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TEZ BAŞLIĞI : GRUP HALKALARININ BAER VE YARI-BAER 
ÖZELLİKLERİ 

YAZAR ADI: SAİT ERKOVAN 

 

Bu tezde Z. Yi ve Y. Zhou’nun “Baer and Quasi-Baer Properties of Group Rings” adlı 
makalesi incelenmiştir ve bu tez toplam dört bölümden oluşmuştur. 

 

Birinci bölümde giriş kısmı bulunmakta olup burada tezin amacını belirttik. 

 

İkinci bölümde tez için gerekli olan bazı temel tanım ve kavramları verdik. 

 

Üçüncü bölümde [13]’teki Hirano’nun sorusunu cevaplandırmak için gerekli bazı 
koşulları verdik. 

 

Dördüncü bölümde sonlu grupların grup halkalarını inceledik ve Hirano’nun sorusunu 
ele aldık. 
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SUMMARY 

 

 

THESIS TITLE: BAER AND QUASI-BAER PROPERTIES OF GROUP RINGS 

THESIS AUTHOR: SAİT ERKOVAN 

 

In this thesis, it’s studied the paper “Baer and Quasi-Baer Properties of Group Rings” 
by Z. Yi and Y. Zhou and this thesis consists four chapters. 

 

The first chapter includes the purpose of the thesis. 

 

In the second chapter, we present some basic definitions and useful notions. 

 

In the third chapter, we give some necessary conditions in order to reply Hirano’s 
question in [13]. 

 

In the fourth chapter, we focus on group rings of finite groups and consider the question 
of Hirano. 
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 ∧ ∧
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1 GİRİŞ

R bir halka olmak üzere, eğer R halkasının boştan farklı her alt kümesinin (her

idealinin) sol sıfırlayanı R halkasının bir eş kare elemanı tarafından üretiliyorsa,

bu R halkasına Baer (yarı-Baer) halkası denir.

[13]’te, Kaplansky tarafından Baer halka fikri tanımlanmış ve yarı-Baer halkası

kavramını da ilk olarak [7]’de Clark kullanmıştır. Baer ve yarı-Baer halkalarının

tanımları, [7] ve [13]’ten sol-sağ simetriktir (bkz. Önerme 2.3.2).

Baer ve yarı-Baer halkalarının gelişimi ve günümüze uyarlanışı ic.in Birken-

meier, Kim and Park [2] makalesi referans alınmıştır.

Bu c.alışmanın amacı, bir grup halkasının ne zaman (yarı-)Baer olduğu sorusunu

ele almaktır. Eğer R bir yarı-Baer halkası ve C∞ sonsuz devirli grup ise, RC∞

grup halkası yarı-Baer’dir [3]. Öte yandan ispatlamışlardır ki; bir R halkasının

yarı-Baer olması ic.in gerek ve yeter koşul R[x] in yarı-Baer olmasıdır ve R[x]

in yarı-Baer olması ic.in gerek ve yeter koşul R[x;x−1] in yarı-Baer olmasıdır

(bkz. Önteorem 2.3.11). [10]’da Hirano’nun ispatladığı gibi, bir sıralı G monoidi

ic.in, eğer R yarı-Baer halka ise, RG monoid halkası da yarı-Baer’dir ve RG grup

halkasının bir indirgenmiş Baer halka olması ic.in gerek ve yeter koşul R halkasının

bir indirgenmiş Baer halka olmasıdır. [8]’de de ispatlandığı üzere, eğer R bir in-

dirgenmiş halka ve G bir ’u.p.’ yarıgrup ise, RG yarıgrup halkasının Baer olması

ic.in gerek ve yeter koşul R halkasının Baer olmasıdır. [4]’te de şu ispatlanmıştır:

bir ’u.p.’ G monoidi ic.in, RG monoid halkasının yarı-Baer olması ic.in gerek ve

yeter koşul R halkasının yarı-Baer olmasıdır.

3. Uluslararası Halka Teorisi Sempozyumu’nun (Kyongju, Güney Kore, 1999)
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ac.ık problem kısmında Hirano, eğer R bir yarı-Baer halka ve |G|−1 ∈ R olacak

şekilde G sonlu bir grup ise, RG grup halkasının yarı-Baer olup olmayacağını

sormuştur.

Zi ve Zhou, Hirano’nun sorusuna aksi örnekler vermişlerdir. Ayrıca soru-

nun, bir sonlu G grubu ic.in, RG grup halkasının (yarı-)Baer olması durumundaki

cevabını bulmak ic.in c.aba göstermiş ve c.eşitli (yarı-)Baer grup halkaları tanımla-

mışlardır.

Zi ve Zhou şu sonuc.ları elde etmişlerdir: Eğer RG grup halkası (yarı-)Baer ise

R de (yarı-)Baer halkadır; eğer RG yarı-Baer ve G sonlu bir grup ise, |G|−1 ∈ R

dir. Hirano’nun sorusuna bir cevap olarak, 2−1 ∈ R1 ve 3−1 ∈ R2 olacak şekilde

R1 ve R2 tamlık bölgeleri ile oluşturulan R1C2k ve R2C3l grup halkaları, herhangi

k ≥ 2 ya da l ≥ 1 ic.in yarı-Baer değildirler. Aynı zamanda 6−1 ∈ R olacak şekilde

bir Baer R halkası ic.in oluşturulan RS3 grup halkası Baer değildir. Diğer yandan,

Hirano’nun sorusuna pozitif bir cevap olarak, G = C2 ya da G = S3 olduğunda

RG grup halkası (yarı-)Baer olur. Ayrıca D∞ sonsuz dihedral grubu ic.in, RD∞

grup halkasının yarı-Baer olması ic.in gerek ve yeter koşul R halkasının yarı-Baer

olmasıdır.
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2 TEMEL TANIM VE KAVRAMLAR

Bu bölümde c.alışmamızda gerekli olacak bazı tanım ve teoremler verilecektir.

2.1 Grup, Halka ve Grup Halkası

Tanım 2.1.1 G, boş olmayan bir küme ise, G üzerinde bir ikili işlem (binary

operation), G×G→ G bir fonksiyondur [12].

Örnek 2.1.2 Z üzerinde verilen sıradan toplama ve c.arpma işlemleri, sırasıyla

(a, b)→ a+ b ve (a, b)→ ab şeklinde tanımlı ikili işlemlerdir.

Biz genelde yaptığımız ikili işlemlerde c.arpma işleminin notasyonunu kul-

lanacağız.

Tanım 2.1.3 Boştan farklı bir G kümesi üzerinde bir ikili işlem tanımlanmış

olsun. Eğer G, asosyatif (associative) özelliğini sağlıyorsa, yani ∀a, b, c ∈ G ic.in

a(bc) = (ab)c oluyorsa, G ye bir yarıgrup (semigroup) denir [12].

Tanım 2.1.4 Bir G yarıgrubu, birim elemana (two-sided identity) sahipse, yani

∀a ∈ G ic.in ae = ea = a olacak şekilde bir e ∈ G varsa, G ye bir monoid denir

[12].

Tanım 2.1.5 G bir monoid olsun. ∀a ∈ G ic.in a nın tersi var ise, yani aa−1 =

a−1a = e oluyorsa, G ye bir grup (group) denir [12].

Ayrıca ∀a, b ∈ G ic.in ab = ba oluyorsa, G grubuna değişmeli (commutative)

grup denir.



4

Tanım 2.1.6 n ≥ 3 olmak üzere a = (123...n) ∈ Sn ve

b =

(
1 2 3 4 5 ... i ... n− 1 n

1 n n− 1 n− 2 n− 3 ... n+ 2− i ... 3 2

)
∈ Sn tarafından

üretilen, Sn nin bir altgrubuna n. mertebeden dihedral grup denir ve Dn ile

gösterilir. Burada o(a) = n ve o(b) = 2 dir.

Eğer o(a) =∞ olursa D∞ ye sonsuz (infinite) dihedral grup denir [12].

Tanım 2.1.7 G bir yarıgrup (monoid) olsun. Eğer, G nin boştan farklı her sonlu

A ve B altkümeleri ic.in en az bir x ∈ G, x = ab (a ∈ A, b ∈ B) olacak şekilde tek

türlü ifade ediliyorsa, G ye ’u.p.’ yarıgrup (monoid) denir [18].

Biz bu c.alışmada tüm halkaları birimli ve asosyatif halka olarak alacağız.

Tanım 2.1.8 R bir halka ve S de R halkasının boş olmayan bir altkümesi olsun.

Eğer ∀a, b ∈ S ic.in ab ∈ S oluyorsa S ye R halkasının c. arpımsal (multiplicative)

altkümesi denir.

Örneğin; S, Z halkasının sıfırdan farklı elemanlarının oluşturduğu küme olsun.

O halde S bir c.arpımsal altkümedir [12].

Önerme 2.1.9 R değişmeli bir halka ve S deR halkasının c.arpımsal bir altkümesi

olsun. R× S kümesi üzerinde

(r, s) ∼ (r′, s′)⇔ s1(rs
′ − r′s) = 0, bazı s1 ∈ S ic.in

ile tanımlı bağıntı, bir denklik bağıntısıdır. Ayrıca, eğer R halkası sıfır bölensiz

ve 0 6∈ S ise,

(r, s) ∼ (r′, s′)⇔ rs′ − r′s = 0

olur [12].
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Önerme 2.1.10 R bir değişmeli halka olmak üzere S, R halkasının bir c.arpımsal

altkümesi ve S−1R de, Önerme 2.1.9’da tanımlı bağıntı altında, R×S nin denklik

sınıflarının kümesi olsun.

(i) S−1R, toplama ve c.arpma işlemleri

r/s+ r′/s′ = (rs′ + r′s)/ss′ ve (r/s)(r′/s′) = rr′/ss′

şeklinde tanımlı olmak üzere, bu işlemler altında birimli ve değişmeli bir

halkadır.

(ii) Eğer R sıfırdan farklı bir bölge (domain) ve 0 6∈ S ise, S−1R bir tamlık

bölgesidir.

(iii) Eğer R sıfırdan farklı bir bölge ve S de R nin sıfırdan farklı bütün eleman-

larının oluşturduğu küme ise, S−1R bir cisimdir [12].

Tanım 2.1.11 Önerme 2.1.10’un (iii) şıkkındaki tanımlı S−1R cismineR halkasının

kesir cismi (the quotient field of R) denir.

Tanım 2.1.12 R bir halka, I ve I ′ de R halkasının iki ideali olsun. Eğer I+I ′ =

R oluyorsa bu ideallere aralarında asal (coprime) idealler denir [9].

Tanım 2.1.13 R bir halka olmak üzere {I1, I2, ..., In}, R de sıfırdan farklı ide-

allerin bir kümesi olsun. Eğer her j, k = 1, 2, ..., n (j 6= k) ic.in Ij + Ik = R

oluyorsa bu kümedeki ideallere ikişer ikişer aralarında asal (pairwise coprime)

idealler denir [9].

