IMPROVING PERFORMANCE OF DEFECT PREDICTORS USING
CONFIRMATION BIAS METRICS

by
Handan Giil Calikh
B.S., Mechanical Engineering, Bogazici University, 2000
M.S., Computer Engineering, Bogazici University, 2004

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering
Bogazici University

2011

IMPROVING PERFORMANCE OF DEFECT PREDICTORS USING
CONFIRMATION BIAS METRICS

APPROVED BY:

Prof. Ayse Bener

(Thesis Co-supervisor)

Prof. Oguz Tosun

(Thesis Co-supervisor)

Prof. H. Levent Akin

Prof. Fikret Giirgen —

Prof. Ali Tekcan

Burak Turhan, Ph.D.

DATE OF APPROVAL: 21.12.2011

Dedicated to my parents Hilal and Omer
Yiicel Calikl

v

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Prof. Ayse Bener for giving me the op-
portunity to do research in an interdisciplinary field such as human aspects in software
engineering. She believed in me and let me find my own way in the jungle of cognitive
psychology, statistics, computer science and software engineering. I thank Prof. Oguz
Tosun for being my co-advisor; and Prof. Levent Akin, Prof. Ali Tekcan, Prof. Fikret
Giirgen and Dr. Burak Turhan for being in my thesis committee. My gratitude goes
to Turgay Aytag for his intellectual guidance and for being a role model. T also thank
Turgay Aytac, Ayhan Inal from Logo Business Solutions and Turkcell A.S. for provid-
ing data for my empirical research. There is one person whom I believe when she says
what I have done as a research work is satisfactory enough, Ayse Tosun. Many thanks
to her for our academic discussions as well as for her friendship, advices and support.
My gratitude also goes to my other friends from SoftLab, Bora Caglayan, Gilfem Isiklar
and Ash Uyar Ozkaya. From the department, I'd like to thank Reyhan Aydogan and
Arzucan Ozgiir for their support, Itir Karag for her sincere friendship as well as being
our leader in sailing and holiday adventures, Ozgiir Kafal for the great tennis talk and
critiques, Nadin Kokciyan for being a great tennis partner, Suzan Bayhan for the chats
at department’s lounge, Didem Goziipek and Gaye Geng Kara for the great time we had
at the conference in Lefkosa during summer 2009 and many other friends whose names I
could not mention, but who made each day at the department meaningful. The last but
not the least, many thanks to a person of good character, Deniz Gayde, whose friendship
and support means a lot to me. I cannot forget my brother Yiiceer Calikli, who helped

me to preprocess data for my thesis and encouraged me whenever I lost my faith.

Finally, I dedicate this thesis to my parents Omer Yiicel and Hilal Calikli. I love
you really much and feel myself very lucky for being your daughter, although I sometimes
curse my genes of perfectionism I inherited from you both. Thank you for believing in

me. [hope I can always make you proud.

ABSTRACT

IMPROVING PERFORMANCE OF DEFECT PREDICTORS
USING CONFIRMATION BIAS METRICS

Software defect prediction models help managers to prioritize their testing effort.
Algorithms, which are used to learn defect predictors, have reached a ceiling such that
further improvements may only come from increasing information content of input data.
The main goal of this research is to build defect predictors which are learnt from de-
velopers’ levels of confirmation bias, which is defined as tendency of people to seek for
evidence to verify hypotheses rather than seeking for evidence to refute them. Our main
goal is to overcome the ceiling effect in defect prediction performance. As a first step, we
define a methodology to measure/quantify confirmation bias and then we perform the
following empirical analysis: i) investigation of factors which have the potential to affect
confirmation bias levels of software developers and testers, ii) empirical analysis of how
confirmation bias affects software developer and tester performance, iii) a benchmark
analysis comparing performance of defect predictors which use combinations of static
code, confirmation bias and churn metrics, iv) defining a methodology to build defect
predictors which can learn using incomplete confirmation bias metric values as input.
Our results on industrial data show that: i) no effect of experience in software devel-
opment /testing has been observed on confirmation bias, whereas hypotheses testing and
reasoning skills affect confirmation bias, ii) confirmation biases of developers lead to an
increase in defects, while testers’ confirmation bias causes an increase post-release defects,
iii) using only confirmation bias metrics, we can build defect predictors with higher or
comparable prediction performance when compared to defect predictors that are learnt
by using only churn metrics or only static code metrics, iv) promising results can also be

obtained by using incomplete confirmation bias metric values to learn defect predictors.

vi

OZET

DOGRULAMA SAPMASI METRIKLERI ILE YAZILIMDA
HATA TAHMINI PERFORMANSININ IYILESTIRILMESI

Hata tahmini modelleri, yoneticilere bir yazilimda test edilmesi gereken kisimlarin
onceliklendirilmesinde yardimci olur. Yazilimda hata tahmini i¢in kullamilan algorit-
malar performans siirilarina ulagmigtir, 6yleki daha ileri gelismeler ancak girig veri-
lerinin igerigini arttirmakla olabilir. Bu tezin amaci, yazilimcilarin dogrulama sapmasi
seviyelerini kullanarak performans limitini agan hata tahmini modelleri olugturmaktur.
Dogrulama sapmasi metriklerini elde etmek icin bir metodoloji tamimladiktan sonra
sirasi ile gu agamalar gergeklegtirdik: i) yazilimer ve testgilerin dogrulama sapmasi se-
viyelerini etkilemesi olasi faktorlerin incelenmesi, ii) dogrulama sapmasimin yazihimer ve
test¢i performansini nasil etkiledigine dair deneysel analizlerin yapilmas, iii) statik kod
ve dogrulama sapmasi metrikleri ile kaynak kod dosyalarinda yapilan degisikliklerden
elde edilen metriklerin degigik kombinasyonlarda kullanilmasiyla olugturulan hata tah-
mini modellerinin kargilagtirmali performans analizinin yapilmasi, iv) eksik dogrulama
sapmasi metrik degerleri ile hata tahmini modellerini olugturma metodolojisinin tanim-
lanmasi. Endiistriyel verileri kullanarak su sonuglar1 elde ettik: i) yazilim geligtirme ve
test etme deneyiminin dogrulama sapmasi lizerinde etkisine rastlanmamigtir, ote yan-
dan hipotez test etme ve muhakeme becerilerinin dogrulama sapmasi tizerinde etkileri
gozlemlenmigtir, ii) yazilmcilarin dogrulama sapmasi, yazilimda hata miktar1 artigina
neden olurken, test¢ilerin dogrulama sapmasi siirtim sonrasi hata miktarinin artmasina
neden olmaktadir, iii) sadece dogrulama sapmasi metrikleri ile elde edilen hata tahmin
performansinin sadece statik kod veya kaynak kod dosyalarinda yapilan degisikliklere
iliskin metriklerle elde edilen hata tahmini performansindan daha iyi ya da bu degerlere
yakin oldugu gozlemlenmistir, iv) Eksik dogrulama sapmasi metrikleri ile kayda deger

hata tahmini performans: elde edilmistir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e iv
ABSTRACT v
OZET . . vi
LIST OF FIGURES e xi
LIST OF TABLES e Xvi
LIST OF ACRONYMS/ABBREVIATIONS Xix
1. INTRODUCTION e e e 1
1.1. Software Defect Prediction Models and the Ceiling Effect 2
1.1.1. Software Defect Prediction Models 2

1.1.2. Ceiling Effect in Software Defect Prediction Performance 3

1.2. Human Factors in Defect Prediction Models 4
1.3. Literature Review L)
1.3.1. Effects of Cognitive Biases on Software Engineering)

1.3.2. People Related Metrics in Software Defect Prediction 8

1.4. Contributions 9
1.5. Thesis Outline 13

2. PROBLEM STATEMENT: BACKGROUND AND RESEARCH QUESTIONS 14
2.1. Cognitive Biases in General 14
2.1.1. Representativeness 14

2.1.2. Availability 15

2.1.3. Adjustment and Anchoring 15

2.1.4. Wason’s Rule Discovery Task 16

2.1.4.1. Wason’s Elimination/Enumeration Index 19

2.1.4.2. Negative Instance Frequency 19

2.1.4.3. Test Severity 19

2.1.5. Wason’s Selection Task, 22

2.1.5.1. Matching Bias 23

2.1.5.2. Realistic Content Replications of Wason’s Selection Task 25

2.2. Confirmation Bias in Software Development and Testing 28

2.3. Research Questions 29

Viil

2.3.1. What are the factors affecting confirmation bias levels in software
development domain? 30
2.3.2. How does confirmation bias affect software developers and testers? 30
2.3.3. How can we build defect predictors with comparable prediction
performance by using only confirmation bias metrics as input data? 31
2.3.4. How can we build defect predictors with comparable prediction

performance using incomplete confirmation bias metric data as input? 31

3. METHODOLOGY e e 32
3.1. Measurement/Quantification of Confirmation Bias 32
3.1.1. Preparation of Confirmation Bias Tests 32
3.1.1.1. Written Tests oL 33

3.1.2. Definition of Confirmation Bias Metrics 35
3.1.2.1. Performance Metrics 35

3.1.2.2. Metrics to Monitor Hypothesis Testing 36

3.1.3. Conducting Confirmation Bias Tests 38
3.1.3.1. Written Testso o oL 38

3.1.3.2. Interactive Tests 39

3.2. Analysis of Factors Affecting Confirmation Bias 40
3.2.1. Test Severity Calculation 40
3.2.2. Formation of Test Severity Graphs Using Vincent Curves 45

3.3. Defect Prediction o 46
3.3.1. Naive Bayes Algorithm 46
3.3.2. Performance Measurement 48

3.4. Missing Data Problem in Defect Prediction 49
3.4.1. Single Imputation Methods 49
3.4.2. Multiple Imputation Methods o1
3.4.3. Expectation Maximization Methods for Imputation o1
3.4.4. Roweis’ EM Algorithm for PCA 52

4. DATA SET 55
4.1. Participants of Confirmation Bias Tests 55
4.2. Collection of Static Code Metrics 58
4.3. Collection of Commit Log Data 60

5. EXPERIMENTS AND RESULTS 61

5.1. Experiment I: Analysis of Factors Affecting Confirmation Bias
5.1.1. Data
5.1.2. Designo
5.1.3. Results and Discussions

5.2. Experiment II: Analysis of the Effects of Confirmation Bias on Software
Developers and Testers
.21, Data

5.2.1.1. Data Used to Analyze Confirmation Bias Effects on Soft-

ware Developers

5.2.1.2. Data Used to Analyze Confirmation Bias Effects on Soft-

ware Testers Lo

5.2.2. Designo
5.2.2.1. Design for Analysis of Confirmation Bias Effects on Soft-

ware Developers

5.2.2.2. Design for Analysis of Confirmation Bias Effects on Soft-

ware Testerso oL

5.2.3. Results and Discussions
5.2.3.1. Results for Analysis of Confirmation Bias Effects on Soft-

ware Developers

5.2.3.2. Results for Analysis of Confirmation Bias Effects on Soft-

ware Testers

X

64
71

71

73
74

74

75
76

76

77

5.3. Experiment III: Using Confirmation Bias Metrics to Learn Defect Predictors 79

5.3.1. Data
0.3.2. Design
5.3.2.1. Defect Matching
5.3.2.2. Formation of Train/Test Sets

5.3.2.3. Construction of Prediction Model

5.3.3. Results and Discussions oL
5.3.3.1. Using Confirmation Bias Metrics as Single Metric Set to

Learn Defect Predictors

5.4. Experiment IV: Learning Defect Predictors Using Incomplete Confirmation
Bias Metric Set
5.4.1. Data L

79

5.4.2. Designo 94

5.4.3. Results and Discussions 97

5.5. Threats to Validity o 102
5.5.1. Threats to Validity for Definition and Extraction of Confirmation

Bias Metrics 102

5.5.2. Threats to Validity in General 104

6. CONCLUSIONS e 106

6.1. Summary of Results 106

6.2. Contributions 108

6.3. Future Directions o 109

APPENDIX A: Interactive Test (English Version) 111

APPENDIX B: Written Test (English Version) 115

B.1. General Written Test (English Version) 115

B.2. Written Test with Software Development /Testing Theme (English Version) 115
REFERENCES 130

LIST OF FIGURES

Figure 1.1. Human aspects affecting software defect density.
Figure 2.1. Record sheet used by Wason on his Rule Discovery Task [1].

Figure 2.2. Protocol followed during Wason’s Rule Discovery Task.
Figure 2.3. Relation between alternative hypotheses and correct rule in Wason'’s

Rule Discovery Task (T: set of triples conforming to the correct rule,

H: set of triples conforming to the hypothesis, U: set of all possible

Figure 2.4. A severe positive and a severe negative test in Wasons rule selection

task)[2]. ..

Figure 2.5. The logical structure of Wason’s selection task [2].

Figure 3.1. Methodology used to measure/quantify confirmation bias metrics.

Figure 3.2. Pseudocode for the implementation of Roweis’ EM Algorithm

Figure 5.1. Normal probability plot for the residuals of the confirmation bias

metric FR%. . . o

Figure 5.2. Histogram for the residuals of the confirmation bias metric FE.

Figure 5.3. Comparison of interactive test hypothesis testing strategies of Groupl*

and Group2*.

Figure 5.4. Distribution of Fulsifiers, Verifiers, Matchers and None within Groupl*

and Group2*.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

Figure 5.10.

Figure 5.11.

Figure 5.12.

Figure 5.13.

Figure 5.14.

Figure 5.15.

Comparison of interactive test hypothesis testing strategies of Groupl*

and GroupT*.

Distribution of Falsifiers, Verifiers, Matchers and None within Groupl*
and GroupT*. e
Comparison of interactive test hypothesis testing strategies of Groupl*
and Group8*.
Distribution of Fulsifiers, Verifiers, Matchers and None within Groupl*
and Group8*.
Comparison of interactive test hypothesis testing strategies of Group2*
and GroupT*.

Distribution of Fualsifiers, Verifiers, Matchers and None within Group2*

and GroupT*.

Comparison of interactive test hypothesis testing strategies of Group2*
and Group8*.
Distribution of Fualsifiers, Verifiers, Matchers and None within Group2*
and Group8*.
Comparison of interactive test hypothesis testing strategies of Group7*
and Group8*.
Distribution of Fulsifiers, Verifiers, Matchers and None within GroupT*
and Group8*.
Percentage of variance explained by each of the principle components

of the resulting matrix of predictor variables.

xii

73

74

75

76

7

78

79

80

81

82

Figure 5.16.

Figure 5.17.

Figure 5.18.

Figure 5.19.

Figure 5.20.

Figure 5.21.

Figure 5.22.

Figure 5.23.

Figure 5.24.

Figure 5.25.

Figure 5.26.

Figure 5.27.

Normal probability plots of residuals for linear, quadratic and inter-

action regression models.o

Vincent curves for test severity of testers with NPRODpgr values

above and below average respectively.

Distribution of falsifiers, verifiers, and matchers among testers who
report bugs above and below average amount, according to Reich and

Ruth’s method.

Work flow followed in the ISV company to fix bugs detected during

testing phase.

: Defect matching procedure of a file to prepare list of defected files

for the second data set.

Experiment IIT boxplots for first dataset.

Experiment IIT boxplots for first dataset, where log-filtering is used

to preprocess data.

Experiment III boxplots for second dataset.

Experiment IIT boxplots for second dataset, where log-filtering is used

to preprocess data.

Pseudo code for generation of missing data configurations for data

sets “Project Group 1”7 and “Group 3”.

Pseudo code for imputation of each missing data configuration. . . .

Missing data percentage versus balance, pd, pf and M SFE for the first

xiil

84

85

86

87

88

91

92

93

94

96

97

Figure 5.28.

Figure A.1.

Figure A.2.

Figure A.3.

Figure B.1.

Figure B.2.

Figure B.3.

Figure B.4.

Figure B.5.

Figure B.6.

Figure B.7.

Figure B.8.

Figure B.9.

Figure B.10.

Figure B.11.

Figure B.12.

Xiv

Missing data percentage versus balance, pd, pf and M SFE for the first

dataset. 102
Interactive test personal information page. 112
Interactive testing procedure information page. 113
Interactive test record sheet.o 114
General written test information page. 116
General written test (first page). 117
General written test (second page). 118
General written test (third page). 119
General written test (fourth page).. 120
General written test (fifth page). 121
General written test (sixth page). 122
General written test (seventh page). 123
General written test (eighth page).. 124
Written Test with software development/testing theme (first page). 125

Written Test with software development/testing theme (second page). 126

Written Test with software development/testing theme (third page). 127

XV

Figure B.13. Written Test with software development /testing theme (fourth page). 128

Figure B.14. Written Test with software development /testing theme (fifth page). 129

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.

Table 3.7.

Table 3.8.

LIST OF TABLES

Prediction of selection of cards according to different response ten-

dencies.,

All four negated versions of Wason’s Selection Task statements. . . .

Response tendencies according to Reich and Ruth’s Categorization. .

Examples of different contents used in the selection task.

Examples of different contents used in the selection task..

List of confirmation bias metrics (Performance Metrics).

List of confirmation bias metrics (Metrics to Monitor Hypothesis Test-

ing Procedure).

Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part 1.

Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part IT.

Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part IIL.

Set of plausible alternative hypothesis to be used in test severity cal-

culations: Part IV.

Confusion matrix TP:True Positives, FN:False Negatives, FP:Fualse

Positives, T'N:True Negatives.

Xvi

24

24

24

27

35

36

37

41

42

43

44

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 5.5.

Table 5.6.

Table 5.7.

Table 5.8.

xvil

Details about groups from which confirmation bias metrics were col-

lected. o7
Gender distribution and average age values of Groups 1-8. 58
Details about project groups within Group 1. 58
List of static code metrics used in Experiment IIT. 59
List of churn metrics used in Experiment IIT. 60
Dividing continuous values of avgInd, ., into categories for x? test. 63

Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 1 and Group 2 respectively. 65

Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 1 and Group 7 respectively. 66

Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 1 and Group 8 respectively. 67

Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 2 and Group 7 respectively. 68

Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 2 and Group 8 respectively. 69

Statistical comparison of confirmation bias metric values for two de-

veloper subgroups which belong to Group 7 and Group 8 respectively. 70

The values regression coefficients, their confidence intervals and sig-

nificance test results. 78

Table 5.9.

Table 5.10.

Table 5.11.

Table 5.12.

Table 5.13.

Table 5.14.

Table 5.15.

Table 5.16.

Table 5.17.

Table 5.18.

Table 5.19.

Table 5.20.

xXviil

Abbreviations used for metric type combinations in Tables. 89
Defect prediction results for first dataset. 89
Defect prediction results for first data set with log filtering. 89
Defect prediction results for second data set. 90
Defect prediction results for second data set with log filtering. 90
Defect prediction performance results for complete form of first data
seb. .o 98
Defect prediction performance results for incomplete confirmation bias
metric values of the first data set as input. 98
MSE values for imputed form of incomplete confirmation bias metric
values for the first dataset. 0oL 99
Defect prediction performance results for complete form of the second
dataset. 99
Defect prediction performance results for incomplete confirmation bias
metric values of the second data set as input. 99
MSE values for imputed form of incomplete confirmation bias metric
values for second dataset. 100

Pearson correlation results for missing % vs. pd, pf, balance and MSE. 100

LIST OF ACRONYMS/ABBREVIATIONS

Al

bal
CGBR
DBMS
E-R
ERP
FN

FP
GCD
ISV

IT
MSE
NPRODpgr
SME
PCA

TSP
3P

Artificiallntelligence

Balance

Call Graph Based Ranking
Database Management System
Entity-Relationship
Enterprize Resource Planning
False Negatives

False Positives

Greatest Common Divisor
Independent Software Vendor
Information Technology

Mean Square Error

Number of Production Defects
Small Medium Enterprise
Principal Component Analysis
Probability of Detection
Probability of False Alarms
Personal Software Process
Test Driven Development
True Negatives

True Positives

Team Software Process

Product Process People (3 pillars of software development)

Xix

1. INTRODUCTION

Software testing is the most resource consuming phase of software development
life-cycle. Approximately 50% of a project schedule is allocated to testing phase [3].
Defect predictors provide guidance to project managers to effectively allocate resources
in testing phase by pointing out defect-prone parts of the software. However, defect
prediction algorithms have reached a performance ceiling. Reported results in software
defect prediction literature suggest that further progress in defect prediction performance
can be achieved by increasing the content of input data that defect predictors learn rather

than using different algorithms or increasing the size of input data [4-6]

Among the three pillars (3Ps) of software development, which are product, process
and people, product and process have long been taken into account in software defect
prediction. Yet, modeling people related aspects in software defect prediction still remains
as a challenge, since it requires conducting more interdisciplinary research and practice
to combine mathematics, statistics, sociology, and psychology. We are aware of the fact
that we cannot cover all human aspects. On the other hand, cognitive biases, which are
deviations of human mind from the laws of mathematics and logic, are very likely to
have significant effects on software development. In this thesis, we focus on a particular
cognitive bias type called confirmation bias which is defined as the tendency of people to
confirm their hypotheses rather than refuting them. During all levels of software testing,
including unit testing, the attempt should be to fail the code [7-9]. However, due to
confirmation bias especially developers might perform unit tests to make their program
work. This results in the propagation of more defects to testing phase and hence probably
an increase in software defect density. Similarly, defects which are overlooked by testers,
during testing phase of a specific release of a software are likely to propagate to the next

releases of that software.

1.1. Software Defect Prediction Models and the Ceiling Effect

1.1.1. Software Defect Prediction Models

In software defect prediction, various machine learning algorithms have been em-
ployed by researchers. Munson and Khoshgoftaar [10] construct discriminant models
by using static code metrics as independent data, where multicolinearity among static
code metrics is eliminated by Principle Component Analysis. Bullard et. al.[11] propose a
rule-based classification model for prediction of defects in a large legacy Telecomunication
system. In [12], Classification and Regression Trees (CART) algorithm is used to identify
fault-prone modules in embedded systems. Neural networks is another machine learning
technique used by Khosgoftaar and Szabo [13] to learn defect predictors. Regression mod-
els have also been widely used [14-17]. The model consisting of an ensemble of classifiers
proposed by Tosun et al. [18] combines three algorithms which are Naive Bayes, Neural
Networks and Voting Feature Intervals respectively. In his repeatable set of experiments,
Menzies et al. [5] discovered that Naive Bayes classifier with a log-filtering preprocessor
on the numeric data, outperforms methods such as OneR and J4.8. Results obtained by
Menzies et al. are in line with the results of the benchmark study by Lessmann et al. [4].
In this benchmark study, Lessmann et al. also found no significant difference between

performance of Naive Bayes and more complex machine learning algorithms.

In order to find out whether performance of defect predictors can be increased by
sampling methods due to the unbalanced nature of the defect data, Menzies et al. [6]
performed a series of experiments. As algorithm, they used Naive Bayes since it was
useful in their previous experiments [5] as well as J4.8 which was used in prior under-
over sampling experiments [19, 20]. According to the results obtained, throwing away
data (i.e. undersampling) does not degrade the performance of the learner. For J4.8
algorithm throwing away data improved median performance from around 40% to 70%,
while under-sampling outperformed over-sampling for both J4.8 and Naive Bayes. These

results are consistent with those of Drummond et al. [19] and Kamei et al.[20].

1.1.2. Ceiling Effect in Software Defect Prediction Performance

Research in software defect prediction has shown that content of input data that
defect predictors learn is more essential than the algorithm used and size of the input
data. In software defect prediction, various machine learning algorithms have been em-
ployed by researchers, ranging from regression models [14-16], decision trees [21], neural
networks [22] and Naive Bayes [5, 23, 24] as well as application of cascading classifiers
[18]. However, Menzies et al. [5] discovered that Nailve classifier with a log-filtering pre-
processor on the numeric data, outperforms methods such as OneR and J48. In their
benchmarking study [4], Lessmann et al. also concluded that there is no significant dif-
ference between performance of Naive and more complex machine learning algorithms.
In summary, using different algorithms did not result in any significant improvement in
the performance of defect predictors. In order to find out whether size of input data
affects performance, Menzies et. al. [6] applied their “micro-sampling” method which
takes only a small portion of data to learn defect predictors using Naive algorithm. The
results they obtained showed that size of the input data did not affect defect prediction

performance.

On the other hand, enhancement of input data content mostly resulted in improved
defect prediction performance. Nagappan et al. [25] state that code churn metrics are
good predictors of post-release defects. Jiang et al. [26] compared predictor perfor-
mances that were learnt from design metrics, static code features and both for 13 NASA
projects. Design metrics were extracted from requirements documents with a text miner.
More accurate results were obtained by using both design and static code metrics rather
than individual use. The results obtained were consistent with results of the similar
experiments which were previously conducted by Zhao. et al. [27] for the analysis of a
real time Telecomunication system. Zimmerman and Nagappan [28] developed a metric
suite which defines dependency of binary files from a graph theoretic point of view. The
authors used these metrics as input to linear and logistic regression models to predict
post-release failures of Windows Server 2003. Zimmerman and Nagappan report 10%
increase in defect prediction performance due to the inclusion of dependency graphs as
input data. Following this research, Nagappan and Ball [25], combined dependency and

churn metrics to predict post-release faults in binary files of Windows Server 2003. The

authors conclude that they can predict post-release failure using regression models at a
statistically significant level. Tosun et al. [29] used network and churn metrics as well
as static code metrics in order to build defect predictors for different defect categories.
According to their results, churn metrics gave the best result to predict all types of de-
fects. Moreover, Tosun et al. [24] obtained improved performance results by using churn
metrics in addition to static code metrics as input data to learn defect predictors for a
telecommunication infrastructure software. Turhan et al. in another study [30] reduced
probability of false alarms by supplementing static code metrics by their Call Graph
Based Ranking (CGBR).

1.2. Human Factors in Defect Prediction Models

Since software products are developed by people, information content of data input
to defect prediction models needs to be enhanced by people metrics. Although it is not a
trivial task to model people, as shown in Figure 1.1, the first step should be to list human
aspects which are most likely to cause introduction of defects in the software product
being developed. Every phase in a software development life cycle requires analytical
problem solving skills. Unlike a person working in an assembly line in a factory, a software
developer and tester requires more sophisticated problem solving skills. Moreover, using
everyday life heuristics instead of laws of logic and mathematics may affect quality of the

software product in an undesirable manner.

Cognitive biases are deviations of the mind from the laws of logic and mathemat-
ics. Cognitive biases are believed to be among the factors which lead to an increase
in software defect density. Therefore, while building defect prediction models cognitive
biases should be taken into account. In cognitive psychology literature, various cogni-
tive bias types have been defined such as representativeness, availability, adjustment and
anchoring, and confirmation bias. In this thesis, we focus on confirmation bias which
is described as the tendency of people to verify a hypothesis rather than refuting that
hypothesis. All levels of software testing, including unit testing, a systematic hypothesis
testing procedure should be followed similar to the one followed by a scientist making ex-
periments in his/her laboratory. In general scientific inferences are based on the principle

of eliminating hypotheses while provisionally accepting the remaining ones. As a result

mdividual . oy
Set of Human Aspects human aspects ; %uantlﬁtatmn—
pmmmm = - . Measurement of P :
, “ 9 o Individual Aspect Metrics
_______ A | individual aspects
| - ~ — Y .
| Lo _ = :
i : Human Aspects % Modelby) .
o affecting software 1 -] Confirmation bias
I defect density 1 | -Cognitive Science metrics
| : [- Psychology
I o o —— 1 ! | I e
1 ! '
I I
I I
i
\.‘ 7’ COGNITIVE BIASES

- o e = = —

*Representativeness
= Availability
= Anchoring & Adjustment

Social
interactions,|, » Confirmation Bias

Social Interaction
Metrics

= - Social Networks
« - Graph Theory

Figure 1.1. Human aspects affecting software defect density.

of an eliminative induction, it is possible to make adequate controls so that both positive
and negative experimental results give information about the possible determinants of a
phenomenon. Therefore, similar to a scientist a software developer/tester should try to
find test scenarios which aim to fail the code being tested instead of making that code
execute without any errors. However, determination of such test scenarios is not trivial,
since in most cases there are infinitely many scenarios. A hypothesis testing strategy
needs to be followed during all levels of software testing so that defect density of the

software product can be reduced increasing software quality significantly.

