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ABSTRACT

STABILITY ANALYSIS AND FEEDBACK STABILIZATION OF BIMODAL
PIECEWISE LINEAR SYSTEMS

Yavuz EREN

Department of Electrical Engineering

Ph.D. Thesis

Advisor: Prof. Dr. Haluk GORGUN

This thesis deals with the quadratic stability and feedback stabilization problems for
continuous bimodal piecewise linear systems. First, we provide necessary and
sufficient conditions in terms of linear matrix inequalities for quadratic stability and
stabilization of this class of systems. Later, these conditions are investigated from a
geometric control point of view and a set of sufficient conditions for feedback
stabilization are obtained.

Moreover, we consider observer design procedure for bimodal systems and we
propose a simpler procedure by reducing the required conditions on the observer
design.

Finally, the result for stability analysis is extended to the bimodal systems with norm-
bounded uncertainties and is proposed a corollary to guarantee the robust stability for
the related systems.

Key words: Piecewise linear systems, Bimodal systems, Stability of bimodal systems,
Stabilization of bimodal systems
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OzET

CiFT DURUMLU PARCALI SUREKLi DOGRUSAL SISTEMLERIN KARARLILIK
ANALIZi ve GERIBESLEME KARARLILIGI

Yavuz EREN

Elektrik Miihendisligi Anabilim Dall

Doktora Tezi
Tez Danismani: Prof. Dr. Haluk GORGUN

Parcali siurekli dogrusal sistemler, ayrik ve strekli dinamikleri blinyesinde barindiran
hibrit sistemlerin temel siniflarindan biridir. Cift durumlu sistemler ise, parc¢ali siirekli
sistemlerin en basit alt sinifidir. Basit yapilarinin yaninda, kararhlik ve kararli kilma gibi
onemli problemlerin ¢6zimi Uzerindeki c¢alismalarda kolaylik sagladigindan, cift
durumlu sistemler, hibrit kontrol teorisinin gelistirmesinde énemlidirler.

Cift durumlu sistemlerin kararhlik analizi ve kararli kilma problemleri, gliniimiizde
Uzerine ¢alisilan 6nemli problemlerdendir. Bu bakimdan, dogrusal zamanla degismeyen
alt sistemlerin konveks kombinasyonlarinin, hangi sartlar altinda esdeger kuadratik
Lyapunov fonksiyonunu paylasacagi bu tez ¢alismasinda ele alinmistir. Orijinal ve kolay
test imkani saglayan kararlilik sartlari strekli vektor alanina sahip ¢ift durumlu
sistemler icin elde edilmistir. Bunun yaninda, geribesleme ile kararli kilma problemi
detayli ele alinip, geometrik kontrol yaklasimi yardimiyla, daha az tutucu sonuglar
bulunmustur.

Ayrica, cift durumlu sistemler icin gelistirilmis gozleyici tasarimi ele alinip, bu tasarim
icin gereken sartlarin azaltildigi bir tasarimi metodu 6nerilmistir.

Son olarak kararhlik analizi icin bulunan sonuclar normu sinirlandirilabilen belirsizlikler
iceren c¢ift durumlu sistemler icin genisletilip, ilgili sistemlerin dayanikli kararlihgini
garanti eden kosul elde edilmistir.



Anahtar Kelimeler: Pargali stirekli lineer sistemler, Cift durumlu sistemler, Cift durumlu
sistemlerin kararlhihgi, Cift durumlu sistemlerin kararh kilinmasi
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Piecewise linear (PWL) systems are some of the fundamental classes of hybrid systems
which incorporate both discrete and continuous dynamics. PWL systems consist of
some pairs of linear time invariant dynamics and a switching surface which divides the
state space into subspaces according to a criterion depending on the system dynamics.
In this thesis, we consider a particular class of switched PWL systems with state-
dependent switchings, namely bimodal PWL systems with a continuous vector field
and we focus on to investigate linear matrix inequality (LMI) conditions for the stability
analysis and feedback stabilization for related systems. However, it is well known that
the efficient solution of the stabilization problem can only be developed when some
basic concepts of linear control theory such as well-posedness, controllability,

observability and stability are fully understood.

In this context, Imura and Schaft studied the well-posedness of PWL systems in the
sense of Carathéodory [1]. They derived necessary and sufficient conditions for the
well-posedness of bimodal systems with single criterion in terms of an analysis based
on lexicographic inequalities and the smooth continuation property of solutions. They
also proposed an algorithm to solve the conditions and gave several necessary and
sufficient conditions for bimodal systems to be well-posed. Furthermore, they
discussed the well-posedness problem of feedback control systems with two state
feedback gains switched according to a criterion depending on the state. Wu et al. also
considered the class of bimodal state-based switched systems and presented

necessary and sufficient conditions for the well-posedness of bimodal system by



excluding the Zeno phenomenon which is called as infinitely mode transitions in a

finite time interval [2].

On the other hand, controllability and observability concepts of PWL systems are also
studied extensively in literature. We can refer to Sontag’s book for detailed reviews
and comments [3]. In summary, it should be noted that characterization of global
controllability and observability of even simple PWL system classes such as bimodal or
conewise is very complicated [3]. However, some remarkable studies are performed.
For instance, Camlibel et al. investigated algebraic necessary and sufficient conditions
for controllability of conewise linear systems that the state space representation is
partitioned into conical regions which some linear dynamics are active on each of
these regions separately [4]. They utilized the controllability results for push—pull
systems and stated easily verifiable conditions for controllability of bimodal systems.
They also adopted geometric control theory to characterize the controllability
conditions, so as to lead to solve the problems like feedback stabilization, observability
and controller synthesis for the related systems. Moreover, a significant study of
Juloski et al. can be referred for observability concept [5]. Juloski et al. presented
observer design procedures for a class of bimodal PWL systems in both continuous and
discrete time. Their design approach needs input and measured output signals only,

while the information on the active mode is not required.

As a last issue, stability and performance analysis on PWL systems are investigated.
Even though, the literature contains rich content for those studies, some of them
become prominent with constructive results. In this regard, J. L. Willems' study can be
considered as a keystone for the solution of stability problem for related systems [6].
J. L. Willems obtained stability conditions of second order system by the technique of
optimal quadratic common Lyapunov function and showed that the stability results
obtained for a second order system by means of the circle criterion that is the same
with quadratic stability technique. J. L. Willems also proved that the results are valid in
general for nonlinear time-dependent feedback systems which can be considered as a
threshold matter to extend the stability and stabilization results to the other classes of
PWL systems. Hassibi and Boyd emphasized the importance of Lyapunov approach for

the analysis and controller synthesis of PWL systems to get less conservative results



[7]. They derived sufficient conditions for stability and performance analysis by the
help of Lyapunov functions in the LMI context, that can be also turned into convex
optimization problem. So that, they proposed ellipsoidal outer approximation to the
operating regions to reduce the conservatism for PWL systems. In the same fashion,
Johansson and Rantzer developed a uniform and computationally tractable approach
for stability analysis of nonlinear systems with PWL affine dynamics [8]. They also
specified that this approach is promising to be generalised in a large number of
directions such as performance analysis, global linearization, controller optimization

and model reduction.

As been noted above, those studies are initiated to developed a useful tool, is common
quadratic Lyapunov functions (CQLF), to deal with the stability and performance
analysis of switching PWL systems. To date, CQLF are among the most popular tools
for the related systems, both for state-independent [9,10] and state-dependent
switchings [8]. One of the main reason behind their popularity is that, in most cases,
such Lyapunov functions can be efficiently computed via LMIs. As such, providing
sufficient conditions for stability in terms of feasibility of a set of LMIs is highly popular
in the literature of linear switching systems [11,12]. However, these conditions are
rather computational in nature and often do not relate to the underlying structure of

the system under study, in particular for the case of state-dependent switchings.

In adition to the feasibility problem of specifying a CQLF, complexity of stability
analysis for switched PWL systems is also originated from the characterization of
switching surface. Samadi and Rodrigues considered the switched surface of PWL
systems and presented a unified dissipative approach for stability analysis of PWL
smooth systems with continuous and discontinuous vector fields [13]. They proposed a
candidate Lyapunov function such that there is no need for information about
attractive sliding modes on switching surfaces. In fact, their study is inspiring to deal
with closed loop stabilization problem of bimodal system, but it is restrictive to
syntheses the stabilization conditions for bimodal systems due to the fact that it
contains a parameter being related to the decay rate of the Lyapunov function.
Camlibel et al. also considered the problem of open loop stabilization for bimodal

systems with state-dependent switching [14]. They adopted geometric control



approach with LMI formulation and presented algebraic necessary and sufficient
conditions to characterize the stabilization. Furthermore, a full connection between
stabilizability and controllability is established for piecewise linear switched systems.
The main advantage of their approach is to reduce burden of computation for
specifying a CQLF. Also, this study can be considered as a first step to solve the closed

loop stabilization problem for bimodal system with state-depended switching.

Finally, some stability results which are based on notable ideas should be noted for
completeness of the survey. For example, lbeas and de le Sen presented a stability
test for multi-modal PWL system formed by a family of simultanously triangularizable
system matrices with CQLF [15]. In a different perspective, Feng presented a stability
analysis method for PWL discrete-time linear systems based on a PWL smooth
Lyapunov function that can be obtained by solving a set of LMls, that is numerically
feasible with commercially available software [16]. Contrary to the previous discussion,
Iwatani and Hara dealt with the stability problem for PWL systems from a different
perspective. Instead of using Lyapunov’s theory, they investigated behavior of PWL

systems directly to get stability tests which are computationally tractable [17].

1.2 Objective of the Thesis

The objectives of this thesis are the stability analysis and feedback stabilization of
bimodal systems. As the previous discussion reveals, there are a variety of stability
analysis for bimodal systems available in the literature. Besides, many of the stability
conditions obtained are non-constructive or impose significant restrictions on the
controller design for the stabilization. Thus, our first objective is to present stability
conditions that provide some insight into the stability properties of the bimodal
systems and can contribute the feedback stabilization process of bimodal systems with
continuity assumption. It turns out that continuity assumption of the underlying vector
field leads to an alternative LMI based necessary and sufficient condition for bimodal
systems. In turn, this alternative condition enables us to look at the feedback
stabilization problem from a geometric point of view. Indeed, the main contribution of

this thesis is to provide sufficient conditions for the existence of a stabilizing static



state feedback for bimodal systems. Then, we are also in pursuit of less restrictive

solution for the stabilization problem by the merits of geometric control theory.

However, available result on observability for bimodal systems leads to conservatism
by imposing extra restrictions on the construction of Lyapunov function. Motivating
from this problem, we aim to offer a less conservative and simpler procedure to design

observers for bimodal system.

1.3 Hypothesis

To our best knowledge, bimodal systems are the simpliest possible form of PWL
systems, therefore the results provided for bimodal systems can be used as a stepping
stone to establish hybrid control theory. However, the stability analysis and
stabilization of even simple classes of PWL systems is extremely complex. In this
regard, this thesis is dedicated to investigate LMI conditions on the stability and state
feedback stabilization for bimodal systems. Overall, the results presented here reveal a
full connection between the stability and feedback stabilization for bimodal systems
which were not available prior to our study. Moreover, although they are different in
nature, those conditions can be applied to the stabilization of the open loop

configuration.



CHAPTER 2

STABILITY ANALYSIS OF BIMODAL SYSTEMS

This chapter presents the stability conditions for bimodal PWL systems. To this end, we
first formulate the quadratic stability of bimodal systems by following J.L. Willems's
conceptual framework on quadratic stability analysis of nonlinear time-dependent
feedback systems [6]. Then, we derive equivalent LMI conditions on the dynamics of
the related systems such that the stability of the bimodal PWL systems is guaranteed.
Based upon the implications of this chapter, we will deal with feedback stabilization of

bimodal PWL systems and we will present theorems to construct CQLF.

