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ÖZET 

Yüksek Lisans  Tezi 

 

AKTÜERYAL RİSK ANALİZİNDE EŞLENİKLERİN KULLANIMI ÜZERİNE  BİR 
ÇALIŞMA 

 

Esra AYDIN 

 

Ankara Üniversitesi 

Fen Bilimleri Enstitüsü 

İstatistik Anabilim Dalı  

 

Danışman: Prof. Dr. Ömer L. GEBİZLİOĞLU 

 

Bu çalışmada sıra istatistikleri ve eşlenikleri, kopulalar, iki değişkenli olasılık integral 

dönüşümü, Riske Maruz Değer (Value-at-Risk) ve bunun Sarmanov Dağılımlar ailesine 

uygulanması üzerinde durulmuştur.  

Sıra istatistikleri, iki boyutlu dağılım fonksiyonları, kopulalar ve sıra istatistiklerinin 

eşlenikleri hakkında temel kavram ve teoremler verildikten sonra çalışmanın  amacını 

oluşturan iki değişkenli olasılık integral dönüşümleri gösterilmiştir. Çok kullanılan risk 

ölçüm değerlerinden biri olan Riske Maruz Değer (Value-at-Risk)’den konuyla ilgili 

olarak kısaca bahsedilmiştir. Tüm bu kavram ve teoremler kullanılarak Sarmanov 

dağılımlar ailesi için gerekli uygulamalar yapılmıştır. Bu kapsamda bağımlılık yapıları 

da ele alınmış ve analitik sonuçlar sunulmuştur. Bu uygulamalar sonucunda tolerans 

aralıklarının belirlenmesine ve Riske Maruz Değer ile ilişkilendirilmesine yer 

verilmiştir. 

Ocak 2012, 54 sayfa 

Anahtar Kelimeler: İki Değişkenli Olasılık İntegral Dönüşümü, Kopula, Kuantiller, 

Riske Maruz Değer (Value-at-Risk), Sarmanov Dağılım Ailesi, Sıra İstatistikleri ve 

Eşlenikleri, Stokastik Sıralama, Tolerans Aralığı 
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In this study; order statistics and their concomitants, copulas, bivariate probability 

integral transform, Value-at-Risk (VaR) and Sarmanov Distribution Family are 

considered.  

Basic concepts of order statistics and their concomitants, two dimensional distribution 

functions, copulas and the related theorems are given. Bivariate probability integral 

transforms, which sets the basis of the study, are shown. Value-at-Risk (VaR), as a risk 

measure, and quantiles of distributions are presented in conjunction with each other. All 

the basic concepts and teorems about the Sarmanov distributions, that are utilized in the 

thesis, are presented. In this regard; quantiles, VaR and tolerans intervals are 

investigated and some analytical results are presented.   
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1. GİRİŞ VE ÖNCEKİ ÇALIŞMALAR 

 

Sıra istatistikleri istatistik teorisinin önemli kavramlarından biri olup, temel istatistik 

yöntemlerinde ve istatistiksel sonuç çıkarımında kullanılmaktadır. Sıra istatistiklerinin 

kullanım alanlarından biri de eşleniklerdir. Sıra istatistiklerinden elde edilen  eşlenikler 

özellikle risk gruplaması, sıralama ve tahmin problemleri olmak üzere birçok uygulama 

alanında kullanılmaktadır.  

Gerçek yaşamda yer alan etkenler ve değişkenler doğal yapıları gereği birbirinden 

bağımsız değillerdir. Bu bağımlılıktan dolayı olasılık dağılımlarını modellemek için çok 

değişkenli dağılımların kullanılması oldukça uygundur. Bu sahada ele alınan çok 

değişkenli dağılım modellerinden birisi olan Sarmanov dağılımlar ailesi literatürde ilk 

kez Sarmanov (1966) tarafından incelenmiştir (Yağcı 2002).  Bu çalışmaların yarattığı 

zemin üzerine inşa edilmiş diğer çok değerli çalışmalar mevcuttur. Ayrıca, çok 

değişkenli dağılımlarda sıra istatistikleri ve eşleniklerinin ortak dağılımlarını karakterize 

etme problemi istatistik bilimi açısından hem kuram hem de uygulama yönleriyle bir 

değer taşımakta olup risk, aktüerya, finans, tıp, biyoloji, jeoloji, hidroloji, ekonomi, 

ziraat gibi pek çok uygulama alanında çözümleyici ve sonuç çıkarıcı yaklaşımlara 

dayanak oluşturmaktadır. 

Çok değişkenli dağılımlarda dağılıma konu olan değişkenler arasındaki bağımlılık 

yapısının ortaya konulmasında “kopula” kavramı son yıllarda istatistik literatüründe 

sıkça kullanılmaktadır. Rastgele değişkenler arasındaki bağımlılık yapısını ortaya koyan 

kopulalar, tek değişkenli marjinalleri [0;1] aralığı üzerinde düzgün dağılıma  bağlarken, 

çok değişkenli dağılımları kendi tek değişkenli marjinallerine bağlayan fonksiyonlardır. 

İki değişkenli olasılık integral dönüşümleri yapılırken, bu dönüşümü kopula ile ifade 

etmek işlemleri daha da kolaylaştırmaktadır. 

İki  değişkenli olasılık integral dönüşümleri ve dağılım fonksiyonlarının kopulaları ile 

ilgili literatürde yer alan önemli çalışmalar; Nelsen vd. (2001), Bairamov ve Kotz 

(2002), Rodriguez-Lallena, Jose A. ve  Ubeda-Flores M.  (2003) ’in çalışmalardır. 
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Aktuerya biliminde, risk yönetiminde bağımlılığı modelleme konusu doğal risk 

niceliklerinden dolayı son yıllarda artan bir önem kazanmıştır. Kayıp miktarları gibi 

birçok sigorta portföyünün içinde ya da arasında bağımlılık söz konusudur. Bu tip 

bağımlı riskleri modelleme çalışmalarında; yükümlülük ve uygun fiyatlama (prim 

hesapları) meseleleri için bir sigorta risk yönetimi planlaması anlamlı risk ölçümlerinin 

kullanılmasını gerektirmektedir.  

Bağımlı  risklerin dağılımlarının kuantilleri, birçok risk ölçüsü için bağımlı riskleri 

modellemek amacıyla kullanılarak dağılımlar temelinde esas değerleri oluşturur. 

Kopulalar, bağımlılığın modellenmesinde, risk niceliklerinin ortak dağılımlarını 

bağımlılık yapısı ve marjinal davranışı olarak ifade etme özelliğine sahip olduğundan 

kullanılışlı bir matematiksel araçtır. Denuit vd. (2005) tarafından yapılan bir çalışmada, 

yeni ve kontrol edilebilir sigorta alanı teorisindeki risk ölçümleri ve kopulalar açısından 

bağımlı aktüeryal risk modelleri ile uygulamalar sunulmuştur. Ayrıca Joe (1997) ve 

Mari ve Kotz (2001)’ un çalışmalarında; bağımlılık, korelasyon ve çok değişkenli 

modelleme hakkında açık ve oldukça geniş bir istatistiksel bakış açısı sunulmaktadır. 

Genel terimlerle, bazı risk ölçümleri, kuantiller, olasılık integral dönüşümleri ve 

kopulalar arasında kavramsal ve analitik bir ilişki mevcuttur. Kuantiller; olasılık 

dağılımlarının genelleştirilmiş tersi olarak tanımlanır ve risk yönetimi pratiğinde Riske 

Maruz Değer (VaR) risk ölçüsü bakımından esası oluşturur. Chen ve Welsh (2002), tek 

değişkenli kuantiller, iki değişkenli kuantiller ve çok değişkenli kuantillerin 

genelleştirilmeleri tanımlamak için iki değişkenli dağılım fonksiyonlarını 

kullanmışlardır. Bağımlı risklerin bazı fonksiyonlarını alarak; bazı risk yönetimi 

problemleri bakımından teknik enstrümanlar olarak kopulaların kullanımı ile bir p-

kuantil risk ölçüsü olan VaR risk ölçümü için sınırlar ortaya konulabilmektedir 

(Embrechts vd. (2003)). Rüschendorf (2005) tarafından yapılan çalışma bazı risk 

fonksiyonellerinin üzerinde bağımlılığın etkisinin sınırlandırılması hakkında ayrıntı 

genişlemelerini önermektedir.  

 Embrechts vd. (2005)’ un yapmış oldukları çalışmada; kopula teorisi kullanılarak VaR’ 

a dayandırılan risk yönetimi için mümkün en kötü senaryolar ve ko-monotonluğu 

destekleyen alternatif bir yaklaşım üzerinde durulmuştur.  
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Bedford (2006) tarafından yapılan çalışmada risk problemlerini hesaplamada kullanılan 

kuantil testlerinden bahsetmiş ve kopulaları kullanarak engelleyici ödeme 

yükümlülüğünün etkililiğini anlamada ek bir araç önererek, güvenilirlik alanı içinde risk 

hesaplamanın önemli bir örneğini vermiştir.  

Gebizlioğlu ve Kızılok (2007) bir portföydeki mevcut riskleri açıklamak için iki adımlı 

yaklaşımı ile iki değişkenli bir model önermişlerdir. İlk adımı risk faktörlerinin marjinal 

dağılımlarının belirlenmesi, ikinci adımı ise bir kopula fonksiyonu aracılığı ile risklerin 

ortak dağılımlarının belirlenmesi işlemleri oluşturmaktadır. Ayrıca kopula 

fonksiyonundan, Koşullu Riske Maruz Değer (CVaR, Conditional Value-at-Risk) 

ölçüsü çıkarılmış ve bu temel üzerinde, en uygun portföyün seçimi problemi için bir 

uygun optimizasyon yöntemi önerilmiştir.    

Fernandez (2008) sigortacılıkta bilanço gelirlerinde bağımlılık yapısının ölçülerini 

kopula teorisi temellinde irdelemiş ve bu bakışla kuyruk bağımlılığı, VaR ve beklenen 

bakiye hesapları ortaya koymuştur. 

Denneberg ve Leufer (2008) stokastik değişimlilik (volatility) ve bağımlılık 

parametreleri üzerine yaptıkları çalışmada ikili değişimlilik ve bağımlılık parametresi 

ile ilgilenmişler ve yapılan diğer çalışmalarda olduğu gibi kopula fonksiyonları 

kullanmışlardır. 

Gebizlioglu ve Yagcı (2008)  iki değişkenli riskler ve risk ölçümlerinin kuantilleri için 

kopula fonksiyonları yardımıyla güven aralıkları oluşturmuşlardır. Ayrıca aktueryal risk 

yönetiminin önemli ölçüm araçlarından  VaR’ ı ele alarak tolerans aralıkları konusunda 

özgün ve önemli kuramsal bulgular ortaya koymuşlardır. 

Tezin bölümleri şöyle oluşturulmuştur: İkinci Bölümde sıra istatistikleri ve dağılımları 

hakkında temel kavram ve teoremler verilmiştir. 

Üçüncü Bölümde Nelsen vd. (2001)’ un çalışmalarına bağlı kalınarak, kopula kavramı 

hakkında genel bilgiler verilmiş ve iki değişkenli olasılık integral dönüşümleri ile ilgili 
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teoremler ve sonuçlarından bahsedilmiştir. Bu bölümde ayrıca birlikteliğin ölçüleri 

konusu da ele alınmıştır.  

Dördüncü Bölümde,  sıra istatistiklerinin eşleniklerinin dağılımları teorisi ele alınmıştır. 

Sıra istatistiklerinin eşleniklerinin dağılımları ve ortak dağılımlarının elde edilmesinde 

kullanılan  temel teoremler verilmiştir.  

Çalışmanın temel amacını oluşturan Beşinci Bölümde, sıra istatistikleri ve eşleniklerine 

iki değişkenli olasılık integral dönüşümlerinin uygulanması gösterilmiş, minimum, 

maksimum ve çarpım kopulaları kullanılarak Sarmanov dağılımlar ailesi üzerine 

analitik yapılar oluşturulmuştur. 

Altıncı Bölüm; çalışmanın diğer özgün sonuçlarını oluşturmaktadır: Bu bölümde, iki 

değişkenli olasılık integral dönüşümleri kullanılarak kuantiller için tolerans aralıklarının 

kurulumu gerçekleştirilmiş ve Sarmanov dağılımlar ailesi için tolerans aralıkları üzerine 

özgün örnekler verilmiştir. 

Yedinci Bölümde, Gebizlioğlu ve Yağcı (2008) tarafından  FGM için yapılan 

çalışmadan yola çıkarak Sarmanov dağılım ailesi için VaR (Riske Maruz Değer)’ ın 

ifade edilmesi ve ileride yapılabilecek çalışmalar konusunda önerilerde 

bulunulmaktadır. 

. 
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2. SIRA İSTATİSTİKLERİ VE DAĞILIMLARI 

 

1 2, ,..., nX X X  , birbirinden bağımsız ve aynı ( )F x  dağılım fonksiyonuna sahip n 

birimlik bir örneklem olmak üzere :r nX  (1 )≤ ≤r n  ile bu örneklemin r-inci en küçük 

değeri gösterilsin. Bu durumda, bu örneklemin sıra istatistikleri 1: 2: :...≤ ≤ ≤n n n nX X X  

şeklinde ifade edilir ve :r nX ’ ye r-inci sıra istatistiği denir. r-inci sıra istatistiği olan 

:r nX ’nin dağılım fonksiyonu, 

n i n i
r r:n

i r

n
F ( x ) P{ X x } [ F( x )] [1 F( x )]   ,   1 r n       

i
−

=

⎛ ⎞
= ≤ = − ≤ ≤∑ ⎜ ⎟

⎝ ⎠                        (2.1)     

biçiminde verilmektedir. 

1 <r s n≤ ≤  için r-inci ve s-inci sıra istatistiklerinin ortak dağılım fonksiyonu ; 

r,s r:n s:n

n n i j n i j

i r j max(0,s i )

F ( x,y ) P{ X x,X x}
n!             F( x) ( F( y ) F( x)) (1-F(y))    x<y , 1 r<s n

i! j!(n i j )!
− −

= = −

= ≤ ≤

= − ≤ ≤∑ ∑
− −

    

  

 

               (2.2) 

( )F x dağılım fonksiyonu mutlak sürekli olup f(x)  gibi bir olasılık yoğunluk 

fonksiyonuna sahip olması durumunda r-inci sıra istatistiğinin olasılık yoğunluk 

fonksiyonu  

( ) ( ) ( ) ( ) ( ) ( )r 1 n r
r

n!f x F x 1 F x f x       - <x<  1 r n
r 1 ! n r !

