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ABSTRACT 

AUTO SCALABLE and MORPHABLE MICROPROCESSORS  

This dissertation proposes the design and implementation of a single Out-of-Order 

superscalar processor capable of dynamic resource sizing and mode switching in response 

to the properties of running applications. While there are multi-core heterogeneous processor 

architectures in the literature, our single processor is capable of morphing to target different 

metrics at different times, such as performance and power. Our final processor proposes a 

two-parameter run-time switch between Out-of-Order and In-Order execution modes. 

Additionally, the processor's instruction queue, Re-order buffer, load/store queue, and 

physical register files are scaled dynamically at runtime to meet the needs of running 

applications. When the approaches described in this dissertation are used, we demonstrate 

that we can save an average of more than 42 percent power and achieve a 43 percent increase 

in efficiency (energy-delay square product) in exchange for a 5 percent performance penalty 

when compared to a baseline Out-of-Order superscalar.  
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ÖZET 

OTOMATİK-ÖLÇEKLENEBİLEN VE ŞEKİL-DEĞİŞTİREBİLEN 

MİKROİŞLEMCİLER 

Bu tez çalışmasında, sırasız mod çalışan süperskalar bir işlemcinin çalışan uygulamaların 

özelliklerine uyum sağlaması için otomatik olarak özkaynak ölçeklemesi ve çalışma modu 

değişimi yapması sağlanmaktadır. Çalışmamız, literatürde çok çekirdekli heterojen işlemci 

mimarilerine rastlanmasına rağmen, tek bir işlemcinin aniden kendini değiştirerek değişik 

zamanlarda performans ve güç gibi farklı ölçütlere yönelmesini hedefleyen bir çalışma 

bulunmaması nedeniyle özgündür. Önerdiğimiz sonuç işlemci, sadece iki çalışma-zamanı 

parametresi ile sırasız çalışma modundan sıralı çalışma moduna geçişe karar vermektedir. 

Ayrıca, işlemci içindeki komut kuyruğu, yeniden-sıralama belleği, yükleme/saklama 

kuyruğu ve fiziksel yazmaç dosyalarının boyutları yine çalışma-zamanında çalışan 

uygulamaların gereksinimleri yönünde ölçeklenmektedir. Bu çalışmada önerilen 

yöntemlerin uygulanması durumunda sırasız komut çalıştıran baz süperskalar işlemciye göre 

ortalama yüzde 5 civarında bir performans kaybı karşılığında ortalama yüzde 42’nin 

üzerinde bir güç tasarrufu ve yüzde 42’nin üzerinde daha iyi verimlilik (enerji-gecikme kare 

çarpanı) sağladığımızı göstermekteyiz.  
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1.  INTRODUCTION 

Computers (processors) are responsible for running various types of applications. For a long 

time, speed was the only major concern of processors when applications are run. Nowadays, 

power-related concerns even surpass all performance-related concerns on any processor 

encountered on any type of system.  

A power-aware processor plays an important role in improving the lives of many modern 

technologies (e.g., smartphones, laptops). It is somewhat less obvious that a power-aware 

processor also plays an important role in the success of a real-time, mission-critical system 

that explores space and other planets. Besides, it is predicted that data centers of the world 

will consume one-fifth of Earth’s power by 2025, and a power-aware processor may provide 

enormous power savings when deployed on data centers in large quantities [32]. 

The well-accepted philosophy on today's processor design is still a" one-size-fits-all" kind 

of realization with a fixed set of data path structures and a fixed mode of execution. For 

instance, when an application has a program phase with a low Instruction Level Parallelism 

(ILP) degree runs on a 4-way superscalar, aggressively speculative, Out-of-Order processor, 

most processor resources are underutilized, and all power-saving opportunities are lost. On 

the contrary, when an application has a program phase with a high ILP degree that runs on 

a 2-way superscalar, In-Order processor, it receives a huge performance penalty due to 

insufficient processor resources. Both of these scenarios point out the inefficiency of the 

current fixed-mode processors. 

Designing a power-aware processor with good performance depends on periodical 

monitoring and effectively analyzes the application's behavior. The application needs 

particular hardware resources such as caches, issue queues, and instruction fetch logic within 

a dynamic superscalar processor which can vary significantly from application to application 

and even within the different phases of a given application. The proposal of an adaptive 

processing approach to improving microprocessor energy efficiency dynamically resizes 

major microprocessor resources such as caches and hardware queues during execution to 

better match varying application needs.  
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This resizing operation usually involves reducing the size of a resource when its full 

capabilities are not needed, then restoring the disabled portions when they are needed again 

[5]. 

The next and natural step to reflect applications' diversity during their running phases is 

introducing an asymmetric multicore processor design, which uses cores of different types 

in the same processor and thus, embraces heterogeneity as the first principle. Different cores 

in an AMP may be optimized for power/performance or different application domains or for 

exploiting instruction-level parallelism or memory-level parallelism. Thus, AMPs promise 

to be beneficial for a broad range of usage scenarios [1]. 

The concept of heterogeneous cores within a processor is not novel. One of the best examples 

of such realizations is ARM's power-aware (big. LITTLE) architecture, which requires a 

physical area to keep multiple cores on the same chip. Furthermore, a 3-wide Out-of-Order 

Cortex-A15 superscalar microprocessor (large) and a 2-wide In-Order Cortex-A7 

superscalar microprocessor (small) are located in the same core in this architecture. This is 

also a valid approach in almost all heterogeneous architectures proposed in the literature, 

and as a result, significant area unavoidably increases [8] [24] [25] [15] [30]. 

Our proposed Auto scalable and morphable processor design deviates from this traditional 

approach. We propose a specialized Out-of-Order core that can act either as a traditional 

Out-of-Order core with adaptive processing included or an In-Order core whenever it is 

suitable to reduce power consumption and keep performance degradation of running 

application below 5 percent. As a result, the area requirement of our proposed processor is 

almost identical to the area requirement of a traditional Out-of-Order processor. Figure 1.1 

shows the basic architectural difference between both designs. 
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Figure 1.1. Basic architectural difference between ARM cores and ASMMP 

1.1. MOTIVATION  

As we stated above, one of the important points that motivate us to propose ASMMP design, 

its ability to reduce power consumption while keeping performance degradation of the 

running application below 5 percent. Also, achieving this goal without using complex and 

power-hungry circuit. The following subsections will examine the main advantages of 

ASMMP design when compared to heterogeneous architectures in terms of die area, thread 

migration and power savings respectively. 

1.1.1.  Die Area 

The die area is the most important aspect of our proposed design, as illustrated in Figure 1.1. 

This is one of the most powerful areas of ASMMP design. Processors with heterogeneous 

cores house multiple cores on the same chip. There is apparently no issue when multiple 

active threads are assigned to each of these heterogeneous cores. However, when only one 

core is active, and the rest of the cores are passive at certain times [8], the processor's area 

efficiency is immediately questioned. ASMMP is an Out-of-Order processor (single core) 

that can also function as an In-Order processor. As a result, its area requirement is nearly 

identical to that of a traditional Out-of-Order processor. Also, the number of transistors that 
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required to implement the ASMMP will certainly less than the number of transistor count 

that needed to implement dual core processor (291 Million transistor/143 mm2) and then less 

die area required for ASMMP when compared to dual core processor [33]. Finally, our 

decision circuit for the execution mode switch does not necessarily involve complex 

methods such as machine learning, nor does it necessitate the storage of additional statistics 

tables in the hardware [8] [9]. 

1.1.2.  Thread Migration 

Thread migration is an important feature of heterogeneous cores. These processors enable a 

running thread to migrate to a suitable core to save power or maintain an application's 

performance at its peak. On the other hand, Thread migration takes a long time, especially 

when the source and target cores are located away. The state of the source core should be 

transferred to the target core, and larger state data means longer migration times and higher 

power costs.  

Data transfer is one of the most difficult challenges in computer architecture research, and it 

should be avoided as much as possible. In Pentium 4, Intel switched from separate physical 

and architectural register structures in Pentium III to a combined register file that holds both 

physical and architectural registers in one structure. We use the same strategy in ASMMP 

design, and we make both the source and target cores the same core. As a result, all data path 

structures holding instructions and processor state can retain their content during a thread 

migration, and there is no migration cost in terms of latency and power. 

1.1.3.  Power Savings  

ASMMP can remain in IO execution mode for an extended time. Structures used to ensure 

correct Out-of-Order execution (such as the register renaming mechanism, load queue, Re-

order buffer, and physical register files) can be disabled while in In-Order mode. As long as 

the In-Order execution mode is enabled, ASMMP is a very low-power processor. We 

assumed that the power dissipated by the In-Order core is three to five times as much as the 

large Out-of-Order core [17]. Furthermore, when the running application requests an Out-
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of-Order mode, the processor enters a performance mode, in which ASMMP continues to 

save less power than In-Order execution mode due to its ability to configure its resources 

dynamically. 

1.2.  OBJECTIVES  

This dissertation is part of the TÜBİTAK project titled" Auto scalable and morphable 

microprocessor)" and the research work related to designing a single processor morphing 

itself to target various metrics, such as performance and power different times, even though 

there are multicore heterogeneous processor architectures in the literature. Figure 1.2 shows 

the design flow of ASMMP. As shown in the Figure, ASMMP contains three main stages, 

respectively. The flow starts with monitoring application behavior for a specific time interval 

called an epoch. The monitoring process relies on a periodical collection of statistics about 

the used processor resources and exploration of instruction-level parallelism of the running 

application. Then, the collected information will be used to classify applications into three 

main types. In the last stage, based on the application type, a suitable processor configuration 

will be chosen for running the application to save power without sacrificing too much 

performance. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Design flow of main ASMMP stages  

Stage 1: Application Monitoring  

Stage 2: Application Classification 

Stage 3: Selection of Appropriate 

Out-of-Order Core Configuration  

General ASMMP Stages 

for Running Applications 
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The remainder of the thesis is as follows: Chapter 2 summarizes the previous research in this 

field. Chapter 3 describes the application monitor statistics, followed by stage one of 

ASMMP's design and implementation details. Chapter 4 represents the details of ASMMP's 

dynamic execution mode selection (application classification stage) design and 

implementation. Chapter 5 represents the details of ASMMP's adaptive resource partitioning 

(application classification stage) design and implementation. Additionally, expressing 

ASMMP operation describes selecting an ASMMP configuration that is appropriate for the 

running application. Chapter 6 discusses the simulation results and their implications. 

Chapter 7 concludes by summarizing the research and discussing the significance of this 

work and any further work conducted. 
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2.  RELATED WORK  

Numerous studies on energy, power, and die area efficiency have been published in the 

literature. One of the most widely used techniques for reducing processor energy 

consumption is to dynamically turn on and off processor resources in response to the needs 

and behavior of the running workload  [4] [5] [6] [7] [12] [13]. Another area of research is 

related to architectural techniques that employ simpler data path structures that consume less 

power and space while providing comparable performance to Out-of-Order processors [7] 

[9] [13] [16] [17] [18] [19] [20] [21] [22]. 

To give more details about adaptive processing and the use of simple data path structures to 

reduce power consumption. We will start with the work done by Manne et al. (1998) that 

discusses pipeline gating, a technique for lowering the processor's average activity [6]. They 

attempt to determine whether a branch is likely to mispredict and prevent wrong-path 

instructions from entering the pipeline by evaluating the quality of each branch prediction 

using a confidence estimator logic. Additionally, Ghiasi and his team (2000) looked for ways 

to save power by switching from an Out-of-Order instruction issue mechanism to In-Order 

or dynamically-gated (reduced width) modes [12]. A micro-architectural IPC matching 

mechanism combined with an external performance indicator to determine when the 

instruction issue mechanism should be changed. The operating system specifies a target IPC 

rate for the processor to achieve, and the processor uses various techniques to approximate 

the current IPC rate while executing committed instructions.  

Bahar and Manne (2001) proposed a technique for balancing pipelines by splitting the issue 

width between two clusters and saving power by monitoring the program's issue needs (look 

at the Issue IPC history) of the running application [4]. A low-power mode is selected when 

the program does not require the processor's full issue capabilities by reducing the instruction 

issue width from 8 to 4 instructions. 

