficient backbone formation is

omitted.

2.3 Distributed Algorithms

Wang et al. (2005) propose a distributed low-cost backbone formation
algorithm for WASNs. The algorithm has two phases. In the first, a weighted
maximal independent set algorithm is constructed. This algorithm is based on
Chatterjee’s algorithm (Chatterjee et al., 2002). First phase of Wang et al.’s
algorithm is given in Algorithm 2.9. Initially, all nodes are WHITE. The nodes
having the lowest weight among their neighbors send lamDominator message to
their neighbors and become a PossibleDominator. If a node receives an
lamDominator message to one of its neighbors, it colors itself GRAY and it sends
an lamDominatee message. When a WHITE node receives an lamDominatee
message, it deletes the sender of this message from the list of WHITE nodes and
sends an lamDominator message and becomes a PossibleDominator if it has the
minimum weight among its WHITE neighbors. At the second step of the first
phase PossibleDominator nodes learn the weights of its neighbors at most 2 hops

away from them. Then, each PossibleDominator node applies a set cover based

22

method to cover itself and its one-hop neighbors. If a PossibleDominator finds
that its one-hop neighbors including itself can be covered by other nodes with less
total weight it quits becoming a PossibleDominator. Otherwise, this
PossibleDominator node becomes a Dominator. At the end of the first phase,

Dominator nodes constitute a DS but not definitely a CDS.

At the second phase, dominator nodes are connected by selecting new
dominator nodes. In this phase, dominator nodes which are at most 2 hops away
learn the costs of the paths between each other. During this operation, ordinary
nodes relay the messages of the dominators. The cost between two dominator
nodes is found by summing the weights of ordinary nodes between these
dominators. After dominator nodes learn the costs, they execute a distributed
minimum spanning tree algorithm. The second phase of Wang et al.’s algorithm is

given in Algorithm 2.10.

Algorithm 2.9: First Phase of Wang et al.’s Algorithm

1. Find a minimal maximal independent (/) set given given
by Chaterjee. Let dominators be the elements of /.

2. Each dominator node d executes a set cover algorithm on
neighborhood sets (each neighborhood set is identified by the id
of that node) of the graph G’=(V",E"’) in which V'’ is the set of all
nodes at most 2 hops away from node v. E’ is the set of edges
connecting nodes in V'’ excluding the edges between nodes x and
y where x and y are two hops away from d.

3. if node d is not included in the solution set

4. node d quits from dominating set

5. send a message to each node in the solution set to
inform that they are dominators.

6. end if

23

Algorithm 2.10: Second Phase of Wang et al.’s
Algorithm

1. A graph H=(X,Y) is constructed where X is the set of

dominator nodes and Y is the set of edges between dominator

nodes which are at most 2 hops away from each other and only
minimum cost paths between each other are included in Y.
2. Dominator nodes run a distributed minimum spanning

tree algorithm on H.

An intelligent algorithm based on distributed learning automata is proposed
by Torkestani and Meybodi (2010a) for constructing backbone in wireless ad hoc
networks. Torkestani and Meybodi (2010b) propose another distributed learning
automata approach for clustering WSANs. An algorithm based on learning
automata is proposed by Torkestani and Meybodi (2012) for finding MWCDS in
stochastic graphs. Ramalakshmi and Radhakrishnan (2015) study on WDS based
routing for ad hoc communications in emergency and rescue scenarios. For a
detailed survey of these studies please refer to Yu et al (2013). Since we focus on
the design and implementation of central algorithms in this thesis, we omit
distributed approaches.

2.4 Summary of Algorithms

The algorithms given in Section 2 are summarized in Table 2.1. The
algorithms are sorted with respect to the date. Type of the algorithms, target
problems, the graphs that algorithms running on and the locality types of

algorithms (centralized/distributed) are given.

24

Table 2.1. Summary of the studies in literature

Paper Type of the Target Graph Type | Locality
Algorithm Problem Type
Chavatal, Approximation | Minimum Designed for Centralized
1979 Algorithm Weight Set Cover | Set Data
Structure. Can
be used in
Node Weighted
Undirected
Graph.
Guha and Approximation | Minimum Node Weighted | Centralized
Khuller, Algorithm Weight Undirected
1998 Connected Graph
Dominating Set
Alkhalifah | Genetic Minimum Undirected Centralized
and Algorithm Connected Graph
Wainwright Dominating Set
, 2004
Shyu et al.,, | Ant Colony Minimum Node Weighted | Centralized
2004 Algorithm Weight Vertex Undirected
Cover Graph
Wang et al., | Approximation | Minimum Node Weighted | Distributed
2005 Algorithm Weight Unit Disk
Connected Graph
Dominating Set
Kamali and | Genetic Minimum Unit Disk Centralized
Safarnourol | Algorithm Connected Graph
lah, 2006 Dominating Set
Zou et al., Approximation | Minimum Node Weighted | Centralized
2009 Algorithm Weight Unit Disk
Dominating Set, | Graph
Minimum
Weight
Connected
Dominating Set
Jovanovic Ant Colony Minimum Node Weighted | Centralized
etal., 2010 | Algorithm Weight Undirected
Dominating Set Graph
Torkestani | Learning Minimum Undirected Distributed
and Automata Connected Graph
Meybodi, Dominating Set

2010a

25

Paper Type of the Target Graph Type | Locality
Algorithm Problem Type
Torkestani | Learning Minimum Weighted Distributed
and Automata Weight Undirected
Meybodi, Connected Graph
2010b Dominating Set
He et al., Genetic Minimum Probabilistic Centralized
2011 Algorithm Connected Network
Dominating Set
He et al., Genetic Connected Undirected Centralized
2012 Algorithm Dominating Set Graph
Torkestani, | Learning Minimum Stochastic Distributed
2012 Automata Weight Graph
Connected
Dominating Set
Bouamama | Population- Minimum Node Weighted | Centralized
etal., 2012 | based Iterated | Weight Vertex Undirected
Greedy Cover Graph
Algorithm
Zhu et al., Approximation | Minimum Node Weighted | Centralized
2012 Algorithm Weight Unit Disk
Dominating Set Graph
Jovanovic Ant Colony Minimum Undirected Centralized
and Tuba, Algorithm Connected Graph
2013 Dominating Set
Abdel-Aziz | Genetic Minimum Edge Edge Weighted | Centralized
etal, 2013 | Algorithm Weighted Undirected
Dominating Set | Graph
More and Genetic Minimum Unit Disk Centralized
Mangalwed | Algorithm Connected Graph
e, 2013 Dominating Set
Potluri and | Hybrid Genetic | Minimum Node Weighted | Centralized
Singh, 2013 | Algorithm and | Weight Unit Disk
Ant Colony Dominating Set Graph
Algorithm
Gendron et | Branch and Cut | Minimum Undirected Centralized
al., 2014 And Hybrid Connected Graph
Algorithm Dominating Set
Nitash and | Ant Colony Minimum Node Weighted | Centralized
Singh, A., Algorithm Weight Undirected
2014 Dominating Set Graph

26

Paper Type of the Target Graph Type | Locality
Algorithm Problem Type
He et al., Multi-objective | Minimum Probabilistic Centralized
2015 Genetic Connected Network
Algorithm Dominating Set
Ramalaksh | Heuristic Minimum Node Weighted | Distributed
mi and Algorithm Weight Undirected
Radhakrish Connected Graph
nan, 2015 Dominating Set
Khalil and | Genetic Minimum Unit Disk Centralized
Ozdemir, Algorithm Connected Graph
2015a Dominating Set
Khalil and | Genetic Minimum Unit Disk Centralized
Ozdemir, Algorithm Connected Graph
2015b Dominating Set
Bouamama | Randomized Minimum Node Weighted | Centralized
and Blum, | Population- Weight Undirected
2015 based Iterated | Dominating Set Graph
Greedy
Algorithm
Al-Nabhan, | Approximation | 3-Connected Unit Disk Centralized
2016 Algorithm Dominating Set Graph
Lin, 2016 Hybrid Minimum Node Weighted | Centralized
Evolutionary Weight Undirected
Algorithm Dominating Set Graph
Liuet al., Approximation | Minimum Partial | Growth- Centralized
2016 Algorithm Connected Bounded Graph
Dominating Set
Yuetal., Heuristic Connected Unit Disk Centralized
2016 Algorithm Dominating Set Graph

27

3.PROPOSED ALGORITHMS

In this section, the preliminaries are given firstly. Then, the proposed two
meta-heuristic algorithms are given in detail. The complexity analysis of the

proposed algorithms is explained in the last subsection.

3.1 Preliminaries

If the removal of a vertex disconnects a graph, we call that vertex as a cut
vertex. An example UG is given in Figure 3.1 where node 4 is the cut vertex.
When node 4 is removed from the graph, there will be two disconnected
components as: {1, 2,3} and {5, 6, 7, 8}.

Figure 3.1. An Example UG with a Cut Vertex

Cut vertices can be detected by Hopcroft and Tarjan’s linear time algorithm
(Hopcroft and Tarjan, 1974) which is based on depth-first search (DFS) algorithm.
The algorithm starts from a root node. In this algorithm each node v is associated
with parent, depth and low values. The parent(v) of node v is the node that is
visited just before node v. The depth(v) of node v is found as
depth(v)=depth(parent(v))+1 where the depth value of the root is 1. The depth
value of node v indicates the distance of node v to the root in the DFS tree. The
low(v) of node v is found as minimum{depth(v), the low values of children of
node v, the depth values of node v’s neighbors excluding node v’s children and

parent(v)}. The low value of node v indicates the minimum depth value of the

28

node that is reachable from subtree of node v. The main steps of the Hopcroft and

Tarjan’s cut vertex detection algorithm is given in Algorithm 3.1.

Algorithm 3.1: Tarjan’s Cut Vertex Detection Algorithm
1.DFS is executed.
2.The root node is a cut vertex if it has more than one child in
the DFS tree.
3.The node v (which is not a root node) is a cut vertex if at least
one of its children u has the low(u) > depth(v) property.

Figure 3.2. Example Operation of Cut Vertex Detection Algorithm

This algorithm can be implemented with modifications to the standard DFS
algorithm and it has O(V+E) time complexity. An example operation of the cut
vertex detection algorithm is given in Figure 3.2. Node 1 is the root node which is
shown with double circles. Parent-child relationships are depicted with directed
edges. Other edges (dashed edges) are not included in DFS tree but they belong to
the graph. The visiting order of nodes in DFS tree is 1, 2, 4, 3, 5, 6, 7 and 8. Since
node 8 is directly connected to node 4 and these nodes do not have a parent-child
relationship, the low value of node 8 is 3. Because node 7’s, node 6’s and node
5’s subtrees include node 8, their low values are 3. Since the depth value of node
1 is 1, the low value of node 3 is 1. Because node 2’s and node 4’s subtrees
include node 3, the low values of node 2 and node 4 are 1. Since the depth value
of node 1 is 1, its low value is equal to 1. Node 4 is a cut vertex in this graph

because node 5’s low value is 3 which is equal to the node 4’s depth value.

29

Moreover, node 4 is the only cut vertex in this graph, because this condition

cannot be satisfied by another node.

In this thesis, colors are used to define the states of the nodes. The color of
node u is defined with color(x). A dominator node u is BLACK. A dominatee
node without having a BLACK neighbor is WHITE. Other dominatee nodes
(dominatee nodes having at least one BLACK neighbor) is GRAY. As
aforementioned, a CDS is constructed when there is no WHITE node and the
induced subgraph of BLACK nodes are connected. I'(u), is defined as I'(u); =
{t € T(u):color(t) = k and is used to indicate the node u’s open neighborhood
with color k. Node u’s closed neighborhood with color k is defined as I'[u], =

{t € I'(w) U {u}: color(t) = k}.

Greedy ratio (GR), greedy weight (GW) and greedy degree (GD) heuristics
are implemented for MWCDS formation in this thesis. In these algorithms, a
WHITE node is chosen at the first step and GRAY nodes are chosen at the
following steps. In this manner, the algorithm resembles the Tree Growing
Algorithm. The algorithms terminate when there are no WHITE nodes left. The
selection policies of algorithms are different from each other. In GR, the node
which has the smallest weight ratio according to the Chavatal’s heuristic is
selected. In Equation 1, the heuristic function of GR (fgz:/—R) for node u is

given.

for(u) = ——W__ (1)

W (C[ulwuiTe)

In Equation 1, the heuristic function of GR (fgz:¥—R) for node u is given.

The chosen node (chosen;y) by GR is given in Equation 2.
chosengg = arg minyey for (1) (2)

In GD, the node u which has the maximum number of WHITE neighbors is
selected. In Equation 3, the heuristic function of GD (fgp:V—R) for node u is

given. Equation 4 gives the chosen node (chosengp) by GD.

30

fep) = [T Wwarel 3)

chosengp = arg maxyey fep (W) “4)

In GW, the node u which has the minimum weight among neighbors is
selected. The heuristic function of GW (fgp:V—R) for node u is given in Equation

5. In Equation 6, the chosen node by GW is given.

fow @) = w(w) (%)

chosengy = arg minyey fow (1) (6)

Figure 3.3, Figure 3.4 and Figure 3.5 show example operations of GR, GD
and GW respectively. Among these figures, GR has the best performance and it
produces a WCDS having total weight equals to 23. GW has the worst
performance and its WCDS has 42 total weight.

Figure 3.3. Example Operation of GR Heuristic

In Figure 3.3, GR selects node 4 having 11/73=0.151 weight ratio firstly.
Node 4 is colored BLACK and its neighbors node 1, node 3, node 5 and node 7
are colored GRAY. Secondly, node 3 is selected by GR since its weight ratio is
12/(18+9)=0.144 that is smaller than the weight ratio of other GRAY nodes. The

31

WHITE neighbors of node 3 is node 2 and node 6, so they are colored GRAY.
After this step, no more WHITE nodes left, so the GR algorithm finishes.

Figure 3.4. Example Operation of GD Heuristic

In GD algorithm, node 5 is chosen at the first step. The reason of this
selection is that node 5 has 5 WHITE neighbors which is the maximum WHITE
neighbor count, among other nodes. Node 5 is colored BLACK and its WHITE
neighbors 2, 3, 4, 6 and 7 are colored GRAY. At the second step, node 4 is chosen
among GRAY nodes. The WHITE degree of node 4 is 1, on the other side other
GRAY nodes do not have any WHITE neighbor, so their WHITE degree is 0.
Node 4 is colored BLACK and node 1 is colored GRAY. After this operation, the

WHITE nodes are consumed, so the algorithm terminates.

Node 6 is selected in GW algorithm at the first step in Figure 3.5. The
weight of node 6 which is the minimum among other nodes’ weights is 9. Node 6
is colored BLACK and its WHITE neighbors 3, 5 and 7 are colored GRAY. At
the second step, node 7 is chosen which has the minimum weight among GRAY
nodes. Node 7 is colored BLACK and node 4 is colored GRAY. At the third step,
GW selects node 4 whose weight equals to 11. Node 4 is colored BLACK and
node 1 that is the WHITE neighbor of node 4 is colored GRAY. At the last step,
node 3 is selected by GW. Node 3 is colored BLACK and its WHITE neighbor
node 2 is colored GRAY. The algorithm finishes after this selection.

32

Figure 3.5. Example Operation of GW Heuristic

As aforementioned, GR has the best performance among other heuristics in
Figure 3.3, Figure 3.4 and Figure 3.5. Although these figures are useful to show
the operation of algorithms and to obtain a general overview about their
performances, we cannot derive a general result. We present extensive simulations
in the following section to show the performances of these algorithms in detail.
From our measurements given in Section 4, we found that GR achieves the best
results in terms of weight ratio. Moreover, the runtime of these heuristics are very
similar. Because of these reasons, GR is used as the greedy heuristic in our

proposed algorithms.

3.2 Description of Hybrid Genetic Algorithm

We have proposed a steady-state Hybrid Genetic Algorithm (HGA) that
uses a genetic algorithm with a greedy heuristic to solve minimum weight
connected dominating set problem. HGA is a genetic algorithm to improve the

solution quality which is produced by greedy heuristic.

