
IMPROVING PERFORMANCE OF DEFECT PREDICTORS USING

CONFIRMATION BIAS METRICS

by

Handan Gül Çalıklı

B.S., Mechanical Engineering, Boğaziçi University, 2000

M.S., Computer Engineering, Boğaziçi University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2011

ii

IMPROVING PERFORMANCE OF DEFECT PREDICTORS USING

CONFIRMATION BIAS METRICS

APPROVED BY:

Prof. Ayşe Bener

(Thesis Co-supervisor)

Prof. Oğuz Tosun

(Thesis Co-supervisor)

Prof. H. Levent Akın

Prof. Fikret Gürgen

Prof. Ali Tekcan

Burak Turhan, Ph.D.

DATE OF APPROVAL: 21.12.2011

Dedicated to my parents Hilal and Ömer

Yücel Çalıklı

iv

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Prof. Ayşe Bener for giving me the op-

portunity to do research in an interdisciplinary field such as human aspects in software

engineering. She believed in me and let me find my own way in the jungle of cognitive

psychology, statistics, computer science and software engineering. I thank Prof. Oğuz

Tosun for being my co-advisor; and Prof. Levent Akın, Prof. Ali Tekcan, Prof. Fikret

Gürgen and Dr. Burak Turhan for being in my thesis committee. My gratitude goes

to Turgay Aytaç for his intellectual guidance and for being a role model. I also thank

Turgay Aytaç, Ayhan İnal from Logo Business Solutions and Turkcell A.Ş. for provid-

ing data for my empirical research. There is one person whom I believe when she says

what I have done as a research work is satisfactory enough, Ayşe Tosun. Many thanks

to her for our academic discussions as well as for her friendship, advices and support.

My gratitude also goes to my other friends from SoftLab, Bora Çağlayan, Gülfem Işıklar

and Aslı Uyar Özkaya. From the department, I’d like to thank Reyhan Aydoğan and

Arzucan Özgür for their support, Itır Karaç for her sincere friendship as well as being

our leader in sailing and holiday adventures, Özgür Kafalı for the great tennis talk and

critiques, Nadin Kökciyan for being a great tennis partner, Suzan Bayhan for the chats

at department’s lounge, Didem Gözüpek and Gaye Genç Kara for the great time we had

at the conference in Lefkoşa during summer 2009 and many other friends whose names I

could not mention, but who made each day at the department meaningful. The last but

not the least, many thanks to a person of good character, Deniz Gayde, whose friendship

and support means a lot to me. I cannot forget my brother Yüceer Çalıklı, who helped

me to preprocess data for my thesis and encouraged me whenever I lost my faith.

Finally, I dedicate this thesis to my parents Ömer Yücel and Hilal Çalıklı. I love

you really much and feel myself very lucky for being your daughter, although I sometimes

curse my genes of perfectionism I inherited from you both. Thank you for believing in

me. I hope I can always make you proud.

v

ABSTRACT

IMPROVING PERFORMANCE OF DEFECT PREDICTORS

USING CONFIRMATION BIAS METRICS

Software defect prediction models help managers to prioritize their testing effort.

Algorithms, which are used to learn defect predictors, have reached a ceiling such that

further improvements may only come from increasing information content of input data.

The main goal of this research is to build defect predictors which are learnt from de-

velopers’ levels of confirmation bias, which is defined as tendency of people to seek for

evidence to verify hypotheses rather than seeking for evidence to refute them. Our main

goal is to overcome the ceiling effect in defect prediction performance. As a first step, we

define a methodology to measure/quantify confirmation bias and then we perform the

following empirical analysis: i) investigation of factors which have the potential to affect

confirmation bias levels of software developers and testers, ii) empirical analysis of how

confirmation bias affects software developer and tester performance, iii) a benchmark

analysis comparing performance of defect predictors which use combinations of static

code, confirmation bias and churn metrics, iv) defining a methodology to build defect

predictors which can learn using incomplete confirmation bias metric values as input.

Our results on industrial data show that: i) no effect of experience in software devel-

opment/testing has been observed on confirmation bias, whereas hypotheses testing and

reasoning skills affect confirmation bias, ii) confirmation biases of developers lead to an

increase in defects, while testers’ confirmation bias causes an increase post-release defects,

iii) using only confirmation bias metrics, we can build defect predictors with higher or

comparable prediction performance when compared to defect predictors that are learnt

by using only churn metrics or only static code metrics, iv) promising results can also be

obtained by using incomplete confirmation bias metric values to learn defect predictors.

vi

ÖZET

DOĞRULAMA SAPMASI METRİKLERİ İLE YAZILIMDA

HATA TAHMİNİ PERFORMANSININ İYİLEŞTİRİLMESİ

Hata tahmini modelleri, yöneticilere bir yazılımda test edilmesi gereken kısımların

önceliklendirilmesinde yardımcı olur. Yazılımda hata tahmini için kullanılan algorit-

malar performans sınırılarına ulaşmıştır, öyleki daha ileri gelişmeler ancak giriş veri-

lerinin içeriğini arttırmakla olabilir. Bu tezin amacı, yazılımcıların doğrulama sapması

seviyelerini kullanarak performans limitini aşan hata tahmini modelleri oluşturmaktır.

Doğrulama sapması metriklerini elde etmek için bir metodoloji tanımladıktan sonra

sırası ile şu aşamaları gerçekleştirdik: i) yazılımcı ve testçilerin doğrulama sapması se-

viyelerini etkilemesi olası faktörlerin incelenmesi, ii) doğrulama sapmasının yazılımcı ve

testçi performansını nasıl etkilediğine dair deneysel analizlerin yapılması, iii) statik kod

ve doğrulama sapması metrikleri ile kaynak kod dosyalarında yapılan değişikliklerden

elde edilen metriklerin değişik kombinasyonlarda kullanılmasıyla oluşturulan hata tah-

mini modellerinin karşılaştırmalı performans analizinin yapılması, iv) eksik doğrulama

sapması metrik değerleri ile hata tahmini modellerini oluşturma metodolojisinin tanım-

lanması. Endüstriyel verileri kullanarak şu sonuçları elde ettik: i) yazılım geliştirme ve

test etme deneyiminin doğrulama sapması üzerinde etkisine rastlanmamıştır, öte yan-

dan hipotez test etme ve muhakeme becerilerinin doğrulama sapması üzerinde etkileri

gözlemlenmiştir, ii) yazılımcıların doğrulama sapması, yazılımda hata miktarı artışına

neden olurken, testçilerin doğrulama sapması sürüm sonrası hata miktarının artmasına

neden olmaktadır, iii) sadece doğrulama sapması metrikleri ile elde edilen hata tahmin

performansının sadece statik kod veya kaynak kod dosyalarında yapılan değişikliklere

ilişkin metriklerle elde edilen hata tahmini performansından daha iyi ya da bu değerlere

yakın olduğu gözlemlenmiştir, iv) Eksik doğrulama sapması metrikleri ile kayda değer

hata tahmini performansı elde edilmiştir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . xi

LIST OF TABLES . xvi

LIST OF ACRONYMS/ABBREVIATIONS . xix

1. INTRODUCTION . 1

1.1. Software Defect Prediction Models and the Ceiling Effect 2

1.1.1. Software Defect Prediction Models 2

1.1.2. Ceiling Effect in Software Defect Prediction Performance 3

1.2. Human Factors in Defect Prediction Models 4

1.3. Literature Review . 5

1.3.1. Effects of Cognitive Biases on Software Engineering 5

1.3.2. People Related Metrics in Software Defect Prediction 8

1.4. Contributions . 9

1.5. Thesis Outline . 13

2. PROBLEM STATEMENT: BACKGROUND AND RESEARCH QUESTIONS 14

2.1. Cognitive Biases in General . 14

2.1.1. Representativeness . 14

2.1.2. Availability . 15

2.1.3. Adjustment and Anchoring . 15

2.1.4. Wason’s Rule Discovery Task . 16

2.1.4.1. Wason’s Elimination/Enumeration Index 19

2.1.4.2. Negative Instance Frequency 19

2.1.4.3. Test Severity . 19

2.1.5. Wason’s Selection Task . 22

2.1.5.1. Matching Bias . 23

2.1.5.2. Realistic Content Replications of Wason’s Selection Task 25

2.2. Confirmation Bias in Software Development and Testing 28

2.3. Research Questions . 29

viii

2.3.1. What are the factors affecting confirmation bias levels in software

development domain? . 30

2.3.2. How does confirmation bias affect software developers and testers? 30

2.3.3. How can we build defect predictors with comparable prediction

performance by using only confirmation bias metrics as input data? 31

2.3.4. How can we build defect predictors with comparable prediction

performance using incomplete confirmation bias metric data as input? 31

3. METHODOLOGY . 32

3.1. Measurement/Quantification of Confirmation Bias 32

3.1.1. Preparation of Confirmation Bias Tests 32

3.1.1.1. Written Tests . 33

3.1.2. Definition of Confirmation Bias Metrics 35

3.1.2.1. Performance Metrics . 35

3.1.2.2. Metrics to Monitor Hypothesis Testing 36

3.1.3. Conducting Confirmation Bias Tests 38

3.1.3.1. Written Tests . 38

3.1.3.2. Interactive Tests . 39

3.2. Analysis of Factors Affecting Confirmation Bias 40

3.2.1. Test Severity Calculation . 40

3.2.2. Formation of Test Severity Graphs Using Vincent Curves 45

3.3. Defect Prediction . 46

3.3.1. Naive Bayes Algorithm . 46

3.3.2. Performance Measurement . 48

3.4. Missing Data Problem in Defect Prediction 49

3.4.1. Single Imputation Methods . 49

3.4.2. Multiple Imputation Methods . 51

3.4.3. Expectation Maximization Methods for Imputation 51

3.4.4. Roweis’ EM Algorithm for PCA 52

4. DATA SET . 55

4.1. Participants of Confirmation Bias Tests 55

4.2. Collection of Static Code Metrics . 58

4.3. Collection of Commit Log Data . 60

5. EXPERIMENTS AND RESULTS . 61

ix

5.1. Experiment I: Analysis of Factors Affecting Confirmation Bias 61

5.1.1. Data . 61

5.1.2. Design . 62

5.1.3. Results and Discussions . 63

5.2. Experiment II: Analysis of the Effects of Confirmation Bias on Software

Developers and Testers . 64

5.2.1. Data . 71

5.2.1.1. Data Used to Analyze Confirmation Bias Effects on Soft-

ware Developers . 71

5.2.1.2. Data Used to Analyze Confirmation Bias Effects on Soft-

ware Testers . 73

5.2.2. Design . 74

5.2.2.1. Design for Analysis of Confirmation Bias Effects on Soft-

ware Developers . 74

5.2.2.2. Design for Analysis of Confirmation Bias Effects on Soft-

ware Testers . 75

5.2.3. Results and Discussions . 76

5.2.3.1. Results for Analysis of Confirmation Bias Effects on Soft-

ware Developers . 76

5.2.3.2. Results for Analysis of Confirmation Bias Effects on Soft-

ware Testers . 77

5.3. Experiment III: Using Confirmation Bias Metrics to Learn Defect Predictors 79

5.3.1. Data . 79

5.3.2. Design . 82

5.3.2.1. Defect Matching . 83

5.3.2.2. Formation of Train/Test Sets 86

5.3.2.3. Construction of Prediction Model 87

5.3.3. Results and Discussions . 88

5.3.3.1. Using Confirmation Bias Metrics as Single Metric Set to

Learn Defect Predictors 88

5.4. Experiment IV: Learning Defect Predictors Using Incomplete Confirmation

Bias Metric Set . 92

5.4.1. Data . 94

x

5.4.2. Design . 94

5.4.3. Results and Discussions . 97

5.5. Threats to Validity . 102

5.5.1. Threats to Validity for Definition and Extraction of Confirmation

Bias Metrics . 102

5.5.2. Threats to Validity in General . 104

6. CONCLUSIONS . 106

6.1. Summary of Results . 106

6.2. Contributions . 108

6.3. Future Directions . 109

APPENDIX A: Interactive Test (English Version) 111

APPENDIX B: Written Test (English Version) 115

B.1. General Written Test (English Version) 115

B.2. Written Test with Software Development/Testing Theme (English Version) 115

REFERENCES . 130

xi

LIST OF FIGURES

Figure 1.1. Human aspects affecting software defect density. 5

Figure 2.1. Record sheet used by Wason on his Rule Discovery Task [1]. 17

Figure 2.2. Protocol followed during Wason’s Rule Discovery Task. 18

Figure 2.3. Relation between alternative hypotheses and correct rule in Wason’s

Rule Discovery Task (T: set of triples conforming to the correct rule,

H: set of triples conforming to the hypothesis, U: set of all possible

triples). 19

Figure 2.4. A severe positive and a severe negative test in Wasons rule selection

task)[2]. 21

Figure 2.5. The logical structure of Wason’s selection task [2]. 22

Figure 3.1. Methodology used to measure/quantify confirmation bias metrics. . 33

Figure 3.2. Pseudocode for the implementation of Roweis’ EM Algorithm 54

Figure 5.1. Normal probability plot for the residuals of the confirmation bias

metric FRs
R . 62

Figure 5.2. Histogram for the residuals of the confirmation bias metric FRs
R . . . 63

Figure 5.3. Comparison of interactive test hypothesis testing strategies ofGroup1∗

and Group2∗. 71

Figure 5.4. Distribution of Falsifiers, Verifiers,Matchers andNone withinGroup1∗

and Group2∗. 72

xii

Figure 5.5. Comparison of interactive test hypothesis testing strategies ofGroup1∗

and Group7∗. 73

Figure 5.6. Distribution of Falsifiers, Verifiers,Matchers andNone withinGroup1∗

and Group7∗. 74

Figure 5.7. Comparison of interactive test hypothesis testing strategies ofGroup1∗

and Group8∗. 75

Figure 5.8. Distribution of Falsifiers, Verifiers,Matchers andNone withinGroup1∗

and Group8∗. 76

Figure 5.9. Comparison of interactive test hypothesis testing strategies ofGroup2∗

and Group7∗. 77

Figure 5.10. Distribution of Falsifiers, Verifiers,Matchers andNone withinGroup2∗

and Group7∗. 78

Figure 5.11. Comparison of interactive test hypothesis testing strategies ofGroup2∗

and Group8∗. 79

Figure 5.12. Distribution of Falsifiers, Verifiers,Matchers andNone withinGroup2∗

and Group8∗. 80

Figure 5.13. Comparison of interactive test hypothesis testing strategies ofGroup7∗

and Group8∗. 81

Figure 5.14. Distribution of Falsifiers, Verifiers,Matchers andNone withinGroup7∗

and Group8∗. 82

Figure 5.15. Percentage of variance explained by each of the principle components

of the resulting matrix of predictor variables. 83

xiii

Figure 5.16. Normal probability plots of residuals for linear, quadratic and inter-

action regression models. 84

Figure 5.17. Vincent curves for test severity of testers with NPRODDEF values

above and below average respectively. 85

Figure 5.18. Distribution of falsifiers, verifiers, and matchers among testers who

report bugs above and below average amount, according to Reich and

Ruth’s method. 86

Figure 5.19. Work flow followed in the ISV company to fix bugs detected during

testing phase. 87

Figure 5.20. : Defect matching procedure of a file to prepare list of defected files

for the second data set. 88

Figure 5.21. Experiment III boxplots for first dataset. 91

Figure 5.22. Experiment III boxplots for first dataset, where log-filtering is used

to preprocess data. 92

Figure 5.23. Experiment III boxplots for second dataset. 93

Figure 5.24. Experiment III boxplots for second dataset, where log-filtering is used

to preprocess data. 94

Figure 5.25. Pseudo code for generation of missing data configurations for data

sets “Project Group 1” and “Group 3”. 96

Figure 5.26. Pseudo code for imputation of each missing data configuration. . . . 97

Figure 5.27. Missing data percentage versus balance, pd, pf and MSE for the first

data set. 101

xiv

Figure 5.28. Missing data percentage versus balance, pd, pf and MSE for the first

data set. 102

Figure A.1. Interactive test personal information page. 112

Figure A.2. Interactive testing procedure information page. 113

Figure A.3. Interactive test record sheet. 114

Figure B.1. General written test information page. 116

Figure B.2. General written test (first page). 117

Figure B.3. General written test (second page). 118

Figure B.4. General written test (third page). 119

Figure B.5. General written test (fourth page). 120

Figure B.6. General written test (fifth page). 121

Figure B.7. General written test (sixth page). 122

Figure B.8. General written test (seventh page). 123

Figure B.9. General written test (eighth page). 124

Figure B.10. Written Test with software development/testing theme (first page). 125

Figure B.11. Written Test with software development/testing theme (second page). 126

Figure B.12. Written Test with software development/testing theme (third page). 127

xv

Figure B.13. Written Test with software development/testing theme (fourth page). 128

Figure B.14. Written Test with software development/testing theme (fifth page). 129

xvi

LIST OF TABLES

Table 2.1. Prediction of selection of cards according to different response ten-

dencies. 24

Table 2.2. All four negated versions of Wason’s Selection Task statements. . . . 24

Table 2.3. Response tendencies according to Reich and Ruth’s Categorization. . 24

Table 2.4. Examples of different contents used in the selection task. 27

Table 3.1. Examples of different contents used in the selection task. 35

Table 3.2. List of confirmation bias metrics (Performance Metrics). 36

Table 3.3. List of confirmation bias metrics (Metrics to Monitor Hypothesis Test-

ing Procedure). 37

Table 3.4. Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part I. 41

Table 3.5. Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part II. 42

Table 3.6. Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part III. 43

Table 3.7. Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part IV. 44

Table 3.8. Confusion matrix TP:True Positives, FN:False Negatives, FP:False

Positives, TN:True Negatives. 49

xvii

Table 4.1. Details about groups from which confirmation bias metrics were col-

lected. 57

Table 4.2. Gender distribution and average age values of Groups 1-8. 58

Table 4.3. Details about project groups within Group 1. 58

Table 4.4. List of static code metrics used in Experiment III. 59

Table 4.5. List of churn metrics used in Experiment III. 60

Table 5.1. Dividing continuous values of avgIndel/en into categories for χ2 test. 63

Table 5.2. Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 1 and Group 2 respectively. 65

Table 5.3. Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 1 and Group 7 respectively. 66

Table 5.4. Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 1 and Group 8 respectively. 67

Table 5.5. Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 2 and Group 7 respectively. 68

Table 5.6. Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 2 and Group 8 respectively. 69

Table 5.7. Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 7 and Group 8 respectively. 70

Table 5.8. The values regression coefficients, their confidence intervals and sig-

nificance test results. 78

xviii

Table 5.9. Abbreviations used for metric type combinations in Tables. 89

Table 5.10. Defect prediction results for first data set. 89

Table 5.11. Defect prediction results for first data set with log filtering. 89

Table 5.12. Defect prediction results for second data set. 90

Table 5.13. Defect prediction results for second data set with log filtering. 90

Table 5.14. Defect prediction performance results for complete form of first data

set. 98

Table 5.15. Defect prediction performance results for incomplete confirmation bias

metric values of the first data set as input. 98

Table 5.16. MSE values for imputed form of incomplete confirmation bias metric

values for the first data set. 99

Table 5.17. Defect prediction performance results for complete form of the second

data set. 99

Table 5.18. Defect prediction performance results for incomplete confirmation bias

metric values of the second data set as input. 99

Table 5.19. MSE values for imputed form of incomplete confirmation bias metric

values for second data set. 100

Table 5.20. Pearson correlation results for missing % vs. pd, pf, balance and MSE.100

xix

LIST OF ACRONYMS/ABBREVIATIONS

AI ArtificialIntelligence

bal Balance

CGBR Call Graph Based Ranking

DBMS Database Management System

E-R Entity-Relationship

ERP Enterprize Resource Planning

FN False Negatives

FP False Positives

GCD Greatest Common Divisor

ISV Independent Software Vendor

IT Information Technology

MSE Mean Square Error

NPRODDEF Number of Production Defects

SME Small Medium Enterprise

PCA Principal Component Analysis

pd Probability of Detection

pf Probability of False Alarms

PSP Personal Software Process

TDD Test Driven Development

TN True Negatives

TP True Positives

TSP Team Software Process

3P Product Process People (3 pillars of software development)

1

1. INTRODUCTION

Software testing is the most resource consuming phase of software development

life-cycle. Approximately 50% of a project schedule is allocated to testing phase [3].

Defect predictors provide guidance to project managers to effectively allocate resources

in testing phase by pointing out defect-prone parts of the software. However, defect

prediction algorithms have reached a performance ceiling. Reported results in software

defect prediction literature suggest that further progress in defect prediction performance

can be achieved by increasing the content of input data that defect predictors learn rather

than using different algorithms or increasing the size of input data [4–6]

Among the three pillars (3Ps) of software development, which are product, process

and people, product and process have long been taken into account in software defect

prediction. Yet, modeling people related aspects in software defect prediction still remains

as a challenge, since it requires conducting more interdisciplinary research and practice

to combine mathematics, statistics, sociology, and psychology. We are aware of the fact

that we cannot cover all human aspects. On the other hand, cognitive biases, which are

deviations of human mind from the laws of mathematics and logic, are very likely to

have significant effects on software development. In this thesis, we focus on a particular

cognitive bias type called confirmation bias which is defined as the tendency of people to

confirm their hypotheses rather than refuting them. During all levels of software testing,

including unit testing, the attempt should be to fail the code [7–9]. However, due to

confirmation bias especially developers might perform unit tests to make their program

work. This results in the propagation of more defects to testing phase and hence probably

an increase in software defect density. Similarly, defects which are overlooked by testers,

during testing phase of a specific release of a software are likely to propagate to the next

releases of that software.

2

1.1. Software Defect Prediction Models and the Ceiling Effect

1.1.1. Software Defect Prediction Models

In software defect prediction, various machine learning algorithms have been em-

ployed by researchers. Munson and Khoshgoftaar [10] construct discriminant models

by using static code metrics as independent data, where multicolinearity among static

code metrics is eliminated by Principle Component Analysis. Bullard et. al.[11] propose a

rule-based classification model for prediction of defects in a large legacy Telecomunication

system. In [12], Classification and Regression Trees (CART) algorithm is used to identify

fault-prone modules in embedded systems. Neural networks is another machine learning

technique used by Khosgoftaar and Szabo [13] to learn defect predictors. Regression mod-

els have also been widely used [14–17]. The model consisting of an ensemble of classifiers

proposed by Tosun et al. [18] combines three algorithms which are Näıve Bayes, Neural

Networks and Voting Feature Intervals respectively. In his repeatable set of experiments,

Menzies et al. [5] discovered that Näıve Bayes classifier with a log-filtering preprocessor

on the numeric data, outperforms methods such as OneR and J4.8. Results obtained by

Menzies et al. are in line with the results of the benchmark study by Lessmann et al. [4].

In this benchmark study, Lessmann et al. also found no significant difference between

performance of Näıve Bayes and more complex machine learning algorithms.

In order to find out whether performance of defect predictors can be increased by

sampling methods due to the unbalanced nature of the defect data, Menzies et al. [6]

performed a series of experiments. As algorithm, they used Näıve Bayes since it was

useful in their previous experiments [5] as well as J4.8 which was used in prior under-

over sampling experiments [19, 20]. According to the results obtained, throwing away

data (i.e. undersampling) does not degrade the performance of the learner. For J4.8

algorithm throwing away data improved median performance from around 40% to 70%,

while under-sampling outperformed over-sampling for both J4.8 and Näıve Bayes. These

results are consistent with those of Drummond et al. [19] and Kamei et al.[20].

3

1.1.2. Ceiling Effect in Software Defect Prediction Performance

Research in software defect prediction has shown that content of input data that

defect predictors learn is more essential than the algorithm used and size of the input

data. In software defect prediction, various machine learning algorithms have been em-

ployed by researchers, ranging from regression models [14–16], decision trees [21], neural

networks [22] and Näıve Bayes [5, 23, 24] as well as application of cascading classifiers

[18]. However, Menzies et al. [5] discovered that Näıve classifier with a log-filtering pre-

processor on the numeric data, outperforms methods such as OneR and J48. In their

benchmarking study [4], Lessmann et al. also concluded that there is no significant dif-

ference between performance of Näıve and more complex machine learning algorithms.

In summary, using different algorithms did not result in any significant improvement in

the performance of defect predictors. In order to find out whether size of input data

affects performance, Menzies et. al. [6] applied their “micro-sampling” method which

takes only a small portion of data to learn defect predictors using Näıve algorithm. The

results they obtained showed that size of the input data did not affect defect prediction

performance.

On the other hand, enhancement of input data content mostly resulted in improved

defect prediction performance. Nagappan et al. [25] state that code churn metrics are

good predictors of post-release defects. Jiang et al. [26] compared predictor perfor-

mances that were learnt from design metrics, static code features and both for 13 NASA

projects. Design metrics were extracted from requirements documents with a text miner.

More accurate results were obtained by using both design and static code metrics rather

than individual use. The results obtained were consistent with results of the similar

experiments which were previously conducted by Zhao. et al. [27] for the analysis of a

real time Telecomunication system. Zimmerman and Nagappan [28] developed a metric

suite which defines dependency of binary files from a graph theoretic point of view. The

authors used these metrics as input to linear and logistic regression models to predict

post-release failures of Windows Server 2003. Zimmerman and Nagappan report 10%

increase in defect prediction performance due to the inclusion of dependency graphs as

input data. Following this research, Nagappan and Ball [25], combined dependency and

churn metrics to predict post-release faults in binary files of Windows Server 2003. The

4

authors conclude that they can predict post-release failure using regression models at a

statistically significant level. Tosun et al. [29] used network and churn metrics as well

as static code metrics in order to build defect predictors for different defect categories.

