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ÖZET

L�INEER FONKS�IYONEL DENKLEMLER�IN BERNSTE�IN POL�INOMLARI
VE RASYONEL FONKS�IYONLARA DAYALI SIRALAMA YÖNTEM�I �ILE

ÇÖZÜMLER�I ÜZER�INE

Osman Raşit IŞIK

Doktora Tezi

Matematik Anabilim Dal�

Dan�şman: Prof. Dr. Zekeriya GÜNEY

Nisan 2012, 107 sayfa

Bu çal�şmada, lineer fonksiyonel denklemler s�n�f�ndan adi diferansiyel denklemler,
gecikmeli diferansiyel denklemler, integro-diferansiyel denklemler ve k�smi türevli
diferansiyel denklemlerin say�sal çözümleri için s�ralama yöntemi ve Bernstein
polinomlar�na dayal� yeni bir matris yöntemi verilmiştir. Oluşturulan s�ralama
yönteminin, di�ger polinomlara dayal� matris yöntemlerine de uygulanabilirli�gi olan
hata analizi ve yap�lan hatan�n tahmini yap�lm�şt�r. Bununla beraber, özel bir
rasyonel fonksiyonlar ailesi ve matris yöntemi kullan�larak adi diferansiyel
denklemler için rasyonel fonksiyon çözümü elde edilmiştir. Son olarak, m�boyutta
rasyonel interpolasyon probleminin bir çözümü olarak bir rasyonel fonksiyon ailesi
elde edilmiş ve k�smi türevli diferansiyel denklemlerin say�sal çözümü için bu
rasyonel fonksiyon ailesi kullan�lm�şt�r.

Anahtar Kelimeler: Rasyonel  Interpolasyon, Bernstein Polinomlar�, S�ralama
Yöntemi, Adi Diferansiyel Denklemler, K�smi Diferansiyel
Denklemler.
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ABSTRACT

ON THE SOLUTIONS OF THE LINEAR FUNCTIONAL EQUATIONS
WITH THE COLLOCATION METHOD DEPENDS ON BERNSTEIN

POLYNOMIALS AND RATIONAL FUNCTIONS

Osman Raşit IŞIK

Doctor of Philosophy (Ph.D.)

Department of Mathematics

Supervisor: Prof. Dr. Zekeriya GÜNEY

April 2012, 107 pages

In this study, a new matrix method based on collocation method and Bernstein
polynomials was given for the numerical solutions of differential equations, delay
differential equations, integro-differential equations and partial differential equations
which are linear functional equations. Error analysis of the method and estimation of
the absolute error that can be applied other matrix method based on polynomials were
given. A new numerical solution based on the matrix method and a family of special
rational functions was obtained for differential equations.Finally, as a solution of the
interpolation problem in m�dimensions, a family of rational functions was obtained,
and they were used to obtain a numerical solution for partial differential equations.

Keywords: Rational Interpolation, Bernstein Polynomials, Collocation Method,
Differential Equations, Partial Differential Equations.
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Şekil 4.13. f (x;y) = 32(x+y)11=2 fonksiyonuna n= 10 ve d1 = d2 = 7 için
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1. G�IR�IŞ

Yaklaş�m teorisi, bir fonksiyona ona göre daha basit olan di�ger fonksiyonlarla

yaklaş�mla ilgilenir. Bir yaklaş�mda, yaklaş�m fonksiyonunun yap�s� ve kolay

uygulanabilirli�gi önemlidir. En genel olarak bir yaklaş�m probleminde,

1. Yaklaş�m yap�lacak olan f 2 X fonksiyonu,

2. Yaklaş�m fonksiyonlar�n�n kümesi A,

3. Yap�lan yaklaş�m�n f �ye ne kadar yaklaşt��g�n�n belirlenmesi

olmak üzere 3 temel unsur vard�r. Herhangi bir f 2 X fonksiyonu ve A verildi�gi

zaman, istenilen tutarl�l�kta bir yaklaş�m bazen tek, bazen birden fazla olabilir. A

kümesinin normlu bir uzay olmas� durumunda yap�lan işlemler ve en iyi yaklaş�m�n

tayini daha kolay olmaktad�r. E�ger A bir lineer uzay ise, iyi bir yaklaş�m elde

etmek için A�n�n boyutu artt�r�labilir. Yaklaş�m fonksiyonlar�n�n bulunmas� için

say�sal metotlar gereklidir. Yaklaş�m teorisinde polinom yaklaş�mlar� s�kl�kla

kullan�lmaktad�r. Örnek olarak, Taylor polinom yaklaş�m� verilebilir. E�ger bir f

fonksiyonuna yüksek tutarl� bir yaklaş�m yap�lmak istenirse, f �nin yüksek

mertebeden türevleri mevcut olmad�kça yaklaş�m fonksiyonunun tek bir polinom

olmas� uygun de�gildir. Hatta sonsuz mertebeden diferansiyellenebilir olsa bile poli-

nom yaklaş�mlar� yine de uygun olmayabilir. Bunun bir sebebi, x ! ∞ iken tek

s�n�rl� polinomun sabit polinom olmas�d�r. Bu yüzden bilgisayar programlar�nda

rasyonel yaklaş�mlar, sinüs, üstel ve arctanjant gibi standart matematik fonksiyonlar�n

hesaplanmas�nda polinomlara tercih edilmektedir. Rasyonel yaklaş�mda A kümesi,

p 2 Pm ve q 2 Pn olmak üzere
p

q
fonksiyonlar�ndan oluşur.

Yaklaş�m fonksiyonlar�, verilen bir fonksiyonel denklemin çözümüne yaklaş�m için

s�kl�kla kullan�lmaktad�r. Fonksiyonel denklemler, matemati�gin birçok alan�nda ve

matemati�gin d�ş�nda karar verme ve enformasyon, !zik, mühendislik ve ekonomi gibi

di�ger bir çok alanda karş�m�za ç�kt�klar� için çözümün var oldu�gunu

söylemek, analitik olarak çözmek veya çözümüne istenen bir tutarl�l�kla yaklaşmak
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önem taş�maktad�r. Örnek olarak Cauchy denklemi, integral denklemler, diferansiyel

denklemler ve k�smi diferansiyel denklemler verilebilir.

Fonksiyonel denklemlerin çözümüne say�sal yaklaş�m için bilinen en kolay yöntem

s�ralama yöntemidir. Bu yöntem,

y(x) = y0(x)+
n

∑
i=1

αiyi(x) (1.1)

aç�l�m�nda αi katsay�lar�n�n s�ralama noktalar� kullanarak belirlenmesidir. S�ralama

yönteminde yi fonksiyonlar� olarak ortogonal polinomlar, parçal� polinomlar gibi

çeşitli özel fonksiyon aileleri kullan�l�r.

S�ralama yöntemi s�ralama noktalar�n�n say�s�na ba�gl� oldu�gu için, uygun bir çözüm

bulmak için uygun say�da s�ralama noktas� seçilmesi gerekmektedir. Çözüm

fonksiyonunun yap�s�na ve yaklaş�m aral��g�na ba�gl� olarak nokta say�s�n�n artmas�

yöntemin yak�nsakl��g�n� genelde garanti etmemektedir. Bundan dolay�, s�ralama

yöntemi kullan�larak bulunan bir fonksiyonel denklemin yaklaş�k çözümünün gerçek

çözüme ne kadar yaklaşt��g�n�n, di�ger bir ifadeyle mutlak hata için bir üst s�n�r�n

bulunmas�, yaklaş�m�n anlaml�l��g�n� art�racakt�r.

Fonksiyonel denklemin tam çözümüne yaklaş�m için polinomlar uzay�n� da içine

alan, p 2 Pm ve q 2 Pn olmak üzere

r =
p

q
(1.2)

tipindeki rasyonel fonksiyonlar da kullan�labilir. Rasyonel fonksiyonlar için bulunan

en iyi yaklaş�m, polinomlar için bulunan en iyi yaklaş�mdan daha iyi oldu�gundan;

rasyonel fonksiyonlar kullan�larak bulunan bir yaklaş�m�n da daha iyi

olmas� beklenebilir. Fakat, rasyonel fonksiyonlar� fonksiyonel denklemlerin

çözümlerinde kullanabilmek için en genel olarak fonksiyonel denklemin tam

çözümünün süreklilik, türevlenebilirlik gibi temel özelliklerine rasyonel fonksiyon

r�nin de sahip olmas� gerekmektedir. Ayr�ca, yaklaş�mda kullan�lacak rasyonel

fonksiyonun s�ralama noktalar�nda tan�ml� olmas� gerekmektedir. Bunun için,

rasyonel fonksiyonun paydas�n�n pozitif veya negatif de�gerli bir polinom oldu�gunu

garanti etmek yeterlidir. Floater ve Hormann (2006), verilen bir fonksiyona 0� d � n

tamsay�, pi polinomu xi;xi+1; : : : ;xi+d noktalar�ndaki interpolasyon polinomu ve

λi(x) =
(�1)i

(x� xi) : : :(x� xi+d)
(1.3)
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olmak üzere

r(x) =

n�d

∑
i=0

λi(x)pi(x)

n�d

∑
i=0

λi(x)

(1.4)

rasyonel fonksiyonu ile yaklaşm�şt�r. (1.4) yaklaş�m�n�n hatas�, aral��g�n uzunlu�gu ve

fonksiyonun düzgünlü�gü ile orant�l�d�r.

Bu tezin amac�, lineer fonksiyonel denklemlerden adi diferansiyel denklemler,

pantograf denklemleri, integral denklemler ve k�smi diferansiyel denklemlerin say�sal

çözümleri için s�ralama yöntemi ve Bernstein polinomlar�na dayal� bir

matris yöntemi oluşturmakt�r. Ayr�ca, en genel olarak s�ralama yönteminin hata

analizi ve yap�lan hatan�n tahminini yapmakt�r. Bununla beraber (1.4)�te verilen

rasyonel fonksiyonlar� s�ralama yönteminde kullanmak, m�boyutta rasyonel

interpolasyon probleminin bir çözümünü elde etmek ve k�smi diferansiyel

denklemlerin çözümü için bu fonksiyon ailesini kullanmakt�r. Verilecek yöntemler,

di�ger lineer fonksiyonel denklemlere de uygulanabilir.

Tezin ikinci bölümünde, yaklaş�m teorisinde temel kavramlar ve teoremler verilip

polinom interpolasyonu, rasyonel yaklaş�m, Bernstein polinomlar� ve matris

normlar� ele al�nm�şt�r. Ayr�ca bu bölümde, Floater ve Hormann (2006) taraf�ndan

verilen rasyonel interpolasyon fonksiyonu da verilmiştir.

Üçüncü bölümde, Sezer (1994), Akyüz ve Sezer (1999), Akyüz ve Sezer (2003),

Akyüz- Daşc�o�glu ve Sezer (2005), Sezer ve Akyüz-Daşc�o�glu (2006), Yalç�nbaş

ve Sezer (2006), Yalç�nbaş vd. (2009) taraf�ndan verilen s�ralama yöntemine dayal�

Chebyshev matris, Legendre matris ve Taylor matris yöntemlerinde baz fonksiyonlar�

olarak Bernstein polinomlar� seçilerek Bernstein seri çözümü gecikmeli

diferansiyel denklemler ve Abel tipi integro-diferansiyel denklemler için elde

edilmiştir. Daha sonra k�smi diferansiyel denklemlerin çözümü için Yüksel (2011) ve

Bülbül (2011) taraf�ndan verilen s�ras�yla Chebyshev matris yöntemi ve

Taylor matris yöntemi, Bernstein polinomlar� kullan�larak verilmiştir. (1.4)

denkleminde pi polinomlar� yerine xi;xi+1; : : : ;xi+d noktalar�ndaki Bernstein seri

çözümü al�narak bir rasyonel fonksiyon çözümü elde edilmiştir. (1.4) denklemi

m�boyut için genellenmiş olup k�smi diferansiyel denklemlerin say�sal çözümleri

için say�sal bir yöntem bulunmuştur. Verilen tüm yöntemler, hata analizleri, hata

tahminleri ve hata tahminlerine dayanan yeni bir yaklaş�m formülü ile birlikte

verilmiştir.
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Dördüncü bölümde, üçüncü bölümde verilen yöntemler Pantograf denklemleri, Abel

tipi integro-diferansiyel denklemler için uygulanm�ş ve yüksek mertebeden adi

diferansiyel denklemlerin rasyonel fonksiyon çözümleri elde edilmiştir.

m = 2 al�narak iki de�gişkenli verilen fonksiyonlar�n rasyonel fonksiyon

yaklaş�mlar� elde edilmiştir. Bunun bir uygulamas� olarak, k�smi diferansiyel

denklemlerin rasyonel fonksiyon çözümleri elde edilmiştir. Elde edilen

yaklaş�mlar�n hata de�gerleri, üçüncü bölümde verilen teorik hata üst s�n�r� ile

karş�laşt�r�lm�şt�r. Yaklaş�mlar�n hata fonksiyonlar�n�n sonsuz normundaki

de�gerleri tablo ile verilmiş ve baz� hata fonksiyonlar�n�n gra!kleri verilmiştir.

Yaklaş�mlar�n hata tahminleri de yap�larak s�ralama noktalar� eşit aral�kl� olarak elde

edilen yaklaş�mlarda hata tahmininin düzgün fonksiyonlar ve düşük n�ler için tutarl�

sonuçlar verdi�gi gözlenmiştir.

Son bölümde, üçüncü bölümde verilen yöntemlerin zay�f ve güçlü yönleri maddeler

halinde verilmiştir. Bulunan sonuçlar özetlenmiştir.
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2. KAYNAK ÖZETLER�I

Verilen bir fonksiyonel denklem için fonksiyonel denklemin yap�s�na göre say�sal

çözüm metotlar� geliştirilmiştir. Adi diferansiyel denklemler için Euler metodu,

Runge Kutta metodu gibi zaman ad�ml� metotlarla birlikte sonlu farklar metodu, tau

metodu, s�ralama yöntemleri örnek olarak verilebilir (Quarteroni vd., 2007;

Mason ve Handscomb, 2003). Taylor aç�l�m ve Chebyshev aç�l�m yöntemleri de

integral ve diferansiyel denklemlerin say�sal çözümleri için s�kl�kla kullan�lm�şlard�r

(Mihaila ve Mihaila, 2002; Palusinski ve Szidarovszky, 1994; Kanwal ve Liu, 1989;

Khalifa vd., 2003). S�ralama yöntemleri olarak literatürde en çok spline s�ralama

yöntemleri (Abd El-Salam ve Zaki, 2010; Akram ve Siddiqi, 2006; Al-Said ve Noor,

2002; Al-Said ve Noor, 2004; Al-Said vd., 2006; Usmani, 1992; Usmani ve Warsi,

1980), Taylor polinomuna dayal� s�ralama yöntemleri (Gülsu ve Sezer, 2005; Sezer ve

Akyüz; 2006; Sezer ve Akyüz-Daşc�o�glu, 2007; Sezer vd., 2008;

Yalç�nbaş ve Sezer, 2000), Chebyshev polinomlar�na dayal� s�ralama yöntemleri

(Sezer ve Do�gan, 1996; Sezer ve Kaynak; 1996) ve Bessel polinomlar�na dayal�

s�ralama yöntemleri (Şahin vd., 2011; Yüzbaş�, 2011; Yüzbaş� vd., 2011a; Yüzbaş�

vd., 2011b; Yüzbaş� vd., 2011c;) s�kl�kla kullan�lm�şt�r. K�smi diferansiyel

denklemler için sonlu farklar yaklaş�m�, spektral s�ralama yöntemi, Galerkin ve sonlu

farklar metodu başl�ca kullan�lan yöntemlerdir (Quarteroni vd., 2007). Bu

yöntemlerin bir k�sm� di�ger fonksiyonel denklemler için de geliştirilmiştir. Örne�gin,

spline s�ralama metodu, Volterra integral denkleminin say�sal çözümü için de

literatürde kullan�lmaktad�r (Brunner, 1986). K�smi diferansiyel denklemler için

s�ralama metoduna ba�gl� matris yöntemleri de geliştirilmiş ve tutarl� sonuçlar elde

edilmiştir (Bülbül, 2011; Yüksel, 2011).

Kullan�lan bir say�sal yöntemin o yönteme özgü avantaj ve dezavantajlar�

bulunmaktad�r. Kullan�lan bir metodun hata analizinin bilinmesi, kolay

uygulanabilirli�gi, bilgisayar programlar� ile uyumluluk, yöntemin zaman aç�s�ndan

maliyeti ve en önemlisi metodun yak�nsakl��g� çok büyük önem kazanmaktad�r.

Örne�gin, tau metot (Mason ve Handscomb, 2003; Doha ve Abd-Elhameed, 2005;

Kong ve Wu, 2009), normda yak�nsakl��g� gösterilmiş bir metottur. Fakat hesaplama
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işlemleri tau metot için zordur. Benzer şekilde, spline s�ralama yöntemleri için özel

s�ralama noktalar� seçilerek tam çözümün çok az mertebeden de olsa düzgün olmas�

durumunda baz� di�ger özel seçimler yap�larak hata analizi verilmiştir

(De Boor ve Swartz, 1973). S�ralama metodu verilen fonksiyonel

denklemin yap�s�ndan ba�g�ms�z oldu�gu ve kolay uyguland��g� için çok s�k kullan�lan

yöntemlerden biri olmuş ve baz fonksiyonlar� olarak Taylor, Chebyshev, Legendre

polinomlar� al�narak matris formunda s�kl�kla kullan�lm�şt�r. Spline s�ralama

yöntemlerinden daha kolay olarak uygulanabilen bu yöntemlerde, spline yönteminin

aksine yak�nsama garanti edilememiştir. Bu çal�şmalarda sadece tutarl�l�k ölçülmüş

ve mutlak hatalar tayin edilmiştir. Baz polinomlar� olarak rasyonel fonksiyonlar poli-

nomlara göre uygulama zorlu�gundan dolay� s�ralama yönteminde daha az

kullan�lm�şt�r.

Yaklaş�m teorisinde, çal�ş�lan uzaylar�n normlu lineer uzay olarak seçilmeleri,

yaklaş�m�n varl��g�, tekli�gi ve yap�lan yaklaş�m�n anlaml�l��g� gibi sorular�n cevab� için

istenen bir durumdur. Bu yüzden, metrik uzay, normlu lineer uzay, Banach uzay� ve iç

çarp�m uzay� kavramlar� verilecektir. Bu kavramlar, herhangi bir fonksiyonel analiz

veya metrik uzay kitaplar�nda bulunabilir (örne�gin Güney, 2003; Kreyszig, 1989).

X 6= /0; d : X2 ! R olmak üzere, e�ger 8x;y;z 2 X için

1. d(x;y) = 0, x= y

2. d(x;y) = d(y;x)

3. d(x;y)� d(x;z)+d(z;y)

şartlar� sa�glan�rsa d fonksiyonuna X üzerinde bir metrik fonksiyon veya k�saca bir

metrik denir. X kümesi üzerinde bir metrik tan�mlanmas�yla oluşan ve (X ;d)

şeklinde gösterilen matematiksel yap�ya metrik uzay denir. (X ;d) metrik uzay�nda,

a noktas�na uzakl��g� ε�dan küçük olan noktalar�n kümesine, a noktas�n�n ε yar�çapl�

komşulu�gu (veya k�saca komşulu�gu) denir ve B(a;ε) ile gösterilir. (X ;d)metrik uzay,

< an> bu uzayda bir dizi olmak üzere, e�ger 8ε> 0 için dizinin n0�dan büyük terimleri

aras�ndaki uzakl�klar ε�dan küçük kalacak şekilde bir n0 do�gal say�s� varsa, < an >

dizisine X uzay�nda bir Cauchy dizisi denir. Bir (X ;d) metrik uzay�nda her Cauchy

dizisi yak�nsak ise X uzay�na tam uzay denir.

V bir vektör uzay� olsun. V üzerinde bir norm, 8v 2 V �deki de�geri kvk ile gösterilen

reel de�gerli bir fonksiyon olup 8u;v 2V ve 8α 2 K için aşa�g�daki şartlar� sa�glar:
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1. kvk � 0

2. kvk= 0, v= 0

3. kαvk= jαjkvk

4. ku+ vk � kuk+kvk :

V vektör uzay� üzerinde tan�mlanan norm ile birlikte V �ye normlu lineer uzay yada

k�saca normlu uzay denir. V üzerinde tan�mlanan bir norm d(x;y) = kx� yk ile V

üzerinde bir metrik tan�mlar. E�ger V normlu uzay�, norm taraf�ndan üretilen metri�ge

göre tam ise bu normlu uzaya Banach uzay� denir. V vektör uzay� üzerinde bir iç

çarp�m V �V ! K bir dönüşüm olup x ve y vektörlerinin görüntüsü < x;y > ile

gösterilir ve 8u;v;w 2V ve 8α 2 K için aşa�g�daki şartlar� sa�glar:

1. < u+ v;w>=< u;w>+< v;w>

2. < αu;w>= α< u;w>

3. < u;w>=< w;u>

4. < u;u>� 0;< u;u>= 0, u= 0:

V üzerinde verilen bir iç çarp�m, V üzerinde kvk = p
< v;v> ile bir norm ve

d(x;y) = kx� yk =p< x� y;x� y> ile bir metrik tan�mlar. Böylece her iç çarp�m

uzay� normlu uzayd�r. Bir iç çarp�m uzay�, iç çarp�mdan üretilen metri�ge göre tam

ise, bu iç çarp�m uzay�na Hilbert uzay� denir.

Aşa�g�da uzakl�k ve ortogonallik ile ilgili verilen teoremlerin ispatlar� Kreyszig

(1989)�de bulunabilir.

Tan m 2.0.1. X bir metrik uzay, x 2 X ve M � X olsun. x eleman�n�n M kümesine

uzakl��g�

δ= inf
y2M

d(x;y) (2.1)

ile tan�mlan�r. E�ger X normlu uzay ise bu tan�m,

δ= inf
y2M

kx� yk

ile verilir.
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(2.1)�de verilen δ uzakl��g�n� gerçekleyen bir y 2M�nin varl��g�n�n ve tekli�ginin bilinip

bilinmedi�gi, fonksiyonlarla yaklaş�m için çok önemlidir.

Örnek 2.0.2. R2�de B((0;0);1) aç�k yuvar�nda x= (2;0) noktas�na uzakl��g� en küçük

olan bir y 2 B((0;0);1) yoktur. Di�ger yandan, (1;0) noktas�na

A=
�
(x;y)j(x�1)2+ y2 = 1

	
kümesinden uzakl��g� en küçük olan birden çok y 2 A

vard�r.

Tan m 2.0.3. X bir vektör uzay� olmak üzere x;y 2 X için x ile y�yi birleştiren do�gru

parças�

fzjz= (1�α)x+αy;α 2 [0;1]g

ile verilir.

Tan m 2.0.4. X bir vektör uzay�, M � X olsun. E�ger 8x;y 2 M için x ile y�yi

birleştiren do�gru parças� �Mde kal�yorsa, �Mye konveks küme denir.

Teorem 2.0.5. X bir iç çarp�m uzay� ve ? 6= M � X konveks ve tam olsun. Bu

durumda, 8x 2 X için

δ= inf
m2M

kx�mk= kx� yk

olacak şekilde teklikle belli bir y 2M vard�r.

Tan m 2.0.6. X bir iç çarp�m uzay� ve M � X olsun. E�ger M�nin her vektörü

ikişer ikişer birbirine dik ise M�ye ortogonal küme denir. E�ger M ortogonal ve her

vektörünün normu 1 ise M�ye ortonormal küme denir.

Bir ortogonal veya ortonormal küme e�ger say�labilirse, kümenin elemanlar�

indislenerek bu küme < xn > dizisi ile gösterilebilir ve bu kümeye ortogonal veya

ortonormal dizi ad� verilir. En genel olarak, bir indislenmiş küme 8α;β 2 I için

< xα;xβ >= 0 oluyorsa < xα >, α 2 I; ortogonaldir. E�ger 8α;β 2 I için

< xα;xβ >=

(
0 ; α 6= β

1 ; α= β

ise bu indislenmiş kümeye ortonormaldir denir.
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Teorem 2.0.7. Bir ortonormal küme lineer ba�g�ms�zd�r.

Örnek 2.0.8. [0;2π]�de sürekli reel de�gerli fonksiyonlar kümesi C [0;2π] ve bu küme

üzerinde tan�ml� iç çarp�m

< f ;g>=

2πZ

0

f (x)g(x)dx

olsun. C [0;2π] üzerinde un(x) = cosnx olmak üzere < un > bir ortogonal dizidir.

