
MODELLING SOFTWARE RELIABILITY USING HYBRID BAYESIAN

NETWORKS

by

Ayşe Tosun Mısırlı

B.S., Computer Science and Engineering, Sabanci University, 2006

M.S., Computer Engineering, Boğaziçi University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in

Boğaziçi University

2012

ii

MODELLING SOFTWARE RELIABILITY USING HYBRID BAYESIAN

NETWORKS

APPROVED BY:

Prof. Ayşe Başar Bener

(Thesis Co-supervisor)

Prof. Oğuz Tosun

(Thesis Co-supervisor)

Prof. Fikret Gürgen

Prof. Emin Anarım

Assist. Prof. A. Taylan Cemgil

Burak Turhan, Ph.D.

DATE OF APPROVAL: 4.4.2012

iii

ACKNOWLEDGEMENTS

I would like to express my genuine gratitude to my thesis supervisor, Prof. Ayşe

Bener, whose endless support and knowledge helped me to complete my research as

well as to find my perspective in life. I will never forget how Prof. Bener has been my

guidance as I engage in the completion of this work. I thank to Prof. Oğuz Tosun for

being my co-advisor and his personal support, and Prof. Fikret Gürgen, Prof. Emin

Anarım, Assist. Prof. Taylan Cemgil and Dr. Burak Turhan for kindly accepting to

be in my defense jury. I owe special thanks to Assist. Prof. Taylan Cemgil and Dr.

Burak Turhan for allocating their valuable time for discussions about my research.

My gratitude goes to Turgay Aytaç for helping me find industrial supporters for

this research as well as sharing his extensive knowledge on computer science, engineer-

ing and management. I am indebted to my colleagues in SoftLab, Bora Çağlayan, Gül

Çalıklı, Aslı Uyar Özkaya and Gülfem Alptekin, for unlimited kindness, friendship and

support, and many of my colleagues at Department of Computer Engineering for being

always ready to help.

I would like to thank Ayhan Inal, Tolga Aytekin from Logo Business Solutions and

Reşat Kale from Turkcell Technology for providing data for my empirical research. This

work could not have been completed without financial supports of Turkish Scientific

Research Council (TUBITAK), Turkish State Planning Organization (DPT under the

project number 2007K120610) and partial supports of Turkcell Akademi, BUVAK,

ACM Graduate Student Support Program.

I am also grateful to everyone in my large family for providing psychological

support, and especially for “food” support when I was desperately in need of care.

Finally, I would like to dedicate this thesis to my dear parents, Fatma Tosun and Ziya

Tosun, my dear sister, Merve Tosun, and my lovely husband Yiğit Mısırlı.

iv

ABSTRACT

MODELLING SOFTWARE RELIABILITY USING

HYBRID BAYESIAN NETWORKS

In this research, we analyse the problem of predicting software reliability from AI

perspective. We observe that existing models are built based on expert knowledge in-

cluding defining a set of metrics through surveys and causal relationships. We overcome

their limitations by introducing new data collection, model construction and inference

methodology. We propose a Hybrid Bayesian network that would estimate reliability of

consecutive releases of software projects before a release decision, in terms of their resid-

ual (post-release) defects. We form this hybrid model by incorporating quantitative

factors of development and testing processes into qualitative factors of requirements

specification and documentation process without the need for any transformation. As

quantitative factors, we select popularly used product, in-process and people metrics

as well as introduce new ones depending on the availability of local data in the orga-

nizations. We also identify qualitative factors representing requirements specification

process via surveys with development teams. Dependencies between software met-

rics and defects are determined according to correlation and independence tests and

graphical dependence analysis with chi-plots. We utilize a Monte Carlo technique to

approximate joint probability distribution of the model over conditionals by inferring

unknown distribution parameters. Empirical analyses on two industrial datasets show

that (i) Hybrid Bayesian networks are capable of estimating reliability in terms of

residual defects, (ii) proposed way of defining causal relationships, chi-plots, decreases

error rates significantly, (iii) expert judgement-based models may not achieve as good

prediction performances as statistical models, (iv) local data are so valuable and rep-

resentative as expert knowledge in software organizations that they should be used

primarily and strengthened with expert knowledge in predicting software reliability.

v

ÖZET

YAZILIM GÜVENİLİRLİĞİNİN HİBRİD BAYES AĞLARI

KULLANILARAK MODELLENMESİ

Bu tezde, yazılım güvenilirliğini tahmin etme problemi yapay zeka açısından in-

celenmektedir. Önceki çalışmalarde kurulan tahmin modellerinde, yazılım süreçlerine

ait faktörler and aralarındaki sebep-sonuç ilişkileri tamamen uzmanlık bilgilerine bağlı

kalınarak kurulmuştur. Bu sebeple, yeni bir veri toplama, model kurma ve çıkarsama

metodu önerilmektedir. Önerilen yazılım güvenilirliği tahmin modeli, yazılım pro-

jelerinin sürüm sonrası hatalarını tahmin eden bir Hibrid Bayes ağları modelidir. Bu

model, şirketlerin varolan veri ambarlarından çıkartılan, kodlama ve test süreçlerini

tanımlayan nicel faktörler ile, yazılım ekibiyle yapılan anketlerden çıkartılan, gereksinim

belirleme ve analiz sürecini tanımlamak için oluşturulan nitel faktörleri birleştirir.

Böylece, önerilen hibrid model hem kategorik hem de sürekli değişkenleri, sürekli

değişkenlere herhangi bir transformasyon uygulamadan, birlikte kullanmıştır. Yazılım

ölçütleri ve hatalar arasındaki sebep-sonuç ilişkileri, istatistiksel bağımsızlık testlerine

ek olarak, grafiksel bağımlılık analizleri ile belirlenmiştir. Bir Monte Carlo yöntemi

ile, Bayes modelinin ortak olasılık dağılımı ve bilinmeyen parametreleri tahmin edildiği

gibi, anketlerdeki eksik veriler de tamamlanmıştır. İki yazılım şirketi için yapılan am-

pirik çalışmaların sonuçları şöyle özetlenebilir: (i) Bayes ağları, nicel ve nitel faktörleri

birlikte kullanarak, yazılım güvenilirliğini sürüm sonrası hatalar açısından, başarıyla

tahmin edebilmektedir, (ii) Grafiksel bağımlılık analizleri sayesinde belirlenen sebep-

sonuç ilişkileri, sürüm sonrası hata yakalama başarısını önemli ölçüde iyileştirmektedir,

(iii) Sadece uzmanlık bilgilerine dayanarak kurulan modeller, istatistiksel analizlerle

kurulan modellere göre daha düşük bir hata yakalama performansı göstermektedir,

(iv) Şirket içi veri havuzları, uzman bilgi ve deneyimleri kadar değerlidir ve yazılım

güvenililirliğini tahmin etmede öncelikli olarak kullanılmalıdır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Contributions . 3

2. BACKGROUND . 7

2.1. Optimal Software Release Problem . 7

2.2. Predicting Software Reliability . 8

2.3. Applications of Bayesian Networks in Software Engineering 13

2.4. Bayesian Networks: Theory and Applications in Other Domains 15

2.5. Research Questions . 16

3. PROPOSED MODEL: HYBRID BAYESIAN NETWORK 21

4. METHODOLOGY . 24

4.1. Dataset Construction . 24

4.1.1. Quantitative Data . 24

4.1.1.1. Software Metrics Representing Development Phase . . 25

4.1.1.2. Software Metrics Representing Testing Phase 27

4.1.2. Qualitative Data . 30

4.1.2.1. Missing Data Imputation 30

4.2. Network Construction . 32

4.3. Performance Evaluation . 34

5. DATASETS . 37

5.1. Dataset 1 from Telecommunications Domain 37

5.2. Dataset 2 from ERP Domain . 38

6. EXPERIMENTS AND RESULTS . 41

6.1. Descriptive Statistics on Software Metrics 41

vii

6.1.1. Dataset 1 . 41

6.1.2. Dataset 2 . 43

6.2. Empirical Analysis on Software Metrics 44

6.2.1. Analysis for Dataset 1 . 48

6.2.2. Analysis for Dataset 2 . 51

6.3. Proposed Models . 55

6.3.1. Models for Dataset 1 . 56

6.3.1.1. Model #1 (GLM) . 56

6.3.1.2. Model #2 (Idiom) . 57

6.3.1.3. Model #3 (Stats) . 59

6.3.1.4. Model #4 (DistCov) 59

6.3.1.5. Model #5 (ChiPlot) 59

6.3.1.6. Model #6 (Hybrid) . 60

6.3.2. Proposed Models for Dataset 2 62

6.3.2.1. Model #1 (GLM) . 62

6.3.2.2. Model #2 (Idiom) . 63

6.3.2.3. Model #3 (Stats) . 64

6.3.2.4. Model #4 (DistCov) 64

6.3.2.5. Model #5 (ChiPlot) 66

6.3.2.6. Model #6 (Hybrid) . 66

6.4. Results . 67

6.5. Discussion on Data Quality . 70

7. THREATS TO VALIDITY . 73

8. CONCLUSIONS . 77

8.1. Summary of Results . 77

8.1.1. What are the software factors affecting software reliability? . . . 77

8.1.2. How do software processes affect software reliability? 78

8.1.3. How can we build a predictive model that would estimate soft-

ware reliability prior to release? 78

8.1.4. How can software companies build predictive models with local

data rather than based solely on expert knowledge? 79

viii

8.2. Contributions . 79

8.2.1. Theoretical and Methodological Contributions 80

8.2.2. Practical Implications . 81

8.3. Future Directions . 82

APPENDIX A: CODES OF PROPOSED MODELS FOR DATASET 1 84

A.1. Winbugs code for the implementation of GLM 84

A.2. Winbugs code for the implementation of Idiom 84

A.3. Winbugs code for the implementation of Stats 85

A.4. Winbugs code for the implementation of DistCov 87

A.5. Winbugs code for the implementation of ChiPlot 87

A.6. Winbugs code for the implementation of Specification and Documenta-

tion Subnet . 89

APPENDIX B: CODES OF PROPOSED MODELS FOR DATASET 2 90

B.1. Winbugs code for the implementation of GLM 90

B.2. Winbugs code for the implementation of Idiom 90

B.3. Winbugs code for the implementation of Stats 92

B.4. Winbugs code for the implementation of DistCov 93

B.5. Winbugs code for the implementation of ChiPlot 94

APPENDIX C: SURVEY RESPONSES . 96

APPENDIX D: CHI-PLOTS FOR DEPENDENCE ANALYSIS 98

APPENDIX E: BOX-PLOTS OF SOFTWARE METRICS 104

REFERENCES . 107

ix

LIST OF FIGURES

Figure 4.1. Data collection procedure from available resources of the software

organizations. 25

Figure 4.2. An illustration of the proposed network. 35

Figure 6.1. Chi-plot of two variables. 48

Figure 6.2. Normality plots for the metrics in Dataset 1. 49

Figure 6.3. Histogram plot for Test Cases with Status Change. 53

Figure 6.4. Normality plots for metrics in Dataset 2. 53

Figure 6.5. Graphical representation of Model #1 - Dataset 1. 57

Figure 6.6. Graphical representation of Model #2 - Dataset 1. 58

Figure 6.7. Graphical representations of Model #3 - Dataset 1. 59

Figure 6.8. Graphical representation of Model #4 - Dataset 1. 60

Figure 6.9. Graphical representation of Model #5 - Dataset 1. 60

Figure 6.10. Graphical representation of Specification and Documentation Subnet. 61

Figure 6.11. Graphical representation of Model # 1 - Dataset 2. 63

Figure 6.12. Graphical representation of Model # 2 - Dataset 2. 64

x

Figure 6.13. Graphical representation of Model # 3 - Dataset 2. 65

Figure 6.14. Graphical representation of Model # 4 - Dataset 2. 65

Figure 6.15. Graphical representation of Model # 5 - Dataset 2. 66

Figure 6.16. Effect of Box-cox transformation on complexity metric in Dataset 1. 71

Figure 6.17. Box plots of post-release defects for both datasets. 72

Figure D.1. Chi-plots showing an association between metrics in Dataset 1. . . 99

Figure D.2. Chi-plots showing an association between metrics in Dataset 1 (con-

tinued). 100

Figure D.3. Chi-plots showing an association between metrics in Dataset 2. . . 101

Figure D.4. Chi-plots showing an association between metrics in Dataset 2 (con-

tinued). 102

Figure D.5. Chi-plots showing an association between metrics in Dataset 2 (con-

tinued). 103

Figure E.1. Box-plots of software metrics for Dataset 1. 105

Figure E.2. Box-plots of software metrics for Dataset 2. 106

xi

LIST OF TABLES

Table 2.1. A summary of software engineering studies, which are based on

faults/failures and software reliability, using BNs. 18

Table 2.2. A summary of software engineering studies, which are based on

project cost/schedule and effort estimation, using BNs. 19

Table 2.3. A list of studies on Bayesian Networks and applications in medical

diagnosis systems. 20

Table 4.1. Specification and Documentation Factors used in the network. . . . 31

Table 6.1. Dataset 1: Software metrics regarding development and testing

phases. 42

Table 6.2. Dataset 2: Software metrics regarding development and testing

phases. 43

Table 6.3. Lilliefors goodness of fit test results for Dataset 1. 50

Table 6.4. Spearman’s correlation coefficients for Dataset 1. 51

Table 6.5. Lilliefors goodness of fit test results for Dataset 2. 52

Table 6.6. Spearman’s correlation coefficients for Dataset 2. 54

Table 6.7. Proposed models for both datasets. 55

Table 6.8. Prediction performance of models on Dataset 1. 69

xii

Table 6.9. Prediction performance of models on Dataset 2. 69

Table C.1. Responses for Specification, Documentation & Project Management

in Datasets 1 & 2. 97

xiii

LIST OF ACRONYMS/ABBREVIATIONS

AI Artificial Intelligence

BN Bayesian Network

CPT Conditional Probability Table

EM Expectation Maximisation

LOC Lines of Code

MCMC Markov Chain Monte Carlo

SDLC Software Development Life Cycle

SVN Subversion

3P People, Process, Product

3GL Third Generation Programming Language

4GL Forth Generation Programming Language

1

1. INTRODUCTION

With the rapid evolution in computer technology, hardware and software systems,

we can see complex software systems in almost all industries, including telecommuni-

cations supporting phone operations, as well as aerospace producing space shuttles, or

even in our personal computers running with complex operating systems with millions

of lines of code. The demand for complex software systems has increased more rapidly

than the ability to design, implement, test and maintain them [1]. As the requirements

for software systems increase, failures also increase due to lack of sufficient advance-

ment in productivity, quality, cost and performance issues. Various historical software

failure stories, such as the loss of Mars Climate Orbiter (1999) [2] or radiation therapy

miscalculation at National Cancer Institute (2000) [3], showed that failures occurred

in the field caused many million dollars of budget loss as well as significant health

problems and loss of human lives.

Reliability is considered as the most important aspect of software quality both

from the engineer’s and customer’s points of view [4]. It is often quantified with failures

(or post-release faults) in software systems. In many engineering disciplines, reliability

engineering has been applied with complex but routine designs for years [1]. Software

engineering discipline should also be well defined through standardized processes. It

should be effectively applied to produce high quality products consistent with customer

requirements.

Software managers in companies primarily look for reliable software which would

function properly in accordance with the customer needs [5]. Due to critical project

constraints such as time, budget and personnel, detecting all possible faults leading

software failures prior to a release and, hence, producing reliable and high quality

products is a real challenge for software industry. Software teams often face with a

constant pressure of “Deliver Now!” during development process [6]. With this pres-

sure, a quick short cut for the team is to ensure that the product satisfies minimum

requirements, works as expected and, then, to deploy the software as soon as possi-

2

ble. However, defects are more costly if discovered and fixed in the later stages of the

development life cycle or during production [7]. Therefore, testing is one of the most

critical phases of the software development life cycle, which is responsible for 50% of

the total cost of development [7]. On the other hand, investing a large amount into soft-

ware testing can be difficult to justify, particularly for and time- and budget-conscious

companies.

Decisions on “when to stop testing” and “how much reliable the software is” are

very critical, and hence, they are very difficult to make. Testing is a complex process

due to complexity of applications and interdependencies between systems. However,

complete testing of a software product is almost impossible. Even though a complete

testing is carried out before the product release, software cannot be 100% reliable.

According to a research carried out more than 20 years ago [8], Adams observed the

occurrence of rates of failures on large IBM software systems and he found that more

than 60% of failures were “5000-year bugs”. This means there are bugs that would

cause the failures of the systems, on average, every 5000 years. So, we cannot claim

that our software is 100% fault-free and, hence, it is 100% reliable.

From the managerial point of view, it is still impossible to tell that our software

is reliable enough before we have seen the operational usage. We need additional

factors, i.e. metrics, predictions, or expert judgements, to make formalisms on the

final reliability level for a specific project. There are common factors suggested to

be monitored during software development to decide an acceptable reliability, i.e.,

confidence, level for a company: (i) percentage of test cases correctly executed, (ii)

test budget and time, (iii) code coverage, functionality or requirements covered, (iv)

bug rate. However, as software systems get more complex, managers do not actually

monitor each factor individually; instead, they combine all these factors with other

process related metrics. Furthermore, product reliability is strongly connected with

software development life cycle (SDLC) activities and three major aspects affecting

the quality of these activities: Product, Process, People (Resources) (3P). Hence, it is

very complex to model the product reliability with a single factor or using only one

aspect in 3P. Each phase in a SDLC has to be modelled by considering the relations of

3

product, process and people related factors, as well as the relationships between these

phases and their impacts on the final product reliability.

Predictive models are increasingly in demand to guide software developers and

managers to help decision-making under uncertainty [9]. Such models can be applied

during different processes to estimate the cost/effort of the development life cycle [10],

to predict defect-prone parts of the software, either in pre-release [11] or post-release

[12], and to assess the reliability of the system [9]. Our research has so far focused on

building decision-making mechanisms for defect prediction [13] and cost estimation [14].

Similar to much research, we have dealt with these issues separately. However, in

real life, software managers take simultaneous decisions under uncertainty. Although

applying such models helps effective allocation of limited resources (e.g. early indication

of defects during testing with defect predictors), software managers want to come up

with a conclusion on the final reliability of software before the release. To accomplish

this, it is necessary to observe not only single factor, such as residual defect density,

but also various factors which may possibly affect the software reliability. After that,

managers have to answer several questions, such as:

• When to stop testing?

• Is the software product reliable enough to release?

• Does the software need additional testing effort, requirements or design effort?

• Based on a reliability level, should software managers make a drastic change,

delay or cancel the project?

1.1. Contributions

In this research, we build a Hybrid Bayesian network that would estimate relia-

bility of consecutive releases of software projects before a release decision, in terms of

the number of residual (potential post-release) defects. We build this causal network

by modelling the relationship between major processes of a software development life

cycle (SDLC) and residual defects. Contributions of this research can be summarized

as follows:

4

• Quantification of software reliability in terms of metrics : Since this research is

based on empirical analysis, we have to measure/quantify software reliability

within the scope of software processes. Our initial step was to made an exten-

sive literature survey on metrics used to quantify software reliability. We have

seen that software reliability was often evaluated with the number of residual

(post-release) defects in a software system. Furthermore, reliability was defined

within the context of development process, with a very few empirical studies on

predicting reliability using metrics from other processes.

In this research, we have selected previously used metrics by adapting them to our

problem as well as defined new ones to investigate potential effects of development

and testing processes on final software reliability. During metric selection, we

have filtered the most representative ones in terms of predicting residual defects

by considering the mapping to Product, Process and People aspects. In order

to complete SDLC, requirements process is represented through a survey due to

difficulty of quantifying this process via metrics and lack of standard deliverables

(like the source code in development, or test cases in testing) that could be

used for metric extraction. Finally, we have managed to represent three major

processes of SDLC in terms of quantitative and qualitative metrics.

• Identification of causal relationships among metrics : One of our research objec-

tives is to gain more insight about how dependencies between software metrics

affect the final reliability of software. In real life, software managers use this

kind of information by combining their previous experience and projections with

current situation at the time of decision making. However, expert predictions

may include bias in their judgemental processes or they may be over-optimistic.

Bayesian learning encodes probabilistic relationships among variables successfully

so that we can gain an understanding about the problem domain and predict

the consequences of different configurations. In this research, we have utilized

Bayesian networks in conjunction with statistical tests in order to identify causal

relationships between software metrics and residual defects.

• Constructing a Hybrid BN using both qualitative and quantitative data: During

data collection steps, we have realized that collecting local data from all soft-

5

ware processes is not feasible, while quantifying processes with survey data also

contains a bias due to subjective judgements of software team with varying expe-

rience levels and qualifications. A hybrid model is necessary when organizations

have different levels of maturity in different processes of SDLC. In this research,

we have applied a hybrid data collection approach by using quantitative data

extracted from organizational repositories and qualitative data collected through

surveys.

To handle mixture of continuous and categorical variables in a single model, we

have proposed a Hybrid BN in which categorical variables can be parents of

continuous variables. A Hybrid BN also requires to handle continuous variables

without the need of any transformation, such as discretization, so that we can

avoid possible biases that may occur due to the application of discretization in

small state spaces, like software engineering datasets.

• Utilization of Monte Carlo methods during BN inference: In this research, our

main concern is to predict software reliability by learning the probability of resid-

ual defects given observations from software metrics. This probability needs to be

computed from BNs, which is called inference in short. Although inferring poste-

rior probability of the output node in a BN is easier with categorical variables, it

is not trivial when we have metrics with both continuous and categorical values.

We have used a well known Monte Carlo technique, namely Gibbs sampling, on

approximation of the joint probability distribution over conditional distributions.

Gibbs sampling is well suited for inferring posterior distribution in a BN (includ-

ing estimation of parameters), handling mixture of continuous and categorical

variables, as well as handling missing data. In our problem, surveys sometimes

have missing data, and hence there is not a one-to-one correspondence with quan-

titative software metrics. We have used Gibbs sampling to handle this situation

in addition to estimating probability of residual defects.

• Empirical analysis of Bayesian networks built by experts versus learned from local

data: Throughout this research, we have collected two industrial datasets with

quantitative metrics extracted from organizations’ data repositories and qualita-

tive metrics extracted through surveys conducted with development teams. We

6

have performed statistical tests for identifying causal relationships and built a

Hybrid BN that would estimate residual defects periodically (weekly or prior to

a new release). In addition, we have built an expert opinion-based BN, whose

causal relations are defined based on evaluations of experts in the organizations.

Our objective is to understand whether a predictive model can imitate the way

experts synthesize their knowledge with current state of software while making

release decisions. Results obtained on two different datasets are very promising

such that we managed to extract relationships between metrics and software re-

liability through Bayesian networks and statistics and make predictions better

than results obtained from an expert-based model. These results also show that

predictive models can be used effectively by software organizations in order to

reduce the risk of wrong estimations and pressure over software managers.

7

2. BACKGROUND

The main interests in practical software engineering are as follows: (i) we are not

sure about when to stop testing and release the software, and (ii) we do not have any

information about final reliability of a software product. This section briefly summa-

rizes previous studies on “optimal release time” and “software reliability” by listing

available models built for predicting software reliability. Then, a broader research on

Bayesian Networks and their applications in other domains are presented.

