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ÇOKLU İÇ İLİŞKİ OLMASI DURUMUNDA LİNEER REGRESYON 
MODELLERİNİN KULLANIMI İLE KESTİRİM VE ÖNGÖRÜ 
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ÇUKUROVA ÜNİVERSİTESİ 
FEN BİLİMLERİ ENSTİTÜSÜ 
İSTATİSTİK ANABİLİM DALI 

 
 Danışman : Prof. Dr. Selahattin KAÇIRANLAR 
   Yıl: 2012, Sayfa: 57 
 Jüri : Prof. Prof. Dr. Selahattin KAÇIRANLAR 
  : Prof. Dr. Fikri AKDENİZ 
  : Prof. Dr. H.Altan ÇABUK 
                       : Prof. Dr. Hamza EROL          
  : Prof. Dr. Sadullah SAKALLIOĞLU 
  

 
 Lineer regresyon modellerinin tahmininde en küçük kareler (EKK) tahmin 
edicisi yaygın olarak kullanılmaktadır. Ancak, açıklayıcı değişkenlerin birbirleriyle 
ilişkili olduğu durumlarda EKK tahmin edicisi istikrarsızlaşır. Bu nedenle, çoklu iç 
ilişkinin varlığı durumunda EKK tahmin edicisine alternatif olarak yanlı tahmin 
ediciler önerilmektedir. Birçok alanda, gelecek zamana ait verileri 
kestirmek/öngörmek büyük önem taşır çünkü öngörü, gelecekteki potansiyel olaylar 
ve onların sonuçları hakkında belli bilgiler ortaya koymaktadır. Bu da politika 
belirleyicinin (veya yöneticinin) önemli kararları daha güvenli bir şekilde almasını 
sağlamaktadır. Yanıt değişkenin bilinmeyen değerlerinin kestirimi ile 
ilgilendiğimizde, regresyon modelinin uygun bir kestirim denklemi üretebilmesi 
öncelikli gereksinimdir. Bu nedenle, bu çalışmada, çoklu iç ilişkinin mevcut olduğu 
durumlarda bazı yanlı tahmin edicilerin kestirim/öngörü performanslarını 
iyileştirecek yöntemler önerilmiş ve bu yöntemlere göre oluşturulmuş kestirim 
denklemleri, gerçek veriler kullanılarak kendi aralarında karşılaştırılmıştır.  
 
Anahtar Kelimeler: Yanlı tahmin edici, Kestirimin Hata Kareleri Ortalaması, 
                                   PRESS, Kestirim, Öngörü 
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The Ordinary Least Squares (OLS) estimator is the widely used technique for 

estimating linear regression models. But the OLS estimator can be highly variable in 
certain directions, especially when the explanatory variables are collinear. Therefore, 
in the presence of multicollinearity, biased estimation techniques are often suggested 
as alternatives to the OLS. In many areas, the prediction/forecasting of the future 
values is very important because, forecasting provides information about the 
potential future events and their consequences. Thus, it increases the confidence of 
the policy maker (or the manager) to make important decisions. When a multiple 
linear regression model is used in predicting/forecasting unknown values of the 
response variable, its ability to produce an adequate prediction equation is of prime 
importance. In this study, some techniques are suggested to improve the 
prediction/forecasting performances of alternative biased estimators. Prediction 
equations formed by using these techniques are compared on real data sets. 
 
Keywords: Biased Estimator, Prediction Mean Squared Error, PRESS, Prediction,                                                                                                                               
                    Forecasting 



 IV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 V 

TEŞEKKÜR 

  

Beni İstatistik Doktora eğitimi almaya yönlendiren Sayın Prof. Dr. Bilal 

VATANSEVER’e desteği ve yardımlarından dolayı gönülden teşekkür ederim.  

 Doktora eğitimim boyunca bana çok şey kazandıran Sayın Hocalarım Prof. 

Dr. Sadullah SAKALLIOĞLU, Prof. Dr. Hamza EROL ve Prof. Dr. Olcay 

ARSLAN’a çok teşekkür ederim. Bana büyük yardımları ve katkıları olmuştur. 

 Doktora tez danışmanım Sayın Prof. Dr. Selahattin KAÇIRANLAR’a bana 

verdiği emeklerinden dolayı çok teşekkür ederim. 

 Her başım sıkıştığında kapısını çaldığım ve yardımlarını benden esirgemeyen 

değerli arkadaşım Öğr. Gör. Dr. Hüseyin GÜLER’e, zor günlerimde bana destek olan 

Sayın Hocalarım Yrd. Doç. Dr. Ebru ÖZGÜR GÜLER ve Doç. Dr. Mehmet 

ÖZMEN’e sonsuz şükranlarımı sunarım. 

 Her zaman büyük bir sevgi ve minnetle anacağım Sayın Prof. Dr. Fikri 

AKDENİZ ve Sayın Prof. Dr. Hasan Altan ÇABUK’a bilimsel ve manevi 

desteklerinden dolayı gönülden teşekkür ederim.  

 En zor anlarıma şahit olan ve beni teselli eden çok değerli iki insana sevgili 

Senay AKALIN ve sevgili Hale YAŞAR’a çok teşekkür ederim.  

 Hayatım boyunca bana hep destek olan annem, babam ve kardeşime sonsuz 

sevgilerimi ve şükranlarımı sunarım.  

 

 

 

 

 

 

 

 

 

 

 



 VI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 



 VII

İÇİNDEKİLER                                                                                                SAYFA 
 
  
ÖZ ................................................................................................................................. I 

ABSTRACT ............................................................................................................... III 

TEŞEKKÜR ................................................................................................................ V 

İÇİNDEKİLER ......................................................................................................... VII 

TABLOLAR DİZİNİ ................................................................................................. IX 

ŞEKİLLER DİZİNİ ................................................................................................... XI 

SİMGELER VE KISALTMALAR ......................................................................... XIII 

1.GİRİŞ ........................................................................................................................ 1 

2. LİU TAHMİN EDİCİNİN KESTİRİM PERFORMANSININ                                                                                                         

    DEĞERLENDİRİLMESİ ........................................................................................ 4 

2.1. Giriş ................................................................................................................... 4 

2.2. Kestirim Hata Kareleri Ortalamalarının Elde Edilişi ........................................ 7 

2.3. Kestirim Hata Kareleri Ortalamalarının İki Boyutlu Uzayda Kaşılaştırılması 11 

2.4. Sayısal Örnek .................................................................................................. 24 

2.5. Sonuç ............................................................................................................... 27 

3. R-K VE R-D SINIF TAHMİN EDİCİLERİN KESTİRİM      

    PERFORMANSLARININ İYİLEŞTİRİLMESİ ................................................... 29 

3.1. Giriş ................................................................................................................. 29 

3.2. Tahmin Ediciler ve PRESS İstatistikleri ......................................................... 30 

3.3. Sayısal Örnek .................................................................................................. 33 

   3.3.1. Mil Başına Benzin Tüketimi Veri Seti .................................................. 33 

3.4. Sonuç ............................................................................................................... 39 

4. LİU TİPİ VE İKİ PARAMETRELİ RİDGE TAHMİN EDİCİLERİNİN        

    KESTİRİM PERFORMANSLARININ PRESS VE GCV İSTATİSTİKLERİ      

    KULLANILARAK KARŞILAŞTIRILMASI ....................................................... 41 

4.1. Giriş ................................................................................................................. 41 

4.2. Tahmin Ediciler ve Kestirim İyiliği İstatistikleri ............................................ 42 

4.3. Sayısal Örnek .................................................................................................. 45 

   4.3.1. Mil Başına Benzin Tüketimi Veri Seti .................................................. 45 



 VIII 

   4.3.2. Portland Çimento Veri Seti ................................................................... 47 

4.4. Sonuç ............................................................................................................... 49 

5. SONUÇLAR VE ÖNERİLER ............................................................................... 50 

KAYNAKÇA ............................................................................................................. 53 

ÖZGEÇMİŞ ............................................................................................................... 57 

 
 



 IX

TABLOLAR DİZİNİ 

 

Tablo 3.1.    Mil Başına Benzin Tüketimi verisi ...................................................... 34 

Tablo 3.2a.   Mil Başına Benzin Tüketimi veri seti için Ridge, r-k sınıf, EKK           

ve TB tahmin edicileri ile tahmin edilen regresyon modeli için      

parametre tahminleri, 2R , HKT, HKO( β̂ ) ve PRESS istatistikleri ... 35 

Tablo 3.2b.  Mil Başına Benzin Tüketimi verisi için Liu, r-d sınıf, EKK ve TB                  

tahmin edicileri ile tahmin edilen regresyon modeli için parametre                   

tahminleri, 2R , HKT, HKO( β̂ ) ve PRESS istatistikleri .................... 36 

Tablo 3.3.   Mil Başına Benzin Tüketimi verisi için EKK, TB ve yanlılık                    

parametreleri PRESS istatistikleri minimize edilerek seçilen          

Ridge, r-k sınıf, Liu, r-d sınıf tahmin edicileri ile tahmin edilen 

regresyon modeli için parametre tahminleri, 2R , HKT, HKO( β̂ )           

ve PRESS istatistikleri ........................................................................ 37 

Tablo 4.1a. Mil Başına Benzin Tüketimi veri seti için EKK, 2 parametreli                  

Ridge ve Liu tipi tahmin edicileri için parametre tahminleri,                  

HKO ve PRESS  istatistikleri ............................................................. 45 

Tablo 4.1b. Mil Başına Benzin Tüketimi veri seti için EKK, 2 parametreli                   

Ridge ve Liu tipi tahmin edicileri için parametre tahminleri,             

HKO ve GCV istatistikleri .................................................................. 46 

Tablo 4.2.   Portland Çimento verisi ........................................................................ 47 

Tablo 4.3a.  Portland Çimento veri seti için EKK, 2 parametreli Ridge ve Liu                   

tipi tahmin edicileri için parametre tahminleri, HKO ve PRESS                  

istatistikleri .......................................................................................... 48 

Tablo 4.3b. Portland Çimento veri seti için EKK, 2 parametreli Ridge ve Liu                   

tipi tahmin edicileri için parametre tahminleri, HKO ve GCV                   

istatistikleri .......................................................................................... 48 

 
 
 
 



 X 

 
 
 
 
 
 
 
 



 XI

ŞEKİLLER DİZİNİ 

                                                                                    

Şekil 2.1.  Liu ve EKK tahmin edicilerin KHKO’larının karşılaştırılması ................ 25 

Şekil 2.2.  Liu ve TB tahmin edicilerin KHKO’larının karşılaştırılması ................... 26 

Şekil 2.3.  Liu ve Ridge tahmin edicilerin KHKO’larının karşılaştırılması .............. 27 

Şekil 3.1a. Mil Başına Benzin Tüketimi verisi için Ridge, Liu, r-d sınıf ve r-k       

sınıf tahmin edicilerin yanlılık parametreleri ve onlara karşılık gelen 

PRESS istatistikleri. ................................................................................. 38 

Şekil 3.1b. Mil Başına Benzin Tüketimi verisi için Ridge ve r-k sınıf tahmin 

edicilerin yanlılık parametreleri ve onlara karşılık gelen PRESS 

istatistikleri. .............................................................................................. 38 

Şekil 3.1c. Mil Başına Benzin Tüketimi verisi için Liu ve r-d sınıf tahmin     

edicilerin yanlılık parametreleri ve onlara karşılık gelen PRESS 

istatistikleri ............................................................................................... 39 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 XII

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XIII 

 

 

SİMGELER VE KISALTMALAR 

 

Regresyon modeli için kullanılan simge ve kısaltmalar 

n  : Gözlem sayısı 
p  : Parametre sayısı 
y  : Yanıt değişken vektörü 

X  : Açıklayıcı değişkenler matrisi 

β  : Bilinmeyen parametreler vektörü 

ε  : Hata terimleri vektörü 

Z  : Ortogonalleştirilmiş açıklayıcı değişkenler matrisi 

T  : ′X X  matrisinin özvektörlerinden oluşan matris 

Λ  Köşegen elemanları ′X X  matrisinin özdeğerleri olan köşegen matris 

  

Tahmin ediciler için kullanılan simge ve kısaltmalar 

EKK : En Küçük Kareler 

TB : Temel Bileşenler 

LT : Liu Tipi 

R : Ridge 

2PR : İki Parametreli Ridge 

ˆ
EKKβ  : En Küçük Kareler tahmin edici 

ˆ
TBβ  : Temel Bileşenler tahmin edici 

ˆ
Rβ  : Ridge tahmin edici 

ˆ
Liuβ  : Liu tahmin edici 

ˆ
r k−β  : r-k sınıf tahmin edici 

ˆ
r d−β  : r-d sınıf tahmin edici 

ˆ
LTβ  : Liu Tipi tahmin edici 



 XIV

2
ˆ

PRβ  : İki Parametreli Ridge tahmin edici 

  

Matrisler için kullanılan simge ve kısaltmalar 

rI  : r r×  boyutlu birim matris 

j  : birler vektörü 

  
Tahmin edicilerin istatistiksel özellikleri için kullanılan simge ve kısaltmalar 

HKO : Hata kareleri ortalaması 

KHKO : Kestirimin hata kareleri ortalaması 

PRESS : Kestirimin hata kareleri toplamı (Prediction error sum of squares) 

GCV : Genelleştirilmiş çapraz geçerlilik (Generalized cross validation) 
2(0, )iid σ

 
: Sıfır ortalamalı, 2σ varyanslı, bağımsız ve özdeş dağılmış (Independent 

and identically distributed) 

(.)E  : Beklenen değer operatörü 

J  : Kestirimin hata kareleri ortalaması 

B  : Yanlılığın karesi 

V  : Varyans 

κ  : Koşul sayısı 

  

  

  

  

 
 



1.GİRİŞ                                                                                                      Fela ÖZBEY 
 

 1 

1.GİRİŞ  

 

 Ampirik çalışmalarda, değişkenler arasındaki ilişkiyi tanımlamak için en sık 

kullanılan yöntem çoklu doğrusal regresyon modelidir. Bunun başlıca sebepleri basit 

yapıda olması ve çoğu zaman, bu basit yapıya rağmen, gerçek dünyadaki verileri 

modellemede oldukça başarılı olmasıdır. 

