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Preface

Inverse Strum-Liouville Problem is one of the current field of researches due to its vital
influences. Also, currently studies on this problem are extending to the concept of non-integer
value derivative which will significantly add to its importance as it comprised the derivative of
fractional order. As the conformable derivative approach is new, our research focused on analyzing
and extending the direct and the inverse nodal Strum-Liouville Problem (with / without delay) to
the non-integer value derivative phenomena by using this new derivative approach. Our target is
successfully achieved as it can been seen presented in this write up.
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like to express my special thanks to my supervisor Prof.Dr. Hikmet KEMALOĞLU whom without
his guidance and persistent help this work would not have been possible and also to all my
lecturers in the department. I am indebted to my parents and family and all my dearest and
nearest for their continuous supports in prayers and good wishes.
My special regard to the management of Firat University: Graduate School of Natural and
Applied Sciences, for giving me the chance to study and achieved my target. My regard also, to
the management of Northwest University, Kano (former Yusuf Maitama Sule University, Kano) for
granting me the leave to carry out this study. Thank you all once again.
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Özet

Uyumlu Türevli Ters Sturm-Liouville Problemi
Auwalu SA’IDU

Doktora Tezi

Fırat Ünı̇versı̇tesı̇
Fen Bilimleri Enstitüsü

Şubat 2025, Sayfa: ix + 80

Bu çalışmada, Sturm-Liouville probleminden (SLP) ile ilgili olup; uyumlu türev yardımıyla
hem direkt hem de teras problemin çözümü incelenmiştir.

İlk olarak gerek mühendislikte gerek ise diğer alanlarda önemli bir yere sahip olan SLP
probleminin temel özellikleri verilmiş, türevin sıfır ve bir değerleri arasındaki kesirli değerleri
kullanılarak dönüşüm operatörünün varlığını ispatını verdik. Burada Hiperbolik tip kısmi türevli
bir diferensiyel denklem ve bunula ilgili sınır şartları şeklinde elde edilen problem için bir Fredholm
integral denklemi elde ettik. Literatürde ters nodal problem olarak bilinen problem için farklı sınır
şartlarında özdeğerler, özfonksiyonlar ve nodal parametreler için asimptotik formüller verdik. Ve
bunlar yardımıyla potansiyel fonksiyon için formüller verdik.

Daha sonra bazı ek koşullar altında potansiyel fonksiyon için bazı teklik teoremlerini ispat edip
özel durumda bu sonuçlardan yola çıkarak Ambarzumyan teoremine ulaştık. Son olarak gecikmeli
SLP için ters nodal problemin çözümünü verip problemin dengeli olduğunu gösterdik. Genel olarak
elde ettiğimiz sonuçların β = 1 için klasik sonuçlar ile aynı olduğunu gösterdik.

Anahtar Kelimeler: Sturm Liouville Denklemi, Sturm Liouville problemi, Uyumlu türev, Düğüm

Noktaları, Düğüm Uzunlukları, Potansiyel Fonksiyonu, Ters Problem, Gecikme Sabiti.
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Abstract

Inverse Conformable Sturm-Liouville Problem
Auwalu SA’IDU

PhD Thesis

Firat University
Graduate School of Natural and Applied Sciences

Department of Mathematics
February 2025, Page: ix + 80

This research work talks about Sturm-Liouville Problem (SLP); the direct and the inverse nodal
forms of the problem (with / without delay) using a newly established non-integer value derivative
called the conformable derivative. At first, looking in to the vitality of the SLP in the models of
the real life problems addressing scientific, engineering, economic, etc, issues and the fact that most
of these problems are better described using non-integer value derivative, we considered the
conformable derivative method and proved the transformation operator for the SLP using this new
differentiation method on a classical Sturm-Liouville Operator. There, we obtained a Hyperbolic
partial differential equation and some suitable conditions for nucleus function N(x,τ), then we
finally obtained a Fredholm integral equation and the proof is validated by taking β = 1 which
returns the original/classical results. In addition, we gave various basic definitions, properties,
lemmas and theorems used in this thesis, and they are mostly under this new derivative.
Next, we considered the general conformable SLP and then established the spectral properties; the
eigenvalues, the eigenfunctions, the nodal points, the nodal lengths, for some special boundary
conditions and after that we calculated the potential functions and proved its uniqueness, in the
direct case, using these spectral parameters as the direct and inverse of the conformable SLP. We
considered and proved the Ambarzumyan’s theorem for the conformable derivative SLP with
additional condition.
Lastly, we extended the conformable SLP and its inverse problems to the constant delay problem
which is also new in the literature. There we similarly obtained the spectral properties for the
problem in two different set of boundary conditions and we also expressed some important results
like the proof for the specification of the spectrum in one case and proving the stability of the
solution in the other case.
New results, as an extension of the classical SLP (with and without delay) were established in this
work in order to extend the concepts of the SLP to non-integer derivative phenomena, and the
corresponding results in the classical cases of the problems discussed in this research documents
can be obtained at β = 1 and also the delay concept can be relax by taking ν = 0.

Keywords: Sturm Liouville Equation, Sturm Liouville problem, Conformable derivative, Nodal

Points, Nodal Lengths, Potential Function, Inverse Problem, Delay Constant.
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Symbols and Abbreviations

Symbols

⟨⟩ : Inner product
Lp

β [a,b] : Square fractional integrable functions space on [a,b]
µn : n. Eigenvalue
Lβ : Sturm-Liouville operator
dβy
dxβ : Fractional differential operator
RLDβ

a : Riemann-Liouville fractional differential operator
CDβ

a : Caputo fractional differential operator
Dβ : Conformable differential operator
M Dα,β

a : M-Derivative fractional differential operator
N(x,x) : Nucleus function
L2

β [a,b] : Conformable Space of Real-valued squarely integrable functions
Cβ [a,b] : Conformable Space of continuous, real or complex-valued functions
q(x) : Potential function for Sturm-Liouville operator
O : Limited values
o : Infinitesimal values
H,h : Impedance constants at boundary conditions
yn(x,µn) : yn eigenfunction corresponding to µn eigenvalue
x

(n)
j : j nodal point corresponding to n

l
(n)
j : j nodal length corresponding to n

Abbreviations

SLP : Strum-Liouville Problem
SLT : Strum-Liouville Theory
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1. Introduction

Sturm-Liouville theory begins with Sturm’s original work between 1829 and 1836.
Later in 1837, Sturm and Liouville published their very important work in a short note in
the journal "Journal de Mathematique", they considered the boundary value problem for
the differential equation below,

−y′′ + q(x)y = µy for 0 ≤ x ≤ 1, (1. 1)

with the boundary conditions that

y(0)cosλ+y′(0)sinλ = 0, and y(1)cosα +y′(1)sinα = 0,

where q(x) is continuous on (0,1) and µ is the spectral parameter. From the solution
of the boundary value problem, the parameter µ is called eigenvalue and the nontrivial
solutions for (1. 1) is called eigenfunctions of the problem. The set of all eigenvalues of
this problem is called the spectrum of the boundary value problem [1]. Sturm-Liouville
problems (SLPs) constitute a fundamental pillar of mathematical analysis, particularly in
the context of differential equations and their applications in physics and engineering. These
issues are significant in light of their inherent occurrence in the separation of variables for
partial differential equations, including the heat equation, wave equation, and Schrödinger
equation. SLPs are of the form of eigenvalue problems, wherein the eigenvalues µ correspond
to specific solutions, designated as eigenfunctions y(x). The solutions of SLPs exhibit a
number of noteworthy characteristics. Orthogonality is defined and the set of eigenfunctions
is complete. The eigenfunctions constitute a complete set within the pertinent function
space, thereby enabling expansions of other functions in terms of these eigenfunctions (e.g.
Fourier series). In the case of a discrete spectrum, the spectrum of µ is ordered and bounded
below under regular conditions. These properties render the Sturm-Liouville Theory (SLT)
a powerful tool in mathematical physics, signal processing, and numerical methods.

Besides the studies on the SLPs there aroused the studies analyzing the concepts of
the inverse SLPs. This extensions of the SLT delve into reconstructing the underlying
differential operator from spectral data, which has applications in fields like geophysics,
quantum mechanics, and medical imaging. The first results of inverse SLP may be
considered as Ambarzumyan’s theorem [2]. It says that if the spectrum of SLP with
Neumann boundary conditions is

{
n2} , n ≥ 0, then the potential function q(x) = 0. The

solution of this type of classical SLPs are possible in many ways and many results have
been obtained by many researchers as in these references and there in
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 18, 34, 35, 36].

Fractional calculus is a fascinating branch of mathematics that generalises classical
calculus by extending the concept of derivatives and integrals to non-integer (fractional)



orders. In contrast to traditional calculus, which deals with integer-order differentiation
and integration, fractional calculus allows for operations of arbitrary order giving the
chance of taking the β-order derivative of a function, for 0 < β ≤ 1, this concept was first
studied in 1695 when Leibniz asked about the derivative of order 1

2 in a letter to
L’Hospital. The fundamental idea of fractional calculus can be traced back to the
generalisation of repeated integration and differentiation. For instance, the n-th derivative
of a function can be expressed using factorials. This concept was extended to fractional
orders using the Gamma function. A new differentiation method called "Conformable
Derivative" was recently developed by Khalil et al. [37] and it satisfies the majority
properties of differential calculus that were not satisfied by the earlier fractional derivative
approaches, this shows that conformable derivative has some advantages. This
conformable derivative, introduced to address limitations of earlier fractional derivatives,
exhibits a number of properties similar to those of classical derivatives, thereby making it
a useful tool for formulating fractional differential equations. Many researchers have
studied, defended, improved, and successfully used the Conformable Derivative approach
in many different fields, our work [38] gives our successful analysis on Conformable
Sturm-Liouville operator, more details on these can be found in the references
[39, 40, 41, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], it has been found to be an
effective derivative approach as such in this research work we considered this new
differentiation method and addressed the spectral problem on SLT. The models of the
phenomena that can be describe by the SLPs are best described by fractional calculus as
it involved the derivative of fractional order. Afterwards, researches on inverse and inverse
nodal SLP are extended to the concept of fractional derivatives and it is now a current
research field as detailed in the references [55, 56, 57, 5, 7, 58, 59, 60]. The authors in [15]
introduced a formula for the potential function in inverse nodal problem, in our works [59]
and [61] we treated the direct and inverse nodal problem of the SLP with eigenparameter
in the boundary condition using conformable derivative approach and proved the
uniqueness of the potential function, we also provided more details about it in this write
up. Also, there are some results on fractional SLPs in these references and there in
[62, 56, 63, 64, 57, 65, 58, 38, 66, 67, 68, 69] and many of them used the conformable
derivative.

To further our studies, we extended it to the concept of direct and inverse nodal
conformable SLP with delay which has the form (the classical)

−y′′ + q(x)y(x−ν) = µy for 0 ≤ x ≤ 1,

with any appropriate boundary conditions.
In the inverse nodal SLP with delay the goal is to determine the coefficients of the
Sturm-Liouville operator and the potential function q(x) or the delay parameter ν based
on the given spectral parameters (or nodal information). The study of SLP with delay has
applications in various fields, such as: Partial differential equations with delay terms,

2



Quantum mechanics and quantum field theory, Control theory and optimization,
Biological and engineering systems with time delays etc, that is why there is an increasing
interest in the spectral analysis of such problems, more details on these can be found in
[70, 71, 72, 73, 74, 75, 76]. Some researchers constructed new approaches for the solutions
of the classical forms of this concept. The SLP with a large constant delay, ν ∈

[
π
2 ,π

)
, was

taken into consideration by the authors in [77]. They developed an efficient algorithm to
solve the problem, and the authors in [78] also examined the nonlinear inverse problem
and determined the properties of their spectral characteristics. The case with a zero
starting function, where the potential q(x) is assumed to be null on the appropriate
subinterval, is the focus of much inverse SLP research. The authors of [79], however,
disregarded this presumption in favor of a continuously matching initial function, which
causes the equation to gain a new term with a frozen argument. They successfully
addressed the issue and demonstrated its spectral properties. For further insights into this
topic, please refer to [70, 73, 74]. In a note worthy contribution, the authors of [70]
presented an intriguing result pertaining to inverse SLP with a constant delay under a
non-self-adjoint operator with a mixed boundary condition. They elucidated the spectral
properties of the eigenvalues obtained.

Studies and results on non-integer value derivative inverse SLP with delay are scarce,
due to that, in our research we established the direct and inverse nodal conformable SLP
with delay as it can be seen in our works [75, 80]. We obtained the result under two
sets of boundary conditions; the mixed and Neumann-Dirichlet boundary conditions, using
conformable derivative approach, we expressed the corresponding spectral properties and
we used the Lipschitz stability approach and demonstrated the stability of the solutions.
The corresponding classical results can be retrieved at β = 1 and the delay concept can be
reversed at ν = 0 . The problem of the delay by a constant, which involves changing the
problem by the degree of the considered constant value, is contained in this supplement to
the literature on the idea of the inverse SLP. In addition to the given information and the
reviews about this research work we would like to give some details about the most important
terms which are the basic and bases of many of the concerned preliminaries. Notably, all
of the definitions, theorems, and lemmas that were used, together with their classical and
conformable derivative proofs, came from the references mentioned, particularly [39, 40, 44,
45, 56, 64, 70].
1.1 Sturm-Liouville Operator

In this section, we discussed about the concept of operator which is highly considered
due to its vitality in almost all parts of mathematics, this leads us to investigate and present
the possibility of providing transformation operator for the SLP using the conformable
derivative in this work. We also gave some main theorems and properties of SLP under this
new differentiation approach with their proofs.

3



1.1.1 Transformation Operator

To define the transformation operator let us consider a topological linear space E

such that E1,E2 ⊂ E,(closed subspaces) and A and B be two linear (may be continuous)
operators.

Definition 1.1.1. Suppose X is a linear invertible operator defined in the entire space E

and acting from E1 to E2. If X meets the following requirements, it can be referred to as a
transformation operator for a pair of operators A and B:
1. The operator and its inverse, X and X−1, are continuous in space E.
2. The form of the operator equation is

AX = XB or A = XBX−1.

Definition 1.1.2. [81] Let X be a linear space. A norm on X is real-valued function ∥.∥
on X defined by ∥.∥ : X → R satisfying the following conditions

(N1) ∥x∥ ≥ 0, x ≥ 0, x ∈ X

(N2) ∥x∥ = 0,⇔ x = 0
(N3) ∥βx∥ = |α|∥x∥ ,∀x ∈ X and for all scalars α .
(N4) ∥x+y∥ ≤ ∥x∥+∥y∥ ,∀x,y ∈ X Then (X, ∥.∥) is called Normed space.

Definition 1.1.3. [81] Let X and Y be two normed linear space over the same field of
scalars. A transformation defined by

T : X → Y

is said to be linear if a) T (x+y) = T (x)+T (y).
b) T (αx) = αT (x) for all x,y ∈ X and for all scalars α.

A linear transformation T : X → Y is said to be continuous at x0 ∈ X if xn → x0 then
T (xn) → T (x0)
T is said to be continuous if T is continuous at each point of X. Note that T is continuous
if and only xn → x =⇒ T (xn) → T (x).

Definition 1.1.4. A linear transformation T from a normed space X to another normed
space Y is said to be a bounded if there exists a real number c > 0, such that ∥T (x)∥ ≤ c∥x∥
for all x ∈ X.

Definition 1.1.5. [81] Let X be a complex linear space. An inner-product on X is a
function ⟨⟩ : X ×X → C which satisfies the following condition:

1) ⟨x,x⟩ ≥ 0, ⟨x,x⟩ = 0 ⇐⇒ x = 0.
2) ⟨x,y +z⟩ = ⟨x,y⟩ + ⟨y,z⟩ .
3) ⟨x,y⟩ = ⟨y,x⟩ , the complex conjugate of ⟨x,y⟩.
4) ⟨αx,y⟩ = α ⟨x,y⟩.

4



Here x,y,z ∈ X and α is a real number. An inner-product space is a linear space
with an inner-product on it [37]. We have a relation between inner product and norm as
∥x∥ =

√
⟨x,x⟩ A complete inner product space is said to be Hilbert space.

Lemma 1.1.1. The space Lp
β(0,a) associated with the norm function

∥f ||p,β =
(∫ a

0
|f(x)|pdβx

) 1
p

,

in a Banach space.

Morever if p = 2, then L2
β(0,a) associated with the inner product ⟨f,g⟩ =

∫ a
0 f.gdβx)

in a Hilbert space.
1.1.2 Fractional Differential Operator

Differential operator, symbolized as D, is a function which mapped functions into
their derivatives. The same is extended to the concept of fractional derivatives and all the
appropriate fractional differentiation approaches can be considered as Fractional
Differential Operators. We can then say, a fractional operator is a function which mapped
fractional differentiable functions into their fractional derivatives. The fractional
differential operators discussed here are the Riemann-Liouville, Caputo and conformable
simbolized as RLDβ

a , CDβ
a and Dβ and each is defined and characterized based on some

properties. It is based on such properties that an operator is said to be valid, good or
inappropriate. The shortcomings of the operators discussed here were given below and it
can be deduced that another operator can be derived as an improvement of the other.
1.1.3 Eigenvalue and Eigenfucntion

The concepts of Eigenvalue and Eigenfucntion, as explained in detail in [82], formed
the basis in the SLP, as such we briefly discussed these concepts as follows.

Definition 1.1.6. An eigenvalue of a square matrix A = (βjk) is a µ such that

Ax = µx (1. 2)

has a solution x ̸= 0.

A is known as the eigenvector that corresponds to that eigenvalue µ.

Definition 1.1.7. Let H be a Hilbert space and T : H → H be a bounded linear operator
on H into itself. Then the unique operator T ∗ defined by

⟨Tx,y⟩ = ⟨x,T ∗y⟩ , ∀x,y ∈ H

is called the adjoint of T.

5



Definition 1.1.8. A bounded linear operator T on a Hilbert space H is said to be self-
adjoint if T ∗ = T. If T is self-adjoint, then

⟨Tx,y⟩ = ⟨x,Ty⟩ ,∀x,y ∈ H.

1.2 Big O-notation

Big O notation is a method for characterizing functions based on their growth rates.
Different functions that have the same asymptotic growth rate can be described using the
same O notation. A description of a function in big O notation often provides an upper
bound on the function’s development rate. The little o notation, like the big O notation,
is used to define several types of asymptotic growth rate constraints. These two notations
typically exhibit similar characteristics [83].
1.2.1 Properties of big O notation

The following properties apply to the big O notation, that is for the functions
g(s), f(s) and h(s):

1. Reflexivity: For any function g(s), g(s) = O(g(s)).

2. Transitivity: Given that g(s) = O(f(s)), and f(s) = O(h(s)) then g(s) = O(h(s)).

3. The fixed factor: If g(s) = O(f(s)), then kg(s) = O(f(s)) for every constant k > 0.

4. Sum Rule: g(s)+h(s) = O(f(s)) if g(s) = O(f(s)) and h(s) = O(f(s)).

5. Product Rule: g(s)∗h(s) = O(f(s)∗k(s)) if g(s) = O(f(s)) and h(s) = O(k(s)).

6. The Composition Rule: f(g(s)) = O(h(s)) if f(s) = O(g(s)) and g(s) = O(h(s)).

7. A few further properties included; for k ̸= 0, O(k + h(s)) = O(h(s)),
O(kh(s)) = O(h(s)) and
g(s) = O(g(s),f(s) = O(f(s)), thenO(g(s)+f(s)) = O(max{g(s),f(s)}).

1.3 Sturm-Liouville Problem

Boundary-value issues known as SLPs naturally occur when specific partial differential
equation problems are solved using the separation of variables method, which is widely used
in literature.
The SLP can be solved in two ways: Finding the spectral data after the potential function
is provided which is the direct problem. In the second, one is asked to determine the
potential function given all spectral parameters, such as eigenvalues, eigenfunctions, etc.
These information and the definitions, theorem and the proofs can be found in the references
[82, 84, 85].
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Theorem 1.3.1. SLP has the general form in the classical case as;

(p(x)y′)′ + q(x)y = −µw(x)y for a < x < b (1. 3)

with the two sets of boundary conditions that;

I the first boundary conditions

y(a)cosλ+y′(a)sinλ = 0, and y(b)cosα +y′(b)sinα = 0, (1. 4)

II the second boundary conditions

y(a) = y(b), and y′(a) = y′(b),

where the functions p(x),p(x)′, q(x) and w(x) (weight function) are continuous on the
interval (a,b). p(x) > 0 and w(x) > 0 on [a,b] and µ is a spectral parameter.

