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ABSTRACT

METHOD OF MOMENTS ANALYSIS OF MICROSTRIP
ANTENNAS IN CYLINDRICALLY STRATIFIED

MEDIA USING CLOSED-FORM GREEN’S FUNCTIONS

Şakir Karan

Ph.D in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Vakur B. Ertürk

July, 2012

Numerical methods based on Method of Moments (MoM) have been widely used

for the design and analysis of planar microstrip antennas/arrays and printed cir-

cuits for various applications for many years. On the other hand, although the

design and analysis of similar antennas/arrays and printed circuits on cylindrical

structures are of great interest for many military, civil and commercial applica-

tions, their MoM-based analysis suffers from the efficiency and accuracy prob-

lems related with the evaluation of the Green’s function representations which

constitute the kernel of the regarding integral equations. In this dissertation,

novel closed-form Green’s function (CFGF) representations for cylindrically stra-

tified media, which can be used as the kernel of an electric field integral equation

(EFIE) are developed. The developed CFGF representations are used in a hybrid

MoM/Green’s function solution procedure.

In the course of obtaining the CFGF representations, first the conventional

spectral domain Green’s function representations are modified so that all the

Hankel (Bessel) functions are written in the form of ratio with another Hankel

(Bessel) function. Furthermore, Debye representations for the ratio terms are

used when necessary in order to avoid the possible overflow and underflow prob-

lems. Acceleration techniques that are present in the literature are implemented

to further increase the efficiency and accuracy of the summation and integration.

Once the acceleration techniques are performed, the resultant expressions are

transformed to the space domain in the form of discrete complex images (DCIM)

with the aid of the generalized pencil of function (GPOF) method and the fi-

nal CFGF expressions are obtained by performing the resultant space domain

integrals analytically.
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The novel CFGF expressions are used in conjunction with MoM for the in-

vestigation of microstrip antennas on cylindrically stratified media. The singular

terms in mutual impedance calculations are treated analytically. The probe-fed

excitation is modeled by implementing an attachment mode that is consistent

with the current modes that are used to expand the induced current on the

patches. In the course of modeling the probe-fed excitation, the probe-related

components of CFGF representations are also derived for the first time in the

literature and MoM formulation is given in the presence of an attachment mode.

Consequently, several microstrip antennas and two antenna arrays are investi-

gated using a hybrid MoM/Green’s function technique that use the CFGF repre-

sentations developed in this dissertation. Numerical results in the form of input

impedance of microstrip antennas in the presence of several layers as well as the

mutual coupling between two microstrip antennas are presented and compared

with the available results in the literature and the results obtained from the CST

Microwave Studio.

Keywords: Cylindrically stratified media, closed-form Green’s function represen-

tations, discrete complex image method, generalized pencil of function method,

Method of Moments, input impedance, mutual coupling.
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ÖZET

KAPALI FORMDA GREEN’İN FONKSİYONLARINI
KULLANARAK SİLİNDİRİK KATMANLI

YÜZEYLERDE MİKROŞERİT ANTENLERİN
MOMENTLER METODU İLE ANALİZİ

Şakir Karan

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Vakur B. Ertürk

Temmuz, 2012

Uzun yıllar boyunca değişik uygulamalar için düzlemsel mikroşerit anten/dizi

ve devrelerin analiz ve tasarım çalışmaları için Momentler Metodu’na dayalı

nümerik metodlar kullanılmıştır. Öte yandan benzer anten/dizi ve devrelerin

silindirik yapılardaki analiz ve tasarım çalışmaları birçok askeri, sivil ve ticari

uygulamalar için ilgi odağı olsa da Momentler Metod’una dayalı analizler ilgili in-

tegral denkleminin çekirdeğinde yer alan Green’in fonksiyonunun doğruluğundan

ve etkinliğinden yoksundur. Bu doktora tezinde, elektrik alan integral denkle-

minin çekirdeğini oluşturabilecek yeni kapalı-formda Green’in fonksiyonları elde

edilmektedir. Elde edilen kapalı-formdaki ifadeler birleşik Momentler Metodu/

Green’in fonksiyonu çözümünde kullanılmıştır.

Kapalı-formdaki ifadeleri elde ederken, öncelikle izgel uzaydaki Green’in

fonksiyonları değiştirilerek her Hankel (Bessel) fonksiyonu bir diğer Hankel

(Bessel) fonksiyonu ile oran şeklinde yazılmıştır. Ayrıca, aşırı azalan ve ar-

tan problemlerini çözmek için oran terimleri için Debye ifadeleri kullanılmıştır.

Toplamın ve integralin etkinliğini ve doğruluğunu arttırmak için literatürde hazır

olan hızlandırma teknikleri kullanılmıştır. Hızlandırma teknikleri uygulandıktan

sonra uzamsal uzaydaki ifadeler genelleştirilmiş kalem fonksiyonu metodu ile ayrık

kompleks imgeler şekline dönmüştür ve en son kapalı-formdaki ifade uzamsal

uzaydaki integrallerin analitik olarak alınması ile elde edilmiştir.

Yeni kapalı-formdaki ifadeler mikroşerit antenlerin silindirik katmanlı ortamda

analizi için Momentler Metodu ile kullanılmıştır. Karşılıklı etkileşim hesabında

tekil ifadeler analitik olarak hesaplanmıştır. Prob ile beslemeyi modellemek için

yama anten üzerindeki akımları açmak için kullanılan akım modları ile uyumlu ek
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akım modu tanımlanmıştır. Prob ile beslemeyi modellemek için kullanılan prob

ile ilgili terimler literatürde ilk defa verilmiştir ve Momentler Metodu formu-

lasyonu ek akım modunun varlığında tanımlanmıştır. Sonuç olarak bu doktora

tezinde elde edilen kapalı-formdaki Green’in fonksiyonları kullanılarak birleşik

Momentler Metodu/Green’in fonksiyonu yardımı ile değişik anten ve ikili dizi

antenler incelenmiştir. Nümerik sonuç olarak birkaç katmanın olduğu durumda

şerit antenlerin giriş empedansları ve iki şerit anten arasındaki karşılıklı etkiletişim

sonuçları verilmiş, literatürde yer alan ve CST Microwave Studio programından

elde edilen sonuçlar ile karşılaştırılmıştır.

Anahtar sözcükler : Silindirik katmanlı ortamlar, kapalı-formda Green’in fonksi-

yonu gösterimleri, ayrık kompleks imge metodu, genelleştirilmiş kalem fonksiyonu

metodu, Momentler Metodu, giriş empedansı, karşılıklı etkileşim.
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Chapter 1

Introduction

Numerical methods based on Method of Moments (MoM) have been widely used

for the design and analysis of planar microstrip antennas/arrays and printed cir-

cuits for various applications for many years [1]-[2]. In general the structures of

interest are open geometries. Hence, an integral equation (IE) is usually set up

and the closed-form Green’s function (CFGF) representations are used as the ker-

nel of this IE [3]-[7]. Then the IE is solved using the MoM based algorithms. On

the other hand, although the design and analysis of similar antennas/arrays and

printed circuits on cylindrical structures are of great interest for many military,

civil and commercial applications, their MoM based analysis suffers from the effi-

ciency and accuracy problems related with the evaluation of the available Green’s

function representations that can be used for cylindrically stratified media.

A number of studies regarding the Green’s functions in cylindrically stratified

media have been reported before [8]-[25]. More references on the conventional

spectral domain and asymptotic Green’s function representations particularly

for single layer dielectric deposited on a perfectly conducting cylinder can be

found in [15] and [16]. However, a vast majority of the above mentioned Green’s

function representations (derived for cylindrically stratified media) are not in

closed form. Besides, convergence of these expressions become an important

issue from the accuracy and efficiency point of views for antenna and/or mutual

coupling problems. On the other hand, most of the studies on the subject of

1



CFGF for cylindrically stratified media have the CFGF expressions that are valid

when the source and observation (or field) points are on different radial distances

from the axis of the cylinder [17]-[21]. Therefore, these expressions are useful

for radiation/scattering problems, provided that the current distribution on the

radiating structure is known. However, they cannot be used in conjunction with

a MoM based algorithm to find the input impedance of an antenna and/or the

mutual coupling between antennas.

Closed-form expressions that can be used in MoM-based algorithms to inves-

tigate cylindrically conformal microstrip antennas and arrays are given in [22].

However, provided closed-from expressions are for the impedance matrix elements

and the voltage vector elements (using entire domain basis functions) rather than

the Green’s functions. In [23], CFGF expressions to be used in the mixed po-

tential integral equation (MPIE) have been presented. Although, these CFGF

expressions (provided in [23]) are valid when the source and the observation points

are located at the same radial distance from the axis of the cylinder, the final

expressions are not valid along the axial line (defined as ρ = ρ′ and φ = φ′)

as well as on a certain region of the cylinder surface where the source and field

points are very close to each other (will be referred to as the “source region”

thereafter). Recently, novel CFGF representations that can be used in MoM-

based algorithms for the solution of an IE have been presented in [25]-[28] to

rigorously analyze antenna problems on cylindrically stratified media. However,

presented CFGF representations in these studies are not valid on the source re-

gion. Therefore, an alternative representation must be used for the evaluation of

the MoM impedance matrix entries that represent the interaction of two current

modes when they partially or fully overlap with each other.

In this dissertation, an efficient and accurate space domain hybrid

MoM/Green’s function method [29]-[31] is developed, which combines the MoM

with the novel CFGF representations provided again in this dissertation. As the

first step of this method, an electric field integral equation (EFIE) is formulated

that uses the aforementioned novel CFGF representations as its kernel. Basically,

for a probe-fed microstrip patch antenna element on a dielectric coated perfect

2
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Figure 1.1: Equivalence principle

electric conducting (PEC) circular cylinder (see Fig. 1.1(a)), an equivalent prob-

lem (see Fig. 1.1(b)) is formed such that the conducting patch is replaced with

the unknown equivalent induced currents making use of the surface equivalence

principle. The total electric field, E(r̄), is written as

E(r̄) = Ei(r̄) + Es(r̄) (1.1)

where Ei(r̄) is the field produced by a known probe current density J i(r̄ ′) in the

presence of a dielectric coated PEC cylinder and its generic form is given by

Ei(r̄) =

∫ ∫ ∫

Vsource

G(r̄/r̄ ′) · J i(r̄ ′)dv′ (1.2)

where G(r̄/r̄ ′) denotes the dyadic form of the CFGF representations involving the

probe-related components with primed and unprimed coordinates representing

the source and observation points, respectively. Similarly, Es(r̄) is the scattered

field and its generic form can be expressed as

Es(r̄) =

∫ ∫

Santenna

G(r̄/r̄ ′) · Js(r̄ ′)ds′ (1.3)

where G(r̄/r̄ ′) denotes the dyadic form of the CFGF representations involving

the tangential components and Js(r̄ ′) is the unknown induced current to be
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determined at the end of the MoM procedure. An EFIE is established by setting

the tangential components of the total electric field (1.1) to zero on the conducting

surface of the patches leading to

n̂× E(r̄) = n̂× [Ei(r̄) + Es(r̄)] = 0 on Spatch (1.4)

where n̂ is ρ̂ for this problem.

The second step is the MoM solution procedure and starts by expanding the

induced current J s on each conducting patch shown in Fig. 1.1(a) in terms of

a finite set of subsectional basis functions. For each patch J s is expanded as

follows:

J s(r̄
′) =

N
∑

n=1

anJn(r̄
′) (1.5)

where

Jn(r̄
′) =

{

fp(r̄
′)ẑ, p = 1, ......., P on each patch

gk(r̄
′)φ̂, k = 1, ......., K on each patch

(1.6)

with N = P +K as shown Fig. 1.1(b). In (1.5) an’s are the unknown coefficients

to be solved at the end of the MoM procedure, and Jn(r̄
′) 6= 0 only if r̄ ∈ Sn;

UN
n=1Sn = Spatchi ; i = 1, ..., # of patches.

First substituting (1.2) and (1.3) into (1.4) and then substituting (1.5) and

(1.6) into the resultant equation, a single equation with N unknowns (for each

patch) can be obtained. Using a set of weighting (testing) functions denoted by

wm(r̄ m) (m = 1, ..., N), the following matrix equation is obtained

Z I = V (1.7)

where

Zmn =

∫ ∫

Sm

dsmwmu
(r̄ m)

∫ ∫

Sn

dsnGuv(r̄ m / r̄ n)Jnv
(r̄ n) (1.8)

In = an (1.9)

Vm = −
∫ ∫

Sm

dsmwm · Ei(r̄ m) (1.10)
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with m,n = 1, ..., N . In this dissertation, piecewise sinusoidal (PWS) functions

are used for both expansion and testing functions. Because testing and expansion

functions are selected to be the same, this testing method is called Galerkin’s

method.

The efficiency and accuracy, which are the major issues in this hybrid method,

are mainly determined by the computation of the Green’s function representa-

tions which should be accurate for arbitrary source and observation locations.

Therefore, we provide novel CFGF representations to be used as the kernel of the

EFIE. The derivation of these novel CFGF representations starts by expressing

the conventional spectral domain Green’s function representations in a different

form by (i) recognizing the Fourier transform based relations between the spect-

ral domain variables and the space domain variables, and (ii) writing the special

cylindrical functions, such as Bessel and Hankel functions, in the form of ratios

(i.e., each Hankel (Bessel) function is written in ratio form with another Hankel

(Bessel) function). Furthermore, these ratios are evaluated directly and Debye

representation (given in Appendix A) of these special functions is used when nec-

essary during the evaluation of the ratios. Therefore, possible overflow/underflow

problems in the numerical calculations of these functions are completely avoided.

Then, the summation over the cylindrical eigenmodes, n, is performed in the

spectral domain. Numerical evaluation of large n values that appear in the or-

ders of special functions (Hankel and Bessel functions), especially for electrically

large cylinders, do not create numerical problems due to the aforementioned way

of expressing the spectral domain Green functions and due to Debye approxima-

tions used when necessary. Furthermore, acceleration techniques that are pre-

sented in [23] are implemented to further increase the efficiency and accuracy of

the summation and integration. Once the acceleration techniques are performed,

the Fourier integral over kz is taken using discrete complex image method (DCIM)

with the help of the generalized pencil of function (GPOF) method [32]. Note

that some modifications are preformed during the implementation of the GPOF

method (compared to ones presented in [17], [18], [25], [27]) and it is critical in

order to obtain accurate results in particular along the axial line of the cylinder

and the self term evaluation of the MoM impedance matrix. Thus, the region
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of field points (with respect to the source point), where the novel CFGF rep-

resentations proposed in this study remain accurate, is significantly wider than

that of the previously available CFGF representations (including [27]). Briefly,

in addition to cases where source and observation points are located at different

radial distances from the axis of the cylinder, the proposed CFGF expressions

are valid for almost all possible source and field points that lie on the same radial

distance (such as the air-dielectric, dielectric-dielectric interfaces). The latter re-

gion includes the situation where both the source and field points are located on

the axial line (ρ = ρ′ and φ = φ′) of the cylinder that exhibits a logarithmic sin-

gularity due to the argument of the Hankel function, and the source region where

two current modes can partially or fully overlap with each other that exhibits

a singularity during the MoM analysis. It should be emphasized that the final

CFGF representations presented in this dissertation are slightly different than

the ones presented in [27] in order to handle these singularities, and to avoid

the necessity of an alternative representation in the MoM analysis of microstrip

antennas/arrays on cylindrically stratified media.

Because the microstrip antennas are assumed to be fed via a probe in the radial

direction, the probe-fed excitation is modeled by implementing an attachment

mode that is consistent with the PWS current modes that are used to expand

the induced current on the patches. In the course of modeling the probe-fed

excitation, the probe-related components of CFGF representations (Gzρ, Gρz,

Gφρ, Gρφ) are also derived for the first time in the literature. Numerical results in

the form of the input impedance of various microstrip antennas in the presence of

several layers as well as the mutual coupling between two microstrip antennas are

presented by comparing the results with the available results in the literature as

well as the results obtained from the CST Microwave Studio which is an available

commercial computer-aided design (CAD) tool.

The organization of this dissertation is as follows: In Chapter 2, the spectral

domain Green’s function representations due to electric sources are derived for

the tangential and probe-related components. When ρ = ρ′ large n values are

needed in the evaluation of the summation for the cylindrical eigenmodes in the

spectral domain Green’s function representations. Therefore, in order to overcome
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possible numerical problems in the evaluation of Hankel and Bessel functions for

large n values, starting with the reflection and transmission matrices, the spectral

domain Green’s function representations are rewritten in such a form that all the

Hankel (Bessel) functions are in the form of ratios with another Hankel (Bessel)

function. Then, Debye representations are defined for the ratio terms using the

Debye expressions of the Hankel and Bessel functions given in the literature and

used when necessary. Chapter 3 deals with the spectral domain Green’s function

representations in detail and they are written in a more compact form. In this

part, to accelerate the summation, an envelope extraction with respect to n is

applied using the series expansion of the zeroth-order Hankel function. Besides, in

order to have a decaying spectral expression, an envelope extraction with respect

to kz is also applied. In this chapter, the Green’s function representations for both

the tangential and probe-related components are written in the most efficient form

which can be used for all possible ρ and ρ′ values. The formulation (valid when

ρ = ρ′) for the probe-related terms is first given in this dissertation. In Chapter 4,

the integration path is defined in order to obtain space domain Green’s function

representations from the spectral domain counterparts. The implementation of

the GPOF method, which is used to obtain closed-form expressions in the space

domain, is also given in this chapter. Mutual impedance calculations for both the

tangential and probe-related components are given in Chapter 5. In the mutual

impedance calculations, the derivatives on the Green’s function representations

are transferred onto the current modes in order to work with less singular terms.

The spectral domain singularity which is due to the argument of the zeroth-

order Hankel function is solved using the small argument approximation of the

Hankel function. Similarly, the space domain singularity which occurs when

the source and field points are on top each other is solved analytically for the

mutual impedance calculations. Since probe-fed antennas are analyzed in this

dissertation, the MoM formulation is given with an attachment mode definition

used to model the continuity of the current form probe to the patch antenna in

Chapter 6. The mutual impedance formulation related with the attachment mode

is given in this chapter including the solutions for all singular terms. Evaluation

of the input impedance of a probe-fed patch antenna and the mutual coupling

between two probe-fed patch antennas in the presence of the attachment mode for
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cylindrically stratified media are explained and numerical results in the form of

the input impedance of several microstrip patch antennas and the mutual coupling

between two antennas are presented in Chapter 7 which show the accuracy of both

the CFGF representations and the hybrid MoM/Green’s function technique with

the attachment mode. Concluding remarks are given in Chapter 8. Finally, six

Appendices are provided. In Appendix A, Debye representations of the ratio

terms obtained using the Debye expressions available in the literature are given.

In Appendix B, a fairly detailed explanation about the GPOF method, which

is used to obtain closed-form Green’s function representation from the spectral

domain samples, is given. The details of the mutual impedance calculations

related with zz, zφ and φφ cases are given in Appendices C, D and E, respectively.

The two-fold mutual impedance formulations obtained from four-fold integrals are

given with the special solutions of the most singular mutual impedance terms (self

and overlapping) for the tangential components. In Appendix F, the even and

odd properties of Green’s functions and mutual impedance expressions are given

since these even and odd properties are important in the efficient evaluation of the

closed-form Green’s function representations and in filling the impedance matrix

and voltage vector in the MoM analysis of antennas. Furthermore, throughout

this dissertation, G is used for the space domain Green’s function, whereas G̃

denotes its spectral domain counterpart. The time dependence of ejωt is used,

where ω = 2πf and f is the operating frequency. Also in this dissertation, all

the Green’s functions are due to an electric source.
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Chapter 2

Spectral Domain Green’s

Function Representations

In the first two sections of this chapter, the spectral domain Green’s function

expressions given in [14], [17] and [18] for ρ 6= ρ′ are briefly summarized because

the same expressions are used in the mutual impedance calculations for ρ = ρ′

case after they are modified in the third section of this chapter. The details of

the formulation given in the first two sections of this chapter can be found in [14]

and [17]-[18].

The general geometry of a cylindrically stratified media is illustrated in Fig.

2.1 where the geometry is assumed to be infinite in the z direction. The point

source is located at (ρ′, φ′, z′) in the source layer i = j and the field point is

located at (ρ, φ, z) in the field layer i = m where m can be any layer. As shown

in Fig. 2.1, layers may vary in their electric and magnetic properties (ǫi,µi) as well

as their thicknesses. Moreover, a perfect electric conductor (PEC) or a perfect

magnetic conductor (PMC) can be considered as the innermost or the outermost

layer.
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Figure 2.1: General geometry of a cylindrically stratified media and propagation
of waves due to a point source in it

2.1 Spectral Domain Field Expressions Due to

an Electric Source

The current of a dipole can be written in the spectral domain as [18]

J(kz) = Iℓα̂ejkzz
′ δ(ρ− ρ′)

ρ
δ(φ− φ′) (2.1)

where Iℓ is the current moment, α̂ is the unit direction which shows the direction

of the current and z′ is the location of the dipole along the z-axis. The field

expression in the field point is the sum of the incoming and outgoing waves

formed by the multiple reflections from the inner and outer boundaries as shown

in Fig. 2.1. The incoming and outgoing waves can be expressed as the sum of

standing and outgoing waves which are represented by the first-kind Bessel and

second-kind Hankel functions, respectively. The z component of the fields in the
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field point are given in [14] and [17]-[18] as

[

Ẽz

H̃z

]

= −Iℓe
jkzz′

4w

∞
∑

n=−∞
ejn(φ−φ′)FnS nj

. (2.2)

For an electric source, S nj
used in (2.2), is a 2× 1 matrix operator given by

S nj
=

[

1
ǫj
(k2j âz + jkz∇′)α̂

−jwα̂(âz ×∇′)

]

(2.3)

and acts to its left-hand side. In (2.3) ∇′ is defined to be

∇′ = âρ
∂

∂ρ′
− âφ

jn

ρ′
+ âzjkz. (2.4)

In (2.2) Fn is a 2×2 matrix, when the field and source layers are the same (m = j)

Fn is defined as

Fn = [Jn(kρjρ)I +H(2)
n (kρjρ)R̃ j,j−1

]M̃
j−[H

(2)
n (kρjρ

′)I + Jn(kρjρ
′)R̃

j,j+1
]

for ρ < ρ′

Fn = [H(2)
n (kρjρ)I + Jn(kρjρ)R̃ j,j+1

]M̃
j+
[Jn(kρjρ

′)I +H(2)
n (kρjρ

′)R̃
j,j−1

]

for ρ > ρ′

(2.5)

and when the field and source layers are different (m 6= j) Fn becomes

Fn = [Jn(kρmρ)I +H(2)
n (kρmρ)R̃m,m−1

]T̃
j,m
M̃

j−[H
(2)
n (kρjρ

′)I + Jn(kρjρ
′)R̃

j,j+1
]

form < j

Fn = [H(2)
n (kρmρ)I + Jn(kρmρ)R̃m,m+1

]T̃
j,m
M̃

j+
[Jn(kρjρ

′)I +H(2)
n (kρjρ

′)R̃
j,j−1

]

form > j.

(2.6)

In (2.5) and (2.6) M̃
j± is defined as

M̃
j± = (I − R̃

j,j∓1
R̃

j,j±1
)−1 (2.7)

where, I is the unity matrix and R̃
j,j∓1

is the generalized reflection matrix. The

generalized reflection matrix R̃
j,j−1

contains multiple reflections from the inner
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layers with respect to j, while R̃
j,j+1

contains multiple reflections from the outer

layers. The subscript j denotes that R̃
j,j∓1

is the generalized reflection matrix

for layer j. The generalized reflection matrix can be defined as

R̃
i,i±1

= R
i,i±1

+ T
i±1,i

R̃
i±1,i±2

T̃
i,i±1

(2.8)

where i denotes an arbitrary layer between 1 and N . Similar to R̃, T̃ is the

generalized transmission matrix, which is defined as

T̃
i,i±1

= (I −R
i±1,i

R̃
i±1,i±2

)−1T
i,i±1

. (2.9)

In (2.8) and (2.9), R and T denote the local reflection and transmission matrices,

respectively. They contain the interactions between only the two layers which

are given in their subscripts. Consequently, the local reflection and transmission

matrices R and T , respectively, are given by

R
i,i+1

= D−1

i
[H(2)

n (kρiai)Hn
(2)(kρi+1

ai)−H(2)
n (kρi+1

ai)Hn
(2)(kρiai)] (2.10)

T
i,i+1

=
2ω

πk2ρiai
D−1

i

[

ǫi 0

0 −µi

]

(2.11)

R
i+1,i

= D−1

i
[Jn(kρiai)Jn(kρi+1

ai)− Jn(kρi+1
ai)Jn(kρiai)] (2.12)

T
i+1,i

=
2ω

πk2ρi+1
ai
D−1

i

[

ǫi+1 0

0 −µi+1

]

(2.13)

with

D
i
= H(2)

n (kρi+1
ai)Jn(kρiai)− Jn(kρiai)Hn

(2)(kρi+1
ai). (2.14)

Note that all the reflection and transmission matrices are 2 × 2 matrices, since

the TE and TM modes are coupled in cylindrically stratified media. In the

aforementioned equations, (2.10)-(2.14), we used H
(2)
n (x), Hn

(2)(x), Jn(x) and

Jn(x). To write the expressions in a more compact form we will use Bn(x) and

Bn(x) such that

Bn(kρiai) =
1

k2ρiai

[

−jωǫikρiaiB
′

n(kρiai) nkzBn(kρiai)

nkzBn(kρiai) jωµikρiaiB
′

n(kρiai)

]

(2.15)

where Bn(x) can be Jn(x) or Hn
(2)(x) and hence, the corresponding Bn(x) will be

Jn(x) or H
(2)
n (x), respectively. Finally, in all the previous equations ′ is used for
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the derivative with respect to kρiai product such that ∂
∂(kρiai)

with kρi =
√

k2i − k2z

being the transverse propagation constant of the ith layer and ki = ω
√
ǫiµi being

the wave number of ith layer. In these formulations, layer (i + 1) is the outer

layer and layer (i − 1) is the inner layer with respect to layer i. Besides, the

reflection matrix R
i,i−1

can be obtained from (2.12) by writing (i− 1) instead of

i. Similarly, R
i−1,i

term is obtained from (2.10) by writing (i− 1) instead of i.