Benzer şekilde, vn(x) = sinnx için < vn > bir ortogonal dizidir. Gerçekten,

< un;um >=

2πZ

0

cosnxcosmxdx=

8
><

>:

0 ; m 6= n

π ; m= n 2 N
2π ; m= n= 0

bulunur. Benzer şekilde < vn > için de yap�labilir. Buradan e�ger

e0(x) =
1p
2π
; n 2 N) en(x) =

un(x)

kun(x)k
=

cosnxp
π

ile tan�mlan�rsa elde edilen yeni dizi ortonormal bir dizi olur. Benzer şekilde,

n 2 N) �en(x) =
vn(x)

kvn(x)k
=

sinnxp
π

dizisi de ortonormal bir dizi olur. Ayn� zamanda, 8m;n için un ? vm�dir ve bu diziler

Fourier aç�l�m�nda ortaya ç�kar.

Ortonormal dizilerle çal�şman�n en büyük avantajlar�ndan birisi, e�ger verilen bir x

eleman�n�n bir ortonormal dizinin baz� terimlerinin lineer kombinasyonu olarak

yaz�labildi�gini biliyorsak, ortonormallik kullan�larak x�in katsay�lar� kolayca

belirlenebilir. Varsayal�m ki, < en > ortonormal bir dizi ve x 2 spanfe1; : : : ;eng yani

x=
n

∑
i=1

αiei olsun. Bu durumda αi katsay�lar�

< x;e j >=<
n

∑
i=1

αiei;e j >=
n

∑
i=1

αi < ei;e j >= α j

olarak bulunur ve
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x=
n

∑
i=1

< x;ei > ei

dir.

Teorem 2.0.9. X bir iç çarp�m uzay� ve < ek > ortonormal bir dizi olsun. Bu

durumda, 8x 2 X için aşa�g�daki eşitsizlik sa�glan�r:

∞

∑
k=1

j< x;ek >j2 � kxk2 : (2.2)

(2.2) eşitsizli�gine Bessel eşitsizli�gi,< x;ek > katsay�lar�na da x�in< ek > ortonormal

dizisine göre Fourier katsay�lar� denir.

2.1. Fourier Serisi

Bu kesimde Fourier serilerinden bahsedilecektir. Fourier serileri bir periyodik

fonksiyonu basit dalgal� fonksiyonlar�n (sinüs ve kosinüs) toplam�na çevirir. Bu

kesimde verilen teoremlerin ispatlar� Kreyszig (1989)�de bulunabilir.

Tan m 2.1.1. X bir normlu uzay, < ak >; X�de bir dizi ve sn = a1+a2+ : : :+an de

k�smi toplamlar dizisi olsun. E�ger < sn > dizisi yak�nsak ve limiti s ise,
∞

∑
k=1

ak serisi

yak�nsakt�r ve toplam� s�dir denir ve

s=
∞

∑
k=1

ak

yaz�l�r.

Tan m 2.1.2. R üzerinde reel de�gerli bir f fonksiyonu e�ger 8x 2 R ve 9p 2 R+ için

f (x+ p) = f (x) şart�n� sa�gl�yor ise f �ye periyodik fonksiyon ve periyodu p�dir denir.

Tan m 2.1.3. a0+
∞

∑
k=1

(ak coskx+bk sinkx) formundaki bir seriye trigonometrik seri

denir.

10



Tan m 2.1.4. f �nin Fourier serisi, ak ve bk katsay�lar� Euler formülleri

a0 =
1

2π

2πZ

0

f (x)dx ; ak =
1

π

2πZ

0

f (x)coskxdx; (2.3)

bk =
1

π

2πZ

0

f (x)sinkxdx ; k 2 N

ile verilen bir trigonometrik seridir. ak ve bk katsay�lara f �nin Fourier katsay�lar�

denir.

E�ger f �nin Fourier serisi 8x için yak�nsak ve toplam� f (x) ise,

f (x) = a0+
∞

∑
k=1

(ak coskx+bk sinkx) (2.4)

yaz�l�r. f fonksiyonu periyodu 2π olan periyodik bir fonksiyon oldu�gundan, (2.3)

denklemindeki integrasyon aral��g�n� [�π;π] gibi uzunlu�gu 2π olan başka bir aral�kla

de�giştirebilir.

Fourier serilerinin genel halini bulmak için, (2.4) denkleminde sinüs ve cosinüs

yerine < uk > ve < vk > ortogonal dizilerini alal�m. Bu durumda (2.4) denklemi,

f (x) = a0u0(x)+
∞

∑
k=1

[akuk(x)+bkvk(x)] (2.5)

olarak yaz�labilir. (2.5) denklemini sabit bir u j ile çarp�p 0�dan 2π�ye integre edelim.

Terim terime integre edilebilirli�gi varsayarak ve 8 j;k için u j ? vk ile< uk> ve< vk>

ortogonalli�gini kullanarak

< f ;u j >= a0 < u0;u j >+
∞

∑
k=1

�
ak < uk;u j >+bk < vk;u j >

�

= a j < u j;u j >= a j



u j



2

=

(
2πa0 ; j = 0

πa j ; j = 1;2; : : :

ve benzer şekilde

< f ;v j >= b j



v j



2
= πb j ; 8 j 2 N
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elde edilir. Buradan < uk > ve < vk > dizileri ortonormalleştirilerek, yeni oluşan

< e j > ve < g j > dizileri için (2.5)�deki Fourier aç�l�m�

f =< f ;e0 > e0+
∞

∑
k=1

[< f ;ek > ek+< f ;gk > gk]

olarak yaz�labilir.

Teorem 2.1.5. H Hilbert uzay� ve < ek > bu uzayda bir ortonormal dizi ve αk�lar

skaler olsun. Bu durumda,

�
∞

∑
k=1

αkek serisi yak�nsakt�r (normda) ancak ve ancak
∞

∑
k=1
jαkj2 serisi yak�nsakt�r.

�
∞

∑
k=1

αkek yak�nsak ve toplam� x ise, αk katsay�lar� Fourier katsay�lar�d�r ve

böylece

x=
∞

∑
k=1

< x;ek > ek

yaz�labilir.

� 8x 2 H için,
∞

∑
k=1

< x;ek > ek normda yak�nsar.

2.2. Yaklaş m Teorisi

Yaklaş�m teorisi, belirli bir tipteki fonksiyona ona göre daha basit olan di�ger

fonksiyonlarla yaklaş�mla ilgilenir. Sürekli bir fonksiyona polinomlarla yaklaş�m,

buna bir örnek olarak verilebilir. Böyle bir durum, analizde şu şekilde yap�l�r: E�ger

bir fonksiyonun Taylor aç�l�m� var ise, bu serinin k�smi toplamlar� yaklaş�mlar olarak

al�nabilir. Bu yaklaş�mlar�n kalitesinin anlaş�lmas� için, kalanlar�n�n belirlenmesi

gerekir. Bu kesimde, yaklaş�m teorisinde kullan�lan temel tan�mlar, en iyi

yaklaş�mlar�n varl�k ve teklik problemleri, metrik uzay ve normlu lineer uzay için

verilecektir. Bu kesimde verilenler Powell (1981) kitab�ndan al�nm�şt�r.

12



2.2.1. Metrik uzaylarda yaklaş m

Metrik uzaylar, metrik fonksiyonuna sahip olduklar�ndan yap�lan bir yaklaş�m�n ne

kadar iyi oldu�gunu belirlememiz için genel bir yol sa�glarlar. Birçok yaklaş�m

probleminde f �yi ve yaklaş�mlar kümesi A�y� içeren uygun bir metrik uzay vard�r.

Tan m 2.2.1. 8a0;a1 2 A için d(a0; f ) < d(a1; f ) ise a0 , a1den daha iyi bir

yaklaş�md�r. 8a 2 A için

d(a�; f )� d(a; f )

olacak şekilde bir a� 2 A varsa, a� eleman�na bir en iyi yaklaş�m denir.

En iyi yaklaş�m�n var olup olmad��g�n� bilmek önemlidir. Çünkü bir çok hesaplama

metodu, bir en iyi yaklaş�m ile elde edilen özelliklerden türetililir.

Teorem 2.2.2. (X ;d) metrik uzay, A� X kompakt ise, 8 f 2 X için

d(a�; f )� d(a; f )

olacak şekilde bir a� 2 A vard�r.

A kompakt de�gil ise bir en iyi yaklaş�m olmayabilir.

Örnek 2.2.3. R2 de B(0;1) aç�k yuvar�n� düşünelim. A�dan x = (2;0) noktas�na bir

en iyi yaklaş�m yoktur.

2.2.2. Normlu Lineer Uzaylarda Yaklaş m

Metrik uzaylar�n özellikleri çal�şmalarda her zaman yeterli de�gildir. Her normlu

lineer uzay ayn� zamanda metrik uzay oldu�gundan, normlu lineer uzaylarda

bulunan sonuçlar metrik uzaylarda da geçerlidir.

Teorem 2.2.4. N normlu bir lineer uzay, A� N sonlu boyutlu ise, 8 f 2 N için A� dan

f �ye bir en iyi yaklaş�m vard�r.

Çal�ş�lan ço�gu yaklaş�m probleminde f ve A; F = f f j f : [a;b]! R süreklig kümesi

ve bu küme üzerinde 3 farkl� norm ile üretilen uzaylardan al�nmaktad�r. Bunlar
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p = 1;2 ve ∞ olmak üzere Lp normlar�d�r. Bunlar�n içerisinde en az kullan�lan�

1�normdur. 2�norm veya w pozitif bir fonksiyon olmak üzere

k fk2 =

2

4
bZ

a

w(x) j f (x)j2 dx

3

5

1=2

ile tan�ml� bir w�a�g�rl�kl� 2�norm, Hilbert uzaylar�ndaki teorik çal�şmalarda

karş�m�za ç�kt��g�ndan ve en iyi yaklaş�m hesaplamalar�n�n 2�normda çözümü

kolay oldu�gundan s�kl�kla kullan�lmaktad�r. ∞�normu ise yaklaş�m teorisinin büyük

bir k�sm�n�n temelini oluşturur. E�ger ∞�normuna göre d( f ;a) küçükse, 1�norm

ve 2�norma göre de d( f ;a) küçüktür. Verilen bir f fonksiyonuna p fonksiyonu ile

yaklaş�m�n hatas�, hata fonksiyonu

e := f � p

ile verilir.

Teorem 2.2.5. 8 f 2C[a;b] için

k fk1 � (b�a)
1
2 k fk2 � (b�a)k fk∞

dur.

2.2.3. En �Iyi Yaklaş m n Tekli!gi

Tan m 2.2.6. 8s1;s2 2 A için fθs1+(1�θ)s2jθ 2 (0;1)g kümesi A kümesi

taraf�ndan kapsan�yorsa A�ya konveks küme denir.

Tan m 2.2.7. 8s1;s2 2A; s1 6= s2 için fθs1+(1�θ)s2jθ 2 (0;1)g kümesi A kümesinin

içi taraf�ndan kapsan�yorsa A�ya tam konveks küme denir.

Teorem 2.2.8. N normlu bir lineer uzay olsun. Bu durumda 8 f 2 N, 8r > 0 için

B( f ;r) = fxjkx� fk � r;x 2 Ng yuvar� konvekstir.

Tan m 2.2.9. N normlu lineer uzay olsun. B(0;1) birim yuvar� tam konveks ise N

üzerindeki norma tam norm ad� verilir.

Teorem 2.2.10. N normlu lineer uzay, A � N kompakt ve tam konveks olsun. Bu

durumda 8 f 2 N için A�dan f �ye sadece bir tane en iyi yaklaş�m vard�r.
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Teorem 2.2.11. N normlu tam konveks bir uzay, A� N konveks olsun. Bu durumda

8 f 2 N için A�dan f �ye en çok bir tane en iyi yaklaş�m vard�r.

2.3. Polinom �Interpolasyonu

8 f 2C [a;b] fonksiyonuna p(x) =
n

∑
i=0

cix
i polinomuyla yaklaş�lmak istenirse,

fciji 2 f0;1; : : : ;ngg

katsay�lar�n�n belirlenmesi gerekir. Bunun için en genel metod f �nin (n+ 1) tane

farkl� X = fxiji 2 f0;1; : : : ;ngg � [a;b] noktalar�nda ald��g� de�geri bilmek ve

p(xi) = f (xi) (2.6)

denklem sistemini çözmektir.

Teorem 2.3.1. fxiji 2 f0;1; : : : ;ngg � [a;b] ; (n+1) tane farkl� nokta ve f 2C [a;b]

olsun. Bu durumda (2.6) denklemini sa�glayan tek bir p 2 Pn vard�r (Quarteroni vd.,

2007).

Tan m 2.3.2. X interpolasyon noktalar�n�n kümesi ile ilişkili i. Lagrange polinomu

li(x) =
n

∏
j=0
j 6=i

(x� x j)

(xi� x j)
; 0� i� n

ile tan�mlan�r.

Tan m 2.3.3. X interpolasyon noktalar�n�n kümesi ile ilişkili nodal polinom, derecesi

n+1, başkatsay�s� 1 ve interpolasyon noktalar�n� kök kabul eden teklikle belli

wn(x) =
n

∏
i=0

(x� xi)

polinomudur.

f �nin interpolasyon polinomu Lagrange formunda

p(x) =
n

∑
i=0

f (xi)li(x)
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yaz�labilir.

Teorem 2.3.4. fxiji 2 f0;1; : : : ;ngg � [a;b], (n + 1) tane farkl� interpolasyon

noktalar�, f 2 C(n+1) [a;b] ve p 2 Pn (2.6)�deki interpolasyon şartlar�n� sa�glayan

polinom olsun. Bu durumda 8x 2 [a;b] için hata, ξ 2 [a;b] noktas� x�e ba�gl� bir nokta

olmak üzere

e(x) =
1

(n+1)"

n

∏
j=0

(x� x j) f (n+1)(ξ)

de�gerini al�r (Quarteroni vd., 2007).

f �nin interpolasyon polinomu pn f ile gösterilecektir.

Runge�nin örne�gi olarak bilinen

f (x) =
1

1+ x2
; �5� x� 5

ile tan�ml� f fonksiyonunun interpolasyon polinomu bulunmak istenirse, f �deki

de�gişimlerin ço�gu aral��g�n�n ortas�nda oldu�gundan, f �e tek bir polinom ile

yaklaşmak uygun de�gildir. Yüksek tutarl�l�kta bir yaklaş�m için yüksek dereceli

bir polinom seçilmesi gerekir. n büyük oldu�gu zaman interpolasyon noktalar�n�n

pozisyonlar� önemlidir. E�ger interpolasyon noktalar� eşit aralikli seçilmişse, n

artt�kça yaklaş�m�n tutarl�l��g� bozulur (Powell, 1981).

m�boyutta interpolasyon problemi, 1�boyuttakine benzer şekilde verilir. R
m�de

xi = (x
1
i ; : : : ;x

m
i ) n farkl� nokta ve φ1; : : : ;φm 2 C(Rm) lineer ba�g�ms�z fonksiyonlar

olsun. m�boyutta interpolasyon problemi, 1� i� n için

a1φ1(xi)+a2φ2(xi)+ � � �+amφm(xi) = f (xi)

denklemini sa�glayan a1;a2; : : :am katsay�lar�n�n belirlenmesidir (Phillips, 2003).

Tan m 2.3.5. Negatif olmayan tamsay�lar�n bir n�lisi α = (α1; : : : ;αn) ve

f : Ω ! R bir fonksiyon olsun. Çoklu indeks gösterimi ile jαj = α1 + � � �+ αn

olmak üzere

Dα f (x) =
∂jαj f (x)

∂x
α1
1 ∂x

α2
2 � � �∂x

αn
n

ile gösterelim.
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Tan m 2.3.6. Bir f fonksiyonunu s�f�rdan farkl� k�lan noktalar kümesinin kapan�ş�,

f �nin deste�gi olarak adland�r�l�r:

Supp f = fx j f (x) 6= 0g:

Tan m 2.3.7. D(Ω) kümesi, sonsuz mertebeden türevli ve Ω�da s�f�rdan farkl� oldu�gu

bölgenin kapan�ş� bir kompakt küme taraf�ndan kapsanan fonksiyonlar kümesi olsun:

D(Ω) = f f 2C∞(Ω) j 9K �Ω kompakt, Supp f � Kg :

Tan m 2.3.8. Ω� Rn ve T : D(Ω)! R olsun. Tnin zay�f türevi
∂T

∂xi
;

�
∂T

∂xi
;φ

�
=�

�
T;

∂φ

∂xi

�
; 8φ 2 D(Ω); i= 1; : : : ;n

ile tan�mlan�r. Benzer şekilde, α= (α1; : : : ;αn) çoklu indeks gösterimi ile DαT

hDαT;φi= (�1)jαj hT;Dαφi ; 8φ 2 D(Ω)

ile verilir.

Tan m 2.3.9. k 2 Z+ ve 1 � p � ∞ olsun:W k;p(Ω) Sobolev uzay�, k�dan küçük eşit

tüm zay�f türevleri Lp(Ω) uzay�nda olan v 2 Lp(Ω) fonksiyonlar�ndan oluşur:

W k;p(Ω) = fv 2 Lp(Ω) j α çoklu indeks ve jαj � k için Dαv 2 Lp(Ω) g :

W n
∞(Ω) uzay�, α � n için Ω�da Dα f 2 L∞(Ω) olan tüm fonksiyonlar�n oluşturdu�gu

Sobolev uzay� olsun. m> 1 ve K j=
n

xi
jja j = x1

j < x2
j < � � �< x

n j

j = b j; i= 1; : : : ;n j

o
,

[a j;b j] aral��g�n�n bir parçalan�ş� olsun.
m

∏
j=1

[a j;b j]�n�n K =
m

∏
j=1

K j tensör çarp�m

parçalan�ş� verilsin. I j polinomu; j: koordinat için interpolasyon polinomu olmak

üzere,

I := Im � � � I1 : W n
∞(K)! Pn

tensör çarp�m interpolasyon polinomu f �nin K�da bir interpolasyon polinomudur ve
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tektir. Hata fonksiyonu, α= (α1;α2; : : : ;αm) 2 Nm ve kαk=max
i

αi olmak üzere

E =� ∑
kαk=1

(�Em)
αm � � �(�E1)

α1 (2.7)

olarak verilebilir. Böylece, interpolasyon hatas� için bir üst s�n�r

v j =
1

n j"
max

a j�x�b j

���(x� x1
j)(x� x2

j) � � �(x� x
n j

j )
���

olmak üzere

kE fk∞ � ∑
kαk=1

v
α1
1 v

α2
2 � � �vαm

m



∂α1n1
1 ∂α2n2

2 � � �∂αmnm
m f




∞

ile verilebilir (Mößner ve Reif, 2009).

Teorem 2.3.10. f 2 W n
∞(K), v = (v1;v2; : : : ;vm) ve αn = (α1n1;α2n2; : : : ;αmnm)

olmak üzere tensör çarp�m interpolasyonu
m

∏
j=1

[a j;b j] üzerinde

k f � I fk∞ � ∑
kαk=1

vα k∂αn fk∞

ile s�n�rl�d�r (Mößner ve Reif, 2009).

Özel olarak 2�boyut için, aşa�g�daki di�ger bir hata formülü Lagrange polinom

interpolasyonu için verilebilir:

Ω= [a;b]� [c;d] ve f 2C(Ω) olsun. [a;b] ve [c;d] aral�klar�n�n parçalan�şlar�

a� x0 < x1 < � � �< xn � b

c� y0 < y1 < � � �< ym � d

olsun. pn;m f polinomunu

pn;m f (x;y) =
n

∑
i=0

m

∑
j=0

f (xi;y j)li(x)l j(y) (2.8)

ile tan�mlayal�m. Bu durumda pn;m f polinomu f fonksiyonunun

�
(xi;y j) : 0� i� n;0� j � m
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noktalar�nda bir interpolasyon polinomudur (Atkinson, 1997).

Teorem 2.3.11.
�
(xi;y j) : 0� i� n;0� j � m

	
�Ω ve varsayalim ki (x;y)2Ω için

∂n+1 f

∂xn+1
ve

∂m+1 f

∂xm+1
mevcut ve sürekli olsunlar. Bu durumda, 8(x;y) 2 Ω için

Λn(x) =
n

∑
i=0

jli;m(x)j Lebesgue sabiti olmak üzere (2.8) interpolasyon polinomu için

hata

j f (x;y)� pn;m f (x;y)j � jwn(x)j
(n+1)"

max
a�x�b
c�y�d

����
∂n+1 f (x;y)

∂xn+1

����

+Λn(x)
jwm(y)j
(m+1)"

max
a�x�b
c�y�d

����
∂m+1 f (x;y)

∂ym+1

����

ile s�n�rl�d�r (Atkinson, 1997).

Genel olarak polinom interpolasyonu yak�nsak sonuçlar vermez. Fakat, polinom

interpolasyonun yak�nsak sonuç vermedi�gi durumlarda, aşa�g�da tan�m� verilen

Chebyshev polinomlar�n�n kökleri

xi = cos

�
[2(n� i)+1]π

2(n+1)

�
; i= 0;1; : : : ;n

kullan�larak interpolasyon hatas� Runge�nin örne�ginde oldu�gu gibi düzeltilebilir.

Tan m 2.3.12. �1� x� 1 aral��g�nda Tn(cosθ) = cos(nθ) ile tan�ml� Tn fonksiyonuna

n�dereceli Chebyshev polinomu denir. Baska bir ifadeyle n�dereceli Chebyshev

polinomu

Tn(x) = cos(ncos�1 x); �1� x� 1

ile verilir (Powell, 1981).

Cosinüs fonksiyonunun cos [(n+1)θ] + cos [(n�1)θ] = 2cosθcos(nθ)

özelli�ginden,

Tn+1(x) = 2xTn(x)�Tn�1(x);�1� x� 1

rekürans ba�g�nt�s�n� elde ederiz. Chebyshev polinomlar� yaklaş�m teorisinde birçok

uygulamaya sahiptir ve maksimum yükseklikleri 1 oldu�gundan kullan�şl�d�r.
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Weierstrass teoreminin ispat�nda kullan�lan Bernstein operatörü, aşa�g�daki şekilde

tan�mlan�r:

Tan m 2.3.13. Bn Bernstein operatörü, n 2 N için C[a;b]�den Pn�e giden bir

operatördür ve [a;b] = [0;1] olmas� durumunda

(Bn f )(x) =
n

∑
k=0

n"

k"(n� k)"
xk(1� x)n�k f (

k

n
)

denklemi ile tan�ml�d�r (Powell, 1981).

Teorem 2.3.14. 8 f 2C[0;1] için Bn Bernstein operatörü olmak üzere fBn f j n 2 Ng
dizisi f �ye düzgün yak�nsar (Powell, 1981).

Teorem 2.3.15. 8 f 2C[a;b] ve 8ε> 0 için k f � pk∞ � ε olacak şekilde bir

p(x) = c0+ c1x+ : : :+ cnxn

cebirsel polinomu vard�r (Powell, 1981).

Tan m 2.3.16. f fonksiyonu [a;b]�de tan�ml� olsun. f �nin süreklili�ginin modülü

δ> 0 için

w(δ) = sup
jx�yj�δ

j f (x)� f (y)j

ile tan�mlan�r (Rivlin, 1969).

[a;b] aral��g�nda tan�ml� bir f fonksiyonuna Pn polinom uzay�ndan yap�lan bir en iyi

yaklaş�m�n hatas�n�

En( f ; [a;b])

ile gösterelim. Bu durumda, en iyi yaklaş�m�n hatas� Jackson�s teoremi olarak bilinen

aşa�g�daki teoremle verilir (Rivlin, 1969).

Teorem 2.3.17. f 2C[a;b] ise,

En( f ; [a;b])� 6w(
b�a

2n
):

Teorem 2.3.4�de verilen her mertebeden türevleri sürekli bir f fonksiyonu için

interpolasyon hatas� verilmişti. Eger f fonksiyonu sürekli fakat her mertebeden
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türevleri sürekli bir fonksiyon de�gilse, en genel olarak aşa�g�daki interpolasyon hata

formülü verilebilir. Bunun için, X = fx0;x1; : : : ;xng noktalar�nda f �ye yap�lan

interpolasyon polinomunun hatas�n� Gn( f ; [a;b]) ile gösterelim.

Teorem 2.3.18. f 2 C[a;b] ve T , X = fx0;x1; : : : ;xng, interpolasyon noktalar�nda

interpolasyon operatörü olmak üzere,

Gn( f ; [a;b])� (1+kTk)En( f ; [a;b])

dir (Rivlin, 1969).

Sonuç 2.3.19. f 2C[a;b] ve X = fx0;x1; : : : ;xng interpolasyon noktalar� ise,

Gn( f ; [a;b])� 6(1+kTk)w(b�a

2n
)

dir (Rivlin, 1969).