By introducing L as the Sturm-Liouville operator to (1. 3) we can represent the SLP
as

L(y) = −µw(x)y,

where

L(y) = (p(x)y′)′ + q(x)y.

The first set of the boundary conditions of the SLP can be reduced to

y′(0)−hy(0) = 0, and y′(π)+Hy(π) = 0,

by taking the impedance constant −h = cosβ
sinβ and H = cosα

sinα and changing the interval to
(0,π).
Now, if we consider Q(x,µ) as the solution of (1. 3) and Q(0,µ) = 1 and Q′(0,µ) = h then
Q(x,µ) can be expressed as

Q(x,µ) = cos(√µx)+ h
√

µ
sin√

µx+ 1
√

µ

∫ x

0
sin(√µ(x− t))q(t)Q(t,µ)dt

while the condition Q∗(0,µ) = 0 and Q∗′(0,µ) = 1 gives the solution of (1. 3) as Q∗(x,µ)
and it can be expressed as

Q∗(x,µ) = 1
√

µ
sin√

µx+ 1
√

µ

∫ x

0
sin(√µ(x− t))q(t)Q∗(t,µ)dt
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1.4 Types of the SLP

There are three types of SLP (1. 3) which are as follows;

1. If p(x) > 0 and w(x) > 0 and the interval is finite [a,b] then the SLP is said to be
regular.

2. If p(x) or w(x) is zero for some x in the interval or the domain is [0,∞) then the
problem is singular.

3. if p(x) > 0, w(x) > 0 and the functions p(x), q(x) and w(x) are continuous functions
on [a,b] along with the following Boundary Conditions: y(a) = y(b) and y(a) = y(b)
then the SLP is called periodic.

It should be noted that the most common types of SLP are regular and periodic as such
most of the studies are on them.
1.5 Reducing Second Order Differential Equations to SLP

It should be remarked that the more general second order differential equations

− d

dx
{(p(x)y′)}+ l(x)y = µw(x)y, (1. 5)

with the functions p(x) and w(x) as stated in the section above, with set of the condition
(1. 4) can be reduced to SLP. That is, let the function p(x) be a continuous first order
differentiable function and the function p(x)w(x) be continuous second order differentiable
function, then (1. 5) can be rewritten as

−p(x)y′′ −p(x)′y′ + l(x)y −µw(x)y = 0, (1. 6)

and dividing both sides of (1. 6) by p(x) and multiplying through by the integrating factor
I(x) we have

−I(x)y′′ − I(x)p(x)′

p(x) y′ + I(x) l(x)
p(x)y − I(x)µw(x)

p(x) y = 0,

that is

−[I(x)y′]′ + I(x) l(x)
p(x)y − I(x)µw(x)

p(x) y = 0, (1. 7)

where I(x) = exp
∫ p(x)′

p(x) dx. Clearly, (1. 7) take the form that

−[I(x)y′]′ + l(x)
p(x)I(x)y = wo(x)µy,

which is a form of SLP with q = l(x)
p(x)I(x) and the weight function as wo(x) = w(x)

p(x) I(x).
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Example 1.5.1. To give an example of this case, let us transform the differential equations
below to the SLP form.

x2y′′ +xy′ +µxy = 0, and exp(2x)y′′ +exp(2x)′y′ +(x+µ)y = 0,

The first equation can be just y′′ + 1
xy′ + µ 1

xy = 0 and it can be reduce by taking the
integrating factor I(x) = exp

∫ p′(x)
p(x) dx = exp

∫ 1
xdx = x, then by multiplying the equation

with the integrating factor we have xy′′ +y′ +µy = 0 that is

[xy′]′ +µy = 0,

which is a SLP with q(x) = 0 and wo(x) = −1.
The second equation can also be y′′ + y′ + xexp(−2x)y + µexp(−2x)y = 0, and it can also
be reduce by taking the integrating factor I(x) = exp

∫ p′(x)
p(x) dx = exp

∫
dx = exp(x),

multiplying the equation with the integrating factor we have
xexp(x)y′′ +exp(x)y′ +xexp(−x)y +µexp(−x)y = 0 that is

[exp(x)y′]′ +xexp(−x)y +µexp(−x)y = 0,

which is a SLP with q(x) = xexp(−x) and wo(x) = −exp(−x).

The special second order differential equations like Euler-Cauchy, Bessel, Legendre,
Chebyshev, has SLP form as

a. Bessel Equation: (xy′)′ +(xµ2 − m2

x )y = 0,

b. Chebyshev Equation: (
√

1−x2y′)′ + n2
√

1−x2 y = 0,

c. Legendre Equation: ((1−x2)y′)′ +µy = 0,

1.6 Properties of SLP

1. The eigenvalues of a SLP are all real and nonnegative.

2. The eigenvalues of a SLP can be arranged to form a strictly increasing infinite
sequence; that is, 0 ≤ µ1 < µ2 < µ3 < .. . Furthermore, µn → ∞. as n → ∞.

3. For each eigenvalue of a SLP, there exists one and only one linearly independent
eigenfunction.

4. The set of eigenfunctions {e1(x),e2(x), ...} of the SLP (1. 3) corresponding to distinct
eigenvalues are orthogonal with respect to the weight function w(x). That is

∫ b

a
w(x)e1(x)e2(x)dx = 0.

5. The eigenvalues of the SLP (1. 3) are simple.
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Definition 1.6.1. Let f(x) and g(x) be two differentiable functions, then their Wronskian
function is defined by

W (f,g) = fg′ −gf ′.
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2. Conformable Derivative/Operator

In this section, we give the description of the Conformable differentiation method and
what it is about and its related issues because it is the main method used in working out
this research.
2.1 Fractional Calculus

Calculus is the mathematics concerning motion or growth (change in state) of an
object or situation. It was invented in 16-17th centuries in order to solve mainly the
mechanical problems of the time. Such real life problems are dynamic in nature and for
them to be properly addressed there is need for “Fractional Calculus ” that is the integrals
and derivatives of real or complex order. The letter received by Leibniz from L’Hospital in
1965 requiring information on the derivatives of d

1
2 y

dx
1
2

was the first mathematical
motivation toward investigations and researches in addressing such situations.
Mathematicians like Leibniz, L’Hospital, Euler, Lacroin, Abel, Liouville, Reimann, and
many others made significant contributions in evaluating such derivative [86]. Fourier, in
1822 gave the first definition for fractical order derivative as

dβy

dxβ
= 1

2π

∫ ∞

−∞
µβdµ

∫ ∞

−∞
f(τ)cos(µx− τµ+β

π

2 )dτ

After 1832 Liouville gave his definition which is based on the formula for differentiating an
exponential function as;

.D
βf(x) = Σ∞

k=0ckaβ
keakx,

for any complex β, from which he established his “Liouville’s first formula ” for the
differentiation of a power function and fractional integration and defined as;

LD−βf(x) = 1
(−1)βΓ(β)

∫ ∞

0
φ(x+ τ)τβ−1dτ, −∞ < x < ∞, Re β

Later in 1847, Riemann expressed his definition as;

RDβf(x) = 1
Γ(β)

∫ ∞

0

φ(τ)
(x− τ)1−β

dτ, x > 0.

Studies on fractional calculus reached a high level in 1880 due to its versatile applications
especially in engineering and sciences.
Many researchers gave many different definitions for fractional derivatives among which
M-Derivative, Riemann-Liouville, Caputo and conformable derivative are the most popular
ones. This research work concentrated more on the last of the above three but discussed
the remaining three in brief.



2.1.1 M-derivative

To say about the M-derivative we need the Mittag-Leffler function as it is defined
below.

Definition 2.1.1. The one-parameter Mittag-Leffler function is defined as

Eβ(z) = Σ∞
k=0

zk

Γ(ka+1) ,

The two-parameter Mittag-Leffler function is defined as

Eβα(z) = Σ∞
k=0

zk

Γ(ka+α) ,

where β > 0,α > 0,z ∈ C.

Definition 2.1.2. Let f : [a,∞] → R, α ∈ (0,1] and γ > 0. Then M-derivative defined as

M Dα,γ
a f(x) = lim

h→0

f(xiEγ(h(x−a)−α)−f(x)
h

where iEγ(.) is truncated Mittag-Leffler function defined in (2.1.1). If a = 0 this derivative
can be indicated as M Dα,γ .

Note that if M Dα,γ exists, we have M Dα,γ
a f(x) = (x−a)1−α

Γ(γ+1) f
′(x) and if a = 0,

M Dα,γf(x) = x1−α

Γ(γ+1)f
′(x) for Γ Gamma function.

Definition 2.1.3. The left M-integral is defined by letting the function f be defined in the
interval (a,x], where a ≥ 0,x ≥ a and 0 < α ≤ 1 as

M Iα,γ
a f(x) =

∫ x

a
f(τ)dατ = Γ(γ +1)

∫ x

a
(τ −a)α−1f(τ)dτ.

2.1.2 Riemann-Liouville Derivative

Riemann-Liouville approach in trying to define the fractional derivative is widely
accepted although it has some short coming. Below is the definition.

Definition 2.1.4. Let β be any point in the interval [n − 1,n), then the β derivative of a
function f is

RLDβ
a (f(τ)) = 1

Γ(n−β)
dn

dτn

∫ τ

a

f(x)
(τ −x)β−n+1 dx

which is the same as dn

dτn
f(τ) when β = n ∈ N

2.1.3 Caputo Derivative

The Caputo approach is similar to that of Riemann-Liouville only that in this case
the ordinary derivative is to be taken before the integral. It is defined as;
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Definition 2.1.5. If β ∈ [n−1,n), then the β derivative of a function f is

CDβ
a (f(τ)) = 1

Γ(n−β)

∫ τ

a

fn(x)
(τ −x)β−n+1 dx

and also CDβ
a (f(τ)) = dn

dτn
f(τ) when β = n ∈ N

These two popular definitions have their shortcomings due to which researching for a
better and more suitable definitions continues. These shortcomings included the following
facts which can be found in [37, 87, 88];

1. The Riemann-Liouville derivative does not satisfy the rule for the derivative of a
constant, that is RLDβ

a (k) ̸= 0 for any constant k but it is satisfied by the Caputo
derivative.

2. These two derivative approaches do not satisfy the product rule of two functions, that
is RLDβ

a (fg) ̸= f.RLDβ
a (g)+g.RLDβ

a (f) and CDβ
a (fg) ̸= f.CDβ

a (g)+g.CDβ
a (f) .

3. These two derivative approaches do not satisfy the quotient rule of two functions,
that is RLDβ

a (f
g ) ̸= g.RLDβ

a (f)+f.RLDβ
a (g)

g2 for g ̸= 0 and CDβ
a (f

g ) ̸= g.CDβ
a (f)+f.CDβ

a (g)
g2 for

g ̸= 0.

4. These two derivative approaches do not satisfy the chain rule, that is
RLDβ

a (f ◦g) ̸=RL Dβ
a (f(g)).RLDβ

a (g) and CDβ
a (f ◦g) ̸=C Dβ

a (f(g)).CDβ
a (g) .

5. In the Caputo definition the function f most be differentiable.

6. Although both the two definitions discussed are linear but they do not coincide with
one another. The relation between them is defined by the following theorem.

Theorem 2.1.1. Riemann-Liouville fractional derivative is related to the Caputo
fractional derivative by

RLDβ
a (f(τ)) =C Dβ

a (f(τ))+Σn−1
k=0

τk−β

Γ(k +1−β)fk(0).

under the condition that β ∈ [n−1,n), for β ∈ R and n ∈ N.

7. These two derivative approaches do not satisfy the basic analysis theorems like Rolle’s
theorem and the mean value theorem.

8. Although both the two definitions discussed have good physical meanings, they are
not easy to evaluate in most cases.

2.2 Conformable Derivative

The fundamental ideas of the "conformable derivative" were developed by Khalil et
al. [37] and discussed further by Abdeljawad [39]. Khalil examined the shortcomings of
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the most popular fractional differentiation techniques and established a new,
straightforward, and easily evaluable definition of the fractional derivatives. The most
fundamental characteristics of differentiation are satisfied by this new definition, which
appears to be a logical progression of the conventional derivative. Below is the definition
and some details with regard to this new definition.

Definition 2.2.1. Let consider the function w : [0,∞) →R, then, the βth order conformable
derivative of w(x) is given as

Dβw(x) = lim
h→0

w(x+hx1−β)−w(x)
h

,

for all x > 0, β ∈ (0,1].

It can be deduced from the definition 2.2.1 that if w(x) is β-differentiable in some
interval (0,a), a > 0, and limh→0+ w(β)(h) exists, then w(β)(0) = limh→0+ w(β)(h). Also if w

is differentiable (ordinary), then Dβw(x) = x1−βw′(x).
The conformable derivative defined for β ∈ (0,1] is also defined for β ∈ (n−1,n) for n ∈ N.
That is,

Definition 2.2.2. Let w be an n-differentiable at x, where x > 0 and β ∈ (n − 1,n), then
the conformable derivative w of order β is defined as,

Dβw(x) = lim
h→0

w⌈β⌉−1(x+hx⌈β⌉−β)−w⌈β⌉−1(x)
h

Where ⌈β⌉ is the smallest integer greater than or equal to β.
It can also be deduced that from the definition (2.2.2) that Dβw(x) = x⌈β⌉−βw⌈β⌉(x)

As the concept of continuity is highly important in calculus, it is also extended to
fractional calculus and the continuity at a point is defined below;

Theorem 2.2.1. If a function w : [0,∞) −→ R is β-differentiable at x0 > 0 for β ∈ (0,1]
then w is continuous at x0 > 0.

Proof 1. This theorem is proved using the concept of limit which is also defined in fractional
calculus. That is;

w(x0 +hx1−β
0 )−w(x0) = w(x0 +hx1−β

0 )−w(x0)
h

.h,

taking the limit on both we have,

lim
h→0

[w(x0 +hx1−β
0 )−w(x0)] = lim

h→0

w(x0 +hx1−β
0 )−w(x0)
h

. lim
h→0

h

Let e = hx1−β
0 clear as h → 0, e → 0. Then, by the definition of first principle we have;

lim
e→0

[w(x0 +e)−w(x0))] = f (β).0
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and this implies that limh→0[w(x0 +e)] = w(x0) which completes the Proof.

Theorem 2.2.2. (Rolle’s Theorem for Conformable Fractional Differentiable Functions).
Let a > 0 and w : [a,b] −→ R be a given function that satisfies
(i) w is continuous on [a,b],
(ii) w is β-differentiable for some β ∈ (0,1),
(iii) w(β)(a) = w(β)(b) = 0,
then, there exists c ∈ (a,b), such that w(β)(c) = 0.

Proof 2. Let w be continuous at every point of the interval [a,b], β-differentiable in (a,b),
and w(β)(a) = w(β)(b) = 0, then there is c ∈ (a,b), which is a point of local extrema. Let
assume, without loss of generality, that c is a point of local minimum. So,

w(β)(c) = lim
h→0+

w(c+hc1−β)−w(c)
h

= lim
h→0−

w(c+hc1−β)−w(c)
h

(2. 1)

Since the first limit is non-negative and the second limit is non-positive, the only possibility
is w(β)(c) = 0.

Theorem 2.2.3. (Mean Value Theorem for Conformable Fractional Differentiable
Functions). If a > 0 and w : [a,b] −→ R be a given function that satisfies;
(i) w is continuous on [a,b].
(ii) w is β-differentiable for some β ∈ (0,1),
then, there exists c ∈ (a,b) such that

w(β)(c) = w(b)−w(a)
bβ

β − aβ

β

(2. 2)

Proof 3. Let us define another function

h(x) = w(x)+w(a)− w(b)−w(a)
bβ

β − aβ

β

(
xβ

β
− aβ

β

)
(2. 3)

so that the function h(x) satisfies the Rolle’s theorem as such there is at least one point
c ∈ (a,b) such that h(β)(c) = 0. Then,

hβ(c) = w(β)(c)− w(b)−w(a)
bβ

β − aβ

β

= 0 ⇒ w(β)(c) = w(b)−w(a)
bβ

β − aβ

β

(2. 4)

This completes the Proof.

2.2.1 Conformable Integrals

The conformable derivatives approach discussed included the concept of fractional
integrations. The following rules where proved to be true and useful.
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Definition 2.2.3. For a function w, the conformable integral of w of order β is given as

Iβw(x) =
∫ x

0
w(τ)dβτ =

∫ x

0
τβ−1w(τ)dτ

for all x > 0. Where the integral is the usual Riemann integral.

Lemma 2.2.1. Let us assume that the function w is differentiable. Then, we have for
x > a,

Ia
βDβ

xw(x) = w(x)−w(a).

Lemma 2.2.2. Assume that w is differentiable. Then, for x > a,

Dβ
xIa

βw(x) = w(x).

Theorem 2.2.4 (Conformable integration by parts). Let w,h be two β-differentiable
functions. Then

∫ b

a
g(x)Dβ

x(h(x))(x)dβx = wh|ba −
∫ b

a
h(x)Dβ

x(w(x))dβx.

Lemma 2.2.3. The β−Leibniz integral rule is given in the form

Dβ
x

[∫ b(x)

a(x)
w(x,τ)dβτ

]
= Dβ

xb(x)w(x,b(x))b(x)β−1 −Dβ
xa(x)w(x,a(x))a(x)β−1

+
∫ b

a
Dβ

x(w(x,τ))dβτ.

(2. 5)

for a(x) ≤ τ ≤ b(x) while a(x) and b(x) are both β−differentiable for x0 ≤ x ≤ x1.

Lemma 2.2.4. Let f be β-Riemann integrable on [a,b]. Then,

lim
µ→±∞

∫ b

a
f(x)cos

(
µxβ

β

)
dβx = 0

lim
µ→±∞

∫ b

a
f(x)sin

(
µxβ

β

)
dβx = 0

lim
µ→±∞

∫ b

a
f(x)e

i

(
µxβ

β

)
dβx = 0

These definitions and Theorems were given by some authors [37, 39, 40, 56].
2.2.2 Properties of Conformable Derivative

The conformable Derivative has the following properties as stated in the theorem
below.

Theorem 2.2.5. Let f and w be β-differential at x, x > 0. Then,
i) Dβ

x(af + bw) = aDβ
xf + bDβ

xw,∀a,b ∈ R
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ii) Dβ
x(c) = 0, (c is a constant)

iii) Dβ
x(fw) = wDβ

xf +fDβ
xw,∀a,b ∈ R

iv) Dβ
x( f

w ) = w.Dβ
x (f)−f.Dβ

x w
w2

v) Dβ
xw = x1−β.Dxw, when w is differentiable.

The Proofs of these properties can easily be seen in [37, 87].
2.2.3 Some Examples on Conformable derivative

The examples below demonstrated the properties of the conformable derivatives and
in each case, when β = 1 the normal derivatives are obtained. Now for a,b,k ∈ R let us
find;
i) Dβ

x( b
β xβ +sin 1

β xβ),
ii) Dβ

x(xaebx −2k),

iii) Dβ
x

(
e

1
β

xβ

tan(ax)

)
.

Clearly, all the functions in all the three problems above are differentiable them, by the
fifth property the solutions are;
i) Dβ

x( b
β xβ +sin 1

β xβ) = Dβ
x( b

β xβ)+Dβ
x(sin 1

β xβ) = b+cos 1
β xβ

ii) Dβ
x(xaebx −2k) = xaDβ

x(ebx)+ebxDβ
x(xa)−Dβ

x(2k) = x1−βebx[bxa +ax(a−1)]

iii) Dβ
x

(
e

1
β

xβ

tan(ax)

)
= tan(ax)Dβ

x (e
1
β

xβ

)−e
1
β

xβ

Dβ
x (tan(ax))

(tan(ax))2 = e
1
β

xβ

[(tan(ax))−ax1−β sec2(ax)]
(tan(ax))2 For the

Integrals, let us demonstrate some of the above definitions by solving the following
examples;
i) Ia

β(xk), k ∈ N
ii) Ia

1
2
(
√

xsinbx), a,b ∈ R

iii) Ia
β(x1−βecx), a,c ∈ R

Now, using the definition 2.2.3 the solutions are;
i) Ia

β(xk) =
∫ x

a
τk

τ1−β dτ = xk+β

k+β , for k ̸= −β

ii) Ia
1
2
(
√

xsinbx) =
∫ x

0

√
τ sinbτ
τ1−β dτ = 1

b [1− cosbx]

iii) Ia
β(x1−βecx) =

∫ x
a

τ1−βecτ

τ1−β dτ = ecx −eac

We can easily note that in all the three cases the original integral is obtained when β = 1.
2.2.4 Development on conformable derivatives

By giving definitions and performing various operations on the left and right
conformable derivatives and conformable integrals of higher orders, Abdeljawad in [39]
explains the evolution of the conformable calculus. Additionally, he used the conformable
derivative approach to develop and explore its versions of the chain rule, exponential
functions, Taylor power series expansions, Gronwall’s inequality, integration by parts,
Laplace transforms, and linear differential systems. Below is a brief on the work of
Abdeljawad.

