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OZET

LINEER FONKSIYONEL DENKLEMLERIN BERNSTEIN POLINOMLARI
VE RASYONEL FONKSIYONLARA DAYALI SIRALAMA YONTEMI iLE
COZUMLERI UZERINE

Osman Rasit I[SIK

Doktora Tezi
Matematik Anabilim Dali
Danigman: Prof. Dr. Zekeriya GUNEY
Nisan 2012, 107 sayfa

Bu ¢alismada, lineer fonksiyonel denklemler sinifindan adi diferansiyel denklemler,
gecikmeli diferansiyel denklemler, integro-diferansiyel denklemler ve kismi tiirevli
diferansiyel denklemlerin sayisal ¢oziimleri icin siralama ydntemi ve Bernstein
polinomlarina dayali yeni bir matris yontemi verilmistir. Olusturulan siralama
yonteminin, diger polinomlara dayali matris yontemlerine de uygulanabilirligi olan
hata analizi ve yapilan hatanin tahmini yapilmistir. Bununla beraber, 6zel bir
rasyonel fonksiyonlar ailesi ve matris yontemi kullanilarak adi diferansiyel
denklemler i¢in rasyonel fonksiyon ¢6ziimii elde edilmistir. Son olarak, m—boyutta
rasyonel interpolasyon probleminin bir ¢éziimii olarak bir rasyonel fonksiyon ailesi
elde edilmis ve kismi tiirevli diferansiyel denklemlerin sayisal ¢Oziimii i¢in bu
rasyonel fonksiyon ailesi kullanilmistir.

Anahtar Kelimeler: Rasyonel Interpolasyon, Bernstein Polinomlari, Siralama
Yontemi, Adi Diferansiyel Denklemler, Kismi Diferansiyel
Denklemler.

v



ABSTRACT

ON THE SOLUTIONS OF THE LINEAR FUNCTIONAL EQUATIONS
WITH THE COLLOCATION METHOD DEPENDS ON BERNSTEIN
POLYNOMIALS AND RATIONAL FUNCTIONS

Osman Rasit [SIK

Doctor of Philosophy (Ph.D.)
Department of Mathematics
Supervisor: Prof. Dr. Zekeriya GUNEY
April 2012, 107 pages

In this study, a new matrix method based on collocation method and Bernstein
polynomials was given for the numerical solutions of differential equations, delay
differential equations, integro-differential equations and partial differential equations
which are linear functional equations. Error analysis of the method and estimation of
the absolute error that can be applied other matrix method based on polynomials were
given. A new numerical solution based on the matrix method and a family of special
rational functions was obtained for differential equations.Finally, as a solution of the
interpolation problem in m—dimensions, a family of rational functions was obtained,
and they were used to obtain a numerical solution for partial differential equations.

Keywords: Rational Interpolation, Bernstein Polynomials, Collocation Method,
Differential Equations, Partial Differential Equations.
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1. GIRIS

Yaklagim teorisi, bir fonksiyona ona gore daha basit olan diger fonksiyonlarla
yaklasimla ilgilenir. Bir yaklagimda, yaklasim fonksiyonunun yapisi ve kolay

uygulanabilirligi dnemlidir. En genel olarak bir yaklasim probleminde,

1. Yaklagim yapilacak olan f € X fonksiyonu,
2. Yaklasim fonksiyonlarinin kiimesi 4,
3. Yapilan yaklasimin f’ye ne kadar yaklastiginin belirlenmesi

olmak iizere 3 temel unsur vardir. Herhangi bir f € X fonksiyonu ve A verildigi
zaman, istenilen tutarlilikta bir yaklasim bazen tek, bazen birden fazla olabilir. A4
kiimesinin normlu bir uzay olmas1 durumunda yapilan islemler ve en 1yi yaklagimin
tayini daha kolay olmaktadir. Eger A bir lineer uzay ise, iyi bir yaklasim elde
etmek icin A’nin boyutu arttirilabilir. Yaklasim fonksiyonlarinin bulunmasi igin
sayisal metotlar gereklidir. ~ Yaklagim teorisinde polinom yaklasimlar1 siklikla
kullanilmaktadir. Ornek olarak, Taylor polinom yaklasimi verilebilir. Eger bir f
fonksiyonuna yiiksek tutarli bir yaklasim yapilmak istenirse, f’nin yiiksek
mertebeden tilirevleri mevcut olmadik¢a yaklagim fonksiyonunun tek bir polinom
olmasi uygun degildir. Hatta sonsuz mertebeden diferansiyellenebilir olsa bile poli-
nom yaklagimlart yine de uygun olmayabilir. Bunun bir sebebi, x — oo iken tek
sinirlt polinomun sabit polinom olmasidir. Bu yiizden bilgisayar programlarinda
rasyonel yaklagimlar, siniis, listel ve arctanjant gibi standart matematik fonksiyonlarin
hesaplanmasinda polinomlara tercih edilmektedir. Rasyonel yaklasimda 4 kiimesi,

p € Py, ve g € P, olmak iizere P fonksiyonlarindan olusur.

Yaklasim fonksiyonlari, verilen bir fonksiyonel denklemin ¢ézlimiine yaklasim i¢in
siklikla kullanilmaktadir. Fonksiyonel denklemler, matematigin bir¢ok alaninda ve
matematigin disinda karar verme ve enformasyon, fizik, mithendislik ve ekonomi gibi
diger bir ¢ok alanda karsimiza ¢iktiklart i¢in ¢Oziimiin var oldugunu

sOylemek, analitik olarak ¢6zmek veya ¢ozlimiine istenen bir tutarlilikla yaklasmak



onem tasimaktadir. Ornek olarak Cauchy denklemi, integral denklemler, diferansiyel

denklemler ve kismi diferansiyel denklemler verilebilir.

Fonksiyonel denklemlerin ¢dziimiine sayisal yaklasim icin bilinen en kolay yontem

siralama yontemidir. Bu yontem,
n
(x) = yo(x) + ) ai(x) (1)
i=1

aciliminda o; katsayilarinin siralama noktalar1 kullanarak belirlenmesidir. Siralama
yonteminde y; fonksiyonlar1 olarak ortogonal polinomlar, parcali polinomlar gibi

cesitli 6zel fonksiyon aileleri kullanilir.

Siralama yontemi siralama noktalarinin sayisina bagli oldugu igin, uygun bir ¢6ziim
bulmak i¢in uygun sayida siralama noktasi se¢ilmesi gerekmektedir. Coziim
fonksiyonunun yapisina ve yaklasim aralifina baglh olarak nokta sayisinin artmasi
yontemin yakinsakligini genelde garanti etmemektedir. Bundan dolayi, siralama
yontemi kullanilarak bulunan bir fonksiyonel denklemin yaklasik ¢6ziimiiniin gergek
¢Oziime ne kadar yaklastiginin, diger bir ifadeyle mutlak hata i¢in bir st sinirin

bulunmasi, yaklagimin anlamliligini artiracaktir.

Fonksiyonel denklemin tam ¢6ziimiine yaklasim i¢in polinomlar uzayini da igine

alan, p € P, ve g € P, olmak lizere
r== (1.2)

tipindeki rasyonel fonksiyonlar da kullanilabilir. Rasyonel fonksiyonlar i¢in bulunan
en iyi yaklasim, polinomlar i¢in bulunan en iyi yaklagimdan daha iyi oldugundan;
rasyonel fonksiyonlar kullanilarak bulunan bir yaklasimin da daha 1iyi
olmasi beklenebilir. ~ Fakat, rasyonel fonksiyonlar1 fonksiyonel denklemlerin
coziimlerinde kullanabilmek i¢in en genel olarak fonksiyonel denklemin tam
¢Oziimiiniin stireklilik, tiirevlenebilirlik gibi temel 6zelliklerine rasyonel fonksiyon
r’nin de sahip olmasi gerekmektedir. Ayrica, yaklasimda kullanilacak rasyonel
fonksiyonun siralama noktalarinda tanimli olmasi gerekmektedir. Bunun i¢in,
rasyonel fonksiyonun paydasinin pozitif veya negatif degerli bir polinom oldugunu
garanti etmek yeterlidir. Floater ve Hormann (2006), verilen bir fonksiyona 0 <d <n

tamsay1, p; polinomu x;,x;41,...,X;+4 noktalarindaki interpolasyon polinomu ve

Ai(x) = (=1 (1.3)



olmak Uzere

n—d
L Ai(x) pi(x)
1=
— (1.4)
Ai(x)
i=0
rasyonel fonksiyonu ile yaklasmistir. (1.4) yaklasiminin hatasi, araligin uzunlugu ve

fonksiyonun diizgiinliigii ile orantilidir.

Bu tezin amaci, lineer fonksiyonel denklemlerden adi diferansiyel denklemler,
pantograf denklemleri, integral denklemler ve kismi diferansiyel denklemlerin sayisal
¢ozlimleri i¢in siralama yontemi ve Bernstein polinomlarina dayali bir
matris yontemi olusturmaktir. Ayrica, en genel olarak siralama yonteminin hata
analizi ve yapilan hatanin tahminini yapmaktir. Bununla beraber (1.4)’te verilen
rasyonel fonksiyonlar1 siralama yonteminde kullanmak, m—boyutta rasyonel
interpolasyon probleminin bir ¢oziimiinii elde etmek ve kismi diferansiyel
denklemlerin ¢6zlimii i¢in bu fonksiyon ailesini kullanmaktir. Verilecek yontemler,

diger lineer fonksiyonel denklemlere de uygulanabilir.

Tezin ikinci boliimiinde, yaklagim teorisinde temel kavramlar ve teoremler verilip
polinom interpolasyonu, rasyonel yaklasim, Bernstein polinomlar1 ve matris
normlar1 ele alinmigtir. Ayrica bu bolimde, Floater ve Hormann (2006) tarafindan

verilen rasyonel interpolasyon fonksiyonu da verilmistir.

Ucgiincii boliimde, Sezer (1994), Akyiiz ve Sezer (1999), Akyiiz ve Sezer (2003),
Akytiz- Dascioglu ve Sezer (2005), Sezer ve Akyiiz-Dascioglu (2006), Yalginbag
ve Sezer (2006), Yal¢inbas vd. (2009) tarafindan verilen siralama yontemine dayali
Chebyshev matris, Legendre matris ve Taylor matris yontemlerinde baz fonksiyonlari
olarak Bernstein polinomlar1 segilerek Bernstein seri ¢oziimii gecikmeli
diferansiyel denklemler ve Abel tipi integro-diferansiyel denklemler igin elde
edilmistir. Daha sonra kismi diferansiyel denklemlerin ¢6ziimii i¢in Yiiksel (2011) ve
Biilbiil (2011) tarafindan verilen sirasiyla Chebyshev matris yOntemi ve
Taylor matris yontemi, Bernstein polinomlari kullanilarak verilmistir.  (1.4)
denkleminde p; polinomlar1 yerine x;,x;;1,...,X;+4 noktalarindaki Bernstein seri
¢Ozliimii almarak bir rasyonel fonksiyon ¢oziimii elde edilmistir. (1.4) denklemi
m—Dboyut i¢in genellenmis olup kismi diferansiyel denklemlerin sayisal ¢oziimleri
icin sayisal bir yontem bulunmustur. Verilen tiim yontemler, hata analizleri, hata
tahminleri ve hata tahminlerine dayanan yeni bir yaklasim formiilii ile birlikte

verilmistir.



Dordiincii boliimde, tiglincii boliimde verilen yontemler Pantograf denklemleri, Abel
tipi integro-diferansiyel denklemler i¢in uygulanmis ve yiiksek mertebeden adi
diferansiyel denklemlerin rasyonel fonksiyon c¢oziimleri elde edilmistir.
m = 2 almmarak iki degiskenli verilen fonksiyonlarin rasyonel fonksiyon
yaklagimlar1 elde edilmistir. Bunun bir uygulamasi olarak, kismi diferansiyel
denklemlerin rasyonel fonksiyon ¢oziimleri elde edilmistir. Elde edilen
yaklasimlarin hata degerleri, ti¢lincii boliimde verilen teorik hata st siniri ile
karsilastirilmistur. Yaklasimlarin hata fonksiyonlarimin sonsuz normundaki
degerleri tablo ile verilmis ve bazi1 hata fonksiyonlarimin grafikleri verilmistir.
Yaklagimlarin hata tahminleri de yapilarak siralama noktalar esit aralikli olarak elde
edilen yaklagimlarda hata tahmininin diizgiin fonksiyonlar ve diistik »’ler i¢in tutarh

sonuclar verdigi gozlenmistir.

Son béliimde, tiglincii boliimde verilen yontemlerin zayif ve gliglii yonleri maddeler

halinde verilmistir. Bulunan sonuglar 6zetlenmistir.



2. KAYNAK OZETLERI

Verilen bir fonksiyonel denklem i¢in fonksiyonel denklemin yapisina gore sayisal
¢Oziim metotlar1 gelistirilmistir. Adi diferansiyel denklemler i¢in Euler metodu,
Runge Kutta metodu gibi zaman adimli metotlarla birlikte sonlu farklar metodu, tau
metodu, siralama yontemleri Ornek olarak verilebilir (Quarteroni vd., 2007,
Mason ve Handscomb, 2003). Taylor agilim ve Chebyshev a¢ilim yontemleri de
integral ve diferansiyel denklemlerin sayisal ¢ozlimleri icin siklikla kullanilmiglardir
(Mihaila ve Mihaila, 2002; Palusinski ve Szidarovszky, 1994; Kanwal ve Liu, 1989;
Khalifa vd., 2003). Siralama yontemleri olarak literatiirde en ¢ok spline siralama
yontemleri (Abd El-Salam ve Zaki, 2010; Akram ve Siddiqi, 2006; Al-Said ve Noor,
2002; Al-Said ve Noor, 2004; Al-Said vd., 2006; Usmani, 1992; Usmani ve Warsi,
1980), Taylor polinomuna dayali siralama yontemleri (Giilsu ve Sezer, 2005; Sezer ve
Akyiiz;  2006; Sezer ve Akyliz-Dascioglu, 2007; Sezer vd., 2008;
Yal¢inbas ve Sezer, 2000), Chebyshev polinomlarina dayali siralama y&ntemleri
(Sezer ve Dogan, 1996; Sezer ve Kaynak; 1996) ve Bessel polinomlarina dayali
siralama yontemleri (Sahin vd., 2011; Yiizbasi, 2011; Yiizbasi vd., 2011a; Yiizbasi
vd., 2011b; Yiizbast vd., 2011c;) siklikla kullanilmistir.  Kismi diferansiyel
denklemler i¢in sonlu farklar yaklagimi, spektral siralama ydntemi, Galerkin ve sonlu
farklar metodu baslica kullanilan yontemlerdir (Quarteroni vd., 2007). Bu
yontemlerin bir kismi diger fonksiyonel denklemler icin de gelistirilmistir. Ornegin,
spline siralama metodu, Volterra integral denkleminin sayisal ¢oziimi i¢in de
literatlirde kullanilmaktadir (Brunner, 1986). Kismi diferansiyel denklemler i¢in
siralama metoduna bagli matris yontemleri de gelistirilmis ve tutarli sonuglar elde
edilmistir (Biilbiil, 2011; Yiiksel, 2011).

Kullanilan bir sayisal yontemin o yonteme Ozgii avantaj ve dezavantajlar
bulunmaktadir. Kullanilan bir metodun hata analizinin bilinmesi, kolay
uygulanabilirligi, bilgisayar programlari ile uyumluluk, yontemin zaman agisindan
maliyeti ve en Onemlisi metodun yakinsakligi ¢ok biiyiik onem kazanmaktadir.
Ornegin, tau metot (Mason ve Handscomb, 2003; Doha ve Abd-Elhameed, 2005;
Kong ve Wu, 2009), normda yakinsaklig1 gosterilmis bir metottur. Fakat hesaplama



islemleri tau metot i¢in zordur. Benzer sekilde, spline siralama yontemleri i¢in 6zel
siralama noktalari secilerek tam ¢oziimiin ¢ok az mertebeden de olsa diizglin olmasi
durumunda baz1 diger 0Ozel secimler yapilarak hata analizi verilmistir
(De Boor ve Swartz, 1973). Siralama metodu verilen fonksiyonel
denklemin yapisindan bagimsiz oldugu ve kolay uygulandigi i¢in ¢ok sik kullanilan
yontemlerden biri olmug ve baz fonksiyonlar1 olarak Taylor, Chebyshev, Legendre
polinomlar1 alinarak matris formunda siklikla kullanilmistir. ~ Spline siralama
yontemlerinden daha kolay olarak uygulanabilen bu yontemlerde, spline yonteminin
aksine yakinsama garanti edilememistir. Bu ¢alismalarda sadece tutarlilik ol¢iilmiis
ve mutlak hatalar tayin edilmistir. Baz polinomlar1 olarak rasyonel fonksiyonlar poli-
nomlara gore uygulama zorlugundan dolay1r siralama yonteminde daha az

kullanilmastir.

Yaklagim teorisinde, calisilan uzaylarin normlu lineer uzay olarak secilmeleri,
yaklasimin varligi, tekligi ve yapilan yaklagimin anlamlilig1 gibi sorularin cevabi igin
istenen bir durumdur. Bu yilizden, metrik uzay, normlu lineer uzay, Banach uzay:1 ve i¢
carpim uzay1 kavramlar1 verilecektir. Bu kavramlar, herhangi bir fonksiyonel analiz

veya metrik uzay kitaplarinda bulunabilir (6rnegin Giiney, 2003; Kreyszig, 1989).

X #0, d: X> — R olmak iizere, eger Vx,y,z € X i¢in

l. dx,y)=0&x=y

2. d(x,y) =d(y,x)

3. d(x,y) <d(x,z) +d(z,y)

sartlar1 saglanirsa d fonksiyonuna X {izerinde bir metrik fonksiyon veya kisaca bir
metrik denir. X kiimesi lizerinde bir metrik tanimlanmasiyla olusan ve (X,d)
seklinde gosterilen matematiksel yapiya metrik uzay denir. (X,d) metrik uzayinda,
a noktasina uzaklig1 €’dan kiiciik olan noktalarin kiimesine, a noktasinin € yaricapl
komsulugu (veya kisaca komsulugu) denir ve B(a, €) ile gosterilir. (X,d) metrik uzay,
< a, > buuzayda bir dizi olmak iizere, eger Ve > 0 i¢in dizinin ny’dan biiyiik terimleri
arasindaki uzakliklar €’dan kiicilik kalacak sekilde bir ng dogal sayis1 varsa, < a, >
dizisine X uzayinda bir Cauchy dizisi denir. Bir (X,d) metrik uzayinda her Cauchy

dizisi yakinsak ise X uzayina tam uzay denir.

V bir vektor uzayi olsun. V iizerinde bir norm, Vv € V’deki degeri ||v|| ile gosterilen

reel degerli bir fonksiyon olup Vu,v € V' ve Vo € K i¢in asagidaki sartlar1 saglar:



Lovl[=0

2. |v|=0<v=0

3. [Jow]] = |otf V]

4. Juvl| < ull + vl -

V' vektor uzayi lizerinde tanimlanan norm ile birlikte /’ye normlu lineer uzay yada
kisaca normlu uzay denir. V iizerinde tanimlanan bir norm d(x,y) = ||x —y|| ile V
tizerinde bir metrik tanimlar. Eger ' normlu uzayi, norm tarafindan tiretilen metrige
gore tam ise bu normlu uzaya Banach uzay1 denir. V' vektor uzayi iizerinde bir ig
carpim V' X V' — K bir donlisim olup x ve y vektorlerinin goriintiisii < x,y > ile
gosterilir ve Vu,v,w € V' ve Vo € K i¢in asagidaki sartlar1 saglar:

. <ut+vw>=<uw>+<v,w>

2. <ou,w>=a<uw>

3. <uw>=<wu>

4, <u,u>>0;<uu>=0&u=0.

V' iizerinde verilen bir i¢ ¢arpim, V lzerinde ||v|| = /<v,v> ile bir norm ve

d(x,y) = ||x—y| = v/<x—y,x—y> ile bir metrik tanimlar. Boylece her i¢ ¢arpim
uzay1 normlu uzaydir. Bir i¢ ¢carpim uzayi, i¢ ¢carpimdan {iretilen metrige gore tam

ise, bu i¢ carpim uzayina Hilbert uzay1 denir.

Asagida uzaklik ve ortogonallik ile ilgili verilen teoremlerin ispatlart Kreyszig
(1989)’de bulunabilir.

Tamm 2.0.1. X bir metrik uzay, x € X ve M C X olsun. x elemaninin M kiimesine

uzakligi
o= infd 2.1
jinf (x,) (2.1)
ile tanimlanir. Eger X normlu uzay ise bu tanim,
O = inf ||x —
inf |l =

ile verilir.



(2.1)’de verilen & uzakligini gergekleyen bir y € M’nin varliginin ve tekliginin bilinip
bilinmedigi, fonksiyonlarla yaklasim i¢in ¢ok dnemlidir.

Ornek 2.0.2. R?’de B((0,0), 1) acik yuvarinda x = (2,0) noktasina uzaklig1 en kiigiik
olan bir y € B((0,0),1) yoktur. Diger yandan, (1,0) noktasmna
A= {(x,y)](x—1)*+y* = 1} kiimesinden uzakhig1 en kiigiik olan birden gok y € 4

vardir.

Tanim 2.0.3. X bir vektor uzay1 olmak iizere x,y € X i¢in x ile y’yi birlestiren dogru

pargasi
{zlz= (1 —)x+ oy, € [0,1]}

ile verilir.

Tamm 2.0.4. X bir vektdr uzayi, M C X olsun. Eger Vx,y € M igin x ile y’yi

birlestiren dogru pargasi ’Mde kaliyorsa, ’Mye konveks kiime denir.

Teorem 2.0.5. X bir i¢ ¢carpim uzay1 ve @ # M C X konveks ve tam olsun. Bu
durumda, Vx € X i¢in

8= inf |x—m| = |x—
inf Jlx— | = x—y]

olacak sekilde teklikle belli bir y € M vardir.