As another option, Lebeck et al. (2002) propose classifying instructions that require a long-

latency operation to reduce power consumption [19]. These instructions are moved out of 

the (relatively small) scheduling window into a (relatively large) waiting instruction buffer 
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(WIB) until the operation is complete, at which point they are returned to the scheduling 

window. 

This combines the benefit of a large instruction window with the benefit of a small 

scheduling window in terms of latency tolerance. However, it requires a large instruction 

window (as well as a large physical register file), which comes at a cost.  

Also, when there is a long-latency instruction as an L2 miss, the issue queue may be filled 

with instructions dependent on the L2 miss. As a result, the issue queue will not expose 

instruction-level parallelism until the miss is resolved. In the context of memory-latency 

tolerant processors, Morancho et al. (2007) propose delaying the insertion of instructions 

dependent on load instructions that are predicted to miss L2 into the issue queue [13]. Instead 

of being inserted into the issue queue, these instructions will be stored in an instruction 

buffer. The dependent instructions will be inserted into the issue queue after the L2 miss has 

been resolved. 

Albonesi and his team (2003) investigate the problem of configuring a processor with two 

levels of caches, integer, and floating-point issue queues, load/store queues, register files, 

and a Re-order buffer [5]. To avoid the overwhelming number of possible configurations, 

they tune each component solely on its local usage statistics. They propose two heuristics 

for accomplishing this, one for tuning caches and the other for tuning buffers and register 

files. The caches they consider are selective-way ones, meaning that each of their multiple 

ways can be activated or deactivated independently. Every way has the most recently used 

(MRU) counter, which is incremented whenever a cache search hits the way. The cache 

tuning heuristic samples this counter at fixed intervals to determine the number of hits in 

each way and the total number of misses. The heuristic computes the energy and 

performance overheads for all possible cache configurations using these access statistics and 

dynamically selects the best configuration. The occupancy-based heuristic is used to control 

other structures such as issue queues. It determines whether to upsize or downsize the 

structure based on how frequently different components of these structures are filled up with 

instructions. 
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Huber and his colleagues recommend (2011) adjusting processor pipeline depth during 

runtime [7]. They added two new special instructions, MERGE and BREAK, to the 

instruction set to achieve this new level of adaptivity. The MERGE instruction merges two 

adjacent pipeline stages by making the pipeline register transparent, which means that the 

clock is ignored and the data path is passed directly to the next pipeline stage.  

In most cases, merging two adjacent pipeline stages can save one cycle. The BREAK 

instruction splits two merged pipeline stages in half by reapplying the clock to the pipeline 

register. This method allows personalizing the processor pipeline to the specific application 

during runtime. 

Carlson team (2015) tried to improve the performance of MLP-sensitive applications on In-

Order processors [20].  Memory instructions and address computations are identified by the 

load slice core, placing them in a separate bypass queue (urgent and non-urgent instructions). 

As a result, loads can be executed ahead of time. 

Another proposal by Sembrant et al. (2015) to reduce power consumption is to relieve 

pressure on Out-of-Order structures by parking instructions that are predicted to be non-

critical for memory-level parallelism before renaming, thereby relieving pressure on the 

issue queue and PRF temporarily until those instructions are resumed [17].   

Additionally, leading research attempts to select an appropriate core in multicore systems 

based on the requirements of running applications to reduce power consumption. Typically, 

a multicore processor is made of cores of the same type (homogeneous (symmetric) cores) 

or cores of different types (heterogeneous (asymmetric) cores). There are numerous 

multicore processor architectures with varying core counts and core types. Also, the running 

application may be assigned to a large core with high performance or to a small core with 

low energy consumption [8] [12] [14] [15] [16]. The majority of recent studies in the 

literature advocate heterogeneous cores in multicore systems [4] [8] [23] [24] [25]. Another 

approach also allows for heterogeneity in terms of core types and dynamic resource sharing 

between cores [14] [26]. Additionally, researchers have fused adjacent cores to create large, 

Out-of-Order cores in some cases, a process known as core-fusing [27] [28]. 
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Kumar et al. (2003,2004) attempted to reduce power consumption in multicore architectures 

by dynamically estimating a program's resource requirements and mapping them to the most 

appropriate core [24]. A wide-issue superscalar processor, for example, can issue multiple 

instructions in each cycle and is thus best suited for a program with a high ILP. On this 

processor, mapping a program with a low ILP wastes resources. Their method allows them 

to optimize for different purposes, including performance and energy efficiency. To make 

thread scheduling decisions, the performance of a thread on different core types must be 

known by running threads on different core types to sample their performance. 

Annavaram et al. (2005) proposed a technique to improve both sequential and parallel 

performance by adjusting the amount of energy consumed in processing each instruction 

based on the degree of parallelism available [25]. For a fixed power budget, a processor 

should spend more energy per retired instruction in phases of limited parallelism (low retired 

instructions per second) and vice versa, according to the power equation represented by 

multiplying  EPI by IPS on all cores. To maintain a power budget constraint, less energy 

should be consumed in processing each instruction for phases with high parallelism and vice 

versa. On this basis, they map high IPS parallel phases to cores with low EPI and low IPS 

sequential phases to cores with high EPI. As opposed to an SMP, an AMP provides a more 

suitable platform with cores of different EPI and thus within the same power budget. 

An architecture presented by Kim et al. (2007) is reconfigurable so that it allows simple 

cores to be dynamically combined into larger cores to optimize either performance, energy, 

or area efficiency [27]. They completely avoid physical sharing of resources to allow the 

processor to scale up to a large issue width (e.g., 64 wide), which precludes the use of 

traditional reduced/complex instruction set computing (RISC/CISC) ISAs. As a result, they 

employ nonstandard explicit data graph execution (EDGE) ISA, in which the order of 

dependence of instructions within a block is explicitly and statically encoded, and thus 

instruction dependence relations are known a priori. This allows the cores' I-cache capacity 

and instruction fetch bandwidth to scale linearly as the number of cores grows. As a result, 

their technique's scalable reconfiguration shows higher flexibility and performance than 

techniques that centralize some processor resources. 
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The core fusion architecture presented by Ipek et al. (2007) allows the formation of larger-

issue Out-of-Order cores by fusing neighboring Out-of-Order cores, and it is described in 

detail in the paper [28]. As a result of their architecture, up to four cores, each with its own 

D/I cache, can be merged at runtime to form cores four times as much as the D/I cache size, 

four times as much as the branch target buffer size, and four times as much as the branch 

predictor size, and four times as much as the commit, issue, and fetch width. Its 

reconfigurable load-store queue (LSQ) and D-cache organization allow for conventional 

coherence while running a parallel program and does not generate any coherence traffic 

when running a serial program in fused mode. Cores execute independently of one another, 

and LSQs and D-caches of individual cores are used to avoid thread interference in L1 caches 

when this is the case.  

In this design, a decentralized frontend and I-cache are used to feed the fused backend, rather 

than to require additional resources on different frontends on the same processor core. Core 

fusion can provide more powerful four-issue super cores to support coarse-grain parallelism, 

more powerful four-issue super cores to support fine-grain parallelism, and one eight-issue 

super core to support sequential execution, among other things. The performance of the fused 

configuration in the core fusion architecture is significantly lower than that of an iso-area 

monolithic Out-of-Order processor in the core fusion architecture. 

Lukefahr and his team (2012,2016) proposed the Composite Core, a reconfigurable core with 

two execution engines (µengines). Both engines have a unique microarchitecture [8] [9]. The 

so-called "Big engine" has a Out-of-Order pipeline, whereas the "Small engine" has a 

pipeline that is in order. Both engines share a few resources, including the L1 cache, the 

fetch stage, and the branch predictor. At any given time, only one engine is active, resulting 

in an In-Order or Out-of-Order core. Multiple performance metrics are monitored by the 

Composite Core to determine when modes are switched. These metrics are collected from 

running engines and forecasted in the sleeping engine. Then, the switching algorithm 

determines which of the two engines are run during that particular program phase. An offline 

training stage is used to establish the optimal coefficient for each metric. 

Asymmetry in a multicore processor can also be introduced by dynamically adjusting the 

resources available to a core in response to its workload. Homayoun et al. (2012) 
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investigated how microarchitectural structures can be shared across three-dimensional 

stacked cores [14]. They point out that the 2D design of reconfigurable AMPs results in 

inefficient resource pooling, which increases pipeline depth and communication delays. 

They propose a 3D design of reconfigurable AMPs that allows for optimized pipeline layout 

in a 2D plane. In addition, additional resources (e.g., LSQ, ROB, cache, registers, and 

instruction queue) are linked in the third dimension without disrupting the 2D pipeline 

layout. This enables fine-grained resource sharing to exploit both ILP and TLP while 

achieving shorter communication delays due to 3D stacking. 

Khubaib et al. (2012) proposed another technique for power reduction called morphcore, 

which utilizes shared hardware resources to operate as an Out-of-Order core or as multiple 

In-Order SMT cores with unused resources such as the Re-order buffer and Out-of-Order 

wakeup/selection logic turned off  [16]. 

To determine which core mode to use, the number of currently scheduled threads is 

multiplied by two. When the number of threads reaches a predetermined threshold, the SMT 

mode is activated to reduce the number of threads. If a group of high ILP threads is scheduled 

together or with many low ILP threads, this approach may cause the high ILP threads to 

suffer. If a small number of low ILP threads are scheduled together and run in the Out-of-

Order mode, this can result in an unnecessary increase in overall power consumption. During 

mode switching, the instruction cache, data cache, and branch history do not need to be 

flushed because morphcore does not require them. The only switching overhead introduced 

by morphcore is the process of draining the pipeline. 

Afram et al. also recommend the FlexCore architecture as a viable and workable alternative. 

In a multi-cluster architecture, the FlexCore architecture consists of two small cores [15]. 

These cores can transform into a wide and Out-of-Order processor, if necessary. The Out-

of-Order processor can also be set up to function as a simultaneous multi-threading (SMT) 

core. However, sufficient thread-level parallelism (TLP) between the existing threads is 

required to achieve this configuration. Various run time statistics are collected like our 

proposed method to make an accurate estimate of the proper configuration. Cores can also 

be configured to run in a low power In-Order execution mode. 
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Finally, we proposed the interactive Mood Detection Engine as an early research project. 

(iMODE) is a similar processor that includes trial periods for both In-Order and Out-of-

Order execution modes to determine the most appropriate execution mode [29]. There was 

no prediction logic in that study, and we relied entirely on the results of the trial execution 

modes, which averaged around 17 percent power savings. Due to the presence of trial 

execution modes in iMODE, performance is degraded unnecessarily, or valuable power-

saving opportunities are missed. As a result, when designing our ASMMP architecture, we 

decided to incorporate an accurate mode prediction logic and eliminate those trial execution 

modes periods. The ShapeShifter architecture used in this thesis for mode switching 

mechanism is proposed, an Out-of-Order superscalar processor that sometimes acts as if it 

is a smaller In-Order superscalar processor [31]. At certain decision points, the mode 

switching circuit decides which execution mode is more suitable for running an application 

until the next decision point. The ShapeShifter achieves better power and energy-delay 

savings with just two processor statistics than the relatively complex and power-hungry 

control circuit within a composite core architecture previously proposed in the literature. 
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3.  APPLICATION MONITORING STAGE IN ASMMP 

This chapter is organized as follows: Section 3.1. explains the ASMMP resources' occupancy 

parameter used to collect information about the running application needs and its behavior 

periodically. Section 3.2 shows how we predict instruction-level parallelism for the running 

application, followed by Section 3.3, which explains how we measure the success rate of 

branch prediction in a speculative processor with a dynamic branch prediction mechanism. 

Lastly, all collected information will be used as input data to the next stage of ASMMP, 

which is the application classification stage. 

