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ABSTRACT  

 

STABILITY ANALYSIS AND FEEDBACK STABILIZATION OF BIMODAL 
PIECEWISE LINEAR SYSTEMS 

 

 

Yavuz EREN  

 

Department of Electrical Engineering 

Ph.D. Thesis 

 

Advisor: Prof. Dr. Haluk GÖRGÜN 

 

This thesis deals with the quadratic stability and feedback stabilization problems for 
continuous bimodal piecewise linear systems. First, we provide necessary and 
sufficient conditions in terms of linear matrix inequalities for quadratic stability and 
stabilization of this class of systems. Later, these conditions are investigated from a 
geometric control point of view and a set of sufficient conditions for feedback 
stabilization are obtained. 

Moreover, we consider observer design procedure for bimodal systems and we 
propose a simpler procedure by reducing the required conditions on the observer 
design.  

Finally, the result for stability analysis is extended to the bimodal systems with norm-
bounded uncertainties and is proposed a corollary to guarantee the robust stability for 
the related systems. 

 

Key words: Piecewise linear systems, Bimodal systems, Stability of bimodal systems, 
Stabilization of bimodal systems 
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ÖZET 

 

ÇİFT DURUMLU PARÇALI SÜREKLİ DOĞRUSAL SİSTEMLERİN KARARLILIK 
ANALİZİ ve GERİBESLEME KARARLILIĞI 

 

Yavuz EREN 

 

Elektrik Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Prof. Dr. Haluk GÖRGÜN 

 

Parçalı sürekli doğrusal sistemler, ayrık ve sürekli dinamikleri bünyesinde barındıran 
hibrit sistemlerin temel sınıflarından biridir. Çift durumlu sistemler ise, parçalı sürekli 
sistemlerin en basit alt sınıfıdır. Basit yapılarının yanında, kararlılık ve kararlı kılma gibi 
önemli problemlerin çözümü üzerindeki çalışmalarda kolaylık sağladığından, çift 
durumlu sistemler, hibrit kontrol teorisinin geliştirmesinde önemlidirler.  

Çift durumlu sistemlerin kararlılık analizi ve kararlı kılma problemleri, günümüzde 
üzerine çalışılan önemli problemlerdendir. Bu bakımdan, doğrusal zamanla değişmeyen 
alt sistemlerin konveks kombinasyonlarının, hangi şartlar altında eşdeğer kuadratik 
Lyapunov fonksiyonunu paylaşacağı bu tez çalışmasında ele alınmıştır. Orijinal ve kolay 
test imkanı sağlayan kararlılık şartları sürekli vektör alanına sahip çift durumlu 
sistemler için elde edilmiştir. Bunun yanında, geribesleme ile kararlı kılma problemi 
detaylı ele alınıp, geometrik kontrol yaklaşımı yardımıyla, daha az tutucu sonuçlar 
bulunmuştur.  

Ayrıca, çift durumlu sistemler için geliştirilmiş gözleyici tasarımı ele alınıp, bu tasarım 
için gereken şartların azaltıldığı bir tasarımı metodu önerilmiştir. 

Son olarak kararlılık analizi için bulunan sonuçlar normu sınırlandırılabilen belirsizlikler 
içeren çift durumlu sistemler için genişletilip, ilgili sistemlerin dayanıklı kararlılığını 
garanti eden koşul elde edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

1.1  Literature Review 

Piecewise linear (PWL) systems are some of the fundamental classes of hybrid systems 

which incorporate both discrete and continuous dynamics. PWL systems consist of 

some pairs of linear time invariant dynamics and a switching surface which divides the 

state space into subspaces according to a criterion depending on the system dynamics. 

In this thesis, we consider a particular class of switched PWL systems with state-

dependent switchings, namely bimodal PWL systems with a continuous vector field 

and we focus on to investigate linear matrix inequality (LMI) conditions for the stability 

analysis and feedback stabilization for related systems. However, it is well known that 

the efficient solution of the stabilization problem can only be developed when some 

basic concepts of linear control theory such as well-posedness, controllability, 

observability and stability are fully understood.  

In this context, Imura and Schaft studied the well-posedness of PWL systems in the 

sense of Carathéodory [1]. They derived necessary and sufficient conditions for the 

well-posedness of bimodal systems with single criterion in terms of an analysis based 

on lexicographic inequalities and the smooth continuation property of solutions. They 

also proposed an algorithm to solve the conditions and gave several necessary and 

sufficient conditions for bimodal systems to be well-posed. Furthermore, they 

discussed the well-posedness problem of feedback control systems with two state 

feedback gains switched according to a criterion depending on the state. Wu et al. also 

considered the class of bimodal state-based switched systems and presented 

necessary and sufficient conditions for the well-posedness of bimodal system by 
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excluding the Zeno phenomenon which is called as infinitely mode transitions in a 

finite time interval [2]. 

On the other hand, controllability and observability concepts of PWL systems are also 

studied extensively in literature. We can refer to Sontag’s book for detailed reviews 

and comments [3]. In summary, it should be noted that characterization of global 

controllability and observability of even simple PWL system classes such as bimodal or 

conewise is very complicated [3]. However, some remarkable studies are performed. 

For instance, Camlibel et al.  investigated algebraic necessary and sufficient conditions 

for controllability of conewise linear systems that the state space representation is 

partitioned into conical regions which some linear dynamics are active on each of 

these regions separately [4]. They utilized the controllability results for push–pull 

systems and stated easily verifiable conditions for controllability of bimodal systems. 

They also adopted geometric control theory to characterize the controllability 

conditions, so as to lead to solve the problems like feedback stabilization, observability 

and controller synthesis for the related systems.  Moreover, a significant study of 

Juloski et al. can be referred for observability concept [5]. Juloski et al. presented 

observer design procedures for a class of bimodal PWL systems in both continuous and 

discrete time. Their design approach needs input and measured output signals only, 

while the information on the active mode is not required.  

As a last issue, stability and performance analysis on PWL systems are investigated. 

Even though, the literature contains rich content for those studies, some of them 

become prominent with constructive results. In this regard, J. L. Willems' study can be 

considered as a keystone for the solution of stability problem for related systems [6].  

J. L. Willems obtained stability conditions of second order system by the technique of 

optimal quadratic common Lyapunov function and showed that the stability results 

obtained for a second order system by means of the circle criterion that is the same 

with quadratic stability technique. J. L. Willems also proved that the results are valid in 

general for nonlinear time-dependent feedback systems which can be considered as a 

threshold matter to extend the stability and stabilization results to the other classes of 

PWL systems. Hassibi and Boyd emphasized the importance of Lyapunov approach for 

the analysis and controller synthesis of PWL systems to get less conservative results 
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[7]. They derived sufficient conditions for stability and performance analysis by the 

help of Lyapunov functions in the LMI context, that can be also turned into convex 

optimization problem. So that, they proposed ellipsoidal outer approximation to the 

operating regions to reduce the conservatism for PWL systems. In the same fashion, 

Johansson and Rantzer developed a uniform and computationally tractable approach 

for stability analysis of nonlinear systems with PWL affine dynamics [8]. They also 

specified that this approach is promising to be generalised in a large number of 

directions such as performance analysis, global linearization, controller optimization 

and model reduction.  

As been noted above, those studies are initiated to developed a useful tool, is common 

quadratic Lyapunov functions (CQLF), to deal with the stability and performance 

analysis of switching PWL systems. To date, CQLF are among the most popular tools 

for the related systems, both for state-independent [9,10] and state-dependent 

switchings [8]. One of the main reason behind their popularity is that, in most cases, 

such Lyapunov functions can be efficiently computed via LMIs. As such, providing 

sufficient conditions for stability in terms of feasibility of a set of LMIs is highly popular 

in the literature of linear switching systems [11,12]. However, these conditions are 

rather computational in nature and often do not relate to the underlying structure of 

the system under study, in particular for the case of state-dependent switchings. 

In adition to the feasibility problem of specifying a CQLF, complexity of stability 

analysis for switched PWL systems is also originated from the characterization of 

switching surface. Samadi and Rodrigues considered the switched surface of PWL 

systems and presented a unified dissipative approach for stability analysis of PWL 

smooth systems with continuous and discontinuous vector fields [13]. They proposed a 

candidate Lyapunov function such that there is no need for information about 

attractive sliding modes on switching surfaces. In fact, their study is inspiring to deal 

with closed loop stabilization problem of bimodal system, but it is restrictive to 

syntheses the stabilization conditions for bimodal systems due to the fact that it 

contains a parameter being related to the decay rate of the Lyapunov function. 

Camlibel et al. also considered the problem of open loop stabilization for bimodal 

systems with state-dependent switching [14]. They adopted geometric control 
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approach with LMI formulation and presented algebraic necessary and sufficient 

conditions to characterize the stabilization. Furthermore, a full connection between 

stabilizability and controllability is established for piecewise linear switched systems. 

The main advantage of their approach is to reduce burden of computation for 

specifying a CQLF. Also, this study can be considered as a first step to solve the closed 

loop stabilization problem for bimodal system with state-depended switching.   

Finally, some stability results which are based on notable ideas should be noted for 

completeness of the survey. For example,  Ibeas and de le Sen presented a stability 

test for multi-modal PWL system formed by a family of simultanously triangularizable 

system matrices with CQLF [15]. In a different perspective, Feng presented a stability 

analysis method for PWL discrete-time linear systems based on a PWL smooth 

Lyapunov function that can be obtained by solving a set of LMIs, that is numerically 

feasible with commercially available software [16]. Contrary to the previous discussion, 

Iwatani and Hara dealt with the stability problem for PWL systems from a different 

perspective. Instead of using Lyapunov’s theory, they investigated behavior of PWL 

systems directly to get stability tests which are computationally tractable [17]. 

1.2 Objective of the Thesis 

The objectives of this thesis are the stability analysis and feedback stabilization of 

bimodal systems. As the previous discussion reveals, there are a variety of stability 

analysis for bimodal systems available in the literature. Besides, many of the stability 

conditions obtained are non-constructive or impose significant restrictions on the 

controller design for the stabilization. Thus, our first objective is to present stability 

conditions that provide some insight into the stability properties of the bimodal 

systems and can contribute the feedback stabilization process of bimodal systems with 

continuity assumption. It turns out that continuity assumption of the underlying vector 

field leads to an alternative LMI based necessary and sufficient condition for bimodal 

systems. In turn, this alternative condition enables us to look at the feedback 

stabilization problem from a geometric point of view. Indeed, the main contribution of 

this thesis is to provide sufficient conditions for the existence of a stabilizing static 
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state feedback for bimodal systems. Then, we are also in pursuit of less restrictive 

solution for the stabilization problem by the merits of geometric control theory. 

However, available result on observability for bimodal systems leads to conservatism 

by imposing extra restrictions on the construction of Lyapunov function. Motivating 

from this problem, we aim to offer a less conservative and simpler procedure to design 

observers for bimodal system.   

1.3 Hypothesis 

To our best knowledge, bimodal systems are the simpliest possible form of PWL 

systems, therefore the results provided for bimodal systems can be used as a stepping 

stone to establish hybrid control theory. However, the stability analysis and 

stabilization of even simple classes of PWL systems is extremely complex. In this 

regard, this thesis is dedicated to investigate LMI conditions on the stability and state 

feedback stabilization for bimodal systems. Overall, the results presented here reveal a 

full connection between the stability and feedback stabilization for bimodal systems 

which were not available prior to our study. Moreover, although they are different in 

nature, those conditions can be applied to the stabilization of the open loop 

configuration. 
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CHAPTER 2 

STABILITY ANALYSIS OF BIMODAL SYSTEMS 

This chapter presents the stability conditions for bimodal PWL systems. To this end, we 

first formulate the quadratic stability of bimodal systems by following J.L. Willems's 

conceptual framework on quadratic stability analysis of nonlinear time-dependent 

feedback systems [6]. Then, we derive equivalent LMI conditions on the dynamics of 

the related systems such that the stability of the bimodal PWL systems is guaranteed. 

Based upon the implications of this chapter, we will deal with feedback stabilization of 

bimodal PWL systems and we will present theorems to construct CQLF. 

2.1 The Willems' Conjecture 

The result of J.L. Willems on the quadratic stability of nonlinear time-dependent 

feedback systems that may be useful as a starting point to derive orginal conditions for 

stability analysis of bimodal systems [6]. For this purpose, we begin with the Willems' 

conjecture. 

Let us consider the general nonlinear time-dependent feedback system as follows  

_x(t) =Ax(t)¡Bk(x;t)Cx                                                                                                  (2.1)    

where A, B and C are (n£n), (n£1) and (1£n) matrices respectively, and realize 

the transfer function G(s) = C(sI ¡A)¡1B in a minimal way. The circle criterion 

proves asymptotic stability in the large of the solution of (2.1) for all k(x; t) such that 

for an arbitrarily small positive ² 

®+²·k(x;t)·¯¡²                                                                                                         (2.2) 
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if the function  

F(s) =
1+®G(s)

1 + ¯G(s)
                                                                                                                   (2.3) 

is positive real.  

Theorem 2.1 [6]: There exists a positive-definite quadratic Lyapunov function 

V (x) = xTPx with P = PT > 0 such that the derivative along the solution of (2.1) 

W(x; t) = xT [(ATP +PA)¡k(x; t)(PBC+CTBTP)]                                              (2.4) 

is negative definite for all k(x; t) satisfying (2.2) if and only if F(s), as defined in (2.3), is 

positive real. Proof of the Theorem 2.1 can be given by means of Lemma 2.2.  

Lemma 2.2 [6]: There exists a positive-definite P  satisfying the matrix inequality  

ATP +PA+(PB¡gCT)(BTP ¡gC)¡®¯CTC · 0                                              (2.5) 

with g =(®+¯)=2 only if for all real !, 

1+(®+¯)ReG(j!)+®¯ jG(j!)j
2
¸ 0.                                                                         (2.6) 

Proof of Teorem 2.1:  Let A 2 Rn£n and B;C 2 Rn where B 6= 0 and C 6= 0. Assume 

that there exist a symmetric positive definite matrix P  such that for each ½2 (®;¯), 

M(½) = (A¡½BCT)TP +P(A¡½BCT) =ATP +PA¡½(PBCT +CBTP)  (2.7)   

is negative definite. Hence, (PBCT +CBTP) 6= 0 and there exists x¤ 2Rn such that 

xT
¤ (PBCT +CBTP)x¤ 6= 0. Let us define H : R!R as H(½) = xT

¤M(½)x¤. Thus, 

there exists ½¤ > 0 such that H(½)H(¡½)<0 for all ½ ¸ ½¤. This shows that M(½) and 

M(¡½) can not be both negative definite for each ½ ¸ ½¤.  

