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RECONSTRUCTION OF OBJECTS LOCATED IN THREE PART 

PLANARLY LAYERED MEDIA  

SUMMARY 

In this study, the problem of reconstructing the location and the shape of a buried 

object in a three part planarly layered media is considered. The problem is studied in 

two dimensions serving as a prestudy for three-dimensional problems requiring more 

advanced math and high computational capability. Contrast Source Inversion method 

(CSI) which is one of the most effective inversion algorithms is employed to solve 

the inverse problems. To this aim, the CSI method is applied for the objects located 

in infinite medium first in order to verify correct implementation of the method. 

Then, the method is applied for objects located in a three part planarly layered media.  

In infinite medium case, the forward problem is solved using Method of Moment 

(MOM) to produce synthetic data and the results validated by analytical solution and 

Finite Element Method (FEM) solution. For the inverse problem, the reconstruction 

domain is illuminated by planewaves impinging on to the domain circumferentially. 

Receive points are located being equally arranged in a full circle. Satisfactory results 

are obtained in the infinite medium case. In stratified media case, the forward 

problem is solved using MOM by utilizing the Green’s functions pertaining to three 

part planarly layered media. It is checked that one component of the Green’s 

functions used in the forward solution is calculated correctly through the Fourier 

inversion path by comparing the results with available analytical expressions. This 

check also provided a powerful evidence indicating that the other components having 

similar analytical behavior are calculated correctly through the same integral path. 

The reconstruction domain is illuminated by down going planewaves and receive 

points are located in the upper half space which is the only accessible media. The 

effect of linearly and circularly arranged receive points on the reconstruction 

performance is tested. The method is studied for different cases. The reconstruction 

performance for small and close objects are investigated. The performance is 

degraded comparing to infinite medium case but obtained results showed that 

Contrast Source Inversion method can be applied to reconstruct objects located in a 

three part planarly layered media. 
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ÜÇ TABAKALI ORTAM İÇERİSİNE GÖMÜLÜ CİSİMLERİN 

GÖRÜNTÜLENMESİ 

ÖZET 

Yanına yaklaşılamayan cisimlerin elektromagnetik dalgalarla görüntülenmesi 

elektromagnetik alanının en gelişmiş uygulamalarından birisidir. Günümüzde 

kullanılagelen görüntüleme sistemlerine bakıldığında askeri ve sivil alanda radar 

temelli sistemler, medikal uygulamalarda röntgen ışını temelli sistemler 

görülmektedir. Bu sistemlerde yüksek enerji kullanılmasına rağmen ancak düşük 

çözünürlüklü görüntüler elde edilebilmektedir. Özellikle medikal uygulamalarda 

hastaları yüksek enerjiye maruz bırakmadan daha yüksek çözünürlüklü görüntüler 

elde edebilen görüntüleme sistemlerine olan ihtiyaç günümüzde iyice belirgin hale 

gelmiştir. Göğüs kanseri gibi erken teşhisin kritik olduğu vakalarda daha iyi 

çözünürlüklü görüntüleme yapılması hastaların hayatını kurtarabilmektedir. 

Mikrodalga görüntüleme olarak adlandırılan görüntüleme sistemi, çok düşük güçlü 

elektromagnetik dalgalar ile yüksek çözünürlüklü görüntüler elde etmeyi amaçlayan 

bir görüntüleme sistemdir.  

Literatürde görüntüleme işlemi elektromagnetik ters probleme karşı düşmektedir. 

Elektromagnetikte problemler, düz saçılma problemleri ve ters saçılma problemleri 

olarak iki kategoriye ayrılabilir. Bilinen bir cismin bilinen bir kaynak ile 

aydınlatılması sonucu oluşacak saçılan alanın belirlenmesi problemi düz problem 

olarak tanımlanır. Bilinmeyen bir cismin bilinen bir kaynak ile aydınlatılması ve 

oluşan saçılan alan bilgisi kullanılarak bilinmeyen cismin geometrik ve fiziksel 

özelliklerinin belirlenmesi problemi ise ters saçılma problemi olarak tanımlanır. Ters 

saçılma problemleri düz saçılma problemlerine göre çok daha karmaşık ve gelişmiş 

yöntemler gerektirir. Bir ters saçılma probleminde çözümün varlığı, tekliği konuları 

dahi araştırma konusu teşkil etmektedir. Son yarım asırda ters saçılma problemlerine 

yönelik çeşitli algoritmalar geliştirilmiştir. Bu algoritmalar doğrusal ve doğrusal 

olmayan algoritmalar olarak basitçe sınıflandırılabilir. Doğrusal olmayan 

algoritmalar problemin doğasına daha uygun olduklarından daha verimli sonuçlar 

üretebilmektedir. Doğrusal olmayan algoritmalar da kendi içerisinde lokal ve global 

algoritmalar olarak sınıflandırılabilir. Lokal algoritmalar belirlenen bir fonksiyoneli 

belirli bir bölgede minimize etmeyi amaçlar, bu algoritmalarda başlangıç tahminleri 

sonucun yakınsaması için kritik öneme sahiptir. Global algoritmalar ise belirlenen 

fonksiyonelin global minimum değerini bulmayı hedefler.  Bu çalışmada, ters 

problemlerin çözümünde kullanılacak olan “Contrast Source Inversion” metodu 

doğrusal olmayan lokal bir algoritma olup bu kategoride öne çıkan yöntemlerden 

birisidir. 
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İkinci bölümde düz problemlerin Green fonksiyonları yardımıyla Moment Metodu 

ile çözümü ele alınmıştır. Düz problem çözümünde Moment Metodu kullanıldığında 

farklı geometriler için sadece Green fonksiyonlarının değiştiği, çözüm yönteminde 

bir değişiklik olmadığı vurgulanmıştır. Saçılan alan için yazılan Helmholtz denklemi, 

Green fonksiyonları yardımıyla integral denklemi olarak  ifade edilmiş ve düz 

problem ikinci türden Fredholm integral denklemine dönüştürülmüştür. Bu denklem 

de uygun hücre boyutları üzerinden ayrıklaştırılmış ve düz problem çözümü elde 

edilmiştir.  Örnek bazı durumlar için farklı yöntemlerle çözülen düz problem 

sonuçları üçüncü bölümde verilmiştir. 