− −
= − ∞ ∞     ,    ≤ ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− −

  (2.3)

 

1 <sr n≤ ≤  için r-inci ve s-inci sıra istatistiklerinin ortak olasılık yoğunluk fonksiyonu  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r 1 s r 1 n s
r ,s

n!f x, y F x F y F x 1 F y f x f y
r 1 ! s r 1 ! n s !

                                                                                              - <x<y< r s n

− − − −
= × − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦− − − −

∞ ∞     ,     1 ≤ < ≤
            

    (2.4) 
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dir. 1 21≤ < < < ≤ ≤ ≤kr r ... r n (1 k n) için, 
1 2 kr :n r :n r :nX , X ,..., X ’nin ortak olasılık yoğunluk 

fonksiyonu  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 k

1 2 1

r ,r ,...,r 1 2 k
1 2 1 k

r 1 r r 1
1 2 1 k 1 2 k 1 2 k

n!f x ,x ,...,x
r 1 ! r r 1 ! ... n r !

F x F x F x ... 1 F x f x f x ... f x - <x <x <...<x <
− − −

=
− − − −

×⎡ ⎤ ⎡ − ⎤ ⎡ − ⎤ ×      ∞ ∞     ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                   (2.5)

 

olarak elde edilir. Burada 0 k+1 0x , x , r 0= −∞ = +∞ =  ve 1= +k+1r n  olarak alınması 
durumunda  

( ) ( ) ( )
( ) ( )

i 1 i

1 2 k

r r 1
k ki 1 i

r ,r ,...,r 1 2 k i
i 0 i 1i 1 i

F x F x
f x ,x ,...,x n! f x

r r 1 !

+ − −

+

= =+

⎡ ⎤−⎡ ⎤⎣ ⎦ ⎡ ⎤⎢ ⎥= ∏ ∏⎢ ⎥⎣ ⎦− −⎢ ⎥⎣ ⎦        (2.6)
 

 

olmaktadır. Ayrıca  1:n 2:n n:nX ,X ,...,X  rasgele değişkenlerinin (n tane sıra istatistiğinin) 
ortak olasılık yoğunluk fonksiyonu  

( ) ( ) ( ) ( )1,2 ,...,n 1 2 k 1 2 n 1 2 nf x ,x ,...,x n! f x f x ... f x         - <x <x <...<x <= ∞ ∞      
    (2.7) 

 

olarak verilir (David ve Nagaraja 2003). 

 

Teorem 2.1. X  rasgele değişkeni için, ( )F x  mutlak sürekli keyfi bir dağılım 

fonksiyonu ve olasılık yoğunluk fonksiyonu ise ( )f x olsun. S ( ),r n ’ lerin sonlu 

kümesi olmak üzere  

r,n r:n
S

                       f ( x ) 0 , x R                         α = ∀ ∈∑
                                        (2.8)

 

lineer ilişkisi vardır. (Balasubramanian ve Beg 1997). 

Teorem 2.2. 1 2, ,..., nX X X  , birbirinden bağımsız ve aynı ( )F x  dağılım fonksiyonuna 

sahip n birimlik bir örneklem olsun. Sırasıyla ( )r:nF x  ile r-inci sıra istatistiğinin dağılım 
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fonksiyonu, r:nf ( x )  ile olasılık yoğunluk  fonksiyonu, k
r:nμ  ile k-ıncı momenti ve 

( )r:nM t  ile moment çıkaran fonksiyonu gösterilsin. O zaman, 

                (2.9)  

                                                 

( ) ( ) ( )
n i-n+r-1

r:n 1:i
i=n-r+1

i 1 n
f x = -1 f x

n r i
−⎛ ⎞⎛ ⎞

∑ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
              (2.10) 

n
k i n r 1 k

r:n 1:i
i=n-r+1

i 1 n
(-1)

n r i
μ μ− + − −⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
∑               (2.11) 

ve  

( ) ( ) ( )
n i-n+r-1

r:n 1:i
i=n-r+1

i 1 n
M t -1 M t

n r i
−⎛ ⎞⎛ ⎞

= ∑ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠         (2.12)
 

dir  (David ve Nagaraja 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

( ) ( ) ( )
n i-n+r-1

r:n 1:i
i=n-r+1

i 1 n
F x = -1 F x

n r i
−⎛ ⎞⎛ ⎞

∑ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
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3. İKİ DEĞİŞKENLİ OLASILIK İNTEGRAL DÖNÜŞÜMLERİ 

 

3.1 İki Boyutlu Dağılımlar ve Kopulalar 

 

R  ile ( )∞+∞− ,  aralığındaki gerçel sayılar kümesi, R  ile ise bu aralıktaki genişletilmiş 

gerçel sayılar kümesi gösterilsin. Bu durumda, RRR ×=2  genişletilmiş gerçel 

düzlemdir. 2R ’ deki bir dikdörtgen; iki kapalı aralığın kartezyen çarpımı B  ile 

gösterilirse, bu durumda [ ] [ ]2121 ,, yyxxB ×= ’ dir. Burada 

1 1 1 2 2 1 2 2( , ), ( , ), ( , ), ( , )x y x y x y x y  noktaları köşegen noktalardır. Birim kare 2I , [0,1]I = ’ 

in kartezyen çarpımı olan II × ’ dır. Bir 2-boyutlu gerçel fonksiyon H , tanım kümesi 

2R ’ nin  bir altkümesi olan DomH  ve değer kümesi R ’ nin bir alt kümesi olan RanH  

şeklinde tanımlanan bir fonksiyondur. 

Tanım 3.1 1S  ve 2S  R ’ nin boş olmayan altkümeleri ve H  ise tanım kümesi 

21 SSDomH ×=  olan bir fonksiyon olsun. [ ] [ ]2121 ,, yyxxB ×=  tüm köşegen noktaları 

DomH ’ de olan bir dikdörtgen olsun. Bu durumda B ’ nin H -hacmi  

2 2 2 1 1 2 1 1( ) ( , ) ( , ) ( , ) ( , )HV B H x y H x y H x y H x y= − − +                    (3.1)  

biçiminde verilebilir (Nelsen, 1999) 

Aynı zamanda, B  dikdörtgeni üzerindeki H ’ nin birinci dereceden farkları aşağıdaki 

gibi verilirse ( )HV B ’ ye, B  dikdörtgenin H -hacmi  denir: 

2
1 2 1( , ) ( , ) ( , )x

x H x y H x y H x yΔ = −  

2
1 2 1( , ) ( , ) ( , )y

y H x y H x y H x yΔ = − . 

O halde; B  dikdörtgenin H -hacmi, H ’ nin B  üzerindeki ikinci dereceden farkı 

olacaktır: 
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2 2
1 1

( ) ( , )H
x y
x yV B H x y=Δ Δ  

 

Tanım 3.2 Eğer köşegen noktaları DomH ’ de olan tüm B  dikdörtgenleri için 

0)( ≥BVH  ise, H  2-boyutlu gerçel fonksiyonuna 2-artandır denir (Nelsen 1999).  

X , F  dağılım fonksiyonlu sürekli bir rasgele değişken olduğunda )(XFU =  rasgele 

değişkeni ( X ’in olasılık integral dönüşümü) ]1,0[=I  aralığında düzgün dağılıma sahip 

olup ya da ]1,0[,))(( ∈=≤ tttXFP  biçiminde yazılır. İki boyut için aynı durum göz 

önüne alındığında; X  ve Y , sırasıyla F  ve G  dağılım fonksiyonlu rasgele değişkenler 

olmak üzere 1H  ve 2H , tek değişkenli marjinalleri F  ve G  olan iki değişkenli dağılım 

fonksiyonları olsun. 1H  ve 2H  için ortak marjinallere kısıtlama yapmak, X  ve Y ’ nin 

tek değişkenli olasılık integral dönüşümüne bağlı olmasını garantileyecektir. Bu 

durumda ),(1 YXH  tek boyutlu bir rasgele değişken olacaktır. Eğer X  ve Y ’ nin ortak 

dağılım fonksiyonu 2H  ise ),(1 YXH ’ nin dağılım fonksiyonu hakkında ne 

söylenebileceği sorusunu cevaplamak için ilk olarak sürekli iki değişkenli dağılım 

fonksiyonlarının kümesi üzerinde sıralamaya gitmek ve ikinci olarak rank korelasyon 

katsayıları (Spearman rho’ su, Kendall tau’ su, Gini katsayısı ve Spearman footrule-

kuralı) dağılım fonksiyonları bakımından özlü olarak ifade edilmelidir (Nelsen vd. 

2001). 

Tanım 3.3 Kopula, aşağıdaki özelliklere sahip 2I ’den I ’ ya bir C  fonksiyonudur: 

(i) I ’daki her u  ve v  için,  

  ),0(0)0,( vCuC ==                                       (3.2)                   

ve  

uuC =)1,(  ve vvC =),1( ;            (3.3) 

(ii) 21 uu ≤  ve 21 vv ≤  olmak üzere I ’daki her 2121 ,,, vvuu  için,  

0),(),(),(),( 11211222 ≥+−− vuCvuCvuCvuC          (3.4) 

şeklinde olmalıdır (Nelsen 1999).  
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Kopulaların, bileşik ve marjinal dağılımları ilişkilendiren özelliği aşağıdaki teoremle 

belirtilmiştir: 

Teorem 3.1 (Sklar’ın Teoremi) H  fonksiyonu F  ve G  marjinal dağılımlı bir ortak 

dağılım fonksiyonu olsun. O zaman öyle bir C  kopulası mevcuttur ki 

],[ +∞−∞=R ’daki bütün x  ve y ’ler için,  

))(),((),( yGxFCyxH =                       (3.5) 

 

dır (Sklar 1959). 

Eğer F  ve G  sürekli ise, C  tektir; diğer durumda RanGRanF ×  üzerinde tek olarak 

belirlenir. Burada RanF  ve RanG , R ’nin altkümeleri olan değer kümeleridir. Diğer 

taraftan, eğer C  bir kopula ve F  ve G  dağılım fonksiyonları ise (3.5) ile verilen FH ,  

ve G  marjinal dağılımlı bir ortak dağılım fonksiyonudur (Nelsen 1999). 

 

3.2 Dağılım Fonksiyonlarının Kopulaları   

 

M  ve W , sırasıyla Frechet-Hoeffding üst ve alt sınır kopulaları olmak üzere, herhangi 

bir C  kopulası  

),(),min(),()0,1max(),( vuMvuvuCvuvuW =≤≤−+=         (3.6) 

eşitsizliği sağlamaktadır. 

Sürekli X  ve Y  rasgele değişkenleri için, ancak ve ancak kopulaları )(WM  ise X  ve 

Y ’nin her biri diğerinin hemen hemen her yerde artan (azalan) bir fonksiyonudur. 

Bağımsız sürekli rasgele değişkenlerin kopulası uvvu =Π ),( ’dir. X  rasgele 

değişkeninin dağılım fonksiyonu )(Xdf  yada F  harfiyle ifade edilecektir. 

)()( YdfXdfYstX ≥⇔≤  dir. Burada “ st≤ ” stokastik eşitsizliği göstermektedir.  

H
μ  iki değişkenli dağılım fonksiyonu H ’nin 2R  üzerindeki ölçüsünü, benzer biçimde 
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C
μ ’de C  kopulasının 2I  üzerindeki ölçüsünü gösterecektir. Son olarak, Cδ , 

),()( ttCtC =δ  olarak verilen C ’nin diagonal (köşegen) kısmıdır. 

Tanım 3.4 1H  ve 2H , ortak F  ve G  sürekli marjinal dağılım fonksiyonlu iki 

değişkenli dağılım fonksiyonları olsun. X  ve Y ’nin ortak dağılım fonksiyonları 2H  

olmak üzere, ),(21 YXHH  ),(1 YXH  rasgele değişkenini göstersin. 1H ’in dağılım 

fonksiyonu 2H , yani ( )( )1 2 ,df H H X Y  (kısaca ( )21 HH  ile gösterilsin) aşağıdaki 

gibi ifade edilir:  

( ) ( )[ ] ( ){ }( ) IttYXHRyxtYXHHtHH H ∈≤∈=≤= ,),(,,Pr)( 1
2

2121 2
μ      (3.7) 

Kopulalar, Düzgün [0,1] dağılımına sahip marjinal dağılımları olan iki değişkenli 

dağılım fonksiyonu olduğundan aynı tanım kopulalar için  yazılabilir. Bu durumda, eğer 

1C  ve 2C  herhangi iki kopula ve U , V  ortak dağılım fonksiyonları 2C  olan düzgün 

[0,1] rasgele değişkenler ise o zaman ),(21 VUCC  ),(1 VUC  rasgele değişkenini 

gösterir ve 1C ’in dağılım fonksiyonu 2C   

( ) ( )[ ] ( ){ }( ) IttVUCIvutVUCCtCC C ∈≤∈=≤= ,),(,,Pr)( 1
2

2121 2
μ      (3.8) 

biçiminde verilir (Nelsen et. al. 2001). 

Teorem 3.2 (Nelsen vd.. 2001) 1H , 2H , F , G , X  ve Y  Tanım 3.4’deki gibi olsun, 

1C  ve 2C   1H  ve 2H ’ye karşılık gelen kopulalar olmak üzere;     

( ) ( )2121 CCHH =             (3.9) 

dır. 