The innermost or outermost layers in Fig. 2.1 can be a perfect electric con-

ductor (PEC) or a perfect magnetic conductor (PMC) layer. The local reflection

matrices from these layers are also given in [14] and [17]-[18]. However, PEC is

mostly used as the innermost layer for many cylindrical structures. Therefore,

the reflection matrix for an innermost PEC layer is given by

R
2,1

=





− Jn(kρ2a1)

H
(2)
n (kρ2a1)

0

0 − J
′

n(kρ2a1)

H
′(2)
n (kρ2a1)



 (2.16)

where a1 is the radius of the PEC layer, which is denoted by i=1 in Fig. 2.1.

2.2 Spectral Domain Green’s Function Repre-

sentations

In the absence of charges and current sources, electric and magnetic fields satisfy

the following Maxwell’s equations in a homogeneous, isotropic and source-free

medium;

∇× Ẽ = −jωµH̃ (2.17)

∇× H̃ = jωǫẼ. (2.18)

The vector fields given in (2.17) and (2.18) can be decomposed into transverse

(φ and ρ) components and z components. After the decomposition is completed,

the transverse components in the field layer m are obtained as

[

H̃φ

Ẽφ

]

=





− jwǫm
kρm

∂
∂(kρmρ)

nkz
k2ρmρ

nkz
k2ρmρ

jwµm

kρm

∂
∂(kρmρ)





[

Ẽz

H̃z

]

(2.19)
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[

H̃ρ

Ẽρ

]

=





−nωǫm
k2ρmρ

− jkz
kρm

∂
∂(kρmρ)

− jkz
kρm

∂
∂(kρmρ)

nωµm

k2ρmρ





[

Ẽz

H̃z

]

(2.20)

where the z components are found from (2.2) using (2.3) for different directed

electric sources. The spectral domain Green’s functions, which relate the ẑ, φ̂

and ρ̂ directed electric fields with the ẑ, φ̂ and ρ̂ directed electric sources, are

defined as








Ẽz

Ẽφ

Ẽρ









=









G̃zz G̃zφ G̃zρ

G̃φz G̃φφ G̃φρ

G̃ρz G̃ρφ G̃ρρ

















J̃z

J̃φ

J̃ρ









. (2.21)

Using the current term given by (2.1), the spectral domain Green’s functions are

obtained as

G̃zz = − 1

2ωǫj

∞
∑

n=0

κn cos[n(φ− φ′)] k2ρjf
11
n (2.22)

G̃φz

kz
= − j

2ωǫj

∞
∑

n=1

sin[n(φ− φ′)]k2ρj

[

n

k2ρmρ
f 11
n +

jωµm

kρmkz

∂f 21
n

∂(kρmρ)

]

(2.23)

G̃zφ

kz
= − j

2ωǫj

∞
∑

n=1

sin[n(φ− φ′)]

[

n

ρ′
f 11
n − jωǫjkρj

kz

∂f 12
n

∂(kρjρ
′)

]

(2.24)

G̃φφ = − 1

2ωǫj

∞
∑

n=0

κn cos[n(φ− φ′)]

[

nkz
k2ρmρ

(
nkz
ρ′
f 11
n − jωǫjkρj

∂f 12
n

∂(kρjρ
′)
)

+
jωµm

kρm

∂

∂(kρmρ)
(
nkz
ρ′
f 21
n − jωǫjkρj

∂f 22
n

∂(kρjρ
′)
)

]

(2.25)

where κn = 0.5 for n = 0 and 1, otherwise. Similarly, the probe-related com-

ponents which are used for applications involving an excitation via a probe are

derived as (also given in [20] and [24])
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G̃ρz

kz
= − 1

2ωǫj

∞
∑

n=0

κn cos[n(φ− φ′)]k2ρj

[

− j

kρm

∂f 11
n

∂(kρmρ)
+

nωµm

kzk2ρmρ
f 21
n

]

(2.26)

G̃ρφ = − j

2ωǫj

∞
∑

n=1

sin[n(φ− φ′)]

[

− jkz
kρm

∂

∂(kρmρ)
(
nkz
ρ′
f 11
n − jωǫjkρj

∂f 12
n

∂(kρjρ
′)
)

+
nωµm

k2ρmρ
(
nkz
ρ′
f 21
n − jωǫjkρj

∂f 22
n

∂(kρjρ
′)
)

]

(2.27)

G̃zρ

kz
=

1

2ωǫj

∞
∑

n=0

κn cos[n(φ− φ′)](jkρj
∂f 11

n

∂(kρjρ
′)
+
nωǫj
kzρ′

f 12
n ) (2.28)

G̃φρ = − j

2ωǫj

∞
∑

n=1

sin[n(φ− φ′)]

[

nkz
k2ρmρ

(jkzkρj
∂f 11

n

∂(kρjρ
′)
+
nωǫj
ρ′

f 12
n )

+
jωµm

kρm

∂

∂(kρmρ)
(jkzkρj

∂f 21
n

∂(kρjρ
′)
+
nωǫj
ρ′

f 22
n )

]

. (2.29)

In (2.22)-(2.29), f 11
n , f 12

n , f 21
n and f 22

n are the entries of Fn (superscripts indicate

the entries). In the Green’s function expressions, the subscript j denotes the layer

where the source point is located and m is used for the layer where the field point

is located.

In (2.22)-(2.29), to increase the efficiency in the computation of the Green’s

function components, the odd and even properties of these components are used.

For instance, using the odd and even properties with respect to cylindrical eigen-

modes n, the summations that range from −∞ to ∞ are folded over all n to

range from 0 to ∞. Similarly, to speed up the integration with respect to kz,

if the Green’s function component is an even function of kz, the kz integral is

converted to a 0 to ∞ integral. However, if the Green’s function component is an

odd function of kz, it is divided by kz so the integrand becomes an even function

of kz. Then, the resultant integral is converted to a 0 → ∞ integral.
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2.3 Spectral Domain Green’s Function Repre-

sentations when (ρ = ρ′)

The Green’s function representations given by (2.22)-(2.29) are accurate when ρ is

far away from ρ′ as it is illustrated in Fig. 2.2, and can not be used for ρ = ρ′ case

which is essential in performing an analysis in cylindrically stratified media. In

Fig. 2.2, the source and field points where ρ = ρ′ = a1 depicts a typical antenna

analysis problem where the antenna is located at the dielectric-air interface. To

obtain accurate Green’s function representations at ρ = ρ′ and to compute them

efficiently and accurately, the spectral domain Green’s function expressions given

by (2.22)-(2.29) are modified as explained, in [26]. In this dissertation these mo-

dified expressions are given once more with the appropriate changes that will help

us to handle singularity problems when they are transformed to space domain.

�
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Figure 2.2: ρ = ρ′ and ρ >> ρ′ situations on a multilayered cylindrical geometry

When ρ = ρ′ the first problem is the slowly convergent behaviour of infinite

summations used in (2.22)-(2.29). Since these summations are slowly conver-

gent, computation of the Hankel and Bessel functions for large n values becomes
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mandatory. However, for large n values, evaluation of the Hankel (Bessel) func-

tions shows overflow/underflow problems. Therefore, instead of evaluating each

Hankel (Bessel) function one at a time, they are written in the form of ratios

(i.e., each Hankel (Bessel) function is written in ratio form with another Hankel

(Bessel) function) and these ratios are directly evaluated. Note that in this dis-

sertation, an expression in the form of ratios means that all the Hankel (Bessel)

functions in that expression are written in ratio form with another Hankel (Bessel)

function.

2.3.1 Spectral Domain Expressions In The Form of Ratios

Although the case of ρ = ρ′ is being analyzed, ρ is not written instead of ρ′ or

vice versa, in order not to create any confusion in the Green’s function expres-

sions. This way, the developed expressions can be easily extended to multilayer

geometries. Besides, there are derivatives with respect ρ and ρ′ that should be

distinguished. Therefore, only at the final expressions when a simplification is

required, ρ is equated to ρ′.

In order to write the spectral domain Green’s function representations in the

form of ratios, we start with Bn(kρiai) term given by (2.15), and rewrite it as

Bn(kρiai) =
Bn(kρiai)

k2ρiai





−jωǫikρiai
B

′

n(kρiai)

Bn(kρiai)
nkz

nkz jωµikρiai
B

′

n(kρiai)

Bn(kρiai)



 . (2.30)

Then, the D
i
expression in (2.14) is rewritten as

D
i
= H(2)

n (kρi+1
ai)Jn(kρiai)

(

Jn(kρiai)

Jn(kρiai)
−
Hn

(2)(kρi+1
ai)

H
(2)
n (kρi+1

ai)

)

. (2.31)

If we define

D
i
= H(2)

n (kρi+1
ai)Jn(kρiai)D in

(2.32)

we obtain

D
in
=
Jn(kρiai)

Jn(kρiai)
−
Hn

(2)(kρi+1
ai)

H
(2)
n (kρi+1

ai)
(2.33)
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and substituting (2.30) into (2.33), it is seen that (2.33) is obtained in the form

of ratios. In a similar manner the local reflection matrix given by (2.10) can be

written as

R
i,i+1

= D−1

i
[H(2)

n (kρiai)H
(2)
n (kρi+1

ai)]

(

Hn
(2)(kρi+1

ai)

H
(2)
n (kρi+1

ai)
−
Hn

(2)(kρiai)

H
(2)
n (kρiai)

)

(2.34)

or in terms of D
in
, (2.34) is rewritten as

R
i,i+1

= D−1

in

[

H
(2)
n (kρiai)

Jn(kρiai)

H
(2)
n (kρi+1

ai)

H
(2)
n (kρi+1

ai)

](

Hn
(2)(kρi+1

ai)

H
(2)
n (kρi+1

ai)
−
Hn

(2)(kρiai)

H
(2)
n (kρiai)

)

.

(2.35)

When the certain simplifications are performed, R
i,i+1

is given by

R
i,i+1

=
H

(2)
n (kρiai)

Jn(kρiai)
D−1

in

(

Hn
(2)(kρi+1

ai)

H
(2)
n (kρi+1

ai)
−
Hn

(2)(kρiai)

H
(2)
n (kρiai)

)

. (2.36)

The Debye approximations for the ratio terms of the Hankel and Bessel functions

are given in Appendix A. From (A.1) and (A.4), it is seen that

lim
n→∞

B
′

n(x)

nBn(x)
= C(kz) (2.37)

where Bn = Jn or Bn = H
(2)
n as mentioned before, and C(kz) is a constant with

respect to n. Using this information, it can be seen that D−1

in
decays with 1/n for

large n values where the (
Hn

(2)(kρi+1ai)

H
(2)
n (kρi+1ai)

− Hn
(2)(kρiai)

H
(2)
n (kρiai)

) term grows with n. Therefore,

if we define

Rni,i+1 = D−1

in

(

Hn
(2)(kρi+1

ai)

H
(2)
n (kρi+1

ai)
−
Hn

(2)(kρiai)

H
(2)
n (kρiai)

)

(2.38)

we obtain

R
i,i+1

=
H

(2)
n (kρiai)

Jn(kρiai)
Rni,i+1 (2.39)

where Rni,i+1 term becomes constant with respect to n for large n values.

Similar to R
i,i+1

, the R
i+1,i

term given by (2.12) can be written as

R
i+1,i

= D−1

i
[Jn(kρiai)Jn(kρi+1

ai)]

(

Jn(kρi+1
ai)

Jn(kρi+1
ai)

−
Jn(kρiai)

Jn(kρiai)

)

, (2.40)
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which can be expressed as

R
i+1,i

=
Jn(kρi+1

ai)

H
(2)
n (kρi+1

ai)
Rni+1,i (2.41)

where

Rni+1,i = D−1

in

(

Jn(kρi+1
ai)

Jn(kρi+1
ai)

−
Jn(kρiai)

Jn(kρiai)

)

(2.42)

and Rni+1,i is also constant with respect to n for large n values.

In [14] and [17]-[18], the simplified expressions given by (2.11) and (2.13) are

used for the local transmission matrices T
i,i+1

and T
i+1,i

, respectively. However,

when they are used in the Fn expression given by (2.5), Fn can not be expressed

in the form of ratios. Therefore, the actual transmission matrix definitions, which

are not simplified, are used in this dissertation. These actual transmission matrix

definitions are

T
i,i+1

= D−1

i
[H(2)

n (kρiai)Jn(kρiai)− Jn(kρiai)Hn
(2)(kρiai)] (2.43)

T
i+1,i

= D−1

i
[H(2)

n (kρi+1
ai)Jn(kρi+1

ai)− Jn(kρi+1
ai)Hn

(2)(kρi+1
ai)]. (2.44)

Hence, similar to the reflection matrices, the transmission matrix T
i,i+1

is ex-

pressed as

T
i,i+1

= D−1

i

[

H(2)
n (kρiai)Jn(kρiai)

]

(

Jn(kρiai)

Jn(kρiai)
−
Hn

(2)(kρiai)

H
(2)
n (kρiai)

)

(2.45)

or

T
i,i+1

=
H

(2)
n (kρiai)

H
(2)
n (kρi+1

ai)
D−1

in

(

Jn(kρiai)

Jn(kρiai)
−
Hn

(2)(kρiai)

H
(2)
n (kρiai)

)

. (2.46)

At this point the T
i,i+1

term, as expressed in (2.46), is in the form of ratios and

constant with respect to n for large n values.

Similarly, T
i+1,i

is written as

T
i+1,i

= D−1

i
[H(2)

n (kρi+1
ai)Jn(kρi+1

ai)]

(

Jn(kρi+1
ai)

Jn(kρi+1
ai)

−
Hn

(2)(kρi+1
ai)

H
(2)
n (kρi+1

ai)

)

(2.47)
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or

T
i+1,i

=
Jn(kρi+1

ai)

Jn(kρiai)
D−1

in

(

Jn(kρi+1
ai)

Jn(kρi+1
ai)

−
Hn

(2)(kρi+1
ai)

H
(2)
n (kρi+1

ai)

)

. (2.48)

Similar to T
i,i+1

expression, T
i+1,i

term is now in the form of ratios and again

constant with respect to n for large n values.

So far, the local reflection and transmission matrices are rewritten in the form

of ratios. As the next step, these matrices are substituted into the generalized

reflection and transmission matrices and expressed in the form of ratios. The

R̃
i,i+1

term is given by

R̃
i,i+1

= R
i,i+1

+ T
i+1,i

R̃
i+1,i+2

T̃
i,i+1

. (2.49)

In an N -layered cylindrical geometry, the first nonzero generalized reflection mat-

rix for the outermost layers is R̃
N−1,N

. R̃
N−1,N

term is in fact a local reflection

matrix and is equal to R
N−1,N

, since we have only N layer and R̃
N,N+1

is zero in

(2.49). Thus, it is possible to write a general expression for R̃
i+1,i+2

using R
i,i+1

given by (2.39)

R̃
i+1,i+2

=
H

(2)
n (kρi+1

ai+1)

Jn(kρi+1
ai+1)

R̃ni+1,i+2 (2.50)

where again R̃ni+1,i+2 term is in the from of ratios and constant with respect to

n for large n values.

Since T̃
i,i+1

term is given by

T̃
i,i+1

= (I −R
i+1,i

R̃
i+1,i+2

)−1T
i,i+1

(2.51)

using (2.41) and (2.50) it can be written as

T̃
i,i+1

=

(

I − H
(2)
n (kρi+1

ai+1)

H
(2)
n (kρi+1

ai)

Jn(kρi+1
ai)

Jn(kρi+1
ai+1)

Rni+1,iR̃ni+1,i+2

)−1

T
i,i+1

. (2.52)

Since all the functions in T̃
i,i+1

are in the form of ratios, T̃
i,i+1

is constant with

respect to n for large n values. Substituting all the terms which are in the form

of ratios into (2.49), the generalized reflection matrix R̃
i,i+1

becomes

R̃
i,i+1

=
H

(2)
n (kρiai)

Jn(kρiai)
R̃ni,i+1. (2.53)
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where

R̃ni,i+1 = Rni,i+1 + T
i+1,i

H
(2)
n (kρi+1

ai+1)

H
(2)
n (kρiai)

Jn(kρiai)

Jn(kρi+1
ai+1)

R̃ni+1,i+2T̃ i,i+1
, (2.54)

and it is clear that R̃ni,i+1 term is in the form of ratios and constant with respect

to n for large n values.

Equation (2.53) is the desired representation for R̃
i,i+1

. However in a similar

fashion, we must define the R̃
i,i−1

term which is given by

R̃
i,i−1

= R
i,i−1

+ T
i−1,i

R̃
i−1,i−2

T̃
i,i−1

. (2.55)

Similar to R̃
i+1,i+2

, R̃
i−1,i−2

is zero for the innermost layer, so the first nonzero

R̃
i−1,i−2

term behaves in the same manner as R
i,i−1

. Hence, it is written as

R̃
i−1,i−2

=
Jn(kρi−1

ai−2)

H
(2)
n (kρi−1

ai−2)
R̃ni−1,i−2 (2.56)

where R̃ni−1,i−2 is in the form of ratios and constant with respect to n for large

n values. The T̃
i,i−1

term is

T̃
i,i−1

= (I −R
i−1,i

R̃
i−1,i−2

)−1T
i,i−1

(2.57)

where the R
i−1,i

term is obtained as

R
i−1,i

=
H

(2)
n (kρi−1

ai−1)

Jn(kρi−1
ai−1)

Rni−1,i (2.58)

by writing i − 1 instead of i in (2.39), and where Rni−1,i term is in the form of

ratios. The T̃
i,i−1

term is then expressed as

T̃
i,i−1

=

(

I − H
(2)
n (kρi−1

ai−1)

H
(2)
n (kρi−1

ai−2)

Jn(kρi−1
ai−2)

Jn(kρi−1
ai−1)

Rni−1,iR̃ni−1,i−2

)−1

T
i,i−1

(2.59)

where T̃
i,i−1

is in the form of ratios.

The R
i,i−1

term is obtained from (2.41) as

R
i,i−1

=
Jn(kρiai−1)

H
(2)
n (kρiai−1)

Rni,i−1 (2.60)
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by writing i− 1 instead of i. Finally, substituting all terms which are in the form

of ratios into (2.55), R̃
i,i−1

expression is obtained as

R̃
i,i−1

=
Jn(kρiai−1)

H
(2)
n (kρiai−1)

R̃ni,i−1 (2.61)

where

R̃ni,i−1 = Rni,i−1 + T
i−1,i

H
(2)
n (kρiai−1)

H
(2)
n (kρi−1

ai−2)

Jn(kρi−1
ai−2)

Jn(kρiai−1)
R̃ni−1,i−2T̃ i,i−1

(2.62)

and R̃ni,i−1 is constant with respect to n for large n values.

When ρ = ρ′, the source and field layers are the same. Denoting this layer by

the index j, the expression in (2.5) must be used for the Fn term. Note that the

two expressions for ρ > ρ′ and ρ < ρ′ become equal to each other when ρ = ρ′.

For the rest of this chapter, the ρ > ρ′ expression given by

Fn = [H(2)
n (kρjρ)I + Jn(kρjρ)R̃ j,j+1

]M̃
j+
[Jn(kρjρ

′)I +H(2)
n (kρjρ

′)R̃
j,j−1

] (2.63)

will be considered. Regarding the Fn in (2.63), the expressions for the tangential

components of the Green’s function representations given by (2.22)-(2.29) contain

derivatives of Fn with respect to kρjρ and kρjρ
′. Since I, R̃

j,j−1
, M̃

j+
and R̃

j,j+1

do not contain any ρ or ρ′, these derivatives are given by

∂Fn

∂(kρjρ)
= [H

′(2)
n (kρjρ)I + J

′

n(kρjρ)R̃ j,j+1
]M̃

j+
[Jn(kρjρ

′)I +H(2)
n (kρjρ

′)R̃
j,j−1

]

(2.64)

∂Fn

∂(kρjρ
′)
= [H(2)

n (kρjρ)I + Jn(kρjρ)R̃ j,j+1
]M̃

j+
[J

′

n(kρjρ
′)I +H

′(2)
n (kρjρ

′)R̃
j,j−1

]

(2.65)

∂2Fn

∂(kρjρ
′)∂(kρjρ)

= [H
′(2)
n (kρjρ)I + J

′

n(kρjρ)R̃ j,j+1
]M̃

j+

.[J
′

n(kρjρ
′)I +H

′(2)
n (kρjρ

′)R̃
j,j−1

].

(2.66)
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The M̃
j+

expression appearing in (2.63)-(2.66) is expressed as

M̃
j+

= (I − R̃
j,j−1

R̃
j,j+1

)−1 (2.67)

where R̃
j,j−1

is obtained putting j instead of i in (2.61) such that

R̃
j,j−1

=
Jn(kρjaj−1)

H
(2)
n (kρjaj−1)

R̃nj,j−1 (2.68)

and similarly, R̃
j,j+1

is written using (2.53) as

R̃
j,j+1

=
H

(2)
n (kρjaj)

Jn(kρjaj)
R̃nj,j+1. (2.69)

Substituting the R̃
j,j+1

and R̃
j,j−1

terms into the M̃
j
+ expression given by (2.67),

we obtain

M̃
j
+ =

(

I − H
(2)
n (kρjaj)

H
(2)
n (kρjaj−1)

Jn(kρjaj−1)

Jn(kρjaj)
R̃nj,j−1R̃nj,j+1

)−1

. (2.70)

It is seen that M̃
j
+ term in (2.70) is in the form of ratios and constant with

respect to n for large n values.

Finally, we can write the Fn expression in (2.63) as

Fn = H(2)
n (kρjρ)Jn(kρjρ

′)Fnn (2.71)

where

Fnn =

([

I +
H

(2)
n (kρjaj)

H
(2)
n (kρjρ)

Jn(kρjρ)

Jn(kρjaj)
R̃nj,j+1

]

M̃
j+

.

[

I +
H

(2)
n (kρjρ

′)

H
(2)
n (kρjaj−1)

Jn(kρjaj−1)

Jn(kρjρ
′)
R̃nj,j−1

])

(2.72)

which is constant with respect to n for large n values.

Similarly, (2.64) can be written as

∂Fn

∂(kρjρ)
= nH(2)

n (kρjρ)Jn(kρjρ
′)Fnndρ (2.73)
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where

Fnndρ =
H

′(2)
n (kρjρ)

nH
(2)
n (kρjρ)

([

I +
H

(2)
n (kρjaj)

H
′(2)
n (kρjρ)

J
′

n(kρjρ)

Jn(kρjaj)
R̃nj,j+1

]

M̃
j+

.

[

I +
H

(2)
n (kρjρ

′)

H
(2)
n (kρjaj−1)

Jn(kρjaj−1)

Jn(kρjρ
′)
R̃nj,j−1

])

, (2.74)

which is in the form of ratios and constant with respect to n for large n values.

The same methodology is also valid for (2.65) such that it is written as

∂Fn

∂(kρjρ
′)
= nH(2)

n (kρjρ)Jn(kρjρ
′)Fnndρ′ (2.75)

where

Fnndρ′ =
J

′

n(kρjρ
′)

nJn(kρjρ
′)

([

I +
H

(2)
n (kρjaj)

H
(2)
n (kρjρ)

Jn(kρjρ)

Jn(kρjaj)
R̃nj,j+1

]

M̃
j+

.

[

I +
H

′(2)
n (kρjρ

′)

H
(2)
n (kρjaj−1)

Jn(kρjaj−1)

J ′

n(kρjρ
′)
R̃nj,j−1

])

, (2.76)

and is the constant term with respect to n for large n values.

Finally, (2.66) can be written as

∂2Fn

∂(kρjρ
′)∂(kρjρ)

= n2H(2)
n (kρjρ)Jn(kρjρ

′)Fnndρdρ′ (2.77)

where the constant term with respect to n for large n values is

Fnndρdρ′ =
H

′(2)
n (kρjρ)

nH
(2)
n (kρjρ)

J
′

n(kρjρ
′)

nJn(kρjρ
′)

([

I +
H

(2)
n (kρjaj)

H
′(2)
n (kρjρ)

J
′

n(kρjρ)

Jn(kρjaj)
R̃nj,j+1

]

M̃
j+

.

[

I +
Jn(kρjaj−1)

J ′

n(kρjρ
′)

H
′(2)
n (kρjρ

′)

H
(2)
n (kρjaj−1)

R̃nj,j−1

])

. (2.78)

Consequently, Fn,
∂Fn

∂(kρj ρ)
,

∂Fn

∂(kρj ρ
′)
and

∂2Fn

∂(kρj ρ
′)∂(kρj ρ)

terms are obtained in the

form of ratios. Furthermore, it is shown that they are constant with respect to

n for large n values. The terms which can not be written in the form of ratios

are also given as a multiplicant in the final expressions (2.71), (2.73), (2.75) and

(2.77).
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The main reasons to write the spectral domain Green’s function components in

such a form are (i) to improve the efficiency of the summation over the cylindrical

eigenmodes n, which becomes important especially when ρ = ρ′; and (ii) to treat

the computation problems around the source (ρ = ρ′, φ = φ′ and z = z′), which

will be addressed in the next chapter.