3.1.  ASMMP RESOURCES’ OCCUPANCY PARAMETER  

Monitoring and collecting important Out-of-Order processor structures occupancy will help 

decide the approximate needs of processor resources that can be dedicated to the running 

application to maximize energy savings while limiting any performance loss below a 

specified level, which is 5 percent in our case. The shaded sections in Figure 3.1 shows Out-

of-Order processor structures that can be redesigned for adaptive processing [5]. 

 

Figure 3.1. Out-of-Order processor structures redesigned for adaptive processing. 

To gather resource occupancy in hardware each cycle, we need to check each structure's 

number of filled entries. This can be easily done by checking each resource entry valid bit. 

Also, a counter is needed to increment when the resource entry is not empty. Performing 
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these calculations at every application execution cycle for all resources may lead to huge 

hardware complexity. Thus, we decide to use the sampling method. 

The sampling method is similar to capturing a picture of the resource occupancy not for 

every cycle but specific running periods. The sampling method helps to reduce monitoring 

overhead with near-accurate occupancy values of different resources. Also, to apply the 

sampling technique, we need to add an extra structure (queue) near each resource to 

periodically collect application occupancy data of different resources. Figure 3.2 shows the 

H/W circuitry of collecting resources occupancy using the sampling technique. Figure 3.3 

shows a flowchart of how to use sampling in occupancy calculation. 

 

Figure 3.2. H/W circuitry for collecting occupancy using sampling 
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Figure 3.3. Flowchart shows sampling in occupancy calculation. 
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3.1.1.  Occupancy Tests and Results  

We collect occupancy values for different processor structures by running benchmarks from 

the Spec2006 benchmark suite using the Gem5 simulator with x86 ISA [2] [3]. Each 

benchmark is executed for 100M instructions. Configuration parameters for the simulated 

processor are given in Table 3.1. Lastly, Figures 3.4, 3.5, 3.6, 3.7, 3.8, and  3.9, respectively, 

show occupancy of different processor resources with different numbers of samples taken 

periodically at the end of each epoch. 

Table 3.1. Specification of the simulated processor 

L1 I- and D-Caches 16Kb, 4-way, 64-byte line size, 2 

cycle latency 

L2 Cache 128Kb, 8-way, 64-byte line size, 20 

cycle latency 

CPU Frequency 2 GHz 

 

 

Pipeline 

4-way issue bandwidth 

ROB: 192 entry 

IQ: 64 entry 

LSQ: 32 entry 

RF: 256 registers 

Decision period (1 epoch) 1 M cycles 

No of samples collected every 1M cycles 1M, 256, 64 samples 

No of executed instructions 100 M 

 

 

Figure 3.4. Re-order buffer average occupancy for 1M cycle period 
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Figure 3.5.  Load queue average occupancy for 1M cycle period 

 

Figure 3.6.  Store queue average occupancy for 1M cycle period 
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Figure 3.7.  Integer Physical register file average occupancy for 1M cycle period 

 

Figure 3.8.  Floating point register file average occupancy for 1M cycle period 
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Figure 3.9.  Issue queue average occupancy for 1M cycle period 

3.1.2.  Effects of Sampling on Occupancy Values  

The average occupancy of different processor structures obtained from the sampling 

technique showed deviation from actual occupancy values. The actual average occupancy 

represents the occupancy of different processor structures collected every cycle during one 

epoch. Also, The changes in deviation values directly depend on the number of samples 

taken. 

Moreover, the deviation between actual occupancy means and sampled occupancy mean 

should not exceed a certain rate. We collected occupancy data for 16, 32, 64, 128, 256, and 

1 million samples to determine the error rate between actual and sampled occupancy values. 

We then applied the L1 norm(Least Absolute Deviations or LAD) and L2 norm (Least 

Absolute Errors or LAE) formula as shown in Equation 3.1 and Equation 3.2.  

The results show that increasing the number of taken occupancy samples leads to more 

accurate and closer results to actual occupancy values for Spec2006 benchmarks. Figures 

3.10 & 3.11, respectively, show the deviation of occupancy samples from actual occupancy 

values, which is equal to one million samples in our case. 
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 𝐿1 𝑛𝑜𝑟𝑚 = ∑
𝑎𝑏𝑠(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 − 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑖𝑧𝑒 𝑜𝑟 𝑛𝑜 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
  (3.1) 

 

 𝐿2 𝑛𝑜𝑟𝑚 = √∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 − 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)2  (3.2) 

 

 

Figure 3.10.  Higher value, worse outcome /or deviation rate after applying L1 norm 

 

Figure 3.11.  Higher value, worse outcome /or deviation rate after applying L2 norm 
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3.2  INSTRUCTION DISPATCH RATIO (IDR) 

The main difference between Out-of-Order and In-Order execution modes is that Out-of-

Order processors can schedule any of the ready instructions waiting in the IQ regardless of 

the original program order, whereas In-Order processors must schedule them in strict 

program order. For example, if any of the customers entering a market finishes their 

shopping, they can complete their transaction at the cash register regardless of the order they 

entered. Out-of-Order processors have logic that is identical to this. When the cash register 

begins dealing with customers in the order they enter the market, the shopping process can 

be streamlined. However, we may need to delay some customers who finished their shopping 

earlier than those who entered the market earlier. This second scenario is perfectly matched 

by the logic of In-Order execution mode. We can collect the IDR value with a counter used 

to measure the ILP level for running the application. 

Therefore, dividing the number of instructions currently awaiting Out-of-Order execution 

by those awaiting In-Order execution allows us to determine how faster an Out-of-Order 

processor could be compared to an In-Order execution. We can obtain a sufficiently precise 

IDR value by sampling enough (n times) over some time, as shown in Equation 3.3 below. 

 𝐼𝐷𝑅 =  
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑎𝑑𝑦 𝐼𝑛𝑠. 𝑖𝑛 𝐼𝑄𝑖𝑛

𝑖=0

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑎𝑑𝑦 𝐼𝑛𝑠. 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑒𝑎𝑑 𝑜𝑓 𝐼𝑄𝑖𝑛
𝑖=0

  (3.3) 

 

The most important thing to remember when collecting samples is that if you sample too 

often, the same instructions that are ready in the same IQ configuration can be counted 

multiple times, resulting in an IDR value that is misleading. During the tests, for example, 

we set the sampling interval to 100 cycles. A slow-running application, such as bwaves from 

the SPEC2006 CPU suite, can stall the IQ for hundreds of cycles. In this case, we risk 

counting and accumulating the number of ready instructions that we have already counted 

at consecutive sampling times. 

To solve this problem, we recall the program counter (PC) of the instruction waiting on top 

of the IQ during a sampling period and compare it to the PC value of the instruction waiting 

on top of the IQ during the next sampling period. If these two PC values are the same, we 
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know that the same instruction is still waiting on top of the IQ and that nothing has changed 

since the last sampling period. 

3.3.  COMMIT OVER FETCH RATIO (CFR) 

The final stage of the instruction completion process is the commitment stage. Some 

instructions are unable to progress to this stage. When a branch instruction is mispredicted 

in speculative processors with a dynamic branch prediction mechanism, many instructions 

following that branch instruction on the mispredicted path must be discarded to continue 

with the application's sound execution. At this point, we look at the ratio of instructions 

committed to instructions fetched over a given period, as shown in Equation 3.4 below. We 

can say that all instructions that entered the processor were successfully committed if this 

ratio is close to one. However, if this ratio is close to zero, we can conclude that the 

processor's predictions were consistently incorrect, and only a small number of instructions 

made it to the commitment stage. The remaining instructions should be removed from the 

processor in this case. 

 

 𝐶𝐹𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑚𝑖𝑡 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑓𝑒𝑡𝑐ℎ𝑒𝑑 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑
  (3.4) 
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4.  APPLICATION CLASSIFICATION/EXECUTION MODE  

This chapter is organized as follows: Section 4.1. with its subsections explains the 

implementation and design of ASMMP execution mode selection mechanism based on 

collected information from stage one. Also, choosing the most suitable instruction execution 

mode for running the application dynamically.  

4.1.  EXECUTION MODE SELECTION 

To compare and clarify the advantages of the proposed ASMMP execution mode selection 

mechanism, we will first overlook and examine the composite core study proposed by 

Lukefahr and his team [8]. A composite core is made up of both large and small 

heterogeneous microengines. The ability of composite cores to select the most appropriate 

micro engines for running applications to save power without sacrificing too much 

performance is their most important property. To accomplish this, a composite core collects 

various processor statistics from the active microengine during runtime and attempts to 

predict the performance of the passive microengine. The microengine, which is more 

suitable for running the rest of the application, is determined by a migration decision 

circuitry bound to collect statistics and complex functions that are run sequentially in the 

method proposed in the literature. 

Lukefahr et al. presented the first study on composite cores. ARM's big.LITTLE 

heterogeneous multi-core architecture is an excellent example of the composite core 

architecture. A 3-wide Out-of-Order Cortex-A15 superscalar microprocessor (large) and a 

2-wide In-Order Cortex-A7 superscalar microprocessor (small) are located in the same core 

in this architecture. Lukefahr et al. define a composite core as a heterogeneous multi-core 

architecture consisting of one large and one small compute microengine that can provide 

both high performance and high energy savings. Core migration is coarse-grained in ARM's 

existing big.LITTLE architecture.  

Many power-saving opportunities are lost in this architecture when running applications that 

frequently change behavior, as cross-core application migration occurs after billions of 
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instructions are executed. Similarly, an application that requires instant high performance 

while running on the small microengine remains connected to the small microengine for an 

extended time. 

In conclusion, the current method lacks the reflex to react to sudden changes in the behavior 

of running applications. Lukefahr et al. now propose a fine-grained decision mechanism for 

core-to-core migration and a method that is more agile in adapting to the needs of running 

applications. The work proposed by Lukefahr and his team is referred to as the Composite 

Core (CC) study here. The method proposed in the CC is based on predicting the 

performance of the passive microengine using a function obtained through machine-learning 

methods that incorporate statistics from the active microengine. 

The statistics gathered range from the L2 cache miss and hit rates to the branch prediction 

mechanism's misprediction percentage and from the instruction-level parallelism (ILP) 

calculated from the issue queue (IQ) to the roughly calculated memory level parallelism 

(MLP) using the miss status holding register (MSHR). To collect these statistics, complex 

tables, such as a dependency table, should be integrated into the small core. The performance 

estimator, threshold controller, and core switching control mechanisms are all part of the 

decision circuit, known as the reactive online controller. 

Instead of using more than two heterogeneous cores, we propose the ASMMP architecture, 

which uses a single Out-of-Order core to switch between Out-of-Order and In-Order modes 

of instruction execution. As shown in Figure 4.1, ASMMP's execution mode circuitry 

comprises a mode switching decision mechanism and a mode switching enforcement 

mechanism. Furthermore, by sacrificing less than 5 percent of performance, our simple mode 

change decision circuitry, which is bound to only two processor statistics (IDR and CFR), 

can save more than 25 percent power, more than 21 percent on energy-delay products, and 

more than 16 percent on energy-delay-square products on average. 
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Figure 4.1.  Execution mode selection policy in ASMMP 

4.1.1.  ASMMP execution mode switching architecture 

The ASMMP core architecture differs from Lukefahr and et al.'s composite core architecture 

[8]. Two heterogeneous microengines, one small and one large are tightly connected in the 

composite core architecture. The fetch logic, the branch prediction unit, the L1 instruction, 

and data caches are all shared in Lukefahr and his team's study [8]. However, data path 

structures such as the register alias table (RAT), physical register files (PRF), and load/store 

queue (LSQ) that are only used by the Out-of-Order microengine are not shared. The authors 

also suggest adding a small L0 cache to the small microengine in the article version of the 

CC, which is published by the same authors later [9]. A dependency table embedded in the 

In-Order core is used by the reactive online controller proposed in the CC.  
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Since it requires 128x32x2 bits, the dependency table requires a static random access 

memory (SRAM) space almost as large as the Re-order buffer (ROB). The reactive online 

controller's main function is to collect various performance metrics and use them to 

determine which core should be active for the next epoch. The CC architecture is depicted 

in Figure 4.2. 