According to their results, churn metrics gave the best result to predict all types of de-

fects. Moreover, Tosun et al. [24] obtained improved performance results by using churn

metrics in addition to static code metrics as input data to learn defect predictors for a

telecommunication infrastructure software. Turhan et al. in another study [30] reduced

probability of false alarms by supplementing static code metrics by their Call Graph

Based Ranking (CGBR).

1.2. Human Factors in Defect Prediction Models

Since software products are developed by people, information content of data input

to defect prediction models needs to be enhanced by people metrics. Although it is not a

trivial task to model people, as shown in Figure 1.1, the first step should be to list human

aspects which are most likely to cause introduction of defects in the software product

being developed. Every phase in a software development life cycle requires analytical

problem solving skills. Unlike a person working in an assembly line in a factory, a software

developer and tester requires more sophisticated problem solving skills. Moreover, using

everyday life heuristics instead of laws of logic and mathematics may affect quality of the

software product in an undesirable manner.

Cognitive biases are deviations of the mind from the laws of logic and mathemat-

ics. Cognitive biases are believed to be among the factors which lead to an increase

in software defect density. Therefore, while building defect prediction models cognitive

biases should be taken into account. In cognitive psychology literature, various cogni-

tive bias types have been defined such as representativeness, availability, adjustment and

anchoring, and confirmation bias. In this thesis, we focus on confirmation bias which

is described as the tendency of people to verify a hypothesis rather than refuting that

hypothesis. All levels of software testing, including unit testing, a systematic hypothesis

testing procedure should be followed similar to the one followed by a scientist making ex-

periments in his/her laboratory. In general scientific inferences are based on the principle

of eliminating hypotheses while provisionally accepting the remaining ones. As a result

5

Figure 1.1. Human aspects affecting software defect density.

of an eliminative induction, it is possible to make adequate controls so that both positive

and negative experimental results give information about the possible determinants of a

phenomenon. Therefore, similar to a scientist a software developer/tester should try to

find test scenarios which aim to fail the code being tested instead of making that code

execute without any errors. However, determination of such test scenarios is not trivial,

since in most cases there are infinitely many scenarios. A hypothesis testing strategy

needs to be followed during all levels of software testing so that defect density of the

software product can be reduced increasing software quality significantly.

1.3. Literature Review

1.3.1. Effects of Cognitive Biases on Software Engineering

Researchers have recently started to use concepts from contemporary psychology

and cognitive psychology to analyze people aspects within the context of software engi-

6

neering.

In contemporary psychology, the “Big Five Model” of personality consists of five

broad dimensions of personality which are extraversion, agreeableness, conscientiousness,

emotional stability/neuroticsm, openness to experience, respectively. In [31] Hannay

et al. analyze the effect of personality on paired programming. In this study, a well

established Big Five Model based personality test is performed to 196 IT consultants

from 10 different companies on three different countries. As a result of the analysis of this

personality test outcomes, the authors find no strong indications that personality affects

pair programming performance. Another study which uses the Big Five Personality

dimensions is by Acuna et al. [32], where they investigate how personality relates to job

satisfaction and software quality. As practical implications of their research, Acuna et

al. recommend software professionals to measure the extraversion personality trait of

developers and to form development teams with average extraversion levels in order to

improve software quality.

In the field of cognitive psychology, there are many important results which can

be used to explain people aspects in software engineering. These results can be used to

analyze the effects of cognitive biases on software engineering. To the best of our knowl-

edge, Stacy and MacMillian are the two pioneers who recognized the potential effects of

cognitive biases on software engineering. In [33], Stacy and MacMillian emphasize the

fact that thought process of developers are a fundamental concern in software develop-

ment. The authors discuss how cognitive biases might show up in software engineering

activities by giving examples from several contexts. However, this work contains no

empirical investigations. The authors put forward some ideas as possible explanations

and as potential areas that require further research. Empirical evidence which supports

existence of confirmation bias among software testers is provided by Teasley et al. in

[7, 8]. In their work, Teasley et. al conduct laboratory experiments as well as observ-

ing software testers in their naturalistic environment. Another empirical study which

provides empirical evidence about the existence of another cognitive bias anchoring and

adjustment within the context of software development belongs to Parsons and Saunders.

In [34], Parson and Saunders conduct two experiments, which investigate the existence

of anchoring and adjustment in software artifact reuse. The first experiment they con-

7

duct examines the reuse of object classes in a programming task, whereas their second

experiment investigates how anchoring and adjustment bias affects reuse of software de-

sign artifacts. In their second experiment, Saunders and Parsons ask the participants to

develop an Entity-Relationship (E-R) model for an airplane application. Finally, Mair

and Shepperd [35] discuss how cognitive biases of software engineers contaminate the re-

sults obtained by software effort predictors making them far from being objective. This

is due the fact that input parameters of prediction models are estimated by software

engineers whose performance is affected by cognitive biases such as over-optimism and

over-confidence. The authors also state that experiments must be made on software

professionals in realistic settings to investigate possible de-biasing strategies. Mair and

Shepperd also emphasize the fact that such experiments should be conducted by an in-

terdisciplinary team consisting of cognitive psychologists and computer scientists. This

work by Mair and Sheppard is in the form of a preliminary research and it contains no

empirical/experimental investigation. On the other hand, Jørgensen et. al empirically

investigates some cognitive bias types within the scope of software development effort

estimation. According to empirical findings of Jørgensen [36], increase in the effort spent

on risk identification during software development effort estimations leads to an illusion

of control which in turn leads to more over-optimism and over-confidence. Moreover,

as a result of the cognitive bias type availability, risk scenarios which are more easily

recalled are over-emphasized so that inaccurate effort estimations are made. Jørgensen

also empirically investigates how anchoring and adjustment heuristic leads to inaccurate

effort estimates [37]. Jørgensen indicates that reasonable results can be obtained only if

the reference value for the estimates (i.e. the anchor) is the typical effort of tasks of same

category or effort of the closest analogy.

In the literature, the above mentioned empirical studies or preliminary works have

been made either to investigate or discuss the existence of some cognitive bias types

within the context of software engineering. However, our work is the first one that uses

cognitive bias type related information as input data to enhance performance of defect

prediction models.

8

1.3.2. People Related Metrics in Software Defect Prediction

In the literature, various people-related metrics have been used to build defect pre-

dictors, yet these are not directly related to people’s thought processes or other cognitive

aspects.

Nagappan et al. [14] defined a metric suite to quantify the complexity of organiza-

tions consisting of many teams of software professionals working together. The authors

built a model to predict failure proneness of Windows Vista. They compared the perfor-

mance of this defect predictor with the performance of models that are learnt using code

churn, code complexity, code coverage, pre-release bugs and dependencies respectively.

In terms of precision and recall values, their model outperformed all these mentioned

models.

Graves et al. [38] also used metrics regarding development organization that worked

on a specific code and number of developers who made changes on that code, as well as

churn metrics for prediction of defective modules. According to the results obtained by

the authors, the number of developers who have changed a module did not improve defect

prediction performance. Weyuker et al. [39] also found that number of developers is not

a major influence to increase defect prediction performance.

On the other hand, Mockus et al. [40] found that developer experience is essential to

predicting failures. In [41], Weyuker et.al. used developer information that distinguishes

developers who are new to a working file or who share responsibility of that file with

other developers, since it is more likely that changes made by such developers would

result in faults. However, Weyuker et al. detected no significant contribution of this kind

of developer information to defect prediction performance. Following this research, the

authors later analyzed the effectiveness of individual developer performance on defect

prediction performance and no evidence of a significant improvement in defect prediction

performance was found either [42].

Social interaction between developers who have collaborated to the same file during

same period of time was modeled as social networks to be used in defect prediction

9

by Meneely et. al [43]. The model constructed for an industrial product from Nortel

was able to explain 60% of the variance of failures during the testing phase. Pinzger

et al. [44] formed a contribution network by combining modules with developers who

contribute to those modules and defined centrality measures to quantify the number of

developers making contribution to a specific module. Empirical analysis of the data from

Windows Vista project showed that centrality metrics can predict software failures up to

a significant extend. Bird et al. [45] formed a network which is a combination of module

dependency and contribution networks to predict fault prone modules. As a result, they

were able to predict fault prone binary files with greater accuracy than prior methods

which use dependency networks [28] or contribution networks [44] in isolation.

1.4. Contributions

Below, we briefly explain the contributions of this thesis. Detailed explanation

about the contributions shall be presented in Chapter 6.

• Measurement/Quantification of Confirmation Bias : Since our research is based on

empirical analysis, we had to find a methodology to quantify/measure confirmation

bias levels of software developers and testers. For this reason, we firstly made

the definition of confirmation bias within the scope of software development and

testing. Taking this definition as our reference point, we prepared written and

interactive tests after having made an extensive survey in the cognitive psychology

literature. An iterative procedure was followed to form the confirmation bias metric

set. Initial metric set was defined during the literature survey and preparation of the

confirmation bias tests. Metric set is updated while conducting tests and evaluating

their outcomes during earlier stages of this research. Metric values are evaluated

for each subject based on the answers he/she gives to these to the questions in the

tests.

Definition of a methodology to quantify/measure confirmation bias was crucial for

us to proceed in our research. Moreover, this metric set can also be used by other

researchers to make further research regarding confirmation bias in software engi-

neering context. The methodology we formed to quantify confirmation bias (i.e. to

form a confirmation bias metric set) can also adapted to quantify/measure other

10

cognitive bias types such as availability, representativeness, adjustment and anchor-

ing, and many others. In this way, it might be possible to investigate the effects

of various cognitive biases on software development life-cycle and to find de-biasing

strategies to eliminate their negative effects on software quality.

• Empirical Analysis of Factors Affecting Confirmation Bias Levels of Software De-

velopers: The goal of this analysis was to gain more insight about confirmation bias

within the scope of software testing and development. Moreover, identifying the

factors affecting confirmation bias is a step toward to find strategies for software

developers to challenge their biases (i.e. de-biasing strategies). Similar analysis can

be also be replicated for software testers and analysts in order to develop de-biasing

strategies for each role in software development life-cycle.

• Empirical Analysis of the Effects of Confirmation Bias on Software Developer and

Tester Performances During unit testing software developers are likely to overlook

defects due to confirmation bias, which leads to propagation of more defects to the

testing phase of software development. As a result, increase in software defects is

inevitable. We empirically investigated the validity of this statement by building

a regression model where independent variables are the confirmation bias levels

of developers and the response variable is the defect density. This analysis also

served as a prerequisite step to get an idea about the suitability of confirmation

bias metrics to be used to build defect predictors.

We also analyzed the effect of confirmation bas on software tester performance.

Although unlike developers, the code tested by testers is not the one implemented

by them, still effects of confirmation bias can be observed. As well as the tendency

to make the code fail, it is essential to follow a proper testing strategy in order to

find as much defects as possible. Defects overlooked by testers may propagate to

the next release of the software or those defects can be detected after the release

of the software. In order to empirically investigate this phenomenon, we perform

a correlation analysis between the total number of post release defects detected in

the files that were tested by a tester T and he confirmation bias level /i.e. values

of the confirmation bias metrics for that tester T) of that tester T.

• Benchmark Analysis to Assess Power of Defect Predictors Built Using Confirma-

tion Bias Metrics : In this benchmark study, our goal was to asses the power of

software defect predictors which are learned using only confirmation bias metrics.

11

We used three data sets in this comparative analysis. The first and second data

sets (DataSet1 and DataSet2) were collected from a large scale telecommunication

company; whereas the third data set (DataSet3) belongs to a project group that

consists of developers of the largest ISV (Independent Software Vendor) in Turkey.

For each data set, we built seven different software defect prediction models us-

ing Näıve Bayes algorithm. Each of these defect predictors uses one of the seven

combinations of three different metric sets (i.e. For each data set, we formed

N = 2n − 1 = 7 defect prediction models where n = 3 is the total number of

metric types). The three different metric types are static code, churn and confir-

mation bias metrics respectively. Static code metrics represent the product pillar of

software development, while churn metrics are a subset of process metrics. Finally,

confirmation bias metrics are categorized under people metrics.

The results of these analysis show that defect predictors learnt using only confir-

mation bias metrics have prediction performances which are comparable with the

prediction performances of defect predictors which are learnt using only either static

code metrics or churn metrics. On the other hand, confirmation bias is a single as-

pect of people and can only give a limited explanation about the effect of people

aspects on software defects. The empirical results we obtained in spite of this fact

indicate the importance of including people metrics as input to defect predictors in

order to overcome the performance ceiling.

• Benchmark Analysis to Assess Power of Defect Predictors Built Using Confirmation

Bias Metrics with Missing Data: Compared to product and process metrics, it takes

more effort to collect people metrics. For instance, static code and churn metrics

can be automatically retrieved, while confirmation bias metric collection requires

conducting tests to developers/testers and assessing the outcome of these tests.

Both of these activities may take considerable time and human resource depending

size of the project team. Moreover, depending on the lifetime of a software product

being developed, some developers might no longer work in the company so that

confirmation bias metric values of such developers cannot be obtained. If developers

who used to be part of the development team were also top committers and a

high portion of the files created and/or updated by them are still a part of the

software product being developed, then considerable amount of confirmation bias

metric values shall be missing. In such as case, we may prefer to take into account

12

files/modules/packages created and/or updated by developers whose confirmation

bias metrics are known. However, in this case it is highly probable that our defect

predictor model shall cover only a small portion of the software.

Therefore, a method is required to deal with missing data due to departure of de-

velopers so that defect prediction models built using confirmation bias metrics can

cover a high portion of the software being developed. Such a method can also

be used by software development companies which seek for an alternative confir-

mation bias metric extraction process especially for large development groups. In

order to overcome the missing data problem, we employ Roweis’ [46] Expectation-

Maximization (EM) Algorithm for Principal Component Analysis (PCA). The al-

gorithm naturally accommodates missing information.

The output of Roweis’ EM Algorithm is the imputed form of the incomplete con-

firmation bias metrics which we used to learn defect predictors. In order to assess

performance of these defect predictors we made a benchmark analysis. For each

data set we used in our benchmark study, we formed 2Nd − 2 missing data config-

urations, where Nd is the number of developers in the project group. Imputation

is performed as an outcome of Roweis’ EM Algorithm for PCA, so that imputed

forms of missing data configurations for each data set are obtained. For each data

set, defect prediction experiments are replicated for the imputed forms of missing

data configurations and defect prediction performance results are compared with

the results obtained for original data sets (i.e. data sets with no missing data). The

performance results of defect predictors which are built using imputed form of in-

complete confirmation bias metrics were comparable with those of defect predictors

built using complete confirmation bias metric values.

The results we obtained are promising such that Roweis’ EM Algorithm for PCA can

be used to perform confirmation bias based defect prediction for software products

developed by large groups. Confirmation bias tests can be conducted on a subgroup

and missing confirmation bias metric values can be imputed before using them to

learn defect predictors. In addition, as we mentioned earlier missing confirmation

bias metric values due to departure of developers from the project group can be

handled using the method we propose.

13

1.5. Thesis Outline

This thesis is organized as follows: Chapter 2 gives necessary background on cog-

nitive biases in general, confirmation bias as well as explaining the role of confirmation

bias in software development and testing. Research questions are also presented in this

chapter. In Chapter 3, we explain the methodology we used to measure/quantify con-

firmation bias to be used in our empirical analysis. Chapter 3 also mentions statistical

methods we used to interpret the results of the experiments we conducted to investigate

the factors affecting confirmation bias as well as the effect of confirmation bias on soft-

ware developers and testers. Defect prediction and missing data imputation methods are

explained in Chapter 3. Details about the overall data set used in the experiments are

presented in Chapter 4. Design and results of the experimented conducted in this study

as explained in Chapter 5. Chapter 5 also gives information about which parts of the

overall data set is used in which experiment together with the reason for such a data

subset selection. In Chapter 6, we conclude our research, summarize our results giving

answers to the research questions we stated previously and finally we point out possible

future directions.

14

2. PROBLEM STATEMENT: BACKGROUND AND

RESEARCH QUESTIONS

2.1. Cognitive Biases in General

Cognitive biases are defined as the deviation of human mind from the laws of

logic and accuracy [33]. The notion of cognitive biases was first introduced by Tversky

and Kahneman [47]. Other than confirmation bias, among cognitive biases that are

most likely to affect software development and testing are representativeness, availability,

and adjustment and anchoring. In the following subsections, we will briefly explain

the cognitive biases representativeness, availability, adjustment and anchoring, as well

as giving examples on how these biases may affect software development and testing.

Detailed information about confirmation bias, which is the cognitive bias type we focus

in this thesis, is given in the next section.

2.1.1. Representativeness

While making predictions and judgments under uncertainty, people do not appear to

follow the statistical theory of prediction. As Kahneman and Tversky states in [47], peo-

ple rely on heuristics which sometimes yield reasonable judgments and which sometimes

lead to severe and systematic errors. Although outcomes representative of a population

of instances are more likely to belong to that population, this is not always true. One

should also take into account the base rate (i.e. prior probability).

Representativeness can also affect testing phase. Since exhaustive testing is not

possible, we have to plan tests such that test data that does not produce an error are

eliminated. We can identify test data to be eliminated based on their similarity to the

data that did not produce any errors in previous tests. However, assessment of similarity

is not trivial. Assume that a developer has to decide whether a set of test data y should

be eliminated or not. Such a decision depends on the similarity of y to X where X

belongs to the population of test data that did not produce any errors. According to

Bayes’ Theorem, we can represent such similarity by the notation P (X|y) and formulate

15

as follows:

P (X|y) = P (y|X)P (X)

P (y)
(2.1)

Due to representativeness, people usually do not take base rates (prior probabilities)

P (X)/P (y) into account and hence similarity and likelihood values coincide. In other

words, the degree to which y is representative of population X (i.e. P (X|y)) is calculated

without taking base rates into account.

2.1.2. Availability

Similar to representativeness, availability is also a heuristic to judge probability or

frequency of instances. Using availability heuristic, people estimate the probability of

an instance according to its associative distance. Lifelong experience has told us that

instances of large classes are recalled much more easily compared to instances of less

frequent classes. However, availability is also affected by factors which are unrelated to

actual frequency. For instance, humans judge the frequency of instances by the ease that

they come to mind. Availability might reveal itself during the developer testing phase

of the software. In addition to formal tests, good programmers also use some heuristic

techniques to expose errors in their code. One heuristic technique is “error guessing”,

which means creating test cases based upon guesses about where the program might have

errors. Such guesses might be based on past experience of the developer about the type

and location of the errors he has made most frequently. In this case, he can misidentify

the most frequently occurring error types and locations based on the ease that they come

to mind. For instance, areas of the code where the developer spent more time might be

much more easily remembered by the developer. Moreover, as a result, most frequently

occurring errors might be overlooked.

2.1.3. Adjustment and Anchoring

When people are given problems whose solutions exist, their estimation of the

problem varies depending on different starting points. In other words, their estimates

are biased towards the initially given values. We call this phenomenon anchoring. The

16

study mentioned in [47] illustrates this effect.

Two groups of high school students were asked to estimate a numerical expression

within 5 seconds. The numerical expression given to the first group was 8 x 7 x 6 x 5

x 4 x 3 x 2 x 1. On the other hand, the following expression was given to the second

group: 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8. The median estimate of the descending sequence

was 2250, while the median estimate for the ascending sequence was 512 and the correct

answer is 40, 320. In this experiment, after a few steps of computation, people estimate

the product by extrapolation. Anchoring heuristic helps to simplify a complex problem

without conscious effort. However, people often fail to make adequate modifications to

an initial solution, which result in incorrect outcome. This phenomenon is known as

adjustment bias.

Parsons and Saunders [34] analyze the effects of adjustment and anchoring in soft-

ware artifact reuse. Due to the anchoring and adjustment bias, software developers

unconsciously adhere to the reuse artifact. Therefore, the errors existing in the reuse

artifacts propagate or necessary functionality additions indicated in the requirements

specification document are omitted. Moreover, extraneous functionalities that do not

exist in the requirements specification remain in the reuse artifacts.

2.1.4. Wason’s Rule Discovery Task

In this experiment, Wason asked his subjects to discover a simple rule about triples

of numbers [1]. Initially, subjects are given a record sheet on which the triple “2, 4, 6” is

written. The experimental procedure can be explained as follows: The subjects are told

that “2 4 6” conforms to this rule.

In order to discover the rule, they are asked to write down triples together with

the reasons of their choice on the record sheet which is shown in Figure 2.1 After each

instance, the tester tells whether the instance conforms to the rule or not. The subject

can announce the rule only when he/she is highly confident. If the subject cannot discover

the rule, he/she can continue giving instances together with reasons for his/her choice.

This procedure continues iteratively until either the subject discovers the rule or he/she

17

Figure 2.1. Record sheet used by Wason on his Rule Discovery Task [1].

wishes to give up. If the subject cannot discover the rule in 45 minutes, the experimenter

aborts the test. The flowchart explaining the above mentioned test protocol is given in

Figure 2.2.

Wason designed this experiment in a way such that subjects mostly showed a ten-

dency to focus on a set of triples that is contained inside the set of all triples conforming to

the correct rule. Due to this fact, discovery of the true rule was possible only by refuting

hypotheses that come to mind. Figure 2.3 shows the relationship between a hypothesis

that is likely to come to participant’s mind once he/she sees the triple “2 4 6”, the rule

to be discovered and the set of all rules in the universe about triples of numbers.

While designing his experiment Rule Discovery Task, Wason’s inspiration was Pop-

per’s criticism approach:

A universal statement cannot be verified purely logically by a limited number
of observations but it can be falsified

As Poletiek also indicates, Popper’s influence on Wason is recognizable in the anal-

ogy he makes between a scientific laboratory experiment and his Rule Discovery Task:

The task simulates a miniature scientific problem where the variables are un-
known and in which evidence has to be systematically adduced to refute or support
hypotheses. Generating an instance corresponds to doing an experiment, knowledge
that the instance conforms or does not conform, corresponds to its result and an

18

Figure 2.2. Protocol followed during Wason’s Rule Discovery Task.

incorrect announcement corresponds to an inference from uncontrolled data.

As we shall see in the following subsections, one must also follows a hypothesis

testing strategy has to succeed in Wason’s Rule Discovery Task. Once, the subject sees

the triple “2 4 6” a set of hypotheses come to her/his mind. An ideal hypothesis testing

strategy is to start by giving examples which does not refute all hypotheses the subject

has in his/her mind at once. The examples of triples that refute more hypotheses should

be given as the test proceeds. The hypotheses should be eliminated,modified and created

in a strategic manner, so that subject can come up with a single hypothesis at the end.

Once the subject is sure about what the rule to be discovered is, he/she can give additional

triple instances to verify his/her guess.

19

Figure 2.3. Relation between alternative hypotheses and correct rule in Wason’s Rule

Discovery Task (T: set of triples conforming to the correct rule, H: set of triples

conforming to the hypothesis, U: set of all possible triples).

2.1.4.1. Wason’s Elimination/Enumeration Index. Eliminative/enumerative index was

constructed by Wason [1] in order to determine the proportion of the total number of

instances that are incompatible with reasons given to those that are compatible.

According to Wason, it is desirable that eliminative/enumerative index is greater

that one. The higher the eliminative/enumerative index, the more tendency the subject

as for refuting his own hypotheses. However, as we shall see in the following subsections

“eliminative” testing strategy is not alone adequate to succeed in Wason’s Rule Discovery

Task.

2.1.4.2. Negative Instance Frequency. In [1], for each subject Wason evaluates the ratio

of the number of instances which does not obey the rule to be discovered (i.e. negative

instances) to the total number of instances given by that subject. Wason also observes

a highly significant correlation between eliminative/enumerative index and negative in-

stance index (Kendall’s Tau being 0.72, where p < 0.00003).

2.1.4.3. Test Severity. Poletiek [2] mentions severity of the tests. The term “test” used

by Poletiek corresponds to a single instance given by the subject, during Wason’s Rule

Discovery Task , during which a subject gives several instances to discover the rule.

20

Popper, who was Wason’s source of inspiration in the design of his famous Rule

Discovery Task, designated the severity of a test (i.e. instance) as follows:

S(t,H, b) =
P (t|H, b)

P (t|b)
(2.2)

According to the above equation, the severity of a test t is interpreted as the supporting

evidence of the hypothesis H given the background knowledge b. A test is more severe

when the chance of the supporting observation occurring under the assumption of the

hypothesis H exceeds the chance of its occurring without the assumption of the H (i.e.

with the assumption of the background knowledge b only). The higher this ratio is

(exceeds 1), the higher the severity of the test is. In other words, when the severity of a

test is high, more alternative hypotheses are eliminated.

In line with Popper’s idea, it was expected that rule discovery performance would

increase as the subject tested more severely (i.e. gave instances that would eliminate

more alternative hypotheses). In order to investigate the validity of this expectation,

Poletiek performed an experiment, where she estimated the severity of the tests performed

by participants. In this experiment, different from the original Wason’s Selection Task

participants were given “2-7-6” as an initial example and the rule to be discovered was

“even-uneven-even number”. Poletiek knew that calculation test severities (i.e. severity

of given instances) was not a trivial task, since the set of “all possible hypotheses” is

infinite as shown in Equation 2.2. On the other hand, in psychological terms this set is

not infinite due to the fact that people cannot easily easily more than one hypothesis

at a time in their mind. Moreover, this set is fuzzy in people’s mind and in order

to perform a more or less severe hypothesis testing, it is not necessary to explicitly

generate all the hypotheses. Hence, in order to make test severity calculations in her

experiment, Poletiek took all plausible reasons given by all the participants as the set of

all alternative hypothesis SH (i.e. background knowledge). The illustration of positive

and negative instances by Poletiek is given in Figure 2.4. In this Figure, H is the set of

triples conforming to the hypothesis of the participant. A1, A2 and A3 are the three sets

of triples conforming to the sets of alternative hypotheses A1, A2 and A3 respectively. U

is the set of all possible triples. In Figure 2.4, Poletiek uses the notation x+ to represent

the set of severe positive triples, the notation x− to represent the set of severe negative

21

Figure 2.4. A severe positive and a severe negative test in Wasons rule selection task)[2].

triples. Finally, she uses ex to represent the example triple that’s been given by the

participant during the experiment.