The Bessel and Hankel functions, which are written in the form of ratios, are

evaluated using Matlab in the following way: For small n values, each function is

evaluated separately. For large n values, where these functions can be replaced

by their Debye representations, the Debye representations given in Appendix A

are used in the ratio terms and instead of evaluating each function separately,

the ratios are evaluated directly.
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Chapter 3

Integral Form of Space Domain

Green’s Function Representations

3.1 Space Domain Green’s Function Represen-

tations For Tangential Components

The spectral domain Green’s function representations given by (2.22)-(2.25) yield

accurate results only when the source and field points are far away from each other

in terms of the radial distance. In this section using (2.71), (2.73), (2.75) and

(2.77), we modify the spectral domain Green’s function representations so that

accurate space domain Green’s function representations can be obtained for all

possible source and field points including ρ = ρ′. Although ρ is equal to ρ′ as

shown in Fig. 3.1, in the provided expressions ρ and ρ′ are kept distinct to avoid

possible confusions in explaining the methodology, in particular when handling

the derivatives with respect to ρ and ρ′, separately.

Fig. 3.1 illustrates the geometry of current modes on a multilayer cylindrical

structure together with the cross-sectional view from the top. Similar to Fig. 2.1

the structure is assumed to be infinite in the z− direction. A PEC cylindrical

ground, denoted by the subscript j = 0, forms the innermost region with a radius
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Figure 3.1: Tangential current modes and a probe on cylindrically layered media

a0, and material layers, denoted by the subscript j = 1, 2, ... surround the PEC

region coaxially, as shown in Fig. 3.1 (subscript j = 1 denotes the substrate

layer; subscript j = 2 denotes the superstrate layer, and subscript j = 3 denotes

the air layer in Fig. 3.1). Each layer has a permittivity, permeability, and radius

denoted by ǫj, µj and aj, respectively. Furthermore, current modes, denoted by

J ′
v(ρ

′, φ′, z′) and Jv(ρ, φ, z) are depicted in Fig. 3.1 where v = φ or z. A z− or φ−
directed tangential current source, defined at air-dielectric or dielectric-dielectric

interface has a dimension of 2za × la (with la = ajφa) along the z− and φ−
directions or 2la × za along the φ− and z− directions, respectively. On the other

hand, if the current mode is normal to an interface (excitation via a probe), it is

usually located inside a layer, assumed to be infinitesimally thin in terms of φ−
and z− coordinates, and has a certain length along the radial direction. Finally,

in Fig. 3.1, s denotes the geodesic distance between the two current modes (or

between the source and observation points for the CFGF expressions) and α is

the angle between the geodesic path and the φ− axis.

The spectral domain Green’s function components, G̃uv (u = z or φ, v = z or
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φ), given by (2.22)-(2.25) are rewritten in the following form:

G̃uv

klz
= − 1

4ωǫj

∞
∑

n=−∞
(k2ρj)

qnpH(2)
n (kρjρ)Jn(kρjρ

′)fuv(n, kz)e
jn(∆φ) (3.1)

where ∆φ = φ − φ′, and for uv = zz : p = 0, q = 1, l = 0, for uv = φz :

p = 1, q = 0, l = 1, for uv = zφ : p = 1, q = 0, l = 1 and finally for

uv = φφ : p = 2, q = 0, l = 0. The key term in (3.1) is fuv(n, kz) explicitly given

by

fzz(n, kz) = f 11
r1 (3.2)

fφz(n, kz) = k2ρj

[

1

k2ρmρ
f 11
r1 +

jωµm

kρmkz
f 21
r2

]

(3.3)

fzφ(n, kz) =
1

ρ′
f 11
r1 − jωǫjkρj

kz
f 12
r3 (3.4)

fφφ(n, kz) =
kz
k2ρmρ

[

kz
ρ′
f 11
r1 − jωǫjkρjf

12
r3

]

+
jωµi

kρm

[

kz
ρ′
f 21
r2 − jωǫjkρjf

22
r4

]

(3.5)

where f 11
r1 , f

21
r2 , f

12
r2 , f

12
r3 , f

22
r4 are the corresponding entries (each superscript indi-

cates the corresponding entry) of Fr1,Fr2, Fr3, Fr4 linked to Fn as

Fr1 = Fnn =
1

H
(2)
n (kρjρ)Jn(kρjρ

′)
Fn (3.6)

Fr2 = Fnndρ =
1

nH
(2)
n (kρjρ)Jn(kρjρ

′)

∂Fn

∂(kρmρ)
(3.7)

Fr3 = Fnndρ′ =
1

nH
(2)
n (kρjρ)Jn(kρjρ

′)

∂Fn

∂(kρjρ
′)

(3.8)

Fr4 = Fnndρdρ′ =
1

n2H
(2)
n (kρjρ)Jn(kρjρ

′)

∂2Fn

∂(kρjρ
′)∂(kρmρ)

. (3.9)

In (3.1) [together with (3.6)-(3.9)], all special cylindrical functions (Hankel and

Bessel functions) are in the form of ratios except the H
(2)
n (kρjρ)Jn(kρjρ

′) product

as explained in Chapter 2. Consequently, the accuracy of the summation over n

is improved since possible numerical problems for large n values are avoided by

using the Debye approximations for the ratio terms as explained in Appendix A.

To further improve the accuracy and efficiency of the summation over n, an

envelope extraction method with respect to n is applied to (3.1). Briefly, the
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limiting value of fuv(n, kz) for very large n values is numerically determined as

lim
n→∞

fuv(n, kz) ≈ Cuv(kz) (3.10)

which is actually constant with respect to n. In the numerical evaluation of

fuv(n, kz), a couple of large n values around n = 10000 can be used to determine

Cuv(kz) .Then, recognizing the series expansion of H
(2)
0 (kρj |ρ̄− ρ̄′|), given by

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)ejn∆φ = H2

0 (kρj |ρ̄− ρ̄′|) = S1 , (3.11)

Cuv(kz) is subtracted from (3.1) and added as a function of S1 with the aid of

(3.11). Hence, (3.1) becomes

G̃uv

klz
= − 1

4ωǫj

{ ∞
∑

n=−∞
(k2ρj)

qnpH(2)
n (kρjρ)Jn(kρjρ

′) [fuv(n, kz)− Cuv(kz)] e
jn∆φ

+Cuv(kz)(k
2
ρj
)qF uv

1 [S1]
}

(3.12)

where

F zz
1 [S1] = S1 (3.13)

F zφ
1 [S1] = F φz

1 [S1] = j
∂S1

∂φ′ = −j ∂S1

∂φ
(3.14)

F φφ
1 [S1] =

∂2S1

∂φ∂φ′ . (3.15)

Note that in the course of writing (3.13)-(3.15), the Fourier series (with respect

to n) relation between the spectral domain and space domain Green’s functions

is recognized such that both the (−j ∂
∂φ
) and (j ∂

∂φ′
) terms in the space domain

correspond to n in the spectral domain.

As a result of this step, the modified summation given in (3.12) converges

very rapidly and hence, the limits of the infinite summation can be truncated

at relatively small values, Nt (i.e.,
∑∞

n=−∞ → ∑Nt

n=−Nt
) even for relatively large

cylinders. This is illustrated in Fig. 3.2, where the imaginary part of G̃zz versus

Nt is plotted for ∆φ = 0.0046, kz = 0 and ρ = ρ′ = a1 using (3.1) and (3.12) (real
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Figure 3.2: Imaginary parts of (3.1) (solid line) and (3.12) (dashed line) with
respect to the number of summations for zz case when ∆φ = 0.0046. The cylinder
parameters are: a0 = 20 cm, a1 = 20.795 cm, ǫr = 2.32 and f = 3.2 GHz

parts of both summations converge rapidly) for a dielectric coated PEC cylinder

with a0 = 20 cm, a1 = 20.795 cm, ǫr = 2.32 and f = 3.2 GHz.

The space domain Green’s function, Guv, is related to the spectral domain

Green’s function, G̃uv, by an inverse Fourier transform (IFT) over kz, given by

Guv =
1

2π

∫ ∞

−∞
G̃uve

−jkz(z−z′)dkz . (3.16)

However, when ∆φ is very small, very large kz values are required so that (3.16)

can converge. Unfortunately, the imaginary part of (3.12) poses numerical prob-

lems (i.e., it does not decay) for large values of kz. These numerical problems

are illustrated in Fig. 3.3 where the imaginary parts of (3.12) for G̃zz are plotted

versus real kz for different ∆φ values for the aforementioned cylinder (dielectric

coated PEC cylinder with a0 = 20 cm, a1 = 20.795 cm, ǫr = 2.32 and f = 3.2

GHz). As seen in Fig. 3.3, the imaginary parts have a problematic behaviour

especially for ∆φ = 0.0004 (there is not any special meaning of ∆φ = 0.0004. It

is only the smallest ∆φ value obtained for this example).
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Figure 3.3: Imaginary part of G̃zz in (3.12) for different ∆φ (in radian) values for
the same cylinder parameters given in Fig. 3.2

The source of this problem is mainly the second term of (3.12) (i.e.,

Cuv(kz)(k
2
ρj
)qF uv

1 [S1]). The remedy for this problem is performing a second en-

velope extraction with respect to kz. Briefly, for asymptotically large kz value

(i.e., kz → ∞ denoted as kz∞ and kz∞ can be chosen around 1000k0), the value

of Cuv(kz), represented by Cuv(kz∞), is found numerically. Then, the product

− 1
4ωǫj

Cuv(kz∞)(k2ρj)
qF uv

1 [S1] is subtracted in the spectral domain from (3.12) and

its Fourier transform is added to the final space domain Green’s function repre-

sentation as a function of e
−jkj

∣

∣

∣

∣

r̄−r̄
′
∣

∣

∣

∣

|r̄−r̄′ | using the relation

I1 =
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ | =
−j
2

∫ ∞

−∞
H2

0 (kρj |ρ̄− ρ̄′|)e−jkz(z−z
′

)dkz. (3.17)

Consequently, the resultant expression for the tangential components of the

space domain Green’s function representations becomes,

Guv = (
j∂

∂z
)l

{

1

2π

∫ ∞

−∞

(

G̃uv

klz
+

1

4ωǫj
Cuv(kz∞)(k2ρj)

q F uv
1 [S1]

)

e−jkz(z−z′)dkz

− j

4πωǫj
Cuv(kz∞)

(

k2j −
∂2

∂z∂z′

)q

F uv
2 [I1]

}

(3.18)
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Figure 3.4: Imaginary part of G̃zz integrand in (3.18) for different ∆φ (in radian)
values for the same cylinder parameters given in Fig. 3.2

where

F zz
2 [I1] = I1 (3.19)

F zφ
2 [I1] = F φz

2 [I1] = j
∂I1
∂φ′ = −j ∂I1

∂φ
(3.20)

F φφ
2 [I1] =

∂2I1
∂φ∂φ′ . (3.21)

Note that similar to the F uv
1 [.] case, the partial derivatives with respect to φ

and φ′ in the space domain closed-form part of (3.18) [i.e., (3.20) and (3.21)] are

due to n in the spectral domain. Besides, as it is seen from (3.18), the (k2ρj) term

in spectral domain corresponds to the (k2j − ∂2

∂z∂z′
) term in the space domain since

both the (j ∂
∂z
) and (−j ∂

∂z′
) terms in the space domain correspond to kz in the

spectral domain (note that k2ρj = k2j − k2z).

Although the space domain Green’s function representation given by (3.18)

is not in closed-form, the integrand in (3.18) is now fast decaying even for very

small ∆φ values. The imaginary part of the integrand of (3.18) for u = z, v = z

is plotted in Fig. 3.4 for different ∆φ values for the aforementioned cylinder. As
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it is seen in Fig. 3.4, the integrand of (3.18) for u = z, v = z is now well-behaved

and converges to zero as desired. Note that the real parts of both (3.12) and

the integrand of (3.18) do not pose any difficulty. Also note that because the

first term of (3.18) has an integral (Fourier transform integral), the present form

of the tangential components of the Green’s function representations is not in

closed-form. Therefore, the inverse Fourier transform which is the first term of

(3.18) is evaluated in closed-form with the aid of GPOF method as explained in

Chapter 4. Finally, the even and odd properties of the Green’s functions that are

given in Appendix F are used in this dissertation and as seen from Appendix F,

Gφz is not computed but determined using the Gzφ results.

3.2 Space Domain Green’s Function Represen-

tations For The Probe-Related Components

(Gzρ, Gφρ, Gρz, Gρφ)

Similar to the tangential components, the spectral domain Green’s function rep-

resentations for the probe-related components can be written as

G̃vρ

klz
= − 1

4ωǫj

{ ∞
∑

n=−∞
npH(2)

n (kρjρ)Jn(kρjρ
′)fvρ(n, kz)e

jn∆φ

}

(3.22)

where l = 1, p = 1 for v = z, and l = 0, p = 2 for v = φ. In this dissertation, Gρz

and Gρφ components are not computed and these components are determined

using the Gzρ and Gφρ terms, respectively, using the even and odd properties of

the related Green’s function components given in Appendix F. The key term in

(3.22) is fvρ and it is explicitly given by

fzρ = −jkρjf 11
ρ3 − ωǫj

kzρ′
f 12
ρ1 (3.23)

fφρ =
kz
k2ρmρ

[

jkzkρjf
11
ρ3 +

ωǫj
ρ′
f 12
ρ1

]

+
jωµm

kρm

[

jkzkρjf
21
ρ4 +

ωǫj
ρ′
f 22
ρ2

]

(3.24)
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where f 11
ρ3 , f

12
ρ1 , f

21
ρ4 , f

22
ρ2 are the corresponding entries (each superscript indicates

the corresponding entry) of Fρ1,Fρ2, Fρ3, Fρ4 linked to Fn as

Fρ1 =
1

H
(2)
n (kρjρ)Jn(kρjρ

′)
Fn (3.25)

Fρ2 =
1

nH
(2)
n (kρjρ)Jn(kρjρ

′)

∂Fn

∂(kρmρ)
(3.26)

Fρ3 =
1

nH
(2)
n (kρjρ)Jn(kρjρ

′)

∂Fn

∂(kρjρ
′)

(3.27)

Fρ4 =
1

n2H
(2)
n (kρjρ)Jn(kρjρ

′)

∂2Fn

∂(kρjρ
′)∂(kρmρ)

. (3.28)

In (3.22) the fvρ term is odd with respect to n. Therefore, in order to apply

the envelope extraction with respect to n, the result of the following summation

is to be obtained: ∞
∑

n=1

H(2)
n (kρjρ)Jn(kρjρ

′) sin(n∆φ). (3.29)

Unfortunately, there is not any closed-form expression for the summation

given in (3.29). Moreover, it is not possible to obtain this summation using any

expression such as (3.11). Therefore, in order to evaluate (3.22) the spectral

domain G̃zρ and G̃φρ components are modified as follows:

G̃vρ

klz
= − 1

4ωǫj

{ ∞
∑

n=−∞
kρjn

pH(2)
n (kρjρ)J

′
n(kρjρ

′)
[ nJn(kρjρ

′)

kρjJ
′
n(kρjρ

′)
fvρ(n, kz)

]

ejn∆φ

}

.

(3.30)

In (3.30), [
nJn(kρj ρ

′)

kρjJ
′

n(kρj ρ
′)
fvρ(n, kz)] term is now even with respect to n and it con-

verges to a constant value as n gets large using the Debye approximations given

in Appendix A. kρj term is also added as a multiplicant to use the ρ′ derivative

of (3.11) in the rest of the probe-related components of Green’s function repre-

sentations. Note that in this new formulation, p = 0, l = 1 for v = z, and p = 1,

l = 0 for v = φ. Defining

f̃vρ(n, kz, ρ
′) =

nJn(kρjρ
′)

kρjJ
′
n(kρjρ

′)
fvρ(n, kz), (3.31)
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the spectral domain G̃vρ components can be expressed as

G̃vρ

klz
= − 1

4ωǫj

{ ∞
∑

n=−∞
kρjn

pH(2)
n (kρjρ)J

′
n(kρjρ

′)f̃vρ(n, kz, ρ
′)ejn∆φ

}

(3.32)

where f̃vρ(n, kz, ρ
′) is now ρ′ dependent. Similar to the tangential components,

an envelope extraction with respect to n is performed and the G̃vρ components

are written as

G̃vρ

klz
= − 1

4ωǫj

{ ∞
∑

n=−∞
kρjn

pH(2)
n (kρjρ)J

′
n(kρjρ

′)ejn∆φ
[

f̃vρ(n, kz, ρ
′)− C̃vρ(kz, ρ

′)
]

+
[

C̃vρ(kz, ρ
′)− C̃vρ(kz, ρ

′ = ρ)
]

F vρ
1 [S1]

+
[

C̃vρ(kz, ρ
′ = ρ)

]

F vρ
1 [S1]

}

(3.33)

where S1 is given by (3.11) and

F zρ
1 [S1] =

∂S1

∂ρ′
(3.34)

F φρ
1 [S1] = −j ∂

2S1

∂φ∂ρ′
. (3.35)

Notice that in (3.33), C̃vρ(kz, ρ
′ = ρ)F vρ

1 [S1] term is also subtracted from second

term and added as a new term. The reason of this operation can be explained as

follows: The ρ′ dependence in the third term of (3.33) exists only in F vρ
1 [S1] as it

can be seen from (3.34)-(3.35). Thus, the ρ′ integration for this term is simplified

to

∫ ρ′=pe

ρ′=ps

∂S1

∂ρ′
dρ′ = S1(pe)− S1(ps). (3.36)

where ps and pe denote the start and end points of the probe, respectively. For

the first and second terms of (3.33), ρ′ integration is performed in the spectral

domain from the efficiency point of view.

Finally, similar to the tangential components, the product − 1
4ωǫj

C̃vρ(kz∞, ρ
′ =

ρ)F vρ
1 [S1] is subtracted in the spectral domain from (3.33) and its Fourier trans-

form is added to the final space domain Green’s function representation as a

function of I1 so that possible numerical problems for very large kz values are
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avoided. Consequently, the resultant expression for the Gvρ components of the

space domain Green’s function representations becomes

Gvρ = (
j∂

∂z
)l

{

1

2π

∫ ∞

−∞

(

G̃vρ

klz
+

1

4ωǫj
Cvρ(kz∞, ρ

′ = ρ)F vρ
1 [S1]

)

e−jkz(z−z′)dkz

− j

4πωǫj
Cvρ(kz∞, ρ

′ = ρ)F vρ
2 [I1]

}

(3.37)

where

F zρ
2 [I1] =

∂I1
∂ρ′

(3.38)

F φρ
2 [I1] = −j ∂

2I1
∂φ∂ρ′

. (3.39)

and I1 is defined in (3.17).

Note that because the first term of (3.37) has an integral (Fourier transform

integral), its present form is not in closed-form. Therefore, its inverse Fourier

transform is evaluated in closed-form with the aid of the GPOF method as exp-

lained in Chapter 4.
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Chapter 4

Closed-Form Evaluation of Space

Domain Green’s Function

Representations

The spectral domain Green’s function representations which have a Fourier in-

tegral with respect to kz are transformed into the space domain by the inverse

Fourier transformation given by

Guv =
1

2π

∫ ∞

−∞
dkze

−jkz(z−z′)G̃uv (4.1)

where Guv is the space domain Green’s function representation. This formula is

a time consuming numerical integration of spectral domain Green’s function rep-

resentation such that it ranges from −∞ to ∞ along the real axis of the complex

kz plane. Therefore, the final form of the spectral domain Green’s function rep-

resentations (integral parts of (3.18) and (3.37) for tangential and probe-related

components, respectively) are written as even functions of kz. Then, the original

Fourier kz integral is folded to a 0 to ∞ integral by writing (4.1) as

Guv =
1

π
(
j∂

∂z
)l
{

∫ ∞

0

dkz cos[kz(z − z′)]
G̃uv

klz

}

. (4.2)

In this dissertation, the discrete complex image method (DCIM) is proposed

in the calculation of the space domain Green’s function representations as a sum
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Figure 4.1: Deformed integration path used for radiation/scattering problems

of complex images by approximating the spectral domain Green’s function repre-

sentations (the integrand of (4.2)) in terms of complex exponentials. The nume-

rical method which is used to find the exponential approximations of the spect-

ral domain Green’s function representations is the generalized pencil of function

(GPOF) method. Therefore, in this dissertation we provide approximate closed-

form expressions in terms of a couple of complex images for the space domain

Green’s function representations using DCIM with the aid of GPOF method. In

[18], for ρ >> ρ′ case (radiation/scattering problem), the spectral domain Green’s

function representations which are again even functions of kz are evaluated on

the integration path given in Fig. 4.1 to overcome the effects of the pole and

branchpoint singularities.

In order to obtain the desired accuracy when ρ = ρ′, the deformed integration

path given in Fig 4.2 is used in this dissertation. It should be noted that the

deformed integration path is an approximation of the original one (integration on

the real kz axis). Around ks (the wave number of the source layer) the integration

path given in Fig 4.2 is broken into small pieces in order to work with less number

of spectral samples and complex exponentials. Instead of a single path before ks

as illustrated in Fig 4.1, two paths Γ′ and Γ1 are defined in Fig 4.2 where T ′

can be chosen between 0.5 and 0.8. The value of T1 (0.1 < T1 < 0.5) should

be kept small to minimize the deviation from the original path. Moreover, T2

should be large enough so that the value of kz is larger than those of the wave
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Figure 4.2: Deformed integration path

numbers of all layers ensuring that none of the singularities lies on the deformed

path. T2 can be between 4 and 6 where the other parameters can be chosen as

20 < T3 < 30 and 30 < T4 < 40, respectively. Up to T3ks four paths are defined

instead of two (when the path given in Fig 4.2 is compared with the one given

in Fig 4.1), in order to work with less number of samples since large number of

samples are needed around ks. In other words, with the integration path given

in Fig 4.2 non-uniform sampling is achieved (large number of samples around ks

and less samples in other paths). On Γ4, the spectral domain Green’s function

representations have smooth decaying behaviour for all possible ∆φ values. To

reach this path, Γ3 is used as a transition path to be far away from ks.

The parameters that define the deformed integration path are as follows:

Γ′ : kz = k′
t′

T ′ , 0 ≤ t′ < T ′ (4.3)

Γ1 : kz =

[

k′ + (k1 − k′)
t1

T ′ − T1

]

, 0 ≤ t1 < T ′ − T1 (4.4)

Γ2 : kz =

[

k1 + (k2 − k1)
t2

T2 − T1

]

, 0 ≤ t2 < T2 − T1 (4.5)

Γ3 : kz =

[

k2 + (k3 − k2)
t3

T3 − T2

]

, 0 ≤ t3 < T3 − T2 (4.6)

Γ4 : kz =

[

k3 + (k4 − k3)
t4

T4 − T3

]

, 0 ≤ t4 < T4 − T3 (4.7)
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where ks is the wave number of the source layer and k′ = T ′ks, k1 = ks + jksT1,

k2 = T2ks, k3 = T3ks and k4 = T4ks.