2.1 The Willems' Conjecture

The result of J.L. Willems on the quadratic stability of nonlinear time-dependent
feedback systems that may be useful as a starting point to derive orginal conditions for
stability analysis of bimodal systems [6]. For this purpose, we begin with the Willems'

conjecture.
Let us consider the general nonlinear time-dependent feedback system as follows
(t) = Ax(t) — Bk(x,t)Cx (2.1)

where A, B and C are (n xn), (n x 1) and (1 x n) matrices respectively, and realize
the transfer function G(s) = C(sI — A)~'B in a minimal way. The circle criterion
proves asymptotic stability in the large of the solution of (2.1) for all k(z,t) such that

for an arbitrarily small positive ¢

a+e<k(xt)<[B—e (2.2)



if the function

_ 1+aG(s)

PO =1 560)

(2.3)

is positive real.

Theorem 2.1 [6]: There exists a positive-definite quadratic Lyapunov function

V(x) = 27 Pz with P = PT > ( such that the derivative along the solution of (2.1)
Wi(x,t) = 2" [(ATP + PA) — k(x,t)(PBC + CT B" P)] (2.4)

is negative definite for all k(z, t) satisfying (2.2) if and only if F'(s), as defined in (2.3), is

positive real. Proof of the Theorem 2.1 can be given by means of Lemma 2.2.

Lemma 2.2 [6]: There exists a positive-definite P satisfying the matrix inequality

ATP 4+ PA+ (PB — gC") (BT P — ¢C) —aBCTC <0 (2.5)
with g = (av+ 3) /2 only if for all real w,

1+ (a+ B)ReG(jw) + B |G(jw)|* > 0. (2.6)

Proof of Teorem 2.1: Let A € R"*" and B, € R" where B # 0 and C # 0. Assume

that there exist a symmetric positive definite matrix P such that for each p € (o, 3),
M(p) = (A—pBC")"'P+ P(A— pBC") = A"P+ PA— p(PBC" +CB"P) (2.7)

is negative definite. Hence, (PBCT + CB™ P) # 0 and there exists x, € R” such that
xT(PBCT + CBT P)x, # 0. Let us define H: R —R as H(p) =27 M(p)x,. Thus,
there exists p. > 0 such that H(p)H(—p) < 0for all p > p.. This shows that M(p) and

M(—p) can not be both negative definite for each p > p..

To be more precise, we can dominate the term of AP + PA in (2.7) by increasing p
and we can guarantee the negative definition of (2.7). To do so, let us to define

F = zI(PBCT + CB" P)z, > (0 and state M(p) in quadratic form as follows.
2T M(p)x, = 2L (AT P + PA)z, — pxl (PBCT + CB' P)x,
= 2l(ATP + PA)x, — pF (2.7)

In this case, we summarize all the possibilities of sign definitions in the following table.



Table 2.1 Sign definition of H

F XiM(p)x. XfM(—p)x,
— >0 <0
+ <0 >0

We imply that, there exist Vp > p, such that M(p)M(—p) < 0. Let us consider the
closed interval of p € [a, 3] and we can make negative definite H(p) = I M(p)z. by
choosing the value of p whereas approaching the ;. If 27 M (ay)z =0 for oy = p
then, 2" Mx =0 <= Mz = 0 must be satisfied with M/ = M7 This property can be
proven easily. Such as, "if only" part of the proof is obvious. For the proof of the "if"
part we can define M = NN and straightforward calculation yields 27 Mz = || Nz|”
and this means that No =0 — Mx =0.

Now, we have following implications

' Mp=a))r <0 = z€kerC” (2.8)
T — —

TMp=a)r=0 = z¢kerC", x € kerM(ov) (2.9)

and due to semi-definetness, it is obvious that dim(kerC”) =n — 1.

Note that, negative definetness for different p values can be guaranteed with
PBCT +CBTP #0.  Therefore, there exist x,€R" such that
2T(PBCT + CBT P)x, # Ois satisfied. In other words, we have a relation H : R — R

can be defined as follows
H(p) = xl M(p).. (2.10)

Hence, there exists a p. > 0 such that H(p)H(—p) < 0 is guaranteed for all p > p.
and we deduce that both the functions of M(p)and M(—p) can not be made negative

definite for all p > p..
Now, let us to define the following parameters on the value sets

o =inf{k | M(p) <0 on [k,O|} (2.11)
G =sup{x| M(p) <0 on [a,k|} (2.12)



where o € [—00,00], 31 € [—oo, o0 and oy < o < 3 < 31 Hence, at least one of oy
and [, is finite. For example if H(—p) > 0 for some p > p,, then « is finite. Now
suppose that «y is finite. In this case, M(p) is negative definite for all p € (o, J]. By

continuity of M(p), M(cy) must be singular and negative semidefinite.

At this stage, we need some auxiliary results which will be considered in the following

claims to complete the proof.

Claim 2.3: There exist the vectors 2, 2o, ..., 2, 1 such that {z, 25, ..., 2,1, C} spans

;)

R” and forall z € R*, 27 M(on)z = — S 77 (2

Proof of Claim 2.3: Let v # 0 be an arbitrary vector in the kernel of C”. Then,
v M (ay)v = v M(py)v < 0 for each p € (ay, 3]. Hence, a nonzero vector y in the
kernel of M(ay) must not be in the kernel of CT. Thus, there exist z;, 2o, . . . , 2,_1 such
that  {z1,2,...,2,.1,C}+ spans R* and for all z€R* and
T M(en)w = — 30 (2 w)>

Claim 2.4: Let BTP =+CT + > 7" (m;z")% Thenr > 0.

Proof of Claim 2.4: Let y € span{z, 2,...,2,_1}> # 0. Hence CTy # 0 as y # 0 and
the vector set of {z,2,...,2,1,C} is a basis of R". Thus, it is obvious that
yT" M(a1)y = 0, using 27 M(ow )z = — S0 (Fx)% Note that,

n—1 n—1
y"M(an)y = yT(ATP+PA)y—y(a1(C’r—l—z(zimiTx)2C’T—|—C’(rC’T—|—Z(miziTx)2))yT
i=1 =1

=y (ATP + PA)y — 20q7(cty)%

Since «y is the infumum of p& (ay,[] with M(p) being negative definite,
yIM(p)y = y'(ATP + PA)y — 2pr(CTy)? < 0 for any p € (ay, []. This implies that
r > 0. More clearly, since «; is the infumum , o; means the first point that negative-
semi definition transforms unidentifiability. Therefore, it is clear that

y (AT P + PA)y = 2017(CTy)2 Now, let us rearrange y* M (p)y as follows
y' M(p)y =y' (A"P+ PAy — 2pr(C"y)*
= 20,7(CTy)? — 2pr(CTy)* <0 (2.13)

=2(ay — p)r(CTy)* < 0.



Consequently, it is obvious that (o — p) < 0 from the last inequality and the other

terms are greater than the zero. So, r > 0.

Claim 2.5: Let us choose r=(3—q)/2 as a positive constant. Then
(25 izl y)? < 370 (s y)*forall y € R

Proof of Claim 2.5: Let y be an arbitrary nonzero vector differently from Claim 2.4.

Note that,

JM(By =y (AP + PAY — 20Oy + (€)Y i) <0

and
n—1 n—1
y M(ar)y =y (A"P + PA)y — 204 [r(CTy)* + (CTy) Y “ma(2]y)] = = (=]y).
=1 =1
Therefore
n—1 n—1
21 — B)[r(CTy?* + (CTy) > _mi(zy)] = > _(y)* <o0. (2.14)
i=1 =1

Now, recall the definition of r as r = (3 — a4 ) /2. Then, the straightforward calculation

yields
n—1 1 n—1
CTy)? +(C" (2] y) + — Fy)? > 0. 2.15
r(C"y)” + ( y);m@(zz v+ ;(Zz 0 (2.15)
If  is in the orthogonal complement of span{z, 2, ..., z,_1}, then the inequality

holds trivially. Now assume that the given y # 0 is not in the orthogonal complement
of span{z,2s,...,2, 1} Fix this y and v be an arbitrary nonzero vector that is

orthogonal to span{z, 2, . .., 2,1 }. Hence CTv #£ 0, y +v # 0 and ¥ (y +v) = 2Ty

forall: =1,2,...,n — 1. Hence, let us to write (2.16) as follows
n—1 1 n—1

cT 24 (CT (2 — Tn?>0. (2.16

r(CT(y+v))* + ( (y+v));m(zz v+, Zl(z y) (2.16)

Since CT'v can be assigned arbitrary by scaling, we must have

n—1 n—1

1
2 T T \2
re’ + E mi (2 y)x+4r E (ziy)” >0 (2.17)

i=1 i=1
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where Vx € R. Due to positive definition of polynomials we get

S mi( )P = 355 (&) <. (2.18)
The negative definiteness of M ((3) have been proved by Claim 2.5 for all z. Then, we

can use Lemma 2.2 as follows

ATP 4 PA+ (PB - WBTP — O‘T —aBCTC <0 (2.19)

such that proves (2.6) is true. Since the existence of the Lyapunov function implies
(2.1) is asymptotically stable for « < k < 3, and at least weakly stable at £ = o and
k = (3, it is concluded that F(s) is positive real. Sufficiency part of the proof can be
found in [18].

2.2 Bimodal Systems

In this subsection, we introduce a particular class of PWL systems with internally
induced switchings, namely bimodal systems with a continuous vector field. This
vector field concatenates two conical region, contain linear dynamics separately, on

the state space. Bimodal PWL systems can be given by

o) Awx(t) + Buu(t) if y(t) <0
y(t) = CTx(t) + Duft) (2.21)

where Ay, Ay € R, By, By, C € R" and D is a scalar. z € R" is the state u € R™ is
the input, and all the matrices involved are of appropriate dimensions. Let assume that

the dynamics is continuous along the hyperplane {(z,u)|C7x + Du = 0} such that
CTz +Du=0— Az + Biu = Ayx + Bou.

This fact is equivalent to

ker [CT D] C ker [Al — Ay, By — BQ}.

Throughout the thesis, we assume that the right-hand side is a continuous function

both in 2 and u, or equivalently, there exists a vector e € R" such that

A — Ay =eCT (2.22)

11



and By, — B, = eD. In this case, the right-hand side of (2.20) is a Lipschitz continuous
function. Hence, for each initial state z, and locally-integrable input w, there exists a
unique absolutely continuous function %" such that (2.20) holds for almost all t € R
and 2%0%(0) = xp. If the right-hand side of (2.20) is Lipschitz continuous in the z
variable, one can show that for each initial state xy € R™ and locally integrable input
u € !, there exists a unique absolutely continuous function 7% satisfying (2.20)
almost everywhere [14]. We also say that system (2.20) is completely controllable if for
any pair of states (xo, zf) which is related start and final time respectively, there exists
a locally integrable input u such that the solution """ of (2.20) passes through =, i.e.

(1) = x5 for some 7 > 0.

Bimodal systems can be encountered in a variety of applications sometimes artificially
as approximations of nonlinear systems and sometimes naturally due to the intrinsic
piecewise affine behaviour. Next, we illustrate an example of mechanical system in the

Figure 2.1 for the latter case.

A " 3 L

| () () () ()

Figure 2.1 Linear mechanical system with a one-sided spring

We assume that the elements of the system behave linearly. Let z; and x; denote the
displacements of the left and right carts from the tip of the leftmost spring,
respectively. Let the mass of the left one cart denoted by m,; and m, for the other one,
the spring constants by k; for the leftmost one and k5 for the other, and the damping

constant by d. Then the governing differential equations can be given by
mla':'l + ]{?(231 — 1'2) + d(l’l — CUQ) — k:'ma:v(—a:l, 0) = 0,

Mpdy + k(21 — ) +d(d1 —22) = F,

12



where F'is the force that is applied to the right cart. By denoting the velocities of the
left and right carts, respectively, by z3 and x4, one arrives at the following bimodal
piecewise linear system:

/-

0 0O 1 0 0
0 0O 0 1 0 .
—(kitks) ko —d d_ T+ 0 Fif Yy < 0
mi mi  mi  mi
—k2 ky  —d d 1
=24t 0m2 . m12 mé mo . (2.23)
0O 0 0 1 0 .
hy ka4 |XT 0 F ify>0
mi mi1  mi  mi
—k2 ke —d d 1
\ Lmo mo m2 m2
y=mx (2.24)

where x = col(x1, T2, X3, 14). Note that, the continuity condition (2.22) is satisfied for

e = col(0,0,55,0)as D =0and B; = B,

More realistic applications of bimodal systems arising from one-sided springs can be
found in for instance [19-20]. These papers deal with observer design and disturbance
attenuation problems, respectively, for a continuous bimodal system arising as a
mathematical model of two steel beams, one supported at both ends by two leaf
springs whereas the other (which is located parallel to the first one) clamped at both

ends acting as a one-sided spring.

