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ABSTRACT

METHOD OF MOMENTS ANALYSIS OF MICROSTRIP
ANTENNAS IN CYLINDRICALLY STRATIFIED
MEDIA USING CLOSED-FORM GREEN’S FUNCTIONS

Sakir Karan
Ph.D in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Vakur B. Ertiirk
July, 2012

Numerical methods based on Method of Moments (MoM) have been widely used

for the design and analysis of planar microstrip antennas/arrays and printed cir-
cuits for various applications for many years. On the other hand, although the
design and analysis of similar antennas/arrays and printed circuits on cylindrical
structures are of great interest for many military, civil and commercial applica-
tions, their MoM-based analysis suffers from the efficiency and accuracy prob-
lems related with the evaluation of the Green’s function representations which
constitute the kernel of the regarding integral equations. In this dissertation,
novel closed-form Green’s function (CFGF) representations for cylindrically stra-
tified media, which can be used as the kernel of an electric field integral equation
(EFIE) are developed. The developed CFGF representations are used in a hybrid
MoM/Green’s function solution procedure.

In the course of obtaining the CFGF representations, first the conventional
spectral domain Green’s function representations are modified so that all the
Hankel (Bessel) functions are written in the form of ratio with another Hankel
(Bessel) function. Furthermore, Debye representations for the ratio terms are
used when necessary in order to avoid the possible overflow and underflow prob-
lems. Acceleration techniques that are present in the literature are implemented
to further increase the efficiency and accuracy of the summation and integration.
Once the acceleration techniques are performed, the resultant expressions are
transformed to the space domain in the form of discrete complex images (DCIM)
with the aid of the generalized pencil of function (GPOF) method and the fi-
nal CFGF expressions are obtained by performing the resultant space domain
integrals analytically.
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The novel CFGF expressions are used in conjunction with MoM for the in-
vestigation of microstrip antennas on cylindrically stratified media. The singular
terms in mutual impedance calculations are treated analytically. The probe-fed
excitation is modeled by implementing an attachment mode that is consistent
with the current modes that are used to expand the induced current on the
patches. In the course of modeling the probe-fed excitation, the probe-related
components of CFGF representations are also derived for the first time in the
literature and MoM formulation is given in the presence of an attachment mode.
Consequently, several microstrip antennas and two antenna arrays are investi-
gated using a hybrid MoM /Green’s function technique that use the CFGF repre-
sentations developed in this dissertation. Numerical results in the form of input
impedance of microstrip antennas in the presence of several layers as well as the
mutual coupling between two microstrip antennas are presented and compared
with the available results in the literature and the results obtained from the CST

Microwave Studio.

Keywords: Cylindrically stratified media, closed-form Green’s function represen-
tations, discrete complex image method, generalized pencil of function method,

Method of Moments, input impedance, mutual coupling.
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OZET

KAPALI FORMDA GREEN’IN FONKSIYONLARINI
KULLANARAK SILINDIRIK KATMANLI
YUZEYLERDE MIKROSERIT ANTENLERIN

MOMENTLER METODU ILE ANALIZI

Sakir Karan
Elektrik ve Elektronik Miihendisligi, Doktora
Tez Yoneticisi: Vakur B. Ertiirk
Temmuz, 2012

Uzun yillar boyunca degigik uygulamalar i¢in diizlemsel mikrogerit anten/dizi
ve devrelerin analiz ve tasarim caligmalar1 icin Momentler Metoduna dayal
niimerik metodlar kullanilmigtir.  Ote yandan benzer anten/dizi ve devrelerin
silindirik yapilardaki analiz ve tasarim caligmalar1 bircok askeri, sivil ve ticari
uygulamalar icin ilgi odagi olsa da Momentler Metod’ una dayali analizler ilgili in-
tegral denkleminin ¢ekirdeginde yer alan Green’in fonksiyonunun dogrulugundan
ve etkinliginden yoksundur. Bu doktora tezinde, elektrik alan integral denkle-
minin ¢ekirdegini olugturabilecek yeni kapali-formda Green’in fonksiyonlar: elde
edilmektedir. Elde edilen kapali-formdaki ifadeler birlesik Momentler Metodu/
Green’in fonksiyonu ¢oztimiinde kullanilmigtir.

Kapali-formdaki ifadeleri elde ederken, oncelikle izgel uzaydaki Green’in
fonksiyonlar1 degistirilerek her Hankel (Bessel) fonksiyonu bir diger Hankel
(Bessel) fonksiyonu ile oran sgeklinde yazilmigtir. Ayrica, agirn azalan ve ar-
tan problemlerini ¢6zmek i¢in oran terimleri i¢in Debye ifadeleri kullanilmigtir.
Toplamin ve integralin etkinligini ve dogrulugunu arttirmak icin literatiirde hazir
olan hizlandirma teknikleri kullanilmigtir. Hizlandirma teknikleri uygulandiktan
sonra uzamsal uzaydaki ifadeler genellestirilmig kalem fonksiyonu metodu ile ayrik
kompleks imgeler sekline donmiigtiir ve en son kapali-formdaki ifade uzamsal

uzaydaki integrallerin analitik olarak alinmas ile elde edilmistir.

Yeni kapali-formdaki ifadeler mikrogerit antenlerin silindirik katmanli ortamda
analizi icin Momentler Metodu ile kullanilmigtir. Karsilikli etkilegsim hesabinda
tekil ifadeler analitik olarak hesaplanmigtir. Prob ile beslemeyi modellemek i¢in

yama anten tizerindeki akimlari agcmak i¢in kullanilan akim modlari ile uyumlu ek
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akim modu tanimlanmistir. Prob ile beslemeyi modellemek i¢in kullanilan prob
ile ilgili terimler literatiirde ilk defa verilmistir ve Momentler Metodu formu-
lasyonu ek akim modunun varhiginda tanimlanmigtir. Sonug olarak bu doktora
tezinde elde edilen kapali-formdaki Green’in fonksiyonlar: kullanilarak birlesik
Momentler Metodu/Green’in fonksiyonu yardimi ile degisik anten ve ikili dizi
antenler incelenmistir. Niimerik sonug olarak birka¢ katmanin oldugu durumda
serit antenlerin giris empedanslari ve iki serit anten arasindaki karsilikl etkiletigim
sonugclar1 verilmig, literatiirde yer alan ve CST Microwave Studio programindan

elde edilen sonuclar ile kargilagtirilmigtar.

Anahtar sozciikler: Silindirik katmanlh ortamlar, kapali-formda Green’in fonksi-
yonu gosterimleri, ayrik kompleks imge metodu, genellestirilmisg kalem fonksiyonu

metodu, Momentler Metodu, giris empedansi, karsilikli etkilegim.
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Chapter 1

Introduction

Numerical methods based on Method of Moments (MoM) have been widely used
for the design and analysis of planar microstrip antennas/arrays and printed cir-
cuits for various applications for many years [1]-[2]. In general the structures of
interest are open geometries. Hence, an integral equation (IE) is usually set up
and the closed-form Green’s function (CFGF) representations are used as the ker-
nel of this IE [3]-[7]. Then the IE is solved using the MoM based algorithms. On
the other hand, although the design and analysis of similar antennas/arrays and
printed circuits on cylindrical structures are of great interest for many military,
civil and commercial applications, their MoM based analysis suffers from the effi-
ciency and accuracy problems related with the evaluation of the available Green’s

function representations that can be used for cylindrically stratified media.

A number of studies regarding the Green’s functions in cylindrically stratified
media have been reported before [8]-[25]. More references on the conventional
spectral domain and asymptotic Green’s function representations particularly
for single layer dielectric deposited on a perfectly conducting cylinder can be
found in [15] and [16]. However, a vast majority of the above mentioned Green’s
function representations (derived for cylindrically stratified media) are not in
closed form. Besides, convergence of these expressions become an important
issue from the accuracy and efficiency point of views for antenna and/or mutual

coupling problems. On the other hand, most of the studies on the subject of
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CFGEF for cylindrically stratified media have the CFGF expressions that are valid
when the source and observation (or field) points are on different radial distances
from the axis of the cylinder [17]-[21]. Therefore, these expressions are useful
for radiation/scattering problems, provided that the current distribution on the
radiating structure is known. However, they cannot be used in conjunction with
a MoM based algorithm to find the input impedance of an antenna and/or the

mutual coupling between antennas.

Closed-form expressions that can be used in MoM-based algorithms to inves-
tigate cylindrically conformal microstrip antennas and arrays are given in [22].
However, provided closed-from expressions are for the impedance matrix elements
and the voltage vector elements (using entire domain basis functions) rather than
the Green’s functions. In [23], CFGF expressions to be used in the mixed po-
tential integral equation (MPIE) have been presented. Although, these CFGF
expressions (provided in [23]) are valid when the source and the observation points
are located at the same radial distance from the axis of the cylinder, the final
expressions are not valid along the axial line (defined as p = p/ and ¢ = ¢')
as well as on a certain region of the cylinder surface where the source and field
points are very close to each other (will be referred to as the “source region”
thereafter). Recently, novel CFGF representations that can be used in MoM-
based algorithms for the solution of an IE have been presented in [25]-[28] to
rigorously analyze antenna problems on cylindrically stratified media. However,
presented CFGF representations in these studies are not valid on the source re-
gion. Therefore, an alternative representation must be used for the evaluation of
the MoM impedance matrix entries that represent the interaction of two current

modes when they partially or fully overlap with each other.

In this dissertation, an efficient and accurate space domain hybrid
MoM/Green’s function method [29]-[31] is developed, which combines the MoM
with the novel CFGF representations provided again in this dissertation. As the
first step of this method, an electric field integral equation (EFIE) is formulated
that uses the aforementioned novel CFGF representations as its kernel. Basically,

for a probe-fed microstrip patch antenna element on a dielectric coated perfect



conducting patch S patch

(a) Original Problem (b) Equivalent Problem

Figure 1.1: Equivalence principle

electric conducting (PEC) circular cylinder (see Fig. 1.1(a)), an equivalent prob-
lem (see Fig. 1.1(b)) is formed such that the conducting patch is replaced with
the unknown equivalent induced currents making use of the surface equivalence

principle. The total electric field, E(7), is written as
E(r) = E'(r) + E°(7) (1.1)

where E'(7) is the field produced by a known probe current density J*(7’) in the

presence of a dielectric coated PEC cylinder and its generic form is given by

sz//ﬂmfwﬁmzwmﬂ (1.2)

where G(7/7') denotes the dyadic form of the CFGF representations involving the
probe-related components with primed and unprimed coordinates representing
the source and observation points, respectively. Similarly, E°(7) is the scattered

field and its generic form can be expressed as
g = [ [ G (13)
Santenna o

where G(7/7') denotes the dyadic form of the CFGF representations involving

the tangential components and J*(7’) is the unknown induced current to be
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determined at the end of the MoM procedure. An EFIE is established by setting
the tangential components of the total electric field (1.1) to zero on the conducting

surface of the patches leading to
A x E(F) =nx [E'(F) + E*(F)] = 0 on Spatch (1.4)
where n is p for this problem.

The second step is the MoM solution procedure and starts by expanding the
induced current J, on each conducting patch shown in Fig. 1.1(a) in terms of

a finite set of subsectional basis functions. For each patch J, is expanded as

follows:
N
1) = 3w, (7) (15)
n=1
where
J () = fp(f’)% p=1,.... , P on each patch (16)
g™, k=1,..... , K on each patch

with N = P+ K as shown Fig. 1.1(b). In (1.5) a,’s are the unknown coeflicients
to be solved at the end of the MoM procedure, and J, () # 0 only if 7 € Sp;
U1 Sn = Spaten, ; @ = 1, ..., # of patches.

First substituting (1.2) and (1.3) into (1.4) and then substituting (1.5) and
(1.6) into the resultant equation, a single equation with N unknowns (for each
patch) can be obtained. Using a set of weighting (testing) functions denoted by

Wi (T ) (M =1,..., N), the following matrix equation is obtained
Z1I=V (1.7)

where

Do = / /S s (1) / /S s, G /7)) (1.8)

I, = a, (1.9)

Vi = —//m dSmWy, - B (T ) (1.10)



with m,n = 1,..., N. In this dissertation, piecewise sinusoidal (PWS) functions
are used for both expansion and testing functions. Because testing and expansion
functions are selected to be the same, this testing method is called Galerkin’s

method.

The efficiency and accuracy, which are the major issues in this hybrid method,
are mainly determined by the computation of the Green’s function representa-
tions which should be accurate for arbitrary source and observation locations.
Therefore, we provide novel CFGF representations to be used as the kernel of the
EFIE. The derivation of these novel CFGF representations starts by expressing
the conventional spectral domain Green’s function representations in a different
form by (i) recognizing the Fourier transform based relations between the spect-
ral domain variables and the space domain variables, and (ii) writing the special
cylindrical functions, such as Bessel and Hankel functions, in the form of ratios
(i.e., each Hankel (Bessel) function is written in ratio form with another Hankel
(Bessel) function). Furthermore, these ratios are evaluated directly and Debye
representation (given in Appendix A) of these special functions is used when nec-
essary during the evaluation of the ratios. Therefore, possible overflow /underflow
problems in the numerical calculations of these functions are completely avoided.
Then, the summation over the cylindrical eigenmodes, n, is performed in the
spectral domain. Numerical evaluation of large n values that appear in the or-
ders of special functions (Hankel and Bessel functions), especially for electrically
large cylinders, do not create numerical problems due to the aforementioned way
of expressing the spectral domain Green functions and due to Debye approxima-
tions used when necessary. Furthermore, acceleration techniques that are pre-
sented in [23] are implemented to further increase the efficiency and accuracy of
the summation and integration. Once the acceleration techniques are performed,
the Fourier integral over k., is taken using discrete complex image method (DCIM)
with the help of the generalized pencil of function (GPOF) method [32]. Note
that some modifications are preformed during the implementation of the GPOF
method (compared to ones presented in [17], [18], [25], [27]) and it is critical in
order to obtain accurate results in particular along the axial line of the cylinder

and the self term evaluation of the MoM impedance matrix. Thus, the region



of field points (with respect to the source point), where the novel CFGF rep-
resentations proposed in this study remain accurate, is significantly wider than
that of the previously available CFGF representations (including [27]). Briefly,
in addition to cases where source and observation points are located at different
radial distances from the axis of the cylinder, the proposed CFGF expressions
are valid for almost all possible source and field points that lie on the same radial
distance (such as the air-dielectric, dielectric-dielectric interfaces). The latter re-
gion includes the situation where both the source and field points are located on
the axial line (p = p’ and ¢ = ¢') of the cylinder that exhibits a logarithmic sin-
gularity due to the argument of the Hankel function, and the source region where
two current modes can partially or fully overlap with each other that exhibits
a singularity during the MoM analysis. It should be emphasized that the final
CFGF representations presented in this dissertation are slightly different than
the ones presented in [27] in order to handle these singularities, and to avoid
the necessity of an alternative representation in the MoM analysis of microstrip

antennas/arrays on cylindrically stratified media.

Because the microstrip antennas are assumed to be fed via a probe in the radial
direction, the probe-fed excitation is modeled by implementing an attachment
mode that is consistent with the PWS current modes that are used to expand
the induced current on the patches. In the course of modeling the probe-fed
excitation, the probe-related components of CFGF representations (G.,, G,,
Ggp, Gpp) are also derived for the first time in the literature. Numerical results in
the form of the input impedance of various microstrip antennas in the presence of
several layers as well as the mutual coupling between two microstrip antennas are
presented by comparing the results with the available results in the literature as
well as the results obtained from the CST Microwave Studio which is an available

commercial computer-aided design (CAD) tool.

The organization of this dissertation is as follows: In Chapter 2, the spectral
domain Green’s function representations due to electric sources are derived for
the tangential and probe-related components. When p = p’ large n values are
needed in the evaluation of the summation for the cylindrical eigenmodes in the

spectral domain Green’s function representations. Therefore, in order to overcome



possible numerical problems in the evaluation of Hankel and Bessel functions for
large n values, starting with the reflection and transmission matrices, the spectral
domain Green’s function representations are rewritten in such a form that all the
Hankel (Bessel) functions are in the form of ratios with another Hankel (Bessel)
function. Then, Debye representations are defined for the ratio terms using the
Debye expressions of the Hankel and Bessel functions given in the literature and
used when necessary. Chapter 3 deals with the spectral domain Green’s function
representations in detail and they are written in a more compact form. In this
part, to accelerate the summation, an envelope extraction with respect to n is
applied using the series expansion of the zeroth-order Hankel function. Besides, in
order to have a decaying spectral expression, an envelope extraction with respect
to k. is also applied. In this chapter, the Green’s function representations for both
the tangential and probe-related components are written in the most efficient form
which can be used for all possible p and p’ values. The formulation (valid when
p = p') for the probe-related terms is first given in this dissertation. In Chapter 4,
the integration path is defined in order to obtain space domain Green’s function
representations from the spectral domain counterparts. The implementation of
the GPOF method, which is used to obtain closed-form expressions in the space
domain, is also given in this chapter. Mutual impedance calculations for both the
tangential and probe-related components are given in Chapter 5. In the mutual
impedance calculations, the derivatives on the Green’s function representations
are transferred onto the current modes in order to work with less singular terms.
The spectral domain singularity which is due to the argument of the zeroth-
order Hankel function is solved using the small argument approximation of the
Hankel function. Similarly, the space domain singularity which occurs when
the source and field points are on top each other is solved analytically for the
mutual impedance calculations. Since probe-fed antennas are analyzed in this
dissertation, the MoM formulation is given with an attachment mode definition
used to model the continuity of the current form probe to the patch antenna in
Chapter 6. The mutual impedance formulation related with the attachment mode
is given in this chapter including the solutions for all singular terms. Evaluation
of the input impedance of a probe-fed patch antenna and the mutual coupling

between two probe-fed patch antennas in the presence of the attachment mode for



cylindrically stratified media are explained and numerical results in the form of
the input impedance of several microstrip patch antennas and the mutual coupling
between two antennas are presented in Chapter 7 which show the accuracy of both
the CFGF representations and the hybrid MoM/Green’s function technique with
the attachment mode. Concluding remarks are given in Chapter 8. Finally, six
Appendices are provided. In Appendix A, Debye representations of the ratio
terms obtained using the Debye expressions available in the literature are given.
In Appendix B, a fairly detailed explanation about the GPOF method, which
is used to obtain closed-form Green’s function representation from the spectral
domain samples, is given. The details of the mutual impedance calculations
related with zz, z¢ and ¢¢ cases are given in Appendices C, D and E, respectively.
The two-fold mutual impedance formulations obtained from four-fold integrals are
given with the special solutions of the most singular mutual impedance terms (self
and overlapping) for the tangential components. In Appendix F, the even and
odd properties of Green’s functions and mutual impedance expressions are given
since these even and odd properties are important in the efficient evaluation of the
closed-form Green’s function representations and in filling the impedance matrix
and voltage vector in the MoM analysis of antennas. Furthermore, throughout
this dissertation, G is used for the space domain Green’s function, whereas G
denotes its spectral domain counterpart. The time dependence of e/“! is used,
where w = 27 f and f is the operating frequency. Also in this dissertation, all

the Green’s functions are due to an electric source.



Chapter 2

Spectral Domain Green’s

Function Representations

In the first two sections of this chapter, the spectral domain Green’s function
expressions given in [14], [17] and [18] for p # p' are briefly summarized because
the same expressions are used in the mutual impedance calculations for p = p/
case after they are modified in the third section of this chapter. The details of
the formulation given in the first two sections of this chapter can be found in [14]
and [17]-[18].

The general geometry of a cylindrically stratified media is illustrated in Fig.
2.1 where the geometry is assumed to be infinite in the z direction. The point
source is located at (p’,¢',2’) in the source layer i = j and the field point is
located at (p, ¢, z) in the field layer i = m where m can be any layer. As shown
in Fig. 2.1, layers may vary in their electric and magnetic properties (¢;,1;) as well
as their thicknesses. Moreover, a perfect electric conductor (PEC) or a perfect
magnetic conductor (PMC) can be considered as the innermost or the outermost

layer.
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Figure 2.1: General geometry of a cylindrically stratified media and propagation
of waves due to a point source in it

2.1 Spectral Domain Field Expressions Due to

an Electric Source

The current of a dipole can be written in the spectral domain as [18]
4. 0(p—p
J(h) = ttae L=y - g 2.1)

where I/ is the current moment, & is the unit direction which shows the direction
of the current and 2’ is the location of the dipole along the z-axis. The field
expression in the field point is the sum of the incoming and outgoing waves
formed by the multiple reflections from the inner and outer boundaries as shown
in Fig. 2.1. The incoming and outgoing waves can be expressed as the sum of
standing and outgoing waves which are represented by the first-kind Bessel and

second-kind Hankel functions, respectively. The z component of the fields in the
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field point are given in [14] and [17]-[18] as

E.

