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ÖZET 

ÜST-SEZGİSEL ALGORİTMALAR KULLANILARAK ÇİZGE 

TEORİK YAPILARIN OLUŞTURULMASI 

AKUSTA DAĞDEVİREN, Züleyha 

Doktora Tezi, Uluslararası Bilgisayar Anabilim Dalı 

Tez Danışmanı: Prof. Dr. M. Serdar KORUKOĞLU 

Aralık 2017, 94 sayfa 

Çizge teorik yapıların kullanımı sayesinde çeşitli ağlar üzerinde pek çok 

önemli işlem gerçekleştirilebilmektedir. Bu yapılardan biri olan hakim kümenin 

telsiz duyarga ağlarında kümeleme, saldırı tespiti ve omurga oluşturma; telsiz örgü 

ağlarında ağ geçitlerinin yerleştirilmesi; internet üzerinde bilgi geri getirimi için 

çok sayıdaki dökümanın özetlenmesi ve sorgu seçilmesi gibi önemli uygulamaları 

bulunmaktadır. 

 En küçük ağırlıklı bağlı hakim kümenin (EABHK) bulunması NP-Zor bir 

problemdir. Bundan dolayı yakınsama algoritmaları ve üst-sezgisel algoritmalar 

polinom zamanda etkili sonuçlar verebilmektedir. Literatürde bu konu ile ilgili 

çeşitli çalışmalar yapılmış olsa da üst-sezgisel algoritmalar kullanılarak yönsüz 

çizgeler için EABHK bulunmasıyla ilgili bir çalışma yapılmamıştır. Bu tez 

çalışmasında EABHK problemi için iki farklı üst-sezgisel algoritma önerilmiştir. 

Bu algoritmalar Hibrit Genetik Algoritma (HGA) ve Popülasyon Tabanlı Tekrarlı 

Açgözlü (PTTA) Algoritmadır.  HGA, genetik arama ile açgözlü sezgisel yaklaşımı 

birleştiren bir kararlı-durum algoritmasıdır. PTTA algoritma her bir bireye bozma 

ve açgözlü bir şekilde yeniden yapılandırma süreçleri uygulayarak popülasyonu 

iyileştirmektedir. Önerilen algoritmaların performansları diğer açgözlü sezgisel ve 

kaba kuvvet algoritmaları ile karşılaştırılmıştır. Önerilen algoritmalar çözüm 

kalitesi ve uygulama süresi açısından çok iyi performans göstermiştir. 

Anahtar sözcükler: En küçük ağırlıklı bağlı hakim küme, hibrit genetik 

algoritma, popülasyon tabanlı tekrarlı açgözlü algoritma, yönsüz çizgeler, üst-

sezgisel algoritmalar. 
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ABSTRACT 

CONSTRUCTING GRAPH THEORETICAL STRUCTURES USING 

META-HEURISTIC ALGORITHMS 

AKUSTA DAĞDEVİREN, Züleyha 

PhD in International Computer Department. 

Supervisor: Prof. Dr. M. Serdar KORUKOĞLU 

December 2017, 94 pages 

Through the use of graph theoretical structures, many important operations 

can be performed on various networks. Dominating set which is one of these 

structures, has many important applications such as clustering, intrusion detection 

and backbone formation in wireless sensor networks; placement of gateways in 

wireless mesh networks; summarizing multiple documents and selecting queries 

for information retrieval on the internet.  

Finding the minimum weighted connected dominating set (MWCDS) is an 

NP-Hard problem. Hence, approximation algorithms and meta-heuristic 

algorithms can give effective results in polynomial time. Although there are 

numerous studies related to this subject in the literature, there is no study about 

finding the MWCDS for undirected graphs using meta-heuristic algorithms. In 

this thesis study, two different meta-heuristic algorithms are proposed for the 

MWCDS problem. These algorithms are Hybrid Genetic Algorithm (HGA) and 

Population-Based Iterated Greedy (PBIG) Algorithm. HGA is a steady-state 

algorithm that combines a genetic search with a greedy heuristic approach. PBIG 

algorithm improves the population by applying a deconstruction process and a 

reconstruction process to each individual in a greedy way. The performances of 

the proposed algorithms are compared with other greedy heuristics and brute force 

algorithms. The proposed algorithms performed very well in terms of solution 

quality and execution time. 

Keywords: Minimum weighted connected dominating set, hybrid genetic 

algorithm, population-based iterated greedy algorithm, undirected graphs, meta-

heuristic algorithms. 
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1. INTRODUCTION 

In this section, minimum weight connected dominating set problem will be 

introduced, then wireless ad hoc and sensor networks with their applications will 

be given. Following this, hybrid genetic algorithm and population-based iterated 

greedy algorithm concepts will be explained. Finally, the organization and the 

contributions of the thesis will be presented.  

1.1 Minimum Weight Connected Dominating Set Problem 

Finding the dominating set (DS) and its variants in graphs is a very popular 

graph theoretical problem which has many application areas such as clustering, 

intrusion detection and backbone formation in wireless ad hoc and sensor 

networks (WASNs) (Chen and Liestman, 2002) (Subhadrabandhu et al., 2004) 

(Wu and Li, 1999), placement of gateways in wireless mesh networks (Aoun et 

al., 2006), wavelength division multiplexing deployment in optical networks 

(Houmaidi and Bassiouni, 2003), information retrieval to summarize multiple 

documents (Shen and Li, 2010) and query selection to obtain data from web (Wu 

et al., 2006). 

 

Figure 1.1. An Example DS 

   

A DS is a set of nodes S such that every node in the network graph G is a 

neighbor of at least one element of S. The Minimum Dominating Set (MDS) 

problem is to find the S with minimum cardinality for a given network graph. 

More formally, MDS problem is finding a subset including vertices (nodes) S ⊆ V 

where each node in V \ S is a neighbor of at least one node in S for a given 
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undirected graph G(V,E) where E is the set of bidirectional edges (links) and V is 

the set of vertices. The nodes in S set are called dominators and the other nodes 

are called as dominatees or ordinary nodes. MDS problem is in NP-Hard 

complexity class (Cormen et al., 2009). Therefore, optimum solutions cannot be 

guaranteed in polynomial time. Heuristic and approximation algorithms can be 

applied to obtain near optimal solutions. Hence, various studies have been 

proposed to deal with this problem and many research studies are ongoing. Unless 

P=NP can be proved, it is anticipated that the popularity of the problem will 

continue. 

  

An example graph including 10 nodes with one of its MDS S={5, 6, 10} 

having 3 elements is given in Figure 1.1. Please notice that {2, 3, 5, 6, 8, 9, 10}, 

{2, 3, 4, 6, 9, 10}, {1, 3, 6, 8, 10}, {5, 7, 8, 9} are DSs with 7, 6, 5 and 4 elements, 

respectively. Since the cardinalities of these sets are greater than 3 we cannot 

identify these sets as MDS. Other alternative MDS sets are {5, 6, 8} and {5, 6, 

10}. Clustering a WASN is a very popular application of MDS problem. The 

members of MDS are cluster heads and other nodes are cluster member nodes. In 

other words, dominators are cluster heads and ordinary nodes are cluster 

members. By sending messages from one cluster to another rapidly and 

hierarchically, the cluster heads will oversee routing within and through the 

clusters. So, the aim of MDS problem in WASNs is to find the smallest set of 

efficient cluster heads.  

 

 

Figure 1.2. a) An Example CDS b) An Example Induced Subgraph 

 

A connected DS is a subset of nodes where the elements of DS are 

connected through each other. More formally, if S is a DS and each node pair 
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(vi,vj) ∈ S has at least one path including only nodes in S, then we can call S as a 

CDS. An alternative formal definition of CDS can be made by using induced 

subgraph concept. An example CDS is given in Figure 1.2.a. A vertex induced 

subgraph by I ⊆ V is G’=(I, E’) in which E’ is the set of edges {(vx, vy): ((vx, vy) ∈ 

E) ˄ (vx ∈ I) ˄ (vy ∈ I)}. An example vertex induced subgraph G’ from G such that 

I={5, 6, 8} is given in Figure 1.2.b. A CDS S can be defined as a DS whose 

induced subgraph G’=(V’=S, E) is connected. Finding Minimum CDS (MCDS) is 

an NP-Hard problem similar to MDS (Cormen et al., 2009).  

An example graph with MCDS S={5, 6, 8} is given in Figure 1.2.a. A={2, 3, 

4, 6, 8, 9} and B={2, 5,  6, 9, 10} are CDSs with 6 and 5 elements, respectively. 

Since the MCDS has 3 elements, A and B are CDS but they are not MCDS. Other 

alternative MCDS is {5, 6, 9}. CDSs provide many advantages in network 

applications such as ease of broadcasting and constructing virtual backbones 

(Subhadrabandhu et al., 2004). When CDS is used as a backbone in WASNs, the 

data collected by the dominators can be relayed through CDS. For CDS 

backbones with small size, the number of transmitted messages through the 

backbone is smaller which results in energy-efficient operation. 

 

Figure 1.3. An Example WCDS 

 

Generally, WASNs compose of battery-powered nodes which we will 

describe them in the following section in detail. Since the network lifetime 

depends on the lifetime of nodes, the energy efficient operation is of paramount 

importance. Transmission is the dominant factor of the energy consumption (Karl 

and Willig, 2005). Since the nodes in S are responsible to carry network traffic, 
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they may run out of their batteries very earlier than other nodes. This situation 

may result catastrophes such that the network traffic can be significantly reduced 

when a dominator node connecting many other nodes fails. An important solution 

to this problem is choosing the nodes having high energies as dominators. A 

minimum weighted connected dominating set (MWCDS) backbone has been 

applied to overcome this problem (Wang et al., 2005). Different from CDS 

problem, MWCDS problem aims to minimize the total weight of the CDS. A 

formal definition of MWCDS problem can be formally defined as follows. The 

MWCDS problem is finding a CDS with minimum weight   ( )  ∑  (  )  ∈  

where w is a function w:V R
+
 and D is the set of dominators.  

An example MWCDS is given in Figure 1.3. Each node is numbered within 

the circle with its node id. The numbers near to each node are its energy in joule 

and its weight which is calculated as 1/energy. The set {5, 6, 8} is the only 

MWCDS in this example which has 0.37 cost (weight) in total. The set {5, 6, 9} is 

WCDS but not MWCDS because the total cost of this set is 0.40. 

1.2 Wireless Ad Hoc and Sensor Networks 

WASNs are composed of ten to thousands of tiny sensor nodes which are 

low cost and low power hardware (Akyildiz et al., 2002). Since these nodes can be 

equipped with wireless transceivers, networked sensors can be realized. These 

nodes generally have read access memory, read only memory, digital to analog 

converter, analog to digital converter, universal asynchronous receiver transmitter, 

interrupt controller and counter. Short range radio frequency, infrared, optical and 

other transmission techniques can be applied on them. The sensors can be 

interacted with the environment to sense the heat, light, acceleration and chemical 

materials. We can summarize some general properties of the networked sensor 

nodes as follows: 

      

 Generally, sensor nodes are small to be deployed easily to the 

environment. An example sensor node is given in Figure 1.4. They use low 

power as their hardware and software technologies permits. 

  

 Sensor nodes can process concurrently such as they can sense from 

the environment at the same time they can execute a scheduled operation.  
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 Sensor nodes are designed as simple and low cost devices. Unlike 

general purpose personal computers, generally sensor nodes are special 

purpose devices. 

 

 

 

Figure 1.4. An Example Sensor Node (https://www.comsys.rwth-

aachen.de/fileadmin/_migrated/pics/mica2dot.jpg) 

Components of a sensor node can be seen in Figure 1.5. There are five 

components of this design which are central processing unit (CPU), sensors, low 

power transceiver, memory and power supply (Karl and Willig, 2005). 

 

 

 

 

Figure 1.5. Components of a Sensor Node 

WASNs are composed of sensor nodes that are self-organizing. An example 

WASN is given in Figure 1.6 (Karl and Willig, 2005). As seen in this figure, the 

data collected by a sensor node is relayed in a multi-hop manner over some other 

sensor nodes to the sink node. The sink node is a gateway node collecting data 

from other nodes and forwarding data to users. The sink node can send data 

through Internet or a satellite network. The user can send configuration data to the 

sensor network, thus the links between users and the sink node are bidirectional.    
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WASNs can be embedded in the environment to sense various data, thus 

they have lots of application types (Ning, 2005). One of the most important 

applications is the habitat monitoring. In great duck island application, the 

lifecycle of Storm Petre bird in great duck island is monitored by the researchers 

from University of California Berkeley and Intel Research Laboratory 

(Mainwaring et al., 2002). The PODS Project developed in Hawai University aims 

to investigate the endangered plant species (Biagioni and Bridges, 2002). The 

other popular application type of WASNs is healthcare applications. Schwiebert et 

al.  (Schwiebert et al., 2001) used micro sensors to construct a prosthesis for blind 

people. Other types of applications are remote patient monitoring and drug use 

(Akyildiz et al., 2002). Also, WASNs can be used in home and office 

applications. Srivastava et al.’s kindergarden application aims to interact with 

children to teach various topics (Srivastava et al., 2001).   

 

 

Figure 1.6. An Example Sensor Network 

1.3 Hybrid Genetic Algorithms 

Genetic algorithms (GAs) are optimization techniques that are inspired by 

the principle of evolution through genetic process (McCall, 2005). The concept of 

GA was proposed by John Holland (McCall, 2005). GA works on a population of 

chromosomes artificially created strings. These strings are usually in binary form 

and represent solution of problems. Each chromosome has a fitness value which 

shows how good the solution is. A GA starts with randomly produced 

chromosomes, selects chromosomes according to their fitness values and 
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combines chromosomes to generate new offspring. The combination process is 

iterated until a stopping criterion is reached.   

As aforementioned, in a GA, initially a random population is generated and 

it is evolved with time. Each chromosome is scored with its fitness value.  

Chromosomes with higher fitness values are preferred over the other ones. 

Besides chromosomes with the worst fitness values may be removed from the 

population. To diversify the population, offspring are produced from parent 

chromosomes. Elitism method provides the selection of the parents as 

chromosomes with the two highest fitness values. In roulette wheel method, the 

chromosomes with higher fitness values get higher probability for being selected 

as a parent. Child chromosome can be produced via single point crossover 

operator in which a random point p in the chromosome data [0,n] is chosen, the 

first part of the child chromosome [0,p] is produced by copying the [0,p] of the 

first parent chromosome and the second part of first part of the child chromosome 

(p,n] is produced by copying the (p,n] of the second parent chromosome. After a 

child chromosome is produced, a mutation can be applied. Algorithm continues 

until termination condition is met. An example algorithm is given in Algorithm 

1.1. 

Algorithm 1.1:  An Example GA 

1. Generate an initial random population of solutions. 

2. Evaluate the fitness of all individuals. 

3. while termination condition not met or generations not 

run out 

4.    Select the parents by the roulette wheel method to 

produce new individuals. 

5.      Apply single point crossover.  

6.      Apply mutation. 

7.      Evaluate fitness of new individuals. 

8.      Generate a new population by inserting new 

individuals or replace low-fit parents with them. 

9. end while 

 

Hybrid GAs (HGAs) are based on genetic and other search methods that can 

complement each other to achieve an optimization goal (El-Mihoub et al., 2006). 

A local search method can be integrated with a GA to enhance search capabilities. 
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A local search method that is able to find local optimum can be integrated with a 

GA to perform local and global search efficiently. This efficiency can be declared 

as in terms of solution quality and the time needed to finish entire operation.  An 

efficient search method increases the fitness values of chromosomes. This 

enhancement leads to reduce the standard deviation of the members of the 

population. In this case, the hybrid algorithm can be still efficient even the 

population size is small. In pure GAs, mutation and crossover operations may 

result illegal solutions. When a problem specific search algorithm is integrated to 

a GA, these illegal solutions are prevented. For example, an intelligent search 

method can be used with a GA to recover infeasible solutions (Konak and Smith, 

1999). Sometimes the calculation of fitness values can be complex and time 

consuming (Jin, 2005). In this situation, an approximation based search method 

can be used to estimate the fitness values. Crossover and mutation operations can 

be replaced by problem specific methods to increase the quality of search 

operation. For example, in probabilistic model-building genetic algorithms 

(PMBGA) the crossover and mutation operations of a pure GA is replaced with a 

model that is based on the estimation of promising solutions (Pelikan et al., 1999).  

Compact genetic algorithm, population-based incremental learning, univariate 

marginal distribution algorithm and bivariate marginal distribution algorithms are 

examples of PMBGA.  An efficient technique can be incorporated within a GA to 

optimize control parameters to improve the search performance.  

1.4 Population-Based Iterated Greedy Algorithms 

An iterated local search (ILS) has three main components (Gonzalez, 2007). 

Firstly, to find local optimum c, a subsidiary local search (SLS) procedure is used. 

Secondly, to escape from local optimum, a perturbation procedure is executed. 

Finally, to decide whether the procedure is continued with c, an acceptance 

condition is used. An example ILS algorithm is given in Algorithm 1.2. ILS 

algorithm is a very promising technique for solving various hard combinatorial 

problems such as traveling salesman problem (Samet, 1990).  

Greedy selection is a very widely used algorithmic technique that provides 

many solutions to the well-known problems. Greedy selection is also at the heart 

of iterated greedy (IG) algorithms which is a variant of ILS (Gonzalez, 2007). IG 

differs from ILS that perturbation and local search phases are changed with 

constructive and destructive search. In a destruction phase, solutions are removed 

randomly or according to a heuristic. After this phase has accomplished, a partial 
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solution is generated from a solution. In a construction phase, a new solution is 

added according to a greedy heuristic. Similar to ILS, IG has an acceptance 

condition to decide whether the new solution will be used in further iterations. 

Population-based IG (PBIG) is a variant of IG in which the algorithm works on 

population of candidate solutions. IG and its variants are very efficient techniques 

and provide state-of-the-art performance for flow-shop scheduling (Linde et al., 

1980) and set covering (Xiang et al., 1994; Gray et al., 1980) problems. 

Algorithm 1.2:  An Example ILS. 

1. Construct initial candidate solution c. 

2. Execute SLS on c. 

3. while termination condition is not met 

4.       t  c. 

