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ABSTRACT

AN ENERGY-EFFICIENT AND REACTIVE REMOTE SURVEILLANCE
FRAMEWORK USING WIRELESS MULTIMEDIA SENSOR NETWORKS

Öztarak, Hakan

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

May 2012, 135 pages

With the introduction of Wireless Multimedia Sensor Networks, large-scale remote outdoor

surveillance applications where the majority of the cameras will be battery-operated are envi-

sioned. These are the applications where the frequency of incidents is too low to employ per-

manent staffing such as monitoring of land and marine border, critical infrastructures, bridges,

water supplies, etc. Given the inexpensive costs of wireless resource constrained camera sen-

sors, the size of these networks will be significantly larger than the traditional multi-camera

systems. While large number of cameras may increase the coverage of the network, such a

large size along with resource constraints poses new challenges, e.g., localization, classifica-

tion, tracking or reactive behavior. This dissertation proposes a framework that transforms

current multi-camera networks into low-cost and reactive systems which can be used in large-

scale remote surveillance applications. Specifically, a remote surveillance system framework

with three components is proposed: 1) Localization and tracking of objects; 2) Classification

and identification of objects; and 3) Reactive behavior at the base-station. For each com-

ponent, novel lightweight, storage-efficient and real-time algorithms both at the computation

and communication level are designed, implemented and tested under a variety of conditions.
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The results have indicated the feasibility of this framework working with limited energy but

having high object localization/classification accuracies. The results of this research will fa-

cilitate the design and development of very large-scale remote border surveillance systems

and improve the systems’ effectiveness in dealing with the intrusions with reduced human

involvement and labor costs.

Keywords: Wireless Multimedia Sensor Networks, Active Rules, Object Localization, Object

Classification, Object Tracking, Complex Event Processing
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ÖZ

KABLOSUZ ÇOKLU ORTAM SENSÖR AĞLARI KULLANAN, ENERJİ YÖNÜNDEN
VERİMLİ VE TEPKİSEL, UZAKTAN KONTROL EDİLEN GÖZETLEME YAPISI

Öztarak, Hakan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Mayıs 2012, 135 sayfa

Kablosuz Çoklu Ortam Sensör Ağlarının takdimiyle, kameraların büyük çoğunluğu pil ile

işleyecek olan, büyük ölçekli uzaktan kontrollü dış mekan gözetleme uygulamaları öngörül-

mektedir. Bu uygulamalar, hadiselerin oluşma sıklığı devamlı personel görevlendirilmesi

için çok düşük olan, kara veya deniz sınırlarını, kritik yapıları, köprüleri ve su kaynaklarını

vb. izleme uygulamalarıdır. Kaynakları sınırlı, ucuz maliyetli kamera sensörleri göz önüne

alındığında, bu ağların büyüklüğü, geleneksel çok kameralı sistemlerden daha büyük ola-

caktır. Çok fazla kamera, ağın kapsamını genişletebilirken, kaynak sıkıntısı ile birlikte böyle

büyük bir boyut, yeni sorunlar ortaya çıkarmaktadır, örneğin, yer tespiti, sınıflandırma, izleme

veya tepkisel davranışlar. Bu doktora tezi, günümüzdeki çok kameralı ağları, büyük boyutlu

uzaktan kontrollü gözetleme uygulamalarında kullanılabilen, düşük maliyetli ve tepkisel sis-

temlere dönüştüren bir yapıyı önermektedir. Özellikle, üç bileşene sahip uzaktan kontrollü

gözetleme yapısı önerilmektedir: 1) Nesnelerin yerlerinin tespit edilmesi ve izlenmesi 2) Nes-

nelerin tanımlanması ve sınıflandırılması; ve 3) Üs-istasyonundaki tepkisel davranışlar. Her

bir bileşen için, hesaplama ve iletişim seviyelerinin her ikisinde de özgün ve hafif, depolama

yönünden verimli ve gerçek zaman kabiliyetine sahip algoritmalar tasarlanmış, geliştirilmiş
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ve çeşitli koşullar altında test edilmiştir. Sonuçlar, yüksek nesne yer tespiti ve sınıflandırması

doğruluklarına sahip olan, fakat limitli enerji gideri ile çalışan bu yapının uygulanabilirliğini

göstermektedir. Bu araştırmanın sonuçları, çok büyük ölçekli uzaktan kontrollü sınır gözetle-

me sistemlerinin tasarım ve geliştirmesi ile birlikte, işçilik maliyetleri ve insan müdahelesi

düşürülmüş, davetsiz misafirlerle başa çıkan sistemlerin etkiliklerinin artırılmasına olanak

sağlayacaktır.

Anahtar Kelimeler: Kablosuz Çoklu Ortam Sensör Ağları, Aktif Kurallar, Nesnelerin Yer-

lerinin Tespit Edilmesi, Nesnelerin Sınıflandırılması, Nesnelerin İzlenmesi, Karmaşık Olay

İşleme
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CHAPTER 1

INTRODUCTION

Wireless Multimedia Sensor Networks (WMSN) receive a great deal of attention because

of their potential to be deployed flexibly in various outdoor applications relatively cheaply

[Akyildiz07]. Such networks deploy a large number of camera (video) sensors with different

capabilities and can collect/process multimedia data [Rahimi05][Hengstler07]. Typical appli-

cations of WMSNs include multimedia surveillance, target tracking, habitat monitoring, and

intrusion detection [Akyildiz07][Akyildiz08]. In this dissertation, we focus on surveillance

applications, where the frequency of incidents is too low to employ permanent staffing (such

as monitoring of land and marine border, critical infrastructures, bridges, water supplies, etc.)

and consequently need a reactive framework to reduce the human involvement.

In surveillance applications, large number of battery operated image/video camera sensors

are deployed to capture the occurring events. These cameras are typically low-resolution

and severely resource constrained in terms of CPU, memory and storage which makes them

cheaper and convenient to be deployed. As a result of these constraints, current WMSN re-

searches focus on energy-efficiency issues in terms of video data routing, quality of service

(QoS) and coverage for increasing the network lifetime [Akyildiz07][Soro09]. Most of these

studies, however, are at the network layer or lower which do not take into account active

data processing related research at the camera sensors. Nevertheless, there are several tra-

ditional image/video processing problems specific to multi-camera surveillance systems that

may consume significant energy and yet to be tackled under active framework of WMSNs. For

instance, localization, tracking, classification and identification of objects as well as events are

such traditional problems whose active solutions may directly affect the WMSN lifetime. This

is because, with the reduction or compression of multimedia data at the camera sensor nodes,

bandwidth and transmission requirements can be relieved which in turn increases the lifetime
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of the nodes. On the other hand, with the reduction of data, the quality of object classifica-

tion and event identification should not be compromised. This relationship of processing and

communication indicates the need for WMSNs to be able to perform image/video data pro-

cessing with limited/uncertain resources in an energy-efficient manner. In this way, the gap

between networking and data processing research can be filled so as to realize the deployment

of WMSNs in a wide variety of real-life applications. This dissertation proposes a framework

to transform current multi-camera networks into efficient and low-cost active systems that can

be used in large-scale remote surveillance. We explore the main challenges of this reactive

framework in the following paragraphs:

Localization and Tracking of Objects: One of the major traditional problems in surveillance

systems is to locate and track multiple objects in real-time. This is very crucial given that

surveillance applications are geared for security and safety. For instance, in a border surveil-

lance application, the location of the intruder needs to be communicated to an officer in time

so that the officer can take the necessary actions immediately. Similarly, in a target track-

ing application, the location information is needed to determine the path of the intruder or to

prepare a defense which might even include shooting the intruder. In addition, if there are

multiple objects in the area, accurate tracking of each object is needed not to miss any events

associated with them.

While the problems of object localization and tracking in surveillance applications are well-

studied in the literature [Spors01][Huiyu08][Qi07][Bramberger06][Guo05][Javed03], these

earlier studies are conducted in the context of traditional multimedia systems where powered

video and image cameras with significant processing capabilities are available. While a large

number of cameras in WMSNs may increase the coverage of the network, increased size along

with resource constraints pose new challenges for both localization and tracking. To be more

explicit, as far as the localization problem is concerned, the schemes proposed in the past

for traditional multimedia systems require complex signal processing, meaning a powerful

processing capability and the compulsory involvement of multiple cameras. These approaches

cannot be directly applied in our context for resource constrained WMSNs. Furthermore,

energy overhead due to processing and communication becomes a critical issue in addition to

the real-time nature of the process.

For object tracking, there are even more challenges: In the first place, because we intend to
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keep the energy consumption low, the individual cameras cannot perform tracking by them-

selves. Besides, individual cameras’ Field of Views (FoV) are not enough to track the detected

objects throughout the entire area under surveillance. Hence, a base-station, (which will be

called afterwards as “sink”), may collect information from multiple cameras and performs the

function of tracking instead of individual sensors. Secondly, the use of an increased number

of cameras introduces the problem of overlapping areas, meaning that the FoVs of multiple

cameras can overlap and thus several cameras may report the same objects to the sink. Under

these circumstances, if there are multiple objects being tracked in the region, the reported

object locations and the number of objects in the monitored region may not be accurate. This

not only generates false alarms for surveillance personnel but also renders accurate real-time

tracking impossible. Finally, if the camera sensors are deployed randomly, the distribution

of cameras’ FoVs may create blind areas where objects become invisible to the WMSN. In

light of these challenges, novel approaches for object localization and tracking in WMSNs

are needed.

Classification and Identification of Objects: Another traditional problem which can also be

employed within object tracking problem is the object classification problem. Deploying a

large number of battery-operated image/video camera sensors in the surveillance region helps

to alleviate issues regarding possible obstacles (blocking cameras) and thus provides great

convenience in terms of object/event coverage. However, accurate classification of the de-

tected objects regardless of the WMSN size and area coverage percentage is still a challenge.

If the detected objects are classified correctly on site, then the sink may be alarmed based

on the received object information. This is very crucial given that surveillance applications

are geared for security and safety. For instance, in a power-plant surveillance application,

only human intruders who are strangers should trigger an alarm for the guards. In case of a

detected animal or an employee, no alarm may be necessary.

In order to perform an accurate object classification, an effective set of features should be

selected and a robust classifier should be constructed [Datta05][Smeulders00][Jain00]. Nev-

ertheless, limited resources of WMSNs restrict the options for choosing the features and the

classifier. Specifically, features and classifiers which are lightweight in terms of processing,

energy consumption and storage are needed. In addition, real-time applicability of the clas-

sifier is crucial considering the fact that the classification process is performed at the camera

sensors when an object is detected. Finally, the flexibility of the classifier for adding new
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features and object classes and making it applicable for other domains is also a big plus.

Event Identification and Reactive Behavior at the Sink: In surveillance applications having

large number of cameras deployed, when the objects are classified and tracked, there is also a

need for a large number of personnel in order to monitor the received data from the cameras.

This is not feasible in large-scale applications like border monitoring [WEB:BorderReport05].

Therefore, a reactive system, which can identify the events and take certain actions, is a

convenient solution in reducing the human involvement.

However, due to the goal of data reduction at the camera sensors to save energy, there is

a limited/uncertain/imprecise data at the sink regarding detected objects. Deciding which

actions should be taken at the sink becomes more challenging with such data. Specifically,

the reactive system should have the capability of reasoning when it has only uncertain and

incomplete information. In addition, there needs to be a fusion mechanism at the sink before

the collected data are processed. This is due to the redundancy of the received data. Typically,

due to the availability of a large number of low-cost wireless camera sensors, an event may be

captured by different camera sensors (i.e., the same event may be captured under the Field-of-

Views (FoV) of several camera sensor nodes), creating redundancy at the sink. Hence before

taking an action, the detected objects and their corresponding events should be analyzed and

identified. Finally, due to the complexity of events and the multi-modal nature of the data

gathered at the sink, fuzziness in events needs to be supported.

1.1 Contributions of the Dissertation

This dissertation proposes an energy-efficient and reactive remote surveillance framework us-

ing WMSNs. Specifically; the proposed framework is compromised from novel, lightweight,

storage-efficient and real-time algorithms for WMSNs to address the aforementioned prob-

lems [Oztarak07]. Our contributions on this framework can be listed as follows:

• We propose a novel lightweight object localization and tracking scheme for WMSNs

[Oztarak09][Oztarak12-2]. The localization scheme extracts the objects from video

frames using frame differencing. Once the object is extracted, the distance between ob-

ject and sensor is calculated by using the height of the object and camera sensor prop-

erties. Then, its location is calculated by using the camera’s location and the distance
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between the object and the camera. The distance along with the minimum bounding

box of the objects are sent to the sink for tracking purposes. The tracking is performed

at the sink using a fuzzy similarity algorithm to identify the objects located.

• We propose an object classification algorithm based on genetic algorithms [Oztarak12].

We choose two simple but effective features which are extracted from the video frames

in the phase of object localization: “Shape Ratio” and “Speed” of the detected objects.

The idea is to eliminate the cost of the extraction of the features to save energy and

improve the WMSN lifetime. For the classifier, we employ a genetic algorithm based

classifier for the best accuracy. The training of the classifier is done offline with a set of

sample objects and then the classifier is stored at each camera sensor before the online

data collection starts.

• Considering the surveillance applications using WMSNs, in this dissertation, we also

propose a reactive mechanism for not only fusing uncertain data at the sink but also au-

tomated processing of data using active rules extending the classical Event-Condition-

Action (ECA) structure [Oztarak11]. In this mechanism, data fusion is performed using

fuzzy logic to handle impreciseness and uncertainty in the received data. The fused data

is then processed to identify simple and complex events and then to infer predefined ac-

tions based on these events. This step is referred to as the WHEN part of the extended

active rules. We propose that this syntax be employed as WECA rules. For instance,

based on the action part of the rule, raw video data may be requested from the appro-

priate camera node only when some events and conditions are met. In this way, one

can get rid of the burden of receiving huge raw video data at all times from the camera

nodes.

1.2 Organization of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 gives a review of the litera-

ture that is related to our work. Chapter 3 presents WMSNs background and explores our

system definition. Chapter 4, 5, 6 and 7 initially define the problems of “Lightweight Object

Localization with a Single Camera”, “Efficient and Accurate Object Classification”, “Effi-

cient Object Tracking” and “Active Rule Processing” consecutively. Each chapter then gives

details about our solution to the corresponding problems, solution analysis and performed ex-
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periments with their results. Lastly, Chapter 8 states the conclusions and presents the details

about the future works. As an appendix, implementation details are presented.
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CHAPTER 2

RELATED WORK

In this chapter, we survey the state of the art under several categories that are related to our

studies.

2.1 Video Surveillance

In the literature, video surveillance focusing on object extraction is studied for more tradi-

tional multimedia systems concentrating on the automatic data extraction problem such as

moving object extraction, object classification, object identification, object trajectory find-

ing or activity classification [Adali96] [Black04] [Hampapur05] [Lyons00] [Garofalakis02]

[Orten05] [Rangaswami04] [Li97]. In video surveillance applications, besides the ability to

store and process the retrieved multimedia data, multimedia sensors should also infer and

record potentially relevant activities (thefts, car accidents, traffic violations, border intrusions

etc.) and make video/audio streams or reports available for future query [Akyildiz07]. For

instance, IBM smart surveillance engine [Hampapur05] detects moving objects, tracks mul-

tiple objects, classifies objects and events, and then executes event based queries. Similar to

this study, in [Lyons00] video sequences are retrieved for content analysis for surveillance ap-

plications. The cooperation of multiple camera outputs to track moving objects is studied in

[Black04][Rangaswami04]. However, in the context of resource-constrained WMSNs, little

work is done in terms of video surveillance.

In WMSNs, the nature of the data that needs to be communicated to the data collection

point, i.e., the sink node, presents novel research challenges. Unlike traditional multimedia

approaches where resourceful sources, e.g., servers, communicate to potentially resource-
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constrained receivers, e.g., mobile devices; there is a pressing need to reverse the processing

complexity. In this regard, it is preferable to deploy efficient processing at the source to

decide on what to transmit at the possible cost of increased processing complexity at the

receiver, e.g., the sink node. Recent studies on WMSNs focus on the processing and com-

pression of multimedia (video/image) data for increasing network lifetime, providing Quality

of Service (QoS) for data communication and placement of cameras for desired coverage

[Akyildiz07][Akkaya08][Akkaya09][Erdem06].

2.2 Object Detection and Localization

The localization problem receives a lot of attention particularly in traditional multimedia sys-

tems. The majority of these works study the localization problem with the involvement of

multiple cameras. For instance, [Spors01] proposes a solution by integrating different types

of audiovisual sensors. In this approach, a video-based face tracker and a microphone array

are used to locate the object. The authors try to reduce their error rate by using multiple sen-

sors. [Huiyu08] presents another approach that uses both visual and audio sensors. The target

is located through color-based change detection in the video modality and through estimation

of the time difference of arrival between the two microphones in the audio modality. Note that

both of these methods work indoors with single-hop powered multi-camera networks, and the

challenges of WMSNs do not exist. The method proposed in [Qi07] is based on the use of

man height and uses a single camera similar to our approach. In this method, the cameras

are assumed to be located above the scene (i.e., ceiling or top of the building) and geared for

indoor applications. However, the approach is geared for human recognition applications and

does not consider any other objects. In addition, the calculations used in [Qi07]’s algorithm

consider both maximum and minimum points seen in the grounds, which is not suitable for

WMSNs where cameras may have varying orientations. Nonetheless, the height estimation

in this approach can be used in our proposed approach. Camera positioning assumption is

not suitable for WMSNs where the camera sensors may be located parallel to the ground and

directed to the horizon.

Other pursued approaches related to camera sensors strive to determine the location of the

camera sensors rather than intruders or objects. For instance, in [Kassebaum08], the authors

try to determine the projection matrix for a camera viewing a 3-D target. Since the loca-
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tion and orientation of the target is known in advance, any two cameras that locate the same

target position automatically locate the target’s geometry. In order to locate an entire view-

connected smart camera network, the system described in [Kassebaum08] requires moving

the target through the overlapping views of all pairs of cameras. Another work that studies

the determination of location of a camera sensor is reported in [Ravi05]. In this work, the

authors use an image database to compare video frames in order to find where the sensor is

located.

In addition to these approaches, it is worth noting that there is also a huge literature on WSN

localization schemes based on various techniques like [Patwari05]. These approaches as well

as the approaches for determining the locations of camera sensors are different from ours.

Basically, we try to locate the objects/intruders in the environments using cameras, assuming

that the camera locations are already known. Therefore, sensor/camera localization tech-

niques complement our work.

2.3 Object Classification

Object classification is also part of surveillance applications which can be performed in con-

junction with object detection and tracking. The main challenges with object classification

stay with video processing, data elimination and data reduction so as to minimize commu-

nication and coordination needs of the involved camera sensors for saving energy. However,

currently, there is not much research focusing solely on this aspect of WMSNs which indi-

rectly affects the networking/communication costs. The works in resource constraint WSNs

(such as [Brooks03]) do not apply as they work only on scalar sensors not on cameras. Our

work is one of the first to address this issue in the context of WMSNs at resource constraint

cameras rather than the resource rich sink node. Given that there is no work in WMSNs on

classification, next we look at the related literature on object classification and feature selec-

tion in general surveillance applications without any resource constraints.

Until now, a significant amount of research has been done on classification problem in general.

A detailed discussion on several types of classifiers and an extensive comparison of them can

be found in [Jain00] and [Michie94]. Below, we present a broad categorization of classifiers

according to their decision units. Also, we analyze their applicability to WMSNs according
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to their complexity and flexibility.

The classifiers in literature can be grouped into three different approaches: Instance-based,

probabilistic and decision boundary-based [Jain00]. In an instance-based classifier, objects

are classified according to the similarities with the prototypes. The classifier model holds

the prototype classes, prototype objects in each class and their features. In order to classify a

given object (i.e., query object), similarity of the object with each prototype class is calculated.

Thus, the complexity of the classifier in terms of processing, energy and time depends on the

similarity function and the features chosen. If reasonable distance functions with some simple

features are utilized, this approach provides a lightweight solution. Moreover, considering that

the raw features are hold in the classifier model, it is easy to extend the classifier by including

new features and objects classes. However, this approach suffers from the risk of low accuracy

if its model contains a small number of prototypes for each class and they do not represent the

classes well or noise exists in the prototypes. There may be also a high storage requirement if

the model is constructed with a large number of prototypes in order to represent the prototype

classes better. Besides, the probabilistic and the decision boundary-based approaches perform

better than the instance-based approaches at the expense of more complex operations. Some

of the well-known classifiers of this type are as follows: Template matching classifier, Nearest

mean classifier, Subspace method, 1-Nearest neighbor rule [Duda01].