 Çoklu doğrusal regresyon modelleri iki temel amaç için kullanılmaktadır. 

Bunlardan ilki modelin eldeki verilere uyumunu optimal şekilde sağlamak (tahmin); 

diğeri ise bu modeli yanıt değişkenin henüz gerçekleşmemiş veya gözlemlenememiş 

değerlerine adapte etmektir (kestirim).  

 Kestirim, eldeki verileri kullanarak yanıt değişkeninin gözlemlenememiş 

değerlerini tahmin etme işlemi olarak tanımlanır. Zaman serisi verilerinin 

analizlerinde kestirilmeye çalışılan veriler gelecek ile ilgili olduklarında, yapılan 

kestirim özel olarak öngörü diye adlandırılır. Yani öngörü, geçmiş ve şimdiki 

zamana ait gözlemler kullanılarak gelecek ile ilgili verilerin kestirilmesidir. 

 Birçok alanda, gelecek zamana ait verileri kestirmek/öngörmek büyük önem 

taşır çünkü öngörü, gelecekteki potansiyel olaylar ve onların sonuçları hakkında belli 

bilgiler ortaya koymaktadır. Her ne kadar öngörü gelecekte gerçekleşecek olayların 

karmaşıklığını ve belirsizliğini azaltmasa da, politika belirleyicinin (veya 

yöneticinin) önemli kararları daha güvenli bir şekilde almasını sağlamaktadır.    

 Yanıt değişkenin bilinmeyen değerlerinin kestirimi ile ilgilendiğimizde, 

regresyon modelinin uygun bir kestirim denklemi üretebilmesi öncelikli 

gereksinimdir. Bu çalışmanın amacı, çoklu iç ilişkinin mevcut olduğu durumlarda 

bazı tahmin edicilerin kestirim/öngörü performanslarının değerlendirilmesidir.  

 En Küçük Kareler (EKK) tahmin edicisi lineer regresyon modellerinin 

tahmininde oldukça yaygın olarak kullanılmaktadır. EKK tahmin edicinin 

kullanımına yönelim, çoğunlukla yansız oluşundan ve yansız tahmin ediciler 

arasında en küçük varyansa sahip oluşundandır. Ancak, EKK tahmin edicisi, 

özellikle açıklayıcı değişkenler arasında doğrusal bir ilişki var ise, belli yönlerde 

oldukça değişken olabilir. Aslında, yansızlık gerekli temel bir özellik değildir. Genel 

olarak tek bir örnekleme sahibiz ve verilen bir örneklem büyüklüğü için, bir tahmin 
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edicinin kalitesi onun Hata Kareleri Ortalaması (HKO) ile ölçülür. Normalde yansız 

olan bir tahmin ediciye bir miktar yanlılık eklenmesi, onun varyansında kayda değer 

bir azalmaya neden olacaktır; öyle ki, HKO’su küçülecektir. Bu nedenle çoklu iç 

ilişkinin varlığı durumunda, çoğunlukla yanlı tahmin yöntemleri EKK’ya alternatif 

olarak önerilmektedir. 

 Çoklu iç ilişki sorunu ile baş etmek için kullanılan en eski tekniklerden birisi 

Temel Bileşenler (TB) regresyonudur (Massy, 1965). Bu yöntem, açıklayıcı 

değişkenlerin kolon uzayının bir alt kümesini seçip kullanmaya ve yanıt değişkenin 

bu alt küme üzerine izdüşümüne dayanmaktadır. Bir diğer popüler örnek Hoerl ve 

Kennard (1970) tarafından önerilen Ridge tahmin edicidir. Ridge tahmin edici, 

yansız bir tahmin ediciye, parametre tahminlerinin ve kestirimlerinin HKO’sunu 

küçültmek amacıyla yanlılık eklenilmesinin en bilinen örneğidir. Liu (1993) 

tarafından önerilen yanlı tahmin edici, Ridge tahmin edicisinin özel bir haline Stein 

tahmin edicinin (Stein tahmin edici için bkz: Stein, 1956) eklenmesi ile elde edilmiş 

bir modifikasyondur. Bu tahmin edicinin, HKO’sunun yanlılık parametresinin 

doğrusal bir fonksiyonu olması nedeniyle, yanlılık parametresinin seçimi daha 

kolaydır; bu bakımdan da Ridge tahmin edicisine göre üstündür. Bu çalışmanın 

ikinci bölümünde, Liu tahmin edicinin kestirim performansı,  EKK, TB ve Ridge 

tahmin edici ile karşılaştırılmıştır. 

 Baye ve Parker (1984), yukarıda adı geçen TB ve Ridge tahmin edicilerini 

birleştirerek, r-k sınıf tahmin edicisini oluşturmuşlardır. Bu tahmni edici, EKK, TB 

ve Ridge tahmin edicilerini ihtiva eden daha geniş kapsamlı bir sınıfı 

oluşturmaktadır. Liu tahmin edicinin Ridge tahmin ediciye üstünlüğünü göz önünde 

bulundurarak Kaçıranlar ve Sakallıoğlu (2001) TB tahmin ediciyi Liu tahmin edici 

ile birleştirerek r-k sınıf tahmin ediciye alternatif olarak r-d sınıf tahmin ediciyi 

önermişlerdir. Bu tahmin edici de EKK, TB ve Liu tahmin edicilerini ihtiva 

etmektedir. Üçüncü bölümde bu sınıf tahmin edicilerin kestirim performansları kendi 

aralarında karşılaştırılırken, ihtiva ettikleri tahmin edicilere üstünlükleri de 

incelenmiştir. 

 Liu (2003), Liu tahmin edicisinin performansını arttırmak için ona ikinci bir 

yanlık parametresi ekleyerek Liu Tipi (LT) tahmin ediciyi oluşturmuştur. Bu tahmin 
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edicide, yanlılık parametrelerinden biri tasarım matrisinin kötü koşulluluğunu 

ortadan kaldırma amaçlı kullanılırken, diğer yanlılık parametresi de modelin uyum 

iyiliğini arttırmaya hizmet etmektedir. Benzer bir amaç doğrultusunda, Lipovetsky ve 

Conklin (2005) Ridge tahmin ediciye uyumun iyiliğini arttıracak ikinci bir parametre 

ekleyerek İki Parametreli Ridge (2PR) tahmin edicisini tanımlamışlardır. Dördüncü 

bölümde bu iki tahmin edicinin kestirim performansları değerlendirilmiştir. 
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2. LİU TAHMİN EDİCİNİN KESTİRİM PERFORMANSININ                                                                         

DEĞERLENDİRİLMESİ  

 

2.1. Giriş 

 

Çoklu doğrusal regresyon modeli 

 

 = +y Xβ ε  (2.1) 

 

olarak tanımlanır. Burada y , 1n×  boyutlu yanıt değişkenler vektörü, X , n p×  

boyutlu stokastik olmayan, önceden belirlenmiş, açıklayıcı değişkenlerin tam kolon 

ranklı matrisi,  β ,  1p×  boyutlu bilinmeyen parametreler vektörü ve  ε , 1n×  

boyutlu, 2(0, )iid σ dağılımlı rassal hatalardır. Değişkenlerin, ′X X  matrisinin 

açıklayıcı değişkenler arasındaki korelasyonların matrisi ve ′X y  vektörünün her bir 

açıklayıcı değişken ve yanıt değişken arasındaki korelasyonların vektörü olacak 

şekilde merkezileştirilmesi ve ölçeklendirilmesi önerilmektedir. Bu nedenle bu 

çalışmada, değişkenlerin bu şekilde standartlaştırıldığı varsayılacaktır. 

 

(2.1) ile verilen eşitlikteki β ’nın EKK tahmin edicisi 

 

 1ˆ ( )EKK
−′ ′=β X X X y  (2.2) 

 

dir. EKK tahmin edicisi yansızdır ve tüm yansız tahmin ediciler arasında en küçük 

varyansa sahiptir, ancak, belli yönlerde oldukça değişken olabilmektedir. Klasik 

doğrusal regresyon modelinin varsayımlarından biri açıklayıcı değişkenler arasında 

doğrusal bir ilişki olmadığıdır.  Ne yazık ki, uygulamada, çoğu açıklayıcı değişken 

arasında yüksek seviyede doğrusal ilişki vardır. Çoklu iç ilişkinin varlığı durumunda, 

parametrelerin EKK tahminleri büyük standart hatalara sahip olurlar, bu nedenle de 
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EKK kullanılarak,  katsayılar büyük bir kesinlik veya doğrulukla tahmin edilemez.  

Bir tahmin ediciden gerçekte beklenen küçük bir HKO değerine sahip olmasıdır ve 

bu, tahmin edicinin yansızlığını gerektirmez. Yansızlık koşulunu gevşetmek, çoklu iç 

ilişkinin varlığı durumunda daha iyi özelliklere sahip (oldukça küçük HKO gibi) 

yanlı tahmin edicileri tartışmaya açmaktadır.   

Çoklu iç ilişki sorunu ile baş etmek için kullanılan en eski tekniklerden birisi 

TB regresyonudur (Massy, 1965). Bu yöntem, X ’in kolon uzayının bir alt kümesini 

seçip kullanmaya ve y  yanıt değişkeninin bu alt küme üzerine izdüşümüne 

dayanmaktadır. (2.1)’deki bilinmeyen parametrelerin TB tahmin edicisi 

 

 ( ) 1 1ˆ
TB r r r r r r r

− −′ ′ ′ ′ ′ ′= =β T T X XT T X y T Λ T X y  (2.3) 

 

şeklinde tanımlanır. Burada, 1 2, , , p =  T t t tK  , ′ ′ =T X XT Λ  olacak şekilde 

ortogonal bir matristir. Yani T , ′X X  matrisinin p p×  boyutlu öz vektörleri 

matrisidir. ( )1 2, , , pdiag λ λ λ=Λ K , ′X X  matrisinin öz değerleri matrisidir ve öz 

değerler azalan sıradadır. rT  matrisi, T matrisinin p r−  tane kolonu silindikten 

sonra kalan kısmı ve  1 2( , , , )r rdiag λ λ λ=Λ K dir.  

Hoerl ve Kennard (1970) tarafından önerilen Ridge tahmin edici, yansız bir 

tahmin ediciye, parametre tahminlerinin ve kestirimlerinin HKO’sunu küçültmek 

amacıyla yanlılık eklenilmesinin en bilinen örneğidir. Bu tahmin edici 

 

 1ˆ ( ) , 0R k k−′ ′= + ≥β X X I X y , (2.4) 

 
olarak tanımlanmıştır. Burada k , EKK tahminleri ile ortaya çıkan zorlukları 

önlemeye yardımcı olmak için kullanılan yanlılık parametresidir. Böylece, ′X X  

matrisi birim matrise yakın bir matris olmadığı durumlarda, ′X X  matrisinin köşegen 

elemanlarına k  eklenerek EKK tahminlerinin duyarlılığının azaltılması 

hedeflenmiştir.  
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Liu (1993) tarafından önerilen yanlı tahmin edici, Ridge tahmin edicisinde 

1k =  iken ′X y  vektörüne Stein tahmin edicinin (Stein tahmin edici için bkz: Stein, 

1956) eklenmesi ile elde edilmiş bir modifikasyondur: 

 
1ˆ ˆ( ) ( )Liu EKKd−′ ′= + +β X X I X y β  

 1 ˆ( ) ( ) , 0 1EKKd d−′ ′= + + < <X X I X X I β ; (2.5) 

 

d  yanlılık parametresidir. 1d =  iken ˆ ˆ
Liu EKK=β β . Bu tahmin edicinin, HKO 

bakımından EKK tahmin edicisinden daha iyi olduğu ve d ’nin doğrusal bir 

fonksiyonu olması nedeniyle, yanlılık parametresinin seçimi daha kolay olduğu, bu 

bakımdan da Ridge tahmin edicisine göre üstün olduğu Liu (1993) tarafından 

gösterilmiştir. Bu tahmin edici, Akdeniz ve Kaçıranlar (1995) ve Gruber (1998, s.43) 

tarafından Liu tahmin edici olarak adlandırılmıştır. Sakallıoğlu ve ark. (2001), Liu 

tahmin ediciyi MSE bakımından Ridge ve İteratif tahmin edicileriyle 

karşılaştırmıştır. 

Yanlı tahmin ediciler, ortalama olarak, tahmin edilen parametreye EKK tahmin 

edicisinden daha yakındır. Çünkü yansız bir tahmin ediciye bir miktar yanlılık 

eklenmesi, onun varyansını kayda değer bir şekilde azaltıp HKO’yu küçültmektedir. 

 Bir tahmin edicinin HKO’su (HKO( β̂ )), bu tahmin edicinin, tahmin edilecek 

parametreye ortalama uzaklığıdır. 

 

 2ˆ ˆHKO( ) ( ) .E= −β β β  (2.6) 

  

Açıktır ki, tahmin edici yansız olduğunda, yani ˆE( ) =β β  olduğunda, bu tahmin 

edicinin HKO’su varyansına eşittir. Tahmin edici yanlı olduğunda, bu tahmin 

edicinin HKO’su yanlılığın karesi ile varyansının toplamına eşittir.  

Çoklu doğrusal regresyon modelleri sıklıkla y  yanıt değişkeninin bilinmeyen 

değerlerini kestirmek için kullanılmaktadır. Gözlemlenen örneklemdeki korelasyon 



2. LİU TAHMİN EDİCİNİN KESTİRİM PERFORMANSININ 
DEĞERLENDİRİLMESİ                                                                          Fela ÖZBEY 
 

 7 

yapısı, kestirilecek kitlede de aynı kalması durumunda, çoklu iç ilişki EKK’nın 

kestirim gücünü azaltmaz (nokta tahmini bakımından); ancak, gözlenen korelasyon 

yapısının istikrarlı olmadığı veya kestirilecek kitle için aynı kalmadığı bir sistemin 

kestiriminde oldukça yanıltıcı sonuçlar vermektedir. Bu gibi durumlarda, bir 

regresyon modelinin uygun kestirim denklemini üretebilmesi temel önceliktir. 

