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MULTI ROBOT COVERAGE METHODS

SUMMARY

Multi robot exploration and coordination problems has been being studied for more
than one decade. The main reason of using multiple agents is because most of the
problems can be solved by using more than one agent more efficiently. This is the
case in coverage problem, too. The multi robot coverage problem is one of the
extensions of the multi robot exploration and coordination topics. In multi robot
coverage problem, the robots are trying to navigate in unexplored regions in
coordination with each other in order to maximize the covered area in optimal time.
In other words, the agents are running optimization algorithms to find an optimal
control input under some constraints such as energy or collision distance constraints.

In this work, a number of selected coverage methods is studied with simulation
results. The simulation environment is designed in MATLAB by using computer
graphics and image processing functions. There are also some contributions to the
literature in this thesis, such as a frontier based coverage approach with collision and
obstacle avoidance. Apart from these contributions, the methods are compared and
the results are discussed. Moreover, a method considering anisotropy of the sensors
IS presented.
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COKLU ROBOT SISTEMLERINDE HARITA CEVRELEME
YONTEMLERI

OZET

Coklu robot kesfetme ve koordinasyon problemleri son birka¢ yildir {izerinde
calisilan yeni konulardandir. Problem ¢6ziimlerinde birden fazla robotun
kullanilmasmin temel nedeni, bazi problemlerde bu yaklagimin daha iyi sonuglar
vermesidir. Harita ¢evreleme probleminde de bu durum benzerdir. Coklu robot harita
cevreleme problemi, ¢oklu robot kesfetme ve koordinasyon problemlerinin bir
uzantis1 olup, robotlarin kesfedilmemis alanlarda birbirleri ile etkilesim halinde
hareket etmeleri amacimi tasir. Birlikte ¢alisan bu robotlarin ortak hedefi en kisa
zamanda haritay1 tiimiiyle cevrelemektir. Diger bir deyisle, her bir robot optimal
kontrol isaretini hesaplamak icin belli kisitlar altinda (enerji ya da ¢arpisma mesafesi
gibi) birer optimizasyon algoritmasi kosturur.

Bu calismada, secilen birkag harita ¢evreleme yontemi simulasyon sonuclari ile
incelenmistir. Simulasyon ortam1 MATLAB {izerinde bilgisayar grafikleri ve goriintii
isleme islevleri kullanilarak gerceklenmistir. Ek olarak, bu ¢alismanin literatiire bazi
katkilar1 da mevcuttur. Bunlar, siir yontemine dayali harita ¢evreleme yontemine
eklenen c¢arpisma Onleme ve engelden kacinma algoritmalaridir. Bu katkilarin
yaninda, segilen yontemler karsilagtirllmis ve sonuglar tartisilmistir. Ayrica,
sensOrlerin  yonden bagimsizligimi ele alan bir harita ¢evreleme yontemi
incelenmistir.
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1. INTRODUCTION

1.1. Motivation

Multi robot coordination problems are challenging and new research topics due to
their essence in coordinated actions in some important applications. Most of the
problems discussed in literature consider failure of vehicle control in multi robot
group and communication losses among the robotic agents. In addition to these
problems, some tasks related with the exploration of the environment, i.e. search and
rescue, surveillance, recovery and environmental monitoring need more than one
robotic agent. The other case in which it is impossible to use a single robotic agent is
manipulation of objects with excessive geometric shapes in a constrained
environment. In multi robot exploration problems, the solution is restricted by
operation time, fuel or energy limitations and communication ranges among the
robots. Hence, the multi robot exploration problem may be considered as an

optimization problem with multiple constraints.

1.2.  Background

A lot of work has been done on the multi robot problems such as coordination,
localization, exploration, mapping, formation and path planning topics. To name a
few from the robotics literature; a new approach to multi robot exploration under
global uncertainty using particle filters [1], a cooperative path planning algorithm
and communication protocol for multi agent sensor systems robust to failure of some
agents [2], a multi agent coalition formation algorithm [3], a distributed algorithm for
deploying multi robot systems consisting of wheeled mobile robots under
nonholonomic constraints [4], a market-based approach Contract Net Protocol used
for multi robot task coordination [5], an extended learning and imitation approach
based on Evolving Societies of Learning Autonomous Systems method for multiple
robots [6], a new approach for developing efficient methods for multi robot active

and passive sensing applications [7], an improved Monte Carlo localization using



self-adaptive samples [8], evolutionary robotics approach applied to a multi-robot
system for autonomous task allocation [9], task distribution among multiple robot
teams and coordination within the teams using coalition approach [10], leader-
follower method with ad-hoc network to solve the real-time formation problem [11],
artificial potential field method with new SWARM and SPREAD potential functions
to solve distributed path planning problem for multi robots in real-time [12],
cooperative simultaneous localization and mapping (SLAM) problem with Extended
Kalman Filter using multiple robots [13] are some of the previous papers about multi

robot problems.

Sensor networks and static sensor coverage problem has also found great interest in
the last decade, as in the work related to optimal sensor allocation [14]. Multi robot
coverage problem can be counted as a special case of sensor networks studies. In this
case, each robotic agent or mobile sensor nodes relocate their positions and
orientations to minimize or maximize a predefined cost function under some

constraints.

Not only the sensor coverage problem, but also the mobile robot exploration problem
is one of the significant open problems in the robotics area that is mainly discussed in
this paper. In the literature, there are various number of works related to exploration
topic such as frontier based approach used for exploration [15], Discoverage, multi
robot exploration based on the Coverage problem [16], Voronoi based distributed
sensing networks [14], mine detection using path planning [17], mobile sensor
coverage problem [18], geometric, probabilistic and potential field approaches to
multi-robot deployment [19] and coverage control over large scale task domains
using multi-agent sensor network [20]. However, all of these studies do not consider
dynamically updating the expected information gain function in coverage

formulation which increases the performance of the optimization considerably.