Tanimm 2.0.6. X bir i¢ carpim uzay1 ve M C X olsun. Eger M’nin her vektori
ikiser ikiser birbirine dik ise M’ye ortogonal kiime denir. Eger M ortogonal ve her

vektorliniin normu 1 ise M’ye ortonormal kiime denir.

Bir ortogonal veya ortonormal kiime eger sayilabilirse, kiimenin elemanlari
indislenerek bu kiime < x, > dizisi ile gosterilebilir ve bu kiimeye ortogonal veya
ortonormal dizi adi verilir. En genel olarak, bir indislenmis kiime Vo, € [ i¢in

< Xq,Xg >= 0 oluyorsa < x¢ >, 0 € /, ortogonaldir. Eger Va,, 3 € [ igin

0
<X(x,XB>:{ 1 ’ng

ise bu indislenmis kiimeye ortonormaldir denir.



Teorem 2.0.7. Bir ortonormal kiime lineer bagimsizdir.

Ornek 2.0.8. [0,27] de siirekli reel degerli fonksiyonlar kiimesi C [0,27] ve bu kiime

tizerinde tanimli i¢ ¢carpim

2n
< fig>= [ fx)gd
0

olsun. C|[0,2m] tizerinde u,(x) = cosnx olmak iizere < u, > bir ortogonal dizidir.

Benzer sekilde, v, (x) = sinnx i¢in < v, > bir ortogonal dizidir. Gergekten,

21 0 , m#n
< Uy, Uy, >:/cosnxcosmxdx: n , m=neN
0 2, m=n=0

bulunur. Benzer sekilde < v, > i¢in de yapilabilir. Buradan eger

1 up(x)  cosnx

wk) = neN= el = o= R

ile tantmlanirsa elde edilen yeni dizi ortonormal bir dizi olur. Benzer sekilde,

va(x)  sinnx

SR

dizisi de ortonormal bir dizi olur. Ayn1 zamanda, Vm, n i¢in u,, 1 v,,’dir ve bu diziler

neN=¢,(x)

Fourier aciliminda ortaya ¢ikar.

Ortonormal dizilerle ¢caligmanin en bilyiik avantajlarindan birisi, eger verilen bir x
elemaninin bir ortonormal dizinin bazi terimlerinin lineer kombinasyonu olarak
yazilabildigini biliyorsak, ortonormallik kullanilarak x’in katsayilar1 kolayca

belirlenebilir. Varsayalim ki, < e, > ortonormal bir dizi ve x € span{ey,...,e,} yani
n

x= Z a,;e; olsun. Bu durumda o; katsayilari
i=1
n n
<Xx,ej >=< Zoc,-e,-,ej >= ZOC,' <ejej >=0;
i=1 i=1

olarak bulunur ve



n
X = Z <Xx,e > ¢
i=1

dir.
Teorem 2.0.9. X bir i¢ ¢arpim uzayr ve < e; > ortonormal bir dizi olsun. Bu

durumda, Vx € X icin agagidaki esitsizlik saglanir:

Y (< xee > < |lx* (2.2)
k=1

(2.2) esitsizligine Bessel esitsizligi, < x, e; > katsayilarina da x’in < e; > ortonormal

dizisine gore Fourier katsayilar1 denir.

2.1. Fourier Serisi

Bu kesimde Fourier serilerinden bahsedilecektir. Fourier serileri bir periyodik
fonksiyonu basit dalgali fonksiyonlarin (siniis ve kosiniis) toplamina g¢evirir. Bu

kesimde verilen teoremlerin ispatlar1 Kreyszig (1989)’de bulunabilir.

Tamm 2.1.1. X bir normlu uzay, < a; >, X’de bir dizi ve s, = a; +ax +...+a, de

kismi toplamlar dizisi olsun. Eger < s,, > dizisi yakinsak ve limiti s ise, Z ay, serisi
k=1
yakinsaktir ve toplami s’dir denir ve

S = iak
k=1

yazilir.

Tamim 2.1.2. R iizerinde reel degerli bir f fonksiyonu eger Vx € R ve 3p € R™ igin
f(x+ p) = f(x) sartin1 sagliyor ise f”ye periyodik fonksiyon ve periyodu p’dir denir.

Tamm 2.1.3. ap + Z (ax coskx + by sinkx) formundaki bir seriye trigonometrik seri
k=1
denir.
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Tamim 2.1.4. f’nin Fourier serisi, a; ve by katsayilar1 Euler formiilleri

i 2n 1 2n
ap = %/f(x)dx , ap = %/f(x) cos kxdx, (2.3)
0 0

27
i
b=~ / f(x)sinkxdx , k€N
0

ile verilen bir trigonometrik seridir. a; ve by katsayilara f’nin Fourier katsayilar

denir.

Eger f’nin Fourier serisi Vx i¢in yakinsak ve toplam1 f(x) ise,
f(x) =ao+ ) (axcoskx+ by sinkx) (2.4)
k=1

yazilir. f fonksiyonu periyodu 27 olan periyodik bir fonksiyon oldugundan, (2.3)
denklemindeki integrasyon araligini [—m, 7] gibi uzunlugu 27 olan bagka bir aralikla
degistirebilir.

Fourier serilerinin genel halini bulmak i¢in, (2.4) denkleminde siniis ve cosiniis

yerine < u; > ve < v > ortogonal dizilerini alalim. Bu durumda (2.4) denklemi,

o)

S(x) = aouo(x) + Y [axuur(x) + bpvi(x)] (2.5)
=1

olarak yazilabilir. (2.5) denklemini sabit bir u; ile ¢arpip 0°dan 27’ye integre edelim.
Terim terime integre edilebilirligi varsayarak ve Vj, kicin u; L vy ile <uy > ve <vi >

ortogonalligini kullanarak

< foup>=ag <ugu; >+ Y [ar < wgu; > +bp < viu; >
k=1

2
= aj<ujuj>=da H“j||

B 27ag j=0
B Ta; , j=12,...

ve benzer sekilde

<f,Vj >:ijij2:nbj , V]EN

11



elde edilir. Buradan < u; > ve < v; > dizileri ortonormallestirilerek, yeni olusan

< e; > ve < g; > dizileri i¢in (2.5)’deki Fourier agilimi

f:<fa€0>€o+z[<f,€k>ek+<fagk>gk]
k=1

olarak yazilabilir.

Teorem 2.1.5. H Hilbert uzay1 ve < e; > bu uzayda bir ortonormal dizi ve oy ’lar
skaler olsun. Bu durumda,

°
k

oey serisi yakinsaktir (normda) ancak ve ancak ) |ock|2 serisi yakinsaktir.
=1 k=1

(oo}

e Y oyer yakinsak ve toplami x ise, oy katsayilari Fourier katsayilaridir ve
k=1
bdylece

X = <Xx,ep > ex

k=1

yazilabilir.

e Vx € Higin, Y < x,e; > e, normda yakinsar.
k=1

2.2. Yaklasim Teorisi

Yaklagim teorisi, belirli bir tipteki fonksiyona ona gore daha basit olan diger
fonksiyonlarla yaklasimla ilgilenir. Siirekli bir fonksiyona polinomlarla yaklagim,
buna bir drnek olarak verilebilir. Boyle bir durum, analizde su sekilde yapilir: Eger
bir fonksiyonun Taylor agilimi var ise, bu serinin kismi toplamlar1 yaklagimlar olarak
alabilir. Bu yaklasimlarin kalitesinin anlasilmasi i¢in, kalanlarinin belirlenmesi
gerekir.  Bu kesimde, yaklagim teorisinde kullanilan temel tanimlar, en iyi
yaklasimlarin varlik ve teklik problemleri, metrik uzay ve normlu lineer uzay icin

verilecektir. Bu kesimde verilenler Powell (1981) kitabindan alinmistir.
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2.2.1. Metrik uzaylarda yaklasim

Metrik uzaylar, metrik fonksiyonuna sahip olduklarindan yapilan bir yaklagimin ne
kadar iyi oldugunu belirlememiz igin genel bir yol saglarlar. Bir¢gok yaklasim

probleminde f’yi ve yaklasimlar kiimesi 4’y1 igeren uygun bir metrik uzay vardir.

Tamm 2.2.1. Vag,a; € A i¢in d(ao,f) < d(ay,f) ise ap , ajden daha iyi bir
yaklasimdir. Va € 4 i¢in

d(a",f) <d(a,f)
olacak sekilde bir a* € 4 varsa, a* elemanina bir en iyi yaklasim denir.

En iy1 yaklasimin var olup olmadigini bilmek 6nemlidir. Ciinkii bir ¢ok hesaplama

metodu, bir en iyi yaklasim ile elde edilen 6zelliklerden tiiretililir.

Teorem 2.2.2. (X,d) metrik uzay, 4 C X kompakt ise, Vf € X i¢in

d(a, f) <d(a,f)
olacak sekilde bir a* € 4 vardir.

A kompakt degil ise bir en 1yi yaklagim olmayabilir.

Ornek 2.2.3. R? de B(0,1) acik yuvarini diisiinelim. 4’dan x = (2,0) noktasina bir
en 1yi yaklasim yoktur.

2.2.2. Normlu Lineer Uzaylarda Yaklasim

Metrik uzaylarin 6zellikleri ¢aligmalarda her zaman yeterli degildir. Her normlu
lineer uzay ayni zamanda metrik uzay oldugundan, normlu lineer uzaylarda

bulunan sonuglar metrik uzaylarda da gecerlidir.

Teorem 2.2.4. N normlu bir lineer uzay, A C N sonlu boyutlu ise, V/ € N i¢in 4’ dan
f’ye bir en 1y1 yaklasim vardir.

Calisilan ¢cogu yaklasim probleminde fve 4, F = {f| f: [a,b] — R siirekli} kiimesi

ve bu kiime iizerinde 3 farkli norm ile iiretilen uzaylardan alinmaktadir. Bunlar
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p = 1,2 ve oo olmak lizere L, normlaridir. Bunlarin igerisinde en az kullanilani

1 —normdur. 2—norm veya w pozitif bir fonksiyon olmak iizere

b 1/2

171> = | [ L) P

a

ile tanimli bir w—agirlikli 2—norm, Hilbert uzaylarindaki teorik c¢aligmalarda
karsimiza c¢iktigindan ve en iyi yaklagim hesaplamalarinin 2—normda ¢6ziimii
kolay oldugundan siklikla kullanilmaktadir. cc—normu ise yaklasim teorisinin biiyiik
bir kisminin temelini olusturur. Eger co—normuna goére d(f,a) kiigiikse, 1—norm
ve 2—norma gore de d( f,a) kigiiktiir. Verilen bir f fonksiyonuna p fonksiyonu ile
yaklasimin hatasi, hata fonksiyonu
e=f—p
ile verilir.

Teorem 2.2.5. Vf € Cla, b] igin

171y < (=) £l < (b-a) |/l

dur.

2.2.3. En lyi Yaklasimin Tekligi
Tammm 2.2.6. Vsj,sp € 4 i¢in {0s;+(1—0)s2/0 € (0,1)} kiimesi 4 kiimesi
tarafindan kapsaniyorsa A4’ya konveks kiime denir.

Tamim 2.2.7. Vs1,s52 € A, s1 # 57 i¢in {0s] + (1 — 0)s2(0 € (0, 1)} kiimesi 4 kiimesinin
ici tarafindan kapsaniyorsa 4’ya tam konveks kiime denir.

Teorem 2.2.8. N normlu bir lineer uzay olsun. Bu durumda Vf € N, Vr > 0 i¢in
B(f,r) ={x|||x— f]| < rx € N} yuvar1 konvekstir.

Tanim 2.2.9. N normlu lineer uzay olsun. B(0, 1) birim yuvari tam konveks ise N

uzerindeki norma tam norm adi verilir.

Teorem 2.2.10. N normlu lineer uzay, 4 C N kompakt ve tam konveks olsun. Bu

durumda Vf € N icin A’dan f’ye sadece bir tane en iyi yaklagim vardir.
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Teorem 2.2.11. N normlu tam konveks bir uzay, 4 C N konveks olsun. Bu durumda

Vf € N i¢cin A’dan f’ye en ¢ok bir tane en 1yi yaklagim vardir.

2.3. Polinom interpolasyonu

n .
Vf € C|a,b] fonksiyonuna p(x) = Y, ¢;x' polinomuyla yaklagilmak istenirse,
=0

{Ci|i€ {0,1,...,1’1}}

katsayilariin belirlenmesi gerekir. Bunun i¢in en genel metod f’nin (n+ 1) tane
farkli1 X = {x;|i € {0,1,...,n}} C [a,b] noktalarinda aldig1 degeri bilmek ve

p(xi) = f(x:) (2.6)

denklem sistemini ¢ozmektir.

Teorem 2.3.1. {x;|i € {0,1,...,n}} C [a,b], (n+1) tane farkli nokta ve f € C|a,b]
olsun. Bu durumda (2.6) denklemini saglayan tek bir p € P, vardir (Quarteroni vd.,
2007).

Tamm 2.3.2. X interpolasyon noktalarinin kiimesi ile iliskili i. Lagrange polinomu

(x—xj)
l,-x =
W=7
A

, 0<i<n
ile tanimlanir.

Tanim 2.3.3. X interpolasyon noktalarinin kiimesi ile iligkili nodal polinom, derecesi

n+ 1, baskatsayisi 1 ve interpolasyon noktalarini kok kabul eden teklikle belli

n

wp(x) = H(x —X;)

i=0

polinomudur.

/f’nin interpolasyon polinomu Lagrange formunda

px) = éﬂxiﬂiw
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yazilabilir.

Teorem 2.3.4. {x;lic{0,1,...,n}} C [a,b], (n+ 1) tane farkli interpolasyon
noktalari, f e Ct+1) la,b] ve p € P, (2.6)’deki interpolasyon sartlarini saglayan
polinom olsun. Bu durumda Vx € [a, ] i¢in hata, & € [a, b] noktasi x’e bagl bir nokta

olmak lizere

1
(n+1)!

o(x) = [T -5 E)
j=0

degerini alir (Quarteroni vd., 2007).

f’nin interpolasyon polinomu p,, /" ile gosterilecektir.
Runge’nin 6rnegi olarak bilinen

1

:1—{——2 s —SSXSS
X

Jx)
ile tanimli f fonksiyonunun interpolasyon polinomu bulunmak istenirse, f deki
degisimlerin c¢ogu araliginin ortasinda oldugundan, f’e tek bir polinom ile
yaklasmak uygun degildir. Yiiksek tutarlilikta bir yaklagim icin yiiksek dereceli
bir polinom secilmesi gerekir. » biiyiikk oldugu zaman interpolasyon noktalarinin
pozisyonlar1 onemlidir. Eger interpolasyon noktalar1 esit aralikli seg¢ilmigse, »
arttik¢a yaklagimin tutarliligi bozulur (Powell, 1981).
m—Dboyutta interpolasyon problemi, 1—boyuttakine benzer sekilde verilir. R™’de
x; = (x},...,x™) n farkli nokta ve ¢,...,0,, € C(R™) lineer bagimsiz fonksiyonlar

olsun. m—boyutta interpolasyon problemi, 1 <i < i¢in

a0y (xi) +a20;(x7) + - -+ + amdy, (x;) = f(x:)
denklemini saglayan ay,aj,...a, katsayilarinin belirlenmesidir (Phillips, 2003).

Tanim 2.3.5. Negatif olmayan tamsayilarin bir n—lisi o = (Q,...,0,) Ve
f:Q — R bir fonksiyon olsun. Coklu indeks gosterimi ile |ot| = ot + -+ +

olmak Uzere

o] £(y
D) — D)

= .03 00 Oy
axl ax2 "'a.xn

ile gosterelim.
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Tamim 2.3.6. Bir f fonksiyonunu sifirdan farkli kilan noktalar kiimesinin kapanis,

/f’nin destegi olarak adlandirilir:

Suppf = {x | f(x) # 0}.

Tamim 2.3.7. D(Q) kiimesi, sonsuz mertebeden tiirevli ve Q’da sifirdan farkli oldugu

bolgenin kapanist bir kompakt kiime tarafindan kapsanan fonksiyonlar kiimesi olsun:
D(Q) ={feC”(Q)| 3K C Q kompakt, Suppf C K}.

oT
Tamim 2.3.8. Q C R” ve T : D(Q) — R olsun. Tnin zayif tiirevi —

Bx,-’
oT B 0 -
<8_xi’¢> __<T’8_x,~>’ VoeD(Q),i=1,...,n

ile tanimlanir. Benzer sekilde, o = (., ..., a,) ¢coklu indeks gosterimi ile D*T
(DT, ¢) = (=1)/*(T,D%)), V¢ € D()

ile verilir.

Tamm 2.3.9. k € ZT ve 1 < p < oo olsun. W5P(Q) Sobolev uzayi, k’dan kiiciik esit

tim zay1f tirevleri L”(Q) uzayinda olan v € L?(Q) fonksiyonlarindan olusur:

WhP(Q) = {v € LP(Q) | o goklu indeks ve || < k igin D% € LP(Q) }.

W2(Q) uzayl, o < n i¢in Q’da D*f € L*(Q) olan tiim fonksiyonlarin olusturdugu

Sobolev uzayi olsun. m > 1 ve K; = {xﬁ-\aj =X <x7 < <ij =b;,i= 1,...,nj},
m m

[aj,b;] araligmm bir parcalanist olsun. H[a j,bj’nm K = HKJ tensOr garpim
J=1 J=1

pargalanig1 verilsin. [; polinomu, ;. koordinat i¢in interpolasyon polinomu olmak

lizere,
I:'=1y -1, :W.K)— P,

tensor ¢arpim interpolasyon polinomu f’nin K’da bir interpolasyon polinomudur ve

17



tektir. Hata fonksiyonu, oo = (01, 02, . .., 0 ) € N™ ve ||o|| = max o; olmak tizere
1
E=— ) (=En)*-(-E)% 27)
o[ =1
olarak verilebilir. Boylece, interpolasyon hatasi i¢in bir {ist sinir

1
Vj — — max
7’11' a;<x<b;

(x—x})(x—x?)---(x—x;f"')

olmak lizere

IEflo < Y v v |[of™a52™ . 9% £]]

lod[=1
ile verilebilir (MdBner ve Reif, 2009).

Teorem 2.3.10. f € WZ(K), v = (vi,V2,...,Vp) Ve On = (Q1n1,0202, ... ,0huMy)
m

olmak {izere tensor ¢arpim interpolasyonu H laj, b;] lizerinde
Jj=1

=1/l < X v*10% /.

lof|=1

ile sinirlidir (M6Bner ve Reif, 2009).

Ozel olarak 2—boyut igin, asagidaki diger bir hata formiilii Lagrange polinom

interpolasyonu i¢in verilebilir:

Q = [a,b] x [¢,d] ve € C(Q) olsun. [a,b] ve [c¢,d] araliklarmin parcalaniglari
a<xg<x1<--<x,<b

c<yo<y1<--<ym<d
olsun. p, , f polinomunu

n m

P (%) =Y Y [y )li(x) () (2.8)

i=0 j=0

ile tammlayalim. Bu durumda p,, ,/ polinomu f fonksiyonunun

{(x,/):0<i<n0<j<m}
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noktalarinda bir interpolasyon polinomudur (Atkinson, 1997).

Teorem 2.3.11. {(x;,y;):0<i<n,0<j<m} CQvevarsayalimki (x,y) € Q i¢in
an—Hf am—Hf

EICES S

mevcut ve siirekli olsunlar. Bu durumda, V(x,y) € Q i¢in

n
Ap(x) = Z |li m(x)| Lebesgue sabiti olmak iizere (2.8) interpolasyon polinomu igin
i=0

hata

[wa (x)]
(n - 1)' a<x<b
c<y<d

Wi ()]

(m + 1)! a<x<b
c<y<d

f@) = pamf )| < W‘

axn—i-l

A )

aym+1

ile sinirhidir (Atkinson, 1997).

Genel olarak polinom interpolasyonu yakinsak sonuglar vermez. Fakat, polinom
interpolasyonun yakinsak sonu¢ vermedigi durumlarda, asagida tanimi verilen

Chebyshev polinomlarinin kokleri

kullanilarak interpolasyon hatasi Runge’nin 6rneginde oldugu gibi diizeltilebilir.

Tamm 2.3.12. —1 <x <1 araliginda 7;,(cos0) = cos(n8) ile taniml1 7, fonksiyonuna
n—dereceli Chebyshev polinomu denir. Baska bir ifadeyle n—dereceli Chebyshev

polinomu
T(x) = cos(ncos 'x), —1<x<1
ile verilir (Powell, 1981).

Cosiniis ~ fonksiyonunun  cos[(n+1)8] + cos[(n—1)8] = 2cosOcos(n0)

ozelliginden,
T (x) =2xT(x) — T—1 (%), -1 <x <1

rekiirans bagintisini elde ederiz. Chebyshev polinomlar1 yaklagim teorisinde bir¢ok

uygulamaya sahiptir ve maksimum yiikseklikleri 1 oldugundan kullanislidir.
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Weierstrass teoreminin ispatinda kullanilan Bernstein operatorii, asagidaki sekilde

tanimlanir:

Tamm 2.3.13. B, Bernstein operatorii, n € N i¢in C[a,b]’den P,’e giden bir

operatordiir ve [a,b] = [0, 1] olmast durumunda

(Bf)5) = X o =2 A

k=0
denklemi ile tanimhidir (Powell, 1981).

Teorem 2.3.14. Vf € C|0, 1] i¢in B, Bernstein operatdrii olmak tizere {B,f | n € N}
dizisi f’ye diizgiin yakinsar (Powell, 1981).