The chromosome used for graph problems is simply a set of vertices, in the
mathematical sense of a set. In our HGA, the chromosomes are represented with a
bit vector C of the length n where n is the number of vertices in the graph. This

representation provides:

33

= Every chromosome is same length,
= There is no need ordering among the vertices,

= There are no duplicated vertices.

C; represents the i" bit of the chromosome. Initially all bit values of the
chromosome are 0. C; is 1 if and only if node i is dominator. When C; is set to 1,
the color of node i is set to BLACK and the colors of WHITE neighbors of node i
are set to GRAY. When C; is set to 0, the color of node i is set to BLACK if node
i does not have any BLACK neighbor, otherwise its color is set to GRAY. Then,
the colors of GRAY neighbors of node i are set to WHITE if and only if their only
BLACK neighbor is node i. If any GRAY neighbor of node i has another BLACK

neighbor other than node i, the color of this neighbor does not change.

Algorithm 3.2: HGA_MWCDS(max_iteration, pop_size, p., p.,

Prs Pm)
4. P <« GeneratelnitialPopulation(pop_size, p,, pm)
5. CV « FindCutVertices()
6. while max_iteration > 0
7 p < RandNum()
8 if p<p.
9. pi1 < BinaryTournamentSelection()
10. P2« BinaryTournamentSelection()
11. C « FitnessBasedCrossover(p;, p>)
12. C < Mutation(C, p,)
13. else
14. C «— GenerateRandomChromosome()
15. end if
16. C < Repair(C, p,)
17. C «— Minimize(C, CV, py)
18. ifC &P
19. P—PuC
20. Remove(P,q, size-;) !/ remove the worst member
21. end if
22. max_iteration <— max_iteration-1
23. end while
24. Return w(P)) // the weight of the best chromosome

Our proposed algorithm HGA_MWCDS is given in Algorithm 3.2 and starts
with generating the initial population. The first member of the population is
generated by GR heuristic. Then, the algorithm detects the cut vertices of the
graph by calling the FindCutVertices function that uses Depth First Search (DFS)
algorithm. These cut vertices are used in the minimization process. CDS should
contain cut vertices as dominator. If cut vertices do not take place in DS, this DS

can never provide connectivity so it cannot be a CDS. The following operations

34

repeat for max_iteration times. A probability value p is generated by RandNum

function that generates a random value in [0, 1] interval.

The algorithm continues with generating new chromosomes. Producing new
chromosomes is done in two ways regarding to p. probability. In one of these
ways, two parents are chosen by binary tournament selection method and
crossover of these parents is done. In step 6 and 7, the chromosomes with a better
fitness value are selected for crossover. In step 8, FitnessBasedCrossover function
is called to generate new chromosome. This function uses a fitness based
crossover technique which is given in (Beasley and Chu, 1996). In this technique,
the crossover operation is executed as follows. Let f; and f> are the fitness values
of parents P; and P, respectively. Let C is child generated by the crossover and all
P;, P, and C are bit string with length n where n is the number of nodes in the

graph. For all i=1 ton

(i) If Pi[i] = Ps[i] then Cli] < P;[i]

(1) Else if P,[i] # P-[i] then p=f/ (fitf>2)
Cli] « P,[i] with probability p
Cli] « P;[i] with probability 1-p

Then, the generated chromosome is mutated by Mutation function. This
function mutates each node i in the graph by applying C; <« (Ci+1) mod 2

operation regarding to p, mutation probability.

In the other way, to ensure randomness in the population, a new
chromosome is produced by generating randomly with a 1-p. probability. Then,
the new chromosome is sent to Repair procedure to check it if it is a CDS or not
and if it does not provide a CDS, it is repaired by this procedure. After that, it
becomes a CDS and sent to Minimize procedure to remove redundant dominators.
Before inserting new member to the population, it is checked to prevent
duplication. Then, the worst member is removed from the population. When all
iterations are completed, the weight of the best member is returned as the final

solution.

35

Algorithm 3.3: GeneratelnitialPopulation(pop_size p,,

Pm)
1. M@
2. P9
3. CV « FindCutVertices()
4. for i1 topop size
5. M «— GenerateRandomChromosome()
6. if CheckCDS(M) is false
7. M < Repair(M, p,)
8. end if
9. M «— Minimize(M, CV, p,)
10. ifM¢P
11. P—PuM
12. M— @
13. end if
14. end for
15. Return P

GeneratelnitialPopulation algorithm which is explained in Algorithm 3.3
produces members by generating chromosome data randomly. Then the produced
member is checked whether it is a CDS or not. If it does not provide a solution or
it is not a CDS in other words, it is repaired by applying Repair procedure.
Thereafter, Minimize procedure is applied to remove redundant nodes from the
solution. After these operations, if a unique solution is obtained it is added to the
initial population. If a unique solution is not obtained, these steps repeat for a
maximum number of trials. After a maximum number of trials, if a unique
solution cannot be obtained, the size of the initial population is updated as the
current size. This situation only occurs while generating the initial population for

small size problem instances due to the small number of nodes.

Algorithm 3.4: Greedy MWCDS()
1. v« VertexWithNthLowestRatio(1, WHITE)
M—MUv
color (v) «— BLACK
color (' (W)wuire) < GRAY
while 3 i € V: color(i) = WHITE
v« VertexWithNthLowestRatio(1, GRAY)
M—MUv
color (v) «— BLACK
color (I' (V)wuire) < GRAY
10. end while
11. Return M

SRS

36

As mentioned before, the first member of the initial population is obtained
by Greedy MWCDS algorithm that uses GR heuristic. The detailed steps of the

algorithm are given in Algorithm 3.4. This algorithm selects the nodes regarding
w(v)
Wr(T[vlwhite)

Firstly, the algorithm selects the node with the minimum weight ratio by

to their weight ratio. The weight ratio of node v is calculated as

VertexWithNthLowestRatio algorithm which takes order n and color as
parameters. It sorts all nodes having that color in ascending order regarding to
their weight ratios and returns the node id in desired order that means n" node id.
The color of the selected node is set to BLACK and its WHITE neighbors are
colored as GRAY. Then, the second and the following nodes are selected from
GRAY nodes to provide connectivity between dominators. These operations
continue until all nodes are GRAY or BLACK in other words there is no WHITE
node.

Repair procedure that is given in Algorithm 3.5 is a heuristic to repair the
chromosome with a probability p,. A chromosome is repaired by RepairWithRatio
that uses GR heuristic or by RepairRandomly that adds nodes randomly until it is
a CDS.

Algorithm 3.5: Repair(C, p,)
1. p < RandNum()

2. ifp<p,

3 Return RepairWithRatio(C)

4. else

5

6

Return RepairRandomly(C)
. end if

Algorithm 3.6 gives the detailed steps of RepairWithRatio procedure that
takes a chromosome as a parameter. In the first step, the algorithm detects the
BLACK nodes. If there are no WHITE nodes left in the graph, it means that all
nodes are dominated. Then, the connectivity of the dominators is checked by
CheckCDS algorithm. If the dominators are connected also, the chromosome is
already a solution, so there is no need to repair it. If there is any WHITE node, the
one having the minimum weight ratio among WHITE nodes is selected by
VertexWithNthLowestRatio algorithm. VertexWithNthLowestRatio is designed as a
generic procedure, so to get the lowest weight ratio “1” is given as a parameter.
Then, the color of the selected node is set to BLACK and its WHITE neighbors
are colored as GRAY. While the BLACK nodes do not construct a CDS,

following nodes are selected from GRAY nodes to provide connectivity. The

37

selected node’s color is set to BLACK and its WHITE neighbors’ color are set to
GRAY. These steps continue until BLACK nodes provide a CDS.

Algorithm 3.6: RepairWithRatio(C)

1. B— {viv €V Acolor(v)=BLACK}

2. ifAv €V :color(v)=WHITE

3. if CheckCDS(B) is true

4. Return C

5. end if

6. elseif Vv €V :color(v)= WHITE

7. Veesr— VertexWithNthLowestRatio(1, WHITE)
8. Copose < 1

9. color (vpes;) < BLACK

10. color (I' (Vpest)wnrre) < GRAY

11. B <«— B U vy

12. end if

13. while CheckCDS(B) is false

14. Veesr— VertexWithNthLowestRatio(1, GRAY)
15. Coposr < 1

16. color (vpes) «— BLACK

17. color (I' (Vpest)wrire) < GRAY

18. B «— B U vjey

19. end while
20. Return C

Algorithm 3.7: RepairRandomly(C)

1. B— {viv €V Acolor(v)=BLACK}
2. ifAv €V :color(v)=WHITE

3. if CheckCDS(B) is true

4. Return M

5. endif

6. elseif Vv €V :color(v) = WHITE
7. p < |RandNum() X (graphSize — 1)]
8. Cyp, — 1

9. color (v,) <~ BLACK

10. color (I' (vp)wwire) < GRAY
11. B« BUvy,

12. end if

13. while CheckCDS(B) is false

14. nodeList «— GetNodeListByColor(GRAY)
15. p <« GetRandomNode(nodelList)

16. Cvp —1

17. color (v,) < BLACK

18. color (I' (Wp)wmuire) < GRAY

19. B«<—BUy,

20. end while

21. Return C

38

RepairRandomly algorithm is given in Algorithm 3.7. As similar to
RepairWithRatio, if there is no WHITE node in the graph, the BLACK nodes are
checked whether they construct a CDS or not. If they do not provide a solution
and there exists any WHITE node, a random value p between [0, n-1] is generated
where 7 is the graph size. The bit of chromosome at the index same with p value
is set to 1. It means that, this node is selected as dominator. So, the color of the
selected node is set to BLACK and its WHITE neighbors’ colors are set to
GRAY. While the BLACK nodes do not provide a CDS, the list of GRAY nodes
is detected by GetNodeListByColor function. Then, a random node is selected
from that list by GetRandomNode function. This random node’s color is set to
BLACK and the colors of its WHITE neighbors are set to GRAY.

Algorithm 3.8: Minimize(C, CV, p,,)
1. R <« FindRedundantInChromosome (C, CV)
2. while R is not empty
p < RandNum()
if p <pm
id «— GetNodeWithMaxWeight(R)
else
id «— GetRandomNode(R)
end if
color (viy) <« GRAY
0. R« FindRedundantinChromosome(C,
Cv)
11. end while
12. Return C

e ° N S Bl

Minimize algorithm is given in Algorithm 3.8. It takes chromosome, cut
vertices and minimization probability p, as parameters. Cut vertices must be
protected not to break the connectivity. At the first step of the algorithm,
redundant nodes are detected by FindRedundantInChromosome function that is
given in Algorithm 3.9. While there is any redundant node in chromosome, the
following operations repeat. Among redundant nodes, a random node determined
by GetRandomNode or node with the maximum weight ratio determined by
GetNodeWithMaxWeight is selected regarding to p,, value. Then, the selected
node is colored as GRAY. The colors of its neighbor do not change. Because it is
a redundant node such that this node has no neighbor which is dominated by only
that node. The list of the redundant nodes is updated after removing that node
from CDS.

FindRedundantinChromosome algorithm determines redundant nodes

among the BLACK nodes in chromosome. At the first step of the algorithm, the

39

cut vertices in CDS are determined as BLACK cut vertices (BCV) by
FindCutVerticesInCDS function. For all BLACK nodes, the algorithm checks

three conditions to determine if it is a redundant dominator or not.

Algorithm 3.9: FindRedundantInChromosome(C)

1. BCV « FindCutVerticesInCDS()

2. R—0Q

3. forv € V: color(v) = BLACK

4. ifvegClVandvé& BCVandAi: i€ (v)A
color(i))=WHITE AT (i)grack= {v}

5. R—RUv

6. end if

7. end for

8. Return R

A dominator is redundant if:

e Itisnotin cut vertex set (v & CV),

e Itisnot in black cut vertex set (v ¢ BCV)

e [t does not have any neighbor that is dominated by only that node (2i: i €
T(v) A color(})=WHITE AT () grack= {v})

If any BLACK node satisfies these three conditions, it is a redundant
dominator and the algorithm adds that node to the redundant dominator list R. An
example operation to explain the detailed steps of Repair and Minimize
procedures is given in Figure 3.6. In Figure 3.6.a, a randomly generated
chromosome is shown as a graph. Nodes M, T and V are the initial dominators and
N,O,R, S, U, V, W, Y and Z are the dominatees.

Since the colors of nodes P and X are not dominated by any dominator, this
chromosome is sent to Repair procedure which starts by selecting a node which
has any WHITE neighbor to complete covering all the nodes in the graph. Node U
is selected between nodes O, U and Y whose weight ratios are 7/10, 2/15 and 8/15,
respectively. Then, node O which is the only node having WHITE neighbor is
selected. The colors of O and U are set to BLACK and their WHITE neighbors P
and X are colored as GRAY. The updated graph is given in Figure 3.6.b. This
graph shows a WDS but it is not a WCDS. Node N having the lowest weight from
GRAY nodes is selected. Then, nodes R and W are selected. After these
operations, a CDS including some redundant dominators is constructed as shown
in Figure 3.6.c. Minimize function firstly removes node M, then node N as they are

redundant dominators. Figure 3.6.d shows the final network with CDS.

40

(b)

(d)

Figure 3.6. a) Initial network b) Insertion of nodes U and O c) Nodes N, R and W are inserted

d) Redundant dominators M and N are removed.

41

3.3 Description of Population-based Iterated Greedy Algorithm

We proposed a Population-based Iterated Greedy (PBIG) algorithm for
minimum weight connected dominating set problem. The strategy of IG
algorithms is that they have a deconstruction process and a reconstruction process.
They destroy the current solution and then apply a greedy heuristic to repair that
solution. The steps of the proposed PBIG algorithm are given in Algorithm 3.10.

Algorithm 3.10: PBIG_ MWCDS(max_iteration, pop_size, p, a)
1. P « GeneratelnitialPopulation_PBIG(pop_size, o)

2. CV <« FindCutVertices()

3. while max_iteration >0

4. Ppew <— @

S. forM € P

6 M gest <— RemoveRedundantAndDestroyPartially(M, p, CV)
7 Moy — Greedy MWCDS PBIG(M e , @)
8. if M\, € P

9. Pnew < Pnew U Mnew

10. end if

11. end for

12. P «— Accept(P,Phe)

13. max_iteration «— max_iteration-1

14. end while
15. Return w(P;) // weight of first member (best member’s weight)

The algorithm generates initial population P by Generatelnitial
Population PBIG algorithm which is given in Algorithm 3.11. Initial population
consists of the candidate solutions that are generated by Greedy MWCDS PBIG
algorithm that is given in Algorithm 3.12. Then, the cut vertices of the graph are
determined by FindCutVertices function which is used in the proposed HGA also.
These cut vertices are necessary for redundant nodes elimination and destruction
phases of the RemoveRedundantAndDestroyPartially algorithm that is given in
Algorithm 3.13. Until the maximum iteration counter comes to end, the following
steps repeat. For each member of the population, RemoveRedundant
AndDestroyPartially algorithm is executed. After removing redundant dominators
of the member and destroying it partially, it may not be a CDS. So, this new
individual is sent to Greedy MWCDS PBIG algorithm again to be repaired. If it
is not generated before, it is added to the new population P,.,. Thus, the new
individuals obtained from the initial population in that way construct P,.,. Then,
the new and the initial populations are sent to Accept method that adds the

members in the new population to the initial population and sorts the combined

42

population in ascending order according to their weights. The new population is

generated by taking the first individuals up to the initial population size at the last

step of the while loop. After all iterations of the algorithm are completed, the

weight of the best member is returned.

Algorithm 3.11: GeneratelnitialPopulation PBIG(pop_size, a)

1.