5.      Execute perturbation on c.  

6.      Execute SLS on c based on acceptance condition. 

7.      Keep c or revert c  t. 

8. end while 

 

1.5 Contributions of the Thesis 

 The contributions of this thesis are listed as follows: 

 We proposed a hybrid genetic algorithm which incorporates a greedy 

heuristic with a genetic approach to solve MWCDS problem. The 

algorithm runs on a population of solutions and aim to improve the 

solution quality by applying cross over, mutation, repair and minimization 

operations sequentially and iteratively. 

 

 We proposed a population-based iterated greedy algorithm which executes 

iteratively by applying destruction and construction phases. This strategy 

can generally improve the solution quality by preventing getting stuck in a 

local minimum solution. 

 

 Proposed algorithms are the first population-based optimization algorithms 

for MWCDS problem on undirected graphs. 
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 We analyzed the time complexities of HGA and PBIG algorithms. We 

provided implementations of the proposed algorithms, greedy heuristics 

and brute force algorithms in Java. Greedy heuristics are Greedy Ratio 

(GR), Greedy Weight (GW) and Greedy Degree (GD). Brute force 

algorithms are a pure implementation named as Brute Force (BF), and a 

time-limited version of BF (T-BF). 

 

 We used two datasets of graphs such that the first dataset is a popular 

dataset used by the researchers and the second dataset is generated in this 

thesis. The reason why we generated the second dataset is some of the 

graphs in first dataset are unconnected. 

 

 From our performance evaluations, we obtained that GR has the best 

performance in terms of MWCDS weight among the other greedy 

heuristics (GD and GW). These greedy heuristics have very close 

execution times. Our proposed algorithms have significantly better weight 

performance than GR for nearly all problem instances. Additionally, our 

proposed algorithms can find optimum results same as BF for small-size 

problem instances, at the same time our algorithms run very faster than 

BF. Moreover, when we compared the performances of our algorithms and 

T-BF, we found that our algorithms outperform T-BF in terms of both 

WCDS weight and execution time. 

 

 Our measurement results taken from the proposed algorithms show that 

PBIG performs better in terms of WCDS weight and HGA is faster. 

 

 The materials given in thesis are published in the following publication:   

Zuleyha Akusta Dagdeviren, Dogan Aydin, Muhammed Cinsdikici, Two 

Population-based Optimization Algorithms for Minimum Weight 

Connected Dominating Set Problem, Applied Soft Computing, 59, pp. 644-

658, Elsevier (Dagdeviren et al., 2017). 

1.6 Organization of the Thesis 

The rest of the thesis is organized as follows: 

In Section 2, related work is given. In this section, centralized dominating 

set algorithms, centralized connected dominating set algorithms and distributed 

javascript:void(0)
javascript:void(0)
javascript:void(0)
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algorithms for both dominating set and connected dominating set problems are 

mentioned and compared with proposed algorithms. Some important 

algorithms are explained in detail.  At the end of this section, algorithms are 

summarized and listed in a table.  

Proposed algorithms HGA and PBIG are described in Section 3. Firstly, 

background information related to the proposed algorithms are given. After 

that, the steps of the algorithms are explained in detail. Examples are given to 

show the operations of the proposed algorithms. Lastly, time complexities of 

the algorithms are analyzed in this section. 

In Section 4, extensive performance evaluations of the proposed 

algorithms with their counterparts are given. This section is divided into 

Evaluation of Small-Size Problem Instances, Evaluation of Moderate-Size 

Problem Instances and Evaluation of Large-Size Problem Instances. The last 

section is Section 5 in which conclusions are drawn by summarizing main 

findings. 
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2. RELATED WORK 

This section reviews the existing studies as centralized dominating set 

algorithms, centralized connected dominating set algorithms and distributed 

algorithms. At the end of the section, a summary of the literaure is given. 

2.1 Centralized Dominating Set Algorithms 

A greedy heuristic algorithm for set-covering problem is proposed by 

Chavatal (1979). The algorithm continues until all points are covered. For each set 

|Pj| / Cj ratio is calculated where Cj is the cost and |Pj| is the number of the points 

covered. The set which has the minimum ratio is selected in each step. We apply 

this heuristic in our proposed algorithms, because this heuristic can be used in 

constructing a weighted dominating set. For the minimum weighted dominating 

set problem, the approximation ratio of this heuristic becomes O(log WT(S)) 

where WT(S) is the total weight of the optimum solution set S. The algorithm is 

given in Algorithm 2.1. 

Algorithm 2.1:  Chavatal’s Algorithm 

 1. input: Sets of Points {S0, … ,Sn}, Costs of Sets {C0, 

…,Cn} 

 2. initially 

          3. Pj : the number of points covered by set Sj. 

          4. Cj : the cost of set Sj. 

 5. repeat 

 6.     For each set Sj calculate the weight ratio of Rj as Cj/ 

|Pj|. 

7.    Choose the set Sj with the minimum Rj and cover the 

points in Sj. 

8. until all points are not covered 

9. Return chosen sets  
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Algorithm 2.2: Potluri and Singh’s Main Algorithm 

1. input: pc (probability of crossover), 

2. Generate initial population and set as P  

3. f ← fitness of best member of P  

4. m ← Best member of P 

5. iteration_count ← 0  

6. while iteration_count < MAX do  

7.     if p < pc then  

8.       Select b1 and b2 by binary tournament 

9.       X← crossover(b1, b2)  

10.     X← mutate(X) 

11.   else  

12.      Generate X randomly  

13.   end if  

14.   X← Repair_Procedure(X)    // see Algorithm 2.3 

15.   X← Minimize_Procedure(X)   // see Algorithm 2.4 

16.   if X is unique then  

17.      Remove the worst member of population P 

18.      Add X to the population P  

19.       if fitness of X < f then  

20.          f ← Fitness of X  

21.          m ← X  

22.       end if  

23.       iteration_count ← iteration_count +1  

24.   end if  

25. end while  

26. Return m 

 

 

Jovanovic et al. (2010) propose an ant colony optimization (ACO) algorithm 

to apply for the minimum weight dominating set problem. Their algorithm is 

compared with the greedy algorithm for different edge densities, weight 

distributions and node counts. The obtained results present that the algorithm is 

better than the greedy approach.  Potluri and Singh (2013) propose hybrid 

metaheuristic algorithms for minimum weight dominating set problem on 

undirected graphs. The main algorithm is given in Algorithm 2.2. In this 
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algorithm, firstly an initial population of chromosomes is generated. Then, for 

MAX number of iteration times the following operations are applied. 

Algorithm 2.3: Potluri and Singh’s Repair Procedure 

1. input: ph (probability of repair) 

2. T ← V \ X  

3. if p < ph then  

4.     while X is not a dominating set do  

5.         maximum ←0 

6.         for t ∈ T do  

7.             if  maximum < W(t) / w(t) then  // w(t) is the        

                weight of node t. W(t) is the total weight of the  

                          dominatee neighbors of node t.   

8.                  maximum ← W(t) / w(t)  

9.                  v ← t  

10.          end if  

11.       end for  

12.       X ← X ∪ v  

13.       T ← T \ v  

14.   end while  

15. else  

16.     while X is not a dominating set do  

17.         v ← Select randomly from T  

18.         X ← X ∪ v  

19.         T := T \ v  

20.     end while  

21. end if  

22. Return X 

 

 

A new chromosome is generated either by applying crossover to two 

chromosomes that are selected by binary tournament selection, or generating 

randomly. The generated chromosome is repaired to provide a weighted 

dominating set from this solution. After that, the chromosome is minimized in 

order to remove the redundant nodes in minimum weighted dominating set. If the 

generated chromosome does not exist in the population, the worst member of the 

population is removed and the generated chromosome is added to the population. 
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At the end of the algorithm, the chromosome having the maximum fitness value is 

returned as solution. 

Algorithm 2.4: Potluri and Singh’s Minimize Procedure 

1. input: pr (probability of deletion) 

2. S is the set of dominators where the neighbors of each     

element of S is covered by other dominators. 

3. while S     do 

4.     if  p < pr  then  

5.         r ← arg max t∈S w(t) / d(t)   // d(t): degree of node t 

6.     else  

7.         r ← Select randomly from S  

8.     end if  

9.     X ← X \ r  

10.   recalculate S  

11. end while  

12. Return X 

 

 

Potluri and Singh’s Repair Procedure is given in Algorithm 2.3. In this 

algorithm, a dominating set is constructed from a partial solution. The algorithm 

either repairs the partial solution by adding the node having the maximum weight 

ratio to the partial solution, or by adding a random node to the partial solution. 

This operation iteratively continues until the partial solution becomes a full 

solution, in another word, a dominating set. Although a dominating set is 

constructed after repairing the solution, redundant nodes may exist in the 

dominating set. 

Potluri and Singh’s Minimize Procedure is given in Algorithm 2.4. 

Redundant nodes are removed in this procedure. A redundant dominator is a 

dominator whose all ordinary nodes are covered by other dominators. In this case, 

if this redundant dominator is removed from the dominating set, the remaining 

dominators still constitute a dominating set. In Minimize Procedure given in 

Algorithm 2.4, firstly redundant nodes are identified. Then, the algorithm either 

removes the redundant dominator having the greater w(t)/d(t) ratio or removes a 

redundant dominator randomly. After each removal, the set of redundant 
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dominators are recalculated. If there are no redundant nodes, the algorithm quits 

from the operation. Otherwise, the operation continues iteratively. 

Algorithm 2.5: Bouamama et al.’s Main Algorithm 

1. input: population_size, probability, determinism_rate 

2. Generate initial population w.r.t input population size 

and set as S // see Algorithm 2.6 

3. while termination condition is not true do 

4.      S1 ←  

5.      for each Ci ∈ S do 

6.         Ci
m
←PartiallyDestroy(Ci, probability)  

7.       Ci
n
←GreedyWeightedVertexCover(Ci

m
, determinism 

_rate) // see Algorithm 2.7 

8.          S1 ← S1 ∪ { Ci
n
 } 

9.      end for 

10.    S←Accept(S,S1)   

11. end while 

12. Return argmin{ weight(Ci) | Ci ∈ S, i=1, . . . , 

population_size} 

 

 

Nitash and Singh (2014) propose an artificial bee colony algorithm for 

solving minimum weight dominating set problem for undirected weighted graphs. 

The results of the algorithm show that their algorithm performs better than other 

metaheuristics in literature. Bouamama et al. (2012) propose a population-based 

iterated greedy (PBIG) algorithm for tackling the minimum weight vertex cover 

problem on vertex-weighted undirected graphs. The aim of vertex cover problem 

is to find a set of vertices C such that every edge in graph is incident to at least 

one vertex in C. Vertex cover problem resembles the dominating set problem and 

it has various applications such as clustering, backbone formation and link 

monitoring in ad hoc networks. Bouamama et al.’s Main Algorithm is given in 

Algorithm 2.5. The algorithm starts with generating an initial population. This 

population generation algorithm is given in Algorithm 2.6. The algorithm 

proceeds by partially destroying and reconstruction of each solution in the 

population. These new solutions are added to a new population. After that, the 

new population and the old population are merged. These operations are 

iteratively executed until the termination condition is satisfied. At the end of the 
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algorithm, the solution having the minimum weight is returned. Bouamama et al. 

assess the performance of their algorithm on all benchmark instances that have 

been considered by Shyu et al. (2004). 

Algorithm 2.6: Bouamama et al.’s GenerateInitial 

Population Procedure 

1. inputs: population_size 

2. S←  

3. C0 ←  

4. for i=1, . . . , population_size do 

5.    Ci ← GreedyWeightedVertexCover(C0, determinism 

_rate) // see Algorithm 2.7 

6.       S←S ∪ {Ci} 

7. end for 

8. return S={C1, C2, . . . , Cpopulation_size} 

 

 

The GreedyWeightedVertexCover Procedure of Bouamama et al.’s Vertex 

Cover Algorithm is given in Algorithm 2.7. In this algorithm, firstly the set of 

nodes which are incident to uncovered edges are identified. While this set is not 

empty, the node having the smallest weight or the node having the second 

smallest weight is removed from this set and added to the vertex cover.  

After vertex cover is constructed, the redundant nodes are removed from the 

vertex cover. A redundant node is a node which is in vertex cover and whose all 

edges are covered by other nodes. While redundant node set is not empty, the 

node having the greatest weight or the node having the second greatest weight is 

removed from the redundant node set. A randomized version of PBIG algorithm is 

proposed by Bouamama and Blum (2015) for constructing minimum weight 

dominating sets.  

Zhu et al. (2012) propose the first polynomial time approximation algorithm 

that achieves a (1+ε)-approximation for any ε>0 to solve the minimum weighted 

dominating set problem with smooth weights on unit disk graphs. A hybrid self-

adaptive evolutionary algorithm is proposed by Lin (2016) for formulating the 

minimum weight dominating set. 
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Although the mentioned approaches in this chapter can be used to construct 

weighted dominating sets in WSNs, they do not provide a backbone structure 

since WCDS formation is not maintained. 

Algorithm 2.7: Bouamama et al.’s GreedyWeighted 

VertexCover Procedure  

1. Inputs: solution, determinism_rate 

2. U ← Set of nodes that are not in vertex cover. Each node 

in this set is incident to at least one uncovered edge. 

3. while U    do 

4.     v1←argmin{weight(v) | v ∈ U} 

5.     v2 ←argmin{weight(v) | v ∈ U \ {v1}} 

6.     probability ← generate random probability 

7.     if probability ≤ determinisim_rate then vb ←v1 

8.     else vb ←v2 

9.     end if 

10.   solution←solution ∪{vb } 

11.   Recalculate U 

12. end while 

13. R ← Set of nodes that are in vertex cover. All edges of 

each node in this set should be covered by two nodes.  

14. while R    do 

15.    v1←argmax{weight(v) | v ∈ R} 

16.    v2←argmax{weight(v) | v ∈ R\{v1}} 

17.    probability ← generate random probability 

18.    if probability ≤ determinisim_rate then vb ←v1 

19.    else vb ←v2 

         20.    end if 

         21.    solution←solution \ {vb } 

22.    Recalculate R 

23. end while 

24. Return solution 
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2.2 Centralized Connected Dominating Set Algorithms 

CDS is a very popular graph theoretic structure for WASNs since it can be 

very useful in backbone formation operation. Unit disk graph (UDG) is used in 

WSANs when the transmission range of a node is assumed to be an ideal circle.  

A genetic algorithm for power aware minimum CDS (MCDS) problem in 

WASNs is proposed by Kamali and Safarnourollah (2006). Their algorithm is 

used for if there is any power aware CDS with size k on a UDG. A genetic 

algorithm is proposed by More and Mangalwede (2013) for CDS problem in 

WSANs modeled as UDG. Zou et al. (2009) propose two approximation 

algorithms for MWDS and MWCDS problems on a unit disk graph. A (4 +ε)-

approximation algorithm for an MWDS based on a dynamic programming 

algorithm for a Min-Weight Chromatic Disk Cover is presented. They also 

propose a (1+ε)-approximation algorithm for the connecting part by showing a 

polynomial-time approximation scheme for a Node-Weighted Steiner Tree 

problem when the given terminal set is c-local and thus obtain a (5+ε)-

approximation algorithm for an MWCDS.  

Khalil and Ozdemir (2015a) propose a genetic algorithm to construct MCDS 

on UDGs. Another study (Khalil and Ozdemir, 2015b) is similar the previous one. 

The only difference between them is the consumed energy while nodes are 

sending messages to sink is not minimized; instead the data reliability between the 

nodes in CDS and the dominatees is aimed. The aim of this study is minimizing 

the number of nodes in CDS and the consumed energy while sending messages to 

sink.  

The algorithms mentioned so far in this section failed to model the real 

wireless transmission that is not an ideal circle in most cases such as interference 

and noise are present (Khun et al., 2003). Our proposed algorithms run on UG 

model which can capture the features of real wireless transmission better than the 

UDG model.  

Tree Growing Algorithm is proposed for CDS problem by Guha and Kuller 

(1998). Their algorithm is an efficient approximation algorithm constructing a 

CDS on UGs. The nodes are given colors as BLACK, GRAY and WHITE where 

BLACK is a dominator node, GRAY is an ordinary node with having at least one 

BLACK neighbor and WHITE is an ordinary node without having a BLACK 
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neighbor. The algorithm uses a heuristic which considers the number of WHITE 

neighbors. All nodes in graph are WHITE initially. The node having the 

maximum number of WHITE neighbors is selected as dominator. Then its color 

becomes BLACK and its neighbors are colored GRAY. To provide connectivity 

between BLACK nodes, the following selections are made from GRAY nodes. 

The selection criterion is again the maximum number of WHITE neighbors. The 

selected nodes are colored BLACK and its neighbors are colored GRAY. These 

steps repeat until all the nodes are dominated which means there is no WHITE 

node in the graph. The algorithm is given in Algorithm 2.8. 

Algorithm 2.8: Guha’s Connected Dominating Set 

Algorithm  

1. Definition of scan operation: Let node u be a GRAY 

node. First color node u BLACK and then color WHITE 

neighbors of node u GRAY.  

2. Definition of the gain of a scan operation: Number of 

nodes which are colored GRAY 

3. Color all nodes WHITE 

4. Color the node v having the greatest degree BLACK and 

color node v’s neighbors GRAY 

5. while there are WHITE nodes do    

6.     Apply the scan operation having the largest gain 

7. end while 

 

 

A memetic algorithm for the minimum weighted edge dominating set 

problem is proposed by Abdel-Aziz et al. (2013). An edge (u, v) in G dominates 

itself and any other edge adjacent to (u, v). An edge dominating set is a set of 

edges which dominates all the other edges in the graph G. In this algorithm, three 

fitness functions are used and a search method is developed.  In our study, we aim 

to construct node weighted connected dominating set instead of edge weighted 

dominating set since the main goal is to select backbone nodes with high energy. 

Alkhalifah and Wainwright (2004) propose a genetic algorithm that can be 

applied to different graph theoretical problems such as geometric CDS (GCDS) 

problem for wireless networks. Their approach is called as the nearest four 

neighbors heuristic that can be applied on traveling tourist man, capacitated k-
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center and capacitated p-median problems. Although this algorithm performs well 

in constructing GCDS, the main drawback of this study is the nodes are not 

weighted thus energy-efficient backbone construction is not maintained. 

