
AUTO SCALABLE AND MORPHABLE MICROPROCESSORS

by

Nazlı Tokatlı

Submitted to Graduate School of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Engineering

Yeditepe University

2021

ii

AUTO SCALABLE AND MORPHABLE MICROPROCESSORS

APPROVED BY:

Prof. Dr. Gürhan Küçük .

(Thesis Supervisor)

(Yeditepe University)

Prof. Dr. Haluk Topcuoğlu .

(Marmara University)

Prof. Dr. Sezer Gören Uğurdağ .

(Yeditepe University)

Assist. Prof. Dr. Didem Unat .

(Koç University)

Assist. Prof. Dr. Onur Demir .

(Yeditepe University)

DATE OF APPROVAL: /. . . . /2021

iii

I hereby declare that this thesis is my own work and that all information in this thesis has

been obtained and presented in accordance with academic rules and ethical conduct. I

have fully cited and referenced all material and results as required by these rules and

conduct, and this thesis study does not contain any plagiarism. If any material used in the

thesis requires copyright, the necessary permissions have been obtained. No material from

this thesis has been used for the award of another degree.

I accept all kinds of legal liability that may arise in case contrary to these situations.

Name, Last name Nazlı Tokatlı

Signature …..……………….……………………..

iv

ACKNOWLEDGEMENTS

First, and most of all, I would like to thank my supervisor Prof. Gürhan Küçük, for his

expertise, assistance, guidance, and patience throughout the process of this research. Without

your help, this research would not have been possible. I would like to express my deep and

sincere gratitude to my committee and jury members, Assist. Prof. Didem Unat, Prof. Haluk

Topcuoğlu, Assist. Prof. Onur Demir, Prof. Sezer Gören Uğurdağ for their time in preparing

and reviewing this dissertation.

I also like to express my appreciation to computer architecture laboratory research team Dr.

İsa Ahmet Güney, Muhammed Emin Savaş, Merve Güney, Sercan Sarı, and Berk Kışınbay

for their valuable contribution to this dissertation. I would also like to thank all academics

and research assistants in Computer Engineering Department at Yeditepe University for their

support and team working spirit during this research journey.

I would like to thank my parents Ertam (my hero) and Güler Nakip. There will be always a

special place in my life and heart for you. They taught me to stand up for what I believe in

and I have seen them go out of their way many times to help others, they give me roots and

wings so I can fly, they taught me to reach for the stars and follow my dreams.

Last but not the least, I would like to thank my children Anja and Atilla who are the most

precious persons in my life, who are the reason behind my happiness they are my endless

treasure. Finally, special thanks to my husband Ali for his endless love and support.

The research work in this dissertation was supported by TÜBİTAK under grant number

117E866.

v

ABSTRACT

AUTO SCALABLE and MORPHABLE MICROPROCESSORS

This dissertation proposes the design and implementation of a single Out-of-Order

superscalar processor capable of dynamic resource sizing and mode switching in response

to the properties of running applications. While there are multi-core heterogeneous processor

architectures in the literature, our single processor is capable of morphing to target different

metrics at different times, such as performance and power. Our final processor proposes a

two-parameter run-time switch between Out-of-Order and In-Order execution modes.

Additionally, the processor's instruction queue, Re-order buffer, load/store queue, and

physical register files are scaled dynamically at runtime to meet the needs of running

applications. When the approaches described in this dissertation are used, we demonstrate

that we can save an average of more than 42 percent power and achieve a 43 percent increase

in efficiency (energy-delay square product) in exchange for a 5 percent performance penalty

when compared to a baseline Out-of-Order superscalar.

vi

ÖZET

OTOMATİK-ÖLÇEKLENEBİLEN VE ŞEKİL-DEĞİŞTİREBİLEN

MİKROİŞLEMCİLER

Bu tez çalışmasında, sırasız mod çalışan süperskalar bir işlemcinin çalışan uygulamaların

özelliklerine uyum sağlaması için otomatik olarak özkaynak ölçeklemesi ve çalışma modu

değişimi yapması sağlanmaktadır. Çalışmamız, literatürde çok çekirdekli heterojen işlemci

mimarilerine rastlanmasına rağmen, tek bir işlemcinin aniden kendini değiştirerek değişik

zamanlarda performans ve güç gibi farklı ölçütlere yönelmesini hedefleyen bir çalışma

bulunmaması nedeniyle özgündür. Önerdiğimiz sonuç işlemci, sadece iki çalışma-zamanı

parametresi ile sırasız çalışma modundan sıralı çalışma moduna geçişe karar vermektedir.

Ayrıca, işlemci içindeki komut kuyruğu, yeniden-sıralama belleği, yükleme/saklama

kuyruğu ve fiziksel yazmaç dosyalarının boyutları yine çalışma-zamanında çalışan

uygulamaların gereksinimleri yönünde ölçeklenmektedir. Bu çalışmada önerilen

yöntemlerin uygulanması durumunda sırasız komut çalıştıran baz süperskalar işlemciye göre

ortalama yüzde 5 civarında bir performans kaybı karşılığında ortalama yüzde 42’nin

üzerinde bir güç tasarrufu ve yüzde 42’nin üzerinde daha iyi verimlilik (enerji-gecikme kare

çarpanı) sağladığımızı göstermekteyiz.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTSiv

ABSTRACT ...v

ÖZETvi

TABLE OF CONTENTS ...vii

LIST OF FIGURES .. ix

LIST OF TABLESxiv

LIST OF SYMBOLS/ABBREVIATIONS ..xv

1. INTRODUCTION .. 1

1.1. MOTIVATION .. 3

1.1.1. Die Area... 3

1.1.2. Thread Migration ... 3

1.1.3. Power Savings ... 4

1.2. OBJECTIVES .. 5

2. RELATED WORK ... 7

3. APPLICATION MONITORING STAGE IN ASMMP ... 14

3.1. ASMMP RESOURCES’ OCCUPANCY PARAMETER 14

3.1.1. Occupancy Tests and Results .. 17

3.1.2. Effects of Sampling on Occupancy Values ... 20

3.2 INSTRUCTION DISPATCH RATIO (IDR) .. 22

3.3. COMMIT OVER FETCH RATIO (CFR) ... 23

4. APPLICATION CLASSIFICATION/EXECUTION MODE .. 24

4.1. EXECUTION MODE SELECTION ... 24

4.1.1. ASMMP execution mode switching architecture .. 26

4.1.2. Mode Switching Decision Mechanism .. 28

4.1.3. Mode Switching Enforcement Mechanism ... 30

4.1.4. Periodic Operation ... 30

viii

4.1.5. Hardware ... 31

5. APPLICATION CLASSIFICATION/RESOURCE PARTITIONING.......................... 34

5.1. PARTITIONING DECISION MECHANISM .. 35

5.1.1. Resource downsizing decision .. 36

5.1.2. Resource Upsizing Decision.. 37

5.1.3. The Use of Statistical Parameters .. 38

5.2. PARTITIONING ENFORCEMENT MECHANISM.. 39

5.2.1. Circular Queue Resources ... 40

5.2.2. Instruction Queue (IQ) .. 40

5.2.3. Register Files ... 42

5.3. ASMMP OPERATION .. 45

5.3.1. Issuing Right Processor Configuration .. 45

6. TESTS AND RESULTS ... 49

6.1. EXECUTION MODE SELECTION TESTS AND RESULTS 49

6.2. RESOURCE PARTITIONING TESTS AND RESULTS 55

6.2.1. Performance ... 56

6.2.2. Issue Queue ... 58

6.2.3. Re-order Buffer ... 60

6.2.4. Load and Store Queues .. 61

6.2.5. Register File... 64

6.3. FINAL ASMMP TESTS AND RESULTS .. 67

6.3.1. Experimental methodology ... 67

6.3.2. Resource Partitioning Effects .. 69

6.3.3. Performance ... 71

6.3.4. In-Order Runtime .. 74

6.3.5. Power Savings ... 75

6.3.6. Energy-Delay product and Energy-Delay2 product ... 77

7. CONCLUSION AND FUTURE WORK ... 81

REFERENCES .. 84

ix

LIST OF FIGURES

Figure 1.1. Basic architectural difference between ARM cores and ASMMP 3

Figure 1.2. Design flow of main ASMMP stages .. 5

Figure 3.1. Out-of-Order processor structures redesigned for adaptive processing. 14

Figure 3.2. H/W circuitry for collecting occupancy using sampling 15

Figure 3.3. Flowchart shows sampling in occupancy calculation. 16

Figure 3.4. Re-order buffer average occupancy for 1M cycle period 17

Figure 3.5. Load queue average occupancy for 1M cycle period 18

Figure 3.6. Store queue average occupancy for 1M cycle period .. 18

Figure 3.7. Integer Physical register file average occupancy for 1M cycle period 19

Figure 3.8. Floating point register file average occupancy for 1M cycle period 19

Figure 3.9. Issue queue average occupancy for 1M cycle period .. 20

Figure 3.10. Higher value, worse outcome /or deviation rate after applying L1 norm 21

Figure 3.11. Higher value, worse outcome /or deviation rate after applying L2 norm 21

Figure 4.1. Execution mode selection policy in ASMMP .. 26

Figure 4.2. Composite core architecture .. 27

Figure 4.3. Execution mode selection architecture in ASMMP .. 28

x

Figure 4.4. Periodic operation of execution mode selection in ASMMP 31

Figure 5.1. Resource partitioning in ASMMP .. 35

Figure 5.2. Partition decision mechanism flowchart for ASMMP 39

Figure 5.3. Partition enforcement mechanism for resource upsizing in ASMMP 43

Figure 5.4. Partition enforcement mechanism for resource downsizing in ASMMP 44

Figure 5.5. Flowchart for proposed ASMMP architecture .. 46

Figure 6.1. Runtime percentage of the In-Order mode in mode selection mechanism of

ASMMP for various alpha thresholds ... 50

Figure 6.2. Percentage of performance drop in mode selection mechanism of ASMMP for

various alpha thresholds ... 53

Figure 6.3. Percentage of power savings in mode selection mechanism of ASMMP for

various alpha thresholds ... 54

Figure 6.4. Percentage of EDP savings in mode selection mechanism of ASMMP for various

alpha thresholds ... 55

Figure 6.5. Percentage of 𝐸𝐷2𝑃 savings in mode selection mechanism of ASMMP for

various alpha thresholds ... 55

Figure 6.6. Performance of resource partition in ASMMP compared to baseline Out-of-Order

processor. ... 57

Figure 6.7. Average performance for simulated benchmarks with different threshold values

 ... 57

Figure 6.8. Average performance drop percentage for simulated benchmarks with different

threshold values ... 58

xi

Figure 6.9. Instruction Queue entries used compared to baseline (64 entry no partition)

configuration .. 59

Figure 6.10. Average used instruction queue entries for all simulated benchmarks compared

to baseline (64 entry) configuration after resource partitioning .. 60

Figure 6.11. Re-order buffer entries used compared to baseline (192 entry no partition)

configuration. ... 61

Figure 6.12. Average used Re-order buffer entries for all simulated benchmarks compared

to baseline (192 entry) configuration after resource partitioning. 61

Figure 6.13. Store queue entries used compared to baseline (32 entry no partition)

configuration. ... 60

Figure 6.14. Average used store queue entries for all simulated benchmarks compared to

baseline (32 entry) configuration after resource partitioning. ... 63

Figure 6.15. Load queue entries used compared to baseline (32 entry no partition)

configuration. ... 63

Figure 6.16. Average used load queue entries for all simulated benchmarks compared to

baseline (32 entry) configuration after resource partitioning. ... 64

Figure 6.17. Integer register file entries used compared to baseline (256 entry no partition)

configuration. ... 65

Figure 6.18. Average used integer register file entries for all simulated benchmarks

compared to baseline (256 entry) configuration after resource partitioning. 65

Figure 6.19. Floating-point register file entries used compared to baseline (256 entry no

partition) configuration. ... 66

xii

Figure 6.20. Average used floating-point register file entries for all simulated benchmarks

compared to baseline (256 entry) configuration after resource partitioning. 66

Figure 6.21. Percentage of saved entries after applying partition in different ASMMP

resources .. 67

Figure 6.22. Percentage of saved entries in final ASMMP for Spec2006 benchmarks during

Out-of-Order execution mode .. 70

Figure 6.23. Average saving percentages for different ASMMP resources includes both out-

of-order and In-Order execution mode .. 71

Figure 6.24. Percentage of performance drop of final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds .. 70

Figure 6.25. Runtime percentage of the In-Order mode in final ASMMP for various alpha

thresholds ... 73

Figure 6.26. Percentage of performance drop of ASMMP for both partition and non-partition

version compared to baseline Out-of-Order processor for various alpha thresholds 74

Figure 6.27. Runtime percentage of the In-Order mode in ASMMP for both partition and

non-partition versions for various alpha thresholds ... 75

Figure 6.28. Percentage of power savings in final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds. ... 76

Figure 6.29. Percentage of power savings of ASMMP for both partition and non-partition

version compared to baseline Out-of-Order processor for various alpha thresholds 77

Figure 6.30. Percentage of EDP savings of final ASMMP compared to baseline Out-of-Order

processor for various alpha thresholds ... 78

xiii

Figure 6.31. Percentage of EDP savings of ASMMP for both partition and non-partition

version compared to baseline Out-of-Order processor for various alpha thresholds 79

Figure 6.32. Percentage of ED2P savings of final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds .. 79

Figure 6.33. Percentage of ED2P savings of ASMMP for partition and non-partition versions

compared to baseline Out-of-Order processor for various alpha thresholds 80

Figure 7.1. ASMMP implemented stages .. 81

xiv

LIST OF TABLES

Table 3.1. Specification of the simulated processor .. 17

Table 4.1. Transistor count for execution mode selection mechanism 33

Table 6.1. Specification of the simulated processor during execution mode switching 49

Table 6.2. Performance drop of In-Order mode .. 50

Table 6.3. Near-optimal thresholds .. 52

Table 6.4. Specification of the simulated processor during resource partitioning 56

Table 6.5. Specification of simulated ASMMP architecture ... 66

xv

LIST OF SYMBOLS/ABBREVIATIONS

ASMMP Auto scalable and morphable microprocessor

AMP Asymmetric multicore processor

B Portion

CC Composite core

CPU Central processing unit

Cct Circuit

CFR Commit fetch ratio

D Average resource occupancy

DP Decision period

EDP Energy delay product

ED2P Energy delay square product

ESDP Execution sampling decision period

EPI Energy per retired instruction

G Resource size

GHz Gigahertz

GB Gigabyte

H/W Hardware

IO In-Order

IQ Instruction queue

IDR Instruction dispatch ratio

ILP Instruction level parallelism

IPC Instruction per cycle

IPS Instruction per second

ISA Instruction set architecture

IDB Instruction dispatch buffer

iMODE Interactive mood detection engine

KB Kilobyte

LQ Load queue

LSQ Load store queue

L1 Level 1

xvi

L2 Level 2

LAD Least absolute deviation

LAE Least absolute errors

MLP Memory level parallelism

MSHR Miss status holding register

MAC Multiplier accumulator

OoO Out-of-order

OSP occupancy sampling period

PS Power savings

PE Power expenditure

PDP Partition decision period

PRF Physical register file

PC Program counter

RAT Register alias table

RFI Integer register file

RFF Floating point register file

ROB Re-order buffer

S Speedup ratio

SR Slowdown rate

SP Sampling period

SRE Saved resource entries

SQ Store queue

SMT Simultaneous multi thread

SRAM Static random access memory

T Threshold

TLP Thread level parallelism

W In-order runtime percentage

α Alpha threshold

1

1. INTRODUCTION

Computers (processors) are responsible for running various types of applications. For a long

time, speed was the only major concern of processors when applications are run. Nowadays,

power-related concerns even surpass all performance-related concerns on any processor

encountered on any type of system.

