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ÖZET 

 

Bu çalışmada iki değişkenli Fibonacci ve Lucas p polinomları göz önüne 

alınarak bu polinomlarda çeşitli düzenlemeler yapılarak, Fibonacci, Lucas, Pell, 

Pell-Lucas, Jacobstal, Jacobsthal-Lucas p polinomları, p sayıları iki 

değişkenli Fibonacci, Lucas polinomları, Fibonacci, Lucas, Pell, Pell-Lucas, 

Jacobstal, Jacobsthal-Lucas polinomlarına ve sayılarının elde edilebileceği

gösterilmiştir. İki değişkenli Fibonacci p polinomları içeren bazı formüller 

elde edilmiştir. Bu formüllerden yararlanılarak bu polinomlar için birçok temel 

özdeşlikler elde edilmiştir. İki değişkenli Fibonacci ve Lucas p polinomları

içeren toplam özdeşlikleri elde edilmiştir. Son olarak p polinomlarının 

bölünebilme özellikleri incelenmiştir. 
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ABSTRACT 

 

The aim of this paper is to show that Fibonacci, Lucas, Pell, Pell - Lucas, 

Jacobstal, Jacobsthal - Lucas polynomials and numbers can be obtained

through taking into account of bivariate Fibonacci and Lucas p polynomials 

and their versions. Moreover, some formulas including bivariate Fibonacci

p polynomials have been obtained and the use of these formulas have

provided with many basic identities for these polynomials. Some total identities

including Fibonacci and Lucas p polynomials have been obtained. Finally, the

divisibility properties of polynomials are investigated. 
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SİMGELER VE KISALTMALAR 

Bu çalışmada kullanılmış bazı simgeler, açıklamaları ile birlikte aşağıda

sunulmuştur. 

 

Simgeler  Açıklama 

 

nF    n . Fibonacci sayısı 

nL    n . Lucas sayısı 

nP    n . Pell sayısı 

nQ    n . Pell-Lucas sayısı 

nJ    n . Jacobsthal sayısı 

nj    n . Jacobsthal-Lucas sayısı 

 ,nF x y   n . iki değişkenli Fibonacci polinomu 

 ,nL x y   n . iki değişkenli Lucas polinomu 

 , ,p nF x y   n . iki değişkenli Fibonacci p  polinomu 

,p nF    n . Fibonacci p  sayıları 

,p nL    n . Lucas p  sayıları 

 ,p nF x   n . Fibonacci p polinomu 

 ,p nL x   n . Lucas p  polinomu 

 , ,p nF x y   n . iki değişkenli Fibonacci p polinomu 

 , ,p nL x y   n . iki değişkenli Lucas p  polinomu 

( )g z    n . iki değişkenli Fibonacci p  polinomlarının üreteç  

   Fonksiyonu 

( )h z    n . iki değişkenli Lucas p  polinomlarının üreteç fonksiyonu 
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1.GİRİŞ 

 

Bu çalışmada Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas 

sayılarına ait bazı önbilgiler verilerek Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal 

ve Jacobsthal-Lucas Polinomları ve iki değişkenli polinomlarınında bilinen 

indirgeme bağıntılarından bahsedilecektir. Daha sonra Fibonacci, Lucas, Pell, Pell-

Lucas, Jacobsthal ve Jacobsthal-Lucas p  sayıları, p polinomları ve iki değişkenli 

polinomlarının indirgeme bağıntıları göz önünde alınarak, iki değişkenli 

p polinomlarında , ,p x y değişkenleri yerine çeşitli sayılar seçilerek Fibonacci, 

Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas p  polinomlarını, 

p  sayılarını, iki değişkenli polinomları, polinomlarını ve sayılarının elde 

edilebileceğini göstereceğiz.  

 

Literatürde Fibonacci, Lucas sayılarının ve polinomlarının birçok genelleştirmeleri 

mevcuttur. Bu çalışmaların bir kısmı Catalini [1,2] , Tan [3], Kocer [4], Djordjevic 

[5-9], Stakhov [10-11], MacHenry [12], Frei [13] olarak gösterilebilir. Fibonacci ve 

Lucas sayıları ile ilgili bir birçok kitap yazılmıştır [17-20].  
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2.BAZI TEMEL KAVRAMLAR VE REKÜRANS BAĞINTILATILARI 

 

2.1 Tanım 

 

0 0F   ve 1 1F   olmak üzere her 2n   için n  Fibonacci sayısı nF  

 

1 2n n nF F F    (2.1) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.2 Tanım 

 

0 2L   ve 1 1L   olmak üzere her 2n   için n  Lucas sayısı nL  

 

1 2n n nL L L    (2.2) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.3 Tanım 

 

0 0P   ve 1 1P   olmak üzere her 2n   için n  Pell sayısı nP  

 

1 22n n nP P P    (2.3) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.4 Tanım 

 

0 2Q   ve 1 2Q   olmak üzere her 2n   için n  Pell-Lucas sayısı nQ  
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1 22n n nQ Q Q    (2.4) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.5 Tanım 

 

0 2J   ve 1 1J   olmak üzere her 2n   için n  Jacobsthal sayısı nJ  

 

1 22n n nJ J J    (2.5) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.6 Tanım 

 

0 0j   ve 1 1j   olmak üzere her 2n   için n  Jacobsthal-Lucas sayısı nj  

 

1 22n n nj j j    (2.6) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.7 Tanım 

 

0 ( ) 0f x   ve 1( ) 1f x   olmak üzere her 2n   için .n  Fibonacci polinomu ( )nf x  

 

1 2( ) ( ) ( )n n nf x x f x f x    (2.7) 

 

indirgeme bağıntısı ile tanımlanır. 
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2.8 Tanım 

 

0 ( ) 2x   ve 1( )x x  olmak üzere her 2n   için .n  Lucas polinomu ( )n x  

 

1 2( ) ( ) ( )n n nx x x x      (2.8) 

 

indirgeme bağıntısı ile tanımlanır. 

 

2.9 Tanım 

 

,0 0pF  , ,1 ,2 ,... 1p p p pF F F     başlangıç koşulları ve 1,2,3,...,n p  olmak 

üzere her 1p  , n p  için .n  Fibonacci p  sayısı ,p nF  

 

, , 1 , 1p n p n p n pF F F     (2.9) 

 
indirgeme bağıntısı ile tanımlanır. 

 

2.10 Tanım 

 

,0 1,pL p  ,1 ,2 ,... 1p p p pL L L     başlangıç koşulları ve 1,2,3,...,n p  olmak 

üzere her 1p   ve n p  için .n  Lucas p  sayısı ,p nL  ile gösterilir ve 

 

, , 1 , 1p n p n p n pL L L     (2.10) 

 

indirgeme bağıntısı ile tanımlanır. 
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2.11 Tanım 

 

,0 ( , ) 0,pF x y  1
, ( , ) n

p nF x y x   başlangıç koşulları ve 1,2,3,...,n p  olmak üzere her 

1p  , n p  için iki değişkenli Fibonacci p polinomu , ( , )p nF x y  

 

, , 1 , 1( , ) ( , ) ( , ) , , 1, 2,3,...,p n p n p n pF x y x F x y y F x y n p n p       (2.11) 

 

şeklinde tanımlanır. 