Other control systems applications in which bimodal systems arise intrinsically include

for instance [21] where clutch engagement problem studied in [22].

In addition to the engineering applications, continuous bimodal systems are also
encountered in various other contexts. Examples from the area of dynamical systems
are included in [23-26]. In what follows, we illustrate a bimodal system arising in the

study of certain partial differential equations.

The so-called Michelson system was originally studied in [26] in the context of the
steady solutions of the Kuramoto—Sivashinsky equations and further studied in [27]. It

can be given as a bimodal system in the form of (2.20) where

13



0 —1 (=1)\(1+ )%
A= |1 0 0 Vi € {1,2},
0 1 0

F=[10 0,C"=1[0 0 1]
and A € Ris aconstant. Note that the continuity assumption is satisfied with

e =[-2A1+X)? 0 0]

2.3 Quadratic Stability of Bimodal Systems

In this subsection, we will formulate a theorem to test the stability of bimodal systems
which is the particular case of (2.20). Consider the bimodal PWL unforced system given

by

5t) = {A1x<t> if T (t) (2.25)

<0
) Asx(t) i CTz(t) >0

where A, Ay € R™", (' € R". We say that the bimodal system is quadratically stable
if there exists a quadratic function V' : R* — R such that V(z) > 0forall z # 0 € R”
and dV/(x(t)/dt) < O for all state trajectories = of (2.25) with x(t) # 0. Equivalently,
the system (2.25) is quadratically stable if and only if there exists a CQLF for the linear

subsystems, that is there exists a symmetric positive definite matrix P such that
AP+ PA; <0 (2.26)
withi € 1,2,

The following theorem gives an alternative characterization for the existence of a CQLF
xr — %:UTP:C satisfying (2.26) by exploting continuity condition which is

A1 — Ag = GCT.
Theorem 2.6: The following statements are equivalent.
1. The bimodal system (2.25) is quadratically stable.

2. There exists a symmetric positive definite matrix P such that

(A; — peCTYI'P + P(A; — 1eCT) < 0 forall i1 € [0, 1].

14



3. There exists a symmetric positive definite matrix A such that

ATK + KA, Ke—C

S o 5 | <0 (2.27)

To prove this theorem, we need the following auxiliary result which can be derived

from the proof of Theorem 1 [6].

Lemma 2.7 [6] : There exists a symmetric positive definite matrix P such that

(A — peCTYTP + P(A; — uieC™) <0 (2.28)
for all 1 € (v, 3) only if there exists v > 0 such that () = P satisfies

a+ (3
2

a+ 0
2

ATQ + QA + (Qe — C)(Qe — ) —apoCt <. (2.29)

Proof of Teorem 2.6 :

1 = 2 : If the bimodal system (2.25) quadratically stable, then there exists
P = PT > 0 such that

ATP+ PA; <0

(A —eCYT' P+ P(A; —eC™) < 0.

By taking convex combination for all i € [0, 1] we get Statement 2 of the Theorem 2.6.
2 = 3 :Due to continuity there exists sufficiently small € > 0 such that

(A — peCY' P+ P(A; — peC™) <0 (2.30)
where ;1 € [0,1 + €.

Then, it follows from Lemma 2.2 in [6] that there exists 7 > 0 such that () =~P

satisfies
1 1
ATQ + QA + (Qe — '2”0)@@ _ geo)T <0. (2.31)
By taking ' = 12-(), we obtain
T 1+e€ T
ATK + KA+~ 5(Ke — C)(Ke — C)T <0. (2.32)

Since (Ke — C')(Ke — C)T is positive semi-definite and € > 0, we further get
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1
ATK + KA, + §(K.e —CO)(Ke—-C)" <. (2.33)
Now, we claim that

1
ATK + KA, + 5(Ke —CO)(Ke—CO)' <. (2.34)
To see this, let z € C" such that

1

(AT K + KA, + 5(Ke —C)(Ke—C)"z =0. (2.35)
Then, it follows from (2.32) that
€ * T
—z*(Ke—C)(Ke—C) z <0.

2

Since € > 0, we can conclude that
(Ke—C)'z=0.

Now, it follows from (2.35) that

2 (ATK + KAz =0.

Since K = f—jﬁP, we obtain
(AT P+ PA)z =0.

Therefore, we get x = 0 from (2.30). Hence, we have showed that (2.26) holds. The

LMI (2.35) readily follows from (2.34) by using a Schur complement argument.

3 = 1: By taking the Schur complement with respect to "-2" of the left hand side of
(2.27), we obtain

1
ATK + KA, + E(Ke —CO)(Ke—CO)' <.
Note that

1
0>ATK + KA + 5(Ke —C)(Ke—-C)"

1
= (A, —eCHTK + K(A; — eCT) + §(K6 +C)(Ke+C)T
Z (Al — BCT)TK —f- K(Al — GCT).

Therefore, we get
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(A —eCTYTK + K(A; —eCT) <.
Clearly, we also have
ATK + KA, <.
Note that
(A — O K + K(A; — peC™)
= (1 —p)(ATK + KA) + pu((A; —eCTK + K(A, —eC™)) <0
forall € [0, 1].

Remark 2.8: Theorem 2.6 shows that one needs to solve the (n+1) LMI in order to
check the existence of a common Lyapunov function AZ-TP—f— PA; <0 given by two
(n x n) LMIs. It also shows that existence of a common quadratic Lyapunov function is
intimately related to a certain type of passivity of the linear system given by the
quadruple X(A;;e;C;1). More interestingly, Theorem 2.6 leads to a number of
geometric suffcient conditions for feedback stabilization of bimodal systems as

discussed in what follows.
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CHAPTER 3

STABILIZATION OF BIMODAL SYSTEMS

This chapter deals with the stabilization problem and provides sufficient conditions for
the existence of a static state feedback controller for bimodal PWL systems. After
comparing the existing open loop stabilizability conditions and those presented for
feedback stabilization, we provide a set of sufficient conditions for feedback
stabilization in terms of the zero dynamics of one of the linear subsystems. The results
of stabilization problem of related systems extensions of Lyapunov theory so as to we

need to show the existence of CQLFs which guarantees stability.

3.1 Open Loop Stabilization of Bimodal Systems

We refer the following theorem that presents a full characterization of open loop

stabilization problem for bimodal systems with continuous vector field [14].

Theorem 3.1 [14]: Suppose that the transfer function D + C?(sI — A;)™' By is not

identically zero. The following statements are equivalent.
1. The Bimodal system (2.29) is stabiliazable.

2. The pair (A;,[B; ¢€])is stabiliazable and the implication

e lAi — A\ B

o D] —0,0<AER VA0 =1,2 = s >0

holds.

3. The pair (A1, [B; e])is controllable and the inequality system

18



[A; — M BI] Ly

o [T

=" u] ﬂ <0,

admits no solution 0 # col(z, 1) € R*™ and 0 < A € R.

Proof of Theorem 3.1: Proof of the theorem is in [14, Thm.2.3].

3.2 Quadratic Feedback Stabilization of Bimodal Systems

This subchapter aims to present novel conditions for feedback stabilization of bimodal
PWL systems. It is known that the existence of a quadratic Lyapunov function is
necessary and sufficient for asymptotic stability of LTI systems [28]. In consideration of
this idea, we present feedback stabilization procedure for unstable bimodal systems
then we investigate to find such a Lyapunov function that guarantees the stability of
the forced bimodal systems. So that, we turn our attention to bimodal PWL systems

with inputs of the form

(3.1)

(1) = Az(t) + Bu(t) if CTa(t) <0
T Ar(t) + Bu(t) it CTa(t) >0

where x € R" is the state, u € R is the input, and all the matrices involved are of
appropriate dimensions. We assume that the right-hand side of (3.1) is continuos in
both z and w, i.e. the continuity condition which is A; — Ay = eC”, holds. As such, for
each initial state xy and locally-integrable input u there exists a unique absolutely

continuous function ™" such that (3.1) holds for almost all ¢ € & and 27%(0) = x.

The problem, we address, is under what conditions there exists a state feedback of the

form u = k”z which renders the closed loop bimodal system

0
0 (3.2)

<
>

(t) = (A; + BED)z(t) if CTz(t)
T A+ BED2() it CTa(t)

guadratically stable. In case, such a feedback exists, we say that the bimodal system

(3.1) is feedback stabilizable.
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In the following theorem, we state necessary and sufficient conditions for feedback
stabilization of bimodal systems in terms of LMls. Later, we will investigate geometric
sufficient conditions based on this theorem. First of all, it should be noted that for a

symmetric matrix M and a subspace VVof the underlying linear space, we write
MZ0 meaning that w’ Mw < 0 for all non-zero w € W.
Theorem 3.2 The following statements are equivalent.

1. The Bimodal system (3.1) is feedback stabilizable.

2. There exists k and P = PT > 0 such that

(A; + BED)YT' P+ P(Ay + BET) Pe—C
[ rp o ] <o (3.3)
3. There exists Q = Q7 > 0 such that
A1Q+ QAT Qc—e|w
{ T Yy <0 (3.4)
where W = ker BT x R.
If the statement 3 holds, one can choose k7 = —aBT(Q~! for some sufficiently large

a > 0.
Proof of Theorem 3.2 :

1 = 2: This readily follows from the application of Theorem 2.6 to bimodal system

(3.2).
2 = 3:Since the LMl in (3.3) is feasible, so is

P 0] [(A — BE)TP+ P(A — BKT) Pe—C| [P 0
{ 0 —1] { e 2 ] { 0 —1] <0 (3.3)

where () = P~ Straightforward calculations yield

T - T T
lAcl“ch; _Qﬁl Q% 6] + lBk Q?;QkB 8} <0. (3.6)

Let = € ker BT and u € R. Then, it follows from (3.6) that

T
] [hgres ac [ Ly -
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Therefore, (3.4) holds.

3 = 2: If B=0, then we have

{Acldcg@+_@§ @ e} . 53

By pre- and post-multiplying this LMI by
Q' 0
0 -1

and defining P = Q~!, we obtain

{i@?tgﬁl e C} <0 (3.9)
which proves the claim.
If B # 0, take k¥ = —aBT QL. It follows from Finsler's lemma [29] that
AQ+QAT QC—¢]  [BKTQ+QkBT 0
[C“TQ—eT =) ]*{ 0 0]:
[AlQ +C%£12{_—eiaBBT QC_2—6 <0 (3.10)

for all sufficiently large a > 0. Note that, it is enough to show that for any p > 0 there

exists a sufficiently large a > 0 such that
AQ+ QAT —2aBB" < —pl. (3.11)
Note that R” = imM @ imB where im M = ker BT. Also note that

(Mv+ BB)"(A1Q + QA] —2aBB")(Mv + 3B)

_[UHW(AQWA{)M MT(A4,Q + QAT)B HU} (3.12)
~ 18] [BTAQ+QANM BT(4Q+QAT)B-22|B|"] |3

imM
) < 0, we know that

where [ and v positive constants. Since (A;Q + QAT
MT(A,Q + QAT)M < 0. Then, it follows from a Schur complement argument that
for any p > 0 we can choose « > 0 sufficiently large enough so that

M"(AQ + QAT)M MT(AQ +QAT)B

BT(A,Q+QAT)M  BT(A4,Q+QAT)B —2a||B|| = 7 (3.13)
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In view of (3.12), this implies that (3.11) holds. Therefore, we have (3.6). By pre- and
post multiplying (3.10) by

Q' 0
@ o] a0

and defining
P=Q

we obtain (3.3). Note that, if we remove the restriction on the control input in

Statement 3 of Theorem 3.2, then it is immediately equal to (2.27).