Önerme 2.1.14 R değişmeli bir halka ve {I1, I2, ..., In} de R de ikişer ikişer

aralarında asal idealler olmak üzere I1 ∩ I2 ∩ ... ∩ In = I1 · I2 · ... · In dir [9].
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Önteorem 2.1.15 R bir halka olmak üzere {I1, I2, ..., In}, R de ikişer ikişer

aralarında asal idealler olsun. Eğer b1, b2, ..., bn ∈ R ise, i = 1, 2, ..., n ic.in

b ≡ bi(mod Ii) olacak şekilde bir b ∈ R vardır. Ayrıca b, modül I1 ∩ I2 ∩ ...∩ In e

göre tek türlü belirlidir [9, C. in Kalan Teoremi].

Bu önteoremin aşağıdaki önemli sonucu da mevcuttur.

Sonuç 2.1.16 R bir halka olmak üzere {I1, I2, ..., In}, R de ikişer ikişer ar-

alarında asal idealler olsun. O halde R/(I1 ∩ I2 ∩ ... ∩ In), halka olarak R/I1 ×

R/I2 × ...×R/In ye izomorftur [9].

Tanım 2.1.17 R bir halka olsun. Eğer R halkasının sıfırdan farklı nilpotent

elemanı yoksa, diğer bir ifadeyle herhangi r ∈ R ic.in r2 = 0 iken r = 0 oluyorsa,

R ye indirgenmiş (reduced) halka denir [5, Chap. II, Section 2.7].

Örnek 2.1.18 Z tamsayılar halkası, Q,R ve C cisimleri birer indirgenmiş halka

örnekleridir.

Tanım 2.1.19 R halkasının tüm sol (sağ) maksimal ideallerinin arakesitine bu

halkanın Jacobson radikali denir ve J(R) ile gösterilir [12].

Tanım 2.1.20 Bir R halkası ic.in, o halkanın Jacobson radikali J(R) sıfır ise, bu

halkaya (Jacobson) yarıbasit (semisimple) halka denir [12].

Örnek 2.1.21 Z tamsayılar halkasının her maksimal ideali, p asal sayı olmak

üzere, (p) şeklinde olduğundan J(Z) = ∩(p) = 0 olup Z, bir yarıbasit halkadır.
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Tanım 2.1.22 G bir grup (sonlu olmak zorunda değil) ve R de bir halka olsun.

RG kümesinin bir x elemanı, sadece sonlu c.oklukta sıfır olmayan koordinat-

lardan oluşur. x ile r1g1 +r2g2 + ...+rngn ya da
n∑
i=1

rigi sonlu toplamını gösterelim.

Tanımımızdan, verilen herhangi iki x =
∑
g∈G

rgg ve y =
∑
g∈G

sgg elemanları ic.in,

x = y olması ic.in gerek ve yeter koşul ∀g ∈ G ic.in rg = sg olmasıdır.

Bu notasyonda, RG kümesindeki toplama işlemini

n∑
i=1

rigi +
n∑
i=1

sigi =
n∑
i=1

(ri + si)gi

ve c.arpma işlemini de(
n∑
i=1

rigi

)(
m∑
j=1

sjhj

)
=

n∑
i=1

m∑
j=1

(risj)(gihj)

şeklinde tanımlayalım. Bu işlemlerle birlikte RG ye, G nin R üzerindeki grup

halkası (the group ring of G over R) denir.

RG grup halkasının değişmeli olması ic.in gerek ve yeter koşul hem R nin hem

de G nin değişmeli olmasıdır. Eğer R, 1R birimine sahip ve e de G nin birim

elemanı ise, 1Re, RG nin birim elemanı olur [12],[17].

Tanım 2.1.23 G bir grup ve R de bir halka olsun.
∑
rigi →

∑
ri ile tanımlı

γ : RG→ R dönüşümü bir halka homomorfizmasıdır. Ve bu dönüşüme genişleme

(augmentation) dönüşümü denir.

Bu dönüşümün c.ekirdeğine de RG grup halkasının genişleme ideali denir ve

w(RG) ile gösterilir [18].

Önteorem 2.1.24 RG bir grup halkası ve γ da bu grup halkasının genişleme

dönüşümü olsun. RG nin genişleme ideali, RG nin iki taraflı bir idealidir. Bu



8

ideal g−g′, (g′−g) ∈ G farkıyla üretilir. Özel olarak 1−g, 1 6= g ∈ G tarafından

da üretilir. Yani w(RG) =
∑
g∈G

R(1 − g) dir. Bu da serbest sol R-modül olarak

genişleme ideali ic.in bir tabandır [18].

Kanıt. Kerγ = w(RG) = {
∑
rigi :

∑
ri = 0} olup w(RG) =

∑
g∈G

R(1 − g)

olduğunu göstereceğiz. Gerc.ekten,
∑
rigi ∈ w(RG) ic.in

∑
ri = 0 dır. Buradan

r1g1 + ...+ rngn − (r1 + ...+ rn) = −[(1− g1)r1 + ...+ (1− gn)rn] ∈
∑
g∈G

R(1− g)

olup w(RG) ⊆
∑
g∈G

R(1− g) dir.

Diğer yandan
∑
ri(1− gi) ∈

∑
g∈G

R(1− g) ic.in,

r1(1− g1) + ...+ rn(1− gn) = (r1 + ...+ rn)1− (r1g1 + ...+ rngn)

olup ∀g ∈ G nin katsayıları toplamı (r1 + ...+ rn)− r1 − ...− rn = 0 olduğundan∑
ri(1− gi) ∈ w(RG) dir. Böylece

∑
g∈G

R(1− g) ⊆ w(RG) olur. Yani

w(RG) =
∑
g∈G

R(1− g)

dir.

Aşağıdaki önteoremin ispatı, [18, Önteorem 1.2]’nin ispatına benzer olarak

yapılmıştır.

Önteorem 2.1.25 G bir sonlu grup ve Ĝ =
∑
g∈G

g olmak üzere lRG(w(RG)) =

RGĜ dir.

Kanıt. α ∈ lRG(w(RG)) olsun. O halde αw(RG) = 0, yani α
∑
g∈G

R(1−g) = 0 dır.

Bu eşitlik ∀r ∈ R ic.in sağlandığından, r = 1R alırsak α(1− g) = 0 dır. Buradan

da α = αg olur. α =
∑
rg′g

′ ∈ RG ise α = αg den α = (
∑
rg′g

′) g ∈ RGĜ olur.

Yani lRG(w(RG)) ⊆ RGĜ dir.
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Diğer taraftan ∀α ∈ RGĜ ic.in αw(RG) = 0 olduğunu göstermeliyiz. α ∈

RGĜ olup α = (
∑
rgg) Ĝ = (

∑
rg) Ĝ dir. Buradan da

αw(RG) =
(∑

rg

)
Ĝ
∑

R(1− g) =
∑

RĜ(1− g)

olup ∀g ∈ G ic.in Ĝ(1 − g) = 0 olduğunu göstermek yeterlidir. G sonlu bir grup

olduğundan G = {g0 = 1, g1, ..., gn} şeklindedir. Burada i 6= j ic.in gi 6= gj dir.

∀gi ∈ G ic.in

Ĝ(1− gi) = (1 + g1 + g2 + ...+ gn)(1− gi)

= 1− gi + g1 − g1gi + g2 − g2gi + ...+ gn − gngi

= (1+g1 +g2 + ...+gi+ ...+gn)−(gi+g1gi+g2gi+ ...+g
2
i + ...+gngi)

olup gruptaki işlemin kapalılık özelliğinden j, k ∈ {0, 1, ..., n} ic.in gj = gkgi dir.

Dolayısıyla ∀gi ∈ G ic.in Ĝ(1− gi) = 0 olup ispat tamamlanmış olur.

Örnek 2.1.26 G bir sonsuz dihedral grup olsun. O halde σ(y) = y−1 ve (x2−1),

x2 − 1 merkez elemanı tarafından üretilen ideal olmak üzere,

RG ∼= R[y, y−1][x;σ]/(x2 − 1)

dir [16].

Tanım 2.1.27 R bir halka ve X de onun bir alt kümesi olsun. R halkasındaki

aX = 0 koşulunu sağlayan tüm a elemanlarının oluşturduğu kümeye X kümesinin

R deki sol sıfırlayanları (the left annihilators of X in R) denir ve lR(X) ile

gösterilir. Yani

lR(X) = {a ∈ R : aX = 0} = {a ∈ R : ax = 0, ∀x ∈ X}

şeklindedir [13].
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Tanım 2.1.28 R bir halka olsun. Bir e ∈ R ic.in, e2 = e oluyorsa, bu elemana R

nin bir eş kare (idempotent) elemanı denir [1].

R nin bir e eş kare elemanı, aynı zamanda R nin merkezinde ise, bu elemana

R nin bir merkez eş kare elemanı denir.

Önerme 2.1.29 [1] R birimli ve asosyatif bir halka olmak üzere X ve Y , R nin

iki altkümesi olsun. O halde,

(1) X ⊆ Y ise lR(Y ) ⊆ lR(X) ve rR(Y ) ⊆ rR(X) olur.

(2) X ⊆ rRlR(X) ve X ⊆ lRrR(X) dir.

(3) lR(X) = lRrRlR(X) ve rR(X) = rRlRrR(X) dir.

Kanıt.

(1) a ∈ lR(Y ) (a ∈ rR(Y )) olsun. O halde aY = 0 (Y a = 0) olup X ⊆ Y

olduğundan aX = 0 (Xa = 0) olur. Yani a ∈ lR(X) (a ∈ rR(X)) olup a

keyfi olduğundan lR(Y ) ⊆ lR(X) (rR(Y ) ⊆ rR(X)) olur.

(2) a ∈ X alalım. lR(X)a = 0 (arR(X) = 0) olduğunu göstermeliyiz. ∀r ∈

lR(X) (∀r ∈ rR(X)) ic.in rX = 0 (Xr = 0) olup a ∈ X olduğundan

ra = 0 (ar = 0) olur. Yani lR(X)a = 0 (arR(X) = 0) dır. O halde

a ∈ rRlR(X) (a ∈ lRrR(X)) olup a ∈ X keyfi bir eleman olduğundan

X ⊆ rRlR(X) (X ⊆ lRrR(X)) olur.

(3) X ⊆ rRlR(X) olup (1)’den lRrRlR(X) ⊆ lR(X) olur. (2)’de X yerine lR(X)

alırsak lR(X) ⊆ lRrR(lR(X)) olur. Buradan lR(X) = lRrRlR(X) elde edilir.
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Benzer şekilde X ⊆ lRrR(X) olup (1)’den rRlRrR(X) ⊆ rR(X) olur. Yine

(2)’den X yerine rR(X) alınırsa rR(X) ⊆ rRlR(rR(X)) olur. Buradan da

rR(X) = rRlRrR(X) elde edilir.