Probabilistic classifiers perform classification by using the generative probability models ob-

tained via the distributions of object classes over the feature space. The classifier model does

not hold the features, but holds the probability models. Thus, the storage requirement is less

for this type. However, it may not be possible to obtain the flexibility as in the instance-

based approaches since the probability models should be recalculated when new features and

classes are included. The accuracy of probabilistic classifiers is reasonably high considering

the low complexity of the classifier model, but it is sensitive to the outliers and class density

estimation errors. Some of the well-known classifiers of this type are: Naive Bayes classifier,

K-nearest neighbor rule, Logistic classifier, Parzen classifier [Duda01].

The decision boundary-based classifiers construct decision boundaries by optimizing some

certain error criteria and perform classification based on these boundaries. Decision boundary

approach is the most complex one among the three approaches with respect to the processing.

However, the accuracy of this approach is usually better. As in the case of the probabilistic
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approaches, it is not easy to include new features and classes. The decision boundary should

be recalculated. Some of the well-known classifiers of this type are as follows: Fisher linear

discriminant, Perceptron, Binary decision tree, Neural networks, Support vector classifier

[Duda01].

Considering these three approaches, the third one is the least convenient for WMSNs because

of its complexity and inflexibility though it provides the best accuracy. Thus, we prefer to

use a classifier that benefits from the advantages of both the instance-based classifiers and

the probabilistic classifiers, as described in [Yilmaz11]. The classifier is first constructed

like an instance based classifier by respecting the low-complexity requirements of the WM-

SNs. Yet, the classifier model is constructed with a large number of prototypes. Then, by

applying genetic algorithm operations, the prototypes are regulated according to their fitness

and the probability knowledge present in the training data is absorbed so that the classifier is

enhanced.

2.3.1 Feature Selection

One important issue for classification of objects is the representation of images. There exist

an excessive number of visual features proposed for the representation of images. The fea-

tures can be classified as global and local features. The former include color [Manjunath01],

shape [Bober01] and texture [Manjunath01] descriptors on the whole image while the latter

is based on some special local points in the image (SIFT [Lowe99], SURF [Bay08]). How-

ever, most of these features are low-level features. Extraction and utilization of such low-level

features impose a high processing complexity as far as the WMSN applications are concerned.

As a result, we prefer utilizing more semantic features which can be easily extracted during

normal video processing for tracking purposes (e.g., object detection or localization). The

goal is to reduce the burden on camera sensors when extracting the features. However, there

is a tradeoff here regarding the number and type of the features used and the classification

accuracy. Our features of object shape and object speed are unique and novel in the sense that

they do not require additional processing while they can still represent the objects for accurate

classification.
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2.4 Object Tracking

Object tracking, identification, re-identification (i.e., deciding if a presently visible object has

already been observed somewhere else before), and classification have been well-studied in

the past [Spors01][Huiyu08][Qi07][Bramberger06][Guo05][Javed03][Collins01] [Sharif09]

using traditional multimedia systems where powered video and smart image cameras were

available with sufficient processing capabilities. The solutions presented in these studies can-

not, therefore, be directly applied to our case as we have different constraints and characteris-

tics. Nonetheless, we will discuss how our classification and tracking processes are different

from these previous studies.

Due to the resource constraints in WMSNs, object tracking and identification processes re-

quire that objects should be detected from the frames and their locations should be determined

in an energy-efficient manner. While [Alaei09] addresses the energy problem with a periodic

wake up of the cameras, the approach still transmits the whole frame and such periodicity

cannot provide real-time tracking of the object. However, our approach utilizes the coordi-

nates of the objects on the frame, applying a fuzzy classification method for determining the

type of the detected object at the camera sensor, without sending any raw video data to the

sink. Moreover, since there is no periodicity, real-time tracking is possible.

In order to track the vehicle objects, some studies have made pre-assumptions on where the

vehicle is going [Coifman98]. In this way, it is much easier to track and re-identify the vehi-

cles. Our work, however, does not include such assumptions about the behavior of objects.

Some of the studies on WMSNs propose distributed or collaborative sensor processing for ob-

ject tracking. For instance, [Liu09] proposes a nonlinear localization-oriented sensing model

for camera sensors. The authors propose a dynamic node collaboration scheme for target

tracking. Nevertheless, this approach cannot handle multiple objects that leave the region or

disappear temporarily due to obstacles. For tracking of multiple objects, more challenges are

identified in [Pasula99]. For example, sensors may be noisy; objects may look similar to each

other or object behaviors may be unpredictable. Our fuzzy solution handles such difficult

situations as shown in Chapter 6.

While we exploit identification for real-time tracking, it has typically been used for differ-

ent purposes in the past. For instance, a person identification scheme is investigated in

12



[Hamdoun08] for a multi-camera surveillance system. This system uses interest-points de-

scriptors to identify individuals appearing at different times throughout the network. Since the

system is used in urban areas, the accuracy of person identification depends on the number

of interest-points. In [Arth07], the authors identify and describe the vehicle objects by using

their local features on traffic scenarios. The matching algorithm compares object signatures

for reacquisition and tracking of the objects through the entire camera network. In [Javed02],

the authors use the feature vector called a ‘Recurrent Motion Image’ (RMI) to calculate re-

peated motions of objects. As a result, they are able to distinguish between a single person,

a group of people and vehicles. Some of the powered systems even use the interaction of a

human operator for these purposes [Park06]. In contrast to these, our identification algorithm

is fully automated, simple, and does not require complicated person or vehicle identification

algorithms.

Classification is considered a good solution to the problem of identifying the different ob-

jects, [Comaniciu00]. For example, people undergo repeated changes in shape while walk-

ing, meaning that they are non-rigid. Vehicles, on the other hand, are rigid bodies and do not

exhibit repeating change in shape while moving. We exploit a similar but simpler approach in

this work. Since the focused application is border monitoring, classifying humans, vehicles

or animals in a simple way is sufficient for differentiating one object from the others.

As far as the WSNs are concerned, there are several studies on collaborative signal processing

for target classification and tracking [Brooks03][Zhang04][Clouqueur01][Li07]. However,

since there are no cameras involved, the event detection techniques in these works are based

on numerical sensor readings and thus they are different from those of WMSNs. For instance,

[Li07] collects a time series of data maps from the sensor network and detects complex events

through matching the gathered data to spatio-temporal data patterns. In our work, we use

multimedia events and investigate them in the space and time domain to identify multiple

objects at the sink.
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2.5 Active Rule Processing

2.5.1 Sensor-Actuator Applications

In the literature, there exist two different working models for sensor-actuator applications

[Zoumboulakis04]:

• Demand-Driven Model: The system initiates the action when an external request/query

is injected into the system. For instance, in order to do environmental monitoring,

a query may be injected into the system periodically [Zaniolo93]. Each sensor in

this model is considered as a data source to the database virtual table stored at sink

[Gehrke04]. An example query for this may be as follows: Tell me the average tem-

perature in the region once every five seconds. These types of applications are not

very prevalent due to the lack of possible applications and thus we will not follow this

approach.

• Event-Driven Model: An individual sensor node produces an event and propagates it

through the network. The system then initiates an action against the produced event.

An example application may be detecting forest fires with temperature sensors. This

approach is used in reactive applications, [Zaniolo93], which is our focus in this work.

Typically, Active Database approach (containing ECA Rules) [Zoumboulakis04] is fol-

lowed in these applications. The aim of ECA systems is to react against the events oc-

curring in the area under control of the active rules asynchronously [Ceri94][Zaniolo93]

[Aiken95][Ghanem93].

While these approaches can respond to the data collected from a WSN, they cannot be applied

directly to a WMSN due to the nature of the data produced, as explained in Chapter 1. The

data contains both redundancy and imprecision. Thus ECA rules need to be extended to

provide data fusion before the rules can be processed. None of the above works consider

these issues.

In [Korpeoglu06], by considering the possible outliers in the processed WSN data, the authors

propose Fuzzy ECA rules. While processing the Fuzzy ECA Rules, events coming from the

sensors are processed directly through a mechanism referred to as composition. In this work,

all the collected data are assumed to be scalar and include single modalities like temperature.
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In our context, due to the ability of camera sensors to capture objects in a larger area (i.e., FoV

is much larger compared to the sensing ranges of simple temperature sensors), when multi-

ple camera sensors send multimedia information regarding the detected objects, the system

cannot directly infer whether the sent multimedia information belongs to the same object. In

addition, there may be several modalities available on the used sensors, which complicate the

use of a mechanism based on composition. Therefore, the fuzzy ECA rule syntax proposed in

[Korpeoglu06] is not adequate to deal with the data in WMSNs. We need to apply data fusion

and extract possible events before the ECA rules can be applied.

2.5.2 Video Event Identification

In WMSNs, different than WSN, the concept of video event plays an important role. A

video event is a high-level semantic concept in videos. In the literature, the translation of

low-level content features in video sequences into video events is a popular research topic

[Lavee09][Ballan11]. In addition, video event extraction is the highest level task in computer

vision. It relies on solutions that use many lower level tasks such as edge detection, opti-

cal flow estimation, object recognition, object classification, and tracking. For instance, in

[Medioni01], the authors work on Unmanned Airborne Vehicle (UAV) videos. They try to

infer whether human beings (small moving objects) or vehicles (big moving objects) present

a threat that should be signaled to a human operator. In order to achieve this, they use a de-

tection module to detect the moving parts of the objects, a tracking module to conclude with

the path information of individual objects and, lastly, a behavior analysis module to extract

the events of the detected objects. Most of their events rely on single moving object and its

behaviors according to static objects on the map which are defined by a human operator.

Different than [Medioni01], [Hongeng04] presents an approach that uses spatial events about

multiple objects. They have just one object class, whose instances are human beings, and

they try to achieve complex events such as “converse” from simple events such as “a person

approaches a reference person from a distance” and then “stops at the reference person when

he arrives”. All the events they define are spatial events. In the literature, in addition to spatial

events, temporal events are also used such as in [Hakeem05], in which they define the world

as a complex network of agents and their temporal interactions which are the events. These

interactions can be visualized in the form of a hierarchy of events and sub-events. The authors
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propose a solution to learn and extract these sub-events temporally in video frames.

The solutions proposed for video event understanding, such as mentioned above, firstly in-

clude a video event extraction part and then a video event modeling part if needed [Oztarak06].

Since we have limited/incomplete/uncertain data gathered from camera nodes having limited

resources, we work on simple video events which discard the video event modeling part.

Using ideas similar to those presented in [Hongeng04] and [Hakeem05], we identify events

based on the spatial and temporal features of detected objects. However, the goal of this

dissertation is not to extract and model complex events, instead we extract simple events to

conclude actions in an efficient manner and also to test our reactive system.

2.6 Complex Event Processing

In the literature, complex event processing is defined as extracting information from dis-

tributed message systems [Luckham98] and makes it possible to discover more complex

events by correlating the simple ones [Flatin07]. In [Etzion10], the complex event processing

correlation techniques are listed as follows:

• Event-pattern detection [Li10],

• Event abstraction [Giambiasi06],

• Modeling event hierarchies [Luckham08],

• Detecting relationships between events (for instance causality, membership or timing)

[Wang08],

• Abstracting event-driven processes [Dong06].

One of the methods that implements the listed correlation techniques is to use the fuzzy rule

based systems. Complex event processing systems use fuzzy rule based systems to model

and detect the event relations. In the literature, fuzzy rule based systems are used in a wide

variety of application areas such as decision making in medicine [Shtovba00][Lin02], taxi

time estimation in airports [Chen11], musical genre classification [Fernandez12] or to extract

features from large data sets [Chaudhari08]. There also exist researches that try to use fuzzi-

ness in event modeling systems, such as transforming crisp systems into fuzzy systems is
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also a research area. For instance, in [Lin02], the authors propose to generalize (crisp) dis-

crete event systems (DES) to fuzzy DES. For that purpose, they transform the traditional crisp

finite automaton model that models the DES system into fuzzy automaton model. They use

biomedicine for their application area. For example, they classify the lung condition states for

a patient as excellent, fair and poor; then, they define the transitions between these condition

states with a crisp finite automaton. Afterwards, they convert the states into fuzzy ones and

convert the transition function to the matrix multiplication that calculates the fuzzy probabil-

ity for new state values. They use fuzziness well in their work; however they did not work on

complex events.

Although, the complex event processing systems are used in literature for Wireless Sensor

Networks [Wang10][Dunkel09], there exists no complex multimedia semantic event process-

ing system for Wireless Multimedia Sensor Networks. In our context, semantic events in

multimedia are the objects’ spatio-temporal relations in multimedia data [Khatib99][Snoek05]

[Leonardi02][Oztarak06]. On the other hand, the usage of fuzzy rule based systems in Wire-

less Multimedia Sensor Networks area is also very limited. For instance, in [Wang10], the

authors use the fuzzy rules for scheduling the sensors that send multimedia data to the sink

by using the future target position. The low or medium residual energy remaining on cam-

era nodes block them to be awoken. Different than [Wang10], in our application which uses

Wireless Multimedia Sensor Network, the simple events are correlated with each other by

using fuzzy rules to produce more complex events.
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CHAPTER 3

WMSN BACKGROUND AND SYSTEM MODEL

This chapter firstly presents some background information about WMSNs, i.e., camera sen-

sors and their features, architectures and application examples. Then, we define our system

model with the assumptions and explain its features in the last section of this chapter.

3.1 WMSN Background

Wireless sensor nodes are used in a wide range of applications such as scientific research,

military, healthcare, and environmental monitoring [Akyildiz02]. Sensor nodes collect infor-

mation about the environment and communicate their observations to a data collection point

from where users can access the collected data without the need to travel to the monitored

area.

With the availability of low cost and also miniature size cameras, multimedia sensor networks

are becoming highly popular to extract more descriptive information about the environment.

In Figure 3.1, we depict a sample deployment from the BWN research lab at Georgia Tech

[WEB:BWN], Stargate board with an 802.11 card and a MICAz mote interfaced with a Log-

itech QuickCam Pro 4000 webcam. Cyclops, [WEB:CYC] depicted in Figure 3.2, attaches

miniaturized cameras similar to those used in cell phones to Mica motes. These examples

enable the nodes to process the images in context and report any new information.

One of the most common used camera sensors is CMUCam3 camera sensor [Rowe07]. It is an

intelligent sensor having vision capabilities and used in different applications such as surveil-

lance (as shown in Figure 3.3), robotics (as shown in Figure 3.4), sensor networks, education,

interactive toys etc. The features of CMUCam3 are listed as follows in [WEB:CmuCam]:
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Figure 3.1: Logitech webcam interfaced with Stargate platform

Figure 3.2: Cyclops with a miniature camera

• Data format of CIF (Common Intermediate Format) with resolution (352x288) on RGB

color sensor,

• For storage, MMC/SD flash slot with FAT16 driver support (The following cards are

known to work with the CMUcam3: PQI 128MB MMC, SanDisk 2GB / 1GB / 512MB

SD cards, SanDisk 512MB MMC cards),

• Image processing rate of 26 frames per second,

• Software JPEG compression,

• Basic image manipulation library,
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– Arbitrary image clipping

– Image down sampling

– Threshold and convolution functions

– RGB, YCrCb and HSV color space

– CMUcam2 emulation

∗ User defined color blobs

∗ Frame differencing

∗ Mean and variance data collection

∗ Raw images dumps over serial

∗ Histogram generation

• Analog video output (PAL or NTSC),

• FIFO image buffer for multiple pass hi-res image processing,

• Wireless Mote networking interface (802.15.4),

• CMUcam3 Frame Grabber for viewing images on the PC.

Figure 3.3: Sample frame for the CMUCam3 used in surveillance (original frame is in color)

Multimedia sensor networks can be deployed in a wide range of applications, such as surveil-

lance sensor networks, law-enforcement reports, traffic control systems, advanced health care

delivery, automated assistance to elderly, etc. [Akyildiz07]. In these applications multimedia

support has the potential of enhancing the level of information collected and enlarging the

range of coverage (i.e., in comparison to point measurements of scalar values).
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Figure 3.4: A CMUCam3 used in robotics

In [Akyildiz07], the reference architecture for WMSNs is given as shown in Figure 3.5. In

Figure 3.5(a), an example of single-tier network of homogeneous camera sensors is illustrated.

In this network, some of the camera nodes may have higher processing capabilities and they

are referred as processing hubs. The second part, which is shown Figure 3.5(b), is an example

of heterogeneous sensor networks which constitutes scalar sensors and camera sensors as a

mixture. Additionally, an example of multi-tier heterogeneous sensor networks is shown in

Figure 3.5(c). In this kind of networks, lower tier may include low-resolution imaging sensors

and the higher tier may be composed of high-end pan-tilt-zoom cameras.

Figure 3.5: Reference architecture for WMSNs
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3.2 System Definition

In this dissertation, the WMSN system is single-tier flat and contains homogeneous camera

sensors (e.g., CmuCam3 [Rowe07]), placed randomly in a surveillance application (e.g., at

borders, bridges, water supplies) to monitor moving objects [Akyildiz07].

Each camera sensor in our WMSN has a certain Field-of-View (FoV) β and Depth-of-Field

(DoF) d, as shown in Figure 3.6, which are the angle and the distance respectively. FoV

is the area within which the camera sensor can capture an accurate image or video. The

camera sensors are assumed to have a random but fixed position and orientation. Location and

orientation can be determined initially using one of the techniques described in the literature

[Patwari05]. Since this is done only once, the energy cost of this process would be negligible.

Camera sensors can communicate with one another as long as they are within the transmission

range of each other. Camera sensors discover their neighbors automatically and use Dijkstra’s

shortest path algorithm to send their messages to the sink. The sink node is assumed to have

more resources than the camera sensors in terms of processing and power.

Figure 3.6: A camera sensor with its FoV (β) and DoF (d)

Finally, the monitored region may have many intersected (overlapped) areas as well as some

blind areas, due to the random camera deployment. A Blind Area is the area which is not

covered by any of the cameras’ FoVs. An example of a blind area is shown in Figure 3.7,

as the whole area around FoVs in black. On the other hand, an Intersected Area is the area

which is covered by more than one camera FoV. An example of an intersected area is shown

in Figure 3.7, as the intersection of the FoVs in gray.
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Figure 3.7: Blind and overlapped areas shown in black and gray respectively

In our surveillance application (border surveillance or power plant surveillance), we assume

three general object classes that may be captured: human, animal and vehicle. In this applica-

tion, the purpose of each object is assumed to be entering the area and then moving towards

the sink as if it aims to capture an important structure positioned at the sink. We assume that

these objects move individually and are not very close to each other (i.e., they do not stick

together as a group).

Figure 3.8: An example scenario where nodes at random locations and an intrusion occurs

An example scenario is depicted in Figure 3.8. In the figure we demonstrate an ad-hoc deploy-
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ment of sensor nodes equipped with cameras represented by their Field of View (FoV) based

on the direction of the deployed camera. Even though the FoV of each camera is limited,

the distributed deployment of multiple cameras enables perception of the environment from

multiple disparate viewpoints. In the figure, we demonstrate an emergency in field marked as

the event in the middle of the figure, and nodes detecting the emergency are circled to distin-

guish them from others. Some obstacles that might block the views of cameras are depicted

by the two gray constructions. In the figure, two nodes with a circle are able to observe the

event while the other nodes are unable to observe the event even though they are much closer

to the event. In this regard, we should not rely on collaboration of neighboring nodes as in

traditional sensor networks to reduce the complexity of multimedia data processing.
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CHAPTER 4

LIGHTWEIGHT OBJECT LOCALIZATION WITH A SINGLE

CAMERA

In this chapter, we describe our proposed protocol for object localization in WMSNs using

a single camera. We first define the problem, then give the solution and lastly explore the

experiments.