1.3. Literature Review

1.3.1. Effects of Cognitive Biases on Software Engineering

Researchers have recently started to use concepts from contemporary psychology

and cognitive psychology to analyze people aspects within the context of software engi-

neering.

In contemporary psychology, the “Big Five Model” of personality consists of five
broad dimensions of personality which are extraversion, agreeableness, conscientiousness,
emotional stability /neuroticsm, openness to experience, respectively. In [31] Hannay
et al. analyze the effect of personality on paired programming. In this study, a well
established Big Five Model based personality test is performed to 196 IT consultants
from 10 different companies on three different countries. As a result of the analysis of this
personality test outcomes, the authors find no strong indications that personality affects
pair programming performance. Another study which uses the Big Five Personality
dimensions is by Acuna et al. [32], where they investigate how personality relates to job
satisfaction and software quality. As practical implications of their research, Acuna et
al. recommend software professionals to measure the extraversion personality trait of
developers and to form development teams with average extraversion levels in order to

improve software quality.

In the field of cognitive psychology, there are many important results which can
be used to explain people aspects in software engineering. These results can be used to
analyze the effects of cognitive biases on software engineering. To the best of our knowl-
edge, Stacy and MacMillian are the two pioneers who recognized the potential effects of
cognitive biases on software engineering. In [33], Stacy and MacMillian emphasize the
fact that thought process of developers are a fundamental concern in software develop-
ment. The authors discuss how cognitive biases might show up in software engineering
activities by giving examples from several contexts. However, this work contains no
empirical investigations. The authors put forward some ideas as possible explanations
and as potential areas that require further research. Empirical evidence which supports
existence of confirmation bias among software testers is provided by Teasley et al. in
[7, 8]. In their work, Teasley et. al conduct laboratory experiments as well as observ-
ing software testers in their naturalistic environment. Another empirical study which
provides empirical evidence about the existence of another cognitive bias anchoring and
adjustment within the context of software development belongs to Parsons and Saunders.
In [34], Parson and Saunders conduct two experiments, which investigate the existence

of anchoring and adjustment in software artifact reuse. The first experiment they con-

duct examines the reuse of object classes in a programming task, whereas their second
experiment investigates how anchoring and adjustment bias affects reuse of software de-
sign artifacts. In their second experiment, Saunders and Parsons ask the participants to
develop an Entity-Relationship (E-R) model for an airplane application. Finally, Mair
and Shepperd [35] discuss how cognitive biases of software engineers contaminate the re-
sults obtained by software effort predictors making them far from being objective. This
is due the fact that input parameters of prediction models are estimated by software
engineers whose performance is affected by cognitive biases such as over-optimism and
over-confidence. The authors also state that experiments must be made on software
professionals in realistic settings to investigate possible de-biasing strategies. Mair and
Shepperd also emphasize the fact that such experiments should be conducted by an in-
terdisciplinary team consisting of cognitive psychologists and computer scientists. This
work by Mair and Sheppard is in the form of a preliminary research and it contains no
empirical /experimental investigation. On the other hand, Jgrgensen et. al empirically
investigates some cognitive bias types within the scope of software development effort
estimation. According to empirical findings of Jergensen [36], increase in the effort spent
on risk identification during software development effort estimations leads to an illusion
of control which in turn leads to more over-optimism and over-confidence. Moreover,
as a result of the cognitive bias type availability, risk scenarios which are more easily
recalled are over-emphasized so that inaccurate effort estimations are made. Jgrgensen
also empirically investigates how anchoring and adjustment heuristic leads to inaccurate
effort estimates [37]. Jorgensen indicates that reasonable results can be obtained only if
the reference value for the estimates (i.e. the anchor) is the typical effort of tasks of same

category or effort of the closest analogy.

In the literature, the above mentioned empirical studies or preliminary works have
been made either to investigate or discuss the existence of some cognitive bias types
within the context of software engineering. However, our work is the first one that uses
cognitive bias type related information as input data to enhance performance of defect

prediction models.

1.3.2. People Related Metrics in Software Defect Prediction

In the literature, various people-related metrics have been used to build defect pre-
dictors, yet these are not directly related to people’s thought processes or other cognitive

aspects.

Nagappan et al. [14] defined a metric suite to quantify the complexity of organiza-
tions consisting of many teams of software professionals working together. The authors
built a model to predict failure proneness of Windows Vista. They compared the perfor-
mance of this defect predictor with the performance of models that are learnt using code
churn, code complexity, code coverage, pre-release bugs and dependencies respectively.
In terms of precision and recall values, their model outperformed all these mentioned

models.

Graves et al. [38] also used metrics regarding development organization that worked
on a specific code and number of developers who made changes on that code, as well as
churn metrics for prediction of defective modules. According to the results obtained by
the authors, the number of developers who have changed a module did not improve defect
prediction performance. Weyuker et al. [39] also found that number of developers is not

a major influence to increase defect prediction performance.

On the other hand, Mockus et al. [40] found that developer experience is essential to
predicting failures. In [41], Weyuker et.al. used developer information that distinguishes
developers who are new to a working file or who share responsibility of that file with
other developers, since it is more likely that changes made by such developers would
result in faults. However, Weyuker et al. detected no significant contribution of this kind
of developer information to defect prediction performance. Following this research, the
authors later analyzed the effectiveness of individual developer performance on defect
prediction performance and no evidence of a significant improvement in defect prediction

performance was found either [42].

Social interaction between developers who have collaborated to the same file during

same period of time was modeled as social networks to be used in defect prediction

by Meneely et. al [43]. The model constructed for an industrial product from Nortel
was able to explain 60% of the variance of failures during the testing phase. Pinzger
et al. [44] formed a contribution network by combining modules with developers who
contribute to those modules and defined centrality measures to quantify the number of
developers making contribution to a specific module. Empirical analysis of the data from
Windows Vista project showed that centrality metrics can predict software failures up to
a significant extend. Bird et al. [45] formed a network which is a combination of module
dependency and contribution networks to predict fault prone modules. As a result, they
were able to predict fault prone binary files with greater accuracy than prior methods

which use dependency networks [28] or contribution networks [44] in isolation.

1.4. Contributions

Below, we briefly explain the contributions of this thesis. Detailed explanation

about the contributions shall be presented in Chapter 6.

e Measurement/Quantification of Confirmation Bias: Since our research is based on
empirical analysis, we had to find a methodology to quantify /measure confirmation
bias levels of software developers and testers. For this reason, we firstly made
the definition of confirmation bias within the scope of software development and
testing. Taking this definition as our reference point, we prepared written and
interactive tests after having made an extensive survey in the cognitive psychology
literature. An iterative procedure was followed to form the confirmation bias metric
set. Initial metric set was defined during the literature survey and preparation of the
confirmation bias tests. Metric set is updated while conducting tests and evaluating
their outcomes during earlier stages of this research. Metric values are evaluated
for each subject based on the answers he/she gives to these to the questions in the
tests.

Definition of a methodology to quantify /measure confirmation bias was crucial for
us to proceed in our research. Moreover, this metric set can also be used by other
researchers to make further research regarding confirmation bias in software engi-
neering context. The methodology we formed to quantify confirmation bias (i.e. to

form a confirmation bias metric set) can also adapted to quantify/measure other

10

cognitive bias types such as availability, representativeness, adjustment and anchor-
ing, and many others. In this way, it might be possible to investigate the effects
of various cognitive biases on software development life-cycle and to find de-biasing
strategies to eliminate their negative effects on software quality.

Empirical Analysis of Factors Affecting Confirmation Bias Levels of Software De-
velopers: The goal of this analysis was to gain more insight about confirmation bias
within the scope of software testing and development. Moreover, identifying the
factors affecting confirmation bias is a step toward to find strategies for software
developers to challenge their biases (i.e. de-biasing strategies). Similar analysis can
be also be replicated for software testers and analysts in order to develop de-biasing
strategies for each role in software development life-cycle.

Empirical Analysis of the Effects of Confirmation Bias on Software Developer and
Tester Performances During unit testing software developers are likely to overlook
defects due to confirmation bias, which leads to propagation of more defects to the
testing phase of software development. As a result, increase in software defects is
inevitable. We empirically investigated the validity of this statement by building
a regression model where independent variables are the confirmation bias levels
of developers and the response variable is the defect density. This analysis also
served as a prerequisite step to get an idea about the suitability of confirmation
bias metrics to be used to build defect predictors.

We also analyzed the effect of confirmation bas on software tester performance.
Although unlike developers, the code tested by testers is not the one implemented
by them, still effects of confirmation bias can be observed. As well as the tendency
to make the code fail, it is essential to follow a proper testing strategy in order to
find as much defects as possible. Defects overlooked by testers may propagate to
the next release of the software or those defects can be detected after the release
of the software. In order to empirically investigate this phenomenon, we perform
a correlation analysis between the total number of post release defects detected in
the files that were tested by a tester T and he confirmation bias level /i.e. values
of the confirmation bias metrics for that tester T) of that tester T.

Benchmark Analysis to Assess Power of Defect Predictors Built Using Confirma-
tion Bias Metrics: In this benchmark study, our goal was to asses the power of

software defect predictors which are learned using only confirmation bias metrics.

11

We used three data sets in this comparative analysis. The first and second data
sets (DataSetl and DataSet2) were collected from a large scale telecommunication
company; whereas the third data set (DataSet3) belongs to a project group that
consists of developers of the largest ISV (Independent Software Vendor) in Turkey.
For each data set, we built seven different software defect prediction models us-
ing Naive Bayes algorithm. Each of these defect predictors uses one of the seven
combinations of three different metric sets (i.e. For each data set, we formed
N = 2" — 1 = 7 defect prediction models where n = 3 is the total number of
metric types). The three different metric types are static code, churn and confir-
mation bias metrics respectively. Static code metrics represent the product pillar of
software development, while churn metrics are a subset of process metrics. Finally,
confirmation bias metrics are categorized under people metrics.

The results of these analysis show that defect predictors learnt using only confir-
mation bias metrics have prediction performances which are comparable with the
prediction performances of defect predictors which are learnt using only either static
code metrics or churn metrics. On the other hand, confirmation bias is a single as-
pect of people and can only give a limited explanation about the effect of people
aspects on software defects. The empirical results we obtained in spite of this fact
indicate the importance of including people metrics as input to defect predictors in
order to overcome the performance ceiling.

Benchmark Analysis to Assess Power of Defect Predictors Built Using Confirmation
Bias Metrics with Missing Data: Compared to product and process metrics, it takes
more effort to collect people metrics. For instance, static code and churn metrics
can be automatically retrieved, while confirmation bias metric collection requires
conducting tests to developers/testers and assessing the outcome of these tests.
Both of these activities may take considerable time and human resource depending
size of the project team. Moreover, depending on the lifetime of a software product
being developed, some developers might no longer work in the company so that
confirmation bias metric values of such developers cannot be obtained. If developers
who used to be part of the development team were also top committers and a
high portion of the files created and/or updated by them are still a part of the
software product being developed, then considerable amount of confirmation bias

metric values shall be missing. In such as case, we may prefer to take into account

12

files/modules/packages created and/or updated by developers whose confirmation
bias metrics are known. However, in this case it is highly probable that our defect
predictor model shall cover only a small portion of the software.

Therefore, a method is required to deal with missing data due to departure of de-
velopers so that defect prediction models built using confirmation bias metrics can
cover a high portion of the software being developed. Such a method can also
be used by software development companies which seek for an alternative confir-
mation bias metric extraction process especially for large development groups. In
order to overcome the missing data problem, we employ Roweis’ [46] Expectation-
Maximization (EM) Algorithm for Principal Component Analysis (PCA). The al-
gorithm naturally accommodates missing information.

The output of Roweis’” EM Algorithm is the imputed form of the incomplete con-
firmation bias metrics which we used to learn defect predictors. In order to assess
performance of these defect predictors we made a benchmark analysis. For each
data set we used in our benchmark study, we formed 24 — 2 missing data config-
urations, where Ny is the number of developers in the project group. Imputation
is performed as an outcome of Roweis” EM Algorithm for PCA, so that imputed
forms of missing data configurations for each data set are obtained. For each data
set, defect prediction experiments are replicated for the imputed forms of missing
data configurations and defect prediction performance results are compared with
the results obtained for original data sets (i.e. data sets with no missing data). The
performance results of defect predictors which are built using imputed form of in-
complete confirmation bias metrics were comparable with those of defect predictors
built using complete confirmation bias metric values.

The results we obtained are promising such that Roweis’ EM Algorithm for PCA can
be used to perform confirmation bias based defect prediction for software products
developed by large groups. Confirmation bias tests can be conducted on a subgroup
and missing confirmation bias metric values can be imputed before using them to
learn defect predictors. In addition, as we mentioned earlier missing confirmation
bias metric values due to departure of developers from the project group can be

handled using the method we propose.

13

1.5. Thesis Outline

This thesis is organized as follows: Chapter 2 gives necessary background on cog-
nitive biases in general, confirmation bias as well as explaining the role of confirmation
bias in software development and testing. Research questions are also presented in this
chapter. In Chapter 3, we explain the methodology we used to measure/quantify con-
firmation bias to be used in our empirical analysis. Chapter 3 also mentions statistical
methods we used to interpret the results of the experiments we conducted to investigate
the factors affecting confirmation bias as well as the effect of confirmation bias on soft-
ware developers and testers. Defect prediction and missing data imputation methods are
explained in Chapter 3. Details about the overall data set used in the experiments are
presented in Chapter 4. Design and results of the experimented conducted in this study
as explained in Chapter 5. Chapter 5 also gives information about which parts of the
overall data set is used in which experiment together with the reason for such a data
subset selection. In Chapter 6, we conclude our research, summarize our results giving
answers to the research questions we stated previously and finally we point out possible

future directions.

14

2. PROBLEM STATEMENT: BACKGROUND AND
RESEARCH QUESTIONS

2.1. Cognitive Biases in General

Cognitive biases are defined as the deviation of human mind from the laws of
logic and accuracy [33]. The notion of cognitive biases was first introduced by Tversky
and Kahneman [47]. Other than confirmation bias, among cognitive biases that are
most likely to affect software development and testing are representativeness, availability,
and adjustment and anchoring. In the following subsections, we will briefly explain
the cognitive biases representativeness, availability, adjustment and anchoring, as well
as giving examples on how these biases may affect software development and testing.
Detailed information about confirmation bias, which is the cognitive bias type we focus

in this thesis, is given in the next section.

2.1.1. Representativeness

While making predictions and judgments under uncertainty, people do not appear to
follow the statistical theory of prediction. As Kahneman and Tversky states in [47], peo-
ple rely on heuristics which sometimes yield reasonable judgments and which sometimes
lead to severe and systematic errors. Although outcomes representative of a population
of instances are more likely to belong to that population, this is not always true. One

should also take into account the base rate (i.e. prior probability).

Representativeness can also affect testing phase. Since exhaustive testing is not
possible, we have to plan tests such that test data that does not produce an error are
eliminated. We can identify test data to be eliminated based on their similarity to the
data that did not produce any errors in previous tests. However, assessment of similarity
is not trivial. Assume that a developer has to decide whether a set of test data y should
be eliminated or not. Such a decision depends on the similarity of y to X where X
belongs to the population of test data that did not produce any errors. According to

Bayes” Theorem, we can represent such similarity by the notation P(X|y) and formulate

15

as follows:

Py|X)P(X)

P(Xly) = Py)

(2.1)
Due to representativeness, people usually do not take base rates (prior probabilities)
P(X)/P(y) into account and hence similarity and likelihood values coincide. In other
words, the degree to which y is representative of population X (i.e. P(X]|y)) is calculated

without taking base rates into account.

2.1.2. Availability

Similar to representativeness, availability is also a heuristic to judge probability or
frequency of instances. Using availability heuristic, people estimate the probability of
an instance according to its associative distance. Lifelong experience has told us that
instances of large classes are recalled much more easily compared to instances of less
frequent classes. However, availability is also affected by factors which are unrelated to
actual frequency. For instance, humans judge the frequency of instances by the ease that
they come to mind. Availability might reveal itself during the developer testing phase
of the software. In addition to formal tests, good programmers also use some heuristic
techniques to expose errors in their code. One heuristic technique is “error guessing”,
which means creating test cases based upon guesses about where the program might have
errors. Such guesses might be based on past experience of the developer about the type
and location of the errors he has made most frequently. In this case, he can misidentify
the most frequently occurring error types and locations based on the ease that they come
to mind. For instance, areas of the code where the developer spent more time might be
much more easily remembered by the developer. Moreover, as a result, most frequently

occurring errors might be overlooked.
2.1.3. Adjustment and Anchoring
When people are given problems whose solutions exist, their estimation of the

problem varies depending on different starting points. In other words, their estimates

are biased towards the initially given values. We call this phenomenon anchoring. The

16

study mentioned in [47] illustrates this effect.

Two groups of high school students were asked to estimate a numerical expression
within 5 seconds. The numerical expression given to the first group was 8 x 7x 6 x 5
x 4 x 3 x 2x 1. On the other hand, the following expression was given to the second
group: 1 x2x3x4x5x6x7x8. The median estimate of the descending sequence
was 2250, while the median estimate for the ascending sequence was 512 and the correct
answer is 40, 320. In this experiment, after a few steps of computation, people estimate
the product by extrapolation. Anchoring heuristic helps to simplify a complex problem
without conscious effort. However, people often fail to make adequate modifications to
an initial solution, which result in incorrect outcome. This phenomenon is known as

adjustment bias.

Parsons and Saunders [34] analyze the effects of adjustment and anchoring in soft-
ware artifact reuse. Due to the anchoring and adjustment bias, software developers
unconsciously adhere to the reuse artifact. Therefore, the errors existing in the reuse
artifacts propagate or necessary functionality additions indicated in the requirements
specification document are omitted. Moreover, extraneous functionalities that do not

exist in the requirements specification remain in the reuse artifacts.

2.1.4. Wason’s Rule Discovery Task

In this experiment, Wason asked his subjects to discover a simple rule about triples
of numbers [1]. Initially, subjects are given a record sheet on which the triple “2, 4, 6” is
written. The experimental procedure can be explained as follows: The subjects are told

that “2 4 6” conforms to this rule.

In order to discover the rule, they are asked to write down triples together with
the reasons of their choice on the record sheet which is shown in Figure 2.1 After each
instance, the tester tells whether the instance conforms to the rule or not. The subject
can announce the rule only when he/she is highly confident. If the subject cannot discover
the rule, he/she can continue giving instances together with reasons for his/her choice.

This procedure continues iteratively until either the subject discovers the rule or he/she

17

Does not

Numbers Reasons for cholce Conforms conform

2 4 6 v

_____ e e e o e o e o b o e ——

T

Figure 2.1. Record sheet used by Wason on his Rule Discovery Task [1].

wishes to give up. If the subject cannot discover the rule in 45 minutes, the experimenter
aborts the test. The flowchart explaining the above mentioned test protocol is given in

Figure 2.2.

Wason designed this experiment in a way such that subjects mostly showed a ten-
dency to focus on a set of triples that is contained inside the set of all triples conforming to
the correct rule. Due to this fact, discovery of the true rule was possible only by refuting
hypotheses that come to mind. Figure 2.3 shows the relationship between a hypothesis
that is likely to come to participant’s mind once he/she sees the triple “2 4 67, the rule

to be discovered and the set of all rules in the universe about triples of numbers.

While designing his experiment Rule Discovery Task, Wason’s inspiration was Pop-

per’s criticism approach:

A universal statement cannot be verified purely logically by a limited number
of observations but it can be falsified

As Poletiek also indicates, Popper’s influence on Wason is recognizable in the anal-

ogy he makes between a scientific laboratory experiment and his Rule Discovery Task:

The task simulates a miniature scientific problem where the variables are un-
known and in which evidence has to be systematically adduced to refute or support
hypotheses. Generating an instance corresponds to doing an experiment, knowledge
that the instance conforms or does not conform, corresponds to its result and an

18

f\" START >

Write down a triple and
| reasons for chaice

L

Get feedback from
experimenter

Announce
mle ?
yes

no

Wantto
terminate or
fime >45 min ?

Figure 2.2. Protocol followed during Wason’s Rule Discovery Task.

incorrect announcement corresponds to an inference from uncontrolled data.

As we shall see in the following subsections, one must also follows a hypothesis
testing strategy has to succeed in Wason’s Rule Discovery Task. Once, the subject sees
the triple “2 4 6” a set of hypotheses come to her/his mind. An ideal hypothesis testing
strategy is to start by giving examples which does not refute all hypotheses the subject
has in his/her mind at once. The examples of triples that refute more hypotheses should
be given as the test proceeds. The hypotheses should be eliminated,modified and created
in a strategic manner, so that subject can come up with a single hypothesis at the end.
Once the subject is sure about what the rule to be discovered is, he/she can give additional

triple instances to verify his/her guess.

19

Figure 2.3. Relation between alternative hypotheses and correct rule in Wason’s Rule
Discovery Task (T: set of triples conforming to the correct rule, H: set of triples

conforming to the hypothesis, U: set of all possible triples).

2.1.4.1. Wason’s Elimination/Enumeration Index. Eliminative/enumerative index was

constructed by Wason [1] in order to determine the proportion of the total number of

instances that are incompatible with reasons given to those that are compatible.

According to Wason, it is desirable that eliminative/enumerative index is greater
that one. The higher the eliminative/enumerative index, the more tendency the subject
as for refuting his own hypotheses. However, as we shall see in the following subsections
“eliminative” testing strategy is not alone adequate to succeed in Wason’s Rule Discovery

Task.

2.1.4.2. Negative Instance Frequency. In [1], for each subject Wason evaluates the ratio

of the number of instances which does not obey the rule to be discovered (i.e. negative
instances) to the total number of instances given by that subject. Wason also observes
a highly significant correlation between eliminative/enumerative index and negative in-

stance index (Kendall’s Tau being 0.72, where p < 0.00003).

2.1.4.3. Test Severity. Poletiek [2] mentions severity of the tests. The term “test” used

by Poletiek corresponds to a single instance given by the subject, during Wason’s Rule

Discovery Task , during which a subject gives several instances to discover the rule.

20

Popper, who was Wason’s source of inspiration in the design of his famous Rule

Discovery Task, designated the severity of a test (i.e. instance) as follows:

P(t|H,b)

(e H,b) = =g

(2.2)
According to the above equation, the severity of a test ¢ is interpreted as the supporting
evidence of the hypothesis H given the background knowledge b. A test is more severe
when the chance of the supporting observation occurring under the assumption of the
hypothesis H exceeds the chance of its occurring without the assumption of the H (i.e.
with the assumption of the background knowledge b only). The higher this ratio is
(exceeds 1), the higher the severity of the test is. In other words, when the severity of a

test is high, more alternative hypotheses are eliminated.

In line with Popper’s idea, it was expected that rule discovery performance would
increase as the subject tested more severely (i.e. gave instances that would eliminate
more alternative hypotheses). In order to investigate the validity of this expectation,
Poletiek performed an experiment, where she estimated the severity of the tests performed
by participants. In this experiment, different from the original Wason’s Selection Task
participants were given “2-7-6” as an initial example and the rule to be discovered was
“even-uneven-even number”. Poletiek knew that calculation test severities (i.e. severity
of given instances) was not a trivial task, since the set of “all possible hypotheses” is
infinite as shown in Equation 2.2. On the other hand, in psychological terms this set is
not infinite due to the fact that people cannot easily easily more than one hypothesis
at a time in their mind. Moreover, this set is fuzzy in people’s mind and in order
to perform a more or less severe hypothesis testing, it is not necessary to explicitly
generate all the hypotheses. Hence, in order to make test severity calculations in her
experiment, Poletiek took all plausible reasons given by all the participants as the set of
all alternative hypothesis Sy (i.e. background knowledge). The illustration of positive
and negative instances by Poletiek is given in Figure 2.4. In this Figure, H is the set of
triples conforming to the hypothesis of the participant. A;, A, and Az are the three sets
of triples conforming to the sets of alternative hypotheses Ay, A; and Aj respectively. U
is the set of all possible triples. In Figure 2.4, Poletiek uses the notation ™ to represent

the set of severe positive triples, the notation = to represent the set of severe negative

21

Figure 2.4. A severe positive and a severe negative test in Wasons rule selection task)[2].

triples. Finally, she uses ex to represent the example triple that’s been given by the

participant during the experiment.

Using the set of alternative hypotheses, she calculated severity of each instance

given by each participant as follows:

e If the instance I is a positive instance (i.e. conforms to the correct rule), then
severity of the instance I is the number of hypothesis in the set Sy to which I does
not, conform.

e If the instance [is a negative instance (i.e. does not conform to the correct rule),
then severity of the instance I is the number of hypothesis in the set Sy to which

I conforms.

When she performed Mann Whitney U Test to find difference between test severity
values of participant who discovered the correct rule and those of who could not, she did
not observe any significant difference. Therefore, she concluded that a falsifying strategy
and high severity values is not enough to discover the correct rule. Hence, according to
Poletiek [2, 48] (and also McDonald [49]) a reasonable strategy to discover the correct
rule is start with giving a low level “severe” instance and progressively exclude more

alternative hypothesis rather than maximizing the severity per given instance.

22

cards D K 3 7

tests Pcard not-P card Qcard not-Q card
not-0 not-Q P not-P not-P

results

Figure 2.5. The logical structure of Wason’s selection task [2].

2.1.5. Wason’s Selection Task

In the original task, the subject is given four cards which are placed on a table
showing respectively D, K, 3, 7. Each card has a letter (either D or K) on one side and
a number (either 3 or 7) on its other side. Given the rule (hypothesis): “Every card that
has a D on one side has a 3 on the other side”, the subject is asked which card(s) must

be turned over to find out whether the rule is true or false.

Figure 2.5 explains the logical structure of Wason’s Selection Task and how it simu-
lates hypothesis testing behavior. Given a hypothesis (rule), we make tests/experiments.
Based on the results of our tests/experiments, we arrive to a conclusion about the validity
of that hypothesis. In the setting of “Wason’s Selection Task”, we find “Card selection”
corresponds to making some experiments/tests each of which has two possible results
(i.e. For each card there are two possibilities about what the letter/integer might be on

its invisible side).

The hypothesis can be translated into the logical implication of the form “If P, then
Q7 (P = @), whereas each test is the selection of one of the cards (P, not-P, Q, not-Q).
Wason interprets selection of the cards D and 3 (i.e. P and Q) as a choice of a verifier,
whereas the subject is defined to be a falsifier if he/she also selects the cards D and 7

(i.e. P and not-Q). Wason’s selection task measures the capability of the subject to use

23

two rules of logic, as well as his/her tendency to refute the given statement. The first

rule is modus ponens:

P P=Q

5 (2.3)

Given a statement S of the form P = @ (i.e.“If P, then Q”), according to modus ponens
if statement S is true and P is true (i.e. there is a card with letter D on its visible side),
then () must also be true. This implies that we must turn over the card which has D on
its visible side. In order to prove or disprove statement S, we must also try to falsify it,
which is possible by modus tollens (In the equation below —P stands for not-P, while —=Q

stands for not-Q).