Teorem 2.3.15. Vf € Cla,b] ve Ve > 0 igin || f — p||.. < € olacak sekilde bir
px)=co+cix+...+cpx"

cebirsel polinomu vardir (Powell, 1981).
Tamm 2.3.16. f fonksiyonu [a,b]’de tanimli olsun. f’nin siirekliliginin modiilii

d > 0 igin

w(8) = sup |f(x)—/(y)l

—y[<d

ile tanimlanir (Rivlin, 1969).

[a,b] araliginda taniml bir f fonksiyonuna P, polinom uzayindan yapilan bir en iyi

yaklasimin hatasini

E,(f;[a,b])

ile gosterelim. Bu durumda, en iyi yaklasimin hatasi Jackson’s teoremi olarak bilinen
asagidaki teoremle verilir (Rivlin, 1969).

Teorem 2.3.17. f € Cla,b] ise,

b—a
2n )

En(f3la,b]) < 6w(

Teorem 2.3.4’de verilen her mertebeden tiirevleri siirekli bir f fonksiyonu i¢in

interpolasyon hatas1 verilmisti. Eger f fonksiyonu siirekli fakat her mertebeden
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tiirevleri stirekli bir fonksiyon degilse, en genel olarak asagidaki interpolasyon hata
formili verilebilir. Bunun i¢in, X = {x¢,x1,...,x,} noktalarinda f’ye yapilan

interpolasyon polinomunun hatasin1 G, (f; [a, b]) ile gosterelim.

Teorem 2.3.18. f € Cla,b] ve T, X = {x0,x1,...,X,}, interpolasyon noktalarinda

interpolasyon operatorii olmak {izere,

Gu(f3la,b]) < (1+[|T[))En(f; [a,b])
dir (Rivlin, 1969).
Sonug 2.3.19. f € Cla,b] ve X = {x¢,x1,...,x,} interpolasyon noktalar ise,

b—a

Ga(f:la,b)) < 6(1+ T w( 2

)

dir (Rivlin, 1969).

2.4. Ortogonal Polinomlar

Vf,g € Cla,b] igin w: [a,b] — [0,0) agirlik fonksiyonu olmak tizere

b
<f.g>= [ fRglwix)ax 29)

fonksiyonu Cla, b] iizerinde bir i¢ ¢arpimdhr.

Tanim 2.4.1. w pozitif agirlik fonksiyonu olmak iizere, (2.9) i¢ ¢carpimu ile
b
S=11S:@h) =R, [ Aw@ds <o
a

kiimesi bir Hilbert uzay1 olup L2,(a,b) ile gosterilir.

n tane lineer bagimsiz polinom {xj,xz,...,x,} verildiginde, Gram-Schmidt
ortogonalizasyon islemi ile {e}, ey, ..., e, } ortonormal kiimesi elde edilir. Bunun igin,

asagidaki adimlar uygulanir.
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l.adim: < e, > ortonormal dizisinin birinci elemani i¢in e; = Hxl—lel almir.

2.adim: x; =< x2,e; > ey + v yazilir ve v, vektori sifir vektori degildir. e, = mvz

alinir ve < vp,e; >= 0 dir.

Jaadim: vz = x3— < x3,e] > e1— < x3,e3 > ey vektorii sifir vektorii degildir.

€3 — —||vl3”\)3 alinir ve < V3, €] >= V3, e >=0 dir.

n—1
nadm: v, =x, — Y < x,,e; > vektorii sifir vektorii degildir ve ey, ep,...,e,—1
k=1

vektorlerine diktir. Boylece e, = mvn alinarak < e, > ortonormal dizisi elde edilmis

olur.

Sonugcta derecesi n olan Vp € P polinomu
n
p(x) =Y oger(x), o =< p,ep >, 0<k<n
k=0
olacak sekilde tek tiirlii yazilir ve j < k igin
< €, X; >= 0

dir (Kreyszig, 1989).

Ortogonal polinomlara ait bazi1 6zellikler agsagida verilmistir ve herhangi bir yaklagim

teorisi veya 0zel fonksiyonlar kitabinda bulunabilir (6rnegin Andrews vd., 1999).

Teorem 2.4.2. k,, p, polinomunun bagkatsayisi ve

k1 a
i , by = —ay < XPn,Pn >, Cn:_n; co=0

ay =
kn ap—1

olmak iizere < pj > ortonormal dizisi
Pnt1 — (@px+bp)pn+cnpp—1 =0, n=1,2,...
rekiirans bagintisini saglar.

n
Teorem 2.4.3. K,(x,y) = Z pr(x)pr(y) olmak tizere p; ortogonal polinomlart,
k=0
Christofel-Darboux formiiliinii

kn pn(¥)Pnt1(x) — pu(x) put1()
kn+1 xX=y

Ky (x7y> =
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saglar.
Teorem 2.4.4. (a,b) araliginda p, ve p,+ polinomlari ortak koke sahip degildir.

Ornek 2.4.5. P,§°"B> Jacobi polinomlar1, agirlik fonksiyonu (1 —x)*(1+x)® olan

ortogonal polinomlardir. Jacobi polinomalari, Rodrigues formulii olarak bilinen

A = UL (1) P (1 (14

—1

denklemini saglarlar. Ozel olarak, o = B = 0 i¢in Legendre polinomlari, o = 3 = >

olmasi durumunda da Chebyshev polinomlar: elde edilir.

2.5. Rasyonel Yaklasim

Bu kesimde rasyonel yaklasim i¢in temel teoremler ve rasyonel interpolasyon konusu
verilecektir. Bu kesimde verilen tanim ve teoremler, Rivlin (1969)’nin kitabindan

alimmustir.

p € Py, g € P, olmak lizere r = P formunda yazilabilen rasyonel fonksiyonlarin

kiimesini R(m,n) ile gosterelim dyle ki p ile ¢’nun hig ortak sifirt olmasin.

R(m,n) = {r =2 |pEPy, qEPy, 1 indirgenemez} .
q

p € Py, q € P, i¢in her p rasyonel fonksiyonu indirgenemez bir rasyonel fonksiyona,

yani R(m,n)nin bir elemanma denktir. Derecesi n olan
q(x) =bo+bix+...+byx"

polinomunun derecesini dg = n ile gosterilir. Eger ¢ # 0 sabit ise, dg =0 ve g =0

ise, dg = —oo ile gosterilir. ¢ # 0 oldugu varsayilacaktir.

Teorem 2.5.1. f € Cla,b] ise, Vr € R(m,n) i¢in

1f =7l < I1f =7l

sartini saglayan 3r* € R(m,n) vardur.
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Tamm 2.5.2. {x; |a <x; <x3 <...<xy-1 <xy < b} kiimesi
fCe)—r(x)| =Ilf =l j=12,...,N

ve
flx;)—r(x;) =— [f(x]'+1>—r()€j+1):| ,j=12,...,N—1

sartlarini saglarsa, {x; | a <x; <x3 <...<xy-1 <xy < b} kiimesine f — r i¢in bir

isaret degisim kiimesidir denir.

Teorem 2.5.3. f € Cla,b| ise, r = d fonksiyonu R(m,n)’den f” ye bir en iyi
q

yaklagimdir ancak ve ancak
N =2+ max(n+dp,m+9q)
olmak iizere / — r’nin N noktal bir isaret degisim kiimesi vardir.
r*, R(m,n)’den fye bir en iyi yaklagim olmak iizere,
Emn=Enn(fila;b]) = I/ =r"[l

ile tanimlansin. Bu durumda, eger &,/ > 0 ise E,f 41 < Ejnn ve Ozel olarak n > 0
i¢in £y, , < Ej 0 dir. Boylece, eger f € Cla,b] ise, Teorem 2.3.17°den

2m

1 = 1l < Emolf:a,5]) < 6w (b‘“)

elde edilir.

Rasyonel yaklasimi sonlu nokta kiimesi lizerinde yaparsak, bazi problemler ortaya
¢ikabilir. Bunlardan birincisi, hig en iyi yaklasim olmayabilir. Ornegin, R(0,1)’den
f(0) =1ve f(1) =0 ile verilen degerlere yaklagim yapmak istenilsin. Bu durumda,

a
V(x):m, la|+1[b] >0

fonksiyonu R(0, 1)’dedir. #(0) =1ver(l) = bj_ ifadelerinden verilen bir € > 0 i¢in

b’yi yeteri kadar biiyiik secilerek

a

max{|f(0) = r(0)[, /(1) =r(D]} = [/(1) —r(1)] <e
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elde edilir Bu da R(0,1)’den yapilan en iyi yaklasimin sifir hata iretmesi ile

miimkiindiir, bu da ancak ve ancak

T fonksiyonu @ = 0 i¢in x = 1 de 0 degerini
X+ c
alir. Bu sefer de fonksiyon x = 0’da 1 degerini almaz. Boylece R(0,1)’den f’ye bir

en iyi yaklasim yoktur.

Tkincisi,Teorem 2.5.3’iin ifadesi dogru olmayabilir. Ornek olarak, f(—1) = —1,
f(%) =2 ve f(1) = 1 degerleri alinsin.

-9

I’(X) = m GR(O, 1)
fonksiyonu i¢in
1 1 5
(=1 =r(=1) = f(5) ~r(3) = A1) —r(1)] =

1
oldugundan {—1,3,1}, f—r i¢in bir isaret degisim kiimesidir fakat — € R(0,1)
X
acik¢a r’den daha 1yi bir yaklagimdir.

X ={a=x1,x2,...,xm = b} ve R(m,n) = R(m,n) NC[a,b] ile tanimlayalim.

Teorem 2.5.4. f fonksiyonu X, lizerinde tanimli ise, » = p fonksiyonu R(m,n)’den

q
f’ye bir en iyi yaklagimdir; ancak ve ancak N = 2 4+ max(n+dp,m+ dq) olmak iizere

f —r’nin N noktal bir isaret degisim kiimesi vardir.

2.5.1. Rasyonel ve Barycentric Rasyonel Interpolasyon

Bu kesimde, diferansiyel denklemlerin ¢oziimiinde kullanilacak olan ve m—boyutta
rasyonel interpolasyon probleminin bir ¢oziimiine genellenecek olan, Floater ve

Hormann (2006)’nin metodu verilecektir.

Rasyonel interpolasyon, £ = m + n+ 1 olmak iizere birbirinden farkli x1,x2,...,x

noktalar1 ve keyfi f1, f2,. .., fr degerleri i¢in
rix))=fi , i=12,....k (2.10)

sartlarin1 saglayan r € R(m,n) rasyonel fonksiyonunu belirlemektir (Rivlin, 1969).

R(m,0) olmasi durumunda, rasyonel interpolasyon (2.6)’da verilen polinom
interpolasyonu olur ve (2.10) ifadesi daima saglatilabilir. Fakat bu, genel olarak

rasyonel interpolasyonda olmayabilir. Eger m = 0 ve 3f; = 0 ise, (2.10) sarti
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gergeklenmez.

Teorem 2.5.5. R(m,n)’de (2.10) interpolasyon probleminin en ¢ok bir ¢6ziimii vardir.

Berrut ve Mittelmann (1997), yiiksek dereceli fonksiyonlar1 kullanarak rasyonel
interpolasyonda kutuplardan kagimmanin miimkiin olabilecegini sOylemislerdir.

Bunun i¢in,

Wi

)n: S (i)
() = S ——

i=0X —Xj

formunda yazilabilen interpolasyon fonksiyonlarini diisiinelim. Bdylece, iyi bir
yaklasim i¢in w; agirliklarim belirlemek yeterli olacaktir.  p, interpolasyon
polinomunun kendisi de, barycentric formda

L |

wi=T1

j=0%i —Xj
JF#

2.11)

alarak yazilabilir. Boylece (2.11)’deki agirliklar kutuplari Onler, fakat genel

interpolasyon noktalari i¢in iyi bir yaklagim vermezler. Diger taraftan Berrut (1988),
wi= (=1, k=0,1,...,n

alarak ifadeyi basitlestirmis ve

(=)' (xi)

X —X;

n
>
i=0

interpolasyon fonksiyonunun R’de hi¢bir kutbunun olmadigini1 géstermistir. Ayrica,

sayisal hesaplamalarda n — oo igin O(4) mertebeli bir yaklagim elde etmistir.

Floater ve Hormann (2006), Berrut’un kullandig1 interpolasyon fonksiyonunu da
iceren ve istenilen hata mertebesinden yaklasim elde etmek icin barycentric
rasyonel interpolasyon fonksiyonlar1 ailesi kullanarak bir yapi olusturmuslardir.
Vd € 7 sayis1 0 < d < n olacak sekilde segilsin ve Vi € {0,1,...,n—d} i¢in p;

polinomu, f fonksiyonunun x;,X;t1,...,X;14 noktalarindaki interpolasyon
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fonksiyonu olsun. » fonksiyonu da,

O e — 2.12)

olarak tanimlansin. Bu yapu, veri noktalari f(x;)’lere lineer olarak baglidir ve bir rasy-
onel interpolasyon fonksiyonlar1 ailesini verir.  Ayrica, bu yapmin R’de hig

kutubu yoktur ve interpolasyon fonksiyonu,

h:= ma i+1 — Xi
ogig;q)il(x’Jrl *i)

ve f € C?*2[a, b] olmak iizere 1 — 0 igin O(h?*!) mertebeli bir yaklasim verir (Floater
ve Hormann, 2006).

(2.12)’deki interpolasyon fonksiyonlarinin R’de kutuba sahip olmadiklarini
gostermek icin (2.12) ifadesinin pay ve paydasi

(=) (x=x0)...(x—x»)
ile carpilirsa,
() = (~1)"4 (v —x0) ... (x = ) M)

olmak Uzere

n—d
)y 1i(x)pi(x)
e P — (2.13)

n—d
'Z #4i(x)
i=0

elde edilir. (2.13) denklemi, 7’ nin pay ve paydasinin derecesinin en ¢ok sirastyla
n ve n — d olabilecegini gostermektedir. Pay ve paydanin dereceleri n’den biiyiik
olmadiklar i¢in, 7 barycentric formda yazilabilir (Floater ve Hormann, 2006). Bu

yaptylr ve boliinmiis farklar1 kullanarak, Floater ve Hormann (2006) asagidaki
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sonuclar1 bulmuslardir:

Teorem 2.5.6. Her 0 < d < n i¢in (2.13)’deki r rasyonel fonksiyonu, R’de hi¢ bir
kutuba sahip degildir.

(2.12)’de verilen r rasyonel fonksiyonunun f’ye yakinsamasi ve mutlak hatasi i¢in de
Floater ve Hormann asagidaki sonuglar1 bulmuglardir:

Teorem 2.5.7. d > 1, h = o nax 1(xl-+1 —x;) ve f € C9*2[a,b] olsun. Bu durumda,
<i<n—

n—d tek ise,

)

. <hd+1 _ o0
I fl < (o)l

ve n—d gift ise,

i M il

< (o)
Ir=flle B { 0= a) =+ s

dir.

Floater ve Hormann, d = 0 i¢in O(h) yakinsamasini 7 — 0 iken

Xi+l — X Xi41 — X }

B:= max min{ ,
Xi —Xi—1 X2 — Xi+1]

1<i<n—2
ifadesi sinirli oluyorsa elde etmislerdir.

Teorem 2.5.8. Varsayalim ki d = 0 ve f € C?[a,b] olsun. Bu durumda, eger 7 tek ise

1/"les
2

lr = fllee <h(1+B)(b—a)

ve n ¢ift igin

sl <h+8) (6=l 7))

dir.
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2.6. Matris Normlar ve Lineer Denklem Sistemlerinin Hassashgi

Bu kesimde, hata analizinde kullanilacak olan matris normlar1 verilecektir.
Matris normlari kullanilarak lineer denklem sistemlerinin hassasligi i¢in kullanigh bir

teorem verilecektir. Bu kesimde verilenler Watkins (2002)’den alinmistir.

Tamm 2.6.1. C"™*" {izerinde bir matris normu, ||| : C"*" — R bir fonksiyondur ve

asagidaki 6zellikleri saglar:
« X#0= x| £0
o [loX] = [ lX]
o [X+Y[<[X]+[Y]

Vektdr normlarinin biitiin 6zellikleri matris normlari icin gegerlidir. Ozel olarak, eger
¢arpimin tanimlt oldugu tim X ve Y’ler i¢in || XY || < || X]|||Y]| oluyor ise bu norma

alt carpimsal norm adi verilir.

Ornek 2.6.2. Herhangi bir matris igin |||| - Frobenius normu
2
X7 =, /3 |l
Lj

olarak tanimlanir ve alt carpimsaldir.

Ornek 2.6.3. co— normu ve 1— normu, sirasiyla
1X]|.. = max ) |x;]
b
ve
X1, = mjaXZ i |
i

olarak tanimlanir. 1—norm ve co—normu alt ¢carpimsaldir.

Teorem 2.6.4. P matrisi tersinir, b # 0, x ve X = x+ Ox sirasiyla Px = b ve PX = b+ 0b

sistemlerinin ¢6ziimleri olsun. Bu durumda,
—1
[18x[| < ||P~]] 135

esitsizligi saglanir.
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2.7. Bernstein Polinomlari

Siralama yonteminde baz polinomlar1 olarak secilen Berntein polinomlari, asagidaki
sekilde tanimlanir (Bhatti ve Bracken, 2007):

Tamm 2.7.1. n. derece Bernstein polinomlari

kR_ n—k
Bin(x) = (Z)’% k=0,1,....n (2.14)

ile tanimlanir 6yle ki R, Bernstein polinomlarinin [0, R] de polinomlar uzayinin bir

tam bazi olacak sekildeki en genis aralik olsun.

Eger (2.14) denkleminde
k n—k n—=k . h—i i
R— n— — _1 anf —1,1
a0 S
koyulursa, n. derece Bernstein polinomlari
n—k j
n\ (kY (C1) 4
Bk’n(x):,;’) <k)( i ) =R

olarak elde edilir.
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3. MATERYAL VE YONTEM

Bu boliimde ilk olarak baz polinomlar: olarak Bernstein polinomlarimin segilmesi
durumunda elde edilen Bernstein seri ¢oziimii olarak adlandiracagimiz siralama
metodu, adi diferansiyel, integro-diferansiyel ve pantograf denklemleri i¢in matris
formunda verilmistir.  Floater ve Hormann (2006)’nin vermis oldugu rasyonel
interpolasyon fonksiyonunda interpolasyon polinomlar1 yerine Bernstein seri ¢oziimii
kullanilarak diferansiyel denklemlerin rasyonel fonksiyon ¢oziimleri elde edilmistir.
Kismi tiirevli diferansiyel denklemlerin ¢6ziimii i¢in Bernstein seri ¢dzimil
2—boyutta verilmistir. Daha sonra m—boyutlu rasyonel interpolasyon probleminin
bir ¢6zlimii i¢in Floater ve Hormann (2006) tarafindan verilen yontem m—boyuta
genellestirilmistir. Bernstein seri ¢0ziimii, rasyonel fonksiyon ¢6ziimii ve rasyonel
interpolasyon fonksiyonu i¢in i¢in hata analizleri verilmistir. Verilen yontemler, diger

lineer fonksiyonel denklemlere de uygulanabilir.

Verilen diferansiyel denklemler i¢in tam ¢6ziimlerin var oldugunu varsayalim ve bu

tam ¢ozimil f ile gosterelim. Bernstein seri ¢éziimii 1 — boyutta f fonksiyonuna
n
pn(x) = ZaiB,m(x) (3.1)
i=0

polinomu ile p,, verilen diferansiyel denklemi {xg,xi,...,x,} siralama noktalarinda
saglayan ve baslangic veya sinir kosullarini gercekleyen; 2—boyutta da benzer
sekilde f fonksiyonuna

Pua(%,y) =Y ) aijBin(x)Bjn(y) (3.2)

i=0 j=0

polinomu ile p,,, {xo,xi,...,x,} siralama noktalarinda verilen kismi diferansiyel

denklemi ve baglangi¢ veya sinir kosullarini saglayan polinomlardir.
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3.1. Adi Diferansiyel Denklemler icin Bernstein Seri Coziimii

Bu kesimde,

YO (0) =0y, k=0,1,...,m—1 (3.3)
baslangic¢ kosulu veya
m
y0(0) =B, y¥(R) =1, k=015 -1 (3.4)

sinir kosullart ile verilen
Y Pex)y® (x) = g(x) (3.5)
k=0

yiiksek mertebeden lineer diferansiyel denklemler i¢in Bernstein seri ¢Oziimii
olusturulacaktir. Bunun i¢in dnce y = p,(x) alinarak y® fonksiyonlarinin matris
formu, daha sonra {xg,x1,...,x,} siralama noktalar1 kullanilarak (3.5) denkleminin
temel matris denklemi olusturulacaktir. Baslangi¢ veya sinir kosullar1 i¢in de y(k) ‘nin
matris formu kullanilarak elde edilen satir matrisleri ile beraber (3.5) denkleminin
temel matris denklemi uygun sekilde birlestirilerek (3.1) denklemindeki katsayilar

bulunacak ve sonugta Bernstein seri ¢oziimii elde edilmis olacaktir.

3.1.1. Temel Bagintilar:

(3.5) denkleminin Bernstein seri ¢6ziimiinii bulalim. Bunun i¢in Bernstein seri ¢oziimii

y(x) = pa(x) ve tirevleri y®) (x) = p,(ik) (x)’in ayr1 ayri matris formlarini olusturalim.