Tahmin edicilerin performanslarının değerlendirilmesinde genellikle, tahmin edilen 

regresyon katsayılarının HKO özelliklerine veya kestiricinin tasarım noktalarındaki 

HKO’suna odaklanılmaktadır. Ancak, amaç y ’nin bilinmeyen değerlerini kestirmek 

olduğunda, kriter olarak kestirimin hata kareleri ortalamasının (KHKO) kullanılması 

daha uygundur.   

Gunst ve Mason (1979) çoklu doğrusal modeli için tahminin bütünleşik 

HKO’sunu geliştirmişler ve bazı regresyon tahmin edicileri için varyansı, yanlılığı ve 

HKO’yu elde etmişlerdir. Friedman ve Montgomery (1985), aynı tahmin ediciler 

üzerine benzer bir yaklaşımı, yanıt değişkeninin ortalamasının tahmini yerine, yeni 

bir değerinin kestirimine odaklanarak adapte etmişlerdir. 0 01 02 0[1, , ,..., ]kX X X′ =x  

noktasındaki kestirim ölçüsü 0 0ˆy y− ’dır. Burada 0 0
ˆŷ ′= x β . Bu, Gunst ve Mason 

(1979) tarafından elde edilen denklemlerin genelleştirilmiş halidir.  

Burada, Friedman ve Montgomery (1985) tarafından elde edilen KHKO’ları 

ve karşılaştırmaları yeniden ele alınarak bazı ilave yorumlarda bulunulacaktır. Daha 

sonra, aynı yaklaşım kullanılarak, Liu tahmin edicisinin kestirim performansı EKK, 

TB ve Ridge tahmin edicilerinin kestirim performansları ile karşılaştırılacaktır. 

Teorik sonuçlar, sayısal bir örnek üzerinde gösterilecektir. 

 

2.2. Kestirim Hata Kareleri Ortalamalarının Elde Edilişi 

 

İlk olarak, Friedman ve Montgomery (1985) tarafından EKK, TB ve Ridge 

tahmin edicileri için elde edilen KHKO’lar bu çalışmadaki notasyona uygun olarak 

yeniden düzenlenerek verilecektir. Daha sonra Liu tahmin edicinin KHKO’su elde 

edilecektir. 
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KHKO, bir kestirimin, kestirilecek olan yanıt değişkenin gerçek değerine 

yakınlığının ölçüsüdür: 

 

 2
0 0ˆKHKO ( )E y y= − . (2.7) 

 

KHKO’yu J  ile gösterelim. J , varyansın (V ) ve yanlılığın karesinin ( B ) 

toplamıdır: 

 J V B= + . (2.8) 

 

Eğer 0y  kestirilecek değer ve 0ŷ  bu değerin kestirimi ise, kestirim hatasının varyansı 

ve yanlılığı sırasıyla 

 

 0 0 0 0ˆ ˆ( ) ( ) ( )V y y V y V y− = +  (2.9) 

ve  

 

 0 0ˆ( )Yanlılık E y y= −  (2.10) 

 

olarak ifade edilir. İşlemlerde kolaylık sağlaması için (2.1) eşitliğinin ortogonal 

formu 

  

 = +y Zα ε  (2.11) 

 

kullanılacaktır. Burada =Z XT  ve ′=α T β . Bu durumda (2.11)’deki α ’nın EKK 

tahmin edicisi 

 

 1 1ˆ ( )EKK
− −′ ′ ′= =α Z Z Z y Λ Z y  (2.12) 
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dir. Eğer 0z , 0ŷ  kestiriminin yapılacağı ortonormalleştirilmiş nokta ise EKK tahmin 

edicisinin KHKO’su    

 

 
2

2 0

1
1

p
i

EKK
i i

zJ σ
λ=

 
= + 

 
∑  (2.13) 

 

olarak elde eldir. 

(2.11)’deki α ’nın TB tahmin edicisi 

 

 1 1ˆ ( )TB r r r r r
− −′ ′ ′= =α Z Z Z y Λ Z y  (2.14) 

 

dir. Burada  r r=Z XT . TB tahmin edicinin KHKO’su  

   
22

2 0
0

1 1
1

pr
i

TB i i
i i ri

zJ zσ α
λ= = +

   
= + +   

  
∑ ∑  (2.15) 

 

olarak elde edilir. (2.11)’deki α ’nın Ridge tahmin edicisi 

 

 1 1ˆ ( ) ( ) , 0R k k k− −′ ′ ′= + = + ≥α Z Z I Z y Λ I Z y  (2.16) 

 

ve bu tahmin edicinin KHKO’su  

  

 
22

2 20 0
2

1 1
1

( )

p p
i i i i

R
i ii i

z zJ k
k k

λ α
σ

λ λ= =

   
= + +   + +   

∑ ∑  (2.17) 

  

şeklindedir. (bkz, Friedman ve Montgomery, 1985). 
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(2.11)’deki α ’nın Liu tahmin edicisi 

 
1ˆ ˆ( ) ( )Liu EKKd−′ ′= + +α Z Z I Z y α  

 1 ˆ( ) ( ) , 0 1EKKd d−′ ′= + + < <Z Z I Z Z I α  (2.18) 

 

dir. Liu tahmin edicisinin kestirim hatasının varyansı 

 

0 0 0 0
2

0

ˆ ˆ( ) ( ) ( )
ˆ( )

Liu Liu

Liu

V y y V y V y
Vσ

− = +

′= + z α
 

                     
2 2

2 0
2

1

( )1
( 1)

p
i i

i i i

z dλ
σ

λ λ=

 +
= + + 

∑  (2.19) 

 

olarak elde edilir. Liu tahmin edicisinin kestirim hatasının yanlılığı ise 

 

0 0 0 00 ˆˆ( ) ( )Liu LiuYanlılık E y y E′ ′= − = −z α z α  

 0

1

(1 )
1

p
i i

i i

d z α
λ=

−
=

+∑  (2.20) 

 

dir. Dolayısıyla yanlılığın karesi 

        

 
2

2 0

1

(1 )( )
1

p
i i

Liu Liu
i i

d zB Yanlılık α
λ=

 −
= =  + 

∑  (2.21) 

 

olarak elde edilir. Varyans ve yanlılığın karesininin toplamı Liu tahmin edicisinin 

KHKO’sunu verecektir:  

 

Liu Liu LiuJ V B= +  
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22 2

2 0 0
2

1 1

( ) (1 )1
( 1) 1

p p
i i i i

i ii i i

z d d zλ α
σ

λ λ λ= =

   + −
= + +   + +   

∑ ∑ . (2.22) 

 

2.3. Kestirim Hata Kareleri Ortalamalarının İki Boyutlu Uzayda 

Kaşılaştırılması 

 

Gunst ve Mason (1979) EKK, TB ve Ridge tahmin edicilerini bütünleşik 

HKO kriterine göre iki boyutlu uzayda karşılaştırmışlardır. Friedman ve 

Montgomery (1985) benzer bir yaklaşımı, aynı tahmin edicilerin KHKO’larını 

karşılaştırmak için kullanmışlardır.   

Bu bölümde, ilk olarak Friedman ve Montgomery (1985) tarafından 

gerçekleştirilen KHKO karşılaştırmaları ele alınarak bazı değerlendirmeler 

yapılacaktır. Daha sonra Liu tahmin edicinin kestirim performansı 

değerlendirilecektir. 

Gunst ve Mason (1979) ve Friedman ve Montgomery (1985)’nin 

çalışmalarında olduğu gibi 2
1α  sıfır kabul edilecektir. Çünkü 2

1α ’nin sıfırdan farklı 

değerleri RJ  ve LiuJ ’nun sabitlerini arttırmakta EKKJ  ve TBJ  nin değerlerini ise 

değiştirmemektedir.  

Friedman ve Montgomery (1985), eğer EKK RJ J>  ise 

 

 
2 2 2 2 22 2
02 1 2 2

2 2 22
1 1 2 2 201 ( ) ( ) ( )

z k
k k kz

σ λ σ λ ασ σ
λ λ λ λ λ

   
< − + −   + + +   

. (2.23) 

 

olduğunu belirtmişlerdir. Ayrıca, 2α ’nin sağ taraftaki paydayı negatif yapmayan tüm 

değerleri için RJ  nin EKKJ  ya göre daima üstün olduğu ve bu kriterin,  

  

 
2

2 2
2

2

(2 )k
k

σ λ
α

λ
+

> . (2.24) 
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olması durumunda Ridge regresyonun EKK’ya göre daima üstün olduğu şeklinde 

ifade edilebileceğini belirtmişlerdir. Ancak, eğer Ridge tahmin edici, KHKO 

bakımından EKK tahmin ediciden üstün olması için 

 

 
2 2 2 2 2 2 2 2 2 2 2

2 201 02 01 1 02 2 02 2
2 2 2

1 2 1 2 2( ) ( ) ( )
z z z z k z

k k k
σ σ σ λ σ λ α

σ σ
λ λ λ λ λ

+ + > + + +
+ + +

 

 

ifadesi sağlanmalıdır. Bu eşitsizlikten  

 

 
2 2 2 22 2

2 21 2 2
01 022 2 2

1 1 2 2 2( ) ( ) ( )
kz z

k k k
σ λ σ λ ασ σ

λ λ λ λ λ
   

− > + −   + + +   
 

 

elde edilir. Burada 2
01z , 2

02z  ve 
22

1
2

1 1( )k
σ λσ

λ λ
−

+
 pozitiftir ama 

2 2 2 2
2 2

2 2
2 2 2( ) ( )

k
k k

σ λ α σ
λ λ λ

+ −
+ +

 ifadesinin işareti 2
2α nin değerine bağlıdır. Dolayısıyla 

eğer (2.24) sağlanıyorsa (2.23) elde edilir. Ancak eğer 

 

 
2

2 2
2

2

(2 )k
k

σ λ
α

λ
+

<  (2.25) 

 

ise, bu durumda Ridge tahmin edicinin KHKO bakımından EKK tahmin edicisine 

üstün olması koşulu  

 

 
2 2 2 2 22 2
02 1 2 2

2 2 22
1 1 2 2 201 ( ) ( ) ( )

z k
k k kz

σ λ σ λ ασ σ
λ λ λ λ λ

   
> − + −   + + +   

 (2.26) 
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halini alacaktır. (2.25) ile verilen koşul altında (2.26) nın sol tarafı daima pozitif, sağ 

tarafı da daima negatif olduğundan Ridge tahmin edici KHKO bakımından daima 

EKK tahmin edicisinden üstün olacaktır. Dolayısıyla, Ridge tahmin edici KHKO 

bakımından EKK tahmin edicisinden daima üstün olmasının koşulu (2.25) tir; 

Friedman ve Montgomery (1985) de belirtildiği gibi (2.24) değildir. (2.24) ile verilen 

koşul altında ise R OLSJ J<  olması için gerek ve yeter koşul (2.23)’ün sağlanmasıdır. 

 Friedman ve Montgomery tarafından 0.1k = , 1 1.95λ =  ve 2 0.05λ =  şeklinde 

verilen örneği tekrar ele alalım (buradaki notasyonda en büyük özdeğerin 1λ  olduğu 

unutulmamalıdır). Bu örnekte, 2
2 40α <  olması durumunda, 2

2α  ve 2 2
02 01z z nin tüm 

değerleri için Ridge tahmin edici KHKO bakımından EKK tahmin ediciden üstündür 

(yani, R OLSJ J< ). 2
2 40α > olması durumunda ise,  eğer  

 

 
2
02
2 2
01 2

0.048811
0.44444 17.778

z
z α

<
−

 

 

koşulu sağlanıyorsa, R OLSJ J<  dir ( R OLSJ J>  değil). 

TB ve Ridge tahmin edicilerin KHKO’larının karşılaştırmasında Friedman ve 

Montgomery (1985), eğer TB RJ J>  ise, o zaman  

 
2

2
2

2 2k
σ

α
λ

<
+

 

 

için 

 

 
2 2 2 2 22

202 1 2 2
22 2 22

1 1 2 201 ( ) ( ) ( )
z k

k k kz
σ λ σ λ ασ

α
λ λ λ λ

   
< − + −   + + +   

 (2.27) 
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olacağını, diğer durumlarda ise TB RJ J<  olacağını belirtmişlerdir.  

Ancak, Ridge tahmin edici, KHKO bakımından TB tahmin ediciden üstün olması 

için 

 

 
2 2 2 2 2 2 2 2 2

2 2 2 201 01 1 02 2 02 2
02 2 2 2 2

1 1 2 2( ) ( ) ( )
z z z k zz

k k k
σ σ λ σ λ α

σ α σ
λ λ λ λ

+ + > + + +
+ + +

 

 

koşulu sağlanmalıdır. Bu eşitsizlikten  

 

 
2 2 2 22

2 2 21 2 2
01 02 22 2 2

1 1 2 2( ) ( ) ( )
kz z

k k k
σ λ σ λ ασ

α
λ λ λ λ

   
− > + −   + + +   

 

 

elde edilir. Burada 2
01z , 2

02z  ve 
22

1
2

1 1( )k
σ λσ

λ λ
−

+
 pozitiftir ama 

2 2 2
22 2
22 2

2 2( ) ( )
k

k k
σ λ α

α
λ λ

+ −
+ +

 ifadesinin işareti 2
2α nin değerine bağlıdır. Eğer 

 

 
2

2
2

2 2k
σ

α
λ

<
+

 (2.28) 

 

ise (2.27) ile verilen ifade elde edilir. Ancak eğer 

 

 
2

2
2

2 2k
σ

α
λ

>
+

 (2.29) 

ise, bu durumda Ridge tahmin edicinin KHKO bakımından TB tahmin edicisine 

üstün olması koşulu  
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2 2 2 2 22

202 1 2 2
22 2 22

1 1 2 201 ( ) ( ) ( )
z k

k k kz
σ λ σ λ ασ

α
λ λ λ λ

   
> − + −   + + +   

. (2.30) 

 

halini alacaktır. (2.29) ile verilen koşul altında (2.30) un sol tarafı daima pozitif, sağ 

tarafı da daima negatif olduğundan, Ridge tahmin edici KHKO bakımından daima 

TB tahmin edicisinden üstün olacaktır. (2.28) ile verilen koşul altında ise R TBJ J<  

olması için gerek ve yeter koşul (2.27) nin sağlanmasıdır. Bu nedenle Ridge tahmin 

edicinin KHKO bakımından TB tahmin ediciden üstün olması koşulunun şu şekilde 

ifade edilmesi uygundur: 

Eğer 
2

2
2

2 2k
σ

α
λ

>
+

 ise Ridge tahmin edici KHKO bakımından TB tahmin ediciden 

daima üstündür. Eğer 
2

2
2

2 2k
σ

α
λ

<
+

 ise Ridge tahmin edici KHKO bakımından TB 

tahmin ediciden ancak ve ancak (2.27) koşulu sağlandığı durumunda üstündür. 