2
3
4.
S.
6
7
8

M— @
. P90
. for i1 to pop size

M —Greedy MWCDS PBIG(M, o)
P—PUM
M— @

. end for
. Return P

Algorithm 3.12: Greedy MWCDS_PBIG(M, a)

1.

ifAv €V :color(v)= WHITE

Return M

else if Vv €V : color(v) = WHITE

Voest1<— VertexWithNthLowestRatio(1, WHITE)
Vbesiz— VertexWithNthLowestRatio(2, WHITE)
oy < RandNum()

if ap <a then v « vy

else v «— vy

end if

M—MUy

color (v) «— BLACK

color ([(W)wuire) < GRAY

. end if

. while 3 i € V: color(i) = WHITE
15.
16.
17.
18.
19.
20.
21.
22,
23.

Voest1<— VertexWithNthLowestRatio(1, GRAY)
Veest2<— VertexWithNthLowestRatio(2, GRAY)
0 <— RandNum()

if ap <o then v «— vp.q;

else v «— vy

end if

M—MUv

color (v) «— BLACK

color (T (W)wure) < GRAY

24. end while
25. Return M

GeneratelnitialPopulation PBIG algorithm that is given in Algorithm 3.11

constructs the

initial population with generating each member by

Greedy MWCDS PBIG algorithm. The algorithm takes population size and
determinism rate o that is used in Greedy MWCDS PBIG as parameters.

43

Algorithm 3.13: RemoveRedundantAndDestroyPartially(M, p, CV)
1. BCV « FindCutVerticesInCDS()
2. Myp— 0
3. forv € V: color(v) = BLACK
4. p’ < RandNum()
// Remove redundant nodes
5. ifvég CVandvé BCVandAi: i € I'(v) A color(i))=WHITE
AT (D prack= v}

6. color(v) «— GRAY

7. BCV « FindCutVerticesInCDS()
/I Destroy partially

8. elseifp<pandvé& CVandvé& BCV

9. forj e '(v)

10. if color(j) = GRAY and |TI" (j)grack|=1

11. color(j) «— WHITE

12. end if

13. end for

14. color(v) < GRAY

15. BCV «— FindCutVerticesInCDS()

16. else M,.,, — M,.,, U v

17. end if

18. end for

19. Return M,.,,

The detailed steps of the Greedy MWCDS PBIG algorithm are given in
Algorithm 3.12. This algorithm generates each individual for the initial population
and repairs partial solutions. It takes two parameters member M and determinism
rate a. M 1s an empty set while generating the member of the initial population or

is a partial solution while repairing.

At the first step of the algorithm, WHITE node presence is checked.
Because if there is no WHITE node in the graph, it means all nodes are covered
and the input member is already a CDS. Thereafter, the first two nodes having the
first and second lowest costs are determined by VertexWithNthLowestRatio. The
cost of a node is calculated as the weight ratio that is given in the description of
HGA algorithm. The selection from these two nodes is determined regarding to a
determinism rate. This procedure provides to prevent selecting the same
individual at each time. In other words, it prevents getting stuck in a local
minimum solution that is the individual with the lowest weight ratio for that case.
After selecting the node, it is added to the solution set M which is being generated
at that time. The color of the selected node is set to BLACK and its WHITE
neighbors are colored GRAY.

44

While there exits WHITE neighbor in the graph that means all nodes are not
covered, the second and the following nodes must be selected from GRAY nodes
to construct a “connected” dominating set. The first two nodes having the first and
second lowest weight ratios are selected as before, but unlike the previous one
they are selected from GRAY nodes. One of them is chosen according to the
determinism rate and it is colored BLACK. The colors of its WHITE neighbors
are set to GRAY. At the end of the while loop, the individual generated by this

way is returned as a CDS solution.

The members generated by Greedy MWCDS PBIG algorithm may include
redundant dominators. The determination of these redundant nodes is provided by
RemoveRedundantAndDestroyPartially algorithm that is given in Algorithm 3.13.
As the name implies, this algorithm removes redundant nodes from the input
member M and destroys M partially regarding to destruction degree p. The
redundant nodes are determined by the same rules given in the description of the
HGA.

The followings steps are executed for each BLACK node. If a dominator is
not cut vertex for both the whole graph and the subgraph constituted by BLACK
nodes and there does not exist any WHITE neighbor dominated by only that
dominator, it is redundant. The color of the dominator is changed as GRAY.
Because the BLACK nodes have changed, the BLACK cut vertices have changed
also. So, the array BCV holding the cut vertices in BLACK nodes must be
updated. In step 7, FindCutVerticesInCDS algorithm that detects the nodes which
connect BLACK nodes is called and the returned array is assigned to BCV. There
is no need to change the colors of the redundant node v’s neighbors, because there

does not exist any neighbor that is dominated by only node v.

If any node v is not redundant and is not cut vertex for both graph and
dominators subgraph, it can be destroyed which means it can be removed from the
solution set regarding to destruction degree p. To remove it, the neighbors of node
v dominated by only node v must be colored WHITE. These nodes’ color was
GRAY because they were dominated by node v. So, to determine these neighbors,
their color and BLACK neighbor count are checked in line 10. After neighbors are
updated, node v is colored GRAY in line 14. The BLACK cut vertices array is
updated by FindCutVerticesInCDS algorithm.

45

(b)

Figure 3.7. a) Redundant node example b) Redundant node remove (Node R is removed)

Remove redundant dominator example is given in Figure 3.7. In this figure,
C indicates that this node is in CV set since it is a cut vertex. BLACK nodes are
the dominators generated by GR heuristic and nodes N, P, R, S, T and U are cut
vertices in Figure 3.7.a. In this example node R is a redundant dominator because
it is not a cut vertex and is not a BLACK cut vertex (not in BCV set) that if it is
removed other dominators are still connected. Also, it does not have any neighbor
which is dominated by only that node. After removing node R, the final version of

the graph is given in Figure 3.7.b.

46

Figure 3.8. An example weighted graph

An example initial graph with weight ratio of each node is given in Figure
3.8 to clearify the node selections while producing WCDS by
Greedy MWCDS PBIG. Firstly, node N is selected because it has the minimum
weight ratio. After that, among its neighbors (M, O and W) the best two neighbors
are taken (M and W has the same weigth ratio 10/10 and 50/50, respectively) and
node M is selected regarding to determinism rate a. Then nodes U, T, S and R are
selected respectively. This state of the graph which provides a WCDS is shown in
Figure 3.9.a.

An example partially destroy operation is given in Figure 3.9. In this figure,
BC indicates BLACK cut vertices that are in BCV set. Node N is selected for
removing depending on destruction degree p. After removing node N, the graph is
updated as Figure 3.9.b. Since the WCDS is destroyed, it is sent to
Greedy MWCDS PBIG procedure to be repaired. Nodes N or /¥ must be inserted
to repair the solution. Node W with 50/70 weight ratio is inserted regarding to
determinism rate. The constructed WCDS is given in Figure 3.9.c. After node W
is inserted, all the other dominators M, R, S, T and U become redundant. So, these
nodes quit from BCV set. They are removed from the WCDS as shown in Figure
3.9.d. After these operations, the total cost of WCDS reduces 60 to 50 and the
MWCDS is constructed.

47

(a) (b)
10 10

70 70

10 10

10 10

10 10 10 10 10 10

(c) (d)
Figure 3.9. a) An example WCDS b) Node N is removed c) Node ¥ is inserted d) Nodes M,

U, T, S and R are removed.
3.4 Complexity Analysis of the Proposed Algorithms

In this section, the time complexity analyses of the proposed algorithms are
given. Each proposed algorithm is analysed line by line.

3.4.1 Complexity Analysis of HGA

Lemma 1. The running time complexity of Greedy MWCDS algorithm
(Algorithm 3.4) is same with Guha and Khuller’s algorithm and it is equal to

O(m) where m is the number of edges.

Proof. Similar to Guha and Khuller’s algorithm, our algorithm selects the
vertex with minimum weight ratio in each step. To construct a CDS, it selects the

second and the following nodes with the minimum ratio among the GRAY nodes.

48

The total time complexity of Greedy MWCDS algorithm is same with Guha and
Khuller’s algorithm that is O(m). O

Lemma 2. The running time complexity of RepairWithRatio algorithm
(Algorithm 3.6) is O(n’+nm) where n is the number of vertices and m is the

number of edges.

Proof. Line 1 is executed in O(n) time. Line 2 checks if there does not exist
WHITE nodes in O(n) time. Line 3 performs in O(n+m) time where CheckCDS is
called. Line 4 performs in constant time. Line 6 controls whether all nodes are
WHITE or not in O(n). Line 7 is performed in O(n) time. Line 8 and line 9 are
executed in O(1) time separately. Line 10 performs in O(n). Line 11 is executed in
constant time. The while loop between line 13 and 19 repeats for O(n+m). In the
while loop, line 14 and 17 execute in O(n); line 15, 16 and 18 execute in O(1)
time separately. Hence, the while loop is completed in O(n’+nm) time. Line 20
perform in constant time. Consequently, the total time complexity of
RepairWithRatio algorithm is O’ +nm). o

Lemma 3. The running time complexity of RepairRandomly algorithm
(Algorithm 3.7) is O(n’+nm) where n is the number of vertices and m is the

number of edges.

Proof. Line 1 and line 2 are performed in O(n) time separately. Line 3
controls BLACK nodes whether they construct a CDS or not by calling
CheckCDS that is executed in O(n+m) time. Line 4 is executed in O(/) time. Line
6 is performed in O(n). Line 7, 8 and 9 are performed in O(I) time separately.
Line 10 is executed in O(n) time. Line 11 is performed in constant time. The while
loop between line 13 and 20 repeats for O(m+m) times. Line 14 is executed in
O(n) time. Line 15, 16 and 17 execute in O(1) time separately. Line 18 performs
in O(n) time. Line 19 is executed in constant time. Line 21 is executed in O(1)
time. Consequently, the total time complexity of RepairRandomly algorithm is
0(n2+nm). i

Lemma 4. The running time complexity of Repair algorithm (Algorithm 3.5)

is O(n’+nm) where n is the number of vertices and m is the number of edges.

Proof. Line 1 is executed in constant time. If control in line 2 performs in

O(1) time. Line 3 is executed in O(n’+nm) from Lemma 2. Else, line 5 is executed

49

that is in O(n’+nm) time from Lemma 3. Hence, the total time complexity of

Repair algorithm is O(n’+nm). o

Lemma 5. The running time complexity of FindRedundantInChromosome

algorithm (Algorithm 3.9) is O(n’) where n is the number of vertices.

Proof. Line 1 is executed in O(n+m) where FindCutVertexInCDS algorithm
is called that finds the cut vertices in CDS by DFS algorithm. Line 2 performs in
O(1) time. The for loop in lines 3 and 7 repeats for n times at the worst case. The
if statement between line 4 and 6 checks ve CV and ve BCV statements which
can be executed in O(1) time if the CV and BCV values are stored for each vertex.
The BLACK neighbor control in the same statement can be performed in O(n)
time for each vertex that leads to O(n’) time at the worst case. Hence, the total
time complexity of the line 4 is O(n’). Line 5 is performed in constant time. Line
8 executes in O(I). Thus, the total time complexity of FindRedundant

InChromosome algorithm is om’). o

Lemma 6. The running time complexity of Minimize algorithm (Algorithm

3.8) is O(n’) where n is the number of vertices.

Proof. Line 1 is executed in O(n’) time from Lemma 5. The while loop
between line 2 and 11 repeats for R times where R can be n at the worst case. Line
3 and 4 perform in O(1) time separately. Line 5 selects the node with maximum
weight from R set and it is executed in O(n) time. Line 7 performs in O(1) time.
Line 9 is executed in constant time. Line 10 performs in O(n’) time from Lemma
5. Line 12 executes in constant time. Consequently, the total time complexity of

Minimize algorithm is O(n’) time. o

Lemma 7. The running time complexity of GeneratelnitialPopulation
algorithm (Algorithm 3.3) is O(n’s) where n is the number of vertices and s is the

population size.

Proof. Line 1 and 2 are performed in O(I). Line 3 executes in O(n+m)
where FindCutVertices algorithm detects the cut vertices by DFS algorithm that
performs in O(n+m) time. The for loop between line 4 and 14 executes for s
times. GenerateRandomChromosome algorithm generates each bit of the
chromosome randomly so line 5 performs in O(n). Line 6 calls CheckCDS which

controls the connectivity between BLACK nodes in O(n+m) time. Line 7

50

performs in O(n’+nm) from Lemma 4. Line 9 executes in O(n*) time from Lemma
6. Line 10 checks the uniqueness of the generated member in O(ns) time. Line 11
and 12 perform in O(1) time separately. Line 15 executes in constant time. Hence,

the total time complexity of GeneratelnitialPopulation algorithm is O(n’s). o

Theorem 1. The running time complexity of HGA MWCDS algorithm
(Algorithm 3.2) is O(n4(s+ Lnax)+ sn Lyay) where L., is the number of maximum

iteration, s is the population size and n is the number of vertices.

Proof. Line 1 generates the initial population in O(n’s) time complexity
from Lemma 7. Line 2 performs in O(n+m) where FindCutVertices finds the cut
vertices in the graph. The while loop between lines 3 and 20 repeats O(1,4,) times.
Line 4 performs in O(1) time. The if control in line 5 performs in O(1) time. In
line 6 and 7, the parents are selected by BinaryTournamentSelection algorithm
that performs in O(1). In line 8, fitness based crossover operation is performed in
constant time. Line 9 performs in O(n) where Mutation algorithm changing each
bit of the chromosome regarding to mutation probability p, is called. Lines 10-11
are executed in O(n) time because GenerateRandomChromosome algorithm
generates each bit of the chromosome randomly. Line 13 is performed in
O(n’+nm) from Lemma 4. Line 14 is executed in O(n”) time from Lemma 6. Line
15 checks whether the generated individual exists or not in the population and it is
performed in O(ns) time complexity. Line 16 performs in O(7) time. Line 17
removes the worst member in constant time. Line 19 decreases the iteration
counter in O(1) time. Line 21 performs in constant time. Consequently, the total
time complexity of HGA_MWCDS algorithm yields O’ (s+ Lna)+ 51 Lngy). O

3.4.2 Complexity Analysis of PBIG Algorithm

Lemma 8. The running time complexity of Greedy MWCDS PBIG
algorithm (Algorithm 3.12) is same with Guha and Khuller’s algorithm and it is

equal to O(m) where m is the number of edges.

Proof. Guha and Khuller’s algorithm selects the vertex with the minimum
weight ratio in each step. Similarly, our algorithm generates a random probability
and selects a vertex among the vertices having the best two weight ratios
according to this probability in each step. Since, the complexities of generating a

random number and calculating the weight ratio are in O(1), the total complexity

51

of Greedy MWCDS PBIG algorithm is same with Guha and Khuller’s algorithm
that is O(m). o

Lemma 9. The running time complexity of GeneratelnitialPopulation PBIG
algorithm (Algorithm 3.11) is O(ms) where m is the number of edges and s is the

population size.

Proof. Line 1 and line 2 are executed in O¢l). In line 4
Greedy MWCDS PBIG algorithm is called so it is performed in O(m) time from
Lemma 8. Line 5 and line 6 are executed in constant time. The for loop between
the lines 3 and 7 is executed for s times. Hence, the total complexity of
GeneratelnitialPopulation PBIG algorithm is O(ms). O

Lemma 10. The running time complexity of RemoveRedundantAnd
DestroyPartially algorithm (Algorithm 3.13) is O(n’) where n is the number of

vertices.