By(¥) = | Boa(x) Bia(x) - Bualx) |

\

y(x) =B,(x)A ve y®(x)=BP (x)A (3.6)

32



olarak yazilabilir. Diger taraftan, [B,(x)]" ifadesi,

dl-.,-:{ =00 i<y

0 i
i¢in
doo doi -+ don
D d:10 d:11 d:1n veX()=[1 x - x”]
d;.qo d;z1 d}:m

veya

[B,(x)] = [X(x)] D' (3.7)

0100 -0
00 2 0
B20903 0
00 0
1000 |

olmak tizere
X =X(x)B
olarak yazilabilir. X®) nin matris gosterimi,

XK =xED B =... = X(x)B (3.8)
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olarak bulunur. Boylece, (3.7) ve (3.8) denklemleri (3.6)’da yerine koyularak

B (x) = X(x)B*DT A

elde edilir. (3.9), (3.5)’de yerine yazilarak

f Pe(x)X(x)B*DT A = g(x)
k=0

elde edilir. 0 <xp < x] < ... <x, < R siralama noktalar1 (3.10)’da koyularak

m
Z Pe(x)X(x)B'DTA =g(x;) ,i=0,1,...,n
k=0

veya kisaca temel matris denklemi

[i P, XB'D'|A=WA =G
k=0
elde edilir 6yle ki
Pr(x0) 0 0
L
0 0 Pk(.xn)
X(x0) 1 xo (x0)"
x_ | X0 | _ 1 X1 (x1)"
X(x,) 1 ox, o ()"

dir. (3.3)’deki kosullar i¢in matris formlar1 3.9 ile
X(0)B*DTA =[oy] , k=0,1,....m—1
ve (3.4) i¢in matris formlari
X(0)BD”A = [B,].

X(R)B'DTA = [y,], k:O,l,...,%—l
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bulunur. Bu formlar
Uk=1| uwo upr -+ gy
olmak iizere
UiA = o], k=0,1,....m—1
veya
UiA = [Bl,
m

UA =[y], k=0,1,....5 -1

olarak yazilabilir. (3.12) veya (3.13)’ii (3.11)’in herhangi m satirtyla W’nin ranki
n+ 1 olacak sekilde degistirilerek

WA =G

denklem sistemi elde edilir ve bu sistemin ¢oziimii olan katsayilar matrisi

olarak yazilabilir. A matrisi (3.6)’da yerine yazilarak (3.5)’in Bernstein seri ¢oziimii

elde edilmis olur.
3.2. Gecikmeli Diferansiyel Denklemlerin Bernstein Seri Coziimii

Vj,k i¢in Pjx(x) ve g(x) fonksiyonlari [0, R]’de siirekli olmak iizere,

m—1
Y O (xo) =N, i=0,1,...,m—1 (3.14)
k=0

baslangic kosullar ile verilen
J m—1

YW@ =Y Y Pay®(ox+p)+glx) , 0<x<R, m>1  (3.15)
=0 k=0
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diferansiyel denklemini ele alalim &yle ki ¢y, A;, o; ve B j reel sabitler ve Vi i¢in

xio € [0,R]’dir. (3.15) denkleminin Bernstein seri ¢oziimiinii bulmak i¢in (3.5)’de

bulunmayan y*) (o jx+P;) teriminin matris gésterimi bulunacaktir.

3.2.1. Temel Bagintilar:

(3.5) denkleminden farkli olarak (3.15) denkleminde bulunan y(k)(oc x4+ B j) terimi
i¢in matris formunu bulmak i¢in, X(a;x +B;) ve X ") (ox + B ;) matrislerini ele

alalm. o; # 0 ve B; # 0 igin

() (@) (B)
B(a.B,) = ’
I 0
ve o £ 0 ve B, = 0 igin
()" 0
B(a;,0) = ° (a.j)l
0 0

olmak tlizere
X(ox+B;) =] 1 ox+B;

= X(x)B(a;,B;)

A%~

X'(ojx +B;) = X(ox +B;)B

X® (ojx+B;) = X(otpx +,)B?

X® (ox+B;) = X(oujx+ ;) B

(ocjx+Bj>N }
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elde edilir. Boylece (3.9) ile (3.16)’dan
B (ax+B;) = X (x)B(a;, B;)BDTA (3.17)

elde edilir. (3.9) ve (3.17)’yi (3.15) denkleminde yerine yazarak
J m—1
X(x)B"D'A=Y Y Pu(x)X(x)B(c,B;)B*D"A +g(x) (3.18)
=0 k=0

denklemi elde edilir. 0 < xg < x1 < ... < x, < R siralama noktalarim1 (3.18)’de

koyarak
J m—1
X(x)B"D'A =Y ¥ Py(x;)X(x))B(ct;,B;)B' DT A+ g(x;) ,i=0,1,....n
7=0 k=0

veya kisaca temel matris denklemi

J m—1
XB"D" — Y Y PyXB(a;,B,)B'D" | A=WA=G (3.19)
Jj=0 k=0
elde edilir oyle ki
[ Pi(xo) 0 g(xo)
0 Pir(x X
P = ]k§ 1) .  G= g(x1) ’
[0 0 Pii(xn) g(xn)
[ X(xo) 1 xo (x0)"
X — X(x1) _ 1 x x1)"
| X (xn) I oxp o ()"

dir. (3.14)’daki kosullar i¢in matris formlar1 (3.9) ile

m—1
Y cuX(xio))B'D'A=[N] , i=0,1,....,m—1
k=0

olarak bulunur. Bu formlar

Ui:[uio Uil v Ujp (3.20)
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olmak Uzere
U,A = [\ (3.21)

olarak yazilabilir. (3.21)’yi (3.19)’un herhangi m satirtyla rank(W) = n+ 1 olacak
sekilde degistirilerek

WA =G (3.22)
denklem sistemi elde edilir. Sonucta katsayilar matrisi

—1 ~

A=W) G

olarak yazilabilir ve ag,ay,...,a, katsayilar belirlenir.

3.3. Zayif Tekil Cekirdekli integro-diferansiyel Denklemlerin Bernstein Seri

Coziimleri

¢, A; ve y; reel sabitler, P;(x), g(x) fonksiyonlari [0, R]’de siirekli, K(x,?) fonksiyonu
[0,R] x [0, R]’de stirekli olmak tizere baglangi¢ kosullar

Y()=y; , i=0,1,...,max{J—1,/—1,k—1} , 0<c<R,

ile verilen

J 4 X (k)(t) X
Y Ay (@) =g() + M [ Z=Ldr+1a [ Kty (e)ar (323)
i=0 0/ Vx—t 0/

zayif tekil ¢ekirdekli integro-diferansiyel denklemini ele alalim. (3.23) denkleminin
(k)
yWi()

x—1

dt ve

X
temel matris denklemini olusturalim. (3.19) denklemine ek olarak A; [
0

X
A [ K (x,0)y"D)(¢)dt terimlerinin matris gdsterimini olusturalim. Bunun i¢in
0

[t
J Vx—t F(n+%)
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x (k)
esitliginden A [ ——= you) dt ifadesi
0

it

)
f) dt =1 Q,BDTA

xlo/f/%

olarak yazilabilir oyle ki

o :[ﬁx%m) Vaer)  yaGHIrm
) r(3) r(3) [(n+3)

dir. A, f K (x,0)y\)(t)dt igin K (x,1) fonksiyonu [0,R] x [0,R]’de siirekli oldugundan

t'K (x,t) fonksiyonu #’ye gore Riemann integrallenebilirdir. Boylece,

V.= [ fK(x,t)dt fK(x,t)tdt fK(x,t)t”dt }
0

0 0

olmak tzere
Ao / K(x, )y (0)dt = M VBDT A

yazilabilir. Sonugta, (3.23) denklemi
J .
Y P(x)X(x)B'D"A = g(x) +1,Q:B*D’ A+ 1, V,B'D" A (3.24)
i=0

formunda yazilabilir. 0 <x¢ < x] < ... <X, <R siralama noktalar1 (3.24)’de yerine
koyularak, (3.23) denklemi i¢in temel matris denklemini

J
WA = (Z P,XB'D” — 1, QB*D” — A, VB*D” ) A=G
i=0

olarak elde edilir dyle ki

Pi(xg) O 0
0 Pi(x 0
P, = l(. l) . )
0 0 Pi(xp)
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Vo Oxo g(xo)
Vxl QX1 g(xl )

I/xn an g(xn)
dir. (3.20) kullanilarak baglangic kosullart W’nin satirlar1 ile uygun sekilde yer
degistirelerek A katsayilar matrisi (3.22)’de oldugu gibi elde edilir ve sonugta

Bernstein seri ¢6ziimii bulunmus olur.

3.4. Yiiksek Mertebeden Lineer Diferansiyel Denklemlerin Rasyonel

Fonksiyon Coziimii

Bu kesimde,

yO0) =0y, k=0,1,....m—1
baslangic kosulu veya

0(0) = B, yI(R) =y, k=0,1,....5 —1
sinir kosullart ile verilen

kf Pe(x)y™® (x) = g(x) (3.25)
=0

yliksek mertebeden lineer diferansiyel denklemler ele alinacak ve Osman vd. (2011)
tarafindan ilk defa verilen bir rasyonel fonksiyon ¢oziimii tanitilacaktir. Bu ¢oziim,

Floater ve Hormann (2006) tarafindan verilen rasyonel interpolasyon fonksiyonunda;

n—d
X Aix)pi(x)
r(x) = =
n—d
L Ai(x)
i=0
pi interpolasyon polinomlari yerine (3.25)’in {x;,Xj41, .. .,X;+4 } noktalari kullanilarak

elde edilen Bernstein seri ¢6zliimii alinacaktir. (3.25)’in Bernstein seri ¢oziimii, d = n
durumuna karsilik gelen rasyonel fonksiyon ¢éziimii oldugundan, farkli d degerleri

icin Bernstein seri ¢oziimiinden daha iyi sonuclar bulunabilir.
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3.5. Kismi Diferansiyel Denklemlerin Bernstein Seri Coziimii

Bu kesimde, kismi diferansiyel denklemlerin (3.2) denklemi ile verilen Benstein seri
¢Oziimii olusturulacaktir. Bunun i¢in, Q = [0,R] X [0,R], P, R, S, T, U, V ve G’de

’da taniml1 fonksiyonlar olmak tizere

o%u %u d%u du ou

denklemi asagidaki karisik kosullar ile verilmis olsun:

e Durum 1: (oy,B;) € 0Q, a ;lar sabitler olmak tizere

t 11 .
XYY abu (o) =,

p 1 1 b (i
Y Y Y bkl By = k(x).
e Durum 3: (n;,y) € 0Q ve c ;lar sabitler olmak tizere

m 1 1
Y Y Y e ey) = ).

k=1i=0 j=0

(3.26)

Dn,n Bernstein seri ¢oziimiinii elde etmek i¢in, B6liim 3.1°dekine benzer sekilde p,, ,

ve tiirevlerinin matris formlar1 olusturulup (3.26) icin temel matris denklemi

olusturulacaktir. Siralama noktalar1 olarak {(x;,y;) : 0 <, j < n} kiimesi almacaktir.

Dnn» (3.26)’nin Bernstein seri ¢6ziimii olsun. py, ,,

B, () 0 0
0 B,(y) - 0
Q:(y) = . n: y : ,
0 0 - Bu(y)
A=|ap au -+ du @o 4 g o Apl
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olmak tlzere

pn,n(xvy) = Bn(x)Qn(y)A (3~27)

olarak yazilabilir. Simdi, (3.26)’nin Bernstein seri ¢ozlimiinii elde edebilmek igin,

(3.27)’nin ve tiirevlerinin matris bagintilarini olusturalim. Boliim 3.1°de
B, (x)]“ = X(x)BD’

oldugu verilmisti. Q,(y) matrisi,

Q.(») =Y(»D

olarak yazilabilir 6yle ki burada

Y) o0 - 0
— 0 e 0
¥ = | Y vy ],
0 0 - Y(y
DT 0 - 0
- 0 DI .. 0
D =
0 o0 - DT

matrisleridir. S_((y)(l ) matrisi de,

0 --- 0
— 0 B 0
B= )

0 0 B

O pyy(x,3)

Sk olmak tlizere
Xtay

dir ve sonugta, p, ,(x, y)(k,/) _

Pua(x,9) ") = X(x)B*D"Y(y)B'DA (3.28)
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elde edilir. (3.27) ve (3.28) denklemleri (3.26)’de yerine yazilirsa, temel matris
denklemi

[P(x,»)X(x)B*DTY (y))D + R(x,y)X(x)BD” Y (y)BD (3.29)
+8(x,9)X(x)DTY(»)B*D + T (x,5)X(x)BD Y () D
+U(x,»)X(x)DTY (y)BD + ¥ (x,)X(x)DTY(»)D] A = G(x,y)

olarak elde edilir. Siralama noktalart {(x;,;) : 0 <i,j < n} (3.29) denkleminde
once i sabit olacak sekilde yerine yazilarak (n -+ 1)? tane satir matris elde edilir. Bu
matrisleri satir kabul eden matrise W matrisi diyelim. G matrisi ile de G(x,y)’nin
siralama noktalarinda 6nce i sabit olacak sekilde aldig1 degerler ile olusan siitun

matrisini gosterelim:

I
n+1

[Gl1i = G(x1,1), t = {

H JI=i—t(n+1)—1.
Boylece,
WA =G (3.30)

sistemi elde edimis olur.

Kosullar i¢in matris formu (3.27) ve (3.28) kullanilarak asagida herbir durum i¢in

verilmistir:

e Durum 1: (o, B,) € 0Q, a* ’lar sabitler olmak iizere

Ry
t 11 o _
Ci, A=Y Y Y af X(0,)BD'Y(B,)B/DA =4, (3.31)
k=1i=0,=0
e Durum 2: (x,y,) € 0Q ve bffj’lar sabitler olmak tizere t = 0, 1,...,n i¢in
p 1 1 - -
C2 A=Y Y Y b X(x)B'D"Y(B,)B/DA = k(x;), (3.32)
k=1i=0 =0

e Durum 3: (1n;,y) € 0Q ve cffj’lar sabitler olmak tlizere t = 0,1,...,n igin
m 1 1

C3 A=Y Y ¥ ¢t X(o)BD"Y(,)B/DA = h(3,). (3.33)
k=1i=0,=0
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(3.31), (3.32) ve (3.33)’de verilen denklem sistemleri sirasiyla

CiA =G,
CA = G,
veE
C3A = Gs

olarak yazilabilir 6yle ki burada [Gi];1 = Ay, [G2]1 = k(x;) ve [G3], = h(y;)’dir.
[W,G] sistemi ile [C},G],[C2,G,] ve [C3,G;3] sistemleri birlestirilerek elde edilen
yeni sistemi [W, G] ile gdsterilsin:

W . G
[W,G} _ C ) G,
G, &
G, G;3

[W, G} sistemi m X n, m > n tipinde bir sistem olup Gauss satir indirgeme yolu ile
elde edilen ve sifirdan farkli olan kismini [W,G] ile gosterelim. Bu durumda A

matrisi eger W matrisi tersinir ise
— 1=
A=W G

ile bulunur. Eger W matrisi tersinir degilse siralama noktalar1 W matrisi tersinir
olacak sekilde degistirilmelidir. Diger bir yontem olarak, eger matrisler ¢ok biiyiik
boyutlu degilse, W’nin yar1 tersi de

yari—

A matrisini bulmak i¢in kullanilabilir.

3.6. m—Boyutta Rasyonel Interpolasyon Fonksiyonu

Bu kesimde, m—boyutta rasyonel interpolasyon probleminin bir ¢dziimii olarak

Floater ve Hormann (2006) tarafindan verilen yontem m—boyut i¢in genellenmistir.
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m—degiskenli f fonksiyonu ve 1 < j < m i¢in 0 < d; < n tamsayilar verilsin.
0<i;<n—djvel <j<migin, p; ;.. , polinomu f’nin

{(x?’xtzz,...,xtm);ij <t;<ij+d;1 S]Sn’l}

m

noktalarindaki interpolasyon polinomu olsun.  » rasyonel fonksiyonunu da

X= (x17x27 s 7xm)

m
i
_1 k=1
}\ril,iz,...,l’m (X) = i1+d, im+dny

[T (cr—xt) - TT (on—h)

i=iy =i

olmak tlizere

n—dy n—d; n—dy,
. 0 ZO. .ZO}\'il7i27~'-7impil7i27"’7im
1=V n= Im=—
r= 3.34
n—dyn—dy  n—dy ( )
Z Z kil,iz,...,im
i1=0 i,=0 im=0

ile tammmlayalim. (3.34) fonksiyonunun R"”’de hi¢ bir koke sahip olmadigi, Teorem

3.6.1°de ispatlanmistir:

Teorem 3.6.1. (3.34)’de tanimlanan rasyonel fonksiyonunun R”’de hi¢ kokii yoktur.

Kami: Teoremin ispatinda kullanilacak olan g, ; ~fonksiyonunu

i]*l n
iy i (X) = H (1 _xlf) H (x’f—xl)
k=0 k=i1+d|+1
im—1 n
T Gn=x)  TT (o —xm)
k=0 k=im+dy+1

olarak tanimlayalim. (3.34)’nin pay ve paydasinin

)" B (51 —t) - YT (=8

k=0 k=0

(_

45



ile ¢arpilmasi

n—dyn—dp n—dy

ZO ZO Z lull»IZa anplllev--wim
_ 1=0 = im=0
= n—d) n—dp n—dpy, (3.35)

Y Y- X% o Hiviz.i

i1=0 i,=0 im=0

ifadesini verir. (3.35)’in paydasi

n—d; n—dy
Z /’tz xl Z :uz xm
i1=0 i, =0

ifadesine esittir ve Teorem 2.5.6°dan (3.35)’in paydas1 pozitiftir.

m = 2 i¢in (3.34) rasyonel fonksiyonunun hatasini inceleyelim. (x,y) € (xo,Xo+1) X

(XB,XB+1) ve dy,d, > 0 olsun.

L = {i:i<a—d,0<i<n—d},
L = {ita—d+1<i<0,0<i<n—d},
L = {ita+1<i0<i<n—d}

n—d;
olmak iizere s(x) = ¥ p;(x), h = o Joax Ixi+1 —x;| ve j € L igin Floater ve
Hormann (2006), -
—d
= s o ) 1

Z 7\.,'()6) =
i=0

ITx—x| TIhx—x] %M
i—0 i—0

n—d) n—d;

oldugunu gostermislerdir. Benzer sekilde, s(x,y) = ¥ ¥ u ;(x,y) olmak {izere
i=0 j=0
n—d) n—d;
Z A j(x,p)| = (,y)
i=0 j=0 O‘X x,IHIy —vil
> _ ()S(V) > S(y})1
b=l Tyl " [T v—
i=0 i=0 i=0
olarak  yazilabilir. Bununla beraber, /#; = max |x;11—x;| Ve

0<i<n—1
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ti = min |x;+1 —x;| olmak {izere

0<i<n—1
s(x) T n

dir. Bunu ispatlamak igin, ilk olarak i € /; olsun. Bu durumda, |u;(x)| < |4, (x)]

h
olup |x —xg_gq,| < t_l |x — X+, +1| oldugundan
1

T < t—l elde edilir. i € I i¢in y;(x) > 0 oldugundan esitsizlik saglanr.
s(x 1

Benzer adimlar i € I3 i¢in de gosterilebilir.

ve boylece

Teorem 3.6.2. d,d> > 0, f € W ([a1,b1] x [a2,b2]) ve {(xi,y;):0<i,j<n}

interpolasyon noktalar1 olsun. Bu durumda,

hi= max iy —xif,hp= max [yit1—yi,
h= 0<rlr£n IXip1 —xi|, b= og?lgl;?—l Vit1 —yil

olmak lzere

dp+1 dy+1
h 1 alerl}( h 2 ad2+1f
1 =l < =) =) | s | St + st |
(n—dy)(n—dy) W1 R2T || gitdai2y

+ @)t

axd1+layd2+l -

esitsizligi saglanir.
Kanit: f — r hata fonksiyonu interpolasyon noktalarinda sifir oldugundan
a1, b1] x [a2,b2)\ { (xi,y;) : 0 <i,j < n}

i¢in hatay1 belirleyelim. f — r fonksiyonu, V(x,y) i¢in

n—dyn—dp
Z Z }\'il,iz (X,J/) [f(x?y) _pilin (x’y)]
i1=0 ip=0
f(x,y) —I’()C,y) = - : n—dy n—d
Z Z ;\'il,iz (xay)
i1=0 i,=0
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dir. Hata fonksiyonunun pay1 i¢in bir {ist simnir ve paydasi i¢in bir alt smir
bulunacaktir. E = f — p; ;, fonksiyonu (2.7) ile E = E| + E» — E1E, olarak

yazilabilir. Boylece,

1 r‘lfdl Vlde 1 ad1+1f
(d1—|—1)| =0 =0 |W; a1+l -
(=) < bt )
xil,iz(XJ/)
i1=0 ip=0
;n—dl n—dy 1 - ad2+1f
dr+ 1) = &= 1w, a2t
4! ) T i (3.37)
Xil,iz(xny)
i1=0 ip=0
1 "L iy
| | Z Z E311+1 dzil
(d1+1)'(d2+1)'i110i2:0 o ay *®
+ n—dy n—dy
Z Z Xi],iz(xay)
i1=0 ip=0
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olarak bulunur. (3.36)’dan (3.37) ifadesi

1 "_dl I7—d2 1 adl +1f
(dy +1)! 1= =6 | w; af .,
i1=0 =0 | Wi, (y)
|(f =7)(xp)] < _ sl(y)n
a1 1 il
1 nfd] l’l*dz 1 ad2+1f
Tl
(d2+1)! i1=0 ;=0 |Wi|(x) 22 |l
+ )
dz'hd2Jr1 ﬁ ‘x—x~‘
n—d| n—d. P
d1tdx+2r
(dy +1)! d2 +1)! ,;) IZ adt g 1|
+
a4 vh‘fl“d vhgﬁl
di+1 d d
h 1 I’lzl nzz }/‘12 | oy
- d1 +1 = ! o
d. +1 d d
. e nz1 nzz }:uiz ‘ oy
dy+1 = sx) Iyt

hd1+1hd2+1 n—dyn—dp

(d1+1 Jda+1) Z Z

adl +d2+2f
axdl +layd2+1

hll+ ad1+1f
S(n_dl)(n_dz)tl(dl—Fl) oxd1 ||
h§2+2 ad2+1f
+<n_d1)(n_d2)lz(dz—|—l) W2t ||
N (n—dy)(n—da)h{ BT Gaearia,
(dl + 1)(d2+ 1) axd1+layd2+l o

ile sinirhdir.

m
Teorem 3.6.3. di,d>,...,d, >0, f € Wit! (H[ai,bi]) ise

i=0
hi= max |X—xF ver;= min [T —xf
0<k<n—1 0<k<n—1
olmak tizere
- AN d+1
If =rle<In—d) ¥ (;) el g |
i=0 lofl=1 ”
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dir dyle ki burada

a(d+1) = (o (d1 +1),00(d2+1),...,0y(dn + 1)),
h= (/’ll,/’lz,...,hm),t = (tl,tz,...,tm)

dir.
n—d) n—dy n—d
Kamit: s(x1,X2,...,Xm) = Z ui(x1) Z ui(x2) .- Z U;(xp) olmak tizere
i=0 i=0 i=0
‘:uil,iz,...,im (xl 3 X2y e 7xm)| <1
S(X1,X2, -3 Xm) -
esitsizligi ve Teorem 3.6.2°deki adimlar1 kullanilarak ispatlanir. ]

Teorem 3.6.2 ile verilen {iist sinir, #; — 0 i¢in smirsiz oldugundan esit aralikli

dagilimlar i¢in daha kullanigh bir hata siiridur.