Using the set of alternative hypotheses, she calculated severity of each instance

given by each participant as follows:

• If the instance I is a positive instance (i.e. conforms to the correct rule), then

severity of the instance I is the number of hypothesis in the set SH to which I does

not conform.

• If the instance I is a negative instance (i.e. does not conform to the correct rule),

then severity of the instance I is the number of hypothesis in the set SH to which

I conforms.

When she performed Mann Whitney U Test to find difference between test severity

values of participant who discovered the correct rule and those of who could not, she did

not observe any significant difference. Therefore, she concluded that a falsifying strategy

and high severity values is not enough to discover the correct rule. Hence, according to

Poletiek [2, 48] (and also McDonald [49]) a reasonable strategy to discover the correct

rule is start with giving a low level “severe” instance and progressively exclude more

alternative hypothesis rather than maximizing the severity per given instance.

22

Figure 2.5. The logical structure of Wason’s selection task [2].

2.1.5. Wason’s Selection Task

In the original task, the subject is given four cards which are placed on a table

showing respectively D, K, 3, 7. Each card has a letter (either D or K) on one side and

a number (either 3 or 7) on its other side. Given the rule (hypothesis): “Every card that

has a D on one side has a 3 on the other side”, the subject is asked which card(s) must

be turned over to find out whether the rule is true or false.

Figure 2.5 explains the logical structure of Wason’s Selection Task and how it simu-

lates hypothesis testing behavior. Given a hypothesis (rule), we make tests/experiments.

Based on the results of our tests/experiments, we arrive to a conclusion about the validity

of that hypothesis. In the setting of “Wason’s Selection Task”, we find “Card selection”

corresponds to making some experiments/tests each of which has two possible results

(i.e. For each card there are two possibilities about what the letter/integer might be on

its invisible side).

The hypothesis can be translated into the logical implication of the form “If P, then

Q” (P ⇒ Q), whereas each test is the selection of one of the cards (P, not-P, Q, not-Q).

Wason interprets selection of the cards D and 3 (i.e. P and Q) as a choice of a verifier,

whereas the subject is defined to be a falsifier if he/she also selects the cards D and 7

(i.e. P and not-Q). Wason’s selection task measures the capability of the subject to use

23

two rules of logic, as well as his/her tendency to refute the given statement. The first

rule is modus ponens:

P, P ⇒ Q

Q
(2.3)

Given a statement S of the form P ⇒ Q (i.e.“If P, then Q”), according to modus ponens

if statement S is true and P is true (i.e. there is a card with letter D on its visible side),

then Q must also be true. This implies that we must turn over the card which has D on

its visible side. In order to prove or disprove statement S, we must also try to falsify it,

which is possible by modus tollens (In the equation below ¬P stands for not-P, while ¬Q

stands for not-Q).

¬Q,¬Q ⇒ ¬P
¬P

(2.4)

The statement P ⇒ Q is equivalent to ¬Q ⇒ ¬P . According to modus tollens, we must

turn over the card which does not have a 3 on its visible side (i.e. card which has a 7 on

its visible side) to see if it has a K on its other side (i.e. statement S is true) or it has a

D on its other side (i.e. statement S is false).

2.1.5.1. Matching Bias. Matching bias may lead subjects to select cards on the basis

of a simple judgment of relevance. In other words, the selection of the cards D and 3

can also result due to matching of the letter D and number 3 in the stated hypothesis.

Determining whether the card selection is made by matching or employing logical rules

requires use of rules with negated components as shown in Table 2.1. Evans and Lynch

[50] used the negated version of the selection task (i.e. if P, then not-Q) as well as the

original task (i.e. if P, then Q). In this experimental study, the subjects chose P and

Q cards, instead of P and not-Q cards. Evans and Lynch interpreted subjects’ behavior

as either being falsifying or matching. However, if a subject, who has chosen P and

Q cards in the standard version, also selects P and Q cards in the negated version,

such behavior can be explained only by matching bias. Otherwise, subject’s verifying

behavior accompanied by falsifying behavior would not make sense. Table 2.2 shows, all

four negated components that should be used to predict matching bias. Reich and Ruth

24

Table 2.1. Prediction of selection of cards according to different response tendencies.

Tendency P ⇒ Q P ⇒ ¬Q ¬P ⇒ Q ¬P ⇒ ¬Q

Matcher P, Q P, Q P, Q P, Q

Verifier P, Q P, ¬Q ¬P, Q ¬P, ¬Q

Falsifier P, ¬Q P, Q ¬P, ¬Q ¬P, Q

Table 2.2. All four negated versions of Wason’s Selection Task statements.

Rule Logical Statement

If there is a D on one side, then there is a 3 on the other side. P ⇒ Q

If there is a D on one side, then there is not a 3 on the other side. P ⇒ ¬Q

If there is not a D on one side, then there is a 3 on the other side. ¬P ⇒ Q

If there is not a D on one side, then there is not a 3 on the other side. ¬P ⇒ ¬Q

[51] used all negated versions of Wason’s Selection Task as well as the original task itself,

in order to determine response tendencies. The method of Reich and Ruth is explained

in Table 2.3.

This method of determining response tendencies is advantageous, as it does not

confound strategies that might have contributed to a particular selection. However, it

neglects a large proportion of data provided by the subjects. On the other hand, it gives

a general view about the subjects’ responses and it is the only classification strategy we

came across in the existing psychology literature. For these reasons, we used the method

of Reich and Ruth and we labeled subjects, whom we could not classify, as None.

Table 2.3. Response tendencies according to Reich and Ruth’s Categorization.

Rule Card Tendency

If there is a D on one side, then there is a 3 on the other side. 7 Falsifier

If there is a D on one side, then there is not a 3 on the other side. 7 Verifier

If there is not a D on one side, then there is a 3 on the other side. D Matcher

If there is not a D on one side, then there is a 3 on the other side. 7 Falsifier

If there is not a D on one side, then there is not a 3 on the other side. D Matcher

If there is not a D on one side, then there is not a 3 on the other side. 7 Verifier

25

2.1.5.2. Realistic Content Replications of Wason’s Selection Task. Wason and Shapiro

[52] performed the first thematic content replication of Wason’s selection task. In this

study, the rule with thematic content was: “Every time I go to Manchester, I travel by

train”. On the exhibited faces of two of the four cards, destination names “Manchester”

and “Leeds” were written; whereas on the remaining two one could see the the modes

of transportation, namely “car” and “train”. The results showed that more subjects

succeeded in this thematic variant compared to the original Wason’s selection task. Griggs

and Cox [53] used the hypothesis “If a person drinks beer, he must be older than 19.”

This hypothesis was in the form of a rule that one must obey. Deontic nature of this

hypothesis facilitated more correct results.

In the literature, there are various studies which aim to explain the facilitating

effect of thematic content in Wason’s selection task [53–56]. Among these, is the memory

cueing, which has been elaborated by Griggs and Cox [53]. Griggs and Cox explain

memory cueing as the production of cues by memory to solve the selection task correctly

while pure logical reasoning is bypassed. However, various studies showed that memory

cuing cannot be the sufficient reason for the facilitation effect. In [54], the experiment

subjects were placed in the situation of a store manager and they were given four receipts

to check whether the following rule is violated or not:“Receipts in excess of 30 dollars must

have the signature of the department manager on the back”. Compared to the abstract

selection task, there was a facilitation effect which obviously cannot be explained by

memory cueing as none of the test subject has ever had an experience as a store manager.

In order to explain such results, Cheng and Holyoak [57] proposed the pragmatic reasoning

effect. Poletiek [2] makes a comparison of reasoning patterns with memory cueing and

logical reasoning as follows:

A reasoning pattern is more abstract than a specific knowledge resident in mem-
ory and more specific and concrete than rules of logical reasoning.

Cheng and Holyoak [57] indicate permission pattern as the fundamental pattern

of selection tasks with facilitating contents. The beer drinking problem of Griggs and

Cox [53] can an example where permission pattern is employed for the correct answer.

Cosmides [55] proposed social contract theory as an explanation to the facilitating effect in

Wason’s selection task with thematic content. Cosmides state that conditional hypotheses

26

comply with the following basic rule: “If you profit (in a social contract), you must pay

the costs”. According to Cosmides, cheating detection mechanism is triggered during the

solution of selection tasks with thematic content. On the other hand, Manktelow and

Over [56] indicate that facilitation effect in every variant of Wason’s selection task with

thematic content cannot be explained by social contract theory. When propositions are

conditional obligation such as “If you clean up blood, you must wear rubber gloves”, then

facilitation occurs but without invoking social contracts. In this case violation is related

with high costs.

T
ab

le
2.
4.

E
x
am

p
le
s
of

d
iff
er
en
t
co
n
te
n
ts

u
se
d
in

th
e
se
le
ct
io
n
ta
sk
.

N
a
m
e

O
ri
g
in
a
l
S
tu

d
y

E
x
a
m
p
le

R
u
le

P
os
ta
l
ru
le

J
oh

n
so
n
-L
ai
rd

et
a
l.

(1
97

2)
[5
8
]

If
th
e
le
tt
er

is
se
a
le
d
,
th
en

it
h
a
s
a
5
0
li
re

st
a
m
p
o
n
it
.

F
o
o
d
an

d
d
ri
n
k
s

M
an

k
te
lo
w

an
d
E
va
n
s
(1
97

9
)
[5
9
]

If
I
ea
t
h
a
d
d
o
ck
,
th
en

I
d
ri
n
k
g
in
.

S
to
re

m
an

ag
er

p
ro
b
le
m

D
’A

n
ra
d
e
in

(1
98
3)

[6
0]

If
a
p
u
rc
h
a
se

ex
ce
ed
s
3
0
d
o
ll
a
rs

,
th
en

th
e
re
ce
ip
t
m
u
st

b
e
si
g
n
ed

b
y

th
e
d
ep
a
rt
m
en
ta
l
m
a
n
a
g
er
.

D
ri
n
k
in
g
ag
e
ru
le

G
ri
gg
s
an

d
C
ox

(1
98
2)

[5
3]

If
a
p
er
so
n
is

d
ri
n
k
in
g
b
ee
r,

th
en

th
a
t
p
er
so
n
m
u
st

b
e
ov
er

1
9
y
ea
rs

o
f
a
g
e.

C
lo
th
in
g
ag
e
ru
le

C
ox

an
d
G
ri
gg
s
(1
98
2)

[6
1]

If
a
p
er
so
n
is

w
ea
ri
n
g
b
lu
e,

th
en

th
a
t
p
er
so
n
m
u
st

b
e
ov
er

1
9
y
ea
rs

o
f
a
g
e.

A
b
st
ra
ct

p
er
m
is
si
on

ru
le

C
h
en
g
an

d
H
ol
y
oa
k
(1
98

5)
[5
7
]

If
o
n
e
is

to
ta
k
e
a
ct
io
n
“
A
”
,
th
en

o
n
e
m
u
st

fi
rs
t
sa
ti
sf
y
p
re
co
n
d
it
io
n
“
P
”
.

S
ta
n
d
ar
d
so
ci
al

co
n
tr
ac
t

C
os
m
id
es

(1
98
9)

[5
5]

If
a
m
a
n
ea
ts

ca
ss
av
a
ro
o
t,

th
en

h
e
m
u
st

h
av
e
a
ta
tt
o
o
o
n
h
is

fa
ce
.

D
eo
n
ti
c
co
n
d
it
io
n
al
s

M
an

k
te
lo
w

an
d
O
v
er

(1
99

0)
[5
6
]

(M
o
th
er

to
so
n
):

“
If

y
o
u
ti
d
y
y
o
u
r
ro
o
m
,
th
en

y
o
u
m
ay

g
o
o
u
t
to

p
la
y.
”

P
re
ca
u
ti
on

ar
y
ru
le

M
an

k
te
lo
w

an
d
O
v
er

(1
99

0)
[5
6
]

If
y
o
u
cl
ea
n
u
p
b
lo
o
d
,
y
o
u
m
u
st

w
ea
r
ru
b
b
er

g
lo
ve
s.

T
ow

n
s
an

d
tr
an

sp
or
t

W
as
on

an
d
S
h
ap

ir
o
(1
97

1)
[5
2
]

E
ve
ry

ti
m
e
I
g
o
to

M
a
n
ch
es
te
r,

I
tr
av
el

b
y
tr
a
in
.

28

2.2. Confirmation Bias in Software Development and Testing

During all levels of testing the goal must be to make the code fail, otherwise defects

shall be overlooked leading to an increase in software defect density. Software developers

must also consider test scenarios that have the potential to fail their code during unit

testing, so that less defects propagate to the testing phase. As the number of defects

which propagate to the testing phase increases, it becomes very likely that more defects

are overlooked before the software is released due to the limited time reserved for testing.

Therefore, the number of post-release defects increases which in turn becomes a risk

for producing high quality software. However, as mentioned previously it is not enough

for a developer to have a tendency to make the code fail. The number of test scenarios

which can be used to test the code can be infinitely many. Moreover, time for unit testing

before the code freeze date (i.e. the time when development of a software release ends and

testing phase for that release starts) is limited. The unit testing performed by developers

is analogous to Wason’s Rule Discovery Task, because firstly developer is supposed to

make his/her own code fail; whereas participants need to refute the alternative hypotheses

in their own mind during Rule Discovery Task. Looking at the overall format of Wason’s

Rule Discovery Task, we can say that the procedure followed by the participant resembles

black box testing.

Different from Wason’s Rule Discovery Task, in Selection Task, participant is given

a statement he/she must try to refute to prove its validity regarding four cards presented

to him/her, each with only one side visible. The statement does not belong to the

participant himself/herself. From this point of view, Wason’s Selection Task is analogous

to testing software after code freeze date when testers test codes developed by developers

(i.e. testers test someone else’s code). Unlike unit testing performed by developers, tester

needs to get an idea about how the software piece implemented by someone else works.

Therefore, it is more appropriate to start with test scenarios that make the code work.

Progressively test scenarios which are more likely to make the code fail may be tried.

Such a strategic testing approach is analogous to the hypothesis testing strategy that

helps to discover the correct rule in Wason’s Rule Discovery Task.

On the other hand, “eliminative” approach that was suggested by Wason is required

29

during all types of testing. As stated by Popper, we cannot verify a universal statement

by limited number of observations, yet falsify it. In our case, this corresponds to testing

codes in an attempt to see them function properly using limited number of test cases.

Time is limited to complete all the testing in order to release the software. Moreover, there

is usually infinitely manu test scenarios. For this reason, it is crucial to find test scenarios

which are more likely to fail the code. Moreover, we must cover the test scenario space

in a way such that we do not always pick scenarios which leads to frequently detecting

the same defect. In other words we must avoid “enumerative” testing. Only covering

the space of test scenarios in a strategic manner may help us to detect as much defect as

possible.

Finally, using logical inference rules modus ponens and modus tollens may be useful

during software testing, as it helps to select the correct cards during Wason’s Selection

Task. We can explain our claim by the question below which is an adaptation of Wason’s

Selection Task to software engineering domain by Stacy and McMillian [33]. In this

question, we are given the following hypothesis: If an instance’s class is Controller, then

it has been initialized.. The remaining of the original question was as follows:

Which of the following(s) need(s) investigation ?

i. An instance of Controller that may or may not be initialized.

ii. An instance of a class other than Controller that may or may not be initialized.

iii. An initialized instance whose class is unknown.

iv. An uninitialized instance whose class is unknown.

The correct answer of the question is “i and iv”.Therefore, knowledge of modus

ponens and modus tollens may help us to detect defects especially during white box

testing.

2.3. Research Questions

In this section, we state our research questions. In the rest of this thesis, we will

perform several experiments in order to obtain empirical evidence to find the answers of

these questions.

30

2.3.1. What are the factors affecting confirmation bias levels in software de-

velopment domain?

In order to answer this question, we make a list of factors which have the potential

to affect confirmation bias levels of software developers. We focus on two main factors

which are experience, and reasoning and hypothesis testing skills respectively. We also

analyze the effect of company size, and the effect of roles in the company (i.e. developer,

tester, analyst, etc.). We perform statistical tests to find out whether there is a signif-

icant correlation between each of these factors with confirmation bias levels of software

developers, testers and analysts.

The goal of this analysis is to gain insight about confirmation bias metrics. More-

over, knowing which factors affect confirmation bias may help us to find methods to

circumvent the negative effects of confirmation bias. In this way some de-biasing strate-

gies may be developed.

2.3.2. How does confirmation bias affect software developers and testers?

We use total number of post release defects which originate from part of software

tested by each tester T as the performance measure of that tester. We perform a correla-

tion analysis to find out if there is a correlation. Moreover, using confirmation bias metrics

of testers as independent variables and performance measure od testers as response vari-

able, we perform a regression analysis. A similar regression analysis is performed for

software developers.

Although there are some hypotheses about the effect of confirmation bias on soft-

ware tester and developer performance, we needed some empirical results.We needed to

make this analysis to have some empirical evidence about the potential of confirmation

bias metrics to be used to learn defect predictors so that we can overcome performance

ceiling of defect predictors.

31

2.3.3. How can we build defect predictors with comparable prediction per-

formance by using only confirmation bias metrics as input data?

In order to answer this research question, we built defect predictors using all com-

binations of static code, churn and confirmation bias metrics. The results of our experi-

ments showed that comparable prediction performance results can be obtained using only

confirmation bias metrics to build defect predictors. This result also has a very important

implication regarding the use of people metrics to overcome performance ceiling of defect

predictors. Although confirmation bias is a very small aspect of people, obtaining such

promising prediction performance results implies that researchers must focus on people

aspects to build defect predictors.

2.3.4. How can we build defect predictors with comparable prediction per-

formance using incomplete confirmation bias metric data as input?

Unlike static code and churn metrics, which are automatically collected, it requires

more effort to collect confirmation bias metrics. Moreover, as the lifetime of the software

being developed increases some developers might leave the software company so that

it would be impossible to collect their confirmation metrics. Eliminating entries with

missing confirmation bias metrics would result in building defect predictors which can

make prediction only for a specific portion of the software product. This portion might

even be very low depending on the number of no longer existing developers who once

created/updated most of the files of the software product which is still being developed.

Hence, we searched for an alternative solution where we can impute the missing data

and use the imputed data consisting of only confirmation bias metrics to learn defect

predictors. The results we obtained were promising which would help us to deal with

missing confirmation bias metric values. In addition, the employed methodology can be

used to make defect prediction in large development groups spending as much resources

as possible to collect confirmation bias metrics. After having collected confirmation bias

metrics from a certain amount of developers, the confirmation bias metrics related to rest

of the developers in the project group can be treated as missing data.

32

3. METHODOLOGY

This chapter explains in detail the methodology used to measure/quantify confir-

mation bias levels of software developers/testers, the statistical methods used to analyze

the effects of some factors on confirmation bias as well as the effect of confirmation bias

on software developer and tester performance. In addition, this chapter contains infor-

mation about Naive Bayes Algorithm used to build defect predictors and Roweis’ EM

Algorithm for PCA to impute missing confirmation bias metrics.

3.1. Measurement/Quantification of Confirmation Bias

The overall methodology to define confirmation bias metrics and extract metric

values is shown in Figure 3.1. Based on our extensive survey about confirmation bias,

we formed an initial confirmation bias metric set. We kept on modifying our confirma-

tion bias metrics set, while we prepared our written and interactive tests. Moreover,

the content of the written tests were also determined based on the some confirmation

bias metrics we decided to include into our metric pool. Hence, we can say that there

was feedback from the outcomes of confirmation bias metric set formation phase to test

preparation phase as well as the other way round (i.e. feedback from test preparation

phase to metric phase formation phase). During conducting our interactive test, our

observations about participants’ hypothesis testing behavior to find the correct rule led

us to define metrics to monitor hypothesis testing strategies. In addition, while we were

evaluating both written and interactive test outcomes, we were able to update our metric

pool. The final content of the metric set, we used in our experiments is given in Table

3.2 and 3.3.

3.1.1. Preparation of Confirmation Bias Tests

Interactive test is Wason’s Rule Discovery Task itself, whereas written test is based

on Wason’s Selection Task. The details about both written and interactive tests are given

in the following subsections.

33

Figure 3.1. Methodology used to measure/quantify confirmation bias metrics.

3.1.1.1. Written Tests. There are four different types of questions in the written test

which are abstract, abstract-thematic and thematic questions as well as questions with

software development/testing theme. Written test consists of two parts. In the first

part, abstract and thematic questions are presented in an order such that an abstract

question is followed by a thematic question and vice versa. In addition to abstract

and thematic questions,the first part also contains an abstract-thematic question. The

second part also consists of thematic questions, however these questions have software

development/testing theme.

Abstract questions require pure logical reasoning to be answered correctly. In our

test, there are eight abstract questions. One of the questions is the original question in

Wason’s Selection Task [1]. In addition to Wason’s original question, there are 3 questions

where the statement that is to be either proved or disproved is of the form “If P, the Q”

(P ⇒ Q). Moreover, in order to identify the tendency of the participant according to

Reich and Ruth’s categorization (i.e. whether the participant is falsifier, verifier, matcher

or none) all three negated versions of the original question in Wason’s Selection Task are

also included in the written test.

• If P, then not Q: P ⇒ ¬Q

• If not P, then Q: ¬P ⇒ Q

• If not P, then not Q: ¬P ⇒ ¬Q

34

As mentioned previously, there is only one abstract-thematic question and it is in

the first part of the written test. Abstract-thematic questions seem to have theme based

on daily life, however they can be answered correctly only based on logical reasoning.

Unlike abstract and abstract-thematic questions, it is possible to answer thematic

questions without pure logical reasoning. The first part of the written test contains seven

thematic questions. These questions aim to stimulate various mechanisms/phenomena

that people can employ to answer thematic questions rather than pure logical reason-

ing. Among these mechanisms/phenomena are daily life experiences, memory cueing,

precautionary effect, cheating detection mechanism from Cosmides’ social contract the-

ory. While preparing thematic questions, we consulted related literature (refer to Table

3.1). One of the questions is the famous “Drinking Age Problem” by Griggs and Cox

[53]. There is also one “Precautionary Rule” very similar to the one by Manktelow and

Evans in [59]. Two different versions of a single question based on Cosmides’ original

“Social Contract” rule [55] are included in the thematic test. In both of these versions,

the participants are asked to prove/disprove the following statement:

“If an employee gets a pension, that employee must have worked at least ten years.”.

In the first version, the participant is told that he/she must assume he/she is an employee;

whereas in the second version we try to make the participant think from employer ’s

point of view. If a participant answers these two questions based on cheating detection

mechanism according to Cosmides’ Social Contract Theory, then he/she cannot give the

same answer to them. On the other hand, if the participant answers these two questions

using pure abstract reasoning he/she gives the same answer to both questions which is the

correct one. One can give the correct answer to “Drinking Age Problem” by Griggs and

Cox by employing the cheating detection mechanism rather than pure logical reasoning.

There is one more question which also stimulates the cheating detection mechanism and

this makes four such questions in total.

Finally, we also included an adaptation of the “Towns and Transport” rule byWason

and Shapiro [52]. In the written tests which we conducted to Turkish participants, the

original statement to be proved/disproved “Every time I go to Manchester, I travel by

train” is replaced by the statement “Every time I go to Ankara, I travel by train” in

35

Table 3.1. Examples of different contents used in the selection task.

Question Type # of Questions

Written Test: Part I

Abstract 7

Abstract+Thematic 1

Thematic 7

Written Test: Part II

Software Development/Testing 8

TOTAL 23

order to facilitate the familiarity of the participants based on their daily life experiences

and memory cueing.

The questions in the second part of the written test were also thematic questions

where pure logical reasoning can be bypassed by experience in software development and

testing. Yet, the answers to these questions can be correct. While preparing this part of

the written test, one of the questions is taken from [33]. This question was mentioned in

Section 2.2 of this thesis, whereas the rest of the questions were prepared by us.

3.1.2. Definition of Confirmation Bias Metrics

In Table 3.2 and Table 3.3, the final set of confirmation bias metrics are shown.

These metrics can be categorized under the following titles.

3.1.2.1. Performance Metrics. Performance metrics are concerned with the final results

of the tests. In interactive tests, final results consist of whether subject discovers the

correct rule or aborts the test (INDABORT), total number of rule announcements made

by the subject (NA) and total time it takes for the subject to complete the test with

or without success (TI). Performance metrics for written tests consist of test scores as

shown in Table 3.2 and time (in minutes) it takes for the subject to complete the tests

(TSW , TTh+ABS).

36

Table 3.2. List of confirmation bias metrics (Performance Metrics).

Metric Explanation Test Type Data Type

STh Score in thematic questions Written Categorical

SABS Score in abstract questions Written Categorical

SSW Score in questions with software theme Written Categorical

TTh+ABS Time it takes to solve general test (in minutes) Written Continuous

TI Interactive test duration (in minutes) Interactive Continuous

NA Total number of rule announcements Interactive Categorical

INDABORT Total number of rule announcements Interactive Categorical

3.1.2.2. Metrics to Monitor Hypothesis Testing. These metrics are only extracted for

interactive test to monitor procedure followed by the subject and to find out whether

subject follows a sensible hypothesis testing strategy or not. Behaviors such as rule or

reason repetition are indicators of the fact that the subject is stuck with a single hypoth-

esis. Within the context of software development and unit testing, this is analogous to

testing the code for similar scenarios and similar input/output combinations. Immediate

rule announcement may also be an indicator of the lack of hypothesis testing strategies.