Another ACO algorithm with pheromone correction strategy is proposed by 

Jovanovic and Tuba (2013) for constructing MCDSs. Their algorithm is simple 

one-step ACO method based on greedy heuristic. This heuristic is based on 

pheromone correction strategy. Yu et al. (2016) propose an algorithm for 

formulating CDSs in cognitive radio networks. Liu et al. (2016) propose the first 

constant factor approximation algorithm for constructing minimum-sized partial 

CDSs in growth-bounded graphs. A 5-approximation algorithm to solve CDS 

problem for WSANs is proposed by Al-Nabhan et al. (2016). He et al. (2011) 

propose a genetic algorithm for constructing a reliable minimum CDS in 

probabilistic wireless networks. A genetic algorithm for load-balanced CDS 

construction in WSANs is proposed by He et al. (2012). Gendron et al. (2014) 

propose benders decomposition, branch-and-cut and hybrid algorithms for MCDS 

problem.  

The algorithms mentioned in this chapter generally aim to minimize the size 

of CDS; the nodes are unweighted so that energy-efficient backbone formation is 

omitted. 

2.3 Distributed Algorithms 

Wang et al. (2005) propose a distributed low-cost backbone formation 

algorithm for WASNs. The algorithm has two phases. In the first, a weighted 

maximal independent set algorithm is constructed. This algorithm is based on 

Chatterjee’s algorithm (Chatterjee et al., 2002). First phase of Wang et al.’s 

algorithm is given in Algorithm 2.9. Initially, all nodes are WHITE. The nodes 

having the lowest weight among their neighbors send IamDominator message to 

their neighbors and become a PossibleDominator. If a node receives an 

IamDominator message to one of its neighbors, it colors itself GRAY and it sends 

an IamDominatee message. When a WHITE node receives an IamDominatee 

message, it deletes the sender of this message from the list of WHITE nodes and 

sends an IamDominator message and becomes a PossibleDominator if it has the 

minimum weight among its WHITE neighbors. At the second step of the first 

phase PossibleDominator nodes learn the weights of its neighbors at most 2 hops 

away from them. Then, each PossibleDominator node applies a set cover based 
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method to cover itself and its one-hop neighbors. If a PossibleDominator finds 

that its one-hop neighbors including itself can be covered by other nodes with less 

total weight it quits becoming a PossibleDominator. Otherwise, this 

PossibleDominator node becomes a Dominator. At the end of the first phase, 

Dominator nodes constitute a DS but not definitely a CDS.  

At the second phase, dominator nodes are connected by selecting new 

dominator nodes. In this phase, dominator nodes which are at most 2 hops away 

learn the costs of the paths between each other. During this operation, ordinary 

nodes relay the messages of the dominators. The cost between two dominator 

nodes is found by summing the weights of ordinary nodes between these 

dominators. After dominator nodes learn the costs, they execute a distributed 

minimum spanning tree algorithm. The second phase of Wang et al.’s algorithm is 

given in Algorithm 2.10. 

Algorithm 2.9: First Phase of Wang et al.’s Algorithm 

1. Find a minimal maximal independent (I) set given given 

by Chaterjee. Let dominators be the elements of I. 

2. Each dominator node d executes a set cover algorithm on 

neighborhood sets (each neighborhood set is identified by the id 

of that node) of the graph G’=(V’,E’) in which V’ is the set of all 

nodes at most 2 hops away from node v. E’ is the set of edges 

connecting nodes in V’ excluding the edges between nodes x and 

y where x and y are two hops away from d.  

3. if node d is not included in the solution set  

4.        node d quits from dominating set 

5.      send a message to each node in the solution set to 

inform that they are dominators. 

6. end if 
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Algorithm 2.10: Second Phase of Wang et al.’s 

Algorithm 

1. A graph H=(X,Y) is constructed where X is the set of 

dominator nodes and Y is the set of edges between dominator 

nodes which are at most 2 hops away from each other and only 

minimum cost paths between each other are included in Y.  

2. Dominator nodes run a distributed minimum spanning 

tree algorithm on H. 

 

 

An intelligent algorithm based on distributed learning automata is proposed 

by Torkestani and Meybodi (2010a) for constructing backbone in wireless ad hoc 

networks. Torkestani and Meybodi (2010b) propose another distributed learning 

automata approach for clustering WSANs. An algorithm based on learning 

automata is proposed by Torkestani and Meybodi (2012) for finding MWCDS in 

stochastic graphs. Ramalakshmi and Radhakrishnan (2015) study on WDS based 

routing for ad hoc communications in emergency and rescue scenarios. For a 

detailed survey of these studies please refer to Yu et al (2013). Since we focus on 

the design and implementation of central algorithms in this thesis, we omit 

distributed approaches. 

2.4 Summary of Algorithms 

The algorithms given in Section 2 are summarized in Table 2.1. The 

algorithms are sorted with respect to the date. Type of the algorithms, target 

problems, the graphs that algorithms running on and the locality types of 

algorithms (centralized/distributed) are given. 
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Table 2.1. Summary of the studies in literature 

Paper  Type of the 

Algorithm 

Target 

Problem  

Graph Type  Locality 

Type 

Chavatal, 

1979 

Approximation 

Algorithm 

Minimum 

Weight Set Cover 

Designed for 

Set Data 

Structure. Can 

be used in 

Node Weighted 

Undirected 

Graph. 

 

Centralized 

Guha and 

Khuller, 

1998 

 

Approximation 

Algorithm 

Minimum 

Weight 

Connected 

Dominating Set 

  

Node Weighted 

Undirected 

Graph  

Centralized 

Alkhalifah 

and 

Wainwright

, 2004 

 

Genetic 

Algorithm  

Minimum 

Connected 

Dominating Set  

Undirected 

Graph  

Centralized 

Shyu et al., 

2004 

  

Ant Colony 

Algorithm  

Minimum 

Weight Vertex 

Cover  

Node Weighted 

Undirected 

Graph  

Centralized 

Wang et al., 

2005 

Approximation 

Algorithm 

 

Minimum 

Weight 

Connected 

Dominating Set 

 

Node Weighted 

Unit Disk 

Graph 

Distributed 

Kamali and 

Safarnourol

lah, 2006 

  

Genetic 

Algorithm  

Minimum 

Connected 

Dominating Set  

Unit Disk 

Graph  

Centralized 

Zou et al., 

2009  

Approximation 

Algorithm  

Minimum 

Weight 

Dominating Set, 

Minimum 

Weight 

Connected 

Dominating Set  

 

Node Weighted 

Unit Disk 

Graph  

Centralized 

Jovanovic 

et al., 2010 

 

Ant Colony 

Algorithm  

Minimum 

Weight 

Dominating Set  

Node Weighted 

Undirected 

Graph 

 

Centralized 

Torkestani 

and 

Meybodi, 

2010a  

 

 

Learning 

Automata 

Minimum 

Connected 

Dominating Set 

 

Undirected 

Graph 

Distributed 
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Paper  Type of the 

Algorithm 

Target 

Problem  

Graph Type  Locality 

Type 

Torkestani 

and 

Meybodi, 

2010b  

 

Learning 

Automata 

Minimum 

Weight 

Connected 

Dominating Set 

 

Weighted 

Undirected 

Graph 

Distributed 

He et al., 

2011  

Genetic 

Algorithm 

Minimum 

Connected 

Dominating Set 

 

Probabilistic 

Network 

Centralized 

He et al., 

2012  

Genetic 

Algorithm 

Connected 

Dominating Set 

 

Undirected 

Graph 

Centralized 

Torkestani, 

2012 

Learning 

Automata 

Minimum 

Weight 

Connected 

Dominating Set 

 

Stochastic 

Graph 

Distributed 

Bouamama 

et al., 2012 

Population-

based Iterated 

Greedy 

Algorithm 

 

Minimum 

Weight Vertex 

Cover 

Node Weighted 

Undirected 

Graph 

Centralized 

Zhu et al., 

2012  

Approximation 

Algorithm 

Minimum 

Weight 

Dominating Set 

Node Weighted 

Unit Disk 

Graph 

 

Centralized 

Jovanovic 

and Tuba, 

2013  

Ant Colony 

Algorithm  

Minimum 

Connected 

Dominating Set 

 

Undirected 

Graph  

Centralized 

Abdel-Aziz 

et al., 2013 

Genetic 

Algorithm  

Minimum Edge 

Weighted 

Dominating Set 

 

Edge Weighted 

Undirected 

Graph  

Centralized 

More and 

Mangalwed

e, 2013 

 

Genetic 

Algorithm  

Minimum 

Connected 

Dominating Set  

Unit Disk 

Graph  

Centralized 

Potluri and 

Singh, 2013 

Hybrid Genetic 

Algorithm and 

Ant Colony 

Algorithm 

  

Minimum 

Weight 

Dominating Set  

Node Weighted 

Unit Disk 

Graph  

Centralized 

Gendron et 

al., 2014 

Branch and Cut 

And Hybrid 

Algorithm 

 

Minimum 

Connected 

Dominating Set 

Undirected 

Graph 

Centralized 

Nitash and 

Singh, A., 

2014 

 

Ant Colony 

Algorithm  

Minimum 

Weight 

Dominating Set  

Node Weighted 

Undirected 

Graph  

Centralized 
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Paper  Type of the 

Algorithm 

Target 

Problem  

Graph Type  Locality 

Type 

He et al., 

2015 

Multi-objective 

Genetic 

Algorithm 

 

Minimum 

Connected 

Dominating Set 

Probabilistic 

Network 

Centralized 

Ramalaksh

mi and 

Radhakrish

nan, 2015 

 

Heuristic 

Algorithm 

Minimum 

Weight 

Connected 

Dominating Set 

Node Weighted 

Undirected 

Graph 

Distributed 

Khalil and 

Ozdemir, 

2015a 

Genetic 

Algorithm  

Minimum 

Connected 

Dominating Set 

 

Unit Disk 

Graph  

Centralized 

Khalil and 

Ozdemir, 

2015b 

Genetic 

Algorithm  

Minimum 

Connected 

Dominating Set 

 

Unit Disk 

Graph  

Centralized 

Bouamama 

and Blum, 

2015 

Randomized 

Population-

based Iterated 

Greedy 

Algorithm 

 

Minimum 

Weight 

Dominating Set  

Node Weighted 

Undirected 

Graph 

Centralized 

Al-Nabhan, 

2016 

 

Approximation 

Algorithm 

3-Connected 

Dominating Set 

Unit Disk 

Graph 

Centralized 

Lin, 2016 Hybrid 

Evolutionary 

Algorithm 

 

Minimum 

Weight 

Dominating Set 

 

Node Weighted 

Undirected 

Graph 

Centralized 

Liu et al., 

2016 

Approximation 

Algorithm 

Minimum Partial 

Connected 

Dominating Set 

 

Growth-

Bounded Graph 

Centralized 

Yu et al., 

2016 

Heuristic 

Algorithm 

Connected 

Dominating Set 

Unit Disk 

Graph 

Centralized 
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3. PROPOSED ALGORITHMS  

In this section, the preliminaries are given firstly. Then, the proposed two 

meta-heuristic algorithms are given in detail. The complexity analysis of the 

proposed algorithms is explained in the last subsection. 

3.1 Preliminaries 

If the removal of a vertex disconnects a graph, we call that vertex as a cut 

vertex. An example UG is given in Figure 3.1 where node 4 is the cut vertex. 

When node 4 is removed from the graph, there will be two disconnected 

components as: {1, 2, 3} and {5, 6, 7, 8}. 

 

Figure 3.1. An Example UG with a Cut Vertex 

Cut vertices can be detected by Hopcroft and Tarjan’s linear time algorithm 

(Hopcroft and Tarjan, 1974) which is based on depth-first search (DFS) algorithm. 

The algorithm starts from a root node. In this algorithm each node v is associated 

with parent, depth and low values. The parent(v) of node v is the node that is 

visited just before node v. The depth(v) of node v is found as 

depth(v)=depth(parent(v))+1 where the depth value of the root is 1. The depth 

value of node v indicates the distance of node v to the root in the DFS tree. The 

low(v) of node v is found as minimum{depth(v), the low values of children of 

node v, the depth values of node v’s neighbors excluding node v’s children and 

parent(v)}. The low value of node v indicates the minimum depth value of the 
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node that is reachable from subtree of node v. The main steps of the Hopcroft and 

Tarjan’s cut vertex detection algorithm is given in Algorithm 3.1. 

Algorithm 3.1: Tarjan’s Cut Vertex Detection Algorithm 

1. DFS is executed. 

2. The root node is a cut vertex if it has more than one child in 

the DFS tree. 

3. The node v (which is not a root node) is a cut vertex if at least 

one of its children u has the low(u) ≥ depth(v) property.  

 

 

Figure 3.2. Example Operation of Cut Vertex Detection Algorithm 

This algorithm can be implemented with modifications to the standard DFS 

algorithm and it has O(V+E) time complexity. An example operation of the cut 

vertex detection algorithm is given in Figure 3.2. Node 1 is the root node which is 

shown with double circles. Parent-child relationships are depicted with directed 

edges. Other edges (dashed edges) are not included in DFS tree but they belong to 

the graph. The visiting order of nodes in DFS tree is 1, 2, 4, 3, 5, 6, 7 and 8. Since 

node 8 is directly connected to node 4 and these nodes do not have a parent-child 

relationship, the low value of node 8 is 3. Because node 7’s, node 6’s and node 

5’s subtrees include node 8, their low values are 3. Since the depth value of node 

1 is 1, the low value of node 3 is 1. Because node 2’s and node 4’s subtrees 

include node 3, the low values of node 2 and node 4 are 1. Since the depth value 

of node 1 is 1, its low value is equal to 1. Node 4 is a cut vertex in this graph 

because node 5’s low value is 3 which is equal to the node 4’s depth value. 
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Moreover, node 4 is the only cut vertex in this graph, because this condition 

cannot be satisfied by another node. 

In this thesis, colors are used to define the states of the nodes. The color of 

node u is defined with color(u). A dominator node u is BLACK. A dominatee 

node without having a BLACK neighbor is WHITE. Other dominatee nodes 

(dominatee nodes having at least one BLACK neighbor) is GRAY. As 

aforementioned, a CDS is constructed when there is no WHITE node and the 

induced subgraph of BLACK nodes are connected.  ( )   is defined as  ( )  

  ∈   ( )      ( )     and is used to indicate the node u’s open neighborhood 

with color k. Node u’s closed neighborhood with color k is defined as  [ ]  

  ∈  ( ) ∪   }      ( )   }  

Greedy ratio (GR), greedy weight (GW) and greedy degree (GD) heuristics 

are implemented for MWCDS formation in this thesis. In these algorithms, a 

WHITE node is chosen at the first step and GRAY nodes are chosen at the 

following steps. In this manner, the algorithm resembles the Tree Growing 

Algorithm. The algorithms terminate when there are no WHITE nodes left. The 

selection policies of algorithms are different from each other. In GR, the node 

which has the smallest weight ratio according to the Chavatal’s heuristic is 

selected. In Equation 1, the heuristic function of GR (fGR:V R) for node u is 

given. 

   ( )  
 ( )

  ( [ ]     )
                              (1) 

In Equation 1, the heuristic function of GR (fGR:V R) for node u is given. 

The chosen node (        ) by GR is given in Equation 2. 

                 ∈    ( )               (2) 

In GD, the node u which has the maximum number of WHITE neighbors is 

selected. In Equation 3, the heuristic function of GD (fGD:V R) for node u is 

given. Equation 4 gives the chosen node (        ) by GD. 
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   ( )  |  ( )     |                                            (3) 

                 ∈    ( )                            (4) 

In GW, the node u which has the minimum weight among neighbors is 

selected. The heuristic function of GW (fGD:V R) for node u is given in Equation 

5. In Equation 6, the chosen node by GW is given.                                                        

   ( )   ( )                                                        (5) 

                 ∈    ( )                            (6) 

Figure 3.3, Figure 3.4 and Figure 3.5 show example operations of GR, GD 

and GW respectively. Among these figures, GR has the best performance and it 

produces a WCDS having total weight equals to 23. GW has the worst 

performance and its WCDS has 42 total weight.  

 

Figure 3.3. Example Operation of GR Heuristic 

In Figure 3.3, GR selects node 4 having 11/73=0.151 weight ratio firstly. 

Node 4 is colored BLACK and its neighbors node 1, node 3, node 5 and node 7 

are colored GRAY. Secondly, node 3 is selected by GR since its weight ratio is 

12/(18+9)=0.144 that is smaller than the weight ratio of other GRAY nodes. The 
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WHITE neighbors of node 3 is node 2 and node 6, so they are colored GRAY. 

After this step, no more WHITE nodes left, so the GR algorithm finishes. 

 

Figure 3.4. Example Operation of GD Heuristic 

In GD algorithm, node 5 is chosen at the first step. The reason of this 

selection is that node 5 has 5 WHITE neighbors which is the maximum WHITE 

neighbor count, among other nodes. Node 5 is colored BLACK and its WHITE 

neighbors 2, 3, 4, 6 and 7 are colored GRAY. At the second step, node 4 is chosen 

among GRAY nodes. The WHITE degree of node 4 is 1, on the other side other 

GRAY nodes do not have any WHITE neighbor, so their WHITE degree is 0. 

Node 4 is colored BLACK and node 1 is colored GRAY. After this operation, the 

WHITE nodes are consumed, so the algorithm terminates.   

Node 6 is selected in GW algorithm at the first step in Figure 3.5. The 

weight of node 6 which is the minimum among other nodes’ weights is 9. Node 6 

is colored BLACK and its WHITE neighbors 3, 5 and 7 are colored GRAY. At 

the second step, node 7 is chosen which has the minimum weight among GRAY 

nodes. Node 7 is colored BLACK and node 4 is colored GRAY. At the third step, 

GW selects node 4 whose weight equals to 11. Node 4 is colored BLACK and 

node 1 that is the WHITE neighbor of node 4 is colored GRAY. At the last step, 

node 3 is selected by GW. Node 3 is colored BLACK and its WHITE neighbor 

node 2 is colored GRAY. The algorithm finishes after this selection. 
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Figure 3.5. Example Operation of GW Heuristic 

As aforementioned, GR has the best performance among other heuristics in 

Figure 3.3, Figure 3.4 and Figure 3.5. Although these figures are useful to show 

the operation of algorithms and to obtain a general overview about their 

performances, we cannot derive a general result. We present extensive simulations 

in the following section to show the performances of these algorithms in detail. 