Dördüncü bölümde ise ters problem ve “Contrast Source Inversion” metodu ele 

alınmıştır. Bir optimizasyon algoritması olarak düşünülebilen yöntemin uygulama 

adımları gösterilmiştir. 

Çalışmanın nihai amacı üç parçalı bir ortam içerisine gömülü cisimlerin 

elektromagnetik dalgalar ile görüntülenmesidir. Bu amaca yönelik “Contrast Source 

Inversion” metodu öncelikle sonsuz uzay içerisine yerleştirilmiş cisimlerin 

görüntülenmesi için uygulanmıştır ve başarılı sonuçlar elde edilmiştir. Ters problem 

çalışması için gereken saçılan alan verileri düz problemin Moment Metodu ile 

çözülmesiyle elde edilmiştir. Sonsuz uzay durumunda elde edilen saçılan alan 

verisinin doğruluğu, analitik çözümlerle ve sonlu eleman analizi çözümü ile 

karşılaştırma yapılarak kontrol edilmiştir. Elde edilen saçılan alan verileriyle yapılan 

ters çözümlerde iyi sonuçlar alınmış ve sonsuz uzay durumunda yöntemin doğru 

uygulandığı görülmüştür. 

Çalışmaya konu olan üç parçalı uzay, düzlemsel sınırlarla ayrılmış homojen, kayıpsız 

ortamlardan oluşmaktadır. Parçalı uzay durumu için Green fonksiyonları Fourier 

dönüşümü kullanılarak elde edilmiştir. Yatay eksende alınan Fourier dönüşümü ile 

Green fonksiyonları için yazılan Helmholtz denklemi bağımsız değişkeni parçalı 

eksen olan adi diferansiyel denkleme dönüştürülmüş ve spektral Green fonksiyonları 

elde edilmiştir. Spektral Green fonksiyonları içerdikleri kompleks fonksiyonların 

tanımları dikkate alınarak belirlenen Fourier ters dönüşüm integral yolu üzerinden 

integre edilerek uzaysal Green fonksiyonları elde edilmiştir. Spektral Green 

fonksiyonlarının integral yolu üzerindeki davranışı incelenmiş, sayısal integrallerde 

integral değişkeninin sıklığı değiştirilerek integral sonucunun yakınsaklığı ve 

sonuçların fiziksel durumla örtüştüğü kontrol edilmiştir. 

Parçalı uzay için düz problem sonuçlarının doğruluğu, Fourier ters dönüşüm integral 

yolu üzerinden hesaplanan Green fonksiyonunun bir bileşeninin analitik ifadeyle 

karşılaştırılmasıyla kontrol edilmiştir. Bahsi geçen bileşen Hankel fonksiyonun 

spektral gösterimidir. Böylece, analitik davranış olarak büyük farklılık göstermeyen 

Green fonksiyonu diğer bileşenlerinin de sayısal integralinin doğru hesaplandığı 

düşünülmüştür. Boş uzay durumuna göre aydınlatmanın sadece üst uzaydan 

yapılması ve saçılan alanın sadece üst uzayda ölçülebiliyor olması görüntüleme 

performansını olumsuz yönde etkilemektedir. Elde edilen saçılan alan verileriyle 

yapılan ters çözümlerde boş uzay durumundaki kadar olmasa da iyi sonuçlar elde 

edilmiştir. Genel olarak, parçalı uzayda elde edilen görüntülerin aydınlatmanın 

sadece üstten yapılabilmesi sebebiyle gölgeli oluştuğu gözlenmiştir. Cisim boyutları 

ve birden fazla cisim durumunda cisimlerin birbirine yakınlığının görüntüleme 

performansına etkisi gözlenmiştir. Görüntüleme bölgesinin büyüklüğünün 

görüntüleme çözünürlüğüne etkisi gözlenmiştir. Görüntüleme bölgesi boyutlarına 

yaklaşmayacak kadar küçük ve dalgaboyunun onda birinden daha büyük boyutta 

cisimlerin daha iyi görüntülendiği gözlenmiştir. Dalgaboyunun onda birinden daha 

küçük cisimlerin elektriksel özelliklerinin doğru tespit edilemediği ancak yerlerinin 
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tespit edildiği ve bazı durumlarda cisim görüntüsünün aynalı olarak elde edildiği 

gözlenmiştir. 

İki cisim durumunda cisimlerin görüntüleme bölgesinin zıt köşelerine yakın olduğu 

hallerde ayırt edilebildiği, birbirlerine yakınlaştığı hallerde ise tek cisim gibi 

görüntülendiği gözlenmiştir. İki cisim durumunda en kötü görüntüleme 

performansının cisimler dikey olarak hizalandığında oluştuğu gözlenmiştir. Cisim 

permitivitesinin ortama çok yakın veya çok uzak olmasının görüntüleme 

performansını olumsuz yönde etkilediği gözlenmiştir. Kontrast değeri bire 

yaklaştıkça veya üç-dört değerini aştıkça cisim görüntüsünün esas yerinden sapma 

yaptığı ve bazı durumlarda aynalanmış olarak görüntülendiği gözlenmiştir. 

