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RECONSTRUCTION OF OBJECTS LOCATED IN THREE PART
PLANARLY LAYERED MEDIA

SUMMARY

In this study, the problem of reconstructing the location and the shape of a buried
object in a three part planarly layered media is considered. The problem is studied in
two dimensions serving as a prestudy for three-dimensional problems requiring more
advanced math and high computational capability. Contrast Source Inversion method
(CSI) which is one of the most effective inversion algorithms is employed to solve
the inverse problems. To this aim, the CSI method is applied for the objects located
in infinite medium first in order to verify correct implementation of the method.
Then, the method is applied for objects located in a three part planarly layered media.
In infinite medium case, the forward problem is solved using Method of Moment
(MOM) to produce synthetic data and the results validated by analytical solution and
Finite Element Method (FEM) solution. For the inverse problem, the reconstruction
domain is illuminated by planewaves impinging on to the domain circumferentially.
Receive points are located being equally arranged in a full circle. Satisfactory results
are obtained in the infinite medium case. In stratified media case, the forward
problem is solved using MOM by utilizing the Green’s functions pertaining to three
part planarly layered media. It is checked that one component of the Green’s
functions used in the forward solution is calculated correctly through the Fourier
inversion path by comparing the results with available analytical expressions. This
check also provided a powerful evidence indicating that the other components having
similar analytical behavior are calculated correctly through the same integral path.
The reconstruction domain is illuminated by down going planewaves and receive
points are located in the upper half space which is the only accessible media. The
effect of linearly and circularly arranged receive points on the reconstruction
performance is tested. The method is studied for different cases. The reconstruction
performance for small and close objects are investigated. The performance is
degraded comparing to infinite medium case but obtained results showed that
Contrast Source Inversion method can be applied to reconstruct objects located in a
three part planarly layered media.
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UC TABAKALI ORTAM iCERISINE GOMULU CISIMLERIN
GORUNTULENMESI

OZET

Yanina yaklasilamayan cisimlerin elektromagnetik dalgalarla goriintiilenmesi
elektromagnetik alaninin en gelismis uygulamalarindan birisidir. Giiniimiizde
kullanilagelen goriintiileme sistemlerine bakildiginda askeri ve sivil alanda radar
temelli sistemler, medikal wuygulamalarda rontgen 1511 temelli sistemler
goriilmektedir. Bu sistemlerde yliksek enerji kullanilmasina ragmen ancak diisiik
¢oziiniirliiklii goriintiiler elde edilebilmektedir. Ozellikle medikal uygulamalarda
hastalar1 yiiksek enerjiye maruz birakmadan daha yiiksek coziiniirliiklii goriintiiler
elde edebilen goriintilleme sistemlerine olan ihtiyag giiniimiizde iyice belirgin hale
gelmistir. GOgilis kanseri gibi erken teshisin kritik oldugu vakalarda daha iyi
¢Oziiniirliklii  gorlintiileme yapilmast hastalarin  hayatini  kurtarabilmektedir.
Mikrodalga goriintiileme olarak adlandirilan goriintiileme sistemi, ¢ok diisiik giicli
elektromagnetik dalgalar ile yiiksek ¢oziiniirliiklii goriintiiler elde etmeyi amaglayan
bir goriintiileme sistemdir.

Literatiirde goriintiileme islemi elektromagnetik ters probleme karsi diismektedir.
Elektromagnetikte problemler, diiz sagilma problemleri ve ters sagilma problemleri
olarak iki kategoriye ayrilabilir. Bilinen bir cismin bilinen bir kaynak ile
aydinlatilmas1 sonucu olusacak sagilan alanin belirlenmesi problemi diiz problem
olarak tanimlanir. Bilinmeyen bir cismin bilinen bir kaynak ile aydinlatilmasi ve
olusan sagilan alan bilgisi kullanilarak bilinmeyen cismin geometrik ve fiziksel
ozelliklerinin belirlenmesi problemi ise ters sa¢ilma problemi olarak tanimlanir. Ters
sacilma problemleri diiz sagilma problemlerine gore ¢ok daha karmasik ve gelismis
yontemler gerektirir. Bir ters sagilma probleminde ¢oziimiin varligi, tekligi konular
dahi aragtirma konusu teskil etmektedir. Son yarim asirda ters sagilma problemlerine
yonelik c¢esitli algoritmalar gelistirilmistir. Bu algoritmalar dogrusal ve dogrusal
olmayan algoritmalar olarak basitce smiflandirilabilir.  Dogrusal olmayan
algoritmalar problemin dogasina daha uygun olduklarindan daha verimli sonuglar
tiretebilmektedir. Dogrusal olmayan algoritmalar da kendi igerisinde lokal ve global
algoritmalar olarak siniflandirilabilir. Lokal algoritmalar belirlenen bir fonksiyoneli
belirli bir bolgede minimize etmeyi amagclar, bu algoritmalarda baslangi¢ tahminleri
sonucun yakinsamasi i¢in kritik 6neme sahiptir. Global algoritmalar ise belirlenen
fonksiyonelin global minimum degerini bulmay: hedefler. Bu c¢alismada, ters
problemlerin ¢dziimiinde kullanilacak olan “Contrast Source Inversion” metodu
dogrusal olmayan lokal bir algoritma olup bu kategoride one cikan yontemlerden
birisidir.
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Ikinci béliimde diiz problemlerin Green fonksiyonlar1 yardimiyla Moment Metodu
ile ¢oziimii ele alinmistir. Diiz problem ¢6ziimiinde Moment Metodu kullanildiginda
farkli geometriler i¢in sadece Green fonksiyonlarinin degistigi, ¢6ziim yonteminde
bir degisiklik olmadig1 vurgulanmistir. Sagilan alan i¢in yazilan Helmholtz denklemi,
Green fonksiyonlar1 yardimiyla integral denklemi olarak ifade edilmis ve diiz
problem ikinci tiirden Fredholm integral denklemine doniistiiriilmiistiir. Bu denklem
de uygun hiicre boyutlar {lizerinden ayriklastirilmis ve diiz problem ¢oziimii elde
edilmistir. Ornek bazi durumlar icin farkli ydntemlerle ¢oziilen diiz problem
sonugclari liclincii boliimde verilmistir.

Dordiincii boliimde ise ters problem ve “Contrast Source Inversion” metodu ele
alinmistir. Bir optimizasyon algoritmasi olarak diisiiniilebilen yontemin uygulama
adimlar1 gosterilmistir.

