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OZET

TEZ BASLIGI: GRUP HALKALARININ BAER VE YARI-BAER
OZELLIKLERI

YAZAR ADI: SAIT ERKOVAN

Bu tezde Z. Yi ve Y. Zhou’nun “Baer and Quasi-Baer Properties of Group Rings” adli
makalesi incelenmistir ve bu tez toplam dort boliimden olusmustur.

Birinci boliimde girig kismu bulunmakta olup burada tezin amacin belirttik.

Ikinci boliimde tez icin gerekli olan bazi temel tanim ve kavramlar verdik.

Ugiincii boliimde [13]teki Hirano’nun sorusunu cevaplandirmak icin gerekli bazi
kosullar1 verdik.

Dérdiincii boliimde sonlu gruplarin grup halkalarini inceledik ve Hirano nun sorusunu
ele aldik.



SUMMARY

THESIS TITLE: BAER AND QUASI-BAER PROPERTIES OF GROUP RINGS

THESIS AUTHOR: SAIT ERKOVAN

In this thesis, it’s studied the paper “Baer and Quasi-Baer Properties of Group Rings”
by Z. Yiand Y. Zhou and this thesis consists four chapters.

The first chapter includes the purpose of the thesis.

In the second chapter, we present some basic definitions and useful notions.

In the third chapter, we give some necessary conditions in order to reply Hirano’s
question in [13].

In the fourth chapter, we focus on group rings of finite groups and consider the question
of Hirano.
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viil

SIMGELER DiZINi

R Birimli, asosyatif halka

Z Tam sayilar halkasi

Q Rasyonel sayilar cismi

C Kompleks sayilar cismi

R[X] Katsayilart R halkasindan olan polinom halkasi

R[X,x'] Katsayilar1 R halkasindan olan Laurent polinom halkas1

R[x; o] Katsayilar1 R halkasindan olan asimetrik (skew) polinom
halkas1

RG Bir G grubunun bir R halkasi {izerindeki grup halkasi

Aut(R) R nin otomorfizmalar halkas1

CenR R nin merkezi

I, (X) X kiimesinin R deki sol sifirlayanlarinin kiimesi

I, (X) X kiimesinin R deki sag sifirlayanlarinin kiimesi

C, Mertebesi n olan devirli grup

i Sanal birim

M, (R) R tizerinde nxn tipindeki matris halkasi

I

Bir G grubunun sonlu bir H alt grubu ig¢in HA=Zh ile

heH

gosterilir. Bir g € G i¢in H =(g) ise I—AI :a seklindedir.



1 GIRIS

R bir halka olmak iizere, eger R halkasinin bogtan farklh her alt kiimesinin (her
idealinin) sol sifirlayan1 R halkasinin bir eg kare eleman1 tarafindan iiretiliyorsa,
bu R halkasma Baer (yari-Baer) halkasi denir.

[13]’te, Kaplansky tarafindan Baer halka fikri tanimlanmig ve yari-Baer halkast
kavramini da ilk olarak [7]’de Clark kullanmigtir. Baer ve yari-Baer halkalarinin
tanimlari, [7] ve [13]’ten sol-sag simetriktir (bkz. Onerme 2.3.2).

Baer ve yari-Baer halkalarinin geligimi ve giiniimiize uyarlanigi icin Birken-
meier, Kim and Park [2] makalesi referans alinmigtir.

Bu caligmanin amaci, bir grup halkasiin ne zaman (yari-)Baer oldugu sorusunu
ele almaktir. Eger R bir yari-Baer halkasi ve C,, sonsuz devirli grup ise, RC,
grup halkasi yari-Baer’dir [3]. Ote yandan ispatlamiglardir ki; bir R halkasinin
yar-Baer olmasi icin gerek ve yeter kogul R[z] in yari-Baer olmasidir ve R[x]
in yari-Baer olmasi icin gerek ve yeter kogul R[z;z~!| in yari-Baer olmasidir
(bkz. Onteorem 2.3.11). [10]’da Hirano’nun ispatladigi gibi, bir siralh G monoidi
icin, eger R yari-Baer halka ise, RG monoid halkas1 da yari-Baer’dir ve RG grup
halkasinin bir indirgenmig Baer halka olmasi icin gerek ve yeter kogul R halkasinin
bir indirgenmis Baer halka olmasidir. [8]’de de ispatlandig: tlizere, eger R bir in-
dirgenmis halka ve GG bir "u.p.” yarigrup ise, RG yarigrup halkasinin Baer olmasi
icin gerek ve yeter kogul R halkasinin Baer olmasidir. [4])’te de su ispatlanmigtir:
bir 'u.p.” G monoidi icin, RG monoid halkasinin yari-Baer olmas icin gerek ve
yeter kogul R halkasinin yari-Baer olmasidir.

3. Uluslararas1 Halka Teorisi Sempozyumu’'nun (Kyongju, Giiney Kore, 1999)



acik problem kisminda Hirano, eger R bir yari-Baer halka ve |G|™' € R olacak
sekilde G sonlu bir grup ise, RG grup halkasinin yari-Baer olup olmayacagini
sormustur.

Zi ve Zhou, Hirano’nun sorusuna aksi érnekler vermislerdir. Ayrica soru-
nun, bir sonlu G grubu icin, RG grup halkasinin (yari-)Baer olmasi durumundaki
cevabin1 bulmak icin caba gostermis ve cesitli (yari-)Baer grup halkalar tanimla-
misglardir.

Zi ve Zhou su sonuclari elde etmiglerdir: Eger RG grup halkasi (yar1-)Baer ise
R de (yar1-)Baer halkadir; eger RG yari-Baer ve G sonlu bir grup ise, |G|™* € R
dir. Hiranonun sorusuna bir cevap olarak, 27! € R; ve 37! € R, olacak sekilde
Ry ve Ry tamlik bolgeleri ile olusturulan R;Cyx ve RoCy grup halkalari, herhangi
k > 2vadal > 1icin yari-Baer degildirler. Ayni zamanda 6= € R olacak sekilde
bir Baer R halkasi icin olugturulan R.S5 grup halkasi Baer degildir. Diger yandan,
Hirano’nun sorusuna pozitif bir cevap olarak, G = Cy ya da G = S35 oldugunda
RG grup halkasi (yari-)Baer olur. Ayrica D, sonsuz dihedral grubu icin, RD,
grup halkasinin yari-Baer olmasi icin gerek ve yeter kosul R halkasinin yari-Baer

olmasidir.



2 TEMEL TANIM VE KAVRAMLAR

Bu boliimde caligmamizda gerekli olacak bazi tanim ve teoremler verilecektir.

2.1 Grup, Halka ve Grup Halkasi

Tanim 2.1.1 G, bog olmayan bir kiime ise, G tizerinde bir ikili iglem (binary

operation), G x G — G bir fonksiyondur [12].

Ornek 2.1.2 Z iizerinde verilen siradan toplama ve carpma iglemleri, sirasiyla

(a,b) — a + b ve (a,b) — ab seklinde taniml ikili iglemlerdir.

Biz genelde yaptigimiz ikili iglemlerde carpma isleminin notasyonunu kul-

lanacagiz.

Tanim 2.1.3 Bostan farkli bir G kiimesi iizerinde bir ikili iglem tanimlanmig
olsun. Eger G, asosyatif (associative) 6zelligini sagliyorsa, yani Va, b, c € G icin

a(bc) = (ab)c oluyorsa, G ye bir yarigrup (semigroup) denir [12].

Tanim 2.1.4 Bir G yarigrubu, birim elemana (two-sided identity) sahipse, yani
Ya € (G icin ae = ea = a olacak sekilde bir e € GG varsa, G ye bir monoid denir

12].

Tanim 2.1.5 G bir monoid olsun. Va € G icin a nin tersi var ise, yani aa™! =

1

a"'a = e oluyorsa, G ye bir grup (group) denir [12].

Ayrica Ya,b € G icin ab = ba oluyorsa, G grubuna degigmeli (commutative)

grup denir.



Tamim 2.1.6 n > 3 olmak lizere a = (123...n) € S, ve

1 2 3 4 5 ' —1
b= ! _ " " € S, tarafindan
1l nn-1n-2n-3 .. n+2—1 .. 3 2

tiretilen, S,, nin bir altgrubuna n. mertebeden dihedral grup denir ve D, ile
gosterilir. Burada o(a) = n ve o(b) = 2 dir.

Eger o(a) = 0o olursa D, ye sonsuz (infinite) dihedral grup denir [12].

Tanim 2.1.7 G bir yarigrup (monoid) olsun. Eger, G nin bogtan farkl her sonlu
A ve B altkiimeleri icin en az bir x € G, x = ab (a € A,b € B) olacak sekilde tek

tiirli ifade ediliyorsa, G ye "u.p.” yargrup (monoid) denir [18].
Biz bu caligmada tiim halkalar1 birimli ve asosyatif halka olarak alacagiz.

Tanim 2.1.8 R bir halka ve S de R halkasinin bog olmayan bir altkiimesi olsun.
Eger Va,b € S icin ab € S oluyorsa S ye R halkasimin carpimsal (multiplicative)
altkimes: denir.

Ornegin; S, Z halkasin sifirdan farkli elemanlarimm olusturdugu kiime olsun.

O halde S bir carpimsal altkiimedir [12].

Onerme 2.1.9 R degismeli bir halka ve S de R halkasinin carpimsal bir altkiimesi

olsun. R x S kiimesi iizerinde
(r,s) ~ (r',s") & s1(rs' —r's) =0, banm s; € S icin

ile tanimh baginti, bir denklik bagintisidir. Ayrica, eger R halkasi sifir bolensiz
ve 0 € S ise,

(r,s) ~(r',s)Y e rsd—r's=0

olur [12].