Proof. Line 1 is performed in O(n+m), because FindCutVertexInCDS finds
the cut vertices in CDS by DFS algorithm which executes in O(n+m) time. Line 2
is executed in O(1) time. Line 4 generates random number between (0, 1) and is
performed in O(1). Inline 5, ve CV and ve BCV controls can be executed in O(1)
time if the CV and BCV values are stored for each vertex. In the same line, the
BLACK neighbor control can be executed in O(n) time for each vertex which
leads to O(n’) time at the worst case. Hence, the total time complexity of the line
5 is O(n’). Line 6 colors v vertices in constant time. Line 7 performs in O(n+m)
like line 1 for the same reason. Line 8 is performed in O(7) time. The if control in
lines 10-11 is executed in O(1). The for loop in lines 9-13 runs O(n) times. Line
14 and 16 are performed in constant time. Line 15 is executed in O(n+m). Lines 3
to 18 repeat for each BLACK vertices and there can be O(n) BLACK vertices.
Hence, these lines repeat for O(n) times at worst case. The total time complexity
yields Om)(Om’)+Om+m)) and m is in O(n’). Consequently the run time
complexity of RemoveRedundantAndDestroyPartially algorithm is in O(n’).0

Theorem 2. The rumnning time complexity of PBIG MWCDS algorithm
(Algorithm 3.10) is O(Lyax(°+ns)+ms) where Iq is the number of maximum
iteration, s is the population size, n is the number of vertices and m is the number

of edges.

52

Proof. Line 1 generates the initial population in O(ms) time complexity
from Lemma 9. Line 2 executes in O(n+m) where FindCutVertices algorithm
detects the cut vertices by DFS algorithm that performs in Om+m) time. The
while loop between lines 3 and 14 repeats O(1,,,,) times. Line 4 performs in O(1)
time. The lines 5 to 11 are executed for each member in population so these lines
repeat for s times. Line 6 is performed in O(n’) from Lemma 10. Line 7 is
executed in O(m) time from Lemma 8. In line 8, the uniqueness control of each
generated individual is performed that is in O(ns) time complexity. Line 9 adds
new member to the population in constant time. Line 12 merges the sorted
populations and takes the first s members in O(s) time. The total time complexity
of PBIG_MWCDS is O(Iyax(n’+ns)+ms).0

53

4.PERFORMANCE EVALUATIONS

We implemented the proposed algorithms with their counterparts in Java
language. The PC used in our implementations has 8 Gigabytes of memory and
Intel Core 17 4500U 1.80 GHz processor. As the counterparts of our algorithms, a
brute force algorithm and three greedy algorithms are implemented. The
implemented Brute force (BF) algorithm always finds the optimal solution by
running all possible subset of solutions. Thus, 2" possible subsets of nodes are

considered.

Although BF produces solutions for small scale datasets within hours, its
execution times become unacceptable long for moderate and large scale datasets.
To solve the time problem in moderate and large scale datasets, a time-limited
version of BF which is named as T-BF is implemented. In T-BF algorithm, the
CPU execution time of the algorithm is bounded by the two times of the CPU
execution time of PBIG algorithm for each (node, edge) combination. We choose
PBIG instead of HGA to limit the CPU execution time of the T-BF algorithm
since generally PBIG takes longer time than HGA especially for large and
moderate datasets. Since T-BF is not permitted to finish its execution, it cannot
always find optimum solutions. We apply t-test between PBIG and BF to compare
the WCDS solution qualities of the proposed algorithms. We do not apply t-test
for other algorithms because we obtain optimal solutions from HGA for small-
size instances and we obtain better solutions from HGA and PBIG than T-BF for

all medium and large scale datasets.

In our measurements two types of datasets are used to benchmark the
proposed algorithms with their counterparts. The first dataset is proposed by
(Shyu et al., 2004) and the second dataset is proposed by us by randomly
generating graphs. The first dataset consists of node weighted and undirected
graphs. The first dataset is divided into Type 1 and Type 2 graphs according to
their distributions of node weights. For Type 1 instances, the weights of vertices
are uniformly and randomly given between 20 and 120 and for Type 2 instances,
the weights of the vertices are uniformly distributed between 1 and d(v)* where
d(v) is the degree of vertex v. The first dataset is also divided into three subgroups
according to node counts in the graphs. This categorization is made by diving into
small, moderate and large problem instances. In small instances, the node counts
are {10, 15, 20, 25}. In moderate instances, the node counts are {50, 100, 150,
200, 250, 300}. In large instances, the node counts are {500, 800, 1000}. Besides,

54

to measure the effect of network density, edge counts are varied. 10 different

instances are generated for each node and edge count combination.

Table 4.1. Implementation parameters

Implementation Parameters

PC Configuration

8 GB memory, Intel Core 17 4500U 1.80 GHz

processor

Language

Java

Implemented Algorithms

HGA, PBIG, BF, T-BF, GR, GD, GW

Datasets

Shyu’s dataset (Type 1 and Type 2), Our dataset

Properties of Type 1

Node Counts

Small: {10, 15, 20, 25}

Moderate: {50, 100, 150, 200,
250, 300}

Large: {500, 800, 1000}

Instances
Node Randomly between [20, 120]
Weights
Node Counts | Small: {10, 15, 20, 25}
Moderate: {50, 100, 150, 200,
250, 300}
P ties of Type 2
roperties o1 Type Large: {500, 800, 1000}
Instances
Node Randomly between [1,
Weights degree(v)z]

Properties of Our Dataset

Node Counts

Small: {10, 15, 20, 25}

Moderate: {50, 100, 150, 200,
250, 300}

Large: {250, 500, 750, 1000}

Node Randomly between [20, 120]
Weights

Population Size 100

Maximum Iterations 200

Solution Evaluations 20,000

55

Even though the first dataset is a popular dataset used by researchers
(Jovanovic et al., 2010; Bouamama et al., 2012; Potluri and Singh, 2013), some of
the graphs generated in this dataset are unconnected. This situation brings an
important problem to our experiment setups, because it is obvious that a MWCDS
cannot be found on an unconnected graph. To overcome this issue, we generated a
new dataset in which all graphs are connected. Our dataset is divided into small,
moderate and large scale instances according to their sizes. In small size instances,
there are {10, 15, 20, 25} nodes. In medium size instances, there are {50, 100,
200, 250} nodes. In large problem instances, there are {250, 500, 750, 1000}
nodes. 2n, 4n, 6n, 8n and 10n edges are randomly generated for each node count
n. For each node and edge count combination, 10 instances are generated and the

weights of the nodes are given between 20 and 120.

An initial population having 100 members is used in our algorithms. These
members are executed for 200 iterations (max_iteration). Because of this, the
proposed algorithms are executed on 20,000 generations. In other words,
maximum 20,000 solutions are evaluated for each algorithm. In some cases, the
initial population cannot have 100 members, because the number of all solutions
are smaller than 100. In these cases, the max iteration is set to 20,000 /
(population size). By applying this operation, equal number of solutions is
generated for reach run. The determinism rate a (used for greedy selection) is set
to 0.5 and the partially destroy probability p is set to 0.5 for PBIG. The probability
p. (used for crossover) is set to 0.9, the probability p, (used for mutation) is set to
0.005, the probability p, (used for repair) is set to 0.7 and the probability p,, (used
for minimization) is set to 0.6 for HGA. We choose these values after making
experiments with various values. These parameters are summarized in Tables 4.1,
4.2 and 4.3.

Table 4.2. HGA parameters

Parameter Value
De Crossover probability 0.9
DPu Mutation probability 0.005
Dr Repair probability 0.7

DPm Minimization probability 0.6

56

Table 4.3. PBIG parameters

Parameter Value
p Partially destroy probability 0.5
o Determinism rate 0.5

The results of small-size problem instances are given in Tables 4.4-4.9 and
Figures 4.1-4.6. The results of moderate size problem instances are given in
Tables 4.10-4.15 and Figures 4.7-4.12. The results of large size problem size
instances are given in Tables 4.16-4.19 and Figures 4.13-4.16. In these tables, 7 is
the node count, m is the edge count, # of con. is the connected graph count, weight
is the total weight of the MWCDS and fime is the execution time of the algorithm.

When we investigate the figures given in Figures 4.1-4.16 we see that
generally the weight and time results of the algorithms increase when we increase
the node count and fix the edge count as a constant factor of the node count. The
reason of this situation is the run times of the algorithms depend on the node
count and the algorithms produce more dominators when node count is increased.
When we fix the node count and increase the edge count, the weight results of the
algorithms generally decrease since nodes can be covered by less number of
dominators in dense networks. The time results of the algorithms except BF are
similar when we increase the edge count and fix the node count, the time results
of BF increase in this case. The time results of T-BF is omitted in Figures 4.7b,
4.8b, 4.9b, 4.10b, 4.11b, 4.12b, 4.13b, 4.14b, 4.15b and 4.16b since they are
always equal to two times of PBIG’s run times for moderate and large size

problem instances.

The obtained results show us that GR has the best weight performance
among greedy heuristics. Because of this, we use GR as the greedy heuristic in
our proposed algorithms. As expected, GR executes faster than our proposed
algorithms since GR quits after finding the first solution whereas our algorithms
iteratively execute to search for better candidates. On the other side, we obtain
significantly better weight performances from our proposed algorithms. In the
following sections we will investigate the performances of the algorithms in

detail.

57

4.1 Evaluation of Small-Size Problem Instances

Measurements of greedy heuristics taken in small-size problem instances are
given in Tables 4.4-4.9 and their related figures are given in Figures 4.1-4.6. GR
has the best weight performance and GD obtains the worst weight performance

when we compare the total weight of the WCDS solutions.

Table 4.4. Weight results of small size problem instances (Shyu’s dataset -Type 1)

n |m |#f |GR |GD GW BF HGA | PBIG Rel. | Stat.

con. Error | Sign.
10| 10 2 1341.0 | 341.0 | 534.0 | 341.0 | 341.0 | 341.0 0| =
20 10 | 180.0 | 188.8 | 241.7 | 157.2 | 157.2 | 157.2 0| =
30 10| 100.1 | 118.0 | 167.8| 859 | 859| 859 0| =

40 10| 63.6| 753 73.1| 45.0| 450| 458 | 1.778 | =

15| 20| 34617 |491.3 | 864.3 | 409.7 | 409.7 | 409.7 0| =
40| 10| 191.7 | 207.4 | 207.4 | 163.0 | 163.0 | 163.0 0| =
60| 10| 122.8| 1402 | 195.5| 104.3 | 1043 | 104.3 0| =
80| 10| 74.1(1190| 91.1| 67.6| 67.6| 67.6 0| =
100| 10| 349| 580 37.1| 257| 257| 257 0| =
200 200 0 - - - - - - - -
40| 9 |347.8|407.8 | 735.0 | 300.4 | 300.4 | 300.4 0| =
60 | 10 |245.7|2793 | 487.8 |213.7|213.7| 213.7 0| =
80| 10| 155.7]204.3| 2355|1358 | 135.8 | 135.8 0| =

100 10| 127.3 | 179.6 | 159.8 | 1114 | 111.4| 1129 | 1346 | =

120 10 | 109.8 | 126.6 | 151.0 | 92.1| 92.1 92.1

25| 40 41 577.8|597.8 | 1191.5 | 508.3 | 508.3 | 508.3

80 10 | 255.5 | 353.6 | 474.9 | 228.0 | 228.0 | 228.0

100 10 | 235.8 | 300.0 | 443.5| 193.4 | 193.4| 193.4

150 10 | 130.2 | 227.7 | 229.6 | 120.0 | 120.0 | 120.0

S| o | oo | o O

200 10| 9377|1334 | 1456 | 80.3| 80.3| &0.3

58

0
10 15 20 25 40 50 60 70 80 90 100 110 120
Node Count Edge Count

(a) (b)

Figure 4.1 Weight results of small size problem instances (Shyu’s dataset — Type 1)

a) Weight results versus node count (m=4n) b) Weight results versus edge count (n=20)

We found 71.27% as the biggest weight performance difference between
GR and GD and this value is obtained from (=20, m=120) in Table 4.4. The
performance difference of GR and GW reaches up to 52.3%. GR finds optimal

solutions for 50 out of 52 problem samples.

2 1 b=
W [——cr 3 ol]
) -6~ GD
10 E aw y M
—&—BF .
. 0 Y
O @
E g" —— R
= = --E¥- GD
5 GW
0 —B—5F
HGA
4 —&— PBIG
. 07
0°E 4
R i3 R i b % & 70 & 30 T i)
Node Count Edge Count
(a) (b)

Figure 4.2 Time results of small size problem instances (Shyu’s dataset — Type 1) a) Time

results versus node count (m=4n) b) Time results versus edge count (n=20)

59

Table 4.5. Time results of small size problem instances (Shyu’s dataset -Type 1)

n |m |#f |GR* |GD* | GW* | BF HGA | PBIG
con.

10| 10 2| 0.000 | 0.000 | 0.000 0.005 | 0.133 | 0.047
20| 10| 0.000 | 0.000 | 0.000 0.002 | 0.103 | 0.029
30| 10| 0.000 | 0.000 | 0.000 0.003 | 0.097 | 0.008
40 | 10| 0.000 | 0.000 | 0.000 0.002 | 0.091 | 0.003
15| 20 3 0.000 | 0.000 | 0.000 0.069 | 0.192 | 0.048
40 | 10| 0.000 | 0.000 | 0.000 0.107 | 0.161 | 0.192
60 | 10| 0.000 | 0.000 | 0.000 0.144 | 0.164 | 0.058
80| 10| 0.000 | 0.000 | 0.000 0.126 | 0.171 | 0.015
100 | 10| 0.000 | 0.000 | 0.000 0.126 | 0.154 | 0.005
20| 20 0 < - - - - -
40 9 | 0.000 | 0.000 | 0.000 3.549 | 0.290 | 0.360
60 | 10| 0.000 | 0.000 | 0.000 4.584 | 0.253 | 0.344
80| 10| 0.000 | 0.000 | 0.000 5.081 | 0.259| 0.228
100 | 10| 0.000 | 0.000 | 0.000 5.498 | 0.251| 0.206
120 10| 0.000 | 0.000 | 0.000 5.661 | 0.262| 0.145
25| 40 4| 0.000 | 0.000 | 0.000 | 111.652 | 0.457 | 0.420
80| 10| 0.000 | 0.000 | 0.000 | 183.172 | 0.367 | 0.522
100 | 10| 0.000 | 0.000 | 0.000 | 210.263 | 0.357 | 0.531
150 | 10| 0.000 | 0.000 | 0.000 | 235.622 | 0.368 | 0.437
200 | 10| 0.000 | 0.000 | 0.000 | 243.002 | 0.397 | 0.096

* These values are less than 10™

The problem instances in which GR cannot find optimum solutions are
(n=10, m=10 of Shyu’s Type 2 dataset) in Table 4.6 and (n=10, m=40 of Our
Dataset) in Table 4.8. In the first instance, GR and GD produce 28 and 26.7 total
weight, respectively. We obtain the 4.87% relative error between them. In the

second instance, GR and GD produce 62.7 and 62.2 weight results where the

relative error between them is 0.8%.

60

Table 4.6. Weight results of small size problem instances (Shyu’s dataset -Type 2)

n m |#f | GR | GD GW | BF HGA | PBIG | Relative | Stat.
con. Error | Sign.

10| 10 2| 280 267 320| 26.7| 267| 26.7 0| =

20| 10| 232 396 382 | 21.3| 213| 214 0469 | =

30 10| 29.0| 545 | 342 | 255| 255| 256 0392 | =

40 10| 21.8| 454 | 244 | 21.1| 21.1| 21.2 0474 | =

15 20 31 402 | 41.0| 455 33.8 | 33.8| 33.8 0] =

40 10| 60.6| 79.9 | 101.1 483 | 483 | 492 1.863 ~

60| 10| 57.3[115.6| 804 | 451 45.1| 45.1 0| =
80| 10| 39.9|1283| 440| 379| 37.9| 379 0| =
100 10| 17.7| 767| 17.7| 17.0| 17.0| 17.0 0| =
200 200 o0 - y - - - - - -

40 9 77.1| 956 |1209| 63.6| 63.6| 643 1.101 | =

60 10| 78.8 11269 | 1183 | 54.1| 54.1| 54.1

80 10 | 69.6 | 189.7 | 129.1 60.2 | 60.2| 60.2

100 10| 80.0 | 2283 | 112.5| 648 | 64.8| 64.8

120 10| 63.7|221.7| 67.5 50.1| 50.1] 50.1

25| 40 4| 93.8|115.8|150.8| 82.5| 82.5| 825

80 10 | 103.2 | 198.0 | 164.5 80.0 | 80.0| 80.0

100 10 | 105.4 | 236.2 | 220.6 | 788 | 78.8| 78.8

150 10| 97.6 2879 |204.6| 842 | 842 | 84.2

oc|lo|lo|lo|lo|lo|lo|o|o
I

200 10 | 1254 | 3054 | 176.5 | 105.0 | 105.0 | 105.0

The t-test results given in Tables 4.4, 4.6 and 4.8 show that we cannot find
any significant difference between the performance results of GR and GD. The
CPU time of these heuristics given in Tables 4.5, 4.7 and 4.9 are close to each

other and they are generally less than 0.0005 s.