 Şimdi, Liu tahmin edicisinin kestirim performansını EKK, TB ve Ridge 

tahmin edicilerinin kestirim performanslarını karşılaştıralım. 

 

Teorem 1:  

a. Eğer  
2 2 2

2 2 2
2 2

2

( 1) ( )
(1 )

d
d

λ λ σ
α

λ
+ − +

< ⋅
−

 ise EKK LiuJ J>  dir.  

b. Eğer  
2 2 2

2 2 2
2 2

2

( 1) ( )
(1 )

d
d

λ λ σ
α

λ
+ − +

> ⋅
−

 ise EKK LiuJ J>  olması için gerek ve yeter 

koşul  
2 2 2 2 2 2 22 2
02 1 2 2

2 2 22
1 1 1 2 2 2 201

( ) ( ) (1 )
( 1) ( 1) ( 1)

z d d d
z

σ λ σ λ ασ σ
λ λ λ λ λ λ λ

   + + −
< − + −   + + +   

 olmasıdır. 

 

İspat: Liu tahmin edicisi KHKO bakımından EKK tahmin edicisinden daha iyi ise  

EKK LiuJ J>  olur. İki boyutlu uzayda açık olarak yazılmış hali 
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2 2 2 2
2 01 02

1 2

2 2 2 2 2 2 2 2 2
2 01 1 02 2 02 2

2 2 2
1 1 2 2 2

( ) ( ) (1 )
( 1) ( 1) ( 1)

z z

z d z d d z

σ σ
σ

λ λ

σ λ σ λ α
σ

λ λ λ λ λ

+ + >

+ + −
+ + +

+ + +

 (2.31) 

 

dir. Bu eşitsizlikten   

 

 
2 2 2 2 2 22 2

2 21 2 2
01 022 2 2

1 1 1 2 2 2 2

( ) ( ) (1 )
( 1) ( 1) ( 1)

d d dz zσ λ σ λ ασ σ
λ λ λ λ λ λ λ

   + + −
− > + −   + + +   

 (2.32) 

elde edilir. Burada 2
01z , 2

02z  ve 
2 22

1
2

1 1 1

( )
( 1)

dσ λσ
λ λ λ

+
−

+
 pozitiftir ancak,  

2 2 2 2 2
2 2

2 2
2 2 2 2

( ) (1 )
( 1) ( 1)

d dσ λ α σ
λ λ λ λ

+ −
+ −

+ +
 ifadesinin işareti 2

2α ’nin değerine bağlıdır.  

 

 
2 2 2 2 2 22 2

1 2 2
2 2 2

1 1 1 2 2 2 2

( ) ( ) (1 )
( 1) ( 1) ( 1)

d d dσ λ σ λ ασ σ
λ λ λ λ λ λ λ

   + + −
− + −   + + +   

 (2.33) 

 

ifadesini 2
2α ’nin bir fonksiyonu olarak tanımlayalım ve bu fonksiyonu 2

1 2( )f α  ile 

gösterelim. 2
1 2( )f α  fonksiyonu  

 

 
2 2 2 2 2

2 2
2 2

2 2 2 2

( ) (1 ) 0
( 1) ( 1)

d dσ λ α σ
λ λ λ λ

+ −
+ − =

+ +
 (2.34) 

  

noktasında düşey asimptota sahiptir. Bu eşitlikten 2
1 2( )f α  fonksiyonunu tanımsız 

yapan 2
2α  değeri 
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2 2 2

2 2 2
2 2

2

( 1) ( )
(1 )

d
d

λ λ σ
α

λ
+ − +

= ⋅
−

 (2.35) 

 

olarak elde edilir. Böylece,  

a. eğer 

 

 
2 2 2

2 2 2
2 2

2

( 1) ( )
(1 )

d
d

λ λ σ
α

λ
+ − +

< ⋅
−

 (2.36) 

 

ise 

 

 
2

202
1 22

01

( )z f
z

α>  (2.37) 

 

eşitsizliği elde edilir. 2 2
02 01z z  daima pozitif olduğundan ve (2.36) ile verilen koşul 

için 2
1 2( )f α  daima negatif olduğundan Liu tahmin edicisi EKK tahmin edicisinden 

üstündür.  

 

b. Eğer  

 

 
2 2 2

2 2 2
2 2

2

( 1) ( )
(1 )

d
d

λ λ σ
α

λ
+ − +

> ⋅
−

 (2.38) 

 

ise, 

 

 
2

202
1 22

01

( )z f
z

α<  (2.39) 
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eşitsizliği elde edilir. (2.38) ile verilen koşul altında 2
1 2( )f α  pozitif olduğundan, 

ancak (2.39) sağlandığı durumda Liu tahmin edicisi EKK tahmin edicisinden 

üstündür. 

 

Teorem 2:  

a. Eğer 
2 2

2 2
2 2 2

2 2

( )
( 1) (1 )

d
d

λ σ
α

λ λ
+

< ⋅
+ − −

 ise TB LiuJ J>  dir.  

b. Eğer 
2 2

2 2
2 2 2

2 2

( )
( 1) (1 )

d
d

λ σ
α

λ λ
+

> ⋅
+ − −

 ise TB LiuJ J>  olması için gerek ve yeter 

koşul 
2 2 2 2 2 2 22

202 1 2 2
22 2 22

1 1 1 2 2 201

( ) ( ) (1 )
( 1) ( 1) ( 1)

z d d d
z

σ λ σ λ ασ
α

λ λ λ λ λ λ
   + + −

< − + −   + + +   
 olmasıdır. 

 

İspat: : Liu tahmin edicisi KHKO bakımından TB tahmin edicisinden daha iyi ise  

TB LiuJ J>  olur. Bu, 

 

 

2 2
2 2 201

02 2
1

2 2 2 2 2 2 2 2 2
2 01 1 02 2 02 2

2 2 2
1 1 2 2 2

( ) ( ) (1 )
( 1) ( 1) ( 1)

z z

z d z d d z

σ
σ α

λ

σ λ σ λ α
σ

λ λ λ λ λ

+ + >

+ + −
+ + +

+ + +

 (2.40) 

 

olmasını gerektirir. Bu ifade yeniden düzenlenirse  

 

 
2 2 2 2 2 22

2 2 21 2 2
01 02 22 2 2

1 1 1 2 2 2

( ) ( ) (1 )
( 1) ( 1) ( 1)

d d dz zσ λ σ λ ασ
α

λ λ λ λ λ λ
   + + −

− > + −   + + +   
 (2.41) 

 

elde edilir. Bu eşitsizlikte, 
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2 2 2 2

22 2
22 2

2 2 2

( ) (1 )
( 1) ( 1)

d dσ λ α
α

λ λ λ
+ −

+ −
+ +

 (2.42) 

 

dışındaki çarpanlar pozitiftir. (2.42) ile verilen çarpanın işareti ise 2
2α ’nin değerine 

bağlıdır.  

 

 
2 2 2 2 2 22

21 2 2
22 2 2

1 1 1 2 2 2

( ) ( ) (1 )
( 1) ( 1) ( 1)

d d dσ λ σ λ ασ
α

λ λ λ λ λ λ
   + + −

− + −   + + +   
 (2.43) 

ifadesi 2
2α ’nin bir fonksiyonu olarak tanımlansın ve 2

2 2( )f α  ile gösterilsin. Bu 

fonksiyon,  

 

 
2 2

2 2
2 2 2

2 2

( )
( 1) (1 )

d
d

λ σ
α

λ λ
+

= ⋅
+ − −

 (2.44) 

 

noktasında düşey asimptota sahiptir. Böylece,  

a. Eğer 

 

 
2 2

2 2
2 2 2

2 2

( )
( 1) (1 )

d
d

λ σ
α

λ λ
+

< ⋅
+ − −

 (2.45) 

ise 

 

 
2

202
2 22

01

( )z f
z

α>  (2.46) 

 



2. LİU TAHMİN EDİCİNİN KESTİRİM PERFORMANSININ 
DEĞERLENDİRİLMESİ                                                                          Fela ÖZBEY 
 

 20 

olur. 2
2 2( )f α , (2.45) ile verilen koşul altında daima negatif olduğundan (2.46) ile 

verilen koşul daima sağlanmaktadır. Sonuç olarak, bu alanda Liu tahmin edicisi TB 

tahmin edicisinden daima üstündür. 

b. Eğer 

 

 
2 2

2 2
2 2 2

2 2

( )
( 1) (1 )

d
d

λ σ
α

λ λ
+

> ⋅
+ − −

 (2.47) 

 

ise 

 

 
2

202
2 22

01

( )z f
z

α<  (2.48) 

 

eşitsizliği elde edilir. 2
2 2( )f α , (2.47) ile verilen koşul altında daima pozitif 

olduğundan, ancak  (2.48) ile verilen koşul sağlandığı durumlarda Liu tahmin edicisi 

TB tahmin edicisinden daha iyidir. 

 

Teorem 3: 

a. Eğer 
2 2 2 2 2

2 2 2 2 2
2 2 2 2 2

2 2 2

( 1) ( ) ( )
(1 ) ( ) ( 1)

k d
d k k

λ λ λ λ σ
α

λ λ λ
+ − + +

< ⋅
− + − +

 ise 

 

i. 2 2 2 2
1 1 1 1( 1) ( ) ( )d kλ λ λ λ+ > + +  için R LiuJ J>  dir. 

ii. 2 2 2 2
1 1 1 1( 1) ( ) ( )d kλ λ λ λ+ < + +  için ancak ve ancak 2 2 2

02 01 3 2( )z z f α< ise 

R LiuJ J>  dir. 

 

b.  Eğer 
2 2 2 2 2

2 2 2 2 2
2 2 2 2 2

2 2 2

( 1) ( ) ( )
(1 ) ( ) ( 1)

k d
d k k

λ λ λ λ σ
α

λ λ λ
+ − + +

> ⋅
− + − +

ise 
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i. 2 2 2 2
1 1 1 1( 1) ( ) ( )d kλ λ λ λ+ < + +  için R LiuJ J>  dir. 

ii. 2 2 2 2
1 1 1 1( 1) ( ) ( )d kλ λ λ λ+ > + +  için ancak ve ancak 2 2 2

02 01 3 2( )z z f α< ise 

R LiuJ J>  dir. 

 

Burada  

 

 

2 2 2
1 1

2 2
2 1 1 1

3 2 2 2 2 2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2 2

( )
( ) ( 1)( )

( ) (1 )
( 1) ( 1) ( ) ( )

d
kf

d d k
k k

σ λ σ λ
λ λ λ

α
σ λ α σ λ α
λ λ λ λ λ

+−
+ +

=
+ −

+ − −
+ + + +

. (2.49) 

İspat: : Liu tahmin edicisi KHKO bakımından Ridge tahmin edicisinden daha iyi ise  

R LiuJ J>  olur. Yani, 

 

 

2 2 2 2 2 2 2
2 01 1 02 2 02 2

2 2 2
1 2 2

2 2 2 2 2 2 2 2 2
2 01 1 02 2 02 2

2 2 2
1 1 2 2 2

( ) ( ) ( )

( ) ( ) (1 ) .
( 1) ( 1) ( 1)

z z k z
k k k

z d z d d z

σ λ σ λ α
σ

λ λ λ

σ λ σ λ α
σ

λ λ λ λ λ

+ + + >
+ + +

+ + −
+ + +

+ + +

 (2.50) 

 

Bu eşitsizlik yeniden düzenlendiğinde 

 
2 2 2

2 1 1
01 2 2

1 1 1

2 2 2 2 2 2 2
2 2 2 2 2
02 2 2 2 2

2 2 2 2 2

( )
( ) ( 1)

( ) (1 )
( 1) ( 1) ( ) ( )

dz
k

d d kz
k k

σ λ σ λ
λ λ λ

σ λ α σ λ α
λ λ λ λ λ

 +
− > + + 

 + −
+ − − + + + + 

 (2.51) 

 

elde edilir. Eğer   

 



2. LİU TAHMİN EDİCİNİN KESTİRİM PERFORMANSININ 
DEĞERLENDİRİLMESİ                                                                          Fela ÖZBEY 
 

 22 

 
2 2 2

1 1
2 2

1 1 1

( )
( ) ( 1)

d
k

σ λ σ λ
λ λ λ

+
−

+ +
 (2.52) 

 

ve 

 

 

 
2 2 2 2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2 2

( ) (1 )
( 1) ( 1) ( ) ( )

d d k
k k

σ λ α σ λ α
λ λ λ λ λ

+ −
+ − −

+ + + +
 (2.53) 

 

 

aynı işarete sahipse, Liu tahmin edicinin Ridge tahmin ediciden daha iyi olmasının 

koşulu 

 

 
2

202
3 22

01

( )z f
z

α<  (2.54) 

 

olur. Eğer (2.52) ve (2.53) zıt işaretlere sahipse, Liu tahmin edicinin Ridge tahmin 

ediciden daha iyi olmasının koşulu 

  

 
2

202
3 22

01

( )z f
z

α>  (2.55) 

 

dır. Eğer  (2.52) ve (2.53) zıt işaretlere sahipse (2.55)’in sağ tarafının negatif olacağı 

açıktır. Böylece (2.55) daima sağlanır. Sonuç olarak, bu alanda Liu tahmin edici 

Ridge tahmni ediciden daima üstündür. 