4.1 Object Localization Issues in WMSNs

While object localization has been well-studied in the past [Spors01][Huiyu08][Qi07], this

was under the context of traditional multimedia systems where powered video and image

cameras are available with enough processing capabilities. The applications included in-

door/outdoor building surveillance with the cameras mounted on the walls/ceilings of the

buildings. However, with the introduction of WMSNs, we envision surveillance applications

in outdoor contexts where the majority of the cameras will be battery operated. These are the

applications where the frequency of incidents is too low to employ permanent staffing such

as monitoring of critical infrastructures, bridges, water supplies, borders, etc. As the cameras

will be battery operated in such setups, energy overhead due to processing and communica-

tion becomes a critical issue in addition to the accuracy of object localization. Given that the

object localization schemes proposed for traditional multimedia systems in the past required

complex signal processing and the involvement of multiple cameras, those approaches can-

not be directly applied in our context for resource constrained WMSNs. Therefore, novel

approaches for object localization in WMSNs are needed.

One possible and simple solution for object localization in WMSNs is to utilize camera sen-
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sor locations and employ triangulation. However, this solution may not be appropriate since it

may not always be guaranteed that an object will be detected by more than one camera sensor

simultaneously. In addition, this approach will require message exchanging among the partic-

ipating nodes which may unnecessarily increase the localization time. Note that minimizing

the object localization time is also of paramount importance given that the effectiveness of the

actions need to be taken depends on the timeliness of object localization. Another solution

would be collecting video data at a sink and perform the calculations there to locate the object.

This approach not only introduces unnecessary transmission of video frames to the sink but

also creates the same concerns regarding timeliness as mentioned above.

Considering the issues of overhead and timeliness, in this chapter we propose a novel light-

weight object localization scheme for WMSNs.

4.2 Problem Definition

Our problem for object detection and localization can be formally defined as follows: “Given

a video camera sensor which is generating video frames within a WMSN, determine the lo-

cation of an object detected by such camera with maximum accuracy and minimum overhead

in terms of energy and time”.

Our solution consists of two steps. First, we describe how the objects are extracted using

frame differencing. Second, we determine the object location by calculating its distance from

the camera and using camera orientation. Our goal while solving the above problem is to

perform calculations at the camera sensors with maximum accuracy and minimum overhead

in terms of energy.

4.3 Lightweight Object Localization with a Single Camera

4.3.1 Object Detection

When an unusual event occurs in the monitored area, the consecutive frames of the camera

sensor are processed to extract the moving objects. Different moving object detection tech-

niques may be used for this purpose. The simplest technique is frame differencing where
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moving objects on the frame are found by comparing the current frame with the previous

frame, pixel by pixel, according to a given threshold value [Bovik00]. If the change of the

intensity at a processed pixel is above a pre-specified threshold, then this pixel is considered

as part of the foreground. Although this is a simple method, it may not work well in noisy

situations such as an area containing dense tree leaves or branches waving in the wind.

In order to eliminate noisy background, we propose to apply two techniques. First, we reduce

the frame size by dividing it into image blocks with a determined size (i.e., 5x5 pixels). Hence

we obtain pixel blocks rather than individual pixels to process. Secondly, the average color

value for every block is calculated so that the image size can further be reduced and the noise

can be eliminated. These steps are shown in Figure 4.1(a).

(a)

(b)

Figure 4.1: Elimination of noise and calculation of the average color values for frame n

Block size should be determined according to the dynamic background of the frame and it

is dependent to the application area where the camera sensor nodes are used. For instance,

if the background has dense and small leaves waving in the wind, i.e., a forest application,
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the block size may be chosen large to eliminate the noisy background more appropriately, if

the background is an open area having no dynamic background, block size may be chosen as

small to be more sensitive to the moving object accordingly.

After the creation of average matrices, the moving object’s blocks are detected by comparing

block averages for each frame n with the block averages of the previous frame n−1 according

to a defined threshold. If the difference is bigger than the threshold, that block is noted as

part of the moving object. This process is shown in Figure 4.1(b). At the end of this step

we get a 0/1 matrix, in which the blocks of moving objects are noted as 1s and other parts

of the matrix are noted as 0s. Thus, we can find the moving object of the original image just

by using this matrix. For instance, in Figure 4.1(b), the moving object consists of 3 moving

blocks, which constitute the frame part having a size of 5x15 pixels in the real frame.

Of course the first possible attempt after detecting the moving object would be sending the

current frame to the sink for further process. For instance, the sink may guide the camera

sensors to zoom in/out to clearly identifying the moving objects. However, firstly, the biggest

gain in our work is the less energy consumption. Secondly, simple cameras do not have

zooming properties due to energy/cost concerns. Such cameras may exist (e.g., PTZ cameras)

but they require significant power (i.e., cannot work with batteries for long) and are expensive,

which makes them infeasible to use in large scale in outdoor contexts. Therefore, identifying

the objects in this way is not applicable for the targeted applications using WMSNs. Thirdly,

even though we assume such cameras with zooming capability, the decision for sending which

frame/frames to the sink is not an easy process. As an example, let us assume that an object

passes through the front of the camera in 10 seconds. This means that, in 260 frames (for a

video having 26 frames/sec), the object is detected as a moving object. Let us assume that

the camera sends the 10th frame to the sink and the sink decides to zoom into the object.

However, again let us assume that at frame 50, another object enters to the scene which is

far from the first object. Since the camera node has zoomed into the first object, it may miss

the second one. If the camera node decided to send the 50th frame to the sink, it would be a

better decision. Hence, instead of huge sized raw video frame or raw video data, we perform

classification and localization as will be explained in next sections and send only this extracted

information to the sink.
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4.3.2 Object Localization

Our object localization approach requires the distance between the extracted object and the

camera. In order to find the distance between the object and the camera sensor, we use camera

properties such as focus distance and sensor dimensions (e.g., the complementary metal oxide

semiconductor (CMOS) sensor which is used in many digital cameras today). By using the

size of the frame and size of the object on the frame, we can determine the size of the object

on the CMOS sensor. We can then use this information to estimate the distance between the

camera sensor and the detected object, as shown in Figure 4.2.

Figure 4.2: Process to find the distance between the intruder and the camera sensor

The relationship between the real object size and the size of the same object on the frame can

be determined as explained next, using the notation in Table 4.1.

We would like to note that the estimation of the height of the object is application dependent

and it should be chosen accordingly. The type of the object in our border surveillance appli-

cation is determined in the first step and the height of the object can be estimated assuming

average height values for human, animal and vehicle intruders respectively. In our application

object height estimation is performed by looking its Shape Coefficient value explained in the
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Table 4.1: Notation for Finding the Object Distance

hOb j CMOS Height of the object on CMOS sensor
hCMOS Height of the CMOS sensor
hOb j Estimated height of the object in reality
hMBR Height of minimum bounding

rectangle for the object
hFrame Height of the frame

d f Focus distance of the CMOS camera
dOb j Distance between the object and sensor

next section. In order to find the distance between the intruder and the camera sensor, first we

need the height of the intruder on the CMOS sensor which can be found using Equation 4.1.

hOb j CMOS = hCMOS ∗
hMBR

hFrame
(4.1)

We then use the height of the intruder on the CMOS sensor found in Equation 4.1, to find the

distance between the object and camera using Equation 4.2.

dOb j = hOb j ∗
d f

hOb j CMOS
(4.2)

By using only Equation 4.1 and Equation 4.2, we can calculate the raw distances given in

Figure 4.3 for each frame. In our experiments, we have observed that, at every frame, since

there may be one or more block count changes due to the noise on image, the calculated

distances may differ significantly (The reasons for this are discussed in object classification

section). Therefore, we average the previous distances in a windowed fashion (i.e., using

the past 5 frames) to estimate the current distance of the object by smoothing out the raw

distances. Sample results are shown in Figure 4.3 as estimated averaged results for all frames.

Once the distance of the object to the camera sensor is found, the next step is to find the

location of the detected object by exploiting this distance. Here, we use the location of the

camera sensor with its orientation as shown in Figure 4.4.

In order to find the orientation of the detected object, we use a stripping method on the frame.

In this method, we divide the frame into 2k strips. (In our implementation, in order to decrease
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Figure 4.3: The results of calculating the distance of the intruder to the camera in our experi-
ment setup

Figure 4.4: Calculating the location of the object

the localization error to the low levels, we use the average matrix’s width as the 2k value) The

middle of the frame shows the same orientation as the camera’s middle point. The left and

right strips give plus or minus orientation angles for the view. This is shown in Figure 4.5.

We use the following notation in Table 4.2 to describe the computation of object location.

Based on the notation, the x and y coordinates of the detected object can be found by using
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Figure 4.5: Using object location on the video frame

Equation 4.3 and Equation 4.4.

xo(t) = xs + cos(α +
β

κ
tk)dt (4.3)

yo(t) = ys + sin(α +
β

κ
tk)dt (4.4)

Table 4.2: Notation for Localization

(xs, ys) The Location of the Sensor
α The Orientation of the Sensor
β The Field of View Angle (±)
dt The Distance of the Object at time t
tk The Frame Strip of the Object at time t
2k The Number of Strips at Frame at time t

The method is tested in a real scenario with a frame size of 640 X 480 on a human intruder, as

seen in Figure 4.6 where one of the frames’s moving object is shown in Figure 4.7 (original

video is in color). We have calculated the object location for each frame and produced the

human’s path. This path is compared with the real object path as seen in Figure 4.8. With

small estimation error (i.e., up to 5%) in object height, the approach can provide 98% accuracy

in localization.
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Figure 4.6: Sample frames for moving object detection

Figure 4.7: Moving object detection for an individual frame (minimum bounding rectangle is
shown with black)

4.4 Algorithm Analysis

The object localization algorithm explained in this dissertation works on every frame of the

video taken by the individual camera sensor. The main steps of the algorithm are listed as

follows:

1. Detect the moving object on the frame,

2. Calculate the distance between the moving object and the camera sensor,

3. Locate the object in 2-D environment.

In order to detect the moving object, first the algorithm runs on every pixel of the frame to

reduce the noise and size of the image. The time requires to process the whole image is O(hw)
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Figure 4.8: Estimated object path and real path for scenario in Figure 4.9. The straight vectors
indicate the borders of the FoV and dashed vector indicates the direction of the sensor.

where h is the height and w is the width of the frame in pixels respectively. Then, the reduced

frame is used at other stages which is smaller than original frame in size. Since detecting the

moving object requires looking at the previous frame and current frame averages matrices,

the time needed for this comparison is not greater than O(hw). After detecting the moving

object, computations to find the distance between object and sensor require constant time

which is O(1). The last step is to locate the object in the environment using the distance found

in the previous step. This also requires constant time, O(1). Hence overall computational

complexity of the algorithm is O(hw).

Note that in case of doing the processing at the sink, the frames need to be transmitted to the

sink. Therefore, there will be extra delay for transmission of one frame over k hops assuming

that camera sensor is k-hop away from the sink. Let the transmission and propagation delays

for a frame of mentioned size above (i.e., hw) are td and tp respectively, then total communica-

tion time complexity is O(k(td +tp)). Note that O(k(td +tp) >> O(hw). To determine the object

location, the sink would need to process the data. If our approach is used for such processing,

there is still a timing cost of O(hw) in addition to the communication cost of O(k(td + tp)).

Therefore, total time complexity of a centralized approach would be O(hw + k(td + tp)). Our

approach saves us a time of O(k(td + tp)) which is invaluable for critical surveillance applica-

tions that depend on the timeliness of the object detection and localization.
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Table 4.3: Notation Used in Time Complexity Analysis

h Height of the processed frame
w Width of the processed frame
k The distance between the camera sensor performing

the processes and the sink in hops
td Transmission delay for the processed frame
tp Propagation delay for the processed frame

4.5 Experimental Evaluation

4.5.1 Experiment Setup and Performance Metrics

In the experiments for object detection and localization, we have captured videos of a mobile

intruder in different scenarios and calculated the location of the intruder. These locations are

then compared with the real 2-D locations of the intruder. We have used sample videos which

have frame size 640 x 480 and every frame is 900 KB. Two sample frames are shown in Figure

4.9.

We have considered two metrics:

• Localization Error: This metric shows the error in estimating the distance of the in-

truder. The less is the error, the better is the quality of the approach.

• Energy Overhead: This metric constitutes total energy in processing and transmitting

the frames (if needed). Our goal is to minimize communication overhead in order to

maximize the lifetime of the cameras.

4.5.2 Performance Results

4.5.2.1 Localization Error

We have calculated the detected object location for each frame and produce its path. We have

repeated this under different scenarios, where intruder is closer to the camera or vice-versa.

These paths are compared with real object paths and the results for them shown in Figure
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(a)

(b)

Figure 4.9: Moving object detection for a sample video where MBR of the object is shown
on two sample frames for Exp-1

4.10 and 4.11 have revealed that our approach can locate the objects with an error of 2% in

the worst case.

4.5.2.2 Energy Overhead

In order to prove the efficiency of the proposed algorithm, we have also performed exper-

iments to assess the energy consumption on the camera sensors. We have used the AVR

Simulation and Analysis Framework (AVRORA) [WEB:AVRORA] to calculate the energy

costs. AVRORA is an emulator which can provide realistic results as if the approach is run

on a typical CMOS sensor. It has built in functions that can compute the processing and

communication costs.
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Figure 4.10: Estimated object path and the real path for Exp-1. The straight vectors indicate
the borders of the FoV and dashed vector indicates the direction of the camera sensor

Figure 4.11: Estimated object path and the real path for Exp-2 where the same intruder of
Exp-1 passes closer to the camera sensor

We have used a baseline approach which processes the frames at the sink and determines the

location of the objects. In that case, the frames are sent to the sink traveling through multiple

hops (i.e., k). This is referred to as ‘Traditional Method’ in the graphs. Our approach per-

forms the localization on site and does not send any data to the sink for localization purposes.

However, it may need to send an alarm (i.e., one simple message) to the sink when an intruder

is detected and located.
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Since AVRORA uses very limited hardware simulation, instead of whole frame, only reduced

part (512 byte) is used to approximate the results. The results are given in Table 4.4 and 4.5.

Table 4.4: Energy Costs for Different Tasks

Task Cost in Joule
C: One-time CPU cost to process the frame

to extract the moving object 0.0180
M: Transmission cost of the

whole frame for 1 hop 0.0700
T : Transmission cost of the

alarm for 1 hop 0.0007
Taking the video data Same for both

cases

Table 4.5: Total Energy Costs in Joules

Process Traditional Proposed
Method Method

For 1 Hop M = 0.0700 C + T = 0.0187
For k Hops M ∗ k = 0.0700 ∗ k C + T ∗ k = 0.018 + 0.070 ∗ k

Figure 4.12: Energy costs of two different methods

The results for varying k (Hop Count) values are depicted in Figure 4.12. As can be seen from
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this figure, energy overhead for our approach is almost constant and significantly smaller than

the traditional method. We would like to note that in this experiment every moving object

detection event is sent as an alarm to the sink. However, if we define some alarm criteria for

the proposed method, the energy consumption would be further reduced (i.e., alarms are only

sent when needed).

4.6 Summary

In this chapter, we present a novel object localization approach which can work on-site at a

camera sensor without the need for collaboration with its neighbors. The approach utilizes

frame differencing in order to extract the object. Once the object is detected, its distance to

the camera sensors is estimated using the size of the object on the frame and on the camera.

The distance is then used to determine the exact location of the object by using the orientation

of the camera and the object.

The experimental evaluation reveals that our approach can effectively determine the location

of an object with an error rate of 2% in the worst case. We also assess the energy overhead

of our approach on the individual camera sensors. The energy consumption is significantly

reduced compared to the cases where the localization is performed at the sink due to commu-

nication overhead.
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CHAPTER 5

EFFICIENT AND ACCURATE OBJECT CLASSIFICATION

In this chapter, we explain how we solve the object classification problem in WMSNs. We

give information about feature selection process and the classifier we use. At the end, we

present the experiments in detail.

5.1 Object Classification Issues in WMSNs

Current WMSN research has focused on the issues regarding energy-efficient video data rout-

ing, quality of service (QoS) and intelligent camera actuation for increased network life-

time, which are mostly related to networking aspects of the application [Akyildiz07][Soro09].

However, WMSNs are multi-camera systems and they also deal with traditional problems of

image/video processing such as object classification. Such processing is associated with net-

working issues as it may provide in-network processing to improve the network lifetime and

reduce the bandwidth requirements. For this purpose, in this chapter, we propose an efficient

and accurate object classification solution for WMSNs.

5.2 Problem Definition

Our problem for object classification can be formally defined as follows: “Given a video

camera sensor which is generating video frames within a WMSN,determine the class of a

detected object by such a camera with maximum accuracy and minimum overhead in terms

of energy, time and storage”. Our goal is to minimize the need for human intervention on the

WMSN applications with automated and accurate object classification.

40



Our goal while solving the above problem is to perform the calculations at the camera sensors

with maximum accuracy and minimum overhead in terms of energy, time and storage to

achieve high data reduction rate. It is desirable to reduce the amount of data that needs to be

transmitted such that the amount of energy during data communications is kept at a minimal

level. This also helps controlling the data traffic to reduce interference problems and data

collision.

5.3 Efficient and Accurate Object Classification

In our border surveillance application, we assume that camera sensors may sense three dif-

ferent object types, namely Human, Vehicle and Animal. In the literature, there are many

works using the shape and the motion properties of moving objects in order to classify them

into one of these categories (human, animal, vehicle), such as [Rivlin02][Bogomolov03]

[Javed06][Landabaso04]. However, all of these works use powerful cameras or machines

that do not have any energy constraints. Given the resource constraints of camera sensors, we

opt to send as minimal data as we can to the sink. Hence we take from these works the idea

of using the features of the moving objects’ shape and motion (velocity) in order to classify

them. We implement this idea in a simpler way to address the energy and processing problems

in WMSNs.

The event associated with the object and sent by camera sensors to the sink is named the

Moving Object Event (MOE). Since, instead of the complete image or video of the object and

only MOEs flow to the sink, there is no way of performing object identification on raw video

data using powerful image processing techniques to differentiate between different objects at

the sink. We therefore propose to utilize a simple object classification algorithm at the camera

sensors in order to be able to identify and track these objects at the sink. The classification

algorithm is fuzzy logic based and does not provide a crisp classification. It depends on very

limited information since it is performed under the energy and processing constraints. The

motivation behind using fuzzy logic is based on the fact that, even though some processing is

allowed at the camera sensors, a single camera may not provide enough information to rec-

ognize and classify an object accurately. Hence, fuzzy logic is utilized in order to incorporate

the uncertainty in the decision of classification at the camera sensors.
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The classification algorithm works as follows: In order to detect the moving objects in the

monitored area, we extract the Minimum Bounding Rectangle (MBR) of the moving object in

the captured frame. We realize that MBR behaviors of different types of objects differ from

each other. For instance, a moving human intruder shows somewhat slim-tall MBR as shown

in Figure 5.1 (with a black box). On the other hand, an animal shows a wider but mostly

thicker MBR. A vehicle shows similar MBR behavior to that of an animal however they differ

in their speeds throughout the video frames. While it is true that some of the animals can

move relatively fast (e.g., horse, dogs, cats), this is only possible when they are escaping or

hunting at their maximum speeds. Assuming a typical walking pace, most of the time, an

animal will be slower than a typical vehicle. For the extreme cases, we introduce possible

errors in classification which will be tested in Chapter 5.5 (Experimental Evaluation).

Figure 5.1: A human intruder, an animal and some vehicles with their minimum bounding
rectangles (MBRs), shown in black

For every detected moving object, a Shape Coefficient is calculated by using Equation 5.1.

The membership values of the objects for the three object classes are found by using the

example fuzzy sets shown in Figure 5.2. We use trapezoidal and triangular membership func-

tions for fuzzy input variable Shape Coefficient. The example fuzzy sets formed by this mem-

bership function and corresponding linguistic states are shown in Figure 5.2. Note that this

Shape Coefficient membership figure is for our specific border surveillance application and is

given as an example. A more specific and accurate fuzzy set can be created and adapted based

on the specifics of the applications.

S hape Coe f f icient =
width MBR
height MBR

(5.1)

As an example, the Shape Coefficient for the human’s MBR in Figure 5.1 is 0.36 (width:

40 pixels, height: 110 pixels). This means that this MBR has the classification vector of

{Human:1.0, Vehicle:0.0, Animal:0.0}. On the other hand, the Shape Coefficient for the ani-
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mal’s MBR shown in Figure 5.1 is 1.35 (width: 230 pixels, height: 170 pixels). This means

that this MBR has the classification vector of {Human:0, Vehicle:0.25, Animal:0.75}.