Önteorem 2.1.30 (Maschke’nin Teoremi) K[G], bir K cismi üzerinde sonlu bir

G grubunun grup cebiri olsun. Eğer K nin karakteristiği 0 ise, K[G] yarıbasittir.

Eğer K, p asal karakteristiğine sahipse, K[G] nin yarıbasit olması ic.in gerek ve

yeter koşul p nin |G| yi bölmemesidir [12].

Önerme 2.1.31 Eğer I ve J , R nin I∩J = (0) şeklinde iki ideali ise, I+J ∼= I×J

olur.

Kanıt. f : I + J → I × J , i + j → (i, j) ile tanımlanan bir dönüşüm olsun.

Bu dönüşümün izomorfizma olduğunu gösterelim. Bu dönüşüm iyi tanımlıdır:

x = i1 + j1, y = i2 + j2 olmak üzere,

x = y ⇒ i1 + j1 = i2 + j2 ⇒ i1 − i2 = j2 − j1 ∈ I ∩ J = (0)

olup i1 = i2 ve j1 = j2 olduğundan (i1, j1) = (i2, j2) olur. Yani f(x) = f(y) olup

f iyi tanımlıdır.

f , bir halka homomorfizmasıdır:

f(x+y) = f(i1+j1+i2+j2) = f(i1+i2+j1+j2) = (i1+i2, j1+j2) = (i1, j1)+(i2, j2)

olup f(x+ y) = f(x) + f(y) olur. Ayrıca

f(xy) = f ((i1 + j1)(i2 + j2)) = f(i1i2 + i1j2 + j1i2 + j1j2)
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olup i1j2, j1i2 ∈ I ∩ J = (0) olduğundan

f(xy) = f(i1i2 + j1j2) = (i1i2, j1j2) = (i1, j1)(j1, j2) = f(x)f(y)

olur. Yani f bir halka homomorfizmasıdır.

Şimdi de bire bir ve örten olduğunu gösterelim. f , bire birdir:

f(x) = f(y)⇒ (i1, j1) = (i2, j2)⇒ i1 = i2 ve j1 = j2

olup i1 + j1 = i2 + j2 dir. Yani x = y olur.

f örtendir: ∀(i, j) ∈ I × J ic.in f(i + j) = (i, j) olacak şekilde i + j ∈ I + J

vardır.

Sonuc. olarak I + J ∼= I × J olur.

Önteorem 2.1.32 R birimli bir halka ve e, R halkasının bir merkez eş kare

elemanı olsun. O halde 1 − e de R nin bir merkez eş kare elemanıdır. Buradan

Re ve R(1− e), R halkasının iki taraflı idealleridir ve R ∼= Re×R(1− e) dir [12].

Kanıt. İlk olarak biliyoruz ki (1− e)2 = (1− e)(1− e) = 1− e− e+ e2 = 1− e

olup 1− e, R nin bir eş kare elemanıdır. Ayrıca 1 ve e, CenR de olup CenR de

R nin bir alt halkası olduğundan 1− e, R nin bir merkez eş kare elemanı olur.

Eğer a ∈ CenR ise Ra, R nin a ile üretilen iki taraflı idealidir. Buradan Re

ve R(1− e) de R nin iki taraflı idealleridir.

Ayrıca Re ∩ R(1 − e) = (0) ve R = Re + R(1 − e) dir. Gerc.ekten, x ∈

Re ∩ R(1 − e) alalım. x = r1e = r2(1 − e) olup r1e = r1e
2 = r2(1 − e)e = 0 ⇒

x = r1e = 0 olduğundan Re∩R(1− e) = (0) olur. Re ve R(1− e), R nin idealleri

olup toplamları da R nin idealleridir. Yani Re + R(1 − e) ⊆ R dir. Şimdi ters
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kapsamayı gösterelim. ∀r ∈ R ic.in r = re+ r(1− e) ∈ Re+R(1− e) olduğundan

R ⊆ Re+R(1− e) olup R = Re+R(1− e) eşitliği sağlanır. Son olarak, Önerme

2.1.31’den Re+R(1− e) = R ∼= Re×R(1− e) elde edilir.

Önerme 2.1.33 (Peirce Decomposition) R bir halka ve e de R halkasının bir eş

kare elemanı ise R = Re⊕R(1− e) dir [14].

2.2 Serbest Modül

Tanım 2.2.1 M bir sol R-modül ve X ⊆ M olsun. Eğer RX = M ise X

kümesine M modülünün üretec. kümesi denir. Burada RX = {r1x1 + r2x2 + ...+

rnxn : n ≥ 1, xi ∈ X, i = 1, ..., n} şeklinde tanımlıdır [1].

Eğer X kümesi sonlu ise M ye sonlu üretilmiş denir.

Tanım 2.2.2 M bir sol R-modül ve X de M modülünün bir üretec. kümesi olsun.

Eğer her n ≥ 1, birbirinden farklı x1, x2, ..., xn ∈ X ve r1, r2, ..., rn ∈ R elemanları

ic.in, r1x1 + r2x2 + ...+ rnxn = 0 iken r1 = r2 = ... = rn = 0 oluyorsa X kümesine

serbest (free) küme denir.

Tanım 2.2.3 M bir sol R-modül olsun. Eğer M sertbest bir üretec. kümesine

sahipse M ye serbest (free) modül denir.

Örnek 2.2.4 Herhangi birimli R halkası ic.in RR sol R-modülü, {1R} serbest

kümesi tarafından üretilen bir serbest modüldür.
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2.3 Baer ve Yarı-Baer (Grup) Halkaları

Tanım 2.3.1 Bir R halkası ic.in, eğer R halkasının boştan farklı her X alt kümesi

(her X ideali), e2 = e ∈ R olmak üzere lR(X) = Re olacak şekilde yazılabiliyorsa,

R halkasına Baer (yarı-(quasi-)Baer) halkası denir.

Baer halkası, [13]’te Kaplansky tarafından tanımlanmıştır. Yarı-Baer halkası

kavramı da ilk olarak 1967’de, Clark tarafından kullanılmıştır [7].

Önerme 2.3.2 [7] Eğer A birimli bir halka ise, aşağıdaki ifadeler denktir:

(a) A yarı-Baer halkadır.

(b) A nın her sol idealinin sol sıfırlayanlarının kümesi A nın bir eş kare elemanı

tarafından üretilir.

(c) A nın her sağ idealinin sağ sıfırlayanlarının kümesi A nın bir eş kare elemanı

tarafından üretilir.

(d) A nın her idealinin sağ sıfırlayanlarının kümesi A nın bir eş kare elemanı

tarafından üretilir.

Kanıt. (a)⇒ (b): A nın her ideali bir sol ideali olduğundan ac.ıktır.

(b) ⇒ (a): A nın her L sol ideali ic.in LA, A nın bir ideali olup A birimli

olduğundan L = LA, yani bir e ∈ A eş kare elemanı ic.in lA(L) = lA(LA) = Ae

olur. O halde A yarı-Baer halkadır. Benzer olarak (c) ⇒ (d) ve (d) ⇒ (c)

gösterilir.

(b) ⇒ (c): R, A nın bir sağ ideali ise rA(R), A nın bir idealidir. Gerc.ekten,

∀a ∈ A ve ∀x ∈ rA(R) ic.in (ax)R = a(xR) = a0 = 0 olmasından ax ∈ rA(R) ve
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(xa)R = x(aR) = xR = 0 olmasından xa ∈ rA(R) olduğundan bir idealdir.

Böylece bir e eş kare elemanı ic.in lA(rA(R)) = Ae dir. Önerme 2.1.29’dan,

rA(R) = rAlArA(R) = rA(Ae) olur. Ae(1 − e)A = A0A = 0 olduğundan

(1 − e)A ⊆ rA(Ae) olur. Diğer yandan ∀x ∈ rA(Ae) alalım. Buradan Aex = 0

olmasından ex = 0 elde edilir ve x = x − ex = (1 − e)x ∈ (1 − e)A olur. Yani

(1 − e)A ⊆ rA(Ae) dir. O halde rA(Ae) = (1 − e)A olup 1 − e de bir eş kare

eleman olduğundan ispat tamamlanmış olur.

Önerme 2.3.3 Yarıbasit bir halka Baer’dir [15].

Önerme 2.3.4 Birimli bir bölge Baer’dir [13].

Kanıt. R bir bölge olsun. ∅ 6= X ⊆ R alalım. R bir bölge olup, sıfır bölensiz

olduğundan ya X 6= {0R} ic.in lR(X) = 0 ya da X = {0R} ic.in lR(X) = R olur.

Buradan lR(X) = R · 0R ve lR(X) = R · 1R olup 02
R = 0R ∈ R ve 12

R = 1R ∈ R eş

kare elemanlar olduğundan R bir Baer halka olur.

Önerme 2.3.5 Bir Baer halka ailesinin dik toplamları (aynı zamanda dik c.arpım

olarak adlandırılır) yine bir Baer halkadır [13, Examples (5)].

Önteorem 2.3.6 A bir Baer halka olmak üzere, A nın her I dik toplamı bir Baer

halkadır; u bir merkez eş kare eleman olmak üzere I = uA dır [13, Theorem 5].

Önerme 2.3.7 A bir Baer halkası ve B de A nın eş kare elemanlarını ic.eren bir

alt kümesi olsun. O halde B de bir Baer halkadır [13, Exercises (1)].

Kanıt. Keyfi bir ∅ 6= X ⊆ B alalım. B ⊆ A olduğundan ve A Baer olduğundan

bir e2 = e ∈ B ic.in lA(X) = Ae dir. Buradan AeX = 0 olup BeX ⊆ AeX = 0

olduğundan BeX = 0 olur. Yani Be ⊆ lB(X) dir.
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Diğer yandan her b ∈ lB(X) ⊆ lA(X) = Ae ic.in b = ae olacak şekilde bir

a ∈ A vardır. Buradan b− be = b(1− e) = ae(1− e) = 0 olduğundan b = be ∈ Be

bulunur. Yani lB(X) ⊆ Be olur. O halde lB(X) = Be, e2 = e ∈ B olup B bir

Baer halka olur.

Önteorem 2.3.8 Eğer A bir yarı-Baer halkası ve e bir eş kare elemanı ise, eAe

de bir yarı-Baer halkasıdır. [7, Önteorem 2]

Kanıt. eAe nin bir sol ideali L = eLe olsun. O halde AL de A nın bir sol

idealidir. Gerc.ekten; ∀x = a1l ∈ AL ve ∀a ∈ A ic.in ax = aa1l = a2l ∈ AL olur.