Remark 3.3: Although they are different in nature, conditions of Theorem 3.1 are
necessary for feedback stabilization and hence should imply those of Theorem 3.2. To
see this implication, note first that the (3.4) readily implies that (A;, B) and hence
(A1, |B e€]) is stabiliazable. To see the second condition of Theorem 3.1 also follows

from (3.4),let A > 0, v # 0 and p; with ¢ = 1, 2 satisfy

Ay — M b@} = 0. (3.15)

o ] [

This yields that v € ker BT, vT A; 4 et = AT and ps = p11 + v'e. As such, we have

T - B
{:1] {ACIQQ_'——Q;;I QC—Q ‘1 [:J = 200" Qu — 2411 13- (3.16)

Since the right-hand side is negative, A is nonnegative and () is positive definite, one

can conclude that p1 9 > 0.

Remark 3.4: Theorem 3.2 provides necessary and sufficient conditions for feedback
stabilizability in terms of certain LMlIs. Next, we further investigate these LMIs with an
eye towards the geometric structure of the linear subsystems of the bimodal system

(3.1). To do so, we quickly introduce some notation.

A subspace V € R" s called as controlled invariant if there exists F' € R" such that
(A— BFT)V € V. Let V*(A, B,CT) be the largest controlled invariant subspace that
is contained in ker CT. A subspace 7 is called as conditioned invariant, if there exists
G € R" such that (A — BGT)T € 7. Let T*(A, B,CT) be the smallest conditioned

invariant subspace that contains im B.
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It is well known (see e.g. [28, Prop.4]) that the transfer function C7(sI — A)~'Bis
invertible as a rational matrix if and only if V&7 =Rand B # 0 # C.

The continuity condition in (2.30) has a number of useful consequences. Indeed, it can

be easily verified (see e.g. [4, Prop.2.1]) that
V*(Ay, B,CT) = V*(As, B,CT) (3.17)
T*(Ay, B,CT) =T*(Ay, B,CT). (3.18)

Together with the invertibility conditions, these equalities imply that the transfer
function CT(sI — A)~!B s invertible if and only if so is not equal to zero. Finally, the
proof of the Theorem 3.7 needs the following auxiliary result, so first of all we would

like to introduce Lemma 3.5.

Lemma 3.5 For any integer m > 1, any vector n € R™"!, and any positive real

numbers o, § and v there exists a symmetric matrix A € R™ " such that

A>al (3.19)
A+ AT < —pI (3.20)
A+AT X — n

3 3.21
{AT —n" = } <0 321

where A = A3, my.f1,2,...m—1} @and A= A2, m—13 {1y

Proof of Lemma 3.5: It trivially holds for m = 1. Suppose that it holds for m = ¢. Take
a vector ¢ € R, Let f:C{LQ,_J_l}. Since this is a (m — 1)-vector, there exists a

symmetric positive definite matrix A € R™*™ such that

A>al

A+ AT < —pI

A+AT XN=¢

Z - . 3.22
[AT—CT —7}<0 522
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where \ = —Ag23.01 g0 10 @nd p are real numbers. Let ©= Of23,. e+13.41,2,..0 and

0 = Oq12,..0.1}

It suffices to prove that i and p can be chosen so that

O>al

0+ 06T < —pI

0+06T -

{QT—CT —7]<0'

Note that,

= =p  [A+AT 0

646 _{ i mj

and that

©+6T) G-¢1 [(A+AD) 0 Ao
3 =1_ 0 2u A — G | - (3.23)
QT—CT —3 /\T_CT Aln_Cm _ﬁ

It follows from (3.22) that (3.23) can be made negative definite by choosing u
sufficiently small. Once p is fixed, one can choose p sufficiently large to satisfy

O>alasA>al.

With this preparation, we are ready to provide geometric sufficient conditions for

feedback stabilization

Lemma 3.6: Suppose that the transfer function C* (sl — A;)~!B is not identically
zero and V*( Ay, B,CT) = {0}. Then, the bimodal system (3.1) is feedback stabilizable.

Proof of Lemma 3.6: Assume that the transfer function of (2.25),
G(s) =p(s)/q(s) =CT(sI —A;))*B#0 and V*={0}. Then, one has
CT(sI —A)'B=py/(s"+qn15"""+...+q@s+q) where p, and ¢ with
i=0,1...n—1 are some real numbers and we conclude that p(s) is constant and

q(s) = 8" + Gn_18""' + ... + 15 + qo . Then, one can take

Hence, after a state space transformation, we get
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[0 1 0 0 ]
0 0 1 0
A = : , (3.24)
0 0 0 1
|~ % —@ —q2 ... —Qn-1]
B=[00 ...0 p ;C=[10 ...0 0 (3.25)

Our goal is to show that (3.4) holds. To do so, note that, in the new coordinates, any
vector v € ker BT is of the form vT = (vy, v, ..., v,_1,0)T. Let © = (v, 02, . . ., Up_1)-
Straightforward calculation yields that
01" TAQ + QAT Qc—e] [v 31" [O+07 G—¢] [o

b [0S ] = ) e L 028
where Q= Qs 112,01y 1= Q21301 €=¢€12. 1} Then, the
application of Lemma 3.5 with m=mn,n =¢,a = 3 = land 7 = 2 yields a symmetric
matrix () such that,

Q:af,[Q+QT Q—é} < 0.

fF—el -2

Therefore we have

L) (e e L1
w CcTQ — et -2 w|  |w

for all v € kerBT. Then, it follows from Theorem 3.1 such that (3.4) holds.

Note that, the hypothesis of the Theorem 3.6, i.e. invertibility of transfer function
CT(sI — A)~'Band V* =0, imply that C”(sI — A)~! B has no zeros. In the following
theorem, we show that feedback stabilization can be achieved in case all zeros are on

the left half plane, that is when the system (A, B, CT) is minumum phase.

Theorem 3.7 : Suppose that the transfer function C7 (sl — A)~!B is not identically
zero. Let V* = V*(Ay, B,C7T) and F be such that (A; — BFT)V* € V*. Suppose that
(A — BFT) |y~ is Hurwitz. Then, the bimodal system (3.1) is quadratically feedback

stabilizable.

Proof of Theorem 3.7 : Before giving the proof of the theorem, we would like to

introduce some notations and notions from geometric control approach. Consider the
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system (A, B,C, D). Let V* and 7%, respectively, which has been already denoted
as the largest output-nulling controlled invariant and the smallest input-containing
conditioned invariant subspaces of the system (A, B,C, D). Also let F'e F(V)
which means the friend of vector F'. Apply the feedback law, ©w = —F'x + v, where v is

the new input. Then the system ¥(A;, B, C, D) becomes
= (A — BF)x + Buv (3.27)
y=(C—DF)+ Dv (3.28)

Obviously, controllability is invariant under this feedback. Moreover, the system
(A, B,C, D) and (A, — BF, B,C — DF, D) share the same V* and 7" due to
Proposition 2.1 in Ref. [4]. Since the transfer matrix C*(sI — A,)™' B + Dis invertible
as rational matrix, Proposition 2.1 in Ref. [28] implies that the state space R™ admits
the following decomposition R" = V* @ 7*. Let the dimensions of the subspaces V*
and 7% be ny and ny, respectively. Also let the vectors (xy, 2o, ..., x,) be a basis for
R™, such that the first n; vectors form a basis for V* and the last ny for 7*. Also let

G € G(T). One immediately gets

B—-GD = {9} (3.29)
by
C—DF=[0 &) (3.30)

in the coordinates that are adapted to the earlier basis as V* C ker (C' — DF’) and

(B—GD) C T*. Here, byand & are are ny x m and p x n, matrices, respectively.

Note that, (4 — BF'— GC+GDF)V* CV* and (A — BF — GC +GDF)T* C T* according
to (see e.g. [4, Prop.2.1]). Therefore, the matrices (A; — BF —GC + GDF),
(B—GD) and (C'— DF) should be of the form [#9], [o«]" and [0«] in the new

coordinates where the row (column) blocks have n; and ny rows (columns),

respectively. Let the matrices /' and G be partitioned as

F=[f f].G= Bj (3.31)

With this partitions and one gets

A — {91Df1 ngfz} . |:ngf1 9102} {91Df1 Q1Df2} _ {12111 0 } N
! bafi  bafe G2Df1 gaca G2Df1 g2Dfo 0 A
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Ay +aiDfy g1C2
A — ~ 3.32
! [ b f1 Ay + bafa + gaca — g2 D fo 332

5= 7] =17 (333
C=|a &|=[Dfi &] (3.34)

Now, we can start the proof. Our first aim is to put the system (3.1) into a certain
canonical form as considered above. By applying the feedback law v = —FTz + v,

where v is the new input, we get

(3.35)

(4) — (Ay — BFD)z(t) if CTz(t) <0
1) = (Ay — BFT)z(t) if CTz(t) > 0.

Clearly, this bimodal system is feedback stabilizable if and only if so is (3.1). Since the
transfer function C*(sI — A;)~' B is invertible, V* & 7* = R". Let the dimensions of
the subspaces V* and 7* be n; and mny, respectively. Also let the vectors
{x1, 29, ...,x,} be abasis for R", such that the first n, vectors form a basis for 1* and

the last n, for 7*. Let G be such that (4, — GCT)T* C T+,

In the new coordinates as V* C ker CT and im B C 7*. By using the above note, we
can assign the subspaces in the new coordinates such as (A, — BFT — GCT)y* C V*
and (A, — BFT — GCT)T* C T*. Therefore, the matrix (4; — BFT — GC?) can be
made of the diagonal form in the new coordinates where the row (column) blocks

have n; and ny, rows (columns), respectively. With the above partitions, one gets

A
_ T _ |11 g1C2
Ay — BF" = { 0 Agz} (3.36)

In view of Theorem 3.2, existence of a positive definite matrix () such that

[(A1 - BFT?) 5 _Qe(;h — BF")" QC_ S . (3.37)

where W = ker BT x R is enough to prove statement.

Let a symmetric matrix () be of the form

@ Q2
©= { 1o Qm] (3.38)
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Straightforward calculations yield

AnQu 4+ QuAl + 916 Qly + Quacagl  AnQua+ QuaAly + 1cd Qe Quacs — €4

An@Qly + QLA + Qucagl ApQo + QAL Q2202 — € (3.39)
T
¢ Q1o -2

By left-multiplying by

I 0 —0
07| 0
00| I

and right-multiplying by its transpose, we get

AnQn + QuAﬂ + 916{ + 619{ - 2919{ AnQe + Q12A§Fg + 9165 Q1202 — €1 +2¢1

ApQly + QLAT + exgl ApyQag + QAT Q222 — € . (3.40)
GQn—€ +20] 6Qn—e ‘ -9

By the hypothesis, Ay is Hurwitz. Let a symmetric matrix () (partitioned accordingly)

be of the form

@1 0
= . 3.41
Q { 0 0, (3.41)
After straightforward calculations we get (3.37) as the following form
A Qr + QAT 9165 Q2 —e
Q20297 AQs + Q2 AL, Qacs —eo] . (3.42)
_6{ CgQ2 ) —2

In the new coordinates, v € ker BT if and only if v = (v;,v5) and v, € ker b. Note
that, V*(Ag, by, ct’) = {0}. Then, Lemma 3.6 implies that there exists a symmetric

positive definite matrix ()» and positive constant (3 such that,

Q2 > GBI

Note that, (A; — BFT) |y~ can be identified with Hurwitz-A;; due to hypothesis.
Therefore for any R=RU' <0 one can find Q,=Qf >0 such that
A1Q1 + Q1 AT, = R. Then, it follows from a Schur complement argument that we can

choose (7 such that (3.37) holds.
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Remark 3.8: Lemma 3.7 and Theorem 3.8 also imply strictly positive realness (SPR). In

particular, there exists k such that the system (A; — Bk™, e, CT 1) is SPR.
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CHAPTER 4

OBSERVER DESIGN FOR BIMODAL SYSTEMS

In this section, we consider observer design procedure for the class of bimodal
systems. For this purpose, we consider a significant study on observer design
procedure for bimodal systems devised by Juloski et al. [5]. The results in [5] lead to
conservatism by imposing extra restrictions on the construction of Lyapunov function.
Motivating from this problem, we streamline this observer design procedure for
related systems. We reduce the number of LMIs to be solved from the orginal two to
one and we also show that one of the parameters required for the design can be
eliminated. As a first step, we consider Luenberger observer design procedure

presented by Juloski et al., in the next subsection.