Definition 2.2.4. The left conformable derivative of the function w : [0,∞) → R is given
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as

aDβw(x) = lim
h→0

w(x+h(x−a)1−β)−w(x)
h

,

for all x > 0, β ∈ (0,1] and a ∈R and if w is β-differentiable in the interval (0,a), a > 0, then
aDβw(a) = limh→a+ [aDβw(x)(h)]. The calculation is simply by aDβw(x) = (x−a)1−βw′(x)
provided w is differentiable.
Similarly, the right conformable derivative of the same function under the same conditions
is given by b ∈ R.

bD
βw(x) = lim

h→0

w(x+h(b−x)1−β)−w(x)
h

,

The calculation here is also simple and it is by bD
βw(x) = −(b − x)1−βw′(x) provided g is

differentiable.

The higher order case is generalized as;

Definition 2.2.5. The left conformable derivative of the function w : [0,∞) −→ R of order
α ∈ (n−1,n),n ∈ N and β = α − (n−1) is defined by

aDαw(x) =a Dβ(w(x))(n−1)

Similarly, the left conformable derivative of the same function under the same condition is
defined as

bD
αw(x) = (−1)n.bD

β(w(x))(n−1)

Let us now give the corresponding conformable integral definition as follows;

Definition 2.2.6. The left conformable integral of order α ∈ (n − 1,n),n ∈ N and β = α −
(n−1) starting at a is defined by

Ia
α(f(τ)) = Ia

n((τ −a)β−1f) = 1
(n−1)!

∫ τ

a
(τ −x)n−1(x−a)β−1f(x)dx

Similarly, the right conformable integral of the same order and under the same condition is
given by

bIα(f(τ)) =b In((τ −a)β−1f) = (−1)n−1

(n−1)!

∫ b

τ
(τ −x)n−1(b−x)β−1f(x)dx

2.2.5 Shortcomings of conformable derivatives

Although the conformable derivatives is an improvement on the two famous
fractional derivatives approaches, it has its shortcomings. The author [37] remarked that
the conformable derivative is local in nature and questioned whether its physical meaning
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can easily be interpreted than the previous fractional derivatives or not.
Despite the fact that, still, there is no criteria for defining fractional derivatives Ortigueira
[45] proved that the two most famous fractional derivatives approaches together with the
Grunwald-Letnikov’s approach share the following properties that every fractional
differential operator may be expected to satisfy. These properties are;

1. Linearity

2. The identity is the zero-order operator

3. The integer-order operators give the ordinary derivative

4. Index law and commutativity

5. the generalized Leibniz rule for the derivative of a product, that is

Dβ(f(x)g(x)) =
∞∑

n=0

(
β

n

)
Dn(f(x))Dβ−n(g(x))

The author asserted that the conformable derivative does not satisfy the properties (ii),(iii)
and (v).
The author [89] analyzed a general fractional model of viscoelasticity using the conformable,
Riemann-Liouville and Caputo fractional derivatives and the result obtained using the first
approach is inconsistent with those obtained using the latter two approaches. The latter
results excellently fit with the experimental studies. But due to the fact that still there
is no standard rule classifying whether a derivative is fractional or not and the facts that
this conformable derivative is effective and applicable it has been employed in various fields
of researches like in control theory of dynamical systems, Newton mechanics, quantum
mechanics, variational calculus, arbitrary time scale problems, anomalous diffusion, diffusive
transport, stochastic process and many others, with many many physical interpretations
have been provided [56], it is really a development in the literature of non-integer value
derivatives.
2.3 Conformable Transformation Sturm-Liouville Operator

This section presents a transformation operator for the conformable SLP which
differs from the traditional Sturm-Liouville operator. Validation of the Proof is achieved
by setting β = 1, which returns the classical problem. The transformation operator
represents a methodology for solving the inverse Sturm-Liouville operator. In order to
establish a relationship between two distinct SLPs with different potentials, an integral
equation was initially employed. The potential function and the nucleus function,
designated as q(x) and N(x,τ) respectively, are related by a pivotal formula. A number of
studies have been carried out on this topic, as referenced in the following sources
[90, 91, 92, 93, 84, 38]. In order to achieve equivalent conclusions for the conformable
Sturm-Liouville issue, we used the following relationship.
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2.3.1 The Classical Form of the Problem

Let us consider two Sturm-Liouville operators A = − d2

dx2 +q(x) and B = − d2

dx2 +r(x),
with q(x) and r(x) squared integrable functions and known as potentials in the theory.
We considered the case where E1 and E2 are considered as subspaces of a topological
linear space, E such that h1 and h2 are finite, for h1 ∈ E1 and h2 ∈ E2. Also, A and B

are two differential operators from E to E under the conditions that w′(0) = h1m(0) and
m′(0) = h2m(0). These conditions based the foundation of ordinary transformation operator
for the problem which is expressed as in the theorem below [94].

Theorem 2.3.1. Defining the transformation operator between A and B as

Xm(x) = m(x)+
∫ x

0
N(x,τ)m(τ)dτ. (2. 6)

Then the kernel in operator (2. 6) is a solution to the Hyperbolic equation,

∂2

∂x2 N(x,τ)− q(x)N(x,τ) = ∂2

∂(τ )2
N(x,τ)− r(x)N(x,τ), (2. 7)

and satisfies the conditions,

N(x,x) = h2 −h1 + 1
2

∫ x

0
[q(s)− r(s)]ds, (2. 8)

[
∂N(x,τ)

∂t
−h1N(x,τ)

]∣∣∣∣
τ=0

= 0. (2. 9)

Inversely, if a the nucleus function N(x,τ) is a solution of the problem (2. 7) - (2. 9), then
the operator X defined by (2. 6) is a transformation operator for A and B.

2.3.2 The proposed conformable transformation operator

Similarly, as in the original case, we consider E as a space which consisted of all
real valued functions m(x) for x ≥ 0 . Let the two fractional Sturm-liouville operators be
expressed as

A = −Dβ
xDβ

x + q(x)andB = −Dβ
xDβ

x + r(x),

here q(x) and r(x), (0 ≤ x < ∞) are continuous functions. Let E1 and E2 be subspaces of
functions in E satisfying the boundary condition;

Dβ
xm(0) = h1m(0)
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and

Dβ
xm(0) = h2m(0),

here h1 and h2 are any constants, then based on these, our proposed fractional operator is
expressed by the theorem below.

Theorem 2.3.2. The transformation operator, X = XA,B from E1 to E2 is defined

Xm(x) = m(x)+
∫ x

0
N(x,τ)m(τ)dβτ (2. 10)

the Kernel in operator (2. 10) is a solution to the fractional differential equation;

Dβ
x(Dβ

xN(x,τ))− q(x)N(x,τ) = Dβ
τ (Dβ

τ N(x,τ))− r(x)N(x,τ) (2. 11)

and satisfies conditions,

N(x,x) = h2 −h1 +
∫ x

0

[q(s)− r(s)]
1+sβ−1 dβs (2. 12)

[Dβ
τ N(x,τ)−h1N(x,τ)]

∣∣∣
τ=0

= 0. (2. 13)

Inversely, the operator X which is given in (2. 10) is a conformable transformation operator
for A, B, on condition that N(x,τ) is a solution of (2. 11) - (2. 13).

This is the statement of the proposed assertion and by using the facts in theorems,
definitions, and lemmas above, the Proof is provided as follows.

Proof 4. Differentiating equation (2. 10) fractionally with respect to x gives

Dβ
x(Xm(x)) = Dβ

xm(x)+Dβ
x [
∫ x

0
N(x,τ)m(τ)dβτ ]

= x1−βm′(x)+Dβ
x(x).N(x,x)m(x).xβ−1

−Dβ
x(0).N(x,0)m(0).(0)β−1 +

∫ x

0
Dβ

xN(x,τ)m(τ)dβτ,

(2. 14)

that is,

Dβ
x(Xm(x)) = x1−βm′(x)+N(x,x)m(x)+

∫ x

0
Dβ

xN(x,τ)m(τ)dβτ. (2. 15)

Since, (Xm(x)) ∈ E2 and m(x) ∈ E1, then taking as x = 0 in (2. 15), we obtained,

Dβ
x(Xm(x))|x=0 = h2(Xm(x))|x=0 = h2(m(0)) = Dβ

xm(0)+N(0,0)m(0)

= h1m(0)+N(0,0)m(0) = [h1 +N(0,0)]m(0),
(2. 16)
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which implies that N(0,0) = h2 −h1. By differentiating equation (2. 15) we get,

Dβ
x [Dβ

x(Xm(x))] = Dβ
x [Dβ

xm(x)]+ [Dβ
xN(x,x)]m(x)+N(x,x)[Dβ

xm(x)]

+Dβ
x(x)[Dβ

xN(x,x)m(x)xβ−1](x)β−1 −Dβ
x(0)[Dβ

xN(x,0)m(0)(0)β−1]xβ−1

+
∫ x

0
Dβ

x [Dβ
xN(x,τ)m(τ)]dβτ

= Dβ
x [Dβ

xm(x)]+ [Dβ
xN(x,x)]m(x)+N(x,x)[Dβ

xm(x)]

+Dβ
xN(x,x)m(x)xβ−1 +

∫ x

0
Dβ

x [Dβ
xN(x,τ)m(τ)]dβτ,

(2. 17)

therefore we have

A(Xm(x)) = −Dβ
xDβ

x(Xm(x))+ q(x)(Xm(x))

= −Dβ
xDβ

xm(x)− [Dβ
xN(x,x)]m(x)−N(x,x)[Dβ

xm(x)]−Dβ
xN(x,x)m(x)xβ−1

−
∫ x

0
[Dβ

xDβ
xN(x,τ)]m(τ)dβτ + q(x)[(m(x))+

∫ x

0
N(x,τ)m(τ)dβτ ]

= −Dβ
xDβ

xm(x)− [Dβ
xN(x,x)]m(x)−N(x,x)[Dβ

xm(x)]−Dβ
xN(x,x)m(x)xβ−1

+ q(x)(m(x))−
∫ x

0
[Dβ

xDβ
xN(x,τ)− q(x)N(x,τ)]m(τ)dβτ.

(2. 18)

Bm(x) under the operator X is expressed as

Bm(x) = [−Dβ
xDβ

x + r(x)]m(x) = −Dβ
xDβ

xm(x)+ r(x)m(x),

then

X[Bm(x)] = (Bm(x))+
∫ x

0
N(x,τ)[Bm(τ)]dβτ

= −Dβ
xDβ

xm(x)+ r(x)m(x)+
∫ x

0
N(x,τ)[−Dβ

τ Dβ
τ m(τ)+ r(τ)]m(τ)]dβτ,

but ∫ x

0
N(x,τ)Dβ

τ [Dβ
τ m(τ)]dβτ = N(x,τ)Dβ

τ m(τ)|x0 −
∫ x

0
[Dβ

τ m(τ)]Dβ
τ N(x,τ)dβτ

= N(x,x)Dβ
τ m(x)−N(x,0)Dβ

τ m(0)

−
[
Dβ

τ N(x,τ)m(τ)|x0 −
∫ x

0
m(τ)Dβ

τ Dβ
τ N(x,τ)dβτ

]
= N(x,x)Dβ

τ m(x)−N(x,0)Dβ
τ m(0)−Dβ

τ N(x,x)m(x)

+Dβ
τ N(x,0)m(0)+

∫ x

0
Dβ

τ Dβ
τ N(x,τ)m(τ)dβτ,

as such X[Bm(x)] become

X[Bm(x)] = −Dβ
xDβ

xm(x)+ r(x)m(x)+ [Dβ
τ N(x,x)]m(x)−N(x,x)Dβ

τ m(x)+N(x,0)Dβ
τ m(0)

− [Dβ
τ N(x,0)]m(0)−

∫ x

0
Dβ

τ Dβ
τ [N(x,τ)− r(x)N(x,τ)]m(τ)dβτ.

(2. 19)
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Since, A(Xm) = X(Bm), then equating (2. 18) and (2. 19) gives

Dβ
xDβ

xN(x,τ)− q(x)N(x,τ) = Dβ
τ Dβ

τ N(x,τ)− r(x)N(x,τ),

and also, the conditions from the same relation can be derived as

0 = N(x,0)Dβ
τ m(0)− [Dβ

τ N(x,0)]m(0) = h1m(0)N(x,0)− [Dβ
τ N(x,0)]m(0),

which implies that

[h1N(x,0)−Dβ
τ N(x,0)]m(0) ⇒ Dβ

τ N(x,τ)−h1N(x,0)]|τ=0 = 0 sincem(0) ̸= 0,

then we have the following condition

[Dβ
τ N(x,τ)−h1N(x,τ)]|τ=0 = 0,

and the other condition is derived as follows.

−[Dβ
xN(x,x)]−Dβ

xN(x,x)xβ−1 + q(x) = [Dβ
τ N(x,x)]+ r(x),

that is

−[Dβ
xN(x,x)][1+xβ−1]q(x) = [Dβ

τ N(x,x)]+ r(x) ⇒

q − r = [Dβ
xN(x,x)][1+xβ−1]+Dβ

τ N(x,x),

that is at τ = x ⇒

Dβ
xN(x,x)[1+xβ−1] = q(x)− r(x),

which is equivalent to

N(x,x) =
∫ x

0

[q(s)− r(s)]
1+sβ−1 dβs+N(0,0), for N(0,0) = h2 −h1.

This gives the Proof of the proposed assertion and it is clear that the original
problem is obtainable by taking β = 1. Briefly, the Proof is that, if the transformation
operator X is in the form (2. 10), then N(x,τ) is a solution of Hyperbolic problems
(2. 11)to (2. 13).Conversely this assertion is also true. To complete the remainder of
Proof, the solvability of problem (2. 11) to (2. 13) is shown below;
First assume that the functions q(x) and r(x) are differentiable. Let the variables
ξ = x+ τ and η = x− τ .Then consider the function below,

Q(ξ,η) = N

(
ξ +η

2 ,
ξ −η

2

)
, (2. 20)
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equations (2. 11) to (2. 13) in terms of ξ and η can be expressed as

Dβ
ξ (Dβ

η Q(ξ,η)) = 1
4

[
q

(
ξ +η

2

)
− r

(
ξ +η

2

)]
Q, (2. 21)

and satisfies the conditions,

Q(ξ,0) = h2 −h1 +
∫ ξ

2

0

[q(s)− r(s)]
1+sβ−1 dβs (2. 22)

and

[Dβ
ξ Qτ1−β −Dβ

η Qτ1−β −h1Q]
∣∣∣
ξ=η

= 0. (2. 23)

Integrating equation (2. 21) according to variable η from 0 to η gives∫ η

0
Dβ

ξ [(Dβ
η Q(ξ,η))]dβη = 1

4

∫ η

0

[
q

(
ξ +η

2

)
− r

(
ξ +η

2

)]
Qdβη,

that is∫ η

0
Dβ

η [(Dβ
ξ Q(ξ,µ))]dβµ = 1

4

∫ η

0

[
q

(
ξ +µ

2

)
− r

(
ξ +µ

2

)]
Qdβµ

so that

Dβ
ξ Q−Dβ

ξ Q
∣∣∣
η=0

= 1
4

∫ η

0

[
q

(
ξ +µ

2

)
− r

(
ξ +µ

2

)]
Q(ξ,µ)dβµ. (2. 24)

It follows from condition (2. 22) that

Dβ
ξ Q
∣∣∣
η=0

= Dβ
ξ Q(ξ,0) = Dβ

ξ

[
h2 −h1 +

∫ ξ
2

0

[q(s)− r(s)]
1+sβ−1 dβs

]

= Dβ
ξ

[∫ ξ
2

0

[q(s)− r(s)]
1+sβ−1 dβs

]

= Dβ
ξ (ξ

2)

[
q
(

ξ
2

)
− r

(
ξ
2

)]
1+( ξ

2)β−1

(
ξ

2

)β−1
−Dβ

ξ (0) [q(0)− r(0)]
(1+(0)β−1)(0)β−1

+
∫ ξ

2

0
Dβ

ξ

[q(s)− r(s)]
(1+(s)β−1)dβs,

that is

Dβ
ξ Q
∣∣∣
η=0

=

[
q
(

ξ
2

)
− r

(
ξ
2

)]
2(1+( ξ

2)β−1)

(
ξ

2

)β−1
,
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therefore (2. 24) becomes

Dβ
ξ Q = 1

4

∫ η

0

[
q

(
ξ +µ

2

)
− r

(
ξ +µ

2

)]
Q(ξ,µ)dβµ+ Dβ

ξ Q
∣∣∣
η=0

= 1
4

∫ η

0

[
q

(
ξ +µ

2

)
− r

(
ξ +µ

2

)]
Qdβµ+

[
q
(

ξ
2

)
− r

(
ξ
2

)]
2(1+( ξ

2)β−1)

(
ξ

2

)β−1
.

(2. 25)

Integrating equation (2. 25) with respect to variable ξ from η to ξ gives∫ ξ

η
Dβ

ξ Qdβξ =
∫ ξ

η
Dβ

ξ Qdβα = Q(ξ,η)

= 1
4

∫ ξ

η
dβα

(∫ η

0

[
q

(
α +µ

2

)
− r

(
α +µ

2

)]
Q(α,µ)dβµ

)

+
∫ α

η

[
q
(

ξ
2

)
− r

(
ξ
2

)]
2(1+( ξ

2)β−1)

(
ξ

2

)β−1
dβµ+Q(η,η),

that is

Q(ξ,η) = 1
4

∫ ξ

η
dβα

∫ η

0

[
q

(
α +µ

2

)
− r

(
α +µ

2

)]
Q(α,µ)dβµ

+
∫ ξ

η

[
q
(

ξ
2

)
− r

(
ξ
2

)]
2(1+( ξ

2)β−1)

(
ξ

2

)β−1
dβµ+Q(η,η).

Now, to calculate Q(η,η), it follows from (2. 23) and (2. 25) that

2Dβ
ξ Qτ1−β

∣∣∣
ξ=η

=
[
Dβ

ξ Qτ1−β +Dβ
η Qτ1−β +h1Q

]∣∣∣
ξ=η

= 1
2

∫ η

0

[
q

(
η +µ

2

)
− r

(
η +µ

2

)]
Q(η,µ)dβµ+

[
q
(η

2
)
− r

(η
2
)]

(1+(η
2 )β−1)

(
η

2

)β−1
,

then the last equation gives that

Dβ
ξ [e(h2+h1)ηQ(η,η)] = e(h2+h1)η

[[
q
(η

2
)
− r

(η
2
)]

(1+(η
2 )β−1)

(
η

2

)β−1
]

+e(h2+h1)η
[1

2

∫ η

0

[
q

(
η +µ

2

)
− r

(
η +µ

2

)]
Q(η,µ)dβµ

]
.

Integrating this equation from 0 from η and considering the equation (2. 22) leads to,

Q(η,η) = −(h2 +h1)e−(h2+h1)η

+e−(h2+h1)η
∫ η

0
e(h2+h1)α

[1
2

∫ η

0

[
q

(
α +µ

2

)
− r

(
α +µ

2

)]
Q(α,µ)dβµ

]
dβα

+e−(h2+h1)η
∫ η

0
e(h2+h1)α

[[
q
(

α
2
)
− r

(
α
2
)]

(1+(α
2 )β−1)

(
α

2

)β−1
]

dβα.
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Thus equation Q(ξ,η) must satisfy the integral equation

Q(ξ,η) = 1
4

∫ α

η
dβα

∫ η

0

[
q

(
α +µ

2

)
− r

(
α +µ

2

)]
Q(α,µ)dβµ

+
∫ ξ

0

[[
q
(µ

2
)
− r

(µ
2
)]

2(1+(µ
2 )β−1)

(
µ

2

)β−1
]

dβµ

+e−(h2+h1)η
(

−(h2 +h1)+
∫ η

0
e(h2+h1)α

.

[1
2

∫ α

0

[
q

(
α +µ

2

)
− r

(
α +µ

2

)]
Q(α,µ)dβµ

]
dβα

+
∫ η

0
e(h2+h1)α

[[
q
(

α
2
)
− r

(
α
2
)]

(1+(α
2 )β−1)

(
α

2

)β−1
]

dβα

)
.