—|Q’ —\Q — -P
—P

(2.4)

The statement P = () is equivalent to =) = —P. According to modus tollens, we must
turn over the card which does not have a 3 on its visible side (i.e. card which has a 7 on
its visible side) to see if it has a K on its other side (i.e. statement S is true) or it has a

D on its other side (i.e. statement S is false).

2.1.5.1. Matching Bias. Matching bias may lead subjects to select cards on the basis

of a simple judgment of relevance. In other words, the selection of the cards D and 3
can also result due to matching of the letter D and number 3 in the stated hypothesis.
Determining whether the card selection is made by matching or employing logical rules
requires use of rules with negated components as shown in Table 2.1. Evans and Lynch
[50] used the negated version of the selection task (i.e. if P, then not-Q) as well as the
original task (i.e. if P, then Q). In this experimental study, the subjects chose P and
Q cards, instead of P and not-Q cards. Evans and Lynch interpreted subjects’ behavior
as either being falsifying or matching. However, if a subject, who has chosen P and
Q cards in the standard version, also selects P and Q cards in the negated version,
such behavior can be explained only by matching bias. Otherwise, subject’s verifying
behavior accompanied by falsifying behavior would not make sense. Table 2.2 shows, all

four negated components that should be used to predict matching bias. Reich and Ruth

24

Table 2.1. Prediction of selection of cards according to different response tendencies.

Tendency | P=Q |[P=-Q | -P=Q | -P = —-Q
Matcher P, Q P, Q P, Q P, Q
Verifier P, Q P, -Q -P, Q P, -Q
Falsifier P, -Q P, Q -P, -Q -P, Q

Table 2.2. All four negated versions of Wason’s Selection Task statements.

Rule Logical Statement
If there is a D on one side, then there is a 3 on the other side. P=Q

If there is a D on one side, then there is not a 3 on the other side. P=-Q

If there is not a D on one side, then there is a 3 on the other side. -P=Q

If there is not a D on one side, then there is not a 3 on the other side. -P=-Q

[51] used all negated versions of Wason’s Selection Task as well as the original task itself,
in order to determine response tendencies. The method of Reich and Ruth is explained

in Table 2.3.

This method of determining response tendencies is advantageous, as it does not
confound strategies that might have contributed to a particular selection. However, it
neglects a large proportion of data provided by the subjects. On the other hand, it gives
a general view about the subjects’ responses and it is the only classification strategy we
came across in the existing psychology literature. For these reasons, we used the method

of Reich and Ruth and we labeled subjects, whom we could not classify, as None.

Table 2.3. Response tendencies according to Reich and Ruth’s Categorization.

Rule Card | Tendency
If there is a D on one side, then there is a 3 on the other side. 7 Falsifier
If there is a D on one side, then there is not a 3 on the other side. 7 Verifier
If there is not a D on one side, then there is a 3 on the other side. D Matcher
If there is not a D on one side, then there is a 3 on the other side. 7 Falsifier
If there is not a D on one side, then there is not a 3 on the other side. D Matcher
If there is not a D on one side, then there is not a 3 on the other side. 7 Verifier

25

2.1.5.2. Realistic Content Replications of Wason’s Selection Task. Wason and Shapiro

[52] performed the first thematic content replication of Wason’s selection task. In this
study, the rule with thematic content was: “Every time I go to Manchester, I travel by
train”. On the exhibited faces of two of the four cards, destination names “Manchester”
and “Leeds” were written; whereas on the remaining two one could see the the modes
of transportation, namely “car” and “train”. The results showed that more subjects
succeeded in this thematic variant compared to the original Wason’s selection task. Griggs
and Cox [53] used the hypothesis “If a person drinks beer, he must be older than 19.”
This hypothesis was in the form of a rule that one must obey. Deontic nature of this

hypothesis facilitated more correct results.

In the literature, there are various studies which aim to explain the facilitating
effect of thematic content in Wason’s selection task [53-56]. Among these, is the memory
cueing, which has been elaborated by Griggs and Cox [53]. Griggs and Cox explain
memory cueing as the production of cues by memory to solve the selection task correctly
while pure logical reasoning is bypassed. However, various studies showed that memory
cuing cannot be the sufficient reason for the facilitation effect. In [54], the experiment
subjects were placed in the situation of a store manager and they were given four receipts
to check whether the following rule is violated or not: “Receipts in excess of 30 dollars must
have the signature of the department manager on the back”. Compared to the abstract
selection task, there was a facilitation effect which obviously cannot be explained by
memory cueing as none of the test subject has ever had an experience as a store manager.
In order to explain such results, Cheng and Holyoak [57] proposed the pragmatic reasoning
effect. Poletiek [2] makes a comparison of reasoning patterns with memory cueing and

logical reasoning as follows:

A reasoning pattern is more abstract than a specific knowledge resident in mem-
ory and more specific and concrete than rules of logical reasoning.

Cheng and Holyoak [57] indicate permission pattern as the fundamental pattern
of selection tasks with facilitating contents. The beer drinking problem of Griggs and
Cox [53] can an example where permission pattern is employed for the correct answer.
Cosmides [55] proposed social contract theory as an explanation to the facilitating effect in

Wason’s selection task with thematic content. Cosmides state that conditional hypotheses

26

comply with the following basic rule: “If you profit (in a social contract), you must pay
the costs”. According to Cosmides, cheating detection mechanism is triggered during the
solution of selection tasks with thematic content. On the other hand, Manktelow and
Over [56] indicate that facilitation effect in every variant of Wason’s selection task with
thematic content cannot be explained by social contract theory. When propositions are
conditional obligation such as “If you clean up blood, you must wear rubber gloves”, then
facilitation occurs but without invoking social contracts. In this case violation is related

with high costs.

‘urer) Aq [oARI} | ‘I9)SOUOURIA O} 08 [owil} AIOAH

[z¢] (1261) omdeyg pue uoses

j1odsueI) pue Sumqy,

"SOAO[S I9QQNI IROM Jsnul NOA ‘poo[q dn ueod noAk jy

[9¢] (066T) T0AQ pue MmO URI

o[nI Areuornesar

Aerd 03 9o 08 Aewr NoA ULY) ‘WOOI INOA API) NOA JT,, :(UO0S 0} IDYIOIN)

[96] (066T) I0A() PUR MO[PINURIA

S[RUOI}TPUOD DIJUOI(]

"90R] ST UO 00})B) & 9ARY JSNUI 97 UST[} ‘)00I BARSSED S)BO URU © JT

[cc] (686T) seprurso))

JORIJUOD [RIO0S PICPUR)G

“ody QOHGM@QOU@HQ \mwmﬁp@m JsIf Isnua ouo U9yl nﬁaﬁwz Uorjo®e 9ykj 03} St 9Uo JT

[16] (g86T) 3yeOA[OH pue Suot)

oI Qoﬁmwﬁahwg PeIsqy

"o3e Jo

SIeaA GT I0A0 9(jsnwt uosiod ey} usy) ‘enjq Surream st uosiad ® J|

[19] (286T) s83ur) pue x0))

9Nl 98% FUIYI0[)

"o3r Jo

SIeaA GT I0A0 9(jsnw uosiod ey} usy) ‘199 JuruLip st uosiod e JJ

[e¢] (286T) X0) pue s33LIx)

9[NI 98 SUINULI(]

“Io8euew Jejuew)redap oY)

Aq poudis oq jsnua Jd1eod1 oY) uay) ‘ SIR[[OP ()¢ Speooxe aseypind e Iy

[09] (€86T) ut operuy,(

wefqoId IeFrURU 910G

WIS ULp [uet) Poppey 1ee | JI

[6G] (6L6T) swear] pue mop[URI

SYULIPp pu® poo;g

31 to dure)s oI1 ()G & Sey 41 USY[)} ‘Poyeas SI 19339 oYY I

[8¢] (TL6T) Ip 72 pirerT-uosuyor

9NI [e1S0q

a[ny ordurexy

Apnyg [eursSIQ

owre N

"J[Se} TOTPO[0S 9T} UI Pashl SIUSJUO0D JUSISPIP Jo sojdurexs] g o[qR],

28

2.2. Confirmation Bias in Software Development and Testing

During all levels of testing the goal must be to make the code fail, otherwise defects
shall be overlooked leading to an increase in software defect density. Software developers
must also consider test scenarios that have the potential to fail their code during unit
testing, so that less defects propagate to the testing phase. As the number of defects
which propagate to the testing phase increases, it becomes very likely that more defects
are overlooked before the software is released due to the limited time reserved for testing.
Therefore, the number of post-release defects increases which in turn becomes a risk
for producing high quality software. However, as mentioned previously it is not enough
for a developer to have a tendency to make the code fail. The number of test scenarios
which can be used to test the code can be infinitely many. Moreover, time for unit testing
before the code freeze date (i.e. the time when development of a software release ends and
testing phase for that release starts) is limited. The unit testing performed by developers
is analogous to Wason’s Rule Discovery Task, because firstly developer is supposed to
make his/her own code fail; whereas participants need to refute the alternative hypotheses
in their own mind during Rule Discovery Task. Looking at the overall format of Wason’s
Rule Discovery Task, we can say that the procedure followed by the participant resembles

black box testing.

Different from Wason’s Rule Discovery Task, in Selection Task, participant is given
a statement he/she must try to refute to prove its validity regarding four cards presented
to him/her, each with only one side visible. The statement does not belong to the
participant himself/herself. From this point of view, Wason’s Selection Task is analogous
to testing software after code freeze date when testers test codes developed by developers
(i.e. testers test someone else’s code). Unlike unit testing performed by developers, tester
needs to get an idea about how the software piece implemented by someone else works.
Therefore, it is more appropriate to start with test scenarios that make the code work.
Progressively test scenarios which are more likely to make the code fail may be tried.
Such a strategic testing approach is analogous to the hypothesis testing strategy that

helps to discover the correct rule in Wason’s Rule Discovery Task.

On the other hand, “eliminative” approach that was suggested by Wason is required

29

during all types of testing. As stated by Popper, we cannot verify a universal statement
by limited number of observations, yet falsify it. In our case, this corresponds to testing
codes in an attempt to see them function properly using limited number of test cases.
Time is limited to complete all the testing in order to release the software. Moreover, there
is usually infinitely manu test scenarios. For this reason, it is crucial to find test scenarios
which are more likely to fail the code. Moreover, we must cover the test scenario space
in a way such that we do not always pick scenarios which leads to frequently detecting
the same defect. In other words we must avoid “enumerative” testing. Only covering
the space of test scenarios in a strategic manner may help us to detect as much defect as

possible.

Finally, using logical inference rules modus ponens and modus tollens may be useful
during software testing, as it helps to select the correct cards during Wason’s Selection
Task. We can explain our claim by the question below which is an adaptation of Wason’s
Selection Task to software engineering domain by Stacy and McMillian [33]. In this
question, we are given the following hypothesis: If an instance’s class is Controller, then

it has been initialized.. The remaining of the original question was as follows:

Which of the following(s) need(s) investigation ?
1. An instance of Controller that may or may not be initialized.
1t. An instance of a class other than Controller that may or may not be initialized.
1t. An initialized instance whose class is unknown.

. An uninitialized instance whose class is unknown.

The correct answer of the question is “4 and ww”.Therefore, knowledge of modus
ponens and modus tollens may help us to detect defects especially during white box

testing.
2.3. Research Questions
In this section, we state our research questions. In the rest of this thesis, we will

perform several experiments in order to obtain empirical evidence to find the answers of

these questions.

30

2.3.1. What are the factors affecting confirmation bias levels in software de-

velopment domain?

In order to answer this question, we make a list of factors which have the potential
to affect confirmation bias levels of software developers. We focus on two main factors
which are experience, and reasoning and hypothesis testing skills respectively. We also
analyze the effect of company size, and the effect of roles in the company (i.e. developer,
tester, analyst, etc.). We perform statistical tests to find out whether there is a signif-
icant correlation between each of these factors with confirmation bias levels of software

developers, testers and analysts.

The goal of this analysis is to gain insight about confirmation bias metrics. More-
over, knowing which factors affect confirmation bias may help us to find methods to
circumvent the negative effects of confirmation bias. In this way some de-biasing strate-

gies may be developed.

2.3.2. How does confirmation bias affect software developers and testers?

We use total number of post release defects which originate from part of software
tested by each tester T as the performance measure of that tester. We perform a correla-
tion analysis to find out if there is a correlation. Moreover, using confirmation bias metrics
of testers as independent variables and performance measure od testers as response vari-
able, we perform a regression analysis. A similar regression analysis is performed for

software developers.

Although there are some hypotheses about the effect of confirmation bias on soft-
ware tester and developer performance, we needed some empirical results.We needed to
make this analysis to have some empirical evidence about the potential of confirmation
bias metrics to be used to learn defect predictors so that we can overcome performance

ceiling of defect predictors.

31

2.3.3. How can we build defect predictors with comparable prediction per-

formance by using only confirmation bias metrics as input data?

In order to answer this research question, we built defect predictors using all com-
binations of static code, churn and confirmation bias metrics. The results of our experi-
ments showed that comparable prediction performance results can be obtained using only
confirmation bias metrics to build defect predictors. This result also has a very important
implication regarding the use of people metrics to overcome performance ceiling of defect
predictors. Although confirmation bias is a very small aspect of people, obtaining such
promising prediction performance results implies that researchers must focus on people

aspects to build defect predictors.

2.3.4. How can we build defect predictors with comparable prediction per-

formance using incomplete confirmation bias metric data as input?

Unlike static code and churn metrics, which are automatically collected, it requires
more effort to collect confirmation bias metrics. Moreover, as the lifetime of the software
being developed increases some developers might leave the software company so that
it would be impossible to collect their confirmation metrics. Eliminating entries with
missing confirmation bias metrics would result in building defect predictors which can
make prediction only for a specific portion of the software product. This portion might
even be very low depending on the number of no longer existing developers who once
created /updated most of the files of the software product which is still being developed.
Hence, we searched for an alternative solution where we can impute the missing data
and use the imputed data consisting of only confirmation bias metrics to learn defect
predictors. The results we obtained were promising which would help us to deal with
missing confirmation bias metric values. In addition, the employed methodology can be
used to make defect prediction in large development groups spending as much resources
as possible to collect confirmation bias metrics. After having collected confirmation bias
metrics from a certain amount of developers, the confirmation bias metrics related to rest

of the developers in the project group can be treated as missing data.

32

3. METHODOLOGY

This chapter explains in detail the methodology used to measure/quantify confir-
mation bias levels of software developers/testers, the statistical methods used to analyze
the effects of some factors on confirmation bias as well as the effect of confirmation bias
on software developer and tester performance. In addition, this chapter contains infor-
mation about Naive Bayes Algorithm used to build defect predictors and Roweis’” EM

Algorithm for PCA to impute missing confirmation bias metrics.

3.1. Measurement/Quantification of Confirmation Bias

The overall methodology to define confirmation bias metrics and extract metric
values is shown in Figure 3.1. Based on our extensive survey about confirmation bias,
we formed an initial confirmation bias metric set. We kept on modifying our confirma-
tion bias metrics set, while we prepared our written and interactive tests. Moreover,
the content of the written tests were also determined based on the some confirmation
bias metrics we decided to include into our metric pool. Hence, we can say that there
was feedback from the outcomes of confirmation bias metric set formation phase to test
preparation phase as well as the other way round (i.e. feedback from test preparation
phase to metric phase formation phase). During conducting our interactive test, our
observations about participants’ hypothesis testing behavior to find the correct rule led
us to define metrics to monitor hypothesis testing strategies. In addition, while we were
evaluating both written and interactive test outcomes, we were able to update our metric

pool. The final content of the metric set, we used in our experiments is given in Table

3.2 and 3.3.
3.1.1. Preparation of Confirmation Bias Tests
Interactive test is Wason’s Rule Discovery Task itself, whereas written test is based

on Wason’s Selection Task. The details about both written and interactive tests are given

in the following subsections.

33

© —»Time order

:Dlnformatmn Flow/Feedback

prepare/
update
written
tests

prepare analyze written
interactive | = —={ and interactive —#
tests tests

perform written extract ps"""‘,‘ statistical

. N) analysis, and

._. |—»| and interactive |—»| confimmation bias —we o dtion
tesls metric values algorithms

create/update test update test metric
i 1 set
metric set

=

Figure 3.1. Methodology used to measure/quantify confirmation bias metrics.

3.1.1.1. Written Tests. There are four different types of questions in the written test

which are abstract, abstract-thematic and thematic questions as well as questions with
software development /testing theme. Written test consists of two parts. In the first
part, abstract and thematic questions are presented in an order such that an abstract
question is followed by a thematic question and vice versa. In addition to abstract
and thematic questions,the first part also contains an abstract-thematic question. The
second part also consists of thematic questions, however these questions have software

development /testing theme.

Abstract questions require pure logical reasoning to be answered correctly. In our
test, there are eight abstract questions. One of the questions is the original question in
Wason'’s Selection Task [1]. In addition to Wason’s original question, there are 3 questions
where the statement that is to be either proved or disproved is of the form “If P, the ()"
(P = Q). Moreover, in order to identify the tendency of the participant according to
Reich and Ruth’s categorization (i.e. whether the participant is falsifier, verifier, matcher
or none) all three negated versions of the original question in Wason’s Selection Task are

also included in the written test.

e If P, then not Q): P = —Q
e [fnot P, then Q: =P = @
e [f not P, then not Q: =P = =@

34

As mentioned previously, there is only one abstract-thematic question and it is in
the first part of the written test. Abstract-thematic questions seem to have theme based

on daily life, however they can be answered correctly only based on logical reasoning.

Unlike abstract and abstract-thematic questions, it is possible to answer thematic
questions without pure logical reasoning. The first part of the written test contains seven
thematic questions. These questions aim to stimulate various mechanisms/phenomena
that people can employ to answer thematic questions rather than pure logical reason-
ing. Among these mechanisms/phenomena are daily life experiences, memory cueing,
precautionary effect, cheating detection mechanism from Cosmides’ social contract the-
ory. While preparing thematic questions, we consulted related literature (refer to Table
3.1). One of the questions is the famous “Drinking Age Problem” by Griggs and Cox
[53]. There is also one “Precautionary Rule” very similar to the one by Manktelow and
Evans in [59]. Two different versions of a single question based on Cosmides’ original
“Social Contract” rule [55] are included in the thematic test. In both of these versions,

the participants are asked to prove/disprove the following statement:

“If an employee gets a pension, that employee must have worked at least ten years.”.
In the first version, the participant is told that he/she must assume he/she is an employee;
whereas in the second version we try to make the participant think from employer’s
point of view. If a participant answers these two questions based on cheating detection
mechanism according to Cosmides’ Social Contract Theory, then he/she cannot give the
same answer to them. On the other hand, if the participant answers these two questions
using pure abstract reasoning he/she gives the same answer to both questions which is the
correct one. One can give the correct answer to “Drinking Age Problem” by Griggs and
Cox by employing the cheating detection mechanism rather than pure logical reasoning.
There is one more question which also stimulates the cheating detection mechanism and

this makes four such questions in total.

Finally, we also included an adaptation of the “Towns and Transport” rule by Wason
and Shapiro [52]. In the written tests which we conducted to Turkish participants, the
original statement to be proved/disproved “Every time I go to Manchester, I travel by

train” is replaced by the statement “Every time I go to Ankara, I travel by train” in

35

Table 3.1. Examples of different contents used in the selection task.

Question Type # of Questions

Written Test: Part 1

Abstract 7
Abstract4+Thematic 1
Thematic 7

Written Test: Part I1

Software Development /Testing 8
TOTAL 23

order to facilitate the familiarity of the participants based on their daily life experiences

and memory cueing.

The questions in the second part of the written test were also thematic questions
where pure logical reasoning can be bypassed by experience in software development and
testing. Yet, the answers to these questions can be correct. While preparing this part of
the written test, one of the questions is taken from [33]. This question was mentioned in

Section 2.2 of this thesis, whereas the rest of the questions were prepared by us.

3.1.2. Definition of Confirmation Bias Metrics

In Table 3.2 and Table 3.3, the final set of confirmation bias metrics are shown.

These metrics can be categorized under the following titles.

3.1.2.1. Performance Metrics. Performance metrics are concerned with the final results

of the tests. In interactive tests, final results consist of whether subject discovers the
correct rule or aborts the test (INDapogr), total number of rule announcements made
by the subject (N4) and total time it takes for the subject to complete the test with
or without success (77). Performance metrics for written tests consist of test scores as

shown in Table 3.2 and time (in minutes) it takes for the subject to complete the tests

(Tsw, TrntaBs)-

36

Table 3.2. List of confirmation bias metrics (Performance Metrics).

Metric Explanation Test Type | Data Type
ST Score in thematic questions Written Categorical
SABsS Score in abstract questions Written Categorical
Ssw Score in questions with software theme Written Categorical
TryyaBs Time it takes to solve general test (in minutes) | Written Continuous
17 Interactive test duration (in minutes) Interactive | Continuous
Ny Total number of rule announcements Interactive | Categorical
IND spogrr | Total number of rule announcements Interactive | Categorical

3.1.2.2. Metrics to Monitor Hypothesis Testing. These metrics are only extracted for

interactive test to monitor procedure followed by the subject and to find out whether
subject follows a sensible hypothesis testing strategy or not. Behaviors such as rule or
reason repetition are indicators of the fact that the subject is stuck with a single hypoth-
esis. Within the context of software development and unit testing, this is analogous to
testing the code for similar scenarios and similar input/output combinations. Immediate
rule announcement may also be an indicator of the lack of hypothesis testing strategies.
A developer who makes immediate announcements during the interactive test, is most
likely not to take into account the results of his/her previous unit test scenarios be-
fore deciding on the scope of his/her next test scenario. Eliminative/enumerative index
(Ind, /en) was introduced by Wason to evaluate the results of his rule discovery task in
order to determine the proportion of the total number of instances that are incompatible
with reasons to those that are compatible. It is desirable that eliminative/ enumerative
index is greater that one, and the higher it is, the higher the tendency of the subject
to refute his/her own hypotheses. The original elimination/enumeration index and its
variations defined by us are listed in Table 3.3. Frequency of negative instances was also
defined by Wason to interpret the results of this rule discovery experiment in addition
to the elimination/enumeration index [1]. He had found high correlation between elimi-
nation/enumeration index values and negative instance frequencies. However, these two
are not entirely the same. Therefore the metric list in Table 3.3 also includes Wason’s
negative instance frequency as well as the variations of both eliminative /enmerative index

and negative instance frequency which have been defined by us.

37

Table 3.3. List of confirmation bias metrics (Metrics to Monitor Hypothesis Testing
Procedure).
Rule/Reason Repetition
Metric | Explanation Test Type | Data Type
avgF® L | Average rule repetition frequency Interactive | Continuous
avgF® , | Average reason repetition frequency Interactive | Continuous
instpyrco | Positive and compatible instances given after Interactive | Continuous
incorrect rule announcements
instpyrco | Positive and incompatible instances given after Interactive | Continuous
incorrect rule announcements
instyy+co | Negative and compatible instances given after Interactive | Continuous
incorrect rule announcements
insty+rc | Negative and incompatible instances given after | Interactive | Continuous
incorrect rule announcements
Immediate Rule Announcements
Metric | Explanation Test Type | Data Type
avgFT™® | Average immediate rule announcement frequency |Interactive | Continuous
avgL'® Average length of immediate rule announcement |Interactive | Continuous
Eliminative/Enumerative Behavior
Metric | Explanation Test Type | Data Type
Inde e, | Wason’s Eliminative/enumerative index Interactive | Continuous
(average, minimum, maximum are also available)
Frequency of Negative Instances
Metric | Explanation Test Type | Data Type
Frey Frequency of negative instances Interactive | Continuous
(average, minimum, maximum are also available)
Subject’s Method to Test Hypotheses
R/T Rules announced per unit time Interactive | Continuous
Rs/T Reasons announced per unit time Interactive | Continuous
UR/T Unique rules announced per unit time Interactive | Continuous
URs/T Unique reasons announced per unit time Interactive | Continuous

38

3.1.3. Conducting Confirmation Bias Tests

In order to collect confirmation bias metrics in a controlled manner, we conducted
confirmation bias tests under a predefined standard procedure. The following information

is valid for both written and interactive tests:

e The environment where both tests were conducted was isolated from noise having
adequate lighting.

e Both Turkish and English versions of the tests were prepared. Participants took
Turkish version of the tests if their native language is Turkish. Participants from
Canada took English versions of the tests.

e Participants were informed about the fact that this test shall not be used in perfor-
mance evaluations and their identity shall be kept anonymous. The goal was not
to exert pressure on participants which could affect participants’ performance.

e Moreover, participants were told that there was no time constraint to complete the
written test in order not exert time pressure.

e After the completion of both tests, participants were warned not to inform other

software developers and testers in their company about the content of the tests.

Below we explain the standard procedures followed for both written and interactive

tests.

3.1.3.1. Written Tests. In Wason’s studies related to his Selection Task, participants

were allowed to inspect real packs of cards, before the experimenter secretly selected four
cards from the pack and placed then on a table so that only a single side of each card
is visible. However, most recent studies in this field rely on the description of the cards,
and pictorial representations of cards’ facing sides either on pencil and paper or on a
computer screen. These procedural differences have made very little differences in the
obtained results [62]. Therefore, we used pen and pencil approach to apply the test which
consists of variations of Wason’s Selection Task as well as its original form. Written
test consists of two booklets. The first booklet (i.e. General Test) included abstract,
thematic-abstract and thematic questions, while the second booklet (i.e. Software Test)

consisted of thematic questions with software development/testing theme. The following

39

standard procedure was followed while conducting written tests:

e Each group of participants, corresponding to each data set listed in Chapter 4, took
written tests altogether in a meeting/seminar room.

e Before starting the tests, the participants were told to fill in the form where personal
information such as gender, age, education and experience in software development
and/or testing were asked.

e Firstly, General Test was given to participants so that they started the test simul-
taneously.

e In order to measure time:

i. We recorded each participant’s completion time of the General Test, once he/she
completed and submitted the test.

ii. Starting time for the General Test was same for all the participants.

iii. After a participant completed and submitted General Test, he/she was given
Software Test. Starting time for this test was also recorded, once the subject
started.

iv. Similar to General Test, completion time of Software Test was also recorded

once the participant submitted the test he/she completed.

3.1.3.2. Interactive Tests.

e Each participant took interactive test separately and for each participant there was
one experimenter to conduct the test.

e Participants were asked whether they give permission to record their voices during
the interactive test. The goal of sound recording was to catch every detail about
the way a participant thinks to discover the correct rule. However, voice recording
was made only if the participant gave us the permission.

e Before the test, the original text in Wason’s Rule discovery Task, was read to the

participant:

You will be given three numbers which conform to a simple rule that I have
in mind. This rule is concerned with a relation between any three numbers
and not with their absolute magnitude, i.e. it is not a rule like all numbers
above (or below) 50, etc.

Your aim is to discover this rule by writing down sets of three numbers,
together with reasons for your choice of them After you have written down

40

each set, I shall tell you whether the numbers conform to the rule or not, and
you can make a note of this outcome on the record sheet provided. There is
no time limit but you should try to discover this rule by citing minimum set
of numbers.

Remember that your aim is not simply to find numbers which conform to
the rule, but to discover the rule itself. when you feel highly confident that
you have discovered it and not before, you are to write it down and tell me
what it is. Have you any questions?

3.2. Analysis of Factors Affecting Confirmation Bias

In this section we explain methods and techniques we employed during the analysis

of factors affecting confirmation bias.