A yarı-Baer olduğundan A daki bir f eş kare elemanı ic.in lA(AL) = Af olur. L

nin eAe deki sol sıfırlayanı l′(L) olsun. Yani l′(L) = leAe(L) olsun. İlk olarak

l′(L) = elA(AL)e olduğunu gösterelim. x ∈ l′(L) olsun. O halde x = eae ∈ eAe

dir. Böylece xAL = eaeAeLe = (eae)eAe(eLe) = xeAeL olup L, eAe nin bir

sol ideali olduğundan xAL = xeAeL ⊆ xL = 0 olur. Yani x ∈ elA(AL)e dir. O

halde l′(L) ⊆ elA(AL)e dir.

Diğer taraftan, eğer x ∈ elA(AL)e = {eae ∈ eAe : a ∈ lA(AL)} ise, x ∈ eAe

ve xL = xeLe = xe(eLe) = xeL olup e ∈ A olduğundan xL = xeL ⊆ xAL = 0

dır. Böylece x ∈ l′(L) dir. Yani leAe(L) = l′(L) = elA(AL)e dir. Buradan,

l′(L) = eAfe dir. Sol sıfırlayan her zaman bir sol ideal olup AL de A nın bir sol

ideali olduğundan, lA(AL) = Af de A nın bir idealidir. Af bir ideal olduğundan,

f ∈ Af ve e ∈ A olup fe ∈ Af dir. O halde fe = a′f olacak şekilde bir a′ ∈ A

vardır. fe = a′f = fef ⇒ fe = fef olur. Bu da gösterir ki fe = fefe ve

fe = fefe ⇒ efe = efefe = (efe)(efe) ⇒ (efe)2 = efe dir. g = efe olsun.

O halde eAeg = eAefe olup Ae ⊆ A ve Af ⊆ A olduğundan eAeg = eAefe ⊆
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eAfe = eAfefe = eAfe2fe ⊆ eAeg ve buradan eAeg = eAfe = l′(L) = leAe(L)

olup ispat tamamlanmış olur.

Önteorem 2.3.9 R bir yarı-Baer halkası olsun. O halde aşağıdaki halka genişlemeleri

de yarı-Baer halkadırlar:

(i) R[X],

(ii) R[[X]],

(iii) R[x;α],

(iv) R[[x;α]],

(v) R[x, x−1;α],

(vi) R[[x, x−1;α]].

Burada X, bilinmeyenlerden oluşan keyfi bir küme ve α da R halkasının bir halka

otomorfizmasıdır [3, Theorem 1.2.].

Kanıt. (iii) şıkkını ispatlayacağız. Diğer şıkların ispatı benzer şekilde yapılabilir.

T = R[x;α] ve T nin bir ideali I olsun. Bir e ∈ R eş kare elemanı ic.in lT (I) = Te

olduğunu iddia ediyoruz. Eğer I = 0 ise, 0 = 0R ∈ R eş kare elemanı ic.in lT (0) =

T ·0 olup ispat ac.ıktır. Dolayısıyla kabul edelim ki I 6= 0 olsun. I0 = {a ∈ R : a =

0 ya da 0 6= f(x) ∈ I ic.in a 6= 0 olmak üzere f(x)’in en küc.ük dereceli teriminin

katsayısı olsun} olarak alalım. O halde I0, R nin bir idealidir. Gerc.ekten, a, b ∈ I0

ic.in a veya b nin sıfır olması durumunda a − b ∈ I0 olduğu kolayca görülür. O

halde a 6= 0 ve b 6= 0 alalım. a ∈ I0 olduğundan a, bir f(x) ∈ I nın en küc.ük
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dereceli teriminin katsayısıdır ve bu terimin derecesi k olsun. Aynı şekilde b ∈ I0

olduğundan b, bir g(x) ∈ I nın en küc.ük dereceli teriminin katsayısı olup bu

terimin derecesi t olsun. Genelliği bozmadan k ≥ t alalım. I, bir ideal olduğundan

f(x) − xk−tg(x) ∈ I olup bu polinomun en küc.ük dereceli terimin katsayısı da

a−b olur. O halde a−b ∈ I0 dır. Diğer yandan, a ∈ I0 ve r ∈ R alalım. Buradan,

bir f(x) ∈ I nın en küc.ük dereceli teriminin katsayısı a olur. O halde ra (ar)

de rf(x) (f(x)r) ∈ I nın en küc.ük dereceli teriminin katsayısı olup ra (ar) ∈ I0

olur. Yani I0, R halkasının bir ideali olur. Buradan da, R yarı-Baer olduğundan

bir e ∈ R eş kare elemanı ic.in lR(I0) = Re olur.

İlk olarak Te ⊆ lT (I) olduğunu görmek ic.in h(x) ∈ I alalım. Eğer h(x) = 0

ise eh(x) = 0 olup ispat tamam olur. h(x) 6= 0 olsun. O halde h(x) = a0 +

a1x + ... + anx
n şeklindedir. Eğer a0 6= 0 ise, a0 ∈ I0 olup ea0 = 0 olur. Şimdi

eh(x) = ea0 + ea1x + ... + eanx
n = a1x + ... + eanx

n ∈ I oldu. Eğer ea1 6= 0 ise,

ea1 ∈ I0 olur. Fakat, e(ea1) = ea1 = 0 olduğundan bu bir c.elişki olur. Benzer

olarak, ea2 = ... = ean = 0 olduğunu elde edebiliriz. Böylece eh(x) = 0 olup

e ∈ lT (I) dır. Yani Te ⊆ lT (I) olur.

Şimdi iddia ediyoruz ki lT (I) ⊆ Te dir. g(x) = b0 + b1x + ... + bmx
m ∈ lT (I)

olsun. g(x)e = g(x) olduğunu göstereceğiz. f(x) = c0x
k + c1x

k+1 + ...+ ctx
k+t ∈

I olsun. Burada c0 6= 0 ve k, negatif olmayan bir tamsayı olsun. O halde

g(x)f(x) = b0c0x
k + b0c1x

k+1 + b1xc0x
k + ... + bmx

mctx
k+t = 0 dır. Böylece

b0c0 = 0 dır. c0 ∈ I0 olduğundan b0 ∈ lR(I0) = Re ⊆ Te = lT (I) olur. Buradan

b0 = re olacak şekilde bir r ∈ R vardır. b0 − b0e = b0(1− e) = re(1− e) = 0 olup

b0 = b0e olur. Ayrıca b0 ∈ lT (I) olduğundan b0f(x) = 0 olur. Yani i = 0, 1, ..., t
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ic.in b0ci = 0 olur. h(x) ∈ I ve g(x) ∈ lT (I) olduğundan g(x)h(x) = b0a0 +

b0a1x + b1xa0 + ... + bmx
manx

n = 0 dır. b0 ∈ lT (I) olduğunu biliyoruz. O halde

b1xa0 = 0 ⇒ b1α(a0)x = 0 ⇒ b1α(a0) = 0 olur. α bir otomorfizma olduğundan,

bir d1 elemanı ic.in α(d1) = b1 dir. O halde α(d1a0) = α(d1)α(a0) = b1α(a0) = 0

olup d1a0 = 0 olur. Yani d1 ∈ lR(I0) = Re ⊆ Te = lT (I) olur. O halde d1 = r1e

olacak şekilde bir r1 ∈ R vardır ve d1 − d1e = d1e(1 − e) = 0 dan d1 = d1e

ve böylece α(d1) = b1 den d1 = α−1(b1) olduğundan α−1(b1) = α−1(b1)e olur.

Buradan b1 = b1α(e) bulunur. Ayrıca d1 ∈ lR(I0) olduğundan i = 0, 1, ..., t ic.in

0 = d1ci = b1α(ci) olur.

Benzer adımlar ve işlemler bu şekilde devam ettirilirse, i = 0, 1, ..., t ic.in

bi = biα
i(e) elde edilir. Böylece g(x) = g(x)e ∈ Te olur. Buradan da lT (I) = Te

elde edilir.

Bu teoremin diğer tarafı, aynı makale ic.inde mevcut olup, Zhou [21]’de daha

basit bir ispat yapmıştır. Şimdi o teoremi, ispatıyla birlikte verelim. Öncelikle

bunun ic.in ispatta kullanacağımız yine [21]’den bir önerme verelim.

Önerme 2.3.10 [21] A = {rR(U) : U j R}, B = {rR[x,x−1](V ) : V j R[x, x−1]}

ve C = {rR[[x,x−1]](W ) : W j R[[x, x−1]]} olsun. I ∈ A, J ∈ B ve K ∈ C ic.in,

Φ1(I) = I[x, x−1], Φ2(I) = I[[x, x−1]], Ψ1(J) = J ∩ R ve Ψ2(K) = K ∩ R olsun.

O halde,

(1) Φ1 : A→ B dönüşümü 1-1 ve Ψ1 : B → A dönüşümü örtendir.

(2) Φ2 : A→ C dönüşümü 1-1 ve Ψ2 : C → A dönüşümü örtendir.

(3) Ψ1 ◦ Φ1 = Ψ2 ◦ Φ2 = 1A dır.
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Önteorem 2.3.11 [21, Theorem 2] (Birkenmeier, Kim and Park) R nin yarı-

Baer olması ic.in gerek ve yeter koşul R[x, x−1] ya da R[[x, x−1]] in yarı-Baer

olmasıdır.

Kanıt. EğerR yarı-Baer iseR[x, x−1] veR[[x, x−1]] de yarı-Baer’dir (bkz. Önteorem

2.3.9). Kabul edelim ki R[x, x−1] yarı-Baer olsun. Şimdi R nin yarı-Baer olduğunu

göstereceğiz. U , R nin bir ideali olsun. O halde U [x, x−1] de R[x, x−1] in idealidir.

Gerc.ekten, u =
∑
k∈Z

ukx
k, v =

∑
k∈Z

vkx
k ∈ U [x, x−1] olsun. u − v =

(∑
k∈Z

ukx
k

)
−(∑

k∈Z
vkx

k

)
=
∑
k∈Z

(uk − vk)xk ve uk − vk ∈ U olup u − v ∈ U [x, x−1] dir. Ayrıca

u ∈ U [x, x−1] ve r =
∑
t∈Z
rtx

t ∈ R[x, x−1] ic.in ur =

(∑
k∈Z

ukx
k

)(∑
t∈Z
rtx

t

)
=( ∑

k,t∈Z
ukrtx

k+t

)
ve ukrt(rtuk) ∈ U olup ur(ru) ∈ U [x, x−1] dir. Şu kümeleri

inceleyelim:

rR(U)[x, x−1] =

{∑
k∈Z

rkx
k : Urk = 0

}

rR[x,x−1](U) =

{∑
k∈Z

rkx
k : U

∑
k∈Z

rkx
k = 0

}

=

{∑
k∈Z

rkx
k :
∑
k∈Z

Urkx
k = 0

}

=

{∑
k∈Z

rkx
k : Urk = 0

}
ve

rR[x,x−1](U [x, x−1]) =

{∑
k∈Z

rkx
k : U [x, x−1]

∑
k∈Z

rkx
k = 0

}

=

{∑
k∈Z

rkx
k : U

(∑
k∈Z

rkx
k

)
[x, x−1] = 0

}

=

{∑
k∈Z

rkx
k :

(∑
k∈Z

Urkx
k

)
[x, x−1] = 0

}
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=

{∑
k∈Z

rkx
k : Urk = 0

}
.