H,

B T0eik=?"
N 4w

o0

S enp,s
— Ny

n=—oo

(2.2)

For an electric source, S n used in (2.2), is a 2 x 1 matrix operator given by

L(k2a, + jk.V')a
S,, = 7 (Rt + 7RV (2.3)
! —jwa(a, x V')
and acts to its left-hand side. In (2.3) V' is defined to be
0 _gn
V' = apa—pl — %F + a7k, . (2.4)
In (2.2) F, is a 2x 2 matrix, when the field and source layers are the same (m = j)
F}, is defined as
Iy = [Jn(Fo;0) L+ Hr(f)(k/)jp)}:?j,j—l@jf[H"Q)(kpf L+ J"(k”fp,)ﬁj,ﬁl]
for p < pf
& = [H7(12)(kp]p)£ + Jn(kpﬂp)éj,j+l]£j+ [Jn(k:p‘]pl)i + H?SZ)(kjpjp/)EjJ_l]
for p > p/
(2.5)
and when the field and source layers are different (m # j) F,, becomes
& = [Jn(kpmp)£ + HT('LQ) (kpmp)§m7mfl]zj’m£ji[H7gl,2)<kpjpl>£ + Jn(kpjp,)}:?j7j+1]
form < j
& = [Hﬁbz) (kpmp)£ + J”(kpmp)ém,m—f—l]zj,m&j-&- [Jn<kpgpl>£ + HT(Lz) (kpjp/)ﬁjd-_l]
for m > 3.
(2.6)
In (2.5) and (2.6) M _ is defined as
(T _ P 3 -1
ﬁji = Ej,jﬂFléjdil) (2.7)

where, [ is the unity matrix and Ejj is the generalized reflection matrix. The

F1

generalized reflection matrix Ej i contains multiple reflections from the inner

11



layers with respect to j, while Ej i1 contains multiple reflections from the outer

layers. The subscript 7 denotes that Ejﬁ is the generalized reflection matrix

1
for layer j. The generalized reflection matrix can be defined as

éi,i:l:l - éi,i:l:l + zi:ﬁ:l,iﬁiil,iiQEi,i:tl (28)

where 7 denotes an arbitrary layer between 1 and N. Similar to E, Z is the

generalized transmission matrix, which is defined as

T I-R

_ D -1
=40+l (: Ziil,iéiil,ii2> zi,iil'

(2.9)

In (2.8) and (2.9), R and T denote the local reflection and transmission matrices,
respectively. They contain the interactions between only the two layers which
are given in their subscripts. Consequently, the local reflection and transmission

matrices R and T, respectively, are given by

= D;1[HT(L2)(kpia/i)&(Q)(kjpi-&-lai) - H(Q)(kpi+1ai)&(2)<kpiai)] (210)

:i,i+1 fr— n

2 Dllei 0 ] (2.11)

=i,i+1 - ﬂkgiai:i 0 — 4
ELP I le[Jn(kpiai)é(kmﬂai) - Jn(kpiﬂai)é(kmai)] (2'12)
2 i 0
ppp—— L (2.13)
— ﬂ-km‘ﬂai_z 0 —Hit1
with
D = HP(k,,, ;) Jn(kpai) — Ju(kypa;) Hy® (ke a5). (2.14)

Note that all the reflection and transmission matrices are 2 x 2 matrices, since
the TE and TM modes are coupled in cylindrically stratified media. In the
aforementioned equations, (2.10)-(2.14), we used H,(Lz)(x), ﬂm)(x), Jn(x) and
J,(z). To write the expressions in a more compact form we will use B, (z) and
() such that

S/

1 —jweik,,a; B, (k,,a;) nk,B, (k,,a;)
k/%i“i nszn(kpzal) jw/"tikpiaiB;l<kpiai)

By (kyai) = (2.15)

where B, () can be J,(z) or H,® (x) and hence, the corresponding B, (x) will be

Jn(z) or 2% (x), respectively. Finally, in all the previous equations " is used for

12



the derivative with respect to k,,a; product such that %ﬂi) with k,, = \/k? — k2
being the transverse propagation constant of the i*" layer and k; = w./e;11; being
the wave number of i layer. In these formulations, layer (i + 1) is the outer
layer and layer (¢ — 1) is the inner layer with respect to layer i. Besides, the

reflection matrix R can be obtained from (2.12) by writing (i — 1) instead of

)

i. Similarly, R, . term is obtained from (2.10) by writing (¢ — 1) instead of 4.

The innermost or outermost layers in Fig. 2.1 can be a perfect electric con-
ductor (PEC) or a perfect magnetic conductor (PMC) layer. The local reflection
matrices from these layers are also given in [14] and [17]-[18]. However, PEC is
mostly used as the innermost layer for many cylindrical structures. Therefore,

the reflection matrix for an innermost PEC layer is given by

-
. HP (kpyar)
52,1 - 0 ’ B J,/L(kaal) (2'16)

H\? (kpyar)
where a; is the radius of the PEC layer, which is denoted by i=1 in Fig. 2.1.

2.2 Spectral Domain Green’s Function Repre-

sentations

In the absence of charges and current sources, electric and magnetic fields satisfy
the following Maxwell’s equations in a homogeneous, isotropic and source-free

medium;
V x E = —juuH (2.17)
V x H = jweE. (2.18)
The vector fields given in (2.17) and (2.18) can be decomposed into transverse

(¢ and p) components and z components. After the decomposition is completed,

the transverse components in the field layer m are obtained as

T _ jwe'm 0 nk, i
H(b — kpm O(kpm p) k%mp EZ (2 19)
EN nk, JWim o 7 ’
¢ k,%mp kPm 6(k:P'm p) Z

13



~ _ nwem _Jk: 8 ~
E _ jks 0 nWhm [_j ’
P kﬂm 8(kpmp) k?zmp z

where the z components are found from (2.2) using (2.3) for different directed
electric sources. The spectral domain Green’s functions, which relate the 2, gg
and p directed electric fields with the 2, é and p directed electric sources, are
defined as

&
Q

2z éz¢ ézp JZ
E¢ - G¢z é¢¢ é¢p j¢ . (221)
pz Gp¢ Gpp J p

"sz
Q

Using the current term given by (2.1), the spectral domain Green’s functions are

obtained as

G.. = Mﬂ 2; i cosin(p — @) K2, f1! (2.22)
e :lsm[nw—as')]kzj et ]
e R
oy = 2w€];fincos n(¢ — ¢)]{ ( v ik 5o o ok, 7))
H:::lm 8(kfmp> ( p’zfil ~ Jweks, 3(6f22 ))] 22

where k, = 0.5 for n = 0 and 1, otherwise. Similarly, the probe-related com-
ponents which are used for applications involving an excitation via a probe are

derived as (also given in [20] and [24])

14



é ; . o 11 .
2 = Z Kn COS ¢ (b )] |:_ kim a(k;i: ) l:}(';g f21 (226)

5
183

M

E
O

$ = 0 nkz 11 . 8f712
Gp¢ - 2w ] ZSIH ¢ ¢ |: /{ 8(l€ )( p/ n ](«Uﬁjkpj a(kp]pl))
W Ly, nk; o £22
( A ) (2.27)
k%m .7 p a(k )
ézp 1 « o o nwe; 1
- e coslf — )| 5o+ 28
k. 2wej nz; ! Nk, O(kp,p') — kap! ) (2.28)
Ty = —= N nk. Ofa' nWej r12
Gor = 53 dsnln(o - 0 [ by s+ 2 2
JWim 0 . 3f21 NWE; o0
* Jhky, 50 -~ 2.29
Kou a(k‘pmp)( ok, 0) | p ) (2.29)

In (2.22)-(2.29),

the entries). In the Green’s function expressions, the subscript j denotes the layer

o f20 2l and f22 are the entries of é (superscripts indicate
where the source point is located and m is used for the layer where the field point

is located.

In (2.22)-(2.29), to increase the efficiency in the computation of the Green’s
function components, the odd and even properties of these components are used.
For instance, using the odd and even properties with respect to cylindrical eigen-
modes n, the summations that range from —oo to oo are folded over all n to
range from 0 to oo. Similarly, to speed up the integration with respect to k.,
if the Green’s function component is an even function of k,, the k, integral is
converted to a 0 to oo integral. However, if the Green’s function component is an
odd function of k., it is divided by k. so the integrand becomes an even function

of k.. Then, the resultant integral is converted to a 0 — oo integral.
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2.3 Spectral Domain Green’s Function Repre-

sentations when (p = p')

The Green’s function representations given by (2.22)-(2.29) are accurate when p is
far away from p’ as it is illustrated in Fig. 2.2, and can not be used for p = p’ case
which is essential in performing an analysis in cylindrically stratified media. In
Fig. 2.2, the source and field points where p = p’ = a; depicts a typical antenna
analysis problem where the antenna is located at the dielectric-air interface. To
obtain accurate Green’s function representations at p = p’ and to compute them
efficiently and accurately, the spectral domain Green’s function expressions given
by (2.22)-(2.29) are modified as explained, in [26]. In this dissertation these mo-
dified expressions are given once more with the appropriate changes that will help

us to handle singularity problems when they are transformed to space domain.

Field Point (p = p')

/

f

’ Field Point (p >> p' )
A Source Point

Y

e

X

Figure 2.2: p = p' and p >> p’ situations on a multilayered cylindrical geometry

When p = p’ the first problem is the slowly convergent behaviour of infinite
summations used in (2.22)-(2.29). Since these summations are slowly conver-

gent, computation of the Hankel and Bessel functions for large n values becomes

16



mandatory. However, for large n values, evaluation of the Hankel (Bessel) func-
tions shows overflow/underflow problems. Therefore, instead of evaluating each
Hankel (Bessel) function one at a time, they are written in the form of ratios
(i.e., each Hankel (Bessel) function is written in ratio form with another Hankel
(Bessel) function) and these ratios are directly evaluated. Note that in this dis-
sertation, an expression in the form of ratios means that all the Hankel (Bessel)
functions in that expression are written in ratio form with another Hankel (Bessel)

function.

2.3.1 Spectral Domain Expressions In The Form of Ratios

Although the case of p = p’ is being analyzed, p is not written instead of p’ or
vice versa, in order not to create any confusion in the Green’s function expres-
sions. This way, the developed expressions can be easily extended to multilayer
geometries. Besides, there are derivatives with respect p and p’ that should be
distinguished. Therefore, only at the final expressions when a simplification is

required, p is equated to p'.

In order to write the spectral domain Green’s function representations in the

form of ratios, we start with B, (k,,a;) term given by (2.15), and rewrite it as

B, (kp,a:)

Bn<kpiai) _jweikpiai By, (kp;ai) nkz
Ba(kp) = =702 ok et | (230
0 Qi nk, ]w:uikpiaiBn(kp:ai)

Then, the D expression in (2.14) is rewritten as

Jn(k iai) n(2)(k i 1ai)
D = HP (ky,,,a;)Jn(kpa:) (= Y= . (2.31)

i Tulkpai) — HP (k.. a)
If we define
21- = an (km+1ai)‘]”(kﬂiai)2m (2'32)
we obtain )
B Jn(kp az) :n( )(kpiﬂai) (2 33)




and substituting (2.30) into (2.33), it is seen that (2.33) is obtained in the form
of ratios. In a similar manner the local reflection matrix given by (2.10) can be

written as

ﬁi,iﬂ =

H,?(k, a) H,?(k,a)
= =~ ) (2.34)

= D MHP (kp,ai) HP (kp,,, a;)] E—
i o pi+t Hq(f)(k?piﬂai) Hr(LQ)(kpiai)

or in terms of D, (2.34) is rewritten as

P _ p H,SQ)(kpiai) H7s2)(kpi+1ai) é(Q)(kPiJrlai) B é@)(kmai)
=it =i Ju(kpa) HD (kypa0) |\ H (kppyas)  HS (kpai)
(2.35)

When the certain simplifications are performed, R i is given by

HP (k,.a; H,® (ky,,a)  Hy (ky,a:)
(kpzaz> -1 ( Pit1 — P (236)

=il Jn(kpiai) =m Hr(zz)(kpiﬂ(li) - H1(12)(k’piai)

The Debye approximations for the ratio terms of the Hankel and Bessel functions

are given in Appendix A. From (A.1) and (A.4), it is seen that

B/
lim —”<x>

Jm B = C(k,) (2.37)

where B, = J,, or B, = H,(f) as mentioned before, and C'(k,) is a constant with

respect to n. Using this information, it can be seen that 2;11 decays with 1/n for

Ha @ (kp, 1ai)  Hn P (kp,ai)
large n values where the (S —— — =5
Hn (kpi+1ai) HTL (kpiai)

) term grows with n. Therefore,

if we define o o)
Rn;;i1 = D! ) A = ’ (2.38)
o - Hn (kpi+1ai) Hn (kpiai>
we obtain )
Hn (kp CLz‘)
= ——Rn,;; 2.39
=i+l Jn(kpz(%) N4 ( )
where Rn; ;1 term becomes constant with respect to n for large n values.
Similar to éiiﬂ, the §i+1i term given by (2.12) can be written as
JN<kPi+1ai) Jn(’%zal)
R =D YI.(k,a)J,(k,  a)|= — = , 2.40
=i+l =3 [ ( Pla) ( Pz+1a )] (Jn(kpi_;,_lai) Jn(k/‘plaz) ( )
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which can be expressed as

In(kp,. i
éi—&—li = (2§p—1+a)§ni+l,i (241)
7 Hy (kpiﬂai)

where

Jn(kpi+1 a“i) B Jn (kpia'i)

Bnip; = D!

—1mn

<é(kpi+1ai) Jn(kpia’i)> (2 42)

and Rn;yq1; is also constant with respect to n for large n values.

In [14] and [17]-[18], the simplified expressions given by (2.11) and (2.13) are
used for the local transmission matrices £”+ . and £i+ L respectively. However,
when they are used in the F, expression given by (2.5), F,, can not be expressed
in the form of ratios. Theregre, the actual transmission rEtrix definitions, which
are not simplified, are used in this dissertation. These actual transmission matrix

definitions are

gi,i—l—l - 2,‘_1[Hn2)(kmai):n(kmai) - Jn(kmai)i@)(km&i)] (2'43)
=itli 2;1[1‘[7(12)(]%”104) n(kpi+1ai) - Jn(kmﬂai)&@)(kpi+1ai)]' (2'44)

Hence, similar to the reflection matrices, the transmission matrix Iu’+ . is ex-

pressed as

Jn(k iai> Hn(2)(k i&i)
‘ = (2.45)
n(koai)  HP (k,,a;)

I
¥
AR
|
lIo
AN
=
Py
o~
>
£
N—
o
—~
o
>
£
~
/T
|

3

or

1Y (ky0) (é(’%“ﬁ ﬁ(z)(k’”ai)> - (2.46)

r...= -
=i,i+1 Hy(f)(k Jn(kpZCM) H,(f)(kplal)

Pit1 l):m

At this point the T, .4y term, as expressed in (2.46), is in the form of ratios and

constant with respect to n for large n values.

Similarly, 7' = is written as
—i+1,

JTL(kz 1ai) n(2)(k i 1a’i>
= - (2.47)
Jn<kpi+1ai) H, (k

Pi+1ai)



or

(2.48)

=itti ] (k,a;) =i N

Jn(kpi+1ai> Hr(z2)(km+1ai)
|, term is now in the form of ratios and again
constant with respect to n for large n values.

_ Jn(kmﬂai)D—l (é(kpi“”ai) é(z)(kpﬁlai))

Similar to I". = expression, 1 .
=i,i+1 =it

So far, the local reflection and transmission matrices are rewritten in the form
of ratios. As the next step, these matrices are substituted into the generalized

reflection and transmission matrices and expressed in the form of ratios. The

R | term is given by

:Z,

(2.49)

ﬁmﬂ - ﬁi,ﬂrl + £i+l,i§i+1,i+2£i,i+l'
In an N-layered cylindrical geometry, the first nonzero generalized reflection mat-

rix for the outermost layers is R LN R, LN term is in fact a local reflection

matrix and is equal to R N1 o Since we have only N layer and R N N1 is zero in

(2.49). Thus, it is possible to write a general expression for };{H )
given by (2.39)

it USHE ﬁi,i—i—l

2
R - Hﬁb )(kpi+1ai+1)
Zitlit2 Jn(kp,i@ivr)

Eni+1,i+2 (2.50)

where again }:?nHLHQ term is in the from of ratios and constant with respect to

n for large n values.

Since iy ;4 term is given by

(I-R

_ -1
Zi,iJrl_ = =i+1,i§i+1,i+2) ;',iﬂ (2'51)

using (2.41) and (2.50) it can be written as

zmﬂ o

-1

. HP(k  aiq) Jo(k,  a; .

_ £ - (2() pz+1a -‘rl) ( pH»lfl ) ﬁni+1,i§ni+1,i+2 gz i1 (252)
Hy (kpi+1ai) Jn<kpi+1a2+1) ’

Since all the functions in Z,H , are in the form of ratios, Z“Jr | Is constant with

respect to n for large n values. Substituting all the terms which are in the form

)

of ratios into (2.49), the generalized reflection matrix Ez i1 becomes

- HP(kya)
=it (k)

20
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where

2
Rn» 1 = Rn.: 1+ T H’(l )(kpi+1ai+1> Jn(kpiai)

o 2.54
=i+l Hr(LQ) (kpiai) Jn(kpi+1ai+1) ( )

ﬁni+l’i+2£i,i+l’

and it is clear that };{niﬂ-ﬂ term is in the form of ratios and constant with respect

to n for large n values.

Equation (2.53) is the desired representation for E i1 However in a similar

fashion, we must define the E .., term which is given by

R.,=R. . +T R

=i-1i=i—1,i-2=ii—1"

(2.55)

Similar to ﬁH it Ei_ Lilo is zero for the innermost layer, so the first nonzero

R, ., term behaves in the same manner as R .. Hence, it is written as

s Jn k i1 Wi— ~
B, = (25 piy 04-2) Rni—1;-9 (2.56)
' Hn (/fpiflai,Q)

where Eni_lﬂ'_Q is in the form of ratios and constant with respect to n for large

n values. The Ii ., term is

_ -1
=ii-1 (£ o Ei—l,iﬁiﬂ,iq) zz’,i—l (2.57)
where the éii Li term is obtained as
o2k, a;
(Rp,-0i1) Ry, (2.58)

Sicti Tk, ai) =

by writing 4 — 1 instead of 7 in (2.39), and where Rn;_;; term is in the form of

ratios. The Z .o, term is then expressed as

—=i,1—1

<I B HY (ky,_ i) Ju(kp,_ai—2)

-1
Rn;_ ,Z'Eni_ i T 959
H7(L2)(kpi,1ai72) Jn(kpi—1a’i—1): 1:4% 1 2) ( )

where Zl - is in the form of ratios.

32

The R . term is obtained from (2.41) as

)
R == =—n——"Bni (2.60)
= Y (ki)



by writing 2 — 1 instead of i. Finally, substituting all terms which are in the form
of ratios into (2.55), }:?“,_ | expression is obtained as

Rni,i,l (261)

where

N HP(k, a;_1) Jo(ky ais) ~ N
ﬁni,i—l :éni;j—l +I ( Pza l) ( pz—1a 2)§ni_1,i_2T”

o T (2.62)
_Zil,ZH’r(LQ)(kpi_lai—2) Jn(kpiai—l) =ii—1

and E”i,ifl is constant with respect to n for large n values.

When p = p/, the source and field layers are the same. Denoting this layer by
the index j, the expression in (2.5) must be used for the £}, term. Note that the
two expressions for p > p’ and p < p’ become equal to each other when p = p'.

For the rest of this chapter, the p > p’ expression given by

Fy = [H (kpyp) L+ Ju(ky,p) R

n B IM - [Ja(ky, 0L+ HP (ky )R ] (2:63)

will be considered. Regarding the F), in (2.63), the expressions for the tangential

components of the Green’s function representations given by (2.22)-(2.29) contain
. . . / . -l ~ =

derivatives of & with respect to k,,p and k, p". Since I, Ej,j—l’ %ﬂ and éj,jﬂ

do not contain any p or p, these derivatives are given by

or,
_— o /(2) ’ ~ - , (2) -
a(kpj p) =, (kpjp)i * Jn(kﬂjp)ﬁj,j+1]ﬂj+[J"(kpjp )£ + H; (kpjp )ﬁj,j—l]
(2.64)
8(kpj10/> " pjp = " Pjp =jj+li=54+t " ,Djp = n Pjp =JJ—-1
(2.65)
82& "(2) !
O(kp,p")0(kp, p) = [H,7 (ko p)L + Jn(kpjp)ﬁjd_’_l]:j_'_
[J;L(/ijp/)é + H;L(z)(kpj p/>:~j,j—1]'
(2.66)
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The &ﬂ expression appearing in (2.63)-(2.66) is expressed as

M. =(-R

L= R
—Jj+ —Jj—1=j,j+1

)t (2.67)
where Ej s obtained putting j instead of 7 in (2.61) such that

P Jn(kpjajfl) >

R ~—=——""—"—Rn;;_ 2.68
=j,j—1 H»,(LQ)(kpj(ljfl)_ 7,J—1 ( )
and similarly, Ej . is written using (2.53) as
- H:? (ky,05) -

Substituting the ﬁj i1 and }:?jjil terms into the &j—k expression given by (2.67),

we obtain
H -1
Y 7(12)(/{? a;) Jp(kya;_1) ~ ~
M+ = i_ P; = n\Fp; @;j - | 20
' (_ Hr(LZ)(kpjaj,l) Jo(kpya;) =77 1820541 (2.70)

It is seen that &Jﬂ— term in (2.70) is in the form of ratios and constant with

respect to n for large n values.

Finally, we can write the F,, expression in (2.63) as

Ey = HP (K, p) Ju(ko, ) En, (2.71)
where
HP (ky,05) Julky,p) - .
In, = L+ ) Jo(k,.a; A75,5+1 %j-i—
H (ky,p) In(kp;a;)

H(k, o) J,(k, a; 1) ~
'[ﬁ Dbyt Jolbptsoi)
Hn (k‘pjaj_l) Jn( leo)

(2.72)
which is constant with respect to n for large n values.
Similarly, (2.64) can be written as
0L (2) /
—— =nH " (k, p)J.(k,.p ) En, 2.73
a(kpjp) n n ( Pjp> ( Pjp):n dp ( )
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where

M .
—,7+

(9 ) ’
Enng, = HnU(kpjp) ([_ Hé)(kpjaj) Jn<kl)jp) ~

— ; BRnj i
nHP (k,, p) B (k,, p) In(kg,a5)= 777

2
'[H H (K, ) Jn(kioy051) D

(2.74)

TG 5
S H (a1 Inlh)

which is in the form of ratios and constant with respect to n for large n values.

The same methodology is also valid for (2.65) such that it is written as

= _  HO(, k. o VEn, ., 2,
a(kpjp,) nH,”( p;p)Jn( pjp):nndp (2.75)
where
o (k') H (ko) Julkp,p) - -
Frpgy = ——2 |1+ . —Rn,; M
= ndulkn ) \ |5 HP (K, p) In(kosa;) Gt =it

7 Hn(Q)(kpjp/) Jn(k'pjaj—l) - -
- H,(?)(/{;pjaj_l) Jn(kpjp/) =

) , (2.76)

and is the constant term with respect to n for large n values.

Finally, (2.66) can be written as

0*F,
— — n2H7s2) k, p)Jn(k ,p/ Fn, ) 9 77
Oky, )0y, 0) (ks )7 (K, ') Ertny (2.77)
where the constant term with respect to n for large n values is
Fnpnapay n_ \Fp;P) In\Fp;P y o i) n piP Rny o | 3T
n nHP (ky, p) 1 ip, ) \ [T HP (e, p) Inlip,00) = 7 | =0t

Ju(kp,a;1) Hi® (ky,0)
) £+ J (k. o (2)
n( Pjp> Hn (k'pjaj,1>

Bnjja

) . (2.78)
OFy OFy 02F,

Consequently, F),, a(kfpw a(k;/) and 3y, )00 ) terms are obtained in the

form of ratios. Furthermore, it is shown that they are constant with respect to
n for large n values. The terms which can not be written in the form of ratios
are also given as a multiplicant in the final expressions (2.71), (2.73), (2.75) and
(2.77).
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The main reasons to write the spectral domain Green’s function components in
such a form are (7) to improve the efficiency of the summation over the cylindrical
eigenmodes n, which becomes important especially when p = p'; and (7) to treat
the computation problems around the source (p = p/, ¢ = ¢/ and z = 2’), which

will be addressed in the next chapter.