A power-aware processor plays an important role in improving the lives of many modern

technologies (e.g., smartphones, laptops). It is somewhat less obvious that a power-aware

processor also plays an important role in the success of a real-time, mission-critical system

that explores space and other planets. Besides, it is predicted that data centers of the world

will consume one-fifth of Earth’s power by 2025, and a power-aware processor may provide

enormous power savings when deployed on data centers in large quantities [32].

The well-accepted philosophy on today's processor design is still a" one-size-fits-all" kind

of realization with a fixed set of data path structures and a fixed mode of execution. For

instance, when an application has a program phase with a low Instruction Level Parallelism

(ILP) degree runs on a 4-way superscalar, aggressively speculative, Out-of-Order processor,

most processor resources are underutilized, and all power-saving opportunities are lost. On

the contrary, when an application has a program phase with a high ILP degree that runs on

a 2-way superscalar, In-Order processor, it receives a huge performance penalty due to

insufficient processor resources. Both of these scenarios point out the inefficiency of the

current fixed-mode processors.

Designing a power-aware processor with good performance depends on periodical

monitoring and effectively analyzes the application's behavior. The application needs

particular hardware resources such as caches, issue queues, and instruction fetch logic within

a dynamic superscalar processor which can vary significantly from application to application

and even within the different phases of a given application. The proposal of an adaptive

processing approach to improving microprocessor energy efficiency dynamically resizes

major microprocessor resources such as caches and hardware queues during execution to

better match varying application needs.

2

This resizing operation usually involves reducing the size of a resource when its full

capabilities are not needed, then restoring the disabled portions when they are needed again

[5].

The next and natural step to reflect applications' diversity during their running phases is

introducing an asymmetric multicore processor design, which uses cores of different types

in the same processor and thus, embraces heterogeneity as the first principle. Different cores

in an AMP may be optimized for power/performance or different application domains or for

exploiting instruction-level parallelism or memory-level parallelism. Thus, AMPs promise

to be beneficial for a broad range of usage scenarios [1].

The concept of heterogeneous cores within a processor is not novel. One of the best examples

of such realizations is ARM's power-aware (big. LITTLE) architecture, which requires a

physical area to keep multiple cores on the same chip. Furthermore, a 3-wide Out-of-Order

Cortex-A15 superscalar microprocessor (large) and a 2-wide In-Order Cortex-A7

superscalar microprocessor (small) are located in the same core in this architecture. This is

also a valid approach in almost all heterogeneous architectures proposed in the literature,

and as a result, significant area unavoidably increases [8] [24] [25] [15] [30].

Our proposed Auto scalable and morphable processor design deviates from this traditional

approach. We propose a specialized Out-of-Order core that can act either as a traditional

Out-of-Order core with adaptive processing included or an In-Order core whenever it is

suitable to reduce power consumption and keep performance degradation of running

application below 5 percent. As a result, the area requirement of our proposed processor is

almost identical to the area requirement of a traditional Out-of-Order processor. Figure 1.1

shows the basic architectural difference between both designs.

3

Figure 1.1. Basic architectural difference between ARM cores and ASMMP

1.1. MOTIVATION

As we stated above, one of the important points that motivate us to propose ASMMP design,

its ability to reduce power consumption while keeping performance degradation of the

running application below 5 percent. Also, achieving this goal without using complex and

power-hungry circuit. The following subsections will examine the main advantages of

ASMMP design when compared to heterogeneous architectures in terms of die area, thread

migration and power savings respectively.

1.1.1. Die Area

The die area is the most important aspect of our proposed design, as illustrated in Figure 1.1.

This is one of the most powerful areas of ASMMP design. Processors with heterogeneous

cores house multiple cores on the same chip. There is apparently no issue when multiple

active threads are assigned to each of these heterogeneous cores. However, when only one

core is active, and the rest of the cores are passive at certain times [8], the processor's area

efficiency is immediately questioned. ASMMP is an Out-of-Order processor (single core)

that can also function as an In-Order processor. As a result, its area requirement is nearly

identical to that of a traditional Out-of-Order processor. Also, the number of transistors that

4

required to implement the ASMMP will certainly less than the number of transistor count

that needed to implement dual core processor (291 Million transistor/143 mm2) and then less

die area required for ASMMP when compared to dual core processor [33]. Finally, our

decision circuit for the execution mode switch does not necessarily involve complex

methods such as machine learning, nor does it necessitate the storage of additional statistics

tables in the hardware [8] [9].

1.1.2. Thread Migration

Thread migration is an important feature of heterogeneous cores. These processors enable a

running thread to migrate to a suitable core to save power or maintain an application's

performance at its peak. On the other hand, Thread migration takes a long time, especially

when the source and target cores are located away. The state of the source core should be

transferred to the target core, and larger state data means longer migration times and higher

power costs.

Data transfer is one of the most difficult challenges in computer architecture research, and it

should be avoided as much as possible. In Pentium 4, Intel switched from separate physical

and architectural register structures in Pentium III to a combined register file that holds both

physical and architectural registers in one structure. We use the same strategy in ASMMP

design, and we make both the source and target cores the same core. As a result, all data path

structures holding instructions and processor state can retain their content during a thread

migration, and there is no migration cost in terms of latency and power.

1.1.3. Power Savings

ASMMP can remain in IO execution mode for an extended time. Structures used to ensure

correct Out-of-Order execution (such as the register renaming mechanism, load queue, Re-

order buffer, and physical register files) can be disabled while in In-Order mode. As long as

the In-Order execution mode is enabled, ASMMP is a very low-power processor. We

assumed that the power dissipated by the In-Order core is three to five times as much as the

large Out-of-Order core [17]. Furthermore, when the running application requests an Out-

5

of-Order mode, the processor enters a performance mode, in which ASMMP continues to

save less power than In-Order execution mode due to its ability to configure its resources

dynamically.

1.2. OBJECTIVES

This dissertation is part of the TÜBİTAK project titled" Auto scalable and morphable

microprocessor)" and the research work related to designing a single processor morphing

itself to target various metrics, such as performance and power different times, even though

there are multicore heterogeneous processor architectures in the literature. Figure 1.2 shows

the design flow of ASMMP. As shown in the Figure, ASMMP contains three main stages,

respectively. The flow starts with monitoring application behavior for a specific time interval

called an epoch. The monitoring process relies on a periodical collection of statistics about

the used processor resources and exploration of instruction-level parallelism of the running

application. Then, the collected information will be used to classify applications into three

main types. In the last stage, based on the application type, a suitable processor configuration

will be chosen for running the application to save power without sacrificing too much

performance.

Figure 1.2. Design flow of main ASMMP stages

Stage 1: Application Monitoring

Stage 2: Application Classification

Stage 3: Selection of Appropriate

Out-of-Order Core Configuration

General ASMMP Stages

for Running Applications

6

The remainder of the thesis is as follows: Chapter 2 summarizes the previous research in this

field. Chapter 3 describes the application monitor statistics, followed by stage one of

ASMMP's design and implementation details. Chapter 4 represents the details of ASMMP's

dynamic execution mode selection (application classification stage) design and

implementation. Chapter 5 represents the details of ASMMP's adaptive resource partitioning

(application classification stage) design and implementation. Additionally, expressing

ASMMP operation describes selecting an ASMMP configuration that is appropriate for the

running application. Chapter 6 discusses the simulation results and their implications.

Chapter 7 concludes by summarizing the research and discussing the significance of this

work and any further work conducted.

7

2. RELATED WORK

Numerous studies on energy, power, and die area efficiency have been published in the

literature. One of the most widely used techniques for reducing processor energy

consumption is to dynamically turn on and off processor resources in response to the needs

and behavior of the running workload [4] [5] [6] [7] [12] [13]. Another area of research is

related to architectural techniques that employ simpler data path structures that consume less

power and space while providing comparable performance to Out-of-Order processors [7]

[9] [13] [16] [17] [18] [19] [20] [21] [22].

To give more details about adaptive processing and the use of simple data path structures to

reduce power consumption. We will start with the work done by Manne et al. (1998) that

discusses pipeline gating, a technique for lowering the processor's average activity [6]. They

attempt to determine whether a branch is likely to mispredict and prevent wrong-path

instructions from entering the pipeline by evaluating the quality of each branch prediction

using a confidence estimator logic. Additionally, Ghiasi and his team (2000) looked for ways

to save power by switching from an Out-of-Order instruction issue mechanism to In-Order

or dynamically-gated (reduced width) modes [12]. A micro-architectural IPC matching

mechanism combined with an external performance indicator to determine when the

instruction issue mechanism should be changed. The operating system specifies a target IPC

rate for the processor to achieve, and the processor uses various techniques to approximate

the current IPC rate while executing committed instructions.

Bahar and Manne (2001) proposed a technique for balancing pipelines by splitting the issue

width between two clusters and saving power by monitoring the program's issue needs (look

at the Issue IPC history) of the running application [4]. A low-power mode is selected when

the program does not require the processor's full issue capabilities by reducing the instruction

issue width from 8 to 4 instructions.

As another option, Lebeck et al. (2002) propose classifying instructions that require a long-

latency operation to reduce power consumption [19]. These instructions are moved out of

the (relatively small) scheduling window into a (relatively large) waiting instruction buffer

8

(WIB) until the operation is complete, at which point they are returned to the scheduling

window.

This combines the benefit of a large instruction window with the benefit of a small

scheduling window in terms of latency tolerance. However, it requires a large instruction

window (as well as a large physical register file), which comes at a cost.

Also, when there is a long-latency instruction as an L2 miss, the issue queue may be filled

with instructions dependent on the L2 miss. As a result, the issue queue will not expose

instruction-level parallelism until the miss is resolved. In the context of memory-latency

tolerant processors, Morancho et al. (2007) propose delaying the insertion of instructions

dependent on load instructions that are predicted to miss L2 into the issue queue [13]. Instead

of being inserted into the issue queue, these instructions will be stored in an instruction

buffer. The dependent instructions will be inserted into the issue queue after the L2 miss has

been resolved.

Albonesi and his team (2003) investigate the problem of configuring a processor with two

levels of caches, integer, and floating-point issue queues, load/store queues, register files,

and a Re-order buffer [5]. To avoid the overwhelming number of possible configurations,

they tune each component solely on its local usage statistics. They propose two heuristics

for accomplishing this, one for tuning caches and the other for tuning buffers and register

files. The caches they consider are selective-way ones, meaning that each of their multiple

ways can be activated or deactivated independently. Every way has the most recently used

(MRU) counter, which is incremented whenever a cache search hits the way. The cache

tuning heuristic samples this counter at fixed intervals to determine the number of hits in

each way and the total number of misses. The heuristic computes the energy and

performance overheads for all possible cache configurations using these access statistics and

dynamically selects the best configuration. The occupancy-based heuristic is used to control

other structures such as issue queues. It determines whether to upsize or downsize the

structure based on how frequently different components of these structures are filled up with

instructions.

9

Huber and his colleagues recommend (2011) adjusting processor pipeline depth during

runtime [7]. They added two new special instructions, MERGE and BREAK, to the

instruction set to achieve this new level of adaptivity. The MERGE instruction merges two

adjacent pipeline stages by making the pipeline register transparent, which means that the

clock is ignored and the data path is passed directly to the next pipeline stage.

In most cases, merging two adjacent pipeline stages can save one cycle. The BREAK

instruction splits two merged pipeline stages in half by reapplying the clock to the pipeline

register. This method allows personalizing the processor pipeline to the specific application

during runtime.

Carlson team (2015) tried to improve the performance of MLP-sensitive applications on In-

Order processors [20]. Memory instructions and address computations are identified by the

load slice core, placing them in a separate bypass queue (urgent and non-urgent instructions).

As a result, loads can be executed ahead of time.

Another proposal by Sembrant et al. (2015) to reduce power consumption is to relieve

pressure on Out-of-Order structures by parking instructions that are predicted to be non-

critical for memory-level parallelism before renaming, thereby relieving pressure on the

issue queue and PRF temporarily until those instructions are resumed [17].

Additionally, leading research attempts to select an appropriate core in multicore systems

based on the requirements of running applications to reduce power consumption. Typically,

a multicore processor is made of cores of the same type (homogeneous (symmetric) cores)

or cores of different types (heterogeneous (asymmetric) cores). There are numerous

multicore processor architectures with varying core counts and core types. Also, the running

application may be assigned to a large core with high performance or to a small core with

low energy consumption [8] [12] [14] [15] [16]. The majority of recent studies in the

literature advocate heterogeneous cores in multicore systems [4] [8] [23] [24] [25]. Another

approach also allows for heterogeneity in terms of core types and dynamic resource sharing

between cores [14] [26]. Additionally, researchers have fused adjacent cores to create large,

Out-of-Order cores in some cases, a process known as core-fusing [27] [28].

10

Kumar et al. (2003,2004) attempted to reduce power consumption in multicore architectures

by dynamically estimating a program's resource requirements and mapping them to the most

appropriate core [24]. A wide-issue superscalar processor, for example, can issue multiple

instructions in each cycle and is thus best suited for a program with a high ILP. On this

processor, mapping a program with a low ILP wastes resources. Their method allows them

to optimize for different purposes, including performance and energy efficiency. To make

thread scheduling decisions, the performance of a thread on different core types must be

known by running threads on different core types to sample their performance.

Annavaram et al. (2005) proposed a technique to improve both sequential and parallel

performance by adjusting the amount of energy consumed in processing each instruction

based on the degree of parallelism available [25]. For a fixed power budget, a processor

should spend more energy per retired instruction in phases of limited parallelism (low retired

instructions per second) and vice versa, according to the power equation represented by

multiplying EPI by IPS on all cores. To maintain a power budget constraint, less energy

should be consumed in processing each instruction for phases with high parallelism and vice

versa. On this basis, they map high IPS parallel phases to cores with low EPI and low IPS

sequential phases to cores with high EPI. As opposed to an SMP, an AMP provides a more

suitable platform with cores of different EPI and thus within the same power budget.

An architecture presented by Kim et al. (2007) is reconfigurable so that it allows simple

cores to be dynamically combined into larger cores to optimize either performance, energy,

or area efficiency [27]. They completely avoid physical sharing of resources to allow the

processor to scale up to a large issue width (e.g., 64 wide), which precludes the use of

traditional reduced/complex instruction set computing (RISC/CISC) ISAs. As a result, they

employ nonstandard explicit data graph execution (EDGE) ISA, in which the order of

dependence of instructions within a block is explicitly and statically encoded, and thus

instruction dependence relations are known a priori. This allows the cores' I-cache capacity

and instruction fetch bandwidth to scale linearly as the number of cores grows. As a result,

their technique's scalable reconfiguration shows higher flexibility and performance than

techniques that centralize some processor resources.