From our measurements given in Section 4, we found that GR achieves the best 

results in terms of weight ratio. Moreover, the runtime of these heuristics are very 

similar. Because of these reasons, GR is used as the greedy heuristic in our 

proposed algorithms.   

3.2 Description of Hybrid Genetic Algorithm 

We have proposed a steady-state Hybrid Genetic Algorithm (HGA) that 

uses a genetic algorithm with a greedy heuristic to solve minimum weight 

connected dominating set problem. HGA is a genetic algorithm to improve the 

solution quality which is produced by greedy heuristic. 

The chromosome used for graph problems is simply a set of vertices, in the 

mathematical sense of a set. In our HGA, the chromosomes are represented with a 

bit vector C of the length n where n is the number of vertices in the graph. This 

representation provides: 
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 Every chromosome is same length, 

 There is no need ordering among the vertices, 

 There are no duplicated vertices. 

Ci represents the i
th

 bit of the chromosome. Initially all bit values of the 

chromosome are 0. Ci is 1 if and only if node i is dominator. When Ci is set to 1, 

the color of node i is set to BLACK and the colors of WHITE neighbors of node i 

are set to GRAY. When Ci is set to 0, the color of node i is set to BLACK if node 

i does not have any BLACK neighbor, otherwise its color is set to GRAY. Then, 

the colors of GRAY neighbors of node i are set to WHITE if and only if their only 

BLACK neighbor is node i. If any GRAY neighbor of node i has another BLACK 

neighbor other than node i, the color of this neighbor does not change. 

Algorithm 3.2: HGA_MWCDS(max_iteration, pop_size, pc, pu, 

pr, pm) 

4. P ← GenerateInitialPopulation(pop_size, pr, pm) 

5. CV ← FindCutVertices() 

6. while max_iteration > 0 

7.          p ← RandNum() 

8.          if p < pc 

9.                 p1 ← BinaryTournamentSelection() 

10.                 p2 ← BinaryTournamentSelection() 

11.                 C ← FitnessBasedCrossover(p1, p2) 

12.                 C ← Mutation(C, pu) 

13.          else 

14.                  C ← GenerateRandomChromosome() 

15.          end if 

16.           C ← Repair(C, pr) 

17.           C ← Minimize(C, CV, pm) 

18.           if     

19.                    P ← P ∪ C 

20.                   Remove(Ppop_size-1)    // remove the worst member 

21.           end if 
22.           max_iteration ← max_iteration-1 

23.   end while 

24.   Return w(P0)          // the weight of the best chromosome 

 

Our proposed algorithm HGA_MWCDS is given in Algorithm 3.2 and starts 

with generating the initial population. The first member of the population is 

generated by GR heuristic. Then, the algorithm detects the cut vertices of the 

graph by calling the FindCutVertices function that uses Depth First Search (DFS) 

algorithm. These cut vertices are used in the minimization process. CDS should 

contain cut vertices as dominator. If cut vertices do not take place in DS, this DS 

can never provide connectivity so it cannot be a CDS. The following operations 
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repeat for max_iteration times. A probability value p is generated by RandNum 

function that generates a random value in [0, 1] interval.  

The algorithm continues with generating new chromosomes. Producing new 

chromosomes is done in two ways regarding to pc probability. In one of these 

ways, two parents are chosen by binary tournament selection method and 

crossover of these parents is done. In step 6 and 7, the chromosomes with a better 

fitness value are selected for crossover. In step 8, FitnessBasedCrossover function 

is called to generate new chromosome. This function uses a fitness based 

crossover technique which is given in (Beasley and Chu, 1996). In this technique, 

the crossover operation is executed as follows. Let f1 and f2 are the fitness values 

of parents P1 and P2 respectively. Let C is child generated by the crossover and all 

P1, P2 and C are bit string with length n where n is the number of nodes in the 

graph. For all i=1 to n 

(i) If P1[i] = P2[i] then C[i] ← P1[i] 

  

(ii) Else if P1[i] ≠ P2[i] then p= f1/ (f1+f2) 

C[i] ← P1[i] with probability p 

C[i] ← P2[i] with probability 1-p 

Then, the generated chromosome is mutated by Mutation function. This 

function mutates each node i in the graph by applying Ci ← (Ci+1) mod 2 

operation regarding to pu mutation probability. 

In the other way, to ensure randomness in the population, a new 

chromosome is produced by generating randomly with a 1-pc probability. Then, 

the new chromosome is sent to Repair procedure to check it if it is a CDS or not 

and if it does not provide a CDS, it is repaired by this procedure. After that, it 

becomes a CDS and sent to Minimize procedure to remove redundant dominators. 

Before inserting new member to the population, it is checked to prevent 

duplication. Then, the worst member is removed from the population. When all 

iterations are completed, the weight of the best member is returned as the final 

solution. 
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Algorithm 3.3: GenerateInitialPopulation(pop_size pr, 

pm) 

1. M←   

2. P ←   

3. CV ← FindCutVertices() 

4. for i←1 to pop_ size 

5.        M ← GenerateRandomChromosome() 

6.        if CheckCDS(M) is false 

7.              M ← Repair(M, pr) 

8.        end if 
9.        M ← Minimize(M, CV, pm) 

10.        if     

11.             P ← P ∪ M 

12.             M←   

13.       end if   

14. end for 

15. Return P 

 

GenerateInitialPopulation algorithm which is explained in Algorithm 3.3 

produces members by generating chromosome data randomly. Then the produced 

member is checked whether it is a CDS or not. If it does not provide a solution or 

it is not a CDS in other words, it is repaired by applying Repair procedure. 

Thereafter, Minimize procedure is applied to remove redundant nodes from the 

solution. After these operations, if a unique solution is obtained it is added to the 

initial population. If a unique solution is not obtained, these steps repeat for a 

maximum number of trials. After a maximum number of trials, if a unique 

solution cannot be obtained, the size of the initial population is updated as the 

current size. This situation only occurs while generating the initial population for 

small size problem instances due to the small number of nodes. 

 

Algorithm 3.4: Greedy_MWCDS() 

1.  v ← VertexWithNthLowestRatio(1, WHITE) 

2. M ← M ∪ v 

3.  color (v)  ← BLACK 

4.  color (  ( )      )  ← GRAY 

5. while   i ∈  : color(i) = WHITE 

6.        v ← VertexWithNthLowestRatio(1, GRAY) 

7.        M ← M ∪ v 

8.        color (v) ← BLACK 

9.        color (  ( )      )  ← GRAY 

10. end while 

11. Return M 
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As mentioned before, the first member of the initial population is obtained 

by Greedy_MWCDS algorithm that uses GR heuristic. The detailed steps of the 

algorithm are given in Algorithm 3.4. This algorithm selects the nodes regarding 

to their weight ratio. The weight ratio of node v is calculated as  
 ( )

  ( [ ]     )
. 

Firstly, the algorithm selects the node with the minimum weight ratio by 

VertexWithNthLowestRatio algorithm which takes order n and color as 

parameters.  It sorts all nodes having that color in ascending order regarding to 

their weight ratios and returns the node id in desired order that means n
th

 node id. 

The color of the selected node is set to BLACK and its WHITE neighbors are 

colored as GRAY. Then, the second and the following nodes are selected from 

GRAY nodes to provide connectivity between dominators. These operations 

continue until all nodes are GRAY or BLACK in other words there is no WHITE 

node. 

Repair procedure that is given in Algorithm 3.5 is a heuristic to repair the 

chromosome with a probability pr. A chromosome is repaired by RepairWithRatio 

that uses GR heuristic or by RepairRandomly that adds nodes randomly until it is 

a CDS. 

Algorithm 3.5: Repair(C, pr) 

1. p ← RandNum() 

2. if p < pr 

3.     Return RepairWithRatio(C) 

4. else 

5.     Return RepairRandomly(C) 

6. end if 

 

Algorithm 3.6 gives the detailed steps of RepairWithRatio procedure that 

takes a chromosome as a parameter. In the first step, the algorithm detects the 

BLACK nodes. If there are no WHITE nodes left in the graph, it means that all 

nodes are dominated. Then, the connectivity of the dominators is checked by 

CheckCDS algorithm. If the dominators are connected also, the chromosome is 

already a solution, so there is no need to repair it. If there is any WHITE node, the 

one having the minimum weight ratio among WHITE nodes is selected by 

VertexWithNthLowestRatio algorithm. VertexWithNthLowestRatio is designed as a 

generic procedure, so to get the lowest weight ratio “1” is given as a parameter. 

Then, the color of the selected node is set to BLACK and its WHITE neighbors 

are colored as GRAY. While the BLACK nodes do not construct a CDS, 

following nodes are selected from GRAY nodes to provide connectivity. The 
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selected node’s color is set to BLACK and its WHITE neighbors’ color are set to 

GRAY. These steps continue until BLACK nodes provide a CDS.   

Algorithm 3.6: RepairWithRatio(C) 

1. B ← {v:   ∈    ˄ color(v) = BLACK} 

2. if     ∈   : color(v) = WHITE 

3.     if CheckCDS(B) is true 

4.          Return C 

5.     end if 

6. else if      ∈   : color(v) = WHITE 

7.      vbest← VertexWithNthLowestRatio(1, WHITE) 

8.            
 ← 1 

9.      color (vbest)  ← BLACK 

10.      color (  (     )      )  ← GRAY 

11.      B ← B ∪ vbest 

12. end if 
13. while CheckCDS(B) is false 

14.       vbest← VertexWithNthLowestRatio(1, GRAY) 

15.             
 ← 1 

16.       color (vbest)  ← BLACK 

17.       color (  (     )      )  ← GRAY 

18.       B ← B ∪ vbest 

19. end while 

20. Return C 

 

Algorithm 3.7: RepairRandomly(C) 

1. B ← {v:   ∈    ˄ color(v) = BLACK} 

2. if     ∈   : color(v) = WHITE 

3.     if CheckCDS(B) is true 

4.           Return M 

5.     end if 

6. else if      ∈   : color(v) = WHITE 

7.      p ← ⌊       ()  (           )⌋ 
8.         

 ← 1 

9.      color (vp)  ← BLACK 

10.      color (  (  )      )  ← GRAY 

11.      B ← B ∪ vp 

12. end if 
13. while CheckCDS(B) is false 

14.       nodeList ← GetNodeListByColor(GRAY) 

15.       p ← GetRandomNode(nodeList) 

16.          
 ← 1 

17.       color (vp)  ← BLACK 

18.       color (  (  )      )  ← GRAY 

19.       B ← B ∪ vp 

20. end while 

21. Return C 
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RepairRandomly algorithm is given in Algorithm 3.7. As similar to 

RepairWithRatio, if there is no WHITE node in the graph, the BLACK nodes are 

checked whether they construct a CDS or not. If they do not provide a solution 

and there exists any WHITE node, a random value p between [0, n-1] is generated 

where n is the graph size. The bit of chromosome at the index same with p value 

is set to 1. It means that, this node is selected as dominator. So, the color of the 

selected node is set to BLACK and its WHITE neighbors’ colors are set to 

GRAY. While the BLACK nodes do not provide a CDS, the list of GRAY nodes 

is detected by GetNodeListByColor function. Then, a random node is selected 

from that list by GetRandomNode function. This random node’s color is set to 

BLACK and the colors of its WHITE neighbors are set to GRAY.  

Algorithm 3.8: Minimize(C, CV, pm) 

1. R ← FindRedundantInChromosome (C, CV) 

2. while R is not empty 

3.      p ← RandNum() 

4.      if p < pm 

5.           id ← GetNodeWithMaxWeight(R) 

6.      else 

7.           id ← GetRandomNode(R) 

8.      end if 

9.      color (vid)  ← GRAY 

10.      R ← FindRedundantInChromosome(C, 

CV) 

11.  end while 

12.  Return C 

 

Minimize algorithm is given in Algorithm 3.8. It takes chromosome, cut 

vertices and minimization probability pm as parameters. Cut vertices must be 

protected not to break the connectivity. At the first step of the algorithm, 

redundant nodes are detected by FindRedundantInChromosome function that is 

given in Algorithm 3.9. While there is any redundant node in chromosome, the 

following operations repeat. Among redundant nodes, a random node determined 

by GetRandomNode or node with the maximum weight ratio determined by 

GetNodeWithMaxWeight is selected regarding to pm value. Then, the selected 

node is colored as GRAY. The colors of its neighbor do not change. Because it is 

a redundant node such that this node has no neighbor which is dominated by only 

that node. The list of the redundant nodes is updated after removing that node 

from CDS. 

FindRedundantInChromosome algorithm determines redundant nodes 

among the BLACK nodes in chromosome. At the first step of the algorithm, the 
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cut vertices in CDS are determined as BLACK cut vertices (BCV) by 

FindCutVerticesInCDS function. For all BLACK nodes, the algorithm checks 

three conditions to determine if it is a redundant dominator or not. 

 Algorithm 3.9: FindRedundantInChromosome(C) 

1. BCV ← FindCutVerticesInCDS() 

2. R←   

3. for  ∈  : color(v) = BLACK 

4.       if v   CV and v   BCV and       ∈  (v) ˄      

color(i)=WHITE ˄   ( )     = {v}   

5.            R ← R ∪ v 

6.       end if 

7. end for 

8. Return R 

 

A dominator is redundant if: 

 It is not in cut vertex set (v   CV), 

 It is not in black cut vertex set (v   BCV) 

 It does not have any neighbor that is dominated by only that node (      ∈

 (v) ˄ color(i)=WHITE ˄   ( )     = {v}) 

If any BLACK node satisfies these three conditions, it is a redundant 

dominator and the algorithm adds that node to the redundant dominator list R. An 

example operation to explain the detailed steps of Repair and Minimize 

procedures is given in Figure 3.6. In Figure 3.6.a, a randomly generated 

chromosome is shown as a graph. Nodes M, T and V are the initial dominators and 

N, O, R, S, U, V, W, Y and Z are the dominatees.  

Since the colors of nodes P and X are not dominated by any dominator, this 

chromosome is sent to Repair procedure which starts by selecting a node which 

has any WHITE neighbor to complete covering all the nodes in the graph. Node U 

is selected between nodes O, U and Y whose weight ratios are 7/10, 2/15 and 8/15, 

respectively. Then, node O which is the only node having WHITE neighbor is 

selected. The colors of O and U are set to BLACK and their WHITE neighbors P 

and X are colored as GRAY. The updated graph is given in Figure 3.6.b. This 

graph shows a WDS but it is not a WCDS. Node N having the lowest weight from 

GRAY nodes is selected. Then, nodes R and W are selected. After these 

operations, a CDS including some redundant dominators is constructed as shown 

in Figure 3.6.c. Minimize function firstly removes node M, then node N as they are 

redundant dominators. Figure 3.6.d shows the final network with CDS. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.6. a) Initial network b) Insertion of nodes U and O c) Nodes N, R and W are inserted  

d) Redundant dominators M and N are removed. 
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3.3 Description of Population-based Iterated Greedy Algorithm 

We proposed a Population-based Iterated Greedy (PBIG) algorithm for 

minimum weight connected dominating set problem. The strategy of IG 

algorithms is that they have a deconstruction process and a reconstruction process. 

They destroy the current solution and then apply a greedy heuristic to repair that 

solution. The steps of the proposed PBIG algorithm are given in Algorithm 3.10. 

 

Algorithm 3.10: PBIG_MWCDS(max_iteration, pop_size, p, α) 

1. P ← GenerateInitialPopulation_PBIG(pop_size, α) 

2. CV ← FindCutVertices() 

3. while max_iteration > 0 

4.          Pnew ←   

5.          for   ∈    
6.               Mdest ← RemoveRedundantAndDestroyPartially(M, p, CV) 

7.               Mnew ← Greedy_MWCDS_PBIG(Mdest , α) 

8.               if        

9.                     Pnew ← Pnew ∪ Mnew 

10.               end if 

11.           end for 

12.           P ← Accept(P,Pnew) 

13.           max_iteration ← max_iteration-1 

14.   end while 

15.   Return w(P0)   // weight of first member (best member’s weight) 

The algorithm generates initial population P by GenerateInitial 

Population_PBIG algorithm which is given in Algorithm 3.11. Initial population 

consists of the candidate solutions that are generated by Greedy_MWCDS_PBIG 

algorithm that is given in Algorithm 3.12. Then, the cut vertices of the graph are 

determined by FindCutVertices function which is used in the proposed HGA also. 

These cut vertices are necessary for redundant nodes elimination and destruction 

phases of the RemoveRedundantAndDestroyPartially algorithm that is given in 

Algorithm 3.13. Until the maximum iteration counter comes to end, the following 

steps repeat. For each member of the population, RemoveRedundant 

AndDestroyPartially algorithm is executed. After removing redundant dominators 

of the member and destroying it partially, it may not be a CDS. So, this new 

individual is sent to Greedy_MWCDS_PBIG algorithm again to be repaired. If it 

is not generated before, it is added to the new population Pnew. Thus, the new 

individuals obtained from the initial population in that way construct Pnew. Then, 

the new and the initial populations are sent to Accept method that adds the 

members in the new population to the initial population and sorts the combined 
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population in ascending order according to their weights. The new population is 

generated by taking the first individuals up to the initial population size at the last 

step of the while loop. After all iterations of the algorithm are completed, the 

weight of the best member is returned. 