The Bessel and Hankel functions, which are written in the form of ratios, are
evaluated using Matlab in the following way: For small n values, each function is
evaluated separately. For large n values, where these functions can be replaced
by their Debye representations, the Debye representations given in Appendix A
are used in the ratio terms and instead of evaluating each function separately,

the ratios are evaluated directly.
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Chapter 3

Integral Form of Space Domain

Green’s Function Representations

3.1 Space Domain Green’s Function Represen-

tations For Tangential Components

The spectral domain Green’s function representations given by (2.22)-(2.25) yield
accurate results only when the source and field points are far away from each other
in terms of the radial distance. In this section using (2.71), (2.73), (2.75) and
(2.77), we modify the spectral domain Green’s function representations so that
accurate space domain Green’s function representations can be obtained for all
possible source and field points including p = p’. Although p is equal to p’ as
shown in Fig. 3.1, in the provided expressions p and p’ are kept distinct to avoid
possible confusions in explaining the methodology, in particular when handling

the derivatives with respect to p and p’, separately.

Fig. 3.1 illustrates the geometry of current modes on a multilayer cylindrical
structure together with the cross-sectional view from the top. Similar to Fig. 2.1
the structure is assumed to be infinite in the z— direction. A PEC cylindrical

ground, denoted by the subscript j = 0, forms the innermost region with a radius
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Tangential
current modes j!

Probe

Co!xia

Figure 3.1: Tangential current modes and a probe on cylindrically layered media

ap, and material layers, denoted by the subscript 7 = 1,2, ... surround the PEC
region coaxially, as shown in Fig. 3.1 (subscript j = 1 denotes the substrate
layer; subscript j = 2 denotes the superstrate layer, and subscript 7 = 3 denotes
the air layer in Fig. 3.1). Each layer has a permittivity, permeability, and radius
denoted by €;, p; and a;, respectively. Furthermore, current modes, denoted by
JI(p', ¢, 2") and J,(p, ¢, z) are depicted in Fig. 3.1 where v = ¢ or z. A z— or ¢—
directed tangential current source, defined at air-dielectric or dielectric-dielectric
interface has a dimension of 2z, x [, (with I, = a;¢,) along the z— and ¢—
directions or 2[, X z, along the ¢— and z— directions, respectively. On the other
hand, if the current mode is normal to an interface (excitation via a probe), it is
usually located inside a layer, assumed to be infinitesimally thin in terms of ¢—
and z— coordinates, and has a certain length along the radial direction. Finally,
in Fig. 3.1, s denotes the geodesic distance between the two current modes (or
between the source and observation points for the CFGF expressions) and « is

the angle between the geodesic path and the ¢— axis.

The spectral domain Green’s function components, G, (u = z or ¢, v = z or
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®), given by (2.22)-(2.25) are rewritten in the following form:

G R i
kl - _4w€. Z (kzj)qanT(LQ)(kpjp)‘]n(kpjpl>fuv(n, kz>€J (A¢) (31)
J

where Ap = ¢ — ¢/, and for wv = zz: p=0,q = 1,1 = 0, for uv = ¢z :
p=1qg=0,1l =1, foruv = 2¢ : p =1,q = 0,1 = 1 and finally for
w=¢p: p=2,¢q=0,1=0. The key term in (3.1) is f,,(n, k,) explicitly given
by

fee(n k) = frlll (3.2)
1 JWhm
fartink) = 1 | 2 g (3.3
Pm pm 7z
1 Jwejk,,
T e (3.4
kz kz . jwﬂz kz .
foolm ) = = |22 s 58] + 92 | 1~ ey 1235
Pm Pm

where f1, f4, f12. 12 f22 are the corresponding entries (each superscript indi-

cates the corresponding entry) of F.1,F9, Fy3, Fy4 linked to F, as

N Hy™ (K, p) by, p') =
F, F ! L (3.7)
r2 = L Npdp = — .
2 " nHP (k) Julkyy ) )
1 = (3.5
F’r = Ennd = — 3.8
= =Y HD (hy,p) (k) O, )
1 P,
& = gnndpdp’ = —— . (39)

n2Hy? (kp; ) In(kip; ') A(ky, p")0(kp,,.p)

In (3.1) [together with (3.6)-(3.9)], all special cylindrical functions (Hankel and
Bessel functions) are in the form of ratios except the H7§2)(kpj p)Jn(k,,;p'") product
as explained in Chapter 2. Consequently, the accuracy of the summation over n
is improved since possible numerical problems for large n values are avoided by

using the Debye approximations for the ratio terms as explained in Appendix A.

To further improve the accuracy and efficiency of the summation over n, an

envelope extraction method with respect to n is applied to (3.1). Briefly, the
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limiting value of f,,(n, k) for very large n values is numerically determined as

lim fu,(n, k) = Cyu(k,) (3.10)

n—oo

which is actually constant with respect to n. In the numerical evaluation of
fuv(n, k), a couple of large n values around n = 10000 can be used to determine

Cuv(k) .Then, recognizing the series expansion of Hé2)(kpj |p— p']), given by

Z Hq(zg)(kpjp)Jn(kpjp/)ejnA¢ = Hg(kpj p—p) =5, (3.11)
Cuv(k.) is subtracted from (3.1) and added as a function of S; with the aid of
(3.11). Hence, (3.1) becomes

¥ = e {ni%ﬁj>qan£2’<kpjp>Jn(kpjp’> s, k) = Cunk)] €7
+ Cu k) (K2 )F 511 (3.12)

where
FZS] = S (3.13)
RS = FIS = =i (3.14)
FP[8)] = ;;g;/. (3.15)

Note that in the course of writing (3.13)-(3.15), the Fourier series (with respect
to n) relation between the spectral domain and space domain Green'’s functions
is recognized such that both the (—j 3%) and (j 8%,) terms in the space domain

correspond to n in the spectral domain.

As a result of this step, the modified summation given in (3.12) converges

very rapidly and hence, the limits of the infinite summation can be truncated

o0

at relatively small values, N; (i.e., > — Zi\f;_ n,) even for relatively large

n=—oo

cylinders. This is illustrated in Fig. 3.2, where the imaginary part of ézz Versus
N, is plotted for A¢ = 0.0046, k., = 0 and p = p’ = a; using (3.1) and (3.12) (real
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Figure 3.2: Imaginary parts of (3.1) (solid line) and (3.12) (dashed line) with
respect to the number of summations for zz case when A¢ = 0.0046. The cylinder
parameters are: ag = 20 cm, a; = 20.795 cm, €, = 2.32 and f = 3.2 GHz

parts of both summations converge rapidly) for a dielectric coated PEC cylinder

with ag = 20 cm, a; = 20.795 cm, €, = 2.32 and f = 3.2 GHz.

The space domain Green’s function, G, is related to the spectral domain
Green’s function, G, by an inverse Fourier transform (IFT) over k,, given by
1 o0

:% n

G Guve 5= . (3.16)

However, when A¢ is very small, very large k, values are required so that (3.16)
can converge. Unfortunately, the imaginary part of (3.12) poses numerical prob-
lems (i.e., it does not decay) for large values of k,. These numerical problems
are illustrated in Fig. 3.3 where the imaginary parts of (3.12) for G.. are plotted
versus real k, for different A¢ values for the aforementioned cylinder (dielectric
coated PEC cylinder with ag = 20 cm, a; = 20.795 cm, ¢, = 2.32 and f = 3.2
GHz). As seen in Fig. 3.3, the imaginary parts have a problematic behaviour
especially for A¢ = 0.0004 (there is not any special meaning of A¢ = 0.0004. It

is only the smallest A¢ value obtained for this example).
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Figure 3.3: Imaginary part of G, in (3.12) for different A¢ (in radian) values for
the same cylinder parameters given in Fig. 3.2

The source of this problem is mainly the second term of (3.12) (i.e.,
Cuv(k2) (k) )7 F{™ [S1]). The remedy for this problem is performing a second en-
velope extraction with respect to k.. Briefly, for asymptotically large k, value
(i.e., k, — oo denoted as ko and k.o, can be chosen around 1000k), the value
of Cuy(k.), represented by Cyy,(k.o0), is found numerically. Then, the product
—LCuU(kzoo)(kzj)qFf” [S1] is subtracted in the spectral domain from (3.12) and

4we;

its Fourier transform is added to the final space domain Green’s function repre-

— ik
sentation as a function of e|7—7,| using the relation
rT—r

/
ﬁh‘@f ‘
e J

Li=——0 = _7]/ Hg(kpj P — ﬁ/|)eijkz(27z dk. (3.17)

7 =7

Consequently, the resultant expression for the tangential components of the

space domain Green’s function representations becomes,

LN /OO Gy 1 2 q o ~ke(z=)
Guv — (82’) {271_ ké +4w€quv(kzw)(kpj) F1 [Sl] € dkz

—0o0

J ;0!

47rwej
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Figure 3.4: Imaginary part of G, integrand in (3.18) for different A¢ (in radian)
values for the same cylinder parameters given in Fig. 3.2

where
FEL) = I (3.19)
R = FfI) =50 = i) (3.20)
F9O1L) a?;a];f . (3.21)

Note that similar to the F*[.] case, the partial derivatives with respect to ¢
and ¢’ in the space domain closed-form part of (3.18) [i.e., (3.20) and (3.21)] are
due to n in the spectral domain. Besides, as it is seen from (3.18), the (kgj) term
in spectral domain corresponds to the (k:]2 — %;Z,) term in the space domain since
both the (j2) and (—j2) terms in the space domain correspond to k. in the

spectral domain (note that k) = k7 — k).

Although the space domain Green’s function representation given by (3.18)
is not in closed-form, the integrand in (3.18) is now fast decaying even for very
small A¢ values. The imaginary part of the integrand of (3.18) for u =z, v =z
is plotted in Fig. 3.4 for different A¢ values for the aforementioned cylinder. As
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it is seen in Fig. 3.4, the integrand of (3.18) for u = z, v = z is now well-behaved
and converges to zero as desired. Note that the real parts of both (3.12) and
the integrand of (3.18) do not pose any difficulty. Also note that because the
first term of (3.18) has an integral (Fourier transform integral), the present form
of the tangential components of the Green’s function representations is not in
closed-form. Therefore, the inverse Fourier transform which is the first term of
(3.18) is evaluated in closed-form with the aid of GPOF method as explained in
Chapter 4. Finally, the even and odd properties of the Green’s functions that are
given in Appendix F are used in this dissertation and as seen from Appendix F,

G- is not computed but determined using the G4 results.

3.2 Space Domain Green’s Function Represen-

tations For The Probe-Related Components
(sz G¢p7 szv qub)

Similar to the tangential components, the spectral domain Green’s function rep-

resentations for the probe-related components can be written as

C,;;p { > nPHP (ky,p)Ju (/fpjp’)fvp(n,kz)ej"“} (3.22)

where l =1,p=1forv=2,and [ =0, p = 2 for v = ¢. In this dissertation, G
and G, components are not computed and these components are determined
using the G, and G, terms, respectively, using the even and odd properties of
the related Green’s function components given in Appendix F. The key term in

(3.22) is f,, and it is explicitly given by

, WE;
foo = —dkpfp — % f (3.23)
k. we 0 oy, T . WE ;
f¢p - k2 Jk- kPJ plj 12:| + jku [jkzkp] p4 + 7] 0222] (3'24)
Pm
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12 21
p3 y Jply Jpds

the corresponding entry) of Fj,1,F,e, Fp3, F,4 linked to F, as

where 22 are the corresponding entries (each superscript indicates

1

Fo = b (3.25)
= B (kyp) Tulkn) =
. 1 oF, : )

= = 3.26
= nHD (ky,p) (k) i)
F 1 = (3.27)

= = 3.27
=L D (ky, p) ok, p) OFny)

1 P F,

Foo = — (3.28)

n2HD (ki ) Ju(ky, ) O )0 (Fpp)

In (3.22) the f,, term is odd with respect to n. Therefore, in order to apply
the envelope extraction with respect to n, the result of the following summation

is to be obtained:

ZH ko, p') sin(nAg). (3.29)

Unfortunately, there is not any closed-form expression for the summation
given in (3.29). Moreover, it is not possible to obtain this summation using any
expression such as (3.11). Therefore, in order to evaluate (3.22) the spectral

domain G, and G, components are modified as follows:

Gop nn(kp,p') -
v k pH 2 / Lk / ’ ] JnA¢ '
ki 4w6J {n_zoo n n P p)Jn( Pjp) kp]J;L(k )f P( ) €
(3.30)
In (3.30), [%ﬁ,p(n k.)] term is now even with respect to n and it con-

verges to a constant value as n gets large using the Debye approximations given
in Appendix A. £, term is also added as a multiplicant to use the p’ derivative
of (3.11) in the rest of the probe-related components of Green’s function repre-
sentations. Note that in this new formulation, p =0, =1 for v = 2z, and p = 1,
[ =0 for v = ¢. Defining

(K, p')
kJ’(k; )

P;j¥n

fvp(n kz,p) fvp( k), (3.31)
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the spectral domain évp components can be expressed as

év 1 > r n
klp - _4WGj { Z k;pjan'r(?)(kpjp)‘]'rll<kpjpl>fvp(n7 kzy p)e? A¢} (3.32)

n=—oo

where fv,,(n, k.,p') is now p' dependent. Similar to the tangential components,
an envelope extraction with respect to n is performed and the GW components

are written as

G 1 > sl s B
kip = _4w€j {nzz_oo kpjan7S2)(kpjp)J;1(kpjpl)e] e [ﬂ)p(nv kzy p') = Coplhizs 0)

+ [C*Up(krz, p) = Coplks, p' = p)} Fy* 181

+[Cuplhes = )] Fi* 51]] (3.33)

where S is given by (3.11) and

05,
FPIS)] = 3.34
1[51] o (3.34)
_0%S

Notice that in (3.33), Cy,(ks, p' = p)F;” [S1] term is also subtracted from second
term and added as a new term. The reason of this operation can be explained as
follows: The p' dependence in the third term of (3.33) exists only in F}” [S]] as it
can be seen from (3.34)-(3.35). Thus, the p’ integration for this term is simplified

to

r'=pe 3 /
[ Sy = 500 - 510 (3.36)
p'=ps P

where p, and p. denote the start and end points of the probe, respectively. For
the first and second terms of (3.33), p/ integration is performed in the spectral

domain from the efficiency point of view.

Finally, similar to the tangential components, the product —ﬁé’vp(k‘zoo, P =

J
p)F? [S1] is subtracted in the spectral domain from (3.33) and its Fourier trans-
form is added to the final space domain Green’s function representation as a

function of I; so that possible numerical problems for very large k., values are
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avoided. Consequently, the resultant expression for the G,, components of the

space domain Green’s function representations becomes

Gup

where

—00 7

]a 1 > év 1 / v —jky(2—2
(&)l {%/ < klp + movp(kzooap = p) Flp [SI]) € ks ( )dkz

O bl = p)F;p[Il]} (3.37)

4mwe;

Rl = (3.39)
O
F¥*[L) = —jaw;. (3.39)

and I, is defined in (3.17).

Note that because the first term of (3.37) has an integral (Fourier transform

integral), its present form is not in closed-form. Therefore, its inverse Fourier

transform is evaluated in closed-form with the aid of the GPOF method as exp-

lained in Chapter 4.
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Chapter 4

Closed-Form Evaluation of Space
Domain Green’s Function

Representations

The spectral domain Green’s function representations which have a Fourier in-
tegral with respect to k, are transformed into the space domain by the inverse

Fourier transformation given by
1 [~ 4 "~
Guw = — / dk,ek=C=2)q (4.1)
2r J_ o

where G, is the space domain Green’s function representation. This formula is
a time consuming numerical integration of spectral domain Green’s function rep-
resentation such that it ranges from —oo to oo along the real axis of the complex
k. plane. Therefore, the final form of the spectral domain Green’s function rep-
resentations (integral parts of (3.18) and (3.37) for tangential and probe-related
components, respectively) are written as even functions of k,. Then, the original

Fourier k, integral is folded to a 0 to co integral by writing (4.1) as

G = %(g)l{ /O " k. coslha (2 — z)]il } (4.2)

In this dissertation, the discrete complex image method (DCIM) is proposed

in the calculation of the space domain Green’s function representations as a sum
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Figure 4.1: Deformed integration path used for radiation/scattering problems

of complex images by approximating the spectral domain Green’s function repre-
sentations (the integrand of (4.2)) in terms of complex exponentials. The nume-
rical method which is used to find the exponential approximations of the spect-
ral domain Green’s function representations is the generalized pencil of function
(GPOF) method. Therefore, in this dissertation we provide approximate closed-
form expressions in terms of a couple of complex images for the space domain
Green’s function representations using DCIM with the aid of GPOF method. In
[18], for p >> p’ case (radiation/scattering problem), the spectral domain Green’s
function representations which are again even functions of k, are evaluated on
the integration path given in Fig. 4.1 to overcome the effects of the pole and

branchpoint singularities.

In order to obtain the desired accuracy when p = p/, the deformed integration
path given in Fig 4.2 is used in this dissertation. It should be noted that the
deformed integration path is an approximation of the original one (integration on
the real k, axis). Around ks (the wave number of the source layer) the integration
path given in Fig 4.2 is broken into small pieces in order to work with less number
of spectral samples and complex exponentials. Instead of a single path before k,
as illustrated in Fig 4.1, two paths [V and I'; are defined in Fig 4.2 where T’
can be chosen between 0.5 and 0.8. The value of 7} (0.1 < 77 < 0.5) should
be kept small to minimize the deviation from the original path. Moreover, T5

should be large enough so that the value of k, is larger than those of the wave
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Figure 4.2: Deformed integration path

numbers of all layers ensuring that none of the singularities lies on the deformed

path. T5 can be between 4 and 6 where the other parameters can be chosen as

20 < T3 < 30 and 30 < Ty < 40, respectively. Up to T3k, four paths are defined

instead of two (when the path given in Fig 4.2 is compared with the one given

in Fig 4.1), in order to work with less number of samples since large number of

samples are needed around ks. In other words, with the integration path given

in Fig 4.2 non-uniform sampling is achieved (large number of samples around k;

and less samples in other paths). On I'y, the spectral domain Green’s function

representations have smooth decaying behaviour for all possible A¢ values. To

reach this path, I's is used as a transition path to be far away from k.

The parameters that define the deformed integration path are as follows:

k-

' k,=

K+ (ky —

ki + (ko —

ko + (ks —

ks + (kg —
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where k, is the wave number of the source layer and k' = T'k,, ki = ks + jkT7,
k‘z = Tzk‘s, k’g = Tgk’s and k’4 = T4k’s.

To obtain space domain counterparts, the spectral domain Green’s function
representations are sampled on paths [V, 'y, I'y, I's and I'y by taking N', Ny, No,
N3 and N, samples, respectively. Using GPOF (the details of GPOF is discussed
in Appendix B), the samples are expressed in terms of M’ My, My, M; and
M, complex exponentials of k, on each part of the integration path. Let the
approximated spectral domain Green’s function representation (or the outputs of
the GPOF on each path) be

Geror,, = Z by, €t (4.8)
B l
Geror,, =) bne" (4.9)
n=1
Gépor,, = Z by, ™2 (4.10)
~ M3
Gépor, =Y bse™" (4.11)
s=1
My
Gapor, = Z by, e*r™ (4.12)
p=1

where the spectral domain Green’s function representation is approximated as

5 ~ A ~ 5 5 =4
Garor,., = Ggpor,, T GEPOFM + GZGPOFW + GSGPOFM + Gapor,,- (4.13)

These outputs of GPOF are then transformed to complex exponentials of &, as

follows:

Goror,, = met . mek Faomy (4.14)

M M

Goror,, = Z by et = Z by € (4.15)
n=1 n=1
M, Mo

éQGPOFM o Z by, et = Z blkekZSzk (4.16)



é?(’}POFuU = Z bstesstt3 = Z bskekzssk (417)
s=1 s=1
~ My My
Garor,, = Z bp, e = Z by €7 (4.18)
p=1 p=1
such that
bmk - bmt (4.19)
T/
Smy, = Smtp (4.20)
e T =T
by, = bp,e T 1K) (4.21)
(T"—T))
S k S (kl _ k/) ( )
(To—T)
blk = blteisltkl (kg —k1) (423)
(T; —Th)
=5, —Z 4.24
Slk Slt (kg o kl) ( )
(T3—Ty)
by, = by, 2 Ta=2) (4.25)
(T3 — T3)
s = Sgy—— 4.26
S k S (kg _ k2) ( )
(T4—T3)
by, = by etk Gika) (4.27)
(Ty — T3)

(4.28)

Sp, = smm.
Note that, as explained in Appendix B, inputs of the GPOF method are the
spectral domain samples, the number of samples NV, the number of complex expo-
nentials M and the sampling interval 6t. In GPOF implementation, the sampling
interval 0t is chosen to be o0t = T"/N', 6t = (T" — T1)/Ny, 6t = (Ty — T1)/Na,
ot = (T3 — T3) /N3 and 6t = (Ty — T3) /N, on paths IV, T'y, I'y, I's and T'y, respec-
tively. As a result of the GPOF implementation, the spectral domain Green’s
function representations are obtained in the form of complex exponentials of k.,

and the integral given by

1
Gapor,, (2 —2') = —

/ dk.coslk.(z — 2")|Gapor,, (4.29)
T 04T 1424 T34 Ty

is evaluated analytically. Consequently, the following expressions are obtained

for the space domain Green’s function representations:
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G' (z z’) - 1 M (ek,[smk-ﬁ-j(z—z’)] _1
GPOF, - N — . '
uv 27]' Smk +]<Z _ Z/)

m=1
ek/[smk—j(z_zl)] . 1
' )

' 4.30
Smy — ](Z — Z’) ( )
Gl (Z _ 2/) - i My <ekl[snk+j(2z’)] o ek/[snk+j(272/)]
T 2 n=1 " Sny, + ](Z — Z’)
ehlsng=3(z=2) _ ek'lsny =i (z=2")]
Sny — J(Z -z )
GQ (Z . Z/) Ny i M ekz[sszrj(zfz’)] i ekl[sszrj(zfz’)]
GPOFy, 2m — U ot (o= )
ekelsy, —i(z=2")] _ ckilsy, —j(z=2")]
" ] ! ) (4.32)
St — ](Z —Z )

Q

G3 (z _ Z/) i M3 ek3[53k+j(2—z’)] o €k2[33k+](2—zl)]
GPOFy, 2 Sk Sg, T j(z _ Z/)

s=1
eks [5s, —d(z—2")] _ 6k2 [55, —i(2—2")]

Sop — j(z — 2') > ) (4.33)

+

Q

GéPOF (Z _ Z/) i M4 <6k4[8pk+j(zzl)] . ekg[spk+j(zle)}
uv 27T p:1 Pk Spk + j(z — z/)
k4[3p _j(Z—z’)] _ k‘3[8p _J(Z—Z/)}
e k . e lk ) (4.34)
Sp, — J(z —2')

where the final space domain representation is obtained as

/ 4
Geror,., = Ggror,, Gé’POFM + G%:POFM + G?éPOFu + Gepor,,- (4.35)
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Figure 4.3: Imaginary part of G integrand on I'y in (3.18) for different A¢ (in
radian) values for the same cylinder parameters given in Fig. 3.2

Note that in this dissertation, the two-level GPOF implementation given in
[18] is not used due to the envelope extraction with respect to k, that we per-
formed as explained in Chapter 3. Recall that when implementing the envelope
extraction with respect to k., the value of the spectral domain Green’s function
representation for large k, (for k, values much larger than k4) is subtracted in
the spectral domain and its Fourier transform is added to the final space do-
main Green’s function representation analytically (i.e., in closed-form). There-
fore, contributions coming from large k., values are automatically included in
closed-form. As a result of this step, when the integral (i.e., the first) terms
of (3.18) for tangential components and (3.37) for probe-related components are
considered for GPOF implementation, the magnitudes of these terms show a vari-
ation (due to their imaginary parts) on I'y for different A¢ values as shown in
Fig. 4.3. When A¢ is small, the magnitude is relatively large (in the order of
1071, 1072, etc.). When Ag¢ is large, the magnitude is very small (in the order
of 1077, 107®) and may be noisy (see Fig. 4.4 when A¢ = 0.0514). However,
when the magnitude is very small and noisy for large k, values (i.e., on I'y, see

Fig. 4.4) numerical issues may occur in the implementation of GPOF leading to
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Figure 4.4: Imaginary part of G, integrand on I'y in (3.18) for A¢ = 0.0514 (in
radian) for the same cylinder parameters given in Fig. 3.2

a resultant complex exponential that may have an exponent (i.e., s,,) with real

part greater than zero.