11

The core fusion architecture presented by Ipek et al. (2007) allows the formation of larger-

issue Out-of-Order cores by fusing neighboring Out-of-Order cores, and it is described in

detail in the paper [28]. As a result of their architecture, up to four cores, each with its own

D/I cache, can be merged at runtime to form cores four times as much as the D/I cache size,

four times as much as the branch target buffer size, and four times as much as the branch

predictor size, and four times as much as the commit, issue, and fetch width. Its

reconfigurable load-store queue (LSQ) and D-cache organization allow for conventional

coherence while running a parallel program and does not generate any coherence traffic

when running a serial program in fused mode. Cores execute independently of one another,

and LSQs and D-caches of individual cores are used to avoid thread interference in L1 caches

when this is the case.

In this design, a decentralized frontend and I-cache are used to feed the fused backend, rather

than to require additional resources on different frontends on the same processor core. Core

fusion can provide more powerful four-issue super cores to support coarse-grain parallelism,

more powerful four-issue super cores to support fine-grain parallelism, and one eight-issue

super core to support sequential execution, among other things. The performance of the fused

configuration in the core fusion architecture is significantly lower than that of an iso-area

monolithic Out-of-Order processor in the core fusion architecture.

Lukefahr and his team (2012,2016) proposed the Composite Core, a reconfigurable core with

two execution engines (µengines). Both engines have a unique microarchitecture [8] [9]. The

so-called "Big engine" has a Out-of-Order pipeline, whereas the "Small engine" has a

pipeline that is in order. Both engines share a few resources, including the L1 cache, the

fetch stage, and the branch predictor. At any given time, only one engine is active, resulting

in an In-Order or Out-of-Order core. Multiple performance metrics are monitored by the

Composite Core to determine when modes are switched. These metrics are collected from

running engines and forecasted in the sleeping engine. Then, the switching algorithm

determines which of the two engines are run during that particular program phase. An offline

training stage is used to establish the optimal coefficient for each metric.

Asymmetry in a multicore processor can also be introduced by dynamically adjusting the

resources available to a core in response to its workload. Homayoun et al. (2012)

12

investigated how microarchitectural structures can be shared across three-dimensional

stacked cores [14]. They point out that the 2D design of reconfigurable AMPs results in

inefficient resource pooling, which increases pipeline depth and communication delays.

They propose a 3D design of reconfigurable AMPs that allows for optimized pipeline layout

in a 2D plane. In addition, additional resources (e.g., LSQ, ROB, cache, registers, and

instruction queue) are linked in the third dimension without disrupting the 2D pipeline

layout. This enables fine-grained resource sharing to exploit both ILP and TLP while

achieving shorter communication delays due to 3D stacking.

Khubaib et al. (2012) proposed another technique for power reduction called morphcore,

which utilizes shared hardware resources to operate as an Out-of-Order core or as multiple

In-Order SMT cores with unused resources such as the Re-order buffer and Out-of-Order

wakeup/selection logic turned off [16].

To determine which core mode to use, the number of currently scheduled threads is

multiplied by two. When the number of threads reaches a predetermined threshold, the SMT

mode is activated to reduce the number of threads. If a group of high ILP threads is scheduled

together or with many low ILP threads, this approach may cause the high ILP threads to

suffer. If a small number of low ILP threads are scheduled together and run in the Out-of-

Order mode, this can result in an unnecessary increase in overall power consumption. During

mode switching, the instruction cache, data cache, and branch history do not need to be

flushed because morphcore does not require them. The only switching overhead introduced

by morphcore is the process of draining the pipeline.

Afram et al. also recommend the FlexCore architecture as a viable and workable alternative.

In a multi-cluster architecture, the FlexCore architecture consists of two small cores [15].

These cores can transform into a wide and Out-of-Order processor, if necessary. The Out-

of-Order processor can also be set up to function as a simultaneous multi-threading (SMT)

core. However, sufficient thread-level parallelism (TLP) between the existing threads is

required to achieve this configuration. Various run time statistics are collected like our

proposed method to make an accurate estimate of the proper configuration. Cores can also

be configured to run in a low power In-Order execution mode.

13

Finally, we proposed the interactive Mood Detection Engine as an early research project.

(iMODE) is a similar processor that includes trial periods for both In-Order and Out-of-

Order execution modes to determine the most appropriate execution mode [29]. There was

no prediction logic in that study, and we relied entirely on the results of the trial execution

modes, which averaged around 17 percent power savings. Due to the presence of trial

execution modes in iMODE, performance is degraded unnecessarily, or valuable power-

saving opportunities are missed. As a result, when designing our ASMMP architecture, we

decided to incorporate an accurate mode prediction logic and eliminate those trial execution

modes periods. The ShapeShifter architecture used in this thesis for mode switching

mechanism is proposed, an Out-of-Order superscalar processor that sometimes acts as if it

is a smaller In-Order superscalar processor [31]. At certain decision points, the mode

switching circuit decides which execution mode is more suitable for running an application

until the next decision point. The ShapeShifter achieves better power and energy-delay

savings with just two processor statistics than the relatively complex and power-hungry

control circuit within a composite core architecture previously proposed in the literature.

14

3. APPLICATION MONITORING STAGE IN ASMMP

This chapter is organized as follows: Section 3.1. explains the ASMMP resources' occupancy

parameter used to collect information about the running application needs and its behavior

periodically. Section 3.2 shows how we predict instruction-level parallelism for the running

application, followed by Section 3.3, which explains how we measure the success rate of

branch prediction in a speculative processor with a dynamic branch prediction mechanism.

Lastly, all collected information will be used as input data to the next stage of ASMMP,

which is the application classification stage.

3.1. ASMMP RESOURCES’ OCCUPANCY PARAMETER

Monitoring and collecting important Out-of-Order processor structures occupancy will help

decide the approximate needs of processor resources that can be dedicated to the running

application to maximize energy savings while limiting any performance loss below a

specified level, which is 5 percent in our case. The shaded sections in Figure 3.1 shows Out-

of-Order processor structures that can be redesigned for adaptive processing [5].

Figure 3.1. Out-of-Order processor structures redesigned for adaptive processing.

To gather resource occupancy in hardware each cycle, we need to check each structure's

number of filled entries. This can be easily done by checking each resource entry valid bit.

Also, a counter is needed to increment when the resource entry is not empty. Performing

15

these calculations at every application execution cycle for all resources may lead to huge

hardware complexity. Thus, we decide to use the sampling method.

The sampling method is similar to capturing a picture of the resource occupancy not for

every cycle but specific running periods. The sampling method helps to reduce monitoring

overhead with near-accurate occupancy values of different resources. Also, to apply the

sampling technique, we need to add an extra structure (queue) near each resource to

periodically collect application occupancy data of different resources. Figure 3.2 shows the

H/W circuitry of collecting resources occupancy using the sampling technique. Figure 3.3

shows a flowchart of how to use sampling in occupancy calculation.

Figure 3.2. H/W circuitry for collecting occupancy using sampling

16

Figure 3.3. Flowchart shows sampling in occupancy calculation.

Empty ?

No

Yes

17

3.1.1. Occupancy Tests and Results

We collect occupancy values for different processor structures by running benchmarks from

the Spec2006 benchmark suite using the Gem5 simulator with x86 ISA [2] [3]. Each

benchmark is executed for 100M instructions. Configuration parameters for the simulated

processor are given in Table 3.1. Lastly, Figures 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9, respectively,

show occupancy of different processor resources with different numbers of samples taken

periodically at the end of each epoch.

Table 3.1. Specification of the simulated processor

L1 I- and D-Caches 16Kb, 4-way, 64-byte line size, 2

cycle latency

L2 Cache 128Kb, 8-way, 64-byte line size, 20

cycle latency

CPU Frequency 2 GHz

Pipeline

4-way issue bandwidth

ROB: 192 entry

IQ: 64 entry

LSQ: 32 entry

RF: 256 registers

Decision period (1 epoch) 1 M cycles

No of samples collected every 1M cycles 1M, 256, 64 samples

No of executed instructions 100 M

Figure 3.4. Re-order buffer average occupancy for 1M cycle period

0

50

100

150

as
ta

r
b

w
av

e
b

zi
p

ca
lc

u
lix

ga
m

es
ge

m
ss

go
b

m
k

gr
o

m
ac

s
h

2
6

4
h

m
m

r
lb

m
le

is
lie

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d
o

m
n

e
tp

p
o

vr
ay

sj
en

g
so

p
le

x
to

n
to

xa
la

n
c

R
O

B
 E

n
tr

ie
s:

 1
9

2

Spec2006 benchmarks

1M_samples

256_samples

64_sample

18

Figure 3.5. Load queue average occupancy for 1M cycle period

Figure 3.6. Store queue average occupancy for 1M cycle period

0

5

10

15

20

25

30

as
ta

r
b

w
av

e
b

zi
p

ca
lc

u
lix

ga
m

es
ge

m
ss

go
b

m
k

gr
o

m
ac

s
h

2
6

4
h

m
m

r
lb

m
le

is
lie

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d
o

m
n

e
tp

p
o

vr
ay

sj
en

g
so

p
le

x
to

n
to

xa
la

n
c

LQ
 e

n
tr

ie
s:

 3
2

Spec2006 benchmarks

1M_samples

256_samples

64_samples

0

5

10

15

20

25

30

35

as
ta

r

b
w

av
e

b
zi

p

ca
lc

u
lix

ga
m

es

ge
m

ss

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
r

lb
m

le
is

lie

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

SQ
 e

n
tr

ie
s:

 3
2

Spec2006 benchmarks

1M_samples

256_samples

64_samples

19

Figure 3.7. Integer Physical register file average occupancy for 1M cycle period

Figure 3.8. Floating point register file average occupancy for 1M cycle period

0

20

40

60

80

100

120

IR
F

e
n

tr
ie

s
:2

5
6

Spec2006 benchmarks

1M_samples

256_samples

64_samples2

0

20

40

60

80

100

120

140

160

180

as
ta

r

b
w

av
e

b
zi

p

ca
lc

u
lix

ga
m

es

ge
m

ss

go
b

m
k

gr
o

m
ac

s
h

2
6

4

h
m

m
r

lb
m

le
is

lie

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

o
vr

ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

FR
F

En
tr

ie
s.

2
5

6

Spec2006 benchmarks

1M_samples

256_samples

64_samples

20

Figure 3.9. Issue queue average occupancy for 1M cycle period

3.1.2. Effects of Sampling on Occupancy Values

The average occupancy of different processor structures obtained from the sampling

technique showed deviation from actual occupancy values. The actual average occupancy

represents the occupancy of different processor structures collected every cycle during one

epoch. Also, The changes in deviation values directly depend on the number of samples

taken.

Moreover, the deviation between actual occupancy means and sampled occupancy mean

should not exceed a certain rate. We collected occupancy data for 16, 32, 64, 128, 256, and

1 million samples to determine the error rate between actual and sampled occupancy values.

We then applied the L1 norm(Least Absolute Deviations or LAD) and L2 norm (Least

Absolute Errors or LAE) formula as shown in Equation 3.1 and Equation 3.2.

The results show that increasing the number of taken occupancy samples leads to more

accurate and closer results to actual occupancy values for Spec2006 benchmarks. Figures

3.10 & 3.11, respectively, show the deviation of occupancy samples from actual occupancy

values, which is equal to one million samples in our case.

0

10

20

30

40

50

60

as
ta

r

b
w

av
e

b
zi

p

ca
lc

u
lix

ga
m

es

ge
m

ss

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
r

lb
m

le
is

lie

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

Is
su

e
 q

u
e

u
e

 E
n

tr
ie

s
.6

4

Spec2006 benchmarks

1M_samples

256_samples

64_samples

21

 𝐿1 𝑛𝑜𝑟𝑚 = ∑
𝑎𝑏𝑠(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 − 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑖𝑧𝑒 𝑜𝑟 𝑛𝑜 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
 (3.1)

 𝐿2 𝑛𝑜𝑟𝑚 = √∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 − 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑎𝑓𝑡𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)2 (3.2)

Figure 3.10. Higher value, worse outcome /or deviation rate after applying L1 norm

Figure 3.11. Higher value, worse outcome /or deviation rate after applying L2 norm

22

3.2 INSTRUCTION DISPATCH RATIO (IDR)

The main difference between Out-of-Order and In-Order execution modes is that Out-of-

Order processors can schedule any of the ready instructions waiting in the IQ regardless of

the original program order, whereas In-Order processors must schedule them in strict

program order. For example, if any of the customers entering a market finishes their

shopping, they can complete their transaction at the cash register regardless of the order they

entered. Out-of-Order processors have logic that is identical to this. When the cash register

begins dealing with customers in the order they enter the market, the shopping process can

be streamlined. However, we may need to delay some customers who finished their shopping

earlier than those who entered the market earlier. This second scenario is perfectly matched

by the logic of In-Order execution mode. We can collect the IDR value with a counter used

to measure the ILP level for running the application.

Therefore, dividing the number of instructions currently awaiting Out-of-Order execution

by those awaiting In-Order execution allows us to determine how faster an Out-of-Order

processor could be compared to an In-Order execution. We can obtain a sufficiently precise

IDR value by sampling enough (n times) over some time, as shown in Equation 3.3 below.

 𝐼𝐷𝑅 =
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑎𝑑𝑦 𝐼𝑛𝑠. 𝑖𝑛 𝐼𝑄𝑖𝑛

𝑖=0

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑎𝑑𝑦 𝐼𝑛𝑠. 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑒𝑎𝑑 𝑜𝑓 𝐼𝑄𝑖𝑛
𝑖=0

 (3.3)

The most important thing to remember when collecting samples is that if you sample too

often, the same instructions that are ready in the same IQ configuration can be counted

multiple times, resulting in an IDR value that is misleading. During the tests, for example,

we set the sampling interval to 100 cycles. A slow-running application, such as bwaves from

the SPEC2006 CPU suite, can stall the IQ for hundreds of cycles. In this case, we risk

counting and accumulating the number of ready instructions that we have already counted

at consecutive sampling times.

To solve this problem, we recall the program counter (PC) of the instruction waiting on top

of the IQ during a sampling period and compare it to the PC value of the instruction waiting

on top of the IQ during the next sampling period. If these two PC values are the same, we

23

know that the same instruction is still waiting on top of the IQ and that nothing has changed

since the last sampling period.

3.3. COMMIT OVER FETCH RATIO (CFR)

The final stage of the instruction completion process is the commitment stage. Some

instructions are unable to progress to this stage. When a branch instruction is mispredicted

in speculative processors with a dynamic branch prediction mechanism, many instructions

following that branch instruction on the mispredicted path must be discarded to continue

with the application's sound execution. At this point, we look at the ratio of instructions

committed to instructions fetched over a given period, as shown in Equation 3.4 below. We

can say that all instructions that entered the processor were successfully committed if this

ratio is close to one. However, if this ratio is close to zero, we can conclude that the

processor's predictions were consistently incorrect, and only a small number of instructions

made it to the commitment stage. The remaining instructions should be removed from the

processor in this case.