Onerme 2.1.10 R bir degismeli halka olmak iizere S, R halkasinin bir carpimsal
altkiimesi ve SR de, Onerme 2.1.9’da tanimh bagnt1 altinda, R x S nin denklik

siiflarinin kiimesi olsun.
(i) S7!'R, toplama ve carpma iglemleri
r/s+r')s = (rs' +1's)/ss’ ve (r/s)(r'/s") =rr'/ss

seklinde tanmimli olmak ftizere, bu islemler altinda birimli ve degismeli bir

halkadir.

(ii) Eger R sifirdan farkhi bir bolge (domain) ve 0 € S ise, S™'R bir tamlik

bolgesidir.

(iii) Eger R sifirdan farkl bir bolge ve S de R nin sifirdan farkli biitiin eleman-

larinin olugturdugu kiime ise, S™' R bir cisimdir [12].

Tanim 2.1.11 Onerme 2.1.10’un (iii) sikkindaki tanimh S~' R cismine R halkasinin

kesir cismi (the quotient field of R) denir.

Tanim 2.1.12 R bir halka, I ve I’ de R halkasinin iki ideali olsun. Eger I+ 1" =

R oluyorsa bu ideallere aralarinda asal (coprime) idealler denir [9].

Tanim 2.1.13 R bir halka olmak tizere {1, I, ..., I,}, R de sifirdan farkh ide-
allerin bir kiimesi olsun. Eger her j.k = 1,2,...,n (j # k) icin [; + [, = R
oluyorsa bu kiimedeki ideallere ikiser ikiser aralarinda asal (pairwise coprime)

idealler denir [9].

Onerme 2.1.14 R degismeli bir halka ve {Iy,I5,...,I,} de R de ikiger ikiser

aralarinda asal idealler olmak lizere LN Ib,N...N I, =1 - Iy - ...- I, dir [9].



Onteorem 2.1.15 R bir halka olmak iizere {I,I5,....,I,}, R de ikiger ikiger
aralarinda asal idealler olsun. Eger by,bs,....,b, € R ise, ¢ = 1,2,....,n icin
b = b;(mod I;) olacak sekilde bir b € R vardir. Ayrica b, modil Iy NI, N...N1, e

gore tek tirlii belirlidir [9, Cin Kalan Teoremi].
Bu onteoremin agagidaki 6nemli sonucu da mevcuttur.

Sonug 2.1.16 R bir halka olmak f{izere {Iy,1s,...,I,}, R de ikiger ikiger ar-
alarinda asal idealler olsun. O halde R/(I; N I N ...N I,), halka olarak R/I; x

R/I5 x ... x R/, ye izomorftur [9].

Tanim 2.1.17 R bir halka olsun. Eger R halkasinin sifirdan farkli nilpotent
eleman1 yoksa, diger bir ifadeyle herhangi r» € R icin r* = 0 iken 7 = 0 oluyorsa,

R ye indirgenmis (reduced) halka denir [5, Chap. II, Section 2.7].

Ornek 2.1.18 Z tamsayilar halkasi, Q,R ve C cisimleri birer indirgenmisg halka

ornekleridir.

Tanim 2.1.19 R halkasimn tiim sol (sag) maksimal ideallerinin arakesitine bu

halkanin Jacobson radikali denir ve J(R) ile gosterilir [12].

Tanim 2.1.20 Bir R halkas icin, o halkanin Jacobson radikali J(R) sifir ise, bu

halkaya (Jacobson) yaribasit (semisimple) halka denir [12].

Ornek 2.1.21 Z tamsayilar halkasinin her maksimal ideali, p asal say1 olmak

tizere, (p) seklinde oldugundan J(Z) = N(p) = 0 olup Z, bir yaribasit halkadur.



Tanim 2.1.22 G bir grup (sonlu olmak zorunda degil) ve R de bir halka olsun.
RG kiimesinin bir x elemani, sadece sonlu coklukta sifir olmayan koordinat-

n

lardan olugur. z ile g1 +7292+ ...+ 7,9, ya da > r;g; sonlu toplamini gosterelim.
i=1

Tanimimizdan, verilen herhangi iki x = ) r,g ve y = ) s,9 elemanlar icin,
geG geq
x =y olmast icin gerek ve yeter kosul Vg € G icin r, = s, olmasidir.
Bu notasyonda, RG kiimesindeki toplama iglemini
Zﬁ'gi + Zsigi = Z(Tz + 5i)9i
i=1 i=1 i=1
ve carpma iglemini de
(Zﬁ%) (ng’hg) = ZZ(Tisj)(gihj)
i=1 j=1 i=1 j=1
seklinde tanmimlayalim. Bu iglemlerle birlikte RG ye, G nin R tuzerindeki grup
halkasy (the group ring of G' over R) denir.
RG grup halkasinin degismeli olmasi icin gerek ve yeter kosul hem R nin hem

de G nin degigmeli olmasidir. Eger R, 1; birimine sahip ve e de G nin birim

elemani ise, 1gre, RG nin birim eleman1 olur [12],[17].

Tanim 2.1.23 G bir grup ve R de bir halka olsun. »_r;g; — > r; ile tanimh
v : RG — R doniigiimii bir halka homomorfizmasidir. Ve bu dontigiime genisleme
(augmentation) dontisimi denir.

Bu doniigtimiin cekirdegine de RG grup halkasinin genisleme ideali denir ve

w(RG) ile gosterilir [18].

Onteorem 2.1.24 RG bir grup halkas1 ve v da bu grup halkasinin genisleme

doniigimi olsun. RG nin genigleme ideali, RG nin iki tarafli bir idealidir. Bu



ideal g—¢', (¢’ — g) € G farkiyla iiretilir. Ozel olarak 1 —g, 1 # g € G tarafindan

da iiretilir. Yani w(RG) = > R(1 — g) dir. Bu da serbest sol R-modiil olarak

geG

genigleme ideali icin bir tabandir [18].

Kanit. Kery = w(RG) = {>_rg;: Y. ri =0} olup w(RG) = > R(1 — g)

geG

oldugunu gosterecegiz. Gercekten, > r;g; € w(RG) icin > r; = 0 dir. Buradan

g1+ oo+ T0Gn — (M1 oo+ 1) = =[(L=g1)r1 + oo + (1= gn)ra] € ZR(l -9)
geG

olup w(RG) C Y R(1 — g) dir.

geG

Diger yandan Y r;(1 —¢g;) € >, R(1 — g) icin,

geG

r(l—g)+ ..+l —=g,) =014+ ... +1)1 = (rigi + ... +709n)

olup Vg € G nin katsayilar toplami (r; + ... +r,) — 1 — ... — r, = 0 oldugundan

> ori(l — ¢;) € w(RG) dir. Boylece > R(1 — g) C w(RG) olur. Yani

geG

w(RG) =Y R(1-g)

geG

dir. m
Agagidaki dnteoremin ispati, [18, Onteorem 1.2)'nin ispatina benzer olarak

yapilmigtir.

Onteorem 2.1.25 G bir sonlu grup ve G = 3 g olmak iizere {ze(w(RG)) =
geG

RGG dir.

Kamt. a € lre(w(RG)) olsun. O halde acw(RG) =0, yania , R(1—g) = 0 dur.

geG
Bu esitlik Vr € R icin saglandigindan, r = 15 alirsak (1 — g) = 0 dir. Buradan
daa=agolur. a=> ry¢d € RGisea=agdena= (> ry9)g € RGG olur.

Yani {ze(w(RG)) € RGG dir.



Diger taraftan Yoo € RGG icin aw(RG) = 0 oldugunu gostermeliyiz. o €

RGG olup a = (X r,9) G = (3. r,) G dir. Buradan da

aw(RG) = (Z rg> G>S R(1-g) =3 RG(1-g)

olup Vg € G icin G(l — ¢g) = 0 oldugunu gostermek yeterlidir. G sonlu bir grup
oldugundan G = {go = 1,91, ..., g»} seklindedir. Burada i # j icin g; # g; dir.
Vg; € G icin
Gl—g)=(0+g+g+..+g.)01-g)
=1l—=gi+0 — 919+ 92— 929+ ...+ gn — Gnbi
= (I+g+get..+gi+..+90) = (9i+ 910+ 929i+... + 97 + ..+ 9ngi)

olup gruptaki iglemin kapalilik ¢zelliginden j, k € {0,1,...,n} icin g; = grg; dir.

Dolayisiyla Vg; € G icin é(l — g;) = 0 olup ispat tamamlanmig olur. m

Ornek 2.1.26 G bir sonsuz dihedral grup olsun. O halde o(y) =y~ ! ve (22 —1),

2% — 1 merkez elemam tarafindan iiretilen ideal olmak iizere,
RG = Rly,y x;0]/(2* — 1)
dir [16].

Tanim 2.1.27 R bir halka ve X de onun bir alt kiimesi olsun. R halkasindaki
aX = 0 kosulunu saglayan tiim a elemanlarinin olugturdugu kiimeye X ktumesinin
R deki sol sifirlayanlar (the left annihilators of X in R) denir ve [g(X) ile

gosterilir. Yani
Ir(X)={aceR:aX=0}={a€R:ax=0, Voz € X}

seklindedir [13].
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Tanmim 2.1.28 R bir halka olsun. Bir e € R icin, e? = e oluyorsa, bu elemana R

nin bir eg kare (idempotent) elemani denir [1].

R nin bir e eg kare elemani, ayni zamanda R nin merkezinde ise, bu elemana

R nin bir merkez es kare elemani denir.

Onerme 2.1.29 [1] R birimli ve asosyatif bir halka olmak fizere X ve Y, R nin

iki altkiimesi olsun. O halde,

(1) X CYiselg(Y) Clgr(X) ve rgr(Y) C rg(X) olur.
(2) X Crglr(X) ve X Clgrg(X) dir.

(3) (r(X) = lgrrlr(X) ve rr(X) = rrlrrr(X) dir.
Kanit.