(2. 26)

And also, if function Q(ξ,η) satisfies the integral equation (2. 26) with q(x) and r(x) each
differentiable once, it can be verified easily that (2. 26) is a solution of problems (2. 20) to
(2. 22).
This completes the Proof and the desired result, that is establishing the transformation
operator for the conformable Sturm-liouville problem, is obtained. The equivalent of
equation (2. 26) in the ordinary case is a voltera-type integral equation, also, in this case
(2. 26) behave the same. The assumption that the functions q(x) and r(x) are each
differentiable will not have an impact on the approximation because continuous functions
can be approximated by smooth functions. The kernel of the transformation operator is
then extrapolated to the limit function N(x,τ) produced. If
A = −Dβ

xDβ
x + q(x) : and : B = −Dβ

xDβ
x we obtain two problems as,

Af = µf,

Dβ
xf(0) = 0

(2. 27)

and

Bf = µf,

Dβ
xf(0) = 0

(2. 28)

and the solution of the problems (2. 27)and (2. 28) are m(x) and cos
√

µ
β xβ. In this case,

we can write the transformation operator as

X

(
cos

√
µ

β
xβ
)

= cos
√

µ

β
xβ +

∫ x

0
N(x,τ)cos

√
µ

β
τβdβτ.

Then we can obtain a partial differential equation for N(x,τ).
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3. Conformable SLP

Conformable SLPs are the classical SLPs expressed under the Conformable derivative
approach. As there are two ways to solve the SLPs in the classical form so also in the
conformable form that is the direct and the inverse ways.
The information, the definitions, theorem and all the proofs below can be found in the
references [56, 64].
3.1 Defining the Conformable SLP

Theorem 3.1.1. Conformable SLP has the general form as

Dβ(p(x)Dβy)+ q(x)y = −µw(x)y, (3. 1)

with the conditions that

y(a)cosλ+Dβy(a)sinλ = 0, and y(b)cosα +Dβy(b)sinα = 0,

where β ∈ (0,1],x ∈ (a,b),p(x),Dβ
a p(x,)q(x) and w(x) (weight function) are continuous on

(a,b). The fractional derivative is conformable and p(x) > 0 and w(x) > 0 on [a,b] and µ is
a spectral parameter.

To demonstrate the above defined problem, to find the eigenvalues and the
eigenfunctions, let us consider the following example.

Example 3.1.1. Let us consider the conformable SLP
−DβDβy + q(x)y = µw(x)y with the conditions that y(0) = y(1) = 0. Consider w(x) = 1
and q(x) = 0.
The corresponding classical problem; y′′ + µy = 0, has the eigenvalue µn = (nπ)2 and the
eigenfunction φn(x) = sin(nπx). The author of [64] gave the eigenvalue and the
eigenfunction of the fractional problem as µn = (βnπ)2 and φn(x) = sin(nπxβ) respectively.
Clearly, the two solutions are the same at β = 1.

Theorem 3.1.2. If DβDβy is continuous on [a,b] and y ∈ C2β[a,b] then y is
2β-continuously differentiable on [a,b].

By introducing L as the Sturm-Liouville operator to (3. 1) we can represent the
problem as;

L(y,β) = −µw(x)y

where

L(y,β) = Dβ(p(x)Dβy)+ q(x)y



Definition 3.1.1. f(x) and g(x) are β-orthogonal with regard to the weight function w(x) ≥
0 if they are two fractional differentiable functions and

∫ b

a
w(x)f(x)g(x)dβx = 0

Theorem 3.1.3. With regard to the weight function w(x), the eigenfunctions of the
conformable SLP (3. 1) that correspond to different eigenvalues are β-orthogonal.

Theorem 3.1.4. The eigenvalues of the conformable SLP (3. 1) are real.

Definition 3.1.2. Let f(x) and g(x) be two conformable differentiable functions, then their
conformable Wronskian function is defined by

Wβ(f,g) = fDβ
a g −gDβ

a f

Theorem 3.1.5. The eigenvalues of the conformable SLP (3. 1) are simple.

3.2 Conformable SLP with Eigenparameter in the Boundary Conditions

The SLP can be solved in two ways. Once the potential function has been provided,
the next step is to identify the spectral data in direct problems. In the second case, the
objective is to determine the potential function given all of the spectrum parameters, such
as eigenvalues, eigenfunctions, and so forth. The second case is generally regarded as more
challenging and intriguing when compared to the first. It is noteworthy that authors have
demonstrated that the zeros of eigenfunctions can be utilized to determine the potential
function. In the literature, this is referred to as the inverse nodal problem. As such, in
this section we give the solutions of the inverse Conformable SLP under a special boundary
conditions- carrying the eigenparameter- and the corresponding spectral properties. The
classical sort of the problem is discussed in [11]. We considered the following conformable
fractional SLP, Lβ(q,f), that is

−Dβ
xDβ

xy + q(x)y = µy (3. 2)

with the conditions

Dβ
xy(0) = 0, and Dβ

xy(π)+f(µ)y(π) = 0 (3. 3)

where Dβ
x defines the conformable derivative of order β, 0 < β ≤ 1, q is a real valued

continuous function and

f(µ) = a1
√

µ+a2
√

µ2 + ...+ar
√

µr ,ai ∈ R,ar ̸= 0, r ∈ Z+.
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Let Q1(x,µ) be solution of (3. 2) under the condition y(0) = 1, then Q1(x,µ) can be
expressed as

Q1(x,µ) = cos
(√

µ

β
xβ
)

+
∫ x

0
N(x,τ)cos

(√
µ

β
τβ
)

dβτ. (3. 4)

The kernel N(x,τ) is the solution of

Dβ
x(Dβ

xN(x,τ))− q(x)N(x,τ) = Dβ
τ (Dβ

τ N(x,τ)), (3. 5)

and N(x,x) satisfies

N(x,x) =
∫ x

0

1
1+sβ−1 q(s)dβs. (3. 6)

and also, let Q2(x,µ) be the solution of

−Dβ
xDβ

xy + q(x)y = µy under the condition that y(0) = 0, Dβ
xy(0) = √

µ. (3. 7)

Conversely, if N(x,τ) is a solution of (3. 5), then (3. 4) satisfies (3. 2) under the condition
y(0) = 1. This is known as transformation operator in the SLT.
Clearly, Q2(x,µ) can be expressed as,

Q2(x,µ) = sin
(√

µ

β
xβ
)

+
∫ x

0
N(x,τ)sin

(√
µ

β
τβ
)

dβτ.

Now, taking the integration in (3. 4) by parts using the conformable integration it follows
that

Q1(x,µ) = cos
(√

µ

β
xβ
)

+
∫ x

0
N(x,τ)

[
1

√
µ

Dβ
τ sin

(√
µ

β
τβ
)]

dβτ

= cos
(√

µ

β
xβ
)

+ 1
√

µ
N(x,x)sin

(√
µ

β
xβ
)

− 1
√

µ

∫ x

0
Dβ

τ N(x,τ)sin
(√

µ

β
τβ
)

dβτ,

that is at x = π we have

Q1(π,µ) = cos
(√

µ

β
πβ
)

+ 1
√

µ
N(π,π)sin

(√
µ

β
πβ
)

− 1
√

µ

∫ π

0
Dβ

τ N(π,τ)sin
(√

µ

β
τβ
)

dβτ.

(3. 8)

By fractionally differentiating (3. 4) and using β−Leibniz rule lemma 2.2.3, we have

Dβ
xQ1(x,µ) = −√

µsin
(√

µ

β
xβ
)

+N(x,x)cos
(√

µ

β
xβ
)

+
∫ x

0
Dβ

xN(x,τ)cos
(√

µ

β
τβ
)

dβτ,
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which gives

Dβ
xQ1(π,µ) = −√

µsin
(√

µ

β
πβ
)

+N(π,π)cos
(√

µ

β
πβ
)

+
∫ π

0
Dβ

xN(π,τ)cos
(√

µ

β
τβ
)

dβτ.

(3. 9)

Q1(x,µ) and Q2(x,µ) are the fundamental solutions of (3. 2), that is, the general solution
is

Q(x,µ) = c1Q1(x,µ)+ c2Q2(x,µ), c1, c2 ∈ R.

but, since we considered the conditions that Dβ
xQ1(x,µ)(0) = 0 and Dβ

xQ2(x,µ)(0) ̸= 0 , it
implies that c2 = 0, then the solution become,

Q(x,µ) = c1Q1(x,µ).

It is well known that µ is an eigenvalue of the problem (3. 2) under (3. 3) if and only if

Wβ(µ,τ) = Dβ
xQ1(π,µ)+f(µ)Q1(π,µ) = 0. (3. 10)

Now, substituting (3. 8) and (3. 9) into (3. 10) yields

Wβ(µ) = −√
µsin

(√
µ

β
πβ
)

+N(π,π)cos
(√

µ

β
πβ
)

+
∫ π

0
Dβ

xN(π,τ)cos
(√

µ

β
τβ
)

dβτ +f(µ)cos
(√

µ

β
πβ
)

+ f(µ)
√

µ
N(π,π)sin

(√
µ

β
πβ
)

− f(µ)
√

µ

∫ π

0
Dβ

τ N(π,τ)sin
(√

µ

β
τβ
)

dβτ = 0.

(3. 11)

The zeros of the function Wβ(µ) (characteristics equation) are its roots and these roots are
the eigenvalues of problem (3. 2) represented by µ.
3.2.1 Calculating the spectral parameters

Let indicate the eigenvalues for problem (3. 2) by σp(q). Now consider the lemma
below.

Lemma 3.2.1. If r = 1, we have

√
µn = βn

πβ−1 + β arctana1
πβ

+ β

πβn

∫ π

0

q(s)
(1+sβ−1)dβs+O

( 1
n2

)
. (3. 12)

If r = 2,

√
µn = βn

πβ−1 + β

2πβ−1 + β

πβ
(
n+ 1

2

) [∫ π

0

q(s)
(1+sβ−1)dβs− 1

a2

]
+O

( 1
n2

)
. (3. 13)
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If r ≥ 3,

√
µn = βn

πβ−1 + β

2πβ−1 + β

πβ
(
n+ 1

2

) [∫ π

0

q(s)
(1+sβ−1)dβs

]
+O

( 1
n2

)
. (3. 14)

Proof 5. By considering equation (3. 11), we can see that µ is an eigenvalue of the problem
(3. 2) if and only if

−√
µsin

(√
µ

β
πβ
)

+N(π,π)cos
(√

µ

β
πβ
)

+
∫ π

0
Dβ

xN(π,τ)cos
(√

µ

β
τβ
)

dβτ +f(µ)cos
(√

µ

β
πβ
)

+ f(µ)
√

µ
N(π,π)sin

(√
µ

β
πβ
)

− f(µ)
√

µ

∫ π

0
Dβ

τ N(π,τ)sin
(√

µ

β
τβ
)

dβτ = 0

(3. 15)

Now, for r = 1,f(µ) = a1
√

µ and as µ → ∞ and the lemma 2.2.4, (3. 15) reduced to

√
µsin

(√
µ

β
πβ
)

= N(π,π)cos
(√

µ

β
πβ
)

+a1
√

µcos
(√

µ

β
πβ
)

+a1N(π,π)sin
(√

µ

β
πβ
)

+O

(
1

√
µ

)
,

(3. 16)

by dividing both sides by √
µcos

(√
µ

β πβ
)
, (3. 16) can be expressed as

tan
(√

µ

β
πβ
)

= a1 + N(π,π)
√

µ
+

a1N(π,π)tan
(√

µ
β πβ

)
√

µ
+O

( 1
µ

)

and it can further be reduce to

tan
(√

µ

β
πβ
)

−a1 = N(π,π)[1+a2
1]

√
µ

+O

( 1
µ

)
. (3. 17)

Let us, by trigonometric identity, express the left hand side of the (3. 17) as

tan
(√

µ

β
πβ −arctana1

)
=

tan
(√

µ
β πβ

)
−a1

1+a1 tan
(√

µ
β πβ

) .

By this identity, (3. 17) can be expressed as,

tan
(√

µ

β
πβ −arctana1

)
=
[
1+a1 tan

(√
µ

β
πβ
)]−1[N(π,π)[1+a2

1]
√

µ
+O

( 1
µ

)]
. (3. 18)

but as µ → ∞, we have tan
(√

µ
β πβ

)
≈ a1 then,

1+a1 tan
(√

µ

β
πβ
)

= 1+a2
1 +O

(
1

√
µ

)
,
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as such the (3. 18) becomes,

tan
(√

µ

β
πβ −arctana1

)
=
[

1
[1+a2

1]
+O

(
1

√
µ

)][
N(π,π)[1+a2

1]
√

µ
+O

( 1
µ

)]

= N(π,π)
√

µ
+O

( 1
µ

)
.

(3. 19)

and

tan
(√

µ

β
πβ −arctana1

)
=

√
µ

β
πβ −arctana1 −nπ,

by which (3. 19) gives

√
µn = βn

πβ−1 + β arctana1
πβ

+ βN(π,π)
πβ√

µ
+O

( 1
µ

)
.

By the fact that 1√
µn

= 1
n +O

(
1

n2

)
, we then write,

√
µn = βn

πβ−1 + β arctana1
πβ

+ βN(π,π)
πβn

+O

( 1
n2

)
, (3. 20)

that is

√
µn = βn

πβ−1 + β arctana1
πβ

+ β

nπβ(1+xβ−1)

∫ π

0
q(s)dβs+O

( 1
n2

)
. (3. 21)

Now, for the remaining two cases we write

√
µ

f(µ) =
N(π,π)cot

(√
µ

β πβ
)

f(µ) +cot
(√

µ

β
πβ
)

+ N(π,π)
√

µ
+O

( 1
µ

)
,

which reduced to

cot
(√

µ

β
πβ
)

= −N(π,π)
√

µ
+

√
µ

f(µ) +O

( 1
µ

)
= −N(π,π)

√
µ

+ 1
ar

√
µr−1 +O

( 1
µ

)
.

Now, when r = 2, similarly, as in the first case, we obtain

cot
(√

µ

β
πβ
)

= −N(π,π)
√

µ
+ 1

a2
√

µ
+O

( 1
µ

)
=

1
a2

−N(π,π)
√

µ
+O

( 1
µ

)
. (3. 22)

Then by Taylor’s series expansion of cotangent inverse we obtain (3. 22) as

√
µ

β
πβ = nπ + π

2 +

[
N(π,π)− 1

a2

]
(
n+ 1

2

) +O

( 1
n2

)
,
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which gives

√
µn = βn

πβ−1 + β

2πβ−1 +
β
[
N(π,π)− 1

a2

]
(
n+ 1

2

)
πβ

+O

( 1
n2

)

= βn

πβ−1 + β

2πβ−1 + β(
n+ 1

2

)
πβ

[∫ π

0

q(s)
(1+sβ−1)dβs− 1

a2

]
+O

( 1
n2

)
.

For r ≥ 3 we get

cot
(√

µ

β
πβ
)

= −N(π,π)
√

µ
+ 1

a3µ
+O

( 1
µ

)
= −N(π,π)

√
µ

+O

( 1
µ

)
,

also, similarly as in the above case we obtain

√
µn = βn

πβ−1 + β

2πβ−1 + βN(π,π)(
n+ 1

2

)
πβ

+O

( 1
n2

)

= βn

πβ−1 + β

2πβ−1 + β(
n+ 1

2

)
πβ

∫ π

0

q(s)
(1+sβ−1)dβs+O

( 1
n2

)
.

3.3 Uniqueness of the Potential function

To prove the uniqueness of the potential function in this case, let’s consider a second
eigenvalue SLP as follows so that we proved the uniqueness by showing that q(x) = q̃(x).

−Dβ
xDβ

xy + q̃(x)y = µy. (3. 23)

with the conditions

Dβ
xy(0) = 0, Dβ

xy(π)+f(µ)y(π) = 0,

where q̃(x) and q(x) have the same properties.

Theorem 3.3.1. Assume σp(q) = σp(q̃), then,
∫ π

0 [q(s)− q̃(s)]dβs = 0.

Proof 6. Denote µn by large eigenvalue for SLP including q(x). Since σp(q) = σp(q̃), it
follows that µn ∈ σp(q̃), as such from (3. 11), we have

−√
µsin

(√
µ

β
πβ
)

+N(π,π)cos
(√

µ

β
πβ
)

+
∫ π

0
Dβ

xN(π,τ)cos
(√

µ

β
τβ
)

dβτ +f(µ)cos
(√

µ

β
πβ
)

+ f(µ)
√

µ
N(π,π)sin

(√
µ

β
πβ
)

− f(µ)
√

µ

∫ π

0
Dβ

τ N(π,τ)sin
(√

µ

β
τβ
)

dβτ = 0,

(3. 24)
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and also

−√
µsin

(√
µ

β
πβ
)

+ Ñ(π,π)cos
(√

µ

β
πβ
)

+
∫ π

0
Dβ

xÑ(π,τ)cos
(√

µ

β
τβ
)

dβτ +f(µ)cos
(√

µ

β
πβ
)

+ f(µ)
√

µ
Ñ(π,π)sin

(√
µ

β
πβ
)

− f(µ)
√

µ

∫ π

0
Dβ

τ Ñ(π,τ)sin
(√

µ

β
τβ
)

dβτ = 0.

(3. 25)

By subtracting (3. 25) from (3. 24), we have

[N(π,π)− Ñ(π,π)]cos
(√

µn

β
πβ
)

+
∫ π

0
Dβ

x [N(π,τ)− Ñ(π,τ)]cos
(√

µn

β
τβ
)

dβτ

+ f(µn)
√

µn
[N(π,π)− Ñ(π,π)] sin

(√
µn

β
τβ
)

− f(µn)
√

µn

∫ x

0
Dβ

x [N(π,τ)− Ñ(π,τ)] sin
(√

µn

β
τβ
)

dβτ = 0

(3. 26)

Case(I) when r = 1, using (3. 12) and lemma 2.2.4, equation (3. 26) can be reduced to

cos
(√

µn

β
πβ
)

[N(π,π)− Ñ(π,π)]+ f(µn)
√

µn
sin
(√

µn

β
τβ
)

[N(π,π)− Ñ(π,π)]+O(1) = 0,

that is[
cos

(√
µn

β
πβ
)

+ f(µn)
√

µn
sin
(√

µn

β
τβ
)]

[N(π,π)− Ñ(π,π)]+O(1) = 0. (3. 27)

Remark 3.3.1. From (3. 20) and Pythagoras theorem, the cosine and the sine functions can
be expressed as follows

cos
(√

µn

β
πβ
)

≈ cos
((

βn

πβ−1 + β arctana1
πβ

)
πβ

β

)
= cos(nπ)cos(arctana1)− sin(nπ)sin(arctana1)

= (−1)n cos(arctana1) = (−1)n cos(k)

= (−1)n√
1+a2

1

where k = arctana1. Similarly

sin
(√

µn

β
πβ
)

≈ (−1)na1√
1+a2

1

By this remark, equation (3. 27) becomes

(−1)n
√

1+a2
1[N(π,π)− Ñ(π,π)]+O(1) = 0.
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Since, for all n, (−1)n
√

1+a2
1 ̸= 0, the above equation implies that

[N(π,π)− Ñ(π,π)] = 0

as such by (3. 6) we have

∫ x

0

[q(s)− q̃(s)]
1+sβ−1 dβs = 0,

that is∫ x

0
[q(s)− q̃(s)]dβs = 0

Case(II) In this case, when r ≥ 2, by multiplying both sides of equation (3. 26) with
√

µn

f(µn)
, we have

[N(π,π)− Ñ(π,π)]
√

µn

f(µn) cos
(√

µn

β
πβ
)

+
√

µn

f(µn)

∫ π

0
Dβ

x [N(π,τ)− Ñ(π,τ)]cos
(√

µn

β
τβ
)

dβτ

+[N(π,π)− Ñ(π,π)] sin
(√

µn

β
τβ
)

−
∫ x

0
Dβ

x [N(π,τ)− Ñ(π,τ)] sin
(√

µn

β
τβ
)

dβτ = 0,

(3. 28)

by the virtue of the lemma 2.2.4, equation (3. 28) becomes

[
√

µn

f(µn) cos(
√

µn

β
πβ)+sin(

√
µn

β
τβ)][N(π,π)− Ñ(π,π)]+O(1) = 0.

Remark 3.3.2. Similarly as in remark 3.3.1, the cosine and the sine functions can be
expressed as follows,

sin
(√

µn

β
πβ
)

≈ sin
((

βn

πβ−1 + β

2πβ−1

)
πβ

β

)

= sin(nπ)cos
(

π

2

)
+sin

(
π

2

)
cos(nπ) = (−1)n,

in the same way

cos
(√

µn

β
πβ
)

≈ 0,

then by using (3. 13),(3. 14) and the remark 3.3.2 on (3. 28), we obtain

(−1)n[N(π,π)− Ñ(π,π)]+O(1) = 0 (3. 29)
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then (3. 29) implies that [N(π,π)− Ñ(π,π)] = 0, as such,∫ x

0
[q(s)− q̃(s)]dβs = 0. (3. 30)

It’s clear that the only possibility for (3. 30) to be zero is when q(s) − q̃(s) = 0. This
completes the proof.