Calismanin nihai amaci 1ii¢ pargali bir ortam igerisine gomiilii cisimlerin
elektromagnetik dalgalar ile goriintiilenmesidir. Bu amaca yonelik “Contrast Source
Inversion” metodu Oncelikle sonsuz uzay igerisine yerlestirilmis cisimlerin
goriintiilenmesi igin uygulanmistir ve basarili sonuglar elde edilmistir. Ters problem
calismasi i¢in gereken sacilan alan verileri diiz problemin Moment Metodu ile
¢oziilmesiyle elde edilmistir. Sonsuz uzay durumunda elde edilen sagilan alan
verisinin dogrulugu, analitik ¢6ziimlerle ve sonlu eleman analizi ¢ozimi ile
karsilagtirma yapilarak kontrol edilmistir. Elde edilen sagilan alan verileriyle yapilan
ters ¢Oziimlerde iyi sonucglar alinmig ve sonsuz uzay durumunda yontemin dogru
uygulandig1 gorilmiistiir.

Calismaya konu olan ii¢ parcali uzay, diizlemsel sinirlarla ayrilmis homojen, kayipsiz
ortamlardan olugmaktadir. Pargali uzay durumu i¢in Green fonksiyonlari Fourier
dontisiimii kullanilarak elde edilmistir. Yatay eksende alinan Fourier doniisiimii ile
Green fonksiyonlart i¢in yazilan Helmholtz denklemi bagimsiz degiskeni parcali
eksen olan adi diferansiyel denkleme doniistiiriilmiis ve spektral Green fonksiyonlart
elde edilmistir. Spektral Green fonksiyonlart icerdikleri kompleks fonksiyonlarin
tanimlar1 dikkate alinarak belirlenen Fourier ters doniisiim integral yolu {izerinden
integre edilerek uzaysal Green fonksiyonlar1 elde edilmistir. Spektral Green
fonksiyonlarmin integral yolu tizerindeki davranisi incelenmis, sayisal integrallerde
integral degiskeninin siklig1 degistirilerek integral sonucunun yakinsakligi ve
sonuglarin fiziksel durumla ortiistiigii kontrol edilmistir.

Pargal1 uzay i¢in diiz problem sonuglarin dogrulugu, Fourier ters doniisiim integral
yolu tizerinden hesaplanan Green fonksiyonunun bir bileseninin analitik ifadeyle
karsilastirilmasiyla kontrol edilmistir. Bahsi gecen bilesen Hankel fonksiyonun
spektral gosterimidir. Boylece, analitik davranis olarak biiylik farklilik gostermeyen
Green fonksiyonu diger bilesenlerinin de sayisal integralinin dogru hesaplandig:
diistiniilmiistiir. Bos uzay durumuna gore aydinlatmanin sadece iist uzaydan
yapilmas1 ve sagilan alanin sadece iist uzayda Olciilebiliyor olmasi goriintiileme
performansini olumsuz yonde etkilemektedir. Elde edilen sacilan alan verileriyle
yapilan ters ¢oziimlerde bos uzay durumundaki kadar olmasa da iyi sonuglar elde
edilmistir. Genel olarak, parcali uzayda elde edilen goriintiilerin aydinlatmanin
sadece listten yapilabilmesi sebebiyle golgeli olustugu gozlenmistir. Cisim boyutlar
ve birden fazla cisim durumunda cisimlerin birbirine yakinliginin goriintiileme
performansina etkisi gozlenmistir. Goriintiileme  bolgesinin  biiylikliiglinlin
gorlintiilleme ¢oziiniirliigiine etkisi gozlenmistir. Goriintiileme bodlgesi boyutlarina
yaklasmayacak kadar kiiclik ve dalgaboyunun onda birinden daha biiyiik boyutta
cisimlerin daha iyi goriintiilendigi gozlenmistir. Dalgaboyunun onda birinden daha
kiiciik cisimlerin elektriksel 6zelliklerinin dogru tespit edilemedigi ancak yerlerinin
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tespit edildigi ve bazi durumlarda cisim goriintiisiiniin aynali olarak elde edildigi
gozlenmistir.

Iki cisim durumunda cisimlerin goriintiilleme bolgesinin zit kdselerine yakin oldugu
hallerde ayirt edilebildigi, birbirlerine yakinlastigi hallerde ise tek cisim gibi
goriintiilendigi  gdzlenmistir. Iki cisim durumunda en kotii goriintiileme
performansinin cisimler dikey olarak hizalandiginda olustugu gozlenmistir. Cisim
permitivitesinin ortama ¢ok yakin veya c¢ok wuzak olmasinin goriintiileme
performansini  olumsuz yonde etkiledigi gozlenmistir. Kontrast degeri bire
yaklastik¢a veya tig-dort degerini astik¢a cisim goriintiisiiniin esas yerinden sapma
yaptig1 ve bazi durumlarda aynalanmis olarak goriintiilendigi gézlenmistir.

Ters problem algoritmalarinin objektif bir bigimde degerlendirilmesi diiz problem
¢ozlimiinde kullanilan  yOntemlerin  ters algoritmalarda yer almamasini
gerektirmektedir. Aksi durumda, diiz problem ¢6ziimiinde yapilan hatalarin ters
problem ¢6ziimiinde ortaya ¢gikmama veya siirpriz iyi sonuglar elde etme riski vardir.
Bu risk literatiirde “inverse crime” olarak adlandirilmaktadir. Bu durumdan
kacinmak i¢in diiz problem ¢6ziimiinliin tamamen farkli bir yontemle yapilmasi
gerekmektedir. Bu ¢alismada sonsuz uzay durumu i¢in diiz problem analitik
yontemlerle ve sonlu eleman analizi ile ¢oziilebilmistir ancak tli¢ pargali uzay durumu
icin diiz problem sadece Moment Metodu ile ¢6ziilmiistiir. Pargali uzay durumunda
sonlu eleman analiz ¢oziimlerinin sinir kosullarinin tam dogru yazilamamasi
sebebiyle diizlem dalgalarin gelme acis1 arttikca kararsiz ¢oziimler elde edilmistir
dolayisiyla sonlu elemanlar yontemi kullanilamamistir. Moment Metodu c¢alismaya
konu olan ters algoritma icerisinde de kullanildigindan algoritma performansinin
objektif degerlendirilememesi riski bulunmaktadir. Par¢ali uzay durumu i¢in diiz
problemin dogru kuruldugu ve ¢oziildiigiine dair kanitlar ortaya konmus olsa da
bahsi gegen risk bulunmaktadir. Bu riske ragmen elde edilen sonuglar mantikli olup
“Contrast Source Inversion” metodunun {i¢ pargali uzay i¢in uygulanabilir oldugu
gorilmistir.
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1. INTRODUCTION

Imaging of inaccessible objects is one of the most sophisticated applications of the
electromagnetics. Radar based systems and Xrays imaging systems those are
rontgen, mammography and conventional tomography in medical imaging are most

popular imaging systems.