 

 

Figure 4.2. Composite core architecture [8] 

As illustrated in Figure 4.3, the execution mode selection in ASMMP is based on the 

aforementioned composite core architecture. ASMMP architecture includes a single Out-of-

Order microengine that functions as an In-Order microengine when needed. The ASMMP 

requires less space and no additional structures for the prediction hardware. Furthermore, 

because only one core can switch between execution modes, no core migration logic is 

required. Since the data path structures holding live instructions can continue working 

without interruption, the mode switch process from In-Order execution mode to Out-of-

Order execution mode happens almost instantly. For example, when the Out-of-Order 

scheduler is activated, the Issue Queue (IQ) that schedules instructions in program order can 

continue its work. However, switching from Out-of-Order execution mode to In-Order 

execution mode may take some time. In such a case, the fetch stage must be throttled, and 
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all data path structures that are currently running instructions Out-of-Order must be drained 

first. Then, the In-Order execution mode can be used. 

 

 

Figure 4.3. Execution mode selection architecture in ASMMP 

4.1.2.  Mode Switching Decision Mechanism 

Mode switching decision mechanism identifies the most appropriate instruction execution 

mode for the running application for a specific period. The decision depends on two main 

statistics: instruction dispatch ratio and instruction commit over fetch ratio of the running 

application. The used statistics are already obtained in the first stage of the study to classify 

applications based on their behavior into three main groups. These groups are as follows:  

1. An application with high Instruction Level Parallelism (ILP) phases needs an Out-

of-Order execution mode to perform well with less power-saving opportunities.  

2. An application with low ILP phases needs an In-Order execution mode to perform 

well and many power-saving opportunities.  
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3. A hybrid application with both high and low ILP phases during its lifetime needs 

dynamic switching in execution mode to save power without sacrificing too much 

performance.  

To determine instruction execution mode for the running application, we need the product 

of instruction commit over fetch ratio with instruction dispatch ratio to determine how well 

the Out-of-Order mode performs compared to its In-Order counterpart. Equation 4.1 shows 

us the speedup value (S) of the Out-of-Order mode over the In-Order mode. 

 𝑆 =  𝐼𝐷𝑅 ∗ 𝐶𝐹𝑅  (4.1) 

 

First and foremost, given the obvious performance advantage of the Out-of-Order mode over 

the In-Order mode, we do not expect the speedup value obtained from Equation 4.1 to be 

less than one. On the other hand, the S value can get very close to 0 due to the value of CFR, 

which indirectly expresses the percentage of instructions inserted into the processor due to 

mispredictions in the dynamic branch prediction mechanism. In such cases, we can deduce 

that the Out-of-Order execution mode loses its advantage over the In-Order mode, and that 

is now the best time to switch from Out-of-Order to In-Order mode in order to save more 

power. Equation 4.2 shows the effect of the S value on the mode selection stage of the 

decision circuit. 

The decision circuit selects the Out-of-Order mode when the calculated S value is greater 

than a fixed threshold value (alpha). In its absence, the In-Order mode is selected. Low 

threshold values result in more Out-of-Order mode selections, while high threshold values 

result in more In-Order mode selections. The impact of this threshold value on performance 

is reported in the tests and results section. Another option is to match the threshold value 

with the needs of applications running in the background. In this case, it may be possible to 

prevent applications' performance from degrading beyond a certain point while revealing a 

more stable and reliable decision mechanism.  

 𝑀𝑜𝑑𝑒 = {
𝑂𝑢𝑡 − 𝑜𝑓 − 𝑜𝑟𝑑𝑒𝑟,    𝑆 >  𝛼

          𝐼𝑛 − 𝑜𝑟𝑑𝑒𝑟,               𝑆 ≤ 𝛼            
                          (4.2) 
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4.1.3.  Mode Switching Enforcement Mechanism  

In ASMMP, switching between execution modes must be as smooth as possible. In this case, 

the enforcement mechanism takes responsibility and adopts mode-change decisions as soon 

as possible. The issue queue is one of the key data path structures distinguishing between 

Out-of-Order and In-Order execution modes. IQ is a queue structure in an In-Order 

processor, where the head of the queue holds the oldest instruction and the tail of the queue 

holds the youngest instruction in program order. The IO mode instruction scheduler is 

straightforward enough to schedule instructions from the IQ's head once they are ready (i.e., 

all source operands of the instruction become valid). 

The Out-of-Order mode instruction scheduler, on the other hand, is far more complicated, as 

it is responsible for locating ready instructions that may be located anywhere in the IQ. IQ 

is no longer a queue structure in an Out-of-Order processor, and it is now known as the 

instruction dispatch buffer (IDB). The instructions in the IQ must be in program order when 

switching from Out-of-Order to In-Order execution mode. As a result, when a mode switch 

decision is made, the ASMMP enforcement mechanism stops fetching new instructions and 

waits for the instruction pipeline to empty. 

If the IQ contains long-latency (such as floating-point divide and square root) and non-

deterministic latency (such as memory) instructions, this process may take a long time. If 

the mode transition is not completed within five thousand cycles, the pipeline contents are 

flushed to avoid long delays in the enforcement mechanism (an empirical time, which gives 

us good feedback in our experiments). The Out-of-Order instruction scheduler is deactivated 

when the pipeline is empty, and a simpler In-Order instruction scheduler is activated. 

Meanwhile, instructions are being dispatched into the IQ in program order. 

It is much easier to switch from In-Order to Out-of-Order execution mode. An IQ 

organization is not required for the Out-of-Order scheduler because it can dispatch 

instructions in any arbitrary sequence and issue them promptly. A simple reactivation of the 

complex Out-of-Order scheduler and deactivation of the In-Order scheduler is needed to 

switch from In-Order mode to Out-of-Order mode. 
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4.1.4.  Periodic Operation  

When collecting statistics, we use two distinct periods: the sampling period (SP) and the 

decision period (DP). There are many SPs in each DP. We collect and accumulate the 

number of ready instructions in the IQ at the end of each SP, as shown in Figure 4.4. We 

calculate IDR and CFR values at the end of a DP and compare the S value with the threshold 

value. Then, we choose which execution mode is best for running our application until the 

next DP arrives. We will continue to work in the target mode if a mode switching decision 

is made. 

 

Figure 4.4. Periodic operation of execution mode selection in ASMMP 

4.1.5.  Hardware 

The CC contains the miss and hit rates collected from the L2 cache, the misprediction rate 

of the dynamic branch prediction mechanism, counters that collect parallelism levels at the 

instruction and memory levels, a multiplier-accumulator (MAC) that performs the 

performance prediction function trained by the offline machine-learning method, and a 

reactive online controller circuit that also takes into account error rate, and a dependency 

table to collect ILP information missing in the In-Order processor require extra hardware 
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that takes up about 3 percent of the total processor area.  The execution mode selection 

architecture described in ASMMP, on the other hand, comprises a pipelined division circuit 

for IDR and CFR computations, a multiplication circuit for calculating the S value, and a 

comparison circuit for comparing it with the threshold value. 

In ASMMP, the execution mode selection architecture is implemented using a hardware 

solution. However, we can explain the functioning of the Execution mode selection 

architecture in terms of pseudocode, as shown in Algorithm 4.1. The variables displayed as 

current commit count and current fetch count in the pseudocode represent the commit and 

fetch counts already collected by many modern processors, as depicted in the pseudocode. 

Instead of sampling the fetch and commit counts in every sampling period in H/W (which is 

more frequent than the decision period), the execution mode selection circuit remembers the 

fetch and commit counts from the previous period at the beginning of the new decision 

period (represented as prev fetch and prev commit). 

 The decision algorithm requires two subtraction operations and two-division operations. 

These operations can be performed consecutively to minimize hardware complexity, 

requiring only a single subtractor and divider to complete the algorithm. A comparator is 

essentially a subtractor. The same unit can be used for both subtractions and comparisons 

because they are independent operations. For the sampling periods, this subtractor can also 

be used as an adder. As a result, the Execution mode selection algorithm can be implemented 

using only a comparator (used in the algorithm for subtraction, comparison, and addition), a 

divider, and a multiplier. It is also worth noting that these units do not necessarily need to be 

full 32-bit units. Simpler computation units may suffice due to the short sampling and 

decision periods. Table 4.1 shows approximate transistor count needed to implement 

execution mode selection mechanism in ASMMP. 

In summary, except for the two statistical variables previously collected in the CC, there is 

no MAC circuit or dependency table complexity as we proposed. As a result, compared to 

the composite core circuit, the suggested execution mode selection approach in ASMMP is 

more advantageous in terms of delay values, area, and power consumption. 
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Algorithm 4.1. Operation of execution mode selection in ASMMP 

 

 

Table 4.1. Transistor count for execution mode selection mechanism 

Hardware circuit Approximate transistor number ( bit 

number * transistor count) 

13 bit full adder 13*20=260 

15 bit comparator 15*10=150 

6 bit division 6*144= 864 

4 bit multiplication 4*24=96 

6 bit counter 6*20=120 

15 bit register 15*6=90 
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5.  APPLICATION CLASSIFICATION/RESOURCE PARTITIONING  

This chapter is organized as follows: Sections 5.1 and 5.2 explain the implementation and 

design of ASMMP resource partitioning based on collected occupancy information from 

stage one. Then, the method behind assigning suitable processor resources to the running 

application is explained. 

The design stage determines the size of various structures within the processors. The size of 

these structures is determined by the design of a high-performance processor. However, 

regardless of the processor's power, some applications will not always require full structure 

capacity. In some cases, using only a small portion of the structures will be sufficient to 

achieve very close performance to the highest possible from the running application. 

In such cases, at the design stage, although a significant part of these structures, which is 

decided to be large, is not needed, they will continue to consume energy. In similar cases, it 

may be possible to reduce structure size without adversely affecting the performance and 

reduce the processor's energy consumption. To achieve this goal, we need to perform 

resource partitioning or adaptive processing. Adaptive processing is a straightforward 

solution to dynamically disable portions from processor resources according to the runtime 

needs of workloads [4], [5], [6], [7]. This thesis will follow the coarse grain resource 

partitioning (open/close for one large partition) path rather than the fine-grain (open/close 

for a small number of entries) path. Coarse grain partition has lower hardware complexity 

and provides more functional resource access methods than the fine-grain option. Figure 5.1 

shows implemented resource partitioning policy and its components. The following 

subsections give a brief explanation of these components. 
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Figure 5.1.  Resource partitioning in ASMMP 

5.1.  PARTITIONING DECISION MECHANISM  

The partition decision mechanism decides to upsize or downsize processor resources 

depending on the collected statistics at the end of each epoch for running the application. 

We use resource occupancy statistics obtained in the first stage of the study to classify 

applications based on their resource demands into two main groups. These groups are as 

follows:  

1. High utility applications which use most of the processor resources. 

2. Low utility applications which use few of the processor resources.  
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The purpose of dividing applications into two main categories is to help use processor 

resources more efficiently and save power without noticeable loss of application 

performance. The partition decision mechanism for resource upsizing/downsizing is 

examined in detail in the following subsections. 

5.1.1.  Resource downsizing decision 

We need to look for a sign that not all resource entries are used by an application to trigger 

resource downsizing operations. In this thesis, we examine the occupancy parameter of 

different processor resources. For example, if the average number of elements contained in 

the resource does not exceed half the total number of elements of this structure in certain 

periods, the resource size will be reduced, and energy savings will be achieved. However, at 

this point, we need to choose the type of size reduction method too. Following an aggressive 

size reduction method that deprecates half of the processor resource size can result in more 

than 5 percent performance degradation. In this case, we will use a more cautious method of 

size reduction, which is the closure of one partition and the closure of other partitions 

according to the average number of elements observed subsequently to prevent performance 

degradation. 