Görüldüğü gibi bu kümeler birbirine eşittir. Yani, rR(U)[x, x−1] = rR[x,x−1](U) =

rR[x,x−1](U [x, x−1]) dir. Buradan, R[x, x−1] yarı-Baer olduğundan, bir [f(x)]2 =

f(x) ∈ R[x, x−1] ic.in rR(U)[x, x−1] = f(x)R[x, x−1] olur. Önerme 2.3.10’un 3.

şıkkından, rR(U) = rR(U)[x, x−1] ∩ R = f(x)R[x, x−1] ∩ R olur. f(x) =
t∑
aix

i

i=−s

olarak alalım. Burada s = 0, t = 0 ve rR(U)[x, x−1] = f(x)R[x, x−1] olduğundan

her i ic.in ai ∈ rR(U) dir. Herhangi a ∈ rR(U) ic.in, a = f(x)g(x) olarak yazabili-

riz. Burada g(x) ∈ R[x, x−1] dir. O halde f(x)a = f(x)f(x)g(x) = f(x)g(x) = a

olur. Bu da a0a = a olması demektir. f(x) eş kare eleman olduğundan a2
0 = a0

olup rR(U) = a0R olur. Yani R yarı-Baer halkadır. Benzer şekilde, R[[x, x−1]] in

yarı-Baer olmasının R nin de yarı-Baer olmasını gerektirdiği gösterilebilir.
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3 HIRANO’NUN SORUSUNU YANITLAMAK

İC. İN GEREKLİ BAZI KOŞULLAR

Şu teoremi ispatlayarak başlayalım.

Teorem 3.0.12 R, bir S halkasının aynı birimine sahip bir alt halkası olsun.

Kabul edelim ki S, 1 ∈ G ve her a ∈ R ve her g ∈ G ic.in ag = ga olacak şekildeki

bir G tabanı ile bir serbest sol R-modül olsun. Eğer S (yarı-)Baer halka ise, R

de (yarı-)Baer halkadır.

Kanıt. İspatı yarı-Baer ic.in yapacağız. Baer olması durumundaki ispat da benzer

yolla yapılır.

I, R nin bir ideali olsun. Ac.ıktır ki, SI da S nin bir idealidir. S yarı-Baer

olduğundan, lS(SI) = Se olacak şekilde bir e2 = e ∈ S vardır. S, G tabanlı bir

serbest sol R-modül ve e ∈ S olduğundan e yi

e = a0gα(0) + ...+ angα(n)

şeklinde yazalım. Burada gα(0) = 1, gα(i) ler birbirinden farklı olmak üzere gα(i) ∈

G ve ai ∈ R dir. lS(SI) = Se olup SeSI = 0 dır. Buradan ∀s1, s2 ∈ S ic.in

s1es2I = 0 olup s1 = s2 = 1 olarak alırsak eI = 0 olur. O halde her a ∈ I ic.in

0 = ea = (a0gα(0) + ...+ angα(n))a = a0agα(0) + ...+ anagα(n)

olup G bir taban olduğundan i = 0, 1, ..., n ic.in aia = 0 olur. Böylece i = 0, 1, ..., n

ic.in aiI = 0 olur. Buradan

aiSI = ai( ⊕
g∈G

Rg)I = ai
∑

(RI)g =
∑

aiIg = 0
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olup ai ∈ lS(SI) = Se’dir. Buradan her i = 0, 1, ..., n ic.in ai = sie olacak şekilde

bir si ∈ S vardır. Buradan,

ai − aie = ai(1− e) = sie(1− e) = 0

olduğundan ai = aie olur. Buradan da,

a0 = a0e⇒ a0 = a0(a0gα(0) + ...+ angα(n))

⇒ a0 = a2
0gα(0) + ...+ a0angα(n)

⇒ 0 = (a2
0 − a0)gα(0) + ...+ (an − a0)gα(n)

olup G bir taban olduğundan a2
0 = a0 ∈ R elde edilir. a0I = 0 olduğundan

Ra0 ∈ lR(I) olur.

Eğer r ∈ lR(I) ise,

rSI = r( ⊕
g∈G

Rg)I = r
∑

(RI)g =
∑

rIg = 0

olur. Yani r ∈ lS(SI) = Se olup r = se olacak şekilde bir s ∈ S vardır. Buradan,

r − re = se− see = se− se2 = se− se = 0

olduğundan r = re olur.

r = re = r(a0gα(0) + ...+ angα(n)) = ra0gα(0) + ...+ rangα(n)

⇒ 0 = (ra0 − r)gα(0) + ...+ rangα(n)

olup G bir taban olduğundan r = ra0 ∈ Ra0 elde edilir. Böylece

lR(I) = Ra0

olur. Yani R, bir yarı-Baer halkadır.
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Sonuç 3.0.13 R bir halka ve G de bir grup olsun. Eğer RG grup halkası (yarı-)

Baer ise, R de (yarı-)Baer halkadır.

Kanıt. G, Teorem 3.0.12’nin şartlarını sağlayan bir taban olmak üzere, bu ta-

banla birlikte S = RG = ⊕
g∈G

Rg olarak sec.ersek, S bir serbest sol R-modül olur.

Burada R yi, ∀r ∈ R ic.in r1 ∈ RG olduğundan, S = RG nin aynı birimine sahip

bir alt halkası olarak alabiliriz.

Sonuç 3.0.14 Eğer R[x] ya da R[x, x−1] (yarı-)Baer halka ise, R de (yarı-)Baer

halkadır.

Kanıt. R[x] ve R[x, x−1], Teorem 3.0.12’nin şartlarını sağlayan, sırasıyla

{xi : i = 0, 1, ...} ve {xi : i = 0,±1, ...} tabanlarına sahip birer serbest modüllerdir.

Teorem 3.0.15 Eğer G sonlu bir grup ve RG grup halkası yarı-Baer ise, |G|−1 ∈

R dir.

Kanıt. Genişleme idealin w(RG) =
∑
g∈G

R(1−g) olduğunu biliyoruz (bkz. Önteorem

2.1.24). Ayrıca, lRG(w(RG)) = RGĜ dir (bkz. Önteorem 2.1.25). Burada

Ĝ =
∑
g∈G

g dir. RG yarı-Baer olduğundan, bir e2 = e ∈ RG ic.in

RGĜ = RGe (1)

olur. O halde e = (
∑
rgg)Ĝ olacak şekilde bir

∑
rgg ∈ RG vardır. Burada e =

(
∑
rgg)Ĝ = (

∑
rg)Ĝ dir. Gerc.ekten (

∑
rgg) (

∑
1ĝ) =

∑
(rg1)(gĝ) =

∑
rgg
′ =

(
∑
rg) Ĝ olur. Buradan Ĝ · Ĝ = |G| · Ĝ olduğundan (

∑
rg)Ĝ = e = e2 =

(
∑
rg)Ĝ(

∑
rg)Ĝ = |G|(

∑
rg)

2Ĝ olup her tarafın genişleme dönüşümünü alırsak,

∑
rg = |G|(

∑
rg)

2 (2)
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olur. RGĜ 6= 0 olduğundan e 6= 0, böylece |G| 6= 0 dır. Böylece şu iddiayı da

ispatlamış olduk.

İddia 3.0.16 Sonlu bir grubun grup halkası yarı-Baer ise, grubun mertebesi kat-

sayılar halkasında sıfır değildir.

Şimdi n = |G| ve r =
∑
rg olsun. (1)’den, Ĝ = (

∑
sgg)e olacak şekilde bir∑

sgg ∈ RG vardır. Burada Ĝ = (
∑
sgg)e = (

∑
sgg)rĜ dir. Eşitliğin her iki

yanına genişleme dönüşümünü uygularsak,

n = (
∑

sg)rn (3)

olur. (2) ve (3) eşitliklerinden, n = (
∑
sg)rn ⇒ n = (

∑
sg)r

2n2 den 1 =

(
∑
sg)r

2n olduğundan, lR(n) = 0 olduğunu göstermek yeterlidir. Kabul ede-

lim ki lR(n) 6= 0 olsun. O halde bazı a ∈ R ic.in an = na = 0 dır. Dolayısıyla

n(Ra) = R(na) = 0, yani n ∈ lR(Ra) olur. RG grup halkası yarı-Baer olduğundan

Sonuc. 3.0.13’ten, R de yarı-Baer halkadır ve lR(Ra) = Rf olacak şekilde bir

f 2 = f ∈ R vardır. Ac.ıkc.a f 6= 1, yani 1 − f 6= 0 dır. Gerc.ekten, f = 1 olsaydı

lR(Ra) = R olurdu ki bu da ∀r ∈ R ic.in r(Ra) = Ra = 0 demektir. Bu da a 6= 0

olmasıyla c.elişir. Ayrıca, n ∈ lR(Ra) = Rf olduğundan n = rf olacak şekilde bir

r ∈ R vardır ve rf(1− f) = n(1− f) = 0 dır. Ancak

(1− f)(RG)(1− f) = (1− f)R(1− f)G

dir. RG yarı-Baer olduğundan Önteorem 2.3.8’den (1 − f)(RG)(1 − f) de yarı-

Baer’dir. Buradan da, S = (1− f)R(1− f) olmak üzere, SG yarı-Baer grup

halkasıdır. Böylece, İddia 3.0.16’dan n, S de sıfırdan farklıdır. Bu da 1− f 6= 0
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olduğundan n(1 − f) = 0 olması ile c.elişir. Dolayısıyla lR(n) = 0 dır. İspat

tamamlanmıştır.

Aşağıdakiler, Teorem 3.0.15’in ac.ık bir sonucudur.

Örnek 3.0.17 Herhangi aşikar olmayan G grubu ic.in ZG yarı-Baer değildir.

Çözüm 3.0.18 Aşikar olmayan bir G grubu ic.in |G|−1 6∈ Z olduğundan ZG grup

halkası yarı-Baer olamaz.

Örnek 3.0.19 G sonlu bir grup ve n > 1 bir tamsayı olsun. O halde aşağıdakiler

denktir:

1. ZnG Baer grup halkasıdır.

2. ZnG yarı-Baer grup halkasıdır.

3. ebob(n, |G|) = 1 ve n kare-c.arpansızdır (square-free).

Kanıt. (1) ise (2) ac.ıktır. C. ünkü her ideal aynı zamanda bir alt gruptur.

(2) sağlansın. pi ler asal sayı ve si > 0 olmak üzere n = ps11 ...p
sk
k olarak

yazalım. O halde Zn
∼= Zp

s1
1
× ... × Zp

sk
k

olup ZnG ∼= Zp
s1
1
G × ... × Zp

sk
k
G dir.