Ters problem algoritmalarının objektif bir biçimde değerlendirilmesi düz problem 

çözümünde kullanılan yöntemlerin ters algoritmalarda yer almamasını 

gerektirmektedir. Aksi durumda, düz problem çözümünde yapılan hataların ters 

problem çözümünde ortaya çıkmama veya sürpriz iyi sonuçlar elde etme riski vardır. 

Bu risk literatürde “inverse crime” olarak adlandırılmaktadır. Bu durumdan 

kaçınmak için düz problem çözümünün tamamen farklı bir yöntemle yapılması 

gerekmektedir. Bu çalışmada sonsuz uzay durumu için düz problem analitik 

yöntemlerle ve sonlu eleman analizi ile çözülebilmiştir ancak üç parçalı uzay durumu 

için düz problem sadece Moment Metodu ile çözülmüştür. Parçalı uzay durumunda 

sonlu eleman analiz çözümlerinin sınır koşullarının tam doğru yazılamaması 

sebebiyle düzlem dalgaların gelme açısı arttıkça kararsız çözümler elde edilmiştir 

dolayısıyla sonlu elemanlar yöntemi kullanılamamıştır. Moment Metodu çalışmaya 

konu olan ters algoritma içerisinde de kullanıldığından algoritma performansının 

objektif değerlendirilememesi riski bulunmaktadır. Parçalı uzay durumu için düz 

problemin doğru kurulduğu ve çözüldüğüne dair kanıtlar ortaya konmuş olsa da 

bahsi geçen risk bulunmaktadır. Bu riske rağmen elde edilen sonuçlar mantıklı olup 

“Contrast Source Inversion” metodunun üç parçalı uzay için uygulanabilir olduğu 

görülmüştür. 
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1.  INTRODUCTION 

Imaging of inaccessible objects is one of the most sophisticated applications of the 

electromagnetics. Radar based systems and Xrays imaging systems those are 

rontgen, mammography and conventional tomography in medical imaging are  most 

popular imaging systems.  

The common drawbacks of these systems are excessive power use and inadequate 

image resolution. Radar systems can only form low-resolution images despite their 

high power use. In medical imaging; although X-rays’ harmful effects on human 

cells could not be explored clearly yet, nobody wants to be exposed such a high 

power. Furthermore, X-ray imaging especially in mammography may not give 

detailed enough information in some cases and this risks patients those can be treated 

well if early diagnosis is achieved.  

High power exposure and low resolution of today’s imaging systems encourages 

researchers to work on microwave imaging (MWI). MWI offers high resolution 

imaging with low power electormagnetic waves. In addition to aforementioned 

applications, MWI can be extended to many medical, industrial and military 

applications. 

In electromagnetics literature, the term imaging corresponds to inverse scattering 

problem. Problems in electromagnetics can be categorized as forward scattering and 

inverse scattering problems those are called forward and inverse problems shortly. A 

known object(s) located in a known environment is illuminated by a known 

electromagnetic source, how the target object(s) scatters is defined as forward 

scattering problem. An unknown object(s) located in a known inaccessible 

background media is illuminated by a known electromagnetic source, determination 

of geometrical and physical properties of the unknown object(s) from scattered data 

collected at accessible points is defined as inverse scattering problem. Human vision 

is an everyday example of inverse scattering problem, the brain reconstruct three-

dimensional objects from the knowledge of scattered light impinging on the retinas. 
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Investigation of the inverse problems forces researchers to work on forward 

problems first. Results of accurately solved forward problems make researchers to 

work with reliable data so that inversion algorithms can be studied well. 

As it may be guessed, inverse problems are much more sophisticated than forward 

problems. In forward problems, as they are well posed, analytical and numerical 

methods such as Method of Moments (MOM), Finite Element Method (FEM), Finite 

Difference Time Domain (FDTD) method can be employed. On the other hand, due 

to their ill-posed nature, inverse problems require advanced algorithms. 

Inversion algorithms can be classified as linear and nonlinear algorithms. Linear 

algorithms simplify the inverse problem by making some approximations. They are 

most early developed algorithms and have limited application areas due to their 

restrictions.  Linear diffraction tomography algorithm and Born approximation are 

popular linear methods. On the other hand, nonlinear methods keep nonlinear nature 

of the inverse problem and bring more accurate results. They are mathematically 

more complex and carried out via iterations. Nonlinear methods cast the inverse 

problem as an optimization problem and they can also be classified as local and 

global inversion algorithms. Newton–Kantorovich algorithm [1], the conjugate-

gradient method, the modified gradient method [2] and the Contrast Source Inversion 

(CSI) [3] method are outstanding local inversion algorithms those seek local 

minimum of a predefined cost functional. Genetic algorithms and neural networks 

are popular examples of global inversion algorithms. 

Aforementioned nonlinear local inversion algorithms have been developed for past 

three decades and Contrast Source Inversion (CSI) method is the most outstanding 

method among them [4]. 

Electromagnetic problems in the real life are three-dimensional problems. Three-

dimensional problems require advanced mathematics and high computational 

capability. It is necessary to study on lower-dimensional problems before studying 

three-dimensional problems. Once the concepts in two-dimensional cases are 

established well, the studies can be extended to three-dimensional problems. 

Moreover, there may be some cases in real life those cause acceptable errors when 

modeled in two dimension. Wide walls, long pipes, large areas can be thought as 

two-dimensional objects in the modeling.  
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The wave motion is governed by the wave equation that is a vector partial 

differential equation defined in the time domain in three dimensions. In time 

harmonic case, the wave equation reduces to Helmholtz equation that is also a vector 

partial differential equation. It also reduces to scalar partial differential equation if 

the field variable is directed in one direction only.  