 

Benzer şekilde ,0 ( , ) 1,pL x y p  , ( , ) n
p nL x y x  başlangıç koşulları ve 

1,2,3,...,n p  olmak üzere her 1p  , n p  için iki değişkenli Lucas 

p polinomu , ( , )p nL x y  

 

, , 1 , 1( , ) ( , ) ( , ) ,p n p n p n pL x y x L x y y L x y n p      (2.12) 

 

ile tanımlanır. 

 

2n   için , ,x y p  için özel seçimler yapılarak diğer sayılar ve polinomlar elde 

edilir. 
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Çizelge 2.1. Özel seçimlerle Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas polinomları,Fibonacci, Lucas, Pell, Pell-

Lucas, Jacobsthal, Jacobsthal-Lucas p polinomları, polinomaları ve sayıları 

x  y  p  
, ( , )p nF x y  Gösterim 

, ( , )p nL x y  Gösterim 

x  y  1 İki değişkenli Fibonacci polinomları ( , )nF x y  İki değişkenli Lucas polinomları ( , )nL x y  

x  1 p  Fibonacci p polinomları , ( )p nF x  Lucas p polinomları 
, ( )p nL x  

x  1 1 Fibonacci polinomları , ( )p nf x  Lucas polinomları 
, ( )p n x  

1 1 p  Fibonacci p  sayıları 
,p nF  Lucas p  sayıları 

,p nL  

1 1 1 Fibonacci sayıları 
nF  Lucas sayıları 

nL  

2x  y  p  İki değişkenli Pell p polinomları , ( , )p nP x y  iki değişkenli Pell-Lucas p polinomları , ( , )p nQ x y  

2x  y  1 İki değişkenli Pell polinomları ( , )nP x y  iki değişkenli Pell-Lucas polinomları ( , )nQ x y  

2x  1 p  Pell p polinomları , ( )p nP x  Pell-Lucas p polinomları , ( )p nQ x  

2x  1 1 Pell polinomları ( )nP x  Pell-Lucas polinomları ( )nQ x  

2  1 1 Pell sayıları 
nP  Pell-Lucas sayıları 

nQ  

x  2y  p  İki değişkenli Jacobsthal p  polinomları 
, ( , )p nJ x y  İki değişkenli Jacobsthal-Lucas p polinomları , ( , )p nj x y

x  2y  1 İki değişkenli Jacobsthal polinomları ( , )nJ x y  İki değişkenli Jacobsthal-Lucas polinomları ( , )nj x y  

1 2y  1 Jacobsthal polinomları ( )nJ x  Jacobsthal-Lucas polinomları ( )nj x  

1 2  1 Jacobsthal sayıları 
nJ  Jacobsthal polinomları 

nj  
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Çizelge 2.2. İki değişkenli Fibonacci ve Lucas p  polinomları, Fibonacci, Lucas p  polinomları, Fibonacci, Lucas p  sayıları ( 1,2,3p   

0,1,2,3,...,8n  ) 

p  İki değişkenli Fibonacci p  polinomları , ( , )p nF x y  Fibonacci p  polinomları , ( )p nF x  Fibınacci p  sayıları ,p nF  

 
 
1 

2 3 4 2 2

5 3 2 6 4 2 2 3

7 5 2 3 3

8 6 2 4 3 2 4

0 ,1, , , 2 , 3 ,

4 3 , 5 6 ,

6 10 4 ,

7 15 10

x x y x yx x yx y

x yx y x x yx y x y

x yx y x y x

x yx y x y x y

   

    

  

   

 

2 3 4 2

5 3 6 4 2

7 5 3

8 6 4 2

0 ,1, , 1, 2 , 3 1,

4 3 , 5 6 1,

6 10 4 ,

7 15 10 1

x x x x x x

x x x x x x

x x x x

x x x x

   

    

  

   

 

0 ,1,1, 2,3,5,8,13,

21,34
 

 
2  

2 3 4 5 2

6 3 2 7 4 2 8 5 2 2

0 ,1, , , , 2 , 3 ,

4 , 5 3 , 6 6

x x x y x yx x yx

x yx y x yx y x x yx y x

  

     
 

2 3 4 5 2

6 3 7 4 8 5 2

0 ,1, , , 1, 2 , 3 ,

4 1, 5 3 , 6 6

x x x x x x x

x x x x x x x x

  

     
 

0 ,1,1,1,2 ,3 ,4 ,6,

9 ,13
 

 
3  

2 3 4 5

6 2 7 3 8 4 2

0 ,1, , , , , 2 ,

3 , 4 , 5

x x x x y x yx

x yx x yx x yx y

 

   
 

2 3 4 5

6 2 7 3 8 4

0,1, , , , 1, 2 ,

3 , 4 , 5 1

x x x x x x

x x x x x x

 

   
 

0 ,1,1,1,1,2 ,3 ,4,

5 ,7
 

p  İki değişkenli Lucas p  polinomları , ( , )p nL x y  Lucas p  polinomları , ( )p nL x  Lucas p  sayıları ,p nL  

 
 
1 

2 3 4 2 2

5 3 2 6 4 2 2 3

7 5 2 3 3

8 6 2 4 3 2 4

2, , 2 , 3 , 4 2 ,

5 5 , 6 9 2 ,

7 14 7 ,

8 20 16 2

x x y x yx x yx y

x yx y x x yx y x y

x yx y x y x

x yx y x y x y

   

    

  

   

 

2 3 4 2

5 3 6 4 2

7 5 3

8 6 4 2

2 , , 2 , 3 , 4 2,

5 5 , 6 9 2,

7 14 7 ,

8 20 16 2

x x x x x x

x x x x x x

x x x x

x x x x

   

    

  

   

 

2 ,1,3 ,4 ,7,11,

18 , 29, 47
 

 
 
2  

2 3 4 5 2

6 3 2 7 4 2

8 5 2 2

3 , , , 3 , 4 , 5 ,

6 3 , 7 7 ,

8 12

x x x y x yx x yx

x yx y x yx y x

x yx y x

  

   

 

 

2 3 4 5 2

6 3 7 4

8 5 2

3 , , , 3 , 4 , 5 ,

6 3 , 7 7 ,

8 12

x x x x x x x

x x x x x

x x x

  

   

 

 

3 ,1,1, 4 ,5 ,6 ,10,

15 ,21
 

 
3  

2 3 4 5

6 2 7 3 8 4 2

4 , , , , 4 , 5 ,

6 , 7 , 8 4

x x x x x y x yx

x yx x yx x yx y

 

   
 

2 3 4 5

6 2 7 3 8 4

4 , , , , 4 , 5 ,

6 , 7 , 8 4

x x x x x x

x x x x x x

 

   
 

4 ,1,1,1,5 ,6 ,7,

8 ,13
 

7 
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Çizelge 2.3. İki değişkenli Pell ve Pell-Lucas p polinomları, Pell, Pell-Lucas p polinomları, Pell, Pell-Lucas p  sayıları ( 1,2,3p   

0,1,2,3,...,8n  ) 

p  İki değişkenli Pell p  polinomları , ( , )p nP x y  Pell p  polinomları , ( )p nP x  Pell p  sayıları ,p nP  