To obtain space domain counterparts, the spectral domain Green’s function

representations are sampled on paths Γ′, Γ1, Γ2, Γ3 and Γ4 by taking N ′, N1, N2,

N3 and N4 samples, respectively. Using GPOF (the details of GPOF is discussed

in Appendix B), the samples are expressed in terms of M ′, M1, M2, M3 and

M4 complex exponentials of kz on each part of the integration path. Let the

approximated spectral domain Green’s function representation (or the outputs of

the GPOF on each path) be

G̃
′

GPOFuv

∼=
M ′

∑

m=1

bmt
esmt t

′

(4.8)

G̃1
GPOFuv

∼=
M1
∑

n=1

bnt
esnt t1 (4.9)

G̃2
GPOFuv

∼=
M2
∑

l=1

blte
slt t2 (4.10)

G̃3
GPOFuv

∼=
M3
∑

s=1

bste
sst t3 (4.11)

G̃4
GPOFuv

∼=
M4
∑

p=1

bpte
spt t4 (4.12)

where the spectral domain Green’s function representation is approximated as

G̃GPOFuv
∼= G̃

′

GPOFuv
+ G̃1

GPOFuv
+ G̃2

GPOFuv
+ G̃3

GPOFuv
+ G̃4

GPOFuv
. (4.13)

These outputs of GPOF are then transformed to complex exponentials of kz as

follows:

G̃
′

GPOFuv

∼=
M ′

∑

m=1

bmt
esmt t

′

=
M ′

∑

m=1

bmk
ekzsmk (4.14)

G̃1
GPOFuv

∼=
M1
∑

n=1

bnt
esnt t1 =

M1
∑

n=1

bnk
ekzsnk (4.15)

G̃2
GPOFuv

∼=
M2
∑

l=1

blte
slt t2 =

M2
∑

l=1

blke
kzslk (4.16)
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G̃3
GPOFuv

∼=
M3
∑

s=1

bste
sst t3 =

M3
∑

s=1

bske
kzssk (4.17)

G̃4
GPOFuv

∼=
M4
∑

p=1

bpte
spt t4 =

M4
∑

p=1

bpke
kzspk (4.18)

such that

bmk
= bmt

(4.19)

smk
= smt

T ′

k′
(4.20)

bnk
= bnt

e
−sntk

′ (T
′
−T1)

(k1−k′) (4.21)

snk
= snt

(T ′ − T1)

(k1 − k′)
(4.22)

blk = blte
−sltk1

(T2−T1)
(k2−k1) (4.23)

slk = slt
(T2 − T1)

(k2 − k1)
(4.24)

bsk = bste
−sstk2

(T3−T2)
(k3−k2) (4.25)

ssk = sst
(T3 − T2)

(k3 − k2)
(4.26)

bpk = bpte
−sptk3

(T4−T3)
(k4−k3) (4.27)

spk = spt
(T4 − T3)

(k4 − k3)
. (4.28)

Note that, as explained in Appendix B, inputs of the GPOF method are the

spectral domain samples, the number of samples N , the number of complex expo-

nentialsM and the sampling interval δt. In GPOF implementation, the sampling

interval δt is chosen to be δt = T ′/N ′, δt = (T ′ − T1)/N1, δt = (T2 − T1)/N2,

δt = (T3 − T2)/N3 and δt = (T4 − T3)/N4 on paths Γ′, Γ1, Γ2, Γ3 and Γ4, respec-

tively. As a result of the GPOF implementation, the spectral domain Green’s

function representations are obtained in the form of complex exponentials of kz

and the integral given by

GGPOFuv
(z − z′) =

1

π

∫

Γ′+Γ1+Γ2+Γ3+Γ4

dkzcos[kz(z − z′)]G̃GPOFuv
(4.29)

is evaluated analytically. Consequently, the following expressions are obtained

for the space domain Green’s function representations:
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G
′

GPOFuv
(z − z′) ≈ 1

2π

M ′

∑

m=1

bmk

(

ek
′[smk

+j(z−z′)] − 1

smk
+ j(z − z′)

+
ek

′[smk
−j(z−z′)] − 1

smk
− j(z − z′)

)

, (4.30)

G1
GPOFuv

(z − z′) ≈ 1

2π

M1
∑

n=1

bnk

(

ek1[snk
+j(z−z′)] − ek

′[snk
+j(z−z′)]

snk
+ j(z − z′)

+
ek1[snk

−j(z−z′)] − ek
′[snk

−j(z−z′)]

snk
− j(z − z′)

)

, (4.31)

G2
GPOFuv

(z − z′) ≈ 1

2π

M2
∑

l=1

blk

(

ek2[slk+j(z−z′)] − ek1[slk+j(z−z′)]

slk + j(z − z′)

+
ek2[slk−j(z−z′)] − ek1[slk−j(z−z′)]

slk − j(z − z′)

)

, (4.32)

G3
GPOFuv

(z − z′) ≈ 1

2π

M3
∑

s=1

bsk

(

ek3[ssk+j(z−z′)] − ek2[ssk+j(z−z′)]

ssk + j(z − z′)

+
ek3[ssk−j(z−z′)] − ek2[ssk−j(z−z′)]

ssk − j(z − z′)

)

, (4.33)

G4
GPOFuv

(z − z′) ≈ 1

2π

M4
∑

p=1

bpk

(

ek4[spk+j(z−z′)] − ek3[spk+j(z−z′)]

spk + j(z − z′)

+
ek4[spk−j(z−z′)] − ek3[spk−j(z−z′)]

spk − j(z − z′)

)

(4.34)

where the final space domain representation is obtained as

GGPOFuv
= G

′

GPOFuv
+G1

GPOFuv
+G2

GPOFuv
+G3

GPOFuv
+G4

GPOFuv
. (4.35)
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Figure 4.3: Imaginary part of G̃zz integrand on Γ4 in (3.18) for different ∆φ (in
radian) values for the same cylinder parameters given in Fig. 3.2

Note that in this dissertation, the two-level GPOF implementation given in

[18] is not used due to the envelope extraction with respect to kz that we per-

formed as explained in Chapter 3. Recall that when implementing the envelope

extraction with respect to kz, the value of the spectral domain Green’s function

representation for large kz (for kz values much larger than k4) is subtracted in

the spectral domain and its Fourier transform is added to the final space do-

main Green’s function representation analytically (i.e., in closed-form). There-

fore, contributions coming from large kz values are automatically included in

closed-form. As a result of this step, when the integral (i.e., the first) terms

of (3.18) for tangential components and (3.37) for probe-related components are

considered for GPOF implementation, the magnitudes of these terms show a vari-

ation (due to their imaginary parts) on Γ4 for different ∆φ values as shown in

Fig. 4.3. When ∆φ is small, the magnitude is relatively large (in the order of

10−1, 10−2, etc.). When ∆φ is large, the magnitude is very small (in the order

of 10−7, 10−8) and may be noisy (see Fig. 4.4 when ∆φ = 0.0514). However,

when the magnitude is very small and noisy for large kz values (i.e., on Γ4, see

Fig. 4.4) numerical issues may occur in the implementation of GPOF leading to
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Figure 4.4: Imaginary part of G̃zz integrand on Γ4 in (3.18) for ∆φ = 0.0514 (in
radian) for the same cylinder parameters given in Fig. 3.2

a resultant complex exponential that may have an exponent (i.e., spk) with real

part greater than zero.

Consequently, in this dissertation, contributions coming from the kz values

larger than k4 are not included because they are usually very small even for

relatively small kz values (because of the envelope extraction). Furthermore,

when ∆φ is small (the threshold value for small ∆φ is set by the user) and

especially for the source region where the source and observation points are very

close to each other, k4 can be set to a large value (sometimes 1000k0, only in the

numerical evaluation of (4.34), without taking any spectral sample beyond k4) to

make sure that contributions coming from large kz values are properly included.

One final note that we initialize all GPOF parameters (i.e., T ′, T1, T2, T3, T4,

N ′, N1, N2, N3, N4, M
′, M1, M2, M3, M4, δt, etc) before we attempt to solve a

microstrip antenna/array problem. Therefore, these parameters should be kept

the same regardless of the ∆φ value.
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Chapter 5

Mutual Impedance Calculations

and The Treatment of

Singularities

To be able to safely use the developed CFGF representations in a MoM solu-

tion procedure, the CFGF representations should be valid for almost all possible

source and field points that lie on the same radial distance from the axis of the

cylinder. However, there are two types of singularities that should be treated

carefully. One of them is so called the spectral domain singularity and occurs

along the axial line (ρ = ρ′, φ = φ′). The other one is so called the space domain

singularity and occurs when the source and observation points overlap with each

other (ρ = ρ′, φ = φ′, z = z′). These two singularities are fortunately integrable

singularities, and are treated analytically during the mutual impedance calcula-

tions in a Galerkin type MoM procedure by performing the integrals over the

surface areas of basis and testing current modes as explained in a detailed way

in this chapter and in Appendices C, D and E for zz, zφ = φz and φφ couplings,

respectively.
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Figure 5.1: Geometry of the problem. Current modes on a multilayer cylindrical
structure together with its cross-sectional view from the top

5.1 Geometry and Current Mode Definitions

Fig. 3.1 is redrawn as Fig. 5.1 and the descriptions of the geometry is repeated

to be able to explain the mutual impedance calculations clearly. As mentioned in

Chapter 3, the geometry of current modes on a multilayer cylindrically stratified

media is illustrated in Fig. 5.1 together with a cross-sectional view from the top.

The structure is assumed to be infinite in the z direction. A PEC cylindrical

ground, denoted by the subscript j = 0, forms the innermost region with a radius

a0, and material layers, denoted by the subscript j = 1, 2, ... surround the PEC

region coaxially, as shown in Fig. 5.1 (subscript j = 1 denotes the substrate

layer; subscript j = 2 denotes the superstrate layer, and subscript j = 3 denotes

the air layer in Fig. 5.1). Each layer has a permittivity, permeability, and radius

denoted by ǫj, µj and aj, respectively. Furthermore, current modes, denoted by

J ′
v(ρ

′, φ′, z′) and Jv(ρ, φ, z) are depicted in Fig. 5.1 where v = φ or z. A z− or φ−
directed tangential current source, defined at air-dielectric or dielectric-dielectric

interface has a dimension of 2za × la (with la = ajφa) along the z− and φ−
directions or 2la × za along the φ− and z− directions, respectively. On the other
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hand, if the current mode is normal to an interface (excitation via a probe), it is

usually located inside a layer, assumed to be infinitesimally thin in terms of φ−
and z− coordinates, and has a certain length along the radial direction. Finally,

in Fig. 5.1 s denotes the geodesic distance between the two current modes (or

between the source and observation points for the CFGF expressions) and α is the

angle between the geodesic path and the φ− axis. Note that during the mutual

impedance calculations for tangential components ρ is equal to ρ′. However, when

the probe-related components are involved ρ is very close to ρ′ but usually ρ 6= ρ′.

The mutual impedance, Z12uv , between two current modes (J1u , J2v) is simply

given by

Z12uv =

∫

s2

E1uJ2v ds (5.1)

where E1u is the field due to the current mode J1u and s2 is the area occupied

by the current mode J2v . In this dissertation, the tangential current modes are

selected to be piecewise sinusoidal (PWS) current modes. As an example, the

expression for a piecewise sinusoid z− directed current mode, Jz, located at ρ = a1

in Fig. 5.1 is given in the space domain as

Jz(φ, z) = rect(
a1φ

la/2
)
1

la
PWS(ka, za, z) (5.2)

where la is the dimension along the φ− direction and 2za is the dimension along

the z− direction and

rect(
x

a
) =

{

1, |x| < a

0, otherwise
(5.3)

PWS(ka, za, z) =

{

sin[ka(za−|z|)]
sin(kaza)

, |z| < za

0, otherwise
. (5.4)

Similarly, the expression for a piecewise sinusoid φ− directed current mode, Jφ,

located at ρ = a1 in Fig. 5.1 is expressed in the space domain as

Jφ(φ, z) = rect(
z

za/2
)
1

za
PWS(ka, la, a1φ). (5.5)

In (5.2) and (5.5) ka is defined either as

ka = k0

√

Re(ǫri) + 1

2
+

Re(ǫri)− 1

2
(1 + 10

thi
min(W,L)

)−0.5 (5.6)
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or as

ka = k0

√

Re(ǫri) + Re(ǫri+1
)

2
. (5.7)

where ǫri is the permittivity of the ith dielectric region, thi is the thickness of the

ith dielectric region, W and L are the width and length of the microstrip antenna,

respectively and Re(.) denotes the real part of the permittivity since the dielectric

region can be lossy. When the microstrip antenna is located at the air-dielectric

interface, the definition given by (5.6) is used for ka. On the other hand, if

the antenna is located at the dielectric-dielectric interface (substrate-superstrate

situation), (5.7) is used for ka.

5.2 Mutual Impedance Calculations For Tan-

gential Components

Defining E1u in (5.1) as E1u =
∫

s1
GuvJ1u with s1 being the area occupied by the

current mode J1u , the mutual impedance formulation can be expressed as

Z12uv =

∫ ∫ ∫ ∫

J1uJ2vGuvdzdz
′dβdβ′ (5.8)

where β = ρφ, β′ = ρ′φ′ and dβ = ρdφ (and dβ′ = ρ′dφ′). In (5.8) dz′dβ′ = ds1

and dzdβ = ds2.

To find the mutual impedance results for tangential components for all prob-

lematic cases (that exhibit singularity), (5.8) will be rewritten and analyzed in

detail. Starting with the space domain Green’s function representation, Guv,

given by (3.18) for tangential components, Guv is expressed as

Guv = (k2j −
∂2

∂z∂z′
)q(j

∂

∂z
)r1(−j ∂

∂φ
)t1(j

∂

∂φ′ )
t2Guv2 (5.9)

where for uv = zz case q = 1, r1 = 0, t1 = 0, t2 = 0; for uv = zφ = φz case

q = 0, r1 = 1, t1 = 0, t2 = 1; and for uv = φφ case q = 0, r1 = 0, t1 = 1, t2 = 1.

As seen in (5.9) Guv and Guv2 are related to each other by the derivatives with

respect to φ, φ′, z and z′. Note that (5.9) is obtained from (3.18) by recognizing
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the Fourier series (with respect to n) and Fourier Transform (with respect to

kz) relations between the spectral domain and space domain Green’s functions.

Briefly, the term (k2j − ∂2

∂z∂z′
) in the space domain corresponds to k2ρj in the spect-

ral domain. Similarly, the (j ∂
∂z
) term in the space domain corresponds to kz in

the spectral domain. Finally, both the (−j ∂
∂φ
) and (j ∂

∂φ′
) terms in the space do-

main correspond to n in the spectral domain. On the other hand, the advantages

of rewriting Guv as (5.9) are as follows: (i) For the zz component, the spectral

domain counterpart of Guv2 decays faster than that of Guv with respect to kz.

(ii) For the φφ component, the spectral domain counterpart of Guv2 decays faster

than that of Guv with respect to n. (iii) Most importantly, these derivatives are

transferred onto current modes using integration by parts. Thereby, the afore-

mentioned two different types of singularities are kept as integrable singularities.

Consequently, for the rest of this chapter Guv2 is the part of the Green’s function

that appears in the mutual impedance calculations.

After transferring the derivatives acting on Guv onto the PWS current

modes (which are differentiable) using integration by parts, the following mu-

tual impedance expressions are obtained for tangential components.

Z12zz =

∫ ∫ ∫ ∫

(

k20JzJz′Gzz2 −
∂Jz
∂z

∂Jz′

∂z′
Gzz2

)

dzdz′dβdβ′ (5.10)

Z12zφ =

∫ ∫ ∫ ∫

(−j)∂Jz
∂z

(−j)∂Jφ′

∂φ′ Gzφ2dzdz
′dβdβ′ (5.11)

Z12φφ =

∫ ∫ ∫ ∫

∂Jφ
∂φ

∂Jφ′

∂φ′ Gφφ2dzdz
′dβdβ′. (5.12)

The details about the expressions (5.10), (5.11), (5.12) are given in Appendix

(C.1), Appendix (D.1), Appendix (E.1), respectively.
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In order to discuss the mutual impedance calculations for tangential compo-

nents let Guv2 be defined in the form of inverse Fourier transform (IFT) as

Guv2 = F−1
{

− 1

4ωǫj

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)fuv(n, kz)e

jn(∆φ)
}

. (5.13)

where F−1{.} denotes the IFT operation. Note that the IFT is performed using

the DCIM with the aid of the GPOF method. After performing the envelope

extraction with respect to n, (5.13) is written as

Guv2 = F−1
{

− 1

4ωǫj

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)[fuv(n, kz)− Cuv(kz)]e

jn(∆φ)
}

+F−1
{

− 1

4ωǫj
Cuv(kz)H

(2)
0 (kρj |ρ̄− ρ̄′|)

}

. (5.14)

Similarly, after performing the envelope extraction with respect to kz, the follow-

ing expression is obtained

Guv2 = F−1
{

− 1

4ωǫj

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)[fuv(n, kz)− Cuv(kz)]e

jn(∆φ)
}

+F−1
{

− 1

4ωǫj
[Cuv(kz)− Cuv(kz∞)]H

(2)
0 (kρj |ρ̄− ρ̄′|)

}

+F−1
{

− 1

4ωǫj
Cuv(kz∞)H

(2)
0 (kρj |ρ̄− ρ̄′|)

}

. (5.15)

The IFT of the last term of (5.15) is available in closed-form. Therefore, (5.15)

is written as

Guv2 = F−1
{

− 1

4ωǫj

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)[fuv(n, kz)− Cuv(kz)]e

jn(∆φ)
}

+F−1
{

− 1

4ωǫj
[Cuv(kz)− Cuv(kz∞)]H

(2)
0 (kρj |ρ̄− ρ̄′|)

}

− j

4πωǫj
Cuv(kz∞)

e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ | . (5.16)

The representation given by (5.16) is used in the mutual impedance calculations

given by (5.10)-(5.12) when there is no singularity. The treatment for the singu-

larities are given next.
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5.2.1 Spectral Domain Singularity (ρ = ρ′, φ = φ′)

The spectral domain singularity occurs along the axial line (when ρ = ρ′ and

φ = φ′) because the argument of the Hankel function H2
0 (kρj |ρ̄− ρ̄′|) becomes

zero as given by

|ρ̄− ρ̄′| =
√

ρ2 + ρ′2 − 2ρρ′ cos(∆φ). (5.17)

The remedy for this problem is to use the small argument approximation of the

Hankel function given by

H2
0 (kρj |ρ̄− ρ̄′|) ≈ 1− j

2

π
log

(

γkρj
2

)

− j
2

π
log (|ρ̄− ρ̄′|) (5.18)

where γ = 1.781. As seen in (5.18), the last term −j 2
π
log(|ρ̄ − ρ̄′|) exhibits a

logarithmic singularity when ρ = ρ′ and φ = φ′ and yields numerical problems

for small ∆φ values (ρ = ρ′). Therefore, for the tangential components, when ∆φ

is small, approximating cos(∆φ) term as 1− ∆φ2

2
, |ρ̄− ρ̄′| can be simplified to

|ρ̄− ρ̄′| ≈ ρ|φ− φ′| = |β − β′| (5.19)

where β = ρφ and β′ = ρ′φ′ and ρ = ρ′.

As the next step, the term −j 2
π
log(|ρ̄− ρ̄′|) is replaced with −j 2

π
log(|β−β′|).

Then it is subtracted fromH2
0 (kρj |ρ̄− ρ̄′|) and added as a new term to the Green’s

function representations. Consequently, (5.16) becomes

Guv2 = F−1
{

− 1

4ωǫj

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)[fuv(n, kz)− Cuv(kz)]e

jn(∆φ)
}

+F−1
{

− 1

4ωǫj
[Cuv(kz)− Cuv(kz∞)]

(

H
(2)
0 (kρj |ρ̄− ρ̄′|)−

[

− j
2

π
log (|β − β′|)

])}

−j 2
π
log (|β − β′|)F−1

{

− 1

4ωǫj
[Cuv(kz)− Cuv(kz∞)]

}

− j

4πωǫj
Cuv(kz∞)

e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ | . (5.20)

In order to handle the singularity in the numerical evaluation of the second term

of (5.20), the
[

1 − j 2
π
log
(

γkρj
2

) ]

term is used for the
(

H
(2)
0 (kρj |ρ̄− ρ̄′|) −

[

−

j 2
π
log (|β − β′|)

])

term when β is exactly equal to β′. In this dissertation, the
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terms like the
(

H
(2)
0 (kρj |ρ̄− ρ̄′|) −

[

− j 2
π
log (|β − β′|)

])

term is called non-

singular or regular although they are numerically singular at the specific point

(i.e., β = β′). The third term of (5.20) is evaluated analytically as defined

in Appendix C.4, Appendix D.3 and Appendix E.4 for zz, zφ and φφ cases,

respectively.

5.2.2 Space Domain Singularity (ρ = ρ′, φ = φ′, z = z′)

The space domain singularity occurs when the source and observation points

overlap with each other (i.e., r̄ = r̄′ which means ρ = ρ′, φ = φ′ and z = z′).

When r̄ = r̄′ the denominator of the last term of (3.18) for the Guv expression

(or the last term of 5.20 [or (5.16)]) that involves I1 = e
−jkj

∣

∣

∣

∣

r̄−r̄
′
∣

∣

∣

∣

|r̄−r̄
′ | exhibits the

singularity problem. To treat this singularity analytically, first recognizing that
∣

∣

∣
r̄ − r̄

′

∣

∣

∣
=

√

|ρ̄− ρ̄′|2 + |z − z′|2. (5.21)

and making use of (5.19), I1 is approximated as

I1 ≈ I ′1 =
1

√

(β − β′)2 + (z − z′)2
. (5.22)

Then, I ′1 is subtracted from I1 in (5.20) and the subtracted term is added as a

new term. As a result Guv2 is expressed as

Guv2 = F−1
{

− 1

4ωǫj

∞
∑

n=−∞
H(2)

n (kρjρ)Jn(kρjρ
′)[fuv(n, kz)− Cuv(kz)]e

jn(∆φ)
}

F−1
{

− 1

4ωǫj
[Cuv(kz)− Cuv(kz∞)]

(

H
(2)
0 (kρj |ρ̄− ρ̄′|)−

[

− j
2

π
log (|β − β′|)

])}

−j 2
π
log (|β − β′|)F−1

{

− 1

4ωǫj
[Cuv(kz)− Cuv(kz∞)]

}

− j

4πωǫj
Cuv(kz∞)

(e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ | − 1
√

(β − β′)2 + (z − z′)2

)

− j

4πωǫj
Cuv(kz∞)

1
√

(β − β′)2 + (z − z′)2
. (5.23)

Similar to the spectral domain singularity, in the numerical evaluation of the
(

e
−jkj

∣

∣

∣

∣

r̄−r̄
′
∣

∣

∣

∣

|r̄−r̄
′ | − 1√

(β−β′)2+(z−z′)2

)

term, the −jkj term is used when ρ = ρ′, φ = φ′
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and z = z′ in order to solve the numerical singularity. The −jkj term comes from

the Taylor series expansion of the exponential function. The last term of (5.23)

is singular when the source and field points overlap with each other. Hence,

it must be evaluated analytically. During the mutual impedance calculations,

overlapping of source and field points occur / may occur when the two current

modes (i.e., basis and testing functions) are on the top of each other (self term)

and partially overlapping with each other (overlapping terms). Details of the

analytic evaluation of the last term of (5.23) for these situations are in Appendix

C.2-C.3, Appendix D.2 and Appendix E.2-E.3 for zz, zφ = φz and φφ cases,

respectively.

5.3 Mutual Impedance Calculations For Probe-

Related Components

In this study, the microstrip antennas are fed via an ideal probe with an infinite-

simally thin thickness. Hence, the probe is modeled as

Jρ =
I0δ(ρφ− rlf )δ(z − zf )

ρ
(5.24)

where I0 = 1 is the magnitude of the excitation current and δ(.) is the Dirac

delta function. Therefore, the mutual impedance expression for probe-related

components for v = φ or v = z is defined as a three-fold integral given by

Vvρ = −
∫ ∫

Jv

∫

Gvρdρ
′dzdβ. (5.25)

It should be noted that instead of Z12vρ we prefer to use Vvρ for the mutual

impedance expressions of probe-related terms. The main reason for this notation

is that they form the entries of the voltage vector V in the MoM calculations. Also

note that the minus sign in front of the integrals in (5.25) is due to the fact that

the electric field direction and the integration path direction for the ρ′ integral

are opposite. Similar to the tangential components, recognizing that (j ∂
∂z
) and

(−j ∂
∂φ
) terms in the space domain correspond to kz and n in the spectral domain,
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respectively, the inner ρ′ integral is rewritten as
∫

Gvρdρ
′ = (−j ∂

∂φ
)p(j

∂

∂z
)l
∫

Gvρ2dρ
′ (5.26)

where p = 0, l = 1 for zρ case and p = 1, l = 0 for φρ case. After transferring the

derivatives acting on Gvρ onto the PWS current modes (which are differentiable)

using integration by parts, the following mutual impedance expressions are ob-

tained for the probe-related components:

Vzρ = −
∫ ∫

(−j)∂Jz
∂z

∫

Gzρ2dρ
′dβdz, (5.27)

Vφρ = −
∫ ∫

(j)
∂Jφ
∂φ

∫

Gφρ2dρ
′dβdz. (5.28)

When there is no singularity in the probe-related components, the ρ′ integral

is performed first to increase the efficiency. Therefore, making use of the IFT

of (3.32), the mutual impedance calculations for the probe-related components

start with the ρ′ integral of (5.26). Hence the ρ′ integral of (5.26) is written as

∫

Gvρ2dρ
′ =

∫

F−1

{

− 1

4ωǫj

∞
∑

n=−∞
kρjH

(2)
n (kρjρ)J

′
n(kρjρ

′)f̃vρ(n, kz, ρ
′)ejn∆φ

}

dρ′.

(5.29)

After the envelope extraction with respect to n as explained in Section 3.2, the

following expression is obtained:
∫

Gvρ2dρ
′ =

∫

F−1

{

− 1

4ωǫj

∞
∑

n=−∞
kρjH

(2)
n (kρjρ)J

′
n(kρjρ

′)[f̃vρ(n, kz, ρ
′)− C̃vρ(kz, ρ

′)]ejn∆φ

}

dρ′

+

∫

F−1

{

− 1

4ωǫj
C̃vρ(kz, ρ

′)F vρ
3 [S1]

}

dρ′ (5.30)

where

F vρ
3 [S1] =

∂H2
0 (kρj |ρ̄− ρ̄′|))

∂ρ′
. (5.31)
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As the next step, the term C̃vρ(kz, ρ
′ = ρ)F vρ

3 [S1] is subtracted from the second

term of (5.30) and its contribution (after the integration with respect to ρ′ is

evaluated) is added analytically as given by
∫

Gvρ2dρ
′ =

∫

F−1

{

− 1

4ωǫj

∞
∑

n=−∞
kρjH

(2)
n (kρjρ)J

′
n(kρjρ

′)[f̃vρ(n, kz, ρ
′)− C̃vρ(kz, ρ

′)]ejn∆φ

}

dρ′

+

∫

F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′)− C̃vρ(kz, ρ
′ = ρ)]F vρ

3 [S1]

}

dρ′

+F−1

{

− 1

4ωǫj
C̃vρ(kz, ρ

′ = ρ)H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=pe

}

−F−1

{

− 1

4ωǫj
C̃vρ(kz, ρ

′ = ρ)H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=ps

}

(5.32)

Note that, as explained in Section 3.2, in the course of obtaining the last two

terms of (5.32) (these are the analytically added parts), the following is used:

∫ ρ′=pe

ρ′=ps

∂S1

∂ρ′
dρ′ = S1(pe)− S1(ps). (5.33)

Also note that the ρ′ integration for the first two terms of (5.32) is performed

numerically using a simple numerical integration algorithm.