                          (1.1) 

Equation 1.1 is scalar Helmholtz equation written for TMz electric fields where k is 

propagation constant of the medium. This equation is the main equation to solve 

forward problems in the thesis. Analytical methods such as separation of variables 

can be employed to solve the Helmholtz equation for some canonical cases. 

However, when arbitrarily shaped scattering objects take into play, numerical 

methods such as MOM, FEM, FDTD should be employed. In this work, MOM is 

used as primary numerical method for forward problems. In addition to MOM, FEM 

is employed as a collaborating numerical method to validate MOM results. FEM 

solutions are obtained using a simple FEM tool, FreeFEM [5].  

In order to apply MOM, Helmholtz equation is converted to integral equation that is 

a Fredholm integral equation of the second kind by utilizing the Green’s functions. 

Then, the integral equation is discretized.  

In inverse problems, Contrast Source Inversion method is used.  The method is 

applied for the objects located in infinite medium first as depicted in the paper from 

which the method originates. Then, it is applied for the objects located in three part 

planarly layered media. 

The thesis is organized as follows, Section 2 depicts forward problems and Section 3 

gives related numerical results. In Section 4, inverse problems are studied and 

numerical results are given in Section 5.  

        is understood time factor for phasor calculations. 

1.1 Purpose of the Work 

The aim of this work is to study on application of Contrast Source 

Inversion method to reconstruct objects located in a three part planarly 

layered media. 



 

4 
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2.   FORWARD PROBLEMS FOR OBJECTS LOCATED IN THREE PART 

PLANARLY LAYERED MEDIA 

This section depicts solution of two-dimensional forward scattering problems. The 

scattered filed data is necessary for the inverse problem study. The data will be 

obtained synthetically by solving the forward problem. As it is mentioned in Section 

1, MOM will be used as primary numerical method to solve the forward problems. 

The cases for objects located in infinite medium and objects located in three part 

planarly layered media will be both studied. In MOM, different mediums differ 

Green’s functions only in the solution procedure. Once Green’s functions pertaining 

to the medium are obtained, the rest of the problem is straightforward. Therefore, a 

simple geometry will be used to illustrate the forward solution procedure.  

2.1 Formulation of the Forward Scattering Problem 

An infinite dielectric cylinder is located along the z-axis in a linear, isotropic and 

lossless media as shown in Figure 2.1. The permittivity of the object and the 

background medium are not necessarily homogeneous. The object is illuminated by a 

TMz planewave propagating in an arbitrary direction.  

 

 

Figure 2.1 : An example geometry for the forward problem. 
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The Helmholtz equation reduces to scalar one because the electric field has z 

component only.  The total electric field satisfies the Helmholtz equation shown in 

(2.1) 

                          (2.1)  

where k is propagation constant being defined by              

         
             

             
  (2.2)  

and the incident field satisfies (2.3). 

       
       (2.3)  

The coordinate indices (x,y) and vector cap placed above a vector will be dropped to 

simplify equations i.e.              throughout the thesis. They will be 

emphasized when necessary.  

It can also be stated that the total field at any point equal to summation of the 

incident and the scattered field at that point as shown in (2.4). 

         (2.4)  

Two terms can be added and subtracted in (2.1), it becomes (2.5).  

           
       

       
       

       (2.5)  

using (2.4)  

            
       

       
       

           (2.6)  

       
      

           (2.7)  

       
            

     (2.8)  

and using the definition of the object function given in (2.9), (2.8) can be expressed 

as (2.10). 
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            (2.9)  

The object function is also called as contrast as it will be referred in Section 3. 

       
        

      (2.10)  

It is seen that the polarization current induced in the cylinder can be thought as 

source current of the scattered field, this approach is called volumetric equivalence 

principle [6]. 

It is also known that, by definition, the solution of (2.11) in a medium gives Green’s 

function of the medium.  

                 
                          (2.11)  

Green’s functions enable us to write the solution of (2.8) in the integral form as in 

(2.12). 

           
                   

 

                             (2.12)  

where (x,y) and (x’,y’) are the coordinates of the observation and source point, 

respectively. The apostrophes are used to indicate source locations throughout the 

thesis. 

Integration surface   indicates surface area on the cross section of the cylinder. The 

term   
         can be taken out of the integral if it does not vary along the region  , 

it will be assumed that it does not vary along the region   from now on. 

In this manner, one can write scattered field anywhere, either in the object or outside 

of it, in terms of the electric field in the object.  

If (2.12) is substituted in (2.4), one can end up with domain integral equation (2.13) 

which is a Fredholm integral equation of the second kind.  

                 
            

 

                             (2.13)  
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The next step is discretization of the domain integral equation. The domain   will be 

subdivided into such small square cells that the dielectric constant and the field 

variation over a cell can be neglected. The cells do not have to be same sized, they 

can be fined regionally. Edge dimensions should not exceed           for accurate 

results [7].  

(2.13) is forced to be hold at the center of each cell m and the following equation is 

obtained. 

      
    

                             
      

 

   

 (2.14)  

where N represents number of cells and E represents the electric field at the center of 

a cell. One can write (2.14) for each cell and end up with N unknowns, the field 

variables E, and N equations. The system of linear equations can be expressed in a 

matrix equation (2.15) 

 (          (2.15)  

where I represents NxN identity matrix and D can be expressed as (2.16). 

       
                          

      

 (2.16)  

(2.15) can be stated in a more compact form as in (2.17). 