2.1. Optimal Software Release Problem

Yang et al. [15] defined “optimal release problem” as constrained optimization

problem, where we expect to maximize the software reliability and minimize the project

cost subject to a predefined cost limit. Software release time has been affected by var-

ious factors during development life cycle, some of which are the number of faults

detected and removed during testing activities, the effort spent for fault removal ac-

tivities, or time spent for each software process area. Authors discussed that it is

impossible to decide on actual release time, since time spent for those factors men-

tioned above are completely random. They studied uncertainty in software cost and

its impact on software release time using a linear model whose parameters are defined

by non-homogeneous Poison distributions. Results of this study show that uncertainty

in project life cycle should be taken into account seriously in order to avoid major

false downs in project management. Other studies estimated optimal software release

time using differential equations [16]. Estimation of optimal release times would, in

turn, determine the software reliability in terms of residual defect densities in the end

product. However, finding the optimal release time is not our major concern during

this research.

8

2.2. Predicting Software Reliability

Software reliability is defined as “the probability that software will not cause the

failure of a system for a specified time under specified conditions” [17]. Software reli-

ability assessment is categorized into three classes by Eusgeld and Freiling [18]: black

box reliability analysis, software metric-based reliability analysis, architecture-based re-

liability analysis. Black-box reliability approaches deal with time-dependent failure

observations from testing or operation phases, and hence, they do not consider inter-

nal details of the software system. Software metric-based reliability analysis aims to

reason about residual faults or fault frequencies expected to have during the software

execution [18]. In this analysis, metrics from the source code or development processes

can be used to estimate the reliability. Finally, architecture-based reliability analy-

sis divides the software into smaller components, called blocks, and these blocks and

their dependencies among each other are investigated based on the architecture of the

software earlier in design phase.

Software reliability is also one of the system reliability concepts, especially a bot-

tleneck of system reliability in many existing large scale systems [1], and it is critical

to model software reliability and predicting its trend to provide crucial information for

reliability engineering. Software reliability engineering (SRE) is defined as the quanti-

tative study of the operational behaviour of software-based systems with respect to user

requirements concerning reliability [17]. Therefore, it includes reliability measurement,

prediction and estimation, as well as impacts of product design, development process,

architecture and operational environment on reliability. Measurements of software re-

liability includes two types of activities: Prediction and Estimation.

Estimation: This activity aims to asses the current reliability in terms of failure

data obtained from system tests or during system operation and determine whether a

reliability growth model is a good fit in retrospect [1].

Prediction: This activity determines future software reliability based upon avail-

able software metrics and measures. In general, when failure data are available (after

9

testing) reliability models can be parametrized and verified to perform future reliability

prediction [1].

In this research, we focus on reliability measurement and predict software relia-

bility (in terms of post-release defects) by using available software metrics and failure

data from previous releases in order to perform predictions for future releases.

In empirical studies, researchers often evaluate the software reliability as predict-

ing residual faults expected to have during operation, similar to the software metric-

based reliability analysis. Today’s verification, validation and testing (VV&T) strate-

gies can be applied to detect and fix software faults earlier in development life cycle,

such as manual code reviews [19,20], inspections [21,22] and automated defect1 predic-

tion models [11, 23, 24]. Defect predictors improve the efficiency of testing phase and

help developers assess the quality and defect-proneness of their software product [25].

They also help managers in allocating resources. These models require historical data

in terms of software metrics and actual defect rates. They combine metrics and de-

fect information as training data to learn which modules are likely to be defective.

Based on the knowledge from training data and software metrics acquired from a re-

cently completed project, such tools can estimate defect-prone modules of that project.

Generally, defect prediction is treated as a classification problem, where the aim is to

predict defect proneness of a software module2 by assigning 0 to defect-free modules

and 1 to defect-prone modules.

Previous research on software defect prediction show that learning based defect

predictors can detect 70% of all defects in a software system on average [11], while

manual code reviews can detect between 35 and 60% of defects [20], and inspections

can detect 30% of defects at most [22]. Furthermore, code reviews are labour-intensive,

since depending on the review procedure, they require 8 to 20 LOC/minutes for each

person in the software team to inspect the source code [11]. Learning based models

1In this research, we use defect and fault interchangeably to define a product anomaly or imper-
fections found during software product life cycle, which causes the software fail to perform its required
function.

2A module can be a package, file, class or a method in a source code.

10

have been one of the widely used approaches in both empirical software engineering

research and industrial practice [11, 13, 23, 24, 26, 27]. Our previous study conducted

on a large telecommunication company showed that we were able to predict, 80% of

pre-release defects on average, while reducing the testing effort by 30% [13].

Research on defect prediction has a history of more than 20 years with one of

the most promising works based on predicting pre-release defects using static code

metrics [11]. Static code metrics, such as lines of code measures, Mc Cabe’s cyclomatic

complexity measures, and Halstead’s operand-operator count measures, are widely used

and easily extracted from the source code through automated tools [28]. As new web

and mainframe technologies, 3GLs, and 4GLs, are emerging, it is more challenging to

extract code metrics due to lack of parsers for these new generation languages [29].

Although static code metrics are successful in predicting 71% defects on average, it has

been shown that the performance of defect predictors using static code metrics was

upper bounded due to the limited information content of these metrics [30]. Due to

this fact, different algorithmic approaches such as Naive Bayes and rule based learners,

could not go beyond the performance achieved so far. For this reason, recent research

in defect prediction has been concentrated on increasing the information content of the

model by adding various metrics from other aspects of software engineering. So far,

churn metrics [23,24,31,32], network dependencies [33–36], and organizational network

of developers [27, 34, 37] have been used to enhance the performance of prediction

models. In addition, some researchers investigated the effect of requirements, design or

testing processes on predicting defective parts of the software by proposing new metric

sets from either of these processes [12,38,39].

Churn metrics represent the progress in development activities throughout a

project’s life cycle in terms of added/deleted lines of code, file age, or rank of commit-

ters who edit the source code. They can be extracted from the change history stored in

version control systems through custom scripts. Studies in [24, 32] used churn metrics

to predict defects prior to a release, whereas [23, 27, 31] used them to predict post-

release defects. Caglayan et al. [32] showed that churn metrics were better indicators

than code metrics in predicting pre-release defects for Eclipse releases. Our previous

11

research also concluded that churn metrics were the best indicators of defects regardless

of their categories in terms of the phases they were found (i.e., during functional tests,

system tests, or from the customer side) [29].

Call graphs extracted from the dependency (static caller-callee) relations between

software modules were used to re-weight metrics [35], increase the number of metrics

[36], or as a complete alternative to existing metrics in defect prediction models [33,

34]. Nagappan et al. [33] found that network metrics predicted post-release defects

in Windows binaries with 10% more accuracy compared to code metrics. Tosun et

al. [35] also extracted network metrics from a large-scale project and three small-scale

projects in order to validate the effects of network metrics on different software projects.

Authors claimed that network metrics were valuable and significant indicators of pre-

release defects only in large-scale complex systems.

On the other hand, Meneely et al. used social metrics from the collaboration

network of developers, and obtained better prediction results than using static code

metrics in a case study [37]. Similarly, a comparative study by Nagappan and Murphy

[27] showed that organizational metrics were the most significant indicators of post-

release defects compared to code, churn, and network metrics. In contrast to the results

obtained by [27], Weyuker et al. [40] added new metrics for developers who accessed

and edited individual code units to their prediction model. Experiments showed that

number of developers was not a significant measure for pre-release defects.

Static code metrics and network metrics use the product, i.e. source code, to pre-

dict defective parts of a software system, whereas churn metrics use the development

process through mining version control systems. Social/organizational metrics look at

the people aspect of a software development life cycle by considering the effect of de-

velopment team on defect proneness of software. To enrich the process aspect, several

researchers also considered the requirements documents [38,41], class diagrams [39] and

test execution records [12] as significant inputs to defect prediction models. In [38],

requirements were mapped with defects by linking each requirement statement to one

or more source files and then linking files to defects. Later, textual metrics from re-

12

quirements documents were extracted to understand the weaknesses in requirement

documents (e.g. # vague statements, incompleteness, conditionals). However, extract-

ing textual metrics from requirement documents is a difficult task, and at most of the

cases, researchers are unable to access requirements documents of software, or docu-

ments are informally written, or their language affects the metric extraction process.

Kpodjedo et al. [39] extracted design evolution metrics from class diagrams and

concluded that when used in conjunction with known metrics(churn), design evolu-

tion metrics improved defect detection performance. Metrics were derived from basic

information in class diagrams, such as number of added/deleted methods, number of

incoming/outgoing relations, and number of modifications on these relations. Based

on these information, authors defined Class Rank measuring the relative importance

of the class in the system, while Evolution Cost quantifying the amount of changes in

signature and relations (i.e. associations, aggregations) that class underwent [39].

Nagappan et al. [12] introduced testing in-process metrics, also called as STREW-

J metric suite, in order to measure their effectiveness on predicting defects [12]. Their

proposed metrics included but not limited to number of test cases per lines of code/

per each requirement/ per each class and number of conditionals used in a test case.

Most defect prediction models combine well-known methodologies such as statis-

tical techniques [23, 24, 42] and machine learning algorithms [11, 13, 43]. A systematic

literature review on fault prediction models have recently been conducted by Hall et

al. [44]. Authors investigated how certain factors, such as the context of models, in-

dependent variables (metrics) used, the modelling techniques applied, influenced the

performance of such models. Based on an analysis on 36 studies, it was found that

most studies preferred simple modelling techniques such as Naive Bayes or Logistic

Regression.

While some researchers prefer simple modelling techniques like regression mod-

els, others use more complicated models like Bayesian Networks that include causal

relations between project and process features [45]. Simpler models like Nave Bayes

13

effectively capture the relationship between defective modules and code metrics in vari-

ous studies with the probability of detection (pd) and probability of false alarms (pf) as

71% and 25% respectively [11]. More comprehensive views onto software systems, such

as Bayesian Networks (BN) [46–48], would, on the other hand, help decision-making

and reasoning, rather than measuring only defect density. According to Fenton et

al. [47], only metrics may omit “sometimes simple and obvious causal factors that can

have major explanatory effect on what is observed and learned”. BNs, on the other

hand, are causal models, which consist of variables as nodes with different probability

distributions and cause-effect relationships between variables as directed edges [46].

The effect of one variable on others can be observed in many useful combinations so as

to find the best cause-effect relationship for software defects and final reliability [45].

2.3. Applications of Bayesian Networks in Software Engineering

BN approach has been widely used in various risk assessment problems in software

engineering domain, mainly for predicting software and system reliability as well as for

predicting resources or effort to accomplish a project. One of the earliest studies on

predicting system safety was proposed by [49] in which a Bayesian Belief Network was

constructed to make reasoning between system variables and safety. Later, different

authors modelled software failures in an operational profile using a time series (Markov

chain BN) [50], as well as using simple BNs (such as [47, 51, 52]). In [53], anomalies

in failing executions of programs were detected online using fully observable Markov

models. BNs were also formed for sensitivity, uncertainty and trade off analysis (such

as [54], [55]). There were also studies that built BNs to predict software project effort

and schedule variance, and to predict testing effort in iterative development, some of

which are listed in Tables 2.1 and 2.2.

In Tables 2.1 and 2.2, we list existing studies in software engineering that have

successfully applied BNs for solving different software engineering problems. Although

the application of BNs in software engineering is not limited to these studies, we have

filtered only the most representative ones in terms of (i) how the BN structure is

formed, (ii) which techniques are used to estimate prior and conditional probability

14

tables, (iii) what type of input variables (cat: categorical, cont: continuous) are used.

In most of these studies, final BN structure, i.e. causal dependencies, was assumed to

be already at hand, or it was inspired from another model (defect flow [56], activity

based quality [57]). Experts opinions fed by historical data also played a critical role

for defining causal relationships between variables (such as in [9, 45,47,49,52]).

In terms of techniques for estimating the parameters, i.e. prior and conditional

probability tables (in case of categorical variables) and distributions (in case of con-

tinuous variables), either the experts were used ([45, 50, 51]), or missing parameters

were learned from historical data using structure learning algorithms employed in BN

tools, such as Junction tree [9,45,47,52,54] or polytree propagation [49]. Alternatively,

when continuous valued variables were needed to be modelled or in case of missing

data, very few authors applied a Monte Carlo method (MC), such as Gibbs sampling

and Expectation maximization [50, 58]. These MC methods are quite successful and

accurate for estimating the unknown parameters of probability distributions or when

inferring posterior probabilities in the case of missing data [59].

Most studies defined their input variables as representative of three different

aspects, process, product, people resources, in a software life cycle. These variables were

often collected via surveys, whose responses are in a categorical range in all studies

except [50, 60]. In some studies, discretization techniques were employed to convert

continuous valued variables, such as product size, complexity, into categorical values

[9,45,55]. Recently, [55] built hybrid BNs by incorporating continuous and categorical

variables in a single model using a dynamic discretization method. Discretization

is a straightforward approach when modelling a BN to create prior and conditional

probability tables [61]. Among various (supervised or unsupervised) discretization

methods, Fayyad and Irani’s discretization method that uses entropy minimization

heuristic is the most commonly used [62].

Beside the inability to make inference over continuous variables, most studies

were limited due to lack of a mechanism for structure learning. Expert judgement

incorporated with the historical data for post-release defects were the most commonly

15

used technique. However, there may be circumstances when a model is needed to

be built based on the historical data [61], due to the fact that experts may also be

uncertain about dependencies between variables. It is known that the problem of

learning the best structure for a BN is NP-hard [59]. Thus, proposed techniques in

other applications should be investigated to select the most appropriate technique for

our problem.

2.4. Bayesian Networks: Theory and Applications in Other Domains

We have investigated software engineering domain to list available studies uti-

lizing Bayesian networks and highlighted their limitations. In this section, several

contributions by other researchers from other domains are proposed to solve these

limitations.

Table 2.3 lists a sample of studies from medical diagnosis and machine learning.

Since 1990s, there have been hundreds of studies employing Bayesian networks on a

specific problem and proposing new techniques. Contributions of these studies are

mainly focused on either qualitative or quantitative parts of BNs [61]. Qualitative

part deals with finding causal dependencies between variables and building the final

structure of the model. Quantitative part, on the other hand, deals with parameter

estimations such as prior and conditional probability tables (CPT). Ideally, both parts

of a BN can be inferred from data [59]. When data is not enough to make inference,

expert judgment is widely used to fill quantitative parts (CPTs) [63,64]. Furthermore,

software tools such as Hugin [65], Netica [66] are helpful, although they have their own

limitations (e.g. handling continuous variables, inference algorithms for insufficient

statistics, building the structure). Murphy reviewed some of the most popular and

recent software packages for dealing with graphical models, i.e., Bayesian networks

and undirected graphs [67].

In Table 2.3, we list a sample of studies from the literature and highlight how

these papers have overcome three major issues: (i) Parameter learning, (ii) Structure

learning, and (iii) Handling continuous variables.

16

In medical diagnosis domain, data taken from case studies are much larger than

those in software engineering studies. Therefore, most of the studies (such as [63,

68–70]) computed parameters of prior and conditional probability distributions by in-

ferring from data. Authors proposed different techniques for structure learning, one

of which proposed a Mutual Information (MI) based inference to find causal depen-

dencies between input-output variables and Chow-Liu’s algorithm to learn interdepen-

dencies between input variables [69]. In all medical diagnosis studies, input variables

were treated as categorical (when they had continuous values, an expert opinion based

method was used to create pre-determined number of bins).

In the context of Bayesian Network theory and machine learning, parameter

learning was applied with different variations of Monte Carlo (MC) methods, such

as Metropolis Hastings with Hamiltonian dynamics [61], Importance Sampling with

Hybrid Loop Belief Propagation [71], Expectation Maximization (EM) for parametric

and semi-parametric conditional probabilities [72] and accelerated EM for factorized

mixture of Gaussians [73].

Studies on structure learning, on the other hand, contain variations in terms of

algorithms or heuristics used for finding the best structure. For instance, [74] applied

genetic algorithms on continuous variables such that six different parameters of the

algorithm were optimized during cross validation experiments. In [73], all pair-wise

interactions were calculated with the help of a heuristic inspired from hill climbing

technique. Furthermore, in [75], an independence based test was applied to both

continuous and discrete/categorical variables, which does not have a distributional

assumption (like in Chi-square test). In summary, depending on the size of data sets

to find the parameters of search techniques and convergence times of the algorithms,

structure learning technique should be carefully designed for every problem.

2.5. Research Questions

We align our research questions in line with the above-mentioned discussions

about the limitations of previous models in software engineering. The rest of this

17

research will look for empirical evidence to the answers of these research questions:

(i) What are the software factors affecting software reliability?

(ii) How do software processes affect software reliability?

(iii) How can we build a predictive model that would estimate software reliability

prior to release?

(iv) How can software companies build predictive models with local data rather than

based solely on expert knowledge?

T
ab

le
2.

1.
A

su
m

m
ar

y
of

so
ft

w
ar

e
en

gi
n
ee

ri
n
g

st
u
d
ie

s,
w

h
ic

h
ar

e
b
as

ed
on

fa
u
lt

s/
fa

il
u
re

s
an

d
so

ft
w

ar
e

re
li
ab

il
it

y,
u
si

n
g

B
N

s.
A
im

T
o
o
l?

P
a
r
a
m

e
te

r
le
a
r
n
in

g
S
tr
u
c
tu

r
e
le
a
r
n
in

g
D
a
ta

(F
r
e
e
?
)

In
p
u
t
d
e
sc

r
ip

ti
o
n

C
a
te

g
o
r
y

T
y
p
e

S
a
fe

ty
a
ss

es
sm

en
t

o
f

n
u

cl
ea

r
co

m
p

u
te

r-

b
a
se

d
sy

st
em

s
[4

9
]

H
u

g
in

&

P
o
ly

tr
ee

p
ro

p
-

a
g
a
ti

o
n

E
x
p

er
t

ju
d

g
em

en
t

w
it

h
si

m
p

li
-

fi
ed

el
ic

it
a
ti

o
n

m
ec

h
a
n

is
m

s

E
x
p

er
t

ju
d

g
em

en
t

N
o

R
eq

u
ir

em
en

ts
,

d
es

ig
n

,

sy
st

em
sp

ec
ifi

ca
ti

o
n

d
o
cu

m
en

t,
p

er
so

n
n
el

q
u

a
li
ti

es

P
eo

p
le

,
P

ro
-

ce
ss

,
P

ro
d

u
ct

C
a
t

M
o
d

el
li
n

g
d

is
cr

et
e

ti
m

e
fa

il
u

re
d

a
ta

[5
0
]

N
o

H
is

to
ri

ca
l

d
a
ta

&
G

ib
b

s
sa

m
-

p
le

r
o
n

M
a
rk

o
v

B
N

E
x
p

er
t

ju
d

g
em

en
t

&

H
is

to
ri

ca
l

d
a
ta

S
p

a
ce

p
ro

g
ra

m
(N

o
)

o
p

er
a
ti

o
n

a
l

p
ro

fi
le

a
n

d

fa
il
u

re
ra

te
s

P
ro

ce
ss

C
o
n
t.

P
re

d
ic

ti
n

g
le

v
el

o
f
fa

u
lt

in
je

ct
io

n
[5

1
]

N
et

ic
a

&
B

a
y
es

N
et

A
ss

is
ta

n
t

E
x
p

er
t

ju
d

g
em

en
t

&
H

is
to

ri
ca

l

d
a
ta

L
in

ea
r

re
g
re

ss
io

n
&

P
C

A

M
o
to

ro
la

so
ft

w
a
re

sy
s-

te
m

(N
o
)

D
o
m

a
in

k
n

o
w

le
d

g
e,

p
ro

b
le

m
co

m
p

le
x
it

y,

st
a
b

il
it

y

P
ro

d
u

ct
,

P
eo

-

p
le

C
a
t

O
n

-l
in

e
a
n

o
m

a
ly

d
et

ec
-

ti
o
n

in
fa

il
in

g
ex

ec
u

-

ti
o
n

s
[5

3
]

N
o

B
a
u

m
-W

el
ch

a
lg

o
ri

th
m

F
u

ll
y

o
b

se
rv

a
b

le

M
a
rk

o
v

m
o
d

el

N
a
n

o
X

M
L

(N
o
)

P
re

d
ic

a
te

st
a
te

s
o
b

-

ta
in

ed
fr

o
m

p
ro

g
ra

m

ex
ec

u
ti

o
n

P
ro

d
u

ct
C

o
n
t

P
re

d
ic

ti
n

g
fa

u
lt

co
n

-

te
n
t

&
p

ro
n

en
es

s
[6

0
]

N
o

E
x
p

er
t

ju
d

g
em

en
t

&
H

is
to

ri
ca

l

d
a
ta

G
en

er
a
li
ze

d
L

in
ea

r

M
o
d

el

N
A

S
A

d
a
ta

se
t

(Y
es

)
O

b
je

ct
o
ri

en
te

d
co

d
e

m
et

ri
cs

P
ro

d
u

ct
C

o
n
t

P
re

d
ic

ti
n

g
re

li
a
b

il
-

it
y

[5
2
]

A
g
en

a
R

is
k

E
x
p

er
t

ju
d

g
em

en
t

&
J
u

n
ct

io
n

tr
ee

E
x
p

er
t

ju
d

g
em

en
t

S
o
ft

w
a
re

p
ro

je
ct

(N
o
)

P
eo

p
le

a
n

d
p

ro
ce

ss

q
u

a
li
ty

,
p

ro
je

ct
co

m
-

p
le

x
it

y,
n

o
v
el

ty

P
eo

p
le

,
P

ro
-

ce
ss

,
P

ro
d

u
ct

C
a
t

P
re

d
ic

ti
n

g
re

li
a
b

il
-

it
y

[4
7
]

A
g
en

a
R

is
k

W
ei

g
h
te

d
T

N
o
rm

a
l

d
is

tr
ib

u
-

ti
o
n

u
si

n
g

ra
n

k
ed

n
o
d

es
,

th
en

J
u

n
ct

io
n

tr
ee

E
x
p

er
t

ju
d

g
em

en
t

&

H
is

to
ri

ca
l

d
a
ta

S
o
ft

w
a
re

p
ro

je
ct

(P
a
r-

ti
a
ll
y
)

P
eo

p
le

ex
p

er
ie

n
ce

,
d

o
-

m
a
in

k
n

o
w

le
d

g
e,

te
st

-

in
g

q
u

a
li
ty

P
ro

ce
ss

,
P

eo
p

le
C

a
t

P
re

d
ic

ti
n

g
re

li
a
b

il
-

it
y

[4
5
]

A
g
en

a
R

is
k

E
x
p

er
t

ju
d

g
em

en
t

fo
r

co
n

d
i-

ti
o
n

a
l

a
n

d
p

ri
o
r

p
ro

b
a
b

il
it

y

d
is

tr
ib

u
ti

o
n

s,
th

en
J
u

n
ct

io
n

tr
ee

E
x
p

er
t

ju
d

g
em

en
t

&

H
is

to
ri

ca
l

d
a
ta

S
o
ft

w
a
re

p
ro

je
ct

(P
a
r-

ti
a
ll
y
)

T
es

ti
n

g
,

re
q
u

ir
em

en
ts

,

d
ev

el
o
p

m
en

t
q
u

a
li
ty

fa
ct

o
rs

,
d

ef
ec

ts

P
eo

p
le

,
P

ro
-

ce
ss

,
P

ro
d

u
ct

C
a
t

P
re

d
ic

ti
n

g
re

li
a
b

il
-

it
y

[9
]

A
g
en

a
R

is
k

D
y
n

a
m

ic
d

is
cr

et
iz

a
ti

o
n

&

J
u

n
ct

io
n

tr
ee

E
x
p

er
t

ju
d

g
em

en
t

&

H
is

to
ri

ca
l

d
a
ta

S
o
ft

w
a
re

p
ro

je
ct

(P
a
r-

ti
a
ll
y
)

T
es

ti
n

g
,

re
q
u

ir
em

en
ts

,

d
ev

el
o
p

m
en

t
q
u

a
li
ty

fa
ct

o
rs

,
d

ef
ec

ts

P
eo

p
le

,
P

ro
-

ce
ss

,
P

ro
d

u
ct

C
a
t

Q
u

a
li
ty

p
re

d
ic

ti
o
n

[5
7
]

A
g
en

a
R

is
k

E
x
p

er
t

ju
d

g
em

en
t

A
ct

iv
it

y
b

a
se

d
q
u

a
li
ty

m
o
d

el
s

to
B

N
tr

a
n

si
-

ti
o
n

N
A

S
A

&
T

o
m

ca
t

se
rv

le
t

(Y
es

)

C
o
d

e
a
tt

ri
b

u
te

s,
eff

o
rt

P
ro

d
u

ct
C

a
t

T
ab

le
2.