Since animals and vehicles have similar MBRs and consequently similar Shape Coefficients,

the animals and the vehicles can also be separated from each other with the aid of their veloc-

ities when they are moving. Therefore, we add one more step to our classification algorithm

to use the velocities of the detected moving objects. The velocity of the objects can be deter-

mined by finding two consecutive locations (which will be explained shortly) and by looking

at the time it takes to travel between those two locations.

Figure 5.2: Example fuzzy sets produced for our application used in simple object classifica-
tion according to Shape Coefficient

We would like to note that there may be some situations that affect the accuracy of the com-

putation of the Shape Coefficient. For instance, an object may be seen in the frame partially,

for following reasons:

1. The object may disappear partially due to an obstacle and thus only some part of it may

be visible;

2. The object may change its shape naturally while moving (i.e., if it is a human being or

animal);

3. There may be a shadow of the object;
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4. The algorithm may not capture the whole moving object at all frames.

Therefore, to prevent inconsistencies in the coefficient, we consider the results of both the

current frame and its previous frames. We average the previous coefficient in a windowed

fashion (i.e., using the past 5 frames) to estimate the coefficient of the object more accurately.

5.3.1 Feature Selection & Extraction for Genetic Algorithm Based Classifier

In visual object classification task, extracting features from images and performing classifi-

cation with these features are usually complex and costly operations. In order to provide a

lightweight classification mechanism in terms of processing and energy consumption, it is

crucial to adapt an energy-efficient and effective solution for the choice of features and the

classification process. Therefore, in this dissertation, we propose to use two simple visual

features that are related to the objects rather than the whole image: Shape Ratio and Speed.

The Shape Ratio feature is the ratio of width and height of the detected object’s minimum

bounding rectangle (MBR), whereas Speed feature gives the speed of the object. Note that

while these features are easy to extract, the classification using such limited features (i.e., in

terms of the number and the characteristics of features) will be challenging. We will address

this challenge when we employ a suitable classifier as will be detailed in the next subsection.

Shape Ratio can be easily obtained from a detected object. To do this, first the object is ex-

tracted from the video frames using frame differencing at individual camera sensors. MBR

on the image can then be easily calculated. This process does not require a lot of video pro-

cessing as it only depends on the frame differencing which was shown to be energy-efficient

in [Oztarak09]. MBR has the height and width of the object which are used to calculate

S hape Ratio = width/height

The speed can also be calculated based on some pre-processing using camera properties and

camera locations. Specifically, once the object is extracted, the distance between the object

and the camera sensor is calculated. The object location is then calculated by using the cam-

era’s location and direction, the object position on the frame and the distance between the

object and the camera. At the end, previous frame’s result for localization is used to calculate

the speed of the object in the area under surveillance. This process has also been shown to be

feasible and cost-efficient in [Oztarak09] for object tracking applications.
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5.3.2 Object Classification Using Genetic Algorithm Based Classifier

In this dissertation, an instance-based classification mechanism is adopted. The instance-

based mechanism requires some prototype images for each class as the classifier model and

makes a decision by using the dissimilarities of the prototypes with the query object. To

avoid the large space requirements of such a classifier model (i.e., it can be used on resource

constrained cameras), a pre-defined number of prototypes are selected by using a Genetic Al-

gorithm (GA) based approach [Yilmaz11] on the training data. In addition to the GA support,

the classifier utilizes Class Specific Feature (CSF) approach [Yilmaz11-2] in order to define

prototype objects with the most representative and discriminative features.

The classifier model is constructed offline and can be deployed to the camera sensors to be

used in classification process. Note that when a new and improved classifier is available, this

classifier can also be deployed to the camera sensors to replace the existing classifier.

Before starting the actual classification, a training phase is performed to construct the classi-

fier model. The goal in this phase is to train the algorithm by using a set of prototype images.

In order to do this, two things need to be performed: 1) Objects features that best represent

each class need to be identified by using CSF indices; and 2) A genetic algorithm (GA) should

be used to classify candidate prototype objects from all images available. Thus, the classifier

model contains two major parts: CSF Model and GA Model. Note that the object features

used here are different than the features that will be used in the classification of the objects

after the training is done.

As introduced in [Yilmaz11-2], the CSF model is built on the idea that different object types

can be represented better by different visual features. For example, a ‘car’ object can be repre-

sented better by its ‘shape’, whereas a ‘sea’ object can be represented with its ‘color’. In this

study, the class-specific feature selection mechanism, which is proposed in [Yilmaz11-2], is

utilized. The method finds out the representative and discriminative features for each image

class. The representative characteristics of features are calculated according to the dissim-

ilarities of images within the same class, and discriminative characteristics are calculated

according to the dissimilarities of images between different image classes. Using these repre-

sentative and discriminative characteristics, the weight values of features for each image class

are calculated. These weight values are referred to as CSF indices and are used during the
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decision making in the classification process.

GA model contains the prototype images for each class. These prototype images are obtained

by using the GA based approach in [Yilmaz11]. Based on the GA notations, each class is

represented with a set of chromosomes (prototypes) which are representative images of the

class. Each chromosome holds an Effectiveness Value that is used as a weight during the

decision making. In addition, each chromosome is represented with a set of genes which are

the representative features for that class in correspondence with the CSF model.

To utilize a GA based approach and perform genetic operations, the training phase is divided

into two parts: one training phase for obtaining the definitions of the training objects (First-

Training) and one for making improvements on the definitions by using genetic operations

(Second-Training). The initial population of genetic algorithm is generated by using the First-

Training data. In other words, the classes in the classifier model gains chromosomes by

identifying new objects in the First-Training phase. Then, the genetic operations are applied

to the system during Second-Training. These genetic operations are: Effectiveness Correction,

Crossover and Mutation. By applying these operations, “survival of the fittest” principle of

genetic algorithm is provided and the fittest chromosomes (prototypes) are selected as the

classifier model.

For each image obtained during the Second-Training, firstly the decisions of all categories are

calculated. Also, fitness values of all chromosomes on all categories are computed by using

the Fitness Function. Then, Effectiveness Correction, Crossover and Mutation operations are

performed on the chromosomes of all categories. The Fitness Function is used to understand

how much a given decision is fit according to the ground truth. The Effectiveness Correction

operation updates the Effectiveness Value’s of the chromosomes according to their fitness. The

Crossover operation mates the currently available chromosomes, combines the information

they contain and tries to obtain fitter chromosomes. Similarly, the Mutation operation mates

the currently available chromosomes with the newly obtained chromosomes during Second-

Training.

Our proposed classification method performs multiple labeling on each object by providing

a fuzzy membership decision for each class in the range [0,1]. The classifier makes a deci-

sion on the fuzzy membership of a candidate object for each of the contained classes. During

such calculation, decision of a gene is based on the similarity of the query object with the
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corresponding prototype object to which the feature belongs. Decisions of genes in a chro-

mosome are combined by applying a weighted sum where the weights are the CSF indices for

the decision-giving class. Decisions of chromosomes are also combined by using a weighted

sum in order to obtain the decision of the class. In such calculation, the weights of the chro-

mosomes are the effectiveness values of chromosomes that are updated during the genetic

operations according to the fitness of the chromosomes.

Our proposed classification method performs multiple labeling on a query object by providing

a fuzzy membership decision for each class in the range [0,1]. For instance, if there are two

classes as human and animal, an object’s fuzzy membership value can be [0.7,0.3] which

indicates that the object is classified as a human with 0.7 fuzzy membership value and as an

animal with 0.3 fuzzy membership value. In order to obtain the membership value of each

class, decisions of chromosomes that are contained in that class are combined by using a

weighted sum. The weights of the chromosomes are the effectiveness values of chromosomes

that are updated during the genetic operations according to the fitness of the chromosomes.

The decision of each chromosome is also found by a weighted sum. To obtain a chromosome

decision, decisions of genes in the chromosome are combined. This time, the weights are the

CSF indices for the decision-giving class. Lastly, decision of each gene is calculated by using

the similarity of the query object with the corresponding prototype object to which the feature

belongs.

As can be seen from the explanations above, the calculation of the fuzzy membership value

does not bring a significant processing overhead to the camera sensors as the calculations are

mostly finding the weighted sums.

5.4 Algorithm Analysis

The steps that are followed before the actual classification algorithm is run are listed below.

These are the steps to extract the features that we use in the classification of the object.

1. Detect moving object on the frame

2. Calculate the distance between moving object and camera sensor

3. Locate and calculate the speed of the object
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We can assume that the features that we are using in the classification will be available as

part of object detection and tracking in surveillance. Therefore, we focus on the analysis of

the classification algorithm only in this section. We analyze the time, energy and storage

complexity of the algorithm to see its applicability to WMSNs.

5.4.1 Time Complexity Analysis

The object classification process requires calculating the similarity between the query object

and each of the prototype objects in the classifier model for each feature. Considering that

preferred features are one-dimensional, performing an Euclidian-distance calculation in order

to find the similarities requires a constant time, which is O(1). Thus, assuming that m and n

denote the feature count and the total number of prototypes respectively, the total classification

process is performed in O(mn) time.

Note that m is the feature count that cannot increase dramatically (e.g., it is 2 in our case). As

a result, n is a more dominant value than m. Hence, we can simplify the complexity to O(n)

which is linearly dependent to n.

Table 5.1: Notation Used in Time Complexity Analysis

m The feature count used in classification
n The total number of prototypes used in classification

5.4.2 Energy Analysis

The energy consumption of classification algorithm depends on calculations made on each

video frame for the classification process. In our algorithm, in order to calculate the simi-

larity between the query object and each of the prototype objects in the classifier model, we

perform Euclidian-distance calculation for each feature and it requires O(mn) simple sub-

tractions where m refers the feature count and n refers to number of prototypes. In order to

calculate the total weight for the query object, we perform O(mn) additions and multiplica-

tions. Then, for each class, we perform O(1) division to find decision value for the prototype,

O(1) addition to find effectiveness for the prototype, and O(1) multiplication and addition to

find the total sum for the prototype. Lastly we perform O(1) more division to find the deci-
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sion of the class for the query object. Hence, if we have c classes, totally we perform O(cmn)

subtractions, O(cmn + c) additions, O(cmn + c) multiplications and O(c) divisions. Since

typically c is small value, total operation count is linearly dependent on mn. Therefore, total

energy cost at each camera sensor for data processing would be the cost of performing O(mn)

multiplications, additions and subtractions.

Note that the classification can also be done at the sink. In that case, if we assume that we

run the same algorithm, then the energy cost will be same but there will be increased delay

for classification due to processing at the sink. On the other hand, if a different classification

algorithm is to be run at the sink, then this requires the transmission of the detected objects

as a whole (rather than the MBRs) which will introduce a significantly higher energy cost

compared to our case. This is because, the size of the transmitted object/frame will be much

higher than the MBRs which are in text. Meanwhile, the extraction of the objects will be as

costly as our frame differencing.

Table 5.2: Notation Used in Energy Analysis for Object Classification

m The feature count used in classification
n The total number of prototypes

used in classification
c The number of classes that the

objects will be classified

5.4.3 Storage Analysis

The classifier model contains two models: CSF model and the genetic algorithm model. CSF

model includes the weights of each feature for each class. Thus, the complexity of the function

for calculating the bytes needed for storage of CSF is O(mc), where m and c denotes the

number of features and classes respectively. Besides, genetic algorithm model holds features

of each prototype and weights of the prototypes. As a result, the complexity of the storage

required for the genetic algorithm model is O(n(m + 1)).

The overall complexity of the storage needed to store the classifier is O(mc + n(m + 1)) which

is linearly dependent on the number of features, classes and prototypes. Since n is larger com-

pared to c and m values (i.e., generally c and m are constants), we can simplify the complexity
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to O(n). If we emphasize having limited storage on camera nodes, linear dependency is the

best we can achieve for that purpose.

Table 5.3: Notation used in Storage Analysis for Object Classification

m The feature count used in classification
n The total number of prototypes

used in classification
c The number of classes that the

objects will be classified

5.5 Experimental Evaluation

5.5.1 Experiment Setup and Performance Metrics

For the experiments of object classification, we assume a power plant surveillance applica-

tion scenario. In this scenario, when an intrusion occurs in the area under surveillance, the

detected objects are classified at the camera sensors. The classification is performed as a

multi-class choice with 3 classes: Human, Vehicle and Animal. For the camera sensor experi-

ment data, the Caltech 101 image dataset [Fei06] (for Vehicle and Animal classes) and search

results from Google Image Search (for Human class) are used by formatting them into the

CmuCam3 [Rowe07] output format. The CalTech101 dataset does not contain Vehicle and

Animal classes. Therefore, images from several different classes in Caltech 101 dataset are

re-grouped according to these classes. The dataset is divided into three sets: First-Training,

Second-Training and Test. The number of images is determined as 10 for each class in each

of the training sets and 20 for each class in the test set. Sample images from our constructed

dataset are given in Figure 5.3.

The S hape Ratio feature of each sample is extracted by simply dividing the width of the

image by the height value. Besides, S peed values are randomly generated, considering that

it is not possible to have speed values in an image dataset. For the random generation, speed

values between [1, 10], [5, 25] and [10, 100] meter/sec are used for classes Human, Animal,

Vehicle, respectively.

As mentioned in Chapter 5.3.2, the CSF mechanism [Yilmaz11-2] is applied in order to
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Figure 5.3: Sample images from test dataset

find representative and discriminative features for each object class. CSF mechanism gives

weights of each feature for each class. Acquired weights are given in Table 5.4. Accord-

ing to these weights, it has been observed that S peed is the dominant feature for all classes.

However, the effect of it is more for Animal class than the other two classes.

Table 5.4: CSF Weights

S hape Ratio S peed
Human 0.371051 0.628949
Vehicle 0.342217 0.657783
Animal 0.130904 0.869096

We have considered three metrics to assess the performance of the classification:

• Classification Accuracy: This metric shows the accuracy in estimating the class of the

intruder. The bigger is the performance, the better is the quality of the approach.

• Energy Overhead: This metric constitutes total energy in processing and transmitting

the frames (if needed). Our goal is to minimize this overhead in order to maximize the

lifetime of the cameras.

• Occupied Space: This metric shows the required space for classifier model at the cam-

era sensor. The occupied space should be minimum, considering that the sensor has a

limited memory.
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5.5.2 Performance Results

5.5.2.1 Classification Accuracy

Under given test setup, the classification results in Table 5.5 and 5.6 are obtained. As men-

tioned in Chapter 5.3, the classifier performs multiple labeling by providing fuzzy member-

ship values in the range [0,1] for each class. Thus, in order to measure the precision values,

the class with the highest membership value is taken as the classification result. The system

performs a high accuracy ratio in which only a total of 1 instance is classified wrong among

the 60 test instances. This 1 instance is a Vehicle instance and classified as an Animal due

to its very low S peed value. As seen in Table 5.4, S peed is a more effective feature for

Animal class. Thus, having S peed value very close to that of the Animal class caused such a

classification.

Table 5.5: Confusion Matrix for GA-based Classification

Prediction
Human Vehicle Animal

A
ct

ua
l Human 20 0 0

Vehicle 0 19 1
Animal 0 0 20

Table 5.6: Class Accuracies for GA-based Classification

Class Accuracy
Human 1.00
Vehicle 0.95
Animal 1.00
Total 0.98

In addition, we compared our classification results with a baseline approach which uses a

fuzzy membership set defined by an expert user to do the classification. The results shown

in Table 5.7 and 5.8 indicate that overall classification accuracy is increased to 0.98 by using

genetic algorithm based classifier from 0.92, where an expert user prepares fuzzy membership

functions to be used in classification process. In addition, the whole classification process is

automated and human intervention is removed.

Finally, we repeated the same experiments by introducing a noise of 20% to the randomly-
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generated S hape Ratio & S peed values that may happen due to errors in localization or

obstacles in the environment. We observe that the results do not change as the proposed

approach can handle such errors perfectly.

Table 5.7: Confusion Matrix for Fuzzy-membership-based Classification

Prediction
Human Vehicle Animal

A
ct

ua
l Human 20 0 0

Vehicle 0 19 1
Animal 1 3 16

Table 5.8: Class Accuracies for Fuzzy-membership-based Classification

Class Accuracy
Human 1.00
Vehicle 0.95
Animal 0.8
Total 0.92

5.5.2.2 Energy Overhead

We also performed experiments to assess the energy consumption of our approach at cam-

era sensors. We used the AVR Simulation and Analysis Framework (AVRORA) to calculate

energy costs [WEB:AVRORA] at camera sensors. We used a baseline approach which pro-

cesses the frames at a sink and determines the location and classification of the objects at the

sink. In that case, the frames travel through multiple hops (i.e., k) to reach the base station.

This approach is referred to as ’Traditional Method’ in the graphs. Note that our approach

performs the localization and classification on site and does not send any data to the sink. It

only sends alarms whenever needed. The results are given in Table 5.9 and 5.10.

The results for varying k (Hop Count) values are depicted in Figure 5.4. As can be seen

from this figure, energy overhead for our approach is constant and significantly less than

the traditional method. We would like to note that in this experiment every moving object

detection event is sent as an alarm to the sink. If we define some alarm criteria for the proposed
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Table 5.9: Energy Costs for Different Tasks in Both Approaches

Task Cost in Joule
C: One-time CPU cost to process the frame

to extract and classify the moving object (our Approach) 0.0220
M: Transmission cost of the

whole frame for 1 hop (traditional approach) 0.0700
T : Transmission cost of the

alarm for 1 hop (our approach) 0.0007
Taking the video data Same for both

cases

Table 5.10: Total Energy Cost Comparison of Both Approaches (in Joules)

Process Traditional Proposed
Method Method

For 1 Hop M = 0.0700 C + T = 0.0227
For k Hops M ∗ k = 0.0700 ∗ k C + T ∗ k = 0.022 + 0.0007 ∗ k

method, the energy consumption would be further reduced (i.e., alarms are only sent when

needed).

Figure 5.4: Energy costs of two different methods
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5.5.2.3 Occupied Space on Camera Sensors

As mentioned in Chapter 5.3, the camera sensor holds two types of models for classifier. The

actual required spaces for each of these in our experiments are given in Table 5.11. As can be

seen in Table 5.11, the space requirements are not significant compared to the available space

on CMUCam3 (e.g., 128MB).

Table 5.11: Space Occupied by Classifier Models on the Sensor

Model Occupied Space
CSF Model 24Bytes
GA Model 360Bytes

5.6 Summary

In this chapter, we present a lightweight and accurate object classification approach which can

work on-site at a camera sensor with limited information. The approach utilizes genetic algo-

rithm to built classifiers on top of two simple but effective features, which are the S hape Ratio

& S peed of the detected objects.

The experimental evaluation reveals that our approach can effectively classify typical objects,

i.e., human, animal and vehicles, in a power-plant surveillance application with an error rate

of at most 2% overall. We also assess the energy overhead of our approach on the individ-

ual camera sensors. The energy consumption is significantly reduced compared to the cases

where the classification is performed at the sink due to reduction in the communication energy

cost.
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CHAPTER 6

EFFICIENT OBJECT TRACKING

In this chapter, we investigate the object tracking problem in WMSNs. We explain the algo-

rithms that we propose in detail. At the end, we present the experiments and their results.

6.1 Object Tracking Issues in WMSNs

Object tracking is one of the major problems in surveillance applications using WMSNs. In

this context, “the object tracking” term does not mean “tracking the objects in the video that

the camera sensors take”; it means “tracking the object at the area under surveillance”. For

instance, the detected object in the area under surveillance should be tracked efficiently to take

precautions against it, i.e., for the purpose of catching it in an appropriate place. In addition,

if there are multiple objects in the area, accurate tracking of each object is needed not to miss

any events associated with them. For these reasons, in this chapter, we propose an efficient

object tracking solution for WMSNs.