21 CC  için dağılım fonksiyonu aşağıdaki çizelge 3.1’ de gösterilmiştir. 
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Çizelge 3.1 { }WMCC ,,, 21 Π∈  için 21 CC ’nin dağılım fonksiyonları (Nelsen vd.  
              2001) 
 

2C  

1C  

 

M  

 

Π  

 

W  

 

M  

 

Π  

 

W  

 

 

t  

 

t  

 

2)1( t+  

 

 

22 tt −  

 

ttt ln−  

 

2)1(1 2t−−  

 

)1,2min( t  

 

)41,0max(1 t−−

 

1 

 

İspat. It ∈  için,  

 

( ) ( ){ }( ) ( ){ }( )
( ){ }( ) ( ) ),(),(,

,))(),((,),(,)(

211
2

1
2

1
2

21

2

22

tCCtVUCIvu

tyGxFCRyxtYXHRyxtHH

C

HH

=≤∈=

≤∈=≤∈=

μ

μμ
 

)(),( yGvxFu ==  dönüşümü yoluyla elde edilir.  

 

Bunun anlamı, X  ve Y ’nin kesin sürekli dönüşümleri altında değişmezliğin 

sağlanmasıyla 1H ’in dağılım fonksiyonu 2H , 1C ’in dağılım fonksiyonu 2C ’ye 

benzerdir.     

Örnek 3.1 M , Π  ve  W ’nun dağılım fonksiyonu M , Π  ve  W  (3.8) ’den hesaplanıp 

Çizelge 3.1’de gösterilmektedir ( It ∈  için).  
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Bu durumda örneğin, M M  I ’da düzgün dağılıma M Π  2,1 == βα  parametreli 

beta dağılımına, WM  [0,1/2]’de düzgün dağılıma, MΠ  1 / 2, 1α β= =  

parametreli beta dağılımına sahiptirler. 

 

Örnek 3.2 U  ve V  ortak dağılım fonksiyonları C  olan düzgün [0,1] dağılıma sahip  

rasgele değişkenler olsun. C ( t ) C( t ,t )δ =  köşegen kopula olmak üzere kolaylıkla It ∈  

için  ( ) CM C ( t ) 2t ( t )δ= −  olduğu gösterilebilir ve bu nedenle U  ve V ’ nin sıra 

istatistiklerinin dağılım fonksiyonları M ’nin C  dağılımına göre ifade edilebilir:     

 

Cdf (min(U ,V ))( t ) 2t ( t ) ( M C )( t ),δ= − =  

 

Cdf (max(U ,V ))( t ) ( t ) 2t ( M C )( t )δ= = −  

 biçiminde ifade edilebilir. 

Ayrıca ( ) ( 1 )
CC M ( t ) ( t )δ −= ’dir; burada ( 1 )

Cδ − , Cδ ’nin sağdan sürekli “yarı-tersi”dir, 

yani It ∈  için { }( 1 )
C C( t ) sup u ( u ) tδ δ− = ≤ ’dir. 

3.3 Kopulaların Kümesi Üzerinde Sıralama   

   

 Kopulaların kümesi üzerinde sıralama bağıntısı kurmak için kopulaların dağılım 

fonksiyonu kullanılacaktır. Bu işlem, Sklar’ın teoremi yardımıyla sürekli rasgele 

değişkenlerin iki değişkenli dağılım fonksiyonlarının kümesi üzerinde yapılacaktır. 

Tanım 3.5 C , 1C  ve 2C  kopula olsun. Bu durumda,               

 

1. Eğer 1 1 2 2stC C C C≥  ise 1C  2C ’den df-larger’ dır.   
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2. Eğer CCCC st 21 ≥  ise 1C  2C ’den C -larger’ dır.  

 

Burada df-larger dağılımda daha geniş, C -larger C  kopulasına göre daha geniş 

anlamında kullanılmıştır.        

 

df-larger Caperaa et al tarafından 1997’de önerilmiştir. Kopulalar için iyi bilinen 

sıralama konkordant (concordance) sıralamadır: Eğer 2I ’de 21 CC ≥  ise 1C  2C ’den 

daha konkordanttır denir ve 21 CC f  şeklinde gösterilir.  

Teorem 3.3 (Nelsen vd. 2001) 1C  ve 2C  kopula olsun. Bu durumda 21 CC f ’dir ancak 

ve ancak 1C  2C ’den her C  kopulası için C -larger ise.              

 

İspat. Öncelikle 21 CC ≥  olduğu varsayılsın. I ’daki tüm t ’ler için: 

 

{ } { }tvuCIvutvuCIvu ≤∈⊆≤∈ ),(),(),(),( 2
2

1
2  

 

ve buradan              

{ }( ) { }( )2 2
1 2C C( u,v ) I C ( u,v ) t ( u,v ) I C ( u,v ) t∈ ≤ ≤ ∈ ≤μ μ  

(her C  kopulası için). Bu nedenle ( ) ( )CCCC 21 ≤ ’dir, yani  CCCC st 21 ≥ ’ dir.  

 

2I ’de 2211 ),(),( tbaCbaCt =<=  ve 
2

21 ttt +
=  olacak şekilde bir ),( ba  noktası olduğu 

varsayılsın. ( ) ( )1 2C C ( t ) C C ( t )>  özelliğine sahip bir C  kopulası ele alınsın; öyle ki 

1C  2C ’den C -larger olmaz. Varsayalımki ba ≤ ’dir ( ba ≥  durumu benzerdir). 2I ’de 

3 çizgi segmentleri (parçaları) üzerinde olasılık yoğunluğu normal dağılımlı olan bir C  
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kopulası göz önüne alınsın, 1L  (0,0)’dan ( )2)(,2)( atat ++ ’ye, 2L  

( )2)2(,2)( batat +−+ ’den ( )1,1+− ba ’e ve 3L  ( )2)2(,1 batba +−+− ’den 

( )2)(,1 at + ’ye olsun. 2),( Lba ∈  olduğuna dikkat edilirse, { }tvuCIvuS ≤∈= ),(),( 1
2

1  

ve { }tvuCIvuS ≤∈= ),(),( 2
2

2  olsun. O zaman cSSba 21 )int(),( ∩∈  ve 

[ ] [ ]( ) )(,0,0)( 12 SabaS CCC μμμ <=×< ’dir, öyle ki ( ) ( ) )()( 21 tCCtCC >  demektir. Bu 

sonuç ile ispat tamamlanmaktadır. 

 

 Teorem 3.3’ ün bir sonucu olarak, tüm C ’ ler için, 1C ’in 2C ’den C -larger olarak 1C  

ve 2C  sıralaması çok güçlü bir gerekli koşuldur ve konkordant sıralamaya denktir.    

Örnek 3.3 “ M -larger” sıralama. 2,1=i  için iU  ve iV  iC  kopulalı )1,0(U  dağılımına 

sahip rasgele değişkenler olsunlar. Bu durumda 

 

1C   2C ’den M -larger’dır  1 2stC M C M⇔ ≥    

                                            ( ) ( )
2121

)1()1(
21 CCCCMCMC δδδδ ≥⇔≤⇔≤⇔ −−  

                                            ( ) ( )),max(),max( 2211 VUdfVUdf ≥⇔   

                                            ve  ( ) ( )),min(),min( 2211 VUdfVUdf ≤    

        

( ) ( ) ( ) ( )22111122 ,max,max,min,min VUVUVUVU ststst ≤≤≤⇔  

      

Bunun anlamı; ancak ve ancak 1U  ve 1V ’in sıra istatistikleri, 2U  ve 2V ’nin sıra 

istatistikleri tarafından belirlenen aralığın içinde yer alıyorsa 1C  2C ’den M -larger’dır. 
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3.4 Birlikteliğin Ölçüleri      

 

Birlikteliğin bazı ölçüleri konkordant ve diskonkordant ifadelerine bağlıdır. Eğer 

0))(( 2121 >−− yyxx  ise, reel sayıların ),( 11 yx  ve ),( 22 yx  sıralı iki çifti konkordant 

ve eğer 0))(( 2121 <−− yyxx  ise diskonkordant olarak adlandırılır. Bu bölümdeki  

konkordant ve diskonkordantın olasılıkları üzerine bağlı olan birliktelik ölçüleri ve 

kopulaların dağılım fonksiyonları arasındaki temel ilişki açıklamaları Nelsen et. al. 

(2001)’ un çalışmalarından yararlanılarak sunulmuş olup, ilgili kuramsal temel  

aşağıdaki teoremde belirtilmektedir.    

Teorem 3.4 (Nelsen vd. 2001) ( )1 1X ,Y  ve ( )22 ,YX  sırasıyla 1H  ve 2H  ortak dağılım 

fonksiyonlu, ortak F  marjinal dağılım fonksiyonlu ( 1X  ve 2X ’nin) ve ortak G  

marjinal dağılım fonksiyonlu ( 1Y  ve 2Y ’nin) sürekli rasgele değişkenlerin rasgele 

vektörleri olsunlar. 1C  ve 2C  sırasıyla ( )11 ,YX  ve ( )22 ,YX ’nin kopulalarını göstersin. 

Q  ( )11 ,YX  ve ( )22 ,YX ’nin konkordant ve diskonkordantlarının olasılıkları arasındaki 

farkı göstersin, yani: 

( )( ) ( )( )1 2 1 2 1 2 1 2Q P X X Y Y 0 P X X Y Y 0 .= − − > − − − <⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                 (3.10) 

                                                                                                                                 

O zaman Q  1C  ve 2C ’nin bir fonksiyonudur ve   

( ) ( )
1 1

1 2 1 2 2 1
0 0

Q Q( C ,C ) 3 4 C C ( t )dt 3 4 C C ( t )dt= = − = −∫ ∫      (3.11) 

şeklinde verilir. 

 

İspat. Nelsen (1999)’ in sunduğu ve yayında ifade edilen Teorem 5.1.1’de      

 

( )1 2 1 2 2 10 0 0 0

1 1 1 1
Q Q C ,C 4 C ( u,v )dC ( u,v ) 1 4 C ( u,v )dC ( u,v ) 1= = − = −∫ ∫ ∫ ∫           (3.12) 

ifadesi, denk bir ifade olarak,      
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( )( )( ) ( )( )( )1 2 2 2 2 1 1 1Q 4E C C U ,V 1 4E C C U ,V 1= − = −     (3.13) 

şeklinde yazılabilir. Burada i iU F( X )=  ve i iV G(Y )=  2,1=i ’dir. Fakat, eğer T  I ’da 

bir rasgele değişken ve dağılım fonksiyonu )(tK  ise, o zaman ( )
1

0
E T 1 K( t )dt= − ∫ ’dir.  

Sonuç olarak şu söylenebilir ki; X  ve Y  C  kopulalı sürekli rasgele değişken olsun ve 

CCC γρτ ,,  ve Cϕ  sırasıyla Kendall’ın τ ’sunun, Spearman’ın ρ ’sunun, Gini’nin 

γ ’sının ve Spearman’ın footrule ϕ ’sinin kitle versiyonu olsun; bu takdirde     

1. ( )
1

C
0

Q( C,C ) 3 4 C C ( t )dtτ = = − ∫        

2. ( )
1

C
0

3Q( C, ) 9 12 C ( t )dtΠ Πρ = = − ∫  

3. ( )
1

C
0

2Q( C,A ) 6 8 C A ( t )dtγ = = − ∫  

4. ( )
1

C
0

3 1Q( C,M ) 4 6 C M ( t )dt
2 2

ϕ = − = − ∫     

saptamaları yapılır. Burada ( ) 2WMA += ’dir. 

Kendall’ın τ ’su ve ( )CC ’nin arasındaki ilişki Caperaa vd. (1997) tarafından 

verilmiştir. Burada ( )CC  Kendall’ın τ ’sunun bir analizi olarak önerilmiştir (Genest ve 

Rivest 1993). Spearman’ın ρ ’su ve ( )C Π  arasındaki benzer ilişki Garralda Guillem 

(1997) tarafından verilmiştir. Diğer birliktelik ölçüleri, kopulaların diğer dağılım 

fonksiyonlarından kolayca oluşturulabilir.       

21 ,CC  kopula ve 1 2 1 2 1 2 1 2, , , , , , ,τ τ ρ ρ γ γ ϕ ϕ  sırası ile Kendall’ın τ ’su, Spearman’ın 

ρ ’su, Gini’nin γ ’sı ve Spearman’ın footrule ϕ ’sine uygun değerler olsun. O zaman, 

aşağıda Şekil 3.1’ de gösterilen gerektirmeler dağılım fonksiyonlarının kopulaları ve 

birliktelik ölçüsüne bağlı sıralamalardır ve bunlar Tanım 3.5 ve yukarıdaki sonuç 1-4’ 

ten elde edilir:   
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1 1 2 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

st

st

st st

 C C C C

    
                                                         C C    

C C C, C C C C   C A C A     

                                            

Π Π ρ ρ

γ γ

τ τ≤ ⇒ ≤

⇑

〈 〉 ≤ 〈 〉 ⇒ ≤

⎡ ⎤⇔ ∀ 〈 〉 ≤ 〈 〉 → 〈 〉 ≤ 〈 〉 ⇒ ≤⎣ ⎦

�

p

1 2 1 2st                 C M C M ϕ ϕ〈 〉 ≤ 〈 〉 ⇒ ≤�

               

Şekil 3.1 Çeşitli bağımlılık sıralamaları arasındaki gerektirmeler 

 

1C  ve 2C ’nin konkordant sıralaması( 1 2C Cp ) arasındaki gerektirmelerin dört 

birliktelik ölçüsüne uygun sıralamayı gerektirdiği iyi bilinmektedir; bu demektir ki 

21 ττ ≤ , 21 ρρ ≤ , 21 γγ ≤ , 21 ϕϕ ≤ . Üç “C -larger” sıralamada (C ,AΠ=  ve M  için ) 

ara durumlar bulunmaktadır; gerektirmede, konkordant sıralama karşılaştırılabilir 

değilken, “df-larger” sıralama var iken Kendall’ın τ  ‘sunun değerleri üzerinde sıralama 

gerekmektedir (Nelsen vd.. 2001). 
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4. SIRA İSTATİSTİKLERİNİN EŞLENİKLERİ 

 

Tanım 4.1. ( ) ( ) ( )1 1 2 2 n nX ,Y , X ,Y ,..., X ,Y  rasgele vektörü bağımsız ve aynı 

( )F x, y dağılımına sahip n birimlik örneklem olsun. 1 2:n :n n:nX X ... X≤ ≤ ≤  örneklemin 

ilk koordinatı olan X ’ in sıra istatistikleri olmak üzere 1 r n≤ ≤  için r:nX  ile r -inci 
sıra istatistiği gösterilsin. Eğer 

[ ] j j r:nr:nY Y X X   ,  j=1,2,...,n             = ∋ =                                                          (4.1) 

ise  [ ]r:nY ’ ye  r-inci istatistiğinin eşleniği denir  (Nagaraja ve David 1994 , David ve 

Nagaraja 1998). 