 𝐶𝐹𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑚𝑖𝑡 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑓𝑒𝑡𝑐ℎ𝑒𝑑 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑
 (3.4)

24

4. APPLICATION CLASSIFICATION/EXECUTION MODE

This chapter is organized as follows: Section 4.1. with its subsections explains the

implementation and design of ASMMP execution mode selection mechanism based on

collected information from stage one. Also, choosing the most suitable instruction execution

mode for running the application dynamically.

4.1. EXECUTION MODE SELECTION

To compare and clarify the advantages of the proposed ASMMP execution mode selection

mechanism, we will first overlook and examine the composite core study proposed by

Lukefahr and his team [8]. A composite core is made up of both large and small

heterogeneous microengines. The ability of composite cores to select the most appropriate

micro engines for running applications to save power without sacrificing too much

performance is their most important property. To accomplish this, a composite core collects

various processor statistics from the active microengine during runtime and attempts to

predict the performance of the passive microengine. The microengine, which is more

suitable for running the rest of the application, is determined by a migration decision

circuitry bound to collect statistics and complex functions that are run sequentially in the

method proposed in the literature.

Lukefahr et al. presented the first study on composite cores. ARM's big.LITTLE

heterogeneous multi-core architecture is an excellent example of the composite core

architecture. A 3-wide Out-of-Order Cortex-A15 superscalar microprocessor (large) and a

2-wide In-Order Cortex-A7 superscalar microprocessor (small) are located in the same core

in this architecture. Lukefahr et al. define a composite core as a heterogeneous multi-core

architecture consisting of one large and one small compute microengine that can provide

both high performance and high energy savings. Core migration is coarse-grained in ARM's

existing big.LITTLE architecture.

Many power-saving opportunities are lost in this architecture when running applications that

frequently change behavior, as cross-core application migration occurs after billions of

25

instructions are executed. Similarly, an application that requires instant high performance

while running on the small microengine remains connected to the small microengine for an

extended time.

In conclusion, the current method lacks the reflex to react to sudden changes in the behavior

of running applications. Lukefahr et al. now propose a fine-grained decision mechanism for

core-to-core migration and a method that is more agile in adapting to the needs of running

applications. The work proposed by Lukefahr and his team is referred to as the Composite

Core (CC) study here. The method proposed in the CC is based on predicting the

performance of the passive microengine using a function obtained through machine-learning

methods that incorporate statistics from the active microengine.

The statistics gathered range from the L2 cache miss and hit rates to the branch prediction

mechanism's misprediction percentage and from the instruction-level parallelism (ILP)

calculated from the issue queue (IQ) to the roughly calculated memory level parallelism

(MLP) using the miss status holding register (MSHR). To collect these statistics, complex

tables, such as a dependency table, should be integrated into the small core. The performance

estimator, threshold controller, and core switching control mechanisms are all part of the

decision circuit, known as the reactive online controller.

Instead of using more than two heterogeneous cores, we propose the ASMMP architecture,

which uses a single Out-of-Order core to switch between Out-of-Order and In-Order modes

of instruction execution. As shown in Figure 4.1, ASMMP's execution mode circuitry

comprises a mode switching decision mechanism and a mode switching enforcement

mechanism. Furthermore, by sacrificing less than 5 percent of performance, our simple mode

change decision circuitry, which is bound to only two processor statistics (IDR and CFR),

can save more than 25 percent power, more than 21 percent on energy-delay products, and

more than 16 percent on energy-delay-square products on average.

26

Figure 4.1. Execution mode selection policy in ASMMP

4.1.1. ASMMP execution mode switching architecture

The ASMMP core architecture differs from Lukefahr and et al.'s composite core architecture

[8]. Two heterogeneous microengines, one small and one large are tightly connected in the

composite core architecture. The fetch logic, the branch prediction unit, the L1 instruction,

and data caches are all shared in Lukefahr and his team's study [8]. However, data path

structures such as the register alias table (RAT), physical register files (PRF), and load/store

queue (LSQ) that are only used by the Out-of-Order microengine are not shared. The authors

also suggest adding a small L0 cache to the small microengine in the article version of the

CC, which is published by the same authors later [9]. A dependency table embedded in the

In-Order core is used by the reactive online controller proposed in the CC.

27

Since it requires 128x32x2 bits, the dependency table requires a static random access

memory (SRAM) space almost as large as the Re-order buffer (ROB). The reactive online

controller's main function is to collect various performance metrics and use them to

determine which core should be active for the next epoch. The CC architecture is depicted

in Figure 4.2.

Figure 4.2. Composite core architecture [8]

As illustrated in Figure 4.3, the execution mode selection in ASMMP is based on the

aforementioned composite core architecture. ASMMP architecture includes a single Out-of-

Order microengine that functions as an In-Order microengine when needed. The ASMMP

requires less space and no additional structures for the prediction hardware. Furthermore,

because only one core can switch between execution modes, no core migration logic is

required. Since the data path structures holding live instructions can continue working

without interruption, the mode switch process from In-Order execution mode to Out-of-

Order execution mode happens almost instantly. For example, when the Out-of-Order

scheduler is activated, the Issue Queue (IQ) that schedules instructions in program order can

continue its work. However, switching from Out-of-Order execution mode to In-Order

execution mode may take some time. In such a case, the fetch stage must be throttled, and

28

all data path structures that are currently running instructions Out-of-Order must be drained

first. Then, the In-Order execution mode can be used.

Figure 4.3. Execution mode selection architecture in ASMMP

4.1.2. Mode Switching Decision Mechanism

Mode switching decision mechanism identifies the most appropriate instruction execution

mode for the running application for a specific period. The decision depends on two main

statistics: instruction dispatch ratio and instruction commit over fetch ratio of the running

application. The used statistics are already obtained in the first stage of the study to classify

applications based on their behavior into three main groups. These groups are as follows:

1. An application with high Instruction Level Parallelism (ILP) phases needs an Out-

of-Order execution mode to perform well with less power-saving opportunities.

2. An application with low ILP phases needs an In-Order execution mode to perform

well and many power-saving opportunities.

29

3. A hybrid application with both high and low ILP phases during its lifetime needs

dynamic switching in execution mode to save power without sacrificing too much

performance.

To determine instruction execution mode for the running application, we need the product

of instruction commit over fetch ratio with instruction dispatch ratio to determine how well

the Out-of-Order mode performs compared to its In-Order counterpart. Equation 4.1 shows

us the speedup value (S) of the Out-of-Order mode over the In-Order mode.

 𝑆 = 𝐼𝐷𝑅 ∗ 𝐶𝐹𝑅 (4.1)

First and foremost, given the obvious performance advantage of the Out-of-Order mode over

the In-Order mode, we do not expect the speedup value obtained from Equation 4.1 to be

less than one. On the other hand, the S value can get very close to 0 due to the value of CFR,

which indirectly expresses the percentage of instructions inserted into the processor due to

mispredictions in the dynamic branch prediction mechanism. In such cases, we can deduce

that the Out-of-Order execution mode loses its advantage over the In-Order mode, and that

is now the best time to switch from Out-of-Order to In-Order mode in order to save more

power. Equation 4.2 shows the effect of the S value on the mode selection stage of the

decision circuit.

The decision circuit selects the Out-of-Order mode when the calculated S value is greater

than a fixed threshold value (alpha). In its absence, the In-Order mode is selected. Low

threshold values result in more Out-of-Order mode selections, while high threshold values

result in more In-Order mode selections. The impact of this threshold value on performance

is reported in the tests and results section. Another option is to match the threshold value

with the needs of applications running in the background. In this case, it may be possible to

prevent applications' performance from degrading beyond a certain point while revealing a

more stable and reliable decision mechanism.

 𝑀𝑜𝑑𝑒 = {
𝑂𝑢𝑡 − 𝑜𝑓 − 𝑜𝑟𝑑𝑒𝑟, 𝑆 > 𝛼

 𝐼𝑛 − 𝑜𝑟𝑑𝑒𝑟, 𝑆 ≤ 𝛼
 (4.2)

30

4.1.3. Mode Switching Enforcement Mechanism

In ASMMP, switching between execution modes must be as smooth as possible. In this case,

the enforcement mechanism takes responsibility and adopts mode-change decisions as soon

as possible. The issue queue is one of the key data path structures distinguishing between

Out-of-Order and In-Order execution modes. IQ is a queue structure in an In-Order

processor, where the head of the queue holds the oldest instruction and the tail of the queue

holds the youngest instruction in program order. The IO mode instruction scheduler is

straightforward enough to schedule instructions from the IQ's head once they are ready (i.e.,

all source operands of the instruction become valid).

The Out-of-Order mode instruction scheduler, on the other hand, is far more complicated, as

it is responsible for locating ready instructions that may be located anywhere in the IQ. IQ

is no longer a queue structure in an Out-of-Order processor, and it is now known as the

instruction dispatch buffer (IDB). The instructions in the IQ must be in program order when

switching from Out-of-Order to In-Order execution mode. As a result, when a mode switch

decision is made, the ASMMP enforcement mechanism stops fetching new instructions and

waits for the instruction pipeline to empty.

If the IQ contains long-latency (such as floating-point divide and square root) and non-

deterministic latency (such as memory) instructions, this process may take a long time. If

the mode transition is not completed within five thousand cycles, the pipeline contents are

flushed to avoid long delays in the enforcement mechanism (an empirical time, which gives

us good feedback in our experiments). The Out-of-Order instruction scheduler is deactivated

when the pipeline is empty, and a simpler In-Order instruction scheduler is activated.

Meanwhile, instructions are being dispatched into the IQ in program order.

It is much easier to switch from In-Order to Out-of-Order execution mode. An IQ

organization is not required for the Out-of-Order scheduler because it can dispatch

instructions in any arbitrary sequence and issue them promptly. A simple reactivation of the

complex Out-of-Order scheduler and deactivation of the In-Order scheduler is needed to

switch from In-Order mode to Out-of-Order mode.

31

4.1.4. Periodic Operation

When collecting statistics, we use two distinct periods: the sampling period (SP) and the

decision period (DP). There are many SPs in each DP. We collect and accumulate the

number of ready instructions in the IQ at the end of each SP, as shown in Figure 4.4. We

calculate IDR and CFR values at the end of a DP and compare the S value with the threshold

value. Then, we choose which execution mode is best for running our application until the

next DP arrives. We will continue to work in the target mode if a mode switching decision

is made.

Figure 4.4. Periodic operation of execution mode selection in ASMMP

4.1.5. Hardware

The CC contains the miss and hit rates collected from the L2 cache, the misprediction rate

of the dynamic branch prediction mechanism, counters that collect parallelism levels at the

instruction and memory levels, a multiplier-accumulator (MAC) that performs the

performance prediction function trained by the offline machine-learning method, and a

reactive online controller circuit that also takes into account error rate, and a dependency

table to collect ILP information missing in the In-Order processor require extra hardware

32

that takes up about 3 percent of the total processor area. The execution mode selection

architecture described in ASMMP, on the other hand, comprises a pipelined division circuit

for IDR and CFR computations, a multiplication circuit for calculating the S value, and a

comparison circuit for comparing it with the threshold value.

In ASMMP, the execution mode selection architecture is implemented using a hardware

solution. However, we can explain the functioning of the Execution mode selection

architecture in terms of pseudocode, as shown in Algorithm 4.1. The variables displayed as

current commit count and current fetch count in the pseudocode represent the commit and

fetch counts already collected by many modern processors, as depicted in the pseudocode.

Instead of sampling the fetch and commit counts in every sampling period in H/W (which is

more frequent than the decision period), the execution mode selection circuit remembers the

fetch and commit counts from the previous period at the beginning of the new decision

period (represented as prev fetch and prev commit).

 The decision algorithm requires two subtraction operations and two-division operations.

These operations can be performed consecutively to minimize hardware complexity,

requiring only a single subtractor and divider to complete the algorithm. A comparator is

essentially a subtractor. The same unit can be used for both subtractions and comparisons

because they are independent operations. For the sampling periods, this subtractor can also

be used as an adder. As a result, the Execution mode selection algorithm can be implemented

using only a comparator (used in the algorithm for subtraction, comparison, and addition), a

divider, and a multiplier. It is also worth noting that these units do not necessarily need to be

full 32-bit units. Simpler computation units may suffice due to the short sampling and

decision periods. Table 4.1 shows approximate transistor count needed to implement

execution mode selection mechanism in ASMMP.

In summary, except for the two statistical variables previously collected in the CC, there is

no MAC circuit or dependency table complexity as we proposed. As a result, compared to

the composite core circuit, the suggested execution mode selection approach in ASMMP is

more advantageous in terms of delay values, area, and power consumption.

33

Algorithm 4.1. Operation of execution mode selection in ASMMP

Table 4.1. Transistor count for execution mode selection mechanism

Hardware circuit Approximate transistor number (bit

number * transistor count)

13 bit full adder 13*20=260

15 bit comparator 15*10=150

6 bit division 6*144= 864

4 bit multiplication 4*24=96

6 bit counter 6*20=120

15 bit register 15*6=90

34

5. APPLICATION CLASSIFICATION/RESOURCE PARTITIONING

This chapter is organized as follows: Sections 5.1 and 5.2 explain the implementation and

design of ASMMP resource partitioning based on collected occupancy information from

stage one. Then, the method behind assigning suitable processor resources to the running

application is explained.

The design stage determines the size of various structures within the processors. The size of

these structures is determined by the design of a high-performance processor. However,

regardless of the processor's power, some applications will not always require full structure

capacity. In some cases, using only a small portion of the structures will be sufficient to

achieve very close performance to the highest possible from the running application.

In such cases, at the design stage, although a significant part of these structures, which is

decided to be large, is not needed, they will continue to consume energy. In similar cases, it

may be possible to reduce structure size without adversely affecting the performance and

reduce the processor's energy consumption. To achieve this goal, we need to perform

resource partitioning or adaptive processing. Adaptive processing is a straightforward

solution to dynamically disable portions from processor resources according to the runtime

needs of workloads [4], [5], [6], [7]. This thesis will follow the coarse grain resource

partitioning (open/close for one large partition) path rather than the fine-grain (open/close

for a small number of entries) path. Coarse grain partition has lower hardware complexity

and provides more functional resource access methods than the fine-grain option. Figure 5.1

shows implemented resource partitioning policy and its components. The following

subsections give a brief explanation of these components.

35

Figure 5.1. Resource partitioning in ASMMP

5.1. PARTITIONING DECISION MECHANISM

The partition decision mechanism decides to upsize or downsize processor resources

depending on the collected statistics at the end of each epoch for running the application.

We use resource occupancy statistics obtained in the first stage of the study to classify

applications based on their resource demands into two main groups. These groups are as

follows:

1. High utility applications which use most of the processor resources.

2. Low utility applications which use few of the processor resources.

36

The purpose of dividing applications into two main categories is to help use processor

resources more efficiently and save power without noticeable loss of application

performance. The partition decision mechanism for resource upsizing/downsizing is

examined in detail in the following subsections.

5.1.1. Resource downsizing decision

We need to look for a sign that not all resource entries are used by an application to trigger

resource downsizing operations. In this thesis, we examine the occupancy parameter of

different processor resources. For example, if the average number of elements contained in

the resource does not exceed half the total number of elements of this structure in certain

periods, the resource size will be reduced, and energy savings will be achieved. However, at

this point, we need to choose the type of size reduction method too. Following an aggressive

size reduction method that deprecates half of the processor resource size can result in more

than 5 percent performance degradation. In this case, we will use a more cautious method of

size reduction, which is the closure of one partition and the closure of other partitions

according to the average number of elements observed subsequently to prevent performance

degradation.