3.2.1. Test Severity Calculation

In order to calculate Test Severity (i.e. severity of each instance) for each partici-
pant, we used the method proposed by Poletiek [48]. The details about this method were
given in Section 2.1.4.3, where we explained Popper’s definition about the test severity.
In Wason’s Selection Task, test severity corresponds to the severity of a given instance.
Poletiek’s method was a way to evaluate severity of each instance given by a partici-
pant during the experiment she conducted. Her experiment was similar to Wason’s Rule
discovery Task. However the initial instance given to the participant was “2-7-6” and
she wanted the participant to the discover the rule “even-uneven-even numbers”. We
replicated her method for our interactive test which is based on Wason’s Selection Task.
We formed a set of plausible alternative rules which are listed in Table 3.4, 3.5, 3.6 and
3.7. This list is a collection of alternative hypotheses which were gathered during in-
teractive tests we conducted to active/inactive software developers/testers from various
companies/institutions in two different countries. Details about data sets can be seen in

Chapter 4.

Ioquinu] pue

pul UOOMIO(9OUSIOPIP oYY 03 [enbo 10 Uey) 1038918 ST OQUINU 4,7 PU®

pu€ TPIMID(SOUSISYIP PUL SJUSUAIIUL IOFOIUT YIIM SISQUINT FUIPUIISY Z3fitvtr 2 fiffitq=opuer4+0=q| ¢l
€ 4q
Q[UISIAIP SI SIOQUINU 991} JO WNS JeY) YONS IOPIO SUIPUSISE Ul SI9FOIUT Zoy9q9vpuey=¢/(O+q+Dv)puRo>q>n| gl
€ Aq SIQISIAID ST SIOQUINT HIIT) JO WG Zoypuey=¢/0+q+0)| 11
oquunu ,,g 9Y) 99I1M) 0} [enbe st s1oqunu ps€ PUR T 973 JO ng Q%3 =29+D| 01
gjo
SPUOWOIOUL JURISUOD [HIM IOPIO SUIPUOOSE UL 018 SIOFOIUL 0AIISOd WOAF | , 7 DU PUR (Z+U)xg =2 pue ([+U)*xZ=QqPURU*xT=D| §
SIOQUINT g PUR 4T 0} [eNDd 10 UL} 19)LdIT ST WDAWNT 4, & Q<opuen <ol §
SIOQqUINT 7 PUR o] WRY)} I9)eIIT ST IOqUINT ¢ Q<opuen<<o|)
IoqUINU 4T S} ST} 931} ST IoquINU ,, & PUR
IOQUINU ;T A} 9ITMY ST IDQUINT 4,7 PUR I9PIO SUIPUSDISE UL OI8 SIOCUITN] DxZ=QpPuUed=q+Dopues>qg>n| 9
¢ JO SjusmWeIOUL JURISUOD UM I9PIO wgﬂugwowd Ul od€ SIoqUIITLN ¢C=qQ—9=D—¢q G
IoquInu , T pue ,,g 9} UsAMID(dDUDISHIP Y3 AQ J[(ISIAIP SI IToquinu ,, & Zoypuey=(—q)/o| ¥
SHUOUWISIOUL JURISUOD M IOPIO SUIPUSISR UL 918 SIOCUITLN Q—2=D—QpuURI>Qqg>D| ¢
Iaqumu , e 973 03 Tenba
ST I9qUINT 7 PUR 4] Y3} JO WNS PUR IDPIO SUIPUISE UL dIR SIOUINN 2=q+DvDpuRd>q>D| 7
Ioqunu , ¢ 973 0} [enbo ST Ioquinu ,,z pue , 1 oY) Jo Wng 2=q+Dv| T
uorjeue[dxy UOI1ejON]

‘T JIed SUOIIRINOMRD AJLIDADS 1S9% UI posn o 01 SISoj0dAY aarjeuIojfe siqsned Jo 108 §'¢ o[qrRL,

¢ JO SJUSWISIDUT JUR)SUOD [[JIM I9PIO SUIPUSDSE UL SIR SI9FIUI WA | 7 DU PUR (g4 U)*xg =2 pue ([+U)*xg=QPuUR Uxg =" | 67
oquInu 4,z pue

45T 93 JO ddeIoAR AU} YIM IoquINU , T 97} JO $oNPoId ST DQUINT , ¢ DxkD=QPUBI=D—Q%D| QG
IOQUINT 5,7 ST IOQUINT 4] JO dIeNbs pue OqUINT 4,7 PUR T

o1} Jo jonpoid WOl PajdeIIINS ST , T USYM PIUIRI(O ST IDQUINT & DkD=QPUBI=D—Q*D|)T
TOQUINT g PUR 4T

o1} Jo jonpoid woIy PajdeIHNS ST , T USYM PIUIRI(O ST IDQUINT , & 2=D—qx*xv| Qg

SI980UL 991 T, 7 3599'D| qg

s198ojur onbrun o1y J, OF£Q#£DDpPUR 7 309D | §g

Z Aq o[qISIAIP SI WIS 9SOYM SI9Fojur dA1}ISOod 991y T, L7 29°q‘p pue gpow(d2 +q+ 1) | €g

Z £q 9[qISIAID SI WIS 9SOYM SISBOIUI 991 T, Z 292 ‘p pue () = gpows(o +q+ 1) | 77

IopIO SUIPULISR UL SISFIJUL SATIISOJ LZ22qQ'Dpued >q>0| g

JOPIO SUIPUDISE UL SIOQUINU [BI DAIIISOJ LYy s9299vpued>q>0| (g

SIOqUINU [BaI 991 T, sIoquunu [eal [[B oIk (2°9‘D) | 6T

Joqunu owLid € ST 198Ul [ors UR(} 19113 | ownid e ore (14974 9‘T+ D) | 8T

¢ ST SIoqUINU 99173} JO IOSIAI(] UOTIUWIO)) }SOIRIIL) c=09D)amon| L1

UOAD ST IOQUINT , T PUR € O} USIMIO] dIUDISHI(] ¢ = gpowsy pue 3§y =D —0o| 9

45T OU3 URY) I9)BDI3 ST IOqUINT 4, € JRT} (NS SISCUINT I, » <o pue (29n)| g1

I9Goyur , T R} 193e0I3 ST I9TIJUL 1, YR} YONS SIOFOYUT 901, D<qQpue 7z 309D| p1

uorjeue[dxy

UOIJeJON]

‘I 38 :SUOIYRINOTed AJLIDADS 4S9) UT Pash aq 03 SIsaTjodAT] aAryeuIa)fe o[qisne[d Jo 319G "G'¢ 9[qR],

USAD 918 9 ‘Q ‘D puR IdPIO

BUIPULOSOP UI 10 FUIPUSISE UL IS0 SIOGOIUT UOAD DAIINIASUO) | g =[q—2| = |p —q| pue 7 22 ‘D puR 2 < 9 < D 102 > q > D YL | G
UQAD IR
“IOPIO SUIPUAISE UL IS}O SIOFOJUI UOAD 9AISOd DATINIISTUO)) 2q‘'ppue g =1|Q—2|=|p—q|pue .7 309D puvd >q>D| 8L
"IOPIO SUIPUISAP U9AD 918 D ‘Q ‘D pue
ur 10 SUIPUOOSE UL IOY}I0 SIOFOJUL U0AD 0ATYISOd DATNOOSUO)) | g = |9 —2| = |p —q| pue .7 299D pued < Q<D I02 >q > D YO | L¢
IOQUINT g Y} SOWITY 09T} 0 [enbo st
I_pquinu 4, e pue .7 Jo 1onpoid Jer) Yons I9PIo SUIPULISE Ul S19599U] q=¢/(@xp)pued>q>vpue 7z 3029'D| 9¢
IDQUINT 7 9} JO dTenbs o1} 0] [enbd st oqUINU
pu€ PUB 4T JO WINS O} 90TM) BT} [DNS SIOFOYUL 99T, (O+D)xg =9 pPue 7 329D| G¢
IOqUINU ,,,g 93} Jo doxenbs o1y 03 [enbo SI OqUINU ,,,¢ PUL , T JO WS
9} 90IM] JRY[} UONS JOpIo SUIPUAISE Ul SI9Z0UT 991y T, (O+D)*xg=,9pPUCO>9>DpuUe 7 329D §¢
¢ 0% [enbo st soquInu , T PUR ,,g Y} U0dMII]
9OURILIP e} Yons Ioplo SUIPUIISE Ul SIOFIIUL 91T, Z+pr=q) pueo>qg>vpueyzd09D| ¢g
IOqUINU 7 Y} 03 [enbo sI pqumu ,,¢ oY) Jo Jrey uey)
1038913 T JRY) UONS IOPIO SUIPUIISE Ul SI980JUT 9911 T, Q=1+ (g/2) pueo >q>vpue 7 509D| g¢
Ioqunu .1 oyj ueyy
1098018 ST IOqUINT 1, YY) [DNS SIOQUINT [BOI 99T, D<qQpuey >29'D| ¢
Ioquinu ,,¢ 97y 03 [enbd 10 Uy 109RIIT ST PQUINU 7 PUE 4] 9} JO WNG 2<Q+D| ¢
uorjeue[dxy uor)ejoN

‘TI] 418 :SUOIRNO[ed AJIIOAdS 4897 UI Pash o 09 s1sojodAY aaryeuIale arqisne[d Jo 308 "9'¢ 9[qe],

"SJUOWIOIOUL POL[RA I0FIJUL WOAS [IIM SUIPUIISE SI0FOIU] | 7 D W pUR 7 32Q'D pue wg = (9 —9) = (D —q) pue 2 >q>0| H}
‘T UR() I0)e0IS 1030 UOWUWIO!) }S9)RIIL) [[IIM SI9SOIU] 1< (@9‘D)gpp pue 7z 529D| ¢F
T uey) 199eaId ST (D)) 1030%]
UOWWIO)) }S918AIL) I} R} YONS IOPIO SUIPUIISE Ul SIdFOIU] 1< (@9‘D)gpHpue 7z 30¢‘ppued >q>v| gy
'z JO sjuomaIep/
SHUOUWIOIOUT IIM SUIPUOOSOP UI 10 SUIPUIISR UL IS0 SI0FIU] | g = [— 2| = [p —q| pue 7 229D puR 2 <9< D 102 > q > D YL | [F
"I9PIO SUIPULISE U IDYII0 SI9F)UI USAD SAIINILSUO)) | USAd IR 2 QD PUR g = [— 2| = |p —q| pue Z 3 2Q‘D puv 2 >q > 0| (OF
uorjeue[dxy UOI)eION

Al HRJ :SUOIYRNOTeD A}IDASS 1S9} UL Pasn oq 0} sisa[jodAY aAryeuIa)fe o[qisne[d Jo 319G “1°¢ 9[qR],

45

3.2.2. Formation of Test Severity Graphs Using Vincent Curves

Vincent curves [63] represent performance of subjects towards a criterion, which
is not defined by fixed number of trials. In his Selection Task, Wason used Vincent
curves to compare mean number of instances incompatible with reasons up to the first
rule announcement for two groups. One of the two groups was the group of participants
who announce the correct rule at their first trial, whereas the other group consisted of

participants who could not find the correct rule at their first trial.

We use Vincent Curves to be able to compare hypothesis testing strategies of dif-
ferent groups of participants. During interactive tests, total number of instances given
before discovery of the correct rule varies from one subject to another. Hence, Vincent
curves can be used to visualize the change in test severity of a group of subjects until
the correct rule is discovered. Although, there are variants of Vincent curves, we use the
original method proposed by Vincent to obtain a composite curve. This method can be

explained as follows:

e Total number of instances given by each subject in the group is divided into N equal
fractions.

e Within each fraction, we calculate the average of test severities of the instances that
fall into that fraction. This calculation is done for each subject in the group.

e For N equal fractions, N 4+ 1 data points are obtained per subject. The average of
the " data point of all subjects gives the ¥ data point for the group of subjects,

where 1 = 1,2, , N + 1.

We have selected total number of fractions N to be equal to the minimum number
of instances given within the group before discovery of the correct rule. For number
of instances which are not divisible by N, we used Vincent’s original procedure. For
instance, the division of 22 instances given by each subject among 5 fractions would be
5,5, 4,4, 4. In other words, 2 additional instances are distributed one by one, starting

from the first fraction.

46

3.3. Defect Prediction
3.3.1. Naive Bayes Algorithm

Naive Bayes is based on Bayes Rule [64]. Using Bayes Rule, the probability that an
observation Z, which is a d-dimensional vector where d > 1 belongs to class C;, P(C;|%)

can be formulated as follows:

P(Cy|7) = —— 220 (3.1)

In Equation 3.1, P(C;) is called the prior probability of class C;. P(Z|C;) is called
the class likelihood that observation ¥ comes from the distribution which generates class
C;. P(Z) is called the evidence and it is the marginal probability that observation 7 is

seen. For all classes C;, P(Z) is identical:

P(Z[Cy) P(Cy)

P(Ci|7) = K P(#]C)P(Cy)

Since evidence P(Z) is identical for all classes C;, we can define the discriminant

function as follows:

8y

9i(¥) = P(Z[C;) P(Cy) (3:3)

Discriminant function g;(#) can also be defined by taking logarithm of the product

P(#C:) P(Cy).

gi(Z) = log(P(%|C;)) + log(P(C;)) (3.4)

In a classification problem, for each observation 7 in the sample we calculate the

posterior probability P(C;|Z) for all classes C}...C,,. We assign each observation & to the

47

class for which maximum posterior probability is obtained. Finding maximum posterior
probability is equivalent to obtaining the maximum value for the discriminant function
g;(Z). In order to calculate value of discriminant function g;(Z) for each observation &,
we need to be able to calculate prior probability P(C;) and the likelihood term P(Z|C;).
Prior probability of each class P(C;) can be obtained from the sample by counting. On
the other hand, we need to choose a suitable distribution for class likelihood P(Z|C;). In

Naive Bayes, it is assumed that P(Z|C;) are Gaussian:

P(EIC) = Grmrsyreeerl—5 (@ — A (207 @) 3:5)

As a result of inserting log(P(Z|C;)) in equation 3.3 by the Gaussian distribution

formula in equation 3.4, discriminant function g;(Z) becomes:

d 1 1 -1

We can eliminate the term —glog27r since it is constant in discriminant functions of
all classes C;, © = 1,...,n. According to the assumptions of Naive Bayes, each class has
a common covariance matrix > where off-diagonal entries are equal to 0. Hence, we can

reformulate discriminant function ¢;(Z) as follows:

DN | —

9:(7) = — (””J_S—;’”)z +logP(C)) (3.7)

Jj=1

In the above equation, x; is the jth dimension of vector &, m;; is the jth dimension
of the mean vector for class C; and s; is the jth component of the standard deviation

vector which is common for all classes.

We use Naive Bayes to build defect prediction models for Experiment III. In our
defect prediction problem domain, each vector Z corresponds to attributes of a single

source code file. These attributes can be static code metrics, churn metrics of the file

48

as well as the confirmation bias metrics of the group of developers who created /updated
that file. We have two classes which are “defected” class C; and “non-defected” class Cs.

Defective files belong to class C', whereas defect-free files belong to class Cj.

3.3.2. Performance Measurement

In order to evaluate the performance of the defect predictors built by using differ-
ent metric set combinations, we used the well-known performance measures which are

probability of detection, false-alarm rate and balance respectively [5].

e Probability of Detection (pd): Pd measures how good a predictors is in finding
defective modules, where modules can be files, methods or packages depending on
the granularity level. In the ideal case, we expect a predictor to catch all defective
modules (i.e. pd = 1).

e Probability of False Alarms (pf): Pf measures false alarm rates, when predictor
classifies defect-free modules as defective. In the ideal case, we expect a predictor
to classify none of the defect-free modules as defective (i.e. pf = 0).

e Balance (bal): In practice, the ideal case where a defect predictor has high prob-
ability of detecting defective modules (i.e. high pd) and low probability of false
alarm (i.e. pf = 0) is very rare. Therefore, we try to balance between pd and pf
values. The notion of balance is formulized to be the Euclidean distance from the
sweet spot (pd = 1 and pf = 0) normalized by the maximum possible distance to
this spot. It is desirable that predictor performance is close to the sweet spot as

much as possible (i.e. high balance values are desirable).

V(0 —pf)* + (1 — pd)?
V2

bal =1 — (3.8)

Pd and pf values are calculated using Confusion Matriz that is given in Table 3.8.
In the confusion matrix, TP is the number of correctly classified defective modules, F'P
is the number of non defective modules that are classified to be defective, F'IN is the
number of defective modules that are classified to be non-defective and finally T'N is
the number of correctly classified non-defective modules. Formulations for pd and pf in

terms of confusion matrix values is given below:

49

Table 3.8. Confusion matrix TP:True Positives, FN:Fualse Negatives, FP:False
Positives, TN:True Negatives.

Predicted

Actual Case | Defected | Not-defected
Defected TP FN
Not-defected FP TN

3.4. Missing Data Problem in Defect Prediction

In the literature, there are various methods to impute missing data. Imputations
are means or draws from a predictive distribution of missing values. There are mainly
two types of imputation methods, which are single imputation and multiple imputation

respectively.
3.4.1. Single Imputation Methods

Single imputations can be used to impute one single value for each missing item.

Below, we list some single imputation methods:

o Mean imputation: Assume that we have a partially complete data set Y, where
y;,; stands for a missing value of the jth attribute for the 7th item. Then, we can

replace each missing value y; ; by the stratified mean can be formulated as follows:
ot = G = ~ > (3.9)
st = Yw = — W;iY; .
Yst =Y n 4 Y

In Equation 3.9, n is the total number of samples and w; is the sampling weight

attached to item z.

-1
il (3.10)

W, = =51
ZZ:1 Ty, !

and m; is the selection probability of item ¢ which implies that item i represents ; *

50

units in the sample population. Hence, in Equation 3.10 is scaled to the sum of the
sample sizen =Y ,_, 771;1- However, y,, can only be calculated using complete data
in the sample, since we have no idea about the missing data. As a result Equation

3.10 becomes:

r(migi) ™!

w; = ST () (3.11)

In the above equation, r is the total number of complete data, ¢; is the probability
that the selected item i is not missing. Therefore Pr(selection and not missing) =
Pr(selection)™ Pr(not missing |selection) = m;¢; and ¢; = r/n.

Regression imputation: Regression imputation can be applied to missing data pat-
terns where Y7,Y5,....Y, 1 are fully observed and Y}, is observed for the first r obser-
vations and missing for the last n — r observations. Using Y7,Y5,....Y;_1 as indepen-
dent variables and the first r rows of Y}, as the response variable, we can construct

a regression equation.

k-1
Yik = Broa2. k-1 + Z Brji2.. k—1Yij (3.12)

J=1

Missing values can be imputed by the results obtained from the resulting regression
model.

Stochastic regression imputation: Different from regression imputation where a con-
ditional mean is imputed, stochastic regression imputation is used to impute a con-
ditional draw.

k-1
Yik = Bro12..k—1 + Z Brji2. k—1Yij + Zik (3.13)

j=1

Un the above equation z;j is a random normal deviate with mean 0 and residual
variance obtained from the regression of Y, on Y7, Ys, ..., Y, 1. In this way, distor-
tions due to imputing mean of the predictive distributions are improved.

Hot deck imputation: Hot deck imputation involves substituting individual values
which are drawn from items similar to the item whose missing value(s) are to be

imputed. In the literature there are various hot deck imputation methods.

ol

o Substitution: Missing values of items are replaced by those of the items which are
not included in the sample. For instance assume that during our analysis in this
thesis, confirmation bias metrics of a developer are missing since that developer no
longer works at the company. Hence, we substitute confirmation bias metrics of a
developer who is not included in our analysis. Such a developer might be excluded
form the analysis since he/she is a new comer to the project group so that she
does not have any commit information in version management system regarding
the project developed by the group. During substitution, there must always be a
resistance to treat the imputed data as complete, because substituted values may
differ significantly from the missing values.

e (Cold deck imputation: Cold deck imputation replaces a missing value of an item
by a constant value from an external source. For instance missing values in a
survey result may be imputed by using previous results of the same survey that was
conducted to the same person. However, similar to substitution method, one must
be cautious while using this method. In our case, since there are no past results of

confirmation bias tests, cold deck imputation is not a suitable method for us.

3.4.2. Multiple Imputation Methods

Using multiple imputation method, one can impute more than one value for each
missing item which makes it possible to assess imputation uncertainty. For each replace-
ment of the missing values, an imputed data set is obtained. Each data set obtained is
analyzed using standard complete data methods. Multiple imputation reflects sampling
variability under one imputation model or uncertainty about the correct model used for

imputation.

3.4.3. Expectation Maximization Methods for Imputation

Expectation-Maximization algorithm formalizes a relatively ad hoc idea for han-
dling missing data [65]. It consists of iteratively replacing missing values by estimated
values which is followed by re-estimating the parameters. E-step (Expectation step) finds
the conditional expectation of the missing data given the observed data and current esti-

mated parameters and then substitutes these expectations for the missing data. On the

o2

other hand, M-step (Maximization step) performs maximum likelihood estimation of the
parameters 6 just as if there were no missing data. Unlike ad-hoc imputation methods,
EM does not necessarily substitute the missing values themselves. Instead of the missing
values, functions of the missing values appearing in the log likelihood of the complete

data £(0|Y) = InL(0]Y") are estimated.

3.4.4. Roweis’ EM Algorithm for PCA

In this thesis, we use Roweis’ Expectation-Maximization (EM) Algorithm for Prin-
cipal Component Analysis (PCA) [46], in order to deal with the missing data problem.
Our goal is not to perform PCA factorization. However, the reason of our choice is
the ability of this algorithm to permit the computation of eigenvalues and eigenvectors
while working with many data with high dimensions in the presence of missing. Roweis’
method, had also inspired Bell, Koren and Volinsky [66] to develop a matrix factoriza-
tion algorithm to improve the accuracy of large recommender systems such as Netflix

Cinematch [67, 68].

The goal of PCA is to find a mapping from the data Y in the original d-dimensional
space to a new k-dimensional space where k < d such that there is minimum loss of

information [64].

X =uw"Y (3.14)

The above equation can be reformulated as Y = C' X, where C' = (w”)™!, which in turn
can be reformulated as X = C~'Y = C7'IY, where [= (CT)~'C7 is the identity matrix.

Therefore, the following formulation holds for X:
X =Ty oty (3.15)
Equation 3.15 forms the E-step of Roweis” EM Algorithm. In the above equation, Y is a

pxn matrix of the original data, X is a kxn matrix which shall be the output of PCA, C'

is a kxp matrix that spans the space of the first k principal components of Y. Similarly,

93

M-step of the algorithm can be formulated as in Equation 3.16

C=yXxX"(xx") (3.16)

During the e-step of the EM algorithm, for any data entry y in the data matrix Y with
some of its coordinates missing, a unique pair z* and y* can be calculated such that
||Cx* — y*|| is minimized. In other words, missing values can be imputed by solving the
least squares problem for ||Cx* — y*|| = 0. Pseudo code of Roweis’ EM Algorithm is

given in Figure 3.2.

54

ImputeMissingData(Y)
% Initially set matriz C' randomly
for all iteration in [1:1: MAX (iter)] do
%E-Step of EM Algorithm
for all y in Y do
for all ¢ in [1:1:size(y,1)] do
% Missing Data Imputation is done within E-step
if isMissing(y(i)) == TRUEFE then
% Find Least Squares Solution to Cx = y by QR decomposition
if isSparseMatriz(C) == TRUE then
(@, R] = grDecompose(C')
else
R = upperTriangle(qr Decompose(C'))
end if
r=R YR CTy;r =y —Cx
e=RYR)CTriz=x+e
end if
if isMissing(y(i)) == FALSFE then
r=(CTC)~1CTy
end if
X (i,:) = z; % Assign z to i" row of matrix X.
end for
end for
% M-Step of EM Algorithm
C=YXT(XXT)"!
end forYj,, uied = CX

return(Y.,puted)

Figure 3.2. Pseudocode for the implementation of Roweis’ EM Algorithm

95

4. DATA SET

4.1. Participants of Confirmation Bias Tests

In this thesis, our goal was to perform our experiments in real software development
settings. Hence, we conducted both written and interactive tests to software development
professionals in order to collect confirmation bias metrics. In Table 4.1, except for Group
8 confirmation bias metrics were collected from participants working in large scale soft-
ware development companies or SMEs (Small Medium Enterprizes). Out of 8 groups, 4
groups consisted of software engineers working in large scale companies. One of these
companies is located in Canada, while the remaining 3 companies are located in Turkey.
Unlike other participant groups, Group 8 consists of computer engineering graduate stu-
dents at Bogazi¢i University. Among these computer engineering graduate students, 14
participants have average software development experience of 2.51 years, while six of
them are still active and they are developing embedded software for RoboCup, which is

an international robotics competition founded in 1993.

In addition to developers testers are included in the groups in large scale companies,
while groups from which confirmation bias metrics were collected in SMEs consist of only
developers. On the other hand, only Group 6 contains analysts and architects as well
as developers and testers. Except for Group 8 members, participants have only bachelor
degrees in computer science, mathematics or other engineering fields. In the large scale
software development company where Group 6 members work, analysts are responsible
from the preparation of both requirement analysis documents and test scenarios for the
testing phase. Gender distribution and average age values are given in Table 4.2. The
highest percentage of females is in Group 6, where 85.71% of analysts are female. The de-
velopment methodology employed by the company is scrum which is an agile development
approach. All SMEs to which Groups 3, 4, and 5 belong also employ agile software de-
velopment methodology, while the large Canadian company develops Data Management
System (DBMS) software using Test Driven Development (TDD) methodology. Different
than from all these groups, within Group 1 there are 3 separate project groups where each

project group employs a different software methodology. Details about project groups

o6

within Group 1 are given in Table 4.3. Project Groups 1 and 2 were temporary pilot
project groups developing a pilot software in order to decide whether TDD and TSP /PSP
methodologies would be beneficial during the production of company’s software products.

Moreover, some group members were also working in other projects at the same time.

"[[0I89SAI $D190qOI/TY I0] oIem)jos pappaqurs Sutdo[eadp aIe WA} JO 9 “UTRWOP) /UoIedTU

-IUWO009[0} Ul pazierads sHINS pue sorueduiod o[eos o8re[je 9ouolodxo Juowdoeadp Jo ST g SBO[48 AR SHUSPNYG ojenpely) Sutesutduy tomduio) jo § ¢
"SHINS pue soruedwoo o[eos o81e] j8 0oudLodxo JuomdoAdp JO SIROA g JSBO[J8 dARY SJUSPN)G ojenpely) Suueoutduy windwo)) jo §1 ,
“AysToATU() 191Z@F0 Je SIUSPLIS djenpris SuLeduIsuy 1oindwo)) are Gdnoiy) Jo SIOqUIBIN

Aovpan T, (OUON] Snotres 6g 0 0 0 e (8dnoLn
Aoxan, o[eOs o3Ie[Jdud 9 0 0 0 9 2dno.uxn)
Aoxan, o[eOS o3Ie[Qoueuy €9 01 Ge 0 QT 9dno.x)
Ao, HINS suonmnos sfrqow 9 0 0 0 9 gdno.9
Aoy, HINS YD | 8 0 0 0 8 pdno.5
Aoypmy, HINS ooteuqy | ¢l 0 0 0 ¢l ednoun
epeue)) oTeos a81e] | juowdopesdp SINIA | ¥E 0 0 01 e gdnour)
Aoxan, o[rOs o3Ie[UOIROTUNWIWORPRY 9¢ 0 0 il 0 1dno.x)

Aiyuno)) | azi§ Auedwo) urewro(J | [e30], | S1993IYdaYy | s)sA[euy | sI193s9J, | s1odo[aad(@ | # dnoin

"Po3o9l[09 BIom SOLI}oUT SBI(UOIJRULITUOD [IIYM TWIOIJ sdnoisd moqe sfrelod "1y °2l9%l

Table 4.2. Gender distribution and average age values of Groups 1-8.