3.7. Kismi Diferansiyel Denklemlerin Rasyonel Fonksiyon Coziimii

(3.26) ile verilen kismi tiirevli diferansiyel denklemlerin Bernstein seri ¢éziimii
Bolim 3.5.°te verilmisti. (3.34) denkleminde interpolasyon polinomlar1 yerine (3.2)
ile verilen Bernstein seri ¢ozlimleri alinirsa, (3.26) denklemi i¢in bir » rasyonel
fonksiyon ¢6ziimii bulunmus olur. n = d; = d> olmas1 durumunda Bernstein seri
¢Ooziimii elde edileceginden, rasyonel fonksiyon ¢oziimleri ile Bernstein seri

¢Oziimiinden daha iyi sonuglar elde edilebilir.

3.8. Bernstein Seri Coziimlerinin Hata Analizi

Bu kesimde, yukarida verilen Bernstein seri ¢oziimler i¢in Once hata analizleri
verilecektir. Daha sonra ¢oziimiin bilinmedigi durumlarda da kullanilabilecek olan
Oliveira (1980), Celik (2005), Celik (2006) ve Shahmorad (2005) tarafindan
verilen kalan dogrulamasi (residuel correction), Bernstein polinomlar1 igin

diizenlenerek hata tahmini de verilecektir.
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3.8.1. Adi Diferansiyel Denklemler i¢cin Bernstein Seri Coziimiiniin
Hata Analizi

f fonksiyonu ve f’nin {xg,xi,...,x,} noktalarmmdaki p,f interpolasyon polinomu
verilsin. Eger f yeteri kadar diizgiin ise, f fonksiyonu f = p,, f + K,, olarak yazilabilir
Oyle ki burada

k) = e [T (e)

hata fonksiyonudur. Eger p, polinomu (3.5)’nin Bernstein seri ¢éziimii ise, (3.5)

denklemini siralama noktalarinda saglar. Boylece,

AGl = [~Bu ()KL () = Pt ()K" ) = = Pow)Ka )|

olmak iizere p, ve p,f sirasiyla WA =G ve WA =G+AG deklemlerinin

¢Oziimleridir.

Teorem 3.8.1. p, ve f (3.5) denkleminin siras1 ile Bernstein seri ¢oziimii ve tam
¢Ozlimii olsun. p, f polinomu f’nin siralama noktalarindaki interpolasyon polinomu
ve W, A, A, (~}, AG , matrisleri yukarida tanimlanan matrisler olsun. Eger
f€C"10,R] ise,

17) — pal)] < [, 0)] + |AGI W 7| X))
esitsizligi saglanir.
Kanit: Mutlak deger 6zelliklerinden,

/() = pn ()| < 1 (x) = puf ()| + [ (x) = puf ()]

dir. /€ C"*1[0,R] oldugundan dolay1, Teorem 2.3.4’den sagdaki ilk terim |K,(x)|’e

esittir ve ikinci terim igin bir {ist sinir asagidaki adimlar norm 6zellikleri ve Teorem

2.6.4 uygulanarak elde edilmis olur:

1Pa(x) = puf (5)] = [ Ba(x) (A = R)| < 1B, ()]l || (A - &)
< [X@)I[[D7 ] AG] [[W-].
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Tam ¢0ziimiin bilinmedigi durumlarda Teorem 3.8.1°den e, = f — p, hata
fonksiyonuna e}, fonksiyonu ile yaklasilabilir ve eger e, — e, hatas1 yeteri kadar
kiiciikse, e;, hataya yaklasim fonksiyonu ile e, hata fonksiyonu tahmin edilebilir.
Uygulamada m > n secilmesi ile daha tutarli sonuglar elde edilmistir. e},’1 bulmak

icin Once e, nin diferansiyel denklemini kuralim. (3.5) denkleminin her iki tarafina

m
(— Z P (x) p,(zm) (x)) eklenirse, e, hata fonksiyonu
k=0

Y (m) y (m)
) Px)en” (x) =g(x) = Y Pelx)pn” (x)
k=0 k=0
diferansiyel denklemini saglar. Baglangi¢ ve sinir kosullar1 da sirastyla
eB0)=0, k=0,1,...,m—1
baslangi¢ kosulu veya
e®(0)=0, M (R) =0, k= 0,1,...% —1

kosullarina doniigir. Yeteri kadar kiiciik € igin |e, —e},| < € oluyorsa, rr%in||en||oo
ifadesini saglayan n sayismimn secimi, |le} ||, ile hesaplanabilir. Benzer sekilde
min||e,||, sayisin1 saglayan n sayisida benzer sekilde tayin edilebilir. Agikga,
pZ-i— ey, polinomu (3.5) denkleminin bir yaklasik ¢oziimiidiir ve farkli m degerleri

i¢in daha iyi bir yaklasim elde edilebilir.

Sonug¢ 3.8.2. Yukaridaki gosterimler ile, eger p, polinomu (3.5)’nin Bernstein seri
¢cOzlimii ise, p, + e, da (3.5)’nin diger bir yaklasik ¢ozliimiidiir ve yaklagimin hatasi

en — ), kadardur.

Bulunan bu sonuglar, gecikmeli diferansiyel denklemler, integro-diferansiyel

denklemler ve kismi diferansiyel denklemler i¢in genellenmistir.
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3.8.2. Gecikmeli Diferansiyel Denklemler icin Bernstein Seri

Coziimiiniin Hata Analizi

/€ C"™10,R] ise, f fonksiyonu Vx igin

BELIN | (RS

olarak yazilabilir ve bir 6nceki kesimdekine benzer olarak (3.15)’in Bernstein seri

¢Oziimii p, ve (3.15)’in siralama noktalarindaki interpolasyon polinomu p,,
J m—1
J=0 k= il

i¢in sirasiyla WA = G ve WA = G+AG deklemlerinin coziimleridir.

Teorem 3.8.3. p, ve f (3.15) denkleminin sirasi ile Bernstein seri ¢oziimii ve tam
¢Oziimii olsun. p, f polinomu f’nin siralama noktalarindaki interpolasyon polinomu
ve W, A, A, G, AG , matrisleri yukarida tanimlanan matrisler olsun. Eger
f€C"™10,R] ise,

/() = pax)] < [Kn() |+ [AG] [[WH [ [[DT [ X (x)
esitsizligi saglanir.
Kanit: Teorem 3.8.1’in ispatina benzer sekilde yapilir. U

Hata fonksiyonunun tahmini de Bolim 3.8.1.’dekine benzer sekilde yapilabilir.
e, = [ — pn hata fonksiyonuna e}, fonksiyonu ile yaklasilirsa ve eger |e, —e,| < €
ise, e, ile e, fonksiyonu tahmin edilebilir. (3.15) denkleminin her iki tarafina
J m—1
_pn Z Z OC])C +B )

j=0 k=0

eklenirse, e, hata fonksiyonu

J m—1 ) (m)
M) =¥ T Pul)e (o +B;) —pu” (x)
j=0 k=0
+ X X Pulx)pn (ox+B;) +g(x)
j=0 k=0
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m—1
Z cie® (xig) =0, i=0,1,...,m—1
k=0

diferansiyel denklemini saglar. |e, —ej,| < € ise min||e,||., ve min||e,|, sayilarmni
n n

veren n sayilari belirlenebilir.

Sonu¢ 3.8.4. Yukaridaki gosterimler ile, eger p, polinomu (3.15) denkleminin
Bernstein seri ¢oziimii ise, p, + e, da (3.15) denkleminin hata fonksiyonu e, — e},

olan diger bir yaklasik ¢oziimiidiir.

3.8.3. Zayif Tekil Cekirdekli integro-diferansiyel Denklemler icin Bernstein

Seri Coziimiiniin Hata Analizi

Eger f yeteri kadar diizgiin ise, yukaridakilere benzer olarak f fonksiyonu

S =pnf+ Ky
olarak yazilip

[AG = | Puw)KA" (x1) + Py () K3™ ™ (63) 4+ Po (i) K (1) ;

olmak tizere (3.23)’lin p, Bernstein seri ¢6ziimii ve siralama noktalarindaki p, f
interpolasyon polinomu sirasiyla WA = G ve WA = G 4+ AG deklemlerinin

¢Oziimleridir.

Teorem 3.8.5. p, ve f (3.23) denkleminin sirasi ile Bernstein seri ¢oziimii ve tam
¢Oziimii olsun. p, f polinomu f’nin siralama noktalarindaki interpolasyon polinomu
ve W, A, A, G, AG , matrisleri yukarida tanimlanan matrisler olsun. Eger
f€C"™10,R] ise,

/() = pa(x)] < [Kn() |+ [AG][WH[ [ DT || X (x)l]
esitsizligi saglanir.
Kanit: Teorem 3.8.1’in ispatina benzer sekilde yapilir. [

Hatanin tahmini de benzer sekilde yapilabilir. (3.23) denkleminin her iki tarafina

J

. X (k) x
_E)F’i(x)l?,(?l)(x)+k10/l\?/"£dt+k2 O/K(xaf)pg)(t)dt
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eklenirse, e, hata fonksiyonu

J % (k) y
(i) en (1) (1
PO x) = g +M di + % / K(x,0)el (1)t
J % (k)
(i) pn ()

Iy / K, p (1)dr
0

diferansiyel denklemini saglar ve baslangi¢ kosullar1 da
ey=0, i=0,1,....max{J—1,/—1,k—1}

olur. En iyi yaklasimi veren n sayisi, |e, —e},| hatasi gozardi edilebilecek kadar
kugciikse, |leq||., veya |len|, Olglilerek bulunabili.  Acik¢a, p,+ e}, (3.23)
denkleminin bir yaklasik ¢oztimiidiir ve farkli m degerleri i¢in daha iyi bir yaklagim
elde edilebilir.

Sonug¢ 3.8.6. Yukaridaki gosterimler ile, eger p, polinomu (3.23)’in Bernstein seri
¢cozlimii ise, p, + e;, da (3.23)’in diger bir yaklasik ¢oziimiidiir ve yaklasimin hata

fonksiyonu e, — e;, fonksiyonudur.

3.8.4. Yiiksek Mertebeden Lineer Diferansiyel Denklemler i¢in

Rasyonel Fonksiyon Coziimiiniin Hata Analizi
r fonksiyonu (3.25)’in rasyonel fonksiyon ¢6ziimii olsun. Teorem 3.8.1 ve Floater ve
Hormann (2006)’1n sonuglar1 kullanilarak agagidaki sonug elde edilir:

Sonug 3.8.7. r ve f (3.25) denkleminin siras1 ile rasyonel fonksiyon ¢6ziimii ve tam

¢oziimii olsun. Bu durumda eger 1 € C?+2[0,R] ise,

@) =) < max{Ke(x) + 1G]
—I—O(hd+1)

A (L |

esitsizligi saglanir Oyle ki AG; ve Wl_ U matrisleri {x;,xi11,...,x4q} ile iliskili

matrislerdir.
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Kanit: f — r hata fonksiyonu

n—d

T 40 [/~ pi ()

yazilarak her bir parca i¢in Teorem 3.8.1 uygulanirsa istenen sonug elde edilmis olur.
[

3.8.5. Kismi Diferansiyel Denklemler i¢cin Bernstein Seri Coziimiiniin Hata
Analizi

Jf fonksiyonu (3.26)’'min tam ¢6ziimii ve p,,f polinomu da f’nin siralama
noktalarindaki Lagrange interpolasyon polinomu olsun. Eger f yeteri kadar diizgiinse,
S fonksiyonu f(x,y) = punf(x,y) + K(x,y) olarak yazlabilir &yle ki K
Teorem 2.3.11°de verilen {,n € (0,R) igin

wa(y) 9" f(xi,m)
(n+1)!  gymtl 7

wle) /E) -

Kixy) = (n+1)!  oxntl

ll'J,(X)

i=
hata fonksiyonudur.

Pn.n fonksiyonu, (3.26)’nin A katsayilar matrisi 6zel olarak [W, G] matrisinin lineer
bagimsiz (n + 1)? satirindan elde edilen Bernstein seri ¢oziimii, yani A = ngég
olmak tizere p, , = B, (x)B,(v)4 olsun dyle ki burda W matrisi W>nin (n+ 1)? tane

lineer bagimsiz satirlarmi ve Gg’de bu satirlara karsilik gelen degerleri
gostermektedir:
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— ~ 1~
Pnn=Bu(x)B,(y)A, A=W; G; (3.38)

Bu durumda p, ,, (3.26)’y1 siralama noktalarinda saglar. Boylece p,, (3.30)’da
verilen W3A = Gy, pnnf'te WsA = G5-+AG denklemlerinin ¢oziimleridir dyle ki

[AG],; = [(PKxx + RK, y + SK,y, + TK + UK, + VK) (x1,y5)] i1

ve r = [|-5]], s =i— (n+ 1)r — I’dir. Hesaplama hatalar goz ard: edilirse,

asagidaki teorem mutlak hata icin bir iist sinir verir:

Teorem 3.8.8. p,, ve f sirasiyla (3.26)’nin (3.38) ile tanimli Bernstein seri ¢6ziimii
ve tam ¢oziimii olsun. Wy, A, X, Gs ve AG matrisleri yukarida tanimlanan matrisler
ve X(x),Y(y), D7, D, matrisleri de Boliim 3.5.’deki matrisler olsun. Eger f yeteri
kadar diizgiinse, mutlak hata fonksiyonu

£59) = P9 < 1K)+ B ()] [Ba0) || W5

laG| (3.39)
esitsizligini saglar.
Kamit: p, ,f polinomlarini (3.39)’un sol tarafina ekleyip ¢ikararak

£ (6,) = Pua(e )| S 1f@9) = Puanf e 0) |+ [ Pnan f(4,9) = P (x,9)]

elde edilir. Sagdaki ilk terim f yeteri kadar diizgiin oldugundan Teorem 2.3.11°den
|K (x,y)| ile simrhdur. ikinci terim igin p, . f = B,(x)B,(y)A olarak yazilirsa, Teorem
2.6.4 ve norm ozelliklerinden

Prnf (63) = Pan(e.2)| = [Ba()By(7)A = By (x)By (1) A|
= [B.(x)B,()(A—A)]
< Bl B0 [ W5 | aG
elde edilir. O

Teorem 3.8.8’deki sinir, ||AG|| kiigiikken anlamli bir sinir verebilir. Bununla beraber
n arttikca hem Wy matrisi kotii kosullu olacagindan, hem de ||B,(x)| ve ||B.()]|
degerleri biiyliyeceginden kullanisl bir {ist sinir vermeyebilir. Bundan dolay1 anlamli

bir iist sinir elde etmek icin »n sayis1 ne ¢ok biiyiik ne de ¢ok kiiciik secilmelidir.
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Ayrica, kullanimi daha kolay olan ve adi diferansiyel denklemler icin verilen hata

tahmini, kismi tiirevli denklemler i¢in de asagidaki adimlar uygulanarak verilebilir:

(3.26) denkleminin her iki tarafina

azp'hn azpmn azpn,n
H(X,y) —P()C,y) ax2 +R(xay) axay +S(x=y) ay2
apn,n apn,n
+T(x7y) ax +U(x7y)W+V(xay)pn,n

eklenirse, e, , = f — pun = u— pp , hata fonksiyonu

d%e d%e d%e de de

denklemini asagidaki kosullar ile saglar.

t

1 1
e Durum 1: ZZZaﬁ]e (o, B,) =

k=1i=0j=0
p 1 1

e Durum 2: ZZZb ) (x,B,) =0,
k=1i=0j=0 /
m 1 1 o

e Durum 3: kZ’l -Z(’) Zbcfije(h/) (M) = 0.
=1i=0/=

(3.40) denkleminin Bernstein seri ¢ozimil e,, ,, olsun. Eger ‘eny,, — e;‘n7m| < ¢ hatasi
gozard: edilirse, min||e, .||, sayisini veren n sayisinin se¢imi yapilabilir. Benzer
sekilde min ||en7n\|2nsaylsln1 veren n say1st da belirlenebilir. Agikea, p, -+ ey, ,, (3.26)
denklemi};in bir yaklasik ¢6ziimiidiir ve daha 1yi1 bir yaklagim elde edilebilir.

Sonug 3.8.9. Yukaridaki gosterimler ile, eger p, , polinomu (3.26) nin Bernstein seri
¢OzUmil ise, pun + €y, , da (3.26)’mn diger bir yaklagik ¢ozimudir ve yaklagimin

hata fonksiyonu e, , — ey, ,, fonksiyonudur.
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4. ARASTIRMA BULGULARI

Boliim 3’te verilen Bernstein seri ¢oziimler, rasyonel fonksiyon yaklagimlar: ve adi
ve kismi diferansiyel denklemlerin rasyonel fonksiyon ¢oziimleri ¢esitli 6rnekler i¢in
elde edilecektir. Hesaplamalar, 32 bit Maple 12 ve 64 bit isletim sisteminde
yapilmustir.  Ayrica, hesaplamalarda farkli hanelerde duyarliliklar kullanilmigtir.
Bunun bir sebebi, kesme smir1 n’den kaynaklanan hatalar disinda bilgisayardan
kaynaklanan hesaplama hatalar1 da sonuglar etkilemektedir ve bu etki islemlerin
yiiksek duyarlilikla yapilmasi ile azaltilabilir. Ayrica, Chebyshev interpolasyon
noktalari, salinimin ¢ok oldugu durumlarda daha tutarli sonuglar verebileceginden,
ozellikle kismi diferansiyel denklemlerin Bernstein seri ¢oziimleri bulunurken
siklikla kullanilmiglardir.  Bernstein seri ¢oziimler ve rasyonel interpolasyon
yontemi, diger bazi yontemlerle kiyaslanmislardir. Bolim 3’te bulunan hata
analizi ile ilgili sonuglar bu boliimde bazi problemler i¢cin dogrulanmistir. Teoriden

elde edilen sonuglar ile uygulamadan elde edilen sonuglar tutarlidir.

4.1. Gecikmeli Diferansiyel Denklemlerin Bernstein Seri Coziimleri ile Tlgili
Ornekler

Bu kesimde, Boliim 3.2.’de verilen gecikmeli diferansiyel denklemler i¢in Bernstein
seri ¢oziimii elde edilecektir (Osman vd., 2010). Ele alinan her bir 6rnek i¢in Teorem
3.8.3 kullanilarak mutlak hata i¢in bir iist sinir bulunmus ve Sonug 3.8.4 kullanilarak

hata tahmini ve yeni bir yaklasim polinomu elde edilmistir.

Ornek 4.1.1. Tam ¢dziimii y(x) = e* olan

X

{ V)= P+ Jeiy(3) L 0<x<
»(0)=1

multi pantograf denklemini ele alalim (Evens ve Raslan, 2005). (3.19)’dan n = 7 i¢in
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10000 0 0 0 0
0000 0 0 0 0
0000 0 0 0 0
1
B(L,0) = ooog?o 0 0 | 6|0
00004 0 0 0 0
00000 5 0 0 0
1
00000 0 & O 0
(0000 0 0 0 g |0 |

olmak iizere
[XBD” —PoXD"—P;XB (},0)D'|A=G
olarak elde edilir. (3.20) denkleminden baslangi¢ kosulu i¢in

[10000000;1]

elde edilir. Boylece, W ve G matrisi sirasiyla

-8 7 0 0 0 0 0 0
-3.26 —-037 148 086 022 0.03 0.002 5.0E-5
-1.17 —-1.66 —0.27 090 0.78 0.29 0.052 0.0037
-0.37 -1.12 —-1.25 -0.23 0.76 0.75 0.29 0.04
-0.11 -049 -1.07 —-1.15 —-0.20 0.83 0.79 0.23
-0.03 —-0.18 —-0.52 —-1.07 —-1.25 —-0.19 1.16 0.88
—-0.01 —-0.08 —-0.21 —-045 —-1.09 —-1.79 —-0.21 0.60

1 0 0 0 0 0 0 0

A%~
T
[00000001]

olarak elde edilir ve bu sistemin ¢oziimiinden Bernstein katsayilar matrisi A,

T
[1 1.1428 1.3095 1.5048 1.7345 2.0063 2.3299 2.7183]

olarak bulunur.
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Cizelge 4.1. Ornek 4.1.1°de farkh  ve H.D. degerleri i¢in mutlak hatalar

Xi

.f = p7l
(20 H.D.)

.f = p1ol
(20 H.D.)

|f = p1s]
(20 H.D.)

|f — pas|
(20 H.D.)

|f = pas]
(30 H.D.)