Teorem 4.1. ( ) ( ) ( )1 1 2 2 n nX ,Y , X ,Y ,..., X ,Y rasgele vektörü bağımsız ve aynı ( )F x, y  
sürekli dağılımına sahip n  birimlik bir örneklem olmak üzere r -inci sıra istatistiğinin 
eşleniği olan [ ]r:nY ‘ nin dağılım fonksiyonu  

                               
[ ] ( ) ( ) ( )r:nr:nG y F y x f x dx                      

+∞

−∞

= ∫
                     (4.2) 

ve olasılık yoğunluk fonksiyonu  

                                [ ] ( ) ( ) ( )r:nr:ng y f y x  f x dx                   
+∞

−∞

= ∫
                      (4.3) 

dir (Bhattacharya 1984, Balasubramanian ve Beg 1998). 

İspat. r-inci sıra istatistiğinin eşleniği olan [ ]r:nY ’ nin dağılımı, 

[ ]{ } { }{ }n

k k r:nr:n
k 1

P Y y P Y y,X X                    
=

≤ = ≤ =U
                                       (4.4)

 

olsun ve (4.4) eşitliğindeki olaylar ayrık olaylar olduğundan,  

[ ]{ } { } { }
{ }

1 1 2 2r:n r:nr:n

n n r:n

P Y y P Y y,X X P Y y,X X

                          +...+P Y y,X X                     

≤ = ≤ = + ≤ =

≤ =                                (4.5)
 

biçiminde yazılabilir. 
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[ ]{ }
{ }

{ }
1 1 2 1 3 1 1 1 1

2 2 1 2 3 2 2 1 2

1 2 1

r:n

r r n

r r n

n n n n r n r n n

                  P Y y

P Y y,X X ,X X ,...,X X ,X X ,...,X X

   P Y y,X X ,X X ,...,X X ,X X ,...,X X
                          +...+
   +P Y y,X X ,X X ,...,X X ,X X ,...,X X

+

+

−

≤

= ≤ ≥ ≥ ≥ ≤ ≤

+ ≤ ≥ ≥ ≥ ≤ ≤

≤ ≥ ≥ ≥ ≤ ≤{ }1

                                                                                                             
−               (4.6)

 

(4.6) eşitliğinde 
( ) ( )

n n ( r 1) n r n!
r 1 1 n r r 1 ! n r !

− − −⎛ ⎞⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠⎝ ⎠

 tane aynı olasılık 

olduğundan  

                                       [ ]{ } ( ) ( )r:n
n!P Y y

r 1 ! n r !
≤ =

− −
 

          { }1 1 2 1 3 1 1 1 1r r nP Y y,X X ,X X ,...,X X ,X X ,...,X X
                                                                                               

+× ≤ ≥ ≥ ≥ ≤ ≤
             (4.7) 

(4.7) eşitliği yazılabilir ve  

( )P( A ) P A X x dF( x )                      
+∞

−∞
= =∫

                                                      (4.8)
 

Toplam Olasılık teoremine dayalı olarak;  

[ ]{ } { 1r:n
n!P Y y P Y y,

( r 1)!( n r )!

+∞

−∞
≤ = ≤∫

− −
 

}1 2 1 3 1 r 1 r 1 1 n 1X X ,X X ,...,X X ,X X ,...,X X X x dF( x )       +≥ ≥ ≥ ≤ ≤ =             (4.9) 

olur.  (4.9) eşitliğinde 
)(

)()(
BP

BAPBAP ∩
=  Koşullu Olasılık Formülü kullanılırsa, 

                                      
[ ]{ }

)!()!1(
!

: rnr
nyYP nr −−

=≤  

{ }1 2 3 1 1

1

r r nP Y y, X x, X x,..., X x, X x,..., X x, X x
dF( x )            

P( X x )
+

+∞

−∞

≤ ≤ ≤ ≤ ≥ ≥ =
× ∫

=  (4.10)
 

olur. (4.10) eşitliğinde )()()( BPBAPBAP =∩  eşitliği kullanılırsa 
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[ ]{ }

)!()!1(
!

: rnr
nyYP nr −−

=≤  

{ }1 2 3 1 1 1

1

r r nP Y y,X x,X x,...,X x,X x,...,X x X x P( X x )
dF( x )        

P( X x )
+

+∞

−∞

≤ ≤ ≤ ≤ ≥ ≥ = =
× ∫

=      

                                                                                                                                    (4.11)                   

yazılır. nXXX ...,,, 21  rasgele değişkenleri bağımsız olduğundan 

                                
[ ]{ }

)!()!1(
!

: rnr
nyYP nr −−

=≤  

{ } ( ) ( )... ( ) ( )... ( ) ( )1 1 2 3 1       P Y y X x P X x P X x P X x P X x P X x dF xr nr
+∞

≤ = ≤ ≤ ≤ ≥ ≥∫ +−∞
×

  (4.12)
 

ve (4.12) eşitliğinde nXXX ...,,, 21  rasgele değişkenleri aynı ( )F x  dağılımına sahip 

olduğundan 

                             
[ ]{ }

)!()!1(
!

: rnr
nyYP nr −−

=≤  

             
{ }[ ] [ ]1

1 1
r n rP Y y X x F( x ) 1 F( x ) dF( x )           

+∞ − −

−∞
× ≤ = −∫

                    (4.13)
 

                              
[ ]{ } ( ) ( )r:n

n!P Y y
r 1 ! n r !

≤ =
− −

 

               
{ }[ ] [ ]1

1
r n rP Y y X x F( x ) 1 F( x ) dF( x )               

+∞ − −

−∞
× ≤ = −∫

            (4.14)
 

r -inci sıra istatistiğinin dağılım fonksiyonu )(xFr  ve olasılık yoğunluk fonksiyonu 

)(xfr  olmak üzere 

 

[ ] ∫
+∞

∞−
= dxxfxyFyG nrnr )()()( ::  

ve 
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[ ] ∫
+∞

∞−
= dxxfxyfyg nrnr )()()( ::  

olarak bulunur. 

Teorem 4.2. 1 1 2 2 n n( X ,Y ),( X ,Y ),...,( X ,Y )  bağımsız ve aynı ),( yxF  sürekli dağılım 

fonksiyonuna sahip n  birimlik bir örneklem olmak üzere, 1 r s n≤ < ≤  için r -inci ve 

s -inci sıra istatistiklerinin eşlenikleri olan [ ]nrY :  ve [ ]nsY : ’ nin ortak dağılım fonksiyonu 

1 2 1 1 2 2 1 2 1 2

2x

r ,s:nr ,s:nG ( y , y ) F( y x )F( y x ) f ( x ,x )dx dx                  ⎡ ⎤⎣ ⎦ −

+∞

−∞ ∞
= ∫ ∫

              (4.15) 

ve olasılık yoğunluk fonksiyonu 

1 2 1 1 2 2 1 2 1 2

2x

r ,s:nr ,s:ng ( y , y ) f ( y x ) f ( y x ) f ( x ,x )dx dx             ⎡ ⎤⎣ ⎦ −

+∞

−∞ ∞
= ∫ ∫

                   (4.16) 

dir. 

Benzer şekilde, 1 2 k1 r r ... r n, (1 k n )≤ < < < ≤ ≤ ≤  için k  tane sıra istatistiğinin 
eşleniğinin ortak dağılımı ve ortak olasılık yoğunluk fonksiyonu 

                               1 2
1 2

kr ,r ,...,r :nk
G ( y , y ,..., y )⎡ ⎤

⎣ ⎦  

                   
∫ ∫ ∫
∞+

∞− ∞− ∞−

=
kx x

kk xyFxyFxyF
2

)()...()(... 2211

 

                          
1 2 1 21 2 k kr ,r ,...,rk

f ( x ,x ,...,x )dx dx ...dx            ×
                  (4.17)

 

                             [ ] ),...,,( 21:,...,2,1 kyyyg nkrrr  

                  
∫ ∫ ∫
∞+

∞− ∞− ∞−

=
kx x

kk xyfxyfxyf
2

)()...()(... 2211

 

                          
1 2 1 21 2 k kkr ,r ,...,rf ( x ,x ,...,x )dx dx ...dx                   ×

     (4.18) 

ve n  tane eşleniğin ortak dağılımı ve ortak olasılık yoğunluk fonksiyonu ise: 
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                         1 21 2 n, ,...,n:nG ( y , y ,..., y )⎡ ⎤
⎣ ⎦

 

              
∫ ∫ ∫
∞+

∞− ∞− ∞−

=
nx x

nn xyFxyFxyF
2

)()...()(... 2211  

                      1 2 n 1 2 n1,2,...,nf ( x ,x ,...,x )dx dx ...dx            ×
                       (4.19) 

                    [ ] ),...,,( 21:,...,2,1 nyyyg nn  

           
∫ ∫ ∫
∞+

∞− ∞− ∞−

=
nx x

nn xyfxyfxyf
2

)()...()(... 2211  

                        1 2 n 1 2 n1,2,...,nf ( x ,x ,...,x )dx dx ...dx                ×
                 (4.20)

 

olarak elde edilir (Bekçi 2003). 
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5. SIRA İSTATİSTİKLERİ VE EŞLENİKLERİNİN ORTAK DAĞILIMLARINA 
     İKİ DEĞİŞKENLİ OLASILIK İNTEGRAL DÖNÜŞÜMLERİNİN    
     UYGULANMASI 

 

1 1 2 2 n n( X ,Y ),( X ,Y ),...,( X ,Y )  rasgele vektörü bağımsız ve aynı dağılımına sahip n  

birimlik bir örneklem olsun. 1 1 X YH ( x, y ) C ( F ( x ),F ( y ))=  ise aynı marjinallere sahip 

başka bir dağılım fonksiyonu olsun. 1 2:n :n n:nX X ... X≤ ≤ ≤  X ’in sıra istatistikleri olmak 

üzere, 1 r n≤ ≤  için nrX :  ile r -inci sıra istatistiği gösterilsin. 

[ ] njXXYY nrnr jj ,...,2,1,:: ==∋=  olmak üzere [ ]nrY :  r -inci sıra istatistiğinin eşleniği    

olsun. Bölüm boyunca Gebizlioğlu ve Yağcı (2008) ve Altınsoy (2009)’ un 

çalışmalarından yararlanılmıştır. Buna göre; 1H  ve 1C ’ e ait rasgele olayların 

olasılıklarının (olasılık dağılımı) eşitliği aşağıdaki teorem ile gösterilir: 

Teorem 5.1 1 1 2 2 n n(U ,V ),(U ,V ),...,(U ,V )  rasgele vektörü bağımsız ve aynı 2C ( u,v )  

kopulasına sahip rasgele değişkenler olmak üzere:  

( ){ } ( ){ }1 : [ : ] 1 : [ : ], ,r n r n r n r nP H X Y t P C U V t≤ = ≤          (5.1) 

dir. Burada 1 r n≤ ≤  için r:nU , düzgün (0,1) dağılımlı 1 2 nU ,U ,...,U  rasgele 

değişkenlerinin r -inci sıra istatistiğini, j j r:nr:nV V U U , j 1,2,...,n⎡ ⎤⎣ ⎦
= ∋ = =  olmak 

üzere r:nV⎡ ⎤⎣ ⎦
 r -inci sıra istatistiğinin eşleniğini göstermektedir. 

İspat. 3. bölümde anlatıldığı gibi, r:nX  ve [ r:n ]Y ’nin ortak dağılım fonksiyonları 1H  

olmak üzere, 1 2 r:n [ r:n ]H H ( X ,Y )  1 r:n [ r:n ]H ( X ,Y )  rasgele değişkenini göstersin. 

1H ’in dağılım fonksiyonu 2H , yani ( )1 2df H H X ,Y  (kısaca ( )1 2H H  ile 

gösterilsin)  

( ) ( ) ( ){ }( )2

2
1 2 1 2 1r:n [ r:n ] H r:n [ r:n ]H H ( t ) Pr H H X ,Y t x, y R H ( X ,Y ) t , t I .μ= ≤ = ∈ ≤ ∈⎡ ⎤⎣ ⎦            

                          (5.2) 

biçiminde ifade edilir. 
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t I∈  için, 

( ) ( ){ } ( ){ }

( ){ }1

1 2 1 r:n [ r:n ]1 2

X ,Y
x,y : H ( x,y ) t

H H ( t ) P H H X ,Y t P H X ,Y tr:n [ r:n ]
 dF ( x, y )

r:n [ r:n ]≤

= ≤ = ≤

= ∫∫
 

( ){ }

( ) ( )
( ){ }

( ) ( )
( ){ }

( ) ( )
( )

1

1

1

1

r:n

r 1 n r
X X

r 1 n r
X X

r 1 n r
X X 2

x,y :H ( x,y ) t

x,y :H ( x,y ) t

x,y :H ( x,y ) t

x,y :H ( x,y )

f ( y x ) f ( x )dxdy

f ( x, y ) 1 F ( x ) 1 F ( x ) f ( x )dxdy
f ( x ) B( r,n r 1)

1 F ( x ) 1 F ( x ) f ( x, y )dxdy
B( r,n r 1)

1 F ( x ) 1 F ( x ) dH ( x, y )
B( r,n r 1)

− −

− −

− −

≤

≤

≤

≤

= ∫∫

= −∫∫
− +

= −∫∫
− +

= −
− + { }

( ) ( ) ( )
( ) ( ){ }

{ }

( ) ( ) ( )
( ) ( ){ }

1

1

r 1 n r
X X 2 X Y

X Y

r 1 n r
2

F ( x ),F ( y )X Y

u,v

t

x,y :C t

x,y :C t

1 F ( x ) 1 F ( x ) dC F ( x ),F ( y )
B( r,n r 1)

F ( x ) u, F ( y ) v
1 u 1 u dC u,v .

B( r,n r 1)

− −

− −

≤

≤

∫∫

= −∫∫
− +

= = =

= −∫∫
− +

 

O zaman, ( ) ( )1 2 1 2H H C C=  olur. 