        (2.17)  

The unknown electric field variables can be found by inverting the matrix C. 

          (2.18)  

Once the electric field over the object is found, scattered field at any point can be 

calculated using (2.19).   

           
                             

      

 

   

 (2.19)  
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A complete solution procedure for the forward problem has been illustrated but no 

Green’s functions have been mentioned yet. It can be deduced that forward scattering 

problems for objects located in different media necessitates different Green’s 

functions only and do not change the solution procedure.   

In the example case, the background medium is infinite and its Green’s function is 

solution of (2.11) with the condition   
  is the same everywhere. The Green’s 

function is given by (2.20). 

              
 

 
   

                         (2.20)  

where (x,y) and (x’,y’) are the coordinates of the observation and source point, 

respectively.  

It should be noted that surface integration of the Green’s function given in (2.20) 

over a computation cell is problematic. A closed form solution of the integration of 

the Hankel function over a square or rectangular cell is not known. Furthermore, we 

encounter a singular point in the integration region when the source and the 

observation cells are the same. Analytical expressions figuring out the both problems 

can be found in [7]. 

2.2 The Problem Geometry and Green’s Functions for the Forward Problem 

The geometry of the forward problem is three part planarly layered media and the 

object is located in the second medium as shown in Figure 2.2. In other words, there 

is a slab between two half spaces and the object is located in the slab. The spaces are 

nonmagnetic, linear, isotropic, homogeneous and lossless. The object will be 

illuminated by planewaves having different incidence angle θi to collect scattered 

data along the measurement line shown in Figure 2.2. 
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Figure 2.2 : The problem geometry for the forward problem. 

The solution procedure for the forward problem was depicted in Section 2.1. The 

Green’s functions pertaining to three part planarly layered media can be employed to 

apply MOM solution. The Green’s function satisfies (2.21). 

                                                   (2.21)  

where  

       

                        
             
                     

  (2.22)  

             and  
             

  
 are continuous on the boundaries separating the 

media. There are different approaches to solve (2.21). One method, called hybrid 

method, suggests Fourier transform in one dimension and direct solution in other 

dimension [8]. We will perform Fourier transform over the horizontal axis and 

employ direct solution in the stratified direction. We apply Fourier transform to the 

whole equation given in (2.21). 

                           
 

  

             (2.23)  
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using radiation condition 

 
   

  
                         (2.24)  

where    stands for the spectral Green’s function and 

             
             (2.25)  

   is defined with the condition             in accordance with the complex cut 

plane as shown in Figure 2.3 [9]. 

 

Figure 2.3 : Branch cuts and Fourier inversion path in the complex plane. 

Nine solutions arise for (2.24) depending on which medium the source and the 

observation point are located in. These are the Green’s functions named as from     

to    . In each of nine case, system of linear equations consisting of eight unknowns 

and eight equations emerge. Six equations coming from Dirichlet and Neumann type 

conditions on boundaries and the source point, two equations imposed by radiation 

conditions form eight equations. Green’s functions pertaining to three part planarly 

layered media is studied well in [10], only the components of         are dealt with 

in this work. They are given in (2.26) and (2.27) 

           
                  

 

   

       
               (2.26)  

O 
x x x x x x 

-k3 

Im( ) 

 

Re( ) 
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(2.27)  

where FIP stands for Fourier inversion path. The coefficients are given by (2.28)-

(2.34) [10]. 

      
 

  
 
          

 
  

 
 

 
 (2.28)  

      
 

  
 
  

 
  

 
 

 
 (2.29)  

      
 

  
 

 

   
 

 
          

 
  

 
    

 
  

 
 

 
 (2.30)  

      
 

  
 

 

   
 

 
  

 
  

 
    

 
  

 
 

 
 (2.31)  

      
 

  
 

 

   
 

 
  

 
  

 
    

 
  

 
 

 
 (2.32)  

           (2.33)  
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  (2.34)  

One should calculate surface integrals of the Green’s functions over a cell area to fill 

the matrix C. Cell size in x is    and in y is   , (     ) holds center coordinates of 

the cells. Surface integrals of the Green’s functions can be calculated as follows. 

 

            
     

   
  

 

   
  

 

   
  

 

   
  

 

         

                

   

             
                           

    
     

                    

   

             
                             

    
     

 

(2.35)  

 

            
     

   
  

 

   
  

 

   
  

 

   
  

 

       

 

 
 
 

 
      

    
   

          
 

  
                                                                                            

     

    
           

                                  

                
  

   

               
       

 

 
          

  

 
 

    
     

                
  

   

               
       

 

 
          

  

 
 

    
    

                 

   

               
       

 

 
          

  

 
 

    
     

                 

   

               
                           

    
     

(2.36)  
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Numerical calculations has shown that surface integrals can be approximated by 

multiplication of the integrand and the cell area. It is seen that when the cell size is 

kept small enough, incurred error is acceptable. 

Now, only the incident field is left to be determined. The incident field can be 

calculated as follows. 

One can write components of electric and magnetic fields in each region as shown in 

Figure 2.4. Then, corresponding boundary conditions can be imposed. 

 

Figure 2.4 : Calculation of the incident field. 

The electric and the magnetic fields in the upper half space are given in (2.37) and 

(2.38). 

                        θ         θ        (2.37)  

            
 

  
              θ         θ              θ           θ    (2.38)  

In slab, the field components are given in (2.39) and (2.40). 
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                         θ          θ        

                θ          θ         
(2.39)  

 

             
 

  
              θ          θ               θ      

     θ      
 

  
              θ          θ          

     θ           θ    

(2.40)  

In the lower half space, the field components are given in (2.41) and (2.42). 