2.4. Ortogonal Polinomlar

8 f ;g 2C[a;b] için w : [a;b]! [0;∞) a�g�rl�k fonksiyonu olmak üzere

< f ;g>=

bZ

a

f (x)g(x)w(x)dx (2.9)

fonksiyonu C[a;b] üzerinde bir iç çarp�md�r.

Tan m 2.4.1. w pozitif a�g�rl�k fonksiyonu olmak üzere, (2.9) iç çarp�m� ile

S=

8
<

:
f j f : (a;b)! R;

bZ

a

f 2(x)w(x)dx< ∞

9
=

;

kümesi bir Hilbert uzay� olup L2
w(a;b) ile gösterilir.

n tane lineer ba�g�ms�z polinom fx1;x2; : : : ;xng verildi�ginde, Gram-Schmidt

ortogonalizasyon işlemi ile fe1;e2; : : : ;eng ortonormal kümesi elde edilir. Bunun için,

aşa�g�daki ad�mlar uygulan�r.
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1:ad�m: < en > ortonormal dizisinin birinci eleman� için e1 =
1
kx1kx1 al�n�r.

2:ad�m: x2 =< x2;e1 > e1+v2 yaz�l�r ve v2 vektörü s�f�r vektörü de�gildir. e2 =
1
kv2kv2

al�n�r ve < v2;e1 >= 0 d�r.

3:ad�m: v3 = x3� < x3;e1 > e1� < x3;e2 > e2 vektörü s�f�r vektörü de�gildir.

e3 =
1
kv3kv3 al�n�r ve < v3;e1 >=< v3;e2 >= 0 d�r.

...

n:ad�m: vn = xn �
n�1
∑

k=1
< xn;ek > vektörü s�f�r vektörü de�gildir ve e1;e2; : : : ;en�1

vektörlerine diktir. Böylece en=
1
kvnkvn al�narak< en> ortonormal dizisi elde edilmiş

olur.

Sonuçta derecesi n olan 8p 2 P polinomu

p(x) =
n

∑
k=0

αkek(x); αk =< p;ek >; 0� k � n

olacak şekilde tek türlü yaz�l�r ve j < k için

< ek;x j >= 0

d�r (Kreyszig, 1989).

Ortogonal polinomlara ait baz� özellikler aşa�g�da verilmiştir ve herhangi bir yaklaş�m

teorisi veya özel fonksiyonlar kitab�nda bulunabilir (örne�gin Andrews vd., 1999).

Teorem 2.4.2. kn, pn polinomunun başkatsay�s� ve

an =
kn+1

kn
; bn =�an < xpn; pn >; cn =

an

an�1
; c0 = 0

olmak üzere < pk > ortonormal dizisi

pn+1� (anx+bn)pn+ cnpn�1 = 0; n= 1;2; : : :

rekürans ba�g�nt�s�n� sa�glar.

Teorem 2.4.3. Kn(x;y) =
n

∑
k=0

pk(x)pk(y) olmak üzere pk ortogonal polinomlar�,

Christofel-Darboux formülünü

Kn(x;y) =
kn

kn+1

pn(y)pn+1(x)� pn(x)pn+1(y)

x� y
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sa�glar.

Teorem 2.4.4. (a;b) aral��g�nda pn ve pn+1 polinomlar� ortak köke sahip de�gildir.

Örnek 2.4.5. P
(α;β)
n Jacobi polinomlar�, a�g�rl�k fonksiyonu (1� x)α(1+ x)β olan

ortogonal polinomlard�r. Jacobi polinomalar�, Rodrigues formulü olarak bilinen

P
(α;β)
n =

(�1)n

2nn"
(1� x)�α(1+ x)�β dn

dxn
[(1� x)α+ j(1+ x)β+ j ]

denklemini sa�glarlar. Özel olarak, α= β= 0 için Legendre polinomlar�, α= β=
�1

2
olmas� durumunda da Chebyshev polinomlar� elde edilir.

2.5. Rasyonel Yaklaş m

Bu kesimde rasyonel yaklaş�m için temel teoremler ve rasyonel interpolasyon konusu

verilecektir. Bu kesimde verilen tan�m ve teoremler, Rivlin (1969)�nin kitab�ndan

al�nm�şt�r.

p 2 Pm; q 2 Pn olmak üzere r =
p

q
formunda yaz�labilen rasyonel fonksiyonlar�n

kümesini R(m;n) ile gösterelim öyle ki p ile q�nun hiç ortak s�f�r� olmas�n.

R(m;n) =

�
r =

p

q
j p 2 Pm; q 2 Pn; r indirgenemez

�
:

p2 Pm; q2 Pn için her
p

q
rasyonel fonksiyonu indirgenemez bir rasyonel fonksiyona,

yani R(m;n)nin bir eleman�na denktir. Derecesi n olan

q(x) = b0+b1x+ : : :+bnxn

polinomunun derecesini ∂q = n ile gösterilir. E�ger q 6= 0 sabit ise, ∂q = 0 ve q = 0

ise, ∂q=�∞ ile gösterilir. q 6= 0 oldu�gu varsay�lacakt�r.

Teorem 2.5.1. f 2C[a;b] ise, 8r 2 R(m;n) için

k f � r�k∞ � k f � rk∞

şart�n� sa�glayan 9r� 2 R(m;n) vard�r.
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Tan m 2.5.2. fxi j a� x1 < x2 < :: : < xN�1 < xN � bg kümesi

�� f (x j)� r(x j)
��= k f � rk∞ ; j = 1;2; : : : ;N

ve

f (x j)� r(x j) =�
�

f (x j+1)� r(x j+1)
�
; j = 1;2; : : : ;N�1

şartlar�n� sa�glarsa, fxi j a� x1 < x2 < :: : < xN�1 < xN � bg kümesine f � r için bir

işaret de�gişim kümesidir denir.

Teorem 2.5.3. f 2 C[a;b] ise, r =
p

q
fonksiyonu R(m;n)�den f � ye bir en iyi

yaklaş�md�r ancak ve ancak

N = 2+max(n+∂p;m+∂q)

olmak üzere f � r�nin N noktal� bir işaret de�gişim kümesi vard�r.

r�; R(m;n)�den f �ye bir en iyi yaklaş�m olmak üzere,

Em;n = Em;n( f ; [a;b]) = k f � r�k∞

ile tan�mlans�n. Bu durumda, e�ger k; l � 0 ise Em+k;n+l � Em;n ve özel olarak n � 0

için Em;n � Em;0 d�r. Böylece, e�ger f 2C[a;b] ise, Teorem 2.3.17�den

k f � r�k∞ � Em;0( f ; [a;b])� 6w

�
b�a

2m

�

elde edilir.

Rasyonel yaklaş�m� sonlu nokta kümesi üzerinde yaparsak, baz� problemler ortaya

ç�kabilir. Bunlardan birincisi, hiç en iyi yaklaş�m olmayabilir. Örne�gin, R(0;1)�den

f (0) = 1 ve f (1) = 0 ile verilen de�gerlere yaklaş�m yapmak istenilsin. Bu durumda,

r(x) =
a

bx+a
; jaj+ jbj> 0

fonksiyonu R(0;1)�dedir. r(0) = 1 ve r(1) =
a

b+a
ifadelerinden verilen bir ε> 0 için

b�yi yeteri kadar büyük seçilerek

maxfj f (0)� r(0)j ; j f (1)� r(1)jg= j f (1)� r(1)j< ε
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elde edilir. Bu da R(0;1)�den yap�lan en iyi yaklaş�m�n s�f�r hata üretmesi ile

mümkündür, bu da ancak ve ancak
a

bx+ c
fonksiyonu a = 0 için x = 1 de 0 de�gerini

al�r. Bu sefer de fonksiyon x = 0�da 1 de�gerini almaz. Böylece R(0;1)�den f �ye bir

en iyi yaklaş�m yoktur.

 Ikincisi,Teorem 2.5.3�ün ifadesi do�gru olmayabilir. Örnek olarak, f (�1) = �1;

f (12) = 2 ve f (1) = 1 de�gerleri al�ns�n.

r(x) =
�9

16x�20
2 R(0;1)

fonksiyonu için

� [ f (�1)� r(�1)] = f (
1

2
)� r(

1

2
) =� [ f (1)� r(1)] =

5

4

oldu�gundan
�
�1; 12 ;1

	
, f � r için bir işaret de�gişim kümesidir fakat

1

x
2 R(0;1)

aç�kça r�den daha iyi bir yaklaş�md�r.

Xm = fa= x1;x2; : : : ;xm = bg ve
_______
R(m;n) = R(m;n)\C[a;b] ile tan�mlayal�m.

Teorem 2.5.4. f fonksiyonu Xm üzerinde tan�ml� ise, r =
p

q
fonksiyonu

_______
R(m;n)�den

f �ye bir en iyi yaklaş�md�r; ancak ve ancak N = 2+max(n+∂p;m+∂q) olmak üzere

f � r�nin N noktal� bir işaret de�gişim kümesi vard�r.

2.5.1. Rasyonel ve Barycentric Rasyonel �Interpolasyon

Bu kesimde, diferansiyel denklemlerin çözümünde kullan�lacak olan ve m�boyutta

rasyonel interpolasyon probleminin bir çözümüne genellenecek olan, Floater ve

Hormann (2006)�n�n metodu verilecektir.

Rasyonel interpolasyon, k = m+ n+ 1 olmak üzere birbirinden farkl� x1;x2; : : : ;xk

noktalar� ve key f1; f2; : : : ; fk de!gerleri için

r(xi) = fi ; i= 1;2; : : : ;k (2.10)

şartlar�n� sa!glayan r 2 R(m;n) rasyonel fonksiyonunu belirlemektir (Rivlin, 1969).

R(m;0) olmas� durumunda, rasyonel interpolasyon (2.6)�da verilen polinom

interpolasyonu olur ve (2.10) ifadesi daima sa!glat�labilir. Fakat bu, genel olarak

rasyonel interpolasyonda olmayabilir. E!ger m = 0 ve 9 fi = 0 ise, (2.10) şart�
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gerçeklenmez.

Teorem 2.5.5. R(m;n)�de (2.10) interpolasyon probleminin en çok bir çözümü vard�r.

Berrut ve Mittelmann (1997), yüksek dereceli fonksiyonlar� kullanarak rasyonel

interpolasyonda kutuplardan kaç�nman�n mümkün olabilece!gini söylemişlerdir.

Bunun için,

r(x) =

n

∑
i=0

wi

x� xi
f (xi)

n

∑
i=0

wi

x� xi

formunda yaz�labilen interpolasyon fonksiyonlar�n� düşünelim. Böylece, iyi bir

yaklaş�m için wi a!g�rl�klar�n� belirlemek yeterli olacakt�r. pn interpolasyon

polinomunun kendisi de, barycentric formda

wi =
n

∏
j=0
j 6=i

1

xi� x j
(2.11)

al�narak yaz�labilir. Böylece (2.11)�deki a!g�rl�klar kutuplar� önler, fakat genel

interpolasyon noktalar� için iyi bir yaklaş�m vermezler. Di!ger taraftan Berrut (1988),

wi = (�1)i ; k = 0;1; : : : ;n

alarak ifadeyi basitleştirmiş ve

r(x) =

n

∑
i=0

(�1)i f (xi)

x� xi

n

∑
i=0

(�1)i
x� xi

interpolasyon fonksiyonunun R�de hiçbir kutbunun olmad�!g�n� göstermiştir. Ayr�ca,

say�sal hesaplamalarda n! ∞ için O(h) mertebeli bir yaklaş�m elde etmiştir.

Floater ve Hormann (2006), Berrut�un kulland�!g� interpolasyon fonksiyonunu da

içeren ve istenilen hata mertebesinden yaklaş�m elde etmek için barycentric

rasyonel interpolasyon fonksiyonlar� ailesi kullanarak bir yap� oluşturmuşlard�r.

8d 2 Z say�s� 0 � d � n olacak şekilde seçilsin ve 8i 2 f0;1; : : : ;n�dg için pi

polinomu, f fonksiyonunun xi;xi+1; : : : ;xi+d noktalar�ndaki interpolasyon
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fonksiyonu olsun. r fonksiyonu da,

λi(x) =
(�1)i

(x� xi) : : :(x� xi+d)

olmak üzere

r(x) =

n�d

∑
i=0

λi(x)pi(x)

n�d

∑
i=0

λi(x)

(2.12)

olarak tan�mlans�n. Bu yap�, veri noktalar� f (xi)�lere lineer olarak ba!gl�d�r ve bir rasy-

onel interpolasyon fonksiyonlar� ailesini verir. Ayr�ca, bu yap�n�n R�de hiç

kutubu yoktur ve interpolasyon fonksiyonu,

h := max
0�i�n�1

(xi+1� xi)

ve f 2Cd+2[a;b] olmak üzere h! 0 içinO(hd+1)mertebeli bir yaklaş�m verir (Floater

ve Hormann, 2006).

(2.12)�deki interpolasyon fonksiyonlar�n�n R�de kutuba sahip olmad�klar�n�

göstermek için (2.12) ifadesinin pay ve paydas�

(�1)n�d (x� x0) : : :(x� xn)

ile çarp�l�rsa,

µi(x) = (�1)n�d (x� x0) : : :(x� xn)λi(x)

olmak üzere

r(x) =

n�d

∑
i=0

µi(x)pi(x)

n�d

∑
i=0

µi(x)

(2.13)

elde edilir. (2.13) denklemi, r� nin pay ve paydas�n�n derecesinin en çok s�ras�yla

n ve n� d olabilece!gini göstermektedir. Pay ve paydan�n dereceleri n�den büyük

olmad�klar� için, r barycentric formda yaz�labilir (Floater ve Hormann, 2006). Bu

yap�y� ve bölünmüş farklar� kullanarak, Floater ve Hormann (2006) aşa!g�daki
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sonuçlar� bulmuşlard�r:

Teorem 2.5.6. Her 0 � d � n için (2.13)�deki r rasyonel fonksiyonu, R�de hiç bir

kutuba sahip de!gildir.

(2.12)�de verilen r rasyonel fonksiyonunun f �ye yak�nsamas� ve mutlak hatas� için de

Floater ve Hormann aşa!g�daki sonuçlar� bulmuşlard�r:

Teorem 2.5.7. d � 1; h = max
0�i�n�1

(xi+1� xi) ve f 2Cd+2[a;b] olsun. Bu durumda,

n�d tek ise,

kr� fk∞ � hd+1(b�a)




 f (d+2)





∞

d+2

ve n�d çift ise,

kr� fk∞ � hd+1

0

@(b�a)




 f (d+2)





∞

d+2
+




 f (d+1)





∞

d+1

1

A

dir.

Floater ve Hormann, d = 0 için O(h) yak�nsamas�n� h! 0 iken

β := max
1�i�n�2

min

�
xi+1� xi

xi� xi�1
;

xi+1� xi

xi+2� xi+1

�

ifadesi s�n�rl� oluyorsa elde etmişlerdir.

Teorem 2.5.8. Varsayal�m ki d = 0 ve f 2C2[a;b] olsun. Bu durumda, e!ger n tek ise

kr� fk∞ � h(1+β)(b�a)
k f 00k∞

2

ve n çift için

kr� fk∞ � h(1+β)

�
(b�a)

k f 00k∞

2
+


 f 0




∞

�

dir.
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2.6. Matris Normlar ve Lineer Denklem Sistemlerinin Hassasl !g 

Bu kesimde, hata analizinde kullan�lacak olan matris normlar� verilecektir.

Matris normlar� kullan�larak lineer denklem sistemlerinin hassasl�!g� için kullan�şl� bir

teorem verilecektir. Bu kesimde verilenler Watkins (2002)�den al�nm�şt�r.

Tan m 2.6.1. Cm�n üzerinde bir matris normu, kk : Cm�n ! R bir fonksiyondur ve

aşa!g�daki özellikleri sa!glar:

� X 6= 0)kXk 6= 0

� kαXk= jαjkXk

� kX+Yk � kXk+kYk

Vektör normlar�n�n bütün özellikleri matris normlar� için geçerlidir. Özel olarak, e!ger

çarp�m�n tan�ml� oldu!gu tüm X ve Y �ler için kXYk � kXkkYk oluyor ise bu norma
alt çarp�msal norm ad� verilir.

Örnek 2.6.2. Herhangi bir matris için kkF Frobenius normu

kXkF =

s

∑
i; j

��xi j

��2

olarak tan�mlan�r ve alt çarp�msald�r.

Örnek 2.6.3. ∞� normu ve 1� normu, s�ras�yla

kXk∞ =max
i

∑
j

��xi j

��

ve

kXk1 =max
j

∑
i

��xi j

��

olarak tan�mlan�r. 1�norm ve ∞�normu alt çarp�msald�r.

Teorem 2.6.4. Pmatrisi tersinir, b 6= 0, x ve �x= x+δx s�ras�yla Px= b ve P �x= b+δb

sistemlerinin çözümleri olsun. Bu durumda,

kδxk �


P�1



kδbk

eşitsizli!gi sa!glan�r.
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2.7. Bernstein Polinomlar 

S�ralama yönteminde baz polinomlar� olarak seçilen Berntein polinomlar�, aşa!g�daki

şekilde tan�mlan�r (Bhatti ve Bracken, 2007):

Tan m 2.7.1. n. derece Bernstein polinomlar�

Bk;n(x) =

�
n

k

�
xk(R� x)n�k

Rn
; k = 0;1; : : : ;n (2.14)

ile tan�mlan�r öyle ki R; Bernstein polinomlar�n�n [0;R] de polinomlar uzay�n�n bir

tam baz� olacak şekildeki en geniş aral�k olsun.

E!ger (2.14) denkleminde

(R� x)n�k =
n�k

∑
i=0

�
n� k

i

�
(�1)iRn�k�ixi

koyulursa, n: derece Bernstein polinomlar�

Bk;n(x) =
n�k

∑
i=0

�
n

k

��
n� k

i

�
(�1)i
Rk�i

xk+i:

olarak elde edilir.
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3. MATERYAL VE YÖNTEM

Bu bölümde ilk olarak baz polinomlar� olarak Bernstein polinomlar�n�n seçilmesi

durumunda elde edilen Bernstein seri çözümü olarak adland�raca!g�m�z s�ralama

metodu, adi diferansiyel, integro-diferansiyel ve pantograf denklemleri için matris

formunda verilmiştir. Floater ve Hormann (2006)�n�n vermiş oldu!gu rasyonel

interpolasyon fonksiyonunda interpolasyon polinomlar� yerine Bernstein seri çözümü

kullan�larak diferansiyel denklemlerin rasyonel fonksiyon çözümleri elde edilmiştir.

K�smi türevli diferansiyel denklemlerin çözümü için Bernstein seri çözümü

2�boyutta verilmiştir. Daha sonra m�boyutlu rasyonel interpolasyon probleminin

bir çözümü için Floater ve Hormann (2006) taraf�ndan verilen yöntem m�boyuta
genelleştirilmiştir. Bernstein seri çözümü, rasyonel fonksiyon çözümü ve rasyonel

interpolasyon fonksiyonu için için hata analizleri verilmiştir. Verilen yöntemler, di!ger

lineer fonksiyonel denklemlere de uygulanabilir.

Verilen diferansiyel denklemler için tam çözümlerin var oldu!gunu varsayal�m ve bu

tam çözümü f ile gösterelim. Bernstein seri çözümü 1� boyutta f fonksiyonuna

pn(x) =
n

∑
i=0

aiBi;n(x) (3.1)

polinomu ile pn, verilen diferansiyel denklemi fx0;x1; : : : ;xng s�ralama noktalar�nda
sa!glayan ve başlang�ç veya s�n�r koşullar�n� gerçekleyen; 2�boyutta da benzer

şekilde f fonksiyonuna

pn;n(x;y) =
n

∑
i=0

n

∑
j=0

ai jBi;n(x)B j;n(y) (3.2)

polinomu ile pnn, fx0;x1; : : : ;xng s�ralama noktalar�nda verilen k�smi diferansiyel

denklemi ve başlang�ç veya s�n�r koşullar�n� sa!glayan polinomlard�r.
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3.1. Adi Diferansiyel Denklemler �Için Bernstein Seri Çözümü

Bu kesimde,

y(k)(0) = αk; k = 0;1; : : : ;m�1 (3.3)

başlang�ç koşulu veya

y(k)(0) = βk; y(k)(R) = γk; k = 0;1; : : : ;
m

2
�1 (3.4)

s�n�r koşullar� ile verilen

m

∑
k=0

Pk(x)y
(k)(x) = g(x) (3.5)

yüksek mertebeden lineer diferansiyel denklemler için Bernstein seri çözümü

oluşturulacakt�r. Bunun için önce y = pn(x) al�narak y(k) fonksiyonlar�n�n matris

formu, daha sonra fx0;x1; : : : ;xng s�ralama noktalar� kullan�larak (3.5) denkleminin
temel matris denklemi oluşturulacakt�r. Başlang�ç veya s�n�r koşullar� için de y(k)�n�n

matris formu kullan�larak elde edilen sat�r matrisleri ile beraber (3.5) denkleminin

temel matris denklemi uygun şekilde birleştirilerek (3.1) denklemindeki katsay�lar

bulunacak ve sonuçta Bernstein seri çözümü elde edilmiş olacakt�r.

3.1.1. Temel Ba!g nt lar:

(3.5) denkleminin Bernstein seri çözümünü bulal�m. Bunun için Bernstein seri çözümü

y(x) = pn(x) ve türevleri y(k)(x) = p
(k)
n (x)�in ayr� ayr� matris formlar�n� oluştural�m.

Bn(x) =
h

B0;n(x) B1;n(x) � � � Bn;n(x)
i

ve

A=
h

a0 a1 � � � an

iT

olmak üzere

y(x) = Bn(x)A ve y(k)(x) = B
(k)
n (x)A (3.6)
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olarak yaz�labilir. Di!ger taraftan, [Bn(x)]
T ifadesi,

di j =

(
(�1) j�i

R j

�
n
i

��
n�i
j�i

�
; i� j

0 ; i> j

için

D=

2

6666
4

d00 d01 � � � d0n

d10 d11 � � � d1n

...
...

. . .
...

dn0 dn1 � � � dnn

3

7777
5

ve X(x) =
h
1 x � � � xn

i

olmak üzere

[Bn(x)]
T = D [X(x)]T

veya

[Bn(x)] = [X(x)]D
T (3.7)

olarak yaz�labilir. X(1) matrisi,

B=

2

666666666
4

0 1 0 0 � � � 0

0 0 2 0 � � � 0

0 0 0 3 � � � 0
...

...
...

...
. . .

...

0 0 0 0 0 n

0 0 0 0 0 0

3

777777777
5

olmak üzere

X(1) = X(x)B

olarak yaz�labilir. X(k) n�n matris gösterimi,

X(k) = X(k�1)(x)B= : : := X(x)Bk (3.8)
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olarak bulunur. Böylece, (3.7) ve (3.8) denklemleri (3.6)�da yerine koyularak

y(k)(x) = X(x)BkDT A (3.9)

elde edilir. (3.9), (3.5)�de yerine yaz�larak

m

∑
k=0

Pk(x)X(x)B
kDT A= g(x) (3.10)

elde edilir. 0� x0 < x1 < :: : < xn � R s�ralama noktalar� (3.10)�da koyularak

m

∑
k=0

Pk(xi)X(xi)B
kDT A= g(xi) ; i= 0;1; : : : ;n

veya k�saca temel matris denklemi

"
m

∑
k=0

PkXBkDT

#

A=WA=G (3.11)

elde edilir öyle ki

Pk =

2

6666
4

Pk(x0) 0 � � � 0

0 Pk(x1) � � � 0
...

...
. . .

...

0 0 � � � Pk(xn)

3

7777
5
; G=

2

6666
4

g(x0)

g(x1)
...

g(xn)

3

7777
5
;

X=

2

6666
4

X(x0)

X(x1)
...

X(xn)

3

7777
5
=

2

6666
4

1 x0 � � � (x0)
n

1 x1 � � � (x1)
n

...
...

. . .
...