The common drawbacks of these systems are excessive power use and inadequate
image resolution. Radar systems can only form low-resolution images despite their
high power use. In medical imaging; although X-rays’ harmful effects on human
cells could not be explored clearly yet, nobody wants to be exposed such a high
power. Furthermore, X-ray imaging especially in mammography may not give
detailed enough information in some cases and this risks patients those can be treated

well if early diagnosis is achieved.

High power exposure and low resolution of today’s imaging systems encourages
researchers to work on microwave imaging (MWI). MW!I offers high resolution
imaging with low power electormagnetic waves. In addition to aforementioned
applications, MWI can be extended to many medical, industrial and military

applications.

In electromagnetics literature, the term imaging corresponds to inverse scattering
problem. Problems in electromagnetics can be categorized as forward scattering and
inverse scattering problems those are called forward and inverse problems shortly. A
known object(s) located in a known environment is illuminated by a known
electromagnetic source, how the target object(s) scatters is defined as forward
scattering problem. An unknown object(s) located in a known inaccessible
background media is illuminated by a known electromagnetic source, determination
of geometrical and physical properties of the unknown object(s) from scattered data
collected at accessible points is defined as inverse scattering problem. Human vision
is an everyday example of inverse scattering problem, the brain reconstruct three-

dimensional objects from the knowledge of scattered light impinging on the retinas.



Investigation of the inverse problems forces researchers to work on forward
problems first. Results of accurately solved forward problems make researchers to

work with reliable data so that inversion algorithms can be studied well.

As it may be guessed, inverse problems are much more sophisticated than forward
problems. In forward problems, as they are well posed, analytical and numerical
methods such as Method of Moments (MOM), Finite Element Method (FEM), Finite
Difference Time Domain (FDTD) method can be employed. On the other hand, due

to their ill-posed nature, inverse problems require advanced algorithms.

Inversion algorithms can be classified as linear and nonlinear algorithms. Linear
algorithms simplify the inverse problem by making some approximations. They are
most early developed algorithms and have limited application areas due to their
restrictions. Linear diffraction tomography algorithm and Born approximation are
popular linear methods. On the other hand, nonlinear methods keep nonlinear nature
of the inverse problem and bring more accurate results. They are mathematically
more complex and carried out via iterations. Nonlinear methods cast the inverse
problem as an optimization problem and they can also be classified as local and
global inversion algorithms. Newton—Kantorovich algorithm [1], the conjugate-
gradient method, the modified gradient method [2] and the Contrast Source Inversion
(CSI) [3] method are outstanding local inversion algorithms those seek local
minimum of a predefined cost functional. Genetic algorithms and neural networks

are popular examples of global inversion algorithms.

Aforementioned nonlinear local inversion algorithms have been developed for past
three decades and Contrast Source Inversion (CSI) method is the most outstanding

method among them [4].

Electromagnetic problems in the real life are three-dimensional problems. Three-
dimensional problems require advanced mathematics and high computational
capability. It is necessary to study on lower-dimensional problems before studying
three-dimensional problems. Once the concepts in two-dimensional cases are
established well, the studies can be extended to three-dimensional problems.
Moreover, there may be some cases in real life those cause acceptable errors when
modeled in two dimension. Wide walls, long pipes, large areas can be thought as

two-dimensional objects in the modeling.



The wave motion is governed by the wave equation that is a vector partial
differential equation defined in the time domain in three dimensions. In time
harmonic case, the wave equation reduces to Helmholtz equation that is also a vector
partial differential equation. It also reduces to scalar partial differential equation if

the field variable is directed in one direction only.
AE(x,y) + k?(x,y) - E(x,y) =0 (1.2)

Equation 1.1 is scalar Helmholtz equation written for TMz electric fields where k is
propagation constant of the medium. This equation is the main equation to solve
forward problems in the thesis. Analytical methods such as separation of variables
can be employed to solve the Helmholtz equation for some canonical cases.
However, when arbitrarily shaped scattering objects take into play, numerical
methods such as MOM, FEM, FDTD should be employed. In this work, MOM is
used as primary numerical method for forward problems. In addition to MOM, FEM
is employed as a collaborating numerical method to validate MOM results. FEM

solutions are obtained using a simple FEM tool, FreeFEM [5].

In order to apply MOM, Helmholtz equation is converted to integral equation that is
a Fredholm integral equation of the second kind by utilizing the Green’s functions.
Then, the integral equation is discretized.

In inverse problems, Contrast Source Inversion method is used. The method is
applied for the objects located in infinite medium first as depicted in the paper from
which the method originates. Then, it is applied for the objects located in three part
planarly layered media.

The thesis is organized as follows, Section 2 depicts forward problems and Section 3
gives related numerical results. In Section 4, inverse problems are studied and

numerical results are given in Section 5.

e '@t js understood time factor for phasor calculations.

1.1 Purpose of the Work

The aim of this work is to study on application of Contrast Source
Inversion method to reconstruct objects located in a three part planarly

layered media.






2. FORWARD PROBLEMS FOR OBJECTS LOCATED IN THREE PART
PLANARLY LAYERED MEDIA

This section depicts solution of two-dimensional forward scattering problems. The
scattered filed data is necessary for the inverse problem study. The data will be
obtained synthetically by solving the forward problem. As it is mentioned in Section
1, MOM will be used as primary numerical method to solve the forward problems.
The cases for objects located in infinite medium and objects located in three part
planarly layered media will be both studied. In MOM, different mediums differ
Green’s functions only in the solution procedure. Once Green’s functions pertaining
to the medium are obtained, the rest of the problem is straightforward. Therefore, a

simple geometry will be used to illustrate the forward solution procedure.