Similarly, multi robot coverage problem has gained a lot of attention in the literature
for the last decade. Biologically inspired neural network approach with obstacle
avoidance for cleaning robots [21], optimal coverage for sensor allocation with
Voronoi by using gradient descent algorithms [14], artificial potential fields based
coverage for mobile sensor networks under given neighborhood constraints [22] are
some of the works found in literature. Also, some other works related to coverage

problem are; a cell decomposition approach to coverage problem with multi robot
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teams including allocation planning of these teams under communication restrictions
[23], a new method for terrain coverage with multiple robots named multi robot
forest coverage compared to another method called multi robot spanning tree
coverage [24]. Therefore, one of the works considers the multi robot boundary
inspection problem by using a coverage algorithm which is posed as k-Rural
Postman Problem (kRPP) and uses the solution of KRPP to plan inspection routes
which provide coverage of the boundary [25]. Additionally, another work shows the
robustness and efficiency in multi-robot coverage algorithms based on spanning-tree
coverage of approximate cell decomposition and examines the importance of the
initial positions of the robots [26]. Another work is about a distributed coverage
control for cooperating mobile sensor networks using a gradient-based algorithm and
maximizes the joint detection probabilities of random events considering the
communication costs [27]. Also, building efficient coverage paths for teams of robots
by constructing spanning trees which minimizes the coverage time [28], a new robust
multi robot online coverage algorithm based on approximate cell decomposition [29],
another cell based multi robot complete coverage algorithm using Boustrophedon
decomposition [30], dynamic coverage control which does not depend on gradient
based methods [31], an extension of the multi robot forest coverage algorithm to
terrains with non-uniform traversability [32], a multi robot coverage algorithm
providing persistent coverage period considering the limitations in the
communication and sensing ranges [33], a new strategy for the exploration of an
unknown environment with a multi robot system with communication restrictions
and maximum distance constraint among robots [34] are some of the related works.
Moreover, a distributed control algorithm based on centroidal VVoronoi diagram for
covering specific area of heterogeneous groups of robots under sensory and
communication range constraints [35], fast multi robot coverage under energy,
velocity and working time constraints [36], a coverage algorithm for multi robot
systems in an unknown environment searching for fixed or moving targets under
communication range and sensory constraints [37], sensor based complete coverage
using generalized VVoronoi diagrams considering energy capacities of mobile robots
[38], multi agent coverage approach as an extension of single robot BSA coverage
algorithm [39], generalized Voronoi diagram based coverage planning with
replanning approach for handling unknown environments considering energy

constraints [40], a coalitional game theory named as weighted voting game technique

3



based coverage [41], a cognitive based adaptive optimization algorithm for coverage
in order to maximize the area monitored by a multi robot team [42] can be counted a

group of works about the coverage problem.

In this thesis, in addition to the idea of autonomous navigation and exploration with
the control law in DisCoverage [16], a new approach for updating and selecting the
information gains in the objective function is given. In the Haumann’s method, the
information gain part of the objective function is considered a static function whereas
in our approach the information gain function consists of two parts; a static and a
dynamic one. Using this new method improves the performance by making the
explored region ratio higher as the iteration of the optimization advances.

In addition to the information gain approach, there are some other assumptions in
this work. The working space is considered as obstacle-free and the dynamics of the
robot is taken as a simple differential kinematic model of a point mass with a sensing
radius. Another assumption is the map and information gains are synchronized

among all the robots.

1.3. Previous Works

There are a lot of experimental works about multi robot and Coverage algorithms in
the literature. For example, Voronoi based coverage control with anisotropic sensors

[43] is done in Fujita Laboratory, as shown in Figure 1.1.

Figure 1.1 : Coverage Control in Fujita Laboratory at Tokyo Institute of Technology
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Also, in multi agent coordination problem, there are a lot of experimental works in
the robotics literature. One of them is Multi UAV Quadrotor Platform of MIT, as

shown in Figure 1.2. Some of the works done on this platform are [44] and [45].

Figure 1.2 : Multi UAV Quadrotor Platform in MIT Aerospace Controls Laboratory

A research group studying mid-size soccer playing robots is CORAL Research
Group at Carnegie Mellon University. Their robots called HammerHeads are shown
in Figure 1.3. Some of the related publications about multi agent systems are [46]
and [47].

Figure 1.3 : HammerHeads Mid-Size Robots of CORAL Research Group at
Carnegie Mellon University



Figure 1.4 : MuRoLa - Multi Robot Laboratory at Technische Universitat Miinchen

In Figure 1.4, Multi Robot Laboratory at TU Miinchen can be seen. Some of the
works about multi robot problems are about load sharing in human-robot cooperation

[48] and a real time control architecture for multi robot systems [49].

Figure 1.5 : Al Robotics Laboratory at Eskisehir Osmangazi University

Some works related to multi robot coverage path planning [38] and sensor coverage
[40] are done in Al Robotics Laboratory, as shown in Figure 1.5.



Figure 1.6 : SwarmBots in Multi Robot Systems Laboratory at Rice University

The Multi Robot Systems Laboratory has various works related to multi robot

distributed coverage control such as [50] and [51], as shown in Figure 1.6.

1.4.  Organization of the Thesis

This thesis is organized as follows; in the second section, the multi robot coverage
problem will be introduced by giving the necessary objective functions for
optimization, sensor and robot models, Voronoi tessellations, information gains,
collision and obstacle avoidance and numerical optimization algorithms used. Then,
in the third section, selected coverage methods are investigated by introducing their
theory. In the fourth section, the effect of sensor characteristics on coverage problem
will be described with selected works in the literature. Also, in the fifth section
simulation results of the coverage methods applied to a mine exploration problem
will be given with single and multi vehicle cases. Finally, the results of the

simulations and the thesis will be discussed in the conclusion section.






2. MULTI ROBOT COVERAGE PROBLEM

The Coverage problem is about covering and exploring the map with best possible
performance. The performance criteria may be time or energy effort under some
constraints. Some of these constraints can be energy (fuel or charge of battery),
velocity or acceleration limits, kinematic constraints or obstacles. This Coverage
problem can be formulated and solved by using constrained or unconstrained
optimization. The special multi robot case involves groups of robots cooperating
with each other in order to cover or explore the given map in finite time. The goal is
to find optimal control inputs for distributed agents. As a result, an optimal trajectory
for each agent can be found.

The basics of two important categorizations of coverage problems in the literature
will be discussed in this section. For VVoronoi based Coverage solution, preliminary
information of Voronoi regions is given. Also, for the Coverage problem with
isotropic/anisotropic sensor types, introductory information is mentioned.

2.1. Problem Definition

Let 0S; be the frontier curve obtained from the formulation of the borders between
explored and unexplored space over the VVoronoi region of vehicle i. The function f
can be defined as the performance index of exploration process. In one of the
previous works, namely DisCoverage, the used solution is to find optimal heading
angles of vehicle moving with a constant linear velocity. The same approach is used
for navigation and exploration in this work. However, the information gain part of
the function f in DisCoverage is considered as a static function @(q). In this work,
this approach is extended in order to use dynamically updated information gain
function consisting of static and dynamic parts. The advantages of using dynamic

gain function will be given with comparisons in the simulation section.