1 

2 3 4 2 2

5 3 2 6 4 2 2 3

7 5 2 3 3

8 6 2 4 3 2 4

0 ,1, 2 , 4 , 8 4 ,16 12 ,

32 32 6 , 64 80 24 ,

128 192 80 8 ,

256 448 240 40

x x y x yx x yx y

x yx y x x yx y x y

x yx y x y x

x yx y x y x y

   

    

  

   

 

2 3 4 2

5 3 6 4 2

7 5 3

8 6 4 2

0 ,1, 2 , 4 1, 8 4 ,16 12 1,

32 32 6 , 64 80 24 1,

128 192 80 8 ,

256 448 240 40 1

x x x x x x

x x x x x x

x x x x

x x x x

   

    

  

   

 0 ,1 ,2 ,5 ,12 , 29 , 70,

169 , 408 , 985
 

2  

2 3 4 5 2

6 3 2 7 4 2

8 5 2 2

0 ,1 , 2 , 4 , 8 , 16 4 , 32 12 ,

64 32 , 128 80 6 ,

256 192 24

x x x y x yx x yx

x yx y x yx y x

x yx y x

  

   

 

 
2 3 4 5 2

6 3 7 4

8 5 2

0 , 1 , 2 , 4 , 8 1 ,16 4 , 32 12 ,

64 32 1 ,128 80 6 ,

256 192 24

x x x x x x x

x x x x x

x x x

  

   

 

 
0 ,1, 2 , 4 ,9 , 20 , 44,

97 , 214 , 472
 

3  
2 3 4 5

6 2 7 3 8 4 2

0 ,1, 2 , 4 , 8 , 16 , 32 4 ,

64 12 ,128 32 , 256 80

x x x x y x yx

x yx x yx x yx y

 

   
 

2 3 4 5

6 2 7 3 8 4

0 ,1,2 ,4 , 8 ,16 1,32 4 ,

64 12 ,128 32 , 256 80 1

x x x x x x

x x x x x x

 

   
 

0 ,1, 2 , 4 , 8 ,17 , 36,

76 ,160 , 337
 

p  İki değişkenli Pell-Lucas p  polinomları , ( , )p nQ x y  Pell-Lucas p  polinomları , ( )p nQ x  Pell–Lucas p  sayıları pQ  

1 

2 3 4 2 2

5 3 2 6 4 2 2 3

7 5 2 3 3

8 6 2 4 3 2 4

2 , 2 , 4 2 , 8 6 ,16 16 2 ,

32 40 10 , 64 96 36 2 ,

128 224 112 14 ,

256 512 320 64 2

x x y x yx x yx y

x yx y x x yx y x y

x yx y x y x

x yx y x y x y

   

    

  

   

 

2 3 4 2

5 3 6 4 2

7 5 3

8 6 4 2

2 , 2 , 4 2 , 8 6 ,16 16 2,

32 40 10 , 64 96 36 2,

128 224 112 14 ,

256 512 320 64 2

x x x x x x

x x x x x x

x x x x

x x x x

   

    

  

   

 2 , 2 ,6 ,14 ,34 ,82,

198 , 478 ,1154
 

2  

2 3 4 5 2

6 3 2 7 4 2

8 5 2 2

3 , 2 , 4 , 8 3 ,16 8 , 32 20 ,

64 48 3 ,128 112 14 ,

256 256 48

x x x y x yx x yx

x yx y x yx y x

x yx y x

  

   

 

 

2 3 4 5 2

6 3 7 4

8 5 2

3 , 2 , 4 , 8 3 ,16 8 ,32 20 ,

64 48 3 ,128 112 14 ,

256 256 48

x x x x x x x

x x x x x

x x x

  

   

 

 
3 , 2 , 4 ,11, 24 ,52,

115 , 254 ,560
 

3  
2 3 4 5 6 2

7 3 8 4 2

4 , 2 , 4 , 8 ,16 4 , 32 10 , 64 24 ,

128 56 , 256 128 4

x x x x y x yx x yx

x yx x yx y

  

  
 

2 3 4 5 6 2

7 3 8 4

4 , 2 , 4 ,8 ,16 4 , 32 10 , 64 24 ,

128 56 , 256 128 4

x x x x x x x x

x x x x

  

  
 

4,2,4,8,20, 42

88,184,388
 

8 
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Çizelge 2.4. İki değişkenli Jacobsthal ve Jacobsthal-Lucas ppolinomları, Jacobsthal, Jacobsthal-Lucas ppolinomları, Jacobsthal, 

Jacobsthal-Lucas psayıları ( 1,2,3p  , 0,1, 2,3,...,8n   

p
 

İki değişkenli Jacobsthal p  polinomları , ( , )p nJ x y  Jacobsthal p  polinomları
 , ( )p nJ x  Jacobsthal p  sayıları

 ,p nJ  

1 

2 3 4 2 2

5 3 2 6 4 2 2 3

7 5 2 3 3

8 6 2 4 3 2 4

2, , 4 , 6 , 8 8 ,

10 20 , 12 36 16 ,

14 56 56 ,

16 80 128 32

x x y x yx x yx y

x yx y x x yx y x y

x yx y x y x

x yx y x y x y

   

    

  

   

 

2

2 2 3

2 3

2 3 4

2 ,1,1 4 ,1 6 ,1 8 8 ,

1 10 20 ,1 12 36 16 ,

1 14 56 56 ,

1 16 80 128 32

y y y y

y y y y y

y y y

y y y y

   

    

  

   

 2 ,1,5,7,17,31,

65,127, 257
 

 
2 
 

2 3 4 5 2

6 3 2 7 4 2

8 5 2 2

3, , , 6 , 8 , 10 ,

12 12 , 14 28 ,

16 48

x x x y x yx x yx

x yx y x yx y x

x yx y x

  

   

 

 2 2

2

3 ,1,1,1 6 ,1 8 ,1 10 ,

1 12 1 12 ,1 14 28 ,

1 16 48

y y y

y y y y

y y

  

   

 

 3,1,1,7,9,11,

25 , 43 ,65
 

3 
2 3 4 5

6 2 7 3 8 4 2

4 , , , , 8 , 10 ,

12 , 14 , 16 16

x x x x y x yx

x yx x yx x yx y

 

   
 

2

4 ,1,1,1,1 8 ,1 10 ,1 12 ,

1 14 ,1 16 16

y y y

y y y

  

  
 

4,1,1,1,9,11,

13 ,15 ,33
 

p
 

İki değişkenli Jacobsthal-Lucas ppolinomları , ( , )p nj x y  Jacobsthal-Lucas ppolinomları , ( )p nj x  Jacobsthal-Lucas psayıları
 ,p nj  

1 

2 3 4 2 2

5 3 2 6 4 2 2 3

7 5 2 3 3

8 6 2 4 3 2 4

0,1, , 2 , 4 , 6 4 ,

8 12 , 10 24 8 ,

12 40 32 ,

14 60 80 16

x x y x yx x yx y

x yx y x x yx y x y

x yx y x y x

x yx y x y x y

   

    

  

   

 