Algorithm 3.11: GenerateInitialPopulation_PBIG(pop_size, α) 

1. M←   

2. P ←   

3. for i←1 to pop_ size 

4.        M ←Greedy_MWCDS_PBIG(M, α) 

5.        P ← P ∪ M 

6.        M←   

7. end for 

8. Return P 

 

Algorithm 3.12: Greedy_MWCDS_PBIG(M, α) 

1. if     ∈   : color(v) = WHITE 

2.          Return M 

3. else if      ∈   : color(v) = WHITE 

4.        vbest1← VertexWithNthLowestRatio(1, WHITE) 

5.        vbest2← VertexWithNthLowestRatio(2, WHITE) 

6.        α0 ← RandNum()  

7.        if α0 ≤ α  then v ← vbest1 

8.        else  v ← vbest2 

9.        end if 

10.        M ← M ∪ v 

11.        color (v)  ← BLACK 

12.        color (  ( )      )  ← GRAY 

13. end if  

14. while   i ∈  : color(i) = WHITE 

15.        vbest1← VertexWithNthLowestRatio(1, GRAY) 

16.        vbest2← VertexWithNthLowestRatio(2, GRAY) 

17.        α0 ← RandNum()  

18.        if α0 ≤ α  then v ← vbest1 

19.        else  v ← vbest2 

20.        end if 

21.        M ← M ∪ v 

22.        color (v) ← BLACK 

23.        color (  ( )      )  ← GRAY 

24. end while 

25. Return M 

 

GenerateInitialPopulation_PBIG algorithm that is given in Algorithm 3.11 

constructs the initial population with generating each member by 

Greedy_MWCDS_PBIG algorithm. The algorithm takes population size and 

determinism rate α that is used in Greedy_MWCDS_PBIG as parameters. 
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Algorithm 3.13: RemoveRedundantAndDestroyPartially(M, p, CV) 

1. BCV ← FindCutVerticesInCDS() 

2. Mnew←   

3. for  ∈  : color(v) = BLACK 

4.        p’ ← RandNum() 

       // Remove redundant nodes 

5.        if v   CV and v   BCV and       ∈  (v) ˄ color(i)=WHITE 

˄   ( )     = {v}   

6.              color(v) ← GRAY 

7.              BCV ← FindCutVerticesInCDS() 

       // Destroy partially 

8.        else if p’≤ p and v   CV and v   BCV                                                          

9.               for   ∈  ( )  
10.                      if color(j) = GRAY and |  ( )     |=1 

11.                           color(j) ← WHITE 

12.                      end if 

13.               end for 

14.               color(v) ← GRAY 

15.               BCV ← FindCutVerticesInCDS() 

16.         else Mnew ← Mnew ∪ v 

17.         end if 

      18.  end for 

      19.  Return Mnew 

 

The detailed steps of the Greedy_MWCDS_PBIG algorithm are given in 

Algorithm 3.12. This algorithm generates each individual for the initial population 

and repairs partial solutions. It takes two parameters member M and determinism 

rate α. M is an empty set while generating the member of the initial population or 

is a partial solution while repairing.  

At the first step of the algorithm, WHITE node presence is checked. 

Because if there is no WHITE node in the graph, it means all nodes are covered 

and the input member is already a CDS. Thereafter, the first two nodes having the 

first and second lowest costs are determined by VertexWithNthLowestRatio. The 

cost of a node is calculated as the weight ratio that is given in the description of 

HGA algorithm. The selection from these two nodes is determined regarding to α 

determinism rate. This procedure provides to prevent selecting the same 

individual at each time. In other words, it prevents getting stuck in a local 

minimum solution that is the individual with the lowest weight ratio for that case. 

After selecting the node, it is added to the solution set M which is being generated 

at that time. The color of the selected node is set to BLACK and its WHITE 

neighbors are colored GRAY.  
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While there exits WHITE neighbor in the graph that means all nodes are not 

covered, the second and the following nodes must be selected from GRAY nodes 

to construct a “connected” dominating set. The first two nodes having the first and 

second lowest weight ratios are selected as before, but unlike the previous one 

they are selected from GRAY nodes. One of them is chosen according to the 

determinism rate and it is colored BLACK. The colors of its WHITE neighbors 

are set to GRAY. At the end of the while loop, the individual generated by this 

way is returned as a CDS solution. 

The members generated by Greedy_MWCDS_PBIG algorithm may include 

redundant dominators. The determination of these redundant nodes is provided by 

RemoveRedundantAndDestroyPartially algorithm that is given in Algorithm 3.13. 

As the name implies, this algorithm removes redundant nodes from the input 

member M and destroys M partially regarding to destruction degree p. The 

redundant nodes are determined by the same rules given in the description of the 

HGA. 

The followings steps are executed for each BLACK node. If a dominator is 

not cut vertex for both the whole graph and the subgraph constituted by BLACK 

nodes and there does not exist any WHITE neighbor dominated by only that 

dominator, it is redundant. The color of the dominator is changed as GRAY. 

Because the BLACK nodes have changed, the BLACK cut vertices have changed 

also. So, the array BCV holding the cut vertices in BLACK nodes must be 

updated. In step 7, FindCutVerticesInCDS algorithm that detects the nodes which 

connect BLACK nodes is called and the returned array is assigned to BCV. There 

is no need to change the colors of the redundant node v’s neighbors, because there 

does not exist any neighbor that is dominated by only node v. 

If any node v is not redundant and is not cut vertex for both graph and 

dominators subgraph, it can be destroyed which means it can be removed from the 

solution set regarding to destruction degree p. To remove it, the neighbors of node 

v dominated by only node v must be colored WHITE. These nodes’ color was 

GRAY because they were dominated by node v. So, to determine these neighbors, 

their color and BLACK neighbor count are checked in line 10. After neighbors are 

updated, node v is colored GRAY in line 14. The BLACK cut vertices array is 

updated by FindCutVerticesInCDS algorithm.  
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(a) 

 
(b) 

Figure 3.7. a) Redundant node example b) Redundant node remove (Node R is removed) 

Remove redundant dominator example is given in Figure 3.7. In this figure, 

C indicates that this node is in CV set since it is a cut vertex. BLACK nodes are 

the dominators generated by GR heuristic and nodes N, P, R, S, T and U are cut 

vertices in Figure 3.7.a. In this example node R is a redundant dominator because 

it is not a cut vertex and is not a BLACK cut vertex (not in BCV set) that if it is 

removed other dominators are still connected. Also, it does not have any neighbor 

which is dominated by only that node. After removing node R, the final version of 

the graph is given in Figure 3.7.b. 
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Figure 3.8. An example weighted graph 

An example initial graph with weight ratio of each node is given in Figure 

3.8 to clearify the node selections while producing WCDS by 

Greedy_MWCDS_PBIG. Firstly, node N is selected because it has the minimum 

weight ratio. After that, among its neighbors (M, O and W) the best two neighbors 

are taken (M and W has the same weigth ratio 10/10 and 50/50, respectively) and 

node M is selected regarding to determinism rate α. Then nodes U, T, S and R are 

selected respectively. This state of the graph which provides a WCDS is shown in 

Figure 3.9.a. 

An example partially destroy operation is given in Figure 3.9. In this figure, 

BC indicates BLACK cut vertices that are in BCV set. Node N is selected for 

removing depending on destruction degree p. After removing node N, the graph is 

updated as Figure 3.9.b. Since the WCDS is destroyed, it is sent to 

Greedy_MWCDS_PBIG procedure to be repaired. Nodes N or W must be inserted 

to repair the solution. Node W with 50/70 weight ratio is inserted regarding to 

determinism rate. The constructed WCDS is given in Figure 3.9.c. After node W 

is inserted, all the other dominators M, R, S, T and U become redundant. So, these 

nodes quit from BCV set. They are removed from the WCDS as shown in Figure 

3.9.d. After these operations, the total cost of WCDS reduces 60 to 50 and the 

MWCDS is constructed. 
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(a) 

 
(b) 

 
(c) (d) 

Figure 3.9. a) An example WCDS b) Node N is removed c) Node W is inserted d) Nodes M, 

U, T, S and R are removed. 

3.4 Complexity Analysis of the Proposed Algorithms 

In this section, the time complexity analyses of the proposed algorithms are 

given. Each proposed algorithm is analysed line by line. 

3.4.1 Complexity Analysis of HGA 

Lemma 1. The running time complexity of Greedy_MWCDS algorithm 

(Algorithm 3.4) is same with Guha and Khuller’s algorithm and it is equal to 

O(m) where m is the number of edges. 

Proof. Similar to Guha and Khuller’s algorithm, our algorithm selects the 

vertex with minimum weight ratio in each step. To construct a CDS, it selects the 

second and the following nodes with the minimum ratio among the GRAY nodes. 
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The total time complexity of Greedy_MWCDS algorithm is same with Guha and 

Khuller’s algorithm that is O(m). □ 

Lemma 2. The running time complexity of RepairWithRatio algorithm 

(Algorithm 3.6) is O(n
2
+nm) where n is the number of vertices and m is the 

number of edges. 

Proof. Line 1 is executed in O(n) time. Line 2 checks if there does not exist 

WHITE nodes in O(n) time. Line 3 performs in O(n+m) time where CheckCDS is 

called. Line 4 performs in constant time. Line 6 controls whether all nodes are 

WHITE or not in O(n). Line 7 is performed in O(n) time. Line 8 and line 9 are 

executed in O(1) time separately. Line 10 performs in O(n). Line 11 is executed in 

constant time. The while loop between line 13 and 19 repeats for O(n+m). In the 

while loop, line 14 and 17 execute in O(n); line 15, 16 and 18 execute in O(1) 

time separately. Hence, the while loop is completed in O(n
2
+nm) time. Line 20 

perform in constant time. Consequently, the total time complexity of 

RepairWithRatio algorithm is O(n
2
+nm). □ 

Lemma 3. The running time complexity of RepairRandomly algorithm 

(Algorithm 3.7) is O(n
2
+nm) where n is the number of vertices and m is the 

number of edges. 

Proof. Line 1 and line 2 are performed in O(n) time separately. Line 3 

controls BLACK nodes whether they construct a CDS or not by calling 

CheckCDS that is executed in O(n+m) time. Line 4 is executed in O(1) time. Line 

6 is performed in O(n). Line 7, 8 and 9 are performed in O(1) time separately. 

Line 10 is executed in O(n) time. Line 11 is performed in constant time. The while 

loop between line 13 and 20 repeats for O(n+m) times. Line 14 is executed in 

O(n) time. Line 15, 16 and 17 execute in O(1) time separately. Line 18 performs 

in O(n) time. Line 19 is executed in constant time. Line 21 is executed in O(1) 

time. Consequently, the total time complexity of RepairRandomly algorithm is 

O(n
2
+nm). □ 

Lemma 4. The running time complexity of Repair algorithm (Algorithm 3.5) 

is O(n
2
+nm) where n is the number of vertices and m is the number of edges. 

Proof. Line 1 is executed in constant time. If control in line 2 performs in 

O(1) time. Line 3 is executed in O(n
2
+nm) from Lemma 2. Else, line 5 is executed 
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that is in O(n
2
+nm) time from Lemma 3. Hence, the total time complexity of 

Repair algorithm is O(n
2
+nm). □ 

Lemma 5. The running time complexity of FindRedundantInChromosome 

algorithm (Algorithm 3.9) is O(n
3
) where n is the number of vertices. 

Proof. Line 1 is executed in O(n+m) where FindCutVertexInCDS algorithm 

is called that finds the cut vertices in CDS by DFS algorithm. Line 2 performs in 

O(1) time. The for loop in lines 3 and 7 repeats for n times at the worst case. The 

if statement between line 4 and 6 checks v  CV and v  BCV statements which 

can be executed in O(1) time if the CV and BCV values are stored for each vertex. 

The BLACK neighbor control in the same statement can be performed in O(n) 

time for each vertex that leads to O(n
2
) time at the worst case. Hence, the total 

time complexity of the line 4 is O(n
2
). Line 5 is performed in constant time. Line 

8 executes in O(1). Thus, the total time complexity of FindRedundant 

InChromosome algorithm is O(n
3
). □ 

Lemma 6. The running time complexity of Minimize algorithm (Algorithm 

3.8) is O(n
4
) where n is the number of vertices. 

Proof. Line 1 is executed in O(n
3
) time from Lemma 5. The while loop 

between line 2 and 11 repeats for R times where R can be n at the worst case. Line 

3 and 4 perform in O(1) time separately. Line 5 selects the node with maximum 

weight from R set and it is executed in O(n) time. Line 7 performs in O(1) time. 

Line 9 is executed in constant time. Line 10 performs in O(n
3
) time from Lemma 

5. Line 12 executes in constant time. Consequently, the total time complexity of 

Minimize algorithm is O(n
4
) time. □ 

Lemma 7. The running time complexity of GenerateInitialPopulation 

algorithm (Algorithm 3.3) is O(n
4
s) where n is the number of vertices and s is the 

population size. 

Proof. Line 1 and 2 are performed in O(1). Line 3 executes in O(n+m) 

where FindCutVertices algorithm detects the cut vertices by DFS algorithm that 

performs in O(n+m) time. The for loop between line 4 and 14 executes for s 

times. GenerateRandomChromosome algorithm generates each bit of the 

chromosome randomly so line 5 performs in O(n). Line 6 calls CheckCDS which 

controls the connectivity between BLACK nodes in O(n+m) time. Line 7 
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performs in O(n
2
+nm) from Lemma 4. Line 9 executes in O(n

4
) time from Lemma 

6. Line 10 checks the uniqueness of the generated member in O(ns) time. Line 11 

and 12 perform in O(1) time separately. Line 15 executes in constant time. Hence, 

the total time complexity of GenerateInitialPopulation algorithm is O(n
4
s). □ 

Theorem 1. The running time complexity of HGA_MWCDS algorithm 

(Algorithm 3.2) is O(n
4
(s+ Imax)+ sn Imax) where Imax is the number of maximum 

iteration, s is the population size and n is the number of vertices.  

Proof. Line 1 generates the initial population in O(n
4
s) time complexity 

from Lemma 7. Line 2 performs in O(n+m) where FindCutVertices finds the cut 

vertices in the graph. The while loop between lines 3 and 20 repeats O(Imax) times. 

Line 4 performs in O(1) time. The if control in line 5 performs in O(1) time. In 

line 6 and 7, the parents are selected by BinaryTournamentSelection algorithm 

that performs in O(1). In line 8, fitness based crossover operation is performed in 

constant time. Line 9 performs in O(n) where Mutation algorithm changing each 

bit of the chromosome regarding to mutation probability pu is called. Lines 10-11 

are executed in O(n) time because GenerateRandomChromosome algorithm 

generates each bit of the chromosome randomly. Line 13 is performed in 

O(n
2
+nm) from Lemma 4. Line 14 is executed in O(n

4
) time from Lemma 6. Line 

15 checks whether the generated individual exists or not in the population and it is 

performed in O(ns) time complexity. Line 16 performs in O(1) time. Line 17 

removes the worst member in constant time. Line 19 decreases the iteration 

counter in O(1) time. Line 21 performs in constant time. Consequently, the total 

time complexity of HGA_MWCDS algorithm yields O(n
4
(s+ Imax)+ sn Imax). □ 

3.4.2 Complexity Analysis of PBIG Algorithm 

Lemma 8. The running time complexity of Greedy_MWCDS_PBIG 

algorithm (Algorithm 3.12) is same with Guha and Khuller’s algorithm and it is 

equal to O(m) where m is the number of edges. 

Proof. Guha and Khuller’s algorithm selects the vertex with the minimum 

weight ratio in each step. Similarly, our algorithm generates a random probability 

and selects a vertex among the vertices having the best two weight ratios 

according to this probability in each step. Since, the complexities of generating a 

random number and calculating the weight ratio are in O(1), the total complexity 
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of Greedy_MWCDS_PBIG algorithm is same with Guha and Khuller’s algorithm 

that is O(m). □ 

Lemma 9. The running time complexity of GenerateInitialPopulation_PBIG 

algorithm (Algorithm 3.11) is O(ms) where m is the number of edges and s is the 

population size. 

Proof. Line 1 and line 2 are executed in O(1). In line 4 

Greedy_MWCDS_PBIG algorithm is called so it is performed in O(m) time from 

Lemma 8. Line 5 and line 6 are executed in constant time. The for loop between 

the lines 3 and 7 is executed for s times. Hence, the total complexity of 

GenerateInitialPopulation_PBIG algorithm is O(ms). □ 

Lemma 10. The running time complexity of RemoveRedundantAnd 

DestroyPartially algorithm (Algorithm 3.13) is O(n
3
) where n is the number of 

vertices. 

Proof. Line 1 is performed in O(n+m), because FindCutVertexInCDS finds 

the cut vertices in CDS by DFS algorithm which executes in O(n+m) time. Line 2 

is executed in O(1) time. Line 4 generates random number between (0, 1) and is 

performed in O(1). In line 5, v  CV and v  BCV controls can be executed in O(1) 

time if the CV and BCV values are stored for each vertex. In the same line, the 

BLACK neighbor control can be executed in O(n) time for each vertex which 

leads to O(n
2
) time at the worst case. Hence, the total time complexity of the line 

5 is O(n
2
). Line 6 colors v vertices in constant time. Line 7 performs in O(n+m) 

like line 1 for the same reason. Line 8 is performed in O(1) time. The if control in 

lines 10-11 is executed in O(1). The for loop in lines 9-13 runs O(n) times. Line 

14 and 16 are performed in constant time. Line 15 is executed in O(n+m). Lines 3 

to 18 repeat for each BLACK vertices and there can be O(n) BLACK vertices. 

Hence, these lines repeat for O(n) times at worst case. The total time complexity 

yields O(n)(O(n
2
)+O(n+m)) and m is in O(n

2
).  Consequently the run time 

complexity of RemoveRedundantAndDestroyPartially algorithm is in O(n
3
).□ 

Theorem 2. The running time complexity of PBIG_MWCDS algorithm 

(Algorithm 3.10) is O(Imax(n
3
+ns)+ms) where Imax is the number of maximum 

iteration, s is the population size, n is the number of vertices and m is the number 

of edges.  
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Proof. Line 1 generates the initial population in O(ms) time complexity 

from Lemma 9. Line 2 executes in O(n+m) where FindCutVertices algorithm 

detects the cut vertices by DFS algorithm that performs in O(n+m) time. The 

while loop between lines 3 and 14 repeats O(Imax) times. Line 4 performs in O(1) 

time. The lines 5 to 11 are executed for each member in population so these lines 

repeat for s times. Line 6 is performed in O(n
3
) from Lemma 10. Line 7 is 

executed in O(m) time from Lemma 8. In line 8, the uniqueness control of each 

generated individual is performed that is in O(ns) time complexity. Line 9 adds 

new member to the population in constant time. Line 12 merges the sorted 

populations and takes the first s members in O(s) time. The total time complexity 

of PBIG_MWCDS is O(Imax(n
3
+ns)+ms).□ 
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4. PERFORMANCE EVALUATIONS 

We implemented the proposed algorithms with their counterparts in Java 

language. The PC used in our implementations has 8 Gigabytes of memory and 

Intel Core i7 4500U 1.80 GHz processor. As the counterparts of our algorithms, a 

brute force algorithm and three greedy algorithms are implemented. The 

implemented Brute force (BF) algorithm always finds the optimal solution by 

running all possible subset of solutions. Thus, 2
n
 possible subsets of nodes are 

considered. 