4.1 Observer Design Problem for Bimodal Systems

Let us to reconsider the bimodal piecewise linear system given by

o) Awx(t) + Bu(t) if H"z(t) <0
) = {Agx(t) + Bu(t) if H z(t) >0 4.0
y(t) = Cx(t) (4.2)

where x € R”, y € RP, u € R"and are the state, output and the input of the system.
The input 2 : '™ — P is assumed to be an integrable function. The matrices A,
Ay e R, B e R ™ ' € RP*™ and H € R". The hyperplane defined by ker H”
separates the n-dimensional real state space into the two half-spaces. Considering

class of bimodal PWL systems has identical input distribution matrix B and output

30



matrix C' for both modes. The vector field of the system is continuous over the
switching plane, i.e. A;(z) = Ay(x) when HT(z) = 0. It is straightforward to show
that Ay = A; + GHT for some vector (G of appropriate dimensions. In this case

equation (4.1) can be written as follows.
#(t) = Az + Gmax(0, H ) + Bu (4.3)

Juloski et al. considered the system (4.1) in [5] and proposed a continuous time

bimodal observer of the following structure

i(t) = A+ Bu+Li(y—y9) if H'2+K'(y—9) <0 (4.4)
| Asi4+Bu+ Loy —9) if HT2+KT(y—9) >0 ‘
y(t) = C(t) (4.5)

where T € R" is estimated state at time ¢ and {L;, Ly} € R"*? and K € R? are design

parameters. The dynamics of the state estimation error, ¢ := x — Z can be described

as follows
(A1 — L1C)e, HTz <0,H'2 + KT (y —9) <0

o (Ay — LyCle+ AAx, HTz <0, HT:+ KT(y—9) >0 (4.6)
(A — LiC)e — AAx, HTz>0,H s+ K"(y—9) <0 '
(Ay — LyC)e, HTz >0,H'2 + KT (y —9) >0

where z satisfies (4.1) and 7 satisfies (4.4). By substituting & = x — e in (4.5), we see
that the right hand side of the state estimation error dynamics is PWL in the variable
(e, ). Note that, such dynamics are not autonomous, but depend on the state of the
observer. Juloski et.al. presented the following theorem to design observer for bimodal
system [5].

Theorem 4.1 [5]: The state estimation error dynamics (4.6) is globally asymptotically
stable for all z : Rt — R" that satisfy system (4.1) in the sense of Lyapunov approach,

if there exist matrices P >0, Ly, Lo, k and constants A > 0, u > 0 such that the

following set of matrix inequalities are satisfied:

A

(A2 = LoC)T P+ P(Ay = LoC) +ul, —PGHT + Z(H — C"K)H” )
<0 :
—~HGTP + gH(H — CTK)T —AHHT
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(As = LOY P + P(Ay — ) + pl, PGHT + 5 (H — OTK)H" s
<0 |
HGTP + gH(H TR CNHHT

Proof of the Theorem 4.1 can be found in [5].

Note that, the parameters A and p appearing in the statement and the matrix
inequalities are related to the S-procedure, and are not directly needed in the design

of the observer.

4.2 Simplified Observer Design for Bimodal Systems

We prove that the LMIs in Theorem 4.1 imply to each other and we reduce the number
of LMIs to be solved from the orginal two to one. We also show that the parameter K
can be chosen zero. By this way, we offer a simpler structure for an observer (4.4-4.5).
Following theorem states that only one of the inequalities in Theorem 4.1 is needed to

design observer for bimodal system.

Theorem 4.2 : Assume there exist P = PT > 0, Ly, K and \, p € Rwith A >0, 2 > 0
such that LMl in (4.7) is satisfied. Then LMI in (4.8) is satisfied with L; = L, — GK.

Proof: Our goal is to present one of the two inequalities (4.7) and (4.8) needs to be
solvable to design observer for bimodal systems. Now, we should consider the cases
A=0and X\ > 0. In the first case, (2,2)-block term of the matrix on the left-hand side
of the first LMl in (4.7) is zero. Also, the (1,2) block term must be zero to satisfy the
LMI. Hence, —PGH”' = P(A; — As) = 0. Since P > ( this imples that A; = A, and
choosing Ly = Ly and K = (O guarantees that the LMI in (4.8) is satisfied.

Then, we deal the case A > 0 and let us rewrite the left hand sides of (4.7) and (4.8) as

T Ty T and T = T, = T respectively, with the matrices 7', 77 and 15 where

I, 0
=l )

- (Ay — LoC)Y' P+ P(Ay — LyC) + pl,, —PG + %(H — CTK)
1 pu— 7
~GTP + %H(H —CTK)T -\
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(A — LiO)T'P+ P(A, — L1C) + pl,, PG+ %(H - CTK)

T2 - )\
GTP+ SH(H —CTK)" ~A

We claim that the LMIs (4.7) and (4.8) are satisfied if and only if 77 < 0and 75 <,

respectively. To prove this claim, we need the following Lemma.
Lemma 4.3: If N'MN < 0and N is full row rank, then M < 0.

Since H # 0 and T' € R**(+1) has full column rank, also 7" full row rank. Then, it
follows from Lemma 4.3 that our claim holds. By taking the Schur complement with
respect to —\ in 77 and 15, we obtain the following bilinear matrix inequalities(BMls),

respectively.

(Ay — LyO\TP + P(Ay — LyO) + pul,

1
+X(—PG + %(H —~CTK)(-G"P + %(H ~CTK)T <0 (4.9
(A — LiCY'P+ P(A, — LC) + uld,,
1 )‘ T T )‘ T T
+ (PG + 5 (H = CTK)(GTP+ S (H — CTK)T <0 (4.10)

Note that, A, = A; + GH”T. Let us substitute A, in (4.9) and proceed the
shtraightforward computations. Then, the left hand-sides of (4.9) and (4.10) are equal

to each other if and only if,
1 1
—CTLIP — PLyC + 5PGKTC + ECTKGTP =

~-C'LIp - PL,.C — %PGKTC — éc’TKG’TP. (4.11)

Consequently, equality condition (4.11) occurs ifand only if L; = L, — GK.

Due to the symmetry in the inequalities (4.7) and (4.8) make possible the alternative

expression of Theorem 4.2 that is stated with following corollary.

Corollary 4.4: Assume there exist P = PT >0, L, K and A\, y € Rwith A >0, u > 0
such that LMl in (4.8) is satisfied. Then LMl in (4.8) is satisfied with L, = L; + GK.

Finally, we are ready to give the main theorem of this section which makes it possible

to design observer for bimodal systems as follows.
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Theorem 4.5: The following statements are equivalent:

1. There exist P, A, L, and K such that

(Ay — LyC)TP + P(Ay — LyC) PG+ %(H — CTK)

\ <0. (4.12)
GTP+ SH(H - CTK)" A
2. There exist P = PT > 0 such that
T A
ATP+ PA, PG+ 2H| w
A\ 2 | <o (4.13)
GTP + §HT -

where YV = ker C x R. Moreover, assume that Statement 2 holds for some P and \.
Then, there exist a > 0 such that Statement 1 holds for P, \, L, = —aP~'C" and
K = 0. Hence, any of the two statements above is equivalent with

. . ) . A A -
3. The linear, time invariant system (A,, G, _§H’ 5) can be passified by the state
feedback law with L, = [, + GK.
Proof of Theorem 4.5:

1—2: Let us rewrite first statement as follows

ATP+PA, PG+ % —CTLIP — PL,C —%C’TK
+ <0
GTP+ %HT —\ —%KTC 0

Let & € ker C and u € R then the second term in the left-hand side become zero on
ker C' x R. Also one can choose \ = 2 then we get the statement 2 of the Theorem

4.5,

Note that, \ is a scaling factor for the P, so that statement 2 of the Theorem 4.5 is also

feasible with ).

2—1 : Assume that the statement 2 of the Theorem 4.5 holds. Then, statement 2 of

the Theorem 4.5 implies that

A
(Ay + LyO)TP + P(Ay + LyC) PG+ §H
<0.
GTP+ %HT -\
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Straighforward calculation yields

A
AyP+ PA, +CTLIP + PL,CT PG+ ZH
\ 2 | <o. (4.14)
GTP + 5HT —\

(4.14) can be written as follows by the help of Finsler's lemma [29]

<0.

A

o A oo o
G"P+ §H —A
Define L, = aP~'CT with the sufficiently large positive parameter a and we
conclude that

A
(Ay — LyO)TP + P(Ay — L,C) PG+ =(H — CTK)
\ 2 < 0. (4.15)
GTP + §H(H — CTK)T —A

Note that (4.15) is the version of Statement 1 of Theorem 4.5 with K = 0 as stated in

(4.13) for the same theorem.

3=—1: Statement 1 of Theorem 4.5 is equivalent to the Positive-Real Lemma for the

system (A; — L.C, G, —%H, —A).

Remark 4.6: While choosing K # 0 in observer design structure (4.4)-(4.5) yields
better transient error dynamics. On the other hand, under the assumption of the

following Corollary the dynamics of the observer with I, = L, is continuous.

Corollary 4.7: Assume that (4.7) holds with P, A\, u, L, and K. Then there exists
positive o € R such that the (4.7) also holds with P, \, i, Ly = aP~1CT and K = 0.

Proof of Corollary 4.7: Considering Theorem 4.2, Theorem 4.5, K =0 and
L, = L, = L, then the observer state matrices of (A; — LC') and (Ay — LO) differ by

the term GH™. Hence, the dynamics of the observer for bimodal system is continuous.
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CHAPTER 5

ROBUST STABILITY TEST FOR BIMODAL SYSTEMS

In a similar way of nominal stability problem of bimodal systems, robust stability
analysis problem is dealt with in this section. As in the nominal stability analysis, we
also need to show the existence of CQLF which guarantees robust stability. We know
that the existence of a quadratic Lyapunov function is necessary and sufficient for
asymptotic stability of LTI systems with parametric and system uncertainties [30].
Those uncertainties can be originated from environment such as external errors and
disturbances. Also, some of them may occur in operating conditions such as
nonlinearities that have not been accounted for in the modeling process. So that, it is
crucial to take into account them to construct a CQLF. To that end, we consider the
robust stability analysis problem for bimodal systems with norm-bounded uncertainty
such that under which conditions, a number of convex combination of LTI systems
share a CQLF. We present a corollary to construct CQLF to check the robust stability of
bimodal systems with norm-bounded uncertainties. Then, to illustrate the
effectiveness of the corollary, we present a mechanical system in bimodal
configuration and simulate the switching mechanism of the system with nominal and

norm-bounded uncertain parameters

5.1 Robust Stability Test for Bimodal Systems

Let us reconsider bimodal piecewise linear system (2.25) with uncertainty as follows
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i(t) = | (5.1)
Note that, we have the continuity assumption such that

Al — AQ + AAl — AAQ = €CT (52)
AA(t) = ETA(t) Dy (5.3)
AAy(t) = Ey Do(t) Dy (5.4)

where Fy, E», D and D, are known uncertainty matrices of appropriate dimensions.

Note that, A; and A, are unknown Lebesque measurable functions of time which

satisfy
AN, < T (5.6)

The next corollary presents a robust stability condition to check the stability of (5.1) in

the view of (5.5) and (5.6).

Corollary 5.1: System (5.1) with (5.3) and (5.4) is robustly stable if there exist a
positive symmetric matrix )/, a positive constant ¢ such that the following condition
holds.
ATM + M A, +e¢ETE, Me—C DT
* —2 0| <0 (5.7)
* * —el
Proof of Corollary 5.1 : Consider the inequality (2.27) given in Section 2 . Exchanging
Aq with A; + AA; and K with M = M7T > 0 the condition (2.27) turns into

(Al +AA1)TM—|—M(A1 +AA1) M@-C
{ (Me — C)T _9 <0 (5.8)
and substituting (5.3) and (5.4) into (5.8) yields,
(Me —C)T —2 ' '

Note that (5.9) can be decomposed as,
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e e [ st o [T]ssom oo o
Defining

A-[het e

D=[ny 0

and some straightforward calculations yields,
A+ DA (t)E + ETAL(t)DT < 0. (5.11)

However, one can find a positive constant € such that,

ETA ()" Dy + DA (H)E, < %E{ E, +eD! D, (5.12)
holds [31]. Therefore in view of (5.12), if

At DD 4+ eETE <0 (5.13)
holds then (5.11) holds too. Then applying Schur complement to (5.13) allows to write

(5.14)

A+ €eEET D
{ DT —e[} <0

which is nothing but (5.7).

