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OZET

Bu calismada iki degiskenli Fibonacci ve Lucas p-—polinomlar1 goz oniine

alinarak bu polinomlarda cesitli diizenlemeler yapilarak, Fibonacci, Lucas, Pell,

Pell-Lucas, Jacobstal, Jacobsthal-Lucas p—polinomlan, p-sayillan iki

degiskenli Fibonacci, Lucas polinomlari, Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobstal, Jacobsthal-Lucas polinomlarina ve sayillarimin elde edilebilecegi

gosterilmistir. Iki degiskenli Fibonacci p—polinomlan iceren baz formiiller

elde edilmistir. Bu formiillerden yararlanilarak bu polinomlar icin bircok temel
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iceren toplam ozdeslikleri elde edilmistir. Son olarak p-—polinomlarinin

boliinebilme o6zellikleri incelenmistir.
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SIMGELER VE KISALTMALAR

Bu c¢aligmada kullanilmis bazi simgeler, agiklamalar1 ile birlikte
sunulmustur.

Simgeler Aciklama

F, n. Fibonacci sayisi

L, n. Lucas sayis1

P, n. Pell sayis1

Q, n. Pell-Lucas sayis1

J, n. Jacobsthal sayis1

I n. Jacobsthal-Lucas sayis1

F(%Y) n . iki degiskenli Fibonacci polinomu

L, (X, y) n . iki degiskenli Lucas polinomu
Fo.(XY) n . iki degiskenli Fibonacci p —polinomu
Fon n. Fibonacci p —sayilar

Lon n. Lucas p—sayilar

Fon (X) n. Fibonacci p—polinomu

. Lucas p—polinomu

. iki degiskenli Fibonacci p —polinomu

L, (X Y) n . iki degiskenli Lucas p —polinomu
9(2) n. iki degiskenli Fibonacci p —polinomlarinin ireteg
Fonksiyonu

X

asagida

h(z) n. iki degiskenli Lucas p —polinomlarinin iirete¢ fonksiyonu



1.GIRiS

Bu c¢alismada Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas
sayilarina ait bazi1 dnbilgiler verilerek Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal
ve Jacobsthal-Lucas Polinomlar1 ve iki degiskenli polinomlarminda bilinen
indirgeme bagintilarindan bahsedilecektir. Daha sonra Fibonacci, Lucas, Pell, Pell-

Lucas, Jacobsthal ve Jacobsthal-Lucas p—sayilari, p—polinomlar1 ve iki degiskenli

polinomlarinin indirgeme bagintilari gz Oniinde alinarak, iki degiskenli

p —polinomlarinda p, X, Yy degiskenleri yerine ¢esitli sayilar segilerek Fibonacci,
Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas p—polinomlarini,
p —sayilarini, iki degiskenli polinomlari, polinomlarmi ve sayilarnin elde

edilebilecegini gosterecegiz.

Literatiirde Fibonacci, Lucas sayilarinin ve polinomlarinin bircok genellestirmeleri
mevcuttur. Bu ¢alismalarin bir kism1 Catalini [1,2] , Tan [3], Kocer [4], Djordjevic
[5-9], Stakhov [10-11], MacHenry [12], Frei [13] olarak gosterilebilir. Fibonacci ve
Lucas sayilar ile ilgili bir bir¢ok kitap yazilmistir [17-20].



2.BAZI TEMEL KAVRAMLAR VE REKURANS BAGINTILATILARI

2.1 Tanim

F, =0 ve F =1 olmak lizere her n>2 i¢in n Fibonacci sayist F,

F,=F +F, 2.1)
n n-1 n-2

indirgeme bagintisi ile tanimlanir.

2.2 Tanim

=2 ve L =1 olmak lizere her n>2 i¢in n Lucas sayis1 L
1 n

L =L  +L_ (2.2)
n n—1 n—2

indirgeme bagintisi ile tanimlanir.

2.3 Tanim

P, =0 ve P, =1 olmak iizere her n>2 i¢in n Pell sayis1 P,

Pn = 2Pn—1 + Pn—z (2.3)

indirgeme bagintisi ile tanimlanir.

2.4 Tanim

Q, =2 ve Q, =2 olmak iizere her n>2 igin n Pell-Lucas say1s1 Q,



Qn = 2Qn—l + Qn—z (24)

indirgeme bagintisi ile tanimlanur.

2.5 Tanim

J, =2 ve J, =1 olmak iizere her n>2 igin n Jacobsthal sayist J

L2, (2.5)

indirgeme bagintisi ile tanimlanur.

2.6 Tanim

Jo =0 ve j, =1 olmak iizere her n>2 icin n Jacobsthal-Lucas say1s1 j,

jn = jn—l +2jn—2 (26)

indirgeme bagintisi ile tanimlanur.

2.7 Tanim

f,(X)=0 ve f (x)=1 olmak iizere her n>2 i¢in n. Fibonacci polinomu f,(X)

f, ) =xf_,(x)+f_,(X (2.7)

indirgeme bagintisi ile tanimlanir.



2.8 Tanim

?,(X)=2 ve {,(X)=X olmak iizere her n>2 i¢in n. Lucas polinomu ¢ (X)

gn(x)zxgnq(x)"'gnfz(x) (2.8)

indirgeme bagintisi ile tanimlanir.

2.9 Tanim

F.=0, F , =F =...=Fp’p=1 baslangi¢ kosullart ve n=12,3,...,p olmak

p,0 p.l p,2

tizere her p=1, n> p i¢in n. Fibonacci p—sayisiF,,

F,=F,  +F

p,n = 7 p,n-1

(2.9)

p.n—p-1

indirgeme bagintisi ile tanimlanur.