2 2

2 3 2 3

2 3 4

0 ,1,1,1 2 ,1 4 ,1 6 4 ,1 8 12 ,

1 10 24 8 ,1 12 40 32 ,

1 14 60 80 16

y y y y y y

y y y y y y

y y y y

     

     

   
 

0,1,1,3 ,5 ,11, 21,

43 ,85,171
 

2 
2 3 4 5 2 6 3 2

7 4 2 8 5 2 2

0,1, , , 2 , 4 , 6 , 8 4 ,

10 12 , 12 24

x x x y x yx x yx x yx y

x yx y x x yx y x

    

   
 

2

2 2

0,1,1,1,1 2 ,1 4 ,1 6 ,1 8 4 ,

1 10 12 ,1 12 24

y y y y y

y y y y

    

   
 

0,1,1,1,3 ,5,7,

13, 23,37
 

 
3 

2 3 4 5 6 2

7 3 8 4 2

0 ,1, , , , 2 , 4 , 6 ,

8 , 10 4

x x x x y x yx x yx

x yx x yx y

  

  
 

2

0,1,1,1,1,1 2 ,1 4 ,1 6 ,

1 8 ,1 10 4

y y y

y y y

  

  
 0,1,1,1,1,3,5,

7,9,15
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3. ÜRETEÇ FONKSİYONLARI VE TOPLAM FORMÜLLERİ 

 

Üreteç fonksiyonları sabit katsayılı homogen lineer rekürans bağıntıların çözümünde 

önemli rol oynar.1718 yılında Fransız matematikçi Abraham De Moivre (1667-1754) 

Fibonacci rekürans bağıntısını çözmek için üreteç fonksiyonunu bulmuştur. 

 

3.1.Tanım 

 

0 1 2, , ,...a a a  bir reel sayı dizisi olmak üzere 

 

2
0 1 2( ) ... ...n

ng x a a x a x a x       (3.1) 

 

ifadesine  na  dizisinin üreteç fonksiyonu denir. Üreteç fonksiyonu sonlu diziler 

içinde tanımlanabilir. 

 

Şimdi iki değişkenli Fibonacci p  polinomlarının üreteç fonksiyonunu aşağıdaki 

teoremle verelim. 

 

3.1.Teorem 

 

, ( , )p nF x y  iki değişkenli Fibonacci p  polinomu olmak üzere , ( , )p nF x y ’nin üreteç 

fonksiyonu 

 

1
( )

1 p

z
g z

xz yz 
 

 (3.2) 

 

dir. 
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İspat 

 

,
1

( ) ( , ) n
p n

n

g z F x y z




  

 

olsun. 

 

 

2 1
,1 ,2 , , 1 ,

2 1
,

1

2 1
, 1 , 1

1

2 1
,

1

( ) ( , ) ( , ) ... ( , ) ( , ) ... ( , ) ...

... ( , )

... ( , ) ( , )

...

p p n
p p p p p p p n

p p n
p n

n p

p p n
p n p n p

n p

p p
p n

n p

g z F x y z F x y z F x y z F x y z F x y z

z xz x z F x y z

z xz x z x F x y y F x y z

z xz x z x F







 




  
 





 

       

    

     

    





 1 , 1
1

2 1 1 1 1
, 1 , 1

1 1

2 1 1 1
, , 1

1

2 1

( , ) ( , )

... ( , ) ( , )

... ( , ) ( , )

... ( )

n n
p n p

n p

p p n p n p
p n p n p

n p n p

p p n p n p
p n p n p

n p n p

p p

x y z y F x y z

z xz x z xz F x y Z yz F x y z

z xz x z xz F x y Z yz F x y z

z xz x z xz g z z



 
 

 
    

  
   

 
   

 
  





     

     

     



 

 

 2 2 3 2 1 1

2 1 2 2 3 1 1

... ( )

... ( ) ... ( )

p p p

p p p p p

xz x z x z yz g z

z xz x z xzg z xz x z x z yz g z

  

  

    

         
 

düzenlenirse 

 

1( ) ( ) ( )pg z z xz g z yz g z    

 

olup, buradan 
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1
( )

1 p

z
g z

xz yz 
 

 

 

elde edilir. 

 

Şimdi iki değişkenli Lucas p  polinomlarının üreteç fonksiyonunu verelim. 

 

3.2.Teorem 

 

, ( , )p nL x y  iki değişkenli Lucas p  polinomu olmak üzere , ( , )p nL x y ’ nin üreteç 

fonksiyonu 

 

1

1
( )

1 p

p pxz
h z

xz yz 

 


 
 (3.3) 

 

dır. 

 

İspat 

 

,
0

( ) ( , ) n
p n

n

h z L x y z




   

 
olsun. 

 

,0 ,1 , ,

.
1

( ) ( , ) ( , ) ... ( , ) ... ( , ) ...

( 1) ... ( , )

p n
p p p p p n

p p n
p n

n p

h z L x y L x y z L x y z L x y z

p xz x z L x y z


 

      

      

 

 

olur. 
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 2 2
. 1 . 1

1

2 2
. 1 . 1

1 1

2 2

1 1
. 1 . 1

1

( ) ( 1) ... ( , ), ( , )

( 1) ... ( , ) ( , )

( 1) ...

( , ) ( , )

p p n
p n p n p

n p

p p n n
p n p n p

n p n p

p p

n p
p n p n p

n p

h z p xz x z x z x L x y y L x y z

p xz x z x z x L x y z y L x y z

p xz x z x z

xz L x y z yz L x y



  
 

 

  
   


 

  
 

      

       

     

 



 

 1

1

2 2 1 1
. . 1

1

2 2

2 2 1 1 1

2 2

2 2

( 1) ... ( , ) ( , )

( 1) ...

( ( ) ( 1) ... ) ( )

( 1) ... ( ) ( 1)

n p

n p

p p n p n p
p n p n p

n p n p

p p

p p p

p p

z

p xz x z x z xz L x y z yz L x y z

p xz x z x z

xz h x p xz x z x z yz h z

p xz x z x z xzh x xz p

x z x


 

 

 
  

 
  

  

       

     

      

        

 



 

3 3 1... ( )p p pz x z yz h z  

 

 

denklemi düzenlenirse 

 

1( ) ( 1) ( ) ( 1) ( )ph z p xz xzh z xz p yz h z        

 

ve 

 

1

1
( )

1 p

p pxz
h z

xz yz 

 


 
 

 

elde edilir. 