Consequently, in this dissertation, contributions coming from the k, values
larger than k; are not included because they are usually very small even for
relatively small k, values (because of the envelope extraction). Furthermore,
when A¢ is small (the threshold value for small A¢ is set by the user) and
especially for the source region where the source and observation points are very
close to each other, k; can be set to a large value (sometimes 1000k, only in the
numerical evaluation of (4.34), without taking any spectral sample beyond ky) to
make sure that contributions coming from large k. values are properly included.
One final note that we initialize all GPOF parameters (i.e., 7', Ty, Ts, T3, Ty,
N', Ni, No, N3, Ny, M', My, My, Mz, My, §;, etc) before we attempt to solve a
microstrip antenna/array problem. Therefore, these parameters should be kept

the same regardless of the A¢ value.
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Chapter 5

Mutual Impedance Calculations
and The Treatment of

Singularities

To be able to safely use the developed CFGF representations in a MoM solu-
tion procedure, the CFGF representations should be valid for almost all possible
source and field points that lie on the same radial distance from the axis of the
cylinder. However, there are two types of singularities that should be treated
carefully. One of them is so called the spectral domain singularity and occurs
along the axial line (p = p/, ¢ = ¢'). The other one is so called the space domain
singularity and occurs when the source and observation points overlap with each
other (p =p/, ¢ = ¢, z = 2'). These two singularities are fortunately integrable
singularities, and are treated analytically during the mutual impedance calcula-
tions in a Galerkin type MoM procedure by performing the integrals over the
surface areas of basis and testing current modes as explained in a detailed way
in this chapter and in Appendices C, D and E for 2z, z¢ = ¢z and ¢¢ couplings,

respectively.
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Figure 5.1: Geometry of the problem. Current modes on a multilayer cylindrical
structure together with its cross-sectional view from the top

5.1 Geometry and Current Mode Definitions

Fig. 3.1 is redrawn as Fig. 5.1 and the descriptions of the geometry is repeated
to be able to explain the mutual impedance calculations clearly. As mentioned in
Chapter 3, the geometry of current modes on a multilayer cylindrically stratified
media is illustrated in Fig. 5.1 together with a cross-sectional view from the top.
The structure is assumed to be infinite in the z direction. A PEC cylindrical
ground, denoted by the subscript j = 0, forms the innermost region with a radius
ag, and material layers, denoted by the subscript j = 1,2, ... surround the PEC
region coaxially, as shown in Fig. 5.1 (subscript j = 1 denotes the substrate
layer; subscript j = 2 denotes the superstrate layer, and subscript 7 = 3 denotes
the air layer in Fig. 5.1). Each layer has a permittivity, permeability, and radius
denoted by €;, 1; and a;, respectively. Furthermore, current modes, denoted by
JI(p', ¢, 2") and J,(p, ¢, z) are depicted in Fig. 5.1 where v = ¢ or z. A z— or ¢—
directed tangential current source, defined at air-dielectric or dielectric-dielectric
interface has a dimension of 2z, x [, (with I, = a;¢,) along the z— and ¢—

directions or 2[, X z, along the ¢— and z— directions, respectively. On the other

46



hand, if the current mode is normal to an interface (excitation via a probe), it is
usually located inside a layer, assumed to be infinitesimally thin in terms of ¢—
and z— coordinates, and has a certain length along the radial direction. Finally,
in Fig. 5.1 s denotes the geodesic distance between the two current modes (or
between the source and observation points for the CFGF expressions) and « is the
angle between the geodesic path and the ¢— axis. Note that during the mutual
impedance calculations for tangential components p is equal to p’. However, when

the probe-related components are involved p is very close to p’ but usually p # p'.

The mutual impedance, Z;5,,, between two current modes (Jy,,, Jo,) is simply
given by
Zmuv = / EluJQU ds (51)

52

where F, is the field due to the current mode J;, and sy is the area occupied
by the current mode J,,. In this dissertation, the tangential current modes are
selected to be piecewise sinusoidal (PWS) current modes. As an example, the
expression for a piecewise sinusoid z— directed current mode, J,, located at p = a;

in Fig. 5.1 is given in the space domain as

a;¢
lo)2

where [, is the dimension along the ¢— direction and 2z, is the dimension along

)lPWS(ka,za, 2) (5.2)

J. (¢, z) = rect( l

the z— direction and

rect(g) = { b 2l <a (5.3)

a 0, otherwise
sinfka(za—|2])] z| < z

PWS(k‘a’ Za, Z) — Sln(kaza) Y | | a . <54)
0, otherwise

Similarly, the expression for a piecewise sinusoid ¢— directed current mode, Jy,

located at p = a; in Fig. 5.1 is expressed in the space domain as

z 1
za/2>z_aPWS(kaalaaa1¢>‘ (55)

Js(¢, z) = rect(

In (5.2) and (5.5) k, is defined either as

Re(e,) +1  Re(e,) —1 Uhi
k, = k i i 1+10— M )05 5.6
0\/ 2 + 2 (1+ min(W, L)) (5:6)
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or as

b — kg\/Re(ETi) + Re(enﬂ). (5.7)

2
where €, is the permittivity of the i dielectric region, t;; is the thickness of the
it" dielectric region, W and L are the width and length of the microstrip antenna,
respectively and Re(.) denotes the real part of the permittivity since the dielectric
region can be lossy. When the microstrip antenna is located at the air-dielectric
interface, the definition given by (5.6) is used for k,. On the other hand, if
the antenna is located at the dielectric-dielectric interface (substrate-superstrate

situation), (5.7) is used for k,.

5.2 Mutual Impedance Calculations For Tan-

gential Components

Defining F;, in (5.1) as Fy, = f51 GuyJ1, With s; being the area occupied by the

current mode J;,, the mutual impedance formulation can be expressed as

Zlguv:////JlquvGuvdzdz’d/Bdﬂ’ (5.8)

where 5 = po, ' = p'¢’ and df = pd¢ (and df’ = p'd¢’). In (5.8) dz'dp' = ds;
and dzdfp = ds,.

To find the mutual impedance results for tangential components for all prob-
lematic cases (that exhibit singularity), (5.8) will be rewritten and analyzed in
detail. Starting with the space domain Green’s function representation, G,

given by (3.18) for tangential components, GG, is expressed as

0? 0 0 0
Guw = (k7 — W)q(jg)n(—ja—gb)tl (jﬁ_gb’)

2 e (5.9)
where for uv = zz case ¢ = 1,71 = 0,t; = 0,t; = 0; for uv = 2¢ = ¢z case
q=0,rp =1,t; = 0,t5 = 1; and for uv = ¢¢ case ¢ = 0,7y = 0,t; = 1,t5 = 1.
As seen in (5.9) G, and G2 are related to each other by the derivatives with

respect to ¢, @', z and z’. Note that (5.9) is obtained from (3.18) by recognizing
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the Fourier series (with respect to n) and Fourier Transform (with respect to
k.) relations between the spectral domain and space domain Green’s functions.
Briefly, the term (k2 — 5%) i
ral domain. Similarly, the (j E) term in the space domain corresponds to k. in

in the space domain corresponds to kz_ in the spect-

the spectral domain. Finally, both the (—j a%) and (j 8%,) terms in the space do-
main correspond to n in the spectral domain. On the other hand, the advantages
of rewriting G, as (5.9) are as follows: (i) For the zz component, the spectral
domain counterpart of G0 decays faster than that of G, with respect to k..
(ii) For the ¢¢ component, the spectral domain counterpart of G0 decays faster
than that of G, with respect to n. (iii) Most importantly, these derivatives are
transferred onto current modes using integration by parts. Thereby, the afore-
mentioned two different types of singularities are kept as integrable singularities.
Consequently, for the rest of this chapter G2 is the part of the Green’s function

that appears in the mutual impedance calculations.

After transferring the derivatives acting on G,, onto the PWS current
modes (which are differentiable) using integration by parts, the following mu-

tual impedance expressions are obtained for tangential components.

0J, 0J
Zl2zz //// kQJ Jz’GZZQ 62: 8 /G222>d2dz/dﬁd6/ (510)

RN oo
07,0y o
Zisgs = / / / B B oz dgag (5.12)

The details about the expressions (5.10), (5.11), (5.12) are given in Appendix
(C.1), Appendix (D.1), Appendix (E.1), respectively.
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In order to discuss the mutual impedance calculations for tangential compo-

nents let G2 be defined in the form of inverse Fourier transform (IFT) as

1
4UJ€]'

7 Oy, ) Jully, ) fu(n, k) @O, (5.13)

n=—oo

Guvz :]'-_1{ -

where F~1{.} denotes the IFT operation. Note that the IFT is performed using
the DCIM with the aid of the GPOF method. After performing the envelope

extraction with respect to n, (5.13) is written as

. - , )
GU/U2 - f 1{ B 4&)6' Z HT(L2) (kpjp)Jn(kpjp )[fuv(n7 kz) - Cuv(kz)]ej (A¢)}
J n=—00
_ 1 .

J
Similarly, after performing the envelope extraction with respect to k., the follow-

ing expression is obtained

1 o )
— -1) _ E (2) / _ in(Ag¢)
Guv2 F { dwe; H, (kpjp)Jn(kpjp Wfuww(n, k) — Cuy(K2)]e }

n=—oo

Ly 1 B o
+F { 4w€j[0w(k:z) Cuuo (ko) Hy (K, |P PI)}

- @1 (5
+7 Y T, o) H” (s |5 7N} (5.15)

The IFT of the last term of (5.15) is available in closed-form. Therefore, (5.15)

is written as

a1 N o / _ Jn(Ag)
Guw2 = F { dwe; n:ZOOHn (kpjp)Jn(kPjp)[fuv(n7kZ) Cuv(k2)]e }

1

dwe;

+.F—1{ B [Cuv(kz) - Cuv(kzoo)] H(g2)<kpj |’6 - '6/|>}

/
f‘k~‘fff)
e M

() (5.16)

 4rwe; |7 — 7|

The representation given by (5.16) is used in the mutual impedance calculations
given by (5.10)-(5.12) when there is no singularity. The treatment for the singu-

larities are given next.
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5.2.1 Spectral Domain Singularity (p = p/, ¢ = ¢')

The spectral domain singularity occurs along the axial line (when p = p/ and
¢ = ¢) because the argument of the Hankel function H{(k,, |p — p'|) becomes

zero as given by

16— 0| =V p* + P2 — 2pp’ cos(Ag). (5.17)

The remedy for this problem is to use the small argument approximation of the

Hankel function given by

L 2 Yk, 2 L
B, lp = )~ 1= 210 () = 2wl =) (518)

where v = 1.781. As seen in (5.18), the last term —j2log(|p — 7/|) exhibits a
logarithmic singularity when p = p’ and ¢ = ¢’ and yields numerical problems
for small A¢ values (p = p'). Therefore, for the tangential components, when A¢

is small, approximating cos(A¢) term as 1 — AT‘bQ, |p — p'| can be simplified to
17— 5~ plé— & = 15— 7] (5.19)
where = pp and ' = p'¢' and p = p'.

As the next step, the term —j% log(|p—7'|) is replaced with —j% log(|8—/5')).
Then it is subtracted from H (k,, |p — p'|) and added as a new term to the Green’s
function representations. Consequently, (5.16) becomes

o0

(5.20)

Gue = ]:_1{ - 4(j€j ; H7(z2)(kpjp)*]n<kpjpl)[fuv(nv k.) — Cuv(kZ)]ejN(Adj)}
1 2
+F = o [Cunlhe) = Cunllose)] (HP iy, 15— 7)) = [ = =108 (18- 8] ) |
2 1
=i 108 (18 = #1 F{ = - [Cunlhe) = Cunlhie)] |
j o e—jkj)f—f"

In order to handle the singularity in the numerical evaluation of the second term
of (5.20), the [1 — j2log <7kpj>] term is used for the (Héz)(k:pj lp—01) — | —

2

j% log (|8 — B’|)D term when [ is exactly equal to 4. In this dissertation, the
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terms like the (Héz)(kpj p—7)) — | —j2log(|8 - ﬁ’])D term is called non-
singular or regular although they are numerically singular at the specific point
(i.e., p = ). The third term of (5.20) is evaluated analytically as defined
in Appendix C.4, Appendix D.3 and Appendix E.4 for zz, z¢ and ¢¢ cases,

respectively.

5.2.2 Space Domain Singularity (p =/, ¢ = ¢, z = 2)

The space domain singularity occurs when the source and observation points
overlap with each other (i.e., 7 = 7 which means p = p/, ¢ = ¢ and z = 2/).

When 7 = # the denominator of the last term of (3.18) for the G, expression

/

—jkj|F—7

(or the last term of 5.20 [or (5.16)]) that involves [; = 6|1L—F,| exhibits the

singularity problem. To treat this singularity analytically, first recognizing that

— 15— 71+ 12— P2 (5.21)

_ s
rT—r

and making use of (5.19), I; is approximated as

1
VB =BP+ (-2
Then, I] is subtracted from I; in (5.20) and the subtracted term is added as a

[1%[{:

(5.22)

new term. As a result (7, is expressed as

1 .
Gu’v2 - ‘Fil{ N Z HT(LQ)(kpjp)’]n(k'pij>[fu’v(n; kz) - Cuv(kz)]ejn(A¢)}

4&)€j e

FH = Cunlke) = Cualhene)] (H 0y, o= ) — [~ 3210815 - 91 ]) }

dwe;
1

.2 "M
~ilog (18— N7 - 1o

[Cuv(kz) - Cuv(kzoo)] }
e—jkj‘f—f’) 1

J
_Mcw(kZQ( — —\/<5_6,)2+(2_Z,)2)

I ek ! , 5.23
4mwe; ( ) \/(5 — B2+ (z— )2 ( )

Similar to the spectral domain singularity, in the numerical evaluation of the

’

T—T

—ik; . .
<e T \/(,3,3/)i+(zz')2> term, the —jk; term is used when p = p/, ¢ = ¢’
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and z = 2’ in order to solve the numerical singularity. The —jk; term comes from
the Taylor series expansion of the exponential function. The last term of (5.23)
is singular when the source and field points overlap with each other. Hence,
it must be evaluated analytically. During the mutual impedance calculations,
overlapping of source and field points occur / may occur when the two current
modes (i.e., basis and testing functions) are on the top of each other (self term)
and partially overlapping with each other (overlapping terms). Details of the
analytic evaluation of the last term of (5.23) for these situations are in Appendix
C.2-C.3, Appendix D.2 and Appendix E.2-E.3 for zz, 2¢ = ¢z and ¢¢ cases,

respectively.

5.3 Mutual Impedance Calculations For Probe-

Related Components

In this study, the microstrip antennas are fed via an ideal probe with an infinite-

simally thin thickness. Hence, the probe is modeled as

_ 1od(pd —rl)o(z — zf)

J
g p

(5.24)

where Iy = 1 is the magnitude of the excitation current and §(.) is the Dirac
delta function. Therefore, the mutual impedance expression for probe-related

components for v = ¢ or v = z is defined as a three-fold integral given by

Vip = —//Jv/vadp’dzdﬁ. (5.25)

It should be noted that instead of Zis,, we prefer to use V,, for the mutual
impedance expressions of probe-related terms. The main reason for this notation
is that they form the entries of the voltage vector V in the MoM calculations. Also
note that the minus sign in front of the integrals in (5.25) is due to the fact that
the electric field direction and the integration path direction for the p’ integral
are opposite. Similar to the tangential components, recognizing that (;j %) and

(— ja%) terms in the space domain correspond to k, and n in the spectral domain,
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respectively, the inner p’ integral is rewritten as

o, .0 ,
[ Guste! = (=575 [ G (5.26)

where p = 0,1 =1 for zp case and p = 1, [ = 0 for ¢p case. After transferring the
derivatives acting on G,, onto the PWS current modes (which are differentiable)
using integration by parts, the following mutual impedance expressions are ob-

tained for the probe-related components:

d.J. :
_/ / (=i, [ Gepdp'dbdz, (5.27)

_//(j)%_{;’ Gopadp'dBdz. (5.28)

When there is no singularity in the probe-related components, the p’ integral
is performed first to increase the efficiency. Therefore, making use of the IFT
of (3.32), the mutual impedance calculations for the probe-related components

start with the p’ integral of (5.26). Hence the p’ integral of (5.26) is written as

/ UPde _/‘F { 4(4)6] Z kﬂanQ (kpg )Jl( pp)fvp(n kz,p)e]"A¢}dp
(5.29)

After the envelope extraction with respect to n as explained in Section 3.2, the

following expression is obtained:

[ G =
[7{5
AR

where

n=—oo

3 b HE )l ol e )~ cvp<kz,p'>1ej”“’}dp'

Coplhen ”[Sl]} i (5.30)

OHg (k,, |p — pl))
op

o4

FY[S] = (5.31)



As the next step, the term C,,(k., o' = p)F3*[S] is subtracted from the second
term of (5.30) and its contribution (after the integration with respect to p’ is

evaluated) is added analytically as given by

/va2d,0/:
Z Ko, HP (K, 0) 11, (ko ) o (2, s, 1) — C‘w(kz,p’)]ejnm}dp’

/]: { dwe; =

s [F { 4%0 (kzapl)—é’vp(krz,p'ZP)]ng[Sﬂ}d,o’

+F‘1{ e Coplkz, p = p)H3 (K, |p
]

..}
) pg} (5.32)

Note that, as explained in Section 3.2, in the course of obtaining the last two

1 -
—F - vp kz —
F { 4w€j0( 0" = p)Hg (k,, |p— 7')

terms of (5.32) (these are the analytically added parts), the following is used:

P'=pe g ,
/ ~dp’ = Si(pe) — Si(ps)- (5.33)
p dp

'=ps
Also note that the p’ integration for the first two terms of (5.32) is performed

numerically using a simple numerical integration algorithm.

Finally, a second envelope extraction with respect to k, is applied as explained

in Section 3.2 and the final form of the p’ integral of (5.26) is obtained as

/ Gupdp' =

/7 { T, Z by B2 (B, ) g ) o, s ) = ov,)<kz,p’>]ef"”}dp'

el e, ~

_ 1 ~ / / = ~
N 1{—m[(]w(k3,p = ) = Coplkae. p' = p)|H3(ky, |9 — 7))
J

[ Up(k27 10/) - évp<kza Pl = p)]F;p[Sl]} d,Ol

_ l A /
_F 1{_4w€ [Cop(kzs o = p) = Copl(keoo, 0 = p)|H3 (K, |7 = 7))

J

. —jkj‘f—f"
J ~ / €

Cv kzoou = T
ATwe;; a p=r |7 — 7|
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/
—'k-’F—F‘
e M

J C’Up(kzoo, P =p) (5.34)

ATwe;; |r—7

p'=ps

At this step, (5.34) can be used in (5.25) to calculate the probe-related mutual
impedances except the cases where singularities exist. The treatment of the

singularities are given next.

5.3.1 Spectral Domain Singularity (p = o/, ¢ = ¢')

Similar to the tangential components, the spectral domain singularity occurs
along the axial line (when ¢ = ¢’ and p = p’) because the argument of the

Hankel function H (k,, |p — p'|) becomes zero as given by

6= 7'l =V p? + 0% = 2pp/ cos(Ag). (5.35)
Again using the small argument approximation of the Hankel function given by

o 2 Yk, .2 L
H; (kp; 1p = pl) ~ 1= j—log (Tp) —j—log(lp—7) (5.36)

it can be seen that the last term —j2log (|p — p'|) exhibits a logarithmic singu-
larity when p = p and ¢ = ¢'. Therefore, similar to the tangential components,
approximating cos(A¢) as 1 — AT‘bQ for small A¢ values, |p — p'| can be approxi-

mated as

p— 0| = \/(p — )2+ %(ﬁ — p¢')>. (5.37)

It should be emphasized that (5.37) is different than (5.19) since there is a p
integration in (5.25) that will play a role during the treatment of this singularity.