Welght

61

Welght

. . 0 \
10 15 20 25 40 50 60 70 80 90 100 110 120
MNode Count Edge Count

(a) (b)

Figure 4.3 Weight results of small size problem instances (Shyu’s dataset — Type 2) a)

Weight results versus node count (m=4n) b) Weight results versus edge count (n=20)

for

Our proposed algorithms produce better WCDS solutions than GR except
only (n=10, m=10) problem instance in Table 4.4. In this combination, GR

finds the optimum result. PBIG produces optimum results for nearly 80% of

instances. HGA can find optimum results for all combinations. For 98.15% of the

combinations, our algorithms perform better solutions than other greedy

heuristics. The maximum difference equals to 31.3% and it is obtained in Table

4.6

Time (s)

for (n=20, m=60) problem instance.

hard
Lord

@
10
E —¥—GR
[--&r- GD
m-a L GW
—B—BF
E E HGA
" —&— PBIG
" 107
10 E
10 3 8 107 : B : 8 L B -
0 i A 25 i 50 60 70 &0 90 100 110 120
Node Count Edge Count
(a) (b)

Figure 4.4 Time results of small size problem instances (Shyu’s dataset — Type 2) a) Time

results versus node count (m=4n) b) Time results versus edge count (#=20)

62

Table 4.7. Time results of small size problem instances (Shyu’s dataset -Type 2)

n | m #of | GR* | GD* | GW* | BF HGA | PBIG
con.

10| 10 2| 0.000 | 0.000 | 0.000 0.002 | 0.179 | 0.004

20 10 | 0.000 | 0.000 | 0.000 0.002 | 0.096 | 0.028

30 10 | 0.000 | 0.000 | 0.000 0.003 | 0.095| 0.013

40 10 | 0.000 | 0.000 | 0.000 0.003 | 0.092 | 0.004

15| 20 31 0.000 | 0.000| 0.000 0.071 | 0.191| 0.131

40 10 | 0.000 | 0.000 | 0.000 0.109 | 0.162 | 0.265

60 10 | 0.000 | 0.000 | 0.000 0.126 | 0.175| 0.112

80 10 | 0.000 | 0.000 | 0.000 0.126 | 0.160 | 0.014

100 10 | 0.000 | 0.000 | 0.000 0.125 | 0.155| 0.005

20| 20 0 : - - - : -

40 91 0.000 | 0.000 | 0.000 3.400 | 0.305| 0.320

60 10 | 0.000 | 0.000 | 0.000 4.454 | 0.260 | 0.374

80 10 | 0.000 | 0.000 | 0.000 5.182| 0.240 | 0.391

100 10 | 0.000 | 0.000 | 0.000 5.523 | 0.246 | 0.303

120 10 | 0.000 | 0.000 | 0.000 5.645| 0.244 | 0.095

25| 40 4| 0.000 | 0.000| 0.000| 112.309 | 0.483 | 0.400

80 10 | 0.000 | 0.000 | 0.000 | 184.949 | 0.380 | 0.552

100 10 | 0.000 | 0.000 | 0.000 | 209.702 | 0.349 | 0.561

150 10 | 0.000 | 0.000 | 0.000 | 235.587 | 0.359 | 0.495

200 10 | 0.000 | 0.000 | 0.000 | 243.215| 0.396 | 0.162

* These values are less than 10™

For 41 out of 52 small-size problem combinations, PBIG achieves optimum
results. For the other 11 out of 52 combinations, PBIG achieves nearly optimum
WCDS solutions. As an example, PBIG produces WCDS with 21.4 total weight in
(n=10, m=20) problem instance where 21.3 is the optimum weight. For 11

different results, the average relative error equals to 1.73%.

63

Table 4.8. Weight results of small size problem instances (Our dataset)

n | m GR GD GW BF HGA | PBIG | Relative | Stat.
Error | Sign.

10| 20| 144.4 | 162.1 | 204.9 | 122.7 | 122.7 | 122.7 0| =

40| 62.7| 62.2 854 | 535 535 | 546 2056 | =

15| 30|273.0 3222 | 416.1 | 250.1 | 250.1 | 250.1 0| =
60| 97.8 1585 | 1314 | 91.1| 91.1| O91.1 0| =
90 | 70.5| 92.6 783 | 62.5| 62.5| 66.6 6.56 | =~
20| 40| 378.1 | 4109 | 657.0 | 329.8 | 329.8 | 329.8 0] =

80| 182.6 | 274.5 | 319.2|164.0 | 164.0 | 164.7 0427 | =

120 | 899 | 156.5| 1003 | 795 795 79.5 0] =

160 | 62.0 | 106.2 67.0 | 555| 555| 569 2523 | =

25| 50| 559.1 609.2 | 10052 |489.4 | 489.4 | 4894 0| =
100 | 211.5| 330.7 | 358.1 | 182.9 | 182.9 | 182.9 0| =
150 | 137.4 | 218.4 | 189.1 | 117.7 | 117.7 | 117.7 0| =
200 | 803 |137.0| 1200 | 752 | 752 | 752 0| =
250 | 64.8 | 126.3 70.9 | 60.8 | 60.8| 60.8 0| =

We obtain no significant difference when we apply t-test to the weight
results of PBIG and the optimum weight results. Additionally, HGA produces
optimum results for all small-size problem instances. These results show us that

the performances of our algorithms are outstanding.

. . .
50 100 150 200 250
Node Count Edge Count

(a) (b)
Figure 4.5 Weight results of small size problem instances (Our dataset) a) Weight results

versus node count (m=4n) b) Weight results versus edge count (n=25)

64

Table 4.9. Time results of small size problem instances (Our dataset)

n| m | GR* | GD* | GW* | BF | HGA | PBIG
10 | 20| 0.000 | 0.000 | 0.000 [0.003 | 0.035| 0.021
40 | 0.000 | 0.000 | 0.000 | 0.002 | 0.025 | 0.003
15| 30| 0.000 | 0.000 | 0.000 | 0.091 | 0.052| 0.210
60 | 0.000 | 0.000 | 0.000 | 0.124 | 0.048 | 0.060
90 | 0.000 | 0.000 | 0.000 | 0.124 | 0.046 | 0.007
20 | 40| 0.000 | 0.000 | 0.000 | 3.539 | 0.098 | 0.368
80 | 0.000 | 0.000 | 0.000 | 5.067 | 0.096 | 0.362
120 | 0.000 | 0.000 | 0.000 [5.504 | 0.078 | 0.071
160 | 0.000 | 0.000 | 0.000 | 5.588 | 0.073 | 0.014
25| 50| 0.000 | 0.000 | 0.000 | 135.025 | 0.149 | 0.543
100 | 0.000 | 0.000 | 0.000 | 203.123 | 0.110 | 0.509
150 | 0.000 | 0.000 | 0.000 | 226.934 | 0.117 | 0.438
200 | 0.000 | 0.000 | 0.000 | 236.863 | 0.118 | 0.127
250 | 0.000 | 0.000 | 0.000 | 239.601 | 0.110 | 0.030

* These values are less than 10™

The run time results of the algorithms show that our proposed algorithms are
significantly faster than BF. Even though BF generally executes faster for n=10
and n=15, the execution times of BF exponentially increase. This situation causes
that the time performance difference between PBIG and BF reaches up to 7986.7
for (n=25, m=250) combination in Table 4.8 where PBIG performs optimum at
the same time. For the same problem instance, the performance difference

between HGA and BF is 2187.2. From these results, we can claim that our

proposed algorithms are far more fast than scalable than BF.

65

L §hy.
&

<
o3

) =
£ E" :
- - 10 —¥— GR]
--Er- GD
. oW
10 —B—5F
HGA
1wt —6— PBIG
% % b il "H i) 0 Fid) 70
Node Count Edge Count
(a) (b)

Figure 4.6 Time results of small size problem instances (Our dataset) a) Time results versus

node count (m=4n) b) Time results versus edge count (n=25)

For 41 out of 52 combinations, HGA and PBIG provide the optimum
results. For most of these 41 problem instances, PBIG runs faster than HGA. For
other 11 out of 52 combinations, the performance of HGA is better than PBIG.
For all small-size problem instances, HGA finds optimal solutions which can be
seen in Tables 4.4, 4.6 and 4.8. The average execution times of HGA and PBIG
are similar and they equal to 0.198 s and 0.206 s, respectively.

4.2. Evaluation of Moderate-Size Problem Instances

Measurements of greedy heuristics taken in 69 moderate-size problem

instances are given in Tables 4.10-4.15 and Figures 4.7-4.12.

12000

10000

8000

6000

Welght
Welght

4000

2000

0 |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Edge Count

Node Count

(a) (b)
Figure 4.7 Weight results of moderate size problem instances (Shyu’s dataset — Type 1) a)

Weight results versus node count (m~5n) b) Weight results versus edge count (n=250)

66

Table 4.10. Weight results of moderate size problem instances (Shyu’s dataset — Type 1)

n m # of GR GD GW T-BF HGA PBIG
con.

50 50 0 - - - - - -

100 4| 1007.5| 1119.5 2728.5 NF 900.0 900.0

250 10 337.2 464.2 816.5 | 493.8* 291.3 290.6

500 10 160.6 290.9 301.3 237.9 141.6 141.2

750 10 105.4 182.3 167.2 110.9 87.7 87.6

1000 10 59.9 138.3 80.7 73.5 514 514

100 100 0 - - - - - -
250 2| 1649.0 | 1877.0 5018.0 NF 1408.0 | 1362.5

500 10 768.2 | 1046.2 2259.1 NF 687.4 641.9

750 10 483.8 725.2 1015.7 NF 439.8 410.4

1000 10 373.2 591.9 710.8 | 661.07 336.9 308.6

2000 10 158.9 314.3 253.9 272.9 144.4 141.9

150 150 0 - - - - - -
250 0 - - - - - -

500 6| 1962.7| 2387.8 7728.0 NF 1752.0 | 1661.3

750 10 | 1179.6 | 1607.5 3243.4 NF 1070.2 | 1013.4

1000 10 855.0 | 1290.7 21414 NF 761.4 701.6

2000 10 416.3 708.4 806.1 NF 392.3 345.0

3000 10 271.5 530.4 539.0 565.8 256.2 234.1

200 250 0 - - - - - -
500 4| 3411.0 | 3865.8 12264.8 NF | 3056.75| 2966.3

750 10 | 2173.2 | 2757.8 7384.5 NF 1917.5 | 1811.0

1000 9| 16476 | 2168.9 5661.2 NF 1451.4 | 1345.6

2000 10 745.8 | 1287.5 1732.7 NF 698.0 627.1

3000 10 497.1 891.3 1051.9 NF 478.0 417.7

250 250 0 - - - - - -
500 0 - - - - - -

750 7| 34053 | 3921.6| 11631.9 NF 3068.1 | 2850.3

1000 9| 25343 | 31904 9780.0 NF 2227.8 | 2056.8

67

n | m | #of | GR GD GW | T-BF | HGA | PBIG

con.

250 | 2000 | 10| 1151.8| 1841.3| 3189.1 NF| 10919 | 9763
3000 10| 7809 | 1327.2| 20533 NF 7522|6569
5000 | 10| 447.8| 886.8 899.2 NF 439.7 | 3949

300 | 300 0 - - - - - -
500 0 - - - - - -
750 2| 5003.0| 5819.5| 17622.0 NF | 4449.5| 42935
1000 0| 36713 | 4364.4| 15645.1 NF| 33154 31110
2000 | 10| 1780.4 | 2464.7| 6035.1 NF | 16394 | 14726
3000 | 10| 1111.5| 1800.0 | 2846.1 NF | 1083.7| 9453
5000 | 10| 6623 | 11958 | 14115 NF 646.0 | 5642

*n=50, m=250 Brute Force found only 4 of 10 graphs, + n=100, m=1000 Brute Force found only 4

of 10 graphs

Again GR has the best performance among the implemented greedy

heuristics for all moderate-size problem instances. The performance difference

between GR and GD reaches up to 87.26%. We obtain this result from (#=50,

m=750) combination in Shyu’s Type 2 dataset which is given in Table 4.12. GW

performs up to 76.8% worse than GR where this difference is obtained from

(n=300, m=1000) combination. The run time results are close to each other and

the maximum performance difference between them is 0.002 s.

Time (s)

—%—GR

--&- GD
Gw

107 HGA

—&—PBIG

10° L
10 L
()

|

/9

Node Count

(a)

£l

[|—%—GR
--r- GD
10° | GW
HGA

—&— PBIG

<

W
»*
»*

1

»*

U'E' = Py L Py L For L L L
500 10 100 2000 2500 3000 3500 4000 4500 oMo

Edge Count

(b)

Figure 4.8 Time results of moderate size problem instances (Shyu’s dataset — Type 1) a)

Time results versus node count (m=5n) b) Time results versus edge count (#=250)

68

Table 4.11. Time results of moderate size problem instances (Shyu’s dataset — Type 1)

n | m | #of | GR* | GD* | GW* | T-BF** | HGA | PBIG
con.
50 50| 0 - - - - - -
100 | 4| 0.001| 0.001| 0.000 | 3.462| 0.160| 1.731
250 | 10| 0.000 | 0.000 | 0.000 | 3.983| 0.076| 1.991
500 | 10| 0.000 | 0.000 | 0.000 | 4.408 | 0.094| 2.204
750 | 10| 0.000 | 0.000 | 0.000 | 3.545| 0.113| 1.772
1000 | 10 | 0.000 | 0.000 | 0.000 | 0.356| 0.134| 0.178
100 100 © _ ; ; _ _]
250 | 2| 0.000| 0.000 | 0.000| 16151.0| 0.713| 8.076
500 | 10| 0.000 | 0.000 | 0.000 | 18.697 | 0.483| 9.348
750 | 10| 0.000 | 0.000 | 0.000 | 18.437| 0412| 9.218
1000 | 10| 0.000 | 0.000 | 0.000 | 19.528| 0.463| 9.764
2000 | 10 | 0.000 | 0.000 | 0.000 | 21.664| 0.942| 10.832
150 | 150| O . : ;] _]
250 0 - - - - - -
500 | 6| 0.000| 0.001 | 0.000| 50.864| 2202| 25.432
750 | 10| 0.000 | 0.001 | 0.000 | 48.985| 1.537| 24.492
1000 | 10 | 0.000 | 0.000 | 0.000 | 42.338 | 1.296| 21.169
2000 | 10| 0.000 | 0.000 | 0.000 | 47.171| 1.535| 23.585
3000 | 10| 0.000 | 0.000 | 0.000 | 45.568| 2.518| 22.784
200 250 0 - - - - - -
500 | 4| 0.001| 0.001 | 0.000| 97.776| 5.854| 48.888
750 | 10| 0.001 | 0.001 | 0.000 | 101.605| 4.881| 50.802
1000 | 9| 0.001 | 0.001 | 0.000 | 94333 | 3.693| 47.166
2000 | 10| 0.001 | 0.001 | 0.000 | 83.854| 2.765| 41.927
3000 | 10| 0.001 | 0.001 | 0.000 | 81.510| 3.614| 40.755
250 | 250 O - - - - - -
500 0 - - - - - -

69

n m #of | GR* | GD* | GW* | T-BF** | HGA PBIG
con.