2.
A

su
m

m
ar

y
of

so
ft

w
ar

e
en

gi
n
ee

ri
n
g

st
u
d
ie

s,
w

h
ic

h
ar

e
b
as

ed
on

p
ro

je
ct

co
st

/s
ch

ed
u
le

an
d

eff
or

t
es

ti
m

at
io

n
,

u
si

n
g

B
N

s.
A
im

T
o
o
l?

P
a
r
a
m

e
te

r
le
a
r
n
in

g
S
tr
u
c
tu

r
e
le
a
r
n
in

g
D
a
ta

(F
r
e
e
?
)

In
p
u
t
d
e
sc

r
ip

ti
o
n

C
a
te

g
o
r
y

T
y
p
e

E
ff

o
rt

es
ti

m
a
ti

o
n

[5
8
]

H
u

g
in

&
P

o
w

-

er
so

ft

H
is

to
ri

ca
l

d
a
ta

&
E

x
p

ec
ta

ti
o
n

M
a
x
im

iz
a
ti

o
n

E
x
p

er
t

ju
d

g
em

en
t

W
eb

p
ro

je
ct

s
(N

o
)

si
ze

re
la

te
d

m
et

-

ri
cs

,s
u

rv
ey

re
sp

o
n

se
s

P
ro

d
u

ct
C

a
t

P
re

d
ic

ti
n

g
ti

m
e-

co
st

-

q
u

a
li
ty

tr
a
d

eo
ff

[5
4
]

A
g
en

a
R

is
k

J
u

n
ct

io
n

tr
ee

A
x
io

m
s

to
b

u
il
d

B
N

S
o
ft

w
a
re

p
ro

je
ct

(P
a
r-

ti
a
ll
y
)

R
es

o
u

rc
es

,
q
u

a
li
ty

,

fu
n

ct
io

n
a
li
ty

P
ro

d
u

ct
C

a
t

P
re

d
ic

ti
n

g
so

ft
w

a
re

ch
a
n

g
e

eff
o
rt

[7
6
]

N
o

E
x
p

er
t

ju
d

g
em

en
t

&
ex

p
er

t

el
ic

it
a
ti

o
n

m
et

h
o
d

E
x
p

er
t

ju
d

g
em

en
t

N
o
rd

ic
m

a
n
u

fa
ct

u
ri

n
g

p
ro

je
ct

s
(N

o
)

P
eo

p
le

,
d

o
cu

m
en

ta
-

ti
o
n

,
si

ze
,

co
u

p
li

n
g

P
eo

p
le

,
P

ro
d

-

u
ct

,
P

ro
ce

ss

C
a
t

P
re

d
ic

ti
n

g
d

ef
ec

t
co

r-

re
ct

io
n

eff
o
rt

[5
6
]

N
o

E
x
p

er
t

ju
d

g
em

en
t

&
H

is
to

ri
ca

l

d
a
ta

D
ef

ec
t

fl
o
w

m
o
d

el
to

B
N

tr
a
n

si
ti

o
n

B
o
sc

h
sy

st
em

(N
o
)

R
eq

u
ir

em
en

ts
v
o
la

ti
l-

it
y,

co
m

p
le

x
it

y,
eff

o
rt

P
ro

ce
ss

,
P

ro
d

-

u
ct

C
a
t

S
en

si
ti

v
it

y,
u

n
ce

rt
a
in

ty

a
n

a
ly

si
s

[5
5
]

A
g
en

a
R

is
k

D
y
n

a
m

ic
d

is
cr

et
iz

a
ti

o
n

&

J
u

n
ct

io
n

tr
ee

H
y
b

ri
d

B
N

C
P

U
m

o
d

u
le

o
f

a
ca

r-

d
ia

c
a
ss

is
t

sy
st

em
(P

a
r-

ti
a
ll
y
)

T
im

e
to

fa
il
u

re
P

ro
d

u
ct

C
a
t

P
re

d
ic

ti
n

g
p

ro
je

ct

sc
h

ed
u

le
v
a
ri

a
n

ce
[7

7
]

N
et

ic
a

E
x
p

er
t

ju
d

g
em

en
t

K
2

a
lg

o
ri

th
m

S
o
ft

w
a
re

fr
o
m

a
B

ei
ji

n
g

co
rp

o
ra

ti
o
n

(N
o
)

C
o
d

in
g

a
n

d
d

es
ig

n

co
m

p
le

x
it

y,
p

ro
g
ra

m
-

m
er

ex
p

er
ie

n
ce

,
st

a
ff

tu
rn

o
v
er

,
re

q
u

ir
em

en
ts

v
o
la

ti
li

ty

P
ro

d
u

ct
,

P
eo

-

p
le

C
a
t

P
re

d
ic

ti
n

g
te

st
eff

o
rt

w
it

h
d

y
n

a
m

ic
B

N
s

[7
8
]

A
g
en

a
E

x
p

er
t

ju
d

g
em

en
t

E
x
p

er
t

ju
d

g
em

en
t

T
w

o
sy

n
th

et
ic

p
ro

je
ct

s

(N
o
)

T
es

t
p

ro
ce

ss
eff

ec
ti

v
e-

n
es

s,
te

st
to

o
l

q
u

a
li
ty

,

fa
u

lt
s,

te
st

te
a
m

,
eff

o
rt

P
ro

ce
ss

,
P

eo
p

le
C

a
t

B
u

il
d

in
g

b
a
si

c
b

lo
ck

s

(i
d

io
m

s)
fo

r
ri

sk
B

N

[7
9
]

S
er

en
e

N
/
A

E
x
p

er
t

ju
d

g
em

en
t

&

id
io

m
d

efi
n

it
io

n
s

N
/
A

N
/
A

N
/
A

C
a
t

20

Table 2.3. A list of studies on Bayesian Networks and applications in medical

diagnosis systems.
Aim Parameter learning Structure learning Input variables

Medical Diagnosis

Diagnosis of liver disor-

ders [63]

Data Expert judgment Binary and discretized

continuous features

Ovarian cancer diagno-

sis [64]

Expert judgment Expert judgment Discretized continuous

features

Assessing the effects

of penetrating trauma

[68]

JavaBayes (junction

tree)

Expert judgment Categorical?

Surgery survival

chance prediction [69]

Data Mutual information

(MI) based inference &

Chow-Lius algorithm

Categorical

Structure learning (as-

suming data is com-

plete) [70]

Data (All parame-

ters are assumed to

come from Dirichlet

(Gamma) dist.)

Binarization of MI

based matrix to

prevent majority of

structures

Categorical

Machine Learning

Structure learning [74] Data Genetic algorithms to

find optimal ordering

of variables

Categorical

Handling continuous

attributes using the

best of two tech-

niques [72]

Dicretization and EM

(for parametric and

semi-parametric cond.

Prob.)

Learned from data Continuous

Mix-net for both con-

tinuous and discrete

variables [73]

Accelerated EM with

factored mixture of

Gaussians

Measuring all pairwise

interactions between

variables

Continuous & Categor-

ical

Distribution free learn-

ing for continuous vari-

ables [75]

Not available Conditional in-

dependence test

based method (non-

parametric) & recur-

sive median alg.

Continuous

Handle Hybrid BNs

[71]

HEPIS (Hybrid Loop

Belief Propagation

based importance

function

Expert judgment Categorical & Continu-

ous

Building BNs [61] 1. Data and junction

tree 2. MCMC meth-

ods

Expert judgment 1.Categorical 2.Contin-

uous

21

3. PROPOSED MODEL: HYBRID BAYESIAN NETWORK

In this research, we propose a comprehensive Hybrid Bayesian Network contain-

ing sub-networks representing three major processes in a software development life

cycle (Requirements specification and documentation, Development and Testing) to

improve decision making for software managers by predicting the reliability in terms

of residual defects. Each sub-network is represented with different factors, i.e. mixture

of continuous and categorical variables, whose causal relationships would represent the

reliability of the associated process. Combinations of these subnets build a local model

for a software organization that can be used to decide when to release the software.

BNs are graphical models that encodes probabilistic relationships among a set

of variables. They allow to learn causal relations, and they are capable of handling

incomplete data [59]. BNs were previously employed to predict software reliability with

residual (post-release) defects (For example, [9,45]). Similarly, three aspects of software

engineering, Process, Product and People were treated as interconnected such that each

factor corresponding to one of these aspects would eventually affect other factors as

well as the final reliability. Therefore, proposed networks took into account causal

relationships of these aspects and effects on software reliability. Despite similarities,

our proposed model differs from previous approaches in a number of ways.

Hybrid Data Approach: BNs proposed in previous studies often required large

amounts of data representing different processes in SDLC. Collecting large amounts of

accurate/reliable data is very challenging when organizations do not follow a systematic

measurement and quality assurance activities. Surveys are valid and cheaper methods

used by many researchers [80–82], compared to other data collection techniques (e.g.

mining repositories, or building a new repository [13, 29, 83]). Thus, models were fed

with data collected via surveys conducted with project managers and development

team. Fenton et al. [45] also used a questionnaire to build a BN including all major

phases in a life cycle in order to predict residual defects in a software system. Authors

claimed that such models were almost impossible to build using limited data, hence

22

they could be consistently built based on subjective expert judgements.

However, in organizations that already have a mature measurement system, his-

torical data collection may not be a concern. On the contrary, due to high turnover

within development teams in certain industries, expert knowledge may be insufficient

or non existent. In such cases, collecting data with surveys may not be feasible and/or

reliable. Therefore, data dependent models would be more effective. In this paper,

we employ a hybrid data collection approach: Metrics representing the development

and testing phases are collected from historical data through mining version control

systems, code bases and metrics databases. On the other hand, metrics characterizing

requirements specification and documentation phase are collected via a questionnaire

proposed by Fenton et al. [45]. We have interviewed project managers to capture qual-

itative data for specification and documentation and project management processes.

Forming Causal Relations : Previous studies in software engineering incorporated

expert judgement with data to build the structure of their networks (Section 2.3). How-

ever, it is sometimes necessary to base the final model onto the local data, especially

when experts are not experienced enough or uncertain about dependencies between

variables of the network. Structure learning in BNs (finding the optimal structure for

a problem) is an NP-hard problem and there is not a unique set of solutions for this.

In our proposed model, we define causal relations between variables of the hybrid net-

work by statistical correlation and independence tests as well as graphical dependence

analysis. Then, we formalize these relations in the network with the help of expert

judgement.

Model Inference: Once the final model is formed, we need to determine various

probabilities of interest from the model. In our problem concerning predicting reliabil-

ity, we want to know the probability of residual defects given observations from other

variables. This probability is not stored directly in the model, and hence needs to be

computed. In general, the computation of the probability given the model is known as

probabilistic inference [59]. Inferring posterior probability of the final node in a BN is

easier with categorical variables, and hence, researchers in software engineering often

23

handle continuous variables with discretization. Although discretization works well in

small state spaces, it can clearly cause loss of information about the variables [72].

Furthermore, in case of missing data, it is inaccurate to learn discretized intervals from

that data.

We utilize Monte Carlo methods, specifically the most commonly used one, Gibbs

sampling, during inference, since this technique approximates the joint probability dis-

tribution of the model when it is not known explicitly, but the conditional distribution

of each variable is known or easier to sample from [59]. In our problem, the joint

probability of residual defects (with all input variables and parameters) is not known

explicitly, but conditional distributions formed by causal relations between variables

are set via statistical tests. Gibbs sampling is well suited for inferring the posterior

distribution of a BN (in our case, it is P (Defects | Metrics, θ) where θ represents

unknown parameters), since BNs are typically a collection of conditional distributions.

Gibbs sampling also helps us to use mixture of continuous and categorical variables

without the need of any transformation and estimate unknown parameters during in-

ference.

24

4. METHODOLOGY

The proposed model requires a dataset construction step, a network construction

step and a performance evaluation step.

4.1. Dataset Construction

Dataset construction step consists of two different techniques: (i) mining software

data repositories to collect quantitative data, and (ii) in case of lack of data related to

a software process, conducting a survey with technical leads and managers on software

processes and principles applied in software organizations.

4.1.1. Quantitative Data

To collect raw data from data repositories, we have implemented automated

scripts and queries that would access to version control systems, source code repos-

itories and testing monitoring systems and to extract product and process related

factors. An illustration showing data collection procedure can be seen in Figure 4.1.

In a version control system, each entry shows a commit done by development team

including the file names edited before this commit and the reason of the commit in

comment part. We have also collected statistics such as added/ deleted lines of code

by parsing commit logs. The most important information contained in a commit is

the key part corresponding to an issue. An issue can be a feature request or a defect

which is entered to an issue management system. We collected defects whose status is

“Resolved” and classified them based on the “Phase” defect was found (as test defects

that were found during testing, and post-release defects that were found externally –by

users). Test execution records are also kept in a separate system on a timely basis.

Tests are often collected in small packages (test suites) depending on the functional-

ity each test corresponds to. For each test suite run, results with an explanation of

“success/fail/error” are recorded in the system.

25

After raw data is formed, we define a set of software metrics for each software

process in the organization. This metric set should be revised for each organization

specifically based on the availability of required data. Data collection procedure and the

final set of metrics for both organizations that we worked with are presented in Section

5. In this section, we will describe metrics that we collected from two organizations by

investigating their effects on software quality in previous studies.

Figure 4.1. Data collection procedure from available resources of the software

organizations.

4.1.1.1. Software Metrics Representing Development Phase. We have extracted 6 dif-

ferent metrics from the version history and code base in software organizations and

calculated the average values of file-level metrics for each release to aggregate them to

release-level. These metrics are age of source files, average churn (added and deleted

LOC), number of committers, number of commits, average time between edits, and Mc-

26

Cabe’s cyclomatic complexity. Our aim is to capture product (i.e. complexity), process

(i.e. age, churn, time between edits) and people (i.e. committers) aspects of the de-

velopment life cycle through different kind of metrics. Depending on the availability

of raw data required to extract these metrics, we extracted all or a subset of them for

the organizations that we collaborated with.

Age: We selected source files created before a release and calculated the age in

days since their creation date until the release. Previously, age was investigated along

with size and complexity measures. While [84] reported that young and small files were

more defect prone, [25] found no correlation between defects and size. In a recent study

by Seifert and Peach [85], age, churn and unique committers to a file were reported as

good indicators of software quality, i.e., defects. Thus, we have also included Age as a

metric into our network.

Average Churn (Churn): We collected edited (in Dataset 1), added and deleted

(in Dataset 2) lines of code in all files of a release and took the average lines of edited

code for each release. Churn metrics were also previously used by various researchers

to predict pre-/post-release defects in commercial and open-source projects. From

[12,27,32], it is seen that churn metrics are significant indicators of defects in software

systems. Thus, we have included Churn metric to our network.

Committers (People): Previous studies done on commercial systems showed

that organizational metrics such as the number of developers (i.e. committers) were

statistically significant indicators of post-release defects with the best prediction accu-

racy, compared to churn and code metrics [27]. Therefore, we counted the number of

unique committers who edited source files in a release and took the average number of

committers for each release.

Commits: This metric is also known as “churn count” in previous studies done

by Nagappan and Ball [23] and counts the number of times an edit has been made on a

source file. Commit count is generally the base metric to calculate other churn metrics,

such as time between edits, average amount of edited/added/deleted LOC. But in one

27

of our datasets, we use this term as one of the in-process metrics in addition to others.

Average Time between Edits: This metric aims to measure the independence

between consecutive edits (i.e. commits) on a source file, or conversely, dependencies

between changes. As this metric value increases, this may indicate that there are

several independent tasks completed on that file. We calculated this metric to add

the extent of edits (changes) and distinguish independent tasks inside a development

process. It is computed by measuring average number of days between consecutive

edits in a release.

Cyclomatic Complexity (Complexity): Lastly, we computed McCabe’s cyclomatic

complexity metric for each file in a release using our open source metric extraction tool,

Prest, [28] and computed average complexity values for each release. This metric, as

the churn metric, is among the most popular indicators of defects in software systems

and it is widely used in defect prediction studies (such as [11,13]).

4.1.1.2. Software Metrics Representing Testing Phase. Similar to the metrics collected

from development process, we have mined test monitoring systems employed in organi-

zations and extracted several metrics representing the activities during testing phase.

These metrics are # test cases, # test cases with errors, # test cases with failures,

% test cases with a status change, # test defects, test case quality and average # of

executions per test case.

While selecting testing metrics, we have investigated previous studies which mea-

sured and analysed testing phase in software organizations [12,86,87]. A previous study

proposed by Kan et al. [86] provided a detailed discussion on key in-process metrics for

managing testing process based on their experience in IBM Rochester software devel-

opment laboratory. Nagappan et al. also introduced 7 in-process testing metrics, also

called as STREW-J metric suite, in order to measure their effectiveness on predicting

software reliability [12]. Their proposed metrics included but not limited to number

of test cases per lines of code, per each requirement, per each class and number of

28

conditionals used in a test case.

We have also used several of these metrics proposed by Kan et al. [86] and by

Talby et al. [87] as our testing in-process metrics, but we set the granularity as release-

level for the purpose of this study. Furthermore, we have added a test case quality

metric to our first dataset in order to measure how logic and data flows in a test case

are related to defect proneness of a software release. This metric was previously defined

as # conditionals per lines of code in [12]. We did not have access to test source codes

in both organizations, but the first organization had already measured test case quality

metric for each test case and stored it in their databases. Thus, we also included that

into our study.

Test Cases: This metric is the vital component of testing progress curves

defined by [86], to track the progress of a testing process. It is calculated by counting

the number of executed test cases in a release or product. We have collected total

number of test cases executed in every release. The data may be cumulative over time,

but this situation does not happen in our datasets due to the fact that we focus on #

test cases executed during user-acceptance, performance and regression testing phases.

Test Cases with Errors: Similar to total # of test cases, test cases completed

with errors are also essential to track testing progress and to take action upon early

indications that testing activity is falling [86]. Generally, test cases completed with

errors indicate that a step in a test case has failed during a run, but it does not cause

a termination. We counted the number of executed test cases which were completed

with errors in a release.

Test Cases with Failures: Failures and unexpected terminations of test execu-

tions are not desirable scenarios and need careful examination during testing process.

We also counted total number of test cases whose termination status is “failed” in a

release.

Test Defects: This metric is also considered as a common feature of many

29

testing tools [86, 87]. Although defect arrival and fix patterns have significant quality

indications for the final product, we could only measure the number of test defects

reported during testing phase of a release due to unavailability of these patterns.

Average # Executions per Test Case (Test Run): Test execution records, espe-

cially test cases which are continuously failed or completed with errors, are significant

indicator for a testing process [86]. However, these records were not available in all

organizations. As an alternative, we reported average execution times of test cases in

a release. Having higher execution times in a release show defect tracking and fixing

progress, since multiple runs of a test case are most probably mapped with one or more

defects. Several test case runs for a specific defect may also catch other defects.

% Test Cases with a Status Change (Tests Change): This metric is also related

to execution records. The percentage of test cases whose status went from (i) pass

to fail/error, (ii) fail to error or (iii) error to fail is also an indicator of the degree to

which inadequate or incorrect code changes were made [86]. It is also defined as defect

injection rate, since when the status of a test case changes, it is an indication that a

code change was made and there is a possibility that this change causes a defect. To

measure this metric, we monitored the status of test cases and calculated percentage

of those whose status changed as (i), (ii) and (iii).

Test Case Quality: Quality of test cases is also as critical as their execution

patterns. Therefore, we have defined this composite metric based on (i) test runs and

(ii) the number of test cases executing in only 1 step and more than 1 steps in a

release, as to measure how many independent paths a test case can cover inside the

code. Having only 1 execution step in a test case may indicate that its capability of

catching defects in the code is lower compared to other test cases with more than 1

execution steps (branches or if-else conditionals). We calculated this metric based on

the ratio between average test runs for test cases with 1 step (TestRunStep=1) and more

than 1 steps (TestRunStep>1). Smaller values of this metric are preferred since 1-step

test cases should be avoided in a company.

30

4.1.2. Qualitative Data

The reason of conducting surveys for some of the software processes in this re-

search is that there is not always historical data characterizing certain processes in the

organizations. For instance, quantifying requirements specification and project man-

agement processes with metrics is a hard task. Furthermore, there may be a more

stable expert knowledge with senior managers and analysts having years of experience

and knowledge about these processes.

Fenton et al. [45] published a questionnaire consisting of 5 major topics repre-

senting different phases of a development life cycle. In this questionnaire, each topic

is represented with qualitative factors that authors and other partners in their project

believed had a significant influence on the outcome of a project. Each factor is de-

scribed by a question to be answered. These descriptive questions were specifically

tailored for the organizations that authors worked with so far.

Although the original questionnaire has 5 major topics representing different

phases of a development life cycle (i) specification and documentation process, (ii)

design and development process, (iii) testing and rework process, (iv) project manage-

ment, (v) new functionality), we only collected responses for the topics (i) and (iv)

to incorporate requirements specification process into our network. Specification and

documentation subnet proposed in [45] includes 4 factors from the same process and

2 factors from project management process. Authors claimed that these subnets were

built based on expert knowledge incorporated with empirical analysis in the literature.

Hence, we also used the same factors while building the requirements specification sub-

net in our models. These factors are described in Table 4.1. Each factor is explained

with additional questions and evaluated with a 5-scale point by participants: Very

Low, Low, Medium, High, Very High.

4.1.2.1. Missing Data Imputation. Since we have two different sources of data (qual-

itative based on surveys and quantitative based on historical data), it is often the

31

Table 4.1. Specification and Documentation Factors used in the network.