Note that the problematic parts of (5.34) are the third and forth terms when
p = p'. The second term does not pose any problem because the multiplication
term [C,p(kz, o) — Cyp(k=, o = p)] cancels this singularity (actually this product
yields zero when |p — p'| = 0 and hence, the contribution coming from this term

vanishes). Using the approximated |p — o| [given by (5.37)] in —j2log (|p — 7'|),
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—j2log <\/(p — )

+ %(/3 - p¢’)2> is subtracted from Hg(k,, |p— p|) in the

third and fourth terms of (5.34) and added as new terms. Hence, (5.34) becomes

/ Gopadp’ =

/]: { 4we; kjijq(zQ)(k )J,(pp)[fvp(n keop') — Cvp(kzvp/)]ejnA¢}dpl
J p=—oo

e

Copllan ) — Coplhey ol = p>]F;:P[le} aff

1 - , - /
LF {_4w€j (Conlhen ' = ) = Cuplhsce. ' = p))(HiChy 17 = 7|
2 /
_ [ ~j= log (\/(p — )2+ %(6 - p¢’)2)] p/p) }
1 ~ ~
_F {_M[ovp(kz, ' =) = Coplkzoor o = p)] (Hg(kpj o=,
2
[l S]]
j ~ , —jk’j’r r‘
ATwe; plkzos: 7= 1) r=r
p'=pe
j B / 7]kj‘F r‘
471'(,()63 p( 200y p) ‘7, —F | )
p'=ps
1 ~ ~
+~F_1 {_m[cvp(kmpl = P) - Cvﬂ(kzoovpl = P)]
[ - j% log (\/(p )P+ %(ﬁ - p¢/>2>] pf=pe}
1 - , - :
5 {_M[Cw(/@, 0 = p) = Copllzser = p)]
2 /
[~ og (\/ (0 =2+ 55— )] } (5.38)

Similar to the tangential components, in (5.38) when a numerical singularity oc-

Cursin( o(kp; 10— P'1)

term, the [1 — j;log( ];

the newly added terms

P =pe 7ps>

]>] term is used. The last two terms of (5.38) are

o ~[=i210g (\/(p— 02 + £(8 - po')?)]

and must be evaluated analytically during the mutual
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impedance calculations as follows: First, (5.38) is substituted into (5.25). As
a result of this step we have a two-fold space domain integration (note that all
¢ integrals for the nonsingular terms given by (5.38) are numerically evaluated
in a straight forward way). Then, integration by part is implemented and the
derivatives are transferred to the testing functions. Finally, for the zp case, the

singular integral is evaluated analytically with respect to § as follows.

/ - 2
/ log (\/ (0= + (5 = po')?) s = * (Brog?P =200 pﬂ¢> (- )]
—pd'loglpp” + (¢ = 2)p°0" — 26¢'pp’ + 870 + p°]
[P 1 ( B = ¢'pr
—2 ;(P —p)tan™! (W W> + 25) (5.39)

The remaining integral with respect to z can be numerically integrated easily

using a simple Gaussian quadrature algorithm since no singularity is left.

Regarding the ¢p case, a slightly different approach is followed since both J,
and its derivative with respect to ¢ are functions of 5. Therefore, the singular

integral for the ¢p case is

/ J2(0)| log (\/ (p—p)? + %’(5 —po)?) | as (5.40)

where

Tsa(6) = <j>aa—“;j’.

To be able to use the result of (5.39) for the ¢p case, the expression Jy(¢') is
subtracted from Jy(¢) and added as follows

(5.41)

[Giat) — Jualef)) 10 (\/ (0= 02+ L5 = pory?) s

+Jg2(0") /10g <\/(p — )+ %(ﬁ - p¢’)2>dﬂ- (5.42)

As seen in (5.42), there are two terms that have to be integrated. The second
integral is now in the same form as that of (5.39) and hence, evaluated analytically.
On the other hand, there is no singularity in the first integral as [Js2(¢) — J42(¢')]
is exactly zero when p = p’ and ¢ = ¢’, which makes the first integral vanish

along the axial line.
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5.3.2 Space Domain Singularity (p =/, ¢ = ¢, z = 72')

Finally, the space domain singularity for the probe-related components exists
when 7 =7 (p = p/, ¢ = ¢ and z = 2’). However, note that ¥ = 7 may not
exactly occur. Instead, because the length of the probe is fairly short p may
approach to p (p = p') and ¢ = ¢ and z = 2’ may occur. Therefore, this

singularity must be treated as if 7 = 7. Similar to the tangential components
TR

the terms that involve I; = in (5.38) must be analytically treated when
7 ~ 7 during the mutual impedance calculations. Making use of (5.37) for

|p — p|, the term I is approximated as I given by

1
I = . (5.43)

Vo= 2+ 2B pd)? + (2 - =)

Then I is subtracted from I; in (5.38) and added as two new terms (the last two

terms).

Consequently (5.38) becomes

/va2d:0/ =
/}— { 4wej
A

_ 1 / S / H— 7
—|—F 1 {—m[cv,ﬁ(kz,p = P) - Cvp2(kzooap = p)](Hg(kPj |p —p |)

520 (\/ (p— )+ %(5 -02)]],_,.)

— 1 ~ / / — —/
_JT" ! {_ [Cvp2<kzap = p) - Cva(kzooap = P)] (Hg(kpg ’p —p |)

dwe;
_ [ . j% log <\/(p — )+ %(ﬂ - p¢’>2>] p':p)}

!
7'k~‘77777‘
e M

n—=——oo

vp2(k pl) - éva(kz’ p, = p)]F;p[Sl]} dp,

p'=pe

p'=ps

1

Z kﬂjHr(LQ)(kﬂjp)Jrlz(kpjpl>[fv/ﬁ(na k., p/) - éva(kza P/)]ejnA¢} dp’

Co (km’plzp)< 7 — 7

47rwe]
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e—jkj‘f—f’) 1
e (0= PP+ E(B— pg)? + (2 — )2
1 - _
+~F_1 {_ [Cva(kza p/ - P) - C’Up2(kzooa )0/ - p)]

dwe;
P':Pe }

[— j% log (\/(p —p)?+ %(5 - P¢')2>]
_F1 {—L[Ovpg(k'z, p'=p) = Copa(kzoe, p' = p)]

v kzoo; = =

)

Ps

4dmwe;
/:

p

4WEj
[ - j% log (\/(p — )P+ %,(/3 - p¢')2>] pf=ps}
i ¢ : !
_—Cv 2(k2007p - p) ;
ey SO PP 2G04 (o= 2Py,

P 1
J Cvp2(kzma P/ =

—— p) ,
dme; Vo= 0+ 28— ps)? + (2 =2y,
(5.44)
In (5.44), when p = p/, ¢ = ¢’ and z = 2/, the —jk; term is used instead of the
—jk; e
<67—7, — 1 ) term. Asseen in (5.44), the
=1 V=2 + L (B—ps) 24212 |
=De;Ps P =Pe,Ps

last two terms of (5.44) are nearly the singular terms and are treated analytically
during the mutual impedance calculations (during the integration through the
area of the test current). For the zp case as follows: when the last two terms of

(5.44) are substituted into (5.27) the analytical result of

1

/\/p P2+ (B — pd)? + (2 — 2)?

is needed. Its closed-form expression is given by

dg (5.45)

1
/\/p P2+ E(8 = pd)? + (2 — 2)? e ;Smh <\/(Z—Z’)2+(p—p’)2'
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Making use the result of (5.46) in the mutual impedance calculation, the remain-
ing z— integration is simply performed using a Gaussian quadrature algorithm

numerically.

Regarding the ¢p component a different approach is followed because Jya(¢)
is a function of 5. Moreover, the methodology followed in the treatment of the
spectral domain singularity can not be used because a term similar to [Js2(¢) —
Js2(¢')] may not exactly cancel the space domain singularity when (5.44) is used.
Therefore, the analytical evaluation of the space domain singularity for the ¢p
case uses (5.38) rather than (5.44). The terms that yield the space domain

singularity in (5.38) can be written as I,,; and [, given by

Ly = il 5.47
vpl — W / ( : )
p'=pe
e—jkj’f—F"
Ly = ‘77——77/| - (5.48)

Substituting (5.47) and (5.48) into (5.27), the singular integral that must be
analytically evaluated during the mutual impedance formulation can be written

as

/J¢2(¢)]md6 (i=1,2) (5.49)

where Jgo(¢) is given in (5.41). Then similar to the procedure related with the
spectral domain singularity [see (5.42)], (5.49) is written as

Joa ()
2 vpt 5
/ (J¢ o \/(P — )2 (B~ pd) + (= — )2 ”/:”g)d
/ 1 i =
e / \/(P — P2 BB = pd)? + (2 — 2)? ”’:Pédﬁ’ =12

(5.50)

where p| = p. and p), = ps. In (5.50), the first term is not singular and it
is possible to make the numerical evaluation with a simple Gaussian quadra-
ture algorithm. However, in the numerical evaluation of the <J¢2(¢)Im —

Js2(¢')
V(o= + 2 (B=p) )2+ (2—2')?

) term, the numerical singularity occurs when p =
p'=p;
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P, ¢ =¢" and z = 2. In this numerical singularity case, the [— Jk; J¢2(¢)] term
is used instead of the (J I, — ‘/]¢2(¢")

w2 @)Ly \/(P*PI)QJF%(5*P¢/)2+(zfz’)2 p=p,
this specific point during the numerical integration. The second term can now be

) term for only

evaluated using (5.46) similar to the zp case.
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Chapter 6

Method of Moments Formulation

In this chapter, the details of the MoM procedure is given in the presence of
an attachment mode with a special emphasis on the attachment mode that is
used to model the probe-fed antennas more accurately by ensuring the current
continuity from probe to the patch antennas. Then, the formulations for the
input impedance of a microstrip antenna as well as the mutual coupling between

two microstrip antennas are given.

6.1 Attachment Mode and Related Mutual

Impedance Calculations

To model a probe-fed type antenna feeding accurately during the MoM proce-
dure by ensuring the continuity of the current from the probe to the patch, an
attachment mode is defined and used. A z— directed attachment mode is defined
as

0.5sin(kq (zatt—|2|))
latt Sin[k‘azatt}

v 2 2 Zatt

Zatt
_ 0.5sin(kq(zatt—|2]))
latt sin[kazatt]

, 2 < Zatt
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Figure 6.1: The z— and ¢— directed current modes and a z— directed attach-
ment mode defined on the microstrip antenna are given in (a). In (b), a colored
3—D picture of a z— directed attachment mode (with different k,, z.u and
parameters) is given. X denotes the exact location of the probe.

in the 2z, X ly region where the probe is at the center of this region. Fig. 6.1
(a) illustrates a typical 3—D picture of the z— and ¢— directed PWS current
modes used to capture J ,(7') (the induced current on the patch antenna) and a
z— directed attachment mode which is consistent with the PWS current modes
defined on the microstrip antenna. A z— directed attachment mode is also given
in Fig. 6.1 (b) with different k,, z. and [, parameters. Note that the shape
of the PWS current modes (also the shape of the attachment mode) changes
with respect to k, and wu, (or ugy) of a u— directed current (or attachment)
mode. When £k, is chosen as 7/(2u,), the PWS becomes a half sinuous in the
u— direction. When k, or u, of a u— directed current mode is decreased, the
PWS current modes become triangular. A ¢— directed attachment mode can be

defined in a similar way by changing z by po, zai by las.

In the definition of an attachment mode, one critical issue is the selection
of the size of the attachment mode, namely z,; and l,;. In this study, the
size of the attachment mode is related with the size of the basis functions that

are used to expand the induced current J (7') on the conducting patches. Our
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probe location
L /

2 cm,.O.S cm)

>rl

— Wy —>

Figure 6.2: A microstrip patch antenna with W=4 c¢cm, L=3 cm and fed via a
probe at the location (rlf, zf)=(2 cm,0.5 cm) at f=3.2 GHz

rule of thumb for such a selection is that for a u— directed attachment mode
(u = zor @), ug < u, where u, = z, or I, for a z— or ¢— directed PWS,
respectively, and v,y = v4/2 O Vayp = Vg [Vart = lase/2 OF 2414/2 (i-e., the other
direction) and v, = [,/2 or z,/2 (i.e., the other direction)] depending on the
placement of the probe with respect to u— directed basis functions along the v—
direction. Therefore, considering a z— directed attachment mode given by (6.1)
on a fixed-sized patch antenna, the following two examples are given to illustrate

how the sizes of z,; and [, are decided.

Consider a microstrip patch antenna with dimensions W=4 cm in the rl—
direction (rl = p¢) and L=3 cm in the z— direction. This antenna is fed via a
probe at (rls, zf)=(u/2 = 2cm,0.5cm) as shown in Fig. 6.2 at f = 3.2 GHz.
For the first example, the conducting patch on which J  (7) exists is divided
into 4 subdomains along the z— and ¢— directions, respectively. Therefore,
P =K =12 and N = 24. Fig. 6.3 illustrates the magnitude, the shape and
the location of J.

e With respect to the 3 z— directed current modes along the

z— direction. In this example 2z, = 0.5cm < 2z, is chosen. Fig. 6.4 shows
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Figure 6.3: The magnitude, shape and location of a z-directed attachment mode
with respect to 3 z— directed PWS current modes along the z— direction for an
antenna whose parameters are given in Fig. 6.2

the placement of the attachment mode and the size of [,;. Because the exact
location of the probe along the rl— direction is exactly between the two z—
directed PWS basis functions, I, = [, is chosen. For the second example, the
same conducting patch on which J (7) exists is divided into 7 subdomains along
the z— and rl— directions, respectively. Hence, P = K = 42 and N = 84.
Similar to Fig. 6.3, Fig. 6.5 illustrates the magnitude, the shape and the location
of J,,,, with respect to 6 z— directed current modes along the z— direction. In
this example z,; = 2, = 0.43 cm is chosen. Similar to Fig. 6.4, Fig. 6.6 illustrates
the placement of the attachment mode and the length of [,;;. Because the exact
location of the probe along the r{— direction is the middle of a z— directed current
mode, I,y = [,/2 is chosen. Note that because the size of the basis functions (or
P, K and hence, N) can be preselected, one of the aforementioned placements of

the probe with respect to expansion functions can always be satisfied.

The mutual impedance calculations related with the attachment mode re-
quires the calculation of the following mutual impedance expressions: Zis..,,,,

Z12q§zatt7 Zl?zattpy Z12¢¢att, Z12z¢att, Z12¢mp- Although Zuzattz, ZlZzattqba Z12¢att¢
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Figure 6.4: The placement of the z— directed attachment mode on the same
antenna, whose parameters are given in Fig. 6.2 together with some of the z—
and ¢— directed PWS basis functions. x denotes the exact location of the probe.

Magnitude

Figure 6.5: The magnitude, shape and location of a z-directed attachment mode
with respect to 6 z— directed PWS current modes along the z— direction for an
antenna whose parameters are given in Fig. 6.2
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Figure 6.6: The placement of z— directed attachment mode on the same antenna,
whose parameters are given in Fig. 6.2 together with some of the z— and ¢—
directed PWS basis functions. x denotes the exact location of the probe.

and Zy24,,,. terms are included in the MoM analysis, there is no need to eva-
luate these terms, as will be explained in Section 6.4. Besides, as explained in

Appendlx F7 ‘/Pzatt - ‘/Zattp and ‘/;)(batt = V¢attp'

Regarding the mutual impedance expression between a z— directed current

mode and J,,; (2— directed attachment mode), the related four-fold integral is

Zlgzzatt:////Jszatthzdzdz’dﬁdﬁ’. (6.2)

Similar to the Z5,, calculations, the k‘ﬁj expression in the spectral domain cor-

given by

2 o2 . . . .
responds to (k5 — 555) in the space domain. Hence, G, is written as

i Go ) (6:3)

where G,y is obtained from (5.20) for uv = zz case. Using an integration by
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parts twice the mutual impedance expression becomes

12220y = //// k‘zJ s Grzo — 0J: aJZ““Gzzg>dzdz'd6d5
0z 0z

/ / / 0z 21m Garpdzdfdf’. (6.4)

Notice that the second term in (6.4) is due to the definition of an attachment

mode as it appears to be discontinuous at the probe location [see (6.1)]. The value
of the attachment mode is +« and —a (« # 0) at the upper and lower halves of
the attachment mode, respectively. Therefore, the end point contributions must
be included when an integration by parts is used. Two contributions, coming
from the upper half and lower half parts of the attachment mode, are added and

the result forms the second term in (6.4).

The spectral domain singularity (log(|,5 —7|) = log(|5 — B’|)> is treated in
the same way as that of Zi,.. case. On the other hand, a slightly different
approach is used for the space domain singularity. Briefly, substituting (5.20)
into (6.4), the mutual impedance term related with the space domain singularity

for the first term of (6.4) can be written as

/ / oz (2,2 [1d2'dB (6.5)

where J,,.,,(z,2") = (k3 J.J..,, — %‘I;%) and I; is given in (3.17). Then, using

(5.22), the term J,.,,, (z, 2’ = 2)I is subtracted and added to (6.5) resulting

// <Jzzatt(z, N — J..,,, (2, I’ dz dﬁ—i—//Jum 2 = 2)I[dZ'dS.

(6.6)

Rewriting the second term in (6.6) as

//Jzzatt(z,z':z)fidz’dﬁ Joonn (2 //[’dz s, (6.7)

the [ [ I{dz'dp integrals can be evaluated analytically using (D.18) and (D.19).
After the 2’ and [ integrals are evaluated analytically, the remaining z and [’
integrals are evaluated using a simple Gaussian quadrature algorithm. Note that
the first integral in (6.6) is regular and the numerical singularity (which occurs

when p = p/, ¢ = ¢’ and z = 2’) is solved using J..,,, (2, 2’ = 2)(—jk;) instead of
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<J2zatt(z, N — Jo (2,2 = z)[{) at the singular point. In a similar manner,
the integral that must be evaluated analytically for the second term of (6.4) can

be written as

[ s, (6.8)

Again (6.8) comes from the substitution of (5.20) into the second term of (6.4).

Rewriting (6.8) as
/ (11 - J;)dﬁ+ / Ildg (6.9)

the second integral [ I1df can be evaluated as

(6.10)

/ Ildg = / T 5,)21 o’ Sinh_l(é - f,/|)

where (6.10) is obtained from (D.18). Note that the first integral in (6.9) is
regular. However, during the numerical integration of (I 1—1 {), <— Ji kj> is used

when the numerical singularity occurs when p = p/, ¢ = ¢’ and z = 2/.

Regarding the mutual impedance expression between a ¢— directed current

mode and J,_,,,

the related four-fold integral is given by

Zl?¢2att ////J¢ za”Gd)ZdZdZ/dﬂdﬁ/. (611)

Similar to the Zy94, calculations, first G, is expressed as

o, . 3

where Gy,9 is obtained from (5.20) for uv = ¢z case. Performing an integration

G¢z:( )

by parts twice the mutual impedance expression is obtained as

2126201 //// 8J¢ Zatthbzdedz dpdpg’

/ / / % Qitthﬁszzdﬁdﬁ (6.13)

In (6.13), the second term is due to the definition of the attachment mode as

discussed for Zjs,.,,, the case.
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The spectral domain singularity <log(\,5 — 7)) = log(|5 — ﬁ’])) exists and is
the same for both terms of (6.13). The integrals that include the spectral domain

singularity can be written as

[ (o) 108(15— #)as (614

where Jyo(¢) = (j)%. Rewriting (6.14) as

/ sa(@) — Joal& = &) og(|8 — BB + Tenld = &) / log(|6 — &),
(6.15)

the second integral in (6.15) is analytically evaluated using (C.67) whereas the
first integral is regular and can be evaluated numerically. When [ is equal to '
in the numerical evaluation, the [J2(¢) — Js2(¢ = ¢')]log(|8 — B’|) term becomes
zero in order to handle the numerical singularity (i.e., logarithmic singularity
vanishes since it is multiplied by zero at the singular point). The remaining z,
z' and (' integrals are evaluated numerically. On the other hand for the space
domain singularity, substituting (5.23) into the first term of (6.13), the space

domain singularity for the first term of (6.13) appears as

/ / Idzdp’ (6.16)

where I] is given in (5.22). In order to perform the two-fold integral given by
(6.16) accurately and efficiently, first the integration with respect to z is evaluated

analytically given by

dz = sinh_1<|; : ;//| ) (6.17)

1
| oy
Then, the 8’ integral is evaluated analytically as
z—2
sinh™! g’ =
f =y

- <|5/ _ ﬁ/|sinh_1( |;/__Zﬁ,|) + sign( |i/:§| )sinh (|5/ |)> sign(f — 8') (2" — 2).

(6.18)

(6.18) solves the space domain singularity for the first term of (6.13). The re-

maining z and (' integrals are evaluated numerically. Substituting (5.20) into the
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second term of (6.13) the space domain singularity for the second term of (6.13)

appears as

/ Jszatt(d))]ldﬁ (619)

where Jy.,,, (¢) = (])—(])#M and [; is given in (3.17). Rewriting (6.19) as

/Q%m@h—%mw_ﬁmWﬂh%m@—w/HM, (6.20)

[ I{dp is evaluated using (6.10). Remaining integrals are evaluated numerically

using a Gaussian quadrature algorithm. In this numerical integration, (J¢Zatt (¢ =

gb’)(—jkj)) is used instead of the <J¢zatt(¢)]1 — Jpzan (O = gb’)]{) term in order

to solve the numerical singularity when p = p’, ¢ = ¢’ and z = 2/,

Regarding the mutual impedance between the probe current and J,,,, the

att)?

related three-fold mutual impedance expression is given by

Zattp // Zatt/Gzpdp dﬂdz (621)

Similar to the V., calculations, first the G, is written as

.0
Gzp - j&Gsz (622)
where G, is obtained from (5.34). Performing an integration by parts, the

expression becomes

Vearp = //) %f/awwwm. (6.23)

Since Gp2 is an odd function with respect to z, the extra contribution that
comes from the attachment mode definition (from upper and lower halves) is
zero and (6.23) contains only one term. The spectral domain and the space
domain singularities are solved using the procedure given in Sections 5.3.1 and

5.3.2, respectively.

Regarding the mutual impedance expression between a ¢— directed current

mode and Jy,,,, the related four-fold integral is given by

oot = Ty, Goodzdz' dBdS. 6.24
¢ ¢/ (ol



Similar the Z244 calculations, first G4, is expressed as

where G442 is obtained from (5.20) for uv = ¢¢ case. Performing an integration

by parts twice the mutual impedance expression can be obtained as

0Jy 0J,
Z12¢pan //// = a;‘j”G 2dB'dBdzdz'

0J, 1 ,
///a—¢2zatte¢¢2d2d2dﬂ. (625)

In (6.25) the second term is due to the definition of the attachment mode at the

probe location as discussed for Z,,.,,, case.