6.2 Problem Definition

Multimedia delivery from highly resourceful sources, e.g., multimedia servers, to resource-

constrained destinations, e.g., wireless handheld devices, has been studied extensively. How-

ever, in the context of wireless multimedia sensor networks, to store, process in real time,

correlate and fuse multimedia data originated from different sources [Aksoy05] constitutes a

major challenge. In a WMSN application with numerous blind and intersected areas, tracking

multiple moving objects at the sink becomes a challenging process. We consider the following
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scenarios to better motivate and explain these challenges (The scenario is also demonstrated

in Figure 6.1):

• Assume that at a specific time t1, the sink receives the information of M different mov-

ing objects from different camera sensors, i.e. as shown in Figure 6.1(a) where M : 3.

(The camera sensors that sense the moving objects are circled in Figure 6.1(a)). How-

ever, in fact, X different objects may exist in that area where M ≥ X, i.e. as shown

in Figure 6.1(a) where X : 2. This may happen, because more than one camera sensor

may detect the same object due to the overlapping FoVs (intersected areas) and transmit

different moving object information to the sink.

• At another time t2, where t2 > t1, the sink receives N different moving objects, where

N < M, i.e. as shown in Figure 6.1(b) where N : 1. This may happen because the some

of the objects detected at t1 may disappear by exiting from the FoVs and entering into

the blind area.

• Finally, at another time t3, where t3 > t2, the sink again receives M different moving

objects. In this case, it is possible that the objects previously entered into the blind

area may appear again in another camera sensor’s FoVs or new objects different than

previously sensed ones may enter the scene which means newly sensed objects at time

t3 may not be same objects with the sensed objects previously.

The challenges in this complex scenario necessitate the aid of an identification algorithm

running at the sink to track the objects accurately. First of all, since the raw video data

has a very large size and transmission of this data consumes lots of energy, data reduction

techniques at the camera sensors and their consequences on identification and tracking at

the sink should be investigated. Secondly, the moving objects and the corresponding events

produced by different camera sensors must be processed spatially and temporally to match

the received objects.

We should note that, because of intersected areas, M moving objects may be captured by K

camera sensors where M ≤ K ≤ N. Therefore, data redundancy at the sink node is expected.

To eliminate the data redundancy, the sink should be able to identify redundant gathered ob-

jects. However, limited data will be available at the sink, since camera sensors send only lim-

ited multimedia information due to resource constraints. Therefore, uncertainty is expected
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(a) At time t1

(b) At time t2

(c) At time t3

Figure 6.1: An example tracking scenario where the camera sensor nodes that sense the in-
truders are shown with a circle around them

to be produced from multiple camera sensors sending similar data about the same objects.

Our problem for object tracking can be formally defined as follows: “Assume that we have

N wireless camera sensors distributed randomly in a border surveillance application. At a

specific time T , there exist M different moving objects (human intruders, vehicles or animals)

in the area under surveillance. We would like to localize and track these M objects in real-time

with minimized energy burden on camera sensors.”

• The first stage is object localization and fuzzy classification in which moving objects
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(e.g., an intruder) are detected, localized and classified via fuzzy logic at the individual

camera sensors. Instead of huge raw video data, only the location and classification

information are relayed to the sink.

• The second stage is object identification/re-identification and tracking, in which the

information collected from different camera sensors (via single or multi-hop communi-

cation), is processed to identify and track the real objects at the sink.

Our goal while solving the above problem is send only reduced and enough information from

the camera sensors to the sink to reduce the transmission costs. As mentioned in the previous

sections, energy is not the only constraint in camera sensor nodes. These nodes also have

limited processing capabilities and therefore it is important to have efficient preprocessing

while deciding on how to reduce the amount of data that needs to be transmitted.

6.3 Information Sent from Camera Sensors to the Sink

Once the location and classification of the object is computed, the MOE information given

below is sent to the sink by the camera sensors. Note that, since the camera sensors do not

know anything about the identities of the detected objects, no identity information is sent to

the sink. It is the sink’s responsibility to identify and track the detected objects by using the

flowing MOEs from different camera sensors as explained below.

The following information is contained in the MOE:

• Sensor ID of the sensor detecting the event

• Detection time

• Object

– Location (X and Y coordinate)

– Velocity of the moving object

– Membership value of the object

∗ for the class ‘Human’

∗ for the class ‘Vehicle’
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∗ for the class ‘Animal’

In Figure 6.2, we demonstrate the bandwidth demand as a basis for comparison if we were

to send all camera data without any processing. When we consider multiple sensor nodes

communicating such amounts of data, the problem is pronounced further within the network.

Our approach, on the other hand, allows us to reduce the amount of data that will need to

be supported. The communication overhead of our proposed architecture is demonstrated in

Figure 6.3 in comparison to the case without any processing. In the figure, the node first

processes the camera collected data to decide if a specific event is being observed. If that is

the case, the event description, rather than multimedia description is sent to the sink node to

minimize the communication overhead. In addition, particular snapshots are also sent to the

sink node to assist query processing. The specifics of our approach are as described in the

following sections.

Figure 6.2: Communication overhead of the traditional wireless multimedia sensor networks

6.4 Efficient Object Tracking

Since running complex identification and tracking algorithms at the sensors is a problem in

WMSNs due to our lack of energy and processing capability, we propose to run an identifica-

tion algorithm at the sink to push the processing and the energy load from the camera sensors

to the sink. One possible solution for identification in this case would be to be able to zoom

in/out of these objects for better views once they are detected by the camera sensors and this

information is received by the sink. While this type of solution would help in improving accu-
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Figure 6.3: Communication overhead of the proposed architecture

racy, it is not feasible in our case assuming that the WMSNs employ simple cameras that do

not have pan-tilt-zoom capabilities due to energy constraints. In addition, the choice of which

frame/frames to send to the sink is not an easy process in such a case. Therefore, we opt for

an identification solution based on the MOEs received from the cameras. Note that the sink

does not perform object identification directly from the raw images. No information other

than MOEs flows from the camera sensors to the sink. The sink performs object identification

by just looking at the limited information carried in MOEs.

Basically, the MOEs coming from different camera sensors at different times are processed at

the sink to identify the real objects in the area under surveillance. The identified objects are

stored in a list at the sink. Since the similarity between two objects can not be expressed with

crisp values, whenever a new MOE containing an object information is received from one of

the camera sensors, a fuzzy similarity search is performed with the existing objects in the list

to determine if this is a newly recognized object or not.

The total fuzzy similarity between two objects is calculated based on two sub similarities,

namely the object class similarity and the velocity similarity. While the former compares

the membership values, the latter compares the speed of objects. The speed is a reasonable

choice for comparison given that the speed of an object would not change abruptly between

consecutive frames. We assign weights to each of these sub similarity classes. The weight

of the object class similarity on total similarity is taken as 0.75 since it includes three fuzzy
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variables (i.e., human, animal and vehicle) out of four including the velocity. The weight of

the velocity similarity is 0.25. (In our application, these constants are chosen according to the

features extracted in our framework. Of course, other constants may be chosen according to

the features used. For instance, if another feature is used additionally or some of the features

are not used at all, other constants may be set appropriately. The important point here is not

the constants themselves but how they are used in the algorithm)

There are various methods for performing similarity analysis using membership value, such as

the max-min, cosine amplitude, correlation coefficient and others, as described by [Ross95].

All methods give corresponding results, though numerical values would differ. We choose the

max-min method because it is computationally simple yet effective.

Consider the similarity of two fuzzy membership vectors, V and Y having dimension n. The

similarity value is defined as:

S imilarityVY =

∑n
i=1(min(Vi,Yi))∑n
i=1(max(Vi,Yi))

(6.1)

We now explain how Equation 6.1 is used at the sink. Consider two different objects, O1

and O2 received by the sink from different sensors S 1 and S 2 at different times T1 and T2

where T2 > T1. If the object class similarity between the objects O1 and O2 is above 0.66

which means that total similarity is above 0.66 ∗ 0.75 = 0.5 (our experiments shows that

0.5/0.75 = 0.66 is a good choice), then there is a good chance that these two objects are

the same 0.66 value is picked based on our observations from the experiments. Specifically,

if a greater value is set as a threshold, a lot of objects were considered as different even if

they were instances of the same object coming from different cameras. Similarly, if a smaller

threshold (i.e., less than 0.66) is picked, this time different objects were considered as same

even though they were not. Thus, 0.66 was the best choice in terms of balancing the accuracy.

After calculating the object class similarity, if we achieve 0.5 value for the total similarity,

thus we need to check the velocity similarity. Once the velocity similarity is computed, it is

added to the total similarity and thus the cumulative object similarity is found.

Algorithm 1 implements this idea. If O1 and O2 are very different objects (i.e., one of them is

a human being and the other one is an animal), then the f indOb jectClassS imilarity function

returns the object class similarity value as less than 0.66 (line 2). If O1 and O2 are similar

kind of objects (i.e., two of them are human beings), then the Total S imilarity parameter
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becomes bigger than or equal to 0.5 and the velocity similarity is also considered, as shown

in line 3. Specifically, the velocity of the object O2 is computed by dividing the distance (i.e.,

the distance between the location of O2 and O1) by the time elapsed between the reporting

times (i.e., t2 − t1). If this velocity is similar to the formerly computed velocity of O1, then

O1 and O2 are very likely the same object. In such a case, the f indOb jectVelocityS imilarity

function returns very close to 1.0 (line 5). Multiplied by its weight, 0.25, it is added to the

Total S imilarity parameter. If they are actually the same object, this calculation makes the

Total S imilarity parameter very close to 1.0 at the end.

Note that while the objects may be similar, their velocities may differ if O2 decreases its

velocity physically when traveling between the location of O1 and O2 (i.e., it may follow

a zigzag movement in a blind area). In such a case, the velocity similarity is less than 1.0

making the Total S imilarity parameter between 0.5 and 1.0.

Algorithm 1 Object Similarity Algorithm at the Sink
Require: Two objects with their membership vectors and velocities exist.

Ensure: Total similarity value between two objects is found.

1: Total S imilarity← 0

2: Total S imilarity← f indOb jectClassS imilarity(Ob ject1,Ob ject2) ∗ 0.75

3: if Total S imilarity ≥ 0.5 then

4: Total S imilarity+ = f indOb jectVelocityS imilarity(Ob ject1,Ob ject2) ∗ 0.25

5: end if

The details of the algorithm at the sink are given in Algorithm 2. The sink stores the MOEs

in an Event List and identified objects in an Ob ject List as shown in Figure 6.4. The first

received MOE is noted as a new object in lines 4 and 5. For the rest of the received MOEs,

fuzzy similarity values of the object in MOE with the existing objects at the sink are compared

by using Algorithm 3 in lines 7 and 8. For instance, the objects contained in MOEs coming

from 3 different camera sensors in Figure 6.4 are compared one by one with the objects

already detected and stored in the Ob ject List in FIFO manner. If the same object exists in

the list (i.e., the fuzzy similarity value is greater than a threshold), the MOE is associated with

that object definition stored at the sink (lines 10 to 14). Otherwise it is noted as a new detected

object in line 16 and 17. When the moving objects are identified correctly, the current path of

an object is simultaneously extracted in line 12 of the Algorithm 2 and stored as a part of the

objects in the Ob ject List shown in Figure 6.4.
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Algorithm 2 Object Tracking Algorithm at the Sink
Require: Event List , ∅ {Sink is getting MOEs from cameras and stores them in the

Event List}

Ensure: Ob ject List , ∅ {Objects are identified into the Ob ject List}

1: Ob ject List ← ∅

2: while Event List , ∅ do

3: MOE ← Get a MOE from Event List {FIFO}

4: if Ob ject List = ∅ then

5: Ob ject List+ = MOE.Ob ject {first object}

6: else {Objects are identified before}

7: for all Objects in Ob ject List do

8: Find object similarity values with MOE.Ob ject {use Algorithm 3}

9: end for

10: if The maximum similarity value ≥ threshold then

11: CO← chosen object having maximum similarity value

12: CO.Route+ = MOE.Ob ject.Location

13: CO.Last S een By← MOE.S ensor ID

14: CO.Last S een At ← MOE.Detection T ime

15: else {The maximum similarity value < threshold}

16: Ob ject List+ = MOE.Ob ject {new object}

17: end if

18: end if

19: end while
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Figure 6.4: Progress of Object Tracking Algorithm. The sink stores the MOEs in the
Event List and identified objects in the Ob ject List. The objects contained in MOEs coming
from 3 different camera sensors are compared one by one in FIFO manner with the objects al-
ready detected and stored in the Ob ject List (i.e., the first MOE of the first sensor is MOE11).
The object to have a maximum similarity value with the object contained within MOEs is
associated with it.

We should note that we define a lifetime threshold for each object stored at the sink. This is

because when an object has disappeared in a blind area, the sink should forget about it after its

lifetime passes. If the time elapsed from the last detection time for an object exceeds this life

time threshold (i.e., the object has disappeared for a long time), the object is removed from the

list to prevent false matchings. If it re-appears, then it is considered as a new object. Hence,

unnecessary storage of the detected moving objects is prevented and the negative effects of

the blind areas are reduced.

The final object definition stored at the sink is given below:

• Route (List of X and Y coordinates in timeline)

• Last sensed by S ensor ID

• Last sensed at Timestamp
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• Approximate velocity of the moving object

• Membership value of the object

– for the class ‘Human’

– for the class ‘Vehicle’

– for the class ‘Animal’

6.5 Algorithm Analysis

For the tracking stage of our approach occurring at the sink, we should investigate the whole

scenario. Assume that at time t, there exist M different objects and N different camera sensors

in the area under surveillance. Let us also assume that there are m different objects, where

m < M is seen by n different camera sensors, where n < N. Hence, in the worst case, the

MOE count that may be sent to the sink at time t is mn which is O(MN). The sink compares

each event with its own stored object definitions to find their similarities which has maximum

number of O(M). Hence at time t, the sink makes O(M2N) comparisons. If the whole scenario

is run T time units, then the computational complexity for object identification and tracking

at the sink is O(M2NT ).

Table 6.1: Notation Used in Time Complexity Analysis for Object Tracking

t Time instant when the inspected tracking occurs
T Total time when the whole tracking occurs
M Number of total objects exist at

the area under surveillance
m Number of objects sensed by the camera sensors

M − m Number of object that cannot be sensed by
the camera sensors i.e. in the blind area

N Number of total camera sensors exist at
the area under surveillance

n Number of camera sensors that can
sense any object at time t

N − n Number of camera sensors that can
sense none object at time t
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6.6 Experimental Evaluation

6.6.1 Experiment Setup and Performance Metrics

To test the tracking performance, we have developed an application to simulate a border

surveillance application. This simulator is explained in detail in Appendix A. An area of

size 1000X600 m2 is considered for surveillance purpose. For each group of experiments,

different numbers of camera sensors are placed randomly with random orientations in order

to achieve the desired coverage values as shown below. Coverage values are calculated in

terms of total FoV with respect to the total area.

• 25% coverage: 29 camera sensors

• 50% coverage: 61 camera sensors

• 75% coverage: 102 camera sensors

• 100% coverage: 120 camera sensors

Note that these cases also cover the effect of any possible obstacles in the environment. In case

of obstacles, depending on the number of such obstacles, the coverage values may decrease

slightly. In addition to obstacles, in some cases, there may not be enough cameras to monitor

the whole region. Hence, to account for such cases, we have considered coverage values from

25% to 100%.

Transmission ranges and DoFs are picked as 200m and 100m respectively. The sink node is

assumed to be placed at (0, 0) location. Objects are generated randomly and their membership

values and velocities are also assigned randomly. In each individual experiment, objects have

special mobility pattern designed for these experiments. Each object has the purpose to enter

the area and move towards the sink as if it was an intruder aiming to capture an important

structure positioned at the sink. Membership values for a random object, (i.e., for a human

intruder is a vector of (a, b, c)), are calculated as a > 0.5, b + c = 1 − a where a, b and c are

random numbers. For instance, for 6 different objects of 2 humans, 2 vehicles and 2 animals,

the membership values produced with this formula are given in Table 6.2.

Two metrics are considered to assess the performance of the proposed algorithm.
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Table 6.2: Random Membership Values for 6 Objects

Object Membership
Name Value

Human 1 (0.86; 0.04; 0.10)
Human 2 (0.93; 0.00; 0.07)
Vehicle 1 (0.14; 0.61; 0.25)
Vehicle 2 (0.03; 0.87; 0.10)
Animal 1 (0.12; 0.08; 0.80)
Animal 2 (0.13; 0.27; 0.60)

• Identification Accuracy: This metric indicates how successful the algorithm is when

identifying the moving objects. It is defined as follows: At each time unit, the real ob-

ject count under surveillance and the calculated object count by the sink are compared.

If these values are not equal to each other, the ratio of the difference of these values to

the real object count is noted as a false ratio. (1 − f alseratio) is defined as the iden-

tification accuracy. Note that the lifetime threshold defined before prevents the false

ratio from being less than 0 or bigger than 1. Our goal is to maximize the identification

accuracy.

• Energy: This metric is the energy consumption value spent in both communication and

computation when tracking and classifying the moving objects at the camera sensors.

Our goal is to minimize the energy consumption of battery-operated camera sensors.

We have conducted six groups of experiments:

• Accuracy evaluation in optimistic scenarios (i.e., no errors in the inputs and no packet

loss in the network),

• Accuracy evaluation in pessimistic scenarios when the classification is faulty (i.e., a

camera sensor classifies a human intruder as an animal or vehicle),

• Accuracy evaluation in pessimistic scenarios when the localization is faulty (i.e., a cam-

era sensor calculates the location of an intruder with some error),

• Accuracy evaluation in pessimistic scenarios when the packet loss occurs in the net-

work,

• Energy consumption evaluation of the network,
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• Battery lifetime evaluation for each camera sensor.

6.6.2 Experiment Results

6.6.2.1 Identification Accuracy

In order to observe the identification accuracy, we have set up experiment groups that include

3, 6, 9 or 12 different moving objects. Each experiment group is performed under 4 different

camera sensor coverage values given in the Experiment Setup subsection. The change of the

average identification accuracy over time for 3 different moving objects for different coverage

values is shown in Figure 6.5. Overall accuracies for all coverage values and for all object

numbers are presented in Table 6.3. We note that the results included here are recorded

between the time interval [40,160], since on average, a random moving object enters into one

of the camera’s FoV at time 40 and begins to disappear from the region at time 160.

Figure 6.5: Change of identification accuracy values over time for experiments with 3 different
objects on all camera coverage values.

In optimistic scenarios, we target the identification accuracy value at least as much as the

total camera coverage percentage. For instance, for 25% camera coverage value, one should

achieve at least 25% identification accuracy as the sink can monitor only 25% part of the

whole area and 75% of the area is the blind area. The results of our experiments show that,

under optimistic scenarios, the identification accuracies are higher than these base coverage
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Table 6.3: Average Identification Accuracies

Object 25% 50% 75% 100%
Count Cov. Cov. Cov. Cov.

3 Objects 0.38 0.71 0.81 1.0
6 Objects 0.38 0.74 0.81 1.0
9 Objects 0.39 0.73 0.83 1.0
12 Objects 0.39 0.75 0.83 1.0

values.

The results also indicate that when the coverage is 100%, our approach guarantees accurate

tracking of any number of objects. With the decreasing coverage percentage value, the accu-

racy decreases. However, this decrease is not proportional to the decrease in coverage value,

indicating the effectiveness of our approach. In all coverage cases, the identification accura-

cies are always higher than the coverage percentage values.

6.6.2.2 Effect of False Classification

The experiments on object identification accuracy given in the previous subsection were per-

formed under the assumption that the camera sensors always produce similar results about

moving object classification. For instance, a camera sensor always identifies an intruder as a

human if a previous camera sensor has already identified it as a human. However, there may

be some erroneous situations when camera sensors may malfunction. For instance, a camera

sensor may see the intruder partially and identify it as being an animal instead of a human or

an animal may be captured from a different angle and classified as a human.

To assess the effect of this kind of erroneous situation on the accuracy of identification, we

have also conducted experiments in which we introduced an error of 5%, 10%, 15% and 20%

in classifying the objects. The change of the average identification accuracy over time for

the 5% error case with different coverage values is shown in Figure 6.6. All the results for

erroneous situations in classification are given in Table 6.4. To compare the results with Table

6.3, we have used 3 different moving objects in these experiments.