2.1 Formulation of the Forward Scattering Problem

An infinite dielectric cylinder is located along the z-axis in a linear, isotropic and
lossless media as shown in Figure 2.1. The permittivity of the object and the
background medium are not necessarily homogeneous. The object is illuminated by a

TMz planewave propagating in an arbitrary direction.

v

: €2(x,y). Mo -

Figure 2.1 : An example geometry for the forward problem.



The Helmholtz equation reduces to scalar one because the electric field has z
component only. The total electric field satisfies the Helmholtz equation shown in
(2.1)

AE(x,v) + k*(x,y) *E(x,y) =0 (2.1)

where k is propagation constant being defined by k? = w?ep + iwop

_ (kq, (x,y) € Q
and the incident field satisfies (2.3).
AE' +k?-E' =0 (2.3)

The coordinate indices (X,y) and vector cap placed above a vector will be dropped to
simplify equations i.e. E = E(x,y)-d, throughout the thesis. They will be

emphasized when necessary.

It can also be stated that the total field at any point equal to summation of the

incident and the scattered field at that point as shown in (2.4).
E'+ES=E (2.4)

Two terms can be added and subtracted in (2.1), it becomes (2.5).

AE +k? E+k? E'—k? E'+k? ES—k? ES=0 (2.5)
using (2.4)
AE'+ES)+ ki -E'— ki -E'+ ki -ES—ki-ES=—k*E (2.6)
AES — k?-E +k? - ES=—k?-E (2.7
AES + k? -ES = —(k? — k?)-E (2.8)

and using the definition of the object function given in (2.9), (2.8) can be expressed
as (2.10).



k?(x,y) — ki

kf =e(xy) -1 (2.9)

x(x,y) =

The object function is also called as contrast as it will be referred in Section 3.
AES + k?-ES=—k?-y-E (2.10)

It is seen that the polarization current induced in the cylinder can be thought as
source current of the scattered field, this approach is called volumetric equivalence

principle [6].
It is also known that, by definition, the solution of (2.11) in a medium gives Green’s
function of the medium.

AG(x,y;x',y) + ki -G(x,y;x',y) = =6(x) - 6(¥) (2.11)

Green’s functions enable us to write the solution of (2.8) in the integral form as in
(2.12).

ES(x,y) = f ki(x',y") - x(x',y) - E(x',y) G(x,y;x',y") - dx' - dy’ (2.12)
Q

where (x,y) and (x’,y’) are the coordinates of the observation and source point,
respectively. The apostrophes are used to indicate source locations throughout the

thesis.

Integration surface Q indicates surface area on the cross section of the cylinder. The
term kZ(x',y") can be taken out of the integral if it does not vary along the region ,

it will be assumed that it does not vary along the region Q from now on.

In this manner, one can write scattered field anywhere, either in the object or outside

of it, in terms of the electric field in the object.

If (2.12) is substituted in (2.4), one can end up with domain integral equation (2.13)
which is a Fredholm integral equation of the second kind.

E(x,y) = E'(x,y) +kffx(x’,y’)-E(x’,y’)-G(x,y:x’,y’)-dx’-dy’ (2.13)
Q



The next step is discretization of the domain integral equation. The domain Q will be
subdivided into such small square cells that the dielectric constant and the field
variation over a cell can be neglected. The cells do not have to be same sized, they
can be fined regionally. Edge dimensions should not exceed 0.2 - 1/+/¢,- for accurate
results [7].

(2.13) is forced to be hold at the center of each cell m and the following equation is

obtained.

elln

N
E, =E., +k?- Z Xn Enf G(x,y;x',y) -dx' - dy' (2.14)
n=1 ¢

where N represents number of cells and E represents the electric field at the center of
a cell. One can write (2.14) for each cell and end up with N unknowns, the field
variables E, and N equations. The system of linear equations can be expressed in a

matrix equation (2.15)
(I-D)-E=E"! (2.15)
where | represents NxN identity matrix and D can be expressed as (2.16).

Dy = k% Xnt f G(x,y;x’,y’) ~dx' - dy, (2'16)

celln

(2.15) can be stated in a more compact form as in (2.17).

C-E=Et (2.17)

The unknown electric field variables can be found by inverting the matrix C.

E=C'-E (2.18)

Once the electric field over the object is found, scattered field at any point can be
calculated using (2.19).

elln

N
B =k Y g Ba | GGyiay)-dx-dy (2.19)
n=1 ¢



A complete solution procedure for the forward problem has been illustrated but no
Green’s functions have been mentioned yet. It can be deduced that forward scattering
problems for objects located in different media necessitates different Green’s

functions only and do not change the solution procedure.

In the example case, the background medium is infinite and its Green’s function is
solution of (2.11) with the condition k? is the same everywhere. The Green’s

function is given by (2.20).

i ! !
G yix',y) =7 HP (ky (= )2+ (v — y)P) (2.20)
where (x,y) and (x’,y’) are the coordinates of the observation and source point,

respectively.

It should be noted that surface integration of the Green’s function given in (2.20)
over a computation cell is problematic. A closed form solution of the integration of
the Hankel function over a square or rectangular cell is not known. Furthermore, we
encounter a singular point in the integration region when the source and the
observation cells are the same. Analytical expressions figuring out the both problems

can be found in [7].

2.2 The Problem Geometry and Green’s Functions for the Forward Problem

The geometry of the forward problem is three part planarly layered media and the
object is located in the second medium as shown in Figure 2.2. In other words, there
is a slab between two half spaces and the object is located in the slab. The spaces are
nonmagnetic, linear, isotropic, homogeneous and lossless. The object will be
illuminated by planewaves having different incidence angle 6; to collect scattered

data along the measurement line shown in Figure 2.2.
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Figure 2.2 : The problem geometry for the forward problem.

The solution procedure for the forward problem was depicted in Section 2.1. The
Green’s functions pertaining to three part planarly layered media can be employed to

apply MOM solution. The Green’s function satisfies (2.21).

AG(x,y;x",y) + k*(y) - G(x,y;x',y") = =6(x = x") - 6(y — ") (2.21)
where
kq, y>0
k(y) =3k,, —d<y<o0 (2.22)
ks, y<-—d

G (x,y;x',y")

G(x,y;x',y") and are continuous on the boundaries separating the

media. There are different approaches to solve (2.21). One method, called hybrid
method, suggests Fourier transform in one dimension and direct solution in other
dimension [8]. We will perform Fourier transform over the horizontal axis and
employ direct solution in the stratified direction. We apply Fourier transform to the

whole equation given in (2.21).

jw [AG +k* -G =—-8(x—x)-8(y—y)] e V> dx (2.23)

— 00
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using radiation condition

A~

G A .
5y 1 6= e sy~ ) 224

where Gstands for the spectral Green’s function and

yv) = |vi-k*,  j=123 (2.25)

y; is defined with the condition y;(0) = —i - k; in accordance with the complex cut

plane as shown in Figure 2.3 [9].

