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ABSTRACT

AUTO SCALABLE and MORPHABLE MICROPROCESSORS

This dissertation proposes the design and implementation of a single Out-of-Order
superscalar processor capable of dynamic resource sizing and mode switching in response
to the properties of running applications. While there are multi-core heterogeneous processor
architectures in the literature, our single processor is capable of morphing to target different
metrics at different times, such as performance and power. Our final processor proposes a
two-parameter run-time switch between Out-of-Order and In-Order execution modes.
Additionally, the processor's instruction queue, Re-order buffer, load/store queue, and
physical register files are scaled dynamically at runtime to meet the needs of running
applications. When the approaches described in this dissertation are used, we demonstrate
that we can save an average of more than 42 percent power and achieve a 43 percent increase
in efficiency (energy-delay square product) in exchange for a 5 percent performance penalty

when compared to a baseline Out-of-Order superscalar.
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OZET

OTOMATIK-OLCEKLENEBILEN VE SEKIL-DEGISTIiREBILEN
MIKROISLEMCILER

Bu tez calismasinda, sirasiz mod calisan siiperskalar bir iglemcinin ¢alisan uygulamalarin
ozelliklerine uyum saglamasi i¢in otomatik olarak 6zkaynak 6l¢eklemesi ve calisma modu
degisimi yapmasi saglanmaktadir. Calismamiz, literatiirde ¢ok ¢ekirdekli heterojen islemci
mimarilerine rastlanmasina ragmen, tek bir islemcinin aniden kendini degistirerek degisik
zamanlarda performans ve gii¢ gibi farkli olgiitlere yonelmesini hedefleyen bir ¢alisma
bulunmamasi nedeniyle 6zgiindiir. Onerdigimiz sonug islemci, sadece iki ¢alisma-zamani
parametresi ile sirasiz ¢aligma modundan sirali calisma moduna gegise karar vermektedir.
Ayrica, islemeci ig¢indeki komut kuyrugu, yeniden-siralama bellegi, yiikleme/saklama
kuyrugu ve fiziksel yazmag¢ dosyalarinin boyutlari yine c¢aligma-zamaninda c¢alisan
uygulamalarin  gereksinimleri yoniinde o6l¢eklenmektedir. Bu calismada Onerilen
yontemlerin uygulanmasi durumunda sirasiz komut ¢alistiran baz siiperskalar iglemciye gore
ortalama yuzde 5 civarinda bir performans kaybi karsiliginda ortalama yilizde 42’nin
Uzerinde bir gu¢ tasarrufu ve yiizde 42’nin iizerinde daha iyi verimlilik (enerji-gecikme kare

carpani) sagladigimizi gostermekteyiz.
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1. INTRODUCTION

Computers (processors) are responsible for running various types of applications. For a long
time, speed was the only major concern of processors when applications are run. Nowadays,
power-related concerns even surpass all performance-related concerns on any processor

encountered on any type of system.

A power-aware processor plays an important role in improving the lives of many modern
technologies (e.g., smartphones, laptops). It is somewhat less obvious that a power-aware
processor also plays an important role in the success of a real-time, mission-critical system
that explores space and other planets. Besides, it is predicted that data centers of the world
will consume one-fifth of Earth’s power by 2025, and a power-aware processor may provide

enormous power savings when deployed on data centers in large quantities [32].

The well-accepted philosophy on today's processor design is still a" one-size-fits-all" kind
of realization with a fixed set of data path structures and a fixed mode of execution. For
instance, when an application has a program phase with a low Instruction Level Parallelism
(ILP) degree runs on a 4-way superscalar, aggressively speculative, Out-of-Order processor,
most processor resources are underutilized, and all power-saving opportunities are lost. On
the contrary, when an application has a program phase with a high ILP degree that runs on
a 2-way superscalar, In-Order processor, it receives a huge performance penalty due to
insufficient processor resources. Both of these scenarios point out the inefficiency of the

current fixed-mode processors.

Designing a power-aware processor with good performance depends on periodical
monitoring and effectively analyzes the application's behavior. The application needs
particular hardware resources such as caches, issue queues, and instruction fetch logic within
a dynamic superscalar processor which can vary significantly from application to application
and even within the different phases of a given application. The proposal of an adaptive
processing approach to improving microprocessor energy efficiency dynamically resizes
major microprocessor resources such as caches and hardware queues during execution to

better match varying application needs.



This resizing operation usually involves reducing the size of a resource when its full

capabilities are not needed, then restoring the disabled portions when they are needed again

[5].

The next and natural step to reflect applications' diversity during their running phases is
introducing an asymmetric multicore processor design, which uses cores of different types
in the same processor and thus, embraces heterogeneity as the first principle. Different cores
in an AMP may be optimized for power/performance or different application domains or for
exploiting instruction-level parallelism or memory-level parallelism. Thus, AMPs promise

to be beneficial for a broad range of usage scenarios [1].

The concept of heterogeneous cores within a processor is not novel. One of the best examples
of such realizations is ARM's power-aware (big. LITTLE) architecture, which requires a
physical area to keep multiple cores on the same chip. Furthermore, a 3-wide Out-of-Order
Cortex-Al5 superscalar microprocessor (large) and a 2-wide In-Order Cortex-A7
superscalar microprocessor (small) are located in the same core in this architecture. This is
also a valid approach in almost all heterogeneous architectures proposed in the literature,

and as a result, significant area unavoidably increases [8] [24] [25] [15] [30].

Our proposed Auto scalable and morphable processor design deviates from this traditional
approach. We propose a specialized Out-of-Order core that can act either as a traditional
Out-of-Order core with adaptive processing included or an In-Order core whenever it is
suitable to reduce power consumption and keep performance degradation of running
application below 5 percent. As a result, the area requirement of our proposed processor is
almost identical to the area requirement of a traditional Out-of-Order processor. Figure 1.1

shows the basic architectural difference between both designs.
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Figure 1.1. Basic architectural difference between ARM cores and ASMMP

1.1. MOTIVATION

As we stated above, one of the important points that motivate us to propose ASMMP design,
its ability to reduce power consumption while keeping performance degradation of the
running application below 5 percent. Also, achieving this goal without using complex and
power-hungry circuit. The following subsections will examine the main advantages of
ASMMP design when compared to heterogeneous architectures in terms of die area, thread

migration and power savings respectively.

1.1.1. Die Area

The die area is the most important aspect of our proposed design, as illustrated in Figure 1.1.
This is one of the most powerful areas of ASMMP design. Processors with heterogeneous
cores house multiple cores on the same chip. There is apparently no issue when multiple
active threads are assigned to each of these heterogeneous cores. However, when only one
core is active, and the rest of the cores are passive at certain times [8], the processor's area
efficiency is immediately questioned. ASMMP is an Out-of-Order processor (single core)
that can also function as an In-Order processor. As a result, its area requirement is nearly

identical to that of a traditional Out-of-Order processor. Also, the number of transistors that



required to implement the ASMMP will certainly less than the number of transistor count
that needed to implement dual core processor (291 Million transistor/143 mm?) and then less
die area required for ASMMP when compared to dual core processor [33]. Finally, our
decision circuit for the execution mode switch does not necessarily involve complex
methods such as machine learning, nor does it necessitate the storage of additional statistics
tables in the hardware [8] [9].

1.1.2. Thread Migration

Thread migration is an important feature of heterogeneous cores. These processors enable a
running thread to migrate to a suitable core to save power or maintain an application's
performance at its peak. On the other hand, Thread migration takes a long time, especially
when the source and target cores are located away. The state of the source core should be
transferred to the target core, and larger state data means longer migration times and higher

power costs.

Data transfer is one of the most difficult challenges in computer architecture research, and it
should be avoided as much as possible. In Pentium 4, Intel switched from separate physical
and architectural register structures in Pentium 111 to a combined register file that holds both
physical and architectural registers in one structure. We use the same strategy in ASMMP
design, and we make both the source and target cores the same core. As a result, all data path
structures holding instructions and processor state can retain their content during a thread

migration, and there is no migration cost in terms of latency and power.

1.1.3. Power Savings

ASMMP can remain in 10 execution mode for an extended time. Structures used to ensure
correct Out-of-Order execution (such as the register renaming mechanism, load queue, Re-
order buffer, and physical register files) can be disabled while in In-Order mode. As long as
the In-Order execution mode is enabled, ASMMP is a very low-power processor. We
assumed that the power dissipated by the In-Order core is three to five times as much as the

large Out-of-Order core [17]. Furthermore, when the running application requests an Out-



of-Order mode, the processor enters a performance mode, in which ASMMP continues to
save less power than In-Order execution mode due to its ability to configure its resources

dynamically.

1.2. OBJECTIVES

This dissertation is part of the TUBITAK project titled" Auto scalable and morphable
microprocessor)™ and the research work related to designing a single processor morphing
itself to target various metrics, such as performance and power different times, even though
there are multicore heterogeneous processor architectures in the literature. Figure 1.2 shows
the design flow of ASMMP. As shown in the Figure, ASMMP contains three main stages,
respectively. The flow starts with monitoring application behavior for a specific time interval
called an epoch. The monitoring process relies on a periodical collection of statistics about
the used processor resources and exploration of instruction-level parallelism of the running
application. Then, the collected information will be used to classify applications into three
main types. In the last stage, based on the application type, a suitable processor configuration
will be chosen for running the application to save power without sacrificing too much

performance.

Stage 1: Application Monitoring

l

Stage 2: Application Classification

|

Stage 3: Selection of Appropriate
Out-of-Order Core Configuration

General ASMMP Stages
for Running Applications

\ 4

Figure 1.2. Design flow of main ASMMP stages



The remainder of the thesis is as follows: Chapter 2 summarizes the previous research in this
field. Chapter 3 describes the application monitor statistics, followed by stage one of
ASMMP's design and implementation details. Chapter 4 represents the details of ASMMP's
dynamic execution mode selection (application classification stage) design and
implementation. Chapter 5 represents the details of ASMMP's adaptive resource partitioning
(application classification stage) design and implementation. Additionally, expressing
ASMMP operation describes selecting an ASMMP configuration that is appropriate for the
running application. Chapter 6 discusses the simulation results and their implications.
Chapter 7 concludes by summarizing the research and discussing the significance of this
work and any further work conducted.



2. RELATED WORK

Numerous studies on energy, power, and die area efficiency have been published in the
literature. One of the most widely used techniques for reducing processor energy
consumption is to dynamically turn on and off processor resources in response to the needs
and behavior of the running workload [4] [5] [6] [7] [12] [13]. Another area of research is
related to architectural techniques that employ simpler data path structures that consume less
power and space while providing comparable performance to Out-of-Order processors [7]
[91 [13] [16] [17] [18] [19] [20] [21] [22].

To give more details about adaptive processing and the use of simple data path structures to
reduce power consumption. We will start with the work done by Manne et al. (1998) that
discusses pipeline gating, a technique for lowering the processor's average activity [6]. They
attempt to determine whether a branch is likely to mispredict and prevent wrong-path
instructions from entering the pipeline by evaluating the quality of each branch prediction
using a confidence estimator logic. Additionally, Ghiasi and his team (2000) looked for ways
to save power by switching from an Out-of-Order instruction issue mechanism to In-Order
or dynamically-gated (reduced width) modes [12]. A micro-architectural IPC matching
mechanism combined with an external performance indicator to determine when the
instruction issue mechanism should be changed. The operating system specifies a target IPC
rate for the processor to achieve, and the processor uses various techniques to approximate

the current IPC rate while executing committed instructions.