The spectral domain singularity <log(] p—7r|) =log(|s— 05 |)> is common for
both terms of (6.25) and the related integrals (that include the spectral domain

singularity) can be written as

/J¢>z(¢) log(|8 — B')dp (6.26)

where Jya(¢) = ( j)%. This integral is evaluated as explained in (6.15). On the
other hand, the space domain singularity in the first term of (6.25) is coming
from the substitution of (5.20) into the first term of (6.25) and is given by

/ / Joo(8)11dBd7 (6.27)

where Jyo(¢) = aa¢ and [; is given in (3.17). Rewriting (6.27) as

/ / <J¢2(¢)Il — Jp(9 = ¢’)I{)d5dz' + g = ¢') / / Idpdy,  (6.28)

where I is given in (5.22), the second integral in (6.28) is analytically evaluated
using (D.19). The remaining integrals (i.e., the first integral of (6.28) as well as
the z and [’ integrals) are evaluated numerically. In the numerical evaluation,
the <J¢2(¢ = gb’)(—jkj)) term is used instead of the (J¢2(¢)Il — Jpo( = qﬁ’)[{)
term in order to handle the numerical singularity when p = p/, ¢ = ¢’ and z = 2/

Similarly, for the second part of (6.25), the singular integral related with the
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space domain singularity comes as a result of substituting (5.20) into the second

part of (6.25) and is given by

/ Id=. (6.29)

Rewriting (6.29) as

/ (11 - ]{)dz + /I{dz (6.30)

the second integral is evaluated using (6.17). The remaining integrals are regular
and can be evaluated numerically. However, in order to solve the numerical
singularity, the ( — jkj> term is used for the ([1 — I{) term when p = p/, ¢ = ¢/

and z = 2’ during the numerical integration.

Regarding the mutual impedance expression between a z— directed current

mode and Jy,,,, the related four-fold integral is given by

ZIQZ¢att - ////sz¢atth¢dZdZ/d6d/6/. (631)

Similar to the Zi9.4,, calculations, first G4 is written as

0 0
G = (j)&(j)a_qb’sz’ (6.32)

where G,y is obtained from (5.20) for uv = z¢ case. Performing an integration

by parts twice the mutual impedance expression is obtained as

12260 = ////(—j)aaf(—j)agj;”(?wzdzdz’dﬂdﬁ’
[ [ S g Gundadsas. (6.33)

2Zatt

The second term in (6.33) is due the definition of the attachment mode as dis-

cussed for Zjs,.,,, case.

The spectral domain singularity is common for both terms of (6.33) and is

evaluated analytically by taking the following integral

/ log (8 — B))dA (6.34)
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in closed-form using (C.67). The space domain singularity for the first term of
(6.33) is coming from the substitution of (5.23) into the first term of (6.33) and

/ / I1d2'ds. (6.35)

It is evaluated analytically using (D.18) and (D.19). After the analytical evalu-

is given by

ation of (6.35), the remaining z and ' integrals are evaluated numerically using
a Gaussian quadrature algorithm. For the second term of (6.33), the singular

integral comes from the substitution of (5.23) into (6.33) and is written as

/ ILdg. (6.36)

(6.36) is analytically evaluated using (6.10) and the remaining z and ' integrals

are evaluated numerically.

Finally, regarding the mutual impedance expression between the probe current

and Jy,,,, the related three-fold integral is given by

Vi == [ [Jous [ Gunditasiz (6.37)

Similar to the V,, calculations, first Gy, is written as

e,
Gop=—J5 ¢G¢02 (6.38)
where Gype is obtained from (5.34). Performing an integration by parts, the

expression becomes

&]
v¢attﬂ = _//( —att /G¢p2dp dﬁdz (639)

Similar to G,po case, since Ggpp is odd (thls time with respect to ¢), the extra
contribution due to the definition of the attachment mode at the probe location
does not exist. The spectral domain and the space domain singularities are solved

using the procedure given in Sections 5.3.1 and 5.3.2, respectively.

6.2 Input Impedance Calculations

When the mutual impedance expressions related to the attachment mode, pre-

sented in Section 6.3, are included into the MoM matrix equation given by (1.7),
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the resultant MoM matrix equation is given by
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Figure 6.7: Patch antenna geometry which is excited with a T'Mj,; mode

Z, Dattatt

Zbanzar L sanz Loansd ap Ve

2 caritare L razate Lorgnz  Lorans (1 —ap) Vieip (6.40)
Lo Loz L, Z, I V.,
| Zosae  Lomn Ly Ly ) Vg

for a single microstrip patch antenna, where « is the magnitude of the attachment

mode.

In (6.40) the dimensions of the submatrices are as follows: Making use of (1.6)
Z ZisanPmatrix,éw isanKmatriX,éw isaKmeatrix,éMisa
K X K matriX’ Z¢att¢att7 Z¢attzatt7 ZZ Zzattzatt are Sca’la’rs’ Z%tzz and Zzattz

att¢att’
are 1 x P vectors, Z 4,,,6 and Z . .. are 1 X K vectors, and finally Z .4, ,, and
Z sz, are P x 1 vectors whereas Z 44,,, and Z 4.,,, are K X 1 vectors. Moreover

in (6.40), I, and I are P x 1 and K x 1 vectors. Similarly, V ., and V;, are also
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P x 1 and K x 1 vectors, respectively. Finally, in (6.40) oo, (1-a), Vi,.p and

V.oup are scalars.

Since the amplitude of the probe current is equal to 1 (Iy = 1), sum of
the magnitudes of z— and ¢— directed attachment modes (the first two rows of
the current vector given in the left hand side of (6.40)) is equal to 1. If only
¢— directed attachment mode is defined o is equal to 1, if only z— directed
attachment mode is defined o is equal to 0 and if both z— and ¢— directed
attachment modes are defined «q is equal to 0.5. Therefore, in the first two rows
of (6.40) there is not any unknown and the matrix equation given in (6.40) can

be cast into:

ézz é?xﬁ [ & ] — KZP aOZZ(ﬁ tt + (1 o aO)ZZZatt ; (641)
gqu ém) ﬁ Z¢P a0Z¢¢ w T (1 ao)Zdw i
which can be expressed as
ZI=V -V ) (6.42)

The unknowns a,,’s are solved using the inverse of Z as

I=2"(V V) (6.43)

Once a,’s are determined, the current distribution on the antenna can be
constructed. Since the magnitude of the probe current is equal to 1 (I = 1), we

know that
/dﬁjp5(p - pe) = 17 (644)

where p. denotes the probe end and J, is given in (5.24). Finally, the input
impedance is defined as the total voltage at the feed point since the total current

through the probe is 1A. Hence, the input impedance expression is given by

N
Zu =) anVy' 4 aVog, + (1= 00) Vs (6.45)

n=1
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Figure 6.8: Mutual coupling geometry where two patch antennas are present on
circular cylinder

where a,, (entries of I ) are the expansion mode coefficients found from the MoM
procedure and V* (simply the corresponding V,.’s and V,,’s) are the induced
voltages on the probe due the current modes J,,. Similarly, V. .. and V,,,,, are
the induced voltages on the probe due the attachment mode. The V,, terms can

be obtained using Appendix F where v can be 2, @, 24 O Quyy-

6.3 Calculation of Mutual Coupling Between

Two Antennas

The geometry used for the mutual coupling calculations between two antennas on
a dielectric coated circular cylinder is shown in Fig.6.8. For each patch antenna
N basis functions (P basis functions in z— direction and K basis functions in ¢—
direction) are used. For the two-port configuration given in Fig.6.8, the input

impedance of element one Z;; is calculated when port two is open. Similarly, the
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mutual impedance Z,; is calculated when port two is open. The other parameters
Z19 = Zy1 as a result of reciprocity theorem and Zss = Z;; because of the fact

that two antennas are selected to be identical.

In order to calculate only the Z;; and Zs;, port two is left open and the
attachment mode is defined only on patch one. After the current modes are
defined on the patch antennas, using a Galerkin type testing, the following matrix

equation is obtained.

Zgarbare  Loarizan Zd)attzl Z%ttzz Z%ttqﬁl Z¢>att¢2 &o Voo

Zeanbarr Lravza Lzgwnn Lzgnzn Lzandr  Lozans (1—ao) Viwiim

Zzl¢att £ 21 zatt ézlzl ézIZQ ézldn ézu]ﬁz h Kzlpl

Zospwr Lo Loy ZLopsy Loy Lo, Ly L

Z¢l¢att Z¢lzatt oz =S¢z £¢1¢1 £¢1¢2 i K¢>1p1

| Z(ﬁmm Z@z(m ooz Epozm é@@ £¢2¢2 & L K%m
(6.46)

In (6.46), the subscripts are written in such a way that Z is the vector

21Patt

which gives the mutual impedance between the ¢— directed attachment mode

and the z— directed current modes on patch one. Similarly, Z ba is the mutual
—@P2<1

impedance matrix between the ¢— directed current modes on patch two and the

z— directed current modes on patch one. V is the induced voltage vector on

22p1
the z— directed current modes on patch two due to the probe of patch one. All

the other submatrices and vectors in (6.46) have similar meanings.

Similar to the input impedance calculations, since the amplitude of the probe
current of patch one is equal to 1 (I = 1), the summation of z— and ¢— directed
attachment modes is equal to 1. If only ¢— directed attachment mode is defined,
ap is equal to 1, if only z— directed attachment mode is defined, «q is equal to
0 and if both z— and ¢— directed attachment modes are defined, ay is equal to
0.5. Therefore, in the first two rows of (6.46) there is not any unknown and the

matrix equation given in (6.46) can be cast into:
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42121 £Z1Z2 £21¢1 émdm h Kzlm Q0L 21 o + (1 - Oéo)
=z021 —z222 ézQ¢l ézwﬁz & — K22/71 . Q0L 251t + <1 - Oég)
£¢1Z1 éqslzg £¢1¢1 £¢1¢2 i Kmpl a0Z¢1¢att + (1 - aO)
L §¢>2Z1 £¢222 £¢2¢1 £¢2¢>2 J Lo, K<Z52Pl aoz¢2¢att + (1 - ao)
(6.47)

which can be expressed as
él = (K - Katt)‘ (6-48)

I in (6.48) is the current vector which contains the unknown coefficients of the
current modes (for instance I, is the vector which contains the amplitudes of the
z— directed current modes on patch one, I, is used for the ¢— directed current

modes on patch two) defined as
I =[ay,as,as,....... ,agn] 7, (6.49)
and are calculated from
I=Z"'(V-V.) (6.50)

Similar to (6.45), the input impedance of patch one is defined as [(voltage at the
probe of patch one)/1A]

2N

Zn = Zanvﬁ’n{ + aovpl%zt + (1 - aO)‘/plzatt (6.51)

n=1
where a,,’s are the expansion mode coefficients found from (6.50) and V! (simply
the corresponding V),,.,’s, V,,.,’s, V4, ’s and V, 4,’s) are the induced voltages on
the probe of patch one due to the current modes J,. V,, ... and V, 4., are the

induced voltages on the probe of patch one due to the attachment mode.

Similarly, the mutual coupling between two antennas is defined as [(voltage
at the probe of patch two)/1A]

2N
Z21 - Z an‘/YPZ _I_ ao‘/,YOQ(batt + (1 - ao)‘/pQZatt (652)
n=1
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where a,,’s are the expansion mode coefficients found from (6.50) when port one
is excited and port two is left open. V! (simply the corresponding V),,.,’s, V,,.,’s,
Viwo's and V,,,4,’s) are the induced voltages on the probe of patch two due to

the current modes J,. V,,.,,, and V, are the induced voltages on the probe of

2¢att
patch two due to the attachment mode. Finally, the mutual coupling coefficient

between two antennas can be calculated as follows:

(Z11 + Zo)(Zaa + Zo) — Z12Zn

Sho = (6.53)

where Zy = 50. In (6.53), Z12 = Zo1 as mentioned before due to reciprocity.
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Chapter 7

Numerical Results

To assess the accuracy of the proposed CFGF representations together with the
MoM procedure that uses the aforementioned attachment mode, numerical results
in the form of input impedance of a single antenna and mutual coupling between
two antennas are obtained and compared with the available results in literature

and the results obtained from a commercial software CST Microwave Studio.

In all of the numerical results obtained via MoM with CFGF, piecewise si-
nusoidal (PWS) current modes are used as the expansion functions with the

attachment mode which is consistent with PWS current modes.

In the course of obtaining the space domain CFGF representations, the fol-
lowing parameters are used for the GPOF implementation of the tangential com-
ponents : TV = 0.5, Ty = 0.2, T, = 5, T3 = 20, T, = 40, N’ = 20, N; = 40,
Ny =80, N3 =20, Ny =20, M'=5, My =8, My =12, M3 =6, My = 4. On the
other hand, for the probe-related components the values of the same parameters
are as follows: 7" = 0.5, 71 = 0.2, Ty, = 4, T3 = 50, Ty = 60, N’ = 10, N; = 20,
Ny =10, N3 =40, Ny =20, M' =3, M; =5, My =3, M3 =5, M, = 3.

The first numerical example is given for a single rectangular microstrip patch
mounted on a dielectric coated circular cylinder as shown in Fig. 7.1 with ag = 20
cm, €, = 2.32, t, = a1 — ag = 0.795 mm. The length of the patch L is 3 cm,
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PEC ground

Figure 7.1: Probe-fed microstrip patch antenna on a dielectric coated PEC cylin-
der

and the width of the patch W is 4 cm. The antenna is excited with a T My,
mode and fed via a probe at the feed location (zf,rl;)=(0.5 cm,2 cm). The input
impedance result (real and imaginary parts) obtained using CFGF is given in Fig.
7.2 with the result of CST Microwave Studio, and they are in good agreement. In
obtaining the CFGF results, the conducting patch, on which the induced current
exists, is divided into 10 subdomains along the z— and ¢— directions (P = 90,
K =90 and N = 180) and a z— directed attachment mode with z,; = 2, and
late = 1o (as explained in Section 6.3 where the z— directed current mode has a
dimension of 2z, x [,) is used. ¢— directed attachment mode is not used for this

example.

Another way to assess the accuracy of the MoM formulation is to perform a
convergence test. Thus, a convergence test is performed for the first example. As
the number of current modes used in the MoM solution is increased, the input
impedance results converge to the P = 90, K = 90 case and do not change much

if more current modes are used. As seen in Fig. 7.3 the input impedance results
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Figure 7.2: Input impedance versus frequency for a patch with the following
parameters: ag = 20 cm, €, = 2.32, t;, = 0.795 mm, L = 3 cm, W = 4 c¢cm and
(zf,mls)=(0.5 cm,2 cm)
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Figure 7.3: Input impedance versus frequency for different number of current
modes for the patch given in Fig. 7.2
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Figure 7.4: Input impedance versus frequency for a patch with the following
parameters: ag = 40 cm, €, = 2.98, t;, = 0.762 mm, L = 6 cm, W = 4 c¢cm and
(zf,rlp)=(2.1 cm,2 cm)

for P =30, K =30, N =60; P =56, K =56, N = 112; P = 90, K = 90,

N = 180 cases are very close to each other.

As the second example, a cylinder with the following parameters is used : ag =
40 cm, €, = 2.98, t;, = 0.762 mm. The dimensions of the patch is L=6 cm, W=4
cm, yielding a resonance at 1.444 GHz where the T'My; mode is excited. Probe
is located at (zf,7lf)=(2.1 cm,2 cm). The input impedance (real and imaginary
parts) result obtained using the CFGF representations versus frequency for this
antenna is given in Fig. 7.4 together with the results of CST Microwave Studio.
In this example, the conducting patch is divided into 8 subdomains along the z—
and ¢— directions (P = 56, K = 56, N = 112) and a z— directed attachment
mode with z,,; = 2, and [,y = [, (as explained in Section 6.3) is used. As seen in

Fig. 7.4 excellent agreement is obtained.

The previous geometry with the same parameters is considered as the third
example except the dielectric layer is considered to be lossy with tand = 0.0045.

The input impedance result obtained using the CFGF representations versus
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Figure 7.5: Input impedance versus frequency for a patch with the following
parameters: ag = 40 cm, €, = 2.98, tan d = 0.0045, ¢, = 0.762 mm, L = 6 cm, W
=4 cm and (zf,rlf)=(2.1 cm,2 cm)

frequency for this antenna is given in Fig. 7.5 with the result of CST Microwave
Studio. In the CFGF result, the conducting patch is divided into 8 subdomains
in both z— and ¢— directions (P = 56, K = 56, N = 112) and a z— directed
attachment mode with z,; = z, and l,; = [, is used. Similar to the previous

case, very good agreement is obtained.

The next example has the same parameters with the first example (i.e., ag =
20 cm, €, = 2.32, t;, = 0.795 mm and the dimensions of the patch is L = 3 cm, W
= 4 cm) except the probe location, where the probe is located at (zf,rlf)=(1.5
cm,2.67 cm). Therefore, T'M;y mode is excited. The microstrip patch antenna
geometry is illustrated in Fig. 7.6. The input impedance result obtained using
the CFGF representations versus frequency for this antenna is given in Fig. 7.7
with the result of CST Microwave Studio. In the CFGF result, the conducting
patch is divided into 8 subdomains in both z— and ¢— directions (P = 56,
K =56, N = 112) and a ¢— directed attachment mode (2, = 2, and I,y = I,
where z, x 21, is the dimension of the ¢— directed current mode) is used. In this

example, the z— directed attachment mode is not used. As seen in Fig. 7.7, very
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Figure 7.6: Microstrip patch antenna geometry which is excited with a T Mg
mode
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Figure 7.7: Input impedance versus frequency for a patch with the following
parameters: ag = 20 cm, €, = 2.32, t;, = 0.795 mm, L = 3 cm, W = 4 c¢cm and
(zf,rl5)=(1.5 cm,2.67 cm)
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Figure 7.8: Microstrip patch antenna geometry where the probe is located at the
corner of the antenna

200

—%— CFGF
—e—CsT

150 b

<«——Real
100 B

Input Impedance (Ohm)
a
o

Imaginary —

-100 i i i i i
2.3 2.35 2.4 2.45 2.5 2.55

Frequency (GHz)

Figure 7.9: Input impedance versus frequency for a patch with the following
parameters: ag = 20 cm, €, = 2.32, t;, = 0.795 mm, L = 3 cm, W = 4 c¢cm and
(zf,m1£)=(0.05 cm,2.67 cm)
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Figure 7.10: The patch antenna geometry where a substrate and a superstrate
exist around PEC. Patch antenna is defined at the substrate-superstrate interface

good agreement is obtained.

The parameters for the next input impedance example are exactly the same
with the previous example. The only difference is the location of the probe. The
probe is located at (z7,rl;)=(0.05 cm,2.67 cm) where the probe is located at the
corner of the patch antenna as seen in Fig. 7.8. The CFGF and CST Microwave
Studio results are given in Fig. 7.9. CFGF results are obtained by dividing the
conducting patch into 12 subdomains along the z— and ¢— directions (P = 132,
K =132, N = 264) and both z— and ¢— directed attachment modes are used
where they have the same length with the z— and ¢— directed current modes
while the widths of the attachment modes are twice that of the widths of the
corresponding current modes. Similar to the previous cases, very good agreement

is obtained.

As the last input impedance example, Fig. 7.10 depicts the microstrip patch
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Figure 7.11: Input impedance versus frequency for a patch with the following
parameters: ag = 20 cm, Substrate ¢, = 2.32, t3; = 0.795 mm, Superstrate
€ =298, tpy = 0.762 mm, L = 3 cm, W =4 cm and (2zf,7l;)=(0.5 cm,2 cm)

antenna geometry where a substrate and a superstrate are present. The patch an-
tenna, with the parameters W = 4 cm and L = 3 cm, is located at the substrate-
superstrate interface. Probe is located at (zf,rl;)=(0.5 cm,2 cm). Substrate
has a thickness of 0.795 mm with ¢, = 2.32 whereas the thickness of the super-
strate layer is 0.762 mm and ¢, = 2.98. The input impedance result obtained
using the CFGF representations versus frequency for this antenna is given in Fig.
7.11 together with the CST Microwave Studio result. In the CFGF results the
conducting patch is divided into 30 and 4 subdomains along the z— and ¢— direc-
tions, respectively, (P = 174, K = 150, N = 324) and a z— directed attachment
mode with 2z, = z, and [, = [, is used. In this example ¢— directed attachment

mode is not used. Excellent agreement is obtained as seen in Fig. 7.11.

Fig. 7.12 illustrates the geometry used for the mutual coupling calculations
between two identical antennas along the E-plane. Note that the antennas shown
in Fig. 7.12 are fed in such a way that the 7'My mode is excited resulting the
z— directed current on each patch being the dominant current mode. Therefore,

the z— direction on the cylinder is part of the E-plane and the ¢— direction on
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Figure 7.12: E-plane coupling geometry

the cylinder becomes part of the H-plane. Fig. 7.13 shows the E-plane coupling
results at f = 3.195 GHz between the antennas whose parameters are defined
in Fig. 7.2 except the probe location. Note that the probe location is now set
to (zf,715)=(0.95 cm,2 cm), so that antennas are matched to 502 at resonance.
In the CFGF results, the conducting patch for each antenna is divided into 10
subdomains both in z— and ¢— directions (P =90, K =90, N = 180) and a z—
directed attachment mode (z4 = 2, and lyy = l,, no ¢— directed attachment
mode) is used. As seen in Fig. 7.13, very good agreement is achieved between
the CFGF and CST Microwave Studio results. The E-plane coupling results for
the geometry given in Fig. 7.12 (with the antenna parameters given in Fig. 7.4)
is illustrated in Fig. 7.14 at the resonance frequency f = 1.444 GHz. In Fig.
7.14, the mutual coupling results are obtained by dividing the conducting patch
for each antenna into 6 subdomains along the z— and ¢— directions (P = 30,
K =30, N =60) and a z— directed attachment mode with z,; = z, and l,;s = [,
(¢p— directed attachment mode is not used) is used. Very good agreement is
achieved between the CFGF and the CST Microwave Studio results. When the
dielectric loss is introduced (as shown in the parameters given in Fig. 7.5) to the

same example, the E-plane coupling results are given in Fig. 7.15. To obtain
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Figure 7.13: E-plane coupling results for patch antenna geometry given in Fig.
7.2 with (zf,rl;)=(0.95 cm,2 cm)

the CFGF results given in Fig. 7.15, the conducting patch for each antenna is
divided into 12 subdomains in both z— and ¢— directions (P = 132, K = 132,
N = 264) and a z— directed attachment mode that has z,; = 2z, and ly = [,
(no ¢— directed attachment mode) is used. In Fig. 7.15 the CFGF results are
compared with the CST Microwave Studio and the measurement results available
in the literature [33]. Notice that with the introduction of the dielectric loss, the
coupling results decrease as expected. Also note that the agreement of all results

are excellent.
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E-Plane Coupling f=1.444 GHz
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Figure 7.14: E-plane coupling results for patch antenna geometry given in Fig.
7.4
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Figure 7.15: E-plane coupling results for patch antenna geometry given in Fig.
7.5
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Figure 7.16: H-plane coupling geometry

Similar to the E-plane coupling case, Fig. 7.16 illustrates the geometry used
for the mutual coupling calculations between two identical antennas along the
H-plane. The H-plane coupling results are shown in Fig. 7.17-7.19 for the same
patch antenna parameters given for the E-plane coupling calculations. In all the
CFGF results related with the H-plane coupling, the conducting patch for each
antenna is divided into 8 subdomains along the z— and ¢— directions (P = 56,
K =56, N =112) and a z— directed attachment mode (z,; = 2, and ly = [,,) is
used. In the first two H-plane coupling results shown in Fig. 7.17 and Fig. 7.18,
the CFGF results are compared with the CST Microwave Studio results where
for the last example measurement results are compared to both CFGF and CST
Microwave Studio results as shown in Fig. 7.19. In all these results, excellent

agreement is achieved.