Although BF produces solutions for small scale datasets within hours, its 

execution times become unacceptable long for moderate and large scale datasets. 

To solve the time problem in moderate and large scale datasets, a time-limited 

version of BF which is named as T-BF is implemented. In T-BF algorithm, the 

CPU execution time of the algorithm is bounded by the two times of the CPU 

execution time of PBIG algorithm for each (node, edge) combination. We choose 

PBIG instead of HGA to limit the CPU execution time of the T-BF algorithm 

since generally PBIG takes longer time than HGA especially for large and 

moderate datasets. Since T-BF is not permitted to finish its execution, it cannot 

always find optimum solutions. We apply t-test between PBIG and BF to compare 

the WCDS solution qualities of the proposed algorithms. We do not apply t-test 

for other algorithms because we obtain optimal solutions from HGA for small-

size instances and we obtain better solutions from HGA and PBIG than T-BF for 

all medium and large scale datasets.       

In our measurements two types of datasets are used to benchmark the 

proposed algorithms with their counterparts. The first dataset is proposed by 

(Shyu et al., 2004) and the second dataset is proposed by us by randomly 

generating graphs.  The first dataset consists of node weighted and undirected 

graphs. The first dataset is divided into Type 1 and Type 2 graphs according to 

their distributions of node weights. For Type 1 instances, the weights of vertices 

are uniformly and randomly given between 20 and 120 and for Type 2 instances, 

the weights of the vertices are uniformly distributed between 1 and d(v)
2
 where 

d(v) is the degree of vertex v. The first dataset is also divided into three subgroups 

according to node counts in the graphs. This categorization is made by diving into 

small, moderate and large problem instances. In small instances, the node counts 

are {10, 15, 20, 25}. In moderate instances, the node counts are {50, 100, 150, 

200, 250, 300}. In large instances, the node counts are {500, 800, 1000}. Besides, 
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to measure the effect of network density, edge counts are varied. 10 different 

instances are generated for each node and edge count combination. 

Table 4.1. Implementation parameters 

Implementation Parameters                                         

PC Configuration 
8 GB memory, Intel Core i7 4500U 1.80 GHz 

processor 

Language Java 

Implemented Algorithms HGA, PBIG, BF, T-BF, GR, GD, GW 

Datasets Shyu’s dataset (Type 1 and Type 2), Our dataset 

 

Properties of Type 1 

Instances 

Node Counts Small: {10, 15, 20, 25} 

Moderate: {50, 100, 150, 200, 

250, 300}   

Large: {500, 800, 1000} 

Node 

Weights 

Randomly between [20, 120] 

 

Properties of Type 2 

Instances 

Node Counts Small: {10, 15, 20, 25} 

Moderate: {50, 100, 150, 200, 

250, 300}   

Large: {500, 800, 1000} 

Node 

Weights 

Randomly between [1, 

degree(v)
2
] 

 

Properties of Our Dataset 

Node Counts Small: {10, 15, 20, 25} 

Moderate: {50, 100, 150, 200, 

250, 300}   

Large: {250, 500, 750, 1000} 

Node 

Weights 

Randomly between [20, 120] 

Population Size 100 

Maximum Iterations 200 

Solution Evaluations 20,000 



55 

Even though the first dataset is a popular dataset used by researchers 

(Jovanovic et al., 2010; Bouamama et al., 2012; Potluri and Singh, 2013), some of 

the graphs generated in this dataset are unconnected. This situation brings an 

important problem to our experiment setups, because it is obvious that a MWCDS 

cannot be found on an unconnected graph. To overcome this issue, we generated a 

new dataset in which all graphs are connected. Our dataset is divided into small, 

moderate and large scale instances according to their sizes. In small size instances, 

there are {10, 15, 20, 25} nodes. In medium size instances, there are {50, 100, 

200, 250} nodes. In large problem instances, there are {250, 500, 750, 1000} 

nodes. 2n, 4n, 6n, 8n and 10n edges are randomly generated for each node count 

n.  For each node and edge count combination, 10 instances are generated and the 

weights of the nodes are given between 20 and 120. 

An initial population having 100 members is used in our algorithms. These 

members are executed for 200 iterations (max_iteration). Because of this, the 

proposed algorithms are executed on 20,000 generations. In other words, 

maximum 20,000 solutions are evaluated for each algorithm. In some cases, the 

initial population cannot have 100 members, because the number of all solutions 

are smaller than 100. In these cases, the max_iteration is set to 20,000 / 

(population size). By applying this operation, equal number of solutions is 

generated for reach run. The determinism rate α (used for greedy selection) is set 

to 0.5 and the partially destroy probability p is set to 0.5 for PBIG. The probability 

pc (used for crossover) is set to 0.9, the probability pu (used for mutation) is set to 

0.005, the probability pr (used for repair) is set to 0.7 and the probability pm (used 

for minimization) is set to 0.6 for HGA. We choose these values after making 

experiments with various values. These parameters are summarized in Tables 4.1, 

4.2 and 4.3.    

Table 4.2. HGA parameters 

Parameter  Value 

pc Crossover probability 0.9 

pu Mutation probability 0.005 

pr Repair probability 0.7 

pm Minimization probability 0.6 
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Table 4.3. PBIG parameters 

Parameter  Value 

p Partially destroy probability 0.5 

α Determinism rate 0.5 

 

The results of small-size problem instances are given in Tables 4.4-4.9 and 

Figures 4.1-4.6. The results of moderate size problem instances are given in 

Tables 4.10-4.15 and Figures 4.7-4.12. The results of large size problem size 

instances are given in Tables 4.16-4.19 and Figures 4.13-4.16. In these tables, n is 

the node count, m is the edge count, # of con. is the connected graph count, weight 

is the total weight of the MWCDS and time is the execution time of the algorithm.  

When we investigate the figures given in Figures 4.1-4.16 we see that 

generally the weight and time results of the algorithms increase when we increase 

the node count and fix the edge count as a constant factor of the node count. The 

reason of this situation is the run times of the algorithms depend on the node 

count and the algorithms produce more dominators when node count is increased. 

When we fix the node count and increase the edge count, the weight results of the 

algorithms generally decrease since nodes can be covered by less number of 

dominators in dense networks. The time results of the algorithms except BF are 

similar when we increase the edge count and fix the node count, the time results 

of BF increase in this case. The time results of T-BF is omitted in Figures 4.7b, 

4.8b, 4.9b, 4.10b, 4.11b, 4.12b, 4.13b, 4.14b, 4.15b and 4.16b since they are 

always equal to two times of PBIG’s run times for moderate and large size 

problem instances. 

The obtained results show us that GR has the best weight performance 

among greedy heuristics. Because of this, we use GR as the greedy heuristic in 

our proposed algorithms. As expected, GR executes faster than our proposed 

algorithms since GR quits after finding the first solution whereas our algorithms 

iteratively execute to search for better candidates. On the other side, we obtain 

significantly better weight performances from our proposed algorithms. In the 

following sections we will investigate the performances of the algorithms in 

detail. 
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4.1 Evaluation of Small-Size Problem Instances 

Measurements of greedy heuristics taken in small-size problem instances are 

given in Tables 4.4-4.9 and their related figures are given in Figures 4.1-4.6. GR 

has the best weight performance and GD obtains the worst weight performance 

when we compare the total weight of the WCDS solutions.  

Table 4.4. Weight results of small size problem instances (Shyu’s dataset -Type 1)  

n m #of  

con. 

GR GD GW BF HGA PBIG Rel. 

Error 

Stat.  

Sign. 

10 10 2 341.0 341.0 534.0 341.0 341.0 341.0 0   

 20 10 180.0 188.8 241.7 157.2 157.2 157.2 0   

 30 10 100.1 118.0 167.8 85.9 85.9 85.9 0   

 40 10 63.6 75.3 73.1 45.0 45.0 45.8 1.778   

15 20 3 461.7 491.3 864.3 409.7 409.7 409.7 0   

 40 10 191.7 207.4 207.4 163.0 163.0 163.0 0   

 60 10 122.8 140.2 195.5 104.3 104.3 104.3 0   

 80 10 74.1 119.0 91.1 67.6 67.6 67.6 0   

 100 10 34.9 58.0 37.1 25.7 25.7 25.7 0   

20 20 0 - - - - - - - - 

 40 9 347.8 407.8 735.0 300.4 300.4 300.4 0   

 60 10 245.7 279.3 487.8 213.7 213.7 213.7 0   

 80 10 155.7 204.3 235.5 135.8 135.8 135.8 0   

 100 10 127.3 179.6 159.8 111.4 111.4 112.9 1.346   

 120 10 109.8 126.6 151.0 92.1 92.1 92.1 0   

25 40 4 577.8 597.8 1191.5 508.3 508.3 508.3 0   

 80 10 255.5 353.6 474.9 228.0 228.0 228.0 0   

 100 10 235.8 300.0 443.5 193.4 193.4 193.4 0   

 150 10 130.2 227.7 229.6 120.0 120.0 120.0 0   

 200 10 93.7 133.4 145.6 80.3 80.3 80.3 0   
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(a) 

 

(b) 

 

Figure 4.1 Weight results of small size problem instances (Shyu’s dataset – Type 1)  

a) Weight results versus node count (m=4n) b) Weight results versus edge count (n=20) 

We found 71.27% as the biggest weight performance difference between 

GR and GD and this value is obtained from (n=20, m=120) in Table 4.4. The 

performance difference of GR and GW reaches up to 52.3%. GR finds optimal 

solutions for 50 out of 52 problem samples. 

 

(a) 

 

(b) 

Figure 4.2 Time results of small size problem instances (Shyu’s dataset – Type 1) a) Time 

results versus node count (m=4n) b) Time results versus edge count (n=20) 
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Table 4.5. Time results of small size problem instances (Shyu’s dataset -Type 1)  

n m #of  

con. 

GR* GD* GW* BF HGA PBIG 

10 10 2 0.000 0.000 0.000 0.005 0.133 0.047 

 20 10 0.000 0.000 0.000 0.002 0.103 0.029 

 30 10 0.000 0.000 0.000 0.003 0.097 0.008 

 40 10 0.000 0.000 0.000 0.002 0.091 0.003 

15 20 3 0.000 0.000 0.000 0.069 0.192 0.048 

 40 10 0.000 0.000 0.000 0.107 0.161 0.192 

 60 10 0.000 0.000 0.000 0.144 0.164 0.058 

 80 10 0.000 0.000 0.000 0.126 0.171 0.015 

 100 10 0.000 0.000 0.000 0.126 0.154 0.005 

20 20 0 - - - - - - 

 40 9 0.000 0.000 0.000 3.549 0.290 0.360 

 60 10 0.000 0.000 0.000 4.584 0.253 0.344 

 80 10 0.000 0.000 0.000 5.081 0.259 0.228 

 100 10 0.000 0.000 0.000 5.498 0.251 0.206 

 120 10 0.000 0.000 0.000 5.661 0.262 0.145 

25 40 4 0.000 0.000 0.000 111.652 0.457 0.420 

 80 10 0.000 0.000 0.000 183.172 0.367 0.522 

 100 10 0.000 0.000 0.000 210.263 0.357 0.531 

 150 10 0.000 0.000 0.000 235.622 0.368 0.437 

 200 10 0.000 0.000 0.000 243.002 0.397 0.096 

*  These values are less than 10
-4 

 

The problem instances in which GR cannot find optimum solutions are 

(n=10, m=10 of Shyu’s Type 2 dataset) in Table 4.6 and (n=10, m=40 of Our 

Dataset) in Table 4.8. In the first instance, GR and GD produce 28 and 26.7 total 

weight, respectively. We obtain the 4.87% relative error between them. In the 

second instance, GR and GD produce 62.7 and 62.2 weight results where the 

relative error between them is 0.8%.  
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Table 4.6. Weight results of small size problem instances (Shyu’s dataset -Type 2)   

n m #of  

con. 

GR GD GW BF HGA PBIG Relative 

 Error 

Stat. 

Sign. 

10 10 2 28.0 26.7 32.0 26.7 26.7 26.7 0   

 20 10 23.2 39.6 38.2 21.3 21.3 21.4 0.469   

 30 10 29.0 54.5 34.2 25.5 25.5 25.6 0.392   

 40 10 21.8 45.4 24.4 21.1 21.1 21.2 0.474   

15 20 3 40.2 41.0 45.5 33.8 33.8 33.8 0   

 40 10 60.6 79.9 101.1 48.3 48.3 49.2 1.863   

 60 10 57.3 115.6 80.4 45.1 45.1 45.1 0   

 80 10 39.9 128.3 44.0 37.9 37.9 37.9 0   

 100 10 17.7 76.7 17.7 17.0 17.0 17.0 0   

20 20 0 - - -    - - - - - 

 40 9 77.1 95.6 120.9 63.6 63.6 64.3 1.101   

 60 10 78.8 126.9 118.3 54.1 54.1 54.1 0   

 80 10 69.6 189.7 129.1 60.2 60.2 60.2 0   

 100 10 80.0 228.3 112.5 64.8 64.8 64.8 0   

 120 10 63.7 221.7 67.5 50.1 50.1 50.1 0   

25 40 4 93.8 115.8 150.8 82.5 82.5 82.5 0   

 80 10 103.2 198.0 164.5 80.0 80.0 80.0 0   

 100 10 105.4 236.2 220.6 78.8 78.8 78.8 0   

 150 10 97.6 287.9 204.6 84.2 84.2 84.2 0   

 200 10 125.4 305.4 176.5  105.0 105.0 105.0 0   

 

The t-test results given in Tables 4.4, 4.6 and 4.8 show that we cannot find 

any significant difference between the performance results of GR and GD. The 

CPU time of these heuristics given in Tables 4.5, 4.7 and 4.9 are close to each 

other and they are generally less than 0.0005 s. 

 



61 

 

 

(a) 

 

(b) 

Figure 4.3 Weight results of small size problem instances (Shyu’s dataset – Type 2) a) 

Weight results versus node count (m=4n) b) Weight results versus edge count (n=20) 

Our proposed algorithms produce better WCDS solutions than GR except 

for only (n=10, m=10) problem instance in Table 4.4.  In this combination, GR 

finds the optimum result. PBIG produces optimum results for nearly 80% of 

instances. HGA can find optimum results for all combinations. For 98.15% of the 

combinations, our algorithms perform better solutions than other greedy 

heuristics. The maximum difference equals to 31.3% and it is obtained in Table 

4.6 for (n=20, m=60) problem instance. 

 

(a) 

 

(b) 

Figure 4.4 Time results of small size problem instances (Shyu’s dataset – Type 2) a) Time 

results versus node count (m=4n) b) Time results versus edge count (n=20) 
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Table 4.7. Time results of small size problem instances (Shyu’s dataset -Type 2)  

n m #of  

con. 

GR* GD* GW* BF HGA PBIG 

10 10 2 0.000 0.000 0.000 0.002 0.179 0.004 

 20 10 0.000 0.000 0.000 0.002 0.096 0.028 

 30 10 0.000 0.000 0.000 0.003 0.095 0.013 

 40 10 0.000 0.000 0.000 0.003 0.092 0.004 

15 20 3 0.000 0.000 0.000 0.071 0.191 0.131 

 40 10 0.000 0.000 0.000 0.109 0.162 0.265 

 60 10 0.000 0.000 0.000 0.126 0.175 0.112 

 80 10 0.000 0.000 0.000 0.126 0.160 0.014 

 100 10 0.000 0.000 0.000 0.125 0.155 0.005 

20 20 0 - - - - - - 

 40 9 0.000 0.000 0.000 3.400 0.305 0.320 

 60 10 0.000 0.000 0.000 4.454 0.260 0.374 

 80 10 0.000 0.000 0.000 5.182 0.240 0.391 

 100 10 0.000 0.000 0.000 5.523 0.246 0.303 

 120 10 0.000 0.000 0.000 5.645 0.244 0.095 

25 40 4 0.000 0.000 0.000 112.309 0.483 0.400 

 80 10 0.000 0.000 0.000 184.949 0.380 0.552 

 100 10 0.000 0.000 0.000 209.702 0.349 0.561 

 150 10 0.000 0.000 0.000 235.587 0.359 0.495 

 200 10 0.000 0.000 0.000 243.215 0.396 0.162 

* These values are less than 10
-4 

 

For 41 out of 52 small-size problem combinations, PBIG achieves optimum 

results. For the other 11 out of 52 combinations, PBIG achieves nearly optimum 

WCDS solutions. As an example, PBIG produces WCDS with 21.4 total weight in 

(n=10, m=20) problem instance where 21.3 is the optimum weight.  For 11 

different results, the average relative error equals to 1.73%.  
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Table 4.8. Weight results of small size problem instances (Our dataset)  

n m GR GD GW BF HGA PBIG Relative 

 Error 

Stat. 

Sign. 