(2) den, ZnG yarı-Baer olduğundan, herbir Zp
si
i
G yarı-Baer grup halkasıdır (bkz.

Önteorem 2.3.6). Böylece Sonuc. 3.0.13’ten Zp
si
i

yarı-Baer ve Teorem 3.0.15’ten

psi
i , |G| yi bölmez. Aksini kabul edelim. psi

i , |G| yi bölsün. Buradan |G| = psi
i k

olacak şekilde bir k ∈ Z vardır. Bu da |G| nin Zp
si
i

de 0 olması, yani |G|−1 6∈ Zp
si
i

olması demektir. Fakat bu Zp
si
i
G nin yarı-Baer olmasıyla c.elişir. O halde psi

i , |G|

yi bölmez. Ayrıca, burada si = 1 dir. C. ünkü, eğer si 6= 1 olsaydı, |G| = pi ic.in
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|G|−1 = p−1
i 6∈ Zp

si
i

olurdu. Bu da, Zp
si
i
G nin yarı-Baer olmasıyla c.elişirdi. Yani

buradan si = 1 ve pi, |G| yi bölmez sonucunu elde ederiz. Böylece (3) sağlanır.

Eğer (3) sağlanırsa, Maschke’nin Teoremi’nden (bkz. Önteorem 2.1.30), n,

|G| yi bölmediğinden, ZnG bir yarıbasit halkadır, yani (1) sağlanır (bkz. Önerme

2.3.3).
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4 SONLU GRUPLARIN GRUP HALKALARI

VE HIRANO’NUN SORUSU

4.1 Sonlu Grupların Grup Halkaları

Önteorem 4.1.1 Eğer 2−1 ∈ R ise, RC2
∼= R×R dir.

Kanıt. C2 = {1, g} olarak alalım. Eğer 2−1 ∈ R ise, a + bg → (a + b, a − b) ile

verilen f : RC2 → R×R dönüşümü bir halka izomorfizmasıdır. Gerc.ekten,

• İyi Tanımlılık:

a1 + b1g = a2 + b2g ⇒ a1 = a2, b1 = b2

⇒ (a1 + b1, a1 − b1) = (a2 + b2, a2 − b2)

⇒ f(a1 + b1g) = f(a2 + b2g)

• Homomorfizma:

f((a1 + b1g) + (a2 + b2g)) = f(a1 + a2 + (b1 + b2)g)

= (a1 + a2 + b1 + b2, a1 + a2 − b1 − b2)

= (a1 + b1, a1 − b1) + (a2 + b2, a2 − b2)

= f(a1 + b1g) + f(a2 + b2g)

f((a1 + b1g)(a2 + b2g)) = f(a1a2 + a1b2g + b1a2g + b1b2)

= f(a1a2 + b1b2 + (a1b2 + b1a2)g)

= (a1a2 +b1b2 +a1b2 +b1a2, a1a2 +b1b2−a1b2−b1a2)

= ((a1 + b1)(a2 + b2), (a1 − b1)(a2 − b2))
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= (a1 + b1, a1 − b1)(a2 + b2, a2 − b2)

= f(a1 + b1g)f(a2 + b2g)

• 1-1 lik:

f(a1 + b1g) = f(a2 + b2g)⇒ (a1 + b1, a1 − b1) = (a2 + b2, a2 − b2)

⇒ a1 + b1 = a2 + b2, a1 − b1 = a2 − b2

⇒ a2 + b2 − b1 = a2 − b2 + b1

⇒ 2b1 = 2b2

⇒ (2−1 ∈ R) b1 = b2

⇒ a1 = a2

⇒ a1 + b1g = a2 + b2g

• Örtenlik: ∀(x, y) ∈ R×R ic.in

f(a+ bg) = (x, y)⇒ (a+ b, a− b) = (x, y)

⇒ a+ b = x, a− b = y

⇒ a = 2−1(x+ y), b = 2−1(x− y) ∈ R

⇒ a+ bg = 2−1(x+ y) + 2−1(x− y)g ∈ RC2

olup bir halka izomorfizmasıdır.

Sonuç 4.1.2 Eğer 2−1 ∈ R ise, RC2 grup halkasının (yarı-)Baer olması ic.in gerek

ve yeter koşul R halkasının (yarı-)Baer olmasıdır.
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Kanıt. Sonuc. 3.0.13’ten RC2 (yarı-)Baer grup halkası ise R de (yarı-)Baer

halkadır. Tersine 2−1 ∈ R ise Önteorem 4.1.1’den RC2
∼= R×R dir. R (yarı-)Baer

ise R × R de (yarı-)Baer olduğundan (bkz. Önerme 2.3.5) RC2 de (yarı-)Baer

grup halkasıdır.

Önteorem 4.1.3 Eğer 2−1 ∈ R ise, RC4
∼= R×R×R[x]/(x2 + 1) dir.

Kanıt. C4 = {1, g, g2, g3} olarak alalım ve e = (1 + g2)/2 olsun. e, RC4 ün

merkez eş kare elemanıdır. Gerc.ekten,

e2 =
(1 + g2)

2

(1 + g2)

2
=

2(1 + g2)

2 · 2
=

(1 + g2)

2
= e

olup eş kare elemandır. Ayrıca, ∀r0 + r1g + r2g
2 + r3g

3 ∈ RC4 ic.in

(r0+r1g+r2g
2+r3g

3)· (1 + g2)

2
=
r0 + r1g + r2g

2 + r3g
3 + r0g

2 + r1g
3 + r2 + r3g

2

=
(1 + g2)(r0 + r1g + r2g

2 + r3g
3)

2

=
(1 + g2)

2
· (r0 + r1g + r2g

2 + r3g
3)

olup e, RC4 ün merkezindedir. e, RC4 ün merkez eş kare elemanı olduğundan,

RC4
∼= RC4e×RC4(1− e) dir (bkz. Önteorem 2.1.32).

Doğrudan hesaplama yaparsak, ∀(r0 + r1g + r2g
2 + r3g

3) ∈ RC4 ic.in,

(r0+r1g+r2g
2+r3g

3)· (1 + g2)

2
=
r0 + r1g + r2g

2 + r3g
3 + r0g

2 + r1g
3 + r2 + r3g

2

=
r0 + r2 + (r1 + r3)g + (r2 + r0)g

2 + (r1 + r3)g
3

2

= (r0 + r2) ·
(1 + g2)

2
+ (r1 + r3)g ·

(1 + g2)

2

olup r0 + r2 = r ve r1 + r3 = s dersek

RC4e = {re+ sge : r, s ∈ R}
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olur. Ayrıca,

(r0 + r1g + r2g
2 + r3g

3) · (1− 1 + g2

2
) = (r0 + r1g + r2g

2 + r3g
3) · (1− g2)

2

=
r0 + r1g + r2g

2 + r3g
3 − r0g2 − r1g3 − r2 − r3g

2

=
r0 − r2 + (r1 − r3)g − (r0 − r2)g2 − (r1 − r3)g3

2

= (r0 − r2) ·
(1− g2)

2
+ (r1 − r3)g ·

(1− g2)

2

olup r0 − r2 = r ve r1 − r3 = s dersek

RC4(1− e) = {r(1− e) + sg(1− e) : r, s ∈ R}

olduğu görülür. re+sge→ r+sx ile verilen f : RC4e→ R[x]/(x2−1) dönüşümü

bir halka izomorfizmasıdır. Gerc.ekten:

• İyi tanımlılık:

r1e+ s1ge = r2e+ s2ge ⇒ (r1 − r2)e+ (s1 − s2)ge = 0

⇒ r1 = r2, s1 = s2

⇒ r1 + s1x = r2 + s2x

⇒ f(r1e+ s1ge) = f(r2e+ s2ge)

• Homomorfizma:

f((r1e+ s1ge) + (r2e+ s2ge)) = f((r1 + r2)e+ (s1 + s2)ge)

= r1 + r2 + (s1 + s2)x

= r1 + s1x+ r2 + s2x

= f(r1e+ s1ge) + f(r2e+ s2ge)
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f((r1e+ s1ge)(r2e+ s2ge)) = f(r1r2e+ r1s2ge+ s1r2ge+ s1s2e)

= f((r1r2 + s1s2)e+ (r1s2 + s1r2)ge)

= r1r2 + s1s2 + (r1s2 + s1r2)x

= (r1 + s1x)(r2 + s2x)

= f(r1e+ s1ge)f(r2e+ s2ge)

• 1-1 lik:

f(r1e+ s1ge) = f(r2e+ s2ge) ⇒ r1 + s1x = r2 + s2x

⇒ r1 − r2 + (s1 − s2)x = 0

⇒ r1 = r2, s1 = s2

⇒ r1e+ s1ge = r2e+ s2ge

• Örtenlik: ∀r+ sx ∈ R[x]/(x2− 1) ic.in, f(re+ sge) = r+ sx olacak şekilde

bir re+ sge ∈ (RC4)e vardır. Dolayısıyla dönüşüm örtendir.

Şimdi de, r(1−e)+sg(1−e)→ r+sx ile tanımlı h : RC4(1−e)→ R[x]/(x2+1)

dönüşümünün bir halka izomorfizması olduğunu gösterelim.

• İyi tanımlılık:

r1(1− e) + s1g(1− e) = r2(1− e) + s2g(1− e)

⇒ (r1 − r2)(1− e) + (s1 − s2)g(1− e) = 0

⇒ r1 = r2, s1 = s2

⇒ r1 + s1x = r2 + s2x

⇒ h(r1(1− e) + s1g(1− e)) = h(r2(1− e) + s2g(1− e))
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• Homomorfizma:

h((r1(1− e) + s1g(1− e)) + (r2(1− e) + s2g(1− e)))

= h((r1 + r2)(1− e) + (s1 + s2)g(1− e))

= r1 + r2 + (s1 + s2)x

= r1 + s1x+ r2 + s2x

= h(r1(1−e)+s1g(1−e))+h(r2(1−e)+s2g(1−e)),

h((r1(1− e) + s1g(1− e))(r2(1− e) + s2g(1− e)))

= h(r1r2(1− e) + r1s2g(1− e) + s1r2g(1− e)− s1s2(1− e))

= h((r1r2− s1s2)(1− e) + (r1s2 + s1r2)g(1− e))

= r1r2 − s1s2 + (r1s2 + s1r2)x

= (r1 + s1x)(r2 + s2x)

= h(r1(1− e) + s1g(1− e))h(r2(1− e) + s2g(1− e))

• 1-1 lik:

h(r1(1− e) + s1g(1− e)) = h(r2(1− e) + s2g(1− e))

⇒ r1 + s1x = r2 + s2x

⇒ r1 − r2 + (s1 − s2)x = 0

⇒ r1 = r2, s1 = s2

⇒ r1(1− e) + s1g(1− e) = r2(1− e) + s2g(1− e)
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• Örtenlik: ∀r+sx ∈ R[x]/(x2+1) ic.in, h(r(1−e)+sg(1−e)) = r+sx olacak

şekilde bir r(1− e) + sg(1− e) ∈ (RC4)(1− e) elemanı vardır. Dolayısıyla

dönüşüm örtendir.