A
Im(V)

»

ky k, ks  Re(V)

A

v

Figure 2.3 : Branch cuts and Fourier inversion path in the complex plane.

Nine solutions arise for (2.24) depending on which medium the source and the
observation point are located in. These are the Green’s functions named as from G4
to G33. In each of nine case, system of linear equations consisting of eight unknowns
and eight equations emerge. Six equations coming from Dirichlet and Neumann type
conditions on boundaries and the source point, two equations imposed by radiation
conditions form eight equations. Green’s functions pertaining to three part planarly
layered media is studied well in [10], only the components of G4, G,, are dealt with
in this work. They are given in (2.26) and (2.27)

Gy (x,y;x,y) = f e~ V1YtV . Cpry - elv(x=x) . 4y (2.26)

FIP

11



+ f e Y2V 0, etV X)L gy
FIP

Con L ; ;
Goa (i x',y) = 7 HP (ke = xD2 + & = ¥)?)

+ [ et e gy

FIP

b [ et gy etvie) gy

FIP

+ f eV (V=) . ¢,y - etV (x=x) . gy
FIP

+ f ez =) ., , - etV X)L gy
FIP

(2.27)

where FIP stands for Fourier inversion path. The coefficients are given by (2.28)-

(2.34) [10].
1 e?9- (v, +7,)
Co11 = % P
1 (Yz - Y3)
Co12 = m P

11 e¥ N (y,+y,) (v, —vy)

C —- . .
217 2m 24y, P
c S 11 () ()
2227 2m 20, P
c S 1 () ()
287 2m 20y, J2
Co24 = Ca23

12

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)



P=e" % (v, +v,) - (v, +v,) + (= 19) - (r, — 7)) (2.34)

One should calculate surface integrals of the Green’s functions over a cell area to fill
the matrix C. Cell size in x is Ax and in y is Ay, (x., y.) holds center coordinates of

the cells. Surface integrals of the Green’s functions can be calculated as follows.

’ 621(95'}’:95';}") dx'dy’ =

>
<
>
x

_ f o2 (+Y) . giva-xg) | 4 -sin(Ax -v/2) - sinh(Ay -y, /2) dv
FIP v2rv (2.35)

4 - sin (Ax -v/2) - sinh (Ay - y,/2) i
- dv

+ Cp1p je—h-y—yz-yc.ei-v-(x—xc).

Y2V
FIP
yc"'A?y c+% ., , ,
f Ay " Gzz(x,y;x,y)-dxdy
Y= “Xem
(i-m-a 1
® oy o
- ".H k. - -, — Ay =
_ 2 . k2 1 ( 2 a) k22 X X y y
i-m-a , : _
) Gk HP (ky G =X+ G =y)?),  otherwise
2
, sin(Ax %) -sinh(Ay -2

+Cypp - f e]/g'(y+y) . ei-v-(x—xc) 4. ( 2) ( y 2) dv

FIP y2rv

(2.36)
, sin(Ax -2)-sinh (Ay -2
+C222 . f e—]/z-(y+y) . ei-v-(x—xc) . 4 . ( 2) ( y 2) . dV
Y2V
FIP
sin(Ax -<)-sinh(Ay -2
+Cyp3 - f V2 Ve=y) . pivi(x=xc) . 4. ( 2) ( Y 2) - dv
Y2V

FIP

sin (Ax - v/2) - sinh (Ay - y,/2) d
. - dv
Y2 v

+C224 f e V22 (emy) . plv(x—x0) . 4
FIP

13



Numerical calculations has shown that surface integrals can be approximated by
multiplication of the integrand and the cell area. It is seen that when the cell size is

kept small enough, incurred error is acceptable.

Now, only the incident field is left to be determined. The incident field can be

calculated as follows.

One can write components of electric and magnetic fields in each region as shown in

Figure 2.4. Then, corresponding boundary conditions can be imposed.

LR R R
{{{{{{{{{{{C{{{{{{{{{ {C{{{{{{{{{{{C{{{{{

Ei(x’ y) — el k1-(x-sin(6;)—y-cos(6;)) . ez ER (X y) =R- el k1-(x-sin(6;)+y-cos(6;)) .

() v v v v v v
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\

ity e e e e e e
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e - e e ™ e e e e e e e ™
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e T e e e e e e e e e e e e e e e e e e e ™
o e e e e e e e e e e e e e e e e ™

T T T e D T T T T T T D T e D D T T TR D T T T T e
Ll = '- . . 1 — .
e ET(x, y)=T-e! k3 (x-sin(Bz)—y-cos(6t2)) . g

e e e e e e T e e e o e e T e e e R
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e e e e e e e e e e e e e e e e e e e e T e e T T T e S S S R S

Figure 2.4 : Calculation of the incident field.

The electric and the magnetic fields in the upper half space are given in (2.37) and
(2.38).

Ei(x, y) — el’-kl.(x.sin(ei)—y.cos(ei)) . gz (2_37)
—_ . 1 . -
Hi(x,y) = — - ethuCesin@)=ycos®) . (—g . sin(0;) —&, - cos(6;)) (2.38)

In slab, the field components are given in (2.39) and (2.40).

14



ES(X’ y) =A- el"kz'(x'Sin(etl)—y-cos(etl)) . é}z

+B- ei-kz-(x-sin(9t1)+y-cos(9t1)) ) é)z (239)
_ 1 . :
HS(x,y) = A-— - etk (xsin(®r)-y-cos(0r1)) . (=8, - sin(6;) —&,
2
. cos(@i)) +B- i . ei'kz'(x'Sin(9t1)+y-cOS(9t1)) . (_é’y (240)
12
- sin(0;) +é, - cos(6;))
In the lower half space, the field components are given in (2.41) and (2.42).
ET(x’ y) = T . gik3-(xsin(Be2)—y-cos(02)) . gz (2.41)
- 1 . .
HT(x,y) = —- T - et'ka:(xsin(r2)—y-cos(¥r2)) . (—8, - sin(0,) —&,
UE (2.42)

- €05 (0r2))

The boundary equations are imposed. Boundary equations at y=0 yields (2.43) and
(2.44)

1+R=A+B (2.43)

1 1 A B
— -+ —cos(6;) + —- R - cos(0;) = —* —cos(0y) + n— cos(0¢1) (2.44)
2

M M2 N2
and at y=-d (2.45) and (2.46) can be written.