0.2
0.4
0.6
0.8

0

0.30E—8
036 £E—8
0.40 E -8
041 E—8
0.89E—7

0

0.10E—12
0.13E—12
0.15E—12
0.18E—12
042E—11

0

043 E—17
0.11E—16
031 E—-16
0.16 E—15
0.15E—-13

0

091 E—-13
0.10E—12
0.65E—12
0.65E—10
021 E—-8

0

039 FE—-23
0.40 £ —23
0.11 E—-22
0.68 E—21
0.78 E—20

Boylece n = 7 i¢in Bernstein seri ¢oziimii

p7(x) =B7(x)A = 1 +x+0.5x% +0.1667x> +0.0417x*
+0.0084x° +0.0012x° +0.0003x

olarak elde edilir.

grafikleri sirastyla Sekil 4.1. ve Sekil 4.2.’de verilmistir. Cesitli n degerleri ve farkli

n =7 icin elde edilen mutlak hata ve ej, fonksiyonlarmnin

duyarlhilikta islemler i¢in mutlak hatalar asagida Cizelge 4.1.’de verilmistir.

Be08-
Ge-08-
de-08-
2o 08-
n_
0 02 04 06 08
X
Sekil 4.1.  Ornek 4.1.1 ve n = 7 i¢cin mutlak hata fonksiyonu
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Sekil 4.2. Ornek 4.1.1 igin |e, | fonksiyonu

Ayrica, 20 hanede duyarlilik i¢in mutlak hata fonksiyonunun sonsuz normundaki
degerleri, e}, fonksiyonunun sonsuz normu ve Sonu¢ 3.8.4 ile verilen yeni
yaklasimin sonsuz normlar1 Cizelge 4.2.’de verilmistir. Bununla beraber, Teorem
3.8.3 kullanilarak bulunan mutlak hata icin st sinirlar da Cizelge 4.2.°de
listelenmis olup teoriden elde edilen bu iist sinirlar uygulamada elde edilen mutlak
hatalar1 sinirlar. e}, fonksiyonu hesaplanirken Chebyshev interpolasyon noktalari

kullanilmustir.

Ayrica Sonug 3.8.4 ile elde edilen yaklasimlarin sonsuz normunda Bernstein seri
¢ozlimii ile elde edilen sonuglardan daha iyi oldugu goriilmektedir. Ek olarak sabit
duyarlilikla islem yapilmasi durumunda hatalar bir noktaya kadar azalmakta ve daha
sonra artmaya baslamaktadir. Bu durum, degisken duyarhilikla islemler yapilarak
Cizelge 4.1.’de oldugu gibi asilabilir. 20 hanede duyarlilik i¢in sonsuz normuna gore
en iyi yaklasim n = 13 i¢in elde edilmis olup ||e},||,, degerininde en kiigiik oldugu

nokta n = 13’te elde edilmistir.

63



mutlak hatalan

Cizelge 4.2. Ornek 4.1.1 icin mutlak hatalar, hata tahminleri ve hata yaklasim fonksiyonunun

n 3 4 5 6

1/ = pull., 0.0080 0.45E—3 035E—4 0.16E—5
lels ]l 0.0080 045E—3 0.35E—4 0.16E-5
If —pn—€5ll. 0.30E—15 0.30E—15 0.30E—15 0.30E —15
Ust sinwr 2.21 0.65 0.16 0.05

n 7 8 9 10

1/ = Pnlle 0.89E—7 032E—8 0.13E—9 0.42E—11
lelsll., 0.80E—7 032E—8 0.13E—9 0.42E—11
If —pn—ebll. 0.30E—15 0.30E—15 0.30E—15 0.30E—15
Ust sinir 1.37E -2 3.62E —3 9.98E —4 241E —4
n 11 12 13 14

17 = pull.. 0.14E —12 0.20E —14 030E —15 0.53E — 14
etz ]l 0.14E—12 0.19E—14 0.30E —15 0.52E — 14
If —pu—ell, 0.30E—15 0.30E—15 0.14E—16 0.90E —17
Ust sinir 0.50F —4 0.11E -4 0.22F -5 0.39E -6
n 15 16 17 18

1/ = Pnllo 091E —13 0.70E—13 021E—12 045E—11
lelsllo 091E—13 0.70E—13 0.20E—12 0.43E—11
If —pn—elyll, 0.90E—16 2.4E—15 0.90E—15 0.11E — 14
Ust sinwr 0.70E—7 0.11E—-7 0.17E—8 0.26E—9
n 19 20

I/ = Pnlle 0.39E—11 0.23E—11

lels ] 0.38E—11 0.23E—11

If —pn—ell. 0.70E—14 0.24E — 14

Ust sinir 0.38E—10 0.50E —11

Ornek 4.1.2. Ugiincii mertebe tam ¢oziimii y(x) = cosx olan,

V" (x) =x"(2x) =¥/ (x) =y (3) +xcos2x+cos3 , 0 <x <1
y(0)=1,(0)=0,5"(0) =1

pantograf denklemini ele alalim (Sezer vd., 2008). n = 6 i¢in Bernstein seri ¢oziimil
y(x) = 1 —0.5000x% +0.0417x* — 0.0001x> — 0.0012x°

olarak bulunur.Cizelge 4.3.’de farkli » degerleri ve 20 hanede duyarlilik i¢in baz1 nok-
talardaki mutlak hatalar ve Teorem 3.8.3 kullanilarak elde edilen mutlak hata igin st
sinirlar verilmigtir. Ayrica aym ¢izelgede e}, fonksiyonu ve f — p, — e}, fonksiy-
onlarinin sonsuz normlar1 da verilmistir.z < 12 i¢in mutlak hatanin sonsuz normu

ve He]ko Hoo sayilar1 birbirlerine ¢ok yakindir. Mutlak hatalar » = 14’ten sonra artmaya
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Cizelge 4.3. Ornek 4.1.2 icin mutlak hatalar, hata tahminleri ve hata yaklasim fonksiyonunun

mutlak hatalari (20 H.D.)

n 3 4 5 6

1f = Pnlle 0.04 0.99E—-3 0.61E—3 0.36E—4
ol 0.04 0.99E—-3 0.61E—3 0.36E—4
f—pn—¢€y|.., 0.69E—8 0.69E—8 0.69E—8 0.69E—8

Ust sinir 13.34 13.63 3.59 2.30

n 7 8 9 10

1f = Pnllw 0.16E—4 049E—6 031E—6 0.98E—38
ol 0.16E—4 048E—6 031E—6 0.29E—38
f=pn—¢jpll. 0.69E—8 0.69E—8 0.69E—8 0.69E—38

Ust sinir 0.58 0.94 2.33 2.67

n 11 12 13 14

1f = Pnlle 091E—9 0.86E—10 0.46E—10 0.12E—9
ol 0.15E—10 0.10E—10 0.34E—11 0.42E—11
f=pn—¢€|l., 0.92E-9 097E—10 049E—11 0.13£—-9

Ust sinir 1.27 3.62 10.67 2.60

n 15 16 17 18

1f = Pnlle 0.13E—9 034E—-8 029E—6 O0.12E—5
ol 0.19E—11 0.13E—10 0.73E—10 0.10E —8
f=pn—¢€|.. O013E—9 034E—-8 029E—6 O0.12E—5

Ust sinir 1.14 1.87 2.99 1.91

n 19 20

1 = Pnlle 0.19E5  0.70E —4
ol 0.70E—9  0.40E —7
f=pn—¢€|l. 0.70E—9 0.70E—4

Ust simir 0.36 0.28

baslamistir. Diger yandan, Teorem 3.8.3 kullanilarak bulunan hata {ist

sinirlar1 mutlak hatalar1 smirlamasma karsin, c¢ok kullanigh bir st sir
vermemektedir. Bunun bir sebebi, AG matrisinin kalan fonksiyonunun 3. mertebe
tirevinden gelen n(n+ 1)(n — 1) carpanini igermesidir. Fakat e}, fonksiyonu ile
20 hanede duyarlilik i¢in sonsuz normunda en iyi yaklasim olan » = 13 sayisinin
tahmini yapilabilmis ve deneysel olarak n sayist1 15 ve 13 olarak elde edilmistir.
n > 12 i¢in hata tahminini ve Sonug¢ 3.8.4 ile elde edilen yeni yaklagimlar1 daha
tutarl hale getirmek i¢in 40 hanede duyarlilik ve m = 15 alalim. Bu durumda elde
edilen sonuglar Cizelge 4.4.’te verilmistir ve sonuglar Cizelge 4.3.’e gore daha

tutarlidir. |e;s| ve {e’fS’ fonksiyonlarinin grafikleri Sekil 4.3.’de verilmistir.
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ekil 4.3. Ornek 4.1.2 ve n = 15 i¢cin mutlak hata ve |¢’. | fonksiyonlar
15 y

Cizelge 4.4. Ornek 4.1.2 icin mutlak hatalar, hata tahminleri ve hata yaklasim fonksiyonunun

mutlak hatalari(40 7.D.)
n 11 12 13 14 15
If=pull.  0.96E—9 0.86E—10 0.45E—10 045E—12 0.31E—13
eisl.. 0.96E -9 0.86E—10 0.45E—10 0.50E—12 0.14E—13

en—eisl|., 045E—13 0.45E—13 0.45E—13 0.45E—13 0.45E—13

Ornek 4.1.3. Tam ¢dziimii y(x) = e *cosx olan degisken katsay1l1

)

A=

{ V() = —y(x) — e 3 sin (2)y (£) — 2¢~ % cos () sin () y (
y(0)=1

pantograf denklemini ele alalim (Liu ve Li, 2004).
Bernstein seri ¢oziimii # = 6 i¢in
y(x) = 1 —x40.0003x> 4+ 0.3314x> — 0.1621x* +0.0001x° — 0.0298x°

bulunur. Farkli n degerleri i¢in Cizelge 4.5.te baz1 noktalarda mutlak hatanin

degerleri 20 hanede duyarlilik i¢in verilmistir. Cizelge 4.6.°da da mutlak hatalar
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Cizelge 4.5. Ornek 4.1.3 icin farkh » degerlerinde mutlak hatalar (20 H.D.)

x; n==~6 n=10 n=20 n=30 n=40

0 0 0 0 0 0

0.2 0.189E—5 0.503F—12 0.748E—16 0.235E—11 0.298E —7
04 0.624E—6 0.398F—12 0.344E—15 0.180E—11 0.229E—7
0.6 0.135E—5 0.285E—12 0.842E—14 0.162E—10 0.305E —7
0.8 0.151E—5 0.130E—12 0.165E—12 0376E—8 0.259E —4
1 0477E -4 0.225E—10 0.380F—11 O0.157E—6 0.011

ve mutlak hatalarin {ist sinrlar1 40 hanede duyarlilik i¢in verilmistir.Cizelge 4.5.’ten
sabit hanede duyarlilik ile mutlak hatalarin bir n degerine kadar azaldig1 ve sonrasinda
arttigl goriilmektedir.  Cizelge 4.6.°dan da Teorem 3.8.3 ile bulunan hata {ist
sinirlarinin mutlak hatayr smirladigt ve kabul edilebilir hata smir1 olduklar

goriilmektedir.

Cizelge 4.6. Ornek 4.1.3 icin mutlak hatalar, hata tahminleri ve hata yaklasim fonksiyonunun
mutlak hatalan

n 8 9 10 11 12
lf—pnll. 0.28E—7 0.80E—9 025E—10 031E—11 0.13E—12
Ust simr 0.010 0.0037 0.0028 0.0012 0.26F —3
n 13 14 15 16 17
lf—pnll. 0.25E—14 0.52E—16 0.55E—17 0.18E—18 0.50E —20
Ust ssmr  0.33E—4 0.188—4 0.66E—5 0.10E—5 0.10E—6
n 18 19 20 21

lf—pnll. 0.42E—22 0.33E—23 0.90E—25 0.12E —26

Ust ssmr  0.50E—7 0.14E—7 0.19E—8 0.16E—9

4.2. Zayif Tekil Cekirdekli integro-diferansiyel Denklemlerin Bernstein Seri
Coziimleri ile flgili Ornekler

Bu kesimde zay1f ¢ekirdekli singiiler integro-diferansiyel denklemlerin Bernstein seri
¢dziimlerine drnekler verilmistir (Osman vd., 2011a). Orneklerin hata analizleri yapilmis
ve hata tahmini yapilarak sonsuz normunda en iyi yaklagimi veren z sayisi1 belirlenmis

ve Ornek 4.2.5 igin sonuglar Taylor agilim ydntemi ile kiyaslanmustir.
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Ornek 4.2.1. Tam ¢oziimii y(x) = x* olan

0 Vrx—t 3 (4.1)

" s < y(t) _ 2, 16,3 x*
V'(x)+y(x)+ [xp(t)dt+ [ dt =2+x"+ 2x2 +
0
¥(0)=)(0)=0,0<x<1

lineer zayif ¢ekirdekli Volterra integro-diferansiyel denklemini ele alalim. » = 7 i¢in

temel matris denklemi
(XB’D"+XQD"+VD')A =G
ve baslangic kosullar1 da

[10...0;7210...0;1}7
[—770---0;7:—770---0;0]

olarak elde edilir. Bu elde edilen sistem ¢oziilerek Bernstein katsayilar matrisi
T
A= [ 0 0 0.0476 0.1428 0.2857 0.4762 0.7143 1 ]

olarak elde edilir ve Bernstein seri ¢ziimii y(x) = B7(x)A’dan

Y(x) =x2+0.6x 10718x3 —0.3 x 107 7x* +0.7 x 10717x°
—0.6x 10717 4+0.26 x 10717

olarak bulunur. Mutlak hatanin bazi degerleri, farkli »’ler i¢in Cizelge 4.7.’de

verilmistir.

Cizelge 4.7. Ornek 4.2.1°de farkli n ve 20 H.D. icin mutlak hatalar

xi n=7,20H.D. n=15,20H.D.

0 0 0
0.2 0.1000E—-20 0.4300 E—19
04 0 0.1450 £ — 17

0.6 0.4000E—-19 0.2956 E—16
0.8 0.3000E£—18 0.1208 E—15
1 0.1100 E—17 0.1682 E—14

Cizelge 4.8.’de de farkli n degerleri i¢in mutlak hatalar; sonsuz ve 1 —normunda e}, ’1n
degerleri Olciilerek hata tahminleri ve Sonu¢ 3.8.6 ile elde edilen yeni
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yaklasimlarin sonsuz normlar1 verilmistir. # = 2 i¢in tam ¢o6ziim elde edilmistir ve
llelall., ile [lef,]|; degerleri de O oldugundan ||ej,||.., |le],]|; degerleri gbz 6niine
alindiginda da en iyi yaklasimin n = 2°de oldugu goriilmektedir. Hesaplamalar esit
aralikli siralama noktalar1 ve 20 hanede duyarlilik ile yapilmistir. Hata taminlerinin
diisiik »’ler i¢in daha biiylik gelmesinin nedenlerinden birisi, baska bir ifade ile e,
fonksiyonuna iyi yaklasim edilememesinin nedenlerinden birisi, p, Bernstein seri
¢ozlimlerinin (4.1)’de yerine koyuldugu zaman esitligin sag tarafinda diizgiin

olmayan bir fonksiyonun elde edilmis olmasidir.

Cizelge 4.8. Ornek 4.2.1 icin mutlak hatalar, hata tahminleri ve hata yaklasim fonksiyonunun
mutlak hatalan

n 2 3 4 5 6

17— pnll 0 04E—19 O0.11E—19 020E —19 3.0E—19
leby]l 0 0.19E—10 0.19E—10 0.19E—10 0.19E — 10
If —pun—eill. 0 0.19E—10 0.19E—10 0.19E—10 0.19E—10
et |l 0 035E—11 035E—11 0.35E—11 0.35E—11
n 7 8 9 10

1f = Pnlle 1.2E — 18 42E—19 1.4E17 45E — 18
le12]l 0.19E — 10 0.19E—10 0.19€—10 0.19E —10
If = Pon—ell, 0.19E—10 0.19E—10 0.19E—10 0.19E —10
let, |, 0.35E — 11 035E—11 035E—11 035E—11
n 11 12 20 30

1 = 2l 34E —17 18E—16 2.6E—12 12E—7
lebyl. 0.19E — 10 0.19E—10 024E—12 0.10E—6
lf = pnn—epll, 0.19E—10 0.19E—10 0.22E—10 2.6E—38

let, |l 0.35E — 11 035E—11 0.43E—11 0.48E—8

Ornek 4.2.2. Tam ¢oziimii y(x) = x* olan

X
Jcos(x—1)y"(¢)dt =2sinx, 0 <x <1

lineer Volterra integro-diferansiyel denklemini ele alalim (Huang ve Li, 2009). Esit

aralikli siralama noktalar1 kullanilmasi durumunda » = 5 i¢in Bernstein seri ¢oziimii
y(x) =x* —0.159 x 10716x% +0.281 x 10710x* —0.227 x 107 16x°
olarak elde edilir. Mutlak hatanin bazi noktalardaki degeri, farkli hanede duyarlilik

ve n’ ler i¢in Cizelge 4.9.’da verilmistir.
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Cizelge 4.9. Ornek 4.2.2°de farkh  ve H.D. degerleri i¢in mutlak hatalar

n=2 n=>5 n=10 n=20 n=20

x; 20H.D. 20H.D. 20 H.D. 20H.D. 40 H.D.

0 0 0 0 0 0

02 0 037E—-18 0.15E-—11 0.0130 020E-—14
04 O 0.13E—17 020E—11 0.1598 021 E—14
06 O 025E—17 023E—-11 0.3603 023E-—14
08 0 032FE—-17 032E—-11 0.6611 026F—14
1 0 0.10E—17 062E—-10 08770 095E—13

Hesaplamalarda duyarlilik sayisinin yeterince biiyiikk se¢ilmesinin daha tutarh

sonuglar verdigi, Cizelge 4.9.da n = 20 i¢in 20 ve 40 hanede duyarlilik ile

bulunan sonuclarin arasindaki farktan anlasilmaktadir.

m = 12 ve 20 hanede

duyarlilik i¢in mutlak hatalar, e}, ve /' — p, —e], fonksiyonlarmnin sonsuz normundaki

degerleri Cizelge 4.10.’da verilmistir.

Sonsuz normunda en iyi yaklagimin hangi

n degerinde oldugu, e}, fonksiyonunun sonsuz normunun O6l¢iimii ile bu 6rnekte

de yapilabilmektedir. Ayrica, n < 12 igin ej, ile f — p, fonksiyonlarmnin sonsuz

normlar1 birbirine yeterince yakindir.

Cizelge 4.10. Ornek 4.2.2 icin mutlak hatalar, hata tahminleri ve hata yaklasim

fonksiyonunun mutlak hatalar

n 2 3 4 5

1/ = Pullos 0 0.10E — 18 0.24E—18 0.32E—17
lelsll.. 0 0.89E —19 0.23E—18 0.33E—17
ILf = pn— €]l 0 0.62E —20 0.64E—20 0.14E—19
n 6 7 8 9

1/ = Pall 0.86E —16 0.41E—14 0.73E—13 0.22E —11
lelsll., 0.86E—16 041FE—14 0.72E—13 0.22E—11
If—pn—el,ll, 033E—19 0.15E—16 0.23E—15 0.44E — 14
n 10 11 12 20

1/ = Pall 0.62E—10 0.14E—8 023E—8 0.16E—5
lelsll., 0.63E—10 0.14E—8 0.28E—8 0.84E—8
If—pn—elsll, 0.73E—12 0.17E—-8 0.60E—9 0.16E -5

Ornek 4.2.3. 7 pozitif say1 olmak iizere

y()
xX—t

[

dt=x",0<x<1
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Abel integral denklemini ele alalim (Singh vd., 2009). (4.2)’in tam ¢oziimi

2 ()P,

W) = "o

| —

ile verilir (Singh vd., 2009). » =2, n =5 ve 30 hanede duyarlilik i¢in yaklasik ¢6ziim

y(x) = —0.9267 x 10712 4+0.1390x + 1.4744x> — 1.6657x°
+1.3492x* — 0.4490x°

olarak bulunur. Mutlak hatalar Cizelge 4.11.’de farkli » ve » i¢in verilmistir. Bulunan

sonuglar Singh vd (2009)’de bulunan sonuglardan » = 5, » = 1.5 i¢in daha iyidir.

Cizelge 4.11. Ornek 4.2.3 icin farkh n ve » degerlerinde mutlak hatalar (30 H.D.)

n=>3, n=>35, n=>35, n=12, n=>35,
X; r=2 r=28 r=1.5 r=2=8 r=2
0 09F —32 08FE—32 08E—-60 O0.14E—37 0.3E-—-32
02 045E—3 0.19E—-2 0 0.30E—10 0.44E—6

04 0.11£-3 O0.11E-2 0.1E-29 0.14E—-10 0.16E—6
0.6 0.13£2—-3 0.153£—-2 0.1E—-29 0.19E—-10 0.86E —7
0.8 0.182—-3 034E-2 O 0.61E—10 0.50E —7
1 0.77E -3 1.779E—-2 046E—-8 0.175E—-4 0.17E—4

Ornek 4.2.4. Tam ¢dziimii y(x) = 1 +xe* olan

X
YD (x) —p(x) = =2+ 4x+ et — fde" + %/tex_ty(t)dt, 0<x,t<4
0

y(0)=»'(0)=1,"(0) =2, '(2) =3

lineer Volterra integro-differansiyel denklemini ele alalim. Esit aralikli noktalar

kullanilarak » = 10 i¢in Bernstein seri ¢oziimii

y(x) = 1+x+x*+0.5x> +0.1667x* 4 0.0410x° + 0.0095x°
+0.3032 x 1073x7 +0.6998 x 103x% —0.9860 x 10~4x°
+0.1664 x 10~4x10

olarak bulunur. Farkli hanede duyarlilik ve »’ler i¢in mutlak hatalar Cizelge 4.12.’de
verilmistir. Cizelge 4.12.’den yliksek hanede duyarlilik ile bulunan yaklagimin daha
tutarlt oldugu goriilebilir.
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Cizelge 4.12. Ornek 4.2.4°de farkh n ve H.D. degerleri icin mutlak hatalar

Xi

n=10
20 H.D.

n=20
30 H.D.

n=20
50 H.D.