Factor Name Descriptive question

S1 Relevant experience of spec and

doc staff

How would you rate the experience and skill set of

your team members for executing this project during

the requirements and specifications phase?

S2 Quality of documentation in-

spected

How would you rate the quality of the requirements

given by the client or other groups?

S3 Regularity of spec and doc re-

views

Have all the Requirements, Design Documents and

Test Specifications been reviewed in the project?

S4 Standard procedures followed In your opinion, how effective was the review proce-

dure?

S7 Requirements stability How stable were the requirements in your project?

P2 Configuration management How effective is the project’s document management

and configuration management?

P5 Stakeholder involvement To what extent were the key project stakeholders

involved?

case when a one-to-one mapping from qualitative responses to quantitative data is not

achieved. Surveys conducted with technical leads and managers usually represent a

general evaluation of the processes rather than a scoring for a specific release. There-

fore, even though we work to map each response or a set of responses to a specific

release, there exists missing rows in qualitative part of our datasets.

Imputations are general methods for handling missing-data problems. There are

explicit and implicit modelling approaches both of which require a method of creating a

predictive distribution for the imputation based on the observed data [88]. For instance,

in explicit modelling, mean imputation is the simplest technique, where mean of the

observed records is assigned to missing values. Hot deck imputation is popular in

survey practice, such that missing values are replaced by similar observed values (with

random sampling with replacement). It is an implicit modelling method which is useful

when missing values are relatively few. In short, as we impute a missing value (y∗i)

by randomly selecting an observed sample (Y1..i−1) from the dataset, we treat the new

instance as observed (yi) and impute the next missing instance (y∗i+1) by selecting from

new set of observed values (Y1..i−1 ∪ yi).

32

We can also think filling missing data from the perspective of Bayesian inference.

If we knew the parameters of the data, then it would be possible to obtain predictions

for missing values. Suppose data come from a normal distribution with parameters µ

and σ. Missing values can be generated from this distribution if we estimate the mean

parameter (µ) using Bayesian inference. The critical part in this approach is the choice

of prior distributions. Monte Carlo methods, such as Gibbs sampling, can be used

to infer parameters based on full posterior distribution, by integrating the conditional

distribution of the unknown parameter (e.g. p(µ | Y, σ2) where Y are known values)

over the posterior distribution of σ2 [88].

In this research, we apply several imputation techniques: In dataset 1, where the

ratio of missing values is small enough (11%), we apply mean imputation. In dataset

2, we use Bayesian inference to estimate parameters of the underlying distribution and

generate samples from that using estimated parameters. We explain the details of both

techniques in Section 6.1.

4.2. Network Construction

Bayesian networks help to make reasoning under uncertainty by structuring any

situation using causal relations between events [59]. In a Bayesian network, there are

a set of variables (represented as nodes) and a set of directed edges between vari-

ables. Each variable has a finite set of mutually exclusive states, or has a conditional

probability table when it has parents (in discrete case). In continuous case, each vari-

able is represented with a prior probability distribution, or when it has parents it is

represented with a conditional probability distribution [59].

We draw an arrow from a variable A, to another variable B, (A → B) if A

is one of the parents of B. In this case, conditional probability distribution of B is

represented as p(B | ..., A). To solve Bayesian networks, joint probability distributions

are used where we benefit from the product of all potentials, i.e. conditional and prior

probability distributions of the variables in the network. For N variables x1, x2, ..., xN

with discrete values, joint distribution can be expressed as [89]:

33

p(x1, x2, ..., xN) =
N∏
i=1

p(xi | parents(xi)) (4.1)

Whenever new information about a variable comes, i.e. evidence, we can update

the joint probability table using the chain rule from Bayes Theorem [90]. There are

automated software tools for building Bayesian network such as Agena [91], Bayes net

toolbox [92], Hugin [65] and Netica [66].

In this research, we aim to use Bayesian learning for complex models using Monte

Carlo(MC) methods [59]. In case of insufficient statistics, i.e. unknown parameters

of distributions, or incomplete data, these methods work remarkably well in practice

and are widely used in machine learning, bioinformatics, medical domain, and other

engineering disciplines. The basic idea behind Gibbs sampling, which is one of the most

popularly used MC method, is to successively sample from posterior distribution of each

node in a Bayesian model given all the others as full conditionals. This Monte Carlo

technique is quite successful when estimating the unknown parameters of probability

distributions or when making empirical analysis to infer true values of a given sample

[59]. An example of Gibbs sampler showing its iterative procedure is explained in [93]

as follows:

Suppose independent variables s1, s2 are parents of a variable x in a network.

If s1, s2 do not have parents, the joint distribution of this network can be written in

terms of conditional distributions, such as p(x, s1, s2) = p(x | s1, s2)p(s1)p(s2). Gibbs

sampler starts by assigning initial values to s1, s2 based on their prior distributions

(q(s1), q(s2)), whereas x has the evidence (set of known values). Afterwards, samples

for s1, s2 are generated from their conditionals, as in Equation 4.2, until the model

converges. Convergence may take longer especially for more complex models.

34

si2 ∼ q(s2) (4.2)

si+1
1 ∼ p(s1 | si2, x = x̂) (4.3)

si+1
2 ∼ p(s2 | si+1

1 , x = x̂) (4.4)

Finally, to build the final structure of the network, we apply independence tests

derived from well-known theories [94] as well as graphical dependence analysis [95],

since the problem of finding the best structure among all possible configurations is not

tractable.

The general network is illustrated in Figure 4.2. Gray rectangle nodes represent

the subnets of our proposed model: Requirements Specification, Development and

Testing. Output variable ‘Software Reliability’ is fed by all subnets. Rectangles with

dashed lines represent requirements specification, development and testing subnets as

illustrative purposes. In this figure, subnets are considered as independent, however

they may have dependencies among each other, which is also considered while building

the model. Output variable represents the final reliability with residual defects.

4.3. Performance Evaluation

To assess the performance in terms of predicting residual defects, we use Mean

Relative Error (MRE), Mean Magnitude of Relative Error (MMRE), Median Magnitude

of Relative Error (MdMRE) and Prediction at level k (Pred) which are commonly used

and suggested to validate such type of models especially in software cost estimation

[45,96,97]. Equations for all measures are presented in Equation 4.5. In MRE formula,

yi represents the actual number of defects, while ŷi represents the estimated number

of defects. MMRE was criticized due to the fact that it was very sensitive to outliers

and it might be “unreliable”. Since MMRE is dependent on the variance of MRE,

an alternative measure, Pred, is proposed. According to recent studies [96, 98], Pred

35

Figure 4.2. An illustration of the proposed network.

has been more consistent and robust than MMRE, since it is simply the number of

instances which the model produces an MRE less than a pre-defined level k. Hence it

is not dependent on the variance of MREs or the dataset size. We also report MdMRE

which reports the median of MREs as an alternative to MMRE which is the mean of

MREs.

MRE =| yi − ŷi | /yi (4.5)

MMRE =
1

N

N∑
i=1

MREi (4.6)

MdMRE = Median(MRE) (4.7)

Pred(k) =
1

N

N∑
i=1

MREi if MREi ≤ k (4.8)

36

In Bayesian networks, a natural way to compare two models is to use criterion

based on trade-off between the fit of the data to the model and the complexity of

the model [99]. Deviance Information Criterion (DIC) is one of these criteria whose

quantities are easier to run in Monte Carlo chains. It is calculated as follows:

D(φ) = −2logL(data|φ) (4.9)

D̄ = Eφ|y[D] (4.10)

D(φ̄) = D(Eφ|y[φ] (4.11)

pD = D̄ −D(φ̄) (4.12)

DIC = D̄ + pD (4.13)

In 4.9, the first term is the deviance calculated from the log likelihood of data.

Complexity in terms of number of parameters (pD) in the model is calculated as “pos-

terior mean deviance” minus “deviance evaluated at the posterior mean of the parame-

ters” [99]. Models with smaller DIC are better supported by the data. We report DIC

values for all models and evaluate how they fit to the data.

37

5. DATASETS

We have collected data from two large-scale software companies in Turkey working

at two different domains: Telecommunications and ERP.

5.1. Dataset 1 from Telecommunications Domain

We mined the version control system, issue management system and testing mon-

itoring system of a large scale software product developed and maintained by the lead-

ing telecommunications company in Turkey. Research & development centre of the

company hosts more than 200 developers, testers and architects developing software

products and solutions for mobile operators all over the world. Some of these solutions

are network solutions, value added services, subscriber identity module (SIM card) re-

lated solutions, terminal based solutions, billing and charging solutions, data mining,

data warehouse, customer and channel management systems and applications.

Their legacy system contains millions of lines of code that are maintained by the

local development teams. The majority of their software is implemented with Java,

Jsp, PL/SQL and other new technologies such as Service Oriented Architecture (SOA).

Every 2 weeks, a new release –on the main branch of their version control system–

with 10 to 15 work packages (smaller units, such as projects) and more than 400 in-

terfaces of their major components (i.e. solutions summarized above) goes into pro-

duction. Since the release period is short, each release package contains at most a

single functionality, such as a new campaign, or two new functionalities and the rest

is modifications/ upgrades for different components of the current system. Design and

development activities are engaged in the company such that there is not a well de-

fined design process applied prior to coding, but architects and developers work in

cooperation. The development activities are stored consistently in a popular version

management system. We mined historical logs of the version control system through

scripts and extracted 4 in-process metrics, namely average churn, average # commit-

38

ters, average time between edits and age. Furthermore, the latest stable version of the

product prior to each release was checked out from source repository and cyclomatic

complexity metric was calculated using Prest [28]. Test execution records and sched-

ules are stored in a testing monitoring system, whose database records were used to

extract 4 additional metrics and aggregate at release level: # test cases executed, #

test defects found during testing, test case quality metric and average # of executions

per test cases.

Finally, defect data is stored in the company’s issue management system where

post-release defects are specifically monitored for their implications on cost control and

resource allocation. Every defect that is reported after a new release is labelled as a

post-release defect. Finally, we collected number of post-release defects and 9 in-process

and product metrics associated with 44 releases between 2009 and 2011.

As the qualitative part of the dataset, we conducted interviews with 15 team

leads and project managers to complete the survey presented in Section 4.1.2. We

applied this survey twice in the company: (i) to evaluate the first 20 releases, and (ii)

to evaluate the next 19 releases. Each release was evaluated by 3-5 people, depending

on which teams actively worked on that release. Most popular response (rating with

the highest number of responses) for each question was added to final dataset. In total

39 releases were evaluated for the first dataset.

5.2. Dataset 2 from ERP Domain

To validate the success of hybrid bayesian networks on predicting post-release

defects and release confidence, we added another dataset to our study collected from

the biggest independent software vendor in Turkey with more than 150000 customers.

The company produced comprehensive ERP solutions and business applications for

SMEs (small and medium size enterprises) including material management, purchasing,

accounting, sales management and more.

We selected one of the major products of the company developed by a total

39

of 15 people, including developers, testers and analysts. Additionally, the company

has an on-site maintenance team located at different customers to solve problems in

the software and answer custom requests. The development team is well aware of

the importance of measurement and analysis, and hence, they have a mature data

repository incorporated with open source management solutions, such as SVNStat for

version control system management, and Hudson for testing monitoring and scheduling.

The release period includes 5 weeks for development and unit testing, continued with

2 weeks for system, regression and user-acceptance tests. Every night, a build is made

and automated test scripts are run. However, to increase data points in our dataset, we

extracted 43 weekly metrics between January 2011 and December 2011 and predicted

post-release defects on a weekly basis.

We mined historical logs of available tools and extracted 6 in-process metrics

related to development process, namely # commits, # unique committers, # added

LOC, # deleted LOC and average time between edits. In addition, we implemented a

Java program to extract 6 test metrics: # test cases executed, # test cases completed

with errors, # test cases completed with failures, % test cases with a status change, #

test defects found during testing and # test suites/packages executed. Different from

the first dataset, we had access to test execution logs, and hence we extracted more

detailed metrics including number of test cases completed with errors, or with failures

and percentage of test cases whose status has changed from error to fail, success to

error/fail. We also defined a new metric, similar to number of test cases executed, # test

suites/packages executed, in order to monitor how many different functionalities have

been tested in a week. Test suites are large packets with several test cases specifically

written for a specific functionality or scenario. Thus, we also added this metric to

increase variability. Furthermore, we computed the edits in lines of code as added and

deleted separately. However, we could not calculate the age metric in this company.

As for the qualitative part of this dataset, we interviewed with 15 people including

developers, testers and analysts and asked them to evaluate the maturity of their

software processes. The final dataset consists of only 15 instances with 7 different

responses for requirements specification and documentation process, since we only had

40

one chance for these interviews and not all releases were evaluated separately. We

applied data imputation techniques for the qualitative part of this dataset in order to

combine it with quantitative data.

41

6. EXPERIMENTS AND RESULTS

6.1. Descriptive Statistics on Software Metrics

6.1.1. Dataset 1

In Table 6.1, we report minimum, maximum, mean, standard deviation of metrics

collected from 44 releases. As Turhan stated in [100], in datasets with large variations

and possibility of outliers, reporting median instead of mean should be preferred as it

is more robust to outliers. Thus, we also added median values of metrics to Table 6.1.

Box plots representing lower/upper quantiles and medians for each metric can also be

seen in Appendix E.

Table 6.1 shows a large variation in data such that source files are around 3

years old (930 days) on average, while there are almost 10 years old files (3144 days)

as well as 2.5 months old files (75 days) in the software. On average, 67 LOC are

edited in every release, which means a large portion of LOC is maintained with small

modifications done in every release. Table 6.1 also shows that very few people (around

2 committers on average) edits the source code in a release, which may indicate that

releases contain small modifications/ updates for a specific application in the software

rather than large updates on the entire system. It may also indicate the code ownership

in the company [101]. Values of churn support our prior hypothesis: Files are edited in

every 4 months on average, due to independent and small modifications in every release.

However, some files, which may contain close dependencies to various components in

the system, are edited in every 9 days. Average complexity of source files in a release

is around 4.8; indicating that majority of files are not so complex in contrast to their

age. Finally, there are almost same number of test cases with 1-step as test cases with

more than 1-step in the dataset, which may bring the question of “how successful are

these test cases in catching defects?”. Based on average number of post-release defects

reported for 44 releases, it is seen that the quality of test cases should also be further

investigated. We left this issue as another research topic.

42

Table 6.1. Dataset 1: Software metrics regarding development and testing phases.

Metrics Min. Max. Mean Stdev Median

Age 74.7 3144.5 930.0 652.7 863.9

People 1.0 4.0 1.6 1.0 2.0

Churn 10.0 230.0 67.0 55.0 53.0

Time between edits (EDITFR) 9.3 499.3 120.2 114.9 86.1

Complexity (COMPL) 0.5 11.1 4.8 2.6 4.3

Test cases (TC) 1.0 101.0 52.2 21.5 51.0

Test defects (TD) 1.0 1303.0 179.0 261.6 116.5

Test case quality (TCQ) 0.2 1.8 1.1 0.4 1.1

Test run (ATR) 1.0 7.7 1.9 1.0 1.7

Post-release defects (DEFECT) 12.0 91.0 46.9 21.2 48.0

Values in Table 6.1 also highlight some exceptional cases, such as 1303 defects

reported during testing, and 91 post-release defects, which may have occurred due to

miscalculations or inaccurate raw data. We do not filter these extreme values during

model construction, but we applied outlier detection techniques on both datasets and

discussed their advantages as well as limitations in predictive studies in Section 6.5.

Responses to two major processes of the survey conducted in both software orga-

nizations can be seen in Appendix C. Since there are 39 responses in total for the first

dataset, we applied mean imputation to fill missing evaluations of the final 5 releases.

Mean imputation assigns the mean of observed values to the missing value, however

in our case, since the data is categorical, we calculate the mode instead of mean, by

counting the most frequent response given for each question, and assign the mode to

missing rows. For instance, in Table C.1 for Dataset 1, S1 has 4 responses of ‘2’, 9

responses of ‘3’, 10 responses of ‘4’, and 16 responses of ‘5’. Thus, the mode for S1 is

‘5’. In the final set, missing 5 rows are filled with ‘5, 3, 3, 2, 2/3, 3, 3’ in which S7 has

equal number of rows with responses of ‘2’ and ‘3’. Hence, with 50% probability, a row

is filled with 2 or 3.

43

Table 6.2. Dataset 2: Software metrics regarding development and testing phases.

Metrics Min. Max. Mean Stdev Median

Commits 52.0 662.0 178.5 123.5 149.0

People 5.0 12.0 8.5 1.5 9.0

Added LOC (ADDLOC) 11.0 670.0 78.8 108.7 43.0

Deleted LOC (DELLOC) 2.0 202.0 32.7 40.3 17.0

Time between Edits (EDITFR) 0.2 2.0 0.8 0.4 0.7

Complexity (COMPL) 0.2 4.3 1.8 0.8 1.8

Test Cases (TC) 49.0 11067.0 2470.3 2713.7 1236.0

Test Cases with Errors (TCE) 0.0 1735.0 281.9 367.9 157.0

Test Cases with Failures (TCF) 0.0 475.0 87.0 113.5 40.0

Tests with Status Change (TCST) 0.0 29.0 4.4 7.8 0.0

Test Suites (TS) 1.0 224.0 41.8 52.4 20.0

Test Defects (TD) 12.0 121.0 58.3 21.2 60.0

Post-release Defects (DEFECT) 2.0 29.0 12.1 7.0 11.0

6.1.2. Dataset 2

In Table 6.2, we report minimum, maximum, mean, standard deviation of metrics

collected from 43 releases. This dataset shows a higher amount of churn compared to

the first dataset, even though metrics are collected on a weekly basis rather than on

every two weeks. On average, 8 to 9 developers work on the source code and they

edited the code approximately in every 3 hours (0.7 days between edits). Table 6.2

also shows that more than 1000 test cases are executed every week, of which 3.5% on

average (87 out of 2470 test cases) is failed and nearly 4% of their status has changed

to fail/error. We checked the correctness of very high and very low values with the

test and development managers in the company and concluded that major commit

and churn activities happened near to release dates, and hence, they are in acceptable

ranges. Box plots representing lower/upper quantiles and medians for each metric can

also be seen in Appendix E.

Responses to two major processes of the survey conducted in the second orga-

nization are also presented in Appendix C. As it is seen, dataset 2 contains only 15

responses which should ideally be 43 to make a complete inference from requirements,

44

development and testing processes. Since the ratio of observed values are smaller

than the ratio of missing values in this dataset, mean or hot deck imputation forms a

synthetic dataset with majority of the instances equal to the mean of observed values.

Therefore, we have used Gibbs sampling to infer parameters of the underlying Bayesian

model that can be seen in Section A.6. However, different from the mean imputation

used in Dataset 1, instead of filling missing responses, we have generated samples from

the posterior distribution of the final node, “probSpecDefect” by estimating its mean

(reqFinal) given unknown parameters (coefficients) and known values (15 responses

to 7 questions). Then we have used generated samples of the final node in Hybrid

networks that we built.

6.2. Empirical Analysis on Software Metrics

During model construction, we have focused on two important issues: (i) Defin-

ing prior/conditional distributions, and (ii) Defining causal relations. To investigate

the first issue, we have applied statistical tests (Lilliefors significance test [102]) on all

metrics including defects, which check whether samples come from a specific distribu-

tion (such as normal, exponential, weibull). Lilliefors significance test is the same as

Kolmogorov-Smirnov goodness of fit test for checking the null hypothesis (H0): Samples

come from a distribution from the normal family. Lilliefors provides better solutions

when sample size is less than 50 and it is also possible to check null hypothesis for other

distributions, such as exponential [102]. Hence, we also used Lilliefors to check whether

the metrics come from the specified distribution. Results of this test (H) is 0 if the null

hypothesis could not be rejected with 95% significance. However, if null hypothesis is

rejected (H=1), this indicates that samples do not come from the specified distribution

with 95% significance.

To investigate the second issue (causal relations), we have used various correlation

and independence tests as well as graphical dependence analysis (chi plots used in

copula modelling [103]).

Correlations, similarities of distributions & significance of equal medians : First,

45

we have used Spearman’s correlation test to check whether metric pairs have a sta-

tistical relation between each other. We also have computed Kolmogorov-Smirnov

significance tests to check whether there are metric pairs which come from identical

continuous distributions and Wilcoxon rank-sum tests to check whether two metrics

come from distributions with equal medians. These additional tests help us understand

the statistical relations between metrics in terms of distributions and medians.

Brownian covariance independence test : We know that correlation tests does

not necessarily indicate causality. Thus, as a second approach, we have used a new

dependence measure on the metrics of development and testing phases. This new

measure was introduced by Szekely and Rizzo [94] as a new approach to the problem of

measuring dependence and testing the joint independence of two random vectors. It is

easy to calculate based on pairwise Euclidean distances between samples such that Akl

is an NxN matrix where each index akl contains pairwise Euclidean distance between

kth and lth samples of a variable. Distance covariance between two vectors, X and Y, is

computed by using these pairwise distance matrices. Distance covariance is computed

as in Equation 6.1. Brownian distance correlation ratio, which is zero if and only if

two metrics are independent, i.e., when dCov(X,X) ∗ dCov(Y, Y) is zero.

Authors showed that the definitions of the new dependence coefficients have the-

oretical foundations based on characteristic functions and on the new concept of covari-

ance with respect to Brownian motion [94]. Hence its independence test is proposed

as Brownian distance correlation test. Distance covariance and correlation also pro-

vide a natural extension of Pearson product-moment covariance and correlation. If the

correlation coefficient of a metric pair is greater than 0 with p-value less than 0.05,

it indicates that this pair has any type of dependence. We have selected metric pairs

whose correlation coefficients are greater than 0.65 with 95% significance.

46

dCor(X, Y) = dCov(X, Y)/
√
dCov(X,X) ∗ dCov(Y, Y)

dCov(X, Y) = 1/N2

N∑
k,l=1

AklBkl (6.1)

Graphical dependence analysis with Chi-plots : As a third approach to depen-

dence analysis, we have used a graphical tool, namely chi-plot, that has been recently

proposed in the literature for detecting dependence between two variables. Chi-plots

are additional graphical tools in addition to K-plots [104] both are used to assess the

dependence between variables during copula modelling. We have plotted pairwise rela-

tions between development and testing metrics and post-release defects using chi-plots.

Before explaining chi-plots, we will briefly explain the idea behind copula modelling.

A traditional view of dependence between two variables, X and Y, is to look

at scatter plot of the pairs (X1, Y1),...,(Xn, Yn). Even though scatter plots incorporate

information about the dependence between X and Y, they also incorporate information

about their marginal distributions [103]. Copula modelling provides a transformation

of data with marginal distributions (H(x, y) = C{F (X), G(Y)}) where F (X) and

G(Y) are marginal distributions and C is copula) so that the transformed data can be

investigated for the possibility of dependence independently from the choice of marginal

distributions. The important thing in this modelling is the choice of F,G, and C from

one of the suitable parametric families. Once marginal distributions, F and G, are

selected, the selected copula would uniquely characterize the joint dependence [103].

In the simplest case, if X and Y are independent, C(u1, u2) = u1 ∗ u2 where u1 and u2

are transformations of X and Y to standard uniform marginal distributions [105]. U1

and U2 are based on ranks of X and Y divided by 1/n+ 1 to scale the values to [0, 1]2.