Note that in all mutual coupling results, the mutual coupling along the H-
plane is stronger than that of the E-plane for small separations but it decreases
faster than the E-plane coupling as the separation increases. Hence, the H-plane
coupling is weaker than the E-plane coupling for large separations. The main
reason is that along the H-plane the main coupling mechanism is the space waves.
However, space waves reduce by 1/s (s: separation) for the fields. The surface
waves are very weak along this plane due to the T'Mj, excitation of the antennas.
On the other hand, the main coupling mechanism along the E-plane is the surface
waves (space wave coupling is very weak). Because surface waves decay with

1/4/s, the decay of the mutual coupling along the E-plane is slower.

Finally, regarding the efficiency of the developed hybrid MoM/CFGF code, in
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Figure 7.17: H-plane coupling results for patch antenna geometry given in Fig.
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Figure 7.18: H-plane coupling results for patch
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Figure 7.19: H-plane coupling results for patch antenna geometry given in Fig.
7.5

the course of obtaining the input impedance and mutual coupling results (using
CFGF) given in this chapter, Matlab codes are written and executed on a stan-
dard desktop personal computer (PC). The CPU time for the evaluation of CFGF
and the solution of the MoM formulation is in the order of minutes. On the other
hand, most of the simulation time is to obtain the mutual impedance terms which
include two-fold or four-fold integrals. Besides, the simulations done with CST
Microwave Studio are repeated by increasing the number of mesh cells until the
input impedance and mutual coupling results converge. The converged number
of mesh cells used in the CST Microwave Studio is in the order of tens of millions
and hence, special computers (work stations) with multi cores and RAM values
in the order of 10 GB, are used to handle the increased workload. Since the
Matlab codes for CFGF and the simulations on CST Microwave Studio are run
on different computers with different number of cores, it is not easy to compare
the CPU time of both procedures. But, although the Matlab codes are not fully
optimized in terms of CPU time and executed on a standard desktop PC, the

CPU time of both procedures is very near to each other.
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Chapter 8

Conclusions

Novel CFGF representations, which constitute the kernel of an EFIE for cylind-
rically stratified media, are developed. The developed CFGF representations are
used in an efficient and accurate hybrid MoM/Green’s function method in the
space domain for the analysis of antennas and arrays in the cylindrically stra-
tified media. The analysis and design of the microstrip antennas mounted on
aircraft, spacecraft and mobile communication applications can be made using

the proposed hybrid MoM/Green’s function method in this dissertation.

The accuracy and efficiency of the hybrid method strongly depend on the
computation of the novel Green’s function representations which are the kernel
of the integral equation solved via MoM for the unknown equivalent currents
induced on the microstrip patch antennas. In the course of obtaining the novel
CFGF representations in the space domain, first the conventional spectral do-
main Green’s function representations used for the radiation/scattering problems
[18], are written in such a form that all the Hankel (or Bessel) functions are in
the form of ratio with another Hankel (or Bessel) function. Then, the Debye
representations are defined for the ratio terms using the Debye expressions of
Hankel (or Bessel) functions available in the literature. Since when p = p/, the
summation over the cylindrical eigenmodes is slowly convergent in the spectral
domain, in the evaluation of the summation for large n values the Debye rep-

resentations are used when necessary. Therefore, possible overflow or underflow
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problems in the evaluation of the summation are handled in the spectral domain.
As the second step, in order to accelerate the summation an envelope extraction
with respect to n is applied using the series expansion of the zeroth-order Hankel
function. Similarly, using the properties of the zeroth-order Hankel function, an
envelope extraction with respect to k, is applied in order to have a fast decay-
ing spectral expression. After the envelope extractions (with respect to n and
k.), the spectral domain Green’s function representation is obtained in the most
accurate and efficient form with a fast convergent summation and a fast decay-
ing spectral behaviour. The space domain Green’s function representations are
obtained in closed-form as a sum of the complex images using DCIM after the
spectral domain counterparts are approximated as complex exponentials of k.,
using GPOF. In order to increase the accuracy for p = p’ case, a new integration
path is defined in the implementation of GPOF in this dissertation. The CFGF
representations given in this dissertation are valid and accurate for all possible
p and p’ values. The CFGF representations obtained in this dissertation for the

probe-related components are presented for the first time in the open literature.

In order to use CFGF representations in the mutual impedance calculations
for the MoM procedure, the derivatives on the CFGF representations with res-
pect to z, 2/, ¢ and ¢’ are treated separately and they are transferred onto the
current modes in the mutual impedance calculations. By this way, the mutual
impedance calculations become less singular. In the evaluation of the mutual
impedance, there are two singularities. The first singularity is due to the argu-
ment of the zeroth-order Hankel function in the spectral domain and it is solved
by analytical treatment using the small argument approximation of the Hankel
function. Similarly the second singularity, which occurs in the space domain
when the source and observation points are on top of each other, is again solved

analytically.

To increase the accuracy of the MoM analysis of the antennas, probe-fed
excitations are modeled by implementing an attachment mode that is consistent
with the PWS current modes that are used as the expansion functions. The
attachment mode is defined carefully in order to increase the accuracy of the

proposed hybrid method. Numerical results in the form of input impedance of
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various microstrip antennas as well as mutual coupling between two microstrip
antennas are presented by comparing the results obtained using these novel CFGF
representations with the available results in the literature as well as the results
obtained from the CST Microwave Studio. Excellent agreement achieved which
assures the accuracy of the developed CFGF representations. As a result, the
developed CFGF representations can safely be used in the MoM-based analysis
of microstrip antennas/arrays and printed circuits on multilayered cylindrical

structures.

As the next step, the hybrid MoM/Green’s function method can be optimised
in terms of the CPU time. Besides, the CFGF representations can be obtained for
the magnetic sources and then the analysis of aperture coupled patch antennas

where a slot is present can be possible for cylindrically stratified media.
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Appendix A

Debye Approximations

In order to calculate the Green’s function representations without any overflow

or underflow problems, the Green’s function representations are written in the

i) HaP ()
2) In(22)" HP (22)
2

Z:{?)Z;; j:ngg Also the multiplication terms Hr(?)(zl)(]n(zQ) and Hg)(zl)(]é(@)

exist in the Green’s function representations and these terms are also treated

and

form of ratios. The ratios obtained at the final expressions are

as the ratio terms. Making use of the Debye representation of each cylindrical
function and its derivative [34], the Debye expressions for the following terms are

derived:

The first ratio term is @ and the following debye expression is defined

In(22)
J! (s1-52) l— et
S1—82 n2—z2 n2—22)3
Jng?i ~ ¢ - (n2 — 22)°B(n? — 25)0.251 " 24\/3 i ~ 24(\/5n2 i) (A1)
i ! 24\/n27zf 24(\/11272%)3
where
— 2 _ 2 -1 m
s1 = 4/n? — z{ — |n| cosh (z ) (A.2)
1
and

Sy =/n?— 22 —|n| coshfl(m). (A.3)
22

The following debye expression is used for the second ratio term which is
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H:L(Q)(Zl)

HE ()
'2) (s251) L e E g )
Hn S2—S1 TLQ*ZQ n2722 3
(1) _ e (n2 — 22)0B(p2 — ,2)02 24y/n2—23 24(\/7712 0 (A4)

@,y 9
Hy™ (2) “ 1 244/n2—23 * 24(y/n2—23)3

HY (21) Jn(22)

Finally, for the last ratio term (H(Q) (22) TnC1)
n (22) 9™

), the following debye expression

is defined as

e . (A.5)

Using debye approximations, the first multiplication term H,?)(zl)Jn(zQ) can
be computed as

1 1
(n? — 22)025 (p2 — 2)0.25

HP (21) J(22) ~ % els2ms1), (A.6)

The other multiplication term H,(f)(zl)J,’L(zQ) is written as

,j (,nQ _ 22)0.25 sos1
H722)<21)J7/L(Z2) ~ —7T22 —(n2 — 23)0.25 e( ) <A7)
1
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Appendix B

Generalized Pencil of Function
(GPOF) Method

The generalized pencil of function method is used to approximate the spectral
domain Green’s function representations with complex exponentials. Since this
method is an important step in approximating the Green’s function representa-

tions, it is explained in detail in this appendix.

Similar to the Prony method and its variants [35]-[36], the pencil of function
(POF) method [37] can be used to extract the poles of an electromagnetics (EM)
system, where the poles are found from the solution of a generalized eigenvalue
problem. On the other hand, the generalized pencil of function method is a
generalization to the POF method and it is used to estimate the poles of an EM
system from its transient response [32]. The GPOF method is more robust and

less noise sensitive, compared to the Prony method.

An EM transient signal with N samples ¥, , can be approximated in terms of

complex exponentials as,

M M
ye = bie" " = "bizf k=0,1,...N—1 (B.1)
i=1 =1

where b; are the complex residues, s; are the complex poles, and 4t is the sampling

interval. The method can be briefly explained as follows:
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1. The following matrices are constructed,

:1=[y0,y1, .......... ’QLA} (B.2)
:2:[%7927 .......... ’QL] (B.3)
where
T
Qi = [ Yir Yit1s oeemeenen y Yit N—L—1 :| (B4)

and L is the pencil parameter, and its optimal choice is around L = N/2 [32].

2. Find a Z matrix (after applying the singular value decomposition (SVD)
to Y 1),
SVD(Y ) =Usyv"” (B.5)

where U, S and EH are (N — L) x (N — L), (N — L) x L and L x L matrices,
respectively. The superscript H denotes the complex conjugate transpose of a
matrix. Note that in this study the optimal choice of L is chosen, which is
L = N/2. As a result of this choice S is now a diagonal matrix. Let S, be the
M x M matrix (M is determined from the number of complex exponentials and
M < L) which includes the largest diagonal terms of S in the decaying order.
Then, taking the corresponding rows and columns of U and V., two new matrices
U . and gt, respectively, are formed both of which are L x M matrices. Using

U, and v, together with ét, Y | is written as

3. The poles of the system are obtained as

log z; ,
S; = ? ) Ly "
ot

M (B.8)

where z;’s are the eigenvalues of the Z matrix.
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4. The residues are found from the least-squares solution of the following

system.

21

22

that can be expressed as

so the b;’s are found by using the pseudo-inverse of A as b = é+g.

ZM

|5S
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Appendix C

Mutual Impedance Calculations

(zz case)

C.1 General Procedure For Mutual Impedance

Calculations

The mutual impedance expression between two z— directed current modes is

written as [see (5.8)],

Zi0.s = / / / / J.JGsodzd dBdS (C.1)

where 8= po, 8 = p'¢', dp = pd¢p and dp’ = p'd¢’. Because the kﬁj term in the
spectral domain corresponds to (/ﬂj2 — %;Z,

for the Green’s function representation for GG, can be expressed as

) in the space domain, the expression

G.. = -2

i 8ZaZ,)Gzz2- (CZ)

Performing an integration by parts twice on (C.2) (also note that the current

modes are differentiable and zero at the end points), (C.1) becomes

J, dJ.
_ 2 . z Z / /
Zips = / / / / (kOJZszGZZQ S Gzzg)dzdz dBdp'. (C.3)
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Figure C.1: PWS current modes in the z— direction

The numerical evaluation of the four-fold integral given in (C.3) is a time consum-
ing calculation especially for the problematic cases when there is a space domain
singularity (i.e., source and observation points are on top of each other. This
situation corresponds to current modes being on the top of each other, self-term

in MoM, or partially overlapping with each other, overlapping terms in MoM).

The evaluation of the four-fold mutual impedance integrals are performed in
a similar way as explained in [38]. The starting point of this evaluation process
s (C.1). When there is no singularity in (C.1), the goal is to reduce this four-
fold integral into a two-fold integral as explained in [38]. Briefly, the mutual
impedance expression between two z— directed current modes (with dimensions
2z,xl,) centered at the points (zm,ﬁm) and (z,,53,) (as illustrated in Fig. C.1)

can be rewritten from (C.1)

Zis, «) (¢4

/ﬁm+l a/2 Bntla/2  pzmtza zn+za Sln (Za _ |Z .
Bm—la/2 nfl /2 Jzm—za Zn—Za l Sln(kaza)

sin(kq(zq
l, sm(k‘aza)

— ) g aasap,
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As the first step the § — ' domain is mapped to the 7 — 1) domain by applying

the following change of variables :

7(/@ B3) (C.5)
Y= ﬁ(ﬁ' +8) (C.6)
dB'dB = drdi (C.7)

where the details are given in [38].

As a result of this step, the new integral variables are supposed to be 7 and
1. However, noticing that ¢ does not occur in the integrand, the 1) integral turns
out to be the end point contributions which are functions of only 7. Therefore,

the resultant three-fold integral is given by

Zm+za 2n+za Sln ( a _ ‘Z _ Zn|)>
12 / ; lasin(kqzq) (C.8)

m—Za Zn—Za

Sln(k(l< Za ‘Z B Zm'))dzdzld,/_
lasin(k,z,)

where
=21+ (la +B)V2 <7<
T, = C.
™ { 2T+(la—ﬂs)\/§ W< T<T (€9)
with
—1

To = 68\/5 2 (ClO)

= BS\/%Z@ (C.12)
and BS = Bm - /Bn

As the next step, after transferring the space derivatives in (C.2) onto the
basis and testing current modes [see (C.3)], the z — 2’ domain is mapped to the

u — v domain in similar way (see [38] for details) by using the following change
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of variables :

L.,
v = E(z — 2) (C.13)
1 /
u = %( + z) (C.14)
dz'dz = dvdu. (C.15)

As a result of this step, the new integral variables are u and v but similar to 7— 1)
case, u does not occur in the integrand. Consequently, the final two-fold mutual

impedance expression for the zz case is written as

1

Jizzz = (lasin(k:aza)

)? /D Too(T){I1 + Lo + L3 }dr (C.16)

T0

where 1,1, I,o and I3 are defined as

I, = 2/v3 { cos|ka(zs — vV2)[ViEF (0) (k2 — k2)Gzo (C.17)

+W%M%+@Wm}m

I = /M { cos[kq(22q 4 2 — vV2) Vi (0) (k2 — k2)G..o (C.18)

+W%M%+%mm}m

Iz = /U2 { cos[kq(22q — 25 + vV2)[VE# (0) (k2 — k2)G..o (C.19)

+ V& (v) (k3 + k:g)G’zzQ}dv

with
Y — Ze—Za v <v<w
ViE(v) = vz o i (C.20)
—v—l—zf/rg“ Vg < U < U

cos (kaza) ko (— 9 + <v<
Vézz(v):{ Fvr Skt mce<en )

—COZ((L":;;“) sin [ka(VV2 = 24 — 25)] V2 <v < g
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and

V2

—2za—zs+v\/§
— 2 U3 <V < Uy

zs—v\/i
—_— Vo <V <V
Vit (v) = { ’ ’

aV2
sin [kq (224425 —vV/2)]
ka2 V3 <V < Uy

sin [kq (2s—vv/2)]
. —ERFe B VIl e < v < Ug
Vit (v) :{ tey?

V2

— 2z 2
HT”‘/ v1 < U < Vg

—22q+2 7vﬁ
— = Y <v <V
VeZ(v) = {

ka2

sin [kq (2s —vV/2)]

sin [ka (220 —2s+vv/2)] Vo <V <V
z
Ve (v) =
= V1 < U<V

Zs — 22,
WS
2s — Zg
v = \/5
Zs
Vo =
V2
Zs + Za
V3 = \/5
Zs + 2z,
Vg =

Finally z, = 2, — 2.

C.2 Overlapping Term

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)
(C.29)

(C.30)

In the space domain MoM analysis of microstrip antennas/arrays, singularity

occurs when the two PWS current modes partially overlap with each other. The

problematic mutual impedance expression, when two z— directed current modes

partially overlap with each other (overlapping term), is the last term of (5.23)

which can be written as

Z12zz - /

/2 [la/2 (220 2 q 97 0.7
[ G2
la/2 J—1q/2 J0 2, S 0z 0z
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where

1 1
- = . C.32
s V(BB +(z-2) (€3

Note that the constant [—-~ - Cuv(k2o0)] 1s not included. Furthermore, (C.31) is

obtained after performing an integration by parts twice. Performing the change of
variables defined in (C.5)-(C.6) and evaluating the ¢ and 7 integrals analytically
(see [38] for the details of analytical integration of 7— integral), the Zj,., is given
by

g /Ozza /_Z; (tg coS [ka(Qza — |2 = 24| — ]2\)] + t4 cos [ka(|z' — Za| — |z|)})
2=z
7

7 ] ) dzdz' (C.33)

la Z -z, b
<2la [log(ﬁ + ( \/5 ) + E) — log

_mw(%zﬁg_

where 2 g
t3 = K[ — ?O — ?“sign(z)sign(z’ - za)], (C.34)
/f2 2
ty =K [?0 — Easign(z)sign(z’ — za)] (C.35)
and .
[ — (C.36)
[la sin(k:aza)]

Then, performing the change of variables defined in (C.13)-(C.14), the two di-
mensional integral with respect to z and 2’ can be written as a one dimensional
integral as the integration with respect to u is evaluated analytically. Finally, for

the resultant v— domain integral, we perform a final change of variable given by

v
_ C.37
=% (C.37)
do— -2 (C.38)
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so that the integration interval can be normalized to (0, 1.5). After arranging

and regrouping the resultant terms, the final integral expression is obtained as
0.5
AT — / tssin(2k,z,0) + te(1 — 2ar) cos(2k,z,x)
0
+tra cos [k‘aza(l - 204)} + tgsin [kaza(l — 2(1)} }Hf(a)doz
1
/ t5 sin [Zkaza(l - a)} — to(1 — 2a) cos [k:aza(é’» — 204)]
0.5
+t7(1 — a) cos [k:aza(l - 204)] — t1psin [k:aza(l - 204)] }H(a)da

/1.5 {t9(3 — 2a) cos [kaza(?) _ Qa)] + tyosin [l{:aza(B - 2@] } H(a)do

+1, (C.39)
where
L / 12 / 12
reoy e 202 4 2o _ _ 202 1 2@ _
H' (o) = \/_[log< +4/22a% + 2) log(za)} \/5[ Za0t + 5 zaa]
(C.40)
and

H(a) = 7 [log (l + 1/ 22a% 4+ %) - log(zaoz)] - \/5[ 2202 + % - zaa].

(C.41)
I, is defined as
B la 62 52 53 53
[pl = —E{/ﬁll [51 10g(51) — 61:| + K9 [5 log((Sl) — Z] + K3 [ 3 lOg(él) — §:|
l 0.5
—— ts sin(2kqzer) + (1 — 2 2k, 2,
A 5 8in(2k,z,0) + to( a) cos(2kyz,x)
+tror cos [kaza(l — 204)] + tg sin [kaza(l — 2a)} } log(a)da (C.42)
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and 0; is a small number which is chosen as (2k,2,01) << 1. The other parameters

are defined as

K1 = tg + tgsin(k,z,) (C.43)
Ko = 2lskazq — 2tg + t7 cos(kazq) — 2tgkazq cos(kaza) (C.44)
Ky = 2trkazq sin(kqzq) (C.45)
ts = sza cos(kaza)tss (C.46)
te = 8v/222 cos(kqaza )ts— (C.47)
tr = 16v/222t4, (C.48)
ty = 8‘5'2“754_ (C.49)
tg = 4v/222t5 (C.50)
ho = V22, (C.51)

ka

In this expressions, t3, and t4y mean that sign(z)sign(z’ — z,) is positive where
ts— and t4— mean that sign(z)sign(z’ — z,) is negative. The integral given by
(C.39) can be computed numerically in a very easy way using a simple Gaussian
quadrature integration scheme. Finally, it should be mentioned that all the details

of this section (for its planar counterpart) can be found in [38].