To be more precise, we can dominate the term of ATP + PA in (2.7) by increasing ½ 

and we can guarantee the negative definition of (2.7). To do so, let us to define 

F = xT
¤ (PBCT +CBTP)x¤ > 0 and state M(½) in quadratic form as follows. 

xT
¤M(½)x¤ = xT

¤ (A
TP +PA)x¤¡½xT

¤ (PBCT +CBTP)x¤ 

                                                                              = xT
¤ (A

TP +PA)x¤¡½F               (2.7) 

In this case, we summarize all the possibilities of sign definitions in the following table. 
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Table 2.1 Sign definition of H 

    
          

         

        

        

 

We imply that, there exist 8½¸ ½¤ such that  M(½)M(¡½)<0. Let us consider the 

closed interval of ½2 [®;¯] and we can make negative definite H(½) = xT
¤M(½)x¤ by 

choosing the value of ½ whereas approaching the ®1. If xTM(®1)x = 0 for ®1 = ½ 

then, xTMx = 0 () Mx = 0 must be satisfied with M = MT . This property can be 

proven easily. Such as,  "if only" part of the proof is obvious. For the proof of the "if" 

part we can define M = NTN  and straightforward calculation yields  xTMx= kNxk
2 

and this means that Nx=0 =) Mx=0.  

Now, we have following implications  

xTM(½=®1)x < 0 =) x2 kerCT                                                                                  (2.8) 

xTM(½=®1)x=0 =) x =2 kerCT ;x2 kerM(®1)                                                     (2.9) 

and due to semi-definetness, it is obvious that dim(kerCT ) = n¡ 1. 

Note that, negative definetness for different ½ values can be guaranteed with 

PBCT +CBTP 6= 0. Therefore, there exist x¤ 2 Rn such that 

xT
¤ (PBCT +CBTP)x¤ 6= 0 is satisfied. In other words, we have a relation H : R!R  

can be defined as follows 

H(½) = xT
¤M(½)x¤.                                                                                                              (2.10) 

Hence, there exists a ½¤ > 0 such that  H(½)H(¡½)<0 is guaranteed for all ½ ¸ ½¤ 

and we deduce that both the functions of M(½) and M(¡½) can not be made negative 

definite for all ½ ¸ ½¤. 

Now, let us to define the following parameters on the value sets   

®1´ inff· jM(½)<0 on [·;¯]g                                                                               (2.11) 

1̄´ supf· jM(½)<0 on [®;·]g                                                                           (2.12) 
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where ®1 2 [¡1;1], 1̄ 2 [¡1;1] and ®1 · ®< ¯ · ¯1. Hence, at least one of ®1 

and ¯1 is finite. For example if H(¡½) > 0 for some ½ ¸ ½¤, then ®1 is finite. Now 

suppose that ®1 is finite. In this case, M(½) is negative definite for all ½2 (®1;¯]. By 

continuity of M(½), M(®1) must be singular and negative semidefinite. 

At this stage, we need some auxiliary results which will be considered in the following 

claims to complete the proof.  

Claim 2.3: There exist the vectors z1; z2; : : : ; zn¡1 such that fz1; z2; : : : ; zn¡1;Cg spans 

Rn and for all x 2 Rn, xTM(®1)x =¡
Pn¡1

i=1 (z
T
i x)2. 

Proof of Claim 2.3: Let v 6= 0 be an arbitrary vector in the kernel of CT . Then, 

vTM(®1)v = vTM(½1)v < 0 for each ½2 (®1;¯]. Hence, a nonzero vector y in the 

kernel of M(®1) must not be in the kernel of CT . Thus, there exist z1; z2; : : : ; zn¡1 such 

that fz1; z2; : : : ; zn¡1;Cg spans Rn and for all x 2Rn and 

xTM(®1)x =¡
Pn¡1

i=1 (z
T
i x)2. 

Claim 2.4: Let BTP = rCT +
Pn¡1

i=1 (miz
T
i )

2. Then r > 0 . 

Proof of Claim 2.4: Let y 2 spanfz1; z2; : : : ; zn¡1g
? 6= 0. Hence CTy 6= 0 as y 6= 0 and 

the vector set of fz1; z2; : : : ; zn¡1;Cg is a basis of Rn. Thus, it is obvious that 

yTM(®1)y = 0, using xTM(®1)x =¡
Pn¡1

i=1 (z
T
i x)2. Note that,   

yTM(®1)y = yT (ATP+PA)y¡y(®1(Cr+

n¡1X

i=1

(zim
T
i x)2CT+C(rCT+

n¡1X

i=1

(miz
T
i x)2))yT

        = yT(ATP +PA)y¡2®1r(c
Ty)2. 

Since ®1 is the infumum of ½2 (®1;¯] with M(½) being negative definite, 

yTM(½)y = yT(ATP +PA)y¡ 2½r(CTy)2 < 0 for any ½2 (®1;¯]. This implies that 

r > 0. More clearly, since ®1 is the infumum , ®1 means the first point that negative-

semi definition transforms unidentifiability. Therefore, it is clear that 

yT(ATP +PA)y = 2®1r(C
Ty)2. Now, let us rearrange yTM(½)y as follows 

yTM(½)y = yT(ATP +PA)y¡2½r(CTy)2 

=2®1r(C
Ty)2¡2½r(CTy)2 < 0                                                                              (2.13) 

=2(®1¡½)r(CTy)2 < 0. 
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Consequently, it is obvious that  (®1¡½)< 0 from the last inequality and the other 

terms are greater than the zero. So, r > 0.  

Claim 2.5: Let us choose r =(¯¡®1)=2 as a positive constant. Then 

(
Pn¡1

i=1 miz
T
i y)2 ·

Pn¡1

i=1 (z
T
i y)2 for all y 2 Rn. 

Proof of Claim 2.5: Let y be an arbitrary nonzero vector differently from Claim 2.4. 

Note that, 

yTM(¯)y = yT (ATP +PA)y¡ 2¯[r(CTy)2 + (CTy)

n¡1X

i=1

mi(z
T
i y)] < 0         

and 

yTM(®1)y = yT (ATP +PA)y¡ 2®1[r(C
Ty)2 + (CTy)

n¡1X

i=1

mi(z
T
i y)] =¡

n¡1X

i=1

(zT
i y). 

Therefore 

2(®1 ¡ ¯)[r(CTy)2 + (CTy)

n¡1X

i=1

mi(z
T
i y)]¡

n¡1X

i=1

(zT
i y)2 < 0.                                     (2.14) 

Now, recall the definition of r as r =(¯¡®1)=2. Then, the straightforward calculation 

yields 

r(CTy)2 + (CTy)

n¡1X

i=1

mi(z
T
i y) +

1

4r

n¡1X

i=1

(zT
i y)2 > 0.                                                    (2.15) 

If y is in the orthogonal complement of spanfz1; z2; : : : ; zn¡1g, then the inequality 

holds trivially. Now assume that the given y 6= 0 is not in the orthogonal complement 

of  spanfz1; z2; : : : ; zn¡1g. Fix this y and v be an arbitrary nonzero vector that is 

orthogonal to spanfz1; z2; : : : ; zn¡1g. Hence CTv 6= 0, y + v 6= 0 and zT
i (y + v) = zT

i y 

for all i = 1; 2; : : : ; n¡ 1. Hence, let us to write (2.16) as follows  

r(CT (y + v))2 + (CT (y + v))

n¡1X

i=1

mi(z
T
i y) +

1

4r

n¡1X

i=1

(zT
i y)2 > 0.       (2.16) 

Since CTv can be assigned arbitrary by scaling, we must have 

rx2 +

n¡1X

i=1

mi(z
T
i y)x+

1

4r

n¡1X

i=1

(zT
i y)2 > 0                              (2.17) 



11 

where 8x 2R. Due to positive definition of polynomials we get  

Pn¡1

i=1 mi(z
T
i y)]2¡

Pn¡1

i=1 (z
T
i y)2 < 0.                                (2.18) 

The negative definiteness of M(¯) have been proved by Claim 2.5 for all x. Then, we 

can use Lemma 2.2 as follows 

ATP +PA+ (PB ¡
®+ ¯

2
CT )(BTP ¡

®+ ¯

2
C)¡®¯CTC · 0       (2.19) 

such that proves (2.6) is true. Since the existence of the Lyapunov function implies 

(2.1) is asymptotically stable for ® < k < ¯, and at least weakly stable at k = ® and 

k = ¯, it is concluded that F(s) is positive real. Sufficiency part of the proof can be 

found in [18].  

2.2 Bimodal Systems 

In this subsection, we introduce a particular class of PWL systems with internally 

induced switchings, namely bimodal systems with a continuous vector field. This 

vector field  concatenates two conical region, contain linear dynamics separately, on 

the state space. Bimodal PWL systems can be given by 

_x(t) =

(
A1x(t) + B1u(t) if y(t) · 0

A2x(t) + B2u(t) if y(t) ¸ 0
                                                                         (2.20) 

y(t) =CTx(t)+Du(t)                                                                                                       (2.21) 

where A1, A2 2 <
n£n, B1, B2, C 2Rn and D is a scalar. x 2Rn is the state u 2Rm is 

the input, and all the matrices involved are of appropriate dimensions. Let assume that 

the dynamics is continuous along the hyperplane f(x;u)jCTx+Du = 0g such that 

CTx+Du=0!A1x+B1u=A2x+B2u. 

This fact is equivalent to  

ker
£
CT D

¤
µ ker

£
A1¡A2 B1¡B2

¤
. 

Throughout the thesis, we assume that the right-hand side is a continuous function 

both in x and u, or equivalently, there exists a vector e2Rn such that  

A1¡A2 = eCT                                                                                                                      (2.22)  
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and B1¡B2 = eD. In this case, the right-hand side of (2.20)  is a Lipschitz continuous 

function. Hence, for each initial state x0 and locally-integrable input u, there exists a 

unique absolutely continuous function xx0;u such that (2.20) holds for almost all t 2R 

and xx0;u(0) =x0. If the right-hand side of (2.20) is Lipschitz continuous in the x 

variable, one can show that for each initial state x0 2Rn and locally integrable input 

u 2 L1, there exists a unique absolutely continuous function xx0;u satisfying (2.20) 

almost everywhere [14]. We also say that system (2.20) is completely controllable if for 

any pair of states (x0; xf )  which is related start and final time respectively, there exists 

a locally integrable input u such that the solution xx0;u of (2.20) passes through xf, i.e. 

xx0;u(¿) = xf  for some ¿ ¸ 0. 

Bimodal systems can be encountered in a variety of applications sometimes artificially 

as approximations of nonlinear systems and sometimes naturally due to the intrinsic 

piecewise affine behaviour. Next, we illustrate an example of mechanical system in the 

Figure 2.1 for the latter case. 

d

k2

  

m1

k1

x1

  

m2

  

x2

F

 

Figure 2.1 Linear mechanical system with a one-sided spring 

We assume that the elements of the system behave linearly. Let x1 and x2 denote the 

displacements of the left and right carts from the tip of the leftmost spring, 

respectively. Let the mass of the left one cart denoted by m1 and m2 for the other one, 

the spring constants by k1 for the leftmost one and k2 for the other, and the damping 

constant by d . Then the governing differential equations can be given by 

m1 Äx1 +k(x1¡x2) +d( _x1¡ _x2)¡k0max(¡x1;0) = 0; 

m2 Äx2 +k(x1¡x2)+d( _x1¡ _x2) =F; 
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where F  is the force that is applied to the right cart. By denoting the velocities of the 

left and right carts, respectively, by x3 and x4, one arrives at the following bimodal 

piecewise linear system: 

_x =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

2

6
6
6
4

0 0 1 0

0 0 0 1
¡(k1+k2)

m1

k2

m1

¡d
m1

d
m1

¡k2

m2

k2

m2

¡d
m2

d
m2

3

7
7
7
5

x +

2

6
6
6
4

0

0

0

1

3

7
7
7
5

F if y · 0

2

6
6
6
4

0 0 1 0

0 0 0 1
¡k2

m1

k2

m1

¡d
m1

d
m1

¡k2

m2

k2

m2

¡d
m2

d
m2

3

7
7
7
5
x+

2

6
6
6
4

0

0

0

1

3

7
7
7
5
F if y ¸ 0

                                               (2.23)  

y = x1                                                                                                                                     (2.24) 

where x= col(x1;x2;x3;x4). Note that, the continuity condition (2.22) is satisfied for 

e = col(0;0; ¡k1

m1
;0) as D =0 and B1 = B2. 

More realistic applications of bimodal systems arising from one-sided springs can be 

found in for instance [19-20]. These papers deal with observer design and disturbance 

attenuation problems, respectively, for a continuous bimodal system arising as a 

mathematical model of two steel beams, one supported at both ends by two leaf 

springs whereas the other (which is located parallel to the first one) clamped at both 

ends acting as a one-sided spring.  

Other control systems applications in which bimodal systems arise intrinsically include 

for instance [21] where clutch engagement problem studied in [22].  

In addition to the engineering applications, continuous bimodal systems are also 

encountered in various other contexts. Examples from the area of dynamical systems 

are included in [23-26]. In what follows, we illustrate a bimodal system arising in the 

study of certain partial differential equations. 

The so-called Michelson system was originally studied in [26] in the context of the 

steady solutions of the Kuramoto–Sivashinsky equations and further studied in [27]. It 

can be given as a bimodal system in the form of (2.20) where 
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Ai =

2

4
0 ¡1 (¡1)i¸(1 + ¸2)

1 0 0

0 1 0

3

58i 2 f1; 2g, 

F =
£
1 0 0

¤
, CT =

£
0 0 1

¤
, 

and ¸ 2R is aconstant. Note that the continuity assumption is satisfied with 

eT =
£
¡2¸(1+¸)2 0 0

¤
. 

2.3 Quadratic Stability of Bimodal Systems 

In this subsection, we will formulate a theorem to test the stability of bimodal systems 

which is the particular case of (2.20). Consider the bimodal PWL unforced system given 

by 

_x(t) =

(
A1x(t) if CTx(t) · 0

A2x(t) if CTx(t) ¸ 0
                                                                                       (2.25) 

where A1, A2 2 Rn£n, C 2Rn. We say that the bimodal system is quadratically stable 

if there exists a quadratic function V : Rn !R such that V (x) > 0 for all x 6= 0 2 Rn 

and dV(x(t)=dt)<0 for all state trajectories x of (2.25) with x(t) 6=0. Equivalently, 

the system (2.25)  is quadratically stable if and only if there exists a CQLF for the linear 

subsystems, that is there exists a symmetric positive definite matrix P such that 

AT
i P +PAi < 0                                                                                                                   (2.26) 

with i 2 1; 2. 