10 20 144.4 162.1 204.9 122.7 122.7 122.7 0   

 40 62.7 62.2 85.4 53.5 53.5 54.6 2.056   

15 30 273.0 322.2 416.1 250.1 250.1 250.1 0   

 60 97.8 158.5 131.4 91.1 91.1 91.1 0   

 90 70.5 92.6 78.3 62.5 62.5 66.6 6.56   

20 40 378.1 410.9 657.0 329.8 329.8 329.8 0   

 80 182.6 274.5 319.2 164.0 164.0 164.7 0.427   

 120 89.9 156.5 100.3 79.5 79.5 79.5 0   

 160 62.0 106.2 67.0 55.5 55.5 56.9 2.523   

25 50 559.1 609.2 1005.2 489.4 489.4 489.4 0   

 100 211.5 330.7 358.1 182.9 182.9 182.9 0   

 150 137.4 218.4 189.1 117.7 117.7 117.7 0   

 200 80.3 137.0 120.0 75.2 75.2 75.2 0   

 250 64.8 126.3 70.9 60.8 60.8 60.8 0   

We obtain no significant difference when we apply t-test to the weight 

results of PBIG and the optimum weight results. Additionally, HGA produces 

optimum results for all small-size problem instances. These results show us that 

the performances of our algorithms are outstanding. 

 

(a) 

 

(b) 

Figure 4.5 Weight results of small size problem instances (Our dataset) a) Weight results 

versus node count (m=4n) b) Weight results versus edge count (n=25) 



64 

 

Table 4.9. Time results of small size problem instances (Our dataset)  

n m GR* GD* GW* BF HGA PBIG 

10 20 0.000 0.000 0.000 0.003 0.035 0.021 

 40 0.000 0.000 0.000 0.002 0.025 0.003 

15 30 0.000 0.000 0.000 0.091 0.052 0.210 

 60 0.000 0.000 0.000 0.124 0.048 0.060 

 90 0.000 0.000 0.000 0.124 0.046 0.007 

20 40 0.000 0.000 0.000 3.539 0.098 0.368 

 80 0.000 0.000 0.000 5.067 0.096 0.362 

 120 0.000 0.000 0.000 5.504 0.078 0.071 

 160 0.000 0.000 0.000 5.588 0.073 0.014 

25 50 0.000 0.000 0.000 135.025 0.149 0.543 

 100 0.000 0.000 0.000 203.123 0.110 0.509 

 150 0.000 0.000 0.000 226.934 0.117 0.438 

 200 0.000 0.000 0.000 236.863 0.118 0.127 

 250 0.000 0.000 0.000 239.601 0.110 0.030 

*  These values are less than 10
-4 

 

The run time results of the algorithms show that our proposed algorithms are 

significantly faster than BF. Even though BF generally executes faster for n=10 

and n=15, the execution times of BF exponentially increase. This situation causes 

that the time performance difference between PBIG and BF reaches up to 7986.7 

for (n=25, m=250) combination in Table 4.8 where PBIG performs optimum at 

the same time. For the same problem instance, the performance difference 

between HGA and BF is 2187.2. From these results, we can claim that our 

proposed algorithms are far more fast than scalable than BF. 
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(a) 

 

(b) 

Figure 4.6 Time results of small size problem instances (Our dataset) a) Time results versus 

node count (m=4n) b) Time results versus edge count (n=25) 

For 41 out of 52 combinations, HGA and PBIG provide the optimum 

results. For most of these 41 problem instances, PBIG runs faster than HGA. For 

other 11 out of 52 combinations, the performance of HGA is better than PBIG. 

For all small-size problem instances, HGA finds optimal solutions which can be 

seen in Tables 4.4, 4.6 and 4.8. The average execution times of HGA and PBIG 

are similar and they equal to 0.198 s and 0.206 s, respectively.  

4.2. Evaluation of Moderate-Size Problem Instances 

Measurements of greedy heuristics taken in 69 moderate-size problem 

instances are given in Tables 4.10-4.15 and Figures 4.7-4.12. 

 

(a) 

 

(b) 

Figure 4.7 Weight results of moderate size problem instances (Shyu’s dataset – Type 1) a) 

Weight results versus node count (m≈5n) b) Weight results versus edge count (n=250) 
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Table 4.10. Weight results of moderate size problem instances (Shyu’s dataset – Type 1) 

n m # of 

con. 

GR GD GW T-BF HGA PBIG 

50 50 0 - - - - - - 

 100 4 1007.5 1119.5 2728.5 NF 900.0 900.0 

 250 10 337.2 464.2 816.5 493.8* 291.3 290.6 

 500 10 160.6 290.9 301.3 237.9 141.6 141.2 

 750 10 105.4 182.3 167.2 110.9 87.7 87.6 

 1000 10 59.9 138.3 80.7 73.5 51.4 51.4 

100 100 0 - - - - - - 

 250 2 1649.0 1877.0 5018.0 NF 1408.0 1362.5 

 500 10 768.2 1046.2 2259.1 NF 687.4 641.9 

 750 10 483.8 725.2 1015.7 NF 439.8 410.4 

 1000 10 373.2 591.9 710.8 661.0
+
 336.9 308.6 

 2000 10 158.9 314.3 253.9 272.9 144.4 141.9 

150 150 0 - - - - - - 

 250 0 - - - - - - 

 500 6 1962.7 2387.8 7728.0 NF 1752.0 1661.3 

 750 10 1179.6 1607.5 3243.4 NF 1070.2 1013.4 

 1000 10 855.0 1290.7 2141.4 NF 761.4 701.6 

 2000 10 416.3 708.4 806.1 NF 392.3 345.0 

 3000 10 271.5 530.4 539.0 565.8 256.2 234.1 

200 250 0 - - - - - - 

 500 4 3411.0 3865.8 12264.8 NF 3056.75 2966.3 

 750 10 2173.2 2757.8 7384.5 NF 1917.5 1811.0 

 1000 9 1647.6 2168.9 5661.2 NF 1451.4 1345.6 

 2000 10 745.8 1287.5 1732.7 NF 698.0 627.1 

 3000 10 497.1 891.3 1051.9 NF 478.0 417.7 

250 250 0 - - - - - - 

 500 0 - - - - - - 

 750 7 3405.3 3921.6 11631.9 NF 3068.1 2850.3 

 1000 9 2534.3 3190.4 9780.0 NF 2227.8 2056.8 
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n m # of 

con. 

GR GD GW T-BF HGA PBIG 

250 2000 10 1151.8 1841.3 3189.1 NF 1091.9 976.3 

 3000 10 780.9 1327.2 2053.3 NF 752.2 656.9 

 5000 10 447.8 886.8 899.2 NF 439.7 394.9 

300 300 0 - - - - - - 

 500 0 - - - - - - 

 750 2 5003.0 5819.5 17622.0 NF 4449.5 4293.5 

 1000 9 3671.3 4364.4 15645.1 NF 3315.4 3111.0 

 2000 10 1780.4 2464.7 6035.1 NF 1639.4 1472.6 

 3000 10 1111.5 1800.0 2846.1 NF 1083.7 945.3 

 5000 10 662.3 1195.8 1411.5 NF 646.0 564.2 

*n=50, m=250 Brute Force found only 4 of 10 graphs, + n=100, m=1000 Brute Force found only 4 

of 10 graphs 

 

Again GR has the best performance among the implemented greedy 

heuristics for all moderate-size problem instances. The performance difference 

between GR and GD reaches up to 87.26%. We obtain this result from (n=50, 

m=750) combination in Shyu’s Type 2 dataset which is given in Table 4.12. GW 

performs up to 76.8% worse than GR where this difference is obtained from 

(n=300, m=1000) combination. The run time results are close to each other and 

the maximum performance difference between them is 0.002 s. 

 

(a) 

 

(b) 

Figure 4.8 Time results of moderate size problem instances (Shyu’s dataset – Type 1) a) 

Time results versus node count (m≈5n) b) Time results versus edge count (n=250) 
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Table 4.11. Time results of moderate size problem instances (Shyu’s dataset – Type 1) 

n m # of 

con. 

GR* GD* GW* T-BF** HGA PBIG 

50 50 0 - - - - - - 

 100 4 0.001 0.001 0.000 3.462 0.160 1.731 

 250 10 0.000 0.000 0.000 3.983 0.076 1.991 

 500 10 0.000 0.000 0.000 4.408 0.094 2.204 

 750 10 0.000 0.000 0.000 3.545 0.113 1.772 

 1000 10 0.000 0.000 0.000 0.356 0.134 0.178 

100 100 0 - - - - - - 

 250 2 0.000 0.000 0.000 16151.0 0.713 8.076 

 500 10 0.000 0.000 0.000 18.697 0.483 9.348 

 750 10 0.000 0.000 0.000 18.437 0.412 9.218 

 1000 10 0.000 0.000 0.000 19.528 0.463 9.764 

 2000 10 0.000 0.000 0.000 21.664 0.942 10.832 

150 150 0 - - - - - - 

 250 0 - - - - - - 

 500 6 0.000 0.001 0.000 50.864 2.202 25.432 

 750 10 0.000 0.001 0.000 48.985 1.537 24.492 

 1000 10 0.000 0.000 0.000 42.338 1.296 21.169 

 2000 10 0.000 0.000 0.000 47.171 1.535 23.585 

 3000 10 0.000 0.000 0.000 45.568 2.518 22.784 

200 250 0 - - - - - - 

 500 4 0.001 0.001 0.000 97.776 5.854 48.888 

 750 10 0.001 0.001 0.000 101.605 4.881 50.802 

 1000 9 0.001 0.001 0.000 94.333 3.693 47.166 

 2000 10 0.001 0.001 0.000 83.854 2.765 41.927 

 3000 10 0.001 0.001 0.000 81.510 3.614 40.755 

250 250 0 - - - - - - 

 500 0 - - - - - - 
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n m # of 

con. 

GR* GD* GW* T-BF** HGA PBIG 

250 750 7 0.002 0.002 0.000 190.136 10.401 95.068 

 1000 9 0.002 0.001 0.000 164.699 8.489 82.349 

 2000 10 0.002 0.001 0.000 150.110 5.072 75.055 

 3000 10 0.002 0.001 0.000 143.539 5.284 71.769 

 5000 10 0.002 0.001 0.000 142.146 8.735 71.073 

300 300 0 - - - - - - 

 500 0 - - - - - - 

 750 2 0.003 0.003 0.001 313.279 18.848 156.640 

 1000 9 0.003 0.003 0.000 312.629 16.753 156.314 

 2000 10 0.002 0.002 0.000 250.434 10.330 125.217 

 3000 10 0.003 0.002 0.000 222.202 8.265 111.101 

 5000 10 0.003 0.002 0.000 218.030 11.360 109.015 

 

*   The 0.000 values in the related columns are less than 10
-4

 

** Time limit that is two times of PBIG’s run time 

 

Our algorithms produce significantly better weight results than GR for all 69 

combinations. The performance difference between PBIG and GR reaches up to 

28.2% and this result is obtained in Table 4.12 from (n=200, m=500) problem 

instance of Shyu’s Type 2 dataset. 

 

(a) 

 

(b) 

Figure 4.9 Weight results of moderate size problem instances (Shyu’s dataset – Type 2)     

a) Weight results versus node count (m≈5n) b) Weight results versus edge count (n=250) 
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Table 4.12. Weight results of moderate size problem instances (Shyu’s dataset – Type 2) 

n m # of 

con. 

GR GD GW T-BF HGA PBIG 

50 50 0 - - - - - - 

 100 4 213.5 280.0 384.0 NF 166.0 166.0 

 250 10 238.7 642.7 516.5 418.4 182.8 182.8 

 500 10 230.0 1083.7 466.4 465.2 204.4 204.4 

 750 10 239.4 1879.4 369.8 612.8 215.3 215.3 

100 50 0 - - - - - - 

 100 0 - - - - - - 

 250 7 401.7 647.7 1065.4 NF 306.1 307.4 

 500 10 485.8 1286.1 1117.7 NF 364.4 348.9 

 750 10 542.0 1747.1 1283.2 NF 464.5 432.2 

150 50 0 - - - - - - 

 100 0 - - - - - - 

 250 0 - - - - - - 

 500 9 629.2 1317.2 2059.8 NF 490.0 479.1 

 750 10 789.4 2109.2 2599.0 NF 622.5 596.9 

200 50 0 - - - - - - 

 100 0 - - - - - - 

 250 0 - - - - - - 

 500 3 924.3 1380.7 2580.7 NF 678.7 664.0 

 750 10 969.4 2131.0 3909.7 NF 733.2 709.0 

250 250 0 - - - - - - 

 500 0 - - - - - - 

 750 6 1188.0 1987.0 3747.8 NF 924.7 896.5 

 1000 9 1303.3 2797.0 4649.8 NF 1014.6 967.8 

 2000 10 1492.2 5717.6 5360.7 NF 1272.9 1167.8 

 5000 10 1780.4 13116.9 3860.7 NF 1666.7 1471.9 

300 250 0 - - - - - - 

 500 0 - - - - - - 

 750 1 1251.0 1821.0 4191.0 NF 999.0 981.0 
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n m # of 

con. 

GR GD GW T-BF HGA PBIG 

300 1000 9 1395.1 2691.9 6010.6 NF 1092.6 1058.7 

 2000 10 1727.2 5768.0 6329.0 NF 1395.6 1294.7 

 5000 10 2010.2 14004.9 4796.8 NF 1934.2 1622.4 

 

Even though T-BF is given two times more time than PBIG, T-BF cannot 

find any solution for 53 out of 69 moderate-size combinations. On the other side, 

our algorithms produce WCDS for all these problem instances.  

In Tables 4.10, 4.12, 4.16 and 4.18, NF stands for “Not Found”. The results 

taken are found by averaging the results of ten instances for each combination. 

The weight results are the average of 6 (n, m) instances instead of 10 instances 

because T-BF can only find solutions for 6 problem instances. 

 

(a) 

 

(b) 

Figure 4.10 Time results of moderate size problem instances (Shyu’s dataset – Type 2)  

a) Time results versus node count (m≈5n) b) Time results versus edge count (n=250) 

PBIG produces up to 2.29 times better weight results than T-BF for (n=100, 

m=800) combination in Table 4.14. HGA finds up to 2.11 times better weight 

results than T-BF for (n=100, m=1000) combination in the same table. Our 

proposed algorithms perform up to 2.85 times (for (n=50, m=750) problem 

instance in Table 4.12) better than T-BF for the other 10 combinations. T-BF 

cannot produce any solution for large-size problem combinations. 
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Table 4.13. Time results of moderate size problem instances (Shyu’s dataset – Type 2) 

n m # of 

con. 

GR* GD* GW* T-BF** HGA PBIG 

50 50 0 - - - - - - 

 100 4 0.000 0.000 0.000 3.441 0.181 1.720 

 250 10 0.000 0.000 0.000 4.201 0.082 2.100 

 500 10 0.000 0.000 0.000 5.050 0.091 2.525 

 750 10 0.000 0.000 0.000 2.834 0.114 1.417 

100 50 0 - - - - - - 

 100 0 - - - - - - 

 250 7 0.000 0.000 0.000 20.533 0.801 10.266 

 500 10 0.000 0.000 0.000 20.002 0.513 10.001 

 750 10 0.000 0.000 0.000 22.102 0.419 1.1051 

150 50 0 - - - - - - 

 100 0 - - - - - - 

 250 0 - - - - - - 

 500 9 0.001 0.001 0.000 52.513 2.363 26.256 

 750 10 0.000 0.000 0.000 55.639 1.838 27.819 

200 50 0 - - - - - - 

 100 0 - - - - - - 

 250 0 - - - - - - 

 500 3 0.002 0.001 0.001 107.096 6.675 53.548 

 750 10 0.001 0.001 0.000 109.209 5.453 54.605 

250 250 0 - - - - - - 

 500 0 - - - - - - 

 750 6 0.002 0.002 0.000 215.133 12.071 107.566 

 1000 9 0.002 0.002 0.000 211.656 10.657 105.828 

 2000 10 0.002 0.001 0.000 186.403 5.354 93.202 

 5000 10 0.002 0.001 0.000 171.986 8.574 85.993 

300 250 0 - - - - - - 

 500 0 - - - - - - 

 750 1 0.004 0.003 0.000 366.842 22.292 183.421 
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n m # of 

con. 

GR* GD* GW* T-BF** HGA PBIG 

300 1000 9 0.003 0.002 0.000 350.722 20.359 175.361 

 2000 10 0.004 0.002 0.000 316.873 11.242 158.436 

 5000 10 0.003 0.002 0.000 263.854 11.472 131.927 

*   The 0.000 values in the related columns are less than 10
-4

 

** Time limit that is two times of PBIG’s run time 

 

 

(a) 

 

(b) 

Figure 4.11 Weight results of moderate size problem instances (Our dataset) a) Weight results 

versus node count (m=4n) b) Weight results versus edge count (n=200) 

For 5 problem instances, we obtain same results from proposed algorithms. 

The average weight value of HGA is 306.1 and the average weight value of PBIG 

is 307.4 for (n=100, m=250) problem instance in Table 4.10.  

 

(a) 

 

(b) 

Figure 4.12 Time results of moderate size problem instances (Our dataset) a) Time results versus 

node count (m=4n) b) Time results versus edge count (n=200) 
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PBIG is better than HGA in terms of WCDS weight for the other 63 

problem instances. PBIG performs up to 16% better than HGA in terms WCDS 

weight for (n=300, m=5000) problem instance in Table 4.12. On the other hand, 

PBIG is slower than HGA for all problem instances. HGA is 28 times faster than 

PBIG for (n=50, m=500) problem instance in Table 4.12. 