A developer who makes immediate announcements during the interactive test, is most

likely not to take into account the results of his/her previous unit test scenarios be-

fore deciding on the scope of his/her next test scenario. Eliminative/enumerative index

(Indel/en) was introduced by Wason to evaluate the results of his rule discovery task in

order to determine the proportion of the total number of instances that are incompatible

with reasons to those that are compatible. It is desirable that eliminative/ enumerative

index is greater that one, and the higher it is, the higher the tendency of the subject

to refute his/her own hypotheses. The original elimination/enumeration index and its

variations defined by us are listed in Table 3.3. Frequency of negative instances was also

defined by Wason to interpret the results of this rule discovery experiment in addition

to the elimination/enumeration index [1]. He had found high correlation between elimi-

nation/enumeration index values and negative instance frequencies. However, these two

are not entirely the same. Therefore the metric list in Table 3.3 also includes Wason’s

negative instance frequency as well as the variations of both eliminative/enmerative index

and negative instance frequency which have been defined by us.

37

Table 3.3. List of confirmation bias metrics (Metrics to Monitor Hypothesis Testing

Procedure).

Rule/Reason Repetition

Metric Explanation Test Type Data Type

avgFR
R Average rule repetition frequency Interactive Continuous

avgFRs
R Average reason repetition frequency Interactive Continuous

instP+C Positive and compatible instances given after Interactive Continuous

incorrect rule announcements

instP+IC Positive and incompatible instances given after Interactive Continuous

incorrect rule announcements

instN+C Negative and compatible instances given after Interactive Continuous

incorrect rule announcements

instN+IC Negative and incompatible instances given after Interactive Continuous

incorrect rule announcements

Immediate Rule Announcements

Metric Explanation Test Type Data Type

avgF IR Average immediate rule announcement frequency Interactive Continuous

avgLIR Average length of immediate rule announcement Interactive Continuous

Eliminative/Enumerative Behavior

Metric Explanation Test Type Data Type

Indel/en Wason’s Eliminative/enumerative index Interactive Continuous

(average, minimum, maximum are also available)

Frequency of Negative Instances

Metric Explanation Test Type Data Type

Fneg Frequency of negative instances Interactive Continuous

(average, minimum, maximum are also available)

Subject’s Method to Test Hypotheses

R/T Rules announced per unit time Interactive Continuous

Rs/T Reasons announced per unit time Interactive Continuous

UR/T Unique rules announced per unit time Interactive Continuous

URs/T Unique reasons announced per unit time Interactive Continuous

38

3.1.3. Conducting Confirmation Bias Tests

In order to collect confirmation bias metrics in a controlled manner, we conducted

confirmation bias tests under a predefined standard procedure. The following information

is valid for both written and interactive tests:

• The environment where both tests were conducted was isolated from noise having

adequate lighting.

• Both Turkish and English versions of the tests were prepared. Participants took

Turkish version of the tests if their native language is Turkish. Participants from

Canada took English versions of the tests.

• Participants were informed about the fact that this test shall not be used in perfor-

mance evaluations and their identity shall be kept anonymous. The goal was not

to exert pressure on participants which could affect participants’ performance.

• Moreover, participants were told that there was no time constraint to complete the

written test in order not exert time pressure.

• After the completion of both tests, participants were warned not to inform other

software developers and testers in their company about the content of the tests.

Below we explain the standard procedures followed for both written and interactive

tests.

3.1.3.1. Written Tests. In Wason’s studies related to his Selection Task, participants

were allowed to inspect real packs of cards, before the experimenter secretly selected four

cards from the pack and placed then on a table so that only a single side of each card

is visible. However, most recent studies in this field rely on the description of the cards,

and pictorial representations of cards’ facing sides either on pencil and paper or on a

computer screen. These procedural differences have made very little differences in the

obtained results [62]. Therefore, we used pen and pencil approach to apply the test which

consists of variations of Wason’s Selection Task as well as its original form. Written

test consists of two booklets. The first booklet (i.e. General Test) included abstract,

thematic-abstract and thematic questions, while the second booklet (i.e. Software Test)

consisted of thematic questions with software development/testing theme. The following

39

standard procedure was followed while conducting written tests:

• Each group of participants, corresponding to each data set listed in Chapter 4, took

written tests altogether in a meeting/seminar room.

• Before starting the tests, the participants were told to fill in the form where personal

information such as gender, age, education and experience in software development

and/or testing were asked.

• Firstly, General Test was given to participants so that they started the test simul-

taneously.

• In order to measure time:

i. We recorded each participant’s completion time of the General Test, once he/she

completed and submitted the test.

ii. Starting time for the General Test was same for all the participants.

iii. After a participant completed and submitted General Test, he/she was given

Software Test. Starting time for this test was also recorded, once the subject

started.

iv. Similar to General Test, completion time of Software Test was also recorded

once the participant submitted the test he/she completed.

3.1.3.2. Interactive Tests.

• Each participant took interactive test separately and for each participant there was

one experimenter to conduct the test.

• Participants were asked whether they give permission to record their voices during

the interactive test. The goal of sound recording was to catch every detail about

the way a participant thinks to discover the correct rule. However, voice recording

was made only if the participant gave us the permission.

• Before the test, the original text in Wason’s Rule discovery Task, was read to the

participant:

You will be given three numbers which conform to a simple rule that I have
in mind. This rule is concerned with a relation between any three numbers
and not with their absolute magnitude, i.e. it is not a rule like all numbers
above (or below) 50, etc.

Your aim is to discover this rule by writing down sets of three numbers,
together with reasons for your choice of them After you have written down

40

each set, I shall tell you whether the numbers conform to the rule or not, and
you can make a note of this outcome on the record sheet provided. There is
no time limit but you should try to discover this rule by citing minimum set
of numbers.

Remember that your aim is not simply to find numbers which conform to
the rule, but to discover the rule itself. when you feel highly confident that
you have discovered it and not before, you are to write it down and tell me
what it is. Have you any questions?

3.2. Analysis of Factors Affecting Confirmation Bias

In this section we explain methods and techniques we employed during the analysis

of factors affecting confirmation bias.

3.2.1. Test Severity Calculation

In order to calculate Test Severity (i.e. severity of each instance) for each partici-

pant, we used the method proposed by Poletiek [48]. The details about this method were

given in Section 2.1.4.3, where we explained Popper’s definition about the test severity.

In Wason’s Selection Task, test severity corresponds to the severity of a given instance.

Poletiek’s method was a way to evaluate severity of each instance given by a partici-

pant during the experiment she conducted. Her experiment was similar to Wason’s Rule

discovery Task. However the initial instance given to the participant was “2-7-6” and

she wanted the participant to the discover the rule “even-uneven-even numbers”. We

replicated her method for our interactive test which is based on Wason’s Selection Task.

We formed a set of plausible alternative rules which are listed in Table 3.4, 3.5, 3.6 and

3.7. This list is a collection of alternative hypotheses which were gathered during in-

teractive tests we conducted to active/inactive software developers/testers from various

companies/institutions in two different countries. Details about data sets can be seen in

Chapter 4.

T
ab

le
3.
4.

S
et

of
p
la
u
si
b
le

al
te
rn
at
iv
e
h
y
p
ot
h
es
is
to

b
e
u
se
d
in

te
st

se
ve
ri
ty

ca
lc
u
la
ti
on

s:
P
ar
t
I.

N
o
ta

ti
o
n

E
x
p
la
n
a
ti
o
n

1
a
+

b
=

c
S
u
m

o
f
th
e
1s

t
a
n
d
2n

d
n
u
m
b
er

is
eq
u
a
l
to

th
e
3r

d
n
u
m
b
er

2
a
<

b
<

c
an

d
a
+

b
=

c
N
u
m
b
er
s
a
re

in
a
sc
en
d
in
g
o
rd
er

a
n
d
su
m

o
f
th
e
1s

t
a
n
d
2n

d
n
u
m
b
er

is

eq
u
a
l
to

th
e
3
r
d
n
u
m
b
er

3
a
<

b
<

c
an

d
b
−

a
=

c
−

b
N
u
m
b
er
s
a
re

in
a
sc
en
d
in
g
o
rd
er

w
it
h
co
n
st
a
n
t
in
cr
em

en
ts

4
c/
(b

−
a
)
=

k
an

d
k
∈
Z

3r
d
n
u
m
b
er

is
d
iv
is
ib
le

b
y
th
e
d
iff
er
en
ce

b
et
w
ee
n
th
e
2n

d
a
n
d
1s

t
n
u
m
b
er

5
b
−

a
=

c
−

b
=

2
N
u
m
b
er
s
a
re

in
a
sc
en
d
in
g
o
rd
er

w
it
h
co
n
st
a
n
t
in
cr
em

en
ts

o
f
2

6
a
<

b
<

c
an

d
a
+

b
=

c
an

d
b
=

2
∗
a

N
u
m
b
er
s
a
re

in
a
sc
en
d
in
g
o
rd
er

a
n
d
2n

d
n
u
m
b
er

is
tw

ic
e
th
e
1
st

n
u
m
b
er

a
n
d
3r

d
n
u
m
b
er

is
th
re
e
ti
m
es

th
e
1
st

n
u
m
b
er

7
c
>

a
an

d
c
>

b
3r

d
n
u
m
b
er

is
g
re
a
te
r
th
a
n
1s

t
a
n
d
2n

d
n
u
m
b
er
s

8
c
≥

a
an

d
c
≥

b
3r

d
n
u
m
b
er

is
g
re
a
te
r
th
a
n
o
r
eq
u
a
l
to

1s
t
a
n
d
2n

d
n
u
m
b
er
s

9
a
=

2
∗
n
an

d
b
=

2
∗
(n

+
1)

an
d
c
=

2
∗
(n

+
2)

an
d
n
∈
Z

+
E
v
en

p
o
si
ti
v
e
in
te
g
er
s
a
re

in
a
sc
en
d
in
g
o
rd
er

w
it
h
co
n
st
a
n
t
in
cr
em

en
ts

o
f
2

10
a
+

c
=

2
∗
b

S
u
m

o
f
th
e
1s

t
a
n
d
3r

d
n
u
m
b
er
s
is

eq
u
a
l
to

tw
ic
e
th
e
2n

d
n
u
m
b
er

11
(a

+
b
+

c)
/3

=
k
an

d
k
∈
Z

S
u
m

o
f
th
re
e
n
u
m
b
er
s
is

d
iv
is
ib
le

b
y
3

12
a
<

b
<

c
an

d
(a

+
b
+
c)
/3

=
k
an

d
a
,b
,c
,k

∈
Z

In
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

su
ch

th
a
t
su
m

o
f
th
re
e
n
u
m
b
er
s
is

d
iv
is
ib
le

b
y
3

13
b
=

a
+

x
an

d
c
=

b
+

y
,
y
≥

x
,
x
,y

∈
Z

+
A
sc
en
d
in
g
n
u
m
b
er
s
w
it
h
in
te
g
er

in
cr
em

en
ts

a
n
d
d
iff
er
en
ce

b
et
w
ee
n
3
r
d

a
n
d
2n

d
n
u
m
b
er

is
g
re
a
te
r
th
a
n
o
r
eq
u
a
l
to

th
e
d
iff
er
en
ce

b
et
w
ee
n
2n

d

a
n
d
1s

t
n
u
m
b
er

T
ab

le
3.
5.

S
et

of
p
la
u
si
b
le

al
te
rn
at
iv
e
h
y
p
ot
h
es
is
to

b
e
u
se
d
in

te
st

se
ve
ri
ty

ca
lc
u
la
ti
on

s:
P
ar
t
II
.

N
o
ta

ti
o
n

E
x
p
la
n
a
ti
o
n

14
a
,b
,c

∈
Z

an
d
b
>

a
T
h
re
e
in
te
g
er
s
su
ch

th
a
t
2
n
d
in
te
g
er

is
g
re
a
te
r
th
a
n
1s

t
in
te
g
er

15
(a
,b
,c
)
an

d
c
>

a
T
h
re
e
n
u
m
b
er
s
su
ch

th
a
t
3r

d
n
u
m
b
er

is
g
re
a
te
r
th
a
n
th
e
1s

t

16
c
−

a
=

k
an

d
k
m
od

2
=

2
D
iff
er
en
ce

b
et
w
ee
n
th
e
3
r
d
a
n
d
1s

t
n
u
m
b
er

is
ev
en

17
G
C
D
(a
,b
,c
)
=

2
G
re
a
te
st

C
o
m
m
o
n
D
iv
is
o
r
o
f
th
re
e
n
u
m
b
er
s
is

2

18
(a

+
1
,b

+
1
,c

+
1)

ar
e
al
l
p
ri
m
e

1
g
re
a
te
r
th
a
n
ea
ch

in
te
g
er

is
a
p
ri
m
e
n
u
m
b
er

19
(a
,b
,c
)
ar
e
al
l
re
al

n
u
m
b
er
s

T
h
re
e
re
a
l
n
u
m
b
er
s

20
a
<

b
<

c
an

d
a
,b
,c

∈
R

+
P
o
si
ti
ve

re
a
l
n
u
m
b
er
s
in

a
sc
en
d
in
g
o
rd
er

21
a
<

b
<

c
an

d
a
,b
,c

∈
Z

+
P
o
si
ti
ve

in
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

22
(a

+
b
+

c)
m
od

2
=

0
an

d
a
,b
,c

∈
Z

T
h
re
e
in
te
g
er
s
w
h
o
se

su
m

is
d
iv
is
ib
le

b
y
2

23
(a

+
b
+

c)
m
od

2
an

d
a
,b
,c

∈
Z

+
T
h
re
e
p
o
si
ti
v
e
in
te
g
er
s
w
h
o
se

su
m

is
d
iv
is
ib
le

b
y
2

24
a
,b
,c

∈
Z

an
d
a
̸=

b
̸=

c
T
h
re
e
u
n
iq
u
e
in
te
g
er
s

25
a
,b
,c

∈
Z

T
h
re
e
in
te
g
er
s

26
a
∗
b
−

a
=

c
3r

d
n
u
m
b
er

is
o
b
ta
in
ed

w
h
en

1s
t
is

su
b
tr
a
ct
ed

fr
o
m

p
ro
d
u
ct

o
f
th
e

1s
t
a
n
d
2n

d
n
u
m
b
er

27
a
∗
b
−

a
=

c
an

d
b
=

a
∗
a

3r
d
n
u
m
b
er

is
o
b
ta
in
ed

w
h
en

1s
t
is

su
b
tr
a
ct
ed

fr
o
m

p
ro
d
u
ct

o
f
th
e

1s
t
a
n
d
2n

d
n
u
m
b
er

a
n
d
sq
u
a
re

o
f
1s

t
n
u
m
b
er

is
2
n
d
n
u
m
b
er

28
a
∗
b
−

a
=

c
an

d
b
=

a
∗
a

3r
d
n
u
m
b
er

is
p
ro
d
u
ct

o
f
th
e
1s

t
n
u
m
b
er

w
it
h
th
e
av
er
a
g
e
o
f
th
e
1s

t

a
n
d
2n

d
n
u
m
b
er

29
a
=

2
∗
n
an

d
b
=

2
∗
(n

+
1)

an
d
c
=

2
∗
(n

+
2)

a
n
d
n
∈
Z

E
v
en

in
te
g
er
s
a
re

in
a
sc
en
d
in
g
o
rd
er

w
it
h
co
n
st
a
n
t
in
cr
em

en
ts

o
f
2

T
ab

le
3.
6.

S
et

of
p
la
u
si
b
le

al
te
rn
at
iv
e
h
y
p
ot
h
es
is
to

b
e
u
se
d
in

te
st

se
ve
ri
ty

ca
lc
u
la
ti
on

s:
P
ar
t
II
I.

N
o
ta

ti
o
n

E
x
p
la
n
a
ti
o
n

30
a
+

b
≥

c
S
u
m

o
f
th
e
1s

t
a
n
d
2n

d
n
u
m
b
er

is
g
re
a
te
r
th
a
n
o
r
eq
u
a
l
to

th
e
3r

d
n
u
m
b
er

31
a
,b
,c

∈
R

an
d
b
>

a
T
h
re
e
re
a
l
n
u
m
b
er
s
su
ch

th
a
t
2n

d
n
u
m
b
er

is
g
re
a
te
r

th
a
n
th
e
1s

t
n
u
m
b
er

32
a
,b
,c

∈
Z

an
d
a
<

b
<

c
an

d
(c
/
2)

+
1
=

b
T
h
re
e
in
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

su
ch

th
a
t
1
g
re
a
te
r

th
a
n
h
a
lf
o
f
th
e
3r

d
n
u
m
b
er

is
eq
u
a
l
to

th
e
2n

d
n
u
m
b
er

33
a
,b
,c

∈
Z

an
d
a
<

b
<

c
an

d
(b

=
a
+
2

T
h
re
e
in
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

su
ch

th
a
t
d
iff
er
en
ce

b
et
w
ee
n
th
e
2
n
d
a
n
d
1s

t
n
u
m
b
er

is
eq
u
a
l
to

2

34
a
,b
,c

∈
Z

an
d
a
<

b
<

c
an

d
b2

=
2
∗
(a

+
c)

T
h
re
e
in
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

su
ch

th
a
t
tw

ic
e
th
e

su
m

o
f
1
st

a
n
d
3r

d
n
u
m
b
er

is
eq
u
a
l
to

th
e
sq
u
a
re

o
f
th
e
2n

d
n
u
m
b
er

35
a
,b
,c

∈
Z

an
d
b2

=
2
∗
(a

+
c)

T
h
re
e
in
te
g
er
s
su
ch

th
a
t
tw

ic
e
th
e
su
m

o
f
1
st

a
n
d
3r

d

n
u
m
b
er

is
eq
u
a
l
to

th
e
sq
u
a
re

o
f
th
e
2n

d
n
u
m
b
er

36
a
,b
,c

∈
Z

an
d
a
<

b
<

c
an

d
(a

∗
c)
/3

=
b

In
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

su
ch

th
a
t
p
ro
d
u
ct

o
f
1s

t
a
n
d
3r

d
n
u
m
b
er

is
eq
u
a
l
to

th
re
e
ti
m
es

th
e
2
n
d
n
u
m
b
er

37
ei
th
er

a
<

b
<

c
or

a
>

b
>

c
an

d
a
,b
,c

∈
Z

+
an

d
|b
−

a
|=

|c
−

b|
=

2
C
o
n
se
cu
ti
v
e
p
o
si
ti
v
e
ev
en

in
te
g
er
s
ei
th
er

in
a
sc
en
d
in
g
o
r
in

an
d
a
,b
,c

ar
e
ev
en

d
es
ce
n
d
in
g
o
rd
er
.

38
a
<

b
<

c
an

d
a
,b
,c

∈
Z

+
an

d
|b
−

a
|=

|c
−

b|
=

2
an

d
a
,b
,c

C
o
n
se
cu
ti
v
e
p
o
si
ti
v
e
ev
en

in
te
g
er
s
ei
th
er

in
a
sc
en
d
in
g
o
rd
er
.

ar
e
ev
en

39
ei
th
er

a
<

b
<

c
or

a
>

b
>

c
an

d
a
,b
,c

∈
Z

an
d
|b
−

a
|=

|c
−

b|
=

2
C
o
n
se
cu
ti
v
e
ev
en

in
te
g
er
s
ei
th
er

in
a
sc
en
d
in
g
o
r
in

d
es
ce
n
d
in
g

or
d
er

an
d
a
,b
,c

ar
e
ev
en

T
ab

le
3.
7.

S
et

of
p
la
u
si
b
le

al
te
rn
at
iv
e
h
y
p
ot
h
es
is
to

b
e
u
se
d
in

te
st

se
ve
ri
ty

ca
lc
u
la
ti
on

s:
P
ar
t
IV

.

N
o
ta

ti
o
n

E
x
p
la
n
a
ti
o
n

40
a
<

b
<

c
an

d
a
,b
,c

∈
Z

an
d
|b
−

a
|=

|c
−

b|
=

2
a
n
d
a
,b
,c

a
re

ev
en

C
o
n
se
cu
ti
ve

ev
en

in
te
g
er
s
ei
th
er

in
a
sc
en
d
in
g
o
rd
er
.

41
ei
th
er

a
<

b
<

c
or

a
>

b
>

c
an

d
a
,b
,c

∈
Z

an
d
|b
−

a
|=

|c
−
b|
=

2
In
te
g
er
s
ei
th
er

in
a
sc
en
d
in
g
o
r
in

d
es
ce
n
d
in
g
w
it
h
in
cr
em

en
ts

/
d
ec
re
m
en
ts

o
f
2
.

42
a
<

b
<

c
an

d
a
,b
,c

∈
Z

an
d
G
C
D
(a
,b
,c
)
>

1
In
te
g
er
s
in

a
sc
en
d
in
g
o
rd
er

su
ch

th
a
t
th
ei
r
G
re
a
te
st

C
o
m
m
o
n

F
a
ct
o
r
(G

C
F
)
is

g
re
a
te
r
th
a
n
1
.

43
a
,b
,c

∈
Z

an
d
G
C
D
(a
,b
,c
)
>

1
In
te
g
er
s
w
it
h
G
re
a
te
st

C
o
m
m
o
n
F
a
ct
o
r
g
re
a
te
r
th
a
n
1
.

44
a
<

b
<

c
an

d
(b

−
a
)
=

(c
−

b)
=

2
∗
m

an
d
a
,b
,c

∈
Z

a
n
d
m

∈
Z

+
In
te
g
er
s
a
sc
en
d
in
g
w
it
h
ev
en

in
te
g
er

va
lu
ed

in
cr
em

en
ts
.

45

3.2.2. Formation of Test Severity Graphs Using Vincent Curves

Vincent curves [63] represent performance of subjects towards a criterion, which

is not defined by fixed number of trials. In his Selection Task, Wason used Vincent

curves to compare mean number of instances incompatible with reasons up to the first

rule announcement for two groups. One of the two groups was the group of participants

who announce the correct rule at their first trial, whereas the other group consisted of

participants who could not find the correct rule at their first trial.

We use Vincent Curves to be able to compare hypothesis testing strategies of dif-

ferent groups of participants. During interactive tests, total number of instances given

before discovery of the correct rule varies from one subject to another. Hence, Vincent

curves can be used to visualize the change in test severity of a group of subjects until

the correct rule is discovered. Although, there are variants of Vincent curves, we use the

original method proposed by Vincent to obtain a composite curve. This method can be

explained as follows:

• Total number of instances given by each subject in the group is divided into N equal

fractions.

• Within each fraction, we calculate the average of test severities of the instances that

fall into that fraction. This calculation is done for each subject in the group.

• For N equal fractions, N + 1 data points are obtained per subject. The average of

the ith data point of all subjects gives the ith data point for the group of subjects,

where i = 1, 2, , N + 1.

We have selected total number of fractions N to be equal to the minimum number

of instances given within the group before discovery of the correct rule. For number

of instances which are not divisible by N , we used Vincent’s original procedure. For

instance, the division of 22 instances given by each subject among 5 fractions would be

5, 5, 4, 4, 4. In other words, 2 additional instances are distributed one by one, starting

from the first fraction.

46

3.3. Defect Prediction

3.3.1. Naive Bayes Algorithm

Naive Bayes is based on Bayes Rule [64]. Using Bayes Rule, the probability that an

observation x⃗, which is a d-dimensional vector where d > 1 belongs to class Ci, P (Ci|x⃗)

can be formulated as follows:

P (Ci|x⃗) =
P (x⃗|Ci)P (Ci)

P (x⃗)
(3.1)

In Equation 3.1, P (Ci) is called the prior probability of class Ci. P (x⃗|Ci) is called

the class likelihood that observation x⃗ comes from the distribution which generates class

Ci. P (x⃗) is called the evidence and it is the marginal probability that observation x⃗ is

seen. For all classes Ci, P (x⃗) is identical:

P (Ci|x⃗) =
P (x⃗|Ci)P (Ci)∑K

k=1 P (x⃗|Ck)P (Ck)
(3.2)

Since evidence P (x⃗) is identical for all classes Ci, we can define the discriminant

function as follows:

gi(x⃗) = P (x⃗|Ci)P (Ci) (3.3)

Discriminant function gi(x⃗) can also be defined by taking logarithm of the product

P (x⃗|Ci)P (Ci).

gi(x⃗) = log(P (x⃗|Ci)) + log(P (Ci)) (3.4)

In a classification problem, for each observation x⃗ in the sample we calculate the

posterior probability P (Ci|x⃗) for all classes C1...Cn. We assign each observation x⃗ to the

47

class for which maximum posterior probability is obtained. Finding maximum posterior

probability is equivalent to obtaining the maximum value for the discriminant function

gi(x⃗). In order to calculate value of discriminant function gi(x⃗) for each observation x⃗,

we need to be able to calculate prior probability P (Ci) and the likelihood term P (x⃗|Ci).

Prior probability of each class P (Ci) can be obtained from the sample by counting. On

the other hand, we need to choose a suitable distribution for class likelihood P (x⃗|Ci). In

Näıve Bayes, it is assumed that P (x⃗|Ci) are Gaussian:

P (x⃗|Ci) =
1

(2π)d/2(Σi)1/2
exp[−1

2
(x⃗− µ⃗i)

T (Σi)
−1(x⃗− µ⃗i)] (3.5)

As a result of inserting log(P (x⃗|Ci)) in equation 3.3 by the Gaussian distribution

formula in equation 3.4, discriminant function gi(x⃗) becomes:

gi(x⃗) = −d

2
log2π − 1

2
log|Σi| −

1

2
(x⃗− µ⃗i)

T Σ⃗i

−1
(x⃗− µ⃗i) + logP (Ci) (3.6)

We can eliminate the term −d
2
log2π since it is constant in discriminant functions of

all classes Ci, i = 1, ..., n. According to the assumptions of Näıve Bayes, each class has

a common covariance matrix Σ where off-diagonal entries are equal to 0. Hence, we can

reformulate discriminant function gi(x⃗) as follows:

gi(x⃗) = −1

2

d∑
j=1

(xj −mij)
2

s2j
+ logP (Ci) (3.7)

In the above equation, xj is the jth dimension of vector x⃗, mij is the jth dimension

of the mean vector for class Ci and sj is the jth component of the standard deviation

vector which is common for all classes.

