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YÜKSEK LİSANS TEZİ
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CERN LARGE HADRON COLLIDER
COMPACT MUON SOLENOID

HADRONIC CALORIMETER UPGRADE WORKS

SUMMARY

The Large Hadron Collider (LHC) and its detectors have become the most discussed
scientific device around the world with its discoveries. Starting from 2000s, LHC
project became real in March 2010, the first successful collision. Just in 2 years, LHC
discovered Higgs boson on July 4, 2012.

LHC houses 4 big experiments, Compact Muon Solenoid (CMS), A Toroidal Large
Hadron Collider ApparatuS (ATLAS), A Large Ion Collider Experiment (ALICE) and
Large Hadron Collider beauty (LHCb). CMS is the heaviest and one of general purpose
detector of LHC. CMS has hadronic calorimeter (HCAL) to measure and identify
hadrons. HCAL consists of hadronic barrel (HB), hadronic outer (HO), hadronic
endcap (HE) and hadronic forward (HF) calorimeters.

Material of these detectors will be damaged due to increasing integrated radiation for
high luminosity of LHC. For that reason, material of subsystems needs to be replaced
by stronger ones. For example, hadronic endcap scintillators will be highly damaged
by luminosity of High Luminosity Large Hadron Collider (HL-LHC), new phase of
LHC starting from 2023. For replacement, 4 different institutes have proposed new
scintillators. Irradiation test of these scintillators were done with a dark box, silicon
photomultiplier (SiPM) and a readout system in 2015. Measurements were taken
in March, June, September and December 2015. In order to understand how much
these scintillators will be damaged by radiation, installation box of scintillators were
irradiated by installing few cm close to the beam pipe inside the CMS detector –to
Centauro And Strange Object Research (CASTOR) table. After taking derivatives
of measurement data under different conditions, breakdown voltage (BDV) of SiPMs
were calculated in ROOT software package. Adding a specific voltage to BDV, currents
were compared to observe radiation damage in scintillators.

Due to systematical and statistical errors in previous measurements setup new
measurements will be taken via HCAL data acquisition (DAQ) system for reliable
results. Work are still continue as of April 2016.

In long shutdown 1 (LS1) photomultiplier tubes (PMT) of HF calorimeters were
replaced by new ones. To calibrate new PMTs, sourcing data were taken with Co-60
radioactive source, and analysis were done in CMSSW. Applying several corrections
and conversions, calibration coefficients of individual PMTs were calculated. New
source data were taken in 2016 and analysis of new data were scheduled later this year.

Alongside these tasks, there are several ongoing tasks such as HF radiation damage
monitoring and online software development. HF-fiber radiation damage monitoring
involves local radiation damage data in CMMSW and monitor radiation damage in
time. Online software includes developing and upgrading new generation readout box

xxi



manager (ngRBXManager). This software will operate to take data from readout boxes
via new generation clock control module (ngCCM).
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CERN BÜYÜK HADRON ÇARPIŞTIRICISI
KOMPAKT MUON SOLENOİDİ

HADRON KALORİMETRESİ YÜKSELTME İŞLERİ

ÖZET

Günümüzden yaklaşık 13,8 milyar yıl önce Büyük Patlamayla başlayan parçacıkların
serüveni günümüz fizikçilerinin en merak ettiği konulardan biridir. Büyük Patlamayla
oluşan parçacık ve karşı-parçacıklar büyük oranda birbirleriyle etkileşime girerek yok
olmuşlardır. Fakat eşit miktarda oluşması beklenen parçacık ve karşı-parçacıklar,
parçacıklar lehine yaklaşık %5 oranında kendiliğinden bozulmuştur. Parçacıkların
günümüze doğru devam eden serüvenine yaklaşık 160.000 yıl önce dahil olan
homo sapiensler, parçacıklar evrenini keşfetmeye başlamışlardır. M.Ö. 4. yüzyılda
Demokritos, maddenin parçalanamayan küçük parçacıklardan yani atomlardan
oluştuğu fikrini ortaya atmıştır. Fakat atomun gözlenmesi 19. yüzyılın sonuna
kadar mümkün olmamıştır. 1897’de J. J. Thomson’ın elektronu keşfiyle başlayan
parçacık fiziği serüveni hızlı bir şekilde seyir almıştır. 1911’de Rutherford’un atom
modeli ve bulut odasının keşfiyle birlikte yeni parçacıklar gözlenmeye ve gözlem
teknikleri gelişmeye başlamıştır. Atmosferimize çarparak yeryüzüne ulaşan kozmik
ışınlarda düşük kütleli parçacıklar gözlenmeye başlandı. 1950’lere gelindiğinde
kozmik ışınların enerjisinin düşük olmasından dolayı yeni parçacıklar gözlenmemeye
başlandı. Bilim topluluğu bu duruma hızlandırıcılar icat ederek çözüm buldu. Bu
sayede parçacıklara elektrik alan altında enerji kazandırılıp hedefe çarptırılarak yüksek
kütleli parçacıkların da gözlenmesi sağlandı.

1950’lerin sonunda Avrupa’da İkinci Dünya Savaşı sonrası sadece hayatlar değil,
bilim de durma noktasına gelmişti. Bu sebeple 1952 yılında aralarında Werner
Heisenberg gibi Nobel ödülü sahibi bilim insanlarının da bulunduğu bir konsey
toplandı. Konseyin toplantıları sonucu 1954 yılında İsviçre’nin Cenevre kenti
yakınlarında Avrupa Nükleer Araştırma Merkezi (CERN) kuruldu. CERN hızlandırıcı
dünyasına Eş Zamanlı Siklotron (SC) ve Proton Eş Zamanlayıcısıyla (PS) birlikte
hızlı bir giriş yaptı. SC, 1957 yılında pion parçacığının elektrona bozunumunu
gözleyerek vektör - aksiyal vektör (V-A) kuramını doğruladı. Bu keşifle birlikte CERN
yıllar içinde yeni hızlandırıcılar yapmaya devam etti. 1976 yılında Süper Proton Eş
Zamanlayıcısı (SPS) tamamlandı. Bu eş zamanlayıcı, protonları 450 GeV enerjisine
kadar hızlandırabilmektedir. 1983 yılında proton karşı-proton çarpıştırıcısı çalışmaya
başladı ve UA1 deneyinde W± ve Z0 bozonları keşfedildi. 1989 yılına gelindiğinde 27
kilometre uzunluğundaki Büyük Elektron-Pozitron Çarpıştırıcısı (LEP) hayata geçti.
Elektron ve pozitronları çarpıştıran bu hızlandırıcı, 200 GeV enerjisine ulaşabiliyordu.
2000’li yılların başında, CERN’de dünya çapında ses getirecek olan yeni bir proje
başladı. Büyük Elektron-Pozitron Çarpıştırıcısı, Büyük Hadron Çarpıştırıcısıyla
(LHC) değiştirildi. 2010 yılında çarpışmalara başlanan LHC’de 4 büyük algıç
bulunmaktadır. Bunlardan ikisi genel amaçlı algıçlar olmak üzere Toroidal Büyük
Hadron Çarpıştırıcısı Aparatı (ATLAS) ve Kompakt Muon Solenoididir (CMS). Diğer
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ikisi belirli amaçlar için tasarlanmış olan Büyük İyon Çarpıştırma (ALICE) ve Büyük
Hadron Çarpıştırıcısı Alt Kuark (LHCb) deneyleridir.

CMS deneyi 2012 yılında ATLAS’la birlikte Higgs bozonunu keşfetmiştir. Fakat
yerin 100 metre altındaki mağaralarda bulunan bu algıçlar oluşan yoğun radyasyondan
dolayı etkilenmektedirler. Algıçların elektronik parçaları ve parçacık tespitini sağlayan
mekanik parçaları radyasyondan zarar görmelerinden bağımsız olarak algıçlarda
yükseltme işlemleri de gerekmektedir. Yeni parçacıklar keşfedildikçe, daha yüksek
kütleli parçacıkların gözlenmesi için daha yüksek ışınlıklı ve daha yüksek enerjili
çarpışmalar yapılması gerekmektedir.

CMS algıcının hadron kalorimetresi, hadronların enerjisini soğurarak ölçen bir alt
algıçtır. Varil şeklinde olan hadronik varil (HB) ve varili iki taraftan kapatan
hadronik kapak (HE) kalorimetreleri vardır. Solenoid magnetin hemen dışında varil
seklinde bir hadronik dış kalorimetresi (HO) vardır. İleri bölgede yüksek enerjili
jetleri ve kayıp enine enerjiyi ölçen ileri hadron kalorimetreleri (HF) vardır. HE
kalorimetresinin parçacık etkileşiminde foton oluşturan sintilatörleri, yüksek ışınlıklı
LHC (HL-LHC) denilen 2020’de başlayacak olan yeni LHC dönemindeki radyasyona
karşı dayanıklı olacak şekilde tasarlanmamıştır. Bu sebeple 4 farklı enstitünün önerdiği
sintilatörlerden biriyle değiştirilmesi gerekmektedir. Önerilen sintilatörler 2015 yılı
içerisinde CMS üzerinde CASTOR boşluğunda demet hattının birkaç cm yakınında
radyasyona maruz bırakılmıştır. Sintilatörler CASTOR boşluğuna yerleştirilmeden
önce mart ayında ölçümleri alınmıştır. Daha sonra haziran, eylül ve aralıktaki teknik
aralarda tekrar yüzeye çıkarılıp ölçümleri yapılmıştır. İlk yapılan ölçümü referans
kabul ederek sonraki ölçümlerde sintilatörün radyasyondan ne kadar zarar gördüğü
ölçülmeye çalışılmıştır.

Ölçümler ışığı izole etmek için siyah bir kutu içinde silikon foto çoğaltıcı kullanılarak
yapılmıştır. Silikon foto çoğaltıcıların kazançları kutuplama gerilimine ve sıcaklığa
bağlıdır. Sintilatörler beta kaynağı olan ve radyoaktivitesi bilinen Sr-90 elementine
maruz bırakılmıştır. Foto çoğaltıcıdan okunan akım değeri radyasyon kaynağının
sintilatörde oluşturabileceği foton sayısıyla ilişkilidir. Bu sebeple veriler kutuplama
gerilimine karşılık foto çoğaltıcıdan okunan akımın yer aldığı akım-gerilim grafiğidir.
Foto çoğaltıcıların çalışma gerilim aralığını tespit etmek için ROOT yazılım programı
aracılığıyla bu grafiğin sayısal türevi alınarak ilgili akım değerine bölünmüştür. Yeni
grafikte iki tane tepe oluşur. İlk tepe çöküm gerilimi (BDV), ikinci tepe Geiger
modudur. Geiger modundan sonra kaçak akımla karanlık akım ayrıştırılamaz. Çalışma
aralığı bu iki tepe arasındadır. Belirli bir ∆V gerilimi, her ölçüm için Gaussyen
uydurmasıyla ayrı ayrı hesaplanmış olan çöküm geriliminin üzerine eklenmiştir. Bu
sayede foto çoğaltıcının kazancını etkileyen sıcaklık ve kutuplama gerilimi etkileri
ortadan kaldırılmış olur. Her bağımsız ölçüm için ayrı ayrı elde edilen BDV +
∆V gerilimlerine karşılık gelen akımlar kıyaslanarak radyasyon hasarı belirlenmeye
çalışılmıştır.