Algorithm 5.1 shows our partition decision mechanism for resource downsizing. At the end 

of each period, we check the difference between resource size(G) and average resource 

occupancy(D) of the running application. If it is larger than the specific threshold(T), we 

decrement resource size by one portion(B), which is equal to eight entries in our study. After 

downsizing decision, we allow instructions to retire from the resource while preventing 

inserting new instructions to the resource. Furthermore, this operation may take a long time 

for a short duration at the beginning of the new period to assign a new resource size (G-B) 

to the running application. 
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Algorithm 5.1. Resource downsizing in ASMMP 

 

5.1.2.  Resource Upsizing Decision  

In the resource upsizing algorithm, here, we can choose aggressive or cautious resource 

upsizing methods. In the aggressive method, when resource occupancy value exceeds a 

certain threshold value, a decision can be made to increase resource size by one portion 

containing eight entries in our case immediately without waiting for the end of the period, 

or multiple portions can be opened instantly (again without waiting for the end of the period). 

On the contrary, in the cautious method, the resource upsizing process can be performed by 

adding only one portion at the end of each decision step(waiting until the end of the epoch). 

As a result, it is possible to try a wide range of alternative algorithms for resource upsizing.  

We will follow an algorithm similar to the resource downsizing algorithm. When the average 

resource occupancy for the running application through a specific period is larger than the 

specific threshold, we increase resource size by one portion. Also, to perform resource 

upsizing, we do not have to wait till the end of the period to prevent performance loss of the 

running application. Algorithm 5.2 shows our partition decision mechanism for resource 

upsizing. 
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Algorithm 5.2. Resource upsizing in ASMMP 

 

5.1.3.  The Use of Statistical Parameters 

In the first stage of ASMMP, we monitor and collect different statistical parameters such as 

average resource occupancy, how many time a resource has been full or not, etc., in every 

period. For each new decision period, we can follow two ways of using the statistical 

parameters. The first way is to consider old values from the previous periods (partial transfer 

of parameters history) and give them a certain weight (most studies give them 50 percent 

impact). Then, merge these values with the new ones for determining resource upsizing or 

downsizing decisions. The second way is to reset parameter values and not merge them with 

new period data. We follow the second method in this thesis to reduce the hardware 

complexity of ASMMP. 

Moreover, we believe that the threshold value for both resources upsizing and downsizing 

should be different to prevent oscillation phenomena. Using the same threshold value may 

lead to continuous activation of resource scaling.  

This oscillation may result in performance degradation of the running application with fewer 

energy-saving opportunities. Lastly, Figure 5.2 shows a flowchart for ASMMP partition 

decision mechanism. 
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Figure 5.2. Partition decision mechanism flowchart for ASMMP  

5.2.  PARTITIONING ENFORCEMENT MECHANISM  

The partition enforcement mechanism in ASMMP has two major purposes. The first purpose 

is to take information from the partition decision mechanism and then continuously check 

whether the conditions are satisfied to turn on/off different processor resources. The second 

purpose is to enforce that the new target amount of resource entries do not exceed the 

maximum allowable resource size and vice versa. 
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In this section, we classify ASMPP resources based on their different characteristics, such 

as resource nature, occupancy, and frequency of resource use. Then, we define suitable 

conditions based on these characteristics. Then, we will check these conditions during the 

partition enforcement operation. The fulfillment of these conditions will help complete the 

scaling process with minimum hardware complexity. The most important condition we will 

follow is to divide the resource into partitions. Each partition consists of eight entries. Also, 

at the end of each scaling decision, only one partition can be turned on or off ( different 

available entries from multiple partitions are not allowed to be turned on/off ). In the 

following subsections, we will examine ASMMP resource structures. 

5.2.1.  Circular Queue Resources  

ASMPP resource structures such as Re-order buffer, load queue, and store queue are circular 

queues where instructions are inserted into the queue in an In-Order manner and instruction 

removal in the same order as insertion. A circular queue has two pointers (Head pointer) that 

point to the beginning of the queue (oldest inserted instruction ) and (Tail pointer) pointing 

to the end of the queue (newest inserted instruction). So, every newly arrived instruction will 

be placed at the end of the queue, and every retired instruction will be removed from the 

beginning of the queue. 

The conditions needed to be satisfied by the partitioning enforcement mechanism to 

downsize circular queue structures in ASMMP are continuously to check all entries in the 

specified partition and mark each empty entry in that partition and second, to block the 

arrival of the new instructions to that partition. 

Moreover, on each instruction, removal from that partition keeps marking the entry and 

repeats the process till all entries in that partition become empty. Finally, the partitioning 

enforcement mechanism deactivates the chosen partition.  

The conditions needed to be satisfied by partitioning enforcement mechanism to upsize 

circular queue structures in ASMMP is to allow insertion of sequential and one-piece of 

instructions to available partition without creating gaps between resource partitions. 

Furthermore, we can achieve the mentioned condition by checking the position of the head 
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pointer and make sure that it should be positioned before the tail pointer. After satisfying the 

above conditions, our partition enforcement mechanism will activate the resource partition, 

and it will be ready to be used by running the application. 

5.2.2.  Instruction Queue (IQ) 

The most important functioning of Out-of-Order execution is the execution of instructions 

based on the "data flow" graph (rather than program order) by keeping the semantics of the 

original program. The HW examines a sliding window of consecutive instructions (The 

"instruction window"). Later, ready instructions get picked up from the window( instruction 

queue keeps these instructions) and executed out of program order. Lastly, instruction results 

are committed to the machine state (memory and architectural register file) in original 

program order. Due to the nature of the instruction queue, ready instructions can be selected 

out of program order. This increases the complexity of the instruction selection circuit, but 

at the same time, it allows instructions to be stored in a mixed order inside the instruction 

queue.  

The instruction queue scaling operation is easier than other resource scaling processes 

because the instructions do not need to be stored in a certain order. Thus, the Partition 

enforcement mechanism can directly (upsize) activate and add a partition to the end of the 

instruction queue without the need to check any conditions. Whereas, during the downsizing 

process, the partition enforcement mechanism blocks fetching new instructions to the 

instruction queue and waits until all partition entries become empty. After satisfying the 

mentioned conditions partition enforcement mechanism turn off that partition. 

Another remarkable point here is that the processor replaces new instructions at the 

beginning of the instruction queue, accumulated in density at the beginning of the queue 

with relatively empty spaces at the end of the queue. The mentioned point helps partition 

enforcement mechanism to complete the size reduction process more quickly. 
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5.2.3.  Register Files  

Register files are structures that play a critical role in the register renaming mechanism, 

which helps eliminate all false data dependencies among instructions. To perform all these 

jobs, register files consume more power than other resources. Instructions (operands) are 

stored in the register file out of program order, similar to the instruction queue case. 

However, the main difference between both structures is that instructions in the instruction 

queue can be removed from this structure as the instructions are executed, while the data in 

the register files must remain in place while the corresponding instructions are on the 

processor. As a result, performing register file scaling requires either waiting until the 

instructions retire from the queue or doing nothing by waiting for a specific period and then 

flushing the structure.   

There are two ways we can use to reduce register file size. The first method is to transfer the 

values inside a specific partition of the register file to other entries in other available 

partitions and then update the register rename table. The second method is to wait for the 

oldest instructions in the register file to commit totally from the processor, which later leads 

to evacuation of its data from the register file. In this thesis, we follow the second method to 

turn off the registers since the first option requires additional circuit, time, and energy 

consumption to be implemented. Lastly, the partition enforcement mechanism can directly 

upsize the register file without any specific condition. The upsizing process can simply be 

done by marking activated registers as available in the register rename table. Figures 5.3 and 

5.4 show a flowchart for the scaling process followed by the partition enforcement 

mechanism in ASMMP. 
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Figure 5.3. Partition enforcement mechanism for resource upsizing in ASMMP 
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Figure 5.4. Partition enforcement mechanism for resource downsizing in ASMMP 
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5.3.  ASMMP OPERATION  

The purpose of this section is to examine and discuss ASMMP's operation and the results 

obtained by integrating the resource partitioning mechanism with the execution mode 

selection mechanism to save power not only through dynamic execution mode switching but 

also by turning off idle processors resources during Out-of-Order execution mode.  

5.3.1.  Issuing Right Processor Configuration 

The primary objective of this thesis is to design a single hybrid processor capable of limiting 

application performance degradation to less than 5 percent and minimizing power 

consumption. This objective is accomplished by using the two distinct methods. The first is 

to dynamically partition resources by monitoring occupancy information during an 

application's Out-of-Order execution mode and saving by turning off unused processor 

resources. The second is periodic switching between In-Order and Out-of-Order execution 

modes, with power savings resulting from the absence of complex Out-of-Order execution 

mode structures for a while. Mode switching is accomplished by monitoring certain 

processor statistics, such as the number of committed and fetched instructions in the running 

application, which are not as difficult to collect and monitor as in CC [8]. Additionally, the 

proposed method overcame the disadvantages of iMODE [29]. iMODE is another technique 

for changing execution modes based on trial periods [29]. The primary disadvantage of this 

method is that it uses brief trial periods at the end of the main Out-of-Order execution mode, 

which slows down high-performance applications. Although iMODE attempts to mitigate 

the slowdown caused by this problem by postponing the next decision point based on a 

specified delay threshold value, applications that require full speed will still experience a 

slowdown. 

These two methods can be combined by selecting the most appropriate processor 

configuration for the running application. Figure 5.5 shows a flowchart for the final proposed 

ASMMP architecture and how these two methods are combined to operate together.  
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Figure 5.5. Flowchart for proposed ASMMP architecture 

As can be seen from the flowchart, the top of our flowchart specifies distinct steps for Out-

of-Order and In-Order execution modes. The left section illustrates the steps to be taken 
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while in the Out-of-Order mode, and the right section illustrates the steps to be taken while 

in the In-Order mode. The mode switching decision mechanism described in Section 4.1 

governs the selection of an Out-of-Order execution mode. ASMMP collects the necessary 

statistical data required by mode decision mechanisms (IDR, CFR) values to calculate 

system speed up (S) using the sampling method. Additionally, resource partitioning in 

ASMMP is dependent on the mechanism for resource partitioning described in Sections 5.1 

and 5.2, respectively. The average occupancy of the Re-order buffer, load queue, store 

queue, issue queue, and register files is determined using the same sampling method. The 

occupancy data is used by the resource partitioning decision mechanism, which helps 

allocate sufficient resource space to run applications and shut down unused entries to 

conserve energy. 

At first, the application ran in an Out-of-Order mode with adaptive resource processing. At 

the ending of each partition decision period, the average occupancy value for all processor 

resources is calculated and compared to the threshold value (downsize threshold), based on 

the comparison result of either resource downsizing or upsizing by one partition applied after 

satisfying all partition enforcement mechanism requirements. Following that, at the ending 

of each execution mode decision period, the system speed up (S) value is calculated and 

compared to the threshold value (alpha threshold). We retain the Out-of-Order execution 

mode if the speed-up value exceeds the specified alpha threshold. Otherwise, we begin the 

process of switching the execution mode to In-Order mode. Before initiating the switching 

process, we must disable the resource partitioning mechanism, which will result in only one 

partition per resource being activated. All remaining partitions will be disabled (the partition 

enforcement mechanism responsible for this operation) since we do not require extensive 

use of these resources in the In-Order execution mode. Additionally, by deactivating most 

resource partitions, we expect to achieve approximately fourfold power savings when an 

application runs in Out-of-Order mode, as mentioned in the CC study. 

Later, we wait for the mode switching enforcement mechanism to complete the process of 

switching by allowing active instructions to complete their execution and be retired. Finally, 

two additional points should be made. The first is related to the resource occupancy 

collection mechanism, which remains active when we are in the In-Order mode, and at the 

ending of each sampling collection period, a value for resource occupancy is inserted into 
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the sampling queue. The final and the most critical point concerns collecting statistical data 

that will be used to forecast the next execution mode. The sample period is critical in this 

situation because a short sample period results in frequent sampling. 

Additionally, we will continue to count the same ready instructions in the instruction queue, 

which will result in inaccurate information about the number of ready instructions. For 

example, collecting ready instructions every 100 cycles may cause issues for slow 

applications, such as bwaves, which can sit in the instruction queue for hundreds of cycles 

without progressing. In this case, we risk counting and accumulating the same number of 

ready instructions as we did during the initial sampling time. 