The following theorem gives an alternative characterization for the existence of a CQLF 

x! 1
2
xTPx satisfying (2.26) by exploting continuity condition which is 

A1¡A2 = eCT . 

Theorem 2.6:  The following statements are equivalent. 

1. The bimodal system (2.25) is quadratically stable. 

2. There exists a symmetric positive definite matrix P  such that 

(A1¡¹eCT)TP +P(A1¡¹eCT) < 0  for all ¹2 [0;1]. 
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3. There exists a symmetric positive definite matrix K such that  

            

·
AT

1 K +KA1 Ke¡C

eTK ¡CT ¡2

¸

< 0.                                                                               (2.27) 

To prove this theorem, we need the following auxiliary result which can be derived 

from the proof of Theorem 1 [6]. 

Lemma 2.7 [6] : There exists a symmetric positive definite matrix P  such that 

(A1¡¹eCT)TP +P(A1¡¹eCT) < 0                                                                           (2.28) 

for all ¹2 (®;¯) only if there exists ° > 0 such that Q = °P  satisfies 

AT
1 Q+QA1 + (Qe¡

®+ ¯

2
C)(Qe¡

®+ ¯

2
C)T ¡®¯CCT · 0.                           (2.29) 

Proof of Teorem 2.6 : 

1 =) 2 : If the bimodal system (2.25) quadratically stable, then there exists 

P = PT > 0 such that 

AT
1 P +PA1 < 0 

(A1¡eCT)TP +P(A1¡eCT) < 0: 

By taking convex combination for all ¹2 [0;1] we get Statement 2 of the Theorem 2.6. 

2 =) 3 : Due to continuity there exists sufficiently small ² > 0 such that  

(A1¡¹eCT)TP +P(A1¡¹eCT) < 0                                                                           (2.30) 

where ¹2 [0;1+²]. 

Then, it follows from Lemma 2.2 in [6] that there exists ° > 0 such that Q = °P  

satisfies 

AT
1 Q+QA1 +(Qe¡

1+ ²

2
C)(Qe¡

1+ ²

2
C)T · 0.                                                   (2.31) 

By taking K = 2
1+²

Q, we obtain 

AT
1 K +KA1 +

1+ ²

2
(Ke¡C)(Ke¡C)T · 0.                                                           (2.32) 

Since (Ke¡C)(Ke¡C)T  is positive semi-definite and ² > 0, we further get 
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AT
1 K +KA1 +

1

2
(Ke¡C)(Ke¡C)T · 0.                                                                 (2.33)  

Now, we claim that 

AT
1 K +KA1 +

1

2
(Ke¡C)(Ke¡C)T < 0.                                                                 (2.34)  

To see this, let x 2 Cn such that 

x¤(AT
1 K +KA1 +

1

2
(Ke¡C)(Ke¡C)T)x = 0.                                                       (2.35) 

Then, it follows from (2.32) that 

²

2
x¤(Ke¡C)(Ke¡C)Tx· 0. 

Since ² > 0, we can conclude that 

(Ke¡C)Tx=0. 

Now, it follows from (2.35) that 

x¤(AT
1 K+KA1)x=0. 

Since K = 2°

1+²
P , we obtain 

x¤(AT
1 P +PA1)x=0. 

Therefore, we get x = 0 from (2.30). Hence, we have showed that (2.26) holds. The 

LMI (2.35) readily follows from (2.34) by using a Schur complement argument. 

3 =) 1: By taking the Schur complement with respect to "-2" of the left hand side of 

(2.27), we obtain 

AT
1 K +KA1 +

1

2
(Ke¡C)(Ke¡C)T < 0. 

Note that 

0 > AT
1 K + KA1 +

1

2
(Ke¡C)(Ke¡C)T

= (A1 ¡ eCT )TK + K(A1 ¡ eCT ) +
1

2
(Ke + C)(Ke + C)T

¸ (A1 ¡ eCT )TK + K(A1 ¡ eCT ).

 

Therefore, we get 



17 

(A1¡eCT)TK+K(A1¡eCT) < 0. 

Clearly, we also have 

AT
1 K+KA1 < 0. 

Note that 

(A1¡¹eCT)TK+K(A1¡¹eCT) 

    = (1¡¹)(AT
1 K+KA1)+¹((A1¡eCT)TK+K(A1¡eCT)) < 0 

for all ¹2 [0;1].  

Remark 2.8: Theorem 2.6 shows that one needs to solve the  (n + 1) LMI in order to 

check the existence of a common Lyapunov function AT
i P +PAi < 0 given by two 

(n£n) LMIs. It also shows that existence of a common quadratic Lyapunov function is 

intimately related to a certain type of passivity of the linear system given by the 

quadruple §(A1;e;C; 1). More interestingly, Theorem 2.6 leads to a number of 

geometric suffcient conditions for feedback stabilization of bimodal systems as 

discussed in what follows. 
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CHAPTER 3 

STABILIZATION OF BIMODAL SYSTEMS 

This chapter deals with the stabilization problem and provides sufficient conditions for 

the existence of a static state feedback controller for bimodal PWL systems. After 

comparing the existing open loop stabilizability conditions and those presented for 

feedback stabilization, we provide a set of sufficient conditions for feedback 

stabilization in terms of the zero dynamics of one of the linear subsystems. The results 

of stabilization problem of related systems extensions of Lyapunov theory so as to we 

need to show the existence of  CQLFs which guarantees stability. 

3.1 Open Loop Stabilization of Bimodal Systems 

We refer the following theorem that presents a full characterization of open loop 

stabilization problem for  bimodal systems with continuous vector field [14].  

Theorem 3.1 [14]: Suppose that the transfer function D+CT(sI ¡A1)
¡1B1 is not 

identically zero. The following statements are equivalent. 

1.  The Bimodal system (2.29) is stabiliazable. 

2.  The pair (A1; [B1 e]) is stabiliazable and the implication 

 
£
vT ¹

¤
·
Ai ¡ ¸I Bi

CT D

¸

= 0; 0 · ¸ 2 <; v 6= 0; i = 1; 2  =) ¹1¹2 ¸ 0 

 holds. 

3. The pair (A1; [B1 e]) is controllable and the inequality system  
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¹ ¸ 0; 

             
£
zT ¹

¤
·
Ai ¡ ¸I B1

CT D

¸

= 0; 

             
£
zT ¹

¤
·
e

1

¸

· 0; 

admits no solution 0 6= col(z; ¹) 2 Rn+1 and 0· ¸2R. 

Proof of Theorem 3.1: Proof of the theorem is in [14, Thm.2.3]. 

3.2 Quadratic Feedback Stabilization of Bimodal Systems 

This subchapter aims to present novel conditions for feedback stabilization of bimodal 

PWL systems. It is known that the existence of a quadratic Lyapunov function is 

necessary and sufficient for asymptotic stability of LTI systems [28]. In consideration of 

this idea, we present feedback stabilization procedure for unstable bimodal systems 

then we investigate to find such a Lyapunov function that guarantees the stability of 

the forced bimodal systems. So that, we turn our attention to bimodal PWL systems 

with inputs of the form 

_x(t) =

(
A1x(t) + Bu(t) if CT x(t) · 0

A2x(t) + Bu(t) if CT x(t) ¸ 0
                                                                      (3.1) 

where x 2Rn is the state, u2R is the input, and all the matrices involved are of 

appropriate dimensions. We assume that the right-hand side of (3.1) is continuos in 

both x and u, i.e. the continuity condition which is A1¡A2 = eCT , holds. As such, for 

each initial state x0 and locally-integrable input u there exists a unique absolutely 

continuous function xx0;u such that (3.1) holds for almost all t 2 < and xx0;u(0) =x0. 

The problem, we address, is under what conditions there exists a state feedback of the 

form u = kTx which renders the closed loop bimodal system 

        _x(t) =

(
(A1 + BkT )x(t) if CT x(t) · 0

(A2 + BkT )x(t) if CT x(t) ¸ 0
                                                             (3.2) 

quadratically stable. In case, such a feedback exists, we say that the bimodal system 

(3.1) is feedback stabilizable. 
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In the following theorem, we state necessary and sufficient conditions for feedback 

stabilization of bimodal systems in terms of LMIs. Later, we will investigate geometric 

sufficient conditions based on this theorem. First of all, it should be noted that for a 

symmetric matrix  and a subspace of the underlying linear space, we write 

M
W
< 0 meaning that  for all non-zero . 

Theorem 3.2 The following statements are equivalent.  

1.  The Bimodal system (3.1) is feedback stabilizable. 

2.  There exists k and P = PT > 0 such that 

·
(A1 +BkT)TP +P(A1 +BkT) Pe¡C

eTP ¡CT ¡2

¸

< 0                                               (3.3) 

3.  There exists Q = QT > 0 such that  

             

·
A1Q+QAT

1 Qc¡ e

cTQ¡ eT ¡2

¸
W
< 0                                                                                    (3.4) 

          where W = kerBT £R. 

If the statement 3 holds, one can choose kT =¡®BTQ¡1 for some sufficiently large 

® > 0.  

Proof of Theorem 3.2 : 

1 =) 2:  This readily follows from the application of Theorem 2.6 to bimodal system 

(3.2). 

2 =) 3: Since the LMI in (3.3) is feasible, so is  

·
P¡1 0

0 ¡1

¸·
(A1¡BkT)TP +P(A1¡BkT) Pe¡C

eTP ¡CT ¡2

¸·
P¡1 0

0 ¡1

¸

< 0.                    (3.5) 

where Q = P¡1. Straightforward calculations yield 

·
A1Q+QAT

1 QC ¡ e

CTQ¡ eT ¡2

¸

+

·
BkTQ+QkBT 0

0 0

¸

< 0.                                                        (3.6)  

Let x 2 kerBT  and u2R. Then, it follows from (3.6) that 

 

·
x

u

¸T ·
A1Q+QAT

1 QC ¡ e

CTQ¡ eT ¡2

¸·
x

u

¸

< 0.                                                                           (3.7) 

M W

wTMw < 0 w2W
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Therefore, (3.4) holds. 

3 =) 2:  If B =0, then we have  

·
A1Q+QAT

1 QC ¡ e

CTQ¡ eT ¡2

¸

< 0.                                                                                              (3.8) 

By pre- and post-multiplying this LMI by 

·
Q¡1 0

0 ¡1

¸

 

and defining P = Q¡1, we obtain 

·
AT

1 P +PA1 Pe¡C

eTP ¡CT ¡2

¸

< 0                                                                                                (3.9) 

which proves the claim.  

If B 6= 0, take kT =¡®BTQ¡1. It follows from Finsler's lemma [29]  that 

·
A1Q+QAT

1 QC ¡ e

CTQ¡ eT ¡2

¸

+

·
BkTQ+QkBT 0

0 0

¸

=   

   

·
A1Q+QAT

1 ¡ 2®BBT QC ¡ e

CTQ¡ eT ¡2

¸

< 0                         (3.10) 

for all sufficiently large ® > 0. Note that, it is enough to show that for any ½ > 0 there 

exists a sufficiently large ® > 0 such that 

A1Q+QAT
1 ¡2®BBT <¡½I.                                                                                        (3.11) 

Note that Rn = imM© imB  where im M = ker BT . Also note that 

(Mv + ¯B)T
¡
A1Q+QAT

1 ¡ 2®BBT
¢
(Mv + ¯B)

=

·
v

¯

¸T ·
MT (A1Q+QAT

1 )M MT (A1Q+QAT
1 )B

BT (A1Q+QAT
1 )M BT (A1Q+QAT

1 )B¡ 2®kBk
4

¸·
v

¯

¸                       (3.12)  

where ¯  and v positive constants. Since (A1Q+QAT
1 )

imM
< 0, we know that 

MT(A1Q+QAT
1 )M < 0. Then, it follows from a Schur complement argument that 

for any ½ > 0 we can choose ® > 0 sufficiently large enough so that 

·
MT (A1Q+QAT

1 )M MT (A1Q+QAT
1 )B

BT (A1Q+QAT
1 )M BT (A1Q+QAT

1 )B ¡ 2®kBk
4

¸

< ¡½I.                              (3.13) 
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In view of (3.12), this implies that (3.11) holds. Therefore, we have (3.6). By pre- and 

post multiplying (3.10) by  

·
Q¡1 0

0 ¡1

¸

                                                                                                                              (3.14) 

and defining   

P = Q¡1, 

we obtain (3.3). Note that, if we remove the restriction on the control input in 

Statement 3 of Theorem 3.2, then it is immediately equal to (2.27). 

Remark 3.3: Although they are different in nature, conditions of Theorem 3.1 are 

necessary for feedback stabilization and hence should imply those of Theorem 3.2. To 

see this implication, note first that the (3.4) readily implies that (A1;B) and hence 

(A1; [B e]) is stabiliazable. To see the second condition of Theorem 3.1 also follows 

from (3.4), let ,  and  with  satisfy 

 
£
vT ¹1

¤
·
Ai ¡¸I bi

cT d

¸

= 0.                                                                                          (3.15) 

This yields that v 2 ker BT , vTAi + ¹ic
T = ¸vT   and ¹2 = ¹1 + vTe. As such, we have  

·
v

¹1

¸T ·
A1Q+QAT

1 QC ¡ e

CTQ¡ eT ¡2

¸·
v

¹1

¸

= 2¸vTQv ¡ 2¹1¹2.                                         (3.16) 

Since the right-hand side is negative, ¸ is nonnegative and Q is positive definite, one 

can conclude that ¹1¹2 > 0. 

Remark 3.4: Theorem 3.2 provides necessary and sufficient conditions for feedback 

stabilizability in terms of certain LMIs. Next, we further investigate these LMIs with an 

eye towards the geometric structure of the linear subsystems of the bimodal system 

(3.1). To do so, we quickly introduce some notation. 

A subspace V 2Rn  is called as controlled invariant if there exists F 2Rn such that 

(A¡BFT)V 2 V . Let V¤(A;B;CT) be the largest controlled invariant subspace that 

is contained in ker CT . A subspace T  is called as conditioned invariant, if there exists 

G 2Rn such that (A¡BGT)T 2 T . Let T ¤(A;B;CT) be the smallest conditioned 

invariant subspace that contains imB. 

¸ ¸ 0 v 6= 0 ¹i i = 1; 2
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It is well known (see e.g. [28, Prop.4]) that the transfer function CT (sI ¡A)¡1B is 

invertible as a rational matrix if and only if V ©T = R and B 6= 0 6= C. 