Algorithm 5.1 shows our partition decision mechanism for resource downsizing. At the end

of each period, we check the difference between resource size(G) and average resource

occupancy(D) of the running application. If it is larger than the specific threshold(T), we

decrement resource size by one portion(B), which is equal to eight entries in our study. After

downsizing decision, we allow instructions to retire from the resource while preventing

inserting new instructions to the resource. Furthermore, this operation may take a long time

for a short duration at the beginning of the new period to assign a new resource size (G-B)

to the running application.

37

Algorithm 5.1. Resource downsizing in ASMMP

5.1.2. Resource Upsizing Decision

In the resource upsizing algorithm, here, we can choose aggressive or cautious resource

upsizing methods. In the aggressive method, when resource occupancy value exceeds a

certain threshold value, a decision can be made to increase resource size by one portion

containing eight entries in our case immediately without waiting for the end of the period,

or multiple portions can be opened instantly (again without waiting for the end of the period).

On the contrary, in the cautious method, the resource upsizing process can be performed by

adding only one portion at the end of each decision step(waiting until the end of the epoch).

As a result, it is possible to try a wide range of alternative algorithms for resource upsizing.

We will follow an algorithm similar to the resource downsizing algorithm. When the average

resource occupancy for the running application through a specific period is larger than the

specific threshold, we increase resource size by one portion. Also, to perform resource

upsizing, we do not have to wait till the end of the period to prevent performance loss of the

running application. Algorithm 5.2 shows our partition decision mechanism for resource

upsizing.

38

Algorithm 5.2. Resource upsizing in ASMMP

5.1.3. The Use of Statistical Parameters

In the first stage of ASMMP, we monitor and collect different statistical parameters such as

average resource occupancy, how many time a resource has been full or not, etc., in every

period. For each new decision period, we can follow two ways of using the statistical

parameters. The first way is to consider old values from the previous periods (partial transfer

of parameters history) and give them a certain weight (most studies give them 50 percent

impact). Then, merge these values with the new ones for determining resource upsizing or

downsizing decisions. The second way is to reset parameter values and not merge them with

new period data. We follow the second method in this thesis to reduce the hardware

complexity of ASMMP.

Moreover, we believe that the threshold value for both resources upsizing and downsizing

should be different to prevent oscillation phenomena. Using the same threshold value may

lead to continuous activation of resource scaling.

This oscillation may result in performance degradation of the running application with fewer

energy-saving opportunities. Lastly, Figure 5.2 shows a flowchart for ASMMP partition

decision mechanism.

39

Figure 5.2. Partition decision mechanism flowchart for ASMMP

5.2. PARTITIONING ENFORCEMENT MECHANISM

The partition enforcement mechanism in ASMMP has two major purposes. The first purpose

is to take information from the partition decision mechanism and then continuously check

whether the conditions are satisfied to turn on/off different processor resources. The second

purpose is to enforce that the new target amount of resource entries do not exceed the

maximum allowable resource size and vice versa.

40

In this section, we classify ASMPP resources based on their different characteristics, such

as resource nature, occupancy, and frequency of resource use. Then, we define suitable

conditions based on these characteristics. Then, we will check these conditions during the

partition enforcement operation. The fulfillment of these conditions will help complete the

scaling process with minimum hardware complexity. The most important condition we will

follow is to divide the resource into partitions. Each partition consists of eight entries. Also,

at the end of each scaling decision, only one partition can be turned on or off (different

available entries from multiple partitions are not allowed to be turned on/off). In the

following subsections, we will examine ASMMP resource structures.

5.2.1. Circular Queue Resources

ASMPP resource structures such as Re-order buffer, load queue, and store queue are circular

queues where instructions are inserted into the queue in an In-Order manner and instruction

removal in the same order as insertion. A circular queue has two pointers (Head pointer) that

point to the beginning of the queue (oldest inserted instruction) and (Tail pointer) pointing

to the end of the queue (newest inserted instruction). So, every newly arrived instruction will

be placed at the end of the queue, and every retired instruction will be removed from the

beginning of the queue.

The conditions needed to be satisfied by the partitioning enforcement mechanism to

downsize circular queue structures in ASMMP are continuously to check all entries in the

specified partition and mark each empty entry in that partition and second, to block the

arrival of the new instructions to that partition.

Moreover, on each instruction, removal from that partition keeps marking the entry and

repeats the process till all entries in that partition become empty. Finally, the partitioning

enforcement mechanism deactivates the chosen partition.

The conditions needed to be satisfied by partitioning enforcement mechanism to upsize

circular queue structures in ASMMP is to allow insertion of sequential and one-piece of

instructions to available partition without creating gaps between resource partitions.

Furthermore, we can achieve the mentioned condition by checking the position of the head

41

pointer and make sure that it should be positioned before the tail pointer. After satisfying the

above conditions, our partition enforcement mechanism will activate the resource partition,

and it will be ready to be used by running the application.

5.2.2. Instruction Queue (IQ)

The most important functioning of Out-of-Order execution is the execution of instructions

based on the "data flow" graph (rather than program order) by keeping the semantics of the

original program. The HW examines a sliding window of consecutive instructions (The

"instruction window"). Later, ready instructions get picked up from the window(instruction

queue keeps these instructions) and executed out of program order. Lastly, instruction results

are committed to the machine state (memory and architectural register file) in original

program order. Due to the nature of the instruction queue, ready instructions can be selected

out of program order. This increases the complexity of the instruction selection circuit, but

at the same time, it allows instructions to be stored in a mixed order inside the instruction

queue.

The instruction queue scaling operation is easier than other resource scaling processes

because the instructions do not need to be stored in a certain order. Thus, the Partition

enforcement mechanism can directly (upsize) activate and add a partition to the end of the

instruction queue without the need to check any conditions. Whereas, during the downsizing

process, the partition enforcement mechanism blocks fetching new instructions to the

instruction queue and waits until all partition entries become empty. After satisfying the

mentioned conditions partition enforcement mechanism turn off that partition.

Another remarkable point here is that the processor replaces new instructions at the

beginning of the instruction queue, accumulated in density at the beginning of the queue

with relatively empty spaces at the end of the queue. The mentioned point helps partition

enforcement mechanism to complete the size reduction process more quickly.

42

5.2.3. Register Files

Register files are structures that play a critical role in the register renaming mechanism,

which helps eliminate all false data dependencies among instructions. To perform all these

jobs, register files consume more power than other resources. Instructions (operands) are

stored in the register file out of program order, similar to the instruction queue case.

However, the main difference between both structures is that instructions in the instruction

queue can be removed from this structure as the instructions are executed, while the data in

the register files must remain in place while the corresponding instructions are on the

processor. As a result, performing register file scaling requires either waiting until the

instructions retire from the queue or doing nothing by waiting for a specific period and then

flushing the structure.

There are two ways we can use to reduce register file size. The first method is to transfer the

values inside a specific partition of the register file to other entries in other available

partitions and then update the register rename table. The second method is to wait for the

oldest instructions in the register file to commit totally from the processor, which later leads

to evacuation of its data from the register file. In this thesis, we follow the second method to

turn off the registers since the first option requires additional circuit, time, and energy

consumption to be implemented. Lastly, the partition enforcement mechanism can directly

upsize the register file without any specific condition. The upsizing process can simply be

done by marking activated registers as available in the register rename table. Figures 5.3 and

5.4 show a flowchart for the scaling process followed by the partition enforcement

mechanism in ASMMP.

43

Figure 5.3. Partition enforcement mechanism for resource upsizing in ASMMP

44

Figure 5.4. Partition enforcement mechanism for resource downsizing in ASMMP

45

5.3. ASMMP OPERATION

The purpose of this section is to examine and discuss ASMMP's operation and the results

obtained by integrating the resource partitioning mechanism with the execution mode

selection mechanism to save power not only through dynamic execution mode switching but

also by turning off idle processors resources during Out-of-Order execution mode.

5.3.1. Issuing Right Processor Configuration

The primary objective of this thesis is to design a single hybrid processor capable of limiting

application performance degradation to less than 5 percent and minimizing power

consumption. This objective is accomplished by using the two distinct methods. The first is

to dynamically partition resources by monitoring occupancy information during an

application's Out-of-Order execution mode and saving by turning off unused processor

resources. The second is periodic switching between In-Order and Out-of-Order execution

modes, with power savings resulting from the absence of complex Out-of-Order execution

mode structures for a while. Mode switching is accomplished by monitoring certain

processor statistics, such as the number of committed and fetched instructions in the running

application, which are not as difficult to collect and monitor as in CC [8]. Additionally, the

proposed method overcame the disadvantages of iMODE [29]. iMODE is another technique

for changing execution modes based on trial periods [29]. The primary disadvantage of this

method is that it uses brief trial periods at the end of the main Out-of-Order execution mode,

which slows down high-performance applications. Although iMODE attempts to mitigate

the slowdown caused by this problem by postponing the next decision point based on a

specified delay threshold value, applications that require full speed will still experience a

slowdown.

These two methods can be combined by selecting the most appropriate processor

configuration for the running application. Figure 5.5 shows a flowchart for the final proposed

ASMMP architecture and how these two methods are combined to operate together.

46

Figure 5.5. Flowchart for proposed ASMMP architecture

As can be seen from the flowchart, the top of our flowchart specifies distinct steps for Out-

of-Order and In-Order execution modes. The left section illustrates the steps to be taken

47

while in the Out-of-Order mode, and the right section illustrates the steps to be taken while

in the In-Order mode. The mode switching decision mechanism described in Section 4.1

governs the selection of an Out-of-Order execution mode. ASMMP collects the necessary

statistical data required by mode decision mechanisms (IDR, CFR) values to calculate

system speed up (S) using the sampling method. Additionally, resource partitioning in

ASMMP is dependent on the mechanism for resource partitioning described in Sections 5.1

and 5.2, respectively. The average occupancy of the Re-order buffer, load queue, store

queue, issue queue, and register files is determined using the same sampling method. The

occupancy data is used by the resource partitioning decision mechanism, which helps

allocate sufficient resource space to run applications and shut down unused entries to

conserve energy.

At first, the application ran in an Out-of-Order mode with adaptive resource processing. At

the ending of each partition decision period, the average occupancy value for all processor

resources is calculated and compared to the threshold value (downsize threshold), based on

the comparison result of either resource downsizing or upsizing by one partition applied after

satisfying all partition enforcement mechanism requirements. Following that, at the ending

of each execution mode decision period, the system speed up (S) value is calculated and

compared to the threshold value (alpha threshold). We retain the Out-of-Order execution

mode if the speed-up value exceeds the specified alpha threshold. Otherwise, we begin the

process of switching the execution mode to In-Order mode. Before initiating the switching

process, we must disable the resource partitioning mechanism, which will result in only one

partition per resource being activated. All remaining partitions will be disabled (the partition

enforcement mechanism responsible for this operation) since we do not require extensive

use of these resources in the In-Order execution mode. Additionally, by deactivating most

resource partitions, we expect to achieve approximately fourfold power savings when an

application runs in Out-of-Order mode, as mentioned in the CC study.

Later, we wait for the mode switching enforcement mechanism to complete the process of

switching by allowing active instructions to complete their execution and be retired. Finally,

two additional points should be made. The first is related to the resource occupancy

collection mechanism, which remains active when we are in the In-Order mode, and at the

ending of each sampling collection period, a value for resource occupancy is inserted into

48

the sampling queue. The final and the most critical point concerns collecting statistical data

that will be used to forecast the next execution mode. The sample period is critical in this

situation because a short sample period results in frequent sampling.

Additionally, we will continue to count the same ready instructions in the instruction queue,

which will result in inaccurate information about the number of ready instructions. For

example, collecting ready instructions every 100 cycles may cause issues for slow

applications, such as bwaves, which can sit in the instruction queue for hundreds of cycles

without progressing. In this case, we risk counting and accumulating the same number of

ready instructions as we did during the initial sampling time.

To address this issue, we store the program counter value of the instruction waiting in the

instruction queue at the end of the sampling period in a register and compare it with the

program counter value of the instruction waiting in the queue at the beginning of the next

sampling period. If these two program counter values match, we know that the same

instruction is still waiting at the top of the queue and that the instruction queue situation has

not changed since the previous sampling period, and thus, we avoid counting the number of

ready instructions multiple times. By employing this technique, we were able to identify

slow benchmarks (bwaves, leslie3d, and sjeng) and execute them in order with minimal

performance degradation and significant power savings in our proposed ASMMP.

49

6. TESTS AND RESULTS

This chapter presents the simulation results for ASMMP in terms of performance, power

savings, and efficiency. The results of evaluating the execution mode selection mechanism

in terms of performance, power savings, and energy efficiency are presented and discussed

in Section 6.1. The resource partitioning mechanism is evaluated in Section 6.2 as a power-

saving technique that can be applied to various processor resources. Section 6.3 summarizes

and discusses the results of the performance, power savings, and energy efficiency

evaluations of the final ASMMP design.

6.1. EXECUTION MODE SELECTION TESTS AND RESULTS

The Gem5 simulator is still being used to test and evaluate the proposed execution mode

switching architecture in ASMMP [2]. SPEC CPU2006 benchmarks are compiled in the x86

architecture and run with reference input files until each benchmark completes 100 million

instructions [3]. Table 6.1 shows the properties of the simulated In-Order and Out-of-Order

processors.

Table 6.1. Specification of the simulated processor during execution mode switching

Processor Microarchitecture x86

Processor Frequency 2 GHz

Machine width 4

Re-order Buffer size 192

Issue Queue size 64

Load Queue/Store Queue size 32

Physical Register File size 256

L1 instruction and data cache 4-way LRU, 16 KB each

L2 cache 8-way LRU, 128 KB

Decision Period (DP) 10000 cycles

Sampling Period (SP) 100 cycles

α Thresholds 1, 3, 5

50

 Three criteria are used to evaluate simulation results: performance, power savings, and

energy efficiency. To calculate the processor's energy consumption per unit time, it is

assumed that the Out-of-Order mode consumes four times the energy of the In-Order mode,

as stated in the CC [8]. Power expenditure (PE) is calculated as stated in Equation 6.1, where

W is the proportion of time spent in the In-Order processor. The reported power savings (PS)

in the results section are determined using Equation 6.2. In terms of the average instructions

per cycle (IPC) metric, Equation 6.3 presents the calculation for the slowdown rate (SR) of

the proposed execution mode switching architecture in ASMMP compared to the baseline

Out-of-Order processor. Finally, Equations 6.4 and 6.5 reflect the efficiency formula in

terms of energy-delay product (EDP) and energy-delay-square product (ED2P),

respectively.