2.10 Tanim

L,o=p+1, L =..=L,,=1 baslangi¢c kosullart ve n=1,2,3,...,p olmak

p.l p.2

lizere her p>1 ve n> p i¢in N. Lucas p—sayisi L ile gosterilir ve

(2.10)

indirgeme bagintisi ile tanimlanur.



2.11 Tanim

Foo(X,y)=0, F (X,y)= x"" baslangic kosullar1 ve n=1,2,3,.... p olmak iizere her

p=1, n> p icin iki degiskenli Fibonacci p—polinomuF, (X, Y)

Fon(GYy)=xF, (X y)+yF, ., (Xy) , n>p ,n=123,..p (2.11)
seklinde tanimlanir.

Benzer sekilde L ,(X,y)=p+1, L, (X,y)= X" baglangi¢  kosullar1  ve
n=1,2,3,..,p olmak iizere her p=>1, n>p icin iki degiskenli Lucas

p—polinomul,  (X,Y)

L.(y)=xL, xy+yL, . ,(Xy),n>p (2.12)

ile tamimlanir.

nN>2 i¢in X,Y, p i¢cin 6zel secimler yapilarak diger sayilar ve polinomlar elde

edilir.



Cizelge 2.1. Ozel secimlerle Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas polinomlari,Fibonacci, Lucas, Pell, Pell-

Lucas, Jacobsthal, Jacobsthal-Lucas p —polinomlari, polinomalari ve sayilari

X Yy P F.(xYy) Gosterim L. (X,Y) Gosterim
X Y 1 Ikidegiskenli Fibonacci polinomlar F (X,Y) Iki degiskenli Lucas polinomlar1 L,(X,y)
X 1 P Fibonacci p—polinomlari Fon(X) Lucas p—polinomlar L,n(X)
X 1 1 Fibonacci polinomlari f,n(X) Lucas polinomlar1 €%

1 1 P Fibonacci p—sayilari Fon Lucas p—sayilar Lo

1 1 1  Fibonacci sayilari F Lucas sayilari L,

2x Y P Iki degiskenli Pell p—polinomlar P a(XY) iki degiskenli Pell-Lucas p —polinomlari Qun(%.Y)
2x Y 1 Iki degiskenli Pell polinomlar1 P(XY) iki degiskenli Pell-Lucas polinomlar1 Q,(X,y)
2x 1 P Pell p—polinomlari Pa(X) Pell-Lucas p —polinomlar1 Q,n(X)
2x 1 1 Pell polinomlari P.(Xx) Pell-Lucas polinomlari Q,(X)

2 1 1 Pell sayilan P, Pell-Lucas sayilari Q,

X 2y P ki degiskenli Jacobsthal p —polinomlar NISY) Iki degiskenli Jacobsthal-Lucas p —polinomlari  j_ (X,Y)
X 2y 1 Iki degiskenli Jacobsthal polinomlari J, (%) Iki degiskenli Jacobsthal-Lucas polinomlari J, %)
1 2y 1 Jacobsthal polinomlari J,(X) Jacobsthal-Lucas polinomlar1 §, (%)

1 2 1 Jacobsthal sayilari J. Jacobsthal polinomlari i




n=0,1,2,3,...8)

Cizelge 2.2. iki degiskenli Fibonacci ve Lucas p - polinomlari, Fibonacci, Lucas p - polinomlar1, Fibonacci, Lucas p-sayilar1 (p=1,2,3

Iki degiskenli Fibonacci p —polinomlari Fon(XY)

Fibonacci p —polinomlart F, (x)

Fibinacci p—sayilan F,

0,1,% X +y, X +2yx, X" +3yx”> + y°,
X4+ 4y +3y°x, X +5yxt +6y*xXE+ Y,
X" +6yx’ +10y°X° +4y°x,

X*+7yx® +15y*x* +10y°x* + y*

0,1, X, x> +1,x +2x, x* +3x* +1,
X +4x7 +3x, X +5x* +6x° +1,
X" +6X> +10X° +4x,

X2+ 78 +15x* +10x* +1

0,1,1,2,3,5,8,13,
21,34

0,1,x,x%, X +y,x  +2yx, x* +3yx’,

0,1,x,x, x> +1, x* +2x, x> +3x%,

0,1,1,1,2,3,4,6,

X+ 4y + Y2 X+ 5yxt 43y, X+ 6y’ +6yP X | X0 +4Ax +1, X7 +5xF +3x, x* + 6% +6X° 9,13
0,1,%, X7, %, x* +y,xX +2yx, 0,1 x, x>, x>, x* +1,x° +2x, 0,1,1,1,1,2,3,4,
5,7

XC+3yx%, X +4yx’, x¥+5yxt +y?

X8 +3x%, X7 +4x7, x* +5x +1

Iki degiskenli Lucas P — polinomlari Lyn(XY)

Lucas p—polinomlart L, ,(X)

Lucas p—sayilart L,

2,%, X242y, X +3yx, X* +4yx” +2y°, 2%, X 42, +3x, X +4x7 +2, 2,1,3,4,7,11,

X459 +5y%%, X0+ 6yx* +9y*x% +2V°, X* 5% +5%, X*+6x* +9x2 +2, 18,29,47

X' +7yx° +14y°x° + 7y, X' +7% +14%° +7X,

X* +8yx° +20y°x* +16y°x* +2y* x*+8x° +20x* +16X> +2

3,%, X%, X +3y, X +4yx, X* +5yx°, 3,%, %5, X +3, X' +4x, x° +5x%, 3,1,1,4,5,6,10,