The continuity condition in (2.30) has a number of useful consequences. Indeed, it can 

be easily verified (see e.g. [4, Prop.2.1]) that 

  V¤(A1;B;CT) = V¤(A2;B;CT)                                                                                      (3.17) 

T ¤(A1;B;CT) = T ¤(A2;B;CT):                                                                                    (3.18) 

Together with the invertibility conditions, these equalities imply that the transfer 

function CT (sI ¡A)¡1B is invertible if and only if so is not equal to zero. Finally, the 

proof  of  the Theorem 3.7 needs the following auxiliary result, so first of all we would 

like to introduce Lemma 3.5. 

Lemma 3.5 For any integer m ¸ 1, any vector ´ 2 Rm¡1, and any positive real 

numbers ®, ¯  and °  there exists a symmetric matrix ¤ 2Rm£m such that 

¤ > ®I                                                                                                                                    (3.19) 

~¤ + ~¤T < ¡¯I                                                                                                                      (3.20) 

·
~¤+ ~¤T ~̧ ¡ ´
~̧T ¡ ´T ¡°

¸

< 0                                                                                                         (3.21) 

where ~¤=¤f2;3;:::;mg;f1;2;:::;m¡1g and ~̧ = ¤f1;2;:::;m¡1g;f1g. 

Proof of Lemma 3.5: It trivially holds for m = 1. Suppose that it holds for m= `. Take 

a vector ³ 2 R`. Let ~³ = ³f1;2;:::;`¡1g. Since this is a -vector, there exists a 

symmetric positive definite matrix ¤ 2 Rm£m such that 

¤ > ®I 

~¤ + ~¤T < ¡¯I  

 

·
~¤+ ~¤T ~̧ ¡ ~³
~̧T ¡ ~³T ¡°

¸

< 0.                                                                                                       (3.22) 

Now, define  £ 2 Rl+1£l+1 as follows 

 

(m¡1)

£ =

2

4
¤

~̧T

¹
~̧ ¹ ½

3

5
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where ~̧ =¡¤f2;3;:::;`g;f`g, ¹ and ½ are real numbers. Let ~£=£f2;3;:::;`+1g;f1;2;:::;`g and 

~µ =£f1;2;:::;`g;f1g. 

It suffices to prove that ¹ and ½ can be chosen so that 

£>®I  

~£ + ~£T < ¡¯I 

·
~£+ ~£T ~µ¡ ³
~µT ¡ ³T ¡°

¸

< 0:
 

Note that, 

~£ + ~£T =

·
~¤ + ~¤T 0

0 2¹

¸

 

and that 

2

4
( ~£+ ~£T ) ~µ ¡ ³

~µT ¡ ³T ¡°

3

5 =

2

4
(~¤ + ~¤T ) 0 ~̧ ¡ ~³

0 2¹ ¤1n ¡ ³m

~̧T ¡ ~³T ¤1n ¡ ³m ¡¯

3

5 .                                      (3.23) 

It follows from (3.22) that (3.23) can be made negative definite by choosing ¹

sufficiently small. Once ¹ is fixed, one can choose ½ sufficiently large to satisfy   

£>®I  as ¤> ®I. 

With this preparation, we are ready to provide geometric sufficient conditions for 

feedback stabilization 

Lemma 3.6:  Suppose that the transfer function CT(sI ¡A1)
¡1B is not identically 

zero and V¤(A1;B;CT ) = f0g. Then, the bimodal system (3.1) is feedback stabilizable. 

Proof of Lemma 3.6: Assume that the transfer function of (2.25), 

G(s) = p(s)=q(s) = CT(sI ¡A1)
¡1B 6= 0 and V¤ =f0g. Then, one has 

CT(sI ¡A)¡1B = p0=(s
n + qn¡1s

n¡1 + : : :+ q1s+ q0) where p0 and qi with 

i = 0; 1 : : : n ¡ 1 are some real numbers and we conclude that p(s) is constant and 

q(s) = sn + qn¡1s
n¡1 + :::+ q1s+ q0 . Then, one can take 

Hence, after a state space transformation, we get 
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A1 =

2

6
6
6
6
6
4

0 1 0 : : : 0

0 0 1 : : : 0
...

...
...

...

0 0 0 : : : 1

¡q0 ¡q1 ¡q2 : : : ¡qn¡1

3

7
7
7
7
7
5

,                                                                         (3.24) 

 B =
£
0 0 : : : 0 p0

¤T
; C =

£
1 0 : : : 0 0

¤
.                                                 (3.25) 

Our goal is to show that (3.4) holds. To do so, note that, in the new coordinates, any 

vector v 2 kerBT  is of the form vT = (v1; v2; : : : ; vn¡1;0)
T . Let ~v =(v1;v2; : : : ;vn¡1). 

Straightforward calculation yields that  

·
v

w

¸T ·
AQ+ QAT Qc¡ e

cTQ¡ eT ¡2

¸·
v

w

¸

=

·
~v

w

¸T · ~Q+ ~QT ~q ¡ ~e

~qT ¡ ~eT ¡2

¸·
~v

w

¸

                         (3.26) 

where ~Q=Qf2;3;:::;ng;f1;2;:::;n¡1g, ~q = Qf1;2;:::;n¡1g;f1g, ~e= ef1;2;:::;n¡1g. Then, the 

application of Lemma 3.5 with m=n, ´ = ~e, ®= ¯ = 1 and ° = 2  yields a symmetric 

matrix Q such that, 

Q = ®I, 

·
~Q + ~QT ~q ¡ ~e

~qT ¡ ~eT ¡2

¸

< 0. 

Therefore we have 

·
v

w

¸T ·
A1Q+QAT

1 QC ¡ e

CTQ¡ eT ¡2

¸·
v

w

¸

=

·
~v

w

¸

 

for all  v 2 kerBT . Then, it follows from Theorem 3.1 such that (3.4) holds.                                                                                                                                     

Note that, the hypothesis of the Theorem 3.6, i.e. invertibility of transfer function 

CT (sI ¡A)¡1B and V¤ = 0, imply that CT (sI ¡A)¡1B has no zeros. In the following 

theorem, we show that feedback stabilization can be achieved in case all zeros are on 

the left half plane, that is when the system §(A1;B;CT ) is minumum phase. 

Theorem 3.7 : Suppose that the transfer function CT (sI ¡A)¡1B is not identically 

zero. Let V¤ = V¤(A1;B;CT ) and F  be such that (A1 ¡BFT )V¤ 2 V¤. Suppose that 

(A¡BFT) jV¤ is Hurwitz. Then, the bimodal system (3.1) is quadratically feedback 

stabilizable. 

Proof of Theorem 3.7 : Before giving the proof of the theorem, we would like to 

introduce some notations and notions from geometric control approach. Consider  the 
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system §(A1;B;C;D). Let V¤ and T ¤, respectively, which has been already denoted 

as the largest output-nulling controlled invariant and the smallest input-containing 

conditioned invariant subspaces of the system §(A1;B;C;D). Also let F 2F(V) 

which means the friend of vector F . Apply the feedback law, u=¡Fx+v, where v is 

the new input. Then the system §(A1;B;C;D) becomes  

_x=(A1¡BF)x+Bv                                                                                                        (3.27) 

y =(C¡DF)+Dv                                                                                                           (3.28) 

Obviously, controllability is invariant under this feedback. Moreover, the system 

§(A1;B;C;D) and §(A1¡BF;B;C¡DF;D) share the same V¤ and T ¤ due to 

Proposition 2.1 in Ref. [4]. Since the transfer matrix CT (sI ¡A1)
¡1B +D is invertible 

as rational matrix, Proposition 2.1 in Ref. [28] implies that the state space Rn admits 

the following decomposition Rn = V¤ ©T ¤. Let the dimensions of the subspaces V¤ 

and T ¤  be n1 and n2, respectively. Also let the vectors  be a basis for 

Rn, such that the first  vectors form a basis for V¤ and the last  for T ¤. Also let 

G2G(T ). One immediately gets 

B ¡GD =

·
0
~b2

¸

                                                                                                                    (3.29) 

C¡DF =
£
0 ~c2

¤
                                                                                                               (3.30) 

in the coordinates that are adapted to the earlier basis as V¤ µ ker (C¡DF) and 

(B¡GD)µ T ¤. Here,  and   are are  and  matrices, respectively.  

Note that, (A1¡BF¡GC+GDF)V¤ µV¤  and (A1¡BF¡GC+GDF)T ¤µT ¤ according 

to (see e.g. [4, Prop.2.1]). Therefore, the matrices (A1¡BF¡GC+GDF), 

(B¡GD) and (C¡DF) should be of the form 
£
¤ 0
0 ¤

¤
, [ 0 ¤ ]T  and [ 0 ¤ ] in the new 

coordinates where the row (column) blocks have  and  rows (columns), 

respectively. Let the matrices F  and G be partitioned as  

F =
£
f1 f2

¤
 , G =

·
g1

g2

¸

                                                                                                      (3.31) 

With this partitions and one gets 

A1 ¡

·
g1Df1 g1Df2

b2f1 b2f2

¸

¡

·
g1Df1 g1c2

g2Df1 g2c2

¸

+

·
g1Df1 g1Df2

g2Df1 g2Df2

¸

=

·
~A11 0

0 ~A22

¸

) 

(x1;x2; : : : ;xn)

n1 n2

~b2 ~c2 n2 £m p £ n2

n1 n2
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A1 =

·
~A11 + g1Df1 g1c2

b2f1
~A22 + b2f2 + g2c2 ¡ g2Df2

¸

                                                       (3.32) 

B =

·
~b1

~b2

¸

=

·
g1D
~b2

¸

                                                                                                               (3.33) 

C =
£
~c1 ~c2

¤
=
£
Df1 ~c2

¤
                                                                                                  (3.34) 

Now, we can start the proof. Our first aim is to put the system (3.1) into a certain 

canonical form as considered above. By applying the feedback law u = ¡FTx+ v, 

where v is the new input, we get 

_x(t) =

(
(A1 ¡BF T )x(t) if CTx(t) · 0

(A2 ¡BF T )x(t) if CTx(t) ¸ 0.
                                                                (3.35) 

Clearly, this bimodal system is feedback stabilizable if and only if so is (3.1). Since the 

transfer function CT(sI ¡A1)
¡1B is invertible, V¤ ©T ¤ = Rn. Let the dimensions of 

the subspaces V¤ and T ¤ be n1 and n2, respectively. Also let the vectors 

fx1;x2; : : : ;xng be a basis for Rn, such that the first n1 vectors form a basis for V¤ and 

the last n2 for T ¤. Let G be such that (A1¡GCT)T ¤ µ T ¤.   

In the new coordinates as V¤ µ ker CT  and im B µ T ¤. By using the above note, we 

can assign the subspaces in the new coordinates such as (A1 ¡BFT ¡GCT)V¤ µ V¤  

and (A1¡BFT ¡GCT)T ¤ µ T ¤. Therefore, the matrix (A1 ¡BFT ¡GCT ) can be 

made of the diagonal form in the new coordinates where the row (column) blocks 

have n1 and n2, rows (columns), respectively. With the above partitions, one gets 

A1¡BFT =

·
A11 g1c2

0 A22

¸

                                                                                                   (3.36) 

In view of Theorem 3.2, existence of a positive definite matrix Q such that 

 

·
(A1¡BFT)Q+Q(A1¡BFT)T Qc¡ e

cTQ¡ eT ¡2

¸
W
< 0                                                        (3.37) 

where W = kerBT £R is enough to prove statement. 

Let a symmetric matrix Q be of the form 

Q =

·
Q11 Q12

QT
12 Q22

¸

.                                                                                                                 (3.38) 
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Straightforward calculations yield 

2

4
A11Q11 + Q11A

T
11 + g1c

T
2 QT

12 +Q12c2g
T
1 A11Q12 +Q12A

T
22 + g1c

T
2 Q22 Q12c2 ¡ e1

A22Q
T
12 + QT

12A
T
11 +Q22c2g

T
1 A22Q22 +Q22A

T
22 Q22c2 ¡ e2

cT
2 Q12 ¡2

3

5           (3.39) 

By left-multiplying by 

2

4
I

0

0

I

¡g1

0

0 0 I

3

5 

and right-multiplying by its transpose, we get 

2

4
A11Q11 +Q11A

T
11 + g1e

T
1 + e1g

T
1 ¡ 2g1g

T
1

A22Q
T
12 +QT

12A
T
11 + e2g

T
1

A11Q12 +Q12A
T
22 + g1e

T
2

A22Q22 +Q22A
T
22

Q12c2 ¡ e1 +2g1

Q22c2 ¡ e2

cT
2 QT

12 ¡ eT
1 +2gT

1 cT
2 Q22 ¡ e2 ¡2

3

5 :    (3.40) 

By the hypothesis, A11 is Hurwitz. Let a symmetric matrix Q (partitioned accordingly) 

be of the form 

Q =

·
Q1 0

0 Q2

¸

:                                                                                                                    (3.41) 

After straightforward calculations we get (3.37) as the following form 

2

4
A11Q1 +Q1A

T
11 g1c

T
2 Q2 ¡e1

Q2c2g
T
1 A22Q2 +Q2A

T
22 Q2c2 ¡ e2

¡eT
1 cT

2 Q2 ¡ e2 ¡2

3

5 :                                                        (3.42) 

In the new coordinates, v 2 kerBT  if and only if v =(v1;v2) and v2 2 ker bT
2 . Note 

that, V¤(A22; b2; c
T
2 ) = f0g. Then, Lemma 3.6 implies that there exists a symmetric 

positive definite matrix Q2  and positive constant ¯  such that,  

Q2 > ¯I 

 

·
(A22)Q2 +Q(AT

22)
T Q2c2 ¡ e2

cT
2 Q2 ¡ eT

2 ¡2

¸
W
< 0.                                                                          (3.43) 

Note that, (A1 ¡BFT ) jV¤ can be identified with Hurwitz-A11 due to hypothesis. 

Therefore for any R = RT < 0 one can find Q1 = QT
1 > 0 such that 

A11Q1 +Q1A
T
11 = R. Then, it follows from a Schur complement argument that we can 

choose Q1 such that (3.37) holds. 
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Remark 3.8: Lemma 3.7 and Theorem 3.8 also imply strictly positive realness (SPR). In 

particular, there exists k such that the system (A1 ¡BkT ; e;CT ; 1) is SPR. 
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CHAPTER 4 

OBSERVER DESIGN FOR BIMODAL SYSTEMS 

In this section, we consider observer design procedure for the class of bimodal 

systems. For this purpose, we consider a significant study on observer design 

procedure for bimodal systems devised by Juloski et al. [5]. The results in [5] lead to 

conservatism by imposing extra restrictions on the construction of Lyapunov function. 