Mart ayında yapılan tekrarlanabilirlik ölçümlerine göre deney düzeneği yaklaşık %5
civarında sistematik hataya sahiptir. Ayrıca ölçümler 50 mV aralıklarla alınmıştır
ve çalışma gerilimi aralığında iki komşu gerilim değerine karşı gelen akımlar
arasında %10 fark vardır. Çöküm geriliminin iki komşu gerilimin tam ortasına
gelmesi durumunda (yani çöküm geriliminin iki komşu gerilimden 25 mV uzakta
olması durumunda) %5 mertebesinde istatistiksel hata mevcuttur. Her ne kadar
istatistiksel hata, kübik iç-kestirimle azaltılmışsa da sistematik hata hâlâ kabul
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edilemez seviyededir. Bunun yansıra ölçümler yapılırken fiber kablo yetersizliği
yüzünden aynı fiber kablo çeşitli sintilatörlere yerleştirilmiştir. Bu durum, fiber
kabloya zarar vererek ileteceği ışık miktarını etkilemiştir.

Bu koşullar altında deney sonuçları beklenildiği üzere çok sağlıklı olmamıştır.
Ölçümler arasındaki oranların 0 ile 1 arasında olması ve zamanla azalması beklenirken,
bazı oranlar 1’den büyük bazıları eksi, bazı oranlar da zaman içinde artmıştır. Mevcut
deney düzeneğinin verimli sonuç vermemesinden dolayı radyasyona maruz bırakma
ölçümleri hadron kalorimetresinin veri alma sistemi kullanılarak daha stabil bir şekilde
algıç üzerinden alınacaktır. Bu sayede tüm çevresel etkiler en aza inecek ve çok
daha verimli veri alma sisteminin yanı sıra yeni algoritmalar sayesinde sistematik
ve istatistik hatalar en aza inecektir. Yeni deney sistemi için çalışmalar nisan 2016
itibariyle devam etmektedir.

Bunların yanı sıra uzun yükseltme 1 (LS1), döneminde ileri hadron kalorimetresinin
foto çoğaltıcı tüpleri daha fazla foton üreten yeni foto çoğaltıcılarla değiştirilmiştir.
Yeni foto çoğaltıcı tüpler birbirinin aynısı olsa bile çevresel faktörlerden dolayı her
birinin kalibre edilmesi gerekmektedir. Bu sebeple 2014 yılı içerisinde HF’nin her iki
sektörü için Co-60 kaynağıyla veri alınmıştır. Bu veriler her tüpe teker teker radyoaktif
kaynak sokularak tüm fiber boyunca alınmıştır.

CMSSW yazılım paketi aracılığıyla kaynak, ilgili tüpteyken ve ilgili tüpten uzaktayken
olmak üzere iki farklı analiz yapılmıştır. Kaynak, tüpteyken alınan veriye sinyal;
kaynak, uzaktayken alınan veri ardalandır. Veriler analog-dijital dönüştürücü (ADC)
aracılığıyla alınır. Veri, farklı ağırlıklara sahip olacak şekilde 32’ye bölünmüş
olarak bir histograma kaydedilir. Her bir kutunun Coulomb cinsinden bir değeri
vardır. Bu sinyaller hesaplanırken, her bir olay histogramının sol tarafında yer alan
tepenin orta noktasına karşılık gelen yük ilgili sinyalden çıkarılmıştır. Bu tepe,
kapasitörlerin oluşturduğu pedestal denen yüklerdir. Bu şekilde hem ardalan hem de
sinyal hesaplanmıştır. Daha sonra ardalan sinyali, sinyalden çıkarılarak arkaplandaki
gürültüden kurtulunmuştur.

Elde edilen yüklere geometrik düzeltme uygulanmıştır. HF kalorimetresinin hücre
büyüklükleri birbirinden farklı olduğu için hücrelerde soğrulan enerji miktarları
farklı olacaktır. Bu geometrik düzeltme katsayıları Geant4 benzetim programıyla
belirlenmiştir. Her bir foto çoğaltıcı tüp için okunan değer foto çoğaltıcıların üreticisi
Hamamatsu firmasının kitapçığında yazan 2,6 ile çarpılarak femto-Coulomb (fC)
cinsinden yükler olarak hesaplanmıştır. Daha sonra son düzeltme, yük (fC) cinsinden
enerjiye (GeV) olan dönüşümdür. Bu dönüşüm için hadronik ve elektromanyetik
tüplerde farklı enerji katsayıları kullanılmıştır. Sonuç olarak yeni foto çoğaltıcıların
kalibrasyon katsayıları hesaplanmıştır. Bu katsayılarla foto çoğaltıcılarda indüklenen
elektrik yükü, enerjiye dönüştütülebilmektedir. Bu sayede foto çoğaltıcı tarafından
tespit edilen parçacığın enerjisi ölçülebilmektedir. Katsayılar yeni analizlerde
kullanılması için veri tabanına kaydedilmiştir.

Aynı veriler 2016 yılında da alınmıştır ve yeni verilerin analizi de 2016 yılı içindeki
hedeflerden biridir. Yeni kalibrasyon katsayıları, yeni veri alım dönemindeki çarpışma
analizlerde kullanılacaktır.

Bu işlerin yanı sıra 2016 yılı içerisinde devam eden çevrimiçi yazılım, HF fiberleri
radyasyon hasarı izleme görevleri devam etmektedir. Çevrimiçi yazılım yükseltme
görevi, yeni nesil veri okuma modüllerinden veri alınmasını sağlayan yazılım paketinin
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geliştirilmesini içermektedir. Adı ngRBXManager olan yazılım paketi, yeni nesil
zamanlama kontrol modülüyle (ngCCM) haberleşerek algıcın elektroniğinden verilerin
alınmasını sağlayan pakettir. Bu pakette hangi yükseltmelerin yapılacağını belirlemek
de görevin bir parçasıdır. HF kalorimetresi radyasyon hasarı izleme görevi, sürekli
olarak algıç üzerinden alınan verilerle kalorimetrede yer alan fiber kabloların hasarını
belirlemek içindir. Veriler lazer aracılığıyla özel hazırlanmış 56 HF kanalından
alınır. Bu veriler CMSSW yazılım paketi aracılığıyla analiz edilerek zaman içerisinde
radyasyon hasarı izlenmektedir. HF çalıştığı sürece radyasyon hasarı olacağından
dolayı bu görev dönemlik değil, sürekli yapılması gereken bir iştir.
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1. INTRODUCTION

Question of “What is the building block of matter?” has become the most important

question of humankind for centuries. This question dates back to BC 600. At those

years, it was common that matter is made of particles. Etymologically, ancient Greek

philosophers such as Leucippus, Democritus and Epicurus worked on “atom” which

means “indivisible.”

In 19th century John Dalton claimed that elements are made of particles which are

called atoms [1]. Through the end of the century, physicists started to discover atoms

and what is in it. With discovery of quantum and nuclear physics, fusion and fission in

the beginning of 20th century, atom which was thought to be indivisible was divided.

While technology and science were growing up, new particles started to be observed.

First observed particle was electron with J. J. Thomson’s cathode tube experiment

in 1897 [2]. Ernest Rutherford discovered atom in 1911 and proton in 1919 [3].

In 1928 Paul Dirac proposed positively charged electron and it was discovered in

1932 by Carl D. Anderson at California Institute of Technology (Caltech) via cosmic

ray experiments and it is named positron [4, 5]. In 1937, Seth Neddermeyer, Carl

D. Anderson, J. C. Street and E. C. Stevenson discovered a muon in cosmic ray

experiments; nevertheless, its existence was proven by cloud chamber experiment of

J. C. Street and E. C. Stevenson in 1937 [6]. In 1947, George Dixon Rochester and

Clifford Charles Butler discovered kaon in cosmic rays at Manchester University [7].

For photon, it is hard to give a name and a date about its discovery.

In 1953, accelerator era started by Brookhaven National Laboratory’s (BNL) 3.3

GeV accelerator whose length is 72 m. In 1955, anti-proton was discovered by

Owen Chamberlain, Emilio Segre, Clyde Wiegand and Thomas Ypsilantis at 6.2 GeV

Bevatron in Berkeley [8].

Later, in 1956 Frederick Reines and Clyde Cowan discovered electron neutrino at Los

Alamos reactor [9]. In 1962, Leon Lederman, Melvin Schwartz and Jack Steinberger
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found muon neutrino [10]. In 1954, strange particles were discovered at Bevatron.

Charged cascade particle whose strangeness number is two, was observed in cosmic

rays at Manchester University in 1952, and neutral cascade particle was discovered in

1959 in Berkeley.

In 1969, quarks were observed during proton-electron collisions at Stanford Linear

Accelerator Center (SLAC). Up, down and strange quarks were observed at SLAC

[11]. Charm quark was independently discovered by Burton Richter team at SLAC

and Samuel Ting team at BNL [12, 13]. Bottom or beauty quark was observed by

Leon Lederman team at Fermi National Accelerator Laboratory (FNAL) and top quark

was discovered by The Collider Detector at Fermilab (CDF) and D∅ collaborations at

FNAL in 1995 [14–16].

In 1979, gluons were indirectly discovered at German Electron Synchrotron (DESY)

and in 1983, The Underground Area 1 (UA1) collaboration at The European

Organization for Nuclear Research (CERN) discovered W± and Z0 bosons with Carlo

Rubbia and Simon van deer Meer [17–19].

On July 4, 2012 CERN announced discovery of a new particle which had five sigma

level signal for Higgs boson [20]. On March 14, 2013 the particle which was observed

in July was announced as Higgs boson in Moriond Conference by analysis of 2.5 times

more data by Compact Muon Solenoid (CMS) and A Large Toroidal Large Hadron

Collider Apparatus (ATLAS) collaborations [21].

Hadrons are composite particles rather than fundamental particles. Hadrons which are

composed of two quarks are called mesons and hadrons composed of three quarks are

called baryons.

Particle physics sometimes called high energy physics. The reason why it is called

high energy physics is not because of macroscopic energy level of protons, it is because

higher energy density of protons compared to their mass and volume. There are two

types of interaction as decay and scattering. Collision of two or more particles (and

eventually production of new particles) is called scattering. Division of one particle

into two or more particles is called decay.
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2. PARTICLE PHYSICS

Particle physics is a branch of physics which is related to particles and interactions

between each other as well as radiation and fundamental particles. Mostly it is called

high energy physics, because particles need to be collided with other particles at higher

energy in order to produce and observe the fundamental particles.

2.1 Standard Model

Standard model is the most realistic model that explains particles and interactions

between the particles. However, it does not show us the whole picture of the universe.

It includes three particle families called leptons, quarks and force carriers.

Leptons have three generations to include electron, muon and tau, and three neutrinos

corresponding to these three leptons. First generation consists of electron and electron

neutrino, second consists of muon and muon neutrino, and third consists of tau and

tau neutrino (Table 2.1). Each lepton has different combination of charge, mass,

electron number, muon number and tau number. Each lepton has anti-particle called

anti-leptons. Anti-leptons have opposite charge and opposite lepton number to the

corresponding leptons. Leptons are fermions, since their spins are 1/2.

Table 2.1 : Properties of leptons.

leptons symbol electric charge mass
electron e− -e 0.511 MeV/c2

electron neutrino νe 0 < 2 eV/c2

muon µ− -e 106 MeV/c2

muon neutrino µν 0 < 0.19 MeV/c2

tau τ− -e 1.78 GeV/c2

tau neutrino ντ 0 < 18.2 MeV/c2

Quarks have three generations also. Each generation includes two quarks as up (u) and

down (d) quarks, strange (s) and charm (c) quarks, and bottom (b) and top (t) quarks,

respectively (Table 2.2). Each quark has anti-particle called anti-quark. Anti-quarks
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have opposite electrical charge and opposite color charge to corresponding quarks.