X+ 6yx’ +3y°, X" +7yx* +Ty°X, XC+6x°+3, X" +7x +7X, 15,21

x*+8yx’ +12y°x? x*+8x° +12x°

Ax, X, X7, X2, X +4y, X° +5yx, 4, %, x5, %, x +4, X +5x, 4,1,1,1,5,6,7,
8,13

X +6yx, X +7yx’, x* +8yx* +4y’

X8+ 6x%, X +7x, x* +8x* +4




n=0,1,2,3,...8)

Cizelge 2.3. iki degiskenli Pell ve Pell-Lucas p —polinomlari, Pell, Pell-Lucas p —polinomlari, Pell, Pell-Lucas p —sayilar1 (p=1,2,3

Iki degiskenli Pell p —polinomlar: Pon(XY)

Pell p-—polinomlart P, (X)

Pell p—sayilar1 P, |

0,1,2x,4x* +y,8%° +4yx, 16x* +12yx* + y?,
32X +32yx’ + 6Y°X, 64x° +80yx* + 24y’ x> + v,
128x7 +192yx® +80y>x’ + 8y,

256x° +448yx°® +240y°x* +40y°x* +y*

0,1,2X,4x* +1,8x> +4x,16x* +12x* +1,
32x7 +32x° +6X, 64x° +80x* +24x> +1,
128x7 +192x° +80x> + 8x,

256%" +448x° +240x* +40x° +1

0,1,2,5,12,29,70,
169,408,985

0,1,2x,4x>,8x° +y,16x* +4yx,32x> +12yx?,
64x°+32yx> +y?, 128x” +80yx* + 6y’x,
256 +192yx® +24y2x*

0,1,2x, 4%, 8x> +1,16x* +4x,32x* +12x7,
64x° +32x* +1,128x” +80x* +6X,
256x° +192x° + 24x*

0,1,2,4,9,20,44,
97,214,472

0,1,2x,4x%,8x°,16x* +y,32x> +4yx,
64x° +12yx>,128x” +32yx’, 256X* +80yx* + y’

0,1,2x,4x>,8%,16xX"* +1,32%° +4x,
64x° +12x7,128x” +32x°, 256x* +80x* +1

0,1,2,4,8,17,36,
76,160,337

Iki degiskenli Pell-Lucas p—polinomlar1 Qun(X%,Y)

Pell-Lucas p —polinomlar1 Q (X)

Pell-Lucas p—sayilar1 Q,

2,2X,4X>+2y,8X> +6yx,16X* +16yx* +2y?,
32X +40yx’ +10y°x, 64x° +96yx* +36y°x* +2Yy°,
128x7 +224yx> +112y*%x° +14y°x,

256%x° +512yx° +320y°x* + 64y°x* +2y*

2,2X,4x* +2, 8% +6X,16X* +16X* +2,
32%° +40x° +10x , 64x° +96X* +36X” +2,
128x7 +224%° +112x° +14x,

256X% +512x° +320x* +64x> +2

2,2,6,14,34,82,
198,478,1154

3,2x,4x%, 8% +3y,16x" +8yx,32x° +20yx?,
64X +48yx® +3y?,128x” +112yx* +14y°x,
256x° +256yx” +48y°Xx’

3,2X,4%%, 8% +3,16X" +8x,32x° +20x%,
64x° +48%° +3,128%7 + 112x* +14x,
256X +256X° +48x’

3,2,4,11,24,52,
115,254,560

4.2%,4x%,8x°,16x* +4y,32x° +10yx, 64x° + 24 yx?,
128x7 +56yx>, 256x° +128yx* + 4y°

4,2%,4%x%,8%7,16x" +4,32x° +10x,64x° +24x>,
128%x7 +56x%,256x% +128x* + 4

4,2,4,8,20, 42
88,184,388




Jacobsthal-Lucas p-sayilari (p=1,2,3, n=0,1,2,3,...,8

Cizelge 2.4. Iki degiskenli Jacobsthal ve Jacobsthal-Lucas p-polinomlari, Jacobsthal, Jacobsthal-Lucas p-polinomlari, Jacobsthal,

Iki degiskenli Jacobsthal p —polinomlar1 J on (X Y)

Jacobsthal p —polinomlart J, (X)

Jacobsthal p—sayilart J

2,%, X +4y, X +6yx,x* +8yx*> +8y?,

2,1,1+4y,1+6y,1+8y+8Yy?,

X*+10yx’ +20y°x, X° +12yx* +36y°X* +16Yy°, 1+10y +20y°,1+12y +36y> +16Y°, 2,1,5,7,17,31,
X' +14yx° +56y°X° +56y°X, 1+14y+56y* +56y°, 65,127,257
x* +16yx° +80y*x* +128y°x* +32y* 1+16y+80y* +128y° +32y*
3,6, %5, X+ 6y, X' +8yx, X* +10yx?, 3,1,1,1+6y,1+8y,1+10y, 3117011
XC 412y +12y2, X7 +14yx* +28y°X, 1+12y1+12y?,1+14y + 28y, 2’5 ’4’3 ’65’ ’
X +16yx° +48y>x 1+16y +48y” T
4,%,x%, %, x* +8y, x> +10yx, 4,1,1,1,1+8y,1+10y,1+12y, 4,1,1,1,9.11,
1+14y,1+16y +16y> 13.,15,33

XC+12yx%, X" +14yx°, x* +16yx* +16y°

Iki degiskenli Jacobsthal-Lucas p-polinomlart j, (X, Y)

Jacobsthal-Lucas p-polinomlart j, (X)

Jacobsthal-Lucas p-sayilar j

0,1,X, X* +2y, %> +4yx,x* +6yx* +4y°,

0,1,1,1+2y,1+4y,1+6y+4y> 1+8y+12y>,

X +8yx’ +12y7x, X° +10yx* +24y°x> +8Yy°, 1410y +24y> +8y*, 1412y +40y> +32Yy°, 0,1,1,3,5,11,21,