Figure 2.1 shows the visual explanation of the terms used in the coverage

formulation. Frontiers are the curves separating the explored and unexplored regions



on the map. Explored areas are defined as the areas that are sensed by one of the
robots at least once. The mines are the information to be found in the mine clearance

problem that will be discussed in the simulation studies.

y[m]

(7

50 100 150 200 260 300
X [m]

Figure 2.1 : Visual explanation of simulation terms

Let p; be the position vector and 6; be the orientation of the agent i. The objective

function to be optimized for i"" agent becomes a curve integral expression over 3S;:

H;(p:, 0;) = f f (i, q,0)P(q)dq (2.1)
as;

We can define the angle a; as follows:

a; = atan2(p;y, = qy, iy, ~ 9x) (2.2)

The function f consists of two parts, an angular and a distance component:

a(pi,q,6:)* llg — p:ll3
f(pi: q, 91) = exp (—T exp —T (23)

Individual agents will run the optimization in a distributed manner. Let N be the
number of robots, P = {p,, ... py} denoting the position vectors of the agents and
0 = {6,, ... Oy} representing the orientation angles. Maximizing H; in parallel means

also maximizing the total objective function H given below:

10



N
H(P,6) = ) Hi(ps6) (2.0
i=1

6;,Hi} = argmax H;(p:, 6:) 2.5)
The optimization problem is converted into finding optimal orientation angles 6, in

parallel which maximize the objective function in order to cover the area.

2.2. Robot and Sensor Models

In this section, the mathematical model of vehicles used in this work will be given
with sensor models. In the proposed method, the vehicle and sensor models play
important roles because they enable the agent to navigate and percept its
environment. The algorithms used in this work are dependent to these mathematical

models.

2.2.1. Robot Model

The motion of the robots is considered as kinematic motions. This means that given
angular and linear velocities, the robot will reach the desired speeds by using its
wheels. This motion is modeled with a differential kinematic model since the type of

robots considered is differential drive.

Figure 2.2 : Mobile Robot and Sensor Model

The kinematic model used in simulations is given as below:

11
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As shown in Figure 2.2, x, y and 4 are the position and orientation states of the robot.

Z‘ng 8] 1] (2.6)

The linear and angular velocity inputs are v and w, respectively.

Additionally, a dynamic model of the differential drive mobile robot can be given as
below, where gr and g, are the angular positions of the right and left wheels, M is the
mass and inertia matrix, h is the matrix involving Coriolis and Centrifugal effects, Fs

is the friction vector and z is the torque signal vector applied to the wheels [52].
q=1[ar ] (2.7)
MG+ h(q+Frr(q) =7 (2.8)

As mentioned in the paper, the terms in the matrices M and h are given below where
m the mass of vehicle, m,, the mass of each wheel, x. and y. are the coordinates of the
center of the gravity, |y is the inertia of the vehicle around the COG, 1, is the moment

of inertia around the turning axis of each wheel.

I =1Iy+2m,L* + m(x? + y2) (2.9)
R? R? R?
Mll 4 m+mI+R2 zmyc +IW (210)

R? R?  R?
Miy =My =m— 2l +—my (2.11)

RR R, R (2.12)

M22—4m+mI+R 2myC+I
h11 = hzz =0 (213)
R3 (2.14)

hi = —hy = (Ggr — QL) m}’c

Similarly, the friction torque vector has the coefficient matrices F, and F, including
the static and viscous friction coefficients, respectively. The friction model used in

this work is given as below.

12



Ffr(‘?) = F,q + F;sgn(q) (2-15)

The kinematic constraints of the differential drive vehicle can be given with the
velocity signals in the dynamic model are given as below. The equations are valid if
there is no lateral and longitudinal slip in the wheels.

R
v = E(QR +q.) (2.16)

R . . 2.17
w=7-(Gr — 4u) @17)
The position vector of the vehicle including X, y and @ variables can be obtained by

solving the kinematic state space equations by integration for the no-slip case.

2.2.2. Sensor Model

In the mobile robot coverage problem, the sensor model is also an important issue.
The reason is that the performance of algorithm can be affected by the sensor
performance which may depend on the distance and orientation to the target to be
sensed [53]. These types of sensors are modeled as anisotropic sensors. For those
sensor models, the area sensed by an agent can be affected from the sensor
performance which is a function of the distance and orientation of the robot. As
mentioned in the paper, camera, radar and directional microphone are various

examples of anisotropic sensors.

In contrast, isotropic sensor models do not consider the performance degradation of
the sensors with respect to distance or orientation. There are also various kinds of
sensors in this category such as short range LASER scanners. As shown in Figure
2.2, the isotropic sensor model has a circular sensing region around the robot with a
sensing radius Ryision. The performance of the sensor over this circular region is equal

in all directions and distances.

13
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Figure 2.3 : Sensivity characteristic of an ultrasonic transducer
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Figure 2.4 : Output characteristic of a Sharp infrared distance sensor

As it can be seen from Figure 2.3, ultrasonic transducers have performance
characteristics changing with respect to the angle of coming sound wave. Similarly,
in Figure 2.4, the output of an infrared ranger changes with respect to the measured
distance of the object. These sensors can be considered and modeled as anisotropic

Sensors.

2.3. Voronoi Regions

A Voronoi diagram is a collection of regions that contain the nearest points to the
points in the corresponding Voronoi region. It can give information about
neighborhoods, closest points, communication costs etc. In this chapter, the VVoronoi

regions will be explained with examples. An example diagram can be seen from

14



Figure 2.5. Other examples are Figure 2.6 and Figure 2.7 with different number of

points.

Figure 2.5 : Voronoi Diagram Example

For giving an example for Voronoi diagrams, consider planning of a supermarket
chain. The aim is to open a new branch at a certain place on the map in order to
maximize the profit. The expected profit depends on the number of customers
attracted by the supermarket. For this purpose, we can define central places called
sites around the living areas of the potential customers. The main assumption in this
problem is that the people get their products at the nearest site.

A geometric model such as given in the supermarket chain example is called the
Voronoi assignment model. In this model, every point is assigned to the nearest
region. The regions created by this model are also called Voronoi regions and the

resulting geometric interpretation is a VVoronoi diagram.

It is possible to get much information from a Voronoi diagram. In supermarket
example, it can be derived that two sites having a common boundary are likely to

compete with each other because of the customers living around this area.

2.3.1. History of Voronoi Diagrams

The history of the Voronoi diagrams goes back to Descartes (1644). In addition, they
were used by Dirichlet in 2- and 3- dimensional forms in his research of quadratic
forms (1850). In 1854, the Voronoi diagrams were used in order to show the
relationship between being closer to Broad Street pump and Soho cholera epidemic
by British physician John Snow. This disease caused death of large amount of people

living close to this pump.
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The name of the VVoronoi diagrams comes from the name of a Russian mathematician
Georgy Fedoseevich Voronoi. The general n-dimensional case of VVoronoi diagrams
was defined by him in 1908.