We use Näıve Bayes to build defect prediction models for Experiment III. In our

defect prediction problem domain, each vector x⃗ corresponds to attributes of a single

source code file. These attributes can be static code metrics, churn metrics of the file

48

as well as the confirmation bias metrics of the group of developers who created/updated

that file. We have two classes which are “defected” class C1 and “non-defected” class C2.

Defective files belong to class C1, whereas defect-free files belong to class C2.

3.3.2. Performance Measurement

In order to evaluate the performance of the defect predictors built by using differ-

ent metric set combinations, we used the well-known performance measures which are

probability of detection, false-alarm rate and balance respectively [5].

• Probability of Detection (pd): Pd measures how good a predictors is in finding

defective modules, where modules can be files, methods or packages depending on

the granularity level. In the ideal case, we expect a predictor to catch all defective

modules (i.e. pd = 1).

• Probability of False Alarms (pf): Pf measures false alarm rates, when predictor

classifies defect-free modules as defective. In the ideal case, we expect a predictor

to classify none of the defect-free modules as defective (i.e. pf = 0).

• Balance (bal): In practice, the ideal case where a defect predictor has high prob-

ability of detecting defective modules (i.e. high pd) and low probability of false

alarm (i.e. pf = 0) is very rare. Therefore, we try to balance between pd and pf

values. The notion of balance is formulized to be the Euclidean distance from the

sweet spot (pd = 1 and pf = 0) normalized by the maximum possible distance to

this spot. It is desirable that predictor performance is close to the sweet spot as

much as possible (i.e. high balance values are desirable).

bal = 1−
√
(0− pf)2 + (1− pd)2√

2
(3.8)

Pd and pf values are calculated using Confusion Matrix that is given in Table 3.8.

In the confusion matrix, TP is the number of correctly classified defective modules, FP

is the number of non defective modules that are classified to be defective, FN is the

number of defective modules that are classified to be non-defective and finally TN is

the number of correctly classified non-defective modules. Formulations for pd and pf in

terms of confusion matrix values is given below:

49

Table 3.8. Confusion matrix TP:True Positives, FN:False Negatives, FP:False

Positives, TN:True Negatives.

Predicted

Actual Case Defected Not-defected

Defected TP FN

Not-defected FP TN

3.4. Missing Data Problem in Defect Prediction

In the literature, there are various methods to impute missing data. Imputations

are means or draws from a predictive distribution of missing values. There are mainly

two types of imputation methods, which are single imputation and multiple imputation

respectively.

3.4.1. Single Imputation Methods

Single imputations can be used to impute one single value for each missing item.

Below, we list some single imputation methods:

• Mean imputation: Assume that we have a partially complete data set Y , where

yi,j stands for a missing value of the jth attribute for the ith item. Then, we can

replace each missing value yi,j by the stratified mean can be formulated as follows:

ȳst ≡ ȳw =
1

n

n∑
i=1

wiyi (3.9)

In Equation 3.9, n is the total number of samples and wi is the sampling weight

attached to item i.

wi =
nπ−1

i∑n
k=1 π

−1
k

(3.10)

and πi is the selection probability of item i which implies that item i represents π−1
i

50

units in the sample population. Hence, in Equation 3.10 is scaled to the sum of the

sample size n =
∑n

k=1 π
−1
k . However, yw can only be calculated using complete data

in the sample, since we have no idea about the missing data. As a result Equation

3.10 becomes:

wi =
r(πiϕi)

−1∑r
k=1(πkϕk)−1

(3.11)

In the above equation, r is the total number of complete data, ϕi is the probability

that the selected item i is not missing. Therefore Pr(selection and not missing) =

Pr(selection)*Pr(not missing |selection) = πiϕi and ϕi = r/n.

• Regression imputation: Regression imputation can be applied to missing data pat-

terns where Y1,Y2,...,Yk−1 are fully observed and Yk is observed for the first r obser-

vations and missing for the last n− r observations. Using Y1,Y2,...,Yk−1 as indepen-

dent variables and the first r rows of Yk as the response variable, we can construct

a regression equation.

ŷik = β̃k0.12...k−1 +
k−1∑
j=1

β̃kj.12...k−1yij (3.12)

Missing values can be imputed by the results obtained from the resulting regression

model.

• Stochastic regression imputation: Different from regression imputation where a con-

ditional mean is imputed, stochastic regression imputation is used to impute a con-

ditional draw.

ŷik = β̃k0.12...k−1 +
k−1∑
j=1

β̃kj.12...k−1yij + zi,k (3.13)

Un the above equation zi,k is a random normal deviate with mean 0 and residual

variance obtained from the regression of Yk on Y1, Y2, ..., Yk−1. In this way, distor-

tions due to imputing mean of the predictive distributions are improved.

• Hot deck imputation: Hot deck imputation involves substituting individual values

which are drawn from items similar to the item whose missing value(s) are to be

imputed. In the literature there are various hot deck imputation methods.

51

• Substitution: Missing values of items are replaced by those of the items which are

not included in the sample. For instance assume that during our analysis in this

thesis, confirmation bias metrics of a developer are missing since that developer no

longer works at the company. Hence, we substitute confirmation bias metrics of a

developer who is not included in our analysis. Such a developer might be excluded

form the analysis since he/she is a new comer to the project group so that she

does not have any commit information in version management system regarding

the project developed by the group. During substitution, there must always be a

resistance to treat the imputed data as complete, because substituted values may

differ significantly from the missing values.

• Cold deck imputation: Cold deck imputation replaces a missing value of an item

by a constant value from an external source. For instance missing values in a

survey result may be imputed by using previous results of the same survey that was

conducted to the same person. However, similar to substitution method, one must

be cautious while using this method. In our case, since there are no past results of

confirmation bias tests, cold deck imputation is not a suitable method for us.

3.4.2. Multiple Imputation Methods

Using multiple imputation method, one can impute more than one value for each

missing item which makes it possible to assess imputation uncertainty. For each replace-

ment of the missing values, an imputed data set is obtained. Each data set obtained is

analyzed using standard complete data methods. Multiple imputation reflects sampling

variability under one imputation model or uncertainty about the correct model used for

imputation.

3.4.3. Expectation Maximization Methods for Imputation

Expectation-Maximization algorithm formalizes a relatively ad hoc idea for han-

dling missing data [65]. It consists of iteratively replacing missing values by estimated

values which is followed by re-estimating the parameters. E-step (Expectation step) finds

the conditional expectation of the missing data given the observed data and current esti-

mated parameters and then substitutes these expectations for the missing data. On the

52

other hand, M-step (Maximization step) performs maximum likelihood estimation of the

parameters θ just as if there were no missing data. Unlike ad-hoc imputation methods,

EM does not necessarily substitute the missing values themselves. Instead of the missing

values, functions of the missing values appearing in the log likelihood of the complete

data ℓ(θ|Y) = lnL(θ|Y) are estimated.

3.4.4. Roweis’ EM Algorithm for PCA

In this thesis, we use Roweis’ Expectation-Maximization (EM) Algorithm for Prin-

cipal Component Analysis (PCA) [46], in order to deal with the missing data problem.

Our goal is not to perform PCA factorization. However, the reason of our choice is

the ability of this algorithm to permit the computation of eigenvalues and eigenvectors

while working with many data with high dimensions in the presence of missing. Roweis’

method, had also inspired Bell, Koren and Volinsky [66] to develop a matrix factoriza-

tion algorithm to improve the accuracy of large recommender systems such as Netflix

Cinematch [67, 68].

The goal of PCA is to find a mapping from the data Y in the original d-dimensional

space to a new k-dimensional space where k < d such that there is minimum loss of

information [64].

X = wTY (3.14)

The above equation can be reformulated as Y = CX, where C = (wT)−1, which in turn

can be reformulated as X = C−1Y = C−1IY , where I = (CT)−1CT is the identity matrix.

Therefore, the following formulation holds for X:

X = (CTC)−1CTY (3.15)

Equation 3.15 forms the E-step of Roweis’ EM Algorithm. In the above equation, Y is a

pxn matrix of the original data, X is a kxn matrix which shall be the output of PCA, C

is a kxp matrix that spans the space of the first k principal components of Y . Similarly,

53

M-step of the algorithm can be formulated as in Equation 3.16

C = Y XT (XXT)−1 (3.16)

During the e-step of the EM algorithm, for any data entry y in the data matrix Y with

some of its coordinates missing, a unique pair x∗ and y∗ can be calculated such that

||Cx∗ − y∗|| is minimized. In other words, missing values can be imputed by solving the

least squares problem for ||Cx∗ − y∗|| = 0. Pseudo code of Roweis’ EM Algorithm is

given in Figure 3.2.

54

ImputeMissingData(Y)

% Initially set matrix C randomly

for all iteration in [1 : 1 : MAX(iter)] do

%E-Step of EM Algorithm

for all y in Y do

for all i in [1:1:size(y,1)] do

% Missing Data Imputation is done within E-step

if isMissing(y(i)) == TRUE then

% Find Least Squares Solution to Cx = y by QR decomposition

if isSparseMatrix(C) == TRUE then

[Q,R] = qrDecompose(C)

else

R = upperTriangle(qrDecompose(C))

end if

x = R−1(RT)−1CTy; r = y − Cx

e = R−1(RT)−1CT r; x = x+ e

end if

if isMissing(y(i)) == FALSE then

x = (CTC)−1CTy

end if

X(i, :) = x; % Assign x to ith row of matrix X.

end for

end for

% M-Step of EM Algorithm

C = Y XT (XXT)−1

end forYimputed = CX

return(Yimputed)

Figure 3.2. Pseudocode for the implementation of Roweis’ EM Algorithm

55

4. DATA SET

4.1. Participants of Confirmation Bias Tests

In this thesis, our goal was to perform our experiments in real software development

settings. Hence, we conducted both written and interactive tests to software development

professionals in order to collect confirmation bias metrics. In Table 4.1, except for Group

8 confirmation bias metrics were collected from participants working in large scale soft-

ware development companies or SMEs (Small Medium Enterprizes). Out of 8 groups, 4

groups consisted of software engineers working in large scale companies. One of these

companies is located in Canada, while the remaining 3 companies are located in Turkey.

Unlike other participant groups, Group 8 consists of computer engineering graduate stu-

dents at Boğaziçi University. Among these computer engineering graduate students, 14

participants have average software development experience of 2.51 years, while six of

them are still active and they are developing embedded software for RoboCup, which is

an international robotics competition founded in 1993.

In addition to developers testers are included in the groups in large scale companies,

while groups from which confirmation bias metrics were collected in SMEs consist of only

developers. On the other hand, only Group 6 contains analysts and architects as well

as developers and testers. Except for Group 8 members, participants have only bachelor

degrees in computer science, mathematics or other engineering fields. In the large scale

software development company where Group 6 members work, analysts are responsible

from the preparation of both requirement analysis documents and test scenarios for the

testing phase. Gender distribution and average age values are given in Table 4.2. The

highest percentage of females is in Group 6, where 85.71% of analysts are female. The de-

velopment methodology employed by the company is scrum which is an agile development

approach. All SMEs to which Groups 3, 4, and 5 belong also employ agile software de-

velopment methodology, while the large Canadian company develops Data Management

System (DBMS) software using Test Driven Development (TDD) methodology. Different

than from all these groups, within Group 1 there are 3 separate project groups where each

project group employs a different software methodology. Details about project groups

56

within Group 1 are given in Table 4.3. Project Groups 1 and 2 were temporary pilot

project groups developing a pilot software in order to decide whether TDD and TSP/PSP

methodologies would be beneficial during the production of company’s software products.

Moreover, some group members were also working in other projects at the same time.

T
ab

le
4.
1.

D
et
ai
ls
ab

ou
t
gr
ou

p
s
fr
om

w
h
ic
h
co
n
fi
rm

at
io
n
b
ia
s
m
et
ri
cs

w
er
e
co
ll
ec
te
d
.

G
ro

u
p

#
D
e
v
e
lo
p
e
rs

T
e
st
e
rs

A
n
a
ly
st
s

A
rc
h
it
e
c
ts

T
o
ta

l
D
o
m
a
in

C
o
m
p
a
n
y
S
iz
e

C
o
u
n
tr
y

G
ro
u
p
1

22
14

0
0

3
6

te
le
co
m
m
u
n
ic
a
ti
o
n

la
rg
e
sc
a
le

T
u
rk
ey

G
ro
u
p
2

24
10

0
0

3
4

D
B
M
S
d
ev
el
o
p
m
en
t

la
rg
e
sc
a
le

C
a
n
a
d
a

G
ro
u
p
3

12
0

0
0

1
2

fi
n
a
n
ce

S
M
E

T
u
rk
ey

G
ro
u
p
4

8
0

0
0

8
C
R
M

S
M
E

T
u
rk
ey

G
ro
u
p
5

6
0

0
0

6
m
o
b
il
e
so
lu
ti
o
n
s

S
M
E

T
u
rk
ey

G
ro
u
p
6

18
0

35
1
0

6
3

fi
n
a
n
ce

la
rg
e
sc
a
le

T
u
rk
ey

G
ro
u
p
7

6
0

0
0

6
E
R
P

la
rg
e
sc
a
le

T
u
rk
ey

G
ro
u
p
81

14
2

0
0

0
2
9

va
ri
o
u
s3

N
o
n
e3

T
u
rk
ey

1
M
em

b
er
s
of

G
ro
u
p
9
ar
e
C
om

p
u
te
r
E
n
gi
n
ee
ri
n
g
gr
ad

u
at
e
st
u
d
en
ts

at
B
o
ğa

zi
çi

U
n
iv
er
si
ty
.

2
14

of
C
om

p
u
te
r
E
n
gi
n
ee
ri
n
g
G
ra
d
u
at
e
S
tu
d
en
ts

h
av
e
at

le
as
t
2
y
ea
rs

of
d
ev
el
op

m
en
t
ex
p
er
ie
n
ce

at
la
rg
e
sc
al
e
co
m
p
an

ie
s
an

d
S
M
E
s.

3
8
of

C
om

p
u
te
r
E
n
gi
n
ee
ri
n
g
G
ra
d
u
at
e
S
tu
d
en
ts

h
av
e
at

le
as
t
2
y
ea
rs

of
d
ev
el
op

m
en
t
ex
p
er
ie
n
ce

at
la
rg
e
sc
al
e
co
m
p
an

ie
s
an

d
S
M
E
s
sp
ec
ia
li
ze
d
in

te
le
co
m
m
u
-

n
ic
at
io
n
/C

R
M

d
om

ai
n
.
6
of

th
em

ar
e
d
ev
el
op

in
g
em

b
ed

d
ed

so
ft
w
ar
e
fo
r
A
I/
ro
b
ot
ic
s
re
se
ar
ch
.

58

Table 4.2. Gender distribution and average age values of Groups 1-8.

Group # Female Male Age (years)

Group1 10 26 29.06

Group2 8 26 34.21

Group3 1 11 27.17

Group4 1 7 26.93

Group5 0 6 24.00

Group6 30 33 31.72

Group7 30 33 30.83

Group8 7 21 27.96

Table 4.3. Details about project groups within Group 1.

Project Group # Developer Tester Total Development Methodology

ProjectGroup1 12 14 26 Waterfall

ProjectGroup2 4 0 4 TDD

ProjectGroup3 8 0 8 TSP/PSP

4.2. Collection of Static Code Metrics

Although confirmation bias related information and metrics are adequate for Exper-

iments I and II, for Experiment III static code metrics of the files created and/or updated

by developer groups are required. Hence, we used Prest tool [69] to extract static code

metrics at file granularity level. The list of the static code metrics Prest can extract from

source code files is given in Table 4.4. The reason why file granularity level is preferred

for static code metrics extraction rather than method, class or package granularity levels

can be explained as follows: Firstly, for defect prediction in Experiments II and III we

were able to obtain defect information at file granularity level. Secondly, using commit

logs it was only possible to match each source code file and group of developers who

created and/or updated that file. In other words, mapping of developer(s) to methods

was not possible. Although file level granularity is coarser than method level granularity,

it is still a fine granularity for experiments compared to package level granularity.

59

Table 4.4. List of static code metrics used in Experiment III.

Attribute Description

McCabe Metrics

Cyclomatic Complexity v(G) number of linearly independent paths

Cyclomatic Density vd(G) the ratio of the files’s cyclomatic complexity to its length

Decision Density dd(G) condition/decision

Essential Complexity ev(G) the degree to which a file contains unstructured constructs

Essential Density ed(G) (ev(G)− 1)/(v(G)− 1)

Maintenance Severity ev(G)/v(G)

Lines of Code Metrics

Unique Operands Count n1

Unique Operators Count n2

Total Operands Count N1

Total Operators Count N2

Lines of Code (LOC) source lines of code

Branch Count number of branches

Conditional Count number of conditionals

Decision Count number of decision points

Halstead Metrics

Level (L) (2/n1) ∗ (n2/N2)

Difficulty (D) 1/L

Length (N) N1 +N2

Volume (V) N ∗ log(n)

Programming Effort (E) D ∗ V

Programming Time (T) E/18

60

Table 4.5. List of churn metrics used in Experiment III.

Attribute Description

commits number of commits made for a file

committers number of developers who committed a file

commitsLast number of commits made for a file since last release

committersLast number of developers who committed a file since last release

rmlLast number of removed lines from a file since last release

alLast number of added lines to a file since last release

rml number of removed lines from a file

al number of added lines to a file

topDevPercent percentage of top developers who committed a file

4.3. Collection of Commit Log Data

We use commit log data to refer to the commit logs obtained from version man-

agement systems. We needed commit log data for two reasons. First reason was to be

able to match each source code file with group of developers who created and/or updated

that file. This step was crucial for conducting Experiment II, since analyzing the effects

of confirmation bias metrics on software developers requires the knowledge about which

developer groups created and/or updated which file. In this way, it was possible to calcu-

late percentage of defected files for each developer group so that a regression model could

be constructed using confirmation bias metrics as independent variables and defected file

percentage as the response variable. Based on the obtained results, one of the goals of

Experiment II was to investigate the effect of confirmation bias on software developers.

The second reason about why information in commit logs was required is the fact that to

conduct Experiments III and IV we had to match confirmation bias metrics with source

code files. Hence, we needed to be able to map each file to a group of developers. More-

over, we also needed to evaluate churn metrics for Experiment II and this is possible only

using information contained in commit logs. List of the churn metrics extracted from

commit log data is given in Table 4.5.

61

5. EXPERIMENTS AND RESULTS

5.1. Experiment I: Analysis of Factors Affecting Confirmation Bias

In this experiment, we aim to gain insight about main factors which affect confirma-

tion bias in software development context. Details about the data set, analysis techniques

used as well as our findings are given in the following sections.

5.1.1. Data

In the first part of this experiment, we used data which belong to Group 1, Group

2, Group 7 and Group 8. However, in order to eliminate confounding factors and analyze

a single factor during each analysis, we use only data corresponding to a specific group of

members of Groups 1,2,7 and 8. For this reason, in the rest of this section we designate

the subgroups obtained after the elimination of confounding factors as Group1∗, Group2∗,

Group7∗ and Group8∗ respectively. Potential confounding factors and how we handled

them can be explained as follows:

• Role of the Software Professional : Each subgroup consists of only developers except

for Group8∗. However, each member of Group8∗ has software development expe-

rience of at least 2 years, while 6 members are still developing research oriented

embedded robotics software.

• Age: Age distribution within each resulting subgroup is similar and maximum age

value is 32.

• Gender : Ratio of female developers to male developers is similar for all subgroups.

• Experience: Members in each subgroup has at least 2 years of experience in software

development industry. Moreover, average years of experience within each subgroup

is identical.

• Development Language: Developers in subgroups Group1∗ and Group7∗ use Java

as development language, whereas the language used by developers in Group2∗ is

C++. However, both languages are object oriented. On the other hand, members

of Group 8∗ are experienced in both Java and C++ programming languages.

62

Figure 5.1. Normal probability plot for the residuals of the confirmation bias metric

FRs
R .

• Development Domain: Members of both Group1∗ and Group7∗ develop customer

services software package for GSM operator clients and bank customers respectively.

Members ofGroup8∗ have industrial software development experience within similar

domains. On the other hand, Group2∗ members are developing database manage-

ment system (DBMS).

5.1.2. Design

We perform pairwise comparison of confirmation bias metric values for these four

subgroups using χ2 test for independence. We did not prefer to use ANOVA or t-test, since

residuals for confirmation metric values are not normally distributed [70]. Figure 5.1 and

Figure 5.2 show normal probability plot and histogram of residuals for the confirmation

bias metrics FRs
R . As it can be seen from Figure 5.1 and Figure 5.2, residuals for the

values of the confirmation bias metric FRs
R are not normally distributed.

Another alternative for pairwise metric value comparisons would be the non-parametric

method Mann Whitney U test. However, there are too many identical values (i.e. ties) in

confirmation bias metrics with continuous values, which would lead to unreliable results

[71]. Moreover, as it can be seen in Table 3.2 and 3.3 some metrics take discrete or

categorical values. Table 5.1 shows how we divided the metric avgIndel/en into categories

63

Figure 5.2. Histogram for the residuals of the confirmation bias metric FRs
R .

Table 5.1. Dividing continuous values of avgIndel/en into categories for χ2 test.

x ∈ [0, 1) x ≥ 1

Group 1∗ 9 10

Group 2∗ 6 14

Group 7∗ 11 7

Group 8∗ 6 9

for χ2 test.

In addition pairwise statistical comparisons of confirmation bias metrics values for

Groups 1∗, 2∗, 7∗ and 8∗, we compare overall hypothesis testing strategies of these sub-

groups during interactive test in a pairwise manner. Moreover, as an outcome of the

written test we compare distribution of Falsifiers, Verifiers and Matchers using Reich

and Ruth’s categorization method [51].

5.1.3. Results and Discussions

When we look at χ2 test results in Table 5.2, 5.5 and 5.6 we can conclude that Group

2∗ members find the correct rule during interactive test with significantly less number of

trials. This implies that unless they are really sure, Group 2∗ members avoid making rule

announcements. Moreover, especially compared to Group 7∗ members, Group 2∗ members

exhibit a more eliminative behavior during interactive tests as well as employing an ideal

64

hypotheses testing strategy. As shown in Figure 5.9 according to the overall hypothesis

testing strategy profile of Group 2∗ members consist of starting with less severe instances

and progressively increasing severity of the instances given. There is a decrease in the

severity of the instance given at the last bin of trials, however during interactive test once

the subject is sure about the rule to be discovered, she/he can can decrease the severity

of the instances given just before the rule announcement. Moreover, as it can be seen

in Figure 5.4 and 5.10 there are more Falsifiers and less Verifiers and Matchers among

Group 2∗ members compared to members of the Groups 1∗ and 7∗. Country seems to be

a factor which can explain why Group 2∗ members outperform members of the Groups

1∗ and 7∗, since company Group 2∗ members work is in Canada, while Group 1∗ and 7∗

members work at software development companies located in Turkey. However, Group 8∗

members are also in Turkey as well as having worked for companies in Turkey and Group

8∗ members also outperform both Group 1∗ and 7∗. As it can be seen in Figures 5.7 and

5.13, overall hypothesis testing strategy followed by members of Group 8∗ is much closer

to the ideal hypothesis testing strategy defined by Poletiek [2]. In addition, majority of

Group 8∗ members are Falsifiers as Figures 5.8 and 5.14.

Under the light of these obtained results, we state that hypotheses testing and

logical reasoning skills are two factors that affect confirmation bias levels of developers. 50

% of the developers in Group 2∗ hold PhD degrees from Computer Science, Mathematics

or related fields. On the other hand, members of Group 8∗ are Computer Engineering

PhD students. We do not claim that PhD is required to eliminate confirmation bias.

However, since hypothesis testing and logical skills are crucial in scientific research, this

makes it obligatory for graduate students to obtain these skills fulfill the requirements of

a PhD study. On the other hand, one does not need to have a PhD degree to acquire these

skills. Training provided to software professionals can help them to eliminate negative

effects of confirmation bias.

5.2. Experiment II: Analysis of the Effects of Confirmation Bias on Software

Developers and Testers

This experiment consists of two parts. In the first part, effect of confirmation bias

on software developer performance is analyzed, while in the second part of the experiment

65

Table 5.2. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 1 and Group 2 respectively.

Confirmation Result Critical Value Explanation

Bias Metrics

avgFR
R χ2(1, n = 38) = 0.1101 2.71 (p < 0.1) No significant difference

avgF IR Expected frequency in at least

one cell is less than 5

avgLIR Expected frequency in at least

one cell is less than 5

minIndel/en χ2(1, n = 39) = 1.2927 2.71 (p < 0.1) No significant difference

maxIndel/en χ2(1, n = 38) = 1.2166 2.71 (p < 0.1) No significant difference

avgIndel/en χ2(1, n = 31) = 1.2418 2.71 (p < 0.1) No significant difference

Indel/en χ2(1, n = 33) = 0.2026 2.71 (p < 0.1) No significant difference

NA χ2(1, n = 38) = 4.496 2.71 (p < 0.1) Group2∗ outperforms Group1∗

INDABORT Expected frequency in at least

one cell is less than 5

STh χ2(1, n = 38) = 3.3135 2.71 (p < 0.1) Group2∗ outperforms Group1∗

SABS χ2(1, n = 38) = 0.0653 2.71 (p < 0.1) No significant difference

Sprecautional χ2(1, n = 38) = 0.9360 2.71 (p < 0.1) No significant difference

ScheatingDetection χ2(1, n = 38) = 0.7415 2.71 (p < 0.1) No significant difference

STh+ABS χ2(1, n = 38) = 0.0144 2.71 (p < 0.1) No significant difference

66

Table 5.3. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 1 and Group 7 respectively.