They are also fermions, since their spins are 1/2.

Table 2.2 : Properties of quarks.

quarks symbol electric charge mass (MeV/c2)
up u 2e/3 1.5-3.0

down d -e/3 3-7
strange s -e/3 95±25
charm c 2e/3 1.25±0.09×103

bottom b -e/3 4.20±0.07×103

top t 2e/3 174±3.3×103

Force carriers or mediators are spin-1 particles; hence, they are bosons. Each

fundamental force has different force carrier. For gravity, force carrier is hypothetical

graviton and hasn’t been observed yet, and it is also not included in standard model.

Force carrier for electromagnetism is massless photon. Strong force has eight different

colorful gluons as force carriers. Neutral Z0 and charged W± bosons are the force

carriers of weak force. These particles have mass unlike other bosons. There is another

extra boson called Higgs boson which explains the masses of W± and Z0 bosons (Table

2.3).

Table 2.3 : Properties of force carriers and Higgs boson.

force force carriers charge mass (GeV/c2) spin
strong gluons 0 0 1

electromagnetic photon (γ) 0 0 1
weak (charged) W± ±1 80.4 1
weak (neutral) Z0 0 91.2 1

- higgs 0 125 0

2.2 Particle Dynamics

There are four fundamental forces in nature. These forces are gravity, electromag-

netism, strong interaction and weak interaction. Combining electromagnetism and

weak interaction, S. L. Glashow, A. Salam and S. Weinberg won the 1979 Nobel

Physics prize with their Glashow-Weinberg-Salam model [22]. These fundamental

forces have different ranges and strengths. While coupling constant for strong force

dramatically increases in short distance, for other forces coupling constant decreases

in short distances. This also explains why quarks cannot be observed as single. When
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quarks are tried to be separated from each other, coupling constant drastically increases

and more energy is required to separate quarks from each other. Even if there is

enough energy to separate quarks, this intense energy will produce new quark couples

immediately. The reason why quarks cannot be seen as a single quark is that the energy

needed to separate quarks will turn into mass creating a new quark.

2.2.1 Electromagnetic force

James Clerk Maxwell combined electric and magnetic forces with his book named

“A Dynamical Theory of Electromagnetic Field” as electromagnetic force in 1864.

With his addition to Ampere’s law, he showed that changing electrical field produces

magnetic field. Combining this law with Gauss’ laws and Faraday’s induction law, he

formed Maxwell equations for electromagnetism (Table 2.4).

Table 2.4 : Maxwell equations.

Law differential form integral form
Gauss’ law ∆.E = ρ

ε0

∮
s E.dA = Q

ε0
Gauss’ law for magnetic field ∆.B = 0

∮
s B.dA = 0

Faraday’s induction law ∆×E = −∂B
∂ t

∮
s E.dl = −dϕB

dt
Ampere’s law ∆×B = µ0J+µ0ε0

∂B
∂ t

∮
s B.dl = µ0I +µ0ε0

−dϕE
dt

First Maxwell equation is Gauss’ law which explains that source of electrical field

is electrical charge. Second equation indicates that there is no source for magnetic

field meaning that there is no magnetic monopole. Third law is Faraday’s law which

shows that changing magnetic field forms an electrical field. Fourth and the last law is

Ampere’s law and Maxwell showed that changing electrical field produces magnetic

field adding a new term which is the actual contribution of Maxwell. This set of four

equations explains all phenomena about electromagnetism. These equations are also

invariant under Lorentz transformation.

Electromagnetic force acts on particles decreasing by inverse square of distance to

the source and it has an infinite range. Force carrier of electromagnetism is spin-1

photons which have no mass and no charge. Anti-particle of a photon is photon.

Photons are emitted from accelerated particles and propagate with the speed of light.

In electromagnetic spectrum, gamma rays, X-rays, ultraviolet, visible light, infrared,

microwave and radio waves are all photons in different energies and wavelengths.
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2.2.2 Strong force

After well understanding of electromagnetism, next question was about how protons

stay together in an atom’s nuclei. According to electromagnetism, particles with the

same sign of charge have to repulse each other, and this repulsive force has to be way

much higher at subatomic scale due to inverse square law of electromagnetism. This

phenomena can be explained by introducing a new force of nature. Strength of this

force has to be higher than electromagnetism and its range has to be too short so that

it cannot be felt from outside of the nuclei. This force is strong nuclear force which

loses its effect below 10−15 m range.

This force acts on quarks which have color charges. Therefore, it acts on baryons

which are made of three quarks and mesons which are made of two quarks. Proton and

neutron are baryons with three quarks, and pion and kaon are mesons with two quarks.

All hadrons are colorless. These color charges are just an analogy with red, blue and

green. Each of these colors have an anti-color as anti-red, anti-green and anti-blue.

In nature, combination of these three colors is white, that is, colorless. Therefore, in

baryons each quark has three different colors. Mesons have quark anti-quark couple

which makes them colorless.

In strong force, there are gluons carrying one color and one anti-color charge as

force carriers. Nine different unique combinations can be generated by three color

and three anti-color charges. These nine combinations are sum of singular and octet

combinations. Singular combination is colorless. Singular combination is prohibited,

since colorless combination can interact with only colorless combination and there

are no long distance gluon interactions. In octet combinations there are eight bicolor

gluons that can interact with each other.

2.2.3 Weak force

Weak force is responsible for subatomic decay. Force carriers of weak nuclear force

are W+, W− and Z0 bosons. These particles have huge mass unlike gluons and photons

(Table 2.3).

While particle flavor is being conserved for other forces, it is not conserved for weak

nuclear force. For example, up quark can turn into charm quark by emitting a Z0 boson.
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Probabilities of these translation are given by 3x3 Cabibbo-Kobayashi-Maskawa

matrix which is experimentally determined. Since weak force does not interact with

color charge, color charges of quarks are conserved. Electron can turn into an electron

neutrino by emitting W−. However, generations are conserved for leptons. For

example, in a weak interaction including electron and electron neutrino, a lepton from

muon or tau generations cannot be observed. In other words, lepton numbers are

conserved for weak interaction.
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3. EXPERIMENTAL PARTICLE PHYSICS

Experimental particle physics aims to observe particles and interactions between

particles. For this purpose, physicists need detection devices such as accelerators and

detectors. Accelerator is the device which supplies accelerated particles to be collided

and observe emerging particles. When a collision happens with particles accelerated

by an accelerator, sensitive and faster detectors need to determine and identify those

emerging particles.

3.1 Accelerator Physics

Subatomic particles usually cannot be observed easily, since their lifetimes are mostly

way much shorter than a second. With specified arrangements called "particle

accelerators" which are designed for this purpose, particles accelerated by high

electrical field are being focused for collision to produce new particles, and then these

secondary particles are observed and identified.

After Rutherford’s atomic model in the beginning of 20th century humankind’s

searches and interests for solving fundamental structure of matter have led to

the usage of accelerated particles such as electrons and protons for new particle

physics and nuclear physics experiments. First experimental studies started in 1920s,

varied in 1930s and beam energies increased 10 times in each 7 years starting

from late 1940s. Today we have an accelerator at 13 TeV, The Large Hadron

Collider (LHC). Accelerators which have become inevitable experimental devices of

particle physics and nuclear physics, (alongside main purposes such as producing

fundamental particles, secondary beams, and especially fundamental researches) have

had roles on various science and technology sector about producing industrial and

technological products, and have helped development of macro economy, engineering

and technology in developed countries.

When the accelerator centers, such as CERN at Swiss-French border, DESY in

Germany, The High Energy Accelerator Research Organization (KEK) in Japan, SLAC
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and FNAL in United States of America (USA), Novosibirsk and Protvino Accelerator

Centers in Russia where in each of them hundreds of PhD people work considered,

development of countries can easily be noticed in fields of information, technology

and engineering.

Accelerators are widely used from particle physics and nuclear physics experiments

to material physics, from X-rays to neutron therapy, from proton therapy to ion

implantation, from searching for fuel and gases to elimination of environmental waste,

from sterilization of food to isotope production, from cleaning of nuclear waste to

thorium reactors, from polymerization to lithography, from angiography to cleaning of

sera gases, from micro spectroscopy to power electronics, from synchrotron radiation

to free electron lasers, from heavy ion fusion to plasma heat. Isotopes or metallic

surfaces which are resistant to rusting for 15 years produced by ion implantation that

are worthy thousands of dollars are just few example products of accelerators.

Large number of researches about physical, chemical and biological substances in

synchrotron radiation laboratories which are based on electron accelerators such as

Hamburg Synchrotron Laboratory (HASYLAB) in Hamburg, Berlin Electron Storage

Ring Society for Synchrotron Radiation (BESSY) in Berlin, European Synchrotron

Radiation Facility (ESRF) in Grenoble, Elettra Sincrotrone Trieste (ELETTRA) in

Trieste etc. would be perfect indication of growing application of micro technologies

and investment to these applications.

Today there are more than 15,000 accelerators at varying scales all around the

world. Around 7,000 of these accelerators are used in ion implantations and surface

modification, 1,500 of these are used in industry, 1,000 of these are used in non-nuclear

researches, 5,000 of these are used in radiotherapy, 200 of these are used in medical

isotope production, 20 of these are used in hadron therapy, 70 of these are used as

synchrotron radiation source. Number of large scale accelerators for particle physics

experiments, nuclear physics experiments, production of synchrotron radiation and

electron laser and developing new technologies which are mentioned earlier are about

110. They have many impact on technology, science and economy. For example, today

at CERN, there are more than 14,000 scientists working from hundreds of institutes in

more than 100 countries.
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Idea of atom dates back to Democritus. Starting from Curie’s discovery of radioactive

elements such as radium and polonium, atomic physics led to nuclear physics with J. J.

Thomson’s discovery of electrons and E. Rutherford’s experiment of atomic structure.

Recent researches are related to more fundamental particles which makes up nucleus.

These researches are done at national and international laboratories such as CERN and

FNAL. They have many effects to daily life such as hadron therapy as well as internet.

3.1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the biggest particle accelerator at CERN near

Geneva,Switzerland. LHC is a 27 km long circular accelerator to accelerate particles

up to 7 TeV.

LHC sits at Large Electron Positron Collider (LEP) tunnel. Exact circumference of

tunnel is 26,659 m. There are more than thousand magnets around the 27 km ring that

is about 100 m underground. Around the ring, there are 8 points to reach underground

(Figure 3.1). In the LEP era, there were 4 experiments which sat at 4 different

points around the ring, the point 2, 4, 6 and 8. Their name were L3, ALEPH, OPAL

and Detector with Lepton, Photon and Hadron Identification (DELPHI), respectively

(Figure 3.2).

Figure 3.1 : LHC plan with access points and sector names. There are 8 access points
to go down the tunnels and experiments.
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Figure 3.2 : LEP era experiments and CERN accelerator plan. There were 4 LEP
experiments at 4 different points.

At point 1 which is just across the CERN main campus in Meyrin village near Geneva,

ATLAS experiment sits. New cavern started to be built in 1999 for ATLAS experiment.