Copula models with different families (e.g. Farlie-Gumbel-Morgenstern family of

copulas, Achimedean copula [105]) can be applied to model the dependence between

two variables. Prior to modelling, it is necessary to check the presence of depen-

47

dence through visual plots. Chi-plots are one of these tools proposed by Fisher and

Switzer [95] and again in [106]. Authors argue that a graphical view of bivariate

dependence is richer than various non-parametric statistical tests. Scatter plots are

primary data analysis tool, however in case of independence, it is very difficult to

judge the randomness through human eye. Hence, chi-plots is designed to address this

problem, by providing characteristic patterns depending on whether variables (i) are

independent, (ii)have some degree of monotone relationship, or (iii) have more complex

dependence [106].

These plots exclusively depend on the ranks of variables by introducing new axes

χ and λ based on the ranks of X and Y. Specifically,

Hi = 1/(n− 1)#{j 6= i : Xj ≤ Xi, Yj ≤ Yi}

Fi = 1/(n− 1)#j 6= i : Xj ≤ Xi

Gi = 1/(n− 1)#j 6= i : Yj ≤ Yi (6.2)

In 6.2, each data pair (Xi, Yi) is transformed to (Fi, Gi). Fisher and Switzer [106]

propose to plot the pairs (λi, χi), where

χi = (Hi − FiGi)/(
√
Fi(1− Fi)Gi(1−Gi))

λi = 4sign((Fi − 1/2)(Gi − 1/2))max((Fi − 1/2)2(Gi − 1/2)2) (6.3)

To avoid outliers, authors recommended that what should be plotted are only the

pairs for which λi ≤ 4(1/(n−1)−1/2)2 [106]. Both λi and χi take values in the range of

[-1,1]. In Figure 6.1, additional control limits are drawn at ±cp/
√
n where cp is selected

48

as 1.78 for defining that 95% of values lie between control limits. Figure illustrates the

chi-plot of the relation between Test Cases and Post-release Defects for Dataset 1.

Association (dependence) between two metrics should be revealed by departures from

zero-centered vertical scatter plot on (λ, χ). In Figure 6.1, we can see that there is

a positive monotone association between test cases and post-release defects, which

is significantly validated with the independence test based on Spearman’s correlation

coefficient.

Figure 6.1. Chi-plot of two variables.

6.2.1. Analysis for Dataset 1

We have reported the results (H values) of Lilliefors test for normal and expo-

nential distributions in Table 6.3. Based on these results, null hypothesis checking

the normality assumption is rejected for all metrics in Dataset 1 except Test Cases,

Test Case Quality, Age and Post-release Defects. For Age metric, the null hypothesis

checking the goodness of fit for exponential distribution cannot be rejected, too. Thus,

we can decide that values of Test Cases, Test Case Quality, Post-release Defects met-

rics may come from normal distributions. Furthermore, values of Test Defects, Churn,

Time between Edits metrics may come from exponential distributions.

49

(a) Age (b) Average Test Run

(c) People (d) Complexity

Figure 6.2. Normality plots for the metrics in Dataset 1.

For the metrics, namely Complexity, People, Average Test Run, significance tests

show that they do not come from both normal and exponential distributions, whereas

for Age metric, either normal or exponential distributions may be good fit. To dissolve

ambiguities for these four metrics, we have used graphical tests (normal probability

plots [107]). Figures 6.2 show normal probability plots which are graphical techniques

for assessing whether a data is normally distributed [107]. Although we could not

decide on four metrics based on statistical tests, we can see that data points (+) for

Average Test Run and Complexity metrics form a nearly linear pattern except few

outliers and they overlap with the red line. On the other hand, Age metric seems to

be very skewed for a normal distribution. Thus, we have applied different distributions

to this metric during model construction in order to find the best fit in terms of DIC.

Finally, People is also very different from a normal distribution due to discrete values.

It may be more appropriate to assign a discrete distribution, such as Poisson, to this

metric during our analysis.

50

Table 6.3. Lilliefors goodness of fit test results for Dataset 1.

Test for normal

distribution (H)

Test for exponential

distribution (H)

Age 0 0

People 1 1

Churn 1 0

Edit Frequency 1 0

Complexity 1 1

Test Cases 0 1

Test Defects 1 0

Test Case Quality 0 1

Average Test Run 1 1

Post-release Defects 0 1

Results of the correlation test are presented in Table 6.4. Short abbreviations are

mapped to metric explanations in Tables 6.1 and 6.2. Bold cells indicate significance

correlations among metric pairs. From Table 6.4, except between TC and DEFECT

(with correlation coefficient being 0.6), none of the correlations are strong enough

to represent a relation. Furthermore, results of Kolmogorov-Smirnov and Wilcoxon

rank-sum significance tests also show that TC and DEFECT may come from similar

distributions with equal medians. We have also seen that CHURN-COMPL, TD-

EDITFR, ATR-PEOPLE pairs may have a relationship in terms of distributions and

parameters (medians of the distributions). We have used these results while forming

causal links between metrics of three BNs that we propose.

We have run Brownian distance correlation test using R energy package and

found correlation coefficients for metric pairs which may be dependent with 95%

confidence. Results show that TC-TD, TC-AGE, TC-PEOPLE, TC-DEFECT, TD-

TCQ,TD-CHURN, ATR-TCQ and ATR-DEFECT pairs have significant (α = 0.05)

dependency relations between each other. Therefore, we have formed an additional

BN whose causal relations between metrics are formed by considering distance corre-

lations.

51

Table 6.4. Spearman’s correlation coefficients for Dataset 1.
TD ATR TCQ AGE PEOPLE CHURN EDITFR COMPL DEFECT

TC 0.36 -0.13 -0.16 0.34 -0.33 -0.11 0.08 0.01 0.60

TD 0.11 -0.25 0.16 -0.12 -0.22 0.18 -0.01 0.35

ATR -0.19 -0.22 0.06 0.07 -0.09 0.26 -0.41

TCQ -0.20 -0.09 0.10 -0.07 -0.24 -0.17

AGE -0.04 -0.10 0.07 0.00 0.23

PEOPLE 0.02 -0.15 0.18 -0.16

CHURN -0.07 0.01 -0.05

EDITFR -0.07 0.29

COMPL -0.02

Finally, we have observed chi-plots between all variables by drawing them ac-

cording to the specifications in [95]. Pairs of variables whose points fall outside of

the “control limits” of the chi-plot are considered as if there exists a presence of an

association. Figures of chi-plots for Dataset 1 can be seen in D.1 and D.2. Pairs with

a dependence are listed as follows: TC-DEFECT, TC-TD, TC-AGE, TD-DEFECT,

TCQ-AGE, ATR-TCQ, ATR-DEFECT, EDITFR-DEFECT, CHURN-COMPL. It can

be observed that some of these pairs are already correlated in Table 6.4, while some of

them are also confirmed with Brownian tests. But there are still new relations found

via chi-plots. Therefore, these new pairs are used to form causal relations of another

BN in order to observe whether there is a significant difference between a network built

with statistical tests and a network built based on graphical assessment of dependence.

6.2.2. Analysis for Dataset 2

Same significance and correlation tests were applied on our second dataset col-

lected from an ERP product. First, we have reported the results (H values) of Lilliefors

test for normal and exponential distributions in Table 6.5. For three metrics namely,

Time between edits, Complexity, Test defects, null hypothesis for the normal assump-

tion could not be rejected. So we used normal distributions for these metrics when they

are included into the model. For five metrics namely, added LOC, deleted LOC, Test

cases, Test cases with Errors, Test suites, null hypothesis for the exponential distribu-

tion could not be rejected. However, using exponential distribution during inference

with Gibbs sampling caused our model not to converge. Therefore, for these metrics,

52

Table 6.5. Lilliefors goodness of fit test results for Dataset 2.

Test for normal

distribution (H)

Test for exponential

distribution (H)

Commits 1 1

People 1 1

Added LOC 1 0

Deleted LOC 1 0

Time between Edits 0 1

Complexity 0 1

Test Cases 1 0

Test Cases with Errors 1 0

Test Cases with Failures 1 1

Test Cases with Status Change 1 1

Test Suites 1 0

Test Defects 0 1

Post-release Defects 1 1

we also computed negative log-likelihood of the parameters for different type of distri-

butions, such as “log-normal”, “gamma”, and selected a more suitable distribution.

Similar to results obtained in Dataset 1, some of the metrics (Commits, People,

Test cases with Failures, Test cases with Status Change, Post-release defects) rejected

both distributions in Dataset 2. People takes discrete values between [5,12] so that it

should have a different distributional form. Furthermore, Test cases with Status Change

contains large amount of 0’s (43%) and hence it is very hard to fit a distribution to this

metric (see its histogram for 43 instances in Figure 6.3). We decided not to remove

this metric from the dataset but to use it as a constant in our models.

In addition, normal probability plots for Commits, Test cases with Failures and

Post-release defects, are presented in Figure 6.4. These plots show that Post-release

Defects and Commits almost follow a normal distribution with a few outliers on the

right corner. However, Test cases with failures has a left skewed curve (points bend

down and right of the normal line) and when outliers are removed, it looks like a

long tailed distribution with more variance than a normal distribution. Therefore, we

53

Figure 6.3. Histogram plot for Test Cases with Status Change.

assigned t-distribution to Test cases with failures, which is more useful for modelling

distributions with long tails.

(a) Commits (b) Test cases with failures

(c) Post-release defects

Figure 6.4. Normality plots for metrics in Dataset 2.

Correlations between metrics are also presented in Table 6.6. Bold cells indi-

cate significant correlations with 95% confidence. Strong correlations with coefficients

greater than 75% are COMMITS-EDITFR, TC-TCE, TC-TCF, TC-TS, TCE-TCF,

TCE-TS, TCF-TS, all of which are due to measurement relations between metric pairs.

We considered these relations while forming our statistical tests based model. Addi-

54

Table 6.6. Spearman’s correlation coefficients for Dataset 2.

PEOPLE ADDLOC DELLOC EDITFR COMPL TC TCE TCF TCST TS TD DEFECT

COMMITS 0.29 0.17 0.16 -0.97 -0.49 -0.27 -0.30 -0.16 -0.23 -0.19 0.21 0.23

PEOPLE 0.33 0.31 -0.27 0.03 0.03 0.06 0.08 0.10 0.08 0.18 0.18

ADDLOC 0.60 -0.17 -0.15 -0.12 -0.16 -0.27 0.17 -0.08 0.24 -0.11

DELLOC -0.15 -0.03 -0.30 -0.23 -0.34 0.07 -0.24 0.29 -0.07

EDITFR 0.49 0.29 0.32 0.14 0.16 0.22 -0.20 -0.21

COMPL 0.18 0.17 0.22 0.28 0.15 0.04 -0.15

TC 0.91 0.80 0.08 0.93 0.23 0.02

TCE 0.73 0.06 0.93 0.24 0.07

TCF 0.13 0.76 0.09 0.20

TCST 0.04 0.04 -0.14

TS 0.24 0.08

TD -0.10

tionally, Kolmogorov-Smirnov and Wilcoxon rank-sum tests identified relations be-

tween COMMITS-TCE, ADDLOC-TCF, ADDLOC-TD and TCF-TS such that they

may come from identical distributions with equal medians.

For independence tests, we have run Brownian distance correlation test using

R energy package and found correlation coefficients for metric pairs which may be

dependent with 95% confidence. Results show that COMMITS-EDITFR, TC-TCE,

TC-TCF, TC-TS, TCE-TCF, TCE-TS and TCF-TS pairs have a dependency relation

with correlation coefficients greater than 65%. There are also correlation whose co-

efficients are below 65% for pairs: PEOPLE-EDITFR, EDITFR-TC, EDITFR-TCE,

EDITFR-TCF, TC-DEFECT and TCF-DEFECT. Results of this test show a very

similar pattern with the results of Spearman’s correlation test.

Finally, chi-plots between pairs of metrics are investigated and pairs whose joint

distribution show a relation between λ and χ, are represented in Figures D.3, D.4 and

D.5. Pairs with a possibility of dependence are listed as follows: COMMITS-EDITFR,

COMMITS-COMPL, COMMITS-TCST, PEOPLE-DELLOC, TC-TS, PEOPLE-TCST,

PEOPLE-EDITFR, ADDLOC-DELLOC, ADDLOC-TCF, DELLOC-TCST, DELLOC-

TD, EDITFR-COMPL, TC-TCE, TC-TCF, TCE-TS, TCE-TCF, TCF-DEFECT, TCF-

TS. As in Dataset 1, we can see similar relations obtained from both Spearman’s cor-

relation and Brownian independence tests, however in chi-plots, we can see additional

relations with the help of transformation of data into ranks. For instance, distribution

55

Table 6.7. Proposed models for both datasets.

Model Description

Model #1 (GLM) A generalized linear model in which the output variable (post-

release defects) is a parametric functional form of input variables

(metrics) which are considered as independent from each other.

Model #2 (Idiom) A model built with basic building blocks (idioms) defined by Neil

et al. [79] based on expert judgement.

Model #3 (Stats) A model whose causal relationship among metrics are defined

based on correlations and significance tests.

Model #4 (DistCov) A model whose causal relationships are defined based on Brownian

distance covariance independence test.

Model #5 (ChiPlot) A model whose causal relationships are defined based on graphical

dependence analysis with chi-plots.

Model #6 (Hybrid) Model whose development & testing subnets are in the form of

either Stats, DistCov or ChiPlot, and requirements subnet is taken

from [45].

of % test cases with a status change metric could not be estimated due to a lot of zero

values. Converting real values to ranks helps to see the relation between this metric

and others. We have also considered these new pair relations and built another BN

during model construction.

6.3. Proposed Models

Based on our empirical analysis, we have built 6 different BNs for both datasets:

The first five model is built on quantitative data, while the last one is built as a Hybrid

model with both qualitative and quantitative data. Hybrid model has three variations

in terms of the model used for building development and testing subnet: Stats, DistCov

or ChiPlot. Short explanations for each model can be seen in Table 6.7.

We have implemented all models in WinBugs [108] which is a powerful framework

for inference using Gibbs Sampling. WinBugs codes for all models can be found in

Appendix A and B. We present 12 different models for both Dataset 1 and 2 in the

next sections.

56

6.3.1. Models for Dataset 1

This subsection explains 6 different models built on Dataset 1. WinBugs codes

for all models of Dataset 1 can be found in Appendix A. In graphical models, white

nodes represent test metrics, while the rest represent development metrics. Post-release

defects node is represented as DEFECT. Metrics which does not have a significant

relationship with others are represented with dashed circles. Hidden nodes are also

represented with blue nodes to distinguish them from metrics.

6.3.1.1. Model #1 (GLM). In a GLM, the output variable is defined as a parametric

functional form of input variables [109],

E(Y) = g−1(Xβ) (6.4)

where g is the link function determined according to the distribution of Y , and

Xβ is the linear predictor with X being input variables and β being coefficients. The

link function can change depending on the distributions as shown in Equation 6.5.

We use identical link function, (E(Y)), since we assume that post-release defects are

normally distributed (see Table 6.3).

E(Y) = Xβ if Y ∼ N(Xβ, σ) (6.5)

ln(E(Y)) = Xβ if Y ∼ P(eXβ) (6.6)

logit(E(Y)) = Xβ if Y ∼ B(eXβ/(1 + eXβ)) (6.7)

In this model, we used all software metrics as independent variables regardless of

57

the phase they represent. Graphical representation of Model # 1 can be seen in Figure

6.5.

Figure 6.5. Graphical representation of Model #1 - Dataset 1.

6.3.1.2. Model #2 (Idiom). Neil et al. inspired from bottom-up approach in system

and software engineering and fragments of Object-Oriented Bayesian Networks to form

a complete Bayesian network [79]. They proposed basic building blocks called idioms,

which were small and reusable components of a network in such a way that complexity

can be easily managed after combining them together. Authors worked on the process

model of a development life cycle by forming idioms.

We have used some of these idioms defined by [79] while constructing our BN:

Definitional idiom, cause-consequence idiom and measurement idiom. Furthermore, we

have validated these relations with senior managers in the company to avoid potential

biases during model construction. Final representation of this model using these idioms

(and agreed by senior management) can be seen in Figure 6.6.

Definitional idiom is used in BNs when there is a definitional relationship between

variables, i.e. a synthetic node is defined by other nodes. We have used this idiom

to define the relationship between a synthetic node H and three development process

metrics: Churn, Complexity and Edit Frequency. Furthermore, we have defined Post-

58

release Defects by three test process metrics: Test Case Quality, Test Defects, Average

Test Run.

Cause-consequence idiom is used to model a process in terms of its relationship

between its causes (input to process) and consequences (output of process). We have

used this idiom to define the relationship between Age-Complexity, People-Churn, and

Test Cases-Test Defects. All relationships were previously investigated by other re-

searchers in empirical studies (see 4.1.1). Based on these works, we have selected the

inputs to the prediction process as Age, People, Test Cases and the outputs of the

process as Complexity (due to Age), Churn (due to People) and Test Defects (due to

Test Cases).

Finally, measurement idiom is used in BNs to measure one event based on the

other. We have used this idiom to define the relationship between Test Case Quality

and Test Cases, since the value of the first variable in fact depends on the second

variable due to the calculation made for finding Test Case Quality.

Figure 6.6. Graphical representation of Model #2 - Dataset 1.

59

6.3.1.3. Model #3 (Stats). In this model, we have used the correlations among metric

pairs as well as significance tests measuring similarities in terms of distributions and

their medians to define causal links between metrics and post-release defects. We also

modified the model by adding two unused metrics into the model (Test case quality,

Age), defining new causal links based on quantile plots (People-Churn, Complexity-

Test Defects, Test case quality-Test Defects, Age-Test Cases, Age-Average test run) as

well as removing one metric (Edit frequency). The output node is defined as a normal

distribution whose mean is defined as a linear function of Test Cases, Test Defects,

Churn and Average test run. This linear function incorporates four metrics as well as

their pairwise interaction effect parameters and a higher-order interaction effect (quad).

A graphical representation can be seen in Figure 6.7.

Figure 6.7. Graphical representations of Model #3 - Dataset 1.

6.3.1.4. Model #4 (DistCov). We have taken into account the results of Brownian

distance covariance independence test while forming causal links among metrics, rather

than correlation results used in the previous model. Results of the independence test

highlight 8 significantly “correlated” metric pairs. Graphical representation of Model

4 can be seen in Figure 6.8. As it is seen from the figure, Edit frequency could not

be related to any metric, and hence, it is not included into the model. Complexity, on

the other hand, is included although it is also uncorrelated with other metrics, since it

helps to improve the performance of this model.

6.3.1.5. Model #5 (ChiPlot). This model is built based on manual interpretation of

chi-plots to assess the dependence among metrics. In Section 6.2.1, we have listed 9

60

Figure 6.8. Graphical representation of Model #4 - Dataset 1.

metric pairs with dependence relations according to specifications of chi-plots. We have

considered these relations while building Model #5 (Figure 6.9).

Figure 6.9. Graphical representation of Model #5 - Dataset 1.

6.3.1.6. Model #6 (Hybrid). The first five models were built based on quantitative

data collected from development and testing activities. In order to incorporate require-

ments specification subnet into existing models, we investigated the model proposed

by Fenton et al. [45] that was built based on expert judgement (experienced project

managers). Each subnet consists of qualitative factors and their causal relationships,

which were elicited from experts based on their discussions on the impact of these

factors on the final outcome of software product. For specification and documentation

subnet, we list qualitative factors that are collected through survey in Section 4.1.2.

61

We have used qualitative factors while building our hybrid network due to the

fact that there is not available data for specification and documentation process in

software organizations. Therefore, we have also adapted the model proposed in [45]

for our final model. Figure 6.10 shows a graphical representation of specification and

documentation subnet, with blue nodes as factors filled with survey results and dashed

nodes as hidden nodes. Distributions and equations of the hidden nodes are modified

according to our model. Final node of this subnet is assumed to follow a Gaussian

distribution, whose mean is a weighted linear equation of two hidden node (Spec and

doc effectiveness and Spec and doc process quality). WinBugs code for this subnet can

also be found in Appendix A.

Figure 6.10. Graphical representation of Specification and Documentation Subnet.

While building the Hybrid network, we use Stats, DistCov and ChiPlot models

shown in Sections A.3, A.4, and A.5 and added a new node (indicating spec. and doc.

subnet’s defect proneness) directly connected to the final node (post-release defects)

on each of three models. During inference, Hybrid model uses a combined version of

the Winbugs code of either of three models (see Sections A.3, A.4, A.5) and Figure A.6

for representing requirements subnet and revise the linear equation of y as follows:

62

y[i] < −β1 + β2 ∗ TD[i] + β3 ∗ ATR[i]+

β4 ∗ TC[i] + β5 ∗ CHURN [i]+

(β6 ∗ TD[i] ∗ ATR[i] ∗ TC[i] ∗ CHURN [i]) +

(β7 ∗ TD[i] ∗ ATR[i]) +

(β8 ∗ TD[i] ∗ TC[i]) +

(β9 ∗ CHURN [i] ∗ TD[i]) + (β10 ∗ probSpecDefect[i])

(6.8)

The final node estimating post-release defects uses this y value as the mean of a

normal distribution and Gibbs sampler generates estimated values of y during several

iterations of Winbugs runs.

6.3.2. Proposed Models for Dataset 2

Similar to Dataset 1, we built 6 different Bayesian networks for Dataset 2. In this

section, we presented their graphical representations and explained how we built the

causal relations as well as formulations of these causal relations. WinBugs codes for

Dataset 2 can be seen in Appendix B. Similar to graphical models for Dataset 1, testing

metrics are represented with white nodes, while development metrics are represented

with gray nodes. Hidden nodes are also coloured with blue to distinguish them from

metrics. We have also put dashed rectangles to some of the models to highlight the

metrics which do not have a significant association with others.

6.3.2.1. Model #1 (GLM). In the generalized linear model (GLM), each metric is

assumed to be independent from each other and their weighted linear equation corre-

sponds to the mean of the final node. Graphical representation can be seen in Figure

6.11.

63

Figure 6.11. Graphical representation of Model # 1 - Dataset 2.

6.3.2.2. Model #2 (Idiom). Cause-consequence, measurement and definition idioms

are used to build the final model. For development subnet, cause-consequence idiom

is defined between People and Added/Deleted LOC : As more People (i.e., Committers

in Winbugs code) work on the source code, the more lines of code is changed in terms

of Added LOC and Deleted LOC.

Measurement idiom is defined between Edit frequency and Commits : Average

time between edits (Edit frequency) are measured by taking the days between each

commit on the source code and divided by total number of Commits.

Definition idiom is also used to define a hidden node representing defect density

of development subnet in terms of Complexity, Time between Edits and Changed LOC

(another hidden node defined with a cause-consequence idiom).

For testing subnet, cause-consequence idiom is defined between Test cases with

Failures, Test cases with Errors, Test suites and Test defects. Since there are strong

correlations between these three metrics and Test cases, we did not include the latter

into Idiom model. We also defined a hidden node representing defect density of testing

subnet in terms of Test defects and Test cases with status change.