Confirmation Result Critical Value Explanation

Bias Metrics

avgFR
R χ2(1, n = 38) = 1.6889 2.71 (p < 0.1) No significant difference

avgF IR χ2(1, n = 38) = 0.3466 2.71 (p < 0.1) No significant difference

avgLIR χ2(1, n = 38) = 0.0499 2.71 (p < 0.1) No significant difference

minIndel/en χ2(1, n = 38) = 0.9070 2.71 (p < 0.1) No significant difference

maxIndel/en χ2(1, n = 38) = 1.3329 2.71 (p < 0.1) No significant difference

avgIndel/en χ2(1, n = 38) = 0.7029 2.71 (p < 0.1) No significant difference

finalIndel/en χ2(1, n = 31) = 2.2452 2.71 (p < 0.1) No significant difference

Indel/en χ2(1, n = 31) = 0.0266 2.71 (p < 0.1) No significant difference

NA χ2(1, n = 38) = 9.5742 7.88 (p < 0.005) Group7∗ outperforms Group1∗

INDABORT χ2(1, n = 38) = 0.2179 2.71 (p < 0.1) No significant difference

STh χ2(1, n = 38) = 5.2157 2.71 (p < 0.1) Group7∗ outperforms Group1∗

SABS χ2(1, n = 38) = 0.0334 2.71 (p < 0.1) No significant difference

Sprecautional Expected frequency in at least

one cell is less than 5

ScheatingDetection Expected frequency in at least

one cell is less than 5

STh+ABS Expected frequency in at least

one cell is less than 5

67

Table 5.4. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 1 and Group 8 respectively.

Confirmation Result Critical Value Explanation

Bias Metrics

avgFR
R χ2(1, n = 38) = 0.1101 2.71 (p < 0.1) No significant difference

avgF IR Expected frequency in at least

one cell is less than 5

avgLIR Expected frequency in at least

one cell is less than 5

minIndel/en χ2(1, n = 39) = 0.9247 2.71 (p < 0.1) No significant difference

maxIndel/en χ2(1, n = 38) = 0.1983 2.71 (p < 0.1) No significant difference

avgIndel/en χ2(1, n = 38) = 0.846 2.71 (p < 0.1) No significant difference

finalIndel/en χ2(1, n = 31) = 0.0154 2.71 (p < 0.1) No significant difference

Indel/en χ2(1, n = 33) = 0.5833 2.71 (p < 0.1) No significant difference

NA χ2(1, n = 38) = 2.5909 2.71 (p < 0.1) No significant difference

INDABORT Expected frequency in at least

one cell is less than 5

STh χ2(1, n = 38) = 6.6165 2.71 (p < 0.1) Group8∗ outperforms Group1∗

SABS χ2(1, n = 38) = 1.9539 2.71 (p < 0.1) No significant difference

Sprecautional Expected frequency in at least

one cell is less than 5

ScheatingDetection Expected frequency in at least

one cell is less than 5

STh+ABS Expected frequency in at least

one cell is less than 5

68

Table 5.5. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 2 and Group 7 respectively.

Confirmation Result Critical Value Explanation

Bias Metrics

avgFR
R χ2(1, n = 38) = 2.6316 2.71 (p < 0.1) No significant difference

avgF IR Expected frequency in at least

one cell is less than 5

avgLIR Expected frequency in at least

one cell is less than 5

minIndel/en χ2(1, n = 38) = 1.7989 2.71 (p < 0.1) No significant difference

maxIndel/en χ2(1, n = 38) = 5.7965 2.71 (p < 0.1) Group2∗ outperforms Group7∗

avgIndel/en χ2(1, n = 38) = 3.7089 2.71 (p < 0.1) Group2∗ outperforms Group7∗

finalIndel/en χ2(1, n = 31) = 6.6523 2.71 (p < 0.1) Group2∗ outperforms Group7∗

Indel/en χ2(1, n = 31) = 0.2026 2.71 (p < 0.1) No significant difference

NA χ2(1, n = 39) = 1.9006 2.71 (p < 0.1) No significant difference

INDABORT Expected frequency in at least

one cell is less than 5

STh χ2(1, n = 38) = 0.2680 2.71 (p < 0.1) No significant difference

SABS χ2(1, n = 38) = 0.1997 2.71 (p < 0.1) No significant difference

Sprecautional χ2(1, n = 38) = 0.0653 2.71 (p < 0.1) No significant difference

Severytime χ2(1, n = 38) = 0.2319 2.71 (p < 0.1) No significant difference

ScheatingDetection χ2(1, n = 38) = 5.7184 2.71 (p < 0.1) Group2∗ outperforms Group7∗

STh+ABS Expected frequency in at least

one cell is less than 5

69

Table 5.6. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 2 and Group 8 respectively.

Confirmation Result Critical Value Explanation

Bias Metrics

avgFR
R χ2(1, n = 38) = 1.8044 2.71 (p < 0.1) No significant difference

avgF IR Expected frequency in at least

one cell is less than 5

avgLIR Expected frequency in at least

one cell is less than 5

minIndel/en χ2(1, n = 39) = 1.3398 2.71 (p < 0.1) No significant difference

maxIndel/en χ2(1, n = 38) = 2.9167 2.71 (p < 0.1) Group 2∗ outperforms Group 8∗

avgIndel/en χ2(1, n = 38) = 0.3804 2.71 (p < 0.1) No significant difference

finalIndel/en χ2(1, n = 31) = 0.8949 2.71 (p < 0.1) No significant difference

Indel/en χ2(1, n = 31) = 0.1379 2.71 (p < 0.1) No significant difference

NA χ2(1, n = 38) = 0.1536 2.71 (p < 0.1) No significant difference

INDABORT Expected frequency in at least

one cell is less than 5

STh χ2(1, n = 38) = 6.6165 2.71 (p < 0.1) Group 8∗ outperforms Group 2∗

SABS Expected frequency in at least

one cell is less than 5

Sprecautional Expected frequency in at least

one cell is less than 5

Severytime Expected frequency in at least

one cell is less than 5

ScheatingDetection Expected frequency in at least

one cell is less than 5

STh+ABS Expected frequency in at least

one cell is less than 5

70

Table 5.7. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 7 and Group 8 respectively.

Confirmation Result Critical Value Explanation

Bias Metrics

avgFR
R χ2(1, n = 38) = 0.0354 2.71 (p < 0.1) No significant difference

avgF IR Expected frequency in at least

one cell is less than 5

avgLIR Expected frequency in at least

one cell is less than 5

minIndel/en χ2(1, n = 38) = 1.3398 2.71 (p < 0.1) No significant difference

maxIndel/en χ2(1, n = 38) = 0.0134 2.71 (p < 0.1) No significant difference

avgIndel/en χ2(1, n = 38) = 1.4599 2.71 (p < 0.1) No significant difference

finalIndel/en χ2(1, n = 31) = 2.3467 2.71 (p < 0.1) No significant difference

Indel/en χ2(1, n = 31) = 2.7000 2.71 (p < 0.1) No significant difference

NA χ2(1, n = 38) = 1.9006 2.71 (p < 0.1) No significant difference

INDABORT Expected frequency in at least

one cell is less than 5

STh χ2(1, n = 38) = 0.2481 2.71 (p < 0.1) No significant difference

SABS χ2(1, n = 38) = 2.5574 2.71 (p < 0.1) No significant difference

Sprecautional Expected frequency in at least

one cell is less than 5

Severytime χ2(1, n = 38) = 5.1219 2.71 (p < 0.1) Group8∗ outperforms Group7∗

ScheatingDetection Expected frequency in at least

one cell is less than 5

STh+ABS Expected frequency in at least

one cell is less than 5

71

1 2 3 4 5
20

20.5

21

21.5

22

22.5

23

Bins of Problem Solving Steps

T
es

t S
ev

er
ity

group1*
group2*

Figure 5.3. Comparison of interactive test hypothesis testing strategies of Group1∗ and

Group2∗.

we analyze how confirmation bias affects performance of software testers.

5.2.1. Data

In this experiment, we analyze members of Project Group 1 which is a subgroup

consisting of developers and testers within Group 1. Details about Group 1 and its

subgroup Project Group 1 are given in Table 4.1 and Table 4.3 respectively. In Project

Group 1, there are 12 developers and 14 testers who are responsible from the development

of a customer services package.

5.2.1.1. Data Used to Analyze Confirmation Bias Effects on Software Developers. We used

data corresponding to the developers of Project Group 1, since all three of required data

which consist of confirmation bias metrics, file commit information and list of defected

files for each release were available for this group of developers. In order to obtain infor-

mation about past source code commitment activities of each developer, log file of version

management system data were examined. These file contains commitment history of all

Java source codes since the beginning of the customer services software package develop-

ment project. The project was launched in 2001, and the churn data also contains names

72

Figure 5.4. Distribution of Falsifiers, Verifiers, Matchers and None within Group1∗ and

Group2∗.

of the developers who no longer work in the project. Therefore, files which were com-

mitted by any of these past developers are not taken into consideration in our analysis.

Moreover, in the present project group out of the 12 developers, commit activities of only

6 developers could be observed in file commitment history. The rest of the development

team was new to the project due to sudden change in the organizational structure at the

time confirmation bias tests were conducted.

We obtained defect information after the analysis of the testing and release dates

of the software package as well as the list of defected files detected during each testing

phase. Every two weeks, a new release of the software is delivered and hence testing

phase of one release and the development phase of the next release overlap. In this study,

we analyzed 10 releases of the software that were developed and tested between the last

week of May 2009 and second week of November 2009. For each release, we categorized

each file to be defected or not based on the results of the testing phase for that release.

For defects detected within a file during testing phase of each release, developers who

created and/or updated that file before that date of testing phase were held responsible.

Therefore, we were able to map each file to a group of developers who created and/or

updated that file.

73

1 2 3 4 5
14

15

16

17

18

19

20

21

22

23

24

T
es

t S
ev

er
ity

Bins of Problem Solving Steps

group7*
group1*

Figure 5.5. Comparison of interactive test hypothesis testing strategies of Group1∗ and

Group7∗.

Finally, as a performance metric, we defined defect density for each developer group

as the ratio of the total number of defected files created/updated by that group to the total

number of files that group created/updated. Defining a metric for assessing individual

performance of each developer was not possible. This is due to the fact that during

testing phase it is highly probable that some defects might have been overlooked as a

result of which defects may propagate from earlier releases of the software to its latest

release. Therefore, any defect which is detected during testing phase might be caused

during development phase of any earlier release.

5.2.1.2. Data Used to Analyze Confirmation Bias Effects on Software Testers. We used

testers of Project Group 1 in this part of the experiment, since in addition to confirmation

bias metrics we were able to access information which can be used to assess software tester

performance. In order to determine a reliable tester performance metric, we made use

of company’s tester competence reports. In these reports for each tester, number of

post-release defects detected on parts of the software product which were tested by that

tester is given. Hence we can set number of production defects (NPRODDEF) as a tester

performance metric.

74

Figure 5.6. Distribution of Falsifiers, Verifiers, Matchers and None within Group1∗ and

Group7∗.

5.2.2. Design

5.2.2.1. Design for Analysis of Confirmation Bias Effects on Software Developers. In or-

der to visualize the effect of confirmation bias on software defect density, we constructed

a linear regression model with confirmation bias metrics as the predictor (independent)

variables and defect density as the response variable. In this experiment, we used only

confirmation bias metrics with continuous values. In order to evaluate confirmation

bias metrics of developer groups, we took the average value of developer group mem-

bers’confirmation bias metrics. In the case when a developer group consists of a single

developer, this reduces to the confirmation bias metrics of that developer.

We decided to construct a linear regression model instead of a quadratic or an

interaction regression model in order not to compromise the estimation of the regression

coefficients, calculation of the confidence intervals and significance test results. In order

to make this decision we had to construct all three models to see if the resulting residuals

are normally distributed. Since linear dependency exists among the predictor variables

leading to matrix singularity problem during the regression coefficient calculation, we

performed principle component analysis (PCA). The scree plot of the percent variability

explained by each principal component is shown in Figure 5.15. The variance is explained

75

1 1.5 2 2.5 3 3.5 4 4.5 5
16

17

18

19

20

21

22

23

24

25

26

27

Bins of Problem Solving Steps

T
es

t S
ev

er
ity

group8*
group1*

Figure 5.7. Comparison of interactive test hypothesis testing strategies of Group1∗ and

Group8∗.

by the first five columns of the resulting matrix.

After having constructed linear, quadratic and interaction regression models, and

plotted normal probability plot of residuals, we were able to observe that residuals only

for the quadratic and interaction models were not normally distributed compared to the

residuals of the linear model as it is shown in Figure 5.16. As a result, in order to visualize

the effect of confirmation bias on software defect density, we performed linear regression

modeling.

5.2.2.2. Design for Analysis of Confirmation Bias Effects on Software Testers. For the group

of tester we calculated the average value for the tester performance metric NPRODDEF .

This allowed us to classify testers into two groups as being testers having NPRODDEF

value above and below average respectively. Having categorized testers in two groups,

performed Reich and Ruth’s categorization to find the distribution of Falsifiers, Verifiers

and Matchers within each group as well as testers who cannot be classified at all. More-

over, in order to visualize overall hypothesis testing strategy employed by each group,

test severity graphs are drawn.

76

Figure 5.8. Distribution of Falsifiers, Verifiers, Matchers and None within Group1∗ and

Group8∗.

5.2.3. Results and Discussions

5.2.3.1. Results for Analysis of Confirmation Bias Effects on Software Developers. We per-

formed test for significance of regression to determine whether a linear relationship exists

between the defect rate and a subset of confirmation bias metrics, given the following

hypotheses: H0: β1 = β2 = ... = β6 and H1: β1 ̸= 0 , for at least one j. The F-statistics

obtained with α = 0.05 significance level is F0 = 17.0983 > Fα,k,n−k−1 = F0.05,6,117. This

results in the rejection of the null hypothesis H0 which implies that at least one of the in-

dependent variables contributes significantly to the model. As we performed PCA before

regression modeling, each independent variable is a linear combination of confirmation

bias metric values. Hence, confirmation bias metric values contribute significantly to the

resulting linear regression model. We also performed significance tests on the individual

regression coefficients. The null hypothesis is H0 : βj = 0 and alternative hypothesis is

H0 : βj ̸= 0. Except for significance tests of the third and fifth regression coefficients,

null hypothesis is rejected. p values for each regression coefficient are given in Table

5.8. Finally, the amount of reduction in the variability of defect rate obtained by using

the linear combinations of confirmation bias metrics is less than 50%. This amount is

given by R2 = 0.4477. Adjusted R2 statistic is equal to 0.4243. As values of ordinary

and adjusted R2 are very close to each other, we can say that non-significant terms are

77

1 1.5 2 2.5 3 3.5 4 4.5 5
14

15

16

17

18

19

20

21

22

Bins of Problem Solving Steps

T
es

t S
ev

er
ity

group2*
group7*

Figure 5.9. Comparison of interactive test hypothesis testing strategies of Group2∗ and

Group7∗.

not added to the model. The value of R2 for prediction is 0.3264, which means that we

could only expect the constructed model to explain only about 32% of the variability in

predicting new observations.

Results show that although confirmation bias metrics are not direct indicators of

defect ratio of software developer groups, they affect software defect density. Moreover,

in our case study during the prediction of the defect rate, confirmation bias metrics

explain 32% of the variability the constructed linear regression model which is a significant

amount in social sciences. If we take into account the fact that defect rate is affected by

processes, and many human aspects other than confirmation bias, the results obtained

are reasonable. Among human aspects affecting software defect, we can name cognitive

biases such as representativeness, availability, adjustment and anchoring in addition to

the social interactions. Therefore the capability of confirmation bias metrics to explain

32% of the variability in defect rate is a promising result.

5.2.3.2. Results for Analysis of Confirmation Bias Effects on Software Testers. Group of

testers with NPRODDEF value below average (i.e. testers who were responsible from

testing files which ended up having less post-release defects) exhibited a more strategic

78

Figure 5.10. Distribution of Falsifiers, Verifiers, Matchers and None within Group2∗

and Group7∗.

approach during interactive tests. As it can be seen in Figure 5.17, this group of testers

starts with a low level severe test and they progressively exclude more alternatives. As

mentioned previously in Chapter 2, starting with highly severe instances during interac-

tive test leads to the elimination of almost all hypotheses in subject’s mind. Moreover,

fluctuations observed in the Vincent curve of testers with NPRODDEF value above aver-

age are far away from being indicators of an ideal hypothesis testing strategy. Moreover,

among tester with NPRODDEF value above average, there are no Falsifiers, but only

Verifiers and Matchers.

Table 5.8. The values regression coefficients, their confidence intervals and significance

test results.

Coefficient Coefficient Value Confidence Interval p-value

β1 6.5669 6.0569-7.0688 1.0791E-12

β2 0.2696 0.0507-0.4896 0.0162

β3 -0.1472 -0.4809-1.1866 0.3843

β4 1.4814 1.0971-1.8657 6.543E-12

β5 0.6248 0.0496-1.2000 0.0335

β6 -1.2697 -1.9005- -0.6309 1.167E-4

79

1 1.5 2 2.5 3 3.5 4 4.5 5
10

12

14

16

18

20

22

24

26

28

Bins of Problem Solving Steps

T
es

t S
ev

er
ity

group2*
group8*

Figure 5.11. Comparison of interactive test hypothesis testing strategies of Group2∗ and

Group8∗.

These results imply that lack of the tendency and reasoning skills to test hypothesis

leads to overlooking defects during testing phase of the software which in turn leads to

an increase in the number of post-release defects.

5.3. Experiment III: Using Confirmation Bias Metrics to Learn Defect

Predictors

This experiment is in the form of a benchmark study, which aims to asses the

power of defect prediction models that are built using only confirmation bias metrics

as information content. In this experiment, we use two data sets which we collected

from developers of two software development companies which are specialized in different

domains. For each data set, we form defect prediction models using all combinations

of static code metrics, confirmation bias metrics and churn metrics. This results in the

formation of 23 − 1 = 7 defect prediction models for each data set.

5.3.1. Data

In this study, we used two data sets which belong to Group 1 and Group 7 respec-

tively. As shown in Table 4.1, Group 1 consists of developers and testers of a large scale

80

Figure 5.12. Distribution of Falsifiers, Verifiers, Matchers and None within Group2∗

and Group8∗.

telecommunication company in Turkey, while Group 3 is a project group consisting of 6

developers in Turkey’s largest Independent Software Vendor (ISV). There are 3 project

groups in Group 1 and details about these project groups are given in Table 4.3. We used

data set which belongs to Project Group 1, due to the following reason: while Project

Group 2 and Project Group 3 are pilot project groups formed to assess the suitability

of the software development methodologies TDD and TSP/PSP, Project Group 1 has

been developing the customer services package since September 2001. Therefore, Project

Group 3 is much more representative of a project group developing a software product in

software development industry. Moreover, information about files that are found to be

defective have been collected only for this project group.

As mentioned in the previous section, Project Group 3 consists of 12 developers

and 14 testers. In our analysis, we were unable to match testers to the files since no

information regarding which file is tested by which tester was not available. Hence, our

experiments focus on developers. The project was launched in 2001, and the churn data

also contains names of the developers who no longer work in the project. We were able

to perform our confirmation bias tests to 3 software professionals who used to part of this

development team. Therefore, files which were committed by any of these past developers,

except for those of these 3 ex-developers, are not taken into consideration in our analysis.

81

1 1.5 2 2.5 3 3.5 4 4.5 5
14

16

18

20

22

24

26

28

Bins of Problem Solving Steps

T
es

t S
ev

er
ity

group7*
group8*

Figure 5.13. Comparison of interactive test hypothesis testing strategies of Group7∗ and

Group8∗.

Moreover, in the present project group out of the 12 developers, commit information of

only 6 developers could be found. The rest of the development team was new to the

project due to sudden change in the organizational structure at the time confirmation

bias tests were conducted. Therefore, regarding Project Group 3, we have confirmation

bias metrics of 9 software professionals. Finally, traditional waterfall methodology is used

for software development delivering a new release approximately every two weeks. In this

study, we cover four versions of the software product released during June and July 2009

and each version consists of 545 files on average.

The second data set belongs to a project group that consists of 6 developers of the

largest ISV (Independent Software Vendor) in Turkey. The software developed by the

project group is an enterprize resource planning (ERP) software. The snapshot of the

software that was retrieved from the version management system belongs to period of

March 2011 and it consists of 3199 files. On the other hand, log file retrieved from the

version management system for the second data set covers file commit activities starting

from the beginning of July 2007 till the end of February 2011.

82

Figure 5.14. Distribution of Falsifiers, Verifiers, Matchers and None within Group7∗

and Group8∗.

5.3.2. Design

For each file in each version, the developers who created and/or modified that

file before the code freeze date are considered to be responsible from any defects found

in that file. This is due to the fact that some previously introduced defects can be

overlooked during testing phase of earlier versions resulting in the propagation of defects.

Therefore, for each file in each version we examined, using the code freeze dates (i.e.

dates when development phase for that release is over and testing phase starts) in the

release calendar together with file commit information retrieved from the version control

system, we obtained a group of developers responsible from that file.

In order to calculate confirmation bias metrics corresponding to each file, we con-

solidated confirmation bias metrics from individual developers to developer groups. For

this purpose, we applied three different operators (i.e. min, max and average) for each

confirmation bias metric of developers who contributed to the same source file and results

are assigned to be the source file’s corresponding feature. Assuming that, Adi represents

the ith confirmation bias metric value of dth developer, d ∈ Gj means that developer d is

among the group of developers who created and/or modified jth source file, and finally,

Sop
ij represents the ith feature value of jth source file when operator op is applied, where

83

Figure 5.15. Percentage of variance explained by each of the principle components of

the resulting matrix of predictor variables.

op can be one of the three operators, namely min, max or avg. Under these assumptions

min, max and avg operators can be formalized as follows:

Smax
ji = max(Ami|∀m ∈ Gj) (5.1)

Smin
ji = min(Ami|∀m ∈ Gj) (5.2)

Savg
ji =

∑
m(Ami|m ∈ Gj)∑
m(1|m ∈ Gj)

(5.3)

In this experiment, confirmation bias metrics which takes continuous values are used as

a result of the nature of the operators used to consolidate confirmation bias metrics of

individual developers to those of developer groups. Using only continuous metrics was

adequate to arrive a conclusion as it shall be explained in the section where we discuss

results of this experiment.

5.3.2.1. Defect Matching. We have been doing research using data provided by the large

scale telecommunication company for a couple of years which resulted in the improvement

of their software development life cycle and software quality in various projects. Hence,

the company has already established an infrastructure to list source files where bugs are

detected during testing phase for each release of the software product.

84

Figure 5.16. Normal probability plots of residuals for linear, quadratic and interaction

regression models.

On the other hand, since this was the first time we collaborated with the ISV

company, defect matching required more effort for the second data set. We had to learn

about the work flow followed by the ISV during their software development life cycle.

Figure 5.19 shows this work flow followed within the ISV to fix bugs which are detected

during the testing phase.

The company uses an issue management system. Each issue is stored in this system

with a unique issue code and it can be a new feature to be added to the software being

developed, a regular project item or a defect that needs to be fixed. We managed to

match issue items that were labeled as defect with source code files. According to the

company’s software development policy, developers must write the corresponding unique

issue code as a comment before they commit file(s) to the version control system. There-

85

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Bins of Problem Solving Steps

Te
st

 S
ev

er
ity

NPROD
DEF

 above avg.

NPROD
DEF

 below avg.

Figure 5.17. Vincent curves for test severity of testers with NPRODDEF values above

and below average respectively.

fore, it was possible to match the file committed to the version management system with

the corresponding issue item in the issue management system. Figure 5.20 shows the

methodology we followed to extract the list of defective files. The company provided us

with the issue list extracted from their issue management system. We formed a “final

issue list” by taking into account only issue entries where request type is “defect” and

issue status is different than “canceled”. States of issues having request type “defect”

are labeled according to the work flow given in Figure 5.19. According to this work flow,

once a defect is detected during testing phase, requirement analysis and design may be

revisited depending on the type of the defect. If analysts are busy, request regarding

the defect is taken to the “Analysis Queue”. However, requirement analysis and design

phase need not to be revisited for all defect types. Hence, developers might directly be

informed about the defect to be fixed. Defects of this type enter the “Coding Queue”

only if developers are busy to fulfill tasks with higher priority in their to do lists. Once

the defect (i.e. bug) is fixed by developers, testers are requested to test the piece of

software related to the fixed defect. Once testers are informed, to ensure whether the

defect was fixed by developers at the previous stage of the work flow related item may

wait in the “Testing Queue” or may directly be taken to the testing phase depending on

both the availability of testers and severity of the fixed defect. After the software with

fixed defects is tested, in order to be sure about whether problems shall still arise or

86

Figure 5.18. Distribution of falsifiers, verifiers, and matchers among testers who report

bugs above and below average amount, according to Reich and Ruth’s method.

not software is tested in the environment of the customer. This is the last stage in the

work flow to fix defects. However, there might also be defects whose existence can not

be verified in customers’ environment settings although they may have been detected as

a “defect” during testing phase. Items corresponding to this case are labeled with status

“canceled” in the issue management system. Such detect detections are mostly due to

the factors related to the testing environment of the tester and thus they do not affect

the customer. We mined the commit log file obtained from the version control system to

get a commit history file where format of each commit log entry is in the form as shown

in Figure 5.20. Finally, for each issue in our final issue list we found names of source files

in commit history file and marked those files as defective.