Group # | Female | Male | Age (years)
Groupl 10 26 29.06
Group?2 8 26 34.21
Group3 1 11 27.17
Group4 1 7 26.93
Groupb 0 6 24.00
Groupb 30 33 31.72
Group7 30 33 30.83
Group8 7 21 27.96

Table 4.3. Details about project groups within Group 1.

o8

Project Group # | Developer | Tester | Total | Development Methodology
ProjectGroupl 12 14 26 Waterfall
ProjectGroup2 4 0 4 TDD
ProjectGroup3 8 0 8 TSP /PSP

4.2. Collection of Static Code Metrics

Although confirmation bias related information and metrics are adequate for Exper-

iments I and 11, for Experiment I1I static code metrics of the files created and /or updated

by developer groups are required. Hence, we used Prest tool [69] to extract static code

metrics at file granularity level. The list of the static code metrics Prest can extract from

source code files is given in Table 4.4. The reason why file granularity level is preferred

for static code metrics extraction rather than method, class or package granularity levels

can be explained as follows: Firstly, for defect prediction in Experiments II and III we

were able to obtain defect information at file granularity level. Secondly, using commit

logs it was only possible to match each source code file and group of developers who

created and/or updated that file. In other words, mapping of developer(s) to methods

was not possible. Although file level granularity is coarser than method level granularity,

it is still a fine granularity for experiments compared to package level granularity.

Table 4.4. List of static code metrics used in Experiment III.

99

Attribute

Description

McCabe Metrics

Cyclomatic Complexity v(Q)

number of linearly independent paths

Cyclomatic Density vd(G)

the ratio of the files’s cyclomatic complexity to its length

Decision Density dd(G)

condition/decision

FEssential Complezity ev(Q)

the degree to which a file contains unstructured constructs

Essential Density ed(Q)

(ev(G) = 1)/(v(G) = 1)

Maintenance Severity

ev(G) /(G

Lines of Code Metrics

Unique Operands Count ny
Unique Operators Count ng
Total Operands Count Ny
Total Operators Count Ny

Lines of Code (LOC)

source lines of code

Branch Count

number of branches

Conditional Count

number of conditionals

Decision Count

number of decision points

Halstead Metrics

Level (L) (2/n1) * (n2/N>)
Difficulty (D) 1/L

Length (N) N1+ Ny

Volume (V) N xlog(n)
Programming Effort (E) DxV
Programming Time (T) E/18

60

Table 4.5. List of churn metrics used in Experiment III.

Attribute Description

commyts number of commits made for a file

committers number of developers who committed a file
commitsLast number of commits made for a file since last release

committersLast | number of developers who committed a file since last release

rmilLast number of removed lines from a file since last release
alLast number of added lines to a file since last release

rml number of removed lines from a file

al number of added lines to a file

topDevPercent | percentage of top developers who committed a file

4.3. Collection of Commit Log Data

We use commit log data to refer to the commit logs obtained from version man-
agement systems. We needed commit log data for two reasons. First reason was to be
able to match each source code file with group of developers who created and/or updated
that file. This step was crucial for conducting Experiment 11, since analyzing the effects
of confirmation bias metrics on software developers requires the knowledge about which
developer groups created and/or updated which file. In this way, it was possible to calcu-
late percentage of defected files for each developer group so that a regression model could
be constructed using confirmation bias metrics as independent variables and defected file
percentage as the response variable. Based on the obtained results, one of the goals of
Experiment I was to investigate the effect of confirmation bias on software developers.
The second reason about why information in commit logs was required is the fact that to
conduct Experiments III and IV we had to match confirmation bias metrics with source
code files. Hence, we needed to be able to map each file to a group of developers. More-
over, we also needed to evaluate churn metrics for Experiment I1 and this is possible only
using information contained in commit logs. List of the churn metrics extracted from

commit log data is given in Table 4.5.

61

5. EXPERIMENTS AND RESULTS

5.1. Experiment I: Analysis of Factors Affecting Confirmation Bias

In this experiment, we aim to gain insight about main factors which affect confirma-
tion bias in software development context. Details about the data set, analysis techniques

used as well as our findings are given in the following sections.

5.1.1. Data

In the first part of this experiment, we used data which belong to Group 1, Group
2, Group 7 and Group 8. However, in order to eliminate confounding factors and analyze
a single factor during each analysis, we use only data corresponding to a specific group of
members of Groups 1,2,7 and 8. For this reason, in the rest of this section we designate
the subgroups obtained after the elimination of confounding factors as Groupl*, Group2*,
Group7* and Group8* respectively. Potential confounding factors and how we handled

them can be explained as follows:

e Role of the Software Professional: Each subgroup consists of only developers except
for Group8*. However, each member of Group8* has software development expe-
rience of at least 2 years, while 6 members are still developing research oriented
embedded robotics software.

e Age: Age distribution within each resulting subgroup is similar and maximum age
value is 32.

e Gender: Ratio of female developers to male developers is similar for all subgroups.

e FErperience: Members in each subgroup has at least 2 years of experience in software
development industry. Moreover, average years of experience within each subgroup
is identical.

e Development Language: Developers in subgroups Groupl® and Group7* use Java
as development language, whereas the language used by developers in Group2* is
C*+. However, both languages are object oriented. On the other hand, members

of Group 8* are experienced in both Java and C*™* programming languages.

62

Normal Probabslity Plot

0o E.........E.........::...
T S

e e
090 f--

Prabability

R - =
0.05 F--

002 ' raskazas feracas

Figure 5.1. Normal probability plot for the residuals of the confirmation bias metric

Rs
FR .

e Development Domain: Members of both Groupl* and Group7* develop customer
services software package for GSM operator clients and bank customers respectively.
Members of Group8* have industrial software development experience within similar
domains. On the other hand, Group2* members are developing database manage-

ment system (DBMS).

5.1.2. Design

We perform pairwise comparison of confirmation bias metric values for these four
subgroups using 2 test for independence. We did not prefer to use ANOVA or t-test, since
residuals for confirmation metric values are not normally distributed [70]. Figure 5.1 and
Figure 5.2 show normal probability plot and histogram of residuals for the confirmation
bias metrics F&°. As it can be seen from Figure 5.1 and Figure 5.2, residuals for the

values of the confirmation bias metric F{* are not normally distributed.

Another alternative for pairwise metric value comparisons would be the non-parametric
method Mann Whitney U test. However, there are too many identical values (i.e. ties) in
confirmation bias metrics with continuous values, which would lead to unreliable results
[71]. Moreover, as it can be seen in Table 3.2 and 3.3 some metrics take discrete or

categorical values. Table 5.1 shows how we divided the metric avgInde., into categories

63

Figure 5.2. Histogram for the residuals of the confirmation bias metric Ff*.

Table 5.1. Dividing continuous values of avgIndee, into categories for x? test.

zel0,1) | z>1
Group 1* 9 10
Group 2* 6 14
Group 7* 11 7
Group 8* 6 9

for x? test.

In addition pairwise statistical comparisons of confirmation bias metrics values for
Groups 1%, 2*, 7* and 8", we compare overall hypothesis testing strategies of these sub-
groups during interactive test in a pairwise manner. Moreover, as an outcome of the
written test we compare distribution of Fulsifiers, Verifiers and Matchers using Reich

and Ruth’s categorization method [51].

5.1.3. Results and Discussions

When we look at 2 test results in Table 5.2, 5.5 and 5.6 we can conclude that Group
2* members find the correct rule during interactive test with significantly less number of
trials. This implies that unless they are really sure, Group 2* members avoid making rule
announcements. Moreover, especially compared to Group 7* members, Group 2* members

exhibit a more eliminative behavior during interactive tests as well as employing an ideal

64

hypotheses testing strategy. As shown in Figure 5.9 according to the overall hypothesis
testing strategy profile of Group 2* members consist of starting with less severe instances
and progressively increasing severity of the instances given. There is a decrease in the
severity of the instance given at the last bin of trials, however during interactive test once
the subject is sure about the rule to be discovered, she/he can can decrease the severity
of the instances given just before the rule announcement. Moreover, as it can be seen
in Figure 5.4 and 5.10 there are more Fulsifiers and less Verifiers and Matchers among
Group 2* members compared to members of the Groups 1* and 7*. Country seems to be
a factor which can explain why Group 2* members outperform members of the Groups
1* and 7*, since company Group 2* members work is in Canada, while Group 1* and 7*
members work at software development companies located in Turkey. However, Group 8*
members are also in Turkey as well as having worked for companies in Turkey and Group
8" members also outperform both Group 1* and 7*. As it can be seen in Figures 5.7 and
5.13, overall hypothesis testing strategy followed by members of Group 8* is much closer
to the ideal hypothesis testing strategy defined by Poletiek [2]. In addition, majority of

Group 8" members are Falsifiers as Figures 5.8 and 5.14.

Under the light of these obtained results, we state that hypotheses testing and
logical reasoning skills are two factors that affect confirmation bias levels of developers. 50
% of the developers in Group 2* hold PhD degrees from Computer Science, Mathematics
or related fields. On the other hand, members of Group 8 are Computer Engineering
PhD students. We do not claim that PhD is required to eliminate confirmation bias.
However, since hypothesis testing and logical skills are crucial in scientific research, this
makes it obligatory for graduate students to obtain these skills fulfill the requirements of
a PhD study. On the other hand, one does not need to have a PhD degree to acquire these
skills. Training provided to software professionals can help them to eliminate negative

effects of confirmation bias.

5.2. Experiment II: Analysis of the Effects of Confirmation Bias on Software

Developers and Testers

This experiment consists of two parts. In the first part, effect of confirmation bias

on software developer performance is analyzed, while in the second part of the experiment

65

Table 5.2. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 1 and Group 2 respectively.

Confirmation

Bias Metrics

Result

Critical Value

Explanation

avgFE x2(1,n = 38) = 0.1101 2.71 (p < 0.1) |No significant difference
avgFTR Expected frequency in at least
one cell is less than 5
avgL'® Expected frequency in at least
one cell is less than 5
minInde; /ey x2(1,n = 39) = 1.2927 2.71 (p < 0.1) | No significant difference
mazInde /ey x2(1,n = 38) = 1.2166 2.71 (p < 0.1) |No significant difference
avgInde ey, x2(1,n =31)=1.2418 | 2.71 (p < 0.1) | No significant difference
Indei/en x%(1,n =33) =0.2026 | 2.71 (p < 0.1) | No significant difference
Ny x2(1,n = 38) = 4.496 2.71 (p < 0.1) | Group2* outperforms Groupl*
INDAporT Expected frequency in at least
one cell is less than 5
St x2(1,n = 38) = 3.3135 2.71 (p < 0.1) | Group2* outperforms Groupl*
Saps x2(1,n = 38) = 0.0653 | 2.71 (p < 0.1) | No significant difference
Sprecautional x2(1,n = 38) = 0.9360 2.71 (p < 0.1) |No significant difference
ScheatingDetection | X>(1,n = 38) = 0.7415 2.71 (p < 0.1) | No significant difference
SthtaBS x2(1,n =38) =0.0144 | 2.71 (p < 0.1) |No significant difference

66

Table 5.3. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 1 and Group 7 respectively.

Confirmation Result Critical Value | Explanation
Bias Metrics
avgFE x2(1,n = 38) = 1.6889 2.71 (p < 0.1) | No significant difference
avgF1R x2(1,n = 38) = 0.3466 | 2.71 (p < 0.1) | No significant difference
avgL'F x2(1,n =38) =0.0499 | 2.71 (p < 0.1) |No significant difference
mininde; /e, x2(1,n = 38) = 0.9070 2.71 (p < 0.1) |No significant difference
mazrinde ey x2(1,n =38)=1.3329 | 2.71 (p < 0.1) |No significant difference
avgInde/en x2(1,n = 38) = 0.7029 2.71 (p < 0.1) | No significant difference
finallnde /er, Y2(1,n =31) =2.2452 | 2.71 (p < 0.1) |No significant difference
Indei/en x2(1,n =31) =0.0266 | 2.71 (p < 0.1) |No significant difference
Nga X2(1,n = 38) = 9.5742 | 7.88 (p < 0.005) |Group7* outperforms Groupl*
INDsporT 2(1,n =38)=0.2179 | 2.71 (p < 0.1) | No significant difference
St X2(1,n =38) =5.2157 | 2.71 (p < 0.1) |Group7* outperforms Groupl*
Saps x2(1,n =38) =0.0334 | 2.71 (p < 0.1) | No significant difference
Sprecautional Expected frequency in at least
one cell is less than 5
ScheatingDetection Expected frequency in at least
one cell is less than 5
STh+ABS Expected frequency in at least
one cell is less than 5

67

Table 5.4. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 1 and Group 8 respectively.

Confirmation

Bias Metrics

Result

Critical Value

Explanation

avgFE x2(1,n = 38) = 0.1101 2.71 (p < 0.1) | No significant difference
avgFTE Expected frequency in at least
one cell is less than 5
avgL'® Expected frequency in at least
one cell is less than 5
minInde/en x2(1,n =39) =0.9247 | 2.71 (p < 0.1) | No significant difference
mazxInde/en x2(1,n = 38) = 0.1983 2.71 (p < 0.1) | No significant difference
avgInde/en x23(1,n = 38) = 0.846 2.71 (p < 0.1) | No significant difference
finallnde /ey, x2(1,n = 31) = 0.0154 2.71 (p < 0.1) | No significant difference
Indei/en x2(1,n = 33) = 0.5833 2.71 (p < 0.1) |No significant difference
Ny x2(1,n =38) =2.5909 | 2.71 (p < 0.1) |No significant difference
INDaAporT Expected frequency in at least
one cell is less than 5
Sth x2(1,n = 38) =6.6165 | 2.71 (p < 0.1) |Group8* outperforms Groupl*
Saps x2(1,n=38) =1.9539 | 2.71 (p < 0.1) |No significant difference
Sprecautional Expected frequency in at least
one cell is less than 5
ScheatingDetection Expected frequency in at least
one cell is less than 5
STh+ABS Expected frequency in at least

one cell is less than 5

68

Table 5.5. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 2 and Group 7 respectively.

Confirmation

Bias Metrics

Result

Critical Value

Explanation

avgFE x2(1,n =38) =2.6316 | 2.71 (p < 0.1) | No significant difference

avgFTR Expected frequency in at least
one cell is less than 5

avgL'? Expected frequency in at least
one cell is less than 5

mininde; /en x2(1,n = 38) = 1.7989 2.71 (p < 0.1) | No significant difference

mazrinde ey x2(1,n =38) =5.7965 | 2.71 (p < 0.1) | Group2* outperforms Group7*

avgInde/en x2(1,n = 38) = 3.7089 2.71 (p < 0.1) | Group2* outperforms Group7*

finallnde/er, x2(1,n = 31) = 6.6523 2.71 (p < 0.1) | Group2* outperforms Group7*

Inde /ey, x2(1,n =31)=0.2026 | 2.71 (p < 0.1) | No significant difference

Na x2(1,n =39) =1.9006 | 2.71 (p < 0.1) | No significant difference

INDABoRrT Expected frequency in at least
one cell is less than 5

Sth x2(1,n =38) =0.2680 | 2.71 (p < 0.1) | No significant difference

SaBs x%(1,n =38) =0.1997 | 2.71 (p < 0.1) | No significant difference

Sprecautional x2(1,n = 38) = 0.0653 2.71 (p < 0.1) |No significant difference

Severytime x2(1,n = 38) = 0.2319 2.71 (p < 0.1) |No significant difference

ScheatingDetection x2(1,n = 38) = 5.7184 2.71 (p < 0.1) | Group2* outperforms Group7*

SThtABS Expected frequency in at least

one cell is less than 5

69

Table 5.6. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 2 and Group 8 respectively.

Confirmation

Bias Metrics

Result

Critical Value

Explanation

avgFE x2(1,n =38) =1.8044 | 2.71 (p < 0.1) |No significant difference

avgFTR Expected frequency in at least
one cell is less than 5

avgL'F Expected frequency in at least
one cell is less than 5

minInde; /ey, x2(1,n =39) =1.3398 | 2.71 (p < 0.1) | No significant difference

mazInde/en x2(1,n =38) =2.9167 | 2.71 (p < 0.1) | Group 2* outperforms Group 8*

avgInde; ey x2(1,n = 38) = 0.3804 | 2.71 (p < 0.1) |No significant difference

finallndey /ey, x2(1,n=31)=0.8949 | 2.71 (p < 0.1) |No significant difference

Indei/en x?(1,n =31)=0.1379 | 2.71 (p < 0.1) | No significant difference

Ny x2(1,n =38) = 0.1536 | 2.71 (p < 0.1) |No significant difference

INDsBorT Expected frequency in at least
one cell is less than 5

Sth x2(1,n = 38) =6.6165 | 2.71 (p < 0.1) | Group 8* outperforms Group 2*

SaBs Expected frequency in at least

one cell is less than 5

Sprecautional

Expected frequency in at least

one cell is less than 5

Severytime Expected frequency in at least
one cell is less than 5

Scheating Detection Expected frequency in at least
one cell is less than 5

STh+ABS Expected frequency in at least

one cell is less than 5

70

Table 5.7. Statistical comparison of confirmation bias metric values for two developer

subgroups which belong to Group 7 and Group 8 respectively.

Confirmation

Bias Metrics

Result

Critical Value

Explanation

avgFE x2(1,n = 38) =0.0354 | 2.71 (p < 0.1) | No significant difference

avgFTE Expected frequency in at least
one cell is less than 5

avgL'® Expected frequency in at least
one cell is less than 5

minInde; /en Y2(1,n =38) =1.3398 | 2.71 (p < 0.1) |No significant difference

mazxinde ey x2(1,n =38) =0.0134 | 2.71 (p < 0.1) |No significant difference

avgInde/en x2(1,n = 38) = 1.4599 2.71 (p < 0.1) | No significant difference

finallnde jep x2(1,n =31) =2.3467 | 2.71 (p < 0.1) | No significant difference

Indey/en x2(1,n = 31) = 2.7000 2.71 (p < 0.1) |No significant difference

Na x2(1,m =38) =1.9006 | 2.71 (p < 0.1) |No significant difference

INDsBoRT Expected frequency in at least
one cell is less than 5

Sth x2(1,n =38) =0.2481 | 2.71 (p < 0.1) |No significant difference

Saps x2(1,n = 38) =2.5574 | 2.71 (p < 0.1) | No significant difference

Sprecautional Expected frequency in at least
one cell is less than 5

Severytime x2(1,n = 38) = 5.1219 2.71 (p < 0.1) | Group8* outperforms Group7*

ScheatingDetection Expected frequency in at least
one cell is less than 5

SThiABS Expected frequency in at least

one cell is less than 5

71

23 \

22

Test Severity
N
[
ul

21+
20.5F
—&— groupl*
- W =group2*
20 1 1 1
1 2 3 4 5

Bins of Problem Solving Steps

Figure 5.3. Comparison of interactive test hypothesis testing strategies of Groupl* and

Group2*.

we analyze how confirmation bias affects performance of software testers.

5.2.1. Data

In this experiment, we analyze members of Project Group 1 which is a subgroup
consisting of developers and testers within Group 1. Details about Group 1 and its
subgroup Project Group 1 are given in Table 4.1 and Table 4.3 respectively. In Project
Group 1, there are 12 developers and 14 testers who are responsible from the development

of a customer services package.

5.2.1.1. Data Used to Analyze Confirmation Bias Effects on Software Developers. We used

data corresponding to the developers of Project Group 1, since all three of required data
which consist of confirmation bias metrics, file commait information and list of defected
files for each release were available for this group of developers. In order to obtain infor-
mation about past source code commitment activities of each developer, log file of version
management system data were examined. These file contains commitment history of all
Java source codes since the beginning of the customer services software package develop-

ment project. The project was launched in 2001, and the churn data also contains names

72

45 Group2*
40 4 B Groupl*
30
25
20

15 4

10 4

; | | Tl

Falsifier Verifier Matcher None

Figure 5.4. Distribution of Fulsifiers, Verifiers, Matchers and None within Groupl* and

Group2*.

of the developers who no longer work in the project. Therefore, files which were com-
mitted by any of these past developers are not taken into consideration in our analysis.
Moreover, in the present project group out of the 12 developers, commit activities of only
6 developers could be observed in file commitment history. The rest of the development
team was new to the project due to sudden change in the organizational structure at the

time confirmation bias tests were conducted.

We obtained defect information after the analysis of the testing and release dates
of the software package as well as the list of defected files detected during each testing
phase. Every two weeks, a new release of the software is delivered and hence testing
phase of one release and the development phase of the next release overlap. In this study,
we analyzed 10 releases of the software that were developed and tested between the last
week of May 2009 and second week of November 2009. For each release, we categorized
each file to be defected or not based on the results of the testing phase for that release.
For defects detected within a file during testing phase of each release, developers who
created and/or updated that file before that date of testing phase were held responsible.
Therefore, we were able to map each file to a group of developers who created and/or

updated that file.

73

24

23

22

N

Test Severity

= = = [N)
~ [ec] © o
T T T T
7

7

\

’

’
’
”

Il Il Il Il

=
(=2}
T
-’
I

- W - group7* L3
—&— groupl* T
1 1 1
2 3 4 5
Bins of Problem Solving Steps

=
a1
T

[N
~

Figure 5.5. Comparison of interactive test hypothesis testing strategies of Groupl* and

GroupT*.

Finally, as a performance metric, we defined defect density for each developer group
as the ratio of the total number of defected files created /updated by that group to the total
number of files that group created/updated. Defining a metric for assessing individual
performance of each developer was not possible. This is due to the fact that during
testing phase it is highly probable that some defects might have been overlooked as a
result of which defects may propagate from earlier releases of the software to its latest
release. Therefore, any defect which is detected during testing phase might be caused

during development phase of any earlier release.

5.2.1.2. Data Used to Analyze Confirmation Bias Effects on Software Testers. We used

testers of Project Group 1 in this part of the experiment, since in addition to confirmation
bias metrics we were able to access information which can be used to assess software tester
performance. In order to determine a reliable tester performance metric, we made use
of company’s tester competence reports. In these reports for each tester, number of
post-release defects detected on parts of the software product which were tested by that
tester is given. Hence we can set number of production defects (NPRODpgr) as a tester

performance metric.

74

50 Group7*
40 -
35 4
30
25 -
20
15
10 -
L

D . . .

Falsifier Verifier Matcher None

Figure 5.6. Distribution of Fulsifiers, Verifiers, Matchers and None within Groupl* and

GroupT*.

5.2.2. Design

5.2.2.1. Design for Analysis of Confirmation Bias Effects on Software Developers. In or-

der to visualize the effect of confirmation bias on software defect density, we constructed
a linear regression model with confirmation bias metrics as the predictor (independent)
variables and defect density as the response variable. In this experiment, we used only
confirmation bias metrics with continuous values. In order to evaluate confirmation
bias metrics of developer groups, we took the average value of developer group mem-
bers’confirmation bias metrics. In the case when a developer group consists of a single

developer, this reduces to the confirmation bias metrics of that developer.

We decided to construct a linear regression model instead of a quadratic or an
interaction regression model in order not to compromise the estimation of the regression
coefficients, calculation of the confidence intervals and significance test results. In order
to make this decision we had to construct all three models to see if the resulting residuals
are normally distributed. Since linear dependency exists among the predictor variables
leading to matrix singularity problem during the regression coefficient calculation, we
performed principle component analysis (PCA). The scree plot of the percent variability

explained by each principal component is shown in Figure 5.15. The variance is explained

75

Test Severity
N
[

N
o
T

\
]
\
-
I

17H B - group8* i
—&— groupl*
16 1 1 1 1 1

1 15 2 25 3 35 4 4.5 5

Bins of Problem Solving Steps

Figure 5.7. Comparison of interactive test hypothesis testing strategies of Groupl* and

Group8*.

by the first five columns of the resulting matrix.

After having constructed linear, quadratic and interaction regression models, and
plotted normal probability plot of residuals, we were able to observe that residuals only
for the quadratic and interaction models were not normally distributed compared to the
residuals of the linear model as it is shown in Figure 5.16. As a result, in order to visualize
the effect of confirmation bias on software defect density, we performed linear regression

modeling.

5.2.2.2. Design for Analysis of Confirmation Bias Effects on Software Testers. For the group

of tester we calculated the average value for the tester performance metric NPRODpgr.
This allowed us to classify testers into two groups as being testers having NPRODpgr
value above and below average respectively. Having categorized testers in two groups,
performed Reich and Ruth’s categorization to find the distribution of Fulsifiers, Verifiers
and Matchers within each group as well as testers who cannot be classified at all. More-
over, in order to visualize overall hypothesis testing strategy employed by each group,

test severity graphs are drawn.

76

)
W Groupl®
50 4 i

40 -
30 4
20 4

10 -

Falsifier Verifier Matcher None

Figure 5.8. Distribution of Fulsifiers, Verifiers, Matchers and None within Groupl* and

Group8*.

5.2.3. Results and Discussions

5.2.3.1. Results for Analysis of Confirmation Bias Effects on Software Developers. We per-

formed test for significance of regression to determine whether a linear relationship exists
between the defect rate and a subset of confirmation bias metrics, given the following
hypotheses: Hy: 1 = B2 = ... = g and Hy: [# 0, for at least one j. The F-statistics
obtained with a = 0.05 significance level is Fy = 17.0983 > Fy, jn—k—1 = Fo.056,117- This
results in the rejection of the null hypothesis Hy which implies that at least one of the in-
dependent variables contributes significantly to the model. As we performed PCA before
regression modeling, each independent variable is a linear combination of confirmation
bias metric values. Hence, confirmation bias metric values contribute significantly to the
resulting linear regression model. We also performed significance tests on the individual
regression coefficients. The null hypothesis is Hy : §; = 0 and alternative hypothesis is
Hy : B; # 0. Except for significance tests of the third and fifth regression coefficients,
null hypothesis is rejected. p values for each regression coefficient are given in Table
5.8. Finally, the amount of reduction in the variability of defect rate obtained by using
the linear combinations of confirmation bias metrics is less than 50%. This amount is
given by R? = 0.4477. Adjusted R? statistic is equal to 0.4243. As values of ordinary

and adjusted R? are very close to each other, we can say that non-significant terms are

7

—0

2 1
5]
>

[} 4
%)
@
()

[]

15| —@—group2*| T TT=~a__ F

- H =group7* T

14 1 1 1 1 1 1 1
1 1.5 2 2.5 3 35 4 4.5 5

Bins of Problem Solving Steps

Figure 5.9. Comparison of interactive test hypothesis testing strategies of Group2* and

GroupT*.

not added to the model. The value of R? for prediction is 0.3264, which means that we
could only expect the constructed model to explain only about 32% of the variability in

predicting new observations.

Results show that although confirmation bias metrics are not direct indicators of
defect ratio of software developer groups, they affect software defect density. Moreover,
in our case study during the prediction of the defect rate, confirmation bias metrics
explain 32% of the variability the constructed linear regression model which is a significant
amount in social sciences. If we take into account the fact that defect rate is affected by
processes, and many human aspects other than confirmation bias, the results obtained
are reasonable. Among human aspects affecting software defect, we can name cognitive
biases such as representativeness, availability, adjustment and anchoring in addition to
the social interactions. Therefore the capability of confirmation bias metrics to explain

32% of the variability in defect rate is a promising result.