X" +12yx° +40y°x* +32y°x, 1+14y+60y* + 80y’ +16y* 43,85,171

x* +14yx° +60y*x* +80y*x* +16y*

0,1,X, X7, x> +2y, x* +4yx, X’ +6yx>, x° +8yx’ +4y°, 0,1,1,1,1+2y,1+4y,1+6y,1+ 8y + 4y, 0,1,1,1,3,5,7,

X" +10yx* +12y°%, X" +12yx° +24y°X’ 1+10y +12y2,1+12y +24y? 13,23,37

0,1,%, %%, %7, x* +2y, X’ +4yx, x° +6yx?, 0,1,1,1,1,1+2y,1+4y,1+6Y, 0.1.1.1,1,3.5.
1+8y,1+10y +4y> 7,9,15

X +8yx’, x* +10yx* + 4y?
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3. URETEC FONKSiYONLARI VE TOPLAM FORMULLERI

Ureteg fonksiyonlar sabit katsayili homogen lineer rekiirans bagintilarin ¢dziimiinde
onemli rol oynar.1718 yilinda Fransiz matematik¢i Abraham De Moivre (1667-1754)
Fibonacci rekiirans bagintisini ¢6zmek igin iirete¢ fonksiyonunu bulmustur.

3.1.Tanim

a,,d,,a,,... bir reel say1 dizisi olmak iizere
g(x)=a, +ax+a,x’ +..+ax" +... (3.1)

ifadesine {a,} dizisinin iirete¢ fonksiyonu denir. Urete¢ fonksiyonu sonlu diziler

i¢inde tanimlanabilir.

Simdi iki degiskenli Fibonacci p—polinomlarinin iirete¢ fonksiyonunu asagidaki

teoremle verelim.

3.1.Teorem

F,.(X,y) iki degiskenli Fibonacci p—polinomu olmak tizere F, (X,Y) nin lreteg

fonksiyonu

92)=" : (3.2)

—xz—yz*"

dir.



Ispat
9(2)=D F,.(x,y)7"
n=1

olsun.
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9(2)=F,, (6, )Z+F,,(x, N2> +..+F (V)" +F (X, 2"+ +F (X, y)z" +...

=2+X +..+X7ZP+ D F (% y)Z"

n=p+1

=2+X .+ XPTZP Y (x Foni Y +YF, (X y)) "

n=p+l1

=2+X2 +.AXPZP D XF ()2 DL YR ()2

n=p+l n=p+1

=2+X +AXPTZP 2 DR L (GNZT Yz Y R (xy) 2

n=p+1 n=p+1

=2+X2 +. AXPZP )2 Y R (G Y)Z Yz YR (x )z

n=p n=p+l
=2+4X +..+ X" 2P 4 x2(9(2) - 2- X2’ - X2’ — .- x"72" )+ y2Pg(2)
_ 2 p-1,p 2 2.3 p-1,p p+1
=Z+X+.. X2+ X29(2) - X2° =X —...— X" 2P +yz" 9(2)

diizenlenirse

9(z)=z+xz9(2)+Yyz""9(2)

olup, buradan
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z
)=—————
9(2) 1-xz—yz""

elde edilir.
Simdi iki degiskenli Lucas p —polinomlarinin iirete¢ fonksiyonunu verelim.
3.2.Teorem

L,.(X,y) iki degiskenli Lucas p-—polinomu olmak iizere L, (X,Yy)’ nin lreteg

fonksiyonu

h(z) =% (3.3)
dir.

ispat

h(z)=> L, (x,y)z" =
n=0
olsun.

h()=L,,(x,y)+L,,(XYZ+...+L, (X, Y)Z2° +..+ L, (X,y)2" +...

=(P+D)+Xxz+..+XP2P + Y L (X, y)Z"

n=p+1

olur.



h(Z)=(p+1) +x2+X°2° +..+xP2" + )’ (x Lo G Y)Y Lo (X, y))zn

n=p+l1

=(P+D+X2+X 2+ 4+ X2+ Y xL (2" + > yL, (Y2

n=p+1 n=p+l1

=(p+D)+x2+X°2*+...+x"2"

+X2 D Lo ()2 P L (X, )z

n=p+1 n=p+1

=(P+D+X2+X 2+ +XP2P+x2 ) L ()" +yzP! Y L ()"
n=p

neptl
=(p+D)+xz+x°2° +...+x"zP

+xz(h(X)=(p+1)—xz—x*2* —...=x""'2° ") yz""'h(z)
=(P+D)+ X2+ X2° +...+ X 2" + xzh(X) = xz(p +1)

—X*2* - X7’ —...—x"2" + yz*"'h(2)
denklemi diizenlenirse

h(z)=(p+1)+ xz+ xzh(z) - xz(p +1) + yz°"'h(z)

Ve
p+1-—pxz
h(z)=——
@) 1—xz—yz"!
elde edilir.