5.3.2.2. Formation of Train/Test Sets. The first data set is obtained by merging files in

four versions of the software being developed. Before the merging process, defective files

are labeled based on the list of defective files for each version. A developer is assigned

as a member to the group of developers who committed a given file F , only if (s)he

committed file F before the code freeze date of the version file F belongs to. Code freeze

date is obtained from the release calendar provided to us by the telecommunication

company. During the merging process, file entries with identical file names are assumed

87

Figure 5.19. Work flow followed in the ISV company to fix bugs detected during testing

phase.

to be different files if and only if corresponding static code metrics are different (i.e. that

file has been modified). Otherwise, such a file is included to the list only once.

Since second data set consists of a single version of the software product, no merg-

ing process was necessary. The methodology followed to label defective files has already

been explained in the previous section. In order to find group of developers who cre-

ated/modified each file, procedure explained in the previous paragraph is used.

Within each data set, a file entry is excluded if there was at least one developer

with unknown confirmation bias metrics among the committers of that file. Such a case

is possible only if a file had been modified by at least one developer who no longer works

at the company, so that it is not possible to conduct confirmation bias tests to these

people.

5.3.2.3. Construction of Prediction Model. In this study, we used Näıve Bayes algo-

rithm, since it combines signals coming from different attributes[5]. In software defect

prediction studies, it is also empirically proven that the performance of Näıve Bayes is

amongst the top algorithms[4]. Both data sets are imbalanced (defective file percentage

in first data set is 11.1% and 8.4% in second data set). Therefore, we use under-sampling

method that is the most suitable sampling method for our data sets [6]. 10-fold cross

88

Figure 5.20. : Defect matching procedure of a file to prepare list of defected files for the

second data set.

validation is used to avoid sampling bias in our experiments. In order to overcome order-

ing effects we shuffled data 10 times and 10-fold cross validation is used for each ordering

configuration of input data. As a result, during each experiment Naive Bayes algorithm

is executed 10x10=100 times, for each data set.

5.3.3. Results and Discussions

Two experiments are performed and each experiment is replicated for both data

sets. In the first experiment, no data preprocessing method is used, while in the second

experiment log-filtering is used to preprocess data. Log-filtering was used by Menzies et

al. in [5] to improve predictor performance. All numeric values are replaced with those

obtained by taking natural logarithms of these numeric values.

5.3.3.1. Using Confirmation Bias Metrics as Single Metric Set to Learn Defect Predictors.

If we take into account the results obtained for both data sets, the following can be con-

89

Table 5.9. Abbreviations used for metric type combinations in Tables.

Abbreviation Metric Type Combination

SC Static Code Metrics

CB Confirmation Bias Metrics

Ch Churn Metrics

SC+CB Static Code and Confirmation Bias Metrics

SC+Ch Static Code and Churn Metrics

CB+Ch Confirmation Bias and Churn Metrics

SC+CB+Ch Static Code, Confirmation Bias and Churn Metrics

Table 5.10. Defect prediction results for first data set.

Metrics Performance

Abbreviation Static Code Confirmation Bias Churn pd pf balance

SC + - - 0.58 0.34 0.61

CB - + - 0.63 0.32 0.64

Ch - - + 0.61 0.39 0.58

SC+CB + + - 0.64 0.29 0.67

SC+Ch + - + 0.61 0.33 0.63

CB+Ch - + + 0.66 0.31 0.67

SC+CB+Ch + + + 0.68 0.28 0.69

Table 5.11. Defect prediction results for first data set with log filtering.

Metrics Performance

Abbreviation Static Code Confirmation Bias Churn pd pf balance

SC + - - 0.53 0.34 0.54

CB - + - 0.68 0.35 0.66

Ch - - + 0.57 0.33 0.59

SC+CB + + - 0.71 0.34 0.67

SC+Ch + - + 0.66 0.31 0.65

CB+Ch - + + 0.70 0.34 0.67

SC+CB+Ch + + + 0.71 0.34 0.67

90

Table 5.12. Defect prediction results for second data set.

Metrics Performance

Abbreviation Static Code Confirmation Bias Churn pd pf balance

SC + - - 0.62 0.12 0.69

CB - + - 0.64 0.27 0.62

Ch - - + 0.52 0.10 0.61

SC+CB + + - 0.62 0.25 0.62

SC+Ch + - + 0.58 0.12 0.65

CB+Ch - + + 0.45 0.21 0.52

SC+CB+Ch + + + 0.50 0.17 0.57

Table 5.13. Defect prediction results for second data set with log filtering.

Metrics Performance

Abbreviation Static Code Confirmation Bias Churn pd pf balance

SC + - - 0.23 0.16 0.39

CB - + - 0.65 0.26 0.62

Ch - - + 0.70 0.16 0.68

SC+CB + + - 0.58 0.13 0.63

SC+Ch + - + 0.59 0.16 0.62

CB+Ch - + + 0.57 0.20 0.59

SC+CB+Ch + + + 0.52 0.19 0.56

91

Figure 5.21. Experiment III boxplots for first dataset.

cluded regarding using confirmation as single metric set to learn defect predictors:

• Defect predictors learnt by using only confirmation bias metrics as input data have

at least as high pd and balance values as the defect predictors learnt by using only

static code metrics or only churn metrics as input data. Moreover, higher pd values

are obtained for the first data set for both experiments.

• In the first experiment for the first data set, using only confirmation bias metrics

instead of only static code metrics and only churn metrics leads to lower false alarm

rates.

• However, in all these experiments for both data sets, learning defect predictors using

only confirmation bias metrics never leads to an average false alarm rate lower than

0.26.

• Despite this fact, balance value is never lower than those of defect predictors which

are learnt using either only static code metrics or only churn metrics.

92

Figure 5.22. Experiment III boxplots for first dataset, where log-filtering is used to

preprocess data.

5.4. Experiment IV: Learning Defect Predictors Using Incomplete

Confirmation Bias Metric Set

Unlike static code and churn metrics which can be retrieved automatically, collect-

ing confirmation bias metrics requires more effort and time. Therefore, defect prediction

models built using only static code or churn metrics may be preferred rather than defect

predictors which are built using only confirmation bias metrics, especially when compa-

rable prediction performances are obtained using both models. In such cases, it might be

a feasible choice to collect confirmation bias metrics of a certain percentage of developers

and to use an imputation technique to obtain imputed confirmation bias metrics that can

be used to learn defect predictors. Such an alternative can be considered as a solution

only if comparable performance results are obtained using imputed form of confirmation

bias metrics as input to defect prediction models.

Moreover, unlike static code and churn metrics, usage of confirmation bias met-

93

Figure 5.23. Experiment III boxplots for second dataset.

rics to learn defect predictors may confine defect prediction to a limited portion of the

software product. For instance, in the case of defect prediction at file granularity level,

each file F within each release R should be mapped with a group of developers Gd who

created and/or updated file F starting from its creation till code freeze date of release R.

Learning a defect predictor using confirmation bias metrics such that resulting predictor

covers each source file of the software, is possible only if confirmation bias metrics of

all developers who are mapped to file F are known. Even if the existence of a single

developer within developer group Gd with unknown results in the exclusion of file F .

Therefore, in such cases it is very likely to come up with a defect prediction model which

covers only a small percentage of source code files that make up the software product.

Such a scenario is inevitable as lifetime of the software being developed increases, since

some of the developers shall be replaced by new comers. As a result, it shall be impos-

sible to collect confirmation bias metrics of development team’s previous members. In

order to learn confirmation bias metric based defect predictors which cover the complete

software product and obtain comparable prediction performances, imputation techniques

are required.

94

Figure 5.24. Experiment III boxplots for second dataset, where log-filtering is used to

preprocess data.

In this section, we investigate whether it is possible to build defect predictors which

are learnt using incomplete confirmation bias metric set so that comparable prediction

performance results can still be obtained.

5.4.1. Data

We use the two data sets that were also used in Experiment III. Detailed information

regarding these two data sets were given in the previous subsection. However, unlike

Experiment III, defect predictors are built using only confirmation bias metrics.

5.4.2. Design

In this experiment, we use only standardized forms of confirmation bias metric

values to learn defect predictors. In the original data sets, confirmation bias metrics

of developers are known. As we have already stated, our goal in this experiment is

95

to compare the performance of defect predictors built using complete confirmation bias

metrics with the performance of prediction models which are learnt using incomplete

confirmation bias metric set. In order to make a comparison, we assume that confirmation

bias metrics of a subgroup of developers is unknown, which implies that confirmation bias

metrics of any file created and/or updated by any member of this subgroup of developers

is missing. Under this assumption for each complete data set, it is possible to create 2N−2

incomplete data sets, where N is the total number of developers whose confirmation bias

metric values are known. 2N is the total number of subsets of the set of developers with

known confirmation bias metrics. When we exclude the empty set and the complete set of

developers, we obtain 2N − 2 missing data configurations (i.e. data sets with incomplete

data).

For each incomplete data set, we employ Roweis’ Expectation Maximization Algo-

rithm to impute the missing data. The pseudo code explaining details of Roweis’ EM

Algorithm is given in Figure 3.2. Output of Roweis’ Algorithm is the imputed form of

the incomplete data set. We build defect prediction models using each of these imputed

confirmation bias metric sets as input. This results in the formation of 2N − 2 defect

predictors. Prediction performance of each of these predictors is compared with the

performance of the prediction model that is built using the complete confirmation bias

metric set.

The pseudo code for the formation of all missing data configurations for both data

sets is given in Figure 5.25, while the pseudo code in Figure 5.26 explains how each

missing data configuration is imputed using Roweis’ EM algorithm. In the pseudo code,

in Figure 5.26 a call to function ImputeMissingData() is made. As shown in Figure

3.2, function ImputeMissingData() which takes a missing data configuration as input

is the implementation of Roweis’s EM Algorithm. Finally, Näıve Bayes algorithm is used

to predict defects in each imputed data set. As a sampling method, under-sampling is

used to deal with imbalanced data problem.

Percentage of missing data (i.e. missing %) for each incomplete data set, that is

created using the algorithm 5.25, can be calculated as Ncomplete/(Ncomplete+Nmissing)x100.

In this simple formulation, Ncomplete is total number of complete entries in the data set,

96

MetricType = “Confirmation Bias Metrics”

Group[1] = “Project Group 1”; Group[2] = “Group 3”;

for all i in [1:1:2] do

DataSet[i] = DataSetOf(Group[i], MetricType);

% list of source file names in the first column of DataSet[i]

Files[i] = filesOf(DataSet[i])

% find developer group members of ith data set

Developers[i] = DevelopersOf(DataSet[i])

% find total numbers of members in the developer group of ith data set

N [i] = Size(Developers[i]);

% form the list of subgroups of the developer group of ith data set

DeveloperSubsets[i] = DeveloperSubsetsOf(Developers[i])

% for each missing data configuration

for all j in [1:1:2N [i] − 2] do

for all developer in DeveloperSubsets[i, :] do

for all k in [1:1:size(DataSet[i], 1)] do

fileName = DataSet[i][k][1]

if IsACommitterOf(developer, fileName) == TRUE then

for all t in [2:1:size(DataSet[i], 1)− 1] do

DataSet[i][k][t] = “missing”

end for

end if

end for

end for

end for

IncompleteDataSet[i][j]= DataSet[i]

end for

Figure 5.25. Pseudo code for generation of missing data configurations for data sets

“Project Group 1” and “Group 3”.

97

for all i in [1:1:2] do

% for each missing data configuration

for all j in [1:1:2N [i] − 2] do

ImputedDataSet[i][j] = ImputeMissingData(IncompleteDataSet[i][j])

end for

end for

Figure 5.26. Pseudo code for imputation of each missing data configuration.

and Nmissing corresponds to total number of entries with missing confirmation bias metric

values. Each entry in the data set corresponds to a source code file and it consists

of the confirmation bias metric values of the group of developers who created and/or

updated that file. Confirmation bias metric values of each developer is estimated from the

outcomes of confirmation bias tests conducted by us. In order to calculate confirmation

bias metric values of each developer group we use, the operators defined by the equations

5.3. Therefore, missing confirmation bias metrics of one or more developers from the

group of developers, who created and/or updated a source code file, automatically implies

that confirmation bias metrics for the developer group of that file are completely missing.

In other words, the entry in the data set corresponding to that file is completely missing.

5.4.3. Results and Discussions

As a result of Experiment IV, 2N − 2 prediction performance values (i.e. pd, pf

and balance) are obtained for each data set, where N is the total number of developers

who develop the software product for which defect prediction models are build. Since we

build defect predictors using imputed form of each missing data configuration of data sets,

this implies that 29 − 2 = 510 defect prediction models are learnt for the first data set,

while for the second data set this corresponds to 26 − 2 = 62 defect predictors. Missing

confirmation bias metric values of developer(s) correspond to a specific missing data

percentage (missing %). We categorized imputed forms of missing data configurations

based on the resulting missing % in the overall data set. For this purpose formed 9

98

Table 5.14. Defect prediction performance results for complete form of first data set.

Metric Type pd pf balance

Confirmation Bias 0.63 0.32 0.64

Static Code 0.58 0.34 0.61

Churn 0.61 0.39 0.58

Table 5.15. Defect prediction performance results for incomplete confirmation bias

metric values of the first data set as input.

Missing % pd pf balance

(0, 10] 0.8013 0.2834 0.7087

(10, 20] 0.7929 0.3029 0.6950

(20, 30] 0.7395 0.3118 0.6628

(30, 40] 0.7141 0.3419 0.6306

(40, 50] 0.7079 0.3804 0.6075

(50, 60] 0.6792 0.3424 0.6097

(60, 70] 0.6003 0.2136 0.6110

(70, 80] 0.6073 0.2856 0.5555

(80, 90] 0.6660 0.4263 0.4869

categories, such that a defect predictor built using a data set with missing % greater than

(i− 1) ∗ 10% and less than or equal to i ∗ 10% belongs to category Ci, where 1 ≤ i ≤ 9 .

Within each category Ci, we calculated the average of prediction performance results (i.e.

pd, pf , balance) of defect predictors which belong to that category. Table 5.16 and Table

5.18 show average pd, pf and balance values corresponding to each missing % category

for the first and second data sets respectively. Mean Square Error (MSE) values for the

imputed form of the first and second datasets are shown in Figure 5.15 and Figure 5.19,

respectively. As it can be seen from Table 5.16 and 5.18, increase in missing % leads to

a decrease in balance value.

The inverse relation between balance and missing percentage is also shown in the

upper left graphs in Figures 5.27 and 5.28. Pearson correlation between balance and

missing % is −0.9092 (p = 0.9955E − 171) for the first data set, while this value is

−0.8700 (p = 1.5794E − 018). As it can be seen in Figures 5.27 and 5.28, correlation

99

Table 5.16. MSE values for imputed form of incomplete confirmation bias metric values

for the first data set.

Missing % MSE

(0, 10] 1.0020

(10, 20] 1.5601

(20, 30] 1.5596

(30, 40] 1.6507

(40, 50] 1.7448

(50, 60] 1.3638

(60, 70] 0.8622

(70, 80] 0.9169

(80, 90] 0.9801

Table 5.17. Defect prediction performance results for complete form of the second data

set.

Metric Type pd pf balance

Confirmation Bias 0.64 0.26 0.62

Static Code 0.58 0.34 0.61

Churn 0.62 0.12 0.69

Table 5.18. Defect prediction performance results for incomplete confirmation bias

metric values of the second data set as input.

Missing % pd pf balance

(0, 10] 0.8013 0.2834 0.7087

(10, 20] 0.7929 0.3029 0.6950

(20, 30] 0.7395 0.3118 0.6628

(30, 40] 0.7141 0.3419 0.6306

(40, 50] 0.7079 0.3804 0.6075

(50, 60] 0.6792 0.3424 0.6097

(60, 70] 0.6003 0.2136 0.6110

(70, 80] 0.6073 0.2856 0.5555

(80, 90] 0.6660 0.4263 0.4869

100

Table 5.19. MSE values for imputed form of incomplete confirmation bias metric values

for second data set.

Missing % MSE

(0, 10] 1.0020

(10, 20] 1.5601

(20, 30] 1.5596

(30, 40] 1.6507

(40, 50] 1.7448

(50, 60] 1.3638

(60, 70] 0.8622

(70, 80] 0.9169

(80, 90] 0.9801

Table 5.20. Pearson correlation results for missing % vs. pd, pf, balance and MSE.

Data Set # 1 Data Set # 2

Missing % vs. ρ p ρ p

balance -0.9092 0.9955E-171 -0.8700 1.5794E-018

pd -0.4120 1.0674E-19 -0.5500 9.3399e-006

pf -0.2287 1.0596E-06 0.2090 0.1188

MSE 0.2227 2.33E-06 -0.6566 2.9167e-008

between missing % and pd, pf and MSE values are not as high as the correlation values

obtained for the relation between missing % and balance values for both first and second

data sets. Table 5.20 list Pearson correlation values for missing % versus balance, pd, pf

and MSE values respectively, for both first and second data sets used in this experiment.

According to the results given in Table 5.14 and 5.16 for the first data set, defect

predictors which are built using confirmation bias metrics data with missing % up to 30%

results in comparable balance values with the balance value of the defect predictor built

using complete input data. Although balance values decrease as missing % increases,

even usage of input data with missing % within the range 80%-90% results in defect

predictors having balance values the comparable with general performance values of rule-

based prediction models [24].

101

Figure 5.27. Missing data percentage versus balance, pd, pf and MSE for the first data

set.

As it is shown in Table 5.17 and 5.18, results obtained for the second data set are

in line with the results obtained for the first data set. Moreover, up to 40% missing data

percentage, average performance results of the defect predictors learning from incomplete

data outperforms prediction performance results of the defect predictor that uses com-

plete confirmation bias metrics as input. Within the missing data percentage range of

40%-70%, still the performance results obtained are comparable with performance of the

original prediction model. Finally, prediction performance within missing data percent-

age range of 70%-90% performance results are comparable with prediction performance

of rule-base defect predictors.

102

Figure 5.28. Missing data percentage versus balance, pd, pf and MSE for the first data

set.

5.5. Threats to Validity

5.5.1. Threats to Validity for Definition and Extraction of Confirmation Bias

Metrics

In order to avoid mono-method bias, which is one of the threats to construct validity,

we used more than a single version of a confirmation bias measure. In other words, we

defined a set of confirmation bias metrics. In order to form our confirmation bias metric

set, we made an extensive survey in cognitive psychology literature covering significant

studies which have been conducted since the first introduction of the term “confirmation

bias” by Wason in 1960 [1]. Moreover, we made a definition of confirmation bias in

relation to software development life cycle. Since our metric definition and extraction

methodology is iterative, we were able to improve contents of our metric set through

pilot study and datasets collected during our previous related research [72], [73], [74]. As

103

a result, we were able to demonstrate that multiple measures of key constructs we use

behave as we theoretically expect them to.

Another threat to construct validity is interaction of different treatments. Before

administration of confirmation bias test to groups of participants, we ensured that none

of the participants were involved simultaneously in several other programs designed to

have similar effects.

Evaluation apprehension is a social threat to construct validity. Many people are

anxious about being evaluated. Moreover, some people are even phobic about testing and

measurement situations. In order to avoid participants’ poor performance due to their

apprehension and not to exert psychological pressure on them, before solving both written

question set and interactive question, participants were informed about the fact that the

questions they are about to solve do not aim to measure IQ or any related capability.

Participants were also told that results shall not be used in their company’s performance

evaluations and their identity shall be kept anonymous. Moreover, participants were told

that there is no time constraint to complete the questions, although some of our metrics

are requires measurement of time it takes to answer questions.

Another social threat to construct validity is the expectancies of the researcher [75].

There are many ways a researcher can bias the results of a study. Hence, the outcomes

of both written question set and interactive question were evaluated by two researchers

independently, one of the researchers not actively being involved in the study. She was

given a tutorial about how to evaluate the confirmation bias metrics from the outcomes

of the written question set and interactive question. However, in order not to induce a

bias she was not told about what the desired answers to the questions are. The inter-

rater reliability was found to be high, for evaluation of each confirmation bias metric.

Average value for Cohen’s kappa was 0.92. During administration of the confirmation

bias test, explanations made to the participants before they started solving the ques-

tions did not include any clue about ideal responses. Moreover, while participants were

solving interactive question an independent researcher attended the session in order to

observe whether the researcher in charge affects participants’ response or not through

his/her gestures or facial expressions. Dialogues, which took place during solution of the

104

interactive question, were also recorded. These recordings were later examined to find

out whether researcher in charge gives any clues to the participant about the expected

result. Parts of the datasets, which were found to be affected by the expectancies of the

researcher, were excluded from the empirical investigation.

In order to avoid internal threats to validity, for all project groups we selected test

dates, when workload of developers are not intense. Within any of the groups, there was

no event in between the confirmation bias tests that can affect subjects’ performance.

Members of the developer group corresponding to the first dataset took confirmation

bias test, which consists of written question set and interactive question, within a week.

Remaining developer groups took the confirmation bias test in a single day. As a result,

within a project group for each member we managed to create similar conditions while

administering confirmation bias test. If one group member were tested when work load

and time pressure were intense, whereas another member of the same group were tested

under much more suitable and relaxed conditions, then our methodology would not have

been reliable. Another attempt to avoid internal validity was to administer confirmation

bias test in environments, which are isolated from distraction factors such as noise.

5.5.2. Threats to Validity in General

We consider three major threats to the validity of our experiments:construct, in-

ternal, external. To avoid the construct validity threats during Experiments III and IV,

we used in terms of measurement artifacts, we used three popular performance measures

in software defect prediction research: probability of detection (pd), probability of false

alarm rates (pf) and balance values (bal). In order to avoid internal validity threats,

in Experiments III and IV, we used 10-fold cross validation to avoid sampling bias in

our experiments. In order to overcome ordering effects we shuffled data 10 times and

10-fold cross validation is used for each ordering configuration of the input data. As a

result, during each experiment Näıve Bayes algorithm is executed 100 times, for each

data set. For statistical validity, we used Chi Square Test [71, 76–78] for Experiment

I while analyzing the effects of some factors on confirmation bias and we used Mann-

Whitney U test for performance comparison of the defect prediction models which we

built for Experiments III and IV. As another attempt to avoid internal validity threats,

105

we performed written and interactive tests, which we use to collect confirmation bias

metrics, within a week for the first group and within a single day for the second group,

respectively. As a result, within a project group for each member we managed to cre-

ate similar testing conditions. Otherwise, if one group member were tested when work

load and time pressure were intense, whereas another member of the same group were

tested under much more suitable and relaxed conditions, then our methodology would

not have been reliable. For both project groups we selected test dates, when workload of

developers are not intense. Within any of the two groups, there was no event in between

the confirmation bias tests that can affect subjects’ performance. Moreover, both testing

environments were isolated from distraction factors such as noise. During Experiments

I, in terms of internal validity our quasi-independent variables are experience, education,

hypothesis testing and reasoning , and software development methodology.

In order to externally validate our results, we collected data from 7 different software

development companies located in two different countries. Moreover, we tried to keep

the variety of the domains in which these companies are specialized as high as possible.

However, since Experiments II, III, and IV we require information regarding source file

commit logs retrieved from version management systems, our analysis were confined with

participant groups for which such data was available. Moreover, since most companies

do not keep list of defected files after each testing phase of the software product, we

had to use data sets from only two developer groups. Yet, up to a certain extend we

managed to cover variety in software development domain since one data set belongs to a

telecommunication company while the other belongs to an ISV specialized in developing

ERP solutions.

106

6. CONCLUSIONS

6.1. Summary of Results

Results of Experiment I, showed that hypothesis testing and reasoning skills have a

significant effect in circumventing negative effects of confirmation bias. Confirmation bias

levels of individuals who have been trained in logical reasoning and mathematical proof

techniques are significantly lower. In other words, given a statement such individuals show

tendency to refute that statement rather than immediately accepting its correctness. A

significant effect of experience in software development/testing has not been observed.

This implies that training in organizations is focused on tasks rather than personal skills.

Considering that the percentage of people with low confirmation bias is very low in the

population [1, 62] an organization should find ways to improve basic logical reasoning

and strategic hypothesis testing skills of their

In addition to the fact that both Groups 2∗ and 8∗ both outperformed in confir-

mation bias tests compared to members of the Groups 1∗ and 7∗, Group 8∗ members

also outperforms members of Group2∗. Individuals, who are experienced but inactive in

software development/testing, score better in confirmation bias tests than active expe-

rienced software developers/testers. This implies that companies should balance work

schedule of testers similar to jet pilots and allow them periodically to take some time off

the regular routine.

Results of Experiment II empirically showed the effect of confirmation bias on soft-

ware developers and testers. The amount of reduction in the variability of defect rate

obtained by using the linear combinations of confirmation bias metrics is less than 50%.

This amount is given by R2 = 0.4477. Adjusted R2 statistic is equal to 0.4243. The value

of R2 for prediction is 0.3264, which means that we could only expect the constructed

model to explain only about 32% of the variability in predicting new observations. Re-

sults show that although confirmation bias metrics are not direct indicators of defect

ratio of software developer groups, they affect software defect density. Moreover, in our

case study during the prediction of the defect rate, confirmation bias metrics explain 32%

107

of the variability the constructed linear regression model which is a significant amount

in social sciences. If we take into account the fact that defect rate is affected by pro-

cesses, and many human aspects other than confirmation bias, the results obtained are

reasonable. Among human aspects affecting software defect, we can name cognitive bi-

ases such as representativeness, availability, adjustment and anchoring in addition to the

social interactions. Therefore the capability of confirmation bias metrics to explain 32%

of the variability in defect rate is a promising result. Besides software developers, results

of Experiment II showed that number of post-release defects in source files is directly

proportional to confirmation bias levels of testers who test those source files.