1 xn � � � (xn)
n

3

7777
5

dir. (3.3)�deki koşullar için matris formlar� 3.9 ile

X(0)BkDT A= [αk] ; k = 0;1; : : : ;m�1 (3.12)

ve (3.4) için matris formlar�

X(0)BkDT A= [βk];

X(R)BkDT A= [γk]; k = 0;1; : : : ;
m

2
�1 (3.13)
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bulunur. Bu formlar

Uk =
h

uk0 uk1 � � � ukn

i

olmak üzere

UkA= [αk] ; k = 0;1; : : : ;m�1

veya

UkA= [βk] ;

UkA= [γk] ; k = 0;1; : : : ;
m

2
�1

olarak yaz�labilir. (3.12) veya (3.13)�ü (3.11)�in herhangi m sat�r�yla �W�n�n rank�

n+1 olacak şekilde de!giştirilerek

�WA= �G

denklem sistemi elde edilir ve bu sistemin çözümü olan katsay�lar matrisi

A=
�

�W
��1 �G

olarak yaz�labilir. A matrisi (3.6)�da yerine yaz�larak (3.5)�in Bernstein seri çözümü

elde edilmiş olur.

3.2. Gecikmeli Diferansiyel Denklemlerin Bernstein Seri Çözümü

8 j;k için Pjk(x) ve g(x) fonksiyonlar� [0;R]�de sürekli olmak üzere,

m�1
∑
k=0

ciky
(k)(xi0) = λi ; i= 0;1; : : : ;m�1 (3.14)

başlang�ç koşullar� ile verilen

y(m)(x) =
J

∑
j=0

m�1
∑
k=0

Pjk(x)y
(k)(α jx+β j)+g(x) ; 0� x� R ; m� 1 (3.15)
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diferansiyel denklemini ele alal�m öyle ki cik; λi; α j ve β j reel sabitler ve 8i için

xi0 2 [0;R]�dir. (3.15) denkleminin Bernstein seri çözümünü bulmak için (3.5)�de

bulunmayan y(k)(α jx+β j) teriminin matris gösterimi bulunacakt�r.

3.2.1. Temel Ba!g nt lar:

(3.5) denkleminden farkl� olarak (3.15) denkleminde bulunan y(k)(α jx+ β j) terimi

için matris formunu bulmak için, X(α jx+ β j) ve X (k)(α jx+ β j) matrislerini ele

alal�m. α j 6= 0 ve β j 6= 0 için

B(α j;β j) =

2

6666666
4

�0
0

��
α j

�0�
β j

�0 �1
0

��
α j

�0�
β j

�1
� � �

�
N
0

��
α j

�0�
β j

�N

0
�1
1

��
α j

�1�
β j

�0
� � �

�
N
1

��
α j

�1�
β j

�N�1

...
...

. . .
...

0 0 � � �
�

N
N

��
α j

�N �
β j

�0

3

7777777
5

ve α j 6= 0 ve β j = 0 için

B(α j;0) =

2

6666
4

�
α j

�0
0 � � � 0

0
�
α j

�1 � � � 0
...

...
. . .

...

0 0 � � �
�
α j

�N

3

7777
5

olmak üzere

X(α jx+β j) =
h
1 α jx+β j � � �

�
α jx+β j

�N
i

= X(x)B(α j;β j)

ve

X0(α jx+β j) = X(α jx+β j)B (3.16)

X(2)(α jx+β j) = X(α jx+β j)B
2

...

X(k)(α jx+β j) = X(α jx+β j)B
k
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elde edilir. Böylece (3.9) ile (3.16)�dan

y(k)(α jx+β j) = X(x)B(α j;β j)B
kDT A (3.17)

elde edilir. (3.9) ve (3.17)�yi (3.15) denkleminde yerine yazarak

X(x)BmDT A=
J

∑
j=0

m�1
∑
k=0

Pjk(x)X(x)B(α j;β j)B
kDT A+g(x) (3.18)

denklemi elde edilir. 0 � x0 < x1 < :: : < xn � R s�ralama noktalar�n� (3.18)�de

koyarak

X(xi)B
mDT A=

J

∑
j=0

m�1
∑
k=0

Pjk(xi)X(xi)B(α j;β j)B
kDT A+g(xi) ; i= 0;1; : : : ;n

veya k�saca temel matris denklemi

"

XBmDT �
J

∑
j=0

m�1
∑
k=0

P jkXB(α j;β j)B
kDT

#

A=WA=G (3.19)

elde edilir öyle ki

P jk =

2

6666
4

Pjk(x0) 0 � � � 0

0 Pjk(x1) � � � 0
...

...
. . .

...

0 0 � � � Pjk(xn)

3

7777
5
; G=

2

6666
4

g(x0)

g(x1)
...

g(xn)

3

7777
5
;

X =

2

6666
4

X(x0)

X(x1)
...

X(xn)

3

7777
5
=

2

6666
4

1 x0 � � � (x0)
n

1 x1 � � � (x1)
n

...
...

. . .
...

1 xn � � � (xn)
n

3

7777
5

dir. (3.14)�daki koşullar için matris formlar� (3.9) ile

m�1
∑
k=0

cikX(xi0)B
kDT A= [λi] ; i= 0;1; : : : ;m�1

olarak bulunur. Bu formlar

Ui =
h

ui0 ui1 � � � uin

i
(3.20)
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olmak üzere

UiA= [λi] (3.21)

olarak yaz�labilir. (3.21)�yi (3.19)�un herhangi m sat�r�yla rank( �W) = n+ 1 olacak

şekilde de!giştirilerek

�WA= �G (3.22)

denklem sistemi elde edilir. Sonuçta katsay�lar matrisi

A=
�
�W
��1 �G

olarak yaz�labilir ve a0;a1; : : : ;an katsay�lar� belirlenir.

3.3. Zay f Tekil Çekirdekli �Integro-diferansiyel Denklemlerin Bernstein Seri

Çözümleri

c; λi ve yi reel sabitler, Pi(x); g(x) fonksiyonlar� [0;R]�de sürekli, K(x; t) fonksiyonu

[0;R]� [0;R]�de sürekli olmak üzere başlang�ç koşullar�

y(i)(c) = yi ; i= 0;1; : : : ;maxfJ�1; l�1;k�1g ; 0� c� R ;

ile verilen

J

∑
i=0

Pi(x)y
(i)(x) = g(x)+λ1

xZ

0

y(k)(t)p
x� t

dt+λ2

xZ

0

K(x; t)y(l)(t)dt (3.23)

zay�f tekil çekirdekli integro-diferansiyel denklemini ele alal�m. (3.23) denkleminin

temel matris denklemini oluştural�m. (3.19) denklemine ek olarak λ1
xR

0

y(k)(t)p
x� t

dt ve

λ2
xR

0
K(x; t)y(l)(t)dt terimlerinin matris gösterimini oluştural�m. Bunun için

xZ

0

tn

p
x� t

dt =

p
πx(

1
2+n)Γ(n+1)

Γ(n+ 3
2)
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eşitli!ginden λ1
xR

0

y(k)(t)p
x� t

dt ifadesi

λ1

xZ

0

y(k)(t)p
x� t

dt = λ1QxB
kDT A

olarak yaz�labilir öyle ki

Qx =

" p
πx

1
2Γ(1)

Γ(32)

p
πx

3
2Γ(2)

Γ(52)
� � �

p
πx(

1
2+n)Γ(n+1)

Γ(n+ 3
2)

#

dir. λ2
xR

0
K(x; t)y(l)(t)dt için K(x; t) fonksiyonu [0;R]� [0;R]�de sürekli oldu!gundan

t iK(x; t) fonksiyonu t�ye göre Riemann integrallenebilirdir. Böylece,

Vx =

�
xR

0
K(x; t)dt

xR

0
K(x; t)tdt � � �

xR

0
K(x; t)tndt

�

olmak üzere

λ2

xZ

0

K(x; t)y(l)(t)dt = λ2VxB
kDT A

yaz�labilir. Sonuçta, (3.23) denklemi

J

∑
i=0

Pi(x)X(x)B
iDT A= g(x)+λ1QxB

kDT A+λ2VxB
kDT A (3.24)

formunda yaz�labilir. 0� x0 < x1 < :: : < xn � R s�ralama noktalar� (3.24)�de yerine

koyularak, (3.23) denklemi için temel matris denklemini

WA=

 
J

∑
i=0

PiXBiDT �λ1QBkDT �λ2VBkDT

!

A=G

olarak elde edilir öyle ki

Pi =

2

6666
4

Pi(x0) 0 � � � 0

0 Pi(x1) � � � 0
...

...
. . .

...

0 0 � � � Pi(xn)

3

7777
5
;
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V=

2

6666
4

Vx0

Vx1
...

Vxn

3

7777
5
; Q=

2

6666
4

Qx0

Qx1
...

Qxn

3

7777
5
;G=

2

6666
4

g(x0)

g(x1)
...

g(xn)

3

7777
5

dir. (3.20) kullan�larak başlang�ç koşullar� W�n�n sat�rlar� ile uygun şekilde yer

de!giştirelerek A katsay�lar matrisi (3.22)�de oldu!gu gibi elde edilir ve sonuçta

Bernstein seri çözümü bulunmuş olur.

3.4. Yüksek Mertebeden Lineer Diferansiyel Denklemlerin Rasyonel

Fonksiyon Çözümü

Bu kesimde,

y(k)(0) = αk; k = 0;1; : : : ;m�1

başlang�ç koşulu veya

y(k)(0) = βk; y(k)(R) = γk; k = 0;1; : : : ;
m

2
�1

s�n�r koşullar� ile verilen

m

∑
k=0

Pk(x)y
(k)(x) = g(x) (3.25)

yüksek mertebeden lineer diferansiyel denklemler ele al�nacak ve Osman vd. (2011)

taraf�ndan ilk defa verilen bir rasyonel fonksiyon çözümü tan�t�lacakt�r. Bu çözüm,

Floater ve Hormann (2006) taraf�ndan verilen rasyonel interpolasyon fonksiyonunda;

r(x) =

n�d

∑
i=0

λi(x)pi(x)

n�d

∑
i=0

λi(x)

pi interpolasyon polinomlar� yerine (3.25)�in fxi;xi+1; : : : ;xi+dg noktalar� kullan�larak
elde edilen Bernstein seri çözümü al�nacakt�r. (3.25)�in Bernstein seri çözümü, d = n

durumuna karş�l�k gelen rasyonel fonksiyon çözümü oldu!gundan, farkl� d de!gerleri

için Bernstein seri çözümünden daha iyi sonuçlar bulunabilir.
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3.5. K smi Diferansiyel Denklemlerin Bernstein Seri Çözümü

Bu kesimde, k�smi diferansiyel denklemlerin (3.2) denklemi ile verilen Benstein seri

çözümü oluşturulacakt�r. Bunun için, Ω = [0;R1]� [0;R2], P; R, S, T , U , V ve G�de

Ω�da tan�ml� fonksiyonlar olmak üzere

P
∂2u

∂x2
+R

∂2u

∂x∂y
+S

∂2u

∂y2
+T

∂u

∂x
+U

∂u

∂y
+Vu= G (3.26)

denklemi aşa!g�daki kar�ş�k koşullar ile verilmiş olsun:

� Durum 1: (αk;βk) 2 ∂Ω; ak
i; j�lar sabitler olmak üzere

t

∑
k=1

1

∑
i=0

1

∑
j=0

ak
i; ju

(i; j)(αt ;βt) = λt ;

� Durum 2: (x;γk) 2 ∂Ω ve bk
i; j�lar sabitler olmak üzere

p

∑
k=1

1

∑
i=0

1

∑
j=0

bk
i; ju

(i; j)(x;βk) = k(x);

� Durum 3: (ηk;y) 2 ∂Ω ve ck
i; j�lar sabitler olmak üzere

m

∑
k=1

1

∑
i=0

1

∑
j=0

ck
i; ju

(i; j)(ηk;y) = h(y):

pn;n Bernstein seri çözümünü elde etmek için, Bölüm 3.1�dekine benzer şekilde pn;n

ve türevlerinin matris formlar� oluşturulup (3.26) için temel matris denklemi

oluşturulacakt�r. S�ralama noktalar� olarak f(xi;y j) : 0� i; j � ng kümesi al�nacakt�r.

pn;n, (3.26)�nin Bernstein seri çözümü olsun. pn;n,

Qn(y) =

2

6666
4

Bn(y) 0 � � � 0

0 Bn(y) � � � 0
...

...
. . .

...

0 0 � � � Bn(y)

3

7777
5
;

A=
h

a00 a01 � � � a0n a10 a11 � � � a1n � � � an1 an2 � � � ann

i
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olmak üzere

pn;n(x;y) = Bn(x)Qn(y)A (3.27)

olarak yaz�labilir. Şimdi, (3.26)�n�n Bernstein seri çözümünü elde edebilmek için,

(3.27)�nin ve türevlerinin matris ba!g�nt�lar�n� oluştural�m. Bölüm 3.1�de

[Bn(x)]
(k) = X(x)BkDT

oldu!gu verilmişti. Qn(y) matrisi,

Qn(y) = Ȳ(y)D̄

olarak yaz�labilir öyle ki burada

Ȳ(y) =

2

6666
4

Y(y) 0 � � � 0

0 Y(y) � � � 0
...

...
. . .

...

0 0 � � � Y(y)

3

7777
5
; Y(y) =

h
1 y � � � yn

i
;

D̄ =

2

6666
4

DT 0 � � � 0

0 DT � � � 0
...

...
. . .

...

0 0 � � � DT

3

7777
5

matrisleridir. Ȳ(y)(l) matrisi de,

B̄=

2

6666
4

B 0 � � � 0

0 B � � � 0
...

...
. . .

...

0 0 � � � B

3

7777
5

olmak üzere

Ȳ(y)(l) = Ȳ(y)B̄l

dir ve sonuçta, pn;n(x;y)
(k;l) =

∂k+l pn;n(x;y)

∂xk∂yl
olmak üzere

pn;n(x;y)
(k;l) = X(x)BkDT Ȳ(y)B̄lD̄A (3.28)
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elde edilir. (3.27) ve (3.28) denklemleri (3.26)�de yerine yaz�l�rsa, temel matris

denklemi

�
P(x;y)X(x)B2DT Ȳ(y)D̄+R(x;y)X(x)BDT Ȳ(y)B̄D̄ (3.29)

+S(x;y)X(x)DT Ȳ(y)B̄2D̄+T (x;y)X(x)BDT Ȳ(y)D̄

+U(x;y)X(x)DT Ȳ(y)B̄D̄+V (x;y)X(x)DT Ȳ(y)D̄
�
A= G(x;y)

olarak elde edilir. S�ralama noktalar� f(xi;y j) : 0 � i; j � ng (3.29) denkleminde

önce i sabit olacak şekilde yerine yaz�larak (n+ 1)2 tane sat�r matris elde edilir. Bu

matrisleri sat�r kabul eden matrise W matrisi diyelim. G matrisi ile de G(x;y)�nin

s�ralama noktalar�nda önce i sabit olacak şekilde ald�!g� de!gerler ile oluşan sütun

matrisini gösterelim:

[G]1i = G(xt ;yl); t =

�����
i

n+1

����

�
; l = i� t(n+1)�1:

Böylece,

WA=G (3.30)

sistemi elde edimiş olur.

Koşullar için matris formu (3.27) ve (3.28) kullan�larak aşa!g�da herbir durum için

verilmiştir:

� Durum 1: (αk;βk) 2 ∂Ω; ak
i; j�lar sabitler olmak üzere

C1;tA=
t

∑
k=1

1

∑
i=0

1

∑
j=0

ak
i; jX(αt)B

iDT Ȳ(βt)B̄
jD̄A= λt ; (3.31)

� Durum 2: (x;γk) 2 ∂Ω ve bk
i; j�lar sabitler olmak üzere t = 0;1; : : : ;n için

C2;tA=
p

∑
k=1

1

∑
i=0

1

∑
j=0

bk
i; jX(xt)B

iDT Ȳ(βk)B̄
jD̄A= k(xt); (3.32)

� Durum 3: (ηk;y) 2 ∂Ω ve ck
i; j�lar sabitler olmak üzere t = 0;1; : : : ;n için

C3;tA=
m

∑
k=1

1

∑
i=0

1

∑
j=0

ck
i; jX(αk)B

iDT Ȳ(yt)B̄
jD̄A= h(yt): (3.33)
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(3.31), (3.32) ve (3.33)�de verilen denklem sistemleri s�ras�yla

C1A=G1;

C2A=G2

ve

C3A=G3

olarak yaz�labilir öyle ki burada [G1]t1 = λt , [G2]t1 = k(xt) ve [G3]t1 = h(yt)�dir.

[W;G] sistemi ile [C1;G1]; [C2;G2] ve [C3;G3] sistemleri birleştirilerek elde edilen

yeni sistemi
�

�W; �G
�
ile gösterilsin:

�
�W; �G

�
=

2

6666
4

W ; G

C1 ; G1

C2 ; G2

C3 ; G3

3

7777
5
:

�
�W; �G

�
sistemi m� n, m > n tipinde bir sistem olup Gauss sat�r indirgeme yolu ile

elde edilen ve s�f�rdan farkl� olan k�sm�n�
�
W̄;Ḡ

�
ile gösterelim. Bu durumda A

matrisi e!ger W̄ matrisi tersinir ise

A= W̄
�1

Ḡ

ile bulunur. E!ger W̄ matrisi tersinir de!gilse s�ralama noktalar� W̄ matrisi tersinir

olacak şekilde de!giştirilmelidir. Di!ger bir yöntem olarak, e!ger matrisler çok büyük

boyutlu de!gilse, W�n�n yar� tersi de

�W�1
yar = (W

T W)�1WT

A matrisini bulmak için kullan�labilir.

3.6. m�Boyutta Rasyonel �Interpolasyon Fonksiyonu

Bu kesimde, m�boyutta rasyonel interpolasyon probleminin bir çözümü olarak

Floater ve Hormann (2006) taraf�ndan verilen yöntem m�boyut için genellenmiştir.
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m�de!gişkenli f fonksiyonu ve 1 � j � m için 0 � d j � n tamsay�lar� verilsin.

0� i j � n�d j ve 1� j � m için, pi1;i2:::;im polinomu f �nin

�
(xt1

1 ;x
t2
2 ; : : : ;x

tm
m ) : i j � t j � i j+d j;1� j � m

	

noktalar ndaki interpolasyon polinomu olsun. r rasyonel fonksiyonunu da

x= (x1;x2; : : : ;xm)

λi1;i2;:::;im(x) =
(�1)

m

∑
k=1

ik

i1+d1

∏
i=i1

�
x1� x

j
1

�
: : :

im+dm

∏
i=im

�
xm� x

j
m

�

olmak üzere

r =

n�d1

∑
i1=0

n�d2

∑
i2=0

� � �
n�dm

∑
im=0

λi1;i2;:::;im pi1;i2;:::;im

n�d1

∑
i1=0

n�d2

∑
i2=0

� � �
n�dm

∑
im=0

λi1;i2;:::;im

(3.34)

ile tan mlayal m. (3.34) fonksiyonunun Rm�de hiç bir köke sahip olmad !g , Teorem

3.6.1�de ispatlanm şt r:

Teorem 3.6.1. (3.34)�de tan mlanan rasyonel fonksiyonunun Rm�de hiç kökü yoktur.

Kan t: Teoremin ispat nda kullan lacak olan µi1;:::;im fonksiyonunu

µi1;:::;im(x) =
i1�1

∏
k=0

�
x1� xk

1

� n

∏
k=i1+d1+1

�
xk

1� x1
�

� � �
im�1

∏
k=0

�
xm� xk

m

� n

∏
k=im+dm+1

�
xk

m� xm

�

olarak tan mlayal m. (3.34)�nin pay ve paydas n n

(�1)
nm�

m

∑
k=0

dk n

∏
k=0

�
x1� xk

1

�
� � �

m

∏
k=0

�
xm� xk

m

�
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ile çarp lmas 

r =

n�d1

∑
i1=0

n�d2

∑
i2=0

� � �
n�dm

∑
im=0

µi1;i2;:::;im pi1;i2;:::;im

n�d1

∑
i1=0

n�d2

∑
i2=0

� � �
n�dm

∑
im=0

µi1;i2;:::;im

(3.35)

ifadesini verir. (3.35)�in paydas 

n�d1

∑
i1=0

µi(x1) � � �
n�dm

∑
im=0

µi(xm)

ifadesine eşittir ve Teorem 2.5.6�dan (3.35)�in paydas pozitiftir.

m= 2 için (3.34) rasyonel fonksiyonunun hatas n inceleyelim. (x;y) 2 (xα;xα+1)�
(xβ;xβ+1) ve d1;d2 > 0 olsun.

I1 = fi : i� α�d1;0� i� n�d1g ;
I2 = fi : α�d1+1� i� α;0� i� n�d1g ;
I3 = fi : α+1� i;0� i� n�d1g

olmak üzere s(x) =
n�d1

∑
i=0

µi(x); h1 = max
0�i�n�1

jxi+1� xij ve j 2 I2 için Floater ve

Hormann (2006),

�����

n�d1

∑
i=0

λi(x)

�����
=

s(x)
n

∏
i=0
jx� xij

�
µj(x)

n

∏
i=0
jx� xij

� 1

d1"hd1+1
1

oldu!gunu göstermişlerdir. Benzer şekilde, s(x;y) =
n�d1

∑
i=0

n�d2

∑
j=0

µi; j(x;y) olmak üzere

�����

n�d1

∑
i=0

n�d2

∑
j=0

λi; j(x;y)

�����
= s(x;y)

n

∏
i=0
jx�xij

n

∏
i=0
jy�yij

� µj(x)s(y)
n

∏
i=0
jx�xij

n

∏
i=0
jy�yij

� s(y)

d1"h
d1+1
1

n

∏
i=0
jy�yij

olarak yaz labilir. Bununla beraber, h1 = max
0�i�n�1

jxi+1� xij ve
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t1 = min
0�i�n�1

jxi+1� xij olmak üzere

jµi(x)j
s(x)

� h1

t1
(3.36)

dir. Bunu ispatlamak için, ilk olarak i 2 I1 olsun. Bu durumda, jµi(x)j �
��µα�d1

(x)
��

olup jx� xα�d1j �
h1

t1
jx� xα+d1+1j oldu!gundan

��µα�d1
(x)
��

µα+d1+1(x)
� h1

t1

ve böylece
jµi(x)j
s(x)

� h1

t1
elde edilir. i2 I2 için µi(x)> 0 oldu!gundan eşitsizlik sa!glan r.

Benzer ad mlar i 2 I3 için de gösterilebilir.

Teorem 3.6.2. d1;d2 > 0; f 2 W n+1
∞ ([a1;b1]� [a2;b2]) ve

�
(xi;y j) : 0� i; j � n

	

interpolasyon noktalar olsun. Bu durumda,

h1 = max
0�i�n�1

jxi+1� xij ;h2 = max
0�i�n�1

jyi+1� yij ;

t1 = min
0�i�n�1

jxi+1� xij ; t2 = min
0�i�n�1

jyi+1� yij

olmak üzere

k f � rk∞ � (n�d1)(n�d2)

�
h

d1+1
1

t1(d1+1)




∂d1+1 f

∂xd1+1





∞
+

h
d2+1
2

t2(d2+1)




∂d2+1 f

∂yd2+1





∞

�

+
(n�d1)(n�d2)h

d1+1
1 h

d2+1
2

(d1+1)(d2+1)




 ∂d1+d2+2 f

∂xd1+1∂yd2+1





∞

eşitsizli!gi sa!glan r.