                          θ          θ         (2.41)  

 
           

 

  
                θ          θ               θ       

     θ     

(2.42)  

The boundary equations are imposed. Boundary equations at y=0 yields (2.43) and 

(2.44) 

         (2.43)  

 
 

  
      θ   

 

  
       θ   

 

  
      θ    

 

  
     θ    (2.44)  

and at y=-d  (2.45) and (2.46) can be written. 

               θ                   θ                  θ    (2.45)  

 

 

  
             θ         θ    

 

  
              θ        θ   

 
 

  
             θ         θ    

(2.46)  

The diffraction angles θ   and θ   can be found using the well-known Snell’s law 

given in (2.47). 
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        θ          θ            θ    (2.47)  

Equations from (2.43) to (2.46) form a system of linear equations, the coefficients R, 

A, B and T can be found easily by filling a 4x4 matrix in a CAD tool. Recursive 

formulas for the reflection and transmission coefficients for a multilayer planarly 

layered media can be found in [11]. 

The C matrix is filled and the incident field vector    is calculated. The matrix 

equation (2.17) can be solved for the unknown electric field variable by inverting the 

matrix C. As it is mentioned in Section 2.1; once the electric field is found, scattered 

data can be produced via (2.19). 
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3.  NUMERICAL RESULTS AND COMMENTS FOR THE FORWARD 

PROBLEMS 

The ultimate goal of the work is to solve an inverse problem. The forward problem is 

solved in order to provide data to the inverse problem study. It must be proved that 

the formulation of the forward problem and the produced scattering data are exactly 

correct so that the studies on the inversion algorithms are meaningful. Otherwise, it 

may be committed so-called inverse crime. 

The best way to prove the results of the forward problem is to solve the forward 

problem with an entirely different numerical method and compare the results. It had 

been intended to solve the problem with FEM in addition to MOM. It is achieved to 

correctly model and produce scattered data for the forward problem for objects 

located in infinite medium in FEM. However, it is not the same for objects located in 

three part planarly layered media. The FEM solution in three part media is left as 

future work. 

Nevertheless, the following results are powerful evidences indicating the forward 

solution is correct. 

It is checked first that whether the spectral representation of the Hankel function can 

be computed over FIP correctly. The magnitudes and the phases are compared and 

results are shown in Figure 3.1 and Figure 3.2. 

 
 

 
   

                         
 

  
  

 

  
 

         
  

   

                 (3.1)  
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Figure 3.1 : Magnitude of the Hankel function, analytical and computed. 

 

Figure 3.2 : Phase of the Hankel function, analytical and computed. 
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Then, electrical properties of three mediums are chosen the same as shown in Figure 

3.3 in order to check forward solution results against to analytical expressions and 

FEM solution also. Results are given in Figure 3.4 and Figure 3.5. 

 

Figure 3.3 : Forward solution check geometry. 

 

Figure 3.4 : Comparison of scattered fields for incidence angle of pi/4. 
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Figure 3.5 : Comparison of scattered fields for normal incidence. 

Although the forward solution could not be modeled in an entirely different 

numerical method, according to obtained results there is nothing looking wrong in 

the forward solution.  
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4.  INVERSE PROBLEMS FOR OBJECTS LOCATED IN THREE PART 

PLANARLY LAYERED MEDIA 

The inverse scattering problem is determination of contrast of the scatterer object(s) 

from knowledge of the incident and the scattered fields. Once the contrast of the 

scatterer immersed in a known background is determined, its both electrical and 

geometrical properties are determined because the contrast function, by definition, 

holds the both properties. 

The inverse problems are generally nonlinear and highly ill-posed. Existence of a 

unique solution of an inverse problem is also a research topic.  

4.1 The Problem Geometry for the Inverse Problem 

The problem is a two dimensional problem and the geometry consists of three part 

planarly layered media. The scattering object(s) is located in the second medium in a 

hypothetical, square reconstruction domain D. The problem geometry is shown in 

Figure 4.1. The spaces are homogeneous, nonmagnetic and lossless i.e.        

      and           . 

 

Figure 4.1 : The problem geometry for the inverse problem. 
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The following parameters are used for the shown geometry throughout the thesis 

unless otherwise noted.  

Thickness of the slab,           

Size of the reconstruction domain D,           

Distance of the measurement line S,         

Dielectric constants of the media,        ,         and         

The region is excited by plane waves having incidence angle   varying from 
  

 
 to 

   

 
. 

4.2 The Contrast Source Inversion Method 

The contrast source inversion method is an algorithm for reconstruction of the 

contrast of a bounded object immersed in a known background medium. The method 

can employ both spatially and frequency varying incident fields and allows to 

introduce a priori information about the scatterer objects improving the 

reconstruction performance.  

In this work, single frequency is used for the excitations and a priori information 

indicating the permittivity of the scattering object has no imaginary part and its real 

part is always positive is introduced. In other words, it is studied for the scattering 

objects whose dielectric constant are pure real and higher than the background 

medium. 

It is known that total field in the domain D satisfies the domain integral equation  

                            

 

                             (4.1)  

and the scattered field data, on the measurement line S, can be found using (4.2).  

                     

 

                             (4.2)  
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The equations (4.1) and (4.2) are called state equation and data equation, 

respectively. They can be rewritten in a symbolic form. The state equation becomes 

(4.3) 

      
    

         (4.3)  

and the data equation becomes (4.4). 

      
         (4.4)  

The subscript j indicates excitation index and the operators   and   are defined 

implicitly in (4.1) and (4.2). 