300 | T

280 F

200

180

100 |

I:l | 1 | 1 |
1] a0 100 150 200 250 300

Figure 2.6 : Example Voronoi Diagram

Voronoi diagrams used in geophysics and meteorology areas to analyze experimental
data such as rainfall measurements are called Thiessen polygons [54]. The name
comes from the American meteorologist Alfred H. Thiessen. Also, Voronoi
tessellations in condensed matter physics are known as Wigner-Seitz unit cells.
Moreover, Brillouin zones is the special name of Voronoi tessellations of the

reciprocal lattice of momenta.

2.3.2. Applications of Voronoi Diagrams

One application of Voronoi diagrams is nearest neighbor search. In order to get the
nearest neighbor of a point, a point location data structure can be built based on a
Voronoi diagram. Nearest neighbors search is used in numerous algorithms and
methods such as Rapidly Exploring Random Trees path planner, vector quantization

used in data compression, or simply finding nearest supermarket in a region.

Another application of VVoronoi diagram can be the derivation of the capacity of a
wireless network. In addition to wireless networks, in climatology, the Voronoi
tessellations can be used to calculate the rainfall of an area (Thiessen polygons).

Also, these diagrams are used in computer graphics in order to create organic looking
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graphics. Additionally, computational chemistry uses the VVoronoi cells in Voronoi
deformation density method which computes atomic charges according to the
positions of the nuclei in a molecule. Moreover, in mining, the reserves of various

resources such as minerals, valuable materials, can be estimated by using Voronoi

polygons.
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Figure 2.7 : Example VVoronoi Regions

The most important application of the Voronoi tessellations is autonomous robot
navigation because of their wide usage in robotics. They can be used in order to
avoid from obstacles or partitioning the map in multi robot exploration problems in

order to enable the robotic agents to cooperate, as discussed in this work.

2.3.3. Formal Definition of VVoronoi Tessellations

For the point g in a Voronoi region of point p;, the distances to p; are minimal among

the other points p;. Defining it more formally, the VVoronoi region of the point i is:

Vi={q€Q llqg—pill <|lqg—psl| v} (2.18)

Voronoi regions play an important role in partitioning a robot’s area in the multi
robot coordination problems. One of the reasons is the collision avoidance is
guaranteed for the multi-robot coordination by using the \Voronoi regions as

mentioned in DisCoverage [16].
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2.3.4. Computation of the Voronoi Diagrams

There are several algorithms in literature to compute the Voronoi tessellations [55].
Some of them are Bowyer-Watson algorithm, Fortune's algorithm and Lloyd's

algorithm. In this chapter, the Fortune’s algorithm will be explained.

Fortune’s algorithm, also known as plane sweep algorithm, can compute the VVoronoi
diagram with an algorithm complexity O(n logn) [56]. Also, it is proved that

Fortune’s algorithm is optimal.

Some definitions and explanations are necessary before introducing the algorithm.
The main strategy in the plane sweep algorithm is to sweep a horizontal line from top
to bottom over the plane. Let the set X = {x, x,, ..., xy} be the point sites in the
plane. The sweep line | moves from top to bottom over the plane. The closed half-
plane above | is represented by 1. Also, a beach line is defined as the sequence of
parabolic arcs which bounds the locus of points that are closer to some site x; € I
than to |. Additionally, S is a balanced binary search tree taken as the beach line.
Also, L is the event queue and its type is priority queue. The priority of an event

changes with respect to its y-coordinate.
The Fortune’s algorithm is given in the Table 2.1, Table 2.2 and Table 2.3 [56].

Table 2.1 shows the steps of the Fortune’s algorithm including two subroutines;
HandleCircleEvent and HandleSiteEvent. These subroutines are given in Table 2.2

and Table 2.3, respectively.
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Table 2.1 : Fortune’s algorithm

Input: X
Output: Voronoi diagram Vor(X) given inside a bounding box in a doubly-

connected edge list data structure

Initialize the event queue L with all site events
While L is not empty
Do Consider the event with largest y-coordinate in L
If the event is a site event, occurring at site X;
Then HandleSiteEvent(x;)
Else HandleCircleEvent(x;), where p, is the lowest point of the
circle causing the event
Remove the event from L
Compute a bounding box containing all vertices of the Voronoi diagram in its
interior and attach the half-infinite edges to the bounding box by updating the
doubly-connected edge list appropriately.
Traverse the half-edges of the doubly-connected edge list to add the cell records
and the pointers to and from them.

Table 2.2 : HandleCircleEvent function of Fortune’s algorithm

HandleCircleEvent(x;)

Search in S for the arc a vertically above x; and delete all circle events involving «
from L.

Delete the leaf representing o from S. Update the tuples representing the
breakpoints at the internal nodes. Perform rebalancing operations on S if
necessary.

Add the center of the circle causing the event as a vertex record in the VVoronoi
diagram structure and create two half-edge records corresponding to the new
breakpoint of the Voronoi diagram. Set the pointers between them appropriately.

Check the new triples of consecutive arcs that arise because of the disappearance
of a. Insert the corresponding circle event into L only if the circle intersects the

sweep line and the circle event is not present yet in L.
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Table 2.3 : HandleSiteEvent function of Fortune’s algorithm
HandleSiteEvent(x;)

Search in S for the arc a vertically above x; and delete all circle events involving a

from L.

Replace the leaf of S representing o with a subtree having three leaves. The
middle leave stores the new site x; and the other two leaves store the site x; that
was originally stored with a. Store the tuples (x;,x;) and (x;, x;) representing
the new breakpoints at the two new internal nodes. Perform rebalancing
operations on T if necessary.

Create new records in the Voronoi diagram structure for the two half-edges
separating V(x;) and V(x;) which will be traced out by the two new breakpoints.
Check the triples of consecutive arcs involving one of three new arcs. Insert
corresponding circle event only if the circle intersects the sweep line and the

circle event is not present yet in L.

2.4.  Collision and Obstacle Avoidance

Although it is claimed that collision avoidance is guaranteed for multi robot
exploration problem by only using the VVoronoi regions [16], it is only true for point
mass robot model. In order to use a more realistic robot models, such as given in
Figure 2.2, a more advanced collision avoidance method is necessary. This method
will be explained in detail in Coverage Methods section, similar to the method in the
work [18].