Burada ( )XF x  iX , i 1,2,...,n=  rasgele değişkenlerinin dağılım fonksiyonunu, ( )YF y  

, 1, 2,...,iY i n=  rasgele değişkenlerinin dağılım fonksiyonunu göstermektedir (Altınsoy 

2009). 

5.1 İki Değişkenli Olasılık İntegral Dönüşümleri için Örnekler 

 

Bu bölümde yazımda kolaylığın sağlanması için; :r nU  yerine U , [ ]:r nV  yerine V  

kullanılmıştır. ( )rU t  ile 
t

r 1 n r
r

0

1U ( t ) u (1 u ) du
B( r,n r 1)

− −= −∫
− +

 gösterilecektir.  

Örnek 5.1 ( )1 ,C M u v= , ( )2C u,vΠ=  ve t I∈  için ( ) )(21 tCC  hesaplamaları: 
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( ) ( ){ }( )
( ){ }( )

{ } { }
{ }

( )

2

2

2 2

2

2
1 2 C 1

2
C

C C

C

1 1 r 1 n r
t t

r

r

u,v I (U ,V ) t

u,v I min(U ,V ) t

C C ( t ) C

P min(U ,V ) t 1 P min(U ,V ) t

1 P U t,V t

11 u (1 u ) dudv
B( r,n r 1)

1 (1 t ) 1 U ( t )
t (1 t )U ( t ).

μ

μ

− −

∈ ≤

∈ ≤

=

=

= ≤ = − >

= − > >

= − −∫ ∫
− +

= − − −

= + −

 

(Altınsoy  2009) 

Örnek 5.2 ( )1C u,vΠ=  ve 2C ( u,v )Π=  için ( ) )(21 tCC  değerlerinin hesaplanması: 

( ) ( ){ }( )
( ){ }( )

{ }
( ){ }2

2
1 2 1

2

2

2

2 I

C C ( t ) u,v I C (U ,V ) tC

u,v I UV tC
1 r 1 n rP UV t u (1 u ) dudvC B( r,n r 1) u,v uv t

μ

μ

= ∈ ≤

= ∈ ≤

− −= ≤ = −∫∫
− + ∈ ≤

 

olacaktır. UV X=  denilerek aşağıdaki iki değişkenli dönüşüm yapılır: 

2

0 1 1det .
1

UV X U Y
J

U Y V X Y y x y y
= =⎫ ⎫

⇒ ⇒ = =⎬ ⎬= = −⎭ ⎭
 

Yeni rasgele değişkenler X  ve Y ’ nin ortak olasılık yoğunluk fonksiyonları: 

 

r 2 n r
X ,Y

1f ( x, y ) y (1 y ) , 0 x y 1
B( r,n r 1)

− −= − < < <
− +

 

 

olacaktır. X ’in marjinal olasılık yoğunluk fonksiyonu (UV X= ’in dağılımı 

araştırıldığı için) 

[ ]X r 1
nf ( x ) 1 U ( x )

r 1 −= −
−
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olarak bulunur. Bu durumda problem ( ) { }1 2 ( )C C t P X t= ≤  olasılığını hesaplamaya 

dönüşecektir. Olasılık, gerekli integral hesaplamaları yapıldığında 

( ) [ ]
t t

1 2 X r 1
0 0

r 1 r

nC C ( t ) f ( x )dx 1 U ( x ) dx
r 1

n r 1t U ( t ) U ( t )
r 1 n

−

−

= = −∫ ∫
−

−⎡ ⎤= − +⎢ ⎥−⎣ ⎦

 

(Altınsoy 2009) 

 

Burada:  

t
r 2 n r

r 1
0

1U ( t ) u (1 u ) du
B( r 1,n r 1)

− −
− = −∫

− − +
 

ve 

t
r 1 n r

r

0

1U ( t ) u (1 u ) du
B( r,n r 1)

− −= −∫
− +

 

dır. 

Örnek 5.3 ( )1C W u,v= ve ( )2C u,vΠ=  için ( ) )(21 tCC  değerleri hesaplamaları: 

( ) ( ){ }( ) ( ){ }( )
{ }

2 2
1 2 1

2 2

2

C C ( t ) u,v I C (U ,V ) t u,v I max(U V 1,0 ) tC C
P U V t 1C

μ μ= ∈ ≤ = ∈ + − ≤

= + ≤ +

dır. 

U V 1 0 U V 1+ − ≤ ⇒ + ≤  olacağından 1 2U V Y U Y+ = =  denilerek iki değişkenli 

dönüşüm yapılır:   

1 2

2 1 2

0 1
1

1 1
U V Y U Y

det J .
U Y V Y Y
+ = =⎫ ⎫

⇒ ⇒ = =⎬ ⎬= = − −⎭ ⎭
 

Burada 1Y  ve 2Y  rasgele değişkenlerinin değer aldığı küme aşağıdaki gibidir:    

 

{ } { }1 2 1 2 1 1 2 1 1 21 2
0 1 0 1 2 1 1( )Y ,YD ( y , y ) : y , y y ( y , y ) : y , y y= ≤ < < < ∪ < ≤ − < < . 
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1Y  ve 2Y ’nin ortak olasılık yoğunluk fonksiyonları aşağıdaki gibidir: 

r 1 n r
1 2 2 2

1
f ( y , y ) y ( 1 y )

B( r ,n r 1 )
− −= −

− +
. 

1Y ’in olasılık yoğunluk fonksiyonu: 

 

dir. ( )1 2 1C C ( t ) P(Y t 1)= ≤ +  olasılığı çözümlediğinde dağılım fonksiyonu aşağıdaki 

gibi elde edilir:  

( ) [ ] [ ]1 2 r r 1
rC C ( t ) 1 t 1 U ( t ) 1 U ( t ) .

n 1 += + − − −
+

 

Burada: 

t
r 1 n r

r
0

1
U ( t ) u ( 1 u ) du

B( r ,n r 1)
− −= −∫

− +
, ( ) ( )

( , )

t
r n r

r 1
0

1
U t u 1 u du

B r 1 n r 1
−

+ = −∫
+ − +

 

dır (Altınsoy 2009). 

5.2 Yeni Genelleştirilmiş Sarmanov Dağılımlar Ailesi için Örnekler 

 

Bağımlı rasgele değişkenlerin olasılık dağılımlarının modellenmesinde kullanılan çok 

değişkenli dağışımlardan birisi olan Sarmanov dağılımlar ailesi literatürde ilk kez 

Sarmanov (1966) tarafından incelenmiştir. Sarmanov dağılımlar ailesinin 

genelleştirilmesinde ortaya çıkan dağılım fonksiyonlarının basit bir yapıya sahip olması, 

bu dağılımların bağımlılık yapılarını saptamakta ve korelasyon katsayısını hesaplamakta 

kolaylık sağlamaktadır.  

Geçmiş yıllara bakıldığında Altınsoy (2009) tarafından Farlie Gumbel Morgenstern 

(FGM) kopulaları için yapılan örnekler bu bölümde yeni genelleştirilmiş Sarmanov 

dağılımlar ailesi için uygulanacaktır. Tezin özgün kısmı yeni genelleştirilmiş Sarmanov 

dağılımlar ailesi için uygulanacak örneklerden oluşacaktır. 

r

rY 11
1

0 , d.y.

U ( y ) , 0 y 11 1
f ( y ) U ( y ) , 1 y1 1 2

⎧
⎪

−⎨
⎪
⎩

≤
= ≤

<
<
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Bu bölümde 2C , Sarmanov kopulası olarak alınacaktır. Bu durumda 2C  kopulası 

( )2
1( , ) 1                    0 , 1 ; 0

1
q q q qC u v u v q u v u v q

q
= + − + − ≤ ≤ >

+
 

ve 2 ( , )dC u v  

( )2
1( , ) 1 1

1
q q q qdC u v u v q u v

q
α

⎧ ⎫
= + + − + −⎨ ⎬+⎩ ⎭

 

dir. Burada, α  Sarmanov dağılımında yer alan bağımlılık parametresidir. α  değeri 

arttıkça bağımlı iki değişken için bağımlılık derecesi artmaktadır. 

 

Örnek 5.4 1( , ) ( , ) min( , )C u v M u v u v= =  olduğunda: 

( ) { } { }( ) min( , ) 1 min( , )1 2 = ≤ = − ≥C C t P U V t P U V t  

{ }

( )

( )

1 1
r 1 n r q q q q

t t

1 1
r 1 n r

t t

1 1
r 1 n r q q q q

t t

1 P U t,V t

1 11 u (1 u ) 1 u v q 1 u v dudv
B( r,n r 1) q 1

u (1 u ) dudv
11

1B( r,n r 1) u (1 u ) u v q 1 u v dudv
q 1

α

α

− −

− −

− −

= − > >

⎧ ⎫⎡ ⎤
= − − + + − + −∫ ∫ ⎨ ⎬⎢ ⎥− + +⎣ ⎦⎩ ⎭

⎧ ⎫− +∫ ∫⎪ ⎪⎪ ⎪= − ⎨ ⎬⎡ ⎤− + ⎪ ⎪+ − + − + −∫ ∫ ⎢ ⎥⎪ ⎪+⎣ ⎦⎩ ⎭
 

ve gerekli integral işlemleri yapıldığında ( )1 2C C ( t ) , t I∈  için aşağıdaki gibi elde 

edilir: 

( ) ( ) ( )
( ) ( ) ( )
n! r q 1 !q qC C ( t ) 1 1 t 1 1 t 1 U t t 1 t 1 U t1 2 r r qq 1 r 1 ! n q !

α α
⎧ ⎫⎡ ⎤ + −⎛ ⎞⎪ ⎪⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − − − − − − − −⎜ ⎟ ⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦ ++ − +⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 

Burada 



30 

 

t
r 1 n r

r
0

t
r q 1 n r

r q
0

1
U ( t ) u ( 1 u ) du

B( r ,n r 1)
1

U ( t ) u ( 1 u ) du
B( r q,n r 1)

− −

+ − −
+

= −∫
− +

= −∫
+ − +

 

dır. 

 

Örnek 5.5 1( , ) ( , ) max( 1,0)C u v W u v u v= = + −  olduğunda: 

( ) { }

( ){ }{ }

( ) max( 1, 0)1 2

1 11(1 ) 1 1
1( , 1) ( , ):max( 1,0)

( 1)

C C t P U V t

r n r q q q qu u u v q u v dudv
qB r n r u v u v t

P U V t

α

= + − ≤

⎡ ⎤− −= − + + − + −∫∫ ⎢ ⎥
+⎣ ⎦− + + − ≤

= + ≤ +

 

 dir. 1 0 1U V U V+ − ≤ ⇒ + ≤  olacağından 1 2U V Y U Y+ = =  denilerek iki değişkenli 

dönüşüm yapılır:   

 

1 2

2 1 2

0 1
det 1.

1 1
U V Y U Y

J
U Y V Y Y
+ = =⎫ ⎫

⇒ ⇒ = =⎬ ⎬= = − −⎭ ⎭
 

 

Burada 1Y  ve 2Y  rasgele değişkenlerinin değer aldığı küme aşağıdaki gibidir:    

{ } { }1 2 1 2 1 1 2 1 1 2( ),1 2
( , ) :0 1,0 ( , ) : 1 2, 1 1Y YD y y y y y y y y y y= ≤ < < < ∪ < ≤ − < < . 

1Y  ve 2Y ’nin ortak olasılık yoğunluk fonksiyonları aşağıdaki gibidir: 

( ) ( ) ( )r 1 n r q qq q
1 2 1 22 21 2 2 2

1 1f ( y , y ) y ( 1 y ) 1 y y y q 1 y y y
q 1B( r ,n r 1 )

α− − ⎧ ⎫⎪ ⎪⎡ ⎤
= − + + − − + − −⎨ ⎬⎢ ⎥+⎪ ⎪⎣ ⎦− + ⎩ ⎭

. 

 

1Y ’in olasılık yoğunluk fonksiyonu: 
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( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
1

r 1 r q 1

q
q kk

1 r q k 1
k 0

q
q kk

1 r 2q k 1 1
k 0

Y 1 r 1

n! r q 1 !
1 U y U y

q 1 r 1 ! n q !

q n! r q k 1 !
+ y 1 U y

k r 1 ! n q k !

q n! r 2q k 1 !
q 1 y 1 U y                0 y 1

k r 1 ! n 2q k !

f y 1 1 U y 1
q 1

α α

α

α

α

+

−
+ −

=

−
+ −

=

⎧ + −⎡ ⎤
− +⎨⎢ ⎥+ − +⎣ ⎦⎩

+ − −⎛ ⎞
−⎜ ⎟ − + −⎝ ⎠

+ − −⎛ ⎞
− + − ≤ <⎜ ⎟ − + −⎝ ⎠

⎡ ⎤
= − − −⎡⎢ ⎥ ⎣+⎣ ⎦

∑

∑

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

r q 1

q
q kk

1 r q k 1 1
k 0

n! r q 1 !
1 U y 1

r 1 ! n q !

q n! r q k 1 !
+ y 1 1 U y 1                1 y 2

k r 1 ! n q k !

0                                                                                     

α

α

+

−
+ −

=

+ −
⎡ ⎤+ − −⎤⎦ ⎣ ⎦− +

+ − −⎛ ⎞
⎡ ⎤− − − ≤ <⎜ ⎟ ⎣ ⎦− + −⎝ ⎠

∑

                     d.y.

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

 

dir. ( )1 2 1C C ( t ) P(Y t 1)= ≤ +  olasılığı çözümlediğinde dağılım fonksiyonu şu şekilde 

elde edilir:  



32 

 

( )( ) ( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

1 2 1

1

 1 1 1
1 1 1 1

! 1 ! ! 1 !
                   

1 ! ! 1 ! !

! 1 !
                    

1 ! !