(1) a € Ig(Y) (a € rg(Y)) olsun. O halde aY = 0 (Ya = 0) olup X C Y
oldugundan aX = 0 (Xa = 0) olur. Yani a € [g(X) (a € rr(X)) olup a

keyfi oldugundan (z(Y) C lr(X) (rr(Y’) € rr(X)) olur.

(2) @ € X alalm. [gr(X)a = 0 (arr(X) = 0) oldugunu gostermeliyiz. Vr €
Ir(X) (Vr € rr(X)) icin 7X = 0 (Xr = 0) olup a € X oldugundan
ra = 0 (ar = 0) olur. Yani lz(X)a = 0 (argr(X) = 0) dir. O halde
a € rrlr(X) (a € lgrr(X)) olup a € X keyfi bir eleman oldugundan

X - T’RZR(X) (X - lRT’R(X)) olur.

(3) X Crgrlr(X) olup (1)’den lgrrlr(X) C Ir(X) olur. (2)’de X yerine Ix(X)

alirsak [g(X) C lrrgr(lgr(X)) olur. Buradan lg(X) = [grrrlr(X) elde edilir.



11

Benzer sekilde X C Igrg(X) olup (1)’den rglgrr(X) C rgr(X) olur. Yine
(2)’den X yerine rg(X) alimirsa rg(X) C rgrlr(rg(X)) olur. Buradan da

rr(X) = rrlrrr(X) elde edilir.

Onteorem 2.1.30 (Maschke’nin Teoremi) K[G], bir K cismi iizerinde sonlu bir
G grubunun grup cebiri olsun. Eger K nin karakteristigi 0 ise, K[G] yaribasittir.
Eger K, p asal karakteristigine sahipse, K[G] nin yaribasit olmasi icin gerek ve

yeter kogul p nin |G| yi bélmemesidir [12].

Onerme 2.1.31 Eger I ve J, Rnin INJ = (0) seklinde iki ideali ise, [+.J = Ix.J

olur.

Kamt. f:I+J —1xJ,i+j — (i,7) ile tanimlanan bir déniigiim olsun.
Bu donitigiimiin izomorfizma oldugunu gosterelim. Bu doniigiim iyi tanimlidir:

T =11 + J1,y = 12 + Jo olmak iizere,
ZE:y:>’i1+j1:Z.Q—Fjgﬁil—’h:jg—jlGIQJ:(O)

olup iy = iy ve j; = jo oldugundan (iy, ji) = (is, jo) olur. Yani f(z) = f(y) olup
f iyi tanimhdir.

f, bir halka homomorfizmasidir:
fle+y) = flir+i1+is+2) = f(ir+ist+ii+72) = (i1+i2, j1+J2) = (i1, J1)+ (42, J2)
olup f(x +y) = f(x) + f(y) olur. Ayrica

fxy) = f((ix + j1)(ia + j2)) = fliria + i1j2 + Jriz2 + Jije)
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olup i1z, j1i2 € I NJ = (0) oldugundan

f(zy) = flivia + jij2) = (ird2, jij2) = (i1, J1) (U1, J2) = f(2) f(y)

olur. Yani f bir halka homomorfizmasidir.

Simdi de bire bir ve orten oldugunu gosterelim. f, bire birdir:

f(x) = fy) = (i1,51) = (i2,J2) = 11 = @2 Ve j1 = jo

olup i1 + j1 = i3 + jo dir. Yani x = y olur.
f ortendir: V(i,j) € I x J icin f(i + j) = (i,7) olacak sekilde i + j € I + J
vardir.

Sonuc olarak [ + J = [ x J olur. m

Onteorem 2.1.32 R birimli bir halka ve e, R halkasinin bir merkez esg kare
elemani olsun. O halde 1 — e de R nin bir merkez eg kare elemanidir. Buradan

Re ve R(1 —e), R halkasmin iki tarafli idealleridir ve R = Re x R(1 —e) dir [12].

Kanit. Tlk olarak biliyoruz ki (1 —e)?=(1—¢e)(1—€e)=1—-ec—ec+e*=1—c¢
olup 1 — e, R nin bir eg kare elemanidir. Ayrica 1 ve e, CenR de olup CenR de
R nin bir alt halkas1 oldugundan 1 — e, R nin bir merkez es kare elemanm olur.

Eger a € CenR ise Ra, R nin a ile tiretilen iki tarafli idealidir. Buradan Re
ve R(1 —e) de R nin iki tarafli idealleridir.

Ayrica ReN R(1 —e) = (0) ve R = Re + R(1 —e) dir. Gercekten, z €
RenN R(1 —e) alahm. z = rie = ro(1 — €) olup re = rie* = ry(l —e)e = 0 =
x =rie = 0 oldugundan ReN R(1 —e) = (0) olur. Re ve R(1—¢), R nin idealleri

olup toplamlar1 da R nin idealleridir. Yani Re + R(1 —e) C R dir. Simdi ters
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kapsamay1 gosterelim. Vr € Ricin r =re+1r(1—e) € Re+ R(1 —e) oldugundan
R C Re+ R(1—e) olup R = Re + R(1 — e) esitligi saglanir. Son olarak, Onerme

2.1.31"den Re + R(1 —e) = R = Re x R(1 — e) elde edilir. m

Onerme 2.1.33 (Peirce Decomposition) R bir halka ve e de R halkasinin bir eg

kare elemani ise R = Re @ R(1 — e) dir [14].

2.2 Serbest Modiul

Tanim 2.2.1 M bir sol R-modil ve X C M olsun. Eger RX = M ise X
kiimesine M modiiliiniin dretec kiimesi denir. Burada RX = {riz| +rexzg+ ...+
rnZy:n>1, x; € X, i=1,...,n} seklinde tammhdir [1].

Eger X kiimesi sonlu ise M ye sonlu turetilmis denir.

Tanim 2.2.2 M bir sol R-modiil ve X de M modiiliintin bir iiretec kiimesi olsun.
Eger her n > 1, birbirinden farkh xy, zo, ..., z, € X ve r{,79,...,7, € R elemanlar
icin, r1x1 +roxs + ... + 12, = 0 iken r; =79 = ... = r,, = 0 oluyorsa X kiimesine

serbest (free) kime denir.

Tanim 2.2.3 M bir sol R-modiil olsun. Eger M sertbest bir tiretec kiimesine

sahipse M ye serbest (free) modil denir.

Ornek 2.2.4 Herhangi birimli R halkas: icin zR sol R-modiilii, {1z} serbest

kiimesi tarafindan tretilen bir serbest modildiir.
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2.3 Baer ve Yari-Baer (Grup) Halkalar:

Tanim 2.3.1 Bir R halkasi icin, eger R halkasinin bogtan farkl her X alt kiimesi
(her X ideali), e = ¢ € R olmak iizere [r(X) = Re olacak sekilde yazilabiliyorsa,
R halkasina Baer (yari-(quasi-)Baer) halkas: denir.

Baer halkasi, [13]'te Kaplansky tarafindan tanimlanmigtir. Yari-Baer halkasi

kavrami da ilk olarak 1967’de, Clark tarafindan kullanilmigtir [7].

Onerme 2.3.2 [7] Eger A birimli bir halka ise, agagidaki ifadeler denktir:

(a) A yari-Baer halkadir.

(b) A nin her sol idealinin sol sifirlayanlarinin kiimesi A nin bir eg kare elemani

tarafindan turetilir.

(c) A mn her sag idealinin sag sifirlayanlariin kiimesi A nin bir eg kare elemam

tarafindan tretilir.

(d) A nin her idealinin sag sifirlayanlarimin kiimesi A min bir eg kare elemam

tarafindan uretilir.

Kanit. (a) = (b): A nin her ideali bir sol ideali oldugundan aciktir.

(b) = (a): A nm her L sol ideali icin LA, A nmn bir ideali olup A birimli
oldugundan L = LA, yani bir e € A es kare eleman icin I4(L) = [4(LA) = Ae
olur. O halde A yari-Baer halkadir. Benzer olarak (¢) = (d) ve (d) = (c¢)
gosterilir.

(b) = (¢): R, A nmin bir sag ideali ise r4(R), A min bir idealidir. Gercekten,

Va € A ve VY € ry(R) icin (az)R = a(zR) = a0 = 0 olmasindan az € r4(R) ve
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(za)R = z(aR) = zR = 0 olmasmdan za € r4(R) oldugundan bir idealdir.
Boylece bir e es kare elemam icin [4(r4(R)) = Ae dir. Onerme 2.1.29'dan,
ra(R) = ralara(R) = ra(Ae) olur. Ae(l —e)A = A0A = 0 oldugundan
(1 —e)A C ra(Ae) olur. Diger yandan Vo € r4(Ae) alahm. Buradan Aex = 0
olmasimdan ex = 0 elde edilir ve x = x —ex = (1 —e)z € (1 — e)A olur. Yani
(1 —e)A C ry(Ae) dir. O halde r4(Ae) = (1 — e)A olup 1 — e de bir eg kare

eleman oldugundan ispat tamamlanmig olur. m
Onerme 2.3.3 Yaribasit bir halka Baer’dir [15].
Onerme 2.3.4 Birimli bir bolge Baer’dir [13].

Kanit. R bir bolge olsun. () # X C R alalm. R bir bolge olup, sifir bolensiz
oldugundan ya X # {0g} icin [g(X) = 0 ya da X = {0g} icin (gr(X) = R olur.
Buradan [p(X) = R-0g ve [g(X) = R-1g olup 03 =0 € Rve 1% = 1z € R eg

kare elemanlar oldugundan R bir Baer halka olur. m

Onerme 2.3.5 Bir Baer halka ailesinin dik toplamlar1 (ayn1 zamanda dik carpim

olarak adlandirilir) yine bir Baer halkadir [13, Examples (5)].