5.2.3.2. Results for Analysis of Confirmation Bias Effects on Software Testers. Group of

testers with NPRODpgr value below average (i.e. testers who were responsible from

testing files which ended up having less post-release defects) exhibited a more strategic

45

30 4
25 4
20 -
15 4

10 4

Falsifier Verifier Matcher None

Group7*
W Group2*

78

Figure 5.10. Distribution of Falsifiers, Verifiers, Matchers and None within Group2*

and GroupT*.

approach during interactive tests. As it can be seen in Figure 5.17, this group of testers

starts with a low level severe test and they progressively exclude more alternatives. As

mentioned previously in Chapter 2, starting with highly severe instances during interac-

tive test leads to the elimination of almost all hypotheses in subject’s mind. Moreover,

fluctuations observed in the Vincent curve of testers with NPRODpgr value above aver-

age are far away from being indicators of an ideal hypothesis testing strategy. Moreover,

among tester with NPRODpgr value above average, there are no Falsifiers, but only

Verifiers and Matchers.

Table 5.8. The values regression coefficients, their confidence intervals and significance

test results.

Coefficient | Coefficient Value | Confidence Interval | p-value
51 6.5669 6.0569-7.0688 1.0791E-12
Ba 0.2696 0.0507-0.4896 0.0162
B3 -0.1472 -0.4809-1.1866 0.3843
Ba 1.4814 1.0971-1.8657 6.543E-12
Bs 0.6248 0.0496-1.2000 0.0335
Be -1.2697 -1.9005- -0.6309 1.167E-4

79

Test Severity
~

18} , 1

[any
[=2)
T
[N
I

14t .

12| | —=— group2* i
- W -group8*

10 1 1 1 1 1 1 1
1 15 2 25 3 3.5 4 4.5 5

Bins of Problem Solving Steps

Figure 5.11. Comparison of interactive test hypothesis testing strategies of Group2* and

Group8*.

These results imply that lack of the tendency and reasoning skills to test hypothesis
leads to overlooking defects during testing phase of the software which in turn leads to

an increase in the number of post-release defects.

5.3. Experiment III: Using Confirmation Bias Metrics to Learn Defect

Predictors

This experiment is in the form of a benchmark study, which aims to asses the
power of defect prediction models that are built using only confirmation bias metrics
as information content. In this experiment, we use two data sets which we collected
from developers of two software development companies which are specialized in different
domains. For each data set, we form defect prediction models using all combinations
of static code metrics, confirmation bias metrics and churn metrics. This results in the

formation of 22 — 1 = 7 defect prediction models for each data set.

5.3.1. Data

In this study, we used two data sets which belong to Group 1 and Group 7 respec-

tively. As shown in Table 4.1, Group 1 consists of developers and testers of a large scale

30

70 Group7*
50 -
40
30 -
20 +
10 - I
0 T T T
Falsifier Verifier Matcher Mone

Figure 5.12. Distribution of Falsifiers, Verifiers, Matchers and None within Group2*

and Group8*.

telecommunication company in Turkey, while Group 3 is a project group consisting of 6
developers in Turkey’s largest Independent Software Vendor (ISV). There are 3 project
groups in Group 1 and details about these project groups are given in Table 4.3. We used
data set which belongs to Project Group 1, due to the following reason: while Project
Group 2 and Project Group 3 are pilot project groups formed to assess the suitability
of the software development methodologies TDD and TSP/PSP, Project Group 1 has
been developing the customer services package since September 2001. Therefore, Project
Group 3 is much more representative of a project group developing a software product in
software development industry. Moreover, information about files that are found to be

defective have been collected only for this project group.

As mentioned in the previous section, Project Group 3 consists of 12 developers
and 14 testers. In our analysis, we were unable to match testers to the files since no
information regarding which file is tested by which tester was not available. Hence, our
experiments focus on developers. The project was launched in 2001, and the churn data
also contains names of the developers who no longer work in the project. We were able
to perform our confirmation bias tests to 3 software professionals who used to part of this
development team. Therefore, files which were committed by any of these past developers,

except for those of these 3 ex-developers, are not taken into consideration in our analysis.

81

N N N
S 2] [ee]
T T
Y
\
N
-
I I

N
N
T
A Y
-
I

Test Severity

N
o

=
(e

=
(<2}
T

—&— group7*
= B =group8*

! ! ! !

15 2 25 3 35 4 45 5
Bins of Problem Solving Steps

=
N
[

Figure 5.13. Comparison of interactive test hypothesis testing strategies of Group7* and

Group8*.

Moreover, in the present project group out of the 12 developers, commit information of
only 6 developers could be found. The rest of the development team was new to the
project due to sudden change in the organizational structure at the time confirmation
bias tests were conducted. Therefore, regarding Project Group 3, we have confirmation
bias metrics of 9 software professionals. Finally, traditional waterfall methodology is used
for software development delivering a new release approximately every two weeks. In this
study, we cover four versions of the software product released during June and July 2009

and each version consists of 545 files on average.

The second data set belongs to a project group that consists of 6 developers of the
largest ISV (Independent Software Vendor) in Turkey. The software developed by the
project group is an enterprize resource planning (ERP) software. The snapshot of the
software that was retrieved from the version management system belongs to period of
March 2011 and it consists of 3199 files. On the other hand, log file retrieved from the
version management system for the second data set covers file commit activities starting

from the beginning of July 2007 till the end of February 2011.

82

)
W Group7*
50 P

40 -
30 4
20 -

10 4

0 | ~

Falsifier Verifier Matcher None

Figure 5.14. Distribution of Falsifiers, Verifiers, Matchers and None within GroupT*

and Group8*.

5.3.2. Design

For each file in each version, the developers who created and/or modified that
file before the code freeze date are considered to be responsible from any defects found
in that file. This is due to the fact that some previously introduced defects can be
overlooked during testing phase of earlier versions resulting in the propagation of defects.
Therefore, for each file in each version we examined, using the code freeze dates (i.e.
dates when development phase for that release is over and testing phase starts) in the
release calendar together with file commit information retrieved from the version control

system, we obtained a group of developers responsible from that file.

In order to calculate confirmation bias metrics corresponding to each file, we con-
solidated confirmation bias metrics from individual developers to developer groups. For
this purpose, we applied three different operators (i.e. min, max and average) for each
confirmation bias metric of developers who contributed to the same source file and results
are assigned to be the source file’s corresponding feature. Assuming that, Ay represents
the i*" confirmation bias metric value of d"" developer, d € G; means that developer d is
among the group of developers who created and/or modified jth source file, and finally,

S represents the ith feature value of jth source file when operator op is applied, where

83

40%

“ariance Explained (96)

30%

20%

10%

Principal Companent

Figure 5.15. Percentage of variance explained by each of the principle components of

the resulting matrix of predictor variables.

op can be one of the three operators, namely min, maz or avg. Under these assumptions

min, max and avg operators can be formalized as follows:

SE = mazr(Am|Vm € Gj) (5.1)

S = min(Am|Vm € Gy) (5.2)
> (Anilm € GY)

gy Lum J 5.3

j >, (m e G) >3

In this experiment, confirmation bias metrics which takes continuous values are used as
a result of the nature of the operators used to consolidate confirmation bias metrics of
individual developers to those of developer groups. Using only continuous metrics was
adequate to arrive a conclusion as it shall be explained in the section where we discuss

results of this experiment.

5.3.2.1. Defect Matching. We have been doing research using data provided by the large

scale telecommunication company for a couple of years which resulted in the improvement
of their software development life cycle and software quality in various projects. Hence,
the company has already established an infrastructure to list source files where bugs are

detected during testing phase for each release of the software product.

84

Linear Model Quadratic Model
0997} 2 ? gransa 0.997 ' . 3
099 poedorrmmnndumnnnnfursssnin o e o gy |-
0 [t : B I B ¥ 098 -4
0.90 foved ; ; ! 090 |---i
B ;
Z o o 078 b
= =
ER | i i i L i | i
E : T e S e e S
g £ :
025} A 025 Lo
0.10 |--3-- 040 bou
0.05 ..t_...;.,.. i e e 006 boos
o] xS R— vez -4
H 0.01 T4
00031*- :
LR : g H 2 P P
] 4 2 0 2 4]
Data
Interaction Model
0997 sasmdssan

0.99
0.98 -

0.95 -----
0.90

0.75 feeevfon

050 b emmfemmommmmme b oo bbb

Probability

0.25 [eeeefees

0.10
0.05
0.02 foeo-
0.01 f-ev ¢
0.003F-jeneneee JE SR foeennnneee [T [[feeee
6 2] F] 4 6
Data

Figure 5.16. Normal probability plots of residuals for linear, quadratic and interaction

regression models.

On the other hand, since this was the first time we collaborated with the ISV
company, defect matching required more effort for the second data set. We had to learn
about the work flow followed by the ISV during their software development life cycle.
Figure 5.19 shows this work flow followed within the ISV to fix bugs which are detected
during the testing phase.

The company uses an issue management system. Each issue is stored in this system
with a unique issue code and it can be a new feature to be added to the software being
developed, a regular project item or a defect that needs to be fixed. We managed to
match issue items that were labeled as defect with source code files. According to the
company’s software development policy, developers must write the corresponding unique

issue code as a comment before they commit file(s) to the version control system. There-

85

14

-
-
-
-

12

10

Test Severity

2H —— NPRODDEF above avg.

- - NPRODDEF below avg.

1 1.5 2 2.5 3 3.5 4 4.5 5
Bins of Problem Solving Steps

Figure 5.17. Vincent curves for test severity of testers with NPROD pgr values above

and below average respectively.

fore, it was possible to match the file committed to the version management system with
the corresponding issue item in the issue management system. Figure 5.20 shows the
methodology we followed to extract the list of defective files. The company provided us
with the issue list extracted from their issue management system. We formed a “final
issue list” by taking into account only issue entries where request type is “defect” and
issue status is different than “canceled”. States of issues having request type “defect”
are labeled according to the work flow given in Figure 5.19. According to this work flow,
once a defect is detected during testing phase, requirement analysis and design may be
revisited depending on the type of the defect. If analysts are busy, request regarding
the defect is taken to the “Analysis Queue”. However, requirement analysis and design
phase need not to be revisited for all defect types. Hence, developers might directly be
informed about the defect to be fixed. Defects of this type enter the “Coding Queue”
only if developers are busy to fulfill tasks with higher priority in their to do lists. Once
the defect (i.e. bug) is fixed by developers, testers are requested to test the piece of
software related to the fixed defect. Once testers are informed, to ensure whether the
defect was fixed by developers at the previous stage of the work flow related item may
wait in the “Testing Queue” or may directly be taken to the testing phase depending on
both the availability of testers and severity of the fixed defect. After the software with

fixed defects is tested, in order to be sure about whether problems shall still arise or

86

60
MPROD_DEF below avg.
50 - W NPROD_DEF above avg.
40 -
30 -
20 -
10
D T T - T
Falsifier Verifier Matcher MNone

Figure 5.18. Distribution of falsifiers, verifiers, and matchers among testers who report

bugs above and below average amount, according to Reich and Ruth’s method.

not software is tested in the environment of the customer. This is the last stage in the
work flow to fix defects. However, there might also be defects whose existence can not
be verified in customers’ environment settings although they may have been detected as
a “defect” during testing phase. Items corresponding to this case are labeled with status
“canceled” in the issue management system. Such detect detections are mostly due to
the factors related to the testing environment of the tester and thus they do not affect
the customer. We mined the commit log file obtained from the version control system to
get a commit history file where format of each commit log entry is in the form as shown
in Figure 5.20. Finally, for each issue in our final issue list we found names of source files

in commit history file and marked those files as defective.

5.3.2.2. Formation of Train/Test Sets. The first data set is obtained by merging files in

four versions of the software being developed. Before the merging process, defective files
are labeled based on the list of defective files for each version. A developer is assigned
as a member to the group of developers who committed a given file F', only if (s)he
committed file F before the code freeze date of the version file F' belongs to. Code freeze
date is obtained from the release calendar provided to us by the telecommunication

company. During the merging process, file entries with identical file names are assumed

87

i ¥) 4
Start: Bug Analysis . . - . . .
@—; Queve » Analysis » Coding Queue » Coding
]
]
A 4 l
Testing Queue » Testing SQUE::?; » Support E??;;Ug

| I

Figure 5.19. Work flow followed in the ISV company to fix bugs detected during testing
phase.

to be different files if and only if corresponding static code metrics are different (i.e. that

file has been modified). Otherwise, such a file is included to the list only once.

Since second data set consists of a single version of the software product, no merg-
ing process was necessary. The methodology followed to label defective files has already
been explained in the previous section. In order to find group of developers who cre-

ated /modified each file, procedure explained in the previous paragraph is used.

Within each data set, a file entry is excluded if there was at least one developer
with unknown confirmation bias metrics among the committers of that file. Such a case
is possible only if a file had been modified by at least one developer who no longer works
at the company, so that it is not possible to conduct confirmation bias tests to these

people.

5.3.2.3. Construction of Prediction Model. In this study, we used Naive Bayes algo-

rithm, since it combines signals coming from different attributes[5]. In software defect
prediction studies, it is also empirically proven that the performance of Naive Bayes is
amongst the top algorithms[4]. Both data sets are imbalanced (defective file percentage
in first data set is 11.1% and 8.4% in second data set). Therefore, we use under-sampling

method that is the most suitable sampling method for our data sets [6]. 10-fold cross

38

. Issue
Version Control

Management

System System

Y Y

|key |create date‘ update dat;’| status‘ request type ‘
)

| .
(-|_commit og entry] issue entry -:
|
|| COMMITLOGS ISSUE LIST l
I |
I |
I |
| |
| [Toyvames] < IR]
| [Lmust match ;, Stalus = ‘cancelled.. . |
: format of an issue entry : Y
|
|
|
|
|

- request type = "defect” .

file name | key | commit date | committername| added Iines‘ deleted lines |
format of a commit log entry

Figure 5.20. : Defect matching procedure of a file to prepare list of defected files for the

second data set.

validation is used to avoid sampling bias in our experiments. In order to overcome order-
ing effects we shuffled data 10 times and 10-fold cross validation is used for each ordering
configuration of input data. As a result, during each experiment Naive Bayes algorithm

is executed 10x10=100 times, for each data set.

5.3.3. Results and Discussions

Two experiments are performed and each experiment is replicated for both data
sets. In the first experiment, no data preprocessing method is used, while in the second
experiment log-filtering is used to preprocess data. Log-filtering was used by Menzies et
al. in [5] to improve predictor performance. All numeric values are replaced with those

obtained by taking natural logarithms of these numeric values.

5.3.3.1. Using Confirmation Bias Metrics as Single Metric Set to Learn Defect Predictors.

If we take into account the results obtained for both data sets, the following can be con-

Table 5.9. Abbreviations used for metric type combinations in Tables.

Abbreviation | Metric Type Combination

SC Static Code Metrics

CB Confirmation Bias Metrics

Ch Churn Metrics

SC+CB Static Code and Confirmation Bias Metrics
SC+Ch Static Code and Churn Metrics

CB+Ch Confirmation Bias and Churn Metrics
SC+CB+Ch Static Code, Confirmation Bias and Churn Metrics

Table 5.10. Defect prediction results for first data set.

89

Metrics Performance
Abbreviation | Static Code | Confirmation Bias | Churn | pd | pf | balance
SC + - - 0.58 | 0.34 0.61
CB + - 0.63 | 0.32 0.64
Ch - - + 0.61 | 0.39 0.58
SC+CB + + - 0.64 | 0.29 0.67
SC+Ch + - + 0.61 | 0.33 0.63
CB+Ch - + + 0.66 | 0.31 0.67
SC+CB+Ch + + + 0.68 | 0.28 0.69

Table 5.11. Defect prediction results for first data set with log filtering.

Metrics Performance
Abbreviation | Static Code | Confirmation Bias | Churn | pd | pf | balance
SC + - - 0.53 | 0.34 0.54
CB - + - 0.68 | 0.35 0.66
Ch - - + 0.57 | 0.33 0.59
SC+CB + + - 0.71 | 0.34 0.67
SC+Ch + - + 0.66 | 0.31 0.65
CB+Ch - + + 0.70 | 0.34 0.67
SC+CB+Ch + + + 0.71 | 0.34 0.67

Table 5.12. Defect prediction results for second data set.

90

Metrics Performance
Abbreviation | Static Code | Confirmation Bias | Churn | pd | pf | balance
SC + - - 0.62 | 0.12 0.69
CB + - 0.64 | 0.27 0.62
Ch - - + 0.52 | 0.10 0.61
SC+CB + + - 0.62 | 0.25 0.62
SC+Ch + - + 0.58 | 0.12 0.65
CB+Ch - + + 0.45 | 0.21 0.52
SC+CB+Ch + + + 0.50 | 0.17 0.57

Table 5.13. Defect prediction results for second data set with log filtering.

Metrics Performance
Abbreviation | Static Code | Confirmation Bias | Churn | pd | pf | balance
SC + - - 0.23 | 0.16 0.39
CB + - 0.65 | 0.26 0.62
Ch - - + 0.70 | 0.16 0.68
SC+CB + + - 0.58 | 0.13 0.63
SC+Ch + - + 0.59 | 0.16 0.62
CB+Ch - + + 0.57 | 0.20 0.59
SC+CB+Ch + + + 0.52 | 0.19 0.56

08

pd 06}

04

91

| +
T 1T 45T 130 I : '
| T +
|
| S 0] R
S I R - I
T - L 5 S U088 =
| - oI F K R
- + - -
SC CB Ch SC+CB SC+Ch CB+ChSCHCB+Ch 8¢ 0B Ch SCHCB SC4Ch CB+ChSCHCB4Ch
Metric Types Wetric Types
03 — —
T | - | |
07t T T | g | Q g |
s
I | -
hal 08 Q | B 1 ﬁ |
i I -
05+ - | - .
|

5C CB Ch BC+CB SC+Ch CB+ChSC+CB+Ch
Metric Types

Figure 5.21. Experiment III boxplots for first dataset.

cluded regarding using confirmation as single metric set to learn defect predictors:

Defect predictors learnt by using only confirmation bias metrics as input data have
at least as high pd and balance values as the defect predictors learnt by using only
static code metrics or only churn metrics as input data. Moreover, higher pd values
are obtained for the first data set for both experiments.

In the first experiment for the first data set, using only confirmation bias metrics
instead of only static code metrics and only churn metrics leads to lower false alarm
rates.

However, in all these experiments for both data sets, learning defect predictors using
only confirmation bias metrics never leads to an average false alarm rate lower than
0.26.

Despite this fact, balance value is never lower than those of defect predictors which

are learnt using either only static code metrics or only churn metrics.

92

0k T - - T % - T | T
o = g 06f | ’
06r 5 | = g| | - T T —
pi — - 1 = = pr ! | | [
04r '
A =pop=pl k-
02F | 1 02r - | - 1
oL+] 1 B
¢ CB Ch SC4+CB SC4+Ch CB4+ChSCHCB4Ch 5S¢ CB Ch SC4CB SC+Ch CB4ChESCHCB4Ch
Metric Types Metric Types
03 — p—
| T T | -
bl VB g - == - - 7 E]
| +
0dr 1
|

B Ch SC+CE SC+Ch CB4CHhECHCE+CH

Metric Types

Figure 5.22. Experiment III boxplots for first dataset, where log-filtering is used to

5.4. Experiment IV: Learning Defect Predictors Using Incomplete

preprocess data.

Confirmation Bias Metric Set

Unlike static code and churn metrics which can be retrieved automatically, collect-

ing confirmation bias metrics requires more effort and time. Therefore, defect prediction

models built using only static code or churn metrics may be preferred rather than defect

predictors which are built using only confirmation bias metrics, especially when compa-

rable prediction performances are obtained using both models. In such cases, it might be

a feasible choice to collect confirmation bias metrics of a certain percentage of developers

and to use an imputation technique to obtain imputed confirmation bias metrics that can

be used to learn defect predictors. Such an alternative can be considered as a solution

only if comparable performance results are obtained using imputed form of confirmation

bias metrics as input to defect prediction models.

Moreover, unlike static code and churn metrics, usage of confirmation bias met-

93

I T I 1] Lo

8C CB Ch SC+CB SC+Ch CB+ChSC+CB+Ch 8C CB Ch SC+(B SC+Ch CB+ChSC+CB+Ch
Metric Types Metric Types

b3|[]_6 L

SC CB Ch SC+CB SC+#Ch CB+ChSC+CB+Ch
Metric Types

Figure 5.23. Experiment III boxplots for second dataset.

rics to learn defect predictors may confine defect prediction to a limited portion of the
software product. For instance, in the case of defect prediction at file granularity level,
each file F' within each release R should be mapped with a group of developers Gy who
created and/or updated file F' starting from its creation till code freeze date of release R.
Learning a defect predictor using confirmation bias metrics such that resulting predictor
covers each source file of the software, is possible only if confirmation bias metrics of
all developers who are mapped to file F' are known. Even if the existence of a single
developer within developer group G, with unknown results in the exclusion of file F.
Therefore, in such cases it is very likely to come up with a defect prediction model which
covers only a small percentage of source code files that make up the software product.
Such a scenario is inevitable as lifetime of the software being developed increases, since
some of the developers shall be replaced by new comers. As a result, it shall be impos-
sible to collect confirmation bias metrics of development team’s previous members. In
order to learn confirmation bias metric based defect predictors which cover the complete
software product and obtain comparable prediction performances, imputation techniques

are required.

-
1 -] 7 l
T s T A
Wosl | o 1 L
' 02r L '
.I.
L T T AR A Tl L
5 CB Ch SC4CB SC+Ch CBAChSC+CB4Ch 5 CB Ch 5C+CB SC+Ch CB+ChEC+CB+CH
Metric Types Metric Types
f T

08r |

|
|
bl 0gk T J
|
04r g | 1

5S¢ (B Ch SC4CE SC4Ch CBAChSCH+CBACH
Metric Types

Figure 5.24. Experiment III boxplots for second dataset, where log-filtering is used to

preprocess data.

In this section, we investigate whether it is possible to build defect predictors which
are learnt using incomplete confirmation bias metric set so that comparable prediction

performance results can still be obtained.

5.4.1. Data

We use the two data sets that were also used in Experiment III. Detailed information
regarding these two data sets were given in the previous subsection. However, unlike

Experiment III, defect predictors are built using only confirmation bias metrics.

5.4.2. Design

In this experiment, we use only standardized forms of confirmation bias metric

values to learn defect predictors. In the original data sets, confirmation bias metrics

of developers are known. As we have already stated, our goal in this experiment is

95

to compare the performance of defect predictors built using complete confirmation bias
metrics with the performance of prediction models which are learnt using incomplete
confirmation bias metric set. In order to make a comparison, we assume that confirmation
bias metrics of a subgroup of developers is unknown, which implies that confirmation bias
metrics of any file created and/or updated by any member of this subgroup of developers
is missing. Under this assumption for each complete data set, it is possible to create 2V —2
incomplete data sets, where N is the total number of developers whose confirmation bias
metric values are known. 2% is the total number of subsets of the set of developers with
known confirmation bias metrics. When we exclude the empty set and the complete set of
developers, we obtain 2V — 2 missing data configurations (i.e. data sets with incomplete

data).

For each incomplete data set, we employ Roweis’ Expectation Maximization Algo-
rithm to impute the missing data. The pseudo code explaining details of Roweis’ EM
Algorithm is given in Figure 3.2. Output of Roweis’ Algorithm is the imputed form of
the incomplete data set. We build defect prediction models using each of these imputed
confirmation bias metric sets as input. This results in the formation of 2V — 2 defect
predictors. Prediction performance of each of these predictors is compared with the
performance of the prediction model that is built using the complete confirmation bias

metric set.

The pseudo code for the formation of all missing data configurations for both data
sets is given in Figure 5.25, while the pseudo code in Figure 5.26 explains how each
missing data configuration is imputed using Roweis’” EM algorithm. In the pseudo code,
in Figure 5.26 a call to function ImputeMissingData() is made. As shown in Figure
3.2, function I'mputeMissingData() which takes a missing data configuration as input
is the implementation of Roweis’s EM Algorithm. Finally, Naive Bayes algorithm is used
to predict defects in each imputed data set. As a sampling method, under-sampling is

used to deal with imbalanced data problem.

Percentage of missing data (i.e. missing %) for each incomplete data set, that is
created using the algorithm 5.25, can be calculated as Neompiete / (Neompiete + Nmissing) 2 100.

In this simple formulation, Neompiete i total number of complete entries in the data set,

96

MetricT'ype = “Confirmation Bias Metrics”
Group|l] = “Project Group 17; Group[2] = “Group 3”;
for all 7 in [1:1:2] do
DataSet[i]| = DataSetO f(Groupli], MetricType);
% list of source file names in the first column of DataSet|i]
Files[i] = filesO f(DataSet]i])
% find developer group members of i** data set
Developersli] = DevelopersO f(DataSet]i])
% find total numbers of members in the developer group of i** data set
Nli] = Size(Developers]i));
% form the list of subgroups of the developer group of i'* data set
DeveloperSubsets|i] = Developer SubsetsO f(Developers]i))
% for each missing data configuration
for all j in [1:1:2V0 — 2] do
for all developer in DeveloperSubsets|i,:] do
for all k£ in [1:1:size(DataSet|i], 1)] do
fileName = DataSet][i][k][1]
if IsACommitterO f(developer, fileName) == TRUE then
for all ¢ in [2:1:size(DataSet[i], 1) — 1] do
DataSet[i][k][t] = “missing”
end for
end if
end for
end for
end for
IncompleteDataSetli][j]l= DataSet|i]

end for

Figure 5.25. Pseudo code for generation of missing data configurations for data sets

“Project Group 17 and “Group 3”.

97

for all 7 in [1:1:2] do
% for each missing data configuration
for all j in [1:1:2V1] — 2] do
ImputedDataSet[i][j] = ImputeMissingData(Incomplete DataSet|[i][j])
end for

end for

Figure 5.26. Pseudo code for imputation of each missing data configuration.

and Nyissing corresponds to total number of entries with missing confirmation bias metric
values. Each entry in the data set corresponds to a source code file and it consists
of the confirmation bias metric values of the group of developers who created and/or
updated that file. Confirmation bias metric values of each developer is estimated from the
outcomes of confirmation bias tests conducted by us. In order to calculate confirmation
bias metric values of each developer group we use, the operators defined by the equations
5.3. Therefore, missing confirmation bias metrics of one or more developers from the
group of developers, who created and/or updated a source code file, automatically implies
that confirmation bias metrics for the developer group of that file are completely missing.

In other words, the entry in the data set corresponding to that file is completely missing.

5.4.3. Results and Discussions

As a result of Experiment IV, 2V — 2 prediction performance values (i.e. pd, pf
and balance) are obtained for each data set, where N is the total number of developers
who develop the software product for which defect prediction models are build. Since we
build defect predictors using imputed form of each missing data configuration of data sets,
this implies that 2° — 2 = 510 defect prediction models are learnt for the first data set,
while for the second data set this corresponds to 2° — 2 = 62 defect predictors. Missing
confirmation bias metric values of developer(s) correspond to a specific missing data
percentage (missing %). We categorized imputed forms of missing data configurations

based on the resulting missing % in the overall data set. For this purpose formed 9

98

Table 5.14. Defect prediction performance results for complete form of first data set.

Metric Type pd | pf | balance

Confirmation Bias | 0.63 | 0.32 0.64

Static Code 0.58 | 0.34 0.61
Churn 0.61 | 0.39 0.58

Table 5.15. Defect prediction performance results for incomplete confirmation bias

metric values of the first data set as input.