Obstacle avoidance can be performed similar to collision avoidance. The
optimization objective function is modified in order to create repulsive fields around
obstacle regions similar to potential fields method. The repulsive fields behave
opposite to fields having non-zero information gains. Also, like in collision
avoidance, in the optimization loop, a forward simulation can be done and the
resulting point can be checked against obstacles. If the point is on obstacle, the cost
of this control input will be saturated to the lowest value. Hence, the optimization

will not select the control inputs that make the agent to collide with obstacles.
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2.5. Information Gains

In the Coverage formulation, as given in Equation (2.19, the function ®(q) is
defined as information gain function. It weights the areas that are expected to be

denser with respect to information.

H;(pi, 6;) = ff(Pi» q,0)®(q)dq (2.19)
3s;

In the Discoverage and Anisotropic Coverage approaches, the information gains are
taken as expected static functions. However, a new method is presented that allows
this function to be dynamic and updated at each optimization step.

2.6.  Numerical Optimization Algorithm

Since the Coverage formulation includes functions with nonlinear terms such as
numerical integration over frontier regions, it is hard to derive the solution by
analytically. So, an appropriate numerical optimization method is used in order to

compute the solution of the optimization at each optimization loop.

Two approaches are tested in simulation; gradient descent and global optimal search

methods.

2.6.1. Gradient Descent

Gradient descent algorithm is a first order numerical optimization algorithm and
finds local minimum of a function. It finds the minimum point by changing step size

according to the negative value of the gradient of the function at a point.
Xi+1 = X — BVf (xy) (2.20)
The algorithm ends with the error condition. Let € be a small number close to zero.

[Vl < e (2.21)

The derivative of function f in all directions becomes nearly zero, so the function

does not change at this local minimum point.
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2.6.2. Global Optimum Search

The method used for global optimum search is based on exhaustive search [57]. The
objective function is evaluated on the search space and the global maximum or
minimum point is found. This method gives the best results and avoids the local

minimum points. Also, it is fast because the search space is small.

Another method which can be categorized into global search is genetic algorithm.
Although it can avoid local extremum points, it is slow compared to the exhaustive

search method.
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3. COVERAGE METHODS

In this chapter, two different coverage methods are explained. One of them is the
Discoverage approach which uses a control law based on frontiers of the regions and
Voronoi partitioning for multiple agents. On the other hand, the other method is
based on optimization without partitioning the map and without using frontier
integrals. However, the latter method uses an anisotropic sensor model.

3.1. A Frontier and Voronoi Based Coverage Approach: Discoverage

Let S; is the frontier curve obtained from the formulation of the borders between
explored and unexplored space over the VVoronoi region of vehicle i. The function f
can be defined as the performance index of exploration process. In the previous work
DisCoverage, the used solution is to find optimal heading angles of vehicle moving
with a constant linear velocity. The same approach is used for navigation and

exploration.

Letting p; the position vector and ; is the orientation of the agent i, the objective

function to be optimized for i agent becomes a curve integral expression over 3S;:

Hi(p;, 0;) = j f(pi,q,6)P(q)dq (3.1)
as;

We can define the angle §; as follows:

6; = atan2(p;,, — qy, Pi, — dx) (3.2)

The function f consists of two parts, an angular and a distance component:

§(pi, q,0:)° g — pill3
f(pi,q,0;) = exp <_T Xp\ =T (3.3)
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Individual agents will run the optimization in a distributed manner. Let P =
{p1,...py} denoting the position vectors of the agents and © = {6, ... Oy}
representing the orientation angles. Maximizing H; in parallel means also

maximizing the total objective function H given below:

N

H(P,6) = > Hi(ps6) (3.4)
i=1

{6/, H} = arg;nax H;(p;, ;) (3.5)

The optimization problem is converted into finding optimal orientation angles 8;" in

parallel which maximize the objective function in order to cover the area.

3.2.  Coverage with Variable Information Gains

In previous works, the expected information gain part of the objective function is
taken as exponential functions with constant coefficients. This function is also
known as density function. In our approach, the information gain function consists of

two parts; a static (expected) and a dynamic part, as given below.

®(q) = Pyraric(q) + (Ddynamic(q) (3.6)

And of course, an update rule for the dynamic part is necessary. This rule depends on
the location of the explored information in the area. In our case studies, this
information is taken as explored mines. The location of the explored mines weights
the area within an exploration radius which determines standard deviation of the
Gaussian function. The amplitude of the Gaussian is selected by using the density of

information in the area.

A simple algorithm is proposed in order to update the information gain function.
Algorithm steps are given in Figure 3.1.
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Figure 3.1 : VIG Algorithm. This subroutine is called at every step of the
optimization.

The update algorithm enables the robots to navigate around the dense information
areas first. In brief, the priorities of the areas are dynamically changed. The effect of

the method will be given in a case study.

3.3.  Coverage with Collision Avoidance

Most of the works about multi robot coverage problem consider the agents as a point
mass or particle. This assumption can be true in most cases, such as the robot has
negligible physical dimensions comparing to the area to be covered. Additionally,
some of the works (Discoverage) claim that VVoronoi partitioning can automatically
enable collision avoidance among the robots. However, the robots can collide even if
they are in separate VVoronoi regions and calculate their own optimal paths in these
regions. A similar work about collision avoidance for coverage problem [18] is done
in the literature. However, the suggested method in this thesis is based on the work
Discoverage [16].

In order to get realistic results and for a good implementation, an improved collision

avoidance mechanism is necessary. This is accomplished by performing a forward
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simulation in each optimization step. p;* is the position vector of the agent i obtained
from forward simulation. If a collision occurs in the forward simulation, the cost is
set to the lowest value. Also, the collision is detected by calculating distance between

each robot and checking it against a distance threshold.

The analytical expression of this method can be given by subtracting a penalty term

from the cost function. Here, c is a constant with a sufficiently large value.

Hi(po, 6, = f (00,60 (@)dg

(3.7)

)

aS;
- z ¢ (Reoision — ||IPi* — p;*

j#i

If the agents i and j are closer to each other than a collision distance R ,ision, the
penalty term becomes positive values. So, the value cost function will be very low.
Since the optimization aims to maximize H;, this value will not be the optimal

solution.

3.4.  Coverage with Obstacle Avoidance

An obstacle avoidance method can be applied to the optimization problem. The
coverage objective function is modified, as in the collision avoidance case. This
suggested method is similar to the collision avoidance works. However, it is a new

approach.

Similarly, the analytical expression of the obstacle avoidance method can be given
by subtracting a penalty term from the cost function. An obstacle j is defined as a
circular region having a radius R; and center point 0;. Also, ¢ is a constant with a

sufficiently large value and N, is the number of obstacles.