It is observed that the unknown variables   and   appear as multiplication in the state 

and the data equation. The contrast source inversion method considers the 

multiplication of the mentioned variables as an equivalent source and names it 

contrast source.  

                      (4.5)  

The state and the data equation become (4.6) and (4.7). 

      
    

      (4.6)  

      
      (4.7)  

The method handles the inverse problem as an optimization problem and aims to 

minimize a cost functional consisting of two terms pertaining to errors in the data 

equation and the object equation. The cost functional F is defined as in (4.8) 

   
        

 
 

        
 

 

 
        

 
 

        
    

 
 

 (4.8)  

where the data error and the state error defined in (4.9) and (4.10), respectively.       
  

and       
  indicate norms on L2(S) and L2(D). 

         
      (4.9)  
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(4.10)  

The algorithm starts with initial values for the contrast source. There are two 

alternatives offered for the initial values, one consists of constant values minimizing 

the data error and the other is obtained by backpropagations. They are given in (4.11) 

and (4.12), respectively, 

     
  

      
    

    
    

  (4.11)  

where          stands for the inner product on L2 [3]. 

     
   

    
        

 

    
   

         
   

      (4.12)  

Second subscript of the contrast source in (4.11) and (4.12) indicates the iteration 

step so the value 0 indicates that the equations are initial assignment equations.  The 

operators     and    
are adjoints of    and    mapping from L2(S) to L2(D) and 

L2(D) to L2(D), respectively. 

After the assignment of starting values, the algorithm constructs   and   iteratively 

reducing the value of the cost functional in the following manner for n=0,1,2…. 

The contrast source is updated at each iteration step by the equation (4.13) 

                       (4.13)  

where      is constants and      is the Polak-Ribiere conjugate gradients update 

directions being function of the position. The initial value of the directions is zero. 

        (4.14)  

The update directions is given by (4.15) 

           
                   

                
        (4.15)  

where      is Frechet derivative of the cost functional with respect to    evaluated at 

       and        ;       is given by (4.16)  
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 (4.16)  

and the constant      is determined to minimize the cost functional, it is given by 

(4.17)  [3]. 

      

        
       

        
 

 
 

                      
       

            
    

 
 

    
        

 

        
 

 
 

                
        

            
    

 
 

 (4.17)  

Once the      is determined      is determined using (4.18). 

                    
        (4.18)  

 The application of the algorithm can be summarized by the following steps. 

1) Determine start values using (4.12)  or (4.12) for the contrast source.  

2) Determine the Frechet derivative g and then determine update directions v. 

3) Determine the constants     

4) Update the contrast source w and then update the total field u. 

5) Calculate contrast,    

6) Calculate the value of the cost functional, go Step 2 if it higher than specified error 

else go Step 7. 

7) Exit from the loop and plot reconstructed contrast. 
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5.  NUMERICAL RESULTS AND COMMENTS FOR THE INVERSE 

PROBLEMS 

The method is applied for the objects located in an infinite medium first as the 

original paper depicts [3].  The geometry is shown in Figure 5.1. The reconstruction 

domain is 0.8λ x 0.8λ square and the measurement line is a circle having diameter of 

1.6λ. The domain subdivided into square cells having size of λ/30. The region is 

illuminated by planewaves with 30 different incident angles being equally spaced in 

[0, 2π) and there are 30 measurement points on the measurement line. The excitation 

frequency is 3 GHz. 

 

 

Figure 5.1 : An example geometry for the inverse problem. 

The first example is circular cylinder whose radius is 0.2λ and contrast is 3.   
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Figure 5.2 : A circular cylindrical object in infinite medium, original(left) 

reconstructed(right). 

 

Figure 5.3 : Reconstruction of circular cylindrical object, cost functional vs 

iteration. 

After 50 iterations the circular cylindrical object is reconstructed well. Then, a 

triangular object is tested as shown in Figure 5.4. 
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Figure 5.4 : Triangular cylindrical object in infinite medium. 

 

Figure 5.5 : Triangular cylindrical object cost functional vs iteration. 
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Two closely located objects are tested as shown in Figure 5.6. 

 

 

Figure 5.6 : Two objects separated by 0.3λ in infinite medium. 

It can be seen in Figure 5.7 that objects having radius of less than 0.1λ can be clearly 

distinguished when they are separated by 0.4λ or more. 

 

Figure 5.7 : Two objects separated by 0.4λ in infinite medium. 

In Figure 5.8, it is seen that altering the objects’ contrast does not disturb the 

reconstruction performance. 
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Figure 5.8 : Two objects with different contrasts are separated by 0.4λ in 

infinite medium. 

In Figure 5.9, the object radius is less than 0.045 λ, although the contrast could not 

be found, the objects’ location is detected. 

 

Figure 5.9 : Small off-centered object in infinite medium. 
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Figure 5.10 : Circular cylindrical object in stratified media, original(left) 

reconstructed(right). 

Then, a triangular object is tested. 

 

Figure 5.11 : Reconstruction of circular cylindrical object in stratified    media, 

cost functional vs iteration. 

 

Figure 5.12 : Triangular cylindrical object in stratified media. 
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Reconstructed images smears down comparing to images obtained in infinite 

medium. This effect may be expected because the objects can only be illuminated by 

down going waves and scattered data can only be collected in upper half space. 

 

Figure 5.13 : Reconstruction of triangular cylindrical object in stratified 

media, cost functional vs iteration. 

In Figure 5.14, it is seen that 0.2λ separated objects could not be reconstructed well; 

the bigger object is detected but the small object is disappeared at all. The bigger one 

has radius of 0.045λ and the small object’s radius is 0.03λ.  