 𝑃𝐸 =
1

4
∗ 𝑊 + (1 − 𝑊) (6.1)

 𝑃𝑆 = 1 − 𝑃𝐸 (6.2)

 𝑆𝑅 =
𝐼𝑃𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐼𝑃𝐶𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒
 (6.3)

 𝐸𝐷𝑃 = 𝑃𝐸 ∗ 𝑆𝑅 (6.4)

 𝐸𝐷2𝑃 = 𝑃𝐸 ∗ 𝑆𝑅2 (6.5)

First, we run the spec 2006 benchmarks in both Out-of-Order and IO execution modes and

collect performance data. Table 6.2 compares the performance of applications running In-

Order with their Out-of-Order counterparts. In some applications, the performance

degradation is almost imperceptible (bwaves 0.3 percent , leslie3d 1.4 percent, and sjeng 1.8

percent). When running such applications, we expect the mode selection circuit in ASMMP

to prefer the In-Order mode in order to save more power.

51

Other benchmarks exhibit a significant performance degradation (gromacs 68.5 percent and

gamess 65.6 percent) when In-Order execution mode is chosen. When running such

applications, we anticipate that the Out-of-Order mode will provide the best performance.

Table 6.2. Performance drop of In-Order mode

Application Performance drop(%) Application Performance drop (%)

astar 59,4 h264 62,5

bwaves 0,3 hmmer 65,1

bzip2 16,1 leslie3d 1,4

calculix 50,3 libquantum 17,4

games 65,6 mcf 59,7

gems 44,6 milc 50

gobmk 23,3 namd 43,2

gromacs 68,5 sjeng 1,8

 average 39,3

We simulate the proposed execution mode switching circuit with various threshold values

(1, 3, and 5) and then record the percentage of In-Order runtime as illustrated in Figure 6.1.

As expected, our proposed mechanism succeeded in most cases in selecting an In-Order

execution mode when the performance difference between the two execution modes is close

to zero for the running application. This statement holds true for the bwaves, leslie3d, and

sjeng benchmarks. However, in applications where the performance difference between the

two modes is significant, as expected, the Out-of-Order mode is preferred.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

as
ta

r

b
w

av

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

In
-O

rd
e

r
ru

n
ti

m
e

 %

Benchmarks

Alpha 1

Alpha 3

Alpha 5

Best Alpha

52

Figure 6.1. Runtime percentage of the In-Order mode in mode selection mechanism of

ASMMP for various alpha thresholds

We also notice that as the threshold value increases and performance losses can be tolerated

more, the In-Order mode is given a better chance. Each benchmark's final column depicts

the effect of the near-optimal alpha threshold (best alpha) value retrieved from Table 6.3. As

the Graph indicates, the results for the fixed alpha threshold of 3 and the best alpha threshold

that always results in a performance penalty of around 5 percent are very similar.

Undoubtedly, using the fixed threshold value of 3 prevents us from taking advantage of some

power-saving opportunities in the astar, bzip2, gromacs, h264, hmmer, libquantum, mcf,

milc, and namd benchmarks. On the contrary, in the gems benchmark, we provide more

opportunities for power savings in the fixed threshold case and compensate for the

significant performance impact, as illustrated in Figure 6.2. The degree of performance

degradation for three fixed threshold values and the near-optimal threshold (best alpha) that

we studied is depicted in Figure 6.2.

The obtained results showed a small loss of around 0.25 percent on average in system

performance when using a small threshold value (Alpha = 1), with the highest performance

loss being 1.8 percent in the sjeng benchmark. On the other hand, because of this threshold

value, many power-saving opportunities are lost.

Table 6.3. Near-optimal thresholds

Application Alpha threshold (α) Application Alpha threshold (α)

astar 7,0 h264 4,0

bwaves insensitive hmmer 7,0

bzip2 5,0 leslie3d insensitive

calculix 3,0 libquantum 4,5

games 3,0 mcf 3,7

gems 2,5 milc 35,5

gobmk 3,0 namd 3,6

gromacs 5,0 sjeng insensitive

The performance loss tolerance of applications in the In-Order mode varies greatly, as shown

in the chart. For example, the bzip2 application spends nearly half of its time in In-Order

mode, but we only see a 0.12 percent performance drop compared to the baseline Out-of-

53

Order processor. Calculix suffers a significant performance loss with a fixed threshold of 3,

despite only running in the In-Order mode for 14 percent of its total runtime.

Additionally, we noticed that some benchmarks such as milc and hmmer are almost

insensitive to all used threshold values and prefer the Out-of-Order execution mode during

their lifetime.

The proposed mode switching circuit in ASMMP managed to stay safe by choosing the Out-

of-Order execution mode when the loss of performance will be high if we switch to the In-

Order mode. The only exceptional case is encountered with the gems benchmark. The fixed

alpha threshold of 3 seems to be a little too much for this benchmark (the best alpha value is

2.5, as shown in Table 6.3), and we observe more than a 15 percent performance drop.

Finally, the mode switching circuit in ASMMP also identifies slow benchmarks that are

insensitive to any alpha threshold (i.e., bwaves, leslie3d, and sjeng) and run them in In-Order

mode 100 percent of the time.

Figure 6.2. Percentage of performance drop in mode selection mechanism of ASMMP for

various alpha thresholds

Additionally, we recorded the power savings, energy-delay-product (EDP), and energy-

delay-square product (ED2P) savings associated with the mode switching mechanism

0%

5%

10%

15%

20%

25%

30%

as
ta

r

b
w

av

b
zi

p
2

ca
lc

u

ga
m

es

ge
m

s

go

gr
o

m
a

h
2

6
4

h
m

m
er

le
sl

ie
3

lib
q

u
a

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

P
e

rf
o

rm
an

ce
 D

ro
p

 %

Benchmarks

alpha=1

alpha=3

alpha=5

Best alpha

54

implemented in ASMMP. Figures 6.3, 6.4, and 6.5 show the obtained results for three

different threshold values. As the Figures show, while the threshold value is 1, the average

power and EDP savings are nearly 15 percent. However, when the threshold value is set to

3, the average power savings jump to 21.5 percent, while the average performance loss

remains around 2.7 percent. The same observation can be made about the EDP criterion.

When the threshold value increases from 1 to 3, the average EDP savings rise to 19.1 percent.

It is worth noting that these results are very close to the near-optimal alpha thresholds that

have been empirically determined for each benchmark. Of course, the average power and

EDP savings are the greatest for the alpha threshold of 5. On the other hand, this threshold

value comes with an 11.4 percent average performance penalty, which may be tolerable in

battery-powered devices such as laptops and smartphones.

Figure 6.3. Percentage of power savings in mode selection mechanism of ASMMP for

various alpha thresholds

0%

10%

20%

30%

40%

50%

60%

70%

80%

as
ta

r

b
w

av

b
zi

p
2

ca
lc

u
li

x

g
am

es
s

g
em

s

g
o
b
m

k

g
ro

m
ac

s

h
2
6
4

h
m

m
er

le
sl

ie
3
d

li
b
q
u
an

tu
m

m
cf

m
il

c

n
am

d

sj
en

g

A
v
er

ag
e

P
o

w
e

r
Sa

vi
n

gs
 %

Benchmarks

Alpha = 1

Alpha = 3

Alpha = 5

Best Alpha

55

Figure 6.4. Percentage of EDP savings in mode selection mechanism of ASMMP for

various alpha thresholds

Figure 6.5. Percentage of 𝐸𝐷2𝑃 savings in mode selection mechanism of ASMMP for

various alpha thresholds

6.2. RESOURCE PARTITIONING TESTS AND RESULTS

We run the proposed resource partitioning mechanism then record its effects on performance

and consumed power. Also, collect average occupancy values for different processor

structures using different upsize and downsize threshold values by running benchmarks from

the Spec2006 benchmark suite using the Gem5 simulator with x86 ISA [2] [3]. Each

0%

10%

20%

30%

40%

50%

60%

70%

80%

as
ta

r

b
w

av

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

ED
P

 S
av

in
gs

 %

Benchmarks

Alpha = 1

Alpha = 3

Alpha = 5

Best Alpha

-40%

-20%

0%

20%

40%

60%

80%

as
ta

r

b
w

av

b
zi

p
2

ca
lc

u
li

x

g
am

es
s

g
em

s

g
o
b
m

k

g
ro

m
ac

s

h
2
6
4

h
m

m
er

le
sl

ie
3
d

li
b
q
u
an

tu
m

m
cf

m
il

c

n
am

d

sj
en

g

A
v
er

ag
e

ED
2

P
 S

av
in

gs
 %

Benchmarks

Alpha = 1

Alpha = 3

Alpha = 5

Best Alpha

56

benchmark is executed for 100M instructions. Configuration parameters for the simulated

processor are given in Table 6.4. Lastly, we will examine these results in terms of

performance and achieve savings by turning off entries from different processor resources'.

Table 6.4. Specification of the simulated processor during resource partitioning

L1 I- and D-Caches 16Kb, 4-way, 64-byte line size, 2 cycle latency

L2 Cache 128Kb, 8-way, 64-byte line size, 20 cycle

latency

CPU Frequency 2 GHz

Pipeline

4-way issue bandwidth

ROB: 192 entry,24partition

IQ: 64 entry,8partitions

LSQ: 32 entry,4 partitions

RF: 256 registers,32partition

Decision period (1 epoch) 1 M cycles

No of occupancy samples collected

every 1M cycles

256 samples

No of executed instructions 100 M

Instruction execution mode Out-of-Order

6.2.1. Performance

As we expected from the obtained results, we observe an improvement in application

performance compared to baseline with losing chances in saving power, after making the

downsizing process harder to happen by choosing high downsize threshold values. We had

more opportunity to save power after performing more frequent downsizing processes by

choosing low downsize threshold values while a performance decline for all running

benchmarks was noticed.

This degradation is related to performing resource partitioning very frequently, which results

in continuous oscillation of resource size. Lastly, Figures 6.6 to 6.8 show the proposed

resource partitioning results in terms of running application performance (IPC).

The obtained results in Figure 6.8 when compared to the non-partition baseline

configuration, the proposed resource partitioning mechanism with a high downsize threshold

value results in a 0.25 percent performance degradation. However, more than 48 percent

performance degradation occurs when the resizing process is performed too frequently due

to low threshold values.

57

Figure 6.6. Performance of resource partition in ASMMP compared to baseline Out-of-

Order processor.

Figure 6.7. Average performance for simulated benchmarks with different threshold values

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

A
ve

ra
ge

In
st

ru
ct

io
n

 p
e

r
cy

cl
e

Benchmarks

Benchmarks performance compared to its baseline

No_partition

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

d24-u8

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Average IPC

No_partition d4-u2 d4-d4 d8-u2 d8-u8 d12-u4

d16-u2 d16-u4 d20-u4 d20-u8 d24-u8

58

Figure 6.8. Average performance drop percentage for simulated benchmarks with different

threshold values

6.2.2. Issue Queue

The proposed resource partition mechanism successes in turning off more than 53 percent

of issue queue entries after using a high downsize threshold value. On the other hand, more

than 84 percent of issue queue entries were saved when using low threshold values, but we

will not use these low threshold values in ASMMP resource partitioning mechanism to

prevent performance degradation of all running applications. Lastly, Figures 6.9 and 6.10

respectively show the used issue queues entries by Spec2006 benchmarks followed by the

average used issue queue entries after applying resource scaling.

0

10

20

30

40

50

60

performance drop compaired to baseline IPC

Performance drop percentage compared to baseline
(non partition)

d4-u2 d4-d4 d8-u2 d8-u8 d12-u4 d16-u2 d16-u4 d20-u4 d20-u8 d24-u8

59

Figure 6.9. Instruction Queue entries used compared to baseline (64 entry no partition)

configuration

0

10

20

30

40

50

60

70

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

IQ
 s

iz
e

 (
6

4
 e

n
tr

y)

Benchmarks

IQ entries used by 22 benchmarks after applying partitioning

IQ_baseline

d2-u4

d2-u8

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

d24-u8

60

Figure 6.10. Average used instruction queue entries for all simulated benchmarks

compared to baseline (64 entry) configuration after resource partitioning

6.2.3. Re-order Buffer

Our simulation results for the resource Re-order buffer were identical to those for the other

resources. The effectiveness of the proposed resource partitioning mechanism is

demonstrated in Figures 6.11 and 6.12. Whenever the downsize threshold value is 24, and

the upsize threshold value is 8, an average saving of more than 63 percent is achieved. On

the contrary, when a downsize threshold value of 2 and an upsize threshold value of 4 are

used, enormous average savings of around 90 percent occur. Finally, as previously stated,

maintaining a high downsize threshold value will benefit our design by achieving significant

average savings and limiting performance degradation to less than 0.25 percent.

0

10

20

30

40

50

60

70

Average IQ entries used by 22 benchmarks after applying
partitioning

IQ_baseline d2-u4 d2-u8 d4-u2 d4-d4

d8-u2 d8-u8 d12-u4 d16-u2 d16-u4

d20-u4 d20-u8 d24-u8

61

Figure 6.11. Re-order buffer entries used compared to baseline (192 entry no partition)

configuration.

Figure 6.12. Average used Re-order buffer entries for all simulated benchmarks compared

to baseline (192 entry) configuration after resource partitioning.

0

50

100

150

200

250

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

R
O

B
 s

iz
e

(1
9

2
 e

n
tr

y)

Benchmarks

ROB entries used by 22 benchmarks after applying partitioing

ROB_baseline

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

0

50

100

150

200

250

Average used ROB entries by 22 benchmarks after applying
partitioning

ROB_baseline d4-u2 d4-d4 d8-u2

d8-u8 d12-u4 d16-u2 d16-u4

d20-u4 d20-u8 d24-u8

62

6.2.4. Load and Store Queues

Figures 6.13–6.16 illustrate the results of resource partitioning when applied to both load

and store queues. their size was mostly emphasized in both queues. Both resources contain

32 entries, which is a small number in comparison to other ASMMP resources. We saved

approximately 25 percent of the store and load queue entries using a downsize threshold of

24, and an upsize threshold of 8. Additionally, as illustrated in Figure 6.13, no savings in the

store queue were achieved when using high downsize threshold values for some benchmarks

such as libquantum, lbm, and bwave. Finally, as illustrated in Figure 6.15, our resource

partitioning mechanism could only disable two load queue entries in several benchmarks,

including leslie3d and mcf.

Figure 6.13. Store queue entries used compared to baseline (32 entry no partition)

configuration.

0

5

10

15

20

25

30

35

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

SQ
 s

iz
e

 (
3

2
 e

n
tr

y)

Benchmarks

SQ entries used by 22 benchmarks after applying partitioing

SQ_baseline

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

63

Figure 6.14. Average used store queue entries for all simulated benchmarks compared to

baseline (32 entry) configuration after resource partitioning.

Figure 6.15. Load queue entries used compared to baseline (32 entry no partition)

configuration.

0

5

10

15

20

25

30

35

Average used SQ entries by 22 benchmarks after applying
partitioning

SQ_baseline d4-u2 d4-d4 d8-u2

d8-u8 d12-u4 d16-u2 d16-u4

d20-u4 d20-u8 d24-u8

0

5

10

15

20

25

30

35

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

LQ
 s

iz
e

 (
3

2
 e

n
tr

y)

Benchmarks

LQ entries used by 22 benchmarks after applying partitioing

LQ_baseline

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

64

Figure 6.16. Average used load queue entries for all simulated benchmarks compared to

baseline (32 entry) configuration after resource partitioning.