Table 4.14. Weight results of moderate size problem instances (Our dataset) 

n m GR GD GW T-BF HGA PBIG 

50 100 1068.4 1161.3 2121.3 NF 908.1 905.0 

 200 459.2 594.9 904.9 658.0
α
 412.8 407.5 

 300 307.6 440.5 638.2 402.3
β 

263.5 257.1 

 400 219.0 340.7 356.2 289.4 186.0 183.0 

 500 164.0 297.1 260.3 227.7 148.5 147.4 

100 200 2149.7 2310.8 5494.5 NF 1856.5 1804.7 

 400 1023.4 1305.9 2913.3 NF 873.2 845.9 

 600 671.6 895.4 1846.1 NF 599.2 559.8 

 800 502.2 750.3 1173.6 945.8
φ 

450.0 412.7 

 1000 353.3 615.2 742.5 714.7
ψ
 338.9 314.8 

150 300 3274.8 3718.6 7311.5 NF 2927.6 2817.0 

 600 1499.7 1901.9 4466.5 NF 1300.7 1237.0 

 900 993.3 1398.6 2435.8 NF 878.8 826.2 

 1200 742.7 1048.7 1997.1 NF 694.3 623.1 

 1500 543.1 902.4 1414.2 NF 508.5 460.4 

200 400 4452.9 4927.9 10547.9 NF 3884.6 3683.5 

 800 2021.7 2612.5 6796.9 NF 1797.2 1674.8 

 1200 1323.6 1890.5 3219.5 NF 1193.5 1115.5 

 1600 951.7 1413.0 2227.0 NF 891.1 784.7 

 2000 723.5 1196.5 1803.6 NF 694.7 614.6 

α n=50, m=200 Brute Force found only 3 of 10 graphs, β n=50, m=300 Brute Force found only 9 

of 10 graphs, φ n=100, m=800 Brute Force found only 1 of 10 graphs, ψ n=100, m=1000 Brute 

Force found only 2 of 10 graphs 
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Table 4.15. Time results of moderate size problem instances (Our dataset) 

n m GR* GD* GW* T-BF** HGA PBIG 

50 100 0.000 0.000 0.000 3.745 0.114 1.873 

 200 0.000 0.000 0.000 3.766 0.075 1.883 

 300 0.000 0.000 0.000 4.040 0.073 2.020 

 400 0.000 0.000 0.000 4.288 0.079 2.144 

 500 0.000 0.000 0.000 4.327 0.095 2.163 

100 200 0.000 0.000 0.000 17.785 0.682 8.892 

 400 0.000 0.000 0.000 17.567 0.518 8.783 

 600 0.000 0.000 0.000 17.166 0.428 8.583 

 800 0.000 0.000 0.000 17.181 0.401 8.590 

 1000 0.000 0.000 0.000 17.728 0.439 8.864 

150 300 0.001 0.000 0.000 51.873 2.166 25.937 

 600 0.001 0.000 0.000 42.917 1.567 21.458 

 900 0.001 0.000 0.000 43.095 1.289 21.547 

 1200 0.000 0.000 0.000 43.462 1.182 21.731 

 1500 0.001 0.000 0.000 42.925 1.209 21.462 

200 400 0.001 0.001 0.000 109.691 4.976 54.845 

 800 0.001 0.001 0.000 89.036 3.900 44.518 

 1200 0.001 0.001 0.000 84.292 2.835 42.146 

 1600 0.001 0.001 0.000 83.360 2.592 41.680 

 2000 0.001 0.001 0.000 77.772 2.622 38.886 

*   The 0.000 values in the related columns are less than 10
-4

 

** Time limit that is two times of PBIG’s run time 

 

4.3. Evaluation of Large-Size Problem Instances 

We present the measurements of greedy heuristics taken in 29 large-size 

problem instances in Tables 4.16-4.19 and Figures 4.13-4.16. The best weight 

performance is achieved by GR for all 29 instances. Its performance is up to 

80.8% better than GW and this result can be seen in (n=500, m=2000) 

combination in Table 4.16.  
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Table 4.16. Weight results of large size problem instances (Shyu’s dataset – Type 1) 

n m GR GD GW T-BF HGA PBIG 

500 500 - - - - - - 

 1000 - - - - - - 

 2000 5297 6546 27581 NF 4579 4239 

 5000 1803 2714 5911 NF 1803 1576 

 10000 922 1925 2752 NF 922 868 

800 500 - - - - - - 

 1000 - - - - - - 

 2000 - - - - - - 

 5000 5223 6976 24521 NF 4740 4334 

 10000 2527 4244 6972 NF 2459 2081 

1000 1000 - - - - - - 

 5000 7900 10599 32379 NF 7319 6762 

 10000 3623 5946 13500 NF 3596 3013 

 15000 2530 4752 7276 NF 2483 2178 

 20000 1895 3432 5126 NF 1895 1658 

 

 

(a) 

 

(b) 

Figure 4.13 Weight results of large size problem instances (Shyu’s dataset – Type 1) a) Weight 

results versus node count (m≈4n) b) Weight results versus edge count (n=1000) 
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Table 4.17. Time results of large size problem instances (Shyu’s dataset – Type 1) 

n m GR GD GW* T-BF** HGA PBIG 

500 500 - - - - - - 

 1000 - - - - - - 

 2000 0.013 0.011 0.002 583.485 74.495 1166.970 

 5000 0.010 0.007 0.001 904.560 33.905 452.280 

 10000 0.007 0.006 0.000 796.998 45.099 398.499 

800 500 - - - - - - 

 1000 - - - - - - 

 2000 - - - - - - 

 5000 0.037 0.031 0.003 3845.316 246.808 1922.658 

 10000 0.030 0.021 0.001 2931.058 131.813 1465.529 

1000 1000 - - - - - - 

 5000 0.080 0.063 0.002 9070.406 540.864 4535.203 

 10000 0.061 0.046 0.001 6243.744 296.014 3121.872 

 15000 0.053 0.043 0.001 5312.758 295.591 2656.379 

 20000 0.049 0.034 0.001 4789.570 308.906 2394.785 

* The 0.000 value in the related column is less than 10
-3

 

**Time limit that is two times of PBIG’s run time 

 

 

(a) 

 

(b) 

Figure 4.14 Time results of large size problem instances (Shyu’s dataset – Type 1) a) Time results 

versus node count (m≈4n) b) Time results versus edge count (n=1000) 
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As aforementioned GR achieves better than GD and the performance 

difference between these two algorithms reaches up to 52.1%. This result can be 

seen in (n=500, m=1000) problem sample of Shyu’s Type 1 dataset given in Table 

4.16. In terms of execution times, GW has the best performance and GR has the 

worst performance on the average.  

Table 4.18. Weight results of large size problem instances (Our dataset) 

n m GR GD GW T-BF HGA PBIG 

250 500 5123.4 5554.2 10720.2 NF 4716.1 4585.0 

 1000 2604.9 3411.2 7871.8 NF 2481.8 2228.0 

 1500 1704.4 2368.3 5374.0 NF 1548.1 1384.0 

 2000 1240.7 2073.8 4827.7 NF 1104.9 1062.4 

 2500 1010.8 1437.4 2535.5 NF 960.3 822.2 

500 1000 10229.1 11257.2 27955.9 NF 9444.3 8859.4 

 2000 5164.3 7030.6 16516.7 NF 4693.7 4393.7 

 3000 3446.5 5759.9 13742.6 NF 3256.9 2915.8 

 4000 2552.6 3819.0 3819.1 NF 2517.9 2164.3 

 5000 1977.0 3051.0 6763.3 NF 1766.5 1552.7 

750 1500 16786.8 18807.5 52193.1 NF 15491.2 14298.5 

 3000 7153.5 9694.3 30528.0 NF 6979.4 6250.9 

 4500 4878.3 7518.4 18476.1 NF 4878.3 4383.5 

 6000 3728.7 5730.6 12627.7 NF 3602.2 3226.9 

 7500 2823.6 4751.1 8258.3 NF 2823.6 2435.0 

1000 2000 21477.5 23785.9 53644.9 NF 19786.5 18235.3 

 4000 10127.6 12624.5 31832.3 NF 9532.0 8475.9 

 6000 6401.5 9340.0 28727.0 NF 5938.7 5341.9 

 8000 4701.8 7498.9 21034.6 NF 4557.0 3983.5 

 10000 3801.5 6024.2 8608.8 NF 3755.9 3188.9 
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(a) 

 

(b) 

Figure 4.15 Weight results of large size problem instances (Our dataset) a) Weight results 

versus node count (m=4n) b) Weight results versus edge count (n=1000) 

 

(a) 

 

(b) 

Figure 4.16 Time results of large size problem instances (Our dataset) a) Time results 

versus node count (m=4n) b) Time results versus edge count (n=1000) 

We take the maximum run time difference between GW and other heuristics 

from (n=1000, m=2000) problem sample in Table 4.19. In this sample GR and GD 

find the solution in 0.096 s, GW finds the solution in 0.1 s. 

We obtain better solutions from proposed solutions in terms of WCDS 

weight for all 29 large-size combinations. For (n=500, m=5000) problem instance 

in Table 4.18, the weight performance of PBIG and GR reaches up to 21.46 %. 

 

 



80 

Table 4.19. Time results of large size problem instances (Our dataset) 

n m GR GD GW* T-BF** HGA PBIG 

250 500 0.018 0.004 0.002 221.436 9.891 110.718 

 1000 0.002 0.001 0.000 180.712 9.072 90.356 

 1500 0.002 0.002 0.000 144.138 5.988 72.069 

 2000 0.002 0.001 0.001 159.186 4.935 79.593 

 2500 0.001 0.001 0.001 124.650 4.891 62.325 

500 1000 0.013 0.013 0.001 1590.280 85.877 795.140 

 2000 0.012 0.010 0.000 1242.566 68.812 621.283 

 3000 0.011 0.009 0.001 1025.832 49.512 512.916 

 4000 0.011 0.008 0.000 935.362 37.736 467.681 

 5000 0.010 0.006 0.001 726.876 34.345 363.438 

750 1500 0.043 0.043 0.002 4787.364 305.155 2393.682 

 3000 0.032 0.030 0.002 3436.760 263.961 1718.380 

 4500 0.030 0.025 0.001 3077.078 199.290 1538.539 

 6000 0.029 0.022 0.001 3049.036 143.775 1524.518 

 7500 0.027 0.020 0.001 2903.990 118.980 1451.995 

1000 2000 0.096 0.100 0.002 12105.298 706.465 6052.649 

 4000 0.087 0.068 0.002 9302.974 609.619 4651.487 

 6000 0.073 0.058 0.003 7597.726 429.499 3798.863 

 8000 0.070 0.056 0.002 6943.852 345.449 3471.926 

 10000 0.063 0.044 0.002 6226.756 280.598 3113.378 

* The 0.000 values in the related column are less than 10
-3

 

** Time limit that is two times of PBIG’s run time 

 

PBIG performs better than HGA for all problem instances where the 

performance difference reaches up to 16% for (n=1000, m=10000) combination in 

Table 4.16. On the other side, HGA is faster than PBIG for all problem instances. 

For (n=250, m=1000) in Table 4.19 problem instance, HGA is 16 times faster than 

PBIG. 
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5. CONCLUSION  

We provided two population-based MWCDS optimization algorithms for 

undirected graphs in this thesis. Firstly, we defined MWCDS problem and its 

variants in detail. We showed that MWCDS has been applied to overcome 

backbone formation problem for WASNs where nodes with higher energies are 

aimed to include in backbone sets. We described WASNs and mentioned one of 

the most important problems in WASNs as energy conservation.  We listed their 

various applications such as habitat monitoring, healthcare monitoring and office 

applications. We realized that energy-efficient backbone construction is vital to 

prolong the application lifetime and MWCDS is a very suitable structure to meet 

the energy requirements. After reviewing the literature, we found that although 

there are various algorithms for DS and CDS constructions, we could not find a 

population-based MWCDS approach which can iteratively refine the MWCDS 

solution quality. The motivation of this thesis arose from this fact. 

The first contribution of this thesis is HGA which is a hybrid genetic 

algorithm and uses a greedy heuristic to solve MWCDS problem. Hybrid genetic 

algorithms are based on genetic and other search methods that can complement 

each other to achieve an optimization objective. This algorithm improves the 

solution quality produced by greedy heuristic. The chromosomes used in this 

problem are sets of vertices where each chromosome Ci is represented with a bit 

vector. If node i is a dominator, Ci is set to 1 otherwise Ci equals to 0 showing that 

node i is a dominatee.  The first member of the HGA is generated by the GR 

heuristic.  HGA runs a DFS based algorithm to detect cut vertices which are used 

in minimization process.  

After above operations are achieved, HGA executes the following 

operations repeatedly. The algorithm generates a new chromosome in two ways. 

In the first way, two parents are chosen by binary tournament selection and these 

parents produce a new offspring by applying a crossover operation. In this 

crossover operation, two parents P1 and P2 having f1 and f2 fitness values are used 

to generate a new chromosome. For each gene, Ci is set to P1[i] with a probability 

of  f1/(f1+f2) and Ci is set to P2[i] otherwise. After a new chromosome is generated, 
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a mutation operation is applied on this chromosome. This operation is achieved by 

applying Ci ← (Ci+1) mod 2 operation according to a predefined priority. The 

generated chromosome is repaired to provide that it is definitely a CDS. The 

redundant dominators are removed from the chromosome and it is added to the 

population if it is not included in the population. After all iterations are finished, 

best member is returned as the final solution. 

The second contribution of this thesis is PBIG which is based on iterated 

greedy strategy. This strategy aims to improve the solution quality by iteratively 

applying deconstruction process and a reconstruction process based on a greedy 

heuristic. At the first step, the algorithm generates an initial population of 

solutions by applying a construction process on each member. This construction 

process can produce a new member and can repair a partial solution. It starts with 

checking of WHITE node presence. If there is no WHITE node in the graph, all 

nodes are covered and the input is already a CDS. Thereafter, the algorithm 

determines first two nodes having the lowest cost and selects one of them with a 

predefined probability. This procedure provides to prevent getting stuck in a local 

minimum solution. The selected node is set to BLACK and its WHITE neighbors 

are colored GRAY. These operations are executed similarly while there is WHITE 

node in the graph. At the end of this operation, the solution is returned. 

After construction process is applied, cut vertices are determined for 

redundant node elimination and destruction phases. This operation is followed by 

the below operations which are iteratively executed. The redundant dominators of 

each member are removed and each member is partially destroyed. The solution is 

repaired by applying the construction process and it is added to new population. In 

this manner, the newly generated members are added to the new population. Then, 

the new and initial populations are merged by sorting the combined population in 

ascending order according to the weights of solutions and taking the first 

individuals up to the initial population size. Lastly, when all iterations of the 

PBIG algorithm are completed, the best member is returned. 

We analyzed the running time complexities of HGA and PBIG algorithms. 

We found that the running time complexity of HGA_MWCDS algorithm 
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(Algorithm 3.2) is O(n
4
(s+ Imax)+ sn Imax) where Imax is the number of maximum 

iteration, s is the population size and n is the number of vertices. We also found 

that the running time complexity of PBIG_MWCDS algorithm (Algorithm 3.10) 

is O(Imax(n
3
+ns)+ms) where m is the number of edges. To further analyze 

algorithms, we provide implementations of our proposed algorithms with their 

counterparts; greedy heuristics and brute force algorithms. GR, GW and GD are 

the greedy heuristics that are implemented. The implemented brute force 

algorithm BF always finds the best solution by running all possible subset of 

solutions. Since BF algorithm can execute for small scale datasets within hours, 

BF runs unacceptably long for moderate and large scale datasets. To overcome 

this problem, a time-limited version of BF named as T-BF is implemented. 

We applied t-tests between our proposed algorithms to compare the solution 

qualities. We used two types of datasets to benchmark the algorithms. Although 

the first dataset is a popular dataset, some of the graphs in this dataset are 

unconnected. This situation causes a significant problem that MWCDS cannot be 

found on an unconnected graph. Because of that reason, the second dataset is 

proposed in this thesis by randomly generating undirected connected graphs. Our 

generated dataset is divided into small, moderate and large scale instances with 

respect to their node counts. In small, medium and large problem instances have 

{10, 15, 20, 25} nodes, {50, 100, 200, 250} nodes and {250, 500, 750, 1000} 

nodes, respectively. For each node count, 2n, 4n, 6n, 8n and 10n edges are 

randomly generated. We generated 10 instances by randomly assigning the 

weights of the nodes between 20 and 120 for each node and edge count 

combination. 

In our performance evaluation study, we investigate the measurements taken 

from greedy heuristics. We found that GR has the best performance in terms of 

WCDS weight and GD has the worst performance in small-size and moderate-size 

problem instances. The performance difference between GR and GD reaches 

71.27% and 87.26% in small-size and medium-size problem instances, 

respectively. The CPU times of the greedy heuristics in small-size and moderate-

size problem instances are generally close to each other. In large-size problem 

instances, again GR has the best performance; GW has the worst performance 
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where GR performs up to 80.8% better than GW. On the other hand, GW runs 

faster than other greedy heuristics while GR performs slower than other heuristics 

in large-size problem instances. 

We evaluated the performance results of our algorithms and GR. As 

expected, the running times of GR are lower than our algorithms, since GR exits 

after finding the first solution whereas our proposed algorithms iteratively 

searches for better candidates. On the other hand, our algorithms perform 

significantly better than GR in terms of WCDS weight. In small-size problem 

instances, our algorithms produce better solutions for 98.15% of the 

combinations. In moderate-size problem instances, the performance difference 

between our algorithms and GR reaches up to 28.2%. In large-size problem 

instances, we found better solutions for all combinations where the weight 

performance difference reaches up to 21.46%. 

We compared the performances of our proposed algorithms with BF. Since 

BF executes unacceptable long, we obtained the performances of BF only in 

small-size problem instances. HGA produces same results with BF for all small-

size problem instances. From our t-tests, we obtained no significant difference 

between PBIG and BF. Moreover, our algorithms outperform BF that the time 

performance difference between PBIG and BF reaches up to 7986.7. 

We evaluated the performance values of our proposed algorithms and T-BF. 

T-BF cannot produce any solution for most of moderate-size problem instances 

whereas our algorithms produce solutions for these instances. T-BF cannot 

produce any solution for large-size problem instances. However, our algorithms 

provide solutions for all instances. 

When we compared the performances of our proposed algorithms HGA and 

PBIG, both of them provide optimum results for 41 out of 52 small-size problem 

instances. For other small-size problem instances, HGA performs better than 

PBIG. The execution times of these algorithms are similar for small-size problem 

instances. In moderate-size and large-size problem instances, PBIG performs 

better than HGA in terms of WCDS weight for most of the problem instances 
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where the performance difference reaches up to 16%. On the other hand, PBIG is 

slower than HGA for all moderate-size and large-size problem instances. These 

results show that PBIG performs better in terms of MWCDS weight and HGA is 

faster. 

In future, we are planning to study on node and edge weighted versions of 

MWCDS problem. Edge weights can represent wireless link qualities such as 

received signal strength indicator or link quality indicator. Another interesting 

future problem is designing Steiner Tree based approaches which can provide 

connection between unconnected dominators to construct WCDSs having low 

total cost. 
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