Ayrıca, Önteorem 4.1.1’den R[x]/(x2 − 1) ∼= RC2
∼= R × R olup RC4

∼=

R×R×R[x]/(x2 + 1) olur.

Sonuç 4.1.4 Eğer 2−1 ∈ R ise, RC4 grup halkasının (yarı-)Baer olması ic.in gerek

ve yeter koşul R[x]/(x2 + 1) in (yarı-)Baer olmasıdır.

Kanıt. RC4 (yarı-)Baer olsun. e = (1 + g2)/2, RC4 ün merkez eş kare elemanı

olduğundan RC4 = RC4e⊕RC4(1−e) dir (bkz. Önerme 2.1.33). Ayrıca RC4(1−

e) ∼= R[x]/(x2 + 1) olduğundan Önteorem 2.3.6’dan R[x]/(x2 + 1) de (yarı-)Baer

olur.

Tersine, R[x]/(x2+1) (yarı-)Baer olsun. e = (1+g2)/2, RC4 ün merkez eş kare

elemanı olup Önteorem 4.1.3’ten R[x]/(x2 + 1) ∼= RC4(1− e) olduğunu biliyoruz.

C4(1− e) = {(1− e), g(1− e),−(1− e),−g(1− e)} de bir gruptur. O halde G =

C4(1−e) dersek, RC4(1−e) = RG grup halkası (yarı-)Baer olup Sonuc. 3.0.13’ten

R de bir (yarı-)Baer halka olur. Önteorem 4.1.3’ten RC4
∼= R×R×R[x]/(x2 +1)

olduğundan, Önerme 2.3.5’ten de RC4 bir (yarı-)Baer grup halkasıdır.

Önteorem 4.1.5 R bir halka ve 3−1 ∈ R olsun. Ayrıca C3 = {1, g, g2} olsun. O

halde aşağıdaki ifadeler sağlanır:

1. e = 1
3
ĝ RC3 ün bir merkez eş kare elemanıdır veRC3

∼= (RC3)e× (RC3)(1− e)

dir. Burada (RC3)e = {re : r ∈ R} ∼= R ve

(RC3)(1− e) = {r + sg + (−r − s)g2 : r, s ∈ R} dir.
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2. Eğer R ⊆ C ise,

RC3
∼= R[x]/(x3 − 1)

∼= R[x]/(x− 1)×R[x]/(x2 + x+ 1)

∼= R×R[x]/(x2 + x+ 1)

dir.

Kanıt. (1) Burada ĝ = 1 + g + g2 dir.

e2 =

[
1

3
ĝ

]2

=
1

3
· 1

3
(1 + g + g2)2 =

1

3
· 1

3
· 3(1 + g + g2) =

1

3
ĝ = e

ve ∀r = r0 + r1g + r2g
2 ∈ RC3 ic.in

er =
1

3
(1 + g + g2)(r0 + r1g + r2g

2)

=
1

3
(r0 + r1g + r2g

2 + r0g + r1g
2 + r2 + r0g

2 + r1 + r2g)

=
1

3
[(r0 + r1 + r2) + (r0 + r1 + r2)g + (r0 + r1 + r2)g

2]

= (r0 + r1g + r2g
2)

1

3
(1 + g + g2)

= re

olup e, RC4 ün bir merkez eş kare elemanıdır. O halde RC3
∼= RC3e×RC3(1−e)

olur (bkz. Önteorem 2.1.32).

Diğer yandan, ∀r = r0 + r1g + r2g
2 ∈ RC3 ic.in,

re =
1

3
[(r0 + r1 + r2) + (r0 + r1 + r2)g + (r0 + r1 + r2)g

2]

= (r0 + r1 + r2)
1

3
(1 + g + g2)
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olup

(RC3)e = {re : r ∈ R}

dir. re → r ile tanımlı (RC3)e → R dönüşümü de bir halka izomorfizmasıdır.

Yani (RC3)e ∼= R dir. Ek olarak, (1 − e) = 1 − 1
3
(1 + g + g2) = (2 − g − g2)/3

olup ve ∀r = (r0 + r1g + r2g
2) ∈ RC3 ic.in,

r(1− e) =
1

3
(2r0 − r0g − r0g2 + 2r1g − r1g2 − r1 + 2r2g

2 − r2 − r2g)

= (2r0 − r1 − r2) + (2r1 − r0 − r2)g + (2r2 − r0 − r1)g2

dir. Burada r = 2r0 − r1 − r2 ve s = 2r1 − r0 − r2 olarak alırsak −r − s =

−2r0 + r1 + r2 − 2r1 + r0 + r2 = 2r2 − r0 − r1 olur. Dolayısıyla

(RC3)(1− e) = {r + sg + (−r − s)g2 : r, s ∈ R}

olarak elde edilir.

Eğer 1/3 ∈ R ⊆ C ise, r0 + r1g + r2g
2 → r0 + r1x + r2x

2 ile tanımlı RC3 →

R[x]/(x3−1) dönüşümü bir halka izomorfizması olup (x−1) ve (x2+x+1) idealleri

R[x] te aralarında asaldırlar. Gerc.ekten, (x− 1) + (x2 + x+ 1) = R[x] tir. Bunu

görmek ic.in R[x] in birimini elde etmek yeterlidir. O halde
[
−1

3
(x+ 2)

]
(x− 1) +

1
3
(x2 + x+ 1) = 1 olup istenilen elde edilir. Böylece (2), C. in Kalan Teoremi’nden

elde edilir (bkz. Sonuc. 2.1.16).

Buradan şunu söyleyebiliriz ki; eğer 1/3 ∈ R olacak şekilde R, C nin bir alt

halkası ise, RC3 ün Baer olması ic.in gerek ve yeter koşul R[x]/(x2 + x + 1) in

Baer olmasıdır.
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Teorem 4.1.6 R, C nin bir alt halkası olsun ve Q(R) ile de R halkasının kesir

cismini gösterelim. a2 − 4b 6= 0 olacak şekilde x2 + ax+ b ∈ R[x] polinomunu ele

alalım. w, C de x2 + ax+ b = 0 ın bir c.özümü olsun. O halde R[x]/(x2 + ax+ b)

(yarı-)Baer’dir ancak ve ancak ya w ∈ R ya da Rw ∩ R = 0 (yani, w 6∈ Q(R))

dır.

Kanıt. S ile R[x]/(x2 + ax + b) halkasını gösterelim. w, x2 + ax + b = 0 ın

bir c.özümü olduğundan, x2 + ax + b = (x − w)(x − v) olsun. Burada w, v ∈ C

dir. Hipotezden, a2 − 4b 6= 0 olduğundan, w 6= v dir. İlk olarak kabul edelim

ki w 6∈ Q(R) olsun. O halde S, C nin bir alt halkası ve böylece bir bölgedir. O

halde S, bir Baer halkadır.

Şimdi de kabul edelim ki w ∈ Q(R) olsun. x2 + ax+ b = (x− w)(x− v) den

x2 + ax + b = x2 + (−w − v)x + wv olur. 0 6= y, x ∈ R ic.in w = x
y

olduğundan,

a = −x
y
− v ve böylece −x+ay

y
= v ∈ Q(R) olur. ϕ(f(x)) = (f(w), f(v)) ile

tanımlı ϕ : R[x]→ Q(R)×Q(R) dönüşümünü ele alalım. Burada ϕ nin c.ekirdeği

(x2 + ax + b) dir. Böylece 1. izomorfizma teoreminden S, Q(R) × Q(R) nin

bir alt halkasıdır. Q(R) × Q(R) bir bölge olmadığından S de bir bölge değildir.

Önerme 2.3.7’den S nin Baer olması ic.in gerek ve yeter koşul S nin, (1, 0) ∈

Q(R) × Q(R) eş kare elemanını ic.ermesidir ve (1, 0) ∈ S olması ic.in gerek ve

yeter koşul rw + s = 1 ve rv + s = 0 olacak şekilde rx + s ∈ R[x] elemanın var

olmasıdır. x2 + ax+ b = (x− w)(x− v) = x2 − (w + v)x+ wv olduğundan,

(ar − 1)s = [−(w + v)r − 1]s = [−(1− 2s)− 1]s

= 2s(s− 1)

= 2(−rv)(−rw) = 2r2b
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sonucunu elde ederiz. Bu da demektir ki, (ar − 1)s = 2r2b olduğundan s, R de

r tarafından bölünebilir. Buradan rv + s = 0 olduğundan v = −s/r ∈ R ve

buradan −(w + v) = a olup w = −a − v ∈ R dir. Böylece ispat tamamlanmış

olur.

4.2 Hirano’nun Sorusu

R bir halka ve G de sonlu bir grup olsun. Eğer RG grup halkası (yarı-)Baer ise,

R de (yarı-)Baer halkadır ve |G|−1 ∈ R dir. Buradan, acaba ”Tersi de doğru

mudur?” sorusu akla gelir. Yarı-Baer halkaları üzerindeki bu soru Hirano [8]

tarafından soruldu.

Örnek 4.2.1 ve Örnek 4.2.2 Hirano’nun sorusu ic.in aksi örneklerdir.

Örnek 4.2.1 R0 = {n/2k : n ∈ Z, k negatif olmayan bir tamsayı} olsun. O

halde R0, Q nun bir alt halkasıdır. Gerc.ekten, k ≥ t olmak üzere ∀n/2k,m/2t ∈

R0 ic.in n/2k −m/2t = (n −m2k−t)/2k ∈ R0 ve (n/2k)(m/2t) = nm/2k+t ∈ R0

dır.

R = {a+ 3bi : a, b ∈ R0}

kümesini göz önüne alalım. O halde a = 1/2 ∈ R0 ve b = 0 ∈ R0 ic.in 1/2 ∈ R

olmak üzere R, C nin bir alt halkasıdır. Gerc.ekten; ∀x = a1 +3b1i, y = a2 +3b2i ∈

R ic.in x − y = a1 − b1 + 3(b1 − b2)i ∈ R ve xy = (a1 + 3b1i)(a2 + 3b2i) =

a1a2−9b1b2 + 3(a1b2 +a2b1)i ∈ R dir. R bir bölge olduğundan, bir Baer halkadır.

1/3 6∈ R0 olduğundan x2 + 1 = 0 ın bir kökü olan i 6∈ R dir. Ayrıca r = 3 ∈ R

ve s = 3i ∈ R ic.in, s = ri ∈ Ri ∩ R 6= 0 olur. Böylece Teorem 4.1.6’dan,

R[x]/(x2 + 1) yarı-Baer değildir. Sonuc. 4.1.4’ten, RC4 de yarı-Baer değildir.
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Örnek 4.2.2 R0 = {n/3k : n ∈ Z, k, negatif olmayan bir tamsayı} olsun. O

halde, R0, Q nun bir alt halkasıdır.