Finally, a second envelope extraction with respect to kz is applied as explained

in Section 3.2 and the final form of the ρ′ integral of (5.26) is obtained as
∫

Gvρ2dρ
′ =

∫

F−1

{

− 1

4ωǫj

∞
∑

n=−∞
kρjH

(2)
n (kρjρ)J

′
n(kρjρ

′)[f̃vρ(n, kz, ρ
′)− C̃vρ(kz, ρ

′)]ejn∆φ

}

dρ′

+

∫

F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′)− C̃vρ(kz, ρ
′ = ρ)]F vρ

3 [S1]

}

dρ′

+F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′ = ρ)− C̃vρ(kz∞, ρ
′ = ρ)]H2

0 (kρj |ρ̄− ρ̄′|)
∣

∣

∣

ρ′=pe

}

−F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′ = ρ)− C̃vρ(kz∞, ρ
′ = ρ)]H2

0 (kρj |ρ̄− ρ̄′|)
∣

∣

∣

ρ′=ps

}

− j

4πωǫj
C̃vρ(kz∞, ρ

′ = ρ)
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=pe
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+
j

4πωǫj
C̃vρ(kz∞, ρ

′ = ρ)
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=ps

(5.34)

At this step, (5.34) can be used in (5.25) to calculate the probe-related mutual

impedances except the cases where singularities exist. The treatment of the

singularities are given next.

5.3.1 Spectral Domain Singularity (ρ = ρ′, φ = φ′)

Similar to the tangential components, the spectral domain singularity occurs

along the axial line (when φ = φ′ and ρ = ρ′) because the argument of the

Hankel function H2
0 (kρj |ρ̄− ρ̄′|) becomes zero as given by

|ρ̄− ρ̄′| =
√

ρ2 + ρ′2 − 2ρρ′ cos(∆φ). (5.35)

Again using the small argument approximation of the Hankel function given by

H2
0 (kρj |ρ̄− ρ̄′|) ≈ 1− j

2

π
log

(

γkρj
2

)

− j
2

π
log (|ρ̄− ρ̄′|) (5.36)

it can be seen that the last term −j 2
π
log (|ρ̄− ρ̄′|) exhibits a logarithmic singu-

larity when ρ = ρ′ and φ = φ′. Therefore, similar to the tangential components,

approximating cos(∆φ) as 1 − ∆φ2

2
for small ∆φ values, |ρ̄− ρ̄′| can be approxi-

mated as

|ρ̄− ρ̄′| ≈
√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2. (5.37)

It should be emphasized that (5.37) is different than (5.19) since there is a ρ′

integration in (5.25) that will play a role during the treatment of this singularity.

Note that the problematic parts of (5.34) are the third and forth terms when

ρ = ρ′. The second term does not pose any problem because the multiplication

term [C̃vρ(kz, ρ
′)− C̃vρ(kz, ρ

′ = ρ)] cancels this singularity (actually this product

yields zero when |ρ̄− ρ̄′| = 0 and hence, the contribution coming from this term

vanishes). Using the approximated |ρ̄− ρ̄′| [given by (5.37)] in −j 2
π
log (|ρ̄− ρ̄′|),
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−j 2
π
log
(√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2

)

is subtracted from H2
0 (kρj |ρ̄− ρ̄′|) in the

third and fourth terms of (5.34) and added as new terms. Hence, (5.34) becomes

∫

Gvρ2dρ
′ =

∫

F−1

{

− 1

4ωǫj

∞
∑

n=−∞
kρjH

(2)
n (kρjρ)J

′
n(kρjρ

′)[f̃vρ(n, kz, ρ
′)− C̃vρ(kz, ρ

′)]ejn∆φ

}

dρ′

+

∫

F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′)− C̃vρ(kz, ρ
′ = ρ)]F vρ

3 [S1]

}

dρ′

+F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′ = ρ)− C̃vρ(kz∞, ρ
′ = ρ)]

(

H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=pe

−
[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=pe

)

}

−F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′ = ρ)− C̃vρ(kz∞, ρ
′ = ρ)]

(

H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=ps

−
[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=ps

)

}

− j

4πωǫj
C̃vρ(kz∞, ρ

′ = ρ)
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=pe

+
j

4πωǫj
C̃vρ(kz∞, ρ

′ = ρ)
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=ps

+F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′ = ρ)− C̃vρ(kz∞, ρ
′ = ρ)]

[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=pe

}

−F−1

{

− 1

4ωǫj
[C̃vρ(kz, ρ

′ = ρ)− C̃vρ(kz∞, ρ
′ = ρ)]

[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=ps

}

(5.38)

Similar to the tangential components, in (5.38) when a numerical singularity oc-

curs in
(

H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=pe,ps
−
[

−j 2
π
log
(√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=pe,ps

)

term, the
[

1 − j 2
π
log
(

γkρj
2

) ]

term is used. The last two terms of (5.38) are

the newly added terms and must be evaluated analytically during the mutual
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impedance calculations as follows: First, (5.38) is substituted into (5.25). As

a result of this step we have a two-fold space domain integration (note that all

ρ′ integrals for the nonsingular terms given by (5.38) are numerically evaluated

in a straight forward way). Then, integration by part is implemented and the

derivatives are transferred to the testing functions. Finally, for the zρ case, the

singular integral is evaluated analytically with respect to β as follows.

∫

log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)

dβ =
1

2

(

β log[
ρ′(β − ρφ′)2

ρ
+ (ρ− ρ′)2]

−ρφ′ log[ρρ
′2 + (φ

′2 − 2)ρ2ρ′ − 2βφ′ρρ′ + β2ρ′ + ρ3]

−2

√

ρ

ρ′
(ρ′ − ρ) tan−1

( βρ′ − φ′ρρ′

(ρ′ − ρ)
√
ρρ′

)

+ 2β
)

. (5.39)

The remaining integral with respect to z can be numerically integrated easily

using a simple Gaussian quadrature algorithm since no singularity is left.

Regarding the φρ case, a slightly different approach is followed since both Jφ

and its derivative with respect to φ are functions of β. Therefore, the singular

integral for the φρ case is

∫

Jφ2(φ)
[

log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]

dβ (5.40)

where

Jφ2(φ) = (j)
∂Jφ
∂φ

. (5.41)

To be able to use the result of (5.39) for the φρ case, the expression Jφ2(φ
′) is

subtracted from Jφ2(φ) and added as follows

∫

(Jφ2(φ)− Jφ2(φ
′))
[

log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]

dβ

+Jφ2(φ
′)

∫

log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)

dβ. (5.42)

As seen in (5.42), there are two terms that have to be integrated. The second

integral is now in the same form as that of (5.39) and hence, evaluated analytically.

On the other hand, there is no singularity in the first integral as [Jφ2(φ)−Jφ2(φ′)]

is exactly zero when ρ = ρ′ and φ = φ′, which makes the first integral vanish

along the axial line.
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5.3.2 Space Domain Singularity (ρ = ρ′, φ = φ′, z = z′)

Finally, the space domain singularity for the probe-related components exists

when r̄ = r̄′ (ρ = ρ′, φ = φ′ and z = z′). However, note that r̄ = r̄′ may not

exactly occur. Instead, because the length of the probe is fairly short ρ may

approach to ρ′ (ρ ≈ ρ′) and φ = φ′ and z = z′ may occur. Therefore, this

singularity must be treated as if r̄ = r̄′. Similar to the tangential components

the terms that involve I1 =
e
−jkj

∣

∣

∣

∣

r̄−r̄
′
∣

∣

∣

∣

|r̄−r̄
′ | in (5.38) must be analytically treated when

r̄ ≈ r̄′ during the mutual impedance calculations. Making use of (5.37) for

|ρ̄− ρ̄′|, the term I1 is approximated as I ′1 given by

I ′1 =
1

√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

. (5.43)

Then I ′1 is subtracted from I1 in (5.38) and added as two new terms (the last two

terms).

Consequently (5.38) becomes

∫

Gvρ2dρ
′ =

∫

F−1

{

− 1

4ωǫj

∞
∑

n=−∞
kρjH

(2)
n (kρjρ)J

′
n(kρjρ

′)[f̃vρ2(n, kz, ρ
′)− C̃vρ2(kz, ρ

′)]ejn∆φ

}

dρ′

+

∫

F−1

{

− 1

4ωǫj
[C̃vρ2(kz, ρ

′)− C̃vρ2(kz, ρ
′ = ρ)]F vρ

3 [S1]

}

dρ′

+F−1

{

− 1

4ωǫj
[C̃vρ2(kz, ρ

′ = ρ)− C̃vρ2(kz∞, ρ
′ = ρ)]

(

H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=pe

−
[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=pe

)

}

−F−1

{

− 1

4ωǫj
[C̃vρ2(kz, ρ

′ = ρ)− C̃vρ2(kz∞, ρ
′ = ρ)]

(

H2
0 (kρj |ρ̄− ρ̄′|)

∣

∣

∣

ρ′=ps

−
[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=ps

)

}

− j

4πωǫj
C̃vρ2(kz∞, ρ

′ = ρ)
(e

−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=pe

− 1
√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

∣

∣

∣

∣

∣

ρ′=pe

)
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+
j

4πωǫj
C̃vρ2(kz∞, ρ

′ = ρ)
(e

−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=ps

− 1
√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

∣

∣

∣

∣

∣

ρ′=ps

)

+F−1

{

− 1

4ωǫj
[C̃vρ2(kz, ρ

′ = ρ)− C̃vρ2(kz∞, ρ
′ = ρ)]

[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=pe

}

−F−1

{

− 1

4ωǫj
[C̃vρ2(kz, ρ

′ = ρ)− C̃vρ2(kz∞, ρ
′ = ρ)]

[

− j
2

π
log
(

√

(ρ− ρ′)2 +
ρ′

ρ
(β − ρφ′)2

)]∣

∣

∣

ρ′=ps

}

− j

4πωǫj
C̃vρ2(kz∞, ρ

′ = ρ)
1

√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

∣

∣

∣

∣

∣

ρ′=pe

+
j

4πωǫj
C̃vρ2(kz∞, ρ

′ = ρ)
1

√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

∣

∣

∣

∣

∣

ρ′=ps

(5.44)

In (5.44), when ρ = ρ′, φ = φ′ and z = z′, the −jkj term is used instead of the
(

e
−jkj

∣

∣

∣

∣

r̄−r̄
′
∣

∣

∣

∣

|r̄−r̄
′ |

∣

∣

∣

∣

∣

ρ′=pe,ps

− 1
√

(ρ−ρ′)2+ ρ′

ρ
(β−ρφ′)2+(z−z′)2

∣

∣

∣

∣

∣

ρ′=pe,ps

)

term. As seen in (5.44), the

last two terms of (5.44) are nearly the singular terms and are treated analytically

during the mutual impedance calculations (during the integration through the

area of the test current). For the zρ case as follows: when the last two terms of

(5.44) are substituted into (5.27) the analytical result of

∫

1
√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

dβ (5.45)

is needed. Its closed-form expression is given by

∫

1
√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

dβ =

√

ρ

ρ′
sinh−1

(

√

ρ′

ρ
(β − ρφ′)

√

(z − z′)2 + (ρ− ρ′)2

)

.

(5.46)
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Making use the result of (5.46) in the mutual impedance calculation, the remain-

ing z− integration is simply performed using a Gaussian quadrature algorithm

numerically.

Regarding the φρ component a different approach is followed because Jφ2(φ)

is a function of β. Moreover, the methodology followed in the treatment of the

spectral domain singularity can not be used because a term similar to [Jφ2(φ)−
Jφ2(φ

′)] may not exactly cancel the space domain singularity when (5.44) is used.

Therefore, the analytical evaluation of the space domain singularity for the φρ

case uses (5.38) rather than (5.44). The terms that yield the space domain

singularity in (5.38) can be written as Ivρ1 and Ivρ2 given by

Ivρ1 =
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=pe

(5.47)

Ivρ2 =
e
−jkj

∣

∣

∣
r̄−r̄

′
∣

∣

∣

|r̄ − r̄′ |

∣

∣

∣

∣

∣

ρ′=ps

(5.48)

Substituting (5.47) and (5.48) into (5.27), the singular integral that must be

analytically evaluated during the mutual impedance formulation can be written

as
∫

Jφ2(φ)Ivρidβ (i = 1, 2) (5.49)

where Jφ2(φ) is given in (5.41). Then similar to the procedure related with the

spectral domain singularity [see (5.42)], (5.49) is written as
∫

(

Jφ2(φ)Ivρi −
Jφ2(φ

′)
√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

∣

∣

∣

ρ′=ρ′i

)

dβ

+Jφ2(φ
′)

∫

1
√

(ρ− ρ′)2 + ρ′

ρ
(β − ρφ′)2 + (z − z′)2

∣

∣

∣

ρ′=ρ′i

dβ, (i = 1, 2),

(5.50)

where ρ′1 = pe and ρ′2 = ps. In (5.50), the first term is not singular and it

is possible to make the numerical evaluation with a simple Gaussian quadra-

ture algorithm. However, in the numerical evaluation of the
(

Jφ2(φ)Ivρi −
Jφ2(φ

′)
√

(ρ−ρ′)2+ ρ′

ρ
(β−ρφ′)2+(z−z′)2

∣

∣

∣

ρ′=ρ′i

)

term, the numerical singularity occurs when ρ =
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ρ′, φ = φ′ and z = z′. In this numerical singularity case, the
[

− jkjJφ2(φ)
]

term

is used instead of the
(

Jφ2(φ)Ivρi − Jφ2(φ
′)

√

(ρ−ρ′)2+ ρ′

ρ
(β−ρφ′)2+(z−z′)2

∣

∣

∣

ρ′=ρ′i

)

term for only

this specific point during the numerical integration. The second term can now be

evaluated using (5.46) similar to the zρ case.

62



Chapter 6

Method of Moments Formulation

In this chapter, the details of the MoM procedure is given in the presence of

an attachment mode with a special emphasis on the attachment mode that is

used to model the probe-fed antennas more accurately by ensuring the current

continuity from probe to the patch antennas. Then, the formulations for the

input impedance of a microstrip antenna as well as the mutual coupling between

two microstrip antennas are given.

6.1 Attachment Mode and Related Mutual

Impedance Calculations

To model a probe-fed type antenna feeding accurately during the MoM proce-

dure by ensuring the continuity of the current from the probe to the patch, an

attachment mode is defined and used. A z− directed attachment mode is defined

as

Jzatt =















0.5 sin(ka(zatt−|z|))
latt sin[kazatt]

, z ≥ zatt

−0.5 sin(ka(zatt−|z|))
latt sin[kazatt]

, z < zatt

(6.1)
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Figure 6.1: The z− and φ− directed current modes and a z− directed attach-
ment mode defined on the microstrip antenna are given in (a). In (b), a colored
3−D picture of a z− directed attachment mode (with different ka, zatt and latt
parameters) is given. × denotes the exact location of the probe.

in the 2zatt × latt region where the probe is at the center of this region. Fig. 6.1

(a) illustrates a typical 3−D picture of the z− and φ− directed PWS current

modes used to capture J s(r̄
′) (the induced current on the patch antenna) and a

z− directed attachment mode which is consistent with the PWS current modes

defined on the microstrip antenna. A z− directed attachment mode is also given

in Fig. 6.1 (b) with different ka, zatt and latt parameters. Note that the shape

of the PWS current modes (also the shape of the attachment mode) changes

with respect to ka and ua (or uatt) of a u− directed current (or attachment)

mode. When ka is chosen as π/(2ua), the PWS becomes a half sinuous in the

u− direction. When ka or ua of a u− directed current mode is decreased, the

PWS current modes become triangular. A φ− directed attachment mode can be

defined in a similar way by changing z by ρφ, zatt by latt.

In the definition of an attachment mode, one critical issue is the selection

of the size of the attachment mode, namely zatt and latt. In this study, the

size of the attachment mode is related with the size of the basis functions that

are used to expand the induced current J s(r̄
′) on the conducting patches. Our
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Figure 6.2: A microstrip patch antenna with W=4 cm, L=3 cm and fed via a
probe at the location (rlf , zf )=(2 cm,0.5 cm) at f=3.2 GHz

rule of thumb for such a selection is that for a u− directed attachment mode

(u = z or φ), uatt ≤ ua where ua = za or la for a z− or φ− directed PWS,

respectively, and vatt = va/2 or vatt = va [vatt = latt/2 or zatt/2 (i.e., the other

direction) and va = la/2 or za/2 (i.e., the other direction)] depending on the

placement of the probe with respect to u− directed basis functions along the v−
direction. Therefore, considering a z− directed attachment mode given by (6.1)

on a fixed-sized patch antenna, the following two examples are given to illustrate

how the sizes of zatt and latt are decided.

Consider a microstrip patch antenna with dimensions W=4 cm in the rl−
direction (rl = ρφ) and L=3 cm in the z− direction. This antenna is fed via a

probe at (rlf , zf )=(u/2 = 2 cm, 0.5 cm) as shown in Fig. 6.2 at f = 3.2 GHz.

For the first example, the conducting patch on which J s(r̄
′) exists is divided

into 4 subdomains along the z− and φ− directions, respectively. Therefore,

P = K = 12 and N = 24. Fig. 6.3 illustrates the magnitude, the shape and

the location of Jzatt with respect to the 3 z− directed current modes along the

z− direction. In this example zatt = 0.5 cm < za is chosen. Fig. 6.4 shows
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Figure 6.3: The magnitude, shape and location of a z-directed attachment mode
with respect to 3 z− directed PWS current modes along the z− direction for an
antenna whose parameters are given in Fig. 6.2

the placement of the attachment mode and the size of latt. Because the exact

location of the probe along the rl− direction is exactly between the two z−
directed PWS basis functions, latt = la is chosen. For the second example, the

same conducting patch on which J s(r̄
′) exists is divided into 7 subdomains along

the z− and rl− directions, respectively. Hence, P = K = 42 and N = 84.

Similar to Fig. 6.3, Fig. 6.5 illustrates the magnitude, the shape and the location

of Jzatt with respect to 6 z− directed current modes along the z− direction. In

this example zatt = za = 0.43 cm is chosen. Similar to Fig. 6.4, Fig. 6.6 illustrates

the placement of the attachment mode and the length of latt. Because the exact

location of the probe along the rl− direction is the middle of a z− directed current

mode, latt = la/2 is chosen. Note that because the size of the basis functions (or

P , K and hence, N) can be preselected, one of the aforementioned placements of

the probe with respect to expansion functions can always be satisfied.

The mutual impedance calculations related with the attachment mode re-

quires the calculation of the following mutual impedance expressions: Z12zzatt ,

Z12φzatt , Z12zattρ, Z12φφatt
, Z12zφatt

, Z12φattρ. Although Z12zattz, Z12zattφ, Z12φattφ
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Figure 6.4: The placement of the z− directed attachment mode on the same
antenna, whose parameters are given in Fig. 6.2 together with some of the z−
and φ− directed PWS basis functions. × denotes the exact location of the probe.
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Figure 6.5: The magnitude, shape and location of a z-directed attachment mode
with respect to 6 z− directed PWS current modes along the z− direction for an
antenna whose parameters are given in Fig. 6.2
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Figure 6.6: The placement of z− directed attachment mode on the same antenna,
whose parameters are given in Fig. 6.2 together with some of the z− and φ−
directed PWS basis functions. × denotes the exact location of the probe.

and Z12φattz terms are included in the MoM analysis, there is no need to eva-

luate these terms, as will be explained in Section 6.4. Besides, as explained in

Appendix F, Vρzatt = Vzattρ and Vρφatt
= Vφattρ.

Regarding the mutual impedance expression between a z− directed current

mode and Jzatt (z− directed attachment mode), the related four-fold integral is

given by

Z12zzatt =

∫ ∫ ∫ ∫

JzJzattGzzdzdz
′dβdβ′. (6.2)

Similar to the Z12zz calculations, the k2ρj expression in the spectral domain cor-

responds to (k2j − ∂2

∂z∂z′
) in the space domain. Hence, Gzz is written as

Gzz = (k2j −
∂2

∂z∂z′
)Gzz2. (6.3)

where Gzz2 is obtained from (5.20) for uv = zz case. Using an integration by
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parts twice the mutual impedance expression becomes

Z12zzatt =

∫ ∫ ∫ ∫

(

k20JzJzattGzz2 −
∂Jz
∂z

∂Jzatt
∂z′

Gzz2

)

dzdz′dβdβ′

−
∫ ∫ ∫

∂Jz
∂z

1

2latt
Gzz2dzdβdβ

′. (6.4)

Notice that the second term in (6.4) is due to the definition of an attachment

mode as it appears to be discontinuous at the probe location [see (6.1)]. The value

of the attachment mode is +α and −α (α 6= 0) at the upper and lower halves of

the attachment mode, respectively. Therefore, the end point contributions must

be included when an integration by parts is used. Two contributions, coming

from the upper half and lower half parts of the attachment mode, are added and

the result forms the second term in (6.4).

The spectral domain singularity
(

log(|ρ̄− ρ̄′|) ≈ log(|β − β′|)
)

is treated in

the same way as that of Z12zz case. On the other hand, a slightly different

approach is used for the space domain singularity. Briefly, substituting (5.20)

into (6.4), the mutual impedance term related with the space domain singularity

for the first term of (6.4) can be written as
∫ ∫

Jzzatt(z, z
′)I1dz

′dβ (6.5)

where Jzzatt(z, z
′) = (k20JzJzatt − ∂Jz

∂z

∂Jzatt
∂z′

) and I1 is given in (3.17). Then, using

(5.22), the term Jzzatt(z, z
′ = z)I ′1 is subtracted and added to (6.5) resulting

∫ ∫

(

Jzzatt(z, z
′)I1 − Jzzatt(z, z

′ = z)I ′1

)

dz′dβ +

∫ ∫

Jzzatt(z, z
′ = z)I ′1dz

′dβ.

(6.6)

Rewriting the second term in (6.6) as
∫ ∫

Jzzatt(z, z
′ = z)I ′1dz

′dβ = Jzzatt(z, z
′ = z)

∫ ∫

I ′1dz
′dβ, (6.7)

the
∫ ∫

I ′1dz
′dβ integrals can be evaluated analytically using (D.18) and (D.19).

After the z′ and β integrals are evaluated analytically, the remaining z and β′

integrals are evaluated using a simple Gaussian quadrature algorithm. Note that

the first integral in (6.6) is regular and the numerical singularity (which occurs

when ρ = ρ′, φ = φ′ and z = z′) is solved using Jzzatt(z, z
′ = z)(−jkj) instead of
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(

Jzzatt(z, z
′)I1 − Jzzatt(z, z

′ = z)I ′1

)

at the singular point. In a similar manner,

the integral that must be evaluated analytically for the second term of (6.4) can

be written as
∫

I1dβ. (6.8)

Again (6.8) comes from the substitution of (5.20) into the second term of (6.4).

Rewriting (6.8) as

∫

(

I1 − I ′1

)

dβ +

∫

I ′1dβ (6.9)

the second integral
∫

I ′1dβ can be evaluated as

∫

I ′1dβ =

∫

1
√

(β − β′)2 + (z − z′)2
dβ = sinh−1

( β − β′

|z − z′|
)

(6.10)

where (6.10) is obtained from (D.18). Note that the first integral in (6.9) is

regular. However, during the numerical integration of
(

I1− I ′1

)

,
(

− jkj

)

is used

when the numerical singularity occurs when ρ = ρ′, φ = φ′ and z = z′.

Regarding the mutual impedance expression between a φ− directed current

mode and Jzatt , the related four-fold integral is given by

Z12φzatt =

∫ ∫ ∫ ∫

JφJzattGφzdzdz
′dβdβ′. (6.11)

Similar to the Z12φz calculations, first Gφz is expressed as

Gφz = (−j) ∂
∂φ

(−j) ∂
∂z′

Gφz2, (6.12)

where Gφz2 is obtained from (5.20) for uv = φz case. Performing an integration

by parts twice the mutual impedance expression is obtained as

Z12φzatt =

∫ ∫ ∫ ∫

(j)
∂Jφ
∂φ

(j)
∂Jzatt
∂z′

Gφz2dzdz
′dβdβ′

+

∫ ∫ ∫

(j)
∂Jφ
∂φ

(j)
1

2latt
Gφz2dzdβdβ

′. (6.13)

In (6.13), the second term is due to the definition of the attachment mode as

discussed for Z12zzatt the case.
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The spectral domain singularity
(

log(|ρ̄− ρ̄′|) ≈ log(|β − β′|)
)

exists and is

the same for both terms of (6.13). The integrals that include the spectral domain

singularity can be written as
∫

Jφ2(φ) log(|β − β′|)dβ (6.14)

where Jφ2(φ) = (j)
∂Jφ
∂φ

. Rewriting (6.14) as

∫

[Jφ2(φ)− Jφ2(φ = φ′)] log(|β − β′|)dβ + Jφ2(φ = φ′)

∫

log(|β − β′|)dβ,

(6.15)

the second integral in (6.15) is analytically evaluated using (C.67) whereas the

first integral is regular and can be evaluated numerically. When β is equal to β′

in the numerical evaluation, the [Jφ2(φ)−Jφ2(φ = φ′)] log(|β − β′|) term becomes

zero in order to handle the numerical singularity (i.e., logarithmic singularity

vanishes since it is multiplied by zero at the singular point). The remaining z,

z′ and β′ integrals are evaluated numerically. On the other hand for the space

domain singularity, substituting (5.23) into the first term of (6.13), the space

domain singularity for the first term of (6.13) appears as
∫ ∫

I ′1dzdβ
′ (6.16)

where I ′1 is given in (5.22). In order to perform the two-fold integral given by

(6.16) accurately and efficiently, first the integration with respect to z is evaluated

analytically given by
∫

1
√

(β − β′)2 + (z − z′)2
dz = sinh−1

( z − z′

|β − β′|
)

. (6.17)

Then, the β′ integral is evaluated analytically as
∫

sinh−1(
z − z′

|β − β′|)dβ
′ =

=

(

|β′ − β|
z − z′

sinh−1(
z − z′

|β′ − β|) + sign(
|β′ − β|
z − z′

)sinh−1(
|β′ − β|
z − z′

)

)

sign(β − β′)(z′ − z).