64

Final node representing Post-release defects is also a weighted linear form of two

hidden nodes from two subnets. Graphical representation can be seen in Figure 6.12.

Figure 6.12. Graphical representation of Model # 2 - Dataset 2.

6.3.2.3. Model #3 (Stats). This model is formed based on the results of statistical

tests and correlation results. In Dataset 2, correlations are very weak between majority

of metrics and only a few relations are defined after statistical tests. Thus, the third

model includes 6 metrics with causal relationships among each other and 3 additional

metrics, namely People, Complexity, Tests with status change, as independent variables.

Final node is again defined with a Gaussian distribution whose mean is expected as a

weighted linear equation between 3 independent metrics and Test suites. Test defects

and Time between edits (Edit frequency) are taken out from the Stats model, whose

graphical representation is in Figure 6.13.

6.3.2.4. Model #4 (DistCov). This model is formed based on the results of Brownian

distance correlation tests. 7 metrics are used in relation with each other, while the

rest 5 of them are also included into the model as independent variables affecting the

final node. We also excluded these 5 metrics during model construction and compared

the performance with or without these metrics. Results show that including them as

independent variables increases the performance. The final graphical representation

can be seen in Figure 6.14.

65

Figure 6.13. Graphical representation of Model # 3 - Dataset 2.

Figure 6.14. Graphical representation of Model # 4 - Dataset 2.

66

6.3.2.5. Model #5 (ChiPlot). As an alternative to statistical tests investigating de-

pendence between variables, this model is formed based on graphical assessment of

chi-plots. In total of 18 metric pairs are listed in Section 6.2.2. However, we have used

the most significant ones, between Test cases, Test cases with failures and Test cases

with errors, and between Commits, Edit frequency and Complexity. Furthermore, we

have included metrics, namely Test defects, and Test cases with status change, which

has no specific relationship with other metrics, since adding them improved the per-

formance. We have considered adding hidden node, H1 in Figure 6.15, on top of

three mostly correlated metrics, based on the idea that there might be a hidden nodes

affecting all metrics and leading to such significant associations.

Figure 6.15. Graphical representation of Model # 5 - Dataset 2.

6.3.2.6. Model #6 (Hybrid). Similar to the approach used on Dataset 1, we built

specification and documentation subnet according to a previous study by Fenton et al.

[45] and we combined this subnet with Stats, DistCov and ChiPlot models respectively

to build a complete model. During inference of parameters, Hybrid model uses a

combined version of Winbugs codes from either of Figures B.3,B.4, or B.5 and A.6 and

revise the linear equation of y as follows:

67

y[i] < −β1 + β2 ∗ TS[i] + β3 ∗ PEOPLE[i]+

β4 ∗ COMPL[i] + β5 ∗ TCST [i] + β6 ∗ probSpecDefect[i]
(6.9)

6.4. Results

Tables 6.8 and 6.9 summarizes the performance of 8 different BNs built on

Datasets 1 and 2, in terms of MMRE, MdMRE, Pred(25), Pred(30). The first 5 models

are already described in Table 6.7, while the last three of them are Hybrid models (see

the last row in Table 6.7) whose development and testing subnet vary between Stats,

DistCov and Chiplot models. We have also reported DIC values for each model to find

the best fit to data. Bold cells highlight models with the best performance significantly

(with 95% according to Mann-Whitney U-test) in terms of performance measures.

Results of Dataset 1 show that Hybrid models are very successful at predicting

post-release defects as they incorporate two different type of data (qualitative and

quantitative) into the model. In Table 6.8, Hybrid models manage to reduce prediction

error in terms of MdMRE down to 11%, with 84% of predictions having MRE lower

than 25%. DIC is also reported as 216.5 in the first hybrid model and 278.1 in the

third, indicating that Hybrid models fit data better than others.

(Idiom) model produces the worst prediction performance although expert judge-

ment was used while building these idioms and links. This shows that statistical rela-

tions between metrics may reveal other types of relations that idioms could not cover.

When we observe Hybrid models built over three major statistical models, it is seen that

(ChiPlot) incorporated with requirements subnet manages to predict 84% of releases

in Dataset 1 with less than 25% MRE. Median of MRE values also decreases down

to 0.11; showing that the success of Hybrid BNs for capturing relationships between

metrics and residual (post-release) defects.

68

Hybrid models built with (Stats) and (DistCov) are worse than (ChiPlot), which

validates the motivation of Fisher and Switzer [95] that a graphical plot may sometimes

worth 100 different tests. The reason for this difference between models with tests and

the model with graphical assessment can be as follows: Considering (Stats) model, the

applied techniques are Spearman’s correlation test and Kolmogorov-Smirnov tests for

testing independence of medians. Even though these are rank based tests without any

limitation of distribution assumption, certain relations may not be observed due to

dependence on the marginal distributions of metrics. As described in copula model-

ing [103], additional transformations may be necessary to discover relations between

two metrics, independently from their marginal distributions. Since chi-plots are suc-

cessful in assessment of dependence and easier to interpret with control limits, we have

seen that in Dataset 1, we manage to identify additional dependencies that were not

highlighted in (Stats) and (DistCov) models.

Table 6.9 also presents prediction performance of five models on Dataset 2. The

success of Hybrid models could not be captured easily in this case which may be due

to the fact that requirements specification subnet was not well represented. We have

used parameter estimates via Gibbs sampling to fill missing values of requirements

specification subnet. Unfortunately, actual data is quite a few (15 instances), from

which unknown parameters were inferred, and hence, they could not represent this

subnet as good as in Dataset 1. If we had more data representing the requirement

specification subnet, we would improve the prediction performance as we did in Dataset

1.

In summary, Hybrid models achieve to get quite low MdMRE rates (32% with

ChiPlot) with 47% of predictions have MRE lower than 30%. Similar in Dataset 1,

(Chiplot) model is better than (Stats) and (Distcov) in terms of DIC, as the best fit

to data. In addition, it reduces the variance of predictions and achieves 30% MdMRE,

40% Pred(25) and 51% Pred(30).

69

Table 6.8. Prediction performance of models on Dataset 1.

MMRE MdMRE Pred(25) Pred(30) DIC

GLM 0.38 0.24 0.50 0.59 393.6

Idiom 0.47 0.33 0.39 0.46 417.0

Stats 0.37 0.21 0.57 0.59 391.8

DistCov 0.41 0.27 0.46 0.57 388.0

ChiPlot 0.39 0.27 0.48 0.57 384.7

Hybrid (with Stats) 0.31 0.16 0.62 0.66 216.5

Hybrid (with DistCov) 0.36 0.18 0.60 0.66 292.7

Hybrid (with ChiPlot) 0.16 0.11 0.84 0.84 278.1

Table 6.9. Prediction performance of models on Dataset 2.

MMRE MdMRE Pred(25) Pred(30) DIC

GLM 0.57 0.31 0.40 0.49 299.41

Idiom 0.66 0.39 0.33 0.40 326.91

Stats 0.67 0.36 0.33 0.37 293.20

DistCov 0.60 0.36 0.33 0.40 293.79

ChiPlot 0.69 0.30 0.44 0.51 280.08

Hybrid (with Stats) 0.68 0.38 0.30 0.33 293.99

Hybrid (with DistCov) 0.60 0.36 0.33 0.37 294.50

Hybrid (with ChiPlot) 0.69 0.32 0.42 0.47 284.42

70

6.5. Discussion on Data Quality

In all studies working on real industrial settings, there may exist data anoma-

lies, such as exceptional data points affecting dataset structure and model parameters,

or outliers resulted due to a miscalculation during measurement [100]. Outliers are

defined as abnormal data objects that do not follow a generating mechanism, i.e. sta-

tistical distribution [110]. Turhan discussed that in order to avoid false generalizations,

researchers should be aware of outliers’ existence while they should be careful during

the choice of removing or keeping them [100]. There are several outlier detection tech-

niques, some of which are probability tests based on statistical models, depth-based,

distance-based, density-based or deviation-based methods [110]. In software engineer-

ing studies, outliers or data quality are often discarded with a few exceptions. Turhan

summarized a number of publications explicitly addressed outlier detection using tech-

niques, such as Cook’s distance for ordinary least square regression models, jackkniffed

cross-validation and visual inspections with box-plots [100].

Removing outliers may significantly increase the prediction performance of a

model (e.g. in predicting residual defects), but it may also cause that the model is

limited to represent certain type of defects, while it misses to capture the others [100].

It is challenging to define which instances in a dataset are “outliers”, since removing

extreme values from the data may also form a narrowed distribution, so that previously

“normal” instances would look like “outliers” in the current filtered data. Remove out-

liers when dataset size is small or we are not sure about the distribution of data under

investigation is also very risky. Before considering removing these points from data, we

should understand why this value appears during the process and whether it is likely

that similar values may exist in the future.

Traditional statistical tests consider outliers as strong deviations from a distribu-

tion [111]. The simple rule behind identifying outliers is to look at data points deviating

more than z times standard deviation from the mean [111]. Value of z is often assigned

as 3 with varying between 2.5 to 4.0 depending on the sample size and skewness of

dataset. Box plots and inter-quartile ranges (IQR) are also applied during outlier de-

71

(a) Histogram of original data (b) Histogram of transformed data

Figure 6.16. Effect of Box-cox transformation on complexity metric in Dataset 1.

tection, however the assumption that data follow a Gaussian distribution, limits the

usage of this technique. The region between Q1− 1.5IQR and Q3 + 1.5IQR, where Q1

represents lower quartile, Q3 represents upper quartile and IQR = Q3 − Q1, contain

99.3% of observations for a Gaussian distributed data [112]. Possible transformation

techniques, such as Box-Cox [113] can be used when the distribution of a variable

may not be known or there is a possibility of high skewness on dataset. Box-Cox

transformation is applied to data (Y) as follows:

T (yi) =


(yλi −1)

λ
if λ 6= 0

log(yi) otherwise
(6.10)

An illustration of the effect of Box-Cox transformation on complexity metric from

the first dataset can be seen in Figure 6.16. We observe box plots of post-release defects

of both datasets after applying statistical tests and IQR limits to identify possible

outliers. Figure 6.17 shows that none of the data points is considered as outlier for

post-release defects, and hence box plots are the same after both techniques. This

may be due to the fact that post-release defects come from a distribution (Gaussian

according to our normality tests) with no indication of skewness/ heavier or thinner

tails. Therefore, we do not replicate our experiments on a filtered data. We can also

conclude that removing outliers based on an outlier detection technique is very risky

72

(a) Dataset 1 (b) Dataset 2

Figure 6.17. Box plots of post-release defects for both datasets. First sub figure

represents the original data, while the second represents filtered data after statistical

tests and the final sub figure represents the filtered data based on IQR.

while building predictive models, such that data should be investigated deeply with a

bunch of outlier detection techniques considering their distributional assumptions.

73

7. THREATS TO VALIDITY

Many types of validity can be invoked when trying to develop a framework to

understand experiments in complex field settings. Campbell and Stanley invoked two

validity types, “internal” and “external” [114]. According to Cook and Campbell [115],

“statistical conclusion validity” should be defined as a special case of internal validity

in order to consider sources of random error and appropriate use of statistics and sta-

tistical tests. Furthermore, “construct validity” is further defined in order to consider

“confounding”, as well as the generalizability of experiments across different settings

(external validity). Confounding relates to the representation of the relationship be-

tween constructs and requires naming measures in generalizable terms [114].

In this research, we have also highlighted possible threats to internal, external,

construct and conclusion validity of our experiments. Before observing measures and

their relationships for internal validity, we have considered possible biases during data

collection. Collection of data, required to build prediction models, is a challenging

task in software organizations. In order to avoid bias during data collection, we have

been supported by release management team of the organizations and scripts written

to extract required metrics were validated by them. Furthermore, we have investigated

possible outliers in datasets which may occur due to miscalculation of metrics. Extreme

values were manually traced and discussed with the management to understand their

reasons and the possibility of having similar values in future releases. We have also

applied two popular outlier detection techniques during our discussion on data quality

(Section 6.5) and concluded that removing extreme values from the datasets may distort

the underlying distributions, even though it may improve the prediction performance.

Our research objectives include quantifying software processes by considering

their impacts on software reliability. We have defined post-release (residual) defects as a

measure of software reliability, since quality is the major attribute of software reliability,

and measuring software quality is quite often defined as predicting defects/faults or

fault density in software systems [17].

74

During quantification of software processes, all development and testing metrics

were selected based on previous empirical research investigating unique characteristics

of post-release defects in software systems. Although there is not a study observing all

processes at once in terms of local data, we have gone through the literature and formed

a larger set of metrics representing both development and testing processes. We have

also discussed prior research on most of these metrics in Section 2.2, emphasizing that

they were very good at predicting post-release defects in software systems. Qualitative

factors, on the other hand, were previously validated as effective when predicting post-

release defects of several commercial software systems [45].

We have stated that causal relationships among major constructs of our research

should be encoded in order to identify possible effects of these constructs, i.e., measures,

on software reliability. Simple regression models would not identify causal relations be-

tween metrics representing different processes and residual defects, even though they

were popularly used in previous studies (see [12,24]). Bayesian networks are well suited

to our problem, where the aim is to encode causal relationships from data and pre-

dict posterior distributions using prior evidence. In fact, if we consider independence

of software metrics and build a simple regression model, we have seen that software

metrics can only explain 32% of variability (R2) in the first dataset, and 36% of vari-

ability in the second dataset. However, taking causal relationships into account helps

to achieve very good prediction rates in addition to understanding the dynamics of a

development life cycle. We have seen that Bayesian networks help us identify that the

changes in our independent variables (metrics) cause the observed changes in our depen-

dent variable (post-release defects). We have considered causal relationships between

metrics from development and testing processes based on statistical and graphical in-

dependence tests, but we could not identify relationships between metrics representing

requirements process and other processes.

Bayesian statistics in conjunction with Bayesian networks also offer an efficient

approach to avoid over-fitting [59]. It is not necessary to build the network with sepa-

rate training and test data as in learning-based prediction models, since Monte Carlo

techniques avoid sampling bias by inferring posterior distributions from the model. In

75

addition, causal relations between variables were found based on different statistical

tests, including correlation statistics and independence tests, as well as graphical de-

pendence analysis. We did not consider one method superior to the others, but we

modelled the network with all approaches respectively.

To overcome threats to construct validity in terms of selecting the right perfor-

mance measures, we have considered popularly used performance measures in vari-

ous effort estimation studies (e.g. [98]): MMRE, MdMRE, Pred(k). MMRE metric

computes the average relative error between actual and predicted values in a typi-

cal regression problem; however it has been criticized as being sensitive to extreme

values in data. Pred captures the variation among predictions and hence, it also sup-

ports MdMRE which is less sensitive to large variations in data, compared to MMRE.

Therefore, we have also reported MdMRE, Pred(k) values in our experiments.

To overcome possible threats to statistical conclusion validity, we have checked the

statistical significance of our predictions using a non-parametric test, Mann-Whitney

U-test. Other tests such as ANOVA or t-tests make Gaussian assumptions that may

not hold in every domain or dataset. We have also used Spearman’s correlation test and

Kolmogorov-Smirnov test which are also computed over ranks as Mann-Whitney U-

test. Brownian covariance independence test is applied on pairwise Euclidean distances,

and hence, it does not have a distribution assumption. Finally, chi-plots are also based

on ranks of variables and it is more informative than scatter plots, due to independence

of a relation between two variables from marginal distributions of data. Thus, we

have considered selecting appropriate tests during our experiments in order to avoid

assumptions implied by several tests.

The software engineering community has begun to emphasize empirical research

methods to improve the validity and generalizability of research results [116]. Even

though experiments in many studies give precise measurements under controlled con-

ditions, they may suffer from a lack of generalizability if they are not carefully designed.

Drawing general conclusions from an empirical study is very difficult, since each dataset

contains unique characteristics, in terms of software processes and the product, of the

76

organization it belongs to. However results should be transferable to other researchers

in terms of the methodology behind. In this research, we have proposed an applica-

tion of Bayesian Networks in software engineering domain by proposing solutions to

limitations in previous studies. Methods used during model construction can be easily

transferable to other studies in order to repeat or refute our conclusions.

77

8. CONCLUSIONS

8.1. Summary of Results

Due to the nature of empirical studies in software engineering, there are limited

number of empirical findings each tested on different settings and it is harder to verify

your theories [116]. Since software engineering is an applied science, theories should

be useful to academia, as well as to the software industry. Therefore, we need to be

accurate while summarizing and generalizing our results. This research proposes an

application of Bayesian networks by selecting to build a Hybrid network containing both

quantitative data regarding development and testing processes and qualitative data

regarding requirements specification process. Our empirical findings on two different

software systems show that the effects of software processes and their relationships on

software reliability are worth the investigation. In addition, we have observed that local

data is very valuable as expert knowledge such that in software organizations with a

mature measurement/ metrics data repository, local data should be used primarily and

strengthened with expert knowledge while predicting software reliability. We have also

linked our research questions in Section 2.5 with our findings on two different datasets.

8.1.1. What are the software factors affecting software reliability?

We have quantified software metrics representing development and testing pro-

cesses to measure software reliability. After an extensive literature survey, we have

evaluated software reliability in terms of post-release/residual defects and then, we

have used previously well-known metrics from development process, which were de-

fined as significant indicators of defects in software projects [12, 27]. We have also

investigated in-process metrics that are effective for managing software testing [86].

Three major aspects of SDLC (People, Product, Process) are covered with these met-

rics, namely cyclomatic complexity represents the product, whereas age, number of

commits, added LOC, deleted LOC, average time between edits represent development

process and number of committers represents the people aspect. Similarly, we have

78

selected number of test cases, number of test cases with errors, number of test cases

with failures, number of test defects represent the product, whereas percentage of test

cases with a status change, test case quality, average number of executions per test case

represent the testing process.

For quantifying requirements specification and documentation process, we have

used a survey proposed in [45] capturing factors such as people experience, quality

of documentation, review process and configuration management. Based on previous

research, these factors were successful at representing requirements process and pre-

dicting post-release defects [45]. We have also incorporated expert judgement into the

model via surveys due to lack of local data regarding this process in both organizations.

8.1.2. How do software processes affect software reliability?

We have believed that dependencies between software processes affect final relia-

bility and validated our research question by building (i) a generalized linear model in

which each metric affects final reliability independently, and (ii) causal models in which

cause-effect relationships among software processes are represented based on statistical

analysis. Results show that causal models are better at predicting software reliability

than linear model.

8.1.3. How can we build a predictive model that would estimate software

reliability prior to release?

Bayesian networks are well suited to our problem since (i) they encode causal

relationships between input and output variables, (ii) they can be built using both

continuous and categorical variables in a hybrid model, (iii) predicting software relia-

bility can be formalized as inferring posterior probability of post-release defects given

observations from software metrics.

We have stated that a hybrid model is necessary when organizations have different

levels of maturity in different processes of SDLC. We have also applied a hybrid data

79

collection approach by using quantitative data extracted from organizational reposito-

ries and qualitative data collected through surveys. Hence, we have proposed a Hybrid

Bayesian Network that incorporates both continuous and categorical variables without

any transformation, such as discretization. Gibbs sampling is used for approximation

of the joint probability distribution over conditional distributions, estimation of un-

known parameters and for handling missing data points in qualitative part. Results

show that proposed Bayesian networks are able to predict upto 84% of post-release

defects with less than 25% MRE in the first dataset, while 51% of defects with less

than 30% MRE in the second dataset.

8.1.4. How can software companies build predictive models with local data

rather than based solely on expert knowledge?

We have seen that a predictive model can estimate post-release defects in most

of the releases with less than 25% MRE rate, when causal relationships are modelled

through statistical tests and graphical analysis. In software organizations with a ma-

ture measurement process, accessing local data can be easier than communicating with

senior managers to conduct surveys, especially when development teams are allocated

at different geographical locations. In the second dataset, we have seen that incor-

porating requirements subnet into other processes could not improve the prediction

performance. One reason for this may be limited survey data. However, it may also

indicate that in software companies with small and cohesive development teams hav-

ing highly experienced staff and almost no turnover, local data may represent expert

behaviour very successfully. Therefore, survey data may not add new information into

the model. This also supports our claim that local data can be successfully used in

such predictive models instead of depending solely on expert judgement.

8.2. Contributions

We have achieved theoretical and methodological contributions as well as high-

lighted their practical implications to the industry.

80

8.2.1. Theoretical and Methodological Contributions

In this research, we have applied well known AI techniques to a software engi-

neering problem, i.e., predicting software reliability prior to a release decision. Recent

research in predicting software reliability have also utilized Bayesian networks, but pro-

posed models were fed by qualitative factors collected via surveys and causal relations

were also defined by experts. We have proposed a new methodology in data collection

by incorporating local data with expert knowledge as well as a new network model

(hybrid) handling mixture of these data without any transformation. Cause-effect

relationships are also defined based on statistical tests strengthened with graphical

analysis, rather than using expert judgement.

In addition to methodological contributions, a well known Monte Carlo method,

namely Gibbs sampling, has been applied during Bayesian inference in software engi-

neering domain in order to estimate unknown parameters of probability distributions

and predict joint distribution of the final model over conditionals. Furthermore, we

have imputed missing data in surveys via Gibbs sampling, specifically by estimating

unknown parameters of the underlying distribution.

Similar models using BNs were previously proposed in the literature [9,45,47,52,

79]. Some authors also built a tool that would help building a BN [45]. We have im-

proved previously proposed models by applying statistical and graphical independence

tests to encode causal relationships between variables, rather than depending solely

on expert judgement during network construction. We have also managed to build

a hybrid network that can incorporate categorical variables into continuous variables

without appyling any transformation technique, like discretization. Inference in this

hybrid network is also handled by using Monte Carlo methods and working on a small

sample of local data. However, our model is a bit more complex to construct than

previous models, since we did not apply any transformation on continuous variables

to ease probabilistic inference. But, there are freely available inference engines, like

WinBugs [108], that would help inference in complex models.

81

We have performed a set of well-defined experiments during model construction

which allows other researchers to replicate our methodology. Reproducibility of empiri-

cal studies is a very important property in software engineering domain. Unfortunately,

building complex models like ours, involving both a hybrid data collection and a net-

work construction with various statistical tests, is very difficult and interpret, even

though we have defined all steps precisely. An automated mechanism makes this pro-

cess significantly easier and more reliable. Therefore, we have started developing a tool,

namely Dione, which is not only for predicting software reliability through Bayesian

networks, but also a metric collection, analysis and reporting tool for the use of both

academicians and practitioners.

8.2.2. Practical Implications

In practice, software organizations need predictive models while making release

decisions in order to reduce the risk of over-/under-estimations and dependence on

experts. Using estimated post-release (residual) defects and the company’s pre-defined

thresholds for software reliability, it is possible to estimate a release readiness level for

each release. This level informs software managers earlier in development life cycle in

order to be prepared for the following scenarios:

(i) Release the software: Its readiness level in terms of residual defects is above a

pre-defined threshold. Managers are aware of potential failures after the release

and they are well prepared for this scenario.

(ii) Delay the release: Its readiness level is within the acceptable ranges, but the soft-

ware still needs improvement: Additional requirements, design or testing efforts

may be necessary through code reviews or inspections.