(2.52)’nin pozitif olma koşulu   

 

 
2 2 2

1 1
2 2

1 1 1

( ) 0
( ) ( 1)

d
k

σ λ σ λ
λ λ λ

+
− >

+ +
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olmasıdır. Bu da 

 

 2 2 2 2
1 1 1 1( 1) ( ) ( )d kλ λ λ λ+ > + +  (2.56) 

 

şeklinde yazılabilir. (2.53)’ün pozitif olma koşulu ise  

 

 
2 2 2 2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2 2

( ) (1 ) 0
( 1) ( 1) ( ) ( )

d d k
k k

σ λ α σ λ α
λ λ λ λ λ

+ −
+ − − >

+ + + +
 

 

olmasıdır. Ya da denk olarak 

 

 
2 2 2 2 2

2 2 2 2 2
2 2 2 2 2

2 2 2

( 1) ( ) ( )
(1 ) ( ) ( 1)

k d
d k k

λ λ λ λ σ
α

λ λ λ
+ − + +

> ⋅
− + − +

 (2.57) 

 

olmasıdır. (2.52) ve (2.53)’ün negatif olmaları için tam tersi koşulların sağlanması 

gerekmektedir. 2
3 2( )f α  hiperbolünün düşey asimptotu  

 

 
2 2 2 2 2

2 2 2 2 2
2 2 2 2 2

2 2 2

( 1) ( ) ( )
(1 ) ( ) ( 1)

k d
d k k

λ λ λ λ σ
α

λ λ λ
+ − + +

= ⋅
− + − +

 (2.58) 

 

noktasından geçmektedir. 
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2.4. Sayısal Örnek 

 

Burada, önceki bölümde elde edilen teorik sonuçlar, Friedman ve 

Montgomery (1985) tarafından verilen sayısal örnek kullanılarak  (yani, 0.1k =  ve 

12 0.95r = ) gösterilmeye çalışılacaktır. Ridge tahmin ediciyle aynı yanlılığa sahip 

olması için Liu tahmin edicinin yanlılık parametresi 0.9d =  olarak seçilmiştir. Bu 

şekilde, iki tahmin edicinin eşit koşullar altında karşılaştırması hedeflenmiştir.  

İlk olarak Liu tahmin edicinin kestirim performansını EKK tahmin edicinin 

kestirim performansı ile karşılaştıralım. (2.33) ten  

  

 2
1 2 2

2

0.034178( )
0.00907 3.6281

f α
α

=
−

 (2.59) 

 

elde edilir. Bu fonksiyon, düşey asiptotu  

 

 2
2 400α =  (2.60) 

noktasından geçen bir hiperboldür. Hem 2 2
02 01z z  hem de 2

2α  pozitif değerler 

olduğundan, fonksiyonun sadece I. Bölge’de yer alan kısmı ile ilgilenmekteyiz. Şekil 

2.1. tahmin edicilerin KHKO bakımından birbirine göre üstün oldukları bölgeleri 

göstermektedir. Şekilde görüldüğü gibi, bu örnekte 2
2 400α =  noktasına kadar Liu 

tahmin edici EKK tahmin ediciye göre daima üstündür. Bu noktadan sonra ise hangi 

tahmin edicinin üstün olduğu  2
1 2( )f α  foksiyonuna bağlıdır. 2 2

02 01z z  oranının küçük 

değerleri için Liu tahmin edici EKK tahmin ediciye kıyasla KHKO bakımından 

üstündür. Friedman ve Montgomery (1985) nin de belirttiği gibi 2 2
02 01z z  oranı 

kestirilecek değerlerin alt uzayını belirlemektedir, dolayısıyla özel bir öneme 

sahiptir. Bu oranın küçük değerleri, temel bileşene bağımlılığı işaret etmektedir. 
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Şekil 2.1. Liu ve EKK tahmin edicilerin KHKO’larının karşılaştırılması 
  

 Aynı örnek için Liu ve TB tahmin edicilerinin KHKO kriterine göre kestirim 

performanslarını değerlendirelim. (2.43) ten  

 

 2
2 2 2

2

0.034178( )
16.372 0.99093

f α
α

=
−

 (2.61) 

 

fonksiyonu elde edilir. Bu fonksiyonun düşey asimptotu 

 

 2
2 16.522α =  (2.62) 

 

noktasından geçmektedir. Şekil 2.2., Liu ve TB tahmin edicilerin KHKO kriterine 

göre üstün oldukları bölgeleri göstermektedir. 2
2α nin 16.522’den büyük değerleri 

için Liu tahmin edici TB tahmin ediciye göre daima üstündür. 2
2α nin 16.522’den 

küçük değerleri için ise hangi tahmin edicinin üstün olduğu 2 2
02 01z z oranının değerine 

bağlıdır. Eğer 2 2
02 01z z oranının değeri 2f nin değerinden küçükse Liu tahmin edici TB 
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Şekil 2.2. Liu ve TB tahmin edicilerin KHKO’larının karşılaştırılması 
 

tahmin ediciden üstündür. 2 2
02 01z z  oranının değeri 2f nin değerinden büyükse TB 

tahmin edici Liu tahmin ediciden üstündür. 

 Son olarak Liu tahmin edici ile Ridge tahmin ediciyi KHKO bakımından 

karşılaştıralım. (2.49) dan 2
2α nin fonksiyonu 

 

 2
3 2 2

2

0.014633( )
0.43537 14.150

f α
α

=
−

 (2.63) 

 

olarak elde edilir. Düşey asimptot  

 

 2
2 32.5α =  (2.64) 

 

noktasından geçmektedir. Şekil 2.3. te Liu ve Ridge tahmin edicilerin 

karşılaştırılması görülmektedir. 2
2α nin 32.5 ten küçük değerleri için Liu tahmin edici 
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Ridge tahmin ediciye göre daima üstündür. 2
2α nin 32.5 ten büyük değerleri için ise 

Liu ve Ridge tahmin edicileri arasında geçişler vardır. 2 2
02 01z z  oranının değeri 3f  

fonksiyonunun değerinden küçükse Liu tahmin edicinin kestirimi Ridge tahmin 

edicinin kestiriminden daha iyidir. 2 2
02 01z z  oranının değeri 3f  fonksiyonunun 

değerinden büyük olduğu durumlarda ise Ridge tahmin edicinin kestirim performansı 

Liu tahmin edicinin kestirim performansından daha iyidir. 

 

 
Şekil 2.3. Liu ve Ridge tahmin edicilerin KHKO’larının karşılaştırılması 
 

 Yukarıda elde edilen sonuçlar, Liu tahmin edicinin diğer üç tahmin ediciye 

göre üstün olduğu bir bölgenin belirlenebileceğini göstermektedir. Verilen örnekte 

bu alan, 2 2
02 01z z  oranının tüm değerleri ile 2

2α  nin [16.522, 32.5]  aralığındaki 

değerleri arasında kalan bölgedir. 

 

2.5. Sonuç 

 

Bu bölümde Liu tahmin edicinin EKK, TB ve Ridge tahmin edicilerine 

kıyasla kestirim performansı değerlendirilmiştir. Bu tahmin ediciler arasındaki 
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karşılaştırmalar, iki boyutlu açıklayıcı değişkenler uzayında belirli bir noktadaki 

KHKO cinsindendir. 

İlk olarak Friedman ve Montgomery (1985) tarafından yapılan bazı 

karşılaştırmalara değinilmiş ve bu karşılaştırmalar üzerine bazı yorumlar 

getirilmiştir. Daha sonra Friedman ve Montgomery’nin yaklaşımı kullanılarak, Liu 

tahmin edicinin kestirim performansı EKK, TB ve Ridge tahmin edicilerinin kestirim 

performansları ile karşılaştırılmıştır. Bu bağlamda, öncelikle Liu tahmin edicinin 

KHKO’su elde edilmiş ve devamında üç teorem verilmiştir. 

Elde edilen teorik sonuçlar sayısal bir örnek üzerinde gösterilmiş ve adı geçen 

tahmin edicilerin üstün olduğu bölgeler belirlenmiştir. Hangi tahmin edicinin daha 

etkili olacağını belirleyen etkenlerden biri 2
2α nin değerleridir. Örneğin, EKK tahmin 

edicisi ancak 2
2α  çok büyük değerler aldığında etkilidir. Bu tahmin edicilerin etkili 

oluşlarını belirleyen diğer etken ise kestirilecek noktanın konumudur. Eğer kestirim, 

daha istikrarlı regresör yönünde ise bu durumda TB tahmin edicisi tercih edilebilir. 

Dolayısıyla, tahmin edicinin seçimi kestirilecek noktanın konumuna bağlı olduğu 

gibi, çoklu iç ilişkinin derecesine de bağlıdır.   

 Verilen sayısal örnekte, Liu tahmin edicinin EKK, TB ve Ridge tahmin 

edicilerinden daima üstün olduğu bir bölge belirlenmiştir. Bu, böyle bir alanın 

belirlenmesinin teorik olarak mümkün olduğunu göstermektedir. 
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3. r-k VE r-d SINIF TAHMİN EDİCİLERİN KESTİRİM 

PERFORMANSLARININ İYİLEŞTİRİLMESİ  

 

EKK tahmin edicisine alternatif olarak tanımlanan yanlı tahmin edicilerden 

ikisi de r-k ve r-d sınıf tahmin edicileridir. Bunların hata kareleri ortalaması (HKO) 

kriterine göre karşılaştırılmaları literatürde ele alınmıştır. Bu bölümde, birbirine 

alternatif bazı yanlı tahmin edicilerin, yanlılık parametrelerinin PRESS istatistiğini 

minimize edecek şekilde seçimi önerilmiştir. Daha sonra bu tahmin edicilerin 

kestirim performansları bir veri seti yardımıyla karşılaştırılmıştır.  

 

3.1. Giriş 

 

 Daha önce de belirtildiği gibi çoklu iç ilişkinin ortaya çıkardığı sorunlarla baş 

etmek için EKK tahmin edicisine alternatif bazı yanlı tahmin ediciler önerilmiştir. 

Bir sonraki alt bölümde bu tahmin edicilerden bazıları ele alınacaktır.  

Yanlı tahmin edicilerdeki yanlılık parametreleri, amaca uygun olarak, 

katsayıların tahmininde bir gelişme veya kestirimlerde bir iyileşme olacak şekilde 

seçilebilir. Tahminin iyiliği, genellikle, hata kareleri toplamı (HKT) veya HKO 

kriterleri ile ölçülür. Mümkün olduğunca iyi parametre tahminleri elde edilmek 

istenildiğinde, çoğunlukla, yanlılık parametresi HKO istatistiğini minimum yapacak 

şekilde seçilir. Literatürde pC  istatistiğinin minimizasyonu da önerilmektedir (bkz. 

Mallows, 1973 ve Liu, 1993). Ancak amaç, kestirim olduğunda, yanlılık 

parametresinin kestirim iyiliğini ölçen kriterlerden birini minimum yapacak şekilde 

seçilmesi daha uygun olur. Kestirim iyiliğinin ölçümünde kullanılan en yaygın 

kriterlerden biri, Allen (1971, 1974) tarafından önerilen ve PRESS olarak da bilinen 

CV (Cross-Validation) istatistiğidir. Bir diğeri ise Golub ve diğerleri (1979) 

tarafından önerilen GCV (Generalized Cross-Validation) istatistiğidir. GCV 

istatistiği, CV istatistiğinin rotasyona duyarsızlaştırılmış formudur. Bu kriterler, 

tanımlarında bilinmeyen parametreler içermediklerinden uygulamalarda kullanımları 

avantaj sağlar.  Ancak, r-k ve r-d sınıf tahmin edicilerinde rotasyonun etkisi 
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önemlidir. Bu nedenle, bu tahmin edicilerde PRESS istatistiği daha uygun bir 

kriterdir.  

Bir tahmin edicinin PRESS istatistiği ne kadar küçükse kestirim performansı 

o derece iyidir. Montgomery ve Friedman (1993) Ridge tahmin edicisinin yanlılık 

parametresi k  nın seçiminde PRESS istatistiğini önermişlerdir. Benzer şekilde 

Özkale ve Kaçıranlar (2007), ridge tahmin edicisine alternatif olarak tanımlanan, Liu 

tahmin edicisinin yanlılık parametresi d  nin seçiminde bu yöntemi önermişlerdir. 

Baye ve Parker (1984) özel durumlarda EKK, ridge tahmin edici ve temel 

bileşenler (TB) tahmin ediciyi veren r-k sınıf tahmin ediciyi tanımlamışlardır. r-k 

sınıf tahmin edicinin, temel bileşenlerden daha küçük HKO değerine sahip olduğunu 

göstermişlerdir. Bu tahmin edicinin performansı farklı kriterlere göre Nomura ve 

Ohkubo (1985), Sarkar (1989), Sarkar (1996) ve Özkale ve Kaçıranlar (2008) de ele 

alınmıştır. Benzer şekilde, Kaçıranlar ve Sakallıoğlu (2001) özel durumlarda EKK, 

Liu tahmin edici ve TB tahmin ediciyi veren r-d sınıf tahmin ediciyi 

tanımlamışlardır. r-d sınıf tahmin edicinin, HKO yönünden, EKK, TB ve Liu tahmin 

edicilerinden daha iyi olduğu Kaçıranlar ve Sakallıoğlu (2001) tarafından 

gösterilmiştir.  

r-k ve r-d sınıf tahmin edicilerinin HKO istatistikleri minimize edildiğinde, 

diğer tahmin edicilere göre daha iyi tahmin performansı gösterdiği literatürdeki 

çalışmalarda ele alınmıştır. Biz bu çalışmada, bu tahmin edicilerin PRESS 

istatistiklerini minimize ederek, daha iyi kestirim performansı verecek şekilde 

yanlılık parametrelerinin seçimlerini ele alacağız. 