(6.18)

(6.18) solves the space domain singularity for the first term of (6.13). The re-

maining z and β′ integrals are evaluated numerically. Substituting (5.20) into the
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second term of (6.13) the space domain singularity for the second term of (6.13)

appears as
∫

Jφzatt(φ)I1dβ (6.19)

where Jφzatt(φ) = (j)
∂Jφ
∂φ

(j) 1
2latt

and I1 is given in (3.17). Rewriting (6.19) as

∫

(

Jφzatt(φ)I1 − Jφzatt(φ = φ′)I ′1

)

dβ + Jφzatt(φ = φ′)

∫

I ′1dβ, (6.20)

∫

I ′1dβ is evaluated using (6.10). Remaining integrals are evaluated numerically

using a Gaussian quadrature algorithm. In this numerical integration,
(

Jφzatt(φ =

φ′)(−jkj)
)

is used instead of the
(

Jφzatt(φ)I1 − Jφzatt(φ = φ′)I ′1

)

term in order

to solve the numerical singularity when ρ = ρ′, φ = φ′ and z = z′.

Regarding the mutual impedance between the probe current and Jzatt , the

related three-fold mutual impedance expression is given by

Vzattρ = −
∫ ∫

Jzatt

∫

Gzρdρ
′dβdz. (6.21)

Similar to the Vzρ calculations, first the Gzρ is written as

Gzρ = j
∂

∂z
Gzρ2 (6.22)

where Gzρ2 is obtained from (5.34). Performing an integration by parts, the

expression becomes

Vzattρ = −
∫ ∫

(−j)∂Jzatt
∂z

∫

Gzρ2dρ
′dβdz. (6.23)

Since Gzρ2 is an odd function with respect to z, the extra contribution that

comes from the attachment mode definition (from upper and lower halves) is

zero and (6.23) contains only one term. The spectral domain and the space

domain singularities are solved using the procedure given in Sections 5.3.1 and

5.3.2, respectively.

Regarding the mutual impedance expression between a φ− directed current

mode and Jφatt
, the related four-fold integral is given by

Z12φφatt
=

∫ ∫ ∫ ∫

JφJφatt
Gφφdzdz

′dβdβ′. (6.24)
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Similar the Z12φφ calculations, first Gφφ is expressed as

Gφφ =
∂2Gφφ2

∂φ∂φ′

where Gφφ2 is obtained from (5.20) for uv = φφ case. Performing an integration

by parts twice the mutual impedance expression can be obtained as

Z12φφatt
=

∫ ∫ ∫ ∫

∂Jφ
∂φ

∂Jφatt

∂φ′ Gφφ2dβ
′dβdzdz′

+

∫ ∫ ∫

∂Jφ
∂φ

1

2zatt
Gφφ2dzdz

′dβ. (6.25)

In (6.25) the second term is due to the definition of the attachment mode at the

probe location as discussed for Z12zzatt case.

The spectral domain singularity
(

log(|ρ̄− ρ̄′|) ≈ log(|β − β′|)
)

is common for

both terms of (6.25) and the related integrals (that include the spectral domain

singularity) can be written as

∫

Jφ2(φ) log(|β − β′|)dβ (6.26)

where Jφ2(φ) = (j)
∂Jφ
∂φ

. This integral is evaluated as explained in (6.15). On the

other hand, the space domain singularity in the first term of (6.25) is coming

from the substitution of (5.20) into the first term of (6.25) and is given by

∫ ∫

Jφ2(φ)I1dβdz
′ (6.27)

where Jφ2(φ) =
∂Jφ
∂φ

and I1 is given in (3.17). Rewriting (6.27) as

∫ ∫

(

Jφ2(φ)I1 − Jφ2(φ = φ′)I ′1

)

dβdz′ + Jφ2(φ = φ′)

∫ ∫

I ′1dβdz
′, (6.28)

where I ′1 is given in (5.22), the second integral in (6.28) is analytically evaluated

using (D.19). The remaining integrals (i.e., the first integral of (6.28) as well as

the z and β′ integrals) are evaluated numerically. In the numerical evaluation,

the
(

Jφ2(φ = φ′)(−jkj)
)

term is used instead of the
(

Jφ2(φ)I1 − Jφ2(φ = φ′)I ′1

)

term in order to handle the numerical singularity when ρ = ρ′, φ = φ′ and z = z′.

Similarly, for the second part of (6.25), the singular integral related with the
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space domain singularity comes as a result of substituting (5.20) into the second

part of (6.25) and is given by

∫

I1dz. (6.29)

Rewriting (6.29) as

∫

(

I1 − I ′1

)

dz +

∫

I ′1dz (6.30)

the second integral is evaluated using (6.17). The remaining integrals are regular

and can be evaluated numerically. However, in order to solve the numerical

singularity, the
(

− jkj

)

term is used for the
(

I1 − I ′1

)

term when ρ = ρ′, φ = φ′

and z = z′ during the numerical integration.

Regarding the mutual impedance expression between a z− directed current

mode and Jφatt
, the related four-fold integral is given by

Z12zφatt
=

∫ ∫ ∫ ∫

JzJφatt
Gzφdzdz

′dβdβ′. (6.31)

Similar to the Z12zφatt
calculations, first Gzφ is written as

Gzφ = (j)
∂

∂z
(j)

∂

∂φ′Gzφ2, (6.32)

where Gzφ2 is obtained from (5.20) for uv = zφ case. Performing an integration

by parts twice the mutual impedance expression is obtained as

Z12zφatt
=

∫ ∫ ∫ ∫

(−j)∂Jz
∂z

(−j)∂Jφatt

∂φ′ Gzφ2dzdz
′dβdβ′

+

∫ ∫ ∫

(−j)∂Jz
∂z

(−j) 1

2zatt
Gzφ2dzdβdβ

′. (6.33)

The second term in (6.33) is due the definition of the attachment mode as dis-

cussed for Z12zzatt case.

The spectral domain singularity is common for both terms of (6.33) and is

evaluated analytically by taking the following integral
∫

log(|β − β′|)dβ (6.34)
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in closed-form using (C.67). The space domain singularity for the first term of

(6.33) is coming from the substitution of (5.23) into the first term of (6.33) and

is given by
∫ ∫

I ′1dz
′dβ. (6.35)

It is evaluated analytically using (D.18) and (D.19). After the analytical evalu-

ation of (6.35), the remaining z and β′ integrals are evaluated numerically using

a Gaussian quadrature algorithm. For the second term of (6.33), the singular

integral comes from the substitution of (5.23) into (6.33) and is written as
∫

I ′1dβ. (6.36)

(6.36) is analytically evaluated using (6.10) and the remaining z and β′ integrals

are evaluated numerically.

Finally, regarding the mutual impedance expression between the probe current

and Jφatt
, the related three-fold integral is given by

Vφattρ = −
∫ ∫

Jφatt

∫

Gφρdρ
′dβdz. (6.37)

Similar to the Vφρ calculations, first Gφρ is written as

Gφρ = −j ∂
∂φ
Gφρ2 (6.38)

where Gφρ2 is obtained from (5.34). Performing an integration by parts, the

expression becomes

Vφattρ = −
∫ ∫

(j)
∂Jφatt

∂φ

∫

Gφρ2dρ
′dβdz. (6.39)

Similar to Gzρ2 case, since Gφρ2 is odd (this time with respect to φ), the extra

contribution due to the definition of the attachment mode at the probe location

does not exist. The spectral domain and the space domain singularities are solved

using the procedure given in Sections 5.3.1 and 5.3.2, respectively.

6.2 Input Impedance Calculations

When the mutual impedance expressions related to the attachment mode, pre-

sented in Section 6.3, are included into the MoM matrix equation given by (1.7),
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the resultant MoM matrix equation is given by
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Figure 6.7: Patch antenna geometry which is excited with a TM01 mode
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(6.40)

for a single microstrip patch antenna, where α0 is the magnitude of the attachment

mode.

In (6.40) the dimensions of the submatrices are as follows: Making use of (1.6)

Z
zz

is a P × P matrix, Z
zφ

is a P ×K matrix, Z
φz

is a K × P matrix, Z
φφ

is a

K ×K matrix, Zφattφatt
, Zφattzatt , Zzattφatt

, Zzattzatt are scalars, Z φattz and Z zattz

are 1 × P vectors, Z φattφ and Z zattφ are 1 × K vectors, and finally Z zφatt
and

Z zzatt are P × 1 vectors whereas Z φφatt
and Z φzatt are K × 1 vectors. Moreover

in (6.40), Iz and Iφ are P × 1 and K × 1 vectors. Similarly, V zρ and V φρ are also
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P × 1 and K × 1 vectors, respectively. Finally, in (6.40) α0, (1-α0), Vφattρ and

Vzattρ are scalars.

Since the amplitude of the probe current is equal to 1 (I0 = 1), sum of

the magnitudes of z− and φ− directed attachment modes (the first two rows of

the current vector given in the left hand side of (6.40)) is equal to 1. If only

φ− directed attachment mode is defined α0 is equal to 1, if only z− directed

attachment mode is defined α0 is equal to 0 and if both z− and φ− directed

attachment modes are defined α0 is equal to 0.5. Therefore, in the first two rows

of (6.40) there is not any unknown and the matrix equation given in (6.40) can

be cast into:





Z
zz

Z
zφ

Z
φz

Z
φφ





[

Iz

Iφ

]

=

[

V zρ

V φρ

]

−
[

α0Z zφatt
+ (1− α0)Z zzatt

α0Z φφatt
+ (1− α0)Z φzatt

]

, (6.41)

which can be expressed as

Z I = (V − V att). (6.42)

The unknowns an’s are solved using the inverse of Z as

I = Z−1(V − V att). (6.43)

Once an’s are determined, the current distribution on the antenna can be

constructed. Since the magnitude of the probe current is equal to 1 (I0 = 1), we

know that
∫

dϑJρδ(ρ− pe) = 1, (6.44)

where pe denotes the probe end and Jρ is given in (5.24). Finally, the input

impedance is defined as the total voltage at the feed point since the total current

through the probe is 1A. Hence, the input impedance expression is given by

Z11 =
N
∑

n=1

anV
n
ρ + α0Vρφatt

+ (1− α0)Vρzatt (6.45)
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Figure 6.8: Mutual coupling geometry where two patch antennas are present on
circular cylinder

where an (entries of I ) are the expansion mode coefficients found from the MoM

procedure and V n
ρ (simply the corresponding Vρz’s and Vρφ’s) are the induced

voltages on the probe due the current modes Jn. Similarly, Vρzatt and Vρφatt
are

the induced voltages on the probe due the attachment mode. The Vρv terms can

be obtained using Appendix F where v can be z, φ, zatt or φatt.

6.3 Calculation of Mutual Coupling Between

Two Antennas

The geometry used for the mutual coupling calculations between two antennas on

a dielectric coated circular cylinder is shown in Fig.6.8. For each patch antenna

N basis functions (P basis functions in z− direction and K basis functions in φ−
direction) are used. For the two-port configuration given in Fig.6.8, the input

impedance of element one Z11 is calculated when port two is open. Similarly, the
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mutual impedance Z21 is calculated when port two is open. The other parameters

Z12 = Z21 as a result of reciprocity theorem and Z22 = Z11 because of the fact

that two antennas are selected to be identical.

In order to calculate only the Z11 and Z21, port two is left open and the

attachment mode is defined only on patch one. After the current modes are

defined on the patch antennas, using a Galerkin type testing, the following matrix

equation is obtained.
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






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.

(6.46)

In (6.46), the subscripts are written in such a way that Z z1φatt
is the vector

which gives the mutual impedance between the φ− directed attachment mode

and the z− directed current modes on patch one. Similarly, Z
φ2z1

is the mutual

impedance matrix between the φ− directed current modes on patch two and the

z− directed current modes on patch one. V z2ρ1
is the induced voltage vector on

the z− directed current modes on patch two due to the probe of patch one. All

the other submatrices and vectors in (6.46) have similar meanings.

Similar to the input impedance calculations, since the amplitude of the probe

current of patch one is equal to 1 (I0 = 1), the summation of z− and φ− directed

attachment modes is equal to 1. If only φ− directed attachment mode is defined,

α0 is equal to 1, if only z− directed attachment mode is defined, α0 is equal to

0 and if both z− and φ− directed attachment modes are defined, α0 is equal to

0.5. Therefore, in the first two rows of (6.46) there is not any unknown and the

matrix equation given in (6.46) can be cast into:

79

















Z
z1z1

Z
z1z2

Z
z1φ1

Z
z1φ2

Z
z2z1

Z
z2z2

Z
z2φ1

Z
z2φ2

Z
φ1z1

Z
φ1z2

Z
φ1φ1

Z
φ1φ2

Z
φ2z1

Z
φ2z2

Z
φ2φ1

Z
φ2φ2



























Iz1

Iz2

Iφ1

Iφ2













=













V z1ρ1

V z2ρ1

V φ1ρ1

V φ2ρ1













−













α0Z z1φatt
+ (1− α0)Z z1zatt

α0Z z2φatt
+ (1− α0)Z z2zatt

α0Z φ1φatt
+ (1− α0)Z φ1zatt

α0Z φ2φatt
+ (1− α0)Z φ2zatt













(6.47)

which can be expressed as

Z I = (V − V att). (6.48)

I in (6.48) is the current vector which contains the unknown coefficients of the

current modes (for instance Iz1 is the vector which contains the amplitudes of the

z− directed current modes on patch one, Iφ2 is used for the φ− directed current

modes on patch two) defined as

I = [a1, a2, a3, ......., a2N ]
T , (6.49)

and are calculated from

I = Z −1(V − V att). (6.50)

Similar to (6.45), the input impedance of patch one is defined as [(voltage at the

probe of patch one)/1A]

Z11 =
2N
∑

n=1

anV
n
ρ1
+ α0Vρ1φatt

+ (1− α0)Vρ1zatt (6.51)

where an’s are the expansion mode coefficients found from (6.50) and V n
ρ1

(simply

the corresponding Vρ1z1 ’s, Vρ1z2 ’s, Vρ1φ1 ’s and Vρ1φ2 ’s) are the induced voltages on

the probe of patch one due to the current modes Jn. Vρ1zatt and Vρ1φatt
are the

induced voltages on the probe of patch one due to the attachment mode.

Similarly, the mutual coupling between two antennas is defined as [(voltage

at the probe of patch two)/1A]

Z21 =
2N
∑

n=1

anV
n
ρ2
+ α0Vρ2φatt

+ (1− α0)Vρ2zatt (6.52)
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where an’s are the expansion mode coefficients found from (6.50) when port one

is excited and port two is left open. V n
ρ2

(simply the corresponding Vρ2z1 ’s, Vρ2z2 ’s,

Vρ2φ1 ’s and Vρ2φ2 ’s) are the induced voltages on the probe of patch two due to

the current modes Jn. Vρ2zatt and Vρ2φatt
are the induced voltages on the probe of

patch two due to the attachment mode. Finally, the mutual coupling coefficient

between two antennas can be calculated as follows:

S12 =
2Z12Z0

(Z11 + Z0)(Z22 + Z0)− Z12Z21

(6.53)

where Z0 = 50. In (6.53), Z12 = Z21 as mentioned before due to reciprocity.
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Chapter 7

Numerical Results

To assess the accuracy of the proposed CFGF representations together with the

MoM procedure that uses the aforementioned attachment mode, numerical results

in the form of input impedance of a single antenna and mutual coupling between

two antennas are obtained and compared with the available results in literature

and the results obtained from a commercial software CST Microwave Studio.

In all of the numerical results obtained via MoM with CFGF, piecewise si-

nusoidal (PWS) current modes are used as the expansion functions with the

attachment mode which is consistent with PWS current modes.

In the course of obtaining the space domain CFGF representations, the fol-

lowing parameters are used for the GPOF implementation of the tangential com-

ponents : T ′ = 0.5, T1 = 0.2, T2 = 5, T3 = 20, T4 = 40, N ′ = 20, N1 = 40,

N2 = 80, N3 = 20, N4 = 20, M ′ = 5, M1 = 8, M2 = 12, M3 = 6, M4 = 4. On the

other hand, for the probe-related components the values of the same parameters

are as follows: T ′ = 0.5, T1 = 0.2, T2 = 4, T3 = 50, T4 = 60, N ′ = 10, N1 = 20,

N2 = 10, N3 = 40, N4 = 20, M ′ = 3, M1 = 5, M2 = 3, M3 = 5, M4 = 3.

The first numerical example is given for a single rectangular microstrip patch

mounted on a dielectric coated circular cylinder as shown in Fig. 7.1 with a0 = 20

cm, ǫr = 2.32, th = a1 − a0 = 0.795 mm. The length of the patch L is 3 cm,
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Figure 7.1: Probe-fed microstrip patch antenna on a dielectric coated PEC cylin-
der

and the width of the patch W is 4 cm. The antenna is excited with a TM01

mode and fed via a probe at the feed location (zf ,rlf )=(0.5 cm,2 cm). The input

impedance result (real and imaginary parts) obtained using CFGF is given in Fig.

7.2 with the result of CST Microwave Studio, and they are in good agreement. In

obtaining the CFGF results, the conducting patch, on which the induced current

exists, is divided into 10 subdomains along the z− and φ− directions (P = 90,

K = 90 and N = 180) and a z− directed attachment mode with zatt = za and

latt = la (as explained in Section 6.3 where the z− directed current mode has a

dimension of 2za × la) is used. φ− directed attachment mode is not used for this

example.

Another way to assess the accuracy of the MoM formulation is to perform a

convergence test. Thus, a convergence test is performed for the first example. As

the number of current modes used in the MoM solution is increased, the input

impedance results converge to the P = 90, K = 90 case and do not change much

if more current modes are used. As seen in Fig. 7.3 the input impedance results
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Figure 7.2: Input impedance versus frequency for a patch with the following
parameters: a0 = 20 cm, ǫr = 2.32, th = 0.795 mm, L = 3 cm, W = 4 cm and
(zf ,rlf )=(0.5 cm,2 cm)
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Figure 7.3: Input impedance versus frequency for different number of current
modes for the patch given in Fig. 7.2
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Figure 7.4: Input impedance versus frequency for a patch with the following
parameters: a0 = 40 cm, ǫr = 2.98, th = 0.762 mm, L = 6 cm, W = 4 cm and
(zf ,rlf )=(2.1 cm,2 cm)

for P = 30, K = 30, N = 60; P = 56, K = 56, N = 112; P = 90, K = 90,

N = 180 cases are very close to each other.

As the second example, a cylinder with the following parameters is used : a0 =

40 cm, ǫr = 2.98, th = 0.762 mm. The dimensions of the patch is L=6 cm, W=4

cm, yielding a resonance at 1.444 GHz where the TM01 mode is excited. Probe

is located at (zf ,rlf )=(2.1 cm,2 cm). The input impedance (real and imaginary

parts) result obtained using the CFGF representations versus frequency for this

antenna is given in Fig. 7.4 together with the results of CST Microwave Studio.

In this example, the conducting patch is divided into 8 subdomains along the z−
and φ− directions (P = 56, K = 56, N = 112) and a z− directed attachment

mode with zatt = za and latt = la (as explained in Section 6.3) is used. As seen in

Fig. 7.4 excellent agreement is obtained.

The previous geometry with the same parameters is considered as the third

example except the dielectric layer is considered to be lossy with tan δ = 0.0045.

The input impedance result obtained using the CFGF representations versus
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Figure 7.5: Input impedance versus frequency for a patch with the following
parameters: a0 = 40 cm, ǫr = 2.98, tan δ = 0.0045, th = 0.762 mm, L = 6 cm, W
= 4 cm and (zf ,rlf )=(2.1 cm,2 cm)

frequency for this antenna is given in Fig. 7.5 with the result of CST Microwave

Studio. In the CFGF result, the conducting patch is divided into 8 subdomains

in both z− and φ− directions (P = 56, K = 56, N = 112) and a z− directed

attachment mode with zatt = za and latt = la is used. Similar to the previous

case, very good agreement is obtained.

The next example has the same parameters with the first example (i.e., a0 =

20 cm, ǫr = 2.32, th = 0.795 mm and the dimensions of the patch is L = 3 cm, W

= 4 cm) except the probe location, where the probe is located at (zf ,rlf )=(1.5

cm,2.67 cm). Therefore, TM10 mode is excited. The microstrip patch antenna

geometry is illustrated in Fig. 7.6. The input impedance result obtained using

the CFGF representations versus frequency for this antenna is given in Fig. 7.7

with the result of CST Microwave Studio. In the CFGF result, the conducting

patch is divided into 8 subdomains in both z− and φ− directions (P = 56,

K = 56, N = 112) and a φ− directed attachment mode (zatt = za and latt = la

where za × 2la is the dimension of the φ− directed current mode) is used. In this

example, the z− directed attachment mode is not used. As seen in Fig. 7.7, very
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Figure 7.6: Microstrip patch antenna geometry which is excited with a TM10

mode
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Figure 7.7: Input impedance versus frequency for a patch with the following
parameters: a0 = 20 cm, ǫr = 2.32, th = 0.795 mm, L = 3 cm, W = 4 cm and
(zf ,rlf )=(1.5 cm,2.67 cm)
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Figure 7.8: Microstrip patch antenna geometry where the probe is located at the
corner of the antenna
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Figure 7.9: Input impedance versus frequency for a patch with the following
parameters: a0 = 20 cm, ǫr = 2.32, th = 0.795 mm, L = 3 cm, W = 4 cm and
(zf ,rlf )=(0.05 cm,2.67 cm)
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Figure 7.10: The patch antenna geometry where a substrate and a superstrate
exist around PEC. Patch antenna is defined at the substrate-superstrate interface

good agreement is obtained.

The parameters for the next input impedance example are exactly the same

with the previous example. The only difference is the location of the probe. The

probe is located at (zf ,rlf )=(0.05 cm,2.67 cm) where the probe is located at the

corner of the patch antenna as seen in Fig. 7.8. The CFGF and CST Microwave

Studio results are given in Fig. 7.9. CFGF results are obtained by dividing the

conducting patch into 12 subdomains along the z− and φ− directions (P = 132,

K = 132, N = 264) and both z− and φ− directed attachment modes are used

where they have the same length with the z− and φ− directed current modes

while the widths of the attachment modes are twice that of the widths of the

corresponding current modes. Similar to the previous cases, very good agreement

is obtained.

As the last input impedance example, Fig. 7.10 depicts the microstrip patch
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Figure 7.11: Input impedance versus frequency for a patch with the following
parameters: a0 = 20 cm, Substrate ǫr = 2.32, th1 = 0.795 mm, Superstrate
ǫr = 2.98, th2 = 0.762 mm, L = 3 cm, W = 4 cm and (zf ,rlf )=(0.5 cm,2 cm)

antenna geometry where a substrate and a superstrate are present. The patch an-

tenna, with the parameters W = 4 cm and L = 3 cm, is located at the substrate-

superstrate interface. Probe is located at (zf ,rlf )=(0.5 cm,2 cm). Substrate

has a thickness of 0.795 mm with ǫr = 2.32 whereas the thickness of the super-

strate layer is 0.762 mm and ǫr = 2.98. The input impedance result obtained

using the CFGF representations versus frequency for this antenna is given in Fig.

7.11 together with the CST Microwave Studio result. In the CFGF results the

conducting patch is divided into 30 and 4 subdomains along the z− and φ− direc-

tions, respectively, (P = 174, K = 150, N = 324) and a z− directed attachment

mode with zatt = za and latt = la is used. In this example φ− directed attachment

mode is not used. Excellent agreement is obtained as seen in Fig. 7.11.

Fig. 7.12 illustrates the geometry used for the mutual coupling calculations

between two identical antennas along the E-plane. Note that the antennas shown

in Fig. 7.12 are fed in such a way that the TM01 mode is excited resulting the

z− directed current on each patch being the dominant current mode. Therefore,

the z− direction on the cylinder is part of the E-plane and the φ− direction on
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Figure 7.12: E-plane coupling geometry

the cylinder becomes part of the H-plane. Fig. 7.13 shows the E-plane coupling

results at f = 3.195 GHz between the antennas whose parameters are defined

in Fig. 7.2 except the probe location. Note that the probe location is now set

to (zf ,rlf )=(0.95 cm,2 cm), so that antennas are matched to 50Ω at resonance.

In the CFGF results, the conducting patch for each antenna is divided into 10

subdomains both in z− and φ− directions (P = 90, K = 90, N = 180) and a z−
directed attachment mode (zatt = za and latt = la, no φ− directed attachment

mode) is used. As seen in Fig. 7.13, very good agreement is achieved between

the CFGF and CST Microwave Studio results. The E-plane coupling results for

the geometry given in Fig. 7.12 (with the antenna parameters given in Fig. 7.4)

is illustrated in Fig. 7.14 at the resonance frequency f = 1.444 GHz. In Fig.

7.14, the mutual coupling results are obtained by dividing the conducting patch

for each antenna into 6 subdomains along the z− and φ− directions (P = 30,

K = 30, N = 60) and a z− directed attachment mode with zatt = za and latt = la

(φ− directed attachment mode is not used) is used. Very good agreement is

achieved between the CFGF and the CST Microwave Studio results. When the

dielectric loss is introduced (as shown in the parameters given in Fig. 7.5) to the

same example, the E-plane coupling results are given in Fig. 7.15. To obtain
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Figure 7.13: E-plane coupling results for patch antenna geometry given in Fig.
7.2 with (zf ,rlf )=(0.95 cm,2 cm)

the CFGF results given in Fig. 7.15, the conducting patch for each antenna is

divided into 12 subdomains in both z− and φ− directions (P = 132, K = 132,

N = 264) and a z− directed attachment mode that has zatt = za and latt = la

(no φ− directed attachment mode) is used. In Fig. 7.15 the CFGF results are

compared with the CST Microwave Studio and the measurement results available

in the literature [33]. Notice that with the introduction of the dielectric loss, the

coupling results decrease as expected. Also note that the agreement of all results

are excellent.
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Figure 7.14: E-plane coupling results for patch antenna geometry given in Fig.
7.4
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Figure 7.15: E-plane coupling results for patch antenna geometry given in Fig.
7.5
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Figure 7.16: H-plane coupling geometry

Similar to the E-plane coupling case, Fig. 7.16 illustrates the geometry used

for the mutual coupling calculations between two identical antennas along the

H-plane. The H-plane coupling results are shown in Fig. 7.17-7.19 for the same

patch antenna parameters given for the E-plane coupling calculations. In all the

CFGF results related with the H-plane coupling, the conducting patch for each

antenna is divided into 8 subdomains along the z− and φ− directions (P = 56,

K = 56, N = 112) and a z− directed attachment mode (zatt = za and latt = la) is

used. In the first two H-plane coupling results shown in Fig. 7.17 and Fig. 7.18,

the CFGF results are compared with the CST Microwave Studio results where

for the last example measurement results are compared to both CFGF and CST

Microwave Studio results as shown in Fig. 7.19. In all these results, excellent

agreement is achieved.