A- ei-kz-d-cos(em) +B- ei-kz-—d-cos(etl) =T- ei-k3-d-cos(9t2) (2.45)

A gikracoston) . —cos(B1) + B etka=dcoston) . cos(6yy)
N2 N2
(2.46)

_ 1 . plk3:d-cos(0cz) —cos(0¢,)
N3

The diffraction angles 0., and 6., can be found using the well-known Snell’s law
givenin (2.47).

15



kl " Sln(el) == k2 - Sln(etl) == k3 - Sln (etz) (247)

Equations from (2.43) to (2.46) form a system of linear equations, the coefficients R,
A, B and T can be found easily by filling a 4x4 matrix in a CAD tool. Recursive
formulas for the reflection and transmission coefficients for a multilayer planarly

layered media can be found in [11].

The C matrix is filled and the incident field vector E' is calculated. The matrix
equation (2.17) can be solved for the unknown electric field variable by inverting the
matrix C. As it is mentioned in Section 2.1; once the electric field is found, scattered

data can be produced via (2.19).

16



3. NUMERICAL RESULTS AND COMMENTS FOR THE FORWARD
PROBLEMS

The ultimate goal of the work is to solve an inverse problem. The forward problem is
solved in order to provide data to the inverse problem study. It must be proved that
the formulation of the forward problem and the produced scattering data are exactly
correct so that the studies on the inversion algorithms are meaningful. Otherwise, it

may be committed so-called inverse crime.

The best way to prove the results of the forward problem is to solve the forward
problem with an entirely different numerical method and compare the results. It had
been intended to solve the problem with FEM in addition to MOM. It is achieved to
correctly model and produce scattered data for the forward problem for objects
located in infinite medium in FEM. However, it is not the same for objects located in
three part planarly layered media. The FEM solution in three part media is left as

future work.

Nevertheless, the following results are powerful evidences indicating the forward

solution is correct.

It is checked first that whether the spectral representation of the Hankel function can
be computed over FIP correctly. The magnitudes and the phases are compared and

results are shown in Figure 3.1 and Figure 3.2.

1 1 . . ,
H(gl) (kl \/(x —x)+ (- yr)z) =5 ﬁ cerilyyl. gtv=x) . gy (3.1)
1
FIP

i
4

17



Hankel Function

0.08

T

0.075

0.07

0.065

Magnitude
o
o
(92}

0.055

0.05

0.045

r

3 3 3 3

Analytical Expression
£ Computed Integral

r r r r

0.04
0

15

20 25 30 35 40
Observation Point

Figure 3.1 : Magnitude of the Hankel function, analytical and computed.
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Figure 3.2 : Phase of the Hankel function, analytical and computed.
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Then, electrical properties of three mediums are chosen the same as shown in Figure

3.3 in order to check forward solution results against to analytical expressions and
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Figure 3.4 : Comparison of scattered fields for incidence angle of pi/4.
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Figure 3.5 : Comparison of scattered fields for normal incidence.

Although the forward solution could not be modeled in an entirely different
numerical method, according to obtained results there is nothing looking wrong in

the forward solution.
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INVERSE PROBLEMS FOR OBJECTS LOCATED IN THREE PART

PLANARLY LAYERED MEDIA

4.

The inverse scattering problem is determination of contrast of the scatterer object(s)

from knowledge of the incident and the scattered fields. Once the contrast of the

scatterer immersed in a known background is determined, its both electrical and

geometrical properties are determined because the contrast function, by definition,

holds the both properties.

The inverse problems are generally nonlinear and highly ill-posed. Existence of a

unique solution of an inverse problem is also a research topic.

4.1 The Problem Geometry for the Inverse Problem

The problem is a two dimensional problem and the geometry consists of three part

planarly layered media. The scattering object(s) is located in the second medium in a

hypothetical, square reconstruction domain D. The problem geometry is shown in

M1 = M2 =

Figure 4.1. The spaces are homogeneous, nonmagnetic and lossless i.e.
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Figure 4.1 : The problem geometry for the inverse problem.
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The following parameters are used for the shown geometry throughout the thesis

unless otherwise noted.

Thickness of the slab, d = 0.45- 4,

Size of the reconstruction domain D, a = 0.4 - 4,
Distance of the measurement line S, dm =1- 4,

Dielectric constants of the media, ¢, = 1-¢g, e, =3-gpand e; =5+ g9

The region is excited by plane waves having incidence angle 6;varying from 3?” to

—-3r

4.2 The Contrast Source Inversion Method

The contrast source inversion method is an algorithm for reconstruction of the
contrast of a bounded object immersed in a known background medium. The method
can employ both spatially and frequency varying incident fields and allows to
introduce a priori information about the scatterer objects improving the

reconstruction performance.

In this work, single frequency is used for the excitations and a priori information
indicating the permittivity of the scattering object has no imaginary part and its real
part is always positive is introduced. In other words, it is studied for the scattering
objects whose dielectric constant are pure real and higher than the background

medium.

It is known that total field in the domain D satisfies the domain integral equation

E(xy) = E(u,y) + k2 f 2GL Y)Y E (LYY Gooyix,y) - dx' - dy’ (4.1)
D

and the scattered field data, on the measurement line S, can be found using (4.2).

B =k [ Gy E G G0y y) - da' - dy’ (4.2)
D
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The equations (4.1) and (4.2) are called state equation and data equation,
respectively. They can be rewritten in a symbolic form. The state equation becomes
(4.3)

E.

) =B+ 600 E) “3)

and the data equation becomes (4.4).
fi =60 B (4.4)
The subscript j indicates excitation index and the operators G and G° are defined

implicitly in (4.1) and (4.2).

It is observed that the unknown variables y and E appear as multiplication in the state
and the data equation. The contrast source inversion method considers the
multiplication of the mentioned variables as an equivalent source and names it

contrast source.

The state and the data equation become (4.6) and (4.7).