Point 2 which housed L3 experiment was replaced by A Large Ion Collider Experiment

(ALICE) experiment. Point 3 is just an access point to LHC/LEP tunnels. ALEPH

experiment was removed from point 4 and now it is used as access point to LHC

tunnels and accelerating cavities. At point 5, two new caverns have been built for

CMS detector and excavation started in 1999. In one of these caverns, CMS itself lies.

Other cavern is just for service with full of electronics and cryogenics systems. First

control room of CMS was in service cavern, then it was moved to the surface of point
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5. OPAL experiment was removed from point 6; therefore, point 6 and 7 are access

points to LHC tunnels. DELPHI experiment was replaced by LHCb experiment.

Large Hadron Collider is made of several components. It consists of 1,232 dipole

magnets, several hundred quadrupole magnets and 16 accelerating cavities. Dipole

magnets are 15 m long and weighs 35 tones. Dipole magnets include 2 individual

beam pipes where particles travel in opposite directions. Beam pipe radii are around

2 cm. Around the pipes, there are steel pipes for vacuuming. Vacuum is up to 10−9

mbar. Liquid helium is used to cool down magnets up to 1.9 K temperature. Liquid

helium is isolated with 2 small pipes inside the beam pipes (Figure 3.3).

Figure 3.3 : LHC beam pipes. Accelerated particles are flowing at center of these
beam pipes in opposite directions. Small pipes above and below of beam

pipes are liquid helium pipes for cooling the magnets and beam pipes.

Liquid helium pipes also cool superconducting coils around the beam pipes.

Superconducting filaments are made of niobium-titanium alloy (NbTi). They are

designed to carry 13 kA current to produce 8.33 Tesla peak magnetic field which makes

them the most powerful magnets ever made. Critical temperature of niobium titanium

is 9.2 K; however, in order to be able to make it carry 13 kA current, it needs to be

cooled till 1.9 K. These magnets are powerful enough to bend 7 TeV protons to 27

km long ring. Magnetic field is set to have vertical lines inside beam pipes (Figure
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3.4). This will allow to bend particles towards center of accelerator by Lorentz force

applied on particles. Since magnetic field lines will be in opposite direction for two

pipes, particle beams will be bent together towards the center of accelerator.

Figure 3.4 : Magnetic field curves of LHC dipole magnets. Magnetic field curves are
just straight vertical lines inside beam pipes, and they are in opposite

direction inside the pipes.

LHC is also equipped with quadrupole magnets. Quadrupole magnets are relatively

smaller than dipole magnets, almost half the size. They also have white covers

unlike blue dipole covers. Depending on polarization, quadrupole magnet can focus

particles either vertically or horizontally. When a beam is focused both vertically and

horizontally, beam will be localized to a very small radius. This will prevent beam to

spray around. These quadrupole magnets are distributed around the ring.

Accelerating cavities sit at point 4. In total, there are 16 radio frequency (RF)

accelerating cavities in 4 cylindrical tubes called cryomodules, two cryomodules per

beam pipe. Each radio frequency generator oscillates at 400 MHz to accelerate particle

beam. They can conduct 2 MV per cavity which makes 16 MV in total per particle

beam.
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3.1.2 Sub accelerators of The Large Hadron Collider

LHC has sub accelerators to accelerate particles nearly to the speed of light (Figure

3.5). A hydrogen tube is used for proton source. Since beams are not continuous,

2×10−9 g hydrogen is being taken per bunch of protons. After taking hydrogen atoms

to duoplasmatron, protons and electrons are separated. Then protons are boosted at

linear accelerator 2 (LINAC2) through The Proton Synchrotron Booster (PSB). The

highest energy of protons at LINAC2 is 50 MeV and speed is around 31.4% of the

speed of light. After injection to the PSB, protons circulate inside 4 different cycles.

The highest energy and speed in PSB are 1.4 GeV and 91.6% of the speed of light.

Figure 3.5 : CERN accelerator network. There are several subcycles of LHC to
accelerate the particles nearly to the speed of light.

Next cycle for particle beam is The Proton Synchrotron (PS) which is one of the

very first accelerators at CERN. In PS, maximum energy of protons is 25 GeV, and

maximum speed is 99.93% of the speed of light. Length of PS is around 628 m in a

circular geometry.

When protons have enough energy and speed, they are ready to be injected to The

Super Proton Synchrotron (SPS) which is 7 km long circular accelerator. Protons will

gain energy up to 450 GeV and speed up to 99.9998% af the speed of light.
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Last cycle will be LHC after a pilot beam injection. Pilot beam is being injected to

LHC to check whether it would be circulating around the ring. If everything is working

fine, proton bunches are being injected into the LHC beam pipes in opposite direction.

LHC can accelerate protons up to 99.9999991% of the speed of light. Initial designed

energy of LHC is 7 TeV per beam which will make 7 TeV + 7 TeV = 14 TeV center

of mass energy when a collision happens. In the first experimental period called run-1,

LHC could reach up to 3.5 TeV and 4 TeV per beam meaning that 7 TeV and 8 TeV

center of mass energy collisions. After long shutdown 1 (LS1) phase, LHC could reach

to 6.5 TeV per beam corresponding to 13 TeV center of mass energy collisions in 2015.

13 TeV collisions will continue during 2016.

3.2 Detector Physics

It is not necessary “to see” to be able to observe something. The simplest example

would be the wind which we can’t see it, but we can feel. However, seeing is not

enough in scientific methods. Results have to be saved and it is shared with the public.

For example, in photography you can see an object, but in real you just see tracks of

the object in the photograph. In this context, seeing subatomic particle means seeing

tracks of the particles Therefore, detection is more important than seeing something.

In general, seeing a particle and observing its interaction mean recording its energy

(E), momentum (p), charge (q) and/or spin (s) by measurements. Detectors are such a

device which can detect and record these properties.

3.2.1 Cloud chambers

Wilson won 1927 Nobel Physics award with a detector he invented the cloud chamber.

It was especially used by experiments between 1920-1950. It is just a supersaturated

alcohol steam in a closed volume, that is why it is called a chamber. Particles in the

chamber ionize alcohol vapor; hence, ionized alcohol becomes visible as cloud. Each

tracks are recorded to be analyzed later. If a magnetic field is applied to the chamber,

charged particles will be curved due to Lorentz force. Using its curvature, momenta

and charge of those particles can be measured. Thanks to this invention positron, muon

and kaon were observed in 1932, 1937 and 1947, respectively [5–7].
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3.2.2 Bubble chambers

Bubble chambers have been invented by Glaser in the beginning of 1950s and he has

won 1960 Nobel Physics award. It basically consists a cylinder or sphere full of liquid.

Liquid is kept just under boiling temperature with a certain pressure and temperature,

i.e. liquid hydrogen at 27 K temperature and 5 bar pressure. When a particle reaches

the chamber, pressure is suddenly lowered, i.e. from 5 bar to 3 bar. Charged particles

lose their energy by ionizing the matter. This causes non-stable liquid to vaporize and

produces bubbles. Photographs are taken in 1 or 2 ms. Multiple cameras provide more

resolution up to 10 µm. It can be bigger than cloud chambers and can detect more

energetic particles since it includes denser liquid. Gargamelle and The Big European

Bubble Chamber (BEBC) are the two examples. Gargamelle experiment at CERN

discovered weak neutral currents.

3.2.3 Compact Muon Solenoid experiment

Imaging interaction of beam is required for recording and statistics. Only interesting

events need to be studied. Most of the events produced by an interaction of a beam

bunch are already known. That is why studying all events would be a waste of time.

Elimination of those events requires a filtering. Before, those filtering was being done

by hand, but now it can be done by electronics and software.

Today, bigger detectors consists of several parts to observe properties of particles and

interactions. Since different particles have different effects on different materials,

detectors can be more effective using the most effective materials.

CMS experiment is one of the bigger detectors of LHC at CERN. LHC houses 4

different giant detectors called CMS, ATLAS, ALICE, LHCb. ALICE and LHCb

experiments are relatively smaller than CMS and ATLAS experiments. They are

looking for specific physics. While ALICE is looking for quark-gluon plasma –state of

matter just after Big Bang–, LHCb is interested in about matter anti-matter asymmetry

or CP violation. CMS and ATLAS experiments are bigger experiments which are

looking for any signs of new physics. They are called general purpose detectors. The

reason why there are two general purpose detectors is to cross check the results. To

be able to announce a result as discovery, both of those detectors have to verify their

results as in the Higgs boson discovery in 2012. They are designed in a completely
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different structure in order not to have same systematical problems as well as to

increase statistics. For example, while CMS has only one and the most powerful

solenoid magnet ever made, ATLAS has a toroid magnet and 3 small solenoid magnets.

Even if CMS is not bigger than ATLAS in dimensions, it is the heaviest detector in

LHC, weighing 14,000 tones. CMS has 5 slices which all of them have been assembled

on the surface during construction of 100 m deep shaft through experimental cavern at

point 5. CMS has layers like a cylindrical onion.

The innermost structure of the CMS is silicon pixel tracker to track particles’ trajectory.

It has many silicon pixel cells which also have inner structure. When a charged particle

produced by collisions hits the silicon pixel detector, it can determine the location of

the particle. Following those locations through silicon layers, trajectory of the particle

can be constructed. Before measuring the energy of particles, it will give a clear track

of particle which will allow scientists to find the vertex where they come from.

Next layer is electromagnetic calorimeter (ECAL) which measures energy of

electromagnetic particles such as electrons, positrons and photons. Electromagnetic

particles deposit all their energy in the ECAL; therefore, it can be understood whether

they are electromagnetic particles or hadrons. Once they have been determined that

they are electromagnetic particles, they can be identified by using their curvature and

their measured energy.

Since hadrons’ momentum is higher than electromagnetic particles, they can pass

through ECAL and can deposit most of their energy in the hadronic calorimeter

(HCAL). That is why HCAL is just after ECAL. As in the ECAL, hadrons deposit

all their energy to the HCAL. Electromagnetic particles and hadrons can easily be

separated just looking where they deposit all their energy. Those calorimeters can

also measure energy of the particles which is one of the most important parameter for

identifying particles.

Measuring energy of a particle is not enough to identify a particle. Other parameters

should be determined such as charge and momentum. Using Lorentz law, charge of a

particle can be found. In the presence of a magnetic field, a charged particle trajectory

will be curved. Looking at the curvature of the particle trajectory, charge can easily

be determined. Furthermore, mass of the particle can be calculated using radius of
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curvature, energy and magnetic field. Since mass is unique for all particles, finding

mass means identifying the particle.

For that reason, there comes the most powerful solenoid magnet ever made surrounding

the HCAL which is “S” in “CMS” acronym. Since particles will have larger momenta,

magnetic field has to be powerful enough –around 4 Tesla. CMS scientists decided

to use the same superconducting filaments used in LHC magnets, NbTi coils. Critical

temperature of NbTi is around 9.2 K. To be able to produce a magnetic field around

4 Tesla in a 6 m diameter and 12.5 m long solenoid, NbTi coils needs to carry

around 20 kA current. Solenoid magnet of the CMS would be cooled down to 1.9

K, same temperature as in the LHC via liquid helium. In this case, nominal magnetic

field strength will be 3.8 Tesla. This field is enough for bending charged particles’

trajectories starting from the tracker layer.

The last layer would be muon chambers, since muons can surpass all layers of the

detector –even the muon chambers. Muons are one of the least interacting particle

and also have one of the longest lifetime in short lived particle family. CMS detector

can detect muons very accurately. Since magnetic field directions are opposite inside

and outside of solenoid magnet, curvature of muon tracks will be reversed inside and

outside of the magnet (Figure 3.6). Magnetic field strength will be around 2 Tesla in

muon chambers.