0.4
0.8
1.2
1.6

2.4
2.8
3.2
3.6

0

0.3231E -5
0.4898E —4
0.1962E -3
0.5048E —3
0.1007E —2
0.1624E —2
0.2396E —2
0.3866E —2
0.6236E —2
0.7679E —2

0

0.5961E —5
0.6184E —4
0.2262E -3
0.5599F -3
0.1131E -2
0.2028E —2
0.3381E -2
0.5433E -2
0.8314E -2
0.1806F — 1

0

0.8339E — 15
0.8677E — 14
0.3183E — 13
0.7888E — 13
0.1595E — 12
0.2860E — 12
0.4770E — 12
0.7618E — 12
0.1223E — 11
0.1242E — 11

m = 15 ve 30 hanede duyarlilik i¢in mutlak hatalar, ej5 ve f — p, — e}
fonksiyonlarinin sonsuz normundaki degerleri Cizelge 4.13.’te verilmistir. n # 15 i¢in
e}s ile f — p, fonksiyonlarinin sonsuz normlar: birbirine yeterince yakindir. n = 13

i¢in mutlak hata ve ‘e]‘s‘ fonksiyonlar1 Sekil 4.4.’te verilmistir.

Cizelge 4.13. Ornek 4.2.4 icin mutlak hatalar, hata tahminleri ve hata yaklasim
fonksiyonunun mutlak hatalar

n 10 11 12 13 14
1f=pull..  0.0076 0.0021  1.65E—4 331E—5 025E—5
els|. 0.0076 0.0021 1.65E—4 327E—5 0.26E-5
en—els|l, 041E—6 041E—6 041E—6 041E—6 041E—6
n 15 16 17 18
1f=pull. 041E—6 023E—7 0.11E—7 0.10E—5
efsl.. 0.96E—11 0.11E—7 022E—7 022E-5
en—els|l, 041E—6 034E—7 039E—7 0.10E—5

Ornek 4.2.5. Tam ¢oziimii 1 +x 4+ x2 olan

x M
y”(x)—i—y(x)—i—%(j;\);)%dt:3+x+x2+% ,0<x<1

~—

¥(0) =)/(0) =1

zayif singiiler ¢ekirdekli Volterra integro-diferansiyel denklemini ele alalim.
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13 i¢in mutlak hata ve || fonksiyonlar:

n =5 i¢in Bernstein seri ¢ozimil

y(x) =14+x+x>+0.1x 10"

Sekil 4.4. Ornek 4.2.4 ve n =

18x5

olarak bulunur. Bdylece, yaklagimin mutlak hatasi

If—psll.=0.1x10""*

olarak bulunur. » =2 ve n = 4 i¢in bulunan yaklagimlar Taylor a¢ilim yontemi (Huang

ve Li, 2009) ile kiyaslanarak Cizelge 4.14.’te verilmistir.

4.3. Yiiksek Mertebeden Lineer Diferansiyel Denklemlerin Rasyonel

Fonksiyon Céziimii ile ilgili Ornekler

Bu kesimde, Boliim 3.4.’te verilen Bernstein seri ¢oziimii ve Floater ve Hormann
(2006) tarafindan verilen rasyonel interpolasyona dayanan r rasyonel fonksiyonu

73



Cizelge 4.14. Ornek 4.2.5 icin farkh n degerlerinde Bernstein seri ¢oziimiiniin Taylor acilim
yontemi ile kiyaslanmasi

Bernstein seri yontemi | Taylor agilim yontemi
x;, n=2 n=4 n=2 n=4
0 O 0 0 0
0.2 0.0014 0.1452E—4 | 0.7211E—-3 0.1372E -3
0.4 0.0118 0.3655E—4 | 0.0099 0.0015
0.6 0.0421 0.3186E—4 | 0.0514 0.0063
0.8 0.1055 0.3220E—3 | 0.1824 0.0172
1 0.2182 0.0021 0.5355 0.0369

kullanilarak yiiksek mertebe lineer diferansiyel denklemlerin yaklasik ¢oziimleri
bulunacaktir. Bulunan bu rasyonel fonksiyon ¢dziimleri, Ornek 4.3.4’te diger bazi

metotlarla kiyaslanarak verilmistir (Osman vd., 2011b).

Ornek 4.3.1. Tam ¢dziimii y(x) = sinx olan ikinci mertebe lineer

V'(x) +x) (x) — 2y(x) = xcosx —3sinx , 0 <x< 1
y(0)=0,5(0)=1

baslangi¢ deger problemini diisiinelim. n =7 ve d = 5 i¢in
r(x) = _— (4.3)

rasyonel fonksiyon ¢6ziimiinii bulalim. Esit aralikli siralama noktalari

1 2
0,=,5,...,1
{77777 a}

sec¢ilmis olsun. Bolim 2. 5 1.’den, po f, p1f ve paf interpolasyon polinomlari sirasiyla
f fonksiyonunun {0,1,2,... 3}, {7, 2,...8} ve {%,3,...,1} noktalarmdaki
interpolasyon pohnomlarldlr {O, = 7, ,7} noktalarindan gegen p, Bernstein seri

¢Ozlimii i¢in temel matris denklemi

WA = (XB°D” —P,XBD" -XD")A=G
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matrisleridir. Baglangi¢ kosulllar1 i¢in matris formlari

UO:[l 0000 o],

Ulz[—s 5000 o}.

i¢cin

[0],

UpA



UiA=[1]

olur ve sonugta [W, G] matrisi

[ 18 —40 20 0 o 0 ; 0 |
1128 —19.53 099 427 094 0.06 ; —0.29
W.G) = 6.54 —6.80 —7.06 224 2.60 047 ; —0.57
338 0.02 —7.53 275 327 1.62 ; —0.86
-5 5 0 0 o 0 ; 1
1 0 0 0 0 0 ; 0 |

olarak elde edilir. Bu sistemin ¢6ziimii olan A matrisi
T
A=[0 020 040 058 073 0384 |
ve yaklagik ¢oziim

Po(x) = x —0.16669x> +0.00012x* +0.00812x°

3w

olarak hesaplanir. Benzer sekilde, {3, 2 Sve {2,

Ty Gsens ..., 1} noktalar1 kullanilarak

elde edilen p; ve p, polinomlari

p1(x) = x+0.578 x 10~%x —0.16669x> 4 0.00059x* + 0.00778x°
pa(x) = x40.395x 103x* —0.16779x> +0.00164x* +0.00729x>

olarak bulunur. Bunlar 4.3’te yerine konursa,

~0.7631 x 10~2x(x? +6.7176x + 11.4986)

x2 —x+0.8571
X (x2 — 1.0001)c—|—0.8572)(x2 —6.6567x+ 11.3963)

r(x)

veE
|y —r|l. =0.7806 x 10~4

olarak elde edilir. Sekil 4.5. ve Sekil 4.6.’da farkli n ve d degerleri icin yaklasik

¢Ozlimler ve tam ¢oziim fonksiyonu ¢izilmistir.
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Sekil 4.5. Ornek 4.3.1°de farkh n,d degerleri icin yaklasik ¢oziimler

Ornek 4.3.2. Altinci mertebe, lineer

{y(6)(x)+exy( X) = =720+ (x —x?)3e™ ,0<x <1
7(0) =y (0) =»"(0) = (1) =)/(1) = ( )=0

sinir deger problemi ele alalim.  Problemin tam ¢dziimii y(x) = x*(1 — x)3
polinomudur (Lamnii vd., 2008). n = 12 ve d = 8 i¢in yaklasik ¢6ziim

r(x) = —0.12x10~ "7 (x—1) (x?+0.5x+8.33x 10'7)
x2—x+0.36

x (x? —x+0.36) (x> = 2x+ 1)

olarak bulunur ve hata
|y —rll., =3.1419 x 10 (4.4)

olarak hesaplanir. Tam ¢6ziim C* sinifindan oldugundan Teorem 2.5.7°den hata

Hy(d+2)H (d+1)”

i

- < — =0.3784 x 10710
7=yl < 129 T 5 X

ile smirhidir ve bu sinir (4.4) ile tutarlidir. Tam ¢éziim ile n =12, d =8 ve n = 15,

d = 8 i¢in r yaklasik ¢oziimleri Sekil 4.7.’de verilmistir.
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Sekil 4.6. Ornek 4.3.1°de farkli n degerleri icin yaklasik ¢oziimler ve tam ¢oziim

Ornek 4.3.3. Sekizinci mertebe lineer

Y& () Fay(x) = —(48 + 15x +x%)e* , 0<x <1
¥(0) =»"(0) =0, y'(0) =1, y""(0) = -3,
y(1)=0,)y(1)=—e, y'(1)=—4e, y(1)=—9¢

sinir deger problemini ele alalim. Eger ¢6zlimiin var oldugu kabul edilirse, n = 12,

d=10ven=12,d = 5 i¢in sirasiyla

~—0.27 x 10 *x(x — 1)(x? 4 5.88x + 9.16) (x* + 4.28x + 10.07)

x2 —x+0.9167
x (x> +1.38x + 14.83) (x> — x4+ 0.92) (x* — 4.27x +26.68)

r ()C)

vE

1 5
r(x) =x— §x3 —3x* 4 Exs + (x*—x)e

elde edilir. Tam ¢éziim C” smifindan oldugu icin 2.5.7°den
1 =¥l < 71 = r2llee+ 72 = Yllo < O(h®) +1.2967 x 107

olarak bulunur ve bu da kabul edilebilir bir hata siniridir.

78



16 T T T T

'y | I fsicd Je e e st 2 LAy s n=l2, ded

7] PR PR | SR AP R T ]

Sekil 4.7. Ornek 4.3.2°de farkli n degerleri icin yaklasik ¢oziimler ve tam ¢oziim

Ornek 4.3.4. Tam ¢dziimii x(1 —x)e* olan

{ YO ) Fay(x) = =8+ Tx+x3)e* ,0<x< 1
¥(0)="(0) =0, »(1) =0, y'(1) = —de

sinir deger problemini ele alalim. n =32, d =30 ve n =16, d = 15 i¢in yaklagimlarin

hatasi, diger baz1 metotlarla kiyaslanarak Cizelge 4.15.’te verilmistir.

4.4. Kismi Diferansiyel Denklemlerin Bernstein Seri Coziimleri Ile Tlgili
Ornekler

Bu kesimde, ikinci mertebeden lineer kismi diferansiyel denklemlerin Bernstein seri
¢ozlimlerine drnekler verilecektir. Ele alinan herbir 6rnek i¢in mutlak hatalar, e, ,,
hataya yaklasim fonksiyonlar1 ve Sonu¢ 3.8.9 ile verilen yeni yaklagim
polinomunun sonsuz normundaki degerleri verilecektir. ey, ,, kullanlarak hangi n
degeri icin sonsuz normunda en iyi yaklasimin elde edilebilecegi tahmin edilmeye

calisilacaktur.
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Cizelge 4.15. Ornek 4.3.3’te Bernstein seri ¢oziimiiniin diger baz1 yontemlerle kiyaslanmasi

Yontemler (h = yll) h=32 h=16
Rasyonel fonksiyon ¢oziimii 2.19E—-15 1.50E—13
Nonpolynomial Spline Teknigi 5.79E —13 2.22E—11
(Abd El-Salam ve Zaki, 2010)

Quartic spline siralama yontemi 4.775E —12 2.98E —10
(Zhu, 2001)

Sonlu farklar yontemi 5.02E—-11 3.12E-9

(Al-Said ve Noor, 2004)
Quintic nonpolynomial spline ¢6ziimii 1.49E -9  2.27F —8
(Ramadan vd., 2009)

Nonpolynomial spline ¢oziimii 2.20E—-10 1.30E -8
(Ramadan vd., 2008)

Cubic splines yontemi 371E—-5 1.47E—4
(Al-Said vd., 2006)

Quartic splines yontemi 5.40E—-5 2.16E—4
(Al-Said ve Noor, )

Quartic splines yontemi 2770E—-5 1.08E—4
(Usmani, 1992)

Smooth spline ¢ozlimii 5.88E—5 6.39E—4

(Usmani ve Warsi, 1980)

Ornek 4.4.1. Ik olarak Dirichlet sinir kosullartyla verilmis olan Laplace denklemini

oxz = 9yr
u(x,0) = u(x,1) = cos (%)
Ty
)

cosh( =%
u(0,y) = cosh((g)), u(1,y) =0

07
: (4.5)

ele alalim. Problemin tam ¢6ziimi

cos (&) cosh (%)
cosh (%)

u(xay) =

dir (Doha ve Abd-Elhameed, 2005). (4.5) denkleminin Bernstein seri ¢éziimiinii

0 <x,y <1 i¢in bulalim. (4.5) denkleminin temel matris denklemi

[X(x)B*DTY(y)D +X(x)D”Y(y)B’D] A = 0
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olur. Siralama noktalar1 olarak Chebyshev polinomlarinin kokleri segilirse, yani

1 1 2i—1 1 1 2ji—1
{(xi,yj) 0<i,j<nx;= §+ 5003(12—71)7@)//‘ = §+§COS( J2n )75}

alinirsa, W matrisi herbir satir1 X(x;)B2D7Y (y J)ﬁ +X(x)DTY(y j)ﬁzﬁ olan matris
olup G matrisi sifir matrisidir. Kosullarin matris denklemleri de u(x,0) = cos (%)
i¢cin
T~ (O SN
Pun(x1,0) = X(x:)DTY (0)DA = cos (7) i=0,1,....n,

u(x,1) = cos (%) igin

Pun(xi,1) = X(x;)DTY(1)DA = cos (7%) P=01,....n,

cosh (%) . .
u(0,y) = — 2/ icin
cosh (%)
— _ h (&
Dn n(O;yl) = X(O)DTY()}Z)DA = = ( 7%; ) 7i: 07 1; <. n
’ cosh (§)

ve u(1,y) =0 igin
Pun(1,y) =X()DTY(y)DA,i =0,1,...,n

olup bunlara karsilik gelen matrisler [W, G] matrisine eklenerek [W, G] elde edilir.

Gauss satir indirgeme ile [W, (_}] matrisi ve sonugta A matrisi elde edilmis olur. Farkli
n degerleri icin sonuglar elde edilmis ve mutlak hata fonksiyonlar1 agagida
esit aralikli noktalar ve 20 hanede duyarlilik icin Cizelge 4.16.” da, esit aralikl
noktalar ve 40 hanede duyarhilik i¢in Cizelge 4.17. de sonsuz normuna gore
verilmistir.20 ve 40 hanede duyarlilik i¢cin Chebyshev siralama noktalar1 kullanilarak
elde edilen sonuglar da sirasiyla Cizelge 4.18. ve Cizelge 4.19.’da verilmistir. Ayrica
m = 10 alinarak ej,,y ve f — ppn — €]y fonksiyonlari da elde edilmis ve
sonsuz normunda biiyiiklikleri de verilmistir. »n = 8 igin Chebyshev siralama
noktalarinda elde edilen mutlak hata ve ej, ,, fonksiyonlarimn grafikleri sirastyla
Sekil 4.8., Sekil 4.9.’de verilmistir.

Chebyshev siralama noktalar1 kullanilarak elde edilen yaklasimlarin mutlak hatalar

esit aralikli siralama noktalar ile elde edilen yaklagimlarin mutlak hatalarindan daha

81



Sekil 4.8. Ornek 4.4.1 ve n = 8 icin mutlak hata fonksiyonu

lyidir. e}y’ sonsuz normu ile mutlak hata fonksiyonunun sonsuz normu esit
aralikli siralama noktalarinda birbirine yakin olup » < 11 i¢in p,, — e]‘o’lo
yaklasimlar1 sonsuz normunda Bernstein seri ¢oziimlerinden daha iyidir. » biiylidiikce
esit aralikli siralama noktalar1 kullanilmasi durumunda » = asal i¢in elde edilen
sonuglar hesaplama hatalar1 biiylidiigli icin kotiilesmektedir. Chebyshev siralama

noktalart kullanildiginda n > 10 igin ej, ,’mn sonsuz normu ile mutlak hata
fonksiyonunun sonsuz normu birbirine yakindir ve n < 7 igin He*l‘o IOH sifira yakin
olup mutlak hatalarin sonsuz normlarini temsil etmemektedir. Bu durum, e},

hesaplanirken siralama noktalarinin degistirilmesi ile giderilebilir.

Ornek 4.4.2. Qp C Q= {(x,y): 0 <x,y < 1} i¢in eliptik, lineer ve degisken katsay1li
genellestirilmis Poisson denklemi Q iizerinde Dirichlet sinir kosullar1 ile
ng% +y23275’ = 2x%y?e,
u(x,0) =1, u(x,1) =€,
u(0,y) =1, u(l,y) =&
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Sekil 4.9. Ornek 4.4.1 ve n = 8 igin )670,10‘ fonksiyonu

olarak verilir. Bu problemin analitik ¢oziimii

Jx.y) =€

fonksiyonudur (Kong ve Wu, 2009). Elde edilen yaklagimlarin mutlak hatalari,
m = 10 alinarak elde edilen €7 |, fonksiyonlart ve /' — py,, — €], ;¢ fonksiyonlarmin
sonsuz normundaki biyiiklikleri Cizelge 4.20.de 20 hanede duyarlilik icin
verilmistir. Hesaplamalarda, Bernstein seri ¢6ziimii i¢in Chebyshev interpolasyon

noktalar1 ve ej |, i¢in esit aralikli siralama noktalar secilmistir.

Sonsuz normunda yapilan en iyi yaklasimin #» = 11 i¢in oldugu Cizelge 4.20.’den

goriilmektedir. Ayrica,

eTo,loH degerinin en az oldugu deger de n = 11°de olup
e“fo’]o fonksiyonu f — p,, fonksiyonuna sonsuz normunda ¢ok yakindir. ejq 10
fonksiyonu kullanilarak elde edilen yeni yaklasgimin mutlak hatasinin sonsuz
normundaki degeri de /' — p, , mutlak hata fonksiyonunun sonsuz normuna olduk¢a

yakindr.
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Cizelge 4.16. Ornek 4.4.1°de esit arahkl siralama noktalar i¢in mutlak hatalar, hata
tahminleri ve hata yaklasim fonksiyonunun mutlak hatalar1 (20 7.D.)

n 5 6 7 8 9
Tennll 0.14 0.0006  0.0006 2.0E—5 3.0E 7
o0 0.14 0.0003  0.0006 2.0E—5 3.0E—7
enn—€lonof_ 0.0055 00006 1.7E-5 3.95E-8 9.7E-9
n 10 1 2 3 14
Tennll- 20E—6 0017 19E—-9 092 0.0015
o0 20E—6 0018 35E-8 2.5 0.016
en,n—eTOJOH 70E—10 0016  35E—8 2.5 0.016
n 15 16 17 18 19
Tennll 60E—7 14E—5 x ¥

o0 20E—6 92E—5 x x

en,n—e’;OJOH 20E—6 92E—5 x x X

Cizelge 4.17. Ornek 4.4.1°de esit arahkl siralama noktalar icin mutlak hatalar, hata
tahminleri ve hata yaklasim fonksiyonunun mutlak hatalar1 (40 H.D.)

n 5 6 7 8 9
Tennll 0.14  0.0006  0.0006 2.0E—5 3.0E—7
€010 0.14  0.0003 00006 2.0E—5 3.0E—7
enn—€lono| 0:0055 00006 1.7E-5 39E-8 9.7E-9
n 10 I 12 13 14

lennll 20E—6 14E—6 2.1E-9 125E-9 2.8E_12
€010 20E—6 31E—6 3.6E—8 2.5E—8 4.5E—10
enn—€lon_ 7SE-10 30E—6 36E-8 25E-8 45E-10
n 15 16 17 8 19

lennll 9.0E —15 85E_15 55E-9 32E_18 43E_6
o0 S0E—14 10E—13 12E—7 12E—17 34E-5
en,n—eTOJOH 80E—14 1.0E—13 12E—7 12E—17 34E—5

Ornek 4.43. Q = {(x,y) : 0 < x,y < 1} i¢in degisken katsayili
hiperbolik kismi diferansiyel denklemi

Pu 1 ,0%u

2 2 a2 T

0
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Cizelge 4.18. Ornek 4.4.1°de Chebyshev siralama noktalar i¢in mutlak hatalar, hata
tahminleri ve hata yaklasim fonksiyonunun mutlak hatalar1 (20 7.D.)

n 5 6 7 8 9

Tennll- 0.0008  0.00015 42E—5 20E—7 7.0E—8
€To.0 SOE—19 16E—18 15E—17 15E—17 15E—17
en—€lono_ 00008 0.00016  4SE-5  24E-7 S.0E-8
n 10 I 2 3 14

Tennll- 9.0E—10 50E—10 170E—11 17E—13 2.5E—13
oo 6.0E—10 15E—10 1.55E—12 1.1E—13 S5.1E—13
en,n—eTOJOH 9.8E—10 48E—10 170E—11 17E—13 5.1E—13
n E 16 7 8 19

Tennll 20E—12 25E—12 82E—12 40E—11 9.1E—10
€To.0 14E—13 29E—12 18E—11 3.0E—11 7.7E—10

en’n—eTOJOH 19E—12 42E—12 18E—11 36E—11 17E—9

Cizelge 4.19. Ornek 4.4.1°de Chebyshev siralama noktalari icin mutlak hatalar, hata
tahminleri ve hata yaklasim fonksiyonunun mutlak hatalar1 (40 H.D.)

n 5 6 7 8 9
Tennll 0.0008  0.00015 42E—5 20E—7 7.0E—8
€To.0 6.0E—39 45E—39 1.1E—37 40E—8 12E—8
ern—Cloo|| 00008 000016 4SE-5 24E-7 8.0F-8
n 10 I 2 3 4

Tennll 87TE—10 45E—10 17E—11 25E—13 59E—15
€lo.0 35E-9 9.0E—11 19E—12 S0E—14 38E—15
en—€lon 90E—9 4SE-10 17E-11 125E-13 5S5E-15
n 15 16 7 I8 19

Tennll 70E—16 34E—18 14E—19 55E-22 16E-22
oo 9.0E—17 65E—18 6.5SE—20 35E—21 8.0E—23
envn—e’{OJOH 75E—16 65E—18 1JE—19 3.5E—21 1.9E—22

baslangic kosullar1
u(x,0) =x,

uy(x,0) = x*
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Cizelge 4.20. Ornek 4.4.2 icin mutlak hatalar, hata tahminleri ve hata yaklasim
fonksiyonunun mutlak hatalar

n 6 7 8 9 10
lennll 40E—7 14E—8 5.0E—10 10E—11 2.0E—13

leto0] 10E—7 70E—9 35E—10 1I1SE—11 18E—13

e,,,,,—e’fmo” 3.6E—7 135E—8 S0E—10 L12E—11 25E—13

n 11 12 13 14 15
lennll.. 42E—-14 13E—-13 45E—-14 60E—-13 3.0E—-12

leto.0] LIE—14 18E—13 25E—13 6.0E—13 2.6E—12

emn—eTO,IOH 26E—14 19E—13 25E—13 85E—13 6.0E—12

n 16 17 18 19 20
lennll 50E—12 70E—11 40E—11 15E—9 1.6E—9

letoo] 36E—12 72E—11 SO0E—11 32E—10 S5.5E—10
e,,J,—eTOJOH 6.0E—12 125E—10 80E—11 14E—9 16E—9

ile verilsin. (4.6) denkleminin tam ¢&ziimii
u(x,y) = x +x*sinhy

fonksiyonudur (Jin, 2008). Siralama noktalar1 Chebyshev interpolasyon noktalari
ve 30 hanede duyarlilikla islem yapilmasi durumunda Bernstein seri ¢oziimler elde
edilmistir. Sonugta elde edilen mutlak hata fonksiyonlarinin sonsuz normundaki

biiyiikliikleri ve eTO,lO ile f— pun— 870710 fonksiyonlarinin sonsuz normundaki

degerleri Cizelge 4.21.’de verilmistir. n = 12 i¢in elde edilen mutlak hata ve ‘e”f()’lo}
fonksiyonlar1 Sekil 4.10. ve Sekil 4.11.’te verilmistir.