E; =E +GP(w) (4.6)

f; =6 w) “.7

The method handles the inverse problem as an optimization problem and aims to
minimize a cost functional consisting of two terms pertaining to errors in the data

equation and the object equation. The cost functional F is defined as in (4.8)

, 112 Nlrs |12
F:ZJHF)]”;_l_ Z}||]||is2 (4.8)
Xillfills X5l Ejllp

where the data error and the state error defined in (4.9) and (4.10), respectively. ||.||3

and ||.]|% indicate norms on Ly(S) and L,(D).

pj = £ — G} (W) (4.9)
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=X B —witx - GP(w) =x B —w (4.10)

The algorithm starts with initial values for the contrast source. There are two
alternatives offered for the initial values, one consists of constant values minimizing
the data error and the other is obtained by backpropagations. They are given in (4.11)
and (4.12), respectively,

e <[pGl>s

we, = (4.11)
70 = TG

where <.,.>gp stands for the inner product on L [3].

bp _ ”st 'ff”% G5 - (4.12)
Wio =7 5 s S i '
IIGj Gj f]”s

Second subscript of the contrast source in (4.11) and (4.12) indicates the iteration
step so the value 0 indicates that the equations are initial assignment equations. The

operators GS" and GP are adjoints of G5 and G® mapping from L,(S) to L»(D) and
L,(D) to Ly(D), respectively.

After the assignment of starting values, the algorithm constructs w and y iteratively

reducing the value of the cost functional in the following manner for n=0,1,2....

The contrast source is updated at each iteration step by the equation (4.13)
Wj,n = Wj,n—l + afj,n . vj,n (413)

where a; ,, is constants and v; ,, is the Polak-Ribiere conjugate gradients update

directions being function of the position. The initial value of the directions is zero.
Vjo=0 (4.14)

The update directions is given by (4.15)

<YgjwIjn ~ Gjn-1>p (4.15)

Vin=0jn T Vj n—
Jmn n jn—-1
< Ijin-19jn-1 >D

where g; , is Frechet derivative of the cost functional with respect to w; evaluated at

Wjn-1 and ¥jn-1; &jn IS given by (4.16)
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. ng* (pj,n—l) _ rj,n—l - GjD* ()Zj,n—l ) rj,n—l) (4.16)
Xk ||fk||§ 2ilXn-1- Ellc”%

Ijin =

and the constant « ,, is determined to minimize the cost functional, it is given by

4.17) [3].

s D
<PjnGjVin>s = <Tjn-1,Vjn~Xjn-1Gj Vjn>D

%k fxll3 Tkl Xkn-1ERllD (4 17)
jn 2 D '
J G vjnlls | 11Vjn=Xjn-16G]vjnllD
TrlfkllE Tkl Xkn-1ELllD

Once the wj , is determined u; , is determined using (4.18).
u]"n = u]"n_l + (Xj'n . GJD (vj'n) (418)

The application of the algorithm can be summarized by the following steps.
1) Determine start values using (4.12) or (4.12) for the contrast source.

2) Determine the Frechet derivative g and then determine update directions v.
3) Determine the constants a.

4) Update the contrast source w and then update the total field u.

5) Calculate contrast, x.

6) Calculate the value of the cost functional, go Step 2 if it higher than specified error

else go Step 7.

7) Exit from the loop and plot reconstructed contrast.
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5. NUMERICAL RESULTS AND COMMENTS FOR THE INVERSE

PROBLEMS

The method is applied for the objects located in an infinite medium first as the

original paper depicts [3]. The geometry is shown in Figure 5.1. The reconstruction

domain is 0.8A x 0.8\ square and the measurement line is a circle having diameter of

1.6A. The domain subdivided into square cells having size of A/30. The region is

illuminated by planewaves with 30 different incident angles being equally spaced in

[0, 2m) and there are 30 measurement points on the measurement line. The excitation

frequency is 3 GHz.

1= &

A

Measurement Line

v

Reconstruction Domain

Figure 5.1 : An example geometry for the inverse problem.

The first example is circular cylinder whose radius is 0.2\ and contrast is 3.

27



Original Contrast function Reconstructed Contrast function
0.04

0.03
0.02
0.01
0
-0.01
-0.02

-0.03

-0.04
-0.04 -0.02 0 0.02 0.04

Figure 5.2 : A circular cylindrical object in infinite medium, original(left)
reconstructed(right).
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Figure 5.3 : Reconstruction of circular cylindrical object, cost functional vs
iteration.

After 50 iterations the circular cylindrical object is reconstructed well. Then, a

triangular object is tested as shown in Figure 5.4.
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Figure 5.4 : Triangular cylindrical object in infinite medium.
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Figure 5.5 : Triangular cylindrical object cost functional vs iteration.
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Two closely located objects are tested as shown in Figure 5.6.

Original Contrast function

Reconstructed Contrast function

- 06

Figure 5.6 : Two objects separated by 0.3X in infinite medium.

It can be seen in Figure 5.7 that objects having radius of less than 0.1A can be clearly

distinguished when they are separated by 0.4A or more.

Original Contrast function Reconstructed Contrast function
4

Figure 5.7 : Two objects separated by 0.4\ in infinite medium.

In Figure 5.8, it is seen that altering the objects’ contrast does not disturb the

reconstruction performance.
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Reconstructed Contrast function

Original Contrast function

Figure 5.8 : Two objects with different contrasts are separated by 0.4X in
infinite medium.

In Figure 5.9, the object radius is less than 0.045 A, although the contrast could not

be found, the objects’ location is detected.

Original Contrast function Reconstructed Contrast function
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Figure 5.9 : Small off-centered object in infinite medium.

Then, the method is applied for the objects located in three part planarly layered
media. The geometry was given in Figure 4.1. Following results are obtained for the

objects located in three part planarly layered media.

In three part media, as it is mentioned, reconstruction domain is 0.4 x 0.4A and cell
size is A/30, A indicates A, throught the following results. The region is illuminated
by planewaves with 80 different incident angles being equally spaced in [-37/8,
37/8)] and there are 80 measurement points on the measurement line. The excitation

frequency is 3 GHz.

The first example is circular cylinder whose radius is 0.12A and contrast is 3.

31



Original Contrast function

2 4 6 8 10 12 14

Reconstructed Contrast function
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Figure 5.10 : Circular cylindrical object in stratified media, original(left)
reconstructed(right).