(iii) Cancel the release: Its readiness level is below the acceptable ranges, and failures

after the release may cost much more than making drastic changes right now.

Furthermore, such predictive models help software managers observe maturity of

their processes in terms of their impacts on software reliability. Measuring/quantifying

software processes also helps software organizations build a measurement repository

82

and monitor trends of development practices in a systematic manner. An automated

tool like Dione also provide tangible benefits to companies such as collecting and storing

local data easily and invisible to the staff, building a complex model based on historical

data and estimating release readiness periodically. We aim to extend Dione with a

questionnaire support to conduct surveys as well.

In this research, we have seen that there are not a specific set of metrics that

should be used in any software organization to predict reliability in terms of post-

release defects. However, it would be useful to extract a common set of metrics (as the

ones we extracted during this research) which were proved as significant indicators of

post-release defects. Causal relationships also change from one model to another based

on local data collected from the organization. Hence, we suggest practitioners to follow

our methodology rather than using same metric sets with same causal relationships

among each other.

As a performance evaluation measure, we proposed 4 different measures, MdMRE,

MMRE, Pred(25) and Pred(30) and assessed the performance of our models by dis-

cussing all of them respectively. However, in real life, practitioners may require using

a single measure in order to judge their model in terms of its prediction performance.

In that case, we suggest them using Pred(k) measure, since Pred would evaluate the

overall success of a model in terms of variance of its predictions’. It is also possible to

set success thresholds for a model, such as “the model should predict at least 75% of

projects with 25% error or less”, and evaluate how the model meets the requirements

using Pred measure.

8.3. Future Directions

Popular applications of BNs on predicting software reliability lack a generalizable

methodology for model construction due to dependence on expert judgement. To con-

sider generalizability of our results, we have proposed well known statistical correlation

and independence tests as well as graphical analysis to infer causal relationships from

local data. We have also defined a set of software metrics, that are characteristics of

83

residual defects, which can be extracted from organizational repositories. As a future

work, this research can be expanded to different settings by adding new set of met-

rics depending on available local data and encoding causal relationships with proposed

techniques. The objective of this research in the long run is to build robust predictive

models and integrate them into daily routines of software development activities so

that software managers would use such models to define policies.

84

APPENDIX A: CODES OF PROPOSED MODELS FOR

DATASET 1

A.1. Winbugs code for the implementation of GLM

model{

for(i=1:N){

p[i] <- beta[1] + beta[2]*TEST_CASE[i] +

beta[3]*TEST_DEFECT[i] + beta[4]*AVG_TEST_RUN[i] +

beta[5]*TEST_CASE_QUALITY[i] + theta[1]*AGE[i] +

theta[2]*PEOPLE[i] + theta[3]*CHURN[i] +

theta[4]*EDIT_FREQUENCY[i] + theta[5]*COMPLEXITY[i]

DEFECT[i] ~ dnorm(p[i], t)

}

for(j=1:5){

beta[j] ~ dnorm(1,0.001)

theta[j] ~ dnorm(1,0.001)

}

t ~ dgamma(0.5,0.5)

}

A.2. Winbugs code for the implementation of Idiom

model{

for(i=1:N){

COMPLEXITY[i] ~ dnorm(AGE[i], a)

CHURN[i] ~ dexp(PEOPLE[i])

e[i] <- theta[1] + theta[2]*COMPLEXITY[i] +

theta[3]*CHURN[i] + theta[4]*EDIT_FREQUENCY[i]

85

h[i] ~ dnorm(e[i], s)

x[i] <- TEST_CASE[i]*h[i]

TEST_DEFECT[i] ~ dlnorm(x[i], t)

TEST_CASE_QUALITY[i] ~ dnorm(TEST_CASE[i], b)

y[i] <- h[i] * K

AVG_TEST_RUN[i] ~ dnorm(y[i], t)

p[i] <- beta[1] + beta[2]*TEST_DEFECT[i] +

beta[3]*AVG_TEST_RUN[i] +

beta[4]*TEST_CASE_QUALITY[i]

DEFECT[i] ~ dnorm(p[i], t)

}

for(j=1:4){

beta[j] ~ dnorm(1,0.001)

theta[j] ~ dnorm(1,0.001)

}

t ~ dgamma(0.5,0.5)

s ~ dgamma(0.5,0.5)

a ~ dgamma(0.5,0.5)

b ~ dgamma(0.5,0.5)

K ~ dgamma(1,1)

}

A.3. Winbugs code for the implementation of Stats

model{

for(i=1:N){

COMPLEXITY[i] ~ dnorm(e[i], t)

PEOPLE[i] ~ dpois(lambda[i])

AGE[i] ~ dnorm(o[i], p)

86

TEST_CASE_QUALITY[i] ~ dnorm(k[i], w)

h[i] <- theta*COMPLEXITY[i]*PEOPLE[i]

CHURN[i] ~ dexp(h[i])

v[i] <- scale*AGE[i]

AVG_TEST_RUN[i] ~ dnorm(v[i], s)

a[i] <- alpha * TEST_CASE_QUALITY[i] * COMPLEXITY[i]

TEST_DEFECT[i] ~ dexp(a[i])

y[i] <- beta[1] + beta[2]*TEST_DEFECT[i] +

beta[3]*AVG_TEST_RUN[i] + beta[4]*TEST_CASE[i] +

beta[5]*CHURN[i] +

(beta[6] * TEST_DEFECT[i] * AVG_TEST_RUN[i]

* TEST_CASE[i] * CHURN[i]) +

(beta[7] * TEST_DEFECT[i] * AVG_TEST_RUN[i]) +

(beta[8] * TEST_DEFECT[i] * TEST_CASE[i]) +

(beta[9]* CHURN[i] * TEST_DEFECT[i])

DEFECT[i] ~ dnorm(y[i], g)

}

for(j=1:9){

beta[j] ~ dnorm(1,0.001)

}

for(f=1:N){

e[f] ~ dnorm(5, 1)

lambda[f] ~ dexp(2)

o[f] ~ dgamma(1.7, 550)

k[f] ~ dgamma(10,10)

}

}

87

A.4. Winbugs code for the implementation of DistCov

model {

for(i=1:N){

CHURN[i] ~ dexp(w[i])

TEST_CASE_QUALITY[i] ~ dnorm(a[i], k)

s[i] <- alpha[1] + alpha[2]*TEST_CASE_QUALITY[i] +

alpha[3]*CHURN[i]

COMPLEXITY[i] ~ dnorm(m[i],c)

TEST_DEFECT[i] ~ dexp(s[i])

PEOPLE[i] ~ dpois(lambda[i])

AGE[i] ~ dnorm(ageMean[i],e)

t[i] <- beta[1] + beta[2]*PEOPLE[i] +

beta[3]*AGE[i] + beta[4]*TEST_DEFECT[i]

TEST_CASE[i] ~ dnorm(t[i], h)

AVG_TEST_RUN[i] ~ dnorm(TEST_CASE_QUALITY[i], f)

y[i] <- theta[1] + theta[2]*TEST_CASE[i] +

theta[3]*AVG_TEST_RUN[i] + theta[4]*COMPLEXITY[i] +

(theta[5]*TEST_CASE[i]*AVG_TEST_RUN[i])

DEFECT[i] ~ dnorm(y[i],g)

}

}

A.5. Winbugs code for the implementation of ChiPlot

model {

for(i=1:N){

88

TEST_DEFECT[i] ~ dt(muTD[i], tauTD[i], d)

AGE[i] ~ dnorm(muAGE[i], varAGE)

h[i] <- theta*COMPLEXITY[i]

CHURN[i] ~ dnorm(h[i], varC)

PEOPLE[i] ~ dpois(lambda[i])

funcTC[i] <- cTC * (TEST_DEFECT[i] + AGE[i])

TEST_CASE[i] ~ dnorm(funcTC[i] , varTC)

temp[i] <- cTCQ * AGE[i]

TEST_CASE_QUALITY[i] ~ dnorm(temp[i], w)

v[i] <- scale *TEST_CASE_QUALITY[i]

AVG_TEST_RUN[i] ~ dnorm(v[i], s)

H[i] <- Hbeta[1] + Hbeta[2]*PEOPLE[i] +

Hbeta[3]*CHURN[i]

y[i] <- beta[1] + beta[2] * TEST_CASE[i] +

beta[3] * AVG_TEST_RUN[i] +

beta[4]*EDIT_FREQUENCY[i] +

(beta[5] * TEST_CASE[i] * AVG_TEST_RUN[i] *

EDIT_FREQUENCY[i]) + beta[6] * H[i]

DEFECT[i] ~ dnorm(y[i],g)

}

}

89

A.6. Winbugs code for the implementation of Specification and

Documentation Subnet

model {

for(i=1:N){

reqA[i] <- coefR[1] + coefR[2]*S1[i] +

coefR[3]*S3[i] + coefR[4]*S4[i]

A[i] ~ dnorm(reqA[i], reqVA)

reqC[i] <- coefRC[1] + coefRC[2]*S7[i] +

coefRC[3]*P2[i] + coefRC[4]*P5[i]

C[i] ~ dpois(reqC[i])

reqF[i] <- coefRF[1] + coefRF[2]* A[i] +

coefRF[3]* C[i] + coefRF[4]* S2[i]

probSpecDefect[i] ~ dnorm(reqF[i], reqVF)

}

for(b=1:4){

coefR[b] ~ dnorm(2, 0.01)

coefRC[b] ~ dnorm(4, 0.01)

coefRF[b] ~ dnorm(3, 0.01)

}

reqVA ~ dgamma(1,1)

reqVF ~ dgamma(1,1)

}

90

APPENDIX B: CODES OF PROPOSED MODELS FOR

DATASET 2

B.1. Winbugs code for the implementation of GLM

model {

for(i=1:N){

y[i] ~ dnorm(p[i],t)

p[i] <- beta[1] + beta[2]*commits[i] +

beta[3]*committers[i] + beta[4]*addedLOC[i] +

beta[5]*delLOC[i] + beta[6]*commitFreq[i] +

beta[7]*complexity[i] + beta[8]*testCases[i] +

beta[9]*errorTest[i] + beta[10]*failTest[i] +

beta[12]*testSuites[i] + beta[13]*testDefects[i]

}

for(j=1:13){

beta[j] ~ dnorm(1,0.001)

}

t ~ dgamma(0.5,0.5)

}

B.2. Winbugs code for the implementation of Idiom

model {

for(i=1:N){

cMu[i] <- abs(addedLOC[i] - delLOC[i]) * committers[i]

changedLOC[i] ~ dt(cMu[i], tau, d)

scale[i] <- (1/ theta) * commits[i]

commitFreq[i] ~ dnorm(scale[i], var1)

91

H1[i] <- h1beta[1] + h1beta[2]*changedLOC[i] +

h1beta[3]*commitFreq[i] + h1beta[4]*complexity[i]

testSum[i] <- (1/theta2) * (errorTest[i] + failTest[i] + testSuites[i])

testDefects[i] ~ dnorm(testSum[i], var2)

H2[i] <- h2beta[1] + h2beta[2]*testDefects[i] +

h2beta[3]*testsChange[i]

p[i] <- beta[1]*H1[i] + beta[2]*H2[i] +

(beta[3]*H1[i]* H2[i])

y[i] ~ dnorm(p[i], t)

}

for(j=1:3){

h2beta [j] ~ dnorm(1,0.01)

beta[j] ~ dnorm(1, 0.01)

}

for(k=1:4){

h1beta[k] ~ dnorm(1, 0.01)

}

t ~ dgamma(2,2)

var1 ~ dgamma(1,1)

theta ~ dnorm(1,1)

theta2 ~ dnorm(50, 0.1)

var2 ~ dnorm(20,0.1)

tau ~ dnorm(70, 1)

d<- 2

}

92

B.3. Winbugs code for the implementation of Stats

model {

for(i=1:N){

testCases[i] ~ dlnorm(tcMu[i], tcVar)

scale[i]<- commits[i] * theta

errorTest[i] ~ dexp(scale[i])

delLOC[i] <- addedLOC[i] * scale2

failTest[i] ~ dt(addedLOC[i] , fTau[i] , d)

sumTest[i] <- (coeff[1]*testCases[i]) +

(coeff[2]*errorTest[i]) +

(coeff[3]*failTest[i]) + (coeff[4]*delLOC[i])

testSuites[i] ~ dt(sumTest[i], sTau[i] , d2)

p[i] <- beta[1] + beta[2]*testSuites[i] +

beta[3]*committers[i] + beta[4]*complexity[i] +

beta[5]*testsChange[i]

y[i] ~ dnorm(p[i], t)

}

for(e=1:6){

beta[e] ~ dnorm(1,0.01)

coeff[e] ~ dnorm(1, 0.001)

}

for(k=1:N){

tcMu[k] ~ dnorm(7, 0.001)

sTau[k] ~ dnorm(5,5)

dvar[k] ~ dnorm(1, 0.01)

fTau[k] ~ dnorm(30, 0.1)

}

theta ~ dnorm(1, 0.1)

scale2 ~ dnorm(0.1, 0.01)

t ~ dgamma(2,2)

93

tcVar ~ dnorm(1, 0.001)

d2 <- 2

d <- 2

}

B.4. Winbugs code for the implementation of DistCov

model {

for(i=1:N){

scale[i] <- theta * commits[i] * committers[i]

commitFreq[i] ~ dnorm(scale[i], var1)

testCases[i] ~ dlnorm(tcMu[i], tcVar)

errorTest[i] ~ dexp(muError[i])

failTest[i] ~ dt(fMu[i] , fTau[i] , d)

sumTest[i] <- (var2 * testCases[i]) +

(var3 * errorTest[i]) +

(var4 * failTest[i])

testSuites[i] ~ dt(sumTest[i], sTau[i] , d2)

p[i] <- beta[1] + beta[2]*commitFreq[i] +

beta[3]*testSuites[i] +

beta[4]*testSuites[i]*commitFreq[i] +

beta[5]*(addedLOC[i] + delLOC[i]) +

beta[6]*complexity[i] + beta[7]*testDefects[i] +

beta[8]*testsChange[i]

y[i] ~ dnorm(p[i], t)

}

for(j=1:8){

94

beta[j] ~ dnorm(1, 0.001)

}

for(k=1:N){

tcMu[k] ~ dnorm(7, 0.001)

muError[k] ~ dgamma(250,1)

fMu[k] ~ dgamma(15, 2)

fTau[k] ~ dnorm(30, 0.1)

sTau[k] ~ dnorm(5,5)

}

}

B.5. Winbugs code for the implementation of ChiPlot

model {

for(i=1:N){

changedLOC[i] <- addedLOC[i] + delLOC[i]

tcMuF[i] <- HtestConstant * tcMu[i]

muErrorF[i] <- muError[i] + HtestConstant

fMuF[i] <- coeff[1] +

(coeff[2] * pow(fMu[i], HtestConstant)) +

(coeff[3] * changedLOC[i])

testCases[i] ~ dlnorm(tcMuF[i], tcVar)

errorTest[i] ~ dexp(muErrorF[i])

fTauOrg[i] <- 1/ fTau[i]

failTest[i] ~ dt(fMuF[i] , fTauOrg[i] , d)

scale[i] <- theta * commits[i]

scale2[i] <- theta2 * commits[i]

commitFreq[i] ~ dnorm(scale[i], var1)

complexity[i] ~ dnorm(scale2[i], var2)

95

H[i] <- coeff2[1] + (coeff2[2]*committers[i]) +

(coeff2[3]*commitFreq[i]) + (coeff2[4]*complexity[i]) +

(coeff2[5]*testsChange[i]) + (coeff2[6]*testSuites[i]) +

(coeff2[7]*testDefects[i])

p[i] <- beta[1] + (beta[2]*failTest[i]) + (beta[3]*H[i])

y[i] ~ dnorm(p[i], t)

}

}

96

APPENDIX C: SURVEY RESPONSES

97

Table C.1. Responses for Specification, Documentation & Project Management in

Datasets 1 & 2.
Response No. Dataset 1 Dataset 2

S1 S2 S3 S4 S7 P2 P5 S1 S2 S3 S4 S7 P2 P5

1 5 4 2 1 3 5 3 5 3 2 3 4 4 5

2 3 2 4 2 1 2 5 4 3 5 3 3 4 4

3 4 3 4 3 1 3 3 5 2 3 1 3 4 4

4 3 3 5 3 4 3 4 4 3 5 3 3 4 4

5 4 3 3 2 4 3 5 4 3 4 1 3 3 4

6 5 3 2 4 2 5 3 3 2 1 1 2 3 3

7 4 3 3 2 4 3 5 3 2 1 1 2 3 1

8 5 2 1 1 3 3 3 4 2 1 1 2 3 3

9 3 2 4 2 1 2 5 4 3 2 1 3 4 3

10 3 2 4 2 1 2 5 5 4 5 5 4 4 4

11 2 2 1 4 1 1 2 4 3 4 3 3 4 3

12 3 3 2 4 2 4 3 3 4 5 2 3 4 3

13 4 3 4 3 1 3 3 5 4 2 3 3 4 5

14 3 3 5 3 4 3 4 5 4 5 4 3 4 3

15 5 5 2 4 5 2 3 3 3 2 2 4 4 3

16 5 3 2 4 2 5 3

17 5 4 5 5 2 5 4

18 5 5 2 4 5 2 3

19 2 2 1 1 3 2 3

20 5 3 3 2 3 3 3

21 4 1 2 3 3 1 4

22 5 4 5 5 2 5 4

23 3 3 3 3 1 5 3

24 5 3 3 2 3 3 3

25 4 3 3 2 4 3 5

26 5 3 3 2 3 3 3

27 3 2 4 2 1 2 5

28 2 2 1 1 2 5 5

29 4 2 3 4 2 4 3

30 5 4 5 5 2 5 4

31 3 2 3 2 3 1 3

32 5 3 2 4 2 5 3

33 4 3 3 2 4 2 2

34 5 2 1 1 3 3 3

35 2 2 1 1 2 5 5

36 5 4 2 1 3 5 3

37 4 3 1 1 2 3 3

38 4 3 3 2 4 2 2

39 5 4 2 1 3 5 3

98

APPENDIX D: CHI-PLOTS FOR DEPENDENCE

ANALYSIS

99

(a) TC-TD (b) TC-AGE

(c) TC-DEFECT (d) TD-DEFECT

Figure D.1. Chi-plots showing an association between metrics in Dataset 1.

100

(a) ATR-TCQ (b) ATR-DEFECT

(c) TCQ-AGE (d) CHURN-COMPL

(e) EDITFR-DEFECT

Figure D.2. Chi-plots showing an association between metrics in Dataset 1

(continued).

101

(a) COMMITS-EDITFR (b) COMMITS-COMPL

(c) COMMITS-TCST (d) PEOPLE-DELLOC

(e) PEOPLE-EDITFR (f) PEOPLE-TCST

Figure D.3. Chi-plots showing an association between metrics in Dataset 2.

102

(a) ADDLOC-DELLOC (b) ADDLOC-TCF

(c) DELLOC-TCST (d) DELLOC-TD

(e) EDITFR-COMPL (f) TC-TCE

Figure D.4. Chi-plots showing an association between metrics in Dataset 2

(continued).

103

(a) TC-TCF (b) TC-TS

(c) TCE-TCF (d) TCE-TS

(e) TCF-TS (f) TCF-DEFECT

Figure D.5. Chi-plots showing an association between metrics in Dataset 2

(continued).

104

APPENDIX E: BOX-PLOTS OF SOFTWARE METRICS

105

(a) Test cases (b) Test defects (c) Average test run

(d) Test case quality (e) Age (f) People

(g) Churn (h) Edit frequency (i) Complexity

Figure E.1. Box-plots of software metrics for Dataset 1.

106

(a) Commits (b) People (c) Added LOC

(d) Deleted LOC (e) Edit frequency (f) Complexity

(g) Test cases (h) Test cases with errors (i) Test cases with failures

(j) Tests with status change (k) Test suites (l) Test defects

Figure E.2. Box-plots of software metrics for Dataset 2.

107

REFERENCES

1. Lyu, M., “Handbook of Software Reliability Engineering”, chap. Introduction,

IEEE Computer Society Press & McGraw-Hill, New York, NY, USA, 1996.

2. Why Projects Fail: Nasaś Mars Climate Orbiter Project , Tech. rep., JSC Centre

of Expertise in the Planning & Implementation of Information Systems, 2003.

3. Germain, J., Can Software Kill You? , Tech. rep., Technology Special Report,

2004.

4. Farr, W., “Handbook of Software Reliability Engineering”, chap. Software Re-

liability Modeling Survey, IEEE Computer Society Press & McGraw-Hill, New

York, NY, USA, 1996.

5. Rosenberg, L., T. Hammer and J. Shaw, “Software Metrics and Reliability”, Pro-

ceedings of the International Symposium on Software Reliability Engineering , pp.

361–370, 1998.

6. Ruben, O., “How Much Software Testing is Enough?”, Communications of the

ACM , 2010.

7. Brooks, A., The Mythical Man-Month: Essays on Software Engineering , Addison-

Wesley Professional, 1995.

8. Littlewood, B., “Limits to Dependability Assurance–A Controversy Revisited”,

Companion to the proceedings of the 29th International Conference on Software

Engineering , ICSE Companion ’07, p. 6, IEEE Computer Society, Washington,

DC, USA, 2007.

9. Fenton, N. E., M. Neil and D. Marquez, “Using Bayesian Networks to Predict

Software Defects and Reliability”, Journal of Risk and Reliability , Vol. 222, pp.

108

701–712, 2008.

10. Boehm, B. W. and R. Valerdi, “Achievements and Challenges in Cocomo-Based

Software Resource Estimation”, IEEE Software, Vol. 25, No. 5, pp. 74–83, 2008.

11. Menzies, T., J. Greenwald and A. Frank, “Data Mining Static Code Attributes to

Learn Defect Predictors”, IEEE Transactions on Software Engineering , Vol. 33,

No. 1, pp. 2–13, 2007.

12. Nagappan, N., L. Williams, M. Vouk and J. Osborne, “Using In-Process Testing

Metrics to Estimate Post-Release Field Quality”, ISSRE ’07: Proceedings of the

The 18th IEEE International Symposium on Software Reliability , pp. 209–214,

IEEE Computer Society, Washington, DC, USA, 2007.

13. Tosun, A., A. B. Bener, B. Turhan and T. Menzies, “Practical Considerations

in Deploying Statistical Methods for Defect Prediction: A Case Study within

the Turkish Telecommunications Industry”, Information & Software Technology ,

Vol. 52, No. 11, pp. 1242–1257, 2010.

14. Tosun, A., B. Turhan and A. B. Bener, “Feature Weighting Heuristics for Analogy-

Based Effort Estimation Models”, Expert Systems with Applications , Vol. 36,

No. 7, pp. 10325–10333, 2009.

15. Yang, B., H. Hu and L. Jia, “A Study of Uncertainty in Software Cost and

Its Impact on Optimal Software Release Time”, IEEE Transactions on Software

Engineering , Vol. 34, No. 6, pp. 813–825, 2008.

16. Ho, J. W., C. C. Fang and Y. S. Huang, “The Determination of Optimal Software

Release Times at Different Confidence Levels with Consideration of Learning Ef-

fects”, Software Testing Verification and Reliability , Vol. 18, No. 4, pp. 221–249,

2008.