Onteorem 2.3.6 A bir Baer halka olmak iizere, A min her I dik toplami bir Baer

halkadir; u bir merkez eg kare eleman olmak tizere I = uA dir [13, Theorem 5.

Onerme 2.3.7 A bir Baer halkas: ve B de A nin es kare elemanlarini iceren bir

alt kiimesi olsun. O halde B de bir Baer halkadir [13, Exercises (1)].

Kamit. Keyfi bir ) # X C B alahm. B C A oldugundan ve A Baer oldugundan
bir €2 = e € B icin I4(X) = Ae dir. Buradan AeX = 0 olup BeX C AeX =0

oldugundan BeX = 0 olur. Yani Be C [5(X) dir.
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Diger yandan her b € [g(X) C [4(X) = Ae icin b = ae olacak sekilde bir
a € A vardir. Buradan b—be = b(1 —e) = ae(1 —e) = 0 oldugundan b = be € Be
bulunur. Yani I5(X) C Be olur. O halde I3(X) = Be, ¢* = ¢ € B olup B bir

Baer halka olur. m

Onteorem 2.3.8 Eger A bir yar-Baer halkasi ve e bir eg kare eleman ise, eAe

de bir yari-Baer halkasidir. [7, Onteorem 2]

Kanit. eAe nin bir sol ideali L = eLe olsun. O halde AL de A nin bir sol
idealidir. Gercekten; Vx = a1l € AL ve Va € A icin ax = aa,l = asl € AL olur.
A yar1-Baer oldugundan A daki bir f eg kare elemani icin [4(AL) = Af olur. L
nin eAe deki sol sifirlayam /(L) olsun. Yani I(L) = lo4e(L) olsun. Ilk olarak
I'(L) = ela(AL)e oldugunu gosterelim. x € I'(L) olsun. O halde x = eae € eAe
dir. Boylece xAL = eaeAeLe = (eae)eAe(eLe) = xeAeL olup L, eAe nin bir
sol ideali oldugundan AL = zeAeL C xL = 0 olur. Yani x € els(AL)e dir. O
halde I'(L) C ela(AL)e dir.

Diger taraftan, eger x € ela(AL)e = {eae € eAe : a € [4(AL)} ise, © € eAe
ve xL = zeLe = xe(eLe) = zeL olup e € A oldugundan xL = zel C AL =0
dir. Boylece z € I'(L) dir. Yani leae(L) = I'(L) = ely(AL)e dir. Buradan,
I'(L) = eAfe dir. Sol sifirlayan her zaman bir sol ideal olup AL de A nin bir sol
ideali oldugundan, [4(AL) = Af de A nin bir idealidir. Af bir ideal oldugundan,
feAfveee Aolup fe € Af dir. O halde fe = d'f olacak sekilde bir o’ € A
vardir. fe = a'f = fef = fe = fef olur. Bu da gosterir ki fe = fefe ve
fe = fefe = efe = efefe = (efe)(efe) = (efe)? = efe dir. g = efe olsun.

O halde eAeg = eAefe olup Ae C A ve Af C A oldugundan eAeg = eAefe C
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eAfe = eAfefe = eAfe’fe C eAeg ve buradan edeg = eAfe = I'(L) = loa.(L)

olup ispat tamamlanmig olur. m

Onteorem 2.3.9 R bir yari-Baer halkasi olsun. O halde agagidaki halka geniglemeleri

de yari-Baer halkadirlar:

(i) RIX],

(ii) R[[XT],

(iii) Rlz;al,

(iv) Rlfz;a]],

(v) Rlz,z7"ql,

(vi) R[[z,z %]l

Burada X, bilinmeyenlerden olusan keyfi bir kiime ve o da R halkasinin bir halka

otomorfizmasidir [3, Theorem 1.2.].

Kanit. (iii) stkkim ispatlayacagiz. Diger giklarin ispat1 benzer sekilde yapilabilir.
T = R[z;a] ve T nin bir ideali I olsun. Bir e € R eg kare elemant icin lp(I) = Te
oldugunu iddia ediyoruz. Eger I = 0 ise, 0 = Og € R eg kare eleman icin l7(0) =
T'-0 olup ispat aciktir. Dolayisiyla kabul edelim ki I # O olsun. Iy ={a € R:a =
Oyada0# f(x) € I icin a # 0 olmak {izere f(z)’in en kiictik dereceli teriminin
katsayisi olsun} olarak alahm. O halde Iy, R nin bir idealidir. Gercekten, a,b € I
icin a veya b nin sifir olmasi1 durumunda a — b € I oldugu kolayca goriiliir. O

halde a # 0 ve b # 0 alalim. a € I oldugundan a, bir f(x) € I nmin en kiiciik
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dereceli teriminin katsayisidir ve bu terimin derecesi k olsun. Aym sekilde b € I,
oldugundan b, bir g(z) € I nin en kiiciikk dereceli teriminin katsayisi olup bu
terimin derecesi ¢t olsun. Genelligi bozmadan k > ¢t alalim. I, bir ideal oldugundan
f(x) — 2*tg(z) € I olup bu polinomun en kiiciik dereceli terimin katsayis1 da
a—>bolur. O halde a—b € Iy dir. Diger yandan, a € Iy ve r € R alalim. Buradan,
bir f(x) € I nin en kiiciik dereceli teriminin katsayist a olur. O halde ra (ar)
de rf(x) (f(x)r) € I nmn en kiiciik dereceli teriminin katsayisi olup ra (ar) € Iy
olur. Yani /[y, R halkasinin bir ideali olur. Buradan da, R yari-Baer oldugundan
bir e € R eg kare elemani icin (z(Iy) = Re olur.

Ilk olarak Te C Ip(I) oldugunu gormek icin h(z) € I alahm. Eger h(z) = 0
ise eh(xz) = 0 olup ispat tamam olur. h(z) # 0 olsun. O halde h(x) = ag +
a1x + ... + a,x" seklindedir. Eger ag # 0 ise, ag € Iy olup eay = 0 olur. Simdi
eh(z) = eag + earz + ... + ea,a”™ = a1z + ... + ea,z™ € I oldu. Eger ea; # 0 ise,
ea; € Iy olur. Fakat, e(ea;) = ea; = 0 oldugundan bu bir celigki olur. Benzer
olarak, eay = ... = ea, = 0 oldugunu elde edebiliriz. Bdylece eh(z) = 0 olup
e € lp(I) dir. Yani Te C Ip(I) olur.

Simdi iddia ediyoruz ki ir(I) C Te dir. g(x) = by + bz + ... + bpx™ € Ip(1)
olsun. g(z)e = g(z) oldugunu gosterecegiz. f(z) = coz® + cya*t + ... + caktt €
I olsun. Burada ¢y # 0 ve k, negatif olmayan bir tamsay1 olsun. O halde
g(z)f(x) = bocox® + bocrz*t + bizcox® + ... + bpa™e®tt = 0 dir. Boylece
boco = 0 dir. ¢y € Iy oldugundan by € lg(ly) = Re C Te = Ip(I) olur. Buradan
by = re olacak sekilde bir r € R vardir. by — bpe = bp(1 —e) = re(1 —e) = 0 olup

by = boe olur. Ayrica by € I7(I) oldugundan by f(x) = 0 olur. Yanii=0,1,...,t
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icin boc; = 0 olur. h(z) € I ve g(x) € lp(I) oldugundan g(z)h(x) = boag +
boarx + bixag + ... + bz a,x™ = 0 dir. by € Ip(I) oldugunu biliyoruz. O halde
bizag = 0 = bia(ag)r = 0 = bya(ap) = 0 olur. « bir otomorfizma oldugundan,
bir d; elemani icin «(d;) = by dir. O halde a(dyag) = a(di)a(ag) = bia(ag) =0
olup diag = 0 olur. Yani d; € lg(ly) = Re C Te = Ip(I) olur. O halde d; = e
olacak gekilde bir r € R vardir ve d; — die = die(1 —e) = 0 dan d; = de
ve boylece a(d;) = by den d; = a~*(b;) oldugundan a~'(b;) = a~!(b)e olur.
Buradan b; = bya(e) bulunur. Ayrica dy € lg(ly) oldugundan ¢ = 0,1,...,¢ icin
0 = dic; = bia(c) olur.

Benzer adimlar ve islemler bu sekilde devam ettirilirse, ¢ = 0, 1, ..., t icin
b; = bia’(e) elde edilir. Boylece g(x) = g(z)e € Te olur. Buradan da Ir(I) = Te
elde edilir. m

Bu teoremin diger tarafi, ayn1 makale icinde mevcut olup, Zhou [21]’de daha
basit bir ispat yapmustir. Simdi o teoremi, ispatiyla birlikte verelim. Oncelikle

bunun icin ispatta kullanacagimiz yine [21)’den bir 6nerme verelim.

Onerme 2.3.10 [21] A = {rz(U): U S R}, B = {rrpe—(V) : V E Rz, 27"}

ve C = {1z (W) : W S R[[z,z7"]]} olsun. I € A, J € B ve K € C icin,
Oy (I) = I[z,z7 1], Do(1) = I[[z,27 Y]], U1(J) = JN R ve Uy(K) = K N R olsun.

O halde,
(1) ¢, : A — B dontigiimii 1-1 ve ¥, : B — A déniisiimii drtendir.
(2) &3: A — C doniigtimii 1-1 ve ¥y : C' — A doniigimi értendir.

(3) Y0P =Vy0Py =14 dur.
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Onteorem 2.3.11 [21, Theorem 2| (Birkenmeier, Kim and Park) R nin yari-
Baer olmasi icin gerek ve yeter kogul R[x,z7!] ya da R|[[z,z7']] in yar-Baer

olmasidir.