Motivating from this problem, we streamline this observer design procedure for 

related systems. We reduce the number of LMIs to be solved from the orginal two to 

one and we also show that one of the parameters required for the design can be 

eliminated. As a first step, we consider Luenberger observer design procedure 

presented by Juloski et al., in the next subsection. 

4.1 Observer Design Problem for Bimodal Systems 

Let us to reconsider the bimodal piecewise linear system given by 

_x(t) =

(
A1x(t) + Bu(t) if HTx(t) · 0

A2x(t) + Bu(t) if HTx(t) ¸ 0
                                                                         (4.1) 

y(t) =Cx(t)                                                                                                                            (4.2) 

where  x 2Rn, y 2Rp, u 2Rn and  are the state, output and the input of the system. 

The input u :<+!<m is assumed to be an integrable function. The matrices A1, 

A2 2 Rn£n, B 2Rn£m, C 2Rp£n and H 2 Rn. The hyperplane defined by ker HT  

separates the n-dimensional real state space into the two half-spaces. Considering 

class of bimodal PWL systems has identical input distribution matrix B and output 
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matrix C for both modes. The vector field of the system is continuous over the 

switching plane, i.e. A1(x) =A2(x) when HT(x) = 0. It is straightforward to show 

that A2 = A1 +GHT  for some vector G of appropriate dimensions. In this case 

equation (4.1) can be written as follows. 

_x(t) =A1x+Gmax(0;HTx)+Bu                                                                                  (4.3) 

Juloski et al. considered the system (4.1) in [5] and proposed a continuous time 

bimodal observer of the following structure  

_̂x(t) =

(
A1x̂ + Bu + L1(y ¡ ŷ) if HT x̂ + KT (y ¡ ŷ) · 0

A2x̂ + Bu + L2(y ¡ ŷ) if HT x̂ + KT (y ¡ ŷ) ¸ 0
                                    (4.4) 

ŷ(t) =Cx̂(t)                                                                                                                            (4.5) 

where x̂ 2 Rn is estimated state at time t  and {L1, L2} 2 Rn£p and  K 2Rp are design 

parameters. The dynamics of the state estimation error, e :=x¡ x̂ can be described 

as follows 

 _e =

8
>>><

>>>:

(A1 ¡ L1C)e; HTx < 0;HT x̂ +KT (y ¡ ŷ) < 0

(A2 ¡ L2C)e+¢Ax; HTx < 0;HT x̂ +KT (y ¡ ŷ) > 0

(A1 ¡ L1C)e¡¢Ax; HTx > 0;HT x̂ +KT (y ¡ ŷ) < 0

(A2 ¡ L2C)e; HTx > 0;HT x̂ +KT (y ¡ ŷ) > 0

                               (4.6) 

where x satisfies (4.1) and x̂ satisfies (4.4). By substituting x̂=x¡e in (4.5), we see 

that the right hand side of the state estimation error dynamics is PWL in the variable 

(e;x). Note that, such dynamics are not autonomous, but depend on the state of the 

observer. Juloski et.al. presented the following theorem to design observer for bimodal 

system [5]. 

Theorem 4.1 [5]: The state estimation error dynamics (4.6) is globally asymptotically 

stable for all x : R+!Rn that satisfy system (4.1) in the sense of Lyapunov approach, 

if there exist matrices P > 0, L1, L2, k and constants ¸ > 0, ¹ > 0 such that the 

following set of matrix inequalities are satisfied: 

 

2

6
4
(A2 ¡L2C)TP + P(A2 ¡L2C) + ¹In ¡PGHT +

¸

2
(H ¡CTK)HT

¡HGTP +
¸

2
H(H ¡CTK)T ¡¸HHT

3

7
5 · 0              (4.7) 
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2

6
4
(A1 ¡L1C)TP +P(A1 ¡L1C) + ¹In PGHT +

¸

2
(H ¡CTK)HT

HGTP +
¸

2
H(H ¡CTK)T ¡¸HHT

3

7
5 · 0               (4.8) 

Proof of the Theorem 4.1 can be found in [5]. 

Note that, the parameters ¸ and ¹ appearing in the statement and the matrix 

inequalities are related to the S-procedure, and are not directly needed in the design 

of the observer. 

4.2 Simplified Observer Design for Bimodal Systems 

We prove that the LMIs in Theorem 4.1 imply to each other and we reduce the number 

of LMIs to be solved from the orginal two to one. We also show that the parameter K 

can be chosen zero. By this way, we offer a simpler structure for an observer (4.4-4.5). 

Following theorem states that only one of the inequalities in Theorem 4.1 is needed to 

design observer for bimodal system. 

Theorem 4.2 : Assume there exist P = PT > 0, L2, K and ¸, ¹ 2R with ¸ ¸ 0, ¹ > 0 

such that LMI in (4.7) is satisfied. Then LMI in (4.8) is satisfied with L1 =L2¡GK. 

Proof: Our goal is to present one of the two inequalities (4.7) and (4.8) needs to be 

solvable to design observer for bimodal systems. Now, we should consider the cases 

¸=0 and ¸> 0. In the first case, (2,2)-block term of the matrix on the left-hand side 

of the first LMI in (4.7) is zero. Also, the (1,2) block term must be zero to satisfy the 

LMI. Hence, ¡PGHT = P(A1 ¡A2) = 0. Since P > 0 this imples that A1 = A2 and 

choosing L1 =L2 and K=0 guarantees that the LMI in (4.8) is satisfied. 

Then, we deal the case ¸> 0 and let us rewrite the left hand sides of (4.7) and (4.8) as  

T ¤ T1 ¤ T
0

 and T ¤ T2 ¤ T
0

 respectively, with the matrices T , T1 and T2 where 

T =

·
In 0

0 H

¸

, 

T1 =

2

6
4
(A2 ¡L2C)TP +P(A2 ¡L2C) + ¹In ¡PG+

¸

2
(H ¡CTK)

¡GTP +
¸

2
H(H ¡CTK)T ¡¸

3

7
5, 
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T2 =

2

6
4
(A1 ¡L1C)TP +P(A1 ¡L1C) + ¹In PG+

¸

2
(H ¡CTK)

GTP +
¸

2
H(H ¡CTK)T ¡¸

3

7
5. 

 We claim that the LMIs (4.7) and (4.8) are satisfied if and only if T1 · 0 and T2 · 0, 

respectively. To prove this claim, we need the following Lemma. 

Lemma 4.3: If NTMN · 0 and N  is full row rank, then M · 0. 

Since H 6= 0 and T 2R2n¤(n+1) has full column rank, also T
0

 full row rank. Then, it 

follows from Lemma 4.3 that our claim holds. By taking the Schur complement with 

respect to ¡¸ in T1 and T2, we obtain the following bilinear matrix inequalities(BMIs), 

respectively.  

(A2¡L2C)TP +P(A2¡L2C)+¹In 

                             +
1

¸
(¡PG+

¸

2
(H ¡CTK))(¡GTP +

¸

2
(H ¡CTK))T · 0      (4.9) 

(A1¡L1C)TP +P(A1¡L1C)+¹In 

                            +
1

¸
(PG+

¸

2
(H ¡CTK))(GTP +

¸

2
(H ¡CTK))T · 0           (4.10) 

Note that, A2 = A1 +GHT. Let us substitute A2 in (4.9) and proceed the 

shtraightforward computations. Then, the left hand-sides of (4.9) and (4.10) are equal 

to each other if and only if,  

 ¡CTLT
2 P ¡PL2C +

1

2
PGKTC +

1

2
CTKGTP = 

                                                ¡CTLT
1 P ¡PL1C¡

1

2
PGKTC¡

1

2
CTKGTP .    (4.11) 

Consequently, equality condition (4.11) occurs if and only if  L1 =L2¡GK. 

Due to the symmetry in the inequalities (4.7) and (4.8) make possible the alternative 

expression of Theorem 4.2 that is stated with following corollary. 

Corollary 4.4: Assume there exist P = PT > 0, L1, K and ¸, ¹ 2R with ¸ ¸ 0, ¹ > 0 

such that LMI in (4.8) is satisfied. Then LMI in (4.8) is satisfied with L2 = L1 +GK. 

Finally, we are ready to give the main theorem of this section which makes it possible 

to design observer for bimodal systems as follows. 
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Theorem 4.5: The following statements are equivalent: 

1. There exist P , ¸, L2 and K such that 

2

6
4
(A2 ¡L2C)TP + P(A2 ¡L2C) PG+

¸

2
(H ¡CTK)

GTP +
¸

2
H(H ¡CTK)T ¡¸

3

7
5 · 0.                                 (4.12) 

2. There exist P = PT > 0 such that  

2

6
4

AT
2 P + PA2 PG+

¸

2
H

GTP +
¸

2
HT ¡¸

3

7
5
W

· 0                                                                                      (4.13) 

where W =kerC£R. Moreover, assume that Statement 2 holds for some P  and ¸. 

Then, there exist  ® > 0 such that Statement 1 holds for P , ¸, L2 =¡®P¡1CT  and 

K=0. Hence, any of the two statements above is equivalent with 

3. The linear, time invariant system (A2;G;¡
¸

2
H;

¸

2
) can be passified by the state 

feedback law with L2 = L1 +GK. 

Proof of Theorem 4.5:  

1=)2 : Let us rewrite first statement as follows 

2

6
4

AT
2 P +PA2 PG+

¸

2

GTP +
¸

2
HT ¡¸

3

7
5+

2

6
4
¡CTLT

2 P ¡ PL2C ¡
¸

2
CTK

¡
¸

2
KTC 0

3

7
5· 0 

Let x 2 kerC and u2R then the second term in the left-hand side become zero on 

kerC£R. Also one can choose ¸=2 then we get the statement 2 of the Theorem 

4.5.  

Note that, ¸ is a scaling factor for the P , so that statement 2 of the Theorem 4.5 is also 

feasible with ¸. 

2=)1 : Assume that the statement 2 of the Theorem  4.5  holds. Then, statement 2 of 

the Theorem 4.5 implies that 

2

6
4
(A2 +L2C)TP +P(A2 +L2C) PG+

¸

2
H

GTP +
¸

2
HT ¡¸

3

7
5· 0. 
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Straighforward calculation yields  

2

6
4
A2P +PA2 +CTLT

2 P +PL2C
T PG+

¸

2
H

GTP +
¸

2
HT ¡¸

3

7
5· 0.                                                 (4.14) 

(4.14) can be written as follows by the help of Finsler's lemma [29] 

2

6
4

AT
2 P + PA2 PG+

¸

2
H

GTP +
¸

2
HT ¡¸

3

7
5+

·
¡2®CTC 0

0 0

¸

· 0. 

Define L2 = ®P¡1CT  with the sufficiently large positive parameter ® and we 

conclude that  

2

6
4
(A2 ¡L2C)TP + P(A2 ¡L2C) PG+

¸

2
(H ¡CTK)

GTP +
¸

2
H(H ¡CTK)T ¡¸

3

7
5 · 0.                             (4.15) 

Note that (4.15) is the version of Statement 1 of  Theorem 4.5 with K=0 as stated in 

(4.13) for the same theorem.  

 3=)1 : Statement 1 of  Theorem 4.5 is equivalent to the Positive-Real Lemma for the 

system (A2 ¡L2C;G;¡
¸

2
H;¡¸). 

Remark 4.6: While choosing K 6= 0 in observer design structure (4.4)-(4.5) yields 

better transient error dynamics. On the other hand, under the assumption of the 

following Corollary the dynamics of the observer with L1 =L2 is continuous. 

Corollary 4.7: Assume that (4.7) holds with P , ¸, ¹, L2 and K. Then there exists 

positive ® 2R such that the (4.7) also holds with P , ¸, ¹, L2 = ®P¡1CT  and K=0. 

Proof of Corollary 4.7: Considering Theorem 4.2, Theorem 4.5, K=0 and 

L1 =L2 =L, then the observer state matrices of (A1¡LC) and (A2¡LC) differ by 

the term GHT . Hence, the dynamics of the observer for bimodal system is continuous. 
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CHAPTER 5 

ROBUST STABILITY TEST FOR BIMODAL SYSTEMS 

 

In a similar way of nominal stability problem of bimodal systems, robust stability 

analysis problem is dealt with in this section. As in the nominal stability analysis, we 

also need to show the existence of CQLF which guarantees robust stability. We know 

that the existence of a quadratic Lyapunov function is necessary and sufficient for 

asymptotic stability of LTI systems with parametric and system uncertainties [30]. 

Those uncertainties can be originated from environment such as external errors and 

disturbances. Also, some of them may occur in operating conditions such as 

nonlinearities that have not been accounted for in the modeling process. So that, it is 

crucial to take into account them to construct a CQLF. To that end, we consider the 

robust stability analysis problem for bimodal systems with norm-bounded uncertainty 

such that under which conditions, a number of convex combination of LTI systems 

share a CQLF. We  present a corollary to construct CQLF to check the robust stability of 

bimodal systems with norm-bounded uncertainties. Then, to illustrate the 

effectiveness of the corollary, we present a mechanical system in bimodal 

configuration and simulate the switching mechanism of the system with nominal and 

norm-bounded uncertain parameters  

5.1 Robust Stability Test for Bimodal Systems 

Let us reconsider bimodal piecewise linear system (2.25) with uncertainty as follows 
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_x(t) =

(
(A1 +¢A1(t))x(t) if CT x(t) · 0

(A2 +¢A2(t))x(t) if CT x(t) ¸ 0.
                                                                  (5.1) 

Note that, we have the continuity assumption such that 

A1¡A2 +¢A1¡¢A2 = eCT                                                                                             (5.2) 

¢A1(t) =ET
1¢1(t)D1                                                                                                           (5.3) 

¢A2(t) =ET
2¢2(t)D2                                                                                                           (5.4) 

where E1, E2, D1 and D2 are known uncertainty matrices of appropriate dimensions. 

Note that, ¢1 and ¢2 are unknown Lebesque measurable functions of time which 

satisfy 

¢T
1¢1 · I,                                                                                                                               (5.5) 

¢T
2¢2 · I.                                                                                                                               (5.6) 

The next corollary presents a robust stability condition to check the stability of  (5.1) in 

the view of (5.5) and (5.6).  

Corollary 5.1:  System (5.1) with (5.3) and (5.4) is robustly stable if there exist a 

positive symmetric matrix M , a positive constant ² such that the following condition 

holds.  