Kan t: f � r hata fonksiyonu interpolasyon noktalar nda s f r oldu!gundan

[a1;b1]� [a2;b2]n
�
(xi;y j) : 0� i; j � n

	

için hatay belirleyelim. f � r fonksiyonu, 8(x;y) için

f (x;y)� r(x;y) =

n�d1

∑
i1=0

n�d2

∑
i2=0

λi1;i2(x;y) [ f (x;y)� pi1;i2(x;y)]

n�d1

∑
i1=0

n�d2

∑
i2=0

λi1;i2(x;y)
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dir. Hata fonksiyonunun pay için bir üst s n r ve paydas için bir alt s n r

bulunacakt r. E = f � pi1;i2 fonksiyonu (2.7) ile E = E1 + E2 � E1E2 olarak

yaz labilir. Böylece,

j( f � r)(x;y)j �

1

(d1+1)"

n�d1

∑
i1=0

n�d2

∑
i2=0

1��wi2(y)

��






∂d1+1 f

∂xd1+1






∞

n�d1

∑
i1=0

n�d2

∑
i2=0

λi1;i2(x;y)

+

1

(d2+1)"

n�d1

∑
i1=0

n�d2

∑
i2=0

1��wi1(x)

��






∂d2+1 f

∂yd2+1






∞

n�d1

∑
i1=0

n�d2

∑
i2=0

λi1;i2(x;y)

+

1

(d1+1)"(d2+1)"

n�d1

∑
i1=0

n�d2

∑
i2=0






∂d1+d2+2 f

∂xd1+1∂yd2+1






∞

n�d1

∑
i1=0

n�d2

∑
i2=0

λi1;i2(x;y)

(3.37)
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olarak bulunur. (3.36)�dan (3.37) ifadesi

j( f � r)(x;y)j �

1

(d1+1)"

n�d1

∑
i1=0

n�d2

∑
i2=0

1��wi2(y)

��






∂d1+1 f

∂xd1+1






∞

s(y)

d1"h
d1+1
1

n
∏

i=0
jy�yij

+

1

(d2+1)"

n�d1

∑
i1=0

n�d2

∑
i2=0

1��wi1(x)

��






∂d2+1 f

∂yd2+1






∞

s(x)

d2"h
d2+1
2

n
∏

i=0
jx�xij

+

1

(d1+1)"(d2+1)"

n�d1

∑
i1=0

n�d2

∑
i2=0






∂d1+d2+2 f

∂xd1+1∂yd2+1






∞

1

d1"h
d1+1
1 d2"h

d2+1
2

� h
d1+1
1

d1+1

n�d1

∑
i1=0

n�d2

∑
i2=0

��µi2
(y)
��

s(y)




∂d1+1 f

∂xd1+1





∞

+
h

d2+1
2

d2+1

n�d1

∑
i1=0

n�d2

∑
i2=0

��µi2
(x)
��

s(x)




∂d2+1 f

∂yd2+1





∞

+
h

d1+1
1 h

d2+1
2

(d1+1)(d2+1)

n�d1

∑
i1=0

n�d2

∑
i2=0




 ∂d1+d2+2 f

∂xd1+1∂yd2+1





∞

� (n�d1)(n�d2)
h

d1+2
1

t1(d1+1)




∂d1+1 f

∂xd1+1





∞

+(n�d1)(n�d2)
h

d2+2
2

t2(d2+1)




∂d2+1 f

∂yd2+1





∞

+
(n�d1)(n�d2)h

d1+1
1 h

d2+1
2

(d1+1)(d2+1)




 ∂d1+d2+2 f

∂xd1+1∂yd2+1





∞

ile s n rl d r.

Teorem 3.6.3. d1;d2; : : : ;dm > 0; f 2W n+1
∞

 
m

∏
i=0

[ai;bi]

!

ise,

hi = max
0�k�n�1

���xk+1
i � xk

i

��� ;ve ti = min
0�k�n�1

���xk+1
i � xk

i

���

olmak üzere

k f � rk∞ �
m

∏
i=0

(n�di) ∑
kαk∞=1

�
h

t

�α

hα(d+1)



∂α(d+1) f





∞
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dir öyle ki burada

α(d+1) = (α1(d1+1);α2(d2+1); : : : ;αm(dm+1));

h= (h1;h2; : : : ;hm); t = (t1; t2; : : : ; tm)

dir.

Kan t: s(x1;x2; : : : ;xm) =
n�d1

∑
i=0

µi(x1)
n�d2

∑
i=0

µi(x2) � � �
n�d2

∑
i=0

µi(xm) olmak üzere

��µi1;i2;:::;im(x1;x2; : : : ;xm)
��

s(x1;x2; : : : ;xm)
� 1

eşitsizli!gi ve Teorem 3.6.2�deki ad mlar kullan larak ispatlan r.

Teorem 3.6.2 ile verilen üst s n r, ti ! 0 için s n rs z oldu!gundan eşit aral kl 

da!g l mlar için daha kullan şl bir hata s n r d r.

3.7. K smi Diferansiyel Denklemlerin Rasyonel Fonksiyon Çözümü

(3.26) ile verilen k smi türevli diferansiyel denklemlerin Bernstein seri çözümü

Bölüm 3.5.�te verilmişti. (3.34) denkleminde interpolasyon polinomlar yerine (3.2)

ile verilen Bernstein seri çözümleri al n rsa, (3.26) denklemi için bir r rasyonel

fonksiyon çözümü bulunmuş olur. n = d1 = d2 olmas durumunda Bernstein seri

çözümü elde edilece!ginden, rasyonel fonksiyon çözümleri ile Bernstein seri

çözümünden daha iyi sonuçlar elde edilebilir.

3.8. Bernstein Seri Çözümlerinin Hata Analizi

Bu kesimde, yukar da verilen Bernstein seri çözümler için önce hata analizleri

verilecektir. Daha sonra çözümün bilinmedi!gi durumlarda da kullan labilecek olan

Oliveira (1980), Çelik (2005), Çelik (2006) ve Shahmorad (2005) taraf ndan

verilen kalan do!grulamas (residuel correction), Bernstein polinomlar için

düzenlenerek hata tahmini de verilecektir.
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3.8.1. Adi Diferansiyel Denklemler !Için Bernstein Seri Çözümünün

Hata Analizi

f fonksiyonu ve f �nin fx0;x1; : : : ;xng noktalar ndaki pn f interpolasyon polinomu

verilsin. E!ger f yeteri kadar düzgün ise, f fonksiyonu f = pn f +Kn olarak yaz labilir

öyle ki burada

Kn(x) =
1

(n+1)"

n

∏
j=0

(x� x j) f (n+1)(ξ)

hata fonksiyonudur. E!ger pn polinomu (3.5)�nin Bernstein seri çözümü ise, (3.5)

denklemini s ralama noktalar nda sa!glar. Böylece,

[∆G]i1 =
h
�Pm(xi)K

(m)
n (xi)�Pm�1(xi)K

(m�1)
n (xi)��� ��P0(xi)Kn(xi)

i

i1

olmak üzere pn ve pn f s ras yla W̄A= Ḡ ve W̄ �A= Ḡ+∆G deklemlerinin

çözümleridir.

Teorem 3.8.1. pn ve f (3.5) denkleminin s ras ile Bernstein seri çözümü ve tam

çözümü olsun. pn f polinomu f �nin s ralama noktalar ndaki interpolasyon polinomu

ve �W, A, �A, �G, ∆G , matrisleri yukar da tan mlanan matrisler olsun. E!ger

f 2Cn+1[0;R] ise,

j f (x)� pn(x)j � jKn(x)j+k∆Gk


 �W�1





DT


kX(x)k

eşitsizli!gi sa!glan r.

Kan t: Mutlak de!ger özelliklerinden,

j f (x)� pn(x)j � j f (x)� pn f (x)j+ jpn(x)� pn f (x)j

dir. f 2Cn+1[0;R] oldu!gundan dolay , Teorem 2.3.4�den sa!gdaki ilk terim jKn(x)j�e
eşittir ve ikinci terim için bir üst s n r aşa!g daki ad mlar norm özellikleri ve Teorem

2.6.4 uygulanarak elde edilmiş olur:

jpn(x)� pn f (x)j=
���Bn(x)(A� �A)

���� kBn(x)k



(A� �A)






� kX(x)k


DT



k∆Gk


 �W�1



 :
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Tam çözümün bilinmedi!gi durumlarda Teorem 3.8.1�den en = f � pn hata

fonksiyonuna e�m fonksiyonu ile yaklaş labilir ve e!ger en � e�m hatas yeteri kadar

küçükse, e�m hataya yaklaş m fonksiyonu ile en hata fonksiyonu tahmin edilebilir.

Uygulamada m � n seçilmesi ile daha tutarl sonuçlar elde edilmiştir. e�m� bulmak

için önce en�nin diferansiyel denklemini kural m. (3.5) denkleminin her iki taraf na 

�
m

∑
k=0

Pk(x)p
(m)
n (x)

!

eklenirse, en hata fonksiyonu

m

∑
k=0

Pk(x)e
(m)
n (x) = g(x)�

m

∑
k=0

Pk(x)p
(m)
n (x)

diferansiyel denklemini sa!glar. Başlang ç ve s n r koşullar da s ras yla

e(k)(0) = 0; k = 0;1; : : : ;m�1

başlang ç koşulu veya

e(k)(0) = 0; e(k)(R) = 0; k = 0;1; : : : ;
m

2
�1

koşullar na dönüşür. Yeteri kadar küçük ε için jen� e�mj � ε oluyorsa, min
n
kenk∞

ifadesini sa!glayan n say s n n seçimi, ke�mk∞ ile hesaplanabilir. Benzer şekilde

min
n
kenk2 say s n sa!glayan n say s da benzer şekilde tayin edilebilir. Aç kça,

pn+ e�m polinomu (3.5) denkleminin bir yaklaş k çözümüdür ve farkl m de!gerleri

için daha iyi bir yaklaş m elde edilebilir.

Sonuç 3.8.2. Yukar daki gösterimler ile, e!ger pn polinomu (3.5)�nin Bernstein seri

çözümü ise, pn+ e�m da (3.5)�nin di!ger bir yaklaş k çözümüdür ve yaklaş m n hatas 

en� e�m kadard r.

Bulunan bu sonuçlar, gecikmeli diferansiyel denklemler, integro-diferansiyel

denklemler ve k smi diferansiyel denklemler için genellenmiştir.
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3.8.2. Gecikmeli Diferansiyel Denklemler !Için Bernstein Seri

Çözümünün Hata Analizi

f 2Cn+1[0;R] ise, f fonksiyonu 8x için

f (x) = pn f (x)+Kn = pn f (x)+
1

(n+1)"

n

∏
j=0

(x� x j) f (n+1)(ξ)

olarak yaz labilir ve bir önceki kesimdekine benzer olarak (3.15)�in Bernstein seri

çözümü pn ve (3.15)�in s ralama noktalar ndaki interpolasyon polinomu pn f

[∆G]i1 =

"

�K
(m)
n (xi)+

J

∑
j=0

m�1

∑
k=0

Pjk(x)K
(k)
n (α jx+β j)

#

i1

için s ras yla W̄A= Ḡ ve W̄ �A= Ḡ+∆G deklemlerinin çözümleridir.

Teorem 3.8.3. pn ve f (3.15) denkleminin s ras ile Bernstein seri çözümü ve tam

çözümü olsun. pn f polinomu f �nin s ralama noktalar ndaki interpolasyon polinomu

ve �W, A, �A, �G, ∆G , matrisleri yukar da tan mlanan matrisler olsun. E!ger

f 2Cn+1[0;R] ise,

j f (x)� pn(x)j � jKn(x)j+k∆Gk


 �W�1





DT


kX(x)k

eşitsizli!gi sa!glan r.

Kan t: Teorem 3.8.1�in ispat na benzer şekilde yap l r.

Hata fonksiyonunun tahmini de Bölüm 3.8.1.�dekine benzer şekilde yap labilir.

en = f � pn hata fonksiyonuna e�m fonksiyonu ile yaklaş l rsa ve e!ger jen� e�mj � ε

ise, e�m ile en fonksiyonu tahmin edilebilir. (3.15) denkleminin her iki taraf na

�p
(m)
n (x)�

J

∑
j=0

m�1

∑
k=0

Pjk(x)p
(k)
n (α jx+β j)

eklenirse, en hata fonksiyonu

e(m)(x) =
J

∑
j=0

m�1
∑

k=0
Pjk(x)e

(k)(α jx+β j)� p
(m)
n (x)

+
J

∑
j=0

m�1
∑

k=0
Pjk(x)p

(k)
n (α jx+β j)+g(x)
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m�1

∑
k=0

cike
(k)(xi0) = 0 ; i= 0;1; : : : ;m�1

diferansiyel denklemini sa!glar. jen� e�mj � ε ise min
n
kenk∞ ve min

n
kenk2 say lar n 

veren n say lar belirlenebilir.

Sonuç 3.8.4. Yukar daki gösterimler ile, e!ger pn polinomu (3.15) denkleminin

Bernstein seri çözümü ise, pn+ e�m da (3.15) denkleminin hata fonksiyonu en� e�m
olan di!ger bir yaklaş k çözümüdür.

3.8.3. Zay f Tekil Çekirdekli !Integro-diferansiyel Denklemler !Için Bernstein

Seri Çözümünün Hata Analizi

E!ger f yeteri kadar düzgün ise, yukar dakilere benzer olarak f fonksiyonu

f = pn f +Kn

olarak yaz l p

[∆G]i1 =
h
Pm(xi)K

(m)
n (xi)+Pm�1(xi)K

(m�1)
n (xi)+ � � �P0(xi)Kn(xi)

i

i1

olmak üzere (3.23)�ün pn Bernstein seri çözümü ve s ralama noktalar ndaki pn f

interpolasyon polinomu s ras yla �WA = �G ve �W �A = �G + ∆G deklemlerinin

çözümleridir.

Teorem 3.8.5. pn ve f (3.23) denkleminin s ras ile Bernstein seri çözümü ve tam

çözümü olsun. pn f polinomu f �nin s ralama noktalar ndaki interpolasyon polinomu

ve �W, A, �A, �G, ∆G , matrisleri yukar da tan mlanan matrisler olsun. E!ger

f 2Cn+1[0;R] ise,

j f (x)� pn(x)j � jKn(x)j+k∆Gk


 �W�1





DT


kX(x)k

eşitsizli!gi sa!glan r.

Kan t: Teorem 3.8.1�in ispat na benzer şekilde yap l r.

Hatan n tahmini de benzer şekilde yap labilir. (3.23) denkleminin her iki taraf na

�
J

∑
i=0

Pi(x)p
(i)
n (x)+λ1

xZ

0

p
(k)
n (t)p
x� t

dt+λ2

xZ

0

K(x; t)p
(l)
n (t)dt
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eklenirse, en hata fonksiyonu

J

∑
i=0

Pi(x)e
(i)
n (x) = g(x)+λ1

xZ

0

e
(k)
n (t)p
x� t

dt+λ2

xZ

0

K(x; t)e
(l)
n (t)dt

�
J

∑
i=0

Pi(x)p
(i)
n (x)+λ1

xZ

0

p
(k)
n (t)p
x� t

dt

+λ2

xZ

0

K(x; t)p
(l)
n (t)dt

diferansiyel denklemini sa!glar ve başlang ç koşullar da

e
(i)
n (c) = 0 ; i= 0;1; : : : ;maxfJ�1; l�1;k�1g

olur. En iyi yaklaş m veren n say s , jen� e�mj hatas gözard edilebilecek kadar

küçükse, kenk∞ veya kenk2 ölçülerek bulunabilir. Aç kça, pn+ e�m (3.23)

denkleminin bir yaklaş k çözümüdür ve farkl m de!gerleri için daha iyi bir yaklaş m

elde edilebilir.

Sonuç 3.8.6. Yukar daki gösterimler ile, e!ger pn polinomu (3.23)�in Bernstein seri

çözümü ise, pn+ e�m da (3.23)�in di!ger bir yaklaş k çözümüdür ve yaklaş m n hata

fonksiyonu en� e�m fonksiyonudur.

3.8.4. Yüksek Mertebeden Lineer Diferansiyel Denklemler !Için

Rasyonel Fonksiyon Çözümünün Hata Analizi

r fonksiyonu (3.25)�in rasyonel fonksiyon çözümü olsun. Teorem 3.8.1 ve Floater ve

Hormann (2006)� n sonuçlar kullan larak aşa!g daki sonuç elde edilir:

Sonuç 3.8.7. r ve f (3.25) denkleminin s ras ile rasyonel fonksiyon çözümü ve tam

çözümü olsun. Bu durumda e!ger f 2Cd+2[0;R] ise,

j f (x)� r(x)j � max
i

n
Kd(x)+k∆Gik




 �W�1
i







DT







 1 x � � � xd





o

+O(hd+1)

eşitsizli!gi sa!glan r öyle ki ∆Gi ve �W�1
i matrisleri fxi;xi+1; : : : ;xi+dg ile ilişkili

matrislerdir.
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Kan t: f � r hata fonksiyonu

f (x)� r(x) =

n�d

∑
i=0

λi(x) [ f � pi] (x)

n�d

∑
i=0

λi(x)

yaz larak her bir parça için Teorem 3.8.1 uygulan rsa istenen sonuç elde edilmiş olur.

3.8.5. K smi Diferansiyel Denklemler !Için Bernstein Seri Çözümünün Hata

Analizi

f fonksiyonu (3.26)�n n tam çözümü ve pn;n f polinomu da f �nin s ralama

noktalar ndaki Lagrange interpolasyon polinomu olsun. E!ger f yeteri kadar düzgünse,

f fonksiyonu f (x;y) = pn;n f (x;y) + K(x;y) olarak yaz labilir öyle ki K

Teorem 2.3.11�de verilen ζ;η 2 (0;R) için

K(x;y) =
wn(x)

(n+1)"

∂n+1 f (ζ;y)

∂xn+1
+

n

∑
i=0

li;n(x)
wn(y)

(n+1)"

∂m+1 f (xi;η)

∂ym+1
;

hata fonksiyonudur.

p̄n;n fonksiyonu, (3.26)�n n A katsay lar matrisi özel olarak [ �W; �G] matrisinin lineer

ba!g ms z (n+ 1)2 sat r ndan elde edilen Bernstein seri çözümü, yani A= �W
�1
ö

�Gö

olmak üzere p̄n;n = Bn(x)Bn(y)A olsun öyle ki burda �Wö matrisi �W�n n (n+1)2 tane

lineer ba!g ms z sat rlar n ve �Gö�de bu sat rlara karş l k gelen de!gerleri

göstermektedir:
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p̄n;n = Bn(x)Bn(y)A; A= �W
�1
ö

�Gö (3.38)

Bu durumda p̄n;n; (3.26)�y s ralama noktalar nda sa!glar. Böylece p̄n;n (3.30)�da

verilen �WöA= �Gö, pn;n f �te �WöĀ= �Gö+∆G denklemlerinin çözümleridir öyle ki

[∆G]i1 = [(PKxx+RKx;y+SKyy+TKx+UKy+VK)(xr;ys)]i1

ve r =
��� i

n+1

��� ; s = i� (n+ 1)r � 1�dir. Hesaplama hatalar göz ard edilirse,

aşa!g daki teorem mutlak hata için bir üst s n r verir:

Teorem 3.8.8. p̄nn ve f s ras yla (3.26)�n n (3.38) ile tan ml Bernstein seri çözümü

ve tam çözümü olsun. �Wö; A; Ā; �Gö ve ∆G matrisleri yukar da tan mlanan matrisler

ve X(x);Y(y); DT ; D̄; matrisleri de Bölüm 3.5.�deki matrisler olsun. E!ger f yeteri

kadar düzgünse, mutlak hata fonksiyonu

j f (x;y)� p̄n;n(x;y)j � jK(x;y)j+kBn(x)kkBn(y)k



W�1

ö




k∆Gk (3.39)

eşitsizli!gini sa!glar.

Kan t: pn;n f polinomlar n (3.39)�un sol taraf na ekleyip ç kararak

j f (x;y)� p̄n;n(x;y)j � j f (x;y)� pn;n f (x;y)j+ jpn;n f (x;y)� p̄n;n(x;y)j

elde edilir. Sa!gdaki ilk terim f yeteri kadar düzgün oldu!gundan Teorem 2.3.11�den

jK(x;y)j ile s n rl d r. #Ikinci terim için pn;n f = Bn(x)Bn(y)Ā olarak yaz l rsa, Teorem

2.6.4 ve norm özelliklerinden

jpn;n f (x;y)� p̄n;n(x;y)j =
��Bn(x)Bn(y)Ā�Bn(x)Bn(y)A

��

=
��Bn(x)Bn(y)(A� Ā)

��

� kBn(x)kkBn(y)k



 �W�1

ö




k∆Gk

elde edilir.

Teorem 3.8.8�deki s n r, k∆Gk küçükken anlaml bir s n r verebilir. Bununla beraber

n artt kça hem �Wö matrisi kötü koşullu olaca!g ndan, hem de kBn(x)k ve kBn(y)k
de!gerleri büyüyece!ginden kullan şl bir üst s n r vermeyebilir. Bundan dolay anlaml 

bir üst s n r elde etmek için n say s ne çok büyük ne de çok küçük seçilmelidir.
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Ayr ca, kullan m daha kolay olan ve adi diferansiyel denklemler için verilen hata

tahmini, k smi türevli denklemler için de aşa!g daki ad mlar uygulanarak verilebilir:

(3.26) denkleminin her iki taraf na

H(x;y) := P(x;y)
∂2pn;n

∂x2
+R(x;y)

∂2pn;n

∂x∂y
+S(x;y)

∂2pn;n

∂y2

+T (x;y)
∂pn;n

∂x
+U(x;y)

∂pn;n

∂y
+V (x;y)pn;n

eklenirse, en;n = f � pn;n = u� pn;n hata fonksiyonu

P
∂2e

∂x2
+R

∂2e

∂x∂y
+S

∂2e

∂y2
+T

∂e

∂x
+U

∂e

∂y
+Ve= G�H (3.40)

denklemini aşa!g daki koşullar ile sa!glar.

� Durum 1:
t

∑
k=1

1

∑
i=0

1

∑
j=0

ak
i; je

(i; j)(αt ;βt) = 0;

� Durum 2:
p

∑
k=1

1

∑
i=0

1

∑
j=0

bk
i; je

(i; j)(x;βk) = 0;

� Durum 3:
m

∑
k=1

1

∑
i=0

1

∑
j=0

ck
i; je

(i; j)(ηk;y) = 0:

(3.40) denkleminin Bernstein seri çözümü e�m;m olsun. E!ger
��en;n� e�m;m

�� � ε hatas 

gözard edilirse, min
n
ken;nk∞ say s n veren n say s n n seçimi yap labilir. Benzer

şekilde min
n
ken;nk2 say s n veren n say s da belirlenebilir. Aç kça, pn;n+ e�m;m (3.26)

denkleminin bir yaklaş k çözümüdür ve daha iyi bir yaklaş m elde edilebilir.

Sonuç 3.8.9. Yukar daki gösterimler ile, e!ger pn;n polinomu (3.26)�n n Bernstein seri

çözümü ise, pn;n+ e�m;m da (3.26)�n n di!ger bir yaklaş k çözümüdür ve yaklaş m n

hata fonksiyonu en;n� e�m;m fonksiyonudur.
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4. ARAŞTIRMA BULGULARI

Bölüm 3�te verilen Bernstein seri çözümler, rasyonel fonksiyon yaklaş mlar ve adi

ve k smi diferansiyel denklemlerin rasyonel fonksiyon çözümleri çeşitli örnekler için

elde edilecektir. Hesaplamalar, 32 bit Maple 12 ve 64 bit işletim sisteminde

yap lm şt r. Ayr ca, hesaplamalarda farkl hanelerde duyarl l klar kullan lm şt r.

Bunun bir sebebi, kesme s n r n�den kaynaklanan hatalar d ş nda bilgisayardan

kaynaklanan hesaplama hatalar da sonuçlar etkilemektedir ve bu etki işlemlerin

yüksek duyarl l kla yap lmas ile azalt labilir. Ayr ca, Chebyshev interpolasyon

noktalar , sal n m n çok oldu!gu durumlarda daha tutarl sonuçlar verebilece!ginden,

özellikle k smi diferansiyel denklemlerin Bernstein seri çözümleri bulunurken

s kl kla kullan lm şlard r. Bernstein seri çözümler ve rasyonel interpolasyon

yöntemi, di!ger baz yöntemlerle k yaslanm şlard r. Bölüm 3�te bulunan hata

analizi ile ilgili sonuçlar bu bölümde baz problemler için do!grulanm şt r. Teoriden

elde edilen sonuçlar ile uygulamadan elde edilen sonuçlar tutarl d r.

4.1. Gecikmeli Diferansiyel Denklemlerin Bernstein Seri Çözümleri !Ile !Ilgili

Örnekler

Bu kesimde, Bölüm 3.2.�de verilen gecikmeli diferansiyel denklemler için Bernstein

seri çözümü elde edilecektir (Osman vd., 2010). Ele al nan her bir örnek için Teorem

3.8.3 kullan larak mutlak hata için bir üst s n r bulunmuş ve Sonuç 3.8.4 kullan larak

hata tahmini ve yeni bir yaklaş m polinomu elde edilmiştir.