Kamnit. Eger R yar-Baer ise Rz, '] ve R[[z, 2] de yari-Baer’dir (bkz. Onteorem
2.3.9). Kabul edelim ki R[x, z7!] yari-Baer olsun. Simdi R nin yari-Baer oldugunu
gosterecegiz. U, R nin bir ideali olsun. O halde U[z, z '] de R[z, '] in idealidir.
Gercekten, u = S upz® v = Yk € Uz, 27 olsun. v —v = <Zukxk) -

keZ keZ keZ

(kaxk> = > (ur, — vp)x* ve u, — vy, € U olup u — v € Ulz,z7!] dir. Ayrica

keZ keZ
uw € Ulz,z7 '] ve r = Y.rzt € Rlz,z7!] icin ur = (Zukxk) (Zrtxt) =
tez keZ tez
(Z ukrt$k+t> ve ury(ryug) € U olup ur(ru) € Ulz,z~!] dir. Su kiimeleri
kteZ
inceleyelim:
rr(U)[z, 271 = {Zrkxk Ury = }
keZ
TRz (U) = {Zrkxk UZrkxk = O}
keZ keZ
= {Zrk:ﬁk : ZUrkxk = 0}
keZ keZ
= {Zrkxk Ur, = O}
keZ
ve
TR[zx*1]<U[$7$ 1]) - {Zrkxk : U[x,-flﬁ }ZT}CQS = O}
kEZ keZ
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= {Zrkxk Ury, = 0} :

kEZ

Goriildugii gibi bu kiimeler birbirine esittir. Yani, rg(U)[z, 27" = rgp .~ (U) =
IRz (Ulz, 271) dir. Buradan, R[z,z™'] yar-Baer oldugundan, bir [f(z)]* =
f(x) € Rz, 7" icin rx(U)[z,27 '] = f(z)R[z,z~'] olur. Onerme 2.3.10'un 3.
sikkindan, rg(U) = rg(U)[z, 27 |N R = f(z)R[z,z7'| N R olur. f(x) = ‘Zt:aixi
olarak alahm. Burada s = 0, t = 0 ve rg(U)[z,z 7] = f(x)R[z, 2 '] oldugundan
her i icin a; € rg(U) dir. Herhangi a € rg(U) icin, a = f(z)g(z) olarak yazabili-
riz. Burada g(x) € R[z,z~!] dir. O halde f(z)a = f(z)f(z)g(z) = f(z)g(z) = a
olur. Bu da apa = a olmas1 demektir. f(z) e kare eleman oldugundan a2 =

olup 7(U) = agR olur. Yani R yari-Baer halkadir. Benzer sekilde, R[[x,z™!]] in

yari-Baer olmasinin R nin de yari-Baer olmasini gerektirdigi gosterilebilir. m
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3 HIRANO’NUN SORUSUNU YANITLAMAK

ICIN GEREKLI BAZI KOSULLAR

Su teoremi ispatlayarak baglayalim.

Teorem 3.0.12 R, bir S halkasinin ayni birimine sahip bir alt halkas1 olsun.
Kabul edelim ki S, 1 € G ve her a € R ve her g € G icin ag = ga olacak sekildeki
bir G tabani ile bir serbest sol R-modiil olsun. Eger S (yari-)Baer halka ise, R

de (yari-)Baer halkadir.

Kamt. Ispat: yari-Baer icin yapacagiz. Baer olmasi durumundaki ispat da benzer
yolla yapilir.

I, R nin bir ideali olsun. Aciktir ki, ST da S nin bir idealidir. S yari-Baer
oldugundan, [g(ST) = Se olacak sekilde bir e = ¢ € S vardir. S, G tabanh bir

serbest sol R-modiil ve e € S oldugundan e yi

€ = a0Ja(0) T --- T AnGa(n)

seklinde yazalim. Burada go) = 1, ga(;) ler birbirinden farkh olmak iizere g, €
G ve a; € R dir. [5(SI) = Se olup SeSI = 0 dir. Buradan Vs;, s, € S icin

siesel = 0 olup s; = so = 1 olarak alirsak el = 0 olur. O halde her a € I icin
0 = ea = (aoga(0) + --- + @nGa(n))a = A0aGa) + - + nGGa(n)

olup G bir taban oldugundan ¢ = 0, 1, ..., n icin a;a = 0 olur. Boylecei =0,1,...,n

icin a;1 = 0 olur. Buradan

a; ST =a;( ® Rg)I = a; Z(Rl)g = Zaifg =0

geG
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olup a; € lg(ST) = Se’dir. Buradan her i = 0,1, ...,n icin a; = s;e olacak sekilde

bir s; € S vardir. Buradan,
a; —ae=a;(l—e)=se(l —e)=0

oldugundan a; = a;e olur. Buradan da,
ap = age = ap = ao(@Ga(0) + - + AnGa(n))
= g = A{ga(0) T - + Q0AnGa(n)
= 0= (ag — a0)ga(o) + - + (@n — @0)Ga(n)
olup G bir taban oldugundan a3 = ag € R elde edilir. apl = 0 oldugundan
Rag € Ig(I) olur.

Eger r € lg(]) ise,

TSI:r(@Rg)]:rZ(R])g:ZT]g:O

geG

olur. Yani r € [g(SI) = Se olup r = se olacak gekilde bir s € S vardir. Buradan,
r—re=se— see = se — se> = se — se =0

oldugundan r = re olur.
r =re =1(A0ga() + - + nJan)) = T00Ja(0) + - + TnGa(n)
= 0= (rag — r)ga(o) + --- + rangam)

olup G bir taban oldugundan r = ray € Rag elde edilir. Boylece
ZR(I) = RCL[)

olur. Yani R, bir yari-Baer halkadir.
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Sonug 3.0.13 R bir halka ve G de bir grup olsun. Eger RG grup halkas: (yar1-)

Baer ise, R de (yari-)Baer halkadir.

Kanit. G, Teorem 3.0.12’nin sartlarimi saglayan bir taban olmak iizere, bu ta-

banla birlikte S = RG = @& Rg olarak secersek, S bir serbest sol R-modiil olur.
geG

Burada R yi, Vr € R icin rl € RG oldugundan, S = RG nin ayni birimine sahip

bir alt halkas1 olarak alabiliriz. =

Sonug 3.0.14 Eger R[z] ya da R[z,z7!] (yari-)Baer halka ise, R de (yari-)Baer

halkadir.

Kanit. R[z] ve R[z,z™ '], Teorem 3.0.12'nin sartlarim saglayan, sirasiyla
{z" :i=0,1,..} ve {a' : i = 0, £1, ...} tabanlarina sahip birer serbest modiillerdir.

Teorem 3.0.15 Eger G sonlu bir grup ve RG grup halkasi yari-Baer ise, |G|™! €

R dir.

Kanit. Genigleme idealin w(RG) = 3 R(1—g) oldugunu biliyoruz (bkz. Onteorem
geG

2.1.24). Aynca, lpe(w(RG)) = RGG dir (bkz. Onteorem 2.1.25). Burada

G= 3" g dir. RG yan-Baer oldugundan, bir ¢ = ¢ € RG icin

geG
RGG = RGe (1)
olur. O halde e = (3. r,9)G olacak sekilde bir 37,9 € RG vardir. Burada e =
(Xrg9)G = (X1rg)G dir. Gercekten (Y 749) (3219) = 3o(rg1)(99) = Yorgg =
(3 7,) G olur. Buradan G - G = |G| - G oldugundan (3.7,)G = ¢ = €2 =

(X 7,)G (3 ry)G = |G|(X27,4)*G olup her tarafin genigleme déniigiimiinii alirsak,

Do =1GIQ ) (2)
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olur. RGG # 0 oldugundan e # 0, boylece |G| # 0 dir. Boylece su iddiay1 da

ispatlamig olduk.

Iddia 3.0.16 Sonlu bir grubun grup halkas: yari-Baer ise, grubun mertebesi kat-

sayilar halkasinda sifir degildir.

Simdi n = |G| ve r = Y7, olsun. (1)’den, G = (3. s,g)e olacak sekilde bir
S 5,9 € RG vardir. Burada G = (Y s,9)e = (3 s,9)rG dir. Esitligin her iki

yanina genisleme doniigiimiinii uygularsak,

n=(_sy)rn (3)

olur. (2) ve (3) esitliklerinden, n = (3 sy)rn = n = (3 s,)r*n? den 1 =
(3" sy)r*n oldugundan, lgz(n) = 0 oldugunu gostermek yeterlidir. Kabul ede-
lim ki Ig(n) # 0 olsun. O halde baz1 a € R icin an = na = 0 dir. Dolayisiyla
n(Ra) = R(na) = 0, yanin € [g(Ra) olur. RG grup halkas: yar1-Baer oldugundan
Sonuc 3.0.13’ten, R de yari-Baer halkadir ve [r(Ra) = Rf olacak sekilde bir
f? = f € Rvardir. Acitkca f # 1, yani 1 — f # 0 dir. Gercekten, f = 1 olsaydi
Ir(Ra) = R olurdu ki bu da Vr € R icin 7(Ra) = Ra = 0 demektir. Buda a # 0
olmasiyla celigir. Ayrica, n € [g(Ra) = Rf oldugundan n = r f olacak sekilde bir

r € Rvardir ve rf(1 — f) =n(l — f) =0 dir. Ancak

(1= RGO - f)= (1= NHER1 -G

dir. RG yar-Baer oldugundan Onteorem 2.3.8’den (1 — f)(RG)(1 — f) de yar-
Baer’'dir. Buradan da, S = (1— f)R(1 — f) olmak iizere, SG yari-Baer grup

halkasidir. Boylece, Iddia 3.0.16’dan n, S de sifirdan farkhidir. Buda 1 — f # 0
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oldugundan n(1 — f) = 0 olmasi ile celisir. Dolaysiyla [z(n) = 0 dir. Ispat
tamamlanmigtir. m

Asagidakiler, Teorem 3.0.15in acik bir sonucudur.
Ornek 3.0.17 Herhangi agikar olmayan G grubu icin ZG yari-Baer degildir.