2

4
AT

1 M +MA1 + ²ET
1 E1 Me¡C DT

1

¤ ¡2 0

¤ ¤ ¡²I

3

5 < 0                                                              (5.7) 

Proof of Corollary 5.1 : Consider the inequality (2.27) given in Section 2 . Exchanging 

A1 with A1 +¢A1 and K with M = MT > 0 the condition (2.27) turns into  

·
(A1 +¢A1)

TM +M(A1 +¢A1) Me¡C

(Me¡C)T ¡2

¸

< 0                                                        (5.8) 

and substituting (5.3) and (5.4) into (5.8) yields, 

·
AT

1 K +DT
1¢

T
1 (t)E1M +MA1 +MET

1 ¢1(t)D1 Me¡C

(Me¡C)T ¡2

¸

< 0:                           (5.9) 

Note that (5.9) can be decomposed as,  



38 

·
AT

1 M +MA1 Me¡C

(Me¡C)T ¡2

¸

+

·
DT

1

0

¸

¢T
1 (t)

£
E1 0

¤
+

·
ET

1

0

¸

¢T
1 (t)

£
D1 0

¤
< 0:        (5.10) 

Defining 

~A =

·
AT

1 M +MA1 Me¡C

(Me¡C)T ¡2

¸

; 

~E =

·
ET

1

0

¸

;   

~D =
£
D1 0

¤
 

and some straightforward calculations yields, 

~A + ~D¢1(t) ~E + ~ET¢1(t) ~D
T < 0.                                                                                   (5.11) 

However, one can find a positive constant ² such that, 

ET
1 ¢1(t)

TD1 +DT
1¢1(t)E1 ·

1

²
ET

1 E1 + ²DT
1 D1                                                         (5.12) 

holds [31]. Therefore in view of (5.12), if  

~A+
1

²
~D ~DT + ² ~ET ~E < 0                                                                                                    (5.13) 

holds then (5.11) holds too. Then applying Schur complement to (5.13) allows to write  

·
~A+ ² ~E ~ET ~D

~DT ¡²I

¸

< 0                                                                                                       (5.14) 

which is nothing but (5.7). 

Remark 5.2: Note that, this corollary clearly states that one need only check the above 

LMI based condition to determine the stability of bimodal systems with norm-bounded 

uncertainty. 

5.2 Simulation Studies 

Consider the mechanical system shown in Figure 5.1. Let the mass of the cart denoted 

by m, damping constant by d  and the spring constants by ks1 for the left most and ks2 

for the other. Firstly, we assume that the system is nominal. Defining the state 

variables as x1 = _x, x2 = Äx which represents distance and velocity of the mass 

respectively, allows to obtain following governing equations 
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·
_x1

_x2

¸

=

8
>>>>>><

>>>>>>:

"
0 1

¡ks1=m ¡d=m

#

+

"
0

1

#

F if CTx · 0:1

"
0 1

¡(ks1 + ks21)=m ¡d=m

#

+

"
0

1

#

F if CTx ¸ 0:1

                                (5.15) 

where F  is the force applied to the cart, c is output and x is state vectors which are 
£
1 0

¤T
and 

£
x1 x2

¤
,respectively. 

d

  

m

ks1

0.1 mt.

Reference point 

(0 mt.)
ks2

F

 

Figure 5.1 Bimodal configurated spring-mass-damper mechanical system 

Firstly, we apply Theorem 2.1 to check the nominal stability of bimodal system given in 

(5.15). Let the system parameters be as m = 250 kg, ks1 =160000 N/m, ks2 = 16000 

N/m and d=1000 Ns/m. In this perspective, let us first solve the LMI (2.25) to find a 

common symmetric definite positive matrix K. According to Theorem 2.1, we have 

conducted a computer simulation using LMIlab toolbox in MATLAB. After the solving 

the related LMI with MATLAB-LMI-lab solver we get the following result. 

K =

·
1:2185 0:0016

0:0016 0:0019

¸
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Figure 5.2 Simulation of bimodal configurated nominal spring-mass-damper 
mechanical system 

 

 

Figure 5.3 Simulation of bimodal configurated spring-mass-damper mechanical system 
with constant uncertainty 

Now, we reformulate the system in Figure 5.1 with uncertainty under the assumption 

of  k¢k6 I. Then, the governing equations can be given as follows. 

·
_x1

_x2

¸

=

8
>>>>>><

>>>>>>:

Ã"
0 1

¡ks1=m ¡C=m

#

+ [¢A1(t)]

!

+

"
0

1

#

F if CTx1 · 0:1

Ã"
0 1

¡(ks1 + ks2)=m ¡c=m

#

+ [¢A2(t)]

!

+

"
0

1

#

F if CTx1 ¸ 0:1

    (5.16) 
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It is assumed that the spring parameter k and damper parameter d  have %60

admissible uncertainties in their exact values. Hence, we can assign the vectors E1 and 

D1 as 
£
0 1

¤T
 and 

£
(0:6 ¤ ks1=m 0:6 ¤ d=m)

¤
, respectively. System parameters are 

same as the previous example and solving the LMI (5.7) to find a positive real 

symmetric matrix M  via Matlab-LMIlab solver we get the following result with 

² = 1:3989 

M =

·
42:2501 2:1272

2:1272 0:7813

¸

.                                                                                                   (5.17) 

Finally, we present elementary simulation studies to visualize the switching 

mechanism of bimodal configurated spring-mass-damper mechanical system. First of 

all, we render the trajectory changing of exact knowledge case on the Figure 5.2. Then, 

we deal with the uncertain case which is allowed %60 change in k and d  parameters, 

on the Figure 5.3 and time varying uncertainty taken 0:6¤ks1 ¤sin(2¼t) on Figure 5.4. 

It should be noted that decreasing on damper coefficient affects to the system at 

most. Hence, one can state that constant type uncertainty have more negative impact 

on the stability of the system than the sinusoidal type uncertainty with respect to time. 

Besides, it could be underlined that sinusoidal type uncertainty affects to attenuation 

path more than the the other type of uncertainties. 

 

Figure 5.4 Simulation of bimodal configurated spring-mass-damper mechanical system 
with sinusoidal uncertainty 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

In this thesis, we investigated the quadratic stability of bimodal PWL systems with 

continuous vector field. After establishing necessary and sufficient conditions for 

quadratic stability and feedback stabilization in terms of LMIs, we provide sufficient 

conditions for feedback stabilization in terms of the zero dynamics for one of the two 

linear subsystems. Also, we discuss the relations between the existing open loop 

stabilizability conditions and those for the feedback stabilization. Based on the 

approach and the results of this thesis, several further research possibilities arise. One 

of the immediate issue is relaxing the continuity assumption on considering system 

class. Also, conditions obtained for the stability can be extended into a large class of 

bimodal PWL systems with relay, saturation, dead-zone or time delay. 

On the other hand, stability analysis and controller design for multi-modal PWL 

systems is also challenging problem. Despite the considerable contribution of 

numerous studies, a full algebraic analogue of stability analysis and stabilization of 

multi-modal case has not been reported yet. In this context, our treatment has the 

potential to bridge the gap between stability theory and controller design of related 

systems due to the fact that it employs tools from geometric control theory.  
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APPENDIX-A 

GEOMETRİC CONTROL REVIEW 

Appendix A introduces some notation and properties for geometric control theory 

from the the book of Trentelman et. al [30]. 

Let X  be a linear space and assume that V and W subspaces of X . In such case, 

V \W and V +W are also subspaces. The smallest subspace containing both V and 

W is donated as V +W. Besides, V \W is the largest subspace contained in both V 

and W. Also it can be said that if a subspace L satisfies V ½ L and W ½L then this 

implies V +W ½L.  In this context, the following  formula which is called as modular 

rule 

       R\(V+W) =V+(R\W)                                            (A1) 

is valid for a subspace R.  

Another important notion is linear independency. Let V1;V2; :::;Vk be subspaces. Then 

the subspaces are called linearly independent if every   has a 

unique representation of the form x = x1 + x2 : : : xk with . 

Moreover, if  and x = x1 + x2 : : : xk imply that 

.  

Null space of a vector space is stated as the symbol "0". Then, it can be also 

characterized the linear independence as follows. 

Vi \
X

j 6=i

= Vj = 0(i = 1; :::; k)                                       (A2) 

x½V1 +V2 + :::+Vk

xi ½Vi(i =1; :::; k)

xi ½Vi(i =1; :::; k)

x1 = x2::: = xk = 0
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If V1;V2:::Vk are linear independent subspaces, then their sum V is called the direct 

sum of V1;V2:::Vk as following notation. 

           V = V1 ©V2 © :::©Vk =

kM

i=1

Vk                                         (A3) 

Linear complementary is also a fundamental notion for linear spaces. If V is a subspace 

then there exists a subspace W such that V ©W =X  which is called linear 

complement of V. It can be constructed by choosing a basis  q1; q2:::qk  of  V and then 

extending it to a basis q1; q2:::qn of X   . In this case, the span of qk+1; qk+2:::qn is a linear 

complement of  V. Note that, a linear complement is not unique. 

Linear Maps 

Let consider a linear map . It can be defined  and   spaces of

 as follows. 

       ker A , fx 2X j Ax = 0g                                                 (A4) 

im A , fx 2X j Axg                                                      (A5) 

If   then   is called as surjective and if  , A is injective. Also, it is 

known that A is isomorphic if A is surjective and injective. Then, A has an inverse map 

and denoted by A¡1.  

Based on the  and   spaces the followinf inclusions can be defined 

         A j imB := imB +AimB + :::+An¡1imB                          (A6) 

                             kerC j A := kerC \A¡1kerC \+:::+A1¡nkerC                     (A7) 

and it is well known that 

       (A j imB) = (kerBT j AT )?                                             (A8) 

where W? denotes the orthogonal space of W. 

It can be also commented that in general, if  A : X ! Y  is a not necessarily invertible 

linear map and if V is a subspace of Y , then the inverse image of V is the subspace of 

X as defined  

     A¡1V , fx 2X j Ax 2 Vg.                                                 (A9) 

A : X ! Y kernel image

A

imA = Y A kerA = 0

kernel image
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Let A : X !X and a subspace V of  X, it said that  V is A¡ invariant if for all 

x 2X . Then Ax 2 V holds. Moreover, this can be stated as AV 2 V . 

If  V 2X then a basis q1; q2:::qn of  X for which q1; q2:::qk is a basis of V(k =dim (V)) 

is called a basis of  X adapted to V. More generally, if V1;V2:::Vr is a chain of subspace 

such that V1 ½V2:::½Vr then a basis q1; q2; :::; qn of  X  is said to be adapted to this 

chain if there exist k1; k2; :::; kr such that q1; q2; :::; qk is a basis of  Vi for (i=1; :::; r). If  

V1;V2; :::;Vr are subspaces of X such that X =V1©V2© :::©Vr, it is said that a 

basis q1; q2; :::; qn is adapted to V1;V2; :::;Vr if there exist numbers k1; k2:::kr+1 such 

that k1 = 1, kr+1 = n+1 and qki
; :::; qki+1¡1 is a basis of Vi for i = 1; :::; r. 

It is also stated a linear map in matrix or vector representation. For example, if  

B : U !X is a linear map satisfying imB½V, it can be chosen a basis q1; q2; :::; qn of 

X adapted to V . Also, p1; p2; :::;pm can be chosen as the basis of  U . Then, the matrix 

representation of B with respect to the basis is the following form 

B=

·
B1

0

¸

                                                                (A10) 

where B 2 Rk£m. This form clearly satisfies the condition of B ½V. 

Upper or lower triangular matrix forms give advantageous for the analysis of the 

mechanical systems. For example, let A : X !X, V ½X. Let also q1; q2; :::; qn be a 

basis of X adapted to V. Then, the matrix of A with respect to this basis is 

   A =

·
A11 A12

0 A22

¸

.                                                          (A11) 

The property A21 = 0 is a consequence of the A¡ invariance of V. The matrix of 

A j V is A11 = 0. 

Systems with inputs and outputs 

Let us consider the linear system with following equations 

  _x(t) =Ax(t)+Bu(t)                                                        (A12) 

y(t) =Cx(t)+Du(t)                                                       (A13) 

where x(t) 2Rn is the state, u(t)2Rm is the input, y(t)2Rp is the output at time 

t 2R. 
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(A;B;C;D) are linear maps or matrices between spaces. (x;u;y) vectors are usually 

defined on positive real axis and called as state, input and output vectors, respectively. 

Input function take values from the outside of the system and the class of admissible 

input functions are denoted as U. U can be chosen different system classes but has 

the slicing property i.e., if u1 2U and u2 2U, then for any µ > 0, the function u3 

defined by u3 , u1(t)(0· t < µ) and u3 , u2(t)(t ¸ µ) is in U. It is assumed that 

input function take values m-dimensioned positive reel space U. Besides, state 

variable vector x have values in a n-dimensioned space X  which is called as state 

space and output of the system (y) have values in a p-dimensioned space Y .  

All the system is represented with §(A;B;C;D) or just with §. Moreover, the map D 

which is from input to the output, is feed-through term is irrelevant in many problems. 

So, the system is often represented with §(A;B;C). It is known that, the solution of 

differential equation of §(A;B;C)  which is 

xu(t; x0) = eAtx0 +
R t

x0
eA(t¡¿)Bu(¿)d¿; x(0) = x0 .                  (A14) 

Output function yu(t;x0) can be given as 

yu(t; x0) = CeAtx0 +
R t

x0
CeAtBu(¿)d¿ .                                (A15) 

It can be reduced the system equations by using the Laplace transformation to the 

transfer function from input to output as follows  

     G(s) , C(sI ¡A)¡1B+D.                                          (A16) 

Proposition A.1: Characterization of invertibility of G(s), 

(1) G(s) is left-invertible as a rational matrix, iff V¤\T ¤ = f0g and 

·
B

D

¸

 is of full 

column rank. 

(2) G(s) is right-invertible as a rational matrix, iff  V¤
L
T ¤=fRng and 

£
C D

¤
 is of full 

row rank. 

(3) G(s) is invertible as a rational matrix, iff  V¤
L
T ¤=fRng and 

·
B

D

¸

 is of full column 

rank and 
£
C D

¤
 is of full row rank. 
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Remark A.2: If G(s) = CT(sI ¡A)¡1B 6= 0 and V¤ =f0g, then 
£
C D

¤
 is scalar and 

the system G(s) does not has zero dynamics. 

Alternatively, it can be characterized the invertibility of the transfer function as 

follows. 

Proposition A.3([28]): The transfer matrix D+C(sI ¡A)¡1B is invertible as a rational 

matrix if and only if V¤ ©T ¤ = Rn, [C D ] is of full row rank, and  [ B D
T ] is of full 

column rank. Moreover, the inverse is polynomial if and only if 

V¤\(A j imB)µ (kerC jA) and (A j imB)µV¤+(kerC jA). 