No
Hy(p;, 6;7) = j f(a.009(@dqg - ) ¢ (R = [lpi" = o] (38)
j=1

aS;

Each agent computes its objective function H; and calculates optimal control

variables. In case of reaching an obstacle, the penalty term will cause the value of the
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objective function to decrease rapidly. Hence, the agent will avoid the obstacle

region.
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4. SENSOR CHARACTERISTICS ON MULTI ROBOT COVERAGE
PROBLEM

Sensor types and characteristics are important issues in multi robot coverage
problems. Localization with anisotropic sensors by using a special transformation of
measurements [58] and a hybrid localization method in anisotropic sensor networks
by analyzing information of nodes [59] are some of the works in the literature about
localization with anisotropic sensors. About the coverage problem, there are also
some works related to anisotropic type sensors such as, coverage control for mobile
sensor networks using anisotropic sensor models and Lloyd algorithm with collision
avoidance [60], coverage control of robotic agents with limited range communication
and anisotropic sensing [61] and gradient based coverage control of multiple robots

with limited anisotropic sensors [53].

In this section, the effect of sensor characteristics on coverage problem will be
investigated. The sensors are categorized according to their anisotropy and the

coverage problem is discussed with isotropic and anisotropic type sensors.

4.1. Coverage with Anisotropic Sensors

In the proposed method in the literature [53], a coverage control method is proposed
by using multiple agents with anisotropic sensors. Also, it is assumed that N
independent robots or agents are moving in the region Q which is defined as a
polyhedron in R% The location and orientation of the robots are (x,y)={(X1,y1)....,
(Xn,yn)} and 6={04,..., O}, respectively. The kinematic model used in the method is

as given below:

xi(k+1) = x;(k) +uy,; (k) (4.1)
yilk +1) = y;(k) +uy, (k) (4.2)
0;(k + 1) = 6;(k) + v;(k) (4.3)
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In this notation, k is the sample number or iteration count, uy(k), uy,i(k), vi(k) are the
control inputs for position and orientation. Let q be a point in Q. If an event occurs at
g, the sensor at location (x;,y;) will detect the signal emitted from point g. According
to the anisotropic sensor model, the received signal quality changes with respect to
the distance from the sensor and orientation of the target. This change is modeled by
using a performance function pi(q). If the value of this function is low, this means the

point q is sensed by the sensor i poorly.

Figure 4.1 : The geometric explanation of the variables

Let R be the maximum sense range and @ be the maximum sensing direction of an

anisotropic sensor as shown in Figure 4.1.

di = llg — sl (4.4)
a; = 4(q—s;) — 6 (4.5)
0€(0, g] (4.6)

A sensor model created in the paper is as below where Q; is the region of sensing of

Sensor i:
(d; — R)?(a; — ©)2 |
pi(q) = 707 o Al .7)
0 ,otherwise
N
P(g,5,0) =1~ | [ -pica) (438)
FGs,0) = | $@P(q5,0)dg (4.9)

Q
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The gradient flows approach is used to design the control laws uj(k) and vi(k). In
order to achieve optimal coverage, objective function F(s,0) should be maximized. It
is necessary to find the optimal control laws uyi(k), uyi(k) and vi(k) by taking the

partial derivatives with respect to x, y and 6.

dP(q,s,0

f () ——— P(qs ) (4.10)
dP(q,s, 9)

ayl f () —— 3, (4.11)
dP(q,s,0

f () ——— (qs ) (4.12)

By using the equation of P(q,s,6), the partial derivatives can be rewritten as

follows:
N
OF s opi(q) 0d;  pi() 0
5=, 0w 1] 0-no (G5 55 (439
oF i api(q) da;
26, ), ?(q) RLL(l pk(q))< da, 30, ) d (4.15)
The control laws can be given as below:
oF
Uyi = Prik ENO) (4.16)
oF
yi = ﬁy,km 4.17)
oF
x,i = Vkm (4.18)
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The step sizes Bk, By and yyis selected in order to guarantee the convergence.

Also, it is necessary to give the following assumption:

_ ori(@) _ opri(@) _
Ifq & Qithen pi(@) =0 55y = 0 Fa =

This assumption says that the sensor i can only sense the point inside its region of

sensing Qi.
aF dpi(q) 9d; 9pi(q) I
f @) 11;[(1 pk(q”( ad, 9x, o, 6xl-> aq (4.19)
oF dpi(q) od;  9pi(q) da;
f 8(q) 11;[(1 - m(q))( od, 3y, T o 6_yi> dq (4.20)
dpi(q) 0a;
] ?(q) 1_[(1 pk(q))( aa, ) q (4.21)
kEN;
The N; is the neighbor set of the sensor i defined by:
N, ={r:lls; —s.||<2R,r=1,..,N, r #i} (4.22)
The final form of the derivatives is as follows:
OF _ 0pi(q) xi — qx
‘ 4.23)
N dpi(q) a+b p (
da; m? — |2
oF pi(qQ) yi — ay
5, ‘”(‘”l;[(l -no) (G
(4.24)
4 dpi(q) a+b P
0a; m?- 2
opi(q) -z
eV f @(q) 11;[(1 - m(q))( oa, m) dq (4.25)
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The constants are:

a = (cos0;, sinb;) (4.26)
b= (q — 5;)(cosb;, sind;)(s; — q)

V2 (4.27)
l = (q — s;)(cosb;, sin6;) (4.28)
m = |ls; —qll (4.29)
z = (q — s;)(—sinb;, cos6;) (4.30)

In brief, the robots can calculate their control signals by using the sensor data from
their neighbors in the sensing regions.

4.2.  Coverage with Isotropic Sensors

The same coverage method can be applied to isotropic sensor case by simply

changing the sensor model.

An isotropic sensor model can be selected as p; given below. Q; is the region of

sensing of sensor i, g is a point in the space.

S

0 ,otherwise (4.31)
N
Pg.5,0)=1-] [t =pi(a) (4.32)
i=1
Fis,0) = | $@PG50)dq (4.33)
Q

The same coverage formulation can be used in order to produce a control input for

the agent i. Similarly, the method is based on gradients of the performance function.
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5. SIMULATION STUDIES

5.1. Simulation Environment

Simulations of the proposed approaches are done in MATLAB environment. The
map and all information regarding to the coverage algorithm and robot kinematics
are stored in arrays and structures. The detailed explanation of the algorithm steps
can be found in Figure 5.4. Also, the axes of all simulation plots are compliant to the

explanation frame in Figure 2.1.
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300
a0 100 1580 200 250 300

X [m]
Figure 5.1 : Sample simulation frame

In the first step, the explored regions are encoded in the map image matrix 1(x,y). An
explored region is defined as the area seen by an agent within the vision radius Ryision-
Then, the frontiers of explored regions are found by filtering the map matrix with the
Laplacian filter. The map image I(x,y) consisting of explored and unexplored regions

are convolved with the Laplacian kernel given below.
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1 1 1
verhelt D

F(x,y) = 1(x,y) * D, (5.2)

The resulting image F(x,y) contains frontier curves, as shown in Figure 5.2.
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Figure 5.2 : Frontier curve image F(x,y) after applying Laplacian filter

Moreover, the Voronoi regions of individual agents are found by using the modified
version built-in MATLAB function which uses Delaunay triangulation to find

Voronoi lines. In order to draw the lines, Bresenham's line algorithm is used.