R = {a+ b
√

3i : a, b ∈ R0}

kümesini göz önüne alalım. Buradan R, C nin bir alt halkasıdır. R bir bölge

olduğundan, bir Baer halkadır. a = 2
√

3i, b = −(3 +
√

3i) ve

w = b/a = −(3 +
√

3i)/2
√

3i = (−1 +
√

3i)/2

olsun. O halde, a, b ∈ R ve w = (−1 +
√

3i)/2, x2 + x + 1 = 0 ın bir köküdür.

Örneğin, 2w ∈ R olduğundan Rw ∩ R 6= 0 olur. Ayrıca x2 + x+ 1 = 0 denklemi

R de c.özülemezdir. Yani (−1 ±
√

3i)/2 6∈ R dir. Dolayısıyla, Teorem 4.1.6’dan

R[x]/(x2 +x+1) yarı-Baer değil ve Önteorem 4.1.5’ten de RC3 yarı-Baer değildir.

Teorem 4.2.3 Eğer RG Baer grup halkası ise, G grubunun her H altgrubu ic.in

RH da Baer grup halkasıdır.

Kanıt. A, RH ın boş olmayan bir alt kümesi olsun. RG Baer ve A ⊆ RH ⊆ RG

olduğundan lRG(A) = RGe olacak şekilde bir e2 = e ∈ RG vardır.

e =
∑
h∈H

ahh+
∑
g 6∈H

bgg

olarak alalım. O halde, RGeA = 0 olduğundan ∀β ∈ A ic.in

0 = eβ =

(∑
h∈H

ahh

)
β +

(∑
g 6∈H

bgg

)
β (4)

dır. Eğer h ∈ H ve g 6∈ H ise, gh 6∈ H dır. Gerc.ekten, eğer gh ∈ H olsaydı

(gh)h−1 = g ∈ H olup c.elişki olurdu. Bu da gösterir ki,

(∑
g 6∈H

bgg

)
β ∈ G \ H

tır. Böylece eşitlik (4)’ten, eğer α =
∑
h∈H

ahh ise, α ∈ lRH(A) ⊆ lRG(A) = RGe
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olup α = ξe olacak şekilde bir ξ ∈ RG vardır. Buradan α − αe = α(1 − e) =

ξe(1− e) = 0 olup α = αe bulunur. Dolayısıyla,

∑
h∈H

ahh =

(∑
h∈H

ahh

)
e =

(∑
h∈H

ahh

)2

+

(∑
h∈H

ahh

)(∑
g 6∈H

bgg

)

dir. Böylece α2 = α = αe ve αA = αeA = 0 olduğundan RHαA = 0 olur. Yani

RHα ⊆ lRH(A) dır. Eğer γ ∈ lRH(A) ise, γA = 0 olur. γ ∈ lRH(A) ⊆ lRG(A) =

RGe olduğundan γ = γe = γ

(∑
h∈H

ahh

)
+ γ

(∑
g 6∈H

bgg

)
olup γ = γ

(∑
h∈H

ahh

)
=

γα ∈ RHα dır. Yani, RHα = lRH(A) olup RH bir Baer grup halkasıdır.

Örnek 4.2.4 G, C4 e izomorf bir altgrubu ic.eren bir grup olsun. Eğer R, Örnek

4.2.1’de tanımlanan halka ise, Teorem 4.2.3’ten RG Baer değildir. Özel olarak,

∀k ≥ 2 ic.in RC2k grup halkası Baer değil ve dolayısıyla da yarı-Baer değildir.

Benzer olarak G, C3 e izomorf bir altgrubu ic.eren bir grup olsun. Eğer R,

Örnek 4.2.2’de tanımlanan halka ise, RG Baer değildir. Özel olarak ∀k ≥ 1 ic.in

RC3k grup halkası yarı-Baer değildir.

Önteorem 4.2.5 [6, Önteorem 4.7] Eğer 6−1 ∈ R ise, RS3
∼= R × R × M2(R)

dir.

Sonuç 4.2.6 6−1 ∈ R olsun. O halde RS3 ün yarı-Baer olması ic.in gerek ve yeter

koşul R nin yarı-Baer olmasıdır ve RS3 ün Baer olması ic.in gerek ve yeter koşul

M2(R) nin Baer olmasıdır.

Örnek 4.2.7 R0 = {n/6k : n ∈ Z, k negatif olmayan bir tamsayı} olsun ve

R = {a+ 5b
√

3i : a, b ∈ R0}



41

kümesini belirleyelim. O halde R, C nin bir althalkasıdır ve 6−1 ∈ R dir. x2 +

x + 1 = 0, R de c.özümsüzdür. C. ünkü 1/5 6∈ R0 dir. Yani (−1 ±
√

3i)/2 6∈ R

dir. Ayrıca, eğer w = (−1 ±
√

3i)/2 ise, 10w = −5 ± 5
√

3i ∈ R olur. Yani

Rw ∩ R 6= 0 dır. Böylece, Önteorem 4.1.5 ve Teorem 4.1.6’dan, RC3 yarı-Baer

değildir. Ancak, Sonuc. 4.2.6’dan, R bir bölge olup yarı-Baer olduğundan, RS3

de bir yarı-Baer grup halkasıdır.

Şimdiki teorem, yarı-Baer grup halkalarının başka bir ailesini verir.

Teorem 4.2.8 D∞ =< x, y : o(x) = 2, o(y) = ∞, xyx = y−1 > sonsuz dihedral

grup olsun. O halde, RD∞ grup halkasının yarı-Baer olması ic.in gerek ve yeter

koşul R halkasının yarı-Baer olmasıdır.

Kanıt. Sonuc. 3.0.13’ten RD∞ grup halkası yarı-Baer ise R de yarı-Baer halkadır.

Tersini ispatlayalım. Kabul edelim ki R yarı-Baer olsun. S = R[y, y−1] ve

σ ∈ Aut(R) olmak üzere σ(y) = y−1 ve ∀r ∈ R ic.in σ(r) = r olsun. O halde

RD∞ ∼= S[x;σ]/(x2 − 1) dir (bkz. Örnek 2.1.26). T = S[x;σ]/(x2 − 1) olsun.

Şimdi T nin yarı-Baer halkası olduğunu göstereceğiz. A, T nin sıfır olmayan bir

ideali olsun ve

I = {a ∈ S : a+ bx ∈ A, bazı b ∈ S ic.in}

J = {b ∈ S : a+ bx ∈ A, bazı a ∈ S ic.in}

kümelerini belirleyelim. O halde I = J , S dir. Gerc.ekten ∀a ∈ I ic.in a+bx ∈ A ve

A, T nin bir ideali olup (a+bx)x = ax+b ∈ A olduğundan a ∈ J olur. Yani I ⊆ J

dir. Benzer şekilde J ⊆ I olduğu da görülür. Ayrıca ∀a ∈ I ic.in a + bx ∈ A ve

∀s ∈ S ⊆ T ic.in s(a+bx) = sa+sbx ∈ A ve (a+bx)s = as+bsx ∈ A olduğundan
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as, sa ∈ I olup I, S nin bir ideali olur. Önteorem 2.3.9’dan R yarı-Baer halka

olduğundan S de yarı-Baer halkadır. O halde bir e2 = e ∈ S ic.in lS(I) = Se

olur. Şimdi de lT (A) = Te olduğunu doğrulayalım. lS(I) = Se olup eI = 0 olur.

∀a + bx ∈ A ic.in a, b ∈ I ve eI = 0 olduğundan e(a + bx) = ea + ebx = 0 olup

eA = 0 olur. O halde Te ⊆ lT (A) dır. Diğer yandan, c + dx ∈ lT (A) olsun.

Burada c, d ∈ S dir. a0 ∈ I olsun. O halde, a0 + b0x ∈ A olacak şekilde bir b0 ∈ I

vardır. Buradan ∀a ∈ S ic.in,

0 = (c+ dx)a(a0 + b0x) = (c+ dx)(aa0 + ab0x)

= caa0 + cab0x+ dxaa0 + dxab0x

= [caa0 + dσ(a)σ(b0)] + [cab0 + dσ(a)σ(a0)]x

olur. Buradan da ∀a ∈ S ic.in,

caa0 + dσ(a)σ(b0) = 0 ve cab0 + dσ(a)σ(a0) = 0

bulunur. Burada a = yn (n ∈ Z) alırsak, σ(y) = y−1 olduğundan σ(yn) = y−n

olup

cyna0 + dy−nσ(b0) = 0 ve cynb0 + dy−nσ(a0) = 0

olur. Buradan yn, S nin merkezinde olduğundan

y2nca0 = −dσ(b0) ve y2ncb0 = −dσ(a0) (5)

olur. (5) eşitliği ∀n ∈ Z ic.in sağlandığından ve c, d, a0, b0, S nin sabit elemanları

olduğu ic.in

ca0 = dσ(a0) = 0
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bulunur. Böylece σ−1(d)a0 = 0 = ca0 olur. a0, I nın keyfi bir elemanı olduğundan,

c, σ−1(d) ∈ lS(I) = Se olduğu sonucunu c.ıkarırız. s1, s2 ∈ S olmak üzere c = s1e,

σ−1(d) = s2e olarak yazalım. O halde, d = σ(s2)σ(e) ve böylece c + dx =

s1e + σ(s2)σ(e)x = [s1 + σ(s2)x]e ∈ Te olur. Dolayısıyla lT (A) = Te olup, T bir

yarı-Baer halkadır.

Hatırlatma 4.2.9 1. R bir tamlık bölgesi olsa bile RD∞ Baer olmayabilir:

Örnek 3.0.17’den ZC2 Baer değildir. C2, D∞ un bir alt grubu olup Teorem

4.2.3’ten, ZD∞ da Baer değildir.

2. ZD∞ yarı-Baer olup ZC2 yarı-Baer değildir. Dolayısıyla Teorem 4.2.3’te

Baer yerine yarı-Baer alınması durumunda bu teorem doğru olmaz. Örnek

4.2.7’de, R bir tamlık bölgesi olmak üzere verilen RC3 grup halkası yarı-

Baer değil fakat RS3, yarı-Baer grup halkasıdır (yani, |S3|−1 = 6−1 ∈ R

dir).

Hatırlatma 4.2.10 Sonuc. 4.2.6 ve Teorem 4.2.8’i göz önüne alarak, mertebesi

2n olan Dn dihedral grubu ic.in RDn grup halkasının Baer olduğunu bilmek ilginc.

olurdu. Teorem 4.2.8’in ispatında kullanılan metot, RCn yarı-Baer ve 2−1 ∈ R

olduğunda RDn grup halkasının yarı-Baer olduğunu göstermek ic.in kullanılabilir,

fakat Hatırlatma 4.2.9, (2)’den dolayı tersi doğru değildir.
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