When they are separated 0.3λ instead of 0.2λ and the radius of the small object is 

increased to 0.04λ, they can be distinguished as shown in Figure 5.15.  

 

Figure 5.14 : Two objects separated by 0.2λ in stratified media. 
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The separation is kept 0.2λ and the reconstruction domain size is reduced to 0.3λ x 

0.3λ to increase the resolution. The cell size is reduced to λ/40.  

It is seen in Figure 5.16 that, none of the object is disappeared and they can be 

reconstructed better because the resolution is increased. 

 

Figure 5.15 : Two objects separated by 0.3λ in stratified media. 

 

Figure 5.16 : Two objects separated by 0.2λ in stratified media, domain 0.3λ x 

0.3λ. 

In first example circular cylinder object having radius of 0.12λ was reconstructed 
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Figure 5.17 : Small object having radius of less than 0.06λ in stratified media. 

 

Figure 5.18 : Small off centered object having radius of less than 0.025λ in 

stratified media 

It can be deduced from Figure 5.17  and Figure 5.18 that when the object radius goes 

below 0.1λ, although electrical properties can not be reconstructed well, their 

locations can be detected.  

The slab thickness is increased to 0.65λ, reconstruction domain size is enlarged to 
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Figure 5.19 : Circular cylindrical object in stratified media, thick slab 

 

Figure 5.20 : Triangular cylindrical object in stratified media, thick slab 

 

 

Figure 5.21 : Two objects in stratified media, separated, thick slab 
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Similar results are obtained for the thick slab (0.65λ). In two object case, objects can 

only be distinguished when they are get close to the opposite corners, otherwise one 

object overshadows the other object and their image become merged as seen from 

Figure 5.21 through Figure 5.23. When they are get closer to each other, they can not 

be separately reconstructed as shown in Figure 5.22. 

 

Figure 5.22 : Two objects in stratified media, merged, thick slab 

The worst case is shown in Figure 5.23, one overshadows the other. 

 

Figure 5.23 : Two objects in stratified media, worst case, thick slab 

As a last study, reconstruction domain and cell size are kept the same, permittivity of 

the media changed as        ,         and        . It is observed for 

5 10 15 20 25

5

10

15

20

25

Original Contrast function

 

 

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25

5

10

15

20

25

Reconstructed Contrast function

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25

5

10

15

20

25

Original Contrast function

 

 

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25

5

10

15

20

25

Reconstructed Contrast function

 

 

0

0.05

0.1

0.15

0.2

0.25



 

38 

circular cylindrical object tests that the object’s image may shift up or down with 

respect to its actual place according to its contrast. When the contrast get closer to 

the background’s, image becomes shifted up and vice versa as show in Figure 5.24 

through Figure 5.26. 

 

Figure 5.24 : Circular cylindrical object in stratified media, shifted up 

 

Figure 5.25 : Circular cylindrical object in stratified media, correct place  

 

Figure 5.26 : Circular cylindrical object in stratified media, shifted down  
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As it is seen from the last three figures, contrast of the object affects the 

reconstruction performance. It can be deduced that for the objects having either much 

greater permittivity than background media or so close to the background media the 

reconstruction performance worsens. This behavior was also observed in previously 

examined cases, in the first case and in the thick slab case. In Figure 5.27, it is seen 

again that two objects can only be distinguished when they are get closer to the 

opposite corners. 

 

Figure 5.27 : Two objects in stratified media 
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6.  CONCLUSIONS 

The forward problems for objects located in infinite medium and three part planarly 

layered media is solved using MOM. The results obtained from the MOM solution 

are compared against to available analytical solutions and the FEM solution.  

Obtained results showed that there is nothing looking wrong in the forward solution. 

The Contrast Source Inversion method is applied to reconstruct objects located in 

infinite medium, first. Then, the method is applied to reconstruct objects located in 

three part planarly layered media. The method is tested for different cases. It is seen 

that reconstruction performance is degraded for the objects located in stratified media 

comparing to objects in infinite medium. However, it is seen that the objects located 

in three part layered media can be reconstructed well using the contrast source 

inversion method. 

How close objects can be distinguished is investigated. It is seen that when the 

domain size is reduced, the resolution is increased and the objects’ image become 

separated more. As a numerical example, 0.2λ separated objects could not be 

distinguished when the reconstruction domain size is chosen 0.4λ. When the domain 

size is reduced to 0.3λ, the resolution is increased and the objects’ separation 

becomes more clear. Furthermore, it is seen that two objects can only be 

distinguished when they are get close to the opposite corners of the reconstruction 

domain, otherwise one object overshadows the other object and their image become 

merged.  

How small objects can be detected is investigated. It is observed that while objects 

get smaller, reconstruction of electrical properties become inaccurate but objects’ 

location can be detected. As a numerical example, in 0.4λx0.4λ reconstruction 

domain, objects  having radius of 0.12λ or greater can be reconstructed well with 

their electrical properties. On the other hand, objects having radius of less than 0.1λ 

can only be detected. 

 It is deduced that for the objects having either much greater permittivity than 

background media or so close to the background media the reconstruction 
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performance worsens and object’s image slightly shifts up or down. The best results 

are obtained for the contrasts being around three. It is also seen that different 

arrangements for the receive points i.e. linear or half circular do not alter the 

reconstruction performance much. 

It had been intended to solve the forward problem for three part media using FEM 

which is an entirely different method from MOM  in order to make a legitimate study 

on the inverse problem. However, FEM solutions could not be obtained for three part 

media and MOM is used in both the forward and the inverse problems. This risks the 

robustness of the work. Nevertheless, contrast source inversion method is applied 

and examined for three part planarly layered media. 
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