Örnek 4.1.1. Tam çözümü y(x) = ex olan

(
y0(x) = 1

2y(x)+ 1
2e

x
2 y
�

x
2

�
; 0� x� 1

y(0) = 1

multi pantograf denklemini ele alal m (Evens ve Raslan, 2005). (3.19)�dan n= 7 için
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temel matris denklemi

B=

2

66666666666666
4

0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 6 0

0 0 0 0 0 0 0 7

0 0 0 0 0 0 0 0

3

77777777777777
5

; P0 =
1

2
I8�8 ;

D=

2

66666666666666
4

1 �7 21 �35 35 �21 7 �1

0 7 �42 105 �140 105 �42 7

0 0 21 �105 210 �210 105 �21

0 0 0 �35 �140 210 �140 35

0 0 0 0 35 �105 105 �35

0 0 0 0 0 21 �42 21

0 0 0 0 0 0 7 �7

0 0 0 0 0 0 0 1

3

77777777777777
5

;

P1 =

2

66666666666666
4

0:50 0 0 0 0 0 0 0

0 0:53 0 0 0 0 0 0

0 0 0:57 0 0 0 0 0

0 0 0 0:62 0 0 0 0

0 0 0 0 0:66 0 0 0

0 0 0 0 0 0:71 0 0

0 0 0 0 0 0 0:76 0

0 0 0 0 0 0 0 0:82

3

77777777777777
5

;

X =

2

666666666666666
4

1 0 0 0 0 0 0 0

1 1
7

�
1
7

�2 �
1
7

�3 �
1
7

�4 �
1
7

�5 �
1
7

�6 �
1
7

�7

1 2
7

�
2
7

�2 �
2
7

�3 �
2
7

�4 �
2
7

�5 �
2
7

�6 �
2
7

�7

1 3
7

�
3
7

�2 �
3
7

�3 �
3
7

�4 �
3
7

�5 �
3
7

�6 �
3
7

�7

1 4
7

�
4
7

�2 �
4
7

�3 �
4
7

�4 �
4
7

�5 �
4
7

�6 �
4
7

�7

1 5
7

�
5
7

�2 �
5
7

�3 �
5
7

�4 �
5
7

�5 �
5
7

�6 �
5
7

�7

1 6
7

�
6
7

�2 �
6
7

�3 �
6
7

�4 �
6
7

�5 �
6
7

�6 �
6
7

�7

1 1 1 1 1 1 1 1

3

777777777777777
5

;
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B(1
2 ;0) =

2

66666666666666
4

1 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0

0 0 0 1
8 0 0 0 0

0 0 0 0 1
16 0 0 0

0 0 0 0 0 1
32 0 0

0 0 0 0 0 0 1
64 0

0 0 0 0 0 0 0 1
128

3

77777777777777
5

;G=

2

66666666666666
4

0

0

0

0

0

0

0

0

3

77777777777777
5

olmak üzere

�
XBDT�P0XDT�P1XB

�
1
2 ;0
�

DT
�
A=G

olarak elde edilir. (3.20) denkleminden başlang ç koşulu için

h
1 0 0 0 0 0 0 0 ; 1

i

elde edilir. Böylece, �W ve �G matrisi s ras yla

2

66666666666666
4

�8 7 0 0 0 0 0 0

�3:26 �0:37 1:48 0:86 0:22 0:03 0:002 5:0E�5

�1:17 �1:66 �0:27 0:90 0:78 0:29 0:052 0:0037

�0:37 �1:12 �1:25 �0:23 0:76 0:75 0:29 0:04

�0:11 �0:49 �1:07 �1:15 �0:20 0:83 0:79 0:23

�0:03 �0:18 �0:52 �1:07 �1:25 �0:19 1:16 0:88

�0:01 �0:08 �0:21 �0:45 �1:09 �1:79 �0:21 0:60

1 0 0 0 0 0 0 0

3

77777777777777
5

ve

h
0 0 0 0 0 0 0 1

iT

olarak elde edilir ve bu sistemin çözümünden Bernstein katsay lar matrisi A;

h
1 1:1428 1:3095 1:5048 1:7345 2:0063 2:3299 2:7183

iT

olarak bulunur.
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Çizelge 4.1. Örnek 4.1.1�de farkl n ve H:D: de"gerleri için mutlak hatalar

j f � p7j j f � p10j j f � p15j j f � p25j j f � p25j
xi (20 H:D:) (20 H:D:) (20 H:D:) (20 H:D:) (30 H:D:)
0 0 0 0 0 0
0:2 0:30 E�8 0:10 E�12 0:43 E�17 0:91 E�13 0:39 E�23
0:4 0:36 E�8 0:13 E�12 0:11 E�16 0:10 E�12 0:40 E�23
0:6 0:40 E�8 0:15 E�12 0:31 E�16 0:65 E�12 0:11 E�22
0:8 0:41 E�8 0:18 E�12 0:16 E�15 0:65 E�10 0:68 E�21
1 0:89 E�7 0:42 E�11 0:15 E�13 0:21 E�8 0:78 E�20

Böylece n= 7 için Bernstein seri çözümü

p7(x) = B7(x)A= 1+ x+0:5x2+0:1667x3+0:0417x4

+0:0084x5+0:0012x6+0:0003x7

olarak elde edilir. n = 7 için elde edilen mutlak hata ve e�12 fonksiyonlar n n

gra$kleri s ras yla Şekil 4.1. ve Şekil 4.2.�de verilmiştir. Çeşitli n de!gerleri ve farkl 

duyarl l kta işlemler için mutlak hatalar aşa!g da Çizelge 4.1.�de verilmiştir.

Şekil 4.1. Örnek 4.1.1 ve n= 7 için mutlak hata fonksiyonu
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Şekil 4.2. Örnek 4.1.1 için je�12j fonksiyonu

Ayr ca, 20 hanede duyarl l k için mutlak hata fonksiyonunun sonsuz normundaki

de!gerleri, e�12 fonksiyonunun sonsuz normu ve Sonuç 3.8.4 ile verilen yeni

yaklaş m n sonsuz normlar Çizelge 4.2.�de verilmiştir. Bununla beraber, Teorem

3.8.3 kullan larak bulunan mutlak hata için üst s n rlar da Çizelge 4.2.�de

listelenmiş olup teoriden elde edilen bu üst s n rlar uygulamada elde edilen mutlak

hatalar s n rlar. e�12 fonksiyonu hesaplan rken Chebyshev interpolasyon noktalar 

kullan lm şt r.

Ayr ca Sonuç 3.8.4 ile elde edilen yaklaş mlar n sonsuz normunda Bernstein seri

çözümü ile elde edilen sonuçlardan daha iyi oldu!gu görülmektedir. Ek olarak sabit

duyarl l kla işlem yap lmas durumunda hatalar bir noktaya kadar azalmakta ve daha

sonra artmaya başlamaktad r. Bu durum, de!gişken duyarl l kla işlemler yap larak

Çizelge 4.1.�de oldu!gu gibi aş labilir. 20 hanede duyarl l k için sonsuz normuna göre

en iyi yaklaş m n = 13 için elde edilmiş olup ke�12k∞ de!gerininde en küçük oldu!gu

nokta n= 13�te elde edilmiştir.
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Çizelge 4.2. Örnek 4.1.1 için mutlak hatalar, hata tahminleri ve hata yaklaş m fonksiyonunun
mutlak hatalar 

n 3 4 5 6
k f � pnk∞ 0:0080 0:45E�3 0:35E�4 0:16E�5
ke�12k∞ 0:0080 0:45E�3 0:35E�4 0:16E�5
k f � pn� e�12k∞ 0:30E�15 0:30E�15 0:30E�15 0:30E�15
Üst s n r 2:21 0:65 0:16 0:05
n 7 8 9 10
k f � pnk∞ 0:89E�7 0:32E�8 0:13E�9 0:42E�11
ke�12k∞ 0:89E�7 0:32E�8 0:13E�9 0:42E�11
k f � pn� e�12k∞ 0:30E�15 0:30E�15 0:30E�15 0:30E�15
Üst s n r 1:37E�2 3:62E�3 9:98E�4 2:41E�4
n 11 12 13 14
k f � pnk∞ 0:14E�12 0:20E�14 0:30E�15 0:53E�14
ke�12k∞ 0:14E�12 0:19E�14 0:30E�15 0:52E�14
k f � pn� e�12k∞ 0:30E�15 0:30E�15 0:14E�16 0:90E�17
Üst s n r 0:50E�4 0:11E�4 0:22E�5 0:39E�6
n 15 16 17 18
k f � pnk∞ 0:91E�13 0:70E�13 0:21E�12 0:45E�11
ke�12k∞ 0:91E�13 0:70E�13 0:20E�12 0:43E�11
k f � pn� e�12k∞ 0:90E�16 2:4E�15 0:90E�15 0:11E�14
Üst s n r 0:70E�7 0:11E�7 0:17E�8 0:26E�9
n 19 20
k f � pnk∞ 0:39E�11 0:23E�11
ke�12k∞ 0:38E�11 0:23E�11
k f � pn� e�12k∞ 0:70E�14 0:24E�14
Üst s n r 0:38E�10 0:50E�11

Örnek 4.1.2. Üçüncü mertebe tam çözümü y(x) = cosx olan,

(
y000(x) = xy00(2x)� y0(x)� y

�
x
2

�
+ xcos2x+ cos x

2 ; 0� x� 1

y(0) = 1 ; y0(0) = 0 ; y00(0) =�1

pantograf denklemini ele alal m (Sezer vd., 2008). n= 6 için Bernstein seri çözümü

y(x) = 1�0:5000x2+0:0417x4�0:0001x5�0:0012x6

olarak bulunur.Çizelge 4.3.�de farkl n de!gerleri ve 20 hanede duyarl l k için baz nok-

talardaki mutlak hatalar ve Teorem 3.8.3 kullan larak elde edilen mutlak hata için üst

s n rlar verilmiştir. Ayr ca ayn çizelgede e�10 fonksiyonu ve f � pn� e�10 fonksiy-

onlar n n sonsuz normlar da verilmiştir.n � 12 için mutlak hatan n sonsuz normu

ve


e�10




∞

say lar birbirlerine çok yak nd r. Mutlak hatalar n= 14�ten sonra artmaya
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Çizelge 4.3. Örnek 4.1.2 için mutlak hatalar, hata tahminleri ve hata yaklaş m fonksiyonunun
mutlak hatalar (20 H:D:)

n 3 4 5 6
k f � pnk∞ 0:04 0:99E�3 0:61E�3 0:36E�4

e�10




∞

0:04 0:99E�3 0:61E�3 0:36E�4

 f � pn� e�10




∞

0:69E�8 0:69E�8 0:69E�8 0:69E�8
Üst s n r 13:34 13:63 3:59 2:30
n 7 8 9 10
k f � pnk∞ 0:16E�4 0:49E�6 0:31E�6 0:98E�8

e�10




∞

0:16E�4 0:48E�6 0:31E�6 0:29E�8

 f � pn� e�10




∞

0:69E�8 0:69E�8 0:69E�8 0:69E�8
Üst s n r 0:58 0:94 2:33 2:67
n 11 12 13 14
k f � pnk∞ 0:91E�9 0:86E�10 0:46E�10 0:12E�9

e�10




∞

0:15E�10 0:10E�10 0:34E�11 0:42E�11

 f � pn� e�10




∞

0:92E�9 0:97E�10 0:49E�11 0:13E�9
Üst s n r 1:27 3:62 10:67 2:60
n 15 16 17 18
k f � pnk∞ 0:13E�9 0:34E�8 0:29E�6 0:12E�5

e�10




∞

0:19E�11 0:13E�10 0:73E�10 0:10E�8

 f � pn� e�10




∞

0:13E�9 0:34E�8 0:29E�6 0:12E�5
Üst s n r 1:14 1:87 2:99 1:91
n 19 20
k f � pnk∞ 0:19E5 0:70E�4

e�10




∞

0:70E�9 0:40E�7

 f � pn� e�10




∞

0:70E�9 0:70E�4
Üst s n r 0:36 0:28

başlam şt r. Di!ger yandan, Teorem 3.8.3 kullan larak bulunan hata üst

s n rlar mutlak hatalar s n rlamas na karş n, çok kullan şl bir üst s n r

vermemektedir. Bunun bir sebebi, ∆G matrisinin kalan fonksiyonunun 3: mertebe

türevinden gelen n(n+ 1)(n� 1) çarpan n içermesidir. Fakat e�10 fonksiyonu ile

20 hanede duyarl l k için sonsuz normunda en iyi yaklaş m olan n = 13 say s n n

tahmini yap labilmiş ve deneysel olarak n say s 15 ve 13 olarak elde edilmiştir.

n > 12 için hata tahminini ve Sonuç 3.8.4 ile elde edilen yeni yaklaş mlar daha

tutarl hale getirmek için 40 hanede duyarl l k ve m = 15 alal m. Bu durumda elde

edilen sonuçlar Çizelge 4.4.�te verilmiştir ve sonuçlar Çizelge 4.3.�e göre daha

tutarl d r. je15j ve
��e�15

�� fonksiyonlar n n gra$kleri Şekil 4.3.�de verilmiştir.
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Şekil 4.3. Örnek 4.1.2 ve n= 15 için mutlak hata ve
��e�15

�� fonksiyonlar 

Çizelge 4.4. Örnek 4.1.2 için mutlak hatalar, hata tahminleri ve hata yaklaş m fonksiyonunun
mutlak hatalar (40 H:D:)

n 11 12 13 14 15
k f � pnk∞ 0:96E�9 0:86E�10 0:45E�10 0:45E�12 0:31E�13

e�15




∞

0:96E�9 0:86E�10 0:45E�10 0:50E�12 0:14E�13

en� e�15




∞

0:45E�13 0:45E�13 0:45E�13 0:45E�13 0:45E�13

Örnek 4.1.3. Tam çözümü y(x) = e�x cosx olan de!gişken katsay l 

(
y0(x) =�y(x)� e�

x
2 sin

�
x
2

�
y
�

x
2

�
�2e�

3x
4 cos

�
x
2

�
sin
�

x
4

�
y
�

x
4

�
;

y(0) = 1

pantograf denklemini ele alal m (Liu ve Li, 2004).

Bernstein seri çözümü n= 6 için

y(x) = 1� x+0:0003x2+0:3314x3�0:1621x4+0:0001x5�0:0298x6

bulunur. Farkl n de!gerleri için Çizelge 4.5.�te baz noktalarda mutlak hatan n

de!gerleri 20 hanede duyarl l k için verilmiştir. Çizelge 4.6.�da da mutlak hatalar
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Çizelge 4.5. Örnek 4.1.3 için farkl n de"gerlerinde mutlak hatalar (20 H:D:)

xi n= 6 n= 10 n= 20 n= 30 n= 40
0 0 0 0 0 0
0:2 0:189E�5 0:503E�12 0:748E�16 0:235E�11 0:298E�7
0:4 0:624E�6 0:398E�12 0:344E�15 0:180E�11 0:229E�7
0:6 0:135E�5 0:285E�12 0:842E�14 0:162E�10 0:305E�7
0:8 0:151E�5 0:130E�12 0:165E�12 0:376E�8 0:259E�4
1 0:477E�4 0:225E�10 0:380E�11 0:157E�6 0:011

ve mutlak hatalar n üst s nrlar 40 hanede duyarl l k için verilmiştir.Çizelge 4.5.�ten

sabit hanede duyarl l k ile mutlak hatalar n bir n de!gerine kadar azald !g ve sonras nda

artt !g görülmektedir. Çizelge 4.6.�dan da Teorem 3.8.3 ile bulunan hata üst

s n rlar n n mutlak hatay s n rlad !g ve kabul edilebilir hata s n r olduklar 

görülmektedir.

Çizelge 4.6. Örnek 4.1.3 için mutlak hatalar, hata tahminleri ve hata yaklaş m fonksiyonunun
mutlak hatalar 

n 8 9 10 11 12
k f � pnk∞ 0:28E�7 0:80E�9 0:25E�10 0:31E�11 0:13E�12
Üst s n r 0:010 0:0037 0:0028 0:0012 0:26E�3
n 13 14 15 16 17
k f � pnk∞ 0:25E�14 0:52E�16 0:55E�17 0:18E�18 0:50E�20
Üst s n r 0:33E�4 0:18E�4 0:66E�5 0:10E�5 0:10E�6
n 18 19 20 21
k f � pnk∞ 0:42E�22 0:33E�23 0:90E�25 0:12E�26
Üst s n r 0:50E�7 0:14E�7 0:19E�8 0:16E�9

4.2. Zay f Tekil Çekirdekli !Integro-diferansiyel Denklemlerin Bernstein Seri

Çözümleri !Ile !Ilgili Örnekler

Bu kesimde zay f çekirdekli singüler integro-diferansiyel denklemlerin Bernstein seri

çözümlerine örnekler verilmiştir (Osman vd., 2011a). Örneklerin hata analizleri yap lm ş

ve hata tahmini yap larak sonsuz normunda en iyi yaklaş m veren n say s belirlenmiş

ve Örnek 4.2.5 için sonuçlar Taylor aç l m yöntemi ile k yaslanm şt r.
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Örnek 4.2.1. Tam çözümü y(x) = x2 olan

8
><

>:

y00(x)+ y(x)+
xR

0
xy(t)dt+

xR

0

y(t)p
x� t

dt = 2+ x2+ 16
15x

5
2 +

x4

3

y(0) = y0(0) = 0 ; 0� x� 1

(4.1)

lineer zay f çekirdekli Volterra integro-diferansiyel denklemini ele alal m. n= 7 için

temel matris denklemi

�
XB2DT+XQDT+VDT

�
A=G

ve başlang ç koşullar da

h
1 0 � � � 0 ; γ

i
=
h

1 0 � � � 0 ; 1
i
;

h
�7 7 0 � � � 0 ; γ

i
=
h
�7 7 0 � � � 0 ; 0

i

olarak elde edilir. Bu elde edilen sistem çözülerek Bernstein katsay lar matrisi

A=
h

0 0 0:0476 0:1428 0:2857 0:4762 0:7143 1
iT

olarak elde edilir ve Bernstein seri çözümü y(x) = B7(x)A�dan

y(x) = x2+0:6�10�18x3�0:3�10�17x4+0:7�10�17x5

�0:6�10�17x6+0:26�10�17

olarak bulunur. Mutlak hatan n baz de!gerleri, farkl n�ler için Çizelge 4.7.�de

verilmiştir.

Çizelge 4.7. Örnek 4.2.1�de farkl n ve 20 H:D: için mutlak hatalar

xi n= 7; 20 H:D: n= 15; 20 H:D:
0 0 0
0:2 0:1000 E�20 0:4300 E�19
0:4 0 0:1450 E�17
0:6 0:4000 E�19 0:2956 E�16
0:8 0:3000 E�18 0:1208 E�15
1 0:1100 E�17 0:1682 E�14

Çizelge 4.8.�de de farkl n de!gerleri için mutlak hatalar; sonsuz ve 1�normunda e�12� n

de!gerleri ölçülerek hata tahminleri ve Sonuç 3.8.6 ile elde edilen yeni
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yaklaş mlar n sonsuz normlar verilmiştir. n = 2 için tam çözüm elde edilmiştir ve

ke�12k∞ ile ke�12k1 de!gerleri de 0 oldu!gundan ke�12k∞, ke�12k1 de!gerleri göz önüne

al nd !g nda da en iyi yaklaş m n n = 2�de oldu!gu görülmektedir. Hesaplamalar eşit

aral kl s ralama noktalar ve 20 hanede duyarl l k ile yap lm şt r. Hata taminlerinin

düşük n�ler için daha büyük gelmesinin nedenlerinden birisi, başka bir ifade ile en

fonksiyonuna iyi yaklaş m edilememesinin nedenlerinden birisi, pn Bernstein seri

çözümlerinin (4.1)�de yerine koyuldu!gu zaman eşitli!gin sa!g taraf nda düzgün

olmayan bir fonksiyonun elde edilmiş olmas d r.

Çizelge 4.8. Örnek 4.2.1 için mutlak hatalar, hata tahminleri ve hata yaklaş m fonksiyonunun
mutlak hatalar 

n 2 3 4 5 6
k f � pnk∞ 0 0:4E�19 0:11E�19 0:20E�19 3:0E�19
ke�12k∞ 0 0:19E�10 0:19E�10 0:19E�10 0:19E�10
k f � pn;n� e�12k∞ 0 0:19E�10 0:19E�10 0:19E�10 0:19E�10
ke�12k1 0 0:35E�11 0:35E�11 0:35E�11 0:35E�11
n 7 8 9 10
k f � pnk∞ 1:2E�18 4:2E�19 1:4E17 4:5E�18
ke�12k∞ 0:19E�10 0:19E�10 0:19E�10 0:19E�10
k f � pn;n� e�12k∞ 0:19E�10 0:19E�10 0:19E�10 0:19E�10
ke�12k1 0:35E�11 0:35E�11 0:35E�11 0:35E�11
n 11 12 20 30
k f � pnk∞ 3:4E�17 1:8E�16 2:6E�12 1:2E�7
ke�12k∞ 0:19E�10 0:19E�10 0:24E�12 0:10E�6
k f � pn;n� e�12k∞ 0:19E�10 0:19E�10 0:22E�10 2:6E�8
ke�12k1 0:35E�11 0:35E�11 0:43E�11 0:48E�8

Örnek 4.2.2. Tam çözümü y(x) = x2 olan

8
<

:

xR

0
cos(x� t)y00(t)dt = 2sinx ; 0� x� 1

y(0) = y0(0) = 0

lineer Volterra integro-diferansiyel denklemini ele alal m (Huang ve Li, 2009). Eşit

aral kl s ralama noktalar kullan lmas durumunda n= 5 için Bernstein seri çözümü

y(x) = x2�0:159�10�16x3+0:281�10�16x4�0:227�10�16x5

olarak elde edilir. Mutlak hatan n baz noktalardaki de!geri, farkl hanede duyarl l k

ve n� ler için Çizelge 4.9.�da verilmiştir.
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Çizelge 4.9. Örnek 4.2.2�de farkl n ve H:D: de!gerleri için mutlak hatalar

n= 2 n= 5 n= 10 n= 20 n= 20
xi 20 H:D: 20 H:D: 20 H:D: 20 H:D: 40 H:D:
0 0 0 0 0 0
0:2 0 0:37 E�18 0:15 E�11 0:0130 0:20 E�14
0:4 0 0:13 E�17 0:20 E�11 0:1598 0:21 E�14
0:6 0 0:25 E�17 0:23 E�11 0:3603 0:23 E�14
0:8 0 0:32 E�17 0:32 E�11 0:6611 0:26 E�14
1 0 0:10 E�17 0:62 E�10 0:8770 0:95 E�13

Hesaplamalarda duyarl l k say s n n yeterince büyük seçilmesinin daha tutarl 

sonuçlar verdi!gi, Çizelge 4.9.�da n = 20 için 20 ve 40 hanede duyarl l k ile

bulunan sonuçlar n aras ndaki farktan anlaş lmaktad r. m = 12 ve 20 hanede

duyarl l k için mutlak hatalar, e�12 ve f � pn�e�12 fonksiyonlar n n sonsuz normundaki

de!gerleri Çizelge 4.10.�da verilmiştir. Sonsuz normunda en iyi yaklaş m n hangi

n de!gerinde oldu!gu, e�12 fonksiyonunun sonsuz normunun ölçümü ile bu örnekte

de yap labilmektedir. Ayr ca, n � 12 için e�12 ile f � pn fonksiyonlar n n sonsuz

normlar birbirine yeterince yak nd r.

Çizelge 4.10. Örnek 4.2.2 için mutlak hatalar, hata tahminleri ve hata yaklaş m
fonksiyonunun mutlak hatalar 

n 2 3 4 5
k f � pnk∞ 0 0:10E�18 0:24E�18 0:32E�17
ke�12k∞ 0 0:89E�19 0:23E�18 0:33E�17
k f � pn� e�12k∞ 0 0:62E�20 0:64E�20 0:14E�19
n 6 7 8 9
k f � pnk∞ 0:86E�16 0:41E�14 0:73E�13 0:22E�11
ke�12k∞ 0:86E�16 0:41E�14 0:72E�13 0:22E�11
k f � pn� e�12k∞ 0:33E�19 0:15E�16 0:23E�15 0:44E�14
n 10 11 12 20
k f � pnk∞ 0:62E�10 0:14E�8 0:23E�8 0:16E�5
ke�12k∞ 0:63E�10 0:14E�8 0:28E�8 0:84E�8
k f � pn� e�12k∞ 0:73E�12 0:17E�8 0:60E�9 0:16E�5

Örnek 4.2.3. r pozitif say olmak üzere

xZ

0

y(t)p
x� t

dt = xr; 0< x< 1 (4.2)
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Abel integral denklemini ele alal m (Singh vd., 2009). (4.2)�in tam çözümü

y(x) =
22r�1

π
r
(Γ(r))2

Γ(2r)
xr� 1

2

ile verilir (Singh vd., 2009). r= 2; n= 5 ve 30 hanede duyarl l k için yaklaş k çözüm

y(x) = �0:9267�10�12+0:1390x+1:4744x2�1:6657x3

+1:3492x4�0:4490x5

olarak bulunur. Mutlak hatalar Çizelge 4.11.�de farkl r ve n için verilmiştir. Bulunan

sonuçlar Singh vd (2009)�de bulunan sonuçlardan n= 5; r = 1:5 için daha iyidir.