250 | 750 71 0.002 | 0.002 | 0.000 | 190.136 | 10.401 95.068

1000 91 0.002| 0.001 | 0.000 | 164.699 | 8.489 82.349

2000 10 | 0.002 | 0.001 | 0.000 | 150.110 | 5.072| 75.055

3000 10 | 0.002 | 0.001 | 0.000 | 143.539 | 5.284| 71.769

5000 10 | 0.002 | 0.001 | 0.000 | 142.146 | 8.735 71.073

300 | 300 0 - - - - - -

500 0 - - - - - -

750 2| 0.003 | 0.003 | 0.001 | 313.279 | 18.848 | 156.640

1000 91 0.003 | 0.003 | 0.000 | 312.629 | 16.753 | 156.314

2000 10 | 0.002 | 0.002 | 0.000 | 250.434 | 10.330 | 125.217

3000 10 | 0.003 | 0.002 | 0.000 | 222.202 | 8.265| 111.101

5000 10 | 0.003 | 0.002 | 0.000 | 218.030 | 11.360 | 109.015

* The 0.000 values in the related columns are less than 10™
** Time limit that is two times of PBIG’s run time

Our algorithms produce significantly better weight results than GR for all 69
combinations. The performance difference between PBIG and GR reaches up to
28.2% and this result is obtained in Table 4.12 from (n=200, m=500) problem
instance of Shyu’s Type 2 dataset.

7000 T T T T 14000

12000 -

10000 -

8000

Weight

6000

4000

2000 -

i or- - SRETRTEES t

50 100 150 200 250 300 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Node Count Edge Count

(a) (b)
Figure 4.9 Weight results of moderate size problem instances (Shyu’s dataset — Type 2)

a) Weight results versus node count (m~5nr) b) Weight results versus edge count (n=250)

70

Table 4.12. Weight results of moderate size problem instances (Shyu’s dataset — Type 2)

n | m | #of | GR GD GW | T-BF | HGA | PBIG

con.

50 50| 0 - - - - - -
100| 4| 2135| 280.0| 3840| NF| 166.0| 166.0
250 | 10| 238.7| 6427| 5165| 4184 | 182.8| 182.8
500 | 10| 230.0| 1083.7| 466.4 | 4652 | 204.4| 204.4
750 | 10| 239.4| 1879.4| 369.8| 612.8| 2153 | 2153

100 50| 0 ; ; ;]) -
100 0 ; ; ;]) -
250 | 7| 401.7| 647.7| 10654 | NF| 306.1| 307.4
500 | 10| 485.8| 1286.1| 1117.7| NF| 3644 | 3489
750 | 10| 542.0 | 1747.1| 12832| NF| 464.5| 4322

150 50| 0 " - - . - -
100 0 - - . - . -
250 0 - - - ; - -
500 9| 6292 1317.2] 2059.8| NF| 490.0| 479.1
750 | 10| 789.4| 2109.2| 2599.0| NF| 622.5| 596.9

200 50| o0 - - - - - -
100 0 - - - - - -
250 0 - - - - - -
500 | 3| 9243 | 1380.7| 2580.7| NF| 678.7| 664.0
750 | 10| 969.4 | 2131.0| 3909.7| NF| 7332| 709.0

250 | 250| 0 ; ;]]]]
500 0 -] ;]]]
750 | 6| 1188.0 | 1987.0| 3747.8| NF| 924.7| 896.5
1000 | 9| 13033 | 2797.0| 4649.8 | NF | 1014.6| 967.8
2000 | 10| 14922 | 5717.6| 5360.7| NF| 12729 | 1167.8
5000 | 10| 1780.4 | 13116.9 | 3860.7 | NF | 1666.7 | 1471.9

300 250 o0 .]]]]]
500 0 - - - - - -
750 1| 1251.0| 1821.0| 4191.0| NF| 999.0| 981.0

71

of

m GR GD GW | T-BF | HGA | PBIG
con.
300 | 1000 9| 1395.1 2691.9 | 6010.6 NF | 1092.6 | 1058.7
2000 10| 1727.2 5768.0 | 6329.0 NF | 1395.6 | 1294.7
5000 10 | 2010.2 | 14004.9 | 4796.8 NF | 19342 | 16224

Even though T-BF is given two times more time than PBIG, T-BF cannot

find any solution for 53 out of 69 moderate-size combinations. On the other side,

our algorithms produce WCDS for all these problem instances.

In Tables 4.10, 4.12, 4.16 and 4.18, NF stands for “Not Found”. The results

taken are found by averaging the results of ten instances for each combination.

The weight results are the average of 6 (n, m) instances instead of 10 instances

because T-BF can only find solutions for 6 problem instances.

e

@
o 10’
£
= a
10° —¥—GR]
--Cr- GD _’______—-ie
il GW I i
HGA
- —&— PBIG
10'5 B h\"‘. .., ST
i 10 i 20 0 £

Node Count

(a)

k-3

< 3

—%—GR

--&r- GD
Gw
HGA

—&— PBIG

Edge Count

(b)

o o5 L o L . L . .
500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 4.10 Time results of moderate size problem instances (Shyu’s dataset — Type 2)

a) Time results versus node count (m~5n) b) Time results versus edge count (n=250)

Sb'RU

PBIG produces up to 2.29 times better weight results than T-BF for (n=100,

m=800) combination in Table 4.14. HGA finds up to 2.11 times better weight

results than T-BF for (»=100, m=1000) combination in the same table. Our

proposed algorithms perform up to 2.85 times (for (#=50, m=750) problem

instance in Table 4.12) better than T-BF for the other 10 combinations. T-BF

cannot produce any solution for large-size problem combinations.

72

Table 4.13. Time results of moderate size problem instances (Shyu’s dataset — Type 2)

n | m |#of | GR* | GD* | GW* | T-BF** | HGA | PBIG
con.
50| 50 0 ; ; ;]] -
100 4| 0.000 | 0.000 | 0.000 3441 0.181| 1.720
250 | 10| 0.000 | 0.000 | 0.000 4201 | 0.082| 2.100
500 | 10| 0.000 | 0.000 | 0.000 5.050 | 0.091 | 2.525
750 | 10 | 0.000 | 0.000 | 0.000 2.834| 0.114| 1417
100 | 50 0 :] ; ;] -
100 0 - - - - - -
250 71 0.000 | 0.000 | 0.000 | 20.533| 0.801 | 10.266
500 | 10| 0.000 | 0.000 | 0.000 | 20.002 | 0.513| 10.001
750 | 10| 0.000 | 0.000 | 0.000 | 22.102 | 0.419 | 1.1051
150 | 50 0 - - - - - -
100 0 - - - - - -
250 0 - ’ - - . .
500 9] 0.001 | 0.001 | 0.000 | 52.513| 2.363| 26256
750 | 10| 0.000 | 0.000 | 0.000 | 55.639 | 1.838 | 27.819
200| 50 0 - - - - - -
100 0 - - - - - -
250 0 - - - - - -
500 31 0.002 | 0.001 | 0.001 | 107.096| 6.675| 53.548
750 | 10| 0.001 | 0.001 | 0.000 | 109.209 | 5.453 | 54.605
250 | 250 0 - - - - - -
500 0 - - - - - -
750 6] 0.002 | 0.002 | 0.000| 215.133| 12.071 | 107.566
1000 9] 0.002 | 0.002 | 0.000| 211.656| 10.657 | 105.828
2000 | 10| 0.002 | 0.001 | 0.000 | 186.403 | 5354 | 93.202
5000 | 10 | 0.002 | 0.001 | 0.000 | 171.986| 8.574 | 85.993
300 | 250 0 - - - - - -
500 0 - - - - - -
750 1| 0.004 | 0.003| 0.000| 366.842 | 22.292 | 183.421

73

n m | #of | GR* | GD* | GW* | T-BF** | HGA | PBIG
con.

300 | 1000 91 0.003 | 0.002| 0.000 | 350.722 | 20.359 | 175.361

2000 10 | 0.004 | 0.002 | 0.000 | 316.873 | 11.242 | 158.436

5000 10 | 0.003 | 0.002 | 0.000 | 263.854 | 11.472 | 131.927

* The 0.000 values in the related columns are less than 107
** Time limit that is two times of PBIG’s run time

Weight

&
Ay

0 . \
400 600 800 1000 1200 1400 1600 1800 2000
Edge Count

Node Count

(a) (b)

Figure 4.11 Weight results of moderate size problem instances (Our dataset) a) Weight results

versus node count (m=4n) b) Weight results versus edge count (#=200)

For 5 problem instances, we obtain same results from proposed algorithms.
The average weight value of HGA is 306.1 and the average weight value of PBIG
1s 307.4 for (n=100, m=250) problem instance in Table 4.10.

—¥%—GR
B . --&r- GD
@ 10 E w10 F oW
o o HGA
E . E
= 107 = [—6&— PBIG
--&- GD
10°L Gw D L T R S 3
HGA
ot —&— PBIG

. . \ . > ! » .
400 600 600 1000 1200 1400 1600 1800 2000
Edge Count

Node Count

(a) (b)
Figure 4.12 Time results of moderate size problem instances (Our dataset) a) Time results versus

node count (m=4n) b) Time results versus edge count (#=200)

74

PBIG is better than HGA in terms of WCDS weight for the other 63
problem instances. PBIG performs up to 16% better than HGA in terms WCDS

weight for (=300, m=5000) problem instance in Table 4.12. On the other hand,

PBIG is slower than HGA for all problem instances. HGA is 28 times faster than
PBIG for (n=50, m=500) problem instance in Table 4.12.

Table 4.14. Weight results of moderate size problem instances (Our dataset)

n m GR GD GW T-BF HGA PBIG
50 100 1068.4 1161.3 2121.3 NF 908.1 905.0
200 459.2 594.9 904.9 658.0“ 412.8 407.5
300 307.6 440.5 638.2 402.3° 263.5 257.1
400 219.0 340.7 356.2 2894 186.0 183.0
500 164.0 297.1 260.3 227.7 148.5 147.4
100 200 2149.7 2310.8 5494.5 NF 1856.5 1804.7
400 1023.4 1305.9 2913.3 NF 873.2 845.9
600 671.6 895.4 1846.1 NF 599.2 559.8
800 502.2 750.3 1173.6 945.8° 450.0 412.7
1000 353.3 615.2 742.5 714.7Y 338.9 314.8
150 300 3274.8 3718.6 7311.5 NF 2927.6 2817.0
600 1499.7 1901.9 4466.5 NF 1300.7 1237.0
900 993.3 1398.6 2435.8 NF 878.8 826.2
1200 742.7 1048.7 1997.1 NF 694.3 623.1
1500 543.1 902.4 1414.2 NF 508.5 460.4
200 400 4452.9 4927.9 10547.9 NF 3884.6 3683.5
800 2021.7 2612.5 6796.9 NF 1797.2 1674.8
1200 1323.6 1890.5 3219.5 NF 1193.5 1115.5
1600 951.7 1413.0 2227.0 NF 891.1 784.7
2000 723.5 1196.5 1803.6 NF 694.7 614.6

a n=50, m=200 Brute Force found only 3 of 10 graphs, p #»=50, m=300 Brute Force found only 9
of 10 graphs, ¢ n=100, m=800 Brute Force found only 1 of 10 graphs, y n=100, m=1000 Brute

Force found only 2 of 10 graphs

75

Table 4.15. Time results of moderate size problem instances (Our dataset)

n m | GR* | GD* | GW* | T-BF** | HGA | PBIG
50 | 100 | 0.000 | 0.000 | 0.000 3.745 | 0.114 | 1.873
200 | 0.000 | 0.000 | 0.000 3.766 | 0.075 | 1.883
300 | 0.000 | 0.000 | 0.000 4.040 | 0.073 | 2.020
400 | 0.000 | 0.000 | 0.000 4288 | 0.079 | 2.144
500 | 0.000 | 0.000 | 0.000 4327 | 0.095| 2.163
100 | 200 | 0.000 | 0.000 | 0.000 | 17.785 | 0.682 | 8.892
400 | 0.000 | 0.000 | 0.000 | 17.567 | 0.518 | 8.783
600 | 0.000 | 0.000 | 0.000 | 17.166 | 0.428 | 8.583
800 | 0.000 | 0.000 | 0.000 | 17.181 | 0.401 | 8.590
1000 | 0.000 | 0.000 [0.000 | 17.728 | 0.439 | 8.864
150 | 300 | 0.001 | 0.000 | 0.000 | 51.873 | 2.166 | 25.937
600 | 0.001 | 0.000 | 0.000 | 42.917 | 1.567 | 21.458
900 | 0.001 | 0.000 | 0.000 | 43.095 | 1.289 | 21.547
1200 | 0.000 | 0.000 | 0.000 | 43.462 | 1.182 | 21.731
1500 | 0.001 | 0.000 [0.000 | 42.925 | 1.209 | 21.462
200 | 400 | 0.001 | 0.001 | 0.000 | 109.691 | 4.976 | 54.845
800 | 0.001 | 0.001 | 0.000 | 89.036 | 3.900 | 44.518
1200 | 0.001 | 0.001 | 0.000 | 84.292 | 2.835 | 42.146
1600 | 0.001 | 0.001 | 0.000 | 83.360 | 2.592 | 41.680
2000 | 0.001 | 0.001 | 0.000 | 77.772 | 2.622 | 38.886
* The 0.000 values in the related columns are less than 10~
** Time limit that is two times of PBIG’s run time

4.3. Evaluation of Large-Size Problem Instances

We present the measurements of greedy heuristics taken in 29 large-size
problem instances in Tables 4.16-4.19 and Figures 4.13-4.16. The best weight
performance is achieved by GR for all 29 instances. Its performance is up to

80.8% better than GW and this result can be seen in (#=500, m=2000)

combination in Table 4.16.

76

Table 4.16. Weight results of large size problem instances (Shyu’s dataset — Type 1)

n m GR | GD GW | T-BF | HGA | PBIG
500 500 - - - - - -
1000 - - - - - -

2000 | 5297 | 6546 | 27581 NF | 4579 | 4239

5000 | 1803 | 2714| 5911 NF| 1803 | 1576

10000 | 922 | 1925| 2752 NF| 922 868

800 500 - - - - - -
1000 ; ;] ;]]

2000 - - - - - -

5000 | 5223 | 6976 | 24521 NF | 4740 | 4334

10000 | 2527 | 4244 | 6972 NF | 2459 | 2081

1000 | 1000 ; ’ i) y]
5000 | 7900 | 10599 | 32379 NF| 7319| 6762

10000 | 3623 | 5946 | 13500 NF | 359 | 3013

15000 | 2530 | 4752 | 7276 NF | 2483 | 2178

20000 | 1895 | 3432| 5126 NF| 1895| 1658

0 L I L L L L L L
500 550 600 650 700 750 BOO 850 900

Node Count

(a)

L
950 1000

Welight

Edge Count

(b)

Figure 4.13 Weight results of large size problem instances (Shyu’s dataset — Type 1) a) Weight

results versus node count (m~=4n) b) Weight results versus edge count (n=1000)

71

Table 4.17. Time results of large size problem instances (Shyu’s dataset — Type 1)

n m GR GD GW* | T-BF** HGA PBIG
500 500 - - - - - -
1000 - - - - - -
2000 | 0.013 | 0.011 | 0.002 583.485 74.495 | 1166.970
5000 | 0.010 | 0.007 | 0.001 904.560 33.905 452.280
10000 | 0.007 | 0.006 | 0.000 796.998 45.099 398.499
800 500 - - - - - -
1000 - - - - - -
2000 - - - - - -
5000 | 0.037 | 0.031 | 0.003 | 3845.316 | 246.808 | 1922.658
10000 | 0.030 | 0.021 | 0.001 | 2931.058 | 131.813 | 1465.529
1000 1000 - - - - - -
5000 | 0.080 | 0.063 | 0.002 | 9070.406 | 540.864 | 4535.203
10000 | 0.061 | 0.046 | 0.001 | 6243.744 | 296.014 | 3121.872
15000 | 0.053 | 0.043 | 0.001 | 5312.758 | 295.591 | 2656.379
20000 | 0.049 | 0.034 | 0.001 | 4789.570 | 308.906 | 2394.785
* The 0.000 value in the related column is less than 10~
**Time limit that is two times of PBIG’s run time
10! , , , , . , , . , 10* , .
>_”4__6’,,’/4 & o
10° E 10° L M
10 10°
—¥—GR
Z0F [R I -t
2 - 6D g HGA
=0 Sg‘; = 10t —&— PBIG
. —O— PBIG .
10 10 " 4
________] =% E
w:gﬂ Séﬂ Gaﬂ Géﬂ 760 Téﬂ 860 Séﬂ 9(‘10 ﬂéﬂ 1000 107;,5 1 wia
Node Count Edge Count %10
(a) (b)

Figure 4.14 Time results of large size problem instances (Shyu’s dataset — Type 1) a) Time results

versus node count (m=~4n) b) Time results versus edge count (n=1000)

As aforementioned GR achieves better than GD and the performance
difference between these two algorithms reaches up to 52.1%. This result can be
seen in (n=500, m=1000) problem sample of Shyu’s Type 1 dataset given in Table

4.16. In terms of execution times, GW has the best performance and GR has the

worst performance on the average.