Theorem 3.3.2. Suppose q ∈ C[0,π], and σp(q) = σp(0). Then q(x) = 0 on [0,π].

Proof 7. By the theorem (3. 13), if σp(q) = σp(0) , then∫ π

0
q(s)dβs = 0for, 0 < β ≤ 1.

Let y1 be the eigenfunction corresponding to µ = 0 ∈ σp(q) = σp(0), then

−Dβ
xDβ

xy1 + q(x)y1 = 0 (3. 31)

with the conditions

Dβ
xy1(0) = 0, Dβ

xy1(π) = 0. (3. 32)

We claim that y1(0) ̸= 0 and y1(π) ̸= 0 otherwise we obtain y1(x) = 0 is an eigenfunction of
(3. 31) which is a contradiction. Now,

Dβ
xDβ

xy1
y1

= q(x) ⇒ Dβ
x

(
Dβ

xy1
y1

)
+
(

Dβ
xy1
y1

)2

= q(x), (3. 33)

and by conformable integral, integrating (3. 33) on [0,π] gives

Dβ
xy1
y1

∣∣∣∣∣
π

0
+
∫ π

0

(
Dβ

xy1
y1

)2

dβx =
∫ π

0
q(x)dβx = 0,

that is, by the boundary conditions (3. 32),

∫ π

0

(
Dβ

xy1
y1

)2

dβx =
∫ π

0

(
Dβ

xy1
y1

)2

xβ−1dx = 0,

for 0 < β ≤ 1 and x ∈ [0,π]. Eventually, we get
y1 = c (a constant) and

−Dβ
xDβ

xc+ q(x)c = 0 ⇒ q(x) = 0.

This completes the proof.
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3.4 The Inverse Nodal Problem

In this section, the nodal lengths and points were calculated, as well as the potential
function reconstruction and evidence for each. The asymptotic form of the eigenvalues for
issue(3. 2) is provided by the following lemma. Moreover, the eigenvalues are the roots of
the equation Wβ(µ,τ) = 0. It is evident that this function is solely reliant on µ and β, rather
than x.
Let y(x,µn) be the eigenfunctions that correspond to the eigenvalues, and let {µn}n≥0 be
the spectrum of (3. 2) under (3. 3). The Oscillation theorem makes it clear that y(x,µn)
has precisely n roots that lie in (0,π). Let us define Yβ =

{
yn

j = (xn
j )β

β ,xn
j ∈ Xβ

}
,n > 0 and

j = 1,n. Besides, Xβ =
{

xn
j : n ∈ N

}
indicates a set that consists of the nodal set of (3. 2)

under (3. 3). That is , y(xn
j ,µn) = 0. In addition, we will indicate jth nodal domain of

the nth element with In
βj =

[
yn

j ,yn
j+1

]
and also lnj = yn

j+1 − yn
j be the nodal length of the

jth domain. In order to solve the inverse nodal problem, we must create another function,
jn(y), which is the greatest index j such that 0 ≤ yn

j ≤ y. Then, if and only if y ∈
[
yn

j ,yn
j+1

]
,

j = jn(y).
The nodal points are computed using the problem’s eigenvalues as stated in lemma 3.2.1.

Theorem 3.4.1. The nodal points of the problem (3. 2) under (3. 3) provide the asymptotic
form as n → ∞, for r = 1

yn
j =

(
j − 1

2

)
πβ

βn
+
(

j − 1
2

)
πβ−1 arctana1

βn2 + π2β−2

β2n2 N(yn
j ,yn

j )+O

( 1
n3

)
,

and for r ≥ 2

yn
j =

(
j − 1

2

)(
1+ 1

2n

)
πβ

βn
+
(

1+ 1
2n

)2 π2β−2

β2n2 N(yn
j ,yn

j )+O

( 1
n3

)
.

Proof 8. Considering the solution of the initial value problem (3. 2) under (3. 3)

Q1(x,µ) = cos
(

s
xβ

β

)
+
∫ x

0
N(x,τ)cos

(
s

τβ

β

)
dβτ,

or

Q1(x,µ) = cos
(

s
xβ

β

)
+ N(x,x)

s
sin
(

s
τβ

β

)
+O

(1
s

)
,

where s = √
µ, then by definition of nodal points, it yields

Q1(x,µ) = cos
(

s
xβ

β

)
+ N(x,x)

s
sin
(

s
τβ

β

)
+O

(1
s

)
= 0,
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which gives

cot
(

s
xβ

β

)
= −N(x,x)

s
+O

(1
s

)
,

that is(
s

xβ

β

)
= arccot

[
−N(x,x)

s
+O

(1
s

)]
,

and using Taylor’s expansion of arccotx near zero we have

yn
j =

(
j − 1

2

)
π

sn
+

N(yn
j ,yn

j )
s2

n

+O

( 1
s2

n

)
(3. 34)

If r = 1, then from (3. 12)

sn = βn

πβ−1 + β arctana1
πβ

+O

( 1
n2

)
,

that is

1
sn

= 1
βn

πβ−1

(
1+ arctana1

nπ +O( 1
n2 )
)

= πβ−1

βn
+ arctana1

βn2 πβ−2 +O

( 1
n3

)
,

(3. 35)

and also

1
s2

n

= π2β−2

β2n2 +O

( 1
n3

)
. (3. 36)

Then inserting (3. 35) and (3. 36) in (3. 34) gives

yn
j =

(
j − 1

2

)
πβ

n
+ arctana1

n2

(
j − 1

2

)
πβ−1 +

π2β−2N(yn
j ,yn

j )
βn2 +O

( 1
n3

)
.

which gives the first case.
For r ≥ 2,

sn = βn

πβ−1 + β

2πβ−1 +O

( 1
n

)
,

that is

1
sn

= 1
βn

πβ−1

(
1+ 1

2n +O
(

1
n2

)) = πβ−1

βn
+ πβ−1

2βn2 +O

( 1
n3

)

= πβ−1

βn

(
1+ 1

2n

)
+O

( 1
n3

)
,

(3. 37)

38



this implies that

1
s2

n

= π2β−2

β2n2

(
1+ 1

2n

)2
+O

( 1
n3

)
. (3. 38)

then using (3. 37) and (3. 38) in (3. 34), we have

yn
j = (j − 1

2)
(

1+ 1
2n

)
πβ

βn
+
(

1+ 1
2n

)2 π2β−2

β2n2 N(yn
j ,yn

j )+O

( 1
n3

)
.

which completes the proofs.

To obtain the nodal lengths, by the definition of the nodal lengths that lnj = yn
j+1 −yn

j ,
we can obtain nodal lengths for r = 1 and r ≥ 2, respectively as follows.
The nodal lengths of the problem (3. 2) under (3. 3) are for r = 1

ln
j = πβ

nβ
+ πβ−1 arctana1

βn2

+ π2β−2

β2n2

[∫ yn
j+1

0

q(s)
(1+sβ−1)dβs−

∫ yn
j

0

q(s)
(1+sβ−1)dβs

]
+O

( 1
n3

)

= πβ

nβ
+ πβ−1 arctana1

βn2 + π2β−2

β2n2

[∫ yn
j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O

( 1
n3

)
,

(3. 39)

for r ≥ 2

ln
j =

(
1+ 1

2n

)
πβ

nβ
+
(

1+ 1
2n

)2 π2β−2

β2n2

[∫ yn
j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O

( 1
n3

)

=
(

1+ 1
2n

)
πβ

nβ
+
(

1+ 1
2n

)2 π2β−2

β2n2

[∫ yn
j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O( 1

n3 ).
(3. 40)

3.4.1 Reconstruction of the Potential

Besides calculating the spectral parameters in two cases so far, we reconstructed the
potential function q case wise, r = 1, and r ≥ 2, as follows.

Theorem 3.4.2. The reconstruction of the potential of the problem (3. 2) under (3. 3) for
q ∈ C[0,π] is,
for r = 1,

q(x) = (1+xβ−1) lim
n→∞

s2
n

(
snlnj

π
−1
)

,

and r ≥ 2

q(x) = (1+xβ−1) lim
n→∞

s3
n

π

(
1+ 1

2n

)
.
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Proof 9. By definition of nodal lengths (3. 39), we have for r = 1(
ln
j −π

(
πβ−1

nβ
+ πβ−2 arctana1

βn2

))
β2n2

π2β−2 =
∫ yn

j+1

yn
j

q(s)
(1+sβ−1)dβs+O

( 1
n3

)
,

then, from the (3. 35) and (3. 36) we have

(
ln
j − π

sn

)
s2

n =
∫ yn

j+1

yn
j

q(s)
(1+sβ−1)dβs+O

( 1
n3

)
,

that is(
snlnj

π
−1
)

= 1
snπ

[∫ yn
j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O

( 1
n

)
.

By mean value theorem for the integrals there is a z ∈ (yn
j ,yn

j+1) such that

(
snlnj

π
−1
)

=
lnj

snπ

q(z)
(1+zβ−1) +O

( 1
n

)
.

From the fact that, as n → ∞, lnj → π
sn

, we obtain

q(x) = (1+xβ−1) lim
n→∞

s2
n

(
snlnj

π
−1
)

,

and for the proof for r ≥ 2, from (3. 40) we have

(
1+ 1

2n

)2
ln
j = π

(
1+ 1

2n

)2 πβ−1

nβ
+
(

1+ 1
2n

)2 π2β−2

β2n2

[∫ yn
j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O

( 1
n5

)
,

then, from the (3. 37) and (3. 38) we obtain

(
1+ 1

2n

)2
ln
j = π

(
1+ 1

2n

) 1
sn

+ 1
s2

n

[∫ yn
j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O

( 1
n5

)
,

which becomes(
1+ 1

2n

)
ln
j

s3
n

π
=
[∫ yn

j+1

yn
j

q(s)
(1+sβ−1)dβs

]
+O

( 1
n5

)
,

also, by mean value theorem as in the above case, we have

(
1+ 1

2n

)
ln
j

s3
n

π
= ln

j

q(z)
(1+zβ−1) +O

( 1
n5

)
,

and by taking limit as n → ∞ we have

q(x) = (1+xβ−1) lim
n→∞

s3
n

π

(
1+ 1

2n

)
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The fractional integral of q and nodal lengths make up the following function.

Fn(x) = 2n2β2

π2β−2

[
nβłn

j

π
+

lnj
2n2βπ2

∫ π

0
q(τ)dβτ −1

]
.

Following lemmas complete proof of the theorem 3.4.2.

Lemma 3.4.1. Suppose that the sequence gk ∈ C [0,π] converges to any function g in the
space Lβ

1 . Then for any ε > 0, with j = jn(y)∥∥∥∥∥µn

βπ

∫ yn
j+1

yn
j

(gk(τ)−g(τ))dβτ

∥∥∥∥∥
1

< ε.

Lemma 3.4.2. Assume that q ∈ Lβ
1 (0,π) and r = 1. Then, as n → ∞,∥∥∥∥∥µn

βπ

∫ yn
j+1

yn
j

q(τ)dβτ − q(y)
∥∥∥∥∥

1
→ 0, j = jn(y).

Theorem 3.4.3. Fn(x) converges to the the potential function q(x) in Lβ
1 .

Proof 10. This theorem shows that the limit defined in the theorem 3.4.2 exists. proof of
the theorem 3.4.3 is omitted.
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4. The Conformable SLP with a Constant

Delay

In this part, we used the conformable derivative approach to acquire the results of
the direct and inverse nodal SLP with a constant delay under two sets of different
boundary conditions. We also expressed the associated spectral features and demonstrated
the stability of the solution. As inferred from [70], the appropriate classical findings can
be obtained at β = 1. The lemma below, which is about Big O approximation, hold in the
conformable derivative case as it hold in the classical derivative case, below is the proof.

Lemma 4.0.1. If the derivative Dβ
τ q(τ) exist and is bounded, and for a delay constant ν,

then for 0 ≤ x ≤ π,

1
2

∫ x

0
q(τ)sin

(
s

β

(
τβ +(τ −ν)β

))
dβτ = O

(1
s

)
,

and

1
2

∫ x

0
q(τ)cos

(
s

β

(
τβ +(τ −ν)β

))
dβτ = O

(1
s

)
.

Proof 11. The proof of the two integrals above goes similarly, as such the proof of one of
them suffices the proof of the other, let us now consider the first integrals.
Let

T (τ) = η = 1
β

(τβ +(τ −ν)β) = 1
β

(τβ +∆(τ)),

where ∆(τ) = (τ −ν)β, then

Dβ
τ (T (τ)) = Dβ

τ (η) = (1+ 1
β

Dβ
τ ∆(τ)) ⇒ dβ

βη = (1+ 1
β

Dβ
τ ∆(τ))dβτ,

as such

dβ
βτ = dβη

(1+ 1
β Dβ

τ ∆(χ(η)))
,

where χ(η) = τβ

β − R(η) and R(η) = 1
β (ηβ + ∆(η)) is the inverse of the function T (τ). The

hypotheses of the lemma shows that Dβ
τ T (τ) > 0, hence T (τ) is a monotone function which

is conformable differentiable on [0,π] and this implies that χ(η) exist and is conformable
differentiable and the derivative is bounded. Therefore∫ x

0
q(τ)sin

(
s

β

(
τβ +(τ −ν)β

))
dβτ =

∫ 2x−ν

−ν
ϕ(η)sinsηdβη, (4. 1)



where

ϕ(η) = q
(
(βη −∆(η))

1
β

)
.

1
(1+ 1

β Dβ
τ ∆(χ(η)))

,

also, by the hypotheses of the lemma, ϕ(η) is bounded and it has a bounded derivative.
Integrating (4. 1) by parts gives

∫ 2x−ν

−ν
ϕ(η)sinsηdβη = O

(1
s

)
.

This completes the proof.

4.1 A conformable SLP with constant delay with mixed boundary
condition

In addition to being the proof of the spectrum specification, the result of SLP with
a constant delay under a conformable operator with a mixed boundary condition obtained
here is novel in its literature.
We consider the SLP below with conformable derivative operator

−Dβ
xDβ

xy + q(x)y(x−ν) = µy(x), for x ∈ (0,π) (4. 2)

under the condition

y(0) = y(j)(π) = 0, for j = 0,1,

for ν ∈ (0,π), and q(x) ∈ L(ν,π). Taking µ as the spectral parameter and the potential
function q(x) = 0 for x ∈ [0,ν].
By defining an operator

Lβy(x) = −Dβ
xDβ

xy + q(x)y(x−ν)

then (4. 2) can be expressed as

Lβy(x) = µy(x), x ∈ (0,π) (4. 3)

We assumed that the eigenvalues of (4. 3) are indicated by {µnj }n≥1,j=0,1.
Consider N ∈ N such that ν ∈

[
π

N+1 , π
N

]
and Q(x,µ) be a solution of (4. 3) under the

conditions that

Q(0,µ) = 0, Dβ
xQ(0,µ) = 1.

We can then expressed Q(x,µ) as

Q(x,µ) = 1
√

µ
sin
(√

µ

β
xβ
)

+ 1
√

µ

∫ x

0
sin
(√

µ

β
(xβ − τβ)

)
q(τ)Q((τ −ν),µ)dβτ, (4. 4)
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For every x in the interval (0,π) and j = 0,1, it is evident that Q(j)(x,µ) is whole in µ of
order 1

2 .
By the method of successive approximations,the solution of (4. 4) is

Q(x,µ) = Q0(x,µ)+Q1(x,µ)+ . . .+QN (x,µ),

for which

Q0(x,µ) = 1
√

µ
sin
(√

µ

β
xβ
)

, for x ≥ 0 (4. 5)

Qk(x,µ) = 1
√

µ

∫ x

kν
sin
(√

µ

β
(xβ − τβ)

)
q(τ)Qk−1((τ −ν),µ)dβτ, (4. 6)

for x ≥ kν, and Qk(x,µ) = 0 for x ≤ kν.
Now, for k ≥ 1, and from (4. 6) and by definition of the conformable derivative we have,

Dβ
xQk(x,µ) =

∫ x

kν
cos

(√
µ

β
(xβ − τβ)

)
q(τ)Qk−1((τ −ν),µ)dβτ for x ≥ kν.

From (4. 6) we obtained

Q1(x,µ) = 1
√

µ

∫ x

ν
sin
(√

µ

β
(xβ − τβ)

)
q(τ)Q0((τ −ν),µ)dβτ

= 1
µ

∫ x

ν
sin
(√

µ

β
(xβ − τβ)

)
.sin

(√
µ

β
(τ −ν)β

)
q(τ)dβτ,

(4. 7)

so that

Q1(x,µ) = 1
2µ

cos
(√

µ

β
(xβ − τβ − (τ −ν)β)

)∫ x

ν
q(τ)dβτ

− 1
2µ

∫ x

ν
cos

(√
µ

β
(xβ − τβ +(τ −ν)β)

)
q(τ)dβτ,

(4. 8)

then, we have from (4. 8) and trigonometric identities that

Q1(x,µ) = 1
2µ

∫ x

ν

[
cos

√
µ

β
xβ
(

cos
(√

µ

β
(τβ +(τ −ν)β)

)
− cos

(√
µ

β
((τ −ν)β − τβ)

))
+sin

√
µ

β
xβ
(

sin
(√

µ

β
(τβ +(τ −ν)β)

)
− sin

(√
µ

β
((τ −ν)β − τβ)

))
q(τ)dβτ,

(4. 9)
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that is

Q1(x,µ) = 1
µ

sin
√

µ

β
xβ
[1

2

∫ x

ν
sin
(√

µ

β
((τ −ν)β − τβ)

)
q(τ)dβτ.

+ 1
2

∫ x

ν
sin
(√

µ

β
(τβ +(τ −ν)β)

)]
q(τ)dβτ

+ 1
µ

cos
√

µ

β
xβ
[1

2

∫ x

ν
cos

(√
µ

β
(τβ +(τ −ν)β)

)
.

− 1
2

∫ x

ν
cos

(√
µ

β
((τ −ν)β − τβ)

)]
q(τ)dβτ.

(4. 10)

Let us define

G(s,τ,ν) = 1
2

∫ x

0
q(τ)sin

(
s

β

(
τβ − (τ −ν)β

))
dβτ and

H(s,τ,ν) = 1
2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ.

(4. 11)

Then by (4. 11) and the lemma (4.0.1) the equation (4. 10) becomes

Q1(x,µ) = 1
µ

sin
√

µ

β
xβ

[
H(s,τ,ν)+O

(
1

√
µ

)]
− 1

µ
cos

√
µ

β
xβ

[
G(s,τ,ν)+O

(
1

√
µ

)]
,

that is

Q1(x,µ) = 1
µ

sin
√

µ

β
xβH(s,τ,ν)− 1

µ
cos

√
µ

β
xβG(s,τ,ν)+O

( 1
µ

)
.

Also, differentiating equation (4. 10) gives,

Dβ
xQ1(x,µ) = 1

√
µ

cos
√

µ

β
xβ
[1

2

∫ x

ν
sin
(√

µ

β
((τ −ν)β − τβ)

)
q(τ)dβτ

+ 1
2

∫ x

ν
sin
(√

µ

β
(τβ +(τ −ν)β)

)]
q(τ)dβτ

− 1
√

µ
sin

√
µ

β
xβ
[1

2

∫ x

ν
cos

(√
µ

β
(τβ +(τ −ν)β)

)
− 1

2

∫ x

ν
cos

(√
µ

β
((τ −ν)β − τβ)

)]
q(τ)dβτ,

(4. 12)

and by (4. 11) and the lemma (4.0.1) the equation (4. 12) becomes

Dβ
xQ1(x,µ) = 1

√
µ

cos
√

µ

β
xβH(s,τ,ν)+ 1

√
µ

sin
√

µ

β
xβG(s,τ,ν)+O

(
1

√
µ

)
.

4.1.1 The Asymptotic Formulae

The characteristics function of Lj(q) can be represented as Wj(µ), where j = 0,1 and
Wj(µ) = Q(j)(π,µ). The Wj(µ) is also entire in µ of order 1

2 since Q(j)(π,µ) is. For the
SLP Lj(q), we drive the asymptotic equations as in the following for |√µ| → ∞ from (4. 6),
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(4. 9), and (4. 10):

Wβ0(µ) = Q(π,µ) = Q0(π,µ)+Q1(π,µ)+ . . .+QN (π,µ)

= 1
√

µ
sin
(√

µ

β
πβ
)

+ 1
µ

sin
(√

µ

β
πβ
)

H(s,τ,ν)

− 1
µ

cos
(√

µ

β
πβ
)

G(s,τ,ν)+o
(
µ

1
2 (j−k−1)e(|Im

√
µ|(π−ν)β)) .