Remark 5.2: Note that, this corollary clearly states that one need only check the above
LMI based condition to determine the stability of bimodal systems with norm-bounded

uncertainty.

5.2 Simulation Studies

Consider the mechanical system shown in Figure 5.1. Let the mass of the cart denoted
by m, damping constant by d and the spring constants by k,; for the left most and £,
for the other. Firstly, we assume that the system is nominal. Defining the state
variables as 1 =&, o = Z which represents distance and velocity of the mass

respectively, allows to obtain following governing equations
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o
0 L + 0 F if CTz <0.1
_ —kg/m —d/m 1
T1| -
Hy
0 1 0
+ F if 0Tz >0.1
L _—(k31+k521)/m —d/m

(5.15)

where [ is the force applied to the cart, c is output and z is state vectors which are

1 O}Tand [ ] respectively.

ks1 Refe(rgnnc]ﬁ)point : ksZ
WA
AMAA L L !
|
d I_I |
L O (O om 7

Figure 5.1 Bimodal configurated spring-mass-damper mechanical system

Firstly, we apply Theorem 2.1 to check the nominal stability of bimodal system given in

(5.15). Let the system parameters be as m = 250 kg, ky;; = 160000 N/m, kg = 16000

N/m and d = 1000 Ns/m. In this perspective, let us first solve the LMI (2.25) to find a

common symmetric definite positive matrix /K. According to Theorem 2.1, we have

conducted a computer simulation using LMllab toolbox in MATLAB. After the solving

the related LMI with MATLAB-LMI-lab solver we get the following result.

P [1.2185 0.0016}

0.0016 0.0019
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Figure 5.2 Simulation of bimodal configurated nominal spring-mass-damper

mechanical system
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Figure 5.3 Simulation of bimodal configurated spring-mass-damper mechanical system

with constant uncertainty

Now, we reformulate the system in Figure 5.1 with uncertainty under the assumption

of ||A|| < I. Then, the governing equations can be given as follows.

;

[0 1 0]
AA ()] ]| + F if CTx, <0.1
—ks/m —C/m + AL E)] 1 ' =
[ 0 1 0
AA()] | + F ifCTxy > 0.1
_(ksl +/€52)/m —c/m ""[ 2( )] 1 1 T =
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It is assumed that the spring parameter k£ and damper parameter d have %60

admissible uncertainties in their exact values. Hence, we can assign the vectors F/; and
D, as [O l}T and [(O.G*ksl/m O.G*d/m)}, respectively. System parameters are
same as the previous example and solving the LMI (5.7) to find a positive real

symmetric matrix )M via Matlab-LMllab solver we get the following result with

e = 1.3989

(5.17)

M= 42.2501 2.1272
- 21272 0.7813|°

Finally, we present elementary simulation studies to visualize the switching
mechanism of bimodal configurated spring-mass-damper mechanical system. First of
all, we render the trajectory changing of exact knowledge case on the Figure 5.2. Then,
we deal with the uncertain case which is allowed %60 change in k and d parameters,
on the Figure 5.3 and time varying uncertainty taken 0.6 * kg, * sin(2mt) on Figure 5.4.
It should be noted that decreasing on damper coefficient affects to the system at
most. Hence, one can state that constant type uncertainty have more negative impact
on the stability of the system than the sinusoidal type uncertainty with respect to time.
Besides, it could be underlined that sinusoidal type uncertainty affects to attenuation

path more than the the other type of uncertainties.

s Trajectory x, of bimodal system with sinosoidal uncertainty in mod 1

= = = Trajectory x, of bimodal system with sinusoidal uncertainty in mod 2

Distance{mt.)

4
Time(s)

Figure 5.4 Simulation of bimodal configurated spring-mass-damper mechanical system
with sinusoidal uncertainty
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CHAPTER 6

RESULTS AND DISCUSSIONS

In this thesis, we investigated the quadratic stability of bimodal PWL systems with
continuous vector field. After establishing necessary and sufficient conditions for
guadratic stability and feedback stabilization in terms of LMIs, we provide sufficient
conditions for feedback stabilization in terms of the zero dynamics for one of the two
linear subsystems. Also, we discuss the relations between the existing open loop
stabilizability conditions and those for the feedback stabilization. Based on the
approach and the results of this thesis, several further research possibilities arise. One
of the immediate issue is relaxing the continuity assumption on considering system
class. Also, conditions obtained for the stability can be extended into a large class of

bimodal PWL systems with relay, saturation, dead-zone or time delay.

On the other hand, stability analysis and controller design for multi-modal PWL
systems is also challenging problem. Despite the considerable contribution of
numerous studies, a full algebraic analogue of stability analysis and stabilization of
multi-modal case has not been reported yet. In this context, our treatment has the
potential to bridge the gap between stability theory and controller design of related

systems due to the fact that it employs tools from geometric control theory.
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APPENDIX-A

GEOMETRIC CONTROL REVIEW

Appendix A introduces some notation and properties for geometric control theory

from the the book of Trentelman et. al [30].

Let X be a linear space and assume that ) and )V subspaces of X. In such case,
VNW and V -+ W are also subspaces. The smallest subspace containing both V' and
W is donated as V + )V. Besides, V N WV is the largest subspace contained in both V
and W. Also it can be said that if a subspace L satisfies Y C £ and YW C L then this
implies V + W C L. In this context, the following formula which is called as modular

rule
ROAV+W) =V +(RNW) (A1)
is valid for a subspace R.

Another important notion is linear independency. Let V;, V., ..., V. be subspaces. Then
the subspaces are called linearly independent if every z CV; +)V +... + V) has a
unique representation of the form z =uz1+2...2, with z; C V(i =1,..., k).
Moreover, if x;CVi(i=1,..,k) and x=z1+22...25, imply that

T = Ty... = 23 = 0.

Null space of a vector space is stated as the symbol ”0”. Then, it can be also

characterized the linear independence as follows.

Vmgzvj —0(i=1,..k) (A2)
JF
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If V1, V%...)), are linear independent subspaces, then their sum V is called the direct

sum of V), V4...); as following notation.
k
V=VieWwhe. oV=PW (A3)
=1

Linear complementary is also a fundamental notion for linear spaces. If V is a subspace
then there exists a subspace VW such that VW =X which is called linear
complement of V. It can be constructed by choosing a basis ¢, ¢s...q;. of V and then
extending it to a basis ¢, ...q,, of X . In this case, the span of g1, gx42...q,, IS a linear

complement of V. Note that, a linear complement is not unique.

Linear Maps

Let consider a linear map A : X — Y. It can be defined kernel and image spaces of

A as follows.
ker A2 {r € X | Av =0} (A4)
im A2 {xc X |Ax} (A5)

If imA =Y then A is called as surjective and if kerA =0, A is injective. Also, it is
known that A is isomorphic if A is surjective and injective. Then, A has an inverse map

and denoted by A1,
Based on the kernel and image spaces the followinf inclusions can be defined
AlimB :=1imB + AimB + ... + A" limB (A6)
kerC'| A :=kerC N A YkerC' N +... + A "kerC (A7)
and it is well known that
(A|imB) = (kerBT | AT)* (A8)
where W+ denotes the orthogonal space of W.

It can be also commented that in general, if A: X — Y is a not necessarily invertible
linear map and if V is a subspace of Y, then the inverse image of V is the subspace of

X as defined

AWE{ze X | Az eV} (A9)
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let A: X — X and a subspace V of X, it said that V is A —invariant if for all
x € X .Then Ax € V holds. Moreover, this can be stated as AV € V.

If V € X then a basis ¢, ¢»...q,, of X for which ¢y, g»...q; is a basis of V(k = dim (V))
is called a basis of X adapted to V. More generally, if V;,)%...), is a chain of subspace
such that Y} C W,... C V. then a basis ¢1, ¢, ..., g, of X is said to be adapted to this
chain if there exist ki, ks, ..., k, such that 91,92, ---» 4k is a basis of V), for (i =1,...,7). If
Vi, W, ..., )V, are subspaces of X such that X =V, WV, & ...V, it is said that a
basis ¢1, o, ..., @, is adapted to Vi, Vs, ..., V. if there exist numbers £y, ks...k,.11 such

thatk; =1, k,y1 =n+1land gy, .., G, —1is @ basis of V fori = 1,..., 7.

It is also stated a linear map in matrix or vector representation. For example, if
B: U — Xis alinear map satisfying #m.3 C V), it can be chosen a basis ¢, ¢, ..., g, of
X adapted to V. Also, p1, P2, ---, Pm €an be chosen as the basis of U. Then, the matrix

representation of B with respect to the basis is the following form

_|B
B_[ : } (A10)

where B € R**™_ This form clearly satisfies the condition of B C V.

Upper or lower triangular matrix forms give advantageous for the analysis of the
mechanical systems. For example, let A: X — X, V C X. Let also ¢y, ¢, ..., q, be a

basis of X adapted to V. Then, the matrix of A with respect to this basis is

_An Ar
A= { 0 AQJ. (A11)

The property Ay = 0 is a consequence of the A — invariance of V. The matrix of

A|VisAjp =0.

Systems with inputs and outputs

Let us consider the linear system with following equations
i(t) = Ax(t) + Bu(t) (A12)
y(t) = Car(t) + Duft) (A13)

where z(t) € R" is the state, u(t) € R™ is the input, y(¢) € R” is the output at time
teR
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(A, B,C, D) are linear maps or matrices between spaces. (x, u, y) vectors are usually
defined on positive real axis and called as state, input and output vectors, respectively.
Input function take values from the outside of the system and the class of admissible
input functions are denoted as U. U can be chosen different system classes but has
the slicing property i.e., if u; € U and uy € U, then for any 6 > 0, the function s
defined by us 2 u;(£)(0 <t < 6) and us 2 uy(t)(t > 6) is in U. It is assumed that
input function take values m-dimensioned positive reel space I{. Besides, state
variable vector x have values in a n-dimensioned space X which is called as state

space and output of the system (y) have values in a p-dimensioned space ).

All the system is represented with YJ(A, B, C, D) or just with 3. Moreover, the map D
which is from input to the output, is feed-through term is irrelevant in many problems.
So, the system is often represented with (A, B, C). It is known that, the solution of
differential equation of (A, B, C') which is

2y (t, o) = eXxg + f;o eA=7) Bu(t)dr; (0) = 0. (A14)
Output function v, (¢, zo) can be given as
yu(t, mg) = Cetag + fgfo Ce’ Bu(t)dr. (A15)

It can be reduced the system equations by using the Laplace transformation to the

transfer function from input to output as follows

G(s) 2 C(sI — A)'B+D. (A16)
Proposition A.1: Characterization of invertibility of G(s),
(1) G(s) is left-invertible as a rational matrix, iff V*N7* = {0} and {g] is of full

column rank.

(2) G(s)is right-invertible as a rational matrix, iff V*@7* ={R"} and [C' D] is of full

row rank.

(3) G(s) is invertible as a rational matrix, iff V*@@7* = {R"} and [g} is of full column

rank and [C D] is of full row rank.
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Remark A.2: If G(s) = C"(sI — A)"'B # 0 and V* ={0}, then [C' D] is scalar and

the system (7(s) does not has zero dynamics.

Alternatively, it can be characterized the invertibility of the transfer function as

follows.

Proposition A.3([28]): The transfer matrix D + C(sI — A)~! B is invertible as a rational
matrix if and only if V*@®7* =R", [c p]is of full row rank, and [5 p7]is of full
column rank. Moreover, the inverse is polynomial if and only if

V*N(A|imB) C (kerC'| A)and (A | imB) CV* + (kerC'| A).