78

Table 4.18. Weight results of large size problem instances (Our dataset)

n m GR GD GW | T-BF | HGA PBIG
250 500 | 5123.4 | 5554.2 | 10720.2 NF | 4716.1 | 4585.0
1000 | 2604.9 | 3411.2| 7871.8 NF | 2481.8 | 2228.0
1500 | 1704.4| 2368.3 | 5374.0 NF | 1548.1 | 1384.0
2000 | 1240.7 | 2073.8 | 4827.7 NF | 11049 | 10624
2500 | 1010.8 | 1437.4| 2535.5 NF 960.3 822.2
500 | 1000 | 10229.1 | 11257.2 | 27955.9 NF | 94443 | 8859.4
2000 | 5164.3 | 7030.6 | 16516.7 NF | 4693.7| 4393.7
3000 | 3446.5 | 5759.9 | 13742.6 NF | 32569 | 2915.8
4000 | 2552.6 | 3819.0 | 3819.1 NF | 25179 | 2164.3
5000 | 1977.0 | 3051.0| 6763.3 NF | 1766.5| 1552.7
750 | 1500 | 16786.8 | 18807.5 | 52193.1 NF | 15491.2 | 14298.5
3000 | 7153.5| 9694.3 | 30528.0 NF | 6979.4 | 6250.9
4500 | 4878.3 | 7518.4 | 18476.1 NF | 48783 | 43835
6000 | 3728.7 | 5730.6 | 12627.7 NF | 36022 | 32269
7500 | 2823.6| 4751.1 | 82583 NF | 2823.6 | 2435.0
1000 | 2000 | 21477.5 | 23785.9 | 53644.9 NF | 19786.5 | 18235.3
4000 | 10127.6 | 12624.5 | 31832.3 NF | 9532.0| 84759
6000 | 6401.5 | 9340.0 | 28727.0 NF | 5938.7| 5341.9
8000 | 4701.8 | 7498.9 | 21034.6 NF | 4557.0| 39835
10000 | 3801.5| 6024.2 | 8608.8 NF | 37559 | 3188.9

79

3
D

0 \ . \ \ \ . \ 0

200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Node Count Edge Count
(a) (b)

Figure 4.15 Weight results of large size problem instances (Our dataset) a) Weight results

versus node count (m=4n) b) Weight results versus edge count (n=1000)

10 T . T T T . T 10 . T . .
A c c
i 10° 1
10° —
10° |
—k— GR —%—GR
10° b --&r- GD] E --&r- GD
@ w0 GW
o @ HGA
£ E
F 02 = 10 ——rai6
107 " " "
=== ==-=oomoo
10* .
07
10‘5 1 L 1 1 1 L 1 10'3 L 1 L L 1 L L F
200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 6000 7000 800D 9000 10000
Node Count Edge Count
(a) (b)

Figure 4.16 Time results of large size problem instances (Our dataset) a) Time results

versus node count (m=4n) b) Time results versus edge count (n=1000)

We take the maximum run time difference between GW and other heuristics
from (n=1000, m=2000) problem sample in Table 4.19. In this sample GR and GD
find the solution in 0.096 s, GW finds the solution in 0.1 s.

We obtain better solutions from proposed solutions in terms of WCDS
weight for all 29 large-size combinations. For (n=500, m=5000) problem instance

in Table 4.18, the weight performance of PBIG and GR reaches up to 21.46 %.

80

Table 4.19. Time results of large size problem instances (Our dataset)

n m GR | GD | GW* | T-BF** HGA PBIG

250 500 | 0.018 | 0.004 | 0.002 221.436 9.891 | 110.718

1000 | 0.002 | 0.001 | 0.000 180.712 9.072 90.356

1500 | 0.002 | 0.002 | 0.000 144.138 5.988 72.069

2000 | 0.002 | 0.001 | 0.001 159.186 4.935 79.593

2500 | 0.001 | 0.001 | 0.001 124.650 4.891 62.325

500 | 1000 | 0.013 | 0.013 | 0.001 | 1590.280 | 85.877 | 795.140

2000 | 0.012 | 0.010 | 0.000 | 1242.566 | 68.812 | 621.283

3000 | 0.011 | 0.009 | 0.001 | 1025.832 | 49.512 | 512.916

4000 | 0.011 | 0.008 | 0.000 935.362 | 37.736 | 467.681

5000 | 0.010 | 0.006 | 0.001 726.876 | 34.345 | 363.438

750 | 1500 | 0.043 | 0.043 | 0.002 | 4787.364 | 305.155 | 2393.682

3000 | 0.032 | 0.030 | 0.002 | 3436.760 | 263.961 | 1718.380

4500 | 0.030 | 0.025 | 0.001 | 3077.078 | 199.290 | 1538.539

6000 | 0.029 | 0.022 | 0.001 | 3049.036 | 143.775 | 1524.518

7500 | 0.027 | 0.020 | 0.001 | 2903.990 | 118.980 | 1451.995

1000 | 2000 | 0.096 | 0.100 | 0.002 | 12105.298 | 706.465 | 6052.649

4000 | 0.087 | 0.068 | 0.002 | 9302.974 | 609.619 | 4651.487

6000 | 0.073 | 0.058 | 0.003 | 7597.726 | 429.499 | 3798.863

8000 | 0.070 | 0.056 | 0.002 | 6943.852 | 345.449 | 3471.926

10000 | 0.063 | 0.044 | 0.002 | 6226.756 | 280.598 | 3113.378

* The 0.000 values in the related column are less than 10”
** Time limit that is two times of PBIG’s run time

PBIG performs better than HGA for all problem instances where the
performance difference reaches up to 16% for (n=1000, m=10000) combination in
Table 4.16. On the other side, HGA is faster than PBIG for all problem instances.
For (n=250, m=1000) in Table 4.19 problem instance, HGA is 16 times faster than
PBIG.

81

5. CONCLUSION

We provided two population-based MWCDS optimization algorithms for
undirected graphs in this thesis. Firstly, we defined MWCDS problem and its
variants in detail. We showed that MWCDS has been applied to overcome
backbone formation problem for WASNs where nodes with higher energies are
aimed to include in backbone sets. We described WASNs and mentioned one of
the most important problems in WASNSs as energy conservation. We listed their
various applications such as habitat monitoring, healthcare monitoring and office
applications. We realized that energy-efficient backbone construction is vital to
prolong the application lifetime and MWCDS is a very suitable structure to meet
the energy requirements. After reviewing the literature, we found that although
there are various algorithms for DS and CDS constructions, we could not find a
population-based MWCDS approach which can iteratively refine the MWCDS

solution quality. The motivation of this thesis arose from this fact.

The first contribution of this thesis 1s HGA which is a hybrid genetic
algorithm and uses a greedy heuristic to solve MWCDS problem. Hybrid genetic
algorithms are based on genetic and other search methods that can complement
each other to achieve an optimization objective. This algorithm improves the
solution quality produced by greedy heuristic. The chromosomes used in this
problem are sets of vertices where each chromosome C; is represented with a bit
vector. If node i is a dominator, C; is set to 1 otherwise C; equals to 0 showing that
node 1 is a dominatee. The first member of the HGA is generated by the GR
heuristic. HGA runs a DFS based algorithm to detect cut vertices which are used

in minimization process.

After above operations are achieved, HGA executes the following
operations repeatedly. The algorithm generates a new chromosome in two ways.
In the first way, two parents are chosen by binary tournament selection and these
parents produce a new offspring by applying a crossover operation. In this
crossover operation, two parents P; and P, having f; and f fitness values are used
to generate a new chromosome. For each gene, Ci is set to P;[i] with a probability

of fi/(fi+f>) and C; is set to P,[i] otherwise. After a new chromosome is generated,

82

a mutation operation is applied on this chromosome. This operation is achieved by
applying C; « (C;+1) mod 2 operation according to a predefined priority. The
generated chromosome is repaired to provide that it is definitely a CDS. The
redundant dominators are removed from the chromosome and it is added to the
population if it is not included in the population. After all iterations are finished,

best member is returned as the final solution.

The second contribution of this thesis is PBIG which is based on iterated
greedy strategy. This strategy aims to improve the solution quality by iteratively
applying deconstruction process and a reconstruction process based on a greedy
heuristic. At the first step, the algorithm generates an initial population of
solutions by applying a construction process on each member. This construction
process can produce a new member and can repair a partial solution. It starts with
checking of WHITE node presence. If there is no WHITE node in the graph, all
nodes are covered and the input is already a CDS. Thereafter, the algorithm
determines first two nodes having the lowest cost and selects one of them with a
predefined probability. This procedure provides to prevent getting stuck in a local
minimum solution. The selected node is set to BLACK and its WHITE neighbors
are colored GRAY. These operations are executed similarly while there is WHITE

node in the graph. At the end of this operation, the solution is returned.

After construction process is applied, cut vertices are determined for
redundant node elimination and destruction phases. This operation is followed by
the below operations which are iteratively executed. The redundant dominators of
each member are removed and each member is partially destroyed. The solution is
repaired by applying the construction process and it is added to new population. In
this manner, the newly generated members are added to the new population. Then,
the new and initial populations are merged by sorting the combined population in
ascending order according to the weights of solutions and taking the first
individuals up to the initial population size. Lastly, when all iterations of the

PBIG algorithm are completed, the best member is returned.

We analyzed the running time complexities of HGA and PBIG algorithms.
We found that the running time complexity of HGA MWCDS algorithm

83

(Algorithm 3.2) is 0(n4(S+ Lyax)t sn Lya) where L., is the number of maximum
iteration, s is the population size and #» is the number of vertices. We also found
that the running time complexity of PBIG MWCDS algorithm (Algorithm 3.10)
is O(Lyax(n’+ns)+ms) where m is the number of edges. To further analyze
algorithms, we provide implementations of our proposed algorithms with their
counterparts; greedy heuristics and brute force algorithms. GR, GW and GD are
the greedy heuristics that are implemented. The implemented brute force
algorithm BF always finds the best solution by running all possible subset of
solutions. Since BF algorithm can execute for small scale datasets within hours,
BF runs unacceptably long for moderate and large scale datasets. To overcome

this problem, a time-limited version of BF named as T-BF is implemented.

We applied t-tests between our proposed algorithms to compare the solution
qualities. We used two types of datasets to benchmark the algorithms. Although
the first dataset is a popular dataset, some of the graphs in this dataset are
unconnected. This situation causes a significant problem that MWCDS cannot be
found on an unconnected graph. Because of that reason, the second dataset is
proposed in this thesis by randomly generating undirected connected graphs. Our
generated dataset is divided into small, moderate and large scale instances with
respect to their node counts. In small, medium and large problem instances have
{10, 15, 20, 25} nodes, {50, 100, 200, 250} nodes and {250, 500, 750, 1000}
nodes, respectively. For each node count, 2n, 4n, 6n, 8n and 10n edges are
randomly generated. We generated 10 instances by randomly assigning the
weights of the nodes between 20 and 120 for each node and edge count

combination.

In our performance evaluation study, we investigate the measurements taken
from greedy heuristics. We found that GR has the best performance in terms of
WCDS weight and GD has the worst performance in small-size and moderate-size
problem instances. The performance difference between GR and GD reaches
71.27% and 87.26% in small-size and medium-size problem instances,
respectively. The CPU times of the greedy heuristics in small-size and moderate-
size problem instances are generally close to each other. In large-size problem

instances, again GR has the best performance; GW has the worst performance

84

where GR performs up to 80.8% better than GW. On the other hand, GW runs
faster than other greedy heuristics while GR performs slower than other heuristics

in large-size problem instances.

We evaluated the performance results of our algorithms and GR. As
expected, the running times of GR are lower than our algorithms, since GR exits
after finding the first solution whereas our proposed algorithms iteratively
searches for better candidates. On the other hand, our algorithms perform
significantly better than GR in terms of WCDS weight. In small-size problem
instances, our algorithms produce better solutions for 98.15% of the
combinations. In moderate-size problem instances, the performance difference
between our algorithms and GR reaches up to 28.2%. In large-size problem
instances, we found better solutions for all combinations where the weight

performance difference reaches up to 21.46%.

We compared the performances of our proposed algorithms with BF. Since
BF executes unacceptable long, we obtained the performances of BF only in
small-size problem instances. HGA produces same results with BF for all small-
size problem instances. From our t-tests, we obtained no significant difference
between PBIG and BF. Moreover, our algorithms outperform BF that the time
performance difference between PBIG and BF reaches up to 7986.7.

We evaluated the performance values of our proposed algorithms and T-BF.
T-BF cannot produce any solution for most of moderate-size problem instances
whereas our algorithms produce solutions for these instances. T-BF cannot
produce any solution for large-size problem instances. However, our algorithms

provide solutions for all instances.

When we compared the performances of our proposed algorithms HGA and
PBIG, both of them provide optimum results for 41 out of 52 small-size problem
instances. For other small-size problem instances, HGA performs better than
PBIG. The execution times of these algorithms are similar for small-size problem
instances. In moderate-size and large-size problem instances, PBIG performs

better than HGA in terms of WCDS weight for most of the problem instances

85

where the performance difference reaches up to 16%. On the other hand, PBIG is
slower than HGA for all moderate-size and large-size problem instances. These
results show that PBIG performs better in terms of MWCDS weight and HGA is

faster.

In future, we are planning to study on node and edge weighted versions of
MWCDS problem. Edge weights can represent wireless link qualities such as
received signal strength indicator or link quality indicator. Another interesting
future problem is designing Steiner Tree based approaches which can provide
connection between unconnected dominators to construct WCDSs having low

total cost.

86

REFERENCES

Abdel-Aziz, S. N., Hedar, A., Sewisy, A. A., 2013, Memetic Algorithm with
Filtering Scheme for the Minimum Weighted Edge Dominating Set
Problem, International Journal of Advanced Research in Artificial
Intelligence, Vol. 2, No. 8.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E., 2002, A
Survey on Sensor Networks. IEEE Communications Magazine, 40(8):102-
114 pp.

Alkhalifah, Y. and Wainwright, R. L., 2004, A genetic algorithm applied to
graph problems involving subsets of vertices, in: Proceedings of the IEEE

Congress on Evolutionary Computation (CEC), pp. 303-308.

Al-Nabhan, N., Zhang, B., Cheng, X., Al-Rodhaan, M. and Al-Dhelaan, A.,
2016, Three connected dominating set algorithms for wireless sensor
networks. International Journal of Sensor Networks, 21 (1) (January 2016),
53-66.

Aoun, B., Boutaba, R., Iraqi, Y. and Kenward, G., 2006, Gateway placement
optimization in wireless mesh networks with QOS constraints, IEEE

Journal on Selected Areas in Communications, pp.2127-2136.

Biagioni E. and Bridges, K., 2002, The Application of Remote Sensor
Technology to Assist the Recovery of Rare and Endangered Species, In
Special issue on Distributed Sensor Networks for the International Journal

of High Performance Computing Applications, 16:3.