On the other hand, the linear system with feedback configuration ( §K;L) can be given 

by 

_x=(A¡BK¡GC+GDK)x+(B¡GD)v                        (A17) 

y =(C¡DK)x+Dv                                         (A18) 

This system is obtained from (A12), by applying both state feedback u=¡Kx+v and 

output injection ¡Ly. 

Proposition A.4: Let K 2Rm£n and L2Rn£p be given. The following statement hold: 

(1) (A j imB) =(A¡BK j imB) 

(2) (kerC jA) = (kerC jA¡GC) 

(3) V¤(§K;L) = V¤(§) 

(4) ¿ ¤(§K;L) = ¿ ¤(§) 

The next proposition relates the invertibility of the transfer matrix to controlled and 

conditioned invariant subspaces. 

A subspace  is called as output-nulling controlled invariant if for some matrix K the 

inclusion (A¡BK)V µV and V µker(C¡DK) hold. The set of such subspaces is 

non-empty and closed under subspace addition, the set has a maximal element which 

is donated as V¤(§). Specifically, V¤(§) is called as largest controlled invariant space. 

The notation K(V) stands for the set fK j (A¡BK)V µV;V µker(C¡DK)g. Also,  

K(A;B;C;D) can be written as K(V¤(A;B;C;D)). Note that, V¤ is the limit of the 

subspaces and 

V
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V0 = Rn                                                            (A19) 

Vi = fx j Ax+Bu 2 Vi¡1;Cx+Du = 0 for some ug.               (A20) 

Dually, it can be state a subspace ¿  is input containing conditioned invariant if for some 

L the inclusions(A¡GC)¿ µ ¿ and im(B¡GD)µ ¿  hold. As the set of such 

subspaces is non-empty and closed under subspace intersection, it has a minimal 

element ¿¤(§).  

It is also written ¿¤(§) as simply ¿ ¤ for the purpose of notational convenient. The 

notation L(¿) represents the set fG j (A¡GC)¿ µ ¿; im(B¡GD)µ ¿g. As 

L(A;B;C;D) is represented with L(¿¤(A;B;C;D)) , it can be said that 

(A j imB)¶ ¿¤(A;B;C;D). 

Next proposition give general characterization of the spaces of V and T . 

Proposition A.5 : Following statements are equivalent: 

(1) V is controlled invariant : iff there exists F  such that (A¡BF)V µV 

(2) V is controlled invariant output nulling: if there exists F  such that (A¡BF)V µV 

and V µker(C¡DF) 

(3) V¤ is the largest controlled invariant nulling subspace. 

(4) T  is conditioned invariant : iff there exists G such that (A¡GC)T µT  

(5) T  is conditioned invariant input containing: iff there exists G such that 

(A¡GC)T µT  and im(B¡GD)T µT  

(6) T ¤ is the smallest conditioned invariant input containing 

it can be used the transformation of the subspaces for complex problems. So that, let 

v1; : : : ; vk and vk+1; : : : ;vn be basis for V¤ and T ¤, respectively. Note that, the 

following implications can be written.  

         (A¡BF)V¤ µV¤ and V¤ µker(C¡DF)                            (A21) 

      (A¡GC)T ¤ µT ¤ and im(B¡GD)T ¤µT ¤                        (A22) 

Note also that (C¡DF) is in the kernel space of V¤ and (B¡GD) is in the 

image space of T ¤. Therefore (A23) and (A24) are similar spaces with (A21) and (A22), 

respectively.    
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(A¡BF ¡GC+GDF)V¤µV¤                                   (A23) 

(A¡BF¡GC+GDF)T ¤ µT ¤.                                  (A24) 

Hence, it can be written the spaces in diagonal matrix form as follows. 

(A¡BF ¡GC +GDF) =

·
¤ 0

0 ¤

¸

                            (A25) 

Also one immediately gets 

B¡GD =

·
0

¤

¸

                                                 (A26) 

  C ¡DF =

·
0

¤

¸T

                                              (A27) 

in the coordinates that are adapted to the earlier basis as V µker(C¡DF) and 

(B¡GD)µT . 

The continuity condition which is between two dynamics (for example, 

A1¡A2 = eCT ) has a number of useful consequences. Indeed, it can be verified 

 V¤(A1;B;CT) = V¤(A2;B;CT)                                      (A28) 

T ¤(A1;B;CT) = T ¤(A2;B;CT)                                     (A29) 

which §(A1;B;CT ) and §(A2;B;CT ) are LTI systems.  

Together with the invertibility conditions, those equalities imply that the transfer 

function CT(sI ¡A1)
¡1 is invertible if and only if so is CT(sI ¡A2)

¡1. 
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APPENDIX-B 

    CONTROLLABILITY OF BIMODAL SYSTEMS 

 

In this appendix, the solution of controllability problem for conewise linear systems is 

adressed. Camlibel et. al. presented the solution of the controllability problem of 

related systems in [4]. They derived algebraic necessary and sufficient conditions for 

the related problem. Firstly, they considered push-pull system for controllability 

problem, then they extended the solution into conewise linear systems. As the 

bimodal systems are an example of conewise linear systems, this solution contains the 

controllability problem of bimodal systems. 

First of all, it should be to introduced conewise linear systems (CLS). CLS can be given 

as follows. 

_x=Ax+f(u)                                                            (B1) 

where x 2Rn, u 2Rm, A 2 Rn£n and f : Rm =) Rn is a continuous conewise 

linear function. Those systems are also considered as push-pull system by the help of 

scalar input function u.   

_x(t) = Ax +

(
B1u(t) if u · 0

B2u(t) if u(t) ¸ 0
                                              (B2) 

It is well know that the system (B1) is completly controllable if for any pair of state 

dynamics  (x0; xf ) 2 Rn£n, there exists a locally integrable input function u such that 

the solution xx0;u of (B1) satisfies xx0;u(T ) = xf for some T > 0. Also, the system (B1) 

is reachable from zero if for any state xf 2Rn , there exists a locally integrable input 
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function u such that the solution xx0;u of (B1) satisfies x0;u(T ) = xf for some T > 0. 

The theorem B1 gives the necessary and sufficient conditions for the controllability of 

push-pull systems [4]. 

Theorem B.1 : The following statements are equivalent. 

1) The system (B1) is completely controllable. 

2) The system (B1) is completely controllable with C1 inputs. 

3) The system (B1) is reachable from zero. 

4) The system (B1) is reachable from zero with C1 inputs. 

5) The implication 

zTexp(At)f(u)¸ 0 for all t ¸ 0 u2Rm =) z =0                   (B3) 

holds. 

6) The pair (A[M1M2:::Mr]) is completely controllable with respect to 

Y1£Y2:::£Yr: 

Proof of Theorem B.1: The implications (2 =) 1), (1 =) 3) and (3 =) 4) are 

clear.  

(3 =) 5): Suppose that Statement (3) holds. Let z 2Rn be such that 

zTexp(At)f(u)¸ 0                                                      (B4) 

for all t ¸ 0 and u 2Rm. Then, the solution x of (B1) with zero initial condition the 
following inequaility can be written. 

zTx(T) = zT

Z T

0

exp(A(T ¡ s))f(u(s))ds ¸ :                             (B5) 

x(T) may take any arbitrary value by choosing a suitable function so z must be zero. 

(5 =) 6): Suppose that statement 5 of the theorem B1 holds. Then, one can need to 

use next theorem [4]. 

Theorem B.2: Consider the linear time invariant system with input as follows with a 

solid cone U  as the restraint set. 

_x=Ax+B(u)                                                            (B6) 

where A 2 Rn£n and B 2Rn£m 
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Then, (B6) is completely controllable with respect to U  if and only if the following 

conditions hold. 

1) The pair (A;B) is controllable. 

2) The implication 

¸ 2R, z 2 R, zTA = ¸zT , BTz 2 U¤ =) z = 0 

holds. By the help of Theorem B.2 following two implications are needed to show.  

1) the pair (A[M1M2:::Mr]) is controllable.  

Proof : Let s0 2 C and v 2 Cn be such that    

v¤[s0I¡A M1M2:::Mr] = 0.                                       (B7) 

(B6)  means that 

s0v¤ = v¤A                                                              (B8) 

          v¤Mi = 0                                                         (B9) 

for all i = 1; 2; :::; r. Let ¾ and ! be, respectively, the real and imaginary parts of s0. 

Also let v1 and v2 be, respectively the real and imaginary parts of v. Then, (B8) and (B9) 

can be written in terms of ¾, !, v1 and v2 as follows 

       

·
vT
1

vT
1

¸

A =

·
¾ !

¡! ¾

¸·
vT
1

vT
1

¸

                                                (B10) 

         vT
1 Mi = vT

2 Mi =0                                                   (B11) 

for all i = 1; 2; :::; r. Also, (B10) results in   

               

·
vT
1

vT
1

¸

exp(At) = exp

Ã·
¾ !

¡! ¾

¸

t

!·
vT

1

vT
1

¸

                                  (B12) 

(B11) and (B12) imply that vT
j exp(At)Mi = 0 for all t, i and j 2f1;2g. In view of 

statement 5 of Theorem B.1 v1 and v2 must be zero. Consequently, the pair 

(A[M1M2:::Mr]) is controllable. 

2) The implication ¸ 2R, z 2Rn, 

            zTA= ¸zT ; (Mi)
Tz 2Y¤i   for all i = 1; 2; :::; r =) z = 0                 (B13) 

holds. 
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Proof: Let z 2 Z and ¸ 2R be such that  

zTA=¸zT
                                                             (B14) 

(Mi)
Tz 2Y¤i                                                             (B15) 

for all i = 1; 2; :::; r. It is known that, zTMiv is nonnegative for any v 2 Yi. .thus, one 

gets zTf(v) ¸ 0 for all v. Note that, zTexp(At) = exp(¸t)zT  due to (B14). Then, 

zTexp(At)f(v) ¸ 0 for all v 2Rm. In view of statement 5 of Theorem 4.1 this implies 

that z = 0. Consequently Statement 6 of Theorem B.1 follows from above implications 

and Theorem B.2. 

(5 =) 4): This implication follows from the following lemma. 

Lemma B.3: Consider the system (B1) and suppose that the implication  

zTexp(At)f(u) ¸ 0 for all t ¸ 0 and u2Rm =) z =0              (B16) 

holds. Then, there exist a positive real number T  and an integer l  such that for a given 

state xf, one can always find vectors ´i;j 2 Yi for i = 1; 2; :::; r and j =0;1;2; :::; l¡1 

such that the state xf  can be reached from the zero state in time T  by the application 

of the input  

                                    (B17) 

for (jr+i¡1)¢l· t· (jr+ i)¢l where ¢l =T=(lr) and £¢ : R ! R is a 

nonnegative valued C1 function with supp(£¢) µ (¢=4; 3¢=4) and 
R¢

0
£¢(t) = 1. 

Proof: First of all, it  can be shown that, if (B16) holds then there exists a positive real 

number T  such that the implication, 

zTexp(At)f(u) ¸ 0 for all t2 [0;T] and u2Rm =) z =0               (B18) 

holds. To see this, suppose that the (B18) does not hold for any T . Therefore, for all T , 

there exists 0 6= zT 2 Rn such that 

zTexp(At)f(u) ¸ 0 for all t2 [0;T] and u2Rm =) z =0             (B19) 

Without the loss of generality, it can be assumed that kzTk=1. Then the sequence 

fzTgT2N admits a convergent subsequences due to the well-known Bolzano-

¹u(t) = ´i;j£¢l(t¡ (jr + i¡ 1)¢l)
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Weierstrass theorem. Let z1 denote its limit. Note that, kz1k=1. It can be claimed 

that  

                                                   (B20) 

for all t ¸ 0 and u 2Rm. To show this, suppose that zT
1exp(At0)f(u0) < 0. Then for 

sufficiently large T 0, one has zT
T exp(At0)f(u0) < 0 and t0 < T 0. However, this can not 

happen due to (B19). In view of (B16), (B20) yields kz1k=0. Hence, by contradiction, 

there exists a positive real number T  such that the implication (B18) holds. 

Now, consider the input function in (B17). Note that  

f(¹u(t)) =Mi¹u(t) if (jr+i¡1)¢l· t· (jr+ i)¢l. 

The solution of (B1) corresponding to x(0) =0 and u = ¹u is given by 

x(T) =

Z T

0

exp[A(T ¡ s)]f(¹u(s))ds                                     (B21) 

Straightforward calculation yields that 

x(T ) = ¤(¢l)

l¡1X

j=1

rX

i=1

exp[A(T ¡ (jr + i¡ 1)¢l)]M
i´i;j                     (B22) 

where ¤(¢) =
R¢

0
exp(¡As)£¢ds. Then it is enough to show that there exists an 

integer l such that the previous equation is solvable in ´i;j 2 Yi for all i = 1; 2; :::; r 

and j = 0;1; :::; l¡1 for any x(T) 2Rn. For this reason, it is needed to generalized 

Farkas' lemma. 

Lemma B.4: Let H 2 RP£N, q 2 RP  and a closed convex cone C µ RN  be given. 

Suppose that HC is closed. Then, either the primal system 

Hv = q,  v 2C 

has a solution v 2 RP , but never both.  

A consequence of this lemma is that, if the implication 

wTHv ¸ 0 for all  v 2C =) w = 0                               (B23) 

holds, then the primal system has a solution for all q . It is assumed that the (B22) is the 

primal system. Note that, ¤(¢l) is nonsingular for all sufficiently large l, as it 

zT
1exp(At)f(u) ¸ 0
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converges to the identity matrix as l  tends to infinity. As Yi is polyhedral cone 

¤(¢l)exp(A¿)MiYi must be polyhedral. Hence, closed for all sufficiently large l  and 

for all ¿ . Therefore, in view of (B23), in order to show that for an integer l,  (B22) has a 

solution for arbitrary x(T). Indeed, the relation  

zT¤(¢l)

l¡1X

j=1

rX

i=1

exp[A(T ¡ (jr + i¡ 1)¢l)]M
i´i;j ¸ 0                   (B24) 

for all ´i;j 2 Yi, i = 1; 2; :::; r and j = 0;1; :::; l¡1 can be only satisfied by z = 0. To 

see this, suppose that for each integer l, there exists zl 6= 0 such that  

zT
l ¤(¢l)

l¡1X

j=1

rX

i=1

exp[A(T ¡ (jr + i¡ 1)¢l)]M
i´i;j ¸ 0                   (B25) 

for all ´i;j 2 Yi, i = 1; 2; :::; r and j = 0;1; :::; l¡1. Also, kzlkcan be taken as 1. In view 

of the Bolzano-Weierstrass theorem, it  can be assumed, without the loss of generality, 

that the sequence fzlg converges, say to z1, as l  tends to infinity. Now, fix i and 

t2 [0;T]. It can be verified that there exists a subsequence flkg½N such that the 

inequality (jlkr+ i¡1)¢lk ·T ¡t· (jlkr+i)¢lk holds for some jlk2f1;2; :::; lkg. 