Bahar and Manne (2001) proposed a technique for balancing pipelines by splitting the issue
width between two clusters and saving power by monitoring the program's issue needs (look
at the Issue IPC history) of the running application [4]. A low-power mode is selected when
the program does not require the processor's full issue capabilities by reducing the instruction

issue width from 8 to 4 instructions.

As another option, Lebeck et al. (2002) propose classifying instructions that require a long-
latency operation to reduce power consumption [19]. These instructions are moved out of

the (relatively small) scheduling window into a (relatively large) waiting instruction buffer



(WIB) until the operation is complete, at which point they are returned to the scheduling

window.

This combines the benefit of a large instruction window with the benefit of a small
scheduling window in terms of latency tolerance. However, it requires a large instruction

window (as well as a large physical register file), which comes at a cost.

Also, when there is a long-latency instruction as an L2 miss, the issue queue may be filled
with instructions dependent on the L2 miss. As a result, the issue queue will not expose
instruction-level parallelism until the miss is resolved. In the context of memory-latency
tolerant processors, Morancho et al. (2007) propose delaying the insertion of instructions
dependent on load instructions that are predicted to miss L2 into the issue queue [13]. Instead
of being inserted into the issue queue, these instructions will be stored in an instruction
buffer. The dependent instructions will be inserted into the issue queue after the L2 miss has

been resolved.

Albonesi and his team (2003) investigate the problem of configuring a processor with two
levels of caches, integer, and floating-point issue queues, load/store queues, register files,
and a Re-order buffer [5]. To avoid the overwhelming number of possible configurations,
they tune each component solely on its local usage statistics. They propose two heuristics
for accomplishing this, one for tuning caches and the other for tuning buffers and register
files. The caches they consider are selective-way ones, meaning that each of their multiple
ways can be activated or deactivated independently. Every way has the most recently used
(MRU) counter, which is incremented whenever a cache search hits the way. The cache
tuning heuristic samples this counter at fixed intervals to determine the number of hits in
each way and the total number of misses. The heuristic computes the energy and
performance overheads for all possible cache configurations using these access statistics and
dynamically selects the best configuration. The occupancy-based heuristic is used to control
other structures such as issue queues. It determines whether to upsize or downsize the
structure based on how frequently different components of these structures are filled up with

instructions.



Huber and his colleagues recommend (2011) adjusting processor pipeline depth during
runtime [7]. They added two new special instructions, MERGE and BREAK, to the
instruction set to achieve this new level of adaptivity. The MERGE instruction merges two
adjacent pipeline stages by making the pipeline register transparent, which means that the
clock is ignored and the data path is passed directly to the next pipeline stage.

In most cases, merging two adjacent pipeline stages can save one cycle. The BREAK
instruction splits two merged pipeline stages in half by reapplying the clock to the pipeline
register. This method allows personalizing the processor pipeline to the specific application

during runtime.

Carlson team (2015) tried to improve the performance of MLP-sensitive applications on In-
Order processors [20]. Memory instructions and address computations are identified by the
load slice core, placing them in a separate bypass queue (urgent and non-urgent instructions).

As a result, loads can be executed ahead of time.

Another proposal by Sembrant et al. (2015) to reduce power consumption is to relieve
pressure on Out-of-Order structures by parking instructions that are predicted to be non-
critical for memory-level parallelism before renaming, thereby relieving pressure on the

issue queue and PRF temporarily until those instructions are resumed [17].

Additionally, leading research attempts to select an appropriate core in multicore systems
based on the requirements of running applications to reduce power consumption. Typically,
a multicore processor is made of cores of the same type (homogeneous (Ssymmetric) cores)
or cores of different types (heterogeneous (asymmetric) cores). There are numerous
multicore processor architectures with varying core counts and core types. Also, the running
application may be assigned to a large core with high performance or to a small core with
low energy consumption [8] [12] [14] [15] [16]. The majority of recent studies in the
literature advocate heterogeneous cores in multicore systems [4] [8] [23] [24] [25]. Another
approach also allows for heterogeneity in terms of core types and dynamic resource sharing
between cores [14] [26]. Additionally, researchers have fused adjacent cores to create large,

Out-of-Order cores in some cases, a process known as core-fusing [27] [28].
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Kumar et al. (2003,2004) attempted to reduce power consumption in multicore architectures
by dynamically estimating a program's resource requirements and mapping them to the most
appropriate core [24]. A wide-issue superscalar processor, for example, can issue multiple
instructions in each cycle and is thus best suited for a program with a high ILP. On this
processor, mapping a program with a low ILP wastes resources. Their method allows them
to optimize for different purposes, including performance and energy efficiency. To make
thread scheduling decisions, the performance of a thread on different core types must be

known by running threads on different core types to sample their performance.

Annavaram et al. (2005) proposed a technique to improve both sequential and parallel
performance by adjusting the amount of energy consumed in processing each instruction
based on the degree of parallelism available [25]. For a fixed power budget, a processor
should spend more energy per retired instruction in phases of limited parallelism (low retired
instructions per second) and vice versa, according to the power equation represented by
multiplying EPI by IPS on all cores. To maintain a power budget constraint, less energy
should be consumed in processing each instruction for phases with high parallelism and vice
versa. On this basis, they map high IPS parallel phases to cores with low EPI and low IPS
sequential phases to cores with high EPI. As opposed to an SMP, an AMP provides a more
suitable platform with cores of different EPI and thus within the same power budget.

An architecture presented by Kim et al. (2007) is reconfigurable so that it allows simple
cores to be dynamically combined into larger cores to optimize either performance, energy,
or area efficiency [27]. They completely avoid physical sharing of resources to allow the
processor to scale up to a large issue width (e.g., 64 wide), which precludes the use of
traditional reduced/complex instruction set computing (RISC/CISC) ISAs. As a result, they
employ nonstandard explicit data graph execution (EDGE) ISA, in which the order of
dependence of instructions within a block is explicitly and statically encoded, and thus
instruction dependence relations are known a priori. This allows the cores' I-cache capacity
and instruction fetch bandwidth to scale linearly as the number of cores grows. As a result,
their technique's scalable reconfiguration shows higher flexibility and performance than

techniques that centralize some processor resources.
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The core fusion architecture presented by Ipek et al. (2007) allows the formation of larger-
issue Out-of-Order cores by fusing neighboring Out-of-Order cores, and it is described in
detail in the paper [28]. As a result of their architecture, up to four cores, each with its own
D/l cache, can be merged at runtime to form cores four times as much as the D/I cache size,
four times as much as the branch target buffer size, and four times as much as the branch
predictor size, and four times as much as the commit, issue, and fetch width. Its
reconfigurable load-store queue (LSQ) and D-cache organization allow for conventional
coherence while running a parallel program and does not generate any coherence traffic
when running a serial program in fused mode. Cores execute independently of one another,
and LSQs and D-caches of individual cores are used to avoid thread interference in L1 caches

when this is the case.

In this design, a decentralized frontend and I-cache are used to feed the fused backend, rather
than to require additional resources on different frontends on the same processor core. Core
fusion can provide more powerful four-issue super cores to support coarse-grain parallelism,
more powerful four-issue super cores to support fine-grain parallelism, and one eight-issue
super core to support sequential execution, among other things. The performance of the fused
configuration in the core fusion architecture is significantly lower than that of an iso-area
monolithic Out-of-Order processor in the core fusion architecture.

Lukefahr and his team (2012,2016) proposed the Composite Core, a reconfigurable core with
two execution engines (pengines). Both engines have a unique microarchitecture [8] [9]. The
so-called "Big engine” has a Out-of-Order pipeline, whereas the "Small engine” has a
pipeline that is in order. Both engines share a few resources, including the L1 cache, the
fetch stage, and the branch predictor. At any given time, only one engine is active, resulting
in an In-Order or Out-of-Order core. Multiple performance metrics are monitored by the
Composite Core to determine when modes are switched. These metrics are collected from
running engines and forecasted in the sleeping engine. Then, the switching algorithm
determines which of the two engines are run during that particular program phase. An offline

training stage is used to establish the optimal coefficient for each metric.

Asymmetry in a multicore processor can also be introduced by dynamically adjusting the

resources available to a core in response to its workload. Homayoun et al. (2012)
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investigated how microarchitectural structures can be shared across three-dimensional
stacked cores [14]. They point out that the 2D design of reconfigurable AMPs results in
inefficient resource pooling, which increases pipeline depth and communication delays.
They propose a 3D design of reconfigurable AMPs that allows for optimized pipeline layout
in a 2D plane. In addition, additional resources (e.g., LSQ, ROB, cache, registers, and
instruction queue) are linked in the third dimension without disrupting the 2D pipeline
layout. This enables fine-grained resource sharing to exploit both ILP and TLP while

achieving shorter communication delays due to 3D stacking.

Khubaib et al. (2012) proposed another technique for power reduction called morphcore,
which utilizes shared hardware resources to operate as an Out-of-Order core or as multiple
In-Order SMT cores with unused resources such as the Re-order buffer and Out-of-Order

wakeup/selection logic turned off [16].

To determine which core mode to use, the number of currently scheduled threads is
multiplied by two. When the number of threads reaches a predetermined threshold, the SMT
mode is activated to reduce the number of threads. If a group of high ILP threads is scheduled
together or with many low ILP threads, this approach may cause the high ILP threads to
suffer. If a small number of low ILP threads are scheduled together and run in the Out-of-
Order mode, this can result in an unnecessary increase in overall power consumption. During
mode switching, the instruction cache, data cache, and branch history do not need to be
flushed because morphcore does not require them. The only switching overhead introduced

by morphcore is the process of draining the pipeline.

Afram et al. also recommend the FlexCore architecture as a viable and workable alternative.
In a multi-cluster architecture, the FlexCore architecture consists of two small cores [15].
These cores can transform into a wide and Out-of-Order processor, if necessary. The Out-
of-Order processor can also be set up to function as a simultaneous multi-threading (SMT)
core. However, sufficient thread-level parallelism (TLP) between the existing threads is
required to achieve this configuration. Various run time statistics are collected like our
proposed method to make an accurate estimate of the proper configuration. Cores can also

be configured to run in a low power In-Order execution mode.
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Finally, we proposed the interactive Mood Detection Engine as an early research project.
(iIMODE) is a similar processor that includes trial periods for both In-Order and Out-of-
Order execution modes to determine the most appropriate execution mode [29]. There was
no prediction logic in that study, and we relied entirely on the results of the trial execution
modes, which averaged around 17 percent power savings. Due to the presence of trial
execution modes in iIMODE, performance is degraded unnecessarily, or valuable power-
saving opportunities are missed. As a result, when designing our ASMMP architecture, we
decided to incorporate an accurate mode prediction logic and eliminate those trial execution
modes periods. The ShapeShifter architecture used in this thesis for mode switching
mechanism is proposed, an Out-of-Order superscalar processor that sometimes acts as if it
is a smaller In-Order superscalar processor [31]. At certain decision points, the mode
switching circuit decides which execution mode is more suitable for running an application
until the next decision point. The ShapeShifter achieves better power and energy-delay
savings with just two processor statistics than the relatively complex and power-hungry

control circuit within a composite core architecture previously proposed in the literature.
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3. APPLICATION MONITORING STAGE IN ASMMP

This chapter is organized as follows: Section 3.1. explains the ASMMP resources' occupancy
parameter used to collect information about the running application needs and its behavior
periodically. Section 3.2 shows how we predict instruction-level parallelism for the running
application, followed by Section 3.3, which explains how we measure the success rate of
branch prediction in a speculative processor with a dynamic branch prediction mechanism.
Lastly, all collected information will be used as input data to the next stage of ASMMP,
which is the application classification stage.