Now, to find the eigenvalues, we set Wβ0(µ) = 0 and divide its both sides by 1√
µ cos

(√
µ

β πβ
)

that is,

tan
(√

µ

β
πβ
)

[1+H(s,τ,ν)] = G(s,τ,ν)+o
(
µ

1
2 (j−k)e(|Im

√
µ|(π−ν)β)) ,

that is

tan
(√

µ

β
πβ
)

= 1
[1+H(s,τ,ν)]G(s,τ,ν)+o

(
µ

1
2 (j−k)e(|Im

√
µ|(π−ν)β))

as such, also by (4. 11) and the lemma (4.0.1) we have

tan
(√

µ

β
πβ
)

= 1
2

∫ x

ν
cos

(√
µ

β
((τ −ν)β − τβ)

)
q(τ)dβτ

+o
(
µ

1
2 (j−k−1)e(|Im

√
µ|(π−ν)β)) ,

then by Tailor expansion of infinite series we have
√

µ

β
πβ =tan−1

(1
2

∫ x

ν
cos

(√
µ

β
((τ −ν)β − τβ)

)
q(τ)dβτ

+o
(
µ

1
2 (j−k−1)e(|Im

√
µ|(π−ν)β))) ,

that is
√

µ

β
πβ = πn+ 1

2

∫ x

ν
cos

(√
µ

β
((τ −ν)β − τβ)

)
q(τ)dβτ +o

( 1
n

)
,

finally, the eigenvalues for j = 0 is calculated as

√
µ0 = βnπ1−β + 1

2nπ

∫ x

ν
cos

(
nπ1−β((τ −ν)β − τβ)

)
q(τ)dβτ +o

( 1
n

)
.

Similarly, the eigenvalues for j = 1 is calculated as follows,

W1(µ) = Dβ
xQ(π,µ) = Dβ

xQ0(π,µ)+Dβ
xQ1(π,µ)+ . . .+Dβ

xQN (π,µ)

= cos
(√

µ

β
πβ
)

+ 1
√

µ
cos

(√
µ

β
πβ
)

G(s,τ,ν)+ 1
√

µ
sin
(√

µ

β
πβ
)

H(s,τ,ν)

+o
(
µ

1
2 (j−k−1)e(|Im

√
µ|(π−ν)β))
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Now, to find the eigenvalues, we set W1(µ) = 0 and divide its both sides by sin
(√

µ
β πβ

)
that

is,

cot
(√

µ

β
πβ
)(

1+ 1
√

µ
G(s,τ,ν)

)
= 1

√
µ

H(s,τ,ν)+o
(
µ

1
2 (j−k−1)e(|Im

√
µ|(π−ν)β)) ,

as such

cot
(√

µ

β
πβ
)

= 1(
1+ 1√

µG(s,τ,ν)
) ( 1

√
µ

H(s,τ,ν)+o
(
µ

1
2 (j−k−1)e(|Im

√
µ|(π−ν)β))) ,

similarly, by Tailor expansion we have
√

µ

β
πβ =cot−1

(
1

2√
µ

∫ x

ν
cos

(√
µ

β
((τ −ν)β − τβ)

)
q(τ)dβτ

)
+o

(
µ

1
2 (j−k+1)e(|Im

√
µ|(π−ν)β))

and finally the eigenvalue for j = 1 is,

√
µ1 =β

(
n− 1

2

)
π1−β + 1

2
(
n− 1

2

)
π

∫ x

ν
cos

((
n− 1

2

)
π1−β((τ −ν)β − τβ)

)
q(τ)dβτ

+o

( 1
n

)
.

4.1.2 The Specification of the Spectrum

To validate the use of the conformal derivative operator, we obtained and proved the
specification of the spectrum for the characteristic function as it follows. The spectrum
corresponding to a problem for a Sturm-Liouville operator for the interval (0,∞) means
the complement of the set of points in a neighborhood where the spectral function Wj(µ)
is constant.

Lemma 4.1.1. The specification of the spectrum {µnj}n≥1, j = 0,1 uniquely determines
the characteristics function Wj(µ) by the formulas

Wβ0(µ) = π3β−2

β3

∞∏
n=1

(
µn0 −µ

n2

)
,

and

Wβ1(µ) = π2β−2

β2

∞∏
n=1

(µn1 −µ)(
n− 1

2

)2 .

Proof 12. Being Wj(µ) entire in µ of order 1
2 , by [95], we get

Wβ0(µ) = C
∞∏

n=1

(
1− µ

µn0

)
,
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now, since

sinz = z
∞∏

n=1

(
1− z2

(kπ)2

)
,

it implies that

W̃0(µ) =
sin
(√

µ
β πβ

)
√

µ
= πβ

β

∞∏
n=1

(
1− µπ2β−2

β2n2

)
= πβ

β

∞∏
n=1

1− µ(
β2

π2β−2

)
n2

 ,

then

Wβ0(µ)
W̃0(µ)

= C
β3

π3β−2

∞∏
n=1

n2

µn0

∞∏
n=1

1+
µn0 −

(
β2

π2β−2

)
n2(

β2

π2β−2

)
n2 −µ

 ,

now

lim
µ→−∞

Wβ0(µ)
W̃0(µ)

= 1 and lim
µ→−∞

∞∏
n=1

1+
µn0 −

(
β2

π2β−2

)
n2(

β2

π2β−2

)
n2 −µ

= 1,

then

C = π3β−2

β3

∞∏
n=1

µn0
n2 ,

and eventually, we arrived at

Wβ0(µ) = C
∞∏

n=1

(
1− µ

µn0

)
= π3β−2

β3

∞∏
n=1

(
µ0 −µ

n2

)
.

This completes the proof of the first case, that is for j = 0.
For the proof for the second case, j = 1, that is Wβ1(µ), we have by the same Hadamard’s
factorization theorem that

Wβ1(µ) = C
∞∏

n=1

(
1− µ

µn1

)
,

and from the fact that

cosπz =
∞∏

n=1

(
1− 4z2

(2n−1)2

)
,

it implies that

W̃β1(µ) = cos
(√

µ

β
πβ
)

=
∞∏

n=1

(
1− µπ2β−2

β2(n− 1
2)2

)
,
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where πz =
√

µ
β πβ then

Wβ1(µ)
W̃β1(µ)

= C
∞∏

n=1

(
β2

π2β−2

)
1

µn1

∞∏
n=1

(n− 1
2)2µn1 − (n− 1

2)2µ((
β2

π2β−2

)
(n− 1

2)2 −µ
)


= C
β2

π2β−2

∞∏
n=1

(n− 1
2)2

µn1

∞∏
n=1

 µn1 −µ((
β2

π2β−2

)
(n− 1

2)2 −µ
)


= C
β2

π2β−2

∞∏
n=1

(n− 1
2)2

µn1

∞∏
n=1

1+
µn1 −

(
β2

π2β−2

)
(n− 1

2)2(
β2

π2β−2

)
(n− 1

2)2 −µ

 ,

as well, by taking the limit we have

limµ→−∞
Wβ1 (µ)
W̃β1 (µ)

= 1 and limµ→−∞
∏∞

n=1

1+
µn1 −

(
β2

π2β−2

)
(n− 1

2 )2(
β2

π2β−2

)
(n− 1

2 )2−µ

= 1,

then

C = π2β−2

β2

∞∏
n=1

µn1

(n− 1
2)2

and consequently we obtained

Wβ1(µ) = C
∞∏

n=1

(
1− µ

µn1

)

= π2β−2

β2

∞∏
n=1

µn1

(n− 1
2)2

(
1− µ

µn1

)
= π2β−2

β2

∞∏
n=1

(
µn1 −µ

(n− 1
2)2

)
.

This completes the proof for both the two cases.

4.2 The inverse nodal SLP with constant delay under more general
boundary conditions

We consider here a more general form of the problem by looking into the boundary
conditions we used and we successfully analyzed the problem as it follows.
Let consider the SLP below with conformable derivative operator;

Dβ
xDβ

xu+ q(x)u(x−ν)+µu(x) = 0, on x ∈ [0,π] (4. 13)

with the boundary conditions

u(0)cosω +Dβ
xu(0)sinω = 0, (4. 14)

and

u(π)cosα +Dβ
xu(π)sinα = 0, (4. 15)
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for q(x) a continuous real-valued function in the interval [0,π] while ν is a constant in the
interval (0,π) such that x − ν ≥ 0, and ω,α ∈ [0,π] and for x ∈ [0,π] while µ,(µ = s2) is a
real eigenparameter.
Let Q(x,µ) be a solution of (4. 13) on [0,π] satisfying the following initial conditions,

Q(0,µ) = sinω and Dβ
xQ(0,µ) = −cosω. (4. 16)

The lemma below proved the above statement.

Lemma 4.2.1. Let Q(x,µ) be a solution of (4. 13) and µ > 0, then it holds that,

Q(x,µ) = sinω cos
(

s

β
xβ
)

− 1
s

cosω sin
(

s

β
xβ
)

− 1
s

∫ x

0
sin
(

s

β
(xβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ.

(4. 17)

Proof 13. To prove this lemma, we can write (4. 13) as

−q(x)u(x−ν) = Dβ
xDβ

xu+µu(x),

since (4. 17) is a solution of (4. 13), we can write

−
∫ x

0
q(τ)sin

(
s

β
(xβ − τβ)

)
Q(τ −ν,µ)dβτ

=
∫ x

0
sin
(

s

β
(xβ − τβ)

)
Dβ

xDβ
xQ(τ −ν,µ)dβτ

+s2
∫ x

0
sin
(

s

β
(xβ − τβ)

)
Q(τ −ν,µ)dβτ.

(4. 18)

Now, integrating the first part of the right -hand side of (4. 18) by part twice and using
the conditions (4. 16) we obtained∫ x

0
sin
(

s

β
(xβ − τβ)

)
Dβ

xDβ
xQ(τ −ν,µ)dβτ

= cosω sin
(

s

β
xβ
)

−ssinω cos
(

s

β
xβ
)

+sQ(x,µ)

−s2
∫ x

0
sin
(

s

β
(xβ − τβ)

)
Q(τ −ν,µ)dβτ,

then, (4. 18) becomes

−
∫ x

0
sin
(

s

β
(xβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ

= cosω sin
(

s

β
xβ
)

−ssinω cos
(

s

β
xβ
)

+sQ(x,µ)

which when rearranged gives back (4. 17). This completes the proof.

Theorem 4.2.1. The eigenvalues of the problem (4. 13)- (4. 14) are simple.
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Proof 14. Let µ̃ be an eigenvalue of the problem (4. 13) under (4. 14) and ũ(x, µ̃) be a
corresponding eigenfunction.Then from (4. 14) and (4. 15) it follows that the determinant

W [ũ(0, µ̃),Q(0, µ̃)] =

∣∣∣∣∣∣ ũ(0, µ̃) sinω

Dβ
x ũ(0, µ̃) −cosω

∣∣∣∣∣∣= 0

then the functions ũ(x, µ̃) and Q(x, µ̃) are linearly dependent on [0,π], hence

ũ(x, µ̃) = kQ(x, µ̃) for k ̸= 0.

Since Q(x, µ̃) is a solution of (4. 13) under (4. 14) on [0,π], it follows that Q(x, µ̃) = 0
identically on [0,π] but this contradicts (4. 16).
Thus, there can not be two linearly independent eigenfunctions in a SLP, then each
eigenvalue of this problem has pairwise corresponding linearly dependent eigenfunctions.

Considering the function Q(x,µ) as the non-trivial solution of (4. 13) under (4. 14),
now putting Q(x,µ) in to (4. 15), we obtained the characteristic equation as

G(µ) = Q(π,µ)cosα +Dβ
xQ(π,µ)sinα

=
[
sinω cos

(
s

β
πβ
)

− 1
s

cosω sin
(

s

β
πβ
)

− 1
s

∫ π

0
sin
(

s

β
(πβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ

]
cosα

−
[
ssinω sin

(
s

β
πβ
)

+cosω cos
(

s

β
πβ
)

+
∫ π

0
cos

(
s

β
(πβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ

]
sinα = 0,

(4. 19)

by theorem 4.2.1, the set of the eigenvalues of (4. 13) under (4. 14) coincides with the set
of real roots of (4. 19) as it can be seen in the next section.
Let q∗ =

∫ π
0 |q(τ)|dβτ , the majority of the claims, assertions, and evidence presented below

are based on [72]’s chapter III.

Lemma 4.2.2. Let µ ≥ 4q∗2, then for the solution Q(x,µ) of (4. 17), the following in
equality holds;

|Q(x,µ)| ≤ max

{ 1
q∗

√
4q∗2 sin2 ω +cos2 ω ,ν|sinω|

}
, x ∈ [0,π] (4. 20)

Proof 15. Let Bµ = max[0,π]|Q(x,µ)|, then from (4. 17) it follows that for every µ > 0, one
of the following inequality holds,

Bµ ≤
√

sin2 ω + 1
s2 cos2 ω + 1

s
Bµq∗,

or

Bµ ≤
√

sin2 ω + 1
s2 cos2 ω + 1

s
ν|sinω|q∗

in each of the two cases above if s ≥ 2q∗, then we get (4. 20) which completes the proof.
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Theorem 4.2.2. The problem (4. 13) under (4. 14) has an infinite set of positive
eigenvalues.

Proof 16. Differentiating (4. 17) according to the conformable derivative with respect to x

we have,

Dβ
xQ(x,µ) = −ssinω sin

(
s

β
xβ
)

− cosω cos
(

s

β
xβ
)

−
∫ x

0
cos

(
s

β
(xβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ.

(4. 21)

Using the equation (4. 17) and (4. 21) in (4. 19) gives[
sinω cos

(
s

β
πβ
)

− 1
s

cosω sin
(

s

β
πβ
)

− 1
s

∫ π

0
sin
(

s

β
(πβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ

]
cosα

−
[
ssinω sin

(
s

β
πβ
)

+cosω cos
(

s

β
πβ
)

+
∫ π

0
cos

(
s

β
(πβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ

]
sinα = 0,

which after some algebraic rearrangements gives

cos
(

s

β
πβ
)

[sin(ω −α)

+
∫ π

0

sin
(

s
β (τβ

)
cosα

s
− cos

(
s

β
(τβ

)
sinα

q(τ)Q(τ −ν,µ)dβτ


− sin

(
s

β
πβ
)[

ssinω sinα + cosω cosα

s

+
∫ π

0

cos
(

s
β (τβ

)
cosα

s
+sin

(
s

β
(τβ

)
sinα

q(τ)Q(τ −ν,µ)dβτ

= 0.

(4. 22)

The equation (4. 22) can be treated in each of the four different cases below;

1. sinω ̸= 0 and sinα ̸= 0.

2. sinω ̸= 0 and sinα = 0.

3. sinω = 0 and sinα ̸= 0.

4. sinω = 0 and sinα = 0.

Case1. Let µ be sufficiently large, then by lemma 4.2.2, (4. 22) may be rewritten in the
form

ssin
(

s

β
πβ
)

+O(1) = 0. (4. 23)
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Obviously, for large s, (4. 23) has an infinite set of roots.
Case2. Here the equation (4. 22) has the form

cos
(

s

β
πβ
)[

sin(ω)+ 1
s

∫ π

0
sin
(

s

β
πβ
)

q(τ)Q(τ −ν,µ)dβτ

]
− sin

(
s

β
πβ
)[cosω

s
+ 1

s

∫ π

0
cos

(
s

β
πβ
)

q(τ)Q(τ −ν,µ)dβτ

]
= 0,

(4. 24)

multiplying (4. 24) by s and by considering lemma 4.2.2 we have

scos
(

s

β
πβ
)

+O(1) = 0, (4. 25)

also for large s, (4. 25) has an infinite set of roots.
Case3. In this case the equation (4. 22) is expressed in the form

cos
(

s

β
πβ
)

[−cosω sinα

+
∫ π

0

sin
(

s
β (τβ

)
cosα

s
− cos

(
s

β
(τβ

)
sinα

q(τ)Q(τ −ν,µ)dβτ


− sin

(
s

β
πβ
)[cosω cosα

s

+
∫ π

0

cos
(

s
β (τβ

)
cosα

s
+sin

(
s

β
(τβ

)
sinα

q(τ)Q(τ −ν,µ)dβτ

= 0.

(4. 26)

We know that x ∈ [0,π] and x − ν ≥ 0 and then Q(τ − ν,µ) = 0 if τ − ν < 0, then by virtue
of (4. 17) and (4. 20) on [0,π] we have

Q(τ −ν,µ) = O

(1
s

)
, (4. 27)

multiplying bothsides of (4. 26) by s and considering (4. 27) gives

scos
(

s

β
πβ
)

+O(1) = 0. (4. 28)

which the same as (4. 25).
Case4. The equation (4. 22) in this case has the form

cos
(

s

β
πβ
)∫ π

0

sin
(

s
β (τβ

)
s

q(τ)Q(τ −ν,µ)dβτ


− sin

(
s

β
πβ
)cosω

s
+
∫ π

0

cos
(

s
β (τβ

)
s

q(τ)Q(τ −ν,µ)dβτ

= 0,

(4. 29)

here also, (4. 23) holds and taking it in to account and multiplying both sides of (4. 29)
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with 1
s2 we obtain

ssin
(

s

β
πβ
)

+O(1) = 0 (4. 30)

as in case1.
Proving the theorem in each of the four cases above completes the proof of the theorem.

4.3 The asymptotic parameters

Under this section we will give the asymptotic properties of the eigenvalues and the
corresponding eigenfunctions of the problem (4. 13)- (4. 15) by the conformable derivatives
as follows.
Let consider s sufficiently large for all the four cases.
Now by (4. 20)

Q(x,µ) = O(1), (4. 31)

on [−a,π] in the first and the second cases while in the third and the fourth cases where
Q(τ −ν,µ) = 0 for x−ν < 0 and by the equations (4. 17) and (4. 20),

Q(x,µ) = O

(1
s

)
, (4. 32)

on [−a,π].
The existence and continuity of the derivatives Dβ

s Q(x,µ) for 0 ≤ x ≤ π, |µ| < ∞ follows
from a theorem 4.1 in chapter I in [72].

Lemma 4.3.1. In the first and the second cases,

Dβ
s Q(x,µ) = O(1), for x ∈ [−ν,π] (4. 33)

Proof 17. Differentiating (4. 17) using conformable derivatives with respect to s, and by
(4. 31) we obtain,

Dβ
s Q(x,µ) = −1

s

∫ x

0
sin
(

s

β
(xβ − τβ)

)
q(τ)Dβ

s Q(τ −ν,µ)dβτ +k(x,µ), (4. 34)

where k is the remaining term and satisfied |k(x,µ)| ≤ ko.
Let Cµ = Max[0,π]|Dβ

s Q(x,µ)|. From (4. 34)

Cµ ≤ 1
s

q∗Cµ +ko

If s ≥ 2q∗, then Cµ ≤ 2ko and this validated the asymptotic expression (4. 33).

Lemma 4.3.2. In the third and the fourth cases,

Dβ
s Q(x,µ) = O

(1
s

)
for x ∈ [−ν,π]. (4. 35)
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Proof 18. The proof goes similar to that of the lemma 4.3.1 by considering (4. 32).

Let n ∈ N, then if |βnπ1−β −√
µ| < 1

4 or |β(n+ 1
2)π1−β −√

µ| < 1
4 , the eigenvalue µ is

situated near (βnπ1−β)2 or (β(n+ 1
2)π1−β)2.

Theorem 4.3.1. Let n ∈ N. Then, there is just one eigenvalue of the problem (4. 13)-
(4. 14) near (βnπ1−β)2 in the first and the second cases also for the third and the fourth
cases there is exactly one eigenvalue of the problem near (β(n+ 1

2)π1−β)2 .

Proof 19. Consider the expressions (4. 23), (4. 25), (4. 28) and (4. 30) then it can be shown
by conformable differentiation with respect to s that for large s the expressions below have
bounded derivative,
First Equation: Multiplying both sides of the equation (4. 31) by 1

sinαsinω and applying the
equation (4. 22) we have the expression that;

1
sinαsinω

{
sin
(

s

β
πβ
)[cosω cosα

s

+
∫ π

0

cos
(

s
β τβ

)
cosα

s
+sin

(
s

β
τβ
)

sinα

q(τ)Q(τ −ν,µ)dβτ


−cos

(
s

β
πβ
)

[sin(ω −α)

+
∫ π

0

sin
(

s
β τβ

)
cosα

s
− cos

(
s

β
τβ
)

sinα

q(τ)Q(τ −ν,µ)dβτ

 .