Then, a triangular object is tested.
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Figure 5.11 : Reconstruction of circular cylindrical object in stratified
cost functional vs iteration.
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Figure 5.12 : Triangular cylindrical object in stratified media.
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Reconstructed images smears down comparing to images obtained in infinite
medium. This effect may be expected because the objects can only be illuminated by

down going waves and scattered data can only be collected in upper half space.

0.9 T T T T T T T T

0.7 b
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0.5 -

0.4 8

Cost Functioanal

0.3 A

0.2 i

0.1 '

0 r F : : : :
0 5 10 15 20 25 30 35 40 45

Iteration

Figure 5.13 : Reconstruction of triangular cylindrical object in stratified
media, cost functional vs iteration.

In Figure 5.14, it is seen that 0.2\ separated objects could not be reconstructed well;
the bigger object is detected but the small object is disappeared at all. The bigger one
has radius of 0.045\ and the small object’s radius is 0.03A.

When they are separated 0.3\ instead of 0.2A and the radius of the small object is
increased to 0.04A, they can be distinguished as shown in Figure 5.15.

Reconstructed Contrast function
14

Original Contrast function

14

12

10

2 4 6 8 10 12 14 2 4 6 8 10 12 14

Figure 5.14 : Two objects separated by 0.2X in stratified media.
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The separation is kept 0.2A and the reconstruction domain size is reduced to 0.3\ x

0.3A to increase the resolution. The cell size is reduced to A/40.

It is seen in Figure 5.16 that, none of the object is disappeared and they can be

reconstructed better because the resolution is increased.

Original Contrast function Reconstructed Contrast function
14 1
12

10

2 4 6 8 10 12 14
Figure 5.15 : Two objects separated by 0.3A in stratified media.
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Figure 5.16 : Two objects separated by 0.2X in stratified media, domain 0.3\ x
0.31.

In first example circular cylinder object having radius of 0.12A was reconstructed

well. When its radius is reduced 0.06, the result shown in Figure 5.17 is obtained.
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Figure 5.17 : Small object having radius of less than 0.06\ in stratified media.
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Figure 5.18 : Small off centered object having radius of less than 0.025A in
stratified media

It can be deduced from Figure 5.17 and Figure 5.18 that when the object radius goes
below 0.1, although electrical properties can not be reconstructed well, their
locations can be detected.

The slab thickness is increased to 0.65A, reconstruction domain size is enlarged to
0.6\ x 0.6\ and cell size is reduced to A/40 and following observations are carried

out.
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Figure 5.19 : Circular cylindrical object in stratified media, thick slab
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Figure 5.20 : Triangular cylindrical object in stratified media, thick slab
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Figure 5.21 : Two objects in stratified media, separated, thick slab
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Similar results are obtained for the thick slab (0.651). In two object case, objects can
only be distinguished when they are get close to the opposite corners, otherwise one
object overshadows the other object and their image become merged as seen from
Figure 5.21 through Figure 5.23. When they are get closer to each other, they can not
be separately reconstructed as shown in Figure 5.22.
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Figure 5.22 : Two objects in stratified media, merged, thick slab

The worst case is shown in Figure 5.23, one overshadows the other.
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Figure 5.23 : Two objects in stratified media, worst case, thick slab

As a last study, reconstruction domain and cell size are kept the same, permittivity of

the media changed as ¢, =1-¢gy, €, =2-¢, and &5 = 7-¢,. It is observed for
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circular cylindrical object tests that the object’s image may shift up or down with
respect to its actual place according to its contrast. When the contrast get closer to
the background’s, image becomes shifted up and vice versa as show in Figure 5.24
through Figure 5.26.
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Figure 5.24 : Circular cylindrical object in stratified media, shifted up

Original Contrast function Reconstructed Contrast function

Figure 5.25 : Circular cylindrical object in stratified media, correct place

Original Contrast function Reconstructed Contrast function

Figure 5.26 : Circular cylindrical object in stratified media, shifted down
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As it is seen from the last three figures, contrast of the object affects the
reconstruction performance. It can be deduced that for the objects having either much
greater permittivity than background media or so close to the background media the
reconstruction performance worsens. This behavior was also observed in previously
examined cases, in the first case and in the thick slab case. In Figure 5.27, it is seen
again that two objects can only be distinguished when they are get closer to the

opposite corners.
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Figure 5.27 : Two objects in stratified media
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6. CONCLUSIONS

The forward problems for objects located in infinite medium and three part planarly
layered media is solved using MOM. The results obtained from the MOM solution
are compared against to available analytical solutions and the FEM solution.

Obtained results showed that there is nothing looking wrong in the forward solution.

The Contrast Source Inversion method is applied to reconstruct objects located in
infinite medium, first. Then, the method is applied to reconstruct objects located in
three part planarly layered media. The method is tested for different cases. It is seen
that reconstruction performance is degraded for the objects located in stratified media
comparing to objects in infinite medium. However, it is seen that the objects located
in three part layered media can be reconstructed well using the contrast source

inversion method.

How close objects can be distinguished is investigated. It is seen that when the
domain size is reduced, the resolution is increased and the objects’ image become
separated more. As a numerical example, 0.24 separated objects could not be
distinguished when the reconstruction domain size is chosen 0.4A. When the domain
size is reduced to 0.3A, the resolution is increased and the objects’ separation
becomes more clear. Furthermore, it is seen that two objects can only be
distinguished when they are get close to the opposite corners of the reconstruction
domain, otherwise one object overshadows the other object and their image become

merged.

How small objects can be detected is investigated. It is observed that while objects
get smaller, reconstruction of electrical properties become inaccurate but objects’
location can be detected. As a numerical example, in 0.4XAx0.4\ reconstruction
domain, objects having radius of 0.12A or greater can be reconstructed well with
their electrical properties. On the other hand, objects having radius of less than 0.1
can only be detected.

It is deduced that for the objects having either much greater permittivity than

background media or so close to the background media the reconstruction
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performance worsens and object’s image slightly shifts up or down. The best results
are obtained for the contrasts being around three. It is also seen that different
arrangements for the receive points i.e. linear or half circular do not alter the

reconstruction performance much.

It had been intended to solve the forward problem for three part media using FEM
which is an entirely different method from MOM in order to make a legitimate study
on the inverse problem. However, FEM solutions could not be obtained for three part
media and MOM is used in both the forward and the inverse problems. This risks the
robustness of the work. Nevertheless, contrast source inversion method is applied
and examined for three part planarly layered media.
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