 

Bu iki teoremdeki özel seçimleri aşağıdaki sonuçla verebiliriz. 
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3.1.Sonuç 

 

İki değişkenli Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas 

polinomlarının üreteç fonksiyonları 

 

Teorem.3.1 ve Teorem.3.2’ de sırasıyla 

 

1p   için 

 

2
0

( , )
1

n
n

n

z
F x y z

xz yz






                   

2
0

2
( , )

1
n

n
n

xz
L x y z

xz yz








   

 

1p   ve x  yerine 2x  alınırsa 

 

2
0

( , )
1 2

n
n

n

z
P x y z

xz yz






                  

2
0

2 2
( , )

1 2
n

n
n

xz
Q x y z

xz yz








   

 

1p   ve y  yerine 2y  alınırsa 

 

2
0

( , )
1 2

n
n

n

z
J x y z

xz yz






                 

2
0

2
( , )

1 2
n

n
n

xz
j x y z

xz yz








   

 

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas 

p polinomlarının üreteç fonksiyonları 

 

1y   için 

 

, 1
0

( )
1

n
p n p

n

z
F x z

xz z







                   , 1

0

1
( )

1
n

p n p
n

p pxz
L x z

xz z






 


   

 

1y   ve x  yerine 2x  alınırsa 
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, 1
0

( )
1 2

n
p n p

n

z
P x z

xz z







                  , 1

0

1 2
( )

1 2
n

p n p
n

p pxz
Q x z

xz z






 


   

 

1x  ve y  yerine 2y  alınırsa 

 

, 1
0

( )
1 2

n
p n p

n

z
J y z

z yz







                 , 1

0

1
( )

1 2
n

p n p
n

p pz
j y z

z yz






 


   

 

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas sayılarının üreteç 

fonksiyonları 

 

1p x y    durumunda 

 

2
0 1

n
n

n

z
F z

z z






                   

2
0

2

1
n

n
n

z
L z

z z








   

 

2
0 1 2

n
n

n

z
P z

z z






                  

2
0

2 2

1 2
n

n
n

z
Q z

z z








   

 

2
0 1 2

n
n

n

z
J z

z z






                 

2
0

2

1 2
n

n
n

z
j z

z z








   

 

İki değikenli Fibonacci p  polinomlarının aşağıda vereceğimiz kombinatoryal 

özdeşlikleri içeren toplam formülleri incelenecektir. 

 

3.3.Teorem 

 

, ( , )p nF x y  iki değişkenli Fibonacci p polinomu ve , ( , )p nL x y  iki değişkenli Lucas 

p polinomu olmak üzere her n  ve 1p   için 

 

, , 1 ,( , ) ( , ) ( , )p n p n p n pL x y F x y p y F x y    (3.4) 
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dır. 

 

İspat 

 

Eş.3.4’ ü tümevarım metoduyla ispatlayalım. 

 

0n   için 

 

,0 ,1 ,

,0

( , ) ( , ) ( , )

1
1

1

( , )

p p p p

p

L x y F x y py F x y

py
y

p

L x y

 

 

 


 

 

dır. 

 

n k  için doğru olsun yani 

 

, , 1 ,( , ) ( , ) ( , )p k p k p k pL x y F x y py F x y    

 

olsun. 

 

1n k   için 

 

 

 

 

, 2 , 1 , 1 , 1

, , 1

, 1 ,

, 1 , 1

( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

p k p k p p k p kp

p k p p k p

p k p k p

p k p p k p

F x y py F x y x F x y F x y

x F x y py F x y

x F x y F x y

F x y py F x y

    

  

 

   

  

 

 

 
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, 2 , 1 , ,

, 1

( , ) ( , ) ( , ) ( , )

( , )

p k p k p p k p k p

p k

F x y py F x y x L x y y L x y

L x y

   



  


 

 

olur. 

 

O halde 1n k   için doğru olur. 

 

Eş.3.4 için özel durumlar aşağıdaki gibidir. 

 

1x y   için Fibonacci ve Lucas p  sayıları 

 

, , 1 ,p n p n p n pL F p F    

 

1p x y    için Fibonacci ve Lucas sayıları 

 

1 1n n nL F F    

 

1p y   ve x  yerine 2x  seçilirse Pell ve Pell-Lucas sayıları 

 

1 12n n nQ P P    

 

1p x   ve y  yerine 2y  seçilirse Jacobsthal ve Jacosthal-Lucas sayıları 

 

1 12n n nj J J    

 

dir. 
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3.4.Teorem 

 

, ( , )p nF x y  iki değişkenli Fibonacci p  polinomları olmak üzere 0n   ve 1p   için 

 

1

1 1
( 1) 1

,
0

( , )

n

p n jp
n j p j

p n
jj

F x y x y

 
    

  



 
  

 
  (3.5) 

 

dır. 

 

İspat 

 

1

1 1
( 1) 1

,
0

( , )

n

p n jp
n j p j

p n
jj

F x y x y

 
    

  



 
  

 
 , 0n  , 1p   

 

Eş.3.5’ i tümevarım metoduyla ispatlayalım. 

 

n p , 1n p   ve olması durumunda açık olarak 

 

1
01 1 0

( 1) 1 2 0 0
,1

0
0 0

( , ) 1

p

p p jp jp
p j p j j j

p
j jj j

F x y x y x y x y

 
        

   

 

            
    

   

 

ve 

 

1
1 2 1

( 1) 1 2 0 1 0
,2

0
0 0

( , )

p

p p jp j p
p j p j j

p
j jj j

F x y x y x y x y x

   
        

  

 

             
    

   

 

,1 1pF   olmak üzere ,2pF x  olduğundan Eş.3.5 doğrudur. 
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Kabul edelim ki. 

 

2k p   olmak üzere 1n k   ve n k  için eşitlik doğru olsun. 

 

1

1 1
( 1) 1

,
0

( , )

k

p k jp
k j p j

p k
jj

F x y x y

 
    

  



 
  

 
  

 

dir. Şimdi 1n k   doğru olduğunu gösterelim 

 

  

, 1 , ,

1

1 11 1
1 1( 1) 1

0 0

( , ) ( , ) ( , )p k p k p k p

k k

p pk jp k jp p
k p jk j p j j

j jj j

F x y x F x y y F x y

x y x y

 

   
           

    

 

 

   
    

   
 

 

 

dir. İkinci ifadede 1j t   seçilirse 0j   için 1t   olur. Ayrıca 1
1

k p
pj  
     için  

 

1
1

1
1

1 1
1

1

1

1

k p
p

k p
p

k p p
p

k
p

t  


 


   




   

   

   

   

 

 

olur. Böylece 

 

 

1

1 11 1
1( 1)

, 1
10 1

( , )

k k

p pk jp k tp
k t pk j p j t

p k
j tj t

F x y x y x y

   
          

  


 

       
  

   
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İfadesindeki ikinci toplamda t  yerine j  yazılırsa 

 

 

1

1 11 1
1( 1)

, 1
10 1

( , )

k k

p pk jp k jp
k j pk j p j j

p k
j jj j

F x y x y x y

   
          

  


 

   
    

   
   

 

elde edilir. 

 

I. Durum 1p k  olsun. 

 

1p k  ise ( 1)k p t   olacak şekilde t  vardır. 