Note that £¢ converges to a Dirac impulse as ¢ tends to zero. Hence, ¤(¢l) 

converges to the identity matrix as l  tends to infinity. Let l = lk and j = jlk in (B25). By 

taking the limit, one gets 

zT
1exp(At)Mi´ ¸ 0                                                  (B26) 

for all t2 [0;T], ´ 2Yi and i = 1; 2; :::; r. Consequently, one has the following 

inequality 

zT
1exp(At)f(u) ¸ 0                                                   (B27) 

for all t2 [0;T] and u2U. Therefore, z1 must be zero due to (B18). This is 

contradiction. 

(6 =) 5) Suppose that 6  holds. It follows from theorem B.2 such that  

a) the pair (A[M1M2:::Mr]) is controllable, 

b) the implication ¸ 2R, z 2Rn, 

zTA= ¸zT ; (Mi)Tz 2Y¤i   for all i = 1; 2; :::; r =) z = 0 
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holds. Now, the following lemma shoul be applied. 

Lemma B.5: Let G 2 RN£N  and H 2 RN£M  be given. Also let W µ RM  be such that 

its convex hull nonempty interior in RM . Suppose that th pair (G;H) is controllable 

and the implication  

¸ 2R, z 2 Rn, zTG= ¸zT , HTz 2W¤ =) z =0                     (B28) 

holds. Then, also the implication 

zTexp(Gt)Hv ¸ 0 for all t ¸ 0 and v 2W =) z =0                   (B29) 

holds. Take G = A, H = [M1M2:::Mr] and W=Y1£Y2:::Yr. It follows from (a) and 

(b) that the hypothesis of the above lemma is satisfied. Hence, the implication 

zTexp(A)[M1 M2 ::: Mr]v ¸ 0 for all t ¸ 0 and v 2W=Y1£Y2:::Yr =) z =0 

holds. Then, the implication 

zTexp(At)f(u) ¸ 0 for all t ¸ 0 and u2U =) z =0              (B30) 

holds. 

(6 =) 1) Note that if the statement 6 holds for the system (B1), does it for the time 

reversed version of the system (B1). Then, the statement 4 holds for (B1). This means 

controllability.  

(4 =) 2) If the statement 4 holds, then one steer any initial state first to zero then, to 

any final state in view of Lemma B.3.  

Lemma B.6: Consider the (B1) such that p=m and the transfer matrix 

D+C(sI ¡A)¡1 is invertible as a rational matrix. Then, the following statements are 

equivalent. 

1) The CLS (B1) is completely controllable 

2) The push-pull system  

_x1 =A11x1 +g(y)                                                   (B31) 

is completely controllable. 
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Proof of Lemma B.6: For the proof of the lemma, some auxiliary results are needed. 

First of all, following lemma which guarantees the existence of smooth functions lying 

in a given polyhedral cone, is needed.  

Lemma B.7: Let Y µRp be a polyhedral cone and y be a C1 function, such that 

y(t)2Y for all t2 [0; ²], where 0 < ² < 1. Then, there exists a C1 function, ¹y such 

that: 

a) ¹y(t) = y(t), for all t2 [0; ²]; 

b) ¹y(k)(1) = 0, for all k = 0;1; :::; and 

c) ¹y(t)2Y, for all t 2 [0;1]. 

Proof: Let only prove the case p = 1 and Y =R+. The rest of the proof is 

generalization to the higher dimensional case. Let ¹¹y(t) be a C1 function, such that 

¹¹y(t) = 1 for t· ²=4, ¹¹y(t) > 1 for ²=4· t· 3²=4 and ¹¹y(t) =0 for 3²=4· t. Such a 

function can be derived from so-called bump function in [24, Lemma 1.2.3] by 

integration and scaling. So, the product of y and ¹¹y(t) proves the claim. The other 

auxiliary results are related with the existence of the solutions of conewise linear 

systems(CLS) with certain proporties[11, Lemmas 2.4 and 3.3]. 

Proposition 3.5: Consider the CLS (1) with u = 0. Then, for each initial state x0, there 

exists an index set i and a positive number ² such that y(t)2Yi for all t2 [0; ²]. 

Now we can turn the proof. Obviously, statement 1 implies to statement 2. For the 

rest, it is enough to show that the system (A11) is controllable, if statement 2 holds. 

Note that, 

V¤(A22 +Mi
2C2;B2 +Mi

2D;C2;D) = f0g and T ¤(A22 +Mi
2C2;B2 +Mi

2D;C2;D) = Rn2 for 

all i = 1; 2; :::; r due to (A23-24) and Proposition 2.1, transfer function 

D+C2(sI ¡A22 +Mi
2C2)

¡1(B2 +Mi
2D) has a polynomial inverse for all 

i = 1; 2; :::; r. 

Take any x10; x1f 2Rn1 and x20; x2f 2Rn2. Consider the system (A11) and apply v = 0. 

According to Proposition 3.5 in [4] it can be found an index i0 and an arbitrarily small 

positive number ² such that y(t) 2Yi0 for all t2 [0; ²]. By applying Lemma B.7, one can 

get a C1 function yin such that: 
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a) yin = y(t), for all t2 [0; ²]; 

b) y
(k)

in (1) = 0, for all k = 0;1; :::; and 

c) yin(t) 2Yi0, for all t 2 [0;1]. 

Then by applying Proposition 2.4 and 2.5 in [4] to the system 

§(A22 +Mi0
2 C2;B2 +Mi0

2 D;C2;D), one can find an input vin such that the output y 

of (A11) is identically yin and the state x2 satisfies x2(0) = x20. Note that the input vin 

should be zero on the interval [0; ²] by the construction of yin and invertibility. 

Moreover, x21 = 0 due to (b) and Proposition 2.5 in [4]. Therefore, the input vin steers 

the state col(x10;x20)) to col(x010; 0)) where x010 := x1(1) [4]. Also, it is can come up 

with an input vout, such that it steers a state col(x01f ; 0)) to col(x1f ; x2f )). Now, it is 

needed to show that the state col(x010; 0)) can be steered to col(x01f ; 0)). To see this, 

Theorem B.1 have to be applied. This theorem gives a positive number T > 0 and a 

C1 function y = ymid, such that the solution x1 of (A11) satisfies x1(0) = x010 and 

x1(T ) = x01f. According to Lemma B.3, function ymid can be chosen such that 

y
(j)

mid(0) = y
(j)

mid(T) = 0 for all j = 0; 1; ::: Moreover, one can find a finite number of 

points, say 0= t0 <t1 <::: < tQ =T , such that ymid(t) 2 Yiq whenever t 2 [tq; tq+1]. 

Since the transfer function D+C2(sI ¡A22 +Mi
2C2)

¡1(B2 +Mi
2D) has a polynomial 

inverse for all i = 1; 2; :::; r, repeated application of Proposition 2.4 in [4] to the 

system §(A22 +Mi0
2 C2;B2 +Mi0

2 D;C2;D) yields an input vmid and a state trajectory 

x2 are satisfied for y = ymid. Also, x2(0) =x2(T) =0 due to Proposition 2.5 in [4]. 

Consequently, the concatenation of vin, vmid and vout steers the state col(x10;x20) to 

the state col(x1f ; x2f ). 

By combining the previous lemma with Theorem B.1, main result of controllability 

problem is as follows. 

Theorem B.8: Consider the (B1) such that p=m and the transfer matrix 

D+C(sI ¡A)¡1 is invertible as a rational matrix. Then, the CLS is completely 

controllable if and only if: 

1) the relation 
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rX

i=1

hA+M iC j im(B +M iD)i = Rn                                  (B32) 

is satisfied. And, 

2) the implication 

£
zT wT

i

¤
·
A+MiC ¡ ¸I B +MiD

C D

¸

= 0                             (B33) 

where ¸ 2R, z 2 Rn, wi 2Rm, wi 2 Y
¤
i  for all i = 1; 2; :::; r , then z = 0 holds. 

Proof of Theorem B.8: If it is considered Lemma1 in [31] and Theorem B.1, it is enough 

to show that the conrollability of the pair   

(A11; [L1 +M1
1 L1 +M2

1 ::: L1 +Mr
1 ])                              (B34) 

with respect to Y1£Y2:::£Yr is equivalent to the conditions presented in Theorem 

B.8. Note that the former is equivalent to the following conditions: 

a) the pair (A11; [L1 +M1
1 L1 +M2

1 ::: L1 +Mr
1 ]) is controllable and 

b) the implication 

zTA11 = ¸zT ; ¸2Re; (L1 +Mi
1)

Tz 2Y¤i   for all i =) z = 0 

holds. 

It is aimed to prove the equivalance of (a) to 1 and of (b) to 2. 

7) a , 1 

Note that ,

hA+MiC j im(B+MiD)i= h(A¡BK)+Mi(C¡DK) j im(B+MiD)i 

for any K due to Proposition 2.1 in [10]. Take K 2K(V¤). Note that the condition in 

1of Theorem B.8 is invariant under state space transformations. Therefore, one can 

take 

(A¡BK) +Mi(C ¡DK) =

·
A11 (L1 +Mi

1)C2

0 A22+Mi
2C2

¸

,                       (B35) 

B +MiD =

·
(L1 +Mi

1)D

B2 +Mi
2D

¸

.                                        (B36) 
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Let R, denote h(A¡BK)+Mi(C¡DK) j im(B+MiD)i. Note that Ri is an input- 

containing conditioned invariant subspace of the system §(A;B;C;D). Hence, T¤ , 

the smallest of the input-containing conditioned invariant subspaces must be 

contained in Ri. In the present case, following inclusions hold 

im

·
0

In2

¸

µRi.                                                         (B37) 

Now, it is needed the following lemma. 

Lemma B.9: Let O, P  and Q be vector spaces such that O =P ©Q. Also let 

¼P(¼Q) :O!Q satisfy the following properties: 

a)P  is F -invariant, 

b) ¼PF¼P = ~F , 

c)QµhF j imGi. 

Then, h ~F j (¼PF¼Q)h+im(¼PG) µ hF j imGi. 

Proof: Note that  

~F hF j imi = ¼PF¼PhF j imGi                                           (B38) 

                            =¼PF(P\hF j imGi)                                    (B39) 

                         µ¼P(P\hF j imGi)                                        (B40) 

                                            µ (P\hF j imGi)µhF j imGi.                  (B41)  

This shows that the subspace hF j imGi is ~F -invariant. Note also that 

im¼PF¼Q=¼PFQµ¼PFhF j imGi µ¼PhF j imGi µhF j imGi 

and 

im¼PGµ imGµhF j imGi.                                   (B42) 

Last two inclusions show that the subspace hF j imGi contains 

im (¼PF¼Q)+ im (¼P)G. Since h ~F j (im ¼PF¼Q)i+ im (¼P)G is the smallest ~F -

invariant subspace that contains im (¼PF¼Q)+ im (¼P)G, the inclusion 

h ~F j (¼PF¼Q)i+ im(¼PG) µ hF j imGi 

holds.  
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Now, Let take  

O = Rn
, P = im

·
In1

0

¸

, O = im

·
0

In2

¸

, S = Rm
                       (B43) 

Fi = (A¡BK)+Mi(C¡DK) Gi =B+MiD                 (B44) 

~F =

·
A11 0

0 0

¸

. 

Note that 

¼P =

·
In1

0

0 0

¸

  and  ¼Q =

·
0 0

0 In2

¸

. 

Then, one has 

¼PF i¼P =

·
A11 0

0 0

¸

,                                                   (B45) 

¼PF i¼Q =

·
0 (L1 +Mi

1)C2

0 0

¸

,                                          (B46) 

¼PGi =

·
(L1 +Mi

1)D

0

¸

.                                               (B47) 

Note that, the first hypothesis of Lemma B.9 satisfies due to (B35) and (B36). It follows 

from (B43) and (B44) that the second one is also satisfied. Finally, the third follows 

from (B37). Then, Lemma B.9 results in  

h

·
A11 0

0 0

¸

j im

·
(L1 +Mi

1)C2 0

(L1 +Mi
1)D 0

¸

i µ Ri.                          (B48) 

By the invertibility hypothesis, the matrix  
£
C2 D

¤
 must be of full row rank. Then, the 

previous inclusion can be written as 

h

·
A11 0

0 0

¸

j im

·
(L1 +Mi

1)

0

¸

i µ Ri .                                 (B49) 

Summing both sides over i, one gets  

Pr

i=1 h

·
A11 0

0 0

¸

j im

·
(L1 +Mi

1)

0

¸

i µ
Pr

i=1Ri .                    (B50) 

This implies that 
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h

·
A11 0

0 0

¸

j im

·
L1 +M1

1 L1 +M2
1 ::: L1 +Mr

1

0 0 ::: 0

¸

i µ
Pr

i=1Ri .    (B51) 

Together with (B37), the previous inclusion implies that the implication "a , 1" holds. 

For the reverse, suppose that 1 holds but (a) does not. Then, there exists a nonzero 

vector z and ¸ 2 C such that  

z¤[¸IA11 L1 +M1
1 L1 +M2

1 :::L1 +Mr
1 ] = 0.                         (B52) 

It can be verified that the real part of , say , belongs to  for all i. Thus, w belongs 

to  .This contradicts 1. 

8) : Statement 2 is invariant under state space transformations. So it is enough 

to prove the statement for the system (A11). Let , ,  and  

be such that the following product is equal to zero: 

.             (B53) 

This would result in 

. 

Note that  for all . Then, it follows from 

Proposition 2.3 in [4] that  and . This implies that (b) is 

equivalent to 2. 

 

 

 

 

 

 

 

 

z w R?
i

Tr

i=1R
?
i = (

Pr

i=1Ri)
?

b,2

¸ 2R v 2Rn1 z 2Rn2 w 2Rm

2

4
v

z

w

3

5

T

=

2

4
A11 ¡ ¸I (L1 + M i

1)C2 (L1 + M i
1)D

0 A22 + M i
2C2 ¡ ¸I B2 + (L1 + M i

2)D

0 C2 D

3

5

vTA11 = ¸vT

·
z

wi + (L1 +M i
1)v

¸T ·
A22 +Mi

2C2 ¡ ¸I B2 + (L1 +M i
2)D

C2 D

¸

= 0

V¤(A22 +Mi
2C2;B2 +Mi

2D;C2;D) = 0 i

z = 0 wT
i = vT(L1 +Mi

1)
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