Bu iki teoremdeki 6zel se¢imleri asagidaki sonugla verebiliriz.
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3.1.Sonug
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Iki degiskenli Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas

polinomlarinin iirete¢ fonksiyonlari

Teorem.3.1 ve Teorem.3.2’ de sirasiyla

p=1igin

© > 2-Xz
F.(xy)"=—— L%y =——+
HZ:;‘ (%Y) 1—xz—yz? HZ:;‘ (x.) 1—xz —yz?
p=1ve X yerine 2X alinirsa
o > 2-2xz
PXY)?" = (XY =
HZ:;‘ n(%Y) 1-2xz—yz* ;Q (x.) 1-2xz—vyz*
p=1ve y yerine 2y alinirsa
o © 2—-XzZ
J X, Zn - = N X, Zn _——
HZ:;‘ (%.Y) 1—-xz-2yz* Z;‘J( ) 1—xz-2yz*

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve

p —polinomlarinin {irete¢ fonksiyonlari
y =1 i¢in

_ p+l-pxz
1—xz—z""

0 n Z
D F,a(0z =
n=0

xz —z""

> L0z
n=0

y=1 ve X yerine 2x alinirsa

Jacobsthal-Lucas



0 N Z o0 "
2P (07 = >.Q;, (02" =
n=0 - n=0

1-2xz

X=1ve y yerine 2y alinirsa

ZJW) Tyzpl ZJpn(Y)

p+1-2pxz
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Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-Lucas sayilarinin iireteg

fonksiyonlari

p=Xx=Y=1 durumunda

© d n 2-12
Z:;‘ T1—z-7° nZ:(;an l1-z-z

c - n 2-22
Z:(; T1-27-7° ;Q”Z 1-2z-7?
S n O - n_ 2-12
nZ:(:‘J”Z 1-z-27° HZ:;‘J”Z 1-2-27°

iki degikenli Fibonacci p—polinomlarmin asagida verecegimiz kombinatoryal

0zdeslikleri iceren toplam formiilleri incelenecektir.

3.3.Teorem

F,n(X,y) iki degiskenli Fibonacci p—polinomu ve L, (X,y) iki degiskenli Lucas

p —polinomu olmak iizere her ne Z ve p>1 i¢in

Lp,n (X’ y) = I:p,n-H (X9 y) + p y I:p,n—p (X7 y)

(3.4)



dir.

1spat

Es.3.4° 1 timevarim metoduyla ispatlayalim.
n=0 igin

Lo y)=F (x,y)+pyF,_,(X,y)
=1+ pyl
y

=1+p
= Lp,O(Xa y)

dir.

n =k igin dogru olsun yani

Lok (% ¥) =Fp i (6 Y)+ pY Ry o (X, Y)

olsun.

n=Kk+1 i¢in

Foka (V) + PYF o (G Y) =XF (V) +F 0 (X )
+(XFy (. Y)+ PY Py p i (%))
= X(Fpun (6 V) +Fyy (X))

+( I:p,k—erl(Xa y) + py Fp,k—p—l(xa y))

16



o (V) + Py Fyypa (6 Y) = XL 6 V) + Y Ly (%, Y)
=Ly (X, y)
olur.
O halde n=k +1 i¢in dogru olur.
Es.3.4 i¢in 6zel durumlar asagidaki gibidir.

X =Y =1 i¢in Fibonacci ve Lucas p —sayilari

Lp,n = I:p,m—l + p I:p,n—p

p=X=Yy =1 i¢in Fibonacci ve Lucas sayilari

L, =F

n+1

+F,

p=y=1ve x yerine 2X secilirse Pell ve Pell-Lucas sayilar1

Q, =2P

n+1

+P

p=x=1 ve y yerine 2V seg¢ilirse Jacobsthal ve Jacosthal-Lucas sayilari

J,=3,,+23,,

n+1

dir.

17



3.4. Teorem
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Fon (X, y) iki degiskenli Fibonacci p —polinomlari olmak tizere n>0 ve p2>1 i¢in

&
p+1 [njpl

Fon(X,Y)= jX”""”‘“y"
" JZ—(; j

dir.

Ispat
=
p+l|( n-jp-1 ) )

Fon(XY)= D XTIy 0> 0, p>1
j=0 i

Es.3.5’ 1 tiimevarim metoduyla ispatlayalim.

n=p,n=p+1 ve olmasi durumunda acik olarak

p-1
{EJ p-ip-1) - o o
F.(X,y)= z X PPy :z | x 2y :(Jxoyo =1
]

j=0 i j=0

ve

{ﬁJ p-ip . _ EJ -] . 0
Fp,z(x’ y)= z ( jXp_J(pH)yJ = ( }(‘—Zlyﬂz(ojxlyozx
=0\ 1]

j=0 ]

F,, =1 olmak tizere F , =X oldugundan Es.3.5 dogrudur.

p P,

(3.5)



Kabul edelim ki.

k> p+2 olmak tizere n=K—1 ve n=K i¢in esitlik dogru olsun.

Fp,k (X’ y) = Z

j=0 ]

521
p+1 (k ip-1

jxk_J( p+1)_] yJ

dir. Simdi n=k +1 dogru oldugunu gdsterelim

FoxaO6Y) =XF (X, )+ Yy F,, ,(XY)

L%J k—jp-1 {ﬁJ k—jp—p-1
_ Z( ! Jxk—i“’”)yj + z[ o ]Xk(ml)(li)ym
j=0 j j=0 j

dir. Ikinci ifadede j+1=t secilirse j=0 igin t =1 olur. Ayrica j =L

olur. Boylece

t-1

L%J k=jp-1 . _ {ﬁJ K—tp-1
Fp,kH(X, y)= z ( Jxk—l(pﬂ)yj n 2 (

j=0 i t=1

jxk—t( p-+1) yt

k—

p+l1

p-1

J igin



[fadesindeki ikinci toplamda t yerine j yazilirsa

{%J k—jp-1 " | {P”J k—jp-1 )
Fosa (X Y) = Z( ) eyl Z( J ehy)

j=0 j j
elde edilir.

I. Durum p+1|k olsun.

p+ 1|k ise kK =(p+1)t olacak sekilde t € Z vardir.