                     +

r r

r q

r q

k

rC C t t tU t U t
q q q n

n r q n r q
t tU t

r n q r n q

n r q
tU t

r n q

q
k

α α α

α α

α

α

+

+

+ +

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − − + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ − + −
+ −

− + − +

+ −
−

− +

⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

1

0

1

0

0

! 1 ! 1 1
1

1 ! ! 1

! 1 ! 1
                    1

1 ! ! 1

1 1 !! 1                     + 1
  z1 ! 1

kq
q k

kq
q k

r q k
k

q
q k

k

n r q k t
r n q k k

q n r q k t
U t

k r n q k k

q k r q z kn
k r k n q

α

α

+
−

+
−

+ −
=

−

=

⎡ ⎤+ − − + −
− ⎢ ⎥

− + − +⎢ ⎥⎣ ⎦

+ − − +⎛ ⎞
− −⎜ ⎟ − + − +⎝ ⎠

+ + + − −⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟− + + +⎝ ⎠ ⎝ ⎠

∑

∑

∑ ( ) ( )

( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( ) ( )

1

0

1

0

1

2
0

!

! 2 1 ! 1 1
                     1 1

1 ! 2 ! 1

! 2 1 ! 1
                     + 1 1

1 ! 2 ! 1

            

k

r q z k
z

kq
q k

k

kq
q k

r q k
k

U t
z k

q n r q k t
q

k r n q k k

q n r q k t
q U t

k r n q k k

α

α

+

+ + −
=

+
−

=

+
−

+ −
=

−

⎡ ⎤+ − − + −⎛ ⎞
− + − ⎢ ⎥⎜ ⎟ − + − +⎝ ⎠ ⎢ ⎥⎣ ⎦

+ − − +⎛ ⎞
+ −⎜ ⎟ − + − +⎝ ⎠

∑

∑

∑

( ) ( ) ( )
( )

( ) ( )
1

2
0 0

1 2 1 !! 1         + 1 1
  z1 ! 1 2 !

q k
q k

r q z k
k z

q k r q z knq U t
k r k n q z k

α
+

−
+ + −

= =

+ + + − −⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟− + + + −⎝ ⎠ ⎝ ⎠

∑ ∑

 

Burada  

t
n r

r
0

t
n r

r 1
0

t
n r

r q
0

t
r q 2 n r

r q 1
0

1 r 1U ( t ) u ( 1 u ) du
B( r ,n r 1)

1 rU ( t ) u ( 1 u ) du
B( r 1,n r 1)

1 r q 1U ( t ) u ( 1 u ) du
B( r q,n r 1)

1
U ( t ) u ( 1 u ) du

B( r q 1,n r 1)

−

−
+

−
+

+ + −
+ +

−= −∫
− +

= −∫
+ − +

+ −= −∫
+ − +

= −∫
+ + − +
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( ) ( ) ( )
t

n rr q k 1
r q k

0

1U t u 1 u du
B r q k ,n r 1

−+ − −
+ − = −

+ − − + ∫  

( ) ( ) ( )
t

n rr q z k 1
r q z k

0

1U t u 1 u du
B r q z k ,n r 1

−+ + − −
+ + − = −

+ + − − + ∫  

( ) ( ) ( )
t

n rr 2q k 1
r 2q k

0

1U t u 1 u du
B r 2q k ,n r 1

−+ − −
+ − = −

+ − − + ∫  

( ) ( ) ( )
t

n rr 2q z k 1
r 2q z k

0

1U t u 1 u du
B r 2q z k ,n r 1

−+ + − −
+ + − = −

+ + − − + ∫  

dır. 

Örnek 5.6 1C ( u,v ) ( u,v ) uvΠ= =  olduğunda: 

 

( ) { }

{ }

1 2

r 1 n r q q q q

( u ,v ):uv t

C C ( t ) P UV t

1
u (1 u ) dudv

B( r,n r 1)
1{1 [u v ( q 1)u v ]}

q 1
α− −

≤

= ≤

= −∫∫
− +

+ + − + −
+

   

olacaktır. UV X=  denilerek aşağıdaki iki değişkenli dönüşüm yapılır: 

 
21 1det .

0 1
UV X U X Y y x y

J
V Y V Y y

= = −⎫ ⎫
⇒ ⇒ = =⎬ ⎬= =⎭ ⎭

 

Yeni rasgele değişkenler X  ve Y ’ nin ortak olasılık yoğunluk fonksiyonu: 

 

( )
r 1 n r q

q q
X ,Y

n r q
r 1 r q q

1 x x x 1 1f ( x, y ) 1 1 y q 1 x
B( r,n r 1) y y y q 1 y

1 x x 1x y 1 1 [ y ( q 1)x ] ,
B( r,n r 1) y y q 1

                                            

α

α

− −

−

− −

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= − + + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟− + +⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

                                                                                                       
                                                                                                                       0 x y 1< < <
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olacaktır. X ’in marjinal olasılık yoğunluk fonksiyonu (UV X= ’in dağılımı 

araştırıldığı için) 

( ) { }1 2 X
0

r 2
n r 1 j n r 1

j 00

t

t

C C (t ) P X t f ( x )dx

1 ( r 2)! (n j r )! ( r q 2)!(1 x ) x (1 x )     
B( r,n r 1) (n 1)! j! ( n q 1)!

                                                 

                                     

α
−

− + − +

=

= ≤ =

⎧ − + − + −
= − + −⎨− + − + −⎩

∫

∑∫

r q 2 r q 2
j n r 1 q j

j 0 j 0

r 2
n r 1 q j

j 0

( n j r )! ( r q 2)! (n j r )!         x (1 x ) x
j! ( n q 1)! j!

( r 2)! ( n j r )!                                                   ( q 1) (1 x ) x
(n 1)! j!

                  

α

α

+ − + −
− + +

= =

−
− + +

=

+ − + − + −
+ −

+ −

− + −
− + −

−

∑ ∑

∑

r 2
n r 1 j

j 0

( r 2)! ( n j r )!                                 (1 x ) x }dx
q 1 ( n 1)! j!
α −

− +

=

− + −
− −

+ − ∑

sonuç olarak 

( ) ( )
( ) ( ) ( )( ) ( )

( )

( )

r 2

1 2 j
j 0

r q 2

j
j 0

r q 2

j q
j 0

r 2 !1 1C C (t ) 1 n r 1 ! U t
B( r,n r 1) n 1 ! q 1 n j r 1 n j r 2

( r q 2 )! 1( n r 1)! U t
( n q 1)! ( n j r 1)( n j r 2 )

( r q 2 )! ( n j r )!( j q )!( n r 1)! U t
( n q 1)! j!( n j q r 2 )!

α

α

α

−

=

+ −

=

− −

+
=

⎧ − ⎡ ⎤⎪= − − +⎨ ⎢ ⎥− + − + + − + + − +⎪ ⎣ ⎦⎩

+ −
+ − +

+ − + − + + − +

− − + − +
+ − +

− − + + − +

∑

∑

∑

( )
r 2

j q
j 0

( r 2 )! ( n j r )!( j q )!( q 1) ( n r 1)! U t
( n 1)! j!( n j q r 2 )!

α
−

+
=

− + − +
− + − +

− + + − +∑

elde edilir. Burada 
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       ( )
( )

!
( ) ( )

! !

t
j n r 1

j
0

n j r 2
U t u 1 u du

j n r 1
− ++ − +

= −∫
− +

 

 

( )
( ) ( )

j q n r 1
j q

tn j q r 2 !
U ( t ) u (1 u ) du

j q ! n r 1 ! 0
+ − +

+

+ + − +
= −∫

+ − +
 

dır. 

Burada gösterilen örnekler, bir bağımlılık parametresi taşıyan Sarmanov kopulası için 

minumum-maksimum, maksimum (+,0) ve çarpım durumlarında ( ) )(21 tCC  ile 

hesaplanan olasılık değerlerini vermektedir. İleriki çalışmalarda geliştirilecek olan 

programlar yardımıyla çeşitli (n,r,q,α ) değerleri için yeni genelleştirilmiş Sarmanov 

kopulalarının (dağılımlarının) davranışları, bağımlılık yapılarının  değerlendirilmesi 

bakımından özgün ve önemli bir sonuç oluşturacaktır. 
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6. İKİ DEĞİŞKENLİ OLASILIK İNTEGRAL DÖNÜŞÜMÜ KULLANARAK 
    DAĞILIMDAN BAĞIMSIZ KİTLE KUANTİLLERİ İÇİN GÜVEN 
    ARALIKLARININ İFADE EDİLİŞİ 
 

Bu bölümde Gebizlioğlu ve Yağcı (2008) tarafından ortaya konulan sonuçlardan 
yararlanılarak ve tıpkı alıntılarda bulunarak tez konuma ilişkin açıklamalar yapılmıştır. 

6.1 Tolerans Limitleri ve Aralıkları  

 

Tolerans katsayısı γ  ile bir sürekli dağılım için tolerans aralığı rasgele bir aralıktır ve 

olasılık aralık limitleri arasında bir bölgedir (Gibbons 1971 ve Zacks 1970).  

Bir tolerans aralığı; X , ( )XF x  dağılım fonksiyonlu sürekli bir rasgele değişken ise 

olasılık integral dönüşümü ile, : :( )s n X s nU F X=  ve : :( )r n X r nU F X=  olmak üzere 

( )[ ] γ=≥− pUUP nrns
~

::  şeklinde ifade edilebilir. Bir başka deyişle; γ   olasılık 

düzeyinde ve tolerans sınırları 1L  ve 2L  için p~  atanmış değer bağlamında  tolerans 

aralıkları   

              γ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≥∫

2

1

~)(
L

L

pdxxfP                         (6.1) 

biçiminde ifade edilir. Bu aralık dağılımdan bağımsızdır. Burada 

1 1 1 2 2 2 1 2( , ,..., ) ( , ,..., )n nL l X X X L l X X X= < =  (.)F   dağılımına sahip 1 2, ,..., nX X X  

rasgele örnekleminden elde edilen iki istatistik olup, 2 1( ) ( )F L F L− ’ in dağılımı (.)F ’ 

dan bağımsızdır. 2 1( ) ( )F L F L−  rasgele değeri, 1L  ve 2L  arasında (.)f ’ nin altında 

halen alanı temsil etmektedir.  

Öncelikle tek değişkenli bir durum ele alınsın: 1 2, ,..., nX X X  ( )F x   dağılımından 
alınmış rasgele bir örneklem ve 1 2, ,..., nU U U  ise (0,1)  aralığındaki Düzgün dağılımdan 

alınmış rasgele bir örneklem olsun. nnnn XXX :::2:1 ...≤≤≤  ve nnnn UUU :::2:1 ...≤≤≤  
sırasıyla 1 2, ,..., nX X X  ile 1 2, ,..., nU U U  rasgele değişkenlerinin sıra istatistiklerini 
göstersin. 
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( )F X U=  ( ( )F x   sürekli bir rasgele değişkenin dağılım fonksiyonu) olasılık-integral 
dönüşümü biçiminde 

: :( )
D

i n i nF X U= , 1, 2,...,ı n=  

olacaktır.  

Yukarıdaki bilgiler ışığında 1L  ve 2L ’ nin sıra istatistikleri seçilmesiyle, genel anlamda 
tolerans aralığı aşağıdaki gibi yazılabilir: 

( ) γ=≥− pLFLFP ~)()( 12 . 

 

6.2 Kuantiller ve Güven Aralıkları  

 

F  sürekli bir rasgele değişkenin dağılım fonksiyonu ve 
1 1( ) , ( ), ( ( ))p pF x p x F p F F p p− −= = =  olmak üzere, 

 
1

: :

:

:

( ) ( ( ))

( ( ) )
( )

pi n i n

i n

i n

P X x P X F p

P F X p
P U p

−≤ = ≤

= ≤

= ≤

 

dır.  

 

Bu durumda kitle kuantilleri için güven aralığı aşağıdaki gibi ifade edilir: 

 

1

1 1

: : : :

: :

: :

( ) ( ( ) )

( ( )) ( ( ))
( ) ( )

pr n s n r n s n

r n s n

r n s n

P X x X P X F p X

P X F p P X F p
P U p P U p

−

− −

≤ ≤ = ≤ ≤

= ≤ − ≤

= ≤ − ≤

 

İki değişkenli olasılık integral dönüşümünü kullanarak kitle kuantilleri için güven 

aralığı ifade etmek mümkündür: 

 ),(),...,,(),,( 2211 nn YXYXYX  ( )2 2( , ) ( ), ( )H x y C F x G y=  ortak dağılım 

fonksiyonundan alınmış iki değişkenli risk rasgele değişkenlerinin rasgele bir örneklemi 

olsun. 1( , )H x y , sırasıyla X  ve Y  için ( )F x  ve ( )G y  aynı marjinal dağılımlı başka bir 
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dağılım fonksiyonu olsun. nnnn XXX :::2:1 ...≤≤≤ , X  için sıra istatistikleri ve 

[ ] njXXYY nrnr jj ,...,2,1,:: ==∋=  olmak üzere, [ ]:r nY  :r nX , nr ≤≤1  sıra 

istatistiğinin eşleniği olsun. Ayrıca; ( )pF x p=  ve ( )pG y p=  olmak üzere, px  ve py  

ile sırasıyla ( )F x  ve ( )G y ’ nin p -inci sıra kuantillerini göstersin. ),( ]:[:1 nrnr YXH  ve 

),( ]:[:1 nsns YXH  niceliklerinin ),( ]:[:1 nrnr YXH < ),( ]:[:1 nsns YXH  olduğu durumlar göz 

önüne alınsın. 

Bu durumda, iki değişkenli integral dönüşümü yardımıyla,  

( ) ( ) ( ){ }, , ,: :1 [ : ] 1 1 [ : ]2
P H X Y H x y H X Yr n p p s nH r n s n< <  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 ,2( , 1) 2, , ( )1 1

1 1 1 ,2( , 1) 2, , ( )1 1

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

−−= −∫∫
− + ∈ ≤

−−− −∫∫
− + ∈ ≤

n rr u dC u v
B r n r u v I C u v p

n ssu u dC u v
B s n s u v I C u v p

u
δ

δ

 

( , ) ( , )

( , , , )
p pr n r s n s

r s n pπ

= Λ − − Λ −

=
           (6.2) 

                

ifadesi elde edilebilir. Burada ( )1 pδ , 1C ’ in köşegenidir; yani ( ) ( , )1 1p C p pδ = ’ dir. 

(6.2) eşitliği ile verilen ( , , , )r s n pπ  kitle kuantili için güven aralığı olarak ifade 
edilebilir. 