To address this issue, we store the program counter value of the instruction waiting in the 

instruction queue at the end of the sampling period in a register and compare it with the 

program counter value of the instruction waiting in the queue at the beginning of the next 

sampling period. If these two program counter values match, we know that the same 

instruction is still waiting at the top of the queue and that the instruction queue situation has 

not changed since the previous sampling period, and thus, we avoid counting the number of 

ready instructions multiple times. By employing this technique, we were able to identify 

slow benchmarks (bwaves, leslie3d, and sjeng) and execute them in order with minimal 

performance degradation and significant power savings in our proposed ASMMP. 
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6.  TESTS AND RESULTS 

This chapter presents the simulation results for ASMMP in terms of performance, power 

savings, and efficiency. The results of evaluating the execution mode selection mechanism 

in terms of performance, power savings, and energy efficiency are presented and discussed 

in Section 6.1. The resource partitioning mechanism is evaluated in Section 6.2 as a power-

saving technique that can be applied to various processor resources. Section 6.3 summarizes 

and discusses the results of the performance, power savings, and energy efficiency 

evaluations of the final ASMMP design. 

6.1.  EXECUTION MODE SELECTION TESTS AND RESULTS  

The Gem5 simulator is still being used to test and evaluate the proposed execution mode 

switching architecture in ASMMP [2]. SPEC CPU2006 benchmarks are compiled in the x86 

architecture and run with reference input files until each benchmark completes 100 million 

instructions [3]. Table 6.1 shows the properties of the simulated In-Order and Out-of-Order 

processors. 

Table 6.1. Specification of the simulated processor during execution mode switching 

Processor Microarchitecture x86 

Processor Frequency 2 GHz 

Machine width 4 

Re-order Buffer size 192 

Issue Queue size 64 

Load Queue/Store Queue size 32 

Physical Register File size 256 

L1 instruction and data cache 4-way LRU, 16 KB each 

L2 cache 8-way LRU, 128 KB 

Decision Period (DP) 10000 cycles 

Sampling Period (SP) 100 cycles 

α  Thresholds 1, 3, 5 
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 Three criteria are used to evaluate simulation results: performance, power savings, and 

energy efficiency. To calculate the processor's energy consumption per unit time, it is 

assumed that the Out-of-Order mode consumes four times the energy of the In-Order mode, 

as stated in the CC [8]. Power expenditure (PE) is calculated as stated in Equation 6.1, where 

W is the proportion of time spent in the In-Order processor. The reported power savings (PS) 

in the results section are determined using Equation 6.2. In terms of the average instructions 

per cycle (IPC) metric, Equation 6.3 presents the calculation for the slowdown rate (SR) of 

the proposed execution mode switching architecture in ASMMP compared to the baseline 

Out-of-Order processor. Finally, Equations 6.4 and 6.5 reflect the efficiency formula in 

terms of energy-delay product (EDP) and energy-delay-square product (ED2P), 

respectively. 

 

 𝑃𝐸 =  
1

4
∗ 𝑊 + (1 − 𝑊)  (6.1) 

 

 𝑃𝑆 =  1 − 𝑃𝐸  (6.2) 

 

 𝑆𝑅 =  
𝐼𝑃𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐼𝑃𝐶𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒
  (6.3) 

 

 𝐸𝐷𝑃 = 𝑃𝐸 ∗ 𝑆𝑅  (6.4) 

 

 𝐸𝐷2𝑃 = 𝑃𝐸 ∗ 𝑆𝑅2  (6.5) 

 

First, we run the spec 2006 benchmarks in both Out-of-Order and IO execution modes and 

collect performance data. Table 6.2 compares the performance of applications running In-

Order with their Out-of-Order counterparts. In some applications, the performance 

degradation is almost imperceptible (bwaves 0.3 percent , leslie3d 1.4 percent, and sjeng 1.8 

percent ). When running such applications, we expect the mode selection circuit in ASMMP 

to prefer the In-Order mode in order to save more power.  
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Other benchmarks exhibit a significant performance degradation (gromacs 68.5 percent and 

gamess 65.6 percent ) when  In-Order execution mode is chosen. When running such 

applications, we anticipate that the Out-of-Order mode will provide the best performance. 

Table 6.2. Performance drop of In-Order mode 

Application Performance drop(%) Application Performance drop (%) 

astar 59,4 h264 62,5 

bwaves 0,3 hmmer 65,1 

bzip2 16,1 leslie3d 1,4 

calculix 50,3 libquantum 17,4 

games 65,6 mcf 59,7 

gems 44,6 milc 50 

gobmk 23,3 namd 43,2 

gromacs 68,5 sjeng 1,8 

  average 39,3 

We simulate the proposed execution mode switching circuit with various threshold values 

(1, 3, and 5) and then record the percentage of In-Order runtime as illustrated in Figure 6.1. 

As expected, our proposed mechanism succeeded in most cases in selecting an In-Order 

execution mode when the performance difference between the two execution modes is close 

to zero for the running application. This statement holds true for the bwaves, leslie3d, and 

sjeng benchmarks. However, in applications where the performance difference between the 

two modes is significant, as expected, the Out-of-Order mode is preferred. 
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Figure 6.1.  Runtime percentage of the In-Order mode in mode selection mechanism of 

ASMMP for various alpha thresholds 

We also notice that as the threshold value increases and performance losses can be tolerated 

more, the In-Order mode is given a better chance. Each benchmark's final column depicts 

the effect of the near-optimal alpha threshold (best alpha) value retrieved from Table 6.3. As 

the Graph indicates, the results for the fixed alpha threshold of 3 and the best alpha threshold 

that always results in a performance penalty of around 5 percent are very similar. 

Undoubtedly, using the fixed threshold value of 3 prevents us from taking advantage of some 

power-saving opportunities in the astar, bzip2, gromacs, h264, hmmer, libquantum, mcf, 

milc, and namd benchmarks. On the contrary, in the gems benchmark, we provide more 

opportunities for power savings in the fixed threshold case and compensate for the 

significant performance impact, as illustrated in Figure 6.2. The degree of performance 

degradation for three fixed threshold values and the near-optimal threshold (best alpha) that 

we studied is depicted in Figure 6.2. 

The obtained results showed a small loss of around 0.25 percent on average in system 

performance when using a small threshold value (Alpha = 1), with the highest performance 

loss being 1.8 percent in the sjeng benchmark. On the other hand, because of this threshold 

value, many power-saving opportunities are lost. 

 

Table 6.3. Near-optimal thresholds 

Application Alpha threshold (α) Application Alpha threshold (α) 

astar 7,0 h264 4,0 

bwaves insensitive hmmer 7,0 

bzip2 5,0 leslie3d insensitive 

calculix 3,0 libquantum 4,5 

games 3,0 mcf 3,7 

gems 2,5 milc 35,5 

gobmk 3,0 namd 3,6 

gromacs 5,0 sjeng insensitive 

The performance loss tolerance of applications in the In-Order mode varies greatly, as shown 

in the chart. For example, the bzip2 application spends nearly half of its time in In-Order 

mode, but we only see a 0.12 percent performance drop compared to the baseline Out-of-
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Order processor. Calculix suffers a significant performance loss with a fixed threshold of 3, 

despite only running in the In-Order mode for 14 percent of its total runtime. 

Additionally, we noticed that some benchmarks such as milc and hmmer are almost 

insensitive to all used threshold values and prefer the Out-of-Order execution mode during 

their lifetime.  

The proposed mode switching circuit in ASMMP managed to stay safe by choosing the Out-

of-Order execution mode when the loss of performance will be high if we switch to the In-

Order mode. The only exceptional case is encountered with the gems benchmark. The fixed 

alpha threshold of 3 seems to be a little too much for this benchmark (the best alpha value is 

2.5, as shown in Table 6.3), and we observe more than a 15 percent performance drop. 

Finally, the mode switching circuit in ASMMP also identifies slow benchmarks that are 

insensitive to any alpha threshold (i.e., bwaves, leslie3d, and sjeng) and run them in In-Order 

mode 100 percent of the time. 

 

Figure 6.2. Percentage of performance drop in mode selection mechanism of ASMMP for 

various alpha thresholds  

Additionally, we recorded the power savings, energy-delay-product (EDP), and energy-

delay-square product (ED2P) savings associated with the mode switching mechanism 
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implemented in ASMMP. Figures 6.3, 6.4, and 6.5 show the obtained results for three 

different threshold values. As the Figures show, while the threshold value is 1, the average 

power and EDP savings are nearly 15 percent. However, when the threshold value is set to 

3, the average power savings jump to 21.5 percent, while the average performance loss 

remains around 2.7 percent. The same observation can be made about the EDP criterion. 

When the threshold value increases from 1 to 3, the average EDP savings rise to 19.1 percent. 

It is worth noting that these results are very close to the near-optimal alpha thresholds that 

have been empirically determined for each benchmark. Of course, the average power and 

EDP savings are the greatest for the alpha threshold of 5. On the other hand, this threshold 

value comes with an 11.4 percent average performance penalty, which may be tolerable in 

battery-powered devices such as laptops and smartphones. 

 

Figure 6.3. Percentage of power savings in mode selection mechanism of ASMMP for 

various alpha thresholds  
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Figure 6.4. Percentage of EDP savings in mode selection mechanism of ASMMP for 

various alpha thresholds 

 

Figure 6.5. Percentage of 𝐸𝐷2𝑃 savings in mode selection mechanism of ASMMP for 

various alpha thresholds 

6.2.  RESOURCE PARTITIONING TESTS AND RESULTS 

We run the proposed resource partitioning mechanism then record its effects on performance 

and consumed power. Also, collect average occupancy values for different processor 

structures using different upsize and downsize threshold values by running benchmarks from 

the Spec2006 benchmark suite using the Gem5 simulator with x86 ISA [2] [3]. Each 
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benchmark is executed for 100M instructions. Configuration parameters for the simulated 

processor are given in Table 6.4. Lastly, we will examine these results in terms of 

performance and achieve savings by turning off entries from different processor resources'.  

Table 6.4. Specification of the simulated processor during resource partitioning 

L1 I- and D-Caches 16Kb, 4-way, 64-byte line size, 2 cycle latency 

L2 Cache 128Kb, 8-way, 64-byte line size, 20 cycle 

latency 

CPU Frequency 2 GHz 

 

 

Pipeline 

4-way issue bandwidth 

ROB: 192 entry,24partition 

IQ: 64 entry,8partitions 

LSQ: 32 entry,4 partitions 

RF: 256 registers,32partition 

Decision period (1 epoch) 1 M cycles 

No of occupancy samples collected 

every 1M cycles 

256 samples 

No of executed instructions 100 M 

Instruction execution mode Out-of-Order 

6.2.1.  Performance  

As we expected from the obtained results, we observe an improvement in application 

performance compared to baseline with losing chances in saving power, after making the 

downsizing process harder to happen by choosing high downsize threshold values. We had 

more opportunity to save power after performing more frequent downsizing processes by 

choosing low downsize threshold values while a  performance decline for all running 

benchmarks was noticed.  

This degradation is related to performing resource partitioning very frequently, which results 

in continuous oscillation of resource size. Lastly, Figures 6.6 to 6.8 show the proposed 

resource partitioning results in terms of running application performance (IPC).  

The obtained results in Figure 6.8 when compared to the non-partition baseline 

configuration, the proposed resource partitioning mechanism with a high downsize threshold 

value results in a 0.25 percent performance degradation. However, more than 48 percent 

performance degradation occurs when the resizing process is performed too frequently due 

to low threshold values. 
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Figure 6.6. Performance of resource partition in ASMMP compared to baseline Out-of-

Order processor. 