On the other hand, the linear system with feedback configuration ( Xk 1) can be given

by
it =(A— BK —GC+GDK)x+ (B—GD)v (A17)
y=(C — DK)x+ Dv (A18)

This system is obtained from (A12), by applying both state feedback u = —Kz + v and

output injection —Ly.

Proposition A.4: Let K € R™*" and L € R"*? be given. The following statement hold:
(1) (A| @mB) = (A— BK | imB)

(2) (kerC'| A) = (kerC | A— GC)

3) V' (Xkr) =V(2)

(4) 7" (X ) = 77(2)

The next proposition relates the invertibility of the transfer matrix to controlled and
conditioned invariant subspaces.

A subspace V is called as output-nulling controlled invariant if for some matrix K the
inclusion (A— BK)Y CV and V C ker(C' — DK) hold. The set of such subspaces is
non-empty and closed under subspace addition, the set has a maximal element which
is donated as V*(X0). Specifically, V*(X) is called as largest controlled invariant space.
The notation KC(V) stands for the set { K' | (A— BK)V CV;V C ker(C' — DK)}. Also,
K(A, B,C, D) can be written as K(V*(A, B,C, D)). Note that, V* is the limit of the

subspaces and
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W —Rn (A19)
Vi={x|Ar+ BueV~5Cx+ Du=0 forsome u}. (A20)

Dually, it can be state a subspace 7 is input containing conditioned invariant if for some
L the inclusions(A—GC)r C 7 and im(B—GD) C7 hold. As the set of such
subspaces is non-empty and closed under subspace intersection, it has a minimal

element 7 (%)

It is also written 7%(X) as simply 7* for the purpose of notational convenient. The
notation £(7) represents the set {G|(A—GCO)r Cr;im(B—GD) C71} As
LA B,C, D) is represented with £(7(A, B,C,/ D)) , it can be said that
(A|mmB) D1(A, B,C, D).

Next proposition give general characterization of the spaces of V and 7.
Proposition A.5 : Following statements are equivalent:
(1) Vis controlled invariant : iff there exists F' such that (A— BF)Y CV

(2) Vis controlled invariant output nulling: if there exists F' such that (A — BF)Y CV
and V C ker(C — DF)

(3) V*is the largest controlled invariant nulling subspace.
(4) 7T is conditioned invariant : iff there exists GG such that (A —GC)T C 7T

(5) 7 is conditioned invariant input containing: iff there exists G such that

(A—GCYT CT andim(B—GD)T CT
(6) 7*is the smallest conditioned invariant input containing

it can be used the transformation of the subspaces for complex problems. So that, let
V1y..., U and Ugyq,...,0, be basis for V* and 7% respectively. Note that, the

following implications can be written.
(A— BF)V* CV*and V* C ker(C — DF) (A21)
(A—GOYT* CT*and im(B—GD)T* CT* (A22)

Note also that (C'— DF) is in the kernel space of V* and (B—GD) is in the
1mage space of T*. Therefore (A23) and (A24) are similar spaces with (A21) and (A22),

respectively.
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(A— BF — GC+GDF)V* CV* (A23)
(A— BF —GC+GDF)T* CT*, (A24)

Hence, it can be written the spaces in diagonal matrix form as follows.

(A— BF — GC + GDF) = {; ﬂ (A25)
Also one immediately gets
o
B—-GD = . (A26)
_O_ T
C—-DF = . (A27)

in the coordinates that are adapted to the earlier basis as V C ker(C'— DF)) and
(B—GD)CT.

The continuity condition which is between two dynamics (for example,

A; — Ay = eC™) has a number of useful consequences. Indeed, it can be verified
V*(Ay, B,CT) =V*(Ay, B,CT) (A28)
T*(A1, B,CT) = T*(A,, B,CT) (A29)
which ¥(A;, B, CT) and ¥(Ay, B, CT) are LTI systems.

Together with the invertibility conditions, those equalities imply that the transfer

function CT(sI — A;) lisinvertible if and only if so is C7 (s — A) L.
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APPENDIX-B

CONTROLLABILITY OF BIMODAL SYSTEMS

In this appendix, the solution of controllability problem for conewise linear systems is
adressed. Camlibel et. al. presented the solution of the controllability problem of
related systems in [4]. They derived algebraic necessary and sufficient conditions for
the related problem. Firstly, they considered push-pull system for controllability
problem, then they extended the solution into conewise linear systems. As the
bimodal systems are an example of conewise linear systems, this solution contains the

controllability problem of bimodal systems.

First of all, it should be to introduced conewise linear systems (CLS). CLS can be given

as follows.

T = Az + f(u) (B1)
where 2 €R", ueR", Ac R and f:R"™ = R" is a continuous conewise
linear function. Those systems are also considered as push-pull system by the help of
scalar input function u.

Byu(t) ifu<0

Byu(t) ifu(t)>0 (B2)

(t) = Az + {

It is well know that the system (B1) is completly controllable if for any pair of state
dynamics (xo,xs) € R"*", there exists a locally integrable input function u such that
the solution ™" of (B1) satisfies ™" (1) = xs for some T" > 0. Also, the system (B1)

is reachable from zero if for any state zy € R", there exists a locally integrable input
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function u such that the solution 2% of (B1) satisfies “(T") = z; for some T > 0.
The theorem B1 gives the necessary and sufficient conditions for the controllability of

push-pull systems [4].
Theorem B.1 : The following statements are equivalent.
1) The system (B1) is completely controllable.
2) The system (B1) is completely controllable with C'*° inputs.
3) The system (B1) is reachable from zero.
4) The system (B1) is reachable from zero with C'*° inputs.
5) The implication
Lexp(At)f(u) >0forallt >0 u € R™ = 2=0 (B3)
holds.

6) The pair (A[M'M?..M"]) is completely controllable with respect to
Vi X Vouoe X Y.

Proof of Theorem B.1: The implications (2 =— 1), (1 = 3) and (3 = 4) are

clear.
(3 == 5): Suppose that Statement (3) holds. Let z € R" be such that

ZLexp(At) f(u) >0 (B4)

forallt > 0 and u € R™. Then, the solution x of (B1) with zero initial condition the
following inequaility can be written.

(T = o7 /0 exp(A(T — ))f(u(s))ds > . (B5)

x(T') may take any arbitrary value by choosing a suitable function so z must be zero.

(5 = 6): Suppose that statement 5 of the theorem B1 holds. Then, one can need to

use next theorem [4].

Theorem B.2: Consider the linear time invariant system with input as follows with a

solid cone U as the restraint set.
& = Az + B(u) (B6)

where A € R"" and B € R»*™
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Then, (B6) is completely controllable with respect to U if and only if the following

conditions hold.

1) The pair (A, B) is controllable.

2) The implication

ANER, zeR ZTA= 0T, BT2 e U* = 2=0

holds. By the help of Theorem B.2 following two implications are needed to show.
1) the pair (A[M*'M?...M"]) is controllable.

Proof : Let s’ € C and v € C" be such that

V[T —A MMM =0. (B7)

(B6) means that
sv* =v*A (B8)
v*M' =0 (B9)

forall i =1,2,...,7. Let 0 and w be, respectively, the real and imaginary parts of s'.
Also let v1 and v, be, respectively the real and imaginary parts of v. Then, (B8) and (B9)

can be written in terms of o, w, v; and v, as follows

vl o w]| [vF
=1 0

vI M =0IM =0 (B11)
forall: =1,2,...,r. Also, (B10) results in

T T
[Zﬂ exp(At) = exp( [_Uw Lﬂ t) [Zﬂ (B12)

(B11) and (B12) imply that v]exp(At)M’ =0 for all t, i and j € {1,2}. In view of
statement 5 of Theorem B.1 v; and v, must be zero. Consequently, the pair

(A[M*M?...M"]) is controllable.
2) The implication A € R, z € R",
dA=NT (M) 2z €Y foralli=1,2,...,r = 2=0 (B13)

holds.
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Proof: Let 2 € Z and )\ € R be such that
ZTA=)T (B14)
(M) 'z e )r (B15)

foralli=1,2,...,r. It is known that, 27 M*v is nonnegative for any v € Y. .thus, one
gets 27 f(v) >0 for all v. Note that, 2" exp(At) = exp(Xt)z” due to (B14). Then,
2Texp(At) f(v) > 0for all v € R™ In view of statement 5 of Theorem 4.1 this implies
that z = 0. Consequently Statement 6 of Theorem B.1 follows from above implications

and Theorem B.2.
(5 == 4): This implication follows from the following lemma.
Lemma B.3: Consider the system (B1) and suppose that the implication
2Texp(At)f(u) > 0forallt > 0and u € R™ — 2z =0 (B16)

holds. Then, there exist a positive real number 7" and an integer [ such that for a given
state x, one can always find vectors n*/ € Y;fori =1,2,...,rand j =0,1,2,....0 — 1
such that the state &y can be reached from the zero state in time 1" by the application

of the input
a(t) = n" 0%t — (jr +1i — 1)Al) (B17)
for (jr4+i—1DA <t <(jr+i)Al where Al=T/(lr) and ©*:R—R is a

nonnegative valued C* function with supp(©2) C (A/4,3A/4) and j;)A OA(t) = 1.

Proof: First of all, it can be shown that, if (B16) holds then there exists a positive real

number 7" such that the implication,
2lexp(At)f(u) >0forall t € [0,T|and u € R — 2 =0 (B18)

holds. To see this, suppose that the (B18) does not hold for any 7'. Therefore, for all T,

there exists 0 # zp € R™ such that
zlexp(At)f(u) > 0forallt € [0,T]and u e R = 2z =0 (B19)

Without the loss of generality, it can be assumed that ||zp|| = 1. Then the sequence

{zr}reny admits a convergent subsequences due to the well-known Bolzano-
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Weierstrass theorem. Let z,, denote its limit. Note that, ||z,.|| = 1. It can be claimed

that
zh.exp(At) f(u) >0 (B20)

for all £ > 0 and u € R™. To show this, suppose that zZ exp(At’) f(v/) < 0. Then for
sufficiently large 1", one has zhexp(At') f(u') < 0 and ¢ < T". However, this can not
happen due to (B19). In view of (B16), (B20) yields ||z.|| = 0. Hence, by contradiction,

there exists a positive real number 7" such that the implication (B18) holds.
Now, consider the input function in (B17). Note that
f(a(t)) = Ma(t)if (jr +i — DAL <t < (jr +i)Al

The solution of (B1) corresponding to x(0) = 0 and u = w is given by

#(T) = / explA(T — 8)]f((s))ds (821)

Straightforward calculation yields that

2(T) = A(A) i > explA(T — (jr+i— 1)A)| M'n* (B22)

j=1 i=1

where A(A) = j;)A exp(—As)©?ds. Then it is enough to show that there exists an

integer [ such that the previous equation is solvable in n*/ € ) forall i = 1,2,...,r
and 7 =0,1,....,] — 1 for any x(T) € R" For this reason, it is needed to generalized

Farkas' lemma.

Lemma B.4: Let H € RPN, ¢ € RY and a closed convex cone C' C RY be given.