Coziim 3.0.18 Agikar olmayan bir G grubu icin |G|~ € Z oldugundan ZG grup

halkas1 yari-Baer olamaz.

Ornek 3.0.19 G sonlu bir grup ve n > 1 bir tamsay1 olsun. O halde agagidakiler

denktir:
1. Z,G Baer grup halkasidir.
2. Z,G yari-Baer grup halkasidir.

3. ebob(n, |G|) = 1 ve n kare-carpansizdir (square-free).

Kamit. (1) ise (2) aciktir. Ciinkii her ideal ayn1 zamanda bir alt gruptur.

k olarak

(2) saglansin. p; ler asal say1 ve s; > 0 olmak iizere n = pi'...p;
yazalm. O halde Z, = Z,: x ... x Zka olup Z,G = Z,nG X ... X ZkaG dir.
(2) den, Z,G yari-Baer oldugundan, herbir Z,::G yan-Baer grup halkasidir (bkz.
Onteorem 2.3.6). Boylece Sonuc 3.0.13’ten Z s yari-Baer ve Teorem 3.0.15’ten

p;', |G| yi bolmez. Aksini kabul edelim. pi*, |G| yi bolslin. Buradan |G| = p;'k

olacak gekilde bir k € Z vardir. Bu da |G| nin Z,» de 0 olmasi, yani |G|~ & Z,=

€

olmasi demektir. Fakat bu Z G nin yari-Baer olmasiyla celigir. O halde p;’,

yi bolmez. Ayrica, burada s; = 1 dir. Ciinkd, eger s; # 1 olsaydi, |G| = p; icin
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G|t =p; ' & Ly olurdu. Bu da, Z,:G nin yar-Baer olmasiyla celigirdi. Yani

buradan s; = 1 ve p;, |G| yi b6lmez sonucunu elde ederiz. Boylece (3) saglanir.
Eger (3) saglanirsa, Maschke'nin Teoremi'nden (bkz. Onteorem 2.1.30), n,

|G| yi bolmediginden, Z,G bir yaribasit halkadir, yani (1) saglamr (bkz. Onerme

2.3.3). m
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4 SONLU GRUPLARIN GRUP HALKALARI

VE HIRANO’NUN SORUSU

4.1 Sonlu Gruplarin Grup Halkalar:
Onteorem 4.1.1 Eger 27! € R ise, RC> =~ R x R dir.

Kanit. Cy = {1, g} olarak alahm. Eger 27! € R ise, a + bg — (a + b,a — b) ile

verilen f: RCy — R x R doniigiimii bir halka izomorfizmasidir. Gercekten,

° iyi Tanimhlhik:

a; +big=as+bg = a1 =ay, by =by
= (al +by,a1 — 51) = (az + b, a9 — 52)
= f(a1 +big) = f(az + bag)

e Homomorfizma:

f((a1 + big) + (a2 + bag)) = flar + az + (b + b2)g)
:(a1+a2+bl+b2,a1+a2—b1—bg)
= (a1 + bl,al — bl) + (&2 + bQ,CZQ — bg)

= f(a1 +b1g) + f(az + bag)

f((a1 + blg)(ag + bgg)) = f(al&z + albgg + blagg + blbz)
= f(a1a2 -+ b1b2 —+ (a1b2 + blag)g)
= (alag —l-blbz +albg +b1a2, a1a9 +blb2 — albg — blag)

= ((a1 + by)(ag + ba), (a1 — by)(az — ba))
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= (a1 + by, a1 — by)(ag + by, as — by)
= f(ai +b1g) f(az + b2g)

o 1-1 lik:

fla1 +b1g) = f(as + bag) = (a1 + by, a1 — by) = (ag + by, ay — by)
= a1+ by =ay+ by, ag — by =as — b
= ay+by—by=ay—by+ b
= 2b; = 2by
= (27" €R) by = by
= a; = as

:>a1+b1g:a2+b2g

e Ortenlik: V(z,y) € R x R icin

fla+bg) = (z,y) = (a+ba—b)=(z,y)
=a+b=x,a—-b=y

=a=2"(z+y), b=2"'(r—-y)ER

=a+bg=2""(x+y)+2 (z—y)g € RCy
olup bir halka izomorfizmasidir. m

Sonug 4.1.2 Eger 27! € R ise, RC, grup halkasimin (yari-)Baer olmasi icin gerek

ve yeter kogul R halkasinin (yari-)Baer olmasidir.
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Kamit. Sonu¢ 3.0.13'ten RC, (yari-)Baer grup halkasi ise R de (yari-)Baer
halkadir. Tersine 27! € R ise Onteorem 4.1.1’den RC, = Rx R dir. R (yari-)Baer
ise R x R de (yari-)Baer oldugundan (bkz. Onerme 2.3.5) RC, de (yari-)Baer

grup halkasidir. m
Onteorem 4.1.3 Eger 27! € R ise, RC, = R x R x Rlz]/(2? + 1) dir.

Kamit. C; = {1,¢,4°% ¢*} olarak alahm ve ¢ = (1 + ¢*)/2 olsun. e, RCy iin

merkez eg kare elemanidir. Gercekten,

s 1+ (0+g°) 2004+¢°) (1A+g°)

2 2 2.2 2

olup es kare elemandir. Ayrica, Vrg + 719 + 79g% + r3g® € RCy icin

1+g° + 119+ 1rag” + 139 + r0g” + 119" + 72 +
(ro+7’1g+7’292+7“393).( QQ)ZTO Mg T 729 T 73§ 2T09 Mg T2y

(14 ¢*)(ro + r1g + r29* + r39%)
2

1+ ¢
_ | 29 ). (ro + 119 + r2g* + 1r39%)

olup e, RCy lin merkezindedir. e, RC) iin merkez eg kare eleman1 oldugundan,
RCy = RCye x RCy(1 — e) dir (bkz. Onteorem 2.1.32).
Dogrudan hesaplama yaparsak, V(rg + r1g + rog® + r3g®) € RCy icin,

1 2 2 3 2 3+
(7’0+7“1g+7“292+7”393).( zg ) _ Tot gt rag” A g ;L?“og T gt T a9

ro+ 1o+ (11 +73)g + (ro +19)g* + (r1 +13)9°
2

(1+ 9% (1+9%)

2

= (ro+12) - + (ri+73)g -

olup rg +ro = r ve r; + r3 = s dersek

RCye = {re+sge:r,s € R}
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olur. Ayrica,

1+ g?
2

(1-4g%)
2

(ro+rig+rag” +139°) - (1 — ) = (ro + 119+ 1r29° + r39°) -

_ ro + 719 + 129> + 13¢° — 10g* — 119 — 12 — 1r3g
2

ro—ro+ (r1—13)g — (ro —r2)g” — (11 —r3)g
2

3

(1-9%
2

(1-9%

+lr =)y

= (TO — 7«2) .
olup rg —ro = r ve r; — r3 = s dersek
RCy(1—e)={r(l—e)+sg(l—e€):r,s € R}

oldugu goriiliir. re+sge — r+s7 ile verilen f : RCye — R[z|/(xz*—1) doniigiimii

bir halka izomorfizmasidir. Gercekten:

° iyi tanimhlik:

rie + S19e = roe + Sage = (r1 —7ro)e + (s1 — s2)ge =0
= T =T9, 51 = S2

= 14+ S1Z = 79 + S9T
= f(rie + sige) = f(rqe + sage)

o Homomorfizma:

f((rie + s1ge) + (roe + sage)) = f((r1 +r2)e + (s1 + s2)ge)
=T +T’2—|—<81 +82)f

:T1+Slf+7"2+$2f

= f(rie + s1ge) + f(rae + sage)
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f((rie + s1ge)(rae + sage)) = f(riree + risage + sirage + s152€)
= f((rirg + s1s2)e + (1152 + s1712)ge)
= ri7rg + S189 + (1189 + $172)T
= (r1 + $17)(r9 + $27)
= f(rie + s1ge) f(rae + sage)

o 1-1 lik:

f(rie+ s1ge) = f(roe + sage) = 11+ $1T = ro + ST
= =712+ (51— 52)T =0
= T =T, 51 =59
= rie+ 51ge = ree + 52g€e

e Ortenlik: Vr + sT € R[z]/(22 — 1) icin, f(re+ sge) = r + sT olacak sekilde

bir re 4+ sge € (RC}y)e vardir. Dolayisiyla dontigiim ortendir.

Simdi de, r(1—e)+sg(1—e) — r+sT ile tammli h : RCy(1—e€) — R[z]/(x*+1)

doniigiimiintin bir halka izomorfizmasi oldugunu gosterelim.
° iyi tanimlilik:
ri(l—e)+s19(1 —e) =ry(l —e) + s2g(1 —e)
= (r1—ro)(1—e)+(s1—s2)g9(1—€) =0
= T =T, S = S9

= 71+ 81T =79+ ST

= h(ri(1 —e)+s1g(1 —e)) = h(ra(1 —e) + sag(1 —e))
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¢ Homomorfizma:

h((ri(1 —e) + s1g(1 — €)) + (r2(1 — €) + s29(1 — ¢)))
= h((ri+r2)(1 =€)+ (s1+ s2)9(1 = ¢))

=r1+ra+ (s1+%2)T

=71+ 1T+ 1y + 9T

= h(ri(1—e)+s1g(1—e))+h(ro(1—e)+sag(1—e)),
h((r1(1 = e) + s19(1 = €))(r2(1 — €) + 559(1 — ¢)))

= h(rira(1—e) +r1529(1 =€) + s1729(1 — €) — s152(1 — €))
= h((ri72 — s152) (1 — €) + (r152 + s172)g(1 — €))

= riry — S189 + (1182 + 8172)T

= (1 + $17) (r2 + 5,7)

— h(r1(1 =€) + s19(1 — €))h(ra(1 — ) + s59(1 —€))

o 1-1 lik:

h(ri(1 —e)+ s19(1 —e)) = h(ra(1 —e) + s29(1 — €))

= 71+ ST =719+ ST

= r1—ro+(s1—5)T =0
= T =T2, §1 =82

= 1i(l—e)+sig(1—e) =12l —e)+s29(1 —e)
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e Ortenlik: Vr+sT € R[z]/(22+1) icin, h(r(1—e)+sg(1—e)) = r+sT olacak
sekilde bir 7(1 —e) + sg(1 —e) € (RC4)(1 — e) elemam vardir. Dolayisiyla

doniigim ortendir.