6.2.5. Register File

Figures 6.17–6.20 illustrate the resource partitioning simulation results when applied to both

integer and floating-point register files. For downsize threshold value 24 and upsize

threshold value 8, the proposed partitioning mechanism succeeded in saving more than 57

percent of integer register file entries. Additionally, savings in the floating-point register file

exceeded 58 percent.

Finally, Figure 6.21 illustrates savings percentages across all ASMMP resources.

Additionally, we can conclude that our proposed resource partitioning mechanism

successfully allocated sufficient resource entries to each running application to maintain

performance close to the baseline case while reducing power consumption by turning off

unused resource entries.

0

5

10

15

20

25

30

35

Average used LQ entries by 22 benchmarks after applying
partitioning

LQ_baseline d4-u2 d4-d4 d8-u2

d8-u8 d12-u4 d16-u2 d16-u4

d20-u4 d20-u8 d24-u8

65

Figure 6.17. Integer register file entries used compared to baseline (256 entry no partition)

configuration.

Figure 6.18. Average used integer register file entries for all simulated benchmarks

compared to baseline (256 entry) configuration after resource partitioning.

0

50

100

150

200

250

300

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

IR
F

si
ze

(2
5

6
 e

n
tr

y)

Benchmarks

IRF entries used by 22 benchmarks after applying partitioing

RFI

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

0

50

100

150

200

250

300

Average used IRF entries by 22 benchmarks after applying
partitioning

RFI_baseline d4-u2 d4-d4 d8-u2

d8-u8 d12-u4 d16-u2 d16-u4

d20-u4 d20-u8 d24-u8

66

Figure 6.19. Floating-point register file entries used compared to baseline (256 entry no

partition) configuration.

Figure 6.20. Average used floating-point register file entries for all simulated benchmarks

compared to baseline (256 entry) configuration after resource partitioning.

0

50

100

150

200

250

300

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
e

tp
p

p
o

vr
ay

sj
en

g

so
p

le
x

to
n

to

xa
la

n
c

FR
F

si
ze

(2
5

6
 e

n
tr

y)

Benchmarks

FRF entries used by 22 benchmarks after applying partitioing

RFF

d4-u2

d4-d4

d8-u2

d8-u8

d12-u4

d16-u2

d16-u4

d20-u4

d20-u8

0

50

100

150

200

250

300

Average used FRF entries by 22 benchmarks after applying
partitioning

FRF_baseline d4-u2 d4-d4 d8-u2 d8-u8 d12-u4

d16-u2 d16-u4 d20-u4 d20-u8 d24-u8

67

Figure 6.21. Percentage of saved entries after applying partition in different ASMMP

resources

6.3. FINAL ASMMP TESTS AND RESULTS

In this subsection, we will go through the used experimental methodology, then evaluate and

discuss our final ASMMP architecture design results after combining both execution mode

switching and resource partitioning mechanism in terms of performance, power savings,

EDP, and ED2P metrics.

6.3.1. Experimental methodology

Like our previous design evaluation process, we continue using the Gem5 simulator to test

and evaluate the overall ASMMP model [2]. The experimental methodology used in

evaluating resource partitioning and mode selection designs was also repeated here by

running the SPEC CPU2006 benchmarks for 100 million instructions on x86 architecture

[3]. The used simulation parameters of ASMMP are given in Table 6.5.

0

10

20

30

40

50

60

70

80

90

100

closed
Instruction

Queue
entries%

closed Load
Queue

entries%

closed Store
Queue

entries%

closed Re-
order buffer

entries%

closed Integer
register file

entries%

closed Floating
Point register
file entries%

Percentage of saved entries for ASMMP resources'

d4-u2 d4-d4 d8-u2 d8-u8 d12-u4 d16-u2 d16-u4 d20-u4 d20-u8 d24-u8

68

Table 6.5. Specification of simulated ASMMP architecture

Microprocessor architecture x86

Processor frequency 2GHz

Machine width 4

Re-order buffer size 192 entries

Issue queue size 64 entries

Load and Store queue size 32 entries

Physical register file size 256 entries

L1 instruction and data cache 4-way LRU, 16 KB

L2 cache 8-way LRU, 128 KB

Execution switch decision period (ESDP) 10000 cycles

Sampling period (SP) 100 cycles

Partition decision period (PDP) 2M cycles

Occupancy sampling period (OSP) 8000 cycles (250 samples)

Alpha threshold values 1,3,5

Downsize threshold value 40

Upsize threshold value 10

Resource scale size 1 partition (resource size/8)

Performance, power savings, and energy efficiency are all criteria used to evaluate

simulation results in this setting. Furthermore, it has been assumed that the processor

consumes the same energy per unit of time as it did in the CC investigation. It was assumed

that a microprocessor operating in Out-of-Order execution mode would consume four times

as much as the amount of energy as a microprocessor operating in In-Order execution mode.

Using Equation 6.6, the power expenditure (PE) can be calculated by taking the percentage

of time spent on the In-Order processor (W). Additionally, we add a parameter for the

number of saved entries (SRE) for all ASMMP resources in Out-of-Order execution mode.

This value is calculated based on the number of unnecessary entries closed by the resource

partitioning mechanism in ASMMP. To make things even better, we continue to use

Equation 6.2 to calculate the power savings (PS). In addition, we continue to use Equation

6.3, which provides the formula for the slowdown rate (SR) of the proposed ASMMP

architecture compared to the baseline Out-of-Order processor in terms of the average

instructions per cycle (IPC) metric, as previously stated.

Lastly, there was no modification in Equations 6.4 and 6.5, used to measure efficiency

metrics represented by the energy-delay product (EDP) and energy-delay-square product

(ED2P) formulas, respectively.

69

 𝑃𝐸 =
1

4
∗ 𝑊 + (1 − 𝑊) ∗ (1 − 𝑆𝑅𝐸) (6.6)

6.3.2. Resource Partitioning Effects

In the first phase of our tests, we wanted to determine how much performance degradation

occurred when we used ASMMP's resource partitioning mechanism with Out-of-Order

execution. The results of resource scaling and the percentage of entries that can be disabled

using a downsize threshold of 40, and an upsize threshold of 10 for the Spec2006

benchmarks in ASMMP are shown in Figure 6.22. Additionally, alpha threshold values of

1, 3, and 5 were used to switch the execution mode from Out-of-Order to In-Order.

In general, lower-alpha values result in more Out-of-Order execution mode periods, and

resource scaling or resource partitioning can result in higher savings. Large alpha values

imply longer periods in order execution mode while saving power is derived from avoiding

Out-of-Order complex structures.

We achieved power savings by shutting down approximately 30 percent of ASMMP

resources during Out-of-Order execution mode periods with an alpha value of one and a

performance loss of approximately 1.87 percent. In comparison to alpha value one, we

continue to save less power. Additionally, 15 percent of entries are saved when the alpha

value is three, resulting in a 2.96 percent performance degradation. When the alpha value is

set to five, approximately 10 percent of entries are saved at a performance cost of more than

12 percent. These results were expected given the decline in Out-of-Order execution mode

periods and the fact that ASMMP operates in an In-Order execution mode for most of the

time (choosing high alpha values makes our execution mode switching mechanism harder

to switch from In-Order to Out-of-Order).

Also, no entries were saved from the resource partitioning mechanism in bwave,leslie3d,

and sjeng since no performance difference between both execution modes and our execution

mode switching mechanism is chosen in order execution mode for these benchmarks during

their lifetime. Whereas, near 40 percent savings were achieved for milc and gems

benchmarks because they are not sensitive to any alpha threshold value, and they keep

running in Out-of-Order execution mode.

70

Figure 6.22. Percentage of saved entries in final ASMMP for Spec2006 benchmarks during

Out-of-Order execution mode

Figure 6.23 shows the percentage of entries saved for different ASMMP resources during

the benchmark lifetime. The savings in the Re-order buffer and register file come mainly

from the resource partitioning mechanism when the alpha value is one, where all benchmarks

run most of the time in Out-of-Order execution mode. Thus, our partitioning algorithm

assigns enough entries from both structures based on the running application's needs and

turns off the unused entries to save power.

 The main savings in load, store and issue queue are achieved when applications start

switching to an In-Order execution mode and stay in several periods in the same execution

mode (alpha 3,5). In this case, as we mentioned before, saving comes not from resource

scaling but comes from not intensive use of Out-of-Order complex structures by applying

direct resource downsize to one partition, as we showed in Figure 5.5.

Additionally, the chosen LSQ (32 entry) and IQ (64 entry) sizes were insufficient for the

running applications during Out-of-Order execution mode (alpha 1), resulting in the loss of

the opportunity to save power in these structures, and the partition mechanism did not

perform resource downsizing to avoid performance degradation of the running application.

On the contrary, alpha 3 and 5 increase the likelihood of saving additional LSQ entries due

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

A
ve

ra
ge

 p
er

fo
rm

an
ce

…

R
e

so
u

rc
e

s
En

tr
y

Tu
rn

 O
ff

 %
 D

u
ri

n
g

O
U

T
-O

F-
O

R
D

ER

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

71

to declining average occupancy at the start of the new Out-of-Order execution period. When

the In-Order runtime increases, the resource occupancy for several periods will be limited to

a single partition. When the application is switched to Out-of-Order, the LSQ occupancy

equals the resource's full size, which is 32 entries. At the ending of PDP, ASMMP's resource

partition mechanism will perform one upsizing operation by eight entries no more than once

or twice and then revert to In-Order execution mode. Finally, we can say that when there is

switching from In-Order to Out-of-Order, more upsizing operations occur for small resource

sizes, and resource downsizing occurs for large resource sizes. In this case, selecting an alpha

threshold value of 3 results in the average savings of 27 percent in ASMMP resources and

performance degradation of less than 5 percent, or approximately 2.96 percent. Finally, this

value enables efficient and balanced utilization of ASMMP's resource partitioning and mode

switching mechanisms. Otherwise, selecting alpha one will result in the loss of the mode

switching mechanism, while selecting alpha 5 will have the opposite effect, reducing the

impact of resource partitioning on ASMMP with a performance degradation of more than 5

percent of the running application.

Figure 6.23. Average saving percentages for different ASMMP resources includes both

out-of-order and In-Order execution mode

6.3.3. Performance

Figure 6.24 shows our final ASMMP architecture performance with all its mechanisms,

including resource partitioning and mode switching. A performance degradation by 1,92

0
10
20
30
40
50
60

R
e

so
u

rc
e

 E
n

tr
y

Tu
rn

 O
ff

 %
 I

n

A
SM

M
P

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

72

percent and 2.96 percent, respectively, when choosing alpha values of one and three.

Besides, performance degradation is more than 12.47 percent when alpha value 5 is chosen.

When alpha one is chosen, we observe a 7.5 percent performance degradation in bzip2. This

is related to the accuracy of the average occupancy samples collected at the end of the

partition decision period (250 samples in our case). Our partitioning mechanism reaches the

more accurate needs of the running application after increasing the number of samples

(bzip2). The main goal of using 250 samples for two million cycles is to reduce hardware

complexity.

Figure 6.25 depicts the percentage of In-Order execution modes for the Spec2006

benchmarks. The results in Figures 6.24 and 6.25 are consistent with our expectations, as

more In-Order periods have a greater negative impact on performance and higher power

savings (the case with the gobmek benchmark). However, the primary objective of this thesis

was to conserve power and maintain a performance loss of less than 5 percent.

Figure 6.24. Percentage of performance drop of final ASMMP compared to baseline Out-

of-Order processor for various alpha thresholds

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

IP
C

 L
O

SS
%

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

73

Figure 6.25. Runtime percentage of the In-Order mode in final ASMMP for various alpha

thresholds

Finally, Figure 6.26 shows the overhead of adding the implementation of resource

partitioning on performance in ASMMP when compared to the non-resource partitioning

version (only mode switching mechanism). There is negligible impact on performance

around 1.9 percent at maximum when alpha 1 is chosen. This threshold value makes our

resource partitioning mechanism active for a long time since most of the execution mode

will be in Out-of-Order mode, and continual resource scaling will be performed on resources

of ASMMP (depending on chosen PDP). On the other hand, lower use of resource

partitioning mechanism, which is the case for alpha value 5 reduces this impact and results

only in 1 percent decline in performance compared to the non-partition version.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

In
-O

rd
e

r%

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

74

Figure 6.26. Percentage of performance drop of ASMMP for both partition and non-

partition version compared to baseline Out-of-Order processor for various alpha thresholds

The idle configuration again here is to choose alpha value one or three. Choosing threshold

value three results only in a 0.10 percent performance drop when compared to the non-

partition version. As we mentioned before, this threshold value helps gives opportunity to

both mechanisms for functioning in balancing and proper way.

Finally, as shown in Figure 6.27 for alpha threshold values one and three, our ASMMP keeps

In-Order execution mode activated for 18.5 percent and 24.57 percent, respectively, from

the total runtime due to low application dispatch ratio. These runtime percentages allow

saving more power by downsizing Out-of-Order structures to one partition and deactivate

resource scaling. On the contrary, ASMMP activates only resource partitioning mechanism

for 81 percent and 75 percent, respectively (high dispatch ratio) from the total runtime while

deactivating the switching mechanism to continue saving less power and avoid performance

degradation.

6.3.4. In-Order Runtime

The incorporation of resource partitioning into ASMMP maintained application

performance close to the baseline case (full Out-of-Order no partition) and had no effect on

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

ALPHA=1 ALPHA(P)=1 ALPHA=3 ALPHA(P)=3 ALPHA=5 ALPHA(P)=5

Average IPC Loss Percentage with and without partition

Average IPC Loss Percentage with and without partition

75

the percentage of In-Order runtime for different alpha threshold values because the switching

decision mechanism is completely dependent on the application speed-up factor, which

monitors instruction dispatch ratio, and instruction commit over fetch ratio. As illustrated in

Figure 6.27, the difference in In-Order runtime percentage between the final ASMMP and

the non-partitioned version of ASMMP is negligible.

Figure 6.27. Runtime percentage of the In-Order mode in ASMMP for both partition and

non-partition versions for various alpha thresholds

6.3.5. Power Savings

The percentage of total processor energy consumed by its resources is usually around 55

percent [10]. Figure 6.28 summarizes the average power saving percentage observed for

various alpha threshold values of the Spec2006 benchmarks in the final ASSMP architecture.

In this case, an additional power saving estimation of more than 28 percent, 13 percent, and

8 percent can be achieved by using a resource scaling mechanism and total savings of 43

percent, 34 percent, and 42.58 percent respectively achieved in the final ASMMP design

with keeping performance degradation below 5 percent for most Spec2006 benchmarks

when alpha threshold values of one, and three are chosen, and performance loss of 12.5

percent is noticed when alpha value 5 is chosen.

0%

10%

20%

30%

40%

50%

ALPHA=1 ALPHA(P)=1 ALPHA=3 ALPHA(P)=3 ALPHA=5 ALPHA(P)=5

In-Order Runtime Percentage with and without partition

In-Order Runtime Percentage with and without partition

76

Besides, in this Figure, we notice a high power saving of around 75 percent in three

benchmarks (bwaves, leslie3d, and sjeng). The reason for this saving relates to the mode

decision mechanism in ASMMP, which identifies these slow benchmarks (low IDR, CFR)

and, regardless of any alpha threshold value, In-Order execution mode is always chosen to

run these benchmarks. Furthermore, we realize that 75 percent of the savings is because the

In-Order execution mode consumes only 25 percent of the Out-of-Order mode power.