50 100 150 200 250 300
X [m]

Figure 5.3 : Voronoi regions obtained with Flood Fill algorithm
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In order to associate the VVoronoi regions with robotic agents, the flood fill algorithm
is used with connected component labeling. First, the VVoronoi regions are filled as
shown in Figure 5.3 and the filled regions are labeled by using connected component
labeling algorithm. Then, the labels obtained are associated with each robot. So, if a
point coordinate is known in the map, the corresponding agent ID can be obtained.
This provides taking the integral over the VVoronoi region for a specific robot.

/ Robot initial positions, initial map parameters /

Calculate Voronoi Regions  |«———————

Draw and Flood Fill Voronoei Regions

L 2

Check for mines

v

Run optimization and find control inputs

v

Run kinematic model

v

Update map and explored regions

2

Draw map and robots

Area covered?
Mo

Figure 5.4 : Simulation algorithm flowchart for mine clearance
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5.2.  Discoverage with Single Agent

In the simulation, 100 of mines are distributed randomly over a 300x300 map. The
initial position of the robot is (150, 150) and its initial orientation is zero. « and p are

chosen as 0.5 and 10, respectively.

In Figure 5.5, Figure 5.6 and Figure 5.7 the output of the algorithm is given. The blue
points represent mines to be explored and the robot has a vision radius of 20.

The information gain function is selected as below. In this simulation, the variable

information gain approach is used with a single agent.

(I)(q) = chtatic(q) + cI)dynamic(q) (53)
llq — ull?
Dgraric(q) = exp <— g7 (5.4)
g — il
chynamic(Q) = z exp <_ lel (5.5)

i
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440
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&0 100 150 200 250 300

X [m]
Figure 5.5 : A simulation frame with single agent

In Figure 5.5, starting from initial state, the vehicle explores a dense mine region and
updates the information gain function which affects the overall cost function. So, it is
possible to say that after finding a dense information region, the robot gives the
priority of exploring to this area.
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Figure 5.6 : Covered regions by the agent

In Figure 5.6, the explored mines create new Gaussian functions on the information

gain function. This enables the robot to navigate around these areas.
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Figure 5.7 : The whole map is covered by the agent

At last, in Figure 5.7, the exploration is completed after 910 iterations. The mine
density map can be seen from the figure where colors denote dense mine regions.
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5.3.  Discoverage with Multi Agents

In this section, the simulation results of the coverage method with multiple agents
will be shown. In Figure 5.8, 5 robots are at their initial positions with zero initial
orientation angles. The width and height of the map are 300 meters. VVoronoi lines
are shown and they separate the regions of robots. The coverage algorithm runs over

these VVoronoi regions.

a0

100

250

300
50 100 180 200 240 300

X [m]
Figure 5.8 : One of the initial frames of the multi agent coverage simulation

Robots are seeking the 150 mines distributed randomly over the map and their vision
radiuses are 20 meters. Also, the coefficients @« and p are chosen as 0.5 and 10,
respectively. The initial information gain function is taken as follows:

llq — ull?
Dratic(q) = exp <_ T (5.6)

Here, u determines the center coordinates of the Gaussian curve and ¢ is the standard
deviation. The width or radius of the Gaussian can be changed by selecting the
parameter a. The values for x4 and ¢ are selected for the simulation as (150, 150) and

50, respectively.
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Figure 5.9 : 20" iteration of the coverage simulation
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Figure 5.10 : VVoronoi regions of the agents at 20" iteration

In Figure 5.9 and Figure 5.11, 20" and 80" iterations of the simulation are shown,
respectively. Figure 5.10 represents the VVoronoi regions of the robots in Figure 5.9.
Since there is no additional collision avoidance, the robots are coming pretty close to
each other, closer than a distance equal to their vision radiuses. However, if the
robots are taken as point masses, the Voronoi regions prevent the robots from
collision. A simulation with improved collision avoidance will be presented in one of

the next sections. Moreover, it can be seen that the covered area increases with the
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iteration number. The robotic agents are discovering the region in distributed
manner. Also, it should be noted that a robot having a fully discovered region will

stop discovering until its VVoronoi region include undiscovered regions of the map.
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Figure 5.11 : 80" iteration of the multi agent coverage simulation
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Figure 5.12 : End frame of the simulation (267th iteration)

In Figure 5.12, the last frame of the simulation at iteration 267 is shown. The area is
completely covered by the agents and the agents are stopped because their \Voronoi

regions are discovered.
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Figure 5.13 : Trajectories of the robots in the multi agent coverage simulation
In Figure 5.13, the trajectories of the robotic agents are given. The circles are

showing the initial positions. The path of each robot has a different colour. It can be

concluded that the robots follow distinct paths by going over the uncovered regions.

5.4.  Multi Robot Discoverage with Collision Avoidance

In this section, the simulation results of the coverage method with multiple agents
and collision avoidance will be shown. The width and height of the map are 300
meters. In Figure 5.14 and Figure 5.15, Voronoi lines are shown and they separate

the regions of robots, as in the previous multi agent simulations.

The information gain function is taken as follows:

®(q) = exp (— %) (5.7)

The values for x4 and o are selected for the simulation as (150, 150) and 50,
respectively. The vision radius of robots is 20 meters. The coefficients of « and p

are chosen as 0.5 and 10, respectively.

The distance for collision is taken as 20 meters which is the same distance with the
vision radius of the robots. If the distance of two robots is less than this value, the

safe region against collision is violated.

43



50

100

240

300
a0 100 150 200 250 300

X [m]
Figure 5.14 : Simulation without collision avoidance (6 robots)

In Figure 5.14, a frame of the simulation without collision avoidance is shown. As it
can be seen from the figure, some of the robots are moving inside the vision region
of the robots. Since, the collision distance and vision radius is taken as same values,
it can be said that some of the robots are inside the regions with collision risk. The

optimization algorithm should give appropriate control inputs to avoid these regions.