3.1. ASMMP RESOURCES’ OCCUPANCY PARAMETER

Monitoring and collecting important Out-of-Order processor structures occupancy will help
decide the approximate needs of processor resources that can be dedicated to the running
application to maximize energy savings while limiting any performance loss below a
specified level, which is 5 percent in our case. The shaded sections in Figure 3.1 shows Out-

of-Order processor structures that can be redesigned for adaptive processing [5].
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register file

Figure 3.1. Out-of-Order processor structures redesigned for adaptive processing.

To gather resource occupancy in hardware each cycle, we need to check each structure's
number of filled entries. This can be easily done by checking each resource entry valid bit.

Also, a counter is needed to increment when the resource entry is not empty. Performing
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these calculations at every application execution cycle for all resources may lead to huge

hardware complexity. Thus, we decide to use the sampling method.

The sampling method is similar to capturing a picture of the resource occupancy not for
every cycle but specific running periods. The sampling method helps to reduce monitoring
overhead with near-accurate occupancy values of different resources. Also, to apply the
sampling technique, we need to add an extra structure (queue) near each resource to
periodically collect application occupancy data of different resources. Figure 3.2 shows the
H/W circuitry of collecting resources occupancy using the sampling technique. Figure 3.3

shows a flowchart of how to use sampling in occupancy calculation.
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Figure 3.2. H/W circuitry for collecting occupancy using sampling
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Figure 3.3. Flowchart shows sampling in occupancy calculation.



3.1.1. Occupancy Tests and Results

We collect occupancy values for different processor structures by running benchmarks from
the Spec2006 benchmark suite using the Gem5 simulator with x86 ISA [2] [3]. Each
benchmark is executed for 100M instructions. Configuration parameters for the simulated
processor are given in Table 3.1. Lastly, Figures 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9, respectively,

show occupancy of different processor resources with different numbers of samples taken

periodically at the end of each epoch.

Table 3.1. Specification of the simulated processor

L1 I- and D-Caches

16Kb, 4-way, 64-byte line size, 2
cycle latency

L2 Cache

128Kb, 8-way, 64-byte line size, 20
cycle latency

CPU Frequency

2 GHz

Pipeline

4-way issue bandwidth
ROB: 192 entry
1Q: 64 entry
LSQ: 32 entry
RF: 256 registers

Decision period (1 epoch) 1 M cycles
No of samples collected every 1M cycles 1M, 256, 64 samples
No of executed instructions 100 M

ROB Entries: 192
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Figure 3.4. Re-order buffer average occupancy for 1M cycle period
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Figure 3.5. Load queue average occupancy for 1M cycle period
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Figure 3.6. Store queue average occupancy for 1M cycle period
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Figure 3.7. Integer Physical register file average occupancy for 1M cycle period
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Figure 3.9. Issue queue average occupancy for 1M cycle period

3.1.2. Effects of Sampling on Occupancy Values

The average occupancy of different processor structures obtained from the sampling
technique showed deviation from actual occupancy values. The actual average occupancy
represents the occupancy of different processor structures collected every cycle during one
epoch. Also, The changes in deviation values directly depend on the number of samples
taken.

Moreover, the deviation between actual occupancy means and sampled occupancy mean
should not exceed a certain rate. We collected occupancy data for 16, 32, 64, 128, 256, and
1 million samples to determine the error rate between actual and sampled occupancy values.
We then applied the L1 norm(Least Absolute Deviations or LAD) and L2 norm (Least
Absolute Errors or LAE) formula as shown in Equation 3.1 and Equation 3.2.

The results show that increasing the number of taken occupancy samples leads to more
accurate and closer results to actual occupancy values for Spec2006 benchmarks. Figures
3.10 & 3.11, respectively, show the deviation of occupancy samples from actual occupancy

values, which is equal to one million samples in our case.
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3.2 INSTRUCTION DISPATCH RATIO (IDR)

The main difference between Out-of-Order and In-Order execution modes is that Out-of-
Order processors can schedule any of the ready instructions waiting in the 1Q regardless of
the original program order, whereas In-Order processors must schedule them in strict
program order. For example, if any of the customers entering a market finishes their
shopping, they can complete their transaction at the cash register regardless of the order they
entered. Out-of-Order processors have logic that is identical to this. When the cash register
begins dealing with customers in the order they enter the market, the shopping process can
be streamlined. However, we may need to delay some customers who finished their shopping
earlier than those who entered the market earlier. This second scenario is perfectly matched
by the logic of In-Order execution mode. We can collect the IDR value with a counter used

to measure the ILP level for running the application.

Therefore, dividing the number of instructions currently awaiting Out-of-Order execution
by those awaiting In-Order execution allows us to determine how faster an Out-of-Order
processor could be compared to an In-Order execution. We can obtain a sufficiently precise

IDR value by sampling enough (n times) over some time, as shown in Equation 3.3 below.

o Number of Ready Ins.in IQi
* o Number of Ready Ins.at the head of 1Qi

IDR = (3.3)

The most important thing to remember when collecting samples is that if you sample too
often, the same instructions that are ready in the same 1Q configuration can be counted
multiple times, resulting in an IDR value that is misleading. During the tests, for example,
we set the sampling interval to 100 cycles. A slow-running application, such as bwaves from
the SPEC2006 CPU suite, can stall the 1Q for hundreds of cycles. In this case, we risk
counting and accumulating the number of ready instructions that we have already counted

at consecutive sampling times.

To solve this problem, we recall the program counter (PC) of the instruction waiting on top
of the 1Q during a sampling period and compare it to the PC value of the instruction waiting

on top of the 1Q during the next sampling period. If these two PC values are the same, we
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know that the same instruction is still waiting on top of the 1Q and that nothing has changed

since the last sampling period.

3.3. COMMIT OVER FETCH RATIO (CFR)

The final stage of the instruction completion process is the commitment stage. Some
instructions are unable to progress to this stage. When a branch instruction is mispredicted
in speculative processors with a dynamic branch prediction mechanism, many instructions
following that branch instruction on the mispredicted path must be discarded to continue
with the application's sound execution. At this point, we look at the ratio of instructions
committed to instructions fetched over a given period, as shown in Equation 3.4 below. We
can say that all instructions that entered the processor were successfully committed if this
ratio is close to one. However, if this ratio is close to zero, we can conclude that the
processor's predictions were consistently incorrect, and only a small number of instructions
made it to the commitment stage. The remaining instructions should be removed from the

processor in this case.

CFR — Number of Instructions commit in a period (3.4)
"~ Number of Instructions that are fetched in a period '
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4. APPLICATION CLASSIFICATION/EXECUTION MODE

This chapter is organized as follows: Section 4.1. with its subsections explains the
implementation and design of ASMMP execution mode selection mechanism based on
collected information from stage one. Also, choosing the most suitable instruction execution

mode for running the application dynamically.

4.1. EXECUTION MODE SELECTION

To compare and clarify the advantages of the proposed ASMMP execution mode selection
mechanism, we will first overlook and examine the composite core study proposed by
Lukefahr and his team [8]. A composite core is made up of both large and small
heterogeneous microengines. The ability of composite cores to select the most appropriate
micro engines for running applications to save power without sacrificing too much
performance is their most important property. To accomplish this, a composite core collects
various processor statistics from the active microengine during runtime and attempts to
predict the performance of the passive microengine. The microengine, which is more
suitable for running the rest of the application, is determined by a migration decision
circuitry bound to collect statistics and complex functions that are run sequentially in the

method proposed in the literature.

Lukefahr et al. presented the first study on composite cores. ARM's big.LITTLE
heterogeneous multi-core architecture is an excellent example of the composite core
architecture. A 3-wide Out-of-Order Cortex-A15 superscalar microprocessor (large) and a
2-wide In-Order Cortex-A7 superscalar microprocessor (small) are located in the same core
in this architecture. Lukefahr et al. define a composite core as a heterogeneous multi-core
architecture consisting of one large and one small compute microengine that can provide
both high performance and high energy savings. Core migration is coarse-grained in ARM's
existing big.LITTLE architecture.

Many power-saving opportunities are lost in this architecture when running applications that
frequently change behavior, as cross-core application migration occurs after billions of
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instructions are executed. Similarly, an application that requires instant high performance
while running on the small microengine remains connected to the small microengine for an

extended time.

In conclusion, the current method lacks the reflex to react to sudden changes in the behavior
of running applications. Lukefahr et al. now propose a fine-grained decision mechanism for
core-to-core migration and a method that is more agile in adapting to the needs of running
applications. The work proposed by Lukefahr and his team is referred to as the Composite
Core (CC) study here. The method proposed in the CC is based on predicting the
performance of the passive microengine using a function obtained through machine-learning

methods that incorporate statistics from the active microengine.

The statistics gathered range from the L2 cache miss and hit rates to the branch prediction
mechanism's misprediction percentage and from the instruction-level parallelism (ILP)
calculated from the issue queue (IQ) to the roughly calculated memory level parallelism
(MLP) using the miss status holding register (MSHR). To collect these statistics, complex
tables, such as a dependency table, should be integrated into the small core. The performance
estimator, threshold controller, and core switching control mechanisms are all part of the

decision circuit, known as the reactive online controller.

Instead of using more than two heterogeneous cores, we propose the ASMMP architecture,
which uses a single Out-of-Order core to switch between Out-of-Order and In-Order modes
of instruction execution. As shown in Figure 4.1, ASMMP's execution mode circuitry
comprises a mode switching decision mechanism and a mode switching enforcement
mechanism. Furthermore, by sacrificing less than 5 percent of performance, our simple mode
change decision circuitry, which is bound to only two processor statistics (IDR and CFR),
can save more than 25 percent power, more than 21 percent on energy-delay products, and

more than 16 percent on energy-delay-square products on average.
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Figure 4.1. Execution mode selection policy in ASMMP

4.1.1. ASMMP execution mode switching architecture

The ASMMP core architecture differs from Lukefahr and et al.'s composite core architecture

[8]. Two heterogeneous microengines, one small and one large are tightly connected in the

composite core architecture. The fetch logic, the branch prediction unit, the L1 instruction,

and data caches are all shared in Lukefahr and his team's study [8]. However, data path

structures such as the register alias table (RAT), physical register files (PRF), and load/store

queue (LSQ) that are only used by the Out-of-Order microengine are not shared. The authors

also suggest adding a small LO cache to the small microengine in the article version of the

CC, which is published by the same authors later [9]. A dependency table embedded in the

In-Order core is used by the reactive online controller proposed in the CC.
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Since it requires 128x32x2 bits, the dependency table requires a static random access
memory (SRAM) space almost as large as the Re-order buffer (ROB). The reactive online
controller's main function is to collect various performance metrics and use them to

determine which core should be active for the next epoch. The CC architecture is depicted

in Figure 4.2.
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Figure 4.2. Composite core architecture [8]

As illustrated in Figure 4.3, the execution mode selection in ASMMP is based on the
aforementioned composite core architecture. ASMMP architecture includes a single Out-of-
Order microengine that functions as an In-Order microengine when needed. The ASMMP
requires less space and no additional structures for the prediction hardware. Furthermore,
because only one core can switch between execution modes, no core migration logic is
required. Since the data path structures holding live instructions can continue working
without interruption, the mode switch process from In-Order execution mode to Out-of-
Order execution mode happens almost instantly. For example, when the Out-of-Order
scheduler is activated, the Issue Queue (1Q) that schedules instructions in program order can
continue its work. However, switching from Out-of-Order execution mode to In-Order

execution mode may take some time. In such a case, the fetch stage must be throttled, and
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all data path structures that are currently running instructions Out-of-Order must be drained

first. Then, the In-Order execution mode can be used.
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Figure 4.3. Execution mode selection architecture in ASMMP

4.1.2. Mode Switching Decision Mechanism

Mode switching decision mechanism identifies the most appropriate instruction execution

mode for the running application for a specific period. The decision depends on two main

statistics: instruction dispatch ratio and instruction commit over fetch ratio of the running

application. The used statistics are already obtained in the first stage of the study to classify

applications based on their behavior into three main groups. These groups are as follows:

1. An application with high Instruction Level Parallelism (ILP) phases needs an Out-

of-Order execution mode to perform well with less power-saving opportunities.