Çizelge 4.11. Örnek 4.2.3 için farkl n ve r de!gerlerinde mutlak hatalar (30 H:D:)

n= 5; n= 5; n= 5; n= 12; n= 5;
xi r = 2 r = 8 r = 1:5 r = 8 r = 2
0 0:9E�32 0:8E�32 0:8E�60 0:14E�37 0:3E�32
0:2 0:45E�3 0:19E�2 0 0:30E�10 0:44E�6
0:4 0:11E�3 0:11E�2 0:1E�29 0:14E�10 0:16E�6
0:6 0:13E�3 0:15E�2 0:1E�29 0:19E�10 0:86E�7
0:8 0:18E�3 0:34E�2 0 0:61E�10 0:50E�7
1 0:77E�3 1:79E�2 0:46E�8 0:175E�4 0:17E�4

Örnek 4.2.4. Tam çözümü y(x) = 1+ xex olan

8
>><

>>:

y(4)(x)� y(x) =�2
3 +

1
3x+ 11

3 ex� 1
9x3ex+ 1

3

xZ

0

tex�ty(t)dt; 0� x; t � 4

y(0) = y0(0) = 1; y00(0) = 2; y0(2) = 3

lineer Volterra integro-differansiyel denklemini ele alal m. Eşit aral kl noktalar

kullan larak n= 10 için Bernstein seri çözümü

y(x) = 1+ x+ x2+0:5x3+0:1667x4+0:0410x5+0:0095x6

+0:3032�10�3x7+0:6998�10�3x8�0:9860�10�4x9

+0:1664�10�4x10

olarak bulunur. Farkl hanede duyarl l k ve n�ler için mutlak hatalar Çizelge 4.12.�de

verilmiştir. Çizelge 4.12.�den yüksek hanede duyarl l k ile bulunan yaklaş m n daha

tutarl oldu!gu görülebilir.
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Çizelge 4.12. Örnek 4.2.4�de farkl n ve H:D: de!gerleri için mutlak hatalar

n= 10 n= 20 n= 20
xi 20 H:D: 30 H:D: 50 H:D:
0 0 0 0
0:4 0:3231E�5 0:5961E�5 0:8339E�15
0:8 0:4898E�4 0:6184E�4 0:8677E�14
1:2 0:1962E�3 0:2262E�3 0:3183E�13
1:6 0:5048E�3 0:5599E�3 0:7888E�13
2 0:1007E�2 0:1131E�2 0:1595E�12
2:4 0:1624E�2 0:2028E�2 0:2860E�12
2:8 0:2396E�2 0:3381E�2 0:4770E�12
3:2 0:3866E�2 0:5433E�2 0:7618E�12
3:6 0:6236E�2 0:8314E�2 0:1223E�11
4 0:7679E�2 0:1806E�1 0:1242E�11

m = 15 ve 30 hanede duyarl l k için mutlak hatalar, e�15 ve f � pn � e�15

fonksiyonlar n n sonsuz normundaki de!gerleri Çizelge 4.13.�te verilmiştir. n 6= 15 için

e�15 ile f � pn fonksiyonlar n n sonsuz normlar birbirine yeterince yak nd r. n = 13

için mutlak hata ve
��e�15

�� fonksiyonlar Şekil 4.4.�te verilmiştir.

Çizelge 4.13. Örnek 4.2.4 için mutlak hatalar, hata tahminleri ve hata yaklaş m
fonksiyonunun mutlak hatalar 

n 10 11 12 13 14
k f � pnk∞ 0:0076 0:0021 1:65E�4 3:31E�5 0:25E�5

e�15




∞

0:0076 0:0021 1:65E�4 3:27E�5 0:26E�5

en� e�15




∞

0:41E�6 0:41E�6 0:41E�6 0:41E�6 0:41E�6
n 15 16 17 18
k f � pnk∞ 0:41E�6 0:23E�7 0:11E�7 0:10E�5

e�15




∞

0:96E�11 0:11E�7 0:22E�7 0:22E�5

en� e�15




∞

0:41E�6 0:34E�7 0:39E�7 0:10E�5

Örnek 4.2.5. Tam çözümü 1+ x+ x2 olan

8
><

>:

y00(x)+ y(x)+
1p
π

xR

0

y00(t)p
x� t

dt = 3+ x+ x2+
4
p

xp
π

; 0� x� 1

y(0) = y0(0) = 1

zay f singüler çekirdekli Volterra integro-diferansiyel denklemini ele alal m.
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Şekil 4.4. Örnek 4.2.4 ve n= 13 için mutlak hata ve
��e�15

�� fonksiyonlar 

n= 5 için Bernstein seri çözümü

y(x) = 1+ x+ x2+0:1�10�18x5

olarak bulunur. Böylece, yaklaş m n mutlak hatas 

k f � p5k∞ = 0:1�10�18

olarak bulunur. n= 2 ve n= 4 için bulunan yaklaş mlar Taylor aç l m yöntemi (Huang

ve Li, 2009) ile k yaslanarak Çizelge 4.14.�te verilmiştir.

4.3. Yüksek Mertebeden Lineer Diferansiyel Denklemlerin Rasyonel

Fonksiyon Çözümü �Ile �Ilgili Örnekler

Bu kesimde, Bölüm 3.4.�te verilen Bernstein seri çözümü ve Floater ve Hormann

(2006) taraf ndan verilen rasyonel interpolasyona dayanan r rasyonel fonksiyonu
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Çizelge 4.14. Örnek 4.2.5 için farkl n de!gerlerinde Bernstein seri çözümünün Taylor aç l m
yöntemi ile k yaslanmas 

Bernstein seri yöntemi Taylor aç l m yöntemi
xi n= 2 n= 4 n= 2 n= 4
0 0 0 0 0
0:2 0:0014 0:1452E�4 0:7211E�3 0:1372E�3
0:4 0:0118 0:3655E�4 0:0099 0:0015
0:6 0:0421 0:3186E�4 0:0514 0:0063
0:8 0:1055 0:3220E�3 0:1824 0:0172
1 0:2182 0:0021 0:5355 0:0369

kullan larak yüksek mertebe lineer diferansiyel denklemlerin yaklaş k çözümleri

bulunacakt r. Bulunan bu rasyonel fonksiyon çözümleri, Örnek 4.3.4�te di!ger baz 

metotlarla k yaslanarak verilmiştir (Osman vd., 2011b).

Örnek 4.3.1. Tam çözümü y(x) = sinx olan ikinci mertebe lineer

(
y00(x)+ xy0(x)�2y(x) = xcosx�3sinx ; 0� x� 1

y(0) = 0 ; y0(0) = 1

başlang ç de!ger problemini düşünelim. n= 7 ve d = 5 için

r(x) =

7�5
∑

i=0
λi(x)pi(x)

7�5
∑

i=0
λi(x)

(4.3)

rasyonel fonksiyon çözümünü bulal m. Eşit aral kl s ralama noktalar 

�
0;

1

7
;
2

7
; : : : ;1

�

seçilmiş olsun. Bölüm 2.5.1.�den, p0 f ; p1 f ve p2 f interpolasyon polinomlar s ras yla

f fonksiyonunun
�

0; 1
7 ;

2
7 ; : : : ;

5
7

	
;
�

1
7 ;

2
7 ; : : : ;

6
7

	
ve
�

2
7 ;

3
7 ; : : : ;1

	
noktalar ndaki

interpolasyon polinomlar d r.
�

0; 1
7 ;

2
7 ; : : : ;

5
7

	
noktalar ndan geçen po Bernstein seri

çözümü için temel matris denklemi

WA=
�
XB2DT�P1XBDT�XDT

�
A=G
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olarak elde edilir öyle ki

X=

2

666666666
4

1 0 0 0 0 0

1 1
7

�
1
7

�2 �
1
7

�3 �
1
7

�4 �
1
7

�5

1 2
7

�
2
7

�2 �
2
7

�3 �
2
7

�4 �
2
7

�5

1 3
7

�
3
7

�2 �
3
7

�3 �
3
7

�4 �
3
7

�5

1 4
7

�
4
7

�2 �
4
7

�3 �
4
7

�4 �
4
7

�5

1 5
7

�
5
7

�2 �
5
7

�3 �
5
7

�4 �
5
7

�5

3

777777777
5

;

B=

2

666666666
4

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 4 0

0 0 0 0 0 5

0 0 0 0 0 0

3

777777777
5

;G=

2

666666666
4

0

�0:29

�0:57

�0:86

�1:14

�1:43

3

777777777
5

;

D=

2

666666666
4

1 0 0 0 0 0

�5 5 0 0 0 0

10 �20 10 0 0 0

�10 30 �30 10 0 0

5 �20 30 �20 5 0

1 5 �10 10 �5 1

3

777777777
5

;

P1 =

2

666666666
4

0 0 0 0 0 0

0 1
7 0 0 0 0

0 0 2
7 0 0 0

0 0 0 3
7 0 0

0 0 0 0 4
7 0

0 0 0 0 0 5
7

3

777777777
5

matrisleridir. Başlang ç koşulllar için matris formlar 

U0 =
h

1 0 0 0 0 0
i
;

U1 =
h
�5 5 0 0 0 0

i
:

için

U0A= [0] ;
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U1A= [1]

olur ve sonuçta [ �W; �G] matrisi

[ �W; �G] =

2

666666666
4

18 �40 20 0 0 0 ; 0

11:28 �19:53 0:99 4:27 0:94 0:06 ; �0:29

6:54 �6:80 �7:06 2:24 2:60 0:47 ; �0:57

3:38 0:02 �7:53 �2:75 3:27 1:62 ; �0:86

�5 5 0 0 0 0 ; 1

1 0 0 0 0 0 ; 0

3

777777777
5

olarak elde edilir. Bu sistemin çözümü olan A matrisi

A=
h

0 0:20 0:40 0:58 0:73 0:84
iT

ve yaklaş k çözüm

p0(x) = x�0:16669x3+0:00012x4+0:00812x5

olarak hesaplan r. Benzer şekilde,
�

1
7 ;

2
7 ; : : : ;

6
7

	
ve
�

2
7 ;

3
7 ; : : : ;1

	
noktalar kullan larak

elde edilen p1 ve p2 polinomlar 

p1(x) = x+0:578�10�4x2�0:16669x3+0:00059x4+0:00778x5

p2(x) = x+0:395�10�3x2�0:16779x3+0:00164x4+0:00729x5

olarak bulunur. Bunlar 4.3�te yerine konursa,

r(x) =
0:7631�10�2x(x2+6:7176x+11:4986)

x2� x+0:8571
� (x2�1:0001x+0:8572)(x2�6:6567x+11:3963)

ve

ky� rk∞ = 0:7806�10�4

olarak elde edilir. Şekil 4.5. ve Şekil 4.6.�da farkl n ve d de!gerleri için yaklaş k

çözümler ve tam çözüm fonksiyonu çizilmiştir.
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Şekil 4.5. Örnek 4.3.1�de farkl n;d de!gerleri için yaklaş k çözümler

Örnek 4.3.2. Alt nc mertebe, lineer

(
y(6)(x)+ e�xy(x) =�720+(x� x2)3e�x ; 0� x� 1

y(0) = y0(0) = y00(0) = y(1) = y0(1) = y00(1) = 0

s n r de!ger problemi ele alal m. Problemin tam çözümü y(x) = x3(1 � x)3

polinomudur (Lamnii vd., 2008). n= 12 ve d = 8 için yaklaş k çözüm

r(x) = �0:12�10�17x3(x�1)(x2+0:5x+8:33�1017)
x2�x+0:36

� (x2� x+0:36)(x2�2x+1)

olarak bulunur ve hata

ky� rk∞ = 3:1419�10�19 (4.4)

olarak hesaplan r. Tam çözüm C∞ s n f ndan oldu!gundan Teorem 2.5.7�den hata

kr� yk∞ �
1

129

0

@




y(d+2)





∞

10
+




y(d+1)





∞

9

1

A= 0:3784�10�10

ile s n rl d r ve bu s n r (4.4) ile tutarl d r. Tam çözüm ile n = 12; d = 8 ve n = 15;

d = 8 için r yaklaş k çözümleri Şekil 4.7.�de verilmiştir.

77



Şekil 4.6. Örnek 4.3.1�de farkl n de!gerleri için yaklaş k çözümler ve tam çözüm

Örnek 4.3.3. Sekizinci mertebe lineer

8
><

>:

y(8)(x)+ xy(x) =�(48+15x+ x3)ex ; 0� x� 1

y(0) = y00(0) = 0; y0(0) = 1; y000(0) =�3;

y(1) = 0; y0(1) =�e; y00(1) =�4e; y000(1) =�9e

s n r de!ger problemini ele alal m. E!ger çözümün var oldu!gu kabul edilirse, n = 12,

d = 10 ve n= 12; d = 5 için s ras yla

r1(x) =
�0:27�10�4x(x�1)(x2+5:88x+9:16)(x2+4:28x+10:07)

x2� x+0:9167
� (x2+1:38x+14:83)(x2� x+0:92)(x2�4:27x+26:68)

ve

r2(x) = x� 1

2
x3�3x4+

5

2
x5+(x4� x5)e

elde edilir. Tam çözüm C7 s n f ndan oldu!gu için 2.5.7�den

kr1� yk∞ � kr1� r2k∞+kr2� yk∞ � O(h6)+1:2967�10�3

olarak bulunur ve bu da kabul edilebilir bir hata s n r d r.
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Şekil 4.7. Örnek 4.3.2�de farkl n de!gerleri için yaklaş k çözümler ve tam çözüm

Örnek 4.3.4. Tam çözümü x(1� x)ex olan

(
y(4)(x)+ xy(x) =�(8+7x+ x3)ex ; 0� x� 1

y(0) = y00(0) = 0; y(1) = 0; y00(1) =�4e

s n r de!ger problemini ele alal m. n= 32, d = 30 ve n= 16; d = 15 için yaklaş mlar n

hatas , di!ger baz metotlarla k yaslanarak Çizelge 4.15.�te verilmiştir.

4.4. K smi Diferansiyel Denklemlerin Bernstein Seri Çözümleri �Ile �Ilgili

Örnekler

Bu kesimde, ikinci mertebeden lineer k smi diferansiyel denklemlerin Bernstein seri

çözümlerine örnekler verilecektir. Ele al nan herbir örnek için mutlak hatalar, e�m;m
hataya yaklaş m fonksiyonlar ve Sonuç 3.8.9 ile verilen yeni yaklaş m

polinomunun sonsuz normundaki de!gerleri verilecektir. e�m;m kullan larak hangi n

de!geri için sonsuz normunda en iyi yaklaş m n elde edilebilece!gi tahmin edilmeye

çal ş lacakt r.
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Çizelge 4.15. Örnek 4.3.3�te Bernstein seri çözümünün di!ger baz yöntemlerle k yaslanmas 

Yöntemler (h= 1
n
) h= 32 h= 16

Rasyonel fonksiyon çözümü 2:19E�15 1:50E�13
Nonpolynomial Spline Tekni!gi 5:79E�13 2:22E�11
(Abd El-Salam ve Zaki, 2010)
Quartic spline s ralama yöntemi 4:75E�12 2:98E�10
(Zhu, 2001)
Sonlu farklar yöntemi 5:02E�11 3:12E�9
(Al-Said ve Noor, 2004)
Quintic nonpolynomial spline çözümü 1:49E�9 2:27E�8
(Ramadan vd., 2009)
Nonpolynomial spline çözümü 2:20E�10 1:30E�8
(Ramadan vd., 2008)
Cubic splines yöntemi 3:71E�5 1:47E�4
(Al-Said vd., 2006)
Quartic splines yöntemi 5:40E�5 2:16E�4
(Al-Said ve Noor, )
Quartic splines yöntemi 2:70E�5 1:08E�4
(Usmani, 1992)
Smooth spline çözümü 5:88E�5 6:39E�4
(Usmani ve Warsi, 1980)

Örnek 4.4.1. "Ilk olarak Dirichlet s n r koşullar yla verilmiş olan Laplace denklemini

8
>>>><

>>>>:

∂2u

∂x2
+

∂2u

∂y2
= 0;

u(x;0) = u(x;1) = cos
�

πx
2

�
;

u(0;y) =
cosh( πy

2 )
cosh( π

2)
; u(1;y) = 0

; (4.5)

ele alal m. Problemin tam çözümü

u(x;y) =
cos
�

πx
2

�
cosh

�πy
2

�

cosh
�

π
2

�

dir (Doha ve Abd-Elhameed, 2005). (4.5) denkleminin Bernstein seri çözümünü

0� x;y� 1 için bulal m. (4.5) denkleminin temel matris denklemi

�
X(x)B2DT Ȳ(y)D̄+X(x)DT Ȳ(y)B̄2D̄

�
A= 0
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olur. S ralama noktalar olarak Chebyshev polinomlar n n kökleri seçilirse, yani

�
(xi;y j) : 0� i; j � n;xi =

1

2
+

1

2
cos(

2i�1

2n
)π;y j =

1

2
+

1

2
cos(

2 j�1

2n
)π

�

al n rsa, W matrisi herbir sat r X(xi)B2DT Ȳ(y j)D̄+X(xi)DT Ȳ(y j)B̄
2
D̄ olan matris

olup G matrisi s f r matrisidir. Koşullar n matris denklemleri de u(x;0) = cos
�

πx
2

�

için

pn;n(xi;0) = X(xi)D
T Ȳ(0)D̄A= cos

�πxi

2

�
; i= 0;1; : : : ;n,

u(x;1) = cos
�

πx
2

�
için

pn;n(xi;1) = X(xi)D
T Ȳ(1)D̄A= cos

�πxi

2

�
; i= 0;1; : : : ;n;

u(0;y) =
cosh

�πy
2

�

cosh
�

π
2

� için

pn;n(0;yi) = X(0)DT Ȳ(yi)D̄A=
cosh

�πyi

2

�

cosh
�

π
2

� ; i= 0;1; : : : ;n

ve u(1;y) = 0 için

pn;n(1;yi) = X(1)DT Ȳ(yi)D̄A; i= 0;1; : : : ;n

olup bunlara karş l k gelen matrisler [W;G] matrisine eklenerek [ �W; �G] elde edilir.

Gauss sat r indirgeme ile [W̄;Ḡ]matrisi ve sonuçta A matrisi elde edilmiş olur. Farkl 

n de!gerleri için sonuçlar elde edilmiş ve mutlak hata fonksiyonlar aşa!g da

eşit aral kl noktalar ve 20 hanede duyarl l k için Çizelge 4.16.� da, eşit aral kl 

noktalar ve 40 hanede duyarl l k için Çizelge 4.17.� de sonsuz normuna göre

verilmiştir.20 ve 40 hanede duyarl l k için Chebyshev s ralama noktalar kullan larak

elde edilen sonuçlar da s ras yla Çizelge 4.18. ve Çizelge 4.19.�da verilmiştir. Ayr ca

m = 10 al narak e�10;10 ve f � pn;n � e�10;10 fonksiyonlar da elde edilmiş ve

sonsuz normunda büyüklükleri de verilmiştir. n = 8 için Chebyshev s ralama

noktalar nda elde edilen mutlak hata ve e�10;10 fonksiyonlar n n gra#kleri s ras yla

Şekil 4.8., Şekil 4.9.�de verilmiştir.

Chebyshev s ralama noktalar kullan larak elde edilen yaklaş mlar n mutlak hatalar 

eşit aral kl s ralama noktalar ile elde edilen yaklaş mlar n mutlak hatalar ndan daha
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Şekil 4.8. Örnek 4.4.1 ve n= 8 için mutlak hata fonksiyonu

iyidir. e�10;10� n sonsuz normu ile mutlak hata fonksiyonunun sonsuz normu eşit

aral kl s ralama noktalar nda birbirine yak n olup n � 11 için pn;n � e�10;10

yaklaş mlar sonsuz normunda Bernstein seri çözümlerinden daha iyidir. n büyüdükçe

eşit aral kl s ralama noktalar kullan lmas durumunda n = asal için elde edilen

sonuçlar hesaplama hatalar büyüdü!gü için kötüleşmektedir. Chebyshev s ralama

noktalar kullan ld !g nda n � 10 için e�10;10� n sonsuz normu ile mutlak hata

fonksiyonunun sonsuz normu birbirine yak nd r ve n � 7 için



e�10;10





∞

s f ra yak n

olup mutlak hatalar n sonsuz normlar n temsil etmemektedir. Bu durum, e�10;10

hesaplan rken s ralama noktalar n n de!giştirilmesi ile giderilebilir.

Örnek 4.4.2. Ω0�Ω= f(x;y) : 0� x;y� 1g için eliptik, lineer ve de!gişken katsay l 

genelleştirilmiş Poisson denklemi Ω0 üzerinde Dirichlet s n r koşullar ile

8
>><

>>:

x2 ∂2u
∂x2 + y2 ∂2u

∂y2 = 2x2y2exy;

u(x;0) = 1; u(x;1) = ex;

u(0;y) = 1; u(1;y) = ey
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Şekil 4.9. Örnek 4.4.1 ve n= 8 için
���e�10;10

��� fonksiyonu

olarak verilir. Bu problemin analitik çözümü

f (x;y) = exy

fonksiyonudur (Kong ve Wu, 2009). Elde edilen yaklaş mlar n mutlak hatalar ,

m= 10 al narak elde edilen e�10;10 fonksiyonlar ve f � pn;n� e�10;10 fonksiyonlar n n

sonsuz normundaki büyüklükleri Çizelge 4.20.�de 20 hanede duyarl l k için

verilmiştir. Hesaplamalarda, Bernstein seri çözümü için Chebyshev interpolasyon

noktalar ve e�10;10 için eşit aral kl s ralama noktalar seçilmiştir.