Gerçekten de, (6.2) eşitliği ayrıntılı olarak incelenirse,  

( ) ( ) ( ){ }: [ : ] : [ : ], , ,1 r n r n 1 p p 1 s n s n2
P H X Y H x y H X YH < <  

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

, , , ,[ ] [ ]( ) ( )

, , , ,[ ] [ ]( ) ( )

, , , ,[ ] [ ]( ) ( )

1 1 1 12 2

1 1 12 2

1 1 12 2

P H x y H X Y P H x y H X Yp p p pH Hs rs r

1 P H X Y H x y 1 P H X Y H x yp p p pH Hs 1 rs r

P H X Y H x y P H X Y H x yp p p pH Hr 1 sr s

= < − <

= − ≤ − − ≤

= ≤ − ≤

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦  
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( ) ( )
( ) ( ){ }

( ) ( )
( ) ( ){ }

( ) ( ) ( , )
( , ) , : ( , ) ,

( ) ( ) ( , )
( , ) , : ( , ) ,

r 1 n r
2

1 1

s 1
2

1 1

1
F x 1 F x dH x y

B r n r 1 x y H x y H x yp p

1 n s
F x 1 F x dH x y

B s n s 1 x y H x y H x yp p

− −

−

= −∫∫
− + ≤

−
− −∫∫

− + ≤

              (6.3) 

( , ) ( ( ), ( ))1 1H x y C F x G y=  

( )( , ) ( ), ( )2 2H x y C F x G y=  

( , ) ( ( ), ( )) ( , ) ( )1 1 1 1p p p pH x y C F x G y C p p pδ= = =  

( )F X U=  ve ( )G Y V=  

olmak üzere  

( ) ( ) ( ){ }, , ,: :[ : ] [ : ]1 1 12
P H X Y H x y H X Yr n p p s nH r n s n< <  

( ) ( )
( ) ( )

,
( , ) , , ( )

n rr 1
2

2
1 1

1
1 u dC u v

B r n r 1 u v I C u v p
u

δ

−−

⎧ ⎫
⎨ ⎬
⎩ ⎭

= −∫∫
− + ∈ ≤

           

( ) ( )
( ) ( )

,
( , ) , , ( )

n ss 1
2

2
1 1

1
u 1 u dC u v

B s n s 1 u v I C u v pδ

−−

⎧ ⎫
⎨ ⎬
⎩ ⎭

− −∫∫
− + ∈ ≤

 

( , ) ( , )

( , , , ).
p pr n r s n s

r s n pπ

= Λ − − Λ −

=
                                                                     (6.4) 

                                                                            

eşitliğine ulaşılır ki, burada ( , , , )r s n pπ niceliğinin 1H , 2H , F  ve G ’den bağımsız 
olduğu görülmektedir. Burada bulunan ( , , , )r s n pπ  nicelik ifadesi, γ  olasılık düzeyinde 
tolerans aralığı için esas olan ifadedir ve çeşitli p~  değerleri için ilgili dağılımlardan 
bağımsız olarak elde edilebilir (Gebizlioglu ve Yagci 2008) .   
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6.3 Yeni Genelleştirilmiş Sarmanov Dağılımlar Ailesi İçin  Örnekler 

Bağımlı risklerin dağılımları, α  bağımlılık parametreleri içerdiğinden dolayı 

bağımlılığın değerlendirilmesi için hem teorik hem de uygulama kolaylığı önemine 

sahiptir. FGM dağılımları için bağımlılık özellikleri, değişkenler arası ilişkinin bir 

ölçüsü olarak korelasyon katsayısı ile yakından ilgilidir (Denuit et. al. 1999, Bairamov 

ve Kotz 2002, Bairamov, Kotz ve Bekci 2001, Bairamov, Kotz ve Gebizlioglu 2001, 

Tank ve Gebizlioglu 2004 ve Tank et. al. 2006). Yeni genelleştilmiş bazı sarmanov 

dağılımlar aileleri de aynı klasik FGM dağılımlarında olduğu gibi basit bir analitik 

yapıya sahiptir. Bağımlılık yapıları kolayca incelenebilmekte ve FGM dağılımlar 

ailesinde olduğu gibi değişkenler arası ölçüsü korelasyon katsayısı ile yakından ilgilidir 

(Yağcı 2002). Bundan dolayı,  örnekler yeni genelleştirilmiş sarmanov dağılımlar ailesi 

durumu için gösterilecektir.  

2C  kopulası Sarmanov kopulası olarak aşağıdaki gibi alınacaktır: 

( , ) ( )q q q q
2

1C u v u v q 1 u v
q 1

= + − + −
+

                                                    (6.5) 

ve 2( , )dC u v  ifadesi de şudur: 

2
1( , ) 1 { ( 1) } .

1
q q q qdC u v u v q u v dudv

q
α= + + − + −

+
                               (6.6) 

Örnek 6.1 1( , ) ( , ) min( , )C u v M u v u v= =  olsun. 1C  için (6.5)’ te ifade edilen olasılık 

aşağıdaki gibi elde edilir:  

 
( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

( )
( )

min ! !!( , , , , )
! ! !

                          

                             

!                          
!

q

q 1

s r

s q 1 r q 1nr s n q p p p 1
n q s 1 r 1

1 p11 p 1 U p U p
q 1 q 1

s q 1np
n q

π α

α

α

+

⎡ ⎤+ − + −⎡ ⎤= − −⎢ ⎥⎣ ⎦ + − −⎣ ⎦
⎡ ⎤−⎛ ⎞
⎢ ⎥+ − − − −⎡ ⎤⎜ ⎟ ⎣ ⎦+ +⎢ ⎥⎝ ⎠⎣ ⎦

+ −
+

+ ( ) ( ) ( )
( ) ( )! !

! !s q r q

r q 1
U p U p

s 1 r 1+ +

⎡ ⎤+ −
−⎢ ⎥− −⎣ ⎦
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Burada, ,j r s=  için 

( ) ( )
( , )

p
j 1 n j

j
0

1U p u 1 u du
B j n j 1

− −= −∫
− +

 

ve 

 

( ) ( )
( , )

p
j q 1 n j

j q
0

1U p u 1 u du
B j q n j 1

+ − −
+ = −∫

+ − +
 

dır. 

Örnek 6.2 Eğer ( , ) ( , ) max( , )1C u v W u v u v 1 0= = + −  alınırsa, 1 2p <  için: 

max ( , , , , )r s n q pπ =  

( ) ( )( )
( )

( )
( )

( )

( ) ( ) ( )( )
( )

( )
( )

( )

! !!
! ! !

! !!
! ! !

q
q k

k 0

q
q k

k 0

q s q k 1 r q k 1n1
k k 1 n q k s 1 r 1

q s 2q k 1 r 2q k 1nq 1 1
k k 1 n 2q k s 1 r 1

α

α

−

=

−

=

⎛ ⎞+ − − + − −⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟+ + − − −⎝ ⎠ ⎝ ⎠

⎛ ⎞+ − − + − −⎛ ⎞
− + − −⎜ ⎟⎜ ⎟ ⎜ ⎟+ + − − −⎝ ⎠ ⎝ ⎠

∑

∑
 

   

ve 1 2p ≥  için:   
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max ( , , , , )r s n q pπ =

( ) ( )( )
( )

( )
( )

( )

( ) ( ) ( )( )
( )

( )
( )

( )

( ) [ ] ( )
( )

( )
( )

( ) ( )

! !!
! ! !

! !!
! ! !

! !!
! ! !

!
!

q
q k

k 0

q
q k

k 0

q k

q s q k 1 r q k 1n1
k k 1 n q k s 1 r 1

q s 2q k 1 r 2q k 1nq 1 1
k k 1 n 2q k s 1 r 1

s q 1 r q 1n 2 p 1
n q s 1 r 1

q s q kn1
k n q k

α

α

α

α

−

=

−

=

−

⎛ ⎞+ − − + − −⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟+ + − − −⎝ ⎠ ⎝ ⎠

⎛ ⎞+ − − + − −⎛ ⎞
− + − −⎜ ⎟⎜ ⎟ ⎜ ⎟+ + − − −⎝ ⎠ ⎝ ⎠

⎡ ⎤+ − + −
− − −⎢ ⎥+ − −⎣ ⎦

+ −⎛ ⎞
+ −⎜ ⎟ + −⎝ ⎠

∑

∑

( )
( )

( )
( )

( )

( ) ( ) ( )
( )

( )
( )

( )
( )

[ ] ( ) ( )

( ) ( )

( ) [ ]

! !   
! !

! !   !
! ! !

!
!

k 1q

k 0

k 1q
q k

k 0

s r

s r

1 r q k 1 2 p
s 1 r 1 k 1

q s 2q k 1 r 2q k 1 2 pnq 1 1
k n 2q k s 1 r 1 k 1

1 2 p 1 U 2 p 1 U 2 p 1
q 1

sU 2 p 1 rU 2 p 1
1

q 1 n 1

sn 2 p 1
n q

α

α

α

α

+

=

+
−

=

⎡ ⎤− + − −
−⎢ ⎥− − +⎣ ⎦

⎡ ⎤+ − − + − −⎛ ⎞
+ + − −⎢ ⎥⎜ ⎟ + − − − +⎝ ⎠ ⎣ ⎦

⎡ ⎤
+ + − ⎡ − − − ⎤⎢ ⎥ ⎣ ⎦+⎣ ⎦

⎡ − − − ⎤⎡ ⎤
− + ⎢ ⎥⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

+ −
+

∑

∑

( )
( ) ( ) ( )

( ) ( )

( )
( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

! !
! !

! !!
! ! !

  ! !!
! ! !

s q r q

s q 1 r q 1

k 1q
q k

s q k r q k
k 0

q

k 0

q 1 r q 1
U 2 p 1 U 2 p 1

s 1 r 1

s q 1 r q 1n U 2 p 1 U 2 p 1
n q s 1 r 1

q 2 p s q k 1 r q k 1n1 U 2 p 1 U 2 p 1
k n q k k 1 s 1 r 1

q
k

α

α

α

+ +

+ + + +

+
−

+ − + −
=

=

⎡ ⎤+ − + −
− − −⎢ ⎥− −⎣ ⎦

⎡ ⎤+ − + −
+ − − −⎢ ⎥+ − −⎣ ⎦

⎡ ⎤+ − − + − −⎛ ⎞
+ − − − −⎢ ⎥⎜ ⎟ + − + − −⎝ ⎠ ⎣ ⎦

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

∑

( ) ( )( )
( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )

! !!
  ! ! !

  ! !!
! ! !

k 1
q k

s q z k r q z k
z 0

k 1q
q k

s 2q k r 2q k
k 0

k 1 s q z k 1 r q z k 1n1 U 2 p 1 U 2 p 1
z k 1 n q z k s 1 r 1

q 2 p s 2q k 1 r 2q k 1nq 1 1 U 2 p 1 U 2 p 1
k n 2q k k 1 s 1 r 1

q
q 1

α

α

+
−

+ + − + + −
=

+
−

+ − + −
=

⎡ ⎤+ + + − − + + − −⎛ ⎞
− − − −⎢ ⎥⎜ ⎟ + + + − − −⎝ ⎠ ⎣ ⎦

⎡ ⎤+ − − + − −⎛ ⎞
− + − − − −⎢ ⎥⎜ ⎟ + − + − −⎝ ⎠ ⎣ ⎦

− +

∑ ∑

∑

( ) ( )( )
( )

( ) ( ) ( )
( ) ( )! !!

  ! ! !

q k 1
q k

s 2q z k r 2q z k
k 0 z 0

k 1 s 2q z k 1 r 2q z k 1n1 U 2 p 1 U 2 p 1
k z k 1 n 2q z k s 1 r 1

+
−

+ + − + + −
= =

⎡ ⎤+ + + − − + + − −⎛ ⎞ ⎛ ⎞
− − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ + + + − − −⎝ ⎠ ⎝ ⎠ ⎣ ⎦

∑ ∑
 

dır.  

Burada, ,j r s=  için  

( ) ( )
( , )

2 p 1
j 0

j 11 n jU 2 p 1 u 1 u du
B j n j 1

− − −− = −∫
− +

, 

 

( ) ( )
( , )

2 p 1
j q 0

j q 11 n jU 2 p 1 u 1 u du
B j q n j 1

−

+
+ − −− = −∫

+ − +
, 
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( ) ( )
( , )

2 p 1

j q 1 0

j q1 n jU 2 p 1 u 1 u du
B j q 1 n j 1

−

+ +
+ −− = −∫

+ + − +
, 

 

( ) ( )
( , )

2 p 1

j q k 0

j q k 11 n jU 2 p 1 u 1 u du
B j q k n j 1

−

+ −
+ − − −− = −∫

+ − − +
 

 

( ) ( )
( , )

2 p 1

j 2q k 0

j 2q k 11 n jU 2 p 1 u 1 u du
B j 2q k n j 1

−

+ −
+ − − −− = −∫

+ − − +
 

 

( ) ( )
( , )

2 p 1

j q z k 0

j q z k 11 n jU 2 p 1 u 1 u du
B j q z k n j 1

−

+ + −
+ + − − −− = −∫

+ + − − +
 

 

( ) ( )
( , )

2 p 1

j 2q z k 0

j 2q z k 11 n jU 2 p 1 u 1 u du
B j 2q z k n j 1

−

+ + −
+ + − − −− = −∫

+ + − − +
 

 

dır. 

Örnek 6.3 ( , ) ( , )1C u v u v uv= Π =  olduğunda, aranan olasılık aşağıdaki gibi elde edilir: 

( , , , , )r s n q pπ Π =  



44 

 

( )
( ) ( )( )

( )
( ) ( )( )
( )
( ) ( )

( )
( )

!
[ ]( )! ( )

( , ) !

!
( )! ( )

!

! ( )!( )!( )! ( )
! ! !

!
( )
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j 0

j 0

j 0

r 2
2

j

r q 2
2

j

r q 2
2

j q

r 21 11 n r 1 U p
B r n r 1 n 1 q 1 n j r 1 n j r 2

r q 2 1n r 1 U p
n q 1 n j r 1 n j r 2

r q 2 n j r q jn r 1 U p
n q 1 j n q j r 2

r 2
q 1

n 1

α

α

α

α

=

=

=

−

+ −

− −

+

⎧ −⎪ − − +⎨− + − + + − + + − +⎪⎩

+ −
+ − +

+ − + − + + − +

+ − + − +
+ − +

+ − + + − +

−
− +

−

∑

∑

∑

( )
( )
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( )
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( )

( )!( )!( )! ( )
!