{(pﬂ)t—lJ {(pﬂ)tJ

p+l (p+Dt=jp-1 P+l [ (p+Dt=jp-1 .

_ (p+Dt=j(p+1)y, i (p+Dt=j(p+1),, ]

Foa6y)= >, ( Jx ARDY [ Jx y
=0 j j=1 j-1

t-1

(t—j) p+t-1 o t [ (t=j)p+t-1 R
jx<p+l)(t—1)y1 +z[ J (p+1)(t71)y1

j=0 i=l

j=1 0

(p+Dt—tp-1
X(p+1)t (p+1)t t

j=0 I 0

(t—j) p+t-1 (t-j) p+t-1 o ((pDt-1
( ]Xum)(t i Z [ jx<p+1)(t—1)yj T ( j (P
j=

t—1 [ (t—])p+t-1 . . t (t—j) p+t-1 . . (p+Dt-1
:Z( jx(p”)(t”y‘ +Z{ ] <p+1)(t—1)y1 1( jx<p+1)t1
J
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t (t—j) p+t-1 ()] t (t—j) p+t-1 ( 1)(t ) .
— p+H(t=1), ) p+D(t=1) )
o (6Y) =D X y 4+ X y

j=0 i j=0 j-1

elde edilir. Bu ifadede

()

Pascal formuli kullanilirsa

Fp,k+1(xa y)== Z

j=0

L : J
p+1 k—jp
Xk—j(p+l)yj

j
sonucuna varilir.

II. Durum p+1/k ise bu durumda

pt _ k <(p+1)t

pt<k<(p+Dt = <
p+1 p+1 p+1

= t-1< —k <t
| p+1]
= t= L
L p+1]

olur. Benzer sekilde ispat yapilabilir.
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Ozel secimlerle iki degiskenli Fibonacci polinomlari, Fibonacci p—polinomlar,
Fibonacci polinomlari, Fibonacci p—sayilart ve Fibonacci sayilari igin toplam

formiilleri asagidaki gibidir.

Sy [
Fn(X, y) = Z [ an—ZJ—lyj , Fp,n (X) — Z [ ]Xn—j(pﬂ)—l

j=0 j j=0 j

-3

=

()

Teorem.3.3” de kullanarak, iki degiskenli Lucas p —polinomlar1 i¢in ispat agagidaki

—

gibidir.
2.5.Teorem

L,.(X,y) iki degiskenli Fibonacci p —polinomlari olmak tizere n>0 ve p =1 igin

o
p,n(xay)_ ; n—jp

n-jp ol
X“-J(P+ )yl (2.6)

i

dir.



Ispat

Es.3.6” dan

LonOGY) =Fp a6 Y)+pY Ry (X, Y)
oldugunu gosterecegiz. Burada

H%llJ n-jp-1
mew=2[

j=0

)an(ml)lyj ,

i

Lo (%)= ]Z_(; — j.pjxn"j“’“)yj,
n=0,p=x1

dir.

Sag tarafindan dolay1

n

}(n—j(pﬂ)—p—l yl

{EJ n—ip o {%J n-jp-p-1
&MMW+w&Hmw=Z( }MwwwmyZ(

j=0 ] j=0 i

dir. Es.3.6’ dan



n

{EJ n—jp . . {ﬁJil n—jp-p-1 . .
Lp,n(xa y)= Z[ JXH_J(p”)yJ + py Z ( jxn—l(pﬂ)—l)—ly]
j ~ j

j=0

j=1 j-1

{pHJ(njp]an(pH)yj + png(njpl)an(pmyj

j=1 j-1

ve
(n—jp—lj: j (n—jp]
i) n=jp
Oldugundan

{ﬁJ n-jp L’ J
Lp,n(xi' y)= Z ( J n— J(p+1) Z

n—jp-1 i
n J(P+1)yl

J

{DHJ(nJPJ(l*— Jp jx”j(p”)yj
=0 \_ i n—Jp

{EJ n n-jp ) 1 .

_ { : j( ]Xn—l(m )yJ

i \N—Jp j

{HJ n-jp “HJ Seeeey
_ . [ J n— J(p+l)y n pyz( ]X —(j-1)(p+D-p- yj—l

_{MJ[njpj(n_jpjxnj(pn)yj . J%J J [”—JpJXn_Kpﬂ)yj

24
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sonucu elde edilir.

Ozel segimlerle iki degiskenli Lucas polinomlari, Lucas p—polinomlari, Lucas

polinomlari, Lucas p—sayilar1 ve Lucas sayilari i¢in toplam formiilleri asagidaki

gibidir.
EJ n n—j . i {EJ n n—jp )
Ln(X, y): — Xn—2JyJ aLpn(X): z : 1P+
SN ’ = N=JP

3.2.0zellik

Her n>1 ve p>1 igin

X Fy o () +(PY + V) (Fo 6 V) + Fy it () + Y (Fy o 6 Y) - PRy it (X))
3.7)

= I‘p,n+l(x7 y) + y I—p,n-] (X9 y)

ispat
Lp,n+1(X9 y) + y Lp,n—p(xa y) = Fp,n+2(x9 y) + py Fp,n—p+l(x7 y)

+y( Fp,n(xﬂ y) + y Fp,n—p—l (X: y))



Lp,n+1(X7 y) + y Lp,nfp(xa y) = Fp,n+2(xa y) + py Fp,nfpﬂ(xa y)

elde edilir.