 

3.2. Tahmin Ediciler ve PRESS İstatistikleri  

 

 Allen (1971,1974) tarafından önerilen PRESS istatistiği 

 

 
2

2
( )

1 1
PRESS

1

n n
i

i
i i ii

ee
h= =

 
= =  − 

∑ ∑  (3.1)  
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şeklinde tanımlanmaktadır. Burada ( )ie , .i gözlem değeri iy  ile .i gözlem silinerek 

geriye kalan  1n −  gözlemden elde edilen parametre tahminleri ( ( )
ˆ

iβ ) kullanılarak 

yapılan .i gözlem tahmini ( ( )ˆ iy ) arasındaki farktır: 

 

 ( ) ( ) ( )
ˆˆ .i i i i i ie y y y ′= − = − x β  (3.2) 

 

ie  , .i  gözleme karşılık gelen hata terimi ve iih  , şapka matrisinin .i  köşegen 

elemanıdır.  

PRESS istatistiğini minimize edecek şekilde yanlılık parametreleri seçilerek 

Ridge, Liu, r-k sınıf ve r-d sınıf tahmin ediciler karşılaştırılacaktır. Ayrıca bu tahmin 

ediciler EKK ve TB tahmin edicileri ile de karşılaştırılacaktır. 

 (2.1) ile verilen çoklu doğrusal regresyon modelinin EKK tahmin edicisi  

(2.2) ile verilmiştir. EKK tahmin edicisi için PRESS istatistiği: 

 

 
2

1
1

ˆ
PRESS

1 ( )

n
i i EKK

EKK
i i i

y
−

=

 ′−
=  ′ ′− 

∑ x β
x X X x

 (3.3) 

 

olarak tanımlanır. (2.3) ile verilen TB tahmin edicinin PRESS istatistiği ise aşağıdaki 

gibi tanımlanır: 

 

 
2

1
1

ˆ
PRESS .

1 ( )

n
i ri TB

TB
i ri r r ri

y
−

=

 ′−
=  ′ ′− 

∑ z α
z Z Z z

 (3.4) 

  

(2.4) ile tanımlanan Ridge tahmin edicinin PRESS istatistiği Montgomery ve 

Friedman (1993) tarafından 
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2

1
1

ˆ
PRESS

1 ( )

n
i i R

R
i i i

y
k −

=

 ′−
=  ′ ′− + 

∑ x β
x X X I x

 (3.5)  

 

şeklinde tanımlanmıştır.  

 Baye ve Parker (1984)’ün ridge ve temel bileşenler tahmin edicilerini 

birleştirerek önerdiği r k−  sınıf tahmin edicisi: 

  

 ( ) 1ˆ ,   0r k r r r r rk k−
− ′ ′= + ≥β T Z Z I Z y  (3.6) 

 

dir. Burada k   yanlılık parametresidir. Bu tahmin edicinin PRESS istatistiği: 

 

 
2

1
1

ˆ
PRESS

1 ( )

n
i ri r k

r k
i ri r r r ri

y
k
−

− −
=

 ′−
=  ′ ′− + 

∑ z α
z Z Z I z

 (3.7)  

 

olarak elde edilir.  Burada ˆ r k−α , ( ) 1ˆ r k r r r rk −
− ′ ′= +α Z Z I Z y  ile elde edilen r k−  sınıf 

tahmin edicisinin kanonik formudur. riz , rZ  matrisinin .i satırından oluşan 

vektördür.  

  Liu (1993)’ün, Stein tahmin edici ile ridge tahmin ediciyi birleştirerek 

önerdiği ve Akdeniz ve Kaçıranlar (1995) tarafından Linear Unified (Liu) olarak 

adlandırılan tahmin edici (2.5) ile tanımlanmıştır. Bu tahmin edicinin PRESS 

istatistiği: 

 

 
2

1 1
1

ˆ
PRESS

1 ( ) ( )( )

n
i i Liu

Liu
i i i

y
d− −

=

 ′−
=  ′ ′ ′ ′− + + 

∑ x β
x X X I X X I X X x

 (3.8) 
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ile elde edilir (Özkale ve Kaçıranlar (2007)). 

 r-k sınıf tahmin ediciye alternatif olarak, Kaçıranlar ve Sakallıoğlu (2001)’in 

Liu ve temel bileşenler tahmin edicileri birleştirerek önerdiği r-d sınıf tahmin edicisi: 

 

 ( ) 1ˆ ˆ( ) ,r d r r r r r TBd d−
− ′ ′= + + − ∞ < < ∞β T Z Z I Z y α  (3.9) 

 

olarak tanımlanır. Bu tahmin edicinin PRESS istatistiği: 

 

 
2

1 1
1

ˆ
PRESS

1 ( ) ( )( )

n
i ri r d

r d
i rrii r r r r r r r r ri

y
d

−
− − −

=

 ′−
=  ′ ′ ′ ′− + + 

∑ z α
z Z Z I Z Z I Z Z z

 (3.10) 

 

şeklinde tanımlanır. 

 

3.3. Sayısal Örnek 

 

Bu uygulamada kullanılan yanlı tahmin edicilerin yanlılık parametreleri, 

modelin hem HKO istatistiği hem de PRESS istatistiği minimize olacak şekilde 

hesaplanacak ve PRESS istatistiğindeki iyileşme gözlenecektir. Her tahmin edici için 

mümkün olan en küçük PRESS istatistiği elde edildikten sonra da bu PRESS 

istatistikleri kendi aralarında karşılaştırılarak, o veri seti için en iyi tahmini veren 

tahmin edici seçilecektir.  

 

3.3.1. Mil Başına Benzin Tüketimi Veri Seti 

 

Kullanılacak veri seti Montgomery ve Friedman (1993)’dan alınan Mil 

Başına Benzin Tüketimi verisidir. Burada y  arabaların mil başına harcadıkları 

benzin, 1x  toplam silindir hacmi, 2x  beygir gücü, 3x  tork, 4x  kompresyon oranı, 5x  

arka aks oranı, 6x  karbüratör büyüklüğü, 7x  vites sayısı, 8x  arabanın uzunluğu, 

9x arabanın genişliği, 10x  arabanın ağırlığı ve 11x  vites tipidir.  
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Tablo 3.1. Mil Başına Benzin Tüketimi verisi 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hesaplamalara başlamadan önce değişkenler standartlaştırılmıştır. ′X X  

matrisinin özdeğerleri 1   7.8929λ = , 2 1.4237λ = , 3 0.8371λ = , 4 0.3934λ = , 

5 0.1652λ = , 6 0.1373λ = , 7 0.0650λ = , 8 0.0472λ = , 9 0.0265λ = , 10 0.0108λ = , 

11 0.0009λ = dur. Koşul sayısı 1

11
8769.9λ

λκ = ≅  çoklu doğrusal bağlantının olduğunu 

gösterir.  

y 1x  2x  3x  4x    5x  6x  7x  8x  9x  10x  11x  

19.73   

11.20  

18.25  

21.47  

20.30  

36.50   

18.90   

30.40  

13.90   

14.89   

21.50   

17.80   

17.80   

16.41   

23.54  

31.90   

14.39   

22.12   

17.00   

20.00 

318.0  

440.0 

351.0  

360.0 

140.0 

85.3  

350.0 

96.9  

351.0 

440.0 

171.0 

302.0 

350.0 

318.0 

231.0 

96.9  

500.0 

231.0 

350.0 

250.0 

140  

215 

143 

180 

83 

80 

165 

75 

148 

215 

109 

129 

155 

145 

110 

75 

190 

110 

170 

105 

255 

330 

255 

290  

109 

83  

260 

83 

243 

330 

146 

220 

250 

255 

175 

83 

360 

175 

275 

185 

8.5 

8.2 

8.0 

8.4 

8.4  

8.5  

8.0 

9.0 

8.0  

8.2  

8.2 

8.0 

8.5  

8.5  

8.0 

9.0 

8.5  

8.0 

8.5  

8.25 

2.71  

2.88 

3.00 

2.45 

3.40  

3.89  

2.56  

4.30  

3.25  

2.71  

3.22  

3.00 

3.08  

2.45  

2.56  

4.30  

2.73  

2.56  

2.56  

2.73 

2  

4 

2 

2 

2 

2 

4 

2 

2 

4 

2 

2 

4 

2 

2 

2 

4 

2 

4 

1 

3  

3 

3 

3 

4 

4 

3 

5 

3 

3 

4 

3 

3  

3 

3 

5 

3 

3 

3 

3 

215.3  

184.5 

199.9 

214.2 

168.8  

160.6  

200.3 

165.2  

215.5 

231.0 

170.4  

199.9  

196.7  

197.6  

179.3  

165.2  

224.1  

179.3  

199.6  

196.7 

76.3 

69.0  

74.0 

76.3 

69.4  

62.2  

69.9  

65.0  

78.5  

79.7  

66.9  

74.0  

72.2  

71.0 

65.4  

61.8  

79.8  

65.4  

72.9  

72.2 

4370 

4215 

3890 

4250 

2700 

2009 

3910 

2320 

4540 

5185 

2655 

3890 

3910  

3660 

3050  

2275 

5290  

3020 

2860 

3510 

1 

1 

1 

1 

0  

0 

1   

0  

1   

1 

0 

1 

1 

1      

1      

0     

1 

1 

1  

1 
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Tablo 3.2a. Mil Başına Benzin Tüketimi veri seti için Ridge, r-k sınıf, EKK ve TB 
                   tahmin edicileri ile tahmin edilen regresyon modeli için parametre  
                   tahminleri, 2R , HKT, HKO( β̂ ) ve PRESS istatistikleri 
 Ridge r-k sınıf EKK TB 

ˆ

0.0033
HKOk =  

ˆ

0.9784
PRESSk =  

ˆ

1.0689
HKOk =  

ˆ

0.2121
PRESSk =    

1̂β   -0.6886 -0.1203 -0.0917 -0.1008 -1.5741 -0.1032 

2β̂     -0.1436 -0.0920 -0.0846 -0.0925 -0.4580 -0.0946 

3β̂     0.3460 -0.1032 -0.0911 -0.1001   1.4987 -0.1025 

4β̂      0.1643   0.0960 0.0550 0.0632   0.0839 0.0660 

5β̂      0.4508   0.0782 0.0811 0.0911   0.6251 0.0942 

6β̂     -0.0875 -0.0560 -0.0465 -0.0493 -0.0240 -0.0497 

7β̂     -0.5611   0.0735 0.0882 0.0989 -0.6516   0.1022 

8β̂     1.4341 -0.0275 -0.0859 -0.0946   1.5734 -0.0969 

9β̂     -1.2398 -0.1115 -0.0796 -0.0875 -1.3603 -0.0897 

10β̂     -0.2168 -0.0900 -0.0865 -0.0951 -0.1897 -0.0974 

11β̂     -0.5021 -0.0576 -0.0874 -0.0976 -0.5389 -0.1007 

2R  0.8969 0.7437 0.7240 0.7340 0.9020 0.7346 

HKT 0.1031 0.2563 0.2760 0.2660 0.0980 0.2654 

HKO( β̂ ) 4.2919 10.0167 10.3209 10.3232 14.6368 10.3250 

PRESS 0.36054 0.3488 0.3263 0.3168 0.7102 0.3177 

 

 

Veri seti için, adı geçen yanlı tahmin edicilerin yanlılık parametreleri, 

modelin hem HKO istatistikleri hem de PRESS istatistikleri minimize olacak şekilde 

hesaplanmıştır. Sonuçlar Tablo 3.1.2a. ve 3.1.2b.’de verilmiştir. TB, r-k sınıf ve r-d 

sınıf tahmin edicilerde özdeğerleri 1’den büyük olan bileşenler seçilmiştir. Bu 

nedenle bileşen sayısı 2’dir.  
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Tablo 3.2b. Mil Başına Benzin Tüketimi verisi için Liu, r-d sınıf, EKK ve TB tahmin 
                   edicileri ile tahmin edilen regresyon modeli için parametre tahminleri, 
                  2R , HKT, HKO( β̂ )ve PRESS istatistikleri 
 Liu Tahmin Edici r-d sınıf Tahmin 

Edici 

EKK TB 

ˆ

0.4058
HKOd =

−
 

ˆ

0.0633
PRESSd =  

ˆ

0.2993
HKOd =  

ˆ

0.7942
PRESSd =    

1̂β  0.4706 -0.2116 -0.0956 -0.1010 -1.5741 -0.1032 

2β̂  0.0568   -0.1149   -0.0880 -0.0927   -0.4580  -0.0946 

3β̂  -0.7525   -0.0014   -0.0950   -0.1003    1.4987 -0.1025 

4β̂    0.0999    0.0945 0.0587    0.0639    0.0839 0.0660 

5β̂  -0.1440    0.1126 0.0855    0.0916    0.6251 0.0942 

6β̂   -0.0688   -0.0538   -0.0476   -0.0491   -0.0240  -0.0497 

7β̂    0.3678    0.0277 0.0929 0.0995   -0.6516    0.1022 

8β̂  -0.6784    0.0729   -0.0897   -0.0948    1.5734 -0.0969 

9β̂  0.3965   -0.1897   -0.0830   -0.0877   -1.3603 -0.0897 

10β̂   -0.0493   -0.0961   -0.0902   -0.0953   -0.1897 -0.0974 

11β̂    0.1373   -0.0883 -0.0919 -0.0981   -0.5389 -0.1007 

2R  0.5879 0.7625 0.7300 0.7342 0.9020 0.7346 

HKT 0.4121 0.2375 0.2700 0.2658 0.0980 0.2654 

HKO( β̂ ) 5.9931 11.3769 10.3207 10.3213 14.6368 10.3250 

PRESS 0.6440 0.3486 0.3203 0.3171 0.7102 0.3177 

 

 

Tablo 3.2a. ve 3.2b.’den, yanlılık parametreleri PRESS istatistiği minimize 

olacak şekilde seçildiğinde, PRESS istatistiğinin yanı sıra, genel olarak, HKT’lerde 

de küçülme olduğu gözlemlenmektedir.  
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Tablo 3.3. Mil Başına Benzin Tüketimi verisi için EKK, TB ve yanlılık parametreleri 
                 PRESS istatistikleri minimize edilerek seçilen Ridge, r-k sınıf, Liu, r-d  
                 sınıf tahmin edicileri ile tahmin edilen regresyon modeli için parametre  
                 tahminleri, 2R , HKT, HKO( β̂ ) ve PRESS istatistikleri 