Figure 3.6 : Particle detection in CMS detector. As it can be seen, curvature of muon
is different inside and outside of the solenoid magnet.
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3.2.3.1 Hadronic calorimeter

HCAL can measure jets and missing transverse energy together with ECAL. HCAL

and ECAL will be the complete calorimetry system [23]. Central hadronic barrel

(HB) and hadronic endcap (HE) calorimeters of HCAL are immersed with high

magnetic field completely surrounding ECAL. HB and HE are connected to each other

hermetically and cover |η |< 3.0 pseudo-rapidity range together. HB covers |η |< 1.4

and HE covers 1.3 < |η | < 3.0, overlapping range with HB. Hadronic forward (HF)

calorimeters that cover 2.9 < |η | < 5 ,overlapping range with HE, are located 11.2 m

from the interaction point. HF calorimeters are designed to detect energetic forward

region jets and missing transverse energy to distinguish narrow lateral shower profile.

In central part, there is another calorimeter to improve measurement in the range of

|η | < 1.26. This calorimeter is called hadronic outer barrel (HO) and located outside

of magnet.

3.2.3.2 Structure of hadronic calorimeter

HB consists of 2 half barrels composed of 18 identical wedges. Each wedge covers

20◦ in φ direction to produce a barrel. Wedges are made of brass alloy absorber plates

which is parallel to the beam. Brass alloy consists of 70% copper and 30% zinc. For

structural strength, stainless steel is used for innermost and outermost layer. Between

brass alloy layer and stainless steel layer, there are 17 active plastic scintillator. First

layer directly comes after ECAL. Thickness of this layer is around twice compared to

the other layers to sample low energy showering particles from ECAL. Inner radius of

HCAL is 1,777 mm and outer radius is 2,876.5 mm. Layers are given by

(Layer 0) 9 mm scintillator/61 mm stainless steel

(Layers 1-8) 3.7 mm scintillator/50.5 mm brass

(Layers 9-14) 3.7 mm scintillator/56.5 mm brass

(Layers 15+16) 3.7 mm scintillator/75 mm stainless steel/ 9 mm scintillator

Layer numbers refer to active scintillator layer. Each scintillator is produced in size

of |η | × |φ | = 0.087× 0.087 and then assembled with one wavelength shifting fiber

(WLS). WLS fibers are connected to clear fibers whose lengths are enough to form 32

barrel towers in η (Table 3.1). There are exceptions for tower 15 and 16, since they
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have multiple optical readout. Optical signal is read by silicon photomultiplier sensors

(SiPM).

HE calorimeter is tapered to connect HB calorimeter and overlap with their tower

16 (Figure 3.7). HE also has 18 wedges made of totally brass absorber plates in φ

direction matching with barrel calorimeter wedges. Thickness is 78 mm for plates

and 3.7 mm for scintillator; thus, it reduces sampling fraction. There are 19 active

plastic scintillator layers. φ -granularity is reduced to 10◦ in high η-region (above

|η |= 1.74) because of accommodation of bending radius of WLS fiber readout (Figure

3.8). Because of uniform segmentation, energies are measured in the 10◦ φ wedges

and divided equally, and sent to the level-1 calorimetry trigger. |η |× |φ | is the same

between 1.3 < |η | < 1.74; however, η size increases after |η | > 1.74 (Figure 3.7).

HE also includes pseudo-EM part in depth starting from tower 18. This tower is also

first tower beyond η coverage of ECAL barrel. First segment of HE is for feeding the

regional calorimeter trigger (RCT). Rear segments are for forming hadronic energy

inputs for RCT. Rear segments of tower 28 is too large with ∆η = 0.35. First two

segments of this tower are split in η for precision (Figure 3.7).

Figure 3.7 : A schematic view of the tower mapping in r− z of the HCAL barrel and
endcap regions [24].

Layers of HO calorimeter are outside of solenoid magnet. They are close to the return

yoke; therefore, there is muon barrel system just after outer barrel calorimeter. HO

consists of 12 sectors in 5 rings each in 2.54 m along z-axis. Ring 0, the central ring,

consists of two 10 mm thick scintillator at radial distance 3,850 mm and 4,097 mm,

respectively. Other rings only have one layer at 4,097 mm radial distance. All panels

are identical except in ring ±1. Due to chimney structure of magnet, special panels
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Table 3.1 : Size of HCAL readout tower in η and φ as well as the segmentation in
depth. The HF has a non-pointing geometry, and therefore the tower η

ranges provided here correspond to |z|= 11.2 m [24].

tower low η high η detector size (φ ) size (η) depth segments
1 0.000 0.087 HB, HO 0.087 5◦ HB=1, HO=1
2 0.087 0.174 HB, HO 0.087 5◦ HB=1, HO=1
3 0.174 0.261 HB, HO 0.087 5◦ HB=1, HO=1
4 0.261 0.348 HB, HO 0.087 5◦ HB=1, HO=1
5 0.348 0.435 HB, HO 0.087 5◦ HB=1, HO=1
6 0.435 0.522 HB, HO 0.087 5◦ HB=1, HO=1
7 0.522 0.609 HB, HO 0.087 5◦ HB=1, HO=1
8 0.609 0.696 HB, HO 0.087 5◦ HB=1, HO=1
9 0.696 0.783 HB, HO 0.087 5◦ HB=1, HO=1

10 0.783 0.879 HB, HO 0.087 5◦ HB=1, HO=1
11 0.879 0.957 HB, HO 0.087 5◦ HB=1, HO=1
12 0.957 1.044 HB, HO 0.087 5◦ HB=1, HO=1
13 1.044 1.131 HB, HO 0.087 5◦ HB=1, HO=1
14 1.131 1.218 HB, HO 0.087 5◦ HB=1, HO=1
15 1.218 1.305 HB, HO 0.087 5◦ HB=2, HO=1
16 1.305 1.392 HB, HE 0.087 5◦ HB=2, HO=1
17 1.392 1.479 HE 0.087 5◦ HE=1
18 1.479 1.566 HE 0.087 5◦ HE=2
19 1.566 1.653 HE 0.087 5◦ HE=2
20 1.653 1.740 HE 0.087 5◦ HE=2
21 1.740 1.830 HE 0.090 10◦ HE=2
22 1.830 1.930 HE 0.100 10◦ HE=2
23 1.930 2.043 HE 0.113 10◦ HE=2
24 2.043 2.172 HE 0.129 10◦ HE=2
25 2.172 2.322 HE 0.150 10◦ HE=2
26 2.322 2.500 HE 0.178 10◦ HE=2
27 2.500 2.650 HE 0.150 10◦ HE=3
28 2.650 2.853 HE 0.350 10◦ HE=3
29 2.853 2.964 HF 0.111 10◦ HF=2
30 2.964 3.139 HF 0.175 10◦ HF=2
31 3.139 3.314 HF 0.175 10◦ HF=2
32 3.314 3.489 HF 0.175 10◦ HF=2
33 3.489 3.664 HF 0.175 10◦ HF=2
34 3.664 3.839 HF 0.175 10◦ HF=2
35 3.839 4.013 HF 0.174 10◦ HF=2
36 4.013 4.191 HF 0.178 10◦ HF=2
37 4.191 4.363 HF 0.172 10◦ HF=2
38 4.363 4.518 HF 0.175 10◦ HF=2
39 4.518 4.716 HF 0.178 10◦ HF=2
40 4.716 4.889 HF 0.173 10◦ HF=2
41 4.889 5.191 HF 0.302 10◦ HF=2
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Figure 3.8 : (a) The η−φ view of a 20◦ HE endcap section showing the 5◦ regions
and “split” 10◦ regions above η = 1.740 in detector pseudo-rapidity. The
tower 28/29 split in η is also shown. (b) The r−φ view of an HF wedge
(η at z = 11.2 m). The shaded regions correspond to the level-1 trigger

sums. [24].

have been used with one scintillator row. Pseudo-rapidity coverage of HO is η < 1.26

except space between muon rings. This space accommodates 75 mm stainless steel

support in φ direction.

Location of the forward calorimeters are 11.2 m from the interaction point. They

consist of steel absorber and hard quartz fiber which can immediately collect

Cherenkov light. Each HF section is made of 18 wedges in φ direction each having

20◦. There are two different length fibers with 5 mm distance, long ones are 1.64 m,

short ones are 1.43 m. They are in a bundle and connected to photo multiplier tubes

(PMT) separately for readout. η ranges are shown in Table 3.1 and an HF wedge is

shown in Figure 3.8.
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4. HADRONIC CALORIMETER UPGRADE STUDIES

LHC started first collisions in March 2010. By March 2010, Run 1 started for
√

s = 7

TeV and
√

s = 8 TeV collisions. After Higgs boson discovery in 2012, LHC and all

4 detectors went into the long shutdown 1 (LS1) starting from 2013.
√

s = 13 TeV

collisions started in 2015 called Run 2. Around early 2019, Run 2 will be ended and

long shutdown 2 (LS2) will be started. During LS2 there will be upgrade phase 1. Run

3 is between early 2021 and late 2023. Phase 2 upgrade –long shutdown 3 (LS3)– will

start by early 2024. During LS3, LHC will be upgraded to High Luminosity Large

Hadron Collider (HL-LHC) for higher luminosity at
√

s = 14 TeV collisions (Figure

4.1).

Figure 4.1 : LHC and HL-LHC plan. Run 1 started in 2010 and ended in 2013.
During LS1 between 2013 and early 2015, LHC and detectors were
upgraded. LS2 is upgrade phase 1 and LS3 upgrade phase 2. During

upgrade phase 2 LHC will be upgraded to LH-LHC [25].

In LHC/HL-LHC plan, integrated luminosity will reach 3000 fb−1 which will cause

radiation damage in detectors. Most parts of the CMS detector were not designed

for HL-LHC luminosity. Increasing integrated luminosity will damage detector parts,

i.e. scintillators, fibers, photomultiplier, electronics. These parts require replacement

before they are damaged to a certain level. When it is considered that integrated

luminosity will reach 3000 fb−1 by late 2020s, these replacement parts must be

stronger against radiation than the old ones.
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Hadronic calorimetry group have proposed some upgrades for each subpart of

calorimeter –hadronic barrel, hadronic endcap, hadronic outer barrel and hadronic

forward calorimeters. Some of these upgrades have been done during LS1 and new

upgrades are in process for upgrade phase 1 and upgrade phase 2.

4.1 Upgrade Studies of Hadronic Barrel and Endcap Calorimeters

HE and HB calorimeters consist of brass absorbers and scintillators with WLS fiber

readout. There are 17 layers with 72,000 individual scintillators connected to the

readout system with individual WLS fibers. The analog inputs coming from the

calorimeter are turned into digital data by a minimum number of individual electronics

channels, since there are intrinsic signal-to-noise ratio limitations of the WLS light

detected by hybrid photodiode (HPD) detectors and corresponding front end noise

from readout electronics (Figure 4.2). There is only one depth segmentation readout

system for bulk of η − φ barrel segmentation. In endcap calorimeter there is limited

depth segmentation, but it is not prepared against high luminosity LHC operation.