3.6. Teorem

+yF (% Y)+ py’F, o (X Y)

=XF Y+ Y Py o (G Y)+ Y Ry (X Y)
+Y Fon (X Y) + DY (Y Fyppa (1))

=XF )+ YR o+ PY R (XY)

+y Fon 6 )+ pY(Fy = XF, (X))

=XF i (G Y)+YF L+ PY R (XY)

+YF, (G Y) + pyF, (X y) - pxy By (X, Y)

= X(XF, (%, Y)+ YF, (X V)= Py F, ., (X))
+HPY+ Y F, (Y +(PY + V) F, (X Y)

= XF, (%, Y)+(py + Y)(F, . (%, Y)+F . (X,¥)

+y(Fp,n—p(X9 y) - pr,n—l (XJ y))
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L,n(X,y) iki degiskenli Lucas p-—polinomunun x ve y degiskenine gore kismi

tiirevleri Nn>0 ve p>1 icin



oL, (X,Y)
—2 " =nF_,(X,

ox p,n( y)
OLyn (X, Y)
pT pn p(X y)
dir.
Ispat

1) Es.3.8” de X ’e gore kismu tiirev alinirsa

n-1

é’Lp,n(X,y)J"z“} N (0=Jp)(N=(P+DJ) npeyic

OX i=0 n_jp (n_Jp_J) J'

e

} (n—jp-1)!

X
= (n—jp-1-j)j!

y

M”L

|:71j| —Jp—
p 1 jp 1
z (

j:()

jxn( p+1)j-1 y j

i
=nF, . (XY)

elde edilir.

Benzer sekilde

i) Es.3.8” de y ’ye gore kismu tiirev alinirsa

-(p+1)j-1,,]

y!

27

(3.8)

(3.9)
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n—(p+1)j,,j-1

yJ

aLp,n(xa y) :{g} n (n—Jp)'j'

- - ~—X
ox = n—jp(n—jp—j)j!

[71} — jp_l)v

X —(p+l)iy171
= —Jp 1= j)(j-1)!

=nkF, . ,(XY)

elde edilir.

Ozel segimlerle asagidaki denklemler elde edilir.

Es.3.8 ve Es.3.9° da sirastyla X yerine 2x alimirsa iki degiskenli pell-Lucas

p —polinomlart i¢in

0
Qpna( y) Ppn(X y)
9Qpn(XY) _

Py Ponp (%)

Es.3.8 ve Es.3.9” da sirasiyla y yerine 2y alinirsa iki degiskenli Jacobsthal-Lucas

p —polinomlart i¢in

o (X, Y)

=nJ__(X,
X p,n( y)



Apa(X,y)

dir.

oy

nd, . (XY)
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4. TOPLAM OZELLIiKLERI
4.1.0zellik

Her n>1 ve p > li¢in asagidakiler dogrudur.

L 1 )
D) DXL Y) =§(Lp,m<x, Y)=X"L,, (% Y))
i=1

S o 1 )
11) z X FPJ (X’ y) :V( Fp,n+2(xa y) —X Fp,z (X, y))
i=1

dir.
Ispat

i)Es2.12deher n=1,2,3,...,p,....K,K+ p ve p>1 tamsayisi igin

1 X
I-p,n—p (X9 y) = ; Lp,n+1(X3 y) _V Lp,n(X: y)

olup, buradan

n-1 n

n— X X
X le,Z—p(X5 y) = T Lp,3(x’ y) _7 Lp,z(xa y)

n-2 n-1

n— X X
KL p (6 1) == Ly () == Ly (69)

2

X X
X Lp’nfp (X,y)= 7 Lp,ml(x, Y) —7 Lp’n (X, Y)

1 X
Lp,n7P+1(Xa y) = ; Lp,n+2(xa y) _g Lp,n+1(xa y)

30
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(4.2)
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olup, taraf tarafa toplanirsa

C n-—i 1 n
z X Lp,n(X9 y) :y( Lp,n+1(X9 y) -X Lp,2(X9 y))
=)
elde edilir.
i) Benzer sekilde Es.2.11 den her n=1,2,3,....k+ p ve p>1 tamsayisi igin

1 X
Fp,n—p(xa y) = V Fp,n+1(xa y) _g Fp,n (Xa y)

olup, buradan

n-1 n

n— X X
X 1Fp,2—p(xa y) = T Fp,3(xa y) _7 Fp,2(Xa y)

n-2 n-1

n— X X
X 2Fp,3—p(xa y) = T Fp,4(xa y) _T Fp,3(xa y)

X x?
XFp,n—p (Xa y) = ; Fp,n+1(x> y) _7 Fp,n(x> y)
1 X
I:p,n—P+l (X’ y) = I:p,n+2 (X9 y) - I:p,m—l (X’ y)
y y
dir. Boylece

S i 1 .
; XF, (X Y) =§( Fonn 6 Y) = X"F L (X, y))

elde edilir.
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4.2.0zellik

Her neZ ve p>1ligin

i) XL (% Y) =L,y (% YLy (% V) =y Ly o (X YL 0 (X Y) (4.3)
i) XF* (%,Y) = F, (X F, a0 () =Y F o (V)R (X Y) (4.4)
dir.

1spat

1) Es.2.12 kullanilirsa

XLy, (%, y)=xL, (6 y)L, (%, Y)

=L V) Lyt (1) =Y Ly o (%))

=L (YL, ) =YL (YL, (% Y)
elde edilir.

i1) Es.2.11 kullanilirsa

X Fp%n (X, ¥)=xF, (X, Y)F, (X, y)

=Fon Y (Fopa () = Y Fy (6, Y))

= Fp,n (Xa y) Fp,n+1(xa y) -y Fp,n (Xa y) Fp,nfp (Xa y)
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elde edilir.
4.3.0zellik

Her n>1, seZ ve p2>1 igin asagidakiler dogrudur.