2. An application with low ILP phases needs an In-Order execution mode to perform

well and many power-saving opportunities.
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3. A hybrid application with both high and low ILP phases during its lifetime needs
dynamic switching in execution mode to save power without sacrificing too much

performance.

To determine instruction execution mode for the running application, we need the product
of instruction commit over fetch ratio with instruction dispatch ratio to determine how well
the Out-of-Order mode performs compared to its In-Order counterpart. Equation 4.1 shows
us the speedup value (S) of the Out-of-Order mode over the In-Order mode.

S = IDR % CFR (4.1)

First and foremost, given the obvious performance advantage of the Out-of-Order mode over
the In-Order mode, we do not expect the speedup value obtained from Equation 4.1 to be
less than one. On the other hand, the S value can get very close to 0 due to the value of CFR,
which indirectly expresses the percentage of instructions inserted into the processor due to
mispredictions in the dynamic branch prediction mechanism. In such cases, we can deduce
that the Out-of-Order execution mode loses its advantage over the In-Order mode, and that
IS now the best time to switch from Out-of-Order to In-Order mode in order to save more
power. Equation 4.2 shows the effect of the S value on the mode selection stage of the

decision circuit.

The decision circuit selects the Out-of-Order mode when the calculated S value is greater
than a fixed threshold value (alpha). In its absence, the In-Order mode is selected. Low
threshold values result in more Out-of-Order mode selections, while high threshold values
result in more In-Order mode selections. The impact of this threshold value on performance
Is reported in the tests and results section. Another option is to match the threshold value
with the needs of applications running in the background. In this case, it may be possible to
prevent applications' performance from degrading beyond a certain point while revealing a

more stable and reliable decision mechanism.

Out —of —order, S> «

(4.2)
In — order, S<a

Mode ={
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4.1.3. Mode Switching Enforcement Mechanism

In ASMMP, switching between execution modes must be as smooth as possible. In this case,
the enforcement mechanism takes responsibility and adopts mode-change decisions as soon
as possible. The issue queue is one of the key data path structures distinguishing between
Out-of-Order and In-Order execution modes. 1Q is a queue structure in an In-Order
processor, where the head of the queue holds the oldest instruction and the tail of the queue
holds the youngest instruction in program order. The 10 mode instruction scheduler is
straightforward enough to schedule instructions from the 1Q's head once they are ready (i.e.,

all source operands of the instruction become valid).

The Out-of-Order mode instruction scheduler, on the other hand, is far more complicated, as
it is responsible for locating ready instructions that may be located anywhere in the 1Q. 1Q
is no longer a queue structure in an Out-of-Order processor, and it is now known as the
instruction dispatch buffer (IDB). The instructions in the 1Q must be in program order when
switching from Out-of-Order to In-Order execution mode. As a result, when a mode switch
decision is made, the ASMMP enforcement mechanism stops fetching new instructions and

waits for the instruction pipeline to empty.

If the 1Q contains long-latency (such as floating-point divide and square root) and non-
deterministic latency (such as memory) instructions, this process may take a long time. If
the mode transition is not completed within five thousand cycles, the pipeline contents are
flushed to avoid long delays in the enforcement mechanism (an empirical time, which gives
us good feedback in our experiments). The Out-of-Order instruction scheduler is deactivated
when the pipeline is empty, and a simpler In-Order instruction scheduler is activated.

Meanwhile, instructions are being dispatched into the IQ in program order.

It is much easier to switch from In-Order to Out-of-Order execution mode. An 1Q
organization is not required for the Out-of-Order scheduler because it can dispatch
instructions in any arbitrary sequence and issue them promptly. A simple reactivation of the
complex Out-of-Order scheduler and deactivation of the In-Order scheduler is needed to
switch from In-Order mode to Out-of-Order mode.
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4.1.4. Periodic Operation

When collecting statistics, we use two distinct periods: the sampling period (SP) and the
decision period (DP). There are many SPs in each DP. We collect and accumulate the
number of ready instructions in the 1Q at the end of each SP, as shown in Figure 4.4. We
calculate IDR and CFR values at the end of a DP and compare the S value with the threshold
value. Then, we choose which execution mode is best for running our application until the
next DP arrives. We will continue to work in the target mode if a mode switching decision

is made.
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Figure 4.4. Periodic operation of execution mode selection in ASMMP

4.1.5. Hardware

The CC contains the miss and hit rates collected from the L2 cache, the misprediction rate
of the dynamic branch prediction mechanism, counters that collect parallelism levels at the
instruction and memory levels, a multiplier-accumulator (MAC) that performs the
performance prediction function trained by the offline machine-learning method, and a
reactive online controller circuit that also takes into account error rate, and a dependency

table to collect ILP information missing in the In-Order processor require extra hardware
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that takes up about 3 percent of the total processor area. The execution mode selection
architecture described in ASMMP, on the other hand, comprises a pipelined division circuit
for IDR and CFR computations, a multiplication circuit for calculating the S value, and a

comparison circuit for comparing it with the threshold value.

In ASMMP, the execution mode selection architecture is implemented using a hardware
solution. However, we can explain the functioning of the Execution mode selection
architecture in terms of pseudocode, as shown in Algorithm 4.1. The variables displayed as
current commit count and current fetch count in the pseudocode represent the commit and
fetch counts already collected by many modern processors, as depicted in the pseudocode.
Instead of sampling the fetch and commit counts in every sampling period in H/W (which is
more frequent than the decision period), the execution mode selection circuit remembers the
fetch and commit counts from the previous period at the beginning of the new decision

period (represented as prev fetch and prev commit).

The decision algorithm requires two subtraction operations and two-division operations.
These operations can be performed consecutively to minimize hardware complexity,
requiring only a single subtractor and divider to complete the algorithm. A comparator is
essentially a subtractor. The same unit can be used for both subtractions and comparisons
because they are independent operations. For the sampling periods, this subtractor can also
be used as an adder. As a result, the Execution mode selection algorithm can be implemented
using only a comparator (used in the algorithm for subtraction, comparison, and addition), a
divider, and a multiplier. It is also worth noting that these units do not necessarily need to be
full 32-bit units. Simpler computation units may suffice due to the short sampling and
decision periods. Table 4.1 shows approximate transistor count needed to implement

execution mode selection mechanism in ASMMP.

In summary, except for the two statistical variables previously collected in the CC, there is
no MAC circuit or dependency table complexity as we proposed. As a result, compared to
the composite core circuit, the suggested execution mode selection approach in ASMMP is

more advantageous in terms of delay values, area, and power consumption.



Algorithm 4.1. Operation of execution mode selection in ASMMP

if current cycle mod 10000 == 0 then

total commit < current commii count — prev_commit

total fetch 4— current feich count — prev_feich

Prev_commit +——current commit count

prev_feich «— current feich count

IDR < fotal ready /total ready head

CFR +— fotal commit / total_fetch

S+— DR * CFR

fotal_ready «— 0

total ready head «— 0

if S > o and current execution mode is In-Order then
Switch to Out-of-Order execution mode

else
if 5 <o and current execution mode is Out-of~-Order then

Switch to In-Order execution mods

else
if current cyecle mode 100 == 0 then
if current PC head! = prev_pec _head then

total_ready + = number of ready instructions in 10

total_ready_head + = number of ready instructions at the head af 10

Table 4.1. Transistor count for execution mode selection mechanism

Hardware circuit Approximate transistor number ( bit
number * transistor count)

13 bit full adder 13*20=260
15 bit comparator 15*10=150
6 bit division 6*144= 864
4 bit multiplication 4*24=96
6 bit counter 6*20=120

15 bit register 15*6=90

33
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5. APPLICATION CLASSIFICATION/RESOURCE PARTITIONING

This chapter is organized as follows: Sections 5.1 and 5.2 explain the implementation and
design of ASMMP resource partitioning based on collected occupancy information from
stage one. Then, the method behind assigning suitable processor resources to the running

application is explained.

The design stage determines the size of various structures within the processors. The size of
these structures is determined by the design of a high-performance processor. However,
regardless of the processor's power, some applications will not always require full structure
capacity. In some cases, using only a small portion of the structures will be sufficient to

achieve very close performance to the highest possible from the running application.

In such cases, at the design stage, although a significant part of these structures, which is
decided to be large, is not needed, they will continue to consume energy. In similar cases, it
may be possible to reduce structure size without adversely affecting the performance and
reduce the processor's energy consumption. To achieve this goal, we need to perform
resource partitioning or adaptive processing. Adaptive processing is a straightforward
solution to dynamically disable portions from processor resources according to the runtime
needs of workloads [4], [5], [6], [7]. This thesis will follow the coarse grain resource
partitioning (open/close for one large partition) path rather than the fine-grain (open/close
for a small number of entries) path. Coarse grain partition has lower hardware complexity
and provides more functional resource access methods than the fine-grain option. Figure 5.1
shows implemented resource partitioning policy and its components. The following

subsections give a brief explanation of these components.
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Figure 5.1. Resource partitioning in ASMMP

5.1. PARTITIONING DECISION MECHANISM

The partition decision mechanism decides to upsize or downsize processor resources
depending on the collected statistics at the end of each epoch for running the application.
We use resource occupancy statistics obtained in the first stage of the study to classify
applications based on their resource demands into two main groups. These groups are as

follows:

1. High utility applications which use most of the processor resources.

2. Low utility applications which use few of the processor resources.
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The purpose of dividing applications into two main categories is to help use processor
resources more efficiently and save power without noticeable loss of application
performance. The partition decision mechanism for resource upsizing/downsizing is

examined in detail in the following subsections.

5.1.1. Resource downsizing decision

We need to look for a sign that not all resource entries are used by an application to trigger
resource downsizing operations. In this thesis, we examine the occupancy parameter of
different processor resources. For example, if the average number of elements contained in
the resource does not exceed half the total number of elements of this structure in certain
periods, the resource size will be reduced, and energy savings will be achieved. However, at
this point, we need to choose the type of size reduction method too. Following an aggressive
size reduction method that deprecates half of the processor resource size can result in more
than 5 percent performance degradation. In this case, we will use a more cautious method of
size reduction, which is the closure of one partition and the closure of other partitions
according to the average number of elements observed subsequently to prevent performance

degradation.