 Ridge r-k sınıf Liu r-d sınıf EKK TB 

 ˆ

0.9784
PRESSk =  

ˆ

0.2121
PRESSk =  

ˆ

0.0633
PRESSd =   

ˆ

0.7942
PRESSd =    

1̂β  -0.1203 -0.1008 -0.2116 -0.1010 -1.5741 -0.1032 

2β̂    -0.0920 -0.0925   -0.1149 -0.0927  -0.4580  -0.0946 

3β̂    -0.1032 -0.1001   -0.0014  -0.1003    1.4987 -0.1025 

4β̂     0.0960 0.0632    0.0945    0.0639    0.0839 0.0660 

5β̂     0.0782 0.0911    0.1126    0.0916    0.6251 0.0942 

6β̂    -0.0560 -0.0493   -0.0538  -0.0491  -0.0240  -0.0497 

7β̂     0.0735 0.0989    0.0277 0.0995  -0.6516    0.1022 

8β̂    -0.0275 -0.0946    0.0729  -0.0948    1.5734 -0.0969 

9β̂    -0.1115 -0.0875   -0.1897  -0.0877  -1.3603 -0.0897 

10β̂    -0.0900 -0.0951   -0.0961  -0.0953  -0.1897 -0.0974 

11β̂    -0.0576 -0.0976   -0.0883 -0.0981  -0.5389 -0.1007 

2R  0.7437 0.7340 0.7625 0.7342 0.9020 0.7346 

HKT 0.2563 0.2660 0.2375 0.2658 0.0980 0.2654 

HKO( β̂ ) 10.0167 10.3232 11.3769 10.3213 14.6368 10.3250 

PRESS 0.3488 0.3168 0.3486 0.3171 0.7102 0.3177 

 

Yukarıdaki tablolardan da açıkça görüldüğü gibi EKK tahmin edicisi en kötü 

kestirim performansı sergilemektedir. r-k ve r-d sınıf tahmin edicileri en iyi PRESS 

istatistiklerini vermektedir. TB tahmin edicisi de bu iki tahmin edicininkine yakın bir 

PRESS istatistiği vermektedir.  
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Şekil 3.1a. Mil Başına Benzin Tüketimi verisi için Ridge, Liu, r-d sınıf ve r-k sınıf 
                  tahmin edicilerin yanlılık parametreleri ve onlara karşılık gelen PRESS 
                  istatistikleri. 
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Şekil 3.1b. Mil Başına Benzin Tüketimi verisi için Ridge ve r-k sınıf tahmin 
                  edicilerin yanlılık parametreleri ve onlara karşılık gelen PRESS 
                  istatistikleri. 
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Şekil 3.1c. Mil Başına Benzin Tüketimi verisi için Liu ve r-d sınıf tahmin edicilerin 
                  yanlılık parametreleri ve onlara karşılık gelen PRESS istatistikleri. 

 

Grafikler üzerinde işaretlenen noktalar belirtilen tahmin edicinin PRESS 

istatistiğinin minimim olduğu nokta ve ona karşılık gelen yanlılık parametresi 

değeridir. 

 

3.4. Sonuç  

 

 Montgomery ve Friedman (1993), ridge tahmin edici için, PRESS istatistiği 

minimize edilerek daha iyi kestirim performansı elde edildiğini göstermişlerdir. 

Özkale ve Kaçıranlar (2007), kestirim performansını arttırmak için aynı yöntemi Liu 

tahmin edicisinin yanlılık parametresinin seçiminde önermektedir. Burada biz, en iyi 

kestirim performansını hedeflediğimizde,  r-k sınıf ve r-d sınıf tahmin edicilerde, 

yanlılık parametresinin PRESS istatistiğini minimize edecek şekilde seçilmesinin, bu 

yanlı tahmin edicilerin kestirim performansını iyileştirdiğini göstermiş olduk. Ayrıca 

yanlılık parametreleri PRESS istatistiğini minimum yapacak şekilde seçildiğinde r-k 

ve r-d sınıf tahmin edicileri ile diğer tahmin edicilere göre daha küçük PRESS 

istatistikleri elde edilebileceğini de ortaya koyduk. Dolayısıyla, Montgomery ve 

Friedman (1993) Ridge tahmin edicisi ve Özkale ve Kaçıranlar (2007) Liu tahmin 

edicisinin yanlılık parametresinin seçiminde önerdikleri yöntemin, r-k sınıf ve r-d 

sınıf tahmin edicileri için de uygulanmasını önermekteyiz. Böylece hem bu tahmin 

edicilerin kestirim performansını iyileştirmiş hem de bu tahmin edicilerin kestirim 
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performanslarını kendi aralarında daha objektif bir şekilde karşılaştırma ve 

değerlendirme olanağını elde etmiş oluruz. 
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4. LİU TİPİ VE İKİ PARAMETRELİ RİDGE TAHMİN EDİCİLERİNİN 

KESTİRİM PERFORMANSLARININ PRESS VE GCV İSTATİSTİKLERİ 

KULLANILARAK KARŞILAŞTIRILMASI   

 

 Liu Tipi ve 2 Parametreli Ridge tahmin edicilerin her ikisi de iki yanlılık 

parametresi içermektedir. Bunlardan biri ′X X  matrisinin kötü koşulluluğunu ortadan 

kaldırmak, diğeri ise modelin uyumunu sağlamak için kullanılmaktadır. Bu 

çalışmada, her iki tahmin edicide ′X X  matrisinin kötü koşulluluğunu ortadan 

kaldırmak için kullanılan parametre aynı seçilerek diğer parametrenin modelin 

uyumunu sağlamada ne kadar başarılı olduğu araştırılacaktır. Amacımız kestirimin 

iyiliği olduğundan, modelin uyumunun iyiliğinde kullanılan parametreler, GCV ve 

PRESS istatistikleri minimize edilerek seçilecektir. 

 

4.1. Giriş 

 

Yanlı tahmin edicilerdeki yanlılık parametreleri, amaca uygun olarak, 

katsayıların tahmininde bir gelişme veya kestirimlerde bir iyileşme olacak şekilde 

seçilebilir. Mümkün olduğunca iyi parametre tahminleri elde edilmek istenildiğinde, 

çoğunlukla, yanlılık parametresi HKO istatistiğini minimum yapacak şekilde seçilir. 

Literatürde pC  istatistiğinin minimizasyonu da önerilmektedir (bkz. Mallows, 

1973a,b ve Liu, 1993). Ancak amaç, kestirim olduğunda, yanlılık parametresinin 

kestirim iyiliğini ölçen kriterlerden birini minimum yapacak şekilde seçilmesi daha 

uygun olur. Kestirim iyiliğinin ölçümünde kullanılan en yaygın kriterlerden biri, 

Allen (1971) tarafından önerilen ve PRESS olarak da bilinen CV (Cross-Validation) 

istatistiğidir. Bir diğeri ise Golub ve diğerleri (1979) tarafından önerilen GCV 

(Generalized Cross-Validation) istatistiğidir. GCV istatistiği, CV istatistiğinin 

rotasyona duyarsızlaştırılmış formudur. 

Allen (1974), yanlı tahmin ediciler arasından seçim yaparken yanlılık 

parametrelerini herhangi bir kritere göre belirledikten sonra PRESS istatistiğine 

bakarak en küçük PRESS istatistiğini veren tahmin edicinin seçilmesini önermiştir. 
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Montgomery ve Friedman (1993) ise Ridge tahmin edicisinin yanlılık 

parametresi k  nın seçiminde doğrudan PRESS istatistiğinin kullanımını 

önermişlerdir. Benzer şekilde, Özkale ve Kaçıranlar (2007) Liu tahmin edicisinin, 

Özbey ve Kaçıranlar (2010) da r-k ve r-d sınıf tahmin edicilerinin yanlılık 

parametreleri seçiminde bu yöntemi önermişlerdir.  

Golub ve diğerleri (1979) GCV istatistiğini geliştirmişlerdir ve onun genel 

olarak PRESS istatistiğinden daha iyi olduğunu göstermişlerdir. Bu nedenle Liu 

(1993) ve Lipovetsky (2006) önerdikleri tahmin edicilerin yanlılık parametrelerinin 

GCV kriterini minimize ederek seçilebileceğini de belirtmişlerdir. 

Bu çalışmada iki parametreli ridge ve Liu tipi tahmin ediciler için 2.yanlılık 

(yani düzeltme) parametreleri hem PRESS hem de GCV istatistiği kullanılarak 

seçilecek ve bu iki tahmin edicinin kestirim performansları karşılaştırılacaktır. 

 

4.2. Tahmin Ediciler ve Kestirim İyiliği İstatistikleri 

 

Liu tahmin edicisi genelleştirilerek Liu tipi tahmin edici Liu (2003) tarafından 

önerilmiştir.  

 

 
1

1

ˆ ˆ( ) ( )
ˆ( ) ( ) 0,

LT k d

k d k d

−

−

′ ′= + −

′ ′= + − > − ∞ < < ∞

β X X I X y β

X X I X X I β
 (4.1) 

 

şeklinde tanımlanan bu tahmin edicide  β̂ , β ’nın herhangi bir tahmin edicisi olabilir. 

Liu (2003) β̂ ’nın EKK ve Ridge tahmin edicisi olduğu durumları incelemiştir. Bu 

çalışmada da β̂  EKK tahmin edicisi olarak alınacaktır. k  ve d  ise yanlılık 

parametreleridir. Liu, k  parametresinin kötü koşullu ′X X  matrisinin kötü 

koşulluluğunu ortadan kaldırmak, d  parametresinin ise modeli uyumunu sağlamak 

için kullanılmasını önermektedir. Bu amaçla k ’nın koşul indeksini 10 yapacak 

şekilde, d ’nin ise MSE’yi minimum yapacak şekilde seçilebileceğini belirtmektedir. 
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Ancak daha önceki bir çalışmasında (bkz: Liu,1993) d ’nin seçimi için GCV 

istatistiğinin minimizasyonunu da önermektedir.  

Lipovetsky ve Conklin (2005)’in önerdiği 2 Parametreli Ridge tahmin edici 

 

 1
2

ˆ ( )PR q k −′ ′= +β X X I X y  (4.2) 

 
şeklinde tanımlanmıştır. Burada q  ve k  yanlılık parametreleridir. Hoerl ve Kennard 

(1970)’ın önerdiği Ridge tahmin edicisini yeni bir yanlılık parametresi olan q  ile 

çarparak Ridge tahmin edicisinin performansının arttırılması hedeflenmektedir. Liu 

tipi tahmin edicide olduğu gibi, k ’nın kötü koşullu ′X X  matrisinin kötü 

koşulluluğunu ortadan kaldırmak, q  parametresinin ise modelin uyumunu sağlamak 

için kullanılması önerilmektedir. Lipovetsky (2006) q  parametresinin seçiminde 

çoklu belirleyicilik katsayısı 2R ’nin maksimizasyonunun yanı sıra GCV istatistiğinin 

minimizasyonunu da önermiştir. 

 Bu çalışmada her iki tahmin edici için düzeltme parametresi hem PRESS hem 

de GCV istatistiği minimize edilerek seçilecek ve  karşılaştırılmaları ele alınacaktır. 

 PRESS istatistiğinin genel tanımı (3.1) ile verilmişti. Bu genel tanımdan Liu 

tipi tahmin edicinin PRESS istatistiği 
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olarak elde edilir. Benzer şekilde iki parametreli Ridge tahmin edicisinin PRESS 

istatistiği de 
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olarak elde edilir. 

 

GCV istatistiği 
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 (4.5) 

 

ile tanımlanır. Buradan Liu tipi tahmin edicinin GCV istatistiği 
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olarak elde edilir. Benzer şekilde iki parametreli Ridge tahmin edicisinin GCV 

istatistiği de 
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şeklinde elde edilir.  

 Bu çalışmada her iki yanlı tahmin eidici için, k  parametresi, Liu (2003) 

tarafından önerildiği gibi, koşul indeksini 10 yapacak şekilde seçileceğinden k , 

 

 min

min

10010
99

maks maksk k
k

λ λ λ
λ

+ −
= ⇒ =

+
 (4.8) 

 

formülü kullanılarak elde edilecektir. Düzeltme parametreleri ise yukarıda 

tanımlanan PRESS ve GCV istatistikleri minimize edilerek elde edilecektir. Bu 
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şartlar altında tahmin edicilerin kestirim performansları, iki farklı veri seti 

kullanılarak değerlendirilecektir. 

 

4.3. Sayısal Örnek 

 

Bu uygulamada kullanılan yanlı tahmin edicilerin yanlılık parametreleri, 

modelin hem PRESS istatistiği hem de GCV istatistiği minimize olacak şekilde 

hesaplanacaktır. Her tahmin edici için mümkün olan en küçük PRESS ve GCV 

istatistikleri elde edildikten sonra bu istatistikler kendi aralarında karşılaştırılarak, o 

veri seti için en iyi kestirimi veren tahmin edici seçilecektir.  

 

4.3.1. Mil Başına Benzin Tüketimi Veri Seti 

 

Kullanılacak ilk veri seti 3. Bölümde verilen ve  Montgomery ve Friedman 

(1993)’dan alınan Mil Başına Benzin Tüketimi verisidir.  