Ayrica, Onteorem 4.1.1'den R[z]/(z> — 1) = RC, = R x R olup RC, =

R x R x R[z]/(x* + 1) olur. =

Sonug 4.1.4 Eger 27! € R ise, RC, grup halkasimin (yari-)Baer olmasi icin gerek

ve yeter kogul R[z]/(z* + 1) in (yari-)Baer olmasidir.

Kamt. RC, (yar1-)Baer olsun. e = (1 + ¢?)/2, RC, tin merkez eg kare elemam
oldugundan RCy = RCye® RCy(1—e) dir (bkz. Onerme 2.1.33). Ayrica RCy(1—
e) = R[z]/(2% 4 1) oldugundan Onteorem 2.3.6’dan R[z]/(z2 + 1) de (yar-)Baer
olur.

Tersine, R[z]/(xz*+1) (yar1-)Baer olsun. e = (1+¢?%)/2, RCy in merkez eg kare
elemani olup Onteorem 4.1.3’ten R[z]/(2 4 1) = RC4(1 — e) oldugunu biliyoruz.
Ciy(1—e)={(1—e),g(1—¢),—(1—e),—g(1 —e)} de bir gruptur. O halde G =
Cy(1—e) dersek, RC4(1—e) = RG grup halkas: (yari-)Baer olup Sonuc 3.0.13’ten
R de bir (yari-)Baer halka olur. Onteorem 4.1.3ten RCy = R x R x R[z]/(z*+1)

oldugundan, Onerme 2.3.5’ten de RCy bir (yari-)Baer grup halkasidir. m

Onteorem 4.1.5 R bir halka ve 37 € R olsun. Ayrica Cs5 = {1, ¢, ¢*} olsun. O

halde agagidaki ifadeler saglanir:

1. e = 39 RC5 in bir merkez eg kare clemamdir ve RC3 = (RC3)e x (RC3)(1 — e)

dir. Burada (RC3)e = {re:r € R} = R ve

(RC3)(1—e) ={r+sg+ (—r—s)g*:r,s € R} dir.



2. Eger R C C ise,

RC3 = R[z]/(z® — 1)

>~

Rz]/(xz — 1) x R[z]/(2* + 2z + 1)

>~ R x R[z]/(2* + 2+ 1)

dir.

Kanit. (1) Burada g = 1+ g + ¢* dir.

ve Vr = 19 + rig + r2g* € RCs icin
]‘ 2 2
er = g(l—l—g—i—g )(ro + 119 + 1297)

1
= 5(7’0 +7’19+T2g2 +Tog+r192 + 79 +rog2 + 7 —i—rgg)
1 2
= 5[(7“0 + 11+ 72) + (o + 11+ 19)g + (ro + 71+ 72)9°]
1
= (ro + 19 + 7“292)5(1 +9+9%)

=re

olup e, RCy tin bir merkez eg kare elemanidir. O halde RC5 = RC3e x RC3(1—e¢)

olur (bkz. Onteorem 2.1.32).

Diger yandan, Vr = ro + 719 + rog*> € RC3 icin,

1
re = g[(ro + 714 7o) + (1o + 11 F12)g + (1o + 71+ 72) 67

1
= (ro+ri+ 7"2)5(1 +g+9%)

35
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olup

(RC3)e = {re:r € R}

dir. re — r ile tamimh (RC3)e — R doniigiimii de bir halka izomorfizmasidir.
Yani (RCs)e = R dir. Ek olarak, (1—e) =1—-3(1+g+¢*) =2—-9—¢°)/3

olup ve Vr = (rg + r1g + 729%) € RCs icin,
1
r(l—e) = 5(27“0 — 709 — 109> + 2r1g — 11g* — 11 + 2rag® — 1y — T2q)

= (2rg — 11 —19) + (211 — 1o — 12)g + (2ry — 19 — 11)g°

dir. Burada r» = 2rg — 11 — 19 ve s = 2ry — 19 — 79 olarak alirsak —r — s =

—2rg + 11 + 19 — 2r; + 19 + 19 = 2r9 — 19 — 11 olur. Dolayisiyla
(RC3)(1 —e) = {r+sg+(—r—s)g°:r,s € R}

olarak elde edilir.

Eger 1/3 € R C Cise, rg + r1g + 129> — 19 + 11T + 1972 ile tammh RC5 —
R[x]/(23—1) déniigiimii bir halka izomorfizmasi olup (z—1) ve (z2+x+1) idealleri
R|z] te aralarinda asaldirlar. Gercekten, (z — 1) + (2% + x + 1) = R[z] tir. Bunu
gormek icin R[z] in birimini elde etmek yeterlidir. O halde [—%(z + 2)] (z — 1)+
$(22 + 2 +1) =1 olup istenilen elde edilir. Béylece (2), Cin Kalan Teoremi’nden
elde edilir (bkz. Sonuc¢ 2.1.16). m

Buradan sunu soyleyebiliriz ki; eger 1/3 € R olacak gekilde R, C nin bir alt
halkas1 ise, RC3 tin Baer olmasi icin gerek ve yeter kogul R[z]/(z* + z + 1) in

Baer olmasidir.
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Teorem 4.1.6 R, C nin bir alt halkas1 olsun ve Q(R) ile de R halkasmin kesir
cismini gosterelim. a? — 4b # 0 olacak sekilde 22 + ax + b € R[z] polinomunu ele
alalm. w, C de 22 + az + b = 0 m bir ¢oziimii olsun. O halde R[z]/(2? + ax + b)
(yari-)Baer’dir ancak ve ancak ya w € R ya da RwN R = 0 (yani, w € Q(R))

dir.

Kamt. S ile R[z]/(z? + ax + b) halkasi gosterelim. w, 2> + az +b = 0 m
bir ¢oziimii oldugundan, x* + ax + b = (z — w)(z — v) olsun. Burada w,v € C
dir. Hipotezden, a® — 4b # 0 oldugundan, w # v dir. Ilk olarak kabul edelim
ki w ¢ Q(R) olsun. O halde S, C nin bir alt halkasi ve boylece bir bolgedir. O
halde S, bir Baer halkadir.

Simdi de kabul edelim ki w € Q(R) olsun. 2 + azx + b = (r — w)(z — v) den
> +ar+b=2+(—w—v)r+wvolur. 0 # y,z € Ricin w = . oldugundan,
a = —7 — v ve boylece —% = v € Q(R) olur. ¢(f(x)) = (f(w), f(v)) ile
tamimh ¢ : R[z] — Q(R) x Q(R) dontigiimiinii ele alalim. Burada ¢ nin cekirdegi
(z? + ax + b) dir. Boylece 1. izomorfizma teoreminden S, Q(R) x Q(R) nin
bir alt halkasidir. Q(R) x Q(R) bir bolge olmadigindan S de bir bolge degildir.
Onerme 2.3.7den S nin Baer olmasi icin gerek ve yeter kosul S nin, (1,0) €
Q(R) x Q(R) es kare elemani icermesidir ve (1,0) € S olmasi icin gerek ve
yeter kogul rw + s = 1 ve rv + s = 0 olacak gekilde rx 4+ s € R[z]| elemanin var

2 — (w + v)x + wv oldugundan,

olmasidir. 22 +ax +b= (v —w)(z —v) =z
(ar —D)s=[—(w+v)r—1s =[—(1—2s) — 1]s
=2s(s—1)

= 2(—rv)(—rw) = 2r?b
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sonucunu elde ederiz. Bu da demektir ki, (ar — 1)s = 2r?b oldugundan s, R de

r tarafindan boéliinebilir. Buradan rv + s = 0 oldugundan v = —s/r € R ve
buradan —(w 4+ v) = a olup w = —a — v € R dir. Boylece ispat tamamlanmig
olur. m

4.2 Hirano’nun Sorusu

R bir halka ve G' de sonlu bir grup olsun. Eger RG grup halkasi (yari-)Baer ise,
R de (yar1-)Baer halkadir ve |G|™* € R dir. Buradan, acaba "Tersi de dogru
mudur?” sorusu akla gelir. Yari-Baer halkalar1 {izerindeki bu soru Hirano [§]
tarafindan soruldu.

Ornek 4.2.1 ve Ornek 4.2.2 Hiranonun sorusu icin aksi érneklerdir.

Ornek 4.2.1 Ry = {n/2* : n € Z, k negatif olmayan bir tamsay1} olsun. O
halde Ry, Q nun bir alt halkasidir. Gercekten, k& > ¢ olmak iizere Vn /2% m /2! €
Ry icin n/28 —m/2! = (n — m2871) /28 € Ry ve (n/2F)(m/2%) = nm/28 € Ry
dir.