 

 

 

( 1) 1 ( 1)

1 1( 1) 1 ( 1) 1
( 1) 1( 1) ( 1)

, 1
10 1

1 ( ) 1 ( ) 1
( 1)( 1)( )

10 1

(

( , )

p t p t

p pp t jp p t jp
p t j pp t j p j j

p k
j jj j

t tt j p t t j p t
p t jp t j j j

j jj j

t

j

F x y x y x y

x y x y

     
            

    


 

      
  

 



   
    

   

   
    

   



 

 

 

 

1 ) 1 ( ) 1 ( 1) 1
( 1)( 1)( ) ( 1) 1

1 00 1

( 1) 1
( 1) ( 1)

( ) 1 ( ) 1
( 1)( 1)( )

10 0

t tj p t t j p t p t
p t jp t j j j p t

jj j

p t tp
p t p t t

t

t tt j p t t j p t
p t jp t j j

j jj j

x y x y x

x y

x y x y

       
    

 

  
  

     
  

 

          
    

   
 

   
    

   

 

 



( 1) 1
( 1) 1

0

1

p t
j p t

t
t

t

x

y

 
 



 
 
 

  
 


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 
( ) 1 ( ) 1

( 1)( 1)( )
, 1

10 0

( , )
t tt j p t t j p t

p t jp t j j j
p k

j jj j

F x y x y x y
     

  


 

   
    

   
   

 

elde edilir. Bu ifadede 

 

1 1

1

k jp k jp k jp

j j j

    



           
     

 

 

Pascal formülü kullanılırsa 

 

1
( 1)

, 1
0

( , )

k

p k jp
k j p j

p k
jj

F x y x y

 
   

 




 
  

 
  

 

sonucuna varılır. 

 

II. Durum 1 |p k   ise bu durumda 

 

( 1)
( 1)

1 1 1

1
1

1

pt k p t
pt k p t

p p p

k
t t

p

k
t

p


     

  

 
     

 
    

 

 

olur. Benzer şekilde ispat yapılabilir. 
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Özel seçimlerle iki değişkenli Fibonacci polinomları, Fibonacci p  polinomları, 

Fibonacci polinomları, Fibonacci p  sayıları ve Fibonacci sayıları için toplam 

formülleri aşağıdaki gibidir. 

 

1

2 1
2 1

0

( , )

n

n j
n j j

n
jj

F x y x y

 
    

 



 
  

 
          

1

1 1
( 1) 1

,
0

, ( )

n

p n jp
n j p

p n
jj

F x x

 
    

  



 
  

 
  

 

1

2 1
2 1

0

( )

n

n j
n j

n
jj

f x x

 
    

 



 
  

 
                  

1

1 1

,
0

n

p n jp

p n
jj

F

 
    



 
  

 
   

 

1

2 1

0

n

n j

n
jj

F

 
    



 
  

 
  

 

Teorem.3.3’ de kullanarak, iki değişkenli Lucas p polinomları için ispat aşağıdaki 

gibidir. 

 

2.5.Teorem 

 

, ( , )p nL x y  iki değişkenli Fibonacci p  polinomları olmak üzere 0n   ve 1p   için 

 

1
( 1)

,
0

( , )

n

p n jp
n j p j

p n
jj

n
L x y x y

n jp

 
   

 



 
    
  (2.6) 

 

dır. 
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İspat 

 

Eş.3.6’ dan 

 

, , 1 ,( , ) ( , ) ( , )p n p n p n pL x y F x y py F x y    

 

olduğunu göstereceğiz. Burada 

 

1

1 1
( 1) 1

,
0

( , )

n

p n jp
n j p j

p n
jj

F x y x y

 
    

  



 
  

 
 , 

 

0 , 1n p   

 

1
( 1)

,
0

( , )

n

p n jp
n j p j

p n
jj

n
L x y x y

n jp

 
   

 



 
    
 , 

 

0 , 1n p   

 

dir. 

 

Sağ tarafından dolayı 

 

1

1 1 1
( 1) ( 1) 1

, 1 ,
0 0

( , ) ( , )

n n p

p pn jp n jp p
n j p j n j p p j

p n p n p
j jj j

F x y py F x y x y py x y

    
          

     
 

 

   
     

   
   

 

dir. Eş.3.6’ dan 
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 
 

1
1 1 1

( 1) ( 1) 1
,

0 0

1 1 1 1
1 ( 1) 1( 1) 1

10 1

( , )

n n

p pn jp n jp p
n j p j n j p p j

p n
j jj j

n n

p p n j p pn jp
n j p pn j p j j

j jj j

n jp

jj

L x y x y py x y

x y py x y

   
          

     

 

   
           

      

 



   
    

   

  
    

   

 
  

 

 

 

1 1 1
( 1) ( 1)

10 1

n n

p p n jp
n j p j n j p j

jj

x y p x y

   
         

   

 

 
  

 
 

 

 

ve 

 

1

1

n jp n jp

j j

j

n jp

  



   
      

 

 

Olduğundan 

 

1 1 1
( 1) ( 1)

,
10 1

1 1
( 1) ( 1)

0 0

1

0

( , )

n n

p pn jp n jp
n j p j n j p j

p n
j jj j

n n

p pn jp n jp
n j p j n j p j

j jj j

n

p n jp

jj

n jp

j

L x y x y p x y

j
x y p x y

n jp

   
         

   

 

   
        

   

 


 





   
    

   

              

 
  

 

 

 

1
( 1) ( 1)

0

1
( 1)

0

1
( 1)

0

1

n

p n jp
n j p j n j p j

jj

n

p n jp
n j p j

jj

n

p n jp
n j p j

jj

jp
x y x y

n jp

jp
x y

n jp

n
x y

n jp

  
      

   



 
   

 



 
   

 



 
    

  
     

  
     

 



  
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sonucu elde edilir. 

 

Özel seçimlerle iki değişkenli Lucas polinomları, Lucas p  polinomları, Lucas 

polinomları, Lucas p  sayıları ve Lucas sayıları için toplam formülleri aşağıdaki 

gibidir. 

 

2
2

0

( , )

n

n j
n j j

n
jj

n
L x y x y

n j

 
   





 
    
  

1
( 1)

,
0
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n

p n jp
n j p

p n
jj

n
L x x

n jp

 
   

 



 
    
  

 

2
2

0
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n

n j
n j

n
jj

n
x x

n j

 
   





 
    
             

1

,
0

,

n

p n jp

p n
jj

n
L

n jp

 
   



 
    
  

 

2

0

n

n j

n
jj

n
L

n j

 
   



 
    
  

 

3.2.Özellik 

 

Her 1n   ve 1p   için 

 

   2
, , , - 1 , - , - 1

, 1 , -1

( , ) ( ) ( , ) ( , ) ( , ) - ( , )

( , ) ( , )

p n p n p n p p n p p n p

p n p n

x F x y py y F x y F x y y F x y pF x y

L x y y L x y

 



   

 
 (3.7) 

 

İspat 

 

 

, 1 , , 2 , 1

, , 1

( , ) ( , ) ( , ) ( , )

( , ) ( , )

p n p n p p n p n p

p n p n p

L x y y L x y F x y py F x y

y F x y y F x y

    

 

  

 
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 

, 1 , , 2 , 1

2
, , 1

, 1 , 1 , 1

, , 1

, 1 , 1 , 1

,

( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( ,

p n p n p p n p n p

p n p n p

p n p n p p n p

p n p n p

p n p n p p n p

p n

L x y y L x y F x y py F x y

y F x y py F x y

xF x y y F x y py F x y

y F x y py y F x y

x F x y y F py F x y

y F x

    

 

    

 

    

  

 

  

 

  

  

 

, , 1

, 1 , 1 , 1

, , , 1

, , , 1

, 1 ,

2
, ,

) ( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ) ( , ) ( ) ( , )

( , ) ( )( ( ,

p n p n

p n n p p n p

p n p n p n

p n p n p p n

p n p p n

p n p n

y py F xF x y

xF x y y F py F x y

yF x y pyF x y pxy F x y

x x F x y yF x y py F x y

py y F x y py y F x y

x F x y py y F x



    



 

 

 

  

  

  

   

   , 1

, , 1

) ( , ))

( ( , ) ( , ))

p n p

p n p p n

y F x y

y F x y pF x y

 

 



 

 

 

elde edilir. 