Figure 6.28. Percentage of power savings in final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds.

As illustrated in Figure 6.29, the final ASMMP design achieved greater power savings for

different alpha threshold values. The Figure clearly illustrates the beneficial effect of

resource scaling on ASMMP power consumption (by turning off unused entries during Out-

of-Order execution mode) compared to the non-scaling version.

Finally, the least amount of power was saved by resource scaling mechanisms when a high

alpha value was used (5). A higher alpha value indicates more In-Order periods and less

resource partition mechanism activation. Thus, the execution mode decision mechanism

results in additional power savings. For the above reasons, we could not achieve additional

power savings through resource scaling, and the resulting savings remained consistent with

the non-partition version of ASMMP.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

P
o

w
e

r
Sa

vi
n

gs
%

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

77

Figure 6.29. Percentage of power savings of ASMMP for both partition and non-partition

version compared to baseline Out-of-Order processor for various alpha thresholds

6.3.6. Energy-Delay product and Energy-Delay2 product

To measure system efficiency, the power-delay product metric is used. The power-delay-

product is calculated by multiplying the power consumption of the processor by time or

delay. The delay represents the duration required to perform a computation. Moreover, lower

power-delay-product means more energy-efficient systems. On the other hand, a system with

a low power-delay-product may do calculations exceedingly slowly [11].

One of the important metrics used popularly to reflect system efficiency rather than power-

delay-product accurately is the energy-delay product. Equation 6.4 is used for calculating

EDP to measure the efficiency of the ASMMP design. When we compare the EDP value of

the baseline processor with itself, this value will be one. This is due to the power expenditure

on the baseline processor (Out-of-Order processor) will be 100 percent of the delay value,

which is equal to 1.0 (base IPC/new IPC). Thus, the energy-delay product for the baseline

processor will be equal to 1.

To compare ASMMP's efficiency to the Out-of-Order processor as a baseline, we examine

Figure 6.30, which displays the obtained (100 percent-EDP) values for the sepc2006

benchmarks. More EDP values close to zero indicate that our design is efficient, as we

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

ALPHA=1 ALPHA(P)=1 ALPHA=3 ALPHA(P)=3 ALPHA=5 ALPHA(P)=5

Average Power Savings Percentage with and without partition

Average Power Savings Percentage with and without partition

78

consumed less energy and had a shorter delay time while performing a computation. The

percentage of EDP savings in ASMMP is 42 percent, 32 percent, and 35 percent for alpha

values of 1,3, and 5 in the final ASMMP version, respectively. ASMMP's integrated resource

partitioning mechanism ensured efficient use of processor resources for alpha value one,

achieving savings of more than 28 percent over the non-partitioning version with a

performance loss of less than 1,9 percent. Additionally, the final ASMMP appears to be more

efficient than the non-partitioned version depicted in Figure 6.31, not just for alpha value 1,

but also for alpha values 3 and 5. The final ASMMP's EDP savings exceed 13 percent with

a performance loss of less than 2,96 percent and 11 percent with a performance loss of 13

percent, respectively. Also, parallel to EDP results obtained for the energy-delay square

product of final ASMMP is shown in Figure 6.33. Lastly, Figure 6.32 shows that the final

ASMMP for alpha threshold values one and three is more efficient in terms of energy-delay

square product than the final ASMMP for alpha threshold value five.

Figure 6.30. Percentage of EDP savings of final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

ED
P

%
 S

av
in

gs

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

79

Figure 6.31. Percentage of EDP savings of ASMMP for both partition and non-partition

version compared to baseline Out-of-Order processor for various alpha thresholds

Figure 6.32. Percentage of ED2P savings of final ASMMP compared to baseline Out-of-

Order processor for various alpha thresholds

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

ALPHA=1 ALPHA(P)=1 ALPHA=3 ALPHA(P)=3 ALPHA=5 ALPHA(P)=5

Average EDP Savings Percentage with and without partition

Average EDP Savings Percentage with and without partition

-40,00%

-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
lix

ga
m

es
s

ge
m

s

go
b

m
k

gr
o

m
ac

s

h
2

6
4

h
m

m
er

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

sj
en

g

A
ve

ra
ge

ED
2

P
 S

av
in

gs
%

Benchmarks

ALPHA(P)=1

ALPHA(P)=3

ALPHA(P)=5

80

Figure 6.33. Percentage of ED2P savings of ASMMP for partition and non-partition

versions compared to baseline Out-of-Order processor for various alpha thresholds

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

ALPHA=1 ALPHA(P)=1 ALPHA=3 ALPHA(P)=3 ALPHA=5 ALPHA(P)=5

Average ED2P Savings Percentage with and without partition

Average EDP Savings Percentage with and without partition

81

7. CONCLUSION AND FUTURE WORK

ASMMP, a single Out-of-Order superscalar processor capable of automatically scaling its

resources in response to the needs of running applications and switching between In-Order

and Out-of-Order execution modes, has been designed and tested in this thesis using

Spec2006 benchmarks. ASMMP's primary objective is to achieve significant power savings

in exchange for an average performance loss of 5 percent. Finally, Figure 7.1 depicts the

complete implementation of our proposed ASMMP.

Figure 7.1. ASMMP implemented stages

We began this thesis by collecting and monitoring appropriate different processor parameters

of the running application periodically. As a result, these parameters are typically collected

using a sampling method that minimizes the proposed design's hardware complexity. The

primary parameters that are dynamically collected are the utilization of different processor

resources, the number of fetched instructions, the number of committed instructions, and the

number of ready instructions in the issue queue for running applications.

As a result, collecting 250 samples per decision period (2M) for occupancy parameters and

100 samples per decision period (10K) for various instruction statistics was sufficient to

82

reflect the application's requirements. Besides, it provides useful information to assist

ASMMP mechanisms in performing their duties properly.

We focus on two distinct mechanisms in the second stage: a simple threshold-based resource

partitioning mechanism and a mode switching mechanism. First, these mechanisms were

implemented and tested independently. They were then combined in the final stage to create

the final ASMMP design. Our resource partitioning mechanism comprises two components:

a decision mechanism and a mechanism for enforcing resource partitioning. We compare the

average collected resource occupancy samples with the threshold value in the partition

decision mechanism. Then, a resource expansion or contraction decision is made based on

the result of the comparison. Furthermore, the partition enforcement mechanism ensures that

new partitions are assigned securely, without erasing any critical data about the running

application's instructions.

Moreover, two distinct execution modes (large core Out-of-Order for high-performance

applications and small core IO for low-performance applications) are rather utilized as in the

case with heterogeneous architecture [8]. Our ASMMP, a single-core, attempts to predict

application performance when run in different execution modes by implementing an

execution mode switching mechanism. The proposed mechanism consists of a mode

switching decision mechanism and a mode switching enforcement mechanism with the

resource partitioning mechanism.

Two parameters influence the decision-making mechanism. The first is the instruction

dispatch ratio (IDR), which is the ratio of ready instructions in the instruction queue for both

execution modes. The second parameter specifies the number of over-fetched instructions

that have been committed (CFR). These parameters enable us to compare the performance

of the Out-of-Order mode to that of the In-Order mode. When the speed-up value, the

product of the two previously mentioned parameters, exceeds the specified alpha threshold,

an Out-of-Order mode is selected. Otherwise, an In-Order mode is selected. Finally, if

certain conditions are met, the mode switching enforcement mechanism will perform mode

switching and assign the running application to the newly selected mode.

83

The final stage of this thesis is to integrate both mechanisms for them to work concurrently

and assign the most appropriate ASMMP configuration to the running application. The

proposed ASMMP architecture is a single-core processor capable of scaling its resources

and switching between IO and Out-of-Order execution modes in response to application

requirements. As a result, the Gem5 simulator and the Spec2006 benchmarks were used to

evaluate the ASMMP architecture. Finally, the average performance loss of the ASMMP

architecture is kept below 5 percent compared to the Out-of-Order baseline processor for

alpha values one and three. Additionally, ASMMP saved more than 43 percent and 34

percent of total processor power, respectively, and 42 percent and 32 percent in terms of

energy-delay product across all simulated Spec2006 benchmarks when alpha values were

one and three.

We intend to perform resource partitioning on level two and level three caches in the future

because these structures consume a disproportionate amount of power compared to other on-

chip structures. Also, rather than using a fixed alpha threshold value for the mode switching

decision mechanism, we can use a dynamic method to determine the alpha threshold value

based on application behavior and which execution mode is unquestionably superior.

84

REFERENCES

[1] Sparsh M. A survey of techniques for architecting and managing asymmetric multicore

processors. ACM Comput. Surv. 2016;48(3):38.

[2] Binkert N, et al., The gem5 simulator, SIGARCH comput, Archit. News. 2011;39:1-7.

[3] Henning JL. SPEC CPU2006 benchmark descriptions, SIGARCH Comput, Archit.

News. 2006;34:1-17.

[4] Bahar RI and Manne S. Power and energy reduction via pipeline balancing.

Proceedings of the 28th Annual International Symposium on Computer Architecture,

2001: Annual.

[5] Albonesi DH, et al., Dynamically tuning processor resources with adaptive processing,

Computer. 2003;36:49-58.

[6] Manne S, Klauser A and Grunwald D. Pipeline gating: speculation control for energy

reduction. Proceedings of the 25th Annual International Symposium on Computer

Architecture; 1998: Annual.

[7] Hubner M, et al., Dynamic processor reconfiguration, Proceedings of the 2011

International Conference on Reconfigurable Computing and FPGAs, 2011.

[8] Lukefahr A, et al., Composite cores: pushing heterogeneity into a core. Proceedings

of the 2012 45th Annual 37 IEEE/ACM International Symposium on

Microarchitecture; 2012: IEEE/ACM.

[9] Lukefahr A, et al., Exploring Fine-Grained Heterogeneity with Composite Cores,

IEEE Transactions on 39 Computers, 2016;65:535-547.

85

[10] Folegnani D, Gonzalez A. Energy-effective issue logic, Proceedings of the 28th

Annual IEEE/ACM International Symposium on Computer Architecture; 2001:

IEEE/ACM.

[11] Steinbach B, et al., Recent progress in the boolean domain. Cambridge: Cambridge

Scholars Publishing.

[12] Ghiasi S, Casmira J and Grunwald D. Using IPC variation in workloads with

externally specified rates to reduce power consumption, Workshop on Complexity

Effective Design, 2000.

[13] Morancho E, Llaberia JM and Olive A. On reducing energy-consumption by late-

inserting instructions into 8 the issue queue. Proceedings of the 2007 international

symposium on Low power electronics and design, 2007.

[14] Homayoun H, Kontorinis V, Shayan A, Lin T and Tullsen DM. Dynamically

heterogeneous cores through 3D resource pooling. IEEE International Symposium on

High-Performance Comp Architecture; 2012: IEEE.

[15] Afram F and Ghose K. FlexCore: A Recon_gurable Processor Supporting Flexible,

Dynamic Morphing. 13 Proceedings of the 2015 IEEE 22nd International Conference

on High Performance Computing (HiPC); 2015: IEEE.

[16] Khubaib M, Suleman A, Hashemi M, Wilkerso, C, Patt YN. MorphCore: An energy-

efficient microarchitecture for high performance ILP and gigh throughput TLP. 45th

Annual IEEE/ACM International Symposium on Microarchitecture; 2012:

IEEE/ACM.

[17] Sembrant A, et al., Long term parking (LTP): criticality-aware resource allocation in

OUT-OF-ORDER processors. Proceedings16 of the 48th International Symposium on

Microarchitecture, 2015.

86

[18] Sleiman FM and Wenisch TF. E_ciently scaling Out-of-Order cores for simultaneous

multithreading, SIGARCH comput, Archit. News. 2016;44:431-443.

[19] Lebeck AR, Koppanalil J, Li T, Patwardhan J and Rotenberg E. A large, fast

instruction window for tolerating cache misses. Proceedings 29th Annual

International Symposium on Computer Architecture, 2002.

[20] Carlson TE, Heirman W, Allam O, Kaxiras S and Eeckhout L. The load slice core

microarchitecture. 42nd Annual International Symposium on Computer Architecture

(ISCA); 2015: IEEE/ACM.

[21] Srinivasan ST, Rajwar R, Akkary H, Gandhi A and Upton M. Continual flow pipelines.

Proceedings of the 11th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2004.

[22] Shioya R, Goshima M and Ando H. A front-end execution architecture for high energy

efficiency. 47th Annual IEEE/ACM International Symposium on Microarchitecture;

2014: IEEE/ACM.

[23] Kumar R, Tullsen DM, Ranganathan P, Jouppi NP and Farkas KI, Single-ISA

heterogeneous multicore architectures for multithreaded workload performance.

Proceedings. 31st Annual International Symposium on Computer Architecture, 2004.

[24] Kumar R, Farkas KI, Jouppi NP, Ranganathan P, Tullsen DM. Single-ISA

heterogeneous multi-core architectures: the potential for processor power reduction.

Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture; 2014: IEEE/ACM.

[25] Annavaram M, Grochowski E and Shen J. Mitigating Amdahl’s law through EPI

throttling, SIGARCH computer architecture. News, 2005;33:298-309.

87

[26] Kumar R, Jouppi NP and Tullsen DM. Conjoined-core chip multiprocessing.

Proceedings of the 37th Annual IEEE/ACM International Symposium on

Microarchitecture; 2014: IEEE/AMC.

[27] Kim C, et al., Composable lightweight processors. 40th Annual IEEE/ACM

International Symposium on Microarchitecture; 2007: IEEE/AMC.

[28] Ipek E, Kirman M, Kirman N and Martinez JF. Core fusion: Accommodating software

diversity in chip multiprocessors, SIGARCH comput archit. News, 2007;35:186-197.

[29] Savas M., Guney IA, Tokatlı NN, Kisinbay B and Kucuk G. iMODE (interactive

MOod Detection Engine) processor. 4th International Conference on Computer

Science and Engineering; 2019: UBMK.

[30] Greenhalgh P. Big.LITTLE processing with ARM Cortex-A15 and Cortex-A7:

Improving energy efficiency in high-performance mobile platforms, white paper. ARM

2001.

[31] Tokatl N, Güney IA, Sarı S, Güney Y, Nezir MU, and Küçük G. ShapeShifter: A

morphable microprocessor for low power. Turkish Journal of Electrical Engineering

& Computer Sciences, 2021;29(4):1964-1977. doi:10.3906/elk-2005-180.

[32] Vidal J. Tsunami of data' could consume one fifth of global electricity by 2025 [cited

2017 12 December]. Available from: https://www.climatechangenews.com-

/2017/12/11/-tsunami-data-consume-one-fifth-global-electricity-2025/.

[33] Mm μm 12. A history of microprocessor transistor count 1971 to 2013 [Internet].

Wagnercg.com. [cited 2021 Nov 30]. Available from:

http://www.wagnercg.com/Portals/0/FunStuff/AHistoryofMicroprocessorTransistorC

ount.pdf.

https://www.climatechangenews.com-/2017/12/11/-tsunami-data-consume-one-fifth-global-electricity-2025/
https://www.climatechangenews.com-/2017/12/11/-tsunami-data-consume-one-fifth-global-electricity-2025/