Algorithm 5.1 shows our partition decision mechanism for resource downsizing. At the end
of each period, we check the difference between resource size(G) and average resource
occupancy(D) of the running application. If it is larger than the specific threshold(T), we
decrement resource size by one portion(B), which is equal to eight entries in our study. After
downsizing decision, we allow instructions to retire from the resource while preventing
inserting new instructions to the resource. Furthermore, this operation may take a long time
for a short duration at the beginning of the new period to assign a new resource size (G-B)

to the running application.
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Algorithm 5.1. Resource downsizing in ASMMP

If DP end is not reached go to step 7

D «— Average resource occupancy

G <— Resource size

B 4— One partition size

T «—B+2

If (G-D)= T true then downsize resource by B entries
End

e R S

5.1.2. Resource Upsizing Decision

In the resource upsizing algorithm, here, we can choose aggressive or cautious resource
upsizing methods. In the aggressive method, when resource occupancy value exceeds a
certain threshold value, a decision can be made to increase resource size by one portion
containing eight entries in our case immediately without waiting for the end of the period,
or multiple portions can be opened instantly (again without waiting for the end of the period).
On the contrary, in the cautious method, the resource upsizing process can be performed by
adding only one portion at the end of each decision step(waiting until the end of the epoch).

As a result, it is possible to try a wide range of alternative algorithms for resource upsizing.

We will follow an algorithm similar to the resource downsizing algorithm. When the average
resource occupancy for the running application through a specific period is larger than the
specific threshold, we increase resource size by one portion. Also, to perform resource
upsizing, we do not have to wait till the end of the period to prevent performance loss of the
running application. Algorithm 5.2 shows our partition decision mechanism for resource

upsizing.
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Algorithm 5.2. Resource upsizing in ASMMP

D «— Average resource occupancy

G +— Resource size

B 4— One partition size

T «— B+2

If (G-D)=T frue then upsize resource by B entries
End

e e B ]

5.1.3. The Use of Statistical Parameters

In the first stage of ASMMP, we monitor and collect different statistical parameters such as
average resource occupancy, how many time a resource has been full or not, etc., in every
period. For each new decision period, we can follow two ways of using the statistical
parameters. The first way is to consider old values from the previous periods (partial transfer
of parameters history) and give them a certain weight (most studies give them 50 percent
impact). Then, merge these values with the new ones for determining resource upsizing or
downsizing decisions. The second way is to reset parameter values and not merge them with
new period data. We follow the second method in this thesis to reduce the hardware
complexity of ASMMP.

Moreover, we believe that the threshold value for both resources upsizing and downsizing
should be different to prevent oscillation phenomena. Using the same threshold value may

lead to continuous activation of resource scaling.

This oscillation may result in performance degradation of the running application with fewer
energy-saving opportunities. Lastly, Figure 5.2 shows a flowchart for ASMMP partition

decision mechanism.
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Figure 5.2. Partition decision mechanism flowchart for ASMMP

5.2. PARTITIONING ENFORCEMENT MECHANISM

The partition enforcement mechanism in ASMMP has two major purposes. The first purpose
is to take information from the partition decision mechanism and then continuously check
whether the conditions are satisfied to turn on/off different processor resources. The second
purpose is to enforce that the new target amount of resource entries do not exceed the

maximum allowable resource size and vice versa.
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In this section, we classify ASMPP resources based on their different characteristics, such
as resource nature, occupancy, and frequency of resource use. Then, we define suitable
conditions based on these characteristics. Then, we will check these conditions during the
partition enforcement operation. The fulfillment of these conditions will help complete the
scaling process with minimum hardware complexity. The most important condition we will
follow is to divide the resource into partitions. Each partition consists of eight entries. Also,
at the end of each scaling decision, only one partition can be turned on or off ( different
available entries from multiple partitions are not allowed to be turned on/off ). In the

following subsections, we will examine ASMMP resource structures.

5.2.1. Circular Queue Resources

ASMPP resource structures such as Re-order buffer, load queue, and store queue are circular
queues where instructions are inserted into the queue in an In-Order manner and instruction
removal in the same order as insertion. A circular queue has two pointers (Head pointer) that
point to the beginning of the queue (oldest inserted instruction ) and (Tail pointer) pointing
to the end of the queue (newest inserted instruction). So, every newly arrived instruction will
be placed at the end of the queue, and every retired instruction will be removed from the

beginning of the queue.

The conditions needed to be satisfied by the partitioning enforcement mechanism to
downsize circular queue structures in ASMMP are continuously to check all entries in the
specified partition and mark each empty entry in that partition and second, to block the

arrival of the new instructions to that partition.

Moreover, on each instruction, removal from that partition keeps marking the entry and
repeats the process till all entries in that partition become empty. Finally, the partitioning

enforcement mechanism deactivates the chosen partition.

The conditions needed to be satisfied by partitioning enforcement mechanism to upsize
circular queue structures in ASMMP is to allow insertion of sequential and one-piece of
instructions to available partition without creating gaps between resource partitions.

Furthermore, we can achieve the mentioned condition by checking the position of the head
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pointer and make sure that it should be positioned before the tail pointer. After satisfying the
above conditions, our partition enforcement mechanism will activate the resource partition,

and it will be ready to be used by running the application.

5.2.2. Instruction Queue (1Q)

The most important functioning of Out-of-Order execution is the execution of instructions
based on the "data flow" graph (rather than program order) by keeping the semantics of the
original program. The HW examines a sliding window of consecutive instructions (The
"instruction window"). Later, ready instructions get picked up from the window( instruction
queue keeps these instructions) and executed out of program order. Lastly, instruction results
are committed to the machine state (memory and architectural register file) in original
program order. Due to the nature of the instruction queue, ready instructions can be selected
out of program order. This increases the complexity of the instruction selection circuit, but
at the same time, it allows instructions to be stored in a mixed order inside the instruction

queue.

The instruction gqueue scaling operation is easier than other resource scaling processes
because the instructions do not need to be stored in a certain order. Thus, the Partition
enforcement mechanism can directly (upsize) activate and add a partition to the end of the
instruction queue without the need to check any conditions. Whereas, during the downsizing
process, the partition enforcement mechanism blocks fetching new instructions to the
instruction queue and waits until all partition entries become empty. After satisfying the

mentioned conditions partition enforcement mechanism turn off that partition.

Another remarkable point here is that the processor replaces new instructions at the
beginning of the instruction queue, accumulated in density at the beginning of the queue
with relatively empty spaces at the end of the queue. The mentioned point helps partition

enforcement mechanism to complete the size reduction process more quickly.
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5.2.3. Register Files

Register files are structures that play a critical role in the register renaming mechanism,
which helps eliminate all false data dependencies among instructions. To perform all these
jobs, register files consume more power than other resources. Instructions (operands) are
stored in the register file out of program order, similar to the instruction queue case.
However, the main difference between both structures is that instructions in the instruction
queue can be removed from this structure as the instructions are executed, while the data in
the register files must remain in place while the corresponding instructions are on the
processor. As a result, performing register file scaling requires either waiting until the
instructions retire from the queue or doing nothing by waiting for a specific period and then

flushing the structure.

There are two ways we can use to reduce register file size. The first method is to transfer the
values inside a specific partition of the register file to other entries in other available
partitions and then update the register rename table. The second method is to wait for the
oldest instructions in the register file to commit totally from the processor, which later leads
to evacuation of its data from the register file. In this thesis, we follow the second method to
turn off the registers since the first option requires additional circuit, time, and energy
consumption to be implemented. Lastly, the partition enforcement mechanism can directly
upsize the register file without any specific condition. The upsizing process can simply be
done by marking activated registers as available in the register rename table. Figures 5.3 and
5.4 show a flowchart for the scaling process followed by the partition enforcement
mechanism in ASMMP.
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5.3. ASMMP OPERATION

The purpose of this section is to examine and discuss ASMMP's operation and the results
obtained by integrating the resource partitioning mechanism with the execution mode
selection mechanism to save power not only through dynamic execution mode switching but

also by turning off idle processors resources during Out-of-Order execution mode.

5.3.1. Issuing Right Processor Configuration

The primary objective of this thesis is to design a single hybrid processor capable of limiting
application performance degradation to less than 5 percent and minimizing power
consumption. This objective is accomplished by using the two distinct methods. The first is
to dynamically partition resources by monitoring occupancy information during an
application's Out-of-Order execution mode and saving by turning off unused processor
resources. The second is periodic switching between In-Order and Out-of-Order execution
modes, with power savings resulting from the absence of complex Out-of-Order execution
mode structures for a while. Mode switching is accomplished by monitoring certain
processor statistics, such as the number of committed and fetched instructions in the running
application, which are not as difficult to collect and monitor as in CC [8]. Additionally, the
proposed method overcame the disadvantages of iIMODE [29]. iMODE is another technique
for changing execution modes based on trial periods [29]. The primary disadvantage of this
method is that it uses brief trial periods at the end of the main Out-of-Order execution mode,
which slows down high-performance applications. Although iIMODE attempts to mitigate
the slowdown caused by this problem by postponing the next decision point based on a
specified delay threshold value, applications that require full speed will still experience a

slowdown.

These two methods can be combined by selecting the most appropriate processor
configuration for the running application. Figure 5.5 shows a flowchart for the final proposed

ASMMP architecture and how these two methods are combined to operate together.
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Figure 5.5. Flowchart for proposed ASMMP architecture

As can be seen from the flowchart, the top of our flowchart specifies distinct steps for Out-

of-Order and In-Order execution modes. The left section illustrates the steps to be taken
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while in the Out-of-Order mode, and the right section illustrates the steps to be taken while
in the In-Order mode. The mode switching decision mechanism described in Section 4.1
governs the selection of an Out-of-Order execution mode. ASMMP collects the necessary
statistical data required by mode decision mechanisms (IDR, CFR) values to calculate
system speed up (S) using the sampling method. Additionally, resource partitioning in
ASMMP is dependent on the mechanism for resource partitioning described in Sections 5.1
and 5.2, respectively. The average occupancy of the Re-order buffer, load queue, store
queue, issue queue, and register files is determined using the same sampling method. The
occupancy data is used by the resource partitioning decision mechanism, which helps
allocate sufficient resource space to run applications and shut down unused entries to

conserve energy.

At first, the application ran in an Out-of-Order mode with adaptive resource processing. At
the ending of each partition decision period, the average occupancy value for all processor
resources is calculated and compared to the threshold value (downsize threshold), based on
the comparison result of either resource downsizing or upsizing by one partition applied after
satisfying all partition enforcement mechanism requirements. Following that, at the ending
of each execution mode decision period, the system speed up (S) value is calculated and
compared to the threshold value (alpha threshold). We retain the Out-of-Order execution
mode if the speed-up value exceeds the specified alpha threshold. Otherwise, we begin the
process of switching the execution mode to In-Order mode. Before initiating the switching
process, we must disable the resource partitioning mechanism, which will result in only one
partition per resource being activated. All remaining partitions will be disabled (the partition
enforcement mechanism responsible for this operation) since we do not require extensive
use of these resources in the In-Order execution mode. Additionally, by deactivating most
resource partitions, we expect to achieve approximately fourfold power savings when an

application runs in Out-of-Order mode, as mentioned in the CC study.

Later, we wait for the mode switching enforcement mechanism to complete the process of
switching by allowing active instructions to complete their execution and be retired. Finally,
two additional points should be made. The first is related to the resource occupancy
collection mechanism, which remains active when we are in the In-Order mode, and at the

ending of each sampling collection period, a value for resource occupancy is inserted into
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the sampling queue. The final and the most critical point concerns collecting statistical data
that will be used to forecast the next execution mode. The sample period is critical in this

situation because a short sample period results in frequent sampling.

Additionally, we will continue to count the same ready instructions in the instruction queue,
which will result in inaccurate information about the number of ready instructions. For
example, collecting ready instructions every 100 cycles may cause issues for slow
applications, such as bwaves, which can sit in the instruction queue for hundreds of cycles
without progressing. In this case, we risk counting and accumulating the same number of

ready instructions as we did during the initial sampling time.