17. IEEE Standard Dictionary of Measures to Produce Reliable Software,

109

http://ieeexplore.ieee.org/servlet/opac?punumber=2752, accessed at

February 2012.

18. Eusgeld, I., F. C. Freiling and R. Reussner (Editors), Dependability Metrics: Ad-

vanced Lectures , Springer-Verlag, Berlin, Heidelberg, 2008.

19. Adrion, W. R., M. A. Branstad and J. C. Cherniavsky, “Validation, Verification,

and Testing of Computer Software”, ACM Computing Survey , Vol. 14, No. 2, pp.

159–192, 1982.

20. Shull, F., V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall, D. Port,

I. Rus, R. Tesoriero and M. Zelkowitz, “What We Have Learned About Fighting

Defects”, Proceedings of the 8th International Symposium on Software Metrics ,

METRICS ’02, pp. 249–258, IEEE Computer Society, Washington, DC, USA,

2002.

21. Wohlin, C., A. Aurum, H. Petersson, F. Shull and M. Ciolkowski, “Software

Inspection Benchmarking - A Qualitative and Quantitative Comparative Oppor-

tunity”, Proceedings of the 8th International Symposium on Software Metrics ,

METRICS ’02, p. 118, IEEE Computer Society, Washington, DC, USA, 2002.

22. Fagan, M., “Software pioneers”, chap. Design and Code Inspections to Reduce

Errors in Program Development, pp. 575–607, Springer-Verlag New York, Inc.,

New York, NY, USA, 2002.

23. Nagappan, N., T. Ball and B. Murphy, “Using Historical In-Process and Product

Metrics for Early Estimation of Software Failures”, ISSRE 2006 , pp. 62–74, 2006.

24. Ostrand, T. J., E. J. Weyuker and R. M. Bell, “Predicting the Location and

Number of Faults in Large Software Systems”, IEEE Transactions on Software

Engineering , Vol. 31, No. 4, pp. 340–355, 2005.

25. Fenton, N. E. and M. Neil, “A Critique of Software Defect Prediction Models”,

110

IEEE Transactions on Software Engineering , Vol. 25, No. 5, pp. 675–689, 1999.

26. Nasa/Wvu IV&V Facility, Metrics Data Program, http://mdp.ivv.nasa.gov,

accessed at September 2010.

27. Nagappan, N., E. Maximilien, T. Bhat and L. Williams, “Realizing Quality Im-

provement Through Test Driven Development: Results and Experiences of Four

Industrial Teams”, Empirical Software Engineering , Vol. 13, No. 3, pp. 289–302,

2008.

28. Kocaguneli, E., A. Tosun, A. Bener, B. Turhan and B. Caglayan, “Prest: An

Intelligent Software Metrics Extraction, Analysis and Defect Prediction Tool”,

Proceedings of SEKE , pp. 637–642, 2009.

29. Misirli, A. T., B. Caglayan, A. V. Miranskyy, A. Bener and N. Ruffolo, “Different

Strokes for Different Folks: A Case Study on Software Metrics for Different Defect

Categories”, Proceedings of the 2nd International Workshop on Emerging Trends

in Software Metrics , WETSoM ’11, pp. 45–51, ACM, New York, NY, USA, 2011.

30. Menzies, T., B. Turhan, A. Bener, G. Gay, B. Cukic and Y. Jiang, “Implica-

tions of Ceiling Effects in Defect Predictors”, Proceedings of the 4th international

workshop on Predictor models in software engineering , PROMISE ’08, pp. 47–54,

ACM, New York, NY, USA, 2008.

31. Nagappan, N. and B. Thomas, “Use of Relative Code Churn Measures to Predict

System Defect Density”, Proceedings of the International Conference on Software

Engineering , pp. 15–21, 2005.

32. Caglayan, B., A. Bener and S. Koch, “Merits of Using Repository Metrics in De-

fect Prediction for Open Source Projects”, Proceedings of the 2009 ICSE Work-

shop on Emerging Trends in Free/Libre/Open Source Software Research and De-

velopment , FLOSS ’09, pp. 31–36, IEEE Computer Society, Washington, DC,

USA, 2009.

111

33. Nagappan, N. and T. Ball, “Using Software Dependencies and Churn Metrics

to Predict Field Failures: An Empirical Case Study”, Proceedings of the First

International Symposium on Empirical Software Engineering and Measurement ,

p. 364373, IEEE Computer Society, 2007.

34. Zimmermann, T. and N. Nagappan, “Predicting Defects Using Network Anal-

ysis on Dependency Graphs”, ICSE ’08: Proceedings of the 30th international

conference on Software engineering , pp. 531–540, ACM, New York, NY, USA,

2008.

35. Tosun, A., B. Turhan and A. Bener, “Validation of Network Measures as Indica-

tors of Defective Modules in Software Systems”, Proceedings of the 5th Interna-

tional Conference on Predictor Models in Software Engineering , PROMISE ’09,

pp. 1–9, ACM, New York, NY, USA, 2009.

36. Shin, Y., R. Bell, T. Ostrand and E. Weyuker, “Does Calling Structure Infor-

mation Improve the Accuracy of Fault Prediction?”, Proceedings of the 2009 6th

IEEE International Working Conference on Mining Software Repositories , MSR

’09, pp. 61–70, IEEE Computer Society, Washington, DC, USA, 2009.

37. Meneely, A., L. Williams, W. Snipes and J. Osborne, “Predicting Failures with

Developer Networks and Social Network Analysis”, Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software engineering , SIG-

SOFT ’08/FSE-16, pp. 13–23, ACM, New York, NY, USA, 2008.

38. Jiang, Y., B. Cukic and T. Menzies, “Fault Prediction Using Early Lifecycle

Data”, Proceedings of the The 18th IEEE International Symposium on Software

Reliability , ISSRE ’07, pp. 237–246, IEEE Computer Society, Washington, DC,

USA, 2007.

39. Kpodjedo, S., F. Ricca, P. Galinier, Y.-G. Guéhéneuc and G. Antoniol, “Design

Evolution Metrics for Defect Prediction in Object Oriented Systems”, Empirical

Software Engineering , Vol. 16, No. 1, pp. 141–175, 2011.

112

40. Weyuker, E., T. Ostrand and R. Bell, “Do Too Many Cooks Spoil the Broth?

Using the Number of Developers to Enhance Defect Prediction Models”, Empirical

Software Engineering , Vol. 13, No. 5, pp. 539–559, 2008.

41. Tosun, A., Defect Prediction in Embedded Software Systems: Cascading Naive

Bayes Algorithm with Cross- vs. Within Company Data, M.S. Thesis, Department

of Computer Engineering, Bogazici University, Turkey, 2008.

42. Zimmermann, T., A. Zeller, P. Weissgerber and S. Diehl, “Mining Version Histo-

ries to Guide Software Changes”, IEEE Transactions on Software Engineering ,

Vol. 31, No. 6, pp. 429–445, 2005.

43. Turhan, B., T. Menzies, A. B. Bener and J. Di Stefano, “On the Relative Value

of Cross-Company and Within-Company Data for Defect Prediction”, Empirical

Software Engineering , Vol. 14, No. 5, pp. 540–578, 2009.

44. Hall, T., S. Beecham, D. Bowes, D. Gray and S. Counsell, “A Systematic Liter-

ature Review on Fault Prediction Performance in Software Engineering”, IEEE

Transactions on Software Engineering , pp. 1–31, 2011.

45. Fenton, N., M. Neil, W. Marsh, P. Hearty, L. Radliński and P. Krause, “On the

Effectiveness of Early Life Cycle Defect Prediction with Bayesian Nets”, Empirical

Software Engineering , Vol. 13, No. 5, pp. 499–537, 2008.

46. Fenton, N. and M. Neil, Combining Evidence in Risk Analysis Using Bayesian

Networks , Tech. Rep. W0707-01, Agena, 2004.

47. Fenton, N. E., M. Neil and J. G. Caballero, “Using Ranked Nodes to Model

Qualitative Judgments in Bayesian Networks”, IEEE Transactions on Knowledge

and Data Engineering , Vol. 19, No. 10, pp. 1420–1432, 2007.

48. Fenton, N., W. Marsh, M. Neil, P. Cates, S. Forey and M. Tailor, “Making Re-

source Decisions for Software Projects”, Proceedings of the 26th International

113

Conference on Software Engineering , ICSE ’04, pp. 397–406, IEEE Computer

Society, Washington, DC, USA, 2004.

49. Courtois, P. J., N. Fenton, B. Littlewood, M. Neil, L. Strigini and D. Wright,

Examination of Bayesian Belief Network for Safety Assessment of Nuclear

Computer-Based Systems , Tech. Rep. DeVa ESPRIT Pro, City University, Centre

for Software Reliability, 1998.

50. Bai, C. G., Q. P. Hu, M. Xie and S. H. Ng, “Software Failure Prediction Based on

a Markov Bayesian Network Model”, Journal of Systems and Software, Vol. 74,

No. 3, pp. 275–282, 2005.

51. Pérez-Miñana, E. and J. J. Gras, “Improving Fault Prediction Using Bayesian

Networks for the Development of Embedded Software Applications: Research

Articles”, Software Testing Verification and Reliability , Vol. 16, No. 3, pp. 157–

174, 2006.

52. Radliński, L., N. Fenton, M. Neil and D. Marquez, “Improved Decision-Making for

Software Managers Using Bayesian Networks”, Proceedings of the 11th IASTED

International Conference on Software Engineering and Applications , SEA ’07, pp.

13–19, ACTA Press, Anaheim, CA, USA, 2007.

53. Baah, G. K., A. Gray and M. J. Harrold, “On-line Anomaly Detection of De-

ployed Software: A Statistical Machine Learning Approach”, Proceedings of the

3rd international workshop on Software quality assurance, SOQUA ’06, pp. 70–77,

ACM, New York, NY, USA, 2006.

54. Fineman, M., N. Fenton and L. Radlinski, “Modelling Project Trade-Off Using

Bayesian Networks”, International Conference on Computational Intelligence and

Software Engineering , pp. 1–4, 2009.

55. Marquez, D., M. Neil and N. Fenton, “Improved Reliability Modeling Using

Bayesian Networks and Dynamic Discretization”, Reliability Engineering & Sys-

114

tem Safety , Vol. 95, No. 4, pp. 412–425, 2010.

56. Schulz, T., L. Radliński, T. Gorges and W. Rosenstiel, “Defect Cost Flow Model:

A Bayesian Network for Predicting Defect Correction Effort”, Proceedings of

the 6th International Conference on Predictive Models in Software Engineering ,

No. 16 in PROMISE ’10, pp. 1–11, ACM, New York, NY, USA, 2010.

57. Wagner, S., “A Bayesian Network Approach to Assess and Predict Software Qual-

ity Using Activity-Based Quality Models”, Proceedings of the 5th International

Conference on Predictor Models in Software Engineering , PROMISE ’09, pp. 6:1–

6:9, ACM, New York, NY, USA, 2009.

58. Mendes, E. and N. Mosley, “Bayesian Network Models for Web Effort Prediction:

A Comparative Study”, IEEE Transactions on Software Engineering , Vol. 34,

No. 6, pp. 723–737, 2008.

59. Heckerman, D., “Learning in Graphical Models”, chap. A Tutorial on Learning

with Bayesian Networks, pp. 301–354, MIT Press, Cambridge, MA, USA, 1999.

60. J. Pai, G. and J. Bechta Dugan, “Empirical Analysis of Software Fault Content

and Fault Proneness Using Bayesian Methods”, IEEE Transactions on Software

Engineering , Vol. 33, No. 10, pp. 675–686, 2007.

61. Wiegerinck, W., B. Kappen and W. Burgers, “Bayesian Networks for Expert

Systems: Theory and Practical Applications”, Vol. 281, pp. 547–578, 2010.

62. Fayyad, M. U. and B. K. Irani, “Multi-Interval Discretization of Continuous-

Valued Attributes for Classification Learning”, Proceedings of the International

Joint Conference on Uncertainty in AI , pp. 1022–1029, 1993.

63. Onisko, A., M. Druzdzel and H. Wasyluk, “A Bayesian Network Model for Diagno-

sis of Liver Disorders”, Proceedings of the Eleventh Conference on Biocybernetics

and Biomedical Engineering , pp. 842–846, 1999.

115

64. Antal, P., H. Verrelst, D. Timmerman, S. Van Huffel, B. de Moor and I. Vergote,

“Bayesian Networks in Ovarian Cancer Diagnosis: Potentials and Limitations”,

Proceedings of the 13th IEEE Symposium on Computer-Based Medical Systems

(CBMS’00), CBMS ’00, p. 103, IEEE Computer Society, Washington, DC, USA,

2000.

65. Hugin Expert, Advanced Decision Support using Bayesian Networks and Influence

Diagrams, http://www.hugin.com, accessed at January 2010.

66. Netica, http://www.norsys.com/netica.html, accessed at March 2010.

67. Murphy, K., “Software for Graphical Models: A Review”, Software Highlight ,

Vol. 14, pp. 1–3, 2007.

68. Ogunyemi, O., J. R. Clarke and B. Webber, “Using Bayesian Networks for Di-

agnostic Reasoning in Penetrating Injury Assessment”, Proceedings of the 13th

IEEE Symposium on Computer-Based Medical Systems (CBMS’00), CBMS ’00,

p. 115, IEEE Computer Society, Washington, DC, USA, 2000.

69. Reiz, B. and L. C., “Tree-Like Bayesian Network Classifiers for Surgery Sur-

vival Chance Prediction”, International Journal of Computers, Communications

& Control , Vol. 3, pp. 470–474, 2008.

70. Meloni, A., A. Ripoli, V. Positano and L. Landini, “Mutual Information Pre-

conditioning Improves Structure Learning of Bayesian Networks from Medical

Databases”, Transactions on Information Technology in Biomedicine, Vol. 13,

No. 6, pp. 984–989, 2009.

71. Yuan, C. and M. J. Druzdzel, “Importance Sampling for General Hybrid Bayesian

Networks”, Journal of Machine Learning Research - Proceedings Track , Vol. 2,

pp. 652–659, 2007.

72. Friedman, N., M. Goldszmidt and T. J. Lee, “Bayesian Network Classification

116

with Continuous Attributes: Getting the Best of Both Discretization and Para-

metric Fitting”, Proceedings of the Fifteenth International Conference on Machine

Learning , ICML ’98, pp. 179–187, Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 1998.

73. Davies, S. and A. Moore, Mix-nets: Factored Mixtures of Gaussians in Bayesian

Networks with Mixed Continuous and Discrete Variables , Research paper, School

of Computer Science, Carnegie Mellon University, 2000.

74. Larraaga, P., C. M. H. Kuijpers, R. H. Murga and Y. Yurramendi, “Learning

Bayesian Network Structures by Searching For the Best Ordering With Genetic

Algorithms”, IEEE Transactions on Systems, Man and Cybernetics , Vol. 26, pp.

487–493, 1996.

75. Margaritis, D., “Distribution-Free Learning of Bayesian Network Structure in

Continuous Domains”, Proceedings of the 20th national conference on Artificial

intelligence - Volume 2 , AAAI’05, pp. 825–830, AAAI Press, 2005.

76. Lagerstrm, R., P. Johnson, D. Hk and J. Knig, “Software Change Project Cost Es-

timation - A Bayesian Network and A Method for Expert Elicitation”, Proceedings

of International Workshop on Software Quality and Maintainability Proceedings ,

2009.

77. Xiaoxu, W., W. Chaoying and M. Lin, “Software Project Schedule Variance Pre-

diction Using Bayesian Network”, Advanced Management Science (ICAMS), 2010

IEEE International Conference on, Vol. 2, pp. 26 –30, 2010.

78. Torkar, R., M. Awan, A. Alvi and W. Afzal, “Predicting Software Test Effort in

Iterative Development Using a Dynamic Bayesian Network”, Proceedings of 21st

IEEE International Symposium on Software Reliability Engineering , 2010.

79. Neil, M., N. Fenton and L. Nielson, “Building Large-Scale Bayesian Networks”,

Knowledge Engineering Review , Vol. 15, No. 3, pp. 257–284, 2000.

117

80. Ciolkowski, M., O. Laitenberger, S. Vegas and S. Biffl, “Practical Experiences in

the Design and Conduct of Surveys in Empirical Software Engineering”, Empirical

Methods and Studies in Software Engineering , pp. 104–128, 2003.

81. Boehm, B. W., Software Engineering Economics , Prentice Hall PTR, Upper Sad-

dle River, NJ, USA, 1st edn., 1981.

82. Ropponen, J. and K. Lyytinen, “Components of Software Development Risk: How

to Address Them? A Project Manager Survey”, IEEE Transactions on Software

Engineering , Vol. 26, No. 2, pp. 98–112, 2000.

83. Zimmermann, T., “Changes and Bugs - Mining and Predicting Development Ac-

tivities”, Proceedings of 25th IEEE International Conference on Software Main-

tenance, pp. 443–446, 2009.

84. Ostrand, T. and E. Weyuker, “The Distribution of Faults in a Large Industrial

Software System”, Proceedings of the 2002 ACM SIGSOFT international sympo-

sium on Software testing and analysis , ISSTA ’02, pp. 55–64, ACM, New York,

NY, USA, 2002.

85. Seifert, T. I. and B. Paech, “Exploring the Relationship of a File History and

Its Fault-Proneness: An Empirical Method and Its Application to Open Source

Programs”, Information & Software Technology , Vol. 52, No. 5, pp. 539–558,

2010.

86. Kan, S. H., J. Parrish and D. Manlove, “In-process Metrics for Software Testing”,

IBM Systems Journal , Vol. 40, No. 1, pp. 220–241, 2001.

87. Talby, D., O. Hazzan, Y. Dubinsky and A. Keren, “Agile Software Testing in a

Large-Scale Project”, IEEE Software, Vol. 23, No. 4, pp. 30–37, 2006.

88. Little, R. and D. Rubin, Statistical Analysis with Missing Data, John Wiley &

Sons, New Jersey, 2002.

118

89. Cemgil, A. T., Bayesian Statistics and Machine Learning, Graphical Models

Lecture 2, http://www.cmpe.boun.edu.tr/courses/cmpe58K/fall2011/, ac-

cessed at January 2012.

90. Jensen, F., An Introduction to Bayesian Networks , University College London

Press, UK, 1996.

91. Agena: Bayesian Network and Simulation Software for Risk Analysis and Deci-

sion Support, http://www.agenarisk.com, accessed at December 2011.

92. Bayes Net Toolbox for Matlab, http://code.google.com/p/bnt/, accessed at

December 2011.

93. Cemgil, A. T., Monte Carlo Methods: The Gibbs Sampler, Applications, Lecture

4, http://www.cmpe.boun.edu.tr/courses/cmpe58n/spring2011/, accessed

at January 2012.

94. Szekely, B. and M. Rizzo, “Brownian Distance Covariance”, The Annals of Applied

Statistics , Vol. 3, No. 4, pp. 1236–1265, 2009.

95. Fisher, N. I. and P. Switzer, “Chi-Plots for Assessing Dependence”, Biometrika,

Vol. 72, No. 2, pp. 253–265, 1985.

96. Kitchenham, B., L. Pickard, S. G. MacDonell and M. J. Shepperd, “What Ac-

curacy Statistics Really Measure”, IEEE Proceedings - Software, Vol. 148, No. 3,

pp. 81–85, 2001.

97. Chulani, S., B. Boehm and B. Steece, “Bayesian Analysis of Empirical Software

Engineering Cost Models”, IEEE Transactions on Software Engineering , Vol. 25,

No. 4, pp. 573 –583, 1999.

98. Port, D. and M. Korte, “Comparative Studies of the Model Evaluation Criterions

MMRE and PRED in Software Cost Estimation Research”, Proceedings of ESEM ,

119

pp. 51–61, 2008.

99. Spiegelhalter, D. J., N. G. Best, B. P. Carlin and A. van der Linde, “Bayesian

Measures of Model Complexity and Fit (with Discussion)”, Journal of the Royal

Statistical Society, Series B , Vol. 64, pp. 583–639(57), 2002.

100. Turhan, B., “On the Dataset Shift Problem in Software Engineering Prediction

Models”, Empirical Software Engineering , Vol. 17, No. 1-2, pp. 62–74, 2012.

101. Bird, C., N. Nagappan, B. Murphy, H. Gall and P. Devanbu, “Don’t Touch My

Code!: Examining the Effects of Ownership on Software Quality”, Proceedings

of the 19th ACM SIGSOFT symposium and the 13th European conference on

Foundations of software engineering , ESEC/FSE ’11, pp. 4–14, ACM, New York,

NY, USA, 2011.

102. Lilliefors, H. W., “On the Kolmogorov-Smirnov Test for the Exponential Distri-

bution with Mean Unknown”, Journal of the American Statistical Association,

Vol. 64, No. 325, p. 387389, 1969.

103. Genest, C. and A. Favre, “Everything You Always Wanted to Know about Copula

Modeling, but Were Afraid to Ask”, Journal of Hydrologic Engineering , Vol. 12,

No. 4, pp. 347–368, 2007.

104. Genest, C. and J. C. Boies, “Detecting Dependence with Kendall Plots”, The

American Statistician, Vol. 57, No. 4, 2003.

105. Nelsen, R., An Introduction to Copulas , Springer Series in Statistics, Springer,

New York, 2006.

106. Fisher, N. I. and P. Switzer, “Graphical Assessment of Dependence: Is a Picture

Worth 100 Tests?”, The American Statistician, Vol. 55, No. 3, pp. 233–239, 2001.

107. Chambers, J., Graphical Methods for Data Analysis , Chapman & Hall statistics

120

series, Wadsworth International Group, 1983.

108. Lunn, D. J., A. Thomas, N. Best and D. Spiegelhalter, “WinBUGS: A Bayesian

Modelling Framework: Concepts, Structure, and Extensibility”, Statistics and

Computing , Vol. 10, No. 4, pp. 325–337, 2000.

109. Peter, M. L., Bayesian Statistics: An Introduction, New York, Willey, 2004.

110. Kriegel, H., P. Krger and A. Zimek, “Outlier Detection Techniques”, Tutorial at

16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

2010), 2010.

111. Vanselst, M. and P. Jolicoeur, “A Solution to the Effect of Sample-Size on Outlier

Elimination”, Quarterly Journal of Experimental Psychology Section AHuman

Experimental Psychology , Vol. 47, No. 3, pp. 631–650, 1994.

112. Chandola, V., A. Banerjee and V. Kumar, “Anomaly Detection: A Survey”, ACM

Computing Surveys , Vol. 41, No. 3, p. 158, 2009.

113. Box, P. E. G. and R. D. Cox, “An Analysis of Transformations”, Journal of the

Royal Statistical Society. Series B (Methodological), Vol. 26, No. 2, pp. 211–252,

1964.

114. Cook, T. and D. Campbell, Quasi-Experimentation: Design & Analysis Issues for

Field Settings , Rand McNally College, 1979.

115. Campbell, D. and J. Stanley, Experimental and Quasi-Experimental Designs for

Research, Rand McNally, 1973.

116. Shull, F., J. Singer and D. I. Sjøberg, Guide to Advanced Empirical Software

Engineering , Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