D3y (y) =2 (Lpn(x VLo (X Y)~ 1+ P)XY") (4.5)

T 1
11) z y sz,| (Xa y) :; I:p,n (Xa y) Fp,n+1(Xa y) (43)
i=1

dir.
ispat
Es.4.3°den

p=>1igin
yL (X, y)——( "L, 06 YL (6 ) =YL (6 YL, (X Y))

YL, (X% y)——( "L, 06 YL (Y =Y L, (6 YL, , (6 Y))

1
yL (%)= ;( Y Lyt YL 06 Y) = YL, (YL (X, Y))
(X y)_ (Lpn(x y)me—l(X y) prn(X y)Lpn p(X y))

olup, taraf tarafa toplanirsa



n

n—i 1 n
2L 06 = (L (6 YLyt (6 ) =Y Ly (6 V) (1))

i=1

elde edilir. p=1 i¢in
Lo (Y=L (x,y)=(1+p), L, (xy)=x
oldugundan

: n—i 1 n
; y L2p| (X, y) =;( Lp,n (Xa y)Lp,n+l(X, y) - (1 + p)Xy )

bulunur.

ii) Ispat1 (i) benzer sekilde yapilabilir.
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5. IKi DEGISKENLIi FIBONACCi VE LUCAS P_ POLINOMLARINDA
BOLUNEBILME

Fibonacci, Lucas sayilar1 ve polinomlarinin bdéliinebilme ozellikleri ile ilgili Frei

[13], Bergum [14], Hoggatt, [15], Webb [16] cesitli ¢alismalar yapmustir.
Bu boliimde y#0,Xx#0 ve y, x € Z olarak alinacaktir.
5.1 Teorem

Eger (y,X)=1 ise her ne N igin
D (F (6 y)y)=1 (5.1)

i) (Lpn (%, ), ¥ ) =1 (5.2)

dir.
ispat

1) Kabul edelim ki (Fp,n(x, ), y) =t #1 olsun. O zaman q|t olacak sekilde bir q asal

sayist vardir. q|t ise q|y ve q|Fp,n(X, y) dir. Bu durum n=1,2 i¢in miimkiin
degildir.

N> 3ic¢in kabul edelim ki; q| X" olsun. (3.5) den

[%} n-jp ) .
I:p,nJrl(Xa y) = z ( jxnj(pﬂ)yj

=0\ ]



36

olup,

anl = Fp,n(xv y)_ Z

j=0

o)
p+1]/ n-jp-1 (et
n=jp+h)-1y,J
X y ly

j

dir. Buradan q| X olmalidir. Bu ise hipotez ile ¢elisir. Boylece

(Fon(6.¥).y)=1
elde edilir.

Ornek olarak; n=3 ve p=1 icin Foa(%y)= X>+y ve x=1,y=2 sifirdan farkli

tamsayilar olmak iizere,
Fs(,2)= ’+2=3

olur.

Buradan
(F5(1,2).2)=(3.2)=1
dir.

i1) Kabul edelim ki (Lp,n (X,¥), y) =t #1 olsun. O zaman q|t olacak sekilde bir q asal

sayist vardir.

alt = aly ve q|L, (X, y)



dir.
Bu durum n =1 i¢in miimkiin degildir.

n>2 igin kabul edelim ki; g|x" olsun. (3.6) den

i o
Xn_J(p+ )y]

i

Pl iy
X y |y

dir. Buradan q| X olmalidir. Bu ise hipotez ile ¢elisir. Boylece

(Lo y)y)=1
elde edilir.

Ornek olarak;
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n=2ve p=1 i¢in L, ,(X,y)= x*+2y ve x=1,y=2 sifirdan farkli tamsayilar

olmak tizere,
L,,(1,2)= 1’+4=5

olur.



Buradan (L,,(1,2),2)=(5,2)=1

olur.

5.2.Teorem

Eger (Y, X)=1,her neN ve p>1 igin
) (Fon(6Y), Fypa (6 Y)) =1

dir.

ispat

1) (y,X)=1, ne N olsun.

n=1 ig¢in

ijl(x, y)=1 ve Fp,z(x, y) =X

olup iddiamiz dogrudur. Kabul edelim ki n =k >2 dogru olsun yani

(Fp,k(xa ¥)s Foia (% y)) =1

olsun.n =k +1 i¢in dogru mudur?

(Fosa 06 Y, Fypa(xy)) =t

olsun.
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(5.3)



Buradan
t| FP,kH(X’ y) ve t| Fp,k+2(xa y)
Es.2.12°den

Fp,k+2(xﬂ y) =X Fp,k+1(x’ y) + pr,k—p+l(X7 y)

olup,
t| Fp,kﬂ(x’ y)= t| XFp,kJrl(Xa y)
Ayrica t| F

»(X,y) oldugundan t|yF,,,(X,y) olur.

p,k+ p,k+2

Buradan

t| y ise t| Foxa (X, Y) oldugundan

t)(Fprn (). Y)

dir.

Oysa Teorem 5.1’den (Fp’k+1 (X, Y), y) =1 olup, t =1 olmak zorundadir.

Boylece

(Fp,k+1(xa ), Fpia (X y)) =1

elde edilir. n=k +1 igin dogru olur.
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O halde (y,x)=1,ve ne N i¢in

(Fan (6 ) By (. 9)) =1

dir.

Ornek olarak

n=2 ve X=1,y =2 aralarinda asal olmak tizere en biiylik ortak bolenleri 1 esittir.
p=1i¢in

Foa(%y) =X

ve

Foa(xy)=x"+y

dir.

X ve Y degerleri yerlerine konursa
F.(1L2)=1ve F ;(1,2)=1"+2=3
olur. Buradan

(Foa(12), Foa(12)) = (1L3) =1

olur.
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