Our experiments show that, with decreasing coverage, the accuracy increases over time as
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Figure 6.6: Change of identification accuracy values over time, if 5% error in classification
exists at camera sensors for 3 moving object case

Table 6.4: Effect of False Classification over Average Identification Accuracies

Error Value 25% 50% 75% 100%
Introduced Cov. Cov. Cov. Cov.
5% Error 0.37 0.60 0.67 0.79
10% Error 0.36 0.52 0.56 0.63
15% Error 0.33 0.43 0.48 0.50
20% Error 0.29 0.36 0.38 0.48

seen in Figure 6.6. This can be explained as follows: An erroneous case which may be

recorded in a particular frame disappears while processing the rest of the video. For instance,

an animal classified as a human in one frame is eventually classified as an animal on other

frames since it is detected from the right angle to be classified as an animal. For increased

coverage the accuracy is increased and it maintains a certain level even when the errors are

increased. This can be attributed to that fact that more than one camera sensor may sense the

same object at the same time in case of increased coverage. This increases the robustness of

the algorithm. While one camera sensor may classify the sensed object into the wrong class,

another sensor may classify the same object into the right class. As a result, if the error rate

for one camera sensor is 10%, the error rate for two camera sensors to classify the same object

into the wrong class becomes 1%. This rate decreases even further for three or more camera

cases.
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6.6.2.3 Effect of Localization Error

We have performed experiments to assess the effect of localization error. The results are

given in Figure 6.7. The results indicate that for 20% localization error, the accuracy does not

reduce more than 20% on average.

Figure 6.7: Change of identification accuracy values over time.

6.6.2.4 Effect of Packet Loss

There is always a chance that some packets may be lost in the network due to wireless envi-

ronment and multi-hop transmissions. We have performed experiments considering different

packet loss percentage values. The experiments have assumed 75% of coverage value for the

network and 3 different moving objects existing in the area under surveillance. As explained

in previous experiments, since our algorithm is robust against even low coverage values such

as 50% or 25%, it can still identify and track moving objects even under high packet loss

percentages. In case of packet loss, some of the information will not be available at the sink.

However, given the nature of our algorithm which depends on different frames and informa-

tion from different sources, it can maintain reasonable identification accuracy as seen in Table

6.5.
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Table 6.5: Average Identification Accuracies when Packets Loss, 75% Coverage, 3 Objects

Packet Loss Average Identification
Percentage Accuracy

0% 0.81
5% 0.78

10% 0.75
15% 0.69

6.6.2.5 Energy Consumption at Sensors

In order to show the efficiency of this algorithm and its suitability for WMSNs, we have

conducted experiments to test computational and communication energy costs. We have used

the AVR Simulation and Analysis Framework (AVRORA), an emulator, to calculate energy

costs of processing and communication [WEB:AVRORA]. We have considered two baseline

approaches: 1) Transmission of the whole frame [Huiyu08][Qi07][Alaei09] referred to as

Traditional Method Sending Full Frame to Sink in the graphs; and 2) Transmission of the

frame part containing detected object referred to as Traditional Method Sending Object Frame

to Sink in the graphs. The associated energy costs for these are given in Table 6.6. Based on

this table, the total costs of the computation and transmission processes are calculated as in

Table 6.7.

Table 6.6: Energy Costs for Different Tasks

Process Cost in Joule
CPU cost to process the frame
to extract the moving object 0.0180 = C

Transmission cost of the
whole frame for 1 hop 0.0700 = M

Transmission cost of the part of the
frame consisting the object for 1 hop 0.0140 = N

(assuming at average the object
covers 20% of the frame)

Transmission cost of the moving
object alarm for 1 hop 0.0007 = T
Taking the video data Same for both

cases and ignored

Considering these energy costs, we have conducted experiments with varying hop-count (i.e.,
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Table 6.7: Total Energy Costs in Joules

H Traditional Traditional Proposed
O Method Method Method
P (Full Frame (Object Frame (MOE Sent)
# Sent) Sent)
1 M = 0.07 C + N = 0.032 C + T = 0.0187
k Mk = 0.07k C + Nk = C + Tk =

0.018 + 0.014k 0.018 + 0.0007k

network diameter), camera coverage and object count as seen in Figures 6.8, 6.9, 6.10 and

Tables 6.8, 6.9, 6.10. The results clearly indicate how the proposed approach outperforms

the baseline approaches in terms of energy consumption. The energy saving is significant,

particularly when the network diameter, coverage or object count is increased.

Table 6.8: Energy Costs of Three Different Methods for Sending One Packet Under Increasing
Number of Hops

H Traditional Traditional Proposed
O Method Method Method
P (Full Frame (Object Frame (MOE Sent)
# Sent) Sent)
1 0.07J 0.032J 0.0187J
2 0.14J 0.046J 0.0194J
3 0.21J 0.060J 0.0201J
4 0.28J 0.074J 0.0208J
5 0.35J 0.088J 0.0215J

Table 6.9: Energy Consumption of Whole Simulation with Varying Camera Coverage Values,
in Which Each Coverage Value Contains Different Numbers of Deployed Camera Sensors

Camera Traditional Traditional Proposed
Coverage Values Method Method Method

& (Full Frame (Object Frame (MOE Sent)
Numbers Sent) Sent)
25% - 29 8543.94J 1711.61J 88.26J
50% - 61 17331.43J 3472.21J 179.24J
75% - 102 27691.54J 5548.14J 286.75J
100% - 120 79128.22J 15852.81J 818.44J
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Figure 6.8: Energy costs graph of three different methods for sending one packet of informa-
tion under increasing number of hops

Figure 6.9: Energy consumption graph of whole simulation with varying camera coverage
values

6.6.2.6 Battery Lifetime for Sensors

To check the individual battery life in a real-application, we performed experiments assum-

ing that camera sensors may contain 4 AA batteries [Pinto10] for a total energy of 10KJ as

given in [WEB:BATTERY]. We used the scenario of 75% coverage and totally 300 different

intrusions were simulated. For this purpose, a total of 100 experiments each lasting 200 time
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Table 6.10: Energy Consumption of Whole Simulation with Varying Object Counts

Object Traditional Method Traditional Method Proposed Method
Counts (Full Frame Sent) (Object Frame Sent) (MOE Sent)

3 27691.54J 5548.14J 286.75J
6 55195.13J 11058.43J 571.36J
9 84160.23J 16861.44J 870.99J

12 112274.43J 22494.16J 1162.01J

Figure 6.10: Energy consumption graph of whole simulation with varying object counts

units were performed. The remaining battery lives of each individual camera node after 20K

(200X100) time units are shown in Figure 6.11. The results show that even after 300 different

intrusions, none of the camera sensors had run out of energy. However, some of the sensor

nodes consumed more energy than others since they were on the way of intruder objects and

thus more likely to sense the intruders.

6.7 Summary

In this chapter, we have investigated a multiple object tracking problem in a typical border

surveillance application of WMSN using minimal resources. Instead of raw frame or raw

video data with huge size, the classification information along with the location of the object

is sent to the sink as part of the MOE for tracking purposes. The sink gathers MOEs from
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Figure 6.11: Remaining energy values of individual 102 randomly deployed camera sensors
at the area after 300 different intrusions

different camera sensors and processes them using a fuzzy similarity and tracking algorithms.

In this way, the sink is able to differentiate and identify distinct moving objects under mostly

blinded areas and track them in real-time.

The algorithms proposed have been implemented and tested under variety of conditions. The

experiments results have shown that the algorithm can accurately identify and track multiple

moving objects even under low area coverage percentages. The results also indicate that this

accuracy is slightly degraded with the introduction of errors (classification errors, localiza-

tion errors or network packet losses). Nonetheless, in all cases, this process of tracking has

been performed with significantly less energy consumption than are needed in the traditional

approaches, which increases the battery lifetime of the camera sensors.
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CHAPTER 7

ACTIVE RULE PROCESSING

In this chapter, we go into detail about active rule processing problem in WMSNs. For that

purpose, we give the solution to the problem with a proof of concept. Then, we explain how

we implement the active rules in a rule inference engine. Not only simple events but also

complex events are explored.

7.1 Active Rule Processing Issues in WMSNs

Wireless Sensor Networks (WSNs) can collect a huge amount of data from the environment

with inexpensive deployment and low labor costs [Akyildiz02]. After data collection, such

data are typically processed by appropriate personnel, and necessary actions are taken through

time. To reduce human intervention in processing the data and taking some limited actions

without human intervention, Wireless Sensor and Actuator Networks (WSANs) have recently

been proposed [Akyildiz04]. In such networks, typically the collected data are processed in

an autonomous manner at the sink and the actions necessary to be taken are decided upon

based on the received data. The actions can be taken either via actuators (actors) that are spe-

cialized based on the application (e.g., sprinklers, robots, etc.) or by informing the necessary

personnel for human intervention. These types of networks are gaining popularity through

cyber-physical systems as well [Noble09]. Depending on the application, such automated

networks are mainly used to minimize human intervention and provide more effective ac-

tions. Examples of such use include fire fighting in forests, intrusion detection at borders and

remote surveillance in outdoor contexts.

One of the main challenges in such sensor-actuator based systems is to implement a mecha-
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nism at the sink which can process the data and infer some actions. For this purpose, reactive

solutions, which are based on asynchronous processes with the assumption that events may

occur at any time, have been widely employed in the past [Zoumboulakis04][Korpeoglu06]

[Ceri94][Ghanem93]. For instance, an intruder may enter an area at any time and an immedi-

ate reaction would be needed. In many of these works, Event-Condition-Action (ECA) rules

are used to take necessary actions in response to these asynchronous events based on condi-

tions. For instance, the rules in a forest fire monitoring application may be as follows: On

the event of excessive warming in the monitored area (event) and if the measured temperature

is above 60 oC (condition), then send fire fighters to the area immediately (action). This is

an informal ECA rule written in natural language. Since a fire may occur at any time in the

forest, the action should be performed immediately when it occurs.

While there has been a number of previous studies in WSNs that aim such a reactive frame-

work using ECA rules [Korpeoglu06][Zoumboulakis04], this problem has not been studied

for Wireless Multimedia Sensor Networks (WMSNs), which deploy wireless camera sensors

that can collect image/video data [Akyildiz07][Rahimi05][Hengstler07][Soro09]. Such net-

works deploy a large number of camera (video) sensors with different capabilities and can

collect/process multimedia data [Rahimi05][Hengstler07]. Typical applications of WMSNs

include multimedia surveillance, target tracking, habitat monitoring, and intrusion detection

[Akyildiz07][Akyildiz08]. In such applications, when a large number of cameras are deployed

there is also a need for a large number of personnel in order to monitor the data. This is not

feasible in large-scale applications like border monitoring [WEB:BorderReport05]. There-

fore, a reactive system would be a convenient solution in reducing human involvement as

well as in increasing the efficiency of these systems. In this chapter, an active rule processing

solution is proposed for WMSNs.

Recent works on WMSNs focus on processing and compression of the raw video data sent

to the sink in order to increase network lifetime, providing Quality of Service (QoS) for

data communication and placement of cameras for desired coverage [Akyildiz07][Soro09]

[Akkaya08][Akkaya09][Erdem06]. However, given limited energy reserves for camera sen-

sors, instead of sending large-size raw multimedia data, limited data may be sent to the sink

[Oztarak09]. For instance, when an intruder is detected in an event, instead of raw video of

the object, information about the detected object, location of the object, class of the object and

frame of the object, etc. may be sent directly to the sink. If the detected event is an event of
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interest for the sink, then the sink may decide to request the raw video data for better recogni-

tion of the event, otherwise the event may be ignored. Hence, this method reduces the energy

consumption significantly, even though it presents new challenges regarding object and event

identification, data processing and data fusion. These challenges are going to be explained in

following paragraphs:

First of all, due to the goal of data reduction at the camera sensors, there will be limited/

uncertain/imprecise data at the sink regarding detected objects. For instance, in a typical

surveillance application, individual low resolution camera sensors may not be able to decide

whether the detected object is a human or an animal, due to their limiting video processing

capabilities. Instead, they may send their guesses (i.e., by utilizing fuzzy logic) about the clas-

sification of the detected moving objects. Deciding which actions should be taken at the sink

becomes more challenging with such imprecise data. Specifically, the reactive system should

have the capability of reasoning when it has only uncertain and incomplete information.

Secondly, there needs to be a fusion mechanism at the sink before the collected data are

processed. This is due to the redundancy of the received data. Typically, due to the availability

of a large number of low-cost wireless camera sensors, an event may be captured by different

camera sensors (i.e., the same event may be captured under the Field-of-Views (FoV) of

several camera sensor nodes), creating redundancy at the sink. Hence before taking an action,

the detected objects and their corresponding events should be analyzed and identified.

Finally, due to the complexity of events and the multi-modal nature of the data gathered at the

sink, fuzziness in events needs to be supported. For instance, “give an alarm, when there is a

human intruder running fast towards to the left gate”, contains a fuzzy term, running fast,

which is an uncertain concept. A reactive system used in such an application should process

that type of information.

In this dissertation, in order to handle the challenges mentioned above, we propose to extend

the ECA rules used in WSNs in order to take actions against asynchronous events, when

providing autonomous operation in WMSNs. Data fusion is performed on the received objects

before ECA is applied. This step is referred to as the WHEN part of the extended active rules.

For instance, “WHEN two different sensors sense the same human intruder at the same time

(fusion), ON the event of human is running fast (event) and IF the human is close to the

camera sensor (condition), THEN request the raw video data from close sensor immediately
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(action)” is an informal extended ECA rule written in natural language. In this dissertation,

we propose that, this syntax be employed as WECA rules. Based on this rule, raw video data

is requested from the appropriate camera node only when some events and conditions are met.

In this way, one can get rid of the burden of receiving huge raw video data at all times from

the camera nodes.

In order to demonstrate the feasibility and effectiveness of the proposed WECA rule syntax,

we assume a power-plant surveillance application, where the camera sensors transmit to the

sink only detected object information rather than the raw video data. Such data are processed

at the sink node using fuzzy logic. The goal is to be able to eliminate uncertainty, to identify

detected objects along with their events and to take actions against the detected events. The

rules are stored in a Data/RuleBase and retrieved in reference to existing events. An infer-

ence mechanism is then employed in order to decide on the actions to be taken. We have

implemented the rules in a power-plant remote surveillance application and have developed a

proof-of-concept using JESS, the rule engine for the JAVA platform [WEB:Jess], to show the

feasibility of the reactive mechanism. We have also conducted experiments on the accuracy

metric when performing object fusion with uncertain data. The results show that the rules can

be processed with acceptable object identification accuracies.

7.2 Problem Definition

Our problem for active rule processing can be formally defined as follows: “Assume that we

have N wireless camera sensors distributed randomly in a critical environment for a surveil-

lance purpose. At a specific time T , let us assume that there exist M > 0 different moving

objects in the area performing either simple events or complex events. Instead of raw video

data, the camera sensors that detect these M moving objects send multimedia data contain-

ing information about detected objects to the sink. Our goal is to define a rule-based reactive

model at the sink which will process the received uncertain and limited data regarding these M

moving objects. Therefore, the defined model will decide the appropriate actions to be taken

in an autonomous manner.” Eventually, the ultimate goal is to minimize the need for human

intervention on the WMSN applications and improve the accuracy of the event detection.

We should note that, because of intersected areas, M moving objects may be captured by K
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camera sensors where M ≤ K ≤ N. Therefore, data redundancy at the sink node is expected.

To eliminate the data redundancy, the sink should be able to identify redundant gathered ob-

jects. However, limited data will be available at the sink, since camera sensors send only lim-

ited multimedia information due to resource constraints. Therefore, uncertainty is expected

to be produced from multiple camera sensors sending similar data about the same objects.

Our goal while solving the above problem is to minimize the need for human intervention by

automating the reactive process against intruders at the sink.

7.3 Active Rule Processing

As mentioned in Chapter 1, because of energy considerations, camera sensors are expected

to do some data elimination/reduction and send just limited information about the detected

objects instead of sending huge amounts of raw video data. Obviously, whenever needed, the

whole frame can be transmitted but our goal is to minimize/eliminate these types of transmis-

sions. With such limited information about the objects at the sink, one needs to trade off the

quality of object identification/classification etc. with energy savings, which in turn affects

the quality of decisions to take actions. Therefore, our solution will utilize application-level

information to improve the accuracy of data received at the sink.

The overall mechanism depends on the data produced at the camera sensors and the data

consumed at the sink node. Specifically, for object localization and classification, we use

the approaches proposed in [Oztarak09] and [Oztarak12]. These approaches first extract the

detected objects from the video frames using frame differencing at individual camera sensors.

Once the object is extracted, a simple fuzzy object classification algorithm is run based on the

used application. Then the distance between the object and the camera sensor is calculated.

The object location is then calculated by using the camera’s location and direction, the object

position on the frame and the distance between the object and the camera.

From the camera sensors, only the classification and location information of the sensed mov-

ing objects are relayed to the sink, instead of raw video data. Note that the size of this infor-

mation, which is Moving Object Event (MOE) data, is very minimal compared to the size of

the raw video frames that need to be sent to the sink in traditional methods. This enables us to

save significant energy for the camera sensors and bandwidth for the network which improves
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the lifetime of the system allowing the system to function without any human intervention for

longer times.

In this dissertation, we propose a data fusion and event processing mechanism at the sink

after the camera sensors send their limited information about detected objects (MOEs) to

the sink. The goal is to use this mechanism to enable a reactive behavior as in the case of

ECA systems. For this purpose, fuzzy logic is utilized to capture and eliminate uncertainty

regarding the events/objects. Given the limited data from the camera sensors and incomplete

information about the events, we cannot come up with crisp event definitions and conditions

at the sink node. Therefore, the sink performs a four-phase mechanism after receiving the

MOEs from different camera sensors. This mechanism forms the basis for implementing an

ECA-like system as will be detailed in the next section.

7.3.1 WECA Rules for WMSNs

In order to build a system that self reacts against the occurring events, we propose an extended

ECA rule syntax at the sink as shown in Figure 7.1 which we call WECA. Different from the

traditional systems, WECA rules perform data fusion first with their WHEN part, before the

rest of the rule are processed. In the figure, ft refers to fusion threshold, and et refers to event

threshold. These threshold values are used when fusing the data or producing the events. Each

line of the rules refers to a phase that is performed at the sink.

Figure 7.1: Extended ECA rule: WECA

Brief descriptions of the phases performed are as follows:

1. Phase 1: Fuzzy Object Fusion: The first phase where MOEs coming from different cam-

era sensors are processed and fused if applicable (i.e., deciding whether two different

MOEs sent by two different camera sensors belong to the same intruder).
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2. Phase 2: Fuzzy Event Identification: The semantic event performed temporally by mov-

ing objects in the area under surveillance is extracted based on predefined event defini-

tions in the application (i.e., deciding which simple/complex event the object performs).

3. Phase 3: Fuzzy Condition Matching: The conditions are processed to check whether

the detected object/event is in a particular state at the time when MOE is received (i.e.,

deciding whether the object/event has some predefined conditions).

4. Phase 4: Fuzzy Inference and Combination: The phase where actions are inferred when

all preliminaries are suitable (i.e., deciding what kind of actions will be performed).

In this last phase, the superimposition of all fuzzy inferences about an action may also

be performed when there exist more than one inference. Again the actions should be

predefined in the system.

The overall architecture for processing these phases is shown in Figure 7.2. The architecture’s

main components are explained below:

1. The User Interface: The user creates his/her rules by using the User Interface. The

actions or results of the active rules are also returned to the user by the user interface.

2. The Data/RuleBase: Rules created by the user are stored in the Data/RuleBase.

3. The Rule Controller: When an event occurs in the area, the MOEs coming from dif-

ferent camera sensors are fused by the Rule Controller. The Rule Controller retrieves

corresponding rules from the Data/RuleBase. The Rule Controller processes the re-

ceived rules by using the Inference Mechanism having the four phases given before to

produce the required actions.

We now explain each of these four phases in detail under following subsections:

7.3.2 Fuzzy Object Fusion

The goal of this phase is to identify individual objects from the redundant information which

can come from multiple camera sensors. This phase will also serve the event identification

phase (i.e., the next phase) to facilitate accurate event identification. With referral to data
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Figure 7.2: The architecture of the active framework

fusion, here we are aiming to fuse the collected information to gather the information of the

objects that really exist in the region. In this phase, a list called the Fusion List is maintained.