To address this issue, we store the program counter value of the instruction waiting in the
instruction queue at the end of the sampling period in a register and compare it with the
program counter value of the instruction waiting in the queue at the beginning of the next
sampling period. If these two program counter values match, we know that the same
instruction is still waiting at the top of the queue and that the instruction queue situation has
not changed since the previous sampling period, and thus, we avoid counting the number of
ready instructions multiple times. By employing this technique, we were able to identify
slow benchmarks (bwaves, leslie3d, and sjeng) and execute them in order with minimal

performance degradation and significant power savings in our proposed ASMMP.
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6. TESTS AND RESULTS

This chapter presents the simulation results for ASMMP in terms of performance, power
savings, and efficiency. The results of evaluating the execution mode selection mechanism
in terms of performance, power savings, and energy efficiency are presented and discussed
in Section 6.1. The resource partitioning mechanism is evaluated in Section 6.2 as a power-
saving technique that can be applied to various processor resources. Section 6.3 summarizes
and discusses the results of the performance, power savings, and energy efficiency
evaluations of the final ASMMP design.

6.1. EXECUTION MODE SELECTION TESTS AND RESULTS

The Gemb simulator is still being used to test and evaluate the proposed execution mode
switching architecture in ASMMP [2]. SPEC CPU2006 benchmarks are compiled in the x86
architecture and run with reference input files until each benchmark completes 100 million
instructions [3]. Table 6.1 shows the properties of the simulated In-Order and Out-of-Order

processors.

Table 6.1. Specification of the simulated processor during execution mode switching

Processor Microarchitecture x86
Processor Frequency 2 GHz
Machine width 4
Re-order Buffer size 192
Issue Queue size 64
Load Queue/Store Queue size 32
Physical Register File size 256

L1 instruction and data cache

4-way LRU, 16 KB each

L2 cache

8-way LRU, 128 KB

Decision Period (DP) 10000 cycles
Sampling Period (SP) 100 cycles
o Thresholds 1,3,5
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Three criteria are used to evaluate simulation results: performance, power savings, and
energy efficiency. To calculate the processor's energy consumption per unit time, it is
assumed that the Out-of-Order mode consumes four times the energy of the In-Order mode,
as stated in the CC [8]. Power expenditure (PE) is calculated as stated in Equation 6.1, where
W is the proportion of time spent in the In-Order processor. The reported power savings (PS)
in the results section are determined using Equation 6.2. In terms of the average instructions
per cycle (IPC) metric, Equation 6.3 presents the calculation for the slowdown rate (SR) of
the proposed execution mode switching architecture in ASMMP compared to the baseline
Out-of-Order processor. Finally, Equations 6.4 and 6.5 reflect the efficiency formula in
terms of energy-delay product (EDP) and energy-delay-square product (ED2P),

respectively.

PE=%*W+(1—W) (6.1)
PS=1-PE (6.2)

_ I’ﬁg{i’# (6.3)

EDP = PE + SR (6.4)
ED2P = PE * SR? (6.5)

First, we run the spec 2006 benchmarks in both Out-of-Order and 10 execution modes and
collect performance data. Table 6.2 compares the performance of applications running In-
Order with their Out-of-Order counterparts. In some applications, the performance
degradation is almost imperceptible (bwaves 0.3 percent , leslie3d 1.4 percent, and sjeng 1.8
percent ). When running such applications, we expect the mode selection circuit in ASMMP

to prefer the In-Order mode in order to save more power.
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Other benchmarks exhibit a significant performance degradation (gromacs 68.5 percent and
gamess 65.6 percent ) when In-Order execution mode is chosen. When running such

applications, we anticipate that the Out-of-Order mode will provide the best performance.

Table 6.2. Performance drop of In-Order mode

Application | Performance drop(%o) Application Performance drop (%)

astar 59,4 h264 62,5
bwaves 0,3 hmmer 65,1
bzip2 16,1 leslie3d 1,4
calculix 50,3 libquantum 17,4
games 65,6 mcf 59,7
gems 44,6 milc 50
gobmk 23,3 namd 43,2
gromacs 68,5 sjeng 1,8
average 39,3

We simulate the proposed execution mode switching circuit with various threshold values
(1, 3, and 5) and then record the percentage of In-Order runtime as illustrated in Figure 6.1.
As expected, our proposed mechanism succeeded in most cases in selecting an In-Order
execution mode when the performance difference between the two execution modes is close
to zero for the running application. This statement holds true for the bwaves, leslie3d, and
sjeng benchmarks. However, in applications where the performance difference between the

two modes is significant, as expected, the Out-of-Order mode is preferred.
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Figure 6.1. Runtime percentage of the In-Order mode in mode selection mechanism of
ASMMP for various alpha thresholds

We also notice that as the threshold value increases and performance losses can be tolerated
more, the In-Order mode is given a better chance. Each benchmark's final column depicts
the effect of the near-optimal alpha threshold (best alpha) value retrieved from Table 6.3. As
the Graph indicates, the results for the fixed alpha threshold of 3 and the best alpha threshold
that always results in a performance penalty of around 5 percent are very similar.
Undoubtedly, using the fixed threshold value of 3 prevents us from taking advantage of some
power-saving opportunities in the astar, bzip2, gromacs, h264, hmmer, libquantum, mcf,
milc, and namd benchmarks. On the contrary, in the gems benchmark, we provide more
opportunities for power savings in the fixed threshold case and compensate for the
significant performance impact, as illustrated in Figure 6.2. The degree of performance
degradation for three fixed threshold values and the near-optimal threshold (best alpha) that

we studied is depicted in Figure 6.2.

The obtained results showed a small loss of around 0.25 percent on average in system
performance when using a small threshold value (Alpha = 1), with the highest performance
loss being 1.8 percent in the sjeng benchmark. On the other hand, because of this threshold

value, many power-saving opportunities are lost.

Table 6.3. Near-optimal thresholds

Application Alpha threshold (o) Application Alpha threshold (a)

astar 7,0 h264 4,0
bwaves insensitive hmmer 7,0

bzip2 5,0 leslie3d insensitive
calculix 3,0 libquantum 4,5
games 3,0 mcf 3,7
gems 2,5 milc 35,5
gobmk 3,0 namd 3,6

gromacs 5,0 sjeng insensitive

The performance loss tolerance of applications in the In-Order mode varies greatly, as shown
in the chart. For example, the bzip2 application spends nearly half of its time in In-Order

mode, but we only see a 0.12 percent performance drop compared to the baseline Out-of-
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Order processor. Calculix suffers a significant performance loss with a fixed threshold of 3,

despite only running in the In-Order mode for 14 percent of its total runtime.

Additionally, we noticed that some benchmarks such as milc and hmmer are almost
insensitive to all used threshold values and prefer the Out-of-Order execution mode during

their lifetime.

The proposed mode switching circuit in ASMMP managed to stay safe by choosing the Out-
of-Order execution mode when the loss of performance will be high if we switch to the In-
Order mode. The only exceptional case is encountered with the gems benchmark. The fixed
alpha threshold of 3 seems to be a little too much for this benchmark (the best alpha value is
2.5, as shown in Table 6.3), and we observe more than a 15 percent performance drop.
Finally, the mode switching circuit in ASMMP also identifies slow benchmarks that are
insensitive to any alpha threshold (i.e., bwaves, leslie3d, and sjeng) and run them in In-Order

mode 100 percent of the time.
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Figure 6.2. Percentage of performance drop in mode selection mechanism of ASMMP for
various alpha thresholds

Additionally, we recorded the power savings, energy-delay-product (EDP), and energy-

delay-square product (ED2P) savings associated with the mode switching mechanism
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implemented in ASMMP. Figures 6.3, 6.4, and 6.5 show the obtained results for three
different threshold values. As the Figures show, while the threshold value is 1, the average
power and EDP savings are nearly 15 percent. However, when the threshold value is set to
3, the average power savings jump to 21.5 percent, while the average performance loss
remains around 2.7 percent. The same observation can be made about the EDP criterion.
When the threshold value increases from 1 to 3, the average EDP savings rise to 19.1 percent.
It is worth noting that these results are very close to the near-optimal alpha thresholds that
have been empirically determined for each benchmark. Of course, the average power and
EDP savings are the greatest for the alpha threshold of 5. On the other hand, this threshold
value comes with an 11.4 percent average performance penalty, which may be tolerable in

battery-powered devices such as laptops and smartphones.
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Figure 6.4. Percentage of EDP savings in mode selection mechanism of ASMMP for
various alpha thresholds
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various alpha thresholds

6.2. RESOURCE PARTITIONING TESTS AND RESULTS

We run the proposed resource partitioning mechanism then record its effects on performance
and consumed power. Also, collect average occupancy values for different processor
structures using different upsize and downsize threshold values by running benchmarks from
the Spec2006 benchmark suite using the Gem5 simulator with x86 ISA [2] [3]. Each
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benchmark is executed for 100M instructions. Configuration parameters for the simulated
processor are given in Table 6.4. Lastly, we will examine these results in terms of

performance and achieve savings by turning off entries from different processor resources'.

Table 6.4. Specification of the simulated processor during resource partitioning

L1 I- and D-Caches 16Kb, 4-way, 64-byte line size, 2 cycle latency
L2 Cache 128Kb, 8-way, 64-byte line size, 20 cycle
latency
CPU Frequency 2 GHz

4-way issue bandwidth
ROB: 192 entry,24partition
Pipeline 1Q: 64 entry,8partitions

LSQ: 32 entry,4 partitions
RF: 256 registers,32partition

Decision period (1 epoch) 1 M cycles
No of occupancy samples collected 256 samples
every 1M cycles
No of executed instructions 100 M
Instruction execution mode Out-of-Order

6.2.1. Performance

As we expected from the obtained results, we observe an improvement in application
performance compared to baseline with losing chances in saving power, after making the
downsizing process harder to happen by choosing high downsize threshold values. We had
more opportunity to save power after performing more frequent downsizing processes by
choosing low downsize threshold values while a performance decline for all running

benchmarks was noticed.

This degradation is related to performing resource partitioning very frequently, which results
in continuous oscillation of resource size. Lastly, Figures 6.6 to 6.8 show the proposed

resource partitioning results in terms of running application performance (IPC).

The obtained results in Figure 6.8 when compared to the non-partition baseline
configuration, the proposed resource partitioning mechanism with a high downsize threshold
value results in a 0.25 percent performance degradation. However, more than 48 percent
performance degradation occurs when the resizing process is performed too frequently due

to low threshold values.
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Figure 6.6. Performance of resource partition in ASMMP compared to baseline Out-of-

Order processor.
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Figure 6.8. Average performance drop percentage for simulated benchmarks with different
threshold values

6.2.2. Issue Queue

The proposed resource partition mechanism successes in turning off more than 53 percent
of issue queue entries after using a high downsize threshold value. On the other hand, more
than 84 percent of issue queue entries were saved when using low threshold values, but we
will not use these low threshold values in ASMMP resource partitioning mechanism to
prevent performance degradation of all running applications. Lastly, Figures 6.9 and 6.10
respectively show the used issue queues entries by Spec2006 benchmarks followed by the

average used issue queue entries after applying resource scaling.
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1Q entries used by 22 benchmarks after applying partitioning
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Figure 6.9. Instruction Queue entries used compared to baseline (64 entry no partition)
configuration
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Average 1Q entries used by 22 benchmarks after applying
partitioning
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Figure 6.10. Average used instruction queue entries for all simulated benchmarks
compared to baseline (64 entry) configuration after resource partitioning

6.2.3. Re-order Buffer

Our simulation results for the resource Re-order buffer were identical to those for the other

resources. The effectiveness of the proposed resource partitioning mechanism is

demonstrated in Figures 6.11 and 6.12. Whenever the downsize threshold value is 24, and

the upsize threshold value is 8, an average saving of more than 63 percent is achieved. On

the contrary, when a downsize threshold value of 2 and an upsize threshold value of 4 are

used, enormous average savings of around 90 percent occur. Finally, as previously stated,

maintaining a high downsize threshold value will benefit our design by achieving significant

average savings and limiting performance degradation to less than 0.25 percent.
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ROB entries used by 22 benchmarks after applying partitioing
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Figure 6.11. Re-order buffer entries used compared to baseline (192 entry no partition)
configuration.