 

Figure 6.7. Average performance for simulated benchmarks with different threshold values 
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Figure 6.8. Average performance drop percentage for simulated benchmarks with different 

threshold values 

6.2.2.  Issue Queue 

The proposed resource partition mechanism successes in turning off more than 53 percent 

of issue queue entries after using a high downsize threshold value. On the other hand, more 

than 84 percent of issue queue entries were saved when using low threshold values, but we 

will not use these low threshold values in ASMMP resource partitioning mechanism to 

prevent performance degradation of all running applications. Lastly, Figures 6.9 and 6.10 

respectively show the used issue queues entries by Spec2006 benchmarks followed by the 

average used issue queue entries after applying resource scaling.  
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Figure 6.9. Instruction Queue entries used compared to baseline (64 entry no partition) 

configuration 
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Figure 6.10. Average used instruction queue entries for all simulated benchmarks 

compared to baseline (64 entry) configuration after resource partitioning 

6.2.3.  Re-order Buffer  

Our simulation results for the resource Re-order buffer were identical to those for the other 

resources. The effectiveness of the proposed resource partitioning mechanism is 

demonstrated in Figures 6.11 and 6.12. Whenever the downsize threshold value is 24, and 

the upsize threshold value is 8, an average saving of more than 63 percent is achieved. On 

the contrary, when a downsize threshold value of 2 and an upsize threshold value of 4 are 

used, enormous average savings of around 90 percent occur. Finally, as previously stated, 

maintaining a high downsize threshold value will benefit our design by achieving significant 

average savings and limiting performance degradation to less than 0.25 percent. 
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Figure 6.11. Re-order buffer entries used compared to baseline  (192 entry no partition) 

configuration. 

 

Figure 6.12. Average used Re-order buffer entries for all simulated benchmarks compared 

to baseline (192 entry) configuration after resource partitioning. 
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6.2.4.  Load and Store Queues  

Figures 6.13–6.16 illustrate the results of resource partitioning when applied to both load 

and store queues. their size was mostly emphasized in both queues. Both resources contain 

32 entries, which is a small number in comparison to other ASMMP resources. We saved 

approximately 25 percent of the store and load queue entries using a downsize threshold of 

24, and an upsize threshold of 8. Additionally, as illustrated in Figure 6.13, no savings in the 

store queue were achieved when using high downsize threshold values for some benchmarks 

such as libquantum, lbm, and bwave. Finally, as illustrated in Figure 6.15, our resource 

partitioning mechanism could only disable two load queue entries in several benchmarks, 

including leslie3d and mcf. 

 

Figure 6.13. Store queue entries used compared to baseline (32 entry no partition) 

configuration. 

  

0

5

10

15

20

25

30

35

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

SQ
 s

iz
e

 (
3

2
 e

n
tr

y)

Benchmarks

SQ entries used by 22 benchmarks after applying partitioing

SQ_baseline

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8



63 

 

 

 

Figure 6.14. Average used store queue entries for all simulated benchmarks compared to 

baseline (32 entry) configuration after resource partitioning. 

 

Figure 6.15. Load queue entries used compared to baseline (32 entry no partition) 

configuration. 
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Figure 6.16. Average used load queue entries for all simulated benchmarks compared to 

baseline (32 entry) configuration after resource partitioning. 

6.2.5.  Register File  

Figures 6.17–6.20 illustrate the resource partitioning simulation results when applied to both 

integer and floating-point register files. For downsize threshold value 24 and upsize 

threshold value 8, the proposed partitioning mechanism succeeded in saving more than 57 

percent of integer register file entries. Additionally, savings in the floating-point register file 

exceeded 58 percent. 

Finally, Figure 6.21 illustrates savings percentages across all ASMMP resources. 

Additionally, we can conclude that our proposed resource partitioning mechanism 

successfully allocated sufficient resource entries to each running application to maintain 

performance close to the baseline case while reducing power consumption by turning off 

unused resource entries. 

 

 

0

5

10

15

20

25

30

35

Average used LQ entries by 22 benchmarks after applying 
partitioning

LQ_baseline d4-u2 d4-d4 d8-u2

d8-u8 d12-u4 d16-u2 d16-u4

d20-u4 d20-u8 d24-u8



65 

 

 

 

Figure 6.17. Integer register file entries used compared to baseline (256 entry no partition) 

configuration. 

 

Figure 6.18. Average used integer register file entries for all simulated benchmarks 

compared to baseline (256 entry) configuration after resource partitioning. 
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Figure 6.19. Floating-point register file entries used compared to baseline (256 entry no 

partition) configuration. 

 

Figure 6.20. Average used floating-point register file entries for all simulated benchmarks 

compared to baseline (256 entry) configuration after resource partitioning. 

 

 

 

0

50

100

150

200

250

300

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

FR
F 

si
ze

(2
5

6
 e

n
tr

y)

Benchmarks

FRF entries used by 22 benchmarks after applying partitioing

RFF

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

0

50

100

150

200

250

300

Average used FRF entries by 22 benchmarks after applying 
partitioning

FRF_baseline d4-u2 d4-d4 d8-u2 d8-u8 d12-u4

d16-u2 d16-u4 d20-u4 d20-u8 d24-u8



67 

 

 

 

Figure 6.21. Percentage of saved entries after applying partition in different ASMMP 

resources 

6.3.  FINAL ASMMP TESTS AND RESULTS 

In this subsection, we will go through the used experimental methodology, then evaluate and 

discuss our final ASMMP architecture design results after combining both execution mode 

switching and resource partitioning mechanism in terms of performance, power savings, 

EDP, and ED2P metrics. 

6.3.1.  Experimental methodology  

Like our previous design evaluation process, we continue using the Gem5 simulator to test 

and evaluate the overall ASMMP model [2]. The experimental methodology used in 

evaluating resource partitioning and mode selection designs was also repeated here by 

running the SPEC CPU2006 benchmarks for 100 million instructions on x86 architecture 

[3]. The used simulation parameters of ASMMP are given in Table 6.5. 
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Table 6.5. Specification of simulated ASMMP architecture 

Microprocessor architecture x86 

Processor frequency 2GHz 

Machine width 4 

Re-order buffer size 192 entries 

Issue queue size 64 entries 

Load and Store queue size 32 entries 

Physical register file size 256 entries 

L1 instruction and data cache 4-way LRU, 16 KB 

L2 cache 8-way LRU, 128 KB 

Execution switch decision period (ESDP) 10000 cycles 

Sampling period (SP) 100 cycles 

Partition decision period (PDP) 2M cycles 

Occupancy sampling period (OSP) 8000 cycles (250 samples) 

Alpha threshold values 1,3,5 

Downsize threshold value 40 

Upsize threshold value 10 

Resource scale size 1 partition (resource size/8) 

Performance, power savings, and energy efficiency are all criteria used to evaluate 

simulation results in this setting. Furthermore, it has been assumed that the processor 

consumes the same energy per unit of time as it did in the CC investigation. It was assumed 

that a microprocessor operating in Out-of-Order execution mode would consume four times 

as much as the amount of energy as a microprocessor operating in In-Order execution mode. 

Using Equation 6.6, the power expenditure (PE) can be calculated by taking the percentage 

of time spent on the In-Order processor (W). Additionally, we add a parameter for the 

number of saved entries (SRE) for all ASMMP resources in Out-of-Order execution mode. 

This value is calculated based on the number of unnecessary entries closed by the resource 

partitioning mechanism in ASMMP. To make things even better, we continue to use 

Equation 6.2 to calculate the power savings (PS). In addition, we continue to use Equation 

6.3, which provides the formula for the slowdown rate (SR) of the proposed ASMMP 

architecture compared to the baseline Out-of-Order processor in terms of the average 

instructions per cycle (IPC) metric, as previously stated.  

Lastly, there was no modification in Equations 6.4 and 6.5, used to measure efficiency 

metrics represented by the energy-delay product (EDP) and energy-delay-square product 

(ED2P) formulas, respectively.  
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 𝑃𝐸 =
1

4
∗ 𝑊 + (1 − 𝑊) ∗ (1 − 𝑆𝑅𝐸)  (6.6) 

 

6.3.2.  Resource Partitioning Effects 

In the first phase of our tests, we wanted to determine how much performance degradation 

occurred when we used ASMMP's resource partitioning mechanism with Out-of-Order 

execution. The results of resource scaling and the percentage of entries that can be disabled 

using a downsize threshold of 40, and an upsize threshold of 10 for the Spec2006 

benchmarks in ASMMP are shown in Figure 6.22. Additionally, alpha threshold values of 

1, 3, and 5 were used to switch the execution mode from Out-of-Order to In-Order. 

In general, lower-alpha values result in more Out-of-Order execution mode periods, and 

resource scaling or resource partitioning can result in higher savings. Large alpha values 

imply longer periods in order execution mode while saving power is derived from avoiding 

Out-of-Order complex structures.  

We achieved power savings by shutting down approximately 30 percent of ASMMP 

resources during Out-of-Order execution mode periods with an alpha value of one and a 

performance loss of approximately 1.87 percent. In comparison to alpha value one, we 

continue to save less power. Additionally, 15 percent of entries are saved when the alpha 

value is three, resulting in a 2.96 percent performance degradation. When the alpha value is 

set to five, approximately 10 percent of entries are saved at a performance cost of more than 

12 percent. These results were expected given the decline in Out-of-Order execution mode 

periods and the fact that ASMMP operates in an In-Order execution mode for most of the 

time (choosing high alpha values makes our execution mode switching mechanism harder 

to switch from In-Order to Out-of-Order). 

Also, no entries were saved from the resource partitioning mechanism in bwave,leslie3d, 

and sjeng since no performance difference between both execution modes and our execution 

mode switching mechanism is chosen in order execution mode for these benchmarks during 

their lifetime. Whereas, near 40 percent savings were achieved for milc and gems 

benchmarks because they are not sensitive to any alpha threshold value, and they keep 

running in Out-of-Order execution mode. 
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Figure 6.22. Percentage of saved entries in final ASMMP for Spec2006 benchmarks during 

Out-of-Order execution mode 

Figure 6.23 shows the percentage of entries saved for different ASMMP resources during 

the benchmark lifetime. The savings in the Re-order buffer and register file come mainly 

from the resource partitioning mechanism when the alpha value is one, where all benchmarks 

run most of the time in Out-of-Order execution mode. Thus, our partitioning algorithm 

assigns enough entries from both structures based on the running application's needs and 

turns off the unused entries to save power. 

 The main savings in load, store and issue queue are achieved when applications start 

switching to an In-Order execution mode and stay in several periods in the same execution 

mode (alpha 3,5). In this case, as we mentioned before, saving comes not from resource 

scaling but comes from not intensive use of Out-of-Order complex structures by applying 

direct resource downsize to one partition, as we showed in Figure 5.5.  

Additionally, the chosen LSQ (32 entry) and IQ (64 entry) sizes were insufficient for the 

running applications during Out-of-Order execution mode (alpha 1), resulting in the loss of 

the opportunity to save power in these structures, and the partition mechanism did not 

perform resource downsizing to avoid performance degradation of the running application. 

On the contrary, alpha 3 and 5 increase the likelihood of saving additional LSQ entries due 
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to declining average occupancy at the start of the new Out-of-Order execution period. When 

the In-Order runtime increases, the resource occupancy for several periods will be limited to 

a single partition. When the application is switched to Out-of-Order, the LSQ occupancy 

equals the resource's full size, which is 32 entries. At the ending of PDP, ASMMP's resource 

partition mechanism will perform one upsizing operation by eight entries no more than once 

or twice and then revert to In-Order execution mode. Finally, we can say that when there is 

switching from In-Order to Out-of-Order, more upsizing operations occur for small resource 

sizes, and resource downsizing occurs for large resource sizes. In this case, selecting an alpha 

threshold value of 3 results in the average savings of 27 percent in ASMMP resources and 

performance degradation of less than 5 percent, or approximately 2.96 percent. Finally, this 

value enables efficient and balanced utilization of ASMMP's resource partitioning and mode 

switching mechanisms. Otherwise, selecting alpha one will result in the loss of the mode 

switching mechanism, while selecting alpha 5 will have the opposite effect, reducing the 

impact of resource partitioning on ASMMP with a performance degradation of more than 5 

percent of the running application. 

 

Figure 6.23. Average saving percentages for different ASMMP resources includes both 

out-of-order and In-Order execution mode  
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percent and 2.96 percent, respectively, when choosing alpha values of one and three. 