Note that in all mutual coupling results, the mutual coupling along the H-

plane is stronger than that of the E-plane for small separations but it decreases

faster than the E-plane coupling as the separation increases. Hence, the H-plane

coupling is weaker than the E-plane coupling for large separations. The main

reason is that along the H-plane the main coupling mechanism is the space waves.

However, space waves reduce by 1/s (s: separation) for the fields. The surface

waves are very weak along this plane due to the TM01 excitation of the antennas.

On the other hand, the main coupling mechanism along the E-plane is the surface

waves (space wave coupling is very weak). Because surface waves decay with

1/
√
s, the decay of the mutual coupling along the E-plane is slower.

Finally, regarding the efficiency of the developed hybrid MoM/CFGF code, in
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Figure 7.17: H-plane coupling results for patch antenna geometry given in Fig.
7.2 with (zf ,rlf )=(0.95 cm,2 cm)
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Figure 7.18: H-plane coupling results for patch antenna geometry given in Fig.
7.4
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Figure 7.19: H-plane coupling results for patch antenna geometry given in Fig.
7.5

the course of obtaining the input impedance and mutual coupling results (using

CFGF) given in this chapter, Matlab codes are written and executed on a stan-

dard desktop personal computer (PC). The CPU time for the evaluation of CFGF

and the solution of the MoM formulation is in the order of minutes. On the other

hand, most of the simulation time is to obtain the mutual impedance terms which

include two-fold or four-fold integrals. Besides, the simulations done with CST

Microwave Studio are repeated by increasing the number of mesh cells until the

input impedance and mutual coupling results converge. The converged number

of mesh cells used in the CST Microwave Studio is in the order of tens of millions

and hence, special computers (work stations) with multi cores and RAM values

in the order of 10 GB, are used to handle the increased workload. Since the

Matlab codes for CFGF and the simulations on CST Microwave Studio are run

on different computers with different number of cores, it is not easy to compare

the CPU time of both procedures. But, although the Matlab codes are not fully

optimized in terms of CPU time and executed on a standard desktop PC, the

CPU time of both procedures is very near to each other.
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Chapter 8

Conclusions

Novel CFGF representations, which constitute the kernel of an EFIE for cylind-

rically stratified media, are developed. The developed CFGF representations are

used in an efficient and accurate hybrid MoM/Green’s function method in the

space domain for the analysis of antennas and arrays in the cylindrically stra-

tified media. The analysis and design of the microstrip antennas mounted on

aircraft, spacecraft and mobile communication applications can be made using

the proposed hybrid MoM/Green’s function method in this dissertation.

The accuracy and efficiency of the hybrid method strongly depend on the

computation of the novel Green’s function representations which are the kernel

of the integral equation solved via MoM for the unknown equivalent currents

induced on the microstrip patch antennas. In the course of obtaining the novel

CFGF representations in the space domain, first the conventional spectral do-

main Green’s function representations used for the radiation/scattering problems

[18], are written in such a form that all the Hankel (or Bessel) functions are in

the form of ratio with another Hankel (or Bessel) function. Then, the Debye

representations are defined for the ratio terms using the Debye expressions of

Hankel (or Bessel) functions available in the literature. Since when ρ = ρ′, the

summation over the cylindrical eigenmodes is slowly convergent in the spectral

domain, in the evaluation of the summation for large n values the Debye rep-

resentations are used when necessary. Therefore, possible overflow or underflow
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problems in the evaluation of the summation are handled in the spectral domain.

As the second step, in order to accelerate the summation an envelope extraction

with respect to n is applied using the series expansion of the zeroth-order Hankel

function. Similarly, using the properties of the zeroth-order Hankel function, an

envelope extraction with respect to kz is applied in order to have a fast decay-

ing spectral expression. After the envelope extractions (with respect to n and

kz), the spectral domain Green’s function representation is obtained in the most

accurate and efficient form with a fast convergent summation and a fast decay-

ing spectral behaviour. The space domain Green’s function representations are

obtained in closed-form as a sum of the complex images using DCIM after the

spectral domain counterparts are approximated as complex exponentials of kz

using GPOF. In order to increase the accuracy for ρ = ρ′ case, a new integration

path is defined in the implementation of GPOF in this dissertation. The CFGF

representations given in this dissertation are valid and accurate for all possible

ρ and ρ′ values. The CFGF representations obtained in this dissertation for the

probe-related components are presented for the first time in the open literature.

In order to use CFGF representations in the mutual impedance calculations

for the MoM procedure, the derivatives on the CFGF representations with res-

pect to z, z′, φ and φ′ are treated separately and they are transferred onto the

current modes in the mutual impedance calculations. By this way, the mutual

impedance calculations become less singular. In the evaluation of the mutual

impedance, there are two singularities. The first singularity is due to the argu-

ment of the zeroth-order Hankel function in the spectral domain and it is solved

by analytical treatment using the small argument approximation of the Hankel

function. Similarly the second singularity, which occurs in the space domain

when the source and observation points are on top of each other, is again solved

analytically.

To increase the accuracy of the MoM analysis of the antennas, probe-fed

excitations are modeled by implementing an attachment mode that is consistent

with the PWS current modes that are used as the expansion functions. The

attachment mode is defined carefully in order to increase the accuracy of the

proposed hybrid method. Numerical results in the form of input impedance of
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various microstrip antennas as well as mutual coupling between two microstrip

antennas are presented by comparing the results obtained using these novel CFGF

representations with the available results in the literature as well as the results

obtained from the CST Microwave Studio. Excellent agreement achieved which

assures the accuracy of the developed CFGF representations. As a result, the

developed CFGF representations can safely be used in the MoM-based analysis

of microstrip antennas/arrays and printed circuits on multilayered cylindrical

structures.

As the next step, the hybrid MoM/Green’s function method can be optimised

in terms of the CPU time. Besides, the CFGF representations can be obtained for

the magnetic sources and then the analysis of aperture coupled patch antennas

where a slot is present can be possible for cylindrically stratified media.
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Appendix A

Debye Approximations

In order to calculate the Green’s function representations without any overflow

or underflow problems, the Green’s function representations are written in the

form of ratios. The ratios obtained at the final expressions are J ′

n(z1)
Jn(z2)

, H
′(2)
n (z1)

H
(2)
n (z2)

and

H
(2)
n (z1)

H
(2)
n (z2)

Jn(z2)
Jn(z1)

. Also the multiplication terms H
(2)
n (z1)Jn(z2) and H

(2)
n (z1)J

′
n(z2)

exist in the Green’s function representations and these terms are also treated

as the ratio terms. Making use of the Debye representation of each cylindrical

function and its derivative [34], the Debye expressions for the following terms are

derived:

The first ratio term is J ′

n(z1)
Jn(z2)

and the following debye expression is defined

J ′
n(z1)

Jn(z2)
≈ e(s1−s2)

z1
(n2 − z21)

0.25(n2 − z22)
0.25

1− 9

24
√

n2−z21
+ 7n2

24(
√

n2−z21)
3

1 + 3

24
√

n2−z21
− 5n2

24(
√

n2−z21)
3

(A.1)

where

s1 =
√

n2 − z21 − |n| cosh−1(
|n|
z1

) (A.2)

and

s2 =
√

n2 − z22 − |n| cosh−1(
|n|
z2

). (A.3)

The following debye expression is used for the second ratio term which is
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H
′(2)
n (z1)

H
(2)
n (z2)

,

H
′(2)
n (z1)

H
(2)
n (z2)

≈ −e
(s2−s1)

z1
(n2 − z21)

0.25(n2 − z22)
0.25

1 + 3

24
√

n2−z21
− 5n2

24(
√

n2−z21)
3
)

1− 9

24
√

n2−z21
+ 7n2

24(
√

n2−z21)
3

.(A.4)

Finally, for the last ratio term (H
(2)
n (z1)

H
(2)
n (z2)

Jn(z2)
Jn(z1)

), the following debye expression

is defined as

H
(2)
n (z1)

H
(2)
n (z2)

Jn(z2)

Jn(z1)
≈ e2(s2−s1). (A.5)

Using debye approximations, the first multiplication term H
(2)
n (z1)Jn(z2) can

be computed as

H(2)
n (z1)Jn(z2) ≈

j

π

1

(n2 − z21)
0.25

1

(n2 − z22)
0.25

e(s2−s1). (A.6)

The other multiplication term H
(2)
n (z1)J

′
n(z2) is written as

H(2)
n (z1)J

′
n(z2) ≈

j

πz2

(n2 − z22)
0.25

(n2 − z21)
0.25

e(s2−s1). (A.7)
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Appendix B

Generalized Pencil of Function

(GPOF) Method

The generalized pencil of function method is used to approximate the spectral

domain Green’s function representations with complex exponentials. Since this

method is an important step in approximating the Green’s function representa-

tions, it is explained in detail in this appendix.

Similar to the Prony method and its variants [35]-[36], the pencil of function

(POF) method [37] can be used to extract the poles of an electromagnetics (EM)

system, where the poles are found from the solution of a generalized eigenvalue

problem. On the other hand, the generalized pencil of function method is a

generalization to the POF method and it is used to estimate the poles of an EM

system from its transient response [32]. The GPOF method is more robust and

less noise sensitive, compared to the Prony method.

An EM transient signal with N samples yk , can be approximated in terms of

complex exponentials as,

yk =
M
∑

i=1

bie
siδtk =

M
∑

i=1

biz
k
i k = 0, 1, ......, N − 1 (B.1)

where bi are the complex residues, si are the complex poles, and δt is the sampling

interval. The method can be briefly explained as follows:

102



1. The following matrices are constructed,

Y1 =
[

y
0
, y

1
, .........., y

L−1

]

(B.2)

Y2 =
[

y
1
, y

2
, .........., y

L

]

(B.3)

where

y
i
=
[

yi, yi+1, .........., yi+N−L−1

]T

(B.4)

and L is the pencil parameter, and its optimal choice is around L = N/2 [32].

2. Find a Z matrix (after applying the singular value decomposition (SVD)

to Y
1
),

SV D(Y
1
) = U S V H (B.5)

where U , S and V H are (N − L) × (N − L), (N − L) × L and L × L matrices,

respectively. The superscript H denotes the complex conjugate transpose of a

matrix. Note that in this study the optimal choice of L is chosen, which is

L = N/2. As a result of this choice S is now a diagonal matrix. Let S
t
be the

M ×M matrix (M is determined from the number of complex exponentials and

M ≤ L) which includes the largest diagonal terms of S in the decaying order.

Then, taking the corresponding rows and columns of U and V , two new matrices

U
t
and V

t
, respectively, are formed both of which are L ×M matrices. Using

U
t
and V

t
together with S

t
, Y

1
is written as

Y
1
= U

t
S

t
V H

t
. (B.6)

Finally, the Z matrix is defined as

Z = S−1

t
UH

t
Y

2
V

t
. (B.7)

3. The poles of the system are obtained as

si =
log zi
δt

i = 1, 2, · · ·,M (B.8)

where zi’s are the eigenvalues of the Z matrix.
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4. The residues are found from the least-squares solution of the following

system.
























1 1 · · · 1

z1 z2 · · · zM

· · · · · ·
· · · · · ·
· · · · · ·

zN−1
1 zN−1

2 · · · zN−1
M

















































b1

b2

·
·
·
bM

























=

























y0

y1

·
·
·

yN−1

























(B.9)

that can be expressed as

A b = y (B.10)

so the bi’s are found by using the pseudo-inverse of A as b = A+y.
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Appendix C

Mutual Impedance Calculations

(zz case)

C.1 General Procedure For Mutual Impedance

Calculations

The mutual impedance expression between two z− directed current modes is

written as [see (5.8)],

Z12zz =

∫ ∫ ∫ ∫

JzJz′Gzzdzdz
′dβdβ′ (C.1)

where β = ρφ, β′ = ρ′φ′, dβ = ρdφ and dβ′ = ρ′dφ′. Because the k2ρj term in the

spectral domain corresponds to (k2j − ∂2

∂z∂z′
) in the space domain, the expression

for the Green’s function representation for Gzz can be expressed as

Gzz = (k2j −
∂2

∂z∂z′
)Gzz2. (C.2)

Performing an integration by parts twice on (C.2) (also note that the current

modes are differentiable and zero at the end points), (C.1) becomes

Z12zz =

∫ ∫ ∫ ∫

(

k20JzJz′Gzz2 −
∂Jz
∂z

∂Jz′

∂z′
Gzz2

)

dzdz′dβdβ′. (C.3)
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Figure C.1: PWS current modes in the z− direction

The numerical evaluation of the four-fold integral given in (C.3) is a time consum-

ing calculation especially for the problematic cases when there is a space domain

singularity (i.e., source and observation points are on top of each other. This

situation corresponds to current modes being on the top of each other, self-term

in MoM, or partially overlapping with each other, overlapping terms in MoM).

The evaluation of the four-fold mutual impedance integrals are performed in

a similar way as explained in [38]. The starting point of this evaluation process

is (C.1). When there is no singularity in (C.1), the goal is to reduce this four-

fold integral into a two-fold integral as explained in [38]. Briefly, the mutual

impedance expression between two z− directed current modes (with dimensions

2zaxla) centered at the points (zm,βm) and (zn,βn) (as illustrated in Fig. C.1)

can be rewritten from (C.1) as

Z12zz =

∫ βm+la/2

βm−la/2

∫ βn+la/2

βn−la/2

∫ zm+za

zm−za

∫ zn+za

zn−za

Gzz
sin(ka(za − |z − zn|))

la sin(kaza)
(C.4)

sin(ka(za − |z′ − zm|))
la sin(kaza)

dzdz′dβdβ′.
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As the first step the β − β′ domain is mapped to the τ − ψ domain by applying

the following change of variables :

τ =
1√
2
(β′ − β) (C.5)

ψ =
1√
2
(β′ + β) (C.6)

dβ′dβ = dτdψ (C.7)

where the details are given in [38].

As a result of this step, the new integral variables are supposed to be τ and

ψ. However, noticing that ψ does not occur in the integrand, the ψ integral turns

out to be the end point contributions which are functions of only τ . Therefore,

the resultant three-fold integral is given by

Z12zz =

∫ τ2

τ0

Tzz(τ)

∫ zm+za

zm−za

∫ zn+za

zn−za

Gzz
sin(ka(za − |z − zn|))

la sin(kaza)
(C.8)

sin(ka(za − |z′ − zm|))
la sin(kaza)

dzdz′dτ

where

Tzz(τ) =

{

−2τ + (la + βs)
√
2 τ1 ≤ τ < τ2

2τ + (la − βs)
√
2 τ0 ≤ τ < τ1

(C.9)

with

τ0 =
βs − la√

2
(C.10)

τ1 =
βs√
2

(C.11)

τ2 =
βs + la√

2
(C.12)

and βs = βm − βn.

As the next step, after transferring the space derivatives in (C.2) onto the

basis and testing current modes [see (C.3)], the z − z′ domain is mapped to the

u − v domain in similar way (see [38] for details) by using the following change

107



of variables :

v =
1√
2
(z′ − z) (C.13)

u =
1√
2
(z′ + z) (C.14)

dz′dz = dvdu. (C.15)

As a result of this step, the new integral variables are u and v but similar to τ−ψ
case, u does not occur in the integrand. Consequently, the final two-fold mutual

impedance expression for the zz case is written as

Z12zz = (
1

la sin (kaza)
)2
∫ τ2

τ0

Tzz(τ){Iv1 + Iv2 + Iv3}dτ (C.16)

where Iv1, Iv2 and Iv3 are defined as

Iv1 = 2

∫ v3

v1

{

cos[ka(zs − v
√
2)]V zz

1 (v)(k20 − k2a)Gzz2 (C.17)

+V zz
2 (v)(k20 + k2a)Gzz2

}

dv

Iv2 =

∫ v4

v2

{

cos[ka(2za + zs − v
√
2)]V zz

3 (v)(k20 − k2a)Gzz2 (C.18)

+V zz
4 (v)(k20 + k2a)Gzz2

}

dv

Iv3 =

∫ v2

v0

{

cos[ka(2za − zs + v
√
2)]V zz

5 (v)(k20 − k2a)Gzz2 (C.19)

+V zz
6 (v)(k20 + k2a)Gzz2

}

dv

with

V zz
1 (v) =

{

v − zs−za√
2

v1 < v < v2

−v + zs+za√
2

v2 < v < v3
(C.20)

V zz
2 (v) =

{

cos (kaza)

ka
√
2

sin [ka(−v
√
2− za + zs)] v1 < v < v2

cos (kaza)

ka
√
2

sin [ka(v
√
2− za − zs)] v2 < v < v3

(C.21)
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V zz
3 (v) =

{

zs−v
√
2√

2
v2 < v < v3

−2za−zs+v
√
2√

2
v3 < v < v4

(C.22)

V zz
4 (v) =

{

− sin [ka(zs−v
√
2)]

ka
√
2

v2 < v < v3
sin [ka(2za+zs−v

√
2)]

ka
√
2

v3 < v < v4
(C.23)

V zz
5 (v) =

{

−2za+zs−v
√
2√

2
v0 < v < v1

−zs+v
√
2√

2
v1 < v < v2

(C.24)

V zz
6 (v) =

{

sin [ka(2za−zs+v
√
2)]

ka
√
2

v0 < v < v1
sin [ka(zs−v

√
2)]

ka
√
2

v1 < v < v2
(C.25)

and

v0 =
zs − 2za√

2
(C.26)

v1 =
zs − za√

2
(C.27)

v2 =
zs√
2

(C.28)

v3 =
zs + za√

2
(C.29)

v4 =
zs + 2za√

2
. (C.30)

Finally zs = zm − zn.

C.2 Overlapping Term

In the space domain MoM analysis of microstrip antennas/arrays, singularity

occurs when the two PWS current modes partially overlap with each other. The

problematic mutual impedance expression, when two z− directed current modes

partially overlap with each other (overlapping term), is the last term of (5.23)

which can be written as

Z12zz =

∫ la/2

−la/2

∫ la/2

−la/2

∫ 2za

0

∫ za

−za

1

s

(

k20JzJz′ −
∂Jz
∂z

∂J ′
z

∂z′

)

dzdz′dβdβ′ (C.31)
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where
1

s
=

1
√

(β − β′)2 + (z − z′)2
. (C.32)

Note that the constant [− j
4πωǫj

Cuv(kz∞)] is not included. Furthermore, (C.31) is

obtained after performing an integration by parts twice. Performing the change of

variables defined in (C.5)-(C.6) and evaluating the ψ and τ integrals analytically

(see [38] for the details of analytical integration of τ− integral), the Z12zz is given

by

Z12zz =

∫ 2za

0

∫ za

−za

(

t3 cos
[

ka(2za − |z′ − za| − |z|)
]

+ t4 cos
[

ka(|z′ − za| − |z|)
]

)

(

2la

[

log(
la√
2
+

√

(
z′ − z√

2
)2 +

l2a
2
)− log

∣

∣

∣

z′ − z√
2

∣

∣

∣

]

−2
√
2

[
√

(z′ − z√
2

)2

+
l2a
2
−
∣

∣

∣

z′ − z√
2

∣

∣

∣

])

dzdz′ (C.33)

where

t3 = K
[

− k20
2

− k2a
2
sign(z)sign(z′ − za)

]

, (C.34)

t4 = K
[k20
2

− k2a
2
sign(z)sign(z′ − za)

]

(C.35)

and

K =
1

[

la sin(kaza)
]2 . (C.36)

Then, performing the change of variables defined in (C.13)-(C.14), the two di-

mensional integral with respect to z and z′ can be written as a one dimensional

integral as the integration with respect to u is evaluated analytically. Finally, for

the resultant v− domain integral, we perform a final change of variable given by

α =
v

za
√
2

(C.37)

dα =
dv

za
√
2
, (C.38)
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so that the integration interval can be normalized to (0, 1.5). After arranging

and regrouping the resultant terms, the final integral expression is obtained as

Z12zz =

∫ 0.5

0

{

t5 sin(2kazaα) + t6(1− 2α) cos(2kazaα)

+t7α cos
[

kaza(1− 2α)
]

+ t8 sin
[

kaza(1− 2α)
]

}

Hr(α)dα

∫ 1

0.5

{

t5 sin
[

2kaza(1− α)
]

− t9(1− 2α) cos
[

kaza(3− 2α)
]

+t7(1− α) cos
[

kaza(1− 2α)
]

− t10 sin
[

kaza(1− 2α)
]

}

H(α)dα

∫ 1.5

1

{

t9(3− 2α) cos
[

kaza(3− 2α)
]

+ t10 sin
[

kaza(3− 2α)
]

}

H(α)dα

+Ip1 (C.39)

where

Hr(α) =
la√
2

[

log
( la
2
+

√

z2aα
2 +

l2a
2

)

− log(za)
]

−
√
2
[

√

z2aα
2 +

l2a
2
− zaα

]

(C.40)

and

H(α) =
la√
2

[

log
( la
2
+

√

z2aα
2 +

l2a
2

)

− log(zaα)
]

−
√
2
[

√

z2aα
2 +

l2a
2
− zaα

]

.

(C.41)

Ip1 is defined as

Ip1 = − la√
2

{

κ1

[

δ1 log(δ1)− δ1

]

+ κ2

[δ21
2
log(δ1)−

δ21
4

]

+ κ3

[δ31
3
log(δ1)−

δ31
9

]

}

− la√
2

∫ 0.5

δ1

{

t5 sin(2kazaα) + t6(1− 2α) cos(2kazaα)

+t7α cos
[

kaza(1− 2α)
]

+ t8 sin
[

kaza(1− 2α)
]

}

log(α)dα (C.42)
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and δ1 is a small number which is chosen as (2kazaδ1) << 1. The other parameters

are defined as

κ1 = t6 + t8 sin(kaza) (C.43)

κ2 = 2t5kaza − 2t6 + t7 cos(kaza)− 2t8kaza cos(kaza) (C.44)

κ3 = 2t7kaza sin(kaza) (C.45)

t5 =
8
√
2za
ka

cos(kaza)t3+ (C.46)

t6 = 8
√
2z2a cos(kaza)t3− (C.47)

t7 = 16
√
2z2at4+ (C.48)

t8 =
8
√
2za
ka

t4− (C.49)

t9 = 4
√
2z2at3− (C.50)

t10 =
4
√
2za
ka

t4−. (C.51)

In this expressions, t3+ and t4+ mean that sign(z)sign(z′ − za) is positive where

t3− and t4− mean that sign(z)sign(z′ − za) is negative. The integral given by

(C.39) can be computed numerically in a very easy way using a simple Gaussian

quadrature integration scheme. Finally, it should be mentioned that all the details

of this section (for its planar counterpart) can be found in [38].

C.3 Self Term

In the space domain MoM analysis of microstrip antennas/arrays, singularity

exists for the self term case which occurs when two PWS current modes are on top

of each other. Similar to the overlapping term explained in the previous section

(C.2), the singular part of the self impedance, Z12zz, integral can be written as

Z12zz =

∫ la/2

−la/2

∫ la/2

−la/2

∫ za

−za

∫ za

−za

1

s

(

k20JzJz′ −
∂Jz
∂z

∂J ′
z

∂z′

)

dzdz′dβdβ′. (C.52)

Notice that the expression is the same as (C.31)-(C.32) except the integration

limits in the z − z′ domain. Performing the change of variable defined in (C.5)-

(C.6) and evaluating the τ and ψ integrals in closed-form as explained in [38],
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Z12zz is given by

Z12zz =

∫ za

−za

∫ za

−za

{

c1 cos
[

ka(2za − |z′| − |z|)
]

+ c2 cos
[

ka(|z′| − |z|)
]

}

(

2la

[

log
( la√

2
+

√

(z′ − z√
2

)2

+
l2a
2

)

− log
∣

∣

∣

z′ − z√
2

∣

∣

∣

]

−2
√
2

[
√

(z′ − z√
2

)2

+
l2a
2
−
∣

∣

∣

z′ − z√
2

∣

∣

∣

])

dzdz′ (C.53)

where

c1 = K
[

− k20
2

− k2a
2
sign(z)sign(z′)

]

, (C.54)

c2 = K
[k20
2

− k2a
2
sign(z)sign(z′)

]

, (C.55)

and K is defined in (C.36). Then, first (C.13)-(C.14) are applied to move from

z − z′ domain to u − v domain, then the u− domain integration is performed

analytically and finally performing the change of variables given by (C.37)-(C.38)

for the v− domain integration, the final Z12zz expression is given by

Z12zz =

∫ 0.5

0

{

c3 sin
[

kaza(1− 2α)
]

+ c4α cos
[

ka2za(1− α)
]

+c5(1− 2α) cos(2kazaα) + c6 sin(2kazaα)

}

Hr(α)dα

∫ 1

0.5

{

c4(1− α) cos
[

2kaza(1− α)
]

+ c6 sin
[

2kaza(1− α)
]

}

H(α)dα

+Ip2 (C.56)

where Hr(α), H(α) are given in (C.40) and (C.41). Ip2 in (C.56) is defined as

Ip2 = − la√
2

{

d1

[

δ2 log(δ2)− δ2

]

+ d2

[δ22
2
log(δ2)−

δ22
4

]

+ d3

[δ32
3
log(δ2)−

δ32
9

]

}

− la√
2

∫ 0.5

δ2

{

c3 sin
[

kaza(1− 2α)
]

+ c4α cos
[

ka2za(1− α)
]

+c5(1− 2α) cos(2kazaα) + c6 sin(2kazaα)

}

log(α)dα (C.57)
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and δ2 is a small number where (2kazaδ2) << 1. The other parameters are given

as

d1 = c3 sin(kaza) + c5 (C.58)

d2 = −2c3kaza cos(kaza) + c4 cos(2kaza)− 2c5 + 2c6kaza (C.59)

d3 = 2c4kaza sin(2kaza) (C.60)

c3 =
za16

√
2

ka
cos(kaza)c1+ (C.61)

c4 = z2a16
√
2c1− (C.62)

c5 = z2a16
√
2c2+ (C.63)

c6 =
za8

√
2

ka
c2−. (C.64)

Similar to the overlapping case, c1+ and c2+ mean that sign(z)sign(z′) is posi-

tive and c2− mean that sign(z)sign(z′) is negative. The integral given by (C.56)

can be computed numerically using a simple Gaussian quadrature integration

scheme. Similar to the overlapping case, all details of this section (for its planar

counterpart) can be seen in [38].