Tablo 4.1a. Mil Başına Benzin Tüketimi veri seti için EKK, 2 parametreli Ridge ve 
                   Liu tipi tahmin edicileri için parametre tahminleri, HKO ve PRESS 
                   istatistikleri 
Tahmin 
edici 

EKK Liu Tipi 
0.0788, 0.0031k d= =  

2 Parametreli Ridge  
0.0788, 0.9411k q= =  

1β  -1.5741 -0.1150 -0.2949 

2β  -0.4580 -0.0906 -0.0544 

3β  1.4987 -0.1077 -0.1451 

4β  0.0839 0.0953 0.1576 

5β  0.6251 0.0763 0.1303 

6β  -0.0240 -0.0559 -0.0422 

7β  -0.6516 0.0758 -0.0244 

8β  1.5734 -0.0334 0.3282 

9β  -1.3603 -0.1067 -0.3642 

10β  -0.1897 -0.0895 -0.0963 

11β  -0.5389 -0.0564 -0.0395 
HKO 14.6368 8.6417 8.1319 
PRESS 0.7102 0.4224 0.4169 
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Her iki tahmin edici için k  yanlılık parametresi koşul indeksini 10 yapacak 

şekilde 

 7.8929 100 0.0009 0.0788
99

k − ×
= =  (4.9) 

olarak seçilmiştir. Diğer yanlılık parametresi ise modelin hem PRESS istatistikleri 

hem de GCV istatistikleri minimize olacak şekilde hesaplanmıştır. Sonuçlar Tablo 

4.1a. ve Tablo 4.1b. de sunulmuştur. 

 

Tablo 4.1b. Mil Başına Benzin Tüketimi veri seti için EKK, 2 parametreli Ridge ve 
                   Liu tipi tahmin edicileri için parametre tahminleri, HKO ve GCV  
                   istatistikleri 
Tahmin 
edici 

EKK Liu Tipi 
0.0788, 0.0298k d= = −  

2 Parametreli Ridge 
0.0788, 0.9373k q= =  

1β  -1.5741 -0.7902 -0.2937 

2β  -0.4580 -0.2092 -0.0542 

3β  1.4987 0.4709 -0.1445 

4β  0.0839 0.1358 0.1570 

5β  0.6251 0.3225 0.1298 

6β  -0.0240 -0.0370 -0.0420 

7β  -0.6516 -0.2625 -0.0243 

8β  1.5734 0.8119 0.3269 

9β  -1.3603 -0.7551 -0.3627 

10β  -0.1897 -0.1354 -0.0959 

11β  -0.5389 -0.2299 -0.0393 
HKO 14.6368 5.5093 8.1387 
GCV 0.2178 0.0182 0.0188 

 

Tablo 4.1a. ve Tablo 4.1b.’den, yanlılık parametreleri PRESS  ve GCV istatistikleri 

minimize olacak şekilde seçildiğinde, bu istatistiklerin yanı sıra, HKO’larda da 

küçülme olduğu gözlemlenmektedir.  Bu sonuçlardan gözlenen diğer önemli bir 

sonuç şu ki, 2 parametreli Ridge tahmin edici için hem PRESS hem de GCV 

istatistiği minimize edildiğinde parametre tahminleri ve MSE fazla değişmemektedir. 

Ancak Liu tipi tahmin edicide PRESS ve GCV minimizasyonları sonucunda 
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parametre tahminlerinde ve HKO değerlerinde oldukça büyük bir farklılık 

gözlenmektedir. 

 

4.3.2. Portland Çimento Veri Seti 

 

Kullanılacak ikinci veri seti uygulamalarda çok yaygın kullanılan Hald (1952)’ın 

Portland Çimento verisidir.  

 

Tablo 4.2. Portland Çimento verisi 
 

 

 

 

 

 

 

 

 

 

 

Uygulamada değişkenler standartlaştırılmış olarak kullanılmıştır. ′X X  matrisinin 

özdeğerleri 1   2.2357λ = , 2 1.5761λ = , 3 0.188661λ = , 4 0.0016237λ = ’dir. Koşul 

sayısı 1

4

1376.917λ
κ

λ
= ≅  çoklu doğrusal bağlantının olduğunu gösterir.  

Bu veri setinde, Liu Tipi ve 2 Parametreli Ridge tahmin edicileri için k  

parametresi  

 

  2.2357 100 0.0016237 0.0209
99

k − ×
= =  

 

y  
1x  2x  3x  4x  

78.5 
74.3 

104.3 
87.6 
95.9 

109.2 
102.7 
72.5 
93.1 

115.9 
83.8 

113.3 
109.4 

7 
1 

11 
11 
7 

11 
3 
1 
2 

21 
1 

11 
10 

26 
29 
56 
31 
52 
55 
71 
31 
54 
47 
40 
66 
68 

6 
15 
8 
8 
6 
9 

17 
22 
18 
4 

23 
9 
8 

60 
52 
20 
47 
33 
22 
6 

44 
22 
26 
34 
12 
12 
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olarak seçilmiştir. Düzeltme amaçlı kullanılan parametreler,  hem PRESS 

istatistikleri hem de GCV istatistikleri minimize olacak şekilde hesaplanmıştır. 

Sonuçlar aşağıdaki tablolarda sunulmuştur. 

 

Tablo 4.3a. Portland Çimento veri seti için EKK, 2 parametreli Ridge ve Liu tipi  
                   tahmin edicileri için parametre tahminleri, HKO ve PRESS istatistikleri 
Tahmin 
Edici 

EKK 2 Parametreli Ridge 
0.0209, 1.0162k q= =  

Liu Tipi 
0.0209, 0.0158k d= =  

1β  0.6065 0.5043 0.2401 

2β  0.5277 0.3076 0.2390 

3β  0.0434 -0.0716 -0.1482 

4β  -0.1603 -0.4010 -0.2615 
HKO 1.2186 0.1474 0.8862 
PRESS 0.0321 0.0274 0.0274 

 

 

Tablo 4.3b. Portland Çimento veri seti için EKK, 2 parametreli Ridge ve Liu tipi 
                   tahmin edicileri için parametre tahminleri, HKO ve GCV istatistikleri 

 
Tahmin Edici 

EKK 2 Parametreli Ridge 
0.0209, 1.0053k q= =  

Liu Tipi 
0.0209, 0.0712k d= =  

1β  0.6065 0.4989 0.1211 

2β  0.5277 0.3043 -0.4625 

3β  0.0434 -0.0708 -0.4576 

4β  -0.1603 -0.3967 -1.1916 
HKO 1.2186 0.1474 14.0094 
GCV 0.0255 0.0023 0.0019 

 

Elde edilen sonuçlar incelendiğinde, Liu tipi tahmin edicinin GCV ve PRESS 

istatistiklerinin minimizasyonu ile elde edilen d parametrelerinin çok farklı olduğu, 

bu nedenle de elde edilen parametre tahminleri ve HKO değerleri arasında büyük 

farklılıklar olduğu gözlemlenmektedir. Hatta GCV minimizasyonu sonucunda elde 

edilen tahminlerin HKO değeri EKK tahmin edicisinden kat kat daha büyüktür. İki 

parametreli ridge tahmin edicisi için GCV ve PRESS istatistikleri minimize edilerek 

elde edilen parametre tahminleri ve HKO değerlerinde ise pek farklılık yoktur. Bu, 
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iki parametreli ridge tahmin edicisinin daha istikrarlı tahminler verdiği yönünde bir 

görüş oluşturmaktadır.  

 

4.4. Sonuç 

 

 Liu Tipi ve 2 Parametreli Ridge tahmin edicilerinin her ikisi de iki yanlılık 

parametresi içermektedir. Bunlardan biri ′X X  matrisinin kötü koşulluluğunu ortadan 

kaldırmak, diğeri ise modelin uyumunu sağlamak için kullanılmaktadır. Bu 

çalışmada, her iki tahmin edicide ′X X  matrisinin kötü koşulluluğunu ortadan 

kaldırmak için kullanılan parametre aynı seçilerek diğer parametrenin modelin 

uyumunu sağlamakta ne kadar başarılı olduğu araştırılmıştır. Amacımız kestirimin 

iyiliği olduğundan da modelin uyumunu sağlamakta kullanılan parametreler GCV ve 

PRESS istatistikleri minimize edilerek seçilmiştir. 

 Yapılan nümerik çalışmada, elde edilen sonuçlar, genel olarak Liu tipi tahmin 

edici ve iki parametreli ridge tahmin edicinin her ikisi ile elde edilen tahminlerde, 

sadece GCV ve PRESS istatistiklerinde değil, aynı zamanda HKO değerlerinde de 

belirgin iyileşmeler elde edilebileceğini göstermektedir. Liu tipi tahmin edicinin 

GCV ve PRESS istatistiklerinin minimizasyonu ile elde edilen d parametrelerinin 

oldukça farklı seçildiği, bu nedenle de elde edilen parametre tahminleri ve HKO 

değerleri arasında büyük farklılıklar olduğu gözlemlenmiştir. Hatta bazı durumlarda 

EKK tahmin eidicisinden daha büyük HKO değerleri elde edilebileceği görülmüştür. 

İki parametreli ridge tahmin edicisi için GCV ve PRESS istatistikleri minimize 

edilerek elde edilen parametre tahminleri ve HKO değerlerinde ise pek farklılık 

yoktur. Bu, iki parametreli ridge tahmin edicisinin daha istikrarlı tahminler verdiği 

yönünde bir görüş oluşturmaktadır.  
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5. SONUÇLAR VE ÖNERİLER 

 

Bu çalışmada benzer özellikler taşıyan ve birbirlerine alternatif olabilecek 

bazı yanlı tahmin ediciler, kestirim performansları bakımından birbirleriyle 

karşılaştırılmıştır.  

İlk aşamada Liu tahmin edicinin EKK, TB ve Ridge tahmin edicilerine 

kıyasla, iki boyutlu açıklayıcı değişkenler uzayında belirli bir noktadaki KHKO 

cinsinden kestirim performansı değerlendirilmiştir. Bu yöntem, Friedman ve 

Montgomery (1985) tarafından önerilmiş ve EKK, TB ve Ridge tahmin edicilerinin 

kestirim performanslarını karşılaştırmak için kullanılmıştır. Çalışmanın bir 

bölümünde, Friedman ve Montgomery’nin yaptığı karşılaştırmalarda eksik görülen 

bazı noktalara değinilmiş ve bu karşılaştırmalar üzerine bazı yorumlar getirilmiştir. 

Daha sonra Liu tahmin edicinin kestirim performansının değerlendirilmesine 

geçilmiştir. Bu bağlamda, öncelikle Liu tahmin edicinin KHKO’su elde edilmiş; 

devamında Liu tahmin edicinin EKK, TB ve Ridge tahmin edicilerine göre KHKO 

anlamında daha iyi olması için gerek ve yeter koşullar üç teorem altında verilmiştir. 

Elde edilen teorik sonuçlar sayısal bir örnek üzerinde gösterilmiş ve adı geçen 

tahmin edicilerin üstün olduğu bölgeler belirlenmiştir. Kestirim için uygun olan 

tahmin edicinin seçimi, kestirilecek noktanın konumuna olduğu gibi çoklu iç ilişkinin 

derecesine de bağlı olduğu görülmüştür.  Verilen sayısal örnekte, Liu tahmin edicinin 

EKK, TB ve Ridge tahmin edicilerinden daima üstün olduğu bir bölge belirlenmiştir. 

Bu, böyle bir alanın belirlenmesinin teorik olarak mümkün olduğunu göstermektedir. 

 İkinci aşamada, en iyi kestirim performansı hedeflendiğinde,  r-k sınıf ve r-d 

sınıf tahmin edicilerde, yanlılık parametresinin PRESS istatistiğini minimize edecek 

şekilde seçilmesinin, bu yanlı tahmin edicilerin kestirim performansını iyileştirdiği 

gösterilmiştir. Ayrıca yanlılık parametreleri PRESS istatistiğini minimum yapacak 

şekilde seçildiğinde r-k ve r-d sınıf tahmin edicileri ile ihtiva ettikleri diğer tahmin 

edicilere göre daha küçük PRESS istatistikleri elde edilebileceği de ortaya 

konulmuştur. Dolayısıyla, amaç iyi bir kestirim elde etmek olduğunda, bu yöntemin 

r-k sınıf ve r-d sınıf tahmin edicileri için uygulanması önerilmektedir. Böylece hem 

bu tahmin edicilerin kestirim performansları iyileştirilmiş hem de bu tahmin 
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edicilerin kestirim performanslarının kendi aralarında daha objektif bir şekilde 

karşılaştırılması ve değerlendirilmesi olanağı elde edilmiş olur. 

Son olarak, Liu Tipi ve 2 Parametreli Ridge tahmin edicilerinin kestirim 

performansları bakımından karşılaştırılmıştır. Liu Tipi ve 2 Parametreli Ridge tahmin 

edicilerinin her ikisi de iki yanlılık parametresi içermektedir. Bunlardan biri ′X X  

matrisinin kötü koşulluluğunu ortadan kaldırmak, diğeri ise modelin uyumunu 

sağlamak için kullanılmaktadır. Bu çalışmanın 4.Bölümünde, her iki tahmin edicide 

′X X  matrisinin kötü koşulluluğunu ortadan kaldırmak için kullanılan parametre aynı 

seçilerek diğer parametrenin modelin uyumunu sağlamakta ne kadar başarılı olduğu 

araştırılmıştır. Amacımız kestirimin iyiliği olduğundan da modelin uyumunu 

sağlamakta kullanılan parametreler GCV ve PRESS istatistikleri minimize edilerek 

seçilmiştir. Yapılan nümerik çalışmada, elde edilen sonuçlar, genel olarak Liu tipi 

tahmin edici ve iki parametreli ridge tahmin edicinin her ikisi ile elde edilen 

tahminlerde, sadece GCV ve PRESS istatistiklerinde değil, aynı zamanda HKO 

değerlerinde de belirgin iyileşmeler elde edilebileceğini göstermektedir. Liu tipi 

tahmin edicinin GCV ve PRESS istatistiklerinin minimizasyonu ile elde edilen d  

parametrelerinin oldukça farklı seçildiği, bu nedenle de elde edilen parametre 

tahminleri ve HKO değerleri arasında büyük farklılıklar olduğu gözlemlenmiştir. 

Hatta bazı durumlarda EKK tahmin edicisinden daha büyük HKO değerleri elde 

edilebileceği görülmüştür. İki parametreli ridge tahmin edicisi için GCV ve PRESS 

istatistikleri minimize edilerek elde edilen parametre tahminleri ve HKO 

değerlerinde ise pek farklılık yoktur. Bu, iki parametreli ridge tahmin edicisinin daha 

istikrarlı öngörüler verdiği yönünde bir görüş oluşturmaktadır.  
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