Missing % | pd pf balance
(0,10] 0.8013 | 0.2834 | 0.7087
(10,20] 0.7929 | 0.3029 | 0.6950
(20, 30 0.7395 | 0.3118 | 0.6628
(30, 40] 0.7141 | 0.3419 | 0.6306
(40, 50] 0.7079 | 0.3804 | 0.6075
(50, 60] 0.6792 | 0.3424 | 0.6097
(60, 70] 0.6003 | 0.2136 | 0.6110
(70, 80] 0.6073 | 0.2856 | 0.5555
(80,90] 0.6660 | 0.4263 | 0.4869

categories, such that a defect predictor built using a data set with missing % greater than
(1 — 1) %« 10% and less than or equal to i * 10% belongs to category C;, where 1 <i <9 .
Within each category C;, we calculated the average of prediction performance results (i.e.
pd, pf, balance) of defect predictors which belong to that category. Table 5.16 and Table
5.18 show average pd, pf and balance values corresponding to each missing % category
for the first and second data sets respectively. Mean Square Error (MSE) values for the
imputed form of the first and second datasets are shown in Figure 5.15 and Figure 5.19,
respectively. As it can be seen from Table 5.16 and 5.18, increase in missing % leads to

a decrease in balance value.

The inverse relation between balance and missing percentage is also shown in the
upper left graphs in Figures 5.27 and 5.28. Pearson correlation between balance and
missing % is —0.9092 (p = 0.9955F — 171) for the first data set, while this value is
—0.8700 (p = 1.5794F — 018). As it can be seen in Figures 5.27 and 5.28, correlation

99

Table 5.16. MSE values for imputed form of incomplete confirmation bias metric values

for the first data set.

Missing % | MSE
(0,10 | 1.0020
(10,20] | 1.5601
(20, 30] 1.5596
(30,40] | 1.6507
(40,50] | 1.7448
(50, 60] 1.3638
(60,70] | 0.8622
(70,80] | 0.9169
(80, 90] 0.9801

Table 5.17. Defect prediction performance results for complete form of the second data

set.
Metric Type pd | pf | balance
Confirmation Bias | 0.64 | 0.26 0.62
Static Code 0.58 | 0.34 0.61
Churn 0.62 | 0.12 0.69

Table 5.18. Defect prediction performance results for incomplete confirmation bias

metric values of the second data set as input.

Missing % | pd pf balance
(0, 10] 0.8013 | 0.2834 | 0.7087
(10, 20] 0.7929 | 0.3029 | 0.6950
(20, 30 0.7395 | 0.3118 | 0.6628
(30, 40] 0.7141 | 0.3419 | 0.6306
(40, 50] 0.7079 | 0.3804 | 0.6075
(50, 60] 0.6792 | 0.3424 | 0.6097
(60, 70] 0.6003 | 0.2136 | 0.6110
(70, 80] 0.6073 | 0.2856 | 0.5555
(80, 90] 0.6660 | 0.4263 | 0.4869

100

Table 5.19. MSE values for imputed form of incomplete confirmation bias metric values

for second data set.

Missing % | MSE

(0, 10] 1.0020

10,20 1.5601

20,30 1.5596

30,40 1.6507

40, 50 1.7448

60,70 0.8622
70, 80

80,90

0.9169

(10, 20]
(20,30]
(30, 40]
(40,50]
(50,60] | 1.3638
(60, 70]
(70,80]
(80,90]

0.9801

Table 5.20. Pearson correlation results for missing % vs. pd, pf, balance and MSE.

Data Set # 1 Data Set # 2
Missing % vs. P P P p
balance -0.9092 | 0.9955E-171 | -0.8700 | 1.5794E-018
pd -0.4120 | 1.0674E-19 | -0.5500 | 9.3399e-006
pf -0.2287 | 1.0596E-06 | 0.2090 0.1188
MSE 0.2227 2.33E-06 | -0.6566 | 2.9167e-008

between missing % and pd, pf and M SE values are not as high as the correlation values
obtained for the relation between missing % and balance values for both first and second
data sets. Table 5.20 list Pearson correlation values for missing % versus balance, pd, pf

and M SFE values respectively, for both first and second data sets used in this experiment.

According to the results given in Table 5.14 and 5.16 for the first data set, defect
predictors which are built using confirmation bias metrics data with missing % up to 30%
results in comparable balance values with the balance value of the defect predictor built
using complete input data. Although balance values decrease as missing % increases,
even usage of input data with missing % within the range 80%-90% results in defect
predictors having balance values the comparable with general performance values of rule-

based prediction models [24].

08t
Pl g

04r

Dz 1 1 1 1
0 0 40 B0 il

Missing %

07

0BF
bal D5¢

04r

0 0 40 B0 il

Missing %

101

Missing %

Missing %

Figure 5.27. Missing data percentage versus balance, pd, pf and MSE for the first data

set.

As it is shown in Table 5.17 and 5.18, results obtained for the second data set are

in line with the results obtained for the first data set. Moreover, up to 40% missing data

percentage, average performance results of the defect predictors learning from incomplete

data outperforms prediction performance results of the defect predictor that uses com-

plete confirmation bias metrics as input. Within the missing data percentage range of

40%-70%, still the performance results obtained are comparable with performance of the

original prediction model. Finally, prediction performance within missing data percent-

age range of 70%-90% performance results are comparable with prediction performance

of rule-base defect predictors.

102

09 - . . — 08
+
nar +f .|.+ + . 06
¢+ A +Jgr l ++
07t q;.; Th 4 Ty ¢ + e
pd ' pl . T of 04} f#: it
06 fe e T & +¢#+‘*" ++++tr++++
o+ I
05t + 1 12 +4T T+
+
04 1 | | | D | | | |
0 I 40 il a0 100 0 a0 40 B0 a0 100
Missing % Missing %
08 - . . . 25
+ 4+
+ +
w7 o] 2t i]
+ ++ +
-H-.|...|_ '#- * e+ ¥ Tt
bal 06} N ++JDr + { MsE 15 +4 Fh
+ o+ Ty + o+
05 #tﬂ A Fot+
' ' tot * Wﬁ
by +
D4 1 | | L+ 05 | | | |
0 0 40 B0 a0 100 0 0 40 B0 a0 100
Missing % Missing %

Figure 5.28. Missing data percentage versus balance, pd, pf and MSFE for the first data

set.

5.5. Threats to Validity

5.5.1. Threats to Validity for Definition and Extraction of Confirmation Bias
Metrics

In order to avoid mono-method bias, which is one of the threats to construct validity,
we used more than a single version of a confirmation bias measure. In other words, we
defined a set of confirmation bias metrics. In order to form our confirmation bias metric
set, we made an extensive survey in cognitive psychology literature covering significant
studies which have been conducted since the first introduction of the term “confirmation
bias” by Wason in 1960 [1]. Moreover, we made a definition of confirmation bias in
relation to software development life cycle. Since our metric definition and extraction
methodology is iterative, we were able to improve contents of our metric set through

pilot study and datasets collected during our previous related research [72], [73], [74]. As

103

a result, we were able to demonstrate that multiple measures of key constructs we use

behave as we theoretically expect them to.

Another threat to construct validity is interaction of different treatments. Before
administration of confirmation bias test to groups of participants, we ensured that none
of the participants were involved simultaneously in several other programs designed to

have similar effects.

Evaluation apprehension is a social threat to construct validity. Many people are
anxious about being evaluated. Moreover, some people are even phobic about testing and
measurement situations. In order to avoid participants’ poor performance due to their
apprehension and not to exert psychological pressure on them, before solving both written
question set and interactive question, participants were informed about the fact that the
questions they are about to solve do not aim to measure 1Q or any related capability.
Participants were also told that results shall not be used in their company’s performance
evaluations and their identity shall be kept anonymous. Moreover, participants were told
that there is no time constraint to complete the questions, although some of our metrics

are requires measurement of time it takes to answer questions.

Another social threat to construct validity is the expectancies of the researcher [75].
There are many ways a researcher can bias the results of a study. Hence, the outcomes
of both written question set and interactive question were evaluated by two researchers
independently, one of the researchers not actively being involved in the study. She was
given a tutorial about how to evaluate the confirmation bias metrics from the outcomes
of the written question set and interactive question. However, in order not to induce a
bias she was not told about what the desired answers to the questions are. The inter-
rater reliability was found to be high, for evaluation of each confirmation bias metric.
Average value for Cohen’s kappa was 0.92. During administration of the confirmation
bias test, explanations made to the participants before they started solving the ques-
tions did not include any clue about ideal responses. Moreover, while participants were
solving interactive question an independent researcher attended the session in order to
observe whether the researcher in charge affects participants’ response or not through

his/her gestures or facial expressions. Dialogues, which took place during solution of the

104

interactive question, were also recorded. These recordings were later examined to find
out whether researcher in charge gives any clues to the participant about the expected
result. Parts of the datasets, which were found to be affected by the expectancies of the

researcher, were excluded from the empirical investigation.

In order to avoid internal threats to validity, for all project groups we selected test
dates, when workload of developers are not intense. Within any of the groups, there was
no event in between the confirmation bias tests that can affect subjects’ performance.
Members of the developer group corresponding to the first dataset took confirmation
bias test, which consists of written question set and interactive question, within a week.
Remaining developer groups took the confirmation bias test in a single day. As a result,
within a project group for each member we managed to create similar conditions while
administering confirmation bias test. If one group member were tested when work load
and time pressure were intense, whereas another member of the same group were tested
under much more suitable and relaxed conditions, then our methodology would not have
been reliable. Another attempt to avoid internal validity was to administer confirmation

bias test in environments, which are isolated from distraction factors such as noise.

5.5.2. Threats to Validity in General

We consider three major threats to the validity of our experiments:construct, in-
ternal, external. To avoid the construct validity threats during Experiments III and IV,
we used in terms of measurement artifacts, we used three popular performance measures
in software defect prediction research: probability of detection (pd), probability of false
alarm rates (pf) and balance values (bal). In order to avoid internal validity threats,
in Experiments III and IV, we used 10-fold cross validation to avoid sampling bias in
our experiments. In order to overcome ordering effects we shuffled data 10 times and
10-fold cross validation is used for each ordering configuration of the input data. As a
result, during each experiment Naive Bayes algorithm is executed 100 times, for each
data set. For statistical validity, we used Chi Square Test [71, 76-78] for Experiment
I while analyzing the effects of some factors on confirmation bias and we used Mann-
Whitney U test for performance comparison of the defect prediction models which we

built for Experiments III and IV. As another attempt to avoid internal validity threats,

105

we performed written and interactive tests, which we use to collect confirmation bias
metrics, within a week for the first group and within a single day for the second group,
respectively. As a result, within a project group for each member we managed to cre-
ate similar testing conditions. Otherwise, if one group member were tested when work
load and time pressure were intense, whereas another member of the same group were
tested under much more suitable and relaxed conditions, then our methodology would
not have been reliable. For both project groups we selected test dates, when workload of
developers are not intense. Within any of the two groups, there was no event in between
the confirmation bias tests that can affect subjects’ performance. Moreover, both testing
environments were isolated from distraction factors such as noise. During Experiments
I, in terms of internal validity our quasi-independent variables are experience, education,

hypothesis testing and reasoning , and software development methodology.

In order to externally validate our results, we collected data from 7 different software
development companies located in two different countries. Moreover, we tried to keep
the variety of the domains in which these companies are specialized as high as possible.
However, since Experiments II, III, and IV we require information regarding source file
commit logs retrieved from version management systems, our analysis were confined with
participant groups for which such data was available. Moreover, since most companies
do not keep list of defected files after each testing phase of the software product, we
had to use data sets from only two developer groups. Yet, up to a certain extend we
managed to cover variety in software development domain since one data set belongs to a
telecommunication company while the other belongs to an ISV specialized in developing

ERP solutions.

106

6. CONCLUSIONS

6.1. Summary of Results

Results of Experiment I, showed that hypothesis testing and reasoning skills have a
significant effect in circumventing negative effects of confirmation bias. Confirmation bias
levels of individuals who have been trained in logical reasoning and mathematical proof
techniques are significantly lower. In other words, given a statement such individuals show
tendency to refute that statement rather than immediately accepting its correctness. A
significant effect of experience in software development/testing has not been observed.
This implies that training in organizations is focused on tasks rather than personal skills.
Considering that the percentage of people with low confirmation bias is very low in the
population [1, 62] an organization should find ways to improve basic logical reasoning

and strategic hypothesis testing skills of their

In addition to the fact that both Groups 2* and 8" both outperformed in confir-
mation bias tests compared to members of the Groups 1* and 7%, Group 8° members
also outperforms members of Group2*. Individuals, who are experienced but inactive in
software development/testing, score better in confirmation bias tests than active expe-
rienced software developers/testers. This implies that companies should balance work
schedule of testers similar to jet pilots and allow them periodically to take some time off

the regular routine.

Results of Experiment II empirically showed the effect of confirmation bias on soft-
ware developers and testers. The amount of reduction in the variability of defect rate
obtained by using the linear combinations of confirmation bias metrics is less than 50%.
This amount is given by R? = 0.4477. Adjusted R? statistic is equal to 0.4243. The value
of R? for prediction is 0.3264, which means that we could only expect the constructed
model to explain only about 32% of the variability in predicting new observations. Re-
sults show that although confirmation bias metrics are not direct indicators of defect
ratio of software developer groups, they affect software defect density. Moreover, in our

case study during the prediction of the defect rate, confirmation bias metrics explain 32%

107

of the variability the constructed linear regression model which is a significant amount
in social sciences. If we take into account the fact that defect rate is affected by pro-
cesses, and many human aspects other than confirmation bias, the results obtained are
reasonable. Among human aspects affecting software defect, we can name cognitive bi-
ases such as representativeness, availability, adjustment and anchoring in addition to the
social interactions. Therefore the capability of confirmation bias metrics to explain 32%
of the variability in defect rate is a promising result. Besides software developers, results
of Experiment Il showed that number of post-release defects in source files is directly

proportional to confirmation bias levels of testers who test those source files.

Defect prediction models we built during Experiment III using only confirmation
bias metrics gave prediction performance results comparable to performance results of
the defect predictors which we built using only either static code or churn bias metrics.
Finally, in Experiments IV we tackled missing data problem. The results of this last
experiment showed that defect predictors which use imputed confirmation bias metric
data as input gives comparable prediction performance results when compared with the
performance of defect predictors built using complete confirmation bias metric values as
input. Static code metrics we used to learn defect prediction models include Lines of Code
(LOC), Halstead [79] and McCabe [80] metrics. In other words, we have covered the set
of all major metrics which can be extracted from source code regarding code complexity
based on program flow and readability of the code. Similarly, the churn metric set, which
we have employed in our analysis, contains extensive information about the changes
in source code during the implementation phase. We extracted significant portion of

information regarding code change history from version management systems.

On the other hand, confirmation bias metrics represent only a single aspect about
people’s thought processes. Despite this, according to our empirical findings using only
confirmation bias metrics to learn defect predictors yields comparable performance re-
sults. Moreover, the phenomena of cognitive biases, which is only one dimension re-
garding people’s thought processes, comprise other bias types such as representativeness,
availability, adjustment and anchoring in addition to confirmation bias. In cognitive psy-
chology, the causes of biases have been extensively investigated in various domains over

the past three decades since the introduction of the concept of bias by Kahneman and

108

Tversky [47]. In addition to cognitive biases, concepts widely studied in cognitive science
such as attention, memory, reasoning, motivation, social cognition are also among the
cognitive aspects which require special attention. Hence, there is extensive amount of
findings in the field of cognitive psychology which can be employed to form a metric suite
covering developers’ cognitive aspects which have significant effect on software defect

density, hence on software quality.

We are aware of the fact that our research is empirical and as stated by Popper,
we cannot verify a theory with limited number of empirical findings, yet falsify it [81].
Hence, we need to be careful while generalizing our experimental results in order not
to be subject to confirmation bias we have been discussing in this paper. However,
our empirical findings suggest that the effects of cognitive aspects and people’s thought
processes on software quality deserves to be investigated. Moreover, obtaining comparable
performance results in software defect prediction by confirmation bias metrics implies that
further investigation of people’s thought processes may help us to overcome the ceiling

effect in defect prediction performance.

6.2. Contributions

There are three ingredients of software projects, which are product, process and
people. Performance increase of defect predictors depends on the enhancement of input
data content. Although product and process metrics have been widely used in software
defect prediction, there is not much work regarding people metrics. In spite of the fact
that confirmation bias is a single aspect of people who consists of many other aspects
as well, defect predictors built using only confirmation bias metrics give prediction per-
formance results comparable with those of traditional defect prediction models which
are built using either static code or churn metrics. Our findings very strongly support
the claim that the ceiling effect in the performance of software developers can only be

overcome by increasing the information content of prediction models using people metrics.

However, unlike static code and churn metrics it takes time and effort to collect
people related metrics. In our research, we collected confirmation bias metrics by con-

ducting written and interactive tests to software professionals. Especially interactive test

109

may result in spending significant amount of effort for confirmation bias metric collec-
tion. In this case, confirmation bias metrics seem to loose their attraction. However, in
our research we proposed a methodology to build confirmation bias metrics based defect
prediction models which can learn from incomplete confirmation bias metrics data. Using
this methodology, it is sufficient to built defect prediction model for a software product
by conducting confirmation bias tests only to 70% of the development team. Moreover,
event when 20-30% of the development team is covered during the collection of confirma-
tion bias metrics performance results obtained are better than the performance of rule

based defect predictors [24].

In addition, as the lifetime of a software being developed increases number of de-
velopers who used to work in the project increases. Since it is impossible to conduct
confirmation bias tests to previous members of the development team, defect predictors
build using only confirmation bias metrics inevitably cover only a portion of the software
product being developed. As the number of ex-top developers increases this portion also
decreases. The methodology we proposed in Experiment IV also solves this problem by
treating confirmation bias metrics of the groups containing at least one ex-developer as

missing data.

6.3. Future Directions

Inclusion of people aspects which affect software defect density as input data to
prediction models is essential to overcome the performance ceiling in defect prediction
models. For this purpose, people aspects that have the potential to affect the introduction
of defects into software must be identified. After the identification of those potential
aspects, empirical studies need to be carried out to ensure the effect of these people
aspects on software defect density. Moreover, a methodology needs to be introduced to

measure/quantify these people aspects.

In this research, we concentrated on confirmation bias and identified a methodology
to define confirmation bias metrics. As mentioned previously, collection of these metrics
require more effort unlike static code and churn metric that can be collected by using

available tool. As future work, the goal of this study to automate the process of conduct-

110

ing confirmation bias tests as well as the estimation of confirmation bias metric values
from the test outcomes. This automation tool shall give us the opportunity to gather
more data from software development companies specialized in various domains in dif-
ferent countries. We aim to increase the variety and quantity of our data set to replicate
our experiments, since we are aware of the fact that as human beings we ourselves are
also under the risk of being influenced by the confirmation bias. In addition, we also
aim to extend our defect prediction models to cover other cognitive bias types such as
availability, representativeness and adjustment and anchoring [47, 62, 82].This software
will help us to improve our metric suite to cover other relevant cognitive aspects that are
briefly mentioned above. Since our software has been designed to be a decision support
tool, it shall also be able to analyze the metrics and make recommendations to software

professionals.

The objective of this research in the long run is to help software development
managers make specific resource allocation decisions by considering metrics related to
people’s thought processes. Such a metric scheme will help managers to determine the
right person to test the defective parts of the software. As a result, guidance of metrics
related to people’s thought processes may decrease the uncertainty in Human Resource

(HR) related decisions up to a significant extent.

111

APPENDIX A: Interactive Test (English Version)

There are English and Turkish versions of the interactive test. We present the

English version of the interactive test in Figure A.1, A.2 and A.3.

Figure A.1 shows the first page of the interactive test, where participant is supposed
to fill in his/her personal information. Requested personal information consists of age,
gender, educational status as well as years of experience in development and testing.
Second page of the interactive test is shown in Figure A.2. The first information given
about the interactive test is that this test does not aim to measure 1Q or performance of a
subject. This is followed by the detailed information about the procedure followed during
the interactive test. Third page is shown in Figure A.3. On this page, participant writes
down triples of numbers and reason of choice for each triple. According to the feedback
given by the examiner, third or fourth columns are marked. If a triple of numbers
conforms to the rule which is supposed to be discovered by the participant, then the
examiner marks the third column. Otherwise, examiner marks the fourth column to
indicate that the corresponding triple of numbers does not conform to the rule which is
supposed to be discovered. At the end of the third page, there writes the following: “If
you want extra pages, you can request from the examiner.” This implies that there is
no restriction on the total number of triples given by the participant. However, as it is
indicated on the second page of the interactive test, which is shown in Figure A.2, the
participant should try to find the correct rule by giving as minimum triples of numbers

as possible, in the ideal case.

112

PERSOMAL INFORMATION

Sex: O Female O Male

Education Status:

Undergraduate

Degree Mame of the University: .o e
L0 =] U
L 1 = o U

(If you have a double major degree)

M.5./M.A. Degree
Mame of the University: .o e

PR BT e e s e e e e e s
FhD Degree

Mame of the University: .o e

L7 =] U

Do you have experience as a professional software developer? O Yes O No

If vour answer to the above question is “Yes”, please write down your years of experience:

Doyou have experience as a professional software tester ¥ O Yes OO Mo

If yvour answer to the above question is “Yes”, please write down your years of experience:

Figure A.1. Interactive test personal information page.

113

About the Test:

» The goal of this test is not to measure IQ or performance of the examinee.
» The results ofthese test shall not be used in individual perfromance evaluations.

Procedure:

» Youwill be given three numbers which conform to a simple rule that I have in mind.

» This rule is concemed with a relation between any three numbers and not with their
absolute magnitude, i.e. it is not a rule like "all numbers above(or below) 50", etc.

* Your aim is to discover this rule by writing down sets of three numbers, together
with reasons for yvour choice of them.

» After you have written down each set, I shall tell youwhether your numbers confarm
to the rule or not, and you can make a note of this outcome on the record sheet
provided.

* There is no time limit, but you should try to discover this rule by citing the
minimum sets of numbers.

main interest. What we shall use in our analyses are the reasons for choice and
rules you wnte down. Thus, it is much more important for us that you write them
down precisely and clearly.

» Remember that youraim is not simply to find numbers which conform to the rule,
but to discoverthe rule itself.

» When you feel highly confident that you have discovered it, and not before, you are
to write it down and tell me what it is.

Record sheetis to be found below.

Have you any questions?

Figure A.2. Interactive testing procedure information page.

Triples Reasons for Choice Conforms to | Does not
the rule conform to
the rule
24 6 | e

IF ¥OU MEED EXTRA PAGES, YOU CAN REQUEST FROM THE EXANMIMER

Figure A.3. Interactive test record sheet.

114

115

APPENDIX B: Written Test (English Version)

There are both English and Turkish versions of the written test. In Appendix B.1
and B.2, we present English versions of the General Written Test and written test with

software development /testing theme, respectively.

Written test consists of two parts: The first part is the General Written Test,
whereas the second part is the test with software development /testing theme. The ques-
tions which the general written test comprises are given in Figure B.2, B.3, B.4, B.5, B.6,
B.7, B.8 and B.9. We present the questions of the written test with software develop-
ment /testing theme in Figure B.10, B.11, B.12, B.13 and B.14.

B.1. General Written Test (English Version)

Information about the General Written Test is given in Figure B.1. Firstly, it is
indicated that the test does not aim to measure IQ or performance of the examinee (par-
ticipant). This statement is also indicated in the information page of the interactive test
in Figure A.1. What must be taken into account by the participant regarding the General
Written Test is also mentioned on the test’s information page. Finally, information page
contains the written test procedure. On the last page, the participant is reminded to
request the written test with software development/testing from the examiner after (s)he
has completed the General Written Test. The last page of the General Written Test is

shown in Figure B.9.

B.2. Written Test with Software Development/Testing Theme (English

Version)

Written test with software development/testing theme consists of eight questions.
Similar to the questions in the General Written Test, more than one choice might be
selected as the answer of each question. Test duration is recorded on the first page of the

test.

116

About the Written Test
The goal of this test is not to measure 10, or performance of the examines

¢ The results of this test shall not be used in individual performance evaluations.

¢ Written test consists of two parts which are General Test and Software Test respectively.

The following must be taken into account about the Written Test:

¢ During the test, please turn your cell phones off and do not deal withanything else except for the
test, sothat test outcomes reflect exactly what is we intend to measure.

= Before starting the test, please do not forgetto fillin the personal information page.

» After having completed the test, please do not inform anyone who did not take this test about the
test's content.

Written Test Procedure

* |n each guestion, there is an explanation about that guestion, and four choices. For each guestion,
one or more choices may need to be selected to answer the guestion of interest correctly.

¢ |n order to make a selection, it shall be adeguate to cross inside the rectangular shapes where
each rectangle represents a choice.

» Any extra selection in addition to the correctly selected ones |eads to an_incormect answer.

¢ Statement to be proved or disproved in each guestion is valid for that question and hence
irrelevant with other guestions in the test.

» There is no time constraint for this test,

& After having finished the gemeral test, please submitit to the examiner. The examiner shall give
you the software test.

Thank you for your interest.

Bogozici University, Software Research Laboratory [Softlab)

Figure B.1. General written test information page.

117

PART |: GENERAL WRITTEN TEST

1. Youareszhown a zet of four cards each of which has a number on one side and a letter on the other
side. The visible faces of the cards show D, F, 7 and 5. Which card(s) should yvou turn over in order

to test the truth of the following mle:

QUESTIONS

“Ifa card has a D on one side, then it has a 7 on iis other side.”

2. Mary has the following opinion about the way John dresses:

“If John wears a blue shirt, then he wears gray trousers”

You want to find out whether Mary's claim is true or false regarding four days during which you
observe the way John dresses. Each card below consists of observations about the way John gets
dreszed. On one side of each card there iz mformation about the color of the shirt John wears, while

on the other side there wiites the color of the trousers he wears duning that day.

Which card(s) should be turmned over to find out whether Mary’s claim i3 true or false with respect
to the four days during which you observed the way John gets dressed.

Blue Shurt Black
Trousers

White Shirt

Gray Trousers

Figure B.2. General written test (first page).

118

i

4.

Inbiclogylaborateries, experiment about viruses are frequently conducted. If viruses contact with
researchers’ skin, they may cause diseases. Paragon Comnpany, is a phammaceutical company which
conducts expenments about vinises in some ofits laboratones, while research and development of
new drugs take place in otherlaboratories ofthe compary. Paragon has the following securty nule:

“If vou are conducting experiments with viruses, you musi wear rubber gloves. "

You want to find out whether the above nile is violated ornot. The cards below represent four
employees of Paragon On one side of each card, foreachofthese four employees it wiites whether
that employee works in laboratories or not, while on the other side of the card it wrtes if {s)he
wears gloves or not.

Which card(s) should be tumed over to find out whether any of these four employees violate the
secunty rule stated above or not?

(sthe conducts (sthe does not (sthe wears (sthe does not
EXperments wear gloves gloves conduct
with vimses EXpeIments

with viruses

You are shown a set of four cards each of which has a number on one side and a letter on the other
side. The visible faces ofthe cards show A K 7 and 4. Which card(s) should you tum overin order
to test the truth of the following nile:

“Ifa card has a vowel on one side, then if has an even mumber on ifs other side.”

A K / 4

Figure B.3. General written test (second page).

119

5. Assume that vou are an emplovee of a company which has the following rule as company policy:
“If an emplovee gets a pension, that emplovee must have worked af least fen vears.”