!
[ ]( )! ( )

( , ) !

!
( )! ( )

!

! ( )!(( )!
!

j 0

j 0

j 0

r 2
2

j q

s 2
2

j

s q 2
2

j

n j r q jn r 1 U p
n q j r 2

s 21 11 n s 1 U p
B s n s 1 n 1 q 1 n j s 1 n j s 2

s q 2 1n s 1 U p
n q 1 n j s 1 n j s 2

s q 2 n j s qn s 1
n q 1

α

α

α

=

=

=

−

+

−

+ −

+ − +
− +

+ + − +

⎧ −⎪− − − +⎨− + − + + − + + − +⎪⎩

+ −
+ − +

+ − + − + + − +

− − + −
+ − +

− −

∑

∑

∑

( )
)! ( )

!

( )! ( )!( )!( ) ( )! ( )}
( )! !( )!

j 0

s 2
2

j q
j 0

s q 2
2

j q
j U p

j n q j s 2

s 2 n j s q jq 1 n s 1 U p
n 1 j n q j s 2

α

=

−

+
=

− −

+
+

+ + − +

− + − +
− + − +

− + + − +

∑

∑
 

Burada ,k r s=  için 

 

( )
( ),

!
( ) ( )

! !
2

2p

j k 0

jn j k 2 n k 1U p u 1 u du
j n k 1

+ − + − += −∫
− +

 

ve 

( )
( ) ( )

2
2

, 0

12 ! 1( ) (1 )
! 1 !

p

j q k
j qn q j k n kU p u u du

j q n k+
+ −+ + − + − += −∫

+ − +
 

 dır. 
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7. BAĞIMLI RİSKLER İÇİN RİSKE MARUZ DEĞER (VaR) 

 

Risk, aktif veya pasif nitelikteki varlıkların değerlerinde meydana gelebilecek olumsuz 

değişimlerin ortaya çıkma olasılığıdır.  

Aktueryal risk yönetimi; sigortacılık uygulamalarında olası hasar/zarar durumunun 

değerlendirilmesi ve ilgili optimal aktüeryal kararların alınmasıyla alakalı konularla 

ilgilenir, ayrıca  sigortalanan ve sigortalayan arasında ortak bir konu olan hasar 

miktarlarına karşı optimal prim ve rezerv hesaplarının yapılmasına ilişkin kuram ve 

yöntemleri sunmaktır. 

Güçlü risk yönetimi olan kuruluşlar (bankalar, sigorta şirketleri, vb.); aldıkları piyasa, 

kredi ve operasyonel riskleri ayrıntıları ile inceler, olası krizlere ilişkin kayıplarını daha 

önceden belirler, bu kayıpları minimize etmek için önceden önlemler alır, aldıkları risk 

ile kazançlarnı karşılaştırır ve riski almaya değip değmeyeceğini önceden 

değerlendirirler.  

Aktueryal riski ölçmek için Aktueryal risk yönetiminde, hasar veya zarar nicelikleri 

rasgele değerler olup sigortacılık gerçekliğine uygun olasılık dağılım modelleri ile ifade 

edilir (Kaas vd.. 2008, Denuit vd. 2005). Riskin ifade edilmesi için 

• Riske Maruz Değer (VaR, Value-at-Risk) 

• Beklenen/Beklenmeyen Kayıp 

• Yeterli Ekonomik Sermaye 

• Yükümlülük Karşılama Yeteneği (Solvency) 

gibi çeşitli ölçütler kullanılmaktadır. Bunlardan VaR, dağılımların kuantilleri ile 

yakından ilintili bir ölçüttür. X  risk rasgele değişkeni, F , X ' in dağılım fonksiyonu, 

(0,1)p ∈  bir olasılık düzeyi olmak üzere; p  düzeyinde VaR şu şekilde tanımlanır: 

[ ] ( )1
p XVaR X F p−=  
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Embrechts et. al. (2003)’ in yapmış olduğu çalışmada, global pozisyon olarak 

adlandırılan fonksiyon aşağıdaki gibi tanımlanmıştır: 

: nR RΨ →  

Bu fonksiyon 1 2, ,..., nX X X  risklerinin marjinal kar-zarar dağılımları bilindiğinde, 

( )1 2, ,..., nX X XΨ  global pozisyonunun VaR’ ı alınarak, bir (üst) sınır yazmakta 

kullanılmaktadır. Özel halde, Embrechts et. al. (2003)’ in çalışmasında 2n =  için 

( )1 2 1 2,x x x x+Ψ =  alınarak ( )1 2,pVaR X XΨ⎡ ⎤⎣ ⎦  için bir üst sınır yazılmıştır. Üst sınır 

yazma amaçları ise, bu bağımlı risklerin ortak dağılımlarının bilinmemesi durumundan 

kaynaklanmaktadır. Ortak dağılımlarının bilindiğinden hareketle yola çıkılarak Ψ ’ nin 

bir dağılım fonksiyonu olduğu düşünülecek olursa, ( ).pVaR  ifadesine kopulalar 

cinsinden ulaşılabilir:  

  ),(),...,,(),,( 2211 nn YXYXYX  ( )2 2( , ) ( ), ( )H x y C F x G y=  ortak dağılım 

fonksiyonundan alınmış iki değişkenli risk rasgele değişkenlerinin rasgele bir örneklemi 

olsun. ( ),X YΨ , sırasıyla X  ve Y  için ( )F x  ve ( )G y  aynı marjinal dağılımlı başka 

bir dağılım fonksiyonu olsun ve 1( , ) ( ( ), ( ))x y C F x G yΨ =  olsun. 

: : :...1n 2 n n nX X X≤ ≤ ≤ , X  için sıra istatistikleri ve [ ] njXXYY nrnr jj ,...,2,1,:: ==∋=  

olmak üzere, [ ]:r nY  :r nX , nr ≤≤1  sıra istatistiğinin eşleniği olsun. Ayrıca; ( )pF x p=  

ve ( )pG y p=  olmak üzere, px  ve py  ile sırasıyla ( )F x  ve ( )G y ’ nin p -inci sıra 

kuantillerini gösterilsin. Marjinal VaR’ ları sırasıyla [ ] 1( )pVaR X F p−=  ve 

[ ] 1( )pVaR Y G p−=  ile gösterilsin. Bu durumda ( ),pVaR X YΨ⎡ ⎤⎣ ⎦  aşağıdaki gibi ifade 

edilebilir: 

( ) ( ) ( ) ( )
( ) ( )

2
2

1

1, 1 ,
, ,

p
p

r n rVaR X Y u u dC u v
u v I C u v

κ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

≤

− −Ψ = −⎡ ⎤ ∫∫⎣ ⎦
∈

, 

gerçekten de görülebileceği gibi 
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( ) ( ){ }( ), ( , ) ,2
p H2

VaR X Y x y R X Y pμΨ = ∈ Ψ ≤⎡ ⎤⎣ ⎦  

      
( ) ( ),

( , )
,

2
2x y R p

dH x y
x y⎧ ⎫

⎨ ⎬
⎩ ⎭

∈ Ψ ≤

= ∫∫  

     

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

,

,

,

( ) ( ):
,

( , ) ( ) ( ) ( )
( ),

( ) ( ) ( , )
,

2
2

2

2

2
2

x y R p

x y R p

x y R p

h y x f x dxdyr n
x y

h x y r 1 n rF x 1 F x f x dxdy
f xx y

r 1 n rF x 1 F x h x y dxdy
x y

κ

κ

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

∈ Ψ ≤

∈ Ψ ≤

∈ Ψ ≤

= ∫∫

− −= −∫∫

− −= −∫∫

 

    

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

,

,

( ) ( ) ( , )
,

( ) ( ) ( ), ( )
,

2
2

2
2

x y R p

x y R p

r 1 n rF x 1 F x dH x y
x y

r 1 n rF x 1 F x dC F x G y
x y

κ

κ

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

∈ Ψ ≤

∈ Ψ ≤

− −= −∫∫
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{ }

( ) ( ) ( )
( )

( ) , ( ) ,  ( ),  ( )

, .
, ( , )

2
2

1

1 1

p

F x u G y v X F U Y G V

r 1 n ru 1 u dC u v
u v I C u v

κ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

− −

≤

= = = = =

− −= −∫∫
∈

 

olup; burada 1
( , 1)B r n r

κ =
− +

 ve (.,.)B  beta fonksiyonunu,  u  ve v  sırasıyla :r nU  ve 

[ ]:r nV ’ nin gözlenen değerlerini göstermektedir (Gebizlioglu ve Yagci 2008). 

7.1 İki Değişkenli Kuantiller, Kopulalar ve İki Bağımlı Risk için VaR  
      Değerlendirmesi 
 

Gösterilen analitik sonuçlar ve verilen örneklerden anlaşılığı üzere; (6.2) eşitliğine göre 

yazılabilen iki değişkenli kuantiller için γ  katsayılı tolerans aralıkları; örneklem 

genişliği n , sıra istatistikleri ve eşleniklerinin sıraları, kuantillerin sırası ve ( , , , )r s n pπ  

olasılığı üzerindeki p~  eşiğinin fonksiyonlarıdır. 
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Ayrıca Sarmanov kopulaları durumunda görülmektedir ki; tolerans aralıkları, iki 

değişkenli kuantiller belirlenmiş tolerans aralıklarında oldukları için direkt olarak 

olasılığın büyüklüğünü etkileyen α  bağımlılık parametresinin fonksiyonlarıdır. 

Dikkat edilmelidir ki; ( ) ( )1 1: :[ : ] [ : ], ,s n r ns n r nH X Y H X Y− , 1 r s n≤ < ≤  mümkün olduğu 

kadar küçük olduğu zaman, iki değişkenli kuantillerin ( )1 ,p pH x y  fonksiyonu ve γ  

toleransına bağlı risk değerlendirmeleri için verilen p~  en iyi mümkün durum için 

meydana gelir. Açıktır ki; bu iki değişkenli bağımlı riskler 2 ( , )C u v  kopula 

fonksiyonuna bağlıdır (Gebizlioglu ve Yagci 2008) 

Tolerans aralıkları; ön-atanmış olasılık düzeyli risk niceliklerinin, karar yönlü sıra 

istatistikleri arasındaki olası bir genişliğe atanan tolerans yoluyla, riskler hakkında 

kararlar ortaya konulmasını sağlar. Bu çalışma; iki değişkenli kuantiller bağlamında 

tolerans aralıklarını ve risk ölçüleri olarak kuantillerle eşdeğer olan ( )pVaR X  ve 

( )pVaR Y  için, bağımlı kayıp şiddetleri olan bağımlı risklere dair risk değerlendirme 

aralıkları önermesinde bulunmaktadır. Söz konusu değerlendirmeler bağımlı risklerin 

birleşik veya marjinal dağılımlarından bağımsız olarak, sadece sıra istatistikleri ve 

eşlenikleri ele alınarak yapılabilir ve bu bakımdan pratik değere de sahiptir. 

Benzer yapılar; Tail Value-at-Risk (TVaR), Conditional Value-at-Risk (CVaR), 

Conditional Tail Expectation (CTE) ve VaR’ ın fonksiyonları olan diğer risk ölçüleri 

için  de kolayca elde edilebilir.        
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8. TARTIŞMA VE SONUÇ 

 

Sıra istatistikleri ve eşlenikleri, kopulalar, iki değişkenli integral dönüşümleri, kuantiller 

ve tolerans aralıkları istatistiğin önemli ve uygulamaya doğrudan yöntem sunan 

konularıdır. Bu yüzden tezde sunulan sonuçlar hem istatistik kuramı hemde aktüeryal 

risk gibi uygulama alanları bakımından özgün ve yararlı sonuçlardır. 

Bağımlı değişkenlerin bağımlılık yapılarının ifadesi bakımından kopulalar son derece 

yararlı analitik araçlardır. Buradan yola çıkarak çalışma, kopulalar ile iki değişkenli 

integral dönüşümlerini ilişkilendirerek bunun dağılımlar bazında istatistik sonuç 

çıkarımına yararlı yöntemlerden bahsetmekedir. Bu yöntemlerle bağımlı iki değişkenli 

durumlar için sıra istatistikleri ve onların eşleniklerinin kullanımını içermektedir. Bu 

yönüyle çalışma, bağımlı rasgele değişkenlerin ortak ve marjinal dağılımlarının 

kullanımını gerektirmeyecek yaklaşımlarla güven ve tolerans aralıklarına istatistik 

sonuç çıkarımı yapılmasına olanak sağlayan kuram ve yöntem yaklaşımları 

sunmaktadır. 

Tezde iki değişkenli dağılımlar ve bağımlı iki değişkenli modellemeler ile ilgili 

çıkarımlarda bulunulmuştur ancak sunulan sonuçlar istatistik kuramı bakımından çok 

değişkenli her durum için geçerlidir. Üç veya daha fazla her durum için genelleştirme 

yapılabilir. Bu yapılan genelleştirme istatistik bilimi ve uygulamaları bakımından son 

derece önemli ve yararlı bilgiler sağlayacaktır. 

Risk ölçütlerinden Riske Maruz Değer (VaR) aktüeryal risk yönetiminin önemli 

konularından biridir. Tezde Riske Maruz  değer (VaR) dikkate alınarak tolerans 

aralıkları oluşturulmuştur. Bu anlamda sunulan sonuçlar aktüerya risk yönetimi ve 

finansal risk yönetimi alanında teorik anlamda önemli sonuçlar sunmaktadır. Gelecekte 

yazılacak  programlar yardmıyla da uygulama açısından önemli gelişmeler olacaktır. 

Ayrıca Riske Maruz Değer (VaR) için elde edilen yapılar Tail Value-at-Risk (TVaR), 

Conditional Value-at-Risk (CVaR), Conditional Tail Expectation (CTE) ve VaR’ ın 

fonksiyonları olan diğer risk ölçüleri için  de kolayca elde edilebilir.        
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