Suppose that HC'is closed. Then, either the primal system
Hv=q, vel
has a solution v € R”, but never both.
A consequence of this lemma is that, if the implication
w'Hv > 0forall ve C = w=0 (B23)

holds, then the primal system has a solution for all g. It is assumed that the (B22) is the

primal system. Note that, A(Z4;) is nonsingular for all sufficiently large [, as it
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converges to the identity matrix as [ tends to infinity. As ) is polyhedral cone
A(A))exp(AT)M'Y; must be polyhedral. Hence, closed for all sufficiently large [ and
for all 7. Therefore, in view of (B23), in order to show that for an integer [, (B22) has a

solution for arbitrary x(7T'). Indeed, the relation

r

-1
D) D Y eaplA(T — (jr+i — DAY M'n™ >0 (B24)

j=1 i=1
forall n € Y, i=1,2,...,7and j =0,1, ..., — 1 can be only satisfied by z = 0. To
see this, suppose that for each integer [, there exists z; # 0 such that

r

-1
AAA)D D eaplA(T — (jr+i— DAY M7 >0 (B25)

j=1 i=1

foralln™ € Y, i=1,2,...,rand j =0,1,...,] — 1. Also, || z;||can be taken as 1. In view
of the Bolzano-Weierstrass theorem, it can be assumed, without the loss of generality,
that the sequence {z} converges, say to 2., as [ tends to infinity. Now, fix i and
t € [0, 7). It can be verified that there exists a subsequence {l;,} C N such that the
inequality (jlpr +1i — 1)Al, <T —t < (jlpr +1)Al; holds for some jl.€ {1,2,...,1;}.
Note that ©“ converges to a Dirac impulse as A tends to zero. Hence, A(A;)
converges to the identity matrix as [ tends to infinity. Let [ = [, and j = j;, in (B25). By

taking the limit, one gets
2T exp(At)Min >0 (B26)

for all t€]0,7), n€); and 7 =1,2,...,r. Consequently, one has the following

inequality
zl.exp(At) f(u) >0 (B27)

for all t€[0,7] and uw € U. Therefore, z,, must be zero due to (B18). This is

contradiction.

(6 = 5) Suppose that 6 holds. It follows from theorem B.2 such that
a) the pair (A[M*M?...M"]) is controllable,

b) the implication A € R, z € R",

dA=N (MY 2 e Y foralli=1,2,..,r = z2=0
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holds. Now, the following lemma shoul be applied.

Lemma B.5: Let G € RV*N and H € RV*M pe given. Also let W C RM be such that
its convex hull nonempty interior in RM. Suppose that th pair (G, H) is controllable

and the implication
AeR, zeR, TG=)\"T, H ze W — 2=0 (B28)
holds. Then, also the implication
2lexp(Gt)Hv > 0forallt > 0andv e W — 2=0 (B29)

holds. Take G = A, H = [M'M?...M"] and W =) X )%...)). It follows from (a) and

(b) that the hypothesis of the above lemma is satisfied. Hence, the implication
2Lexp(A)[M* M? ... M"v > Oforallt > 0andv e W=, xW..J), — 2=0
holds. Then, the implication

2Texp(At)f(u) >0forallt > 0andueld — 2=0 (B30)
holds.

(6 = 1) Note that if the statement 6 holds for the system (B1), does it for the time
reversed version of the system (B1). Then, the statement 4 holds for (B1). This means

controllability.

(4 = 2) If the statement 4 holds, then one steer any initial state first to zero then, to

any final state in view of Lemma B.3.

Lemma B.6: Consider the (B1l) such that p=m and the transfer matrix
D + C(sI — A)~!is invertible as a rational matrix. Then, the following statements are

equivalent.
1) The CLS (B1) is completely controllable
2) The push-pull system
7y = Anz +9(y) (B31)

is completely controllable.
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Proof of Lemma B.6: For the proof of the lemma, some auxiliary results are needed.
First of all, following lemma which guarantees the existence of smooth functions lying

in a given polyhedral cone, is needed.

Lemma B.7: Let ) C IRP be a polyhedral cone and ¥ be a C* function, such that
y(t) € Y for all t €10, €], where 0 < € < 1. Then, there exists a C> function, 7 such
that:

a) y(t) = y(t), forall t € [0, €|;
b) 7¥)(1) =0, forall k = 0,1, ...;and
c) y(t) € Y, forall t €0, 1.

Proof: Let only prove the case p=1 and Y =1IR,. The rest of the proof is
generalization to the higher dimensional case. Let 7(¢) be a C* function, such that
y(t) =1for t <e/4, y(t) > 1 for ¢/4 <t < 3e¢/4 and y(t) =0 for 3¢/4 <t. Such a
function can be derived from so-called bump function in [24, Lemma 1.2.3] by
integration and scaling. So, the product of y and ¢(t) proves the claim. The other
auxiliary results are related with the existence of the solutions of conewise linear

systems(CLS) with certain proporties[11, Lemmas 2.4 and 3.3].

Proposition 3.5: Consider the CLS (1) with v = 0. Then, for each initial state x, there

exists an index set i and a positive number ¢ such that y(¢) € ) forall t € |0, ¢].

Now we can turn the proof. Obviously, statement 1 implies to statement 2. For the

rest, it is enough to show that the system (A11) is controllable, if statement 2 holds.
Note that,

V*(Agg + MyCy, By + MiD,Cy, D) = {0} and T*(Age + MiCh, By + MiD, Cy, D) = R™ for
all 1=1,2,...,7r due to (A23-24) and Proposition 2.1, transfer function
D + Cy(sI — Agp + M3Cy) (B2 + M3D)  has a polynomial inverse for all
1=1,2,...,r.

Take any x19, 21 € R™ and xo, 225 € IR™. Consider the system (A11) and apply v = 0.
According to Proposition 3.5 in [4] it can be found an index ¢y and an arbitrarily small

positive number € such that y(t) € ) for all ¢ € [0, €|. By applying Lemma B.7, one can

get a C* function v;,, such that:
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a) yin = y(t), forall ¢ € [0, ¢;
b) 4" (1) =0, forall k=0, 1, ...;and
C) Yin(t) € Vi, forall ¢t € [0, 1].

Then by applying Proposition 2.4 and 2.5 in [4] to the system
Y(Agg + MOCy, By + M D, Cy, D), one can find an input v;, such that the output y
of (A11) is identically 4, and the state x5 satisfies 25(0) = x9. Note that the input vy,
should be zero on the interval [0, ¢] by the construction of ¥, and invertibility.
Moreover, T2 = 0 due to (b) and Proposition 2.5 in [4]. Therefore, the input v, steers
the state col(xyg, o)) to col(z)y,0)) where z/ := z1(1) [4]. Also, it is can come up
with an input v,,, such that it steers a state col(';,0)) to col(z1f,7a5)). Now, it is
needed to show that the state col(z,,0)) can be steered to col(z},0)). To see this,
Theorem B.1 have to be applied. This theorem gives a positive number 7' > 0 and a
C® function y = 9,4, such that the solution x; of (A11) satisfies x1(0) = x/, and

z1(T) = ;. According to Lemma B.3, function #,,q can be chosen such that

yﬁfgd(O) = yggd(T) =0 for all j =0,1,... Moreover, one can find a finite number of

points, say 0 =ty <t; <... <ty =1, such that ynmia(t) € Vi, whenever t € [ty 1,1].

Since the transfer function D + Cs(sI — Agy + M3C5) (B2 + M3 D) has a polynomial
inverse for all © =1,2,....r, repeated application of Proposition 2.4 in [4] to the
system X (Ag + MiPCy, By + M D, Cy, D) yields an input v,,;4 and a state trajectory
X9 are satisfied for ¥y = y,,iq. Also, x2(0) = 22(T") =0 due to Proposition 2.5 in [4].
Consequently, the concatenation of vy, Upuq and v, steers the state col (a1, o) to

the state col(x17, xof).

By combining the previous lemma with Theorem B.1, main result of controllability

problem is as follows.

Theorem B.8: Consider the (B1l) such that p=m and the transfer matrix
D+ C(sI — A)~! is invertible as a rational matrix. Then, the CLS is completely

controllable if and only if:

1) the relation
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> (A+ M'C|im(B+M'D)) =R" (B32)
=1

is satisfied. And,

2) the implication

where A e R, z € R", w; € R™, w; € Y foralli =1,2,...,r, then 2 = 0 holds.

Proof of Theorem B.8: If it is considered Lemmal in [31] and Theorem B.1, it is enough

to show that the conrollability of the pair
(Ay, [Ly + M} Ly + M? ... Ly + M]]) (B34)

with respect to ); X Jh... X ). is equivalent to the conditions presented in Theorem

B.8. Note that the former is equivalent to the following conditions:
a) the pair (Ayy, [Ly + M} L, + M} ... Ly + M7]) is controllable and
b) the implication
AL =M NER], (L + M) 2 e Yy foralli = 2=0
holds.
It is aimed to prove the equivalance of (a) to 1 and of (b) to 2.
Nas1

Note that,
(A+ MC | im(B + M,D)) = (A — BK) + My(C — DK) | im(B+ M, D))

for any K due to Proposition 2.1 in [10]. Take K € KC(V*). Note that the condition in

lof Theorem B.8 is invariant under state space transformations. Therefore, one can

take
. : N o All (L1+ f)CQ
(A— BK) + M;(C — DK) = { 0 Ao ;M”%CQ, (B35)
N (L1 + M{) D
B+ M;D = [BQ+M§D . (B36)
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Let R, denote (A — BK) + M;(C — DK) | im(B + M;D)). Note that R; is an input-
containing conditioned invariant subspace of the system (A, B, C, D). Hence, T* ,
the smallest of the input-containing conditioned invariant subspaces must be

contained in R;. In the present case, following inclusions hold
. 0
m C R, (B37)
I,

Now, it is needed the following lemma.

Lemma B.9: Let O, P and Q be vector spaces such that O =P @ Q. Also let

mp(mo) : O — Q satisfy the following properties:
a)P is F-invariant,

b) TpFrp = F,

)Q C (F | imG).

Then, (F | (mpFrg){(+im(mpG) C (F | imG).

Proof: Note that

F(F | im) = mpFrp(F | imG) (B38)
=mpl (PN ({F | imG)) (B39)
C mp(P N (F' | imG)) (B40)
C (PN(E [ imG)) C (F [ imG). (B41)

This shows that the subspace (F' | imG) is F-invariant. Note also that

immplng =mpFQ CmpF(F | imG) Cmp(F | imG) C(F | imG)
and
impG Cim G C (F'| imG). (B42)
Last two inclusions show that the subspace (F'|im() contains
im (mpFrg) +im (7p)G. Since (F'| (im mpFrg)) 4+ im (7p)G is the smallest F-
invariant subspace that contains im (mpF'rrg) +im (7p)G, the inclusion

(F | (xpFr)) + im(mpG) C (F | imG)

holds.
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Now, Let take

O=R"P—=im [181], O =im LO ] S=R" (B43)
F'=(A-BK)+M(C—-DK) G'=B+M'D (B44)
nin All O
[

Note that

L, 0] 0 0
P = 0 0 and mg = 0 I.|
n2

Then, one has

wpFimp = {AO“ 8}, (B45)
mpFimg = {8 (I +é\41)(12}’ (B46)
mpGt = l(Ll +OMDD}. (B47)

Note that, the first hypothesis of Lemma B.9 satisfies due to (B35) and (B36). It follows
from (B43) and (B44) that the second one is also satisfied. Finally, the third follows

from (B37). Then, Lemma B.9 results in

<{A11 0} [ im {(L1+M{)CQ 0

0 0 (Ly + M))D 0} ) C R (B48)

By the invertibility hypothesis, the matrix [C, D] must be of full row rank. Then, the

previous inclusion can be written as

[y e o

Summing both sides over i, one gets
r A O . Ly + M} -
Eﬂ[o“ o} | im [( 0 1)}>§Z“Rz-- (B50)

This implies that
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1 2 r
S N e S B P S T

0 O 0 0 0
Together with (B37), the previous inclusion implies that the implication "a < 1" holds.
For the reverse, suppose that 1 holds but (a) does not. Then, there exists a nonzero

vector z and A € C such that
Z*[)\IAH L1 —FMl L1 —{—MQ L1 —{—M] =0. (352)

It can be verified that the real part of z, say w, belongs to R; for all i. Thus, w belongs

to (i_; Ri- = (O°1_, Ri)* .This contradicts 1.

8) b« 2: Statement 2 is invariant under state space transformations. So it is enough
to prove the statement for the system (All).Let A€ R, v e R™, 2z € R”2and w € R™
be such that the following product is equal to zero:

T

v AH — A (Ll + Mf)CQ (Ll + Mf)D
w 0 Cg D

This would result in

= 0.

ol Ay = o7 z ' Z A22+M§CQ_)\I Bg—}—(Ll—I—M;)D
1 W; + (L1 + Mll)’U CQ D

Note that V*(Agy + MiCy, By + MiD,Cs, D) =0 for all i. Then, it follows from

Proposition 2.3 in [4] that 2 =0 and w! =vT(L; + M?). This implies that (b) is

equivalent to 2.
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