Second Equation: Multiplying both sides of the equation (4. 32) by s
sinω and applying the

equation (4. 24) we have the expression that

1
sinω

{
cos

(
s

β
πβ
)[∫ π

0
sin
(

s

β
πβ
)

q(τ)Q(τ −ν,µ)dβτ

]
−sin

(
s

β
πβ
)[

cosω +
∫ π

0
cos

(
s

β
πβ
)

q(τ)Q(τ −ν,µ)dβτ

]}
.

Third Equation: Multiplying both sides of the equation (4. 33) by s
sinαcosω and applying

the equation (4. 26) we have the expression that;

1
cosω sinα

{
sin
(

s

β
πβ
)

[cosω sinα

+
∫ π

0

cos
(

s
β τβ

)
cosα

s
+sin

(
s

β
τβ
)

sinα

sq(τ)Q(τ −ν,µ)dβτ


−cos

(
s

β
πβ
)∫ π

0

sin
(

s
β τβ

)
cosα

s
− cos

(
s

β
τβ
)

sinα

sq(τ)Q(τ −ν,µ)dβτ

 .
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Fourth Equation: Multiplying both sides of the equation (4. 35) by s2

cosω we have,

ssin
(

s

β
πβ
)

+ 1
cosω

{∫ π

0

(
sin
(

s

β
πβ
)

cos
(

s

β
τβ
)

−cos
(

s

β
πβ
)

sin
(

s

β
τβ
))

q(τ)Q(τ −ν,µ)dβτ

}
,

and applying the equation (4. 29) and some trigonometric expression we have the expression
that

1
cosω

∫ π

0
ssin

(
s

β
(πβ − τβ)

)
q(τ)Q(τ −ν,µ)dβτ.

It is clear that as s → ∞ the roots of (4. 23) (which is the same as (4. 30)) are situated
close to the integer numbers.
Now we will show that as s → ∞, only one root of (4. 23) ( or (4. 30)) lies near to each
βnπ1−β.
Considering the function

C(s) = ssin
(

s

β
πβ
)

+O(1),

its derivative

Dβ
s C(s) = sin

(
s

β
πβ
)

+s
πβ

β
cos

(
s

β
πβ
)

+O(1),

does not vanish for s close to n for very large n. As such, the assertion follows by Rolle’s
Theorem. Similarly, for the equations (4. 25) (which is the same as (4. 28)), as s → ∞ their
roots lies near to the numbers β(n− 1

2)π1−β.
Considering the equation as the function below

C∗(s) = scos
(

s

β
πβ
)

+O(1),

then its derivative is

Dβ
s C∗(s) = cos

(
s

β
πβ
)

−s
πβ

β
sin
(

s

β
πβ
)

+O(1),

which also for sufficiently large n does not vanish for s close to β(n − 1
2)π1−β. Similarly

as in the case above, for sufficiently large n there is only one root of the equations (4. 25)
(or (4. 28)) close to each number of the β(n− 1

2)π1−β. Which also by Rolle’s Theorem the
theorem is completed.

It is now possible to obtain the asymptotic expressions for the eigenvalues of the
problem (4. 13) - (4. 15) due to the expressions (4. 23), (4. 25), (4. 28) and (4. 30).
Since for sufficiently large n the eigenvalues of the problem lies near

(
βnπ1−β

)2
or(

β(n+ 1
2)π1−β

)2
, let sn = βnπ1−β + γn then by equation (4. 23) or (4. 30) we have

56



sin(γnπ) = O
(

1
n

)
and as such, for large n, we have (γnπ) = O

(
1
n

)
consequently, it follows

that

sn = βnπ1−β +O

( 1
n

)
, (4. 36)

which is the eigenvalues expressions, while by equations (4. 25) and (4. 28) for sufficiently
large n and letting sn = β(n + 1

2)π1−β + γn then by equation (4. 23) or (4. 30), sin(γnπ) =
O
(

1
n

)
and as such, for large n, we have (γnπ) = O

(
1
n

)
then

sn =
(

n+ 1
2

)
βπ1−β +O

( 1
n

)
, (4. 37)

which is the other eigenvalues expressions.
The formula (4. 36) and (4. 37) make it possible to obtain the asymptotic expressions for
the eigenfunctions of the problem (4. 13) - (4. 15).
Now, by considering the case 1, then from (4. 17) and (4. 31), we have

Q(x,µ) = sinω cos
(

s

β
xβ
)

+O

(1
s

)
, (4. 38)

by putting (4. 36) in (4. 38) we have that

un(x) = Q(x,µn) = sinω cos
(
nπ1−βxβ

)
+O

( 1
n

)
,

for the case 2, equation (4. 38) also holds and by (4. 37), we have that

un(x) = Q(x,µn) = sinω cos
((

n− 1
2

)
π1−βxβ

)
+O

( 1
n

)
.

In case 3, from (4. 17) and (4. 32), we obtain

Q(x,µ) = −cosω

s
sin
(

s

β
xβ
)

+O

( 1
s2

)
, (4. 39)

by equation (4. 37) we have

un(x) = Q(x,µn) = −cosω

n
sin
((

n− 1
2

)
π1−βxβ

)
+O

( 1
n2

)
.

For the last case, case 4, equation (4. 39) holds as well and by equation (4. 36) we obtain

un(x) = Q(x,µn) = −cosω

n
sin
(
nπ1−βxβ

)
+O

( 1
n2

)
.

These are the asymptotic representations of the eigenfunctions of the problem (4. 13) -
(4. 15) for x ∈ [0,π]. The above obtained asymptotic expressions correspond to the ones
in the similar problem without the delay, now we will obtain the more exact asymptotic
formulas which depend upon the delay constant and due to the lemma (4.0.1) and some
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additional conditions.

Theorem 4.3.2. If Dβ
xq exist and bounded in [0,π], then the positive eigenvalues µn = s2

n

of the problem (4. 13)-(4. 15) are;
for the case 1,

sn =βnπ1−β + cotα

nπ
− cotω

nπ
− 1

2nπ

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

+O

( 1
n2

)
.

for the case 2,

sn =β

(
n+ 1

2

)
π1−β − cotω

nπ
− 1

2nπ

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

+O

( 1
n2

)
.

for the case 3,

sn =β

(
n+ 1

2

)
π1−β + cotα

nπ
− 1

2nπ

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

+O

( 1
n2

)
.

for the case 4,

sn =βnπ1−β − 1
2nπ

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ +O

( 1
n2

)
.

Proof 20. Let assume that Dβ
xq exist and bounded in [0,π], it is easy to see that

x−a ≥ 0 for x ∈ [0,π] (4. 40)

for the case 1,
by (4. 38) and (4. 40) we get

Q(τ −a,µ) = sinω cos s

β
(τ −ν)β +O

(1
s

)
, on [0,π] (4. 41)

putting this in to (4. 19) we obtain

sinω cosαcos
(

s

β
πβ
)

− cosα
1
s

cosω sin
(

s

β
πβ
)

− 1
s

∫ π

0
cosαsin

(
s

β
(πβ − τβ)

)
q(τ)

[
sinω cos s

β
(τ −ν)β +O

(1
s

)]
dβτ

−ssinω sinαsin
(

s

β
πβ
)

− cosω sinαcos
(

s

β
πβ
)

−
∫ π

0
sinαcos

(
s

β
(πβ − τβ)

)
q(τ)

[
sinω cos s

β
(τ −ν)β +O

(1
s

)]
dβτ = 0,
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that is

sin(ω −α)cos
(

s

β
πβ
)

−ssinω sinαsin
(

s

β
πβ
)

−
∫ π

0
sinω sinαq(τ)1

2

[
cos

(
s

β
πβ
)

cos s

β

(
τβ +(τ −ν)β

)
+ sin

(
s

β
πβ
)

sin s

β

(
τβ +(τ −ν)β

)
+cos

(
s

β
πβ
)

cos s

β

(
τβ − (τ −ν)β

)
+ sin

(
s

β
πβ
)

sin s

β

(
τβ − (τ −ν)β

)]
dβτ +O

(1
s

)
= 0,

that is

sin(ω −α)cos
(

s

β
πβ
)

−ssinω sinαsin
(

s

β
πβ
)

− cos
(

s

β
πβ
)[sinω sinα

2

∫ π

0

[
cos s

β

(
τβ +(τ −ν)β

)
+cos

(
s

β

(
τβ − (τ −ν)β

))]
q(τ)dβτ

]
− sin

(
s

β
πβ
)[sinω sinα

2

∫ π

0

[
sin s

β

(
τβ +(τ −ν)β

)
+sin

(
s

β

(
τβ − (τ −ν)β

))]
q(τ)dβτ

]
+O

(1
s

)
= 0,

that is

cos
(

s

β
πβ
)[

sin(ω −α)− sinω sinα

2

∫ π

0

[
cos s

β

(
τβ +(τ −ν)β

)
+cos

(
s

β

(
τβ − (τ −ν)β

))]
q(τ)dβτ

]
− sin

(
s

β
πβ
)[

ssinω sinα + sinω sinα

2

∫ π

0

[
sin s

β

(
τβ +(τ −ν)β

)
+sin

(
s

β

(
τβ − (τ −ν)β

))]
q(τ)dβτ

]
+O

(1
s

)
= 0.

(4. 42)

It is clear that these functions are bounded for x ∈ [0,π] and s ∈ (0,∞). Now, from
lemma 4.0.1 and the equations (4. 42) and (4. 11) we have

cos
(

s

β
πβ
)[

sin(ω −α)− sinω sinα

(
H(s,τ,ν)+O

(1
s

))]
− sin

(
s

β
πβ
)[

ssinω sinα − sinω sinα

(
G(s,τ,ν)+O

(1
s

))]
= 0,

which, by dividing its both side by cos
(

s
β πβ

)
and sinω sinα implies that

tan
(

s

β
πβ
)

[s+G(s,τ,ν)] = cotα − cotω −H(s,τ,ν)+O

(1
s

)
,

that is

tan
(

s

β
πβ
)

= 1
s

[cotα − cotω −H(s,τ,ν)]+O

( 1
s2

)
. (4. 43)
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Let again sn = βnπ1−β +γn then from (4. 36), for large n the equation (4. 43) gives

γn = cotα

nπ
− cotω

nπ
− 1

2nπ

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ +O

( 1
n2

)
,

finally, the eigenvalues takes the form

sn =βnπ1−β + cotα

nπ
− cotω

nπ
− 1

2nπ

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

+O

( 1
n2

)
,

(4. 44)

and this completes the proof for this case.
for the case 2,
The equations (4. 24) and (4. 41) we obtain

cos
(

s

β
πβ
)[

sinω + sinω

s

∫ π

0
q(τ)sin

(
s

β
τβ
)

cos
(

s

β
(τ −ν)β

)
dβτ +O

( 1
s2

)]
− sin

(
s

β
πβ
)[cosω

s
+ sinω

s

∫ π

0
q(τ)cos

(
s

β
τβ
)

cos
(

s

β
(τ −ν)β

)
dβτ +O

( 1
s2

)]
= 0.

(4. 45)

multiplying (4. 45) by s and applying the product rule from trigonometric identity we have

cos
(

s

β
πβ
)[

ssinω + sinω

2

∫ π

0
q(τ)

(
sin s

β

(
τβ +(τ −ν)β

)
+sin s

β

(
τβ − (τ −ν)β

))
dβτ +O

(1
s

)]
− sin

(
s

β
πβ
)[

cosω + sinω

2∫ π

0
q(τ)

(
cos s

β

(
τβ +(τ −ν)β

)
+cos s

β

(
τβ − (τ −ν)β

))
dβτ +O

(1
s

)]
= 0,

(4. 46)

and by considering lemma 4.0.1 and equation (4. 11)and multiplying (4. 46) by 1
sinω we

have

cos
(

s

β
πβ
)[

s+G(s,τ,ν)+O

(1
s

)]
− sin

(
s

β
πβ
)[

cotω +H(s,τ,ν)+O

(1
s

)]
= 0,

then we have

cot
(

s

β
πβ
)

= 1
s

[
cotω +H(s,τ,ν)+O

( 1
s2

)]
, (4. 47)

again, let Sn = β
(
n+ 1

2π1−β
)

+γn and recall that γn = O
(

1
n

)
then we can say

cot
(

β

(
n+ 1

2

)
π1−β +γn

)
πβ

β
= −tanγn

πβ

β

= 1
β
(
n+ 1

2

)
π1−β

[
cotω +H(s,τ,ν)+O

( 1
n2

)]
,
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thus for sufficiently large n

γn = − 1(
n+ 1

2

)
π

[
cotω +H(s,τ,ν)+O

( 1
n2

)]
,

and finally

Sn = β

(
n+ 1

2

)
π1−β − 1

nπ

[
cotω +H(s,τ,ν)+O

( 1
n2

)]
,

which by (4. 11) completes the proof for the second case.
The proof for the third and the fourth cases follows similarly.

Theorem 4.3.3. If Dβ
xq exist and bounded in [0,π], then the positive eigenfunctions un(x)

of the problem (4. 13)-(4. 15) are
for the case 1;

un(x) = sinω

[
cos

(
nπ1−βxβ

)(
1+ 1

2βnπ1−β

∫ x

0
q(τ)sin

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)

−
sin
(
nπ1−βxβ

)
nπ

((
cotα − cotω + 1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
x

+
(

cotω + 1
2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
π

)]
+O

( 1
n2

)
.

for the case 2;

un(x) = sinω

[
cos

(
(n+ 1

2)π1−βxβ
)(

1+ 1
2βnπ1−β

∫ x

0
q(τ)sin

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)

+
sin
(
(n+ 1

2)π1−βxβ
)

βnπ1−β

((
cotω + 1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
x

+
(

cotω + 1
2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
π

)]
+O

( 1
n2

)
.

for the case 3;

un(x) = −cosω

sin
(
(n+ 1

2)π1−βxβ
)

β(n+ 1
2)π1−β

(
1+ 1

2βnπ1−β

∫ x

0
q(τ)sin

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)

+
cos

(
(n+ 1

2)π1−βxβ
)

β2n2π3−2β

((
cosα − 1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
x

+
(1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
π

)]
+O

( 1
n3

)
.
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for the case 4;

un(x) = −cosω

sin
(
nπ1−βxβ

)
βnπ1−β

(
1+ 1

2βnπ1−β

∫ x

0
q(τ)sin

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)

+
cos

(
nπ1−βxβ

)
nπ2−βxβ

((1
2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
π

+
(1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
x

)]
+O

( 1
n2

)
.

Proof 21. For the proof of the case 1, consider the solution below of the problem (4. 13)-
(4. 15),

Q(x,µ) = sinω cos
(

s

β
xβ
)

− 1
s

cosω sin
(

s

β
xβ
)

− 1
s

∫ x

0
q(τ)sinω sin

(
s

β
(xβ − τβ)

)
cos

(
s

β
(τ −ν)β

)
dβτ +O

( 1
s2

)
,

(4. 48)

the right hand side of the equation (4. 48) can be expressed as∫ x

0
q(τ)sinω sin

(
s

β
(xβ − τβ)

)
cos

(
s

β
(τ −ν)β

)
dβτ

= 1
2

∫ x

0
q(τ)sinω

[
sin
(

s

β
(xβ − τβ +(τ −ν)β)

)
+sin

(
s

β
(xβ − τβ − (τ −ν)β)

)]
dβτ

= 1
2

∫ x

0
q(τ)sinω

[
sin
(

s

β
xβ
)

cos
(

s

β
(τβ − (τ −ν)β)

)
−cos

(
s

β
xβ
)

sin
(

s

β
(τβ − (τ −ν)β)

)
+sin

(
s

β
xβ
)

cos
(

s

β
(τβ +(τ −ν)β)

)
− cos

(
s

β
xβ
)

sin
(

s

β
(τβ +(τ −ν)β)

)]
dβτ

= sinω

[
sin
(

s

β
xβ
)(1

2

∫ x

0
q(τ)cos

(
s

β
(τβ − (τ −ν)β)

)
dβτ

+1
2

∫ x

0
q(τ)cos

(
s

β
(τβ +(τ −ν)β)

)
dβτ

)
−cos

(
s

β
xβ
)(1

2

∫ x

0
q(τ)sin

(
s

β
(τβ − (τ −ν)β)

)
dβτ

+1
2

∫ x

0
q(τ)sin

(
s

β
(τβ +(τ −ν)β)

)
dβτ

)]
= sinω

[
sin
(

s

β
xβ
)(

H(s,τ,ν)+O

(1
s

))
− cos

(
s

β
xβ
)(

G(s,τ,ν)+O

(1
s

))]
.
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Now the equation (4. 48) becomes

Q(x,µ) = sinω cos
(

s

β
xβ
)

− 1
s

cosω sin
(

s

β
xβ
)

− sinω

s
sin
(

s

β
xβ
)

H(s,τ,ν)

+ sinω

s
cos

(
s

β
xβ
)

G(s,τ,ν)+O

( 1
s2

)
= sinω cos

(
s

β
xβ
)(

1+ G(s,τ,ν)
s

)

−
sin
(

s
β xβ

)
s

(cosω +sinωH(s,τ,ν))+O

( 1
s2

)
= sinω

[
cos

(
s

β
xβ
)(

1+ G(s,τ,ν)
s

)

−
sin
(

s
β xβ

)
s

(cotω +H(s,τ,ν))

+O

( 1
s2

)
,

(4. 49)

then replacing s by sn and using (4. 44) we have

Q(x,µ) = sinω

[
cos

(
nπ1−βxβ

)(
1+ G(s,τ,ν)

βnπ1−β

)

−
β sin

(
nπ1−βxβ

)
nπβ

((cotα − cotω +H(s,τ,ν))x

+(cotω +H(s,τ,ν))π)]+O

( 1
n2

)
,

by the definition of G(s,τ,ν) and H(s,τ,ν) from (4. 11) above, we have

un(x) = sinω

[
cos

(
nπ1−βxβ

)(
1+ 1

2βnπ1−β

∫ x

0
q(τ)sin

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)

−
β sin

(
nπ1−βxβ

)
nπβ

(
cotα − cotω + 1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
x

+
(

cotω + 1
2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

)
π

]
+O

( 1
n2

)
For the proof of the case 2, consider the equation below,

Q(x,µ) = sinω

[
cos

(
s

β
xβ
)(

1+ G(s,τ,ν)
s

)

−
sin
(

s
β xβ

)
s

(cotω +H(s,τ,ν))

+O

( 1
s2

)
.

(4. 50)

Now replacing s by sn and using (4. 49) in (4. 50) we have

Q(x,µ) = sinω

[
cos

((
n+ 1

2

)
π1−βxβ

)(
1+ 1

βnπ1−β
G(s,τ,ν)

)

+
sin
((

n+ 1
2

)
π1−βxβ

)
βnπ1−β

(cotω +H(s,τ,ν))

+O

( 1
n2

)
,
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hence we have

Q(x,µ) = sinω

[
cos

((
n+ 1

2

)
π1−βxβ

)(
1+ 1

βnπ1−β
G(s,τ,ν)

)

+
sin
((

n+ 1
2

)
π1−βxβ

)
βnπ1−β

((cotω +H(s,τ,ν))x

−(cotω +H(s,τ,ν))π)]+O

( 1
n2

)
,

also, by the definition of G(s,τ,ν) and H(s,τ,ν) from (4. 11) above, the proof for the second
case is completed.
Also, the proof for the third and the fourth cases follows similarly.

The eigenvalues and matching eigenfunctions that depend on the delay constant have
also been computed. In addition, we will discuss the inverse problem of this SLP in the
following manner.
4.4 The Inverse Nodal Problem

In this section we give the nodal points and the nodal lengths of the the problem for
each of the four cases. The proofs are similar as such we give the proof of the first two
cases.

Theorem 4.4.1. The nodal points of the problem (4. 13)-(4. 15) are
for the case 1:

yn
i = iπ

sn
+ 1

s2
n

[
cotα − cotω − 1

2

∫ yn
i

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
n3

)
.

for the case 2:

yn
i =

(
i− 1

2

)
π

sn
+ 1

s2
n

[
cotω + 1

2

∫ yn
i

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
n3

)
.

for the case 3:

yn
i =

(
i− 1

2

)
π

sn
− 1

s2
n

[
cotα − 1

2

∫ yn
i

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
n3

)
.

for the case 4:

yn
i = iπ

sn
− 1

2s2
n

∫ yn
i

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ +O

( 1
n3

)
.