Average used ROB entries by 22 benchmarks after applying
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Figure 6.12. Average used Re-order buffer entries for all simulated benchmarks compared
to baseline (192 entry) configuration after resource partitioning.
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6.2.4. Load and Store Queues

Figures 6.13-6.16 illustrate the results of resource partitioning when applied to both load
and store queues. their size was mostly emphasized in both queues. Both resources contain
32 entries, which is a small number in comparison to other ASMMP resources. We saved
approximately 25 percent of the store and load queue entries using a downsize threshold of
24, and an upsize threshold of 8. Additionally, as illustrated in Figure 6.13, no savings in the
store queue were achieved when using high downsize threshold values for some benchmarks
such as libquantum, Ibm, and bwave. Finally, as illustrated in Figure 6.15, our resource
partitioning mechanism could only disable two load queue entries in several benchmarks,

including leslie3d and mcf.
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Figure 6.13. Store queue entries used compared to baseline (32 entry no partition)
configuration.
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Average used SQ entries by 22 benchmarks after applying
partitioning
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Figure 6.14. Average used store queue entries for all simulated benchmarks compared to
baseline (32 entry) configuration after resource partitioning.
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Figure 6.15. Load queue entries used compared to baseline (32 entry no partition)
configuration.
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Average used LQ entries by 22 benchmarks after applying
partitioning
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Figure 6.16. Average used load queue entries for all simulated benchmarks compared to
baseline (32 entry) configuration after resource partitioning.

6.2.5. Register File

Figures 6.17-6.20 illustrate the resource partitioning simulation results when applied to both
integer and floating-point register files. For downsize threshold value 24 and upsize
threshold value 8, the proposed partitioning mechanism succeeded in saving more than 57
percent of integer register file entries. Additionally, savings in the floating-point register file

exceeded 58 percent.

Finally, Figure 6.21 illustrates savings percentages across all ASMMP resources.
Additionally, we can conclude that our proposed resource partitioning mechanism
successfully allocated sufficient resource entries to each running application to maintain
performance close to the baseline case while reducing power consumption by turning off

unused resource entries.
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IRF entries used by 22 benchmarks after applying partitioing
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Figure 6.17. Integer register file entries used compared to baseline (256 entry no partition)
configuration.

Average used IRF entries by 22 benchmarks after applying

partitioning
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Figure 6.18. Average used integer register file entries for all simulated benchmarks
compared to baseline (256 entry) configuration after resource partitioning.
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FRF entries used by 22 benchmarks after applying partitioing
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Figure 6.19. Floating-point register file entries used compared to baseline (256 entry no
partition) configuration.
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Figure 6.20. Average used floating-point register file entries for all simulated benchmarks
compared to baseline (256 entry) configuration after resource partitioning.
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Figure 6.21. Percentage of saved entries after applying partition in different ASMMP
resources

6.3. FINAL ASMMP TESTS AND RESULTS

In this subsection, we will go through the used experimental methodology, then evaluate and
discuss our final ASMMP architecture design results after combining both execution mode
switching and resource partitioning mechanism in terms of performance, power savings,
EDP, and ED?P metrics.

6.3.1. Experimental methodology

Like our previous design evaluation process, we continue using the Gem5 simulator to test
and evaluate the overall ASMMP model [2]. The experimental methodology used in
evaluating resource partitioning and mode selection designs was also repeated here by
running the SPEC CPU2006 benchmarks for 100 million instructions on x86 architecture
[3]. The used simulation parameters of ASMMP are given in Table 6.5.



Table 6.5. Specification of simulated ASMMP architecture
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Microprocessor architecture x86
Processor frequency 2GHz
Machine width 4
Re-order buffer size 192 entries
Issue queue size 64 entries
Load and Store queue size 32 entries
Physical register file size 256 entries

L1 instruction and data cache

4-way LRU, 16 KB

L2 cache

8-way LRU, 128 KB

Execution switch decision period (ESDP) 10000 cycles
Sampling period (SP) 100 cycles
Partition decision period (PDP) 2M cycles

Occupancy sampling period (OSP) 8000 cycles (250 samples)

Alpha threshold values 1,35
Downsize threshold value 40
Upsize threshold value 10

Resource scale size 1 partition (resource size/8)

Performance, power savings, and energy efficiency are all criteria used to evaluate
simulation results in this setting. Furthermore, it has been assumed that the processor
consumes the same energy per unit of time as it did in the CC investigation. It was assumed
that a microprocessor operating in Out-of-Order execution mode would consume four times
as much as the amount of energy as a microprocessor operating in In-Order execution mode.
Using Equation 6.6, the power expenditure (PE) can be calculated by taking the percentage
of time spent on the In-Order processor (W). Additionally, we add a parameter for the
number of saved entries (SRE) for all ASMMP resources in Out-of-Order execution mode.
This value is calculated based on the number of unnecessary entries closed by the resource
partitioning mechanism in ASMMP. To make things even better, we continue to use
Equation 6.2 to calculate the power savings (PS). In addition, we continue to use Equation
6.3, which provides the formula for the slowdown rate (SR) of the proposed ASMMP
architecture compared to the baseline Out-of-Order processor in terms of the average
instructions per cycle (IPC) metric, as previously stated.

Lastly, there was no modification in Equations 6.4 and 6.5, used to measure efficiency
metrics represented by the energy-delay product (EDP) and energy-delay-square product
(ED2P) formulas, respectively.
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1
PE=Z*W+(1—W)*(1—SRE) (6.6)
6.3.2. Resource Partitioning Effects

In the first phase of our tests, we wanted to determine how much performance degradation
occurred when we used ASMMP's resource partitioning mechanism with Out-of-Order
execution. The results of resource scaling and the percentage of entries that can be disabled
using a downsize threshold of 40, and an upsize threshold of 10 for the Spec2006
benchmarks in ASMMP are shown in Figure 6.22. Additionally, alpha threshold values of

1, 3, and 5 were used to switch the execution mode from Out-of-Order to In-Order.

In general, lower-alpha values result in more Out-of-Order execution mode periods, and
resource scaling or resource partitioning can result in higher savings. Large alpha values
imply longer periods in order execution mode while saving power is derived from avoiding

Out-of-Order complex structures.

We achieved power savings by shutting down approximately 30 percent of ASMMP
resources during Out-of-Order execution mode periods with an alpha value of one and a
performance loss of approximately 1.87 percent. In comparison to alpha value one, we
continue to save less power. Additionally, 15 percent of entries are saved when the alpha
value is three, resulting in a 2.96 percent performance degradation. When the alpha value is
set to five, approximately 10 percent of entries are saved at a performance cost of more than
12 percent. These results were expected given the decline in Out-of-Order execution mode
periods and the fact that ASMMP operates in an In-Order execution mode for most of the
time (choosing high alpha values makes our execution mode switching mechanism harder

to switch from In-Order to Out-of-Order).

Also, no entries were saved from the resource partitioning mechanism in bwave,leslie3d,
and sjeng since no performance difference between both execution modes and our execution
mode switching mechanism is chosen in order execution mode for these benchmarks during
their lifetime. Whereas, near 40 percent savings were achieved for milc and gems
benchmarks because they are not sensitive to any alpha threshold value, and they keep

running in Out-of-Order execution mode.
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Figure 6.22. Percentage of saved entries in final ASMMP for Spec2006 benchmarks during
Out-of-Order execution mode

Figure 6.23 shows the percentage of entries saved for different ASMMP resources during
the benchmark lifetime. The savings in the Re-order buffer and register file come mainly
from the resource partitioning mechanism when the alpha value is one, where all benchmarks
run most of the time in Out-of-Order execution mode. Thus, our partitioning algorithm
assigns enough entries from both structures based on the running application's needs and

turns off the unused entries to save power.

The main savings in load, store and issue queue are achieved when applications start
switching to an In-Order execution mode and stay in several periods in the same execution
mode (alpha 3,5). In this case, as we mentioned before, saving comes not from resource
scaling but comes from not intensive use of Out-of-Order complex structures by applying

direct resource downsize to one partition, as we showed in Figure 5.5.

Additionally, the chosen LSQ (32 entry) and 1Q (64 entry) sizes were insufficient for the
running applications during Out-of-Order execution mode (alpha 1), resulting in the loss of
the opportunity to save power in these structures, and the partition mechanism did not
perform resource downsizing to avoid performance degradation of the running application.

On the contrary, alpha 3 and 5 increase the likelihood of saving additional LSQ entries due
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to declining average occupancy at the start of the new Out-of-Order execution period. When
the In-Order runtime increases, the resource occupancy for several periods will be limited to
a single partition. When the application is switched to Out-of-Order, the LSQ occupancy
equals the resource's full size, which is 32 entries. At the ending of PDP, ASMMP's resource
partition mechanism will perform one upsizing operation by eight entries no more than once
or twice and then revert to In-Order execution mode. Finally, we can say that when there is
switching from In-Order to Out-of-Order, more upsizing operations occur for small resource
sizes, and resource downsizing occurs for large resource sizes. In this case, selecting an alpha
threshold value of 3 results in the average savings of 27 percent in ASMMP resources and
performance degradation of less than 5 percent, or approximately 2.96 percent. Finally, this
value enables efficient and balanced utilization of ASMMP's resource partitioning and mode
switching mechanisms. Otherwise, selecting alpha one will result in the loss of the mode
switching mechanism, while selecting alpha 5 will have the opposite effect, reducing the
impact of resource partitioning on ASMMP with a performance degradation of more than 5
percent of the running application.
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Figure 6.23. Average saving percentages for different ASMMP resources includes both
out-of-order and In-Order execution mode

6.3.3. Performance

Figure 6.24 shows our final ASMMP architecture performance with all its mechanisms,

including resource partitioning and mode switching. A performance degradation by 1,92
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percent and 2.96 percent, respectively, when choosing alpha values of one and three.

Besides, performance degradation is more than 12.47 percent when alpha value 5 is chosen.

When alpha one is chosen, we observe a 7.5 percent performance degradation in bzip2. This
is related to the accuracy of the average occupancy samples collected at the end of the
partition decision period (250 samples in our case). Our partitioning mechanism reaches the
more accurate needs of the running application after increasing the number of samples

(bzip2). The main goal of using 250 samples for two million cycles is to reduce hardware
complexity.