C.4 Spectral Domain Singularity

Substituting (5.20) into (5.10) and performing the IFTs, the singular part of the

mutual impedance expression due to the spectral domain singularity appears as

Z12zz =

∫ ∫ ∫ ∫

(

k20JzJz′C
zz(z, z′) log(|β − β′|)

− ∂Jz
∂z

∂Jz′

∂z′
Czz(z, z′) log(|β − β′|)

)

dzdz′dβdβ′ (C.65)

where Czz(z, z′) is an expression which is a function of z and z′ only. Therefore,

the mutual impedance expression is rewritten as

Z12zz =

∫ ∫

(

k20JzJz′C
zz(z, z′)− ∂Jz

∂z

∂Jz′

∂z′
Czz(z, z′)

)

∫ ∫

log(|β − β′|)dβdβ′dzdz′.

(C.66)
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In the analytic evaluation of (C.66), the result of
∫

log(|β−β′|)dβ which is given

by
∫

log(|β − β′|)dβ = β log(|β′ − β|)− log(|β − β′|)β′ − β (C.67)

and the result of
∫ ∫

log(|β − β′|)dβdβ′ which is given by

∫ ∫

log(|β − β′|)dβdβ′ = −β
′2 log(|β′ − β|)

2
+ ββ′ log(|β′ − β|)

+
β2 log(|β′ − β|) + β

′2+2ββ′

2

2
− β(β log(|β′ − β|) + β′)− ββ′ (C.68)

are used. Using (C.68), the singular β and β′ integrals in (C.66) are evaluated

analytically. z and z′ integrals in (C.66) are evaluated using the v integral [after

it is applied to (C.66) as it is given in (C.16)] in order to reduce the integral to a

one-fold integral. Note that in the evaluation of (C.65), when using the v integral

(to evaluate z and z′ integrals) as given in (C.16), the τ integral (C.16) is not

considered since the β and β′ integrals are already evaluated using (C.68).
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Appendix D

Mutual Impedance Calculations

(zφ = φz case)

D.1 General Procedure For Mutual Impedance

Calculations

Figure D.1: Current modes in the z− and φ− directions
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Similar to the zz case, the mutual impedance expression between a z− and a

φ− directed current modes (shown in Fig. D.1) is written [see (5.8)] as

Z12zφ =

∫ ∫ ∫ ∫

JzJφ′Gzφdzdz
′dβdβ′. (D.1)

The zφ = φz components of the Green’s function representation in the space

domain can be written as follows:

Gzφ = j
∂

∂z
j
∂

∂φ′Gzφ2. (D.2)

Performing an integration by parts twice on (D.2) together with the PWS current

modes, the mutual impedance expression is obtained as

Z12zφ =

∫ ∫ ∫ ∫

(−j)∂Jz
∂z

(−j)∂Jφ′

∂φ′ Gzφ2dzdz
′dβdβ′. (D.3)

When there is no singularity, this four-fold mutual impedance integral is reduced

to a two-fold integral as follows (the details for this part (for its planar counter-

part) can be found in [38]): The mutual impedance expression between a z− and

a φ− directed current modes (with the size and location parameters as depicted

in Fig. D.1) is rewritten from (D.1) as

Z12zφ =

∫ βm+la

βm−la

∫ βn+la/2

βn−la/2

∫ zm+za/2

zm−za/2

∫ zn+za

zn−za

Gzφ
sin(ka(za − |z − zn|))

la sin(kaza)
(D.4)

sin(ka(la − |β′ − βm|))
za sin(kala)

dzdz′dβdβ′.

After transferring the spatial derivatives [see (D.2)] onto the basis and testing

functions [see (D.3)], and following the same procedure given in Appendix C.1,

the z− z′ domain is mapped to the u− v domain given by (C.13)-(C.15) [38]. As

a result of this step, the following three-fold integral expression is obtained:

Z12zφ = [
ka√

2za sin (kala)
]

∫ βm+la

βm−la

∫ βn+la/2

βn−la/2

cos [ka(la − |β′ − βm|)]

sign(β′ − βm){
∫ vzφ3

vzφ0

V zφ(v)Gzφ2dv}dβdβ′ (D.5)

where

V zφ(v) =



































− sin [ka(1.5za − zs + v
√
2)] vzφ0 < v < vzφ1

2 cos (kaza
2

) sin [ka(v
√
2− zs)] vzφ1 < v < vzφ2

sin [ka(1.5za + zs − v
√
2)] vzφ2 < v < vzφ3

(D.6)
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with

vzφ0 =
zs − 1.5za√

2
(D.7)

vzφ1 =
zs − 0.5za√

2
(D.8)

vzφ2 =
zs + 0.5za√

2
(D.9)

vzφ3 =
zs + 1.5za√

2
(D.10)

and zs = zm−zn. As the next step, converting the β−β′ domain integration into

a τ − ψ domain integration using the change of variables given by (C.5)-(C.7)

(see [38] for details), the final two-fold mutual impedance integral expression for

zφ = φz case becomes

Z12zφ = (
2

zala sin (kaza) sin (kala)
)

∫ τzφ3

τzφ0

Tzφ(τ){
∫ vzφ3

vzφ0

V zφ(v)Gzφ2dv}dτ

(D.11)

where

T zφ(τ) =



































− sin [ka(
3la
2
− βs + τ

√
2)] τ zφ0 < τ < τ zφ1

−2 cos (kala
2
) sin [ka(βs − τ

√
2)] τ zφ1 < τ < τ zφ2

sin [ka(
3la
2
+ βs − τ

√
2)] τ zφ2 < τ < τ zφ3

(D.12)

with

τ zφ0 =
βs − 3la

2√
2

(D.13)

τ zφ1 =
βs − la

2√
2

(D.14)

τ zφ2 =
βs +

la
2√

2
(D.15)

τ zφ3 =
βs +

3la
2√

2
(D.16)

and βs = βm − βn.
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D.2 Overlapping Term

In the course of evaluating the mutual impedance integral for the zφ case, the

most singular situation is the overlapping case since the self term case does not

exist for the zφ case. Similar to the zz case, the singular part for Z12zφ is coming

from the last term of (5.23) when (5.23) is substituted into (D.3). Ignoring the

constants, the singular term can be written as

Z12zφ =

∫ 2la

0

∫ la

0

∫ za

0

∫ 2za

0

∂Jz
∂z

∂Jφ′

∂φ′
1

√

(β − β′)2 + (z − z′)2
dzdz′dβdβ′. (D.17)

In order to perform the four-fold integral given by (D.17) accurately and effi-

ciently, first the integration with respect to z′ is evaluated analytically given by

∫

1
√

(β − β′)2 + (z − z′)2
dz′ = sinh−1

( z′ − z

|β − β′|
)

= csch−1
( |β − β′|
z′ − z

)

. (D.18)

Then, the β integral is evaluated analytically as given by

∫

sinh−1(
z′ − z

|β − β′|)dβ = Izφ(β, β
′, z, z′) =

=

(

|β − β′|
z′ − z

sinh−1(
z′ − z

|β − β′|) + sign(
|β − β′|
z′ − z

)sinh−1(
|β − β′|
z′ − z

)

)

sign(β′ − β)(z − z′).

(D.19)

As a result of these steps, the mutual impedance integral given by (D.17) is now

a two-fold integral given by

Z12zφ =

∫ 2la

0

∫ 2za

0

∂Jz
∂z

∂Jφ′

∂φ′

[

(

Izφ(la, β
′, z, 2za)− Izφ(la, β

′, z, 0)
)

−
(

Izφ(0, β
′, z, 2za)− Izφ(0, β

′, z, 0)
)

]

dzdβ (D.20)

where Izφ(β, β
′, z, z′) is given in (D.19).

(D.20) can be evaluated in an efficient way using a simple Gaussian quadrature

algorithm and can be used for all cases that a possible singularity occurs ( partially

overlapping, touching through a corner or an edge, etc.).
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D.3 Spectral Domain Singularity

Substituting (5.20) into (5.11) for uv = zφ (= φz) and performing the IFTs,

the singular part of the mutual impedance expression due to the spectral domain

singularity appears as

Z12zφ =

∫ ∫ ∫ ∫

(−j)∂Jz
∂z

(−j)∂Jφ′

∂φ′ log(|β − β′|)dzdz′dβdβ′ (D.21)

where the constants are not included. Singular part is the same as that of the

zz case. Hence, (C.67) is used for the evaluation of the β integral. Then, the

v integral (τ integral is not considered) given in (D.11) is used for the z and

z′ integrals in (D.21). Finally, the remaining β′ and v integrals (v integral is

obtained for (D.21) as given in (D.11)) are evaluated as two-fold integrals using

a simple Gaussian quadrature algorithm.

120



Appendix E

Mutual Impedance Calculations

(φφ case)

E.1 General Procedure for Mutual Impedance

Calculations

Similar to the zz case, the mutual impedance calculation between two φ− directed

current modes can be expressed as [see (5.8)]

Z12φφ =

∫ ∫ ∫ ∫

JφJφ′Gφφdzdz
′dβdβ′. (E.1)

Noticing that n2 in the spectral domain corresponds to derivative with respect to φ

and φ′ in the space domain, the expression for the Green’s function representation

Gφφ can be written as

Gφφ =
∂2Gφφ2

∂φ∂φ′ . (E.2)

Performing an integration by parts twice on (E.2) (also note that PWS current

modes are differentiable and zero at the end points), the final mutual impedance

expression becomes

Z12φφ =

∫ ∫ ∫ ∫

∂Jφ
∂φ

∂Jφ′

∂φ′ Gφφ2dzdz
′dβdβ′. (E.3)
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This four-fold integral for the φφ case can be reduced to a two-fold integral using

the same methodology given for the zz case as explained in Appendix C.1. In the

course of obtaining the final expressions for the φφ case z is changed by β and z′

is changed by β′. Consequently, the final two-fold mutual impedance integral for

the φφ case can be expressed as

Z12φφ = (
1

za sin (kala)
)2
∫ τ2

τ0

Tφφ(τ){Iv1 + Iv2 + Iv3}dτ (E.4)

where

Tφφ(τ) =

{

−2τ + (za + zs)
√
2 τ1 ≤ τ < τ2

2τ + (za − zs)
√
2 τ0 ≤ τ < τ1

(E.5)

with

τ0 =
zs − za√

2
(E.6)

τ1 =
zs√
2

(E.7)

τ2 =
zs + za√

2
(E.8)

and zs = zm − zn as defined in Appendix C. Furthermore, in (E.4) Iv1, Iv2 and

Iv3 are defined as

Iv1 = 2

∫ v3

v1

{

cos[ka(βs − v
√
2)]V φφ

1 (v)Gφφ2 (E.9)

+V φφ
2 (v)Gφφ2

}

dv

Iv2 =

∫ v4

v2

{

cos[ka(2la + βs − v
√
2)]V φφ

3 (v)Gφφ2 (E.10)

+V φφ
4 (v)Gφφ2

}

dv

Iv3 =

∫ v2

v0

{

cos[ka(2la − βs + v
√
2)]V φφ

5 (v)Gφφ2 (E.11)

+V φφ
6 (v)Gφφ2

}

dv
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with

V φφ
1 (v) =

{

v − βs−la√
2

v1 < v < v2

−v + βs+la√
2

v2 < v < v3
(E.12)

V φφ
2 (v) =

{

cos (kala)

ka
√
2

sin [ka(−v
√
2− la + βs)] v1 < v < v2

cos (kala)

ka
√
2

sin [ka(v
√
2− la − βs)] v2 < v < v3

(E.13)

V φφ
3 (v) =

{

βs−v
√
2√

2
v2 < v < v3

−2la−βs+v
√
2√

2
v3 < v < v4

(E.14)

V φφ
4 (v) =

{

− sin [ka(βs−v
√
2)]

ka
√
2

v2 < v < v3
sin [ka(2la+βs−v

√
2)]

ka
√
2

v3 < v < v4
(E.15)

V φφ
5 (v) =

{

−2la+βs−v
√
2√

2
v0 < v < v1

−βs+v
√
2√

2
v1 < v < v2

(E.16)

V φφ
6 (v) =

{

sin [ka(2la−βs+v
√
2)]

ka
√
2

v0 < v < v1
sin [ka(βs−v

√
2)]

ka
√
2

v1 < v < v2
(E.17)

and

v0 =
βs − 2la√

2
(E.18)

v1 =
βs − la√

2
(E.19)

v2 =
βs√
2

(E.20)

v3 =
βs + la√

2
(E.21)

v4 =
βs + 2la√

2
. (E.22)

Finally βs = βm − βn as defined in Appendix C.1.
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E.2 Overlapping Term

Similar to the zz case, the singular part of the mutual impedance expression,

when two φ− directed current modes partially overlap with each other, is the last

term of (5.23) which can be written as

Z12φφ =

∫ 2la

0

∫ la

−la

∫ za/2

−za/2

∫ za/2

−za/2

1

s

∂Jφ
∂φ

∂Jφ′

∂φ′ dzdz
′dβdβ′. (E.23)

where 1
s
is defined in (C.32). For the φφ case, the corresponding integral given

in (C.33) is obtained as

Z12φφ =

∫ 2la

0

∫ la

−la

(

t3 cos
[

ka(2la − |β′ − la| − |β|)
]

+ t4 cos
[

ka(|β′ − la| − |β|)
]

)

(

2za

[

log(
za√
2
+

√

(
β′ − β√

2
)2 +

z2a
2
)− log

∣

∣

∣

β′ − β√
2

∣

∣

∣

]

−2
√
2

[
√

(β′ − β√
2

)2

+
z2a
2

−
∣

∣

∣

β′ − β√
2

∣

∣

∣

])

dβdβ′ (E.24)

where

t3 = K
[

sign(β)sign(β′ − la)
]

(E.25)

t4 = K
[

sign(β)sign(β′ − la)
]

(E.26)

K =
−kaρ

2
[

za sin(kala)
]2 . (E.27)

Following the same methodology given in Appendix C.2 and making use of [38]

for the details, the final integral expression is given by

Z12φφ =

∫ 0.5

0

{

t5 sin(2kalaα) + t6(1− 2α) cos(2kalaα)

+t7α cos
[

kala(1− 2α)
]

+ t8 sin
[

kala(1− 2α)
]

}

Hr(α)dα

∫ 1

0.5

{

t5 sin
[

2kala(1− α)
]

− t9(1− 2α) cos
[

kala(3− 2α)
]
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+t7(1− α) cos
[

kala(1− 2α)
]

− t10 sin
[

kala(1− 2α)
]

}

H(α)dα

∫ 1.5

1

{

t9(3− 2α) cos
[

kala(3− 2α)
]

+ t10 sin
[

kala(3− 2α)
]

}

H(α)dα

+Ip1 (E.28)

where

Hr(α) =
za√
2

[

log
(za
2

+

√

l2aα
2 +

z2a
2

)

− log(la)
]

−
√
2
[

√

l2aα
2 +

z2a
2

− laα
]

(E.29)

and

H(α) =
za√
2

[

log
(za
2

+

√

l2aα
2 +

z2a
2

)

− log(laα)
]

−
√
2
[

√

l2aα
2 +

z2a
2

− laα
]

.

(E.30)

Ip1 in (E.24) is defined as

Ip1 = − za√
2

{

κ1

[

δ1 log(δ1)− δ1

]

+ κ2

[δ21
2
log(δ1)−

δ21
4

]

+ κ3

[δ31
3
log(δ1)−

δ31
9

]

}

− za√
2

∫ 0.5

δ1

{

t5 sin(2kalaα) + t6(1− 2α) cos(2kalaα)

+t7α cos
[

kala(1− 2α)
]

+ t8 sin
[

kala(1− 2α)
]

}

log(α)dα (E.31)

and δ1 is a small number which is chosen as (2kalaδ1) << 1. The other parameters

in (E.24)-(E.31) are defined as

κ1 = t6 + t8 sin(kala) (E.32)

κ2 = 2t5kala − 2t6 + t7 cos(kala)− 2t8kala cos(kala) (E.33)

κ3 = 2t7kala sin(kala) (E.34)

t5 =
8
√
2la
ka

cos(kala)t3+ (E.35)

t6 = 8
√
2l2a cos(kala)t3−
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t7 = 16
√
2l2at4+ (E.36)

t8 =
8
√
2la
ka

t4− (E.37)

t9 = 4
√
2l2at3− (E.38)

t10 =
4
√
2la
ka

t4−. (E.39)

In this expressions, t3+ and t4+ mean that sign(β)sign(β′ − la) is positive where

t3− and t4− mean that sign(β)sign(β′ − la) is negative.

E.3 Self Term

Similar to the zz case, explained in Appendix C.3, the singular part of the self

impedance (i.e., mutual impedance when source and field points overlap with

each other), Z12φφ, integral can be written as

Z12φφ =

∫ la

−la

∫ la

−la

∫ za/2

−za/2

∫ za/2

−za/2

1

s

∂Jφ
∂φ

∂Jφ′

∂φ′ dzdz
′dβdβ′. (E.40)

Following the same methodology given in Appendix C.2 and C.3 and making use

of [38] for the details, the final integral expression is given by

Z12φφ =

∫ 0.5

0

{

c3 sin
[

kala(1− 2α)
]

+ c4α cos
[

ka2la(1− α)
]

+c5(1− 2α) cos(2kalaα) + c6 sin(2kalaα)

}

Hr(α)dα

∫ 1

0.5

{

c4(1− α) cos
[

2kala(1− α)
]

+ c6 sin
[

2kala(1− α)
]

}

H(α)dα

+Ip2 (E.41)

with

Ip2 = − za√
2

{

d1

[

δ2 log(δ2)− δ2

]

+ d2

[δ22
2
log(δ2)−

δ22
4

]

+ d3

[δ32
3
log(δ2)−

δ32
9

]

}

− za√
2

∫ 0.5

δ2

{

c3 sin
[

kala(1− 2α)
]

+ c4α cos
[

ka2la(1− α)
]

+c5(1− 2α) cos(2kalaα) + c6 sin(2kalaα)

}

log(α)dα (E.42)
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In (E.42), δ2 is a small number where (2kazaδ2) << 1. The other parameters in

(E.41)-(E.42) are given as

d1 = c3 sin(kala) + c5 (E.43)

d2 = −2c3kala cos(kala) + c4 cos(2kala)− 2c5 + 2c6kala (E.44)

d3 = 2c4kala sin(2kala) (E.45)

c3 =
la16

√
2

ka
cos(kala)c1+ (E.46)

c4 = l2a16
√
2c1− (E.47)

c5 = l2a16
√
2c2+ (E.48)

c6 =
la8

√
2

ka
c2− (E.49)

c1 = K
[

sign(β)sign(β′)
]

(E.50)

c2 = K
[

sign(β)sign(β′)
]

. (E.51)

Similar to the overlapping case, c1+ and c2+ mean that sign(β)sign(β′) is positive.

Also c1− and c2− mean that sign(β)sign(β′) is negative. Hr(α) andH(α) are given

in (E.29) and (E.30), respectively.

E.4 Spectral Domain Singularity

Substituting (5.20) into (5.12) for uv = φφ and performing the IFTs, the singular

part of the mutual impedance expression due to the spectral domain singularity

appears as

Z12φφ =

∫ ∫ ∫ ∫

∂Jφ
∂φ

∂Jφ′

∂φ′ log(|β − β′|)dzdz′dβdβ′ (E.52)

where the constants are not included. Since the spectral domain singularity is

related with (β − β′) and the current modes are dependent on φ and φ′ (or β

and β′) the solution for the spectral domain singularity given for the zz case can

not be used for the φφ case. Therefore, let the center points of the Jφ′ and Jφ

current modes (both of them have dimensions 2la × za) be at βm, zm and βn, zn,

respectively. The spectral domain singularity in (E.52) appears in two different
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cases. In the first case, the singularity appears when βm − βn = la regardless of

zm − zn. For this case (E.52) can be written as

Z12φφ =

∫ 2la

0

∫ la

−la

∫ ∫

∂Jφ
∂φ

∂Jφ′

∂φ′ log(|β − β′|)dzdz′dβdβ′. (E.53)

Performing the z and z′ integrals (the integrand does not depend on z and z′ and

the width of both current modes are za), (E.53) is reduced to

Z12φφ =

∫ 2la

0

∫ la

−la

(

t3 cos
[

ka(2la − |β′ − la| − |β|)
]

+ t4 cos
[

ka(|β′ − la| − |β|)
]

)

(

z2a log(|β − β′|)
)

dβdβ′ (E.54)

where t3 and t4 are defined in (E.25) and (E.26). Note that (E.54) is similar to

(E.24). In (E.24), the corresponding integrand for z2a log(|β − β′|) term is

Ht =

(

2za

[

log(
za√
2
+

√

(
β′ − β√

2
)2 +

z2a
2
)− log

∣

∣

∣

β′ − β√
2

∣

∣

∣

]

−2
√
2

[
√

(β′ − β√
2

)2

+
z2a
2

−
∣

∣

∣

β′ − β√
2

∣

∣

∣

])

. (E.55)

Using (C.37) and (C.13) (also changing z, z′, za and la for the zz case with β, β′,

la and za is necessary), when 2laα is substituted instead of β′ − β in (E.55), the

following is obtained.

Ht|(β′−β)=2laα = 2
√
2H(α) (E.56)

where H(α) is given in (E.30). Therefore, for the z2a log(|β − β′|) term, the

corresponding H(α) and Hr(α) expressions (substituting 2laα instead of β′ − β)

can be defined as

H(α) =
z2a√
2
log(2laα) (E.57)

Hr(α) =
z2a√
2
log(2la). (E.58)

As a result, for the numerical evaluation of (E.53) or (E.54), the expression given

in (E.28) is used with the H(α) and Hr(α) expressions given in (E.57) and (E.58).
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The spectral singularity also appears when βm = βn (the second case) as given

in the following expression

Z12φφ =

∫ la

−la

∫ la

−la

∫ ∫

∂Jφ
∂φ

∂Jφ′

∂φ′ log(|β − β′|)dzdz′dβdβ′. (E.59)

As explained for the βm − βn = la case, in the course of the numerical evaluation

of (E.59), (E.41) is used with the H(α) and Hr(α) expressions given in (E.57)

and (E.58), respectively.
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Appendix F

Even and Odd Properties of

Green’s Functions and Mutual

Impedance

In this dissertation, even and odd properties of the Green’s function components

are used in order to increase the efficiency of the computation procedure. Table

F.1 depicts the even and odd properties of the components of the spectral and the

space domain Green’s function representations with respect to kz or ∆z = (z−z′)
and ∆φ = (φ − φ′), respectively. In the spectral domain, the summation with

kz/∆z n/∆φ

G̃zz/Gzz even even

G̃zφ/Gzφ odd odd

G̃φz/Gφz odd odd

G̃φφ/Gφφ even even

G̃zρ/Gzρ odd even

G̃φρ/Gφρ even odd

G̃ρz/Gρz odd even

G̃ρφ/Gρφ even odd

Table F.1: Even and odd properties of the components of the spectral and the
space domain Green’s function representations
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∆z,∆φ −∆z,∆φ ∆z,−∆φ −∆z,−∆φ
Z12zz azz azz azz azz
Z12zφ azφ −azφ −azφ azφ
Z12φz azφ −azφ −azφ azφ
Z12φφ aφφ aφφ aφφ aφφ
Vzρ azρ −azρ azρ −azρ
Vρz −azρ azρ −azρ azρ
Vφρ aφρ aφρ −aφρ −aφρ
Vρφ −aφρ −aφρ aφρ aφρ

Table F.2: Even and odd properties of mutual impedance

respect to the cylindrical eigenmodes n that ranged from −∞ to ∞ are folded to

range from 0 to ∞ using the third column of Table F.1. Similarly, in the course

of obtaining the space domain Green’s function representations the kz integral is

evaluated over the range from 0 to ∞ using Table F.1. In Table F.1, the even

and odd properties of the space domain Green’s functions are also given for the

sake of completeness.

In the MoM analysis of antennas or arrays, Table F.2 is used in order to obtain

the impedance matrix and the voltage vector efficiently. In Table F.2, the even

and odd properties of the mutual impedances are given. In the MoM analysis,

only one of the four different (∆z, ∆φ) combinations is computed. For the other

combinations, Table F.2 is used in order to increase the efficiency of the MoM

analysis.
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