 

3.6.Teorem 

 

, ( , )p nL x y  iki değişkenli Lucas p  polinomunun x  ve y  değişkenine göre kısmi 

türevleri 0n   ve 1p   için 
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,
,

( , )
( , )p n

p n

L x y
n F x y

x





 (3.8) 

 

,
,

( , )
( , )p n

p n p

L x y
n F x y

y 





 (3.9) 

 

dir. 

 

İspat 

 

i) Eş.3.8’ de x ’e göre kısmı türev alınırsa 

 

   
 

 

 
 

 

 

1

1
, 1 1

0

1

1
1 1

0

1

1 1
1 1

0

,

( , ) ! ( 1)

! !

1 !

1 ! !

( , )

n

p
p n n p j j

j

n

p
n p j j

j

n

p n jp
n p j j

j
j

p n

L x y n jp n p jn
x y

x n jp n jp j j

n jp
n x y

n jp j j

n x y

n F x y

 
  

  



 
  

  



 
    

  



   


   

 


  

   
 









 

 

elde edilir. 

 

Benzer şekilde 

 

ii) Eş.3.8’ de y ’ye göre kısmı türev alınırsa 

 



 

 

28

 
 

 

 
   

 

 

1

1
, 1 1

0

1

1
1 1

0

1

1 1
1 1

1
0

,

( , ) ! !

! !

1 !

1 ! 1 !

( , )

n

p
p n n p j j

j

n

p
n p j j

j

n

p n jp
n p j j

j
j

p n p

L x y n jp jn
x y

x n jp n jp j j

n jp
n x y

n jp j j

n x y

n F x y

 
  

  



 
  

  



 
    

  






 


   

 


   

   
 









 

 

elde edilir. 

 

Özel seçimlerle aşağıdaki denklemler elde edilir. 

 

Eş.3.8 ve Eş.3.9’ da sırasıyla x  yerine 2x  alınırsa iki değişkenli pell-Lucas 

p  polinomları için 

 

,
,

( , )
( , )p n

p n

Q x y
n P x y

x





 

 

,
,

( , )
( , )p n

p n p

Q x y
n P x y

y 





 

 

Eş.3.8 ve Eş.3.9’ da sırasıyla y  yerine 2y  alınırsa iki değişkenli Jacobsthal-Lucas 

p  polinomları için 

 

,
,

( , )
( , )p n

p n

j x y
n J x y

x





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,
,

( , )
( , )p n

p n p

j x y
n J x y

y 





 

 

dir. 
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4. TOPLAM ÖZELLİKLERİ 

 

4.1.Özellik 

 

Her 1n   ve 1p  için aşağıdakiler doğrudur. 

 

i)  , , 2 ,2
1

1
( , ) ( , ) ( , )

n
n i n

p i p n p
i

x L x y L x y x L x y
y






   (4.1) 

 

ii)  , , 2 ,2
1

1
( , ) ( , ) ( , )

n
n i n

p i p n p
i

x F x y F x y x F x y
y






   (4.2) 

 

dir. 

 

İspat 

 

i) Eş 2.12 de her 1, 2,3,..., ,..., ,n p k k p   ve 1p   tamsayısı için 

 

, , 1 ,

1
( , ) ( , ) ( , )p n p p n p n

x
L x y L x y L x y

y y    

 

olup, buradan 

 

1
1

,2 ,3 ,2

2 1
2

,3 ,4 ,3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

n n
n

p p p p

n n
n

p p p p

x x
x L x y L x y L x y

y y

x x
x L x y L x y L x y

y y






 




 

 



 

2

, , 1 ,

, 1 , 2 , 1

( , ) ( , ) ( , )

1
( , ) ( , ) ( , )

p n p p n p n

p n P p n p n

x x
x L x y L x y L x y

y y

x
L x y L x y L x y

y y

 

   

 

 
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olup, taraf tarafa toplanırsa 

 

 , , 1 ,2
1

1
( , ) ( , ) ( , )

n
n i n

p n p n p
i

x L x y L x y x L x y
y






   

 

elde edilir. 

 

ii) Benzer şekilde Eş.2.11 den her 1, 2,3,...,n k p   ve 1p   tamsayısı için 

 

, , 1 ,

1
( , ) ( , ) ( , )p n p p n p n

x
F x y F x y F x y

y y    

 

olup, buradan 

 

1
1

,2 ,3 ,2

2 1
2

,3 ,4 ,3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

n n
n

p p p p

n n
n

p p p p

x x
x F x y F x y F x y

y y

x x
x F x y F x y F x y

y y






 




 

 



 

2

, , 1 ,

, 1 , 2 , 1

( , ) ( , ) ( , )

1
( , ) ( , ) ( , )

p n p p n p n

p n P p n p n

x x
xF x y F x y F x y

y y

x
F x y F x y F x y

y y

 

   

 

 
 

 

dir. Böylece 

 

 , , 1 ,2
1

1
( , ) ( , ) ( , )

n
n i n

p n p n p
i

x F x y F x y x F x y
y






   

 

elde edilir. 
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4.2.Özellik 

 

Her n  ve 1p  için 

 

i) 
,

2
, , 1 , , 1( , ) ( , ) ( , ) ( , ) ( , )

p n p n p n p n p nx L x y L x y L x y y L x y L x y    (4.3) 

 

ii) 
,

2
, , 1 , , 1( , ) ( , ) ( , ) ( , ) ( , )

p n p n p n p n p nx F x y F x y F x y y F x y F x y    (4.4) 

 

dir. 

 

İspat 

 

i) Eş.2.12 kullanılırsa 

 

 

2
, , ,

, , 1 ,

, , 1 , ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

p n p n p n

p n p n p n p

p n p n p n p n p

x L x y x L x y L x y

L x y L x y y L x y

L x y L x y y L x y L x y

 

 



 

 

 

 

elde edilir. 

 

ii) Eş.2.11 kullanılırsa 

 

 

,

2
, ,

, , 1 ,

, , 1 , ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

p n p n p n

p n p n p n p

p n p n p n p n p

x F x y x F x y F x y

F x y F x y y F x y

F x y F x y y F x y F x y

 

 



 

 
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elde edilir. 

 

4.3.Özellik 

 

Her 1n  , s  ve 1p   için aşağıdakiler doğrudur. 

 

i)  2
, , , 1

1

1
( , ) ( , ) ( , ) (1 )

n
n i n

p i p n p n
i

y L x y L x y L x y p xy
x






    (4.5) 

 

ii) 2
, , , 1

1

1
( , ) ( , ) ( , )

n
n i

p i p n p n
i

y F x y F x y F x y
x






  (4.3) 

 

dir. 