Figure 6.25 depicts the percentage of In-Order execution modes for the Spec2006
benchmarks. The results in Figures 6.24 and 6.25 are consistent with our expectations, as
more In-Order periods have a greater negative impact on performance and higher power
savings (the case with the gobmek benchmark). However, the primary objective of this thesis

was to conserve power and maintain a performance loss of less than 5 percent.
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Figure 6.24. Percentage of performance drop of final ASMMP compared to baseline Out-
of-Order processor for various alpha thresholds
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Figure 6.25. Runtime percentage of the In-Order mode in final ASMMP for various alpha
thresholds

Finally, Figure 6.26 shows the overhead of adding the implementation of resource
partitioning on performance in ASMMP when compared to the non-resource partitioning
version (only mode switching mechanism). There is negligible impact on performance
around 1.9 percent at maximum when alpha 1 is chosen. This threshold value makes our
resource partitioning mechanism active for a long time since most of the execution mode
will be in Out-of-Order mode, and continual resource scaling will be performed on resources
of ASMMP (depending on chosen PDP). On the other hand, lower use of resource
partitioning mechanism, which is the case for alpha value 5 reduces this impact and results

only in 1 percent decline in performance compared to the non-partition version.
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Figure 6.26. Percentage of performance drop of ASMMP for both partition and non-
partition version compared to baseline Out-of-Order processor for various alpha thresholds

The idle configuration again here is to choose alpha value one or three. Choosing threshold
value three results only in a 0.10 percent performance drop when compared to the non-
partition version. As we mentioned before, this threshold value helps gives opportunity to

both mechanisms for functioning in balancing and proper way.

Finally, as shown in Figure 6.27 for alpha threshold values one and three, our ASMMP keeps
In-Order execution mode activated for 18.5 percent and 24.57 percent, respectively, from
the total runtime due to low application dispatch ratio. These runtime percentages allow
saving more power by downsizing Out-of-Order structures to one partition and deactivate
resource scaling. On the contrary, ASMMP activates only resource partitioning mechanism
for 81 percent and 75 percent, respectively ( high dispatch ratio) from the total runtime while
deactivating the switching mechanism to continue saving less power and avoid performance

degradation.

6.3.4. In-Order Runtime

The incorporation of resource partitioning into ASMMP maintained application

performance close to the baseline case (full Out-of-Order no partition) and had no effect on
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the percentage of In-Order runtime for different alpha threshold values because the switching
decision mechanism is completely dependent on the application speed-up factor, which
monitors instruction dispatch ratio, and instruction commit over fetch ratio. As illustrated in
Figure 6.27, the difference in In-Order runtime percentage between the final ASMMP and
the non-partitioned version of ASMMP is negligible.
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Figure 6.27. Runtime percentage of the In-Order mode in ASMMP for both partition and
non-partition versions for various alpha thresholds

6.3.5. Power Savings

The percentage of total processor energy consumed by its resources is usually around 55
percent [10]. Figure 6.28 summarizes the average power saving percentage observed for
various alpha threshold values of the Spec2006 benchmarks in the final ASSMP architecture.

In this case, an additional power saving estimation of more than 28 percent, 13 percent, and
8 percent can be achieved by using a resource scaling mechanism and total savings of 43
percent, 34 percent, and 42.58 percent respectively achieved in the final ASMMP design
with keeping performance degradation below 5 percent for most Spec2006 benchmarks
when alpha threshold values of one, and three are chosen, and performance loss of 12.5

percent is noticed when alpha value 5 is chosen.
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Besides, in this Figure, we notice a high power saving of around 75 percent in three
benchmarks (bwaves, leslie3d, and sjeng ). The reason for this saving relates to the mode
decision mechanism in ASMMP, which identifies these slow benchmarks (low IDR, CFR)
and, regardless of any alpha threshold value, In-Order execution mode is always chosen to
run these benchmarks. Furthermore, we realize that 75 percent of the savings is because the

In-Order execution mode consumes only 25 percent of the Out-of-Order mode power.
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Figure 6.28. Percentage of power savings in final ASMMP compared to baseline Out-of-
Order processor for various alpha thresholds.

As illustrated in Figure 6.29, the final ASMMP design achieved greater power savings for
different alpha threshold values. The Figure clearly illustrates the beneficial effect of
resource scaling on ASMMP power consumption (by turning off unused entries during Out-

of-Order execution mode) compared to the non-scaling version.

Finally, the least amount of power was saved by resource scaling mechanisms when a high
alpha value was used (5). A higher alpha value indicates more In-Order periods and less
resource partition mechanism activation. Thus, the execution mode decision mechanism
results in additional power savings. For the above reasons, we could not achieve additional
power savings through resource scaling, and the resulting savings remained consistent with

the non-partition version of ASMMP.
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Figure 6.29. Percentage of power savings of ASMMP for both partition and non-partition
version compared to baseline Out-of-Order processor for various alpha thresholds

6.3.6. Energy-Delay product and Energy-Delay? product

To measure system efficiency, the power-delay product metric is used. The power-delay-
product is calculated by multiplying the power consumption of the processor by time or
delay. The delay represents the duration required to perform a computation. Moreover, lower
power-delay-product means more energy-efficient systems. On the other hand, a system with

a low power-delay-product may do calculations exceedingly slowly [11].

One of the important metrics used popularly to reflect system efficiency rather than power-
delay-product accurately is the energy-delay product. Equation 6.4 is used for calculating
EDP to measure the efficiency of the ASMMP design. When we compare the EDP value of
the baseline processor with itself, this value will be one. This is due to the power expenditure
on the baseline processor (Out-of-Order processor) will be 100 percent of the delay value,
which is equal to 1.0 (base IPC/new IPC). Thus, the energy-delay product for the baseline

processor will be equal to 1.

To compare ASMMP's efficiency to the Out-of-Order processor as a baseline, we examine
Figure 6.30, which displays the obtained (100 percent-EDP) values for the sepc2006

benchmarks. More EDP values close to zero indicate that our design is efficient, as we
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consumed less energy and had a shorter delay time while performing a computation. The
percentage of EDP savings in ASMMP is 42 percent, 32 percent, and 35 percent for alpha
values of 1,3, and 5 in the final ASMMP version, respectively. ASMMP's integrated resource
partitioning mechanism ensured efficient use of processor resources for alpha value one,
achieving savings of more than 28 percent over the non-partitioning version with a
performance loss of less than 1,9 percent. Additionally, the final ASMMP appears to be more
efficient than the non-partitioned version depicted in Figure 6.31, not just for alpha value 1,
but also for alpha values 3 and 5. The final ASMMP's EDP savings exceed 13 percent with
a performance loss of less than 2,96 percent and 11 percent with a performance loss of 13
percent, respectively. Also, parallel to EDP results obtained for the energy-delay square
product of final ASMMP is shown in Figure 6.33. Lastly, Figure 6.32 shows that the final
ASMMP for alpha threshold values one and three is more efficient in terms of energy-delay

square product than the final ASMMP for alpha threshold value five.
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Order processor for various alpha thresholds
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Figure 6.31. Percentage of EDP savings of ASMMP for both partition and non-partition
version compared to baseline Out-of-Order processor for various alpha thresholds
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Order processor for various alpha thresholds
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versions compared to baseline Out-of-Order processor for various alpha thresholds
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7. CONCLUSION AND FUTURE WORK

ASMMP, a single Out-of-Order superscalar processor capable of automatically scaling its
resources in response to the needs of running applications and switching between In-Order
and Out-of-Order execution modes, has been designed and tested in this thesis using
Spec2006 benchmarks. ASMMP's primary objective is to achieve significant power savings
in exchange for an average performance loss of 5 percent. Finally, Figure 7.1 depicts the

complete implementation of our proposed ASMMP.

Auto Scalable and Morphable Microprocessors Stages
- - - /) Stage 2/A
| Instruction Dispatch Ratio | ShapeShifter Processor
[ Commit over Fetch Ratio | In-order and Qut-of-
j Order
Re-Order Buffer Occupancy Decision mechanism
data ) ] + Choose of Proper
Mode switching Processor Combination
Load Quene Occupancy enforcement mechanism for Running
data B Application to
Stage 2/B Save power with
Store Que:et()cmpancy Simple average Partitioning minimum performance
ata
Partitioning decision lose
Register File Occupancy mechanism
data S +
Instruction Queue Partitioning
Occupancy data enforcement mechanism
— Stage 3: Issuing right processor
Stage 1: Application monitoring Stage 2: Application Classification configuration to running Application

Figure 7.1. ASMMP implemented stages

We began this thesis by collecting and monitoring appropriate different processor parameters
of the running application periodically. As a result, these parameters are typically collected
using a sampling method that minimizes the proposed design's hardware complexity. The
primary parameters that are dynamically collected are the utilization of different processor
resources, the number of fetched instructions, the number of committed instructions, and the

number of ready instructions in the issue queue for running applications.

As a result, collecting 250 samples per decision period (2M) for occupancy parameters and

100 samples per decision period (10K) for various instruction statistics was sufficient to
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reflect the application's requirements. Besides, it provides useful information to assist

ASMMP mechanisms in performing their duties properly.

We focus on two distinct mechanisms in the second stage: a simple threshold-based resource
partitioning mechanism and a mode switching mechanism. First, these mechanisms were
implemented and tested independently. They were then combined in the final stage to create
the final ASMMP design. Our resource partitioning mechanism comprises two components:
a decision mechanism and a mechanism for enforcing resource partitioning. We compare the
average collected resource occupancy samples with the threshold value in the partition
decision mechanism. Then, a resource expansion or contraction decision is made based on
the result of the comparison. Furthermore, the partition enforcement mechanism ensures that
new partitions are assigned securely, without erasing any critical data about the running

application’s instructions.

Moreover, two distinct execution modes (large core Out-of-Order for high-performance
applications and small core 10 for low-performance applications) are rather utilized as in the
case with heterogeneous architecture [8]. Our ASMMP, a single-core, attempts to predict
application performance when run in different execution modes by implementing an
execution mode switching mechanism. The proposed mechanism consists of a mode
switching decision mechanism and a mode switching enforcement mechanism with the

resource partitioning mechanism.

Two parameters influence the decision-making mechanism. The first is the instruction
dispatch ratio (IDR), which is the ratio of ready instructions in the instruction queue for both
execution modes. The second parameter specifies the number of over-fetched instructions
that have been committed (CFR). These parameters enable us to compare the performance
of the Out-of-Order mode to that of the In-Order mode. When the speed-up value, the
product of the two previously mentioned parameters, exceeds the specified alpha threshold,
an Out-of-Order mode is selected. Otherwise, an In-Order mode is selected. Finally, if
certain conditions are met, the mode switching enforcement mechanism will perform mode

switching and assign the running application to the newly selected mode.
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The final stage of this thesis is to integrate both mechanisms for them to work concurrently
and assign the most appropriate ASMMP configuration to the running application. The
proposed ASMMP architecture is a single-core processor capable of scaling its resources
and switching between 10 and Out-of-Order execution modes in response to application
requirements. As a result, the Gem5 simulator and the Spec2006 benchmarks were used to
evaluate the ASMMP architecture. Finally, the average performance loss of the ASMMP
architecture is kept below 5 percent compared to the Out-of-Order baseline processor for
alpha values one and three. Additionally, ASMMP saved more than 43 percent and 34
percent of total processor power, respectively, and 42 percent and 32 percent in terms of
energy-delay product across all simulated Spec2006 benchmarks when alpha values were

one and three.

We intend to perform resource partitioning on level two and level three caches in the future
because these structures consume a disproportionate amount of power compared to other on-
chip structures. Also, rather than using a fixed alpha threshold value for the mode switching
decision mechanism, we can use a dynamic method to determine the alpha threshold value

based on application behavior and which execution mode is unquestionably superior.
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