Each of these cards shown below represents one of vour the employees. On one side of each card,
there 15 the total number of vears an emplovee has been working in the company; whereas on the
other side there 15 information about whether that employee gets a pension or not. Which of the

following cards would you definitely need to fum over to see if the company policy stated about is
violated or not?

worked 12 1o pension pension worked &
years years

6. You are shown a set of four cards each of which has a number on one side and a letter on the other

side. The visible faces of the cards show D, F, 7 and 5. Which card(s) should vou fum over in order
to test the truth of the following rule:

"If a card does not have a D on one side, then it has a 7 on ifs other side. ™

Figure B.4. General written test (third page).

120

7. Assume that you are a bouncer at a bar and you must enforce the following mle:

“If someone is drinking beer, then he/she is 21 years old or older.

Each of the four cards given below represents one customer in vour bar. One side of each card
shows the person’s age and the other side shows what that person is drinking. Pick only the cards
vou defmitely need to tum over to see if any of these people are breaking the law and need to be
thrown out.

23 years old Diet Coke 16 vears old Beer

8. You are shown a set of four cards each of which has a number on one side and a letter on the other
side. The visible faces of the cards show K, E, 3 and 8. Which card(s) should you furn over in order
to fest the truth of the following rule:

“If a card does not have an odd number on one side, then i has a consonant on ifs other side.”

Figure B.5. General written test (fourth page).

121

0. Teenagers who don't have their own cars usually end up borrowing their parents’ cars. Assume
that a father set the following rle for four of his teenager kads:

“If vou borrow my car, then you have to fill up the fank with gas. ™

You are given four cards where each card represents one of these four teenage kids. Which of the
following cards would vou defmitely need to tum over to see if any of these teenagers are breaking
their father’s rle?

borrowed car did not borrow filled up tank did not fill up
car with gas tank with gas

10. You are shown a set of four cards each of which has a number on one side and a letter on the other
side. The visihle faces of the cards show D, F, 7 and 3. Which card(s) should vou tum over in order
to test the truth of the following nile:

“If a card does not have a D) on one side, then it does not have a 7 on ifs other side. ™

Figure B.6. General written test (fifth page).

122

11. Jane says that she prefers train whenever she wants to go to Manchester. Each card below

represents four trips of Jane. On one side of each card, there writes the destination points of her trips,
while on the other side of the card the transportation medium she used for each trip. In order to check
whether Jane really prefers to go to Manchester by tram, which cards should be tumed over?

“Whenever Jane goes to Manchester, she travels by train.”

train plane Manchester Oxford

12. Jack planted a lovely garden with flowers of every color. However, he has not been able to enjov i,
because his flowers are getting harmed by fungi. To get rid of the fingi in a week, Jack's grandmother
gave him the following advice:

“Ifvou spray lacana tea on vour flowers, vou can get rid of the fungi that harm vour flowars.”

In order to see if that really works, Jack decided to make an experiment and convinced some of his
neighbors, who also have complaints about fung in their gardens, to spray their flowers with lacana tea.
After a week he decided to check whether any of the results of this experiment violate his
Grandmother’srule. Each ofthe cards below represents one of the four gardens near Ali’s house. One
side of the card shows whether lacana tea was sprayed on the flowers in a vard and the other side tells
whether fungi still exist ornot Which of the following cards would you definitely twm over to see if
what happened in anv of these gardens violated his Grandmother’s nile?

spraved with not sprayed No fungi Fungi still
lacana tea with lacana tea remained in the exists in the
garden garden

Figure B.7. General written test (sixth page).

123

13. You are shown a set of four cards each of which has a number on one side and a letter on the

other side. The visible faces of the cards show D, F, 7 and 5. Which card(s) should vou tum over in
order to test the truth of the following rule:

"If a card has a I on one side, then it does not have a 7 on ifs other side. "

D F 7 5

14. Assume that you are an emplover and your company has the following rule as company policy:
“If an employee gets a pension, that employee must have worked at least ten years.”

Each of these cards shown below represents one of your the employees. On one side of each card,
there is the total number of years an emplovee has been working in the company; whereas on the
other side there 1s information about whether that employee gets a pension or not. Which of the
following cards would vou defmitely need to tum over to see 1f the company policy stated about 13
violated or not?

worked 12 no pension pension worked 8
years years

Figure B.8. General written test (seventh page).

124

15. You are shown a set of four cards each of which has a number on one side and a geometric shape
on the other side. The visible faces of the cards show rectangle, 3, square and 8. Which card(s)
should vou turn over in order to test the truth of the following rule:

“If a card has an even nmumber on one side, then if does noi have a square on iis other side.”

3 O 8

IFYOU HAVE FINISHED GENERAL WRITTEN TEST PLEASE SUBMIT
IT TO THE EXAMINER AND REQUEST FOR WRITTEN TEST WITH
SOFTWARE DEVELOPMENT/TESTING.

Figure B.9. General written test (eighth page).

125

For each question you can choose one or more choices.
It is enough to mark these choices with a circle.
Please write down your starting and ending times of the test in the areas provided below.

Thank you.

Starting time:ccovevevmnieninnnen Ending time:coevievninieiinianan

1. Suppose yvou want to make sure that a program avoids dereferencing (deleting) a null
pointer by always checking before dereferencing. Someone tells vou there are four
sections of code that needs examination and the following have been determined
gbout those sections:

a) Section A checks whether the pointer is null The pointer may or may not be
dereferenced there.

b) Section B does not check whether the pointer is null. The pointer may or may
not be dereferenced there.

c) Section C dereferences the pointer. The pointer may or may not have been
checked for nullity.

d) Section D does not dereference the pointer. The pointer may or may not have
been checked for nullity.

Which of the sections mentioned above should you definitely check to avoid the
situation mentioned above?

Figure B.10. Written Test with software development/testing theme (first page).

126

2. To evaluate the following hypothesis:
“If an instance s class is Coniroller, then it has been inifialized ™
Which of the following needs mvestigation?
a) Aninstance of Controller that may or may not be mitialized.
b) Anmstance of a class other than Controller that may or may not be mutialized.
c] Anmitiahred mstance whose class 1s unknown.
d] Anummtalized mstance whose class 1s unknown.

3. Supposeyouwant tomake sure that file Fis opened successfully, before any attempt to
access that file. Thus, you have the following hypothesis:

“If there is an attempt to access file F, then file F has been opened successfully.”

You are previously told that there are four sections m your code which need to be
mvestigated carefully and yvou know the following about those sections:

a) Section A- Thereisno check whether NULL pomnter retums as a result ofthe attempt
to open file F. There mavbe anaccess operation(e.g.read, winte, etc.)to file F or not.

b) Section B: Thereis an attenpt to read file F. There 1z also an attempt to open file F
before theread operahon but there may ormaynotbe a checkto find whether NULL
pointer returns as a result of the attempt to open file F.

) Section C: Thereisno attenptto access file F. There may ormay not be a check to
find whether NULL pomter retumns as a result of the attempt to open file F.

d) SectionD: Thereis a check whether NULL pointer retums as a result ofthe attenpt to
open file F. There may ormaynotbe anaccess operation (e.g.read, wnte, etc.) to file
F.

Which ofthe sections mentioned above should vou defirately check so that youcan find out
whetherthe statedhypothesis about file Fis valid ornot?

Figure B.11. Written Test with software development/testing theme (second page).

127

4. Suppose vou have a local varizble my var of type float and you alse have zssignment operations
m various parts of your program, where vou assign the value of my_var to other varizbles. You
want to make sure that any varizble to which value of my_var 15 2ssigned 15 2lso of type float.
“Ifvalue of my_var i assigned o avariable, then type of that variable i float ™
Tou are previously told that thers zre four sections m your code which need to be mvestigated
carefully and you kmow the followmg about those sections:

g) Section A Velue of my var iz assipmed to varizble x. Tvpe of variable x nesds to be
chackad.

b) Section B: Tvpe of varizhle 7 iz mteger and it iz not kmown whether sy var 13 2szsimned to £
of not.

) Section C: Type of varizble v iz float and it 1z not kmown whether sy ver 13 2ssigned to v
of not.

d) Section D: Varizble w iz not zszizned to value of sy var m ey part of the code. Type of
variable w neads to be checked.

Which sections need mvestigztion”

3. Suppose vou want to make sure that an array 15 mitialized before accessmg one of ifs elements.
Touhave the followmg hypothesis:

“Ifthere It an arfempi fo access an element of an array, then @rray & mitialized before this
operation ™

Y ou are previously told that there ars four sections m vour cods which need to be mvestgated
carefully:

a) Section A: There 15 an attempt to access an element of the array. Array may of may not be
mitialized.

b) Section B: There may be an attempt to access an element of the array. Array iz not
mitialized.

) Section C: Array mav of may not be mitialized. There iz no attempt to 2ccess m element
ofthe array.

d) Section D: Array i3 mitizlized. There may or mav not be an attempt to 2ccess m element
of the array.

Which sections nesd mvestigation?

Figure B.12. Written Test with software development/testing theme (third page).

128

6. Suppose vou want to make sure that no division by zero 15 carnied out withm 2 fimetion whose
retmming value may be used. You have the followmg hypothesis:

“Ifthere v an affempt fo wse the refurning value of the finction f), then no division by zero is
carried out within the function ™

ou are previously told that there are four sections i vour code which nesd to be mvestigated
carefully:

a) Section A: There may or may not be an attempt to use the remmmg value of the imction.
Mo division by zero 1z carried out within the fnction.

b) Section B: There 15 no attempt to use the retummg value of the fimction. Diviston by zero
may of may not be carried out within the function.

L]
er

Section C: Thers 15 an attempt to use the remmmg value of the fimction. Drviston by zero
may of may not be carried out within the function.

d) Section D: There may be an attempt to use the retummg value of the funchion. Diviston by
zero 13 carried out.

Which sections need mvestigation?

7. Suppose you want to make sure that connection to 3 database iz opened successfully before any
attempt to access 2 tzble of the datzbase. Youhave the followmg hypothesis:

“[fthere & an affempt fo access a table of the database, then database connection has been
establizhed successfully. ™

Y ou are previously told that there are four sections m vour code which need to be mvestigated
carefully:

a) Section A: There iz an aftempt to access 2 table. Thers mav or may not be a check
whether efror oocurs 23 2 result of datsbase connection estzblishment.

b) Hection B: There is no check whether error ocours 23 a result of databaze connection
establishment.

(]
Rty

Section C: Thete 1z no attempt to zocess 2 table. Thers mav or mav not be a check
whether error occurs 23 2 result of the attempt to zccesz a table.

d) Section D: There 1z a check whether etror occurs 25 2 result of database connection
establishment. Thers may or may not be an access operation to 2 table.

Which sections need mvestigation?

Figure B.13. Written Test with software development/testing theme (fourth page).

129

8. Suppose vou want to make sure that an instance of an object is created before accessing anon-
static member from a static method. You have the following hypothesis:

“If there is an affempt to access a non-static member from a static method then anobject instance is
created hafore this operation ™

You are previously told that there are four sections in vour code which need to be investigated
carefully:

3) Section A: There is an attempt to access a non-static member from a static method. An object
instance mav or may not be created.

b) Section B: There 15 no attempt to access a non-static member from a static method. There
may or may not be a creation of an object instance.

) Section C: There may or may not be an attempt to access a non-static member from a static
method. An object instance is created.

d) Section D: No object instance is created. There mav be an access operation to a non-static
member from a static method.

Which sections need investigation?

Figure B.14. Written Test with software development/testing theme (fifth page).

10.

11.

130

REFERENCES

. Wason, P. C.; “On the Failure to Eliminate Hypotheses in a Conceptual Task”,

Quarterly Journal of Experimental Psychology, Vol. 12, pp. 129-140, 1960.

Poletiek, F., Hypothesis Testing Behavior (Essays in Cognitive Psychology), Psychol-
ogy Press Ltd., East Sussex, 2001.

Harrold, M., “Testing: A Roadmap”, Proceedings of the Conference on the Future of
Software Engineering, pp. 61-72, ACM, New York, NY, 2000.

Lessmann, S., B. Baesens, C. Mues, and S. Pietsch, “Benchmarking Classification
Models for Software Defect Prediction: A Proposed Framework and Novel Findings”,
IEEE Transactions on Software Engineering, Vol. 34, No. 4, pp. 485-496, 2008.

. Menzies, T. Z., C. J. Hihn, and K. Lum, “Data Mining Static Code Attributes

to Learn Defect Predictors”, IEEE Transactions on Software Engineering, Vol. 33,
No. 1, pp. 2-13, 2007.

Menzies, T., B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Implications of
Ceiling Effects in Defect Predictors”, Proceedings of the 3rd Workshop on Predictive

Models in Software Engineering, 2008.

Teasley, B., L. M. Leventhal, and D. S. Rohlman, “Positive Test Bias in Software
Engineering Professionals: What is Right and Whats Wrong”, C.R. Cook, J. S. and
J. C. Spohrer (editors), Empirical Studies of Programmers: Fifth Workshop, 1993.

Teasley, B. F., L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman, “Why Software
Testing is Sometimes Ineffective: Two Applied Studies of Positive Test Strategy”,
Journal of Applied Psychology, Vol. 79, pp. 142-155, 1994.

McConnell, S., Code Complete, Microsoft Press, Redmond, 2004.

Munson, J. C. and T. M. Khoshgoftaar, “Detection of Fault Prone Programs”, IEFEFE

Transactions on Software Engineering, Vol. 18, pp. 423-433, 1992.

Khoshgoftaar, T., A. Bullard, Lofton, and K. Gao, “An Application of a Rule-Based
Model in Software Quality Classification”, Proceedings of the 6th International Con-

ference on Machine Learning and Applications, 2007.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

131

Khoshgoftaar, T. and E. B. Allen, “Predicting Fault-Prone Software Modules in Em-
bedded Systems with Classification Trees”, Proceedings of the 4th IEEE International

Symposium on High-Assurance Systems Engineering, 1999.

Khoshgoftaar, T. M. and R. M. Szabo, “Using Neural Networks to Predict Software
Faults During Testing”, IEEE Transactions on Reliability, Vol. 45, pp. 456-462, 1996.

Nagappan, N., “Toward a Software Testing and Reliability Early Warning Metric
Suite”, Proceedings of the 26th International Conference on Software Engineering,

2004.

Bell, O. T. J., R. M. and E. J. Weyuker, “Looking for Bugs in All the Right Places”,
Proceedings of the 2006 International Symposium on Software Testing and Analysis,

2006.

Ostrand, T. J., Weyuker, and R. M. Bell, “Where the Bugs are”, Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,
2004.

Ostrand, T. J., J. Weyuker, Elaine, and R. M. Bell, “Automating Algorithms for the
Identification of Fault-Prone Files”, Proceedings of the 2007 International Symposium

on Software Testing and Analysis, 2007.

Tosun, A., B. Turhan, and A. Bener, “Ensemble of Software Defect Predictors: A
Case Study”, Proc. of 2nd International Symposium on Empirical Software Engi-
neering and Measurement (ESEM 2008), Kaiserslautern, Germany, October 2008.

Drummond, C. and R. C. Holte, “C4.5, Class Imbalance and Cost Sensitivity: Why
Under-Sampling Beats Over-Sampling”, Proceedings of 2nd Workshop on Learning
from Imbalanced Datasets, 2003.

Kamei, Y., A. Monden, T. Matsumoto, and K. Matsumoto, “The Effects of Over and
Under-Sampling on Fault Prone Module Detection”, Proceedings of the 1st Interna-

tional Symposium on Empirical Software engineering and Measurement, 2007.

Liu, Y. and T. M. Khoshgoftaar, “Building Decision Tree Software Quality Classifi-
cation Models Using Genetic Programming”, Proc. of the Genetic and FEvolutionary

Computation Conference (GECCO 2003), Chicago, 1L, USA, July 2003.

22.

23.

24.

25.

26.

27.

28.

29.

30.

132

Khoshgoftaar, T. M., J. Van Hulse, and A. Napolitano, “Supervised Neural Network
Modeling: An Empirical Investigation into Learning from Imbalanced Data with
Labeling Errors”, IEEE Transactions on Neural Networks, Vol. 21, No. 5, pp. 813—
830, 2010.

Turhan, B. and A. Bener, “Analysis of Naive Bayes’ Assumptions on Software Fault
Data: An Empirical Study”, Data and Knowledge Engineering, Vol. 68, No. 2, pp.
278-290, 20009.

Tosun, A., B. Turhan, and A. Bener, “Practical Considerations in Deploying Al for
Defect Prediction: A Case Study within the Turkish Telecommunication Industry”,
Proc. of 5th International Conference on Predictor Models in Software Engineering

(PROMISE 2009), ACM. New York, Vancouver, Canada, May 2009.

Nagappan, N. and T. Ball, “Using Software Dependencies and Churn Metrics to
Predict Field Failures”, Proceedings of the 1st Symposium on Empirical Software

Engineering and Measurement, 2007.

Jiang, Y., B. Cuki, T. Menzies, and N. Bartlow, “Comparing Design and Code Met-
rics for Software Quality Prediction”, Proceedings of the 4" International Workshop

on Predictor Models in Software Engineering, 2008.

Zhao, M., C. Wohlin, N. Ohlsson, and M. Xie, “A Comparison between Software
Design and Code Metrics for the Prediction of Software Fault Content”, Information

and Software Technology, Vol. 40, pp. 801-809, 1998.

Zimmerman, T. and N. Nagappan, “Predicting Subsystem Failures Using Depen-
dency Graph Complexities”, Proceedings of the 18th IEEE International Symposium
on Software Reliability, 2007.

Misirli-Tosun, A., B. Caglayan, A. Mirasky, A. Bener, and N. Ruffolo, “Different
Strokes for Different Folks: A Case Study on Software Metrics for Different Defect

Categories”, Proceedings of the 2nd Workshop on Emerging Trends in Software Met-
rics, 2011.

Turhan, B., G. Kocak, and A. Bener, “Software Defect Prediction Using Call Graph
Based Ranking (CGBR) Framework”, Proc. of. 84th Intl. EUROMICRO Software

31.

32.

33.

34.

35.

36.

37.

38.

39.

133

Engineering and Advanced Applications Conference (EUROMICRO 2008), Parma,
Italy, September 2008.

Hannay, J. E., E. Arisholm, H. Engvik, and D. I. K. Sjoberg, “Effects of Personality on
Paired Programming”, IEEE Transactions on Software Engineering, Vol. 36, No. 1,
2010.

Acuna, S. T., M. Gomez, and N. Juristo, “How Do Personality, Team Processes and
Task Characteristics Relate to Job Satisfaction and Software Quality?”, Information

and Software Technology, Vol. 51, No. 3, pp. 627-639, March 2009.

Stacy, W. and J. MacMillan, “Cognitive Bias in Software Engineering”, Communi-

cation of the ACM , Vol. 38, No. 6, pp. 57-63, 1995.

Parsons, J. and C. Saunders, “Cognitive Heuristics in Software Engineering: Apply-
ing and Extending Anchoring and Adjustment to Artifact Reuse”, IEEE Transactions
on Software Engineering, Vol. 30, No. 12, pp. 873-888, 2004.

Mair, C. and M. Shepperd, “Human Judgement and Software Metrics: Vision for
the Future”, Proceeding of the 2nd international workshop on Emerging trends in

software metrics (WETSoM 11), New York, NY, USA, 2011.

Jorgensen, M., “Identification of More Risks Can Lead to Increased Over-Optimism
and Over-Confidence in Software Development Effort Estimates”, Journal of Infor-

mation and Software Technology, Vol. 52, pp. 506-516, 2010.

Jorgensen, M., “Estimation on Software Development Work Effort: Evidence on Ex-
pert Judgement and Formal Models”, International Journal of Forecasting, Vol. 23,

pp. 449-462, 2007.

Graves, T. L., A. F. Karr, J. S. Marron, and H. Siy, “Predicting Fault Incidence Using
Software Change History”, IEEFE Transactions on Software Engineering, Vol. 26, pp.
653-661, 2000.

Weyuker, O. T. J., Elaine J. and R. M. Bell, “Do too Many Cooks Spoil the Broth?
Using the Number of Developers to Enhance Defect Prediction Models”, Empirical
Software Engineering, Vol. 13, No. 5, October 2008.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

134

Mockus, A. and D. M. Weiss, “Predicting Risk of Software Changes”, Bell Labs
Technical Journal, pp. 169—-180, 2000.

Weyuker, O. T. J., E.J. and R. M. Bell, “Using Developer Information as a Factor
for Fault Prediction”, Proceedings of the 1st International Workshop on Predictor
Models in Software Engineering, 2007.

Ostrand, T. J., E. J. Weyuker, and R. M. Bell, “Programmer-Based Fault Predic-
tion”, Proceedings of the 3rd Workshop on Predictor Models in Software Engineering,
2010.

Meneely, A., L. Williams, W. Snipes, and J. Osborne, “Predicting Failures with
Developer Networks and Social Network Analysis”, Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, 2008.

Pinzger, M., N. Nagappan, and B. Murphy, “Can Developer-Module Networks Pre-
dict Failures?”, Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2008.

Bird, C.,; N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting It All To-
gether: Using Socio-Technical Networks to Predict Failures”, Proceedings of the 17th

International Symposium on Software Reliability Engineering, 2009.

Roweis, S., “EM Algorithms for PCA and SPCA”, in Advances in Neural Information
Processing Systems, pp. 626-632, MIT Press, 1998.

Kahneman, D.; P. Slovic, and A. Tversky, Judgment under Uncertainty: Heuristics

and Biases, Cambridge University Press, New York, New York, 1982.

Poletiek, F., “Paradoxes of Falsification”, Quarterly Journal of Ezperimental Psy-

chology, Vol. 49A, pp. 447-462, 1996.

McDonald, J., “Is Strong Inference Superior to Simple Inference?”, Syntheses,

Vol. 92, pp. 261-282, 1992.

Evans, J. S. B. T. and J. S. Lynch, “Matching Bias in the Selection Task”, British
Journal of Psychology, Vol. 64, No. 3, pp. 391-397, August 1973.

ol.

52.

93.

o4.

99.

56.

57.

98.

59.

60.

61.

62.

63.

135

Reich, S. S. and P. Ruth, “Wason’s Selection Task: Verification, Falsification and
Matching”, British Journal of Psychology, Vol. 73, pp. 395405, 1982.

Wason, P. C. and D. Shapiro, “Natural and Contrieved Experience in a Reasoning

Problem”, Quarterly Journal of Experimental Psychology, Vol. 23, pp. 63-71, 1971.

Griggs, R. A. and J. R. Cox, “The Elusive Thematic Materials Effect in Wasons
Selection Task”, British Journal of Psychology, Vol. 73, pp. 407420, 1982.

Rumelhart, D. E., Schemata: The Building Blocks of Cognition, In “Theoretical
Issues in Reading Comprehension”, Lawrance Erlbaum Associates Inc., Hillsdale,

NJ, 1980.

Cosmides, L., “The Logic of Social Exchange: Has Natural Selection Shaped How
Humans Reason? Studies with Wasons Selection Task”, Cognition, Vol. 31, pp. 187—
276, 1989.

Manktelow, K. I. and D. E. Over, Inference and Understanding: A Philosophical and

Psychological Perspective, London, 1990.

Cheng, P. W. and K. J. Holyoak, “Pragmatic Reasoning Schemas”, Cognitive Psy-
chology, Vol. 17, pp. 391-416, 1985.

Johnson-Laird, P. and J. M. Tridgell, “When Negation is Easier than Affirmation”,
Quarterly Journal of Experimental Psychology, Vol. 24, pp. 87-91, 1972.

Manktelow, K. I. and J. S. B. T. Evans, “Facilitation of Reasoning by Realism: Effect
or Non-Effect?”, British Journal of Psychology, Vol. 70, pp. 477-488, 1979.

Griggs, R. A., The Role of Problem Content in the Selection Task and in the THOG
Problem. In “Thinking and Reasoning: Psychological Approaches”, London, 1983.

Cox, J. R. and R. A. Griggs, “The Effects of Experience on Performance in Wasons
Selection Task”, Memory and Cognition, Vol. 10, pp. 496-502, 1982.

Evans, J. S. B. T., S. E. Newstead, and R. M. J. Byrne, Human Reasoning: The Psy-

chology of Deduction, Lawrence Erlbaum Associates Publishers, East Sussex, 1993.

Hilgard, E. R., “A Summary and Evaluation of Alternative Procedures for the Con-
struction of Vincent Curves”, Psychology Bulletin, Vol. 35, pp. 282297, 1938.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

136

Alpaydin, E., Introduction to Machine Learning, The MIT Press, Cambridge, 2004.

Little, R. J. A. and D. B. Rubin, Statistical Analysis with Missing Data, John Wiley
& Sons Inc., New Jersey, 2002.

Bell, R., Y. Koren, and C. Volinsky, “Modeling Relationships at Multiple Scales
to Improve Accuracy of Large Recommender Systems”, ACM Int. Conference on

Knowledge Discovery and Data Mining (KDD’07), 2007.

Bell, R. M., J. Bennet, Y. Koren, and C. Volinsky, “The Million Dollar Programming
Prize”, IEEE Spectrum, pp. 28-33, May 2009.

Bell, R. M. and Y. Koren, “Lessons from the Netflix Prize Challenge”, SIGKDD
Ezxplorations, Vol. 9, No. 2, pp. 75-79, 2007.

Kocaguneli, E., A. Tosun, A. Bener, B. Turhan, and B. Caglayan, “Prest: An intel-
ligent Software Metrics Extraction, Analysis and Defect Prediction Tool”, 21st In-
ternational Conference on Software Engineering and Knowledge Engineering (SEKE

2009), Boston, USA, July 20009.

Montgomery, D. C., Design and Analysis of Experiments, John Wiley and Sons, Inc.,
New Jersey, 2009.

Gravetter, F. J. and L. B. Wallnau, Statistics for Behavioral Sciences, Wadsworrth

Cengage Learning, Belmont, California, 2009.

Calikli, G., A. Bener, and B. Arslan, “An Analysis of the Effects of Company Culture,
Education and Experience on Confirmation Bias Levels of Software Developers and

Testers”, Proceedings of 32nd International Conference on Software Engineering,

2010.

Calikli, G., B. Arslan, and A. Bener, “Confirmation Bias in Software Development
and Testing: An Analysis of the Effects of Company Size , Experience and Reasoning
Skills”, Proceedings of the 22nd Annual Psychology of Programming Interest Group
Workshop, 2010.

Calikli, G. and A. Bener, “Empirical Analyses Factors Affecting Confirmation Bias

and the Effects of Confirmation Bias on Software Developer/Tester Performance”,

75.

76.

77.

78.

79.

80.

81.

82.

137

Proceedings of 5th International Workshop on Predictor Models in Software Engi-
neering, 2010.

Cook, D., Thomas and D. T. Campbell, Quasi-Experimentation: Design and Analysis
Issues for Field Setting, Houghton Mifflin Company, Boston, Boston, 1979.

Cohen, J., Statistical Power Analysis for the Behavioral Sciences, Lawrance Erlbaum

Associates, Publishers, New Jersey, 1988.

Cohen, J., P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences, Lawrance Erlbaum Associates

Publishers, New Jersey, 2003.
Cohen, J., “A Power Primer”, Psychology Bulletin, Vol. 112:1, pp. 155-159, 1992.
Halstead, M., Elements of Software Science, Elsevier, 1977.

McCabe, T., “A Complexity Measure”, IEEE Transactions on Software Engineering,
Vol. 2, pp. 308-320, 1976.

Popper, K., The Logic of Scientific Discovery, Routledge Classics, London, 1959.

Johnson-Laird, P. and P. C. Wason (editors), Thinking: Readings in Cognitive Sci-
ence, Cambridge University Press, London, 1977.