C.3 Self Term

In the space domain MoM analysis of microstrip antennas/arrays, singularity
exists for the self term case which occurs when two PWS current modes are on top
of each other. Similar to the overlapping term explained in the previous section

(C.2), the singular part of the self impedance, Z1s,., integral can be written as

la/2 la/2 Za za OJ. 0.
D ioss = / / / —(k:gJZJZ/ e
—la)2J=laj2 S =20 S =24 S 0z 0z

Notice that the expression is the same as (C.31)-(C.32) except the integration

)dzdz’dﬂdﬁ’. (C.52)

limits in the z — 2’ domain. Performing the change of variable defined in (C.5)-

(C.6) and evaluating the 7 and % integrals in closed-form as explained in [38],
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Z19,, 18 given by

Zo = [ { cos [Fa(220 = 2] = |21)] + cacos [Ra(12 — |2 }
(D5
NG [\/(Z/\/_;)Q + g - Ddzdz’ (C.53)

where 2 g
¢ = K[ — 50 — ?“sign(z)sign(z')}, (C.54)
o _ ki —
Cy = K[E - 581gn(z)81gn(z )], (C.55)

and K is defined in (C.36). Then, first (C.13)-(C.14) are applied to move from
z — 2/ domain to u — v domain, then the u— domain integration is performed
analytically and finally performing the change of variables given by (C.37)-(C.38)

for the v— domain integration, the final Z;5,, expression is given by

AL I— /015 {03 sin [k:aza(l — 204)} + ¢y cos [ka2za(1 — oz)]
0

+c5(1 — 2a0) cos(2k,z40) + o sin(2kazaa)}HT(a)do¢

/01 {04(1 — @) cos |:2]€a2a<1 — oz)} + cg sin [2k’aza(1 — a)} }H(a)da

.5

1 (C.56)

where H" (), H(«) are given in (C.40) and (C.41). I, in (C.56) is defined as

l, 52 52 53 53
Iy = _E{dl [52 log(d2) — 52] +dy [52 log(d2) — ZQ} +d3 [52 log(d2) — 32} }
l 0.5
_ﬁ . s sin [/{:aza(l - 204)] + ¢y cos [ka2za(1 — a)}
+c5(1 — 2a) cos(2k,zq0) + ¢4 sin(2kazaa)} log(a)da (C.57)
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and s is a small number where (2k,z,02) << 1. The other parameters are given

as
dy = cgsin(kqz,) + 5 (C.58)
dy = —2c3ko2, c08(kyzq) + ¢4 c08(2k,24) — 205 + 2¢6kq 2 (C.59)
d3 = 2¢4kqz, sin(2k,2,) (C.60)
c3 = Zal:aﬂ cos(kqzq)c1y (C.61)
ey = 2216V 2¢, (C.62)
5 = 2216V 2c4 (C.63)

za8\/§
kq

Co_. (064)

Ce —

Similar to the overlapping case, ¢, and cy; mean that sign(z)sign(z’) is posi-
tive and co— mean that sign(z)sign(z’) is negative. The integral given by (C.56)
can be computed numerically using a simple Gaussian quadrature integration
scheme. Similar to the overlapping case, all details of this section (for its planar

counterpart) can be seen in [38].

C.4 Spectral Domain Singularity

Substituting (5.20) into (5.10) and performing the IFTs, the singular part of the

mutual impedance expression due to the spectral domain singularity appears as

Zow = [ [ [ [ (Brrac 0805 - 9)

0,0y 2z / - / /
=07 (2, 2) logI8 ﬁ|)>dzdzdﬁdﬁ (C.65)

where C#%(z, 2’) is an expression which is a function of z and 2’ only. Therefore,

the mutual impedance expression is rewritten as

Zhos, = // <k§JZJZ/CZZ(z,z’) - %JZ —%JZ//CZZ(z,z’)) //log(\ﬁ—ﬂ’|)dﬁdﬁ’dzdz’.
2z Oz
(C.66)
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In the analytic evaluation of (C.66), the result of [log(|3 — £'|)d which is given
by

/bgW—HszﬂbﬂW—ﬁD—bQW—BWH—B (C.67)

and the result of [ [log(|8 — A'|)dBdS" which is given by

2 -
[ [ 10815 - gasas = ~FE = 4 ggriogs - )

| B log(|5' - B) + P2

; — B(Blog(18' ~ B) + 8) — B8 (C.68)

are used. Using (C.68), the singular 5 and /' integrals in (C.66) are evaluated
analytically. z and 2’ integrals in (C.66) are evaluated using the v integral [after
it is applied to (C.66) as it is given in (C.16)] in order to reduce the integral to a
one-fold integral. Note that in the evaluation of (C.65), when using the v integral
(to evaluate z and 2’ integrals) as given in (C.16), the 7 integral (C.16) is not

considered since the § and ' integrals are already evaluated using (C.68).
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Appendix D

Mutual Impedance Calculations

(z¢ = ¢z case)

D.1 General Procedure For Mutual Impedance

Calculations

(:H r.dn )

21,

Figure D.1: Current modes in the z— and ¢— directions
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Similar to the zz case, the mutual impedance expression between a z— and a

¢— directed current modes (shown in Fig. D.1) is written [see (5.8)] as

am_////J@Zmemﬁ (D.1)

The z¢ = ¢z components of the Green’s function representation in the space

domain can be written as follows:
0 8
G =
* =157 05"
Performing an integration by parts twice on (D.2) together with the PWS current

(D.2)

modes, the mutual impedance expression is obtained as

am_//// gg '%ﬁmwwww (D.3)

When there is no singularity, this four-fold mutual impedance integral is reduced

to a two-fold integral as follows (the details for this part (for its planar counter-
part) can be found in [38]): The mutual impedance expression between a z— and
a ¢— directed current modes (with the size and location parameters as depicted
in Fig. D.1) is rewritten from (D.1) as

Bm~+la Br+la/2 Zm+za/2 Zn+za Sln Za — |2 — Zn
o = [ o= a)
B B

m—la n—la/2 Jzm—24/2 Jz2n—2q l Sin(k:aza)
sin(k,(la — |8 —
zq sin(kqly)

After transferring the spatial derivatives [see (D.2)] onto the basis and testing

Bnl) 4., dz'dBdp'.

functions [see (D.3)], and following the same procedure given in Appendix C.1,
the z — 2’ domain is mapped to the u — v domain given by (C.13)-(C.15) [38]. As

a result of this step, the following three-fold integral expression is obtained:

k Bm+la  pBntla/2
Tiry = a e — 15 — B
122¢ [\/izasin(k‘ala)] - s cos | ’ﬁ Brml)]
vz
s@Mﬁ—ﬁM{ﬂ¢Vw@M%ﬂMW%H (D.5)
Yo

where

[ —sin [ka(1.52 — 2 + 0V/2)] 02 <v <0

V() = ¢ 2cos (Ra2) sin [k, (vv/2 — 2,)] v” < v < v3? (D.6)

| sin [Kq(1.524 + 25 — vv/2)] v’ < v < v’
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with

24 Ps— 1.5z,

=2 (D.7)
vt — % (D.8)
Vi = L\/%% (D.9)

26 2s T 1.5z (D.10)

vyl =
3 \/5
and z; = 2, — 2,. As the next step, converting the 8 — 8’ domain integration into
a 7 — 1) domain integration using the change of variables given by (C.5)-(C.7)

(see [38] for details), the final two-fold mutual impedance integral expression for

z¢ = ¢z case becomes

z¢p z¢
2 T3 U3
A P = Tz z¢p B dvld
1229 (Zala sin (kaza> sin (kala)) /7—5‘15 ¢<T){/v§¢ V <U>G ¢2 ’U} T

(D.11)
where
([ —sin [ka(3 — B, + 7V2)] 5t <<
T (1) = —2cos (Eala)sin [k, (B — 7V2)] T S <r<Ty? (D.12)
| sin [k o3 + B, — TV2)] <1<
with
_ 3la
=B (D.13)
10} ﬁs - l_a
0 = \/52 (D.14)
la
. 58\;%2 (D.15)
3ly
. 58\22 (D.16)
and Bs = ﬁm - Bn
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D.2 Overlapping Term

In the course of evaluating the mutual impedance integral for the z¢ case, the
most singular situation is the overlapping case since the self term case does not
exist for the z¢ case. Similar to the zz case, the singular part for Z;s.4 is coming
from the last term of (5.23) when (5.23) is substituted into (D.3). Ignoring the

constants, the singular term can be written as

2lq la 22a @J 8J¢/ 1 ) /
L1224 = / / / / 02 00 JT—FPT o Z/)2dzdz dpdg’. (D.17)

In order to perform the four-fold integral given by (D.17) accurately and effi-

ciently, first the integration with respect to z’ is evaluated analytically given by
!/

/ o 5/)21+ — Z')de, = sinh*(ﬁ) — esch™ <|f _il) (D.18)

Then, the § integral is evaluated analytically as given by

/sinh_ <|5 5 |) df = L¢(B,0',2,2') =

Cﬁ a1 ( 272 ) 4 ign(B=7 68

Jsin 1<y_z>>$gwy—ﬂx2—z>
(D.19)

2 —z |ﬁ Iod 2 —z

As a result of these steps, the mutual impedance integral given by (D.17) is now

a two-fold integral given by

Ao (%20 9], 0)y ,
ZIQZ¢ / / 82 ag; [ zd)(laMB ) Z7 22@) - Izq‘)(la, 6/7 Z’ 0))

. (IZ¢(0, B 2,220) — Lo(0, 8, 2, 0))] d=dp (D.20)

where L4(3, ', z,2') is given in (D.19).

(D.20) can be evaluated in an efficient way using a simple Gaussian quadrature
algorithm and can be used for all cases that a possible singularity occurs ( partially

overlapping, touching through a corner or an edge, etc.).
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D.3 Spectral Domain Singularity

Substituting (5.20) into (5.11) for uv = 2¢ (= ¢z) and performing the IFTs,
the singular part of the mutual impedance expression due to the spectral domain

singularity appears as

O, . 0Jy o
Zii= [ [ [ [0S0 0u15 - #dzazapas D21

where the constants are not included. Singular part is the same as that of the

zz case. Hence, (C.67) is used for the evaluation of the 8 integral. Then, the
v integral (7 integral is not considered) given in (D.11) is used for the z and
Z" integrals in (D.21). Finally, the remaining f’ and v integrals (v integral is
obtained for (D.21) as given in (D.11)) are evaluated as two-fold integrals using

a simple Gaussian quadrature algorithm.
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Appendix E

Mutual Impedance Calculations

(66 case)

E.1 General Procedure for Mutual Impedance

Calculations

Similar to the zz case, the mutual impedance calculation between two ¢— directed

current modes can be expressed as [see (5.8)]

Ziopp = / / / / Ty Gypdzdz'dBdf. (E.1)

Noticing that n? in the spectral domain corresponds to derivative with respect to ¢
and ¢’ in the space domain, the expression for the Green’s function representation

G s can be written as

G = . (E.2)

Performing an integration by parts twice on (E.2) (also note that PWS current
modes are differentiable and zero at the end points), the final mutual impedance

expression becomes

ta= [ [ ] /gg gg, G305 ®3




This four-fold integral for the ¢¢ case can be reduced to a two-fold integral using
the same methodology given for the zz case as explained in Appendix C.1. In the
course of obtaining the final expressions for the ¢¢ case z is changed by § and 2’
is changed by f’. Consequently, the final two-fold mutual impedance integral for

the ¢¢ case can be expressed as

1 T2
7 = (———)? T Ipi + Lo + I3}d E.4
1266 (Zasm (kala)) /TO 60 (T){ o1 + oo + Lz }dT (E.4)
where
27+ (24 + 2)V2 I <T< T
po(T) = (E.5)
27’+(za—zs)\/§ T<T<T7
with
e — &
Ty = = 4 E.6
0 \/§ ( )
z
T = — E.7
=75 (E.7)
S (E.8)

V2

and z; = 2, — z, as defined in Appendix C. Furthermore, in (E.4) I,1, I,» and

1,3 are defined as

Iy = 2/U3 {COS[ka(ﬁs — 0V2)]V (1) Gy (E.9)
+%¢¢(U)G¢¢2}d“
Ly = /”4 { coslka(2la + Bs — vV/2)]VY? (0)Gpgo (E.10)
+‘Q¢¢(U)G¢¢2}dv
Lz = /U2 { coska(2la — By + vV2) IV (1) Gy (E.11)
+V6¢¢(U)G¢¢2}dv
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with
" U_Bs_}la v < U < Vg
Vi (v) = 3

_U—Fﬁs\/tzla 'U2<U<U3

c0s (Kala) i) [ka(—0V2 — 1, + B5)] v1 <v <y

‘/2¢¢(U) = { CO’:‘Z];{;G)

kaV/2
Bs_vﬁ
‘/?)Qf)d)(v) _ 72 s Vg <V < U3
—2la—Bs 2
% v3 < U < Uy

__sin [ka(Bs—vv2)]

Vd)d) v) = . kaVv2
4 ( ) { sin [ka(2gj\‘/%s_”\/§)] V3 <V <y

Vg < v < U3

—2la+Bs—vV2

V5¢>¢(v)={ — v tesusu

%ﬁ v <V < Vg

sin [ka (2la —Bs +vv2)]
Vg < v <0
Vil (v) = { ka/2 ’ '

sin [k'u.(ﬁsfv\/i)]
R, S V1 <V <V

and

Vo =

V1 =

Vo =

V3 =

Vy4 =

Finally 85 = B,, — B, as defined in Appendix C.1.
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sin [ka(vvV2 =1, — Bs)]  va<v <ws

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)
(E.19)
(E.20)
(E.21)

(E.22)



E.2 Overlapping Term

Similar to the zz case, the singular part of the mutual impedance expression,
when two ¢— directed current modes partially overlap with each other, is the last

term of (5.23) which can be written as

2, Za/2 Za/2 1 8J aJ ,
Z _/ / / / 22 zdz dBdp. E.23
1209 Za/2 Za/2 S a¢ agb, B B ( )

where % is defined in (C.32). For the ¢¢ case, the corresponding integral given
n (C.33) is obtained as

Zises = / / (t 2z—|/3—z|—\/3|>]+t4cos[ka<|ﬁ'—za|—|/3|>])

<2za [10g(—2 + \/(5/\/_55)2 + %‘%) — log 5’\/—55 ‘]
_2\/51\/(6' . )2 + %2 - B/\/_ﬁﬁ’]>dﬁdﬁ' (E.24)
where
ts =K [Sign(ﬁ)sign(ﬁ’ — la)} (E.25)
ty=K [Sign(ﬂ)sign(ﬁl — la)} (E.26)
K=t (E.27)
2 [za sin(k‘ala)}

Following the same methodology given in Appendix C.2 and making use of [38]

for the details, the final integral expression is given by

0.5
Z12gp = / {t5 sin(2kql,a) + te(1 — 2a) cos(2k,l, )
0

+tro cos [kala(l — 2@)} + tgsin [kala(l - 204)] }Hr(a)da

.5

/1 {t5 sin |:2]€ala(1 — a)] —to(1 — 2ax) cos [kala(?) — 204)}
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+t7(1 — «) cos [kala(l — 20[)} — t1psin [kala(l — 2&)} }H(a)da

/1.5 {t9(3 — 2a) cos [kala(B — 20[)} + t10sin [/{ala(?) — 2&)} }H(a)da

+1, (E.28)
where
H'(a) = 7 [1og ( a2 + ”’;) - 1og(za)} V2 [m - laa}
(E.29)
and
H(a) = 7 [log ( a2 + Z;) log(l, a)] - ﬁ[m— laa].
(E.30)

I,y in (E.24) is defined as

24 o3 52 53 53
[pl = —E{Hl |:61 10g(51) — (51:| + Ko [51 10g<51) — Zl] + K3 [ 31 log(51) — §:| }
L 05
- ts sin(2k,la00) + t6(1 — 2 2kqlq
A 5 sin( a) + tg( a) cos( @)
+tracos [kala(l — 204)} + tg sin [k;ala(l - 204)] } log(ar)da (E.31)

and 07 is a small number which is chosen as (2k,l,01) << 1. The other parameters
n (E.24)-(E.31) are defined as

R1 = t6 -+ tg Sin(kala) <E32)

Ko = 2ts5kaly — 2ts + t7 cos(kaly) — 2tskal, cos(kaly) (E.33)

R3 = 2t7k’ l sin(kala) (E34)
8v/2l

t5 \/_ OS(k’ [ )t3+ <E35)

te = 8\/_l2 cos(kaly)ts—
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tr = 16v/20%t4, (E.36)
8v2l,

. (E.37)

to = 4v/20%t5_ (E.38)

(E.39)

tg = ty

42,
=5

In this expressions, t3, and t,, mean that sign(f)sign(f’ — [,) is positive where

th t4, .

ts— and t4— mean that sign(f5)sign(f8’ — [,) is negative.

E.3 Self Term

Similar to the zz case, explained in Appendix C.3, the singular part of the self
impedance (i.e., mutual impedance when source and field points overlap with
each other), Z1a44, integral can be written as
la la Za/2 Za/2 16J aJ ,
roge = / / / S22 dy dBd (E.40)
A S —ra)2) a2 S 00 O
Following the same methodology given in Appendix C.2 and C.3 and making use

of [38] for the details, the final integral expression is given by

Zispy = /0.5 {03 sin [kala(l — 20&)} + ¢y cos [k:a2la(l — oz)]
0

+e5(1 — 2a) cos(2k,l,c0) + ¢ Sin(Qkalaoz)}HT(a)doz

/01 {04(1 — a) cos [Qkala(l — a)} + cgsin [2kala(1 — a)} }H(a)da

.5

+1 (E.41)
with
_ % 03 03 03 03
ng = —E{dl |:(52 log(ég) — 52:| + dg [E log(dg) — Z:| + dg |:§ log(ég) — §:|

2, 0.5

~ 75, {03 sin [kzala(l - 204)] + ¢4 cos [k?ana(l - O‘)}

+c5(1 — 2a0) cos(2k,l,) + ¢ Sin(2kalaa)} log(a)da (E.42)
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In (E.42), d5 is a small number where (2k,2,02) << 1. The other parameters in
(E.41)-(E.42) are given as

dy = cgsin(kyly) + ¢
dy = —2c3k,l, cos(kaly) + ¢4 cos(2kal,) — 2¢5 + 2¢6kal,

ds = 2c4k,l, sin(2k,1,)
1,16v/2
ka
cq = 12167/2¢,
Cs = l216\/502+
1.8V2
Co_

C3 —

(E.43)
(E.44)
(E.45)
cos(kqly)er+ (E.46)
(E.47)
(E.48)

ce = . (E.49)
¢ = K[sign(ﬁ)sign(ﬁ’)] (E.50)
Cy = K[sign(ﬁ)sign(ﬁ')]. (E.51)

Similar to the overlapping case, ¢;. and ¢y mean that sign(5)sign(f’) is positive.
Also ¢;- and ¢y mean that sign(5)sign(4’) is negative. H"(a) and H («) are given
n (E.29) and (E.30), respectively.

E.4 Spectral Domain Singularity

Substituting (5.20) into (5.12) for uv = ¢¢ and performing the IFTs, the singular

part of the mutual impedance expression due to the spectral domain singularity

Z1ngp = / / / / %‘gf’%‘;‘é’ g(|8 = B'))dzdz'dBds’ (E.52)

where the constants are not included. Since the spectral domain singularity is
related with (8 — £') and the current modes are dependent on ¢ and ¢ (or
and () the solution for the spectral domain singularity given for the zz case can

not be used for the ¢¢ case. Therefore, let the center points of the Jy and Jy

appears as

current modes (both of them have dimensions 2[, x z,) be at S, 2, and [, z,,

respectively. The spectral domain singularity in (E.52) appears in two different
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cases. In the first case, the singularity appears when (,, — 8, = [, regardless of

Zm — Zn. For this case (E.52) can be written as
2,
0Jy (9J¢/
Zhogp = E.
wom [ ][ [ G2 ostts - isazasar. wy

Performing the z and 2’ integrals (the integrand does not depend on z and 2z’ and
the width of both current modes are z,), (E.53) is reduced to

21, la
Zisss = / / | (t [Fa(2la = |8 = La] = B])] + 1 cos [ka(|ﬁ’—la|—!6!)]>
(2'3 log(|8 — ﬁ’|)> dpdp’ (E.54)

where t3 and ¢, are defined in (E.25) and (E.26). Note that (E.54) is similar to
(E.24). In (E.24), the corresponding integrand for 22log(|3 — 8'|) term is

Za B/_BQ Zg Bl_ﬁ
H, = (2za[10g(ﬁ+\/( 7 ) +?)—log W‘]

Jﬂb/(%)u%g_ %‘D (E.55)

Using (C.37) and (C.13) (also changing z, 2/, z, and [, for the zz case with 3, /7',
lo and z, is necessary), when 2[,« is substituted instead of f' — 8 in (E.55), the

following is obtained.
Htl(ﬁ’—ﬂ)leaa = 2\/5]’](0[) <E56)

where H(a) is given in (E.30). Therefore, for the z2log(|3 — #'|) term, the
corresponding H(«) and H"(«) expressions (substituting 2/, instead of 5" — )
can be defined as

2

H(a) = % log(2l,c) (E.57)
H"(a) = Z—g log(2l,). (E.58)

V2

As a result, for the numerical evaluation of (E.53) or (E.54), the expression given
in (E.28) is used with the H(«) and H"(«) expressions given in (E.57) and (E.58).
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The spectral singularity also appears when 3, = 3, (the second case) as given

in the following expression

Z12ge = / / / / %‘ZE%{;’ g(18 = B')dzdz'dBdp'. (E.59)

As explained for the 5,, — 5, = [, case, in the course of the numerical evaluation

of (E.59), (E.41) is used with the H(a) and H"(«) expressions given in (E.57)

and (E.58), respectively.
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Appendix F

Even and Odd Properties of
Green’s Functions and Mutual

Impedance

In this dissertation, even and odd properties of the Green’s function components
are used in order to increase the efficiency of the computation procedure. Table
F.1 depicts the even and odd properties of the components of the spectral and the
space domain Green’s function representations with respect to k, or Az = (2 —2/)

and A¢ = (¢ — ¢'), respectively. In the spectral domain, the summation with

k./Az | n/Ag¢
G../G,. | even | even
Gz¢/Gz¢ odd odd
Gy./Gy, | odd odd
Gps/Gos | even | even
G.,/G., | odd even
Gyp/Gep | even | odd
G)./Gp, | odd even
Gpy/Gps | even | odd

Table F.1: Even and odd properties of the components of the spectral and the
space domain Green’s function representations
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Az, A¢p | —Az,A¢p | Az, —A¢ | —Az, —A¢

Zlez Azz Azz Q2 Qzz
Zle¢ Qz¢ —Qz¢ _az¢ Qz¢
Zl?qﬁz Qz¢ —Qz¢ —Qz¢ Qz¢
Z12gs | g0 Agg Agg g

szp azp _azp azp _azp

Ve —Gzp Azp —Gzp Qzp

Vap Qgp Qgp —Ggp —Qgp

Voo | —agp —Qgp agp Agp

Table F.2: Even and odd properties of mutual impedance

respect to the cylindrical eigenmodes n that ranged from —oo to oo are folded to
range from 0 to co using the third column of Table F.1. Similarly, in the course
of obtaining the space domain Green’s function representations the k, integral is
evaluated over the range from 0 to co using Table F.1. In Table F.1, the even
and odd properties of the space domain Green’s functions are also given for the

sake of completeness.

In the MoM analysis of antennas or arrays, Table F.2 is used in order to obtain
the impedance matrix and the voltage vector efficiently. In Table F.2, the even
and odd properties of the mutual impedances are given. In the MoM analysis,
only one of the four different (Az, A¢) combinations is computed. For the other
combinations, Table F.2 is used in order to increase the efficiency of the MoM

analysis.
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