This list contains all possibly existing objects that arrived from camera the sensors at the sink

along with their information. Data fusion is performed among the objects in this list. Fusion

of two different objects depends on stored information in corresponding MOEs. For instance,

a MOE may have the following information:

• ID of the camera sensor detecting the object

• Location of the camera sensor detecting the object

• Detection time

• Detected object

– Location Estimate (X, Y, Z coordinates)

– Velocity Estimate

– Class/category of the object (based on a fuzzy function)

85



Consider the similarity of two fuzzy membership vectors, V and Y having dimension n. The

similarity value is again defined as:

S imilarityVY =

∑n
i=1(min(Vi,Yi))∑n
i=1(max(Vi,Yi))

(7.1)

Similarly, we use the information stored in MOEs to create the n dimensions and compute

the similarity value. We also define a fuzzy membership function based on the keywords

given in the WECA rules. For instance, if the rule has the keyword VERY SIMILAR, then

the similarity value calculated with the Equation 7.1 is compared with the membership value

found using Figure 7.3.

Figure 7.3: Example fuzzy membership set to process the fusion list

The details of the fusion algorithm and similarity comparison will be explained in the context

of a sample application in Chapter 7.4.

7.3.3 Fuzzy Simple Event Identification

We propose identification of predefined events based on the temporal and spatial characteris-

tics of the moving objects. The uncertainty due to incomplete information from the camera

sensors is captured using fuzzy logic. The predefined events defined for the applied applica-

tion will be used for matching with the existing temporal and spatial data. For instance, in
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a surveillance application, the events may be defined based on spatial features such as their

velocity, direction or position. Each defined event will be checked with the existing event

definitions from the database. The following events are sample events which can be defined

using temporal and spatial states of the gathered objects at the sink:

• Object getting closer to/further away from the camera sensor: If the distance between

the object’s position and camera sensor’s position is decreasing/increasing in two con-

secutive MOEs, we conclude that the object is getting closer to/further away from the

camera sensor.

• Human running: If the velocity of the detected human intruder is above 5 km/h in at

least three consecutive MOEs, we conclude that the human is running.

• Object going east/west/south/north: If the object is changing its position through east/

west/south/north at two consecutive MOEs, we conclude that the object is going east/

west/south/north. Determination of the direction can be based on a fuzzy function so

that some flexibility can be introduced.

• Object speeding up/down: If the object is increasing/decreasing its speed in at least

three consecutive MOEs, we conclude that the object is speeding up/down.

• Object approaching a critical location (e.g., bridge/water supply): If the distance be-

tween object’s position and critical location is decreasing between two consecutive

MOEs, we conclude that the object is approaching the intended location.

• Object climbing a structure: If the Z coordinate of the object is changing while X and

Y stay relatively similar in two consecutive MOEs, then we conclude that the object is

climbing a structure. Note that this is not possible unless the location estimated is in

3-D.

7.3.4 Fuzzy Condition Matching

Before triggering an action, one needs to check the existing state of the objects involved in the

events defined above. Note that conditions are defined different than events although they are

part of the event occurring in the area. To check the special conditions, the system should in-

vestigate the properties of the object at the moment when such checking is performed. There-

87



fore, no temporal investigation of the objects is needed. On the contrary, when identifying

the events, we need to look at the temporal properties of the objects. For instance, an object’s

approaching to a critical structure is an event but this may not trigger an action until the object

is very CLOSE to that structure, which is a condition about the position of the object.

At this phase, conditions are processed to check whether the network is in a particular state

in which case the rule fires. These state conditions are directly related to object features and

some of them can be expressed in fuzzy terms. For instance, a condition about the speed of

an object may be given as being slow or fast or exactly 20 km/h. Sample conditions for a

typical surveillance application and how they can be checked on a single MOE may be listed

as follows:

• If the object is human/vehicle/animal: This condition can be decided by checking the

classification value of the gathered MOE.

• If the object velocity is greater than v: This condition can be decided by checking the

velocity feature of the gathered MOE.

• If the object is very close to a critical structure: This condition can be decided by

checking if the difference between the position of the intruder stored in gathered MOE

and the critical structure is less than a predefined threshold (e.g., 10 meters).

• If the object is close enough to the camera sensor: This condition can be decided by

checking if the distance between intruder and camera sensor is below 1
4 of the camera’s

DoF.

7.3.5 Fuzzy Inference and Combination

The last phase concerns on inferring actions when all preliminaries are suitable. In this phase,

the superimposition of all fuzzy inferences about an action is also performed when there

exist more than one inference. Again all of these actions should be predefined in the system.

Example actions for a typical surveillance application may be listed as:

• Sending an alarm to guards/personnel,

• Requesting the whole image from the next possible camera sensor on the way,
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• Sending the received image of the detected object to the appropriate personnel’s device,

• Activating all camera sensors around the object,

• Activating powerful PTZ cameras on the path of the object,

• Inserting an intruder record into the local database,

• Activating all emergency lights of the area to track the intruder better.

7.3.6 Complex Event Processing

7.3.6.1 Formal Simple Event Definition

The system proposed in this dissertation has camera sensors as the source of distributed mes-

sages. The camera sensors send extracted multimedia information to the sink. As explained

in Chapter 7.3.3, simple events are semantic multimedia events that can be extracted from

coming MOEs (messages coming from distributed sources, i.e. the camera sensors).

In this dissertation, we define the simple events formally as follows:

• SER: MOES→ (SE, µS ) is a Simple Event Rule where:

– MOES = {MOE1, MOE2, ..., MOEn } is a finite Set of Moving Object Events

(MOE) coming from distributed camera sensors and each MOEn has consecutive

time labels with MOEn−1,

– SE is a Simple Event inferred by investigating the MOES depending on their

semantic meaning,

– µS E is the fuzzy membership value of inferred event SE and calculated through a

fuzzy membership function defined appropriately.

For instance, a simple event of “a human intruder RUNNING FAST” can be defined with the

proposed notation as follows:

HRR: {MOEt1} → (HR, µrun) where MOEt1 has the velocity value for a human intruder at

time t1and µrun is a membership value calculated through the fuzzy membership function
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Figure 7.4: A sample fuzzy membership function for FAST and SLOW based on the velocity
of human intruders

of being “FAST”. HR is the inferred “HUMAN RUNNING” event. For instance, a fuzzy

membership functions for “FAST” and “SLOW” is shown in Figure 7.4.

Two another simple events named as “a vehicle ENTERING to a critical zone” and “a vehicle

EXITING from a critical zone” which are based on spatial correlation between coming MOEs

can be defined with the proposed notation as follows:

ENCZR: {MOEt1, MOEt2} → (ENCZ, µencz) where MOEt1 for a vehicle has the spatial coor-

dinates out of a defined critical zone and MOEt2 for the same vehicle has the spatial coordi-

nates in the defined critical zone. In most of the surveillance applications, the borders of the

critical zones are defined precisely. So being out of it and being in it can be expressed with

crisp values. Hence for this ENCZ kind of events µrun is either 0 or 1.0. Similarly, EXCZR:

{MOEt1, MOEt2} → (EXCZ, µexcz) where MOEt1 for a vehicle has the spatial coordinates in

the defined critical zone and MOEt2 for the same vehicle has the spatial coordinates out of a

defined critical zone.

7.3.6.2 Formal Complex Event Definition

The complex events are built by correlating the simple events. In this dissertation, we define

the complex events formally as follows:

• CER: SSE→ (CE, µCE) is a Complex Event Rule where:
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– SSE = {(S E1, Fµ1), (S E2, Fµ2), ..., (S En, Fµn)} is a finite Set of Simple Events

inferred previously by using simple event rules and each (S E1, Fµ1) pair is the

simple event with its corresponding fuzzy membership value having the transition

function such as “above some threshold” or “below some threshold” etc.

– CE is a Complex Event inferred by investigating the members of SSE depending

on their semantic meanings.

– µCE is the fuzzy membership value of inferred event CE and calculated through a

fuzzy membership function either based on ‘Fmui’s or independently.

For instance, a complex event of “ATTACK to the sink” can be defined with the proposed

notation as follows:

ATHR: {(HR, µrun > 0.5), (ENCZ, 1.0)} → (ATH, µath) where if there exists a human intruder

RUNNING FAST and a vehicle ENTERS to a critical zone, then the rule concludes with the

“ATTACK to the sink” having µath as a fuzzy membership value calculated, i.e. based on the

velocity of the vehicle.

Another complex event of “SMUGGLING from the critical zone” can be defined with the

proposed notation as follows:

SMR: {(HR, µrun < 0.5), (EXCZ, 1.0)} → (SM, µsm) where if there exists a human intruder

RUNNING SLOW and a vehicle EXITS from the critical zone which means they are taking

out the goods secretly with the vehicle. Then the rule concludes with the “SMUGGLING

from the critical zone” having µsm as a fuzzy membership value calculated, i.e. based on the

velocity of the human beings.

7.4 Experimental Evaluation

In this section, we describe how such a system using WECA rules can be implemented in a

power-plant surveillance application.
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7.4.1 Power-Plant Surveillance Application with WECA Rules

A WMSN with a large number of simple cameras as well as sophisticated PTZ cameras can

be very convenient to monitor the surroundings of a power-plant built in rural areas (see

Figure 7.5 [WEB:PowerPlant]) against possible terrorist attacks, thefts or animal intrusions.

We envision a continuous remote surveillance system which will last for several months if not

years and trigger certain actions in an autonomous manner.

Figure 7.5: A sample power-plant surveillance area

In our sample power plant surveillance application, we assume that camera sensors may cap-

ture three different object types, namely Human, Vehicle and Animal which can possibly in-

trude in to different parts of the power-plant. Camera sensors also send the Location and

Velocity of the detected objects. The definition of a MOE in our application is given as fol-

lows:

• ID of the camera sensor detecting the event

• Detection time

• Detected object

– Location (X and Y coordinate)

– Velocity
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– Membership value of the object

∗ for the class of ‘Human’

∗ for the class of ‘Vehicle’

∗ for the class of ‘Animal’

Below we list some sample situations and discuss how they are expressed in WECA form.

7.4.1.1 Example-1: A Human Intruder is Detected by Two Different Camera Sensors

at Similar Times

Consider an example active rule shown in Figure 7.6, expressed in natural language and de-

fined for power plant surveillance:

Figure 7.6: Active rule defined in natural language

Let us assume that this human intruder is detected by two different camera sensors, given that

the number of cameras used is large. As a result, two different MOEs containing a human

intruder object are sent to the sink by two camera sensors, namely Camera S ensor 1 and

Camera S ensor 2. Let us assume that the objects detected are referred to as H1 or H2.

Then, the WECA rule that needs to be defined at the sink is as shown in Figure 7.7. The

WECA rule fires when a human intruder is detected (by at least two different camera sensors)

(Phase-1) and approaches the transmission lines (Phase2). If the intruder is close enough to

one of the camera sensors (Phase-3), the action to be taken is triggered, which is, in this case,

requesting the original video frame from that camera sensor (Phase-4).

Now, let us look at each phase in detail:

In our work, fusion of two different MOEs sent by two different camera sensors is performed

by using the similarity of MOEs based on their stored features, i.e., classification values and
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Figure 7.7: Corresponding WECA rule

their velocities. The total fuzzy similarity between the two MOEs is calculated based on two

sub similarities, namely the object class similarity and the velocity similarity. While the for-

mer compares the membership values, the latter compares the speed of objects. The speed is a

reasonable choice for comparison given that the speed of an object would not change abruptly

between consecutive frames. We assign weights to each of these sub similarity classes. The

weight of the object class similarity on total similarity is taken as 0.75 since it includes three

fuzzy variables (i.e., human, animal and vehicle) out of four including the velocity. The

weight of the velocity similarity is 0.25.

We now explain how Equation 7.1 and Figure 7.3 are used at the sink in Algorithm 3, the Ob-

ject Similarity Algorithm. Assume that O1 and O2 are received by the sink from different sen-

sors S 1 and S 2 at different times T1 and T2 where T2 > T1. Since we have three membership

values and one velocity value, the object class similarity has the weight of 0.75 over the total

similarity. If the rule has the keyword VERY SIMILAR, then the threshold value to check

the velocity similarity, which we call W afterwards, becomes 0.675 (W = 0.9 ∗ 0.75 = 0.675).

If the object class similarity between the objects O1 and O2 is above 0.9 then there is a good

chance that these two objects are VERY SIMILAR and at line 3, the total similarity becomes

bigger than W = 0.675, then we need to check the velocity similarity. Once the velocity simi-

larity is computed, it is multiplied by 0.25 and added to the total similarity. Thus, a final total

object similarity is found at line 4. If the found total object similarity is above 0.9, then we

may consider the gathered objects as VERY SIMILAR and fused to one object at the sink,

meaning that two different cameras sense the same object at different times, T1 and T2.

Note that, while the objects may be very similar in their classes, their velocities may differ if
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O2 decreases its velocity physically when traveling between the location of O1 and O2 (i.e.,

it may follow a zigzag movement in a blind area). In such a case, the velocity similarity is

less than 1.0 making the Total S imilarity parameter between 0.75 and 1.0. On the other hand

if the same camera sensor sends two different MOEs containing different locations for the

objects having the same classification value at the same time, the velocity is calculated as ∞

which makes the velocity similarity 0. Hence, even if the object class similarity is equal to

1.0, the system identifies two different objects, i.e., two different vehicles.

Hence, the MOEs sent by Camera S ensor 1 and Camera S ensor 2 in Figure 7.7 are fused

with the help of Algorithm 3.

Algorithm 3 Object Similarity Algorithm at the Sink
Require: Two objects with their membership vectors and velocities exist.

Ensure: Total similarity value between two objects is found.

1: Total S imilarity← 0

2: Total S imilarity← f indOb jectClassS imilarity(Ob ject1,Ob ject2) ∗ 0.75

3: if Total S imilarity ≥ W then

4: Total S imilarity+ = f indOb jectVelocityS imilarity(Ob ject1,Ob ject2) ∗ 0.25

5: end if

One final note is on the time of object detection. Obviously, the detection times of human

intruders for C1 and C2 may not be exactly the same. We are interested in a more flexible

“similar” time. To do this, the detection times in MOEs can be compared according to a

specific application-dependent threshold, i.e., 2 ms in our case.

After the WHEN part of the WECA rule is processed, then event processing is performed.

The event part (E) contains an approaching event which needs to check whether the distance

between human’s position and transmission line’s location is decreasing between two consec-

utive MOEs. Note that transmission line’s location and possible other important structures’

locations should be supplied to the system in advance.

If the event is occurring, then the condition (C), which is being close enough to a camera, is

checked. In order to check this, the location of the object and camera are needed to compute

the distance. If that distance is below some predefined threshold, then the condition check is

also positive.
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If the condition is also met, then the action part (A) which is requesting the video data from

the camera is handled. After requesting the raw video data, it is up to the application designers

to use human intervention to see if there is something serious happening. Up to that point, the

system reacts in an energy-efficient manner under uncertain/incomplete information.

7.4.1.2 Example-2: Two Human Intruders are Detected by Two Different Camera Sen-

sors at Similar Times

Following the same event example above, let us assume that two MOEs detected by two cam-

era sensors are not similar. Therefore, there are two different human intruders. Let us define

two independent events for these intruders such that one of them approaches the transmis-

sion lines and the other one moves west which is the direction of the entrance gate. If these

two events occur at similar times, we want to alarm the guards without checking any other

conditions. As a result, the WECA rule will be defined as in Figure 7.8.

Figure 7.8: WECA rule

7.4.1.3 Example-3: Two Human Intruders are Detected by a Single Camera Sensor

It may also be possible that these intruders are detected by the same camera sensor. Even if

the same camera sensor senses these human intruders at similar times and sends two different

MOEs containing two human objects, the rule defined in Figure 7.8 still works. C1 and C2 can

be the same camera sensor which detects two objects on the same or consecutive frames. The

camera sensor will send different locations for the two objects. Then the velocity is calculated

as∞ which makes the velocity similarity 0. Hence, even if the object class similarity is equal
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to 1.0 for them, the system identifies two different human beings for the same time instant.

7.4.2 The Rule Controller - JESS Implementation

In order to test the feasibility of WECA rules, we used JESS, the rule engine for the JAVA

platform [WEB:Jess]. The reasons for using JESS instead of direct implementation in ap-

plication code are similar to ones given for using ECA rules instead of application code in

[Zoumboulakis04]. These reasons are listed as follows:

• JESS allows an application’s reactive functionality to be specified and managed within

a database/ knowledge base rather than being encoded in diverse programs, thus en-

hancing the modularity, maintainability and extensibility of applications.

• JESS has a high-level, declarative syntax and is thus amenable to analysis and optimiza-

tion techniques which cannot be easily applied if the same functionality is expressed

directly in application code.

• JESS has a mechanism that can abstract a wide variety of reactive behaviors, in con-

trast to an application code that is typically specialized to a particular kind of reactive

scenario.

In our implementation, the rules created by the user are transformed into the objects and

stored in a very simple object database. These rule-objects contain enumeration values for

the predefined fusion parameters, event, condition and action types. When a rule is retrieved

from the database, it is transformed into the JESS syntax and inserted into the JESS working

memory.

In this part, a simple JESS example for a power plant surveillance application system will be

given for the example WECA rule shown in Figure 7.7.

Each JESS rule engine holds a collection of knowledge nuggets called facts [WEB:Jess].

This collection is known as the working memory. Working memory is important because

rules can only react to additions, deletions, and changes to working memory. Every fact has

a template. The template has a name and a set of slots, and each fact gets these from its

template. In Figure 7.9, Figure 7.10 and Figure 7.11, the template definitions for individual

camera sensors, important structures and MOEs are given respectively.
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Figure 7.9: Template definition for sensors

Figure 7.10: Template definition for important structure

Figure 7.11: Template definition for MOEs

JESS rules have two parts, separated by the => symbol. The first part consists of the Left

Hand Side pattern, the second part consists of the Right Hand Side action. We define the

WHEN part (fusion part) of WECA rules as a sub-rule given in Figure 7.13. Notice that MOE

template definition contains the part object name. However, sensors do not know the identity

information of the detected objects. Hence MOEs coming from camera sensors are fed into

the JESS system after they are processed using Algorithm 3 and their identities are obtained

in the architecture as shown in Figure 7.12.

A simple event for human beings is to approach important structures and is modified with

the sub-rule given in Figure 7.14. In this simple event, if the same human object is sensed at
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Figure 7.12: The architecture of the mechanism using JESS

Figure 7.13: Sub-Rule for fusion part

consecutive time intervals with decreasing distance to the important structure, such as trans-

mission lines, then he/she is assumed to be approaching to that structure.

A simple condition of being close to a camera sensor is processed with the sub-rule given in

Figure 7.15. In this condition, if the detected object and the camera show 5 meters difference

between x and y positions, they are assumed to be close.
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Figure 7.14: Sub-Rule for event part

Figure 7.15: Sub-Rule for condition part
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The final rule uses all of the sub rules’ results and ensures that an object is detected by two

different camera sensors and that the object is human and approaching the important structure.

When that object is near one of the cameras, then the system requests original raw video data

from that camera. Hence, instead of gathering raw video data from camera sensors at all

times, the system requests it only when the intruder is performing a predefined event with the

predefined conditions. The final rule is shown in Figure 7.16.

Figure 7.16: Final rule

After defining the templates and the rules for JESS, the JESS system is ready to accept the

facts which are the real-word instances occurring in real time. Figure 7.17 shows some exam-

ple facts for the rules given in previous Figures.

The result of JESS against the definitions and facts inserted into the working memory is shown

in Figure 7.18. At time T2, the whole rule fires and the system requests the original video

data from the camera sensor S 2 in order to inspect the intruder appropriately.