 

İspat 

 

Eş.4.3’den 

 

1p   için 

 

 

 

1 2 1
,1 ,1 ,2 ,1 ,1

2 2 1 1
,2 ,2 ,3 ,2 ,2

1
( , ) ( , ) ( , ) ( , ) ( , )

1
( , ) ( , ) ( , ) ( , ) ( , )

n n n
p p p p p p

n n n
p p p p p p

y L x y y L x y L x y y L x y L x y
x

y L x y y L x y L x y y L x y L x y
x

 


  


 

 



 

 

 

2 2
, 1 , 1 , , 1 , 1

2
, , , 1 , ,

1
( , ) ( , ) ( , ) ( , ) ( , )

1
( , ) ( , ) ( , ) ( , ) ( , )

p n p n p n p n p n p

p n p n p n p n p n p

y L x y y L x y L x y y L x y L x y
x

L x y L x y L x y y L x y L x y
x

    

 

 

 

 

 

olup, taraf tarafa toplanırsa 
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 
,

2
, , 1 ,1 ,1

1

1
( , ) ( , ) ( , ) ( , ) ( , )

p n

n
n i n

p n p n p p p
i

y L x y L x y L x y y L x y L x y
x


 



   

 

elde edilir. 1p   için  

 

,1 ,0( , ) ( , ) (1 )p p pL x y L x y p    ,  ,1 ,pL x y x   

 

olduğundan 

 

 2
, , , 1

1

1
( , ) ( , ) ( , ) (1 )

n
n i n

p i p n p n
i

y L x y L x y L x y p xy
x






    

 

bulunur. 

 

ii) İspatı (i) benzer şekilde yapılabilir. 
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5. İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS P_POLİNOMLARINDA   

    BÖLÜNEBİLME 

 

Fibonacci, Lucas sayıları ve polinomlarının bölünebilme özellikleri ile ilgili Frei 

[13], Bergum [14], Hoggatt, [15], Webb [16] çeşitli çalışmalar yapmıştır. 

 

Bu bölümde 0y  , 0x   ve ,y x  olarak alınacaktır. 

 

5.1 Teorem 

 

Eğer ( , ) 1y x   ise her n  için 

 

i)  , ( , ), 1p nF x y y   (5.1) 

 

ii)  , ( , ), 1p nL x y y 
 (5.2) 

 

dir. 

 

İspat 

 

i) Kabul edelim ki  , ( , ), 1p nF x y y t   olsun. O zaman q t  olacak şekilde bir q asal 

sayısı vardır. q t  ise q y  ve , ( , )p nq F x y  dir. Bu durum 1, 2n   için mümkün 

değildir. 

 

3n  için kabul edelim ki; 1nq x   olsun. (3.5) den 

 

1
( 1)

, 1
0

( , )

n

p n jp
n j p j

p n
jj

F x y x y

 
   

 




 
  

 
  
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olup, 

 

1

1 1
1 ( 1) 1

,
0

( , )

n

p n jp
n n j p j

p n
jj

x F x y x y y

 
    

   



 
  

    
  

 

  

 

dir. Buradan q x  olmalıdır. Bu ise hipotez ile çelişir. Böylece 

 

 , ( , ), 1p nF x y y 
 

 

elde edilir. 

 

Örnek olarak; 3n   ve 1p   için 3
,3 ( , )pF x y x y 

 
ve 1x  , 2y   sıfırdan farklı 

tamsayılar olmak üzere, 

 

3
,3 (1, 2) 1 2 3pF     

 

olur. 

 

Buradan 

 

 ,3 (1, 2), 2 (3, 2) 1pF  
 

 

dir. 

 

ii) Kabul edelim ki  , ( , ), 1p nL x y y t   olsun. O zaman q t  olacak şekilde bir q asal 

sayısı vardır. 

 

q t  q y  ve , ( , )p nq L x y
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dir. 

 

Bu durum 1n   için mümkün değildir. 

 

2n   için kabul edelim ki; nq x  olsun. (3.6) den 

 

1
( 1)

,
0

( , )

n

p n jp
n j p j

p n
jj

n
L x y x y

n jp

 
   

 



 
    
  

 

olup, 

 

1
( 1)

,
0

( , )

n

p n jp
n n j p j

p n
jj

n
x L x y x y y

n jp

 
   

 



 
  

       
 

  

 

dir. Buradan q x  olmalıdır. Bu ise hipotez ile çelişir. Böylece 

 

 , ( , ), 1p nL x y y 
 

 

elde edilir. 

 

Örnek olarak; 

 

2n  ve 1p   için 2
,2 ( , ) 2pL x y x y 

 
ve 1x  , 2y   sıfırdan farklı tamsayılar 

olmak üzere, 

 

2
,2 (1, 2) 1 4 5pL     

 

olur. 
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Buradan  ,2 (1, 2), 2 (5, 2) 1pL  
 

 

olur. 

 

5.2.Teorem 

 

Eğer ( , ) 1y x   , her n  ve 1p   için 

 

i)
  , , 1( , ) , ( , ) 1p n p nF x y F x y 

 (5.3) 

 

dir. 

 

İspat 

 

i) ( , ) 1y x  , n  olsun. 

 

1n   için 

 

,1( , ) 1pF x y   ve ,2 ( , )pF x y x  

 

olup iddiamız doğrudur. Kabul edelim ki 2n k   doğru olsun yani 

 

 , , 1( , ) , ( , ) 1p k p kF x y F x y 
 

 

olsun. 1n k   için doğru mudur? 

 

 , 1 , 2( , ) , ( , )p k p kF x y F x y t    

 

olsun. 
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Buradan 

 

, 1( , )p kt F x y  ve , 2 ( , )p kt F x y  

 

Eş.2.12’den 

 

, 2 , 1 , 1( , ) ( , ) ( , )p k p k p k pF x y x F x y yF x y      

 
olup, 

 

, 1( , )p kt F x y  , 1( , )p kt xF x y  

 

Ayrıca , 2 ( , )p kt F x y  olduğundan , 2 ( , )p kt yF x y  olur. 

 

Buradan 

 

t y  ise , 1( , )p kt F x y  olduğundan 

 

 , 1( , ),p kt F x y y  

 

dir.  

 

Oysa Teorem 5.1’den  , 1( , ), 1p kF x y y   olup, 1t   olmak zorundadır.  

 

Böylece 

 

 , 1 , 2( , ), ( , ) 1p k p kF x y F x y    

 

elde edilir. 1n k   için doğru olur.  
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O halde ( , ) 1y x  ,ve n  için 

 

 , , 1( , ), ( , ) 1p n p nF x y F x y 
 

 

dir. 

 

Örnek olarak 

 

2n   ve 1x  , 2y   aralarında asal olmak üzere en büyük ortak bölenleri 1 eşittir. 

 

1p   için 

 

,2 ( , )pF x y x  

 

ve 

 

2
,3 ( , )pF x y x y   

 

dir. 

 

x  ve y değerleri yerlerine konursa 

 

,2 (1, 2) 1pF   ve 2
,3 (1, 2) 1 2 3pF     

 

olur. Buradan 

 

 ,2 ,3(1, 2), (1, 2) (1,3) 1p pF F  
 

 

olur. 
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