Beasley, J. E. and Chu, P.C., 1996, A genetic algorithm for the set covering
problem, European Journal of Operational Research, 94 (October (2))
(1996), 392-404.

Benedettini, S., Blum, C. and Roli, A. 2010 A Randomized Iterated Greedy
Algorithm for the Founder Sequence Reconstruction Problem. LION 2010:
37-51.

Bouamama, S., Blum, C. and Boukerram, A., 2012, A Population-based
Iterated Greedy Algorithm for the Minimum Weight Vertex Cover
Problem, Applied Soft Computing, (12) 1632-1639.

87

REFERENCES (continued)

Bouamama, S. and Blum, C., 2015, A Randomized Population-based Iterated
Greedy Algorithm for the Minimum Weight Dominating Set Problem, 6™
International Conference on Information and Communication Systems
(ICICS).

Chatterjee M., Das, S. K., Turgut, D., 2002, WCA: A Weighted Clustering
Algorithm for Mobile Ad Hoc Networks, Cluster Computing, v.5 n.2,
pp.193-204.

Chen, Y. P. and Liestman, A. L., 2002, Approximating minimum size weakly-
connected dominating sets for clustering mobile ad hoc networks,
in: Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing (MobiHoc '02), ACM, New York, NY, USA,
2002, pp. 165-172.

Chvatal, V., 1979, A Greedy Heuristic for the Set-Covering Problem,
Mathematics of Operations Research, 4(3):233-235.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., 2009,
Introduction to Algorithms, Third Edition (3rd ed.), The MIT Press.

Dagdeviren, Z.A., Aydin, D. and Cinsdikici, M., 2017, Two population-based
optimization algorithms for minimum weight connected dominating set,
Applied Soft Computing, 59:644-658.

El-Mihoub, T. A., Hopgood, A. A., Nolle, L. and Battersby, A., 2006, Hybrid
Genetic Algorithms: A Review. Engineering Letters 13 (2), 124-137.

Fanjul-Peyro L. and Ruiz, R. 2010, Iterated greedy local search methods for
unrelated parallel machine scheduling. European Journal of Operational
Research 207(1): 55-69.

Gendron, B., Lucena, A., Salles da Cunha, A. and Simonetti, L., 2014,
Benders Decomposition, Branch-and-Cut, and Hybrid Algorithms for the
Minimum Connected Dominating Set Problem, INFORMS Journal on
Computing 26(4) (2014), 645-657.

Gonzalez, T. F., 2007, Handbook of Approximation Algorithms and
Metaheuristics (Chapman & Hall/Crc Computer & Information Science
Series), Chapman & Hall/CRC.

https://dl.acm.org/citation.cfm?id=593002&CFID=1001229441&CFTOKEN=86504648
https://dl.acm.org/citation.cfm?id=593002&CFID=1001229441&CFTOKEN=86504648
https://dl.acm.org/citation.cfm?id=593002&CFID=1001229441&CFTOKEN=86504648
https://scholar.google.com/citations?view_op=view_citation&hl=da&user=exP5rSEAAAAJ&sortby=pubdate&citation_for_view=exP5rSEAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=da&user=exP5rSEAAAAJ&sortby=pubdate&citation_for_view=exP5rSEAAAAJ:u5HHmVD_uO8C

88

REFERENCES (continued)

Gray, R. M., Kieffer, J. C., and Linde, Y., 1980, Locally optimal block

quantizer design, Information and Control, 45, 178.

Guha, S. and Khuller, S., 1998, Approximation Algorithms for Connected
Dominating Sets, Algorithmica, (20) 374-387.

Hand, D. J., Smyth, P., and Mannila, H., 2001, Principles of Data Mining.
MIT Press, Cambridge, MA, USA.

He, J., Cai, Z., Ji, S., Beyah, R. and Pan, Y., 2011, A genetic algorithm for
constructing a reliable MCDS in probabilistic wireless networks, in:
Proceedings of the 6th International Conference on Wireless Algorithms,
Systems, and Applications (WASA 2011), LNCS 6843, pp. 96—-107.

He, J., Ji, S., Yan, M., Pan, Y. and Li, Y., 2012, Load-balanced CDS
construction in wireless sensor networks via genetic algorithm,
International Journal of Sensor Networks, 11 (3) (April 2012), 166-178.

He, J. S., Ji, S., Beyah, R., Xie, Y. and Li, Y., 2015, Constructing load-balanced
virtual backbones in probabilistic wireless sensor networks via multi-
objective genetic algorithm, Transactions on Emerging
Telecommunications Technologies, 26 (2) (February 2015), 147-163.

Hoos H. H. and Stiitzle, T., 2005, Stochastic Local Search: Foundations and

Applications, Morgan Kaufmann Publishers.

Hopcroft, J. and Tarjan, R., 1974, Efficient planarity testing, Journal of the
ACM (JACM), 21(4), 549-568.

Houmaidi, M. E. and Bassiouni, M. A., 2003, K-weighted minimum
dominating sets for sparse wavelength converters placement under non-
uniform traffic, in: Proceedings of the International Symposium on
Modeling, Analysis and Simulation of Computer Telecommunications
Systems (MASCOTS’03), pp. 56-61.

Jin, Y., 2005, A comprehensive survey of fitness approximation in evolutionary

computation, Soft Computing, vol. 9, pp. 3-12.

89

REFERENCES (continued)

Jovanovic, R., Tuba, M. and Simian, D., 2010, Ant Colony Optimization
Applied to Minimum Weight Dominating Set Problem, in: Proceedings of
the 12th International conference on Automatic control, modelling and
simulation. pp. 322-326. ACMOS’10, World Scientific and Engineering
Academy and Society, Stevens Point, Wisconsin, USA.

Jovanovic, R. and Tuba, M., 2013, Ant Colony Optimization Algorithm with
Pheromone Correction Strategy for the Minimum Connected Dominating

Set Problem, Computer Science and Information Systems (ComSIS), 10
(D).
Kamali, S. and Safarnourollah, V., 2006, A Genetic Algorithm for Power

Aware Minimum Connected Dominating Set Problem in Wireless Ad-Hoc

Networks, Concordia University.

Karl, H. and Willig, A., 2005, Protocols and Architectures for Wireless Sensor
Networks, Wiley 2005, ISBN 978-0-470-09510-2, pp. - XXV, 1-497.

Khalil, E. and Ozdemir, S., 2015a, Prolonging stability period of CDS based
wireless sensor networks, in: Proceedings of the 11th International
Wireless Communications and Mobile Computing Conference (IWCMC),
Dubrovnik, Croatia.

Khalil, E. and Ozdemir, S., 2015b, CDS based reliable topology control in
wireless sensor networks, in: Proceedings of the International Symposium
on Networks, Computers and Communications (ISNCC), Hammamet,

Tunisia.

Khun, F., Wattenhofer, R., and Zollinger, A., 2003, Ad-hoc networks beyond
unit disk graphs, in: Proceedings of the 2003 joint workshop on
Foundations of mobile computing(DIALM-POMC’03), ACM, New York,
USA, pp.69-78.

Klein, P., and Ravi, P., 1995, A nearly best-possible approximation algorithm
for node-weighted Steiner trees, Journal of Algorithms, 19(1):104-115pp.

Konak A. and Smith, A. E., 1999 "A hybrid genetic algorithm approach for
backbone design of communication networks," in the 1999 Congress on
Evolutionary Computation. Washington D.C, USA: IEEE, pp. 1817-1823.

http://dblp.uni-trier.de/pers/hd/w/Willig:Andreas

90

REFERENCES (continued)

Linde, Y., Buzo, A., and Gray, R. M., 1980, An algorithm for vector quantizer

design, IEEE Transactions on Communications., 28(1), 84.

Lin, G., 2016, A hybrid self-adaptive evolutionary algorithm for the minimum
weight dominating set problem, International Journal of Wireless and
Mobile Computing, 11 (1), (January 2016), 54-61.

Liu, X., Wang, W., Kim, D., Yang, Z., Tokuta, A. O. and Jiang, Y., 2016, The
first constant factor approximation for minimum partial connected
dominating set problem in growth-bounded graphs, Wireless Networks, 22
(2), 553-562.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D. and Anderson, J.,
2002, Wireless Sensor Networks for Habitat Monitoring. In Proceedings of
ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA'02), Atlanta, GA.

McCall, J., 2005, Genetic algorithms for modelling and optimisation, Journal of
Computational and Applied Mathematics, Volume 184, Issue 1, Pages 205-
222, ISSN 0377 0427, http://dx.doi.org/10.1016/j.cam.2004.07.034.

More, V. and Mangalwede, S.R., 2013, A Genetic Algorithm for Solving
Connected Dominating Set Problem in Wireless Ad-Hoc Network,
International Journal of Computer and Communication Engineering
Research (IJCCER), 1 (2).

Ning X., 2005, A Survey of Sensor Network Applications, IEEE
Communications Magazine, 5(5): 774-788pp.

Nitash, C. G and Singh, A., 2014, An artificial bee colony algorithm for
minimum weight dominating set, in: Proceedings of the IEEE Symposium

on Swarm Intelligence (SIS), pp. 1-7.

Pelikan, M., Goldberg, D. E. and Lobo, F., 1999, A survey of optimization by
building and using probabilistic models, I1liGAL.

Potluri A. and Singh, A., 2013, Hybrid metaheuristic algorithms for minimum
weight dominating set, Applied Soft Computing, 13 (1) 76-88.

http://dx.doi.org/10.1016/j.cam.2004.07.034

91

REFERENCES (continued)

Ramalakshmi, R. and Radhakrishnan, S., 2015, Weighted dominating set
based routing for ad hoc communications in emergency and rescue
scenarios, Wireless Networks, 21 (2), 499-512.

Ruiz, R. and Stiitzle T., 2007, A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of
Operational Research 177(3): 2033-2049.

Samet, H., 1990, Applications of Spatial Data Structures, Addison-Wesley,
Reading, MA.

Schwiebert, L., Gupta, S. K. S. and Weinmann, J., 2001, Research Challenges
in Wireless Networks of Biomedical Sensors. In Proceedings of Mobile

Computing and Networking, 151-165pp.

Shen, C. and Li, T., 2010, Multi-document summarization via the minimum
dominating set, in: Proceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010), August 2010, pp. 984-992.

Shyu, S. J., Yin, P., Lin and B. M. T., 2004, An ant colony optimization
algorithm for the minimum weight vertex cover problem, Annals of
Operation Research, (131), 283-304.

Singh, A. and Gupta, A. K., 2006, A hybrid heuristic for the minimum weight
vertex cover problem, Asia-Pacific Journal of Operational Research, 23
(June (2)), 73-285.

Srivastava, M. B., Muntz, R. R. and Potkonjak, M., 2001, Smart
Kindergarten: Sensorbased Wireless Networks for Smart Developmental
Problem-solving Enviroments, In Proceedings of Mobile Computing and
Networking, 132-138pp.

Subhadrabandhu, D., Sarkar, S. and Anjum, F., 2004, Efficacy of misuse
detection in adhoc networks, in: Proceedings of the First Annual IEEE
Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, 2004, pp. 97-107.
Torkestani, J. A. and Meybodi, M. R., 2010a, An intelligent backbone

formation algorithm for wireless ad hoc networks based on distributed

learning automata, Computer Networks, 54 (5), 826-843.

92

REFERENCES (continued)

Torkestani, J. A. and Meybodi, M. R., 2010b, Clustering the wireless ad hoc
networks: A distributed learning automata approach, Journal of Parallel and
Distributed Computing, 70 (4), 394-405.

Torkestani, J. A. and Meybodi, M. R., 2012, Finding minimum weight
connected dominating set in stochastic graph based on learning automata,

Information Sciences, 200, 57-77.

Wang, Y., Wang, W. Z. and Li, X. -Y., 2005, Distributed low-cost backbone
formation for wireless ad hoc networks, in: Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and computing
(MobiHoc '05), ACM, New York, NY, USA, pp. 2-13.

Wu, J. and Li, H., 1999, On calculating connected dominating set for efficient
routing in ad hoc wireless networks, in: Proceedings of the 3rd
international workshop on discrete algorithms and methods for mobile
computing and comm. (DIALM '99), ACM, New York, USA, pp. 7-14.

Wu, P., Wen, J. -R., Liu, H. and Ma, W. -Y., 2006, Query selection techniques
for efficient crawling of structured web sources, in: Proceedings of the

22nd International Conference on Data Engineering (ICDE’06), pp. 47.

Xiang, Z. and Joy, G., 1994, Color image quantization by agglomerative
clustering, IEEE Computer Graphics and Applications, 14(3), 44.

Yu, J., Wang, N., Wang, G. and Yu, D., 2013, Connected dominating sets in
wireless ad hoc and sensor networks - A comprehensive survey, Computer
Communications, 36 (2), 121-134.

Yu, J., Li, W., Cheng, X., Atiquzzaman, M., Wang, H. and Feng, L., 2016,
Connected dominating set construction in cognitive radio networks,
Personal and Ubiquitous Computing, 20 (5), 757-769.

Zhu, X., Wang, W., Shan, S., Wang, Z. and Wu, W., 2012, A PTAS for the
minimum weighted dominating set problem with smooth weights on unit
disk graphs, Journal of Combinatorial Opt., 23 (4) (May 2012), 443-450.

Zou, F., Wang, Y., Xu, X., Li, X., Du, H., Wan, P. and Wu, W., 2011, New
approximations for minimum-weighted dominating sets and minimum-
weighted connected dominating sets on unit disk graphs, Theoretical
Computer Science 412(3), 198-208.

93

CURRICULUM VITAE
Ziileyha AKUSTA DAGDEVIREN
Address: International Computer Institute, Izmir/TURKEY.

Telefon: 05436914983

E-mail: zuleyhaakusta@gmail.com

Personal Information
Nationality: Turkish
Birth Date: 20.02.1987
Birth Place: Izmir

Education

September 2012- present, Ph.D. in Information Technologies,
International Computer Institute, Ege University

September 2010 — June 2012, M.Sc. in Information Technologies,
International Computer Institute, Ege University

September 2005 — June 2010, B.Sc. in Computer Engineering,

Computer Engineering Department, Izmir Institute of Technology

Foreign Languages
Turkish: First Language
English: Advanced

Programming Languages
C/C++, Java, C#, Matlab, MIPS, Assembly.

Publications
Dagdeviren, Z.A., Aydin, D. and Cinsdikici, M., 2017, Two population-based
optimization algorithms for minimum weight connected dominating set,

Applied Soft Computing, 59:644-658.

Dagdeviren, Z.A., Oguz, K. and Cinsdikici, M., 2015, Automatic Registration
of Structural Brain MR Images to MNI Image Space, In proceedings of the

mailto:zuleyhaakusta@gmail.com

94

23" Signal Processing and Communications Applications Conference (SIU),
Malatya, Turkey, pp. 359-362.

Dagdeviren, Z.A., Oguz, K. and Cinsdikici, M.G., 2014, Three Techniques for
Automatic Extraction of Corpus Callosum in Structural Midsagittal Brain
MR Images: Valley Matching, Evolutionary Corpus Callosum Detection
and Hybrid Method, Engineering Applications of Artificial Intelligence,
31:101-115.

Akusta, Z. and Kardas, G., 2011, A Case Study on the Development of
Electronic Barter Systems using Software Agents, In proceedings of the 5"
Turkish National Software Engineering Symposium (UYMS 2011),
September 26-28, Ankara, Turkey, pp. 123-126.

Thesis

Dagdeviren, Z. A., Registration of the Structural MR Images of the Patients to
MNI Image Space, M.Sc. Thesis, Ege University, Izmir, Turkey, 2012 (in
Turkish).

Akusta, Z., Development of a B2B E-Commerce Software by Using Database
Technology, B.Sc. Thesis, Izmir Institute of Technology, Izmir, Turkey,
2010 (in English).

Other Academic Activities

TUBITAK 2211-C Schoolarship

Reviewers of Journals: Applied Soft Computing
IET Image Processing

http://www.uyms.org.tr/2011/uyms2011.pdf
http://www.uyms.org.tr/2011/uyms2011.pdf