Several physics analyses done on initial LHC collision have clearly shown areas where

they need to be improved. Analysis also have shown that these improvements will

directly affect productivity of the experiment. Due to these analysis, areas required

upgrades and improvements can be summarized as follows: [26]

1) Need for calorimeter clean-up algorithms to reduce non-collision signals

coming from numerous sources,

2) Limited discriminating power of the HCAL/ECAL energy ratio for separating

pions from electrons,

3) Degradation of the electron isolation quantities with increasing instantaneous

luminosity,

4) Limited efficiency for muon isolation and identification using the HCAL

barrel and endcap,

5) Large calibration biases using isolated hadrons below 5 GeV due to showering

in dead material between ECAL and HCAL,

6) Inefficient bunch-crossing identification for low-energy signal impacting large

area summations used for hardware trigger-level lepton isolation, jet energy and global

energy sums,
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7) Strong η-dependent radiation damage in the endcap scintillators at high

luminosity introducing non-uniform light loss and constant term energy resolution

degradation, and

8) Limited number of discriminating quantities to reject beam-related

backgrounds not originating from the interaction region.

Figure 4.2 : Quarter view of the barrel and endcap hadron calorimeters, showing the
intrinsic longitudinal segmentation capabilities. The front-end readout
electronics, the readout boxes or “RBX”, are located directly behind

tower 15 in the barrel and directly behind tower 18 in the endcap [26].

Upgrades and improvements which will overcome these limitations are as follows: [26]

a) Replacement of photodetectors to eliminate the sources of anomalous signals

and to improve the front-end signal-to-noise ratio by an order of magnitude,

b) Four-fold increase in longitudinal segmentation to reduce

pile-up/high-occupancy performance degradation coming from the first layer of

scintillator, to improve clustering and geometric discrimination against non-collision

backgrounds and to increase channel redundancy, and

c) Scintillator time, time to digital converter (TDC) measurements per bunch

crossing with nanosecond timing resolution down to minimum ionizing particle

(MIP) energies to provide independent rejection for beam halo, cosmic ray, and other

non-collision backgrounds.
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To benefit new upgrades especially for front-end (FE) electronics there are new

proposals for back-end (BE) trigger and readout electronics: [26]

1) FE to BE data bandwidth increases from increased longitudinal segmentation

and TDC information in the readout of the HB and HE;

2) Data volume management and integration with the central data acquisition

(DAQ);

3) Increased trigger processing needs to provide total energy sums, separate

lepton isolation quantities and to apply the new FE timing information;

4) Increased bandwidth to the trigger system to provide finer granularity

information, including full granularity in the HF region, additional fine-grain

information, and separate total energy and lepton isolation sums.

Improvement of HCAL for physics is the main goal of HCAL upgrades. Inherent

capability of the HB/HE will be tried to be maximized. Main parameters to improve

are high-pT physics and luminosity beyond 1034 cm−2s−1 which is LHC design

luminosity. For HB and HE calorimeter phase 1 upgrades, modifications to the FE

electronics and trigger/readout BE are proposed. FE and BE crates are accessible from

outside of the calorimeter, and any modification can be done without modifications of

calorimeter. Starting from phase 2, luminosity will be increased to 5×1034 cm−2s−1.

High integrated radiation level might make defective high η region of HE calorimeter.

Improvements on phase 1, such as replacing new technology photodetector and new

detector electronics component, can maintain phase 2 performance standard. HCAL

and ECAL endcap calorimeter have to look for new components which can maintain

high radiation level in phase 2 –in HL-LHC.

According to radiation map of HB and HF calorimeters, they are able to operate at

the radiation level of phase 1. Situation is not the same for HE calorimeter. Ionizing

radiation will damage HE layers causing less light emittance.

First of all integrated ionization radiation in HE scintillators and in FE readout boxes

need to be understood, since radiation will reduce number of photons per GeV.

Understanding of ionization and neutron influence are another important parameters

for electronics to be able to sit at that environment. HE scintillators are set according

to phase 1 luminosity although HE electronics is set according to phase 2 luminosity
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which is at 5× 1034 cm−2s−1 for 10 years. HE electronics will be able to operate at

harsh conditions of phase 2. Also new silicon photomultiplier which were replaced

with photomultiplier tubes can operate with the new electronics.

Radiation contours in Grays (100 Rad = 1 Gray) are shown in Figure 4.3 for for

10 years of LHC running at 500 fb−1 for HB and HE calorimeter. It can easily be

indicated that ionization radiation level is approximately 100 Rad around readout box

(RBX) region, and 10 KRad around HB region. These radiation levels are the same

with expected radiation levels on LHC phase 1. In the figure, around lower part of

HE, radiation level reaches to 1 MRad. Figure 4.4, gives clear understanding of these

radiation levels. Around few MRad radiation, scintillator light output will decrease in

a significant amount.

In phase 2, expected ionization radiation level will be 10× higher than phase 1;

therefore, HE scintillators light output will decrease to few percent, and eventually

HE will not be in operation. For that reason, HE scintillators needs to be upgraded by

new scintillators for phase 2.

Figure 4.3 : Radiation contours for CMS from FLUKA calculations, units of Grays,
after 500 fb−1 (10 years at LHC design luminosity). HB and HE begins

at r > 180 cm and z >∼ 400 cm respectively [26].
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Figure 4.4 : Scintillator radiation damage as a function of ionization radiation [26].

4.2 Upgrade Studies of Hadronic Forward Calorimeters

Forward rapidity calorimeters called HFs consist of quartz fibers for producing

Cherenkov light. Cherenkov radiation has an advantage and a disadvantage. The

advantage is that it has rapid time response, the disadvantage is that less light is

produced by Cherenkov process. Number of photoelectrons per GeV deposited in

HF calorimeters is lower than plastic scintillators of HB, HE and HO by two orders of

magnitude.

High gain PMTs are used in the HF calorimeters. Radiation level at high rapidity

regions will effect PMT window material and ultraviolet (UV) transmission sensitivity

of the fiber and light guides. HF can deposit 0.25 photoelectron per GeV energy. Any

non-calorimetric interaction with fibers can generate the same level signal as 1 TeV

deposited energy.
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Each HF calorimeter are made at 36 steel wedges producing a ring with inner and outer

radii of 12.5 cm and 120 cm, respectively. They are located 11.2 m from the interaction

point and the length of each calorimeter is 1.65 m along beam line. They have 13

segmentation in η and 72 segmentation in φ , granularity of η × φ = 0.175× 0.175.

Photomultiplier tubes read the fiber signal from 864 channels per module and 1728

channels in total.

Well shielded PMTs of HF were produced by Hamamatsu and model name is

R7525HA. This model have 8 dynodes, 12.5 mm radius bialkali photocathode, 0.6

cm thick borosilicate silicon window and quantum efficiency (QE) of 22% at 450 nm.

The PMTs would be exposed to 8-10 KRad/10 years at 1034 cm−2s−1 luminosity. The

PMT windows will be damaged significantly after 120 KRad.

HF PMT upgrade was proposed to replace Hamamatsu R7525 with new PMTs.

Properties of new PMTs are as follows: [26]

1) a thin (< 1 mm) front window that reduces the amount of Cherenkov light;

2) a metal envelope that further eliminates Cherenkov light made by particles

traversing the side of the PMT;

3) 45% peak QE; and

4) four-way segmented anodes that allow further rejection of PMT events by

using the pattern of light distribution among the anodes, which is different than signals

coming from energy deposited in the HF absorber.

Old Hamamatsu R7525 PMTs are replaced by Hamamatsu R7600 PMTs which

provides all the properties listed above (Figure 4.5).

Figure 4.5 : New photomultiplier tubes of HF wedges. Hamamatsu R7600.
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5. EXPERIMENTATION AND ANALYSIS

5.1 Hadronic Endcap Calorimeter Scintillator Upgrade

Hadronic endcap calorimeter scintillators are not designed for phase-2 operations and

require replacement with stronger scintillator material against radiation. For that

reason, many scintillators are proposed by 4 different institutes, Maryland University

(UMD), Iowa University (UI), FNAL and Dubna (Table 5.1).

Table 5.1 : List of proposed scintillators.

slot scintillator radiation sensor
1 4 different 70 mm×70 mm scintillators (FNAL) K18, K21
2 15 finger scintillators in a row of 5 (FNAL) K16, K39, K17
3 5 small finger scintillators (UMD) K29, K22
4 EJ_200_P2 scintillator in Wetzel box (UMD) K43
5 EJ_200_2X scintillator in Wetzel box (UMD) no sensor
6 PEN scintillator in Wetzel box (UI) K02, K20
7 PTP scintillator in Wetzel box (UI) no sensor
8 PET scintillator in Wetzel box (UI) K12, K13
9 QPAN scintillator in Wetel box (UI) no sensor
10 SCSN81 scintillator in Wetzel box (UMD) no sensor
11 EJ_260 scintillator in Wetzel box (UMD) K41
12 Sensor plate multiple sensors
13 AL4_2 scintillator in Wetzel box (UMD) no sensor
14 AL4M_2 scintillator in Wetzel box (UMD) no sensor

Centauro And Strange Object Research (CASTOR) table is receiving much radiation

because it is in very forward region just after hadronic forward calorimeters between

5.2 < |η | < 6.6 pseudo-rapidity region (Figure 5.1). Scintillators were prepared in a

box for irradiation in CMS itself (Figure 5.2). Since luminosity and radiation level

would be higher in HL-LHC phase, scintillators were put to CASTOR table which is

close to beam pipe (Figure 5.3). This allowed to reach higher accumulated radiation

doses to be able to observe radiation damage at HL-LHC luminosity. Irradiation were

done by LHC 6.5 TeV energy beam in 2015. Integrated radiation level was expected

to be around KRad by the end of 2015
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Figure 5.1 : CASTOR table location in CMS. Interaction point is in very right of the
scheme. CASTOR is just after HF and it is in more forward region than

HF calorimeters [27].

Figure 5.2 : Tiles in installation box. Slot numbers are increasing starting from the
right side.

5.1.1 Measurement setup

Measurements of scintillators were done on the surface area at point 5 (CMS), not

in situ on detector. Dubna scintillators were not measured since they have their own

installation box and measurement setup. Only scintillators proposed by FNAL, UI and

UMD were analyzed.
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Figure 5.3 : Installation box (or irradiation box) in CASTOR table. Red circle is
beam pipe. Box is 26.5 mm from the beam pipe. All dimensions are in

mm.

Measurements were taken using SiPM, same detector as in the HE readout

boxes. Since gain of SiPMs is sensitive to temperature and bias voltage,

measurements were taken as current-volt (I −V ) curve where former is readout

current from SiPM, latter is the bias voltage of SiPM. Measurement cycle is

scintillator->fiber->SiPM->picoAM->GPIB_readout->local storage.

In this setup, scintillator, fiber, SiPM and beta source were in the dark box (Figure

5.4). Each scintillator was placed to a Wetzel box which is designed and 3D-printed

by James Wetzel. There were two different aluminum plates to be placed on top of

the Wetzel box, one with only one point for center of scintillator and one with four

different points for corners of scintillators (Figure 5.5). These points were to put a

beta source, Sr-90, as radioactive source. Data were taken by applying different bias

voltage to SiPM and reading readout current by Keithley picoAmper meter. Keithley

picoAmper meter supplied bias voltage to SiPM and read currents from SiPM. Keithley

was controlled by local computer via general purpose interface bus (GPIB) readout

module. Every command was sent by computer to Keithley via GPIB module.
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Figure 5.4 : Dark box where measurements are done on the surface of point 5.

Figure 5.5 : (a) Source position for measurements. Sr-90 beta source are placed at 5
different positions one by one as indicated in the figure. (b) Tiles are put

into black 3D-printed Wetzel boxes during measurements.