Elde edilen mutlak hata fonksiyonlarinin sonsuz normlar1 bir n degerine kadar
azalip sonra artmaya baslamustir. e}, fonksiyonlarinin normlari, segilen siralama
noktalar1 ve m = 10 icn mutlak hata fonksiyonlarindan en az 1072 kat daha az
bulunmustur. Bu durum, siralama noktalarinin Bernstein seri ¢oziimleri veya e>1k0,10
bulunurken kullanilan siralama noktalar1 degistirilerek Cizelge 4.22.’de oldugu gibi
giderilebilir. Siralama noktalarinin Bernstein seri ¢oziimleri i¢in esit aralikli ve eTOJO
bulunurken Chebyshev interpolasyon noktalar1 se¢ilmesi durumunda elde edilen
sonuglar Cizelge 4.22.’de verilmistir.Cizelge 4.22.’deki sonuglardan, » < 10 i¢in
1/ = Pan

yaklagiminin Bernstein seri ¢oziimiinden sonsuz normuna gore daha iyi oldugu

w Ve He*{oylon degerleri birbirine ¢ok yakin oldugu ve p,, — €jg g
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Sekil 4.10. Ornek 4.4.3 ve n = 12 i¢cin mutlak hata fonksiyonu

sOylenebilir.

4.5. ki Degiskenli Fonksiyonlarin Rasyonel interpolasyon Fonksiyonu
I¢in Ornekler

Bolim 3.6.°da verilen m—boyutta rasyonel interpolasyon fonksiyonlar: icin 6zel
olarak m = 2 alinarak verilen iki degiskenli fonksiyonlarin yaklasik ¢oziimleri

bulunacaktir. Yapilan yaklagimlarin mutlak hata fonksiyonlarinin sonsuz normundaki
degerleri de hesaplanacaktir.

Ornek 4.5.1. [0,1] x [0,1]’de f(x,y) = 32(x+ y)'/? fonksiyonuna (3.34) rasyonel
fonksiyonu ile yaklasalim (M6Bner ve Reif, 2009). Interpolasyon noktalar

; .
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Sekil 4.11.  Ornek 4.4.3 ve n = 12 icin ‘eTO.IO) fonksiyonu

olarak segilirse n = 6 ve d; = d, = 4 igin hata foksiyonunun sonsuz normu
If = 7ll. <0.09

ile simirhidir. Benzer sekilde, interpolasyon noktalari esit aralikli alinarak n = 10 ve

di1 = dp = 7 i¢in hata foksiyonunun sonsuz normu
If=rll. <107

ile sinirhdir. n =6, df =d, =4 ve n =10, di = d, = 7 i¢in mutlak hata
fonksiyonlarinin grafikleri sirasiyla Sekil 4.12. ve Sekil 4.13.’te verilmistir. Cizelge
4.23.’te de n = 10 ve farkli d,d, degerleri i¢in hata fonksiyonlarinin sonsuz normlari

verilmistir.

Ornek 4.5.2. [0,1] x [0, 1]de f(x,y) = x*)? (1 - e_("2+y2)) fonksiyonunu ele alalim
(MoBner ve Reif, 2009). Esit aralikli interpolasyon noktalar1i ve n =8, d;y =dr, =5

88



Cizelge 4.21. Ornek 4.4.3 icin mutlak hatalar, hata tahminleri ve hata yaklasim
fonksiyonunun mutlak hatalan

n 5 6 7 8 9
lennll 0.002  0.0023 40E—-5 14E—5 3JE—6
e”fo,lo 40E—-5 6.0E—-5 55E—-6 8.0E —6 2.5E -7
enn—€lono_ 0002 00023 3555 S6E-6 35E-6

n 10 11 12 13 14
lennll— S0E—7 12E—8 18E—9 35E—11 7.0E—12
eTOJO S2E—-20 14E—-10 1.0E—11 125E—-13 1.2E—14
en,n—eTOJOH SOE—7 12E—8 18E—9 35E—11 7.0E—12

n 15 16 17 20
lennll 12E—12 1.JE—13 7.0E—13 5.0E— 10
€010 25E—17 12E—18 55E—18 6.0E — 20
en’n—eTOJOH 12E—12 1.6E—13 7.0E—13 3.0E — 18

Cizelge 4.22. Ornek 4.4.3’te mutlak hatalar, hata tahminleri ve hata yaklasim fonksiyonunun
mutlak hatalan

n 5 6 7 g 9
Tennll 0.001  0.0014 _ 0.0003 _ 0.0002 2.5E 7
€010 0.001  0.0014  0.0004  0.0002 7.0E—7
enn—Cloo| | SSE-8 85E-8 8SE-8 8SE-8 SOE-7

n 10 11 12 13 14
lennll 30E—6 15E-9 92E-9 40E-9 38E—_10
€010 25E—6 SOE—5 38E—7 27E—6 7.6E—11
enn— €l 10“ 50E—7 S50E—5 38E—7 27E—6 45E—10

n 15 16 17 20
lennl.  52E—10 6.0E—13 S.0E 13 9.0E _ 14
€010 70E—9 60E—-9 S52E—9 6.0E — 14
en,n—eTOJOH 78E—9 16E—13 S2E—9 1.5~ 13

icin r rasyonel yaklagiminin mutlak hatasi
I =7l <9.6x 1077

ile sinirhidir. Hata fonksiyonunun grafigi Sekil 4.14.’te verilmistir.
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Cizelge 4.23. Ornek 4.5.1°de f(x,y) = 32(x+y)'!/? fonksiyonuna yapilan rasyonel
yaklasimlarin mutlak hatalar

di=dry=3 di=dr=4 di=dr=5 di=dy=6
0.031 0.007 1.5E -4 44E -5

L] ke

Sekil 4.12.  f(x,y) = 32(x+y)'!/2 fonksiyonuna n = 6 ve d| = d, = 4 i¢in yapilan rasyonel
yaklasimin mutlak hata fonksiyonu

Ornek 4.5.3. [0,1] x [0,1]°de

3 022 (22 3 _(x-2?  (9-2)?

fley)=ge 37 F fe w0

I _oem? 32 1 g0 g2 (9y—7)2

foe 7 d e

2 5 ’
fonksiyonunu ele alalim (Sommariva vd., 2005). n = 10, d; = d, = 6 igin rasyonel
yaklasimin mutlak hatasi i¢in bir {ist sinir

If =7l <0.035

olarak bulunur. Hata fonksiyonunun grafigi Sekil 4.15.’te verilmistir.
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Sekil 4.13.  f(x,y) = 32(x+)'!/? fonksiyonuna n = 10 ve d; = d» = 7 i¢in yapilan rasyonel
yaklasimin mutlak hata fonksiyonu

Ornek 4.5.4. Rasyonel yaklasim metodunu

f(x,y) =€ cosy, (x,y) €10,1] x [0, 1]

fonksiyonuna uygulayalim. Esit aralikli noktalar kullanilarak » = 5, d| = d, = 4
ve n = 10, di = d> = 7 i¢in elde edilen rasyonel yaklasimlarin hatalar1 sirasiyla
ILf =7l <0.9446 x 1073 ve || f —r]|.. <0.3821 x 10719 ile simirhdur.

Ornek 4.5.5. [0,1] x [0,1]°de
flry)=e )

fonksiyonu verilsin (Quarteroni vd., 2007). n =4, d| = d» = 2 i¢in 2. derece pargali
polinom interpolasyonu ve rasyonel polinom interpolasyonu ile bulunan

yaklasimlarin hatalar1 sirasi ile

If =7l <1.6678 x 1073
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Sekil 4.14.  f(x,y) =22 (1 - e*<x2+y2)) fonksiyonuna 1 = 8 ve d; = d» = 5 icin yapilan
rasyonel yaklasimin mutlak hata fonksiyonu

Ve
If =7, <4.4842x 1073

olarak bulunur. n =8, d| = d; = 2 i¢in de 2. derece pargali polinom interpolasyonu

ve rasyonel polinom interpolasyonunun hatalari sirasi ile
I/ —r|. <2.8151 x 107*
ve

£ = rl., < 4.5000 x 107
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Sekil 4.15.
(9x-2)2  (9y-2)2 (9x=2)%  (9y-2)2
f(xvy):%ef%f%—k%e_ 9 le —|—%e
fonksiyonuna n = 10 ve d| = d, = 6 i¢in yapilan rasyonel yaklasimin mutlak hata fonksiyonu

o2 (9y-3)?
7

— Lo G4 =(0r-77

ile sinirlidir. Bulunan sonuglar 2. derece parcali polinom interpolasyonu ve n = 4,
d| = dy =2 i¢in daha iyi olmasina karsin rasyonel polinom interpolasyonu ile bulunan

sonuglar n = 8, di = d, = 2 i¢in daha iyidir.

4.6. Kismi Diferansiyel Denklemlerin Rasyonel Interpolasyon

Fonksiyonu Ile Céziimleri

Boliim 3.6.°da verilen m—boyutta rasyonel interpolasyon fonksiyonlar1 ve Bernstein
seri ¢oziimii kullanilarak, kismi diferansiyel denklemlerin rasyonel fonksiyon

¢Oziimleri bulunabilir.
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Ornek 4.6.1. Dirichlet sinir kosullu Ornek 4.4.1°de verilen Laplace denklemini

u  *u

P

ele alalim. n = 12, d; = d, = 10 i¢in Chebyshev siralama noktalar1 kullanilarak
herbir p; ;, 0 < i,j < 2 Bernstein seri ¢oziimleri hesaplanarak (3.34)’de yerine

konursa, bulunan » yaklagiminin mutlak hatas1 i¢in {ist sinir
If =7l <2.72x 1077

olarak bulunur.

Ornek 4.6.2. Q) C Q = {(x,y) : 0 <x,y < 1} i¢in genellestirilmis Poisson denklemi

tizerinde Dirichlet sinir kosullari ile
—Au+Puy+ & Vuy+u=g(x,y), (x,3) € Qo
olarak verilir. Bu problemin analitik ¢6zimi
g(x,y) = 2sinxsiny + "™ cosxsiny + e ¥ cosysinx + sinxsiny
i¢in
f(x,y) = sinxsiny
fonksiyonudur (Kong ve Wu, 2009). Esit aralikli siralama noktalar1 ve n = 7,

dy = dr =4 i¢in p; ;, 0 <1i,j < 3 Bernstein seri ¢oziimleri (3.34)’de yerine konursa,

bulunan r yaklagiminin mutlak hatasi
If =]l <0.0078

ile sinirhdir.
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5. TARTISMA VE SONUCLAR

Bu tezin amaglarindan birisi, Bernstein polinomlarina dayali siralama yonteminin
diferansiyel denklem, gecikmeli diferansiyel denklem, integro-diferansiyel denklem
ve kismi diferansiyel denklemler i¢in olusturularak Bernstein seri ¢dziimlerinin
bulunmasidir. Ikinci bir amag olarak, Taylor ve Chebyshev polinomlar: gibi ézel
polinomlara dayali matris yontemleri i¢in genel bir hata analizi olusturmaktir.
Ucgiincii bir amag olarak, bulunan Bernstein seri ¢oziimleri ve Floater ve Hormann
(2006)’1n rasyonel interpolasyon formiilii kullanilarak diferansiyel denklemlerin
rasyonel fonksiyon ¢oziimleri elde etmektir. Dordiincii bir amag olarak m—boyutlu
rasyonel interpolasyon probleminin ¢6ziimii i¢in Floater ve Hormann (2006)’1n
1 —boyutta verdigi rasyonel interpolasyon yontemini m—boyuta genellemektir. Son
olarak m—boyutta verilen rasyonel interpolasyon formiilii ve Bernstein seri
¢oziimler kullanilarak kismi diferansiyel denklemler i¢in rasyonel fonksiyon ¢oziimii
olusturmaktir. Hedeflenen amaglara ulasilmis olup elde edilen sonuglar her boliim

i¢in ayr1 ayr1 gruplanarak asagida verilmistir.

Bolim 3.1°de Bernstein seri ¢oziimler adi diferansiyel denklemler i¢in elde edilmistir.
Bu yontem kullanilarak, Boliim 4.3.°de p; ; polinomlar1 hesaplanmustir. Yo6ntem, her
tiirli adi diferansiyel denkleme kolaylikla uygulanabilir ve hata analizi ile
mutlak hatasi i¢in bir {ist sinir bulunabilir. Tam ¢6ziimiin bilinmemesi durumunda
hata tahmini e}, fonksiyonu ile yapilabilir. Bernstein seri ¢dzlimiine e}, eklenerek

yeni bir yaklasik ¢6zliim elde edilebilir.

Bolim 3.2’de Bernstein seri ¢oziimler gecikmeli diferansiyel denklemler igin
olusturulmus ve Bernstein seri ¢oziimler i¢in ¢ogu ortak olan sonuglar asagida

verilmistir:

e Bu yontem, gecikmeli diferansiyel denklemlere kolayca uygulanabilir.

e Daha tutarli sonuglar elde etmek i¢in »’nin biiyiik se¢ilmesi gerekmektedir.

Fakat ¢ok biiyiik #’ler i¢in yontem gilivenilir olmayabilir.

e Tam ¢6zlim f fonksiyonunun polinom olmasi durumunda, tam ¢6ziim veya ona

cok yakin yaklagik ¢oziimler elde edilir. n > deg( f) i¢in Teorem 3.8.3’den hata
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sifir olacagindan, eger hesaplama hatalar1 gézardi edilirse, tam ¢6ziim yani f
elde edilir.

Bilgisayar yuvarlama hatalarim1 azaltmak i¢in bilgisayarda kullanilan
programlarda islemlerin yliksek duyarlilik sayisi ile yapilmas: tutarlilig

artiracaktir.

Esit aralikli noktalar i¢in bulunan ¢o6ziimlerin tutarliligi, uygulamada

Chebyshev siralama noktalar1 kullanilarak elde edilen sonuc¢lardan daha azdir.

Eger n asalsa, esit aralikli siralama noktalar1 i¢in yuvarlama hatalar1 daha biiytik

olacagindan sonuglar daha az tutarlidir.

Hata analizi yapilarak mutlak hata i¢in bir iist sinir bulunabilmesi, fonksiyonun

diizglinliigii ile orantilidir.
Yontem, her durum i¢in yakinsak degildir.
Iyi sonuglar elde etmek icin  sayisi ne ¢ok kiigiik ne de ¢ok biiyiik olmalidur.

Tam ¢6ziim bilinmese bile, tam ¢dzlimiin interpolasyon polinomu yakinsak ise,

e, ile hata fonksiyonun tahmini yapilabilir.

Orneklerde, esit aralikli siralama noktalar1 ve n < m igin, e, hata
fonksiyonuna sonsuz normunda olduk¢a yakindir ve p, + e;, polinomu

Bernstein seri ¢ozlimiinden sonsuz normunda daha iyidir.

Boliim 3.3’te elde edilen sonuglar Boliim 3.2 ile benzer olup ek olarak, tam ¢oziim

J’nin polinom olmas1 durumunda » # deg(f) i¢in e,, hata fonksiyonuna yeterince

yakin olmayabilecegi 6rneklerden sdylenebilir.

Boliim 3.4’te verilen Bernstein seri ¢oziimiine dayali rasyonel fonksiyon ¢oziimii,

Bernstein seri ¢ozlimiiniin sahip oldugu 6zelliklere sahip olup ek olarak asagidaki

sonuclar bulunmustur:

e Bernstein seri ¢oziimlerine gore daha tutarli ve kararli sonuglar elde edilebilir.

e Hata analizi i¢in tam ¢6ziimiin daha diisiik mertebeden tiirevlerinin olmasi

yeterlidir.

e Yiiksek n’ler i¢in de kararli ¢oziimler elde edilebilir.
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e Siralama metoduna gore islemler daha ¢oktur, fakat yiiksek » ve diisiik d i¢in
siralama metodunda biiyiik #’ler i¢in elde edilen sonuglardan daha az siirede
ayni tutarlilik elde edilebilir.

Boliim 3.5’te verilen kismi diferansiyel denklemlerin Bernstein seri ¢oziimi i¢in

asagidaki sonuclar bulunmustur:

e Bilgisayar yuvarlama hatalarim1 azaltmak i¢in bilgisayarda kullanilan
programlarda islemlerin yiiksek duyarlilik sayisi ile yapilmasi tutarliligi

artiracaktir.

e Chebyshev siralama noktalar1 kullanilarak elde edilen sonuglar, siralama

yontemi ile elde edilen sonug¢lardan daha tutarli olabilir.

e Asal n’ler ve esit aralikli siralama noktalari i¢in yuvarlama hatalar1 daha biiyiik
olacagindan sonuglar daha az tutarli olabilir.

e Hata analizi yapilarak mutlak hata i¢in bir {ist sinir bulunabilmesi, fonksiyonun

diizgiinliigii ile orantilidir.
e Yontem, her durum i¢in yakinsak degildir.
e Iyi sonuglar elde etmek igin n sayis1 ne ¢ok kiigiik ne de ¢ok biiyiik olmalidir.

e Tam ¢Ozlim bilinmese bile, tam ¢Oziimiin interpolasyon polinomu yakinsak ise,

€.m 1le hata fonksiyonun tahmini yapilabilir..

o Orneklerde, esit aralikli siralama noktalari ve n < m igin, €nm hata
fonksiyonuna sonsuz normunda oldukga yakindir ve p,, + €, , polinomu

Bernstein seri ¢dziimiinden sonsuz normunda daha iyidir.

e 1 > 20 icin Bernstein seri ¢dziimiiniin hesaplanmasi ¢ogu durumda miimkiin
olmamaktadir ve #’nin kosul sayisi arttigindan hesaplamalar yapilsa bile

sonuglar giivenilir olmayabilir

Boliim 3.6°da verilen m—boyutta rasyonel interpolasyon fonksiyonu i¢in asagidaki

sonuclar bulunmustur:
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3.34’de verilen r fonksiyonu R”’de tanimlidir.

e Yaklasim yapilan fonksiyon f € W/*! ise uygun d;’ler segilerek yakinsak

sonugclar elde edilir.
e Yontem igin m(n+ 1) fonksiyon hesaplamak gerekir.

e Yontem interpolasyon noktalarinin tensér carpim olmast disinda noktalarin
dagilimindan bagimsiz olsa da sonuglar esit aralikli dagilimlar i¢in daha

anlamli bir hata st sinir1 verir.

e Yontemle elde edilen sonuglar diizgiin fonksiyon oldugundan diferansiyel

denklemlerin ¢oziimlerinde kullanilabilir.

Son boliimde verilen kismi diferansiyel denklemlerin rasyonel fonksiyon ¢oziimleri
icin, m—boyutta rasyonel interpolasyon fonksiyonunun ve Bernstein seri
¢oziimlerinin 6zelliklerine sahiptir. Rasyonel fonksiyon ¢ézlimiiniin Bernstein seri
¢Oziimiine gore en biiyiik avantaji, n > 20 icin disiik d;’ler secilerek daha az

zamanda daha tutarli sonuglar elde edilebilir.

Gelecek caligmalar i¢in, siralama metodunun hata analizi yapilirken gerekli olan
sartlar azaltilmaya caligilabilir. Siralama metodunda, farkli rasyonel fonksiyonlar
kullanilabilir.  En Onemlisi, Bo6lim 3’te verilen her metodun her durumda
yakinsaklig1 garanti edilebilir mi sorusunun cevabi arastirilabilir.  Ayrica, lineer
fonksiyonel denklemler icin verilen bu yontemler, lineer olmayan fonksiyonel

denklemlere de uygulanabilir mi sorusunun cevabi arastirilabilir.
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