7.4.3 Experimental Evaluation of Fusion

To test the object fusion performance of WECA rules (i.e., the WHEN part), we have used

the simulator for the monitoring of our power-plant surveillance application. An area of

1000X600 m2 is considered. For each group of experiments, different numbers of camera

sensors are placed randomly with random orientations in order to achieve the desired coverage

values as shown below. Coverage values are calculated in terms of total FoV with respect to

the total area.
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Figure 7.17: Facts

Figure 7.18: Output

• 25% coverage: 29 camera sensors

• 50% coverage: 61 camera sensors

• 75% coverage: 102 camera sensors

• 100% coverage: 120 camera sensors

Note that these cases also cover the effect of any possible obstacles in the environment. In case

of obstacles, depending on the number of such obstacles, the coverage values may decrease

slightly. In addition to obstacles, in some cases, there may not be sufficient cameras to monitor

the whole region. Hence, to account for such cases, we have considered coverage values from

25% to 100%.
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Transmission ranges and DoFs are picked as 200m and 100m respectively. The sink node is

assumed to be placed at (0, 0) location. Objects are generated randomly and their membership

values and velocities are also assigned randomly. In each individual experiment, objects have

special mobility pattern designed for these experiments. Each object has the purpose to enter

the area and move towards the main building as if it was an intruder aiming to capture an

important structure positioned at the building. Membership values for a random object, (i.e.,

for a human intruder is a vector of (a, b, c)), are calculated as a > 0.5, b + c = 1 − a where a,

b and c are random numbers. For instance, for 6 different objects of 2 humans, 2 vehicles and

2 animals, the membership values produced with this formula are as given in Table 7.1.

The metric that we have used in our experiment is Fusion Accuracy. This metric indicates

how successful the algorithm is when identifying the moving objects. It is defined as follows:

At each time unit, the real object count under surveillance and the calculated object count by

the sink are compared. If these values are not equal to each other, the ratio of the difference

of these values to the real object count is noted as a false ratio. (1 − f alse ratio) is defined

as the fusion accuracy. Note that the lifetime threshold defined before prevents the false ratio

from being less than 0 or bigger than 1. Our goal is to maximize the accuracy.

Table 7.1: Random Membership Values for 6 Objects

Object Membership
Name Value

Human 1 (0.86; 0.04; 0.10)
Human 2 (0.93; 0.00; 0.07)
Vehicle 1 (0.14; 0.61; 0.25)
Vehicle 2 (0.03; 0.87; 0.10)
Animal 1 (0.12; 0.08; 0.80)
Animal 2 (0.13; 0.27; 0.60)

In order to observe the fusion accuracy, we have set up experiment groups that include 3,

6, 9 or 12 different moving objects. Each experiment group is performed under 4 different

camera sensor coverage values given in the Experiment Setup subsection. The change of the

average fusion accuracy over time for 3 different moving objects for different coverage values

is shown in Figure 7.19. Overall accuracies for all coverage values and for all object numbers

are presented in Table 7.2. We note that the results included here are recorded between the

time interval [40,160], since, on average, a random moving object enters into one of the
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camera’s FoV at time 40 and begins to disappear from the region at time 160.

Figure 7.19: Change of fusion accuracy values over time for experiments with 3 different
objects on all camera coverage values.

Table 7.2: Average Fusion Accuries

Object 25% 50% 75% 100%
Count Cov. Cov. Cov. Cov.

3 Objects 0.38 0.71 0.81 1.0
6 Objects 0.38 0.74 0.81 1.0
9 Objects 0.39 0.73 0.83 1.0
12 Objects 0.39 0.75 0.83 1.0

In optimistic scenarios, we target the fusion accuracy value to be at least as much as the

total camera coverage percentage. For instance, for 25% camera coverage value, one should

achieve at least 25% fusion accuracy as the sink can monitor only 25% part of the whole

area and 75% of the area is the blind area. The results of our experiments show that, under

optimistic scenarios, the fusion accuracies are higher than these base coverage values.

The results also indicate that when the coverage is 100%, our approach guarantees accurate

tracking of any number of objects. With the decreasing coverage percentage value, the accu-

racy decreases. However, this decrease is not proportional to the decrease in coverage value,
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indicating the effectiveness of our approach. In all coverage cases, the fusion accuracies are

always higher than the coverage percentage values.

7.4.4 Experiments for Complex Event Processing

In this section, by using a typical border surveillance application we give a proof of concept

about our complex event processing solution. Assume a border surveillance area as shown in

Figure 7.20. Consider two example complex events shown in Figures 7.21 and 7.22, expressed

in natural language and defined for this application.

Figure 7.20: Typical border surveillance area where the left of the vertical line passes from
the middle is a critical area for the sink

Figure 7.21: Complex event of ATTACK

Since these two complex events defined above are build on top of simple events, i.e., HUMAN

RUNNING and ENTERING/EXITING to/from critical zone, the ON part of WECA rule is

used for combining those simple events. WHEN part is useless for defining complex events
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Figure 7.22: Complex event of SMUGGLING

because there exist no need for fusion at this stage. The IF part is used to detect any feature

defined in simple events and THEN part is used to infer actions when the rule fires. Two

WECA rules defined for the complex events above are shown in Figures 7.23 and 7.24.

Figure 7.23: WECA rule of ATTACK

Figure 7.24: WECA rule of SMUGGLING

In order to implement the two WECA rules given above, firstly template definitions for the

FACTS should be defined in JESS working memory. Template definitions for MOE and

Critical Zone are shown in Figures 7.25 and 7.26. The critical zone only needs X coordinate

of the vertical line in this example scenario. Of course, more complex critical zones such as

rectangle areas or circle areas in the area under surveillance can be defined according to the

application.

Before complex events, the simple events are firstly extracted from the coming MOEs from the

camera sensors. When they are extracted, they are also added to the JESS working memory

to be used in complex event processing. For that purpose, the JESS needs template definitions
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Figure 7.25: Template definition for MOE

Figure 7.26: Template definition for critical zone

for the simple events. In Figures 7.27, 7.28 and 7.29, the template definitions for simple

events of “Human Running”, “Entering to the Critical Zone” and “Exiting from the Critical

Zone” are shown respectively.

Figure 7.27: Template definition for a simple event of “Human Running”

Figure 7.28: Template definition for a simple event of “Entering to the Critical Zone”
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Figure 7.29: Template definition for a simple event of “Exiting from the Critical Zone”

The fuzzy membership function used for the RUNNING event that takes the velocity of the

human beings as input and produces the fuzzy value of being FAST or SLOW is shown in

Figure 7.30. This fuzzy membership graph has three regions where the first one only produces

SLOW fuzzy membership value as 1.0, the second one (which is the middle region) produces

values for both FAST and SLOW fuzzy membership values, and lastly the third one only

produces FAST fuzzy membership value as 1.0. For that reason, three different rules that

include the appropriate fuzzy membership value calculations for HUMAN RUNNING events

are shown in Figures 7.31, 7.32 and 7.33.

Figure 7.30: The fuzzy membership function for FAST and SLOW based on velocity

“Human Running FAST” event just calculates the fuzzy membership value for being FAST

as shown in Figure 7.31. For that reason, there is no SLOW fuzziness value calculation in this

rule.

The JESS rules that implements the simple events of “Entering to a Critical Zone” and “Exit-

ing from a Critical Zone” are shown in Figures 7.34 and 7.35 respectively. These two events
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Figure 7.31: Rule definition for a simple event of “Human Running FAST”

Figure 7.32: Rule definition for a simple event of “Human Running SLOW”

are produced by checking the object spatial features. When the object X coordinate at time t1

is out of critical zone and at time t2 in the critical zone (where t2 > t1) then this means that

the object is entering to the critical zone. “Exiting from a Critical Zone” event definition is

reverse of the “Entering to a Critical Zone” event definition.

The JESS implementations for the complex events of “ATTACK” and “SMUGGLING” are

shown in Figures 7.36 and 7.37 respectively. In “ATTACK” event, being FAST is checked

by having FAST fuzzy membership value above 0.5, because according the fuzzy member-

ship graph given in Figure 7.30, the sum of fuzzy membership values of being FAST and

SLOW equals to 1.0. If the FAST membership value is above 0.5 then this means that fuzzy

membership value for SLOW is less than 0.5.
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Figure 7.33: Rule definition for a simple event of “Human Running either SLOW or FAST”,
fuzzy calculation

Figure 7.34: Rule definition for a simple event of “Entering to a Critical Zone”

In JESS the FACTS are injected to the system and the rules fire according to these FACTS.

In Figure 7.38, firstly the critical zone line coordinate is injected to the system. Then MOEs

are injected to the system one by one. At each time interval, there exist two different objects

exist at the area under surveillance. One of them is a human being, the other one is a vehicle.
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Figure 7.35: Rule definition for a simple event of “Exiting from a Critical Zone”

Figure 7.36: Rule definition for a complex event of “ATTACK”

“(run)” is a command for JESS to process the injected FACT by “(assert)” command. In each

MOE, only X coordinates for the objects are given for simplicity, since the example rules

defined above are only interested in X coordinates of the objects.

The outputs of JESS for the FACTS injected in Figure 7.38 are shown in Figure 7.39. At
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Figure 7.37: Rule definition for a complex event of “SMUGGLING”

Figure 7.38: Facts

time t1, human object O1 is detected as RUNNING SLOW with the probability of 0.75. At

time t2, human object O1 is detected as RUNNING FAST with the probability of 0.75 and

a vehicle ENTERS to the CRITICAL ZONE which means an ATTACK occurs at time t2.

The probability of the ATTACK is found as 0.75. At time t3, human object O1 is detected

as RUNNING VERY SLOW and a vehicle EXITS from the CRITICAL ZONE which means

SMUGGLING occurs at time t3 with the probability of 1.0.
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Figure 7.39: Outputs

7.5 Summary

In this chapter, we have proposed an active rule processing mechanism for a typical power-

plant surveillance application that uses WMSNs. Instead of collecting the raw video data all

the time, the sink gathers incomplete and imprecise moving object event information about the

objects from different camera sensors only when the camera sensors detect an event. The sink

then processes the received data using predefined active rules. For this purpose, we extend

ECA rules according to the needs of WMSNs and propose WECA rules. The sink performs

four phases for rule-based processing after getting multimedia data from different camera

sensors: Fuzzy Object Fusion, Fuzzy Event Identification, Fuzzy Condition Matching and

Fuzzy Inference. Data fusion is done via utilizing fuzzy logic and can thus capture uncertainty

in the data.

The feasibility of the rule-based mechanism has been shown via a JESS implementation on

the power-plant surveillance application. In addition, we have conducted experiments for

assessing the accuracy of the proposed fusion approach. The experiment results show that

acceptable accuracy values can be obtained via the proper processing of incomplete and un-

certain information using fuzzy logic.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

A lot of new challenges emerge with the introduction of WMSNs in different applications.

These are the applications where the frequency of incidents is too low to employ perma-

nent staffing such as border surveillance or monitoring of critical infrastructures positioned

desolate places, etc. Moreover, in such applications, large number of battery operated im-

age/video camera sensors are deployed to capture the occurring events. These cameras are

typically low-resolution and severely resource constrained in terms of CPU, memory and

storage which makes them cheaper and convenient to be deployed. This dissertation proposes

a remote surveillance reactive framework with three components: 1) Localization and track-

ing of objects; 2) Classification and identification of objects; and 3) Reactive behavior at the

sink.

In this dissertation, we first present a novel object localization approach which can work on-

site at a camera sensor without the need for collaboration with its neighbors. The localization

approach proposed utilizes frame differencing in order to extract the object from the frame.

Once the object is detected, its distance to the camera sensor is estimated using the size of

the object on the frame and on the camera sensor. The distance is then used to determine

the exact location of the object at the area under surveillance, by using the orientation of the

camera sensor. The experimental evaluation has revealed that, our approach can effectively

determine the location of an object with an error rate of 2% in the worst case. We also assess

the energy overhead of our approach on individual camera sensors. The energy consumption

is significantly reduced compared to the case, where the localization is performed at the sink

due to the communication overhead.

Then, we present a lightweight and accurate object classification approach which can work on-
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site again at the camera sensor with limited information. The classification approach utilizes

genetic algorithm to built classifiers. The experimental evaluation for classification reveals

that our classification approach can effectively classify typical objects, i.e., human, animals

and vehicles, in a power-plant surveillance application with an error rate of at most 2% over-

all. We also assess the energy and storage overhead of our approach on individual camera

sensors. Like in localization problem, the energy consumption is also reduced compared to

the traditional case. Additionally, storage overhead is not significant compared to the available

space on a typical camera sensor.

Afterwards, we investigate a multiple object tracking problem in a typical border surveillance

application of WMSNs using minimal resources. Instead of raw frame or raw video data with

huge size, the classification information along with the location of the object is sent to the

sink as part of the MOE for tracking purposes. The sink gathers MOEs from different camera

sensors and processes them using a fuzzy object similarity and tracking algorithms. In this

way, the sink is able to differentiate and identify distinct moving objects under mostly blinded

areas and track them in real-time. The tracking algorithm proposed is implemented and tested

under variety of conditions. The experiments results show that the algorithm can accurately

identify and track multiple moving objects even under low area coverage percentages. The

results also indicate that this accuracy is slightly degraded with the introduction of errors

(classification errors, localization errors or network packet losses). Nonetheless, in all cases,

this process of classification and tracking performs with significantly less energy consumption

than is needed in the traditional approaches, and as a result, increases the battery lifetime of

the camera sensors.

Lastly, we propose an active rule processing mechanism for a typical power-plant surveillance

application that uses WMSNs. Instead of collecting the raw video data all the time, the sink

gathers incomplete and imprecise moving object event information about the objects from

different camera sensors only when the camera sensors detect an event. The sink then pro-

cesses the received data using predefined active rules. For this purpose, we extend ECA rules

according to the needs of WMSNs and propose WECA rules. The sink performs four phases

for rule-based processing: Fuzzy Object Fusion, Fuzzy Event Identification, Fuzzy Condition

Matching and Fuzzy Inference. Data fusion is done via utilizing fuzzy logic and can thus

capture uncertainty in the data. Simple events and complex events are all extracted within

the proposed framework. The feasibility of the rule-based mechanism is shown via a JESS
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implementation on the power-plant surveillance application. In addition, we conduct exper-

iments for assessing the accuracy of the proposed fusion approach. The experiment results

show that acceptable accuracy values can be obtained via the proper processing of incomplete

and uncertain information using fuzzy logic.

Future works for this dissertation can be listed as follows:

1. The object detection approach used in this dissertation cannot deal with groups of an-

imals/people when they stick very close to each other, as this is a different and chal-

lenging problem which has been also a research issue in computer vision. For instance,

[Mckenna00] points out that robust tracking of individuals in a group of people requires

person models that must cope with reasonable changes in illumination and varied cloth-

ing. Especially in outdoor surveillance, it is not reasonable to assume that people wear

tightly fitting clothes or these clothes are uniformly colored. Hence, when they are very

close to each other, it is not an easy task to differentiate individuals in the group. This

is a more challenging task in our case, where inexpensive and simple cameras are used.

For the case of animal groups, since animals do not wear any clothes or do not have any

dominant color differences between each other, differentiating models based on color

changes will not work appropriately. Introducing new lightweight detection algorithms

dealing with those problems is a challenging research area for the camera sensors.

2. Without increasing the energy consumption much at the camera sensors, increase at the

number of features used in classification to further improve the accuracy and be able to

work with more object classes, is another research area. For that purpose, new features

should be extracted with low processing from the raw video by using low energy usage.

Additionally, the extraction process should be time efficient such that the classification

information is used in real-time surveillance applications.

3. One may think that, it is easy for a target to compromise the classification system.

For example, by changing body shape or moving speed suddenly, the object similarity

algorithm would not work. A target/intruder may even compromise a system that has

strong and powerful cameras (and thus with powerful image processing algorithms) by

wearing animal costumes or changing body shape etc. However, in order to cheat the

system, the intruder should know about algorithm details, such as fuzzy sets defined in

the algorithm. In addition, the system can be equipped with some strong rules to trigger
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action against such targets. Extension of the classification and active rule processing

approaches to deal with cases of cheating by intruders (e.g., a human intruder trying to

behave (walk) like animals) is another challenging future work for this dissertation.

4. The WMSN used in this dissertation is a single-tier flat and contains homogeneous

camera sensors. For this reason, some problems such as object detection or classifica-

tion have limitations with the usage of energy limited camera sensors. Every algorithm

that is proposed should be energy efficient in order to work on these camera sensors.

However, in the literature, WMSNs with heterogeneous sensors are also proposed in the

reference architecture, [Akyildiz07]. Improving the proposed algorithms in this disser-

tation by using the information gathered from other types of sensor, e.g., scalar sensors

or radar sensors, besides camera sensors is a research direction after this dissertation.

5. In this dissertation, we do not try to estimate the future concepts such as possible future

path of the objects while tracking them or possible next events while extracting the cur-

rent ones. These kind of predictions would stronger the active framework while taking

precautions about the intruders. Making such future predictions is another research area

after this dissertation.
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APPENDIX A

IMPLEMENTATION

In this section, our simulator and its features are explained in detail. The simulator has the

capability of simulating any number of camera sensors distribution on an area of defined

size. In Figure A.1, the simulator main screen is shown when there exists only the sink at

the position of (0, 0). Transmission range for the sink is shown as a circle around the sink.

The sensors who will directly communicate with the sink should be positioned in that area.

Otherwise, they are out of range for the sink.

Figure A.1: The area under surveillance and sink position

The first camera sensor which is positioned on the area under surveillance is shown in Figure

A.2. Similar to the sink, the camera sensor has also its own transmission range, drawn as a

circle around it. Every camera sensor has its own id also, i.e. 1 in this case.
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Figure A.2: A camera sensor on the area

Camera sensors can communicate with one another as long as they are within the transmis-

sion range of each other. In Figure A.3, 8 camera sensors are positioned on the area under

surveillance, where each of the camera sensors has at least one neighbor in its transmission

range. The simulator automatically calculates the neighboring graph and draws it with the

lines between camera sensors or between camera sensors and the sink. This graph shows

which sensor can communicate with which sensor. In this example, the graph is connected

where each of the sensors has a path to the sink for communication.

Figure A.3: Camera sensors and their neighboring graph
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Camera sensors discover their neighbors automatically and use Dijkstra’s shortest path algo-

rithm to send their messages to the sink. Based on neighboring graph calculated in Figure

A.3, the simulator calculates the shortest path of each sensor to communicate with the sink

and draws it on the main screen as shown in Figure A.4.

Figure A.4: Shortest path for each camera sensors to the sink

The simulator can also calculate the camera sensor’s total coverage value for the area un-

der surveillance. In Figure A.5, the coverage value for the distribution is calculated as 7%

approximately.

Figure A.5: Calculating camera sensors’ coverage value
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Since there may exists different kinds of sensors with different Depth of Views and Angle of

Visions, the simulator has also the capability of simulating them. In Figure A.6, the properties

of the camera sensors given in Figure A.5 are changed to increase the camera coverage value

to 30% approximately.

Figure A.6: Increased camera coverage value by changing the camera features

In Figure A.7, the camera sensors are distributed to the area to achieve 25% camera coverage

value approximately.

Figure A.7: Camera sensor distribution to achieve 25% camera coverage value
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The experiments explained in Chapter 5 are performed under different camera coverage val-

ues. In Figure A.8, 75% camera coverage is achieved by 102 different camera sensors.

Figure A.8: 102 camera sensor to achieve 75% camera coverage value

The intruder objects (human, vehicle or animals) are injected to the area under surveillance

with their appropriate membership values. In Figure A.9, a human intruder is injected to the

system. The camera sensors that detect that human intruder and sends MOE information to

the sink are the camera sensors 98 and 25.

Figure A.9: A human intruder detected by two camera sensors
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The MOEs sent by the camera sensors are processed at the sink to track the intruders. In

Figure A.10, the path of the human intruder is drawn by the sensor according to the route

information stored at the sink. This route information is calculated by the Object Tracking

Algorithm at the Sink, i.e. Algorithm 2 given in Chapter 6.4.

Figure A.10: Object tracking result

In Figure A.11, 12 different objects which 4 of them human, 4 of them vehicle and 4 of them

animal are injected to the system. Each of the intruder objects has different random paths

having the purpose of attacking to the sink. 13 camera sensors that detect those objects and

send MOE information to the sink are shown in different color.

Figure A.11: Multiple random objects injected to the area under surveillance
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The simulator has the information area in which the real-time information about the perform-

ing experiments is given. In Figure A.12, this area is shown. On the left side; time, energy

measurements and object counts are given, on the right side; the information stored at the sink

is given. Hence, the user is able to follow the experiments at real-time.

Figure A.12: Information area of the simulator

The simulator has the ability to detect moving objects in videos. In Figure A.14 moving object

detection result of the simulator is shown for the sample frame given in Figure A.13.

Figure A.13: Sample frame for moving object detection
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Figure A.14: Detected moving object is marked as red inside its MBR by the simulator
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