In the installation box, there are 100 mm×100 mm scintillators between slot 4-11

inclusive and slot 13-14. There are small scintillators in the rest of the slots. For 100

mm×100 mm scintillators, 5 different source (1 at center and 4 at corners by aluminum

plates) and 1 background measurement without source, were evaluated. For other

scintillators, only 1 source measurement were taken while source was at the center,

and 1 background measurement. After measurements, there are six measurements for

100 mm×100 mm scintillators and two measurements for the rest of the scintillators.

According to schedule, first measurements were taken in March 2015 with 85V −88V

bias voltage range. Also repeatability measurements of the setup were taken in March.

After first measurements, box of scintillators was placed on the CASTOR table for

irradiation till next technical stop in June 2015. In June 2015, box of scintillators
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was brought to the surface from underground and same measurement procedure was

applied. Scintillators, again, were lowered to CASTOR table until next technical stops

in September and December 2015.

Measurements data are I−V which have been taken by 50 mV steps in a certain range.

Ten different measurements were taken for each voltage step. Each point in I−V plots

represents arithmetical means of 10 individual measurements for stability (Figure 5.6).

These data were used for finding breakdown voltage (BDV).

Figure 5.6 : An I−V of a measurement of EJ_200_2X scintillator with 5 different
source and a background measurements. Measurement step is 50vmV

and each point is the mean of 10 different measurements.

During measurements fibers were installed and uninstalled for several times to the

scintillators, due to lack of fibers. Installing fiber to sigma-shape grooved scintillators

caused some fibers to be scratched. And measurements had to be taken with scratched

fibers. Scratched fibers would produce less light delivery, there would be less signal

which will make almost impossible to compare 2 individual measurements.

Another important factor was temperature. SiPM are highly sensitive to temperature.

It can sense 0.1 ◦C difference. For example, during June data taking, weather was to

hot and there was a large difference in temperature during the day and the night and

there was no air conditioner in the experimental room. This might have led to a change

of BDVs even during the same measurement. In addition to these, there is no recorded

info about temperature which might affect BDVs.
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5.1.2 Analysis method

Once I−V curves were taken from measurement of a scintillator, it is time to analyze

the data. First of all, operating bias voltage range of SiPM needs to be determined.

Gain of SiPM sensors is dependent on the temperature and bias voltage; moreover,

the relation between gain and bias voltage is nonlinear. Relation between gain and

temperature is around 8% per ◦C at 1.5 V above BDV [28]. In order to be able to

compare 2 different measurements of the same scintillator, operating range must be

matched.

Determining operating range of SiPM requires taking derivative of I−V curve which

is implemented by Yuri Musienko at CERN. This derivative then must be divided

by corresponding current (I). This derivative was evaluated by numerical derivative

method

dI
dV
I

=

I(V )−I(V+0.05)
V−(V+0.05)

I(V )+I(V+0.05)
2

= 40× I(V )− I(V +0.05)
I(V )+ I(V +0.05)

(5.1)

where I is SiPM signal current and V is bias voltage of SiPM. In this formulation, two

neighboring points were used for calculating the derivative. After derivation, resulting

plot will indicate 2 peaks on the plots. First peak will show breakdown voltage

meaning the beginning of operating range. Second and bigger peak will indicate

Geiger mode meaning the end of operating range (Figure 5.7). After Geiger mode,

physics will change and one cannot distinguish leakage current and/or dark current.

All comparison must be done between these two peaks. Operating range is around

several volt. Applying Gaussian fit on the first peak, BDV can be easily extracted.

BDV depends on temperature linearly. Since temperature could be different for all

measurements for the same scintillator, BDV of all measurements must be found and

matched. Then determining a ∆V and adding to the breakdown voltages, corresponding

currents can be compared (Figure 5.8). Dividing currents at the corresponding voltages

(at BDV +∆V ), health status can be found. Subtracting that value from 1, radiation

damage can easily be deducted.

Radiation Damage (RadDam) = 1− I(BDVnew +∆V )

I(BDVold +∆V )
(5.2)
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These calculations were done for each measurements during the year of 2015 to be

able to see radiation damage profile in time.

Figure 5.7 : Plot above shows 5 different source and a background I−V curves. Plot
below is the derivative of the first plot divided by current and it indicates

breakdown voltage (first peak) and Geiger mode (second peak).

Figure 5.8 : Goal of measurements. First peak is breakdown voltage, second is
Geiger mode. Comparison is done adding a ∆V to the breakdown voltage

to compare in between these two peaks.
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5.1.3 Repeatability of measurement setup

As in all scientific measurements, repeatability is important to determine systematic

errors of measurement setup. For repeatability measurements, two of the scintillators

were chosen, PEN (UI) and EJ_200_2X (UMD). Measurements were taken with full

arrangement i.e. disconnecting, taking out of box, waiting around 20 minutes and

connecting again. Six different measurements with source in the center were done for

each of two of the scintillators in the range of 83V −88V in March 2015. And also one

background measurement was taken to subtract background noise for both scintillators.

First thing was to match BDVs using ROOT software package, since temperature was

not controlled and not known. BDVs were almost the same with small differences;

therefore, it was decided to correct for matching BDVs (Figure 5.9).

Figure 5.9 : Breakdown voltages of repeatability measurements. For all 6
measurements for both scintillator, breakdown voltages are almost same.
Breakdown voltages were considered the same for repeatability analysis.
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Two different methods were applied for repeatability. First one includes putting

currents from each different measurements into individual voltage bin histograms.

Histograms were filled for each voltage bin. Since there are six measurements, there

were six entries for each histogram (Figure 5.10). Using means and root mean squares

(RMS) of these histograms, systematic errors were determined for each bias voltage.

Systematic error =
RMS(src measurements−background)
Mean(src measurements−background)

(5.3)

Repeating this process for each voltage, a profile histogram of systematic error can be

obtained.

Figure 5.10 : Histogram for V = 86V with first method. There are only six entries
since there is only six measurements.

In the second method, if you recall that each point is the mean of 10 different

measurements, better systematic error analysis can be done. Instead of putting six

entries to each voltage histograms, 60 individual measurements can be put to the

histograms (Figure 5.11). Again by evaluating equation 5.3 systematic errors are

calculated.

5.1.4 Analysis of measurements

During 2015, four different measurements were taken in March, June, September

and December. Results of these measurements must easily show radiation damage

profile in time by comparing integrated luminosity during this period; therefore,
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Figure 5.11 : Histogram for V = 86V with second method. There are only 60 entries
since there are 60 data taken in six measurements. Recall that each
point in the measurement is the mean of 10 different measurements.

damage/radiation ratio can be calculated. When damage/radiation ratio is known, it

can be estimated that how long scintillators will survive under integrated luminosity.

In March, voltage range for measurements does not include breakdown voltages. BDV

of March measurements are around 85V and range is 85V − 88V . Even if BDV of

March measurements are slightly higher than 85V , it is hard to determine BDV by

Gaussian fit. For that reason, March measurements cannot be compared. However, in

order to check consistency with next measurements, mean of BDVs from repeatability

measurements in March (84.96V ) is used for breakdown voltage (Figure 5.9).

First measurements were in March 2015, but they cannot be used as reference

measurements due to short voltage range, Luckily, there were no luminosity between

March and June (Figure 5.12). This allows us to use June measurement as reference

measurement before radiation. Starting from June, ranges were extended to include

breakdown voltages.

In September and December, two different measurements were taken and analyzed

with the same methods. Comparison was done by currents corresponding to BDV +

0.6V . Statistical error is around several percent. Current difference between two

neighboring voltage bins (two bins with 50 mV difference) is around 10% in the range

of BDV +∆V . If BDV +∆V is in between two neighboring voltage bins, choosing
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Figure 5.12 : CMS integrated luminosity between June 2015 and November 2015.
Before June 2015 there is no beam [29].

the closest voltage will add a statistical error of around 5%. However, this error was

reduced by using spline cubic interpolation. Instead of choosing the closest neighbor

voltage, interpolation value was used for BDV +∆V . Statistical error was reduced to a

reasonable level.

5.2 Hadronic Forward Calorimeters 2014 and 2016 Sourcing Analysis

Due to upgrade requirements, PMTs of forward calorimeters (Hamamatsu R7525)

have been replaced with new ones (Hamamatsu R7600) in LS1. In Run 2, gains of

new PMTs become important to determine the energy deposited in HF channels. For

that reason, local sourcing measurements were done with Co-60 radioactive source.

First sourcing runs were taken in April 2014 for HF plus (HFP) and in July 2014 for

HF minus (HFM) after installation of PMTs. Sourcing was done by source driver

which consists of Co-60. This source driver has a Co-60 source in one end and can

penetrate inside the HF tubes. Source driver is driven by the run control and monitor

system (RCMS) automatically. It can also indicate position of the source inside tube.

This position info is correlated with the data to produce a profile through the fiber.
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The source was run through the end of each HF channels one by one, but data are

taken from all channels. Since lengths of fibers are not the same for all channels and

some part of fibers are outside of absorber, data must be analyzed starting from point

where source inside the absorber for each channel. Lengths of fibers are different

outside of channels; therefore, starting indices are different for each channel. In each

channel there are two different tubes, one for electromagnetic and one for hadronic

part. Electromagnetic tubes are 1.65 m and longer than hadronic tubes. Hadronic

fibers are 1.43 m inside the absorber (Figure 5.13). When signal is profiled versus real

position in mm there will be a big peak just before starting point and then there will be

a straight line around 1.65 m which is the length of the fiber inside the absorber (Figure

5.14). For hadronic fibers there will be a drop in signal around the last 22 cm, since

there is no fiber after 1.43 m. Events were taken into analysis when source position is

between

Tube Start +300 mm < Source Reel Position < Tube End−300 mm (5.4)

Tube start position and tube end position are different for each tube depending on fiber

length outside of the absorber. Each wedge covers 20◦ degree in φ and 29 < iη < 41

in iη space (Figure 5.15).

Charge is collected by 4 capacitors for each 25 ns –1 time slice (TS)– and 50 ns –2

TS. Signal from four different capacitors must be summed over. Integrated charge

is registered via analog to digital converter (ADC). For different TS firmware, bin

weights ADC are different. For 1 TS charges; 15 bins weighted by 1, 7 bins weighted

by 2, 4 bins weighted by 3, 3 bins weighted by 4 and 3 bins weighted by 5, and in total

range is between 0-63 ADC counts. 32nd and the last bin is overflow containing all

charges above 64. For 2 TS charges; 10 bins weighted by 1, 6 bins weighted by 2, 5

bins weighted by 4, 5 bins weighted by 8, 3 bins weighted by 16, 2 bins weighted by

32 and 1 bin weighted by 62, and range is between 0-194 ADC count. 32nd and the

last bin contains charges above 194.

Analysis were done by CMS software package (CMSSW_5_3_11_patch5). In the first

bins for 1 TS data, there will be a peak of ADC counts in log scale plots (Figure 5.16).
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Figure 5.13 : The cross section view of the HF calorimeter shows that the sensitive
area extends from 125 to 1,300 mm in the radial direction. The

absorber in the beam direction measures 1,650 mm. Bundled fibers
(shaded area) are routed from the back of the calorimeter to air-core

light guides which penetrate through a steel-lead-polyethlene shielding
matrix. Light is detected by PMTs housed in the readout boxes.