Besides, performance degradation is more than 12.47 percent when alpha value 5 is chosen. 

When alpha one is chosen, we observe a 7.5 percent performance degradation in bzip2. This 

is related to the accuracy of the average occupancy samples collected at the end of the 

partition decision period (250 samples in our case). Our partitioning mechanism reaches the 

more accurate needs of the running application after increasing the number of samples 

(bzip2). The main goal of using 250 samples for two million cycles is to reduce hardware 

complexity. 

Figure 6.25 depicts the percentage of In-Order execution modes for the Spec2006 

benchmarks. The results in Figures 6.24 and 6.25 are consistent with our expectations, as 

more In-Order periods have a greater negative impact on performance and higher power 

savings (the case with the gobmek benchmark). However, the primary objective of this thesis 

was to conserve power and maintain a performance loss of less than 5 percent. 

 

Figure 6.24.  Percentage of performance drop of final ASMMP compared to baseline Out-

of-Order processor for various alpha thresholds 
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Figure 6.25. Runtime percentage of the In-Order mode in final ASMMP for various alpha 

thresholds 

Finally, Figure 6.26 shows the overhead of adding the implementation of resource 

partitioning on performance in ASMMP when compared to the non-resource partitioning 

version (only mode switching mechanism). There is negligible impact on performance 

around 1.9 percent at maximum when alpha 1 is chosen. This threshold value makes our 

resource partitioning mechanism active for a long time since most of the execution mode 

will be in Out-of-Order mode, and continual resource scaling will be performed on resources 

of ASMMP (depending on chosen PDP). On the other hand, lower use of resource 

partitioning mechanism, which is the case for alpha value 5 reduces this impact and results 

only in 1 percent decline in performance compared to the non-partition version. 
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Figure 6.26. Percentage of performance drop of ASMMP for both partition and non-

partition version compared to baseline Out-of-Order processor for various alpha thresholds 

The idle configuration again here is to choose alpha value one or three. Choosing threshold 

value three results only in a 0.10 percent performance drop when compared to the non-

partition version. As we mentioned before, this threshold value helps gives opportunity to 

both mechanisms for functioning in balancing and proper way.  

Finally, as shown in Figure 6.27 for alpha threshold values one and three, our ASMMP keeps 

In-Order execution mode activated for 18.5 percent and 24.57 percent, respectively, from 

the total runtime due to low application dispatch ratio. These runtime percentages allow 

saving more power by downsizing Out-of-Order structures to one partition and deactivate 

resource scaling. On the contrary, ASMMP activates only resource partitioning mechanism 

for 81 percent and 75 percent, respectively ( high dispatch ratio) from the total runtime while 

deactivating the switching mechanism to continue saving less power and avoid performance 

degradation. 

6.3.4.  In-Order Runtime  

The incorporation of resource partitioning into ASMMP maintained application 

performance close to the baseline case (full Out-of-Order no partition) and had no effect on 
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the percentage of In-Order runtime for different alpha threshold values because the switching 

decision mechanism is completely dependent on the application speed-up factor, which 

monitors instruction dispatch ratio, and instruction commit over fetch ratio. As illustrated in 

Figure 6.27, the difference in In-Order runtime percentage between the final ASMMP and 

the non-partitioned version of ASMMP is negligible. 

 

Figure 6.27. Runtime percentage of the In-Order mode in ASMMP for both partition and 

non-partition versions for various alpha thresholds 

6.3.5.  Power Savings  

The percentage of total processor energy consumed by its resources is usually around 55 

percent [10]. Figure 6.28 summarizes the average power saving percentage observed for 

various alpha threshold values of the Spec2006 benchmarks in the final ASSMP architecture.  

In this case, an additional power saving estimation of more than 28 percent, 13 percent, and 

8 percent can be achieved by using a resource scaling mechanism and total savings of 43 

percent, 34 percent, and 42.58 percent respectively achieved in the final ASMMP design 

with keeping performance degradation below 5 percent for most Spec2006 benchmarks 

when alpha threshold values of one, and three are chosen, and performance loss of 12.5 

percent  is noticed when alpha value 5 is chosen. 
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Besides, in this Figure, we notice a high power saving of around 75 percent in three 

benchmarks (bwaves, leslie3d, and sjeng ). The reason for this saving relates to the mode 

decision mechanism in ASMMP, which identifies these slow benchmarks (low IDR, CFR) 

and, regardless of any alpha threshold value, In-Order execution mode is always chosen to 

run these benchmarks. Furthermore, we realize that 75 percent of the savings is because the 

In-Order execution mode consumes only 25 percent of the Out-of-Order mode power.  

 

Figure 6.28. Percentage of power savings in final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds. 

As illustrated in Figure 6.29, the final ASMMP design achieved greater power savings for 

different alpha threshold values. The Figure clearly illustrates the beneficial effect of 

resource scaling on ASMMP power consumption (by turning off unused entries during Out-

of-Order execution mode) compared to the non-scaling version. 

Finally, the least amount of power was saved by resource scaling mechanisms when a high 

alpha value was used (5). A higher alpha value indicates more In-Order periods and less 

resource partition mechanism activation. Thus, the execution mode decision mechanism 

results in additional power savings. For the above reasons, we could not achieve additional 

power savings through resource scaling, and the resulting savings remained consistent with 

the non-partition version of ASMMP. 
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Figure 6.29. Percentage of power savings of ASMMP for both partition and non-partition 

version compared to baseline Out-of-Order processor for various alpha thresholds 

6.3.6.  Energy-Delay product and Energy-Delay2 product  

To measure system efficiency, the power-delay product metric is used. The power-delay-

product is calculated by multiplying the power consumption of the processor by time or 

delay. The delay represents the duration required to perform a computation. Moreover, lower 

power-delay-product means more energy-efficient systems. On the other hand, a system with 

a low power-delay-product may do calculations exceedingly slowly [11]. 

One of the important metrics used popularly to reflect system efficiency rather than power-

delay-product accurately is the energy-delay product. Equation 6.4 is used for calculating 

EDP to measure the efficiency of the ASMMP design. When we compare the EDP value of 

the baseline processor with itself, this value will be one. This is due to the power expenditure 

on the baseline processor (Out-of-Order processor) will be 100 percent of the delay value, 

which is equal to 1.0 (base IPC/new IPC). Thus, the energy-delay product for the baseline 

processor will be equal to 1. 

To compare ASMMP's efficiency to the Out-of-Order processor as a baseline, we examine 

Figure 6.30, which displays the obtained (100 percent-EDP) values for the sepc2006 
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consumed less energy and had a shorter delay time while performing a computation. The 

percentage of EDP savings in ASMMP is 42 percent, 32 percent, and 35 percent for alpha 

values of 1,3, and 5 in the final ASMMP version, respectively. ASMMP's integrated resource 

partitioning mechanism ensured efficient use of processor resources for alpha value one, 

achieving savings of more than 28 percent over the non-partitioning version with a 

performance loss of less than 1,9 percent. Additionally, the final ASMMP appears to be more 

efficient than the non-partitioned version depicted in Figure 6.31, not just for alpha value 1, 

but also for alpha values 3 and 5. The final ASMMP's EDP savings exceed 13 percent with 

a performance loss of less than 2,96 percent and 11 percent with a performance loss of 13 

percent, respectively. Also, parallel to EDP results obtained for the energy-delay square 

product of final ASMMP is shown in Figure 6.33. Lastly, Figure 6.32 shows that the final 

ASMMP for alpha threshold values one and three is more efficient in terms of energy-delay 

square product than the final ASMMP for alpha threshold value five. 

 

Figure 6.30. Percentage of EDP savings of final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds 

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

ED
P

%
 S

av
in

gs

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5



79 

 

 

 

Figure 6.31. Percentage of EDP savings of ASMMP for both partition and non-partition 

version compared to baseline Out-of-Order processor for various alpha thresholds 

 

Figure 6.32. Percentage of ED2P savings of final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds 
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Figure 6.33. Percentage of ED2P savings of ASMMP for partition and non-partition 

versions compared to baseline Out-of-Order processor for various alpha thresholds 
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7.  CONCLUSION AND FUTURE WORK 

ASMMP, a single Out-of-Order superscalar processor capable of automatically scaling its 

resources in response to the needs of running applications and switching between In-Order 

and Out-of-Order execution modes, has been designed and tested in this thesis using 

Spec2006 benchmarks. ASMMP's primary objective is to achieve significant power savings 

in exchange for an average performance loss of 5 percent. Finally, Figure 7.1 depicts the 

complete implementation of our proposed ASMMP. 

 

Figure 7.1. ASMMP implemented stages 

We began this thesis by collecting and monitoring appropriate different processor parameters 

of the running application periodically. As a result, these parameters are typically collected 

using a sampling method that minimizes the proposed design's hardware complexity. The 

primary parameters that are dynamically collected are the utilization of different processor 

resources, the number of fetched instructions, the number of committed instructions, and the 

number of ready instructions in the issue queue for running applications.  

As a result, collecting 250 samples per decision period (2M) for occupancy parameters and 

100 samples per decision period (10K) for various instruction statistics was sufficient to 
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reflect the application's requirements. Besides, it provides useful information to assist 

ASMMP mechanisms in performing their duties properly. 

We focus on two distinct mechanisms in the second stage: a simple threshold-based resource 

partitioning mechanism and a mode switching mechanism. First, these mechanisms were 

implemented and tested independently. They were then combined in the final stage to create 

the final ASMMP design. Our resource partitioning mechanism comprises two components: 

a decision mechanism and a mechanism for enforcing resource partitioning. We compare the 

average collected resource occupancy samples with the threshold value in the partition 

decision mechanism. Then, a resource expansion or contraction decision is made based on 

the result of the comparison. Furthermore, the partition enforcement mechanism ensures that 

new partitions are assigned securely, without erasing any critical data about the running 

application's instructions. 

Moreover, two distinct execution modes (large core Out-of-Order for high-performance 

applications and small core IO for low-performance applications) are rather utilized as in the 

case with heterogeneous architecture [8]. Our ASMMP, a single-core, attempts to predict 

application performance when run in different execution modes by implementing an 

execution mode switching mechanism. The proposed mechanism consists of a mode 

switching decision mechanism and a mode switching enforcement mechanism with the 

resource partitioning mechanism. 

Two parameters influence the decision-making mechanism. The first is the instruction 

dispatch ratio (IDR), which is the ratio of ready instructions in the instruction queue for both 

execution modes. The second parameter specifies the number of over-fetched instructions 

that have been committed (CFR). These parameters enable us to compare the performance 

of the Out-of-Order mode to that of the In-Order mode. When the speed-up value, the 

product of the two previously mentioned parameters, exceeds the specified alpha threshold, 

an Out-of-Order mode is selected. Otherwise, an In-Order mode is selected. Finally, if 

certain conditions are met, the mode switching enforcement mechanism will perform mode 

switching and assign the running application to the newly selected mode. 
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The final stage of this thesis is to integrate both mechanisms for them to work concurrently 

and assign the most appropriate ASMMP configuration to the running application. The 

proposed ASMMP architecture is a single-core processor capable of scaling its resources 

and switching between IO and Out-of-Order execution modes in response to application 

requirements. As a result, the Gem5 simulator and the Spec2006 benchmarks were used to 

evaluate the ASMMP architecture. Finally, the average performance loss of the ASMMP 

architecture is kept below 5 percent compared to the Out-of-Order baseline processor for 

alpha values one and three. Additionally, ASMMP saved more than 43 percent and 34 

percent of total processor power, respectively, and 42 percent and 32 percent in terms of 

energy-delay product across all simulated Spec2006 benchmarks when alpha values were 

one and three.  

We intend to perform resource partitioning on level two and level three caches in the future 

because these structures consume a disproportionate amount of power compared to other on-

chip structures. Also, rather than using a fixed alpha threshold value for the mode switching 

decision mechanism, we can use a dynamic method to determine the alpha threshold value 

based on application behavior and which execution mode is unquestionably superior. 
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