Sonsuz normunda yap lan en iyi yaklaş m n n = 11 için oldu!gu Çizelge 4.20.�den

görülmektedir. Ayr ca,



e�10;10





∞

de!gerinin en az oldu!gu de!ger de n = 11�de olup

e�10;10 fonksiyonu f � pn;n fonksiyonuna sonsuz normunda çok yak nd r. e10;10

fonksiyonu kullan larak elde edilen yeni yaklaş m n mutlak hatas n n sonsuz

normundaki de!geri de f � pn;n mutlak hata fonksiyonunun sonsuz normuna oldukça

yak nd r.
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Çizelge 4.16. Örnek 4.4.1�de eşit aral kl s ralama noktalar için mutlak hatalar, hata
tahminleri ve hata yaklaş m fonksiyonunun mutlak hatalar (20 H:D:)

n 5 6 7 8 9
ken;nk∞ 0:14 0:0006 0:0006 2:0E�5 3:0E�7


e�10;10





∞

0:14 0:0003 0:0006 2:0E�5 3:0E�7



en;n� e�10;10





∞

0:0055 0:0006 1:7E�5 3:95E�8 9:7E�9

n 10 11 12 13 14
ken;nk∞ 2:0E�6 0:017 1:9E�9 0:92 0:0015


e�10;10





∞

2:0E�6 0:018 3:5E�8 2:5 0:016



en;n� e�10;10





∞

7:0E�10 0:016 3:5E�8 2:5 0:016

n 15 16 17 18 19
ken;nk∞ 6:0E�7 1:4E�5 x x x


e�10;10





∞

2:0E�6 9:2E�5 x x x



en;n� e�10;10





∞

2:0E�6 9:2E�5 x x x

Çizelge 4.17. Örnek 4.4.1�de eşit aral kl s ralama noktalar için mutlak hatalar, hata
tahminleri ve hata yaklaş m fonksiyonunun mutlak hatalar (40 H:D:)

n 5 6 7 8 9
ken;nk∞ 0:14 0:0006 0:0006 2:0E�5 3:0E�7


e�10;10





∞

0:14 0:0003 0:0006 2:0E�5 3:0E�7



en;n� e�10;10





∞

0:0055 0:0006 1:7E�5 3:9E�8 9:7E�9

n 10 11 12 13 14
ken;nk∞ 2:0E�6 1:4E�6 2:1E�9 1:25E�9 2:8E�12


e�10;10





∞

2:0E�6 3:1E�6 3:6E�8 2:5E�8 4:5E�10



en;n� e�10;10





∞

7:5E�10 3:0E�6 3:6E�8 2:5E�8 4:5E�10

n 15 16 17 18 19
ken;nk∞ 9:0E�15 8:5E�15 5:5E�9 3:2E�18 4:3E�6


e�10;10





∞

8:0E�14 1:0E�13 1:2E�7 1:2E�17 3:4E�5



en;n� e�10;10





∞

8:0E�14 1:0E�13 1:2E�7 1:2E�17 3:4E�5

Örnek 4.4.3. Ω = f(x;y) : 0 � x;y � 1g için de!gişken katsay l ikinci mertebe

hiperbolik k smi diferansiyel denklemi

∂2u

∂y2
� 1

2
x2 ∂2u

∂x2
= 0 (4.6)
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Çizelge 4.18. Örnek 4.4.1�de Chebyshev s ralama noktalar için mutlak hatalar, hata
tahminleri ve hata yaklaş m fonksiyonunun mutlak hatalar (20 H:D:)

n 5 6 7 8 9
ken;nk∞ 0:0008 0:00015 4:2E�5 2:0E�7 7:0E�8


e�10;10





∞

5:0E�19 1:6E�18 1:5E�17 1:5E�17 1:5E�17



en;n� e�10;10





∞

0:0008 0:00016 4:5E�5 2:4E�7 8:0E�8

n 10 11 12 13 14
ken;nk∞ 9:0E�10 5:0E�10 1:70E�11 1:7E�13 2:5E�13


e�10;10





∞

6:0E�10 1:5E�10 1:55E�12 1:1E�13 5:1E�13



en;n� e�10;10





∞

9:8E�10 4:8E�10 1:70E�11 1:7E�13 5:1E�13

n 15 16 17 18 19
ken;nk∞ 2:0E�12 2:5E�12 8:2E�12 4:0E�11 9:1E�10


e�10;10





∞

1:4E�13 2:9E�12 1:8E�11 3:0E�11 7:7E�10



en;n� e�10;10





∞

1:9E�12 4:2E�12 1:8E�11 3:6E�11 1:7E�9

Çizelge 4.19. Örnek 4.4.1�de Chebyshev s ralama noktalar için mutlak hatalar, hata
tahminleri ve hata yaklaş m fonksiyonunun mutlak hatalar (40 H:D:)

n 5 6 7 8 9
ken;nk∞ 0:0008 0:00015 4:2E�5 2:0E�7 7:0E�8


e�10;10





∞

6:0E�39 4:5E�39 1:1E�37 4:0E�8 1:2E�8



en;n� e�10;10





∞

0:0008 0:00016 4:5E�5 2:4E�7 8:0E�8

n 10 11 12 13 14
ken;nk∞ 8:7E�10 4:5E�10 1:7E�11 2:5E�13 5:9E�15


e�10;10





∞

3:5E�9 9:0E�11 1:9E�12 5:0E�14 3:8E�15



en;n� e�10;10





∞

9:0E�9 4:5E�10 1:7E�11 1:25E�13 5:5E�15

n 15 16 17 18 19
ken;nk∞ 7:0E�16 3:4E�18 1:4E�19 5:5E�22 1:6E�22


e�10;10





∞

9:0E�17 6:5E�18 6:5E�20 3:5E�21 8:0E�23



en;n� e�10;10





∞

7:5E�16 6:5E�18 1:7E�19 3:5E�21 1:9E�22

başlang ç koşullar 

u(x;0) = x;

uy(x;0) = x2
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Çizelge 4.20. Örnek 4.4.2 için mutlak hatalar, hata tahminleri ve hata yaklaş m
fonksiyonunun mutlak hatalar 

n 6 7 8 9 10
ken;nk∞ 4:0E�7 1:4E�8 5:0E�10 1:0E�11 2:0E�13


e�10;10





∞

1:0E�7 7:0E�9 3:5E�10 1:15E�11 1:8E�13



en;n� e�10;10





∞

3:6E�7 1:35E�8 5:0E�10 1:12E�11 2:5E�13

n 11 12 13 14 15
ken;nk∞ 4:2E�14 1:3E�13 4:5E�14 6:0E�13 3:0E�12


e�10;10





∞

1:1E�14 1:8E�13 2:5E�13 6:0E�13 2:6E�12



en;n� e�10;10





∞

2:6E�14 1:9E�13 2:5E�13 8:5E�13 6:0E�12

n 16 17 18 19 20
ken;nk∞ 5:0E�12 7:0E�11 4:0E�11 1:5E�9 1:6E�9


e�10;10





∞

3:6E�12 7:2E�11 5:0E�11 3:2E�10 5:5E�10



en;n� e�10;10





∞

6:0E�12 1:25E�10 8:0E�11 1:4E�9 1:6E�9

ile verilsin. (4.6) denkleminin tam çözümü

u(x;y) = x+ x2 sinhy

fonksiyonudur (Jin, 2008). S ralama noktalar Chebyshev interpolasyon noktalar 

ve 30 hanede duyarl l kla işlem yap lmas durumunda Bernstein seri çözümler elde

edilmiştir. Sonuçta elde edilen mutlak hata fonksiyonlar n n sonsuz normundaki

büyüklükleri ve e�10;10 ile f � pn;n � e�10;10 fonksiyonlar n n sonsuz normundaki

de!gerleri Çizelge 4.21.�de verilmiştir. n = 12 için elde edilen mutlak hata ve
���e�10;10

���
fonksiyonlar Şekil 4.10. ve Şekil 4.11.�te verilmiştir.

Elde edilen mutlak hata fonksiyonlar n n sonsuz normlar bir n de!gerine kadar

azal p sonra artmaya başlam şt r. e�10;10 fonksiyonlar n n normlar , seçilen s ralama

noktalar ve m = 10 içn mutlak hata fonksiyonlar ndan en az 10�2 kat daha az

bulunmuştur. Bu durum, s ralama noktalar n n Bernstein seri çözümleri veya e�10;10

bulunurken kullan lan s ralama noktalar de!giştirilerek Çizelge 4.22.�de oldu!gu gibi

giderilebilir. S ralama noktalar n n Bernstein seri çözümleri için eşit aral kl ve e�10;10

bulunurken Chebyshev interpolasyon noktalar seçilmesi durumunda elde edilen

sonuçlar Çizelge 4.22.�de verilmiştir.Çizelge 4.22.�deki sonuçlardan, n � 10 için

k f � pn;nk∞ ve



e�10;10





∞

de!gerleri birbirine çok yak n oldu!gu ve pn;n � e�10;10

yaklaş m n n Bernstein seri çözümünden sonsuz normuna göre daha iyi oldu!gu
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Şekil 4.10. Örnek 4.4.3 ve n= 12 için mutlak hata fonksiyonu

söylenebilir.

4.5. �Iki De!gişkenli Fonksiyonlar n Rasyonel �Interpolasyon Fonksiyonu
�Için Örnekler

Bölüm 3.6.�da verilen m�boyutta rasyonel interpolasyon fonksiyonlar için özel

olarak m = 2 al narak verilen iki de!gişkenli fonksiyonlar n yaklaş k çözümleri

bulunacakt r. Yap lan yaklaş mlar n mutlak hata fonksiyonlar n n sonsuz normundaki

de!gerleri de hesaplanacakt r.

Örnek 4.5.1. [0;1]� [0;1]�de f (x;y) = 32(x+ y)11=2 fonksiyonuna (3.34) rasyonel

fonksiyonu ile yaklaşal m (Mößner ve Reif, 2009). "Interpolasyon noktalar 

�
(xi;y j) : xi =

i

6
; y j =

j

6
; 0� i; j � 6

�
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Şekil 4.11. Örnek 4.4.3 ve n= 12 için
���e�10;10

��� fonksiyonu

olarak seçilirse n= 6 ve d1 = d2 = 4 için hata foksiyonunun sonsuz normu

k f � rk∞ � 0:09

ile s n rl d r. Benzer şekilde, interpolasyon noktalar eşit aral kl al narak n = 10 ve

d1 = d2 = 7 için hata foksiyonunun sonsuz normu

k f � rk∞ � 10�5

ile s n rl d r. n = 6; d1 = d2 = 4 ve n = 10; d1 = d2 = 7 için mutlak hata

fonksiyonlar n n gra#kleri s ras yla Şekil 4.12. ve Şekil 4.13.�te verilmiştir. Çizelge

4.23.�te de n= 10 ve farkl d1;d2 de!gerleri için hata fonksiyonlar n n sonsuz normlar 

verilmiştir.

Örnek 4.5.2. [0;1]� [0;1]�de f (x;y) = x2y2
�

1� e�(x
2+y2)

�
fonksiyonunu ele alal m

(Mößner ve Reif, 2009). Eşit aral kl interpolasyon noktalar ve n = 8, d1 = d2 = 5
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Çizelge 4.21. Örnek 4.4.3 için mutlak hatalar, hata tahminleri ve hata yaklaş m
fonksiyonunun mutlak hatalar 

n 5 6 7 8 9
ken;nk∞ 0:002 0:0023 4:0E�5 1:4E�5 3:7E�6


e�10;10





∞

4:0E�5 6:0E�5 5:5E�6 8:0E�6 2:5E�7



en;n� e�10;10





∞

0:002 0:0023 3:5E�5 5:6E�6 3:5E�6

n 10 11 12 13 14
ken;nk∞ 5:0E�7 1:2E�8 1:8E�9 3:5E�11 7:0E�12


e�10;10





∞

5:2E�20 1:4E�10 1:0E�11 1:25E�13 1:2E�14



en;n� e�10;10





∞

5:0E�7 1:2E�8 1:8E�9 3:5E�11 7:0E�12

n 15 16 17 � � � 20
ken;nk∞ 1:2E�12 1:7E�13 7:0E�13 � � � 5:0E�10


e�10;10





∞

2:5E�17 1:2E�18 5:5E�18 � � � 6:0E�20



en;n� e�10;10





∞

1:2E�12 1:6E�13 7:0E�13 � � � 3:0E�18

Çizelge 4.22. Örnek 4.4.3�te mutlak hatalar, hata tahminleri ve hata yaklaş m fonksiyonunun
mutlak hatalar 

n 5 6 7 8 9
ken;nk∞ 0:001 0:0014 0:0003 0:0002 2:5E�7


e�10;10





∞

0:001 0:0014 0:0004 0:0002 7:0E�7



en;n� e�10;10





∞

8:5E�8 8:5E�8 8:5E�8 8:5E�8 5:0E�7

n 10 11 12 13 14
ken;nk∞ 3:0E�6 1:5E�9 9:2E�9 4:0E�9 3:8E�10


e�10;10





∞

2:5E�6 5:0E�5 3:8E�7 2:7E�6 7:6E�11



en;n� e�10;10





∞

5:0E�7 5:0E�5 3:8E�7 2:7E�6 4:5E�10

n 15 16 17 � � � 20
ken;nk∞ 5:2E�10 6:0E�13 8:0E�13 � � � 9:0E�14


e�10;10





∞

7:0E�9 6:0E�9 5:2E�9 � � � 6:0E�14



en;n� e�10;10





∞

7:8E�9 1:6E�13 5:2E�9 � � � 1:5E�13

için r rasyonel yaklaş m n n mutlak hatas 

k f � rk∞ � 9:6�10�7

ile s n rl d r. Hata fonksiyonunun gra#!gi Şekil 4.14.�te verilmiştir.
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Çizelge 4.23. Örnek 4.5.1�de f (x;y) = 32(x+ y)11=2 fonksiyonuna yap lan rasyonel
yaklaş mlar n mutlak hatalar 

d1 = d2 = 3 d1 = d2 = 4 d1 = d2 = 5 d1 = d2 = 6
0:031 0:007 1:5E�4 4:4E�5

Şekil 4.12. f (x;y) = 32(x+ y)11=2 fonksiyonuna n= 6 ve d1 = d2 = 4 için yap lan rasyonel
yaklaş m n mutlak hata fonksiyonu

Örnek 4.5.3. [0;1]� [0;1]�de

f (x;y) =
3

4
e�

(9x�2)2

4 � (9y�2)2

4 +
3

4
e�

(9x�2)2

49 � (9y�2)2

10

+
1

2
e�

(9x�7)2

4 � (9y�3)2

4 � 1

5
e�(9x�4)2�(9y�7)2;

fonksiyonunu ele alal m (Sommariva vd., 2005). n = 10, d1 = d2 = 6 için rasyonel

yaklaş m n mutlak hatas için bir üst s n r

k f � rk∞ � 0:035

olarak bulunur. Hata fonksiyonunun gra#!gi Şekil 4.15.�te verilmiştir.
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Şekil 4.13. f (x;y) = 32(x+ y)11=2 fonksiyonuna n= 10 ve d1 = d2 = 7 için yap lan rasyonel
yaklaş m n mutlak hata fonksiyonu

Örnek 4.5.4. Rasyonel yaklaş m metodunu

f (x;y) = ex cosy; (x;y) 2 [0;1]� [0;1]

fonksiyonuna uygulayal m. Eşit aral kl noktalar kullan larak n = 5, d1 = d2 = 4

ve n = 10, d1 = d2 = 7 için elde edilen rasyonel yaklaş mlar n hatalar s ras yla

k f � rk∞ � 0:9446�10�3 ve k f � rk∞ � 0:3821�10�10 ile s n rl d r.

Örnek 4.5.5. [0;1]� [0;1]�de

f (x;y) = e�(x
2+y2)

fonksiyonu verilsin (Quarteroni vd., 2007). n= 4, d1 = d2 = 2 için 2: derece parçal 

polinom interpolasyonu ve rasyonel polinom interpolasyonu ile bulunan

yaklaş mlar n hatalar s ras ile

k f � rk∞ � 1:6678�10�3
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Şekil 4.14. f (x;y) = x2y2
�

1� e�(x
2+y2)

�
fonksiyonuna n= 8 ve d1 = d2 = 5 için yap lan

rasyonel yaklaş m n mutlak hata fonksiyonu

ve

k f � rk∞ � 4:4842�10�3

olarak bulunur. n = 8, d1 = d2 = 2 için de 2: derece parçal polinom interpolasyonu

ve rasyonel polinom interpolasyonunun hatalar s ras ile

k f � rk∞ � 2:8151�10�4

ve

k f � rk∞ � 4:5000�10�5
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Şekil 4.15.

f (x;y) = 3
4e�

(9x�2)2

4 � (9y�2)2

4 + 3
4e�

(9x�2)2

49 � (9y�2)2

10 + 1
2e�

(9x�7)2

4 � (9y�3)2

4 � 1
5e�(9x�4)2�(9y�7)2

fonksiyonuna n= 10 ve d1 = d2 = 6 için yap lan rasyonel yaklaş m n mutlak hata fonksiyonu

ile s n rl d r. Bulunan sonuçlar 2: derece parçal polinom interpolasyonu ve n = 4,

d1= d2= 2 için daha iyi olmas na karş n rasyonel polinom interpolasyonu ile bulunan

sonuçlar n= 8, d1 = d2 = 2 için daha iyidir.

4.6. K smi Diferansiyel Denklemlerin Rasyonel �Interpolasyon

Fonksiyonu �Ile Çözümleri

Bölüm 3.6.�da verilen m�boyutta rasyonel interpolasyon fonksiyonlar ve Bernstein

seri çözümü kullan larak, k smi diferansiyel denklemlerin rasyonel fonksiyon

çözümleri bulunabilir.
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Örnek 4.6.1. Dirichlet s n r koşullu Örnek 4.4.1�de verilen Laplace denklemini

∂2u

∂x2
+

∂2u

∂y2
= 0

ele alal m. n = 12, d1 = d2 = 10 için Chebyshev s ralama noktalar kullan larak

herbir pi; j; 0 � i; j � 2 Bernstein seri çözümleri hesaplanarak (3.34)�de yerine

konursa, bulunan r yaklaş m n n mutlak hatas için üst s n r

k f � rk∞ � 2:72�10�7

olarak bulunur.

Örnek 4.6.2. Ω0 �Ω= f(x;y) : 0� x;y� 1g için genelleştirilmiş Poisson denklemi

üzerinde Dirichlet s n r koşullar ile

�∆u+ ex+yux+ ex�yuy+u= g(x;y); (x;y) 2Ω0

olarak verilir. Bu problemin analitik çözümü

g(x;y) = 2sinxsiny+ ex+y cosxsiny+ ex�y cosysinx+ sinxsiny

için

f (x;y) = sinxsiny

fonksiyonudur (Kong ve Wu, 2009). Eşit aral kl s ralama noktalar ve n = 7,

d1 = d2 = 4 için pi; j; 0� i; j � 3 Bernstein seri çözümleri (3.34)�de yerine konursa,

bulunan r yaklaş m n n mutlak hatas 

k f � rk∞ � 0:0078

ile s n rl d r.
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5. TARTIŞMA VE SONUÇLAR

Bu tezin amaçlar ndan birisi, Bernstein polinomlar na dayal s ralama yönteminin

diferansiyel denklem, gecikmeli diferansiyel denklem, integro-diferansiyel denklem

ve k smi diferansiyel denklemler için oluşturularak Bernstein seri çözümlerinin

bulunmas d r. "Ikinci bir amaç olarak, Taylor ve Chebyshev polinomlar gibi özel

polinomlara dayal matris yöntemleri için genel bir hata analizi oluşturmakt r.

Üçüncü bir amaç olarak, bulunan Bernstein seri çözümleri ve Floater ve Hormann

(2006)� n rasyonel interpolasyon formülü kullan larak diferansiyel denklemlerin

rasyonel fonksiyon çözümleri elde etmektir. Dördüncü bir amaç olarak m�boyutlu

rasyonel interpolasyon probleminin çözümü için Floater ve Hormann (2006)� n

1�boyutta verdi!gi rasyonel interpolasyon yöntemini m�boyuta genellemektir. Son

olarak m�boyutta verilen rasyonel interpolasyon formülü ve Bernstein seri

çözümler kullan larak k smi diferansiyel denklemler için rasyonel fonksiyon çözümü

oluşturmakt r. Hede$enen amaçlara ulaş lm ş olup elde edilen sonuçlar her bölüm

için ayr ayr gruplanarak aşa!g da verilmiştir.

Bölüm 3.1�de Bernstein seri çözümler adi diferansiyel denklemler için elde edilmiştir.

Bu yöntem kullan larak, Bölüm 4.3.�de pi; j polinomlar hesaplanm şt r. Yöntem, her

türlü adi diferansiyel denkleme kolayl kla uygulanabilir ve hata analizi ile

mutlak hatas için bir üst s n r bulunabilir. Tam çözümün bilinmemesi durumunda

hata tahmini e�m fonksiyonu ile yap labilir. Bernstein seri çözümüne e�m eklenerek

yeni bir yaklaş k çözüm elde edilebilir.

Bölüm 3.2�de Bernstein seri çözümler gecikmeli diferansiyel denklemler için

oluşturulmuş ve Bernstein seri çözümler için ço!gu ortak olan sonuçlar aşa!g da

verilmiştir:

� Bu yöntem, gecikmeli diferansiyel denklemlere kolayca uygulanabilir.

� Daha tutarl sonuçlar elde etmek için n�nin büyük seçilmesi gerekmektedir.

Fakat çok büyük n�ler için yöntem güvenilir olmayabilir.

� Tam çözüm f fonksiyonunun polinom olmas durumunda, tam çözüm veya ona

çok yak n yaklaş k çözümler elde edilir. n� deg( f ) için Teorem 3.8.3�den hata
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s f r olaca!g ndan, e!ger hesaplama hatalar gözard edilirse, tam çözüm yani f

elde edilir.

� Bilgisayar yuvarlama hatalar n azaltmak için bilgisayarda kullan lan

programlarda işlemlerin yüksek duyarl l k say s ile yap lmas tutarl l !g 

art racakt r.

� Eşit aral kl noktalar için bulunan çözümlerin tutarl l !g , uygulamada

Chebyshev s ralama noktalar kullan larak elde edilen sonuçlardan daha azd r.

� E!ger n asalsa, eşit aral kl s ralama noktalar için yuvarlama hatalar daha büyük

olaca!g ndan sonuçlar daha az tutarl d r.

� Hata analizi yap larak mutlak hata için bir üst s n r bulunabilmesi, fonksiyonun

düzgünlü!gü ile orant l d r.

� Yöntem, her durum için yak nsak de!gildir.

� "Iyi sonuçlar elde etmek için n say s ne çok küçük ne de çok büyük olmal d r.

� Tam çözüm bilinmese bile, tam çözümün interpolasyon polinomu yak nsak ise,

e�m ile hata fonksiyonun tahmini yap labilir.

� Örneklerde, eşit aral kl s ralama noktalar ve n � m için, e�m hata

fonksiyonuna sonsuz normunda oldukça yak nd r ve pn + e�m polinomu

Bernstein seri çözümünden sonsuz normunda daha iyidir.

Bölüm 3.3�te elde edilen sonuçlar Bölüm 3.2 ile benzer olup ek olarak, tam çözüm

f �nin polinom olmas durumunda n 6= deg( f ) için e�m, hata fonksiyonuna yeterince

yak n olmayabilece!gi örneklerden söylenebilir.

Bölüm 3.4�te verilen Bernstein seri çözümüne dayal rasyonel fonksiyon çözümü,

Bernstein seri çözümünün sahip oldu!gu özelliklere sahip olup ek olarak aşa!g daki

sonuçlar bulunmuştur:

� Bernstein seri çözümlerine göre daha tutarl ve kararl sonuçlar elde edilebilir.

� Hata analizi için tam çözümün daha düşük mertebeden türevlerinin olmas 

yeterlidir.

� Yüksek n�ler için de kararl çözümler elde edilebilir.
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� S ralama metoduna göre işlemler daha çoktur, fakat yüksek n ve düşük d için

s ralama metodunda büyük n�ler için elde edilen sonuçlardan daha az sürede

ayn tutarl l k elde edilebilir.

Bölüm 3.5�te verilen k smi diferansiyel denklemlerin Bernstein seri çözümü için

aşa!g daki sonuçlar bulunmuştur:

� Bilgisayar yuvarlama hatalar n azaltmak için bilgisayarda kullan lan

programlarda işlemlerin yüksek duyarl l k say s ile yap lmas tutarl l !g 

art racakt r.

� Chebyshev s ralama noktalar kullan larak elde edilen sonuçlar, s ralama

yöntemi ile elde edilen sonuçlardan daha tutarl olabilir.

� Asal n�ler ve eşit aral kl s ralama noktalar için yuvarlama hatalar daha büyük

olaca!g ndan sonuçlar daha az tutarl olabilir.

� Hata analizi yap larak mutlak hata için bir üst s n r bulunabilmesi, fonksiyonun

düzgünlü!gü ile orant l d r.

� Yöntem, her durum için yak nsak de!gildir.

� "Iyi sonuçlar elde etmek için n say s ne çok küçük ne de çok büyük olmal d r.

� Tam çözüm bilinmese bile, tam çözümün interpolasyon polinomu yak nsak ise,

e�m;m ile hata fonksiyonun tahmini yap labilir..

� Örneklerde, eşit aral kl s ralama noktalar ve n � m için, e�m;m hata

fonksiyonuna sonsuz normunda oldukça yak nd r ve pn;n + e�m;m polinomu

Bernstein seri çözümünden sonsuz normunda daha iyidir.

� n > 20 için Bernstein seri çözümünün hesaplanmas ço!gu durumda mümkün

olmamaktad r ve �W �n n koşul say s artt !g ndan hesaplamalar yap lsa bile

sonuçlar güvenilir olmayabilir

Bölüm 3.6�da verilen m�boyutta rasyonel interpolasyon fonksiyonu için aşa!g daki

sonuçlar bulunmuştur:
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� 3.34�de verilen r fonksiyonu Rm�de tan�ml�d�r.

� Yaklaş�m yap�lan fonksiyon f 2 W n+1
∞ ise uygun di�ler seçilerek yak�nsak

sonuçlar elde edilir.

� Yöntem için m(n+1) fonksiyon hesaplamak gerekir.

� Yöntem interpolasyon noktalar�n�n tensör çarp�m olmas� d�ş�nda noktalar�n

da g�l�m�ndan ba g�ms�z olsa da sonuçlar eşit aral�kl� da g�l�mlar için daha

anlaml� bir hata üst s�n�r� verir.

� Yöntemle elde edilen sonuçlar düzgün fonksiyon oldu gundan diferansiyel

denklemlerin çözümlerinde kullan�labilir.

Son bölümde verilen k�smi diferansiyel denklemlerin rasyonel fonksiyon çözümleri

için, m�boyutta rasyonel interpolasyon fonksiyonunun ve Bernstein seri

çözümlerinin özelliklerine sahiptir. Rasyonel fonksiyon çözümünün Bernstein seri

çözümüne göre en büyük avantaj�, n > 20 için düşük di�ler seçilerek daha az

zamanda daha tutarl� sonuçlar elde edilebilir.

Gelecek çal�şmalar için, s�ralama metodunun hata analizi yap�l�rken gerekli olan

şartlar azalt�lmaya çal�ş�labilir. S�ralama metodunda, farkl� rasyonel fonksiyonlar

kullan�labilir. En önemlisi, Bölüm 3�te verilen her metodun her durumda

yak�nsakl� g� garanti edilebilir mi sorusunun cevab� araşt�r�labilir. Ayr�ca, lineer

fonksiyonel denklemler için verilen bu yöntemler, lineer olmayan fonksiyonel

denklemlere de uygulanabilir mi sorusunun cevab� araşt�r�labilir.
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