R ={a+3bi:a,be Ry}

kiimesini goz 6ntine alalm. O halde a = 1/2 € Ry ve b =0 € Ry icin 1/2 € R
olmak iizere R, C nin bir alt halkasidir. Gercekten; Vo = a;+3b1i,y = as+3bsi €
Ricin z —y = a; — by + 3(by — b2)i € R ve zy = (a1 + 3byi)(ay + 3boi) =
ajag — 9b1by + 3(a1be 4 azby )i € R dir. R bir bolge oldugundan, bir Baer halkadir.
1/3 € Ry oldugundan z* + 1 = 0 1 bir kokii olan 7 € R dir. Ayricar =3 € R
ve s = 3i € Ricin, s = ri € RiN R # 0 olur. Boylece Teorem 4.1.6’dan,

R[z]/(2z* + 1) yar-Baer degildir. Sonuc 4.1.4’ten, RC} de yari-Baer degildir.
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Ornek 4.2.2 Ry = {n/3" : n € Z,k, negatif olmayan bir tamsay1} olsun. O

halde, Ry, (Q nun bir alt halkasidir.
R={a+bV3i:a,be Ry}

kiimesini goz oniine alahm. Buradan R, C nin bir alt halkasidir. R bir bolge

oldugundan, bir Baer halkadir. a = 2v/3i,b = —(3+ \/gz) ve
w=bla=—(3+3i)/2V/3i = (=1 +V3i)/2

olsun. O halde, a,b € R ve w = (=1 ++/3i)/2, 2> + x + 1 = 0 m bir kokiidiir.
Ornegin, 2w € R oldugundan Rw N R # 0 olur. Ayrica 2% + z + 1 = 0 denklemi
R de coziilemezdir. Yani (—1 & /3i)/2 ¢ R dir. Dolayisiyla, Teorem 4.1.6’dan

Rlz]/(2®+x+41) yar-Baer degil ve Onteorem 4.1.5’ten de RC yari-Baer degildir.

Teorem 4.2.3 Eger RG Baer grup halkasi ise, G grubunun her H altgrubu icin

RH da Baer grup halkasidir.

Kanit. A, RH in bog olmayan bir alt kiimesi olsun. RG Baer ve A C RH C RG

oldugundan [pg(A) = RGe olacak sekilde bir e? = e € RG vardur.

e= Zahh + Zbgg

heH gZH

olarak alalim. O halde, RGeA = 0 oldugundan V3 € A icin

0=ef = (Zm) 5+ <Zbgg) 3 (4)

heH g2 H

dir. Eger h € H ve g ¢ H ise, gh ¢ H dir. Gercekten, eger gh € H olsaydi

(gh)h™ = g € H olup celigki olurdu. Bu da gosterir ki, (Z bgg> geG\H
g¢H

tir. Boylece esitlik (4)’ten, eger o = > aph ise, a € lgp(A) C lra(A) = RGe
heH
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olup a@ = &e olacak sekilde bir £ € RG vardir. Buradan o — ae = a1 —e) =

¢e(1 —e) =0 olup a = e bulunur. Dolayisiyla,

San= (o) o= (Zo) + (o) (509)

dir. Boylece o? = a = ae ve aA = aeA = 0 oldugundan RHaA = 0 olur. Yani
RHa C lgy(A) dir. Eger v € lgy(A) ise, yA = 0 olur. v € lgu(A) C lra(A) =
RGe oldugundan v = ye = ~ (Z ahh) + v (Z bgg> olup v =~ (Z ahh> =

heH gZH heH

va € RHa dir. Yani, RHa = lpy(A) olup RH bir Baer grup halkasidir. m
Ornek 4.2.4 G, C, e izomorf bir altgrubu iceren bir grup olsun. Eger R, Ornek
4.2.1’de tammlanan halka ise, Teorem 4.2.3’ten RG Baer degildir. Ozel olarak,
Vk > 2 icin RC9. grup halkas1 Baer degil ve dolayisiyla da yari-Baer degildir.
Benzer olarak G, C5 e izomorf bir altgrubu iceren bir grup olsun. Eger R,

Ornek 4.2.2°de tammlanan halka ise, RG Baer degildir. Ozel olarak Yk > 1 icin

RC5x grup halkasi yari-Baer degildir.

Onteorem 4.2.5 [6, Onteorem 4.7] Eger 67! € R ise, RS3 = R x R x M,(R)

dir.

Sonug 4.2.6 67! € Rolsun. O halde RS iin yari-Baer olmasi icin gerek ve yeter
kosul R nin yari-Baer olmasidir ve R.S5 tin Baer olmast icin gerek ve yeter kogul

M5(R) nin Baer olmasidir.
Ornek 4.2.7 Ry = {n/6% : n € Z, k negatif olmayan bir tamsay1} olsun ve

R={a+5b0V3i:a,be Ry}
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kiimesini belirleyelim. O halde R, C nin bir althalkasidir ve 67! € R dir. 22 +
z4+1 =0, R de coziimsiizdiir. Ciinkii 1/5 ¢ Ry dir. Yani (—14++/3i)/2 ¢ R
dir. Ayrica, eger w = (—1 £ /3i)/2 ise, 10w = —5 + 5v/3i € R olur. Yani
Rw N R # 0 dir. Boylece, Onteorem 4.1.5 ve Teorem 4.1.6’dan, RCs yari-Baer
degildir. Ancak, Sonuc 4.2.6’dan, R bir bolge olup yari-Baer oldugundan, RSs

de bir yari-Baer grup halkasidir.
Simdiki teorem, yari-Baer grup halkalarinin bagka bir ailesini verir.

Teorem 4.2.8 D, =< z,y : o(x) = 2,0(y) = oo, zyr = y~! > sonsuz dihedral
grup olsun. O halde, RD,, grup halkasinin yari-Baer olmasi icin gerek ve yeter

kosul R halkasinin yari-Baer olmasidir.

Kanit. Sonuc 3.0.13’ten RD, grup halkasi yari-Baer ise R de yari-Baer halkadir.
Tersini ispatlayalim. Kabul edelim ki R yari-Baer olsun. S = R[y,y~ '] ve
o € Aut(R) olmak iizere o(y) = y~' ve Vr € R icin o(r) = r olsun. O halde
RD., = S[z;0]/(2* — 1) dir (bkz. Ornek 2.1.26). T = S[z;0]/(2> — 1) olsun.
Simdi 7" nin yari-Baer halkas1 oldugunu gosterecegiz. A, T nin sifir olmayan bir
ideali olsun ve
I={a€eS:a+bx € Abanbec S icin}
J={beS:a+bx € Abaz1a € S icin}
kiimelerini belirleyelim. O halde I = J, S dir. Gercekten Va € [ icin a+bx € A ve
A, T nin bir ideali olup (a+b%)T = aT+b € A oldugundan a € J olur. Yani I C J

dir. Benzer gekilde J C I oldugu da goriiliir. Ayrica Va € [ icin a + bx € A ve

Vs € S C Ticin s(a+bT) = sa+sbx € Ave (a+bT)s = as+bsT € A oldugundan
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as,sa € I olup I, S nin bir ideali olur. Onteorem 2.3.9’dan R yari-Baer halka
oldugundan S de yari-Baer halkadir. O halde bir ¢* = ¢ € S icin Ig(]) = Se
olur. Simdi de lr(A) = Te oldugunu dogrulayalim. [g(I) = Se olup el = 0 olur.
Va + b € Aicin a,b € I ve el = 0 oldugundan e(a + bT) = ea + ebT = 0 olup
eA = 0 olur. O halde Te C Ip(A) dir. Diger yandan, ¢ + dz € Ip(A) olsun.
Burada ¢,d € S dir. ag € I olsun. O halde, ag+ byT € A olacak sekilde bir by € I

vardir. Buradan Va € S icin,

0 = (c+dT)a(ap + byT) = (c + dT)(aag + abyT)

= caay + cabyT + draag + drabyx
= [caag + do(a)o(by)] + [caby + do(a)o(ap)|T

olur. Buradan da Va € S icin,

caay + do(a)o(by) = 0 ve caby + do(a)o(ag) =0

1 -n

bulunur. Burada a = y" (n € Z) alrsak, o(y) = y~' oldugundan o(y") = y
olup

cy"ag + dy "o(by) = 0 ve cy"by + dy "o (ag) =0

olur. Buradan 3", S nin merkezinde oldugundan

y*"cag = —do(by) ve y*"cby = —do(ap) (5)

olur. (5) esitligi Vn € Z icin saglandigindan ve ¢, d, ag, by, S nin sabit elemanlar
oldugu icin

cag = do(ag) =0
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bulunur. Boylece 071 (d)ag = 0 = cag olur. ag, I nin keyfi bir elemani oldugundan,
c,0 Y(d) € ls(I) = Se oldugu sonucunu cikarirz. s;, s, € S olmak iizere ¢ = sie,
o7 Y(d) = sge olarak yazalm. O halde, d = o(sy)o(e) ve boylece ¢ + dT =
sie + o(s2)o(e)T = [s1 + o(s9)T|e € Te olur. Dolayisiyla l7(A) = Te olup, T' bir

yari-Baer halkadir. m

Hatirlatma 4.2.9 1. R bir tamlik bolgesi olsa bile RD,, Baer olmayabilir:
Ornek 3.0.17'den ZC Baer degildir. Cy, Do un bir alt grubu olup Teorem

4.2.3'ten, ZD., da Baer degildir.

2. ZD, yari-Baer olup ZC5 yari-Baer degildir. Dolayisiyla Teorem 4.2.3’te
Baer yerine yar-Baer alimmasi durumunda bu teorem dogru olmaz. Ornek
4.2.7'de, R bir tamlik bolgesi olmak tizere verilen RC'3 grup halkasi yari-
Baer degil fakat RSs, yari-Baer grup halkasidir (yani, |S3|™' = 671 € R

dir).

Hatirlatma 4.2.10 Sonuc 4.2.6 ve Teorem 4.2.8’i goz oniine alarak, mertebesi
2n olan D,, dihedral grubu icin RD,, grup halkasinin Baer oldugunu bilmek ilginc
olurdu. Teorem 4.2.8’in ispatinda kullamilan metot, RC,, yari-Baer ve 27! € R
oldugunda RD,, grup halkasinin yari-Baer oldugunu gostermek icin kullanilabilir,

fakat Hatirlatma 4.2.9, (2)’den dolay1 tersi dogru degildir.
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