Proof 22. For the proof of the first case; from (4. 43) and by replacing π by x the nodal
point can be obtained as follows,

xβ

β
= π

s
+ 1

s2

[
cotα − cotω − 1

2

∫ x

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
s3

)
,
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(4. 51)

now, taking µ = µn, s = sn, and x = x
(n)
i , we can expressed (4. 51) as

(x(n)
i )β

β
= iπ

sn
+ 1

s2
n

cotα − cotω − 1
2

∫ (xn
i

)β

β

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ


+O

( 1
n3

)
,

(4. 52)

which is the nodal points of the problem.
Now, for convenience, let us define Yβ =

{
yn

i : yn
i = (xn

i )β

β ,xn
i ∈ X

}
,n ∈ N and i = 1,n as

the nodal set of the problem while X = {xn
i } is the nodal set of the corresponding classical

problem, as such, we can expressed (4. 52) as

yn
i = iπ

sn
+ 1

s2
n

[
cotα − cotω − 1

2

∫ yn
i

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
n3

)
,

that is

yn
i+1 =(i+1)π

sn
+ 1

s2
n

[
cotα − cotω − 1

2

∫ yn
i+1

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]

+O

( 1
n3

)
.

For the proof of the second case; from (4. 47) and by replacing π by x and following the
steps in the proof of the first case, the nodal point can be obtained as follows

yn
i =

(
i− 1

2

)
π

sn
+ 1

s2
n

[
cotω + 1

2

∫ yn
i

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
n3

)
,

such that

yn
i+1 =

(
i+ 1

2

)
π

sn
+ 1

s2
n

[
cotω + 1

2

∫ yn
i+1

0
q(τ)cos

(
s

β

(
τβ − (τ −ν)β

))
dβτ

]
+O

( 1
n3

)
.

Now using the fact that the difference of the points (yn
i ,yn

i+1) is the nodal length of
the problem, as such the nodal length of the first case (which is the same as the nodal length
of the fourth case) is obtain as

lnβi = π

sn
− 1

2s2
n

∫ yn
i+1

yn
i

q(τ)cos
(

s

β

(
τβ − (τ −ν)β

))
dβτ +o

( 1
n3

)
, (4. 53)

while the nodal length of the second case (which is the same as the nodal length of the third
case) is obtained as

lnβi = π

sn
+ 1

2s2
n

∫ yn
i+1

yn
i

q(τ)cos
(

s

β

(
τβ − (τ −ν)β

))
dβτ +o

( 1
n3

)
. (4. 54)

65



4.5 Reconstruction of the Potential Function

Reconstruction of the potential function using the nodal points and the nodal lengths
is one of the ways in inverse problem, as such we reconstructed the potential function in
each of the four cases expressed above.
For the potential function in the first case (which is the same as the potential in the fourth
case) from (4. 53) we have(

lnβisn

π
−1
)

2πsn

1 = −
∫ yn

i+1

yn
i

q(τ)cos
(

sn

β

(
τβ − (τ −ν)β

))
dβτ +o

( 1
n2

)
, (4. 55)

then, by applying the mean value theorem for integrals to (4. 55) for a fixed n, there exist
a point, z ∈ (yn

i ,yn
i+1) so that

∫ yn
i+1

yn
i

q(τ)cos
(

sn

β

(
τβ − (τ −ν)β

))
dβτ = lnβiq(z)cos

(
sn

β

(
zβ − (z −ν)β

))
, (4. 56)

equations (4. 55) and (4. 56) gives

q(z) = −
(

lnβisn

π
−1
)

2πsn

lnβi cos
(

sn
β (zβ − (z −ν)β)

) +o

( 1
n

)
, (4. 57)

but from (4. 53) we have

l
(n)
βi sn

π
= 1+O

( 1
n

)
, (4. 58)

then from (4. 58) and as n → ∞, (4. 57) becomes

q(x) = 2s2
n

cos
(

sn
β (xβ − (x−ν)β)

) (1−
lnβisn

π

)
, (4. 59)

then by taking the limit as n → ∞ and by (4. 44), equation (4. 59) becomes

q(x) = lim
n→∞

2β2n2π2−2β

cos(nπ1−β (xβ − (x−ν)β))

(
1−

βnlnβi

πβ

)
. (4. 60)

Similarly, the potential function of the the second case (which is the same as the potential
in the third case) from (4. 54) is calculated as

q(x) = lim
n→∞

2β2(n+ 1
2)2π2−2β

cos
(
(n+ 1

2)π1−β (xβ − (x−ν)β)
) (β(n+ 1

2)lnβi

πβ
−1
)

, (4. 61)

then (4. 60) and (4. 61) are the potential functions of the SLP (4. 13)- (4. 15).
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4.6 The Stability of the Potential

In this section, we would like to prove the stability of the problem using Lischitz
stability approach which is based on metric spaces. The concept of hemeomorphism between
the defined two metric spaces is considered to show the continuity.
Let N = N\{1}. Let Ω be the space of all admissible sequences that is

Ω = {(q,ω,α) ∈ L1
βi

(0,π)× (0,π)}

Σ = The collection of all double sequences Xβ = {X
(n)
βi

} for i = 1,2,3, . . . ,n − 1,n ∈ N such
that 0 < X

(n)
β1

< X
(n)
β2

< X
(n)
β3

< .. . < X
(n)
βn−1

< π, for each n.
Let Xβ ∈ Σ and define X

(n)
β0

= 0,X
(n)
βn

= π,L
(n)
βi

= X
(n)
βi+1

−X
(n)
βi

, and I
(n)
βi

= (X(n)
βi

,X
(n)
βi+1

) for
i = 1,2,3, . . . ,n−1.
Let the function iβn(x) on (0,π) be define by

iβn(x) = Max{i : x
(n)
i ≤ x},

and for fixed x and n, i = iβn(x) implies x ∈ [x(n)
i ,x

(n)
i+1]

In what follows, let define γ = 1
cos(nπ1−β(xβ−(x−ν)β)) for convenience.

Definition 4.6.1. Let X
(n)
βi

, X̃
(n)
βi

∈ Σ with L
(n)
βi

and L̃
(n)
βi+1

as their respective grid lengths.
Define

Kβn(Xβ, X̃β) = β2π2−2βΣn−1
i=0 n2γ|L(n)

βi
− L̃

(n)
βi

|.

Let do and dΣ be two metric on Σ defined by

do(Xβ, X̃β) = lim
n→∞

Kβn(Xβ, X̃β),

and

dΣ(Xβ, X̃β) = lim
n→∞

Kβn(Xβ, X̃β)
1+Kβn(Xβ, X̃β)

= do(Xβ, X̃β)
1+do(Xβ, X̃β)

, (4. 62)

which implies that

do(Xβ, X̃β) = dΣ(Xβ, X̃β)
1−dΣ(Xβ, X̃β)

, (4. 63)

such that

dΣ(Xβ, X̃β) ≤ do(Xβ, X̃β). (4. 64)
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Then, there exist a positive constant k such that

2
3k

≤ do(Xβ, X̃β) ≤ dΣ(Xβ, X̃β) ≤ 3(k +1)do(Xβ, X̃β),

which means do(Xβ, X̃β) = 0 only when dΣ(Xβ, X̃β) = 0. If this is achieved, then this inverse
nodal problem is stable. The metric dΣ(., .) is a pseudometric on Σ.

Proof 23. From the definition and the absolute value properties dΣ(., .) is finite and
symmetric. Now the following proves the triangle inequility, that is,

Kβn(Xβ, X̃β) = β2π2−2βΣn−1
i=0 n2γ|L(n)

βi
− L̃

(n)
βi

|

≤ β2π2−2βΣn−1
i=0 n2γ[|L(n)

βi
−L

(n)
βj

|+ |L(n)
βj

− L̃
(n)
βi

|]

= β2π2−2βΣn−1
i=0 n2γ|L(n)

βi
−L

(n)
βj

|+β2π2−2βΣn−1
i=0 n2γ|L(n)

βj
− L̃

(n)
βi

|

= Kβn(Xβ,Yβ)+Kβn(Yβ, X̃β),

clearly

Kβn(Xβ, X̃β)
1+Kβn(Xβ, X̃β)

≤ Kβn(Xβ,Yβ)
1+Kβn(Xβ,Yβ) + Kβn(Yβ, X̃β)

1+Kβn(Yβ, X̃β)
, (4. 65)

then from (4. 62) and (4. 65) we have

dΣ(Xβ, X̃β) ≤ dΣ(Xβ,Yβ)+dΣ(Yβ, X̃β).

This completes the proof.

So, dΣ(., .) defines an equivalence relation ∼ on
∑

. Now (
∑∗,dΣ) is a metric space,

where
∑∗ :=

∑
/ ∼.

Let
∑

1 ⊂
∑

be the subspace of all asymtotically equivalent nodal sequences and let
∑∗

1 :=∑
1 / ∼.

Theorem 4.6.1. The metric spaces (Ω, || · ||1) and (
∑∗,dΣ) are homeomorphic to each

other.

Lemma 4.6.1. Let Xβ, X̃β ∈ Σ1, then

i. The length of the interval I
(n)
βi between the points X

(n)
βi and X̃

(n)
βi is O

(
1

n2

)
.

ii. For all x ∈ (0,1), |iβn(x)− ĩβn(x)| ≤ 1 for sufficiently large n.

Proof 24. For the proof of i. above, we have from (4. 56)

X
(n)
βi − iπβ

βn
= O

( 1
n2

)
,
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then

∣∣∣I(n)
βi

∣∣∣= ∣∣∣X(n)
βi − X̃

(n)
βi

∣∣∣≤ ∣∣∣∣∣X(n)
βi − iπβ

βn

∣∣∣∣∣+
∣∣∣∣∣ iπβ

βn
− X̃

(n)
βi

∣∣∣∣∣
= O

( 1
n2

)
+O

( 1
n2

)
= O

( 1
n2

)
,

and for the proof of ii, for a fixed x ∈ (0,π) and from (4. 56) again,

iπβ

βn
+O

( 1
n2

)
= X

(n)
βi ≤ x ≤ X

(n)
β(i+1) = (i+1)πβ

βn
+O

( 1
n2

)
,

similarly

ĩπβ

βn
+O

( 1
n2

)
= X̃

(n)
β̃i

≤ x ≤ X̃
(n)
β(̃i+1)

= (̃i+1)πβ

βn
+O

( 1
n2

)
,

now, for a very large n, i+1 ≥ ĩ and ĩ+1 ≥ i which implies that∣∣∣iβi(x)− ĩβi(x)
∣∣∣≤ 1,

this completes the proof.

Theorem 4.6.2. If Xβ, X̃β ∈ Σ1 are asymptotically nodal to q and q̃ in Ω, respectively, then

||q − q̃|| ≤ 2do

(
Xβ, X̃β

)
.

Proof 25. From (4. 59) and for almost every, x ∈ (0,π), we have

q(x)− q̃(x) = limn→∞
2γs3

n

π

[
L̃

(n)
β̃iβn(x)

−L
(n)
βiβn(x)

]
,

then, by Fatou’s lemma, we have∫ π

0
|q − q̃|dβx ≤ limn→∞2β3π2−3β

∫ π

0
γn3

∣∣∣∣L(n)
βiβn(x) − L̃

(n)
β̃iβn(x)

∣∣∣∣dβx

≤ 2β3π2−3βlimn→∞

{
n3
∫ π

0
γ
∣∣∣L(n)

βiβn(x) − L̃
(n)
βiβn(x)

∣∣∣dβx

+n3
∫ π

0
γ

∣∣∣∣L̃(n)
βiβn(x) − L̃

(n)
β̃iβn(x)

∣∣∣∣dβx

}
,

(4. 66)

due to lemma 4.6.1, the second term gives

n3
∫ π

0
γ

∣∣∣∣L̃(n)
βiβn(x) − L̃

(n)
β̃iβn(x)

∣∣∣∣dβx = n3γΣn−1
i=0

∣∣∣L̃β(i+1) − L̃βi

∣∣∣ ∣∣∣In
βi

∣∣∣
= n3γΣn−1

i=0 o

( 1
n2

)
O

( 1
n2

)
= O(1),
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since, for 1 ≤ i ≤ n−2, (4. 53) implies that

∣∣∣Lβi − L̃βi

∣∣∣= π2β−2

2β2n2

∣∣∣∣∣∣
∫ x

(n)
i+1

x
(n)
i

1
γ

q(τ)dβτ −
∫ x̃

(n)
i+1

x̃
(n)
i

1
γ

q̃(τ)dβτ

∣∣∣∣∣∣+o

( 1
n3

)

Thus
∣∣∣Lβi − L̃βi

∣∣∣= o
(

1
n2

)
, as such the second term in (4. 66), after taking the upper limit,

vanished.
Also, by virture of (4. 66) we obtain∫ π

0
|q − q̃|dβx ≤ 2β3π2−3βlimn→∞Σn−1

i=0 n3γLn
βi

∣∣∣Ln
βi − L̃n

βi

∣∣∣
≤ 2β3π2−3βlimn→∞Σn−1

i=0 γ

(
πβ

β
n2 +O(n)

)∣∣∣Ln
βi − L̃n

βi

∣∣∣
= 2β2π2−2βlimn→∞Σn−1

i=0 n2γ
∣∣∣Ln

βi − L̃n
βi

∣∣∣
= 2do(Xβ, X̃β),

(4. 67)

which completes the proof.

It follows from theorem 4.6.2 that for the asymptotically nodal points Xβ and X̃β to
q and q̃ in Ω the following relation holds

||q − q̃||1 ≤ 2do(Xβ, X̃β).

Theorem 4.6.3. If Xβ and X̃β asymptotically nodal to q and q̃ in Ω, then do(Xβ, X̃β) ≤
||q − q̃||1 .

Proof 26. By virtue of (4. 67) and definition 4.6.1 we have

Kβn(Xβ, X̃β) ≤ β2π2−2βΣn−1
i=0 n2γ

∣∣∣Ln
βi − L̃n

βi

∣∣∣
= γ

2 Σn−1
i=0

∣∣∣∣∣∣
∫ x

(n)
i+1

x
(n)
i

1
γ

q(τ)dβτ −
∫ x̃

(n)
i+1

x̃
(n)
i

1
γ

q̃(τ)dβτ

∣∣∣∣∣∣+o(1)

≤ γ

2 Σn−1
i=0


∣∣∣∣∣∣
∫ x

(n)
i+1

x
(n)
i

1
γ

(q(τ)− q̃(τ))dβτ

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ x

(n)
i+1

x
(n)
i

−
∫ x̃

(n)
i+1

x̃
(n)
i

 1
γ

q̃(τ)dβτ

∣∣∣∣∣∣
+o(1)

≤ γ

2 Σn−1
i=0


∫ x

(n)
i+1

x
(n)
i

1
γ

|q(τ)− q̃(τ)|dβτ

+

∫ x
(n)
i+1

x
(n)
i

−
∫ x̃

(n)
i+1

x̃
(n)
i

 1
γ

|q̃(τ)|dβτ

+o(1),

(4. 68)
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but we know that

Σn−1
i=0

∫ x
(n)
i+1

x
(n)
i

1
γ

|q(τ)− q̃(τ)|dβτ =
∫ x

(n)
1

x
(n)
0

1
γ

|q(τ)− q̃(τ)|dβτ +
∫ x

(n)
2

x
(n)
1

1
γ

|q(τ)− q̃(τ)|dβτ

+ · · ·+
∫ x

(n)
n−1

x
(n)
n

1
γ

|q(τ)− q̃(τ)|dβτ

=
∫ π

0

1
γ

|q(τ)− q̃(τ)|dβτ =
∣∣∣∣∣∣∣∣1γ (q − q̃)

∣∣∣∣∣∣∣∣
1
,

then (4. 68) becomes

Kβn(Xβ, X̃β) ≤ γ

2 || 1
γ

|| ||q − q̃||1 +Σn−1
i=0

∫ x
(n)
i+1

x
(n)
i

−
∫ x̃

(n)
i+1

x̃
(n)
i

 1
γ

|q̃(τ)|dβτ +o(1)

≤ ||q − q̃||1 +Σn−1
i=0

∫
Ĩ

(n)
βi

1
γ

|q̃(τ)|dβτ,

(4. 69)

where Ĩ
(n)
βi = I

(n)
βi ∪I

(n)
β(i+1) and I

(n)
β(i) is the interval bounded by x

(n)
βi and x̃

(n)
βi . Let I

(n)
β = ∪Ĩ

(n)
β(i),

then by virtue of lemma 4.6.1 we have∣∣∣In
β

∣∣∣= Σn−1
i=0

∣∣∣Ĩn
βi

∣∣∣= n
∣∣∣Ĩn

βi

∣∣∣= nO

( 1
n2

)
= O

( 1
n

)
,

as such limn→∞
∫

Ĩ
(n)
βi

1
γ |q̃(τ)|dβτ = 0 and (4. 69) gives Kβn(Xβ, X̃β) ≤ ||q − q̃||1 which implies

that

do(Xβ, X̃β) ≤ ||q − q̃||1 , (4. 70)

hence the theorem is proved.

Now, we can prove the theorem 4.6.1.

Proof 27. Considering section 4.6, theorem 4.6.1 and (4. 64) it is clear that dΣ(Xβ, X̃β) = 0
if and only if q = q̃, as such Σ∗

1 is in one-one correspondence with Ω.
Let

dΣ(Xβ, X̃β) ≤ 1
2 ,

it follows from (4. 63) and section 4.6 that

||q − q̃||1 ≤ 4dΣ(Xβ, X̃β), (4. 71)

on the contrary, it follows from theorem 4.6.3 that if ||q − q̃||1 is small, then dΣ(Xβ, X̃β) is
also small. This and (4. 70) completes the proof.

It can be seen from (4. 70) and (4. 71) that do(Xβ, X̃β) = 0 only when dΣ(Xβ, X̃β) = 0.
as such, the inverse nodal problem is stable.
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5. Conclusion

In this research work, we established and presented the direct and inverse SLP using
the new non-integer value differentiation method- Conformable derivative, where we
analyzed its spectral properties; the eigenvalues, the eigenfunctions, the nodal points, the
nodal lengths and the potential functions under different sets of boundary conditions as an
effort to extend the concepts of the SLP and its inverse problems to the non-integer value
derivative concepts as it gives a more appropriate and more approximate model of the
likely physical problems.
In order to test the possibility of using this new differentiation method in SLPs we used it
and established a transformation operator for the SLP on a classical Sturm-Liouville
operator, there we obtained a Hyperbolic type partial differential equation and the related
conditions for Nucleus function N(x,τ). Finally, this problem is reduced to a Volterra
integral type equation. This transformation operator has an important place in terms of
the solution of the inverse problem in the SLT, especially the relation between the
potential function and the kernel in the form of N(x,x) =

∫ x
0 [q(s) − r(s)]ds. A similar

relationship for the conformable SLP is presented as N(x,x) =
∫ x

0
[q(s)−r(s)]

1+sβ−1 dβs.
Subsequently, we investigated the direct and inverse nodal problems associated with a
conformable derivative SLP with the spectral parameter included in the boundary
conditions. The spectral parameters obtained were employed to reconstruct the potential
function and the uniqueness of the potential function is demonstrated. We proved the
Ambarzumyan theorem to furthermore demonstrate the new derivative approach. This
study is significant for two reasons. Initially, an nth-degree polynomial was considered in
the boundary condition, resulting in the availability of exceptional cases. Secondly, in
comparison to the classical derivative, the conformable derivative demonstrated greater
universality.
In the last section, we extended the SLPs to the concepts of constant delay using the
conformable derivative approach, there we were able to show and expressed the possibility
of solving the direct and inverse SLP with constant delay and expressed the corresponding
spectral properties.
We examined the problem under two different sets of boundary conditions. In the first
case, we solved the direct problem and proved that the specification of the spectrum
uniquely determine the characteristics function, while in the second case, we solved both
the direct and the inverse problem and proved the stability of the obtained potential
function using Lipschitz stability approach.
This novel derivative approach allows for the discussion of similar problems with different
boundary conditions, along with their associated spectral features and also similar or
other derivative approaches can be use where possible to express similar cases of the SLP



so that a full non-integer derivative phase of the direct and inverse SLP could be
established and this will significantly add to the literature of this special case of the
second order differential equation.
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RECOMMENDATIONS

This research work established, analyzed and successfully expressed the direct and
inverse SLP using a non-integer value derivative called conformable derivative which is an
addition to the literature of the SLP since it is an extension to the classical SLP. This
work may enhance the provision of more appropriate and more approximate models of the
likely real life problem and we recommended that further researches should be carried out
using this new derivative under different set of the boundary conditions or another different
non-integer value differentiation approaches in order to established a complete phenomena
for the SLP as it may be more vital in the near future.
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