Defect prediction models we built during Experiment III using only confirmation

bias metrics gave prediction performance results comparable to performance results of

the defect predictors which we built using only either static code or churn bias metrics.

Finally, in Experiments IV we tackled missing data problem. The results of this last

experiment showed that defect predictors which use imputed confirmation bias metric

data as input gives comparable prediction performance results when compared with the

performance of defect predictors built using complete confirmation bias metric values as

input. Static code metrics we used to learn defect prediction models include Lines of Code

(LOC), Halstead [79] and McCabe [80] metrics. In other words, we have covered the set

of all major metrics which can be extracted from source code regarding code complexity

based on program flow and readability of the code. Similarly, the churn metric set, which

we have employed in our analysis, contains extensive information about the changes

in source code during the implementation phase. We extracted significant portion of

information regarding code change history from version management systems.

On the other hand, confirmation bias metrics represent only a single aspect about

people’s thought processes. Despite this, according to our empirical findings using only

confirmation bias metrics to learn defect predictors yields comparable performance re-

sults. Moreover, the phenomena of cognitive biases, which is only one dimension re-

garding people’s thought processes, comprise other bias types such as representativeness,

availability, adjustment and anchoring in addition to confirmation bias. In cognitive psy-

chology, the causes of biases have been extensively investigated in various domains over

the past three decades since the introduction of the concept of bias by Kahneman and

108

Tversky [47]. In addition to cognitive biases, concepts widely studied in cognitive science

such as attention, memory, reasoning, motivation, social cognition are also among the

cognitive aspects which require special attention. Hence, there is extensive amount of

findings in the field of cognitive psychology which can be employed to form a metric suite

covering developers’ cognitive aspects which have significant effect on software defect

density, hence on software quality.

We are aware of the fact that our research is empirical and as stated by Popper,

we cannot verify a theory with limited number of empirical findings, yet falsify it [81].

Hence, we need to be careful while generalizing our experimental results in order not

to be subject to confirmation bias we have been discussing in this paper. However,

our empirical findings suggest that the effects of cognitive aspects and people’s thought

processes on software quality deserves to be investigated. Moreover, obtaining comparable

performance results in software defect prediction by confirmation bias metrics implies that

further investigation of people’s thought processes may help us to overcome the ceiling

effect in defect prediction performance.

6.2. Contributions

There are three ingredients of software projects, which are product, process and

people. Performance increase of defect predictors depends on the enhancement of input

data content. Although product and process metrics have been widely used in software

defect prediction, there is not much work regarding people metrics. In spite of the fact

that confirmation bias is a single aspect of people who consists of many other aspects

as well, defect predictors built using only confirmation bias metrics give prediction per-

formance results comparable with those of traditional defect prediction models which

are built using either static code or churn metrics. Our findings very strongly support

the claim that the ceiling effect in the performance of software developers can only be

overcome by increasing the information content of prediction models using people metrics.

However, unlike static code and churn metrics it takes time and effort to collect

people related metrics. In our research, we collected confirmation bias metrics by con-

ducting written and interactive tests to software professionals. Especially interactive test

109

may result in spending significant amount of effort for confirmation bias metric collec-

tion. In this case, confirmation bias metrics seem to loose their attraction. However, in

our research we proposed a methodology to build confirmation bias metrics based defect

prediction models which can learn from incomplete confirmation bias metrics data. Using

this methodology, it is sufficient to built defect prediction model for a software product

by conducting confirmation bias tests only to 70% of the development team. Moreover,

event when 20-30% of the development team is covered during the collection of confirma-

tion bias metrics performance results obtained are better than the performance of rule

based defect predictors [24].

In addition, as the lifetime of a software being developed increases number of de-

velopers who used to work in the project increases. Since it is impossible to conduct

confirmation bias tests to previous members of the development team, defect predictors

build using only confirmation bias metrics inevitably cover only a portion of the software

product being developed. As the number of ex-top developers increases this portion also

decreases. The methodology we proposed in Experiment IV also solves this problem by

treating confirmation bias metrics of the groups containing at least one ex-developer as

missing data.

6.3. Future Directions

Inclusion of people aspects which affect software defect density as input data to

prediction models is essential to overcome the performance ceiling in defect prediction

models. For this purpose, people aspects that have the potential to affect the introduction

of defects into software must be identified. After the identification of those potential

aspects, empirical studies need to be carried out to ensure the effect of these people

aspects on software defect density. Moreover, a methodology needs to be introduced to

measure/quantify these people aspects.

In this research, we concentrated on confirmation bias and identified a methodology

to define confirmation bias metrics. As mentioned previously, collection of these metrics

require more effort unlike static code and churn metric that can be collected by using

available tool. As future work, the goal of this study to automate the process of conduct-

110

ing confirmation bias tests as well as the estimation of confirmation bias metric values

from the test outcomes. This automation tool shall give us the opportunity to gather

more data from software development companies specialized in various domains in dif-

ferent countries. We aim to increase the variety and quantity of our data set to replicate

our experiments, since we are aware of the fact that as human beings we ourselves are

also under the risk of being influenced by the confirmation bias. In addition, we also

aim to extend our defect prediction models to cover other cognitive bias types such as

availability, representativeness and adjustment and anchoring [47, 62, 82].This software

will help us to improve our metric suite to cover other relevant cognitive aspects that are

briefly mentioned above. Since our software has been designed to be a decision support

tool, it shall also be able to analyze the metrics and make recommendations to software

professionals.

The objective of this research in the long run is to help software development

managers make specific resource allocation decisions by considering metrics related to

people’s thought processes. Such a metric scheme will help managers to determine the

right person to test the defective parts of the software. As a result, guidance of metrics

related to people’s thought processes may decrease the uncertainty in Human Resource

(HR) related decisions up to a significant extent.

111

APPENDIX A: Interactive Test (English Version)

There are English and Turkish versions of the interactive test. We present the

English version of the interactive test in Figure A.1, A.2 and A.3.

Figure A.1 shows the first page of the interactive test, where participant is supposed

to fill in his/her personal information. Requested personal information consists of age,

gender, educational status as well as years of experience in development and testing.

Second page of the interactive test is shown in Figure A.2. The first information given

about the interactive test is that this test does not aim to measure IQ or performance of a

subject. This is followed by the detailed information about the procedure followed during

the interactive test. Third page is shown in Figure A.3. On this page, participant writes

down triples of numbers and reason of choice for each triple. According to the feedback

given by the examiner, third or fourth columns are marked. If a triple of numbers

conforms to the rule which is supposed to be discovered by the participant, then the

examiner marks the third column. Otherwise, examiner marks the fourth column to

indicate that the corresponding triple of numbers does not conform to the rule which is

supposed to be discovered. At the end of the third page, there writes the following: “If

you want extra pages, you can request from the examiner.” This implies that there is

no restriction on the total number of triples given by the participant. However, as it is

indicated on the second page of the interactive test, which is shown in Figure A.2, the

participant should try to find the correct rule by giving as minimum triples of numbers

as possible, in the ideal case.

112

Figure A.1. Interactive test personal information page.

113

Figure A.2. Interactive testing procedure information page.

114

Figure A.3. Interactive test record sheet.

115

APPENDIX B: Written Test (English Version)

There are both English and Turkish versions of the written test. In Appendix B.1

and B.2, we present English versions of the General Written Test and written test with

software development/testing theme, respectively.

Written test consists of two parts: The first part is the General Written Test,

whereas the second part is the test with software development/testing theme. The ques-

tions which the general written test comprises are given in Figure B.2, B.3, B.4, B.5, B.6,

B.7, B.8 and B.9. We present the questions of the written test with software develop-

ment/testing theme in Figure B.10, B.11, B.12, B.13 and B.14.

B.1. General Written Test (English Version)

Information about the General Written Test is given in Figure B.1. Firstly, it is

indicated that the test does not aim to measure IQ or performance of the examinee (par-

ticipant). This statement is also indicated in the information page of the interactive test

in Figure A.1. What must be taken into account by the participant regarding the General

Written Test is also mentioned on the test’s information page. Finally, information page

contains the written test procedure. On the last page, the participant is reminded to

request the written test with software development/testing from the examiner after (s)he

has completed the General Written Test. The last page of the General Written Test is

shown in Figure B.9.

B.2. Written Test with Software Development/Testing Theme (English

Version)

Written test with software development/testing theme consists of eight questions.

Similar to the questions in the General Written Test, more than one choice might be

selected as the answer of each question. Test duration is recorded on the first page of the

test.

116

Figure B.1. General written test information page.

117

Figure B.2. General written test (first page).

118

Figure B.3. General written test (second page).

119

Figure B.4. General written test (third page).

120

Figure B.5. General written test (fourth page).

121

Figure B.6. General written test (fifth page).

122

Figure B.7. General written test (sixth page).

123

Figure B.8. General written test (seventh page).

124

Figure B.9. General written test (eighth page).

125

Figure B.10. Written Test with software development/testing theme (first page).

126

Figure B.11. Written Test with software development/testing theme (second page).

127

Figure B.12. Written Test with software development/testing theme (third page).

128

Figure B.13. Written Test with software development/testing theme (fourth page).

129

Figure B.14. Written Test with software development/testing theme (fifth page).

130

REFERENCES

1. Wason, P. C., “On the Failure to Eliminate Hypotheses in a Conceptual Task”,

Quarterly Journal of Experimental Psychology , Vol. 12, pp. 129–140, 1960.

2. Poletiek, F., Hypothesis Testing Behavior (Essays in Cognitive Psychology), Psychol-

ogy Press Ltd., East Sussex, 2001.

3. Harrold, M., “Testing: A Roadmap”, Proceedings of the Conference on the Future of

Software Engineering , pp. 61–72, ACM, New York, NY, 2000.

4. Lessmann, S., B. Baesens, C. Mues, and S. Pietsch, “Benchmarking Classification

Models for Software Defect Prediction: A Proposed Framework and Novel Findings”,

IEEE Transactions on Software Engineering , Vol. 34, No. 4, pp. 485–496, 2008.

5. Menzies, T. Z., C. J. Hihn, and K. Lum, “Data Mining Static Code Attributes

to Learn Defect Predictors”, IEEE Transactions on Software Engineering , Vol. 33,

No. 1, pp. 2–13, 2007.

6. Menzies, T., B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Implications of

Ceiling Effects in Defect Predictors”, Proceedings of the 3rd Workshop on Predictive

Models in Software Engineering , 2008.

7. Teasley, B., L. M. Leventhal, and D. S. Rohlman, “Positive Test Bias in Software

Engineering Professionals: What is Right and Whats Wrong”, C.R. Cook, J. S. and

J. C. Spohrer (editors), Empirical Studies of Programmers: Fifth Workshop, 1993.

8. Teasley, B. F., L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman, “Why Software

Testing is Sometimes Ineffective: Two Applied Studies of Positive Test Strategy”,

Journal of Applied Psychology , Vol. 79, pp. 142–155, 1994.

9. McConnell, S., Code Complete, Microsoft Press, Redmond, 2004.

10. Munson, J. C. and T. M. Khoshgoftaar, “Detection of Fault Prone Programs”, IEEE

Transactions on Software Engineering , Vol. 18, pp. 423–433, 1992.

11. Khoshgoftaar, T., A. Bullard, Lofton, and K. Gao, “An Application of a Rule-Based

Model in Software Quality Classification”, Proceedings of the 6th International Con-

ference on Machine Learning and Applications , 2007.

131

12. Khoshgoftaar, T. and E. B. Allen, “Predicting Fault-Prone Software Modules in Em-

bedded Systems with Classification Trees”, Proceedings of the 4th IEEE International

Symposium on High-Assurance Systems Engineering , 1999.

13. Khoshgoftaar, T. M. and R. M. Szabo, “Using Neural Networks to Predict Software

Faults During Testing”, IEEE Transactions on Reliability , Vol. 45, pp. 456–462, 1996.

14. Nagappan, N., “Toward a Software Testing and Reliability Early Warning Metric

Suite”, Proceedings of the 26th International Conference on Software Engineering ,

2004.

15. Bell, O. T. J., R. M. and E. J. Weyuker, “Looking for Bugs in All the Right Places”,

Proceedings of the 2006 International Symposium on Software Testing and Analysis,

2006.

16. Ostrand, T. J., Weyuker, and R. M. Bell, “Where the Bugs are”, Proceedings of the

2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,

2004.

17. Ostrand, T. J., J. Weyuker, Elaine, and R. M. Bell, “Automating Algorithms for the

Identification of Fault-Prone Files”, Proceedings of the 2007 International Symposium

on Software Testing and Analysis , 2007.

18. Tosun, A., B. Turhan, and A. Bener, “Ensemble of Software Defect Predictors: A

Case Study”, Proc. of 2nd International Symposium on Empirical Software Engi-

neering and Measurement (ESEM 2008), Kaiserslautern, Germany, October 2008.

19. Drummond, C. and R. C. Holte, “C4.5, Class Imbalance and Cost Sensitivity: Why

Under-Sampling Beats Over-Sampling”, Proceedings of 2nd Workshop on Learning

from Imbalanced Datasets , 2003.

20. Kamei, Y., A. Monden, T. Matsumoto, and K. Matsumoto, “The Effects of Over and

Under-Sampling on Fault Prone Module Detection”, Proceedings of the 1st Interna-

tional Symposium on Empirical Software engineering and Measurement , 2007.

21. Liu, Y. and T. M. Khoshgoftaar, “Building Decision Tree Software Quality Classifi-

cation Models Using Genetic Programming”, Proc. of the Genetic and Evolutionary

Computation Conference (GECCO 2003), Chicago, IL, USA, July 2003.

132

22. Khoshgoftaar, T. M., J. Van Hulse, and A. Napolitano, “Supervised Neural Network

Modeling: An Empirical Investigation into Learning from Imbalanced Data with

Labeling Errors”, IEEE Transactions on Neural Networks , Vol. 21, No. 5, pp. 813–

830, 2010.

23. Turhan, B. and A. Bener, “Analysis of Naive Bayes’ Assumptions on Software Fault

Data: An Empirical Study”, Data and Knowledge Engineering , Vol. 68, No. 2, pp.

278–290, 2009.

24. Tosun, A., B. Turhan, and A. Bener, “Practical Considerations in Deploying AI for

Defect Prediction: A Case Study within the Turkish Telecommunication Industry”,

Proc. of 5th International Conference on Predictor Models in Software Engineering

(PROMISE 2009), ACM. New York, Vancouver, Canada, May 2009.

25. Nagappan, N. and T. Ball, “Using Software Dependencies and Churn Metrics to

Predict Field Failures”, Proceedings of the 1st Symposium on Empirical Software

Engineering and Measurement , 2007.

26. Jiang, Y., B. Cuki, T. Menzies, and N. Bartlow, “Comparing Design and Code Met-

rics for Software Quality Prediction”, Proceedings of the 4th International Workshop

on Predictor Models in Software Engineering , 2008.

27. Zhao, M., C. Wohlin, N. Ohlsson, and M. Xie, “A Comparison between Software

Design and Code Metrics for the Prediction of Software Fault Content”, Information

and Software Technology , Vol. 40, pp. 801–809, 1998.

28. Zimmerman, T. and N. Nagappan, “Predicting Subsystem Failures Using Depen-

dency Graph Complexities”, Proceedings of the 18th IEEE International Symposium

on Software Reliability , 2007.

29. Misirli-Tosun, A., B. Caglayan, A. Mirasky, A. Bener, and N. Ruffolo, “Different

Strokes for Different Folks: A Case Study on Software Metrics for Different Defect

Categories”, Proceedings of the 2nd Workshop on Emerging Trends in Software Met-

rics , 2011.

30. Turhan, B., G. Kocak, and A. Bener, “Software Defect Prediction Using Call Graph

Based Ranking (CGBR) Framework”, Proc. of. 34th Intl. EUROMICRO Software

133

Engineering and Advanced Applications Conference (EUROMICRO 2008), Parma,

Italy, September 2008.

31. Hannay, J. E., E. Arisholm, H. Engvik, and D. I. K. Sjoberg, “Effects of Personality on

Paired Programming”, IEEE Transactions on Software Engineering , Vol. 36, No. 1,

2010.

32. Acuna, S. T., M. Gomez, and N. Juristo, “How Do Personality, Team Processes and

Task Characteristics Relate to Job Satisfaction and Software Quality?”, Information

and Software Technology , Vol. 51, No. 3, pp. 627–639, March 2009.

33. Stacy, W. and J. MacMillan, “Cognitive Bias in Software Engineering”, Communi-

cation of the ACM , Vol. 38, No. 6, pp. 57–63, 1995.

34. Parsons, J. and C. Saunders, “Cognitive Heuristics in Software Engineering: Apply-

ing and Extending Anchoring and Adjustment to Artifact Reuse”, IEEE Transactions

on Software Engineering , Vol. 30, No. 12, pp. 873–888, 2004.

35. Mair, C. and M. Shepperd, “Human Judgement and Software Metrics: Vision for

the Future”, Proceeding of the 2nd international workshop on Emerging trends in

software metrics (WETSoM ’11), New York, NY, USA, 2011.

36. Jorgensen, M., “Identification of More Risks Can Lead to Increased Over-Optimism

and Over-Confidence in Software Development Effort Estimates”, Journal of Infor-

mation and Software Technology , Vol. 52, pp. 506–516, 2010.

37. Jorgensen, M., “Estimation on Software Development Work Effort: Evidence on Ex-

pert Judgement and Formal Models”, International Journal of Forecasting , Vol. 23,

pp. 449–462, 2007.

38. Graves, T. L., A. F. Karr, J. S. Marron, and H. Siy, “Predicting Fault Incidence Using

Software Change History”, IEEE Transactions on Software Engineering , Vol. 26, pp.

653–661, 2000.

39. Weyuker, O. T. J., Elaine J. and R. M. Bell, “Do too Many Cooks Spoil the Broth?

Using the Number of Developers to Enhance Defect Prediction Models”, Empirical

Software Engineering , Vol. 13, No. 5, October 2008.

134

40. Mockus, A. and D. M. Weiss, “Predicting Risk of Software Changes”, Bell Labs

Technical Journal , pp. 169–180, 2000.

41. Weyuker, O. T. J., E.J. and R. M. Bell, “Using Developer Information as a Factor

for Fault Prediction”, Proceedings of the 1st International Workshop on Predictor

Models in Software Engineering , 2007.

42. Ostrand, T. J., E. J. Weyuker, and R. M. Bell, “Programmer-Based Fault Predic-

tion”, Proceedings of the 3rd Workshop on Predictor Models in Software Engineering ,

2010.

43. Meneely, A., L. Williams, W. Snipes, and J. Osborne, “Predicting Failures with

Developer Networks and Social Network Analysis”, Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering , 2008.

44. Pinzger, M., N. Nagappan, and B. Murphy, “Can Developer-Module Networks Pre-

dict Failures?”, Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering , 2008.

45. Bird, C., N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting It All To-

gether: Using Socio-Technical Networks to Predict Failures”, Proceedings of the 17th

International Symposium on Software Reliability Engineering , 2009.

46. Roweis, S., “EM Algorithms for PCA and SPCA”, in Advances in Neural Information

Processing Systems , pp. 626–632, MIT Press, 1998.

47. Kahneman, D., P. Slovic, and A. Tversky, Judgment under Uncertainty: Heuristics

and Biases , Cambridge University Press, New York, New York, 1982.

48. Poletiek, F., “Paradoxes of Falsification”, Quarterly Journal of Experimental Psy-

chology , Vol. 49A, pp. 447–462, 1996.

49. McDonald, J., “Is Strong Inference Superior to Simple Inference?”, Syntheses ,

Vol. 92, pp. 261–282, 1992.

50. Evans, J. S. B. T. and J. S. Lynch, “Matching Bias in the Selection Task”, British

Journal of Psychology , Vol. 64, No. 3, pp. 391–397, August 1973.

135

51. Reich, S. S. and P. Ruth, “Wason’s Selection Task: Verification, Falsification and

Matching”, British Journal of Psychology , Vol. 73, pp. 395–405, 1982.

52. Wason, P. C. and D. Shapiro, “Natural and Contrieved Experience in a Reasoning

Problem”, Quarterly Journal of Experimental Psychology , Vol. 23, pp. 63–71, 1971.

53. Griggs, R. A. and J. R. Cox, “The Elusive Thematic Materials Effect in Wasons

Selection Task”, British Journal of Psychology , Vol. 73, pp. 407–420, 1982.

54. Rumelhart, D. E., Schemata: The Building Blocks of Cognition, In “Theoretical

Issues in Reading Comprehension”, Lawrance Erlbaum Associates Inc., Hillsdale,

NJ, 1980.

55. Cosmides, L., “The Logic of Social Exchange: Has Natural Selection Shaped How

Humans Reason? Studies with Wasons Selection Task”, Cognition, Vol. 31, pp. 187–

276, 1989.

56. Manktelow, K. I. and D. E. Over, Inference and Understanding: A Philosophical and

Psychological Perspective, London, 1990.

57. Cheng, P. W. and K. J. Holyoak, “Pragmatic Reasoning Schemas”, Cognitive Psy-

chology , Vol. 17, pp. 391–416, 1985.

58. Johnson-Laird, P. and J. M. Tridgell, “When Negation is Easier than Affirmation”,

Quarterly Journal of Experimental Psychology , Vol. 24, pp. 87–91, 1972.

59. Manktelow, K. I. and J. S. B. T. Evans, “Facilitation of Reasoning by Realism: Effect

or Non-Effect?”, British Journal of Psychology , Vol. 70, pp. 477–488, 1979.

60. Griggs, R. A., The Role of Problem Content in the Selection Task and in the THOG

Problem. In “Thinking and Reasoning: Psychological Approaches”, London, 1983.

61. Cox, J. R. and R. A. Griggs, “The Effects of Experience on Performance in Wasons

Selection Task”, Memory and Cognition, Vol. 10, pp. 496–502, 1982.

62. Evans, J. S. B. T., S. E. Newstead, and R. M. J. Byrne, Human Reasoning: The Psy-

chology of Deduction, Lawrence Erlbaum Associates Publishers, East Sussex, 1993.

63. Hilgard, E. R., “A Summary and Evaluation of Alternative Procedures for the Con-

struction of Vincent Curves”, Psychology Bulletin, Vol. 35, pp. 282–297, 1938.

136

64. Alpaydin, E., Introduction to Machine Learning , The MIT Press, Cambridge, 2004.

65. Little, R. J. A. and D. B. Rubin, Statistical Analysis with Missing Data, John Wiley

& Sons Inc., New Jersey, 2002.

66. Bell, R., Y. Koren, and C. Volinsky, “Modeling Relationships at Multiple Scales

to Improve Accuracy of Large Recommender Systems”, ACM Int. Conference on

Knowledge Discovery and Data Mining (KDD’07), 2007.

67. Bell, R. M., J. Bennet, Y. Koren, and C. Volinsky, “The Million Dollar Programming

Prize”, IEEE Spectrum, pp. 28–33, May 2009.

68. Bell, R. M. and Y. Koren, “Lessons from the Netflix Prize Challenge”, SIGKDD

Explorations , Vol. 9, No. 2, pp. 75–79, 2007.

69. Kocaguneli, E., A. Tosun, A. Bener, B. Turhan, and B. Caglayan, “Prest: An intel-

ligent Software Metrics Extraction, Analysis and Defect Prediction Tool”, 21st In-

ternational Conference on Software Engineering and Knowledge Engineering (SEKE

2009), Boston, USA, July 2009.

70. Montgomery, D. C., Design and Analysis of Experiments , John Wiley and Sons, Inc.,

New Jersey, 2009.

71. Gravetter, F. J. and L. B. Wallnau, Statistics for Behavioral Sciences , Wadsworrth

Cengage Learning, Belmont, California, 2009.

72. Calikli, G., A. Bener, and B. Arslan, “An Analysis of the Effects of Company Culture,

Education and Experience on Confirmation Bias Levels of Software Developers and

Testers”, Proceedings of 32nd International Conference on Software Engineering ,

2010.

73. Calikli, G., B. Arslan, and A. Bener, “Confirmation Bias in Software Development

and Testing: An Analysis of the Effects of Company Size , Experience and Reasoning

Skills”, Proceedings of the 22nd Annual Psychology of Programming Interest Group

Workshop, 2010.

74. Calikli, G. and A. Bener, “Empirical Analyses Factors Affecting Confirmation Bias

and the Effects of Confirmation Bias on Software Developer/Tester Performance”,

137

Proceedings of 5th International Workshop on Predictor Models in Software Engi-

neering , 2010.

75. Cook, D., Thomas and D. T. Campbell, Quasi-Experimentation: Design and Analysis

Issues for Field Setting , Houghton Mifflin Company, Boston, Boston, 1979.

76. Cohen, J., Statistical Power Analysis for the Behavioral Sciences , Lawrance Erlbaum

Associates, Publishers, New Jersey, 1988.

77. Cohen, J., P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple Regres-

sion/Correlation Analysis for the Behavioral Sciences, Lawrance Erlbaum Associates

Publishers, New Jersey, 2003.

78. Cohen, J., “A Power Primer”, Psychology Bulletin, Vol. 112:1, pp. 155–159, 1992.

79. Halstead, M., Elements of Software Science, Elsevier, 1977.

80. McCabe, T., “A Complexity Measure”, IEEE Transactions on Software Engineering ,

Vol. 2, pp. 308–320, 1976.

81. Popper, K., The Logic of Scientific Discovery , Routledge Classics, London, 1959.

82. Johnson-Laird, P. and P. C. Wason (editors), Thinking: Readings in Cognitive Sci-

ence, Cambridge University Press, London, 1977.