Stainless steel radioactive source tubes (red lines) are installed for each
tower and are accessible from outside the detector for source

calibration. The intersection point is at 11.15 m from the front of the
calorimeter to the right. All dimensions are in mm [30].

Figure 5.14 : HF sourcing data profile. For this individual channel tube starts around
3,600 mm and continue around 5,200 mm [31].
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Figure 5.15 : Schematics of an HF towers. Beam pipe is close to the upside;
therefore, iη numbers are getting bigger going up. Each channel is

connected to three baseboards which includes eight PMTs in each [31].

This shows the pedestal region peak due to capacitor delay, and Gaussian mean of this

peak must be subtracted in calculations.

Signal from one channel is called source signal, if source is in the same channel.

Signal from one channel is called background signal if source is in same wedge but

far from the channel. Taking the difference of source and background signals, charge

can be calculated for the individual channels. Source and background signals can be

calculated by

Qsignal =
∑i=1(qs−qped

s )n

∑
32
i=1 n

=
∑i=1 qsn

∑
32
i=1 n

−qped
s (5.5)

Qbackground =
∑i=1(qb−qped

b )n

∑
32
i=1 n

=
∑i=1 qbn

∑
32
i=1 n

−qped
b (5.6)
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Figure 5.16 : HF sourcing data histogram for each event. Peak in left is due to
capacitors and mean of this peak needs to be subtracted from

accumulating signal for all events [31].

Quncorrected
signal = Qsignal−Qbackground (5.7)

where qped is Gaussian mean of pedestal region, n is the charge of ith bin (y-axis in

Figure 5.16), q is the ADC counts (x-axis in Figure 5.16).

Background parameters are:

While source is in iη = 29, background was recorded in towers iη ≥ 34,

While source is in iη = 39, background was recorded in towers iη < 34,

Once source signal and background signal constructed by subtracting pedestals for

each channel, next thing to do is geometrical corrections. Cell dimensions are not the

same for all channels; thus, energy deposition on cells will not be the same for each

tube. Geometric correction factors determined by Geant4 simulation was applied to

the signals by

Qcorrected
signal = Quncorrected

signal /R (5.8)

where R is the geometric correction factor in Table 5.2.
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Table 5.2 : Geometric correction factors for each tower’s energy containment for a
radioactive source passing through a given source tube [31].

Tube Mismatch Match Unc.
1(14)A 0.917 0.840 0.017
1(14)B 0.909 0.833 0.017
2(15)A 0.945 0.866 0.009
2(15)B 0.938 0.859 0.009
3(16)A 0.925 0.846 0.013
3(16)B 0.908 0.829 0.015
4(17) 0.930 0.851 0.002
5(18) 0.889 0.810 0.003
6(19) 0.847 0.772 0.004
7(20) 0.789 0.713 0.006
8(21) 0.715 0.633 0.018
9(22) 0.646 0.572 0.006

10(23) 0.597 0.516 0.013
11(24) 0.498 0.425 0.023
12A(B) 0.413 0.331 0.056

13 0.588 0.510 0.023

Next correction would be ADC count to fC conversion. According to Hamamatsu

handbook, ADC/fC conversion coefficient is 2.6. Multiplying results by 2.6, average

charges for each channel were calculated in fC unit.

Groove types of HF tubes are different, either hadronic or electromagnetic. If source

tube replaced an electromagnetic optical fiber, fC/GeV conversion coefficient is 744.6

KeV. If source tube replaced a hadronic optical fiber, fC/GeV conversion coefficient

is 706 KeV. Multiplying charges with corresponding numbers according to groove

type map, ADC/GeV conversion were calculated. These coefficients are calibration

coefficients of HF PMTs and sent to the conditions database (CondDB) for Run 2

collisions. New HF sourcing data has been taken in 2016 and these data will be

analyzed in 2016. Due to changes in HF electronics in LS1, CMSSW_5_3_11_patch11

cannot unpack HF data; hence, analyzer code was upgraded to newer version of

CMSSW (above CMSSW_7_3_5_patch6) which includes HF new electronics map.

Also analyzer code requires a new upgrade due to new charge integrated encoder (QIE)

card. Installed QIE cards are QIE8. In few channel of HF, there are QIE10 cards. All

QIE cards of HF will be replaced by QIE10 cards. New analyzer needs to unpack

QIE10 data as well.
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5.3 Radiation Damage Monitoring of Hadronic Forward Calorimeter Fibers

HCAL is exposed to radiation from collisions. In forward regions where HF

calorimeters sit, radiation level is comparatively much higher than the rest of the

detector. HF fibers will be damaged while integrated luminosity is increasing. An

optical reflectometry system developed and installed to some HF channels to monitor

radiation damage and fiber recovery. Rapid optical transparency assessment is required

due to dynamic nature of damage and recovery. This rapid assessment becomes more

important around wavelength region where PMTs are the most sensitive.

Monitoring of fibers requires to use 337 nm pulsed nitrogen laser. However wavelength

of laser is shifted by a 2 cm long scintillating fiber into blue region (∼ 440 nm). Shifted

laser light is distributed to 56 HF channels in four wedges. These 56 HF channels will

provide radiation damage profile of the entire system. Some fraction of laser light

reflects from an optical connector which is installed to radiation damage channels.

Rest of the laser light will take the whole path through fibers and turn back. On PMT

readout plot there will be two signals; first one due to direct reflection reflection of

laser, second one is from reflection the end of the fiber where traveling the whole fiber

back and forth. Optical connectors are placed on the HF fiber so that time window

becomes 25 ns (1 TS) (Figure 5.17). Ratio of these signals should remain the same

for each channel if there is no radiation damage. Ratio for individual channels might

differ from each other; however, ratios will decrease in time depending on the radiation

damage. Fibers will deliver less number of photons which will result as a decrease in

ratio profile in time.

Figure 5.17 : The radiation damage to the optical transparency is monitored by a set
of 56 fibers distributed in the entire calorimeter system. The ratio of the
reflected pulse from the far end of the fiber located inside the absorber
to the reflected pulse from the first optical connector provides a relative

measure of fiber darkening. A schematic of optical connection is
depicted in (a) and a pulse train is reproduced in (b). [30]
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HF radiation damage data are taken time to time in years. In each data there will be

pulse shape distribution along 10 TS. Reflected and transmitted signal will appear in

two consecutive time slices as S1 and S2, since delay between these two signals is 25

ns (Figure 5.18).

Figure 5.18 : Pulse shape of an HF radiation damage channel. X−axis is time slice.
Each time slice is 25 ns width. There are 2 signal peaks which

corresponds to reflected and transmitted signal from optical connector,
respectively. Transmitted signal height will be related to fiber health.

Generating these pulse shapes and calculating ratios by CMSSW software, radiation

damage profile of HF fibers can be monitored. One of the data will be chosen as

reference, then all data taken after reference data will be divided by results of reference

data. Hence, first ratios will be 1 for each radiation damage channel. Then it is

expected that this ratio will decrease in time.

5.4 Online Software Development

In context of online software development, new generation readoutboxes manager

(ngRBXManager) requires upgrade.

This manager handles collection of data from readout boxes and provides a user

interface. Sending command and having response from new generation clock control

module (ngCCM), it can control a whole crate. As of April 2016, there are problems

about communication with ngCCMs. First of all commands must be delivered
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successfully to ngCCM and then feedback must be received about the command

delivery status. After fixing this problem, new features will be proposed and developed.

Studies are still continuing with this issue.
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6. RESULTS AND CONCLUSIONS

6.1 Hadronic Endcap Calorimeter Scintillator Upgrade

After 4 different measurement periods in March, June, September and December in

2014, it can be easily seen that there is a problem about reliability of measurement

setup. Some measurements are negative or bigger than 1 which should be impossible

(Table 6.1).

Table 6.1 : Results of measurements.

scintillator Jun (A) Sep (A) Dec (A) Sep/Jun Dec/Jun
EJ_200_2X 8.29×10−8 6.43×10−8 3.35×10−8 0.776 0.404
EJ_200_P2 6.33×10−8 6.74×10−8 2.01×10−8 1.065 0.318

EJ_260 1.28×10−8 1.20×10−8 6.54×10−9 0.940 0.512
PEN 1.44×10−9 1.94×10−9 6.48×10−10 1.350 0.450
PET 2.83×10−10 −1.11×10−9 1.07×10−10 −3.941 0.379

SCSN81 1.48×10−8 1.52×10−8 9.85×10−9 1.032 0.667
FNAL_93 2.73×10−8 2.21×10−8 1.68×10−8 0.809 0.614
FNAL_94 3.72×10−8 2.79×10−8 2.12×10−8 0.749 0.568
FNAL_95 4.13×10−8 4.57×10−8 2.23×10−8 1.106 0.539
FNAL_96 2.79×10−8 8.52×10−9 4.15×10−9 0.305 0.149

From March repeatability measurements, profile histograms for two different methods

for both measured scintillators clearly indicate that there are systematic errors around

5% for EJ_200_2X scintillator (UMD) and 3% for PEN scintillator (UI) (Figure

6.1). This by itself is enough to consider this measurement setup as unreliable,

since expected radiation damage level should be around several percent in 2015 LHC

luminosity.

Under these circumstances and meaningless results, experiment will be redone in situ

on CASTOR table. Instead of using Keithley picoAM and GPIB readout system, data

will be taken by HCAL RCMS. As of April 2016, new boxes have been shipped to

CERN from FNAL. New readout modules (RM) are now being calibrated. New FE

and BE electronics are also being setup. Plan is to install everything with electronics to
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Figure 6.1 : Results of repeatability measurements.

the CASTOR table in June 2016 technical stop. Measurements will be taken by HCAL

DAQ system hoping to have reliable results.

In building 28 at CERN, calibration studies of RMs still continue. Mapping of

scintillator boxes are being done by LED and laser data taken by RCMS. After

completion of mapping and calibration works, all teststands will be transferred to point

5 to be installed to underground service cavern (USC) of the CMS. Same tests will

be repeated to integrate RMs and installation box to the HCAL DAQ system. After

installing box to the CASTOR table, new measurements can start for more reliable

results. In 2016 new measurements will clearly indicate the radiation damage, and
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radiation damage level will be one of the most important criteria for HE scintillators

selection.

6.2 Hadronic Forward Calorimeters 2014 and 2016 Sourcing Analysis

HF 2014 sourcing analysis has been finished as of December 2014 and new gains are

being used for calibration coefficients of the HF PMTs. Calibration coefficient show a

narrow distributions (Figure 6.2). In the results there are no unexpected problems.

In January 2016 new HF sourcing data were taken, same procedure will be applied for

new data and gains of PMTs will be recalculated. This will be a great chance to check

consistency of two sourcing measurements

Figure 6.2 : Results of HF sourcing calibration measurements. Left plots are
distribution of calibration coefficients. Right plots are map of calibration

coefficients of HF PMTs.

6.3 Radiation Damage Monitoring of Hadronic Forward Calorimeter Fibers and

Online Software Development

HF calorimeter fiber damage studies are done for Run 1 (Figure 6.3). It clearly shows

that fiber health is decreasing as expected. These monitoring requires long term work
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on HF radiation damage issue. As long as HF operates, there will be increasing

radiation.

Online software upgrades for ngRBXManager is another ongoing work. Before going

further, it needs to be decided what it should do. After this decision and fixing the

communication problem, time will come to proceed with new features.

Figure 6.3 : An example for radiation damage profile of HF fibers. First data point is
the reference and all other data points are divided by this reference data

revealing a clear indication of damage.
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