In Figure 5.15, the same frame of the simulation with collision avoidance is given. It
can be said that the robots can avoid the risky regions defined by the collision
distance which is taken as 20 meters. The optimization algorithm gives the necessary

control inputs considering the collision distance.
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Figure 5.15 : Simulation with collision avoidance (6 robots)
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Figure 5.16 : Trajectories of the robots in simulation with collision avoidance

Figure 5.16 shows the paths that the robots follow in simulation with collision
avoidance. It can be seen that the distance between the robots does not become less
than the safety distance for collision avoidance. In conclusion, the collision

avoidance method gives successful results.
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5.5. Multi Robot Discoverage with Variable Information Gains

In this section, the simulation results of the coverage method with multiple agents
and variable information gain approach will be shown. In Figure 5.17, 4 robots are at
their initial positions with zero initial orientation angles. The width and height of the

map are 300 meters.

The information gain function is taken as follows:

q)(Q) = chtatic(Q) + q)dynamic(q) (5.8)
llg — ull?
Dgraric(q) = exp <_ T 002 (5.9)
g — wll?
cI)dynamic (@ = Z exp <_ T‘lz (5.10)

i

Also, Voronoi lines are shown. In Figure 5.17 and they separate the regions of

robots, as in the previous multi agent simulations.

&0

100
140

y [m]

130

200

250

300
a0 100 150 200 250 300

X [m]
Figure 5.17 : Initial frame of the simulation with Variable Information Gains

In Figure 5.17, the first frame of the simulation is given. It can be seen that there are
four mobile robots located at their initial positions and orientations. Also, the dark
blue lines separating Voronoi partitions enable the robots to have their own
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exploration regions. The Voronoi partitions are changing dynamically according to
the positions of the robots. Also, the size of map is taken as 300x300 meters.
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Figure 5.18 : The end frame of the simulation with information gains

In Figure 5.18, the last simulation frame of the proposed approach (VIGA) is shown.
It can be seen that the regions with densely distributed mines are marked with

Gaussian functions. The four robots are stopped after exploring the whole map, after
161 iterations.
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Figure 5.19 : Trajectories of the robots with original method
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Figure 5.20 : Trajectories of the robots with the VIG approach

In the two simulations, 150 and 300 of mines are randomly distributed over the map.
In Figure 5.19 and Figure 5.20, the trajectories of four agents in two simulations are
given. First simulation uses the original method Discoverage (DISC) and the other

one uses the proposed approach, variable information gains (VIGA).
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Figure 5.21 : Explored mine count versus iteration count (150 mines)
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Figure 5.22 : Explored mine count with respect to iteration count (300 mines)

Figure 5.21 and Figure 5.22 show explored mine counts with respect to iteration
count, with 150 and 300 initial mine count, respectively. From these results, it can be

seen that there is a minor difference between two algorithms.

However, the performances of the two algorithms are different according to explored
region ratio shown in Figure 5.23 and Figure 5.24. With the proposed approach, the
reach time of explored region ratio and iteration count is less than the original
method. So, the proposed approach gives better results. It can be concluded that the
proposed variable information approach has a better result in both explored region

ratio and explored mine counts compared to the original method.
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Figure 5.23 : Explored region ratio versus iteration count (150 mines)
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Figure 5.24 : Explored region ratio versus iteration count (300 mines)

The performances of the two methods are compared by changing the robot and mine
counts. Iteration count is taken as the main performance criterion. In Figure 5.21,
Figure 5.22, Figure 5.23 and Figure 5.24, it can be seen that VIGA method gives
better results with mine counts 150 and 300 when the robot count is 4.
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Figure 5.25 : The distances taken by robots in meters (150 mines)
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Figure 5.26 : The distances taken by robots in meters (300 mines)

In Figure 5.25, the distances taken by four robots in the simulation with different
mine counts (150 and 300) are given. It can be seen that the total distance taken by
the four robots is smaller in the VIGA than in the original Discoverage method. So, it

can be said that Variable Information Gain Approach requires less total energy effort

than the original method for 150 and 300 mines.
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Figure 5.27 : Iteration counts with 5 robots
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Figure 5.28 : Iteration counts with 10 robots

In Figure 5.27, the results of simulation with different mine counts (150, 300 and
450) with 5 agents are given. The iteration counts of the coverage with variable
information gain approach for 150 and 300 mines are less than the original
Discoverage method. However, above 300 mines, the Discoverage method gives

better results.

In Figure 5.28, the robot count is increased to 10. In conclusion, the Discoverage
algorithm gives better results compared to coverage with variable information gains
for 150, 300 and 450 mines.
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Figure 5.29 : Iteration counts with 20 robots

Also, in Figure 5.29, the same simulation is done with 20 robots. The iteration counts

are less than the original method Discoverage in 10 and 20 robots.

From Figure 5.27, Figure 5.28 and Figure 5.29, it can be concluded that the coverage
with variable information gains gives better results when the robot count is low (five

robots) and the mine count is not greater than 150.
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Figure 5.30 : Information gains at the end of the simulation (2D)
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Figure 5.31 : Information gains at the end of the simulation (3D)

In Figure 5.30, the last frame of the simulation can be seen. The colored regions are
showing the information gains. Since the variable information gain algorithm inserts
Gaussian functions to @ at the regions with high mine count, some regions have
greater information gains than other regions. In Figure 5.31, the 3 dimensional plot
of the information gain function @ is given. Large values of this function show that

there are a lot of mines around this region.
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6. CONCLUSION

In this thesis, a number of selected Coverage methods are studied with simulation
results. The method Discoverage with single and multi robot cases are applied to
simulation as an application of mine clearance. In this mine clearance application,
the robots are supposed to clear the map including a number of randomly distributed
mines by using one of the proposed coverage algorithm approaches. In the simulation
studies, the Discoverage approach is extended with two new approaches including
Variable Information Gains and collision avoidance. The Discoverage algorithm with
Variable Information Gains gives better results compared to the original method
when the robot count and mine count is low. In addition to the VIG approach, the
Discoverage with collision avoidance algorithm prevents the robots from getting
closer than a safety distance in order to avoid collisions. Successful results are
obtained in simulation. This approach is important for multi robot real time
implementations because of the physical dimensions of the robots. Also, an existing

method for coverage with anisotropic sensors is studied under a separate section.

In future, the proposed obstacle avoidance methods for coverage may be
implemented for multi robot case. This approach can be extended to collision and
obstacle avoidance implementation. Moreover, a real time implementation of the
suggested algorithms with multiple agents may be done by using appropriate
localization methods, as done in the implementations given in previous works

section.
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